blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
c47b2a335796c963552a994e83d36361618a343d
7073c53c421018bd1a2c8a14e55c61bcf7c8ed04
/ask_1.py
c1ef86a87a8fd62f35b2730de5a77d797f38205a
[]
no_license
AntonisEkatommatis/1o_Eksamino_PYTHON
0a0e075a2bff9705bca34ab3064ae58eab3305e1
d9c019d62bed1ed71f9c4a441c0fb814ffa3a730
refs/heads/master
2020-04-21T14:40:08.915040
2019-02-12T19:32:55
2019-02-12T19:32:55
169,642,646
0
0
null
null
null
null
UTF-8
Python
false
false
1,076
py
#Ergasia 1 #Antonis Ekatommatis #Eisagwgh sthn episthmh twn ypologistwn #1o Eksamino #Dimiourgia Synartisis def sumIntervals (L): a=[] b=[] asin=0 bsin=0 apot=0 #Eisagawgi sthn lista a oles tis arxes apo ta oria for i in range(len(L)): a.append(L[i][0]) #Eisagwgi sthn lista b ta teleutaia psifia kathe oriou for i in range(len(L)): b.append(L[i][1]) #Bubblesort N=len(a) for i in range(1,N,1): for j in range(N-1,i-1,-1): if a[j] < a[j-1]: a[j],a[j-1]=a[j-1],a[j] b[j],b[j-1]=b[j-1],b[j] #Elegxoi gia na vgei to athroisma for i in range(1,len(a)): while a[i] < b[i-1]: a[i]=a[i]+1 for i in range(len(a)): while a[i] > b[i]: b[i]=b[i]+1 for item in a: asin+=item for item in b: bsin+=item apot=bsin-asin return apot print sumIntervals([[1,2], [6, 10], [11, 15]]) print sumIntervals([[1,4], [7, 10], [3, 5]]) print sumIntervals([[1,5], [10, 20], [1, 6], [16, 19], [5, 11]])
9dae9e1cb02e03ac83133c64c0010ed526601e15
bd9c74247381121f71f3dde6b55c67856f58e124
/编程题/第4章-6 输出前 n 个Fibonacci数 (15分).py
d9428ceda6a9128e079ff4764f63ec641e09169e
[]
no_license
Redomeliu/Python
302cd5abd89f7040911c8afb1db6faee6d43de64
9f5568ec59d30ce0f7d572d072b86088e933abc8
refs/heads/master
2023-01-05T19:51:00.795864
2020-10-29T02:42:36
2020-10-29T02:42:36
308,293,416
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
def Fibonacci(i): lis = [1,1] n = 1 while(i>n): lis.append(lis[n]+lis[n-1]) n +=1 return lis[i] x = int(input()) count = 0 for i in range(x): count +=1 print(f'{Fibonacci(i):>11d}',end="") if count == 5 or i==x-1: print('\n') count=0 if x < 1: print('Invalid.')
14c97cc76c6333d459e2b615402d70304853e1d8
520a9b3d11f4a4ce93d0927a8fd5c575252b3559
/lib/python2.7/site-packages/sphinx/registry.py
cdae7722411e7bcd78f8a786996f665d8862a229
[ "Apache-2.0" ]
permissive
Larsende/F5_Agility_2018_Security_in_AWS
90c7404962313b13cec63321e6fc38bdc9516dd0
1bebcf9d441a3e3b7348757fcbc83844fbb0132e
refs/heads/master
2020-03-20T02:23:59.099742
2018-08-12T15:28:50
2018-08-12T15:28:50
137,111,587
0
2
Apache-2.0
2018-08-03T21:19:48
2018-06-12T18:21:58
Python
UTF-8
Python
false
false
15,315
py
# -*- coding: utf-8 -*- """ sphinx.registry ~~~~~~~~~~~~~~~ Sphinx component registry. :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import print_function import traceback from pkg_resources import iter_entry_points from six import iteritems, itervalues, string_types from sphinx.domains import ObjType from sphinx.domains.std import GenericObject, Target from sphinx.errors import ExtensionError, SphinxError, VersionRequirementError from sphinx.extension import Extension from sphinx.locale import __ from sphinx.parsers import Parser as SphinxParser from sphinx.roles import XRefRole from sphinx.util import import_object from sphinx.util import logging from sphinx.util.console import bold # type: ignore from sphinx.util.docutils import directive_helper if False: # For type annotation from typing import Any, Callable, Dict, Iterator, List, Type, Union # NOQA from docutils import nodes # NOQA from docutils.io import Input # NOQA from docutils.parsers import Parser # NOQA from docutils.transforms import Transform # NOQA from sphinx.application import Sphinx # NOQA from sphinx.builders import Builder # NOQA from sphinx.domains import Domain, Index # NOQA from sphinx.environment import BuildEnvironment # NOQA from sphinx.ext.autodoc import Documenter # NOQA from sphinx.util.typing import RoleFunction # NOQA logger = logging.getLogger(__name__) # list of deprecated extensions. Keys are extension name. # Values are Sphinx version that merge the extension. EXTENSION_BLACKLIST = { "sphinxjp.themecore": "1.2" } # type: Dict[unicode, unicode] class SphinxComponentRegistry(object): def __init__(self): self.autodoc_attrgettrs = {} # type: Dict[Type, Callable[[Any, unicode, Any], Any]] self.builders = {} # type: Dict[unicode, Type[Builder]] self.documenters = {} # type: Dict[unicode, Type[Documenter]] self.domains = {} # type: Dict[unicode, Type[Domain]] self.domain_directives = {} # type: Dict[unicode, Dict[unicode, Any]] self.domain_indices = {} # type: Dict[unicode, List[Type[Index]]] self.domain_object_types = {} # type: Dict[unicode, Dict[unicode, ObjType]] self.domain_roles = {} # type: Dict[unicode, Dict[unicode, Union[RoleFunction, XRefRole]]] # NOQA self.post_transforms = [] # type: List[Type[Transform]] self.source_parsers = {} # type: Dict[unicode, Parser] self.source_inputs = {} # type: Dict[unicode, Input] self.translators = {} # type: Dict[unicode, nodes.NodeVisitor] self.transforms = [] # type: List[Type[Transform]] def add_builder(self, builder): # type: (Type[Builder]) -> None logger.debug('[app] adding builder: %r', builder) if not hasattr(builder, 'name'): raise ExtensionError(__('Builder class %s has no "name" attribute') % builder) if builder.name in self.builders: raise ExtensionError(__('Builder %r already exists (in module %s)') % (builder.name, self.builders[builder.name].__module__)) self.builders[builder.name] = builder def preload_builder(self, app, name): # type: (Sphinx, unicode) -> None if name is None: return if name not in self.builders: entry_points = iter_entry_points('sphinx.builders', name) try: entry_point = next(entry_points) except StopIteration: raise SphinxError(__('Builder name %s not registered or available' ' through entry point') % name) self.load_extension(app, entry_point.module_name) def create_builder(self, app, name): # type: (Sphinx, unicode) -> Builder if name not in self.builders: raise SphinxError(__('Builder name %s not registered') % name) return self.builders[name](app) def add_domain(self, domain): # type: (Type[Domain]) -> None logger.debug('[app] adding domain: %r', domain) if domain.name in self.domains: raise ExtensionError(__('domain %s already registered') % domain.name) self.domains[domain.name] = domain def has_domain(self, domain): # type: (unicode) -> bool return domain in self.domains def create_domains(self, env): # type: (BuildEnvironment) -> Iterator[Domain] for DomainClass in itervalues(self.domains): domain = DomainClass(env) # transplant components added by extensions domain.directives.update(self.domain_directives.get(domain.name, {})) domain.roles.update(self.domain_roles.get(domain.name, {})) domain.indices.extend(self.domain_indices.get(domain.name, [])) for name, objtype in iteritems(self.domain_object_types.get(domain.name, {})): domain.add_object_type(name, objtype) yield domain def override_domain(self, domain): # type: (Type[Domain]) -> None logger.debug('[app] overriding domain: %r', domain) if domain.name not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain.name) if not issubclass(domain, self.domains[domain.name]): raise ExtensionError(__('new domain not a subclass of registered %s ' 'domain') % domain.name) self.domains[domain.name] = domain def add_directive_to_domain(self, domain, name, obj, has_content=None, argument_spec=None, **option_spec): # type: (unicode, unicode, Any, bool, Any, Any) -> None logger.debug('[app] adding directive to domain: %r', (domain, name, obj, has_content, argument_spec, option_spec)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) directives = self.domain_directives.setdefault(domain, {}) directives[name] = directive_helper(obj, has_content, argument_spec, **option_spec) def add_role_to_domain(self, domain, name, role): # type: (unicode, unicode, Union[RoleFunction, XRefRole]) -> None logger.debug('[app] adding role to domain: %r', (domain, name, role)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) roles = self.domain_roles.setdefault(domain, {}) roles[name] = role def add_index_to_domain(self, domain, index): # type: (unicode, Type[Index]) -> None logger.debug('[app] adding index to domain: %r', (domain, index)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) indices = self.domain_indices.setdefault(domain, []) indices.append(index) def add_object_type(self, directivename, rolename, indextemplate='', parse_node=None, ref_nodeclass=None, objname='', doc_field_types=[]): # type: (unicode, unicode, unicode, Callable, nodes.Node, unicode, List) -> None logger.debug('[app] adding object type: %r', (directivename, rolename, indextemplate, parse_node, ref_nodeclass, objname, doc_field_types)) # create a subclass of GenericObject as the new directive directive = type(directivename, # type: ignore (GenericObject, object), {'indextemplate': indextemplate, 'parse_node': staticmethod(parse_node), 'doc_field_types': doc_field_types}) self.add_directive_to_domain('std', directivename, directive) self.add_role_to_domain('std', rolename, XRefRole(innernodeclass=ref_nodeclass)) object_types = self.domain_object_types.setdefault('std', {}) object_types[directivename] = ObjType(objname or directivename, rolename) def add_crossref_type(self, directivename, rolename, indextemplate='', ref_nodeclass=None, objname=''): # type: (unicode, unicode, unicode, nodes.Node, unicode) -> None logger.debug('[app] adding crossref type: %r', (directivename, rolename, indextemplate, ref_nodeclass, objname)) # create a subclass of Target as the new directive directive = type(directivename, # type: ignore (Target, object), {'indextemplate': indextemplate}) self.add_directive_to_domain('std', directivename, directive) self.add_role_to_domain('std', rolename, XRefRole(innernodeclass=ref_nodeclass)) object_types = self.domain_object_types.setdefault('std', {}) object_types[directivename] = ObjType(objname or directivename, rolename) def add_source_parser(self, suffix, parser): # type: (unicode, Type[Parser]) -> None logger.debug('[app] adding search source_parser: %r, %r', suffix, parser) if suffix in self.source_parsers: raise ExtensionError(__('source_parser for %r is already registered') % suffix) self.source_parsers[suffix] = parser def get_source_parser(self, filename): # type: (unicode) -> Type[Parser] for suffix, parser_class in iteritems(self.source_parsers): if filename.endswith(suffix): break else: # use special parser for unknown file-extension '*' (if exists) parser_class = self.source_parsers.get('*') if parser_class is None: raise SphinxError(__('source_parser for %s not registered') % filename) else: if isinstance(parser_class, string_types): parser_class = import_object(parser_class, 'source parser') # type: ignore return parser_class def get_source_parsers(self): # type: () -> Dict[unicode, Parser] return self.source_parsers def create_source_parser(self, app, filename): # type: (Sphinx, unicode) -> Parser parser_class = self.get_source_parser(filename) parser = parser_class() if isinstance(parser, SphinxParser): parser.set_application(app) return parser def add_source_input(self, input_class): # type: (Type[Input]) -> None for filetype in input_class.supported: if filetype in self.source_inputs: raise ExtensionError(__('source_input for %r is already registered') % filetype) self.source_inputs[filetype] = input_class def get_source_input(self, filename): # type: (unicode) -> Type[Input] parser = self.get_source_parser(filename) for filetype in parser.supported: if filetype in self.source_inputs: input_class = self.source_inputs[filetype] break else: # use special source_input for unknown file-type '*' (if exists) input_class = self.source_inputs.get('*') if input_class is None: raise SphinxError(__('source_input for %s not registered') % filename) else: return input_class def add_translator(self, name, translator): # type: (unicode, Type[nodes.NodeVisitor]) -> None logger.info(bold(__('Change of translator for the %s builder.') % name)) self.translators[name] = translator def get_translator_class(self, builder): # type: (Builder) -> Type[nodes.NodeVisitor] return self.translators.get(builder.name, builder.default_translator_class) def create_translator(self, builder, document): # type: (Builder, nodes.Node) -> nodes.NodeVisitor translator_class = self.get_translator_class(builder) return translator_class(builder, document) def add_transform(self, transform): # type: (Type[Transform]) -> None logger.debug('[app] adding transform: %r', transform) self.transforms.append(transform) def get_transforms(self): # type: () -> List[Type[Transform]] return self.transforms def add_post_transform(self, transform): # type: (Type[Transform]) -> None logger.debug('[app] adding post transform: %r', transform) self.post_transforms.append(transform) def get_post_transforms(self): # type: () -> List[Type[Transform]] return self.post_transforms def add_documenter(self, objtype, documenter): # type: (unicode, Type[Documenter]) -> None self.documenters[objtype] = documenter def add_autodoc_attrgetter(self, typ, attrgetter): # type: (Type, Callable[[Any, unicode, Any], Any]) -> None self.autodoc_attrgettrs[typ] = attrgetter def load_extension(self, app, extname): # type: (Sphinx, unicode) -> None """Load a Sphinx extension.""" if extname in app.extensions: # alread loaded return if extname in EXTENSION_BLACKLIST: logger.warning(__('the extension %r was already merged with Sphinx since ' 'version %s; this extension is ignored.'), extname, EXTENSION_BLACKLIST[extname]) return # update loading context app._setting_up_extension.append(extname) try: mod = __import__(extname, None, None, ['setup']) except ImportError as err: logger.verbose(__('Original exception:\n') + traceback.format_exc()) raise ExtensionError(__('Could not import extension %s') % extname, err) if not hasattr(mod, 'setup'): logger.warning(__('extension %r has no setup() function; is it really ' 'a Sphinx extension module?'), extname) metadata = {} # type: Dict[unicode, Any] else: try: metadata = mod.setup(app) except VersionRequirementError as err: # add the extension name to the version required raise VersionRequirementError( __('The %s extension used by this project needs at least ' 'Sphinx v%s; it therefore cannot be built with this ' 'version.') % (extname, err) ) if metadata is None: metadata = {} if extname == 'rst2pdf.pdfbuilder': metadata['parallel_read_safe'] = True elif not isinstance(metadata, dict): logger.warning(__('extension %r returned an unsupported object from ' 'its setup() function; it should return None or a ' 'metadata dictionary'), extname) metadata = {} app.extensions[extname] = Extension(extname, mod, **metadata) app._setting_up_extension.pop()
fd6eff07502fb4045b9c9bea91c6e2e5360f0a6c
dfac09701ae836ca8ff682ac741535eb84fec3af
/Dasha/modules/info.py
e291873d2b028cd6961d07b17aaaa10885835902
[]
no_license
Srinath2006/Dasha
a166c2274e15e0b7a73a7216ae0a533843647f1d
54a2025c2cea0f89c322249578c271d132b90fd0
refs/heads/main
2023-08-23T02:23:26.245367
2021-11-02T14:28:39
2021-11-02T14:28:39
423,876,040
0
0
null
null
null
null
UTF-8
Python
false
false
2,235
py
from Dasha import ubot from Dasha.events import dasha from . import get_user from telethon.tl.functions.users import GetFullUserRequest @dasha(pattern="^/info ?(.*)") async def new(event): if not event.reply_to_msg_id and not event.pattern_match.group(1): user = await ubot.get_entity(event.sender_id) else: try: user, extra = await get_user(event) except TypeError as e: print(e) pass user_id = user.id first_name = user.first_name last_name = user.last_name username = user.username text = "╒═══「<b>User info</b>:\n" if first_name: text += f"<b>First Name:</b> {first_name}\n" if last_name: text += f"<b>Last Name:</b> {last_name}\n" ups = None if username: text += f"<b>Username:</b> @{username}\n" ups = await event.client(GetFullUserRequest(user.username)) text += f"<b>ID:</b> <code>{user_id}</code>\n" text += f'<b>User link:</b> <a href="tg://user?id={user_id}">{first_name}</a>' if ups: text += f"\n\n<b>Bio:</b> <code>{ups.about}</code>" text += f"\n\n<b>Gbanned: No</b>" text += f"\n\n╘══「 <b>Groups count:</b> {ups.common_chats_count} 」" await event.edit(text, parse_mode='html') @dasha(pattern="^/id ?(.*)") async def _t(event): if not event.reply_to_msg_id and not event.pattern_match.group(1): user = await ubot.get_entity(event.sender_id) else: try: user, extra = await get_user(event) except TypeError as e: print(e) pass user_id = user.id chat_id = event.chat_id msg_id = event.id event_id = event.id c_id = str(chat_id).replace('-100', '') if event.reply_to_msg_id: event_id = event.reply_to_msg_id text = f"**[Chat ID]**(http://t.me/{event.chat.username}) : `{chat_id}`\n" text += f"**[Message ID]**(http://t.me/c/{c_id}/{event_id}) : `{event_id}`\n" text += f"**[User ID]**(tg://user?id={user_id}) : `{user_id}`" if event.reply_to_msg_id: msg = await event.get_reply_message() if msg.sticker: type = "Sticker" elif msg.audio: type = "Audio" elif msg.gif: type = "Gif" elif msg.video: type = "Video" elif msg.media: type = "Media" if msg.media: file_id = msg.file.id text += f"\n\n**Media Type:** `{type}`\n" text += f"**Fid:** `{file_id}`" await event.edit(text)
88842d784deeecde1c87e82ab837462e8ead03f9
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/ZZsnGAjYLyosG9zmH_12.py
aa9e707c08223592b4481ac84b90ac438ecda630
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
def flash(fc): var1, oper, var2 = fc return var1 + var2 if oper == '+' else var1 - var2 if oper == '-' else var1 * var2 if oper == 'x' else round(var1 / var2, 2) if oper == '/' and var2 else None
da9bfaca059b92580491b71e850ef87666555b90
9baa968c71efebb42c70c130de930cb4810ded31
/OS_IMUDataConversion.py
05e2d59dff4bb385de0ff7c99c81dc6fa852ff76
[]
no_license
jravenhorst909/MoveShelf_IMU_analyser
02cdc0e7f54f9120611106314ad8c055dfb7ad22
cadc3c405b4f61f4d44a29783824889e1f204360
refs/heads/main
2023-02-12T20:46:16.826991
2021-01-06T10:21:20
2021-01-06T10:21:20
311,619,156
8
1
null
2021-01-06T10:21:21
2020-11-10T10:12:03
Python
UTF-8
Python
false
false
1,582
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 8 13:28:40 2020 @author: Joris Ravenhorst """ import opensim as osim def IMUdata_conversion(trial_dir_path,TrialName): # Build an Xsens Settings Object. # Instantiate the Reader Settings Class xsensSettings = osim.XsensDataReaderSettings('myIMUMappings.xml') # Instantiate an XsensDataReader xsens = osim.XsensDataReader(xsensSettings) # Read in seprate tables of data from the specified IMU file(s) tables = xsens.read(trial_dir_path) # get the trial name from the settings trialID = xsensSettings.get_trial_prefix() # Get Orientation Data as quaternions quatTable = xsens.getOrientationsTable(tables) # Write to file osim.STOFileAdapterQuaternion.write(quatTable, trial_dir_path +'/'+ trialID + '_orientations.sto') # OPTIONAL: # # Get Acceleration Data # accelTable = xsens.getLinearAccelerationsTable(tables) # # Write to file # osim.STOFileAdapterVec3.write(accelTable, trial_dir_path +'/'+ trialID + '_linearAccelerations.sto') # # Get Magnetic (North) Heading Data # magTable = xsens.getMagneticHeadingTable(tables) # # Write to file # osim.STOFileAdapterVec3.write(magTable, trial_dir_path +'/'+ trialID + '_magneticNorthHeadings.sto') # # Get Angular Velocity Data # angVelTable = xsens.getAngularVelocityTable(tables) # # Write to file # osim.STOFileAdapterVec3.write(angVelTable, trial_dir_path +'/'+ trialID + '_angularVelocities.sto') return trialID
bec5d5fbb09b6260d514209bc438f344d215832b
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp/sblp_ut=3.5_rd=1_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=30/sched.py
a85202e958d39e172c17afa700742b708255c6d6
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
-S 0 -X RUN -Q 0 -L 2 84 250 -S 1 -X RUN -Q 0 -L 2 80 250 -S 0 -X RUN -Q 0 -L 2 74 250 -S 0 -X RUN -Q 0 -L 2 59 250 -S 2 -X RUN -Q 1 -L 1 57 200 -S 2 -X RUN -Q 1 -L 1 48 175 -S 2 -X RUN -Q 1 -L 1 40 125 -S 2 -X RUN -Q 1 -L 1 33 300 -S 3 -X RUN -Q 2 -L 1 29 100 -S 3 -X RUN -Q 2 -L 1 27 125 -S 3 -X RUN -Q 2 -L 1 21 100 -S 3 -X RUN -Q 2 -L 1 19 150 -S 4 -X RUN -Q 3 -L 1 19 100 -S 4 -X RUN -Q 3 -L 1 15 100 -S 4 -X RUN -Q 3 -L 1 14 100
74be8d4d0984d5ac6a6f034cc22a1d68d58228f7
369e4a831387a477a1e37b995b264504e6ed91bd
/nomadiq_app/run.py
66275b06c174c1dd71971b802216f699235dbd0b
[]
no_license
geneahn/nomadiq_repo
2544762c507e0121c284b979240c52fca36a4f68
baba67426f940f9de5f3b7cb0519a496467cd087
refs/heads/master
2020-04-21T22:38:43.380259
2019-04-16T07:08:21
2019-04-16T07:08:21
169,919,167
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
from nomadiq_app import app as application if __name__ == '__main__': application.run(debug=True)
6dcb83acc4bf4107889ebbe1f7af8432518e95eb
3a022998c1fa28408e6d38845f29730579d22a20
/rootsofcube.py
88f22babfd0f3217b9e57c2e5a715534a2a49d56
[]
no_license
nandishaivalli/APS2020
1cd69fbade6fd2069f6b72dc5e8815d905c73836
57bcbe919c92692c61093e01304815c0f29222dc
refs/heads/master
2020-12-20T20:58:23.523106
2020-05-16T07:44:33
2020-05-16T07:44:33
236,208,138
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
#using formula find the roots of cubic eqn a = 3 b = 4 c = 4 d = 3 #ax3+bx2+cx+d=0 p = (-1*b)/(3*a) q = p**3 + (b*c-3*a*d)/(6*a**2) r = c/(3*a) x = (q+(q**2 + (r-p**2)**3)**0.5)**(1/3) + (q-(q**2 + (r-p**2)**3)**0.5)**(1/3) + p print(x)
5893049dfab4f9e7702c5a3117f4468d5c72a98f
27bd7769798502bccbbc4b1bbc34e22d17f17d98
/regressao_linear.py
6dd8db7e2851e9a8717ad91bfc2f4b32d1eb00d7
[]
no_license
jcclark/regressao_linear
03f3bfd759de3e629788d7ba6891f081ae41a667
bcf27dd810eb3916809b3683098ae2c3bd4dc619
refs/heads/master
2020-08-01T09:29:57.254610
2019-10-05T22:35:14
2019-10-05T22:35:14
210,948,723
0
0
null
null
null
null
UTF-8
Python
false
false
2,757
py
import csv import math from random import randint import matplotlib.pyplot as plt def modelo( data, tipo, i): dados = dv_dados(data, tipo) b_treino, b_teste = dv_bases(dados, i) b_0, b_1 = regressao_linear(b_treino, tipo) x = [d[0] for d in dados] y = [(b_0 + (d[0] * b_1)) for d in dados] desvio = desvio_padrao(b_teste, b_0, b_1) print("Desvio padrão: " + str( round(desvio, 2) )) plt.title('Média Provas x ' + tipo ) plt.xlabel(tipo.title()) plt.ylabel('Média provas') plt.scatter(x, y) plt.plot(x, y) plt.show() def desvio_padrao( b_teste, b_0, b_1): desvio = 0 for d in b_teste: y = d[1] fx = (b_0 + (d[0] * b_1)) desvio += (y - fx) ** 2 return desvio def regressao_linear( b_treino, type): N = len(b_treino) x = somatorio(b_treino, 'x') y = somatorio(b_treino, 'y') xy = somatorio(b_treino, 'xy') x1 = somatorio(b_treino, 'x2') b_1 = ((x * y) - (N * xy)) / ((x ** 2) - (N * x1)) b_0 = (y - (b_1 * x))/ N return b_0, b_1 def somatorio( l_n, tipo): numeros = [] for t in l_n: if tipo == 'x': a = t[0] elif tipo == 'y': a = t[1] elif tipo == 'xy': a = t[0] * t[1] elif tipo == 'x2': a = t[0] ** 2 else: a = 1 print('Erro') numeros.append(a) return sum(numeros) def dv_dados( data, tipo): res = [] for item in data: if tipo == "Idade": x = item.get("Idade") elif tipo == "Tempo de Estudo": x = item.get("Tempo de Estudo") elif tipo == "Faltas": x = item.get("Faltas") y = item.get("MediaProvas") res.append((int(x), int(y))) return res def dv_bases(dados, i): p_treino = [] while (len(p_treino) < round(i * 0.7)): posicao = randint(0, i - 1) if posicao not in p_treino: p_treino.append(posicao) d_treino = [dados[p] for p in p_treino] d_treino = [dados[p] for p in range(len(dados)) if p not in p_treino] return d_treino, d_treino def excutar(): data = [] with open("AnaliseEstudo.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=";") for row in csv_reader: if row[0] != "Idade": media = (int(row[3]) + int(row[4]) + int(row[5])) / 3 aux = { "Idade": row[0], "Tempo de Estudo": row[1], "Faltas":row[2], "MediaProvas": media } data.append(aux) for tipo in ["Idade", "Tempo de Estudo", "Faltas"]: modelo(data, tipo, len(data)) excutar()
da11437adf2aba52e01ffabe242c48711dbfe401
d0a54183ad20c3e1bfb3d70d118b3a2ccf9256be
/pylearn2/pylearn2/training_algorithms/bgd.py
86cdd585642ea1c5ac01de3c8ab7785692360024
[ "BSD-3-Clause" ]
permissive
julius506/pylearn2
93973fafb80ccd724c9ec16d6f0dcab0544acbcb
9134a6438e954cf5d8a1684ef8f5e2767549d6bc
refs/heads/master
2020-05-18T08:52:43.499030
2014-12-03T05:26:25
2014-12-03T05:26:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,764
py
""" Module for performing batch gradient methods. Technically, SGD and BGD both work with any batch size, but SGD has no line search functionality and is thus best suited to small batches, while BGD supports line searches and thuse works best with large batches. """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import logging import warnings import numpy as np from theano import config from pylearn2.compat import OrderedDict from pylearn2.monitor import Monitor from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent from pylearn2.utils.iteration import is_stochastic from pylearn2.training_algorithms.training_algorithm import TrainingAlgorithm from pylearn2.utils import safe_zip from pylearn2.train_extensions import TrainExtension from pylearn2.termination_criteria import TerminationCriterion from pylearn2.utils import sharedX from pylearn2.space import CompositeSpace, NullSpace from pylearn2.utils.data_specs import DataSpecsMapping from pylearn2.utils.rng import make_np_rng logger = logging.getLogger(__name__) class BGD(TrainingAlgorithm): """ Batch Gradient Descent training algorithm class Parameters ---------- cost : pylearn2.costs.Cost, optional A pylearn2 Cost, or None, in which case model.get_default_cost() will be used batch_size : int, optional Like the SGD TrainingAlgorithm, this TrainingAlgorithm still iterates over minibatches of data. The difference is that this class uses partial line searches to choose the step size along each gradient direction, and can do repeated updates on the same batch. The assumption is that you use big enough minibatches with this algorithm that a large step size will generalize reasonably well to other minibatches. To implement true Batch Gradient Descent, set the batch_size to the total number of examples available. If batch_size is None, it will revert to the model's force_batch_size attribute. batches_per_iter : int, optional WRITEME updates_per_batch : int, optional Passed through to the optimization.BatchGradientDescent's `max_iters parameter` monitoring_batch_size : int Size of monitoring batches. monitoring_batches : WRITEME monitoring_dataset : Dataset or dict, optional A Dataset or a dictionary mapping string dataset names to Datasets termination_criterion : WRITEME set_batch_size : bool, optional If True, BGD will attempt to override the model's `force_batch_size` attribute by calling set_batch_size on it. reset_alpha : bool, optional Passed through to the optimization.BatchGradientDescent's `reset_alpha` parameter conjugate : bool, optional Passed through to the optimization.BatchGradientDescent's `conjugate` parameter min_init_alpha : float, optional WRITEME reset_conjugate : bool, optional Passed through to the optimization.BatchGradientDescent's `reset_conjugate` parameter line_search_mode : WRITEME verbose_optimization : bool, optional WRITEME scale_step : float, optional WRITEME theano_function_mode : WRITEME init_alpha : WRITEME seed : WRITEME """ def __init__(self, cost=None, batch_size=None, batches_per_iter=None, updates_per_batch=10, monitoring_batch_size=None, monitoring_batches=None, monitoring_dataset=None, termination_criterion=None, set_batch_size=False, reset_alpha=True, conjugate=False, min_init_alpha=.001, reset_conjugate=True, line_search_mode=None, verbose_optimization=False, scale_step=1., theano_function_mode=None, init_alpha=None, seed=None): self.__dict__.update(locals()) del self.self if monitoring_dataset is None: assert monitoring_batches is None assert monitoring_batch_size is None self._set_monitoring_dataset(monitoring_dataset) self.bSetup = False self.termination_criterion = termination_criterion self.rng = make_np_rng(seed, [2012, 10, 16], which_method=["randn", "randint"]) def setup(self, model, dataset): """ Allows the training algorithm to do some preliminary configuration *before* we actually start training the model. The dataset is provided in case other derived training algorithms need to modify model based on the dataset. Parameters ---------- model : object A Python object representing the model to train. Loosely implementing the interface of models.model.Model. dataset : pylearn2.datasets.dataset.Dataset Dataset object used to draw training data """ self.model = model if self.cost is None: self.cost = model.get_default_cost() try: if self.cost.is_stochastic(): raise TypeError("BGD is not compatible with stochastic " "costs.") except NotImplementedError: warnings.warn("BGD is not compatible with stochastic costs " "and cannot determine whether the current cost is " "stochastic.") if self.batch_size is None: self.batch_size = model.force_batch_size else: batch_size = self.batch_size if self.set_batch_size: model.set_batch_size(batch_size) elif hasattr(model, 'force_batch_size'): if not (model.force_batch_size <= 0 or batch_size == model.force_batch_size): raise ValueError("batch_size is %d but " + "model.force_batch_size is %d" % (batch_size, model.force_batch_size)) self.monitor = Monitor.get_monitor(model) self.monitor.set_theano_function_mode(self.theano_function_mode) data_specs = self.cost.get_data_specs(model) mapping = DataSpecsMapping(data_specs) space_tuple = mapping.flatten(data_specs[0], return_tuple=True) source_tuple = mapping.flatten(data_specs[1], return_tuple=True) # Build a flat tuple of Theano Variables, one for each space, # named according to the sources. theano_args = [] for space, source in safe_zip(space_tuple, source_tuple): name = 'BGD_[%s]' % source arg = space.make_theano_batch(name=name) theano_args.append(arg) theano_args = tuple(theano_args) # Methods of `self.cost` need args to be passed in a format compatible # with their data_specs nested_args = mapping.nest(theano_args) fixed_var_descr = self.cost.get_fixed_var_descr(model, nested_args) self.on_load_batch = fixed_var_descr.on_load_batch cost_value = self.cost.expr(model, nested_args, ** fixed_var_descr.fixed_vars) grads, grad_updates = self.cost.get_gradients( model, nested_args, ** fixed_var_descr.fixed_vars) assert isinstance(grads, OrderedDict) assert isinstance(grad_updates, OrderedDict) if cost_value is None: raise ValueError("BGD is incompatible with " + str(self.cost) + " because it is intractable, but BGD uses the " + "cost function value to do line searches.") # obj_prereqs has to be a list of function f called with f(*data), # where data is a data tuple coming from the iterator. # this function enables capturing "mapping" and "f", while # enabling the "*data" syntax def capture(f, mapping=mapping): new_f = lambda *args: f(mapping.flatten(args, return_tuple=True)) return new_f obj_prereqs = [capture(f) for f in fixed_var_descr.on_load_batch] if self.monitoring_dataset is not None: if (self.monitoring_batch_size is None and self.monitoring_batches is None): self.monitoring_batch_size = self.batch_size self.monitoring_batches = self.batches_per_iter self.monitor.setup( dataset=self.monitoring_dataset, cost=self.cost, batch_size=self.monitoring_batch_size, num_batches=self.monitoring_batches, obj_prereqs=obj_prereqs, cost_monitoring_args=fixed_var_descr.fixed_vars) params = model.get_params() self.optimizer = BatchGradientDescent( objective=cost_value, gradients=grads, gradient_updates=grad_updates, params=params, param_constrainers=[model.modify_updates], lr_scalers=model.get_lr_scalers(), inputs=theano_args, verbose=self.verbose_optimization, max_iter=self.updates_per_batch, reset_alpha=self.reset_alpha, conjugate=self.conjugate, reset_conjugate=self.reset_conjugate, min_init_alpha=self.min_init_alpha, line_search_mode=self.line_search_mode, theano_function_mode=self.theano_function_mode, init_alpha=self.init_alpha) # These monitoring channels keep track of shared variables, # which do not need inputs nor data. if self.monitoring_dataset is not None: self.monitor.add_channel( name='ave_step_size', ipt=None, val=self.optimizer.ave_step_size, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.monitor.add_channel( name='ave_grad_size', ipt=None, val=self.optimizer.ave_grad_size, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.monitor.add_channel( name='ave_grad_mult', ipt=None, val=self.optimizer.ave_grad_mult, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.first = True self.bSetup = True def train(self, dataset): """ .. todo:: WRITEME """ assert self.bSetup model = self.model rng = self.rng train_iteration_mode = 'shuffled_sequential' if not is_stochastic(train_iteration_mode): rng = None data_specs = self.cost.get_data_specs(self.model) # The iterator should be built from flat data specs, so it returns # flat, non-redundent tuples of data. mapping = DataSpecsMapping(data_specs) space_tuple = mapping.flatten(data_specs[0], return_tuple=True) source_tuple = mapping.flatten(data_specs[1], return_tuple=True) if len(space_tuple) == 0: # No data will be returned by the iterator, and it is impossible # to know the size of the actual batch. # It is not decided yet what the right thing to do should be. raise NotImplementedError("Unable to train with BGD, because " "the cost does not actually use data " "from the data set. " "data_specs: %s" % str(data_specs)) flat_data_specs = (CompositeSpace(space_tuple), source_tuple) iterator = dataset.iterator(mode=train_iteration_mode, batch_size=self.batch_size, num_batches=self.batches_per_iter, data_specs=flat_data_specs, return_tuple=True, rng=rng) mode = self.theano_function_mode for data in iterator: if ('targets' in source_tuple and mode is not None and hasattr(mode, 'record')): Y = data[source_tuple.index('targets')] stry = str(Y).replace('\n', ' ') mode.record.handle_line('data Y ' + stry + '\n') for on_load_batch in self.on_load_batch: on_load_batch(mapping.nest(data)) self.before_step(model) self.optimizer.minimize(*data) self.after_step(model) actual_batch_size = flat_data_specs[0].np_batch_size(data) model.monitor.report_batch(actual_batch_size) def continue_learning(self, model): """ .. todo:: WRITEME """ if self.termination_criterion is None: return True else: rval = self.termination_criterion.continue_learning(self.model) assert rval in [True, False, 0, 1] return rval def before_step(self, model): """ .. todo:: WRITEME """ if self.scale_step != 1.: self.params = list(model.get_params()) self.value = [param.get_value() for param in self.params] def after_step(self, model): """ .. todo:: WRITEME """ if self.scale_step != 1: for param, value in safe_zip(self.params, self.value): value = (1. - self.scale_step) * value + self.scale_step \ * param.get_value() param.set_value(value) class StepShrinker(TrainExtension, TerminationCriterion): """ .. todo:: WRITEME """ def __init__(self, channel, scale, giveup_after, scale_up=1., max_scale=1.): self.__dict__.update(locals()) del self.self self.continue_learning = True self.first = True self.prev = np.inf def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ monitor = model.monitor if self.first: self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset, data_specs=hack.data_specs) channel = monitor.channels[self.channel] v = channel.val_record if len(v) == 1: return latest = v[-1] logger.info("Latest {0}: {1}".format(self.channel, latest)) # Only compare to the previous step, not the best step so far # Another extension can be in charge of saving the best parameters ever # seen.We want to keep learning as long as we're making progress. We # don't want to give up on a step size just because it failed to undo # the damage of the bigger one that preceded it in a single epoch logger.info("Previous is {0}".format(self.prev)) cur = algorithm.scale_step if latest >= self.prev: logger.info("Looks like using {0} " "isn't working out so great for us.".format(cur)) cur *= self.scale if cur < self.giveup_after: logger.info("Guess we just have to give up.") self.continue_learning = False cur = self.giveup_after logger.info("Let's see how {0} does.".format(cur)) elif latest <= self.prev and self.scale_up != 1.: logger.info("Looks like we're making progress " "on the validation set, let's try speeding up") cur *= self.scale_up if cur > self.max_scale: cur = self.max_scale logger.info("New scale is {0}".format(cur)) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) self.prev = latest def __call__(self, model): """ .. todo:: WRITEME """ return self.continue_learning class ScaleStep(TrainExtension): """ .. todo:: WRITEME """ def __init__(self, scale, min_value): self.scale = scale self.min_value = min_value self.first = True def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ if self.first: monitor = model.monitor self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset) cur = algorithm.scale_step cur *= self.scale cur = max(cur, self.min_value) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) class BacktrackingStepShrinker(TrainExtension, TerminationCriterion): """ .. todo:: WRITEME """ def __init__(self, channel, scale, giveup_after, scale_up=1., max_scale=1.): self.__dict__.update(locals()) del self.self self.continue_learning = True self.first = True self.prev = np.inf def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ monitor = model.monitor if self.first: self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset) channel = monitor.channels[self.channel] v = channel.val_record if len(v) == 1: return latest = v[-1] logger.info("Latest {0}: {1}".format(self.channel, latest)) # Only compare to the previous step, not the best step so far # Another extension can be in charge of saving the best parameters ever # seen.We want to keep learning as long as we're making progress. We # don't want to give up on a step size just because it failed to undo # the damage of the bigger one that preceded it in a single epoch logger.info("Previous is {0}".format(self.prev)) cur = algorithm.scale_step if latest >= self.prev: logger.info("Looks like using {0} " "isn't working out so great for us.".format(cur)) cur *= self.scale if cur < self.giveup_after: logger.info("Guess we just have to give up.") self.continue_learning = False cur = self.giveup_after logger.info("Let's see how {0} does.".format(cur)) logger.info("Reloading saved params from last call") for p, v in safe_zip(model.get_params(), self.stored_values): p.set_value(v) latest = self.prev elif latest <= self.prev and self.scale_up != 1.: logger.info("Looks like we're making progress " "on the validation set, let's try speeding up") cur *= self.scale_up if cur > self.max_scale: cur = self.max_scale logger.info("New scale is {0}".format(cur)) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) self.prev = latest self.stored_values = [param.get_value() for param in model.get_params()] def __call__(self, model): """ .. todo:: WRITEME """ return self.continue_learning
e97a029febec768754bf9e0c325316f93500cf73
8025929108bb70599cc5079b0f32d35c556dfe33
/font_batch_subset.py
4166574af64597447c4f5d871beec315011070c0
[]
no_license
waivek/website
1b0a0c49c3d28f6736362251a184cf48db4063b7
82a5f91ef9335de2dde86af934e5305895cd160d
refs/heads/master
2023-07-11T08:10:32.109086
2023-07-02T06:47:19
2023-07-02T06:47:19
113,569,477
1
0
null
null
null
null
UTF-8
Python
false
false
3,715
py
from columnar import columnar import argparse import subprocess import os.path import re parser = argparse.ArgumentParser(description='Batch subsets a font to an accepted unicode range') parser.add_argument("directory") parser.add_argument("unicode_range") args = parser.parse_args() headers = [ "Input", "Output", "Input Size", "Output Size"] data = [] # correct - fonts\Vollkorn\Vollkorn.400italic.ttf filenames = os.listdir(args.directory) layout_features="lnum,tnum" directory_save = os.getcwd() os.chdir(args.directory) selected_filenames = [ filename for filename in filenames if re.match(r"(\w+)\.(\d)00(italic)?\.ttf", filename) ] total_selected_filenames = len(selected_filenames) padding_length = len(str(total_selected_filenames)) for i, filename in enumerate(selected_filenames, start=1): status_message = "[%s/%s] %s" % (str(i).rjust(padding_length), total_selected_filenames) print(status_message) m = re.match(r"(\w+)\.(\d)00(italic)?\.ttf", filename) font_name_with_underscores, font_weight, font_style = m.groups() font_style = font_style if font_style else "normal" input_filename_root, extension = os.path.splitext(filename) output_filename = input_filename_root + "-subset" ttf_subset_command = 'pyftsubset {input_filename} --unicodes={unicode_range} --output-file={output_filename}.ttf --layout-features={layout_features}'.format( input_filename=filename, unicode_range=args.unicode_range, output_filename=output_filename, layout_features=layout_features) woff_subset_command = 'pyftsubset {input_filename} --unicodes={unicode_range} --output-file={output_filename}.woff --layout-features={layout_features} --flavor=woff'.format( input_filename=filename, unicode_range=args.unicode_range, output_filename=output_filename, layout_features=layout_features) woff2_subset_command = 'pyftsubset {input_filename} --unicodes={unicode_range} --output-file={output_filename}.woff2 --layout-features={layout_features} --flavor=woff2'.format( input_filename=filename, unicode_range=args.unicode_range, output_filename=output_filename, layout_features=layout_features) subprocess.run(ttf_subset_command) input_byte_size = os.path.getsize(filename) input_kilobyte_size_string = str(round(input_byte_size / 1024, 2)) + " KB" # Subsetting fonts/Vollkorn/Vollkorn.400.ttf to Vollkorn.400-subset.ttf (was 313.88 KB, now 5.72 KB) # Subsetting fonts/Vollkorn/Vollkorn.400.ttf to Vollkorn.400-subset.zopfli.woff (was 313.88 KB, now 3.44 KB) # Subsetting fonts/Vollkorn/Vollkorn.400.ttf to Vollkorn.400-subset.woff2 (was 313.88 KB, now 2.8 KB) output_ttf_byte_size = os.path.getsize("%s.ttf" % output_filename) output_ttf_kilboyte_size_string = str(round(output_ttf_byte_size / 1024, 2)) + " KB" data.append([ filename, "%s.ttf" % output_filename, input_kilobyte_size_string, output_ttf_kilboyte_size_string ]) subprocess.run(woff_subset_command) output_woff_byte_size = os.path.getsize("%s.woff" % output_filename) output_woff_kilboyte_size_string = str(round(output_woff_byte_size / 1024, 2)) + " KB" data.append([ filename, "%s.woff" % output_filename, input_kilobyte_size_string, output_woff_kilboyte_size_string ]) subprocess.run(woff2_subset_command) output_woff2_byte_size = os.path.getsize("%s.woff2" % output_filename) output_woff2_kilboyte_size_string = str(round(output_woff2_byte_size / 1024, 2)) + " KB" data.append([ filename, "%s.woff2" % output_filename, input_kilobyte_size_string, output_woff2_kilboyte_size_string ]) os.chdir(directory_save) print() table = columnar(data, headers, no_borders=True, justify=["l", "l", "r", "r"] ) print(table)
c2abb820a33634fbd4d2baa8cc40894fd5ffc9db
afea9757be324c8def68955a12be11d71ce6ad35
/willyanealves/customer_service/migrations/0018_remove_customerservice_serviceitem.py
5389c0887e5e5598bfdb43884190c5126c6d8681
[]
no_license
bergpb/willyane-alves
c713cac3ec3a68005f3b8145985693d2477ba706
8b2b9922ba35bf2043f2345228f03d80dbd01098
refs/heads/master
2023-02-10T19:57:50.893172
2021-01-11T16:17:14
2021-01-11T16:17:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# Generated by Django 3.1.2 on 2020-11-16 14:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('customer_service', '0017_auto_20201116_1115'), ] operations = [ migrations.RemoveField( model_name='customerservice', name='serviceitem', ), ]
bfed24c5b9f51dc5e88f33ea662a3f1e253a3474
39c7137821880e504608a4508299ed5883e3ebe3
/website/run.py
d10df72b10721b85de47d5e8500058bead40b612
[]
no_license
tharrington923/rCheckUp
081a6b806e41f2b0d2a1b82e35f402b0ed9c932d
80e13d9b79b069f01dc83cb43d282557d5f78787
refs/heads/master
2020-12-10T03:27:05.944264
2017-06-29T16:02:15
2017-06-29T16:02:15
95,575,694
2
0
null
null
null
null
UTF-8
Python
false
false
82
py
#!/usr/bin/env python from rcheckup import app app.run(host='0.0.0.0', port=5000)
ba55baa802dc3a6b2fe5b7b479d00888a5eec426
728be4e1d3ab5a63e2d6900637fdfb822d965a43
/blobing_photo.py
a41716f876d2c4ec077f3e39a3870d46e285f6db
[]
no_license
Reveta/openCV_Python
7ea7aeb5da5243b4359cb75ed9e14489051d917f
6b88a9c1ba459f2810c54b91da77e0f0914da894
refs/heads/master
2023-07-16T00:26:17.752429
2021-08-23T19:33:10
2021-08-23T19:33:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,054
py
# !/usr/bin/python # Standard imports import cv2 import numpy as np # Read image # image_original = cv2.imread("media/blobs/blob.jpg", cv2.IMREAD_GRAYSCALE) image_original = cv2.imread("media/blobs/microchips_1.png", cv2.IMREAD_COLOR) # image_original = cv2.imread("media/blobs/microchips_2.png", cv2.IMREAD_COLOR) th, image = cv2.threshold(image_original, 150, 255, cv2.THRESH_BINARY) image = cv2.medianBlur(src=image, ksize=3) image = cv2.bitwise_not(image) # Setup SimpleBlobDetector parameters. params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = 150 params.maxThreshold = 255 # params.filterByColor = True # params.blobColor = 203 # Filter by Area. # params.filterByArea = True # params.minArea = 100 # # Filter by Circularity # params.filterByCircularity = True # params.minCircularity = 0.7 # Filter by Convexity params.filterByConvexity = True params.minConvexity = 0 # Filter by Inertia params.filterByInertia = True params.minInertiaRatio = 0 # Create a detector with the parameters ver = (cv2.__version__).split('.') if int(ver[0]) < 3: detector = cv2.SimpleBlobDetector(params) else: detector = cv2.SimpleBlobDetector_create(params) # Detect blobs. keypoints = detector.detect(image) # Draw detected blobs as red circles. # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures # the size of the circle corresponds to the size of blob image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) th, image = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV) im_with_keypoints = cv2.drawKeypoints(image_original, keypoints, np.array([]), (0, 0, 255), cv2.DrawMatchesFlags_DRAW_RICH_KEYPOINTS) down_width = 800 down_height = 800 down_points = (down_width, down_height) image_original = cv2.resize(image_original, down_points, interpolation= cv2.INTER_LINEAR) im_with_keypoints = cv2.resize(im_with_keypoints, down_points, interpolation= cv2.INTER_LINEAR) # Show blobs cv2.imshow("original", image_original) cv2.imshow("Keypoints", im_with_keypoints) cv2.waitKey(0)
07030cbb64db6488b93f8e7f03c975d1d39c099d
df5cd640098a10e754a9552187fc5ad8c50df90c
/colour/examples/algebra/examples_interpolation.py
4acf509db6a9fd00459d7e4bce455a3a20c6b8ca
[ "BSD-3-Clause" ]
permissive
ofek/colour
d4963c9b77b0d119cf3ef3296dbf5369167472df
04f4863ef49093a93244c1fedafd1d5e2b1b76da
refs/heads/develop
2021-07-08T05:33:14.220392
2017-09-29T22:34:14
2017-09-29T22:34:14
105,406,461
0
0
null
2017-09-30T23:06:18
2017-09-30T23:06:18
null
UTF-8
Python
false
false
3,265
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Showcases interpolation computations. """ import pylab import colour from colour.plotting import * # noqa from colour.utilities.verbose import message_box message_box('Interpolation Computations') message_box(('Comparing "Sprague (1880)" and "Cubic Spline" recommended ' 'interpolation methods to "Pchip" method.')) uniform_spd_data = { 340: 0.0000, 360: 0.0000, 380: 0.0000, 400: 0.0641, 420: 0.0645, 440: 0.0562, 460: 0.0537, 480: 0.0559, 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360, 620: 0.1511, 640: 0.1688, 660: 0.1996, 680: 0.2397, 700: 0.2852, 720: 0.0000, 740: 0.0000, 760: 0.0000, 780: 0.0000, 800: 0.0000, 820: 0.0000 } non_uniform_spd_data = { 340.1: 0.0000, 360: 0.0000, 380: 0.0000, 400: 0.0641, 420: 0.0645, 440: 0.0562, 460: 0.0537, 480: 0.0559, 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360, 620: 0.1511, 640: 0.1688, 660: 0.1996, 680: 0.2397, 700: 0.2852, 720: 0.0000, 740: 0.0000, 760: 0.0000, 780: 0.0000, 800: 0.0000, 820.9: 0.0000 } base_spd = colour.SpectralPowerDistribution('Reference', uniform_spd_data) uniform_interpolated_spd = colour.SpectralPowerDistribution( 'Uniform - Sprague Interpolation', uniform_spd_data) uniform_pchip_interpolated_spd = colour.SpectralPowerDistribution( 'Uniform - Pchip Interpolation', uniform_spd_data) non_uniform_interpolated_spd = colour.SpectralPowerDistribution( 'Non Uniform - Cubic Spline Interpolation', non_uniform_spd_data) uniform_interpolated_spd.interpolate(colour.SpectralShape(interval=1)) uniform_pchip_interpolated_spd.interpolate( colour.SpectralShape(interval=1), method='Pchip') non_uniform_interpolated_spd.interpolate(colour.SpectralShape(interval=1)) shape = base_spd.shape x_limit_min, x_limit_max, y_limit_min, y_limit_max = [], [], [], [] pylab.plot( base_spd.wavelengths, base_spd.values, 'ro-', label=base_spd.name, linewidth=2) pylab.plot( uniform_interpolated_spd.wavelengths, uniform_interpolated_spd.values, label=uniform_interpolated_spd.name, linewidth=2) pylab.plot( uniform_pchip_interpolated_spd.wavelengths, uniform_pchip_interpolated_spd.values, label=uniform_pchip_interpolated_spd.name, linewidth=2) pylab.plot( non_uniform_interpolated_spd.wavelengths, non_uniform_interpolated_spd.values, label=non_uniform_interpolated_spd.name, linewidth=2) x_limit_min.append(shape.start) x_limit_max.append(shape.end) y_limit_min.append(min(base_spd.values)) y_limit_max.append(max(base_spd.values)) settings = { 'x_label': 'Wavelength $\\lambda$ (nm)', 'y_label': 'Spectral Power Distribution', 'x_tighten': True, 'legend': True, 'legend_location': 'upper left', 'x_ticker': True, 'y_ticker': True, 'limits': (min(x_limit_min), max(x_limit_max), min(y_limit_min), max(y_limit_max)) } boundaries(**settings) decorate(**settings) display(**settings)
dfa355b0aa14dd76ed80003014bdb0d64e25c20b
84fe91caa2209022b8300a7f42dea0b78db41e12
/action/test/test_watermark.py
acb7ae6abfbc2f7e2d4e76c4d1d2bf2991c3c0c8
[ "MIT" ]
permissive
mshemanskyi/image-batch-processor
6b579f1e3442262a9abb5a0cd8f6731a23ebf13b
dd7e0d9bc77fd06fe0f94c4f4fd025323633d9f7
refs/heads/master
2023-01-10T10:03:52.523962
2020-11-07T21:18:47
2020-11-07T21:18:47
303,668,070
0
0
MIT
2020-11-07T20:27:36
2020-10-13T10:33:10
Python
UTF-8
Python
false
false
677
py
import unittest from action.watermark import watermarkImage, watermarkText import cv2 as cv import numpy as np class WatermarkTest((unittest.TestCase)): @classmethod def setUpClass(self): self.testImage = cv.imread('examples/img1.jpg') self.watermarkLogo = cv.imread('examples/wm-logo.png') def setUp(self): pass def test_watermak__image_action(self): wmi = watermarkImage(self.testImage, self.watermarkLogo) self.assertTrue(np.any(self.testImage != wmi)) def test_watarmark_text_action(self): wmi = watermarkText(self.testImage, 'watermarkLogo') self.assertTrue(np.any(self.testImage != wmi))
e5473522c26a9ba7d2654c9fa7a954d97bb4ed88
f855be082bd55159cf6f77be034a78ecf2020232
/actions/actions.py
9501206f8fdb9634b4fe7561bdb7409868ff48ea
[]
no_license
athenasaurav/venkat
64e3b9522bbcceb141d87f4b04498dcfd7f10969
bfb7a767793483a6a8663e1e112a20c03433b2df
refs/heads/main
2023-03-27T11:32:52.246192
2021-03-16T18:01:55
2021-03-16T18:01:55
348,443,833
0
0
null
null
null
null
UTF-8
Python
false
false
12,129
py
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/custom-actions # This is a simple example for a custom action which utters "Hello World!" from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher from rasa_sdk.events import Form, AllSlotsReset, Restarted class ActionHelloWorld(Action): def name(self) -> Text: return "action_greet" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Hi human, I'm sure you want something 😃 I'm sure you are gonna ask me something") return [] class ActionPostAccommodationServicesHotel(Action): def name(self) -> Text: return "action_post_Accommodation_Services_Hotel" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Hotel") return [] class ActionPostCityAttractionSpa(Action): def name(self) -> Text: return "action_post_city_attraction_spa" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Spa") return [] class ActionPostEducationalSuppliesDealers(Action): def name(self) -> Text: return "action_post_Educational_Supplies_Dealers" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Education supplies dealers") return [] class ActionPostEducationalSuppliesDealersBookShop(Action): def name(self) -> Text: return "action_post_Educational_Supplies_Dealers_book_shop" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Book Services") return [] class ActionPostAccountant(Action): def name(self) -> Text: return "action_post_Accountant" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Accountant") return [] class ActionPostInsurance(Action): def name(self) -> Text: return "action_post_Insurance" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Insurance") return [] class ActionPostATM(Action): def name(self) -> Text: return "action_post_ATM" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="ATM") return [] class ActionPostGovernmentOffices(Action): def name(self) -> Text: return "action_post_Government_Offices" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="GOVT OFFICE") return [] class ActionPostNightlife(Action): def name(self) -> Text: return "action_post_Nightlife" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Nightlife") return [] class ActionPostNightlifeHookah(Action): def name(self) -> Text: return "action_post_Nightlife_Hookah" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Nightlife Hookah") return [] class ActionPostSchools(Action): def name(self) -> Text: return "action_post_Schools" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Schools") return [] class ActionPostSchoolsRetakers(Action): def name(self) -> Text: return "action_post_Schools_Retakers" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Schools Retakers") return [] class ActionPostGamesCenters(Action): def name(self) -> Text: return "action_post_Games_Centers" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Game Centers") return [] class ActionPostFoodandDininglocation(Action): def name(self) -> Text: return "action_post_Food_and_Dining_location" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Food_and_Dining_location") return [] class ActionPostFoodandDiningFoodProductSuppliers(Action): def name(self) -> Text: return "action_post_Food_and_Dining_Food_Product_Suppliers" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Food_and_Dining_Food_Product_Suppliers") return [] class ActionPostFoodandDiningRestaurant(Action): def name(self) -> Text: return "action_post_Food_and_Dining_Restaurant" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Food_and_Dining_Restaurant") return [] class ActionPostFoodandDiningSeafood(Action): def name(self) -> Text: return "action_post_Food_and_Dining_Seafood" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Food_and_Dining_Seafood") return [] class ActionPostFoodandDiningSweet(Action): def name(self) -> Text: return "action_post_Food_and_Dining_Sweet" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Food_and_Dining_Sweet") return [] class ActionPostGrocery(Action): def name(self) -> Text: return "action_post_Grocery" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="Grocery") return [] class ActionPostClinicsAndDoctorsType(Action): def name(self) -> Text: return "action_post_Clinics_and_Doctors_type" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Clinics_and_Doctors_type") return [] class ActionPostClinicsandDoctorstypeChiropractors(Action): def name(self) -> Text: return "action_post_Clinics_and_Doctors_type_Chiropractors" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Clinics_and_Doctors_type_Chiropractors") return [] class ActionPostClinicsandDoctorstypeDentists(Action): def name(self) -> Text: return "action_post_Clinics_and_Doctors_type_Dentists" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Clinics_and_Doctors_type_Dentists") return [] class ActionPostEmergencyServices(Action): def name(self) -> Text: return "action_post_Emergency_Services" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Emergency_Services") return [] class ActionPostLegalService(Action): def name(self) -> Text: return "action_post_Legal_Service" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Legal_Service") return [] class ActionPostLegalServiceAdvocates(Action): def name(self) -> Text: return "action_post_Legal_Service_Advocates" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Legal_Service_Advocates") return [] class ActionPostLegalServiceImmigration(Action): def name(self) -> Text: return "action_post_Legal_Service_Immigration" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Legal_Service_Immigration") return [] class ActionPostLegalServicePassport(Action): def name(self) -> Text: return "action_post_Legal_Service_Passport" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Legal_Service_Passport") return [] class ActionPostFuneralsandMemorials(Action): def name(self) -> Text: return "action_post_Funerals_and_Memorials" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Funerals_and_Memorials") return [] class ActionPostGardenandLawn(Action): def name(self) -> Text: return "action_post_Garden_and_Lawn" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Garden_and_Lawn") return [] class ActionPostGardenandLawnGarden(Action): def name(self) -> Text: return "action_post_Garden_and_Lawn_Garden" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Garden_and_Lawn_Garden") return [] class ActionPostGardenandLawnIrrigation(Action): def name(self) -> Text: return "action_post_Garden_and_Lawn_Irrigation" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message(text="action_post_Garden_and_Lawn_Irrigation") return [] class ActionRestarted(Action): def name(self): return "action_restart" def run(self, dispatcher, tracker, domain): dispatcher.utter_template("utter_reset_full", tracker) return [Form(None), AllSlotsReset(None), Restarted(None)]
563f625c719041548b3b0dee923cd3f05db82e19
498328d283bbcfa2aed7780cc2ccd1ab1435998c
/validation.py
7edbc1a87dd4a75e441e312bb3351b880ee9201b
[]
no_license
ktan8/AM205-Project
51a336921314b5e977dd9682a60f8c73adc64598
e697afe74f0b9fb8d2b177191e7d8472a3167031
refs/heads/master
2020-04-11T01:01:34.481178
2018-12-16T15:01:19
2018-12-16T15:01:19
161,403,438
1
0
null
null
null
null
UTF-8
Python
false
false
6,987
py
'''Reads suppulemeal data''' import pandas as pd import os import network_matrices import numpy as np import scipy.stats import matplotlib.pyplot as plt def label_active(row): '''Label whether a given knockout was higher express - huristic is to see if it's above 20% points above/below baseline''' if(row['RNA1_percent'] >1.2 and row["RNA2_percent"] > 1.2): return(1) elif(row["RNA1_percent"] < 0.8 and row["RNA2_percent"] < 0.8): return(-1) return(0) def get_data_jak2(): '''Read the expression data for jak2''' path = os.path.join("data", "data_jak2_knockdown.txt") data = pd.read_csv(path, sep = '\t') data["RNA1_percent"] = data["sh-JAK2-shRNA1"] / data["shRNA-control"] data["RNA2_percent"] = data["sh-JAK2-shRNA2"] / data["shRNA-control"] data['mat_val'] = data.apply(label_active, axis = 1) return(data) def get_data_stat5(): '''Get stat5 expression data''' path3 = os.path.join("data", "data_stat5_knockdown.txt") d4 = pd.read_csv(path3, sep = '\t') d4['percent_change' ] = d4['data.expr.anno.ctl'] / d4['data.expr.anno.kdSTAT5'] return(d4) def get_pathway(path): '''Read in hand currated network''' pathway = pd.read_csv(path) pathway = pathway.set_index("Unnamed: 0") pathway.index.name = "Gene" conversion_path = os.path.join("data", "convertModelToExprNames.txt") conversions = pd.read_table(conversion_path) return(pathway, conversions) def compute_expressions(conversions, df, gene_col = "Gene Symbol", control_col = "shRNA-control", experiment_col = "sh-JAK2-shRNA1"): '''Create a dictionary of the expresison data percent change per gene''' expression_levels_change = {} for elem in conversions: model_name = elem[0] targets = elem[1].split(',') total_control = 0 total_expression = 0 for gene in targets: avg_df = df[df[gene_col] == gene].mean() # We may have multiple expression total_control += avg_df[experiment_col] total_expression += avg_df[control_col] change = total_control / total_expression - 1 if(not np.isnan(change)): expression_levels_change[model_name] = change return(expression_levels_change) def get_val(df, index, gene_names): a = (df[df["Gene Symbol"] == gene_names[index]]['mat_val']).sum() return(np.sign(a)) def quick_correlation(jak2_index, indicies, mat1, exp): '''Compute the correlation at a given index pair in mat1''' l1 = np.squeeze(np.asarray(mat1[jak2_index, indicies])) return(scipy.stats.spearmanr(np.abs(l1), np.abs(exp))) def wrapper_corr(jak2_index, indicies, exp): '''Dummy wrapper for syntax''' return(lambda x : quick_correlation(jak2_index, indicies, x, exp)) def run_example(data, pathway, conversions, elc, knockdown_gene ): path2 = os.path.join("data", "PDL1_pathway", "PDL1_pathway.matrix.csv") tran = True rem = True '''Get the models''' (prop, dist, neighbors) = network_matrices.run_many(path2, tran, rem) (_, gene_names, _) = network_matrices.get_data(path2, tran, rem) genes_have_all = list(elc.items()) genes_have = [x[0] for x in genes_have_all] genes_have_val = [x[1] for x in genes_have_all] indicies = [] jak2_index = -1 pdl1_index = pathway.index.get_loc("PD-L1") for i in range(0, len(gene_names)): if(gene_names[i] == knockdown_gene): jak2_index = i if(gene_names[i] in genes_have): indicies.append(i) genes_have_val = np.array(genes_have_val) f = wrapper_corr(jak2_index, indicies, genes_have_val) #Correlation data corr_data = [f(prop[0]), f(prop[1]), f(prop[2]), f(dist[0]), f(dist[1]) ] '''Plotting code''' blues = [plt.cm.Blues(300), plt.cm.Blues(200), plt.cm.Blues(100)] oranges= [plt.cm.Oranges(200), plt.cm.Oranges(100)] greys= [plt.cm.Greys(300), plt.cm.Greys(200), plt.cm.Greys(100)] reds= [ plt.cm.Reds(200), plt.cm.Reds(175), plt.cm.Reds(150), plt.cm.Reds(125), plt.cm.Reds(100) ] colors = blues + oranges + greys + reds objects = ('Propogation (d+s)', 'Propogation (d)', 'Propogation (u)', 'Distance (d)', 'Adjacency (d+s)') y_pos = np.arange(len(objects)) blues = [plt.cm.Blues(300), plt.cm.Blues(200), plt.cm.Blues(100)] oranges= [plt.cm.Oranges(200), plt.cm.Oranges(100)] greys= [plt.cm.Greys(300)] colors = blues + oranges + greys + reds corr_data = [x[0] for x in corr_data] plt.bar(y_pos, corr_data, align='center', alpha=0.5, color = colors) plt.xticks(y_pos, objects, rotation='vertical') plt.ylabel('Correlation') plt.title('Strength with experiment') plt.show() def isactive(val): '''Look at the direction. Up is more than 10%, down is < 10%''' if(val > 0.1): return(1) elif(val < -0.1): return(-1) return(0) vfunc = np.vectorize(isactive) genes_have_val_ind = vfunc(genes_have_val) '''Get the precent sign match''' q = lambda inp : np.sum(np.sign(inp[jak2_index, indicies]) == np.sign(genes_have_val_ind)) / (len(indicies)) sign_match = [q(prop[0]), q(prop[1]), q(prop[2]), q(dist[0]), q(dist[1]), ] plt.bar(y_pos, sign_match, align='center', alpha=0.5, color = colors) plt.xticks(y_pos, objects, rotation='vertical') plt.ylabel('Percent agreement') plt.title('Percent agrement in sign with different models') plt.show() all_data_names = ["Propogation (d+s)", "Progation (d)", "Propogation (u)", "Distance (d)", "Distance (u)", "neighbors (signed)"] all_data_models = [prop[0], prop[1], prop[0], dist[0], dist[1], neighbors[0]] def write_data(index, all_data, all_data_names, pathway): list_arr = [] for model in all_data: list_arr.append((np.squeeze(np.asarray(model[:, index])))) df_res = pd.DataFrame(list_arr, index = all_data_names, columns = pathway.columns[1:]) df_res.index.name = "method" return(df_res) '''Can write this data to a csv if needed''' d = write_data(pdl1_index , all_data_models, all_data_names, pathway) return(d) (pathway, conversions) = get_pathway(os.path.join("data", "PDL1_pathway", "PDL1_pathway.matrix.csv")) elc = compute_expressions(conversions.values, jak_2) knockdown_gene = "JAK2" run_example(jak_2, pathway, conversions, elc, knockdown_gene) #stat5 = get_data_stat5() #elc2 = compute_expressions(conversions.values, stat5, 'data.expr.anno.GENE_SYMBOL','data.expr.anno.ctl', 'data.expr.anno.kdSTAT5') #knockdown_gene = "STAT5" #run_example(stat5, pathway, conversions, elc2, knockdown_gene) # # #f(neighbors[2].T)
aea1aef16acb0e35be9835c1de7d957ef061384a
a55bf36b8c58cb5b430734a9e5c35fec3a757b46
/Pygame/Maps/Attempts/Map01/app.py
4eab769097b0c2c65af739eb60bbae8eaf628217
[]
no_license
alexetsnyder/OuroborosPython
5547a6f925263430f024b5fd1d1d797600ec5f9d
3c5e93fb90368c30c2748218a56a4d184e144caa
refs/heads/master
2021-06-28T22:37:07.555035
2021-03-01T23:45:10
2021-03-01T23:45:10
225,740,980
1
0
null
2021-03-01T23:45:10
2019-12-04T00:03:14
Python
UTF-8
Python
false
false
1,680
py
#app.py import pygame, island_map import imp, go, events, config from pygame import freetype from structs import * class Screen: def __init__(self, size): self.set_size(size) self.surface = pygame.display.set_mode(self.size, pygame.RESIZABLE) def wire_events(self): imp.IMP().add_listener(events.WindowResizedEvent().listen(self.on_resize)) def on_resize(self, event): self.surface = pygame.display.set_mode((event.w, event.h), pygame.RESIZABLE) def set_size(self, size): self.w, self.h = self.size = size def set_title(self, title): pygame.display.set_caption(title) def fill(self, color=Color.BLACK): self.surface.fill(color) def flip(self): pygame.display.flip() class App: def __init__(self): pygame.init() self.island_map = island_map.IslandMap((0, 0), imp.IMP().screen.size, 320, 200) self.wire_events() def wire_events(self): imp.IMP().add_listener(events.WindowResizedEvent().listen(self.on_resize)) def on_resize(self, event): self.island_map.refresh((0, 0), (event.w, event.h)) def update(self): pass def draw(self): imp.IMP().screen.fill(Color.BLACK) imp.IMP().draw(self.island_map) imp.IMP().screen.flip() def free(self): pygame.quit() def run(self): while imp.IMP().running: for event in pygame.event.get(): imp.IMP().dispatch(event) self.update() self.draw() self.free() if __name__=='__main__': data = config.Config('data/config_data.txt') screen = Screen((640, 400)) event_dispatcher = events.EventDispatcher() imp.IMP().init(screen, data, event_dispatcher, data.try_get('DEBUG', False)) app = App() app.run()
a3686500cf1b87f08d8a3d467cb0f56dead33719
44cfc32ae35487314cbf2ea83fbc96de9ac3e693
/Trees/post_iterative.py
f989a9dbf228047512a35fb120c7ca73c34c63c3
[]
no_license
Imonymous/Practice
738fdf2099a74127460a647fee8db97c95f322fc
ff6138d858777e6a669a5a387cd2f775c60c9aff
refs/heads/master
2020-03-18T16:53:15.029553
2019-11-09T23:29:27
2019-11-09T23:29:27
134,991,515
0
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
#!/usr/bin/env python from isBST import TreeNode, BinaryTree, readBinaryTree # Using one stack def build_stack(node, s): while node: if node.right_ptr: s.append(node.right_ptr) s.append(node) node = node.left_ptr def peek(s): if len(s) > 0: return s[-1] return None def post_iterative_1_stack(root): s = [] build_stack(root, s) while s: curr = s.pop() if curr.right_ptr == peek(s): temp = s.pop() s.append(curr) build_stack(temp, s) else: print(curr.val) # Using two stacks def dfs(node): if node is None: return print(node.val) dfs(node.left_ptr) dfs(node.right_ptr) def post_iterative_2_stack(root): # dfs(root) s1 = [] s2 = [] s1.append(root) while s1: curr = s1.pop() s2.append(curr) if curr.right_ptr: s1.append(curr.right_ptr) if curr.left_ptr: s1.append(curr.left_ptr) while s2: curr = s2.pop() print(curr.val) def main(): root = readBinaryTree() post_iterative_2_stack(root) post_iterative_1_stack(root) if __name__ == '__main__': main()
1f20faa1db5d79da116d4b083125c2a17a098fc2
2485df18e7584efc0652ab5693ca299a29bf315a
/Finance/Monte-Carlo/Python/Pricing.py
443d07a10067c4ceebbe99b11a406d8ee136e2d2
[]
no_license
lesibius/Programming-For-Fun
c16a576dcb91ff12e7ae8116386d4ac89c5e40c0
ae7e19e6ba78f4f95bbbf64f0d222f16d6b22b1d
refs/heads/master
2020-05-29T08:41:19.938610
2017-02-17T10:50:23
2017-02-17T10:50:23
69,820,991
0
0
null
null
null
null
UTF-8
Python
false
false
9,485
py
# -*- coding: utf-8 -*- """ Created on Wed Jan 18 10:28:21 2017 @author: clem """ import math import numpy.random import scipy.stats import matplotlib.pyplot as plt import sklearn.utils as sku class Path: """ Class to represent the path of a random variable following a Brownian motion (e.g. stock price) """ def __init__(self,s0,nPeriod,deltaT): """ Parameters ---------- s0: float Initial value of the random variable nPeriod: int Number of period to generate deltaT: float Inter-period time interval Returns ------- None """ self.NPeriod = nPeriod self.DeltaT = deltaT self.Values = [s0 for i in range(nPeriod)] def GetLastItem(self): """ Returns the last value of the Path instance Parameters ---------- None Returns ------- type: float Last value of the Path instance """ return self.Values[self.NPeriod-1] def __setitem__(self,ind,item): """ Set the value of an item in the Path value list Parameters ---------- ind: int Index in the random variable path list item: Value to set Returns ------- None """ self.Values[ind] = item def __getitem__(self,ind): """ Returns a value of an item from the Path value list with the index provided Parameters ---------- ind: int Index of the item to return Returns ------- type: float Value of the random variable at the given index """ return self.Values[ind] def GetItemByDate(self,date): """ Return the value of the random variable at a given date Parameters ---------- date: float Date for which the random variable value should be returned Returns ------- type: float Value of the random variable at the selected date """ frac, ind = math.modf(date / self.DeltaT) ind=int(ind) if frac < 0.000001: return self[ind] else: return frac*self[ind]+(1-frac)*self[ind+1] def Plot(self): """ Plot a graph of the path Parameters ---------- None Returns ------- None """ plt.plot([self.DeltaT * period for period in range(self.NPeriod)],self.Values) class PathGenerator: """ Class generating Path instances to price derivatives """ def __init__(self,nPath,totaltime,deltaT,model, drift, vol,**kwargs): """ Parameters ---------- nPath: int Number of path to generate totaltime: float Total time of each path deltaT: float Time interval between two periods drift: float/function Drift of the Brownian motion model: str Name of the model to use. Currently, only "black-scholes" supported vol: float/function Volatility of the Brownian motion **kwargs: optional arguments to provide for certain model """ self.TotalTime = totaltime self.NPath = nPath self.NPeriod = int(totaltime/deltaT) self.DeltaT = deltaT self.Drift = drift self.Vol = vol if model.lower() in ['bs','black-scholes','black scholes','merton','black-scholes-merton','black scholes merton']: self.DriftFun = self._BSDriftFun self.VolFun = self._BSVolFun def _BSDriftFun(self,S,t,rt,sigmat): """ Drift function used by the Black-Scholes-Merton model """ return self.Drift * S def _BSVolFun(self,S,t,r,sigmat): """ Volatility function used by the Black-Scholes-Merton model """ return self.Vol * S * numpy.random.normal(0.0,1.0) def _initPaths(self,s0): """ Init the attribute Paths as a list of Path instance Parameters ---------- s0: float Initial value of the random variable Returns ------- None """ self.Paths = [Path(s0,self.NPeriod,self.DeltaT) for i in range(self.NPath)] def GeneratePaths(self,s0): """ Generate the Path instance to price derivatives Parameters ---------- s0: float Initial value of the random variable Returns ------- None """ self._initPaths(s0) for i in range(self.NPath): S = s0 for j in range(self.NPeriod-1): t = (j+1)*self.DeltaT S = S + self.DriftFun(S,t,0.01,0) * self.DeltaT + self.VolFun(S,t,0.01,0) * math.sqrt(self.DeltaT) self.Paths[i][j+1] = S def Discount(self,date): """ Returns the discount factor for a given date Warnings -------- Only provide the discount factor, and do not implement r=f(t) yet Parameters ---------- date: float Date of the cash flow Returns ------- type: float Discount factor for the selected date """ return math.exp(-date * 0.01) def __getitem__(self,ind): """ Return a Path instance from the path list Parameters ---------- ind: int Index of the Path instance Returns ------- type: Path Path at the ind index """ return self.Paths[ind] def __iter__(self): """ Returns an iterable list of the Path instance Parameters ---------- None Returns ------- type: list List of Path instance """ for path in self.Paths: yield path class Option: """ Option class """ def __init__(self,payoff,underlying,expiry=None): """ Parameters ---------- payoff: function(Path -> float) Payoff function underlying: PathGenerator Underlying PathGenerator instance expiry: float (optional) Expiry date (or last expirty date) of the derivative """ self.Underlying = underlying self.Payoff = payoff if expiry is None: self.Expiry = underlying.TotalTime else: self.Expiry = expiry def _GetValue(self,path): """ Compute the value at expiry date of the option" Parameters ---------- path: Path Path for which the value should be computed Returns ------- type: float Value at expiry """ return self.Payoff(path) * self.Underlying.Discount(self.Expiry) def Price(self,nbootstrap = 1000): """ Compute the option price using simulations Parameters ---------- None Returns ------- type: float Option price at t = 0 """ tmpval = [] for path in self.Underlying: tmpval.append(self._GetValue(path)) #av = mean(tmpval) #st = (1.0/sqrt(self.Underlying.NPath))*numpy.std(tmpval) #Dirty bootstrap procedure. Fall far from the closed form solution for OTM put #But still better than without actually bootstrap = [mean(sku.resample(tmpval)) for i in range(nbootstrap)] av = mean(bootstrap) st = numpy.std(bootstrap) return [av - 1.96 * st, av ,av + 1.96 * st] #Filled with some data ~ today libor = 0.76944/100.0 S0 = 2267.89 r = 12.0 * math.log(1+libor/12.0) sigma =0.06 #0.1177 K = 2250.0 t=1.0/12.0 nperiod = 1000 npath = 2000 pg = PathGenerator(npath,t,t/nperiod,'bs',r,sigma) pg.GeneratePaths(S0) plainvanillacall = Option(lambda x: max(x.GetLastItem() - K,0),pg) plainvanillaput = Option(lambda x: max(K - x.GetLastItem(),0),pg) print("Call price data: {}".format(plainvanillacall.Price())) print("Put price data: {}".format(plainvanillaput.Price())) N = lambda x: scipy.stats.norm.cdf(x) d1 = (1.0/(sigma *math.sqrt(t))) * (math.log(S0/K)+(r+(sigma**2.0)/2.0)*t) d2 = d1 - sigma * math.sqrt(t) print("Closed form call: {}".format(S0 * N(d1) - K * math.exp(-r*t) * N(d2))) print("Closed form put: {}".format(-S0 * N(-d1) + K * math.exp(-r*t) * N(-d2))) from matplotlib.ticker import FuncFormatter """ plt.hist([p.GetLastItem() for p in pg.Paths],bins=10) def to_percent(y,position): return str(100*y/npath) + '%' formatter = FuncFormatter(to_percent) plt.gca().yaxis.set_major_formatter(formatter) """ print(mean([p.GetLastItem() for p in pg.Paths])) print(S0 * math.exp(r * plainvanillacall.Expiry)) pg.Paths[0].Plot() #plt.gca().set_ylim([0,2500])
c5764734108e5118eb033f9417b70073be8ac9a0
28541d61368a14a0d5003db4cc07fed21b40c41f
/Chapter-4/maze3.py
2a2bcf9a00c029002b258874bd88cd10f9fc123a
[]
no_license
eizin6389/python_algorithm
390861f9342ce907f2cda0b45b84d364bcba7541
abf3588ed97a343b6559eb5d69156708d42bc243
refs/heads/master
2022-12-06T20:48:49.470312
2020-08-14T13:29:26
2020-08-14T13:29:26
282,905,077
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
maze = [ [9,9,9,9,9,9,9,9,9,9,9,9], [9,0,0,0,9,0,0,0,0,0,0,9], [9,0,9,0,0,0,9,9,0,9,9,9], [9,0,9,9,0,9,0,0,0,9,0,9], [9,0,0,0,9,0,0,9,9,0,9,9], [9,9,9,0,0,9,0,9,0,0,0,9], [9,0,0,0,9,0,9,0,0,9,1,9], [9,0,9,0,0,0,0,9,0,0,9,9], [9,0,0,9,0,9,0,0,9,0,0,9], [9,0,9,0,9,0,9,0,0,9,0,9], [9,0,0,0,0,0,0,9,0,0,0,9], [9,9,9,9,9,9,9,9,9,9,9,9] ] dir = [[1,0],[0,1],[-1,0],[0,-1]] x, y, depth, d = 1, 1, 0, 0 while maze[x][y] != 1: maze[x][y] = 2 for i in range(len(dir)): j = (d + i - 1) % len(dir) if maze[x + dir[j][0]][y + dir[j][1]] < 2: x += dir[j][0] y += dir[j][1] d = j depth += 1 break elif maze[x + dir[j][0]][y + dir[j][1]] == 2: x += dir[j][0] y += dir[j][1] d = j depth -= 1 break print(depth)
3eaa1551407f554655a52f1b22c4d721669fa579
3e6e18edfe81bb19e298ae4e1831cb76c2c6069d
/src/lpcshop/models/bottles.py
a4dba719454dd661eebe4d48daada55e5b64e9f8
[]
no_license
libertalia/lpc
2e72de7eee36cd92d62e4d250186bda2353c179a
972343abdcffffc2bec0cac4e2057c91edfa1716
refs/heads/master
2023-01-07T08:13:02.708844
2016-05-13T01:34:57
2016-05-13T01:34:57
58,680,165
0
1
null
2022-12-26T19:59:29
2016-05-12T22:02:24
JavaScript
UTF-8
Python
false
false
2,117
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.six.moves.urllib.parse import urljoin from django.utils.encoding import python_2_unicode_compatible from djangocms_text_ckeditor.fields import HTMLField from shop.money.fields import MoneyField from shop.models.product import BaseProduct, BaseProductManager from shop.models.defaults.mapping import ProductPage, ProductImage @python_2_unicode_compatible class Bottle(BaseProduct): # common product fields product_name = models.CharField(max_length=255, verbose_name=_("Product Name")) slug = models.SlugField(verbose_name=_("Slug")) unit_price = MoneyField(_("Unit price"), decimal_places=3, help_text=_("Net price for this product")) description = HTMLField(verbose_name=_("Description"), help_text=_("Description for the list view of products.")) # controlling the catalog order = models.PositiveIntegerField(verbose_name=_("Sort by"), db_index=True) cms_pages = models.ManyToManyField('cms.Page', through=ProductPage, help_text=_("Choose list view this product shall appear on.")) images = models.ManyToManyField('filer.Image', through=ProductImage) objects = BaseProductManager() # filter expression used to search for a product item using the Select2 widget lookup_fields = ('product_name__icontains',) class Meta: verbose_name = _("Bottle") ordering = ('order',) def __str__(self): return self.product_name @property def sample_image(self): return self.images.first() def get_price(self, request): return self.unit_price def get_absolute_url(self): # sorting by highest level, so that the canonical URL associates with the # most generic category cms_page = self.cms_pages.order_by('depth').last() if cms_page is None: return urljoin('category-not-assigned', self.slug) return urljoin(cms_page.get_absolute_url(), self.slug)
0486cb46bc1ae6e72dae5915d07ace26bbe31c92
ebc478ba6921afc9a3f613eda29942e3434512c6
/snpfc/snpCompare.py
4b454241b380e1545d7cabec6d16716f95c013b5
[ "Python-2.0" ]
permissive
TeamMacLean/snpFC
704c24947bf13a476c733845324061a7e12e4b2f
6f3f90ebba4aa527bca80381d7d0002438011d22
refs/heads/master
2020-04-28T02:28:44.062833
2019-04-26T11:36:11
2019-04-26T11:36:11
174,899,809
4
3
null
null
null
null
UTF-8
Python
false
false
14,318
py
import os import vcf class SnpCompare: "class to compare SNPs from multiple VCFs." def __init__(self, vcffiles): """Initializes the object with vcf files and data structure variables to compare snps.""" self.vcffilenames = vcffiles self.snpsites = {} self.snp_positions = {} def _record_all_snp_positions(self, chromosome, position): """ creates datastructure to store snp positions. Records all chromosome and positions in global variable (dictionary data structure) and initializes with an array of False boolean values for each vcf input file Each boolean value is a positional value of a snp in input vcf files in an array. E.g. if input vcf files are ["test1.vcf", "test2.vcf", "test3.vcf"] snpsites["chr1"]["1"] = [False, False, False] snpsites["chr1"]["10"] = [False, False, False] snpsites["chr2"]["1"] = [False, False, False] :type chromosome: string :param chromosome: name of the chromosome :type position: int :param position: position of SNP call in the chromosome return: None """ if chromosome in self.snpsites.keys(): if str(position) in self.snpsites[chromosome].keys(): return else: self.snpsites[chromosome][str(position)] = [False] * len( self.vcffilenames ) else: self.snpsites.update( {chromosome: {str(position): [False] * len(self.vcffilenames)}} ) def _record_all_snps(self, filename, chromosome, position, ref, alt): """ creates datastructure to store all snps and it's relevant information. append the snp records to the dictionary data structure once they passed the filter :type filename: string :param filename: vcf filename :type chromosome: string :param chromosome: chromosome name on which SNP was call :type position: int :param position: base position in the chromosome :type ref: String :param ref: reference base in SNP call :type alt: String :param alt: alternate base in SNP call return: None """ if filename in self.snp_positions.keys(): if chromosome in self.snp_positions[filename].keys(): self.snp_positions[filename][chromosome].update( { str(position): { "ref": ref, "alt": str(alt) .replace("[", "") .replace("]", "") .replace(" ", ""), } } ) else: self.snp_positions[filename].update( { chromosome: { str(position): { "ref": ref, "alt": str(alt) .replace("[", "") .replace("]", "") .replace(" ", ""), } } } ) else: self.snp_positions.update( { filename: { chromosome: { str(position): { "ref": ref, "alt": str(alt) .replace("[", "") .replace("]", "") .replace(" ", ""), } } } } ) def _get_snp_data(self): """ reads chromosome, position, reference and alternative columns for SNPs and store in dict data structure.""" vcf_counter = 0 for filename in self.vcffilenames: vcf_reader = vcf.Reader(open(filename), "rb") samplename = vcf_reader.samples[0] for record in vcf_reader: chromosome, position, ref, alt = ( record.CHROM, record.POS, record.REF, record.ALT, ) position = str(position) ## code to build all snps position self._record_all_snp_positions(chromosome, position) self._record_all_snps(filename, chromosome, position, ref, alt) # self.snp_positions.update({str(vcf_counter) + "_" + chromosome + "_" + str(position):{"ref": str(ref), "alt":str(alt).replace("[","").replace("]", "")}}) self.snpsites[chromosome][str(position)][vcf_counter] = True vcf_counter += 1 def count_list_elements_occurrences(self, alt_bases): """ counts number of each element of input array. :type alt_bases: Array :param alt_bases: alternate bases from all VCF files for same chromosome and position. e.g. ["A", "T", "A", "T,C"] return: array with count of each element in the input array. e.g for above array it retuns [2, 1, 2, 1] """ counts = [] for x in alt_bases: counts.append(alt_bases.count(x)) return counts def get_unique_snps(self): """ records a unique snps in a vcf file """ for chromosome in self.snpsites.keys(): for position in self.snpsites[chromosome].keys(): for filenumber in range(len(self.vcffilenames)): if ( self.snpsites[chromosome][position][filenumber] == True and sum(self.snpsites[chromosome][position]) == 1 ): # First any(array) finds self.snp_positions[self.vcffilenames[filenumber]][chromosome][ position ].update({"unique": True}) elif ( sum(self.snpsites[chromosome][position]) >= 2 ): # there might be snp at same position but with different alt base snp_index = [ i for i, j in enumerate(self.snpsites[chromosome][position]) if j == True ] totalindex = len(snp_index) # Lets check the alt base in these vcf files using index # lets get array of alt bases from each file alt_snps = [] for index in snp_index: alt_snps.append( self.snp_positions[self.vcffilenames[index]][ chromosome ][position]["alt"] ) # get the counts of the elements counts = self.count_list_elements_occurrences(alt_snps) for index in range(len(counts)): if counts[index] == 1: # this is unique, so occurred once self.snp_positions[self.vcffilenames[snp_index[index]]][ chromosome ][position].update( {"unique": True} ) # vcffilenames[snp_index[index]] = this will be the filename # print("this is unique", vcffilenames[snp_index[index]], chromosome, position, self.snp_positions[vcffilenames[snp_index[index]]][chromosome][position]) # else: # vcf_database["self.snp_positions"][chromosome + "_" + position].update({"unique":False}) return def get_common_snps(self): """ records SNPs common to all VCF input files. """ for chromosome in self.snpsites.keys(): for position in self.snpsites[chromosome].keys(): if all(self.snpsites[chromosome][position]) == True: # lets check if all alt bases are same alt_snps = [] for index in range(len(self.snpsites[chromosome][position])): alt_snps.append( self.snp_positions[self.vcffilenames[index]][chromosome][ position ]["alt"] ) counts = self.count_list_elements_occurrences(alt_snps) for countindex in range(len(counts)): if counts[countindex] == len(self.vcffilenames): self.snp_positions[self.vcffilenames[countindex]][ chromosome ][position].update({"common": True}) def compare(self, outdir, save=True, display=False): """ save the common/unique snps to files and/or display the results. :type outdir: string :param outdir: output directory to save the output files :type save: boolean :param save: save the results to output files. Default True :type display: boolean :param display: display the results on the screen. Default False returns: None """ self._get_snp_data() self.get_unique_snps() self.get_common_snps() outfiles = [] for filename in self.vcffilenames: outfile = ( outdir + "/" + os.path.basename(filename).replace(".vcf", "") + "_snpcompare.txt" ) outfh = open(outfile, "w") outfiles.append(outfile) if display == True: print("Common and Unique SNPS in vcf File : ", filename) else: print( "Common and Unique SNPs from file ", filename, " are saved in :", outfile, ) for chromosome in self.snp_positions[filename].keys(): for position in self.snp_positions[filename][chromosome].keys(): if ( "common" in self.snp_positions[filename][chromosome][position].keys() and self.snp_positions[filename][chromosome][position]["common"] == True ): if save == True: outfh.write( " ".join( [ chromosome, position, self.snp_positions[filename][chromosome][ position ]["ref"], self.snp_positions[filename][chromosome][ position ]["alt"], "common", ] ) + "\n" ) if display == True: print( " ".join( [ chromosome, position, self.snp_positions[filename][chromosome][ position ]["ref"], self.snp_positions[filename][chromosome][ position ]["alt"], "common", ] ) ) elif ( "unique" in self.snp_positions[filename][chromosome][position].keys() and self.snp_positions[filename][chromosome][position]["unique"] == True ): if save == True: outfh.write( " ".join( [ chromosome, position, self.snp_positions[filename][chromosome][ position ]["ref"], self.snp_positions[filename][chromosome][ position ]["alt"], "unique", ] ) + "\n" ) if display == True: print( " ".join( [ chromosome, position, self.snp_positions[filename][chromosome][ position ]["ref"], self.snp_positions[filename][chromosome][ position ]["alt"], "unique", ] ) ) outfh.close() if display == True: print("The outputs are saved in these files :", " ".join(outfiles)) return
4ac2e03f18c59c4cf2e602bb3b261c600978f096
c7575775b41d1435f33131eb5fdb1b5ec9066bba
/heyapp/settings.py
e259df91898c04a481dccc46c69e0c51a5722d51
[]
no_license
Wambuilucy/nostalgia
12a5c951769b2d4dc0e4e68fce65bb53d360e0e7
5daf50d9e37e263a40c948ffcb155d85e03bd5b2
refs/heads/master
2023-01-06T08:00:33.547694
2020-11-03T17:00:44
2020-11-03T17:00:44
309,750,279
0
0
null
null
null
null
UTF-8
Python
false
false
3,094
py
""" Django settings for heyapp project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'x5a(^4i%79m302-_w6^0&v*pa--xyf&=&=dr8j#2v5lu1%-^l-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'heyapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'heyapp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
7bd8c0b70b4ffef14ae6fc96a939fd776a871a5f
c4b852ce48ddef75f8c57bd2e70cc8ae7dc10693
/ToDo/console/migrations/0006_auto_20150309_1629.py
cbad7de01caa9cfa4fe39921f022ec9d123245ed
[]
no_license
MMX13/todo
a2d063b3872579faa4b2ac4e1df4dfab74fe6788
b303fcec6e44f93223e6dab0de5a6d359c72cc70
refs/heads/master
2020-06-07T11:36:13.255423
2015-03-20T05:00:11
2015-03-20T05:00:11
31,998,487
0
0
null
null
null
null
UTF-8
Python
false
false
450
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('console', '0005_auto_20150309_1627'), ] operations = [ migrations.AlterField( model_name='task', name='scheduledDate', field=models.DateField(null=True, blank=True), preserve_default=True, ), ]
396451adf046ae9a1e9a93d08c731002c02b4a78
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AntMerchantExpandIndirectOnlineModifyResponse.py
deb575d50e426359ce6993ae14225946249fa464
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
805
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AntMerchantExpandIndirectOnlineModifyResponse(AlipayResponse): def __init__(self): super(AntMerchantExpandIndirectOnlineModifyResponse, self).__init__() self._sub_merchant_id = None @property def sub_merchant_id(self): return self._sub_merchant_id @sub_merchant_id.setter def sub_merchant_id(self, value): self._sub_merchant_id = value def parse_response_content(self, response_content): response = super(AntMerchantExpandIndirectOnlineModifyResponse, self).parse_response_content(response_content) if 'sub_merchant_id' in response: self.sub_merchant_id = response['sub_merchant_id']
4b664002f3b91925204f95cf5afde92db89ca9f4
154e563104144721865a90987db0332bef08a4c3
/rh_aligner/plotting/__init__.py
8187d6023c6db7b60a29f9fbf00456387099c256
[ "MIT" ]
permissive
Rhoana/rh_aligner
565572d645769053c74a36ddf0f53ecc20d997fe
baab698f6520b9b999bccf423dc510b0c8f4b9bb
refs/heads/master
2021-01-01T05:29:25.406459
2016-05-09T15:34:58
2016-05-09T15:34:58
56,165,015
3
3
null
2016-05-05T20:00:26
2016-04-13T15:43:33
Python
UTF-8
Python
false
false
281
py
""" Plotting of the stitching and alignment steps library - to deubg the steps """ from .view_pre_pmcc_mfov import view_pre_pmcc_mfov from .view_post_pmcc_mfov import view_post_pmcc_mfov __all__ = [ 'view_pre_pmcc_mfov', 'view_post_pmcc_mfov' ]
467775b4bd0bdc529f7af369a772db9776c3f4d4
0b793bce2da8c3d09b7956c0672ddbffd46feaed
/atcoder/corp/dwacon6_a.py
0f60c706492fb0f7e55329255dd53fcbe06cb6d9
[ "MIT" ]
permissive
knuu/competitive-programming
c6c4e08fb231937d988bdc5a60a8ad6b31b97616
16bc68fdaedd6f96ae24310d697585ca8836ab6e
refs/heads/master
2021-01-17T09:39:02.647688
2020-11-07T03:17:22
2020-11-07T03:17:22
27,886,732
1
0
null
null
null
null
UTF-8
Python
false
false
225
py
N = int(input()) titles, times = [], [] for _ in range(N): s, t = input().split() titles.append(s) times.append(int(t)) idx = titles.index(input()) ans = 0 for i in range(idx+1, N): ans += times[i] print(ans)
c16c35fcddd7c0a797b27db56f807ce47716da1a
7bc03c4f3fc28a9cebc9ebd3581060129a112416
/ogb/ogbn-products/mlp.py
3a6a307fffdcbe5fdff3be599899997a804eddba
[ "BSD-3-Clause" ]
permissive
cornell-zhang/GraphZoom
468f6a03cf8009d133345f267425933421054e6a
5156f86fa22efa853e864553de4225a9122d8062
refs/heads/master
2023-04-04T19:06:33.155239
2021-04-20T23:21:35
2021-04-20T23:21:35
238,811,116
106
16
BSD-3-Clause
2023-03-24T23:42:18
2020-02-07T00:10:40
Python
UTF-8
Python
false
false
4,345
py
import argparse import numpy as np import torch import torch.nn.functional as F from ogb.nodeproppred import PygNodePropPredDataset, Evaluator from logger import Logger from csv import writer class MLP(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, num_layers, dropout): super(MLP, self).__init__() self.lins = torch.nn.ModuleList() self.lins.append(torch.nn.Linear(in_channels, hidden_channels)) for _ in range(num_layers - 2): self.lins.append(torch.nn.Linear(hidden_channels, hidden_channels)) self.lins.append(torch.nn.Linear(hidden_channels, out_channels)) self.dropout = dropout def reset_parameters(self): for lin in self.lins: lin.reset_parameters() def forward(self, x): for lin in self.lins[:-1]: x = lin(x) x = F.relu(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.lins[-1](x) return torch.log_softmax(x, dim=-1) def train(model, x, y_true, train_idx, optimizer): model.train() optimizer.zero_grad() out = model(x[train_idx]) loss = F.nll_loss(out, y_true.squeeze(1)[train_idx]) loss.backward() optimizer.step() return loss.item() @torch.no_grad() def test(model, x, y_true, split_idx, evaluator): model.eval() out = model(x) y_pred = out.argmax(dim=-1, keepdim=True) train_acc = evaluator.eval({ 'y_true': y_true[split_idx['train']], 'y_pred': y_pred[split_idx['train']], })['acc'] valid_acc = evaluator.eval({ 'y_true': y_true[split_idx['valid']], 'y_pred': y_pred[split_idx['valid']], })['acc'] test_acc = evaluator.eval({ 'y_true': y_true[split_idx['test']], 'y_pred': y_pred[split_idx['test']], })['acc'] return train_acc, valid_acc, test_acc def main(): parser = argparse.ArgumentParser(description='OGBN-Products (MLP)') parser.add_argument('--device', type=int, default=0) parser.add_argument('--log_steps', type=int, default=1) parser.add_argument('--use_node_embedding', action='store_true') parser.add_argument('--num_layers', type=int, default=3) parser.add_argument('--hidden_channels', type=int, default=256) parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--runs', type=int, default=10) args = parser.parse_args() print(args) device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu' device = torch.device(device) dataset = PygNodePropPredDataset(name='ogbn-products') split_idx = dataset.get_idx_split() data = dataset[0] x = data.x if args.use_node_embedding: embedding = np.load('./embed_results/embeddings.npy') embedding = torch.from_numpy(embedding).float() x = torch.cat([x, embedding], dim=-1) x = x.to(device) y_true = data.y.to(device) train_idx = split_idx['train'].to(device) model = MLP(x.size(-1), args.hidden_channels, dataset.num_classes, args.num_layers, args.dropout).to(device) evaluator = Evaluator(name='ogbn-products') logger = Logger(args.runs, args) for run in range(args.runs): model.reset_parameters() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, 1 + args.epochs): loss = train(model, x, y_true, train_idx, optimizer) result = test(model, x, y_true, split_idx, evaluator) logger.add_result(run, result) if epoch % args.log_steps == 0: train_acc, valid_acc, test_acc = result print(f'Run: {run + 1:02d}, ' f'Epoch: {epoch:02d}, ' f'Loss: {loss:.4f}, ' f'Train: {100 * train_acc:.2f}%, ' f'Valid: {100 * valid_acc:.2f}%, ' f'Test: {100 * test_acc:.2f}%') logger.print_statistics(run) logger.print_statistics() total_params = sum(p.numel() for p in model.parameters()) print(f'mlp total params are {total_params}') if __name__ == "__main__": main()
1517524505fa74f594aa60a8d208dff423017646
2ce15189f888f9823469d7eaca69c7c1e06d9a01
/apps/login_app/migrations/0001_initial.py
0d97fff9e69a4eec96bb77b7913c10519bb3f726
[]
no_license
paulfranco/cards
6cbcbe3e71b889cb8fbbbbc0fe9a3a4b229087d0
5250b2526d37b9993355fc2f5afed3df778a2812
refs/heads/master
2021-07-04T16:49:41.182133
2017-09-27T06:20:44
2017-09-27T06:20:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-27 01:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=200)), ('last_name', models.CharField(max_length=200)), ('email', models.CharField(max_length=200)), ('password', models.CharField(max_length=200)), ], ), ]
36ef3a599bd8eeffa53ece08e08283a8b626e2f6
29a0ce2e17aa6a092d3c5bae2da9a3a4fcd7fd22
/pandas_practice/basic5.5_clean.py
0b15b414ec7a4ed81aeffe658385351a63fed922
[]
no_license
varun0308/python_practice
0a94c7c5789665e6f930166a424499647b83ba55
6badc59b871b610ef407054128bc1ed482ec148f
refs/heads/main
2023-08-25T12:56:22.404006
2021-10-02T13:59:47
2021-10-02T13:59:47
330,429,476
0
0
null
2021-01-20T09:22:17
2021-01-17T16:02:00
Python
UTF-8
Python
false
false
380
py
import pandas as pd df = pd.read_csv('D:\Varun\python_practice\pandas_practice\dirtydata.csv') print(df.head()) # We can drop any unwanted column as df1 = df.drop(['Calories'], axis = 1) # Or axis = 1 print(df.head()) # We can concatinate 2 dataframe, column-wise or row-wise df2 = pd.concat([df1,df['Calories']], axis = 1) # Or axis = 0 for row concatination print(df2.head())
47cf0fd8aeef98b4cf379b295d0c198188f4b2da
22a671da954e3c6ecc83f7d24bb4a7c6c22cdeb9
/flask/lib/python3.6/io.py
153ad1e1b39a6a6b1fc5224983d5dbaa58d11d97
[]
no_license
areibman/Kaggle-Renthop
62b7b0066bd6e980f10447681d749f183e8552b9
553aadca9ba1faa1696df048fb46e3843dda0113
refs/heads/master
2021-09-03T14:22:09.400118
2018-01-09T18:50:13
2018-01-09T18:50:13
116,855,697
0
0
null
null
null
null
UTF-8
Python
false
false
41
py
/Users/alex/anaconda3/lib/python3.6/io.py
97550ee9088bd44771d6985a9fa127e9f57fd623
9fb8221849511024fa74a7a9f40c89075e06d7b1
/node_modules/bcrypt/build/config.gypi
e53b910c93cae2e01ae79dba6454d5dd5ee46d45
[ "MIT" ]
permissive
ericajlittle/tinyURL
d94f6598ef49c95177bc84fa52351672dd9b9c86
b1f167da5a5665ab93598594389ac7f3a665b534
refs/heads/master
2021-01-11T21:13:21.703523
2017-01-31T21:51:28
2017-01-31T21:51:28
79,271,946
0
0
null
null
null
null
UTF-8
Python
false
false
4,489
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "debug_devtools": "node", "gas_version": "2.23", "host_arch": "x64", "icu_data_file": "icudt57l.dat", "icu_data_in": "../../deps/icu-small/source/data/in/icudt57l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "57", "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 48, "node_no_browser_globals": "false", "node_prefix": "/", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "openssl_fips": "", "openssl_no_asm": 0, "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "false", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_inspector": "true", "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_random_seed": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "/home/vagrant/.node-gyp/6.3.1", "copy_dev_lib": "true", "standalone_static_library": 1, "fallback_to_build": "true", "module": "/vagrant/week2day2/express_tinyURL/node_modules/bcrypt/lib/binding/bcrypt_lib.node", "module_name": "bcrypt_lib", "module_path": "/vagrant/week2day2/express_tinyURL/node_modules/bcrypt/lib/binding", "cache_lock_stale": "60000", "legacy_bundling": "", "sign_git_tag": "", "user_agent": "npm/3.10.3 node/v6.3.1 linux x64", "always_auth": "", "bin_links": "true", "key": "", "description": "true", "fetch_retries": "2", "heading": "npm", "if_present": "", "init_version": "1.0.0", "user": "1000", "force": "", "only": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "tag_version_prefix": "v", "cache_max": "Infinity", "userconfig": "/home/vagrant/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/tmp", "depth": "Infinity", "save_dev": "", "usage": "", "progress": "true", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "dry_run": "", "prefix": "/home/vagrant/.nvm/versions/node/v6.3.1", "browser": "", "cache_lock_wait": "10000", "registry": "https://registry.npmjs.org/", "save_optional": "", "scope": "", "searchopts": "", "versions": "", "cache": "/home/vagrant/.npm", "global_style": "", "ignore_scripts": "", "searchsort": "name", "version": "", "local_address": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "maxsockets": "50", "umask": "0002", "fetch_retry_maxtimeout": "60000", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "save": "true", "access": "", "also": "", "unicode": "", "long": "", "production": "", "unsafe_perm": "true", "node_version": "6.3.1", "tag": "latest", "git_tag_version": "true", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "save_exact": "", "strict_ssl": "true", "dev": "", "globalconfig": "/home/vagrant/.nvm/versions/node/v6.3.1/etc/npmrc", "init_module": "/home/vagrant/.npm-init.js", "parseable": "", "globalignorefile": "/home/vagrant/.nvm/versions/node/v6.3.1/etc/npmignore", "cache_lock_retries": "10", "save_prefix": "^", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "json": "" } }
25824908e100267109197ad1c04cca8d349a6f10
8cf0cf9b71b7c5fbaa150e9893bf461ef661045e
/ownblock/ownblock/apps/parking/models.py
84c75498d4e8e94365b81a282ee43d877a925a7d
[ "MIT" ]
permissive
danjac/ownblock
676b27a5aa0d4ce2ac2cd924a632489cd6fc21ee
ac662fb7efb2f04567e2f85638c1250286452611
refs/heads/master
2016-08-02T21:51:56.055598
2015-05-02T12:54:47
2015-05-02T12:54:47
34,940,828
3
0
null
null
null
null
UTF-8
Python
false
false
875
py
from django.conf import settings from django.db import models from django_countries.fields import CountryField class Vehicle(models.Model): description = models.CharField(max_length=100) registration_number = models.CharField(max_length=12) country = CountryField(default="FI") resident = models.ForeignKey(settings.AUTH_USER_MODEL) reserved_place = models.CharField(max_length=12, blank=True) def __str__(self): return self.registration_number def get_groups(self): return [self.resident, self.resident.apartment.building.site.group] def has_permission(self, user, perm): if user.role == 'resident': return user == self.resident if user.role == 'manager': return (self.resident.apartment.building.site_id == user.site_id) return False
2c04318b0b4fa9de6ab094de0b250b0fad83f7ad
3ee88f6e7c427eef6dd7bb177f4b3a727bccbcd2
/pbnh/conf.py
90a4b7dcbb4ef4decd192aada7dd76669fc36f77
[ "MIT" ]
permissive
bhanderson/pbnh
67a4132adf366dafda3d01cfcfae92f14d84266c
59bcb27de1a2300f14476349f3182c651a8f88a1
refs/heads/master
2022-11-05T13:45:17.674023
2022-10-24T23:21:24
2022-10-24T23:21:24
55,452,403
17
10
MIT
2022-10-24T23:21:25
2016-04-04T23:21:09
JavaScript
UTF-8
Python
false
false
580
py
import yaml import copy DEFAULTS = { "server": { "bind_ip": "0.0.0.0", "bind_port": 5001, "debug": True, }, "database": { "dbname": "pastedb", "dialect": "sqlite", "driver": None, "host": None, "password": None, "port": None, "username": None } } def get_config(): try: with open('secrets.yml') as config: return yaml.load(config) except IOError: return copy.copy(DEFAULTS)
caef2901988d4c4ef7134aa4f7bd5d6bc5e027cf
e180e68c468557b186d083869c005c98abdf539a
/Testing Hardcoded format/test12.py
45c8d0b0c94ebea29eb0ddab7264b94cf3c404aa
[]
no_license
singhalshubh/Notification-system-Testing-using-selenium
8a58977d7d63c1216e420363f408826e9bfccf7a
e460e7ceeb63e5eea9a914be0ed84febaebe47c7
refs/heads/master
2020-03-21T21:33:03.046748
2020-01-17T09:53:24
2020-01-17T09:53:24
139,069,652
0
0
null
null
null
null
UTF-8
Python
false
false
2,514
py
__author__= 'shubh' import unittest from selenium import webdriver class signup(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() def test_unsubscribe_community(self): user ="raghav" pwd= "sha123#56su" driver = webdriver.Firefox() driver.maximize_window() #For maximizing window driver.implicitly_wait(20) #gives an implicit wait for 20 seconds driver.get("http://127.0.0.1:8000/") driver.find_element_by_xpath('//a [@href="/login/?next=/"]').click() driver.get("http://localhost:8000/login/?next=/") elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/communities/"]').click() driver.find_element_by_xpath('//a [@href="/community-view/1/"]').click() driver.find_element_by_id("join-us").click() driver.find_element_by_xpath('//a [@href="/logout/"]').click() driver.get("http://127.0.0.1:8000/") user ="shubh" pwd= "sha123#56su" driver.find_element_by_xpath('//a [@href="/login/?next=/"]').click() driver.get("http://localhost:8000/login/?next=/") elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/communities/"]').click() driver.find_element_by_xpath('//a [@href="/community-view/2/"]').click() driver.find_element_by_xpath('//a [@href="/manage_community/2/"]').click() name = "raghav" Role = "author" elem = driver.find_element_by_id("username") elem.send_keys(name) elem = driver.find_element_by_id("role") elem.send_keys(Role) #specify the class driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/logout/"]').click() driver.get("http://127.0.0.1:8000/") user ="raghav" pwd= "sha123#56su" driver.find_element_by_xpath('//a [@href="/login/?next=/"]').click() driver.get("http://localhost:8000/login/?next=/") elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/notifications/"]').click() def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main()
4f1cde96439f98545e5230a27a9a466a7284b8c1
2d39d2dbfc4d54c79899caf6fab83d23b1823b9a
/extract_info.py
f2316188355dc7286dc2172aa53a4455fba34d35
[]
no_license
josephthurman/nyt-reviews
77db49ab131cbbb2664a45cf4d1625b2ea79f5c8
15067020ecb96acfc89a2b14c38ebd3e0dbf7841
refs/heads/master
2020-03-24T11:51:41.936973
2018-10-03T19:17:44
2018-10-03T19:17:44
142,697,014
0
0
null
null
null
null
UTF-8
Python
false
false
6,327
py
from bs4 import BeautifulSoup import re import json import os # Some helper functions - mostly used in testing def get_review(counter): with open('./reviews/review' + str(counter) + '.html', 'r') as file: parsed = BeautifulSoup(file, 'html.parser') return(parsed) # Extract the text of the review def find_review(bs): tag_searches = [('p', re.compile('story-body-text story-content')), ('p', re.compile('css-1i0edl6'))] for (tag, regex) in tag_searches: result = bs.find_all(tag, {'class': regex}) if len(result) > 0: review_text = '' for p in result: review_text += p.get_text() review_text = re.sub(r'\s+', ' ', review_text) return(review_text) # Return EMPTY if review text cannot be found return("EMPTY") # Extract the rating from the review def find_stars(bs): # Newer reviews have the rating set off from the story in special html tag. Find those first tag_searches = [('span', re.compile('ReviewFooter-stars')), ('div', re.compile('ReviewFooter-rating')), ('li', re.compile('critic-star-rating')), ('li', re.compile('critic-word-rating'))] stars = "NA" for (tag, regex) in tag_searches: result = bs.find_all(tag, {'class': regex}) if len(result) > 0: text = result[0].get_text() stars = re.sub(r'\s+', ' ', text).strip() if stars in ['Satisfactory', 'Fair', 'Poor']: return(stars) else: return(str(len(stars))) # Older stories have the rating just sitting in a plain paragraph. We can also find those if re.search('<p.*?>\s*[Ss]atisfactory\s*</p>', str(bs)): return('Satisfactory') if re.search('<p.*?>\s*[Ff]air\s*</p>', str(bs)): return('Fair') if re.search('<p.*?>\s*[Pp]oor\s*</p>', str(bs)): return('Poor') direct_search = re.search('<p.*?>\s*★+\s*</p>', str(bs)) if direct_search: just_stars = re.search('★+', direct_search.group()).group() return(str(len(just_stars))) # If all else fails, return 'NA' to show we couldn't find a rating return('NA') # Extract the number of recommended dishes in the review def find_rec_dishes(bs): tag_searches = [('div', 'class', re.compile('ReviewFooter-recommendedDishes')), ('span', 'itemprop', re.compile('[Mm]enu'))] rec_dish_text = '' for (tag, property, regex) in tag_searches: result = bs.find_all(tag, {property: regex}) if result: if len(result) > 1: rec_dish_text = result[1].get_text() else: rec_dish_text = result[0].get_text() break # Two reviews have the prices listed in a totally different format. We pick those up here if rec_dish_text == '': regex = re.compile(r'RECOMMENDED\s*</strong>(.*?)</p>', flags = re.DOTALL) rec_dish_text = re.search(regex, str(bs)).group(1) # Return the number of recommended dishes rec_dish_list = re.split('; |\. ', rec_dish_text) return(len(rec_dish_list)) # Convert numeric price to price category # This is a best guess - they don't have a current key for this. # But we're actually only doing this for 2 reviews anyway def price_to_category(price): if price < 25: return(1) elif price < 50: return(2) elif price < 100: return(3) else: return(4) # Extract the price rating in the review def find_price(bs): tag_searches = [('dd', 'class', 'price'), ('span', 'itemprop', re.compile('[Pp]rice[Rr]ange'))] price_text = '' for (tag, property, regex) in tag_searches: result = bs.find_all(tag, {property: regex}) if len(result) > 0: price_text = result[0].get_text() break # Two reviews have the prices listed in a totally different format. We pick those up here if price_text == '': regex = re.compile(r'PRICES\s*</strong>(.*?)</p>', flags = re.DOTALL) price_text = re.search(regex, str(bs)).group(1) # Read price description and get the dollar sign rating dollar_regex = re.compile('(\$+)\s') dollarsigns = re.search(dollar_regex, price_text) if dollarsigns: return(len(dollarsigns.group(1))) else: # Extract actual price numbers - finds numbers preceded by $, or by hyphens for ranges, # e.g. return 5, 17 and 45 from somthing like "apps $5-17, entrees $45" price_regex = re.compile('(?<=[-\$])[0-9]+') list_of_prices = re.findall(price_regex, price_text) if list_of_prices: max_price = max(map(int,list_of_prices)) return(price_to_category(max_price)) else: # Error - couldn't find the price category. return(0) if __name__ == '__main__': with open('./reviews/url_list.txt', 'r') as url_file: urls = json.load(url_file) cleaned_reviews = [] unprocessed_URLS = [] for counter, review_url in enumerate(urls): # progress counter for debugging if counter % 10 == 0: print(counter) # Read review parsed = get_review(counter) rating = find_stars(parsed) if rating != 'NA': restaurant_info = {'id': counter, 'review_url': review_url, 'rating': rating, 'review_text': find_review(parsed), 'price': find_price(parsed), 'rec_dishes' : find_rec_dishes(parsed)} cleaned_reviews.append(restaurant_info) else: unprocessed_URLS.append(review_url) # There are still some articles for which we can't find a star rating. The list of such articles is saved here # It ends up being short enough to inspect by hand and see that none of these articles are real reviews with stars os.makedirs('data', exist_ok=True) with open('./data/unprocessed_URLs.txt', 'w') as outfile: json.dump(unprocessed_URLS, outfile) # Save cleaned reviews for further analysis with open('./data/cleaned_reviews.json', 'w') as outfile: json.dump(cleaned_reviews, outfile)
12554a6f358810f3d7bcf732d99807639d1b65bf
22ebdd6881730a9474ede8e8167c615990c4e275
/prob17a.py
e5cae5301008b8a21864cb95ac76154a72222942
[]
no_license
MMohan1/eueler
a96a465b265334b03645f2e2bb66c85395c54e75
05a88f1c9b41fbc3d6bcd95b38b83a6510b3b50a
refs/heads/master
2021-01-18T15:14:35.320214
2015-02-02T11:02:06
2015-02-02T11:02:06
15,935,991
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
def prob17(): list1=[] total_char=0 dict1={0:'',1:'one',2:'two',3:'three',4:'four',5:'five',6:'six',7:'seven',8:'eight',9:'nine',10:'ten'} dict2={11:'eleven',12:'twelve',13:'thirteen',14:'fourteen',15:'fifteen',16:'sixteen',17:'seventeen',18:'eighteen',19:'nineteen'} dict3={0:'',1:'ten',2:'twenty',3:'thirty',4:'fourty',5:'fifty',6:'sixty',7:'seventy',8:'eighty',9:'ninty'} for i in range(1,100): x=str(i) if len(x) == 1: list1.append(dict1[i]) elif len(x) == 2 and x[1] == '0': list1.append(dict3[int(x[0])]) elif len(x) == 2 and x[0] == '1': list1.append(dict2[i]) elif len(x) == 2: list1.append(dict3[int(x[0])]+dict1[int(x[1])]) p = sum([len(i) for i in list1]) print list1,p k = 3*((13*99)+p) + 3*((14*99)+p) + 3*((15*99)+p) + len('onethousand') + p + 99 print k if __name__ == '__main__': prob17()
564f224574f406c1a966ab5582a316627e5a9ae1
2cfa657fd119a23de2a5c2ae6d55e6d2516bae2d
/test/functional/wallet_keypool_topup.py
1c1aa4fe3a776fdc70d840768a3b9deacdbccf53
[ "MIT" ]
permissive
vivuscoin/vivuscoin
640b10ae3a72c03b501e03b07caae09ce6c87c81
ba0db89712234bf68b2d6b63ef2c420d65c7c25d
refs/heads/master
2023-05-07T06:26:26.241247
2021-05-25T03:54:32
2021-05-25T03:54:32
362,198,076
0
0
null
null
null
null
UTF-8
Python
false
false
3,779
py
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Copyright (c) 2021 The Vivuscoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test HD Wallet keypool restore function. Two nodes. Node1 is under test. Node0 is providing transactions and generating blocks. - Start node1, shutdown and backup wallet. - Generate 110 keys (enough to drain the keypool). Store key 90 (in the initial keypool) and key 110 (beyond the initial keypool). Send funds to key 90 and key 110. - Stop node1, clear the datadir, move wallet file back into the datadir and restart node1. - connect node1 to node0. Verify that they sync and node1 receives its funds.""" import os import shutil from test_framework.test_framework import VivuscoinTestFramework from test_framework.util import ( assert_equal, connect_nodes_bi, sync_blocks, ) class KeypoolRestoreTest(VivuscoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 4 self.extra_args = [[], ['-keypool=100'], ['-keypool=100'], ['-keypool=100']] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): wallet_path = os.path.join(self.nodes[1].datadir, "regtest", "wallets", "wallet.dat") wallet_backup_path = os.path.join(self.nodes[1].datadir, "wallet.bak") self.nodes[0].generate(101) self.log.info("Make backup of wallet") self.stop_node(1) shutil.copyfile(wallet_path, wallet_backup_path) self.start_node(1, self.extra_args[1]) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) for i, output_type in enumerate(["legacy", "p2sh-segwit", "bech32"]): self.log.info("Generate keys for wallet with address type: {}".format(output_type)) idx = i+1 for _ in range(90): addr_oldpool = self.nodes[idx].getnewaddress(address_type=output_type) for _ in range(20): addr_extpool = self.nodes[idx].getnewaddress(address_type=output_type) # Make sure we're creating the outputs we expect address_details = self.nodes[idx].validateaddress(addr_extpool) if i == 0: assert(not address_details["isscript"] and not address_details["iswitness"]) elif i == 1: assert(address_details["isscript"] and not address_details["iswitness"]) else: assert(not address_details["isscript"] and address_details["iswitness"]) self.log.info("Send funds to wallet") self.nodes[0].sendtoaddress(addr_oldpool, 10) self.nodes[0].generate(1) self.nodes[0].sendtoaddress(addr_extpool, 5) self.nodes[0].generate(1) sync_blocks(self.nodes) self.log.info("Restart node with wallet backup") self.stop_node(idx) shutil.copyfile(wallet_backup_path, wallet_path) self.start_node(idx, self.extra_args[idx]) connect_nodes_bi(self.nodes, 0, idx) self.sync_all() self.log.info("Verify keypool is restored and balance is correct") assert_equal(self.nodes[idx].getbalance(), 15) assert_equal(self.nodes[idx].listtransactions()[0]['category'], "receive") # Check that we have marked all keys up to the used keypool key as used assert_equal(self.nodes[idx].getaddressinfo(self.nodes[idx].getnewaddress())['hdkeypath'], "m/0'/0'/110'") if __name__ == '__main__': KeypoolRestoreTest().main()
dada702324b30a4d4a00d067c7b3c97d8b05129b
b8ef1a5cd3856a8e9134c3313a4e23522f199df7
/Baekjoon/1966_프린터 큐/1966_프린터 큐.py
73d38dbd9d6bdf4902738765108954a7e7151128
[]
no_license
scl2589/Algorithm_problem_solving
910623d9675ae0219320abfd1fefc7d576027544
80db697cdd0180a7d4dbcfae4944d4a54191bddf
refs/heads/master
2023-07-29T10:56:38.225206
2021-09-11T13:50:46
2021-09-11T13:50:46
235,363,353
0
0
null
2021-03-04T15:39:41
2020-01-21T14:36:41
Python
UTF-8
Python
false
false
548
py
from collections import deque tc = int(input()) for _ in range(tc): N, M = map(int, input().split()) impt = list(map(int, input().split())) q = deque() for idx, value in enumerate(impt): q.append([idx, value]) count = 0 while True: max_num = sorted(q, key = lambda x: x[1], reverse=True)[0][1] num = q.popleft() if num[0] == M and num[1] == max_num: break elif num[1] == max_num: count += 1 else: q.append(num) print(count + 1)
fd6eb4ffc23f7389f26fd2d60442434609b29286
5f814192b19721dc9c06e0e9595738b0f8561233
/OCR/east_text_detection.py
f8bee5a5e3d5d1b813617866d1b192837295a2ef
[]
no_license
irischo/civil_translation
7b3c5c58e201f74547d5ae21123fdfd9d4bc5e64
240638a434957ea25cfac262da93fc23e292f6f2
refs/heads/master
2022-11-23T15:32:50.503095
2020-07-29T00:40:06
2020-07-29T00:40:06
283,387,321
0
0
null
2020-07-29T03:21:50
2020-07-29T03:21:49
null
UTF-8
Python
false
false
2,829
py
from imutils.object_detection import non_max_suppression import numpy as np import argparse import time import cv2 # argument parse ap = argparse.ArgumentParser() ap.add_argument('-i', '--image', type=str, help='path to input image') ap.add_argument('-east', '--east', type=str, help='path to input EAST text detector') ap.add_argument('-c', '--min-confidence', type=float, default=0.5, help='minimum probability required to inspect a region') ap.add_argument('-w', '--width', type=int, default=320, help='resized image width (should be multiple of 32)') ap.add_argument('-e', '--height', type=int, default=320, help='resized image height (should be multiple of 32)') args = vars(ap.parse_args()) # load image image = cv2.imread(args['image']) orig = image.copy() (H, W) = image.shape[:2] # set new width & height (newW, newH) = (args['width'], args['height']) rW = W / float(newW) rH = H / float(newH) # resize image image = cv2.resize(image, (newW, newH)) (H, W) = image.shape[:2] layerNames = [ 'feature_fusion/Conv_7/Sigmoid', # text or not check 'feature_fusion/concat_3' # image geometry ] # load pre-trained EAST text decorator (from frozen_east_text_detection.pb) print('[INFO] loading EAST text detector ...') net = cv2.dnn.readNet(args['east']) blob = cv2.dnn.blobFromImage(image, 1.0, (W, H), (123.68, 116.78, 103.94), swapPB=True, crop=False) start = time.time() net.setInput(blob) (scores, geometry) = net.forward(layerNames) end = time.time() # show timing information on text prediction print("[INFO] text detection took {:.6f} seconds".format(end - start)) (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] for y in range(0, numRows): scoresData = scores[0, 0, y] xData0 = geometry[0, 0, y] xData1 = geometry[0, 1, y] xData2 = geometry[0, 2, y] xData3 = geometry[0, 3, y] anglesData = geometry[0, 4, y] for x in range(0, numCols): if scoresData[x] < args['min_confidence']: continue (offsetX, offsetY) = (x * 4.0, y * 4.0) angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) h = xData0[x] + xData2[x] w = xData1[x] + xData3[x] endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) startX = int(endX - w) startY = int(endY - h) rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) boxes = non_max_suppression(np.array(rects), probs=confidences) for (startX, startY, endX, endY) in boxes: startX = int(startX * rW) startY = int(startY * rH) endX = int(endX * rW) endY = int(endY * rH) cv2.rectangle(orig, (startX, startY), (endX, endY), (0, 255, 0), 2) cv2.imshow('Text Detection', orig) cv2.waitKey(0)
2054a0b722aa2fa72a01cff5884700470b6bbf49
edcccb46c663d7ef52b72c40c2b93c1f2b61c2d2
/Sample Work/Remove Char.py
f3ddb784e1ebb06aec5b34fd384a31d52f733336
[]
no_license
mre9798/Python_Anlin
235292e80fe38181098706f733dba78614f38e7a
83c1e0c994fa55e9bb8cd5de1097b2de7345813e
refs/heads/master
2023-02-24T22:31:38.279969
2021-02-01T09:17:36
2021-02-01T09:17:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
# Remove nth character s = input("Enter a string : ") pos = int(input("Enter position of character to be removed : ")) print(s[:pos-1] + s[pos:])
39b251cf54d0848c796c624fffa0a173acf39360
8d5ff31efba68cfc3e833d74ee2e1baa20c2ae87
/example/petstore/apis/pet/updatePet.py
905f31823115094929116457528d605abd007d7b
[]
no_license
avanov/swagger_codegen
8fd3f08f0e0d7aff5beb5602e755836009b0494f
b0fcc84cfd12091ef443fc000d4ff6a547a48d86
refs/heads/master
2022-12-11T04:21:24.066731
2020-08-28T13:56:34
2020-08-28T13:56:34
292,118,282
0
0
null
2020-09-01T22:10:54
2020-09-01T22:10:53
null
UTF-8
Python
false
false
1,585
py
from __future__ import annotations import pydantic import datetime import asyncio import typing from pydantic import BaseModel from swagger_codegen.api.base import BaseApi from swagger_codegen.api.request import ApiRequest class Tag(BaseModel): id: typing.Optional[int] = None name: typing.Optional[str] = None class Category(BaseModel): id: typing.Optional[int] = None name: typing.Optional[str] = None class Pet(BaseModel): category: typing.Optional[Category] = None id: typing.Optional[int] = None name: str photoUrls: typing.List[str] status: typing.Optional[str] = None tags: typing.Optional[typing.List[Tag]] = None def make_request(self: BaseApi, __request__: Pet,) -> Pet: """Update an existing pet""" def serialize_item(item): if isinstance(item, pydantic.BaseModel): return item.dict() return item if isinstance(__request__, (list, tuple, set)): body = [serialize_item(item) for item in __request__] else: body = __request__.dict() m = ApiRequest( method="PUT", path="/api/v3/pet".format(), content_type="application/json", body=body, headers=self._only_provided({}), query_params=self._only_provided({}), cookies=self._only_provided({}), ) return self.make_request( { "200": {"application/json": Pet, "application/xml": Pet,}, "400": {"default": None,}, "404": {"default": None,}, "405": {"default": None,}, }, m, )
fc07829f755d7e6cdcfbb45f1595dfd39618bdaa
6d69b249a81e076d79787dd08eb8957908052052
/libs/parse/sections/grouper_mixins/blocks.py
154423ab5e2c3ebe6544db079d4af4ebccbedda5
[]
no_license
2vitalik/wiktionary
02ee1f1327c3b82fc7b4d7da12083b1431b1eb8b
8edae2f7dcf9089084c5ce7033c4fb0b454f4dfa
refs/heads/master
2023-02-06T11:28:41.554604
2023-02-05T22:49:01
2023-02-05T22:49:01
121,025,447
7
2
null
2021-10-13T17:36:32
2018-02-10T15:06:24
Lua
UTF-8
Python
false
false
486
py
from libs.parse.groupers.sections.blocks.any_blocks import AnyBlocksGrouper from libs.parse.groupers.sections.blocks.blocks import BlocksGrouper from libs.parse.sections.grouper_mixins.sub_blocks import SubBlocksGroupersMixin from libs.parse.utils.decorators import parsed class BlocksGroupersMixin(SubBlocksGroupersMixin): @property @parsed def blocks(self): return BlocksGrouper(self) @parsed def any_blocks(self): return AnyBlocksGrouper(self)
5df906375ee0c7d24ede8dd570122ce0cbdd1251
9bdc5bd0b6195761fbceed17c0725bc48a5941a1
/testing/keras_taylor_1D.py
f24a460e11be29c65a55abbe497af20fe014f122
[]
no_license
lapsintra/htt-ml
bc6bbb12eda4a3f0abbc5c0db13940a31b667a08
ce07cad6fcc8625b1595157de6486759b74f6d62
refs/heads/master
2020-04-05T16:29:29.858916
2018-12-04T19:32:10
2018-12-04T19:32:10
157,015,043
0
0
null
2018-11-10T19:38:56
2018-11-10T19:38:56
null
UTF-8
Python
false
false
7,871
py
#!/usr/bin/env python import ROOT ROOT.PyConfig.IgnoreCommandLineOptions = True # disable ROOT internal argument parser import argparse from array import array import yaml import pickle import numpy as np import os import sys import matplotlib as mpl mpl.use('Agg') mpl.rcParams['font.size'] = 16 import matplotlib.pyplot as plt from matplotlib import cm from keras.models import load_model import tensorflow as tf from tensorflow_derivative.inputs import Inputs from tensorflow_derivative.outputs import Outputs from tensorflow_derivative.derivatives import Derivatives import logging logger = logging.getLogger("keras_taylor_1D") logger.setLevel(logging.DEBUG) handler = logging.StreamHandler() formatter = logging.Formatter("%(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def parse_arguments(): parser = argparse.ArgumentParser(description="Produce confusion matrice") parser.add_argument("config_training", help="Path to training config file") parser.add_argument("config_testing", help="Path to testing config file") parser.add_argument("fold", type=int, help="Trained model to be tested.") parser.add_argument( "--no-abs", action="store_true", default=False, help="Do not use abs for metric.") parser.add_argument( "--normalize", action="store_true", default=False, help="Normalize rows.") return parser.parse_args() def parse_config(filename): logger.debug("Load config %s.", filename) return yaml.load(open(filename, "r")) def main(args, config_test, config_train): # Load preprocessing path = os.path.join(config_train["output_path"], config_test["preprocessing"][args.fold]) logger.info("Load preprocessing %s.", path) preprocessing = pickle.load(open(path, "rb")) # Load Keras model path = os.path.join(config_train["output_path"], config_test["model"][args.fold]) logger.info("Load keras model %s.", path) model_keras = load_model(path) # Get TensorFlow graph inputs = Inputs(config_train["variables"]) try: sys.path.append("htt-ml/training") import keras_models except: logger.fatal("Failed to import Keras models.") raise Exception try: name_keras_model = config_train["model"]["name"] model_tensorflow_impl = getattr( keras_models, config_train["model"]["name"] + "_tensorflow") except: logger.fatal( "Failed to load TensorFlow version of Keras model {}.".format( name_keras_model)) raise Exception model_tensorflow = model_tensorflow_impl(inputs.placeholders, model_keras) outputs = Outputs(model_tensorflow, config_train["classes"]) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Get operations for first-order derivatives deriv_ops = {} derivatives = Derivatives(inputs, outputs) for class_ in config_train["classes"]: deriv_ops[class_] = [] for variable in config_train["variables"]: deriv_ops[class_].append(derivatives.get(class_, [variable])) # Loop over testing dataset path = os.path.join(config_train["datasets"][(1, 0)[args.fold]]) logger.info("Loop over test dataset %s to get model response.", path) file_ = ROOT.TFile(path) mean_abs_deriv = {} for i_class, class_ in enumerate(config_train["classes"]): logger.debug("Process class %s.", class_) tree = file_.Get(class_) if tree == None: logger.fatal("Tree %s does not exist.", class_) raise Exception values = [] for variable in config_train["variables"]: typename = tree.GetLeaf(variable).GetTypeName() if typename == "Float_t": values.append(array("f", [-999])) elif typename == "Int_t": values.append(array("i", [-999])) else: logger.fatal("Variable {} has unknown type {}.".format(variable, typename)) raise Exception tree.SetBranchAddress(variable, values[-1]) if tree.GetLeaf(variable).GetTypeName() != "Float_t": logger.fatal("Weight branch has unkown type.") raise Exception weight = array("f", [-999]) tree.SetBranchAddress(config_test["weight_branch"], weight) deriv_class = np.zeros((tree.GetEntries(), len(config_train["variables"]))) weights = np.zeros((tree.GetEntries())) for i_event in range(tree.GetEntries()): tree.GetEntry(i_event) # Preprocessing values_stacked = np.hstack(values).reshape(1, len(values)) values_preprocessed = preprocessing.transform(values_stacked) # Keras inference response = model_keras.predict(values_preprocessed) response_keras = np.squeeze(response) # Tensorflow inference response = sess.run( model_tensorflow, feed_dict={ inputs.placeholders: values_preprocessed }) response_tensorflow = np.squeeze(response) # Check compatibility mean_error = np.mean(np.abs(response_keras - response_tensorflow)) if mean_error > 1e-5: logger.fatal( "Found mean error of {} between Keras and TensorFlow output for event {}.". format(mean_error, i_event)) raise Exception # Calculate first-order derivatives deriv_values = sess.run( deriv_ops[class_], feed_dict={ inputs.placeholders: values_preprocessed }) deriv_values = np.squeeze(deriv_values) deriv_class[i_event, :] = deriv_values # Store weight weights[i_event] = weight[0] if args.no_abs: mean_abs_deriv[class_] = np.average((deriv_class), weights=weights, axis=0) else: mean_abs_deriv[class_] = np.average(np.abs(deriv_class), weights=weights, axis=0) # Normalize rows classes = config_train["classes"] matrix = np.vstack([mean_abs_deriv[class_] for class_ in classes]) if args.normalize: for i_class, class_ in enumerate(classes): matrix[i_class, :] = matrix[i_class, :] / np.sum( matrix[i_class, :]) # Plotting variables = config_train["variables"] plt.figure(0, figsize=(len(variables), len(classes))) axis = plt.gca() for i in range(matrix.shape[0]): for j in range(matrix.shape[1]): axis.text( j + 0.5, i + 0.5, '{:.2f}'.format(matrix[i, j]), ha='center', va='center') q = plt.pcolormesh(matrix, cmap='Wistia') #cbar = plt.colorbar(q) #cbar.set_label("mean(abs(Taylor coefficients))", rotation=270, labelpad=20) plt.xticks( np.array(range(len(variables))) + 0.5, variables, rotation='vertical') plt.yticks( np.array(range(len(classes))) + 0.5, classes, rotation='horizontal') plt.xlim(0, len(config_train["variables"])) plt.ylim(0, len(config_train["classes"])) output_path = os.path.join(config_train["output_path"], "fold{}_keras_taylor_1D.png".format(args.fold)) logger.info("Save plot to {}.".format(output_path)) plt.savefig(output_path, bbox_inches='tight') if __name__ == "__main__": args = parse_arguments() config_test = parse_config(args.config_testing) config_train = parse_config(args.config_training) main(args, config_test, config_train)
4e6dc77e570b5419eef0fc74fd16710afdfd3235
190d03cf370844548b9e8c89952dfbaec4d0c5c8
/p103.py
467aee99fa0ff340b0a00d481a047ab36a7d0d52
[]
no_license
alainlou/leetcode
446d101a9fd2f9eaa2229252e5909e7df36b4a74
fe500bcb067be59aa048259e3860e9da6f98344d
refs/heads/master
2022-10-16T12:20:44.726963
2022-09-18T15:29:05
2022-09-18T15:29:05
178,775,702
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
from DS.TreeNode import TreeNode class Solution: def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]: if root is None: return [] ans = [] q = [(root, 0)] while len(q) > 0: curr = q.pop(0) if len(ans) <= curr[1]: ans.append([]) ans[-1].append(curr[0].val) if curr[0].left: q.append((curr[0].left, curr[1]+1)) if curr[0].right: q.append((curr[0].right, curr[1]+1)) for i in range(1, len(ans), 2): ans[i] = ans[i][::-1] return ans
55579000cd5ed23906233808f75b3a4fae18bda1
7e9e76ccb9a8132f875ff8e3279eeb95b4f9b424
/houseDjango/loggings/urls.py
fbc79cdd86349e0b486fc3cb7c5f10e4b586d14a
[]
no_license
IPingStudio/houseDjango
9f282273beb80ab4ec2e741bcba28c10c59880c5
55aff03fb7febb106304f4555ecdce254539cfa6
refs/heads/master
2023-01-13T02:04:00.362837
2020-11-02T02:30:37
2020-11-02T02:30:37
302,852,093
0
0
null
null
null
null
UTF-8
Python
false
false
816
py
"""houseDjango URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, re_path, include from . import views urlpatterns = [ re_path(r'^$', views.searchLoginByHouse, name='showLog'), ]
68a88475ce22d1c7e3b750255bbf7cee712a0ee7
e8d927d593e2d8d08004e12ec11988062b9df8b3
/typeidea/blog/adminx.py
d5363e831143e4fac4e100c666967e13751ed032
[]
no_license
choupihuan/typeidea
9c4f6a90dfb53f94dcaeb15e5e6e915f9f9e0ee6
f8e13b1e4afd0f67bf365bdbb04e35cc4f56a0da
refs/heads/master
2020-06-05T19:51:29.757681
2019-06-29T11:32:46
2019-06-29T11:32:46
192,530,809
1
0
null
null
null
null
UTF-8
Python
false
false
3,567
py
import xadmin from django.urls import reverse from django.utils.html import format_html from django.contrib.admin.models import LogEntry from xadmin.layout import Row,Fieldset,Container from xadmin.filters import manager from xadmin.filters import RelatedFieldListFilter from .models import Post,Category,Tag from .adminforms import PostAdminForm from typeidea.base_admin import BaseOwnerAdmin class PostInline: form_layout = ( Container(Row('title','desc') ) ) extra = 1 model = Post @xadmin.sites.register(Category) class CategoryAdmin(BaseOwnerAdmin): list_display = ('name','status','is_nav','owner','create_time','post_count') fields = ('name','status','is_nav') inlines = [PostInline,] def post_count(self,obj): return obj.post_set.count() post_count.short_description = '文章数量' @xadmin.sites.register(Tag) class TagAdmin(BaseOwnerAdmin): list_display = ('name','status','create_time') fields = ('name','status') class CategoryOwnerFilter(RelatedFieldListFilter): """ 自定义过滤器只展示当前用户分类 """ @classmethod def test(cls, field, request, params, model, admin_view, field_path): return field.name == 'category' def __init__(self,field,request,params,model,model_admin,field_path): super().__init__(field,request,params,model,model_admin,field_path) self.lookup_choices = Category.objects.filter(owner=request.user).values_list('id','name') manager.register(CategoryOwnerFilter,take_priority=True) @xadmin.sites.register(Post) class PostAdmin(BaseOwnerAdmin): form = PostAdminForm list_display = [ 'title','category','status', 'create_time','owner','operator' ] list_display_links = [] exclude = ('owner',) list_filter = ['category'] search_fields = ['title','category__name'] actions_on_top = True actions_on_bottom = False #编辑页面 save_on_top = False filter_horizontal = ('tag',) # fields = ( # ('category','title'), # 'desc', # 'status', # 'content', # 'tag', # ) # fieldsets = ( # ('基础配置',{ # 'description':'基础配置', # 'fields': ( # ('title','category','tag'), # 'status', # ), # }), # ('内容',{ # 'fields': ( # 'desc', # 'content', # ), # }), # # ) # 使用xadmin修改的地方 form_layout = ( Fieldset( '基础信息', Row('title','category'), 'status', 'tag', ), Fieldset( '内容信息', 'desc', 'is_md', 'content_ck', 'content_md', 'content', ) ) # @property # def media(self): # media = super().media # media.add_js(['https://cdn.bootcss.com/bootstrap/4.0.0-beta.2/js/bootstrap.bundle.js']) # media.add_css({ # 'all':('https://cdn.bootcss.com/bootstrap/4.0.0-beta.2/css/bootstrap.min.css') # }) # return media def operator(self,obj): return format_html( '<a href="{}">编辑</a>', reverse('xadmin:blog_post_change',args=(obj.id,)) ) operator.short_description = '操作' @xadmin.sites.register(LogEntry) class LogEntryAdmin(): list_display = ['object_repr','object_id','action_flag','user','change_message']
fcd899d0868ace0b83ecc9fb302a4fa7c51e35ea
a20707ab33beba0b0aac6401d7baf91c135af4c6
/Lab/Notes/Embed MatPlotLib in Tkinter.py
a5538e3c87caac7cdc899dbd0792cc75179dc895
[]
no_license
ffarassati/Metherate-Lab
21fa34fadf165c6ba0d1862db5e4097fb047da4f
4f34d59d9168c150f7ae578a38e8b11674275c54
refs/heads/master
2020-05-17T05:17:13.318713
2019-06-17T09:37:41
2019-06-17T09:37:41
183,529,688
0
0
null
null
null
null
UTF-8
Python
false
false
3,885
py
# The code for changing pages was derived from: http://stackoverflow.com/questions/7546050/switch-between-two-frames-in-tkinter # License: http://creativecommons.org/licenses/by-sa/3.0/ # https://pythonprogramming.net/how-to-embed-matplotlib-graph-tkinter-gui/ import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import tkinter as tk from tkinter import ttk LARGE_FONT= ("Verdana", 12) class SeaofBTCapp(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) tk.Tk.iconbitmap(self, default="") tk.Tk.wm_title(self, "Sea of BTC client") container = tk.Frame(self) container.pack(side="top", fill="both", expand = True) container.grid_rowconfigure(0, weight=1) container.grid_columnconfigure(0, weight=1) self.frames = {} for F in (StartPage, PageOne, PageTwo, PageThree): frame = F(container, self) self.frames[F] = frame frame.grid(row=0, column=0, sticky="nsew") self.show_frame(StartPage) def show_frame(self, cont): frame = self.frames[cont] frame.tkraise() class StartPage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self,parent) label = tk.Label(self, text="Start Page", font=LARGE_FONT) label.pack(pady=10,padx=10) button = ttk.Button(self, text="Visit Page 1", command=lambda: controller.show_frame(PageOne)) button.pack() button2 = ttk.Button(self, text="Visit Page 2", command=lambda: controller.show_frame(PageTwo)) button2.pack() button3 = ttk.Button(self, text="Graph Page", command=lambda: controller.show_frame(PageThree)) button3.pack() class PageOne(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) label = tk.Label(self, text="Page One!!!", font=LARGE_FONT) label.pack(pady=10,padx=10) button1 = ttk.Button(self, text="Back to Home", command=lambda: controller.show_frame(StartPage)) button1.pack() button2 = ttk.Button(self, text="Page Two", command=lambda: controller.show_frame(PageTwo)) button2.pack() class PageTwo(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) label = tk.Label(self, text="Page Two!!!", font=LARGE_FONT) label.pack(pady=10,padx=10) button1 = ttk.Button(self, text="Back to Home", command=lambda: controller.show_frame(StartPage)) button1.pack() button2 = ttk.Button(self, text="Page One", command=lambda: controller.show_frame(PageOne)) button2.pack() class PageThree(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) label = tk.Label(self, text="Graph Page!", font=LARGE_FONT) label.pack(pady=10,padx=10) button1 = ttk.Button(self, text="Back to Home", command=lambda: controller.show_frame(StartPage)) button1.pack() f = Figure(figsize=(5,5), dpi=100) a = f.add_subplot(111) a.plot([1,2,3,4,5,6,7,8],[5,6,1,3,8,9,3,5]) canvas = FigureCanvasTkAgg(f, self) canvas.draw() canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) toolbar = NavigationToolbar2Tk(canvas, self) toolbar.update() canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) app = SeaofBTCapp() app.mainloop()
18369325e71e025ee816fd5e5d7ce741992af937
399765d71fbc931125fe75cc6c71eabdac4dc58f
/app-tornado.py
bced06bd7f1d0304a5654802440c2e6409be3fa6
[]
no_license
G-Guillard/NEO
98e989952c7a15de630962c44d65998e979f7efd
3317b228fbeead14b1546290e9e7a7a7abbd7ff3
refs/heads/master
2020-12-10T09:16:47.845598
2020-01-16T15:29:19
2020-01-16T15:29:19
233,555,035
0
0
null
null
null
null
UTF-8
Python
false
false
5,208
py
import os from tornado.web import Application, RequestHandler from tornado.ioloop import IOLoop from pymongo import MongoClient from bson import Code import pandas as pd from plotly.utils import PlotlyJSONEncoder import plotly.graph_objects as go import plotly.express as px import json from sklearn.cluster import KMeans #Connect to Mongo client and DB client = MongoClient('db', 27017) db = client.nasadb coll = db.neo collname = "neo" # Near Earth Objects def get_keys(collection, numeric=False): """Get all documents keys, or only numerical keys""" if numeric: mapper = Code("function() { for (var key in this) { if (typeof(this[key]) == 'number') emit(key, null); } }") else: mapper = Code("function() { for (var key in this) { emit(key, null); } }") reducer = Code("function(key, stuff) { return null; }") result = db[collection].map_reduce(mapper, reducer, collection + "_keys") return result.distinct("_id") def get_features(f1, f2=''): """Get features from Mongo DB""" cursor = coll.find() if f2: return pd.DataFrame(list(cursor), columns=[f1, f2]) else: return pd.DataFrame(list(cursor), columns=[f1]) class Index(RequestHandler): def get(self): """Index page contains links to plots of single distributions""" items = [key for key in get_keys(collname, numeric=True)] self.render('templates/index-tornado.html', items = items) class Plot1D(RequestHandler): def get(self, feature): """Plot distribution of a feature""" if not feature: self.set_status(400) return self.render('templates/error-tornado.html', code=400) else: feature = feature.split("/")[0] if not feature in get_keys(collname): self.set_status(404) return self.render('templates/error-tornado.html', code=404, key=feature) df = get_features(feature) fig = go.Figure(data=[go.Histogram(x=df[feature])]) graphJSON = json.dumps(fig, cls=PlotlyJSONEncoder) return self.render('templates/plot-tornado.html', plot=json.dumps(graphJSON)) class Plot2D(RequestHandler): def get(self, query=''): """GET request for 2D plot""" features = query.split("/") if features[0] and features[1]: self.plot(features[0], features[1]) else: self.set_status(400) return self.render('templates/error-tornado.html', code=400) def post(self): """POST request for 2D plot""" feature1 = self.get_argument('x') feature2 = self.get_argument('y') if feature1 and feature2: self.plot(feature1, feature2) else: self.set_status(400) return self.render('templates/error-tornado.html', code=400) def plot(self, feature1, feature2): """Plot 2D distributions of two features""" if not feature1 in get_keys(collname): self.set_status(404) return self.render('templates/error-tornado.html', code=404, key=feature1) if not feature2 in get_keys(collname): self.set_status(404) return self.render('templates/error-tornado.html', code=404, key=feature2) df = get_features(feature1, feature2) fig = px.scatter(df, x=feature1, y=feature2) graphJSON = json.dumps(fig, cls=PlotlyJSONEncoder) return self.render('templates/plot-tornado.html', plot=json.dumps(graphJSON)) class KMeansClassifier(RequestHandler): def get(self, n_clusters=2): """Unsupervised classification attempt""" # Default argument value doesn't work, set to '' if not n_clusters: n_clusters = 2 cursor = coll.find() df = pd.DataFrame(list(cursor), columns=[ 'Absolute Magnitude', 'Est Dia in M(min)', 'Est Dia in M(max)', 'Relative Velocity km per hr', # 'Miss Dist (Astronomical)', 'Minimum Orbit Intersection', 'Jupiter Tisserand Invariant', 'Epoch Osculation', 'Eccentricity', 'Semi Major Axis', 'Inclination', 'Asc Node Longitude', 'Orbital Period', 'Perihelion Distance', 'Perihelion Arg', 'Aphelion Dist', 'Perihelion Time', 'Mean Anomaly', 'Mean Motion' ]) normalized_df = (df - df.mean()) / df.std() normalized_df = normalized_df.dropna() pred = KMeans(n_clusters=int(n_clusters)).fit_predict(normalized_df) df["pred"] = pred fig = px.scatter(df, x="Mean Anomaly", y="Eccentricity", color="pred") graphJSON = json.dumps(fig, cls=PlotlyJSONEncoder) return self.render('templates/plot-tornado.html', plot=json.dumps(graphJSON)) # Launch the app if __name__ == "__main__": app = Application([ ('/',Index), (r'/plots/1D/(.*)',Plot1D), (r'/plots/2D/',Plot2D), (r'/plots/2D/(.*)',Plot2D), (r'/classify/kmeans/(.*)',KMeansClassifier) ]) app.listen(5000) IOLoop.current().start()
d3e48f69c086cadbd11c7ae49adb48301ab31324
62669fa98cfba28653f97adfaf169c166e02d69c
/yi_parser.py
b829e653e392286b80afb190dd2a9d2223f8e028
[]
no_license
Kevin-Xi/Yi_Analysis_Tools
d8e7850275572bc00c59a46fe10c0ae2a584670d
2191948795f1c6df621ec1ab535d43c35b3067d7
refs/heads/master
2020-04-18T11:47:18.576014
2013-06-05T08:26:39
2013-06-05T08:26:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,719
py
# -- coding=utf-8 -- # """Parser of Yi Analyse specified Yao of a Gua Usage: python yi_parser.py [options] Options: -s ... use specified xml file -g ... specify a Gua, between 1 and 64 -y ... specify a Yao, between 1 and 6 -a analyse all -h show help document Examples: yi_parser.py -s new_yi.xml use 'new_yi.xml' as source xml file yi_parser.py -g 32 analyse all Yao of Gua no.32 yi_parser.py -y 5 analyse Yao no.5 of every Gua yi_parser.py -g 16 -y 3 analyse the third Yao of Gua no.16 yi_parser.py -a analyse all Visit https://github.com/Kevin-Xi/Yi_Analysis_Tools for the latest version. """ from xml.dom import minidom import sys import getopt import time class Yi_parser(): result = {} def __init__(self, xmlfile, gflag, yflag): xmldoc = minidom.parse(xmlfile) self.xmlroot = xmldoc.childNodes[0] target_gua = self.xmlroot.childNodes[gflag*2-1] self.yao_bucket = target_gua.childNodes self.target_yao = self.yao_bucket[yflag*2-1] self.gflag = gflag self.yflag = yflag self.parse() def parse(self): self.target_p = int(self.target_yao.attributes['p'].value) self.dangwei() self.dezhong() self.ying() self.cheng_up() #乘 self.cheng_down() #承 def dangwei(self): if self.yflag % 2 == self.target_p % 2: self.result['当位'] = 1 else: self.result['当位'] = 0 def dezhong(self): if self.yflag == 2 or self.yflag == 5: self.result['得中'] = 1 else: self.result['得中'] = 0 def ying(self): ying_no = self.yflag-3 > 0 and self.yflag-3 or self.yflag+3 ying_p = int(self.yao_bucket[ying_no*2-1].attributes['p'].value) if self.target_p != ying_p: self.result['应'] = 1 else: self.result['应'] = 0 def cheng_up(self): try: cheng_p = int(self.yao_bucket[self.yflag*2-3].attributes['p'].value) if self.target_p == 1 and cheng_p == 0: self.result['乘'] = 1 else: self.result['乘'] = 0 except: self.result['乘'] = -1 def cheng_down(self): try: cheng_p = int(self.yao_bucket[self.yflag*2+1].attributes['p'].value) if self.target_p == 0 and cheng_p == 1: self.result['承'] = 1 else: self.result['承'] = 0 except: self.result['承'] = -1 def output(self): return ', '.join(['%s = %s' % (k, v) for k, v in self.result.items() if self.result[k] != -1]) + '\n' class ArgOutofRangeError(Exception): pass def usage(): print __doc__ def main(argv): xmlfile = 'yi.xml' gflag = 0 yflag = 0 try: opts, args = getopt.getopt(argv, 's:g:y:ah') #the args should be here to take the junk for opt, arg in opts: if opt == 'h': usage() sys.exit() elif opt == '-s': xmlfile = arg elif opt == '-g': gflag = int(arg) if gflag > 64 or gflag < 1: raise ArgOutofRangeError elif opt == '-y': yflag = int(arg) if yflag > 6 or yflag < 1: raise ArgOutofRangeError elif opt == '-a': (gflag, yflag) = (0, 0) #HOW TO PROCESS OVERWRITE CONFLICT BETWEEN g, y and a except getopt.GetoptError: usage() sys.exit(2) #except ArgOutofRangeError, ValueError: #WHY CANNOT??????? except: usage() sys.exit(3) if gflag != 0 and yflag != 0: run(xmlfile, gflag, yflag) elif gflag == 0 and yflag != 0: for i in range(64): # A big memory comsumer, but I think let the class only parse one yao is right. How to do? Cache? run(xmlfile, i+1, yflag) elif gflag != 0 and yflag == 0: for i in range(6): run(xmlfile, gflag, i+1) else: for i in range(64): for j in range(6): run(xmlfile, i+1, j+1) def run(xmlfile, gflag, yflag): y = Yi_parser(xmlfile, gflag, yflag) print y.output() if __name__ == '__main__': if len(sys.argv) <= 1: usage() sys.exit() main(sys.argv[1:])
552d7737321351084598b558d7543b946c890425
4f989b9e1e9c1caa70b5d013d95b95f3c3f0cb3c
/classbasedapiview/urls.py
e0fddc3de7513210995950c8b9d2832b0757ac90
[]
no_license
vikashtiwary118/class-based-apiview
4cdb9bc786c16d51dbc5e80060c2b92579659bea
bccaa57a8c7ca07e17402b6d9a12e7f32ba2546f
refs/heads/main
2023-05-17T00:47:38.819526
2021-06-07T05:09:35
2021-06-07T05:09:35
374,537,483
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.contrib import admin from django.urls import path from api import views urlpatterns = [ path('admin/', admin.site.urls), path('studentapi/', views.StudentAPI.as_view()), path('studentapi/<int:pk>', views.StudentAPI.as_view()), ]
2e6669b326e3edda7be0bf7c377f290405bcf0c3
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2671/60590/241334.py
25e5fee553d7db62878bfa4165d65ebdfde7331c
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
314
py
def cal(w): if w==1: return 2 if w==2: return 3 elif w==3: return 5 else: w2=2 w3=3 for i in range(w-2): temp=w2+w3 w2=w3 w3=temp return temp t = int(input()) for i in range(t): w=int(input()) print(2**w-cal(w))
9e81266bf495049477857e380675d6fdda9605c5
6d35c28f907b6ce999522ae53b98fa6ded98df6f
/server/corpsoftportal/corpsoftportal/wsgi.py
dee886c41e13032dd34908158d6bf79ad0948be8
[]
no_license
Rassoliny/csp
7a5f22c0b6c969ef566b1871c097aad5fc5a38d1
815aa0abcf0796e67ac4a81d065d4d99243881f1
refs/heads/master
2020-04-18T06:54:56.747455
2019-03-11T12:24:02
2019-03-11T12:24:02
167,342,026
0
0
null
2019-02-11T10:14:42
2019-01-24T09:38:40
JavaScript
UTF-8
Python
false
false
405
py
""" WSGI config for corpsoftportal project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'corpsoftportal.settings') application = get_wsgi_application()
8c055cb19494e422d0d5bb1e656c1a374f646cbb
6da108db00c294a55410bde285fa7851358331df
/mobycity/carpooling/forms.py
78599ffb37b78a430fdc9db6e0e32a0c46f8eed0
[ "MIT" ]
permissive
LucienD/Mobct
5639eb108922dc03dd88d62b93b8eaac0c989dae
1c8422b30c205bdb2dc21c988f74280194980ec4
refs/heads/master
2020-07-04T18:55:49.784534
2016-11-20T13:30:48
2016-11-20T13:30:48
74,147,433
0
0
null
null
null
null
UTF-8
Python
false
false
3,259
py
from django import forms from django.core.exceptions import ValidationError from django.utils.translation import ugettext as _ from carpooling.models import Carpool class OfferCarpoolForm(forms.ModelForm): class Meta: model = Carpool fields = [ 'departure_latitude', 'departure_longitude', 'arrival_latitude', 'arrival_longitude', 'frequency', 'occ_departure_datetime', 'occ_arrival_datetime', 'reg_departure_time', 'reg_arrival_time', 'seats_number', 'free', 'comment', ] exclude = ( 'organizer', ) widgets = { 'frequency': forms.RadioSelect(), 'departure_latitude': forms.HiddenInput(), 'departure_longitude': forms.HiddenInput(), 'arrival_latitude': forms.HiddenInput(), 'arrival_longitude': forms.HiddenInput(), 'occ_departure_datetime': forms.SplitDateTimeWidget(), 'occ_arrival_datetime': forms.SplitDateTimeWidget(), } def clean_occ_departure_datetime(self): if self.cleaned_data['frequency'] == 'REG': return None else: if (self.cleaned_data['occ_departure_datetime']): return self.cleaned_data['occ_departure_datetime'] else: raise ValidationError(_('This field is required.')) def clean_occ_arrival_datetime(self): if self.cleaned_data['frequency'] == 'REG': return None else: if (self.cleaned_data['occ_arrival_datetime']): return self.cleaned_data['occ_arrival_datetime'] else: raise ValidationError(_('This field is required.')) def clean_reg_departure_time(self): if self.cleaned_data['frequency'] == 'OCC': return None else: if (self.cleaned_data['reg_departure_time']): return self.cleaned_data['reg_departure_time'] else: raise ValidationError(_('This field is required.')) def clean_reg_arrival_time(self): if self.cleaned_data['frequency'] == 'OCC': return None else: if (self.cleaned_data['reg_arrival_time']): return self.cleaned_data['reg_arrival_time'] else: raise ValidationError(_('This field is required.')) class SearchCarpoolForm(forms.ModelForm): class Meta: model = Carpool fields = [ 'departure_latitude', 'departure_longitude', 'arrival_latitude', 'arrival_longitude', 'frequency', 'occ_arrival_datetime', 'reg_arrival_time', ] exclude = ( 'organizer', ) widgets = { 'frequency': forms.RadioSelect(), 'departure_latitude': forms.HiddenInput(), 'departure_longitude': forms.HiddenInput(), 'arrival_latitude': forms.HiddenInput(), 'arrival_longitude': forms.HiddenInput(), 'occ_arrival_datetime': forms.SplitDateTimeWidget(), }
b5c26aa9fc4c568ff3effe6c26bb5dbcdedb889b
9d027df3b1295ecc49be75b2902c9e0f1089405b
/ingest/stuart_lab_remove_all.py
6594820647844b6aa97c529cc4ea3026d27fc4e6
[ "MIT" ]
permissive
mrJeppard/clusterdb-ingest
5e3681f0712f830e3ffd34c802cc7221d463c0d6
f52f3ee03a1071ef15a63412e1e2085fdf74e584
refs/heads/master
2022-12-12T03:56:44.097278
2019-05-14T21:06:13
2019-05-14T21:06:13
174,733,533
0
0
MIT
2022-12-08T01:41:16
2019-03-09T18:49:35
Python
UTF-8
Python
false
false
2,222
py
""" Works with a directory of anndata objects which are the result of the stuart lab runs from October 2018 Update the data values common across the cluster solution, such as cluster_description, method... To run change the DATADIR and FULLPATHDB global run and run the script from the repos venv. python stuart_lab_anndata_in.py """ import os, csv import scanpy as sc import pandas as pd from sqlalchemy import create_engine, Table, MetaData, select """ # Full path to the sqllite db on bop FULLDBPATH = "/soe/swat/cellAtlas/data/cluster.swat.db" # Path to the data directory filled with anndata objects. DATADIR = "/soe/swat/cellAtlas/data/cluster" # Path to the dataset tsv file. DATASETPATH = "/soe/swat/clusterdb-ingest/dataset.tsv" """ # Full path to the sqllite db for swat FULLDBPATH = "/Users/swat/dev/cdb/cluster.db" # Path to the data directory filled with anndata objects. DATADIR = "/Users/swat/dev/cdbIngest/dataIn" # Path to the dataset tsv file. DATASETPATH = "/Users/swat/dev/cdbIngest/dataIn/dataset.tsv" # Connection to the database. dbstartstr = "sqlite:///%s" % FULLDBPATH engine = create_engine(dbstartstr, echo=False) metadata = MetaData() conn = engine.connect() # Accessor for each of the tables. dataset = Table('dataset', metadata, autoload=True, autoload_with=engine) cluster_solution_table = Table('cluster_solution', metadata, autoload=True, autoload_with=engine) cluster = Table('cluster', metadata, autoload=True, autoload_with=engine) cell_of_cluster = Table('cell_of_cluster', metadata, autoload=True, autoload_with=engine) # Remove obsolete datasets from the db. with open(DATASETPATH, 'rU') as fin: fin = csv.DictReader(fin, delimiter='\t') for row in fin: dataset_delete = dataset.delete().where(dataset.c.name == row['name']) result = conn.execute(dataset_delete) print('deleted:', row['name']) for name in [ 'Tabula Muris facs', 'Tabula Muris droplet', 'Quake Brain', 'UCSC Human Cortex', 'Immune Bone', 'Immune Cord']: dataset_delete = dataset.delete().where(dataset.c.name == name) result = conn.execute(dataset_delete) print('deleted:', name) # Remove obsolete cluster solutions from the db
[ "" ]
d078bea59e3fd25f0fb187ea727e6ef3f081d3f2
a6db31c3f9264c7b0ad5c3307dee4afd7ce689c1
/Python/MyPythonTest/zy/com/python3/Demo003.py
f0fcd0b4de6ffc722baa962d301009f4d34b9480
[]
no_license
aJanefish/Work
2933fa5437b3c216ff1d76aa641af26226e5295c
96e585d6208e9d6bab5576a25853c0fdb54fbcd8
refs/heads/master
2021-06-29T15:53:28.458468
2020-02-23T08:23:44
2020-02-23T08:23:44
141,233,308
0
0
null
2020-10-13T10:42:43
2018-07-17T04:58:08
Python
UTF-8
Python
false
false
317
py
# -*- coding: UTF-8 -*- # Filename : test.py # author by : www.runoob.com # 文件操作 # 写文件 print with open("test.txt", "wt") as out_file: out_file.write("该文本会写入到文件中\n看到我了吧!") # Read a file with open("test.txt", "rt") as in_file: text = in_file.read() print(text)
42912ac022fad380ab3b2d80fe7989268ffc6c88
a1858b1eeef112531b52f977b644a83fc3436688
/second/protos/train_pb2.py
d23b33889b3ebd11208cdc61c940a72a4d0ed2f7
[]
no_license
NorthCross/CLOCs
2086ab2fe7fdce0c93ee7f181caf1b94774506a5
4cef59b23990a35656853bb16c4e897164b2ef02
refs/heads/master
2023-08-16T08:09:42.479641
2021-10-25T22:47:50
2021-10-25T22:47:50
null
0
0
null
null
null
null
UTF-8
Python
false
true
5,945
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: second/protos/train.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from second.protos import optimizer_pb2 as second_dot_protos_dot_optimizer__pb2 from second.protos import preprocess_pb2 as second_dot_protos_dot_preprocess__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='second/protos/train.proto', package='second.protos', syntax='proto3', serialized_options=None, serialized_pb=b'\n\x19second/protos/train.proto\x12\rsecond.protos\x1a\x1dsecond/protos/optimizer.proto\x1a\x1esecond/protos/preprocess.proto\"\x95\x02\n\x0bTrainConfig\x12+\n\toptimizer\x18\x01 \x01(\x0b\x32\x18.second.protos.Optimizer\x12\r\n\x05steps\x18\x02 \x01(\r\x12\x16\n\x0esteps_per_eval\x18\x03 \x01(\r\x12\x1d\n\x15save_checkpoints_secs\x18\x04 \x01(\r\x12\x1a\n\x12save_summary_steps\x18\x05 \x01(\r\x12\x1e\n\x16\x65nable_mixed_precision\x18\x06 \x01(\x08\x12\x19\n\x11loss_scale_factor\x18\x07 \x01(\x02\x12!\n\x19\x63lear_metrics_every_epoch\x18\x08 \x01(\x08\x12\x19\n\x11\x64\x65tection_2d_path\x18\t \x01(\tb\x06proto3' , dependencies=[second_dot_protos_dot_optimizer__pb2.DESCRIPTOR,second_dot_protos_dot_preprocess__pb2.DESCRIPTOR,]) _TRAINCONFIG = _descriptor.Descriptor( name='TrainConfig', full_name='second.protos.TrainConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='optimizer', full_name='second.protos.TrainConfig.optimizer', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='second.protos.TrainConfig.steps', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps_per_eval', full_name='second.protos.TrainConfig.steps_per_eval', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='save_checkpoints_secs', full_name='second.protos.TrainConfig.save_checkpoints_secs', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='save_summary_steps', full_name='second.protos.TrainConfig.save_summary_steps', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_mixed_precision', full_name='second.protos.TrainConfig.enable_mixed_precision', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_scale_factor', full_name='second.protos.TrainConfig.loss_scale_factor', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clear_metrics_every_epoch', full_name='second.protos.TrainConfig.clear_metrics_every_epoch', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='detection_2d_path', full_name='second.protos.TrainConfig.detection_2d_path', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=108, serialized_end=385, ) _TRAINCONFIG.fields_by_name['optimizer'].message_type = second_dot_protos_dot_optimizer__pb2._OPTIMIZER DESCRIPTOR.message_types_by_name['TrainConfig'] = _TRAINCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainConfig = _reflection.GeneratedProtocolMessageType('TrainConfig', (_message.Message,), { 'DESCRIPTOR' : _TRAINCONFIG, '__module__' : 'second.protos.train_pb2' # @@protoc_insertion_point(class_scope:second.protos.TrainConfig) }) _sym_db.RegisterMessage(TrainConfig) # @@protoc_insertion_point(module_scope)
808c37dcb29ca35c6d9c2b58002ea569528d3997
f82728b6f868a2275e63848f936d2c22354dc024
/Data Structure/Array Or Vector/Search An Element in Sorted Array/SolutionByYashika.py
08248acbf202fda8812505c30c4bb5b29244da21
[ "MIT" ]
permissive
shoaibrayeen/Programmers-Community
0b0fa4ba1427fa472126e640cda52dff3416b939
cd0855e604cfd54101aaa9118f01a3e3b4c48c1c
refs/heads/master
2023-03-16T03:13:48.980900
2023-03-12T00:25:37
2023-03-12T00:25:37
209,997,598
285
424
MIT
2023-03-12T00:25:38
2019-09-21T14:17:24
C++
UTF-8
Python
false
false
381
py
def search(array,ele): if len(array)==0: #if array is empty return False if array[0]==ele: # if ele is found at 0th index return True return search(array[1:],ele) # recursively search for the element in the array size=int(input()) array=[int(i) for i in input().split()] ele=int(input()) if search(array,ele): print("Yes") else: print("No")
866c1d3d680c6beedd8c74466cc4d708fc411925
58a392f4c4bae3fa1c99e3d081eda0701bb9c93f
/comment/migrations/0001_initial.py
02c7a01063db0d61442f5fc9a3fe66b88b72b2b4
[]
no_license
KD233233/kd
84e6b60457c70b0eb603049762a3e17c808701f9
d0c298aefdc4b0712afa27604f832459b97a8edf
refs/heads/master
2020-05-19T07:21:08.312106
2019-05-05T06:03:42
2019-05-05T06:03:42
184,895,175
1
0
null
2019-05-04T13:09:01
2019-05-04T12:58:51
null
UTF-8
Python
false
false
864
py
# Generated by Django 2.1.7 on 2019-02-26 01:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('blog', '0006_auto_20190226_0940'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=52)), ('email', models.CharField(max_length=50)), ('content', models.CharField(max_length=1000)), ('time', models.DateTimeField(auto_now_add=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='blog.Post')), ], ), ]
e1267a54f015e66aaf57df060a0ebb302d36b67e
8d4f26bccc3b016cf45e8270df617cea73d1a741
/utils/transforms.py
4a3b38f5fe3802f8719e83a981a8f9c1740e3a2c
[]
no_license
krylatov-pavel/aibolit-ECG
3b6e4fc8d87ada6a615038c7fb94048570af2d43
27bad875981547ea93ac0088518eb29149078988
refs/heads/master
2022-12-26T05:49:30.827061
2019-08-19T10:47:20
2019-08-19T10:47:20
191,343,111
1
0
null
2022-12-08T05:56:08
2019-06-11T09:53:21
Python
UTF-8
Python
false
false
631
py
import torch from torchvision import transforms def squeeze(x): return torch.squeeze(x, dim=0) def clip_fn(min, max): def clip(x): x = torch.clamp(x, min, max) return x return clip def scale_fn(min, max, a, b): def scale(x): x = ((b - a) * (x - min) / (max - min)) + a return x return scale def get_transform(): clip = clip_fn(-19, 21) scale = scale_fn(-19, 21, 0, 5) transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(clip), transforms.Lambda(scale), transforms.Lambda(squeeze) ]) return transform
eabdc4dfe6fbd29641364cd7beabe54e1c5611c7
49facbcd74c2ca6adbca447a45e30a4190b35bc7
/EMAN2/2.06/lib/emitem3d.py
4fb979d45e44e783786926fe49428f77efc44768
[]
no_license
CVL-dev/StructuralBiology
801c37bfa5664e74c36f9f97478d59016f1f61fc
1f1eaa42ae565c2032e245c6a874c8439d2719b9
refs/heads/master
2023-02-25T10:28:00.700774
2013-03-02T08:29:43
2013-03-02T08:29:43
5,609,380
2
0
null
null
null
null
UTF-8
Python
false
false
39,273
py
#!/usr/local/eman/2.06/Python/bin/python # Copyright (c) 2011- Baylor College of Medicine # # This software is issued under a joint BSD/GNU license. You may use the # source code in this file under either license. However, note that the # complete EMAN2 and SPARX software packages have some GPL dependencies, # so you are responsible for compliance with the licenses of these packages # if you opt to use BSD licensing. The warranty disclaimer below holds # in either instance. # # This complete copyright notice must be included in any revised version of the # source code. Additional authorship citations may be added, but existing # author citations must be preserved. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston MA 02111-1307 USA # # from OpenGL import GL from PyQt4 import QtCore, QtGui from EMAN2 import Transform, Vec4f, Vec3f from libpyGLUtils2 import GLUtil from valslider import ValSlider, EMSpinWidget import weakref import math import numpy class EMVertexBuffers(object): """ Class to hold vertex buffers """ vbuffers = [] numbuffers = 2 @staticmethod def getBuffers(): if not len(EMVertexBuffers.vbuffers): EMVertexBuffers.vbuffers = GL.glGenBuffers(EMVertexBuffers.numbuffers) return EMVertexBuffers.vbuffers def drawBoundingBox(width, height, depth): """ Draw bounding box use C side for easy of vertex arrays """ GL.glPushAttrib(GL.GL_LIGHTING_BIT) GL.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, [1.0,1.0,1.0,1.0]) GLUtil.glDrawBoundingBox(width, height, depth) GL.glPopAttrib() class EMItem3D(object): #inherit object for new-style class (new-stype classes required for super() and Python properties) """ The base class for nodes in our scene graph, which is used in our 3D scene viewer. In our case, the scene graph is a tree data structure. """ # Class attrib to connect openGL int identifiers to class instances vbuffers = 0 selection_idx_dict = {} selection_recycle = [] selection_intname = -1 name = "General 3D Item" nodetype = "BaseNode" @staticmethod def get_transformlayout(layout, idx, attribdict): """ Adds a transform layout to a dialog @param layout, the layout to append to @param idx, the row to being appnding to """ font = QtGui.QFont() font.setBold(True) translatelabel = QtGui.QLabel("Translation") translatelabel.setFont(font) translatelabel.setAlignment(QtCore.Qt.AlignCenter) layout.addWidget(translatelabel, idx, 0, 1, 4) txlabel = QtGui.QLabel("Tx") tylabel = QtGui.QLabel("Ty") txlabel.setAlignment(QtCore.Qt.AlignRight) tylabel.setAlignment(QtCore.Qt.AlignRight) attribdict["tx"] = QtGui.QLineEdit("0.0") attribdict["ty"] = QtGui.QLineEdit("0.0") attribdict["tx"].setMinimumWidth(100.0) attribdict["ty"].setMinimumWidth(100.0) layout.addWidget(txlabel, idx+1, 0, 1, 1) layout.addWidget(attribdict["tx"], idx+1, 1, 1, 1) layout.addWidget(tylabel, idx+1, 2, 1, 1) layout.addWidget(attribdict["ty"], idx+1, 3, 1, 1) tzlabel = QtGui.QLabel("Tz") zoomlabel = QtGui.QLabel("Zm") tylabel.setAlignment(QtCore.Qt.AlignRight) zoomlabel.setAlignment(QtCore.Qt.AlignRight) attribdict["tz"] = QtGui.QLineEdit("0.0") attribdict["zoom"] = QtGui.QLineEdit("1.0") attribdict["tz"].setMinimumWidth(100.0) attribdict["zoom"].setMinimumWidth(100.0) layout.addWidget(tzlabel, idx+2, 0, 1, 1) layout.addWidget(attribdict["tz"], idx+2, 1, 1, 1) layout.addWidget(zoomlabel, idx+2, 2, 1, 1) layout.addWidget(attribdict["zoom"], idx+2, 3, 1, 1) rotatelabel = QtGui.QLabel("EMAN Rotation") rotatelabel.setFont(font) rotatelabel.setAlignment(QtCore.Qt.AlignCenter) layout.addWidget(rotatelabel, idx+3, 0, 1, 4) azlabel = QtGui.QLabel("Az") azlabel.setAlignment(QtCore.Qt.AlignRight) attribdict["az"] = QtGui.QLineEdit("0.0") altlabel = QtGui.QLabel("Alt") altlabel.setAlignment(QtCore.Qt.AlignRight) attribdict["alt"] = QtGui.QLineEdit("0.0") attribdict["az"] .setMinimumWidth(100.0) attribdict["alt"].setMinimumWidth(100.0) layout.addWidget(azlabel, idx+4, 0, 1, 1) layout.addWidget(attribdict["az"], idx+4, 1, 1, 1) layout.addWidget(altlabel, idx+4, 2, 1, 1) layout.addWidget(attribdict["alt"], idx+4, 3, 1, 1) philabel = QtGui.QLabel("Phi") philabel.setAlignment(QtCore.Qt.AlignRight) attribdict["phi"] = QtGui.QLineEdit("0.0") layout.addWidget(philabel, idx+5, 0, 1, 1) layout.addWidget(attribdict["phi"], idx+5, 1, 1, 1) @staticmethod def getTransformFromDict(attribdict): """ Return a transform using a dict created using the above function""" return Transform({"type":"eman","az":float(attribdict["az"].text()),"alt":float(attribdict["alt"].text()),"phi":float(attribdict["phi"].text()),"tx":float(attribdict["tx"].text()),"ty":float(attribdict["ty"].text()),"tz":float(attribdict["tz"].text()),"scale":float(attribdict["zoom"].text())}) @staticmethod def getNodeDialogWidget(attribdict): """ Get Data Widget """ nodewidget = QtGui.QWidget() grid = QtGui.QGridLayout() node_name_label = QtGui.QLabel("Node Name") attribdict["node_name"] = QtGui.QLineEdit() grid.addWidget(node_name_label , 0, 0, 1, 2) grid.addWidget(attribdict["node_name"], 0, 2, 1, 2) EMItem3D.get_transformlayout(grid, 2, attribdict) nodewidget.setLayout(grid) return nodewidget @staticmethod def getNodeForDialog(attribdict): """ Create a new node using a attribdict """ return EMItem3D(attribdict["parent"], transform=EMItem3D.getTransformFromDict(attribdict)) def __init__(self, parent = None, children = [], transform=None): """ @type parent: EMItem3D @param parent: the parent node to the current node or None for the root node @type children: list @param children: the child nodes @type transform: Transform or None @param transform: The transformation (rotation, scaling, translation) that should be applied before rendering this node and its children """ self.label = None # Customisabl label, used to label the inspector in the tree self.setParent(parent) self.setChildren(children) if not transform: transform = Transform() self.transform = transform self.is_visible = True self.is_selected = False self.hide_selection = False self.item_inspector = None # This is an inspector widget self.EMQTreeWidgetItem = None # This is an inspector tree item self.boundingboxsize = None self.getAndSetUniqueInteger() def getChildren(self): return self.children def setChildren(self, children): self.children = list(children) for child in children: child.parent = self def getParent(self): return self.parent def setParent(self, parent): self.parent = parent #if parent: # Why is this here is causes chaos b/c things get added twice. You can only implment this if you check to ensure self is not already a child of parent! #parent.addChild(self) def isSelectedItem(self): return self.is_selected def setSelectedItem(self, is_selected): self.is_selected = is_selected def isSelectionHidded(self): return self.hide_selection def getHiddenSelected(self): return self.hide_selection def setHiddenSelected(self, hide_selection): self.hide_selection = hide_selection def getTransform(self): return self.transform def setTransform(self, transform): self.transform = transform def isVisibleItem(self): return self.is_visible def setVisibleItem(self, is_visible): self.is_visible = is_visible def setLabel(self, label): self.label = label def getLabel(self): return self.label def __del__(self): EMItem3D.selection_recycle.append(self.intname) def getEvalString(self): """ Retrun a string that after eval can reinstatiate the object """ return "EMItem3D()" def getAndSetUniqueInteger(self): """ Stuff for the selection mechanism, return a unique int for each instance of EMItem3D """ if len(EMItem3D.selection_recycle) > 0: self.intname = EMItem3D.selection_recycle.pop() else: EMItem3D.selection_intname += 1 self.intname = EMItem3D.selection_intname EMItem3D.selection_idx_dict[self.intname] = weakref.ref(self) def addChild(self, node): """ Adds a child node, if not already in the list of child nodes. @type node: EMItem3D @param node: the child node to add """ self.children.append(node) node.parent = self def insertChild(self, node, nodeindex): """ Inserts a child node, if not already in the list of child nodes. @type node: EMItem3D @param node: the child node to add @param nodeindex: the index for insertion """ self.children.insert(nodeindex, node) node.parent = self def addChildren(self, nodes): """ Adds all the provided child nodes which are not already in the list of child nodes. @type nodes: an iterable collection of EMItem3D (or subclass) objects @param nodes: the nodes which will be added as child nodes """ for node in nodes: if not node in self.children: self.children.append(node) node.parent = self def hasChild(self, node): """ Tests whether the supplied node is a child of the current node. @type node: EMItem3D @param node: test whether this node is a child node of self """ return node in self.children def getChildIndex(self, node): """ Returns the index of child in the list of children. Raises an execption if not found """ return self.children.index(node) def displayTree(self, level = 1): """ This prints a representation of the subtree rooted at this node to standard output. Useful for debugging. """ indent = "\t"*(level-1) marker = "<-->" if self.parent else "-->" print indent, marker, self.intname for child in self.children: child.displayTree(level+1) def addParentReferences(self): """ For the subtree rooted at self, give each child node a reference to its parent node. """ for child in self.children: child.parent = self child.addParentReferences() def removeParentReferences(self): """ For the subtree rooted at self, break reference cycles by setting self.parent to None. """ self.parent = None for child in self.children: child.removeParentReferences() def removeChild(self, node): """ Remove the supplied node from the list of child nodes This also removes all its descendant nodes. @type node: EMItem3D @param node: the node to remove """ if node in self.children: node.removeParentReferences() while node in self.children: #In case a duplicate got in, somehow self.children.remove(node) def getSelectedAncestorNodes(self): """ Return a list of selected node ancestors """ selected_ancestors = [] node = self while node.parent: if node.parent.is_selected: selected_ancestors.append(node.parent) node = node.parent return selected_ancestors def getRootNode(self): """ Returns the root node """ node = self while node.parent: node = node.parent return node def getAllSelectedNodes(self): """ For the tree rooted at self, this recursive method returns a list of all the selected nodes. @return: a list of selected nodes """ selected_list = [] if self.is_selected: selected_list.append(self) for child in self.children: #Recursion ends on leaf nodes here selected_list.extend(child.getAllSelectedNodes()) #Recursion return selected_list def getAllNodes(self): """ For the tree rooted at self, this recursive method returns a list of all the nodes. @return: a list of selected nodes """ nodelist = [] nodelist.append(self) for child in self.children: #Recursion ends on leaf nodes here nodelist.extend(child.getAllNodes()) #Recursion return nodelist def getNearbySelectedNodes(self): """ For the tree rooted at self, this recursive method returns a list of the selected nodes that are near self. A selected node will not be in the returned list if one of its ancestor nodes is also selected. @return: a list of selected nodes """ selected_list = [] if self.is_selected: return [self] else: for child in self.children: selected_list.extend(child.getNearbySelectedNodes()) return selected_list def getDistantSelectedNodes(self): """ For the tree rooted at self, this recursive method returns a list of the selected nodes that are distant from self. A selected node will not be in the returned list if one of its descendant nodes is also selected. @return: a list of selected nodes """ selected_list = [] for child in self.children: selected_list.extend(child.getDistantSelectedNodes()) if not selected_list: #either this is a leaf node, or there are no selected nodes in the child subtrees if self.is_selected: selected_list.append(self) return selected_list def getItemInspector(self): """ Return a Qt widget that controls the scene item """ if not self.item_inspector: self.item_inspector = EMItem3DInspector("Node", self) return self.item_inspector def setEMQTreeWidgetItem(self, node): """ Relate a QtreeItem to this node """ self.EMQTreeWidgetItem = node def getTransformStdCoord(self): """ This returns the transform in standard coordinate system, not one changed by7 parent matrices """ tt = t = self.transform tp = self.getParentMatrixProduct() if tp: tt = tp*t return tt def getParentMatrixProduct(self): """ Get the product of all parent matrices This is a recursive function """ if self.parent: if self.parent.getParentMatrixProduct(): return self.parent.getParentMatrixProduct()*self.parent.getTransform() else: return self.parent.getTransform() else: return None def updateMatrices(self, params, xformtype): """ The matrcies are updated in such a way that each is done in the standard cooridnate system and the std coord system is not perturbed by the others @type params: List @param params: A list defining how the transform in each active node is modified @type xfromtype: sting @param xformtype: The sort of transform we wish to do """ if self.is_selected: if xformtype == "rotate": if self.parent: self.transform.rotate_origin_newbasis(self.getParentMatrixProduct(), params[0], params[1], params[2], params[3]) else: self.transform.rotate_origin(Transform({"type":"spin","Omega":params[0],"n1":params[1],"n2":params[2],"n3":params[3]})) elif xformtype == "translate": if self.parent: self.transform.translate_newbasis(self.getParentMatrixProduct(), params[0], params[1], params[2]) else: self.transform.translate(params[0], params[1], params[2]) elif xformtype == "scale": self.transform.scale(params[0]) else: raise Exception,"Invalid transformation type" # Now tell all children to update # TODO: we MIGHT want to get rid of the recursive part of this algorithm # instead, the calling function would get a list of all selected nodes, and apply transformations to each for child in self.children: child.updateMatrices(params, xformtype) #Note: the transformation is only applied to SELECTED nodes def getItemDictionary(self): """ Return a dictionary of item parameters (used for restoring sessions """ return {"TRANSFORMATION":self.transform.get_params("eman"),"CONSTRUCTOR":self.getEvalString(),"NAME":str(self.getLabel()),"VISIBLE":self.isVisibleItem(),"SELECTED":self.isSelectedItem(),"NODETYPE":self.nodetype,"HIDDENSEL":self.getHiddenSelected()} def setUsingDictionary(self, dictionary): """ Set item attributes using a dictionary, used in session restoration """ self.setTransform(Transform(dictionary["TRANSFORMATION"])) self.setVisibleItem(dictionary["VISIBLE"]) self.setSelectedItem(dictionary["SELECTED"]) try: self.setHiddenSelected(dictionary["HIDDENSEL"]) except: pass self.setLabel(dictionary["NAME"]) def render(self): """ This is the method to call to render the node and its child nodes. It calls self.renderNode() to render the current node. Usually, this method is unchanged in subclasses. """ if not self.is_visible: return #Also applies to subtree rooted at this node if self.transform.is_identity(): GL.glPushName(self.intname) self.renderNode() for child in self.children: child.render() GL.glPopName() else: GL.glPushMatrix() GL.glPushName(self.intname) GLUtil.glMultMatrix(self.transform) #apply the transformation self.renderNode() for child in self.children: child.render() GL.glPopName() GL.glPopMatrix() if self.item_inspector != None and self.is_selected: self.item_inspector.updateItemControls() def renderNode(self): """ This method, which is called by self.render(), renders the current node. It should be implemented in subclasses that represent visible objects. """ pass def keyPressEvent(self, event): pass def keyReleaseEvent(self, event): pass def mouseDoubleClickEvent(self, event): pass def mouseMoveEvent(self, event): pass def mousePressEvent(self, event): pass def mouseReleaseEvent(self, event): pass def wheelEvent(self, event): pass class EMItem3DInspector(QtGui.QTabWidget): """ Class to make the EMItem GUI controls """ def __init__(self, name, item3d): QtGui.QTabWidget.__init__(self) self.item3d = weakref.ref(item3d) self.name = name self.inspector = None self.transfromboxmaxheight = 400 # This might be problematic self.addTabs() def setInspector(self, inspector): """ This is a reference back to the main inspector, which holds all the item inspectors""" self.inspector = weakref.ref(inspector) def addTabs(self): """ Add a tab for each 'column' """ tabwidget = QtGui.QWidget() gridbox = QtGui.QGridLayout() EMItem3DInspector.addControls(self, gridbox) tabwidget.setLayout(gridbox) self.addTab(tabwidget, "basic") def addControls(self, gridbox): """ Construct all the widgets in this Item Inspector """ # selection box and label font = QtGui.QFont() font.setBold(True) label = QtGui.QLabel(self.name,self) label.setFont(font) label.setAlignment(QtCore.Qt.AlignCenter) gridbox.addWidget(label, 0, 0, 1, 1) databox = QtGui.QHBoxLayout() self.boundingbox = None if self.item3d().boundingboxsize: self.boundingbox = QtGui.QLabel("Size: "+self.item3d().boundingboxsize,self) databox.addWidget(self.boundingbox) gridbox.addLayout(databox, 1, 0, 1, 1) # angluar controls xformframe = QtGui.QFrame() xformframe.setFrameShape(QtGui.QFrame.StyledPanel) xformbox = QtGui.QGridLayout() xformlabel = QtGui.QLabel("Transformation", xformframe) xformlabel.setFont(font) xformlabel.setAlignment(QtCore.Qt.AlignCenter) xformbox.addWidget(xformlabel, 0, 0, 1, 2) # Rotations self.rotcombobox = QtGui.QComboBox() xformbox.addWidget(self.rotcombobox, 1, 0, 1, 2) self.rotstackedwidget = QtGui.QStackedWidget() self.addRotationWidgets() xformbox.addWidget(self.rotstackedwidget, 2, 0, 1, 2) #translations txlabel = QtGui.QLabel("TX",xformframe) txlabel.setAlignment(QtCore.Qt.AlignCenter) xformbox.addWidget(txlabel, 3, 0, 1, 1) tylabel = QtGui.QLabel("TY",xformframe) tylabel.setAlignment(QtCore.Qt.AlignCenter) xformbox.addWidget(tylabel, 3, 1, 1, 1) self.tx = EMSpinWidget(0.0, 1.0) self.ty = EMSpinWidget(0.0, 1.0) xformbox.addWidget(self.tx, 4, 0, 1, 1) xformbox.addWidget(self.ty, 4, 1, 1, 1) tzlabel = QtGui.QLabel("TZ",xformframe) tzlabel.setAlignment(QtCore.Qt.AlignCenter) xformbox.addWidget(tzlabel, 5, 0, 1, 1) zoomlabel = QtGui.QLabel("Zoom",xformframe) zoomlabel.setAlignment(QtCore.Qt.AlignCenter) xformbox.addWidget(zoomlabel, 5, 1, 1, 1) self.tz = EMSpinWidget(0.0, 1.0) self.zoom = EMSpinWidget(1.0, 0.1, postivemode=True, wheelstep=0.1) xformbox.addWidget(self.tz, 6, 0, 1, 1) xformbox.addWidget(self.zoom, 6, 1, 1, 1) self.resetbuttontx = QtGui.QPushButton("Reset Tx") self.resetbuttonrot = QtGui.QPushButton("Reset Rot") xformbox.addWidget(self.resetbuttontx, 7, 0, 1, 1) xformbox.addWidget(self.resetbuttonrot, 7, 1, 1, 1) xformframe.setLayout(xformbox) xformframe.setMaximumWidth(350) xformframe.setMaximumHeight(self.transfromboxmaxheight) xformframe.setLayout(xformbox) gridbox.addWidget(xformframe, 2, 0, 1, 1) # set to default, but run only as a base class if type(self) == EMItem3DInspector: self.updateItemControls() QtCore.QObject.connect(self.tx,QtCore.SIGNAL("valueChanged(int)"),self._on_translation) QtCore.QObject.connect(self.ty,QtCore.SIGNAL("valueChanged(int)"),self._on_translation) QtCore.QObject.connect(self.tz,QtCore.SIGNAL("valueChanged(int)"),self._on_translation) QtCore.QObject.connect(self.zoom,QtCore.SIGNAL("valueChanged(int)"),self._on_scale) QtCore.QObject.connect(self.resetbuttontx,QtCore.SIGNAL("clicked()"),self._on_resettx) QtCore.QObject.connect(self.resetbuttonrot,QtCore.SIGNAL("clicked()"),self._on_resetrot) def _on_translation(self, value): """ Need to contain the right coords. And do translation in the correct corrd system """ tt = t = Transform({"tx":self.tx.getValue(),"ty":self.ty.getValue(),"tz":self.tz.getValue()}) tp = self.item3d().getParentMatrixProduct() if tp: tt = tp.inverse()*t self.item3d().getTransform().set_trans(tt.get_trans()) self.inspector().updateSceneGraph() def _on_scale(self, value): self.item3d().getTransform().set_scale(self.zoom.getValue()) self.inspector().updateSceneGraph() def _on_resettx(self): self.item3d().getTransform().set_trans(0.0, 0.0, 0.0) self.updateItemControls() self.inspector().updateSceneGraph() def _on_resetrot(self): self.item3d().getTransform().set_rotation({"type":"eman","az":0.0,"alt":0.0,"phi":0.0}) self.updateItemControls() self.inspector().updateSceneGraph() def _isRotNaN(self, rot1, rot2, rot3): """ Better check to make sure get_rotation did not return Nan, so to prevent a crash """ if rot1 != rot1: return True if rot2 != rot2: return True if rot3 != rot3: return True return False def updateItemControls(self): """ Updates this item inspector. Function is called by the item it observes""" # Translation update stdtransfrom = self.item3d().getTransformStdCoord() translation = stdtransfrom.get_trans() self.tx.setValue(translation[0]) self.ty.setValue(translation[1]) self.tz.setValue(translation[2]) # Rotation update rotation = stdtransfrom.get_rotation(str(self.rotcombobox.currentText())) is_identity = stdtransfrom.is_rot_identity() comboboxidx = self.rotcombobox.currentIndex() if comboboxidx == 0: if self._isRotNaN(rotation["az"],rotation["alt"],rotation["phi"]): return self.emanazslider.setValue(rotation["az"], quiet=1) self.emanaltslider.setValue(rotation["alt"], quiet=1) self.emanphislider.setValue(rotation["phi"], quiet=1) if comboboxidx == 1: if self._isRotNaN(rotation["gamma"],rotation["beta"],rotation["alpha"]): return self.imagicgammaslider.setValue(rotation["gamma"], quiet=1) self.imagicbetaslider.setValue(rotation["beta"], quiet=1) self.imagicalphaslider.setValue(rotation["alpha"], quiet=1) if comboboxidx == 2: if self._isRotNaN(rotation["psi"],rotation["theta"],rotation["phi"]): return self.spiderpsislider.setValue(rotation["psi"], quiet=1) self.spiderthetaslider.setValue(rotation["theta"], quiet=1) self.spiderphislider.setValue(rotation["phi"], quiet=1) if comboboxidx == 3: if self._isRotNaN(rotation["phi"],rotation["theta"],rotation["omega"]): return self.mrcpsislider.setValue(rotation["phi"], quiet=1) self.mrcthetaslider.setValue(rotation["theta"], quiet=1) self.mrcomegaslider.setValue(rotation["omega"], quiet=1) if comboboxidx == 4: if self._isRotNaN(rotation["ztilt"],rotation["ytilt"],rotation["xtilt"]): return self.xyzzslider.setValue(rotation["ztilt"], quiet=1) self.xyzyslider.setValue(rotation["ytilt"], quiet=1) self.xyzxslider.setValue(rotation["xtilt"], quiet=1) if comboboxidx == 5: if self._isRotNaN(rotation["n1"],rotation["n2"],rotation["n3"]): return if is_identity and self.spinn1slider.getValue() == 0.0 and self.spinn2slider.getValue() == 0.0 and self.spinn3slider.getValue() == 0.0: self.spinomegaslider .setValue(0.0, quiet=1) self.spinn1slider.setValue(0.0, quiet=1) self.spinn2slider.setValue(0.0, quiet=1) self.spinn3slider.setValue(1.0, quiet=1) else: self.spinomegaslider .setValue(rotation["Omega"], quiet=1) # Don't change slider if reult is Nan if rotation["n1"] == rotation["n1"]: self.spinn1slider.setValue(rotation["n1"], quiet=1) if rotation["n2"] == rotation["n2"]: self.spinn2slider.setValue(rotation["n2"], quiet=1) if rotation["n3"] == rotation["n3"]: self.spinn3slider.setValue(rotation["n3"], quiet=1) if comboboxidx == 6: if self._isRotNaN(rotation["n1"],rotation["n2"],rotation["n3"]): return if is_identity and self.spinn1slider.getValue() == 0.0 and self.spinn2slider.getValue() == 0.0 and self.spinn3slider.getValue() == 0.0: self.spinomegaslider.setValue(0.0, quiet=1) self.sgirotn1slider.setValue(0.0, quiet=1) self.sgirotn2slider.setValue(0.0, quiet=1) self.sgirotn3slider.setValue(1.0, quiet=1) else: self.spinomegaslider.setValue(rotation["q"], quiet=1) # Don't change slider if reult is Nan if rotation["n1"] == rotation["n1"]: self.sgirotn1slider.setValue(rotation["n1"], quiet=1) if rotation["n2"] == rotation["n2"]: self.sgirotn2slider.setValue(rotation["n2"], quiet=1) if rotation["n3"] == rotation["n3"]: self.sgirotn3slider.setValue(rotation["n3"], quiet=1) if comboboxidx == 7: if self._isRotNaN(rotation["e1"],rotation["e2"],rotation["e3"]): return if is_identity: self.quaternione0slider.setValue(1.0, quiet=1) self.quaternione1slider.setValue(0.0, quiet=1) self.quaternione2slider.setValue(0.0, quiet=1) self.quaternione3slider.setValue(0.0, quiet=1) else: self.quaternione0slider.setValue(rotation["e0"], quiet=1) self.quaternione1slider.setValue(rotation["e1"], quiet=1) self.quaternione2slider.setValue(rotation["e2"], quiet=1) self.quaternione3slider.setValue(rotation["e3"], quiet=1) # Scaling update self.zoom.setValue(self.item3d().getTransform().get_scale()) def updateMetaData(self): """ I didn't want to put this in update b/c this data doesn't change very often, and I don't want to waste CPU Its a judgement call really, less coupling vs. more efficiency """ if self.boundingbox: self.boundingbox.setText("Size: "+self.item3d().boundingboxsize) def addRotationWidgets(self): """ Add alll the widgets for the various EMAN2 rotation conventions """ EMANwidget = QtGui.QWidget() Imagicwidget = QtGui.QWidget() Spiderwidget = QtGui.QWidget() MRCwidget = QtGui.QWidget() XYZwidget = QtGui.QWidget() spinwidget = QtGui.QWidget() sgirotwidget = QtGui.QWidget() quaternionwidget = QtGui.QWidget() # EMAN emanbox = QtGui.QVBoxLayout() self.emanazslider = ValSlider(EMANwidget, (0.0, 360.0), " Az", rounding = 1) self.emanaltslider = ValSlider(EMANwidget, (0.0, 180.0), "Alt", rounding = 1) self.emanphislider = ValSlider(EMANwidget, (0.0, 360.0), "Phi", rounding = 1) emanbox.addWidget(self.emanazslider) emanbox.addWidget(self.emanaltslider) emanbox.addWidget(self.emanphislider) EMANwidget.setLayout(emanbox) # Imagic imagicbox = QtGui.QVBoxLayout() self.imagicgammaslider = ValSlider(Imagicwidget, (0.0, 360.0), "Gamma", rounding = 1) self.imagicbetaslider = ValSlider(Imagicwidget, (0.0, 180.0), " Beta", rounding = 1) self.imagicalphaslider = ValSlider(Imagicwidget, (0.0, 360.0), " Alpha", rounding = 1) imagicbox.addWidget(self.imagicgammaslider) imagicbox.addWidget(self.imagicbetaslider) imagicbox.addWidget(self.imagicalphaslider) Imagicwidget.setLayout(imagicbox) # Spider spiderbox = QtGui.QVBoxLayout() self.spiderpsislider = ValSlider(Spiderwidget, (0.0, 360.0), " Psi", rounding = 1) self.spiderthetaslider = ValSlider(Spiderwidget, (0.0, 180.0), "Theta", rounding = 1) self.spiderphislider = ValSlider(Spiderwidget, (0.0, 360.0), " Phi", rounding = 1) spiderbox.addWidget(self.spiderpsislider) spiderbox.addWidget(self.spiderthetaslider) spiderbox.addWidget(self.spiderphislider) Spiderwidget.setLayout(spiderbox) # MRC mrcbox = QtGui.QVBoxLayout() self.mrcpsislider = ValSlider(MRCwidget, (0.0, 360.0), " Psi", rounding = 1) self.mrcthetaslider = ValSlider(MRCwidget, (0.0, 180.0), " Theta", rounding = 1) self.mrcomegaslider = ValSlider(MRCwidget, (0.0, 360.0), "Omega", rounding = 1) mrcbox.addWidget(self.mrcpsislider) mrcbox.addWidget(self.mrcthetaslider) mrcbox.addWidget(self.mrcomegaslider) MRCwidget.setLayout(mrcbox) # XYZ xyzbox = QtGui.QVBoxLayout() self.xyzzslider = ValSlider(XYZwidget, (0.0, 360.0), "Z", rounding = 1) self.xyzyslider = ValSlider(XYZwidget, (0.0, 180.0), "Y", rounding = 1) self.xyzxslider = ValSlider(XYZwidget, (0.0, 360.0), "X", rounding = 1) xyzbox.addWidget(self.xyzzslider) xyzbox.addWidget(self.xyzyslider) xyzbox.addWidget(self.xyzxslider) XYZwidget.setLayout(xyzbox) # spin spinbox = QtGui.QVBoxLayout() self.spinomegaslider = ValSlider(spinwidget, (0.0, 180.0), "Omega", rounding = 1) self.spinn1slider = ValSlider(spinwidget, (0.0, 1.0), " N1", rounding = 4) self.spinn2slider = ValSlider(spinwidget, (0.0, 1.0), " N2", rounding = 4) self.spinn3slider = ValSlider(spinwidget, (0.0, 1.0), " N3", rounding = 4) spinbox.addWidget(self.spinomegaslider) spinbox.addWidget(self.spinn1slider) spinbox.addWidget(self.spinn2slider) spinbox.addWidget(self.spinn3slider) spinwidget.setLayout(spinbox) # sgirot sgirotbox = QtGui.QVBoxLayout() self.sgirotqslider = ValSlider(sgirotwidget, (0.0, 180.0), " Q", rounding = 1) self.sgirotn1slider = ValSlider(sgirotwidget, (0.0, 1.0), "N1", rounding = 4) self.sgirotn2slider = ValSlider(sgirotwidget, (0.0, 1.0), "N2", rounding = 4) self.sgirotn3slider = ValSlider(sgirotwidget, (0.0, 1.0), "N3", rounding = 4) sgirotbox.addWidget(self.sgirotqslider) sgirotbox.addWidget(self.sgirotn1slider) sgirotbox.addWidget(self.sgirotn2slider) sgirotbox.addWidget(self.sgirotn3slider) sgirotwidget.setLayout(sgirotbox) # quaternion quaternionbox = QtGui.QVBoxLayout() self.quaternione0slider = ValSlider(quaternionwidget, (0.0, 1.0), "E0", rounding = 4) self.quaternione1slider = ValSlider(quaternionwidget, (0.0, 1.0), "E1", rounding = 4) self.quaternione2slider = ValSlider(quaternionwidget, (0.0, 1.0), "E2", rounding = 4) self.quaternione3slider = ValSlider(quaternionwidget, (0.0, 1.0), "E3", rounding = 4) quaternionbox.addWidget(self.quaternione0slider) quaternionbox.addWidget(self.quaternione1slider) quaternionbox.addWidget(self.quaternione2slider) quaternionbox.addWidget(self.quaternione3slider) quaternionwidget.setLayout(quaternionbox) # Add widgets to the stack self.rotstackedwidget.addWidget(EMANwidget) self.rotstackedwidget.addWidget(Imagicwidget) self.rotstackedwidget.addWidget(Spiderwidget) self.rotstackedwidget.addWidget(MRCwidget) self.rotstackedwidget.addWidget(XYZwidget) self.rotstackedwidget.addWidget(spinwidget) self.rotstackedwidget.addWidget(sgirotwidget) self.rotstackedwidget.addWidget(quaternionwidget) # add choices to combobox self.rotcombobox.addItem("EMAN") self.rotcombobox.addItem("Imagic") self.rotcombobox.addItem("Spider") self.rotcombobox.addItem("MRC") self.rotcombobox.addItem("XYZ") self.rotcombobox.addItem("spin") self.rotcombobox.addItem("sgirot") self.rotcombobox.addItem("quaternion") # Signal for all sliders QtCore.QObject.connect(self.rotcombobox, QtCore.SIGNAL("activated(int)"), self._rotcombobox_changed) QtCore.QObject.connect(self.emanazslider,QtCore.SIGNAL("valueChanged"),self._on_EMAN_rotation) QtCore.QObject.connect(self.emanaltslider,QtCore.SIGNAL("valueChanged"),self._on_EMAN_rotation) QtCore.QObject.connect(self.emanphislider,QtCore.SIGNAL("valueChanged"),self._on_EMAN_rotation) QtCore.QObject.connect(self.imagicgammaslider,QtCore.SIGNAL("valueChanged"),self._on_Imagic_rotation) QtCore.QObject.connect(self.imagicbetaslider,QtCore.SIGNAL("valueChanged"),self._on_Imagic_rotation) QtCore.QObject.connect(self.imagicalphaslider,QtCore.SIGNAL("valueChanged"),self._on_Imagic_rotation) QtCore.QObject.connect(self.spiderpsislider,QtCore.SIGNAL("valueChanged"),self._on_Spider_rotation) QtCore.QObject.connect(self.spiderthetaslider,QtCore.SIGNAL("valueChanged"),self._on_Spider_rotation) QtCore.QObject.connect(self.spiderphislider,QtCore.SIGNAL("valueChanged"),self._on_Spider_rotation) QtCore.QObject.connect(self.mrcpsislider,QtCore.SIGNAL("valueChanged"),self._on_MRC_rotation) QtCore.QObject.connect(self.mrcthetaslider,QtCore.SIGNAL("valueChanged"),self._on_MRC_rotation) QtCore.QObject.connect(self.mrcomegaslider,QtCore.SIGNAL("valueChanged"),self._on_MRC_rotation) QtCore.QObject.connect(self.xyzzslider,QtCore.SIGNAL("valueChanged"),self._on_XYZ_rotation) QtCore.QObject.connect(self.xyzyslider,QtCore.SIGNAL("valueChanged"),self._on_XYZ_rotation) QtCore.QObject.connect(self.xyzxslider,QtCore.SIGNAL("valueChanged"),self._on_XYZ_rotation) QtCore.QObject.connect(self.spinomegaslider,QtCore.SIGNAL("valueChanged"),self._on_spin_rotation) QtCore.QObject.connect(self.spinn1slider,QtCore.SIGNAL("valueChanged"),self._on_spin_rotation) QtCore.QObject.connect(self.spinn2slider,QtCore.SIGNAL("valueChanged"),self._on_spin_rotation) QtCore.QObject.connect(self.spinn3slider,QtCore.SIGNAL("valueChanged"),self._on_spin_rotation) QtCore.QObject.connect(self.sgirotqslider,QtCore.SIGNAL("valueChanged"),self._on_sgirot_rotation) QtCore.QObject.connect(self.sgirotn1slider,QtCore.SIGNAL("valueChanged"),self._on_sgirot_rotation) QtCore.QObject.connect(self.sgirotn2slider,QtCore.SIGNAL("valueChanged"),self._on_sgirot_rotation) QtCore.QObject.connect(self.sgirotn3slider,QtCore.SIGNAL("valueChanged"),self._on_sgirot_rotation) QtCore.QObject.connect(self.quaternione0slider,QtCore.SIGNAL("valueChanged"),self._on_quaternion_rotation) QtCore.QObject.connect(self.quaternione1slider,QtCore.SIGNAL("valueChanged"),self._on_quaternion_rotation) QtCore.QObject.connect(self.quaternione2slider,QtCore.SIGNAL("valueChanged"),self._on_quaternion_rotation) QtCore.QObject.connect(self.quaternione3slider,QtCore.SIGNAL("valueChanged"),self._on_quaternion_rotation) def _rotcombobox_changed(self, idx): self.rotstackedwidget.setCurrentIndex(idx) self.updateItemControls() def _on_EMAN_rotation(self, value): self._set_rotation_std_coords(Transform({"type":"eman","az":self.emanazslider.getValue(),"alt":self.emanaltslider.getValue(),"phi":self.emanphislider.getValue()})) self.inspector().updateSceneGraph() def _on_Imagic_rotation(self, value): self._set_rotation_std_coords(Transform({"type":"imagic","gamma":self.imagicgammaslider.getValue(),"beta":self.imagicbetaslider.getValue(),"alpha":self.imagicalphaslider.getValue()})) self.inspector().updateSceneGraph() def _on_Spider_rotation(self, value): self._set_rotation_std_coords(Transform({"type":"spider","psi":self.spiderpsislider.getValue(),"theta":self.spiderthetaslider.getValue(),"phi":self.spiderphislider.getValue()})) self.inspector().updateSceneGraph() def _on_MRC_rotation(self, value): self._set_rotation_std_coords(Transform({"type":"mrc","phi":self.mrcpsislider.getValue(),"theta":self.mrcthetaslider.getValue(),"omega":self.mrcomegaslider.getValue()})) self.inspector().updateSceneGraph() def _on_XYZ_rotation(self, value): self._set_rotation_std_coords(Transform({"type":"xyz","ztilt":self.xyzzslider.getValue(),"ytilt":self.xyzyslider.getValue(),"xtilt":self.xyzxslider.getValue()})) self.inspector().updateSceneGraph() def _on_spin_rotation(self, value): v = Vec3f(self.spinn1slider.getValue(), self.spinn2slider.getValue(), self.spinn3slider.getValue()) v.normalize() self._set_rotation_std_coords(Transform({"type":"spin","Omega":self.spinomegaslider.getValue(),"n1":v[0],"n2":v[1],"n3":v[2]})) self.inspector().updateSceneGraph() def _on_sgirot_rotation(self, value): v = Vec3f(self.sgirotn1slider.getValue(), self.sgirotn2slider.getValue(), self.sgirotn3slider.getValue()) v.normalize() self._set_rotation_std_coords(Transform({"type":"sgirot","q":self.sgirotqslider.getValue(),"n1":v[0],"n2":v[1],"n3":v[2]})) self.inspector().updateSceneGraph() def _on_quaternion_rotation(self, value): v = Vec4f(self.quaternione0slider.getValue(), self.quaternione1slider.getValue(), self.quaternione2slider.getValue(), self.quaternione3slider.getValue()) v.normalize() self._set_rotation_std_coords(Transform({"type":"quaternion","e0":v[0],"e1":v[1],"e2":v[2],"e3":v[3]})) self.inspector().updateSceneGraph() def _set_rotation_std_coords(self, rotation): """ This function sets the rotation as if there were no preceeding ones, otherwise a rot around Z could be arounf y,x, etc. Works by transforming local coords into global corrds""" tt = rotation tp = self.item3d().getParentMatrixProduct() if tp: tt = tp.inverse()*rotation self.item3d().getTransform().set_rotation(tt.get_rotation()) if __name__ == '__main__': #Test code root = EMItem3D(0) a = EMItem3D(root) b = EMItem3D(root) c = EMItem3D(root) # root.addChildren([a,b,c]) aa = EMItem3D(a) ab = EMItem3D(a) ac = EMItem3D(a) # a.addChildren([aa,ab,ac]) ba = EMItem3D(b) bb = EMItem3D(b) bc = EMItem3D(b) # b.addChildren([ba,bb,bc]) ca = EMItem3D(c) cb = EMItem3D(c) cc = EMItem3D(c) # c.addChildren([ca,cb,cc]) aaa = EMItem3D(aa) aab = EMItem3D(aa) aac = EMItem3D(aa) # aa.addChildren([aaa,aab,aac]) a.is_selected = True aab.is_selected = True ba.is_selected = True bc.is_selected = True c.is_selected = True cc.is_selected = True print "getAllSelectedNodes() test: " print "\tpassed? ", set(root.getAllSelectedNodes()) == set([a,aab,ba,bc,c,cc]) print "getNearbySelectedNodes() test: " print "\tpassed? ", set(root.getNearbySelectedNodes()) == set([a,ba,bc,c]) print "getDistantSelectedNodes() test: " print "\tpassed? ", set(root.getDistantSelectedNodes()) == set([aab,ba,bc,cc]) root.displayTree() print "\n" a.removeParentReferences() root.displayTree() print "\n" root.addParentReferences() root.displayTree() print "\n" print "removing child..." root.removeChild(a) root.displayTree() del a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac #Ensure instances are deleted before the class object is deleted, which is important in EMItem3D.__del__(self):
5b7a76806a2d1052d41fbce4748ec2feec0badda
3873dadd6e60a426439fbfefcff084590cd39670
/solver.py
04f717bfbda2274a9b02cda05635305feab94052
[]
no_license
adam-urbanczyk/Eigenvalues
52e7a0f25501f24ee8d76f4ce2d6a49e17565813
5484b0be5fac95ef0a0f1f2ab9d19ddffe128e6c
refs/heads/master
2021-01-11T21:23:49.372225
2016-03-22T04:46:44
2016-03-22T04:46:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,571
py
""" Provides Solver class and other tools for solving eigenvalue problems. Handles all adaptive cases. """ from dolfin import refine, CellFunction, Constant, Measure, FunctionSpace, \ TrialFunction, TestFunction, dot, assemble, dx, DirichletBC, \ grad, SLEPcEigenSolver, Function, FacetFunction, PETScMatrix, Mesh, \ project, interpolate, ds, \ Expression, DomainBoundary from boundary import get_bc_parts from transforms import transform_mesh from domains import build_mesh import numpy as np import time USE_EIGEN = False # FIXME finish EIGEN implementation class Solver: """ Main eigenvalue solver class. """ def __init__(self, mesh, bcList, transformList, deg=2, bcLast=False, method='CG', wTop='1', wBottom='1'): """ Initialize basic data. Method should be either CG or CR. """ self.pickleMesh = None self.mesh = mesh self.deg = deg self.dim = mesh.topology().dim() self.size = self.mesh.size(self.dim) self.exit = False self.bcList = bcList self.transformList = transformList self.bcLast = bcLast if method in {'nonconforming', 'lower bound'}: self.method = 'CR' self.deg = 1 else: self.method = 'CG' self.CGbound = (method == 'lower bound') self.monitor = None self.adaptive = self.upTo = self.edge = False self.number = 10 self.target = None self.wTop = wTop self.wBottom = wBottom self.space = None def refineTo(self, size, upTo=False, edge=False): """ Save arguments. Procedure is done while solving. """ self.upTo = upTo self.size = size self.edge = edge def refineMesh(self): """ Perform mesh refinement. """ if self.upTo: mesh = refine_mesh_upto(self.mesh, self.size, self.edge) else: mesh = refine_mesh(self.mesh, self.size, self.edge) return mesh def __call__(self, monitor): """ Call solvers and return eigenvalues/eigenfunctions. """ self.monitor = monitor self.mesh = build_mesh(*self.pickleMesh) results = list(self.solve()) results.extend(self.getGeometry()) return results def progress(self, s): """ Send progress report. Assumes monitor is a queue (as in multiprocessing), or a function. """ try: self.monitor.put(s) except: try: self.monitor(s) except: pass time.sleep(0.01) def newFunction(self): """ Create a function in the appropriate FEM space. """ if not self.mesh: self.addMesh() if not self.space: # space takes a long time to construct self.space = FunctionSpace(self.mesh, 'CG', 1) return Function(self.space) def addMesh(self, mesh=None): """ Keep fully transformed mesh. This breaks pickling. """ if mesh is None: self.mesh = build_mesh(*self.pickleMesh) self.mesh = self.refineMesh() self.mesh = transform_mesh(self.mesh, self.transformList) self.finalsize = self.mesh.size(self.dim) else: self.mesh = mesh self.extraRefine = self.deg > 1 if self.extraRefine: self.mesh = refine(self.mesh) def removeMesh(self): """ Remove mesh to restore pickling ability. """ if self.pickleMesh is None: self.pickleMesh = [self.mesh.cells(), self.mesh.coordinates()] self.mesh = None def solveFor(self, number=10, target=None, exit=False): """ Save parameters related to number of eigenvalues. """ self.number = number self.target = target self.exit = exit def solve(self): """ Find eigenvalues for transformed mesh. """ self.progress("Building mesh.") # build transformed mesh mesh = self.refineMesh() # dim = mesh.topology().dim() if self.bcLast: mesh = transform_mesh(mesh, self.transformList) Robin, Steklov, shift, bcs = get_bc_parts(mesh, self.bcList) else: Robin, Steklov, shift, bcs = get_bc_parts(mesh, self.bcList) mesh = transform_mesh(mesh, self.transformList) # boundary conditions computed on non-transformed mesh # copy the values to transformed mesh fun = FacetFunction("size_t", mesh, shift) fun.array()[:] = bcs.array()[:] bcs = fun ds = Measure('ds', domain=mesh, subdomain_data=bcs) V = FunctionSpace(mesh, self.method, self.deg) u = TrialFunction(V) v = TestFunction(V) self.progress("Assembling matrices.") wTop = Expression(self.wTop) wBottom = Expression(self.wBottom) # # build stiffness matrix form # s = dot(grad(u), grad(v))*wTop*dx # add Robin parts for bc in Robin: s += Constant(bc.parValue)*u*v*wTop*ds(bc.value+shift) # # build mass matrix form # if len(Steklov) > 0: m = 0 for bc in Steklov: m += Constant(bc.parValue)*u*v*wBottom*ds(bc.value+shift) else: m = u*v*wBottom*dx # assemble # if USE_EIGEN: # S, M = EigenMatrix(), EigenMatrix() # tempv = EigenVector() # else: S, M = PETScMatrix(), PETScMatrix() # tempv = PETScVector() if not np.any(bcs.array() == shift+1): # no Dirichlet parts assemble(s, tensor=S) assemble(m, tensor=M) else: # # with EIGEN we could # apply Dirichlet condition symmetrically # completely remove rows and columns # # Dirichlet parts are marked with shift+1 # # temp = Constant(0)*v*dx bc = DirichletBC(V, Constant(0.0), bcs, shift+1) # assemble_system(s, temp, bc, A_tensor=S, b_tensor=tempv) # assemble_system(m, temp, bc, A_tensor=M, b_tensor=tempv) assemble(s, tensor=S) bc.apply(S) assemble(m, tensor=M) # bc.zero(M) # if USE_EIGEN: # M = M.sparray() # M.eliminate_zeros() # print M.shape # indices = M.indptr[:-1] - M.indptr[1:] < 0 # M = M[indices, :].tocsc()[:, indices] # S = S.sparray()[indices, :].tocsc()[:, indices] # print M.shape # # solve the eigenvalue problem # self.progress("Solving eigenvalue problem.") eigensolver = SLEPcEigenSolver(S, M) eigensolver.parameters["problem_type"] = "gen_hermitian" eigensolver.parameters["solver"] = "krylov-schur" if self.target is not None: eigensolver.parameters["spectrum"] = "target real" eigensolver.parameters["spectral_shift"] = self.target else: eigensolver.parameters["spectrum"] = "smallest magnitude" eigensolver.parameters["spectral_shift"] = -0.01 eigensolver.parameters["spectral_transform"] = "shift-and-invert" eigensolver.solve(self.number) self.progress("Generating eigenfunctions.") if eigensolver.get_number_converged() == 0: return None eigf = [] eigv = [] if self.deg > 1: mesh = refine(mesh) W = FunctionSpace(mesh, 'CG', 1) for i in range(eigensolver.get_number_converged()): pair = eigensolver.get_eigenpair(i)[::2] eigv.append(pair[0]) u = Function(V) u.vector()[:] = pair[1] eigf.append(interpolate(u, W)) return eigv, eigf def SolveExit(self): """ Find expected exit time/torsion function. """ pass def getGeometry(self): """ Compute geometric factors. """ self.progress("Computing geometric factors.") # build transformed mesh mesh = self.refineMesh() mesh = transform_mesh(mesh, self.transformList) V = FunctionSpace(mesh, 'CG', 1) u = Function(V) u.vector()[:] = 1 # area/volume # weight from denominator of Rayleigh w = Expression(self.wBottom) geometry = {} A = geometry['A'] = assemble(u*w*dx) # perimeter/surface area geometry['P'] = assemble(u*w*ds) # center of mass x = Expression('x[0]') y = Expression('x[1]') cx = assemble(u*x*w*dx)/A cy = assemble(u*y*w*dx)/A c = [cx, cy] if self.dim == 3: z = Expression('x[2]') cz = assemble(u*z*w*dx)/A c.append(cz) geometry['c'] = c # moment of inertia if self.dim == 2: f = Expression( "(x[0]-cx)*(x[0]-cx)+(x[1]-cy)*(x[1]-cy)", cx=cx, cy=cy) else: f = Expression( "(x[0]-cx)*(x[0]-cx)+(x[1]-cy)*(x[1]-cy)+(x[2]-cz)*(x[2]-cz)", cx=cx, cy=cy, cz=cz) geometry['I'] = assemble(u*f*w*dx) # TODO: implement Gs # TODO: implement diameter and inradius geometry['D'] = None geometry['R'] = None return [geometry] def AdaptiveSolve(self): """ Adaptive refine and solve. """ pass def refine_mesh(mesh, size, edge=False): """ Refine mesh to at least given size, using one of two methods. """ dim = mesh.topology().dim() if not edge: # FEniCS 1.5 and 1.6 have a bug which prevents uniform refinement while mesh.size(dim) < size: mesh = refine(mesh) else: # Refine based on MeshFunction while mesh.size(dim) < size: print refine(mesh).size(dim) full = CellFunction("bool", mesh, True) print refine(mesh, full).size(dim) mesh = refine(mesh, full) return mesh def refine_mesh_upto(mesh, size, edge=False): """ Refine mesh to at most given size, using one of two methods. """ dim = mesh.topology().dim() if mesh.size(dim) > size: return mesh if not edge: while True: # FEniCS 1.5 and 1.6 have a bug which prevents uniform refinement mesh2 = refine(mesh) if mesh2.size(dim) > size: return mesh mesh = mesh2 else: # Refine based on MeshFunction while True: all = CellFunction("bool", mesh, True) mesh2 = refine(mesh, all) if mesh2.size(dim) > size: return mesh mesh = mesh2 def shiftMesh(mesh, vector): """ Shift mesh by vector. """ mesh.coordinates()[:, :] += np.array(vector)[None, :] def symmetrize(u, d, sym): """ Symmetrize function u. """ if len(d) == 3: # three dimensions -> cycle XYZ return cyclic3D(u) elif len(d) >= 4: # four dimensions -> rotations in 2D return rotational(u, d[-1]) nrm = np.linalg.norm(u.vector()) V = u.function_space() mesh = Mesh(V.mesh()) # test if domain is symmetric using function equal 0 inside, 1 on boundary # extrapolation will force large values if not symmetric since the flipped # domain is different bc = DirichletBC(V, 1, DomainBoundary()) test = Function(V) bc.apply(test.vector()) if len(d) == 2: # two dimensions given: swap dimensions mesh.coordinates()[:, d] = mesh.coordinates()[:, d[::-1]] else: # one dimension given: reflect mesh.coordinates()[:, d[0]] *= -1 # FIXME functionspace takes a long time to construct, maybe copy? W = FunctionSpace(mesh, 'CG', 1) try: # testing test = interpolate(Function(W, test.vector()), V) # max-min should be around 1 if domain was symmetric # may be slightly above due to boundary approximation assert max(test.vector()) - min(test.vector()) < 1.1 v = interpolate(Function(W, u.vector()), V) if sym: # symmetric pr = project(u+v) else: # antisymmetric pr = project(u-v) # small solution norm most likely means that symmetrization gives # trivial function assert np.linalg.norm(pr.vector())/nrm > 0.01 return pr except: # symmetrization failed for some reason print "Symmetrization " + str(d) + " failed!" return u def cyclic3D(u): """ Symmetrize with respect to (xyz) cycle. """ try: nrm = np.linalg.norm(u.vector()) V = u.function_space() assert V.mesh().topology().dim() == 3 mesh1 = Mesh(V.mesh()) mesh1.coordinates()[:, :] = mesh1.coordinates()[:, [1, 2, 0]] W1 = FunctionSpace(mesh1, 'CG', 1) # testing if symmetric bc = DirichletBC(V, 1, DomainBoundary()) test = Function(V) bc.apply(test.vector()) test = interpolate(Function(W1, test.vector()), V) assert max(test.vector()) - min(test.vector()) < 1.1 v1 = interpolate(Function(W1, u.vector()), V) mesh2 = Mesh(mesh1) mesh2.coordinates()[:, :] = mesh2.coordinates()[:, [1, 2, 0]] W2 = FunctionSpace(mesh2, 'CG', 1) v2 = interpolate(Function(W2, u.vector()), V) pr = project(u+v1+v2) assert np.linalg.norm(pr.vector())/nrm > 0.01 return pr except: print "Cyclic symmetrization failed!" return u def rotational(u, n): """ Symmetrize with respect to n-fold symmetry. """ # TODO: test one rotation only V = u.function_space() if V.mesh().topology().dim() > 2 or n < 2: return u mesh = V.mesh() sum = u nrm = np.linalg.norm(u.vector()) rotation = np.array([[np.cos(2*np.pi/n), np.sin(2*np.pi/n)], [-np.sin(2*np.pi/n), np.cos(2*np.pi/n)]]) for i in range(1, n): mesh = Mesh(mesh) mesh.coordinates()[:, :] = np.dot(mesh.coordinates(), rotation) W = FunctionSpace(mesh, 'CG', 1) v = interpolate(Function(W, u.vector()), V) sum += v pr = project(sum) if np.linalg.norm(pr.vector())/nrm > 0.01: return pr else: return u
3e7d7a968820733d5a77fff903a398968800b2e8
4dccaf218916f20294d2fb944c78244210636955
/wordladder/neighbors.py
2f39fc1064fad1452249909ac8e93418e46ab8bb
[]
no_license
aaronli39/artificial_intel
750649495fde223fa22b83f3c82092cbb89001f4
3c284ac836972ec9ecc67ee10b3431bdccf4f2a3
refs/heads/master
2021-06-22T02:22:09.531412
2020-12-31T01:59:48
2020-12-31T01:59:48
168,211,566
0
0
null
null
null
null
UTF-8
Python
false
false
6,231
py
#! /usr/bin/python3 import sys def comp(a, b, end): ac, bc = 0, 0 # print(a, b) for i in range(4): if a[1][i] == end[i]: ac += 1 for i in range(4): if b[1][i] == end[i]: bc += 1 if (ac + a[0]) < (bc + b[0]): return 1 elif (ac + a[0]) == (bc + b[0]): return 0 return -1 # priority queue class Pqueue: # default comparison # a and b are lists [steps, word] def bad_cmp(self, a, b, end): ac, bc = 0, 0 for i in range(self.len): if a[1][i] == end[i]: ac += 1 for i in range(self.len): if b[1][i] == end[i]: bc += 1 if (ac - a[0]) < (bc - b[0]): return -1 elif (ac - a[0]) == (bc - b[0]): return 0 return 1 def ord_cmp(self, a, b, end): ac, bc = 0, 0 for i in range(self.len): if a[1][i] == end[i]: ac += 1 for i in range(self.len): if b[1][i] == end[i]: bc += 1 if (ac - a[0]) < (bc - b[0]): return 1 elif (ac - a[0]) == (bc - b[0]): return 0 return -1 # init initializes the array, size, and comparator obj def __init__(self, length, start, result, comparator=ord_cmp): self.data = [] self.size = 0 self.len = length self.end = result self.cmp_to = comparator # push takes in 1 val, appends it, and bubbles the # val to appropriate position def push(self, val): self.data.append(val) self.size += 1 el = self.size - 1 par = int((self.size - 2) / 2) while(self.cmp_to(self, self.data[el], self.data[par], self.end) == -1 and par >= 0): self.data[el], self.data[par] = self.data[par], self.data[el] el = par par = int((par - 1) / 2) # pushL takes in a list, appends each value in list to # queue, and the bubbles them to their correct location def push_all(self, data): [self.push(i) for i in data] return # pop root, rearrange rest of array def pop(self): if self.size == 0: return None ret = self.data[0] # set new root as last element to bubble down self.data[0] = self.data[self.size - 1] self.data, self.size = self.data[:-1], self.size - 1 # starting indices with left and right children cur = 0 left, right = 2 * cur + 1, 2 * cur + 2 # if it's just a one level tree, pop root and swap left and current if necessary if self.size == 2 and self.cmp_to(self, self.data[cur], self.data[left], self.end) == 1: self.data[cur], self.data[left] = self.data[left], self.data[cur] while(left < self.size and right < self.size and (self.cmp_to(self, self.data[cur], self.data[left], self.end) == 1 or self.cmp_to(self, self.data[cur], self.data[right], self.end) == 1)): # if left smaller than right if self.cmp_to(self, self.data[left], self.data[right], self.end) == 1: # right smaller so swap right and current self.data[cur], self.data[right] = self.data[right], self.data[cur] cur = right left, right = cur * 2 + 1, cur * 2 + 2 else: # swap left and current self.data[cur], self.data[left] = self.data[left], self.data[cur] cur = left left, right = cur * 2 + 1, cur * 2 + 2 return ret # look at next root def peek(self): if self.size == 0: return None return self.data[0][1] # returns list representation of the queue def toList(self): ret = [self.pop() for i in self.data] return ret # returns the elements in the queue without popping def internal_list(self): return self.data # do the actual ladder def ladder(words, length, start, end): queue = Pqueue(length, start, end) neighbors, path, explored, steps = [start], [], set(), 0 while True: steps += 1 for i in neighbors: queue.push([steps, i, path]) # if no more elements there is no ladder if len(queue.data) == 0: return [start, end] val = queue.pop() if val[1] == end: return val[2] + [val[1]] else: if val[1] not in explored: explored.add(val[1]) path = val[2] + [val[1]] neighbors = [word for word in words[val[1]] if word not in explored] else: path = [] neighbors = [] # general function def do(inp, out, data, length): # vars to use alpha = "abcdefghijklmnopqrstuvwxyz" words = {} try: with open(inp, "rU") as temp: temp = temp.read().split("\n") goal = [] for i in temp: goal.append(i.split(",")) except: print("error reading input file") return # create the dictionary of words of desired length for i in data: ind = 0 neighbors = set() while ind < length: for letter in alpha: word = i[:ind] + letter + i[ind + 1:] if word in data and word != i: neighbors.add(word) ind += 1 words[i] = list(neighbors) # getting wordladder data if goal[0][0] == "": print("input file empty") return ret = [] print(goal) for i in goal: ret.append(ladder(words, length, i[0], i[1])) # create write data with open(out, "w") as temp: for i in ret: temp.write(",".join(i) + "\n") return # sys argv stuff def main(): try: with open(sys.argv[1], "rU") as temp: length = len(temp.read().split("\n")[0].split(",")[0]) with open("dictall.txt", "rU") as temp: data = set() # create set of all 4 letter words to pass on data = {word for word in temp.read().strip().split("\n") if len(word) == length} except: print("error getting input file") do(sys.argv[1], sys.argv[2], data, length) main()
fc3b822caec378c8a3defbf7471bb237e7933eb6
bd8eb564710998df1f2d77650d357d1b3b02fbd4
/can/bt_plugin_can.py
ea56995dcbca5f67b055e7185b770431e790c486
[]
no_license
gpollo/babeltrace-fun-plugins
43afd3c64004cebc6902e2f8713b3a23a980b1ea
7145f8647db7d9662fd37ecfe5b4265654e7b7fc
refs/heads/master
2022-02-25T17:43:51.193150
2019-08-16T04:34:55
2019-08-16T04:34:55
198,295,555
0
0
null
2019-07-22T20:14:43
2019-07-22T20:14:42
null
UTF-8
Python
false
false
9,344
py
import bt2 import cantools class CANIterator(bt2._UserMessageIterator): def __init__(self, port): (self._events, self._trace_class, self._messages) = port.user_data self._trace = self._trace_class() self._stream_class = self._trace_class[0] self._stream = self._trace.create_stream(self._stream_class) self._init_msgs = [self._create_stream_beginning_message(self._stream)] self._end_msgs = [self._create_stream_end_message(self._stream)] self._iter = iter(self._events) self._next = self._next_init def _create_decoded_event(self, timestamp, frame_id, bytedata): if len(self._messages[frame_id]) == 2: (database, event_class) = self._messages[frame_id] decoded_data = database.decode_message(frame_id, bytedata) elif len(self._messages[frame_id]) == 3: (database, event_classes, key) = self._messages[frame_id] decoded_data = database.decode_message(frame_id, bytedata) event_class = event_classes[decoded_data[key]] else: raise ValueError event_msg = self._create_event_message( event_class, self._stream, default_clock_snapshot=timestamp ) for key in event_msg.event.payload_field.keys(): event_msg.event.payload_field[key] = decoded_data[key] return event_msg def _create_unknown_event(self, timestamp, frame_id, bytedata): event_class = self._messages[None] event_msg = self._create_event_message( event_class, self._stream, default_clock_snapshot=timestamp ) event_msg.event.payload_field["id"] = frame_id for i in range(7): event_msg.event.payload_field[f"byte {i}"] = bytedata[i] return event_msg def _next_init(self): if len(self._init_msgs) > 0: return self._init_msgs.pop(0) else: self._next = self._next_events return self._next() def _next_events(self): try: (timestamp, frame_id, bytedata) = next(self._iter) if frame_id in self._messages: event_msg = self._create_decoded_event(timestamp, frame_id, bytedata) else: event_msg = self._create_unknown_event(timestamp, frame_id, bytedata) return event_msg except StopIteration: self._next = self._next_end return self._next() def _next_end(self): if len(self._end_msgs) > 0: return self._end_msgs.pop(0) else: raise StopIteration def __next__(self): return self._next() @bt2.plugin_component_class class CANSource(bt2._UserSourceComponent, message_iterator_class=CANIterator): def __init__(self, params, obj): inputs = CANSource._get_param_list(params, "inputs") databases = CANSource._get_param_list(params, "databases") (trace_class, messages) = self._create_trace_class_for_databases(databases) for path in inputs: self._create_port_for_can_trace(trace_class, messages, str(path)) def _create_trace_class_for_databases(self, databases): messages = dict() clock_class = self._create_clock_class(frequency=1000) trace_class = self._create_trace_class() stream_class = trace_class.create_stream_class( name="can", default_clock_class=clock_class ) print(f"created trace class {trace_class}") event_class = CANSource._create_unknown_event_class(trace_class, stream_class) messages[None] = event_class print(f"created event class 'UNKNOWN' at {event_class}") for path in databases: CANSource._create_database_event_classes( trace_class, stream_class, str(path), messages ) return (trace_class, messages) def _create_port_for_can_trace(self, trace_class, messages, path): try: file = open(path, "rb") except FileNotFoundError as err: raise ValueError(f"couldn't read {path}") from err events = [] while True: # Custom binary format parsing. # # [bytes 0 - 3] timestamp # [bytes 4 - 7] frame ID (standard or extended) # [bytes 8 - 15] up to 64 bits of data msg = file.read(16) if msg == b"": break timestamp = 0 timestamp += msg[0] << 0 timestamp += msg[1] << 8 timestamp += msg[2] << 16 timestamp += msg[3] << 32 frame_id = 0 frame_id += msg[4] << 0 frame_id += msg[5] << 8 data = msg[8:] events.append((timestamp, frame_id, data)) self._add_output_port(path, (events, trace_class, messages)) @staticmethod def _get_param_list(params, key): if key not in params: raise ValueError(f"missing `{key}` parameter") param = params[key] if type(param) != bt2.ArrayValue: raise TypeError( f"expecting `{key}` parameter to be a list, got a {type(param)}" ) if len(param) == 0: raise ValueError(f"expecting `{key}` to not be of length zero") return param @staticmethod def _create_database_event_classes(trace_class, stream_class, path, messages): try: database = cantools.db.load_file(path) except FileNotFoundError as err: raise ValueError(f"database file `{path}` couldn't be read.") from err for message in database.messages: if message.frame_id in messages: print(f"{message.name} already present in another database") continue multiplexed = False for signal in message.signal_tree: if isinstance(signal, str): continue multiplexed = True break if multiplexed: (event_classes, key) = CANSource._create_multiplexed_message_classes( trace_class, stream_class, message ) messages[message.frame_id] = [database, event_classes, key] print(f"created event class '{message.name}' at {event_class}") else: event_class = CANSource._create_message_class( trace_class, stream_class, message ) messages[message.frame_id] = [database, event_class] print(f"created event class '{message.name}' at {event_class}") @staticmethod def _create_unknown_event_class(trace_class, stream_class): field_class = trace_class.create_structure_field_class() field_class.append_member("id", trace_class.create_real_field_class()) for i in range(8): field_class.append_member( f"byte {i}", trace_class.create_real_field_class() ) event_class = stream_class.create_event_class( name="UNKNOWN", payload_field_class=field_class ) return event_class @staticmethod def _create_multiplexed_message_classes(trace_class, stream_class, message): event_classes = dict() multiplexer = None signals = [] for signal in message.signal_tree: if isinstance(signal, str): signals.append(signal) elif multiplexer is None: multiplexer = signal else: raise ValueError(f"multiple multiplexer in message `{message.name}`") if multiplexer is None or len(multiplexer) == 0: raise ValueError(f"no multiplexer found in `{message.name}`") if len(multiplexer) > 1: raise ValueError(f"more than 1 multiplexer found in `{message.name}`") key = list(multiplexer.keys())[0] for value in multiplexer[key].keys(): field_class = trace_class.create_structure_field_class() field_class.append_member(key, trace_class.create_real_field_class()) for signal in multiplexer[key][value]: field_class.append_member(signal, trace_class.create_real_field_class()) for signal in signals: field_class.append_member(signal, trace_class.create_real_field_class()) event_class = stream_class.create_event_class( name=message.name, payload_field_class=field_class ) event_classes[value] = event_class return (event_classes, key) @staticmethod def _create_message_class(trace_class, stream_class, message): field_class = trace_class.create_structure_field_class() for signal in message.signals: field_class.append_member( signal.name, trace_class.create_real_field_class() ) event_class = stream_class.create_event_class( name=message.name, payload_field_class=field_class ) return event_class bt2.register_plugin( module_name=__name__, name="can", description="CAN Format", author="Gabriel-Andrew Pollo-Guilbert", license="GPL", version=(1, 0, 0), )
635ba9cef3c47552319481c624406b556a3d4b17
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp-obt/sblp_ut=3.5_rd=1_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=0/params.py
aff20aa8732740d3ec888ec12ac9538f67a70364
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
{'cpus': 4, 'duration': 30, 'final_util': '3.570619', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '1', 'res_nmb': '4', 'res_weight': '0.04', 'scheduler': 'RUN', 'trial': 0, 'utils': 'uni-medium-3'}
32e18a4664cd9782b3a51b71a5e8d6d18c54ee03
c8705c604e9dbc50c65d157f95c42f2529354bbb
/keras_layers/keras_layer_L2Normalization.py
3c5977e6a76ed021285bfd28c2762ba39cdd4fff
[]
no_license
toschilt/object_detection_ic
e00b45c56865273f831b29c6017e89f92e545de6
bd2d8aa36c6734cdb21c517ff3bb47d174993663
refs/heads/main
2023-05-30T18:33:23.881966
2021-06-24T02:32:58
2021-06-24T02:32:58
342,574,861
0
0
null
2021-06-24T02:32:59
2021-02-26T12:52:28
null
UTF-8
Python
false
false
2,734
py
''' A custom Keras layer to perform L2-normalization. Copyright (C) 2018 Pierluigi Ferrari Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from __future__ import division import numpy as np import keras.backend as K import keras as keras from keras.engine.topology import InputSpec from keras.engine.topology import Layer class L2Normalization(Layer): ''' Performs L2 normalization on the input tensor with a learnable scaling parameter as described in the paper "Parsenet: Looking Wider to See Better" (see references) and as used in the original SSD model. Arguments: gamma_init (int): The initial scaling parameter. Defaults to 20 following the SSD paper. Input shape: 4D tensor of shape `(batch, channels, height, width)` if `dim_ordering = 'th'` or `(batch, height, width, channels)` if `dim_ordering = 'tf'`. Returns: The scaled tensor. Same shape as the input tensor. References: http://cs.unc.edu/~wliu/papers/parsenet.pdf ''' def __init__(self, gamma_init=20, **kwargs): if K.image_data_format() == 'channels_last': self.axis = 3 else: self.axis = 1 self.gamma_init = gamma_init super(L2Normalization, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = [InputSpec(shape=input_shape)] #gamma = self.gamma_init * np.ones((input_shape[self.axis],)) #self.gamma = K.variable(gamma, name='{}_gamma'.format(self.name)) #self.trainable_weights = [self.gamma] self.gamma = self.add_weight(name='{}_gamma'.format(self.name), shape=(input_shape[self.axis],), initializer=keras.initializers.Constant(value=self.gamma_init), trainable=True) super(L2Normalization, self).build(input_shape) def call(self, x, mask=None): output = K.l2_normalize(x, self.axis) return output * self.gamma def get_config(self): config = { 'gamma_init': self.gamma_init } base_config = super(L2Normalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
6133612965233013406ba7cb943881799c725dd8
875c602f53b5775468e5a39161a0cf2bf3a4af53
/pipify/ShowProxy.py
1a8189c43ef62b8a1e97050d34e8aaa60c0641ea
[]
no_license
cjsatuforc/fusion360-kaneka
87bf141e7e2a546a1a6b0a9e7260e51cb4a83c5b
d29037d7432be0be6fea86efabdaaf1faeb864f3
refs/heads/master
2020-05-03T12:29:24.776853
2018-02-09T19:18:26
2018-02-09T19:18:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,504
py
# (C) Copyright 2015 by Autodesk, Inc. # Permission to use, copy, modify, and distribute this software in # object code form for any purpose and without fee is hereby granted, # provided that the above copyright notice appears in all copies and # that both that copyright notice and the limited warranty and restricted # rights notice below appear in all supporting documentation. # # AUTODESK PROVIDES THIS PROGRAM "AS IS" AND WITH ALL FAULTS. # AUTODESK SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR # FITNESS FOR A PARTICULAR USE. AUTODESK, INC. DOES NOT WARRANT THAT THE # OPERATION OF THE PROGRAM WILL BE UNINTERRUPTED OR ERROR FREE. import adsk.core, adsk.fusion, traceback # Global variable used to maintain a reference to all event handlers. handlers = [] dim=0.09375 def getInputs(inputs): try: selection = inputs.itemById('selectEnt').selection(0) face = selection.entity evalType = inputs.itemById('evalType').selectedItem.name density = int(inputs.itemById('number').value) return(evalType, face, density) except: app = adsk.core.Application.get() ui = app.userInterface if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) def add_pip(lines, ent, pip, sketchPoints): p0 = ent.geometry.getData()[1] # recLines = lines.addTwoPointRectangle(ent.geometry.getData()[1], ent.geometry.getData()[1]) sketchPoint = sketchPoints.add(p0) # Move sketch point translation = adsk.core.Vector3D.create(dim*pip*2, 0, 0) sketchPoint.move(translation) x = sketchPoint.geometry.x y = sketchPoint.geometry.y z = sketchPoint.geometry.z p1 = adsk.core.Point3D.create(x + dim, y, z) lines.addByTwoPoints(sketchPoint.geometry, p1) p2 = adsk.core.Point3D.create(x + dim, y-dim, z) lines.addByTwoPoints(p1, p2) p3 = adsk.core.Point3D.create(x + dim*2, y-dim, z) lines.addByTwoPoints(p2, p3) p4 = adsk.core.Point3D.create(x + dim*2, y, z) lines.addByTwoPoints(p3, p4) # seg2 = lines.addByTwoPoints(ent.geometry.getData()[1], ent.geometry.getData()[1] + dim) # seg3 = lines.addByTwoPoints(ent.geometry.getData()[1], ent.geometry.getData()[1] + dim) # seg4 = lines.addByTwoPoints(ent.geometry.getData()[1], ent.geometry.getData()[1] + dim) def draw(ent, num_pips): app = adsk.core.Application.get() ui = app.userInterface # doc = app.documents.add(adsk.core.DocumentTypes.FusionDesignDocumentType) design = adsk.fusion.Design.cast(app.activeProduct) # Get the root component of the active design. rootComp = design.rootComponent # Create a new sketch on the xy plane. sketches = rootComp.sketches xyPlane = rootComp.xYConstructionPlane sketch = sketches.add(xyPlane) # Get sketch points sketchPoints = sketch.sketchPoints # Draw two connected lines. lines = sketch.sketchCurves.sketchLines; for x in range(num_pips): add_pip(lines, ent, x, sketchPoints) # ExecutePreview event handler class. class MyExecutePreviewHandler(adsk.core.CommandEventHandler): def __init__(self): super().__init__() def notify(self, args): try: cmdArgs = adsk.core.CommandEventArgs.cast(args) # Get the current info from the dialog. inputs = cmdArgs.command.commandInputs (evalType, ent, num_pips) = getInputs(inputs) draw(ent, num_pips) # Set this property indicating that the preview is a good # result and can be used as the final result when the command # is executed. cmdArgs.isValidResult = True except: app = adsk.core.Application.get() ui = app.userInterface if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) # Called when the command is executed. However, because this command # is using the ExecutePreview event and is setting the isValidResult property # to true, the results created in the preview will be used as the final # results and the Execute will not be called. class MyExecuteHandler(adsk.core.CommandEventHandler): def __init__(self): super().__init__() def notify(self, args): try: # Get the current info from the dialog. inputs = args.command.commandInputs (evalType, face, density) = getInputs(inputs) draw(face) except: app = adsk.core.Application.get() ui = app.userInterface if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) # CommandCreated event handler class. class MyCommandCreatedHandler(adsk.core.CommandCreatedEventHandler): def __init__(self): super().__init__() def notify(self, args): try: command = adsk.core.Command.cast(args.command) inputs = command.commandInputs # Create a selection input to get a selected entity from the user. selectInput = inputs.addSelectionInput('selectEnt', 'Selection', 'Select an entity') selectInput.addSelectionFilter('SketchLines') selectInput.setSelectionLimits(1, 1) # Create a text box that will be used to display the results. textResult = inputs.addTextBoxCommandInput('textResult', '', '', 2, True) # Create a text box that will be used to display the results. varResult = inputs.addTextBoxCommandInput('varResult', '', '', 2, True) # Add the selection input to get the points. typeInput = inputs.addDropDownCommandInput('evalType', 'Huristic', adsk.core.DropDownStyles.LabeledIconDropDownStyle) typeInput.listItems.add('Floor', True, '', -1) typeInput.listItems.add('Ceiling', True, '', -1) # Add the unitless value input to get the density. densityInput = inputs.addValueInput('number', 'NumPips', '', adsk.core.ValueInput.createByString('10')) baseDimInput = inputs.addDistanceValueCommandInput('baseDim', 'baseDimInput', adsk.core.ValueInput.createByString('3in/32')) # Connect to the input changed event. onInputChanged = MyInputChangedHandler() command.inputChanged.add(onInputChanged) handlers.append(onInputChanged) # Connect to the execute preview and execute events. onExecutePreview = MyExecutePreviewHandler() command.executePreview.add(onExecutePreview) handlers.append(onExecutePreview) except: app = adsk.core.Application.get() ui = app.userInterface if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) # InputChanged event handler class. class MyInputChangedHandler(adsk.core.InputChangedEventHandler): def __init__(self): super().__init__() def notify(self, args): try: # Get the selection command input. cmdInput = adsk.core.CommandInput.cast(args.input) if cmdInput.id == 'selectEnt': selInput = adsk.core.SelectionCommandInput.cast(cmdInput) # Check that an entity is selected. if selInput.selectionCount > 0: ent = selInput.selection(0).entity # Create a string showing the proxy path. path = getPath(ent) entType = ent.objectType entType = entType.split(':') entType = entType[len(entType)-1] path += '/' + entType # Get the text box command input and display the path string in it. textResult = cmdInput.parentCommand.commandInputs.itemById('textResult') textResult.text = path # Get the text box command input and display the path string in it. varResult = cmdInput.parentCommand.commandInputs.itemById('varResult') # if It's a line then this is x, y of the first and second point. varResult.text = "begin: (" + str(ent.geometry.getData()[1].x) + ", " + str(ent.geometry.getData()[1].y) + ")" varResult.text += " end: (" + str(ent.geometry.getData()[2].x) + ", " + str(ent.geometry.getData()[2].y) + ")" # If we were instpecting a point these are the x, y coords # varResult.text = str(ent.geometry.getData()[1]) + ", " + str(ent.geometry.getData()[2]) except: app = adsk.core.Application.get() ui = app.userInterface if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) # Builds up the string showing the proxy path by stepping up the path from # the proxy entity itself to each occurrence that defines its context. def getPath(ent): path = '' if ent.assemblyContext: occ = ent.assemblyContext while occ: if path == '': path = occ.name else: path = occ.name + '/' + path occ = occ.assemblyContext path = 'Root/' + path else: path = 'Root' return path def run(context): ui = None try: app = adsk.core.Application.get() ui = app.userInterface # Create a new command and connect to the command created event. buttonDef = ui.commandDefinitions.addButtonDefinition('ekinsShowProxyPath', 'Show Proxy', 'Display the proxy path of the selected entity.', 'Resources/ShowProxy') onCommandCreated = MyCommandCreatedHandler() buttonDef.commandCreated.add(onCommandCreated) handlers.append(onCommandCreated) # Add a control for the command into the INSPECT panel. inspectPanel = ui.allToolbarPanels.itemById('InspectPanel') inspectPanel.controls.addCommand(buttonDef) except: if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc())) def stop(context): ui = None try: app = adsk.core.Application.get() ui = app.userInterface # Clean up all UI related to this command. buttonDef = ui.commandDefinitions.itemById('ekinsShowProxyPath') if buttonDef: buttonDef.deleteMe() inspectPanel = ui.allToolbarPanels.itemById('InspectPanel') if inspectPanel.controls.itemById('ekinsShowProxyPath'): inspectPanel.controls.itemById('ekinsShowProxyPath').deleteMe() except: if ui: ui.messageBox('Failed:\n{}'.format(traceback.format_exc()))
8abbdd180f33166add8aa0e2afc8656a3e61eb68
198dd2fd5b2aa27b950bd5844c97a1ebdbd3af17
/dephell/repositories/_local.py
90ceb7d1f9c1045a3bc1c9a026ebe0a9eea2cb71
[ "MIT" ]
permissive
espdev/dephell
68411b20c1830836dcea0eec96a8bd15e95171d5
17d5604e7b443b4d58bffc635a139adb49431efc
refs/heads/master
2020-11-26T01:05:07.580285
2019-12-20T14:29:07
2019-12-20T14:29:07
228,915,765
0
0
MIT
2019-12-18T20:24:21
2019-12-18T20:24:20
null
UTF-8
Python
false
false
4,172
py
# built-in from datetime import datetime from pathlib import Path from typing import Optional, Tuple, Union # app from ..cache import RequirementsCache from ..config import Config from ..constants import FILES from ..models.release import Release from ._warehouse import WarehouseLocalRepo from .base import Interface class LocalRepo(Interface): def __init__(self, path: Union[Path, str]): if type(path) is str: path = Path(path) self.path = path def get_releases(self, dep) -> Tuple[Release, ...]: releases = [] dist_path = (self.path / 'dist') if dist_path.exists(): repo = WarehouseLocalRepo(name='tmp', path=dist_path) releases = list(repo.get_releases(dep=dep)) root = self.get_root(name=dep.name, version='0.0.0') self.update_dep_from_root(dep=dep, root=root) releases.append(Release( raw_name=root.raw_name, version=root.version, time=datetime.fromtimestamp(self.path.stat().st_mtime), )) return tuple(reversed(releases)) async def get_dependencies(self, name: str, version: str, extra: Optional[str] = None) -> tuple: cache = RequirementsCache('local', 'deps', name, str(version)) deps = cache.load() if deps: return deps root = self.get_root(name=name, version=version) deps = root.dependencies if extra: deps = tuple(dep for dep in deps if extra in dep.envs) cache.dump(root=root) return deps def get_root(self, name: str, version: str): from ..converters import EggInfoConverter, SDistConverter, WheelConverter, CONVERTERS if not self.path.exists(): raise FileNotFoundError(str(self.path)) # load from file if self.path.is_file(): for converter in CONVERTERS.values(): if converter.can_parse(path=self.path): return converter.load(path=self.path) raise LookupError('cannot find loader for file ' + str(self.path)) # get from wheel or sdist patterns = ( ('-*-*-*.whl', WheelConverter()), ('.tar.gz', SDistConverter()), ('.tgz', SDistConverter()), ) for suffix, converter in patterns: paths = tuple(self.path.glob('**/{name}-{version}{suffix}'.format( name=name.replace('-', '_'), version=str(version), suffix=suffix, ))) if paths: path = min(paths, key=lambda path: len(path.parts)) return converter.load(path=path) # read from egg-info path = self.path / (name + '.egg-info') if path.exists(): return EggInfoConverter().load(path=path) # read from dephell config path = self.path / 'pyproject.toml' if path.exists(): config = Config().attach_file(path=path, env='main') if config is not None: section = config.get('to') or config.get('from') if section and 'path' in section and 'format' in section: converter = CONVERTERS[section['format']] path = self.path.joinpath(section['path']) return converter.load(path) # get from dependencies file for fname in FILES: path = self.path / fname if not path.exists(): continue for converter in CONVERTERS.values(): if converter.can_parse(path=path): return converter.load(path=path) raise LookupError('cannot find dependencies in ' + str(self.path)) @staticmethod def update_dep_from_root(dep, root) -> None: if not dep.description: dep.description = root.description if not dep.authors: dep.authors = root.authors if not dep.links: dep.links = root.links if not dep.classifiers: dep.classifiers = root.classifiers if not dep.license: dep.license = root.license
033a0c1772872da6d3ec1735dadf3faddd9151e8
9fe8442df6f27791f8798d5905969a85ae705dd4
/Python_Stack/Django/Django_Orm/Users_Shell/Shell_App/models.py
f638bb1644c0850de0525c46a0966d2155c451dc
[]
no_license
cpugao/Python
225493da5d1c8f146680182cd2951d81c5a087ff
77a8d6f884543ae6679d9635a1eb96d6dda3bc10
refs/heads/master
2022-12-21T11:23:22.624304
2020-09-08T07:34:58
2020-09-08T07:34:58
293,735,920
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
from django.db import models class User(models.Model): first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) email_address = models.EmailField(max_length=255) age = models.IntegerField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) # Create your models here.
4c40cb98ca63c117e54ac2a813fc76d9104e8a5b
88ba7e002797738d2f7496a70158931f31992e57
/src/ANN/ANNTest.py
560f606b973aeb3685629e144e15a1a875e68462
[]
no_license
HUbbm409/bbm406-project-what-is-this-books-genre
6a9464dda8ae80bf23017b2b3252cea1600ac674
541391f1fa11ba039374dec334161042c6315eef
refs/heads/master
2020-04-13T06:18:43.608987
2019-01-18T16:44:02
2019-01-18T16:44:02
163,016,881
0
1
null
null
null
null
UTF-8
Python
false
false
3,822
py
from object_management.object_manager import ObjectManager import keras import gensim import numpy as np from sklearn.metrics import hamming_loss from sklearn.metrics import zero_one_loss import ast import os from pathlib import Path def ConvertGenreListToVector(data): genreTypes = {' Fiction': 0, ' Speculative fiction': 1, ' Science Fiction': 2, ' Novel': 3, ' Fantasy': 4, " Children's literature": 5, ' Mystery': 6, ' Young adult literature': 7, ' Suspense': 8, ' Crime Fiction': 9, ' Historical novel': 10, ' Thriller': 11, ' Horror': 12, ' Romance novel': 13, ' Historical fiction': 14, ' Detective fiction': 15, ' Adventure novel': 16, ' Non-fiction': 17, ' Alternate history': 18, ' Spy fiction': 19, ' Comedy': 20, ' Dystopia': 21, ' Autobiography': 22, ' Satire': 23, ' Gothic fiction': 24, ' Comic novel': 25, ' Biography': 26} labels = [] # represent books all genres as a vector for genreList in data["GenreList"]: vector = [0] * 27 genres = ast.literal_eval(genreList) for genre in genres: vector[genreTypes.get(genre)] = 1.0 labels.append(vector) return np.array(labels) def Word2Vec(model, data): temp = [] for x in data: count = 0 vector = np.zeros((300,)) for word in x.split(' '): try: vector += model.get_vector(word) count += 1 except KeyError: continue if count == 0: vector = np.zeros((300,)) count = 1 print(x) temp.append(vector / count) return temp # -- Get data -- directory = Path().absolute() modelFiles = os.listdir(str(directory) + "\\Model") word2vecModel = gensim.models.KeyedVectors.load_word2vec_format('../2vecmodels/GoogleNews-vectors-negative300.bin', binary=True) objManager = ObjectManager() testData = objManager.ReadObject(str(directory)+"\\RecordedObject\\TestData") file = open("log.txt","w") for modelName in modelFiles: file.write(str(modelName) + "\n") model = keras.models.load_model(str(directory) + '\\Model\\' + str(modelName) ) # -- Test Data -- testSummary = testData["Summary"] # novel's summaries for test testGenre = testData["Genre"] # novel's genres for test tempTest = Word2Vec(word2vecModel, testSummary) x_test = np.array(tempTest) y_test = ConvertGenreListToVector(testData) # Multilabel classifier trasholdList = [0.1, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.30, 0.35, 0.40, 0.45, 0.50] # -My Prediction- for th in trasholdList: print("-- Trashold Value: ", th, " --") file.write("-- Trashold Value: "+ str(th) + " --"+ "\n") predict = model.predict(x_test, 32) predict[predict >= th] = 1 predict[predict < th] = 0 predictionHit = 0 for i in range(predict.shape[0]): pre = [i for i, e in enumerate(predict[i]) if e == 1] acc = [i for i, e in enumerate(y_test[i]) if e == 1] hitNum = 0 for j in pre: if acc.__contains__(j): hitNum += 1 hitRate = hitNum / len(acc) if hitRate > 0.65: predictionHit += 1 print('Test accuracy:', (predictionHit / predict.shape[0])) file.write('Test accuracy:'+ str(predictionHit / predict.shape[0]) + "\n") print("Hamming Loss:", hamming_loss(np.array(y_test),predict )) print("Zero One Loss:", zero_one_loss(np.array(y_test),predict )) file.write("Hamming Loss:" + str(hamming_loss(np.array(y_test),predict)) + "\n") file.write("Zero One Loss:" + str(zero_one_loss(np.array(y_test),predict)) + "\n") file.close() print("Done")
67c5c82a547f0328a5f2785a7f49e1a9f8b45785
1050b277f6cb4bf4535c913dcf699c51fc705dd1
/pysp/projects/shield/metahumans/migrations/0004_metahuman_last_update.py
e6025ee3ee97df1d184e5429f1ccd7eb01954743
[]
no_license
joserequenaidv/my-eoi
7d680d6a48f688867eae37c1af103a54d8cf57b9
019d0fffbee95372eb63c378d0c93b66b6e6fedf
refs/heads/master
2022-12-06T19:52:29.703696
2020-08-12T14:27:38
2020-08-12T14:27:38
267,091,694
4
0
null
null
null
null
UTF-8
Python
false
false
390
py
# Generated by Django 3.0.5 on 2020-05-04 10:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('metahumans', '0003_metahuman'), ] operations = [ migrations.AddField( model_name='metahuman', name='last_update', field=models.DateTimeField(auto_now=True), ), ]
53de45efc62f9e11b91f03a858fe16a54ff85139
bc105a7586ed67a352430563d36770078f2b3a29
/most-recent-seasonal-spotify-playlist-generator.py
201c6dca176ea15c06ff02e4be8530bd6769e48f
[]
no_license
neasatang/seasonal-spotify-playlist-generator
1692957deccb56fa49c85cfe05d4416a3ce79a64
843a8175bf8f62294656d1da30e86f300bfd34d4
refs/heads/master
2023-02-08T00:55:18.594188
2020-12-29T16:01:11
2020-12-29T16:01:11
239,403,536
0
0
null
null
null
null
UTF-8
Python
false
false
2,688
py
import os import datetime import spotipy from spotipy.oauth2 import SpotifyOAuth spring_months = ("02", "03", "04") summer_months = ("05", "06", "07") autumn_months = ("08", "09", "10") winter_months = ("01", "11", "12") seasons = { "01": winter_months, "04": spring_months, "07": summer_months, "10": autumn_months } def get_season(month): if month in ("01","11","12"): return " Winter '", "❄" elif month in ("02","03","04"): return " Spring '", "🌸" elif month in ("05", "06", "07"): return " Summer '", "🌞" else: return " Autumn '", "🍂" def add_to_specific_season_playlist(year, month, track, months): season = get_season(month) if month == "01": change_year = int(year) - 1 year = str(change_year) playlist_name = season[0] + year[-2:] + " " + season[1] playlist_exists = False playlist_id = "" user_playlists = sp.current_user_playlists() for item in user_playlists["items"]: if playlist_name == item['name']: playlist_id = item["id"] playlist_exists = True if playlist_exists is False: newly_created_playlist = sp.user_playlist_create(os.environ["USER_ID"], playlist_name, description= "Automatically generated playlist for" + season[0] + year[-2:] + season[1] + " https://github.com/neasatang/monthly-spotify-playlist-generator" ) playlist_id = newly_created_playlist["id"] sp.playlist_add_items(playlist_id, {track}) scope = "playlist-modify-public" sp = spotipy.Spotify(auth_manager=SpotifyOAuth(scope=scope)) results = sp.current_user_playlists() playlist = sp.playlist(os.environ["PLAYLIST_ID"]) total = playlist["tracks"]["total"] offset = 0 temp_offset = 0 while offset != total: playlist_tracks = sp.playlist_items(os.environ["PLAYLIST_ID"], offset=offset) for item in playlist_tracks["items"]: date = item["added_at"].split("-") now = datetime.datetime.now() previous_month = str(now.month-1) # edge case if previous_month == "0": previous_month = "12" if len(previous_month) < 2: previous_month = "0" + previous_month if previous_month in seasons and str(now.year) == date[0] and \ date[1] in seasons.get(previous_month): if item["track"] is not None: track_id = item["track"]["id"] if track_id is not None: add_to_specific_season_playlist(date[0], date[1], track_id, seasons.get(previous_month)) new_track_id = sp.track(track_id) temp_offset += 1 offset = temp_offset
f7eacb3ff42e16ef6d307a110f5e395dc4aaec5a
829dc287dbdbd1b73a65035d3be67a22ea37a140
/test.py
8411f87c1d6b22e3dd4402e562b56f07cf1916b7
[]
no_license
JesseE/flask-prototype-sqldata
24a3ef0f35dc1639b10dba1eb9ef20b9b3507f5a
e14874eea4773893b9a5130b4fd4b643ce3212e6
refs/heads/master
2021-01-09T20:32:47.744412
2016-05-31T14:59:36
2016-05-31T14:59:36
60,099,240
0
0
null
null
null
null
UTF-8
Python
false
false
2,437
py
from app import app import unittest class FlaskTestCase(unittest.TestCase): # Ensure that flask was set up correctly def test_index(self): #isolated test client like selenium tester = app.test_client(self) response = tester.get('/login', content_type='html/text') self.assertEqual(response.status_code, 200) # Ensure that login page load correctly def test_login_page_loads(self): #isolated test client like selenium tester = app.test_client(self) response = tester.get('/login', content_type='html/text') self.assertTrue(b'Please login' in response.data) # Ensure that login page load correctly with correct credentials def test_correct_login(self): tester = app.test_client() response = tester.post( '/login', data=dict(username="admin", password="admin"), follow_redirects=True ) self.assertIn(b'you were just logged in', response.data) # Ensure that login page load correctly with incorrect credentials def test_incorrect_login(self): tester = app.test_client() response = tester.post( '/login', data=dict(username="wrong", password="wrong"), follow_redirects=True ) self.assertIn(b'Invalid credentilals. please try again.', response.data) # Ensure that login out page load correctly def test_logout(self): tester = app.test_client() tester.post( '/logout', data=dict(username="admin", password="admin"), follow_redirects=True ) response = tester.get('/logout', follow_redirects=True) self.assertIn(b'You need to login first.', response.data) # Ensure that the main page requires login def test_main_route_requires_login(self): tester = app.test_client(self) response = tester.get('/', follow_redirects=True) self.assertTrue(b'You need to login first.' in response.data) # Ensure that post show up on the main page def test_post_show_up(self): tester = app.test_client(self) response = tester.post( '/login', data=dict(username="admin",password="admin"), follow_redirects=True ) self.assertIn(b'name:',response.data) if __name__ == '__main__': unittest.main()
654213eace46387f5fd43bd5e09a377bfc08c864
916d152cef8955d68465e963e131e10db02e431c
/bin/count_lines.py
f3a76cbaeaa78a9165926a99eb4a4e83d20122c4
[]
no_license
camgunz/profile
fa57f44f2f94eaee90e99249440435bbaa0f0b15
7ab9e02b3750096c6a46ff83a28dd9413d8a8d28
refs/heads/master
2021-09-26T14:12:55.968071
2021-09-16T15:10:44
2021-09-16T15:10:44
31,148,797
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
#!/usr/bin/env python import sys import os.path def main(): total = 0 for file_name in sys.argv[1:]: if not os.path.isfile(file_name): continue with open(file_name, 'r') as fobj: line_count = len([ln for ln in fobj.readlines() if ln.strip()]) print('%s: %s' % (file_name, line_count)) total += line_count print('------------------------------') print(f'Total: {total}') main()
b8e64eea9a8b89c992011677975679292443dff5
259bf472d38d05ea86f23932789f5fb7f264df89
/projectApps/consumers.py
ed362646e24bf9f2b8800ab761743d1a1ce6b81f
[]
no_license
andrewryan/ClassCollabs
0fc3416e5f5fed59aae6aa2fad8a2e8373a7c74b
e73bb0164ce8e8f64f794b4fbd1509adfa09cf96
refs/heads/master
2021-01-20T18:04:13.536089
2017-07-18T22:35:27
2017-07-18T22:35:27
90,900,824
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
import json from channels import Group from channels.auth import channel_session_user, channel_session_user_from_http # When a user logs in, add them to the 'users' group, # with their username and the value of 'is_logged_in', # websockets have to be passed a JSON serializable message @channel_session_user_from_http def ws_connect(message): Group('users').add(message.reply_channel) Group('chat').add(message.reply_channel) Group('users').send({ 'text': json.dumps({ 'username': message.user.username, 'is_logged_in': True }) }) # When the user logs out remove them from the 'users' group, # and change the is_logged_in value to false @channel_session_user def ws_disconnect(message): Group('users').send({ 'text': json.dumps({ 'username': message.user.username, 'is_logged_in': False }) }) Group('users').discard(message.reply_channel) Group("chat").discard(message.reply_channel) # Trying to send messages through websockets for chat, # 'text' represents the data of the message being sent def ws_message(message): Group('chat').send({ "text": "[user] %s" % message.content['text'], })
8a5e173f87c878730e0dfa0966878e78abf3d25e
3e5d04efc67876ddd3cc490f4254b43d81287c69
/task_list/urls.py
adea6b8465672d6033e912421b32e4fc5eebe08d
[]
no_license
asattelmaier/django_task_list
f7208b94fda5b5fd30e84bc175f030acea43eb78
0bd949a12d63e191ac097c4dd0d05115ecc478c8
refs/heads/master
2021-09-13T11:52:14.475084
2018-04-29T13:56:50
2018-04-29T13:56:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
837
py
"""task_list URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from tasks.views import get_task_list from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), path('', get_task_list, name='task_list'), ]
6bf0b46a1682e0078e8be749f54915500deaa131
81a551f87fc7ea1ce501e0f92f0bf787562299b3
/pip_stripper/_pip_stripper.py
3c419f84503f987c0933f8b411541416e898701b
[ "MIT" ]
permissive
jpeyret/pip-stripper
c35bd7c9fd544a6e24180e3e544c067c3e5f48f7
bf50bf80915acfaaf501db914c26c4265bf4d6a4
refs/heads/master
2023-01-05T01:22:18.502356
2019-04-23T04:28:49
2019-04-23T04:28:49
180,931,747
4
1
MIT
2022-12-26T20:47:21
2019-04-12T04:43:22
Python
UTF-8
Python
false
false
10,834
py
# -*- coding: utf-8 -*- """Main module.""" #!/usr/bin/env python # -*- coding: utf-8 -*- """doc for _main.py - """ import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) import sys import argparse import re import os import subprocess import distutils.sysconfig as sysconfig from traceback import print_exc as xp import pdb from pip_stripper._baseutils import ( set_cpdb, set_rpdb, ppp, debugObject, cpdb, fill_template, rpdb, sub_template, ) from pip_stripper.writers import ScanWriter from pip_stripper.matching import Matcher from pip_stripper.pip import ClassifierPip from pip_stripper.trackimports import ClassifierImport from pip_stripper.common import Command from pip_stripper.builder import Builder from yaml import safe_load as yload, dump if __name__ == "__main__": set_cpdb(cpdb, remove=True) dn_script = os.path.dirname(__file__) if not dn_script: fnp_script = os.path.join(dn_cwd_start, sys.argv[0]) dn_script = os.path.dirname(fnp_script) class Main(object): """ manages batch""" di_opt = {} def __repr__(self): return self.__class__.__name__ def _get_fnp(self, subject): try: if subject == "templatedir": return os.path.join(dn_script, "templates") else: fn = self.config["vars"]["filenames"][subject] return os.path.join(self.workdir, fn) except (Exception,) as e: if cpdb(): pdb.set_trace() raise def __init__(self, options): try: self.options = options pwd = os.getcwd() self.workdir = self.options.workdir or pwd self.config = None fnp_config = self.options.config if self.options.init: fnp_config = self._initialize(fnp_config) if not fnp_config: for dn in [self.workdir, pwd]: fnp_config = os.path.join(dn, self.FN_CONFIG) try: with open(fnp_config) as fi: self.config = yload(fi) break except (IOError,) as e: pass else: msg = "missing configuration file. perhaps you wanted to use the --init option to create one?" print(msg) sys.exit(1) else: with open(fnp_config) as fi: self.config = yload(fi) self.scan = not self.options.noscan # self.vars = dict() self.vars["scandir"] = self.workdir sectionname = "filenames" section = self.config["vars"][sectionname] for k, v in section.items(): self.vars.update(**{"%s_%s" % (sectionname, k): v}) self.import_classifier = ClassifierImport(self) self.scanwriter = ScanWriter(self) self.matcher = Matcher() self.builder = Builder(self) except (ValueError,) as e: raise except (Exception,) as e: if cpdb(): pdb.set_trace() raise def process(self): try: if self.scan: self.scanner = Scanner(self) self.scanner.run() self.import_classifier.run() for name in self.import_classifier.packagetracker.di_packagename: self.matcher.imp.feed(name) pips = self.pip_classifier = ClassifierPip(self) for set_ in pips.di_bucket.values(): [self.matcher.pip.feed(name) for name in set_] pips.run(self.import_classifier.packagetracker) # for name in self.li_pip: self.scanwriter.write() if self.options.build: self.builder.process() except (Exception,) as e: if cpdb(): pdb.set_trace() raise DN = os.path.dirname(__file__) FN_CONFIG = "pip-stripper.yaml" _s_stdlib = None @property def s_stdlib(self): """load the std lib import names""" if self._s_stdlib is None: self._s_stdlib = liststdlib() self._s_stdlib |= set(self.config.get("extra_stdlib", [])) return self._s_stdlib _aliases = _imp2pip = None @property def imp2pip(self): """uses the aliases to look up import name to pip name """ if self._imp2pip is None: self._imp2pip = {v: k for k, v in self.aliases.items()} return self._imp2pip @property def aliases(self): if self._aliases is None: self._aliases = Matcher.match_all(self) # self._aliases = self.matcher.di_pip_imp.copy() self._aliases.update(**self.config.get("hardcoded_aliases", {})) return self._aliases pip2imp = aliases _raw_imports = None @property def raw_imports(self): if self._raw_imports is None: fnp = self._get_fnp("imports") with open(fnp) as fi: self._raw_imports = fi.readlines() return self._raw_imports _all_imports = None @property def all_imports(self): """loads the grep-ed import scans on demand""" if self._all_imports is None: self._all_imports = set( self.import_classifier.packagetracker.di_packagename ) return self._all_imports _all_freezes = None _all_pips = None @property def all_freezes(self): if self._all_freezes is None: # this triggers the pips which what populates # the freezes... self.all_pips return self._all_freezes @property def all_pips(self): """loads the pip freeze output on demand""" if self._all_pips is None: self._all_pips = set() self._all_freezes = {} fnp = self._get_fnp("freeze") with open(fnp) as fi: for line in fi.readlines(): try: packagename = self.pip_classifier.parse_requirement_line(line) except (ValueError,) as e: logger.warning("could not parse packagename on %s" % (line)) continue self._all_pips.add(packagename) self._all_freezes[packagename] = line.strip() return self._all_pips @classmethod def getOptParser(cls): parser = argparse.ArgumentParser() dest = "config" parser.add_argument( "--" + dest, action="store", help="config file. if not provided will look for %s in --workdir, current directory " % (cls.FN_CONFIG), ) dest = "noscan" default = False parser.add_argument( "--" + dest, default=default, action="store_true", help="don't scan to classify packages. build phase will re-use existing pip-stripper.scan.yaml. [%s]. " % (default), ) dest = "build" default = False parser.add_argument( "--" + dest, default=default, action="store_true", help="read pip-stripper.scan.yaml to create requirements.prod/dev.txt [%s]" % (default), ) dest = "init" parser.add_argument( "--" + dest, action="store_true", help="initialize the config file (as %s) if it doesn't exist" % (cls.FN_CONFIG), ) dest = "workdir" parser.add_argument( "--" + dest, action="store", help="work directory [defaults to config file's value or current directory]", ) dest = "verbose" default = False parser.add_argument( "--" + dest, default=default, action="store_true", help="verbose mode. adds extra zzz_debug: entry to pip-stripper.scan.yaml [%s]" % (default), ) return parser def _initialize(self, fnp_config): """--init option handling""" try: fnp_config = fnp_config or os.path.join(self.workdir, self.FN_CONFIG) if os.path.isfile(fnp_config): print( "pip-stripper configuration file exists already at @ %s. leaving it alone" % (fnp_config) ) return fnp_config # load the template file fnp_template = os.path.join(self.DN, "templates/pip-stripper.yaml") with open(fnp_template) as fi: tmpl = fi.read() seed = fill_template(tmpl, self) with open(fnp_config, "w") as fo: fo.write(seed) print("pip-stripper configuration generated @ %s" % (fnp_config)) return fnp_config except (Exception,) as e: if cpdb(): pdb.set_trace() raise def liststdlib(): """ pretty grungy code, will need a rework """ listed = set() std_lib = sysconfig.get_python_lib(standard_lib=True) for top, dirs, files in os.walk(std_lib): for nm in files: if nm != "__init__.py" and nm[-3:] == ".py": found = os.path.join(top, nm)[len(std_lib) + 1 : -3].replace("\\", ".") found = found.split("/")[0] listed.add(found) return listed class Scanner(object): def __init__(self, mgr): self.mgr = mgr self.config = self.mgr.config.get(self.__class__.__name__) self.tasknames = self.config["tasknames"] def run(self): try: for taskname in self.tasknames: config = self.mgr.config.get("Command")["tasks"][taskname] command = Command(self.mgr, taskname, config) command.run() fnp_out = os.path.join( self.mgr.workdir, self.mgr.config["vars"]["filenames"]["liststdlib"] ) except (Exception,) as e: if cpdb(): pdb.set_trace() raise def main(args=None): """the console_scripts entry point""" if args is None: args = sys.argv[1:] parser = Main.getOptParser() options = parser.parse_args(args) mgr = Main(options) mgr.process() if __name__ == "__main__": # conditional pdb.trace()-ing with --cpdb on command line set_cpdb(cpdb, remove=True) main()
0e056bd4bb9433bc9d9431ddbca1ea8006b3f319
dcb57598b4b7f9fb7a25f847574b227824b5420c
/tests/integration_tests/test_features.py
53172ef02b0bf7875a94cad0a5af4b9fa26394f8
[ "MIT" ]
permissive
netor27/features-webapp
473a0f393bea5d30d654d1880869fe8daebe4c5b
801d582975de7734c90bf0a4c95f404cbf305e86
refs/heads/master
2021-05-11T07:36:06.494569
2018-05-08T17:54:15
2018-05-08T17:54:15
118,023,763
0
2
MIT
2018-05-08T17:54:16
2018-01-18T18:48:42
Python
UTF-8
Python
false
false
17,571
py
import pytest from unittest import TestCase from flask import url_for, json from datetime import date from web.server import create_app from web.db import db from web.status import status from web.models import Feature from tests.integration_tests.post_helpers import PostHelper class FeaturesTests(TestCase): @pytest.fixture(autouse=True) def transact(self, request, configfile, waitForDb): self.app = create_app(configfile, waitForDb) self.test_client = self.app.test_client() self.app_context = self.app.app_context() self.app_context.push() self.test_user_name = 'testuserusers' self.test_user_password = 'T3s!p4s5w0RDd12#' self.ph = PostHelper(self.test_client, self.test_user_name, self.test_user_password) db.create_all() yield db.session.remove() db.drop_all() self.app_context.pop() def test_create_and_retrieve_feature(self): """ Ensure we can create a new Feature and then retrieve it """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create a new feature, assert we receive a 201 http code and and assert there's only one Feature in the db title = 'New Feature Title' description = 'Description ' * 10 target_date = date(2018, 6, 15) priority = 1 client = 'Client 1' area = 'Billing' post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) self.assertEqual(Feature.query.count(), 1) # check that the returned values in the post response are correct post_res_data = json.loads(post_res.get_data(as_text=True)) self.assertEqual(post_res_data['title'], title) self.assertEqual(post_res_data['description'], description) self.assertEqual(post_res_data['target_date'], target_date.isoformat()) self.assertEqual(post_res_data['client_priority'], priority) self.assertEqual(post_res_data['client']['name'], client) self.assertEqual(post_res_data['area']['name'], area) # get the new feature url, retrieve it and assert the correct values feature_url = post_res_data['url'] res = self.test_client.get( feature_url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['title'], title) self.assertEqual(res_data['description'], description) self.assertEqual(res_data['target_date'], target_date.isoformat()) self.assertEqual(res_data['client_priority'], priority) self.assertEqual(res_data['client']['name'], client) self.assertEqual(res_data['area']['name'], area) def test_retrieve_features_list(self): """ Ensure we can retrieve the features list """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create 4 features and assert the response for i in range(1, 5): title = 'New Feature Title {}'.format(i) description = 'Description {}'.format(i) target_date = date(2018, 6, i) priority = i client = "Client" area = "Billing" post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # assert we only have this 4 self.assertEqual(Feature.query.count(), 4) # retrieve the complete list of features, it should return only the 4 we created url = url_for('api.featurelistresource', _external=True) res = self.test_client.get( url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['count'], 4) def test_update_feature(self): """ Ensure we can update the name for an existing feature """ # create our user so we can authenticate and create the feature res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create a new feature, assert we receive a 201 http code and and assert there's only one Feature in the db title = 'New Feature Title' description = 'Description ' * 10 target_date = date(2018, 6, 15) priority = 1 client = 'Client 1' area = 'Billing' post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) self.assertEqual(Feature.query.count(), 1) post_res_data = json.loads(post_res.get_data(as_text=True)) # Create a new area and a new client, so we test we can update those too area = "New Area" res = self.ph.create_area(area) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) client = "New Client" res = self.ph.create_client(client) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # Create the patch request with the updated values feature_url = post_res_data['url'] title = 'Updated Title' description = 'Updated Description ' * 10 target_date = date(2018, 5, 19) priority = 15 data = {'title': title, 'description': description, 'target_date': target_date.isoformat(), 'client_priority': priority, 'client': client, 'area': area} patch_response = self.test_client.patch( feature_url, headers=self.ph.get_authentication_headers(), data=json.dumps(data)) self.assertEqual(patch_response.status_code, status.HTTP_200_OK, patch_response.get_data(as_text=True)) # retrieve the updated feature and validate the name is the same as the updated value res = self.test_client.get( feature_url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['title'], title) self.assertEqual(res_data['description'], description) self.assertEqual(res_data['target_date'], target_date.isoformat()) self.assertEqual(res_data['client_priority'], priority) self.assertEqual(res_data['area']['name'], area) self.assertEqual(res_data['client']['name'], client) def test_features_priority_adjustment_when_adding_a_new_feature(self): """ Ensure that when creating a new feature that has the same priority as another one it should adjust the priorities """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create 4 features and assert the response for i in range(10): title = 'Title {}'.format(i+1) description = 'Description {}'.format(i+1) target_date = date(2018, 6, 1) priority = i+1 client = "Client" area = "Billing" post_res = self.ph.create_feature(title, description, target_date, priority, client, area) self.assertEqual(post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # assert we only have this 10 features (with priorities from 1 to 10) self.assertEqual(Feature.query.count(), 10) # create a new one with priority 5, so the service must update all the priorities that are higher than 5 title = 'New Feature' description = 'Description' target_date = date(2018, 6, i) priority = 5 client = "Client" area = "Billing" post_res = self.ph.create_feature(title, description, target_date, priority, client, area) self.assertEqual(post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # Query all the priorities and verify they are updated correctly url = url_for('api.featurelistresource', _external=True, page=1, size=11) res = self.test_client.get( url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['count'], 11) # because it's a new db for this test, the id should be the same as the priority before we updated them features = res_data['results'] for i in range(11): id = features[i]['id'] priority = features[i]['client_priority'] if id <= 4: self.assertEqual(priority, id) elif id == 11: self.assertEqual(priority, 5) else: self.assertEqual(priority, id + 1) def test_features_priority_adjustment_when_updating_an_existing_feature(self): """ Ensure that when updating a feature that has the same priority as another one it should adjust the priorities """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create the first feature, that we will update later title = 'Title 1' description = 'Description 1' target_date = date(2018, 6, 1) priority = 1 client = "Client" area = "Billing" post_res = self.ph.create_feature(title, description, target_date, priority, client, area) res_data = json.loads(post_res.get_data(as_text=True)) self.assertEqual(post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) feature_url = res_data['url'] # create other 9 features and assert the response for i in range(1,10): title = 'Title {}'.format(i+1) description = 'Description {}'.format(i+1) target_date = date(2018, 6, 1) priority = i+1 client = "Client" area = "Billing" post_res = self.ph.create_feature(title, description, target_date, priority, client, area) res_data = json.loads(post_res.get_data(as_text=True)) self.assertEqual(post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # assert we only have this 10 features (with priorities from 1 to 10) self.assertEqual(Feature.query.count(), 10) # update a feature with priority 1 to priority 2, so the service must update all the priorities that are higher or equal than 2 priority = 2 data = {'client_priority': priority} patch_response = self.test_client.patch( feature_url, headers=self.ph.get_authentication_headers(), data=json.dumps(data)) self.assertEqual(patch_response.status_code, status.HTTP_200_OK, patch_response.get_data(as_text=True)) # Query all the priorities and verify they are updated correctly url = url_for('api.featurelistresource', _external=True, page=1, size=10) res = self.test_client.get( url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['count'], 10) # because it's a new db for this test, the id should be the same as the priority before we updated them features = res_data['results'] for i in range(10): id = features[i]['id'] priority = features[i]['client_priority'] self.assertEqual(priority, id+1) def test_retrieve_features_list_by_area(self): """ Ensure we can retrieve the features list for an area """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create 4 features and assert the response for i in range(1, 5): title = 'New Feature Title {}'.format(i) description = 'Description {}'.format(i) target_date = date(2018, 6, i) priority = i client = "Client" area = "Billing" post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # create another 4 features but for another area for i in range(1, 5): title = 'New Feature Title {}'.format(i) description = 'Description {}'.format(i) target_date = date(2018, 6, i) priority = i client = "Client" area = "Claims" post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # assert we only have this 8 self.assertEqual(Feature.query.count(), 8) # retrieve the complete list of features for the first client, it should return only the 4 we created url = url_for('api.featurelistbyarearesource', id = 1, _external=True) res = self.test_client.get( url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['count'], 4) def test_retrieve_features_list_by_client(self): """ Ensure we can retrieve the features list for a client """ # create our user so we can authenticate res = self.ph.create_user(self.test_user_name, self.test_user_password) self.assertEqual(res.status_code, status.HTTP_201_CREATED, res.get_data(as_text=True)) # create 4 features and assert the response for i in range(1, 5): title = 'New Feature Title {}'.format(i) description = 'Description {}'.format(i) target_date = date(2018, 6, i) priority = i client = "Client" area = "Billing" post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # create another 4 features but for another area for i in range(1, 5): title = 'New Feature Title {}'.format(i) description = 'Description {}'.format(i) target_date = date(2018, 6, i) priority = i client = "Client 2" area = "Billing" post_res = self.ph.create_feature( title, description, target_date, priority, client, area) self.assertEqual( post_res.status_code, status.HTTP_201_CREATED, post_res.get_data(as_text=True)) # assert we only have this 8 self.assertEqual(Feature.query.count(), 8) # retrieve the complete list of features for the first client, it should return only the 4 we created url = url_for('api.featurelistbyclientresource', id = 1, _external=True) res = self.test_client.get( url, headers=self.ph.get_authentication_headers()) res_data = json.loads(res.get_data(as_text=True)) self.assertEqual(res.status_code, status.HTTP_200_OK, res.get_data(as_text=True)) self.assertEqual(res_data['count'], 4)
b866f47bcedbd24a41b9e989c6316740d4e2d137
5b21e3b64083c5449f367a927a0f718af7a74491
/venv/Scripts/pip3-script.py
c91dffd6ff58842f226b6cdff66d4e17ad56d2ea
[]
no_license
james-bogert/Lists_Project
ae257cd0005a081c0b89cad05c33d8f0f9fabbe6
abf81699f126f33d60cd87e19fd619c71a8042e7
refs/heads/master
2020-04-08T00:46:15.953431
2018-11-23T18:27:48
2018-11-23T18:27:48
158,258,045
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
#!C:\Users\jjbog\Lists_Project\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
1b6973b7da92004e47d0485666a2fa1e91eead94
310bfe2d33786fb4af8ef9c74149649a6c735d34
/cnn_processor.py
434a6cb36151f9ca71d57f3afd22659a222e3e4a
[]
no_license
hanayashiki/FindEmotionalWords
472e62351b86db34ffcfd8c880b2703da4f96f8b
333affee5c61fcc074cfa2727e7616974a9aac35
refs/heads/master
2021-08-11T19:18:47.166614
2017-11-14T02:55:45
2017-11-14T02:55:45
109,950,597
0
0
null
null
null
null
UTF-8
Python
false
false
764
py
import tensorflow as tf from settings_cnn import * import test_cnn optimizer, losses, sigmoid_output, accuracy, one_zero = test_cnn.build() def process(x_data): sess = tf.Session() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) saver.restore(sess, model_path) y = sess.run(one_zero, feed_dict={test_cnn.xs: x_data}) to_ret = [] for y_line in y: emotion_obj_list = [] for idx in range(len(y_line)): if y_line[idx] == 1: emotion_obj_list.append((idx // sequence_length + 1, idx % sequence_length + 1)) to_ret.append(emotion_obj_list) print(emotion_obj_list) #print(y) #print(to_ret) return to_ret if __name__ == '__main__': process()
81ead41af15f2e458481b49604b4fc00b30f8ecc
9cbd22ce203ab7f40d6e02a7ee2b565461369b45
/bagbankde/items.py
768a82202c55a20a6a785aed852583aebad99500
[]
no_license
hristo-grudev/bagbankde
a506ed6af28db7ad4c609d7fbd922d5a699b64d6
1afcb0454b9e498c4b4eccb233b7d2aa15823513
refs/heads/main
2023-03-26T14:09:08.641400
2021-03-18T14:16:31
2021-03-18T14:16:31
349,100,217
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
import scrapy class BagbankdeItem(scrapy.Item): title = scrapy.Field() description = scrapy.Field() date = scrapy.Field()
61f49f427b666427264c788d37ae7c6625a6b4c8
cc3aa2b5a08416b96cc0633647f9567864c0de58
/test/test3.py
4904b3d4897d02086ce0982afb38c6f431168874
[]
no_license
piixeltree/testcase_generator
2c31be02061b3d52d729c20dce13b90d071629f9
d1694b5799a92b2a66f6ae5423d9881c3c45dfa4
refs/heads/master
2020-03-10T03:23:46.548505
2018-04-12T11:49:08
2018-04-12T11:49:08
129,163,656
0
0
null
null
null
null
UTF-8
Python
false
false
33
py
def sub(a,b): return (a-b,4)
16e773d0dc3490478889f1eef2ab3f40c45177bc
68f119bc8d30e106df37b56993df7909ec0c95fc
/readbacks/apps/common/utils.py
8a772b631c0e4f6fa7b0e4a540cf30b524185fed
[ "MIT" ]
permissive
argybarg/readbacks
7b580d8a2a733b89cd03d7eb9803fbea8ce3a585
6b78bc3f33e53dd0850ed40d1412e355b7cd7cd6
refs/heads/master
2020-01-22T15:16:28.978295
2014-05-22T22:01:26
2014-05-22T22:01:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
797
py
# https://djangosnippets.org/snippets/1259/ def truncatesmart(value, limit=80): """ Truncates a string after a given number of chars keeping whole words. Usage: {{ string|truncatesmart }} {{ string|truncatesmart:50 }} """ try: limit = int(limit) # invalid literal for int() except ValueError: # Fail silently. return value # Make sure it's unicode value = unicode(value) # Return the string itself if length is smaller or equal to the limit if len(value) <= limit: return value # Cut the string value = value[:limit] # Break into words and remove the last words = value.split(' ')[:-1] # Join the words and return return ' '.join(words) + '...'
df87989ac6e9817600210b00a6107f9f117640db
40dc0e7a24ff1ef5fb932b44cb663acd71df31fe
/AlphaZero_Gomoku-master/human_play.py
b617f0dea3383b34bdde3cf7c28d37ce05809a08
[ "MIT" ]
permissive
channerduan01/gomoku
42e558528fb93bd50b585e32538e822c4a3279a9
0b759ab8b6633190fc205f00e34d6947ef8871bd
refs/heads/master
2021-01-10T13:31:55.148620
2019-05-05T03:08:28
2019-05-05T03:08:28
50,356,694
0
1
null
null
null
null
UTF-8
Python
false
false
3,043
py
# -*- coding: utf-8 -*- """ human VS AI models Input your move in the format: 2,3 @author: Junxiao Song """ from __future__ import print_function import pickle from game import Board, Game from mcts_pure import MCTSPlayer as MCTS_Pure from mcts_alphaZero import MCTSPlayer from policy_value_net_numpy import PolicyValueNetNumpy # from policy_value_net import PolicyValueNet # Theano and Lasagne # from policy_value_net_pytorch import PolicyValueNet # Pytorch # from policy_value_net_tensorflow import PolicyValueNet # Tensorflow # from policy_value_net_keras import PolicyValueNet # Keras class Human(object): """ human player """ def __init__(self): self.player = None def set_player_ind(self, p): self.player = p def get_action(self, board): try: location = input("Your move: ") if isinstance(location, str): # for python3 location = [int(n, 10) for n in location.split(",")] move = board.location_to_move(location) except Exception as e: move = -1 if move == -1 or move not in board.availables: print("invalid move") move = self.get_action(board) return move def __str__(self): return "Human {}".format(self.player) def run(): # print("!!!!!!!!!!") n = 5 width, height = 8, 8 model_file = 'best_policy_8_8_5.model' try: board = Board(width=width, height=height, n_in_row=n) game = Game(board) # ############### human VS AI ################### # load the trained policy_value_net in either Theano/Lasagne, PyTorch or TensorFlow # best_policy = PolicyValueNet(width, height, model_file = model_file) # mcts_player = MCTSPlayer(best_policy.policy_value_fn, c_puct=5, n_playout=400) # load the provided model (trained in Theano/Lasagne) into a MCTS player written in pure numpy try: policy_param = pickle.load(open(model_file, 'rb')) except: policy_param = pickle.load(open(model_file, 'rb'), encoding='bytes') # To support python3 best_policy = PolicyValueNetNumpy(width, height, policy_param) # best_policy = PolicyValueNet(width, height, model_file) mcts_player = MCTSPlayer(best_policy.policy_value_fn, c_puct=5, n_playout=400) # set larger n_playout for better performance # uncomment the following line to play with pure MCTS (it's much weaker even with a larger n_playout) # mcts_player = MCTS_Pure(c_puct=5, n_playout=1000) # human player, input your move in the format: 2,3 human = Human() # set start_player=0 for human first game.start_play(human, mcts_player, start_player=1, is_shown=1) # game.start_self_play(mcts_player, is_shown=1) except KeyboardInterrupt: print('\n\rquit') if __name__ == '__main__': run()
526d68e7367544fddb75b1feac1d125516d58c15
2eca0111818adce7454e76197436fa567a0ab6bd
/storefront/themed_products/migrations/0003_auto_20210114_1449.py
c47334bfb5dc7db3481a78f5d8fa49cd1326dfff
[]
no_license
jbar173/Storefront
336eedc9b75e31e8f2f1fd0015fdcbdc10bd7467
0a7a9cf3fd6267fb828b1b5d2f99b8ad0794db32
refs/heads/main
2023-03-28T19:08:25.633081
2021-03-29T16:07:07
2021-03-29T16:07:07
321,958,485
0
0
null
null
null
null
UTF-8
Python
false
false
848
py
# Generated by Django 3.1.2 on 2021-01-14 14:49 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('orders', '0003_auto_20210113_2056'), ('themed_products', '0002_themedbouquet_theme_name'), ] operations = [ migrations.AddField( model_name='themedbouquet', name='order', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='t_bouquet', to='orders.order'), ), migrations.AlterField( model_name='themedbouquet', name='theme_name', field=models.CharField(choices=[('Type', 'Type'), ('Colour', 'Colour'), ('Type and Colour', 'Type and Colour')], max_length=50, null=True), ), ]
bcc5720fc4cdcc6f82c6aabd3852ce15ab77b4e0
d886d3a2c1c9e117a817d60d4d29122fe49afef5
/test/lexTests.py
4d5cde4ff3ceea8ae499d385a879634d350fa9f5
[ "LicenseRef-scancode-scintilla" ]
permissive
missdeer/Scintilla-iOS
e70012012af9c2a500871d59d6b52386f083983a
956d4fb53c2ffa135648f86b0b395f51e4136448
refs/heads/master
2022-05-16T12:28:45.315261
2022-04-03T08:57:27
2022-04-03T08:57:27
178,977,537
0
0
NOASSERTION
2020-01-08T01:39:51
2019-04-02T01:47:01
C++
UTF-8
Python
false
false
3,424
py
# -*- coding: utf-8 -*- from __future__ import with_statement import io, os, sys, unittest if sys.platform == "win32": import XiteWin as Xite else: import XiteQt as Xite keywordsHTML = [ b"b body content head href html link meta " b"name rel script strong title type xmlns", b"function", b"sub" ] class TestLexers(unittest.TestCase): def setUp(self): self.xite = Xite.xiteFrame self.ed = self.xite.ed self.ed.ClearAll() self.ed.EmptyUndoBuffer() def AsStyled(self): text = self.ed.Contents() data = io.BytesIO() prevStyle = -1 for o in range(self.ed.Length): styleNow = self.ed.GetStyleAt(o) if styleNow != prevStyle: styleBuf = "{%0d}" % styleNow data.write(styleBuf.encode('utf-8')) prevStyle = styleNow data.write(text[o:o+1]) return data.getvalue() def LexExample(self, name, lexerName, keywords=None): if keywords is None: keywords = [] self.ed.SetCodePage(65001) self.ed.LexerLanguage = lexerName bits = self.ed.StyleBitsNeeded mask = 2 << bits - 1 self.ed.StyleBits = bits for i in range(len(keywords)): self.ed.SetKeyWords(i, keywords[i]) nameExample = os.path.join("examples", name) namePrevious = nameExample +".styled" nameNew = nameExample +".new" with open(nameExample, "rb") as f: prog = f.read() BOM = b"\xEF\xBB\xBF" if prog.startswith(BOM): prog = prog[len(BOM):] lenDocument = len(prog) self.ed.AddText(lenDocument, prog) self.ed.Colourise(0, lenDocument) self.assertEquals(self.ed.EndStyled, lenDocument) try: with open(namePrevious, "rb") as f: prevStyled = f.read() except FileNotFoundError: prevStyled = "" progStyled = self.AsStyled() if progStyled != prevStyled: with open(nameNew, "wb") as f: f.write(progStyled) print(progStyled) print(prevStyled) self.assertEquals(progStyled, prevStyled) # The whole file doesn't parse like it did before so don't try line by line # as that is likely to fail many times. return # Try partial lexes from the start of every line which should all be identical. for line in range(self.ed.LineCount): lineStart = self.ed.PositionFromLine(line) self.ed.StartStyling(lineStart, mask) self.assertEquals(self.ed.EndStyled, lineStart) self.ed.Colourise(lineStart, lenDocument) progStyled = self.AsStyled() if progStyled != prevStyled: with open(nameNew, "wb") as f: f.write(progStyled) self.assertEquals(progStyled, prevStyled) # Give up after one failure return def testCXX(self): self.LexExample("x.cxx", b"cpp", [b"int"]) def testPython(self): self.LexExample("x.py", b"python", [b"class def else for if import in print return while"]) def testHTML(self): self.LexExample("x.html", b"hypertext", keywordsHTML) def testASP(self): self.LexExample("x.asp", b"hypertext", keywordsHTML) def testPHP(self): self.LexExample("x.php", b"hypertext", keywordsHTML) def testVB(self): self.LexExample("x.vb", b"vb", [b"as dim or string"]) def testLua(self): self.LexExample("x.lua", b"lua", [b"function end"]) def testRuby(self): self.LexExample("x.rb", b"ruby", [b"class def end"]) def testPerl(self): self.LexExample("x.pl", b"perl", [b"printf sleep use while"]) def testD(self): self.LexExample("x.d", b"d", [b"keyword1", b"keyword2", b"", b"keyword4", b"keyword5", b"keyword6", b"keyword7"]) if __name__ == '__main__': Xite.main("lexTests")
b70b6252b5bca3bad1bd930541510f86d3f7360e
167c6b1238c0e3f8f17e3659ae4e34a8dff3908d
/task1.py
bbb51409030000b6d4014178effcd77099474735
[]
no_license
Pajke123/ORS-PA-18-Homework07
8345ae8758601e9b42e76f0ac324adb005802727
fdd7c0c853f0fd70616295145e8ebef04677808f
refs/heads/master
2020-05-21T01:02:13.703392
2019-04-30T12:53:10
2019-04-30T12:53:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
""" =================== TASK 1 ==================== * Name: Roll The Dice * * Write a script that will simulate rolling the * dice. The script should fetch the number of times * the dice should be "rolled" as user input. * At the end, the script should print how many times * each number appeared (1 - 6). * * Note: Please describe in details possible cases * in which your solution might not work. * * Note: You can use `rand` module to simulate dice * rolling. =================================================== """ # Write your script here
7d42995cc032265dc1da6c26ba81455cc32bcebd
c60c199410289c1d7ec4aea00833b461e1f08f88
/.history/older-than/older/source-example/day2/user-list.py
a923e529b041db39bfa93f7bc43cb926236f86e4
[]
no_license
ver007/pythonjumpstart
66fb111e6af197fad3e853b2c2d712a1b57a7d59
5b1f52479abd07456e2da494149e491d398f3b7d
refs/heads/master
2021-01-21T01:34:35.501870
2015-05-13T14:10:13
2015-05-13T14:10:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
#!/usr/bin/env python users = [ line.split(':')[0] for line in open('/etc/passwd') if '#' not in line and '!' in line ] users.sort() for (i, n) in enumerate(users): print i, ":", n
01b32f0e13acf20a01c271a146bc3a109c71506a
0533cdcaa13edd15d60523be1c806985f2a27be3
/life/addRestaurants.py
523f72ba7849fd028b5157a5be5b00d20fa7c69f
[]
no_license
cs160su18/p5-junseoky21
bfcebb141ea9501d866707939c6435506f49664c
27a39c4cbc795e2f2e6805d9f3ae9fc78b2013c1
refs/heads/master
2020-03-23T11:08:27.179003
2018-07-22T23:19:57
2018-07-22T23:19:57
141,485,743
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
from life.models import * Mc = Restaurant(name="McDonalds", latitude=37.8716, longitude=-122.2727) Mc.save() Mc = Restaurant(name="Bongo Burger", latitude=37.8653, longitude=-122.2582) Mc.save() Mc = Restaurant(name="Taco Bell", latitude=37.8678, longitude=-122.2576) Mc.save()
0933da67fd790e5811ce8b580f16a0ab1a3f6a75
32bbbd6dbd100bbb9a2282f69ac3b7b34516347f
/Study/keras/keras44_cifar100_2_cnn.py
88e3f8742ac013b4f6a6c64966e550971666ddae
[]
no_license
kimjh1753/AIA_Academy_Study
2162d4d4f1a6b8ca1870f86d540df45a8742f359
6022718ae7f9e5170a19c4786d096c8042894ead
refs/heads/master
2023-05-07T12:29:12.920693
2021-06-05T01:09:33
2021-06-05T01:09:33
324,136,796
0
0
null
null
null
null
UTF-8
Python
false
false
1,971
py
# 1. 데이터 from tensorflow.keras.datasets import cifar100 (x_train, y_train), (x_test, y_test) = cifar100.load_data() print(x_train.shape, y_train.shape) # (50000, 32, 32, 3) (50000, 1) print(x_test.shape, y_test.shape) # (10000, 32, 32, 3) (10000, 1) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], x_train.shape[3])/255. x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], x_test.shape[3])/255. # OneHotEncoding from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) print(y_train.shape, y_test.shape) # (50000, 100) (10000, 100) # 2. 모델 구성 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout model = Sequential() model.add(Conv2D(filters=10, kernel_size=(2,2), padding='same', strides=1, input_shape=(32, 32, 3))) model.add(Dropout(0.2)) model.add(Conv2D(9, (2,2), padding='valid')) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1000, activation='relu')) model.add(Dense(100, activation='softmax')) # 3. 컴파일, 훈련 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) from tensorflow.keras.callbacks import EarlyStopping es = EarlyStopping(monitor='loss', patience=30, mode='auto') model.fit(x_train, y_train, epochs=2000, batch_size=2000, validation_split=0.2, verbose=1, callbacks=[es]) # 4. 평가, 예측 loss, acc = model.evaluate(x_test, y_test, batch_size=1) print("loss : ", loss) print("loss : ", acc) # keras cifar100 cnn # loss : 5.992544174194336 # loss : 0.23280000686645508
973325cd65d92a99bb447908d6527aa29d2f230e
b9cb9229b042be70e5c7918b9e89006bfb01d506
/uniforms.py
b142a544242f109a0ca9fc1dd063e9b507f3c877
[]
no_license
adibenc/sentimen-aa
d2defbc38ab785ba4b254b8b1f3aab4af9d1f887
eb4d145fe51ec9baa59703dd643e5b432c97c7f2
refs/heads/main
2023-05-13T07:49:43.295866
2021-05-28T10:20:40
2021-05-28T10:20:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,724
py
import pandas as pd import numpy as np class BaseIO: datas = { "csv": None, "xls": None, "dataframe": None, } def __init__(self): pass def fromCsv(self, filename): pass def toCsv(self, filename): pass def toXls(self, filename): pass def inputFmt(self, name, filename): return { "name": name, "filename": filename, } baseio = BaseIO() """ https://stackabuse com/how-to-merge-dataframes-in-pandas/#mergedataframesusingappend pd.concat(dataframes, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True) Here are the most commonly used parameters for the concat() function: objs is the list of DataFrame objects ([df1, df2, ...]) to be concatenated axis defines the direction of the concatenation, 0 for row-wise and 1 for column-wise join can either be inner (intersection) or outer (union) ignore_index by default set to False which allows the index values to remain as they were in the original DataFrames, can cause duplicate index values. If set to True, it will ignore the original values and re-assign index values in sequential order keys allows us to construct a hierarchical index. Think of it as another level of the index that appended on the outer left of the DataFrame that helps us to distinguish indices when values are not unique """ def concatDataframeRows(dataframes): return pd.concat(dataframes, axis=0, join='outer') def initialize(): crawled = [ baseio.inputFmt("ruu.minol", 'ruu.minol.csv'), baseio.inputFmt("ruu.minol2", 'ruu.minol2.csv'), baseio.inputFmt("ruu.minuman.beralkohol", 'ruu.minuman.beralkohol.csv'), baseio.inputFmt("ruu.minuman.beralkohol2", 'ruu.minuman.beralkohol2.csv'), baseio.inputFmt("ruu.miras", 'ruu.miras.csv'), baseio.inputFmt("ruu.miras2", 'ruu.miras2.csv'), ] useCols = [ 'status_id', 'created_at', 'screen_name', 'text', 'preprocessed', 'classify_data', 'classified' ] dataframes = [] # print(crawled) for c in crawled: # get classified filen = './' + c['name'] + '.classified.csv' print(filen) df = pd.read_csv(filen, header=0, lineterminator='\n', usecols=useCols) dataframes.append(df) # preprocessor.results['sentimen.y1'][c['name']] = c concated = concatDataframeRows(dataframes) concated.to_csv("ruu.all.classified.csv") initialize() """ 'status_id', 'created_at', 'screen_name', 'text', 'preprocessed', 'classify_data', 'classified' """
84cc0587d07c1b8dd4cdaa6a6736f3482679e698
aec4dc0c6780e1dc63fb1a840541771b2931198f
/app/models/follow.py
7a7d81cd0bdd0513286e51112a7feab36650310e
[]
no_license
dunnjm814/mySampler
e1864fa8e7407eaa31a32ceec5252840d7ad5dde
a272ed13e19a2d6593ef6a7ae6d20441d16e9546
refs/heads/main
2023-06-14T22:50:30.477166
2021-07-14T00:35:03
2021-07-14T00:35:03
343,591,654
8
0
null
2021-07-14T00:35:04
2021-03-01T23:59:18
Python
UTF-8
Python
false
false
195
py
from .db import db follows = db.Table( "follows", db.Column("follower_id", db.Integer, db.ForeignKey("users.id")), db.Column("followed_id", db.Integer, db.ForeignKey("users.id")) )
6a1e6c2874181f6c5859c830e394359834617163
747f759311d404af31c0f80029e88098193f6269
/extra-addons/training_doc/__init__.py
4cb47ad014a13cc816addb240e952f246358cbea
[]
no_license
sgeerish/sirr_production
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
1081f3a5ff8864a31b2dcd89406fac076a908e78
refs/heads/master
2020-05-19T07:21:37.047958
2013-09-15T13:03:36
2013-09-15T13:03:36
9,648,444
0
1
null
null
null
null
UTF-8
Python
false
false
1,097
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (c) 2011 Zikzakmedia S.L. (http://zikzakmedia.com) All Rights Reserved. # Jesús Martín <[email protected]> # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import training_doc import wizard
12a717c45c8c69c635adf443185ebd07138871b6
aa39aa66215492d85c254116045e5516c40d4b80
/Brilliant/toy_lstm.py
f39f6268252c2b6b7ecd30b862929c8bbe6ff758
[]
no_license
JoaoAreias/Artificial-intelligence
f7a2260ceba9a6c0bbd7d9c5db4a347c2d3a965f
37c99d7cb094f7e084dd4a52fac2e54e02bf1473
refs/heads/master
2021-08-02T16:16:10.380044
2021-07-30T14:24:06
2021-07-30T14:24:06
152,242,702
1
0
null
null
null
null
UTF-8
Python
false
false
802
py
"""A toy LSTM to solve brilliant.org's challanges [INCOMPLETE] """ from scipy.special import expit import numpy as np class LSTM(object): def __init__(self): self.C = None self.h = None def _forget_gate(self): """Models the output of a forget gate""" ft = np.array([1, 0, 0.5]) return self.C*ft def _input_gate(self, X): """Models the output of an input gate""" Wi = None X = np.concatenate(self.h, X) b = None return expit(np.matmul(Wi, X) + b) def _tanh_gate(self, X): """Creates possible new additions to the cell state""" Wc = None X = np.concatenate(self.h, X) b = None return np.tanh(np.matmul(Wc, X) + b) def _update_cell_state(self, X): self.C = self._forget_gate() + self._input_gate(X)* self._tanh_gate(X)
066606616f939cd8455b4c5eaeb8039be54a8ed4
c4e872fc1cbfd78006cfd6826f57b7db3d94c622
/web/pack.py
458c0ab36b94e98bed1c68ccfe455611c09bcad6
[ "Apache-2.0" ]
permissive
rajeshpandit107/AccDNN
7049eb3e14193f59f03d61fbf7d3ed7fbfb8d22b
e250a0c020d0ba84f4c4ec098d58b5d1c5fb6d10
refs/heads/master
2023-03-29T22:56:08.042630
2021-04-09T14:58:28
2021-04-09T14:58:28
255,531,572
0
1
Apache-2.0
2020-04-14T06:45:03
2020-04-14T06:45:02
null
UTF-8
Python
false
false
910
py
#!/usr/bin/env python from settings import * def pack_layer_profile(layer_name, layer_type, cpf, kpf, macs, dsps, weights_num, delay, bandwidth, blks): return {'name':layer_name, 'type':layer_type, 'cpf':cpf, 'kpf':kpf, 'macs':macs, \ 'dsps':dsps, 'weights':weights_num, 'delay':delay, 'bandwidth':bandwidth, 'blks':blks} def pack_model_profile(layer_info, batch_size, total_macs, total_dsps, \ total_weights_num, total_blks, total_ddr_bandwidth, throughput, utilization): return {'layer_info':layer_info, 'batch_size':batch_size, 'total_macs':total_macs, \ 'total_dsps': total_dsps, 'total_weights_num':total_weights_num, 'total_blks':total_blks, 'total_ddr_bandwidth':total_ddr_bandwidth, 'throughput':throughput, 'utilization':utilization} def pack_optim_info(layer_name, cpf, kpf): return {'name':layer_name, 'cpf':cpf, 'kpf':kpf}
af26b2e4c69d706a2290188dd72518c77b79a727
8c6c5daf87e7335ea2450f117c8dbb20cd586b04
/blog/migrations/0003_auto_20190717_1433.py
2f5c89a127022a175d0a3dd638d17224df5fb4df
[]
no_license
lucifer0508/demoblog
62cef204ee6278371e215952a6d7a641bda43e05
f45b0fce32e6b8a999ab68da74fe3790eb6f8fba
refs/heads/master
2020-06-21T13:50:48.224315
2019-07-17T22:22:54
2019-07-17T22:22:54
197,471,529
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
# Generated by Django 2.2.3 on 2019-07-17 09:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_blogdata_email'), ] operations = [ migrations.AlterField( model_name='blogdata', name='email', field=models.CharField(default='Empty...', max_length=40), ), ]
550ed41dde0be83f539c8f99ae6123610cd360c3
c424cc8b499d61da10dba06cc582d271be481b5b
/bin/pscp
c6d17e566eba1c8dfd5752cbae05cfa0e8957c5f
[]
no_license
westfly/mssh
c908e7a369bcb4f8c48975e4ae92f9a8b341df98
4cece9eb08c5d03a238fd55754b12e1551514bd1
refs/heads/master
2021-01-10T02:16:42.130330
2015-12-27T10:37:32
2015-12-27T10:37:32
48,640,888
2
0
null
null
null
null
UTF-8
Python
false
false
2,905
#!/usr/bin/env python # -*- Mode: python -*- # Copyright (c) 2009, Andrew McNabb # Copyright (c) 2003-2008, Brent N. Chun """Parallel scp to the set of nodes in hosts.txt. For each node, we essentially do a scp [-r] local user@host:remote. This program also uses the -q (quiet) and -C (compression) options. Note that remote must be an absolute path. """ import os import re import sys parent, bindir = os.path.split(os.path.dirname(os.path.abspath(sys.argv[0]))) if os.path.exists(os.path.join(parent, 'psshlib')): sys.path.insert(0, parent) from psshlib import psshutil from psshlib.task import Task from psshlib.manager import Manager from psshlib.cli import common_parser, common_defaults def option_parser(): parser = common_parser() parser.usage = "%prog [OPTIONS] -h hosts.txt local remote" parser.epilog = ("Example: pscp -h hosts.txt -l irb2 foo.txt " + "/home/irb2/foo.txt") parser.add_option('-r', '--recursive', dest='recursive', action='store_true', help='recusively copy directories (OPTIONAL)') return parser def parse_args(): parser = option_parser() defaults = common_defaults() parser.set_defaults(**defaults) opts, args = parser.parse_args() if len(args) < 1: parser.error('Paths not specified.') if len(args) < 2: parser.error('Remote path not specified.') if not opts.host_files and not opts.host_entries: parser.error('Hosts not specified.') return opts, args def do_pscp(hosts, localargs, remote, opts): if opts.outdir and not os.path.exists(opts.outdir): os.makedirs(opts.outdir) if opts.errdir and not os.path.exists(opts.errdir): os.makedirs(opts.errdir) manager = Manager(opts) for host, port, user in hosts: cmd = [] if opts.common_password: cmd += ['sshpass', '-p', opts.common_password] cmd += ['scp', '-qC'] if opts.options: cmd += ['-o', opts.options] if port: cmd += ['-P', port] if opts.recursive: cmd.append('-r') if opts.extra: cmd.extend(opts.extra) cmd.extend(localargs) if user: cmd.append('%s@%s:%s' % (user, host, remote)) else: cmd.append('%s:%s' % (host, remote)) t = Task(host, port, user, cmd, opts) manager.add_task(t) manager.run() if __name__ == "__main__": opts, args = parse_args() localargs = args[0:-1] remote = args[-1] if not re.match("^/", remote): print("Remote path %s must be an absolute path" % remote) sys.exit(3) hosts = psshutil.read_hosts(opts.host_files, default_user=opts.user) if opts.host_entries: for entry in opts.host_entries: hosts.append(psshutil.parse_host(entry, default_user=opts.user)) do_pscp(hosts, localargs, remote, opts)