blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
b5d497e34c6d852313063361b3beaa86632b1650
18d94ebd5eb0854340d0f4ce68c3a0c879f44d7e
/LinkedInCrawler/parameters.py
2cdd0ccfdbeb5efde9e8af79f6fa4399a7aad9ef
[]
no_license
benjamincarney/EECS-Faculty-Salary-Predictor
c3d2a268847a377fecaab9885a815f01edd6f701
2a3efe01806c93f7cbdd8a4db22c31ed296101ba
refs/heads/master
2020-04-24T19:54:21.149330
2019-08-14T16:41:44
2019-08-14T16:41:44
172,227,168
3
1
null
null
null
null
UTF-8
Python
false
false
414
py
''' Contains user information to login to LinkedIn ''' # specifies the path to the chromedriver.exe driverDirectory = 'C:/Users/Aaron/Desktop/ChromeDriver/chromedriver.exe' # query = 'site:linkedin.com/in/ AND "University of Michigan" AND "Professor"' query = 'site:linkedin.com/in/ AND "University of Michigan"' # User log-in information linked_in_email = "[email protected]" linked_in_password = "password123"
d688346d4d087c2a6241963d45df681e1cd106b5
a51fb785beb1fe70c9b1352ac24159d01061868c
/05-深入python的dict和set/04-dict_performance.py
63cf01a087618bb5c08d3767a03a2abbfc7af58d
[]
no_license
zhagyilig/AdvancePy
f3cfe560919bd15760686b391d863d813781a867
f98a8abb5898474a0f00d2d9856fd46713b65d82
refs/heads/master
2020-09-07T08:35:14.779826
2020-01-06T02:30:26
2020-01-06T02:30:26
220,724,647
0
0
null
null
null
null
UTF-8
Python
false
false
3,200
py
# -*- encoding: utf-8 -*- __author__ = 'ericzhang' from random import randint def load_list_data(total_nums, target_nums): """ 从文件中读取数据,以list的方式返回 :param total_nums: 读取的数量 :param target_nums: 需要查询的数据的数量 """ all_data = [] target_data = [] file_name = "fbobject_idnew.txt" with open(file_name, encoding="utf8", mode="r") as f_open: for count, line in enumerate(f_open): if count < total_nums: all_data.append(line) else: break for x in range(target_nums): random_index = randint(0, total_nums) if all_data[random_index] not in target_data: target_data.append(all_data[random_index]) if len(target_data) == target_nums: break return all_data, target_data def load_dict_data(total_nums, target_nums): """ 从文件中读取数据,以dict的方式返回 :param total_nums: 读取的数量 :param target_nums: 需要查询的数据的数量 """ all_data = {} target_data = [] file_name = "fbobject_idnew.txt" with open(file_name, encoding="utf8", mode="r") as f_open: for count, line in enumerate(f_open): if count < total_nums: all_data[line] = 0 else: break all_data_list = list(all_data) for x in range(target_nums): random_index = randint(0, total_nums-1) if all_data_list[random_index] not in target_data: target_data.append(all_data_list[random_index]) if len(target_data) == target_nums: break return all_data, target_data def find_test(all_data, target_data): #测试运行时间 test_times = 100 total_times = 0 import time for i in range(test_times): find = 0 start_time = time.time() for data in target_data: if data in all_data: find += 1 last_time = time.time() - start_time total_times += last_time return total_times/test_times if __name__ == "__main__": # all_data, target_data = load_list_data(10000, 1000) # all_data, target_data = load_list_data(100000, 1000) # all_data, target_data = load_list_data(1000000, 1000) # all_data, target_data = load_dict_data(10000, 1000) # all_data, target_data = load_dict_data(100000, 1000) # all_data, target_data = load_dict_data(1000000, 1000) all_data, target_data = load_dict_data(2000000, 1000) last_time = find_test(all_data, target_data) #dict查找的性能远远大于list #在list中随着list数据的增大 查找时间会增大 #在dict中查找元素不会随着dict的增大而增大 print(last_time) # 1. dict的key或者set的值 都必须是可以hash的 # 不可变对象 都是可hash的, str, fronzenset, tuple,自己实现的类 __hash__ # 2. dict的内存花销大,但是查询速度快, 自定义的对象 或者python内部的对象都是用dict包装的 # 3. dict的存储顺序和元素添加顺序有关 # 4. 添加数据有可能改变已有数据的顺序
8f835971103604fef87f915b2e98181e52cbf08a
6a747c7daca848aa0f352fe2466dba249fa08eda
/customerapp/customerapp/wsgi.py
cfd56fbe00295ab7b1083b1ead3d7c3426c4d1fb
[]
no_license
sujabshrestha/customerapp
229ae8a70f04be4402ed5470910dcb7a502cc950
74b31e34d895c2f06a6520b448a15b0092b7a50f
refs/heads/master
2023-01-20T20:25:07.552808
2020-12-02T14:21:44
2020-12-02T14:21:44
317,863,413
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for customerapp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'customerapp.settings') application = get_wsgi_application()
5072fa236fc47cf8d3722ba3b44e8dfdd85b3df4
11ed61997e14cac429dc5fe76b1de8f17e457a99
/lab1/task1.py
c6781343573519b3ffc36489b2eaa93760b9485a
[]
no_license
4jeR/wfiis-python-in-the-enterprise
0215cf9e005665a3bee5eb5f4eb407ea5991ef02
8c32e0e5651c4d34bd3ab65f87564a65b38ac9af
refs/heads/master
2023-01-13T21:35:40.371763
2020-11-16T18:33:41
2020-11-16T18:33:41
304,587,188
0
0
null
null
null
null
UTF-8
Python
false
false
3,150
py
# Write a module that will simulate autonomic car. # The simulation is event based, an example: # car1 = Car() # car1.act(event) # print(car1.wheel_angle, car1.speed) # where event can be anything you want, i.e. : # `('obstacle', 10)` where `10` is a duration (time) of the event. ##The program should: # - act on the event # - print out current steering wheel angle, and speed # - run in infinite loop # - until user breaks the loop #The level of realism in simulation is of your choice, but more sophisticated solutions are better. #If you can thing of any other features, you can add them. #Make intelligent use of pythons syntactic sugar (overloading, iterators, generators, etc) #Most of all: CREATE GOOD, RELIABLE, READABLE CODE. #The goal of this task is for you to SHOW YOUR BEST python programming skills. #Impress everyone with your skills, show off with your code. # #Your program must be runnable with command "python task.py". #Show some usecases of your library in the code (print some things) # #When you are done upload this code to github repository. # #Delete these comments before commit! #Good luck. import time from random import randint import math class Engine: def __init__(self, acc_rate=5): self.rate = acc_rate class Brakes: def __init__(self, dec_rate=5): self.rate = dec_rate class Car: def __init__(self, engine, brakes, wheel_angle=0, speed=0): self.engine = engine self.brakes = brakes self.wheel_angle = 0 self.speed = 0 def __str__(self): return f'Car({self.wheel_angle} {self.speed})' def accelerate(self): print(f'Car is accelerating by {self.engine.rate}') if self.speed < 70: self.speed += self.engine.rate self.wheel_angle += self.speed * 0.01 def decelerate(self): self.speed -= self.brakes.rate self.wheel_angle -= self.speed * 0.01 if self.speed < 0: self.speed = 0 if self.wheel_angle < 0: self.wheel_angle = 0 def act(self, event): global total_time print(f'Car has slowed, because of {event.name}') for i in range(event.duration): self.decelerate() if self.wheel_angle < 0: self.wheel_angle = 0 total_time += 1 class Event: def __init__(self, name='Obstacle', duration=3, odds=10): self.name = name self.duration = duration self.odds = odds def __str__(self): return f'An event occured: {self.name}, for {self.duration}' def __repr__(self): return f'An event occured: {self.name}, for {self.duration}' if __name__=='__main__': total_time = 0 engine = Engine(4) brakes = Brakes(15) car = Car(engine=engine, brakes=brakes) while True: total_time += 1 car.accelerate() print(f'Car: {car.speed} km/h, {car.wheel_angle} rate') print(f'[TIME {total_time}]') event_odds = randint(0, 100) if event_odds < 5: evt = Event('Obstacle', 3) car.act(evt) time.sleep(1)
035d3b7ecfd085642724be6fbf2d04839d3ff812
4c68186ef1c4cb184e4b09192bff080ea8f7bf57
/ERROR:print odd num.py
2651d3dd4c74f71b358a65f9fd3f5e55456f1137
[]
no_license
neelakandan1905/python
e70c12d45a7c32be9787c85551c5647b90141bad
75b23c751f22f763b1c881b0c83e32a83a9683f4
refs/heads/master
2021-06-23T01:28:47.828267
2021-04-09T12:09:13
2021-04-09T12:09:13
211,134,263
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
n= input() l=list(n) c=0 for i in l: if int(i)%2!=0: print(i,end=" ") elif int(i)%2==0: c=c+1 if len(l)==c: print(-1)
7f470f8bf2a672988fc108db926df5c8295a3df2
d2dd15ebf96c0ded11666998d7e3b8c2251adf75
/roles/blueprint/templates/PushBlueprint.py.j2
fed4f22c2ed6191cd1105bbc8504cac8da760bfa
[]
no_license
borgified/ansible-hadoop
98e9e24631aa826350a62b0227fe6902b65edd18
00508df9be33cf50853b157bf865d1ddef50dea6
refs/heads/master
2020-11-30T10:54:07.132488
2014-09-23T10:01:08
2014-09-23T10:01:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,974
j2
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import sys import requests AMBARI_SERVER = "{{ hostvars[groups['ambari_server'][0]]['ansible_fqdn'] }}" def main(): # Read blueprint file f = open('/root/ambari-install/multi-nodes-hdp.json','r') blueprint_data = f.read() f.close() # Push blueprint ambari_url = "http://" + AMBARI_SERVER + ":8080/api/v1/blueprints/multi-nodes-hdp" r = requests.post(ambari_url, blueprint_data, auth=("admin","admin"), headers={"X-Requested-By":"ambari-script"}) if r.status_code != 201: print "return code is %s" % r.status_code print r.text # sys.exit(1) # Read blueprint file f = open('/root/ambari-install/hosts-map.json','r') maps_data = f.read() f.close() # Push blueprint ambari_url = "http://" + AMBARI_SERVER + ":8080/api/v1/clusters/hortonworks" print ambari_url r = requests.post(ambari_url, maps_data, auth=("admin","admin"), headers={"X-Requested-By":"ambari-script"}) if r.status_code != 202: print "return code is %s" % r.status_code print r.text ambari_url = "http://" + AMBARI_SERVER + ":8080/api/v1/clusters" r = requests.get(ambari_url, auth=("admin","admin")) if __name__ == "__main__": main()
f51dc8e865ace127ea3dc8e354921dc11e914eae
0c69d52c02923d896855be6df48d63eb7c1d8a2f
/counting_quad_sorts.py
48704861b8b3601d258228d8326a214d36946367
[]
no_license
bzia/Complexity-Visualizer
d2e5c196cc17377a7539b9b7c323ee0627e363dd
e34654728c2869ca4b775e9aa5f9676c43642b4d
refs/heads/main
2023-04-24T05:27:20.380688
2021-05-04T16:37:46
2021-05-04T16:37:46
325,883,778
0
0
null
null
null
null
UTF-8
Python
false
false
2,786
py
""" This module contains four sorting algorithms which can be used in other models to generate empirical data. """ def bubbleSort(items): """ Orders the items from lowest to highest value Parameters: items - list to be sorted Returns: count - number of times the loop has been iterated """ swapped = True count = 0 while swapped: swapped = False for i in range(1,len(items)): if items[i-1] > items[i]: items[i-1], items[i] = items[i], items[i-1] # Swap values swapped = True count += 1 return count def optimizedBubbleSort(items): """ Optimized version of classic bubble sort which orders the items from lowest to highest value Parameters: items - list to be sorted Returns: count - number of times the loop has been iterated """ count = 0 n = len(items) swapped = True while swapped: count += 1 swapped = False for i in range(1, n): count += 1 if items[i-1] > items[i]: items[i-1], items[i] = items[i], items[i-1] swapped = True n -= 1 return count def selectionSort(items): """ Orders the items from lowest to highest value Parameters: items - list to be sorted Returns: count - number of times the loop has been iterated """ count = 0 # for analysis only n = len(items) for i in range(n-1): count += 1 min = i for j in range(i + 1,n): if (items[j] < items[min]): min = j count += 1 if (min != i): items[i], items[min] = items[min], items[i] # Swap Values return count def insertionSort(items): """ Orders the items from lowest to highest value Parameters: items - list to be sorted Returns: count - number of times the loop has been iterated """ count = 0 # Traverse from 1 to the length of the list. for i in range(1, len(items)): count += 1 key = items[i] # Move elements of arr[0..i-1], that are # greater than key, to one position ahead # of their current position j = i-1 while j >= 0 and key < items[j]: count += 1 items[j + 1] = items[j] j -= 1 items[j + 1] = key return count if __name__ == '__main__': print(bubbleSort([9,8,7,6,5,4,3,2,1])) print(optimizedBubbleSort([9,8,7,6,5,4,3,2,1])) print(selectionSort([9,8,7,6,5,4,3,2,1])) print(insertionSort([9,8,7,6,5,4,3,2,1])) # The above code prints the loop iterations ('count') # for each of the 4 sorting algorithms.
c2506ad3b81d0b1849f86465fdfb65d22aeedc52
293e76be374728f72c89019b0274cf0755629e95
/feature graphs.py
3ed91b771740f2afd9b55c97c112cd2eb910801a
[]
no_license
Hudki/Noise-Pollution-Classification-
a206915015d5229af486219ea1e26c38291fbf5d
6a4928f89aaca43b6872129670987dcee3697cf2
refs/heads/master
2020-06-16T19:31:42.430749
2019-12-04T00:04:20
2019-12-04T00:04:20
195,679,415
1
0
null
2019-08-07T17:45:24
2019-07-07T17:32:38
null
UTF-8
Python
false
false
2,008
py
import librosa import matplotlib.pyplot as plt import numpy as np import librosa.display y, sr = librosa.load('output.wav') librosa.feature.melspectrogram(y=y, sr=sr) librosa.feature.mfcc(y=y, sr=sr) librosa.feature.chroma_stft(y=y, sr=sr) D = np.abs(librosa.stft(y))**2 S = librosa.feature.melspectrogram(S=D, sr=sr) S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000) V = np.abs(librosa.stft(y)) a = librosa.effects.harmonic(y) tonnetz = librosa.feature.tonnetz(y=a, sr=sr) contrast = librosa.feature.spectral_contrast(S=V, sr=sr) mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) chroma = librosa.feature.chroma_stft(S=V, sr=sr) """Mel-Frequency Spectrogram""" plt.figure(figsize=(10, 4)) S_dB = librosa.power_to_db(S, ref=np.max) librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sr, fmax=8000) plt.colorbar(format='%+2.0f dB') plt.title('Mel-frequency spectrogram') plt.tight_layout() """Mel-Frequency Cepstral Coefficients""" plt.figure(figsize=(10, 4)) librosa.display.specshow(mfccs, x_axis='time') plt.colorbar() plt.title('MFCC') plt.tight_layout() """Spectral Contract""" plt.figure() plt.subplot(2, 1, 1) librosa.display.specshow(librosa.amplitude_to_db(V,ref=np.max), y_axis='log') plt.colorbar(format='%+2.0f dB') plt.title('Power spectrogram') plt.subplot(2, 1, 2) librosa.display.specshow(contrast, x_axis='time') plt.colorbar() plt.ylabel('Frequency bands') plt.title('Spectral contrast') plt.tight_layout() """Tonnetz""" plt.figure() plt.subplot(2, 1, 1) librosa.display.specshow(tonnetz, y_axis='tonnetz') plt.colorbar() plt.title('Tonal Centroids (Tonnetz)') plt.subplot(2, 1, 2) librosa.display.specshow(librosa.feature.chroma_cqt(a, sr=sr), y_axis='chroma', x_axis='time') plt.colorbar() plt.title('Chroma') plt.tight_layout() """Chromagram""" plt.figure(figsize=(10, 4)) librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') plt.colorbar() plt.title('Chromagram') plt.tight_layout() plt.show()
851bc6989765017b016ae4c617aace38f8d4ff45
e67fa22b0193dca6809a15fa67a84f1d2ba27cf5
/src/map_conf_cities.py
a6696409d84aef360dfb31186ab2b88326a54f33
[]
no_license
kientz/If-you-host-it-will-they-come
6c8f7bfee8e8ce6cee60c4ba00ab93fbd5690645
6e86204c3c56709d0abd9d8ded0241f5fc22cb54
refs/heads/master
2021-01-23T12:48:47.881358
2017-06-16T19:25:42
2017-06-16T19:25:42
93,201,437
0
0
null
null
null
null
UTF-8
Python
false
false
8,143
py
import folium import pandas as pd import numpy as np from set_region_and_super_region import define_regions # float_formatter = lambda x: "%.1f" % x # np.set_printoptions(formatter={'float_kind':float_formatter}) superregions2, superregions, regions, regions2, state_to_code, code_to_state = define_regions() srg=pd.read_csv('../data/superregions.csv') #Get Lat Long of Region Centers rg=pd.read_csv('../data/regions.csv') #Region Lat Long latrg = list(rg["LAT"]) lonrg = list(rg["LON"]) rgid = list(rg["REGIONS"]) #Super Region Lat Long and names latsrg = list(srg["LAT"]) lonsrg = list(srg["LON"]) srgid = list(srg["SUPER_REGIONS"]) df=pd.read_excel('../data/conference_lat_long_and_counts.xlsx') colnames=list(df.columns) #L_CityState_distance_cost_count.csv backup data map = folium.Map(location=[38.58, -99.09], zoom_start=5, tiles="Mapbox Bright") #one at a time #map.add_child(folium.Marker(location=[38.2,-99.1]),popup="MARKER HERE",icon=folium.Icon(color='red')) #Have map show base of super regions colored differently if False: fgSR = folium.FeatureGroup(name="SuperRegions") #fgSR.add_child(folium.GeoJson(data=open('gz_2010_us_040_00_500k.json', 'r', encoding='utf-8-sig'), #style_function = lambda feature: dict(color='red', weight=0.2, opacity=0.6))) #South fgSR.add_child(folium.GeoJson(data=open('gz_2010_us_040_00_500k.json', 'r', encoding='utf-8-sig'), style_function=lambda x: {'fillColor': 'cyan' if x['properties']['NAME'] in superregions2['Northeast'] else 'orange' if x['properties']['NAME'] in superregions2['Midwest'] else 'red' if x['properties']['NAME'] in superregions2['West'] else 'm','weight':0.1})) #South # #fgsrc = folium.FeatureGroup(name="SuperRegionCenters") #feature group # for lt, ln, id in zip(latsrg, lonsrg,srgid): # fgSR.add_child(folium.CircleMarker(location=[lt, ln], radius = 6, popup=str(id), # fill_color='red', color = 'grey', fill_opacity=0.9)) if True: fgR = folium.FeatureGroup(name="Regions") fgR.add_child(folium.GeoJson(data=open('gz_2010_us_040_00_500k.json', 'r', encoding='utf-8-sig'), style_function=lambda x: {'fillColor': '#ffff00' if x['properties']['NAME'] in regions2['Great Lakes'] else '#7fffd4' if x['properties']['NAME'] in regions2['Central Midwest'] else '#b03060' if x['properties']['NAME'] in regions2['Mid-Atlantic'] else '#cd853f' if x['properties']['NAME'] in regions2['Mountain States'] else '#b22222' if x['properties']['NAME'] in regions2['Northwest'] else '#ff0000' if x['properties']['NAME'] in regions2['South-Central'] else '#00ff00' if x['properties']['NAME'] in regions2['Southeast'] else '#0000ff' if x['properties']['NAME'] in regions2['Northeast'] else '#a020f0','weight':0.1})) #Southwest # #Feature Group # #fgrc = folium.FeatureGroup(name="RegionCenters") #or use fg # ##fgv.add_child(folium.Marker(location=[38.2,-99.1]),popup="MARKER HERE",icon=folium.Icon(color='red')) # for lt, ln, id in zip(latrg, lonrg,rgid): # fgR.add_child(folium.CircleMarker(location=[lt, ln], radius = 6, popup=str(id), # fill_color='red', color = 'grey', fill_opacity=0.9)) from folium.features import DivIcon #m = folium.Map([45.0302, -105.22], zoom_start=13) folium.map.Marker( [52.0, -100.0], icon=DivIcon( icon_size=(500,36), icon_anchor=(0,0), html='<div style="font-size: 24pt">Conference Cities</div>', ) ).add_to(map) ''' cols in conference_lat_long_and_counts.xlsx ['L_CityState', 'L_City', 'L_Zip', 'L_lat', 'L_lon', 'L_State', 'L_Region', 'L_Super_Region', 'Total Conferences', 'Academic Administration', 'Advancement', 'Enrollment Management', 'Leadership', 'Physical Campus', 'Planning & Finance', 'Student Affairs', 'Teaching & Learning'] ''' num_cities=len(df) #do not include domains with 0 counts. fgCon = folium.FeatureGroup(name="Conferences") for i in range(num_cities): html = '<i>' + 'LOCATION: ' + df['L_CityState'][i] + '<br>'+\ 'Total Num Conferences: ' + df['Total Conferences'][i].astype(str) + '<br>' +\ 'Total Conference Attendees: ' + df['Total Attendance'][i].astype(str) + '<br>' +\ 'Avg Conference Attendace: ' + str(round(float(df['Overall City Avg Attendance'][i]),1)) + '<br><br>' +\ ['Academic Administration: ' + df['Academic Administration'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Academic Administration'][i]),1))+'<br>',''][df['Academic Administration'][i]==0] +\ ['Advancement: ' + df['Advancement'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Advancement'][i]),1))+ '<br>',''][df['Advancement'][i]==0] +\ ['Enrollment Management: ' + df['Enrollment Management'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Enrollment Management'][i]),1))+ '<br>',''][df['Enrollment Management'][i]==0] +\ ['Leadership: ' + df['Leadership'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Leadership'][i]),1))+ '<br>',''][df['Leadership'][i]==0] +\ ['Physical Campus: ' + df['Physical Campus'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Physical Campus'][i]),1))+ '<br>',''][df['Physical Campus'][i]==0]+\ ['Planning & Finance: ' + df['Planning & Finance'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Planning & Finance'][i]),1))+ '<br>',''][df['Planning & Finance'][i]==0] +\ ['Student Affairs: ' + df['Student Affairs'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Student Affairs'][i]),1))+ '<br>',''][df['Student Affairs'][i]==0] +\ ['Teaching & Learning: ' + df['Teaching & Learning'][i].astype(str) + ' ' + str(round(float(df['Avg Atten Teaching & Learning'][i]),1)) + '</i>','</i>'][df['Teaching & Learning'][i]==0] iframe = folium.IFrame(html=html, width=360, height=270) popup = folium.Popup(iframe, max_width=2650) #folium.CircleMarker(location=[df['L_lat'][i],df['L_lon'][i]],color='red',fill_color='red',radius=6,popup=popup).add_to(map) if df['Total Conferences'][i]<8: rad=6 else: rad = df['Total Conferences'][i] fgCon.add_child(folium.CircleMarker(location=[df['L_lat'][i],df['L_lon'][i]],color='red',fill_color='red',radius=rad,popup=popup)) # for lt, ln, id in zip(latrg, lonrg,rgid): # fgR.add_child(folium.CircleMarker(location=[lt, ln], radius = 6, popup=str(id), # fill_color='red', color = 'grey', fill_opacity=0.9)) # crime['text'] = '<i>' + 'Murder: ' + crime['Murder'].astype(str) + '<br>' +\ # 'Rape: ' + crime['Rape'].astype(str) + '<br>' +\ # 'Aggr. Aslt.: ' + crime['Aggravated Assault'].astype(str) + '</i>' # df['L_CityState'][i] + # str(df['Total Conferences'][i])+ # str(df['Academic Administration'][i])+ # str(df['Advancement'][i])+ # str(df['Enrollment Management'][i])+ # str(df['Leadership'][i])+ # str(df['Physical Campus'][i])+ # str(df['Planning & Finance'][i])+ # str(df['Student Affairs'][i])+ # str(df['Teaching & Learning'][i]) # # df['L_CityState'][i] +str(df['Total Conferences'][i])+str(df['Academic Administration'][i])+str(df['Advancement'][i])+str(df['Enrollment Management'][i])+str(df['Leadership'][i])+str(df['Physical Campus'][i])+str(df['Planning & Finance'][i])+str(df['Student Affairs'][i])+str(df['Teaching & Learning'][i]) #map.add_child(fgrc) #map.add_child(fgsrc) #map.add_child(fgSR) map.add_child(fgR) map.add_child(fgCon) map.add_child(folium.LayerControl()) map.save("Map_of_Conference_Cities.html") # #Markers # map_2 = folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner', zoom_start=13) # folium.CircleMarker(location=[45.5215, -122.6261], radius=500, # popup='Laurelhurst Park', color='#3186cc', # fill_color='#3186cc').add_to(map_2) # # folium.Marker(location=[45.5244, -122.6699], popup='The Waterfront').add_to(map_2) # map_2.save("MarkersExamp.html")
573ab5c65291d81f2a1a2ccb6ae82183b69edb20
baf592c7483656ca8270472c4b90d4a9f250882f
/Lib/site-packages/redis/connection.py
8329cf6570b96b123a05391caa357ff4785a71d6
[]
no_license
LuisACC/test2
10c0873df197a564506804abc246987e53d51943
c910c7cda7d7602e84ad314b4f5a35b1219828b8
refs/heads/main
2023-03-23T00:16:47.536965
2021-03-12T11:06:03
2021-03-12T11:06:03
347,027,100
0
0
null
null
null
null
UTF-8
Python
false
false
55,954
py
from __future__ import unicode_literals from distutils.version import StrictVersion from itertools import chain from time import time import errno import io import os import socket import threading import warnings from redis._compat import (xrange, imap, unicode, long, nativestr, basestring, iteritems, LifoQueue, Empty, Full, urlparse, parse_qs, recv, recv_into, unquote, BlockingIOError, sendall, shutdown, ssl_wrap_socket) from redis.exceptions import ( AuthenticationError, AuthenticationWrongNumberOfArgsError, BusyLoadingError, ChildDeadlockedError, ConnectionError, DataError, ExecAbortError, InvalidResponse, NoPermissionError, NoScriptError, ReadOnlyError, RedisError, ResponseError, TimeoutError, ) from redis.utils import HIREDIS_AVAILABLE try: import ssl ssl_available = True except ImportError: ssl_available = False NONBLOCKING_EXCEPTION_ERROR_NUMBERS = { BlockingIOError: errno.EWOULDBLOCK, } if ssl_available: if hasattr(ssl, 'SSLWantReadError'): NONBLOCKING_EXCEPTION_ERROR_NUMBERS[ssl.SSLWantReadError] = 2 NONBLOCKING_EXCEPTION_ERROR_NUMBERS[ssl.SSLWantWriteError] = 2 else: NONBLOCKING_EXCEPTION_ERROR_NUMBERS[ssl.SSLError] = 2 # In Python 2.7 a socket.error is raised for a nonblocking read. # The _compat module aliases BlockingIOError to socket.error to be # Python 2/3 compatible. # However this means that all socket.error exceptions need to be handled # properly within these exception handlers. # We need to make sure socket.error is included in these handlers and # provide a dummy error number that will never match a real exception. if socket.error not in NONBLOCKING_EXCEPTION_ERROR_NUMBERS: NONBLOCKING_EXCEPTION_ERROR_NUMBERS[socket.error] = -999999 NONBLOCKING_EXCEPTIONS = tuple(NONBLOCKING_EXCEPTION_ERROR_NUMBERS.keys()) if HIREDIS_AVAILABLE: import hiredis hiredis_version = StrictVersion(hiredis.__version__) HIREDIS_SUPPORTS_CALLABLE_ERRORS = \ hiredis_version >= StrictVersion('0.1.3') HIREDIS_SUPPORTS_BYTE_BUFFER = \ hiredis_version >= StrictVersion('0.1.4') HIREDIS_SUPPORTS_ENCODING_ERRORS = \ hiredis_version >= StrictVersion('1.0.0') if not HIREDIS_SUPPORTS_BYTE_BUFFER: msg = ("redis-py works best with hiredis >= 0.1.4. You're running " "hiredis %s. Please consider upgrading." % hiredis.__version__) warnings.warn(msg) HIREDIS_USE_BYTE_BUFFER = True # only use byte buffer if hiredis supports it if not HIREDIS_SUPPORTS_BYTE_BUFFER: HIREDIS_USE_BYTE_BUFFER = False SYM_STAR = b'*' SYM_DOLLAR = b'$' SYM_CRLF = b'\r\n' SYM_EMPTY = b'' SERVER_CLOSED_CONNECTION_ERROR = "Connection closed by server." SENTINEL = object() class Encoder(object): "Encode strings to bytes-like and decode bytes-like to strings" def __init__(self, encoding, encoding_errors, decode_responses): self.encoding = encoding self.encoding_errors = encoding_errors self.decode_responses = decode_responses def encode(self, value): "Return a bytestring or bytes-like representation of the value" if isinstance(value, (bytes, memoryview)): return value elif isinstance(value, bool): # special case bool since it is a subclass of int raise DataError("Invalid input of type: 'bool'. Convert to a " "bytes, string, int or float first.") elif isinstance(value, float): value = repr(value).encode() elif isinstance(value, (int, long)): # python 2 repr() on longs is '123L', so use str() instead value = str(value).encode() elif not isinstance(value, basestring): # a value we don't know how to deal with. throw an error typename = type(value).__name__ raise DataError("Invalid input of type: '%s'. Convert to a " "bytes, string, int or float first." % typename) if isinstance(value, unicode): value = value.encode(self.encoding, self.encoding_errors) return value def decode(self, value, force=False): "Return a unicode string from the bytes-like representation" if self.decode_responses or force: if isinstance(value, memoryview): value = value.tobytes() if isinstance(value, bytes): value = value.decode(self.encoding, self.encoding_errors) return value class BaseParser(object): EXCEPTION_CLASSES = { 'ERR': { 'max number of clients reached': ConnectionError, 'Client sent AUTH, but no password is set': AuthenticationError, 'invalid password': AuthenticationError, # some Redis server versions report invalid command syntax # in lowercase 'wrong number of arguments for \'auth\' command': AuthenticationWrongNumberOfArgsError, # some Redis server versions report invalid command syntax # in uppercase 'wrong number of arguments for \'AUTH\' command': AuthenticationWrongNumberOfArgsError, }, 'EXECABORT': ExecAbortError, 'LOADING': BusyLoadingError, 'NOSCRIPT': NoScriptError, 'READONLY': ReadOnlyError, 'NOAUTH': AuthenticationError, 'NOPERM': NoPermissionError, } def parse_error(self, response): "Parse an error response" error_code = response.split(' ')[0] if error_code in self.EXCEPTION_CLASSES: response = response[len(error_code) + 1:] exception_class = self.EXCEPTION_CLASSES[error_code] if isinstance(exception_class, dict): exception_class = exception_class.get(response, ResponseError) return exception_class(response) return ResponseError(response) class SocketBuffer(object): def __init__(self, socket, socket_read_size, socket_timeout): self._sock = socket self.socket_read_size = socket_read_size self.socket_timeout = socket_timeout self._buffer = io.BytesIO() # number of bytes written to the buffer from the socket self.bytes_written = 0 # number of bytes read from the buffer self.bytes_read = 0 @property def length(self): return self.bytes_written - self.bytes_read def _read_from_socket(self, length=None, timeout=SENTINEL, raise_on_timeout=True): sock = self._sock socket_read_size = self.socket_read_size buf = self._buffer buf.seek(self.bytes_written) marker = 0 custom_timeout = timeout is not SENTINEL try: if custom_timeout: sock.settimeout(timeout) while True: data = recv(self._sock, socket_read_size) # an empty string indicates the server shutdown the socket if isinstance(data, bytes) and len(data) == 0: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) buf.write(data) data_length = len(data) self.bytes_written += data_length marker += data_length if length is not None and length > marker: continue return True except socket.timeout: if raise_on_timeout: raise TimeoutError("Timeout reading from socket") return False except NONBLOCKING_EXCEPTIONS as ex: # if we're in nonblocking mode and the recv raises a # blocking error, simply return False indicating that # there's no data to be read. otherwise raise the # original exception. allowed = NONBLOCKING_EXCEPTION_ERROR_NUMBERS.get(ex.__class__, -1) if not raise_on_timeout and ex.errno == allowed: return False raise ConnectionError("Error while reading from socket: %s" % (ex.args,)) finally: if custom_timeout: sock.settimeout(self.socket_timeout) def can_read(self, timeout): return bool(self.length) or \ self._read_from_socket(timeout=timeout, raise_on_timeout=False) def read(self, length): length = length + 2 # make sure to read the \r\n terminator # make sure we've read enough data from the socket if length > self.length: self._read_from_socket(length - self.length) self._buffer.seek(self.bytes_read) data = self._buffer.read(length) self.bytes_read += len(data) # purge the buffer when we've consumed it all so it doesn't # grow forever if self.bytes_read == self.bytes_written: self.purge() return data[:-2] def readline(self): buf = self._buffer buf.seek(self.bytes_read) data = buf.readline() while not data.endswith(SYM_CRLF): # there's more data in the socket that we need self._read_from_socket() buf.seek(self.bytes_read) data = buf.readline() self.bytes_read += len(data) # purge the buffer when we've consumed it all so it doesn't # grow forever if self.bytes_read == self.bytes_written: self.purge() return data[:-2] def purge(self): self._buffer.seek(0) self._buffer.truncate() self.bytes_written = 0 self.bytes_read = 0 def close(self): try: self.purge() self._buffer.close() except Exception: # issue #633 suggests the purge/close somehow raised a # BadFileDescriptor error. Perhaps the client ran out of # memory or something else? It's probably OK to ignore # any error being raised from purge/close since we're # removing the reference to the instance below. pass self._buffer = None self._sock = None class PythonParser(BaseParser): "Plain Python parsing class" def __init__(self, socket_read_size): self.socket_read_size = socket_read_size self.encoder = None self._sock = None self._buffer = None def __del__(self): try: self.on_disconnect() except Exception: pass def on_connect(self, connection): "Called when the socket connects" self._sock = connection._sock self._buffer = SocketBuffer(self._sock, self.socket_read_size, connection.socket_timeout) self.encoder = connection.encoder def on_disconnect(self): "Called when the socket disconnects" self._sock = None if self._buffer is not None: self._buffer.close() self._buffer = None self.encoder = None def can_read(self, timeout): return self._buffer and self._buffer.can_read(timeout) def read_response(self): raw = self._buffer.readline() if not raw: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) byte, response = raw[:1], raw[1:] if byte not in (b'-', b'+', b':', b'$', b'*'): raise InvalidResponse("Protocol Error: %r" % raw) # server returned an error if byte == b'-': response = nativestr(response) error = self.parse_error(response) # if the error is a ConnectionError, raise immediately so the user # is notified if isinstance(error, ConnectionError): raise error # otherwise, we're dealing with a ResponseError that might belong # inside a pipeline response. the connection's read_response() # and/or the pipeline's execute() will raise this error if # necessary, so just return the exception instance here. return error # single value elif byte == b'+': pass # int value elif byte == b':': response = long(response) # bulk response elif byte == b'$': length = int(response) if length == -1: return None response = self._buffer.read(length) # multi-bulk response elif byte == b'*': length = int(response) if length == -1: return None response = [self.read_response() for i in xrange(length)] if isinstance(response, bytes): response = self.encoder.decode(response) return response class HiredisParser(BaseParser): "Parser class for connections using Hiredis" def __init__(self, socket_read_size): if not HIREDIS_AVAILABLE: raise RedisError("Hiredis is not installed") self.socket_read_size = socket_read_size if HIREDIS_USE_BYTE_BUFFER: self._buffer = bytearray(socket_read_size) def __del__(self): try: self.on_disconnect() except Exception: pass def on_connect(self, connection): self._sock = connection._sock self._socket_timeout = connection.socket_timeout kwargs = { 'protocolError': InvalidResponse, 'replyError': self.parse_error, } # hiredis < 0.1.3 doesn't support functions that create exceptions if not HIREDIS_SUPPORTS_CALLABLE_ERRORS: kwargs['replyError'] = ResponseError if connection.encoder.decode_responses: kwargs['encoding'] = connection.encoder.encoding if HIREDIS_SUPPORTS_ENCODING_ERRORS: kwargs['errors'] = connection.encoder.encoding_errors self._reader = hiredis.Reader(**kwargs) self._next_response = False def on_disconnect(self): self._sock = None self._reader = None self._next_response = False def can_read(self, timeout): if not self._reader: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) if self._next_response is False: self._next_response = self._reader.gets() if self._next_response is False: return self.read_from_socket(timeout=timeout, raise_on_timeout=False) return True def read_from_socket(self, timeout=SENTINEL, raise_on_timeout=True): sock = self._sock custom_timeout = timeout is not SENTINEL try: if custom_timeout: sock.settimeout(timeout) if HIREDIS_USE_BYTE_BUFFER: bufflen = recv_into(self._sock, self._buffer) if bufflen == 0: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) self._reader.feed(self._buffer, 0, bufflen) else: buffer = recv(self._sock, self.socket_read_size) # an empty string indicates the server shutdown the socket if not isinstance(buffer, bytes) or len(buffer) == 0: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) self._reader.feed(buffer) # data was read from the socket and added to the buffer. # return True to indicate that data was read. return True except socket.timeout: if raise_on_timeout: raise TimeoutError("Timeout reading from socket") return False except NONBLOCKING_EXCEPTIONS as ex: # if we're in nonblocking mode and the recv raises a # blocking error, simply return False indicating that # there's no data to be read. otherwise raise the # original exception. allowed = NONBLOCKING_EXCEPTION_ERROR_NUMBERS.get(ex.__class__, -1) if not raise_on_timeout and ex.errno == allowed: return False raise ConnectionError("Error while reading from socket: %s" % (ex.args,)) finally: if custom_timeout: sock.settimeout(self._socket_timeout) def read_response(self): if not self._reader: raise ConnectionError(SERVER_CLOSED_CONNECTION_ERROR) # _next_response might be cached from a can_read() call if self._next_response is not False: response = self._next_response self._next_response = False return response response = self._reader.gets() while response is False: self.read_from_socket() response = self._reader.gets() # if an older version of hiredis is installed, we need to attempt # to convert ResponseErrors to their appropriate types. if not HIREDIS_SUPPORTS_CALLABLE_ERRORS: if isinstance(response, ResponseError): response = self.parse_error(response.args[0]) elif isinstance(response, list) and response and \ isinstance(response[0], ResponseError): response[0] = self.parse_error(response[0].args[0]) # if the response is a ConnectionError or the response is a list and # the first item is a ConnectionError, raise it as something bad # happened if isinstance(response, ConnectionError): raise response elif isinstance(response, list) and response and \ isinstance(response[0], ConnectionError): raise response[0] return response if HIREDIS_AVAILABLE: DefaultParser = HiredisParser else: DefaultParser = PythonParser class Connection(object): "Manages TCP communication to and from a Redis server" def __init__(self, host='localhost', port=5000, db=0, password=None, socket_timeout=None, socket_connect_timeout=None, socket_keepalive=False, socket_keepalive_options=None, socket_type=0, retry_on_timeout=False, encoding='utf-8', encoding_errors='strict', decode_responses=False, parser_class=DefaultParser, socket_read_size=65536, health_check_interval=0, client_name=None, username=None): self.pid = os.getpid() self.host = host self.port = int(port) self.db = db self.username = username self.client_name = client_name self.password = password self.socket_timeout = socket_timeout self.socket_connect_timeout = socket_connect_timeout or socket_timeout self.socket_keepalive = socket_keepalive self.socket_keepalive_options = socket_keepalive_options or {} self.socket_type = socket_type self.retry_on_timeout = retry_on_timeout self.health_check_interval = health_check_interval self.next_health_check = 0 self.encoder = Encoder(encoding, encoding_errors, decode_responses) self._sock = None self._parser = parser_class(socket_read_size=socket_read_size) self._connect_callbacks = [] self._buffer_cutoff = 6000 def __repr__(self): repr_args = ','.join(['%s=%s' % (k, v) for k, v in self.repr_pieces()]) return '%s<%s>' % (self.__class__.__name__, repr_args) def repr_pieces(self): pieces = [ ('host', self.host), ('port', self.port), ('db', self.db) ] if self.client_name: pieces.append(('client_name', self.client_name)) return pieces def __del__(self): try: self.disconnect() except Exception: pass def register_connect_callback(self, callback): self._connect_callbacks.append(callback) def clear_connect_callbacks(self): self._connect_callbacks = [] def connect(self): "Connects to the Redis server if not already connected" if self._sock: return try: sock = self._connect() except socket.timeout: raise TimeoutError("Timeout connecting to server") except socket.error as e: raise ConnectionError(self._error_message(e)) self._sock = sock try: self.on_connect() except RedisError: # clean up after any error in on_connect self.disconnect() raise # run any user callbacks. right now the only internal callback # is for pubsub channel/pattern resubscription for callback in self._connect_callbacks: callback(self) def _connect(self): "Create a TCP socket connection" # we want to mimic what socket.create_connection does to support # ipv4/ipv6, but we want to set options prior to calling # socket.connect() err = None for res in socket.getaddrinfo(self.host, self.port, self.socket_type, socket.SOCK_STREAM): family, socktype, proto, canonname, socket_address = res sock = None try: sock = socket.socket(family, socktype, proto) # TCP_NODELAY sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) # TCP_KEEPALIVE if self.socket_keepalive: sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) for k, v in iteritems(self.socket_keepalive_options): sock.setsockopt(socket.IPPROTO_TCP, k, v) # set the socket_connect_timeout before we connect sock.settimeout(self.socket_connect_timeout) # connect sock.connect(socket_address) # set the socket_timeout now that we're connected sock.settimeout(self.socket_timeout) return sock except socket.error as _: err = _ if sock is not None: sock.close() if err is not None: raise err raise socket.error("socket.getaddrinfo returned an empty list") def _error_message(self, exception): # args for socket.error can either be (errno, "message") # or just "message" if len(exception.args) == 1: return "Error connecting to %s:%s. %s." % \ (self.host, self.port, exception.args[0]) else: return "Error %s connecting to %s:%s. %s." % \ (exception.args[0], self.host, self.port, exception.args[1]) def on_connect(self): "Initialize the connection, authenticate and select a database" self._parser.on_connect(self) # if username and/or password are set, authenticate if self.username or self.password: if self.username: auth_args = (self.username, self.password or '') else: auth_args = (self.password,) # avoid checking health here -- PING will fail if we try # to check the health prior to the AUTH self.send_command('AUTH', *auth_args, check_health=False) try: auth_response = self.read_response() except AuthenticationWrongNumberOfArgsError: # a username and password were specified but the Redis # server seems to be < 6.0.0 which expects a single password # arg. retry auth with just the password. # https://github.com/andymccurdy/redis-py/issues/1274 self.send_command('AUTH', self.password, check_health=False) auth_response = self.read_response() if nativestr(auth_response) != 'OK': raise AuthenticationError('Invalid Username or Password') # if a client_name is given, set it if self.client_name: self.send_command('CLIENT', 'SETNAME', self.client_name) if nativestr(self.read_response()) != 'OK': raise ConnectionError('Error setting client name') # if a database is specified, switch to it if self.db: self.send_command('SELECT', self.db) if nativestr(self.read_response()) != 'OK': raise ConnectionError('Invalid Database') def disconnect(self): "Disconnects from the Redis server" self._parser.on_disconnect() if self._sock is None: return try: if os.getpid() == self.pid: shutdown(self._sock, socket.SHUT_RDWR) self._sock.close() except socket.error: pass self._sock = None def check_health(self): "Check the health of the connection with a PING/PONG" if self.health_check_interval and time() > self.next_health_check: try: self.send_command('PING', check_health=False) if nativestr(self.read_response()) != 'PONG': raise ConnectionError( 'Bad response from PING health check') except (ConnectionError, TimeoutError): self.disconnect() self.send_command('PING', check_health=False) if nativestr(self.read_response()) != 'PONG': raise ConnectionError( 'Bad response from PING health check') def send_packed_command(self, command, check_health=True): "Send an already packed command to the Redis server" if not self._sock: self.connect() # guard against health check recursion if check_health: self.check_health() try: if isinstance(command, str): command = [command] for item in command: sendall(self._sock, item) except socket.timeout: self.disconnect() raise TimeoutError("Timeout writing to socket") except socket.error as e: self.disconnect() if len(e.args) == 1: errno, errmsg = 'UNKNOWN', e.args[0] else: errno = e.args[0] errmsg = e.args[1] raise ConnectionError("Error %s while writing to socket. %s." % (errno, errmsg)) except BaseException: self.disconnect() raise def send_command(self, *args, **kwargs): "Pack and send a command to the Redis server" self.send_packed_command(self.pack_command(*args), check_health=kwargs.get('check_health', True)) def can_read(self, timeout=0): "Poll the socket to see if there's data that can be read." sock = self._sock if not sock: self.connect() sock = self._sock return self._parser.can_read(timeout) def read_response(self): "Read the response from a previously sent command" try: response = self._parser.read_response() except socket.timeout: self.disconnect() raise TimeoutError("Timeout reading from %s:%s" % (self.host, self.port)) except socket.error as e: self.disconnect() raise ConnectionError("Error while reading from %s:%s : %s" % (self.host, self.port, e.args)) except BaseException: self.disconnect() raise if self.health_check_interval: self.next_health_check = time() + self.health_check_interval if isinstance(response, ResponseError): raise response return response def pack_command(self, *args): "Pack a series of arguments into the Redis protocol" output = [] # the client might have included 1 or more literal arguments in # the command name, e.g., 'CONFIG GET'. The Redis server expects these # arguments to be sent separately, so split the first argument # manually. These arguments should be bytestrings so that they are # not encoded. if isinstance(args[0], unicode): args = tuple(args[0].encode().split()) + args[1:] elif b' ' in args[0]: args = tuple(args[0].split()) + args[1:] buff = SYM_EMPTY.join((SYM_STAR, str(len(args)).encode(), SYM_CRLF)) buffer_cutoff = self._buffer_cutoff for arg in imap(self.encoder.encode, args): # to avoid large string mallocs, chunk the command into the # output list if we're sending large values or memoryviews arg_length = len(arg) if (len(buff) > buffer_cutoff or arg_length > buffer_cutoff or isinstance(arg, memoryview)): buff = SYM_EMPTY.join( (buff, SYM_DOLLAR, str(arg_length).encode(), SYM_CRLF)) output.append(buff) output.append(arg) buff = SYM_CRLF else: buff = SYM_EMPTY.join( (buff, SYM_DOLLAR, str(arg_length).encode(), SYM_CRLF, arg, SYM_CRLF)) output.append(buff) return output def pack_commands(self, commands): "Pack multiple commands into the Redis protocol" output = [] pieces = [] buffer_length = 0 buffer_cutoff = self._buffer_cutoff for cmd in commands: for chunk in self.pack_command(*cmd): chunklen = len(chunk) if (buffer_length > buffer_cutoff or chunklen > buffer_cutoff or isinstance(chunk, memoryview)): output.append(SYM_EMPTY.join(pieces)) buffer_length = 0 pieces = [] if chunklen > buffer_cutoff or isinstance(chunk, memoryview): output.append(chunk) else: pieces.append(chunk) buffer_length += chunklen if pieces: output.append(SYM_EMPTY.join(pieces)) return output class SSLConnection(Connection): def __init__(self, ssl_keyfile=None, ssl_certfile=None, ssl_cert_reqs='required', ssl_ca_certs=None, ssl_check_hostname=False, **kwargs): if not ssl_available: raise RedisError("Python wasn't built with SSL support") super(SSLConnection, self).__init__(**kwargs) self.keyfile = ssl_keyfile self.certfile = ssl_certfile if ssl_cert_reqs is None: ssl_cert_reqs = ssl.CERT_NONE elif isinstance(ssl_cert_reqs, basestring): CERT_REQS = { 'none': ssl.CERT_NONE, 'optional': ssl.CERT_OPTIONAL, 'required': ssl.CERT_REQUIRED } if ssl_cert_reqs not in CERT_REQS: raise RedisError( "Invalid SSL Certificate Requirements Flag: %s" % ssl_cert_reqs) ssl_cert_reqs = CERT_REQS[ssl_cert_reqs] self.cert_reqs = ssl_cert_reqs self.ca_certs = ssl_ca_certs self.check_hostname = ssl_check_hostname def _connect(self): "Wrap the socket with SSL support" sock = super(SSLConnection, self)._connect() if hasattr(ssl, "create_default_context"): context = ssl.create_default_context() context.check_hostname = self.check_hostname context.verify_mode = self.cert_reqs if self.certfile and self.keyfile: context.load_cert_chain(certfile=self.certfile, keyfile=self.keyfile) if self.ca_certs: context.load_verify_locations(self.ca_certs) sock = ssl_wrap_socket(context, sock, server_hostname=self.host) else: # In case this code runs in a version which is older than 2.7.9, # we want to fall back to old code sock = ssl_wrap_socket(ssl, sock, cert_reqs=self.cert_reqs, keyfile=self.keyfile, certfile=self.certfile, ca_certs=self.ca_certs) return sock class UnixDomainSocketConnection(Connection): def __init__(self, path='', db=0, username=None, password=None, socket_timeout=None, encoding='utf-8', encoding_errors='strict', decode_responses=False, retry_on_timeout=False, parser_class=DefaultParser, socket_read_size=65536, health_check_interval=0, client_name=None): self.pid = os.getpid() self.path = path self.db = db self.username = username self.client_name = client_name self.password = password self.socket_timeout = socket_timeout self.retry_on_timeout = retry_on_timeout self.health_check_interval = health_check_interval self.next_health_check = 0 self.encoder = Encoder(encoding, encoding_errors, decode_responses) self._sock = None self._parser = parser_class(socket_read_size=socket_read_size) self._connect_callbacks = [] self._buffer_cutoff = 6000 def repr_pieces(self): pieces = [ ('path', self.path), ('db', self.db), ] if self.client_name: pieces.append(('client_name', self.client_name)) return pieces def _connect(self): "Create a Unix domain socket connection" sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.settimeout(self.socket_timeout) sock.connect(self.path) return sock def _error_message(self, exception): # args for socket.error can either be (errno, "message") # or just "message" if len(exception.args) == 1: return "Error connecting to unix socket: %s. %s." % \ (self.path, exception.args[0]) else: return "Error %s connecting to unix socket: %s. %s." % \ (exception.args[0], self.path, exception.args[1]) FALSE_STRINGS = ('0', 'F', 'FALSE', 'N', 'NO') def to_bool(value): if value is None or value == '': return None if isinstance(value, basestring) and value.upper() in FALSE_STRINGS: return False return bool(value) URL_QUERY_ARGUMENT_PARSERS = { 'socket_timeout': float, 'socket_connect_timeout': float, 'socket_keepalive': to_bool, 'retry_on_timeout': to_bool, 'max_connections': int, 'health_check_interval': int, 'ssl_check_hostname': to_bool, } class ConnectionPool(object): "Generic connection pool" @classmethod def from_url(cls, url, db=None, decode_components=False, **kwargs): """ Return a connection pool configured from the given URL. For example:: redis://[[username]:[password]]@localhost:5000/0 rediss://[[username]:[password]]@localhost:5000/0 unix://[[username]:[password]]@/path/to/socket.sock?db=0 Three URL schemes are supported: - ```redis://`` <https://www.iana.org/assignments/uri-schemes/prov/redis>`_ creates a normal TCP socket connection - ```rediss://`` <https://www.iana.org/assignments/uri-schemes/prov/rediss>`_ creates a SSL wrapped TCP socket connection - ``unix://`` creates a Unix Domain Socket connection There are several ways to specify a database number. The parse function will return the first specified option: 1. A ``db`` querystring option, e.g. redis://localhost?db=0 2. If using the redis:// scheme, the path argument of the url, e.g. redis://localhost/0 3. The ``db`` argument to this function. If none of these options are specified, db=0 is used. The ``decode_components`` argument allows this function to work with percent-encoded URLs. If this argument is set to ``True`` all ``%xx`` escapes will be replaced by their single-character equivalents after the URL has been parsed. This only applies to the ``hostname``, ``path``, ``username`` and ``password`` components. Any additional querystring arguments and keyword arguments will be passed along to the ConnectionPool class's initializer. The querystring arguments ``socket_connect_timeout`` and ``socket_timeout`` if supplied are parsed as float values. The arguments ``socket_keepalive`` and ``retry_on_timeout`` are parsed to boolean values that accept True/False, Yes/No values to indicate state. Invalid types cause a ``UserWarning`` to be raised. In the case of conflicting arguments, querystring arguments always win. """ url = urlparse(url) url_options = {} for name, value in iteritems(parse_qs(url.query)): if value and len(value) > 0: parser = URL_QUERY_ARGUMENT_PARSERS.get(name) if parser: try: url_options[name] = parser(value[0]) except (TypeError, ValueError): warnings.warn(UserWarning( "Invalid value for `%s` in connection URL." % name )) else: url_options[name] = value[0] if decode_components: username = unquote(url.username) if url.username else None password = unquote(url.password) if url.password else None path = unquote(url.path) if url.path else None hostname = unquote(url.hostname) if url.hostname else None else: username = url.username or None password = url.password or None path = url.path hostname = url.hostname # We only support redis://, rediss:// and unix:// schemes. if url.scheme == 'unix': url_options.update({ 'username': username, 'password': password, 'path': path, 'connection_class': UnixDomainSocketConnection, }) elif url.scheme in ('redis', 'rediss'): url_options.update({ 'host': hostname, 'port': int(url.port or 5000), 'username': username, 'password': password, }) # If there's a path argument, use it as the db argument if a # querystring value wasn't specified if 'db' not in url_options and path: try: url_options['db'] = int(path.replace('/', '')) except (AttributeError, ValueError): pass if url.scheme == 'rediss': url_options['connection_class'] = SSLConnection else: valid_schemes = ', '.join(('redis://', 'rediss://', 'unix://')) raise ValueError('Redis URL must specify one of the following ' 'schemes (%s)' % valid_schemes) # last shot at the db value url_options['db'] = int(url_options.get('db', db or 0)) # update the arguments from the URL values kwargs.update(url_options) # backwards compatability if 'charset' in kwargs: warnings.warn(DeprecationWarning( '"charset" is deprecated. Use "encoding" instead')) kwargs['encoding'] = kwargs.pop('charset') if 'errors' in kwargs: warnings.warn(DeprecationWarning( '"errors" is deprecated. Use "encoding_errors" instead')) kwargs['encoding_errors'] = kwargs.pop('errors') return cls(**kwargs) def __init__(self, connection_class=Connection, max_connections=None, **connection_kwargs): """ Create a connection pool. If max_connections is set, then this object raises redis.ConnectionError when the pool's limit is reached. By default, TCP connections are created unless connection_class is specified. Use redis.UnixDomainSocketConnection for unix sockets. Any additional keyword arguments are passed to the constructor of connection_class. """ max_connections = max_connections or 2 ** 31 if not isinstance(max_connections, (int, long)) or max_connections < 0: raise ValueError('"max_connections" must be a positive integer') self.connection_class = connection_class self.connection_kwargs = connection_kwargs self.max_connections = max_connections # a lock to protect the critical section in _checkpid(). # this lock is acquired when the process id changes, such as # after a fork. during this time, multiple threads in the child # process could attempt to acquire this lock. the first thread # to acquire the lock will reset the data structures and lock # object of this pool. subsequent threads acquiring this lock # will notice the first thread already did the work and simply # release the lock. self._fork_lock = threading.Lock() self.reset() def __repr__(self): return "%s<%s>" % ( type(self).__name__, repr(self.connection_class(**self.connection_kwargs)), ) def reset(self): self._lock = threading.Lock() self._created_connections = 0 self._available_connections = [] self._in_use_connections = set() # this must be the last operation in this method. while reset() is # called when holding _fork_lock, other threads in this process # can call _checkpid() which compares self.pid and os.getpid() without # holding any lock (for performance reasons). keeping this assignment # as the last operation ensures that those other threads will also # notice a pid difference and block waiting for the first thread to # release _fork_lock. when each of these threads eventually acquire # _fork_lock, they will notice that another thread already called # reset() and they will immediately release _fork_lock and continue on. self.pid = os.getpid() def _checkpid(self): # _checkpid() attempts to keep ConnectionPool fork-safe on modern # systems. this is called by all ConnectionPool methods that # manipulate the pool's state such as get_connection() and release(). # # _checkpid() determines whether the process has forked by comparing # the current process id to the process id saved on the ConnectionPool # instance. if these values are the same, _checkpid() simply returns. # # when the process ids differ, _checkpid() assumes that the process # has forked and that we're now running in the child process. the child # process cannot use the parent's file descriptors (e.g., sockets). # therefore, when _checkpid() sees the process id change, it calls # reset() in order to reinitialize the child's ConnectionPool. this # will cause the child to make all new connection objects. # # _checkpid() is protected by self._fork_lock to ensure that multiple # threads in the child process do not call reset() multiple times. # # there is an extremely small chance this could fail in the following # scenario: # 1. process A calls _checkpid() for the first time and acquires # self._fork_lock. # 2. while holding self._fork_lock, process A forks (the fork() # could happen in a different thread owned by process A) # 3. process B (the forked child process) inherits the # ConnectionPool's state from the parent. that state includes # a locked _fork_lock. process B will not be notified when # process A releases the _fork_lock and will thus never be # able to acquire the _fork_lock. # # to mitigate this possible deadlock, _checkpid() will only wait 5 # seconds to acquire _fork_lock. if _fork_lock cannot be acquired in # that time it is assumed that the child is deadlocked and a # redis.ChildDeadlockedError error is raised. if self.pid != os.getpid(): # python 2.7 doesn't support a timeout option to lock.acquire() # we have to mimic lock timeouts ourselves. timeout_at = time() + 5 acquired = False while time() < timeout_at: acquired = self._fork_lock.acquire(False) if acquired: break if not acquired: raise ChildDeadlockedError # reset() the instance for the new process if another thread # hasn't already done so try: if self.pid != os.getpid(): self.reset() finally: self._fork_lock.release() def get_connection(self, command_name, *keys, **options): "Get a connection from the pool" self._checkpid() with self._lock: try: connection = self._available_connections.pop() except IndexError: connection = self.make_connection() self._in_use_connections.add(connection) try: # ensure this connection is connected to Redis connection.connect() # connections that the pool provides should be ready to send # a command. if not, the connection was either returned to the # pool before all data has been read or the socket has been # closed. either way, reconnect and verify everything is good. try: if connection.can_read(): raise ConnectionError('Connection has data') except ConnectionError: connection.disconnect() connection.connect() if connection.can_read(): raise ConnectionError('Connection not ready') except BaseException: # release the connection back to the pool so that we don't # leak it self.release(connection) raise return connection def get_encoder(self): "Return an encoder based on encoding settings" kwargs = self.connection_kwargs return Encoder( encoding=kwargs.get('encoding', 'utf-8'), encoding_errors=kwargs.get('encoding_errors', 'strict'), decode_responses=kwargs.get('decode_responses', False) ) def make_connection(self): "Create a new connection" if self._created_connections >= self.max_connections: raise ConnectionError("Too many connections") self._created_connections += 1 return self.connection_class(**self.connection_kwargs) def release(self, connection): "Releases the connection back to the pool" self._checkpid() with self._lock: try: self._in_use_connections.remove(connection) except KeyError: # Gracefully fail when a connection is returned to this pool # that the pool doesn't actually own pass if self.owns_connection(connection): self._available_connections.append(connection) else: # pool doesn't own this connection. do not add it back # to the pool and decrement the count so that another # connection can take its place if needed self._created_connections -= 1 connection.disconnect() return def owns_connection(self, connection): return connection.pid == self.pid def disconnect(self, inuse_connections=True): """ Disconnects connections in the pool If ``inuse_connections`` is True, disconnect connections that are current in use, potentially by other threads. Otherwise only disconnect connections that are idle in the pool. """ self._checkpid() with self._lock: if inuse_connections: connections = chain(self._available_connections, self._in_use_connections) else: connections = self._available_connections for connection in connections: connection.disconnect() class BlockingConnectionPool(ConnectionPool): """ Thread-safe blocking connection pool:: >>> from redis.client import Redis >>> client = Redis(connection_pool=BlockingConnectionPool()) It performs the same function as the default ``:py:class: ~redis.connection.ConnectionPool`` implementation, in that, it maintains a pool of reusable connections that can be shared by multiple redis clients (safely across threads if required). The difference is that, in the event that a client tries to get a connection from the pool when all of connections are in use, rather than raising a ``:py:class: ~redis.exceptions.ConnectionError`` (as the default ``:py:class: ~redis.connection.ConnectionPool`` implementation does), it makes the client wait ("blocks") for a specified number of seconds until a connection becomes available. Use ``max_connections`` to increase / decrease the pool size:: >>> pool = BlockingConnectionPool(max_connections=10) Use ``timeout`` to tell it either how many seconds to wait for a connection to become available, or to block forever: # Block forever. >>> pool = BlockingConnectionPool(timeout=None) # Raise a ``ConnectionError`` after five seconds if a connection is # not available. >>> pool = BlockingConnectionPool(timeout=5) """ def __init__(self, max_connections=50, timeout=20, connection_class=Connection, queue_class=LifoQueue, **connection_kwargs): self.queue_class = queue_class self.timeout = timeout super(BlockingConnectionPool, self).__init__( connection_class=connection_class, max_connections=max_connections, **connection_kwargs) def reset(self): # Create and fill up a thread safe queue with ``None`` values. self.pool = self.queue_class(self.max_connections) while True: try: self.pool.put_nowait(None) except Full: break # Keep a list of actual connection instances so that we can # disconnect them later. self._connections = [] # this must be the last operation in this method. while reset() is # called when holding _fork_lock, other threads in this process # can call _checkpid() which compares self.pid and os.getpid() without # holding any lock (for performance reasons). keeping this assignment # as the last operation ensures that those other threads will also # notice a pid difference and block waiting for the first thread to # release _fork_lock. when each of these threads eventually acquire # _fork_lock, they will notice that another thread already called # reset() and they will immediately release _fork_lock and continue on. self.pid = os.getpid() def make_connection(self): "Make a fresh connection." connection = self.connection_class(**self.connection_kwargs) self._connections.append(connection) return connection def get_connection(self, command_name, *keys, **options): """ Get a connection, blocking for ``self.timeout`` until a connection is available from the pool. If the connection returned is ``None`` then creates a new connection. Because we use a last-in first-out queue, the existing connections (having been returned to the pool after the initial ``None`` values were added) will be returned before ``None`` values. This means we only create new connections when we need to, i.e.: the actual number of connections will only increase in response to demand. """ # Make sure we haven't changed process. self._checkpid() # Try and get a connection from the pool. If one isn't available within # self.timeout then raise a ``ConnectionError``. connection = None try: connection = self.pool.get(block=True, timeout=self.timeout) except Empty: # Note that this is not caught by the redis client and will be # raised unless handled by application code. If you want never to raise ConnectionError("No connection available.") # If the ``connection`` is actually ``None`` then that's a cue to make # a new connection to add to the pool. if connection is None: connection = self.make_connection() try: # ensure this connection is connected to Redis connection.connect() # connections that the pool provides should be ready to send # a command. if not, the connection was either returned to the # pool before all data has been read or the socket has been # closed. either way, reconnect and verify everything is good. try: if connection.can_read(): raise ConnectionError('Connection has data') except ConnectionError: connection.disconnect() connection.connect() if connection.can_read(): raise ConnectionError('Connection not ready') except BaseException: # release the connection back to the pool so that we don't leak it self.release(connection) raise return connection def release(self, connection): "Releases the connection back to the pool." # Make sure we haven't changed process. self._checkpid() if not self.owns_connection(connection): # pool doesn't own this connection. do not add it back # to the pool. instead add a None value which is a placeholder # that will cause the pool to recreate the connection if # its needed. connection.disconnect() self.pool.put_nowait(None) return # Put the connection back into the pool. try: self.pool.put_nowait(connection) except Full: # perhaps the pool has been reset() after a fork? regardless, # we don't want this connection pass def disconnect(self): "Disconnects all connections in the pool." self._checkpid() for connection in self._connections: connection.disconnect()
58bdf0804bc8b7ad982f2eb35cec240b9a395eb9
cb4be2d145c529192cad597ebf6bba8aed0ec12e
/2014-x64/prefs/00_important/mec_shelf_loader/shelves/00_Trash/noske_marc_riggingtools_cri1_1405.py
f8c8ae94094ed2cfba76c6061d8544926d1870cf
[]
no_license
mclavan/Work-Maya-Folder
63e791fdbd6f8ac1f4fda2d46015cd98df38825c
c56dbdb85a7b1a87ef6dd35296c56e0057254617
refs/heads/master
2020-05-20T07:21:15.891179
2014-10-17T14:28:45
2014-10-17T14:28:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,440
py
''' Lesson - Joint Renamer rigging_tools.py Description: Practical use of loops. Renaming joint based upon a naming convention. How to Run: import noske_marc_rigging_tools reload(noske_marc_rigging_tools) ''' print 'Rigging Tools Active' import pymel.core as pm def hierarchy(): ''' Create a hierarchy basd upon a given system. Select root joing chain and execute function. import noske_marc_rigging_tools noske_marc_rigging_tools.hierarchy() ''' ''' Input What are we working on? The root joint. ''' joint_system = pm.ls(selection=True, dag=True) # print 'Joint System:', joint_system root_joint = joint_system [0] joint_2 = joint_system[1] joint_3 = joint_system[2] ''' Padding Root Joint ''' # Create empty group root_pad = pm.group(empty=True) # Move group over to the target join. temp_constraint = pm.pointConstraint(root_joint, root_pad) pm.delete(temp_constraint) # Freeze Transforms on group pm.makeIdentity(root_pad, apply=True, t=1, r=1, s=1, n=0) # Parent root joint to the group pm.parent(root_joint, root_pad) ''' Local Controls ''' ''' Control 1 - root_joint ''' # Create a control. # normal=[1, 0, 0], radius 2 control_icon_1 = pm.circle(normal=[1, 0, 0], radius=2)[0] # Create a group. # Grouping control during the process. local_pad_1 = pm.group() # Output control and pad. print 'Control 1 Created:', control_icon_1 print 'Local Pad 1 Created:', local_pad_1 # Move group over to the target joint # Delete constrain after snapping. # Driver: joint # Driven: group temp_constraint = pm.parentConstraint(root_joint, local_pad_1) pm.delete(temp_constraint) # Orient Constrain the joint to the control. # Driver -> Driven. # Control -> Joint pm.orientConstraint(control_icon_1, root_joint) ''' Control 2 ''' # Create a control. # normal=[1, 0, 0], radius 2 control_icon_2 = pm.circle(normal=[1, 0, 0], radius=2)[0] # Create a group. # Grouping control during the process. local_pad_2 = pm.group() # Output control and pad. print 'Control 2 Created:', control_icon_2 print 'Local Pad 2 Created:', local_pad_2 # Move group over to the target joint # Delete constrain after snapping. # Driver: joint # Driven: group temp_constraint = pm.parentConstraint(joint_2, local_pad_2) pm.delete(temp_constraint) # Orient Constrain the joint to the control. # Driver -> Driven. # Control -> Joint pm.orientConstraint(control_icon_2, joint_2) ''' Control 3 ''' # Create a control. # normal=[1, 0, 0], radius 2 control_icon_3 = pm.circle(normal=[1, 0, 0], radius=2)[0] # Create a group. # Grouping control during the process. local_pad_3 = pm.group() # Output control and pad. print 'Control 3 Created:', control_icon_3 print 'Local Pad 3 Created:', local_pad_3 # Move group over to the target joint # Delete constrain after snapping. # Driver: joint # Driven: group temp_constraint = pm.parentConstraint(joint_3, local_pad_3) pm.delete(temp_constraint) # Orient Constrain the joint to the control. # Driver -> Driven. # Control -> Joint pm.orientConstraint(control_icon_3, joint_3) ''' Parent control together. ''' # Pad 3 (Last) -> control 2 pm.parent(local_pad_3, control_icon_2) pm.parent(local_pad_2, control_icon_1) print 'Hierarchy Created.' def padding_tool(): ''' This tool creates a world pad on the selected joint system. Select the root and execute the command. import noske_marc_riggingtools_cri1_1405 reload (noske_marc_riggingtools_cri1_1405) noske_marc_riggingtools_cri1_1405.padding_tool() ''' selected = pm.ls(selection=True) # print 'Current Selected:', selected root_joint = selected[0] # Create empty group # empty=True will create a empty group # pad = pm.group(empty=True) # Move group to joint. # and delete constraint temp_constraint = pm.pointConstraint(root_joint, pad) pm.delete(temp_constraint) # Freeze Transforms on the group pm.makeIdentity(pad, apply=True, t=1, r=1, s=1, n=0) # Parent joint to group pm.parent(root_joint, pad) # renaming # ct_tail_01_bind # ct_tail_00_pad pad_name = root_joint.replace('01_bind', '00_pad') pad.rename(pad_name) print 'Padding group Created' def joint_renamer(): ''' This tool renames all the joints in a joint chain. Based upon the naming convention: lt_arm_01_bind -> lt_arm_03_waste Select the root joint and execute commad. import noske_marc_riggingtools_cri1_1405 reload (noske_marc_riggingtools_cri1_1405) noske_marc_riggingtools_cri1_1405.joint_renamer() ''' print 'Joint Renamer - Active' import pymel.core as pm ori = raw_input() system_name = raw_input() count = 0 suffix = 'bind' ''' Get Selected. pm.ls(selected=True) ''' joint_chain = pm.ls(selection=True, dag=True) print 'Selected items:', joint_chain ''' Figure out naming convetion. 'lt_arm_01_bind' -> 'lt_arm_03_waste 'ct_tail_01_bind', -> 'ct_tail_04_waste' ''' ''' Loop through joint chain. ''' for current_joint in joint_chain: count = count + 1 new_name = '{0}_{1}_{2}_{3}'.format(ori, system_name, count, suffix) print 'New Name:', new_name # Rename joint current_joint.rename(new_name) new_name = '{0}_{1}_{2}_{3}'.format(ori, system_name, count, 'waste') current_joint.rename(new_name) def priming_tool(): ''' This tool creates a local oriented control and pad on the selected joint system. Select the joints and execute them. import noske_marc_riggingtools_cri1_1405 reload (noske_marc_riggingtools_cri1_1405) noske_marc_riggingtools_cri1_1405.priming_tool() ''' # Get Selected. selected = pm.ls(selection=True) # print 'Joints Selected:', selected target_joint = selected[0] for target_joint in selected: control_icon_name = target_joint.replace('_bind', '_icon') local_pad_name = target_joint.replace('_bind', '_local') # Create control # normal set to x and radius is 1.8 control_icon = pm.circle(normal=[1, 0, 0], radius=1.8, name=control_icon_name)[0] # Group control (NOT an empty group) local_pad = pm.group(name=local_pad_name) print 'Control_Icon:', control_icon print 'Pad Created:', local_pad # Move group to target joint. # and delete constraint temp_constraint = pm.parentConstraint(target_joint, local_pad) pm.delete(temp_constraint) # Orient Constraint joint to control. pm.orientConstraint(control_icon, target_joint) print 'Local Oriented Controls Created'
075dc5ac96d9959d8b37233b21e8f77234e9c826
e9b5916013c2e3fc0ef91d505f4b8db3778e97e5
/Where_is_the_ISS.py
887e085004080f70fe5faf68b4f1535d67a8ccee
[]
no_license
Robin-van-Schendel/Stuff
039ea55c5dbadfa6e0978d45d97de17afea475c5
9e2d74a98ffa5d79e7796e161542df3d7eaa5f04
refs/heads/main
2023-06-20T00:51:43.946230
2021-07-19T00:19:03
2021-07-19T00:19:03
380,754,595
0
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
# -*- coding: utf-8 -*- """ Created on Mon Jul 19 01:04:32 2021 @author: Robin """ """ We are going to do a little python project here for fun. It's based on this Youtube video (https://youtu.be/R6CCTuHast0) and involves pandas and plotly. We are going to use an API and we are going to plot on a map the actual current location of the International Space Station. This is literally just copied""" import pandas as pd import plotly.express as px import plotly.io as pio # Because spyder (the IDE I use) can't seem to deal with plotly figures # we have to show them in browser pio.renderers.default = "browser" # Now we are going to read the location of the ISS using this API url = "http://api.open-notify.org/iss-now.json" dataframe = pd.read_json(url) #print(dataframe) # Let's change the order now of columns to rows dataframe['latitude'] = dataframe.loc['latitude','iss_position'] dataframe['longitude'] = dataframe.loc['longitude','iss_position'] dataframe.reset_index(inplace=True) # print(" ") # print(dataframe) # Let's get rid of some of the superfluous columns dataframe = dataframe.drop(['index','message'], axis=1) # print(" ") # print(dataframe) # Now let's illustrate our data by plotting it fig = px.scatter_geo(dataframe, lat = 'latitude', lon = 'longitude') fig.show()
1f5282f0900b7d72c28cfe9b137fc1ed048289da
dd17f48dbfd60a775730c9ceab4e38331f3ab04e
/main_bonus.py
d3ac9fb3108f436e04afe21060af32e541c3b1ff
[]
no_license
KPI-Sense/intern-take-home-assessment
3bf03fe8cc2a69abdcc4c7e45b5dc4c3e0d2a40f
99b4130ef7007b15ec95fa08aba1839490eccd3b
refs/heads/master
2022-11-02T03:30:29.012566
2020-06-18T19:50:05
2020-06-18T19:50:05
269,168,515
0
0
null
2020-06-18T19:50:07
2020-06-03T18:49:12
Python
UTF-8
Python
false
false
1,778
py
import xlrd import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np from textwrap import wrap import pandas as pd from datetime import datetime from datetime import timedelta import getopt import sys from openpyxl import Workbook import openpyxl xl = pd.read_excel('demo_model.xlsx', sheet_name= "Model P&L" , index_col = 14, usecols = "N:CG", skiprows=4, nrows = 7); dates_x = xl.iloc[0, :] sub_rev = xl.iloc[5, :] serv_rev = xl.iloc[6, :] count = 0 if len(sys.argv) == 2: m,y = sys.argv[1].split('/') for jj in range(0, len(dates_x._index)): count = count + 1 if dates_x._index[jj].month == int(m): if dates_x._index[jj].year == int(y): sub_rev = xl.iloc[5, count:len(dates_x._index)] serv_rev = xl.iloc[6, count:len(dates_x._index)] dates_x = xl.iloc[0, count:len(dates_x._index)] break dt_arr = [0] for jj in range(0, len(dates_x._index)): dt = dates_x._index[jj] dt_month= dt.month dt_daysm= dt.day dt_daysa = dt.days_in_month dt_diff = dt_daysa - dt_daysm if dt_diff != 0: dt = dt + timedelta(days = dt_diff) dt_arr.insert(jj, dt) indx_x = np.arange(len(dates_x._index)) tickvalues = np.arange(0,len(dt_arr)) plt.figure(figsize=(25,7)) graphSub = plt.bar(x=indx_x, height=sub_rev, width=0.55) graphServ = plt.bar(x=indx_x, height=serv_rev, width=0.55, bottom=sub_rev) plt.gcf().autofmt_xdate() plt.gca().tick_params(axis='x', which='major', labelsize = 6) plt.xlabel ('Dates') plt.ylabel ('Revenue') plt.title('Demo Company - P&L Model') plt.xticks(tickvalues, dt_arr) plt.yticks() plt.legend((graphSub[0], graphServ[0]), ('Subscription Revenue', 'Service Revenue')) plt.tight_layout() plt.show()
045eaa1ba5008040aa5cfb9cf8fdb29a4824d58b
ba9f1dfad6df7946f1dff62f42b8cca465a9d6a8
/PEuler_076.py
4ae4dd35459e19dc9b76d58f1b9571325877ab12
[]
no_license
Concarne2/ProjectEuler
7148e54ec74683d7a6ff3aeb41f4dfbc31386fe3
8fa87f3c0e59b730edc11272ef04790173e6a831
refs/heads/master
2020-07-21T14:46:04.140951
2019-09-07T01:42:45
2019-09-07T01:42:45
206,899,413
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
results = [0,0,1,2] def nextResult(): n = len(results) ways = results[n-1] + 1 for i in range(2,n//2 + 1): ways += results[n//i] results.append(ways) ways = [1] for i in range(1,101): ways.append(0) for i in range(1,100): for j in range(i,101): ways[j] += ways[j-i]
623c325e61835a7b871177b94263a55960e72177
a9f517df3af78a18c79b92a25fce3f676e2597c0
/ckanext/ytp/comments/logic/auth/delete.py
e14918d608183f1dac79de377ce7dadad2f71a20
[]
no_license
nvgiambruno44/ckanext-ytp-comments
d3f70e261badb634013ed585444d240cd869c64f
0dd9069ed564076b850366bb37136436be9079da
refs/heads/master
2020-08-05T19:14:48.284385
2019-10-03T20:22:43
2019-10-03T20:22:43
212,672,045
0
0
null
2019-10-03T20:18:43
2019-10-03T20:18:43
null
UTF-8
Python
false
false
622
py
import logging from pylons.i18n import _ from ckan import logic import ckanext.ytp.comments.model as comment_model log = logging.getLogger(__name__) def comment_delete(context, data_dict): model = context['model'] user = context['user'] userobj = model.User.get(user) cid = logic.get_or_bust(data_dict, 'id') comment = comment_model.Comment.get(cid) if not comment: return {'success': False, 'msg': _('Comment does not exist')} if comment.user_id is not userobj.id: return {'success': False, 'msg': _('User is not the author of the comment')} return {'success': True}
fb92dd9b2f76b302c782a0613c06b023634ee190
f391e9b02730cf61c19d53423ab861b252691a07
/manage.py
04e547904b2845ddb906df1e889b2916ab9f2db2
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
Bogdanp/django_dramatiq_example
7eb7b6f92c73aacb93b7bf964e437faad35dc5fd
07b00b70233b7fb7eb72c1766f0d73ba68f08d17
refs/heads/master
2022-11-05T00:05:54.944946
2018-01-06T10:54:28
2018-01-06T10:54:28
109,243,253
34
4
NOASSERTION
2020-06-23T09:59:59
2017-11-02T09:23:55
Python
UTF-8
Python
false
false
821
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_dramatiq_example.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
c19ba77da1e470b244cb2d31ae64f6e5753bc812
5b4529582c9e1c6d832387672cc295e775cdd39a
/day04/统计.py
66008caaeaf6780c5aaa4f09e36c9d21f593a831
[]
no_license
gitxf12/demotest
8ccbc7f050eaefb96a6399171e103495371f403a
5d4807d7e3a4e869038ceb1f08356d0caf40f6f5
refs/heads/master
2023-04-21T06:16:00.368012
2021-05-31T08:37:08
2021-05-31T08:37:08
359,756,091
1
0
null
null
null
null
UTF-8
Python
false
false
173
py
List = [1,4,7,5,8,2,1,3,4,5,9,7,6,1,10] i=0 while i < len(List): a = List.count(List[i]) if a > 1: print(List[i],"重复了:",a-1,"次") i=i+1
53bc1a13640e400a6b5db1007807747461441931
7fffc39739869f259fe2d103efa05b87739778d1
/Python/3021.py
0f36f7063cfd086de49ec99c21fa25ca058daed7
[]
no_license
yunbinni/CodeUp
be39b3bd9fbeaa64be2a77a92918ebcc79b1799b
5cb95442edb2b766de74154e0b91e8e1c236dd13
refs/heads/main
2023-08-15T19:02:29.819912
2021-10-12T00:50:16
2021-10-12T00:50:16
366,761,440
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
"""입력 및 초기화""" a = '0'+input() b = '0'+input() stack = [] oneNum, tenNum, sum = 0, 0, 0 res = '' """계산부""" if len(a) >= len(b): b = '0'*(len(a) - len(b)) + b else: a = '0'*(len(b) - len(a)) + a # 숫자 뒤집기 a = a[::-1] b = b[::-1] loopNum = len(a) if len(a) > len(b) else len(b) for i in range(loopNum): sum = int(a[i]) + int(b[i]) + tenNum oneNum = sum % 10 tenNum = sum // 10 stack.append(oneNum) """출력부""" while(stack): res += str(stack.pop()) res = int(res) print(res)
ba30f17076ec8a6204953eed47762879a99d80e6
60a3353c5c497cae6092ead3d81c4e908d86d1b4
/m-solutions/euclidean.py
437f848fce6891f81828fc8cfa60179375f902c5
[]
no_license
kt8128/atcorder
a60dee4b727292506281e512a176454a16b27481
f7f61c8e25db73d725d9f87b655f9e46daf0c36e
refs/heads/master
2020-08-27T19:03:59.451172
2020-01-13T02:16:15
2020-01-13T02:16:15
217,466,039
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
import sys import pandas as pd import math args = sys.argv d, d_prime = int(args[1]), int(args[2]) x, x_prime, y, y_prime, q = 1, 0, 0, 1, 0 df = pd.DataFrame([[d, d_prime, x, x_prime, y, y_prime, q]], columns=["d", "d_prime", "x", "x_prime", "y", "y_prime", "q"]) while d_prime != 0: d_prev, d_prime_prev, x_prev, x_prime_prev, y_prev, y_prime_prev = d, d_prime, x, x_prime, y, y_prime q = math.floor(d_prev / d_prime_prev) d, d_prime = d_prime_prev, d_prev-q*d_prime_prev x, x_prime, y, y_prime = x_prime_prev, x_prev-q*x_prime_prev, y_prime_prev, y_prev-q*y_prime_prev df1 = pd.DataFrame([[d, d_prime, x, x_prime, y, y_prime, q]], columns=df.columns) df = df.append(df1) print(df)
1677e59cd251670e285e829e2b42e65aabc776e2
43bb2144abf954a42995ea84ea1a71c2483ac3db
/django/api/appclassdash/urls.py
0ea37291a17122b15ab8ba053212d7be0073b041
[]
no_license
classdashapp/ALLClassDashServerFiles
d281464f0da715628f9d4f8f9a69ba1016734fa8
dd05531b7422ca4e254de8841af7fffc71f006db
refs/heads/master
2020-05-17T11:07:58.030951
2019-04-26T18:36:49
2019-04-26T18:36:49
183,676,440
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
from django.urls import path from rest_framework import routers from django.conf.urls import url, include from rest_framework.urlpatterns import format_suffix_patterns from .views import InterestViewSet, UserViewSet, CourseViewSet from rest_framework.authtoken.views import obtain_auth_token router = routers.DefaultRouter() router.register(r'interests',InterestViewSet, 'interests') router.register(r'courses', CourseViewSet, 'courses') router.register(r'users', UserViewSet, 'users') urlpatterns = [ url(r'^auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^get-token/', obtain_auth_token), url(r' ', include(router.urls)) ]
531e12ee91b3b3cc63baa365562d4af6120eef6c
09eeb8352feb8a59574dc58d894b986575e78e5d
/packaging/myproject/pkgB/B_feature.py
15fe78cd476250c0af84dc889c7a5c79e411bfb7
[ "MIT" ]
permissive
TxuanYu/packaging_practice
5d03f85ede49020ddeabf48724297db3d834e39a
4f62953bdac18f542e216b429e4e70e892ee8f6b
refs/heads/main
2023-04-03T11:56:58.183888
2021-03-29T05:14:37
2021-03-29T05:14:37
352,520,843
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
def nice_test(): print('B') if __name__ == '__main__': nice_test()
0c8ed463b89362b26c7aa74053162692a31bf33a
d877e1f98f907fa8556138265f0b7fb224639323
/discusProject/asgi.py
97806e780bcaa5c1a5456192c1da9c4195a0e3b8
[]
no_license
MuflikhunovRR/discusProject
2034867b8423b8713fc29b876f30f287e338e09f
8fb9f568c7984f8b8f1184106d1518aeb794334e
refs/heads/master
2023-04-27T13:38:07.857764
2021-05-14T12:01:09
2021-05-14T12:01:09
367,331,747
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" ASGI config for discusProject project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'discusProject.settings') application = get_asgi_application()
abbc97914297519c3d4d2f494cb8a8fe7b094b5f
a1ef11a1861bc94495f5cc1bc0de2355080f5c3f
/19/19_2.py
6784acc25b51363b757cce9704b7a6d1da4b99b7
[]
no_license
womogenes/AoC-2020-solutions
85208d1a2b24daf299150a40056fe9cb3c52355d
72c4673a24c1d06d8f385536f1881c9202991d10
refs/heads/main
2023-02-08T01:03:30.384345
2020-12-25T19:20:10
2020-12-25T19:20:10
318,245,689
3
4
null
null
null
null
UTF-8
Python
false
false
1,540
py
import re from functools import lru_cache from pprint import pprint with open("19_input.txt") as fin: data = fin.read().split("\n") # Variable to keep track of rules rules = {} # Get all the rules line = 0 while data[line] != "": number = int(data[line][:data[line].index(":")]) rule = data[line][data[line].index(":") + 2:] rules[number] = rule line += 1 # Variable to keep track of regexes def get_regex(number): # Gets regex based on id if number == 8: return r8 if number == 11: return r11 ans = to_regex(rules[number]) return ans def to_regex(rule): # Converts "rule" to regex if "|" in rule: part1 = [int(i) for i in rule[:rule.index("|") - 1].split(" ")] part2 = [int(i) for i in rule[rule.index("|") + 2:].split(" ")] regex1 = "(" + ")(".join([get_regex(i) for i in part1]) + ")" regex2 = "(" + ")(".join([get_regex(i) for i in part2]) + ")" ans = f"({regex1})|({regex2})" elif '"' in rule: ans = rule[1] else: parts = [int(i) for i in rule.split(" ")] ans = "(" + ")(".join([get_regex(i) for i in parts]) + ")" return ans r42 = get_regex(42) r31 = get_regex(31) r8 = f"({r42})+" r11s = [] for n in range(1, 20): r11s.append(f"({r42}){{{n}}}({r31}){{{n}}}") r11 = "(" + ")|(".join([i for i in r11s]) + ")" # Verify! count = 0 line += 1 while line < len(data): matches = bool(re.fullmatch(get_regex(0), data[line])) count += matches line += 1 print(count)
47f9a655abcd4d887051fc29d68c0b3f18df2950
18ca91dcce6f15e761c1ccae7a7fde5dc6ee93d3
/spec/interpreter/interpreter_spec.py
04c5458826ccaf59a801a20fc96874c5af6b7b34
[]
no_license
IgnusG/H4ck3rs-D3l1ght
cc6e2f02b4d67a877259f43012fe7b9ff91101a7
cadbe2842910885502c355a6269ee281bbcf334a
refs/heads/master
2020-04-06T06:57:34.583845
2016-08-04T22:30:37
2016-08-04T22:30:37
64,971,171
0
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
import unittest from interpreter.interpreter import Interpreter class InterpreterTest(unittest.TestCase): def setUp(self): Interpreter.reset_storage() def test_interpreter_basic_output(self): user_input = 'HD! HD! HD=' self.assertEqual(Interpreter.run_interpreter(user_input), '2') def test_interpreter_hello_world(self): user_input = '72 H4ck3rs D3l1ght@ 101 H4ck3rs D3l1ght@ 108 D3l1ght H4ck3rs= H4ck3rs D3l1ght@ H4ck3rs D3l1ght@ H4ck3rs D3l1ght. 111 D3l1ght H4ck3rs= H4ck3rs D3l1ght@ 32 H4ck3rs D3l1ght@ 87 H4ck3rs D3l1ght@ H4ck3rs D3l1ght@ 114 H4ck3rs D3l1ght@ D3l1ght H4ck3rs. H4ck3rs D3l1ght@ 100 H4ck3rs D3l1ght@ 33 H4ck3rs D3l1ght@' self.assertEqual(Interpreter.run_interpreter(user_input), 'Hello World!') def test_interpreter_conditions(self): user_input = 'HD! HD! HD! HD? HD= DH! DH? HD! HD=' self.assertEqual(Interpreter.run_interpreter(user_input), '3211') def test_interpreter_nested_conditions(self): user_input = 'HD! HD! HD! HD? HD= DH! HD. HD! HD! HD? HD= DH! DH? DH. DH?' self.assertEqual(Interpreter.run_interpreter(user_input), '321221121')
68765f3d71df3158760cd4cdd1511398f5249306
e1b0baf821459cc58ad7e562ed59a2c18538f5d6
/02_variables.py
88cac0703aecb141fc88550754061815876ac408
[]
no_license
Moses-Mumo98/Python-Basics
57a8a5df7f8a973093ecb1fd5b333633e9fbb0d4
2c65123cc6a9977abd6746a761b2efb986bafdea
refs/heads/main
2023-05-09T01:47:39.599003
2021-06-01T17:39:23
2021-06-01T17:39:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# what is a variable - named containers used to temporarily store data in the computers memory # declare a variable; # reassign a variable # float # string # boolean # define appriopriate variables from the folloing line # check in a student named John doe # He is 21 years old and is a new student # getting input from the user (input) # getting a data-type
88a2924f6e0807ecffd10efb725949441bceb4fa
cfd493f1c1908b0c4b339da60e2453eec15bcdbb
/packages_ext_ws/build/universal_robot/ur_driver/catkin_generated/pkg.installspace.context.pc.py
4b12042306581e950751fe8171f7862fe8861eb3
[]
no_license
skypap/projets_ros
bc95e3baff468febba8169bd6375ed56d74a86df
66f00307ffcf96141027752f287f57e16ade5e57
refs/heads/master
2021-05-16T14:11:58.086748
2018-01-29T22:32:06
2018-01-29T22:32:06
118,060,303
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/maxime/projets-ros/packages_ext_ws/install/include".split(';') if "/home/maxime/projets-ros/packages_ext_ws/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "dynamic_reconfigure".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "ur_driver" PROJECT_SPACE_DIR = "/home/maxime/projets-ros/packages_ext_ws/install" PROJECT_VERSION = "1.1.11"
90200eb35d16e47548cb09c81a083e16a412daf5
fe19d2fac4580d463132e61509bd6e3cc2cf958d
/otp/uberdog/RejectCode.py
4676d7c5bbdcf662d24bc3867799ee2d361bf35e
[]
no_license
t00nt0wn1dk/c0d3
3e6db6dd42c3aa36ad77709cf9016176a3f3a44f
7de105d7f3de0f8704b020e32fd063ee2fad8d0d
refs/heads/master
2021-01-01T16:00:15.367822
2015-03-21T21:25:52
2015-03-21T21:25:55
32,647,654
3
5
null
null
null
null
UTF-8
Python
false
false
2,568
py
# 2013.08.22 22:15:51 Pacific Daylight Time # Embedded file name: otp.uberdog.RejectCode class RejectCode(): __module__ = __name__ TIMEOUT = 65535 NO_GUILD = 10000 MAY_NOT_JOIN_GUILD = 10001 MAY_NOT_INVITE_GUILD = 10002 NO_MEMBERSHIP = 10003 GUILD_FULL = 10004 LEAVE_CURRENT_GUILD_FIRST = 10005 ALREADY_IN_GUILD = 10006 JOIN_OWN_GUILD = 10007 NOT_IN_A_GUILD = 10008 OTHER_AVATAR_NO_MEMBERSHIP = 10009 OTHER_AVATAR_NO_GUILD = 10010 OTHER_AVATAR_NO_GUILD_FOUND = 10011 ALREADY_HAS_GUILD = 10012 MAY_NOT_CREATE_GUILD = 10013 BUSY = 10014 NO_CREW = 20000 MAY_NOT_JOIN_CREW = 20001 JOIN_OWN_CREW = 20002 NOT_IN_A_CREW = 20003 MAY_NOT_INVITE_CREW = 20004 ALREADY_IN_CREW = 20005 ALREADY_INVITED_TO_CREW = 20006 NOT_CAPTAIN_OF_CREW = 20007 NO_SELF_CREW_INVITE = 20008 CREW_INVITATION_DECLINED = 20009 ALREADY_LOCKED = 20010 NOT_LOCKED = 20011 NOT_YOUR_LOCK = 20012 YOUR_CREW_IS_LOCKED = 20013 OTHER_CREW_IS_LOCKED = 20014 NOT_IN_YOUR_CREW = 20015 NO_TRADE = 30000 NOT_YOUR_TRADE = 30001 TRADE_NOT_ACTIVE = 30002 AVATAR_NOT_HERE = 30003 MAY_NOT_TRADE = 30004 NO_SELF_TRADE = 30005 OTHER_AVATAR_NOT_HERE = 30006 OTHER_AVATAR_MAY_NOT_TRADE = 30007 NO_INVENTORY = 40000 CONTENT_TYPE_NOT_ALLOWED = 40001 HAS_NONE_OF_THAT_TYPE = 40002 NO_MORE_SLOTS = 40003 SLOT_TYPE_NOT_FOUND = 40004 OVERFLOW = 40005 UNDERFLOW = 40006 MULTIPLE_OF_SAME_ITEM = 40007 MAY_NOT_DESTROY = 40008 NO_REMOVE = 40009 NOT_YOUR_DO_ID = 40010 NO_AVATAR = 50000 NOT_YOUR_AVATAR = 50001 BAD_DELETE_PASSWORD = 50002 MAY_NOT_LIST_AVATARS = 50003 MAY_NOT_CREATE_AVATAR = 50004 MAY_NOT_REMOVE_AVATAR = 50005 SLOT_OUT_OF_RANGE = 50006 SLOT_TAKEN = 50007 INVALID_ACCOUNT = 50008 AVATAR_ONLINE = 50009 MAX_AVATAR_LIMIT = 50010 NO_LOCK_ON_SLOT = 50011 NO_FRIENDS_LIST = 60000 FRIENDS_LIST_NOT_HANDY = 60001 INVITEE_NOT_ONLINE = 60002 ALREADY_INVITED = 60003 ALREADY_YOUR_FRIEND = 60004 FRIENDS_LIST_FULL = 60005 OTHER_FRIENDS_LIST_FULL = 60006 ALREADY_NOT_YOUR_FRIEND = 60007 INVITATION_DECLINED = 60008 NOT_YOUR_FRIENDS_LIST = 60009 ALREADY_FRIENDS_WITH_SELF = 60010 MAY_NOT_OPEN_INVITE = 60011 # okay decompyling C:\Users\Maverick\Documents\Visual Studio 2010\Projects\Unfreezer\py2\otp\uberdog\RejectCode.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2013.08.22 22:15:51 Pacific Daylight Time
b3fd148f25d0931228a52e238f31c93d73495d1a
95fa704c0e2809bb7f740a79828eedaec7cffe05
/Wrapper/MapFunctions.py
a59246b03e6d8eeb2d230c87aad60bf92e704165
[]
no_license
jgontrum/GeoTweetEstimator
03a9dccb49a3577fdc21c28cfa00ac2b3ad75850
a4e5c6cdef1b0c377d6bcf318c14b907829dda93
refs/heads/master
2020-12-28T21:51:41.776151
2015-10-17T13:49:22
2015-10-17T13:49:22
34,210,768
3
0
null
null
null
null
UTF-8
Python
false
false
1,538
py
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Johannes Gontrum <[email protected]>' # Use this if there is no X-Server availible, e.g. this script runs on a cluster import matplotlib as mpl mpl.use('Agg') from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt """ This wrapper maintains all functions about the Basemap package, that allows you to draw graphs directly on a map. The prepareMap() function returns a Basemap-object, that is centered on Germany, Austria and Switzerland. """ # Returns a map with default setting def prepareMap(): map = Basemap(projection='merc', resolution='i', area_thresh=200, lat_0=51.16, # center lon_0=10.44, # center llcrnrlon=5.3, # longitude of lower left hand corner of the desired map domain (degrees). llcrnrlat=45, # latitude of lower left hand corner of the desired map domain (degrees). urcrnrlon=18, # longitude of upper right hand corner of the desired map domain (degrees). urcrnrlat=56 # latitude of upper right hand corner of the desired map domain (degrees). ) # draw coastlines, state and country boundaries, edge of map. map.drawcoastlines(linewidth=0.25) map.drawcountries(linewidth=0.25) map.fillcontinents(color='snow', lake_color='lightcyan') # draw the edge of the map projection region (the projection limb) map.drawmapboundary(fill_color='lightblue') return map
c63312dedb59f427503f31e21b0dc9fc56c7ba3d
db4157453ae65b6679809e8298dd63576387de9e
/scikit_learn_morvan/skl_4.py
848363a3f14e0e6b482f1eb807eeb259679ddb8f
[]
no_license
TanMengyuan/Machine_Learning
c0a24471b4408c1677aa11107ec107645f9cc79c
9581a6a1beb5060b5a5c8530706a8ce3a6520c2d
refs/heads/master
2020-05-27T19:27:44.609118
2019-11-18T13:36:58
2019-11-18T13:36:58
170,133,373
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
from sklearn import preprocessing import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets.samples_generator import make_classification from sklearn.svm import SVC import matplotlib.pyplot as plt # a = np.array([[10, 2.7, 3.6], # [-100, 5, -2], # [120, 20, 40]], dtype=np.float64) # print(a) # print(preprocessing.scale(a)) X, y = make_classification(n_samples= 300, n_features= 2, n_redundant= 0, n_informative= 2, random_state= 22, n_clusters_per_class= 1, scale= 100) # plt.scatter(X[:, 0], X[:, 1], c=y) # plt.show() X = preprocessing.minmax_scale(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= .3) clf = SVC() clf.fit(X_train, y_train) print(clf.score(X_test, y_test))
fb2f9f6c456de289f09f1b7a377ac669354429f8
6b35764647da66746818da584b9a058c838b98eb
/ble/projects/bookreview/app.py
e8de149b2b332854704508b475c0d3c43370eca7
[]
no_license
seon0522/front_study
fa16ad6806c6b789b6d343a9cdcf5db3665e1a8e
613f2cedd68abe3e6c3e2159739c08209020e476
refs/heads/main
2023-06-24T22:01:12.206324
2021-07-22T04:39:31
2021-07-22T04:39:31
374,309,697
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
from flask import Flask, render_template, jsonify, request app = Flask(__name__) from pymongo import MongoClient client = MongoClient('localhost', 27017) db = client.dbsparta ## HTML을 주는 부분 @app.route('/') def home(): return render_template('index.html') ## API 역할을 하는 부분 @app.route('/review', methods=['POST']) def write_review(): sample_receive = request.form['sample_give'] print(sample_receive) return jsonify({'msg': '이 요청은 POST!'}) @app.route('/review', methods=['GET']) def read_reviews(): sample_receive = request.args.get('sample_give') print(sample_receive) return jsonify({'msg': '이 요청은 GET!'}) if __name__ == '__main__': app.run('0.0.0.0', port=5000, debug=True)
c2bde3703edd788b56bd303b9772777a3ab417c1
c0df141c1e4cd2fc7148c88526c24099d994bb8a
/LinearRegression.py
0531745cf64cc5d0beb55085d9c0534b2ccca200
[]
no_license
Solony/MachineLearningDemo
41c75986d18eaf2dc23ac3e04b315a0952ee53e7
ec37a227384e8fec50e60f70249a20d26cacb1dc
refs/heads/master
2021-07-17T04:39:34.736943
2017-10-20T03:07:52
2017-10-20T03:07:52
107,617,260
0
0
null
null
null
null
UTF-8
Python
false
false
1,537
py
import numpy as np import matplotlib.pyplot as plt X = np.linspace(0, 10) #inline method y = x f = lambda x: x #Turn f into numpy thing F = np.vectorize(f) Y = F(X) #init dataset num = 100 random_sign = np.vectorize(lambda x: x if np.random.sample() > 0.5 else -x) data_X = np.linspace(1, 9, num) data_Y = random_sign(np.random.sample(num) * 2) + F(data_X) #Linear regression from sympy import * def linear_regression(X, Y): a, b = symbols('a b') residual = 0 #殘值 for i in range(num): residual += (Y[i] - (a * X[i] + b)) ** 2 #diff a and b respectively f1 = diff(residual, a) f2 = diff(residual, b) res = solve([f1, f2], [a, b]) return res[a], res[b] a, b = linear_regression(data_X, data_Y) LR_X = X h = lambda x: a * x + b H = np.vectorize(h) LR_Y = H(LR_X) #plt.plot(X, Y, 'b') plt.plot(LR_X, LR_Y, 'g') plt.plot(data_X, data_Y, 'ro') #Data test #Define 4 extraordinary data points and 3 normal data points DataSet = [[1.3, 10], [2.6, 8], [3.8, 7], [4.5, 9], [3.2, 3.0], [2.1, 1.9], [1.4, 1.3]] #DataSet = [[1.3, 2.6, 3.8, 4.5, 3.2, 2.1, 1.4], [10, 8, 7, 9, 3.0, 1.9, 1.3]] i = 0 while i < len(DataSet): plt.plot(DataSet[i][0], DataSet[i][1], 'bo') i += 1 plt.show() count = 0 for i in range(len(data_X)): if(data_X[i] < 5): count += 1 ordinary = (count + 3) / (float)(count + len(DataSet)) exception = (count + 4) / (float)(count + len(DataSet)) print (format(ordinary, '.2f')) print (format(exception, '.2f'))
43560555f43f44b5b8ef4fe21a2f9d054e2ff43d
2fd40155f0b7efce82ea87711db3b790aa7bb99e
/call_job.py
3b26eb555841609295156c7e3c5cbb4c23fb68ee
[ "MIT" ]
permissive
breecummins/dsgrn_net_gen
3c743ecbe173f33e129f8d865cf4af0001e11726
bcd77b71ad3e311d2906f0af986559d2c54ffe6d
refs/heads/master
2021-12-27T02:19:38.054600
2021-09-23T18:58:16
2021-09-23T18:58:16
251,466,654
1
0
MIT
2021-04-13T19:17:15
2020-03-31T01:09:42
Python
UTF-8
Python
false
false
107
py
from dsgrn_net_gen.makejobs import Job import sys paramfile = sys.argv[1] job = Job(paramfile) job.run()
caa80222721a93370d33ce36be40304194ab3e32
7c99880c8014f090ec5694e14276211284bf4220
/backend/wallet/migrations/0001_initial.py
f0061f9d57752af31404c778f37cb7a132166de7
[]
no_license
crowdbotics-apps/selekni-24543
bf1e087ae15fd7c99f02b89ba50d79c1e03b189c
f740a5dcf449ac7180e50bf2979a882a8d4353b3
refs/heads/master
2023-03-04T23:59:38.938220
2021-02-16T20:03:28
2021-02-16T20:03:28
339,158,961
0
0
null
null
null
null
UTF-8
Python
false
false
6,258
py
# Generated by Django 2.2.18 on 2021-02-15 19:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ("task_profile", "0001_initial"), ("task", "0001_initial"), ] operations = [ migrations.CreateModel( name="CustomerWallet", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("balance", models.FloatField()), ("expiration_date", models.DateTimeField()), ("last_transaction", models.DateTimeField()), ( "customer", models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, related_name="customerwallet_customer", to="task_profile.CustomerProfile", ), ), ], ), migrations.CreateModel( name="PaymentMethod", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("account_token", models.CharField(max_length=255)), ("payment_account", models.CharField(max_length=10)), ("timestamp_created", models.DateTimeField(auto_now_add=True)), ( "wallet", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="paymentmethod_wallet", to="wallet.CustomerWallet", ), ), ], ), migrations.CreateModel( name="TaskerWallet", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("balance", models.FloatField(max_length=254)), ("expiration_date", models.DateTimeField()), ("last_transaction", models.DateTimeField()), ( "tasker", models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, related_name="taskerwallet_tasker", to="task_profile.TaskerProfile", ), ), ], ), migrations.CreateModel( name="TaskerPaymentAccount", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("account_token", models.CharField(max_length=255)), ("payment_account", models.CharField(max_length=10)), ("timestamp_created", models.DateTimeField(auto_now_add=True)), ( "wallet", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="taskerpaymentaccount_wallet", to="wallet.TaskerWallet", ), ), ], ), migrations.CreateModel( name="PaymentTransaction", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("price", models.FloatField()), ("tip", models.FloatField()), ("tracking_id", models.CharField(max_length=50)), ("timestamp_created", models.DateTimeField(auto_now_add=True)), ( "customer", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="paymenttransaction_customer", to="task_profile.CustomerProfile", ), ), ( "payment_method", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="paymenttransaction_payment_method", to="wallet.PaymentMethod", ), ), ( "tasker", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="paymenttransaction_tasker", to="task_profile.TaskerProfile", ), ), ( "transaction", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="paymenttransaction_transaction", to="task.TaskTransaction", ), ), ], ), ]
b38ff14e2876add3596c10fc062f2902405b898e
dcf9a7aeaddc876530e8f28fd17130f8859feda9
/pymatflow/cp2k/base/motion_driver.py
f3e40b94ad64f31523d19937480656281410f41c
[ "MIT" ]
permissive
DeqiTang/pymatflow
3c6f4a6161a729ad17db21db9533187c04d8f5ac
922722187e2678efbfa280b66be2624b185ecbf5
refs/heads/master
2022-05-25T19:41:19.187034
2022-03-05T03:07:08
2022-03-05T03:07:08
245,462,857
5
1
null
null
null
null
UTF-8
Python
false
false
455
py
#!/usr/bin/env python # _*_ coding: utf-8 _*_ # ======================== # CP2K / MOTION / DRIVER # ======================== class cp2k_motion_driver: def __init__(self): self.params = { } self.status = False def set_params(self, params): for item in params: if len(item.split("-")) == 2: self.params[item.split("-")[-1]] = params[item] else: pass
626a52bc6976c92a5a598edb3e2ca4eaf21e0e9e
d4296be903796d6edbbd59b863ff4d45aa03ad36
/day18/day18.py
3089dd6aefa1307224b8d8920deaf073494f49ce
[]
no_license
yamnikov-oleg/aoc2020
e534edcb64109f68f903e1b66d7b73151ae5364e
0ad20f4db5b79a38e53364117dfda6787c6259f5
refs/heads/master
2023-02-05T03:08:54.390805
2020-12-27T14:46:05
2020-12-27T14:46:05
318,168,374
0
0
null
null
null
null
UTF-8
Python
false
false
10,595
py
from enum import Enum import re from dataclasses import dataclass from typing import List, Tuple, Union class Expr: """ A base class for an evaluatable expression. """ def eval(self) -> int: raise NotImplementedError("eval") @dataclass class LiteralExpr(Expr): """ A number literal. Evaluates to itself. """ value: int def eval(self) -> int: return self.value @dataclass class ParenExpr(Expr): """ A group of parentheses, wrapping around another expression. Evaluates to the value of the inner expression. """ inner: Expr def eval(self) -> int: return self.inner.eval() @dataclass class AddExpr(Expr): """ An addition. Evaluates to the sum of the values of the left hand side expression and the right hand side expression. """ left_operand: Expr right_operand: Expr def eval(self) -> int: return self.left_operand.eval() + self.right_operand.eval() @dataclass class MultExpr(Expr): """ A multiplication. Evaluates to the product of the values of the left hand side expression and the right hand side expression. """ left_operand: Expr right_operand: Expr def eval(self) -> int: return self.left_operand.eval() * self.right_operand.eval() class Precedence(Enum): """ Enumeration for the precedence option of the parser. """ # + and * are parsed evaluated at the same precedence level. # As a result, in an expression without parentheses former operations will be # nested the later, be it AddExpr or MultExpr. FLAT = 'flat' # Summations are parsed and evaluated before the multiplications. # As a result, in an expression without parentheses AddExpr will be nested # in MultExpr, but never the other way around. ADDITION_FIRST = 'addition_first' @dataclass class Parser: """ A class to tokenize, parse and evaluate expressions in the text form. """ # Controls the precedence of the operators. # Affects how the operations are nested inside the AddExpr and MultExpr trees. precedence: Precedence = Precedence.FLAT def tokenize(self, line: str) -> List[str]: """ Split the expression string into more parsable string tokens. Valid tokens are '(', ')', '+', '*' and 'N', where N is any integer. Example: Parser().tokenize("1 + 2 * (3 + 4)") # => ["1", "+", "2", "*", "(", "3", "+", "4", ")"] """ line = line.strip() if not line: return [] token_re = re.compile(r'\d+|\(|\)|\+|\*') match = token_re.match(line) if not match: raise ValueError(f"Invalid expression: {line}") if match.start(0) != 0: raise ValueError(f"Invalid character: {line}") rest = line[match.end(0):] tokens = self.tokenize(rest) return [match.group(0), *tokens] def _parse_operand(self, tokens: List[str]) -> Tuple[Expr, List[str]]: """ Expects a literal or a parenthesized expression. Parses it and returns the rest of the tokens. Examples: parser._parse_operand(["1", "+", "2"]) # => LiteralExpr(1), ["+", "2"] parser._parse_operand(["(", "1", "+", "2", ")", "+", "3"]) # => ParenExpr(AddExpr(LiteralExpr(1), LiteralExpr(2))), ["+", "3"] """ if not tokens: raise ValueError("Expected an operand, found end of line") if tokens[0].isdigit(): return LiteralExpr(int(tokens[0])), tokens[1:] elif tokens[0] == '(': expr, tokens = self._parse_expr(tokens[1:]) if not tokens: raise ValueError(f"Expected ')', found end of line") return ParenExpr(expr), tokens[1:] # [1:] skips the closing parenthesis else: raise ValueError(f"Expected operand, found {tokens!r}") def _parse_operator(self, tokens: List[str]) -> Tuple[str, List[str]]: """ Expects a plus sign or an asterisk. Returns it as string and the rest of the tokens. Examples: parser._parse_operator(["+", "2"]) # => "+", ["2"] """ if not tokens: raise ValueError("Expected an operator, found end of line") if tokens[0] in ['+', '*']: return tokens[0], tokens[1:] else: raise ValueError(f"Invalid operator: {tokens[0]!r}") def _group_operations_flat(self, operations: List[Union[str, Expr]]) -> Expr: """ Given a list of expressions and operators, groups them in a single expression by the flat precedence law. Examples: parser._group_operations_flat([Literal(1), "*", Literal(2), "+", Literal(3)]) # => AddExpr(MultExpr(Literal(1), Literal(2)), Literal(3)) """ if not operations: raise ValueError(f"_group_operations_flat called with an empty list") # If there is only one items - it's a single operand, return it as is. if len(operations) == 1: return operations[0] lhs = operations[0] operator = operations[1] rhs = operations[2] rest_of_operations = operations[3:] # Group the left-most operation... if operator == '+': expr = AddExpr(lhs, rhs) elif operator == '*': expr = MultExpr(lhs, rhs) else: raise ValueError(f"Invalid operator: {operator}") # ...and nest it in the operation to the right by using it as an operand. return self._group_operations_flat([expr, *rest_of_operations]) def _group_operations_addition_first(self, operations: List[Union[str, Expr]]) -> Expr: """ Given a list of expressions and operators, groups them in a single expression by the "additions first" precedence law. Examples: parser._group_operations_flat([Literal(1), "*", Literal(2), "+", Literal(3)]) # => MultExpr(Literal(1), AddExpr(Literal(2), Literal(3))) """ # Group the operation items into "summation groups" - multiplicands, which # can be a single operand or a summation. # Example: # Given operations = [Literal(1), "*", Literal(2), "+", Literal(3)] # Produces sum_groups = [[Literal(1)], "*", [Literal(2), "+", Literal(3)]] current_sum_group = [] sum_groups = [current_sum_group] while operations: operand = operations[0] operations = operations[1:] current_sum_group.append(operand) if not operations: break operator = operations[0] operations = operations[1:] if operator == '*': sum_groups.append(operator) current_sum_group = [] sum_groups.append(current_sum_group) continue elif operator == '+': current_sum_group.append(operator) continue else: raise ValueError(f"Invalid operator: {operator!r}") # Convert each "summation group" into an AddExpr or a single operand # Example: # Given sum_groups = [[Literal(1)], "*", [Literal(2), "+", Literal(3)]] # Produces multiplicands = [Literal(1), "*", AddExpr(Literal(2), Literal(3))] multiplicands = [self._group_operations_flat(sum_group) for sum_group in sum_groups] # Convert the resulting list of multiplication operations into a single MultExpr. return self._group_operations_flat(multiplicands) def _group_operations(self, operations: List[Union[str, Expr]]) -> Expr: """ Given a list of expressions and operators, groups them in a single expression by the precedence law selected in self.precedence. See _group_operations_flat and _group_operations_addition_first. """ if self.precedence == Precedence.FLAT: return self._group_operations_flat(operations) elif self.precedence == Precedence.ADDITION_FIRST: return self._group_operations_addition_first(operations) else: raise ValueError(f"Invalid precedence value: {self.precedence}") def _parse_expr(self, tokens: List[str]) -> Tuple[Expr, List[str]]: """ Parses a compound expression until the end of the line or until an unmatched closing parenthesis. Returns the expression and the rest of tokens (including the unmatched closing parenthesis if there is one). Example: parser._parse_expr(["(", "1", "+", "2", ")", "+", "3"]) # => AddExpr(ParenExpr(AddExpr(Literal(1), Literal(2))), Literal(3)), [] parser._parse_expr(["(", "1", "+", "2", ")", "+", "3", ")", "*", "4"]) # => AddExpr(ParenExpr(AddExpr(Literal(1), Literal(2))), Literal(3)), [")", "*", "4"] """ left_operand, tokens = self._parse_operand(tokens) if not tokens or tokens[0] == ')': return left_operand, tokens # Collect operand and operators into a single list operations: List[Union[str, Expr]] = [left_operand] while tokens and tokens[0] != ')': operator, tokens = self._parse_operator(tokens) operations.append(operator) right_operand, tokens = self._parse_operand(tokens) operations.append(right_operand) return self._group_operations(operations), tokens def parse_expr(self, tokens: List[str]) -> Expr: """ Parses the expression given the tokens produced by self.tokenize. Example: parser._parse_expr(["(", "1", "+", "2", ")", "+", "3"]) # => AddExpr(ParenExpr(AddExpr(Literal(1), Literal(2))), Literal(3)) """ expr, tokens = self._parse_expr(tokens) if tokens: raise ValueError(f"Expected end of line, found more tokens: {tokens!r}") return expr def evaluate(self, line: str) -> int: return self.parse_expr(self.tokenize(line)).eval() def main(): with open('./input.txt') as f: lines = [l.strip() for l in f.readlines()] values = [Parser().evaluate(line) for line in lines] print(f"Sum of results: {sum(values)}") values = [Parser(precedence=Precedence.ADDITION_FIRST).evaluate(line) for line in lines] print(f"Sum of results (part 2): {sum(values)}") if __name__ == "__main__": main()
eb41129ed3f7057d5cc5083bb4c41750be22ebc3
979dbbef0b9818d4b950f42ee7d7c0ff0d515617
/epitools-env/bin/pip3.8
ea2258fe562378939df7d3d60b46e371f7db2bc7
[]
no_license
adjovichancel/EPITECH-DOCUMENTATION
86f6b767162f194d92f53144d01ccde77455653f
b4a13592ef6679117271fef16f2e16ccdbf3ae36
refs/heads/master
2022-12-09T14:37:59.591845
2020-09-23T21:42:16
2020-09-23T21:42:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
271
8
#!/home/blacky/github/EPITECH-DOCUMENTATION/epitools-env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
cdbb1dc82dac13f36383f179e2df457c3bf5a1b1
5a1e1756025bacae88b619d388ebf61b330001ab
/1.Class/Language_Python-master/Language_Python-master/LC25_1_IPaddressChecking.py
7e82ec909b2bbe4f4feb7d208d5df661e74ba574
[]
no_license
reshmaladi/Python
d1953497703aa15e163cd8ac27be23e3e5c3e947
8e9092af63476fef35d221e20acf418983957e53
refs/heads/master
2021-10-15T00:55:08.136039
2021-10-01T14:32:16
2021-10-01T14:32:16
165,836,823
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
import re def checkip(ip): pattern = re.compile("(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})") k=re.match(pattern,ip) type=k.group(1) print(type) type = int(type) if(int(k.group(2))<256 and int(k.group(3))<256 and int(k.group(4))<256): if(type<127 and type>0): print("Class A") elif(type<192 and type>127): print("Class B") elif(type<127 and type>192): print("Class C") elif(type<192 and type>224): print("Class D") elif(type<224 and type>256): print("Class E") else: print("Invalid IP") else: print("Invalid IP") def main(): ip=input("Enter IP:\t") checkip(ip) if __name__=='__main__': main() ''' try: n=10/0 except ZeroDivisionError as e: print(e,"222") except Exception as e: print(e,"111") '''
e4fc443083d31d36d7520fafdf282e4d77b2f4e4
3df322b2e1ed2b63ee5cd6903a602010ba99d801
/sniffer/tests/scent_file.py
af43f2f6fc5c9705a258521c03b4d33f665d87db
[ "MIT" ]
permissive
walnutgeek/sniffer
a76799aa31921a8bd2f15c5376fe2cd2da3d5683
5b462f61aa39972c42d14af4ff6b1f3f69658b47
refs/heads/master
2020-06-04T10:26:20.347812
2019-06-14T17:48:25
2019-06-14T17:48:25
191,983,870
1
0
MIT
2019-06-14T17:43:55
2019-06-14T17:43:54
null
UTF-8
Python
false
false
386
py
from sniffer.api import * @select_runnable('execute_type1') @file_validator def type1_files(filename): return filename.endswith('.type1') @select_runnable('execute_type2') @file_validator def type2_files(filename): return filename.endswith('.type2') @runnable def execute_type1(mock, *args): mock('type1') @runnable def execute_type2(mock, *args): mock('type2')
7daf6a04365cbddc656882e3c00036eba767ca17
2dd224df341afd0d10e08024dc53197944ea2df9
/datacollectvenv/Scripts/django-admin.py
1e640b005e370c8d78f6c771e14cae2f3b6f487b
[]
no_license
c0pper/datacollector
fc319735c0a8e5e4df590b70ff5b25819f569ef1
798548d7b045771335ca87b3e250cbc169ecf34c
refs/heads/master
2023-06-09T01:02:09.583650
2021-06-27T20:42:01
2021-06-27T20:42:01
380,715,957
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
#!c:\users\simon\pycharmprojects\django data collector\datacollectvenv\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
2341e1ce655b42e820e7cb430efa637bb46d886a
409b87a4f3b77e929d84f140d9574e28c00ed9ec
/06-Condities/Test.py
b3d51bc8cad9e661f346bef5a111f392aa3d7db5
[]
no_license
WoutVdb19103/Informatica5
d16f76f308ecd95e5c1339e0b3f5be50e07d0e08
7d127e54b01a6dcac33907c346c1c360a07fa019
refs/heads/master
2020-03-28T03:19:03.832752
2019-05-23T08:05:59
2019-05-23T08:05:59
147,637,122
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
leeftijd = int(input('leeftijd: ')) if leeftijd > 16 and leeftijd > 21 print('Drink met mate.') elif: leeftijd > 16: print('Wel pintje, geen sterke drank') else: print('Alcohol verboden!')
85f8c276c3f225a7b4195c6f3beabc4213a234ba
f888669dcf1ae6c6a25235c49ccb67333163b7f2
/korpokkur/scaffolds/pygitignore/__init__.py
9527f58b84b5b1659f7f3ff9417039e7cf668b02
[]
no_license
podhmo/korpokkur
dd50f6df9b7659ab70b8dcde809fb50ebc848d40
9bf4cb6ca6fa3ec45fe1820282345e78268b396d
refs/heads/master
2020-07-04T07:03:29.605665
2016-10-01T14:04:09
2016-10-01T14:04:09
19,282,059
1
0
null
null
null
null
UTF-8
Python
false
false
485
py
# -*- coding:utf-8 -*- from zope.interface import implementer from korpokkur.interfaces import IScaffoldTemplate import os.path ## see: korpokkur.interfaces:IScaffoldTemplate @implementer(IScaffoldTemplate) class Package(object): """tiny python package scaffold (this is sample)""" source_directory = os.path.join(os.path.abspath(os.path.dirname(__file__)), "+package+") expected_words = { "package": ("package name", "sample") } template_engine = "mako"
179a1ab778d5951e027a1585095e9502fc057b84
3f6187741f631db0f43865b0029397324e1bd190
/Script1.py
2b0edc2b8a93e02b6a65a97cc985006853467c04
[]
no_license
petervdl112/selenium
9067cf614263aafa934ea400304ba1b2487ad27c
f8eee9a82a364bba5d3ec008b9df2c77529ddefa
refs/heads/main
2023-08-11T17:12:56.084169
2021-09-15T19:05:20
2021-09-15T19:05:20
400,483,716
0
0
null
null
null
null
UTF-8
Python
false
false
1,369
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys #om enter etc. door te kunnen geven import time from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC #1e video on selenium TechWithTim #PATH = 'C:/Program Files (x86)/chromedriver.exe' #voor windows #driver = webdriver.Chrome(PATH) #voor windows driver = webdriver.Chrome() driver.get('https://techwithtim.net') #grab search results. Textbox "search" has HTML "value_name='s'" search = driver.find_element_by_name('s') search.clear() search.send_keys('test') search.send_keys(Keys.RETURN) # dit is de methode om te wachten totdat de pagina beschikbaar is. Alternatief is direct opvragen: # main = driver.find_element_by_id('main'). # meer specifiek. we zoeken eerst naar sectie = main. binnen deze sectie zoeken we dan naar een tag # het lijkt erop dat je voor een <article id="..."> gewoon kan zoeken naar article tag. try: main = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "main")) ) articles = main.find_elements_by_tag_name("article") for article in articles: header = article.find_element_by_class_name("entry-summary") print(header.text) time.sleep(5) finally: driver.quit()
bfdea5090dfe44846995ad0ad8fc2a19c97373c8
6d8cc1eeb320988a9e8e9047e6cd403600361257
/manipulator_grasping/src/grasp_demo_3.py
9891d2217e57dda760b8347052151f832699859b
[]
no_license
SalahEddine1919/mov
de3ce43a2e0fc2dc7d7e66a81d6730df23c663d4
7c5d6ce72df563bb88dfd42ac7b949c8b2ed0682
refs/heads/main
2023-04-28T16:00:32.041816
2021-05-21T09:29:08
2021-05-21T09:29:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,230
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy, sys import moveit_commander from control_msgs.msg import GripperCommand class MoveItFkDemo: def __init__(self): # Initialize the move_group API moveit_commander.roscpp_initialize(sys.argv) # Initialize ROS node rospy.init_node('moveit_fk_demo', anonymous=True) # Initialize the arm group in the robot arm that needs to be controlled by the move group arm = moveit_commander.MoveGroupCommander('arm') # Initialize the gripper group in the robot arm controlled by the move group gripper = moveit_commander.MoveGroupCommander('gripper') # Set the allowable error value of the robot arm and gripper arm.set_goal_joint_tolerance(0.001) gripper.set_goal_joint_tolerance(0.001) # Control the robot arm to return to the initial position first ''' arm.set_named_target('bow') arm.go() rospy.sleep(2) ''' # Set the target position of the gripper and control the gripper movement gripper.set_named_target("opened") gripper.go() rospy.sleep(1) # Set the target position of the robot arm and use six-axis position data to describe (unit: radians) joint_positions = [0.0,1.57,1.0,0.0,-1.0] result=arm.set_joint_value_target(joint_positions) rospy.loginfo(str(result)) # Control the robot arm to complete the movement arm.go() joint=arm.get_current_joint_values() print("final joint=",joint) pose=arm.get_current_pose('arm_link5') print('pose=',pose) rospy.sleep(1) gripper.set_named_target("closed") gripper.go() rospy.sleep(1) arm.set_named_target('bow') arm.go() rospy.sleep(2) # Close and exit moveit moveit_commander.roscpp_shutdown() moveit_commander.os._exit(0) if __name__ == "__main__": try: MoveItFkDemo() except rospy.ROSInterruptException: pass
8147e3887f21a7dd5c37cf59f704ec8811f0a409
c4ad1f2a6c1bc6cfc22c57a70035444340244854
/snippet_converter/__init__.py
074e3b044258b8d49dbb4542c2cf2a5a52f9c06e
[ "MIT" ]
permissive
pr4shan7/snippet-converter
646598f765deb6edb13b05dc8816d5a5ac251ebd
ac9f29bc7a723b7f2bcbdf6fca4cbdee02526d5e
refs/heads/master
2022-12-21T23:21:17.728089
2020-10-02T11:40:57
2020-10-02T11:40:57
263,321,787
0
1
MIT
2020-10-02T11:40:59
2020-05-12T11:49:57
Python
UTF-8
Python
false
false
107
py
from snippet_converter import setup from snippet_converter import sublime from snippet_converter import cli
450ace0a062d76157a65deb0ea308b6eada98826
118371a66a1649bf515712f66ae96e15a4443171
/util.py
472f745fa7cd04ecc6077843ce2471e146f61757
[]
no_license
sodiffi/hot_source_server
82dd8e721d9b043c2a04e8b841e4a011e0f82c8a
81722e59d3b12571ddeb7c76497f5436915c2fa6
refs/heads/master
2023-08-28T12:49:39.984556
2021-10-07T03:56:38
2021-10-07T03:56:38
412,814,126
0
0
null
2021-10-03T15:44:58
2021-10-02T14:06:38
Python
UTF-8
Python
false
false
338
py
from flask import Response,jsonify,make_response import json from coder import MyEncoder def ret(result): mes="成功" if result["success"] else "失敗" resultData=result["data"] if "data" in result else {} return make_response(json.dumps({"D":resultData,"message":mes,"success":result["success"]}, cls=MyEncoder))
4b7ba8fe703eed263317b0fd81b1007e71aafd01
00d7e9321d418a2d9a607fb9376b862119f2bd4e
/patterns/__init__.py
00b2afc5cbacee223ea57b5ca685e1d8786dd191
[ "MIT" ]
permissive
baluneboy/pims
92b9b1f64ed658867186e44b92526867696e1923
5a07e02588b1b7c8ebf7458b10e81b8ecf84ad13
refs/heads/master
2021-11-16T01:55:39.223910
2021-08-13T15:19:48
2021-08-13T15:19:48
33,029,780
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
""" A place to keep all our string-type patterns (like regular expressions, for example). """
c3cdd5ad8556ee86fd866d49b31d93dc6e696596
ad7391451b41e95c4349bdf62846969f6a92e155
/VCF data mining new.py
2f7b386892a330e72f5fe26c08748adeab807684
[]
no_license
bearnomore/Evolution-genomics
10ed959024f91ac944ec6a236da4c063c50f2bee
9a48cde3b8d61d540c5a907c6b42e2c266458776
refs/heads/master
2020-03-13T09:33:03.231419
2018-07-10T20:39:28
2018-07-10T20:39:28
131,066,578
0
0
null
null
null
null
UTF-8
Python
false
false
5,584
py
# coding: utf-8 # In[150]: import pandas as pd import numpy as np import glob # In[180]: def vcf_clean(file): ''' Input = Exported VCF from Geneious, Select columns ['Minimum', 'Maximum', 'Amino Acid Change', 'Change', 'Codon Change', 'locus_tag', 'Polymorphism Type', 'Protein Effect', 'Variant Frequency', 'Note'], Remove rows with 'Protein Effect' == NaN or None, Remove rows of 'locus_tag' == 'SCO3798' where the barcode is inserted, Sort data by 'Variant Frequency' in descending order. Return cleaned VCF dataframe ''' vcf = pd.read_csv(file, usecols = ['Minimum', 'Maximum', 'Change', 'locus_tag', 'Polymorphism Type', 'Protein Effect', 'Variant Frequency', 'Amino Acid Change','Codon Change', 'note']) ## vcf = vcf[~vcf['Protein Effect'].isnull()].loc[vcf['Protein Effect'] != 'None'].loc[vcf['locus_tag'] != 'SCO3798'] # Remove SNPs that caused no effect on protein encoding genes, but maintain all other intra/inter genetic changes vcf = vcf.loc[vcf['Protein Effect'] != 'None'] # Clean the variant frequencies and pick up the floor of the range vcf['Variant Frequency']= list(map(lambda x: float(x[0].replace('%', ''))/100, vcf['Variant Frequency'].str.split( '->'))) vcf.sort_values(by = ['Variant Frequency'], ascending = False, inplace = True) return vcf # In[191]: def clean_WT(wt_vcf, vf_threshold): ''' Input = the wt_vcf dataframe from vcf_clean function, the threshold of Variant Frequency Remove all rows with 'Variant Frequency' >= vf_threshold (e.g. 0.95) so that the existed variances across the population from time0 in our barcoded strain are excluded from following analysis. Output = wt_vcf_new ''' wt_vcf_new = wt_vcf.loc[wt_vcf['Variant Frequency'] < vf_threshold] return wt_vcf_new # In[294]: def compare_to_wt(wt_vcf_new, mutant_vcf): ''' Input = the cleaned wt_vcf_new where variances across the population have been removed, the mutant_vcf cleaned by vcf_clean() Output = dataframe common where common variances were found between wt_vcf_new and the mutant_vcf, dataframe mutant_to_wt where new variances are found ''' common = wt_vcf_new.merge(mutant_vcf, on = ['Minimum', 'Maximum', 'Change']) mutant_to_wt = mutant_vcf[(~mutant_vcf['Minimum'].isin(common['Minimum'])) & (~mutant_vcf['Maximum'].isin(common['Maximum'])) & (~mutant_vcf['Change'].isin(common['Change']))] mutant_to_wt['locus_tag'].fillna('intergenetic region', inplace = True) mutant_to_wt.set_index('locus_tag', inplace = True) # clean up the common df a bit by removing repeated columns common = common[['Minimum', 'Maximum', 'Change', 'locus_tag_x', 'Polymorphism Type_x', 'Protein Effect_x', 'Variant Frequency_x', 'Amino Acid Change_x', 'Codon Change_x', 'note_x', 'Variant Frequency_y']] common.rename(index=str, columns={'locus_tag_x':'locus_tag',"Polymorphism Type_x": "Polymorphism Type", "Protein Effect_x": "Protein Effect", 'Variant Frequency_x': 'Variant Frequency WT', 'Amino Acid Change_x': 'Amino Acid Change', 'Codon Change_x': 'Codon Change', 'note_x': 'note', 'Variant Frequency_y': 'Variant Frequency Mutant'}, inplace = True) common['locus_tag'].fillna('intergenetic region', inplace = True) common.set_index('locus_tag', inplace = True) return common, mutant_to_wt # In[295]: files = glob.glob('G:\Dropbox (Vetsigian lab)\Vetsigian lab Team Folder\Ye\Genomics\M145 Evolved mutants\*.csv') strain_names = list(map(lambda f: f.split('\\')[6].split('_')[0], files)) vcfs = list(map(lambda f: vcf_clean(f), files)) VCFs = dict(zip(strain_names, vcfs)) wt = VCFs['WT'] vf_threshold = 0.95 wt_new = clean_WT(wt, vf_threshold) # Compare each mutant df in VCFs to the cleaned new WT vcf, wt_new. # This will generate a two layered dictionary where outside keys are the mutant names, # and the inside keys are "common" and "variance" that corresponding to variance found # in the wt_new and variance not found in wt_new respectively. mutant_names = strain_names[:-1] dict_mutants_to_wt = {} for name in mutant_names: [common, variance]= compare_to_wt(wt_new, VCFs[name]) dict_mutants_to_wt[name] = {} dict_mutants_to_wt[name]['common'] = common dict_mutants_to_wt[name]['variance'] = variance wt_new['locus_tag'].fillna('intergenetic region', inplace = True) wt_new.set_index('locus_tag', inplace = True) # In[296]: dict_mutants_to_wt['R1'] # In[298]: # Compare variance frequencies of mutatations shared by wt and mutants ('the common data set and wt data set') common_vf_comp = {} for mutant in mutant_names: common_vf_comp[mutant] = dict_mutants_to_wt[mutant]['common'][['Variant Frequency WT', 'Variant Frequency Mutant']] common_vf_comp # In[144]: # find locus tag with mutations of variant freq > 0.5 def find_locus(dict_mutants_to_wt, variant_freq, mutant_name): mutant2wt = dict_mutants_to_wt[mutant_name] return mutant2wt[mutant2wt['Variant Frequency'] > 0.5].index.values variant_freq = 0.5 mutation_genes = {} for name in mutant_names: mutation_genes[name] = find_locus(dict_mutants_to_wt, variant_freq, name) #mutation_genes df = pd.DataFrame.from_dict(mutation_genes, orient="index") df.to_csv("G:\\Ye\\Evolution mutants\\mutation_genes.csv")
1de878da8da08496ed34586ab07431295564e3c0
876c5c693739673ece340fca377746292da41d69
/Simulation/Minutia/Dopplers Mirror/Doppler Mirror.py
1528f8768a030248dc0c2e7e02b265bcd21b4a9a
[]
no_license
DanielxDWhite/Y4Project
b72ab9d37f5b5810cafe5cea9f96ac43ce417ee0
e7bbfb72034fefbe80eea94f9b1956ff13b20fb6
refs/heads/master
2021-04-09T09:08:43.302472
2020-03-20T23:43:17
2020-03-20T23:43:17
248,858,981
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
import matplotlib.pyplot as plt import numpy as np c = 3*10**8 #d = 30*10**6 d = np.linspace(0.5 * 10**7, 11**7, 15) f0 = 382.230484468*10**12 f = f0 + d a = f/f0 xx = 1-a xy = np.negative(2) xz = 1+a disc = xy**2-4*xz*xx Bp = (xy+np.sqrt(disc))/2*xx Bm = (xy-np.sqrt(disc))/2*xx Vp = c * Bp Vm = c * Bm print(Vp,Vm) dplot = d*10**(-6) Vpplot = Vp *10**(7) plt.plot(dplot, Vpplot) plt.xlabel('Detuning / MHz') plt.ylabel('Velocity of Mirror $x10^{-7}$ / $ms^{-1}$') plt.title('Doppler shift via a moving mirror') plt.grid(color='grey', linestyle='-', linewidth=0.2) plt.show() plt.close
39a03d47b7ac9f20e8cfcc3abf17a00db972c6dc
5b18718ca8526788dde87be82da3c078ea40c766
/geometry/discriminant.py
4d450a6c9dc4a2371dab75736a401267bd11ed73
[]
no_license
rhyshardwick/maths
42443dcd888937128176d9fedbda22ad25ab09d8
bca86c3d5b7db95a9063e0113067b437e00f9e40
refs/heads/master
2023-02-23T23:47:17.715035
2022-10-06T15:59:54
2022-10-06T15:59:54
185,846,558
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
# Calculates the discriminant value # discriminant: the expression that appears under teh square root (radidical) sign in # the quadratic equation # b ** 2 - 4ac # w3resource exercise uses x, y, z, I will use the more standard a, b, c print("Calculate the discriminant for the quadratic equation axx + bx + c") a = float(input("a: ")) b = float(input("b: ")) c = float(input("c: ")) print("Discriminant:", b ** 2 - 4 * a * c)
[ "rhys@RhysSurfacePro7" ]
rhys@RhysSurfacePro7
ce1c4491d2da4a9c8e764be676f415cea4e6e04e
124b35ccbae76ba33b9044071a056b9109752283
/NeuralNetwork/selective/g_final.py
ea9f9155e11885614eb73dff119af6f31e7741ed
[]
no_license
anilmaddu/Daily-Neural-Network-Practice-2
94bc78fe4a5a429f5ba911bae5f231f3d8246f61
748de55c1a17eae9f65d7ea08d6b2b3fc156b212
refs/heads/master
2023-03-08T22:04:45.535964
2019-03-15T23:10:35
2019-03-15T23:10:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,831
py
import tensorflow as tf import numpy as np import sys, os,cv2 from sklearn.utils import shuffle from scipy.misc import imread from scipy.misc import imresize import matplotlib.pyplot as plt from sklearn.preprocessing import OneHotEncoder from skimage.transform import resize from imgaug import augmenters as iaa import imgaug as ia os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' np.random.seed(678) tf.set_random_seed(678) ia.seed(678) def tf_elu(x): return tf.nn.elu(x) def d_tf_elu(x): return tf.cast(tf.greater_equal(x,0),tf.float32) + (tf_elu(tf.cast(tf.less(x,0),tf.float32) * x) + 1.0) def tf_relu(x): return tf.nn.relu(x) def d_tf_relu(x): return tf.cast(tf.greater_equal(x,0),tf.float32) def tf_softmax(x): return tf.nn.softmax(x) def unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict # ===== Rules that I have learned ===== # 1. Data augmentation horizontal flip # 2. kernel size is 3 # 3. LR decay is also good # 4. 3 block is good # ===== Rules that I have learned ===== # code from: https://github.com/tensorflow/tensorflow/issues/8246 def tf_repeat(tensor, repeats): """ Args: input: A Tensor. 1-D or higher. repeats: A list. Number of repeat for each dimension, length must be the same as the number of dimensions in input Returns: A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats """ expanded_tensor = tf.expand_dims(tensor, -1) multiples = [1] + repeats tiled_tensor = tf.tile(expanded_tensor, multiples = multiples) repeated_tesnor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats) return repeated_tesnor # class class CNN(): def __init__(self,k,inc,out,act,d_act): self.w = tf.Variable(tf.random_normal([k,k,inc,out],stddev=0.05)) self.m,self.v_prev = tf.Variable(tf.zeros_like(self.w)),tf.Variable(tf.zeros_like(self.w)) self.v_hat_prev = tf.Variable(tf.zeros_like(self.w)) self.act,self.d_act = act,d_act def getw(self): return self.w def feedforward(self,input,stride=1,padding='SAME',droprate=1.0,res=False): self.input = input self.layer = tf.nn.dropout(tf.nn.conv2d(input,self.w,strides=[1,stride,stride,1],padding=padding) ,droprate) self.layerA = self.act(self.layer) if res: return self.layerA + input return self.layerA def backprop(self,gradient,learning_rate_change,batch_size_dynamic,stride=1,padding='SAME',mom=False,adam=False,awsgrad=False,reg=False): grad_part_1 = gradient grad_part_2 = self.d_act(self.layer) grad_part_3 = self.input grad_middle = grad_part_1 * grad_part_2 grad = tf.nn.conv2d_backprop_filter( input = grad_part_3, filter_sizes = self.w.shape,out_backprop = grad_middle, strides=[1,stride,stride,1],padding=padding ) grad_pass = tf.nn.conv2d_backprop_input( input_sizes = [batch_size_dynamic] + list(grad_part_3.shape[1:]), filter= self.w,out_backprop = grad_middle, strides=[1,stride,stride,1],padding=padding ) update_w = [] if adam: update_w.append( tf.assign( self.m,self.m*beta1 + (1-beta1) * (grad) ) ) update_w.append( tf.assign( self.v_prev,self.v_prev*beta2 + (1-beta2) * (grad ** 2) ) ) m_hat = self.m / (1-beta1) v_hat = self.v_prev / (1-beta2) adam_middel = learning_rate_change/(tf.sqrt(v_hat) + adam_e) adam_middel = tf.multiply(adam_middel,m_hat) if reg: adam_middel = adam_middel - learning_rate_change * 0.00001 * self.w update_w.append(tf.assign(self.w,tf.subtract(self.w,adam_middel )) ) if awsgrad: update_w.append(tf.assign( self.m,self.m*beta1 + (1-beta1) * grad )) v_t = self.v_prev *beta2 + (1-beta2) * grad ** 2 def f1(): return v_t def f2(): return self.v_hat_prev v_max = tf.cond(tf.greater(tf.reduce_sum(v_t), tf.reduce_sum(self.v_hat_prev) ) , true_fn=f1, false_fn=f2) adam_middel = tf.multiply(learning_rate_change/(tf.sqrt(v_max) + adam_e),self.m) if reg: adam_middel = adam_middel - learning_rate_change * 0.00001 * self.w update_w.append(tf.assign(self.w,tf.subtract(self.w,adam_middel ) )) update_w.append(tf.assign( self.v_prev,v_t )) update_w.append(tf.assign( self.v_hat_prev,v_max )) if mom: update_w.append(tf.assign( self.m,self.m*beta1 + learning_rate* (grad) )) adam_middel = self.m if reg: adam_middel = adam_middel - learning_rate_change * 0.00001 * self.w update_w.append(tf.assign(self.w,tf.subtract(self.w,adam_middel )) ) return grad_pass,update_w # data PathDicom = "../../Dataset/cifar-10-batches-py/" lstFilesDCM = [] # create an empty list for dirName, subdirList, fileList in os.walk(PathDicom): for filename in fileList: if not ".html" in filename.lower() and not ".meta" in filename.lower(): # check whether the file's DICOM lstFilesDCM.append(os.path.join(dirName,filename)) # Read the data traind and Test batch0 = unpickle(lstFilesDCM[0]) batch1 = unpickle(lstFilesDCM[1]) batch2 = unpickle(lstFilesDCM[2]) batch3 = unpickle(lstFilesDCM[3]) batch4 = unpickle(lstFilesDCM[4]) onehot_encoder = OneHotEncoder(sparse=True) train_batch = np.vstack((batch0[b'data'],batch1[b'data'],batch2[b'data'],batch3[b'data'],batch4[b'data'])) train_label = np.expand_dims(np.hstack((batch0[b'labels'],batch1[b'labels'],batch2[b'labels'],batch3[b'labels'],batch4[b'labels'])).T,axis=1).astype(np.float32) train_label = onehot_encoder.fit_transform(train_label).toarray().astype(np.float32) test_batch = unpickle(lstFilesDCM[5])[b'data'] test_label = np.expand_dims(np.array(unpickle(lstFilesDCM[5])[b'labels']),axis=0).T.astype(np.float32) test_label = onehot_encoder.fit_transform(test_label).toarray().astype(np.float32) train_batch = np.reshape(train_batch,(len(train_batch),3,32,32)) test_batch = np.reshape(test_batch,(len(test_batch),3,32,32)) # reshape data rotate data train_batch = np.rot90(np.rot90(train_batch,1,axes=(1,3)),3,axes=(1,2)) test_batch = np.rot90(np.rot90(test_batch,1,axes=(1,3)),3,axes=(1,2)).astype(np.float32) # standardize Normalize data per channel test_batch[:,:,:,0] = (test_batch[:,:,:,0] - test_batch[:,:,:,0].mean(axis=0)) / ( test_batch[:,:,:,0].std(axis=0)) test_batch[:,:,:,1] = (test_batch[:,:,:,1] - test_batch[:,:,:,1].mean(axis=0)) / ( test_batch[:,:,:,1].std(axis=0)) test_batch[:,:,:,2] = (test_batch[:,:,:,2] - test_batch[:,:,:,2].mean(axis=0)) / ( test_batch[:,:,:,2].std(axis=0)) # print out the data shape print(train_batch.shape) print(train_label.shape) print(test_batch.shape) print(test_label.shape) # hyper parameter num_epoch = 101 batch_size = 50 print_size = 1 beta1,beta2,adam_e = 0.9,0.9,1e-9 learning_rate = 0.0003 learnind_rate_decay = 0 proportion_rate = 0.0000001 decay_rate = 0 # define class channel_size = 164 l1 = CNN(3,3,channel_size,tf_elu,d_tf_elu) l2 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l3 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l4 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l5 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l6 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l7 = CNN(3,channel_size,channel_size,tf_elu,d_tf_elu) l8 = CNN(1,channel_size,channel_size,tf_elu,d_tf_elu) l9 = CNN(1,channel_size,10,tf_elu,d_tf_elu) # graph x = tf.placeholder(shape=[None,32,32,3],dtype=tf.float32) y = tf.placeholder(shape=[None,10],dtype=tf.float32) batch_size_dynamic= tf.placeholder(tf.int32, shape=()) iter_variable = tf.placeholder(tf.float32, shape=()) learning_rate_dynamic = tf.placeholder(tf.float32, shape=()) learning_rate_change = learning_rate_dynamic * (1.0/(1.0+learnind_rate_decay*iter_variable)) decay_dilated_rate = proportion_rate * (1.0/(1.0+decay_rate*iter_variable)) droprate1 = tf.placeholder(tf.float32, shape=()) droprate2 = tf.placeholder(tf.float32, shape=()) droprate3 = tf.placeholder(tf.float32, shape=()) layer1 = l1.feedforward(x,droprate=droprate1) layer2 = l2.feedforward(layer1,droprate=droprate2) layer3 = l3.feedforward(layer2,droprate=droprate3) layer4_Input = tf.nn.avg_pool(layer3,ksize=[1,2,2,1],strides=[1,2,2,1],padding="VALID") layer4 = l4.feedforward(layer4_Input,droprate=droprate2) layer5 = l5.feedforward(layer4,droprate=droprate3) layer6 = l6.feedforward(layer5,droprate=droprate1) layer7_Input = tf.nn.avg_pool(layer6,ksize=[1,2,2,1],strides=[1,2,2,1],padding="VALID") layer7 = l7.feedforward(layer7_Input,droprate=droprate3) layer8 = l8.feedforward(layer7,droprate=droprate1) layer9 = l9.feedforward(layer8,droprate=droprate2) final_global = tf.reduce_mean(layer9,[1,2]) final_soft = tf_softmax(final_global) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=final_global,labels=y) ) correct_prediction = tf.equal(tf.argmax(final_soft, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # ===== manual ==== grad_prepare = tf.reshape(final_soft-y, [ batch_size_dynamic ,1,1,10] ) grad9,grad9_up = l9.backprop(grad_prepare,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad8,grad8_up = l8.backprop(grad9,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic) grad7,grad7_up = l7.backprop(grad8,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad6_Input = tf_repeat(grad7,[1,2,2,1]) grad6,grad6_up = l6.backprop(grad6_Input,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad5,grad5_up = l5.backprop(grad6,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic) grad4,grad4_up = l4.backprop(grad5,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad3_Input = tf_repeat(grad4,[1,2,2,1]) grad3,grad3_up = l3.backprop(grad3_Input,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad2,grad2_up = l2.backprop(grad3,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic) grad1,grad1_up = l1.backprop(grad2,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic) grad_update = grad9_up + grad8_up+ grad7_up + grad6_up + grad5_up + grad4_up + grad3_up + grad2_up + grad1_up # ===== manual ==== # ====== adversal input ========== adversal_input = x + 0.01 * tf.sign(grad1) concat_input = tf.concat([x,adversal_input],axis=0) yy = tf.concat([y,y],axis=0) layer1_ad = l1.feedforward(concat_input,droprate=droprate1) layer2_ad = l2.feedforward(layer1_ad,droprate=droprate2) layer3_ad = l3.feedforward(layer2_ad,droprate=droprate3) layer4_Input_ad = tf.nn.avg_pool(layer3_ad,ksize=[1,2,2,1],strides=[1,2,2,1],padding="VALID") layer4_ad = l4.feedforward(layer4_Input_ad,droprate=droprate2) layer5_ad = l5.feedforward(layer4_ad,droprate=droprate3) layer6_ad = l6.feedforward(layer5_ad,droprate=droprate1) layer7_Input_ad = tf.nn.avg_pool(layer6_ad,ksize=[1,2,2,1],strides=[1,2,2,1],padding="VALID") layer7_ad = l7.feedforward(layer7_Input_ad,droprate=droprate3) layer8_ad = l8.feedforward(layer7_ad,droprate=droprate1) layer9_ad = l9.feedforward(layer8_ad,droprate=droprate2) final_global_ad = tf.reduce_mean(layer9_ad,[1,2]) final_soft_ad = tf_softmax(final_global_ad) cost_ad = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=final_global_ad,labels=yy) ) correct_prediction_ad = tf.equal(tf.argmax(final_soft_ad, 1), tf.argmax(yy, 1)) accuracy_ad = tf.reduce_mean(tf.cast(correct_prediction_ad, tf.float32)) # ====== adversal input ========== # ===== adversal manual ==== grad_prepare_ad = tf.reshape(final_soft_ad-yy,[batch_size_dynamic*2,1,1,10]) grad9_ad,grad9_up_ad = l9.backprop(grad_prepare_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad8_ad,grad8_up_ad = l8.backprop(grad9_ad,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic*2) grad7_ad,grad7_up_ad = l7.backprop(grad8_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad6_Input_ad = tf_repeat(grad7_ad,[1,2,2,1]) grad6_ad,grad6_up_ad = l6.backprop(grad6_Input_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad5_ad,grad5_up_ad = l5.backprop(grad6_ad,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic*2) grad4_ad,grad4_up_ad = l4.backprop(grad5_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad3_Input_ad = tf_repeat(grad4_ad,[1,2,2,1]) grad3_ad,grad3_up_ad = l3.backprop(grad3_Input_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad2_ad,grad2_up_ad = l2.backprop(grad3_ad,learning_rate_change=learning_rate_change,adam=True,batch_size_dynamic=batch_size_dynamic*2) grad1_ad,grad1_up_ad = l1.backprop(grad2_ad,learning_rate_change=learning_rate_change,awsgrad=True,batch_size_dynamic=batch_size_dynamic*2) grad_update_ad = grad9_up_ad + grad8_up_ad+ grad7_up_ad + grad6_up_ad + grad5_up_ad + grad4_up_ad + grad3_up_ad + grad2_up_ad + grad1_up_ad # ===== adversal manual ==== # sess with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_cota,train_acca = 0,0 train_cot,train_acc = [],[] test_cota,test_acca = 0,0 test_cot,test_acc = [],[] data_input_type = 0 for iter in range(num_epoch): train_batch,train_label = shuffle(train_batch,train_label) lower_bound = 0.025 * (iter+1)/num_epoch random_drop1 = np.random.uniform(low=0.975+lower_bound,high=1.000000000000001) random_drop2 = np.random.uniform(low=0.975+lower_bound,high=1.000000000000001) random_drop3 = np.random.uniform(low=0.975+lower_bound,high=1.000000000000001) for batch_size_index in range(0,len(train_batch),batch_size//2): current_batch = train_batch[batch_size_index:batch_size_index+batch_size//2] current_batch_label = train_label[batch_size_index:batch_size_index+batch_size//2] # data aug seq = iaa.Sequential([ iaa.Sometimes( (0.1 + lower_bound * 6) , iaa.Affine( translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, ) ), iaa.Sometimes( (0.2 + lower_bound * 6), iaa.Affine( rotate=(-25, 25), ) ), iaa.Sometimes( (0.1 + lower_bound * 6), iaa.Affine( scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, ) ), iaa.Fliplr(1.0), # Horizontal flips ], random_order=True) # apply augmenters in random order seq_lite1 = iaa.Sequential([ iaa.Fliplr(0.5), # Horizontal flips, ], random_order=True) # apply augmenters in random order seq_lite2 = iaa.Sequential([ iaa.Flipud(0.5), # Horizontal flips ], random_order=True) # apply augmenters in random order if data_input_type == 2 : images_aug = seq.augment_images(current_batch.astype(np.float32)) current_batch = np.vstack((current_batch,images_aug)).astype(np.float32) current_batch_label = np.vstack((current_batch_label,current_batch_label)).astype(np.float32) input_sess_array = [cost_ad,accuracy_ad,correct_prediction_ad,grad_update_ad,concat_input] input_feed_dict={x:current_batch,y:current_batch_label, iter_variable:iter,learning_rate_dynamic:learning_rate,droprate1:random_drop1,droprate2:random_drop2,droprate3:random_drop3,batch_size_dynamic:batch_size} elif data_input_type == 0 : images_aug = seq.augment_images(current_batch.astype(np.float32)) current_batch = np.vstack((current_batch,images_aug)).astype(np.float32) current_batch_label = np.vstack((current_batch_label,current_batch_label)).astype(np.float32) input_sess_array = [cost,accuracy,correct_prediction,grad_update] input_feed_dict= {x:current_batch,y:current_batch_label, iter_variable:iter,learning_rate_dynamic:learning_rate,droprate1:random_drop1,droprate2:random_drop2,droprate3:random_drop3,batch_size_dynamic:batch_size} elif data_input_type == 1 : current_batch = seq_lite1.augment_images(current_batch.astype(np.float32)) input_sess_array = [cost_ad,accuracy_ad,correct_prediction_ad,grad_update_ad,concat_input] input_feed_dict ={x:current_batch,y:current_batch_label, iter_variable:iter,learning_rate_dynamic:learning_rate,droprate1:random_drop1,droprate2:random_drop2,droprate3:random_drop3,batch_size_dynamic:batch_size//2} elif data_input_type == 3 : current_batch = seq_lite2.augment_images(current_batch.astype(np.float32)) input_sess_array = [cost_ad,accuracy_ad,correct_prediction_ad,grad_update_ad,concat_input] input_feed_dict ={x:current_batch,y:current_batch_label, iter_variable:iter,learning_rate_dynamic:learning_rate,droprate1:random_drop1,droprate2:random_drop2,droprate3:random_drop3,batch_size_dynamic:batch_size//2} # online data augmentation here and standard normalization current_batch[:,:,:,0] = (current_batch[:,:,:,0] - current_batch[:,:,:,0].mean(axis=0)) / ( current_batch[:,:,:,0].std(axis=0)+ 1e-20) current_batch[:,:,:,1] = (current_batch[:,:,:,1] - current_batch[:,:,:,1].mean(axis=0)) / ( current_batch[:,:,:,1].std(axis=0)+ 1e-20) current_batch[:,:,:,2] = (current_batch[:,:,:,2] - current_batch[:,:,:,2].mean(axis=0)) / ( current_batch[:,:,:,2].std(axis=0)+ 1e-20) current_batch,current_batch_label = shuffle(current_batch,current_batch_label) # online data augmentation here and standard normalization sess_result = sess.run(input_sess_array,feed_dict=input_feed_dict ) print("Current Iter : ",iter, " current batch: ",batch_size_index, ' Current cost: ', sess_result[0], ' Current Acc: ', sess_result[1],end='\r') train_cota = train_cota + sess_result[0] train_acca = train_acca + sess_result[1] for test_batch_index in range(0,len(test_batch),batch_size): current_batch = test_batch[test_batch_index:test_batch_index+batch_size] current_batch_label = test_label[test_batch_index:test_batch_index+batch_size] sess_result = sess.run([cost,accuracy,correct_prediction], feed_dict={x:current_batch,y:current_batch_label,iter_variable:iter,learning_rate_dynamic:learning_rate, droprate1:1.0,droprate2:1.0,droprate3:1.0,batch_size_dynamic:batch_size}) print("Current Iter : ",iter, " current batch: ",test_batch_index, ' Current cost: ', sess_result[0], ' Current Acc: ', sess_result[1],end='\r') test_acca = sess_result[1] + test_acca test_cota = sess_result[0] + test_cota if iter % print_size==0: print("\n---------- Learning Rate : ", learning_rate * (1.0/(1.0+learnind_rate_decay*iter))," Data: ",data_input_type ) print("Lower Bound : ",lower_bound,' Drop Lower: ',0.95+lower_bound ,' Random Image :',lower_bound * 6, '\n',"Drop 1 : ",random_drop1," Drop 2: ",random_drop2," Drop 3: ",random_drop3) print('Train Current cost: ', train_cota/(len(train_batch)/(batch_size//2)),' Current Acc: ', train_acca/(len(train_batch)/(batch_size//2) ),end='\n') print('Test Current cost: ', test_cota/(len(test_batch)/batch_size),' Current Acc: ', test_acca/(len(test_batch)/batch_size),end='\n') print("----------") train_acc.append(train_acca/(len(train_batch)/batch_size//2)) train_cot.append(train_cota/(len(train_batch)/batch_size//2)) test_acc.append(test_acca/(len(test_batch)/batch_size)) test_cot.append(test_cota/(len(test_batch)/batch_size)) test_cota,test_acca = 0,0 train_cota,train_acca = 0,0 # data_input_type = data_input_type + 1 # if data_input_type == 4: data_input_type = 0 # Normalize the cost of the training train_cot = (train_cot-min(train_cot) ) / (max(train_cot)-min(train_cot)) test_cot = (test_cot-min(test_cot) ) / (max(test_cot)-min(test_cot)) # training done now plot plt.figure() plt.plot(range(len(train_acc)),train_acc,color='red',label='acc ovt') plt.plot(range(len(train_cot)),train_cot,color='green',label='cost ovt') plt.legend() plt.title("Train Average Accuracy / Cost Over Time") plt.savefig("Case a Train.png") plt.figure() plt.plot(range(len(test_acc)),test_acc,color='red',label='acc ovt') plt.plot(range(len(test_cot)),test_cot,color='green',label='cost ovt') plt.legend() plt.title("Test Average Accuracy / Cost Over Time") plt.savefig("Case a Test.png") # -- end code --
646e4bdb64395b37d72c7eec6ab0b6d0a82ec228
14edb3491718f55ac4faddbeeb804a18496d7b68
/test/functional/test_framework/test_shell.py
1d81a19057ef51b4ab48026087eb79e2906bf93b
[ "MIT" ]
permissive
freelancerstudio/Danecoin
712f361abdf2a635f86ea9be7e8a0f63a419437d
73d21d335c11a8966c995b7e8c520c2b55695c04
refs/heads/main
2023-07-03T04:22:05.076216
2021-08-16T17:43:48
2021-08-16T17:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,407
py
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import DanecoinTestFramework class TestShell: """Wrapper Class for DanecoinTestFramework. The TestShell class extends the DanecoinTestFramework rpc & daemon process management functionality to external python environments. It is a singleton class, which ensures that users only start a single TestShell at a time.""" class __TestShell(DanecoinTestFramework): def set_test_params(self): pass def run_test(self): pass def setup(self, **kwargs): if self.running: print("TestShell is already running!") return # Num_nodes parameter must be set # by DanecoinTestFramework child class. self.num_nodes = 1 # User parameters override default values. for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) elif hasattr(self.options, key): setattr(self.options, key, value) else: raise KeyError(key + " not a valid parameter key!") super().setup() self.running = True return self def shutdown(self): if not self.running: print("TestShell is not running!") else: super().shutdown() self.running = False def reset(self): if self.running: print("Shutdown TestShell before resetting!") else: self.num_nodes = None super().__init__() instance = None def __new__(cls): # This implementation enforces singleton pattern, and will return the # previously initialized instance if available if not TestShell.instance: TestShell.instance = TestShell.__TestShell() TestShell.instance.running = False return TestShell.instance def __getattr__(self, name): return getattr(self.instance, name) def __setattr__(self, name, value): return setattr(self.instance, name, value)
1fbc8fe692bbd42fa5947ae91067fa7daa1e18d2
cd208b4a40be8bf166da79fdc126dbcb71e95a7d
/app/notification/advance_notifications.py
8304f7d69b491586773bac5131f10c0f31a25f4c
[ "MIT" ]
permissive
Moirted/MyPersonalKitchenBot
63a2b1be6e21e90ed908c9f3162bd085162cd83f
03de0beeaf2665e8b3ddd1709da3d4edcd422b80
refs/heads/main
2023-04-21T12:17:52.486113
2021-05-16T13:00:22
2021-05-16T13:00:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
import datetime as dt from apscheduler.schedulers.asyncio import AsyncIOScheduler from dateutil.parser import parse from sqlalchemy import and_ from app.misc import bot from app.models import UserSettings from app.models.product import Product async def advance_notification_checker(): users = await UserSettings.query.where(and_( UserSettings.notifications_general_enabled, UserSettings.notifications_advance_enabled) ).gino.all() for u in users: answer = "Истекает срок годности:\n" p = await Product.query.where(and_(Product.user_id == u.user_id, Product.expiration_date == dt.datetime.today() + dt.timedelta(u.notifications_advance_days_until_expiration))).gino.all() for pr in p: answer += pr.name + " - " + parse(str(pr.expiration_date)).strftime('%d.%m') + "\n" await bot.send_message(u.user_id, answer) scheduler = AsyncIOScheduler() scheduler.add_job(advance_notification_checker, 'cron', hour='18', minute='00') scheduler.start()
8cd9e0a4dd1402479c1142722ce6f9bfb837ff1e
5e3ebc83bc3fe2f85c34563689b82b1fc8b93a04
/google/ads/googleads/v5/services/services/reach_plan_service/transports/grpc.py
2a1fae4361e4090055a995f0e2712c344ada0370
[ "Apache-2.0" ]
permissive
pdsing/google-ads-python
0ce70227cd6bb13a25cd13de0ca05c2636279ecd
ee2c059498d5679a0d1d9011f3795324439fad7c
refs/heads/master
2023-05-04T18:39:57.412453
2021-05-21T16:38:17
2021-05-21T16:38:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,745
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers # type: ignore from google.api_core import gapic_v1 # type: ignore from google import auth # type: ignore from google.auth import credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v5.services.types import reach_plan_service from .base import ReachPlanServiceTransport, DEFAULT_CLIENT_INFO class ReachPlanServiceGrpcTransport(ReachPlanServiceTransport): """gRPC backend transport for ReachPlanService. Reach Plan Service gives users information about audience size that can be reached through advertisement on YouTube. In particular, GenerateReachForecast provides estimated number of people of specified demographics that can be reached by an ad in a given market by a campaign of certain duration with a defined budget. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def list_plannable_locations( self, ) -> Callable[ [reach_plan_service.ListPlannableLocationsRequest], reach_plan_service.ListPlannableLocationsResponse, ]: r"""Return a callable for the list plannable locations method over gRPC. Returns the list of plannable locations (for example, countries & DMAs). Returns: Callable[[~.ListPlannableLocationsRequest], ~.ListPlannableLocationsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_plannable_locations" not in self._stubs: self._stubs[ "list_plannable_locations" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v5.services.ReachPlanService/ListPlannableLocations", request_serializer=reach_plan_service.ListPlannableLocationsRequest.serialize, response_deserializer=reach_plan_service.ListPlannableLocationsResponse.deserialize, ) return self._stubs["list_plannable_locations"] @property def list_plannable_products( self, ) -> Callable[ [reach_plan_service.ListPlannableProductsRequest], reach_plan_service.ListPlannableProductsResponse, ]: r"""Return a callable for the list plannable products method over gRPC. Returns the list of per-location plannable YouTube ad formats with allowed targeting. Returns: Callable[[~.ListPlannableProductsRequest], ~.ListPlannableProductsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_plannable_products" not in self._stubs: self._stubs[ "list_plannable_products" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v5.services.ReachPlanService/ListPlannableProducts", request_serializer=reach_plan_service.ListPlannableProductsRequest.serialize, response_deserializer=reach_plan_service.ListPlannableProductsResponse.deserialize, ) return self._stubs["list_plannable_products"] @property def generate_product_mix_ideas( self, ) -> Callable[ [reach_plan_service.GenerateProductMixIdeasRequest], reach_plan_service.GenerateProductMixIdeasResponse, ]: r"""Return a callable for the generate product mix ideas method over gRPC. Generates a product mix ideas given a set of preferences. This method helps the advertiser to obtain a good mix of ad formats and budget allocations based on its preferences. Returns: Callable[[~.GenerateProductMixIdeasRequest], ~.GenerateProductMixIdeasResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "generate_product_mix_ideas" not in self._stubs: self._stubs[ "generate_product_mix_ideas" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v5.services.ReachPlanService/GenerateProductMixIdeas", request_serializer=reach_plan_service.GenerateProductMixIdeasRequest.serialize, response_deserializer=reach_plan_service.GenerateProductMixIdeasResponse.deserialize, ) return self._stubs["generate_product_mix_ideas"] @property def generate_reach_forecast( self, ) -> Callable[ [reach_plan_service.GenerateReachForecastRequest], reach_plan_service.GenerateReachForecastResponse, ]: r"""Return a callable for the generate reach forecast method over gRPC. Generates a reach forecast for a given targeting / product mix. Returns: Callable[[~.GenerateReachForecastRequest], ~.GenerateReachForecastResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "generate_reach_forecast" not in self._stubs: self._stubs[ "generate_reach_forecast" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v5.services.ReachPlanService/GenerateReachForecast", request_serializer=reach_plan_service.GenerateReachForecastRequest.serialize, response_deserializer=reach_plan_service.GenerateReachForecastResponse.deserialize, ) return self._stubs["generate_reach_forecast"] __all__ = ("ReachPlanServiceGrpcTransport",)
902fa14e9c84754d961df78eee10d849f8f767bf
a9dd94198cb4d67d1b5b4c8d8dfdc6122da59613
/Longinus/redisScan.py
904d7a755d92c6a0bcbefde54aac14ba9d2739b4
[]
no_license
orange23qi/Evangelion
004cc637ffed8b23cd3ea07c09fc589e943664e8
17145875ef31d6f0f901265439fe5042ec4c7f25
refs/heads/master
2021-01-01T07:58:39.817105
2017-07-18T08:30:07
2017-07-18T08:30:07
97,568,408
1
0
null
null
null
null
UTF-8
Python
false
false
8,018
py
# -*- coding: UTF-8 -*- import redis from rediscluster import StrictRedisCluster from .models import config_redis_command class redisScan(object): """ def __init__(self, redisHost, redisPort, redisType, redisDb): self.host = redisHost self.port = int(redisPort) self.type = int(redisType) self.db = int(redisDb) """ def splitCommand(self, content): """ 拆分命令 """ commandList = [] for row in content.splitlines(): commandList.append(row.split()) return commandList def prepareCommand(self, content): finalResult = {'status': 0, 'msg': 'ok'} count = 1 commandList = self.splitCommand(content) for row in commandList: count = config_redis_command.objects.filter(command=row[0], status=1) .count() if count == 0: finalResult['status'] = 1 finalResult['msg'] = '不支持 %s ,请修改.' % (row[0]) return finalResult return finalResult def getValues(self, redisHost, redisPort, redisType, redisDb, content): """ 执行命令,返回结果 目前支持: string : get / mget / getrange / strlen hash : hget / hmget / hgetall / hlen / hkeys / hexists list : llen / lindex / lrange set : smembers / scard / sdiff / sinter / sismember / srandmember / sunion zset : zmembers / zcount other : """ finalValue = [] if redisType == 1: r = redis.Redis(host=redisHost, port=redisPort, db=redisDb) elif redisType == 2: startup_nodes = [{"host": redisHost, "port": redisPort}] r = StrictRedisCluster(startup_nodes=startup_nodes, decode_responses=True) commandList = self.splitCommand(content) for row in commandList: key = row[0] command = "" command2 = "" tempList = [] if key in ("get", "strlen", "hlen", "llen", "scard", "zcard"): command = "tempList.append(r.%s('%s'))" % (key, row[1]) print(command) exec(command) for tempRow in tempList: if isinstance(tempRow, bytes): tempRow = str(tempRow, encoding='utf-8') command2 = "finalValue.append(['%s %s','%s'])" % (key, row[1], tempRow) exec(command2) elif key in ("mget", "hmget"): if key == "mget": command = "tempList.append(r.%s(%s))" % (key, row[1:]) key = "get" i = 0 elif key == "hmget": command = "tempList.append(r.%s('%s',%s))" % (key, row[1], row[2:]) key = "hget" i = 1 exec(command) for tempRow in tempList: for listValue in tempRow: i += 1 if isinstance(listValue, bytes): listValue = str(listValue, encoding='utf-8') if key == "get": command2 = "finalValue.append(['%s %s','%s'])" % (key, row[i], listValue) elif key == "hget": command2 = "finalValue.append(['%s %s %s','%s'])" % (key, row[1], row[i], listValue) exec(command2) elif key in ("getrange", "zcount"): command = "tempList.append(r.%s('%s', %d, %d))" % (key, row[1], int(row[2]), int(row[3])) exec(command) if isinstance(tempList[0], bytes): tempList[0] = str(tempList[0], encoding='utf-8') command2 = "finalValue.append(['%s %s %d %d','%s'])" % (key, row[1], int(row[2]), int(row[3]), tempList[0]) exec(command2) elif key in ("hget", "hexists", "sismember"): tmpKey = row[2].replace("\"","").replace("'","") command = "tempList.append(r.%s('%s','%s'))" % (key, row[1], tmpKey) exec(command) if isinstance(tempList[0], bytes): tempList[0] = str(tempList[0], encoding='utf-8') command2 = "finalValue.append(['%s %s %s','%s'])" % (key, row[1], row[2], tempList[0]) exec(command2) elif key in ("hgetall"): command = "tempList.append(r.%s('%s'))" % (key, row[1]) exec(command) key = "hget" for tempRow in tempList: if isinstance(tempRow, dict): for dictKey in tempRow.keys(): dictValue = tempRow[dictKey] if isinstance(dictKey, bytes): dictKey = str(dictKey, encoding='utf-8') if isinstance(dictValue, bytes): dictValue = str(dictValue, encoding='utf-8') command2 = "finalValue.append(['%s %s %s','%s'])" % (key, row[1], dictKey, dictValue) exec(command2) elif key in ("hkeys", "smembers", "sdiff", "sinter", "sunion"): if key in ("hkeys", "smembers"): command = "tempList.append(r.%s('%s'))" % (key, row[1]) if key in ("sdiff", "sinter", "sunion"): command = "tempList.append(r.%s(%s))" % (key, row[1:]) exec(command) i = 1 for tempRow in tempList: for listValue in tempRow: if isinstance(listValue, bytes): listValue = str(listValue, encoding='utf-8') if key in ("hkeys", "smembers"): command2 = "finalValue.append(['%s %s (%d)','%s'])" \ % (key, row[1], i, listValue) if key in ("sdiff", "sinter", "sunion"): command2 = "finalValue.append(['%s %s%s (%d)','%s'])" \ % (key, row[1], "...", i, listValue) exec(command2) i += 1 elif key in ("lindex"): command = "tempList.append(r.%s('%s',%d))" % (key, row[1], int(row[2])) exec(command) if isinstance(tempList[0], bytes): tempList[0] = str(tempList[0], encoding='utf-8') command2 = "finalValue.append(['%s %s %d','%s'])" % (key, row[1], int(row[2]), tempList[0]) exec(command2) elif key in ("lrange", "srandmember"): row.append('1') if int(row[2]) > 1000: row[2] = 1000 if key in ("lrange"): command = "tempList.append(r.%s('%s',%d,%d))" % (key, row[1], int(row[2]), int(row[3])) exec(command) key = "lindex" i = 0 elif key in ("srandmember"): command = "tempList.append(r.%s('%s',%d))" % (key, row[1], int(row[2])) exec(command) i = 1 for tempRow in tempList: for listValue in tempRow: if isinstance(listValue, bytes): listValue = str(listValue, encoding='utf-8') if key in ("lindex"): command2 = "finalValue.append(['%s %s %d','%s'])" % (key, row[1], i, listValue) elif key in ("srandmember"): command2 = "finalValue.append(['%s %s (%d)','%s'])" % (key, row[1], i, listValue) exec(command2) i += 1 return finalValue
6ed1735ed355ea388a28aabc6fcfc46865ffb3d9
e726624ca76481066d66e74dc4bcc14f589d05c3
/utils.py
e3fb1fbf86d303aed240b3be11e7a9ef9f97f546
[]
no_license
diwakar-vsingh/Scene-Recognition
381387688d470775b8bb1f06845f3e00a40585d2
736bfeb9e85abc550db284f2bb28c03596757dc6
refs/heads/master
2022-12-19T15:23:06.983620
2020-09-20T22:40:08
2020-09-20T22:40:08
297,175,295
0
0
null
null
null
null
UTF-8
Python
false
false
14,410
py
import sys import os import os.path as osp import shutil import time import random import numpy as np import cv2 import torchvision.transforms as transforms import torchvision.datasets as datasets import torch import torch.utils.data from glob import from torch.autograd import Variable from IPython.core.debugger import set_trace from visdom import Visdom from torch.utils.data import DataLoader from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix from random import shuffle def im2single(im): im = im.astype(np.float32) / 255 return im def single2im(im): im *= 255 im = im.astype(np.uint8) return im def load_image(path): return im2single(cv2.imread(path))[:, :, ::-1] def load_image_gray(path): img = load_image(path) return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) def get_image_paths(data_path, categories, num_train_per_cat=100, fmt='jpg'): """ This function returns lists containing the file path for each train and test image, as well as listss with the label of each train and test image. By default all four of these arrays will have 1500 elements where each element is a string. :param data_path: path to the 'test' and 'train' directories :param categories: list of category names :param num_train_per_cat: max number of training images to use (per category) :param fmt: file extension of the images :return: lists: train_image_paths, test_image_paths, train_labels, test_labels """ train_image_paths = [] test_image_paths = [] train_labels = [] test_labels = [] for cat in categories: # train pth = osp.join(data_path, 'train', cat, '*.{:s}'.format(fmt)) pth = glob(pth) shuffle(pth) pth = pth[:num_train_per_cat] train_image_paths.extend(pth) train_labels.extend([cat]*len(pth)) # test pth = osp.join(data_path, 'test', cat, '*.{:s}'.format(fmt)) pth = glob(pth) shuffle(pth) pth = pth[:num_train_per_cat] test_image_paths.extend(pth) test_labels.extend([cat]*len(pth)) return train_image_paths, test_image_paths, train_labels, test_labels def show_results(train_image_paths, test_image_paths, train_labels, test_labels, categories, abbr_categories, predicted_categories): """ shows the results :param train_image_paths: :param test_image_paths: :param train_labels: :param test_labels: :param categories: :param abbr_categories: :param predicted_categories: :return: """ cat2idx = {cat: idx for idx, cat in enumerate(categories)} # confusion matrix y_true = [cat2idx[cat] for cat in test_labels] y_pred = [cat2idx[cat] for cat in predicted_categories] cm = confusion_matrix(y_true, y_pred) cm = cm.astype(np.float) / cm.sum(axis=1)[:, np.newaxis] acc = np.mean(np.diag(cm)) plt.figure() plt.imshow(cm, interpolation='nearest', cmap=plt.cm.get_cmap('jet')) plt.title('Confusion matrix. Mean of diagonal = {:4.2f}%'.format(acc*100)) tick_marks = np.arange(len(categories)) plt.tight_layout() plt.xticks(tick_marks, abbr_categories, rotation=45) plt.yticks(tick_marks, categories) def set_seed(seed, use_GPU=False): torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) if use_GPU: torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic=True def print_input_size_hook(self, input, output): print('Input size to classifier is', input[0].size()) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class Trainer(object): def __init__(self, train_dataset, val_dataset, model, loss_fn, optimizer, lr_scheduler, params): """ General purpose training script :param train_dataset: PyTorch dataset that loads training images :param val_dataset: PyTorch dataset that loads testing / validation images :param model: Network model :param optimizer: PyTorch optimizer object :param lr_scheduler: PyTorch learning rate scheduler object :param loss_fn: loss function :param params: dictionary containing parameters for the training process It can contain the following fields (fields with no default value mentioned are mandatory): n_epochs: number of epochs of training batch_size: batch size for one iteration do_val: perform validation? (default: True) shuffle: shuffle training data? (default: True) num_workers: number of CPU threads for loading data (default: 4) val_freq: frequency of validation (in number of epochs) (default: 1) print_freq: progress printing frequency (in number of iterations (default: 20) experiment: name of the experiment, used to create logs and checkpoints checkpoint_file: Name of file with saved weights. Loaded at before start of training if provided (default: None) resume_optim: whether to resume optimization from loaded weights (default: True) """ self.model = model self.loss_fn = loss_fn self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.best_prec1 = -float('inf') # parse params with default values self.config = { 'n_epochs': params['n_epochs'], 'batch_size': params['batch_size'], 'do_val': params.get('do_val', True), 'shuffle': params.get('shuffle', True), 'num_workers': params.get('num_workers', 4), 'val_freq': params.get('val_freq', 1), 'print_freq': params.get('print_freq', 100), 'experiment': params['experiment'], 'checkpoint_file': params.get('checkpoint_file'), 'resume_optim': params.get('resume_optim', True) } self.logdir = osp.join(os.getcwd(), 'logs', self.config['experiment']) if not osp.isdir(self.logdir): os.makedirs(self.logdir) # visdom plots self.vis_env = self.config['experiment'] self.loss_win = 'loss_win' self.vis = Visdom() self.vis.line(X=np.zeros((1,2)), Y=np.zeros((1,2)), win=self.loss_win, opts={'legend': ['train_loss', 'val_loss'], 'xlabel': 'epochs', 'ylabel': 'loss'}, env=self.vis_env) self.lr_win = 'lr_win' self.vis.line(X=np.zeros(1), Y=np.zeros(1), win=self.lr_win, opts={'legend': ['learning_rate'], 'xlabel': 'epochs', 'ylabel': 'log(lr)'}, env=self.vis_env) self.top1_win = 'top1_win' self.vis.line(X=np.zeros((1,2)), Y=np.zeros((1,2)), win=self.top1_win, opts={'legend': ['train_top1_prec', 'val_top1_prec'], 'xlabel': 'epochs', 'ylabel': 'top1_prec (%)'}, env=self.vis_env) self.top5_win = 'top5_win' self.vis.line(X=np.zeros((1,2)), Y=np.zeros((1,2)), win=self.top5_win, opts={'legend': ['train_top5_prec', 'val_top5_prec'], 'xlabel': 'epochs', 'ylabel': 'top5_prec (%)'}, env=self.vis_env) # log all the command line options print('---------------------------------------') print('Experiment: {:s}'.format(self.config['experiment'])) for k, v in self.config.items(): print('{:s}: {:s}'.format(k, str(v))) print('---------------------------------------') self.start_epoch = int(0) checkpoint_file = self.config['checkpoint_file'] if checkpoint_file: if osp.isfile(checkpoint_file): checkpoint = torch.load(checkpoint_file) self.model.load_state_dict(checkpoint['model_state_dict']) self.best_prec1 = checkpoint['best_prec1'] if self.config['resume_optim']: self.optimizer.load_state_dict(checkpoint['optim_state_dict']) self.start_epoch = checkpoint['epoch'] print('Loaded checkpoint {:s} epoch {:d}'.format(checkpoint_file, checkpoint['epoch'])) self.train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.config['batch_size'], shuffle=self.config['shuffle'], num_workers=self.config['num_workers']) if self.config['do_val']: self.val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.config['batch_size'], shuffle=False, num_workers=self.config['num_workers']) else: self.val_loader = None def save_checkpoint(self, epoch, is_best): filename = osp.join(self.logdir, 'checkpoint.pth.tar') checkpoint_dict =\ {'epoch': epoch, 'model_state_dict': self.model.state_dict(), 'optim_state_dict': self.optimizer.state_dict(), 'best_prec1': self.best_prec1} torch.save(checkpoint_dict, filename) if is_best: shutil.copyfile(filename, osp.join(self.logdir, 'best_model.pth.tar')) def step_func(self, train): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() if train: self.model.train() status = 'train' loader = self.train_loader else: self.model.eval() status = 'val' loader = self.val_loader end = time.time() for batch_idx, (data, target) in enumerate(loader): data_time.update(time.time() - end) kwargs = dict(target=target, loss_fn=self.loss_fn, optim=self.optimizer, train=train) loss, output = step_feedfwd(data, self.model, **kwargs) # measure accuracy and calculate loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss, data.size(0)) top1.update(prec1[0], data.size(0)) top5.update(prec5[0], data.size(0)) # measure batch time batch_time.update(time.time() - end) end = time.time() if batch_idx % self.config['print_freq'] == 0: print('{:s} {:s}: batch {:d}/{:d}, loss {:4.3f}, top-1 accuracy {:4.3f},' ' top-5 accuracy {:4.3f}'.format(status, self.config['experiment'], batch_idx, len(loader)-1, loss, prec1[0], prec5[0])) print('{:s} {:s}: loss {:f}'.format(status, self.config['experiment'], losses.avg)) return losses.avg, top1.avg, top5.avg def train_val(self): for epoch in range(self.start_epoch, self.config['n_epochs']): print('{:s} Epoch {:d} / {:d}'.format(self.config['experiment'], epoch, self.config['n_epochs'])) # ADJUST LR self.lr_scheduler.step() lr = self.lr_scheduler.get_lr()[0] self.vis.line(X=np.asarray([epoch]), Y=np.asarray([np.log10(lr)]), win=self.lr_win, name='learning_rate', update='append', env=self.vis_env) # TRAIN loss, top1_prec, top5_prec = self.step_func(train=True) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([loss]), win=self.loss_win, name='train_loss', update='append', env=self.vis_env) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([top1_prec]), win=self.top1_win, name='train_top1_prec', update='append', env=self.vis_env) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([top5_prec]), win=self.top5_win, name='train_top5_prec', update='append', env=self.vis_env) self.vis.save(envs=[self.vis_env]) # VALIDATION if self.config['do_val'] and ((epoch % self.config['val_freq'] == 0) or (epoch == self.config['n_epochs']-1)): loss, top1_prec, top5_prec = self.step_func(train=False) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([loss]), win=self.loss_win, name='val_loss', update='append', env=self.vis_env) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([top1_prec]), win=self.top1_win, name='val_top1_prec', update='append', env=self.vis_env) self.vis.line(X=np.asarray([epoch]), Y=np.asarray([top5_prec]), win=self.top5_win, name='val_top5_prec', update='append', env=self.vis_env) self.vis.save(envs=[self.vis_env]) # SAVE CHECKPOINT is_best = top1_prec > self.best_prec1 self.best_prec1 = max(self.best_prec1, top1_prec) self.save_checkpoint(epoch, is_best) print('Checkpoint saved') if is_best: print('BEST TOP1 ACCURACY SO FAR') return self.best_prec1 def step_feedfwd(data, model, target=None, loss_fn=None, optim=None, train=True): """ training/validation step for a feedforward NN :param data: :param target: :param model: :param loss_fn: :param optim: :param train: training / val stage :return: """ if train: assert loss_fn is not None with torch.no_grad(): data_var = Variable(data, requires_grad=train) output = model(data_var) if loss_fn is not None: with torch.no_grad(): target_var = Variable(target, requires_grad=False) loss = loss_fn(output, target_var) if train: # SGD step optim.zero_grad() loss.backward() optim.step() return loss.item(), output else: return 0, output def get_mean_std(data_path, input_size, rgb): tform = [] tform.append(transforms.Resize(size=input_size)) if not rgb: tform.append(transforms.Grayscale()) tform.append(transforms.ToTensor()) tform = transforms.Compose(tform) dset = datasets.ImageFolder(root=data_path, transform=tform) train_loader = DataLoader(dataset=dset, batch_size=50) scaler = StandardScaler(with_mean=True, with_std=True) print('Computing pixel mean and stdev...') for idx, (data, labels) in enumerate(train_loader): if idx % 20 == 0: print("Batch {:d} / {:d}".format(idx, len(train_loader))) data = data.numpy() n_channels = data.shape[1] # reshape into [n_pixels x 3] data = data.transpose((0, 2, 3, 1)).reshape((-1, n_channels)) # pass batch to incremental mean and stdev calculator scaler.partial_fit(data) print('Done, mean = ') pixel_mean = scaler.mean_ pixel_std = scaler.scale_ print(pixel_mean) print('std = ') print(pixel_std) return pixel_mean, pixel_std
ff52b8f529b94dda69dce7fafc24efc220fa1e7c
d5985446e35eeb71b77b26a45c1c7c48db2bf1fa
/Web-Scraper/scraper.py
0795bc31a5597bfad4c99f8d98aa2313680fad00
[]
no_license
sl-spase/Python_NLP
aa7b9bd555ebdc31bcba07ddd83d19b1e37cc703
fed717c719be16018acd1b092bdbee48ef340f97
refs/heads/main
2023-07-31T16:08:54.864313
2021-09-13T09:34:52
2021-09-13T09:34:52
405,909,837
0
0
null
null
null
null
UTF-8
Python
false
false
2,445
py
import requests import string import os from bs4 import BeautifulSoup page = input() article_type = input() for i in range(1, int(page) + 1): url_list_articles = "https://www.nature.com/nature/articles?sort=PubDate&year=2020&page=" + str(i) r1 = requests.get(url_list_articles, headers={'Accept-Language': 'en-US,en;q=0.5'}) if r1.status_code == 200: soup1 = BeautifulSoup(r1.content, 'html.parser') types = soup1.find_all('span', {'class': "c-meta__type"}) position_news_articles = [] # [9,11,18] k = 0 for t in types: if t.text == article_type: # Find the 'News' ones position_news_articles.append(k) k = k + 1 hrefs = soup1.find_all('a', {'data-track-action': "view article"}) articles_url = [] # stores all news articles urls for position in position_news_articles: href = hrefs[position]['href'] url_article = "https://www.nature.com" + str(href) articles_url.append(url_article) articles_title = [] os.mkdir('Page_' + str(i)) for url in articles_url: r2 = requests.get(url, headers={'Accept-Language': 'en-US,en;q=0.5'}) soup2 = BeautifulSoup(r2.content, 'html.parser') article_title = [] if article_type == "Research Highlight": article_title = soup2.find('h1', {'class': "article-item__title"}).text.strip() else: article_title = soup2.find('h1', {'class': "c-article-magazine-title"}).text.strip() for p in article_title: if p in string.punctuation: article_title = article_title.replace(p, "") article_title = article_title.replace(' ', '_') articles_title.append(article_title) article_body = [] if article_type == "Research Highlight": article_body = soup2.find('div', {'class': "article-item__body"}).text.strip() else: article_body = soup2.find('div', {'class': "c-article-body u-clearfix"}).text.strip() os.chdir(os.getcwd() + '\\Page_' + str(i)) file_name = article_title + '.txt' file = open(file_name, 'wb') file.write(article_body.encode()) file.close() os.chdir("..") print("Saved articles:") print(articles_title)
443a8d75e938c169af2de29928c8608a50907fc9
d61482ba081ab69edbe53f1d641eba9b4295684f
/utilities.py
1c038126e3f99e9b7eeabd6081ec962fd1b7998b
[]
no_license
lucapegolotti/FingerMovement
6099bad810429444d1b94c6d4350e16ed2302c4c
d515da1bd7394fc62657dc9e065132f3b2d169bb
refs/heads/master
2020-03-06T22:34:43.389476
2018-05-18T12:46:20
2018-05-18T12:46:20
127,106,711
0
0
null
null
null
null
UTF-8
Python
false
false
4,321
py
import torch from torch import nn import numpy as np import random """ Compute number of errors on given datset wrt its target """ def compute_nb_errors(model, input, target): # To deactivate dropout: model.train(False) y = model.forward(input) indicesy = np.argmax(y.data,1).float() nberrors = np.linalg.norm(indicesy - target.data.float(),0) model.train(True) return nberrors """ Train model """ def train_model(model, criterion, train_input, \ train_target, validation_input, validation_target, test_input, test_target,\ n_epochs=1000, eta=0.1, batch_perc=0.3, l2_parameter=1e-3, gamma=0.95): train_size = train_input.size(0) test_size = test_input.size(0) validation_size = validation_input.size(0) # Initialize an output_array of 4 or 5 columns if there isn't or there is # a validation set, respectively if validation_size is not 0: output_array = np.zeros(shape=(n_epochs,5)) else: output_array = np.zeros(shape=(n_epochs,4)) # Effective mini-batch size for this training set mini_batch_size = int(train_size*batch_perc) # Adam otpimizer to improve weights and biases after each epoch optimizer = torch.optim.Adam(model.parameters(), lr = eta, weight_decay = l2_parameter) # We adjust the learning rate following a geometric progression with coefficient # gamma every 30 epochs # See http://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate # Section "How to adjust Learning Rate" scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=gamma, last_epoch=-1) for e in range(0, n_epochs): # Initialization of loss for SGD with mini-batches after random shuffling # of training dataset sum_loss = 0 shuffle_indexes_minibatch = torch.randperm(train_size) train_input = train_input[shuffle_indexes_minibatch,:,:] train_target = train_target[shuffle_indexes_minibatch] for b in range(0, train_size, mini_batch_size): # To avoid errors when train_size/mini_batch_size is not an integer # we introduce the variable current_mini_bach_size current_mini_batch_size = min(mini_batch_size, train_input.size(0) - b) # Forward run output = model.forward(train_input.narrow(0, b, current_mini_batch_size)) # Take the mini-batch of train_target train_target_narrowed = train_target.narrow(0, b, current_mini_batch_size).long() # Compute the loss loss = criterion(output, train_target_narrowed) scheduler.step() sum_loss = sum_loss + loss.data.item() # Backward step model.zero_grad() loss.backward() optimizer.step() # Compute number of erorrs on training and test set train_error = compute_nb_errors(model,train_input, train_target) test_error = compute_nb_errors(model,test_input, test_target) # print("Epoch = {0:d}".format(e)) # print("Loss function = {0:.8f}".format(sum_loss)) string_to_print = "Epoch: {0:d}".format(e) + \ " loss function: {0:.8f}".format(sum_loss) + \ " train error: {0:.2f}%".format((train_error/train_size)*100) # Save results on output_array to be exported output_array[e,0] = e output_array[e,1] = sum_loss output_array[e,2] = (train_error/train_size)*100 output_array[e,3] = (test_error/test_size)*100 # If the cross-validation set is non empty we can also compute the # number of errors on this set if validation_size is not 0: validation_error = compute_nb_errors(model,validation_input, validation_target) string_to_print += " validation error: {0:.2f}%".format((validation_error/validation_size)*100) output_array[e,4] = (validation_error/validation_size)*100 print(string_to_print) print("===============================================================================") return output_array """ Random initialization of weights using Xavier uniform """ def init_weights(layer): if type(layer) == nn.Linear: torch.nn.init.xavier_uniform_(layer.weight)
7aca51c0bc9b994fc566fd826ff4718574520621
77938a0011373d88a966374a7464e03781372ee8
/canvas_stream/helpers.py
03386cf4133bbc3b7bea3f6d0f59c0e884a6fe7f
[]
no_license
benjavicente/canvas-stream
f1f5283dab646885ffe73c14c5862c10419835ba
897b9600b2b8da3a66feaeac044dad3cf1041471
refs/heads/main
2023-06-18T22:37:08.352444
2021-07-14T03:10:57
2021-07-14T03:10:57
385,799,020
1
0
null
null
null
null
UTF-8
Python
false
false
1,104
py
"Utilities" import unicodedata import re from pathlib import Path import requests def slugify(value: str) -> str: "Makes a string a valid file path" value = ( unicodedata.normalize("NFKD", value) .encode("ascii", "ignore") .decode("ascii") .lower() .replace(r"/", "-") .replace("\\", "-") .replace("*", "") ) return re.sub(r"[-]+", "-", value).strip("_-.") def download(url: str, path: Path): "Downloads a file from a url" path.parent.mkdir(parents=True, exist_ok=True) stream = requests.get(url, stream=True) content_length = stream.headers.get("content-length", None) with path.open("wb") as file: if not content_length: print(f"???% -- {path}") file.write(stream.content) return progress = 0 total_bytes = int(content_length) for data in stream.iter_content(chunk_size=4096): file.write(data) progress += len(data) print(f"{progress / total_bytes:4.0%} -- {path}", end="\r") print(end="\n")
27505b546eae906b61150035fa0d980ecabbeead
b49fe70be4977ff9ba4903d410d6a2628922f486
/app.py
c49553b5708536de071d9ac843d182b4e101ba7d
[]
no_license
CarlosPlatoni/BeeDetection
8609af08d8c4b59098e292d4c09ed074f90ae0eb
cc459b576a0d4c492acf7c68f8b545a0eb4dfcf4
refs/heads/master
2021-01-01T06:19:21.300110
2017-07-16T19:53:21
2017-07-16T19:53:21
97,406,919
0
0
null
null
null
null
UTF-8
Python
false
false
2,557
py
#!/usr/bin/env python from flask import Flask, render_template, Response, flash, jsonify from flask_socketio import SocketIO from camera import Camera from flask_bootstrap import Bootstrap from flask_wtf import FlaskForm from wtforms import StringField, SubmitField from wtforms.validators import DataRequired import time app = Flask(__name__) app.config['DEBUG'] = True app.config['SECRET_KEY'] = 'well-secret-password' bootstrap = Bootstrap(app) socketio = SocketIO(app) camera = Camera() class MyForm(FlaskForm): nomask = SubmitField(label='NoMask') green = SubmitField(label='Green') yellow = SubmitField(label='Yellow') @app.route('/', methods=['GET', 'POST']) def index(): form = MyForm() if form.validate_on_submit(): if form.nomask.data: flash("You pressed nomask button") camera.removemask() elif form.green.data: flash("You pressed green button") camera.setmaskgreen() elif form.yellow.data: flash("You pressed yellow button") camera.setmaskyellow() return render_template('index.html', form=form) def gen(camera): """Video streaming generator function.""" count = 0 currentvalue = False socketio.emit('my_response', {'mse' : 'No Bee detected'}) while True: frame = camera.get_frame() if camera.mse > 0 and currentvalue == False: socketio.emit('my_response', {'mse' : 'Bee detected', 'elapsed' : 0}) start_time = time.time() currentvalue = True elif camera.mse == 0 and currentvalue == True: elapsed_time = time.time() - start_time socketio.emit('my_response', {'mse' : 'No Bee detected', 'elapsed' : elapsed_time}) currentvalue = False yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed') def video_feed(): return Response(gen(camera), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/detection') def detection(): return jsonify(result=camera.mse); @socketio.on('my event') def handle_my_custom_event(json): print('received json: ' + str(json)) return 'one', 2 @socketio.on('message') def handle_message(message): print('socketio', message) send(message) if __name__ == '__main__': #app.run(host='0.0.0.0', debug=True, threaded=True) socketio.run(app, host='0.0.0.0', debug=True)
12e4d32bdd3605e95d8b769aaf8df68f4b0dca2d
31b53c36c3573af089b768afeb4fda2e7e095916
/backend/env/Scripts/django-admin.py
a288ebf49e5bb51ba02edf823fe2fdc70ce4b4a8
[]
no_license
jlavery828/django-react
75fbe952144b3deb37d67657ab166b35cf912308
6faa065779a9978431dc6ba28174e58762ff790a
refs/heads/master
2022-12-11T18:05:15.322678
2019-03-09T16:05:07
2019-03-09T16:05:07
174,713,724
0
1
null
2022-11-27T23:36:31
2019-03-09T15:49:13
JavaScript
UTF-8
Python
false
false
176
py
#!c:\users\miner\documents\python-projects\djreact\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
07d25a17906756a002a0fc08fb221ed13ac6ad2a
ba3be84d355e90860479fc2a0d92b536c377c643
/PYTHON/string/3ld.py
7a3773926eea3d04b6c3ec283fe50647e16eed21
[]
no_license
vipin26/python
c62a3427511658ff292085fc382c5b3b3ff4d609
e8442b84c385ddef972d6a514e471d8eba8af0a3
refs/heads/master
2020-09-29T12:39:52.775466
2019-12-15T05:44:31
2019-12-15T05:44:31
227,034,374
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
s1="" s1=raw_input("enter a string : ") f=open("ele.txt",'w') f.write(s1) f.close() f=open("ele.txt",'r') s=f.read() print s c=0 for i in s: if(i==" "): c=c+1 print c
b45bc654f093c8fd49cd30f653fc0c4abdc0e330
811036ddc4996d5dfd71a2f28f877a0e8c518593
/python_course/bin/pip2
c86fdb7c6bbb88f0df7019c7fe43812fb3c314c4
[]
no_license
canyoubaby/python_course
728409ab1adaeb53614f9192d2bbfc156995b5d5
c418c811aa0d70c91d0fadcbca6765a8c09eabb6
refs/heads/master
2020-05-21T00:27:41.099422
2019-05-25T02:19:08
2019-05-25T02:19:08
185,826,697
0
0
null
2019-11-02T12:07:53
2019-05-09T15:35:47
Python
UTF-8
Python
false
false
256
#!/home/hieu/Desktop/python_course/python_course/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
cfe5fe1188d19fce17f316165c315b36d38060dc
48909fe6205f92d707b5d825426e1da9cb4b7738
/amazon_6/first_non_repeating _char.py
cc6b8893428e5c00532b4fa1b3a65cd5922c15fc
[]
no_license
BJV-git/amazon_6
608fd9ad76611d6050d8ff14d19ff29de3240b96
b8959581ca501ecebcc7f67982a18a4a985a6852
refs/heads/master
2020-05-04T05:22:21.008271
2019-04-02T02:36:08
2019-04-02T02:36:08
178,983,967
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
# isntead of maintaingin a dict lets mainatain a row of all alphabets # Time: O(N) # Space: O(1) def firtsUnique(s): count={} for i in s: count[i] = count.get(i,0)+1 for i in s: if count[i]==1: return i return -1
31465cfde8c86ee957b1f48a96915c6c548da66e
a3f991609b9f25e4ef4f65dc16867d602c1e867e
/scs_account_report/report/financial_report.py
a7cc4ddfa8199eb0d9a3384cd067412a5c829c5a
[]
no_license
RLJO/custom_gtl1
ecdb86ebb5dbead92a2ec152748eb125381f3ce2
ee9b9148aa8b2746322f67cd1afdb43078af7eaf
refs/heads/main
2023-07-29T04:25:18.016192
2021-09-13T13:48:48
2021-09-13T13:48:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,317
py
# -*- coding: utf-8 -*- # See LICENSE file for full copyright and licensing details. import time from odoo import api, models, _ from odoo.exceptions import UserError class ReportFinancial(models.AbstractModel): _name = 'report.scs_account_report.report_financial' _description = 'Financial Account Report' def _compute_account_balance(self, accounts): """ compute the balance, debit and credit for the provided accounts """ mapping = { 'balance': "COALESCE(SUM(debit),0) - COALESCE(SUM(credit), 0) as balance", 'debit': "COALESCE(SUM(debit), 0) as debit", 'credit': "COALESCE(SUM(credit), 0) as credit", } res = {} for account in accounts: res[account.id] = dict.fromkeys(mapping, 0.0) if accounts: tables, where_clause, where_params = self.env['account.move.line']._query_get() tables = tables.replace('"', '') if tables else "account_move_line" wheres = [""] if where_clause.strip(): wheres.append(where_clause.strip()) filters = " AND ".join(wheres) request = "SELECT account_id as id, " + ', '.join(mapping.values()) + \ " FROM " + tables + \ " WHERE account_id IN %s " \ + filters + \ " GROUP BY account_id" params = (tuple(accounts._ids),) + tuple(where_params) self.env.cr.execute(request, params) for row in self.env.cr.dictfetchall(): res[row['id']] = row return res def _compute_report_balance(self, reports): '''returns a dictionary with key=the ID of a record and value=the credit, debit and balance amount computed for this record. If the record is of type : 'accounts' : it's the sum of the linked accounts 'account_type' : it's the sum of leaf accoutns with such an account_type 'account_report' : it's the amount of the related report 'sum' : it's the sum of the children of this record (aka a 'view' record)''' res = {} fields = ['credit', 'debit', 'balance'] for report in reports: if report.id in res: continue res[report.id] = dict((fn, 0.0) for fn in fields) if report.type == 'accounts': # it's the sum of the linked accounts res[report.id]['account'] = self._compute_account_balance(report.account_ids) for value in res[report.id]['account'].values(): for field in fields: res[report.id][field] += value.get(field) elif report.type == 'account_type': # it's the sum the leaf accounts with such an account type accounts = self.env['account.account'].search([('user_type_id', 'in', report.account_type_ids.ids)]) res[report.id]['account'] = self._compute_account_balance(accounts) for value in res[report.id]['account'].values(): for field in fields: res[report.id][field] += value.get(field) elif report.type == 'account_report' and report.account_report_id: # it's the amount of the linked report res2 = self._compute_report_balance(report.account_report_id) for key, value in res2.items(): for field in fields: res[report.id][field] += value[field] elif report.type == 'sum': # it's the sum of the children of this account.report res2 = self._compute_report_balance(report.children_ids) for key, value in res2.items(): for field in fields: res[report.id][field] += value[field] return res def get_account_lines(self, data): lines = [] account_report = self.env['account.financial.report'].search([('id', '=', data['account_report_id'][0])]) child_reports = account_report._get_children_by_order() res = self.with_context(data.get('used_context'))._compute_report_balance(child_reports) if data['enable_filter']: comparison_res = self.with_context(data.get('comparison_context'))._compute_report_balance(child_reports) for report_id, value in comparison_res.items(): res[report_id]['comp_bal'] = value['balance'] report_acc = res[report_id].get('account') if report_acc: for account_id, val in comparison_res[report_id].get('account').items(): report_acc[account_id]['comp_bal'] = val['balance'] for report in child_reports: vals = { 'name': report.name, 'balance': res[report.id]['balance'] * report.sign, 'type': 'report', 'level': bool(report.style_overwrite) and report.style_overwrite or report.level, 'account_type': report.type or False, #used to underline the financial report balances } if data['debit_credit']: vals['debit'] = res[report.id]['debit'] vals['credit'] = res[report.id]['credit'] if data['enable_filter']: vals['balance_cmp'] = res[report.id]['comp_bal'] * report.sign lines.append(vals) if report.display_detail == 'no_detail': #the rest of the loop is used to display the details of the financial report, so it's not needed here. continue if res[report.id].get('account'): sub_lines = [] for account_id, value in res[report.id]['account'].items(): #if there are accounts to display, we add them to the lines with a level equals to their level in #the COA + 1 (to avoid having them with a too low level that would conflicts with the level of data #financial reports for Assets, liabilities...) flag = False account = self.env['account.account'].browse(account_id) vals = { 'name': account.code + ' ' + account.name, 'balance': value['balance'] * report.sign or 0.0, 'type': 'account', 'level': report.display_detail == 'detail_with_hierarchy' and 4, 'account_type': account.internal_type, } if data['debit_credit']: vals['debit'] = value['debit'] vals['credit'] = value['credit'] if not account.company_id.currency_id.is_zero(vals['debit']) or not account.company_id.currency_id.is_zero(vals['credit']): flag = True if not account.company_id.currency_id.is_zero(vals['balance']): flag = True if data['enable_filter']: vals['balance_cmp'] = value['comp_bal'] * report.sign if not account.company_id.currency_id.is_zero(vals['balance_cmp']): flag = True if flag: sub_lines.append(vals) lines += sorted(sub_lines, key=lambda sub_line: sub_line['name']) return lines @api.model def _get_report_values(self, docids, data=None): if not data.get('form') or not self.env.context.get('active_model') or not self.env.context.get('active_id'): raise UserError(_("Form content is missing, this report cannot be printed.")) self.model = self.env.context.get('active_model') docs = self.env[self.model].browse(self.env.context.get('active_id')) report_lines = self.get_account_lines(data.get('form')) return { 'doc_ids': self.ids, 'doc_model': self.model, 'data': data['form'], 'docs': docs, 'time': time, 'get_account_lines': report_lines, }
fbf7b12a7de7632c7500856f41831d7973ddded9
fa3f1f73ccb50ab551b0560ccece9f1bd41fa10a
/WeightedAvg_categorybased.py
8c9a0d2a32a5bc6580ffa7f13c4306f480d83c72
[]
no_license
harithagmu/SciCast-PredictionMarketData-Analytics-Engineering
d4074efd66d94bc49f587c412609e8c83c92cff5
beaf1a9b1236cb46cfaab6bfbba798223683821d
refs/heads/master
2020-09-09T21:08:28.103697
2020-04-21T20:59:30
2020-04-21T20:59:30
221,571,363
0
0
null
null
null
null
UTF-8
Python
false
false
9,074
py
#Importing required libraries import psycopg2 import pandas as pd import numpy as np from datetime import datetime import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report import os import math from scipy import interpolate %matplotlib qt #Changing the working directory os.getcwd() os.chdir("") #connecting to postgres SQL conn = psycopg2.connect("") cursor = conn.cursor() #Extracting all the binary resolved questions sql_command = "SELECT * FROM {};".format(str('questions')) data = pd.read_sql(sql_command, conn) new_data=data[data.settled_value.isnull() == False] df=new_data.reset_index(drop=True) df_binary=df[df.type == 'binary'] df_b=df_binary.reset_index(drop=True) #Calculating weights for timeline resolution def find_a_k(d): ''' The function returns constant values of a and k for every unique question using the duration(no. of days) for which the question was open. The function assumes equation f(t)=a*(exp(kt)) where f(t)=1 for t=1 and f(t)=100 for t=d(number of days) ''' a=pow(100,(1/(d+1))) k=np.log(a) return a,k e=2.718 def exp(t,a,k): ''' The function returns the value of f(t) where f(t)=a*(exp(kt)) ''' y=a*(e**(k*t)) return y df_time=pd.DataFrame() df_time['q_id']=df_b['id'] df_time['creation']=df_b['created_at'] df_time['settled']=df_b['settled_at'] df_time['settled_value']=df_b['settled_value'] #calculating constants a and k for each question df_time['d']=0 df_time['a']=0.0 df_time['k']=0.0 for i in range(len(df_time)): df_time['d'][i]=(df_time['creation'][i]-df_time['settled'][i]).days df_time['a'][i],df_time['k'][i]=find_a_k(df_time['d'][i]) #Simple Average and Weighted Average for Category 13- Business of Science #getting questions of category 13 sql_command1 = "SELECT * FROM {};".format(str('question_category_links')) category = pd.read_sql(sql_command1, conn) q_lst=[] for i in range(len(category)): if category['category_id'][i]==13: q_lst.append(category['question_id'][i]) q_lst1=tuple(q_lst) #getting trades related to category 13 questions sql_command = "select h.new_value,h.created_at as h_time,h.question_id,h.user_id,q.created_at as q_time,q.settled_at as q_settledtime,q.settled_value as settled_value from questions q, historical_trades h where q.id=h.question_id and q.settled_value is not null and q.type='binary'and h.user_id!=1 and h.question_id in {};".format(q_lst1) cat13=pd.read_sql(sql_command, conn) #Calculating difference between creation time of question and creation time of trade # As well as difference between creation time of trade and resolution time of question l=[] m=[] l1=[] for i in range(len(cat13)): l.append((cat13['q_time'][i]-cat13['h_time'][i]).days) m.append(abs((cat13['q_time'][i]-cat13['h_time'][i]).days)) l1.append(abs((cat13['h_time'][i]-cat13['q_settledtime'][i]).days)) cat13['t']=l cat13['t1']=m cat13['res_time_difference']=l1 #Scaling the resolution value for all questions so that all questions are resolved to a single value n=[] for i in range(len(cat13)): if cat13['settled_value'][i]==0: n.append(1-cat13['new_value'][i]) else: n.append(cat13['new_value'][i]) cat13['new_value_scaled']=n cat13['Abs Error']=1-cat13['new_value_scaled'] #Timeline weights calulation and scaling the weights f=[] for i in range(len(cat13)): for j in range(len(df_time)): if cat13['question_id'][i]==df_time['q_id'][j]: x=exp(cat13['t'][i],df_time['a'][j],df_time['k'][j]) break f.append(x) cat13['w_unscaled']=f cat13['w']=cat13['w_unscaled']/100 cat13['w'] #Getting user weights for each trade user_w=pd.read_csv("lookup.csv") user_wlst=[] x=0.0 for i in range(len(cat13)): for j in range(len(user_w)): if cat13['user_id'][i]==user_w['UserId'][j]: x=user_w['Business of Science'][j] break if x==0.0: user_wlst.append(0.000196541) else: user_wlst.append(x) x=0.0 cat13['user_w']=user_wlst #Calculating weighted Average and simple Average cat13['prod_of_weights']=cat13['user_w']*cat13['w'] cat13['prod']=cat13['prod_of_weights']*cat13['new_value_scaled'] cat13['prod_time']=cat13['w']*cat13['new_value_scaled'] #plot for checking trend of trades with respect to timeline of question df_mod=cat13 a=[] for i in range(len(df_mod)): a.append(abs((df_mod['q_settledtime'][i]-df_mod['q_time'][i]).days)) df_mod['length_of_question']=a df_mod1=df_mod.groupby(['question_id']).mean() df_mod1=df_mod1.reset_index() mean_value=math.ceil(df_mod1['length_of_question'].mean()) df_mod['x']=round((df_mod['t1']/df_mod['length_of_question'])*mean_value) df_mod['x1']=round((df_mod['res_time_difference']/df_mod['length_of_question'])*mean_value) df_mod['Abs Error']=abs(df_mod['new_value']-df_mod['settled_value']) df_mod2=df_mod.groupby('x1').mean() df_mod2=df_mod2.reset_index() plt.scatter(df_mod2['x1'],df_mod2['Abs Error']) z = np.polyfit(df_mod2['x1'], df_mod2['Abs Error'], 1) p = np.poly1d(z) plt.plot(df_mod2['x1'],p(df_mod2['x1']),"r--") plt.xlim(max(df_mod['x1']),0) plt.xlabel("Time until resolution(scaled)") plt.ylabel("Average Absolute Error") plt.title("Trend of predictions over time") plt.grid(True) plt.show() #df_mod2.to_csv('df_mod2.csv') #Calculating weighted Average and simple Average l=cat13.groupby(['question_id']).mean() l=l.reset_index() new_frame_cat13=cat13.groupby(['question_id']).sum() new_frame_cat13=new_frame_cat13.reset_index() settled=[] for i in range(len(new_frame_cat13)): if new_frame_cat13['settled_value'][i]==0: settled.append(0) else: settled.append(1) new_frame_cat13['settled_value']=settled new_frame_cat13['Weighted_avg']=new_frame_cat13['prod']/new_frame_cat13['prod_of_weights'] new_frame_cat13['Weighted_avg_time']=new_frame_cat13['prod_time']/new_frame_cat13['w'] new_frame_cat13['avg']=l['new_value_scaled'] new_frame_cat13['Avg_AE']=1-new_frame_cat13['avg'] new_frame_cat13['WeightedAvg_AE']=1-new_frame_cat13['Weighted_avg'] new_frame_cat13['WeightedAvg_AE_time']=1-new_frame_cat13['Weighted_avg_time'] #Baseline 1- getting prediction made by the user prior to resolution of question base=pd.read_csv('basline.csv') lll=[] sv=[] for i in range(len(new_frame_cat13)): for j in range(len(base)): if base['id'][j]==new_frame_cat13['question_id'][i]: lll.append(base['absError'][j]) sv.append(base['settled_value'][j]) break new_frame_cat13['baseline_AE']=lll new_frame_cat13['baseline_settled']=sv new_frame_cat13['baseline']=abs(new_frame_cat13['baseline_settled']-new_frame_cat13['baseline_AE']) #Baseline 2- getting last 10 predictions prior to resolution newavg10 = [] weights=[] prod=[] for qid in new_frame_cat13['question_id']: records = cat13[cat13.question_id == qid] records = records.reset_index() #print(records.shape) if(len(records)>0): if records.shape[0] > 10: records = records.sort_values('h_time', ascending= False) records = records.reset_index() records = records[:10] newavg10.append(abs(records['settled_value']-records['new_value']).mean()) weights.append(sum(records['w'])) prod.append(sum(records['prod_time'])) else: newavg10.append(abs(records['settled_value']-records['new_value']).mean()) prod.append(sum(records['prod_time'])) weights.append(sum(records['w'])) else: newavg10.append(0) weights.append(sum(records['w'])) prod.append(sum(records['prod_time'])) wadf=pd.DataFrame() wadf['prod']=prod wadf['weights']=weights wadf['wa']=wadf['prod']/wadf['weights'] new_frame_cat13['baseline_last10'] = newavg10 new_frame_cat13['baseline_last10_wa'] = wadf['wa'] new_frame_cat13['baseline_last10_wa_ae'] = 1-wadf['wa'] #Difference between Simple Average and weighted Average considering both weights as well as only time weights new_frame_cat13['dff_SA&WA_AE']=new_frame_cat13['Avg_AE']-new_frame_cat13['WeightedAvg_AE'] new_frame_cat13['dff_SA&WA_time_AE']=new_frame_cat13['Avg_AE']-new_frame_cat13['WeightedAvg_AE_time'] plt.plot(new_frame_cat13.index,new_frame_cat13['dff_SA&WA_AE'],'o') plt.axhline(0) #Mean absolute errors for category 13 questions round(new_frame_cat13['Avg_AE'].mean(),2) #Simple Average round(new_frame_cat13['WeightedAvg_AE'].mean(),2) #Weighted Average round(new_frame_cat13['WeightedAvg_AE_time'].mean(),2) #Weighted Average using time weights only round(new_frame_cat13['baseline_AE'].mean(),2) #Baseline 1 round(new_frame_cat13['baseline_last10'].mean(),2) #Baseline 2
11c26bc67655788b4e9134383d372e909eb9b40f
65e39deb4e1e152d3650323cc7641686d4b1776d
/list1.py
5d2fa070bcaaf00b6da4a8edfa3cf2da580e9bc2
[]
no_license
bwigoder/pythontut
a7c07c4f55afcb41b04cc4b895e256058bbaf134
629e889326bfd4473d7073837b0058c0f7328361
refs/heads/master
2021-01-10T20:39:46.667380
2014-02-17T19:59:02
2014-02-17T19:59:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,303
py
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ # Basic list exercises # Fill in the code for the functions below. main() is already set up # to call the functions with a few different inputs, # printing 'OK' when each function is correct. # The starter code for each function includes a 'return' # which is just a placeholder for your code. # It's ok if you do not complete all the functions, and there # are some additional functions to try in list2.py. # A. match_ends # Given a list of strings, return the count of the number of # strings where the string length is 2 or more and the first # and last chars of the string are the same. # Note: python does not have a ++ operator, but += works. def match_ends(words): count = 0 for word in words: if len(word) >= 2 and word[0] == word[-1]: count += 1 return count # B. front_x # Given a list of strings, return a list with the strings # in sorted order, except group all the strings that begin with 'x' first. # e.g. ['mix', 'xyz', 'apple', 'xanadu', 'aardvark'] yields # ['xanadu', 'xyz', 'aardvark', 'apple', 'mix'] # Hint: this can be done by making 2 lists and sorting each of them # before combining them. def front_x(words): wordsnox = [] wordswithx = [] for word in words: if word[0] == 'x': wordswithx.append(word) else: wordsnox.append(word) wordswithx_sorted = sorted(wordswithx) wordsnox_sorted = sorted(wordsnox) sortedwords = wordswithx_sorted + wordsnox_sorted return sortedwords # C. sort_last # Given a list of non-empty tuples, return a list sorted in increasing # order by the last element in each tuple. # e.g. [(1, 7), (1, 3), (3, 4, 5), (2, 2)] yields # [(2, 2), (1, 3), (3, 4, 5), (1, 7)] # Hint: use a custom key= function to extract the last element form each tuple. def sort_last(tuples): def grablast(s): return s[-1] tuples_sorted = sorted(tuples, key=grablast) return tuples_sorted # Simple provided test() function used in main() to print # what each function returns vs. what it's supposed to return. def test(got, expected): if got == expected: prefix = ' OK ' else: prefix = ' X ' print '%s got: %s expected: %s' % (prefix, repr(got), repr(expected)) # Calls the above functions with interesting inputs. def main(): print 'match_ends' test(match_ends(['aba', 'xyz', 'aa', 'x', 'bbb']), 3) test(match_ends(['', 'x', 'xy', 'xyx', 'xx']), 2) test(match_ends(['aaa', 'be', 'abc', 'hello']), 1) print print 'front_x' test(front_x(['bbb', 'ccc', 'axx', 'xzz', 'xaa']), ['xaa', 'xzz', 'axx', 'bbb', 'ccc']) test(front_x(['ccc', 'bbb', 'aaa', 'xcc', 'xaa']), ['xaa', 'xcc', 'aaa', 'bbb', 'ccc']) test(front_x(['mix', 'xyz', 'apple', 'xanadu', 'aardvark']), ['xanadu', 'xyz', 'aardvark', 'apple', 'mix']) print print 'sort_last' test(sort_last([(1, 3), (3, 2), (2, 1)]), [(2, 1), (3, 2), (1, 3)]) test(sort_last([(2, 3), (1, 2), (3, 1)]), [(3, 1), (1, 2), (2, 3)]) test(sort_last([(1, 7), (1, 3), (3, 4, 5), (2, 2)]), [(2, 2), (1, 3), (3, 4, 5), (1, 7)]) if __name__ == '__main__': main()
cb4160269f36707e4931919c274db435eb21cb6c
944401a6292baa2d23b9738898e0b0cb199d0795
/lib/python2.7/site-packages/bokeh/models/widgets/tables.py
5584c2821cb4704e2b0077b69ef9bc9912d443fe
[ "Python-2.0" ]
permissive
sunnyweilai/Finding-Theme-Color-Palettes
cc84c93ce58abdd1802431c41bd59181d7a4f75b
4c38b112f5c40b43d6ec126e415b609c7fdc1f39
refs/heads/master
2022-12-21T09:41:31.187411
2019-04-30T14:50:17
2019-04-30T14:50:17
184,273,925
1
0
null
2022-12-07T03:46:55
2019-04-30T14:09:52
Python
UTF-8
Python
false
false
17,275
py
''' Various kinds of data table (data grid) widgets. ''' from __future__ import absolute_import from ...core.enums import DateFormat, FontStyle, NumeralLanguage, TextAlign, RoundingFunction from ...core.has_props import abstract from ...core.properties import Bool, Color, Either, Enum, Float, Instance, Int, List, Override, String from ...model import Model from ..sources import DataSource, CDSView from .widget import Widget @abstract class CellFormatter(Model): ''' Abstract base class for data table's cell formatters. ''' @abstract class CellEditor(Model): ''' Abstract base class for data table's cell editors. ''' class StringFormatter(CellFormatter): ''' Basic string cell formatter. ''' font_style = Enum(FontStyle, default="normal", help=""" An optional text font style, e.g. bold, italic. """) text_align = Enum(TextAlign, default="left", help=""" An optional text align, i.e. left, center or right. """) text_color = Color(help=""" An optional text color. See :class:`bokeh.core.properties.Color` for details. """) class NumberFormatter(StringFormatter): ''' Number cell formatter. ''' format = String("0,0", help=""" The number format, as defined in the following tables: **NUMBERS**: ============ ============== =============== Number Format String ============ ============== =============== 10000 '0,0.0000' 10,000.0000 10000.23 '0,0' 10,000 10000.23 '+0,0' +10,000 -10000 '0,0.0' -10,000.0 10000.1234 '0.000' 10000.123 10000.1234 '0[.]00000' 10000.12340 -10000 '(0,0.0000)' (10,000.0000) -0.23 '.00' -.23 -0.23 '(.00)' (.23) 0.23 '0.00000' 0.23000 0.23 '0.0[0000]' 0.23 1230974 '0.0a' 1.2m 1460 '0 a' 1 k -104000 '0a' -104k 1 '0o' 1st 52 '0o' 52nd 23 '0o' 23rd 100 '0o' 100th ============ ============== =============== **CURRENCY**: =========== =============== ============= Number Format String =========== =============== ============= 1000.234 '$0,0.00' $1,000.23 1000.2 '0,0[.]00 $' 1,000.20 $ 1001 '$ 0,0[.]00' $ 1,001 -1000.234 '($0,0)' ($1,000) -1000.234 '$0.00' -$1000.23 1230974 '($ 0.00 a)' $ 1.23 m =========== =============== ============= **BYTES**: =============== =========== ============ Number Format String =============== =========== ============ 100 '0b' 100B 2048 '0 b' 2 KB 7884486213 '0.0b' 7.3GB 3467479682787 '0.000 b' 3.154 TB =============== =========== ============ **PERCENTAGES**: ============= ============= =========== Number Format String ============= ============= =========== 1 '0%' 100% 0.974878234 '0.000%' 97.488% -0.43 '0 %' -43 % 0.43 '(0.000 %)' 43.000 % ============= ============= =========== **TIME**: ============ ============== ============ Number Format String ============ ============== ============ 25 '00:00:00' 0:00:25 238 '00:00:00' 0:03:58 63846 '00:00:00' 17:44:06 ============ ============== ============ For the complete specification, see http://numbrojs.com/format.html """) language = Enum(NumeralLanguage, default="en", help=""" The language to use for formatting language-specific features (e.g. thousands separator). """) rounding = Enum(RoundingFunction, help=""" Rounding functions (round, floor, ceil) and their synonyms (nearest, rounddown, roundup). """) class BooleanFormatter(CellFormatter): ''' Boolean (check mark) cell formatter. ''' icon = Enum('check', 'check-circle', 'check-circle-o', 'check-square', 'check-square-o', help=""" The icon visualizing the check mark. """) class DateFormatter(CellFormatter): ''' Date cell formatter. ''' format = Either(Enum(DateFormat), String, default='ISO-8601', help=""" The date format can be any standard `strftime`_ format string, as well as any of the following predefined format names: ================================================ ================== =================== Format name(s) Format string Example Output ================================================ ================== =================== ``ATOM`` / ``W3C`` / ``RFC-3339`` / ``ISO-8601`` ``"%Y-%m-%d"`` 2014-03-01 ``COOKIE`` ``"%a, %d %b %Y"`` Sat, 01 Mar 2014 ``RFC-850`` ``"%A, %d-%b-%y"`` Saturday, 01-Mar-14 ``RFC-1123`` / ``RFC-2822`` ``"%a, %e %b %Y"`` Sat, 1 Mar 2014 ``RSS`` / ``RFC-822`` / ``RFC-1036`` ``"%a, %e %b %y"`` Sat, 1 Mar 14 ``TIMESTAMP`` (ms since epoch) 1393632000000 ================================================ ================== =================== Note that in the table some of the format names are synonymous, with identical format names separated by slashes. This list of supported `strftime`_ format codes is reproduced below. %a The abbreviated name of the day of the week according to the current locale. %A The full name of the day of the week according to the current locale. %b The abbreviated month name according to the current locale. %B The full month name according to the current locale. %c The preferred date and time representation for the current locale. %C The century number (year/100) as a 2-digit integer. %d The day of the month as a decimal number (range 01 to 31). %D Equivalent to %m/%d/%y. (Americans should note that in many other countries %d/%m/%y is rather common. This means that in international context this format is ambiguous and should not be used.) %e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a space. %f Microsecond as a decimal number, zero-padded on the left (range 000000-999999). This is an extension to the set of directives available to `timezone`_. %F Equivalent to %Y-%m-%d (the ISO 8601 date format). %G The ISO 8601 week-based year with century as a decimal number. The 4-digit year corresponding to the ISO week number (see %V). This has the same format and value as %Y, except that if the ISO week number belongs to the previous or next year, that year is used instead. %g Like %G, but without century, that is, with a 2-digit year (00-99). %h Equivalent to %b. %H The hour as a decimal number using a 24-hour clock (range 00 to 23). %I The hour as a decimal number using a 12-hour clock (range 01 to 12). %j The day of the year as a decimal number (range 001 to 366). %k The hour (24-hour clock) as a decimal number (range 0 to 23). Single digits are preceded by a blank. (See also %H.) %l The hour (12-hour clock) as a decimal number (range 1 to 12). Single digits are preceded by a blank. (See also %I.) (TZ) %m The month as a decimal number (range 01 to 12). %M The minute as a decimal number (range 00 to 59). %n A newline character. Bokeh text does not currently support newline characters. %N Nanosecond as a decimal number, zero-padded on the left (range 000000000-999999999). Supports a padding width specifier, i.e. %3N displays 3 leftmost digits. However, this is only accurate to the millisecond level of precision due to limitations of `timezone`_. %p Either "AM" or "PM" according to the given time value, or the corresponding strings for the current locale. Noon is treated as "PM" and midnight as "AM". %P Like %p but in lowercase: "am" or "pm" or a corresponding string for the current locale. %r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to %I:%M:%S %p. %R The time in 24-hour notation (%H:%M). For a version including the seconds, see %T below. %s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). %S The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for occasional leap seconds.) %t A tab character. Bokeh text does not currently support tab characters. %T The time in 24-hour notation (%H:%M:%S). %u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w. %U The week number of the current year as a decimal number, range 00 to 53, starting with the first Sunday as the first day of week 01. See also %V and %W. %V The ISO 8601 week number (see NOTES) of the current year as a decimal number, range 01 to 53, where week 1 is the first week that has at least 4 days in the new year. See also %U and %W. %w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u. %W The week number of the current year as a decimal number, range 00 to 53, starting with the first Monday as the first day of week 01. %x The preferred date representation for the current locale without the time. %X The preferred time representation for the current locale without the date. %y The year as a decimal number without a century (range 00 to 99). %Y The year as a decimal number including the century. %z The +hhmm or -hhmm numeric timezone (that is, the hour and minute offset from UTC). %Z The timezone name or abbreviation. %% A literal '%' character. .. warning:: The client library BokehJS uses the `timezone`_ library to format datetimes. The inclusion of the list below is based on the claim that `timezone`_ makes to support "the full compliment of GNU date format specifiers." However, this claim has not been tested exhaustively against this list. If you find formats that do not function as expected, please submit a `github issue`_, so that the documentation can be updated appropriately. .. _strftime: http://man7.org/linux/man-pages/man3/strftime.3.html .. _timezone: http://bigeasy.github.io/timezone/ .. _github issue: https://github.com/bokeh/bokeh/issues """) class HTMLTemplateFormatter(CellFormatter): ''' HTML formatter using a template. This uses Underscore's `template` method and syntax. http://underscorejs.org/#template The formatter has access other items in the row via the `dataContext` object passed to the formatter. So, for example, if another column in the datasource was named `url`, the template could access it as: <a href="<%= url %>"><%= value %></a> To use a different set of template delimiters, pass the appropriate values for `evaluate`, `interpolate', or `escape`. See the Underscore `template` documentation for more information. http://underscorejs.org/#template Example: Simple HTML template to format the column value as code. HTMLTemplateFormatter(template='<code><%= value %></code>') Example: Use values from other columns (`manufacturer` and `model`) to build a hyperlink. HTMLTemplateFormatter(template='<a href="https:/www.google.com/search?q=<%= manufacturer %>+<%= model %>" target="_blank"><%= value %></a>') ''' template = String('<%= value %>', help=""" Template string to be used by Underscore's template method. """) class StringEditor(CellEditor): ''' Basic string cell editor with auto-completion. ''' completions = List(String, help=""" An optional list of completion strings. """) class TextEditor(CellEditor): ''' Multi-line string cell editor. ''' class SelectEditor(CellEditor): ''' Select cell editor. ''' options = List(String, help=""" The list of options to select from. """) class PercentEditor(CellEditor): ''' ``IntEditor`` optimized for editing percentages. ''' class CheckboxEditor(CellEditor): ''' Boolean value cell editor. ''' class IntEditor(CellEditor): ''' Spinner-based integer cell editor. ''' step = Int(1, help=""" The major step value. """) class NumberEditor(CellEditor): ''' Spinner-based number cell editor. ''' step = Float(0.01, help=""" The major step value. """) class TimeEditor(CellEditor): ''' Spinner-based time cell editor. ''' class DateEditor(CellEditor): ''' Calendar-based date cell editor. ''' class TableColumn(Model): ''' Table column widget. ''' field = String(help=""" The name of the field mapping to a column in the data source. """) title = String(help=""" The title of this column. If not set, column's data field is used instead. """) width = Int(300, help=""" The width or maximum width (depending on data table's configuration) in pixels of this column. """) formatter = Instance(CellFormatter, lambda: StringFormatter(), help=""" The cell formatter for this column. By default, a simple string formatter is used. """) editor = Instance(CellEditor, lambda: StringEditor(), help=""" The cell editor for this column. By default, a simple string editor is used. """) sortable = Bool(True, help=""" Whether this column is sortable or not. Note that data table has to have sorting enabled to allow sorting in general. """) default_sort = Enum("ascending", "descending", help=""" The default sorting order. By default ``ascending`` order is used. """) @abstract class TableWidget(Widget): ''' Abstract base class for data table (data grid) widgets. ''' source = Instance(DataSource, help=""" The source of data for the widget. """) view = Instance(CDSView, help=""" A view into the data source to use when rendering table rows. A default view of the entire data source is created if a view is not passed in during initialization. """) def __init__(self, **kw): super(TableWidget, self).__init__(**kw) if "view" not in kw: self.view = CDSView(source=self.source) class DataTable(TableWidget): ''' Two dimensional grid for visualisation and editing large amounts of data. ''' columns = List(Instance(TableColumn), help=""" The list of child column widgets. """) fit_columns = Bool(True, help=""" Whether columns should be fit to the available width. This #1lab_results in no horizontal scrollbar showing up, but data can get unreadable if there is no enough space available. If set to ``True``, columns' width is understood as maximum width. """) sortable = Bool(True, help=""" Allows to sort table's contents. By default natural order is preserved. To sort a column, click on it's header. Clicking one more time changes sort direction. Use Ctrl + click to return to natural order. Use Shift + click to sort multiple columns simultaneously. """) reorderable = Bool(True, help=""" Allows the reordering of a tables's columns. To reorder a column, click and drag a table's header to the desired location in the table. The columns on either side will remain in their previous order. """) editable = Bool(False, help=""" Allows to edit table's contents. Needs cell editors to be configured on columns that are required to be editable. """) selectable = Either(Bool(True), Enum("checkbox"), help=""" Whether a table's rows can be selected or not. Using ``checkbox`` is equivalent to ``True``, but makes selection visible through a checkbox for each row, instead of highlighting rows. Multiple selection is allowed and can be achieved by either clicking multiple checkboxes (if enabled) or using Shift + click on rows. """) row_headers = Bool(True, help=""" Enable or disable row headers, i.e. the index column. """) scroll_to_selection = Bool(True, help=""" Whenever a selection is made on the data source, scroll the selected rows into the table's viewport if none of the selected rows are already in the viewport. """) height = Override(default=400)
e2c572e43c469fc2dd9396060cc0563e3547fb90
c5cbb2a8a32ad0f6d86290921ed5fd623e02e624
/MICCAI_Challenge2018_YuHsiang/DICELOSS/DLV3+3AS.py
f34d0e00979214a3c80d0ba2232c218d09f23eab
[]
no_license
leocvml/MICCAI2018_Robotic-Scene-Segmentation-
779835ca506b935c9ae0282c2d49924735d473a6
8b23c352188449bf73f5976723ff22326911cfd7
refs/heads/master
2020-07-23T12:13:04.395012
2019-09-10T12:28:08
2019-09-10T12:28:08
207,552,824
0
0
null
null
null
null
UTF-8
Python
false
false
15,418
py
from mxnet import gluon, image, ndarray from matplotlib import pyplot as plt from mxnet.gluon import data as gdata from os import listdir from mxnet.gluon import nn import mxnet as mx from mxnet import nd import os import numpy as np ##################################################################################### ## ## DeepLab ## #################################################################################### class stemblock(nn.HybridBlock): def __init__(self, filters): super(stemblock, self).__init__() self.filters = filters self.conv1 = nn.Conv2D(self.filters, kernel_size=3, padding=1, strides=2) self.bn1 = nn.BatchNorm() self.act1 = nn.Activation('relu') self.conv2 = nn.Conv2D(self.filters, kernel_size=3, padding=1, strides=1) self.bn2 = nn.BatchNorm() self.act2 = nn.Activation('relu') self.conv3 = nn.Conv2D(self.filters, kernel_size=3, padding=1, strides=1) self.pool = nn.MaxPool2D(pool_size=(2, 2), strides=2) def hybrid_forward(self, F, x): stem1 = self.act1(self.bn1(self.conv1(x))) stem2 = self.act2(self.bn2(self.conv2(stem1))) stem3 = self.pool(stem2) out = self.conv3(stem3) return out class conv_block(nn.HybridBlock): def __init__(self, filters): super(conv_block, self).__init__() self.net = nn.HybridSequential() with self.net.name_scope(): self.net.add( nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(filters, kernel_size=3, padding=1), nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(filters, kernel_size=1), ) def hybrid_forward(self, F, x): return self.net(x) class DenseBlcok(nn.HybridBlock): def __init__(self, num_convs, num_channels): # layers, growth rate super(DenseBlcok, self).__init__() self.net = nn.HybridSequential() with self.net.name_scope(): for _ in range(num_convs): self.net.add( conv_block(num_channels) ) def hybrid_forward(self, F, x): for blk in self.net: Y = blk(x) x = F.concat(x, Y, dim=1) return x class Deeplabv3(nn.HybridBlock): def __init__(self, growth_rate, numofcls): super(Deeplabv3, self).__init__() self.feature_extract = nn.HybridSequential() with self.feature_extract.name_scope(): self.feature_extract.add( stemblock(256), DenseBlcok(8, growth_rate), nn.BatchNorm(), nn.Activation('relu') ) self.conv1 = nn.HybridSequential() with self.conv1.name_scope(): self.conv1.add( nn.Conv2D(128, kernel_size=1, strides=2), nn.BatchNorm(), nn.Activation('relu') ) self.conv3r6 = nn.HybridSequential() with self.conv3r6.name_scope(): self.conv3r6.add( nn.Conv2D(128, kernel_size=3, strides=2, padding=6, dilation=6), nn.BatchNorm(), nn.Activation('relu') ) self.conv3r12 = nn.HybridSequential() with self.conv3r12.name_scope(): self.conv3r12.add( nn.Conv2D(128, kernel_size=3, strides=2, padding=12, dilation=12), nn.BatchNorm(), nn.Activation('relu') ) self.conv3r18 = nn.HybridSequential() with self.conv3r18.name_scope(): self.conv3r18.add( nn.Conv2D(128, kernel_size=3, strides=2, padding=18, dilation=18), nn.BatchNorm(), nn.Activation('relu') ) self.maxpool = nn.MaxPool2D(pool_size=2, strides=2) self.concatconv1 = nn.HybridSequential() with self.concatconv1.name_scope(): self.concatconv1.add( nn.Conv2D(512, kernel_size=1), nn.BatchNorm(), nn.Activation('relu') ) self.feconv1 = nn.HybridSequential() with self.feconv1.name_scope(): self.feconv1.add( nn.Conv2D(512, kernel_size=1), nn.BatchNorm(), nn.Activation('relu') ) self.transUp = nn.HybridSequential() with self.transUp.name_scope(): self.transUp.add( nn.Conv2DTranspose(256, kernel_size=4, padding=1, strides=2), nn.BatchNorm(), nn.Activation('relu') ) self.decodeConv3 = nn.HybridSequential() with self.decodeConv3.name_scope(): self.decodeConv3.add( nn.Conv2D(512, kernel_size=3, padding=1, strides=1), nn.BatchNorm(), nn.Activation('relu') ) self.Up4 = nn.HybridSequential() with self.Up4.name_scope(): self.Up4.add( nn.Conv2DTranspose(256, kernel_size=4, padding=1, strides=2), nn.BatchNorm(), nn.Activation('relu'), nn.Conv2DTranspose(numofcls, kernel_size=4, padding=1, strides=2), nn.Activation('sigmoid') ) self.supervised = nn.HybridSequential() with self.supervised.name_scope(): self.supervised.add( nn.Conv2D(numofcls, kernel_size=1, strides=1), nn.Activation('sigmoid') ) def hybrid_forward(self, F, x): out = self.feature_extract(x) conv1out = self.conv1(out) conv3r6out = self.conv3r6(out) conv3r12out = self.conv3r12(out) conv3r18out = self.conv3r18(out) maxpoolout = self.maxpool(out) second_out = ndarray.concat(conv1out, conv3r6out, conv3r12out, conv3r18out, maxpoolout, dim=1) encoder_out = self.concatconv1(second_out) sup_out = self.supervised(encoder_out) encoderUp = self.transUp(encoder_out) feconv1out = self.feconv1(out) combine_out = ndarray.concat(encoderUp, feconv1out, dim=1) output = self.decodeConv3(combine_out) output = self.Up4(output) return output, sup_out #################################################################################### ### ### ### DataLoader ### ##################################################################################### class SegDataset(gluon.data.Dataset): def __init__(self, root, resize, DataNameList, colormap=None, classes=None): self.root = root self.resize = resize self.colormap = colormap self.classes = classes self.DataNameList = DataNameList self.colormap2label = None self.load_images() def clsmap2channel(self,x): y = ndarray.one_hot(x, 11) y = ndarray.transpose(y,(2, 0, 1)) return y def label_indices(self, img): if self.colormap2label is None: self.colormap2label = nd.zeros(256 ** 3) for i, cm in enumerate(self.colormap): self.colormap2label[(cm[0] * 256 + cm[1]) * 256 + cm[2]] = i data = img.astype('int32') idx = (data[:, :, 0] * 256 + data[:, :, 1]) * 256 + data[:, :, 2] return self.colormap2label[idx] def read_images(self, root): dataroot = root + 'left_frames/' # left_frames #data labelroot = root + 'labels/' # labels #label DataNamelist = sorted(self.DataNameList) data, label = [None] * len(self.DataNameList), [None] * len(self.DataNameList) for i, name in enumerate(DataNamelist): data[i] = image.imread(dataroot + name) label[i] = image.imread(labelroot + name) return data, label def load_images(self): data, label = self.read_images(root=self.root) self.data = [self.normalize_image(im) for im in data] if self.colormap is None: self.label = [self.normalize_image(im) for im in label] if self.colormap != None: self.label = label print('read ' + str(len(self.data)) + ' examples') def normalize_image(self, data): return (data.astype('float32') / 127.5) - 1 def __getitem__(self, item): if self.colormap is None: data = image.imresize(self.data[item], self.resize[0], self.resize[1]) label = image.imresize(self.label[item], self.resize[0], self.resize[1]) return data.transpose((2, 0, 1)), label.transpose((2, 0, 1)) if self.colormap != None: data = image.imresize(self.data[item], self.resize[0], self.resize[1]) label = image.imresize(self.label[item], self.resize[0], self.resize[1]) sup_label = image.imresize(self.label[item], self.resize[0]//8, self.resize[1]//8) return data.transpose((2, 0, 1)), self.label_indices(label),self.label_indices(sup_label) def __len__(self): return len(self.data) MICCAI_colormap = [[0, 0, 0], [0, 255, 0], [0, 255, 255], [125, 255, 12], [255, 55, 0], [24, 55, 125], [187, 155, 25], [0, 255, 125], [255, 255, 125], [123, 15, 175], [124, 155, 5]] MICCAI_classes = ['background', 'shaft', 'clasper', 'wrist', 'kidney-parenchyma', 'covered-kidney', 'thread', 'clamps', ' suturing-needle', 'suction', 'small_intestine'] numcls = len(MICCAI_colormap) def LoadDataset(dir, batchsize, output_shape, datalist, colormap=None, classes=None, train=True): dataset = SegDataset(dir, output_shape, datalist, colormap, classes) if not train: data_iter = gdata.DataLoader(dataset, 1, shuffle=False) if train: data_iter = gdata.DataLoader(dataset, batchsize, shuffle=True, last_batch='discard') return data_iter ######################################################################## ### ### predict to map ### ### ######################################################################## def predict2img(predict): colormap = ndarray.array(MICCAI_colormap, ctx=mx.gpu(), dtype='uint8') # voc_colormap target = predict.asnumpy() label = colormap[target[:, :, :]] return label.asnumpy() def PredictTrans(predict): colormap = ndarray.array(MICCAI_colormap, ctx=mx.gpu(), dtype='uint8') # voc_colormap label = colormap[predict[:, :, :]] label = ndarray.transpose(label, (0, 3, 1, 2)) label = label.astype(('float32')) return label ###################################################################### ### ### learning rate decay ### ### ### ###################################################################### def Cosine_decay_schedule(current_step, total_step, warm_step, hold_base_step, learning_rate_base, warmup_rate_base): # learning_rate_base = 0.1 # warmup_rate_base = 0.05 # total_step = 1000 # warm_step = 0 # hold_base_step = 10 learning_rate = 0.5 * learning_rate_base * (1 + np.cos( np.pi * ((current_step - warm_step - hold_base_step) / (total_step - warm_step - hold_base_step)))) if hold_base_step > 0: if current_step > warm_step + hold_base_step: learning_rate = learning_rate else: learning_rate = learning_rate_base if warm_step > 0: slope = (learning_rate_base - warmup_rate_base) / warm_step warmup_rate = slope * current_step + warmup_rate_base if current_step < warm_step: learning_rate = warmup_rate else: learning_rate = learning_rate return learning_rate ###################################################################################################################### import random name = 'DLV3+3AS' dataset_dir ='../../total640x512/' result_folder = 'result_' + name + '/' if not os.path.exists(result_folder): os.makedirs(result_folder) random.seed(0) test_result_folder = 'test' + result_folder if not os.path.exists(test_result_folder): os.makedirs(test_result_folder) GPU_COUNT = 1 batch_size = GPU_COUNT * 10 resize = (320, 256) ctx = [mx.gpu(i) for i in range(GPU_COUNT)] with open('train_iter1.txt', 'r') as f: lines = f.readlines() img_list = [] for line in lines: img_list.append(line[:-1]) training_list = img_list train_iter = LoadDataset(dataset_dir, batch_size, resize, training_list, MICCAI_colormap, MICCAI_classes) # default is for 2 class if you want to multiclass for d, l,sup_label in train_iter: break print(d.shape) print(l.shape) print(sup_label.shape) GenNet = nn.HybridSequential() with GenNet.name_scope(): GenNet.add( Deeplabv3(growth_rate=10, numofcls=numcls) # 12 ) GenNet.initialize() softmax_CE = gluon.loss.SoftmaxCrossEntropyLoss(axis=1) GenNet.collect_params().reset_ctx(ctx=ctx) epochs = 200 warm_step = 3 hold_base = int(epochs * 0.6) base_lr = 0.0002 warm_lr = 0.000001 Gtrainer = gluon.Trainer(GenNet.collect_params(), 'adam', {'learning_rate': base_lr}) # 0.0001 G_filename = name+'.params' #GenNet.load_params(G_filename, ctx=ctx) import time from mxnet import autograd for epoch in range(epochs): lr = Cosine_decay_schedule(epoch, epochs, warm_step, hold_base,base_lr, warm_lr) Gtrainer.set_learning_rate(lr) tic = time.time() for i, (d, l, sup_l) in enumerate(train_iter): x = gluon.utils.split_and_load(d, ctx) y = gluon.utils.split_and_load(l, ctx) sup_y = gluon.utils.split_and_load(sup_l, ctx) with autograd.record(): fake_y = [GenNet(X) for X in x] errG = [softmax_CE(f_y[0], _y) + softmax_CE(f_y[1], _sy) for f_y, _y, _sy in zip(fake_y, y, sup_y)] # print(len(errG)) for l in errG: l.backward() Gtrainer.step(d.shape[0]) print( 'Epoch %2d,batch %2d,G_loss %.5f ,lr = %.5f, time %.1f sec' % ( epoch, i, mx.ndarray.mean(errG[0]).asscalar(), Gtrainer.learning_rate, time.time() - tic)) if epoch % 5 == 0: result, sup = GenNet(x[0]) result = ndarray.argmax(result, axis=1) result = predict2img(result) x = mx.ndarray.transpose(x[0], (0, 2, 3, 1)) # print(x.shape) GT = predict2img(y[0]) figsize = (10, 4) _, axes = plt.subplots(3, x.shape[0], figsize=figsize) for n in range(x.shape[0]): #print(n) axes[0][n].imshow(x[n].asnumpy()) axes[1][n].imshow(result[n]) axes[2][n].imshow(GT[n]) axes[0][n].axis('off') axes[1][n].axis('off') axes[2][n].axis('off') plt.savefig(result_folder + str(epoch) + '.png') plt.close('all') GenNet.save_params(G_filename) GenNet.save_params(G_filename)
387fbf7012807a35c5ca715e00d16344878a7166
3c191eddb3f83a18d2f20836ccbc7d64470d441e
/IDEA/pythod_work/spark_to_pgMysql/pgDDLToSpark/pg_ddl_spark.py
9ae11f6d2e5de3d9120dd766cc4f297eb473032e
[]
no_license
maizi12580/test
69c7aa60264d4757e58daba0f268408a22bb96a2
df354eb1de71b459b92a5a505e27b9d17880332c
refs/heads/master
2023-06-29T13:50:30.401052
2021-08-03T16:21:14
2021-08-03T16:21:14
289,845,837
0
0
null
null
null
null
UTF-8
Python
false
false
11,108
py
#! /usr/bin/python # -*- coding: utf-8 -*- # Atom import ConfigParser import base64 import csv import logging.config import random import sched import socket import traceback import psycopg2 import json from datetime import datetime import subprocess import time import os import sys import re class CryptoUtil: def __init__(self): pass @classmethod def encrypt(cls, source_str): random_choice = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890!@#$%^&*()" to_encrypt_arr = [] shift_str = "" for char in source_str: shift_str = shift_str + chr(ord(char) + 3) shift_index = 0 for index in range(0, len(shift_str) * 3): if index % 3 != 0: rand_char = random.choice(random_choice) to_encrypt_arr.append(rand_char) else: to_encrypt_arr.append(shift_str[shift_index]) shift_index = shift_index + 1 to_encrypt_str = ''.join(to_encrypt_arr) encrypt_str = base64.b64encode(to_encrypt_str) return encrypt_str @classmethod def decrypt(cls, encrypt_str): decrypt_str = base64.b64decode(encrypt_str) shift_str = [] for index in range(len(decrypt_str)): if index % 3 == 0: shift_str.append(decrypt_str[index]) source_arr = [] for char in shift_str: source_arr.append(chr(ord(char) - 3)) source_str = "".join(source_arr) return source_str class DateUtils: def __init__(self): pass @classmethod def get_current_date(cls): """get current time of year-month-day format :return: time of year-month-day format """ return datetime.now().strftime('%Y-%m-%d') @classmethod def get_current_time(cls): """get current time of year-month-day hour:minute:second.microsecond format :return: time of year-month-day hour:minute:second.microsecond format """ return datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') @classmethod def timestamp_to_datetime(cls, timestamp): local_dt_time = datetime.fromtimestamp(timestamp / 1000000.0) return local_dt_time @classmethod def datetime_to_strtime(cls, datetime_obj, date_format): local_str_time = datetime_obj.strftime(date_format) return local_str_time @classmethod def datetime_to_timestamp(cls, datetime_obj): local_timestamp = long(time.mktime(datetime_obj.timetuple()) * 1000000.0 + datetime_obj.microsecond) return local_timestamp @classmethod def strtime_to_datetime(cls, timestr, date_format): local_datetime = datetime.strptime(timestr, date_format) return local_datetime @classmethod def timestamp_to_strtime(cls, timestamp, date_format): return cls.datetime_to_strtime(cls.timestamp_to_datetime(timestamp), date_format) @classmethod def strtime_to_timestamp(cls, timestr, date_format): try: local_str_time = cls.datetime_to_timestamp(cls.strtime_to_datetime(timestr, date_format)) return local_str_time except Exception as e: return 0 @classmethod def get_file_ctime_timestamp(cls, f): return cls.datetime_to_timestamp(datetime.fromtimestamp(os.path.getctime(f))) @classmethod def get_file_mtime_timestamp(cls, f): return cls.datetime_to_timestamp(datetime.fromtimestamp(os.path.getmtime(f))) @staticmethod def compare_mtime(x, y): x_mtime = x["mtime"] y_mtime = y["mtime"] if x_mtime < y_mtime: return -1 elif x_mtime > y_mtime: return 1 else: return 0 class SparkDDLSync: def __init__(self, log): # 获取当前文件路径 current_file_path = os.path.split(os.path.realpath(__file__))[0] self.config_file = os.path.join(current_file_path, "syn.config") self.log = log self.config = ConfigParser.ConfigParser() self.config.read(self.config_file) self.host = self.config.get('psql', 'host') self.spark_host = self.config.get('psql', 'spark_host') self.port = self.config.get('psql', 'port') self.psql_password_type = self.config.get('psql', 'psql_password_type') self.psql_user = self.config.get('psql', 'psql_user') self.psql_password = self.config.get('psql', 'psql_password') self.fromDB = self.config.get('psql','from_db_name') self.aimDB = self.config.get('psql','aim_db_name') self.interval_time = int(self.config.get('execute', 'interval_time')) ignore_option = self.config.get('execute', 'ignore_error') if "true" == ignore_option.lower(): self.ignore_error = True else: self.ignore_error = False self.max_retry_times = int(self.config.get('execute', 'max_retry_times')) self.sleep_time = 1 self.SUCCESS_STATE = 0 self.level = {"debug": "DEBUG", "info": "INFO", "warning": "WARNING", "error": "ERROR"} self.level_priority = {"DEBUG": 4, "INFO": 3, "WARNING": 2, "ERROR": 1} self.ignore_file = "syn.ignore.info" self.in_metastore_file = "syn.insert_metastore.info" self.check_avg() self.logger(self.level["info"], "Start pg ddl sync to spark...") self.pg_to_spark_fields={"text":"string",\ "integer":"int",\ "numeric":"int",\ "integer":"integer",\ "bigint":"long",\ "float":"double",\ "double":"double",\ "bigint":"bigint",\ "decimal":"decimal",\ "date":"date",\ "timestamp":"timestamp",\ "LOB":"LOB"} self.current_file_path = os.path.split(os.path.realpath(__file__))[0] path=os.path.join(self.current_file_path, self.aimDB) isExists=os.path.exists(path) if not isExists: os.makedirs(path) self.logger(self.level["info"], "Create folder successful.") else: self.logger(self.level["info"], "Folder is exists.") def __log_ignore_stmt(self, stmt): ignore_file = open(self.ignore_file, "a") ignore_file.write(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") + " " + stmt + "\n") ignore_file.close() def check_avg(self): # if not os.path.exists(self.log_directory): # os.makedirs(self.log_directory) if int(self.psql_password_type) == 0: encrypt_password = CryptoUtil.encrypt(self.psql_password) self.psql_password = encrypt_password self.psql_password_type = 1 self.update_password() def update_password(self): self.config.set('psql', 'psql_password', self.psql_password) self.config.set('psql', 'psql_password_type', self.psql_password_type) self.config.write(open(self.config_file, "w")) def run_check_task(self): self.logger(self.level["info"], "begin to check psql") self.fromDB_conn = psycopg2.connect(database=self.fromDB, user=self.psql_user,\ password=CryptoUtil.decrypt(self.psql_password), host=self.host, port=self.port) self.fromDB_cursor = self.fromDB_conn.cursor() self.exe() self.fromDB_cursor.close() self.fromDB_cursor.close() def exe(self): self.fromDB_cursor.execute("select a.relname ,b.ftoptions from \"pg_class\" a ,\"pg_foreign_table\" b where a.relkind='f' and a.relfilenode=b.ftrelid") tables = self.fromDB_cursor.fetchall() folder=os.path.join(self.current_file_path, self.aimDB) for table in tables: self.fromDB_cursor.execute("select column_name,data_type from information_schema.\"columns\" where \"table_name\"='{tb}'".format(tb=table[0])) fields=self.fromDB_cursor.fetchall() sub='' for field in fields: field_type=field[1].split(" ")[0] if(self.pg_to_spark_fields.has_key(field_type)): sub+=field[0]+" "+self.pg_to_spark_fields[field_type]+"," else: self.logger(self.level["info"], "error field type {fie}".format(fie=field[1])) cs=table[1][0].split("=")[1] cl=table[1][1].split("=")[1] pre='drop table if exists {cs}.{cl};\n'.format(cs=self.aimDB,cl=table[0],sub=sub[:-1]) head='create table {cs}.{cl} ({sub} )'.format(cs=self.aimDB,cl=table[0],sub=sub[:-1]) tail='USING com.sequoiadb.spark OPTIONS(host \'{host}\',collectionspace \'{cs}\',collection \'{cl}\',ignoreduplicatekey \'true\');'.format(host=self.spark_host,cs=cs,cl=cl) path=os.path.join(folder,table[0]) with open (path,'w+') as f: f.write(pre) f.write(head) f.write(tail) def logger(self, log_level, message): if log_level == self.level["error"]: self.log.error(message) elif log_level == self.level["warning"]: self.log.warn(message) elif log_level == self.level["info"]: self.log.info(message) elif log_level == self.level["debug"]: self.log.debug(message) def init_log(log_config_file): try: # Get the log file path from the log configuration file, and create the directory if it dose not exist. config_parser = ConfigParser.ConfigParser() files = config_parser.read(log_config_file) if len(files) != 1: print("Error: Read log configuration file failed") return None log_file = config_parser.get("handler_rotatingFileHandler", "args").split('\'')[1] curr_path = os.path.abspath(os.path.dirname(log_config_file)) log_file_full_path = os.path.join(curr_path, log_file) log_file_parent_dir = os.path.abspath(os.path.join(log_file_full_path, "..")) if not os.path.exists(log_file_parent_dir): os.makedirs(log_file_parent_dir) logging.config.fileConfig(log_config_file) log = logging.getLogger("ddlLogger") return log except BaseException as e: print("Error: Initialize logging failed. Error number: " + ". Message: " + e.message) return None def run_task(log): sparkDDLSync = SparkDDLSync(log) scheduler = sched.scheduler(time.time, time.sleep) # 定时器 while True: scheduler.enter(sparkDDLSync.interval_time, 1, sparkDDLSync.run_check_task, ()) scheduler.run() break def main(): current_file_path = os.path.split(os.path.realpath(__file__))[0] pid_file = os.path.join(current_file_path, "APP_ID") if os.path.exists(pid_file): with open(pid_file, "r") as f: pid = str(f.readline()) if os.path.exists("/proc/{pid}".format(pid=pid)): with open("/proc/{pid}/cmdline".format(pid=pid), "r") as process: process_info = process.readline() if process_info.find(sys.argv[0]) != -1: return with open(pid_file, "w") as f: pid = str(os.getpid()) f.write(pid) log_config_file= os.path.join(current_file_path, "syn.log.config") log = init_log(log_config_file) if log is None: print("Initialize logging failed. Exit...") return 1 run_task(log) if __name__ == '__main__': main()
9893462377c8a546220e77bccda1fa2062b2e625
37b906301a5a63575ddca4f76c6218039cb1ee64
/core/receivers.py
83b75a215d442fc31775c161bd9ca81ea701f609
[]
no_license
oseniasjunior/order-system
83c19a97f36de14bbb822c6de5db96e1d065ca11
4d398d5ae51bb146c4a8d13eaf13710516b2d8a5
refs/heads/master
2022-12-28T05:14:36.755278
2020-10-16T00:46:16
2020-10-16T00:46:16
302,489,665
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from core import models, actions, tasks @receiver(post_save, sender=models.Product, dispatch_uid="update_detail_decription_by_product", weak=False) def update_detail_decription_by_product(**kwargs): tasks.populate_test.apply_async([], countdown=1) @receiver(pre_save, sender=models.Product, dispatch_uid="pre_save_product", weak=False) def pre_save_product(**kwargs): instance = kwargs.get('instance') actions.ProductActions.update_detail_decription(product=instance) actions.ProductActions.calculate_sale_price(product=instance)
ed1c2824292e2442eaf2e0e8dbf0274376b7629e
8bc13cf88d47d5b3c65f215f3f138f82dc7b86b9
/auth_path/models.py
ee76cdc16a4171052339448e6f9c0ee673e8ef97
[]
no_license
xal9wiii4ik/store
f941673dbff1b8a333d0df36dc04b51775df54c9
d8b7fbae3f6232e956859abb078c236986a0cc3a
refs/heads/master
2023-04-10T09:14:36.777575
2021-04-08T21:52:40
2021-04-08T21:52:40
323,389,369
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
from django.contrib.auth.models import User from django.db import models from django.utils.encoding import force_bytes from django.utils.http import urlsafe_base64_encode class Uid(models.Model): """Model uid for future verification of user""" uid = models.CharField(max_length=25, verbose_name='Юид') user = models.OneToOneField(User, on_delete=models.CASCADE, verbose_name='Владелец юида') def save(self, *args, **kwargs): self.uid = urlsafe_base64_encode(force_bytes(self.user.id)) super().save(*args, **kwargs) def __str__(self): return f'{self.uid}, {self.user.username}'
0499b11e79ad0ae0ace80eb279ded4f3c66e0293
32fd2ea54af5f802f0568de168254b070a9f9bef
/tests/test_xmp.py
3f6a364914a02057509833e3c3bc6e2f6b7de103
[]
no_license
gaqzi/py-xmp-tool
923b6ade266880f0d64734bf83d80db37f4409fb
df69d5a3527fddb4e1c2d271974227ba81f1a7b3
refs/heads/master
2021-01-01T16:00:26.248178
2015-02-19T05:47:36
2015-02-19T05:50:52
19,036,805
4
1
null
2018-03-05T00:55:54
2014-04-22T16:23:26
Python
UTF-8
Python
false
false
2,429
py
import os import tempfile from shutil import copyfile import pytest import xmp FILES_FOLDER = os.path.join(os.path.dirname(__file__), 'files') BUBBA_JPG = os.path.join(FILES_FOLDER, 'bubba.jpg') HELLO_TXT = os.path.join(FILES_FOLDER, 'hello.txt') @pytest.fixture def clean_file(request): filename = tempfile.mkstemp()[1] copyfile(BUBBA_JPG, filename) request.addfinalizer(lambda: os.unlink(filename)) return filename @pytest.fixture def clean_file_text(request): filename = tempfile.mkstemp()[1] copyfile(HELLO_TXT, filename) def remove_files(): os.unlink(filename) try: os.unlink('{0}.xmp'.format(filename)) except OSError: pass request.addfinalizer(remove_files) return filename def test_write_physical_medium(clean_file): assert xmp.read_xmp(clean_file, 'PhysicalMedium') is False assert xmp.write_xmp(clean_file, 'PhysicalMedium', 'lto01') assert xmp.read_xmp(clean_file, 'PhysicalMedium') == 'lto01' def test_write_physical_medium_to_text_file_should_fail(clean_file_text): assert xmp.read_xmp(clean_file_text, 'PhysicalMedium') is False assert xmp.write_xmp(clean_file_text, 'PhysicalMedium', 'lto01') is False def test_write_physical_medium_to_text_with_sidecar(clean_file_text): assert xmp.read_xmp(clean_file_text, 'PhysicalMedium') is False sidecar_file = xmp.write_xmp(clean_file_text, 'PhysicalMedium', 'lto01', sidecar=True) assert sidecar_file == '{0}.xmp'.format(clean_file_text) assert os.path.exists(sidecar_file) assert xmp.read_xmp(clean_file_text, 'PhysicalMedium') == 'lto01' assert xmp.read_xmp(clean_file_text, 'Test') is False def test_read_back_entire_xmp_data_from_sidecar(clean_file_text): xmp.write_xmp(clean_file_text, 'PhysicalMedium', 'lto01', sidecar=True) assert 'lto01' in xmp.read_xmp(clean_file_text) def test_read_back_entire_xmp_data(clean_file): xmp.write_xmp(clean_file, 'PhysicalMedium', 'lto01') assert 'lto01' in xmp.read_xmp(clean_file) def test_write_to_sidecar_file_again(clean_file_text): xmp.write_xmp(clean_file_text, 'PhysicalMedium', 'lto01', sidecar=True) xmp.write_xmp(clean_file_text, 'format', 'text/plain', sidecar=True) assert xmp.read_xmp(clean_file_text, 'PhysicalMedium') == 'lto01' assert xmp.read_xmp(clean_file_text, 'format') == 'text/plain'
55c7b7e568f950238f82b23b7c2310569f498664
5609efe94f138a820e7478a2ee9e49164241621a
/article/models.py
6611404a5db2bf6afe54f517ab8a25e4b17f8ba4
[]
no_license
hynn911/tony_blog
546a7f4943a927860f43dc0dc6011429b846a63d
8b26e151f767cc83a91ac7ea9279ae29d93cc1d4
refs/heads/master
2021-09-10T10:07:37.880664
2018-03-24T11:46:55
2018-03-24T11:46:55
120,170,947
0
1
null
null
null
null
UTF-8
Python
false
false
2,440
py
from django.db import models from django.forms import ModelForm # Create your models here. class HssUser(models.Model): msisdn_no = models.BigIntegerField(db_column='MSISDN_NO', primary_key=True) # Field name made lowercase. imsi_no = models.BigIntegerField(db_column='IMSI_NO', blank=True, null=True) # Field name made lowercase. hss = models.CharField(db_column='HSS', max_length=64, blank=True, null=True) # Field name made lowercase. city = models.CharField(db_column='City', max_length=128, blank=True, null=True) # Field name made lowercase. class Meta: managed = False db_table = 'HSS_USER' def __unicode__(self): return self.MSISDN_NO class HSS_NUM(models.Model): MSISDN_NO = models.DecimalField(max_digits=20, decimal_places=0, primary_key=True) # MSISDN号码 IMSI_NO = models.DecimalField(max_digits=20, decimal_places=0) # IMSI号码 HSS = models.CharField(max_length=50, blank=False) # 归属HSS,严格来说哦,归属HLR City = models.CharField(max_length=50, blank=True, null=True) # 归属城市 def __unicode__(self): return self.MSISDN_NO + ":" + self.HSS class Meta: # 按号段正序排序 ordering = ['MSISDN_NO'] class Article(models.Model): title = models.CharField(max_length = 100) #题目 category = models.CharField(max_length = 100) #类别 date_time = models.DateTimeField(auto_now_add = True) #上线日期 content = models.TextField(blank = True,null = True) #处理url url = models.CharField(max_length = 100) #处理url def __unicode__(self): return self.title class Meta: #按时间下降排序 ordering = ['-date_time'] class CmdinfoHwhss(models.Model): cmd = models.CharField(db_column='CMD', primary_key=True, max_length=64) # Field name made lowercase. cmd_name = models.CharField(db_column='CMD_NAME', max_length=256) # Field name made lowercase. param = models.CharField(db_column='PARAM', max_length=256) # Field name made lowercase. param_name = models.CharField(db_column='PARAM_NAME', max_length=2048) # Field name made lowercase. class Meta: managed = False db_table = 'CMDINFO_HWHSS' def __unicode__(self): return self.cmd_name class NumForm(ModelForm): class Meta: model = HSS_NUM # fields = ['MSISDN_NO', 'IMSI_NO', 'HSS'] fields = '__all__'
9ce278978b150bbbdbe42f9f29d5a065f081ab42
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/prime-big-734.py
ae9cb7e5ea058d3ccbe2d140c51960c31f68dea9
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,706
py
# Get the n-th prime starting from 2 def get_prime(n:int) -> int: candidate:int = 2 found:int = 0 while True: if is_prime(candidate): found = found + 1 if found == n: return candidate candidate = candidate + 1 return 0 # Never happens def is_prime(x:int) -> bool: div:int = 2 div2:int = 2 div3:int = 2 div4:int = 2 div5:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True def is_prime2(x:int, x2:int) -> bool: div:int = 2 div2:int = 2 div3:int = 2 div4:int = 2 div5:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True def is_prime3(x:int, x2:int, x3:int) -> bool: div:int = 2 div2:int = 2 div3:int = 2 div4:int = 2 div5:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True def is_prime4(x:int, x2:int, x3:int, x4:int) -> bool: div:int = 2 div2:int = 2 div3:int = 2 div4:int = 2 div5:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True def is_prime5(x:int, x2:int, x3:int, x4:int, x5:int) -> bool: div:int = 2 div2:int = 2 div3:int = 2 div4:int = 2 div5:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True # Input parameter n:int = 15 n2:int = 15 n3:int = 15 n4:int = 15 n5:int = 15 # Run [1, n] i:int = 1 i2:int = 1 i3:int = 1 i4:int = 1 i5:int = 1 # Crunch while i <= n: print(get_prime(i)) i = $ID + 1
70064ac4483b4656d78c4854940aa8a1d6e54c2f
068bf97bc4c2a7c95ffe281e480d4e168435837b
/base/3.python循环while/08_print函数的结尾.py
63b5682d74c8327bfeba144ae4adc170a6fd0f70
[]
no_license
EricLeeN1/pythonStudy
6ab28833f4f25340ea5ddfc9e2dd4fbe34630567
e8bc47214711e43e6d5273843937b73e27ad1acf
refs/heads/master
2020-09-30T17:50:18.448680
2020-01-18T03:47:13
2020-01-18T03:47:13
227,340,997
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
''' @Author: your name @Date: 2020-01-09 10:34:45 @LastEditTime : 2020-01-09 10:35:56 @LastEditors : Please set LastEditors @Description: In User Settings Edit @FilePath: \pythonStudy\base\3.python循环while\08_print函数的结尾.py ''' # - 在默认情况下,print 函数输出内容之后,会自动在内容末尾增加换行 # - 如果不希望末尾增加换行,可以在 print 函数输出内容的后面增加 , end="" # - 其中 "" 中间可以指定 print 函数输出内容之后,继续希望显示的内容 i = 0 while i < 5: i += 1 print('*' * i, end="/")
03fcd43a145d21132262958bba4ac98d27fdfe04
ff9be20d8ec3eb0e4a35d13c1b95b25d81221b75
/orthos/graphicsItems/linked_view_box/infinite_grid_lines.py
c7c6fb047e73252dd617fdece8bc82b22559309e
[]
no_license
DerThorsten/orthos
340ec785c053f8f3423117e6c1f7aee340fb3d77
529454df365ccca93162e2cc2ee2cbf1c3688e42
refs/heads/master
2021-01-17T06:16:12.947418
2016-07-21T11:45:47
2016-07-21T11:45:47
44,521,841
0
2
null
2015-11-27T15:07:36
2015-10-19T08:43:37
Python
UTF-8
Python
false
false
2,077
py
import pyqtgraph as pg from pyqtgraph.Qt import QtGui, QtCore import numpy #from ..tiling_image_item import * #from tiling import VisibleBlocks def make3dSlicing(begin,end): slicing = [] for b,e in zip(begin, end): slicing.append(slice(b,e)) return slicing class InfiniteGridLines(pg.GraphicsObject): def __init__(self, viewBox): pg.GraphicsObject.__init__(self) self.viewBox = viewBox self.mlBlocking = self.viewBox.navigator.mlBlocking self.initialzie() def initialzie(self): self.shape2d = self.mlBlocking.shape2d(self.viewBox.scrollAxis) self.blockColors = numpy.zeros(shape=(self.mlBlocking.nBlockings, 3)) fLen = float(self.mlBlocking.nBlockings) for bi in range(self.mlBlocking.nBlockings): r = 50.0 b = 20 + (fLen-bi)/fLen * 180.0 g = 50.0 self.blockColors[bi, :] = r,g,b def boundingRect(self): return QtCore.QRectF(0,0,self.shape2d[0],self.shape2d[1]) def paint(self, p, *args): vrx = self.viewBox.state['viewRange'][0] vry = self.viewBox.state['viewRange'][1] minX = max(int(vrx[0]),0) minY = max(int(vry[0]),0) maxX = min(int(vrx[1]),self.shape2d[0]) maxY = min(int(vry[1]),self.shape2d[1]) mlB = self.mlBlocking for blockingIndex in range(mlB.nBlockings): w = float(blockingIndex+1)*2.0 c = self.blockColors[blockingIndex,:] p.setPen(pg.mkPen(color=c,width=w )) bs2d = mlB.blockShape2d(blockingIndex, self.viewBox.scrollAxis) # draw horizonal lines minBlockC = minX/bs2d[0],minY/bs2d[1] maxBlockC = maxX/bs2d[0] + 2,maxY/bs2d[1] +1 for bcx in range(minBlockC[0],maxBlockC[0]): x = min(bcx*bs2d[0],self.shape2d[0]) p.drawLine(x,minY,x,maxY ) for bcy in range(minBlockC[1],maxBlockC[1]): y = min(bcy*bs2d[1],self.shape2d[1]) p.drawLine(minX,y,maxX,y )
f8015ddfe4a45df4802411afbc079c4499655f43
7b54c0e315fa38f604d767d9559af54889b38bd6
/open_wechat/settings.py
032439f75357884dfebe6db0284cbf968e304e11
[]
no_license
dongtianqi1125/open-wechat-grant
790e7076e5f186e8ee340a5a9d8aa0eb5d6380dc
07126f1ea6a176959dab962ebfc0127da85a9bf8
refs/heads/master
2022-04-26T18:38:40.219360
2020-04-27T08:45:07
2020-04-27T08:45:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,337
py
""" Django settings for open_wechat project. Generated by 'django-admin startproject' using Django 1.11.6. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os from config import DEBUG, ALLOWED_HOSTS from config import LOG_NAME, LOG_PATH, LOG_MAX_BYTES, LOG_BACKUP_COUNT, LOG_LEV # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i*-rhmnnsc&6z#s)ola08l)(f=xsx*&e!%9!yts1=q@%ip54ui' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'portal', 'wechat', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', #'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'open_wechat.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'open_wechat.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'default': { 'format': '%(asctime)s|%(levelname)s|%(message)s', }, 'django.server': { '()': 'django.utils.log.ServerFormatter', 'format': '[%(server_time)s] %(message)s', } }, 'handlers': { 'default': { 'level': 'DEBUG', 'formatter': 'default', 'class': 'logging.handlers.RotatingFileHandler', 'filename': LOG_PATH, 'maxBytes': LOG_MAX_BYTES, 'backupCount': LOG_BACKUP_COUNT, }, 'django.server': { 'level': 'INFO', 'class': 'logging.StreamHandler', 'formatter': 'django.server', }, }, 'loggers': { LOG_NAME: { 'handlers': ['default'], 'level': LOG_LEV, 'propagate': False, }, 'django.server': { 'handlers': ['django.server'], 'level': 'INFO', 'propagate': False, } }, } # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_IMG_PATH = os.path.join(BASE_DIR, 'portal/static/portal/img')
1981fa46e690336fe98322561d70fff3b3b90049
e4a0a50471c38aea60f4f4dc99b38ad9020250e7
/Transformer_TextClassification/utils.py
28f427e3410bee8a2199e2ed4ce3df1a5fbada0a
[]
no_license
Macielyoung/TextClassification
3041d7bb6161abb78ed1aab91af1a930bbbae9b0
ee53558f252cfbf399816ed5d5012e35f5f2f9f3
refs/heads/master
2020-06-29T22:12:06.406940
2020-04-18T07:21:39
2020-04-18T07:21:39
200,638,631
0
0
null
null
null
null
UTF-8
Python
false
false
2,173
py
# coding:utf-8 import torch from torch import nn from torch.autograd import Variable import copy import math def clones(module, N): # 生成N层encoder子层 return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Embedding(nn.Module): # embedding层 def __init__(self, d_model, vocab): super(Embedding, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut (x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): # 使用正弦余弦公式来计算位置编码 # PE(pos, 2i) = sin(pos/10000^(2i/d_model)) # PE(pos, 2i+1) = cos(pos/10000^(2i/d_model)) def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) # 函数 : e ^ (2i * -log(10000) / d), i是维度 div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(torch.as_tensor(position.numpy() * div_term.unsqueeze(0).numpy())) pe[:, 1::2] = torch.cos(torch.as_tensor(position.numpy() * div_term.unsqueeze(0).numpy())) pe = pe.unsqueeze(0) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(torch.as_tensor(position.numpy() * div_term.unsqueeze(0).numpy())) pe[:, 1::2] = torch.cos(torch.as_tensor(position.numpy() * div_term.unsqueeze(0).numpy()))#torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x)
1ae5603381bc89456335cb745e6e62f3ba9fb909
d78f98494135212f626b5c13dae35cf1a7195436
/AutomatedMails/AutomatedMails/urls.py
3f5f550580d596be28d1203c361684d9e62098ff
[]
no_license
JasbirCodeSpace/Django-Mini-Projects
0d4cd1981d356a7b737be25f5bc69ab70863292a
87634eeb1e15540b88bcd3e5d6f788cdfbe0c797
refs/heads/master
2023-07-30T17:44:21.500000
2020-06-07T07:54:51
2020-06-07T07:54:51
257,206,866
0
0
null
2021-09-22T18:55:32
2020-04-20T07:40:00
CSS
UTF-8
Python
false
false
1,041
py
"""AutomatedMails URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('',include('SimpleMail.urls')), path('SendMail',include('SimpleMail.urls')), path('admin/', admin.site.urls), ] urlpatterns = urlpatterns + static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
b82bb341708cdea6fa41b4c567c2b87179a7e0e7
382f4acfd565be4aedb07c694e8daa489ff3e70a
/eveutil1/bin/OLD/fwcorps
4d476f84186e8d5ceb9b7bff45e8e2e8863a33ab
[]
no_license
electusmatari/legacy
913c5a9f68074d1fa793b0e3ff76fd3f9c3f481e
9266e955398a0c8279b82b8347a85d9186a455da
refs/heads/master
2021-01-22T05:24:13.935562
2013-09-29T11:44:19
2013-09-29T11:44:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,011
#!/usr/bin/env python import urllib import os import re from lib import characters URLS = [] #"http://www.amarr-empire.net/killboard/?a=alliance_detail&all_id=517&view=corp_kills", # "http://www.minmatar-militia.org/kb/?a=faction_detail&fac_id=2&view=corp_kills"] line_rx = re.compile(r'^([^(]*)(?: \(.*\))?$') def main(): known = [] for line in file(os.path.expanduser("~/.fwcorps_known")): line = line.rstrip("\n") corp = line_rx.match(line).group(1) known.append(corp) api_corps = get_api() kb_corps = [] for url in URLS: kb_corps.extend(get_kb(url)) new = [] for corp in kb_corps: if corp not in known: new.append((corp, "Amarr Militia")) known.append(corp) for corp in api_corps: if corp not in known: new.append((corp, None)) known.append(corp) new.sort(lambda a, b: cmp(a[0].lower(), b[0].lower())) for (corp, affiliation) in new: if affiliation is not None: print "%s (%s)" % (corp, affiliation) else: print corp rx = re.compile(r'<a href="\?a=corp_detail&crp_id=[0-9]+">(.*?)</a>') def get_kb(url): data = urllib.urlopen(url).read() return unique(rx.findall(data)) def get_api(): api = characters.api() fwts = api.eve.FacWarTopStats() return unique([x.corporationName for x in fwts.corporations.KillsYesterday] + [x.corporationName for x in fwts.corporations.KillsLastWeek] + [x.corporationName for x in fwts.corporations.KillsTotal] + [x.corporationName for x in fwts.corporations.VictoryPointsYesterday] + [x.corporationName for x in fwts.corporations.VictoryPointsLastWeek] + [x.corporationName for x in fwts.corporations.VictoryPointsTotal]) def unique(list): result = [] for element in list: if element not in result: result.append(element) return result main()
4db6bd1dbd44a581974b10488b2d28062ae27e45
60634610b4a96f28afc5ce20c7389704e60957a9
/Python/django_intro/integration_project/apps/words/views.py
0f0fe4a555513d8b378d6ad8953e1bc0ea230512
[]
no_license
r-knight/DojoAssignments
31f313d8f566080195fb8024fb2aed87599ff9e7
81c5231a7f1d58a975cd3bda0a1250f4155d24ac
refs/heads/master
2020-03-10T17:00:34.372821
2018-06-30T22:12:33
2018-06-30T22:12:33
129,488,610
0
0
null
null
null
null
UTF-8
Python
false
false
1,233
py
from django.shortcuts import render, redirect import time def index(request): return render(request, 'words/index.html') def process(request): if request.method == "POST": size = request.POST.get('checkbox_big', False); if size == False : size = 'normal' curr_time = time.gmtime() if request.POST['new_word'] != "": request.session['word'] = request.POST['new_word'] print("Got word! Word: ", request.session['word']) else: print("No word detected") return redirect('/') request.session['color'] = request.POST['color'] if 'words' in request.session: request.session['words'].append({'word': request.session['word'], 'color': request.session['color'], 'size': size, 'timestamp': time.strftime("%c", curr_time)}) else: request.session['words'] = [{'word': request.session['word'], 'color': request.session['color'], 'size': size, 'timestamp': time.strftime("%c", curr_time)}] return redirect('/new') else: return redirect('/') def new(request): return redirect('/') def reset(request): request.session.clear() return redirect('/')
8feff5fd04db2a6ebab56a8c444af3bf03ee13ff
07f8d2b32aaf96f7a0fbb23a6146bea49ecf2de2
/old_version/nombre_rut_firma.py
d7926635cd868f93973c5e7b1573026f2ef9a94b
[]
no_license
ROBLIENAN/rutificador_nombrerutfirma
6a7cc2904c001111e6f8692f10b559ede356d37c
f861276707ad19dd75438bf67a9190bc3fd049ed
refs/heads/master
2023-04-22T02:09:26.797150
2021-05-14T16:34:24
2021-05-14T16:34:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,175
py
#!/usr/bin/env python3 from selenium import webdriver from selenium.common.exceptions import NoSuchElementException import csv import time, sys import warnings import os if not sys.warnoptions: warnings.simplefilter("ignore") pwd = os.getcwd() print('') print('Rutificador automático para nombrerutyfirma.cl. Creado por deivid.') print('******************************************************************') print('') print('Para finalizar el proceso de manera anticipada, oprima Ctrl + C ...') print('') driver = webdriver.PhantomJS() driver.get('https://nombrerutyfirma.cl') driver.implicitly_wait(10) filas = [] try: ruts_out = open('ruts_out.csv', 'w') with open('ruts.csv', newline='', encoding='utf-8-sig') as f: reader = csv.reader(f, delimiter=';', quoting=csv.QUOTE_NONE) for row in reader: driver.find_elements_by_xpath("//*[contains(text(),'RUT')]")[0].click() busca_rut = driver.find_elements_by_xpath("//input[@placeholder='Buscar por RUT']")[0] busca_rut.send_keys(row[0]) print('Procesando rut: ' + row[0]) boton = driver.find_elements_by_xpath("//div[@class='tab-pane active']//input[@type='submit']")[0] boton.click() try: nombre = driver.find_element_by_xpath("//tr[@tabindex='1']/td[1]").text rut = driver.find_element_by_xpath("//tr[@tabindex='1']/td[2]").text sexo = driver.find_element_by_xpath("//tr[@tabindex='1']/td[3]").text direccion = driver.find_element_by_xpath("//tr[@tabindex='1']/td[4]").text comuna = driver.find_element_by_xpath("//tr[@tabindex='1']/td[5]").text linea = nombre + ";" + rut + ";" + sexo + ";" + direccion + ";" + comuna except NoSuchElementException: print('El rut ' + row[0] + ' no existe en la BD, saltando ...') print(linea) print('') ruts_out.write(linea + '\n') filas.append(linea) sgte = driver.find_element_by_xpath("//*[contains(text(),'Buscar otro')]") sgte.click() except IOError as e: print ("No se ha encontrado ruts.csv (archivo de entrada).") print ("Carpeta: " + pwd) print ("") except KeyboardInterrupt: print ("Ctrl + C detectado, interrumpiendo ejecución...") print ("") ruts_out.close()
a8b946fea7fc3a21cb19090832a8fb387d4ddb6a
5247dbbe6555c73358775e9b82c2bd4154a418fa
/user/api/views.py
a9d6d97ddba9049a5b185b7f4cdf25428086ed7e
[]
no_license
pimka/django-microservices-example
f6fc260768afd1197b89b0aff0b956632459ad71
18a6dcd38480bca917f5c2898dea10da257026c4
refs/heads/master
2021-06-25T11:54:23.759781
2019-12-22T10:36:50
2019-12-22T10:36:50
216,499,308
0
0
null
2021-03-19T22:47:33
2019-10-21T07:02:00
Python
UTF-8
Python
false
false
2,202
py
from django.http import Http404 from rest_framework import status from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.pagination import LimitOffsetPagination from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from api.models import User, CustomToken from api.serializers import UserSerializer, AppSerializer from api.auth import TokenAuth class UserOper(APIView): authentication_classes = [TokenAuth, ] paginator = LimitOffsetPagination() paginator.default_limit = 100 def get(self, request): users = User.objects.all() result = self.paginator.paginate_queryset(users, request) serializer = UserSerializer(result, many=True) return Response(serializer.data) def post(self, request): serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserAdvOper(APIView): authentication_classes = [TokenAuth, ] def get(self, request, user_id): try: user = User.objects.get(owner_uuid=user_id) serializer = UserSerializer(user) return Response(serializer.data) except User.DoesNotExist: raise Http404 class UserExist(APIView): permissions = [IsAuthenticated, ] authentication_classes = [TokenAuth, ] def get(self, request, *args, **kwargs): if request.user is None: return Response(status=status.HTTP_400_BAD_REQUEST) serializer = UserSerializer(request.user) return Response(data=serializer.data, status=status.HTTP_200_OK) class ServiceAuth(ObtainAuthToken): serializer_class = AppSerializer def post(self, request): serializer = self.serializer_class(data=request.data, context = {'request': request}) serializer.is_valid(raise_exception=True) token = CustomToken.objects.create() return Response({ 'token': token.token }, status.HTTP_200_OK)
158b25e7b92fec4e90254c369ae5634e94b55675
561378ab9a6eb737c21144f085878eb825f64729
/guest_list.py
e59b8253018d762c2310c664ce376ec5a1b41fec
[]
no_license
NotAKernel/python-tutorials
75a88554ffdddfff636582f9e66b734f33404601
ccdb37af7680cb465d73c0468d8667406f1c9f14
refs/heads/master
2022-05-01T19:51:35.465524
2022-03-22T19:51:01
2022-03-22T19:51:01
217,547,958
1
0
null
null
null
null
UTF-8
Python
false
false
308
py
while True: f_name = input("Enter your first name: ") l_name = input("Enter your last name: ") username = f"{f_name.title()} {l_name.title()}" file_name = 'guest_list.txt' with open('guest_list.txt','a') as file_object: file_object.write(f"{username}\n") print("Next name")
b8f337665d6ff249d50cfbf245afee15ee82ae62
0544ff7fc0736d2f6dded68e5ae27f4e2ddf7a06
/sdk/communication/azure-communication-chat/azure/communication/chat/_generated/_configuration.py
ffeba8865187656ea9fe006fd81dd0e4f9bf577c
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
dhanizael/azure-sdk-for-python
160469181f80593b0dff9104a8eb0d5b781722a9
17a1d048a8be4c869c7b943b2aff5a0c8213652e
refs/heads/master
2023-03-04T14:47:54.334635
2021-02-10T20:16:40
2021-02-10T20:16:40
337,845,515
0
0
MIT
2021-02-10T20:37:41
2021-02-10T20:30:09
null
UTF-8
Python
false
false
2,533
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any VERSION = "unknown" class AzureCommunicationChatServiceConfiguration(Configuration): """Configuration for AzureCommunicationChatService. Note that all parameters used to create this instance are saved as instance attributes. :param endpoint: The endpoint of the Azure Communication resource. :type endpoint: str """ def __init__( self, endpoint, # type: str **kwargs # type: Any ): # type: (...) -> None if endpoint is None: raise ValueError("Parameter 'endpoint' must not be None.") super(AzureCommunicationChatServiceConfiguration, self).__init__(**kwargs) self.endpoint = endpoint self.api_version = "2020-11-01-preview3" kwargs.setdefault('sdk_moniker', 'azurecommunicationchatservice/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or policies.HttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy')
d8714ee24f591c485cd9ec54687dc4e2c60e795e
6ac2c27121d965babbb4bcbc7c479c26bf60bdf5
/pymatex/node/BinaryOperator.py
a1ed0964642e5cd803a9f7cb8a373142fde706b7
[ "MIT" ]
permissive
Gawaboumga/PyMatex
5a2e18c3e17d3b76e814492f7e2ca63a57d720e9
3ccc0aa23211a064aa31a9b509b108cd606a4992
refs/heads/master
2020-03-28T01:40:32.341723
2018-12-20T13:49:12
2018-12-20T13:49:12
147,521,693
1
0
null
null
null
null
UTF-8
Python
false
false
741
py
from pymatex.node.Node import Node class BinaryOperator(Node): def __init__(self, lhs, rhs, symbol, operator): super().__init__() self.lhs = lhs self.rhs = rhs self.symbol = symbol self.operator = operator def __eq__(self, other): assert (self.lhs is not None and self.rhs is not None) assert (other.lhs is not None and other.rhs is not None) assert (isinstance(self.lhs, type(other.lhs))) assert (isinstance(self.rhs, type(other.rhs))) return self.lhs == other.lhs and self.rhs == other.rhs def __str__(self): assert (self.lhs is not None and self.rhs is not None) return '({} {} {})'.format(self.lhs, self.symbol, self.rhs)
5c50fc9485d29bdbbdc80e762cf0bf71aab040fc
bfe6c95fa8a2aae3c3998bd59555583fed72900a
/isSameTree.py
92b84e0e9e9ebf88b5ff80b0395446eb323b984e
[]
no_license
zzz136454872/leetcode
f9534016388a1ba010599f4771c08a55748694b2
b5ea6c21bff317884bdb3d7e873aa159b8c30215
refs/heads/master
2023-09-01T17:26:57.624117
2023-08-29T03:18:56
2023-08-29T03:18:56
240,464,565
0
0
null
null
null
null
UTF-8
Python
false
false
581
py
from typing import * # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: def same(a,b): if a==None and b==None: return True if a==None or b==None: return False if a.val!=b.val: return False return same(a.left,b.left) and same(a.right,b.right) return same(p,q)
b59ef2972aee022007baf201ac8cd373a9d77aa0
c5d1e08312ddfaac8bb3f558d09b5378e28f7add
/design_patterns/proxy_pattern/urer_proxy.py
27b1d5ab375b0cd13f44b4f194b376e9c5de96d5
[]
no_license
dimitriepirghie/UReR
7d368752e6c21dccfe7734d3d58921c0992b4393
eefe22cb60d5e7d8e259dcc7bf5d3bc1ce14ad18
refs/heads/master
2021-06-12T15:27:07.369326
2017-01-23T23:35:00
2017-01-23T23:35:00
71,646,392
0
0
null
null
null
null
UTF-8
Python
false
false
1,762
py
from flask import Flask, request, abort app = Flask(__name__) class Dispatcher(object): __service_identifier_proxy_mapping__ = {} def __init__(self): """ Get all proxies """ import Proxies self.__service_identifier_proxy_mapping__['facebook_identifier'] = Proxies.FacebookProxy() self.__service_identifier_proxy_mapping__['linkedin_identifier'] = Proxies.LinkedInProxy() self.__service_identifier_proxy_mapping__['foaf_identifier'] = Proxies.FOAFProxy() def __get_proxy__(self, service_identifier): """ For a service_identifier return specific proxy :param service_identifier: service_identifier :return: AbstractProxy specific object """ return self.__service_identifier_proxy_mapping__[service_identifier]\ if service_identifier in self.__service_identifier_proxy_mapping__ else None def dispatch(self, service_identifier, request=None): specific_proxy = self.__get_proxy__(service_identifier) if specific_proxy: return specific_proxy.serve_request(request) else: abort(400) def authenticate_and_authorize(): """ Check if request if a request is valid :return: boolean """ # TODO: Implement request validation method ! return True if request else False @app.route('/service/<service_identifier>') def service(service_identifier): if not authenticate_and_authorize(): abort(401, "Unauthorized") dispatcher = Dispatcher() return dispatcher.dispatch(service_identifier, request) @app.route('/') def hello_client(): return 'Hello Client, here is how UReR API Works ! ' # Redirect if __name__ == '__main__': app.run()
ec2c3157e9435ae144c7542e34e4d008a82f24ee
3a6f9f492a625c1b688baf5607bd9b0efae049ee
/GFS/FIS/DecisionSystem.py
d72c542075908c1a88100df578ab28eb3bcebbc8
[]
no_license
HarderThenHarder/GeneticFuzzySystem
ad77866fa34bf584040460bde466d4867ec91ee0
d625523e62fc6a41b2c257df255c067a5ae9c3eb
refs/heads/master
2023-08-17T08:31:08.174303
2021-09-27T04:37:35
2021-09-27T04:37:35
320,836,303
5
3
null
null
null
null
UTF-8
Python
false
false
359
py
class DecisionSystem(object): def __init__(self, fuzzy_variable_list, rule_lib): """ FIS决策系统:由模糊变量集与模糊规则库组成 :param fuzzy_variable_list: 模糊变量集 :param rule_lib: 模糊规则库 """ self.fuzzy_variable_list = fuzzy_variable_list self.rule_lib = rule_lib
4aeaa6069f610d5d0cfb69906fdfedaf7e462021
0421985d1af2c039e3ad1867b674adf3393dfbae
/basicFunctions.py
01886de7ee6da99319df36caa30f8271ed49e21c
[]
no_license
mayankloyalka/Maths4330
854f7b6ac1822f0ec6651133402a18d3a3775f40
fcb705ccb031c30a07595db2d958ebdfec283563
refs/heads/master
2020-04-22T12:25:42.321533
2019-05-09T04:15:21
2019-05-09T04:15:21
170,370,929
0
0
null
null
null
null
UTF-8
Python
false
false
4,729
py
def vandermode(arg1): # What does the Vandermode function do? # It takes a list of vectors and raise it to the power of [0,1,2,3,4] # Arguments: # args1 :Arg1 is a list of vectors, that is entered by the user result=[] for i in range(5): new_list=[] for element in range(len(arg1)): new_list.append(arg1[element]**i) result.append(new_list) # Final Result of our function? # We get a list of matrix that is represented as a coloumn vector return result def transpose(arg1): # What does the transpose function do? # It takes a matrix and change its rows to coloumns # Arguments: # args1 :Arg1 is a matrix represented as a coloumn vector result=[] for i in range(len(arg1)): new_list=[] for element in range(len(arg1)): new_list.append(arg1[i][element]) result.append(new) # Final Result of our function? # We get a transpose matrix return result def matrix_saclor(arg1,scalor): # What does the matrix function do? # It takes the coloumns of a matrix and then multiply them to a scalor # Arguments: # args1 :Arg1 is a matrix which is represented as a coloumn vector # scalor: It is any complex number result=arg1[::] for index in range(len(arg1)): result[index]=scalor*arg1[index] # Final Result of our function? # We get a matrix return result def conjuagte(arg1): # What does the conjugate function do? # It takes an complex number as an argument and changes the sign of the imaginery part # Arguments: # args1 :Arg1 is a list of complex number result=0 for index in range(len(arg1)): result[index]=-result[index] # Final Result of our function? # The sign of the imaginery part is changed return result def conjugate_transpose(arg1): # What does the conjugate function function do? # It takes the rows of a matrix change them to a coloumn and take their conjugate # Arguments: # args1 :Arg1 is a matrix that is represented as a coloumn vector result=transpose(arg1) for i in range(len(arg1)): for element in range(len(arg1)): result[i][element]=conjugate(result[i][element]) # Final Result of our function? # We get a matrix return result def normalisation(arg1): # What does the normalisation function do? # It takes a singular matrix and then find the absolute value of each raise to the power of 1/2 # Arguments: # args1 :Arg1 is a matrix, that is given by a coloumn vector result=0 for i in range(len(arg1)): for j in range(len(arg1[i])): result=result+ (abs(arg1[i][j]))**2 result=result**(1/2) # Final Result of our function? # We a vector norm of our given matrix return result def gram_Schmitt(arg1): # What does the Vandermode function do? # It takes a matrix and does an orthogonal decomposition and normalisation # on the matrix to find matrix Q and R, such that Matrix= Q*R # Arguments: # args1 :Arg1 is a matrix represented as a coloumn vectore, obtained from # doing function vandermode V=[] for i in range(len(arg1)): V.append(arg1[i]) for i in range(len(arg1)): R[i][i]=normalisation(V[i]) Q[i]=V[i]/(R[i]) for j in (i+1,len(arg1)+1): R[i][j]=transpose(Q[i])*V[j] V[j]=V[j]- V[i][j]*Q[j] # Final Result of our function? # We get a unitary matrix Q and a upper triangular matrix R return Q,R def backsub(R,y): # What does the bacsub function do? # It solves the value of a for the equation # R*a=Q*y # Arguments: # R: It is an upper triangular matrix # y : It is a vector that will be entered by the user result=y for i in range(len(R[0])): a=len(R) result[i]=(b*[i]-matrix_scalor(R[i+1:a],result[i+1:a])*(1/(R[i][i]))) # Final Result of our function? # We get the final values of a return result Beta=backsub(R,Q*y) def degree4(Beta,x): # What does the degree4 function do? # It gives us an interpolyating polynomial # Arguments: # Beta: The result obtained after the backsub function # x: It is vector that will be entered by the user return (Beta[0]+Beta[1]*x+Beta[2]*(x**2)+Beta[3]*(x**3)+Beta[4]*(x**4))
c98bd1e48e841a4636e99391915ab7d93eae1383
b7639e383c9250b0de2e4713c55f1d366840d758
/todo/views.py
0015de031217bfa43d734ecf77d13c27b1fbdcac
[]
no_license
mohammad2745/awsome-todo
6fe0263147917cc92a4e335cff3d7adb1580af64
571633ae39146df00ef4c40b272d00abfe4c415f
refs/heads/master
2023-08-04T13:02:41.375094
2021-06-22T05:06:25
2021-06-22T05:06:25
277,222,183
0
0
null
2021-09-22T19:23:13
2020-07-05T03:10:35
Python
UTF-8
Python
false
false
935
py
from django.shortcuts import render, redirect from django.views.decorators.http import require_POST from .models import Todo from .forms import TodoForm # Create your views here. def index(request): todo_list = Todo.objects.order_by('id') form = TodoForm() context = {'todo_list': todo_list, 'form': form} return render(request, 'todo/index.html', context) @require_POST def addTodo(request): form = TodoForm(request.POST) if form.is_valid(): new_todo = Todo(text=request.POST['text']) new_todo.save() return redirect('index') def completeTodo(request, todo_id): todo = Todo.objects.get(pk=todo_id) todo.complete = True todo.save() return redirect('index') def deleteCompleted(request): Todo.objects.filter(complete__exact=True).delete() return redirect('index') def deleteAll(request): Todo.objects.all().delete() return redirect('index')
8203b06fc0a707631c4c0f8c113869357cde1785
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-osm/huaweicloudsdkosm/v2/model/check_verify_codes_request.py
4a523c962e6e5a6b6fd6bb917e72c51422a6eb24
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,852
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CheckVerifyCodesRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'x_site': 'int', 'x_language': 'str', 'x_time_zone': 'str', 'body': 'VerifyVerifyCodeV2Req' } attribute_map = { 'x_site': 'X-Site', 'x_language': 'X-Language', 'x_time_zone': 'X-Time-Zone', 'body': 'body' } def __init__(self, x_site=None, x_language=None, x_time_zone=None, body=None): """CheckVerifyCodesRequest - a model defined in huaweicloud sdk""" self._x_site = None self._x_language = None self._x_time_zone = None self._body = None self.discriminator = None if x_site is not None: self.x_site = x_site if x_language is not None: self.x_language = x_language if x_time_zone is not None: self.x_time_zone = x_time_zone if body is not None: self.body = body @property def x_site(self): """Gets the x_site of this CheckVerifyCodesRequest. 对接站点信息。 0(中国站) 1(国际站),不填的话默认为0。 :return: The x_site of this CheckVerifyCodesRequest. :rtype: int """ return self._x_site @x_site.setter def x_site(self, x_site): """Sets the x_site of this CheckVerifyCodesRequest. 对接站点信息。 0(中国站) 1(国际站),不填的话默认为0。 :param x_site: The x_site of this CheckVerifyCodesRequest. :type: int """ self._x_site = x_site @property def x_language(self): """Gets the x_language of this CheckVerifyCodesRequest. 语言环境,值为通用的语言描述字符串,比如zh-cn等,默认为zh-cn。 会根据语言环境对应展示一些国际化的信息,比如工单类型名称等。 :return: The x_language of this CheckVerifyCodesRequest. :rtype: str """ return self._x_language @x_language.setter def x_language(self, x_language): """Sets the x_language of this CheckVerifyCodesRequest. 语言环境,值为通用的语言描述字符串,比如zh-cn等,默认为zh-cn。 会根据语言环境对应展示一些国际化的信息,比如工单类型名称等。 :param x_language: The x_language of this CheckVerifyCodesRequest. :type: str """ self._x_language = x_language @property def x_time_zone(self): """Gets the x_time_zone of this CheckVerifyCodesRequest. 环境时区,值为通用的时区描述字符串,比如GMT+8等,默认为GMT+8。 涉及时间的数据会根据环境时区处理。 :return: The x_time_zone of this CheckVerifyCodesRequest. :rtype: str """ return self._x_time_zone @x_time_zone.setter def x_time_zone(self, x_time_zone): """Sets the x_time_zone of this CheckVerifyCodesRequest. 环境时区,值为通用的时区描述字符串,比如GMT+8等,默认为GMT+8。 涉及时间的数据会根据环境时区处理。 :param x_time_zone: The x_time_zone of this CheckVerifyCodesRequest. :type: str """ self._x_time_zone = x_time_zone @property def body(self): """Gets the body of this CheckVerifyCodesRequest. :return: The body of this CheckVerifyCodesRequest. :rtype: VerifyVerifyCodeV2Req """ return self._body @body.setter def body(self, body): """Sets the body of this CheckVerifyCodesRequest. :param body: The body of this CheckVerifyCodesRequest. :type: VerifyVerifyCodeV2Req """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CheckVerifyCodesRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f93b9c60190b4f7e57154c753e126e12e0b25105
70961aa4e7aab24e2c8d32a3b5e5f5c804c40144
/id11.py
c7b57b7c24c9a8abbd5bfd1e1786518d70091f7e
[]
no_license
kxtan/euler
5c98726a43d38bc7840c9835a746e34f8d923fe6
97b20cdbf699b808b94bfb3986de3f7f81f5f0cd
refs/heads/master
2021-01-11T00:04:16.534649
2017-02-07T12:50:18
2017-02-07T12:50:18
70,759,662
0
0
null
null
null
null
UTF-8
Python
false
false
3,036
py
""" In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is 26 × 63 × 78 × 14 = 1788696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid? """ # pre-process number grid my_file = open('id11numgrid', 'r') num_grid = list(my_file) for x in range(len(num_grid)): num_grid[x] = num_grid[x].rstrip() num_grid[x] = [int(i) for i in num_grid[x].split()] # check up and down max_product_up_down = 0 for x in range(len(num_grid)): product = 1 for y in range(4): if x <= 16: product *= num_grid[x+y][x] if product > max_product_up_down: max_product_up_down = product max_product_left_right = 0 for x in range(len(num_grid)): product = 1 for y in range(4): if x <= 16: product *= num_grid[x][x+y] if product > max_product_left_right: max_product_left_right = product max_product_diagonal_up_right = 0 for x in range(len(num_grid)): for y in range(len(num_grid)): if x < 17 and y > 2: product = num_grid[x][y] * num_grid[x+1][y-1] * num_grid[x+2][y-2] * num_grid[x+3][y-3] if product > max_product_diagonal_up_right: max_product_diagonal_up_right = product max_product_diagonal_down_right = 0 for x in range(len(num_grid)): for y in range(len(num_grid)): if x < 17 and y < 17: product = num_grid[x][y] * num_grid[x+1][y+1] * num_grid[x+2][y+2] * num_grid[x+3][y+3] if product > max_product_diagonal_down_right: max_product_diagonal_down_right = product print(max(max_product_up_down, max_product_left_right, max_product_diagonal_down_right, max_product_diagonal_up_right))
e29437a2fb5d9ded927b7bb4e7a848eb1239d407
da03465c8a2dbd7b1415f1703f824bb4f582408a
/nova/policy.py
2ebe6a69c2e40fd4a68168dd74dc7ef32b8f6c39
[ "Apache-2.0" ]
permissive
rbenali/nova
4d4622189aa0b54aec90e07bc71919ca9f99bbe6
fb4a138bc5791d23e6f302b78da13ea99a511f26
refs/heads/master
2021-01-16T20:50:13.224776
2012-01-11T16:50:50
2012-01-11T16:50:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,427
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2011 OpenStack, LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Policy Engine For Nova""" from nova import exception from nova import flags from nova import utils from nova.common import policy FLAGS = flags.FLAGS flags.DEFINE_string('policy_file', 'policy.json', _('JSON file representing policy')) _POLICY_PATH = None _POLICY_CACHE = {} def reset(): global _POLICY_PATH global _POLICY_CACHE _POLICY_PATH = None _POLICY_CACHE = {} policy.reset() def init(): global _POLICY_PATH global _POLICY_CACHE if not _POLICY_PATH: _POLICY_PATH = utils.find_config(FLAGS.policy_file) data = utils.read_cached_file(_POLICY_PATH, _POLICY_CACHE, reload_func=_set_brain) def _set_brain(data): policy.set_brain(policy.HttpBrain.load_json(data)) def enforce(context, action, target): """Verifies that the action is valid on the target in this context. :param context: nova context :param action: string representing the action to be checked this should be colon separated for clarity. i.e. compute:create_instance compute:attach_volume volume:attach_volume :param object: dictionary representing the object of the action for object creation this should be a dictionary representing the location of the object e.g. {'project_id': context.project_id} :raises: `nova.exception.PolicyNotAllowed` if verification fails. """ init() match_list = ('rule:%s' % action,) target_dict = target credentials_dict = context.to_dict() try: policy.enforce(match_list, target_dict, credentials_dict) except policy.NotAllowed: raise exception.PolicyNotAllowed(action=action)
617197ff5520b1ea151f45448772ca8e3edcd9d5
3c0687e6ee69b079d2cdced80494681fef0512e5
/file handling_Corey Schafer/reading and wrting.py
e80ca9a152436e6d458a4387629797ccf333313f
[]
no_license
wingedrasengan927/Python-tutorials
b51f21f13b2e4f7ff924eb702e236f320de70d85
7af09884b4c4bec3a234bcdb8ed4f80aa8c2210a
refs/heads/master
2021-07-09T01:02:46.431532
2020-08-09T16:42:48
2020-08-09T16:42:48
180,403,864
3
0
null
null
null
null
UTF-8
Python
false
false
268
py
# first let's clear the file f = open('dummy3.txt', 'r+') f.truncate(0) # let us read the contents of dummy.txt and copy it into dummy3.txt with open('dummy.txt', 'r') as rf: with open('dummy3.txt', 'w') as wf: for line in rf: wf.write(line)
baa962e00a091243b62064081042f24aec064f21
ade74e6b497703ef01fe267b665261e90e335a18
/studyvisapp/utils.py
c34695abd775ad8f16791ec085d2291043680e61
[]
no_license
TMdiesel/study-vis-app
0492ff8bdda5f1c2596cca0ac3642b6c81691f9a
a0440a8ffd21d5848faf8eeabfed4c7be38be90f
refs/heads/main
2023-07-08T04:32:48.564623
2021-08-15T12:08:53
2021-08-15T12:08:53
395,558,322
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
import os import pathlib from dotenv import load_dotenv from omegaconf import OmegaConf, dictconfig from django.core.management.utils import get_random_secret_key def load_config() -> dictconfig.DictConfig: load_dotenv() config_path = os.getenv( "CONFIG_PATH", pathlib.Path(__file__).parent.parent / "config.yaml" ) config = OmegaConf.load(config_path) return config def create_item_choice(): config = load_config() dict = config.item choice = tuple([tuple([item, item]) for item in dict.keys()]) return choice def create_key(): secret_key = get_random_secret_key() secret_key = "SECRET_KEY = '{0}'".format(secret_key) print(secret_key) return secret_key if __name__ == "__main__": create_key()
6f23f4bc5f9f62fe62decd8935d9f299c4c0d995
032d4ed8cfdbc10b6b22186a28d527e2ad0161c4
/CourseraCourse ProgrammingforEverybody/Code/Wk9q4.py
06cc8dc8d1d3fc27f1f128f279761b76f6bd62d2
[]
no_license
jish6303/Python
fa83a8d95707982426a484330c82c167577404a5
841976b71b0028c8cfaa57aaea0bc472ce3ea55b
refs/heads/master
2021-01-19T18:08:33.263735
2014-12-09T00:00:18
2014-12-09T00:00:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
#Write a program to read through the mbox-short.txt and figure out who has the #sent the greatest number of mail messages. The program looks for 'From ' lines #and takes the second word of those lines as the person who sent the mail. The #program creates a Python dictionary that maps the sender's mail address to a #count of the number of times they appear in the file. After the dictionary is #produced, the program reads through the dictionary using a maximum loop to find #the most prolific committer. name = raw_input("Enter file:") name = "mbox-short.txt" handle = open(name,'r') ct_email=dict() for line in handle: line=line.rstrip() if not line.startswith('From '): continue words=line.split() email=words[1] ct_email[email]=ct_email.get(email,0)+1 bigcount=None bigword=None for word,count in ct_email.items(): if bigcount is None or count>bigcount: bigword=word bigcount=count print bigword,bigcount
96a2a20b910aa08899a63d5c2c2b228bfeecca9f
8fb1cd16158873c97976c6861e4a16817f11c096
/WhatsAppManifest/automator/whatsapp/conversation/conversation.py
e540fb729eb786e85f3425596f61f2c0dfa1675b
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
alexbnkz/WhatsAppManifest
bdce7b281d17b68e72090fd0f269fc77618a4879
963546dbcc254b332c704c823f1f291906f8dee6
refs/heads/master
2021-03-10T15:51:31.201749
2020-03-11T03:06:34
2020-03-11T03:06:34
246,465,139
0
1
null
2020-03-11T03:26:48
2020-03-11T03:26:47
null
UTF-8
Python
false
false
1,942
py
from time import sleep from WhatsAppManifest.adb.base import WhatsAppManifest from WhatsAppManifest.consts import _PACKAGE_NAME_ from WhatsAppManifest.adb.device import Device from WhatsAppManifest.manifest.android import AndroidKeyEvents from WhatsAppManifest.automator.whatsapp.database import WhatsAppDatabaseMSGStore class Conversation(WhatsAppManifest): _device: Device = None _msgstore: WhatsAppDatabaseMSGStore = None def __init__(self, device: Device): self.build_logger(type(self).__name__) self._device = device self._msgstore = WhatsAppDatabaseMSGStore(device=device) def send_message(self, jid: str, message: str, re_open: bool = True, wait_send_complete: bool = False): from WhatsAppManifest.manifest.whatsapp.contact_picker import ContactPicker if re_open: self._device.adb_utils.app_stop(_PACKAGE_NAME_) picker = ContactPicker() command = picker.build_send_message(jid, message) self.logger.info(f"Opening conversation with contact {jid}") command_output = self._device.adb_device.shell(command) self.logger.debug(f"{command_output}") while self._device.adb_utils.current_app().get("activity") != "com.whatsapp.Conversation": sleep(1) self.logger.info(f"Pressing the \"ENTER\" key") self._device.adb_utils.keyevent(AndroidKeyEvents.ENTER) if wait_send_complete: while True: sleep(2) message = self._msgstore.last_contact_message(jid) if message is not None and message.status in ["seen", "received", "waiting_in_server"]: break def create_chat(self, phone_number): from WhatsAppManifest.manifest.whatsapp.api_send import APISend api_send = APISend() command = api_send.build_apo_send(phone_number) return self._device.adb_device.shell(command)
47404961f7e18c58781bec4b2c30100d3659544b
f85e7b3e347622c7541a15974d90159c4fd9b973
/kitchensink-prj/kitchensink/statics/views.py
b7c7eacd735135b4fab68a876456c7f490477497
[]
no_license
giubeppe/django-study
45baca5e7b03d478319214b28bb62ae73629c34e
34c31609bf02ea56cd6c8d24fac8dde0a051207e
refs/heads/master
2021-01-04T14:06:20.942460
2011-09-27T05:21:49
2011-09-27T05:21:49
2,456,058
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
# Create your views here. from django.http import HttpResponse from django.shortcuts import * def index(request): return render_to_response('index.html')
861791a99cff6199e12450b643eb878adfecc0e4
6d25434ca8ce03f8fef3247fd4fc3a1707f380fc
/[0072][Hard][Edit_Distance]/Edit_Distance.py
a5ef60b431b491c1ee9c91a3dfbba9d16a70f005
[]
no_license
sky-dream/LeetCodeProblemsStudy
145f620e217f54b5b124de09624c87821a5bea1b
e0fde671cdc9e53b83a66632935f98931d729de9
refs/heads/master
2020-09-13T08:58:30.712604
2020-09-09T15:54:06
2020-09-09T15:54:06
222,716,337
2
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
# leetcode time cost : 180 ms # leetcode memory cost : 16.9 MB # Time Complexity: O(M*N) # Space Complexity: O(M*N) # solution 1. dp with iteration class Solution: #def minDistance(self, word1: str, word2: str) -> int: def minDistance(self, word1, word2): m = len(word1) n = len(word2) dp = [[0] * (n + 1) for _ in range(m + 1)] # 第一行 for j in range(1, n + 1): dp[0][j] = dp[0][j-1] + 1 # 第一列 for i in range(1, m + 1): dp[i][0] = dp[i-1][0] + 1 for i in range(1, m + 1): for j in range(1, n + 1): if word1[i-1] == word2[j-1]: dp[i][j] = dp[i-1][j-1] else: dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1] ) + 1 return dp[-1][-1] def main(): word1 = "horse" # expect is 3, word2 = "ros" obj = Solution() result = obj.minDistance(word1, word2) print("return result is ",result); if __name__ =='__main__': main()