blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
52f918a11c4f8b68cbd12ff571b0f79cab91be4e
1f2697ad292791a9f550422b5c7123382c79dc54
/16sender.py
3a0bf0426b4fbd111348bf0ff723610397eb4a5f
[]
no_license
wukainf/PyQt5-
1ec2ced0a7775f0bb3aa5e17d462fb1aeff43fce
31452fc9669b87f74f0b09ad57e45facdcee807e
refs/heads/master
2021-01-11T20:18:44.495971
2017-01-20T10:03:03
2017-01-20T10:03:03
79,086,988
7
3
null
null
null
null
UTF-8
Python
false
false
1,309
py
#! /usr/bin/python # -*- coding: utf-8 -*- import sys from PyQt5.QtWidgets import QApplication, QWidget, QMainWindow, QPushButton, QVBoxLayout, QHBoxLayout class Myform(QMainWindow): def __init__(self): super(Myform, self).__init__() self.initUI() def initUI(self): btn1 = QPushButton('Button1', self) btn2 = QPushButton('Button2', self) # 为按钮添加点击事件 btn1.clicked.connect(self.buttonClicked) btn2.clicked.connect(self.buttonClicked) hbox = QHBoxLayout() hbox.addStretch(1) hbox.addWidget(btn1) hbox.addWidget(btn2) vbox = QVBoxLayout() vbox.addStretch(1) vbox.addLayout(hbox) widget = QWidget() widget.setLayout(vbox) self.setCentralWidget(widget) # QMainWindow有自己的布局了,所以不能直接setLayout self.resize(300, 200) self.move(300, 300) self.setWindowTitle('sender') self.show() self.statusBar() def buttonClicked(self): # 事件: 显示信号发出者 sender = self.sender() self.statusBar().showMessage(sender.text() + ' was pressed') if __name__ == '__main__': app = QApplication(sys.argv) w = Myform() sys.exit(app.exec_())
2830b96e1dcb39f5d16d310bcf1aa83d9bbd7a2a
4c23f3543384747dd3b30487f97dd0f32f0a111f
/apps/tasks/__init__.py
af192f7e82da3f6076f1517aa3c85fbff4de1a41
[]
no_license
dmallinger/recaster
b57d9ec2ecd7182cc80e03eb63b26f64a7dc5a63
51ece9ab492b077f00809ac2680e4bbb8e0c355c
refs/heads/master
2023-05-12T13:05:11.841044
2019-12-04T21:08:48
2019-12-04T21:08:48
193,429,724
0
0
null
2023-05-01T20:35:08
2019-06-24T03:47:52
Python
UTF-8
Python
false
false
107
py
from .utils import require_cron_job, require_task_api_key from .utils import add_task, get_task_arguments
692e67ef96d970b4cb5b65e005a9ffccd3fd0742
1e300a3ec484086b870e560530f901e7515e12cc
/higgs.py
b1169a2bd39b77ba306e66ffb4af9c49df0ab6d0
[]
no_license
samhiggs/ID3-decision-tree-machine-learning-algorithm
0b75cf88d45f2ed1299008ba5879d43f0cc66c1e
3b682d2ea16cd1f4f138f56d52978f191c96913b
refs/heads/master
2022-01-09T16:50:12.258440
2019-05-06T09:02:30
2019-05-06T09:02:30
184,758,360
0
0
null
null
null
null
UTF-8
Python
false
false
17,563
py
import numpy as np import pandas as pd import unittest, random, math, os, sys from matplotlib import pyplot as plt class Node: ''' The Node data structure is used to store the feature and decision for each feature and decision of the binary tree ''' def __init__(self, f, d): self.feature = f self.decision = d self.children = [] def __str__(self): return ''' Node {:>7} : {:<4} {:>7} : {:<4} {:>7} : {:<4} '''.format(\ 'Feature', self.feature if self.feature is not None else 'NA',\ 'Decision', self.decision if self.decision is not None else 'NA', \ 'N Children', len(self.children) if self.children else 'False', \ ) def __eq__(self, other): return( self.__class__==other.__class__ and \ self.feature == other.feature and \ self.decision == other.decision and \ self.children == other.children \ ) data_surround = '\n{:{fill}{align}{width}}\n' def ID3(d, n, data, header=None): ''' ID3 builds a decision tree recursively. Assumes the data has no features in the header. Features should be described in the Parameters d (int): The max depth of the tree n (int): The maximum number of nodes data (list): n-dimensional dataset Returns root (Node): The root of the tree of depth d. ''' #Check to ensure the inputs are valid. if d is None or not isinstance(d, int) or d < 1: raise Exception('d is not valid') if n is None or not isinstance(n, int) or n < d : raise Exception('n is not valid') if data is None: raise Exception('data is not valid') #convert the dataset to a numpy array so we can use some of the app. methods.. try: if not isinstance(data, np.ndarray): data = np.asarray(data) rows, cols = data.shape if rows < 2 or cols < 2: raise Exception('The dataset will not be useful as there are to few rows and/or columns') except Exception as e: print(e) raise Exception('The data cannot be converted in into a numpy array ') if header is None: features = ['c_'+str(i) for i in range(cols-1)] features.append('labels') else: features = header #Setup tree root = Node('root', 'root') print(data_surround.format('Building Tree', fill='*', align='^', width=50)) buildTree(data, root, features) return root def buildTree(subset, node, features): ''' buildTree is a helper function for the ID3 and will recursively build a tree. The base cases are whether all the indices are the same and therefore cannot be split further. In this case, it will return. The tree is built of the initial node, therefore no return value is necessary. WARNING: The dataset in the nodes are NOT changed, only the featureset is manipulated. This is to avoid excess computation by copying a dataset everytime, instead it just points to the one dataset but it's important to use the features as a source of truth. Parameters node (Node) : the node for which children will be spawned features (list) : The indexed list of features which reduces each time a feature is split. subset (ndarray): an n-dim array representing a subset of the data which hasn't been analysed. Return No return value ''' print(features,subset.shape) if not isinstance(subset, np.ndarray): raise Exception('Must be a numpy array') if not features or len(features) < 1: raise Exception('No features left.') if node is None or node.children is None: raise Exception('No node or improperly created.') if subset is None or subset.shape[0] < 1 or subset.shape[1] < 1 or len(features) > subset.shape[1]: raise Exception('subset is not being read in correctly.') labels = np.unique(subset[:,-1]) # Base case for if all labels are the same. if len(labels) == 1: leaf = Node(subset[0,-1], labels[0]) node.children.append(leaf) return # Base case for if we are at the end of the dataset if len(features) == 1: for cat in np.unique(subset[:,-1]): leaf = Node(features[0], cat) node.children.append(leaf) return # Make absolutely sure that we don't keep going if len(features) == 0: raise Exception('Oops we should not have hit this...Check code!') #Recursive Function given the best feature of the set (target feature) max_idx = np.argmax([compute_gain(subset, f)[0] for f, _ in enumerate(features[:-1])]) feature = features.pop(max_idx) for c in np.unique(subset[:, max_idx]): #create a child node child = Node(feature, c) node.children.append(child) #split the data child_data = subset[subset[:,max_idx]==c] child_data = np.concatenate((child_data[:,:max_idx], child_data[:,max_idx+1:]), axis=1) buildTree(child_data, child, features) return #Helper for debugging. def visualiseData(data): rows, cols = data.shape col_data = {} for i in range(cols): cat, counts = np.unique(data[:,i], return_counts=True) decisions = [data[:,-1][data[:,i]==c] for c in cat] decisions = [', '.join(d) for d in decisions] col_data[i]={} col_data[i].update({cat:{'count': c, 'decisions':d} for cat, c, d in zip(cat, counts, decisions)}) # col_data[header[i]].update({'Total':sum(counts)}) print(data_surround.format('Data Summary', fill='*', align='^', width=50)) print('n rows : {}, n cols : {}'.format(rows, cols)) print('Column categories and count:') for k, v in col_data.items(): print('{:>10}: '.format(k)) for col_cats,val in v.items(): print('{:>16}: {:>2} : {:>2}'.format(col_cats, val['count'], val['decisions'])) print(data_surround.format('End Summary', fill='*', align='^', width=50)) print(data_surround.format('Visualise The Data', fill='*', align='^', width=50)) def print_tree(root): nodes = [[root, root]] width, next_width = 1, 0 depth = 0 while len(nodes) > 0: n, parent = nodes.pop(0) if width == 0: depth += 1 width = next_width next_width = 0 width -= 1 if len(n.children) > 0: next_width+= len(n.children) nodes.extend([[child, n] for child in n.children]) p = depth*2 print(f"{'':^{p}} Parent {parent.feature} : {parent.decision}") print(f"{'':^{p}}{n}") return #Complete and working def compute_gain(S, i): ''' Gain computation by splitting the set across the ith index using the entropy calculations Parameters: S (n-dim array): The dataset that you wish to calculate the information gain on, must be at least 2 dimensions with the labels on the final column. i (int) : The index of the column. Return: gain (float) : The difference between the previous and new entropy ''' if not isinstance(S, np.ndarray): S = np.asarray(S) rows, cols = S.shape if cols < 2: return -1 if i-1 > cols: return -1 subset = S[:,[i,-1]] rows, cols = subset.shape total_entropy = entropy(subset[:,-1]) categories = np.unique(subset[:,0]) divided_S = [subset[subset[:,0]==c] for c in categories] entropies = [entropy(div_s[:,-1]) for div_s in divided_S] props = [len(div_s)/rows for div_s in divided_S] #count/rows for each category for each column combined = sum([x*y for x,y in zip(props, entropies)]) return (total_entropy - combined), categories #Complete and working def entropy(S): ''' Calculate the entropy of a dataset across label l Parameters: S (1-dim array): The dataset that you wish to calculate the entropy on, must be at lest 1 dimension Returns: entropy (float): The entropy of the column rounded to 6d.p ''' if not isinstance(S, np.ndarray): S = np.asarray(S) rows = S.shape if len(rows) is not 1: return -1 categories, counts = np.unique(S, return_counts=True) cat_cnt = dict(zip(categories, counts)) entropy = -sum((cat_cnt[cat]/rows)*math.log((cat_cnt[cat]/rows), 2) for cat in categories)[0] return round(entropy, 6) #Randomly divide the data by the percentage split. def split_data(data, split): ''' split_data generates a random set of indices which then divide the training and test set Parameters: data (ndarray): n-dim array that is being split split (float): The percentage split for example, .7 is 70% split Return: test, train (ndarray, ndarray): two n-dim arrays with the appropriate split. ''' largerSplit = split if split > .5 else 1 - split training_set_is = random.sample(range(len(data)),int(len(data)*largerSplit)) test_set_is = [i for i in range(len(data)) if i not in training_set_is] training_set = data[training_set_is, : ] test_set = data[test_set_is, : ] return training_set, test_set def learning_curve(d, n, training_set, test_set): ''' I ran out of time to implement this sadly, The function was starting to be written but I ran into mistakes so removed it to ensure that it could run. The implementation was going to limit the depth and bredth of the decision tree to d and n, choosing the best gain greedily. It would fit the model using the training set, then predict using the test_set and apply a column of labels It would then calculate the difference between the labels it predicted and the actual labels, and use this to measure the Errors ''' plot = '' # you will probably need additional helper functions return plot test_features = ['color', 'softness', 'tasty',] #where tasty is the label test_data = [ [0,0,0], [0,0,0], [0,0,0], [1,0,0], [0,1,0], [0,1,0], [0,1,0], [1,1,1], [1,1,1], [1,1,1], ] common_e = { "one_half" : 1.0, "one_third" : round(0.9182958340544896, 6), 'one_quarter' : round(0.8112781244591328, 6), "two_fifths": round(0.9709505944546685, 6), "one_fifth" : round(0.7219280948873623, 6), "one_tenth" : round(0.4689955935892812,6) } class TestID3Functions(unittest.TestCase): def test_entropy(self): simpleData = [['a','orange'],['b','apple']] data = np.array(simpleData)[:,0] e = entropy(data) print('entropy for simpleData is {}'.format(e)) self.assertEqual(e, 1) def test_another_entropy(self): simpleData = [['a','orange'], ['b', 'apple'], ['b', 'apple'],['b','apple']] dataLeft = np.array(simpleData)[:,0] dataRight = np.array(simpleData)[:,1] el = entropy(dataLeft) er = entropy(dataRight) print('Entropy for simple data L is {}'.format(el)) print('Entropy for simple data R is {}'.format(er)) self.assertEqual(el, common_e['one_quarter']) self.assertEqual(er, common_e['one_quarter']) def test_numeric_entropy(self): dataColOne = np.array(test_data)[:,0] dataColTwo = np.array(test_data)[:,1] dataColThree = np.array(test_data)[:,2] entropies = [entropy(dataColOne), entropy(dataColTwo), entropy(dataColThree)] print('Entropy for test data column 0 is {}'.format(entropies[0])) print('Entropy for test data column 1 is {}'.format(entropies[1])) print('Entropy for test data column 2(labels) is {}'.format(entropies[2])) expected_o = [common_e['two_fifths'], common_e['two_fifths'], round(-((7/10)*math.log(7/10, 2) + (3/10)*math.log(3/10, 2)), 6)] self.assertListEqual(entropies, expected_o) def test_compute_gain(self): uncertain_data = np.array([ [0,'a'], [0, 'a'], [0, 'b'], [1, 'a'], [1, 'b'] ]) uncertain_to_certain = np.array([ [0,'a'], [0,'a'], [0,'a'], [1,'b'], [1,'b'], [1,'b'], ]) uncertain_gain = compute_gain(uncertain_data, 0) gain_col0 = compute_gain(test_data,0) gain_col1 = compute_gain(test_data,1) self.assertEqual(round(uncertain_gain,6), 0.019973) self.assertEqual(round(compute_gain(uncertain_to_certain,0),6), 1) self.assertEqual(round(gain_col0,6), .556780) self.assertEqual(round(gain_col1, 6), .281291) def test_split(self): print('running test split.') data = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] split = .3 train_set, test_set = split_data(data, split) # print(train_set) # print(test_set) self.assertEqual(len(train_set), len(data)*.7) self.assertEqual(len(test_set), len(data)*.3) def test_ID3_temp_data(self): play_tennis_data = np.array([ ['Sunny', 'Hot', 'High', 'Weak', 'No'], ['Sunny', 'Mild', 'High', 'Weak', 'No'], ['Sunny', 'Mild', 'Normal', 'Strong', 'Yes'], ['Sunny', 'Cold', 'Normal', 'Weak', 'Yes'], ['Sunny', 'Hot', 'High', 'Strong', 'No'], ['Overcast', 'Hot', 'High', 'Weak', 'Yes'], ['Overcast', 'Cool', 'Normal', 'Strong', 'Yes'], ['Overcast', 'Mild', 'High', 'Strong', 'Yes'], ['Overcast', 'Hot', 'Normal', 'Weak', 'Yes'], ['Rain', 'Mild', 'High', 'Weak', 'Yes'], ['Rain', 'Cool', 'Normal', 'Strong', 'No'], ['Rain', 'Mild', 'Normal', 'Weak', 'Yes'], ['Rain', 'Mild', 'High', 'Strong', 'No']] ) features = ['Outlook', 'Temperature', 'Humidity', \ 'Wind', 'Decision'], #Calculations made using wolframalpha root_gain = round(0.96123660472287587, 6) expected_gain = { 'Decision': root_gain, 'Outlook' : round(root_gain - ((4/13)*0.0 + (4/13)*1.0 + (5/13)*common_e['two_fifths']),6), 'Temperature': round(root_gain - ((1/13)*0.0 + (2/13)*1.0 + (4/13)*1.0 + (6/13)*common_e['one_third']), 6), 'Humidity' : round(root_gain - ((7/13)*round(0.98522813603425, 6) + (6/13)*round(0.65002242164835,6))), 'Wind' : round(root_gain - ((6/13)*1.0 + (7/13)*common_e['one_third']), 6) } root = ID3(3,3,play_tennis_data) self.print_tree(root) self.assertEqual(1, 1) def print_tree(self, root): nodes = [[root, root]] width, next_width = 1, 0 depth = 0 while len(nodes) > 0: n, parent = nodes.pop(0) if width == 0: depth += 1 width = next_width next_width = 0 width -= 1 if len(n.children) > 0: next_width+= len(n.children) nodes.extend([[child, n] for child in n.children]) p = depth*2 print(f"{'':^{p}} Parent {parent.feature} : {parent.decision}") print(f"{'':^{p}}{n}") return def test_tree_build_one_level_perfect_gain(self): #Build tree to test. data = np.asarray([ ['sun', 'sun', 'sun', 'cloud', 'cloud'], ['go_outside', 'go_outside', 'go_outside', 'stay_indoors', 'stay_indoors'] ]) data = data.T root = ID3(6,6,data) self.assertEqual(1, 1) def test_simple_helper(self): simple_d = np.array([ [0,1], [0,1], [1,0], [1,0], ]) node = Node('root', 'root') features = ['wind', 'label'] root = ID3(1,1,simple_d) self.print_tree(root) self.assertEqual(1,1) def test_tree_two_level_imperfect_gain(self): test_w_data = np.asarray([ ['w','C','H',0], ['w','C','L',0], ['w','C','L',0], ['w','H','L',0], ['w','H','L',1], ['d','H','H',1], ['d','H','H',1], ['d','H','H',1], ['d','C','H',1], ['d','C','L',0], ]) root = ID3(2,3,test_w_data) self.print_tree(root) self.assertEqual(1,1) if __name__ == '__main__': #Testing functions # unittest.main() data_fn = 'data\house-votes-84.data' names = [ 'Class Name', 'handicapped-infants', 'water-project-cost-sharing', 'adoption-of-the-budget-resolution', 'physician-fee-freeze', 'el-salvador-aid', 'religious-groups-in-schools', 'anti-satellite-test-ban', 'aid-to-nicaraguan-contras', 'mx-missile', 'immigration', 'synfuels-corporation-cutback', 'education-spending', 'superfund-right-to-sue', 'crime', 'duty-free-exports', 'export-administration-act-south-africa', ] names = [ name.replace(' ', '_').lower() for name in names] data = pd.read_csv(data_fn,names=names ) data = data.replace('?', np.nan) data = data.fillna(method='pad') data = data.fillna('y') n = names.pop(0) names.append(n) train, test = split_data(data.values, .7) root = ID3(3,3,train, names) print_tree(root)
a9c818e98a689655c4b0863e803ddf4d6e232f30
d42dea822871be6027fadbf8b167be1c0b38d9c7
/LinkedList/tempCodeRunnerFile.py
5dd125a654093152da2a6c61508fa4529b8df816
[]
no_license
siddhantprateek/Python-in-Practice
d8412c46dec57d512d8abd87cb0a33b71070c5ee
0ad806f02fecb87de20078ef956f8e23bb38e342
refs/heads/main
2023-06-26T22:34:55.172882
2021-07-29T15:14:09
2021-07-29T15:14:09
354,875,226
0
0
null
null
null
null
UTF-8
Python
false
false
16
py
permute("321")
20f71d3a82d7b30d19d33379d24bd499c1aaa086
3a53bcfa6bc3dd000e81946b483a838003991815
/projects/migrations/0111_auto_20210610_1427.py
9137bf2a24cc98808743983fb6b2f91fb3b2e035
[ "MIT" ]
permissive
City-of-Helsinki/kaavapino
f15f221d89a0ba18f9ebca203afc6c1160a80f19
d74d15c6bf565e8ea5f7a1221627d76f7459cb81
refs/heads/development
2023-08-26T14:16:03.980268
2023-08-25T11:07:10
2023-08-25T11:07:10
113,177,939
4
12
MIT
2023-08-30T12:52:21
2017-12-05T12:14:15
Python
UTF-8
Python
false
false
608
py
# Generated by Django 2.2.13 on 2021-06-10 11:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0110_ad_integration_model_fields'), ] operations = [ migrations.AlterField( model_name='attribute', name='ad_data_key', field=models.CharField(blank=True, choices=[('id', 'id'), ('name', 'name'), ('phone', 'phone'), ('email', 'email'), ('title', 'title'), ('office', 'office'), ('company', 'company')], max_length=7, null=True, verbose_name='AD user data key'), ), ]
f79fd6689615bef49bb77d7471a18bbaf4a276e1
1da61d4a09ac9407b08a75377a1c506aee9dfd46
/python/cfgmdl/unit.py
71b5f461c579b1d769816bf12ebc7c3d9537cf7b
[ "BSD-3-Clause" ]
permissive
KIPAC/cfgmdl
4e1db8eb9f07a0e676ed135454399e124f568786
ea2903b51594ca1102f812c73ad77228fe51cc00
refs/heads/master
2023-03-22T12:05:53.344198
2021-03-03T21:51:08
2021-03-03T21:51:08
339,553,394
0
1
BSD-3-Clause
2021-03-03T21:51:09
2021-02-16T22:55:10
Python
UTF-8
Python
false
false
1,242
py
"""Small module for unit converision""" import numpy as np class Unit: """ Object for handling unit conversions """ to_SI_dict = {} def __init__(self, unit=None): # Dictionary of SI unit conversions # Check that passed unit is available if unit is None: self._SI = 1. self._name = '' return if isinstance(unit, str): if unit not in self.to_SI_dict: raise KeyError("Passed unit '%s' not understood by Unit object" % (unit)) self._SI = self.to_SI_dict[unit] self._name = unit return self._SI = float(unit) self._name = "a.u." @property def name(self): """Return the units name""" return self._name def __call__(self, val): """Convert value to SI unit """ if val is None: return None return np.array(val) * self._SI def inverse(self, val): """Convert value from SI unit """ if val is None: return None return np.array(val) / self._SI @classmethod def update(cls, a_dict): """Update the mapping of unit names""" cls.to_SI_dict.update(a_dict)
7c788e89c7f8e94cb8a65f127108617060777304
20d040a1a04d0a8cae892c8f90649cdf9101d512
/RS_Fusion_Exp/Model/label/createLabel3.py
4b5aadbc9585e8a31d8e7c205056a7edf27568d5
[]
no_license
PotentialPie/RS_Fusion_exp
add4634d526049ebfc56e51e314fe0a9839100fc
6c3a9b3f9c7d6d5834b8115223cae06ae8e016ae
refs/heads/master
2022-03-27T16:58:14.104059
2020-01-13T08:58:49
2020-01-13T08:58:49
233,552,876
1
0
null
null
null
null
UTF-8
Python
false
false
5,880
py
import numpy as np import matplotlib.pyplot as plt import cv2 import os ''' 255 255 255; % Background 0 0 0; % Roads 100 100 100; % Buildings 0 125 0; % Trees 0 255 0; % Grass 150 80 0; % Bare Soil 0 0 150; % Water 255 255 0; % Railways 150 150 255]; % Swimming Pools ''' # img = Image.open('zh1_GT.jpg') def get_label(arr): # 读出来RGB顺序相反??? if (arr == [0, 0, 0]).all(): return 1 if (arr == [100, 100, 100]).all(): return 2 if (arr == [0, 125, 0]).all(): return 3 if (arr == [0, 255, 0]).all(): return 4 if (arr == [0, 80, 150]).all(): return 5 if (arr == [150, 0, 0]).all(): return 6 if (arr == [0, 255, 255]).all(): return 7 if (arr == [255, 150, 150]).all(): return 8 raise ValueError("存在其他类") def mark_white(_w, _h): iswhite[_w, _h] = 1 # print("{},{} is 白色".format(_w, _h)) point_dict['{}-{}'.format(_w, _h)] = -1 def is_white(_w, _h): if (img_array[_w, _h, :] == [255, 255, 255]).all(): return True else: return False def create_box(_w, _h): global count # 新建框 label_dict[count] = get_label(img_array[_w, _h, :]) point_dict['{}-{}'.format(_w, _h)] = count # print('{}-{} is {} {}'.format(_w, _h, count, img_array[_w, _h, :])) results.append([]) results[count].append([_w, _h]) count += 1 def point_add_box(_w, _h, dire): # print(point_dict) if dire == 'up': _count = point_dict['{}-{}'.format(_w, _h - 1)] point_dict['{}-{}'.format(_w, _h)] = _count # print('{}-{} is {} {}'.format(_w, _h, count, img_array[_w, _h, :])) results[_count].append([_w, _h]) elif dire == 'left': _count = point_dict['{}-{}'.format(_w - 1, _h)] point_dict['{}-{}'.format(_w, _h)] = _count # print('{}-{} is {} {}'.format(_w, _h, count, img_array[_w, _h, :])) results[_count].append([_w, _h]) elif dire == 'all': _count_up = point_dict['{}-{}'.format(_w, _h - 1)] _count_left = point_dict['{}-{}'.format(_w - 1, _h)] point_dict['{}-{}'.format(_w, _h)] = _count_up if _count_up == _count_left: # 框也一样 results[_count_up].append([_w, _h]) else: results[_count_up] += results[_count_left] results[_count_up].append([_w, _h]) for point in results[_count_left]: point_dict['{}-{}'.format(point[0], point[1])] = _count_up # print('{}-{} is {} {}'.format(point[0], point[1], count, img_array[_w, _h, :])) drop_index.append(_count_left) def same_as(dire, _w, _h): if dire == 'up': if (img_array[_w, _h, :] == img_array[_w, _h - 1, :]).all(): return True else: return False if dire == 'left': if (img_array[_w, _h, :] == img_array[_w - 1, _h, :]).all(): return True else: return False list = os.listdir('Zurich_dataset_v1.0/groundtruth') for i,filename in enumerate(list): file = filename[:-4] filename = 'Zurich_dataset_v1.0/groundtruth/' + filename img = cv2.imread(filename, -1) img_array = np.array(img) # [:300, :300, :] # print(np.array(img_array)) width = img_array.shape[0] height = img_array.shape[1] # print(img_array.shape) count = 0 # 接下来是第几个框 label_dict = {} # 第几个框 count : 颜色RGB point_dict = {} # 点坐标{x},{y}: 属于哪个框 -1 白色 results = [] # 哪个框的所有坐标 drop_index = [] iswhite = np.zeros((width, height)) # 是否是白色 for h in range(height): for w in range(width): print("{}/{} {}/{}".format(i+1,len(list),h * width + w, height * width)) if is_white(w, h): mark_white(w, h) continue if w == 0 and h == 0: create_box(w, h) continue if h == 0: if same_as('left', w, h): point_add_box(w, h, 'left') else: create_box(w, h) continue if w == 0: if same_as('up', w, h): point_add_box(w, h, 'up') else: create_box(w, h) continue if not same_as('up', w, h) and not same_as('left', w, h): # 和上面 左边都不一样 # print("都不一样") create_box(w, h) elif same_as('up', w, h) and same_as('left', w, h): # print("都一样") # 都一样 point_add_box(w, h, 'all') elif same_as('left', w, h): # print("和左一样") point_add_box(w, h, 'left') elif same_as('up', w, h): # print("和上一样") point_add_box(w, h, 'up') fig = plt.figure(figsize=(height / 100, width / 100)) ax = fig.add_subplot(111) ax.imshow(img_array) for i in range(count): if i in drop_index: continue minx, miny = np.min(results[i], 0) maxx, maxy = np.max(results[i], 0) label = label_dict[i] # x y 相反 rect = plt.Rectangle((miny, minx), (maxy - miny), (maxx - minx), fill=False, edgecolor='r') ax.add_patch(rect) # with open('../data/{}_bounding_box.txt'.format(file), 'a', encoding='utf-8') as f: # f.write('{} {} {} {} {}\n'.format(minx, miny, maxx, maxy, label)) ax.set_xticks([]) ax.set_yticks([]) print("保存") plt.savefig("result_{}.jpg".format(file)) plt.close('all')
b1825f35c41ea617fb138ee56dd1a1879fc74f92
199395a506266cbdd1d6aba5fb2287fb6fb1d127
/src/customer.py
45c3df1b555411380f39d778424c2fb9b0b22326
[]
no_license
heathercking/pub.py
436569bfead928daf5a0bd43b90ba7a1f098cefc
27d5add08219f4c40350b67daab416885a9fe8b5
refs/heads/master
2023-08-16T03:28:09.229600
2021-10-20T14:53:42
2021-10-20T14:53:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
class Customer: def __init__(self, name, wallet): self.name = name self.wallet = wallet def reduce_cash_from_wallet(self, amount): self.wallet -= amount
84d207972b9e649fd138701b12838984cbc71550
80e1179f3cd9a356784223086d2bdadc6dd139d4
/Files/st_feedback_query_auto.py
b108e4cb0927802955a27f7ae027656cb0f5d57f
[]
no_license
vivek3141/IntellitrakFeedbackTracker
68eb5c6a963bd78481b77edc58823402a121d6c5
fb92f1556a3ad270d2b5a47fed2d5671a354bab0
refs/heads/master
2021-08-30T12:32:16.951094
2017-12-18T00:22:58
2017-12-18T00:22:58
114,575,812
6
0
null
null
null
null
UTF-8
Python
false
false
5,625
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'st_feedback_query.ui' # # Created: Tue Aug 2 15:15:23 2016 # by: PyQt4 UI code generator 4.11.3 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(1110, 512) MainWindow.setStyleSheet(_fromUtf8("background-color: rgb(255, 166, 57);")) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.tableView = QtGui.QTableView(self.centralwidget) self.tableView.setGeometry(QtCore.QRect(10, 80, 1091, 371)) self.tableView.setStyleSheet(_fromUtf8("\n" "background-color: rgb(255, 255, 255);")) self.tableView.setObjectName(_fromUtf8("tableView")) self.comboBox = QtGui.QComboBox(self.centralwidget) self.comboBox.setGeometry(QtCore.QRect(10, 40, 241, 22)) self.comboBox.setStyleSheet(_fromUtf8("background-color: rgb(255, 255, 255);")) self.comboBox.setObjectName(_fromUtf8("comboBox")) self.comboBox.addItem(_fromUtf8("")) self.pushButton_5 = QtGui.QPushButton(self.centralwidget) self.pushButton_5.setGeometry(QtCore.QRect(1010, 20, 91, 51)) font = QtGui.QFont() font.setFamily(_fromUtf8("Berlin Sans FB")) font.setPointSize(16) font.setBold(False) font.setWeight(50) self.pushButton_5.setFont(font) self.pushButton_5.setStyleSheet(_fromUtf8("background-color: rgb(255, 255, 255);")) self.pushButton_5.setObjectName(_fromUtf8("pushButton_5")) self.label = QtGui.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 10, 211, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Berlin Sans FB Demi")) font.setPointSize(12) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setStyleSheet(_fromUtf8("color: rgb(255, 255, 255);")) self.label.setObjectName(_fromUtf8("label")) self.verticalLayoutWidget = QtGui.QWidget(self.centralwidget) self.verticalLayoutWidget.setGeometry(QtCore.QRect(260, 10, 691, 61)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setMargin(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.cbx_helpme = QtGui.QCheckBox(self.verticalLayoutWidget) self.cbx_helpme.setObjectName(_fromUtf8("cbx_helpme")) self.verticalLayout.addWidget(self.cbx_helpme) self.label_2 = QtGui.QLabel(self.verticalLayoutWidget) self.label_2.setObjectName(_fromUtf8("label_2")) self.verticalLayout.addWidget(self.label_2) self.label_3 = QtGui.QLabel(self.verticalLayoutWidget) self.label_3.setObjectName(_fromUtf8("label_3")) self.verticalLayout.addWidget(self.label_3) self.pushButton = QtGui.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(301, 471, 291, 23)) self.pushButton.setStyleSheet(_fromUtf8("background-color: rgb(255, 255, 255);")) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.pushButton_4 = QtGui.QPushButton(self.centralwidget) self.pushButton_4.setGeometry(QtCore.QRect(609, 471, 251, 23)) self.pushButton_4.setStyleSheet(_fromUtf8("background-color: rgb(255, 255, 255);")) self.pushButton_4.setObjectName(_fromUtf8("pushButton_4")) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QObject.connect(self.pushButton_4, QtCore.SIGNAL(_fromUtf8("clicked()")), MainWindow.close) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "Modify Feedback", None)) self.comboBox.setItemText(0, _translate("MainWindow", "All", None)) self.pushButton_5.setText(_translate("MainWindow", "Q [F10]", None)) self.label.setText(_translate("MainWindow", "Course", None)) self.cbx_helpme.setText(_translate("MainWindow", "Help Me with this window", None)) self.label_2.setText(_translate("MainWindow", "First Select the row by clicking on the number at the left of the row. Next press F1 or Select to edit the Feedback in a new form.", None)) self.label_3.setText(_translate("MainWindow", "Course Filter can be used to filter the rows in the below list by course names. Initially all courses are selected.Select the course and press F10", None)) self.pushButton.setText(_translate("MainWindow", "Select [F1]", None)) self.pushButton_4.setText(_translate("MainWindow", "Close", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) MainWindow = QtGui.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
5d250d65c461d6fb64cf3e41e70a0c70796a948b
9b442c80c497b29a67fbf13ae1e1c10f283175b0
/src/main.py
7a0051943a872c26a267ac80f6bd4a6c0fb8ec84
[ "MIT" ]
permissive
lpsantil/TYOS
0be1b8046fd2a7a1134491eaea363f958431a8b5
488579747d8e0b98920adb5c8c227348359969fa
refs/heads/master
2021-10-02T17:58:14.367466
2018-11-29T22:39:25
2018-11-29T22:39:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,758
py
#main.py #Copyright (c) 2015 Tyler Spadgenske #MIT License ''' Usage: If FONA is powered off, run sudo python /home/pi/tyos/src/main.py --power to turn module on and start TYOS. If FONA is already on, just run sudo python /home/pi/tyos/src/main.py Upgrade: To check for updates go to https://github.com/spadgenske/TYOS/releases/latest and compare the version number with your current version of TYOS. If higher, you can update. To get your version of TYOS run the command sudo python /home/pi/tyos/src/main.py --version ''' VERSION = '0.5.6' #Set to True if you do not want the time modified off the FONA USE_RAW_TIME = False import pygame, sys, os, time, datetime, traceback, warnings from pygame.locals import * import framebuffer, toolbar, apps, serialport, receive class tyos(): def __init__(self): warnings.filterwarnings("ignore") for arg in sys.argv: if arg == '--power': self.POWER_FONA = True print 'Powering FONA on...' else: self.POWER_FONA = False if arg == '--version': print 'TYOS VERSION ' + VERSION sys.exit() self.VERSION = VERSION if self.POWER_FONA: import power power.Power().toggle() time.sleep(10) #Setup fona self.fona = serialport.SerialPort() self.fona.connect() self.set_audio() #Setup some important objects self.scope = framebuffer.pyscope() self.toolbar = toolbar.Toolbar(self.fona) self.apps = apps.App(self.fona) self.reciever = receive.Receive(self.fona) pygame.init() #Setup surface self.WINDOWWIDTH = 320 self.WINDOWHIEGHT = 480 self.surface = pygame.display.set_mode((self.WINDOWWIDTH, self.WINDOWHIEGHT), pygame.FULLSCREEN) pygame.mouse.set_visible(False) self.clock = pygame.time.Clock() #Colors R G B self.BLUE = ( 0, 0,255) self.WHITE = (255,255,255) self.BLACK = ( 0, 0, 0) self.surface.fill(self.WHITE) self.update = True #Setup logo self.logo = pygame.image.load('/home/pi/tyos/graphics/logo.png') self.logo_rect = self.logo.get_rect() self.logo_rect.y = self.surface.get_rect().centery - 50 self.logo_rect.centerx = self.surface.get_rect().centerx #Setup Battery Icon self.bat = pygame.image.load('/home/pi/tyos/graphics/bat.png') self.bat_rect = self.bat.get_rect() self.bat_rect.centery = 15 self.bat_rect.right = self.WINDOWWIDTH - 10 #Setup Low Battery Icon self.low_bat = pygame.image.load('/home/pi/tyos/graphics/low_bat.png') self.low_bat_rect = self.low_bat.get_rect() self.low_bat_rect.centery = 380 self.low_bat_rect.centerx = self.surface.get_rect().centerx #Setup App Toolbar self.app_toolbar = pygame.Rect(0, 0, 320, 30) #Rectangle Dictionary self.rectangles = {'rects':[self.app_toolbar], 'colors':[self.BLACK]} #Reception Rectangle dictionary self.reception_bars = {'rects':[], 'colors':[]} #Battery Left Text self.bat_left = {'surface':self.toolbar.bat_left, 'rects':self.toolbar.bat_left_rect} #Setup fonts self.font = pygame.font.Font('/home/pi/tyos/fonts/liberation_sans.ttf', 20) #Setup clock Text self.clock_text = self.font.render('12:00', True, self.WHITE, self.BLACK) self.clock_text_rect = self.clock_text.get_rect() self.clock_text_rect.centerx = self.surface.get_rect().centerx self.clock_text_rect.centery = 15 #Image Dictionary self.images = {'surfaces':[self.bat], 'rects':[self.bat_rect, self.clock_text_rect]} self.blit_logo = True self.dead_bat = False def set_audio(self): #Set audio in/out to selected from config file try: #See if config file exists self.audio_file = open('/home/pi/tyos/configure/audio.conf', 'r') except: if not os.path.exists('/home/pi/tyos/configure'):#If configure directory doesn't exist, create one os.mkdir('/home/pi/tyos/configure') self.audio_file = open('/home/pi/tyos/configure/audio.conf', 'w+')#Create config file and add some lines self.audio_file.write('#Audio config file\n') self.audio_file.write('mode=1\n') self.audio_file.close() self.audio_file = open('/home/pi/tyos/configure/audio.conf', 'r') file = self.audio_file.readlines() for i in range(0, len(file)):#Parse file if file[i][0] == '#': pass #Do Nothing. Line is comment else: file[i] = file[i].rstrip() if 'mode' in file[i]: #Extract audio mode: 1=Built in, 0=External mode = file[i] mode = mode.split('=') mode = mode[1] self.fona.transmit('AT+CHFA=' + mode) def blit_time(self): #Convert to 12 hour time then blit it to surface t = time.strftime("%H:%M") if USE_RAW_TIME == False: if int(t[0] + t[1]) > 12: t = str(int(t[0] + t[1]) - 12) + t[-3:] t = t.lstrip('0') self.clock_text = self.font.render(t, True, self.WHITE, self.BLACK) self.surface.blit(self.clock_text, self.images['rects'][1]) def home(self): while True: #handle events and clock self.blit_time() self.handle_events() pygame.display.update() self.clock.tick() #Update battery and reception self.reception_bars, self.bat_left, self.update, self.dead_bat = self.toolbar.clock(self.reception_bars, self.bat_left, self.update, self.apps.pixel) #Move images if necessary self.update, self.images, self.rectangles, self.reception_bars, self.bat_left = self.apps.open(self.update, self.images, self.rectangles, self.reception_bars, self.bat_left) #Open app if tapped self.apps.open_app() #Check for calls and sms self.update = self.reciever.check(self.update) #Close app if opened and call coming in if self.reciever.call_coming: self.apps.app_to_open = None self.apps.blit_logo = True #Update if necessary if self.update: self.blit(self.images, self.rectangles, self.reception_bars, self.bat_left) self.update = False def blit(self, surfaces, rects, reception, bat): self.surface.fill(self.WHITE) if self.apps.app_to_open != None: self.blit_logo = False #Blit images using one image but different rectangles for i in self.apps.app_objects[self.apps.app_to_open].blit_one_surface['rects']: self.surface.blit(self.apps.app_objects[self.apps.app_to_open].blit_one_surface['surface'], i) #Blit images using multiple images and rectangles for rect, surface in zip(self.apps.app_objects[self.apps.app_to_open].blit['rects'], self.apps.app_objects[self.apps.app_to_open].blit['surfaces']): self.surface.blit(surface, rect) #Blit all rectangles for rect, color in zip(rects['rects'], rects['colors']): pygame.draw.rect(self.surface, color, rect) #Blit all reception bars for rect, color in zip(reception['rects'], reception['colors']): pygame.draw.rect(self.surface, color, rect) #Blit all images for surface, rect in zip(surfaces['surfaces'], surfaces['rects']): self.surface.blit(surface, rect) #Blit battery Percentage self.surface.blit(bat['surface'], bat['rects']) #Blit logo if self.apps.blit_logo: self.surface.blit(self.logo, self.logo_rect) if self.dead_bat: self.surface.blit(self.low_bat, self.low_bat_rect) if self.apps.logos['rects'][0].y != -50: for surface, rect in zip(self.apps.logos['surfaces'], self.apps.logos['rects']): self.surface.blit(surface, rect) #Blit incoming call if self.reciever.call_coming: for surface, rect in zip(self.reciever.blit['surfaces'], self.reciever.blit['rects']): self.surface.blit(surface, rect) def handle_events(self): for event in pygame.event.get(): self.update = True self.apps.update_app = True self.app_bar = self.apps.check(event) if self.reciever.call_coming: self.reciever.get_events(event) phone = tyos() try: phone.home() #E.T Reference except KeyboardInterrupt: print print 'Closing TYOS ' + phone.VERSION if phone.POWER_FONA: power.Power().toggle() pygame.quit() sys.exit() except SystemExit: pass except: print '******************************************' print 'An Error Occured' print 'Writing to log /home/pi/tyos/logs/tyos.log' print '******************************************' #If error occurs, save it to file error = traceback.format_exc() error_log = open('/home/pi/tyos/logs/tyos.log', 'w') error_log.write(error)
8db9c19422cd0fe35aecf9f8453a618861cc0cac
a6a8f68673e6f4b75dc66195c7c2d49ddce91e78
/p10.py
a9558c8e645487d80ef592f0857eae341b8a1e2b
[]
no_license
ValerianClerc/project-euler
c4d8d6bf40ac892312e995880bfaf242743baa21
d83bc741ff217cbc7f49b988bcce2760b2fe9844
refs/heads/master
2020-03-22T16:46:27.700892
2018-07-22T22:27:33
2018-07-22T22:27:33
140,350,305
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
def sieve(): n = 2000001 dict = {} for i in range(2, n): dict[i] = "u" for p in range(2, n): count = p mult = 2 while count < n: count = mult*p dict[count] = "m" mult = mult +1 ans = [] for i in range(2, n): if(dict[i] == "u"): ans.append(i) print(sum(ans)) sieve() # def sieve2(): # n = 2000001 # list = [] # for i in range(2, n): # list.append(True) # for p in range(2, n): # count = p # mult = 2 # while count < n: # count = mult*p # list[count] = False # mult = mult + 1 # ans = [] # for i in range(2,n): # if(list[i]): # ans.append(i) # print(sum(ans)) # # sieve2()
889cabb901e4edb3cf0c85083b58b1a30ccd1b95
230f757be00fddd13856727f9145675ea526f733
/hello-world.py
a9e088e30f2fe75d421a8909accdce5d20cb3415
[ "MIT" ]
permissive
khangnngo12/astr-119
b425774641f7a018fe687f7aa1d9e34a255cb95a
2728ae9b112f522bcafcd82ff151292d892a3097
refs/heads/main
2022-12-21T07:51:33.025197
2020-10-05T19:46:23
2020-10-05T19:46:23
300,378,934
0
0
MIT
2020-10-05T19:46:24
2020-10-01T18:14:33
Python
UTF-8
Python
false
false
85
py
#!/usr/bin/env python3 #this program will write #Hello World! print("Hello World!")
ffda1497cfd67bc0111688811bc86deb263485c3
acd9166b0780d01045d055d0b187138deac53457
/train.py
423b34e420eb94585c1ecb63d11843fe90555b38
[]
no_license
xiekuncn/Behavioral-Cloning
41bbda4daebc8f96d08cce1932570b7b8837c10e
17cd73db481620e5d99637c75c95ed0ebf2b3003
refs/heads/master
2021-01-19T19:32:06.794252
2017-04-17T15:22:37
2017-04-17T15:22:37
88,420,915
0
0
null
null
null
null
UTF-8
Python
false
false
6,300
py
#!/usr/bin/env python3 # _*_coding=utf8_*_ import os import csv from sklearn.model_selection import train_test_split import cv2 import numpy as np import sklearn from keras.layers import Dense, Flatten, Lambda, Dropout, Cropping2D from keras.layers.convolutional import Conv2D import tensorflow as tf from keras.models import Sequential import matplotlib.pyplot as plt import keras def train(data_paths): ''' train the model by the data providing from data_paths. :param data_paths: it's a list of dataset folders. the code will load the 'driving_log.csv' for each input folder, and this csv file should record the image by relative path, *NOT absolute path*. If the image is not exist, will raise a FileNotFound exception before training. ''' batch_size = 128 if type(data_paths) is str: data_paths = [data_paths] train_samples, validation_samples = [], [] for data_path in data_paths: train_data, validation_data = make_samples(data_path) train_samples.extend(train_data) validation_samples.extend(validation_data) train_generator = generator(train_samples, batch_size) validation_generator = generator(validation_samples, batch_size) ch, row, col = 3, 160, 320 # Trimmed image format model = Sequential() model.add(Cropping2D(cropping=((40, 25), (0, 0)), input_shape=(row, col, ch))) model.add(Lambda(lambda x: keras.layers.core.K.tf.image.resize_images(x, (66, 200)))) # resize image model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(66, 200, 3), output_shape=(66, 200, 3))) model.add(Conv2D(kernel_size=(5, 5), filters=24, padding='valid', activation='relu', strides=(2, 2), use_bias=True)) model.add(Conv2D(kernel_size=(5, 5), filters=36, padding='valid', activation='relu', strides=(2, 2), use_bias=True)) model.add(Conv2D(kernel_size=(5, 5), filters=48, padding='valid', activation='relu', strides=(2, 2), use_bias=True)) model.add(Conv2D(kernel_size=(3, 3), filters=64, padding='valid', activation='relu', strides=(1, 1), use_bias=True)) model.add(Conv2D(kernel_size=(3, 3), filters=64, padding='valid', activation='relu', strides=(1, 1), use_bias=True)) model.add(Flatten()) model.add(Dense(1164, activation='relu')) model.add(Dense(100, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='tanh')) model.summary() model.compile(loss='mse', optimizer='adam') history_object = model.fit_generator(train_generator, steps_per_epoch=len(train_samples), validation_data=validation_generator, validation_steps=len(validation_samples), epochs=3) model.save("model.h5") print(history_object.history.keys()) ### plot the training and validation loss for each epoch # plt.plot(history_object.history['loss']) # plt.plot(history_object.history['val_loss']) # plt.title('model mean squared error loss') # plt.ylabel('mean squared error loss') # plt.xlabel('epoch') # plt.legend(['training set', 'validation set'], loc='upper right') # plt.show() def make_samples(data_path): ''' make samples for data_path folder. and will return the training samples and validate sample by 4:1. the data will augmentation by flip, it's a attribute in one sample. :param data_path: it's a folder includes 'driving_log.csv' file. :return training_samples, validate_samples. ''' samples = [] csv_file = os.path.join(data_path, "driving_log.csv") skip_line = True with open(csv_file) as f: reader = csv.reader(f) for line in reader: if skip_line: skip_line = False continue for image_index in range(3): path = "".join(line[image_index].split()) path = os.path.join(data_path, path) if not os.path.exists(path): raise FileNotFoundError(path) line[image_index] = ''.join(path.split()) angle = float(line[3]) if image_index == 1: angle += 0.229 elif image_index == 2: angle -= 0.229 samples.append({"image": line[image_index], "angle": angle, "flip": False}) samples.append({"image": line[image_index], "angle": angle, "flip": True}) train_samples, validation_samples = train_test_split(samples, test_size=0.2) return train_samples, validation_samples def generator(samples, batch_size=128): ''' it's a generator for sampling. :param samples: the whole datasets for training or validation :param batch_size: batch size :return: yield a batch sample ''' num_samples = len(samples) while 1: # Loop forever so the generator never terminates sklearn.utils.shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset + batch_size] images = [] angles = [] for batch_sample in batch_samples: name = batch_sample["image"] image = cv2.imread(name) if image is None or image.shape != (160, 320, 3): continue angle = float(batch_sample["angle"]) if batch_sample["flip"]: images.append(np.fliplr(image)) angles.append(-angle) else: images.append(image) angles.append(angle) # trim image to only see section with road X_train = np.array(images) y_train = np.array(angles) yield sklearn.utils.shuffle(X_train, y_train) if __name__ == "__main__": train(['/dataset/pj3-1/', '/dataset/pj3-2/', '/dataset/pj3-origin/'])
d4b7a0a364fdc667c3582d44384e6f48a247b0fe
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03464/s336171115.py
4f42109ae769c6dfb2831e74579d5c8aceb6e5c6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
#!/usr/bin/env python3 import sys, math, copy # import fractions, itertools # import numpy as np # import scipy HUGE = 2147483647 HUGEL = 9223372036854775807 ABC = "abcdefghijklmnopqrstuvwxyz" def get_max_min_mod(a, minp, maxp): if minp % a == 0: minp_new = (minp // a) * a else: minp_new = (minp // a + 1) * a maxp_new = (maxp // a) * a return minp_new, maxp_new def main(): k = int(input()) ak = list(map(int, reversed(input().split()))) assert len(ak) == k minp = maxp = 2 for j in range(k): minp, maxp = get_max_min_mod(ak[j], minp, maxp) if minp > maxp: print(-1) sys.exit(0) maxp += ak[j] - 1 print(minp, maxp) main()
691b805c06257ec4860f40bf70e4d6899007590d
7c5d3246d866379dc7b6a7152ac61ae5a18b067c
/Figure_2.py
4b3e2eb844ee743bceedc1b0dd130c984302ced0
[ "Apache-2.0" ]
permissive
sunatthegilddotcom/Data-Driven-PV
c601a3c66a81cedf64b652393419a137cebf8b51
4f06d861948de4088131ef72fbab80521140cd8a
refs/heads/master
2022-11-24T15:51:30.779365
2020-07-30T08:11:05
2020-07-30T08:11:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,155
py
# -*- coding: utf-8 -*- #Load libraries import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd from scipy.stats import lognorm # Specify font used in plots font = 'Adobe Myungjo Std' math_font = 'cm' #Cutoff function def voef(cut, slope, eff): if eff < cut: return 0 else: return (eff*slope) def voef_exp(cut, slope, eff, exp): if eff < cut: return 0 else: return (slope * np.power(eff,exp)) def make_plots(efficiencies, share_max, axs=False): cuts = np.linspace(8, 13, 100) slopes = np.linspace(0.5, 10, 100) distributions = [] total_rev =[] distributions_exp = [] total_rev_exp =[] for slope in slopes: for cut in cuts: #Compute revenue rev = np.zeros((len(efficiencies),1)) cut = cut slope = slope for i, sample in enumerate(efficiencies): rev[i] = voef(cut, slope, sample) distributions.append(rev) total_rev.append([np.sum(rev)/len(efficiencies), cut, slope]) total_rev_def = pd.DataFrame(total_rev, columns = ['Total Revenue', 'n_c', 'k']) cuts_n = cuts / np.mean(cuts) X, Y = np.meshgrid(cuts_n, slopes) #fig,ax = plt.subplots(1,1) if axs: ax = axs z= total_rev_def['Total Revenue'] Z= z.values.reshape(100,100) levels = np.linspace(0, share_max, 10) cp = ax.contourf(X, Y, Z, cmap='viridis', levels = levels) #cp.ax.set_title('$/m^2', size=20) clb = plt.colorbar(cp, ax=axs, format='%.1f') # Add a colorbar to a plot clb.ax.set_title(r'$\$ / m^2$', fontname=font) #ax.set_title('Total Revenue', size=20) ax.set_xlabel(r'Ratio $\eta_c / \eta _{mean}$', size=18, fontname=font) ax.set_ylabel(r'$k$ [$\$ \: W^{-1} m^{-2}$]', size=18, fontname=font) # Set the font name for axis tick labels for tick in ax.get_xticklabels(): tick.set_fontname(font) for tick in ax.get_yticklabels(): tick.set_fontname(font) return total_rev_def, X, Y, Z #%% #LOAD DATA JV_exp = np.loadtxt('perov_JV_exp.txt',delimiter=',') JV_exp = JV_exp v_sweep = np.linspace (0,1.2,100) power_exp= JV_exp[:,100*2:100*3]*v_sweep eff_exp = np.max(power_exp, axis=1)/0.98 exp_condition = pd.read_excel('prcess_label.xlsx',index_col=0) exp_condition = exp_condition.values #Stack data and order X_data = np.concatenate([eff_exp.reshape(-1,1), exp_condition],axis= 1) p_index = [] X_data_re=[] for i in [70,90,110,130]: for j in [2,4,8]: idx = np.intersect1d(np.where(X_data[:,1]==i) ,np.where(X_data[:,2]==j)) X_data_re.append(X_data[idx,:]) X_data_re = np.vstack(X_data_re) #Remove data to have same # of samples: X_data_re = np.delete(X_data_re, [0,15,21,13,14,10,12,17,12,9,7,4], 0) X_data_re = np.insert(X_data_re, 36, [3.88, 90, 2], axis=0) X_data_re = np.delete(X_data_re, [106,107,108,96,110,112], 0) X_data_re = np.insert(X_data_re, 143, [5.77, 130, 8], axis=0) #make_plots(X_data_re) #%% # Histogram of data #plt.hist(X_data_re[:,0],50) # Compute efficiency and normalize df_X1 = pd.DataFrame(X_data_re, columns=['Efficiency','Temperature','Ratio']) df_X2 = df_X1.values df_X2 = df_X2[df_X2[:,0]>2] df_max = np.max(df_X2[:,0]) df_X2 = df_X2[:,0] / df_max mean_zeroff = np.mean(df_X2) std_zeroff = np.std(df_X2) #plt.hist(df_X2, 50) from scipy.stats import norm logn_zero = norm(loc=mean_zeroff, scale = std_zeroff) sample_zero = logn_zero.rvs(size=1500) sample_zero = sample_zero[sample_zero < 20/ df_max] z_i = np.random.randint(10, size=len(sample_zero)) z_i[z_i>0]=1 sample_z = z_i *(1-sample_zero) sample_z [sample_z<0]=0 #plt.figure() #plt.hist(sample_z * df_max,50) #plt.axvline(x=np.mean(sample_zero)*df_max, color='r') #plt.figure() #plt.hist(X_data_re[:,0], 50) #%% #Lognormal #logn = lognorm(s=std_zeroff, scale = (1-mean_zeroff)+ (std_zeroff**2 / 2)) # # #sample = logn.rvs(size=150000) sample = np.random.lognormal(np.log(1-mean_zeroff), (std_zeroff), 1500 ) sample[sample>1]= 1 #plt.figure() #plt.hist ((1-sample)*df_max,50) mean = np.mean((1-sample)) #plt.axvline(x=mean*df_max, color='r') #%% #a = make_plots((sample_z * df_max), share_max = 80) #b= make_plots(((1-sample)*df_max), share_max = 80) #calc = [] #for i, sample in enumerate((1-sample)*df_max): # calc.append(voef(9.5, 5, sample)) # #res = np.sum(calc) #%% import matplotlib.style as style #style.use('seaborn-white') sns.set(style="white", context='talk') fig, axes = plt.subplots(2, 2, figsize=(10,8)) import matplotlib matplotlib.rcParams['font.family'] = font matplotlib.rcParams['mathtext.fontset'] = math_font #matplotlib.rcParams['font.size'] = 20 axes[0, 0].hist(sample_z * df_max, 50, density=True, color='mediumseagreen') axes[0, 0].axvline(x=np.mean(sample_zero)*df_max, color='blue', linewidth=2) #axes[0, 0].set_title('R&D Distribution', size=20) axes[0, 0].set_xlabel(r'Solar Cell Efficiency $\eta$ [%]', size=18, fontname=font) axes[0, 0].set_ylabel(r'Probability $p\:(\eta)$', size=18, fontname=font) axes[0, 0].set_xlim(right=20) axes[0, 1].hist((1-sample)*df_max, 50, density=True, color='mediumseagreen') axes[0, 1].axvline(x=mean*df_max, color='blue', linewidth=2) #axes[0, 1].set_title('Manufacturing Distribution', size=20) axes[0, 1].set_xlabel(r'Solar Cell Efficiency $\eta$ [%]', size=18, fontname=font) axes[0, 1].set_ylabel(r'Probability $p\:(\eta)$', size=18, fontname=font) axes[0, 1].set_xlim(right=20) # Set the font name for axis tick labels for ax in axes.ravel(): for tick in ax.get_xticklabels(): tick.set_fontname(font) for tick in ax.get_yticklabels(): tick.set_fontname(font) make_plots((sample_z * df_max), share_max = 80, axs= axes[1,0]) make_plots(((1-sample)*df_max), share_max = 80, axs= axes[1,1]) fig.tight_layout() plt.savefig('Fig2.png', dpi=1000) #axes[1, 0].scatter(x, y) #%% #df_X = df_X1.copy() # #max_eff = df_X['Efficiency'].max() # ## Normalize #df_X['Efficiency'] = df_X['Efficiency'] / max_eff # ## Get mean and variance for empirical distribution #X_mean = df_X['Efficiency'].mean() #eff_data = df_X['Efficiency'] # #log_norm_var = eff_data.std() # #make_plots(X_data_re) #plt.figure() #plt.hist(X_data_re[:,0], 50) # # # ##%% ## Lognormal distribution # # #logn = lognorm(s=0.5*log_norm_var, scale = 0.5*(1-X_mean)) #sample = logn.rvs (size=1500) #sample[sample>1]= 1 #plt.figure() #plt.hist (1-sample,50) # ##%% # ##zero inflated lognormal #logn_zero = norm(loc=0.5*log_norm_var, scale = 1.9*(1-X_mean)) #sample_zero = logn_zero.rvs(size=1500) # #z_i = np.random.randint(10, size=len(sample_zero)) #z_i[z_i>0]=1 #sample_z = z_i *(1-sample_zero) #sample_z [sample_z<0]=0 # #plt.figure() #plt.hist(sample_z,50) # # # ##%% ##Make data frames for plotting #lognorm_df = 1-sample #lognorm_df = lognorm_df.reshape(-1,1) #lognorm_df = lognorm_df * max_eff #a = make_plots(lognorm_df) # ##Make data frames for plotting #lognorm_zero = sample_z #lognorm_zero = lognorm_zero.reshape(-1,1) #lognorm_zero = lognorm_zero * max_eff #b = make_plots(lognorm_zero) # # # ##%% # #plt.figure() #plt.hist(lognorm_df,50) #plt.figure() #plt.hist(lognorm_zero,50) # ##%% ## # # # sns.lineplot(x='k', y='Total Revenue', hue='n_c', data=total_rev_def, legend='full') # for exponent in exponents: # for cut in cuts: # #Compute revenue # rev_exp = np.zeros((len(efficiencies),1)) # cut = cut # slope = fixed_slope # exponent = exponent # # for i, sample in enumerate(efficiencies): # rev_exp[i] = voef_exp(cut, slope, sample[0], exponent) # # # distributions_exp.append(rev_exp) # total_rev_exp.append([np.sum(rev_exp), cut, exponent]) # # total_rev_def_exp = pd.DataFrame(total_rev_exp, columns = ['Total Revenue', 'n_c', 'Exp']) # # plt.figure() # sns.lineplot(x='Exp', y='Total Revenue', hue='n_c', data=total_rev_def_exp, legend='full')
84bb5d529654e19be0e8563ab99ea1631a73031d
343ab5dde66ab0314acdc339c08973e62283631c
/home/urls.py
0c523ced43ab2ff2fb122341228e826b4fbca388
[]
no_license
pdolawat654/Hospital_Management
45e400a9376aa3302ca500d20910859429417c5b
e9ee6fe9c6f6a659f69f0a70aaef875c73a8baf7
refs/heads/master
2022-10-18T19:08:37.741706
2020-06-12T12:35:42
2020-06-12T12:35:42
271,786,980
1
0
null
null
null
null
UTF-8
Python
false
false
102
py
from django.urls import path from . import views urlpatterns=[ path("",views.home,name='home'), ]
bab8cf5bbb562bf33a113be171dba2455f98a23c
198947a1082ff3855a76aabf48c057629ef2f3ef
/ex11.py
e9b25dc5d8be585da017f795fcf81e493912fb49
[]
no_license
mskaru/LearnPythonHardWay
ec71a140bd6d7713629c97cf435b890679613d18
4838f2c38d2ceba954469363db1f98e8d2758a0f
refs/heads/master
2016-08-04T13:26:09.818275
2014-02-09T10:14:36
2014-02-09T10:14:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
# -*- coding: utf-8 -*- print "How old are you?", age = raw_input() print "How tall are you?", height = raw_input() print "How much do you weigh?", weight = raw_input() print "So, you're %r old, %r tall and %r heavy." % (age, height, weight) print int(age, base = 2) + int(height, base = 2)
c69d3069c6f96a3344942716ceaee3ab21eb94f3
82ff359caee189eef3744f37dde84a81c8eadb60
/rotate/test_mask.py
f705a5eafeede5814744f731ecca8710b46aec6d
[]
no_license
cycle13/Hagibis
a3e509f7dc4aafb9ff11de58dcce92c0443a2fca
6c8237c75740070def1159ff6962ea0f4203136c
refs/heads/master
2023-01-19T06:42:15.637110
2020-11-24T00:18:33
2020-11-24T00:18:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
from librotate import pi, dtheta, mask_lonlat, rotate_lonlat1d import numpy as np import matplotlib.pyplot as plt lonc = 137.5 latc = 25.0 dcolat = 12.5 lon = np.arange(360) lat = -90.0 + np.arange(180) msk = mask_lonlat(dcolat, lonc, latc, lon, lat) nmsk = np.sum(msk.astype(np.int)) print(nmsk) mlon = np.zeros(nmsk) mlat = np.zeros_like(mlon) print(mlon.size) k = 0 for j in range(lat.size): for i in range(lon.size): if msk[j, i]: mlon[k] = lon[i] mlat[k] = lat[j] k += 1 print(mlon.min(),mlon.max()) print(mlat.min(),mlat.max()) lonnp, latnp = rotate_lonlat1d(lonc, latc, mlon, mlat, -1) fig, ax = plt.subplots(2) ax[0].scatter(mlon,mlat) ax[0].scatter(lonc, latc, marker="*") #ax.set_xlim([lon.min(),lon.max()]) ax[0].set_xlim([90.0,180.0]) #ax.set_ylim([lat.min(),lat.max()]) ax[0].set_ylim([-30.0,60.0]) ax[0].set_aspect("equal") ax[0].set_xlabel("longitude") ax[0].set_ylabel("latitude") ax[1].scatter(lonnp, latnp, s=10) ax[1].set_xlim([lon.min(),lon.max()]) ax[1].set_ylim([60.0,lat.max()]) ax[1].set_aspect("equal") ax[1].set_xlabel("longitude") ax[1].set_ylabel("latitude") plt.show()
2599514a359bcc1853bb1c1eb4591332d4afeb29
ea6fcda29246a86bdd4b3fc19247b4a3e5ea97dd
/Python & Web Applications/2 Basics/Penetest/main.py
a27031b6bb5c330b86a70002910e7068b8f4a945
[]
no_license
Abbalon/pythons_hacks
d0e4be96dec28bb29c823fd526873edbe58af9cc
607e904fe7f4d0f4173937b2cb29e3067362fa07
refs/heads/master
2020-09-06T04:32:52.446304
2020-05-10T17:13:19
2020-05-10T17:13:19
220,322,905
0
0
null
2020-05-10T17:14:03
2019-11-07T20:25:47
Ruby
UTF-8
Python
false
false
151
py
import requests response = requests.get('https://web.whatsapp.com/') if(response.status_code == 200): print("ok") else: print(response.text)
c2a7eb9fb4d719a0c4eca6e4489e155ae0db2dcc
7875dd778108c1aa51abb13d8e5603c82317b4fd
/src/natcap/__init__.py
d9510401c9b1311aab8bd9c9e3d209edef0c509d
[]
no_license
gaybro8777/rios-deprecated
358b9117f91b6523109ef5a4bc098972f8be2c1b
653109a14ad2ee9c01d9f41831aa39668a011916
refs/heads/master
2023-03-19T00:55:59.498872
2020-06-11T17:51:02
2020-06-11T17:51:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
"""this is a namespace package for natcap""" import pkg_resources pkg_resources.declare_namespace(__name__)
ad37988f989e0ddb53dce8a9ed42adf25063d185
bc9151c9437862b45dbbe3e491c2da0986736980
/2.listas/challenge4_rouillonh.py
fa12aebd0d0fa23d04213b55202a9c23953177af
[ "MIT" ]
permissive
rouillonh/challenge-python
d285eb7ec081e2316bb0177d4448d8bfef653652
759adaf12f6112c5482841a81e53e8438d33b33e
refs/heads/main
2023-09-06T02:14:53.946972
2021-11-24T18:23:26
2021-11-24T18:23:26
432,236,856
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
print("\tWelcome to the Basketball Roster Program\n") #Pedimos los nombres de los jugadores a elección del usuario pg = input("Who is your point guard: ").title() sg = input("Who is your shooting guard: ").title() sf = input("Who is your small forward: ").title() pf = input("\nWho is your power forward: ").title() c = input("Who is your center: ").title() #Añadimos los jugadores a una nueva lista roster = [] roster.append(pg) roster.append(sg) roster.append(sf) roster.append(pf) roster.append(c) print("\n\tYour starting ",len(roster)," for the upcoming basketball season") print("\t\tPoint guard: \t\t",pg) print("\t\tShooting guard: \t",sg) print("\t\tSmall forward: \t\t",sf) print("\t\tPower forward: \t\t",pf) print("\t\tCenter: \t\t",c) #Removemos al jugador lesionado y añadimos a uno nuevo con la variable added_player print("\nOh no, ",sf," is injured.") roster.remove(sf) injured_player = sf print("Your roster only has ",len(roster)," players.") added_player = input(f"Who will take {injured_player}'s spot: ").title() roster.insert(2,added_player) #Finalmente, mostramos la lista final del equipo print("\n\tYour starting ",len(roster)," for the upcoming basketball season") print("\t\tPoint guard: \t\t",pg) print("\t\tShooting guard: \t",sg) print("\t\tSmall forward: \t\t",added_player) print("\t\tPower forward: \t\t",pf) print("\t\tCenter: \t\t",c) print("\nGood Luck ",roster[2]," you will do great!") print("Your roster now has ",len(roster)," players.")
e7126106bb6c5d92c93880f93e7b077e87dfe9b9
a37bbd659c17a29204983ef84dcfeeab30d70d0c
/_controllers/google/adsense.py
5af84bc6c2247e0515870569e6c11e68766aa40c
[]
no_license
goosemo/blog
613f2561c48c6d034f4c81ec93806c084fb36521
ffa9738bf2d8bfa8498b1e9c0fac96b104dadb7e
refs/heads/master
2021-01-19T20:28:02.554535
2014-02-27T07:04:34
2014-02-27T07:04:34
948,398
2
0
null
null
null
null
UTF-8
Python
false
false
22
py
def run(): pass
c389313c6aee0e663d05983f97db3c7d0b8d3209
6ee2b41e2f5468f6a1f2113b9505c60e97eb4349
/Dotation_solidarite_urbaine.py
e54fcc7cf2126645af8a62e3173a4853daab3ca4
[]
no_license
MikaelMonjour/simulation-dsu
2b25db753318b14c1528a3bd2ed13aa68b9ac243
d6054a01e38db87022dcbad46b3980da0eee1c01
refs/heads/master
2022-09-01T18:51:45.616649
2020-01-25T15:10:14
2020-01-25T15:10:14
236,148,109
0
1
null
2022-08-23T18:18:33
2020-01-25T09:10:50
Python
UTF-8
Python
false
false
7,726
py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np choix_commune = input("Tu veux calculer la dotation 2019 pour quelle ville ? : ") departement = input("Numero du département à deux chiffre ex 67 : ") print("[+] Calcul pour une commune de plus de 10 000 habitants") df = pd.read_csv("2019-communes-criteres-repartition.csv", decimal=",") _nombre_de_villes_elligibles = len( df["RANG_DSU_SUP_10K"].replace(0, np.nan).dropna() ) * ( 2 / 3 ) # Les deux tiers de 1032 # Selection des colonnes df2 = df[ [ "Informations générales - Nom de la commune", "Informations générales - Population DGF Année N'", "Informations générales - Population INSEE Année N ", "Informations générales - Code département de la commune", "Dotation de solidarité urbaine - Nombre de bénéficiaires des aides au logement de la commune", "Dotation de solidarité urbaine - Nombre de logements TH de la commune", "Dotation de solidarité urbaine - Part des bénéficiaires d'aides au logement par rapport au nombre de logements des communes mét de plus de 10000 habitants", "Dotation de solidarité urbaine - Nombre de logements sociaux de la commune", "Dotation de solidarité urbaine - Part des logements sociaux dans le total des logements des communes métropolitaines de plus de 10000 habitants", "Dotation de solidarité urbaine - Revenu imposable moyen par habitant des communes mét de plus de 10 000 habitants", "Dotation de solidarité urbaine - Revenu imposable par habitant", "Dotation de solidarité urbaine - Potentiel financier moyen par habitant des communes métropolitaines de plus de 10000 habitants", "Potentiel fiscal et financier des communes - Potentiel financier par habitant", "EFFORT_FISCAL", # Changer nom de colonne en production "RANG_DSU_SUP_10K", # Changer nom de colonne en production "RANG_DSU_5K_A_10K", # Changer nom de colonne en production "Dotation de solidarité urbaine - Montant attribution spontanée DSU", ] ] dfcity = df.loc[ (df["Informations générales - Nom de la commune"] == choix_commune) & ( df["Informations générales - Code département de la commune"] == int(departement) ) ] if len(dfcity) == 0: print( f"[!] Il n'existe pas de commune {choix_commune} dans le {departement} - > Arrêt du programme !" ) else: population_dgf_commune = dfcity[ "Informations générales - Population DGF Année N'" ].values[0] population_insee_commune = dfcity[ "Informations générales - Population INSEE Année N " ].values[0] beneficiaires_aide_au_logement_commune = dfcity[ "Dotation de solidarité urbaine - Nombre de bénéficiaires des aides au logement de la commune" ].values[0] leffort_fiscal = dfcity["EFFORT_FISCAL"].values[0] dsu_annee_precedente = dfcity[ "Dotation de solidarité urbaine - Montant attribution spontanée DSU" ].values[0] print(f"[+] {population_insee_commune}") if population_insee_commune > 10000: rang = dfcity["RANG_DSU_SUP_10K"].values[0] _pfi_reference_10000 = 1292.66 # Potentiel Financier de référence au niveau national communes > 10K pfi_commune = dfcity[ "Potentiel fiscal et financier des communes - Potentiel financier par habitant" ].values[ 0 ] # Potentiel financier de la commune pour laquelle on calcule la dotation ecart_potentiel_financier_par_hab = _pfi_reference_10000 / pfi_commune _ri_reference_10000 = ( 15396.50 # Le revenu imposable par habitant commune plus de 10K hab ) ri_commune = dfcity[ "Dotation de solidarité urbaine - Revenu imposable par habitant" ].values[ 0 ] # Le revenu imposable par habitant de la commune ecart_revenu_imposable_par_hab = _ri_reference_10000 / ri_commune _part_des_logement_sociaux_plus_de_10000 = 0.232031 part_des_logement_sociaux_de_la_commune = ( dfcity[ "Dotation de solidarité urbaine - Nombre de logements sociaux de la commune" ].values[0] / dfcity[ "Dotation de solidarité urbaine - Nombre de logements TH de la commune" ].values[0] ) ecart_de_pourcentage_de_logements_sociaux = ( part_des_logement_sociaux_de_la_commune / _part_des_logement_sociaux_plus_de_10000 ) _part_des_allocations_logements_plus_de_10000 = 0.515391 part_des_allocations_logements_commune = ( dfcity[ "Dotation de solidarité urbaine - Nombre de bénéficiaires des aides au logement de la commune" ].values[0] / dfcity[ "Dotation de solidarité urbaine - Nombre de logements TH de la commune" ].values[0] ) ecart_de_pourcentage_allocation_logement = ( part_des_allocations_logements_commune / _part_des_allocations_logements_plus_de_10000 ) ponderation_potentiel_financier = 0.30 # Possibilité de changé via amendement ponderation_revenu_imposable = 0.25 ponderation_logement_sociaux = 0.15 ponderation_allocation_logement = 0.30 c1 = ecart_potentiel_financier_par_hab * ponderation_potentiel_financier c2 = ecart_revenu_imposable_par_hab * ponderation_revenu_imposable c3 = ecart_de_pourcentage_de_logements_sociaux * ponderation_logement_sociaux c4 = ecart_de_pourcentage_allocation_logement * ponderation_allocation_logement indice_synthetique = c1 + c2 + c3 + c4 rang_de_la_commune = rang # Par rapport à l'indice synthétique RENNES (diiférent en fonction de la commune) numerateur_coeff_rang = ( (3.5 * rang_de_la_commune) + 0.5 - (4 * _nombre_de_villes_elligibles) ) denominateur_coeff_rang = 1 - _nombre_de_villes_elligibles coefficient_de_rang = numerateur_coeff_rang / denominateur_coeff_rang population_insee_de_la_commune = population_insee_commune population_qpv_de_la_commune = beneficiaires_aide_au_logement_commune coefficient_qpv = 1 + 2 * ( population_qpv_de_la_commune / population_insee_de_la_commune ) # ESsayer de retouver le calcul de la valeur de point _valeur_de_point = ( 0.57362212 # Modification en fonction des critères de dessus (POUR 2019) ) population_dgf = population_dgf_commune # Dans fichier DGCL effort_fiscal_de_la_commune = ( leffort_fiscal if leffort_fiscal < 1.3 else 1.3 ) # Dans fichier DGCL - Plafond de 1.3 montant_abondement = ( indice_synthetique * population_dgf * effort_fiscal_de_la_commune * coefficient_de_rang * coefficient_qpv * _valeur_de_point ) DSU2019 = dsu_annee_precedente + montant_abondement print(f"DSU 2019 : {DSU2019}") df = pd.DataFrame( {"": [montant_abondement, dsu_annee_precedente]}, index=["Abondement", "DSU N-1"], ) plot = df.plot.pie(y="", title="TOTAL DSU", figsize=(10, 6)) fig = plot.get_figure() fig.savefig("figure.png", dpi=300) elif population_insee_commune > 5000 and population_insee_commune < 10000: rang = dfcity["RANG_DSU_5K_A_10K"].values[0] print("Ville de 5K Habitants") else: print("Moins de 5 000 habitants")
cfdafc9e200313d08f4693b01ef1b3ed12d4a8fd
67320a95b746f76a6ecbacb7e323aef0c4b8c4bd
/Diter_Delivery/FS/FS_billing_amount.py
0b8b403f900c89db97092363f4fabd921474a8cc
[]
no_license
EkaterinaDanilicheva/Project_ivc
68155be84912fe2af3c4caef088ce92d81a13dba
f7de6431f7fef4220b8ba2198e0974d32af450ae
refs/heads/master
2021-01-23T16:43:50.739155
2017-09-07T14:01:08
2017-09-07T14:01:08
102,743,585
0
0
null
null
null
null
UTF-8
Python
false
false
3,473
py
# -*- coding: utf-8 import MySQLdb import string import mysql.connector from mysql.connector import errorcode import logging logging.basicConfig(filename='FS_billing_amount.log', format='%(asctime)s %(message)s',level=logging.INFO) # billing19_002 подключаемся к базе данных (не забываем указать кодировку, а то в базу запишутся иероглифы) config = { 'user': 'tariff', 'password': 'TrubKakuRa', 'host': '81.19.128.73', 'database': 'billing19_002', 'raise_on_warnings': True, } try: billing_db = mysql.connector.connect(**config) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: logging.critical("Something is wrong with your user name or password.") elif err.errno == errorcode.ER_BAD_DB_ERROR: logging.critical("Database does not exist.") else: logging.critical(err) exit() logging.info("billing MySQL connected.") # формируем курсор, с помощью которого можно исполнять SQL-запросы billing_cursor = billing_db.cursor() # freeswitch подключаемся к базе данных (не забываем указать кодировку, а то в базу запишутся иероглифы) config = { 'user': 'portuser', 'password': 'TrubKakuRa', 'host': '81.19.142.2', 'database': 'freeswitch', 'raise_on_warnings': True, } try: freeswitch_db = mysql.connector.connect(**config) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: logging.critical("freeswitch_db:Something is wrong with your user name or password.") elif err.errno == errorcode.ER_BAD_DB_ERROR: logging.critical("freeswitch_db: Database does not exist.") else: logging.critical(err) exit() logging.info("freeswitch MySQL connected.") freeswitch_cursor = freeswitch_db.cursor() #IS NULL freeswitch_sql = "SELECT start_stamp, uuid FROM `cdr` WHERE `cdr`.`billing_amount` = 0 AND `cdr`.`billsec`>0 AND `cdr`.`billing_number` LIKE '7__________'" # исполняем SQL-запрос freeswitch_cursor.execute(freeswitch_sql) # получаем результат выполнения запроса freeswitch_uuid_arr = freeswitch_cursor.fetchall() # перебираем записи for freeswitch_uuid in freeswitch_uuid_arr: # извлекаем данные из записей - в том же порядке, как и в SQL-запросе start_stamp, uuid = freeswitch_uuid fs_tel_table = "tel029" + start_stamp.strftime("%Y%m%d") billing_sql = "SELECT amount FROM `"+ fs_tel_table +"` WHERE timefrom = '"+ str(start_stamp) +"' AND session_id = '"+ uuid +"'" # исполняем SQL-запрос billing_cursor.execute(billing_sql) # получаем результат выполнения запроса amount = billing_cursor.fetchall() billing_amount = amount[0][0] # update cdr на freeswitch добавляем billing_amount update_sql = "UPDATE `cdr` SET `billing_amount` = '"+ str(billing_amount) +"' WHERE `start_stamp` = '"+ str(start_stamp) +"' AND `uuid` = '"+ uuid +"'" # исполняем SQL-запрос freeswitch_cursor.execute(update_sql) freeswitch_db.commit() print (update_sql) # закрываем соединение с базой данных freeswitch_db.close() billing_db.close()
98308daf2f91ba233841fae32d27a2e2d09d2207
04843a11bce1247bdcd55526d5e29732d5d2a2e6
/mysite/homepage/models.py
a8ff8302526dd5f66fdadd0e25750365f5911aa2
[]
no_license
mapleyustat/WorkZone
eef19a231a94e18b127e98461756b6ff5a8fe95c
9d44d07b9d1ae82a3f6a03ef3d707346aae7907c
refs/heads/master
2020-12-28T09:32:47.463950
2014-12-02T09:59:36
2014-12-02T09:59:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
from django.db import models class ThoughtForTheDay(models.Model): thought_text = models.CharField(max_length=255) posted_date = models.DateTimeField('date posted') class ThoughtOpinion(models.Model): thought_text = models.ForeignKey(ThoughtForTheDay) up_votes = models.IntegerField(default=0) down_votes = models.IntegerField(default=0)
ecc759b1d1ddc6f3dbcc08c45f09cc1e521cae4e
276ab3dc4742f2eab923ab4864923da996e9d994
/kats/tests/models/test_arima_model.py
6faba886ab669733da30466d81086dd43b8ee3f6
[ "MIT" ]
permissive
hyh123a/Kats
071f2a7c80594720dfbfa300a5c279a3ec18266c
f8b3a9603dcb9014f08e83739343124cd4c32ed5
refs/heads/main
2023-07-15T02:08:12.013987
2021-09-02T08:24:19
2021-09-02T08:24:19
402,340,132
0
0
MIT
2021-09-02T08:06:25
2021-09-02T08:06:24
null
UTF-8
Python
false
false
3,143
py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import os import pkgutil import unittest from unittest import TestCase import pandas as pd from kats.consts import TimeSeriesData from kats.models.arima import ARIMAModel, ARIMAParams def load_data(file_name): ROOT = "kats" if "kats" in os.getcwd().lower(): path = "data/" else: path = "kats/data/" data_object = pkgutil.get_data(ROOT, path + file_name) return pd.read_csv(io.BytesIO(data_object), encoding="utf8") class ARIMAModelTest(TestCase): def setUp(self): DATA = load_data("air_passengers.csv") DATA.columns = ["time", "y"] self.TSData = TimeSeriesData(DATA) DATA_daily = load_data("peyton_manning.csv") DATA_daily.columns = ["time", "y"] self.TSData_daily = TimeSeriesData(DATA_daily) DATA_multi = load_data("multivariate_anomaly_simulated_data.csv") self.TSData_multi = TimeSeriesData(DATA_multi) def test_fit_forecast(self) -> None: params = ARIMAParams(p=1, d=1, q=1) m = ARIMAModel(data=self.TSData, params=params) m.fit( start_params=None, transparams=True, method="css-mle", trend="c", solver="lbfgs", maxiter=500, # pyre-fixme[6]: Expected `bool` for 7th param but got `int`. full_output=1, disp=False, callback=None, start_ar_lags=None, ) m.predict(steps=30) m.plot() m_daily = ARIMAModel(data=self.TSData_daily, params=params) m_daily.fit() m_daily.predict(steps=30, include_history=True) m.plot() def test_others(self) -> None: params = ARIMAParams(p=1, d=1, q=1) params.validate_params() m = ARIMAModel(data=self.TSData, params=params) # test __str__ method self.assertEqual(m.__str__(), "ARIMA") # test input error self.assertRaises( ValueError, ARIMAModel, self.TSData_multi, params, ) # test search space self.assertEqual( m.get_parameter_search_space(), [ { "name": "p", "type": "choice", "values": list(range(1, 6)), "value_type": "int", "is_ordered": True, }, { "name": "d", "type": "choice", "values": list(range(1, 3)), "value_type": "int", "is_ordered": True, }, { "name": "q", "type": "choice", "values": list(range(1, 6)), "value_type": "int", "is_ordered": True, }, ], ) if __name__ == "__main__": unittest.main()
251259e6477fbef29aae030289f231724f2d6123
a608fc3bdef273edc87eb707e294341323c8152e
/config.py
7d61124e0c10730dd251e84480ad78a91af6a945
[]
no_license
Hualin/prams
1faba53b204b3ccee8c8cc03115d2f5139b88f91
467483fc070acf5cfe971233be1731e024808cdf
refs/heads/master
2020-05-19T17:30:03.925334
2013-05-16T00:57:51
2013-05-16T00:57:51
10,082,749
1
0
null
null
null
null
UTF-8
Python
false
false
106
py
# configuration DEBUG = True SECRET_KEY = 'development key' SQLALCHEMY_DATABASE_URI = 'sqlite:///prams.db'
4e11f1bdd89a47a0d95835f7605481daba0f366e
924224d9b9b86092f63eb54476f3886adc008a90
/helper.py
7bc5b05b5b7760a0c1cd7bccdecf19e70b57a6ab
[]
no_license
pfespada/Madrid-AirBnB-Analysis
8e12417aff86cca41d580eb18e0c4e0f84f85ef2
2de0903c929dc9935deed8a98055ad82809f19bc
refs/heads/master
2020-05-01T16:16:12.640504
2019-03-26T11:17:32
2019-03-26T11:17:32
177,568,003
0
0
null
null
null
null
UTF-8
Python
false
false
2,137
py
# Investigate the variance accounted for by each principal component. #function to plot the principal components as well as the cumulative variance def scree_plot(pca): ''' Creates a scree plot associated with the principal components INPUT: pca - the result of instantian of PCA in scikit learn OUTPUT: None ''' num_components=len(pca.explained_variance_ratio_) ind = np.arange(num_components) vals = pca.explained_variance_ratio_ plt.figure(figsize=(20, 15)) ax = plt.subplot(111) cumvals = np.cumsum(vals) ax.bar(ind, vals) ax.plot(ind, cumvals) count=0 for i in range(num_components): count+=1 ax.annotate(r"%s%%" % ((str(vals[i]*100)[:4])), (ind[i]+0.2, vals[i]), va="bottom", ha="center", fontsize=12) if count==3: break ax.xaxis.set_tick_params(width=0) ax.yaxis.set_tick_params(width=2, length=12) ax.set_xlabel("Principal Component") ax.set_ylabel("Variance Explained (%)") plt.title('Explained Variance Per Principal Component') # function to fill the NaN values using the mean def impute_missing(df, col): """ HERE YOU SHOULD BRIEFLY DESCRIBE WHAT THE FUNCTION COMPUTES Args: Data frame and column name ..... Returns: The data frame with the missing values converted to the mean() .... """ return df[col].fillna(df[col].mean(),inplace=True) #funtion to get R2 score in train and test data def quick_val (model): ''' Creates a scree plot associated with the principal components INPUT: model to be validated OUTPUT: R2 result for train and test data ''' train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_score = r2_score(y_train, train_predict) test_score = r2_score(y_test, test_predict) return print("In the model {}, The rsquared on the training data was {} and the rsquared on the test data was {}.".format(type(model).__name__,train_score, test_score))
e769b11263a1c2fea3831cc76399e87d0caea22a
8c6b28c62e13f1007ee908d5f283bed3fca54d66
/app/routes/register_equipment.py
f29bad92bbc08a71069f465366e63dcccdbc9fa7
[]
no_license
jvsn19/modec-api
2f6ba0ef03ed2d42baa200a6e92494f7c7ca20d4
a869a7a69515e3b00764bb192c8587ad8917c5d7
refs/heads/main
2023-01-04T08:15:17.166021
2020-11-05T22:06:44
2020-11-05T22:06:44
310,398,719
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
from flask import request from . import routes from ..db import CustomDatabase from ..utils import VesselDoesNotExistException, EquipmentAlreadyCreatedException @routes.route('/register-equipment', methods=['POST']) def register_equipment() -> None: response_json = request.get_json() params = { 'vessel_id': response_json['vessel-id'], 'equipment_id': response_json['equipment-id'], 'name': response_json['name'], 'location': response_json['location'], } try: CustomDatabase.add_equipment(**params) return "Created", 201 except EquipmentAlreadyCreatedException as ex: return str(ex), 409 except VesselDoesNotExistException as ex: return str(ex), 404 except Exception as _: return "Bad Request", 400
264b6c57af456663534b23a73353a20cb421322a
416814a6f129400d0802ef334ac7cea6bd3b69e4
/educa/courses/fields.py
5e0a6bbda9fd91738ca0e349d707e91387d65483
[]
no_license
shahparan9988/CSE327
d6c875df3be3c9ca03f25166e7a88c9c43ea7216
f2df19f6213f2ed43360bdc617b8b8c37936dbb9
refs/heads/master
2022-02-12T23:48:26.215266
2019-07-21T12:56:12
2019-07-21T12:56:12
198,091,394
0
0
null
2019-07-21T18:29:18
2019-07-21T18:29:18
null
UTF-8
Python
false
false
1,493
py
from django.db import models from django.core.exceptions import ObjectDoesNotExist # Using PositiveIntegerField we can easily specify the order of objects # custom order Field -> inherits PositiveIntegerField class OrderField(models.PositiveIntegerField): def __init__(self, for_fields=None, *args, **kwargs): self.for_fields = for_fields #indicates the field that the order #has to be calculated with respect to super(OrderField, self).__init__(*args, **kwargs) # executes before saving the field in database def pre_save(self, model_instance, add): if getattr(model_instance, self.attname) is None: #no current value try: qs = self.models.objects.all() if self.for_fields: # filter by objects with the same field values # for the fields in "for_fields" query = {field: getattr(model_instance, field)\ for field in self.for_fields} qs = qs.filter(**query) # get the order of the last item last_item = qs.latest(self.attname) value = last_item.order + 1 except ObjectDoesNotExist: value = 0 setattr(model_instance, self.attname, value) return value else: return super(OrderField, self).pre_save(model_instance, add)
ecc5fcce79e4d79a47ed00b608037a48442a8845
e134c1a98cb9cceaa188fc019ca1a955bf1046b6
/OzoneLUNA/ozone_response_pcuo.py
b21ffd76884a36c9d3ed723f26103395144660fe
[]
no_license
ziu1986/python_scripts
bd36bfd58e136657432331191c9e08fa85b6d8e1
df5d237b68e0143f35c5ff1c58190460692fdac8
refs/heads/master
2022-05-23T19:24:54.643726
2022-04-08T12:17:49
2022-04-08T12:17:49
170,145,851
0
0
null
null
null
null
UTF-8
Python
false
false
10,826
py
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sample_from_norm import compute_cuo from mytools.met_tools import print_all def cuo(o3_mu, o3_sigma, gs_o3, gs_o3_sigma, o3_fumi, o3_days, **kwarg): article = kwarg.pop("article", "general") if (article=="watanabe14"): exp = kwarg.pop("exp", 'CC') pcuo = [] pcuo_std = [] cuo_mean, cuo_std = compute_cuo(o3_mu['%s_1' % exp], o3_sigma['%s_1' % exp], gs_o3['%s_1' % exp], gs_o3_sigma['%s_1' % exp], int(o3_fumi['%s_1' % exp]), o3_days['%s_1' % exp]) pcuo.append(cuo_mean) pcuo_std.append(cuo_std) cuo_mean, cuo_std = compute_cuo(o3_mu['%s_1.5' % exp], o3_sigma['%s_1.5' % exp], (gs_o3['%s_1' % exp]+gs_o3['%s_2' % exp])*0.5, np.sqrt(gs_o3_sigma['%s_1' % exp]**2+gs_o3_sigma['%s_2' % exp]**2)*0.5, int(o3_fumi['%s_1.5' % exp]), o3_days['%s_1.5' % exp]-o3_days['%s_1' % exp]) cuo_mean = cuo_mean+pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pcuo_std[-1]**2) pcuo.append(cuo_mean) pcuo_std.append(cuo_std) cuo_mean, cuo_std = compute_cuo(o3_mu['%s_2' % exp], o3_sigma['%s_2' % exp], gs_o3['%s_2' % exp], gs_o3_sigma['%s_2' % exp], int(o3_fumi['%s_2' % exp]), (o3_days['%s_2' % exp]-o3_days['%s_1.5' % exp])) cuo_mean = cuo_mean+pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pcuo_std[-1]**2) pcuo.append(cuo_mean) pcuo_std.append(cuo_std) cuo_mean, cuo_std = compute_cuo(o3_mu['%s_3' % exp], o3_sigma['%s_3' % exp], gs_o3['%s_3' % exp], gs_o3_sigma['%s_3' % exp], int(o3_fumi['%s_3' % exp]), (o3_days['%s_3' % exp]-o3_days['%s_2' % exp])) cuo_mean = cuo_mean+pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pcuo_std[-1]**2) pcuo.append(cuo_mean) pcuo_std.append(cuo_std) cuo_mean, cuo_std = compute_cuo(o3_mu['%s_4' % exp], o3_sigma['%s_4' % exp], gs_o3['%s_4' % exp], gs_o3_sigma['%s_4' % exp], int(o3_fumi['%s_4' % exp]), (o3_days['%s_4' % exp]-o3_days['%s_3' % exp])) cuo_mean = cuo_mean+pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pcuo_std[-1]**2) pcuo.append(cuo_mean) pcuo_std.append(cuo_std) pcuo = np.array(pcuo) pcuo_std = np.array(pcuo_std) return(pcuo,pcuo_std) # Compute accumulated ozone for each article xu_pcuo = [] xu_pcuo_std = [] for i in range(4): cuo_mean, cuo_std = compute_cuo(xu_o3_mu[i], xu_o3_sigma[i], xu_gs_o3[i], xu_gs_o3_sigma[i], 10, xu_o3_days[i]) xu_pcuo.append(cuo_mean) xu_pcuo_std.append(cuo_std) pelle_pcuo = [] pelle_pcuo_std = [] for i in range(1,6): cuo_mean, cuo_std = compute_cuo(pelle_o3_mu[i], pelle_o3_sigma[i], (pelle_gs_o3[i]-pelle_gs_o3[i-1])*0.5+pelle_gs_o3[i-1], 0.5*np.sqrt(pelle_gs_o3_sigma[i]**2+pelle_gs_o3_sigma[i-1]**2), 5, pelle_o3_days[i]-pelle_o3_days[i-1]) if i>1: cuo_mean = cuo_mean+pelle_pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pelle_pcuo_std[-1]**2) pelle_pcuo.append(cuo_mean) pelle_pcuo_std.append(cuo_std) watanabe_pcuo_cf, watanabe_pcuo_std_cf = cuo(watanabe_o3_mu, watanabe_o3_sigma, watanabe_gs_o3, watanabe_gs_o3_sigma, watanabe_o3_fumi, watanabe_o3_days, exp='CC', article='watanabe14') watanabe_pcuo, watanabe_pcuo_std = cuo(watanabe_o3_mu, watanabe_o3_sigma, watanabe_gs_o3, watanabe_gs_o3_sigma, watanabe_o3_fumi, watanabe_o3_days, exp='OO', article='watanabe14') watanabe_pcuo_oc, watanabe_pcuo_std_oc = cuo(watanabe_o3_mu, watanabe_o3_sigma, watanabe_gs_o3, watanabe_gs_o3_sigma, watanabe_o3_fumi, watanabe_o3_days, exp='OC', article='watanabe14') watanabe_pcuo_co, watanabe_pcuo_std_co = cuo(watanabe_o3_mu, watanabe_o3_sigma, watanabe_gs_o3, watanabe_gs_o3_sigma, watanabe_o3_fumi, watanabe_o3_days, exp='CO', article='watanabe14') pelle14_pcuo = [] pelle14_pcuo_std = [] pelle14_pcuo1 = [] pelle14_pcuo1_std = [] pelle14_pcuo2 = [] pelle14_pcuo2_std = [] for i in range(1,6): cuo_mean, cuo_std = compute_cuo(pelle14_o3_mu[i], pelle14_o3_sigma[i], (pelle14_gs_o3[i]-pelle14_gs_o3[i-1])*0.5+pelle14_gs_o3[i-1], 0.5*np.sqrt(pelle14_gs_o3_sigma[i]**2+pelle14_gs_o3_sigma[i-1]**2), 5, pelle14_o3_days[i]-pelle14_o3_days[i-1]) cuo1_mean, cuo1_std = compute_cuo(pelle14_o3_mu[i], pelle14_o3_sigma[i], pelle14_gs_o3[i], pelle14_gs_o3_sigma[i], 5, pelle14_o3_days[i]-pelle14_o3_days[i-1]) cuo2_mean, cuo2_std = compute_cuo(pelle14_o3_mu[i], pelle14_o3_sigma[i], pelle14_gs_o3[i-1], pelle14_gs_o3_sigma[i-1], 5, pelle14_o3_days[i]-pelle14_o3_days[i-1]) if i>1: cuo_mean = cuo_mean+pelle14_pcuo[-1] cuo_std = np.sqrt(cuo_std**2+pelle14_pcuo_std[-1]**2) cuo1_mean = cuo1_mean+pelle14_pcuo1[-1] cuo1_std = np.sqrt(cuo1_std**2+pelle14_pcuo1_std[-1]**2) cuo2_mean = cuo2_mean+pelle14_pcuo2[-1] cuo2_std = np.sqrt(cuo2_std**2+pelle14_pcuo2_std[-1]**2) pelle14_pcuo.append(cuo_mean) pelle14_pcuo_std.append(cuo_std) pelle14_pcuo1.append(cuo1_mean) pelle14_pcuo1_std.append(cuo1_std) pelle14_pcuo2.append(cuo2_mean) pelle14_pcuo2_std.append(cuo2_std) kinose_pcuo = [] kinose_pcuo_std = [] for j in range(3): o3_mu = kinose_o3_mu[j::3] o3_sigma = kinose_o3_sigma[j::3] gs_o3 = kinose_gs_o3[j::3].interpolate() gs_o3_sigma = kinose_gs_o3_sigma[j::3].interpolate() o3_days = kinose_o3_days[j::3] for i in range(1,kinose_o3_mu[0::3].size): cuo_mean, cuo_std = compute_cuo(o3_mu[i], o3_sigma[i], (gs_o3[i]-gs_o3[i-1])*0.5+gs_o3[i-1], 0.5*np.sqrt(gs_o3_sigma[i]**2+gs_o3_sigma[i-1]**2), 12, o3_days[i]-o3_days[i-1]) if i>1: cuo_mean = cuo_mean+kinose_pcuo[-1] cuo_std = np.sqrt(cuo_std**2+kinose_pcuo_std[-1]**2) kinose_pcuo.append(cuo_mean) kinose_pcuo_std.append(cuo_std) kinose_pcuo = np.array(kinose_pcuo).reshape(3,len(kinose_pcuo)/3) kinose_pcuo_std = np.array(kinose_pcuo_std).reshape(3,len(kinose_pcuo_std)/3) watanabe13_pcuo = [] watanabe13_pcuo_std = [] for i in (0,2): cuo_mean, cuo_std = compute_cuo(watanabe13_o3_mu[i], watanabe13_o3_sigma[i], watanabe13_gs_o3[i], watanabe13_gs_o3_sigma[i], int(watanabe13_o3_fumi[i]), watanabe13_o3_days[i]) watanabe13_pcuo.append(cuo_mean) watanabe13_pcuo_std.append(cuo_std) cuo_mean_1, cuo_std_1 = compute_cuo(watanabe13_o3_mu[i], watanabe13_o3_sigma[i], watanabe13_gs_o3[i], watanabe13_gs_o3_sigma[i], int(watanabe13_o3_fumi[i]), watanabe13_o3_days[i]-watanabe13_o3_days[i+1]) cuo_mean_max, cuo_std_max = compute_cuo(watanabe13_o3_mu[i+1], watanabe13_o3_sigma[i+1], watanabe13_gs_o3[i], watanabe13_gs_o3_sigma[i], int(watanabe13_o3_fumi[i+1]), watanabe13_o3_days[i+1]) cuo_mean_min, cuo_std_min = compute_cuo(watanabe13_o3_mu[i+1], watanabe13_o3_sigma[i+1], watanabe13_gs_o3[i+1], watanabe13_gs_o3_sigma[i+1], int(watanabe13_o3_fumi[i+1]), watanabe13_o3_days[i+1]) cuo_mean_mean, cuo_std_mean = compute_cuo(watanabe13_o3_mu[i+1], watanabe13_o3_sigma[i+1], (watanabe13_gs_o3[i]+watanabe13_gs_o3[i+1])*0.5, np.sqrt(watanabe13_gs_o3_sigma[i+1]**2+watanabe13_gs_o3_sigma[i+1]**2)*0.5, int(watanabe13_o3_fumi[i+1]), watanabe13_o3_days[i+1]) cuo_mean = cuo_mean_1+cuo_mean_mean # Max uncertainty estimation (variation of start- and endpoint gsto) cuo_std = (cuo_mean_mean-cuo_mean_min, cuo_mean_max-cuo_mean_mean) watanabe13_pcuo.append(cuo_mean) watanabe13_pcuo_std.append(cuo_std) #print(watanabe13_o3_days[i], cuo_mean, cuo_std) #print(watanabe13_o3_days[i]-watanabe13_o3_days[i+1], cuo_mean_1, cuo_std_1) #print(watanabe13_o3_days[i+1], cuo_mean_max, cuo_std_max) #print(watanabe13_o3_days[i+1], cuo_mean_min, cuo_std_min) #print(watanabe13_o3_days[i+1], cuo_mean_mean, cuo_std_mean) gao_pcuo = [] gao_pcuo_std = [] for j in range(2): for i in range(4): #print(i+j*4) if j<1: leaf_age = gao_o3_days[0::2][i+j*4] else: leaf_age = gao_o3_days[0::2][i+j*4]-gao_o3_days[0::2][i] # Select the non filtered data for both measurement dates and cycle them cuo_mean, cuo_std = compute_cuo(gao_o3_mu[0::2][i+j*4], gao_o3_sigma[0::2][i+j*4], gao_gs_o3[0::2][i+j*4], gao_gs_o3_sigma[0::2][i+j*4], int(gao_o3_fumi[0::2][i+j*4]), leaf_age) # Push them to accumulated ozone gao_pcuo.append(cuo_mean) gao_pcuo_std.append(cuo_std) #print("nf", j,i, cuo_mean, cuo_std) if j==0: leaf_age = gao_o3_days[1::2][i+j*4] else: leaf_age = gao_o3_days[1::2][i+j*4]-gao_o3_days[1::2][i] # Select the ozone treated data cuo_mean, cuo_std = compute_cuo(gao_o3_mu[1::2][i+j*4], gao_o3_sigma[1::2][i+j*4], gao_gs_o3[1::2][i+j*4], gao_gs_o3_sigma[1::2][i+j*4], int(gao_o3_fumi[1::2][i+j*4]), leaf_age) # Push them to accumulated ozone gao_pcuo.append(cuo_mean) gao_pcuo_std.append(cuo_std) #print("o3",j,i, cuo_mean, cuo_std) # Add the accumulation of ozone under ambient conditions (rest of the day) #cuo_mean, cuo_std = compute_cuo(gao_o3_mu[0::2][i+j*4], gao_o3_sigma[0::2][i+j*4], gao_gs_o3[1::2][i+j*4], gao_gs_o3_sigma[1::2][i+j*4], int(gao_o3_fumi[0::2][i+j*4]-gao_o3_fumi[1::2][i+j*4]), leaf_age) #print("o3",j,i, cuo_mean, cuo_std) #gao_pcuo[-1] = gao_pcuo[-1] + cuo_mean #gao_pcuo_std[-1] = np.sqrt(gao_pcuo_std[-1]**2 + cuo_std**2) #print("o3",j,i, gao_pcuo[-1], gao_pcuo_std[-1]) ##print(cuo_mean, cuo_std) gao_pcuo = np.array(gao_pcuo) gao_pcuo_std = np.array(gao_pcuo_std) gao_pcuo[8:] = gao_pcuo[:8]+gao_pcuo[8:] gao_pcuo_std[8:] = np.sqrt(gao_pcuo_std[:8]**2+gao_pcuo_std[8:]**2) harmens_pcuo = [] harmens_pcuo_std = [] for j in range(3): for i in range(4): if j==0: cuo_mean, cuo_std = compute_cuo(harmens_o3_mu[4*j:4*j+4][i], harmens_o3_sigma[4*j:4*j+4][i], harmens_gs_o3[4*j:4*j+4][i],harmens_gs_o3_sigma[4*j:4*j+4][i], harmens_o3_fumi[4*j:4*j+4][i].astype(int), harmens_o3_days[4*j:4*j+4][i]) if j>0: cuo_mean, cuo_std = compute_cuo(harmens_o3_mu[4*j:4*j+4][i], harmens_o3_sigma[4*j:4*j+4][i], (harmens_gs_o3[4*j:4*j+4][i]-harmens_gs_o3[4*(j-1):4*(j-1)+4][i])*0.5+harmens_gs_o3[4*(j-1):4*(j-1)+4][i], 0.5*np.sqrt(harmens_gs_o3_sigma[4*j:4*j+4][i]**2+harmens_gs_o3_sigma[4*(j-1):4*(j-1)+4][i]**2), harmens_o3_fumi[4*j:4*j+4][i].astype(int), harmens_o3_days[4*j:4*j+4][i]-harmens_o3_days[4*(j-1):4*(j-1)+4][i]) cuo_mean = cuo_mean+harmens_pcuo[4*(j-1):4*(j-1)+4][i] cuo_std = np.sqrt(cuo_std**2+harmens_pcuo_std[4*(j-1):4*(j-1)+4][i]**2) harmens_pcuo.append(cuo_mean) harmens_pcuo_std.append(cuo_std) harmens_pcuo = np.array(harmens_pcuo) harmens_pcuo_std = np.array(harmens_pcuo_std)
36360f49cabe5fb47ab93822cade686107ed8662
626b230317ce6d53f742319ff194c19d6afc8e17
/30_daylearn_spider/4-30.py
8165b89231b51bb5960afb461259d8292e24a466
[]
no_license
myyyy/Spider
d6fac6b4b5973834f01ba82b14980b6179d66d6a
d7a7ae92778c9837caad4020106e4b54a2922ec9
refs/heads/master
2021-01-09T20:52:10.313968
2017-06-09T10:34:01
2017-06-09T10:34:01
57,097,806
1
0
null
null
null
null
UTF-8
Python
false
false
556
py
# -*- coding: utf-8 -*- # URL异常处理 import urllib2 def SpiderDemo(): url = "http://qzone.qq.com/" user_agent = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36" value = {'u':'name','p':'password'} header = {'User-Agent':user_agent} data = urllib2.urlencode(value) request = urllib2.Request(url,data,header) try: response = urllib2.urlopen(request) page = response.read() return page except urllib2.URLError,e: return e.reason if __name__=="__main__": print SpiderDemo()
4f4711027be00272d70319e9a88009d4d0e8bcc8
3c2fb2221aa68af9f909cea2b15ae883dc5f0bee
/hw5/test.py
e139fa2f5118ddc651f7f729019488f9f7378dfe
[]
no_license
RAYHOU777/ML2017
26c70104a4c8c53d43a56c0399a1988764cd5191
d6bae50984350823e63f6e0692205e3801a0f3b9
refs/heads/master
2021-03-19T16:35:54.539917
2017-06-08T14:53:17
2017-06-08T14:53:17
82,925,627
0
0
null
null
null
null
UTF-8
Python
false
false
3,255
py
import keras.backend as K import pickle from keras.models import load_model from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import sys test_path = sys.argv[1] output_path = sys.argv[2] def f1_score(y_true,y_pred): thresh = 0.5 y_pred = K.cast(K.greater(y_pred,thresh),dtype='float32') tp = K.sum(y_true * y_pred) precision=tp/(K.sum(y_pred)) recall=tp/(K.sum(y_true)) return 2*((precision*recall)/(precision+recall)) def read_data(path,training): print ('Reading data from ',path) with open(path,'r') as f: tags = [] articles = [] tags_list = [] f.readline() for line in f: if training : start = line.find('\"') end = line.find('\"',start+1) tag = line[start+1:end].split(' ') article = line[end+2:] for t in tag : if t not in tags_list: tags_list.append(t) tags.append(tag) else: start = line.find(',') article = line[start+1:] articles.append(article) if training : assert len(tags_list) == 38,(len(tags_list)) assert len(tags) == len(articles) return (tags,articles,tags_list) #(Y_data,X_data,tag_list) = read_data('train_data.csv',True) (_, X_test,_) = read_data(test_path,False) #all_corpus = X_data + X_test model2 = load_model('best.hdf5', custom_objects={'f1_score': f1_score}) #tokenizer = Tokenizer() #tokenizer.fit_on_texts(all_corpus) tag_list = ['SCIENCE-FICTION', 'SPECULATIVE-FICTION', 'FICTION', 'NOVEL', 'FANTASY', "CHILDREN'S-LITERATURE", 'HUMOUR', 'SATIRE', 'HISTORICAL-FICTION', 'HISTORY', 'MYSTERY', 'SUSPENSE', 'ADVENTURE-NOVEL', 'SPY-FICTION', 'AUTOBIOGRAPHY', 'HORROR', 'THRILLER', 'ROMANCE-NOVEL', 'COMEDY', 'NOVELLA', 'WAR-NOVEL', 'DYSTOPIA', 'COMIC-NOVEL', 'DETECTIVE-FICTION', 'HISTORICAL-NOVEL', 'BIOGRAPHY', 'MEMOIR', 'NON-FICTION', 'CRIME-FICTION', 'AUTOBIOGRAPHICAL-NOVEL', 'ALTERNATE-HISTORY', 'TECHNO-THRILLER', 'UTOPIAN-AND-DYSTOPIAN-FICTION', 'YOUNG-ADULT-LITERATURE', 'SHORT-STORY', 'GOTHIC-FICTION', 'APOCALYPTIC-AND-POST-APOCALYPTIC-FICTION', 'HIGH-FANTASY'] #with open("tokenizer.txt", "wb") as f: # pickle.dump(tokenizer, f, pickle.HIGHEST_PROTOCOL) tokenizer = pickle.load(open("tokenizer.txt", "r")) word_index = tokenizer.word_index max_article_length =None test_sequences = tokenizer.texts_to_sequences(X_test) test_sequences = pad_sequences(test_sequences,maxlen=max_article_length) Y_pred = model2.predict(test_sequences) thresh = 0.65 with open(output_path,'w') as output: # print ('\"id\",\"tags\"',file=output) Y_pred_thresh = (Y_pred > thresh).astype('int') output.write('"id","tags"\n') for index,labels in enumerate(Y_pred_thresh): labels = [tag_list[i] for i,value in enumerate(labels) if value==1 ] labels_original = ' '.join(labels) # print ('\"%d\",\"%s\"'%(index,labels_original),file=output) output.write('"' + str(index) + '"' + ',' + '"' + labels_original + '"' + '\n')
99765317a04672e9d0a7177524447f4636b4014f
5de9e0cba3693e80c9aa10f76a513e39ac413239
/mercantile/contrib/teamspeak.py
9f6cd53c4ce8e4539a36cb938039ddf16d689fe7
[]
no_license
DeadWisdom/mercantile
4ca77ef80f295ef8cf38fb17ae0cd4c52e973bfe
f31ccb38043e54f15ade48d9cef9018a0b8ec8d4
refs/heads/master
2021-01-22T06:48:50.588271
2015-02-19T20:36:01
2015-02-19T20:36:01
18,348,013
0
0
null
null
null
null
UTF-8
Python
false
false
2,003
py
from fabric.decorators import task from fabric.api import env, sudo, cd, settings, local @task def build(): try: import pyquery except ImportError: print "PyQuery not found." return -1 print env.user ## Add User with settings(warn_only=True): sudo("useradd -m -U %s -c \"%s\"" % ("ts", "Teamspeak 3")) with cd("/home/%s/" % "ts"): # Change the Shell to Bash sudo("chsh -s /bin/bash %s" % "ts") ## Get Latest Url url = get_latest_ts3_url() filename = url.rsplit('/', 1)[-1] print "TEAMSPEAK:", url, filename print "Installing..." ## Install with cd("/home/ts"): sudo("wget %s" % url, user="ts") sudo("tar xzf %s" % filename, user="ts") ## Restart with cd("/home/ts/teamspeak3-server_linux-amd64"): with settings(warn_only=True): sudo("./ts3server_startscript.sh stop", user="ts") sudo("./ts3server_startscript.sh start", user="ts") ### Helpers ### def get_latest_ts3_url(root="http://teamspeak.gameserver.gamed.de/ts3/releases"): from pyquery import PyQuery as pq doc = pq(url=root) versions = [] for e in doc("td.n a"): if e.text.startswith('3'): try: tup = e.text.split('.') versions.append( tuple(int(x) for x in tup) ) except: continue versions.sort(reverse=True) for version in versions: version = ".".join(str(x) for x in version) print "%s/%s/" % (root, version) try: doc = pq(url="%s/%s/" % (root, version)) except: continue target = "teamspeak3-server_linux-amd64-%s.tar.gz" % version #target = "teamspeak3-server_linux-x86-%s.tar.gz" % version for e in doc("td.n a"): print e.text.strip(), target if e.text.strip() == target: return "%s/%s/%s" % (root, version, target) return None
e74775b68c3364a87ea2e36ba0593d5ca14a41c7
7c9e6d7a596c4b948346e56e8a7b0e0428caa307
/homework/2021-01-31/int_to_binary.py
8c7721a203422c228ed28dfced3394cb5b3b09c4
[]
no_license
WebOrGameMaker/LearnPython
b96ea7653d58c5a1a5341ed818b90a729d29a93d
0b1aeefd452242f58808acfb6bbda0649c32ff39
refs/heads/master
2023-06-07T13:09:19.879813
2021-07-04T17:19:09
2021-07-04T17:19:09
293,579,954
0
0
null
2021-07-04T17:19:10
2020-09-07T16:35:26
Python
UTF-8
Python
false
false
460
py
def binary_str(num): """ >>> binary_str(23937495825) '10110010010110010010011001100010001' >>> binary_str(876765) '11010110000011011101' >>> binary_str(213) '11010101' """ digits = [] while num > 0: current_digit = num % 2 digits.append(str(current_digit)) num //= 2 digits.reverse() return "".join(digits) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
5a59e7fb8e998d23f9ac3789fc3c5eec2a7ad2f6
8bd77ab469c1c95e39db31863172fdf238968dac
/ci/cloudbuild/scheduled/reap-gke-clusters/cleanup_load_balancers.py
8a6ab06724bc33bcfb809ea77875346b728d4183
[ "Apache-2.0" ]
permissive
google/kf
4952b9389cc1381a47f9099fc6021f62304a35bf
63b13dbe4e41855cf243605e9190229c4fa56da8
refs/heads/main
2023-09-03T19:47:13.966967
2023-08-29T19:01:36
2023-08-29T19:01:36
184,312,842
404
75
Apache-2.0
2023-09-12T19:01:49
2019-04-30T18:34:38
Go
UTF-8
Python
false
false
6,468
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import json import sys import http.client from urllib.parse import urlparse if len(sys.argv) != 2: print("Usage: %s [PROJECT_ID]" % sys.argv[0]) sys.exit(1) project_id = sys.argv[1] def execute(command): call = subprocess.run(command.split(), stdout=subprocess.PIPE, check=True) return call.stdout.decode("utf-8") class TargetPool: def __init__(self, name, region, health_checks): self.name = name self.region = region self.health_checks = health_checks def __hash__(self): return hash("%s/%s" % (self.name, self.region)) def __eq__(self, other): return (self.name, self.region) == (other.name, other.region) def extract_region(regionURL): # regionURL paths look like the following: # /compute/v1/projects/<PROJECT_ID>/regions/<REGION/6> url = urlparse(regionURL) splits = url.path.split("/") return splits[6] def target_pools(project_id): target_pool_list = json.loads(execute("gcloud --project %s compute target-pools list --format='json'" % project_id)) for target_pool in target_pool_list: health_checks = [] if "healthChecks" in target_pool: health_checks = target_pool["healthChecks"] yield TargetPool(target_pool["name"], extract_region(target_pool["region"]), health_checks) def instances(project_id, target_pool): target_pool_desc = json.loads(execute("gcloud --project %s compute target-pools describe --region %s --format='json' %s" % (project_id, target_pool.region, target_pool.name))) if "instances" in target_pool_desc: for instanceURL in target_pool_desc["instances"]: yield instanceURL def valid_instance(instanceURL): url = urlparse(instanceURL) conn = http.client.HTTPSConnection(url.netloc) auth_token = "Bearer " + execute("gcloud --project %s auth print-access-token" % project_id).strip() headers = {"Authorization": auth_token} conn.request("GET", url.path, headers=headers) return conn.getresponse().getcode() == 200 def valid_target_pool(project_id, target_pool): for instanceURL in instances(project_id, target_pool): if valid_instance(instanceURL): # Found a valid instance, we know the target pool is valid return True # We didn't find a valid instance, must be invalid return False def map_forwarding_rules(project_id): forwarding_rules = json.loads(execute("gcloud --project %s compute forwarding-rules list --format='json'" % project_id)) result = {} # The target pool is under the 'target' field. However it is listed as a # URL. The path has the following format: # compute/v1/projects/<PROJECT_ID>}/regions/<REGION/6>/targetPools/<TARGET_POOL/8> for forwarding_rule in forwarding_rules: url = urlparse(forwarding_rule["target"]) splits = url.path.split("/") region = splits[6] target_pool_name = splits[8] result.update({TargetPool(target_pool_name, region, []): forwarding_rule["name"]}) return result def map_health_checks(project_id): result = {} for target_pool in target_pools(project_id): for health_check in target_pool.health_checks: result.update({health_check: target_pool.name}) return result def health_checks(project_id): heath_check_list = json.loads(execute(f"gcloud --project {project_id} compute http-health-checks list --format='json'")) for health_check in heath_check_list: if "name" in health_check: yield health_check["name"] # We'll cache these so we don't have to do it multiple times. forwarding_rules = map_forwarding_rules(project_id) mapped_health_checks = map_health_checks(project_id) def delete_associated_forwarding_rule(project_id, target_pool): if target_pool not in forwarding_rules: # Looks like we don't know about an associated forwarding rule print("did not find a forwarding rule for target pool %s (region %s)" % (target_pool.name, target_pool.region)) return forwarding_rule_name = forwarding_rules[target_pool] print("delete forwarding rule %s (associated with target pool %s)" % (forwarding_rule_name, target_pool.name)) print(execute("gcloud --quiet --project %s compute forwarding-rules delete --region %s %s" % (project_id, target_pool.region, forwarding_rule_name))) def delete_target_pool(project_id, target_pool): delete_associated_forwarding_rule(project_id, target_pool) print(f"deleting target-pool {target_pool.name} in zone {target_pool.region}") print(execute("gcloud --quiet --project %s compute target-pools delete --region %s %s" % (project_id, target_pool.region, target_pool.name))) def delete_health_check(project_id, health_check): print(f"deleting HTTP health check {health_check}...") print(execute(f"gcloud --quiet --project {project_id} compute http-health-checks delete {health_check}")) def delete_abandoned_target_pools(project_id): for target_pool in target_pools(project_id): if valid_target_pool(project_id, target_pool): print("target pool %s (region %s) is valid" % (target_pool.name, target_pool.region)) else: print("target pool %s (region %s) is not valid... deleting" % (target_pool.name, target_pool.region)) delete_target_pool(project_id, target_pool) # delete_abandoned_health_checks looks for all the HTTP health checks that # don't have an associated target pool. Any it finds, it deletes. def delete_abandoned_health_checks(project_id): for health_check in health_checks(project_id): if health_check not in mapped_health_checks: delete_health_check(project_id, health_check) def main(): delete_abandoned_target_pools(project_id) delete_abandoned_health_checks(project_id) if __name__ == '__main__': main()
a7357387bb3adfafb8532fab01ed308d44c6ac8f
bda7570bb01ade12f60fec9433795a288dc0de63
/PreetyPrint.py
a25019d1e6f3825ddc413437d21a57dad1dec991
[]
no_license
nayana8/Prep1
e4639decc0218d0026603c084ffca2a11f4f0d7e
0d3e79202de069100fdf73182ca2ddddb663e606
refs/heads/master
2020-03-18T01:06:37.827422
2018-06-28T06:15:00
2018-06-28T06:15:00
134,127,517
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
class Solution: # @param A : integer # @return a list of list of integers def prettyPrint(self, A): if A == 0: return [] n = (A * 2) - 1 last = n - 1 level = A matrix = [[0 for i in range(0,n)] for j in range(0, n)] for k in range(0, level): for i in range(k, n): for j in range(i, n): matrix[i][j] = A matrix[j][i] = A matrix[last][j] = A matrix[j][last] = A A = A - 1 last = last - 1 n = n - 1 return matrix
039335e1bd05152988f56c87f8fe116621bfa91a
8aeefa27b94bf02f79cc73b7c030d1a7eaa76f53
/myApp/migrations/0007_auto_20210930_0937.py
20276d88ac326cd1e65f350660c9d9d0fcba9f84
[]
no_license
Prasadchaskar/InterviewDashboard
e99d63ec65edfafcb76c2d5512f25b9c3ec5b0eb
aa3b53e2b6125dbbd6bd114caa00a399ba3604ef
refs/heads/main
2023-08-17T13:11:35.183670
2021-10-14T08:49:05
2021-10-14T08:49:05
402,381,063
0
1
null
null
null
null
UTF-8
Python
false
false
1,684
py
# Generated by Django 3.2 on 2021-09-30 04:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('myApp', '0006_auto_20210927_1530'), ] operations = [ migrations.AlterField( model_name='candidate', name='company', field=models.CharField(choices=[('Uptricks', 'Uptricks'), ('Kukbit', 'Kukbit'), ('Skillbit', 'Skillbit'), ('Learntricks', 'Learntricks'), ('Challengekatta', 'Challengekatta'), ('Happieloop', 'Happieloop'), ('Internshipmela', 'Internshipmela')], max_length=50), ), migrations.AlterField( model_name='candidate', name='post', field=models.CharField(choices=[('Internship', 'Internship'), ('Job', 'Job')], max_length=50), ), migrations.AlterField( model_name='candidate', name='technology', field=models.CharField(choices=[('Video Editor Animation', 'Video Editor Animation'), ('Android Development', 'Android Development'), ('Game Development', 'Game Development'), ('Graphics Designing', 'Graphics Designing'), ('Software Testing', 'Software Testing'), ('Manual Testing', 'Manual Testing'), ('Full-stack Development', 'Full-stack Development'), ('Human Resource', 'Human Resource'), ('Digital Marketing', 'Digital Marketing'), ('Wordpress Development', 'Wordpress Development'), ('Web Auditor', 'Web Auditor'), ('Web developer', 'Web developer'), ('Business development executive', 'Business development executive'), ('Machine learning', 'Machine learning'), ('Machine learning', 'Machine learning'), ('AWS', 'AWS')], max_length=50), ), ]
[ "chaskarprasad2000.com" ]
chaskarprasad2000.com
b49b7e922640e6c806235e56eda6f345abd4b005
3490dbcd3820c6c1745cc3efcf05d14bcb6b8448
/todo/test_forms.py
7f138d00d09f67d38632f7cb585c4dacac88d412
[]
no_license
NgiapPuoyKoh/fs-hello-django
0dc2f41a9999b945589eaf13a58f5a9618a93b10
3a438c76c07b22aa6be3eed27e5d6dd2e24a7b04
refs/heads/master
2023-06-02T11:06:30.445732
2021-06-15T17:34:30
2021-06-15T17:34:30
305,090,727
0
0
null
2021-05-21T09:11:30
2020-10-18T11:55:30
Python
UTF-8
Python
false
false
654
py
from django.test import TestCase from .forms import ItemForm # Create your tests here. class TestItemForm(TestCase): def test_item_name_is_required(self): form = ItemForm({'name': ''}) self.assertFalse(form.is_valid()) self.assertIn('name', form.errors.keys()) self.assertEqual(form.errors['name'][0], 'This field is required.') def test_done_field_is_not_required(self): form = ItemForm({'name': 'Test Todo Item'}) self.assertTrue(form.is_valid()) def test_fields_are_explicit_in_form_metaclass(self): form = ItemForm() self.assertEqual(form.Meta.fields, ['name', 'done'])
4b7488fe8381ea5e6817663563d6415fae03e8d5
be503c37c064fedc7210696fc5f1ce1666a8ed49
/tools/compute_joint_ll.py
635c25ede8cab65fe10585518c0c60fe1007f283
[]
no_license
Anantha-Ravi-Kiran/learning-correlated-topic-modelling
87aaf43d6327fc1b974f58805bf8a9f0a7e47c19
3dbc3e86f9a1e3e992ec687503c6ac3924e63db7
refs/heads/master
2021-01-13T02:07:40.887944
2013-11-11T20:05:47
2013-11-11T20:05:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
import sys import numpy as np inp_file = sys.argv[1] with open(inp_file) as f: lines = f.read().splitlines() lines = lines[:len(lines)-1] lines = [float(x) for x in lines] lines = np.array(lines) print lines.sum()/lines.shape[0]
e95171929db5a433b0db41a29a5797ad04f6ae0a
0f4d9bc794d1b2b87c4b607af735a2819435f991
/TodoApp/Resources/TagResources.py
4cd0139a25ec28bcfcb748a3d625b36027d29cc5
[]
no_license
gamesbrainiac/Pony-Todo-API
daf592461b6021ce4b0b47bda85f6b66968e7c1d
004bcf5807d712571b021213fe5b8823ac847734
refs/heads/master
2016-09-09T17:06:13.982176
2014-10-15T12:53:02
2014-10-15T12:53:02
24,995,619
8
1
null
2014-10-10T01:30:57
2014-10-09T15:30:56
Python
UTF-8
Python
false
false
932
py
# encoding=utf-8 from TodoApp.Models.User import User __author__ = "Quazi Nafiul Islam" import flask_restful as rest from flask import g from pony import orm from TodoApp.Models.Tag import Tag class Tags(rest.Resource): def get(self): """Will show you all tags""" with orm.db_session: return { tag.name: tag.url for tag in User[g.user].tags } class TagItem(rest.Resource): def get(self, tag_id): """ Will show you information about a specific tag :param tag_id: ID for the tag :type tag_id: int """ try: with orm.db_session: tag = Tag[tag_id] todos = list(tag.todos.data) return { "tag": tag.name, "tasks": todos } except orm.ObjectNotFound: return {}, 404
06368bd9b6e0d22c1ed9cc5152bc6551053d776e
1b629efe07b2ca138dcfe409320dc1a0b1f89441
/analysis/doubt_count.py
bd527beeaaa2ccc96ea2e3d3e560794a34e6eed1
[]
no_license
zhenhuaplus/svet-wrapper
f88c7939fb14c1c4d90dbe5db8ba6d452d1aed5e
01faa68c7b81297c09610e5ee27db908033f0d3b
refs/heads/main
2023-06-04T06:59:09.040485
2021-06-12T06:17:29
2021-06-12T06:17:29
329,802,303
0
1
null
null
null
null
UTF-8
Python
false
false
14,985
py
import pandas as pd import numpy as np from plotly import graph_objs as go from plotly.subplots import make_subplots from vc_wrap import SvetObject def run_double_count(iso_name, tariff): # Initialize results Finance_customer_tariff_filename = "/Users/zhenhua/Desktop/price_data/tariff_data_fake/{}.csv".format( tariff) Scenario_time_series_filename = "/Users/zhenhua/Desktop/price_data/hourly_timeseries_{}_2019_200x.csv".format( iso_name) results = pd.DataFrame(columns=["Case #", "DA ETS", "SR", "NSR", "Avoided Demand", "Avoided Energy", "Capex", "O&M Cost", "NPV"]) # Case 0a: use retail rates for RS case0a = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} RS on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='no', retailTimeShift_active='yes', DA_active='no', SR_active='no', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case0a.run_storagevet() results = results.append({"Case #": "0 - RS", "Avoided Demand": case0a.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case0a.npv_new["Avoided Energy Charge"][0], "Capex": case0a.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case0a.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case0a.npv_new["Lifetime Present Value"][0]}, ignore_index=True) # Case 0b: use retail rates for RS+DCM case0b = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} RS+DCM on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='yes', retailTimeShift_active='yes', DA_active='no', SR_active='no', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case0b.run_storagevet() results = results.append({"Case #": "0 - RS+DCM", "Avoided Demand": case0b.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case0b.npv_new["Avoided Energy Charge"][0], "Capex": case0b.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case0b.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case0b.npv_new["Lifetime Present Value"][0]}, ignore_index=True) # Case 0c: use DA rates for wholesale participation only case0c = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} DA+SR on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='no', retailTimeShift_active='no', DA_active='yes', SR_active='yes', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case0c.run_storagevet() results = results.append({"Case #": "0 - DA+SR", "DA ETS": case0c.npv_new["DA ETS"][0], "SR": case0c.npv_new["Spinning Reserves"][0], "Capex": case0c.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case0c.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case0c.npv_new["Lifetime Present Value"][0]}, ignore_index=True) case1b = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} DA+SR+DCM on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='yes', retailTimeShift_active='no', DA_active='yes', SR_active='yes', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case1b.run_storagevet() results = results.append({"Case #": "1 - use DA for DA+SR+DCM after double counting", "DA ETS": case1b.npv_new["DA ETS"][0], "SR": case1b.npv_new["Spinning Reserves"][0], "Avoided Demand": case1b.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case1b.npv_new["Avoided Energy Charge"][0], "Capex": case1b.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case1b.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case1b.npv_new["Lifetime Present Value"][0]}, ignore_index=True) results = results.append({"Case #": "1 - use DA for DA+SR+DCM before double counting", "DA ETS": case1b.npv_new["DA ETS"][0], "SR": case1b.npv_new["Spinning Reserves"][0], "Avoided Demand": case1b.npv_new["Avoided Demand Charge"][0], "Avoided Energy": 0, "Capex": case1b.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case1b.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case1b.npv_new["Lifetime Present Value"][0] - case1b.npv_new["Avoided Energy Charge"][0]}, ignore_index=True) results = results.append({"Case #": "1 - double count delta", "NPV": case1b.npv_new["Avoided Energy Charge"][0]}, ignore_index=True) case2a = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} RS+SR+DCM on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='yes', retailTimeShift_active='yes', DA_active='no', SR_active='yes', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case2a.run_storagevet() results = results.append({"Case #": "2 - use RS for RS+SR+DCM before double counting", "SR": case2a.npv_new["Spinning Reserves"][0], "Avoided Demand": case2a.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case2a.npv_new["Avoided Energy Charge"][0], "Capex": case2a.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case2a.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case2a.npv_new["Lifetime Present Value"][0]}, ignore_index=True) # TODO case2a_ts_results = pd.read_csv(case2a.runID_dispatch_timeseries_path) da_ets_corrected_yearly = np.dot(case2a.initial_hourly_timeseries["DA Price ($/kWh)"], case2a_ts_results["Load (kW)"]) - \ np.dot(case2a.initial_hourly_timeseries["DA Price ($/kWh)"], case2a_ts_results["Net Load (kW)"]) da_ets_corrected_npv_list = [] for i in range(0, 15): da_ets_corrected_npv_list.append(da_ets_corrected_yearly * (1 + 0.03) ** i) da_ets_corrected_npv_list = [0] + da_ets_corrected_npv_list da_ets_corrected_npv = np.npv(0.07, da_ets_corrected_npv_list) results = results.append({"Case #": "2 - use RS for RS+SR+DCM after double counting", "DA ETS": da_ets_corrected_npv, "SR": case2a.npv_new["Spinning Reserves"][0], "Avoided Demand": case2a.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case2a.npv_new["Avoided Energy Charge"][0], "Capex": case2a.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case2a.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case2a.npv_new["Lifetime Present Value"][0] + da_ets_corrected_npv}, ignore_index=True) results = results.append({"Case #": "2 - double count delta", "NPV": da_ets_corrected_npv}, ignore_index=True) case3 = SvetObject(SVet_absolute_path="/Applications/storagevet2v101/StorageVET-master-git/", default_params_file="Model_Parameters_2v1-0-2_default_03-2021.csv", shortname="{} DA+RS+DCM+SR on".format(iso_name), description="{} 200x".format(iso_name), Scenario_n="36", Finance_npv_discount_rate="7", Scenario_time_series_filename=Scenario_time_series_filename, Finance_customer_tariff_filename=Finance_customer_tariff_filename, DCM_active='yes', retailTimeShift_active='yes', DA_active='yes', SR_active='yes', NSR_active='no', FR_active="no", FR_CombinedMarket="1") case3.run_storagevet() results = results.append({"Case #": "3 - use DA and RS for DA+SR+RS+DCM", "DA ETS": case3.npv_new["DA ETS"][0], "SR": case3.npv_new["Spinning Reserves"][0], "Avoided Demand": case3.npv_new["Avoided Demand Charge"][0], "Avoided Energy": case3.npv_new["Avoided Energy Charge"][0], "Capex": case3.npv_new["2MW-5hr Capital Cost"][0], "O&M Cost": case3.npv_new["2MW-5hr Fixed O&M Cost"][0], "NPV": case3.npv_new["Lifetime Present Value"][0]}, ignore_index=True) results.sort_values(by="Case #").reset_index(drop=True)\ .to_csv("/Users/zhenhua/Desktop/double_count_results_0410/{}_{}.csv".format(iso_name, tariff)) # Plot prices & results case1b_ts_results = pd.read_csv(case1b.runID_dispatch_timeseries_path) case2a_ts_results = pd.read_csv(case2a.runID_dispatch_timeseries_path) case1b_ts_results["date"] = pd.to_datetime(case1b_ts_results["Start Datetime (hb)"]).dt.date case1b_ts_results["hour (hb)"] = pd.to_datetime(case1b_ts_results["Start Datetime (hb)"]).dt.hour case2a_ts_results["date"] = pd.to_datetime(case2a_ts_results["Start Datetime (hb)"]).dt.date case2a_ts_results["hour (hb)"] = pd.to_datetime(case2a_ts_results["Start Datetime (hb)"]).dt.hour fig = make_subplots(rows=2, cols=2, subplot_titles=("DA and retail", "SR", "DA as signal, RS to double count", "RS as signal, DA to double count")) for date in set(case1b_ts_results["date"]): data = case1b_ts_results[case1b_ts_results["date"] == date].reset_index() fig.add_trace(go.Scatter(x=data["hour (hb)"], y=data["DA Price Signal ($/kWh)"], line=dict(color='blue'), opacity=0.2, name=str(date)), row=1, col=1) fig.add_trace(go.Scatter(x=data["hour (hb)"], y=data["SR Price Signal ($/kW)"], line=dict(color='green'), opacity=0.5, name=str(date)), row=1, col=2) fig.add_trace(go.Scatter(x=data["hour (hb)"], y=data["2MW-5hr Power (kW)"], line=dict(color='blue'), opacity=0.2, name=str(date)), row=2, col=1) data2 = case2a_ts_results[case2a_ts_results["date"] == date].reset_index() fig.add_trace(go.Scatter(x=data2["hour (hb)"], y=data2["Energy Price ($/kWh)"], line=dict(color='red'), opacity=0.5, name=str(date)), row=1, col=1) fig.add_trace(go.Scatter(x=data2["hour (hb)"], y=data2["2MW-5hr Power (kW)"], line=dict(color='blue'), opacity=0.2, name=str(date)), row=2, col=2) fig.update_layout(title="{}_{}".format(iso_name, tariff)) return results, fig # results, fig = run_double_count(iso_name="caiso", tariff="peak4-14-18") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-15-19") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-16-20") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-17-21") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-18-22") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-19-23") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak4-20-24") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak12-18") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak13-19") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak14-20") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak15-21") # fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak16-22") # fig.show() results, fig = run_double_count(iso_name="caiso", tariff="peak17-23") fig.show() # results, fig = run_double_count(iso_name="caiso", tariff="peak18-24") # fig.show()
bf8204844134d11fb338976ce96378ae2042d6fb
a4fc0dd8dcda38de3010fac6b851e6cca3b6ee4e
/tests/test_utils.py
c10f1463db2e716a3bcff170bd455e2783e62a50
[ "MIT" ]
permissive
Leticia-maria/funsies
eaaf72bc5a96bc59530cd3cbe99d60fff9834d71
12656f49420e9062edb9dd4c34aa18bcc94880f1
refs/heads/master
2023-08-22T02:07:58.719514
2021-10-02T18:17:47
2021-10-02T18:17:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,306
py
"""Test of Funsies utility functions.""" # std from typing import List # external import pytest # funsies from funsies import errors, Fun, morph, options, put, take, utils from funsies._context import get_connection from funsies._run import run_op from funsies.config import MockServer from funsies.types import Error, ErrorKind, UnwrapError def test_concat() -> None: """Test concatenation.""" with Fun(MockServer()): db, store = get_connection() dat1 = put(b"bla") dat2 = put(b"bla") cat = utils.concat(dat1, dat2) run_op(db, store, cat.parent) assert take(cat) == b"blabla" cat = utils.concat(dat1, dat1, dat1, join=b" ") run_op(db, store, cat.parent) assert take(cat) == b"bla bla bla" def test_match() -> None: """Test error matching.""" results = [b"bla bla", errors.Error(kind=errors.ErrorKind.NotFound)] assert utils.match_results(results, lambda x: x) == [b"bla bla"] def unity(x: bytes) -> bytes: return x def err(x: errors.Error) -> errors.ErrorKind: return x.kind results2: List[errors.Result[bytes]] = [ b"bla bla", errors.Error(kind=errors.ErrorKind.NotFound), ] assert utils.match_results(results2, unity, err) == [ b"bla bla", errors.ErrorKind.NotFound, ] def test_truncate() -> None: """Test truncation.""" with Fun(MockServer()): db, store = get_connection() inp = "\n".join([f"{k}" for k in range(10)]) dat1 = put(inp.encode()) trunc = utils.truncate(dat1, 2, 3) run_op(db, store, trunc.parent) assert take(trunc) == ("\n".join(inp.split("\n")[2:-3])).encode() def test_exec_all() -> None: """Test execute_all.""" with Fun(MockServer(), defaults=options(distributed=False)): results = [] def div_by(x: float) -> float: return 10.0 / x for i in range(10, -1, -1): val = put(float(i)) results += [morph(div_by, val)] with pytest.raises(UnwrapError): take(results[0]) err = utils.execute_all(results) print(take(results[0])) v = take(err, strict=False) assert isinstance(v, Error) assert v.kind == ErrorKind.ExceptionRaised
73cd0d36dba5121d488942cdf8f5fb0037d4ca18
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/nos/v6_0_2f/interface/hundredgigabitethernet/switchport/access/rspan_access/__init__.py
0c094df735e4ba5e000dd99a7d7d0802011fc9d7
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,447
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class rspan_access(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-interface - based on the path /interface/hundredgigabitethernet/switchport/access/rspan-access. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: The access layer characteristics of this interface. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__rspan_access_vlan',) _yang_name = 'rspan-access' _rest_name = '' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__rspan_access_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..8191']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="rspan-access-vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Specify rspan-vlan id to set as access vlan', u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='vlan-type', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'interface', u'hundredgigabitethernet', u'switchport', u'access', u'rspan-access'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'interface', u'HundredGigabitEthernet', u'switchport', u'access'] def _get_rspan_access_vlan(self): """ Getter method for rspan_access_vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access/rspan_access/rspan_access_vlan (vlan-type) YANG Description: Specify rspan-vlan id to set as access vlan """ return self.__rspan_access_vlan def _set_rspan_access_vlan(self, v, load=False): """ Setter method for rspan_access_vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access/rspan_access/rspan_access_vlan (vlan-type) If this variable is read-only (config: false) in the source YANG file, then _set_rspan_access_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_rspan_access_vlan() directly. YANG Description: Specify rspan-vlan id to set as access vlan """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..8191']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="rspan-access-vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Specify rspan-vlan id to set as access vlan', u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='vlan-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """rspan_access_vlan must be of a type compatible with vlan-type""", 'defined-type': "brocade-interface:vlan-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..8191']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="rspan-access-vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Specify rspan-vlan id to set as access vlan', u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='vlan-type', is_config=True)""", }) self.__rspan_access_vlan = t if hasattr(self, '_set'): self._set() def _unset_rspan_access_vlan(self): self.__rspan_access_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..8191']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="rspan-access-vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Specify rspan-vlan id to set as access vlan', u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='vlan-type', is_config=True) rspan_access_vlan = __builtin__.property(_get_rspan_access_vlan, _set_rspan_access_vlan) _pyangbind_elements = {'rspan_access_vlan': rspan_access_vlan, }
45a08f7682ead31dfeed72ac54a34dd40082e946
de26d82255c883f197797b2e7d5981b6021f4fd4
/rewrite/pst.py
bd6cc61c9fb276bdabd3e5d68b8a4d795b77ab98
[]
no_license
hofmannedv/python-network-traffic
212022cba54319a3ebeb66c1374713a6b63ea4c5
e46b83d9a70f24c56b96971156367c74b2200123
refs/heads/master
2023-02-06T12:29:20.889459
2020-12-29T11:10:58
2020-12-29T11:10:58
324,977,505
0
0
null
null
null
null
UTF-8
Python
false
false
2,277
py
import pyshark import time import re # define interface networkInterface = "enp0s3" # define capture object capture = pyshark.LiveCapture(interface=networkInterface) print("listening on %s" % networkInterface) # scan for five network packages # print(" ") # print("Scan for 5 packets") # # for pkt in capture.sniff_continuously(packet_count=5): # # default output # print(pkt) # scan for five network packages and display header + content print(" ") print("Scan for 10 packages for being TCP, UDP or IPv4 packets") for pkt in capture.sniff_continuously(packet_count=10): # adjusted output try: # get timestamp localtime = time.asctime(time.localtime(time.time())) # get packet content protocol = pkt.transport_layer src_addr = pkt.ip.src src_port = pkt[protocol].srcport dst_addr = pkt.ip.dst dst_port = pkt[protocol].dstport flags = "" # output packet info print ("%s IP %s:%s <-> %s:%s (%s): Flags: %s" % (localtime, src_addr, src_port, dst_addr, dst_port, protocol, flags)) # output packet data print ("data:") payload = pkt.tcp.payload payloadEntries = payload.split(":") position = 10 n = m = 0 while n < len(payloadEntries): m = m + 16 positionString = "%04d" % position dataString = " ".join(payloadEntries[n:m]) # prepare ascii output asciibasis = dataString.replace(" ","") asciiString = bytearray.fromhex(asciibasis).decode('latin-1') pattern3 = re.compile("[^a-z0-9]", re.IGNORECASE) asciiString = re.sub(pattern3, ".", asciiString) # combine 2x2 letters pattern1 = re.compile("([a-z0-9]{2})\s([a-z0-9]{2})") pattern2 = r"\1\2" dataString = re.sub(pattern1, pattern2, dataString) # make sure the string is exactly 40 characters dataString = dataString.ljust(40) print ("0x%s: %s %s" % (positionString, dataString, asciiString)) n = m position = position + 10 except AttributeError as e: # # ignore packets other than TCP, UDP and IPv4 pass print (" ")
31afe073ff484dc3ba5a2e142d00ca193ef49026
e879205ec5f82d73b480594ba7cc58b68b13af7f
/hello_world.py
697cf9a32ba20154116835c67d9b11010a19508c
[]
no_license
BoraMutluoglu/Python-Projects
51456386893bc40838c74899db0a401288c48747
a6076a0f80b3599338b4bd96c644e25028846b26
refs/heads/master
2020-03-08T06:59:24.462668
2019-06-17T18:46:38
2019-06-17T18:46:38
127,984,178
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
#! /usr/bin/env python3 print("hello world")
7ad94a15b350c206a2363e9acbdfee1d65f47637
7f8f307b76e8f429c9ffd72f9e5643720afcc955
/importbidang/import_bidang.py
03b46c1c1d8bcc09bed19ffa96c51da02f1a9e3f
[]
no_license
imseptin/PBB2
01ff59f761b1b35686316f12330fa50b1cb32ae8
4425cd111ec37e9aaacf8ab86a93aff44d88443b
refs/heads/master
2020-09-24T21:12:39.113779
2017-02-10T01:11:02
2017-02-10T01:11:02
67,618,392
0
0
null
null
null
null
UTF-8
Python
false
false
9,846
py
# -*- coding: utf-8 -*- """ /*************************************************************************** ImportBidang A QGIS plugin Import bidang ke Basisdata Bidang ------------------- begin : 2017-02-08 git sha : $Format:%H$ copyright : (C) 2017 by Septin Mulatsih Rezki email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ from PyQt4.QtCore import QSettings, QTranslator, qVersion, QCoreApplication from PyQt4.QtGui import QAction, QIcon # Initialize Qt resources from file resources.py import resources # Import the code for the dialog from import_bidang_dialog import ImportBidangDialog from qgis.core import QgsMapLayer import os.path import psycopg2 #to connect postgres db class ImportBidang: """QGIS Plugin Implementation.""" def __init__(self, iface): """Constructor. :param iface: An interface instance that will be passed to this class which provides the hook by which you can manipulate the QGIS application at run time. :type iface: QgsInterface """ # Save reference to the QGIS interface self.iface = iface # initialize plugin directory self.plugin_dir = os.path.dirname(__file__) # initialize locale locale = QSettings().value('locale/userLocale')[0:2] locale_path = os.path.join( self.plugin_dir, 'i18n', 'ImportBidang_{}.qm'.format(locale)) if os.path.exists(locale_path): self.translator = QTranslator() self.translator.load(locale_path) if qVersion() > '4.3.3': QCoreApplication.installTranslator(self.translator) # Create the dialog (after translation) and keep reference self.dlg = ImportBidangDialog() # connect slot self.dlg.cboLayer.currentIndexChanged.connect(self.index_changed) # Declare instance attributes self.actions = [] self.menu = self.tr(u'&Import Bidang') # TODO: We are going to let the user set this up in a future iteration self.toolbar = self.iface.addToolBar(u'ImportBidang') self.toolbar.setObjectName(u'ImportBidang') # noinspection PyMethodMayBeStatic def tr(self, message): """Get the translation for a string using Qt translation API. We implement this ourselves since we do not inherit QObject. :param message: String for translation. :type message: str, QString :returns: Translated version of message. :rtype: QString """ # noinspection PyTypeChecker,PyArgumentList,PyCallByClass return QCoreApplication.translate('ImportBidang', message) def add_action( self, icon_path, text, callback, enabled_flag=True, add_to_menu=True, add_to_toolbar=True, status_tip=None, whats_this=None, parent=None): """Add a toolbar icon to the toolbar. :param icon_path: Path to the icon for this action. Can be a resource path (e.g. ':/plugins/foo/bar.png') or a normal file system path. :type icon_path: str :param text: Text that should be shown in menu items for this action. :type text: str :param callback: Function to be called when the action is triggered. :type callback: function :param enabled_flag: A flag indicating if the action should be enabled by default. Defaults to True. :type enabled_flag: bool :param add_to_menu: Flag indicating whether the action should also be added to the menu. Defaults to True. :type add_to_menu: bool :param add_to_toolbar: Flag indicating whether the action should also be added to the toolbar. Defaults to True. :type add_to_toolbar: bool :param status_tip: Optional text to show in a popup when mouse pointer hovers over the action. :type status_tip: str :param parent: Parent widget for the new action. Defaults None. :type parent: QWidget :param whats_this: Optional text to show in the status bar when the mouse pointer hovers over the action. :returns: The action that was created. Note that the action is also added to self.actions list. :rtype: QAction """ icon = QIcon(icon_path) action = QAction(icon, text, parent) action.triggered.connect(callback) action.setEnabled(enabled_flag) if status_tip is not None: action.setStatusTip(status_tip) if whats_this is not None: action.setWhatsThis(whats_this) if add_to_toolbar: self.toolbar.addAction(action) if add_to_menu: self.iface.addPluginToMenu( self.menu, action) self.actions.append(action) return action def initGui(self): """Create the menu entries and toolbar icons inside the QGIS GUI.""" icon_path = ':/plugins/ImportBidang/icon.png' self.add_action( icon_path, text=self.tr(u'Import Bidang'), callback=self.run, parent=self.iface.mainWindow()) def unload(self): """Removes the plugin menu item and icon from QGIS GUI.""" for action in self.actions: self.iface.removePluginMenu( self.tr(u'&Import Bidang'), action) self.iface.removeToolBarIcon(action) # remove the toolbar del self.toolbar def daftar_layer(self): """Function to get layer list from table of content :return: list of layer """ daftar_layer = [] for layer in self.iface.mapCanvas().layers(): daftar_layer.append(layer) return daftar_layer def daftar_kolom(self, layer): """Function to get fields list of a layer :param layer: :return: """ self.dlg.cboField.clear() if layer.type() == QgsMapLayer.VectorLayer: layer_fields = layer.pendingFields() for field in layer_fields: self.dlg.cboField.addItem(field.name(), field) def index_changed(self): """Mengakomodir perubahan layer terpilih terhadap daftar field yang akan ditampilkan""" current_index = self.dlg.cboLayer.currentIndex() layer = self.dlg.cboLayer.itemData(current_index) self.daftar_kolom(layer) def run(self): """Run method that performs all the real work""" # show the dialog self.dlg.show() # Run the dialog event loop self.dlg.cboLayer.clear() daftar_layer = self.daftar_layer() for layer in daftar_layer: self.dlg.cboLayer.addItem(layer.name(), layer) result = self.dlg.exec_() # See if OK was pressed if result: # Do something useful here - delete the line containing pass and # substitute with your code. selectedLayerIndex = self.dlg.cboLayer.currentIndex() selectedLayer = self.iface.mapCanvas().layers()[selectedLayerIndex] #selectedLayer.setCrs(QgsCoordinateReferenceSystem(32750)) #fields = selectedLayer.pendingFields() fieldname = str(self.dlg.cboField.currentText()) for feature in selectedLayer.getFeatures(): idx = selectedLayer.fieldNameIndex(fieldname) nop = feature.attributes()[idx] geom = feature.geometry() geom_wkt = geom.exportToWkt() #multipolygon = "MULTIPOLYGON(((" geom_wkt_str = geom_wkt[10:-2] #st_geom = """ST_GeomFromText('""" #srid = """)', 32750)""" #geom_wkb_postgis = st_geom + multipolygon +geom_wkt_str + srid #wkb version, just return geometry, doesn't include SRID #geom_wkb = geom.asWkb() #geom_wkb_postgis = geom_wkb.encode('hex') query1 = '''INSERT INTO gis.tm_bidang3(d_nop,geom) VALUES (%s, ST_GeomFromText(%s, 32750));''' #query = """INSERT INTO gis.tm_bidang2(d_nop,geom) VALUES (%s, ST_GeomFromText('MULTIPOLYGON(((%s)))', 32750));""" data = [nop, geom_wkt] #Parameter Connection to database host_name = "localhost" port_name = "5433" db_name = "db_pbb" user_name = "postgres" user_pass = "septin" #Connection conn = psycopg2.connect("user='%s' password='%s' host='%s' port='%s' dbname='%s'" % (user_name, user_pass, host_name, port_name, db_name)) cur = conn.cursor() cur.execute(query1, data) conn.commit() cur.close() conn.close()
286843621ff8a3018d6028de68ef2bedb69f2c42
8b76adbe7ae0e66f8954e64da606d472833c8d74
/web/gift.py
c7583a422ab179a09e152c0ad49b6b575daaecb6
[]
no_license
MattHony/YuShu_
b737756144a28293f75a3753d1abc37f89ee49ad
19519288f4580bcc7b6b0b28473c8c6aad36e814
refs/heads/master
2020-03-25T02:44:37.804757
2018-08-02T13:55:28
2018-08-02T13:55:28
143,305,425
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/8/2 21:08 # @Author : '红文' # @File : gift.py # @Software: PyCharm from . import web @web.route('/my/gifts') def my_gifts(): pass @web.route('/gifts/book/<isbn>') def save_to_gifts(isbn): pass @web.route('/gifts/<gid>/redraw') def redraw_from_gifts(gid): pass
90567629b60811dafa7155c58ca4f08b0ee9b164
c763082f876196ae49fb47c2dd1e21aa9d5245e3
/properscoring/_energy_score.py
b1326b663fdd5021f91d4c68ac3c18102da449a2
[ "Apache-2.0" ]
permissive
tozech/properscoring
9e4192f1806aa3cd6fa13306c28cd4c72e955073
bf940c16a738cbbe69c9e65d2cc9655ff50eda70
refs/heads/master
2021-07-14T05:01:11.088138
2020-11-03T09:34:24
2020-11-03T09:34:24
221,425,181
0
0
Apache-2.0
2019-11-13T09:46:48
2019-11-13T09:46:47
null
UTF-8
Python
false
false
3,009
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 15 21:16:18 2020 @author: tzech """ import numpy as np from ._utils import suppress_warnings try: from properscoring._gufuncs import _energy_score_gufunc except ImportError as exc: def _make_import_error(a): raise ImportError('Numba is not installed.') _energy_score_gufunc = lambda x: _make_import_error(x) # TODO: refactor energy_score to energy_score_vectorized and add numba version def energy_score(observations, forecasts, weights=None, issorted=False, axis=-2, feature_axis=-1): """computes the energy score Parameters ---------- observations : np.ndarray 2-dim (samples, features) forecasts : np.ndarray 3-dim (samples, members, features) weights : np.ndarray, optional 2-dim (samples, members) issorted : bool, optional axis : int, optional feature_axis : int, optional Returns ------- np.ndarray 1-dim (samples) energy score References ---------- Tilmann Gneiting & Adrian E Raftery (2007) Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the American Statistical Association, 102:477, 359-378, DOI: 10.1198/016214506000001437 """ if issorted: raise NotImplementedError if axis != -2: raise NotImplementedError if feature_axis != -1: raise NotImplementedError observations = np.asarray(observations) forecasts = np.asarray(forecasts) weights = np.asarray(weights) if weights.ndim > 0: forecasts_nan = np.all(~np.isnan(forecasts), axis=-1) weights = np.where(forecasts_nan, weights, np.nan) #Uses mean for NaN handling, requires mean in score = np.nanmean(... later on weights = weights / np.nanmean(weights, axis=-1, keepdims=True) else: weights = np.ones(forecasts.shape[:-1]) weights = weights / np.nanmean(weights, axis=-1, keepdims=True) if observations.ndim == forecasts.ndim - 1: # sum over the last axis # assert observations.shape == forecasts.shape[:-1] #TODO redo observations = np.expand_dims(observations, axis=-2) l2norm_resi = np.linalg.norm(forecasts - observations, axis=feature_axis) with suppress_warnings('Mean of empty slice'): score = np.nanmean(weights * l2norm_resi, axis=-1) # insert new axes along last and second to last forecast dimensions so # forecasts_diff expands with the array broadcasting forecasts_diff = (np.expand_dims(forecasts, -2) - np.expand_dims(forecasts, -3)) weights_matrix = (np.expand_dims(weights, -1) * np.expand_dims(weights, -2)) l2norm_diff = np.linalg.norm(forecasts_diff, axis=feature_axis) with suppress_warnings('Mean of empty slice'): score += -0.5 * np.nanmean(weights_matrix * l2norm_diff, axis=(-2, -1)) return score
730584abfa02ef3e2a7640c6b4961314107db4c5
605ef2110da81419772072f2e7b1007b50d04196
/helptutor/services/api/service.py
d0501702d5ee1c167c67f94b90c8df96bf8658be
[]
no_license
kabutoblanco/helptutor_backend
daf441edbc2ee3ad2584e1d62b9195b8f2f4f673
47bd13382dce61327a7ae2f5fb85c883bbc99439
refs/heads/master
2023-04-15T10:09:11.414371
2021-04-28T22:00:13
2021-04-28T22:00:13
347,634,433
0
0
null
null
null
null
UTF-8
Python
false
false
1,365
py
from rest_framework import generics, status, viewsets, mixins, response from rest_framework.permissions import IsAuthenticated from helptutor.users.models import Tutor from helptutor.services.models import Service, Aggrement from helptutor.services.serializers import * from drf_yasg.utils import swagger_auto_schema class ServiceAPIView(viewsets.ModelViewSet): serializer_class = ServiceCreateSerializer queryset = Service.objects.filter(is_active=True) @swagger_auto_schema( responses={status.HTTP_200_OK: ServiceModelSerializer} ) def create(self, request, *args, **kwargs): user = request.user.pk tutor = Tutor.objects.get(user=user) request.data['tutor'] = tutor.pk return super().create(request, args, kwargs) def destroy(self, request, *args, **kwargs): instance = self.get_object() instance.is_active = False self.perform_update(instance) Aggrement.objects.filter(service=instance.pk).update(is_active=False) return response.Response(status=status.HTTP_200_OK) class TutorServicesAPI(generics.ListAPIView): serializer_class = ServiceModelSerializer permission_classes = (IsAuthenticated, ) def get_queryset(self): queryset = Service.objects.filter(tutor__user=self.request.user.pk, is_active=True) return queryset
04bac3c4ab7b8005c1c6edd4eb2e71d0fea59c58
dc6c0a0862487ce56c92f0d1e6df597e6fb0272c
/huikaka_API/TestCase_Lib/CustomerQrcode.py
57a3d31645adeba2de9bef44351c2ecd40f3c75d
[]
no_license
youlong533/huikakaAPITest
9d4a72e62141878fa32d62c588ebb1dd08202e8e
fb02f38dacda995ff537bfb84b194d87cbba9baf
refs/heads/master
2020-05-19T19:22:40.876200
2019-05-09T08:27:34
2019-05-09T08:27:34
185,177,590
0
1
null
null
null
null
UTF-8
Python
false
false
236
py
from Api_request import Api_request def customer_qrcode(): r= Api_request() url = '/api/v1/customer/qrcode' data = { 'type':'' } re =r.get_re(data,url) print(re.text) return re.text customer_qrcode()
592ecce508ee03af00fc02cf063594585424106d
93c749ba37eb8b724c7ce81fec40c315917ced7a
/Exemplo-CSV-Write.py
ce3a79ecc104ec50666c8692e94178140a98d683
[]
no_license
thiagokaiser/aprendendo-python
7027d904045a0cf913114e8db9f787a59573e157
58602e88bbb9e1653d83d90af664f9687ecad907
refs/heads/master
2021-09-24T08:08:00.936799
2018-10-05T11:39:20
2018-10-05T11:39:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
import csv lista = [] i = 0 while i <= 190: i = i + 1 lista.append(i) print(lista) with open('c:/temp/testecsv.csv', 'w', newline='') as csvfile: arquivo = csv.writer(csvfile, delimiter=';') arquivo.writerow(lista)
12b7ed869a00a01b95ee8fd217548779035c0c8a
c5458f2d53d02cb2967434122183ed064e1929f9
/sdks/python/test/test_sigma_boolean.py
717d38d33feb2b8df40cd39dfb9d39217f9f3642
[]
no_license
ross-weir/ergo-node-api-sdks
fd7a32f79784dbd336ef6ddb9702b9dd9a964e75
9935ef703b14760854b24045c1307602b282c4fb
refs/heads/main
2023-08-24T05:12:30.761145
2021-11-08T10:28:10
2021-11-08T10:28:10
425,785,912
0
0
null
null
null
null
UTF-8
Python
false
false
775
py
""" Ergo Node API API docs for Ergo Node. Models are shared between all Ergo products # noqa: E501 The version of the OpenAPI document: 4.0.15 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import openapi_client from openapi_client.model.sigma_boolean import SigmaBoolean class TestSigmaBoolean(unittest.TestCase): """SigmaBoolean unit test stubs""" def setUp(self): pass def tearDown(self): pass def testSigmaBoolean(self): """Test SigmaBoolean""" # FIXME: construct object with mandatory attributes with example values # model = SigmaBoolean() # noqa: E501 pass if __name__ == '__main__': unittest.main()
2c3d685965678dc6963636f6fe53de2d3ed78f5c
ddbe0cf338b65da7b9910cff658b3ccc8547e426
/answer/ps0/ps0.py
7a5ec0bac1beb14f8e630d854812d4440d7867ec
[]
no_license
guoguozy/Python
de455e2084a57a8bf8459a01b86670a6043a62f2
9bdef9305488f6d5897aaae6026f108a7365c545
refs/heads/master
2021-07-07T12:37:05.601156
2020-08-17T04:03:43
2020-08-17T04:03:43
175,205,125
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
""" Author : 郭梓煜 数据科学与计算机学院 Student ID : 17341046 mail : [email protected] """ import math num1=input("Enter number x:") num2=input("Enter number y:") print("X**y = %s\nlog(x)=%s\n" % (int(num1)**int(num2),math.log(int(num1),2)))
285d66bbd8ef0cd0e03fcceb627acbea8633dd73
983e4c777574e7cdf3181d21c00bb6913a6af77f
/src/chat/consumers.py
21c5e861ec784805b175fde31d1a1518a60aaf6b
[]
no_license
ArunimaKhanna/django-channels
bd45fd6ff09c90a336ca6f5f07a3293a1e05d276
fac7fd04d35ae218b975b96c128906ef27179bbd
refs/heads/master
2022-07-20T01:19:37.510904
2020-05-20T17:06:39
2020-05-20T17:06:39
265,563,953
0
0
null
null
null
null
UTF-8
Python
false
false
4,569
py
# from channels.generic.websocket import WebsocketConsumer # import json # class ChatConsumer(WebsocketConsumer): # def connect(self): # self.accept() # def disconnect(self, close_code): # pass # def receive(self, text_data): # text_data_json = json.loads(text_data) # message = text_data_json['message'] # self.send(text_data=json.dumps({ # 'message': message # })) # from asgiref.sync import async_to_sync # from channels.generic.websocket import AsyncWebsocketConsumer # import json # class ChatConsumer(AsyncWebsocketConsumer): # async def connect(self): # self.room_name = self.scope['url_route']['kwargs']['room_name'] # self.room_group_name = 'chat_%s' % self.room_name # # Join room group # await self.channel_layer.group_add( # self.room_group_name, # self.channel_name # ) # await self.accept() # async def disconnect(self, close_code): # # Leave room group # await self.channel_layer.group_discard( # self.room_group_name, # self.channel_name # ) # # Receive message from WebSocket # async def receive(self, text_data): # text_data_json = json.loads(text_data) # message = text_data_json['message'] # # Send message to room group # await self.channel_layer.group_send( # self.room_group_name, # { # 'type': 'chat_message', # 'message': message # } # ) # # Receive message from room group # async def chat_message(self, event): # message = event['message'] # # Send message to WebSocket # await self.send(text_data=json.dumps({ # 'message': message # })) # for commenting or un commenting ctrl+/ from django.contrib.auth import get_user_model from asgiref.sync import async_to_sync from channels.generic.websocket import WebsocketConsumer import json from .models import Message # from ReconnectingWebSocket import 'reconnecting-websocket' User = get_user_model() class ChatConsumer(WebsocketConsumer): def fetch_messages(self, data): messages = Message.last_10_messages() content = { 'command': 'messages', 'messages': self.messages_to_json(messages) } self.send_chat_message(content) def new_message(self, data): author = data['from'] author_user = User.objects.filter(username=author)[0] message = Message.objects.create( author=author_user, content=data['message']) content = { 'command': 'new_message', 'message': self.message_to_json(message) } return self.send_chat_message(content) def messages_to_json(self, messages): result = [] for message in messages: result.append(self.message_to_json(message)) return result def message_to_json(self, message): return { 'author': message.author.username, 'content': message.content, 'timestamp': str(message.timestamp) } commands = { 'fetch_messages': fetch_messages, 'new_message': new_message } def connect(self): self.room_name = self.scope['url_route']['kwargs']['room_name'] self.room_group_name = 'chat_%s' % self.room_name async_to_sync(self.channel_layer.group_add)( self.room_group_name, self.channel_name ) self.accept() def disconnect(self, close_code): async_to_sync(self.channel_layer.group_discard)( self.room_group_name, self.channel_name ) def receive(self, text_data): data = json.loads(text_data) self.commands[data['command']](self, data) def send_chat_message(self, message): async_to_sync (self.channel_layer.group_send)( self.room_group_name, { 'type': 'chat_message', 'message': message } ) def send_message(self, message): self.send(text_data=json.dumps(message)) def chat_message(self, event): message = event['message'] self.send(text_data=json.dumps(message))
500bc23b8f567673adf8a7087e0d61f3f10dfa48
674f2e52a127806305f62ecdbbf49dc74c49957e
/18.6.py
d72a5dfb5c872f546b71efbe3d6911b0f493938d
[]
no_license
Dashylikkkkk/pythonProject3
14365fa1d52d61870e5b3e8c6f342293aec3ac8d
0a816b77f35b02d67b6fc40f9407808c79bcdab2
refs/heads/master
2023-05-13T06:08:37.629703
2021-05-29T12:14:52
2021-05-29T12:14:52
367,468,636
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
def line(s, t): if float(t.split(';')[1]) == float(s.split('x')[0]) * float(t.split(';')[0]) + float(s.split('x')[1]): print(True) else: print(False)
41cab2ce5452c1cd30e28a37027569807a11c4a5
77fde9e697346dc178f4a84be0fbe948f542d616
/hello_django/hello_django/settings.py
3cd0bfc1feb193be04d8a2591c966ab2b43f868d
[]
no_license
ferreirathiago/hello_django
0c0846c6efc2f211376a8351a00159881000dec0
8d5ada841176cc51be8272851b4e85ae386fd091
refs/heads/master
2020-12-08T19:38:35.373314
2020-01-10T15:38:11
2020-01-10T15:38:11
233,076,318
0
0
null
null
null
null
UTF-8
Python
false
false
3,117
py
""" Django settings for hello_django project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'fxe$vjx96dtp)7%la(fc%e@g@$f$!dmvc3=xl+oiqmsygug@-2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'hello_django.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hello_django.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
afb6b1fd48b34dd36ee93a9677980ebe26ad0c20
6c6668d337dae3779e679447bb52648df13601f7
/Miscellaneous/Selection Sort 2.py
a438700e81a5c09aec15d7d4507c0b70e417ccd6
[]
no_license
Suryanshg/Python-2.7
74b812691d1cb453048fb99a915da29e04bc52a0
7f51439e21534d0db70d3bfdc3d7ec32346e12da
refs/heads/master
2020-05-03T17:56:40.835588
2019-04-16T14:44:00
2019-04-16T14:44:00
178,753,144
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
while True: def sort(L,c): for i in range(len(L)): ma=L[i] for j in range(i+1,len(L)): if (L[i]<L[j]): ma=L[j] L[j]=L[i] L[i]=ma if (c=='d'): print L else: L.reverse() print L L=input("Enter a List:") c=raw_input("Enter 'a' for ascending and 'd' for descending:") sort(L,c)
198267fe7897a7771e9569fa5b7fb5dc877d1e3e
20174998be9c95bc810f47ad394d64680fbf9438
/bert_train.py
87a783c306e58cb6a5c26555cb37190382c06cf3
[]
no_license
dheeraj7596/metaguide
5370bd02edd42e622da8077275441a870f4ebdbd
168d754fc9bbcbd5f04146d0c7c65e3b1e856f31
refs/heads/master
2020-12-07T14:40:55.804669
2020-10-04T17:38:27
2020-10-04T17:38:27
232,739,789
1
0
null
null
null
null
UTF-8
Python
false
false
16,527
py
from transformers import BertForSequenceClassification, BertTokenizer, AdamW, BertConfig, \ get_linear_schedule_with_warmup from torch.utils.data import TensorDataset, random_split from torch.utils.data import DataLoader, RandomSampler, SequentialSampler import torch import numpy as np import time import random import datetime def format_time(elapsed): ''' Takes a time in seconds and returns a string hh:mm:ss ''' # Round to the nearest second. elapsed_rounded = int(round((elapsed))) # Format as hh:mm:ss return str(datetime.timedelta(seconds=elapsed_rounded)) # Function to calculate the accuracy of our predictions vs labels def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) def bert_tokenize(tokenizer, sentences, labels): input_ids = [] attention_masks = [] # For every sentence... for sent in sentences: # `encode_plus` will: # (1) Tokenize the sentence. # (2) Prepend the `[CLS]` token to the start. # (3) Append the `[SEP]` token to the end. # (4) Map tokens to their IDs. # (5) Pad or truncate the sentence to `max_length` # (6) Create attention masks for [PAD] tokens. encoded_dict = tokenizer.encode_plus( sent, # Sentence to encode. add_special_tokens=True, # Add '[CLS]' and '[SEP]' max_length=512, # Pad & truncate all sentences. pad_to_max_length=True, return_attention_mask=True, # Construct attn. masks. return_tensors='pt', # Return pytorch tensors. ) # Add the encoded sentence to the list. input_ids.append(encoded_dict['input_ids']) # And its attention mask (simply differentiates padding from non-padding). attention_masks.append(encoded_dict['attention_mask']) # Convert the lists into tensors. input_ids = torch.cat(input_ids, dim=0) attention_masks = torch.cat(attention_masks, dim=0) labels = torch.tensor(labels) # Print sentence 0, now as a list of IDs. print('Original: ', sentences[0]) print('Token IDs:', input_ids[0]) return input_ids, attention_masks, labels def create_data_loaders(dataset): # Calculate the number of samples to include in each set. train_size = int(0.9 * len(dataset)) val_size = len(dataset) - train_size # Divide the dataset by randomly selecting samples. train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) # The DataLoader needs to know our batch size for training, so we specify it # here. For fine-tuning BERT on a specific task, the authors recommend a batch # size of 16 or 32. batch_size = 32 # Create the DataLoaders for our training and validation sets. # We'll take training samples in random order. train_dataloader = DataLoader( train_dataset, # The training samples. sampler=RandomSampler(train_dataset), # Select batches randomly batch_size=batch_size # Trains with this batch size. ) # For validation the order doesn't matter, so we'll just read them sequentially. validation_dataloader = DataLoader( val_dataset, # The validation samples. sampler=SequentialSampler(val_dataset), # Pull out batches sequentially. batch_size=batch_size # Evaluate with this batch size. ) return train_dataloader, validation_dataloader def train(train_dataloader, validation_dataloader, device, num_labels): # Load BertForSequenceClassification, the pretrained BERT model with a single # linear classification layer on top. model = BertForSequenceClassification.from_pretrained( "bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab. num_labels=num_labels, # The number of output labels--2 for binary classification. # You can increase this for multi-class tasks. output_attentions=False, # Whether the model returns attentions weights. output_hidden_states=False, # Whether the model returns all hidden-states. ) if device == torch.device("cuda"): model.cuda() # Note: AdamW is a class from the huggingface library (as opposed to pytorch) # I believe the 'W' stands for 'Weight Decay fix" optimizer = AdamW(model.parameters(), lr=2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5 eps=1e-8 # args.adam_epsilon - default is 1e-8. ) # Number of training epochs. The BERT authors recommend between 2 and 4. # We chose to run for 4, but we'll see later that this may be over-fitting the # training data. epochs = 4 # Total number of training steps is [number of batches] x [number of epochs]. # (Note that this is not the same as the number of training samples). total_steps = len(train_dataloader) * epochs # Create the learning rate scheduler. scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, # Default value in run_glue.py num_training_steps=total_steps) # This training code is based on the `run_glue.py` script here: # https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128 # Set the seed value all over the place to make this reproducible. seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) if device == torch.device("cuda"): torch.cuda.manual_seed_all(seed_val) # We'll store a number of quantities such as training and validation loss, # validation accuracy, and timings. training_stats = [] # Measure the total training time for the whole run. total_t0 = time.time() # For each epoch... for epoch_i in range(0, epochs): # ======================================== # Training # ======================================== # Perform one full pass over the training set. print("") print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs)) print('Training...') # Measure how long the training epoch takes. t0 = time.time() # Reset the total loss for this epoch. total_train_loss = 0 # Put the model into training mode. Don't be mislead--the call to # `train` just changes the *mode*, it doesn't *perform* the training. # `dropout` and `batchnorm` layers behave differently during training # vs. test (source: https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch) model.train() # For each batch of training data... for step, batch in enumerate(train_dataloader): # Progress update every 40 batches. if step % 40 == 0 and not step == 0: # Calculate elapsed time in minutes. elapsed = format_time(time.time() - t0) # Report progress. print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed)) # Unpack this training batch from our dataloader. # # As we unpack the batch, we'll also copy each tensor to the GPU using the # `to` method. # # `batch` contains three pytorch tensors: # [0]: input ids # [1]: attention masks # [2]: labels b_input_ids = batch[0].to(device) b_input_mask = batch[1].to(device) b_labels = batch[2].to(device) # Always clear any previously calculated gradients before performing a # backward pass. PyTorch doesn't do this automatically because # accumulating the gradients is "convenient while training RNNs". # (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch) model.zero_grad() # Perform a forward pass (evaluate the model on this training batch). # The documentation for this `model` function is here: # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification # It returns different numbers of parameters depending on what arguments # arge given and what flags are set. For our useage here, it returns # the loss (because we provided labels) and the "logits"--the model # outputs prior to activation. loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) # Accumulate the training loss over all of the batches so that we can # calculate the average loss at the end. `loss` is a Tensor containing a # single value; the `.item()` function just returns the Python value # from the tensor. total_train_loss += loss.item() # Perform a backward pass to calculate the gradients. loss.backward() # Clip the norm of the gradients to 1.0. # This is to help prevent the "exploding gradients" problem. torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # Update parameters and take a step using the computed gradient. # The optimizer dictates the "update rule"--how the parameters are # modified based on their gradients, the learning rate, etc. optimizer.step() # Update the learning rate. scheduler.step() # Calculate the average loss over all of the batches. avg_train_loss = total_train_loss / len(train_dataloader) # Measure how long this epoch took. training_time = format_time(time.time() - t0) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epcoh took: {:}".format(training_time)) # ======================================== # Validation # ======================================== # After the completion of each training epoch, measure our performance on # our validation set. print("") print("Running Validation...") t0 = time.time() # Put the model in evaluation mode--the dropout layers behave differently # during evaluation. model.eval() # Tracking variables total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 # Evaluate data for one epoch for batch in validation_dataloader: # Unpack this training batch from our dataloader. # # As we unpack the batch, we'll also copy each tensor to the GPU using # the `to` method. # # `batch` contains three pytorch tensors: # [0]: input ids # [1]: attention masks # [2]: labels b_input_ids = batch[0].to(device) b_input_mask = batch[1].to(device) b_labels = batch[2].to(device) # Tell pytorch not to bother with constructing the compute graph during # the forward pass, since this is only needed for backprop (training). with torch.no_grad(): # Forward pass, calculate logit predictions. # token_type_ids is the same as the "segment ids", which # differentiates sentence 1 and 2 in 2-sentence tasks. # The documentation for this `model` function is here: # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification # Get the "logits" output by the model. The "logits" are the output # values prior to applying an activation function like the softmax. (loss, logits) = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) # Accumulate the validation loss. total_eval_loss += loss.item() # Move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Calculate the accuracy for this batch of test sentences, and # accumulate it over all batches. total_eval_accuracy += flat_accuracy(logits, label_ids) # Report the final accuracy for this validation run. avg_val_accuracy = total_eval_accuracy / len(validation_dataloader) print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) # Calculate the average loss over all of the batches. avg_val_loss = total_eval_loss / len(validation_dataloader) # Measure how long the validation run took. validation_time = format_time(time.time() - t0) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Validation took: {:}".format(validation_time)) # Record all statistics from this epoch. training_stats.append( { 'epoch': epoch_i + 1, 'Training Loss': avg_train_loss, 'Valid. Loss': avg_val_loss, 'Valid. Accur.': avg_val_accuracy, 'Training Time': training_time, 'Validation Time': validation_time } ) print("") print("Training complete!") print("Total training took {:} (h:mm:ss)".format(format_time(time.time() - total_t0))) return model def evaluate(model, prediction_dataloader, device): # Put model in evaluation mode model.eval() # Tracking variables predictions, true_labels = [], [] # Predict for batch in prediction_dataloader: # Add batch to GPU batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader b_input_ids, b_input_mask, b_labels = batch # Telling the model not to compute or store gradients, saving memory and # speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] # Move logits and labels to CPU logits = torch.softmax(logits, dim=-1).detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Store predictions and true labels predictions.append(logits) true_labels.append(label_ids) return predictions, true_labels def test(model, X_test, y_test, use_gpu=False): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) input_ids, attention_masks, labels = bert_tokenize(tokenizer, X_test, y_test) if use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") batch_size = 32 # Create the DataLoader. prediction_data = TensorDataset(input_ids, attention_masks, labels) prediction_sampler = SequentialSampler(prediction_data) prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size) predictions, true_labels = evaluate(model, prediction_dataloader, device) return predictions def train_bert(X, y, use_gpu=False): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) input_ids, attention_masks, labels = bert_tokenize(tokenizer, X, y) # Combine the training inputs into a TensorDataset. dataset = TensorDataset(input_ids, attention_masks, labels) # Create a 90-10 train-validation split. train_dataloader, validation_dataloader = create_data_loaders(dataset) # Tell pytorch to run this model on the GPU. if use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") model = train(train_dataloader, validation_dataloader, device, num_labels=len(set(y))) return model
35c684815ba14b3ee735f70e4964fb9e0e979cf6
0f81cbd7cc67e1a51a3ce57d13da4d5477c496d4
/pythons/sklearn/learn_SVM.py
20297950c2cf8a37214ec674b12570c75de6e8ac
[]
no_license
Nisoka/somethings
16b7dd897e4ed6a203a0e355be09ba432b6f396b
b72475deb074b093b88d31abfcc23f8dfea911f6
refs/heads/master
2020-04-03T15:54:48.020651
2019-08-22T02:09:29
2019-08-22T02:09:29
155,382,894
0
0
null
null
null
null
UTF-8
Python
false
false
3,027
py
# from sklearn import svm # # def trainSVM(train_xs, train_ys, decision='ovr'): # clf = svm.SVC(decision_function_shape='ovr', kernel='poly', probability=True, C=11, coef0=11) # clf.fit(train_xs, train_ys) # return clf print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets def make_meshgrid(x, y, h=.02): """Create a mesh of points to plot in Parameters ---------- x: data to base x-axis meshgrid on y: data to base y-axis meshgrid on h: stepsize for meshgrid, optional Returns ------- xx, yy : ndarray """ x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(ax, clf, xx, yy, **params): """Plot the decision boundaries for a classifier. Parameters ---------- ax: matplotlib axes object clf: a classifier xx: meshgrid ndarray yy: meshgrid ndarray params: dictionary of params to pass to contourf, optional """ # print(clf.coef_) w = clf.coef_[0] a = - w[0] / w[1] print(type(clf.kernel)) x1 = np.linspace(xx.min(), xx.max()) y1 = a * x1 - (clf.intercept_[0]) / w[1] # Plot the hyperplane print(x1, y1) ax.plot(x1, y1, color='navy') # Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Z = Z.reshape(xx.shape) # out = ax.contourf(xx, yy, Z, **params) return ax # import some data to play with iris = datasets.load_iris() # Take the first two features. We could avoid this by using a two-dim dataset X = iris.data[:, :2] y = iris.target print(X) print(y) train_y = np.array([_y for _y in y if _y < 2]) train_x = np.array([X[i] for i in range(len(train_y))]) # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter models = (svm.SVC(kernel='linear', C=C), svm.LinearSVC(C=C), # svm.SVC(kernel='rbf', gamma=0.7, C=C), svm.SVC(kernel='poly', degree=3, C=C) ) models = (clf.fit(train_x, train_y) for clf in models) # title for the plots titles = ('SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel') # Set-up 2x2 grid for plotting. fig, sub = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.4, hspace=0.4) X0, X1 = train_x[:, 0], train_x[:, 1] xx, yy = make_meshgrid(X0, X1) for clf, title, ax in zip(models, titles, sub.flatten()): plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8) ax.scatter(X0, X1, c=train_y, cmap=plt.cm.coolwarm, s=20, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xlabel('Sepal length') ax.set_ylabel('Sepal width') ax.set_xticks(()) ax.set_yticks(()) ax.set_title(title) plt.show()
87526ab4de5e25639132b53199bbe9eba15b373b
85e078ee3ceda5091624233ca19ba42f78747499
/LeetCode/smallest_subtree_with_all_the_deepest_nodes.py
879c6a1c4c2fb0ab8bb56f936b3cb6a0ef4572aa
[]
no_license
papayetoo/StudyinPython
d5e6ec0cff0e97fcc4afc8d846e3658c06eb67c2
f686b6e08720ad4d7d57b41d24c63c4bfa64dd90
refs/heads/master
2021-07-22T04:05:38.993123
2021-02-03T14:12:26
2021-02-03T14:12:26
240,009,852
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
# Definition for a binary tree node. from collections import deque class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution(object): def subtreeWithAllDeepest(self, root): # Tag each node with it's depth. depth = {None: -1} def dfs(node, parent = None): if node: depth[node] = depth[parent] + 1 dfs(node.left, node) dfs(node.right, node) dfs(root) max_depth = max(depth.values()) def answer(node): # Return the answer for the subtree at node. if not node or depth.get(node, None) == max_depth: if node: print(node.val) return node L, R = answer(node.left), answer(node.right) return node if L and R else L or R return answer(root)
538d071e2c58a84c9e37f5d44356d7df7b7c46b2
3c645f28d89820abfc9fdb82cbe54f034850f6c1
/exeteraeval/import_patients_dask.py
de849f608110d1bb3028d95e7ece03999c1df1dc
[ "Apache-2.0" ]
permissive
KCL-BMEIS/ExeTeraEval
8cc861ad81877df9e10fb54c9cea9c28e1c1e759
c6ef1485aff08fba17cd328a76fcc398c757255d
refs/heads/main
2023-06-03T22:14:16.671092
2021-06-23T08:41:30
2021-06-23T08:41:30
316,761,626
0
0
null
null
null
null
UTF-8
Python
false
false
1,861
py
import sys from collections import OrderedDict import json import time import pandas as pd import dask import dask.dataframe as ddf def dtype_from_schema(entry): ft = entry['field_type'] if ft == 'categorical': if 'out_of_range' in entry['categorical']: return 'object' else: # return 'category' return 'object' elif ft == 'numeric': if entry['value_type'] in ('uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'bool'): return 'float32' else: return 'float64' else: return 'object' def go(schema_filename, table, src_filename, dest_filename): with open(schema_filename, 'r') as f: schema = json.load(f) schema = schema['schema'][table]['fields'] column_dtypes = OrderedDict() for fk, fv in schema.items(): column_dtypes[fk] = dtype_from_schema(fv) for fk, fv in column_dtypes.items(): print(fk, fv) t0 = time.time() df = ddf.read_csv(src_filename, dtype=column_dtypes) # df.compute() # print(df) # print('to_hdf') df.to_hdf(dest_filename, '/data', lock=dask.utils.SerializableLock()) print(time.time() - t0) # t0 = time.time() # print('read csv') # df = pd.read_csv(src_filename) #, dtype=column_dtypes) # print('from pandas') # df = ddf.from_pandas(df, npartitions=1) # print('to hdf') # df.to_hdf(dest_filename, '/data', format='table') # print(time.time() - t0) t0 = time.time() df2 = ddf.read_hdf(dest_filename, '/data') print(df2.compute()) print(time.time() - t0) if __name__ == '__main__': if len(sys.argv) != 5: print("Usage: import_patients_pandas.py " "<schema_filename> <table> <source filename> <destination filename>") exit(-1) t0 = time.time() try: go(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]) except Exception as e: print("failed after", time.time() - t0) raise
015a6f53a7b2208d9135e32d9d7b1f24ef8272a4
ca07351db12c08244bd16ed4ea87f20a929a4870
/blog/models.py
88bc5847d751b90cfadece8a3ac7f5c79d0f0a5e
[]
no_license
kassa-diss/dspredictor-master
a90a2533a4c9b65e3989c1a0019d2f669210b601
0e91842c14eec07c6296686abc5e9197cbdbb941
refs/heads/main
2023-06-27T13:47:13.662682
2021-08-01T12:24:51
2021-08-01T12:24:51
355,596,199
0
0
null
null
null
null
UTF-8
Python
false
false
1,760
py
from django.db import models from django.utils import timezone from django.urls import reverse from django.conf import settings class PostManager(models.Manager): def like_toggle(self, user, post_obj): if user in post_obj.liked.all(): is_liked = False post_obj.liked.remove(user) else: is_liked = True post_obj.liked.add(user) return is_liked class Post(models.Model): author = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE) title = models.CharField(max_length=100) brief = models.TextField(max_length=500,default="") content = models.TextField() liked = models.ManyToManyField( settings.AUTH_USER_MODEL, blank=True, related_name='liked') date_posted = models.DateTimeField(default=timezone.now) pic = models.ImageField(upload_to='photos/%Y/%m/%d/', default='photos\2021\04\06\01.png') objects = PostManager() class Meta: ordering = ('-date_posted', ) def __str__(self): return self.title def get_absolute_url(self): return reverse('post_detail', kwargs={'pk': self.pk}) class Comment(models.Model): post = models.ForeignKey( Post, related_name='comments', on_delete=models.CASCADE) author = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE) text = models.TextField() created_date = models.DateTimeField(default=timezone.now) approved_comment = models.BooleanField(default=True) def approve(self): self.approved_comment = True self.save() def get_absolute_url(self): return reverse("post_list") def __str__(self): return self.author # Create your models here.
0160e702928416c0796466a1e2b85f9c8dcd39e8
80297c81618831adc72714ca1fa2f172b375b8ea
/pandas/io/parsers/c_parser_wrapper.py
e8909f542f335680cbd31f48c992ee3d3ac2ba32
[ "BSD-3-Clause" ]
permissive
abmyii/pandas
61f852957c54e3517f9ff899f79cfefa4fffbc57
5bf346c7e26ae74c1e02c433cdf370de4adb7ac1
refs/heads/master
2022-08-26T11:13:51.846587
2022-02-12T18:33:18
2022-02-12T18:33:18
228,681,300
0
0
BSD-3-Clause
2019-12-17T18:50:37
2019-12-17T18:50:36
null
UTF-8
Python
false
false
14,933
py
from __future__ import annotations from typing import ( Hashable, Mapping, Sequence, ) import warnings import numpy as np import pandas._libs.parsers as parsers from pandas._typing import ( ArrayLike, DtypeArg, DtypeObj, ReadCsvBuffer, ) from pandas.errors import DtypeWarning from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_categorical_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import union_categoricals from pandas.core.dtypes.dtypes import ExtensionDtype from pandas import ( Index, MultiIndex, ) from pandas.core.indexes.api import ensure_index_from_sequences from pandas.io.parsers.base_parser import ( ParserBase, is_index_col, ) class CParserWrapper(ParserBase): low_memory: bool _reader: parsers.TextReader def __init__(self, src: ReadCsvBuffer[str], **kwds): super().__init__(kwds) self.kwds = kwds kwds = kwds.copy() self.low_memory = kwds.pop("low_memory", False) # #2442 # error: Cannot determine type of 'index_col' kwds["allow_leading_cols"] = ( self.index_col is not False # type: ignore[has-type] ) # GH20529, validate usecol arg before TextReader kwds["usecols"] = self.usecols # Have to pass int, would break tests using TextReader directly otherwise :( kwds["on_bad_lines"] = self.on_bad_lines.value for key in ( "storage_options", "encoding", "memory_map", "compression", "error_bad_lines", "warn_bad_lines", ): kwds.pop(key, None) kwds["dtype"] = ensure_dtype_objs(kwds.get("dtype", None)) self._reader = parsers.TextReader(src, **kwds) self.unnamed_cols = self._reader.unnamed_cols # error: Cannot determine type of 'names' passed_names = self.names is None # type: ignore[has-type] if self._reader.header is None: self.names = None else: # error: Cannot determine type of 'names' # error: Cannot determine type of 'index_names' ( self.names, # type: ignore[has-type] self.index_names, self.col_names, passed_names, ) = self._extract_multi_indexer_columns( self._reader.header, self.index_names, # type: ignore[has-type] passed_names, ) # error: Cannot determine type of 'names' if self.names is None: # type: ignore[has-type] if self.prefix: # error: Cannot determine type of 'names' self.names = [ # type: ignore[has-type] f"{self.prefix}{i}" for i in range(self._reader.table_width) ] else: # error: Cannot determine type of 'names' self.names = list( # type: ignore[has-type] range(self._reader.table_width) ) # gh-9755 # # need to set orig_names here first # so that proper indexing can be done # with _set_noconvert_columns # # once names has been filtered, we will # then set orig_names again to names # error: Cannot determine type of 'names' self.orig_names = self.names[:] # type: ignore[has-type] if self.usecols: usecols = self._evaluate_usecols(self.usecols, self.orig_names) # GH 14671 # assert for mypy, orig_names is List or None, None would error in issubset assert self.orig_names is not None if self.usecols_dtype == "string" and not set(usecols).issubset( self.orig_names ): self._validate_usecols_names(usecols, self.orig_names) # error: Cannot determine type of 'names' if len(self.names) > len(usecols): # type: ignore[has-type] # error: Cannot determine type of 'names' self.names = [ # type: ignore[has-type] n # error: Cannot determine type of 'names' for i, n in enumerate(self.names) # type: ignore[has-type] if (i in usecols or n in usecols) ] # error: Cannot determine type of 'names' if len(self.names) < len(usecols): # type: ignore[has-type] # error: Cannot determine type of 'names' self._validate_usecols_names( usecols, self.names, # type: ignore[has-type] ) # error: Cannot determine type of 'names' self._validate_parse_dates_presence(self.names) # type: ignore[has-type] self._set_noconvert_columns() # error: Cannot determine type of 'names' self.orig_names = self.names # type: ignore[has-type] if not self._has_complex_date_col: # error: Cannot determine type of 'index_col' if self._reader.leading_cols == 0 and is_index_col( self.index_col # type: ignore[has-type] ): self._name_processed = True ( index_names, # error: Cannot determine type of 'names' self.names, # type: ignore[has-type] self.index_col, ) = self._clean_index_names( # error: Cannot determine type of 'names' self.names, # type: ignore[has-type] # error: Cannot determine type of 'index_col' self.index_col, # type: ignore[has-type] ) if self.index_names is None: self.index_names = index_names if self._reader.header is None and not passed_names: assert self.index_names is not None self.index_names = [None] * len(self.index_names) self._implicit_index = self._reader.leading_cols > 0 def close(self) -> None: # close handles opened by C parser try: self._reader.close() except ValueError: pass def _set_noconvert_columns(self) -> None: """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ assert self.orig_names is not None # error: Cannot determine type of 'names' # much faster than using orig_names.index(x) xref GH#44106 names_dict = {x: i for i, x in enumerate(self.orig_names)} col_indices = [names_dict[x] for x in self.names] # type: ignore[has-type] # error: Cannot determine type of 'names' noconvert_columns = self._set_noconvert_dtype_columns( col_indices, self.names, # type: ignore[has-type] ) for col in noconvert_columns: self._reader.set_noconvert(col) def read( self, nrows: int | None = None, ) -> tuple[ Index | MultiIndex | None, Sequence[Hashable] | MultiIndex, Mapping[Hashable, ArrayLike], ]: index: Index | MultiIndex | None column_names: Sequence[Hashable] | MultiIndex try: if self.low_memory: chunks = self._reader.read_low_memory(nrows) # destructive to chunks data = _concatenate_chunks(chunks) else: data = self._reader.read(nrows) except StopIteration: if self._first_chunk: self._first_chunk = False names = self._maybe_dedup_names(self.orig_names) index, columns, col_dict = self._get_empty_meta( names, self.index_col, self.index_names, dtype=self.kwds.get("dtype"), ) columns = self._maybe_make_multi_index_columns(columns, self.col_names) if self.usecols is not None: columns = self._filter_usecols(columns) col_dict = {k: v for k, v in col_dict.items() if k in columns} return index, columns, col_dict else: self.close() raise # Done with first read, next time raise StopIteration self._first_chunk = False # error: Cannot determine type of 'names' names = self.names # type: ignore[has-type] if self._reader.leading_cols: if self._has_complex_date_col: raise NotImplementedError("file structure not yet supported") # implicit index, no index names arrays = [] for i in range(self._reader.leading_cols): if self.index_col is None: values = data.pop(i) else: values = data.pop(self.index_col[i]) values = self._maybe_parse_dates(values, i, try_parse_dates=True) arrays.append(values) index = ensure_index_from_sequences(arrays) if self.usecols is not None: names = self._filter_usecols(names) names = self._maybe_dedup_names(names) # rename dict keys data_tups = sorted(data.items()) data = {k: v for k, (i, v) in zip(names, data_tups)} column_names, date_data = self._do_date_conversions(names, data) # maybe create a mi on the columns column_names = self._maybe_make_multi_index_columns( column_names, self.col_names ) else: # rename dict keys data_tups = sorted(data.items()) # ugh, mutation # assert for mypy, orig_names is List or None, None would error in list(...) assert self.orig_names is not None names = list(self.orig_names) names = self._maybe_dedup_names(names) if self.usecols is not None: names = self._filter_usecols(names) # columns as list alldata = [x[1] for x in data_tups] if self.usecols is None: self._check_data_length(names, alldata) data = {k: v for k, (i, v) in zip(names, data_tups)} names, date_data = self._do_date_conversions(names, data) index, column_names = self._make_index(date_data, alldata, names) return index, column_names, date_data def _filter_usecols(self, names: Sequence[Hashable]) -> Sequence[Hashable]: # hackish usecols = self._evaluate_usecols(self.usecols, names) if usecols is not None and len(names) != len(usecols): names = [ name for i, name in enumerate(names) if i in usecols or name in usecols ] return names def _get_index_names(self): names = list(self._reader.header[0]) idx_names = None if self._reader.leading_cols == 0 and self.index_col is not None: (idx_names, names, self.index_col) = self._clean_index_names( names, self.index_col ) return names, idx_names def _maybe_parse_dates(self, values, index: int, try_parse_dates: bool = True): if try_parse_dates and self._should_parse_dates(index): values = self._date_conv(values) return values def _concatenate_chunks(chunks: list[dict[int, ArrayLike]]) -> dict: """ Concatenate chunks of data read with low_memory=True. The tricky part is handling Categoricals, where different chunks may have different inferred categories. """ names = list(chunks[0].keys()) warning_columns = [] result = {} for name in names: arrs = [chunk.pop(name) for chunk in chunks] # Check each arr for consistent types. dtypes = {a.dtype for a in arrs} # TODO: shouldn't we exclude all EA dtypes here? numpy_dtypes = {x for x in dtypes if not is_categorical_dtype(x)} if len(numpy_dtypes) > 1: # error: Argument 1 to "find_common_type" has incompatible type # "Set[Any]"; expected "Sequence[Union[dtype[Any], None, type, # _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]]" common_type = np.find_common_type( numpy_dtypes, # type: ignore[arg-type] [], ) if common_type == object: warning_columns.append(str(name)) dtype = dtypes.pop() if is_categorical_dtype(dtype): result[name] = union_categoricals(arrs, sort_categories=False) else: if isinstance(dtype, ExtensionDtype): # TODO: concat_compat? array_type = dtype.construct_array_type() # error: Argument 1 to "_concat_same_type" of "ExtensionArray" # has incompatible type "List[Union[ExtensionArray, ndarray]]"; # expected "Sequence[ExtensionArray]" result[name] = array_type._concat_same_type( arrs # type: ignore[arg-type] ) else: # Argument 1 to "concatenate" has incompatible type # "List[Union[ExtensionArray, ndarray[Any, Any]]]"; expected # "Union[_SupportsArray[dtype[Any]], # Sequence[_SupportsArray[dtype[Any]]], # Sequence[Sequence[_SupportsArray[dtype[Any]]]], # Sequence[Sequence[Sequence[_SupportsArray[dtype[Any]]]]], # Sequence[Sequence[Sequence[Sequence[_SupportsArray[dtype[Any]]]]]]]" result[name] = np.concatenate(arrs) # type: ignore[arg-type] if warning_columns: warning_names = ",".join(warning_columns) warning_message = " ".join( [ f"Columns ({warning_names}) have mixed types. " f"Specify dtype option on import or set low_memory=False." ] ) warnings.warn(warning_message, DtypeWarning, stacklevel=find_stack_level()) return result def ensure_dtype_objs( dtype: DtypeArg | dict[Hashable, DtypeArg] | None ) -> DtypeObj | dict[Hashable, DtypeObj] | None: """ Ensure we have either None, a dtype object, or a dictionary mapping to dtype objects. """ if isinstance(dtype, dict): return {k: pandas_dtype(dtype[k]) for k in dtype} elif dtype is not None: return pandas_dtype(dtype) return dtype
160b2a9bafde75264ce75c06f5673e2489becdf4
30e568f5feccea6c87a284c47d65ade652fe9f61
/blog/views.py
b6d8713a243724b44739a8a3bbb5d42b43cf3267
[]
no_license
lukaszszajkowski/anitablog
c923ec367f76a2e26feb1145cd330628acaf4076
d108379d4266a5e1a4cbbab0c316341f623ebf80
refs/heads/master
2021-01-01T05:39:10.021870
2014-08-19T12:55:12
2014-08-19T12:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,404
py
from django.shortcuts import render # Create your views here. from django.contrib.auth.decorators import user_passes_test from django.shortcuts import redirect, get_object_or_404 from django.core.urlresolvers import reverse from django.shortcuts import render from .models import Post, Comment from .forms import PostForm, CommentForm def home(request): return render(request, 'index.html', {'test': "test"}) def list_posts(request): form = CommentForm(request.POST or None) posts = Post.objects.all() comments = Comment.objects.all() return render(request, 'posts.html', {'posts': posts, 'form': form, 'comments': comments}) @user_passes_test(lambda u: u.is_superuser) def add_post(request): form = PostForm(request.POST or None) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.save() return redirect(post) return render(request, 'add_post.html', {'form': form}) def view_post(request, slug): post = get_object_or_404(Post, slug=slug) form = CommentForm(request.POST or None) if form.is_valid(): comment = form.save(commit=False) comment.post = post comment.save() request.session["name"] = comment.name request.session["email"] = comment.email return redirect(request.path) form.initial['name'] = request.session.get('name') form.initial['email'] = request.session.get('email') return render(request, 'posts.html', {'post': post, 'form': form, }) def detail_post(request, slug): post = Post.objects.get(slug=slug) context = { 'post': post, } return render(request, 'detail_post.html', context) def add_comment(request, slug): post = get_object_or_404(Post, slug=slug) form = CommentForm(request.POST or None) if form.is_valid(): comment = form.save(commit=False) comment.post = post comment.save() request.session["name"] = comment.name request.session["email"] = comment.email return redirect(reverse('list_posts')) form.initial['name'] = request.session.get('name') form.initial['email'] = request.session.get('email') return render(request, 'add_comment.html', { 'post': post, 'form': form, })
ac9274e51003d35b9861619abcc7751dda7e1aaa
e6a0bb9235cf36697fbf41084e4506e785d530ac
/git/Alice-test/alice-redis-backup-op.py
9d939ed23f2bb3f9966ea26a197d46ddd415bc7d
[]
no_license
githkm/playbooks
f1f185ab7185bb32906b3e75618960af5f060714
e00ebeff2654eb2d0b6eb01a6c667dc957e3f414
refs/heads/master
2020-07-24T06:47:26.515251
2019-10-30T03:42:18
2019-10-30T03:42:18
207,834,206
0
0
null
null
null
null
UTF-8
Python
false
false
4,780
py
#!/root/.pyenv/shims/python #coding: utf-8 from tencentcloud.common import credential from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.redis.v20180412 import redis_client, models from datetime import datetime, timedelta, timezone import getopt, sys, json, wget utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc) cn_dt = utc_dt.astimezone(timezone(timedelta(hours=8))) current_bj_time = cn_dt.strftime("%Y-%m-%d %H:%M") current_bj_date = cn_dt.strftime("%Y-%m-%d") specifies_bj_time = "%s 04:" % current_bj_date cred = credential.Credential("AKIDgAPSJzIcaNuCH7J4A4mERRBgw0pVEEI9", "lGYaQ0KRPBtKizDJjuqY1FHDzby75oIX") httpProfile = HttpProfile() httpProfile.endpoint = "redis.tencentcloudapi.com" clientProfile = ClientProfile() clientProfile.httpProfile = httpProfile client = redis_client.RedisClient(cred, "ap-tokyo", clientProfile) BackupId = None def getbackuplist(InstanceId): try: req = models.DescribeInstanceBackupsRequest() params = '{"InstanceId":"%s"}' % InstanceId # print("params",params) req.from_json_string(params) resp = client.DescribeInstanceBackups(req) # print(resp.to_json_string()) return resp.to_json_string() except TencentCloudSDKException as err: print(err) def manualbackup(InstanceId, current_bj_time): try: req = models.ManualBackupInstanceRequest() params = '{"InstanceId":"%s", "Remark": "%s"}' % (InstanceId, current_bj_time) req.from_json_string(params) resp = client.ManualBackupInstance(req) print(resp.to_json_string()) return resp.to_json_string() except TencentCloudSDKException as err: print(err) def geturl(InstanceId, BackupId): try: req = models.DescribeBackupUrlRequest() params = '{"InstanceId":"%s","BackupId":"%s"}' % (InstanceId, BackupId) req.from_json_string(params) resp = client.DescribeBackupUrl(req) return resp.to_json_string() except TencentCloudSDKException as err: print(err) def usage(): print("Instances ID List:", instance_ids) print('''usage: alice-redis-backup-op.py [options] arg1 ...' options: -h, Show This Help Message And Exit --create At Current Time Create Backup --list List All Backup --autodown Auto Download The Crontab Backup At 04:00 Everyday --download InstanceID BackupID Download Specifies Instance And Specifies Backup ''') if __name__ == "__main__": options = None args = None tmp_dic = {} #instance_ids = {"172.16.6.3": "crs-c3hjmvm8", "172.16.6.12": "crs-qjdj8zv8"} instance_ids = {"172.16.6.3": "crs-c3hjmvm8", "172.16.6.20": "crs-qzf91dlm", "172.16.6.12": "crs-qjdj8zv8", "172.16.6.44": "crs-n0u1xupg"} if len(sys.argv) == 1: usage() exit(1) try: options, args = getopt.getopt(sys.argv[1:], "h", ['create', 'list', 'download', 'autodown']) except Exception as e: print(str(e)) exit(1) for name, value in options: if name == '--list': for k in instance_ids: res = getbackuplist(instance_ids[k]) tmp_dic.update({k: json.loads(res)['BackupSet']}) for k, v in tmp_dic.items(): print(k, instance_ids[k], v[0]) elif name == '--autodown': for k in instance_ids: res = getbackuplist(instance_ids[k]) for each in json.loads(res)['BackupSet']: if specifies_bj_time in each['StartTime']: url = geturl(instance_ids[k], each['BackupId']) tmp_dic.update({k: json.loads(url)['InnerDownloadUrl'][0]}) print(tmp_dic) for k in tmp_dic: wget.download(tmp_dic[k],"/home/www/%s-dump.rdb" % k) elif name == '--create': for k in instance_ids: res = manualbackup(instance_ids[k], current_bj_time) elif name == '--download': if len(args) != 2: usage() exit(255) url = json.loads(geturl(args[0], args[1]))['InnerDownloadUrl'][0] print('URL:',url) for k in instance_ids: if instance_ids[k] == args[0]: wget.download(url,k) elif name == "-h": usage() exit(0)
af670c7de09800202230e69c4c1e374c784f1b0a
edc4a15788b8c1d11ea0496a588e63f9e7ae2712
/csv_to_blenderspheres.py
d248abd159e686db522157912b2566c097c3e3d9
[]
no_license
BradhamLab/Blender
e716f322f54cfb922cfcf3aa707a665ba3762b30
a3bf8234857b9788a0823715763c6561a5776be0
refs/heads/master
2020-03-25T19:07:22.761071
2018-08-08T20:55:18
2018-08-08T20:55:18
144,065,870
0
0
null
null
null
null
UTF-8
Python
false
false
2,198
py
import sys def generate_blender_line(coordinates, blenderLayer): # Write a line to generate a sphere object in Blender. varLayer = ["False","False","False","False","False","False","False","False","False","False","False","False","False","False","False","False","False","False","False","False"] varLayer[blenderLayer] = "True" layerStr = ','.join(str(layer) for layer in varLayer) return "bpy.ops.mesh.primitive_uv_sphere_add(segments=32, ring_count=16, size=0.5, view_align=False, enter_editmode=False, location=(" + coordinates + "), rotation=(0,0,0), layers=(" + layerStr + "))" def write_blender_script(outputFile): #Iterates through list of xyz coordinates, then writes each line of Blender code to an output file coordLayer = 0 #designates the desired Blender layer to add sphere objects to. Layer 1 in Blender = coordLayer 0 with open(outputFile, 'w') as out: for xyz in coordList: if xyz == ',,' or '': #increases blender layer for coordinates following a blank line in the csv file coordLayer +=1 else: line = generate_blender_line(xyz, coordLayer) out.write(line + '\n') def usage(): str="This script generates a text file containing a series of blender inputs, given a .csv file containing xyz coordinates\ \n\n\nThe script takes two files as input, an input file name and an output \ file name. The input file is expected to be a .csv file, while the output file\ is expected to be .txt file. To run the script issue the following command:\n\n\n\ \tpython csv_to_blenderspheres.py <input_file> <output_file>\n\n\n\ For additional information consult the ReadMe at http://www.github.com/BradhamLab/Blender\n\n\n" print(str) args = sys.argv[1:] if len(args) == 2 and isinstance(args[0], str) and isinstance(args[1], str): if args[0].endswith('.csv') and args[1].endswith('.txt'): with open(args[0]) as f: content = f.readlines() for crudeList in content: coordList = crudeList.split('\r') write_blender_script(args[1]) else: usage() else: usage()
dc014c62864afc9910148aede58f63bbc87f6677
f0b741f24ccf8bfe9bd1950425d83b6291d21b10
/sdk/python/test_data/pipelines/pipeline_with_retry.py
3a2d8a506bc7d2e1e9d3cd667fccdf4249d58f5e
[ "Apache-2.0" ]
permissive
kubeflow/pipelines
e678342b8a325559dec0a6e1e484c525fdcc8ce8
3fb199658f68e7debf4906d9ce32a9a307e39243
refs/heads/master
2023-09-04T11:54:56.449867
2023-09-01T19:07:33
2023-09-01T19:12:27
133,100,880
3,434
1,675
Apache-2.0
2023-09-14T20:19:06
2018-05-12T00:31:47
Python
UTF-8
Python
false
false
1,005
py
# Copyright 2022 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp import compiler from kfp import dsl @dsl.component def add(a: float, b: float) -> float: return a + b @dsl.pipeline(name='test-pipeline') def my_pipeline(a: float = 1, b: float = 7): add_task = add(a=a, b=b) add_task.set_retry(num_retries=3) if __name__ == '__main__': compiler.Compiler().compile( pipeline_func=my_pipeline, package_path=__file__.replace('.py', '.yaml'))
18afb092fa3604ed28ba2383053af28dc9cd73d5
13d3954b5c26984b5f0d9eb071fff4d3b030c7da
/github/api.py
5c3ff0934b1090cac9a1ce82d5bf71e8f62837c7
[]
no_license
gsdenys/git-stat
e884bfcaa8244675ec52216da03b5c40a9760bd3
2fdfef5a068d7a5e49ab14fa8301530001850397
refs/heads/main
2023-03-17T13:18:07.656343
2021-03-10T17:43:25
2021-03-10T17:43:25
329,178,172
0
0
null
2021-02-08T21:26:34
2021-01-13T03:05:37
Jupyter Notebook
UTF-8
Python
false
false
867
py
import requests as req # from config import Config class Worker: """ Worker class to helps implementation of github API actions """ def __init__(self, config): """Default Builder Args: config (Config): The configuratin object """ self._config = config # Create the HTTP requeste header self._headers = req.utils.default_headers() self._headers.update({'Authorization': 'token ' + config.getToken()}) def get(self, url): """Function to perform a HTTP GET request through any URL. Args: url (str): The http URL Returns: JSON: The json-encoded content of a response, if any. """ data = req.get(url, headers=self._headers) return data.json() def getConf(self): return self._config
7a33b8340748fbc641c270e612ef69eba661c3b4
e2bb4e21acf004c9f50fa1446390755dd966fa09
/Tests/test_MathOperations.py
aab7a0183d15844ab6c97534564955f379184259
[]
no_license
HGNJIT/statsCalculator
45f933ab4fb9576b96a4668fbfaf994584caec03
4fc9ac753921e6ac784afe071b84fbabf31c925c
refs/heads/master
2023-03-23T18:13:53.563727
2021-03-23T03:40:25
2021-03-23T03:40:25
343,956,928
1
0
null
null
null
null
UTF-8
Python
false
false
1,244
py
import unittest from Calculator.calculator import Calculator class MyTestCase(unittest.TestCase): def setUp(self): self.calculator = Calculator() def test_instantiate_calculator(self): self.assertIsInstance(self.calculator, Calculator) def test_calculator_return_sum(self): result = self.calculator.Sum(1, 2) self.assertEqual(3, result) def test_calculator_return_sumList(self): numlist = [1, 3, 5, 2] result = self.calculator.Sum(numlist) self.assertEqual(11, result) def test_calculator_return_difference(self): result = self.calculator.Difference(4, 1) self.assertEqual(3, result) def test_MathOperation_Product(self): self.assertEqual(10, self.calculator.Product(2, 5)) def test_MathOperations_Product_list(self): numlist = [1, 3, 5] self.assertEqual(15, self.calculator.Product(numlist)) def test_MathOperations_Power(self): self.assertEqual(8, self.calculator.Power(2, 3)) def test_MathOperations_Power_list(self): numlist = [1, 2, 3] self.assertEqual(9, self.calculator.Power(numlist, 2)) def test_Root(self): self.assertEqual(3, self.calculator.Root(2,9))
3024d9f2053d0621237ff0d4fa0459671876a57a
5c09a68e01be442e7184e8a40b32305504ad3aae
/src/modules/helper/wscript
3daf05b53462e344ada34db1cf2047789e9bd28c
[]
no_license
jakobluettgau/feign
8178ff99d7fb3da6abc97f5a9715ccffed9ae040
0c735283923253a6cb51a28fe4d3299cc2a2a86f
refs/heads/master
2016-09-10T14:59:51.370767
2015-03-06T12:18:01
2015-03-06T12:18:01
17,636,101
0
0
null
null
null
null
UTF-8
Python
false
false
503
#! /usr/bin/env python def options(ctx): ctx.load("compiler_c compiler_cxx") pass def configure(ctx): ctx.load("compiler_c compiler_cxx") ctx.check_cfg(package='glib-2.0', args='--cflags --libs') ctx.env.LINKFLAGS = [] #TODO: absolute path #ctx.env.append_value('INCLUDES', ['../include']) # configure modules and plugins pass def build(ctx): # build feign executables ctx.shlib(source=['helper.cpp'], target='feign-helper', uselib=["GLIB-2.0"]) pass
967c54ebd9e3e7a1f17010694bebc3026a024991
440c2f17a64b718227bbc9ac1f799630d0f3233d
/Chapter01_ArrayProblem/lc796.py
b50332bb95b4ae17e7495e3c834eeac162f62da0
[]
no_license
HuichuanLI/alogritme-interview
6fc84fdbfe1123c1e587eaf2df6b6e9fb2ca7dda
0ac672a1582707fcaa6b6ad1f2a1d927034447df
refs/heads/master
2023-02-05T03:29:14.458783
2020-12-25T14:04:17
2020-12-25T14:04:17
206,583,220
1
0
null
null
null
null
UTF-8
Python
false
false
372
py
class Solution: def rotateString(self, A: str, B: str) -> bool: if len(A) != len(B): return False if A == B: return True for index, a in enumerate(A): if a != B[0]: continue else: if A[index:] + A[:index] == B: return True return False
c1fcb8d442f27e99c3ca9c06c6168d39a909e9e7
467a4136897495766b7cbb69890b642ea684d50c
/project/applications/users/serializers.py
732dceac7c6a149bf801fe707de6e88d917b906e
[]
no_license
abheist/django_angular_webpack
1eb4e6d766e86dc9203edb4573a5563497d5eca9
0ec0b532f08eb5fa7094fb3f84b04b756ee6662a
refs/heads/master
2021-06-19T22:49:38.154736
2017-07-21T21:33:37
2017-07-21T21:33:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from rest_framework import serializers from project.applications.users.models import User class UserSerializer(serializers.ModelSerializer): class Meta(object): model = User fields = ('id', 'email', 'is_admin', 'is_active',)
f76accf40d09b58d4311d4c39502aaf544b48f91
9da129ec93a6fd2c5f65b57a0faec21d8eb80720
/Term_NSI/devoirs/4-dm2/Corrigé/S5/E10.py
a95413dc1d38cadd7439053c1c59d2d57ee9e86a
[]
no_license
FranckCHAMBON/ClasseVirtuelle
79bd4e4114d27ca3792b46b1fb384c394397b329
48fe9883ee6763e79e561537bc0ed7048339b457
refs/heads/master
2022-08-22T15:35:48.128508
2021-04-28T07:21:04
2021-04-28T07:21:04
249,953,475
3
4
null
2022-08-05T09:28:10
2020-03-25T10:52:47
HTML
UTF-8
Python
false
false
1,310
py
""" Prologin: Entraînement 2003 Exercice: 10 - Solitaire https://prologin.org/train/2003/semifinal/solitaire """ plateau = [] liste_billes = [] for ligne in range(7): entrée = list(input()) plateau.append(entrée) for colonne in range(7): if entrée[colonne] == "1": liste_billes.append((ligne, colonne)) def est_déplaçable(x, y): """ Retourne le nombre de déplacements possibles à partir de (`x`,`y`) """ nombre_déplacements = 0 if 0 <= x+2 < 7 and 0 <= y < 7: if plateau[x+1][y] == "1": if plateau[x+2][y] == "0": nombre_déplacements += 1 if 0 <= x < 7 and 0 <= y+2 < 7: if plateau[x][y+1] == "1": if plateau[x][y+2] == "0": nombre_déplacements += 1 if 0 <= x-2 < 7 and 0 <= y < 7: if plateau[x-1][y] == "1": if plateau[x-2][y] == "0": nombre_déplacements += 1 if 0 <= x < 7 and 0 <= y-2 < 7: if plateau[x][y-1] == "1": if plateau[x][y-2] == "0": nombre_déplacements += 1 return nombre_déplacements somme_déplacements = sum(est_déplaçable(x_bille, y_bille) for x_bille, y_bille in liste_billes) print(somme_déplacements)
c62111437c9a53952b4d3ee19e7ba5ee43c9e633
b41b996b4a14f11bb3d7676b4539725a93c2d586
/SourceCode/Codesignal-Selenium/SourceNew/Py3/insertDashes.py3
7c90291c8490000fd0d77637d4d36bd37deccab2
[]
no_license
mquandvr/selenium
ee2c0e7febb15f4db4d33a8575726f67c48bde05
d7bb4c95d4d0756c66cbf3c69387318fc07219f2
refs/heads/master
2020-06-05T05:49:57.476867
2019-06-18T10:55:27
2019-06-18T10:55:27
192,335,493
0
0
null
null
null
null
UTF-8
Python
false
false
167
py3
def insertDashes(inputString): words = inputString.split() for i in range(len(words)): words[i] = "-".join(list(words[i])) return ' '.join(words)
f76c015d05834771b0bdb2b544881a218625789f
6e1d770c11a94a4f2d5d6f5212da47c5a92f1d46
/venv/bin/wheel
2597eccb6f37b54faebc3ec6b50b96098550937c
[]
no_license
ironstein0/myUIC_portal_automatic_registration
aa76eb8f056d92dfb3e5e3a824c278632a04a394
cb89aa718f9bf845eeb067efe67b5746a7fbc1e1
refs/heads/master
2021-08-23T04:55:44.795736
2017-12-03T12:20:48
2017-12-03T12:20:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
276
#!/Volumes/jarvis/projects_working_directory/selenium_projects/venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
d32998b192faf56572de67cb5f15dc59afc38c2c
25b30786850d0e18502813f088b2779c2132b67a
/venv/Scripts/easy_install-3.8-script.py
eccfd79e85962afb201029e0e0a472c1f9ad1e52
[]
no_license
manisreekar/DetectionOfTwitterBots-MINI_PROJECT
2389ced3e584cd1e4fd52ce7f9251b91381d76a3
71fb0cd7ad394a458676c3e909ea479e57df34bc
refs/heads/master
2022-11-11T21:07:33.232921
2020-06-27T11:41:01
2020-06-27T11:41:01
274,459,076
1
0
null
null
null
null
UTF-8
Python
false
false
496
py
#!C:\Users\manis\PycharmProjects\MachineLearning-Detecting-Twitter-Bots-master\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.8' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.8')() )
b513d8cf0065d3b86ae611a8e704f4ec381c14d8
97128c3b69666255f5c8583685256db5c61bbe29
/connectz.py
308de00a10806ccd42eb3e362b3554deb2b5f99b
[]
no_license
zeeshanshanu14/Connect4
43f8838630ac1cfa2e2ee6f542d09124f50844f7
7edf05f6fdbc69e37cbe27e52b8f4dcc6515148b
refs/heads/master
2020-08-13T23:26:53.317468
2019-10-14T13:51:12
2019-10-14T13:51:12
215,056,419
0
0
null
null
null
null
UTF-8
Python
false
false
8,182
py
import itertools import sys import numpy as np def execute_player_action(game_board, played_loc, player): if played_loc > np.shape(game_board)[1] - 1: print(6) exit(6) success_flag = 0 changed_board = game_board[:, played_loc] # iterate that column in reverse as checker will be stacked to top for x in range(len(changed_board), 0, -1): index = x - 1 if not changed_board[index]: changed_board[index] = player success_flag = 1 break if success_flag: game_board[:, played_loc] = changed_board # lets send the last location changed to reduce search space of game won return game_board, (index, played_loc) else: # illegal row, return 5 as per test cases print(5) exit(5) def construct_game_board(dim): return np.zeros((dim[0], dim[1])) def check_horz_win(game_board, last_played_loc, player, win_length): row = last_played_loc[0] col = last_played_loc[1] counter = 1 # if player won in horizontal completion then this checker can be anywhere in conbination in a row for x in range(col + 1, np.shape(game_board)[1]): if game_board[row][x] == player: counter += 1 if counter == win_length: return True continue # if changed location is less the the length and nothing was found on the right, check left as well if col + 1 < win_length and counter == 1: return 0 for x in range(col - 1, 0, -1): if game_board[row][x] == player: counter += 1 if counter == win_length: return player continue else: return 0 def check_ver_win(game_board, last_played_loc, player, win_length): col = last_played_loc[1] counter = 1 # if plaer won in vertical then his checker will be on top for x in range(last_played_loc[0] + 1, np.shape(game_board)[0]): if game_board[x][col] == player: counter += 1 if counter == win_length: return player continue else: return 0 def check_diag_win_backslash(game_board, last_played_loc, player, win_length): col = last_played_loc[1] row = last_played_loc[0] # checking backward diagonal counter = 1 col_forwards = list(range(col, np.shape(game_board)[1])) row_backwards = list(range(row, 0 - 1, -1)) diag_list = [i for i in itertools.zip_longest(col_forwards, row_backwards)] # zip(col_forwards, row_forwards) counter = 0 for col_index, row_index in diag_list: # if player won in horizontal completion then this checker can be anywhere in conbination in a row if col_index is None or row_index is None: continue if game_board[row_index][col_index] == player: counter += 1 if counter == win_length: return player continue # if changed location is less the the length and nothing was found on the right, check left as well if col < win_length - 1 and counter == 1: return 0 # now check starting from next diag element is curr is already counted col_backwards = list(range(col - 1, 0 - 1, -1)) row_forwards = list(range(row + 1, np.shape(game_board)[0])) diag_list_down = [i for i in itertools.zip_longest(col_backwards, row_forwards)] # should iterate backwards as we going down for col_index, row_index in diag_list_down: # if player won in horizontal completion then this checker can be anywhere in conbination in a row if col_index is None or row_index is None: continue if game_board[row_index][col_index] == player: counter += 1 if counter == win_length: return player continue return 0 def check_diag_win_fslash(game_board, last_played_loc, player, win_length): col = last_played_loc[1] row = last_played_loc[0] # checking backward diagonal down first col_forwards = list(range(col, np.shape(game_board)[1])) row_backwards = list(range(row, np.shape(game_board)[0])) diag_list = [i for i in itertools.zip_longest(col_forwards, row_backwards)] # zip(col_forwards, row_forwards) counter = 0 for col_index, row_index in diag_list: # if player won in horizontal completion then this checker can be anywhere in conbination in a row if col_index is None or row_index is None: continue if game_board[row_index][col_index] == player: counter += 1 if counter == win_length: return player continue else: break # if changed location is less the the length and nothing was found on the right, check left as well # if there is not much to be checked and already found match is too less, its not work traversing. if col < win_length and counter == 1: return 0 # now check up, current cell is counted for above col_backwards = list(range(col - 1, 0 - 1, -1)) row_backwards = list(range(row - 1, 0 - 1, -1)) diag_list_up = [i for i in itertools.zip_longest(col_backwards, row_backwards)] # should iterate backwards as we going down for col_index, row_index in diag_list_up: # if player won in horizontal completion then this checker can be anywhere in conbination in a row if col_index is None or row_index is None: continue if game_board[row_index][col_index] == player: counter += 1 if counter == win_length: return player continue else: break return 0 def check_player_won(game_board, last_played_loc, player, win_length): winner = check_diag_win_backslash(game_board, last_played_loc, player, win_length) or check_diag_win_fslash( game_board, last_played_loc, player, win_length) or check_horz_win(game_board, last_played_loc, player, win_length) or check_ver_win( game_board, last_played_loc, player, win_length) if winner: return winner else: return 3 def play(input_file): validation_code = validate_file(input_file[0:3]) if validation_code >0 : return validation_code game_board = construct_game_board(input_file[0:2]) player = 1 attemps_played_total = 1 wining_length = input_file[2] winning_player = 0 for col in input_file[3:]: if winning_player: return 4 played_loc = col - 1 game_board, chaged_loc = execute_player_action(game_board, played_loc, player) if attemps_played_total >= input_file[2] * 2 - 1: winner = check_player_won(game_board, chaged_loc, player, wining_length) if winner in [1, 2]: winning_player = winner continue if attemps_played_total >= np.size(game_board): # draw return 0 # # incomplete game # return 3 player = 2 if player == 1 else 1 attemps_played_total += 1 if winning_player: return winning_player elif attemps_played_total < np.size(game_board): # incomplete return 3 def validate_file(meta_data_array): if len(meta_data_array) < 2: return 8 row = meta_data_array[0] col = meta_data_array[1] winning_length = meta_data_array[2] if (winning_length > row and winning_length > col) or (row > winning_length and col < 2) or ( col > winning_length and row < 2): # illegal game return 7 else: return 0 if __name__ == '__main__': if len(sys.argv) != 2: exit('connectz.py: Provide one input file') file_name = sys.argv[1] try: data = np.fromfile(file_name, dtype=int, sep=' ') return_code = play(data) except IOError: return_code = 9 print(return_code) exit(return_code)
68cedabfbc09a63f6c95ab47625817a4d4f29131
758e34c96569a52b24454311e263d12ef8b0a4af
/socks/__init__.py
e06450c60206faa84f0c1f4f7289cea508ce922c
[]
no_license
devenjarvis/aws-socks
fde00ef0f9e122121dd62dacd2ff74ac117c8186
8e917dcec062bdbfac95b57fd1dbbb9a5f7e810d
refs/heads/master
2022-12-17T05:36:21.682336
2020-09-12T23:56:28
2020-09-12T23:56:28
279,918,200
3
1
null
2020-09-13T00:07:28
2020-07-15T16:19:49
Python
UTF-8
Python
false
false
248
py
# Core AWS Service abstractions #import socks.ssm import boto3 import socks.athena import socks.cloudwatch import socks.dynamodb import socks.s3 import socks.secretsmanager import socks.sqs import socks.ssm import socks.sts import socks.aws_lambda
795dbd21792c5f06fc2b33e3ded0ba6d473c4161
bf7959048edc0005e04431a0864c719adc5ea9ea
/python版本/222.CountNodes.py
484d866b66bbde6d0c8250b82279c24b92434a61
[]
no_license
Yohager/Leetcode
7c24f490cfa5fd8e3cdb09e5a2305a134a064a93
585af82ff2c2d534053f6886714406019ed0c7d1
refs/heads/master
2022-12-07T23:51:16.347174
2022-11-28T02:30:53
2022-11-28T02:30:53
178,201,848
1
0
null
null
null
null
UTF-8
Python
false
false
861
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def countNodes(self, root: TreeNode) -> int: if not root: return 0 lh = 0 l = root while l: l = l.left lh += 1 lb,rb = int(2**(lh-1)), int(2**(lh)-1) while lb <= rb: m = lb + (rb - lb) // 2 path = int(2**(lh-2)) node = root while node and path > 0: if m & path: node = node.right else: node = node.left path //= 2 if node: lb = m + 1 else: rb = m - 1 return rb
56057d7e91a6da371c702cdb1b2e71d854c5a446
daf9fc80a6a68fbe620af85a3eeebb3f53a593eb
/app/pru.py
e21b70d5b678b3d6506f2dce9b08435278c76eb9
[ "MIT" ]
permissive
HudsonWerks/visualpru
9625430616fbe9db16d5f50e561b0c32730e104d
5bbb44ebb0798a493ad33f4881fa7845e8aeff74
refs/heads/master
2021-01-18T18:25:57.332862
2014-08-20T18:38:11
2014-08-20T18:38:11
23,190,525
1
0
null
null
null
null
UTF-8
Python
false
false
7,636
py
from __future__ import print_function from __future__ import division import os import mmap import struct import re import pasm class PRU: def __init__(self, id, constants, shared_constants): self.id = id self.constants = constants self.shared_constants = shared_constants self.f = os.open("/dev/mem", os.O_RDWR | os.O_SYNC) self.pruss_mmap = self.map_memory(self.f, self.shared_constants.PRUSS_RANGE) self.source_files = [] self.compiled_file = {} self.errors = [] self.warnings = [] #Pass in the range of addresses we want to cover, and size the mmap accordingly def map_memory(self,f, memory_range): if (memory_range[1] - memory_range[0] + 1) % mmap.PAGESIZE == 0: #The range is fully covered by a multiple of the pagesize multiple = (memory_range[1] - memory_range[0] + 1) // mmap.PAGESIZE else: #Since the page size is not evenly divisible by the range, we need to round up to the next page size to fully cover the entire range multiple = 1 + ((memory_range[1] - memory_range[0] + 1) // mmap.PAGESIZE) mm = mmap.mmap(f, mmap.PAGESIZE * multiple, offset=memory_range[0]) return mm def unmap_memory(self): self.pruss_mmap.close() os.close(self.f) def read_register(self,register_block_offset,register_offset,byte_count): r = self.pruss_mmap[register_block_offset+register_offset:register_block_offset+register_offset+byte_count] return struct.unpack("<L",r)[0] def write_register(self,register_block_offset,register_offset,byte_count,value): packed_value = struct.pack("<L",value) self.pruss_mmap[register_block_offset+register_offset:register_block_offset+register_offset+byte_count] = packed_value def is_running(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) if (r & (1<<self.shared_constants.RUNSTATE_BIT)) == 0: return False else: return True def reset(self,value=None): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) #Clear bit to trigger a reset r &= ~(1<<self.shared_constants.SOFT_RST_N_BIT) #Set a start instruction if specified, otherwise just jump to the default if value is not None: #Clear the current counter value and set the new one r &= ~(0xFFFF<<self.shared_constants.PCOUNTER_RST_VAL_BIT) r |= ((value & 0xFFFF)<<self.shared_constants.PCOUNTER_RST_VAL_BIT) self.write_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4,r) def set_singlestep_mode(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) r |= (1<<self.shared_constants.SINGLE_STEP_BIT) self.write_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4,r) def set_freerunning_mode(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) r &= ~(1<<self.shared_constants.SINGLE_STEP_BIT) self.write_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4,r) def get_run_mode(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) if r&(1<<self.shared_constants.SINGLE_STEP_BIT) != 0: mode = 'step' else: mode = 'continuous' return mode #TODO: Also check to see if the PRU is asleep def get_status(self): if self.is_running(): status = 'running' else: status = 'halted' return status def get_program_counter_value(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.STATUS_OFFSET,4) return r & 0xFFFF def halt(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) r &= ~(1<<self.shared_constants.ENABLE_BIT) self.write_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4,r) def run(self): r = self.read_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4) r |= (1<<self.shared_constants.ENABLE_BIT) self.write_register(self.constants.PRUSS_PRU_CTRL_OFFSET,self.shared_constants.CONTROL_OFFSET,4,r) def write_opcodes_to_iram(self,opcodes): for i,opcode in enumerate(opcodes): self.write_register(self.constants.PRU_IRAM_OFFSET,i*4,4,opcode) def get_gpreg_value(self,number): return self.read_register(self.constants.PRU_ICSS_PRU_DEBUG_OFFSET,self.shared_constants.GPREG_OFFSET+number*4,4) def get_gpreg_values(self): registers = [] for i in range(self.shared_constants.GPREG_COUNT): registers.append({'name' : 'r'+str(i), 'value': self.get_gpreg_value(i)}) return registers def compile_and_upload_program(self, compilation_directory, source_files): #Create the PRU directory structure if it doesn't exist program_directory = os.path.join(compilation_directory,self.id) if not os.path.exists(program_directory): os.makedirs(program_directory) #Create the source files and store an internal copy for source_file in source_files: with open(os.path.join(program_directory,source_file['name']),'w') as f: f.write(source_file['content']) self.source_files = source_files #Get the primary filename, which is the first file in the array by convention #TODO: Make it an entry in the object? eg. check for a 'primary':true flag primary_filename = source_files[0]['name'] #Compile the source files errors, warnings = pasm.compile(program_directory,primary_filename) self.errors = errors self.warnings = warnings #Write to PRU memory if there are no errors if not errors: #A source file is guaranteed to have a '.p' or '.hp' extension, so we can rely string substitution compiled_filename = re.sub('(?:\.p)$|(?:\.hp)$','.lst',primary_filename) #Write the program to memory #TODO: Confirm that the combined size of the opcodes is than the PRU's IRAM... # : len(opcodes) * 4 <= self.shared_constants.MAX_IRAM_SIZE where 4 represents the bytesize of each opcode opcodes, instructions = pasm.parse_compiler_output(program_directory,compiled_filename) self.write_opcodes_to_iram(opcodes) self.compiled_file = {'name':compiled_filename,'content':instructions} #NOTE: This function returns a dictionary oject with state information in a format that mirrors the front-end model state def get_state(self): pru = {} pru['id'] = self.id pru['state'] = {'programCounter':self.get_program_counter_value(), 'status': self.get_status(), 'runMode': self.get_run_mode()} pru['program'] = { 'sourceFiles' : self.source_files, 'compiledFile' : self.compiled_file, 'errors' : self.errors, 'warnings' : self.warnings } pru['memory'] = {'generalPurpose':self.get_gpreg_values()} return pru
98044cdd44063bb110f6b637a8192e571ea4c3c2
4e362157246306f095a904dced51e16a87d82b79
/ex14.py
bef360bade2068ea51a670f3a968cc3071249a70
[]
no_license
tejaveturi/python
c17fd605c0da6123f0b22d4d70aabee96edd4187
83c117f2d6f6ffc25da35ba2445c4ff3c9afd723
refs/heads/master
2021-01-11T13:47:37.035056
2017-05-19T01:25:35
2017-05-19T01:25:35
86,526,803
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
from sys import argv script, user_name = argv prompt = '>' print "Hi %s I am %s" % (user_name, script) print" where do you live %s" %user_name live = raw_input(prompt) print " do you like me %s " % user_name like = raw_input(prompt) print "what computer do you have %s" % user_name computer = raw_input(prompt) print """ your name is %s, you said %s about liking, you live in %s, you have %s computer""" % (user_name, like, live, computer)
a0500d0291da3fd04b167a482f55b0cfb912567c
5ea8be3085b173a5fa006a2d9538ea5d92d08957
/py/settings.py
342080897813d9c04afbb952e4d8ffaa376bb3b8
[]
no_license
amirgraily7/PDFMetadataExtractor
c01d3ab6535edb5a4080a76e3aac1f2d1beb5be3
c15290c44376fcdaa1a1597478f4d27fe44ab45c
refs/heads/master
2021-05-31T07:56:13.479570
2016-02-28T02:15:38
2016-02-28T02:15:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,780
py
import yaml import collections import os import importlib import pattern_builder import re class Settings: """Represent settings and do related things. Settings are stored in a YAML """ def __init__(self, filename=None): """Load settings from a file. Loads the settings from the YAML file given by filename (or a default path if none is specified). Initialize all fields and the pattern builder. Store all files and directories as absolute paths. """ if filename is None: filename = self.default_file() self.filename = filename self._load_from_file() self.pattern_builder = pattern_builder.PatternBuilder(self._data['substitutions']) self._load_fields() self._set_files() self._set_directories() self._extra_labels = self._data['extra_labels'] self.test_proportion = self._data['test_proportion'] def _load_from_file(self): """Load the settings from the given filename.""" with open(self.filename, 'r') as f: self._data = yaml.load(f) def session(self): """Get a SQLAlchemy session object for the database specified.""" import sqlalchemy.orm maker = sqlalchemy.orm.sessionmaker(bind=self.engine()) return maker() def engine(self): """Get a SQLAlchemy engine object for the specified database.""" import sqlalchemy db = self._data['db'] address = "%s://%s:%s@%s:%d/%s" % (db['backend'], db['username'], db['password'], db['server'], db['port'], db['name']) if "charset" in db: address += "?charset=%s" % db['charset'] return sqlalchemy.create_engine(address) def _set_files(self): """Get filenames from settings dictionary and store absolute paths.""" files = collections.defaultdict(dict, self._data['files']) self._files = {key: self.resolve_path(value) for key, value in files.iteritems()} def _set_directories(self): """Store absolute paths for directories.""" directories = collections.defaultdict(dict, self._data['directories']) self._directories = {key: self.resolve_path(value) for key, value in directories.iteritems()} def resolve_path(self, path): """Convert a filename from the settings file to an absolute path. Absolute paths are left as is. Relative paths are assumed to be relative to the settings file. """ settings_file = self.filename if not os.path.isabs(path): return os.path.join(os.path.split(settings_file)[0], path) else: return path def default_file(self): """A default location for the settings YAML file.""" return os.path.abspath("../settings.yml") def substitutions(self): """The allowable substitutions to be used when generating patterns.""" return self._data['substitutions'] def get_directory(self, name): """Retrieve the absolute path for a directory.""" return self._directories[name] def get_file(self, name): """Retrieve the absolute path for a file.""" return self._files[name] def _load_fields(self): """Load fields specified in the settings file.""" self.fields = {} for name in self._data['fields']: info = self._data['fields'][name] if 'disabled' not in info or not info['disabled']: module = importlib.import_module(info['module']) cls = info['class'] func = getattr(module, cls) params = info.get('parameters', {}) self.fields[name] = func(self, name, info, **params) def load_labels(self): """Load correct metadata labels from a YAML file. This is called when populating the database. """ with open(self.get_file('label'), "r") as f: return yaml.load(f) # TODO: the following would probably fit better somewhere else def strip_labels(self, text): """ Remove all field labels from some text. :param text: A string from which to remove labels. :return: A list of strings formed by removing labels from the text. """ labels = sum([field.labels for field in self.fields.values()], self._extra_labels) pattern = self.pattern_builder.list_pattern(labels) if pattern is None: return text return re.split(pattern, text) def map_tables(self): """ Map the Document, Box, and Line classes to their SQL tables.""" from schema import document_table, box_table, line_table from sqlalchemy import MetaData from sqlalchemy.orm import mapper, relationship from pdf_classes import Document, Box, Line metadata = MetaData() mapper(Document, document_table(self.fields, metadata), properties={'boxes': relationship(Box, back_populates='document'), 'lines': relationship(Line, back_populates='document') }) mapper(Box, box_table(metadata), properties={'document': relationship(Document, back_populates='boxes'), 'lines': relationship(Line, back_populates='box') }) mapper(Line, line_table(metadata), properties={'document': relationship(Document, back_populates='lines'), 'box': relationship(Box, back_populates='lines') }) return metadata
c4e5a95d799181a421ae69c2a2c1605b7a024145
a932f09ba6c9f5d6086ed70f7311fca41b77ef92
/wbManager/__init__.py
c4b70a893c318cc719c4b275c53b5de3db692727
[]
no_license
N0taN3rd/pywbModules
446b2d69ed4d518e1b439b50d5a61019f8639b5c
d456e3c0006e074dfcc770b4193bd3aa59b22b31
refs/heads/master
2021-01-20T21:12:07.433132
2016-08-27T20:49:39
2016-08-27T20:49:39
65,776,710
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
import sys, os if getattr(sys, 'frozen', False): # we are running in a bundle frozen = 'ever so' bundle_dir = sys._MEIPASS DEFAULT_CONFIG = os.path.join(bundle_dir,'default_config.yaml') else: DEFAULT_CONFIG = 'wbManager/default_config.yaml' def get_test_dir(): if getattr(sys, 'frozen', False): # we are running in a bundle frozen = 'ever so' bundle_dir = sys._MEIPASS return os.path.join(os.path.dirname(os.path.realpath(bundle_dir)), 'sample_archive') + os.path.sep else: return os.path.join(os.path.dirname(os.path.realpath(__file__)), 'sample_archive') + os.path.sep
b260f208bb5d54f3c60ebdd94ef44c20c976b2dc
16df28be8eafbb07384c7a1ad7bd686c7e392382
/dispersion_functions.py
c6be3a7db23e005129e3f53724dfade59aa1eb4e
[]
no_license
kd891/TuringPatterns_MRes
a81db5acbb41a7903dc477ad4e46b55dc28e6f66
262cb96b28e326e8249c09b037590c1a2a258397
refs/heads/main
2023-07-13T09:39:18.094876
2021-08-23T22:42:47
2021-08-23T22:42:47
399,262,120
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
''' This file contains all the functions required to perform the linear stability analysis 1) Finding the steady state values 2) Harmonic diagonal perturbation of the steady state in the presence of diffusion ''' import scipy from scipy import optimize import numpy as np ''' Steady State: Powell's dogleg method N.B. we have to call ss.x for the output and ss.result for the condition ''' def steady_state(func, x0, k, jacobian): ss = optimize.root(func,x0, args=k, jac=jacobian) return ss def ss_newton(func, x0, k): ss = scipy.optimize.newton(func, x0, fprime=None, args=(k,)) return ss ''' Harmonic perturbation ''' def DispRel_four(wvn, jac, D_A=0.01, D_B=0.01, D_C=0.4, D_D=0.4): jac[0, 0] += -D_A*wvn**2 jac[1, 1] += -D_B*wvn**2 jac[2, 2] += -D_C*wvn**2 jac[3, 3] += -D_D*wvn**2 eigval = np.linalg.eig(jac) return eigval def DispRel_two(wvn, jac, D_A=0.01, D_B=0.4): jac[0, 0] += -D_A*wvn**2 jac[1, 1] += -D_B*wvn**2 eigval = np.linalg.eig(jac) return eigval def DispRel_three(wvn, jac, D_A=0.01, D_B=0.4, D_C=0.4): jac[0, 0] += -D_A*wvn**2 jac[1, 1] += -D_B*wvn**2 jac[2, 2] += -D_C*wvn**2 eigval = np.linalg.eig(jac) return eigval
ff360813a0192800928a486df1db909c9c890603
e2f5a314f8f3c03acf6452c7648958632b443179
/job/migrations/0003_job_description.py
d9291a0828b7554e83bc1ece159b19be467c6c01
[]
no_license
Anas-Darwish-SB/django-job-board
8c82cff929ddcba0f23cd592aff03e81a11f9dc9
3d65320217d96b6914cbae0ab43a886cd352e1f0
refs/heads/main
2023-03-01T15:32:54.378367
2021-02-05T07:20:50
2021-02-05T07:20:50
335,994,207
0
0
null
null
null
null
UTF-8
Python
false
false
426
py
# Generated by Django 3.1.6 on 2021-02-04 17:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('job', '0002_job_job_type'), ] operations = [ migrations.AddField( model_name='job', name='description', field=models.TextField(default='', max_length=1000), preserve_default=False, ), ]
f047285cfd37ada2200725af048a79b49b00a69c
13c22985b2062d29e18885f36e64346fad7f63e3
/advertisement/serializers.py
5a064c8ab3ebf2333903959be6f4b1bdcb62a25b
[]
no_license
zozoh94/GivagoAPI
b10e3af40450c5576f25c1de2d3507dccbf0edde
43913479bc1fac9d83d59ada9f829bc431c6b356
refs/heads/master
2020-12-25T14:58:51.643452
2017-06-13T11:42:50
2017-06-13T11:42:50
66,844,100
0
0
null
2019-10-22T20:44:31
2016-08-29T13:02:25
Python
UTF-8
Python
false
false
3,103
py
from rest_framework import serializers from embed_video.backends import detect_backend from django.contrib.auth.models import User from django.contrib.auth.models import Group from taggit_serializer.serializers import (TagListSerializerField, TaggitSerializer) from django.utils.translation import ugettext_lazy as _ from .models import Ad from .models import App from sponsor.models import Sponsor from sponsor.models import SponsorManager from sponsor.serializers import SponsorSerializer class VideoSerializer(serializers.BaseSerializer): def to_representation(self, obj): video = detect_backend(obj) return { 'url': obj, 'url_embed': video.get_url(), 'thumbnail': video.get_thumbnail_url() } def to_internal_value(self, data): try: backend = detect_backend(url) backend.get_code() except UnknownBackendException: raise serializers.ValidationError(_(u'URL could not be recognized.')) except UnknownIdException: raise serializers.ValidationError(_(u'ID of this video could not be ' u'recognized.')) return data class AdSerializer(TaggitSerializer, serializers.ModelSerializer): video = VideoSerializer(required=True) author = serializers.ReadOnlyField(source='author.user.username') sponsor_url = serializers.HyperlinkedRelatedField(view_name='sponsor-detail', read_only=True, source='sponsor') sponsor = serializers.PrimaryKeyRelatedField(queryset=Sponsor.objects.all(), write_only=True, required=True) tags = TagListSerializerField(required=False, read_only=True) class Meta: model = Ad fields = ('id', 'url', 'name', 'video', 'author', 'sponsor', 'sponsor_url', 'tags') def validate_sponsor(self, value): if value is not None: try: manager_in_sponsor = value.managers.all() except SponsorManager.DoesNotExist: raise serializers.ValidationError("Sponsor don't have any manager.") try: current_manager = self.context['request'].user.sponsormanager except SponsorManager.DoesNotExist: raise serializers.ValidationError("You're not a manager.") if current_manager in manager_in_sponsor or self.context['request'].user.is_superuser: return value else: raise serializers.ValidationError("You can't assign this sponsor to the advertisement. You're not a manager of this sponsor.") else: return value class AdDetailSerializer(AdSerializer): sponsor_detail = SponsorSerializer(read_only=True, source='sponsor') class Meta: model = Ad fields = ('url', 'name', 'video', 'author', 'sponsor', 'sponsor_detail', 'tags', 'number_views', 'number_views_different_user') class AppSerializer(serializers.ModelSerializer): class Meta: model = App fields = ('id', 'name', 'link', 'thumbnail')
8f4c6030c1dc333a1e1776bfe77cbc9ba9f0bcf1
db9cc680a60997412eae035b257cc77efbcdcb06
/py3/leetcodeCN/competition/2020/2020-3-1-cp-3.py
080ce7ceb567a3597e3ddf364c513a2eb84a902e
[]
no_license
Azson/machineLearning
9630b62c73b2388a57c630644dae3ffa8e4db236
35662ddf39d322009f074ce8981e5f5d27786819
refs/heads/master
2022-05-06T07:03:23.543355
2021-08-20T14:57:25
2021-08-20T14:57:25
179,935,258
3
3
null
2019-11-04T14:26:51
2019-04-07T08:07:08
Python
UTF-8
Python
false
false
1,398
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isSubPath(self, head, root): """ :type head: ListNode :type root: TreeNode :rtype: bool """ dt = dict() def dfs(now_node, to_search): if now_node.val == to_search.val: to_search = to_search.next if to_search is None: return True else: to_search = head if now_node in dt and to_search in dt[now_node]: return False f = False if now_node.left: f |= dfs(now_node.left, to_search) if not f and to_search != head: f |= dfs(now_node.left, head) if not f and now_node.right: f |= dfs(now_node.right, to_search) if not f and to_search != head: f |= dfs(now_node.right, head) if now_node not in dt: dt[now_node] = dict() dt[now_node][to_search] = f return f return dfs(root, head)
c402d92be0fefde5dce06ba3d84f6f68b959e4b1
031be4933b53a382bf5573e1a8c3259ce7be6435
/models/tag.py
96b3562a6d2fdba334272961f4e9327a31128dfc
[]
no_license
ScarlettSamantha/depricated
8f6241bf3d357c1d5a9f561110da0a3d3604bc85
0f4e43398a4a595333371b12bd37cc145bf1ce0e
refs/heads/master
2023-02-20T14:30:19.715146
2018-07-27T14:33:20
2018-07-27T14:33:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
from uuid import uuid4 from helpers.uuid import UuidField from TransHelp import db from datetime import datetime class Tag(db.Model): id = db.Column(UuidField, unique=True, nullable=False, default=uuid4, primary_key=True) name = db.Column(db.String(255), unique=False, nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) date_updated = db.Column(db.DateTime, nullable=False, default=datetime.utcnow, onupdate=datetime.utcnow)
f3d2d04de7d85a941f4cd9cf4d9eea6843ec645f
d86305121299d4827faa19f3d5d7176e6764f9bc
/modules/bbc/chain/wallet.py
6e6b7c4009b2328617c499b54e9f82c6ab08a9a6
[ "MIT" ]
permissive
pdinkins/pythos
af5d07e7339dc7e39def66d290d7bc54bf1f3713
7cca6ae94090f5179d3e108ded78559c0775535a
refs/heads/master
2020-03-21T12:27:21.031224
2018-07-11T17:01:49
2018-07-11T17:01:49
138,553,400
4
0
null
null
null
null
UTF-8
Python
false
false
7,947
py
# Wallet # stores all functions relating to the user hash wallet # dyanmically stores data for wallet currently in use current_wallet = [] wallet_data = [] _system_architecture_dyna = [] # dumps all dynamic data def dynamic_data_dump(): current_wallet.clear() wallet_data.clear() _system_architecture_dyna.clear() class NewWallet: def __init__(self): self.timestamp = self.time_stamp() self.usr_nym = self.user_nym() self.node_build = self.user_build() self.id = self.generate_user_id() def time_stamp(self): import datetime return datetime.datetime.now() def user_nym(self): usernym = input('This info will be used to name the local wallet file.\nuser_nym> ') return usernym def user_build(self): # for testing the current local build # initial import try: import os, sys import platform import datetime import subprocess import requests import time import pynetwork.ipfs as ipfs #from classes import User, Idea #import bloacks, bloacks, chain, client #import generate, menu, writer, ledger except: print('FATAL__BUILD__ERROR') error = sys.exc_info() print(error) print(sys.exc_info()[0]) raise try: # current cpu system configuration log('0_SYSTEM_CONFIG') self._0_node_ip = requests.get('http://ip.42.pl/raw').text log(self._0_node_ip) DEBUG_headers = False if DEBUG_headers == True: self._0_node_config = requests.get('http://ip.42.pl/headers').text log(self._0_node_config) else: log('DEBUG_headers = ' + DEBUG_headers) self._system_architecture = platform.uname() log(self._system_architecture) self.node = platform.platform() log(self.node) self._python_build = platform.python_build() log(self._python_build) self._system = platform.system() log(self._system) self._python_compiler = platform.python_compiler() log(self._python_compiler) log('0_SYSTEM_CONFIGFILE') self.n0osd = [ self._0_node_ip, self._0_node_config, self._system_architecture, self.node, self._python_build, self._system, self._python_compiler ] return self.n0osd except: print(datetime.datetime.now(), 'SYSTEM LOG') error = sys.exc_info() print(error) print(sys.exc_info()[0]) raise def generate_user_id(self): import hashlib wid = hashlib.sha256() wid.update(str(self.timestamp).encode('utf=8') + str(self.usr_nym).encode('utf-8') + str(self.node_build).encode('utf-8')) return wid.hexdigest() def generate_new_wallet(): wallet = NewWallet() sys_arc = wallet.user_build() builder(wallet.id, wallet.usr_nym, sys_arc) wd = [wallet.id, wallet.usr_nym, sys_arc] for i in range(0, len(wd)): log(wd[i]) set_current_wallet(wd) def builder(id, nym, arc): try: import pynetwork.ipfs as ipfs ipfs.initialize_ipfsapi() config_file = open('config_0_node.txt', 'w') for i in range(0, len(arc)): config_file.writelines(arc[i]) config_file.close() ipfs.add_file('config_0_node.txt') except: print('__BUILD__FILE__IPFS__ERROR') import sys error = sys.exc_info() print(error) print(sys.exc_info()[0]) raise def set_current_wallet(rgw): try: d = str(input('Use recently generated wallet as current usable hash wallet [y/n]? >')).lower() #fill dynamic storage list if d == 'y': for i in range(0, len(rgw)): current_wallet.append(rgw[i]) log('Succesfully set the current usable wallet') # pipe back to client interface elif d == 'n': aus = str(input('are you sure [y/n]? > ')).lower() if aus == 'y': # pipe to client interface print('Did not set current usable wallet') elif aus == 'n': for i in range(0, len(rgw)): current_wallet.append(rgw[i]) else: raise TypeError else: raise TypeError except TypeError: print("ERROR: Not a valid input") return def print_cw(): for i in range(0, len(current_wallet)): print(current_wallet[i]) class WalletFile: def __init__(self): self.wfn = self.gwfn() self.walletfile = self.generate_nwf() def gwfn(self): # relay function for future security checks on wallet file_nym = self.cwe() return file_nym # checks if current wallet exists and generates if not def cwe(self): if not current_wallet: print('No current usable wallet') try: gen = str(input('Generate new wallet [y/n]? >')).lower() if gen == 'y': generate_new_wallet() print('Test statement for flow..........') elif gen == 'n': # pipe to function to set wallet from file pass else: raise TypeError except TypeError: print('ERROR: Invalid input') elif current_wallet: w_nym = current_wallet[0] wfn = w_nym + '.csv' return wfn def generate_nwf(self): import csv open(self.wfn, mode='w') def write_wallet(): wallet_f = WalletFile() name = wallet_f.wfn import csv with open(name, 'a', newline='') as wallet: writer = csv.writer(wallet) writer.writerow([current_wallet[0], current_wallet[1], current_wallet[2]]) def write_cwf(): import csv try: with open ('main.csv', 'w', newline='') as cwallet: writer = csv.writer(cwallet) writer.writerow([current_wallet[0], current_wallet[1], current_wallet[2]]) except FileNotFoundError: open('main.csv', 'w') return def parse_wallet(): try: wallet_data.clear() import csv walletfile = str(input('walletfile> ')) with open(walletfile) as wallet: reader = csv.reader(wallet) for row in reader: wallet_data.append(row[0]) wallet_data.append(row[1]) wallet_data.append(row[2]) except FileNotFoundError: print('ERROR: WALLET__NOT__FOUND') def log(msg): wallet_auto_log(msg) def wallet_auto_log(message): import inspect, logging import datetime as dt # Get the previous frame in the stack, otherwise it would # be this function!!! func = inspect.currentframe().f_back.f_code # Dump the message + the name of this function to the log. logging.debug("{}\t{}\t{}\t{}".format( dt.datetime.now(), func.co_filename, func.co_name, message )) debug_menu = False ''' import app.menu as m md = {'new wallet': generate_new_wallet, 'print current wallet info': print_cw, 'write wallet': write_wallet, 'quit': m.quit_menu} while debug_menu: m.initialize_menu(md, 'title') '''
531cdbf271adab4283793689ac212bbf31ec34ca
f1e1dd0a7c99045c369700bb912f27b1ef594c38
/reviews/migrations/0001_initial.py
923b221732ca647790232f6712b268d5cd540de5
[]
no_license
gamitarchana/cabdemo1
5a362cc90a4fe373a1a3e3d0c522b5bb4d664593
b9243635716dfa600aeb6d70679022f7b9af9482
refs/heads/master
2020-05-29T14:21:10.623072
2019-05-29T09:19:58
2019-05-29T09:19:58
189,192,223
0
0
null
null
null
null
UTF-8
Python
false
false
2,184
py
# Generated by Django 2.1.8 on 2019-05-20 10:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('outstation', '0001_initial'), ('login', '0001_initial'), ] operations = [ migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('review_comments', models.TextField(help_text='Add Review')), ('rating', models.PositiveSmallIntegerField(blank=True, default=0, null=True)), ('publish_date', models.DateTimeField(auto_now_add=True)), ('route', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='page_review', to='outstation.OutstationRoutePage')), ('user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user_review', to='login.UserProfile')), ], ), migrations.CreateModel( name='ReviewImage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='reviews/images/')), ('upload_date', models.DateTimeField(auto_now_add=True)), ('review', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='review_image', to='reviews.Review')), ], ), migrations.CreateModel( name='ReviewVideo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('video', models.FileField(upload_to='reviews/videos/')), ('upload_date', models.DateTimeField(auto_now_add=True)), ('review', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='review_video', to='reviews.Review')), ], ), ]
8ae8ee1ac0d9a92d5f5173c5c6da8ae64d37fb07
a65f6e9eba9fabea9b62b967e057180efe363b1d
/crm/models.py
1f9ff471d1b30ca9d910848e38e4e7a573f5b283
[]
no_license
SiriChandanaGoparaju/Foodservice
7c5f4627b4e7f9d208d76350b2805e09a8edfeb5
57fd12111ed8275c3e52ea47563d3776aedaca51
refs/heads/master
2020-03-28T18:55:31.051779
2018-10-01T01:57:44
2018-10-01T01:57:44
148,927,361
0
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
from django.db import models from django.utils import timezone # Create your models here. class Customer(models.Model): cust_name = models.CharField(max_length=50) organization = models.CharField(max_length=100, blank=True) role = models.CharField(max_length=100) email = models.EmailField(max_length=100) bldgroom = models.CharField(max_length=100) address = models.CharField(max_length=200) account_number = models.IntegerField(blank=False, null=False) city = models.CharField(max_length=50) state = models.CharField(max_length=50) zipcode = models.CharField(max_length=10) phone_number = models.CharField(max_length=50) created_date = models.DateTimeField( default=timezone.now) updated_date = models.DateTimeField(auto_now_add=True) def created(self): self.created_date = timezone.now() self.save() def updated(self): self.updated_date = timezone.now() self.save() def __str__(self): return str(self.cust_name) class Service(models.Model): cust_name = models.ForeignKey(Customer, on_delete=models.CASCADE, related_name='services') service_category = models.CharField(max_length=100) description = models.TextField() location = models.CharField(max_length=200) setup_time = models.DateTimeField( default=timezone.now) cleanup_time = models.DateTimeField( default=timezone.now) service_charge = models.DecimalField(max_digits=10, decimal_places=2) created_date = models.DateTimeField( default=timezone.now) updated_date = models.DateTimeField(auto_now_add=True) def created(self): self.acquired_date = timezone.now() self.save() def updated(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.cust_name) class Product(models.Model): cust_name = models.ForeignKey(Customer, on_delete=models.CASCADE, related_name='products') product = models.CharField(max_length=100) p_description = models.TextField() quantity = models.IntegerField() pickup_time = models.DateTimeField( default=timezone.now) charge = models.DecimalField(max_digits=10, decimal_places=2) created_date = models.DateTimeField( default=timezone.now) updated_date = models.DateTimeField(auto_now_add=True) def created(self): self.acquired_date = timezone.now() self.save() def updated(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.cust_name)
347cde7559e5110cbe0a2f1da98c7276860f087f
ebf934fb6fd4e0ebbd870db857897fbb9d8022b7
/test/nlp/hanLP_test.py
bd09b95b9eab1c22f831b1bfdcf0b9498d7ff034
[]
no_license
AidenLong/ai
6ce2bcf5928f8350ba8b440e9032ea4c39dd69ec
0901e6010bbb51a165680e52d9adaeec7e510dc1
refs/heads/master
2020-05-03T13:27:38.698490
2019-08-22T03:18:09
2019-08-22T03:18:09
178,653,209
3
2
null
null
null
null
UTF-8
Python
false
false
5,430
py
# -*- coding:utf-8 -*- # 引入java的执行环境;Jpype是一个让我们可以通过python来运行Java代码的工具包 from jpype import * # startJVM(getDefaultJVMPath(), "-ea") # java.lang.System.out.println("Hello World") # shutdownJVM() # 启动JVM,Linux需替换分号;为冒号: startJVM(getDefaultJVMPath(), "-Djava.class.path=D:\syl\dev\hanlp-1.7.4-release\hanlp-1.7.4.jar;D:\syl\dev\hanlp-1.7.4-release", "-Xms1g", "-Xmx1g") # 启动了JVM以后,就可以运行Java语句了 print("=" * 30 + "HanLP分词" + "=" * 30) # 初始化一个Java类 HanLP = JClass('com.hankcs.hanlp.HanLP') # 中文分词 print(HanLP.segment('你好,欢迎在Python中调用HanLP的API')) print("-" * 70) print("=" * 30 + "标准分词" + "=" * 30) StandardTokenizer = JClass('com.hankcs.hanlp.tokenizer.StandardTokenizer') print(StandardTokenizer.segment('你好,欢迎在Python中调用HanLP的API')) print("-" * 70) # NLP分词NLPTokenizer会执行全部命名实体识别和词性标注 print("=" * 30 + "NLP分词" + "=" * 30) NLPTokenizer = JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer') print(NLPTokenizer.segment('中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程')) print("-" * 70) print("=" * 30 + "索引分词" + "=" * 30) IndexTokenizer = JClass('com.hankcs.hanlp.tokenizer.IndexTokenizer') termList = IndexTokenizer.segment("主副食品"); for term in termList: print(str(term) + " [" + str(term.offset) + ":" + str(term.offset + len(term.word)) + "]") print("-" * 70) print("=" * 30 + " CRF分词" + "=" * 30) print("-" * 70) print("=" * 30 + " 极速词典分词" + "=" * 30) SpeedTokenizer = JClass('com.hankcs.hanlp.tokenizer.SpeedTokenizer') print(NLPTokenizer.segment('江西鄱阳湖干枯,中国最大淡水湖变成大草原')) print("-" * 70) print("=" * 30 + " 自定义分词" + "=" * 30) CustomDictionary = JClass('com.hankcs.hanlp.dictionary.CustomDictionary') CustomDictionary.add('攻城狮') CustomDictionary.add('单身狗') HanLP = JClass('com.hankcs.hanlp.HanLP') print(HanLP.segment('攻城狮逆袭单身狗,迎娶白富美,走上人生巅峰')) print("-" * 70) print("=" * 20 + "命名实体识别与词性标注" + "=" * 30) NLPTokenizer = JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer') print(NLPTokenizer.segment('中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程')) print("-" * 70) document = "水利部水资源司司长陈明忠9月29日在国务院新闻办举行的新闻发布会上透露," \ "根据刚刚完成了水资源管理制度的考核,有部分省接近了红线的指标," \ "有部分省超过红线的指标。对一些超过红线的地方,陈明忠表示,对一些取用水项目进行区域的限批," \ "严格地进行水资源论证和取水许可的批准。" print("=" * 30 + "关键词提取" + "=" * 30) print(HanLP.extractKeyword(document, 8)) print("-" * 70) print("=" * 30 + "自动摘要" + "=" * 30) print(HanLP.extractSummary(document, 3)) print("-" * 70) text = r"算法工程师\n 算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。\n \n 1职位简介\n 算法工程师是一个非常高端的职位;\n 专业要求:计算机、电子、通信、数学等相关专业;\n 学历要求:本科及其以上的学历,大多数是硕士学历及其以上;\n 语言要求:英语要求是熟练,基本上能阅读国外专业书刊;\n 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。\n\n2研究方向\n 视频算法工程师、图像处理算法工程师、音频算法工程师 通信基带算法工程师\n \n 3目前国内外状况\n 目前国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。\n 在计算机音视频和图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Reduction),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。\n 在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。\n 另外数据挖掘、互联网搜索算法也成为当今的热门方向。\n" print("=" * 30 + "短语提取" + "=" * 30) print(HanLP.extractPhrase(text, 10)) print("-" * 70) shutdownJVM()
0b8a4d987be1c050c59b6bfd3e16eb59b6970292
343f954b367cf9a7e136c3cf748bdac6b5d40291
/web/docker_addons/provider.py
ed2f64b993c8892a4306c51687891c5645b43ed8
[]
no_license
TigerAppsOrg/TigerHost
e1e6ab69d0691af8fb7a7f22acae275b254b38f6
df2bbc2c0f7b593930a5c5bc038232f66394f8c5
refs/heads/master
2023-02-07T10:21:55.134366
2016-05-25T01:59:57
2016-05-25T01:59:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,923
py
import docker from api_server.addons.providers.base_provider import BaseAddonProvider from api_server.addons.providers.exceptions import AddonProviderError from django.conf import settings from docker_addons.docker_client import create_client from docker_addons.models import ContainerInfo class DockerAddonProvider(BaseAddonProvider): def __init__(self, container_type, config_name): """Create a new Docker addon provider for the specified container type. :param docker_addons.containers.types.AddonTypes container_type: the addon type :param str config_name: the name of the config to store in """ self.config_name = config_name self.docker_client = create_client() self.container_type = container_type def _get_config_name(self, config_customization=None): if config_customization is None: return self.config_name return config_customization + '_' + self.config_name def begin_provision(self, app_id): """Kick off the provision process and return a UUID for the new addon. This method MUST return immediately. In the event of errors, raise any subclass of :py:obj:`AddonProviderError <api_server.addons.providers.exceptions.AddonProviderError>`. :param str app_id: the ID of the app that this addon will be for :rtype: dict :return: A dictionary with the following keys:\{ 'message': 'the message to be displayed to the user', 'uuid': 'the unique ID for this addon. Must be a UUID object.', } :raises api_server.addons.providers.exceptions.AddonProviderError: If the resource cannot be allocated. """ instance = ContainerInfo.objects.create() container = self.container_type.get_container( container_info=instance, docker_client=self.docker_client, network_name=settings.DOCKER_NETWORK, ) try: container.run_container() except (docker.errors.APIError, docker.errors.DockerException): raise AddonProviderError('Addon cannot be allocated.') return { 'message': 'Addon allocated. Please wait a while for it to become available. The URL will be stored at {} or {}.'.format(self.config_name, self._get_config_name('<CUSTOM_NAME>')), 'uuid': instance.uuid, } def provision_complete(self, uuid): """Check on the status of provision. This must return immediately. :param uuid.UUID uuid: The UUID returned from :py:meth:`begin_provision` :rtype: tuple :return: (bool, int) - The first value should be True if provision is complete. The second value is an optional value to tell the server how long (in seconds) to wait before checking in again. Note that this is only looked at if the first value is False :raises api_server.addons.providers.exceptions.AddonProviderError: If provision failed. """ return True, 0 def get_config(self, uuid, config_customization=None): """Get the config necesary to allow the app to use this addon's resources. :param uuid.UUID uuid: The UUID returned from :py:meth:`begin_provision` :param str config_customization: A string used to avoid conflict in config variable names. This string should be incorporated into each of the config variable names somehow, for example, <custom_name>_DATABASE_URL. :rtype: dict :return: A dictionary with the following keys:\{ 'config':\{ 'ENV_VAR1': ... ... } } :raises api_server.addons.providers.exceptions.AddonProviderError: If the config cannot be generated for some reason (say, provision never started/failed). """ try: instance = ContainerInfo.objects.get(uuid=uuid) except ContainerInfo.DoesNotExist: raise AddonProviderError( 'Addon with uuid {} does not exist.'.format(uuid)) container = self.container_type.get_container( container_info=instance, docker_client=self.docker_client, network_name=settings.DOCKER_NETWORK, ) return { 'config': { self._get_config_name(config_customization=config_customization): container.get_url(), } } def deprovision(self, uuid): """Kicks off the deprovision process. This should return right away. :param uuid.UUID uuid: The UUID returned from :py:meth:`begin_provision` :rtype: dict :return: A dictionary with the following keys:\{ 'message': 'The message to be displayed to the user.' } :raises api_server.addons.providers.exceptions.AddonProviderError: If deprovision cannot start, or if it has already started. """ try: instance = ContainerInfo.objects.get(uuid=uuid) except ContainerInfo.DoesNotExist: raise AddonProviderError( 'Addon with uuid {} does not exist.'.format(uuid)) container = self.container_type.get_container( container_info=instance, docker_client=self.docker_client, network_name=settings.DOCKER_NETWORK, ) try: container.stop_container() except (docker.errors.APIError, docker.errors.DockerException) as e: raise AddonProviderError('{}'.format(e)) return { 'message': 'Addon deleted. PPlease remove {config_name} or {custom_name} manually.'.format( config_name=self.config_name, custom_name=self._get_config_name('<CUSTOM_NAME>')) }
60a5a3b2d88f1b5cfc9138ecdb5aa12bafdb305b
b5b5786665bf242bef93883b3689f4bda192f916
/minimum number of operation.py
7b921a3df547ec96560cf627e68889b20ae4e415
[]
no_license
Manojna52/data-structures-with-python
c9bbd44bbedeb3c4f2d6188e1e0a579ee22d15e9
ae4df664a90ce9df83ca75354c15416d74f86da5
refs/heads/master
2023-03-19T06:02:58.028046
2021-03-20T04:28:40
2021-03-20T04:28:40
349,619,394
0
0
null
2021-03-20T04:28:41
2021-03-20T03:43:45
Python
UTF-8
Python
false
false
176
py
x=input() x=int(x) def target(x): if(x==0): return 0; if(x%2==0): return 1+target(x//2); if(x%2!=0): return 1+target(x-1); print(target(x))
151e27aa8434d20f0181f26549e74a8f679a726c
119a40ccae50e41ee1b902f06785faa404e4f8e9
/gen_zip.py
6847973b4f6e821ff275c883d668defafff54276
[]
no_license
randomdude999/smwc-preview
ffe8eda8da02b8b801c561c0acbac76f24e1faa2
69d760c7712d5e4e66afe7b3089ff8a6be4c36c3
refs/heads/master
2022-04-04T07:06:09.042427
2017-10-25T21:22:55
2017-10-25T21:22:55
108,280,176
1
2
null
2020-02-17T13:50:38
2017-10-25T14:16:50
Python
UTF-8
Python
false
false
1,843
py
import subprocess import zipfile import fnmatch import os # needed for building the extension chrome_exe = os.environ["CHROME_EXE"] exclude_from_zip = [ ".idea", "settings.json", "gen_zip.py", ".gitignore", "chrome_ext.pem", "install_mode", "smwc_preview.zip", os.path.join("*", "error.log"), os.path.join(".", "native_messaging_host", "smwc_preview.json"), ".git", os.path.join("*", "__pycache__"), "*.py[co]", "README_user.txt", "README.md", os.path.join(".", "uri_handler", "uri_format.txt") ] if os.path.exists("chrome_ext.pem"): result = subprocess.run([chrome_exe, "--pack-extension=" + os.path.abspath("chrome_ext"), "--pack-extension-key=" + os.path.abspath("chrome_ext.pem")]) if result.returncode != 0: print(f"chrome exited with error code {result.returncode}") with zipfile.ZipFile('smwc_preview.zip', 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk("."): for x in dirs.copy(): # iterate over copy but modify original, modifying the thing you're iterating is bad and causes cryptic errors root_relative_path = os.path.join(root if root != '.' else '', x) for pattern in exclude_from_zip: if fnmatch.fnmatch(root_relative_path, pattern): dirs.remove(x) break for x in files: root_relative_path = os.path.join(root if root != '.' else '', x) include = True for pattern in exclude_from_zip: if fnmatch.fnmatch(root_relative_path, pattern): include = False break if include: zipf.write(root_relative_path) zipf.write("README_user.txt", "README.txt")
023ece318ab75778e99245e1d84e28a375bf3258
354ebc252c46fa844e1ff93ac554d3a0e1535ddd
/ex30.py
465f243b9a42954578e1282df641779202318d59
[]
no_license
yuliqing16/python_learn
de568e23e57141fe26b6db5e8c9a00899676f232
ba7daa7fda08ea99ea3c1b30be9d18afd07deec8
refs/heads/master
2018-11-05T18:46:20.534032
2018-08-27T06:25:17
2018-08-27T06:25:17
114,659,812
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
people = 30 cars = 40 buses = 15 if cars > people: print("We should take the cars.") elif cars < people: print("We should not take the cars.") else: print("We still can't decide.")
98d3c9a40cc074f8a5e5e4e336dccf81f7542b34
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_koshers.py
7df1793076be59aa259e7fa5dbfcd802dd19301a
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
from xai.brain.wordbase.adjectives._kosher import _KOSHER #calss header class _KOSHERS(_KOSHER, ): def __init__(self,): _KOSHER.__init__(self) self.name = "KOSHERS" self.specie = 'adjectives' self.basic = "kosher" self.jsondata = {}
b05a9b35d1dc2bc4a1f6b1502a4d2517cc98fd12
cb6b6ee58dbee4604058a3e44142d0ffb7906ba8
/pypif/obj/common/reference.py
d73228acef181e4c1721f6f402341b3e3a654819
[]
no_license
nad2000/pypif
a3991dab9bf3e0c558a2891b301c3dec494096a6
dc9923792f91c53ac649b403620a387e1d86cb83
refs/heads/master
2020-04-07T07:43:57.980477
2016-01-13T21:54:58
2016-01-13T21:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,256
py
from pypif.obj.common.name import Name from pypif.obj.common.pages import Pages from pypif.obj.common.pio import Pio class Reference(Pio): """ Information about a referenced publication. """ def __init__(self, doi=None, isbn=None, issn=None, url=None, title=None, publisher=None, journal=None, volume=None, issue=None, year=None, pages=None, authors=None, editors=None, references=None, **kwargs): """ Constructor. :param doi: String with DOI of the published work :param isbn: String with ISBN of the published work :param issn: String with ISSN of the published work :param url: String with URL to the published work :param title: String with title of the published work. :param publisher: String with publisher of the work. :param journal: String with the journal in which the work was published. :param volume: String with the volume in which the work was published. :param issue: String with the issue in which the work was published. :param year: String with the year in which the work was published. :param pages: :class:`.Pages` object with the starting and ending pages for the published work. :param authors: List of :class:`.Name` objects with information about the authors. :param editors: List of :class:`.Name` objects with information about the editors. :param references: List of :class:`.Reference` objects with works cited by this published work. :param kwargs: Dictionary of field names not supported. """ super(Reference, self).__init__(**kwargs) # These members have explicit setters and getters self._pages = None self._authors = None self._editors = None self._references = None # Set the values for this object self.doi = doi self.isbn = isbn self.issn = issn self.url = url self.title = title self.publisher = publisher self.journal = journal self.volume = volume self.issue = issue self.year = year self.pages = pages self.authors = authors self.editors = editors self.references = references @property def pages(self): return self._pages @pages.setter def pages(self, value): self._pages = self._get_object(Pages, value) @pages.deleter def pages(self): del self._pages @property def authors(self): return self._authors @authors.setter def authors(self, value): self._authors = self._get_object(Name, value) @authors.deleter def authors(self): del self._authors @property def editors(self): return self._editors @editors.setter def editors(self, value): self._editors = self._get_object(Name, value) @editors.deleter def editors(self): del self._editors @property def references(self): return self._references @references.setter def references(self, value): self._references = self._get_object(Reference, value) @references.deleter def references(self): del self._references
e365c6caa96ff93ca3ae52f83d2dad7fe420db8a
e8ae11e5017507da59e2e92d423b6a1994490de4
/env/lib/python2.7/site-packages/azure/batch/models/node_agent_sku_paged.py
421f4ce3570b08e498a112d19f4b911761114146
[]
no_license
teopeurt/ansible-ubuntu-server
613d00cea28bc6531acf4a39aeeb9cd0baa2a391
b5b6127d2ee9723c5088443efe2ffb8ae30cfea7
refs/heads/master
2021-06-28T12:49:50.935753
2017-07-31T17:34:33
2017-07-31T17:34:33
98,912,808
0
1
null
2020-07-24T00:05:31
2017-07-31T17:32:56
Makefile
UTF-8
Python
false
false
1,386
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class NodeAgentSkuPaged(Paged): """ A paging container for iterating over a list of NodeAgentSku object """ _attribute_map = { 'next_link': {'key': 'odata\\.nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[NodeAgentSku]'} } def __init__(self, *args, **kwargs): super(NodeAgentSkuPaged, self).__init__(*args, **kwargs)