blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
3dfd37b502e225e3f66840019c085a2442a476db
2564d19ba0f40ecb0392cde6a28cb87dc70276db
/ADB/urls.py
29b83b574dc92be8cb45195e4d40dd703ebdac8c
[]
no_license
Moochun/ADB_Project2_backend
6476eb07506b55cda1ae92d8ce52bc11e69929a3
b835c07c3c2fbf9fc537ea062fb7d052f845e5a8
refs/heads/master
2020-12-24T18:55:54.768338
2016-05-11T15:54:50
2016-05-11T15:54:50
58,558,688
0
0
null
null
null
null
UTF-8
Python
false
false
1,404
py
"""ADB URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^movies/$', "movie.views.movies"), url(r'^movies/(?P<MID>[0-9]+)/$', 'movie.views.movie'), url(r'^users/$', "movie.views.users"), url(r'^login/$', "movie.views.login"), url(r'^comments/$', "movie.views.comments"), url(r'^comments/(?P<MID>[0-9]+)/$', 'movie.views.comment'), url(r'^rates/$', "movie.views.rates"), url(r'^collections/$', "movie.views.collections"), url(r'^collections/delete/$', "movie.views.collections_delete"), url(r'^collections/(?P<UID>[0-9]+)/$', 'movie.views.collection'), url(r'^genres/$', 'movie.views.genres'), url(r'^genres/(?P<GID>[0-9]+)/$', 'movie.views.genre') ]
2c9c4fd5697467b536ce805d2da4f449ced0fadc
5c9bc1e9eca2e020e8a459e53e66699d057eb03d
/run.py
b543b3b0b8436f76d78df794279f2f2cc20637b9
[ "MIT" ]
permissive
alexomaset/PasswordLocker
aaa91581edd7b68991ceb26b8321908506743b17
d74f12c97e7ff194d31333dd92d50482ade61dbf
refs/heads/master
2020-05-05T13:30:27.481366
2019-04-08T11:28:53
2019-04-08T11:28:53
180,080,972
0
0
null
null
null
null
UTF-8
Python
false
false
15,306
py
from user import User from credential import Credential def create_account (account_name,user_name,user_password,confirmpassword): """ function to create a new account """ new_user = User(account_name,user_name,user_password,confirmpassword) return new_user def save_details(user): """ function to save save_details """ user.save_detail() def display_all_details(): """ function used to return all saved save_details """ return User.display_all_details() def check_existing_user(username): """ a function that is used to check and return all exissting accounts """ return User.find_by_username(username) def create_new_credential(account_name, account_password): """Function to create a new account and its credentials""" new_credential = Credential(account_name, account_password) return new_credential def save_new_credential(credential): """Function to save the newly created account and password""" credential.save_credential def find_credential(account_name): """Function that finds credentials based on account_name given""" return Credential.find_by_name(account_name) def check_existing_credential(name): """Method that checks whether a particular account and its credentials exist based on searched account_name""" return Credential.find_by_name(name) def display_credential(): """Function which displays all saved credentials""" return Credential.display_credential() def delete_credential(credential): """ Method that deletes credentials """ return Credential.delete_credential(credential) def main(): while True: print("Welcome to PassWordLocker.") print('\n') print("Use these short codes to select an option: Create New User use 'cu': Login to your account use 'lg' or 'ex' to exit password locker") short_code = input() print('\n') if short_code == 'cu': print("Create a UserName") created_user_name = input() print("Select a Password") created_user_password = input() print("Confirm Your Password") confirm_password = input() while confirm_password != created_user_password: print("Sorry your passwords did not match!") print("Enter a password") created_user_password = input() print("Confirm Your Password") confirm_password = input() else: print(f"Congratulations {created_user_name}! You have created your new account.") print('\n') print("Proceed to Log In to your Account") print("Username") entered_userName = input() print("Your Password") entered_password = input() while entered_userName != created_user_name or entered_password != created_user_password: print("You entered a wrong username or password") print("Username") entered_userName = input() print("Your Password") entered_password = input() else: print(f"Welcome: {entered_userName} to your Account") print('\n') print("Select an option below to continue: Enter 1, 2, 3, 4 or 5") print('\n') while True: print("1: View Your saved credentials") print("2: Add new credentials") print("3: Remove credentials") print("4: Search credentials") print("5: Log Out") option = input() if option == '2': while True: print("Continue to add? y/n") choice = input() if choice == 'y': print("Enter The Account Name") account_name = input() print("Enter a password") print( "To generate password enter keyword 'n' to create your own password") keyword = input() if keyword == 'gp': print('\n') elif keyword == 'n': print("Create your password") account_password = input() print(f"Account: {account_name}") print(f"Password: {account_password}") print('\n') else: print("Please enter a valid Code") save_new_credential(create_new_credential( account_name, account_password)) elif choice == 'n': break else: print("Please use 'y' for yes or 'n' for no!") elif option == '1': while True: print("Below is a list of all your credentials") if display_credential(): for credential in display_credential(): print(f"ACCOUNT NAME:{credential.account_name}") print(f"PASSWORD:{credential.account_password}") else: print('\n') print("You don't seem to have any contacts yet") print('\n') print("Back to Menu? y/n") back = input() if back == 'y': break elif back == 'n': continue else: print("Please Enter a valid code") continue elif option == '5': print("WARNING! You will loose all your credentials if you log out. Are you sure? y/n") logout = input() if logout == 'y': print("You have Successfully logged out") break elif logout == 'n': continue elif option == '3': while True: print("Search for credential to delete") search_name = input() if check_existing_credential(search_name): search_credential = find_credential(search_name) print(f"ACCOUNT NAME: {search_credential.account_name} \n PASSWORD: {search_credential.account_password}") print("Delete? y/n") sure = input() if sure == 'y': delete_credential(search_credential) print("Account SUCCESSFULLY deleted") break elif sure == 'n': continue else: print("That Contact Does not exist") break elif option == '4': while True: print("Continue? y/n") option2 = input() if option2 == 'y': print("Enter an account name to find credentials") search_name = input() if check_existing_credential(search_name): search_credential = find_credential(search_name) print(f"ACCOUNT NAME: {search_credential.account_name} \n PASSWORD: {search_credential.account_password}") else: print("That Contact Does not exist") elif option2 == 'n': break else: print("Please enter a valid code") else: print("Please enter a valid code") continue elif short_code == 'lg': print("WELCOME") print("Enter UserName") default_user_name = input() print("Enter Your password") default_user_password = input() print('\n') while default_user_name != 'testuser' or default_user_password != '12345': print("Wrong userName or password. Username 'testuser' and password '12345'") print("Enter UserName") default_user_name = input() print("Enter Your password") default_user_password = input() print('\n') if default_user_name == 'testuser' and default_user_password == '12345': print("YOU HAVE SUCCESSFULLY LOGGED IN!") print('\n') print("Select an option below to continue: Enter 1, 2, 3, 4 or 5") print('\n') while True: print("1: saved credentials") print("2: Add new credentials") print("3: Remove credentials") print("4: Search credentials") print("5: Log Out") option = input() if option == '2': while True: print("Continue to add? y/n") choice = input() if choice == 'y': print("Enter The Account Name") account_name = input() print("Enter a password") print( "To generate password enter keyword 'n' to create your own password") keyword = input() if keyword == 'gp': print('\n') elif keyword == 'n': print("Create your password") account_password = input() print(f"Account: {account_name}") print(f"Password: {account_password}") print('\n') else: print("Please enter a valid Code") save_new_credential(create_new_credential( account_name, account_password)) elif choice == 'n': break else: print("Please use 'y' for yes or 'n' for no!") elif option == '1': while True: print("Below is a list of all your credentials") if display_credential(): for credential in display_credential(): print(f"ACCOUNT NAME:{credential.account_name}") print(f"PASSWORD:{credential.account_password}") else: print('\n') print("You don't seem to have any contacts yet") print('\n') print("Back to Menu? y/n") back = input() if back == 'y': break elif back == 'n': continue else: print("Please Enter a valid code") # elif choice1 == 'n': # break # else: # print("Please use y or n") elif option == '5': print("WARNING! You will loose all your credentials if you log out. Are you sure? y/n") logout = input() if logout == 'y': print("You have Successfully logged out") break elif logout == 'n': continue elif option == '3': while True: print("Search for credential to delete") search_name = input() if check_existing_credential(search_name): search_credential = find_credential(search_name) print(f"ACCOUNT NAME: {search_credential.account_name} \n PASSWORD: {search_credential.account_password}") print("Delete? y/n") sure = input() if sure == 'y': delete_credential(search_credential) print("Account SUCCESSFULLY deleted") break elif sure == 'n': continue else: print("That Contact Does not exist") break elif option == '4': while True: print("Continue? y/n") option2 = input() if option2 == 'y': print("Enter an account name to find credentials") search_name = input() if check_existing_credential(search_name): search_credential = find_credential(search_name) print(f"ACCOUNT NAME: {search_credential.account_name} \n PASSWORD: {search_credential.account_password}") else: print("That Contact Does not exist") elif option2 == 'n': break else: print("Please enter a valid code") else: print("Please enter a valid code") elif short_code == 'ex': break else: print("Please Enter a valid code to continue") if __name__ == '__main__': main()
2d66de8b269ba8e5da83aedb44f710f028e31d44
b1a7417caf4200557106821a0fe45d848b598467
/python 101/files/files-write.py
6d916edda92324b417762dd84371b64f4021a66e
[]
no_license
WonderLuc/brother-bootcamp
3ab6a197160f71d17be837c0be2001b2abcc6c3c
841285d516566730d35da7af9690c5d3b94051a4
refs/heads/main
2023-08-20T15:44:33.228640
2021-10-14T17:43:47
2021-10-14T17:43:47
404,047,387
0
0
null
null
null
null
UTF-8
Python
false
false
322
py
try: with open('hello.txt', 'a') as f: f.write('\nI\'m fine') f.close() print(open('hello.txt', 'r').read()) # Hello File! # How are you? # I'm fine with open('404.txt', 'w') as f: f.write('New File') f.close() print(open('404.txt', 'r').read()) # New File except: print('Smthg wrong')
abb6d54a01cfb9eb330d64b5b58c4a9309b4d8e3
04b85710bbf73f807b7bf8506982fd019e3898e1
/app/user/serializers.py
20380f41ebbe29264af31739c0a3ada8d4fe7b1f
[ "MIT" ]
permissive
wamuntu/recipe-app-api
774bd6d097b63a962474962161c422f46b833031
7976ff4fa13872097e1018e3305c00206c54fcf5
refs/heads/master
2022-12-01T06:45:45.046421
2020-07-28T22:25:29
2020-07-28T22:25:29
281,071,426
0
0
null
null
null
null
UTF-8
Python
false
false
1,727
py
from django.contrib.auth import get_user_model, authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers class UserSerializer(serializers.ModelSerializer): """Serializer for the users object""" class Meta: model = get_user_model() fields = ('email', 'password', 'name') extra_kwargs = {'password': {'write_only': True, 'min_length': 5}} def create(self, validated_data): """Create a new user with encrypted password and return it""" return get_user_model().objects.create_user(**validated_data) def update(self, instance, validated_data): """Update a user, setting the password correctly and return it""" password = validated_data.pop('password', None) user = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user class AuthTokenSerializer(serializers.Serializer): """Serializer for the user authentication object""" email = serializers.CharField() password = serializers.CharField( style={'input_type': 'password'}, trim_whitespace=False ) def validate(self, attrs): """Validate and authenticate the user""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authorization') attrs['user'] = user return attrs
342d09cf61ccf5c4f339d5c86f0e7204551a0b93
368c8d27f42d2789e84b0463b09018017858e383
/tests/test_scan.py
cb28934a266e8cae990bf7825374528ac27bd8e0
[ "MIT" ]
permissive
ConnectBox/wifi-configurator
6cce0ae5048a327fd9508f672a8359d178dd0c87
07031bdd2ea1f2a59b15cbff13149091642ea3f0
refs/heads/master
2023-08-27T10:13:58.107992
2023-08-15T21:22:06
2023-08-15T21:22:06
183,581,318
1
1
MIT
2022-12-26T20:47:21
2019-04-26T07:36:48
Python
UTF-8
Python
false
false
8,756
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from wifi_configurator import scan def freq_signal_dict_as_scan_output(cs_dict): scan_output = "" for freq, signal in cs_dict.items(): scan_output = "%sBSS: blah\nfreq: %s\nsignal: %s\n" % \ (scan_output, freq, signal) return scan_output def test_get_country_count_populated(iw_dev_scan_0): c = scan.get_country_count_from_iw_output(iw_dev_scan_0) assert c.most_common(1)[0][0] == "TR" assert len(list(c.elements())) == 4 assert c["AL"] == 1 def test_get_country_count_unpopulated(iw_dev_scan_1): c = scan.get_country_count_from_iw_output(iw_dev_scan_1) assert c.most_common(1) == [] assert not list(c.elements()) def test_get_country_count_empty(iw_dev_scan_2): c = scan.get_country_count_from_iw_output(iw_dev_scan_2) assert c.most_common(1) == [] assert not list(c.elements()) def test_get_country_count_populated2(iw_dev_scan_3): c = scan.get_country_count_from_iw_output(iw_dev_scan_3) assert c.most_common(1)[0][0] == "AU" assert len(list(c.elements())) == 2 AU_REGDB = """\ country AU: DFS-ETSI (2402.000 - 2482.000 @ 40.000), (20.00), (N/A) (5170.000 - 5250.000 @ 80.000), (17.00), (N/A), AUTO-BW (5250.000 - 5330.000 @ 80.000), (24.00), (N/A), DFS, AUTO-BW (5490.000 - 5710.000 @ 160.000), (24.00), (N/A), DFS (5735.000 - 5835.000 @ 80.000), (30.00), (N/A)""" def test_get_country_rules_block_matching(regdb_lines): block_lines = scan.get_country_rules_block("AU", regdb_lines) assert block_lines == AU_REGDB.split("\n") def test_au_freq_extraction(regdb_lines): block_lines = scan.get_country_rules_block("AU", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) assert freq_blocks == [ (2402, 2482), (5170, 5250), (5250, 5330), (5490, 5710), (5735, 5835), ] def test_flattening_of_au_freqs(regdb_lines): block_lines = scan.get_country_rules_block("AU", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) freq_blocks = scan.flatten_frequency_blocks(freq_blocks) assert scan.flatten_frequency_blocks(freq_blocks) == [ (2402, 2482), (5170, 5330), (5490, 5710), (5735, 5835), ] def test_channel_list_au(regdb_lines): block_lines = scan.get_country_rules_block("AU", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) freq_blocks = scan.flatten_frequency_blocks(freq_blocks) assert scan.get_channel_list_from_frequency_blocks(freq_blocks) == \ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UNSET_REGDB = """\ country 00: DFS-UNSET (2402.000 - 2472.000 @ 40.000), (20.00), (N/A) (2457.000 - 2482.000 @ 20.000), (20.00), (N/A), NO-IR, AUTO-BW (2474.000 - 2494.000 @ 20.000), (20.00), (N/A), NO-OFDM, NO-IR (5170.000 - 5250.000 @ 80.000), (20.00), (N/A), NO-IR, AUTO-BW (5250.000 - 5330.000 @ 80.000), (20.00), (N/A), DFS, NO-IR, AUTO-BW (5490.000 - 5730.000 @ 160.000), (20.00), (N/A), DFS, NO-IR (5735.000 - 5835.000 @ 80.000), (20.00), (N/A), NO-IR (57240.000 - 63720.000 @ 2160.000), (N/A), (N/A)""" def test_get_country_rules_block_first(regdb_lines): block_lines = scan.get_country_rules_block("00", regdb_lines) assert block_lines == UNSET_REGDB.split("\n") def test_unset_freq_extraction(regdb_lines): block_lines = scan.get_country_rules_block("00", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) assert freq_blocks == [ (2402, 2472), (2457, 2474), (5170, 5250), (5250, 5330), (5490, 5730), (5735, 5835), (57240, 63720), ] def test_flattening_of_unset_freqs(regdb_lines): block_lines = scan.get_country_rules_block("00", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) assert scan.flatten_frequency_blocks(freq_blocks) == [ (2402, 2474), (5170, 5330), (5490, 5730), (5735, 5835), (57240, 63720), ] def test_channel_list_unset(regdb_lines): block_lines = scan.get_country_rules_block("00", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) freq_blocks = scan.flatten_frequency_blocks(freq_blocks) assert scan.get_channel_list_from_frequency_blocks(freq_blocks) == \ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] JP_REGDB = """\ country JP: DFS-JP (2402.000 - 2482.000 @ 40.000), (20.00), (N/A) (2474.000 - 2494.000 @ 20.000), (20.00), (N/A), NO-OFDM (4910.000 - 4990.000 @ 40.000), (23.00), (N/A) (5030.000 - 5090.000 @ 40.000), (23.00), (N/A) (5170.000 - 5250.000 @ 80.000), (20.00), (N/A), AUTO-BW (5250.000 - 5330.000 @ 80.000), (20.00), (N/A), DFS, AUTO-BW (5490.000 - 5710.000 @ 160.000), (23.00), (N/A), DFS (59000.000 - 66000.000 @ 2160.000), (10.00), (N/A)""" def test_get_country_rules_block_jp(regdb_lines): block_lines = scan.get_country_rules_block("JP", regdb_lines) assert block_lines == JP_REGDB.split("\n") def test_jp_freq_extraction(regdb_lines): block_lines = scan.get_country_rules_block("JP", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) assert freq_blocks == [ (2402, 2474), (4910, 4990), (5030, 5090), (5170, 5250), (5250, 5330), (5490, 5710), (59000, 66000), ] def test_flattening_of_jp_freqs(regdb_lines): block_lines = scan.get_country_rules_block("JP", regdb_lines) freq_blocks = scan.get_frequency_blocks_from_country_block(block_lines) assert scan.flatten_frequency_blocks(freq_blocks) == [ (2402, 2474), (4910, 4990), (5030, 5090), (5170, 5330), (5490, 5710), (59000, 66000), ] def test_get_country_rules_block_unmatched(regdb_lines): block_lines = scan.get_country_rules_block("NOMATCH", regdb_lines) assert not block_lines def test_get_freq_signals_0(iw_dev_scan_0): assert scan.get_freq_signal_tuples_from_iw_output(iw_dev_scan_0) == [ (2412, -48.0), (2432, -84.0), (2442, -42.0), (2442, -83.0), (2442, -82.0), (2462, -85.0), (5180, -89.0), (2412, -84.0), (2452, -88.0), ] def test_get_freq_signals_1(iw_dev_scan_1): assert scan.get_freq_signal_tuples_from_iw_output(iw_dev_scan_1) == [ (2412, -48.0), ] def test_get_freq_signals_2(iw_dev_scan_2): assert scan.get_freq_signal_tuples_from_iw_output(iw_dev_scan_2) == [] def test_get_freq_signals_3(iw_dev_scan_3): assert scan.get_freq_signal_tuples_from_iw_output(iw_dev_scan_3) == [ (2412, -32.0), (2442, -36.0), (5180, -25.0), ] def test_overlap_empty_full(): assert not scan.channel_overlaps_with_others(1, []) assert scan.channel_overlaps_with_others( 1, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] ) def test_overlap_end_spectrum(): assert not scan.channel_overlaps_with_others( 1, [5, 6, 7, 8, 9, 10, 11, 12, 13] ) assert scan.channel_overlaps_with_others(1, [4]) assert not scan.channel_overlaps_with_others( 13, [1, 2, 3, 4, 5, 6, 7, 8, 9] ) assert scan.channel_overlaps_with_others(13, [10]) def test_overlap_mid_spectrum(): assert not scan.channel_overlaps_with_others( 5, [1, 9, 10, 11, 12, 13] ) assert scan.channel_overlaps_with_others( 5, [1, 2, 9, 10, 11, 12, 13] ) assert scan.channel_overlaps_with_others( 5, [1, 8, 9, 10, 11, 12, 13] ) assert not scan.channel_overlaps_with_others( 9, [1, 2, 3, 4, 5, 13] ) assert scan.channel_overlaps_with_others( 9, [1, 2, 3, 4, 5, 6, 13] ) assert scan.channel_overlaps_with_others( 9, [1, 2, 3, 4, 5, 12, 13] ) assert not scan.channel_overlaps_with_others( 9, [5, 13] ) assert scan.channel_overlaps_with_others( 9, [6] ) assert scan.channel_overlaps_with_others( 9, [12] ) def test_uncontested_channels(): # 3 knocks out 1-6, 9 knocks out 7-12, 13 knocks out 10-13 assert scan.get_available_uncontested_channel( range(1, 14), freq_signal_dict_as_scan_output( {2422: -50, 2452: -50, 2472: -50} ) ) == scan.NO_CHANNEL # 3 knocks out 1-5, 9 knocks out 7-12, leaving 13 assert scan.get_available_uncontested_channel( range(1, 14), freq_signal_dict_as_scan_output({2422: -50, 2452: -50}) ) == 13
d517c0304e985ead906169b47b976447619f523e
b54f9626c1b4fb8b930bf2ad73821cda24df73ee
/onnxmltools/convert/sparkml/operator_converters/word2vec.py
b66edf23938a6e5a08b2b5ace52b4f2eb84246e9
[ "MIT" ]
permissive
vinitra/onnxmltools
6e5e8100ce1914f8d265d32e7c44ba590fc1c2ce
dd843d392c5790320b3b597a0618c4910473b5a2
refs/heads/master
2021-06-25T00:11:12.705711
2020-10-12T03:29:10
2020-10-12T03:29:10
152,326,441
3
1
MIT
2018-11-17T00:07:20
2018-10-09T21:54:36
Python
UTF-8
Python
false
false
4,079
py
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import pandas import numpy from onnx import onnx_pb as onnx_proto from ..utils import SparkMlConversionError from ...common._apply_operation import apply_add, apply_mul, apply_sum from ...common._registration import register_converter, register_shape_calculator from ...common.data_types import StringTensorType, FloatTensorType from ...common.utils import check_input_and_output_numbers, check_input_and_output_types def convert_word2vec(scope, operator, container): op = operator.raw_operator vectors = op.getVectors().toPandas().vector.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32) cats_strings = op.getVectors().toPandas().word.values.tolist() cats_int64s = [x for x in range(0, len(cats_strings))] word_count = operator.inputs[0].type.shape[1] vectors_tensor = scope.get_unique_variable_name('vectors_tensor') container.add_initializer(vectors_tensor, onnx_proto.TensorProto.FLOAT, vectors.shape, vectors.flatten()) word_indices = scope.get_unique_variable_name('word_indices_tensor') container.add_node('CategoryMapper', operator.input_full_names, word_indices, op_domain='ai.onnx.ml', cats_int64s=cats_int64s, cats_strings=cats_strings, default_int64=-1) one = scope.get_unique_variable_name('one_tensor') container.add_initializer(one, onnx_proto.TensorProto.INT64, [1], [1]) zero = scope.get_unique_variable_name('zero_tensor') container.add_initializer(zero, onnx_proto.TensorProto.INT64, [1], [0]) word_count_tensor = scope.get_unique_variable_name('word_count_tensor') container.add_initializer(word_count_tensor, onnx_proto.TensorProto.INT64, [1], [word_count]) sliced_outputs = [] for i in range(0, word_count): index = scope.get_unique_variable_name('index_tensor') container.add_initializer(index, onnx_proto.TensorProto.INT64, [1], [i]) selected_index = scope.get_unique_variable_name('selected_index_tensor') container.add_node('ArrayFeatureExtractor', [word_indices, index], selected_index, op_domain='ai.onnx.ml') reshaped_index = scope.get_unique_variable_name('reshaped_tensor') container.add_node('Reshape', [selected_index, one], reshaped_index, op_version=5) end_index = scope.get_unique_variable_name('end_index_tensor') apply_add(scope, [one, reshaped_index], end_index, container, axis=0) sliced_output = scope.get_unique_variable_name('sliced_tensor') container.add_node('DynamicSlice', [vectors_tensor, reshaped_index, end_index, zero], sliced_output) sliced_outputs.append(sliced_output) sum_vector = scope.get_unique_variable_name('sum_tensor') apply_sum(scope, sliced_outputs, sum_vector, container) factor = scope.get_unique_variable_name('factor_tensor') container.add_initializer(factor, onnx_proto.TensorProto.FLOAT, [1], [1/operator.inputs[0].type.shape[1]]) apply_mul(scope, [factor, sum_vector], operator.output_full_names, container) register_converter('pyspark.ml.feature.Word2VecModel', convert_word2vec) def calculate_word2vec_output_shapes(operator): check_input_and_output_numbers(operator, output_count_range=1) check_input_and_output_types(operator, good_input_types=[StringTensorType]) N = operator.inputs[0].type.shape[0] if N != 1: raise SparkMlConversionError('Word2Vec converter cannot handle batch size of more than 1') C = operator.raw_operator.getOrDefault('vectorSize') operator.outputs[0].type = FloatTensorType([N, C]) register_shape_calculator('pyspark.ml.feature.Word2VecModel', calculate_word2vec_output_shapes)
5c5014ac32e47fc41d41eaf0a112c52d610840dc
e9a322607be1740c4d1f69944f9bf4ac46c29f4d
/cyvlfeat/sift/sift.py
46419daeeee11b4edf767bd224c35f3ccadd94ee
[ "BSD-2-Clause" ]
permissive
simmimourya/cyvlfeat
71fc3ac92b1ca12cc08d796296fb379269f2e10f
efc83dca40d335658620c49017ca0c814ad77132
refs/heads/master
2022-01-14T10:39:37.630437
2019-06-16T16:28:28
2019-06-16T16:28:28
59,349,633
2
0
BSD-2-Clause
2019-06-16T16:28:29
2016-05-21T08:26:19
Python
UTF-8
Python
false
false
5,888
py
import numpy as np from .cysift import cy_sift def sift(image, n_octaves=None, n_levels=3, first_octave=0, peak_thresh=0, edge_thresh=10, norm_thresh=None, magnification=3, window_size=2, frames=None, force_orientations=False, float_descriptors=False, compute_descriptor=False, verbose=False): r""" Extracts a set of SIFT features from ``image``. ``image`` must be ``float32`` and greyscale (either a single channel as the last axis, or no channel). Each column of ``frames`` is a feature frame and has the format ``[Y, X, S, TH]``, where ``(Y, X)`` is the floating point center of the keypoint, ``S`` is the scale and ``TH`` is the orientation (in radians). If ``compute_descriptors=True``, computes the SIFT descriptors as well. Each column of ``descriptors`` is the descriptor of the corresponding frame in ``frames``. A descriptor is a 128-dimensional vector of type ``uint8``. Parameters ---------- image : [H, W] or [H, W, 1] `float32` `ndarray` A single channel, greyscale, `float32` numpy array (ndarray) representing the image to calculate descriptors for. n_octaves : `int`, optional The number of octaves of the DoG scale space. If ``None``, the maximum number of octaves will be used. n_levels : `int`, optional The number of levels per octave of the DoG scale space. first_octave : `int`, optional The index of the first octave of the DoG scale space. peak_thresh : `int`, optional The peak selection threshold. The peak threshold filters peaks of the DoG scale space that are too small (in absolute value). edge_thresh : `int`, optional The edge selection threshold. The edge threshold eliminates peaks of the DoG scale space whose curvature is too small (such peaks yield badly localized frames). norm_thresh : `float`, optional Set the minimum l2-norm of the descriptors before normalization. Descriptors below the threshold are set to zero. If ``None``, norm_thresh is ``-inf``. magnification : `int`, optional Set the descriptor magnification factor. The scale of the keypoint is multiplied by this factor to obtain the width (in pixels) of the spatial bins. For instance, if there are there are 4 spatial bins along each spatial direction, the ``side`` of the descriptor is approximately ``4 * magnification``. window_size : `int`, optional Set the variance of the Gaussian window that determines the descriptor support. It is expressed in units of spatial bins. frames : `[F, 4]` `float32` `ndarray`, optional If specified, set the frames to use (bypass the detector). If frames are not passed in order of increasing scale, they are re-orderded. A frame is a vector of length 4 ``[Y, X, S, TH]``, representing a disk of center f[:2], scale f[2] and orientation f[3]. force_orientations : `bool`, optional If ``True``, compute the orientations of the frames, overriding the orientation specified by the ``frames`` argument. float_descriptors : `bool`, optional If ``True``, the descriptor are returned in floating point rather than integer format. compute_descriptor : `bool`, optional If ``True``, the descriptors are also returned, as well as the keypoints (frames). This means that the output of calling this function changes from a single value ``frames``, to a tuple of output values ``(frames, descriptors)``. verbose : `bool`, optional If ``True``, be verbose. Returns ------- frames : `(F, 4)` `float32` `ndarray` ``F`` is the number of keypoints (frames) used. This is the center of every dense SIFT descriptor that is extracted. descriptors : `(F, 128)` `uint8` or `float32` `ndarray`, optional ``F`` is the number of keypoints (frames) used. The 128 length vectors per keypoint extracted. ``uint8`` by default. Only returned if ``compute_descriptors=True``. """ # Remove last channel if image.ndim == 3 and image.shape[-1] == 1: image = image[..., 0] # Validate image size if image.ndim != 2: raise ValueError('Only 2D arrays are supported') if frames is not None: if frames.ndim != 2 or frames.shape[-1] != 4: raise ValueError('Frames should be a 2D array of size ' '(n_keypoints, 4)') frames = np.require(frames, dtype=np.float32, requirements='C') # Validate all the parameters if n_octaves is not None and n_octaves < 0: raise ValueError('n_octaves must be >= 0') if n_octaves is None: n_octaves = -1 if n_levels < 1: raise ValueError('n_levels must be > 0') if first_octave < 0: raise ValueError('first_octave must be >= 0') if edge_thresh < 1: raise ValueError('edge_thresh must be > 0') if peak_thresh < 0: raise ValueError('peak_thresh must be >= 0') if norm_thresh is not None and norm_thresh < 0: raise ValueError('norm_thresh must be >= 0') if norm_thresh is None: norm_thresh = -1 if window_size < 0: raise ValueError('window_size must be >= 0') # Ensure types are correct before passing to Cython image = np.require(image, dtype=np.float32, requirements='C') result = cy_sift(image, n_octaves, n_levels, first_octave, peak_thresh, edge_thresh, norm_thresh, magnification, window_size, frames, force_orientations, float_descriptors, compute_descriptor, verbose) # May be a tuple or a single return of only the calculated frames return result
1e9740a8e1b78a322a5f0a91333bbb1a7d3abc3c
3d2901bb0dc06b24f40544b92b999b76256b2a5b
/05_django/01_django_intro_2/config/urls.py
84d5a8a8031e1ad68880dfe1f48eda2d3b2088a9
[]
no_license
kyunghee2/TIL
3ac949000900cdd58c8b63685dbe45561a1523e4
8e3a27d99beabee6342da571700ad08b35e62bb9
refs/heads/master
2022-12-11T10:44:37.494808
2020-12-29T07:15:02
2020-12-29T07:15:02
216,502,861
0
4
null
2022-12-08T06:47:25
2019-10-21T07:21:19
Python
UTF-8
Python
false
false
998
py
"""config URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from pages import views urlpatterns = [ # 사용자가 pages/로 시작하는 경로로 들어오면 # pages 앱 안의 urls.py에서 처리하도록 설정 path('pages/',include('pages.urls')), path('utilities/',include('utilities.urls')), path('admin/', admin.site.urls), ]
08a4954ba693a54f34fe62d504239de31695ae34
5452fc2155808581ba7448de23a2879c27e411a1
/accounts/models.py
edb676378a47f85bc1131b953e72d73d1b72e1a9
[]
no_license
eferroni/django3-star_social
9e991ea7f3a869b7b33f9b171ea620000b7a2aca
266d3c1e1ac9596e6fdd3774a1609b3327841955
refs/heads/main
2023-04-24T08:18:47.627003
2021-05-05T23:33:08
2021-05-05T23:33:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
from django.db import models from django.contrib import auth # Create your models here. class User(auth.models.User,auth.models.PermissionsMixin): def __str__(self): return f'@{self.username}'
c36b256ce526feca9b8fd7feb9a7ee6860c355db
18d9fe191a7dcccaa989ac16d0c693526f9f43dc
/manage.py
c86a46ea1870ec971a072381f1188f5ad3f96561
[]
no_license
david654100/messingwithdjango
787fb6bda6ca0e3a237081b022e1c15d0ddd6dfd
8086429645001c02607d4d241829e838f66c7d67
refs/heads/master
2020-05-30T00:11:33.439830
2019-05-30T17:25:27
2019-05-30T17:25:27
189,454,659
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'messingwithdjango.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
5d2afa784fddf2b41a2109e47a38a43e9cbbc586
34cd68ebcb2d8c2cacc8c3c5550881b998de969a
/my_site/blog/forms.py
7370321b58f6c732fc4aa6705a9598d23f9ad1c0
[]
no_license
kenzli/waterloo-blog
793bc8873ba544e55863faaaf82227d014c06a18
66a7c7897181751332e5a578cb14807d7ac4e8ec
refs/heads/master
2020-12-14T06:43:02.500688
2020-01-18T20:44:16
2020-01-18T20:44:16
234,671,612
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm class RegistrationForm(UserCreationForm): email = forms.EmailField() first_name = forms.CharField(label='First Name', max_length=50) last_name = forms.CharField(label='Last Name', max_length=50) class Meta: model = User fields = ['first_name', 'last_name', 'username', 'email', 'password1', 'password2'] class UserUpdate(forms.ModelForm): email = forms.EmailField() class Meta: model = User fields = ['first_name', 'last_name', 'username', 'email']
069713aff4aa6e1329cdf6ccd1b28edd3cecf71f
70f41a06d733e680af3bb1f00d8ff33574f4f4bb
/src/fh_tools/language_test/DeepLearningNotes/Note-2 RNN处理非线性回归/sonnet/examples/rnn_shakespeare.py
f53e8156f989b18659775bba702b787f26b79ac1
[ "MIT" ]
permissive
mmmaaaggg/RefUtils
209f7136acc63c880e60974c347e19adc4c7ac2e
f127658e75b5c52b4db105a22176ee0931ceacae
refs/heads/master
2021-06-11T16:06:06.245275
2021-03-10T05:32:14
2021-03-10T05:32:14
139,413,962
1
1
null
null
null
null
UTF-8
Python
false
false
13,434
py
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train a stacked LSTM on the Tiny Shakespeare dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import sonnet as snt from sonnet.examples import dataset_shakespeare import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("num_training_iterations", 10000, "Number of iterations to train for.") tf.flags.DEFINE_integer("report_interval", 1000, "Iterations between reports (samples, valid loss).") tf.flags.DEFINE_integer("reduce_learning_rate_interval", 2500, "Iterations between learning rate reductions.") tf.flags.DEFINE_integer("lstm_depth", 3, "Number of LSTM layers.") tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.") tf.flags.DEFINE_integer("num_embedding", 32, "Size of embedding layer.") tf.flags.DEFINE_integer("num_hidden", 128, "Size of LSTM hidden layer.") tf.flags.DEFINE_integer("truncation_length", 64, "Sequence size for training.") tf.flags.DEFINE_integer("sample_length", 1000, "Sequence size for sampling.") tf.flags.DEFINE_float("max_grad_norm", 5, "Gradient clipping norm limit.") tf.flags.DEFINE_float("learning_rate", 0.1, "Optimizer learning rate.") tf.flags.DEFINE_float("reduce_learning_rate_multiplier", 0.1, "Learning rate is multiplied by this when reduced.") tf.flags.DEFINE_float("optimizer_epsilon", 0.01, "Epsilon used for Adam optimizer.") tf.flags.DEFINE_string("checkpoint_dir", "/tmp/tf/rnn_shakespeare", "Checkpointing directory.") tf.flags.DEFINE_integer("checkpoint_interval", 500, "Checkpointing step interval.") def _configure_saver(checkpoint_dir, checkpoint_interval): """Returns a tf.train.CheckpointSaverHook for autosaving checkpoints.""" saver = tf.train.Saver() return tf.train.CheckpointSaverHook( checkpoint_dir=checkpoint_dir, save_steps=checkpoint_interval, saver=saver) def build_graph(lstm_depth=3, batch_size=32, num_embedding=32, num_hidden=128, truncation_length=64, sample_length=1000, max_grad_norm=5, initial_learning_rate=0.1, reduce_learning_rate_multiplier=0.1, optimizer_epsilon=0.01): """Constructs the computation graph.""" # Get datasets. dataset_train = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="train", random=True, name="shake_train") dataset_valid = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="valid", random=False, name="shake_valid") dataset_test = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="test", random=False, name="shake_test") # Define model. model = TextModel( num_embedding=num_embedding, num_hidden=num_hidden, lstm_depth=lstm_depth, output_size=dataset_valid.vocab_size, use_dynamic_rnn=True, use_skip_connections=True) # Get the training loss. train_input_sequence, train_target_sequence = dataset_train() train_output_sequence_logits, train_final_state = model(train_input_sequence) # pylint: disable=not-callable train_loss = dataset_train.cost(train_output_sequence_logits, train_target_sequence) # Get the validation loss. valid_input_sequence, valid_target_sequence = dataset_valid() valid_output_sequence_logits, _ = model(valid_input_sequence) # pylint: disable=not-callable valid_loss = dataset_valid.cost(valid_output_sequence_logits, valid_target_sequence) # Get the test loss. test_input_sequence, test_target_sequence = dataset_test() test_output_sequence_logits, _ = model(test_input_sequence) # pylint: disable=not-callable test_loss = dataset_test.cost(test_output_sequence_logits, test_target_sequence) # Build graph to sample some strings during training. initial_logits = train_output_sequence_logits[truncation_length - 1] train_generated_string = model.generate_string( initial_logits=initial_logits, initial_state=train_final_state, sequence_length=sample_length) # Set up global norm clipping of gradients. trainable_variables = tf.trainable_variables() grads, _ = tf.clip_by_global_norm( tf.gradients(train_loss, trainable_variables), max_grad_norm) # Get learning rate and define annealing. learning_rate = tf.get_variable( "learning_rate", shape=[], dtype=tf.float32, initializer=tf.constant_initializer(initial_learning_rate), trainable=False) reduce_learning_rate = learning_rate.assign( learning_rate * reduce_learning_rate_multiplier) # Get training step counter. global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) # Define optimizer and training step. optimizer = tf.train.AdamOptimizer( learning_rate, epsilon=optimizer_epsilon) train_step = optimizer.apply_gradients( zip(grads, trainable_variables), global_step=global_step) graph_tensors = { "train_loss": train_loss, "valid_loss": valid_loss, "test_loss": test_loss, "train_generated_string": train_generated_string, "reduce_learning_rate": reduce_learning_rate, "global_step": global_step, "train_step": train_step } # Return dataset_train for translation to human readable text. return graph_tensors, dataset_train def train(num_training_iterations, report_interval, reduce_learning_rate_interval): """Trains a deep LSTM model on the Tiny Shakespeare dataset.""" # Build the computation graph. graph_tensors, dataset_train = build_graph( lstm_depth=FLAGS.lstm_depth, batch_size=FLAGS.batch_size, num_embedding=FLAGS.num_embedding, num_hidden=FLAGS.num_hidden, truncation_length=FLAGS.truncation_length, sample_length=FLAGS.sample_length, max_grad_norm=FLAGS.max_grad_norm, initial_learning_rate=FLAGS.learning_rate, reduce_learning_rate_multiplier=FLAGS.reduce_learning_rate_multiplier, optimizer_epsilon=FLAGS.optimizer_epsilon) # Configure a checkpoint saver. saver_hook = _configure_saver(FLAGS.checkpoint_dir, FLAGS.checkpoint_interval) # Train the network. with tf.train.SingularMonitoredSession( hooks=[saver_hook], checkpoint_dir=FLAGS.checkpoint_dir) as sess: start_iteration = sess.run(graph_tensors["global_step"]) for train_iteration in range(start_iteration, num_training_iterations): if (train_iteration + 1) % report_interval == 0: train_loss_v, valid_loss_v, _ = sess.run( (graph_tensors["train_loss"], graph_tensors["valid_loss"], graph_tensors["train_step"])) train_generated_string_v = sess.run( graph_tensors["train_generated_string"]) train_generated_string_human = dataset_train.to_human_readable( (train_generated_string_v, 0), indices=[0]) tf.logging.info("%d: Training loss %f. Validation loss %f. Sample = %s", train_iteration, train_loss_v, valid_loss_v, train_generated_string_human) else: train_loss_v, _ = sess.run((graph_tensors["train_loss"], graph_tensors["train_step"])) tf.logging.info("%d: Training loss %f.", train_iteration, train_loss_v) if (train_iteration + 1) % reduce_learning_rate_interval == 0: sess.run(graph_tensors["reduce_learning_rate"]) tf.logging.info("Reducing learning rate.") test_loss = sess.run(graph_tensors["test_loss"]) tf.logging.info("Test loss %f", test_loss) class TextModel(snt.AbstractModule): """A deep LSTM model, for use on the Tiny Shakespeare dataset.""" def __init__(self, num_embedding, num_hidden, lstm_depth, output_size, use_dynamic_rnn=True, use_skip_connections=True, name="text_model"): """Constructs a `TextModel`. Args: num_embedding: Size of embedding representation, used directly after the one-hot encoded input. num_hidden: Number of hidden units in each LSTM layer. lstm_depth: Number of LSTM layers. output_size: Size of the output layer on top of the DeepRNN. use_dynamic_rnn: Whether to use dynamic RNN unrolling. If `False`, it uses static unrolling. Default is `True`. use_skip_connections: Whether to use skip connections in the `snt.DeepRNN`. Default is `True`. name: Name of the module. """ super(TextModel, self).__init__(name=name) self._num_embedding = num_embedding self._num_hidden = num_hidden self._lstm_depth = lstm_depth self._output_size = output_size self._use_dynamic_rnn = use_dynamic_rnn self._use_skip_connections = use_skip_connections with self._enter_variable_scope(): self._embed_module = snt.Linear(self._num_embedding, name="linear_embed") self._output_module = snt.Linear(self._output_size, name="linear_output") self._lstms = [ snt.LSTM(self._num_hidden, name="lstm_{}".format(i)) for i in range(self._lstm_depth) ] self._core = snt.DeepRNN(self._lstms, skip_connections=self._use_skip_connections, name="deep_lstm") def _build(self, one_hot_input_sequence): """Builds the deep LSTM model sub-graph. Args: one_hot_input_sequence: A Tensor with the input sequence encoded as a one-hot representation. Its dimensions should be `[truncation_length, batch_size, output_size]`. Returns: Tuple of the Tensor of output logits for the batch, with dimensions `[truncation_length, batch_size, output_size]`, and the final state of the unrolled core,. """ input_shape = one_hot_input_sequence.get_shape() batch_size = input_shape[1] batch_embed_module = snt.BatchApply(self._embed_module) input_sequence = batch_embed_module(one_hot_input_sequence) input_sequence = tf.nn.relu(input_sequence) initial_state = self._core.initial_state(batch_size) if self._use_dynamic_rnn: output_sequence, final_state = tf.nn.dynamic_rnn( cell=self._core, inputs=input_sequence, time_major=True, initial_state=initial_state) else: rnn_input_sequence = tf.unstack(input_sequence) output, final_state = tf.contrib.rnn.static_rnn( cell=self._core, inputs=rnn_input_sequence, initial_state=initial_state) output_sequence = tf.stack(output) batch_output_module = snt.BatchApply(self._output_module) output_sequence_logits = batch_output_module(output_sequence) return output_sequence_logits, final_state @snt.experimental.reuse_vars def generate_string(self, initial_logits, initial_state, sequence_length): """Builds sub-graph to generate a string, sampled from the model. Args: initial_logits: Starting logits to sampling from. initial_state: Starting state for the RNN core. sequence_length: Number of characters to sample. Returns: A Tensor of characters, with dimensions `[sequence_length, batch_size, output_size]`. """ current_logits = initial_logits current_state = initial_state generated_letters = [] for _ in range(sequence_length): # Sample a character index from distribution. char_index = tf.squeeze(tf.multinomial(current_logits, 1)) char_one_hot = tf.one_hot(char_index, self._output_size, 1.0, 0.0) generated_letters.append(char_one_hot) # Feed character back into the deep_lstm. gen_out_seq, current_state = self._core( tf.nn.relu(self._embed_module(char_one_hot)), current_state) current_logits = self._output_module(gen_out_seq) generated_string = tf.stack(generated_letters) return generated_string def main(unused_argv): train( num_training_iterations=FLAGS.num_training_iterations, report_interval=FLAGS.report_interval, reduce_learning_rate_interval=FLAGS.reduce_learning_rate_interval) if __name__ == "__main__": tf.app.run()
60b4941d89cf2d18278c8cc3cc21bb76ed4d4ee1
2b2350241420638b2ea0e7068648c801e24c908c
/notchlist/notchlistApi/models/cocktail_ingredient.py
09669015acdc1697a30aa82b052cd8f97505811f
[]
no_license
RockMurdock/Notch-List-API
a2133fd5179fca7901efe5debc2fe62af7a2c12d
6907992357b08c0c34710dab96fdad1daf183e9d
refs/heads/master
2023-08-02T09:54:02.883186
2020-07-01T05:05:14
2020-07-01T05:05:14
272,433,980
0
0
null
2021-09-22T19:15:11
2020-06-15T12:34:07
Python
UTF-8
Python
false
false
400
py
from django.db import models from .cocktail import Cocktail from .ingredient import Ingredient class Cocktail_Ingredient(models.Model): cocktail = models.ForeignKey(Cocktail, on_delete=models.CASCADE) ingredient = models.ForeignKey(Ingredient, on_delete=models.CASCADE) class Meta: verbose_name = "cocktail ingredient" verbose_name_plural = "cocktails ingredients"
4537ab6a765731e146c3aed202b3496d609ec0f6
cfee5e56465060cec89cb779f8c5196aeae29730
/bot.py
221c27e8a8446474a189514afe027fe96170f666
[]
no_license
r3dinforesearcher/ircbot
5b43fdb5cb29924858e407fde1feec75a6cd5d5f
76461457948409225b15ff8631915e0559291201
refs/heads/master
2021-01-10T04:47:43.839499
2015-10-04T13:48:32
2015-10-04T13:48:32
43,637,839
0
0
null
null
null
null
UTF-8
Python
false
false
3,072
py
# Author: r3dinfoguy # Source code integrated from below mentioned links # http://wiki.shellium.org/w/Writing_an_IRC_bot_in_Python # http://www.primalsecurity.net/0xc-python-tutorial-python-malware/ import socket import getpass import os import time import random import re # Set up our commands function def commands(nick,channel,message): if message.find(botnick+': shellium')!=-1: ircsock.send('PRIVMSG %s :%s: Shellium is awesome!\r\n' % (channel,nick)) elif message.find(botnick+': help')!=-1: ircsock.send('PRIVMSG %s :%s: My other command is shellium.\r\n' % (channel,nick)) # Some basic variables used to configure the bot server = "irc.freenode.net" # Server channel = "#r3dinfo" # Channel botnick = socket.gethostname()+'-'+getpass.getuser() # Your bots nick def ping(): # This is our first function! It will respond to server Pings. ircsock.send("PONG :pingis\n") def sendmsg(chan , msg): # This is the send message function, it simply sends messages to the channel. ircsock.send("PRIVMSG "+ chan +" :"+ msg +"\n") def joinchan(chan): # This function is used to join channels. ircsock.send("JOIN "+ chan +"\n") def hello(): # This function responds to a user that inputs "Hello Mybot" ircsock.send("PRIVMSG "+ channel +" :Hello!\n") def executecommand(): command = ircmsg.split(' @')[1] channel = "#r3dinfo" # Channel output = os.popen(command).read() lines = re.split('\n',output) for line in lines: ircsock.send("PRIVMSG "+ channel +" :%s\n" % line) time.sleep(1) ircsock.send("PRIVMSG "+ channel +" :------ Command Completed --------\n") ircsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ircsock.connect((server, 6667)) # Here we connect to the server using the port 6667 ircsock.send("USER "+ botnick +" "+ botnick +" "+ botnick +" :This bot is a result of a tutorial covered on http://shellium.org/wiki.\n") # user authentication ircsock.send("NICK "+ botnick +"\n") # here we actually assign the nick to the bot joinchan(channel) # Join the channel using the functions we previously defined #ircsock.send("Host connected: "+socket.gethostname()+"\n") #ircsock.send("Current User: "+getpass.getuser()+"\n") while 1: # Be careful with these! it might send you to an infinite loop ircmsg = ircsock.recv(2048) # receive data from the server ircmsg = ircmsg.strip('\n\r') # removing any unnecessary linebreaks. print(ircmsg) # Here we print what's coming from the server hello = "welcome Sir" ircsock.send("PONG %s\r\n" % hello) #ircsock.send('PRIVMSG %s :%s: My other command is shellium.\r\n' % (channel,nick)) if ircmsg.find(' PRIVMSG ')!=-1: nick=ircmsg.split('!')[0][1:] channel=ircmsg.split(' PRIVMSG ')[-1].split(' :')[0] commands(nick,channel,ircmsg) if ircmsg.find(":Hello "+ botnick) != -1: # If we can find "Hello Mybot" it will call the function hello() hello() if ircmsg.find("PING :") != -1: # if the server pings us then we've got to respond! ping() if ircmsg.find("YOYO @") !=-1: executecommand()
5577785d91f8ed0b861ba5b46a164fa8802bcbd5
951c392e439e4a3576ce3f4469aedae7e4167cd9
/modules/site_watcher.py
f1bd75fc7a473bce6b4bcf7c6b6e07ea09e27a35
[]
no_license
DonoA/Thompson-Discord
bfbe524f0b6bd0cc3d565b626a5ed41be1647659
7a04497887bbb6355e8ded39e7e0a18a53738598
refs/heads/master
2021-01-19T09:35:50.553880
2017-04-17T04:34:39
2017-04-17T04:34:39
87,770,456
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
from threading import Thread from splinter import Browser import discord_bot class SiteWatch(Thread): def __init__(self, url, xpath, timeout, total_time, logger, channel): self.url = url self.xpath = xpath self.timeout = timeout self.total_time = total_time self.logger = logger.log self.message = await discord_bot.discord_bot.send_message(channel, "Fetching...") self.fetch() def fetch(self): with Browser() as browser: self.logger("Screen ready") browser.visit(self.url) val = browser.find_by_xpath(self.xpath).first["text"] await discord_bot.discord_bot.edit_message(self.message, val)
49ce8a859130b9c6410b6506e684134bc91d97bb
cadb30d66cfb3352d333ecf131356eb67d602399
/AstroObject.py
22a294c6a05df5efc23d9e7acda968fd9011502e
[]
no_license
LoganBenham/SpaceGame
4ae37f12899c279cd6f5fc591644e6e5492abc88
9b4bcd5847c9a48eeaedef48398b9f32c581119e
refs/heads/master
2021-01-11T15:57:56.467364
2017-01-25T00:22:54
2017-01-25T00:22:54
79,968,509
1
0
null
null
null
null
UTF-8
Python
false
false
6,434
py
from UnitNumber import * import random as rand class StationaryObject: # Newtonian object, mainly for centers of galaxies def __init__(self, mass=UNum(0, suns=1), position=UVector2D(value=UNum(0, ly=1), angle=0.)): self.mass = mass if type(position)!=UVector2D: raise TypeError('Position must be UVector2D') self.real_position = position self.orbiters = [] self.type_name = 'Newtonian Object' self.orbiting = False def get_pos(self, time): return self.real_position class Orbit: def __init__(self, focus, semimajor_axis, eccentricity, periapsis=None, angle=None, time=UNum(0, yrs=1), clockwise=False): if type(semimajor_axis)!=UNum: raise TypeError('Semimajor Axis has no units') if eccentricity >= 1 or eccentricity < 0: raise ValueError('Eccentricity can only be from 0-0.999...', eccentricity) self.focus = focus self.semimajor_axis = semimajor_axis self.eccentricity = eccentricity self.start_time = time self.clockwise = clockwise if periapsis is not None: self.periapsis = periapsis else: self.periapsis = 2 * math.pi * rand.random() # angle if angle is not None: self.initial_angle = angle else: self.initial_angle = 2 * math.pi * rand.random() self.mu = Physics.G_myunits * self.focus.mass self.period = UNum(0, yrs=1) if not self.mu.number==0: self.period = (((self.semimajor_axis**3) / self.mu)**0.5) * 2 * math.pi return # noinspection PyPep8Naming def get_pos(self, time, debug=False): if self.semimajor_axis.number==0.: return self.focus.real_position elif self.focus.mass.number==0: raise ValueError('Orbiting something with no mass') mean_anomaly = (self.period**-1 * (time - self.start_time - self.period) * 2 * math.pi).number eccentric_anomaly = self.inversekepler(mean_anomaly) #print('mean anomaly:', mean_anomaly) #print('eccentric anomaly:', eccentric_anomaly) cos_E = math.cos(eccentric_anomaly) sin_E = math.sin(eccentric_anomaly) e = self.eccentricity cos_true = (cos_E - e) / (1 - e * cos_E) sin_true = math.sqrt(1 - e**2) * sin_E / (1 - e * cos_E) true_anomaly = math.atan2(sin_true, cos_true) if self.clockwise: true_anomaly = -true_anomaly distance = self.semimajor_axis * (1 - e**2) / (1 + (e * math.cos(true_anomaly))) return UVector2D(value=distance, angle=true_anomaly + self.initial_angle + self.periapsis) + self.focus.real_position def get_vel(self, time): x = self.get_pos(time, debug=True) - self.focus.get_pos(time) dx = self.get_pos(time + self.period/100) - self.get_pos(time - self.period/100) angle = dx.angle term1 = x.value**-1 term2 = self.semimajor_axis**-1 speed = (self.mu*(term1*2 - term2))**0.5 return UVector2D(value=speed, angle=angle) def orbital_position(self, time): return (self.get_pos(time)-self.focus.position).rotate(-self.periapsis) def orbit_points(self, position_unit, n=30): points = [] for i in range(n): eccentric_anomaly = 2 * math.pi * i / n cos_E = math.cos(eccentric_anomaly) sin_E = math.sin(eccentric_anomaly) e = self.eccentricity cos_true = (cos_E - e) / (1 - e * cos_E) sin_true = math.sqrt(1 - e**2) * sin_E / (1 - e * cos_E) true_anomaly = math.atan2(sin_true, cos_true) if self.clockwise: true_anomaly = -true_anomaly distance = self.semimajor_axis * (1 - self.eccentricity**2) / (1 + (self.eccentricity * math.cos(true_anomaly))) vec = UVector2D(value=distance, angle=true_anomaly + self.periapsis + self.initial_angle) vec = (vec + self.focus.real_position).convert([position_unit]) points.append(Vector2D(x=vec.x.number, y=vec.y.number)) return points def inversekepler(self, mean_anom): ecc_anom = mean_anom for i in range(35): ecc_anom = mean_anom + self.eccentricity * math.sin(ecc_anom) return ecc_anom def print(self): #print('SM-Axis:', self.semimajor_axis) print('e:', self.eccentricity) print('periapsis:', self.periapsis) #print('period:', self.period) print('start time:', self.start_time) print('start angle:', self.initial_angle) def get_system(self): focus = self.focus while focus.type_name!='Star System': focus = focus.orbit.focus return focus def __getattr__(self, attr): if attr == 'apoapsis_dist': return self.semimajor_axis * (1+self.eccentricity) elif attr == 'periapsis_dist': return self.semimajor_axis * (1-self.eccentricity) else: raise AttributeError("%r object has no attribute %r" % (self.__class__, attr)) class OrbitFromVectors(Orbit): def __init__(self, focus, position, velocity, time=UNum(0, yrs=1)): pos = position - focus.get_pos(time) vel = velocity angular_momentum = pos.value * vel.value * math.sin(vel.angle - pos.angle) #in 3rd dim mu = Physics.G.convert(['AU', 'yrs']) * focus.mass term1 = pos * (vel.value**2 - mu/pos.value) term2 = vel * pos.dot(vel) e_vec = ((term1 - term2) / mu) e_vec = e_vec.number() if angular_momentum.number >= 0: term1_2 = Vector2D(value=(vel.value*angular_momentum/mu).number, angle=vel.angle-math.pi/2) else: term1_2 = Vector2D(value=(vel.value*angular_momentum/mu).number, angle=vel.angle+math.pi/2) term2_2 = Vector2D(value=1, angle=pos.angle) e_vec_2 = term1_2 - term2_2 e = e_vec.value mech_energy = (vel.value**2)/2 - mu/pos.value semimajor_axis = mu / (mech_energy * -2) periapsis = e_vec.angle if angular_momentum.number < 0: periapsis = 2*math.pi - periapsis while periapsis > 2*math.pi: periapsis -= 2*math.pi true_anomaly = pos.angle - periapsis super().__init__(focus, semimajor_axis, e, periapsis=periapsis, angle=true_anomaly, time=time) self.print() class Orbiter: def __init__(self, focus, semimajor_axis, mass=UNum(0, kg=1), eccentricity=0., clockwise=False): if not hasattr(self, 'type_name'): self.type_name = 'Generic Orbiter' if not hasattr(self, 'name'): self.name = 'noname' self.color = 'orange' self.draw_radius = 2 self.mass = mass self.orbiting = True self.orbit = Orbit(focus, semimajor_axis, eccentricity, clockwise=clockwise) if self.orbit.period.number==0.: self.moving = False self.real_position = self.orbit.focus.real_position else: self.moving = True def get_pos(self, time): return self.orbit.get_pos(time) def get_vel(self, time): return self.orbit.get_vel(time) def set_pos(self, time): self.real_position = self.get_pos(time) def __str__(self): return self.name + ' - ' + self.type_name
ff4167eca5c1c06c214655bc62f72432e12d13f8
35bb03caac708f73497a88c1a81cef6f5f481197
/WeightofEvidence.py
c0abe497e7fa5ad0a1324be8b3bfe22a68897703
[]
no_license
aleespa/Equipo-3
c70c7a3b6458aa0c14571036ea2634895314d7f0
5a28b3fde05d3eca6c32570c79dd4b0e054753df
refs/heads/master
2020-04-06T07:09:05.047232
2018-05-16T20:38:35
2018-05-16T20:38:35
124,180,706
0
1
null
null
null
null
UTF-8
Python
false
false
3,844
py
from __future__ import division import pandas as pd import numpy as np from math import log class WoE: def __init__(self, disc=None, cont=None): self.maps = None self.disc = disc self.cont = cont self.IV = None def fit(self, Z, y,bins=None): X = Z.copy() self.IV = pd.DataFrame([np.zeros(len(X.columns))],columns = X.columns) self.maps = pd.DataFrame() cols = X.columns X['var'] = y X['ID'] = range(len(X)) for col in self.disc: a = X.pivot_table(aggfunc='count',columns='var',fill_value=0, index=col,values='ID').reset_index() a.loc[-1] =["TOTAL", sum(a[0]), sum(a[1])] lis = [] for y in set(X[col].values): g = int(a[a[col]==y][1])/int(a[a[col]=='TOTAL'][1]) b = int(a[a[col]==y][0])/int(a[a[col]=='TOTAL'][0]) if g*b == 0 : d = log((g+0.5)/(b+0.5)) else: d = log(g/b) self.IV[col] += float((g-b)*d) lis.append((y,d)) lis1 = pd.DataFrame(columns=[col]) lis1[col] = lis self.maps = pd.concat([self.maps, lis1],axis=1) for col in self.cont: IV = [] for i in bins: IV.append(0) X[col] = pd.cut(Z[col], bins = i) a = X.pivot_table(aggfunc='count',columns='var',fill_value=0, index=col,values='ID').reset_index() a.loc[-1] =["TOTAL", sum(a[0]), sum(a[1])] for y in set(X[col].values): goods = float(int(a[a[col]==y][1])/int(a[a[col]=='TOTAL'][1])) bads = float(a[a[col]==y][0]/int(a[a[col]=='TOTAL'][0])) if (bads != 0)&(goods !=0): d = log(bads/goods) IV[-1] += float((bads-goods)*d) else: IV[-1] += -np.inf IV = np.array(IV) armax = np.argmax(IV[IV <np.inf]) M = int(bins[armax]) y1 = min(Z[col]) y2 = max(Z[col]) B = [-np.inf]+[y1 + n*(y2-y1)/M for n in range(1,M)]+[np.inf] X[col] = pd.cut(Z[col], bins = M,include_lowest=True,right=True,labels= [x for x in range(1,M+1)]) a = X.pivot_table(aggfunc='count',columns='var',fill_value=0, index=col,values='ID').reset_index() a.loc[-1] =["TOTAL", sum(a[0]), sum(a[1])] lis = [] for y in set(X[col].values): g = int(a[a[col]==y][1])/int(a[a[col]=='TOTAL'][1]) b = int(a[a[col]==y][0])/int(a[a[col]=='TOTAL'][0]) if g*b == 0 : d = log((g+0.5)/(b+0.5)) else: d = log(g/b) self.IV[col] += float((g-b)*d) lis.append((B[y-1],B[y],d)) lis1 = pd.DataFrame(columns=[col]) lis1[col] = lis self.maps = pd.concat([self.maps, lis1],axis=1) def transform(self, W): Z = W.copy() for col in self.disc: for value in Z[col].values: Aux = [x for x in self.maps[col] if type(x)==tuple] if value in [x[0] for x in Aux]: aux = [x[1] for x in Aux if x[0]==value] Z[col].replace(value,aux[0]*100,inplace=True) else: print str(value)+" No se observo en la variable original " + str(col) for col in self.cont: for pairs in [x for x in self.maps[col] if type(x)==tuple ]: for value in Z[col].values: if (pairs[0]<= value) & (value<= pairs[1]): Z[col].replace(value,pairs[2]*100,inplace=True) return Z
7fa2c95485f833a66f82eeeb2eac977db70d395a
d31d744f62c09cb298022f42bcaf9de03ad9791c
/lingvo/lingvo/core/generic_input_test.py
f9ce2cc34f92681e17e8c56079cff145b69a067b
[ "Apache-2.0" ]
permissive
yuhuofei/TensorFlow-1
b2085cb5c061aefe97e2e8f324b01d7d8e3f04a0
36eb6994d36674604973a06159e73187087f51c6
refs/heads/master
2023-02-22T13:57:28.886086
2021-01-26T14:18:18
2021-01-26T14:18:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,217
py
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for generic_input_op.""" import collections import os import pickle import unittest from absl.testing import parameterized from lingvo import compat as tf from lingvo.core import generic_input from lingvo.core import py_utils from lingvo.core import test_utils import numpy as np def get_test_input(path, bucket_batch_limit=8, **kwargs): return generic_input.GenericInput( file_pattern='tfrecord:' + path, file_random_seed=0, file_buffer_size=32, file_parallelism=4, bucket_batch_limit=[bucket_batch_limit], **kwargs) def run_basic_graph(use_nested_map, bucket_fn=lambda x: 1, bucket_batch_limit=8): # Generate a test file w/ 100 records. tmp = os.path.join(tf.test.get_temp_dir(), 'basic') with tf.python_io.TFRecordWriter(tmp) as w: for i in range(100): w.write(('%08d' % i).encode('utf-8')) # A simple string parsing routine. Just convert a string to a # number. def str_to_num(s): return np.array(float(s), dtype=np.float32) # A record processor written in TF graph. def _process(source_id, record): num, = tf.py_func(str_to_num, [record], [tf.float32]) num = tf.stack([num, tf.square(num)]) if use_nested_map: return py_utils.NestedMap( source_id=source_id, record=record, num=num), bucket_fn(num) else: return [source_id, record, num], bucket_fn(num) # Samples random records from the data files and processes them # to generate batches. inputs, _ = get_test_input( tmp, bucket_batch_limit=bucket_batch_limit, bucket_upper_bound=[1], processor=_process) if use_nested_map: return inputs else: src_ids, strs, vals = inputs return py_utils.NestedMap(source_id=src_ids, record=strs, num=vals) class GenericInputOpTest(test_utils.TestCase, parameterized.TestCase): @parameterized.named_parameters(('OutputList', False, 8), ('OutputNestedMap', True, 8), ('OutputNestedMap_Batch1', True, 1)) def testBasic(self, use_nested_map, bucket_batch_limit): input_batch = run_basic_graph( use_nested_map=use_nested_map, bucket_batch_limit=bucket_batch_limit) with self.session(): record_seen = set() for i in range(100): ans_input_batch = self.evaluate(input_batch) for s in ans_input_batch.record: record_seen.add(s) self.assertEqual(ans_input_batch.source_id.shape, (bucket_batch_limit,)) self.assertEqual(ans_input_batch.record.shape, (bucket_batch_limit,)) self.assertEqual(ans_input_batch.num.shape, (bucket_batch_limit, 2)) ans_vals = ans_input_batch.num self.assertAllEqual(np.square(ans_vals[:, 0]), ans_vals[:, 1]) for i in range(100): self.assertIn(('%08d' % i).encode('utf-8'), record_seen) def testPadding(self): # Generate a test file w/ 50 records of different lengths. tmp = os.path.join(tf.test.get_temp_dir(), 'basic') with tf.python_io.TFRecordWriter(tmp) as w: for n in range(1, 50): w.write(pickle.dumps(np.full([n, 3, 3], n, np.int32))) g = tf.Graph() with g.as_default(): # A record processor written in TF graph. def _process(record): num = tf.py_func(pickle.loads, [record], tf.int32) bucket_key = tf.shape(num)[0] return [num, tf.transpose(num, [1, 0, 2])], bucket_key # Samples random records from the data files and processes them # to generate batches. (vals_t, transposed_vals_t), _ = get_test_input( tmp, bucket_upper_bound=[10], processor=_process, dynamic_padding_dimensions=[0, 1], dynamic_padding_constants=[0] * 2) with self.session(graph=g): for _ in range(10): vals, transposed_vals = self.evaluate([vals_t, transposed_vals_t]) print(vals, np.transpose(transposed_vals, [0, 2, 1, 3])) self.assertEqual(vals.shape[0], 8) self.assertEqual(vals.shape[2], 3) self.assertEqual(vals.shape[3], 3) largest = np.amax(vals) self.assertLessEqual(largest, 10) self.assertEqual(vals.shape[1], largest) for j in range(8): n = vals[j, 0, 0, 0] self.assertTrue(np.all(vals[j, :n] == n)) self.assertTrue(np.all(vals[j, n:] == 0)) self.assertAllEqual(vals, np.transpose(transposed_vals, [0, 2, 1, 3])) def testDropRecordIfNegativeBucketKey(self): def bucket_fn(num): # Drops record if num[0] is odd. return tf.cond( tf.equal(tf.math.floormod(num[0], 2), 0), lambda: 1, lambda: -tf.cast(num[0], tf.int32)) input_batch = run_basic_graph(use_nested_map=False, bucket_fn=bucket_fn) with self.session(): record_seen = set() for i in range(100): ans_input_batch = self.evaluate(input_batch) for s in ans_input_batch.record: record_seen.add(s) for i in range(100): if i % 2 == 0: self.assertIn(('%08d' % i).encode('utf-8'), record_seen) else: self.assertNotIn(('%08d' % i).encode('utf-8'), record_seen) def testWithinBatchMixing(self): # Generate couple files. def generate_test_data(tag, cnt): tmp = os.path.join(tf.test.get_temp_dir(), tag) with tf.python_io.TFRecordWriter(tmp) as w: for i in range(cnt): w.write(('%s:%08d' % (tag, i)).encode('utf-8')) return tmp path1 = generate_test_data('input1', 100) path2 = generate_test_data('input2', 200) path3 = generate_test_data('input3', 10) g = tf.Graph() with g.as_default(): # A record processor written in TF graph. def _process(source_id, record): return py_utils.NestedMap(source_id=source_id, record=record), 1 # Samples random records from the data files and processes them # to generate batches. input_batch, buckets = generic_input.GenericInput( file_pattern=','.join( ['tfrecord:' + path1, 'tfrecord:' + path2, 'tfrecord:' + path3]), input_source_weights=[0.2, 0.3, 0.5], file_random_seed=0, file_buffer_size=32, file_parallelism=4, bucket_batch_limit=[8], bucket_upper_bound=[1], processor=_process) with self.session(graph=g): source_id_count = collections.defaultdict(int) tags_count = collections.defaultdict(int) total_count = 10000 for _ in range(total_count): ans_input_batch, ans_buckets = self.evaluate([input_batch, buckets]) for s in ans_input_batch.source_id: source_id_count[s] += 1 for s in ans_input_batch.record: tags_count[s.split(b':')[0]] += 1 self.assertEqual(ans_input_batch.source_id.shape, (8,)) self.assertEqual(ans_input_batch.record.shape, (8,)) self.assertAllEqual(ans_buckets, [1] * 8) self.assertEqual(sum(source_id_count.values()), total_count * 8) self.assertEqual(sum(tags_count.values()), total_count * 8) num_records = 8. * total_count self.assertAlmostEqual( tags_count[b'input1'] / num_records, 0.2, delta=0.01) self.assertAlmostEqual( tags_count[b'input2'] / num_records, 0.3, delta=0.01) self.assertAlmostEqual( tags_count[b'input3'] / num_records, 0.5, delta=0.01) self.assertAlmostEqual(source_id_count[0] / num_records, 0.2, delta=0.01) self.assertAlmostEqual(source_id_count[1] / num_records, 0.3, delta=0.01) self.assertAlmostEqual(source_id_count[2] / num_records, 0.5, delta=0.01) def testBoolDType(self): tmp = os.path.join(tf.test.get_temp_dir(), 'bool') with tf.python_io.TFRecordWriter(tmp) as w: for i in range(50): w.write(pickle.dumps(True if i % 2 == 0 else False)) g = tf.Graph() with g.as_default(): # A record processor written in TF graph. def _process(record): bucket_key = 1 num, = tf.py_func(pickle.loads, [record], [tf.bool]) return [num], bucket_key # Samples random records from the data files and processes them # to generate batches. inputs, _ = get_test_input( tmp, bucket_upper_bound=[1], processor=_process) with self.session(graph=g): for _ in range(10): inputs_vals = self.evaluate(inputs)[0] self.assertEqual(inputs_vals.dtype, bool) def testExtraArgs(self): def _parse_record(record): del record example = py_utils.NestedMap(t=tf.convert_to_tensor(0)) bucketing_key = 1 return example, bucketing_key def _parse_record_stateful(record): del record extra = tf.Variable(0) example = py_utils.NestedMap(t=extra.value()) bucketing_key = 1 return example, bucketing_key generic_input.GenericInput( _parse_record, file_pattern='', bucket_upper_bound=[1], bucket_batch_limit=[1]) with self.assertRaisesRegex(AssertionError, 'is not pure: extra_args='): generic_input.GenericInput( _parse_record_stateful, file_pattern='', bucket_upper_bound=[1], bucket_batch_limit=[1]) def testTfData(self): """Checks that GenericInput can be invoked from a tf.data.Dataset.""" def _input_batch(): return run_basic_graph(use_nested_map=True) # Trick to create dataset from tensor coming from custom op. dummy_dataset = tf.data.Dataset.from_tensors(0).repeat() dataset = dummy_dataset.map(lambda _: _input_batch()) with self.session(use_gpu=False) as sess: it = tf.compat.v1.data.make_initializable_iterator(dataset) sess.run(it.initializer) batch = it.get_next() for _ in range(10): # Read 10 batches. print(sess.run(batch)) @unittest.skip('This test is expected to crash.') def testFatalErrors(self): tmp = os.path.join(tf.test.get_temp_dir(), 'fatal') with tf.python_io.TFRecordWriter(tmp) as w: for i in range(50): w.write(str((i % 2) * 2**33)) def _parse_record(record): # tf.strings.to_number raises error on overflow. i = tf.strings.to_number(record, tf.int32) example = py_utils.NestedMap(record=i) bucketing_key = 1 return example, bucketing_key with self.session(): # Without specifying fatal_errors all records not 0 are skipped. input_batch, _ = generic_input.GenericInput( _parse_record, file_pattern=f'tfrecord:{tmp}', bucket_upper_bound=[1], bucket_batch_limit=[1]) for i in range(25): ans_input_batch = self.evaluate(input_batch) self.assertEqual(ans_input_batch.record[0], 0) # With fatal_errors it dies instead. input_batch, _ = generic_input.GenericInput( _parse_record, file_pattern=f'tfrecord:{tmp}', bucket_upper_bound=[1], bucket_batch_limit=[1], fatal_errors=[tf.errors.INVALID_ARGUMENT]) # NOTE: There is no way to catch LOG(FATAL) from python side, so running # this test will cause a crash. for i in range(10): self.evaluate(input_batch) class GenericInputOpBenchmark(tf.test.Benchmark): def benchmark_basic(self): input_batch = run_basic_graph(use_nested_map=True) with tf.Session() as sess: print(self.run_op_benchmark(sess, input_batch, min_iters=10)) if __name__ == '__main__': tf.test.main()
683a5c5baaba469274e36b437dc1f159aad7593e
572f63126e81fd12c3eaa3c9293190a04c4808ba
/text_file.py
51fdea75a5b60348dd4ef3f7438dde20f6a53f27
[]
no_license
ibbocus/file_handling
caa32718f41634e71b42a728f26e70fb4582b522
b4528a886b2c7c8c1b95508eadf35aa4c9c89dfe
refs/heads/master
2022-11-14T09:37:33.579256
2020-07-08T18:00:57
2020-07-08T18:00:57
278,157,898
0
0
null
null
null
null
UTF-8
Python
false
false
2,577
py
class TextFileHandling: def __init__(self, file_path, text_storage = None): self.file_path = file_path self.text_storage = text_storage # Going to read in two ways and write in two ways def readtextfile(self): #open file #read the file #close the file try: file = open(self.file_path, 'r') #try = put the code you think will raise an error except Exception as e: # except - catches the thrown exception print(e) else: # if the exception is not thrown then run the code as normal. You can add a finally clause that will perform regardless of whether an excpetion is thrown or no # self.text_storage = file.read(3) # this reads 3 characters in the text file self.text_storage = file.readline() self.text_storage = file.readline() print(file.tell()) # outputs the location of the pointer, after read lines the pointer moves to the end of what has been read file.seek(0) # file.seek moves the pointer to the character stated. 1 is current postion, 3 is distance? self.text_storage = file.readlines() file.close() return self.text_storage def writetextfile(self): file = open("writer.txt", 'w') file.write("my first python created file\n") file.close() file = open("writer.txt", "a+") # a+ means append and read file.write("adding to txt file") file.seek(0) self.text_storage = file.read() file.close() return self.text_storage def readtextfilesusingwith(self): # reduces the overhead of closing files # just opens it and closes it # automatically closes the file and also closes it during the times of execution with open("order.txt", "r") as file: self.text_storage = file.read() return self.text_storage def writetextfilesusingwith(self): with open("writer.txt", "w+") as file: file.write("using writer with with") file.seek(0) self.text_storage = file.read() return self.text_storage def playingwithpythonosmodule(self): import os print(os.getcwd(), "is the current folder") # cwd = current window # os.remove("writer.txt") print(os.listdir()) # if empty, will return a list of the files in cwd # os.chdir("C:\Users\Ib_Bo\PycharmProjects\Com_1") # os.mkdir("Ayb") os.rmdir("Ayb") # this will remove the directory stated
1d7ed26d68903d80c4ab5c736012326121c90ce6
806f10d2b56a3f4b79f3d90e8ac6d0addd96c16a
/pyictacp/record/input.py
7f6db8cb1e1699fb78cca4f0d4e54ae9c48aea19
[]
no_license
HexF/pyictacp
3f41e348d4c84d45876725e092c3967f08328b43
a742e92dee0f2666c30069aed4427da981cee5fb
refs/heads/main
2023-08-12T00:10:49.567906
2021-10-06T13:26:19
2021-10-06T13:26:19
412,511,915
1
1
null
null
null
null
UTF-8
Python
false
false
1,382
py
from pyictacp.connection import Connection from pyictacp.record import Record from pyictacp.packet.data import InputStatusDataPacketData from pyictacp.packet.command import PermanentInputBypassCommandPacket, RemoveInputBypassCommandPacket, RequestInputStatusCommandPacket, TemporaryInputBypassCommandPacket class Input(Record, data_class = InputStatusDataPacketData, data_request_command = RequestInputStatusCommandPacket, data_index_match = lambda rec, id: rec.input_index == id): def __init__(self, connection: Connection, record_id: int): super().__init__(connection, record_id) self.input_state = None self.bypassed = None self.bypassed_latched = None self.siren_lockout = None def _update(self, data: InputStatusDataPacketData): self.input_state = data.input_state self.bypassed = data.bypassed self.bypassed_latched = data.bypassed_latched self.siren_lockout = data.siren_lockout def remove_bypass(self): self.connection.execute_command( RemoveInputBypassCommandPacket(self.record_id) ) def bypass(self, temporary: bool=False): cmd_type = TemporaryInputBypassCommandPacket if temporary else PermanentInputBypassCommandPacket self.connection.execute_command( cmd_type(self.record_id) )
053a6d747f2455a605247829fbc91cd44c08ac2b
0907a339c27471b1b0da4207229d245eec75c1ca
/src/utils/timeget.py
3a90bd0d0e5f2f68738ddd3764a34c5b932e0d5a
[ "MIT" ]
permissive
Useems/TrydRPC
2f142b0d54469229a15abbc794d47183f535a2d1
f149779ecb147999a339399e85a195f024698eca
refs/heads/main
2023-04-17T04:48:53.028499
2021-04-24T14:34:42
2021-04-24T14:34:42
341,267,375
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
timeOrder = ["acabou de abrir a plataforma", "há {0} minutos", "há {0} horas", "há {0} dias"] def getTime(time): global timeOrder diff = (datetime.now() - time).total_seconds() index = 0 for i in [60, 60, 24]: if diff >= i and index + 1 < len(timeOrder): diff = diff/i index += 1 else: break diff = math.floor(diff) message = str(diff) + ' ' + timeOrder[index] if diff == 1: message = message[:-1] return message
0158367327597b0ac63d733ad9deb79ba2213d1e
7c1a0ee337c4407768c343518ebee7f8a1b540ef
/env/lib/python3.6/sre_constants.py
91beca82ad32721c6b411f90126001a8780c8fc3
[]
no_license
spmarisa/flask_demo
8dcce02b43664da0b6afe97975e70a675425e22f
e5be66cfe1ebddc130875fb9fddc294d81085a0e
refs/heads/master
2020-03-23T19:58:39.017626
2018-07-23T12:51:14
2018-07-23T12:51:14
142,013,715
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
/home/phaneendra/anaconda3/lib/python3.6/sre_constants.py
00659e30f98681b77ccbae801214198d8020a229
6e08e7057b4e8ac04aa031cea19518ff6e479b62
/TSIS1-informatics/3752-1.py
207dbbd58d826b5a32392cb98a6f035b6834dc5a
[]
no_license
Arujazzz/Python
1e313cab12f11e506844e969d5e5072635cfd27c
1ea44e9bdc830f60bf627958c2a5defad54af823
refs/heads/main
2023-05-02T23:39:28.053098
2021-05-20T05:56:15
2021-05-20T05:56:15
369,092,366
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
s = list(map(int, input().split())) nset = set() for i in s: print('YES') if i in nset else print('NO') nset.add(i)
71766bce5bf64747b94fe0451bda8719bec805b1
edf354a966b107d784580591ea6d649e9e513378
/django_chuck_conf.py
582494f8fbd5b652d1186c41241e9ca170258e1c
[ "BSD-2-Clause" ]
permissive
cambieri/django-chuck
bc57da06c2892c082876e3ad15fdd10f23d9bfc8
43980e054c450038e5143d1b08edbcb0b331369f
refs/heads/master
2020-12-25T12:07:54.365015
2013-06-24T11:33:49
2013-06-24T11:33:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
# Where to put virtualenvs? virtualenv_basedir="/home/workspace-django/virtualenvs" # Where to put project dirs? project_basedir="/home/workspace-django/projects" # Comma seperated list of dirs where Chuck should look for modules. # . will be replaced with the Django Chuck modules dir #module_basedirs = ["."] module_basedirs = ["./modules"] # comma seperated list of modules that always should be installed default_modules=["core", "south"] # comma seperated list of app that should additionally get installed #default_additional_apps = ["south"] # use virtualenvwrapper? use_virtualenvwrapper = False # default django settings module to use # project_name will be automatically prepended django_settings = "settings.dev" # requirements file to install in virtualenv # default: requirements_local.txt requirements_file = "requirements_local.txt" # version control system # possible values: git, svn, cvs, hg # default: git version_control_system = "git" # the branch you want to checkout / clone # default is "" branch = "" # Python version to use by default # If not set version of local python interpreter will be used python_version = "2.7" # Where to find virtualenvs on your server? server_virtualenv_basedir = "/opt/django/virtualenvs" # Where to projects on your server? server_project_basedir = "/opt/django/sites" # What is your email domain? email_domain = "cambieri.it" # module aliases are a list of modules under a single name module_aliases = { "test": ["unittest", "jenkins"], "oscar": ["fabric", "jquery", "nginx", "pil", "postgres", "twitter-bootstrap", "uwsgi"], } # Run in debug mode debug = False # Dont delete project after failure? # delete_project_on_failure=False # Module to use as template engine # Default: django_chuck.template.notch_interactive.engine template_engine = "django_chuck.template.notch_interactive.engine"
e6336016dcbe4e89b2a155b8b3de83bb815764d9
8b553f336d01a28c6e84d7c864963775073b892c
/perceptron.py
95d698ae73dcc818c55c0acf75b6e0342af2b31f
[]
no_license
wangshuaibupt/rock-climbing-cnn
c3e8fad4e97104c2492ba4fe59cbbad35ec2e8f6
aab26eb4fe16fe5ca1568efbd4d636aaf726a635
refs/heads/master
2022-12-05T22:22:15.362925
2020-07-26T13:58:38
2020-07-26T13:58:38
282,428,066
1
0
null
null
null
null
UTF-8
Python
false
false
3,885
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # Copyright (c) 2020 wangshuaibupt. All Rights Reserved # ################################################################################ """ perceptron.py 感知机 Authors: wangshuaibupt([email protected]) Date: 2020/07/25 14:57:06 """ import random import logging import functools import numpy as np def activation(x): """激活函数""" # return x return 1 if x > 0 else 0 def activation_list(x_list): """列表每个元素都使用激活函数""" out = [] for i in range(0, len(x_list)): out.append(activation(x_list[i])) return out class VectorOP(object): """向量操作""" @staticmethod def dot_product(x, y, bia=None): """带偏置项的点积""" if bia is None: bia = 0.0 if len(x) == 0 or len(y) == 0: return 0.0 return functools.reduce(lambda a, b: a + b, VectorOP.vector_multiply(x, y), bia) @staticmethod def vector_add(x, y): """向量对应元素相加""" return list(map(lambda x_y: x_y[0] + x_y[1], zip(x, y))) @staticmethod def vector_subtraction(x, y): """向量对应元素项相减""" return list(map(lambda x_y: x_y[0] - x_y[1], zip(x, y))) @staticmethod def vector_add(x, y): """向量对应元素相加""" return list(map(lambda x_y: x_y[0] + x_y[1], zip(x, y))) @staticmethod def scala_multiply(v, s): """将向量v中的每个元素和标量s相乘""" return map(lambda e: e * s, v) @staticmethod def vector_multiply(x, y): """向量对应元素相乘""" return list(map(lambda multiply: multiply[0] * multiply[1], zip(x, y))) class Perceptron(object): """感知机函数""" def __init__(self, features, lables, iterations, learning_rate, activation): """初始化 :param features 特征个数 :param lables 标签 :param activation 激活函数 """ self.features = features self.lables = lables self.activation = activation self.input_parm_num = 0 # 最长迭代次数 self.iterations = iterations # 学习速率 self.learning_rate = learning_rate if len(self.features) > 0: self.input_parm_num = len(self.features[0]) # 权重向量 self.w = [0.0] * self.input_parm_num # 偏执 self.bia = 0.0 def one_iteration(self): """单次迭代将所有数据过一遍""" samples = zip(self.features, self.lables) for feature, lable in samples: sub = self.predict(feature) - lable delta_w = VectorOP.scala_multiply(feature, self.learning_rate * sub) self.w = list(map(lambda a, b: a - b, self.w, delta_w)) self.bia = self.bia - self.learning_rate * sub * 1.0 def train(self): """函数训练""" for i in range(0, self.iterations): logging.info("iterations num is %s", i) self.one_iteration() def predict(self, x): """预测""" return self.activation(VectorOP.dot_product(self.w, x, self.bia)) if __name__ == '__main__': features = [[1, 1, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 0]] lables = [1, 0, 0, 0, 0, 0, 0, 0] iterations = 1000 learning_rate = 0.1 p_obj = Perceptron(features, lables, iterations, learning_rate, activation) p_obj.train() print ("权重矩阵预测值:{w}".format(w=p_obj.w)) print ("偏置量预测值:{bia}".format(bia=p_obj.bia)) print (p_obj.predict([1.0, 1.0, 1.0])) print (p_obj.predict([1.0, 0.0, 1.0])) print (p_obj.predict([0.0, 1.0, 1.0]))
3c614fad0d1969fd449d602b813487baaeec15fc
b39530cc6370acf017f8136ae2888bceaff412e1
/TangoProject/wsgi.py
a20a940848b4cac39d94378de2e9301542b014f9
[]
no_license
smallcrustation/TangoProject
375a328dd664121d32e94ea7417cd7453e6c7b87
5969f97af69971665ef95a46856252931ad4ee0b
refs/heads/master
2022-12-14T09:47:16.632714
2019-12-10T19:42:29
2019-12-10T20:15:59
70,802,056
0
0
null
2022-11-22T01:18:38
2016-10-13T12:01:16
Python
UTF-8
Python
false
false
1,146
py
""" WSGI config for TangoProject project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "TangoProject.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
eae2af2918fa99c6dbb9f80d51f087a4a62e8429
d0581b344128cf838c9e7912bf922f8e2d37f2b3
/08-Functions/01-BasicFunctions.py
2db751135f260de39c5b4f10cfeb22dd5581938f
[]
no_license
ravi4all/PythonFeb_9-30
fe60d240db3e0922332072ee3ae74cea7fab29ef
8c660e826328c411ec7dd91564ee457e9c758aa5
refs/heads/master
2021-05-03T08:34:59.428138
2018-03-24T11:38:11
2018-03-24T11:38:11
120,567,118
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
x = 12 y = 13 def add(): ## x = 12 ## y = 13 z = x + y print("Sum is",z) def sub(): ## x = 12 ## y = 13 z = x - y if x > y else y - x print("Difference is",z) def mul(): ## x = 12 ## y = 13 z = x * y print("Multiplication is",z) def div(): ## x = 12 ## y = 13 z = x / y print("Divison is",z) add() sub() div() mul()
3e15473e0ceef6ee8b0f3a681787454452ed8b62
39beeca8b6862adfb7f1a55b9f5308b20cd64395
/delivery_history/models/__init__.py
89a0441e27055814dfc92edc0722e69a16f1c3a6
[]
no_license
Ibrahimmardini/texmar
98c34469618b72648686c3252b6053f1dd07e9a0
d31416df8feb87b93d757b1451be5f870d3ca867
refs/heads/master
2023-08-15T20:20:57.520164
2021-02-02T12:02:17
2021-02-02T12:02:17
255,095,450
0
3
null
null
null
null
UTF-8
Python
false
false
103
py
# -*- coding: utf-8 -*- from . import sale_order_line_changes from . import sale_delivery_date_history
6afe39dc1e07f76c1385e9d30b2ae28b9529fbab
738f2cb3642da73eb8aa2c617f2ae006279c96dc
/五期周末作业/start.py
d692f71898ae296f0668bda0e980d289f61e7f10
[]
no_license
betakenname/used_modules_homework
4c0a08b3a37da1fd8b49ee3f68c28de956047eb5
81814ede5fd5b48903cc5e9e7f8a91ce907f4e14
refs/heads/master
2020-04-10T16:12:35.273402
2018-12-07T09:42:02
2018-12-07T09:42:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
import os,sys sys.path.append(os.path.dirname(__file__)) import core if __name__ == '__main__': #功能字典 funcs = {"1":core.login,"2":core.register} while True: print(""" 1.登录 2.注册 """) res = input("请选择功能(q退出):") if res == "q": # 输入q则退出 print("再见!") break if res in funcs: funcs[res]() else: print("输入错误 请重试!")
e9cf1f988cf4a51913aa29d3fd87ab9904ae843e
49db7f622d670f08be3f48b12e40dd6e76898af2
/readstdout.py
2412c331f88adaeadbcfbdfefb41b30e87632b09
[]
no_license
PlutusApp/MachineLearning
65da8f9a37fdf5014dc889f0bc3da38602422213
3c310266b4916f315c0eca9c2317b28c028c6dcf
refs/heads/master
2021-01-24T18:58:13.026393
2017-03-26T15:50:06
2017-03-26T15:50:06
86,162,699
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
import subprocess proc = subprocess.Popen(['python3','productList.py'],stdout=subprocess.PIPE) while True: line = proc.stdout.readline() if line != b'': #the real code does filtering here print("test:",line.rstrip()) else: break
d64ad6136478df14a748d71546ab31ce4efffa36
863c77a136ed5383bd4dc9240ef91fd06bb2037c
/app/__init__.py
91596db6e6d34c7aa3a48ad27cd59798436b6cdf
[]
no_license
VianneyMI/morpion
2b84863a80ae609330545336460e44e410557b53
5a4a13a137c68ea32eb12410d42d5828e3c1e291
refs/heads/master
2023-04-11T19:14:00.641608
2021-05-16T20:46:36
2021-05-16T20:46:36
367,982,463
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
import connexion from app import extensions def create_app(): # Setup connexion connexion_app = connexion.FlaskApp(__name__) connexion_app.add_api('api.yaml') flask_app = connexion_app.app # Flask setup extensions.init_app(flask_app) # Database setup extensions.create_db(flask_app) return flask_app
abe34e472f3eaa6b544688f444409cdee257634c
fbfcccbbf045c271ce6156113c14c40abf3cbeb6
/homework/casadi_gen.py
c32efd0dcf40e2b578e66fc7a2a5645aa38b0004
[ "BSD-3-Clause" ]
permissive
jmpark418/aae497-f19
e6e4182e5068976ccb398bb0bda5c3586ba1cdb1
adca263c4c553dc3afe634fde390fe8dfefb5fe3
refs/heads/master
2020-07-08T12:27:39.662266
2019-10-31T01:11:00
2019-10-31T01:11:00
203,671,932
0
0
null
2019-08-21T22:14:45
2019-08-21T22:14:44
null
UTF-8
Python
false
false
239
py
import casadi as ca x = ca.SX.sym('x') y = 2*x f = ca.Function('double_this', [x], [y], ['x'], ['y']) gen = ca.CodeGenerator('casadi_gen.c', {'main': False, 'mex': False, 'with_header': True, 'with_mem': True}) gen.add(f) gen.generate()
2f78fce0ae82499ddc9b90df99fdd48b92a01f86
6d80ce7a1f44ddf5741fd190ddfe0d9be8e5f162
/model/detection_model/maskscoring_rcnn/demo/webcam.py
b4176584dda2025fc3284894978afd67f5f831c9
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
dun933/FudanOCR
dd8830ca4b8ebb08acd31326fcf5aa3c961886a0
fd79b679044ea23fd9eb30691453ed0805d2e98b
refs/heads/master
2021-04-03T19:50:47.646099
2020-03-16T08:43:59
2020-03-16T08:43:59
248,391,401
1
0
MIT
2020-03-19T02:23:11
2020-03-19T02:23:10
null
UTF-8
Python
false
false
2,705
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 from maskrcnn_benchmark.config import cfg from predictor import COCODemo import time def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo") parser.add_argument( "--config-file", default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--confidence-threshold", type=float, default=0.7, help="Minimum score for the prediction to be shown", ) parser.add_argument( "--min-image-size", type=int, default=224, help="Smallest size of the image to feed to the model. " "Model was trained with 800, which gives best results", ) parser.add_argument( "--show-mask-heatmaps", dest="show_mask_heatmaps", help="Show a heatmap probability for the top masks-per-dim masks", action="store_true", ) parser.add_argument( "--masks-per-dim", type=int, default=2, help="Number of heatmaps per dimension to show", ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() # load config from file and command-line arguments cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=args.show_mask_heatmaps, masks_per_dim=args.masks_per_dim, min_image_size=args.min_image_size, ) # cam = cv2.VideoCapture(0) # while True: # start_time = time.time() # ret_val, img = cam.read() # composite = coco_demo.run_on_opencv_image(img) # print("Time: {:.2f} s / img".format(time.time() - start_time)) # cv2.imshow("COCO detections", composite) # if cv2.waitKey(1) == 27: # break # esc to quit # cv2.destroyAllWindows() start_time = time.time() import os root = "/workspace/mnt/group/ocr/qiutairu/code/maskrcnn-benchmark/demo" img = cv2.imread(os.path.join(root, "test.jpg")) composite = coco_demo.run_on_opencv_image(img) print("Time: {:.2f} s / img".format(time.time() - start_time)) cv2.imwrite(os.path.join(root, "test_result.jpg"), composite) if __name__ == "__main__": main()
7ece072e393552c38e72e4d6a0bb231595d98128
6a6984544a4782e131510a81ed32cc0c545ab89c
/src/trigger-sim/resources/scripts/print_trigger_configuration.py
0b21c3f90486a4f57234d8f37117ef7f27cd4609
[]
no_license
wardVD/IceSimV05
f342c035c900c0555fb301a501059c37057b5269
6ade23a2fd990694df4e81bed91f8d1fa1287d1f
refs/heads/master
2020-11-27T21:41:05.707538
2016-09-02T09:45:50
2016-09-02T09:45:50
67,210,139
1
0
null
null
null
null
UTF-8
Python
false
false
912
py
#!/usr/bin/env python from optparse import OptionParser usage = """ %prog -g [GCD file] This script pulls the trigger configuration information from the input GCD file. """ parser = OptionParser(usage=usage) parser.add_option("-g","--gcd", dest="GCD_FILENAME", help="Name of the input GCD file.") (options, args) = parser.parse_args() from icecube import dataclasses, dataio f = dataio.I3File(options.GCD_FILENAME) frame = f.pop_frame() while f.more() and not "I3DetectorStatus" in frame: frame = f.pop_frame() detector_status = frame["I3DetectorStatus"] trigger_status_map = detector_status.trigger_status for key, config in trigger_status_map.iteritems() : print("TriggerKey : %s" % str(key)) print(" %s" % config.trigger_name) for name, setting in config.trigger_settings.iteritems(): print(" %s = %s" % (name,setting))
50214a889c1615e1112e87bcafae8b641515c699
864d9402cc77f97ab8c015fa0557667a567785f4
/assign5.1.py
4d54afcdca802e3fad42c69d6c3e1763bd9c591d
[]
no_license
fkxodls/python
6068e453c132a83468960175b9d100c13370db4c
89200102f4bb60e35ecfc60aec6fb8674fd0a838
refs/heads/master
2020-07-21T15:53:04.895707
2019-12-07T06:23:38
2019-12-07T06:23:38
206,913,657
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
lnum = None snum = None while True: num = input("enter a number ") if num == 'done': break try: num = int(num) except: print('invalid value') continue if lnum == None: lnum = num snum = num elif num > lnum: lnum = num elif num < snum: snum = num print("Maximum is",lnum) print("Minimum is",snum)
6ed89e3db6fe588de88fde566e4c388509b50cbe
68be706be391fce3667bbcb9ebb9a7298196149c
/setup.py
82768fc5110675b35f69199e0a4fdab3425ee5ae
[]
no_license
chaoflow/example.packagerepo
764ecaa46f59f756b758b2b60debe41be1c3d2f7
657a39ba5ee1229046dedf208c879333f01c9439
refs/heads/master
2021-01-22T19:44:57.367420
2009-10-29T02:02:48
2009-10-29T02:02:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,040
py
from setuptools import setup name = 'example.packagerepo' version = 0.1 # get packages from the package name: '1.2.3' -> ['1','1.2','1.2.3'] packages = [name.rsplit('.',x)[0] for x in reversed(range(len(name.split('.'))))] setup(name=name, version=version, description="Example package repository, containing one egg", #long_description=open("README.txt").read() + "\n" + # open(os.path.join("docs", "HISTORY.txt")).read(), # Get more strings from http://www.python.org/pypi?%3Aaction=list_classifiers classifiers = [], keywords='', author='Florian Friesdorf', author_email='[email protected]', url='', license='', packages = packages, package_dir = {'': 'src'}, # all except the last are treated as namespace_packages namespace_packages=packages[:-1], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', # -*- Extra requirements: -*- ], entry_points=""" # -*- Entry points: -*- """, )
cf9dad94cae2dbc0f9a4b994ff370ceeb7fc8021
346e3729151491493c6a61f958ba9ddd8028c3aa
/ICDARRecTs_task2/ICDARRecTs_2Train.py
69d40541eea710ccab4318a9cca5b000304e1702
[]
no_license
ResearchingDexter/ICDAR2019RecTS
16687db52b38efcdd44083e8235c2a276c19276c
274978435455671dc22ca18e4d9b1ec8b8bb80e9
refs/heads/master
2020-05-16T08:35:41.612158
2019-08-31T13:22:14
2019-08-31T13:22:14
182,917,144
11
5
null
null
null
null
UTF-8
Python
false
false
6,686
py
import torch from torch.autograd import Variable from datetime import datetime from torch.utils.data import DataLoader from torch.nn import CTCLoss from torch.optim import Adam,Adadelta import json from torchvision import transforms from IPython.display import clear_output from ICDARRecTs_2DataSet import ICDARRecTs_2DataSet from ICDARRecTs_2NN import DenseLSTM,VGGLSTM,DenseCNN,VGGFC,ResNetLSTM import pdb import os import sys sys.path.append('../') from Logging import * torch.backends.cudnn.benchmark = True os.environ['CUDA_VISIBLE_DEVICES']='0' DEVICE='cuda' BATCH_SIZE=8 EPOCH=10000 PATH=r'E:\Files\ICDAR2019RecTs\ReCTS\\' DICTIONARY_NAME='RecTs2dictionary.json' IMAGE_PATH=r'E:\Files\ICDAR2019RecTs\ReCTS\task2_cropped_img_less_30\\' MODEL_PATH=r'E:\Files\ICDAR2019RecTs\ReCTS\\' MODEL_NAME='DenseCNN.pkl' PRETRAIN=False NUM_CLASS=4134+1 LR=0.001 MAX_ACCURACY=0 def train(pretrain=PRETRAIN): logging.debug('pretrain:{}'.format(pretrain)) if DEVICE=='cuda': if torch.cuda.is_available()==False: logging.error("can't find a GPU device") pdb.set_trace() #model=DenseLSTM(NUM_CLASS) #model=VGGLSTM(NUM_CLASS) #model=DenseCNN(NUM_CLASS) #model=VGGFC(NUM_CLASS) model=ResNetLSTM(NUM_CLASS) if os.path.exists(MODEL_PATH)==False: os.makedirs(MODEL_PATH) if os.path.exists(PATH+DICTIONARY_NAME)==False: logging.error("can't find the dictionary") pdb.set_trace() with open(PATH+DICTIONARY_NAME,'r') as f: dictionary=json.load(f) if pretrain==True: model.load_state_dict(torch.load(MODEL_PATH+MODEL_NAME,map_location=DEVICE)) model.to(DEVICE).train() model.register_backward_hook(backward_hook)#transforms.Resize((32,400)) dataset=ICDARRecTs_2DataSet(IMAGE_PATH,dictionary,BATCH_SIZE,img_transform=transforms.Compose([transforms.ColorJitter(brightness=0.5,contrast=0.5,saturation=0.5,hue=0.3), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])) dataloader=DataLoader(dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=4,drop_last=False)#collate_fn=dataset.collate #optimizer=Adam(model.parameters(),lr=LR,betas=(0.9,0.999),weight_decay=0) optimizer=Adadelta(model.parameters(),lr=0.01,rho=0.9,weight_decay=0) criterion=CTCLoss(blank=0) length=len(dataloader) max_accuracy=0 if os.path.exists('max_accuracy.txt')==True: with open('max_accuracy.txt','r') as f: max_accuracy=float(f.read()) for epoch in range(EPOCH): epoch_time=datetime.now() epoch_correct=0 epoch_loss=0 min_loss=100 for step,data in enumerate(dataloader): step_time=datetime.now() imgs,names,label_size,img_name=data #print(names,label_size) logging.debug("imgs' size:{}".format(imgs.size())) imgs=Variable(imgs,requires_grad=True).to(DEVICE) label,batch_label=dataset.transform_label(batch_name=names) label=Variable(label).to(DEVICE) label_size=Variable(label_size).to(DEVICE) preds=model(imgs) logging.debug("preds size:{}".format(preds.size())) preds_size=Variable(torch.LongTensor([preds.size(0)]*BATCH_SIZE)).to(DEVICE) loss=criterion(preds,label,preds_size,label_size) epoch_loss+=loss.item() optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1) optimizer.step() if min_loss>loss.item(): min_loss=loss.item() torch.save(model.state_dict(),MODEL_PATH+MODEL_NAME) num_same=if_same(preds.cpu().data,batch_label) epoch_correct+=num_same logging.debug("Epoch:{}|length:{}|step:{}|num_same:{}|loss:{:.4f}|min loss:{:.4f}".format(epoch,length,step,num_same,loss.item(),min_loss)) logging.debug("the time of one step:{}".format(datetime.now()-step_time)) if step%100==0: clear_output(wait=True) accuracy=epoch_correct/(length)*BATCH_SIZE if accuracy>max_accuracy: max_accuracy=accuracy with open('max_accuracy.txt','w') as f: f.write(str(max_accuracy)) torch.save(model.state_dict(),MODEL_PATH+MODEL_NAME) torch.save(model.state_dict(),MODEL_PATH+'optimal'+str(max_accuracy)+MODEL_NAME) mean_loss=epoch_loss/length logging.info('Epoch:{}|accuracy:{}|mean loss:{}|the time of one epoch:{}|max accuracy:{}'.format(epoch,accuracy,mean_loss,datetime.now()-epoch_time,max_accuracy)) with open('accuracy.txt','a+') as f: f.write('Epoch:{}|accuracy:{}|mean loss:{}|the time of one epoch:{}|max accuracy:{}\n'.format(epoch,accuracy,mean_loss,datetime.now()-epoch_time,max_accuracy)) def backward_hook(module,grad_input,grad_output): for g in grad_input: #print('g:{}'.format(g)) g[g!=g]=0#replace all nan or inf in gradients to zero def if_same(preds,batch_label): #print(batch_label) t,b,n_class=preds.size() preds=preds.permute(1,0,2) _,preds=preds.max(2) count=0 def condense(pred): result=[] original_pred=[] for i,p in enumerate(pred): original_pred.append(p.item()) if p!=0 and (not(i>0 and pred[i-1]==pred[i])): result.append(p.item()) return result,original_pred for pred,label in zip(preds,batch_label): flag=0 pred,original_pred=condense(pred) label,_=condense(label) if(len(pred)==len(label)): for i,p in enumerate(pred): if(p!=label[i]): flag=1 break if(flag==0 and len(pred)==len(label)): count+=1 """if(count==1): print('label:{}'.format(label)) print('pred:{}'.format(pred)) print('original pred:{}'.format(original_pred))""" print('label:{}'.format(label)) print('pred:{}'.format(pred)) if(len(pred)==0): pass #return (0,1) return count if __name__=='__main__': train(PRETRAIN) """ temp=PATH + DICTIONARY_NAME with open(temp,'r') as f:#train_ReCTS_019633.12.jpg,¡ a=json.load(f) i=len(a) a['¡']=i print(len(a)) with open(PATH+'1'+DICTIONARY_NAME,'w') as f: json.dump(a,f) #print(a.get('¡'))"""
b57f96130b2ac339bfe0abfe7a141f41ec8080a2
c122dcd3eedccfbdd3e087076fb67dc7cfc77282
/seg_models/models/deeplab.py
5adaaf909a1935faa8963032b4dc4f92c8b6eb67
[ "MIT" ]
permissive
daniel-zeng/SegSort
4bba641ce4ce376ad9e9fff05b561fc868637132
7a50e6253df23a7719f962b34acff2626c916354
refs/heads/master
2023-06-29T18:43:47.981883
2021-08-01T20:11:41
2021-08-01T20:11:41
298,406,985
0
0
MIT
2020-09-24T22:15:55
2020-09-24T22:15:55
null
UTF-8
Python
false
false
3,398
py
import tensorflow as tf from network.common.resnet_v1 import resnet_v1_101 import network.common.layers as nn def _deeplab_builder(x, name, cnn_fn, num_classes, is_training, use_global_status, reuse=False): """Helper function to build Deeplab v2 model for semantic segmentation. The Deeplab v2 model is composed of one base network (ResNet101) and one ASPP module (4 Atrous Convolutional layers of different size). The segmentation prediction is the summation of 4 outputs of the ASPP module. Args: x: A tensor of size [batch_size, height_in, width_in, channels]. name: The prefix of tensorflow variables defined in this network. cnn_fn: A function which builds the base network (ResNet101). num_classes: Number of predicted classes for classification tasks. is_training: If the tensorflow variables defined in this network would be used for training. use_global_status: enable/disable use_global_status for batch normalization. If True, moving mean and moving variance are updated by exponential decay. reuse: enable/disable reuse for reusing tensorflow variables. It is useful for sharing weight parameters across two identical networks. Returns: A tensor of size [batch_size, height_in/8, width_in/8, num_classes]. """ # Build the base network. x = cnn_fn(x, name, is_training, use_global_status, reuse) with tf.variable_scope(name, reuse=reuse) as scope: # Build the ASPP module. aspp = [] for i,dilation in enumerate([6, 12, 18, 24]): score = nn.atrous_conv( x, name='fc1_c{:d}'.format(i), filters=num_classes, kernel_size=3, dilation=dilation, padding='SAME', relu=False, biased=True, bn=False, is_training=is_training) aspp.append(score) score = tf.add_n(aspp, name='fc1_sum') return score def deeplab_resnet101(x, num_classes, is_training, use_global_status, reuse=False): """Builds Deeplab v2 based on ResNet101. Args: x: A tensor of size [batch_size, height_in, width_in, channels]. name: The prefix of tensorflow variables defined in this network. num_classes: Number of predicted classes for classification tasks. is_training: If the tensorflow variables defined in this network would be used for training. use_global_status: enable/disable use_global_status for batch normalization. If True, moving mean and moving variance are updated by exponential decay. reuse: enable/disable reuse for reusing tensorflow variables. It is useful for sharing weight parameters across two identical networks. Returns: A tensor of size [batch_size, height_in/8, width_in/8, num_classes]. """ h, w = x.get_shape().as_list()[1:3] # NxHxWxC scores = [] for i,scale in enumerate([1]): with tf.name_scope('scale_{:d}'.format(i)) as scope: x_in = x score = _deeplab_builder( x_in, 'resnet_v1_101', resnet_v1_101, num_classes, is_training, use_global_status, reuse=reuse) scores.append(score) return scores
797b90c5844bc3a338d7aeb8c53eab43e5b3da5c
5ae650f569d9929140dd61f86b7dd69187125dde
/resorce/page_costome.py
5040f298ce9c004ce29c16205f2c44dd7e90b2df
[]
no_license
liuxingyuxx/LXY
17bc641b9ff029cab2fd313ea908a47ecfdb5c6f
c43e3a78ab99a8f5923d0e3d4eb6d9ccba2ffaad
refs/heads/master
2020-03-19T07:34:16.058725
2018-06-05T05:40:23
2018-06-05T05:40:23
135,989,378
0
0
null
null
null
null
UTF-8
Python
false
false
831
py
#--*-- coding:utf-8 --*-- ''' 在学老男孩python全栈开发时写的,用于自制的分页功能 ''' class PageInfo(object): def __init__(self, current_page,all_data_num, per_page_num): try: self.current_page = int(current_page) except: self.current_page = 1 self.per_page_num = per_page_num self.all_page_num = all_date_num/per_page_num def start(self): return (self.current_page-1)*per_page_num def end(self): return (self.current_page)*per_page_num def pager(self): #用于显示当前页左右的3页 page_list = [] def costom(request): current_page = request.GET.get('page') page_info = PageInfo(current_page, 10) user_list = models.UserInfo.objects.all()[page_info.start:page_info.end]
9355c2e7458a18116cb2e9ed51a955260f7fbaaa
81d9e83bbcfcd98836f6df6f0aba89a55c5c9adf
/store/migrations/0005_auto_20201108_0234.py
821ffead7487267c75d149cbb33334dcb7029034
[]
no_license
AnikaTahsin06/PeriwinkleRose
3405b47391d9544a67f940df9231753aeae52167
f4bf1c98b0645243aa45a45d4c5d1f66fe9cab37
refs/heads/main
2023-02-03T23:48:06.205837
2020-12-27T18:52:48
2020-12-27T18:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
# Generated by Django 3.1.2 on 2020-11-07 20:34 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('store', '0004_auto_20201107_0258'), ] operations = [ migrations.RenameField( model_name='customer', old_name='lasr_name', new_name='last_name', ), ]
b852e1a665b8052d9d91c5710556b67df67ddb7f
fa2a2cd5e0089f216a0df15defa6a3abf09be083
/mlp/prediction/debug_utils.py
1c3a160e8b47a734001f3605c4b5c60e87a5b303
[]
no_license
dominikheinisch/neural_network
d2a925ea77ea13090da9c89da439541438be09ec
4705f9c74fdfc33757f7e9e9d5ea5ad2d97aaaa6
refs/heads/master
2020-08-08T06:55:39.349768
2019-11-27T19:08:38
2019-11-27T19:08:38
213,767,189
0
0
null
null
null
null
UTF-8
Python
false
false
5,708
py
import numpy as np from loader.loader import load from loader.mnist_loader import load_data_wrapper from saver.saver import save # from prediction.network import calc_prediction_accuracy from prediction.activation_function import SIGMOID, RELU from utils.timer import elapsed_timer # def print_result(filename, test_data): # activation_func = np.vectorize(SIGMOID[0]) # print(filename) # with elapsed_timer() as timer: # te_in, te_out = test_data # weights = load(filename=filename)['weights'] # for i in range(len(weights)): # print(f'{i} {calc_prediction_accuracy(activation_func, *weights[i], te_in, te_out)}') # print(f'timer: {timer():.2f}') def prepare(filename): data = load(filename) data['activation'] = 'sigmoid' str_to_find = '_simulation_' index = filename.find(str_to_find) + len(str_to_find) new_filename = f'{filename[:index]}sigmoid_{filename[index:]}' # data = load(filename) # hidden_neurones = 'hidden_neurones' # data[hidden_neurones] = 50 # str_to_find = '_draw_range_' # index = filename.find(str_to_find) + len(str_to_find) + 4 # new_filename = f'{filename[:index]}hidden_neurones_50_{filename[index:]}' # save(data=data, filename=new_filename) print("'" + new_filename + "',") if __name__ == "__main__": _, validation_data , test_data = load_data_wrapper("../data") # print_result('test_weights.pkl', test_data) # filename = 'test_alpha_0.04_batch_100_draw_range_1.0_hidden_neurones_50.pkl' # print_result(filename=filename, test_data=test_data) # file = '2_test_alpha_0.01_batch_100_draw_range_0.05_hidden_neurones_25.pkl' # file = 'once_sigmoid_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_100_res_0.9739.pkl' # test_data = test_data[0], test_data[1] # print_result(filename=file, test_data=test_data) # from saver.saver import save files = [ # 'draw_range_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_24.4_times_5.pkl', # 'draw_range_simulation_alpha_0.04_batch_100_draw_range_0.4_hidden_neurones_50_avg_epochs_24.2_times_5.pkl', # 'draw_range_simulation_alpha_0.04_batch_100_draw_range_0.6_hidden_neurones_50_avg_epochs_25.0_times_5.pkl', # 'draw_range_simulation_alpha_0.04_batch_100_draw_range_0.8_hidden_neurones_50_avg_epochs_23.8_times_5.pkl', # 'draw_range_simulation_alpha_0.04_batch_100_draw_range_1.0_hidden_neurones_50_avg_epochs_27.6_times_5.pkl', # 'alpha_simulation_alpha_0.005_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_51.4_times_5.pkl', # 'alpha_simulation_alpha_0.01_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_54.0_times_5.pkl', # 'alpha_simulation_alpha_0.02_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_31.8_times_5.pkl', # 'alpha_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_24.4_times_5.pkl', # 'alpha_simulation_alpha_0.08_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_19.6_times_5.pkl', # 'batch_simulation_alpha_0.04_batch_10_draw_range_0.2_hidden_neurones_50_avg_epochs_22.4_times_5.pkl', # 'batch_simulation_alpha_0.04_batch_25_draw_range_0.2_hidden_neurones_50_avg_epochs_25.8_times_5.pkl', # 'batch_simulation_alpha_0.04_batch_50_draw_range_0.2_hidden_neurones_50_avg_epochs_23.2_times_5.pkl', # 'batch_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_24.4_times_5.pkl', # 'batch_simulation_alpha_0.04_batch_200_draw_range_0.2_hidden_neurones_50_avg_epochs_24.2_times_5.pkl',' # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_15_avg_epochs_22.6_times_5.pkl', # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_25_avg_epochs_20.6_times_5.pkl', # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_50_avg_epochs_24.4_times_5.pkl', # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_75_avg_epochs_26.0_times_5.pkl', # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_100_avg_epochs_31.2_times_5.pkl', # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_150_avg_epochs_38.0_times_2.pkl', ] # # # goodF = [ # # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_15_avg_epochs_22.6_times_5.pkl', # # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_25_avg_epochs_20.6_times_5.pkl', # # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_75_avg_epochs_26.0_times_5.pkl', # # 'hidden_neurones_simulation_alpha_0.04_batch_100_draw_range_0.2_hidden_neurones_100_avg_epochs_31.2_times_5.pkl', # # ] # # # # for f in files: # prepare(f) # print(load('once_relu_alpha_0.003_batch_10_draw_range_0.2_hidden_neurones_50.pkl')) print(load('hidden_neurones4_simulation_relu_alpha_0.01_batch_5_draw_range_0.2_hidden_neurones_25_avg_epochs_16.0_times_5.pkl')) # def calc_avg_times(input): # max_len = max(len(sub_list) for sub_list in input) # result_acc = [0] * max_len # divider_acc = [0] * max_len # for sub_list in input: # for i in range(len(sub_list)): # result_acc[i] += sub_list[i] # divider_acc[i] += 1 # return [result_acc[i] / divider_acc[i] for i in range(max_len)] # # a = [[1, 3], [2, 4, 6, 9], [], [-1]] # print(calc_avg_times(a))
ab4e452b493ea04924e42fbd382980755e7f27c5
7bcd811a6e575f2bbc658510c7c64e3cf78a0aa5
/ui/settingsitems/numbox.py
b06982684d73f627efbf43fc5568b57a56d6b379
[]
no_license
alang321/Shellmania
1e32ae2ae36767b842ad2f3a03021628dd989e10
fc489ffda77cec2c1e0376e481b1cf3907eaf472
refs/heads/master
2023-01-24T11:49:22.354544
2020-12-08T22:58:57
2020-12-08T22:58:57
268,876,426
0
0
null
null
null
null
UTF-8
Python
false
false
4,432
py
import pygame class numbox: def __init__(self, keydict, key, isint, hasfocus, font, pos, w, h, bordercolor, bordercolorhover, backgroundcoloractive, backgroundcolorinactive, minvalue, maxvalue, lostfocusfunction, textcolor=pygame.color.THECOLORS["black"], maxtextlength=5): self.isint = isint if self.isint: self.convert = int else: self.convert = float self.keydict = keydict # key for dict values self.key = key # checked #convert value to specified data type self.value = self.convert(self.keydict[self.key]) self.text = str(self.value) self.font = font self.textcolor = textcolor self.maxtextlength = maxtextlength self.minval = self.convert(minvalue) self.maxval = self.convert(maxvalue) self.rendertext(self.text) self.key = key #text box self.pos = pos self.textbox = pygame.Surface((w, h)) self.rect = self.textbox.get_rect() self.rect.center = self.pos self.borderrect = pygame.Rect((0, 0), (w-1, h-1)) #colors self.bordercolor = bordercolor self.bordercolordefualt = bordercolor self.bordercolorhover = bordercolorhover self.inactivecolorbackground = backgroundcolorinactive self.activecolorbackground = backgroundcoloractive #function that is called when button is pressed self.lostfocusfunction = lostfocusfunction self.delete = False self.hasfocus = hasfocus self.hovering = False #if the mousebutton down is pressed, calls function if mousebutton one is released still on button self.clicked = False def rendertext(self, text): self.textsurface = self.font.render(text, True, self.textcolor) self.textsurfacerect = self.textsurface.get_rect() def _converttext(self, text): try: value = self.convert(text) if value <= self.maxval: self.value = value return True else: return False except: return False def _changefocus(self, value): if self.hasfocus != value: self.hasfocus = value if not self.hasfocus: if not self.minval <= self.value <= self.maxval: self.value = self.minval self.text = str(self.value) self.rendertext(self.text) if self.lostfocusfunction != None: self.lostfocusfunction(self) #keydown event handler def eventhandler(self, event): if event.type == pygame.MOUSEBUTTONDOWN: self._changefocus(self.rect.collidepoint(event.pos)) # if text box has foxus and if event.type == pygame.KEYDOWN and self.hasfocus: if event.key == pygame.K_RETURN: self._changefocus(False) elif event.key == pygame.K_BACKSPACE: self.text = self.text[:-1] self._converttext(self.text) else: if len(self.text) < self.maxtextlength: text = self.text text += event.unicode if self._converttext(text): self.text += event.unicode self.rendertext(self.text) def update(self): mousepos = pygame.mouse.get_pos() if self.rect.collidepoint(mousepos): self.bordercolor = self.bordercolorhover else: self.bordercolor = self.bordercolordefualt return def draw(self, screen): #switch color to current state color, clicked before hovering if self.hasfocus: color = self.activecolorbackground else: color = self.inactivecolorbackground #draw button rect self.textbox.fill(color) pygame.draw.rect(self.textbox, self.bordercolor, self.borderrect, 2) screen.blit(self.textbox, (self.pos[0]-self.rect.w/2, self.pos[1]-self.rect.h/2)) #draw text screen.blit(self.textsurface, (self.pos[0]-self.textsurfacerect.w/2, self.pos[1]-self.textsurfacerect.h/2)) def valuefromfile(self): self.value = self.convert(self.keydict[self.key]) self.text = str(self.value) self.rendertext(self.text) return
fc9fee71cf034ce62cc202be2f52f1ff8a766382
7fe646e7d425bc3e1e0f2bac03c4df0f33dcf4ec
/chamado/apps.py
73571d3c357d5521e84ff34963e3d71378a5a17c
[]
no_license
equeirozdenoronha/tickets
d77d13da08cf2f96ef6d6d2a28c8919719981b69
560b0f3dce2e2058b6875ba5f93ef175ab7afcb7
refs/heads/master
2022-12-11T19:05:18.367194
2018-04-22T19:25:19
2018-04-22T19:25:19
130,600,070
1
0
null
2022-12-07T23:51:09
2018-04-22T19:22:27
Python
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class ChamadoConfig(AppConfig): name = 'chamado'
9281930d21b644e11996b40a59b910ca73f0d356
d4b701776eb649dc28e9c892fd83a8d3f1351fb4
/schooltogether/wsgi.py
c3d02c316fac0e2b7ff33bff0edac25885de46c4
[]
no_license
jouanneaur/Projet-Applicatif
4d7788ef45d500ff33c221e4d397f41da2469cb8
d8b6f3575d1f7027142e02d4229f3bae5482252d
refs/heads/master
2020-08-11T22:10:35.371909
2020-01-20T17:37:00
2020-01-20T17:37:00
214,637,234
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
""" WSGI config for schooltogether project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'schooltogether.settings') application = get_wsgi_application()
a2ab682b9768d771d61598f9a4775200e11716dd
e520ddd5000de801d670b28132b7bee2c6925ffa
/estudo_portatil/views/correctionViewSet.py
40bee06bc72b6b119e4c528ffde3653924ef363d
[]
no_license
salvachz/estudoPortatil
7fba16b4b5555c402e29784ffa4d2d35abc0b199
74e285541f6f4b99dc8b09a4d6460a9784b6a3aa
refs/heads/master
2020-06-19T17:38:04.004987
2017-04-14T01:50:16
2017-04-14T01:50:16
74,843,209
0
0
null
null
null
null
UTF-8
Python
false
false
1,954
py
from rest_framework.response import Response from rest_framework import authentication, permissions, viewsets from rest_framework.authentication import SessionAuthentication, BasicAuthentication from django.utils import timezone from estudo_portatil.models import UserProfile, Correction, Wording, CorrectionItem from estudo_portatil.serializers import CorrectionSerializer, CorrectionItemSerializer class CorrectionViewSet(viewsets.ModelViewSet): authentication_classes = (SessionAuthentication, BasicAuthentication) permission_classes = (permissions.IsAuthenticated,) #permission_classes = () queryset = Correction.objects.all() serializer_class = CorrectionSerializer def create(self, request, format = None): data = request.data print 'data:',data if data.get('wording_id',None): wording = Wording.objects.get(id=data['wording_id']) profile = UserProfile.objects.get(id=request.user.id) print profile correction, created = Correction.objects.get_or_create(wording=wording, corrected_by=profile) correction.score = data.get('score',0) for item_id in xrange(1,10): item_in = data.get(str(item_id), None) if item_in: correctionItem = CorrectionItem.objects.create(correction=correction,number=item_id, item_text=item_in) correctionItem.save() correction.save() serializer = CorrectionSerializer(correction, many=False) return Response(serializer.data) def retrive(self, request, pk=None): profile = UserProfile.objects.get(id=request.user.id) wording = Wording.objects.get(id=pk) queryset = Correction.objects.filter(wording=wording, corrected_by=profile) serializer = CorrectionSerializer(queryset, many=True) if serializer.data: return Response(serializer.data[0]) return Response([])
ea9c40dce4b1d666e29be1c4368b84744ddb28b7
dbbcc80f4468db1d08d8e44dcb02b086fe2debfe
/manage.py
b8c9ad11decd1e19114c6a4ce32283abb95a5afb
[]
no_license
drsherlock/movienalyse
ee2b04b5f2b6a35e1496681720c191f4430585c8
1f1d01858bcd590f29cbb817aa31d0295ea20afe
refs/heads/master
2021-01-10T12:21:19.010722
2016-03-15T17:41:58
2016-03-15T17:41:58
50,301,661
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "movienalyse.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
d90002bacce97e271e447cada97bfd8130957162
c3367f9919cfc13702224ba248d72030e477f872
/drift correction.py
1650a05b9166edf1baecdaeeed6d42185a7e44a9
[]
no_license
jaianthv/Nanoparticles_py
a88d9db9288c3721da014389148a2d96be6c19e2
5b2e5ac730e572e0375f5aa32dbdeb82b686b316
refs/heads/main
2023-04-25T11:14:26.534222
2021-05-17T16:18:27
2021-05-17T16:18:27
368,249,786
0
0
null
null
null
null
UTF-8
Python
false
false
1,317
py
import peempy.imageproc as imp import matplotlib.pyplot as plt from skimage.data import astronaut from skimage.color import rgb2grey from scipy.ndimage import shift import numpy as np # n images n_images = 20 base_img = rgb2grey(astronaut()) print (np.shape(base_img)) # Generate randomised shift vectors rand_scale = 2 mean_drift_scale = 1 mean_drift_vec = np.random.random(2) * mean_drift_scale + np.array([1, 1]) insert_vec = np.random.random((n_images, 2)) * rand_scale ind = np.arange(n_images).reshape((n_images, 1)) drift = ind * mean_drift_vec + insert_vec drift -= drift[4] print (np.shape(drift)) # Create the drifted image set dataset = [] for i in range(n_images): drifted = shift(base_img, drift[i]) dataset.append(drifted) dataset = np.asarray(dataset) print (np.shape(dataset)) # Construct corrector object cor = imp.DriftCorrector(dataset, 4, ((411, 34), (325, 112))) cor.calc_drifts() cor.super_sample = 4 #% # Plot plt.subplot(211) plt.plot(drift[:, 0], drift[:, 1], 'r-x', label="Image drift") plt.plot(-cor.drifts[:, 0], -cor.drifts[:, 1], 'b-x', label="detected") plt.legend() plt.subplot(212) plt.plot(-cor.drifts[:, 0] - drift[:, 0], -cor.drifts[:, 1] - drift[:, 1], ".-", label="Error") plt.legend() plt.show()
e324c70afaed5d9a592520cfd6f9d8ce868489b1
e1e08ca2df1caadc30b5b62263fa1e769d4904d8
/stream/models/utils.py
ee41104f14bd821b66dd2e63eaca0fbc99d93663
[ "LicenseRef-scancode-public-domain" ]
permissive
tiench189/ClassbookStore
509cedad5cc4109b8fb126ad59e25b922dfae6be
4fff9bc6119d9ec922861cbecf23a3f676551485
refs/heads/master
2020-12-02T07:48:26.575023
2017-07-10T02:45:09
2017-07-10T02:45:09
96,728,874
0
0
null
null
null
null
UTF-8
Python
false
false
43,077
py
#@author: hant # Those functions are inserted in many service. from datetime import * from contrib.pbkdf2 import * import os import sys import traceback import usercp import fs.path import StringIO import urllib2 sys.path.append('/home/pylibs/pdflib') ERR_TIME_OUT = CB_0011 ERR_TOKEN = CB_0012 SUCCES = CB_0000 db_RQ_FAILD = CB_0003 MAXIMUM_ALLOWABLE_DEVICE_ACTIVE= CB_0017 MAXIMUM_ALLOWABLE_DEVICE_IN_USE = CB_0020 MAXIMUM_ALLOWABLE_TIME_SET_DEVICE_IN_USE = CB_0021 #DOMAIN_VDC = "123.30.179.205" DOMAIN_VDC = "classbook.vn" def timeOut(name, t): if not name or not t: return CB_0019 #NULL_ARGUMENT table = 'clsb_user' # name = request.args(0) # t = request.args(1) row = db(db[table].username==name).select(db[table].user_token, db[table].lastLoginTime).first() if not row: return USER_NAME_NOT_EXIST if row['user_token'] != None and t != None and row['user_token'] == t: #if datetime.now() < row['lastLoginTime'] + TIME_OUT: db(db[table].username == name).update(lastLoginTime = datetime.now()) return SUCCES #else: # return ERR_TIME_OUT else: #db(db[table].username == name).update(user_token = None, lastLoginTime = datetime.now()) return ERR_TOKEN def checkTimeOut(name, t): return SUCCES if not name or not t: return CB_0019 #NULL_ARGUMENT table = 'clsb_user' # name = request.args(0) # t = request.args(1) row = db(db[table].username==name).select(db[table].user_token, db[table].lastLoginTime).first() if not row: return USER_NAME_NOT_EXIST #if datetime.now() < row['lastLoginTime'] + TIME_OUT: if row['user_token'] != None and t != None and row['user_token'] == t: db(db[table].username == name).update(lastLoginTime = datetime.now()) return SUCCES else: return ERR_TOKEN #else: # db(db[table].username == name).update(user_token = None, lastLoginTime = datetime.now()) # return ERR_TIME_OUT def updateLogTime(name): table = 'clsb_user' try: db(db[table].username == name).update(lastLoginTime = datetime.now()) return SUCCES except Exception as e: return db_RQ_FAILD # get a user's number-devices-active. Params: user_id, url to disable device to have the required nb of device. maxNbD=3 def verifyNbDevice(userid): table = 'clsb_device' try: devices_active = db(db[table].user_id == userid)(db[table].status==True).select() if devices_active and len(devices_active) >= MAX_D_ACTIVE: return MAXIMUM_ALLOWABLE_DEVICE_ACTIVE else: return SUCCES except Exception as e: return db_RQ_FAILD # get a user's number-devices-in-use. Params: user_id, url to disable device to have the required nb of device. maxNbD=1 def verifyInUseDevice(userid): table = 'clsb_device' try: devices_active = db(db[table].user_id == id)(db[table].in_use==True).select() if devices_active and len(devices_active) != MAX_D_IN_USE: return MAXIMUM_ALLOWABLE_DEVICE_IN_USE else: return SUCCES except Exception as e: return db_RQ_FAILD def verifyValidTime(userid): table = 'clsb_user' try: valid_time = db(db[table]._id == userid).select(db[table].valid_time).as_list() valid_time = valid_time[0]['valid_time'] if valid_time == None: return 'test'#CB_0007 # data error, for exp: value is None if valid_time < MAX_VALID_TIME_SET_DEFAULT: return SUCCES else: return MAXIMUM_ALLOWABLE_TIME_SET_DEVICE_IN_USE except Exception as e: return db_RQ_FAILD #add log for store 2.0 def log_20(params, insert): try: db.clsb_user_log.insert(user_id=params['userID'], user_action='DOWNLOAD', date_created=datetime.now, search_text=params['searchTxt'], product_code=params['pcode'], ip_address=params['clientIP'], ) product = db(db.clsb_product.product_code == params['pcode']).select(db.clsb_product._id) if len(product) > 0: try: product_id = product.first()['id'] device_serial = params['dserial'] except_device = db(db.clsb20_device_exception.device_serial == device_serial).select(db.clsb20_device_exception.device_serial).as_list() if len(except_device) > 0: price = 0 else: price = params['price'] if insert: new_log = db.clsb_download_archieve.insert( user_id=params['userID'], product_id=product_id, price=price, download_time=datetime.now(), purchase_type=params['purchase_type'], rom_version=params['rom_version'], device_serial=params['dserial'], status=params['status'] ) #return id from log return new_log['id'] else: #update log by id log_data = db((db.clsb_download_archieve.id == params['log_id']) & (db.clsb_download_archieve.status.like("Inprogress"))) if len(log_data.select()) > 0: db(db.clsb_download_archieve.id == params['log_id']).update(price=price, status=params['status']) return "OK" else: return False except Exception as e: print e return False except Exception as e: print e return False def log(params, insert): # STATUS = 'Completed' try: db.clsb_user_log.insert(user_id=params['userID'], user_action='DOWNLOAD', date_created=datetime.now, search_text=params['searchTxt'], product_code=params['pcode'], ip_address=params['clientIP'], ) mytable = db.clsb_download_archieve prodID = None try: prodID = db(db.clsb_product.product_code==params['pcode']).select(db.clsb_product._id).as_list() prodID = prodID[0]['id'] if prodID : # and not db(mytable.user_id==params['userID'] and # mytable.device_serial==params['dserial'] and # mytable.product_id==prodID).select(): if insert: db.clsb_download_archieve.insert(user_id=params['userID'], product_id=prodID, price=params['price'],#add price for download_archieve download_time=datetime.now(), purchase_type=params['purchase_type'], rom_version=params['rom_version'], device_serial=params['dserial'], status=params['status'],) else: download_id = db(db.clsb_download_archieve.user_id == params['userID'])\ (db.clsb_download_archieve.product_id == prodID)\ (db.clsb_download_archieve.device_serial == params['dserial'])\ (~db.clsb_download_archieve.status.like("Completed")).select(orderby=db.clsb_download_archieve.download_time).as_list() download_id = download_id[-1]['id'] db(db.clsb_download_archieve.id == download_id).update(price=params['price'], status=params['status']) return SUCCES except Exception as e: if not prodID: return PRODUCT_CODE_NOT_EXIST return db_RQ_FAILD + str(e) except Exception as e: return db_RQ_FAILD + str(e) def pay(username, total, product_id, oldCBM): import applications.cbs.modules.transaction as transaction try: #message content to send user message = 'Tài khoản của bạn đã bị khóa, vui lòng liên hệ với quản trị viên để biết thêm chi tiết !' subject = 'Tài khoản ClassBook bị khóa' user_id = db(db.clsb_user.username == username).select(db.clsb_user.id).as_list()[0]['id'] if not user_id: return CB_0010 # Tên đăng nhập không tồn tại # total = request.args(1) # username = request.args(0) user_cash = db(db.clsb_user.username == username).select(db.clsb_user.fund, db.clsb_user.data_sum).as_list() user_cash = user_cash[0]['fund'] # remove check user_cash /TanBM 03/01/201 # if user_cash < total or user_cash < 0: # return dict(error=CB_0023) #if db.clsb_user.data_sum != transaction.encrypt(db, user_cash, username): #db(db.clsb_user.username == username).update(status=False) # send mail to user # get user email #user_email = db(db.clsb_user.username == username).select(db.clsb_user.email).as_list() #user_email = user_email[0]['email'] #try: # mail.send(to=[user_email], subject=subject, message=message) # return dict(item=CB_0000) #except Exception as e: # print str(e) # return dict(error=CB_0006) #return CB_0006 # check new purchase new_fund = user_cash query = db(db["clsb_product"].id == product_id) query = query(db["clsb20_product_purchase_item"].product_code == db["clsb_product"].product_code) query = query(db["clsb20_purchase_item"].id == db["clsb20_product_purchase_item"].purchase_item) query = query(db["clsb20_purchase_type"].id == db["clsb20_purchase_item"].purchase_type) product_purchases = query.select( # db["clsb20_product_purchase_item"].discount, db["clsb20_purchase_type"].name, # db["clsb20_purchase_type"].name, db["clsb20_purchase_item"].times, db["clsb20_purchase_item"].duration, db['clsb20_purchase_item'].id) if len(product_purchases) == 0: rows = db((db.clsb_download_archieve.user_id == user_id) & (db.clsb_download_archieve.product_id == product_id) & (db.clsb_download_archieve.status.like("Completed") | db.clsb_download_archieve.status.like("TestSuccess"))).select(db.clsb_download_archieve.status) if len(rows) > 0: pass else: if oldCBM: new_fund -= total / 2 else: new_fund -= total else: from datetime import datetime from datetime import timedelta product_purchase = product_purchases.first() if product_purchase.clsb20_purchase_type.name.upper() != "FREE": if product_purchase.clsb20_purchase_type.name.upper() != "NONCONSUMABLE": query = db(db["clsb20_user_purchase_item"].user_id == user_id) query = query(db["clsb20_user_purchase_item"].purchase_id == product_purchase.clsb20_purchase_item.id) user_purchases = query.select(db["clsb20_user_purchase_item"].id, # db["clsb20_user_purchase_item"].times, db["clsb20_user_purchase_item"].day_end) is_expired_date_or_time = False if len(user_purchases) > 0: user_purchase = user_purchases.first() # if user_purchase.times > 0: # db(db["clsb20_user_purchase_item"].id == user_purchase.id).update(times=user_purchase.times-1) # elif user_purchase.times < 0 or user_purchase.day_end > datetime.today(): # pass # else: # if oldCBM: # new_fund -= total / 2 # else: # new_fund -= total # day_end = datetime.today() + timedelta(days=product_purchase.clsb20_purchase_item.duration) # query = db(db["clsb20_user_purchase_item"].id == user_purchase.id) # query.update(day_end=day_end, times=product_purchase.clsb20_purchase_item.times) # db["clsb20_purchase_renew_history"].insert(user_id=user_id, product_id=product_id, date_do_renew=datetime.today()) if oldCBM: new_fund -= total / 2 else: new_fund -= total day_end = datetime.today() + timedelta(days=product_purchase.clsb20_purchase_item.duration) query = db(db["clsb20_user_purchase_item"].id == user_purchase.id) query.update(day_end=day_end) # , times=product_purchase.clsb20_purchase_item.times) db["clsb20_purchase_renew_history"].insert(user_id=user_id, product_id=product_id, date_do_renew=datetime.today()) else: if oldCBM: new_fund -= total / 2 else: new_fund -= total # if product_purchase.clsb20_purchase_item.times == 0: # day_end = datetime.today() + timedelta(days=product_purchase.clsb20_purchase_item.duration) # db["clsb20_user_purchase_item"].insert(user_id=user_id, product_id=product_id, # times=product_purchase.clsb20_purchase_item.times, # day_end=day_end) # db["clsb20_purchase_renew_history"].insert(user_id=user_id, product_id=product_id, # date_do_renew=datetime.today()) day_end = datetime.today() + timedelta(days=product_purchase.clsb20_purchase_item.duration) db["clsb20_user_purchase_item"].insert(user_id=user_id, purchase_id=product_purchase.clsb20_purchase_item.id, # times=product_purchase.clsb20_purchase_item.times, day_end=day_end) db["clsb20_purchase_renew_history"].insert(user_id=user_id, product_id=product_id, date_do_renew=datetime.today()) else: change_time_first = db(db.clsb20_product_price_history.product_id == product_id)\ (db.clsb20_product_price_history.purchase_item == product_purchase.clsb20_purchase_item.id).select(orderby=db.clsb20_product_price_history.changing_time) if len(change_time_first) > 0: change_time_first = change_time_first.first() rows = db(db.clsb_download_archieve.user_id == user_id)(db.clsb_download_archieve.product_id == product_id)\ (db.clsb_download_archieve.download_time >= change_time_first.changing_time).select(db.clsb_download_archieve.status) if len(rows) > 0: pass else: if oldCBM: new_fund -= total / 2 else: new_fund -= total else: rows = db((db.clsb_download_archieve.user_id == user_id) & (db.clsb_download_archieve.product_id == product_id) & (db.clsb_download_archieve.status.like("Completed") | db.clsb_download_archieve.status.like("TestSuccess"))).select(db.clsb_download_archieve.status) if len(rows) > 0: pass else: if oldCBM: new_fund -= total / 2 else: new_fund -= total data_sum = transaction.encrypt(new_fund, username) db(db.clsb_user.username == username).update(fund=new_fund, data_sum=data_sum) data = dict(record_id=user_id, table_name='clsb_user', key_unique='username') insert_to_log_temp(data) # url_update_fund = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="update_user_fund", # vars=dict(fund=new_fund, data_sum=data_sum, username=username)) # print(url_update_fund) # urllib2.urlopen(url_update_fund) return CB_0000 # SUCCESS except: import traceback traceback.print_exc() # print "Error at pay() in modules/transaction.py: " + str(e) +" on line: "+str(sys.exc_traceback.tb_lineno) return str(sys.exc_traceback.tb_lineno) # db_RQ_FAILD # Temporal fct to add cash for user account when user add a new device def fund(username): # username = request.args(0) CASH = 200000 if db(db.clsb_user.username == username).update(fund=db.clsb_user.fund + CASH): user_id = db(db.clsb_user.username == username).select().first()['id'] data = dict(record_id=user_id, table_name='clsb_user', key_unique='username') insert_to_log_temp(data) # url_update_fund = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="update_user_fund", # vars=dict(fund=db.clsb_user.fund + CASH, data_sum="cash", username=username)) # print(url_update_fund) # urllib2.urlopen(url_update_fund) return CB_0000 #SUCCESS else: return CB_0006 #Faillure def str2price(value): i = 0 price = '' for index in range(len(value) - 1, -1, -1): i += 1 price = value[index] + price if i == 3: price = '.' + price i = 0 if price[0] == '.': price = price[1:] return u'Không thu phí' if price == '0' else price + '₫' #add check product for old version def check_product_for_old_version(product_code): query = db(db["clsb_product"].product_code == product_code) query = query(db["clsb20_product_purchase_item"].product_code == db["clsb_product"].product_code) query = query(db["clsb20_purchase_item"].id == db["clsb20_product_purchase_item"].purchase_item) query = query(db["clsb20_purchase_type"].id == db["clsb20_purchase_item"].purchase_type) product_purchases = query.select( db["clsb_product"].product_price, db["clsb20_purchase_type"].name, db["clsb20_purchase_item"].duration, db['clsb20_purchase_item'].id ) purchase = False if len(product_purchases) > 0: product_purchase = product_purchases.first() if (product_purchase.clsb20_purchase_type.name.upper() != "NONCONSUMABLE") & (product_purchase.clsb20_purchase_type.name.upper() != "FREE"): purchase = True type_name = db((db.clsb_product.product_code == product_code) & (db.clsb_product.product_price > 0))\ (db.clsb_product.product_category == db.clsb_category.id)\ (db.clsb_category.category_type == db.clsb_product_type.id)\ (db.clsb_product_type.type_name.like("Application") | db.clsb_product_type.type_name.like("Exercise")).select() if len(type_name) > 0: purchase = True return purchase def get_purchase_description(code): purchase = db(db.clsb20_product_purchase_item.product_code == code)\ (db.clsb20_purchase_item.id == db.clsb20_product_purchase_item.purchase_item)\ (db.clsb20_purchase_type.id == db.clsb20_purchase_item.purchase_type).select() if len(purchase) > 0: purchase = purchase.first()["clsb20_purchase_type"]["description"] else: purchase = "Thanh toán cho lần đầu tiên tải về" return purchase #add check ota_update def check_ota_update(code): data = db(db.clsb_ota_version.software.like(code)).select() if len(data) > 0: return True return False def pay_to_log(user, product, classbook_device, end_buy=False): if classbook_device and check_free_for_classbook(product['clsb_category']['id']): return True if not check_free_for_classbook(product['clsb_category']['id']): downloaded = db(db.clsb_download_archieve.product_id == product['clsb_product']['id'])(db.clsb_download_archieve.status.like("Completed"))(db.clsb_download_archieve.user_id == user['id']).select() if len(downloaded) > 0: return True """ Mua cho thiet bi class book voi gia sach SGK se ko ghi log """ import applications.cbs20.modules.transaction as transaction check_buy = db(db.clsb30_product_history.product_id == product['clsb_product']['id'])(db.clsb30_product_history.user_id == user['id']).select() if len(check_buy) > 0: return True if not end_buy: user_cash = db(db.clsb_user.id == user['id']).select(db.clsb_user.fund, db.clsb_user.data_sum).as_list() user_cash = user_cash[0]['fund'] new_fund = user_cash - product['clsb_product']['product_price'] if new_fund < 0: return dict(error='Tiền trong tài khoản không đủ') data_sum = transaction.encrypt(new_fund, user['username']) db(db.clsb_user.username == user['username']).update(fund=new_fund, data_sum=data_sum) user_id = db(db.clsb_user.username == user['username']).select().first()['id'] data = dict(record_id=user_id, table_name='clsb_user', key_unique='username') insert_to_log_temp(data) # url_update_fund = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="update_user_fund", # vars=dict(fund=new_fund, data_sum=data_sum, username=user['username'])) # print(url_update_fund) # urllib2.urlopen(url_update_fund) if len(db(db.clsb30_product_history.product_id == product['clsb_product']['id'])(db.clsb30_product_history.user_id == user['id']).select()) <= 0: insert_buy = db.clsb30_product_history.insert( product_title=product['clsb_product']['product_title'], product_id=product['clsb_product']['id'], user_id=user['id'], category_id=product['clsb_category']['id'], product_price=product['clsb_product']['product_price'] ) data = dict(record_id=str(insert_buy), table_name='clsb30_product_history', key_unique='user_id.product_id') insert_to_log_temp(data) # url_sign = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="sign_buy_product", args=["Product", # product['clsb_product']['id'], # user['username'], # product['clsb_category']['id'], # pay]) # print(url_sign) # urllib2.urlopen(url_sign) return True def pay_to_log_divide(user, product, classbook_device, isMedia, pay, end_buy=False): # if classbook_device and check_free_for_classbook(product['clsb_category']['id']): # print('return1') # return "True 1" if isMedia.lower() == 'false': if not check_free_for_classbook(product['clsb_category']['id']): downloaded = db(db.clsb_download_archieve.product_id == product['clsb_product']['id'])(db.clsb_download_archieve.status.like("Completed"))(db.clsb_download_archieve.user_id == user['id']).select() if len(downloaded) > 0: print('return2') return "True 2" """ Mua cho thiet bi class book voi gia sach SGK se ko ghi log """ import applications.cbs20.modules.transaction as transaction if isMedia.lower() == 'true': check_buy = db(db.clsb30_media_history.product_id == product['clsb_product']['id'])(db.clsb30_media_history.user_id == user['id']).select() print(check_buy) if len(check_buy) > 0: print('return3') return "True 3" else: check_buy = db(db.clsb30_product_history.product_id == product['clsb_product']['id'])(db.clsb30_product_history.user_id == user['id']).select() print(check_buy) if len(check_buy) > 0: print('return4') return "True 4" if not end_buy: user_cash = db(db.clsb_user.id == user['id']).select(db.clsb_user.fund, db.clsb_user.data_sum).as_list() user_cash = user_cash[0]['fund'] new_fund = int(user_cash) - int(pay) if new_fund < 0: print('return5') return dict(error='Tiền trong tài khoản không đủ') print('tiench new_fund: ' + str(new_fund)) data_sum = transaction.encrypt(new_fund, user['username']) db(db.clsb_user.username == user['username']).update(fund=new_fund, data_sum=data_sum) user_id = db(db.clsb_user.username == user['username']).select().first()['id'] data = dict(record_id=user_id, table_name='clsb_user', key_unique='username') insert_to_log_temp(data) # url_update_fund = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="update_user_fund", # vars=dict(fund=new_fund, data_sum=data_sum, username=user['username'])) # print(url_update_fund) # update_result = urllib2.urlopen(url_update_fund) # print(update_result.read()) if isMedia.lower() == 'true': print("tiench insert media: " + str(isMedia)) if len(db(db.clsb30_media_history.product_id == product['clsb_product']['id'])(db.clsb30_media_history.user_id == user['id']).select()) <= 0: media_insert = db.clsb30_media_history.insert( product_title=product['clsb_product']['product_title'], product_id=product['clsb_product']['id'], user_id=user['id'], category_id=product['clsb_category']['id'], product_price=pay ) params = {'searchTxt': 'ND', 'clientIP': '', 'dserial': "", 'pcode': product['clsb_product']['product_code'], 'purchase_type': 'WEB_PAY', 'rom_version': "CLASSBOOK.APP", 'userID': user_id, 'price': int(pay), 'status': 'Completed'} log_20(params, True) db.clsb30_payment_log.insert(user_id=user_id, product_id=product['clsb_product']['id'], product_type='MEDIA', pay=int(pay)) data = dict(record_id=str(media_insert), table_name='clsb30_media_history', key_unique='user_id.product_id') insert_to_log_temp(data) # url_sign = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="sign_buy_media", args=["Product", # product['clsb_product']['id'], # user['username'], # product['clsb_category']['id'], # pay]) # print(url_sign) # urllib2.urlopen(url_sign) else: print("tiench insert product: " + str(isMedia)) try: if len(db(db.clsb30_product_history.product_id == product['clsb_product']['id'])(db.clsb30_product_history.user_id == user['id']).select()) <= 0: product_insert = db.clsb30_product_history.insert( product_title=product['clsb_product']['product_title'], product_id=product['clsb_product']['id'], user_id=user['id'], category_id=product['clsb_category']['id'], product_price=pay ) params = {'searchTxt': 'ND', 'clientIP': '', 'dserial': "", 'pcode': product['clsb_product']['product_code'], 'purchase_type': 'WEB_PAY', 'rom_version': "CLASSBOOK.APP", 'userID': user_id, 'price': int(pay), 'status': 'Completed'} log_20(params, True) db.clsb30_payment_log.insert(user_id=user_id, product_id=product['clsb_product']['id'], product_type='PRODUCT', pay=int(pay)) data = dict(record_id=str(product_insert), table_name='clsb30_product_history', key_unique='user_id.product_id') insert_to_log_temp(data) # url_sign = URL(host=DOMAIN_VDC, a='cbs20', c="sync2vdc", f="sign_buy_product", args=["Product", # product['clsb_product']['id'], # user['username'], # product['clsb_category']['id'], # pay]) # print(url_sign) # urllib2.urlopen(url_sign) except Exception as err: print("Error: " + err) return dict(error=str(err)) return "True final" def check_free_for_classbook(category_id): try: parent_id = db(db.clsb_category.id == category_id).select().first()['category_parent'] list = db((db.clsb30_category_classbook_device.product_category == category_id) | (db.clsb30_category_classbook_device.product_category == parent_id)).select() if len(list) <= 0: return False return True except Exception as ex: print ex.message + " on line: "+str(sys.exc_traceback.tb_lineno) return False def make_zip_nomedia(path, code, file): path_in = os.path.join(path, file) path_out = os.path.join(path, file+".nomedia") if os.path.exists(path_out): pass else: import zipfile z_in = zipfile.ZipFile(settings.home_dir+path_in, "r") z_out = zipfile.ZipFile(settings.home_dir+path_out, "w") try: z_out.writestr(code+"/book_config/config.xml", z_in.read(code+"/book_config/config.xml")) z_out.writestr(code+"/book_config/.nomedia", z_in.read(code+"/book_config/.nomedia")) z_out.writestr(code+"/book_config/cover.clsbi21", z_in.read(code+"/book_config/cover.clsbi21")) z_out.writestr(code+"/book_config/cover.clsbi21", z_in.read(code+"/book_config/cover.clsbi20")) except: pass z_in.close() z_out.close() return path_out ## bo dau tieng viet #!/usr/bin/python # -*- coding: utf-8 -*- import re import unicodedata def remove_viet_accents(str): ''' Helper function: Remove Vietnamese accent for string ''' nkfd_form = unicodedata.normalize('NFKD', unicode(str, 'utf-8')) return u"".join([c for c in nkfd_form if not unicodedata.combining(c)]).replace(u'\u0111','d').replace(u'\u0110', 'D') def check_media(product_code):#params: product_code try: response.generic_patterns = ['*'] # product_code = request.args(0) check_cp = db(db.clsb_product.product_code.like(product_code))(db.clsb20_product_cp.product_code.like(product_code)).select() import Image if len(check_cp) > 0: cpid = usercp.user_get_id_cp(check_cp.first()['clsb20_product_cp']['created_by'], db) path = fs.path.pathjoin(settings.cp_dir, "CP%s" % cpid, 'published', product_code) else: path = fs.path.pathjoin(product_code) product_files = osFileServer.listdir(path=path, wildcard=product_code + ".[Zz][Ii][Pp]", files_only=True) if len(product_files) == 0: return dict(check=False) else: check = check_media_in_zip(fs.path.pathjoin(settings.home_dir, path, product_files[0]), product_code) print('check' + str(check)) return dict(check=check) except Exception as ex: print('tiench' + str(ex)) return dict(check=False) def check_media_in_zip(path, product_code): try: import zipfile zip_file = zipfile.ZipFile(path, "r") for name in [member.filename for member in zip_file.infolist()]: # print(name) if str.startswith(name, product_code.upper()+"/media/"): zip_file.close() return True else: zip_file.close() return False except Exception as err: print('tiench' + str(err)) return False def server_version(): return settings.server_ver; def check_version_mp(app_ver): if 'ios' not in app_ver.lower(): return False version = app_ver.split('_')[len(app_ver.split('_')) - 1] print(version) check = db(db.clsb30_fake_ios.fake_name == 'ios').select() if len(check) == 0: return False if int(check[0]['fake_value']) == 0: return False elif int(check[0]['fake_value']) == 1: return True else: try: data = parsr_data_istore("942940905") if int(data['resultCount']) > 0: if version > data['results'][0]['version']: return True else: return False else: return True except Exception as err: return True def parsr_data_istore(id): import urllib, json url = "https://itunes.apple.com/lookup?id=" + id response = urllib.urlopen(url) data = json.loads(response.read()) return data #########tiench insert to log temp################### INIT = "init" import time from datetime import datetime def write_log(file_name, content): try: log_file = open("/home/www-data/web2py/applications/" + file_name + ".txt", 'a+') log_file.write(content + " " + str(datetime.now()) + "\n") log_file.close() return True except Exception as err: return str(err) + " on line: "+str(sys.exc_traceback.tb_lineno) def sync_a_record(): try: write_log("sync_log", "0") data_log = db(db.clsb30_sync_temp.status == INIT).select() if len(data_log) == 0: return dict(result=False, code="FINISH") write_log("sync_log", "1") data_log = data_log.first() get_data = get_data_sync(data_log['record_id'], data_log['table_name'], data_log['key_unique']) write_log("sync_log", "2") get_data['table_name'] = data_log['table_name'] print("get_data: " + str(get_data)) result = sync_data_to_db(get_data) write_log("sync_log", "3") db(db.clsb30_sync_temp.id == data_log['id']).delete() write_log("sync_log", str(result)) if result['result']: return True else: db.clsb30_sync_temp.insert(record_id=data_log['record_id'], table_name=data_log['table_name'], status=INIT, key_unique=data_log['key_unique']) return False return dict(result=True) except Exception as err: write_log("sync_log", "4" + str(err) + " on line: "+str(sys.exc_traceback.tb_lineno)) return dict(result=False, code="ERROR", error=str(err) + " on line: "+str(sys.exc_traceback.tb_lineno)) def insert_to_log_temp(data): try: record_id = data['record_id'] table_name = data['table_name'] key_unique = data['key_unique'] check_exist = db(db.clsb30_sync_temp.record_id == str(data['record_id']))\ (db.clsb30_sync_temp.table_name == str(data['table_name']))\ (db.clsb30_sync_temp.status == "init").select() if len(check_exist) == 0: try: #get_data = get_data_sync(record_id, table_name, key_unique) #get_data['table_name'] = table_name #print("get_data: " + str(get_data)) #result = sync_data_to_db(get_data) #if not result['result']: db.clsb30_sync_temp.insert(record_id=record_id, table_name=table_name, status=INIT, key_unique=key_unique) #return result except Exception as err: print(err) except Exception as e: print(e) return False def sync_data_to_db(get_data): db_sync = connect_db_sync() query_bug = "" try: unique_data = get_data['unique'] data = get_data['data'] table_name = get_data['table_name'] if 'username' in unique_data: users = db_sync.executesql("SELECT * FROM clsb_user WHERE username" + "='" + unique_data['username'] + "'") if len(users) == 0 and table_name != 'clsb_user': return dict(result=False, error=CB_0001) if len(users) > 0: user = users[0] if 'user_id' in data: data['user_id'] = user[0] unique_data['user_id'] = user[0] if 'username' not in data: del unique_data['username'] # return dict(data=data) query_unique = "" for key in unique_data.keys(): if table_name != 'clsb_device' or key != 'user_id': if query_unique != "": query_unique += " AND " query_unique += str(key) + "='" + str(unique_data[key]) + "'" check_exist = False query_bug = "SELECT * FROM " + table_name + " WHERE " + query_unique if len(unique_data) > 0: check_data = db_sync.executesql("SELECT * FROM " + table_name + " WHERE " + query_unique) if len(check_data) > 0: check_exist = True print("exist: " + str(check_exist)) if check_exist: query_data_update = "UPDATE " + table_name + " SET " data_update = "" for key in data.keys(): if key not in unique_data: print(key) if data_update != "": data_update += "," if data[key] == None: data_update += str(key) + "=null" else: try: data_update += str(key) + "='" + data[key].encode('utf-8') + "'" except Exception as err: try: data_update += str(key) + "='" + str(data[key]) + "'" except Exception as e: print("ERR: " + str(e)) print(data_update) query_data_update += data_update query_data_update += " WHERE " + query_unique print(query_data_update) query_bug = query_data_update try: db_sync.executesql(query_data_update) return dict(result=True) except Exception as err: print('err sql: ' + str(err)) return dict(result=False, error=str(err) + " on line: "+str(sys.exc_traceback.tb_lineno)) else: str_field = "" str_value = "" for key in data.keys(): if data.keys().index(key) > 0: str_field += "," str_value += "," str_field += str(key) print("data " + str(key) + ": ") if data[key] == None: str_value += "null" else: try: str_value += "'" + data[str(key)].encode("utf-8") + "'" except Exception as err: print(err) str_value += "'" + str(data[str(key)]) + "'" query_data_insert = "INSERT INTO " + table_name + "(" + str_field + ") VALUES (" + str_value + ")" print(query_data_insert) query_bug = query_data_insert try: db_sync.executesql(query_data_insert) return dict(result=True) except Exception as err: return dict(result=False, error=str(err) + " on line: "+str(sys.exc_traceback.tb_lineno)) except Exception as err: return dict(result=False, error=str(err) + " - " + query_bug + " on line: "+str(sys.exc_traceback.tb_lineno) + ":" + str(get_data)) def get_data_sync(record_id, table_name, key_unique): #record_id, table_name, key_unique try: data_result = db.executesql("SELECT * FROM " + table_name + " WHERE id =" + str(record_id), as_dict=True) if len(data_result) == 0: return dict(result=False, err="no record") print(data_result[0]) data = data_result[0] del data['id'] unique_dict = dict() for unique in key_unique.split('.'): if unique == 'user_id': user = db(db.clsb_user.id == data['user_id']).select().first() unique_dict['username'] = user['username'] else: unique_dict[unique] = data[unique] return dict(data=data, unique=unique_dict) except Exception as err: return dict(result=False, err=str(err)+" on line: "+str(sys.exc_traceback.tb_lineno)) return dict(result=False, err="UNKNOWN") def connect_db_sync(): return DAL(settings.database_sync, pool_size=1, check_reserved=['all'], migrate_enabled=settings.migrate, decode_credentials=True, db_codec='UTF-8')
304196f5503465038ec51dcf77bc133495327bf5
08f1cd2ba1f5c441c609e44219148b49ecc27f97
/商城优惠券系统.py
20a6a0aeb071370db93b448316aa421465a1178b
[]
no_license
919074006/first
fe05537ff4506fb3dcfa7b4b19b05fe282afdc26
8baee6b072c4ada8cb02d1d24b0af3f32cf16a51
refs/heads/master
2023-06-15T05:00:36.012607
2021-06-09T06:16:46
2021-06-09T06:16:46
373,369,700
1
0
null
null
null
null
UTF-8
Python
false
false
1,882
py
shop=[ ["联想电脑",6000], ["Iphone 16x plus",15000], ["PS5游戏机",3500], ["老干妈",7.5], ["老于妈",5.5], ["卫龙辣条",10], ["HUA WEI watch",1200], ["MAC PC",15000] ] coupon=[ ["联想电脑",6000], ["卫龙辣条",10] ] mycart=[] salary=input("请输入您的余额:") salary=int(salary) M=salary import random S=random.choice(coupon) #choice随机获得列表中的某个列表数据 if salary<0: print("对不起,您的输入有误,请重新输入!") salary = input("请输入您的余额:") salary = int(salary) M = salary else: print("恭喜您获得",S[0],"优惠券") while True: for index, value in enumerate(shop): print(index, value) choes = input("请输入商品序号:") if choes.isdigit(): choes = int(choes) if choes < len(shop): if salary >= shop[choes][1]: mycart.append(shop[choes]) salary = salary - shop[choes][1] print("恭喜,添加成功!您的余额还剩:¥", salary) print("已有", mycart) else: print("穷鬼,钱不够,请选择其他商品!") elif choes >= len(shop): print("对不起,您的输入有误,请重新输入!") elif choes == 'Q' or choes == 'q': print("欢迎下次光临,再见!") break else: print("对不起,您的输入有误,请重新输入!") some=mycart.count(["联想电脑",6000]) same=mycart.count(["卫龙辣条",10]) J=(M-salary)/10 J=int(J) print("您可获得积分",J) if S==["联想电脑",6000]: salary = salary + some * 3000 elif S==["卫龙辣条",10] and same>3: salary=salary+300 print("优惠券优惠后","您剩余",salary)
ac1ec3210e1bc44987c279340c27129430ee2fad
8fd472f7f5e7c8868fbda91ef9bff4d9fb53823c
/bjoj_2446.py
8e69870ea3cfbcf98943aa50fb7e3841cee01220
[]
no_license
basekim14/BJOJ_py
13810537bda4663e59e00cf0398468dd1366cb46
986f8394f9883f64f31961ba68f9639636ccd17f
refs/heads/master
2023-07-18T16:10:13.467785
2021-09-19T14:07:44
2021-09-19T14:07:44
270,268,442
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
""" ㄱㄱㅊ <[email protected]>, 20-06-18 Baekjoon Online Judge Study - 2446(print * - 9) """ from sys import stdin N = int(stdin.readline()) for i in range(N): print(" " * i + "*" * (2 * (N-i) - 1)) for i in range(N-1, 0, -1): print(" " * (i-1) + "*" * (2 * (N-i+1) - 1))
3834aad9ce09ccfbb6453c057e638122965eb47e
0c9e39df287b55bb5088ed95df88d8a14cfdf381
/test.py
618fd02249f0b31002869d3a6c48d6e5b5f1c292
[ "Apache-2.0", "CC0-1.0" ]
permissive
afcarl/accelerator-gzutil
9e599d0313dbe4c96539a0b1ea8eec65aaf60801
7ea2b9ca48bcdd1c395b4eb3649a075e99bb463f
refs/heads/master
2020-03-18T07:19:29.281153
2018-04-20T20:37:15
2018-04-20T20:37:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,496
py
#!/usr/bin/env python ############################################################################ # # # Copyright (c) 2017 eBay Inc. # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ############################################################################ # Verify general operation and a few corner cases. from __future__ import division, print_function, unicode_literals from datetime import datetime, date, time from sys import version_info from itertools import compress import gzutil TMP_FN = "_tmp_test.gz" inf, ninf = float("inf"), float("-inf") if version_info[0] > 2: l = lambda i: i else: l = long # The Bits types don't accept floats, the others Int types do. # This wasn't really intentional, but the right thing. dttm0 = datetime(1789, 7, 14, 12, 42, 1, 82933) dttm1 = datetime(2500, 12, 31, 23, 59, 59, 999999) dttm2 = datetime(2015, 1, 1, 0, 0, 0, 0) dt0 = date(1985, 7, 10) tm0 = time(0, 0, 0, 0) tm1 = time(2, 42, 0, 3) tm2 = time(23, 59, 59, 999999) for name, data, bad_cnt, res_data in ( ("Float64" , ["0", float, 0 , 4.2, -0.01, 1e42, inf, ninf, None], 2, [0.0, 4.2, -0.01, 1e42, inf, ninf, None]), ("Float32" , ["0", float, l(0), 4.2, -0.01, 1e42, inf, ninf, None], 2, [0.0, 4.199999809265137, -0.009999999776482582, inf , inf, ninf, None]), ("Int64" , ["0", int, 0x8000000000000000, -0x8000000000000000, 0.1, 0x7fffffffffffffff, l(-5), None], 4, [0, 0x7fffffffffffffff, -5, None]), ("Bits64" , ["0", int, None, l(-5), -5, 0.1, 0x8000000000000000, 0x7fffffffffffffff, l(0x8000000000000000)], 6, [0x8000000000000000, 0x7fffffffffffffff, 0x8000000000000000]), ("Int32" , ["0", int, 0x80000000, -0x80000000, 0.1, 0x7fffffff, l(-5), None], 4, [0, 0x7fffffff, -5, None]), ("Bits32" , ["0", int, None, l(-5), -5, 0.1, 0x80000000, 0x7fffffff, l(0x80000000)], 6, [0x80000000, 0x7fffffff, 0x80000000]), ("Number" , ["0", int, 1 << 1007, -(1 << 1007), 1, l(0), -1, 0.5, 0x8000000000000000, -0x800000000000000, 1 << 340, (1 << 1007) - 1, -(1 << 1007) + 1, None], 4, [1, 0, -1, 0.5, 0x8000000000000000, -0x800000000000000, 1 << 340, (1 << 1007) - 1, -(1 << 1007) + 1, None]), ("Bool" , ["0", bool, 0.0, True, False, 0, l(1), None], 2, [False, True, False, False, True, None]), ("BytesLines" , [42, str, b"\n", u"a", b"a", b"foo bar baz", None], 4, [b"a", b"foo bar baz", None]), ("AsciiLines" , [42, str, b"\n", u"foo\xe4", b"foo\xe4", u"a", b"foo bar baz", None], 5, [str("a"), str("foo bar baz"), None]), ("UnicodeLines" , [42, str, u"\n", b"a", u"a", u"foo bar baz", None], 4, [u"a", u"foo bar baz", None]), ("DateTime" , [42, "now", tm0, dttm0, dttm1, dttm2, None], 3, [dttm0, dttm1, dttm2, None]), ("Date" , [42, "now", tm0, dttm0, dttm1, dttm2, dt0, None], 3, [dttm0.date(), dttm1.date(), dttm2.date(), dt0, None]), ("Time" , [42, "now", dttm0, tm0, tm1, tm2, None], 3, [tm0, tm1, tm2, None]), ("ParsedFloat64" , [float, "1 thing", "", "0", " 4.2", -0.01, "1e42 ", " inf", "-inf ", None], 3, [0.0, 4.2, -0.01, 1e42, inf, ninf, None]), ("ParsedFloat32" , [float, "1 thing", "", "0", " 4.2", -0.01, "1e42 ", " inf", "-inf ", None], 3, [0.0, 4.199999809265137, -0.009999999776482582, inf , inf, ninf, None]), ("ParsedNumber" , [int, "", str(1 << 1007), str(-(1 << 1007)), "0.0", 1, 0.0, "-1", "9223372036854775809", -0x800000000000000, str(1 << 340), str((1 << 1007) - 1), str(-(1 << 1007) + 1), None, "1e25"], 4, [0.0, 1, 0, -1, 0x8000000000000001, -0x800000000000000, 1 << 340, (1 << 1007) - 1, -(1 << 1007) + 1, None, 1e25]), ("ParsedInt64" , [int, "", "9223372036854775808", -0x8000000000000000, "0.1", 1, 0.1, "9223372036854775807", " -5 ", None], 5, [1, 0, 0x7fffffffffffffff, -5, None]), ("ParsedBits64" , [int, "", None, l(-5), "-5", 0.1, " 9223372036854775808", "9223372036854775807 ", "0", 1], 5, [0, 0x8000000000000000, 0x7fffffffffffffff, 0, 1]), ("ParsedInt32" , [int, "", 0x80000000, -0x80000000, "0.1", 0.1, "-7", "-0", "2147483647", " -5 ", None, 1], 5, [0, -7, 0, 0x7fffffff, -5, None, 1]), ("ParsedBits32" , [int, "", None, l(-5), -5, 0.1, "2147483648", "2147483647", l(0x80000000), 1], 5, [0, 0x80000000, 0x7fffffff, 0x80000000, 1]), ): print(name) r_name = "Gz" + name[6:] if name.startswith("Parsed") else "Gz" + name r_typ = getattr(gzutil, r_name) w_typ = getattr(gzutil, "GzWrite" + name) # verify that failuses in init are handled reasonably. for typ in (r_typ, w_typ,): try: typ("/NONEXISTENT") raise Exception("%r does not give IOError for /NONEXISTENT" % (typ,)) except IOError: pass try: typ("/NONEXISTENT", nonexistent_keyword="test") raise Exception("%r does not give TypeError for bad keyword argument" % (typ,)) except TypeError: pass # test that the right data fails to write with w_typ(TMP_FN) as fh: count = 0 for ix, value in enumerate(data): try: fh.write(value) count += 1 assert ix >= bad_cnt, repr(value) except (ValueError, TypeError, OverflowError): assert ix < bad_cnt, repr(value) assert fh.count == count, "%s: %d lines written, claims %d" % (name, count, fh.count,) if "Lines" not in name: want_min = min(filter(lambda x: x is not None, res_data)) want_max = max(filter(lambda x: x is not None, res_data)) assert fh.min == want_min, "%s: claims min %r, not %r" % (name, fh.min, want_min,) assert fh.max == want_max, "%s: claims max %r, not %r" % (name, fh.max, want_max,) # Okay, errors look good with r_typ(TMP_FN) as fh: res = list(fh) assert res == res_data, res # Data comes back as expected. if name.endswith("Lines"): continue # no default support for ix, default in enumerate(data): # Verify that defaults are accepted where expected try: with w_typ(TMP_FN, default=default) as fh: pass assert ix >= bad_cnt, repr(default) except AssertionError: raise except Exception: assert ix < bad_cnt, repr(default) if ix >= bad_cnt: with w_typ(TMP_FN, default=default) as fh: count = 0 for value in data: try: fh.write(value) count += 1 except (ValueError, TypeError, OverflowError): assert 0, "No default: %r" % (value,) assert fh.count == count, "%s: %d lines written, claims %d" % (name, count, fh.count,) # No errors when there is a default with r_typ(TMP_FN) as fh: res = list(fh) assert res == [res_data[ix - bad_cnt]] * bad_cnt + res_data, res # Great, all default values came out right in the file! # Verify hashing and slicing def slice_test(slices, spread_None): res = [] sliced_res = [] total_count = 0 for sliceno in range(slices): with w_typ(TMP_FN, hashfilter=(sliceno, slices, spread_None)) as fh: count = 0 for ix, value in enumerate(data): try: wrote = fh.write(value) count += wrote assert ix >= bad_cnt, repr(value) assert fh.hashcheck(value) == wrote or (spread_None and value is None), "Hashcheck disagrees with write" except (ValueError, TypeError, OverflowError): assert ix < bad_cnt, repr(value) assert fh.count == count, "%s (%d, %d): %d lines written, claims %d" % (name, sliceno, slices, count, fh.count,) if "Lines" not in name: got_min, got_max = fh.min, fh.max total_count += count with r_typ(TMP_FN) as fh: tmp = list(fh) assert len(tmp) == count, "%s (%d, %d): %d lines written, claims %d" % (name, sliceno, slices, len(tmp), count,) for v in tmp: assert (spread_None and v is None) or w_typ.hash(v) % slices == sliceno, "Bad hash for %r" % (v,) if "Bits" not in name or v < 0x8000000000000000: assert w_typ.hash(v) == gzutil.hash(v), "Inconsistent hash for %r" % (v,) res.extend(tmp) sliced_res.append(tmp) if "Lines" not in name: tmp = list(filter(lambda x: x is not None, tmp)) if tmp: want_min = min(tmp) want_max = max(tmp) assert got_min == want_min, "%s (%d, %d): claims min %r, not %r" % (name, sliceno, slices, got_min, want_min,) assert got_max == want_max, "%s (%d, %d): claims max %r, not %r" % (name, sliceno, slices, got_max, want_max,) else: assert got_min is None and got_max is None assert len(res) == total_count, "%s (%d): %d lines written, claims %d" % (name, slices, len(res), total_count,) assert len(res) == len(res_data), "%s (%d): %d lines written, should be %d" % (name, slices, len(res), len(res_data),) assert set(res) == set(res_data), "%s (%d): Wrong data: %r != %r" % (name, slices, res, res_data,) # verify reading back with hashfilter gives the same as writing with it with w_typ(TMP_FN) as fh: for value in data[bad_cnt:]: fh.write(value) for sliceno in range(slices): with r_typ(TMP_FN, hashfilter=(sliceno, slices, spread_None)) as fh: slice_values = list(compress(res_data, fh)) assert slice_values == sliced_res[sliceno], "Bad reader hashfilter: slice %d of %d gave %r instead of %r" % (sliceno, slices, slice_values, sliced_res[sliceno],) for slices in range(1, 24): slice_test(slices, False) slice_test(slices, True) # and a simple check to verify that None actually gets spread too if "Bits" not in name: with w_typ(TMP_FN, hashfilter=(slices - 1, slices, True)) as fh: for _ in range(slices * 3): fh.write(None) with r_typ(TMP_FN) as fh: tmp = list(fh) assert tmp == [None, None, None], "Bad spread_None for %d slices" % (slices,) print("Hash testing, false things") for v in (None, "", b"", 0, 0.0, False,): assert gzutil.hash(v) == 0, "%r doesn't hash to 0" % (v,) print("Hash testing, strings") for v in ("", "a", "0", "foo", "a slightly longer string", "\0", "a\0b",): u = gzutil.GzWriteUnicodeLines.hash(v) a = gzutil.GzWriteAsciiLines.hash(v) b = gzutil.GzWriteBytesLines.hash(v.encode("utf-8")) assert u == a == b, "%r doesn't hash the same" % (v,) assert gzutil.hash(b"\xe4") != gzutil.hash("\xe4"), "Unicode hash fail" assert gzutil.GzWriteBytesLines.hash(b"\xe4") != gzutil.GzWriteUnicodeLines.hash("\xe4"), "Unicode hash fail" try: gzutil.GzWriteAsciiLines.hash(b"\xe4") raise Exception("Ascii.hash acceptet non-ascii") except ValueError: pass print("Hash testing, numbers") for v in (0, 1, 2, 9007199254740991, -42): assert gzutil.GzWriteInt64.hash(v) == gzutil.GzWriteFloat64.hash(float(v)), "%d doesn't hash the same" % (v,) assert gzutil.GzWriteInt64.hash(v) == gzutil.GzWriteNumber.hash(v), "%d doesn't hash the same" % (v,) print("BOM test") def test_read_bom(num, prefix=""): with gzutil.GzBytesLines(TMP_FN) as fh: data = list(fh) assert data == [prefix.encode("utf-8") + b"\xef\xbb\xbfa", b"\xef\xbb\xbfb"], (num, data) with gzutil.GzBytesLines(TMP_FN, strip_bom=True) as fh: data = list(fh) assert data == [prefix.encode("utf-8") + b"a", b"\xef\xbb\xbfb"], (num, data) with gzutil.GzUnicodeLines(TMP_FN) as fh: data = list(fh) assert data == [prefix + "\ufeffa", "\ufeffb"], (num, data) with gzutil.GzUnicodeLines(TMP_FN, strip_bom=True) as fh: data = list(fh) assert data == [prefix + "a", "\ufeffb"], (num, data) with gzutil.GzUnicodeLines(TMP_FN, "latin-1") as fh: data = list(fh) assert data == [prefix.encode("utf-8").decode("latin-1") + u"\xef\xbb\xbfa", u"\xef\xbb\xbfb"], (num, data) with gzutil.GzUnicodeLines(TMP_FN, "latin-1", strip_bom=True) as fh: data = list(fh) assert data == [prefix.encode("utf-8").decode("latin-1") + u"a", u"\xef\xbb\xbfb"], (num, data) with gzutil.GzUnicodeLines(TMP_FN, "ascii", "ignore") as fh: data = list(fh) assert data == ["a", "b"], (num, data) if version_info[0] > 2: with gzutil.GzAsciiLines(TMP_FN) as fh: try: next(fh) raise Exception("GzAsciiLines allowed non-ascii in python3") except ValueError: pass with open(TMP_FN, "wb") as fh: fh.write(b"\xef\xbb\xbfa\n\xef\xbb\xbfb") test_read_bom(0) with gzutil.GzWriteUnicodeLines(TMP_FN, write_bom=True) as fh: fh.write("a") fh.write("\ufeffb") test_read_bom(1) with gzutil.GzWriteUnicodeLines(TMP_FN, write_bom=True) as fh: fh.write("\ufeffa") fh.write("\ufeffb") test_read_bom(2, "\ufeff") with gzutil.GzWriteUnicodeLines(TMP_FN) as fh: fh.write("a") assert next(gzutil.GzBytesLines(TMP_FN)) == b"a", "GzWriteUnicodeLines writes BOM when not requested" print("Append test") # And finally verify appending works as expected. with gzutil.GzWriteInt64(TMP_FN) as fh: fh.write(42) with gzutil.GzWriteInt64(TMP_FN, mode="a") as fh: fh.write(18) with gzutil.GzInt64(TMP_FN) as fh: assert list(fh) == [42, 18] print("Untyped writer test") with gzutil.GzWrite(TMP_FN) as fh: class SubString(bytes): pass for v in (b"apa", "beta", 42, None, SubString(b"\n"), b"foo"): try: fh.write(v) assert isinstance(v, bytes), "GzWrite accepted %r" % (type(v),) except ValueError: assert not isinstance(v, bytes), "GzWrite doesn't accept %r" % (type(v),) pass with gzutil.GzAsciiLines(TMP_FN) as fh: res = list(fh) assert res == ["apa", "foo"], "Failed to read back GzWrite written stuff: %r" % (res,) print("Line boundary test") Z = 128 * 1024 # the internal buffer size in gzutil a = [ "x" * (Z - 2) + "a", # \n at end of buffer "X" * (Z - 1) + "A", # \n at start of 2nd buffer "y" * (Z - 4) + "b", # leave one char in 1st buffer "Y" * (Z * 2 - 1) + "B", # \n at start of 3rd buffer "12345" * Z + "z" * (Z - 1), # \n at end of 6th buffer "Z", ] with gzutil.GzWriteAsciiLines(TMP_FN) as fh: for v in a: fh.write(v) with gzutil.GzAsciiLines(TMP_FN) as fh: b = list(fh) assert a == b, b print("Number boundary test") with gzutil.GzWriteNumber(TMP_FN) as fh: todo = Z - 100 while todo > 0: fh.write(42) todo -= 9 # v goes over a block boundary. v = 0x2e6465726f6220657261206577202c6567617373656d20676e6f6c207974746572702061207369207374696220646e6173756f6874206120796c6c6175746341203f7468676972202c6c6c657720736120746867696d206577202c65726568206567617373656d2074726f68732061206576616820732774656c20796548 want = [42] * fh.count + [v] fh.write(v) with gzutil.GzNumber(TMP_FN) as fh: assert want == list(fh) print("Number max_count large end test") with gzutil.GzWriteNumber(TMP_FN) as fh: fh.write(2 ** 1000) fh.write(7) with gzutil.GzNumber(TMP_FN, max_count=1) as fh: assert [2 ** 1000] == list(fh) print("Callback tests") with gzutil.GzWriteNumber(TMP_FN) as fh: for n in range(1000): fh.write(n) def callback(num_lines): global cb_count cb_count += 1 if cb_interval > 1: assert num_lines in good_num_lines or num_lines == 1000 + cb_offset for cb_interval, max_count, expected_cb_count in ( (300, -1, (3,)), (250, 300, (1,)), (250, 200, (0,)), (1, -1, (999, 1000,)), (5, -1, (199, 200,)), (5, 12, (2,)), (10000, -1, (0,)), ): for cb_offset in (0, 50000000, -10000): cb_count = 0 good_num_lines = range(cb_interval + cb_offset, (1000 if max_count == -1 else max_count) + cb_offset, cb_interval) with gzutil.GzNumber(TMP_FN, max_count=max_count, callback=callback, callback_interval=cb_interval, callback_offset=cb_offset) as fh: lst = list(fh) assert len(lst) == 1000 if max_count == -1 else max_count assert cb_count in expected_cb_count def callback2(num_lines): raise StopIteration with gzutil.GzNumber(TMP_FN, callback=callback2, callback_interval=1) as fh: lst = list(fh) assert lst == [0] def callback3(num_lines): 1 / 0 with gzutil.GzNumber(TMP_FN, callback=callback3, callback_interval=1) as fh: good = False try: lst = list(fh) except ZeroDivisionError: good = True assert good
235cf824591304d36567de455c94e8ee24396e90
ee51d8f7180ee75bc3c2e84872ae60bc8edeacd1
/evalfun.py
8bd5a20a411c235d970c903800dd91d9de35a719
[]
no_license
cboin1996/Chesster
d2a822936aad2fca6355fd0e66be5930c11e35ad
c7dfdc9bcbfcc69bef9856d94cb08d7ac8810101
refs/heads/master
2022-03-01T17:24:21.342397
2021-09-15T13:08:09
2021-09-15T13:08:09
244,189,301
2
0
null
2022-02-09T23:43:42
2020-03-01T17:05:15
Python
UTF-8
Python
false
false
567
py
import math import random import itertools import os import chess def start(config: Config): return EvaluateWorker(config).start() """ ^ creates a new function to start the evaluation function. This "Config" is from the utils package which may need to be downloaded using pip install. If this doesn't work, will probably sub with configparser instead. """ class evalFunc(someGameState): def intialize(agent, config: Config): self.config = config self.play_config = config.eval.play_config self.current
ecb83b8c2c02fcc3dd01c5da3e6b777228dae06e
32c0c21fc97cb2429b92a488663a34dddf360008
/src/resources/api.py
5be37f581e69a59d8f0aaf0c603d502ca1881402
[]
no_license
fuse-sujan/Basic-Flask-Setup
5a2038317668ec604e3b90fb90d9a14950defd96
32b7f2c7ed180a0a450da44ee242871d7648c587
refs/heads/master
2021-06-27T18:08:49.813756
2019-12-04T09:48:09
2019-12-04T09:48:09
223,720,475
0
0
null
2021-03-20T02:22:18
2019-11-24T09:31:05
Python
UTF-8
Python
false
false
109
py
from flask_restplus import Api api = Api(version='1.0', title='Todo API', description='A simple Todo App')
3eb0594982efc90f12c71373cf28806e98a9a2c1
f9bb9466f575166c578167f7fff0c3a210ab409a
/settings/base.py
8acd839dcba05e11c4831b3b7f1021f66026ad21
[ "MIT" ]
permissive
jameelhamdan/mlfaati
77edaa4230298f8807029c446d61643b68ae69ae
12c0dcbe0389c2c1da0bde80509fb3374955e293
refs/heads/master
2023-04-20T12:32:17.811344
2021-05-23T13:45:10
2021-05-23T13:45:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,699
py
import os import dj_database_url from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] ADMINS = ( ('Jameel', '[email protected]'), ) INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'qsessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', # Plugins 'rest_framework', 'crispy_forms', 'menu_generator', # Apps 'frontend', 'users', 'core', 'processing', 'cdn', 'console', 'api', 'docs', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'qsessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'app.context_processors.config', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] ASGI_APPLICATION = 'app.server.appplication' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DEFAULT_DATABASE_PATH = os.path.join(BASE_DIR, 'db.sqlite3') DATABASE_URL = os.getenv('DATABASE_URL', f'sqlite:///{DEFAULT_DATABASE_PATH}') DATABASES = { 'default': dj_database_url.parse(DATABASE_URL, conn_max_age=600), } DEFAULT_REDIS_URL = os.getenv('DEFAULT_REDIS_URL', 'redis://localhost:6379/0') CELERY_REDIS_URL = os.getenv('CELERY_REDIS_URL', DEFAULT_REDIS_URL) CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': DEFAULT_REDIS_URL, 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', }, }, 'celery': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': CELERY_REDIS_URL, 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', }, }, } AUTH_USER_MODEL = 'users.User' SESSION_ENGINE = 'qsessions.backends.cached_db' DEFAULT_AUTO_FIELD = 'django.db.models.AutoField' APPEND_SLASH = False LOGIN_URL = '/auth/login' LOGOUT_REDIRECT_URL = LOGIN_URL LOGIN_REDIRECT_URL = '/console/' # Email setup EMAIL_USE_TLS = True EMAIL_PORT = os.getenv('EMAIL_PORT', 587) EMAIL_HOST = os.getenv('EMAIL_HOST', '') EMAIL_HOST_USER = os.getenv('EMAIL_HOST_USER', '') EMAIL_HOST_PASSWORD = os.getenv('EMAIL_HOST_PASSWORD', '') EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Rest Framework # https://www.django-rest-framework.org/ REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'api.authentication.TokenAuthentication', ], 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.IsAuthenticated', ], 'DEFAULT_RENDERER_CLASSES': [ 'rest_framework.renderers.JSONRenderer', ] } # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-ca' TIME_ZONE = 'UTC' USE_TZ = True USE_I18N = False USE_L10N = False # Best datetime format DATETIME_FORMAT = 'Y-m-d H:i:s' SHORT_DATETIME_FORMAT = 'Y-m-d H:i:s' # Best date format DATE_FORMAT = 'Y-m-d' SHORT_DATE_FORMAT = 'Y-m-d' CRISPY_TEMPLATE_PACK = 'bootstrap4' STATICFILES_STORAGE = 'app.staticfiles.StaticFilesStorage' STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, '.static') STATICFILES_DIRS = [] DEFAULT_FILE_STORAGE = 'django.core.files.storage.FileSystemStorage' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Celery Settings CELERY_TIMEZONE = 'UTC' CELERY_TASK_TRACK_STARTED = True CELERY_TASK_TIME_LIMIT = 30 * 60 CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_BROKER_URL = CELERY_REDIS_URL CELERY_RESULT_BACKEND = CELERY_REDIS_URL ENABLE_TRANSFORMATIONS = True ENABLE_ASYNC = True IMAGE_CLASSIFY_MODEL = 'image_classify' # Override this in your conf.py to set custom image classification model file # To download these files you can use ./scripts/download_models.sh script MODEL_OPTIONS = { IMAGE_CLASSIFY_MODEL: { 'path': os.path.join(BASE_DIR, 'bin', 'models', 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5'), } }
a38096882f016407f2967c5cc1d40ac61dadb377
83ad61aee2c828978a8e4a5db5c4e8a6bf7574c6
/setup.py
af15176d6fdba12593d114f09124549cfe1f8e78
[ "Apache-2.0" ]
permissive
zengchen1024/mindinsight
24b2877af1cc32da5f3cfab8af36c26416b8dcd5
228a448b46707e889efc1fb23502158e27ab56ca
refs/heads/master
2021-05-19T05:16:26.548635
2020-03-30T12:01:47
2020-03-30T12:01:47
251,543,681
0
0
Apache-2.0
2020-03-31T08:30:33
2020-03-31T08:30:32
null
UTF-8
Python
false
false
5,606
py
# Copyright 2019 Huawei Technologies Co., Ltd.All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Setup.""" import sys import os import shutil import stat import platform import shlex import subprocess import types from importlib import import_module from setuptools import setup from setuptools.command.egg_info import egg_info from setuptools.command.build_py import build_py from setuptools.command.install import install def get_version(): """Get version.""" machinery = import_module('importlib.machinery') version_path = os.path.join(os.path.dirname(__file__), 'mindinsight', '_version.py') module_name = '__mindinsightversion__' version_module = types.ModuleType(module_name) loader = machinery.SourceFileLoader(module_name, version_path) loader.exec_module(version_module) return version_module.VERSION def get_os(): """Get OS.""" os_system = platform.system().lower() return os_system def get_description(): """Get description.""" os_info = get_os() cpu_info = platform.machine() cmd = "git log --format='[sha1]:%h, [branch]:%d' -1" process = subprocess.Popen( shlex.split(cmd), shell=False, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, _ = process.communicate() if not process.returncode: git_version = stdout.decode() return 'mindinsight platform: %s, cpu: %s, git version: %s' % (os_info, cpu_info, git_version) return 'mindinsight platform: %s, cpu: %s' % (os_info, cpu_info) def get_install_requires(): """Get install requirements.""" with open('requirements.txt') as file: return file.read().splitlines() def update_permissions(path): """ Update permissions. Args: path (str): Target directory path. """ for dirpath, dirnames, filenames in os.walk(path): for dirname in dirnames: dir_fullpath = os.path.join(dirpath, dirname) os.chmod(dir_fullpath, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC | stat.S_IRGRP | stat.S_IXGRP) for filename in filenames: file_fullpath = os.path.join(dirpath, filename) os.chmod(file_fullpath, stat.S_IREAD) def run_script(script): """ Run script. Args: script (str): Target script file path. """ cmd = '/bin/bash {}'.format(script) process = subprocess.Popen( shlex.split(cmd), shell=False, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) while True: line = process.stdout.readline() if not line and process.poll() is not None: break if line: sys.stdout.write(line.decode()) if process.returncode: sys.exit(1) class EggInfo(egg_info): """Egg info.""" def run(self): self.build_dependencies() egg_info_dir = os.path.join(os.path.dirname(__file__), 'mindinsight.egg-info') shutil.rmtree(egg_info_dir, ignore_errors=True) super().run() update_permissions(egg_info_dir) def build_dependencies(self): build_dir = os.path.join(os.path.dirname(__file__), 'build') sys.stdout.write('building crc32 ...\n') crc32_script = os.path.join(build_dir, 'scripts', 'crc32.sh') run_script(crc32_script) sys.stdout.write('building ui ...\n') ui_script = os.path.join(build_dir, 'scripts', 'ui.sh') run_script(ui_script) class BuildPy(build_py): """Build py files.""" def run(self): mindinsight_lib_dir = os.path.join(os.path.dirname(__file__), 'build', 'lib', 'mindinsight') shutil.rmtree(mindinsight_lib_dir, ignore_errors=True) super().run() update_permissions(mindinsight_lib_dir) class Install(install): """Install.""" def run(self): super().run() if sys.argv[-1] == 'install': pip = import_module('pip') mindinsight_dir = os.path.join(os.path.dirname(pip.__path__[0]), 'mindinsight') update_permissions(mindinsight_dir) if __name__ == '__main__': version_info = sys.version_info if (version_info.major, version_info.minor) < (3, 7): sys.stderr.write('Python version should be at least 3.7\r\n') sys.exit(1) setup(name='mindinsight', version=get_version(), author='MindInsight Team', description=get_description(), license='Apache 2.0', keywords='mindinsight', install_requires=get_install_requires(), packages=['mindinsight'], platforms=[get_os()], include_package_data=True, cmdclass={ 'egg_info': EggInfo, 'build_py': BuildPy, 'install': Install, }, entry_points={ 'console_scripts': [ 'mindinsight=mindinsight.utils.command:main', ], })
ac80b72867b0693300017bf2be9315b5d866cc98
aafdea5ae489a951818851610f1096bd6ba6c2e0
/Symphony/exitpnl.py
28d1f9702ee60d320c2f3ae62a587ce2eb4a7731
[]
no_license
ChetanKoranga/RMS_Trade
5edd8b673e2654b9d6e147d376601911f9f4fb8b
6aadd005463bda87549a359af0455af0480c6274
refs/heads/master
2022-11-18T23:17:51.606122
2020-07-20T14:53:51
2020-07-20T14:53:51
232,064,690
0
2
null
null
null
null
UTF-8
Python
false
false
2,589
py
from pymongo import MongoClient import datetime from time import sleep date = datetime.date.today() new_collec = f'finalpnl_{date}' try: client = MongoClient() db = client['newTotalPnl'] collec = f'newTotalPnl_{date}' db.create_collection(collec) print(f"created new collection '{collec}'") except Exception as e: print(e) try: new_client = MongoClient() exitpnl_db = new_client['finalpnl'] exitpnl_db[new_collec].drop() print('finalpnl Collec Deleted') except: pass try: new_client = MongoClient() new_db = new_client['finalpnl'] new_db.create_collection(new_collec) print(f"created new collection '{new_collec}'") except Exception as e: print(e) # algoname_unique = db[collec].find().distinct("algoname") # print(algoname_unique) # ClientID_unique = db[collec].find().distinct("clientID") # print(ClientID_unique) # l = [] # for x in algoname_unique: # for y in ClientID_unique: # conca = x + y # l.append(conca) # print(l) while True: check = db[collec].find() li = [] for z in check: conca = z["clientID"]+ z["algoname"] if conca in li: continue else: li.append(conca) match = new_db[new_collec].find_one({ "$and" : [{"algoname": z['algoname']},{"clientID": z['clientID']}] }) if match: try: new_db[new_collec].update({'_id' : match['_id']}, {"$set": {"strategywise_pnl": z['strategywise_pnl']}}) except Exception: print("Waiting for PnL") pass else: try: post={"algoname":z['algoname'], "clientID":z['clientID'],"strategywise_pnl":z['strategywise_pnl']} new_db[new_collec].insert_one(post) except Exception: print("Waiting for PnL") pass # check = db[collec].find() # l = [] # for x in check: # conca = x["clientID"]+ x["algoname"] # if conca in l: # continue # else: # l.append(conca) # new_db[new_collec].insert(db[collec].find({},{ "_id": 0, "algoname": 1, "clientID": 1, "strategywise_pnl": 1 }))
2239f04929b2dc1222a6a620b16e4b17090d4853
79b7e662e9010f7675e0c2406e4eb5105fa864cf
/weatherApp/weather.py
f677bd2d19de6f0d8787426a512a56caf39d7ea3
[]
no_license
kav98/cloud2
7bd27cac7e2dbe794cfcbb90ccd4ce73257f1759
1d59a564a3d93c0726e1d5329328b4e13ee261b9
refs/heads/main
2023-03-07T11:22:06.735152
2021-03-01T20:32:05
2021-03-01T20:32:05
340,958,979
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
from datetime import datetime import os import pytz import requests import math API_KEY = '2447efb69513604bd845ca8e0a73fb81' API_URL = ('http://api.openweathermap.org/data/2.5/weather?q={}&mode=json&units=metric&appid={}') def query_api(city): try: print(API_URL.format(city, API_KEY)) data = requests.get(API_URL.format(city, API_KEY)).json() #print(data) except Exception as exc: print(exc) data = None return data
995fe38e4e3c1c437b481edebf11ccf292bc0490
9626164f8c550cf1529fe4909494defa114218be
/news_ie/views.py
7a6d1eb8156ba8f284fa9f6e9875e44c99b12208
[]
no_license
Anmeet/News-Information-Extraction-and-Visualization
85e2f1bbf9e924f1ca9e3ba5319e9d424d1c63a0
34a48458df0126928fdf5f52ae63ef181ecdb492
refs/heads/master
2021-07-03T09:28:04.647042
2020-02-23T01:06:02
2020-02-23T01:06:02
242,434,860
0
0
null
2021-06-10T22:36:01
2020-02-23T00:57:04
Python
UTF-8
Python
false
false
8,805
py
import datetime import string import sys from django.contrib.gis.geos import GEOSGeometry, Point, fromstr from django.http import HttpResponse from django.shortcuts import render from world.models import WayPoint from .extraction.getdate import extract_date from .extraction.getday import get_day from .extraction.getdeathinjury import * from .extraction.getnewlocation import geotraverseTree from .extraction.ner import getlocation from .extraction.vehicle_no import vehicle_no from .forms import NameForm from .geocoder import * from .models import News from .sentoken import sentences from .up import rep # Create your views here. def index(request): now = datetime.datetime.now() return render(request, 'news_ie/index.html', {'date': now}) def get_news(request): if request.method == 'POST': form = NameForm(request.POST) # To display waypoints on the maps waypoints = WayPoint.objects.order_by('name') if form.is_valid(): data = form.cleaned_data # extract_items(data['news_text']) story = News() story.body = data['news_text'] #data['news'] = rep(data['news']) # print("Befor Splitting \n") # print(data['news_text']) #data['news_text'] = rep(data['news_text']) # Split the news into sentences [pre-processing] # Create Sentence Object sentclass = sentences() sentlist = sentclass.split_into_sentences(data['news_text']) splited_sen = [] # # print each sentences # # print("\n" + "After Spliting " + "\n") for sent in sentlist: splited_sen.append(sent) # # print(sent + "\n") # sentences_dic = dict((i, splited_sen[i]) for i in range(0, len(splited_sen))) # # print(sentences_dic) # # # Get the vehicle no. Here number_plate is the dictionary number_plate = vehicle_no(splited_sen) print(number_plate) story.vehicle_no = number_plate # Get death count and injury count death = death_no(splited_sen) if death == "None": actualdeath = death deathNo = 0 else: actualdeath = remove_date(death) deathNo = convertNum(death) print("Death No: ") print(death, actualdeath, deathNo) story.death = death injury = injury_no(splited_sen) if injury == "None": actualinjury = "None" injuryNo = 0 else: actualinjury = remove_date(injury) injuryNo = convertNum(injury) print("Injury No:") print(injury, actualinjury, injuryNo) story.injury = injury extdate = extract_date(sentlist) print("Date:", extdate) s = extdate[0] story.date = datetime.datetime.strptime(s, "%Y-%m-%d").date() # Get location from 1st sentences list # from the classifier location = geotraverseTree(splited_sen[0]) print(location) story.location = location # Get day from the total sentence list day = get_day(sentlist) print(day) story.day = day # from standford, dont forget to use ' '.join(location) # location = getlocation(splited_sen[0]) # print(' '.join(location)) # story.location = ' '.join(location) # location_coordinates = find_lat_lng(location) try: location_coordinates = find_lat_lng(location) except Exception: location_coordinates = [0.0, 0.0] # print(location_coordinates[0]) # print(location_coordinates[1]) # Save the Coordinate of the location to Database as WayPoint lat = str(location_coordinates[0]) lng = str(location_coordinates[1]) #gem = "POINT(" + str(lat) + ' ' + str(lng) + ")" gem = GEOSGeometry('POINT(%s %s)' % (lng, lat)) my_long_lat = lat + " " + lng gem = fromstr('POINT(' + my_long_lat + ')') WayPoint(name=' '.join(location), geometry=gem).save() # Now save the story # story.save() save_story(story, data) return render(request, 'news_ie/index.html', {'waypoints': waypoints, 'form': form, 'date': extdate, 'day': day, 'sentences_dic': sentences_dic, 'death': actualdeath, "deathnum": deathNo, 'injury': actualinjury, 'injurynum': injuryNo, 'number_plate': number_plate, 'location': location,'lat':lat,'lng':lng, 'coordintae': location_coordinates}) else: form = NameForm() return render(request, 'news_ie/index.html', {'form': form}) def extract_items(n): # print(n) story = News() story.body = n #data['news'] = rep(data['news']) # print("Befor Splitting \n") # print(data['news_text']) #data['news_text'] = rep(data['news_text']) # Split the news into sentences [pre-processing] # Create Sentence Object sentclass = sentences() sentlist = sentclass.split_into_sentences(n) splited_sen = [] # print each sentences # print("\n" + "After Spliting " + "\n") for sent in sentlist: splited_sen.append(sent) # print(sent + "\n") sentences_dic = dict((i, splited_sen[i]) for i in range(0, len(splited_sen))) # print(sentences_dic) # Get the vehicle no. Here number_plate is the dictionary number_plate = vehicle_no(splited_sen) print(number_plate) story.vehicle_no = number_plate # Get death count and injury count death = death_no(splited_sen) if death == "None": actualdeath = death deathNo = 0 else: actualdeath = remove_date(death) deathNo = convertNum(death) print("Death No: ") # print(death, actualdeath, deathNo) story.death = actualdeath story.death_no = deathNo injury = injury_no(splited_sen) if injury == "None": actualinjury = "None" injuryNo = 0 else: actualinjury = remove_date(injury) injuryNo = convertNum(injury) print("Injury No:") # print(injury, actualinjury, injuryNo) story.injury = actualinjury story.injury_no = injuryNo extdate = extract_date(splited_sen) print("Date:", extdate) s = extdate[0] story.date = datetime.datetime.strptime(s, "%Y-%m-%d").date() # Get location from 1st sentences list # from the classifier location = geotraverseTree(splited_sen[0]) # print(location) story.location = location # Get day from the total sentence list day = get_day(sentlist) # print(day) story.day = day # from standford, dont forget to use ' '.join(location) # location = getlocation(splited_sen[0]) # print(' '.join(location)) # story.location = ' '.join(location) # location_coordinates = find_lat_lng(location) try: location_coordinates = find_lat_lng(location) except Exception: location_coordinates = [0.0, 0.0] print(location_coordinates[0]) print(location_coordinates[1]) # Save the Coordinate of the location to Database as WayPoint # lat = str(location_coordinates[0]) # lng = str(location_coordinates[1]) #gem = "POINT(" + str(lat) + ' ' + str(lng) + ")" # gem = GEOSGeometry('POINT(%s %s)' % (lng, lat)) # my_long_lat = lat + " " + lng # gem = fromstr('POINT(' + my_long_lat + ')') # WayPoint(name=' '.join(location), geometry=gem).save() # # # Now save the story story.save() # save_story(story, data) # return story # Try Jaccard coefficient def similar_story(news1, news2): doc1 = set(news1.split()) doc2 = set(news2.split()) # find union union = list(doc1 | doc2) intersec = list(doc2.intersection(doc1)) #intersection = list(set(doc1) - (set(doc1) - set(doc2))) jacc_coef = float(len(intersec)) / len(union) return jacc_coef # Save the story from the data def save_story(story, data): sim = [] # get all the saved story savedStory = News.objects.all() for s in savedStory: doc2 = set(s.body.split()) coefficient = similar_story(data['news_text'], s.body) sim.append(coefficient) # print(sim) jacc_max = max(sim) # print(jacc_max) # set the threshold value to identify Duplicate thresHold = .90 if jacc_max < thresHold: s = story.save() print("Save Successful:") else: print("Duplicate News Exists:")
bce010e018cf7d38188930cbfbdc14ff095e91d4
11eea5de39fcdb28ee928c252c93eadd82cc19d6
/robotics/build/robot_description/catkin_generated/pkg.installspace.context.pc.py
19d0f2067ceba31d43929362359cb61e2647b4ef
[]
no_license
eandualem/Robotics-Final-Project
f5df467ca0f9892921b5506f830f6f4715fd1b1e
f6ca90dfd5dcf945c61758a779d5a1f4af5ac5c2
refs/heads/master
2020-12-24T03:58:48.423089
2020-01-31T08:06:56
2020-01-31T08:06:56
237,374,044
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "robot_description" PROJECT_SPACE_DIR = "/home/elias/Desktop/ws/src/robotics/install" PROJECT_VERSION = "0.0.0"
2594c37f8a6e7f0892fb7ed620e30d9339c1c69e
e4e44097320d056f3768eb3a53f28f4c19cdc7ce
/recoverTree.py
b06eb61e5a0f4c3bae3d675badf8f4208cced976
[]
no_license
amisyy/leetcode
0640e009c02956778f402eb89b74c98c36882d44
ba8ab343a246aa3eead75a23dc69b5a76680d290
refs/heads/master
2021-06-03T06:27:38.216035
2020-11-08T06:59:40
2020-11-08T06:59:40
103,757,845
0
0
null
null
null
null
UTF-8
Python
false
false
1,640
py
# Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def recoverTree(self, root): """ :type root: TreeNode :rtype: void Do not return anything, modify root in-place instead. """ pre_cur = None pre = None p1 = None p2 = None cur = root found = False while cur is not None: if cur.left is None: if pre_cur is not None and pre_cur.val>cur.val: if not found: found = True p1 = pre_cur p2 = cur pre_cur = cur cur = cur.right else: pre = cur.left while pre.right is not None and not pre.right == cur: pre = pre.right if pre.right is None: pre.right = cur cur = cur.left else: if pre_cur is not None and pre_cur.val > cur.val: if not found: found = True p1 = pre_cur p2 = cur pre_cur = cur pre.right = None cur = cur.right if p1 is not None and p2 is not None: temp = p1.val p1.val = p2.val p2.val = temp u = Solution() test = [ 1 ] for x in test: print(u.isInterleave("aa","ab","abaa"))
2478f96af98a0a8eb5353f436c45ba8ffa79ba4f
f3d86b5f622a407dc30233c4a609a410dc048920
/profile_app/urls.py
b06c6239840a4fbe76df0861ae2695880bb6fbcb
[]
no_license
KozlovKV/django-votings
1adb350919ea1ff0a3bb4f450cf6a43fe7b779e8
9d917c9c4d8719ae6ce326a46cc6bb6a5e837414
refs/heads/master
2023-03-02T02:43:17.414803
2021-02-08T17:48:06
2021-02-08T17:48:06
337,081,842
0
0
null
null
null
null
UTF-8
Python
false
false
2,175
py
from django.contrib.auth import views from django.urls import path import profile_app.view_subclasses as reg_subclasses import menu_app.view_subclasses as menu_subclasses urlpatterns = [ path('login/', reg_subclasses.LoginViewDetailed.as_view(), name='login'), path('logout/', views.LogoutView.as_view(), name='logout'), # path('password_change/', views.PasswordChangeView.as_view(), name='password_change'), # path('password_change/done/', views.PasswordChangeDoneView.as_view(), name='password_change_done'), path('password_reset/', reg_subclasses.PasswordResetViewDetailed.as_view(), name='password_reset'), path('password_reset/done/', menu_subclasses.TemplateViewWithMenu.as_view( template_name='registration/password_reset_done.html'), name='password_reset_done'), path('reset/<uidb64>/<token>/', reg_subclasses.PasswordResetConfirmViewDetailed.as_view(), name='password_reset_confirm'), path('reset/done/', menu_subclasses.TemplateViewWithMenu.as_view( template_name='registration/password_reset_complete.html'), name='password_reset_complete'), ] reg_patterns = [ path( "activate/complete/", menu_subclasses.TemplateViewWithMenu.as_view( template_name="django_registration/activation_complete.html", ), name="django_registration_activation_complete", ), path( "activate/<str:activation_key>/", reg_subclasses.ActivationViewDetailed.as_view(), name="django_registration_activate", ), path( "register/", reg_subclasses.RegistrationViewDetailed.as_view(), name="django_registration_register", ), path( "register/complete/", menu_subclasses.TemplateViewWithMenu.as_view( template_name="django_registration/registration_complete.html", ), name="django_registration_complete", ), path( "register/closed/", menu_subclasses.TemplateViewWithMenu.as_view( template_name="django_registration/registration_closed.html", ), name="django_registration_disallowed", ), ] urlpatterns += reg_patterns
d5986cb730eac15b8464e6d259d06074a79643ef
0b0a947c10038152fc56efbdde13eef3330adb34
/hackerrank-problem-solving-solutions/39. Find Angle MBC.py
c17a91d5e4e612e6dddf54c97dc3dfea98b81da3
[]
no_license
swapnanildutta/Python-programs
9c382eb8c823571e4f098fff263d126665fbc575
d47e2e3c4d648e0cc0ae1b89b83ce4f99db89f63
refs/heads/master
2021-11-18T22:16:57.276910
2021-09-04T13:07:36
2021-09-04T13:07:36
197,773,723
1
26
null
2023-04-09T10:51:57
2019-07-19T13:02:26
Python
UTF-8
Python
false
false
307
py
# Author Aman Shekhar import math ab = float(input()) bc = float(input()) ac = math.sqrt((ab*ab)+(bc*bc)) bm = ac / 2.0 mc = bm b = mc c = bm a = bc angel_b_radian = math.acos(a / (2*b)) angel_b_degree = int(round((180 * angel_b_radian) / math.pi)) output_str = str(angel_b_degree)+'°' print(output_str)
[ "Aman Shekhar" ]
Aman Shekhar
fc2b1670dc0d8c57a7933598d24f307c9bf42883
ab3d5455b4644e643679a8cc6263b17b1d616a64
/custom.py
824c9ad6a2bc48cff7c24a7b6a3ada6beaeec775
[]
no_license
ayrton22/IA_Final_Project_DH
3ee1aa3aa09d229707ce3dd4391ac3f0f3aaabc7
08a03380eadebc80a37dd669fa6f2497bcc1ea5b
refs/heads/master
2023-03-05T02:25:12.312710
2021-02-11T20:11:15
2021-02-11T20:11:15
336,387,853
1
0
null
null
null
null
UTF-8
Python
false
false
1,445
py
''' Custom cce, plate_acc and acc for plate recognition using CNN ''' from tensorflow.keras import backend as K import tensorflow as tf # Custom Metrics def cat_acc(y_true, y_pred): y_true = K.reshape(y_true, shape=(-1, 7, 37)) y_pred = K.reshape(y_pred, shape=(-1, 7, 37)) return K.mean(tf.keras.metrics.categorical_accuracy(y_true, y_pred)) def plate_acc(y_true, y_pred): ''' How many plates were correctly classified If Ground Truth is ABC 123 Then prediction ABC 123 would score 1 else ABD 123 would score 0 Avg these results (1 + 0) / 2 -> Gives .5 accuracy (Half of the plates were completely corrected classified) ''' y_true = K.reshape(y_true, shape=(-1, 7, 37)) y_pred = K.reshape(y_pred, shape=(-1, 7, 37)) et = K.equal(K.argmax(y_true), K.argmax(y_pred)) return K.mean( K.cast(K.all(et, axis=-1, keepdims=False), dtype='float32') ) def top_3_k(y_true, y_pred): # Reshape into 2-d y_true = K.reshape(y_true, (-1, 37)) y_pred = K.reshape(y_pred, (-1, 37)) return K.mean( tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=3) ) # Custom loss def cce(y_true, y_pred): y_true = K.reshape(y_true, shape=(-1, 37)) y_pred = K.reshape(y_pred, shape=(-1, 37)) return K.mean( tf.keras.losses.categorical_crossentropy( y_true, y_pred, from_logits=False, label_smoothing=0.2 ) )
30fe5f0a451f6fe0b398ee8ef69538f3765c29b4
b2eed268ec55b0e0b7299a042d1cbf2e39212ed7
/lista_videos.py
669092621a9dedd8046ccd7d517da493e23cfa65
[]
no_license
jul21unac/codigo
5772f2706e493b1020268fbdaff59e6b5d7676e2
3c24b439c083cb3d2da21f3ab2f69da02ecd50f6
refs/heads/master
2020-04-28T04:50:59.884582
2019-05-23T09:25:27
2019-05-23T09:25:27
174,996,541
1
0
null
null
null
null
UTF-8
Python
false
false
1,312
py
from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.keys import Keys import time import random driver = webdriver.Firefox() driver.get("https://www.youtube.com/user/CirculosPodemos/videos") ultima_medida = driver.execute_script("return document.documentElement.scrollHeight;") i=0 while True: #bucle para desplazarnos poco a poco while i <= ultima_medida: cadena_medida = "window.scrollTo(0," + str(i) + ");" driver.execute_script(cadena_medida) #el incremento lo hacemos ramdon para que no sospechen incremento = random.randint(50,100) i = i + incremento #el tiempo de espera tambien tiempo_espera = random.uniform(0.4,0.5) time.sleep(tiempo_espera) nueva_medida = driver.execute_script("return document.documentElement.scrollHeight;") if nueva_medida == ultima_medida: break ultima_medida = nueva_medida videos = driver.find_elements_by_xpath("//*[@id='video-title']") f = open('links_podemos.txt','w') #podemos lanzar la funcion de recoleccion de comentarios en vez de guardar los links de los videos for link in videos: print(link.get_attribute("href"),file = f) print("-"*80,file = f)
2eb0b07281848c75fdfbbebad5323ee7aad041b6
b064696e34a31d2f23eb5da4f364a09542428b44
/tf_agents/environments/test_envs.py
6a387d171858712c9f4f239a123767929ea08075
[ "Apache-2.0" ]
permissive
vraoresearch/agents
affead659efd3b5ac232d3d9ff60a1fabe74250e
58ffe1eec6e38a2cddcf34834d795b37e3b8843b
refs/heads/master
2022-11-19T10:01:54.906271
2022-10-27T14:41:56
2022-10-27T14:42:23
293,401,771
0
1
Apache-2.0
2020-09-07T02:23:54
2020-09-07T02:23:53
null
UTF-8
Python
false
false
6,095
py
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collection of simple environments useful for testing.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gin import numpy as np from tf_agents import specs from tf_agents.environments import py_environment from tf_agents.trajectories import time_step as ts from tf_agents.typing import types # TODO(b/156832202) Replace with EpisodeCountingEnv @gin.configurable class CountingEnv(py_environment.PyEnvironment): """Counts up in the observation as steps are taken. Step observation values are of the form (10 ** episodes + self._current_step) if steps_per_episode is greater than 10 then on reset the value of the observation count may go down. """ def __init__(self, steps_per_episode: types.Int = 10, dtype=np.int32): self._steps_per_episode = steps_per_episode self._dtype = np.dtype(dtype) self._episodes = 0 self._current_step = np.array(0, dtype=self._dtype) super(CountingEnv, self).__init__(handle_auto_reset=True) def observation_spec(self) -> types.NestedArraySpec: return specs.BoundedArraySpec((), dtype=self._dtype) def action_spec(self) -> types.NestedArraySpec: return specs.BoundedArraySpec((), dtype=self._dtype, minimum=0, maximum=1) def _step(self, action): del action # Unused. self._current_step = np.array(1 + self._current_step, dtype=self._dtype) if self._current_step < self._steps_per_episode: return ts.transition(self._get_observation(), 0) # pytype: disable=wrong-arg-types return ts.termination(self._get_observation(), 1) # pytype: disable=wrong-arg-types def _get_observation(self): if self._episodes: return np.array(10 * self._episodes + self._current_step, dtype=self._dtype) return self._current_step def _reset(self): if self._current_time_step and self._current_time_step.is_last(): self._episodes += 1 self._current_step = np.array(0, dtype=self._dtype) return ts.restart(self._get_observation()) def get_info(self): return {} @gin.configurable class EpisodeCountingEnv(py_environment.PyEnvironment): """Counts up in the observation as steps are taken. Step observation values are of the form (episodes, self._current_step) """ def __init__(self, steps_per_episode=10): self._steps_per_episode = steps_per_episode self._episodes = 0 self._steps = 0 super(EpisodeCountingEnv, self).__init__(handle_auto_reset=True) def observation_spec(self): return (specs.BoundedArraySpec((), dtype=np.int32), specs.BoundedArraySpec((), dtype=np.int32)) def action_spec(self): return specs.BoundedArraySpec((), dtype=np.int32, minimum=0, maximum=1) def _step(self, action): del action # Unused. self._steps += 1 if self._steps < self._steps_per_episode: return ts.transition(self._get_observation(), 0) # pytype: disable=wrong-arg-types return ts.termination(self._get_observation(), 1) # pytype: disable=wrong-arg-types def _get_observation(self): return (np.array(self._episodes, dtype=np.int32), np.array(self._steps, dtype=np.int32)) def _reset(self): if self._current_time_step and self._current_time_step.is_last(): self._episodes += 1 self._steps = 0 return ts.restart(self._get_observation()) @gin.configurable class NestedCountingEnv(py_environment.PyEnvironment): """Counts up in the observation as steps are taken. Step observation values are of the form { 'total_steps': (10 ** episodes + self._current_step), 'current_steps': (self._current_step) } if steps_per_episode is greater than 10 then on reset the value of the observation count may go down. """ def __init__(self, steps_per_episode: types.Int = 10, nested_action=False): self._steps_per_episode = steps_per_episode self._episodes = 0 self._current_step = np.array(0, dtype=np.int32) self._nested_action = nested_action super(NestedCountingEnv, self).__init__(handle_auto_reset=True) def observation_spec(self) -> types.NestedArraySpec: return { 'total_steps': specs.BoundedArraySpec((), dtype=np.int32), 'current_steps': specs.BoundedArraySpec((), dtype=np.int32) } def action_spec(self) -> types.NestedArraySpec: if self._nested_action: return { 'foo': specs.BoundedArraySpec((), dtype=np.int32, minimum=0, maximum=1), 'bar': specs.BoundedArraySpec((), dtype=np.int32, minimum=0, maximum=1) } else: return specs.BoundedArraySpec((), dtype=np.int32, minimum=0, maximum=1) def _step(self, action): del action # Unused. self._current_step = np.array(1 + self._current_step, dtype=np.int32) if self._current_step < self._steps_per_episode: return ts.transition(self._get_observation(), 0) # pytype: disable=wrong-arg-types return ts.termination(self._get_observation(), 1) # pytype: disable=wrong-arg-types def _get_observation(self): return { 'total_steps': np.array(10 * self._episodes + self._current_step, dtype=np.int32), 'current_steps': self._current_step } def _reset(self): if self._current_time_step and self._current_time_step.is_last(): self._episodes += 1 self._current_step = np.array(0, dtype=np.int32) return ts.restart(self._get_observation())
145fa56faeef37542e22de8faa7b5458191b40fd
4139b937d2710e809a3883554f8717271277b5a0
/ytube/mainapp/urls.py
97b68c554252e5162218c69ab690e68bb20160e7
[]
no_license
debaghosh/Youtube-Data-API-Project
5a24ebd8e05665b31f3451cc620b14d29446eb49
0f4c79b7c03e222e4978327d310fd5f95b53aebc
refs/heads/main
2023-04-18T00:34:53.734390
2021-04-28T19:11:21
2021-04-28T19:11:21
305,747,146
2
0
null
null
null
null
UTF-8
Python
false
false
201
py
from django.urls import path from . import views urlpatterns = [ path('',views.home,name='home'), path('video/',views.video,name="video"), path('channel/',views.channel,name="channel"), ]
de1fb4c2e52ad648d612c61f606df65673435378
422c7b6f117bb78483fffdc58bc4dce97ece3a06
/weatherapp/app/views.py
090c18fa303cc6319572324faab9a7cdd487b756
[]
no_license
xiasuke/WeatherApp
300e076ab0868f23b7cb2329befd2412de4c007a
edffd0b581955a41b0419722fe8dc8327d8bd693
refs/heads/master
2021-06-30T00:42:03.245952
2017-09-18T13:32:04
2017-09-18T13:32:04
103,694,220
0
0
null
null
null
null
UTF-8
Python
false
false
3,525
py
# -*- coding: utf-8 -*- import json from flask import render_template, url_for, redirect, flash, request from app import app from .forms import CityInputForm, SelectCityForm from .models import Cities, CurrentWeather from controller import InputHandler from common.constants import JAVASCRIPT_PATH @app.route('/', methods=['GET', 'POST']) def index(): form = CityInputForm() if form.validate_on_submit(): city_name = form.city.data return redirect(url_for('find_city', city_name=city_name)) return render_template("home.html", title='Home', searchform=form, entries=Cities().get_all_cities()) @app.route('/find_city/<city_name>', methods=['GET', 'POST']) def find_city(city_name): search_form = CityInputForm() duplicate_city_form = SelectCityForm() if duplicate_city_form.is_submitted() and not search_form.validate_on_submit(): print "go here" value = duplicate_city_form.city_list.data if value == "None": return render_template("home.html", title="Invalid Entry", searchform=search_form, entries=Cities().get_all_cities()) value = json.loads(duplicate_city_form.city_list.data) print "value_id: {}, {}".format(value, type(value)) return redirect(url_for('current_weather', city_id=value.get("id"))) # print city_name if search_form.validate_on_submit(): new_city_name = search_form.city.data return redirect(url_for('find_city', city_name=new_city_name)) city_info = Cities().get_city_info(city_name) new_city_info = InputHandler().get_requested_city_state(city_name, city_info) if new_city_info is not None and len(new_city_info) != 1: duplicate_city_form.city_list.choices = [(json.dumps(city), ", ".join((city_name, city.get("state"), city.get("country")))) for city in new_city_info] return render_template("home.html", title=city_name, searchform=search_form, cityinfo=duplicate_city_form, numcityinfo=len(new_city_info), entries=Cities().get_all_cities()) elif new_city_info is not None and len(new_city_info) == 1: print new_city_info[0].get("id") return redirect(url_for('current_weather', city_id=new_city_info[0].get("id"))) flash("%s is not a city" % (city_name)) return redirect(url_for("index")) @app.route('/current_weather/<city_id>', methods=['GET', 'POST']) def current_weather(city_id): cur_weather_result = InputHandler().get_city_cur_weather(city_id) cur_response_builder = CurrentWeather(cur_weather_result) cur_response = cur_response_builder.build_current_weather_response() forecast_result = InputHandler().get_city_forecast(city_id) return render_template("current_weather.html", title=cur_response_builder.city_name + ", " + cur_response_builder.city_country, weatherdescrip=cur_response_builder.weather_description, temp=cur_response_builder.current_temp, curweather = cur_response, curweathericon=cur_weather_result['weather'][0]["icon"], forecast_info=forecast_result["list"])
ff42e4c1e25395242bc420cf6c2299df49eeed88
662207b37b6d77b43c164b9feacdbf928790bf17
/day5/csv_file_reader-4.py
71ef476d3185e56ed6b74d536cdfcf95ce22baa0
[]
no_license
shamanthaka/mypython_work
fc26983488059eb59462f8ab966aaad2ab93532a
410f655939387b709cefa4d452aa323aede1c4d7
refs/heads/master
2020-07-10T03:12:59.246227
2019-08-24T12:34:34
2019-08-24T12:34:34
204,152,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
import csv from datetime import datetime file = open("google_stock_data-1.csv", newline='') reader = csv.reader(file) header = next(reader) #The first line is the header data = [] for row in reader: #row = [Date, Open, High, Low, Close, Volume, Adj.Close date = datetime.strptime(row[0], "%m/%d/%Y") open_price = float(row[1]) #'open' is builtin function high = float(row[2]) low = float(row[3]) close = float(row[4]) volume = int(row[5]) adj_close = float(row[6]) data.append([date, open_price, high, low, close, volume, adj_close]) print(data[0]) #compute and store daily stock returns return_path = "google_returns.csv" file = open(return_path, 'w') writer1 = csv.writer(file) writer1.writerow(["Date", "Returns"]) for i in range(len(data) - 1): todays_row = data[i] todays_date = todays_row[0] todays_price = todays_row[-1] yesterdays_row = data[i+1] yesterdays_price = yesterdays_row[-1] daily_return = (todays_price - yesterdays_price) / yesterdays_price formatted_date = todays_date.strftime('%m/%d/%Y') writer1.writerow([formatted_date, daily_return]) print(header) print(data[0])
d4d251c3b3289e5e59f6f69637eadebeaa3d7d65
f286fa74dc20579274cc61281326446fa05e0e45
/python_bale_bot/models/messages/base_message.py
524159d0e63e0f952aac44dd6aec8cc98853c726
[]
no_license
mmdaz/Bot
91b39d8ff0cce16834ca2d80e77232020b31bd90
fb7b207dc8c07e4e7d766ced61c0dce6eccf11b7
refs/heads/master
2021-06-13T10:32:15.215663
2018-12-25T02:52:57
2018-12-25T02:52:57
145,236,800
0
0
null
2021-03-31T18:47:50
2018-08-18T16:49:58
Python
UTF-8
Python
false
false
105
py
from python_bale_bot.models.base_models.jsonable import Jsonable class BaseMessage(Jsonable): pass
a742a33db13716c957bb8912fdcb12eeb8c67fc9
e4ceb24675f326ee985271761ceea1f7499c008f
/shredder.py
106463d860d699b6eeb4dc91b0c6d9019f394391
[]
no_license
vdugar/Instagram-Challenge
c15b0584bb6cbf87be4c856b2ac4e92418848b35
fe5ce6d79e91235d967d998ea2a268f2600e2fcf
refs/heads/master
2016-09-06T09:43:12.606514
2012-01-08T05:43:56
2012-01-08T05:43:56
2,802,625
0
0
null
null
null
null
UTF-8
Python
false
false
732
py
""" Usage: python shredder.py source_image NO_OF_SHREDS """ import sys from PIL import Image from random import shuffle def shredder(): image = Image.open(sys.argv[1]) SHREDS = int(sys.argv[2]) shredded = Image.new('RGBA', image.size) width, height = image.size shred_width = width/SHREDS sequence = range(0, SHREDS) shuffle(sequence) for i, shred_index in enumerate(sequence): shred_x1, shred_y1 = shred_width * shred_index, 0 shred_x2, shred_y2 = shred_x1 + shred_width, height region =image.crop((shred_x1, shred_y1, shred_x2, shred_y2)) shredded.paste(region, (shred_width * i, 0)) shredded.save('shredded.jpg') if __name__ == '__main__': shredder()
d8c7395042d0f2082aff13bcb11066c45b458b79
ddca79e37a1731104e7e469d349797c6c46cfa9b
/egs/thchs30/steps/data/augment_data_dir.py
432b136e3b1f54793a1e224686852689243038b9
[ "Apache-2.0" ]
permissive
zyzisyz/tf-kaldi-speaker
9608302d9430fae6916cb0367a79e227e06a3795
320ed4d6255addda4e86f9d4c2911c1fec21ba42
refs/heads/master
2020-08-11T14:21:13.280003
2019-10-12T14:22:16
2019-10-12T14:22:16
214,579,180
0
0
Apache-2.0
2019-10-12T04:46:17
2019-10-12T04:46:17
null
UTF-8
Python
false
false
9,158
py
#!/usr/bin/env python3 # Copyright 2017 David Snyder # 2017 Ye Bai # Apache 2.0 # # This script generates augmented data. It is based on # steps/data/reverberate_data_dir.py but doesn't handle reverberation. # It is designed to be somewhat simpler and more flexible for augmenting with # additive noise. from __future__ import print_function import sys, random, argparse, os, imp sys.path.append("steps/data/") from reverberate_data_dir import ParseFileToDict from reverberate_data_dir import WriteDictToFile data_lib = imp.load_source('dml', 'steps/data/data_dir_manipulation_lib.py') def GetArgs(): parser = argparse.ArgumentParser(description="Augment the data directory with additive noises. " "Noises are separated into background and foreground noises which are added together or " "separately. Background noises are added to the entire recording, and repeated as necessary " "to cover the full length. Multiple overlapping background noises can be added, to simulate " "babble, for example. Foreground noises are added sequentially, according to a specified " "interval. See also steps/data/reverberate_data_dir.py " "Usage: augment_data_dir.py [options...] <in-data-dir> <out-data-dir> " "E.g., steps/data/augment_data_dir.py --utt-suffix aug --fg-snrs 20:10:5:0 --bg-snrs 20:15:10 " "--num-bg-noise 1:2:3 --fg-interval 3 --fg-noise-dir data/musan_noise --bg-noise-dir " "data/musan_music data/train data/train_aug", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fg-snrs', type=str, dest = "fg_snr_str", default = '20:10:0', help='When foreground noises are being added, the script will iterate through these SNRs.') parser.add_argument('--bg-snrs', type=str, dest = "bg_snr_str", default = '20:10:0', help='When background noises are being added, the script will iterate through these SNRs.') parser.add_argument('--num-bg-noises', type=str, dest = "num_bg_noises", default = '1', help='Number of overlapping background noises that we iterate over. For example, if the input is "1:2:3" then the output wavs will have either 1, 2, or 3 randomly chosen background noises overlapping the entire recording') parser.add_argument('--fg-interval', type=int, dest = "fg_interval", default = 0, help='Number of seconds between the end of one foreground noise and the beginning of the next.') parser.add_argument('--utt-suffix', type=str, dest = "utt_suffix", default = "aug", help='Suffix added to utterance IDs.') parser.add_argument('--random-seed', type=int, dest = "random_seed", default = 123, help='Random seed.') parser.add_argument("--bg-noise-dir", type=str, dest="bg_noise_dir", help="Background noise data directory") parser.add_argument("--fg-noise-dir", type=str, dest="fg_noise_dir", help="Foreground noise data directory") parser.add_argument("input_dir", help="Input data directory") parser.add_argument("output_dir", help="Output data directory") print(' '.join(sys.argv)) args = parser.parse_args() args = CheckArgs(args) return args def CheckArgs(args): if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) if not args.fg_interval >= 0: raise Exception("--fg-interval must be 0 or greater") if args.bg_noise_dir is None and args.fg_noise_dir is None: raise Exception("Either --fg-noise-dir or --bg-noise-dir must be specified") return args def GetNoiseList(noise_wav_scp_filename): noise_wav_scp_file = open(noise_wav_scp_filename, 'r').readlines() noise_wavs = {} noise_utts = [] for line in noise_wav_scp_file: toks=line.split(" ") wav = " ".join(toks[1:]) noise_utts.append(toks[0]) noise_wavs[toks[0]] = wav.rstrip() return noise_utts, noise_wavs def AugmentWav(utt, wav, dur, fg_snr_opts, bg_snr_opts, fg_noise_utts, \ bg_noise_utts, noise_wavs, noise2dur, interval, num_opts): # This section is common to both foreground and background noises new_wav = "" dur_str = str(dur) noise_dur = 0 tot_noise_dur = 0 snrs=[] noises=[] start_times=[] # Now handle the background noises if len(bg_noise_utts) > 0: num = random.choice(num_opts) for i in range(0, num): noise_utt = random.choice(bg_noise_utts) noise = "wav-reverberate --duration=" \ + dur_str + " \"" + noise_wavs[noise_utt] + "\" - |" snr = random.choice(bg_snr_opts) snrs.append(snr) start_times.append(0) noises.append(noise) # Now handle the foreground noises if len(fg_noise_utts) > 0: while tot_noise_dur < dur: noise_utt = random.choice(fg_noise_utts) noise = noise_wavs[noise_utt] snr = random.choice(fg_snr_opts) snrs.append(snr) noise_dur = noise2dur[noise_utt] start_times.append(tot_noise_dur) tot_noise_dur += noise_dur + interval noises.append(noise) start_times_str = "--start-times='" + ",".join(list(map(str,start_times))) + "'" snrs_str = "--snrs='" + ",".join(list(map(str,snrs))) + "'" noises_str = "--additive-signals='" + ",".join(noises).strip() + "'" # If the wav is just a file if wav.strip()[-1] != "|": new_wav = "wav-reverberate --shift-output=true " + noises_str + " " \ + start_times_str + " " + snrs_str + " " + wav + " - |" # Else if the wav is in a pipe else: new_wav = wav + " wav-reverberate --shift-output=true " + noises_str + " " \ + start_times_str + " " + snrs_str + " - - |" return new_wav def CopyFileIfExists(utt_suffix, filename, input_dir, output_dir): if os.path.isfile(input_dir + "/" + filename): dict = ParseFileToDict(input_dir + "/" + filename, value_processor = lambda x: " ".join(x)) if len(utt_suffix) > 0: new_dict = {} for key in dict.keys(): new_dict[key + "-" + utt_suffix] = dict[key] dict = new_dict WriteDictToFile(dict, output_dir + "/" + filename) def main(): args = GetArgs() fg_snrs = list(map(int, args.fg_snr_str.split(":"))) bg_snrs = list(map(int, args.bg_snr_str.split(":"))) input_dir = args.input_dir output_dir = args.output_dir num_bg_noises = list(map(int, args.num_bg_noises.split(":"))) reco2dur = ParseFileToDict(input_dir + "/reco2dur", value_processor = lambda x: float(x[0])) wav_scp_file = open(input_dir + "/wav.scp", 'r').readlines() noise_wavs = {} noise_reco2dur = {} bg_noise_utts = [] fg_noise_utts = [] # Load background noises if args.bg_noise_dir: bg_noise_wav_filename = args.bg_noise_dir + "/wav.scp" bg_noise_utts, bg_noise_wavs = GetNoiseList(bg_noise_wav_filename) bg_noise_reco2dur = ParseFileToDict(args.bg_noise_dir + "/reco2dur", value_processor = lambda x: float(x[0])) noise_wavs.update(bg_noise_wavs) noise_reco2dur.update(bg_noise_reco2dur) # Load background noises if args.fg_noise_dir: fg_noise_wav_filename = args.fg_noise_dir + "/wav.scp" fg_noise_reco2dur_filename = args.fg_noise_dir + "/reco2dur" fg_noise_utts, fg_noise_wavs = GetNoiseList(fg_noise_wav_filename) fg_noise_reco2dur = ParseFileToDict(args.fg_noise_dir + "/reco2dur", value_processor = lambda x: float(x[0])) noise_wavs.update(fg_noise_wavs) noise_reco2dur.update(fg_noise_reco2dur) random.seed(args.random_seed) new_utt2wav = {} new_utt2spk = {} # Augment each line in the wav file for line in wav_scp_file: toks = line.rstrip().split(" ") utt = toks[0] wav = " ".join(toks[1:]) dur = reco2dur[utt] new_wav = AugmentWav(utt, wav, dur, fg_snrs, bg_snrs, fg_noise_utts, bg_noise_utts, noise_wavs, noise_reco2dur, args.fg_interval, num_bg_noises) new_utt = utt + "-" + args.utt_suffix new_utt2wav[new_utt] = new_wav if not os.path.exists(output_dir): os.makedirs(output_dir) WriteDictToFile(new_utt2wav, output_dir + "/wav.scp") CopyFileIfExists(args.utt_suffix, "reco2dur", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "utt2dur", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "utt2spk", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "utt2lang", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "text", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "utt2spk", input_dir, output_dir) CopyFileIfExists(args.utt_suffix, "vad.scp", input_dir, output_dir) CopyFileIfExists("", "spk2gender", input_dir, output_dir) data_lib.RunKaldiCommand("utils/fix_data_dir.sh {output_dir}".format(output_dir = output_dir)) if __name__ == "__main__": main()
54261356c34affbb8adc4b8e18917f0b93ecbf45
3bdc9855c32ed0a7e1b433f1538f57264ae2e4dd
/Day-4/Hands-on/MultiNetworkExample/RGM/utils.py
bfbc401a5a5a51a897363163829527eacd302c6e
[]
no_license
SSDS-Croatia/SSDS-2020
b184cef79b38f1973cd04f42063ef7de22585ed8
fd3b18ed36aa33a31c24e45d5562aa7b371eb760
refs/heads/master
2022-12-18T14:35:52.898610
2020-09-23T11:45:14
2020-09-23T11:45:14
279,528,225
4
6
null
2020-09-06T18:41:28
2020-07-14T08:31:35
null
UTF-8
Python
false
false
2,780
py
import numpy as np, networkx as nx import scipy.io as sio from config import * import scipy.sparse as sp from scipy.sparse import coo_matrix dataset_lookup = {"mutag" : "MUTAG", "nci" : "NCI1", "ptc" : "PTC_MR", "imdb-b": "IMDB-BINARY", "imdb-m" : "IMDB-MULTI", "collab": "COLLAB"} #Input: list of n embs of shape m_1 x d, m_2 x d, ...m_n x d #Output: combined matrix of shape (sum_i = 1 to n m_i) x d def combine_embs(embs): combined_embs = embs[0] for i in range(1, len(embs)): combined_embs = np.vstack((combined_embs, embs[i])) return combined_embs #Combine multiple graphs into one big block diagonal graph #Handles sparse graphs def create_combined_graph(graphs, emb_method): dim_starts = [0] #where to start new graph for g in graphs: dim_starts.append(g.N + dim_starts[-1]) combined_row = np.asarray([]) combined_col = np.asarray([]) combined_data = np.asarray([]) combined_node_labels = None combined_edge_labels = None combined_edgelabel_row = np.asarray([]) combined_edgelabel_col = np.asarray([]) combined_edgelabel_data = np.asarray([]) for i in range(len(graphs)): adj = graphs[i].adj.tocoo() combined_row = np.concatenate((combined_row, adj.row + dim_starts[i])) combined_col = np.concatenate((combined_col, adj.col + dim_starts[i])) combined_data = np.concatenate((combined_data, adj.data)) if graphs[i].edge_labels is not None: #add edge labels edge_labels = graphs[i].edge_labels.tocoo() combined_edgelabel_row = np.concatenate((combined_edgelabel_row, edge_labels.row + dim_starts[i])) combined_edgelabel_col = np.concatenate((combined_edgelabel_col, edge_labels.col + dim_starts[i])) combined_edgelabel_data = np.concatenate((combined_edgelabel_data, edge_labels.data)) #add node label data if graphs[i].node_labels is not None: if combined_node_labels is None: combined_node_labels = graphs[i].node_labels else: combined_node_labels = np.concatenate((combined_node_labels, graphs[i].node_labels)) combined_shape = (dim_starts[-1], dim_starts[-1]) combined_adj = coo_matrix((combined_data, (combined_row, combined_col)), shape = combined_shape).tocsr() if combined_edgelabel_data.size > 0: #we have edge labels combined_edge_labels = coo_matrix((combined_edgelabel_data, (combined_edgelabel_row, combined_edgelabel_col)), shape = combined_shape).tocsr() #use node label as attribute combined_graph = Graph(combined_adj, node_labels = combined_node_labels, edge_labels = combined_edge_labels, node_attributes = combined_node_labels) return combined_graph, dim_starts #Input list of graphs #Output: array of combined node labels def combine_labels(graphs): combined_labels = list() for graph in graphs: combined_labels += graph.node_labels return combined_labels
122be19a61a0639cc28993bfa38839b6a35b7df6
2821a9e144d27e70aacebed3bc4e58137dc7c191
/app/auth/forms.py
387f678d01142d6847f971ab03d0ca788f6e0d75
[]
no_license
bluesnoblue/BluesServer
296fd3b281616b82d0773902ba7a06c089740935
96db1d10d6ce565db46c0bdb72e493fc0dbdd23b
refs/heads/master
2022-12-13T18:47:17.140086
2019-03-12T07:28:40
2019-03-12T07:28:40
156,386,402
0
0
null
null
null
null
UTF-8
Python
false
false
1,677
py
from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, PasswordField, BooleanField from wtforms.validators import DataRequired, Email, ValidationError, EqualTo from app.models import User class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Remember Me') submit = SubmitField('Sign In') class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Repeat Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Register') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('Please use a different email address.') class ResetPassWordRequestForm(FlaskForm): email = StringField('Email', validators=[DataRequired(),Email()]) submit = SubmitField('Request Password Reset') class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Repeat Password', validators=[DataRequired(), EqualTo('password')]) submit =SubmitField('Request Password Reset')
eaf3251ef24f1745953ed74171cac3e1b9abf7d3
df93e960b8be38d82d76cc2656a16f7b441d320d
/obfuscate.py
18e5e3ef1f2d578017b810761247397e821a4009
[]
no_license
kabads/obfuscate
ce8ecfbf67cef8cbd31b934b432d040ae5839428
88005a1d28557c9b5e2defb03095c5f4ce736e7b
refs/heads/master
2023-04-07T04:27:30.966242
2021-03-31T07:38:17
2021-03-31T07:38:17
353,115,890
0
0
null
null
null
null
UTF-8
Python
false
false
4,248
py
import csv import random import argparse LOWER_VOWEL_LIST = ['a', 'e', 'i', 'o', 'u'] UPPER_VOWEL_LIST = ['A', 'E', 'I', 'O', 'U'] LOWER_CONSONANT_LIST = ['b', 'c', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'w', 'x', 'y', 'z'] UPPER_CONSONANT_LIST = ['B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'W', 'X', 'Y', 'Z'] DIGIT_LIST = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] def obfuscate(string): new_string = '' for i in string: if i in LOWER_VOWEL_LIST: i = random.choice(LOWER_VOWEL_LIST) elif i in UPPER_VOWEL_LIST: i = random.choice(UPPER_VOWEL_LIST) elif i in LOWER_CONSONANT_LIST: i = random.choice(LOWER_CONSONANT_LIST) elif i in UPPER_CONSONANT_LIST: i = random.choice(UPPER_CONSONANT_LIST) elif i in DIGIT_LIST: i = random.choice(DIGIT_LIST) new_string = new_string + i return new_string def read_file(file, columns, outfilename=None): # Prepare the output file: outfilename = "" print(outfilename) if outfilename == "": outfilename = file.name + str("-bak.csv") # Outfile is going to be where we write the file to. outfile = (open(str(outfilename), "w")) csv_writer = csv.writer(outfile, delimiter=',', lineterminator='\n') # Open the file to obfuscate with open(str(file.name), newline='') as csvfile: csv_reader = csv.reader(csvfile, delimiter=',') # Next just moves it on one row (to take out the header row) rowcount = 0 # keep a count of which row we are on # Iterate over the rows in the csv file for row in csv_reader: # Iterate through all the columns, but if a column matches something in columns, # then it should be obfuscated newrow = [] # an array to hold our new row as we read the columns. if rowcount != 0: # if this is zero, then we are at the header # Iterate over the columns in the row keeping columncount as a counter columncount = 0 for column in row: newcell = "" # This will hold the contents of the new cell if str(columncount) in columns: # Check if this is one of the files that needs obfuscation: for i in column: # Loop through each character and change it i = obfuscate(i) # This is the character being passed to obfuscate and returned newcell = newcell + i # Collect all the random characters in newcell: newrow.append(newcell) # Append the newcell to the new row else: # This column is not obfuscated newrow.append(column) # Append the newcell to the new row columncount = columncount + 1 # If the cell doesn't need obfuscating, then just carry on else: # This must be the header as this is row 0, so lets add it to the new outfile: csv_writer.writerow(row) # OK - now we will increase our rowcount by one. rowcount = rowcount + 1 # And write the newrow to the file: csv_writer.writerow(newrow) # We've finished all the files - so close the file: outfile.close() def open_file(filename): file = open(filename) return file def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--file", required=True, help="Which file do you want to read in?", dest="infile") parser.add_argument("-o", "--outfile", help="Which file do you want to write out to?") parser.add_argument("-r", "--rows", required=True, help="Which rows do you want to be obfuscated (in ascending" " order)?", dest="rows", nargs='+') args = parser.parse_args() file = open_file(args.infile) # print("Args: ", args.infile) # print("file opened successfully.") read_file(file, args.rows, args.outfile) file.close() if __name__ == '__main__': main()
5a376adc61df0a82a554729b16161f47b55484e0
cf72581c792fa74f959c74550c167f9e18def815
/dominio_ag_tsp.py
2acc9f158e926e78aaa485d4b23213164fd2583e
[ "Apache-2.0" ]
permissive
ITCRStevenLPZ/Proyecto3-Analisis-de-Algoritmos
295319f918bb14d48e651c3c7b28feebb92091fc
86d73834da5f4ca7cd94671dc665bd576ed32e4b
refs/heads/master
2023-08-14T15:45:23.249396
2021-10-07T06:04:22
2021-10-07T06:04:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,224
py
from dominio_ag import DominioAG from dominio_tsp import DominioTSP from random import random class DominioAGTSP(DominioAG, DominioTSP): """ Representa el objeto de dominio que conoce los detalles de implementación y modelamiento del problema del vendedor viajero para ser resuelto con algoritmos genéticos. Las soluciones se modelan como listas de enteros, donde cada número representa una ciudad específica. Si el grafo contiene n ciudades, la lista siempre contiene (n-1) elementos. La lista nunca contiene elementos repetidos y nunca contiene la ciudad de inicio y fin del circuito. Métodos: generar(n) Construye aleatoriamente una lista de listas que representa n posibles soluciones al problema. cruzar(sol_a, sol_b) Produce una nueva posible solución cruzando las dos soluciones dadas por parámetro. mutar(sol) Produce una nueva solución aplicando un ligero cambio a la solución dada por parámetro. """ def __init__(self, ciudades_rutacsv, ciudad_inicio): """Construye un objeto de modelo de dominio para una instancia específica del problema del vendedor viajero para ser resuelto con algoritmos genéticos. Entradas: ciudades_rutacsv (str) Ruta al archivo csv que contiene la matriz de pesos entre las ciudades para las que se quiere resolver el problema del vendedor viajero. ciudad_inicio (str) Nombre de la ciudad que será el inicio y fin del circuito a calcular. Salidas: Una instancia de DominioAGTSP correctamente inicializada. """ super().__init__(ciudades_rutacsv,ciudad_inicio) def generar_n(self, n): """Construye aleatoriamente una lista de listas que representa n posibles soluciones al problema. Entradas: n (int) Número de soluciones aleatorias a generar. Salidas: (sols) Lista que contiene n listas, cada una representando una posible solución al problema modelado por el objeto de dominio. """ sols = [] for x in range(n): nuevo = self.generar() valido = self.validar(nuevo) while(not valido): nuevo = self.generar() valido = self.validar(nuevo) sols.append(nuevo) return sols def cruzar(self, sol_a, sol_b): """Produce una nueva posible solución cruzando las dos soluciones dadas por parámetro. Entradas: sol_a (estructura de datos) Estructura de datos que modela la solución antecesora A que será cruzada con la B sol_b (estructura de datos) Estructura de datos que modela la solución antecesora B que será cruzada con la A Salidas: (H1) Una nueva solución producto del cruzamiento entre las soluciones A y B """ P1 = sol_a P2 = sol_b lenOri = len(sol_a) H1 = [-1] * lenOri geneA = 0 geneB = 0 while (geneA == geneB):#para que lo rango no sea igual a vacio geneA = int(random() * lenOri) geneB = int(random() * lenOri) startGene = min(geneA, geneB) endGene = max(geneA, geneB) for i in range(startGene, endGene): H1[i] = P1[i] rec = 0#recorrido del padre recorrido = 0#pos en la que va el nuevo elemento while (rec < lenOri): while (H1[recorrido] != -1 and recorrido + 1 < lenOri): recorrido += 1 if (P2[rec] not in H1): H1[recorrido] = P2[rec] rec += 1 return H1 def mutar(self, sol): """Produce una nueva solución aplicando un ligero cambio a la solución dada por parámetro. Entradas: sol (estructura de datos) La solución a mutar. Salidas: (vecino(sol)) Una nueva solución que refleja un ligero cambio con respecto a la solución dada por parámetro utilizando el método de vecino del SIM ANNEALING """ return super().vecino(sol)
a936dc2e461b068adb1d7e0afb575895d7118f90
59ac4d6d130fa83a9a38e0838c4ff52ed6a944d2
/tourism survey multi-tasking/ILS_master_2.py
edb75cfddf590aa10936e3404f5feb54ed10c87a
[]
no_license
GaryGrimes/Multi_Tasking_Main
f97c3aad02c95dde259ef148350ef230d6ed5347
fd3924ae9e64f1163e5d9fc23a6c61a9d9fbb7aa
refs/heads/master
2020-11-27T02:32:27.591003
2019-12-20T14:17:46
2019-12-20T14:17:46
229,273,756
0
0
null
null
null
null
UTF-8
Python
false
false
27,873
py
import numpy as np import pickle class IlsUtility(object): def __init__(self, NodeNum, alpha, beta, phi, UtilMatrix, TimeMatrix, CostMatrix, DwellArray): if len(alpha) != 2: raise ValueError('alpha should be a 1*2 array!') if len(beta) != 3: raise ValueError('beta should be a 1*3 array!') self.NodeNum = NodeNum self.alpha, self.beta, self.phi = alpha, beta, phi self.utilmatrix = UtilMatrix self.timematrix = TimeMatrix self.costmatrix = CostMatrix self.dwellarray = DwellArray def modify_travel_time(self): timematrix = self.timematrix for i in range(timematrix.shape[0]): for j in range(timematrix.shape[1]): min_cost = timematrix[i][j] for k in range((timematrix.shape[1])): cost = timematrix[i][k] + timematrix[k][j] min_cost = cost if cost < min_cost else min_cost timematrix[i][j] = min(min_cost, timematrix[i][j]) timematrix = (timematrix + timematrix.T) / 2 return timematrix def eval_util(self, route): # use array as input util, AcumUtil = 0, np.zeros([3]) if len(route) <= 2: return 0 else: for k in range(1, len(route) - 1): # arc and node utility util += self.arc_util_callback(route[k - 1], route[k]) + self.node_util_callback(route[k], Pref, AcumUtil) AcumUtil += self.exp_util_callback(route[k], AcumUtil) # Accumulated utility; travel history util += self.arc_util_callback(route[k], route[k + 1]) return util pass def cost_change(self, n1, n2, n3, n4): cost_matrix = self.costmatrix return cost_matrix[n1][n3] + cost_matrix[n2][n4] - cost_matrix[n1][n2] - cost_matrix[n3][n4] def time_callback(self, route): DwellArray = self.dwellarray if len(route) <= 2: return 0 else: time = 0 for k in range(1, len(route) - 1): time += self.travel_time_callback(route[k - 1], route[k]) + DwellArray[route[k]] time += self.travel_time_callback(route[k], route[k + 1]) return time def travel_time_callback(self, from_node, to_node): return self.timematrix[from_node][to_node] def arc_util_callback(self, from_node, to_node): alpha1, alpha2, phi = self.alpha[0], self.alpha[1], self.phi return alpha1 * self.timematrix[from_node][to_node] + alpha2 * phi * self.costmatrix[from_node][to_node] def exp_util_callback(self, to_node, AcumUtil): beta2 = self.beta[1] return self.utilmatrix[to_node] * np.exp(-beta2 * AcumUtil) def node_util_callback(self, to_node, Pref, AcumUtil): [beta1, beta2, beta3] = self.beta return beta1 * np.dot(Pref, self.utilmatrix[to_node] * np.exp(-beta2 * AcumUtil)) + beta3 * self.dwellarray[ to_node] def util_max_insert(self, o, d, tmax, must_node=None): if must_node: _path = [o, must_node, d] else: _path = [o, d] # construct new path into cur_nop distance, benefit = [], [] for _i in range(self.NodeNum): cost = self.timematrix[o][_i] + self.timematrix[_i][d] + self.dwellarray[_i] distance.append(cost) bene = np.dot(Pref, self.utilmatrix[_i]) / cost benefit.append(bene) # index is sorted such that the first entry has smallest benefit for insertion (from o to d) index = list(np.argsort(benefit)) # except for node_j if must_node in index: index.remove(must_node) # check time limitation available_nodes = [x for x in index if distance[x] <= tmax][::-1] # nodes with higher benefits at front while available_nodes: # try all available nodes, even if current node cannot be inserted due to big cost cur_node = available_nodes.pop(0) min_cost = 999999 for k in range(1, len(_path)): # available positions for insertion # try all possible insertions newpath = _path[:k] + [cur_node] + _path[k:] newcost = self.time_callback(newpath) if newcost < tmax and newcost < min_cost: min_cost, bespos = newcost, k nochange = min_cost == 999999 if not nochange: _path = _path[:bespos] + [cur_node] + _path[bespos:] return _path def initialization(self, tmax, o, d): # for the points within ellipse, insert onto paths with cheapest insertion cost while ignoring the scores. distance = [] for _node in range(self.NodeNum): distance.append(self.timematrix[o][_node] + self.timematrix[_node][d] + self.dwellarray[_node]) # index is sorted such that the first entry has smallest benefit for insertion (from o to d) index = np.argsort(distance) # check time limitation available_nodes = [x for x in index if distance[x] <= tmax] L = min(10, len(available_nodes)) # find L nodes with largest distance from start and end if L < 1: return None # index is node indices with distances from smallest to largest # build solutions. Reference: a fast and efficient heuristic for... Chao et al solutions = [] path_op_set, path_nop_set = [], [] for l in range(L): paths = [] # to store available paths (available nodes have to be on one of the paths) # construct 1st path cur_node_set = list(available_nodes) cur_path = [o, cur_node_set.pop(-(l + 1)), d] # insert l-th largest node into the first path no_improvement = 0 # either path full (time limit exceeded) or no available nodes to be inserted while not no_improvement: cur_cost = self.time_callback(cur_path) # regarding distance not score best_node, best_pos, best_cost = -1, -1, 999999 for idx, node in enumerate(cur_node_set): for pos in range(1, len(cur_path)): # check all positions on current path for insertion _path = cur_path[:pos] + [node] + cur_path[pos:] _cost = self.time_callback(_path) - cur_cost if self.time_callback(_path) < tmax and _cost < best_cost: best_node_idx, best_pos, best_cost = idx, pos, _cost no_improvement = best_cost == 999999 if not no_improvement: cur_path = cur_path[:best_pos] + [cur_node_set.pop(best_node_idx)] + cur_path[best_pos:] paths.append(cur_path) # other paths # assign nodes to all paths while cur_node_set: cur_path = [o, cur_node_set.pop(0), d] # cur_node_set is already sorted, the first node is with smallest distance from o to d no_improvement = 0 while not no_improvement: cur_cost = time_callback(cur_path) # regarding distance not score best_node, best_pos, best_cost = -1, -1, 999999 for idx, node in enumerate(cur_node_set): for pos in range(1, len(cur_path)): # check all positions on current path for insertion _path = cur_path[:pos] + [node] + cur_path[pos:] _cost = time_callback(_path) - cur_cost if time_callback(_path) < tmax and _cost < best_cost: best_node_idx, best_pos, best_cost = idx, pos, _cost no_improvement = best_cost == 999999 if not no_improvement: cur_path = cur_path[:best_pos] + [cur_node_set.pop(best_node_idx)] + cur_path[best_pos:] paths.append(cur_path) # decide the solution path by choosing a path with largest total score among the paths score, solution = [eval_util(_path) for _path in paths], [] if score: solution = paths.pop(np.argsort(score)[-1]) path_op_set.append(solution) path_nop_set.append(paths) # return best path_op and its path_nop set best_op, best_nop = [], [] if path_op_set: score = [eval_util(_path) for _path in path_op_set] best_op, best_nop = path_op_set[np.argsort(score)[-1]], path_nop_set[np.argsort(score)[-1]] return best_op, best_nop def two_point_exchange(self, path_op, path_nop, tmax): TimeMatrix = self.timematrix cur_op, cur_nop = list(path_op), list(path_nop) a_loop_nodes = list(cur_op[1:-1]) # A loop for idx, node_j in enumerate(a_loop_nodes): # first to the last point in path_op (except for o and d) for debugger in cur_nop: if self.time_callback(debugger) > Tmax: raise LookupError('Path time over limit.') cur_op_backup = cur_op.copy() # the point remain in current position if exchange results in a bad score _ = cur_op[1:-1] _.remove(node_j) cur_op = [cur_op[0]] + _ + [ cur_op[-1]] # o + attractions + d. Sometimes origin or des will also exist in attractions # node_j is removed from cur_op length = self.time_callback(cur_op) found = 0 # Flag to indicate whether a candidate exchange leading to a higher total score is found. # If found, the exchange is performed immediately, and all other exchanges are ignored. # B loop TODO 加入best path,能在没有找到最优解的情况按deviation修改 # b_loop_records = [] # b_loop_scores = [] exchange_flag = 0 best_path_idx, best_path, best_node, best_pos, best_score, = -999999, [], -1, -1, -999999 for _path_idx, _path in enumerate(cur_nop): if found == 1: break for index in range(1, len(_path) - 1): node_i = _path[index] # skip node_j and duplicate node if node_i == node_j or node_i in cur_op: # avoid duplicate continue for pos in range(1, len(cur_op)): # feasibility check if TimeMatrix[cur_op[pos - 1]][node_i] + DwellArray[node_i] + TimeMatrix[node_i][cur_op[pos]] - \ TimeMatrix[cur_op[pos - 1]][cur_op[pos]] + length < tmax: test_path = cur_op[:pos] + [node_i] + cur_op[pos:] test_score = self.eval_util(test_path) # find best insert position if test_score >= best_score: best_path_idx, best_path, best_node, best_pos, best_score = _path_idx, _path, node_i, pos, test_score # do the exchange if best_path: # found an insertion location indeed # total score increase check if best_score > record: found = 1 # found an exchange that leads to a higher score # exchange cur_op = cur_op[:best_pos] + [best_node] + cur_op[best_pos:] best_path.pop(index) exchange_flag = 1 break # b_loop_records.append([best_node, best_pos]) # b_loop_scores.append(best_score) # b_loop ends # if found no exchange, try exchanges between record and (record - deviation) if found == 0: if best_path: test_path = cur_op[:best_pos] + [best_node] + cur_op[best_pos:] test_score = eval_util(test_path) else: test_path, test_score = [], 0 if test_score >= record - deviation: # exchange # insert node_i onto cur_op cur_op = cur_op[:best_pos] + [best_node] + cur_op[best_pos:] # remove node_i from the best_path in path_nop visits = list(best_path[1:-1]) visits.remove(best_node) cur_nop[best_path_idx] = [best_path[0]] + visits + [best_path[-1]] exchange_flag = 1 pass # if found no exchange, cur_op remains the same if not exchange_flag: cur_op = cur_op_backup # no removing nodes from path_nop continue # put node_j back into cur_nop # criteria: minimum insertion cost best_path_idx, best_path, best_pos, best_score = 999999, [], -1, 999999 for bp_idx, _path in enumerate(cur_nop): if node_j in _path[1:-1]: # skip nodes that serve as origin or destination raise LookupError('Duplicate nodes are not supposed to present! Debug please.') # continue # avoid repetitive existence for pos in range(1, len(_path)): length = time_callback(_path) # feasibility check if TimeMatrix[_path[pos - 1]][node_j] + DwellArray[node_j] + TimeMatrix[node_j][_path[pos]] - \ TimeMatrix[_path[pos - 1]][_path[pos]] + length < Tmax: test_path = _path[:pos] + [node_j] + _path[pos:] test_score = time_callback(test_path) - length # find best insert position if test_score <= best_score: best_path_idx, best_path, best_pos, best_score = bp_idx, _path, pos, test_score # do the exchange if not best_score == 999999: # found an insertion location indeed # TODO check if change is made inplace cur_nop[best_path_idx] = best_path[:best_pos] + [node_j] + best_path[best_pos:] else: # construct new path into cur_nop new_path = [path_op[0], node_j, path_op[-1]] cur_nop.append(new_path) # pick up best from both path_op and path_nop solutions = [cur_op] + cur_nop # DEBUG best_score, best_path, best_index = -999999, [], -999999 for index, solution in enumerate(solutions): if len(set(solution[1:-1])) < len(solution[1:-1]): raise LookupError('Duplicate nodes in a path') cur_score = eval_util(solution) if cur_score > best_score: best_path, best_score, best_index = solution, cur_score, index p_op = solutions.pop(best_index) p_nop = solutions return p_op, p_nop def one_point_movement(path_op, path_nop): # calculate points that are within ellipse o, d = path_op[0], path_op[-1] distance = [] for _node in range(NodeNum): distance.append(TimeMatrix[o][_node] + TimeMatrix[_node][d] + DwellArray[_node]) # index is sorted such that the first entry has smallest benefit for insertion (from o to d) index = np.argsort(distance) # check time limitation available_nodes = [x for x in index if distance[x] <= Tmax] paths = [path_op] + path_nop # paths变了源变量也跟着变 for _node in available_nodes: # pick out the current path that the node is on: path_q = [] for _i, _path in enumerate(paths): if _node in _path[1:-1]: path_q = paths.pop(_i) break # movement movement = 0 best_path_index, best_pos, best_score = -999999, -1, -999999 for path_index, _path in enumerate(paths): for pos in range(1, len(_path)): test_path = _path[:pos] + [_node] + _path[pos:] # check feasibility: if time_callback(test_path) < Tmax: test_score = eval_util(test_path) # check total score increase # if test_score > eval_util(_path): # TODO total score here 是指每个path的还是record的? if test_score > record: paths[path_index] = test_path # do movement _ = path_q[1:-1] _.remove(_node) if len(_) == len(path_q[1:-1]): raise LookupError('Remove not successful... not found node in current path?') path_q, movement = [path_q[0]] + _ + [path_q[-1]], 1 # TODO 这里可能是inplace的, 能不能这样放回到paths里? list()后应该就可以 paths = [list(path_q)] + paths break # else: if test_score > best_score: best_path_index, best_pos, best_score = path_index, pos, test_score if movement: break if movement == 0: # check if the score of the best movement >= record - deviation if best_score >= record - deviation: # make movement paths[best_path_index] = paths[best_path_index][:best_pos] + [_node] + paths[best_path_index][ best_pos:] # delete current node on path_q _ = path_q[1:-1] _.remove(_node) if len(_) == len(path_q[1:-1]): raise LookupError('Remove not successful... not found node in current path?') path_q, movement = [path_q[0]] + _ + [path_q[-1]], 1 paths = [list(path_q)] + paths else: paths = [list(path_q)] + paths # put path_q back if no movement score = [] for _path in paths: score.append(eval_util(_path)) path_op = paths.pop(np.argsort(score)[-1]) return path_op, paths def two_opt(path_op): best = list(path_op) _score = eval_util(best) improved = True while improved: improved = False for _i in range(1, len(path_op) - 2): for j in range(_i + 1, len(path_op)): if j - _i == 1: continue if cost_change(TimeMatrix, best[_i - 1], best[_i], best[j - 1], best[j]) < -0.1: best[_i:j] = best[j - 1:_i - 1:-1] improved = True return best if eval_util(best) > _score else path_op # check improvement of utility def reinitialization(path_op, path_nop, k): if k < 1: return path_op, path_nop ratio = [] # visited = path_op[1:-1] for _idx in range(1, len(path_op) - 1): # si/costi gain = node_util_callback(path_op[_idx], Pref, np.zeros([3])) cost = TimeMatrix[path_op[_idx - 1]][path_op[_idx]] + DwellArray[path_op[_idx]] + TimeMatrix[path_op[_idx]][ path_op[_idx + 1]] - TimeMatrix[path_op[_idx - 1]][path_op[_idx + 1]] ratio.append(gain / cost) # ratio is benefit/insertion cost nodes_sorted = np.argsort(ratio) # smaller nodes are assigned in front remove_indices = nodes_sorted[:k] # for _i, _node in enumerate(path_op): path_op_new = [path_op[x] for x in range(len(path_op)) if x - 1 not in remove_indices] for _k in range(k): remove_node_idx = remove_indices[_k] + 1 # remove node from path_op node_j = path_op[remove_node_idx] # TODO 每次path_op都在变小,不能按idx pop # put node_j back into path_nop # criteria: minimum insertion cost best_path_idx, best_path, best_pos, best_score = 999999, [], -1, 999999 for bp_idx, _path in enumerate(path_nop): if node_j in _path[1:-1]: # skip nodes that serve as origin or destination raise LookupError('Duplicate nodes are not supposed to present! Debug please.') # continue # avoid repetitive existence for pos in range(1, len(_path)): length = time_callback(_path) # feasibility check if TimeMatrix[_path[pos - 1]][node_j] + DwellArray[node_j] + TimeMatrix[node_j][_path[pos]] - \ TimeMatrix[_path[pos - 1]][_path[pos]] + length < Tmax: test_path = _path[:pos] + [node_j] + _path[pos:] test_score = time_callback(test_path) - length # find best insert position if test_score <= best_score: best_path_idx, best_path, best_pos, best_score = bp_idx, _path, pos, test_score # do the exchange if not best_score == 999999: # found an insertion location indeed path_nop[best_path_idx] = best_path[:best_pos] + [node_j] + best_path[best_pos:] else: # construct new path into cur_nop new_path = [path_op[0], node_j, path_op[-1]] path_nop.append(new_path) path_op = path_op_new return path_op, path_nop if __name__ == '__main__': # %% Solver Setup NodeNum = 37 # number of attractions. Origin and destination are excluded. # UtilMatrix = 10 * np.random.rand(NodeNum, 3) # UtilMatrix[0] = [0, 0, 0] # # TimeMatrix = 100 * np.random.rand(NodeNum, NodeNum) # np.fill_diagonal(TimeMatrix, 0) # # CostMatrix = 20 * np.random.rand(NodeNum, NodeNum) # np.fill_diagonal(CostMatrix, 0) # # DwellArray = 60 * np.random.rand(NodeNum) alpha1, alpha2 = -0.05, -0.05 beta1, beta2, beta3 = 1, 0.03, 0.08 # TODO beta2该怎么定 phi = 0.1 Tmax = 500 # person specific time constraints Origin, Destination = 0, 0 # %% save data # pickle.dump(UtilMatrix, open('UtilMatrix.txt', 'wb')) # pickle.dump(TimeMatrix, open('TimeMatrix.txt', 'wb')) # pickle.dump(CostMatrix, open('CostMatrix.txt', 'wb')) # pickle.dump(DwellArray, open('DwellArray.txt', 'wb')) UtilMatrix = pickle.load(open('UtilMatrix.txt', 'rb')) TimeMatrix = pickle.load(open('TimeMatrix.txt', 'rb')) CostMatrix = pickle.load(open('CostMatrix.txt', 'rb')) DwellArray = pickle.load(open('DwellArray.txt', 'rb')) TimeMatrix = modify_travel_time(TimeMatrix) # %% start solver # warning: total utility of a path must >= 0 Pref = np.array([0.5, 0.3, 0.2]) route = [0, 2, 4, 0] print('test %.2f \n' % eval_util(route)) # initialization PathOp, PathNop = initialization(Tmax, Origin, Destination) print('Scores after initial insertion: \n') print('Optimal path score: {}, time: {}'.format(eval_util(PathOp), time_callback(PathOp))) print(PathOp) for i in PathNop: print('Non-optimal path score: {}, time: {}'.format(eval_util(i), time_callback(i))) print(i) record, p = eval_util(PathOp), 0.1 deviation = p * record best_solution = PathOp.copy() K = 3 for _K in range(K): print('\nCurrent K loop number: {}'.format(_K)) for itr in range(4): print('\nCurrent iteration: {}'.format(itr)) # two-point exchange Path_op, Path_nop = two_point_exchange(PathOp, PathNop) visited = [] print('\nScores after two-point exchange: \n') score = eval_util(Path_op) print('Optimal path score: {}, time: {}'.format(score, time_callback(Path_op))) print(Path_op) visited.extend(Path_op[1:-1]) for i, path in enumerate(Path_nop): visited.extend(path[1:-1]) print('Current path number: {}, score as {}, time: {}'.format(i, eval_util(path), time_callback(path))) print(path) print('Number of attractions visited: {}, duplicate nodes: {}.'.format(len(visited), len(visited) - len(set(visited)))) if score > record: best_solution, record = list(Path_op), score deviation = p * record # one-point movement Path_op, Path_nop = one_point_movement(Path_op, Path_nop) visited = [] print('\nScores after one-point movement: \n') score = eval_util(Path_op) print('Optimal path score: {}, time: {}'.format(score, time_callback(Path_op))) print(Path_op) visited.extend(Path_op[1:-1]) if score > record: best_solution, record = list(Path_op), score deviation = p * record for i, path in enumerate(Path_nop): visited.extend(path[1:-1]) print('Current path number: {}, score as {}, time: {}'.format(i, eval_util(path), time_callback(path))) print(path) print('Number of attractions visited: {}, duplicate nodes: {}.'.format(len(visited), len(visited) - len(set(visited)))) # 2-opt (clean-up) print('\nPath length before 2-opt: {}, with score: {}'.format(time_callback(Path_op), eval_util(Path_op))) Path_op_2 = two_opt(Path_op) cost_2_opt = eval_util(Path_op_2) print('Path length after 2-opt: {}, with score: {}'.format(time_callback(Path_op_2), cost_2_opt)) PathOp, PathNop = Path_op_2, Path_nop # if no movement has been made, end I loop if Path_op_2 == best_solution: break # if a new better solution has been obtained, then set new record and new deviation if cost_2_opt > record: best_solution, record = list(Path_op_2), cost_2_opt deviation = p * record # perform reinitialization PathOp, PathNop = reinitialization(PathOp, PathNop, 3) print('\nBest solution score: {}, time: {} \nSolution: {}'.format(record, time_callback(best_solution), best_solution))
e859c41c360c09031092ca20ba7456f1a4d99789
63168b3cc1a8019583b331ebc8c4ec58c241753c
/ngraph/python/tests/test_onnx/test_zoo_models.py
dd2534600445cc7195cdfa606889c5cf8b590520
[ "Apache-2.0" ]
permissive
generalova-kate/openvino
2e14552ab9b1196fe35af63b5751a96d0138587a
72fb7d207cb61fd5b9bb630ee8785881cc656b72
refs/heads/master
2023-08-09T20:39:03.377258
2021-09-07T09:43:33
2021-09-07T09:43:33
300,206,718
0
0
Apache-2.0
2020-10-01T08:35:46
2020-10-01T08:35:45
null
UTF-8
Python
false
false
9,766
py
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import tests from operator import itemgetter from pathlib import Path from typing import Sequence, Any import numpy as np from tests.test_onnx.utils import OpenVinoOnnxBackend from tests.test_onnx.utils.model_importer import ModelImportRunner from tests import ( xfail_issue_38701, xfail_issue_43742, xfail_issue_45457, xfail_issue_37957, xfail_issue_38084, xfail_issue_39669, xfail_issue_38726, xfail_issue_37973, xfail_issue_47430, xfail_issue_47495, xfail_issue_48145, xfail_issue_48190, xfail_issue_58676, xfail_issue_onnx_models_140) MODELS_ROOT_DIR = tests.MODEL_ZOO_DIR def yolov3_post_processing(outputs : Sequence[Any]) -> Sequence[Any]: concat_out_index = 2 # remove all elements with value -1 from yolonms_layer_1/concat_2:0 output concat_out = outputs[concat_out_index][outputs[concat_out_index] != -1] concat_out = np.expand_dims(concat_out, axis=0) outputs[concat_out_index] = concat_out return outputs def tinyyolov3_post_processing(outputs : Sequence[Any]) -> Sequence[Any]: concat_out_index = 2 # remove all elements with value -1 from yolonms_layer_1:1 output concat_out = outputs[concat_out_index][outputs[concat_out_index] != -1] concat_out = concat_out.reshape((outputs[concat_out_index].shape[0], -1, 3)) outputs[concat_out_index] = concat_out return outputs post_processing = { "yolov3" : {"post_processing" : yolov3_post_processing}, "tinyyolov3" : {"post_processing" : tinyyolov3_post_processing}, "tiny-yolov3-11": {"post_processing": tinyyolov3_post_processing}, } tolerance_map = { "arcface_lresnet100e_opset8": {"atol": 0.001, "rtol": 0.001}, "fp16_inception_v1": {"atol": 0.001, "rtol": 0.001}, "mobilenet_opset7": {"atol": 0.001, "rtol": 0.001}, "resnet50_v2_opset7": {"atol": 0.001, "rtol": 0.001}, "test_mobilenetv2-1.0": {"atol": 0.001, "rtol": 0.001}, "test_resnet101v2": {"atol": 0.001, "rtol": 0.001}, "test_resnet18v2": {"atol": 0.001, "rtol": 0.001}, "test_resnet34v2": {"atol": 0.001, "rtol": 0.001}, "test_resnet50v2": {"atol": 0.001, "rtol": 0.001}, "mosaic": {"atol": 0.001, "rtol": 0.001}, "pointilism": {"atol": 0.001, "rtol": 0.001}, "rain_princess": {"atol": 0.001, "rtol": 0.001}, "udnie": {"atol": 0.001, "rtol": 0.001}, "candy": {"atol": 0.003, "rtol": 0.003}, "densenet-3": {"atol": 1e-7, "rtol": 0.0011}, "arcfaceresnet100-8": {"atol": 0.001, "rtol": 0.001}, "mobilenetv2-7": {"atol": 0.001, "rtol": 0.001}, "resnet101-v1-7": {"atol": 0.001, "rtol": 0.001}, "resnet101-v2-7": {"atol": 0.001, "rtol": 0.001}, "resnet152-v1-7": {"atol": 1e-7, "rtol": 0.003}, "resnet152-v2-7": {"atol": 0.001, "rtol": 0.001}, "resnet18-v1-7": {"atol": 0.001, "rtol": 0.001}, "resnet18-v2-7": {"atol": 0.001, "rtol": 0.001}, "resnet34-v2-7": {"atol": 0.001, "rtol": 0.001}, "vgg16-7": {"atol": 0.001, "rtol": 0.001}, "vgg19-bn-7": {"atol": 0.001, "rtol": 0.001}, "tinyyolov2-7": {"atol": 0.001, "rtol": 0.001}, "tinyyolov2-8": {"atol": 0.001, "rtol": 0.001}, "candy-8": {"atol": 0.001, "rtol": 0.001}, "candy-9": {"atol": 0.007, "rtol": 0.001}, "mosaic-8": {"atol": 0.003, "rtol": 0.001}, "mosaic-9": {"atol": 0.001, "rtol": 0.001}, "pointilism-8": {"atol": 0.001, "rtol": 0.001}, "pointilism-9": {"atol": 0.001, "rtol": 0.001}, "rain-princess-8": {"atol": 0.001, "rtol": 0.001}, "rain-princess-9": {"atol": 0.001, "rtol": 0.001}, "udnie-8": {"atol": 0.001, "rtol": 0.001}, "udnie-9": {"atol": 0.001, "rtol": 0.001}, "mxnet_arcface": {"atol": 1.5e-5, "rtol": 0.001}, "resnet100": {"atol": 1.5e-5, "rtol": 0.001}, "densenet121": {"atol": 1e-7, "rtol": 0.0011}, "resnet152v1": {"atol": 1e-7, "rtol": 0.003}, "test_shufflenetv2": {"atol": 1e-05, "rtol": 0.001}, "tiny_yolov2": {"atol": 1e-05, "rtol": 0.001}, "mobilenetv2-1": {"atol": 1e-04, "rtol": 0.001}, "resnet101v1": {"atol": 1e-04, "rtol": 0.001}, "resnet101v2": {"atol": 1e-06, "rtol": 0.001}, "resnet152v2": {"atol": 1e-05, "rtol": 0.001}, "resnet18v2": {"atol": 1e-05, "rtol": 0.001}, "resnet34v2": {"atol": 1e-05, "rtol": 0.001}, "vgg16": {"atol": 1e-05, "rtol": 0.001}, "vgg19-bn": {"atol": 1e-05, "rtol": 0.001}, "test_tiny_yolov2": {"atol": 1e-05, "rtol": 0.001}, "test_resnet152v2": {"atol": 1e-04, "rtol": 0.001}, "test_mobilenetv2-1": {"atol": 1e-04, "rtol": 0.001}, "yolov3": {"atol": 0.001, "rtol": 0.001}, "yolov4": {"atol": 1e-04, "rtol": 0.001}, "tinyyolov3": {"atol": 1e-04, "rtol": 0.001}, "tiny-yolov3-11": {"atol": 1e-04, "rtol": 0.001}, "GPT2": {"atol": 5e-06, "rtol": 0.01}, "GPT-2-LM-HEAD": {"atol": 4e-06}, "test_retinanet_resnet101": {"atol": 1.3e-06}, } zoo_models = [] # rglob doesn't work for symlinks, so models have to be physically somwhere inside "MODELS_ROOT_DIR" for path in Path(MODELS_ROOT_DIR).rglob("*.onnx"): mdir = path.parent file_name = path.name if path.is_file() and not file_name.startswith("."): model = {"model_name": path, "model_file": file_name, "dir": mdir} basedir = mdir.stem if basedir in tolerance_map: # updated model looks now: # {"model_name": path, "model_file": file, "dir": mdir, "atol": ..., "rtol": ...} model.update(tolerance_map[basedir]) if basedir in post_processing: model.update(post_processing[basedir]) zoo_models.append(model) if len(zoo_models) > 0: zoo_models = sorted(zoo_models, key=itemgetter("model_name")) # Set backend device name to be used instead of hardcoded by ONNX BackendTest class ones. OpenVinoOnnxBackend.backend_name = tests.BACKEND_NAME # import all test cases at global scope to make them visible to pytest backend_test = ModelImportRunner(OpenVinoOnnxBackend, zoo_models, __name__, MODELS_ROOT_DIR) test_cases = backend_test.test_cases["OnnxBackendModelImportTest"] # flake8: noqa: E501 if tests.MODEL_ZOO_XFAIL: import_xfail_list = [ # ONNX Model Zoo (xfail_issue_38701, "test_onnx_model_zoo_text_machine_comprehension_bidirectional_attention_flow_model_bidaf_9_bidaf_bidaf_cpu"), (xfail_issue_43742, "test_onnx_model_zoo_vision_object_detection_segmentation_ssd_mobilenetv1_model_ssd_mobilenet_v1_10_ssd_mobilenet_v1_ssd_mobilenet_v1_cpu"), (xfail_issue_38726, "test_onnx_model_zoo_text_machine_comprehension_t5_model_t5_decoder_with_lm_head_12_t5_decoder_with_lm_head_cpu"), # Model MSFT (xfail_issue_43742, "test_MSFT_opset10_mlperf_ssd_mobilenet_300_ssd_mobilenet_v1_coco_2018_01_28_cpu"), (xfail_issue_37957, "test_MSFT_opset10_mask_rcnn_keras_mask_rcnn_keras_cpu"), ] for test_case in import_xfail_list: xfail, test_name = test_case xfail(getattr(test_cases, test_name)) del test_cases test_cases = backend_test.test_cases["OnnxBackendModelExecutionTest"] if tests.MODEL_ZOO_XFAIL: execution_xfail_list = [ # ONNX Model Zoo (xfail_issue_39669, "test_onnx_model_zoo_text_machine_comprehension_t5_model_t5_encoder_12_t5_encoder_cpu"), (xfail_issue_38084, "test_onnx_model_zoo_vision_object_detection_segmentation_mask_rcnn_model_MaskRCNN_10_mask_rcnn_R_50_FPN_1x_cpu"), (xfail_issue_38084, "test_onnx_model_zoo_vision_object_detection_segmentation_faster_rcnn_model_FasterRCNN_10_faster_rcnn_R_50_FPN_1x_cpu"), (xfail_issue_47430, "test_onnx_model_zoo_vision_object_detection_segmentation_fcn_model_fcn_resnet50_11_fcn_resnet50_11_model_cpu"), (xfail_issue_47430, "test_onnx_model_zoo_vision_object_detection_segmentation_fcn_model_fcn_resnet101_11_fcn_resnet101_11_model_cpu"), (xfail_issue_48145, "test_onnx_model_zoo_text_machine_comprehension_bert_squad_model_bertsquad_8_download_sample_8_bertsquad8_cpu"), (xfail_issue_48190, "test_onnx_model_zoo_text_machine_comprehension_roberta_model_roberta_base_11_roberta_base_11_roberta_base_11_cpu"), (xfail_issue_onnx_models_140, "test_onnx_model_zoo_vision_object_detection_segmentation_duc_model_ResNet101_DUC_7_ResNet101_DUC_HDC_ResNet101_DUC_HDC_cpu"), # Model MSFT (xfail_issue_37973, "test_MSFT_opset7_tf_inception_v2_model_cpu"), (xfail_issue_37973, "test_MSFT_opset8_tf_inception_v2_model_cpu"), (xfail_issue_37973, "test_MSFT_opset9_tf_inception_v2_model_cpu"), (xfail_issue_37973, "test_MSFT_opset11_tf_inception_v2_model_cpu"), (xfail_issue_37973, "test_MSFT_opset10_tf_inception_v2_model_cpu"), (xfail_issue_58676, "test_MSFT_opset7_fp16_tiny_yolov2_onnxzoo_winmlperf_tiny_yolov2_cpu"), (xfail_issue_58676, "test_MSFT_opset8_fp16_tiny_yolov2_onnxzoo_winmlperf_tiny_yolov2_cpu"), (xfail_issue_38084, "test_MSFT_opset10_mask_rcnn_mask_rcnn_R_50_FPN_1x_cpu"), (xfail_issue_38084, "test_MSFT_opset10_faster_rcnn_faster_rcnn_R_50_FPN_1x_cpu"), (xfail_issue_39669, "test_MSFT_opset9_cgan_cgan_cpu"), (xfail_issue_47495, "test_MSFT_opset10_BERT_Squad_bertsquad10_cpu"), (xfail_issue_45457, "test_MSFT_opset10_mlperf_ssd_resnet34_1200_ssd_resnet34_mAP_20.2_cpu"), ] for test_case in import_xfail_list + execution_xfail_list: xfail, test_name = test_case xfail(getattr(test_cases, test_name)) del test_cases globals().update(backend_test.enable_report().test_cases)
8c06bb5e519ec1686a774be59d66a0b85a8aa078
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/ml/azure-ai-ml/azure/ai/ml/entities/_compute/synapsespark_compute.py
91246ce9f13fa7101e3c320b4f62ab2e90df2b91
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-python-cwi", "LGPL-2.1-or-later", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
9,495
py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from typing import Dict, Optional from azure.ai.ml._restclient.v2022_10_01_preview.models import ( AutoPauseProperties, AutoScaleProperties, ComputeResource, SynapseSpark, ) from azure.ai.ml._schema.compute.synapsespark_compute import SynapseSparkComputeSchema from azure.ai.ml._utils._experimental import experimental from azure.ai.ml.constants._common import BASE_PATH_CONTEXT_KEY, TYPE from azure.ai.ml.constants._compute import ComputeType from azure.ai.ml.entities import Compute from azure.ai.ml.entities._credentials import IdentityConfiguration from azure.ai.ml.entities._util import load_from_dict class AutoScaleSettings: """Auto-scale settings for Synapse Spark compute. :keyword min_node_count: The minimum compute node count. :paramtype min_node_count: Optional[int] :keyword max_node_count: The maximum compute node count. :paramtype max_node_count: Optional[int] :keyword enabled: Specifies if auto-scale is enabled. :paramtype enabled: Optional[bool] .. admonition:: Example: .. literalinclude:: ../../../../../samples/ml_samples_spark_configurations.py :start-after: [START synapse_spark_compute_configuration] :end-before: [END synapse_spark_compute_configuration] :language: python :dedent: 8 :caption: Configuring AutoScaleSettings on SynapseSparkCompute. """ def __init__( self, *, min_node_count: Optional[int] = None, max_node_count: Optional[int] = None, enabled: Optional[bool] = None, ) -> None: self.min_node_count = min_node_count self.max_node_count = max_node_count self.auto_scale_enabled = enabled def _to_auto_scale_settings(self) -> AutoScaleProperties: return AutoScaleProperties( min_node_count=self.min_node_count, max_node_count=self.max_node_count, auto_scale_enabled=self.auto_scale_enabled, ) @classmethod def _from_auto_scale_settings(cls, autoscaleprops: AutoScaleProperties) -> "AutoScaleSettings": return cls( min_node_count=autoscaleprops.min_node_count, max_node_count=autoscaleprops.max_node_count, enabled=autoscaleprops.enabled, ) class AutoPauseSettings: """Auto pause settings for Synapse Spark compute. :keyword delay_in_minutes: The time delay in minutes before pausing cluster. :paramtype delay_in_minutes: Optional[int] :keyword enabled: Specifies if auto-pause is enabled. :paramtype enabled: Optional[bool] .. admonition:: Example: .. literalinclude:: ../../../../../samples/ml_samples_spark_configurations.py :start-after: [START synapse_spark_compute_configuration] :end-before: [END synapse_spark_compute_configuration] :language: python :dedent: 8 :caption: Configuring AutoPauseSettings on SynapseSparkCompute. """ def __init__(self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None) -> None: self.delay_in_minutes = delay_in_minutes self.auto_pause_enabled = enabled def _to_auto_pause_settings(self) -> AutoPauseProperties: return AutoPauseProperties( delay_in_minutes=self.delay_in_minutes, auto_pause_enabled=self.auto_pause_enabled, ) @classmethod def _from_auto_pause_settings(cls, autopauseprops: AutoPauseProperties) -> "AutoPauseSettings": return cls( delay_in_minutes=autopauseprops.delay_in_minutes, enabled=autopauseprops.enabled, ) @experimental class SynapseSparkCompute(Compute): """SynapseSpark Compute resource. :keyword name: The name of the compute. :paramtype name: str :keyword description: The description of the resource. Defaults to None. :paramtype description: Optional[str] :keyword tags: The set of resource tags defined as key/value pairs. Defaults to None. :paramtype tags: Optional[[dict[str, str]] :keyword node_count: The number of nodes in the compute. :paramtype node_count: Optional[int] :keyword node_family: The node family of the compute. :paramtype node_family: Optional[str] :keyword node_size: The size of the node. :paramtype node_size: Optional[str] :keyword spark_version: The version of Spark to use. :paramtype spark_version: Optional[str] :keyword identity: The configuration of identities that are associated with the compute cluster. :paramtype identity: Optional[~azure.ai.ml.entities.IdentityConfiguration] :keyword scale_settings: The scale settings for the compute. :paramtype scale_settings: Optional[~azure.ai.ml.entities.AutoScaleSettings] :keyword auto_pause_settings: The auto pause settings for the compute. :paramtype auto_pause_settings: Optional[~azure.ai.ml.entities.AutoPauseSettings] :keyword kwargs: Additional keyword arguments passed to the parent class. :paramtype kwargs: Optional[dict] .. admonition:: Example: .. literalinclude:: ../../../../../samples/ml_samples_spark_configurations.py :start-after: [START synapse_spark_compute_configuration] :end-before: [END synapse_spark_compute_configuration] :language: python :dedent: 8 :caption: Creating Synapse Spark compute. """ def __init__( self, *, name: str, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None, node_count: Optional[int] = None, node_family: Optional[str] = None, node_size: Optional[str] = None, spark_version: Optional[str] = None, identity: Optional[IdentityConfiguration] = None, scale_settings: Optional[AutoScaleSettings] = None, auto_pause_settings: Optional[AutoPauseSettings] = None, **kwargs, ) -> None: kwargs[TYPE] = ComputeType.SYNAPSESPARK super().__init__(name=name, description=description, location=kwargs.pop("location", None), tags=tags, **kwargs) self.identity = identity self.node_count = node_count self.node_family = node_family self.node_size = node_size self.spark_version = spark_version self.scale_settings = scale_settings self.auto_pause_settings = auto_pause_settings @classmethod def _load_from_rest(cls, rest_obj: ComputeResource) -> "SynapseSparkCompute": prop = rest_obj.properties scale_settings = ( # pylint: disable=protected-access AutoScaleSettings._from_auto_scale_settings(prop.properties.auto_scale_properties) if prop.properties.auto_scale_properties else None ) auto_pause_settings = ( # pylint: disable=protected-access AutoPauseSettings._from_auto_pause_settings(prop.properties.auto_pause_properties) if prop.properties.auto_pause_properties else None ) return SynapseSparkCompute( name=rest_obj.name, id=rest_obj.id, description=prop.description, location=rest_obj.location, resource_id=prop.resource_id, tags=rest_obj.tags if rest_obj.tags else None, created_on=prop.created_on if prop.properties else None, node_count=prop.properties.node_count if prop.properties else None, node_family=prop.properties.node_size_family if prop.properties else None, node_size=prop.properties.node_size if prop.properties else None, spark_version=prop.properties.spark_version if prop.properties else None, # pylint: disable=protected-access identity=IdentityConfiguration._from_compute_rest_object(rest_obj.identity) if rest_obj.identity else None, scale_settings=scale_settings, auto_pause_settings=auto_pause_settings, provisioning_state=prop.provisioning_state, provisioning_errors=prop.provisioning_errors[0].error.code if (prop.provisioning_errors and len(prop.provisioning_errors) > 0) else None, ) def _to_dict(self) -> Dict: # pylint: disable=no-member return SynapseSparkComputeSchema(context={BASE_PATH_CONTEXT_KEY: "./"}).dump(self) @classmethod def _load_from_dict(cls, data: Dict, context: Dict, **kwargs) -> "SynapseSparkCompute": loaded_data = load_from_dict(SynapseSparkComputeSchema, data, context, **kwargs) return SynapseSparkCompute(**loaded_data) def _to_rest_object(self) -> ComputeResource: synapsespark_comp = SynapseSpark( name=self.name, compute_type=self.type, resource_id=self.resource_id, description=self.description, ) return ComputeResource( location=self.location, properties=synapsespark_comp, name=self.name, identity=( # pylint: disable=protected-access self.identity._to_compute_rest_object() if self.identity else None ), tags=self.tags, )
f91b75f58f0b50595c5280517be0d491c69e8a3d
cc8d7864ded79da1822441d1b223349e79fc4a2d
/for문/for문 ) 빠른 A+B.py
c169219ba2d76bf9192dbeea72e5f7feaea2b47b
[]
no_license
yaena1223/BAEKJOON-
0b3afbad1ece5074cdd41dde51e4f262407a16da
bd2e5396183a2aaba30c38adcc3751aa05d951c0
refs/heads/main
2023-08-16T23:34:47.901537
2021-09-29T16:28:59
2021-09-29T16:28:59
368,310,358
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
import sys sum = [] num = int(input()) for i in range(num): a, b = map(int, sys.stdin.readline().split()) sum.append(a+b) for i in range(num): print(sum[i])
378fed1855d570a576642186d5941fdcf0477fcc
bd0959ad5d0d6cf57acaaf3785cf78e92fcf36af
/ScriptingLab/PyCol/changeString.py
023b9e9de4289b4cfccf55044efa11260289a160
[]
no_license
sach999/ScriptingLab
3b39080d89c2feeddd6db7cd98e0290fef3e3d47
4ff340b65337e4c228ed9cb906605e8860a6dd47
refs/heads/master
2020-07-20T07:14:20.635313
2019-12-22T16:50:30
2019-12-22T16:50:30
206,596,385
0
3
null
null
null
null
UTF-8
Python
false
false
706
py
def ChangeStr(str1): #increment each alphabet by 1 temp="" temp1="" l=len(str1) for i in range(0,l): ch=str1[i] if ch>="a" and ch<="z": if(ch=='z'): temp=temp+"a" else: ch1=ord(ch) ch1=ch1+1 temp=temp+chr(ch1) else: temp=temp+ch print(temp) for i in range(0,l): ch2=temp[i] if (ch2=="a" or ch2=="e" or ch2=="i" or ch2=="o" or ch2=="u"): s=ord(ch2) s=s-32 temp1=temp1+chr(s) else: temp1=temp1+ch2 print(temp1) ChangeStr(input("Enter the string:"))
a1c33c1c1624f756c1e2048314d0fbef2bb9a278
7d131ff01b3955ab892ac4323060712882febcf7
/setup.py
e1ec27da120ccbd79585c4d36de47f6608323d0c
[ "MIT" ]
permissive
TomekPulkiewicz/pywebby
d441973a0884b680198fab718b8d83adebd1271a
a7f8bd22a697ee4a4f09612e8a4384941ad08074
refs/heads/master
2023-06-17T11:42:14.903957
2021-07-18T12:47:08
2021-07-18T12:47:08
370,953,575
0
0
MIT
2021-05-27T23:01:09
2021-05-26T07:59:42
Python
UTF-8
Python
false
false
923
py
from setuptools import setup, find_packages import codecs import os here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, "README.md"), encoding="utf-8") as fh: LONG_DESCRIPTION = "\n" + fh.read() VERSION = '0.0.2' DESCRIPTION = 'An open-source python WebFramework.' # Setting up setup( name="pywebby", version=VERSION, author="Tomek Pulkiewicz", author_email="[email protected]", description=DESCRIPTION, long_description_content_type="text/markdown", long_description=LONG_DESCRIPTION, packages=find_packages(), install_requires=[], keywords=['python', 'web', 'web framework','sockets'], classifiers=[ "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", ] )
d6835d4de5c1a6c84a8eb54508afc0f74d9de13c
0a8d1b0d6ad3d836781373cdb3f1d58f8e246a59
/feature_1_2.py
50270ea6909ffb70365db289e6fa3e2a6d221933
[]
no_license
kunwardeepak/2020-interns
80c1d2e09c18ccb8c016dadd4f592e8ef78b51c0
6c073cf5aa8f9cfd605539a00b7d1a039199f8fb
refs/heads/master
2022-11-24T12:28:40.619037
2020-07-22T05:59:36
2020-07-22T05:59:36
281,129,122
0
0
null
2020-07-20T13:49:01
2020-07-20T13:49:01
null
UTF-8
Python
false
false
7,617
py
#Python 3.7.4 from tkinter import * import json import datetime import turtle import urllib.request import random def reset(): pass c = (0,0,0) def drawBar(t, height,old,date): """ Get turtle t to draw one bar, of height. """ global c try: if c[0]<220 and c[1]<220 and c[2]<220: r, g, b = c r += 30 g += 30 b += 30 c = (r, g, b) else: try: c = (random.randint(0,220),random.randint(0,220),random.randint(0,220)) except: pass except: pass # start drawing this shape t.begin_fill() t.right(180) t.backward(12) t.color('black') t.write(date,font=("Arial", 8, "normal"),align='left') t.color(c) t.forward(10) t.left(90) t.backward(0) t.left(90) t.left(90) t.color("black") t.forward((old)) t.color('black') t.forward(((height-old))) t.right(90) t.color('blue') t.pensize(1) t.forward(13) t.color("red") t.forward(13) t.color('blue') t.write(format(height), font=("Arial", 6, "normal"),align='center') t.color('blue') t.forward(13) t.color(c) t.right(90) t.forward((height)) t.left(90) def plot(): if month.get()=='select month': print('Please select month') return if cur.get()=='select': print('Please select currency') return if len(year_entry.get())>4 or int(year_entry.get())<2009: print('year is not valid') return months = ['January', 'February', 'March', 'April', 'May', 'June', 'July','August', 'September', 'October', 'November', 'December'] try: yy=year_entry.get() mm=months.index(month.get())+1 if int(mm)<10: mm=str('0'+str(mm)) ss='1' if int(mm)==2: ee='26' if int(mm)%2!=0 or int(mm)==1: ee=('31') if int(mm)%2==0 and int(mm)!=2: ee=('30') startdate=(str(yy)+'-'+str(mm)+'-'+ss) enddate=(str(yy)+'-'+str(mm)+'-'+ee) info['text']='Please wait fetching data from site....' url='https://api.exchangeratesapi.io/history?start_at='+str(startdate)+'&end_at='+str(enddate) try: print('Please wait fetching data from site....') x = urllib.request.urlopen(url) print('Data Revecied successfully') info['text']='Data Revecied successfully' data = json.loads(x.read()) except: data=json.load(open('data.json')) d={} d1=1 dates=[] rupees=[] while d1<10: for k,v in data.items(): for k1 in v: if k1==str(yy)+'-'+str(mm)+'-0'+str(d1): dates.append(k1) d=v[k1] for (k2,v2) in d.items(): if k2==str(cur.get()): rupees.append(v2) d1+=1 while d1<32: for p_id, p_info in data.items(): for key in p_info: if key==str(yy)+'-'+str(mm)+'-'+str(d1): dates.append(key) d=p_info[key] for (k,v) in d.items(): if k==str(cur.get()): rupees.append(v) d1+=1 date1=[] for x in dates: a=x.split('-') y=a[0] m=a[1] dates=a[2] date1.append(int(dates)) date=date1 xs=rupees print(date) print(xs) try: turtle.reset() except: pass try: turtle.clear() except: pass maxheight = max(xs) numbars = len(xs) border = 10 wn = turtle.Screen() # Set up the window and its attributes wn.setworldcoordinates(0-border, 0-border, 40*numbars+border, maxheight+border) wn.bgcolor("white") tess = turtle.Turtle() tess.speed('fastest') turtle.colormode(255) tess.pensize(3) tess.sety(-0.0125) tess.color("green") m=max(xs) tess.left(90) tess.backward(3) tess.write(' x,y') tess.forward(3) tess.forward(m+3) tess.write(cur.get()+' exchange rate against EUR') tess.backward(m+3) tess.right(90) tess.backward(20) tess.forward(20) tess.forward((len(xs)*39)+30) tess.right(90) tess.color('white') tess.forward(3) tess.color('green') tess.write('Date',align='right') tess.color('white') tess.backward(3) tess.color('green') tess.left(90) tess.forward(40) tess.backward((len(xs)*39)+70) tess.forward(((len(xs)*39)-100)/2) tess.right(90) tess.color("white") tess.forward(5) tess.color("blue") months = ['January', 'February', 'March', 'April', 'May', 'June', 'July','August', 'September', 'October', 'November', 'December'] mm=months.index(month.get())+1 if int(mm)<10: mm=str('0'+str(mm)) ss='1' if int(mm)==2: ee='26' if int(mm)%2!=0 or int(mm)==1: ee=('31') if int(mm)%2==0 and int(mm)!=2: ee=('30') tess.write(" 1 "+month.get()+" "+year_entry.get()+" to "+ee+ " " +month.get()+" "+year_entry.get(),font=('Arial',10,'normal')) tess.color("white") tess.backward(5) tess.color("green") tess.left(90) tess.backward(((len(xs)*39)-100)/2) old=0 i=0 for a in xs: drawBar(tess, a,old,str(date[i])) old=a i+=1 wn.exitonclick() except Exception as e: print(e) info['text']='Ops! Try Again (Check internet connection/No data found' app = Tk() app.title('Stats') app.geometry('900x550') info = Label(app, text='Data source (https://api.exchangeratesapi.io)', font=('bold', 10),pady=20) info.grid(row=50, column=2) start_txt = StringVar() year_txt = StringVar() year_label = Label(app, text='Year', font=('bold', 12),pady=20) year_label.grid(row=0, column=1) year_label1 = Label(app, text='(above 2008)', font=('Arial', 8),pady=20) year_label1.grid(row=0, column=3) year_entry =Entry(app,textvariable =year_txt) year_entry.grid(row =0 ,column=2) month = StringVar() month.set('select month') month_list = OptionMenu(app ,month, 'January', 'February', 'March', 'April', 'May', 'June', 'July','August', 'September', 'October', 'November', 'December') month_list.grid(row =0 ,column=0) select_label = Label(app, text=' Select currency : ', font=('bold', 12),pady=20) select_label.grid(row=10 , column=0) cur = StringVar() cur.set('select') cur_list = OptionMenu(app ,cur, 'CAD','HKD','ISK','PHP','DKD','HUF','CZK','AUD','RON','SEK','IDR','INR','BRL','RUB','HRK','JPY','THB','CHF','SGD','PLN','BGN','TRY','CNY','NOK','NZD','ZAR','USD','MXN','ILS','GBP','KRW','MYR') cur_list.grid(row =10 ,column=1) submit_btn = Button(app, text='Submit',width = 12,command =plot) submit_btn.grid(row=10,column=2) reset_btn = Button(app, text='Reset',width = 12,command =reset) reset_btn.grid(row=10,column=3) app.mainloop()
a99ce3fd7eafe338c38c4823f88c6f2e0aecf982
4acd48fd26b40891e4f58b33bb86be95d935c018
/models/LSTMEnsembleEncoder.py
b5b11d43430cc8085831116e553291b872af18cb
[]
no_license
ezosa/topic-aware-moderation
84052ef8b766348c4cfe25859801920f7d9f89d0
7721aab0625a49d0307a065783aae120cb140bf4
refs/heads/main
2023-08-21T09:00:18.839930
2021-10-20T06:23:28
2021-10-20T06:23:28
397,535,184
1
0
null
null
null
null
UTF-8
Python
false
false
2,200
py
import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from models.MLP import MLP device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class LSTMEncoder(nn.Module): def __init__(self, lstm_args, mlp_args): super(LSTMEncoder, self).__init__() # embedding layer self.embedding_dim = lstm_args['emb_dim'] self.embedding = nn.Embedding(lstm_args['vocab_size'], self.embedding_dim) # initialize with pretrained word emb if provided if 'pretrained_emb' in lstm_args: self.embedding.weight.data.copy_(lstm_args['pretrained_emb']) # bi-LSTM layer self.hidden_dim = lstm_args['hidden_dim'] self.input_dim = lstm_args['emb_dim'] + lstm_args['num_topics'] self.lstm = nn.LSTM(input_size=self.input_dim, hidden_size=self.hidden_dim, num_layers=1, batch_first=True, bidirectional=True) self.drop = nn.Dropout(p=0.5) # MLP classifier mlp_input_size = int(self.hidden_dim * 2) self.mlp = MLP(mlp_input_size, mlp_args['hidden_size']) def forward(self, text, text_len, topics): text_emb = self.embedding(text) doc_size = text_emb.shape[1] topic_input = topics.unsqueeze(1).repeat(1, doc_size, 1) lstm_input_emb = torch.cat((text_emb, topic_input), dim=2) lstm_input_len = text_len # packed_input = pack_padded_sequence(text_emb, text_len, batch_first=True, enforce_sorted=False) packed_input = pack_padded_sequence(lstm_input_emb, lstm_input_len, batch_first=True, enforce_sorted=False) packed_output, _ = self.lstm(packed_input) output, _ = pad_packed_sequence(packed_output, batch_first=True) out_forward = output[range(len(output)), text_len - 1, :self.hidden_dim] out_reverse = output[:, 0, self.hidden_dim:] out_reduced = torch.cat((out_forward, out_reverse), 1) text_fea = self.drop(out_reduced) mlp_output = self.mlp(text_fea) return mlp_output
0ff4b26b697e8ddb4643086d96acfea6f61ee817
ca3d3a34db5363141de2338b56a2dc41c545762d
/file_python1.py
893ba9712f3796cd12f99f14d30bb579e1747656
[]
no_license
marmiksp/First-Git-Based-Project
ede432d4aa4cc39d0b5a2bf5cb200ade345e0be6
4a4d7f3e557187085e23a4acc9bce0e2917e892d
refs/heads/master
2020-06-01T17:47:55.724890
2019-06-08T11:11:53
2019-06-08T11:11:53
190,870,877
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
# In this Program, we will going to move # file(.txt , .jpg etc) from source to Destination # and not Folders import os import shutil src = 'C:/Users/MSP/Desktop/A' dest = 'C:/Users/MSP/Desktop/B' filess = os.listdir(src) print("A -> ",filess) filesd = os.listdir(dest) print("B -> ",filesd) os.chdir(src) #for fil in filess: # this will create error # shutil.copy(fil, dest) # of not copying folder # to overcome that follow right next code for fil in filess: if os.path.isfile(fil): shutil.copy(fil, dest)
c29467258a701902de51c13c6b259165f83ade76
ed39a9306f9fec3e61849d5aec98e70c25b5ea42
/SrikanthFTL/SrikanthFTL/wsgi.py
ec26cab72385951eec06ccfeb050bc47ea79ab78
[]
no_license
srikanthch95/MYAPI
84323768d59c89a5780c19c3deff72ed97c71c57
09685d0902f12ec37a5fe77e037bdb7330365857
refs/heads/main
2023-03-08T17:38:27.375267
2021-02-20T16:23:59
2021-02-20T16:23:59
340,362,195
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for SrikanthFTL project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SrikanthFTL.settings') application = get_wsgi_application()
a0cedfaad3d595e93689cbd4a6c82b83bac81f28
3b499249387fc42800d7eba3b2f802911a9b4ece
/Exercize3.py
2ac01f2b1d849fc45c458d6e0e2f29d23c4ac0f9
[]
no_license
ArtemMonk/Homework2
636b051f48c8a4e379be581ee1527ccec5b7c1d2
9f8ee37d78e5055eb309ffa937bcb02a51b3d694
refs/heads/master
2023-03-03T07:50:35.353901
2021-02-09T13:41:26
2021-02-09T13:41:26
337,415,248
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
# 3. Пользователь вводит месяц в виде целого числа от 1 до 12. # Сообщить к какому времени года относится месяц (зима, весна, лето, осень). # Напишите решения через list и через dict. seasons = ((1, 'Зима'), (2, 'Зима'), (3, 'Весна'), (4, 'Весна'), (5, 'Весна'), (6, 'Лето'), (7, 'Лето'), (8, 'Лето'), (9, 'Осень'), (10, 'Осень'), (11, 'Осень'), (12, 'Зима')) seasons_dict = dict(seasons) month = int(input("Введите число месяца: ")) if month in seasons_dict: print("Этот месяц входит в", seasons_dict[month]) else: print('Нет такого месяца') #print(seasons_dict)
06a7697c93e8cfd130164bfb4344619cf2bf77df
04a4a951516e760fe1d9b6577d80776f03e306a7
/ZenPacks/community/bridge/BridgeDevice.py
b56e9e000be2008ced0ca53337f4f4d88c017dad
[]
no_license
Hemie143/ZenPacks.community.bridge
5f07a0ac87561ce04b60abd5cb2410791ad81ca3
aacdb3ce7f55e9e51392cb8cbb5725e47d7fc6b7
refs/heads/master
2021-01-21T17:10:37.352806
2017-08-02T10:13:58
2017-08-02T10:13:58
98,509,837
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
######################################################################################################################## # BridgeDevice ######################################################################################################################## from Globals import InitializeClass from Products.ZenRelations.RelSchema import * from Products.ZenModel.Device import Device # from Products.ZenModel.ZenossSecurity import ZEN_VIEW from copy import deepcopy class BridgeDevice(Device): # Bridge Device _relations = Device._relations + ( ('BridgeInt', ToManyCont(ToOne, 'ZenPacks.community.bridge.BridgeInterface', 'BridgeDev')), ) factory_type_information = deepcopy(Device.factory_type_information) def __init__(self, *args, **kw): Device.__init__(self, *args, **kw) self.buildRelations() InitializeClass(BridgeDevice)
e8fd4267fb33d903fe484ed060f7d7fc78e425a8
81873e1a4e3b8c52e39c0995134129a1836df526
/propertylisting/proplistapp/models.py
ca820cc35665b1c7deeba95a874debbbd0fe6903
[ "MIT" ]
permissive
sameem420/iProperty
7edcd279d03c49adb7c5647b96473393b19509f1
3e15a42f7119c347b6a4cad86d86ce79a3c9b7ed
refs/heads/main
2023-02-23T21:04:10.469716
2021-02-02T16:50:11
2021-02-02T16:50:11
323,579,355
0
0
null
null
null
null
UTF-8
Python
false
false
1,276
py
from django.db import models from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _ from django.db.models.signals import post_save from django.dispatch import receiver class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) phone_number = models.CharField(max_length=20, blank=True, default='') profile_picture = models.ImageField(upload_to="profile_images/", blank=True, default='profile_images//default.png') city = models.CharField(max_length=100, default='', blank=True) country = models.CharField(max_length=100, default='', blank=True) def __str__(self): return self.user.username @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: UserProfile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.userprofile.save() class PostAd(models.Model): address = models.CharField(max_length=50) rooms = models.IntegerField() bathrooms = models.IntegerField() house_images = models.ImageField(upload_to='images/') uploaded_at = models.DateTimeField(auto_now_add=True)
28f1fee81bfc9e4b70161d7ab0a2fc88e096a862
91d9dcd5756b42e047e039e32259f22500a5f97d
/seed_packing.py
ed55baea52d64e76806ec515441cabf553fcbd89
[]
no_license
kmandrus/fibonacci-examples
0485bb00986d07317ab0dd39338b55c747f5cc32
a0c4f389b59f43f253d7fe3c2a26f3b3965d4365
refs/heads/main
2023-03-01T16:48:49.768051
2021-02-01T17:06:23
2021-02-01T17:06:23
335,023,424
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
import plotly.graph_objects as go import math phi = (math.sqrt(5) - 1) / 2 radii = [math.sqrt(x) for x in range(100)] angles = [x * phi * 360 for x in range(100)] fig = go.Figure(data= go.Scatterpolar( r=radii, theta=angles, mode = 'markers', )) fig.update_layout(showlegend=False) fig.show()
2f60fcf9674263e0fe4727a8818e310e48a2e8e3
55f43ddf80f995f17123f34ac69b9360d9a0e4cc
/tiktok-master/base_user/models.py
443c0d9c5f942a105af0ce4d71ddd9f8b18fe841
[]
no_license
Orxan014/Tik_Tok
36d237e6462185e8c1251acde4f27044f4c2aab9
08969fb0ce9b8deadfbe3fc11aeebeb03daa4b53
refs/heads/master
2022-02-10T03:15:49.863792
2019-06-29T12:25:46
2019-06-29T12:25:46
194,402,825
0
0
null
null
null
null
UTF-8
Python
false
false
3,375
py
from django.db import models from django.utils import timezone from django.conf import settings from django.core import validators from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, UserManager from base_user.tools.common import get_user_profile_photo_file_name, GENDER from oscar.apps.wishlists.models import WishList, Line USER_MODEL = settings.AUTH_USER_MODEL # Customize User model class MyUser(AbstractBaseUser, PermissionsMixin): """ An abstract base class implementing a fully featured User model with admin-compliant permissions. Username, password and email are required. Other fields are optional. """ username = models.CharField(_('username'), max_length=100, unique=True, help_text=_('Tələb olunur. 75 simvol və ya az. Hərflər, Rəqəmlər və ' '@/./+/-/_ simvollar.'), validators=[ validators.RegexValidator(r'^[\w.@+-]+$', _('Düzgün istifadəçi adı daxil edin.'), 'yanlışdır') ]) first_name = models.CharField(_('first name'), max_length=255, blank=True) last_name = models.CharField(_('last name'), max_length=255, blank=True) email = models.EmailField(_('email address'), max_length=255) profile_picture = models.ImageField(upload_to=get_user_profile_photo_file_name, null=True, blank=True) gender = models.IntegerField(choices=GENDER, verbose_name="cinsi", null=True, blank=True) place = models.IntegerField(default=0) is_play = models.BooleanField(default=False) is_staff = models.BooleanField(_('staff status'), default=False, help_text=_('Designates whether the user can log into this admin ' 'site.')) is_active = models.BooleanField(_('active'), default=True, help_text=_('Designates whether this user should be treated as ' 'active. Unselect this instead of deleting accounts.')) date_joined = models.DateTimeField(_('date joined'), default=timezone.now) """ Important non-field stuff """ objects = UserManager() USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] class Meta: verbose_name = 'İstifadəçi' verbose_name_plural = 'İstifadəçilər' def get_wishlist_count(self): wish = WishList.objects.filter(owner=self).last() if wish: return Line.objects.filter(wishlist=wish).count() else: return 0 def get_full_name(self): """ Returns the first_name plus the last_name, with a space in between. """ full_name = '%s %s' % (self.first_name, self.last_name) return full_name.strip() def get_short_name(self): """ Returns the short name for the user. """ return self.first_name def get_avatar(self): if self.profile_picture: return self.profile_picture.url else: return "https://graph.facebook.com/%s/picture?type=large" % '100002461198950'
16dd280bdb3aeae7c20e3fc516cfa46616cc7c11
ecd1efa7d985f9f168cb71a8b385621269d5a2a5
/threading_test.py
01667dd9d6ff0e92c706c563195b6849a790e199
[]
no_license
dtward/pylddmm
90c1f1b7537831d0dce57918895116ab0a0350d4
41da878fd0447bb60d19e54775e08f32bc5537a4
refs/heads/master
2021-08-23T03:01:31.195450
2017-12-02T19:45:39
2017-12-02T19:45:39
109,031,611
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 28 08:56:54 2017 @author: dtward """ from multiprocessing import Pool from multiprocessing import Process import os import time def f(x): return x*x data = [1,2,3,4,5] n = len(data) p = Pool(n) out = p.map(f,data) print(out) def info(title): print title print 'module name:', __name__ if hasattr(os, 'getppid'): # only available on Unix print 'parent process:', os.getppid() print 'process id:', os.getpid() def f(name): info('function f') print 'hello', name info('main line') p = Process(target=f, args=('bob',)) p.start() p.join() def do_nothing(x,test=1): print('hi') return x def multiply(x,y): x = do_nothing(x) return x*y def multiply_tuple(x): return multiply(*x) p = Pool(2) out = p.map(multiply_tuple,((5.0,6.0),(7,8),(8,9))) print(out) workers = p._pool print(workers) print([w.is_alive() for w in workers]) p.close() p.join() p = None DELTA = 0.1 time.sleep(DELTA*2) print(workers) print([w.is_alive() for w in workers]) p = Pool(2) out = p.map(multiply_tuple,((5.0,6.0),(7,8),(8,9)))
158d0868e5c8cc7e84b71ac90477cfc0929d2c76
8538d36b6aae027aa4f2a6eb5bacb33927f3ae3f
/Main.py
95eec8672ba40ffac23557ff743645d3e292f071
[]
no_license
jordi1307/exam_extra_iPY
1b14971efcd2f9dab90114fa9a252a3824887a45
d1b95da47c9d703178491f9670ff493c0741f834
refs/heads/master
2016-09-06T17:59:03.019642
2014-06-13T16:45:39
2014-06-13T16:45:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,162
py
__author__ = 'jor' import datetime import re def main(): #nif=input("Cliente Identifiquese ,con su nif") nif="47179315J" if nif=="": print("se creara un nuebo cliente:") nombre=input("Nombre: ") apellido=input("Apellido: ") nifcli=input("Nif: ") clien=cliente(nombre,apellido,nifcli) clien.seif() else: cli="" print(nif) with open('clientes.txt', mode='r',encoding ='utf-8') as clientes: aux2=clientes.read() aux=aux2.split(";") clien=cliente(aux[0],aux[1],aux[2]) # print("buscan") #print(clien.getNif()) #if clien.getNif() ==nif.strip(): # print("hola") cli=clien cli.Alquilar() class cliente: nombre="" apellido="" nif="" def __init__(self,nombre,apellido,nif): self.nombre=nombre self.apellido=apellido self.nif=nif def getNif(self): return self.nif def getNombre(self): return self.nombre def getApellido(self): return self.apellido def Alquilar(self):#1.2.1 matricula=input("inserte matricula del coche a alquilar") with open('veiculos.txt', mode='r',encoding ='utf-8') as veiculos: for veiculo in veiculos: print(veiculo) veic=veiculo.split(";", 5) for a in veic: print(a) cochet=coche(veic[0],veic[1],veic[2],veic[3],veic[4]) print(cochet.getDisponible(matricula)) if cochet.getDisponible(matricula)==str(True): fecha_debolucion=input("que dia debolbera el beiculo?") num=input("numero de dias") tramite=alquiler(matricula,self.getNif(),datetime.datetime.now().strftime('%d/%m/%Y'),fecha_debolucion,cochet.getPrecio_dia(),False) tramite.seif() cochet.setDisponible("False") cochet.seif() def SercarCochesDisponibles(self): with open('veiculos.txt', mode='w',encoding ='utf-8') as veiculos:#1.2.2 for veiculo in veiculos: veic=veiculo.split(";") cochet=Coche.coche(veic[0],veic[1],veic[2],veic[3],veic[4],veic[5]) if cochet.getDisponible()==True: print("Coche:\n" "\tMatricula: % \n" "\tMarca: %\n" "\tModelo: %\n" "\tPrecio por dia: %\n" "\tDisponible: %\n" % cochet.getMatricula(), cochet.getMarca(), cochet.getModelo(), cochet.getPrecio_dia()) def SercarCochesEnLloger(self):#1.2.3 with open('veiculos.txt', mode='w',encoding ='utf-8') as veiculos: for veiculo in veiculos: veic=veiculo.split(";") cochet=Coche.coche(veic[0],veic[1],veic[2],veic[3],veic[4],veic[5]) if cochet.getDisponible()==False: print("Coche:\n" "\tMatricula: % \n" "\tMarca: %\n" "\tModelo: %\n" "\tPrecio por dia: %\n" "\tDisponible: %\n" % cochet.getMatricula(), cochet.getMarca(), cochet.getModelo(), cochet.getPrecio_dia()) def ToString(self): return self.getNombre()+";"+self.getApellido()+";"+self.getNif() def seif(self): with open('clientes.txt', mode='a',encoding ='utf-8') as clientes: clientes.write("\n"+self.ToString()) class coche: matricula="" marca="" modelo="" precio_dia="" disponible = False def __init__(self,matricula,marca,modelo,precio_dia,disponible): self.matricula=matricula self.marca=marca self.modelo=modelo self.precio_dia=precio_dia self.disponible = disponible def getMatricula(self): return self.matricula def getMarca(self): return self.marca def getModelo(self): return self.modelo def getPrecio_dia(self): return self.precio_dia def getDisponible(self,matricula): if matricula==self.matricula: return self.disponible def setDisponible(self,disponible): self.disponible=disponible self.seif() def setPrecio_dia(self,precio_dia): self.precio_dia=precio_dia self.seif() def ToString(self): return str(self.matricula)+";"+str(self.marca)+";"+str(self.modelo)+";"+str(self.precio_dia)+";"+str(self.disponible) def seif(self): with open('alquiler.txt', mode='r+',encoding ='utf-8') as f_alquiler: if re.search(f_alquiler.read(),self.matricula): f_alquiler.write(self.ToString()) def addCocha(self):#1.2.4 with open('alquiler.txt', mode='a',encoding ='utf-8') as f_alquiler: if re.search(f_alquiler.read(),self.matricula): f_alquiler.write("\n"+self.ToString()) class alquiler: matricula="" nif="" fecha_alquiler="" fecha_debolucion="" importe="" completada=False def __init__(self,matricula,nif, fecha_alquiler,fecha_debolucion,importe,completada): self.matricula=matricula self.nif=nif self.fecha_alquiler=fecha_alquiler self.fecha_debolucion=fecha_debolucion self.importe=importe self.completada=completada def getMatricula(self): return self.matricula def getNif(self): return self.nif def getFecha_alquiler(self): return self.fecha_alquiler def getFecha_debolucion(self): return self.fecha_debolucion def getImporte(self): return self.importe def getCompletada(self): return self.completada def setMatricula(self,matricula): self.matricula=matricula def setNif(self,nif): self.nif=nif def setFecha_alquiler(self,fecha_alquiler): self.fecha_alquiler=fecha_alquiler def setFecha_debolucion(self,fecha_debolucion): self.fecha_debolucion=fecha_debolucion def setImporte(self,importe): self.importe=importe def setCompletada(self,completada): self.completada=completada def ToString(self): return str(self.matricula)+";"+str(self.nif)+";"+str(self.fecha_alquiler)+";"+str(self.fecha_debolucion)+";"+str(self.importe)+";"+str(self.completada) def seif(self): print("seif alquiler") with open('alquiler.txt', mode='a',encoding ='utf-8') as f_alquiler: f_alquiler.write(self.ToString()) main()
3472f414bb872e3cfb085954cbbb3e0152f80455
04a77043cebd9415069aad4a6b8e7af077de1168
/1-pbase/day05/exmple/for_for.py
8b5fbd75a866aea0376e372ffee9ad02756fc2a6
[]
no_license
yangxiangtao/biji
a935fbc4af42c81205900cb95a11e98c16d739de
5c5f46e6c145fc02ea10b7befdc05c489fc3b945
refs/heads/master
2022-11-12T02:25:51.532838
2019-04-02T01:22:12
2019-04-02T01:22:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
#练习: # 输入一个整数,打印正方形 # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 n = int(input('输入一个数:')) for x in range(1,n+1): for x in range (x,x+5): print(x,end=" ") x += 1 print()
edd40c8dc2627641923343107499a3309785bd4e
73ff5a5b78b1dc9dcd1c2b9436b037ba89716f42
/algolove/urls/snippets.py
f708dad208722bc437e9a1ccf8b68722267e132b
[]
no_license
gchandel6/algolove
f77fbc52f5b6c08e8608bd607f4e1475a04d03a3
2ca9fc875782547c96e2f2223ee86721d0e482fd
refs/heads/master
2021-01-17T10:19:55.106012
2016-06-11T06:47:27
2016-06-11T06:47:27
58,667,132
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
from django.conf.urls import url from algolove.views import Algo_snippets,Coding_snippets from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.shortcuts import render , get_object_or_404 from algolove.models import Algo_snippet,Coding_snippet query1 = Algo_snippet.objects.all() query2 = Coding_snippet.objects.all() urlpatterns = [ # URL for list of all views -- (Generic View) url(r'^$', ListView.as_view(queryset=query1, paginate_by=20, ), name="algo_codes_list" ), url(r'^$', ListView.as_view(queryset=query2, paginate_by=20, ), name="compete_codes_list" ), url(r'^(?P<snippet_id>\d+)/$' , Algo_snippets.algo_snippet_page, name="code_detail" ), ]
2a36aaf9a1504c34d23ddb693137eba315b58ed4
6f394a5f520ba50671d95aa18b3e594e427a4d21
/flytekit/sdk/exceptions.py
1e9ea62b88aff3b6ccd64e4a2be7395bf752621b
[ "Apache-2.0" ]
permissive
jbrambleDC/flytekit
844cf2216954eecfe8243e1bd9ca733a2802304c
2eb9ce7aacaab6e49c1fc901c14c7b0d6b479523
refs/heads/master
2022-04-15T10:30:22.433669
2020-04-13T17:09:15
2020-04-13T17:09:15
255,514,936
1
0
Apache-2.0
2020-04-14T05:04:46
2020-04-14T05:04:45
null
UTF-8
Python
false
false
458
py
from __future__ import absolute_import from flytekit.common.exceptions import user as _user class RecoverableException(_user.FlyteRecoverableException): """ Raise an exception of this type if user code detects an error and would like to force a retry of the entire task. Any exception raised from user code other than RecoverableException will NOT be considered retryable and the task will fail without additional retries. """ pass
0813c7423d195ac6c50cc117503fb58455f94fd3
6f080f12c45b995ef1fb3edc48758980cb947137
/backend/controller/rest/main_handler.py
b1317d82e23e236501b55b82d6490e89c22d34ae
[]
no_license
MrWhiski/neinzehnaruafn
e3303d8702bffddc5ce7b5d984da9979aef2342f
219133d4d1d2e2f10eac18721735880f9c07de6a
refs/heads/main
2023-05-09T10:45:34.766758
2021-05-25T20:58:14
2021-05-25T20:58:14
367,586,150
1
0
null
null
null
null
UTF-8
Python
false
false
402
py
from abc import ABC from typing import Any import tornado.web import tornado.httputil class MainHandler(tornado.web.RequestHandler): def __init__( self, application: "Application", request: tornado.httputil.HTTPServerRequest, **kwargs: Any ): super().__init__(application, request) def get(self): self.write("HelloWorld")
07d1754c6d472cb4a99f4e501f68369ae85c632d
5caa7bca9872109c3cbde72b937272b4ecf77555
/cart/migrations/0005_cart_ordered.py
7a9bc238a15596efa00677e66d4aa270f13258ba
[]
no_license
Prejudice182/prej-milestone-four
292ea493b6486479b328f82ca2bc77117052e241
b05ac9ad90807a2f8b075d96548dced2116d6ced
refs/heads/master
2022-11-13T07:19:29.986343
2022-11-07T22:52:09
2022-11-07T22:52:09
231,970,672
0
1
null
2022-08-27T00:30:59
2020-01-05T20:17:31
Python
UTF-8
Python
false
false
381
py
# Generated by Django 3.0.2 on 2020-01-11 00:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cart', '0004_cartitem_ordered'), ] operations = [ migrations.AddField( model_name='cart', name='ordered', field=models.BooleanField(default=False), ), ]
8ebd76df680408aac13b53b494f35a9d9ff7fca6
554b840d833b4fe9a6735521a180bf95ceaa1665
/centro/historialesmedicos/apps.py
675c029f22defe4a8da33ea7e32c65473ec83021
[]
no_license
jppenuela/centro_medico
4889718b07c35295e38ae0d755fa00e6dcaec9d8
439aab4ae2e2c9697339b11450eb068b0fe5252d
refs/heads/master
2022-12-27T04:54:19.649475
2020-10-15T22:28:47
2020-10-15T22:28:47
304,086,047
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
from django.apps import AppConfig class HistorialesmedicosConfig(AppConfig): name = 'historialesmedicos'
818e80a9624f26542880063b7539c3636f076b3e
76881c25248b35d925669feff7079c70b5a71344
/nose/test_profile.py
ba1b21cbd5df00c3fce15705414bf116859b5ad6
[]
no_license
abatten/pynbody
4919a3e4a3ddd0b2846477b0f50466321cb25dc7
bb4ee1e32d1674295d12f7dddb0d680802ffe086
refs/heads/master
2021-04-29T19:36:49.240663
2018-08-13T06:05:48
2018-08-13T06:05:48
121,580,496
0
0
null
2018-02-15T01:23:10
2018-02-15T01:23:10
null
UTF-8
Python
false
false
1,053
py
import pynbody import numpy as np np.random.seed(1) def make_fake_bar(npart=100000, max=1, min=-1, barlength=.8, barwidth=0.05, phi=0, fraction=0.2): x = np.random.sample(int(npart*fraction))*(max-min) + min y = np.random.sample(int(npart*fraction))*(max-min) + min xbar = np.random.sample(npart, )*(barlength/2+barlength/2) - barlength/2 ybar = np.random.sample(npart)*(barwidth/2+barwidth/2) - barwidth/2 x = np.concatenate([x,xbar]) y = np.concatenate([y,ybar]) good = np.where((x**2 + y**2 < 1))[0] s = pynbody.snapshot.new(len(good)) s['x'] = x[good] s['y'] = y[good] s['pos'].units = 'kpc' s['mass'] = 1.0 s['mass'].units = 'Msol' s['vel'] = 1.0 s['vel'].units = 'km s^-1' s.rotate_z(phi) return s def test_fourier_profile(): bar = make_fake_bar(phi=45) p = pynbody.analysis.profile.Profile(bar, nbins=50) assert(np.all(p['fourier']['amp'][2,4:20] > 0.1)) assert(np.allclose(np.abs(p['fourier']['phi'][2,4:20]/2), np.pi/4.0, rtol=0.05))
da65bbdb35886a9cf93a682e86d6cdd0b982bc5a
ba1754030b7bf3f20a8bc826cfa797640470f721
/observation/otf_IRC_radec_2021.py
e3d85e9fab58d7ca9ab84d780220cafe8d3f7874
[]
no_license
1p85m/necst-1p85m2019
46b52e59cb980e802d974a7101c672040211119f
d20724bd2cd23d6ad3524630c5755c571b619624
refs/heads/master
2021-06-25T15:01:32.984872
2021-02-09T10:47:52
2021-02-09T10:47:52
197,499,217
0
0
null
null
null
null
UTF-8
Python
false
false
7,828
py
#!/usr/bin/env python3 import sys import time import numpy import math import os import datetime sys.path.append("/home/exito/ros/src/necst-telescope/scripts") import telescope_controller sys.path.append("/home/exito/ros/src/necst-core/scripts") import core_controller sys.path.append("/home/exito/ros/src/necst-1p85m2019/scripts") import controller_1p85m2019 import rospy from std_msgs.msg import Float64 from std_msgs.msg import Float64MultiArray from std_msgs.msg import String ###############parameter################### name = "otf_IRC10216_2021" param = {} #IRC+10216 param["on_x"] = (9 + 47/60 + 57.4063/3600)*15 #deg param["on_y"] = 13 + 16/60 + 43.5648/3600 #deg param["on_frame"] = "fk5" param["on_offset_x"] = 0 #deg param["on_offset_y"] = 0 #deg param["num_x"] = 120 param["num_y"] = 120 param["delta_x"] = 10/3600 param["delta_y"] = 10/3600 param["delta_t"] = 0.5 param["ramp"] = 2 param["off_x"] = (9 + 50/60 + 14/3600)*15 param["off_y"] = 13 + 35/60 + 40/3600 param["off_frame"] = "fk5" param["off_integ"] = 10 #sec param["hot_time"] = 10 #sec param["hot_interval"] = 5 #min param["direction"] = "V" param["target"] = "IRC+10216" param["dcos"] = 1 ###################START OBSERVATION########################## class otf_observation(object): last_timestamp = 0. interval = 10 regist_time = 0 def __init__(self): self.logger = core_controller.logger() self.antenna = telescope_controller.antenna() self.load = controller_1p85m2019.load() self.obsstatus = rospy.Publisher('/otf/status', String, queue_size=1) self.target = rospy.Publisher('/otf/target', String, queue_size=1) self.otfparam_on = rospy.Publisher('/otf/param/on', Float64MultiArray, queue_size=1) self.otfparam_scan = rospy.Publisher('/otf/param/scan', Float64MultiArray, queue_size=1) self.otfparam_off = rospy.Publisher('/otf/param/off', Float64MultiArray, queue_size=1) self.otfparam_hot = rospy.Publisher('/otf/param/hot', Float64MultiArray, queue_size=1) self.otfparam_direc = rospy.Publisher('/otf/param/direction', String, queue_size=1) def hot_obs(self,hot_time): self.load.move_hot() self.load.check_hot() self.obsstatus.publish("{0:9}".format('hot start')) time.sleep(hot_time) self.obsstatus.publish("{0:9}".format('hot end')) self.load.move_sky() self.load.check_hot() time.sleep(0.01) pass def off_obs(self,off_x,off_y,off_frame,off_integ): self.antenna.move_wcs(off_x,off_y,frame=off_frame) self.antenna.tracking_check() self.obsstatus.publish("{0:9}".format('off start')) time.sleep(off_integ) self.obsstatus.publish("{0:9}".format('off end')) time.sleep(0.01) pass def timer_regist(self,t): self.interval = t*60 #min->sec self.regist_time = time.time() pass def timer_check(self): now = time.time() if self.interval <= (now - self.regist_time): self.last_timestamp = now return True return False def pub_scan_param(self,param): on = Float64MultiArray() off = Float64MultiArray() scan = Float64MultiArray() hot = Float64MultiArray() target = String() direc = String() on.data = [param["on_x"],param["on_y"],param["on_offset_x"],param["on_offset_y"] ] scan.data = [param["num_x"],param["num_y"],param["delta_x"],param["delta_y"],param["delta_t"],param["ramp"]] off.data = [param["off_x"],param["off_y"],param["off_integ"]] hot.data = [param["hot_time"],param["hot_interval"]] target.data = param["target"] direc.data = param["direction"] time.sleep(0.01) self.otfparam_on.publish(on) time.sleep(0.01) self.otfparam_scan.publish(scan) time.sleep(0.01) self.otfparam_off.publish(off) time.sleep(0.01) self.otfparam_hot.publish(hot) time.sleep(0.01) self.target.publish(target) time.sleep(0.01) self.otfparam_direc.publish(direc) time.sleep(0.01) def start(self,param): name = "otf_IRC+10216_2021" date = datetime.datetime.today().strftime('%Y%m%d_%H%M%S') file_name = name + '/' + date + '.necstdb' print(file_name) hot_time = param["hot_time"] hot_interval = param["hot_interval"] if param["direction"] == "H": total_scan = param["num_y"] x = param["on_x"] y = param["on_y"] dx = param["delta_x"] dy = param["delta_y"] frame = param["on_frame"] ramp = param["ramp"] num_x = param["num_x"] num_y = param["num_y"] dt = param["delta_t"] off_x = param["off_x"] off_y = param["off_y"] off_frame = param["off_frame"] off_integ = param["off_integ"] on_offset_x = param["on_offset_x"] on_offset_y = param["on_offset_y"] elif param["direction"] == "V": total_scan = param["num_x"] x = param["on_x"] y = param["on_y"] dx = param["delta_x"] dy = param["delta_y"] frame = param["on_frame"] ramp = param["ramp"] num_x = param["num_x"] num_y = param["num_y"] dt = param["delta_t"] off_x = param["off_x"] off_y = param["off_y"] off_frame = param["off_frame"] off_integ = param["off_integ"] on_offset_x = param["on_offset_x"] on_offset_y = param["on_offset_y"] self.logger.start(file_name) time.sleep(0.3) self.pub_scan_param(param) for scan_num in range(total_scan): self.obsstatus.publish("{0:9}".format('otf line '+str(scan_num))) time.sleep(0.1) #################HOT############## if self.timer_check(): print("hot") self.antenna.move_wcs(off_x,off_y,frame=off_frame) self.load.move_hot() self.antenna.tracking_check() self.hot_obs(hot_time) self.timer_regist(hot_interval) else: pass #################OFF############## print("off") self.off_obs(off_x,off_y,off_frame,off_integ) #################ON############## if param["direction"] == "H": _lx = dx * (num_x+1) _ly = dy * (num_y) lx = _lx + dx/dt*ramp ly = 0 ctr_x = x + on_offset_x ctr_y = y + on_offset_y sx = ctr_x - _lx/2 - dx/dt*ramp sy = ctr_y - _ly/2 + dy*scan_num scan_t = dt*(num_x+1) + ramp elif param["direction"] == "V": _lx = dx * (num_x) _ly = dy * (num_y+1) lx = 0 ly = _ly + dy/dt*ramp ctr_x = x + on_offset_x ctr_y = y + on_offset_y sx = ctr_x - _lx/2 + dx*scan_num sy = ctr_y - _ly/2 - dy/dt*ramp scan_t = dt*(num_y+1) + ramp pass self.obsstatus.publish("{0:9}".format('on start')) print("scan "+str(scan_num)) self.antenna.move_raster_wcs(sx,sy,lx,ly,scan_t,l_unit="deg",frame=frame) self.obsstatus.publish("{0:9}".format('on finish')) time.sleep(0.1) self.antenna.finalize() self.logger.stop() return if __name__ == "__main__": rospy.init_node(name) otf = otf_observation() otf.start(param)