blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
f4e6efba2acb098ba59cc3d1248893b426802823
1ae1bc24fa902e1c293af85eac37e777e4805eb9
/server/tests/test_get_secret.py
b6d50871b1e24317e0854e960c6b8b9a10402a2d
[ "MIT" ]
permissive
Excloudx6/simple-one-time-secret
1745abde5c694707f6136483b5773cc04554e999
c61c242ce41a7ef0c74e915b312e94d4ee37158c
refs/heads/main
2023-08-03T07:45:14.826847
2021-09-15T17:33:35
2021-09-15T17:33:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
868
py
from datetime import datetime from uuid import UUID from fastapi import Response from server.endpoints import get_secret def test__get_secret__valid_data__secret_returned(): response = Response() ret = get_secret(UUID("11111111-1111-4111-a111-111111111111"), response) assert ret["_id"] == "11111111-1111-4111-a111-111111111111" assert isinstance(ret["expiration"], datetime) assert ret["secret"] == "some_encrypted_secret" def test__get_secret__expired_secret__404(): response = Response() ret: Response = get_secret(UUID("22222222-2222-4222-a222-222222222222"), response) assert ret == {"message": "Not Found"} def test__get_secret__non_existent_secret__404(): response = Response() ret: Response = get_secret(UUID("33333333-3333-4333-a333-333333333333"), response) assert ret == {"message": "Not Found"}
f5dda19da49217fca423a9a350dac6e89131454f
b21571488740a3fb54e4779d6e73c5acff80749c
/analysis/karp_rabin.py
ec57877972c5e3eedd84050c25cf357d253d372b
[]
no_license
nnkennard/review-discourse
428b1c68cd716c8530c5713db864fdb1f8a99e29
a7e8012cbd3a229b21cfcbfee55962b2ab140fca
refs/heads/master
2022-12-12T14:40:16.197293
2021-05-24T16:28:00
2021-05-24T16:28:00
236,221,931
0
0
null
2022-12-08T10:55:54
2020-01-25T19:55:34
Python
UTF-8
Python
false
false
3,557
py
import json import math import sys import openreview_lib as orl from tqdm import tqdm WINDOW = 7 Q = 2124749677 # Is this too big for Python int def myhash(tokens): tok_str = "".join(tokens) hash_acc = 0 for i, ch in enumerate(reversed(tok_str)): hash_acc += math.pow(2, i) * ord(ch) return hash_acc % Q def get_hashes(tokens): return {i:myhash(tokens[i:i+WINDOW]) for i in range(len(tokens) - WINDOW)} def karp_rabin(tokens_1, tokens_2): hashes_1 = get_hashes(tokens_1) hashes_2 = get_hashes(tokens_2) results = [] for k1, v1 in hashes_1.items(): for k2, v2 in hashes_2.items(): if v1 == v2: results.append((k1, k2)) return sorted(results) def find_parent(child_node, forum_map): for forum_head, forum in forum_map.items(): if child_node in forum.keys(): return forum_head, forum[child_node] return None def get_examples_from_nodes_and_map(nodes, forum_map): chunk_map = {} pairs = [] for node in nodes: top_node = node["included_nodes"][0] ancestor_id, parent_id = find_parent(top_node, forum_map) for maybe_parent in nodes: if parent_id in maybe_parent["included_nodes"]: chunk_map[parent_id] = chunk_tokens(maybe_parent["tokens"]) chunk_map[top_node] = chunk_tokens(node["tokens"]) pairs.append((ancestor_id, top_node, parent_id,)) break return pairs, chunk_map def chunk_tokens(tokens): chunks = [] current_chunk = [] for token in tokens: if token == "__NEWLINE": if current_chunk: chunks.append(current_chunk) current_chunk = [] else: current_chunk.append(token) return chunks def get_lcs(chunk1, chunk2, start_indices): current_lcs = [] for start1, start2 in start_indices: j = 0 while start1 + j < len(chunk1) and start2 + j < len(chunk2): if chunk1[start1:start1+j] == chunk2[start2:start2+j]: j += 1 elif j-1 > len(current_lcs): current_lcs = chunk2[start2:start2+j-1] return current_lcs class CommentPair(object): def __init__(self, ancestor, child_node, parent_node, chunk_map): child_chunks = chunk_map[child_node] parent_chunks = chunk_map[parent_node] child_chunks_mapped = {i:None for i in range(len(child_chunks))} parent_chunks_mapped = {i:None for i in range(len(parent_chunks))} lcs_map ={} for i, child_chunk in enumerate(child_chunks): for j, parent_chunk in enumerate(parent_chunks): x = karp_rabin(child_chunk, parent_chunk) if x: child_chunks_mapped[i], parent_chunks_mapped[j] = j, i lcs_map[(i,j)] = child_chunk[x[0][0]:x[0][0]+WINDOW] assert len(parent_chunks) == len(parent_chunks_mapped) assert len(child_chunks) == len(child_chunks_mapped) self.data = { "child": child_node, "parent": parent_node, "ancestor": ancestor, "child_chunks": child_chunks_mapped, "parent_chunks": parent_chunks_mapped, "lcs" : list(lcs_map.values()) } def main(): forum_info_file, input_file = sys.argv[1:] with open(input_file, 'r') as f: nodes = json.loads(f.read())["nodes"] dataset = orl.get_datasets(forum_info_file, debug=False)["train"] pairs, chunk_map = get_examples_from_nodes_and_map(nodes, dataset.forum_map) matches = [] for ancestor, x, y in tqdm(pairs): cp = CommentPair(ancestor, x, y, chunk_map) matches.append(cp.data) with open('kr_ouptut.json', 'w') as f: f.write(json.dumps(matches)) if __name__ == "__main__": main()
ad754b71e5640b1150ff4d3331cbc5ee7159f940
423b80913a2d7109336cd60ccf6d50947883447d
/euler2.py
54bb3979f789375378f2dcdc551c57a0f3262a27
[]
no_license
kaborso/Project-Euler
3545eef46ce50fb0db2cbd65a1552bbf1ee503ae
292f8c2d616eb0e14d6c0e2b9279708299e5f43c
refs/heads/master
2016-09-16T14:08:39.576198
2011-06-20T22:05:03
2011-06-20T22:05:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
import sys def sumfib(n): sum = 0 a, b = 0, 1 while a < n: if (b % 2 == 0): sum += b a, b = b, a + b return sum input = long(sys.argv[1]) print sumfib(input)
f8bfb04de2d5971b0475709c0e401cf21b704a3a
e531a27eaad5a6bde184a84205a9da06b4e8e12a
/text/korean.py
fb639e5c55050a925743162b8a7c902387017967
[ "MIT" ]
permissive
zldzmfoq12/voice-synthesizer
5751693cc35ca457eb29e0fe719a2832b861a127
2c347de9d64fa42035b21c317112f6b625aa0c25
refs/heads/master
2022-12-13T00:01:22.360153
2021-04-28T12:14:50
2021-04-28T12:14:50
200,749,138
8
1
NOASSERTION
2022-12-08T00:48:02
2019-08-06T00:45:36
Python
UTF-8
Python
false
false
8,631
py
# Code based on import re import os import ast import json from jamo import hangul_to_jamo, h2j, j2h from .ko_dictionary import english_dictionary, etc_dictionary PAD = '_' EOS = '~' PUNC = '!\'(),-.:;?' SPACE = ' ' JAMO_LEADS = "".join([chr(_) for _ in range(0x1100, 0x1113)]) JAMO_VOWELS = "".join([chr(_) for _ in range(0x1161, 0x1176)]) JAMO_TAILS = "".join([chr(_) for _ in range(0x11A8, 0x11C3)]) VALID_CHARS = JAMO_LEADS + JAMO_VOWELS + JAMO_TAILS + PUNC + SPACE ALL_SYMBOLS = PAD + EOS + VALID_CHARS char_to_id = {c: i for i, c in enumerate(ALL_SYMBOLS)} id_to_char = {i: c for i, c in enumerate(ALL_SYMBOLS)} quote_checker = """([`"'"“‘])(.+?)([`"'"”’])""" def is_lead(char): return char in JAMO_LEADS def is_vowel(char): return char in JAMO_VOWELS def is_tail(char): return char in JAMO_TAILS def get_mode(char): if is_lead(char): return 0 elif is_vowel(char): return 1 elif is_tail(char): return 2 else: return -1 def _get_text_from_candidates(candidates): if len(candidates) == 0: return "" elif len(candidates) == 1: return _jamo_char_to_hcj(candidates[0]) else: return j2h(**dict(zip(["lead", "vowel", "tail"], candidates))) def jamo_to_korean(text): text = h2j(text) idx = 0 new_text = "" candidates = [] while True: if idx >= len(text): new_text += _get_text_from_candidates(candidates) break char = text[idx] mode = get_mode(char) if mode == 0: new_text += _get_text_from_candidates(candidates) candidates = [char] elif mode == -1: new_text += _get_text_from_candidates(candidates) new_text += char candidates = [] else: candidates.append(char) idx += 1 return new_text num_to_kor = { '0': '영', '1': '일', '2': '이', '3': '삼', '4': '사', '5': '오', '6': '육', '7': '칠', '8': '팔', '9': '구', } unit_to_kor1 = { '%': '퍼센트', 'cm': '센치미터', 'mm': '밀리미터', 'km': '킬로미터', 'kg': '킬로그람', } unit_to_kor2 = { 'm': '미터', } upper_to_kor = { 'A': '에이', 'B': '비', 'C': '씨', 'D': '디', 'E': '이', 'F': '에프', 'G': '지', 'H': '에이치', 'I': '아이', 'J': '제이', 'K': '케이', 'L': '엘', 'M': '엠', 'N': '엔', 'O': '오', 'P': '피', 'Q': '큐', 'R': '알', 'S': '에스', 'T': '티', 'U': '유', 'V': '브이', 'W': '더블유', 'X': '엑스', 'Y': '와이', 'Z': '지', } def compare_sentence_with_jamo(text1, text2): return h2j(text1) != h2j(text) def tokenize(text, as_id=False): text = normalize(text) tokens = list(hangul_to_jamo(text)) if as_id: return [char_to_id[token] for token in tokens] + [char_to_id[EOS]] else: return [token for token in tokens] + [EOS] def tokenizer_fn(iterator): return (token for x in iterator for token in tokenize(x, as_id=False)) def normalize(text): text = text.strip() text = re.sub('\(\d+일\)', '', text) text = re.sub('\([⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+\)', '', text) text = normalize_with_dictionary(text, etc_dictionary) text = normalize_english(text) text = re.sub('[a-zA-Z]+', normalize_upper, text) text = normalize_quote(text) text = normalize_number(text) return text def normalize_with_dictionary(text, dic): if any(key in text for key in dic.keys()): pattern = re.compile('|'.join(re.escape(key) for key in dic.keys())) return pattern.sub(lambda x: dic[x.group()], text) else: return text def normalize_english(text): def fn(m): word = m.group() if word in english_dictionary: return english_dictionary.get(word) else: return word text = re.sub("([A-Za-z]+)", fn, text) return text def normalize_upper(text): text = text.group(0) if all([char.isupper() for char in text]): return "".join(upper_to_kor[char] for char in text) else: return text def normalize_quote(text): def fn(found_text): from nltk import sent_tokenize # NLTK doesn't along with multiprocessing found_text = found_text.group() unquoted_text = found_text[1:-1] sentences = sent_tokenize(unquoted_text) return " ".join(["'{}'".format(sent) for sent in sentences]) return re.sub(quote_checker, fn, text) number_checker = "([+-]?\d[\d,]*)[\.]?\d*" count_checker = "(시|명|가지|살|마리|포기|송이|수|톨|통|점|개|벌|척|채|다발|그루|자루|줄|켤레|그릇|잔|마디|상자|사람|곡|병|판)" def normalize_number(text): text = normalize_with_dictionary(text, unit_to_kor1) text = normalize_with_dictionary(text, unit_to_kor2) text = re.sub(number_checker + count_checker, lambda x: number_to_korean(x, True), text) text = re.sub(number_checker, lambda x: number_to_korean(x, False), text) return text num_to_kor1 = [""] + list("일이삼사오육칠팔구") num_to_kor2 = [""] + list("만억조경해") num_to_kor3 = [""] + list("십백천") #count_to_kor1 = [""] + ["하나","둘","셋","넷","다섯","여섯","일곱","여덟","아홉"] count_to_kor1 = [""] + ["한","두","세","네","다섯","여섯","일곱","여덟","아홉"] count_tenth_dict = { "십": "열", "두십": "스물", "세십": "서른", "네십": "마흔", "다섯십": "쉰", "여섯십": "예순", "일곱십": "일흔", "여덟십": "여든", "아홉십": "아흔", } def number_to_korean(num_str, is_count=False): if is_count: num_str, unit_str = num_str.group(1), num_str.group(2) else: num_str, unit_str = num_str.group(), "" num_str = num_str.replace(',', '') num = ast.literal_eval(num_str) if num == 0: return "영" check_float = num_str.split('.') if len(check_float) == 2: digit_str, float_str = check_float elif len(check_float) >= 3: raise Exception(" [!] Wrong number format") else: digit_str, float_str = check_float[0], None if is_count and float_str is not None: raise Exception(" [!] `is_count` and float number does not fit each other") digit = int(digit_str) if digit_str.startswith("-"): digit, digit_str = abs(digit), str(abs(digit)) kor = "" size = len(str(digit)) tmp = [] for i, v in enumerate(digit_str, start=1): v = int(v) if v != 0: if is_count: tmp += count_to_kor1[v] else: tmp += num_to_kor1[v] tmp += num_to_kor3[(size - i) % 4] if (size - i) % 4 == 0 and len(tmp) != 0: kor += "".join(tmp) tmp = [] kor += num_to_kor2[int((size - i) / 4)] if is_count: if kor.startswith("한") and len(kor) > 1: kor = kor[1:] if any(word in kor for word in count_tenth_dict): kor = re.sub( '|'.join(count_tenth_dict.keys()), lambda x: count_tenth_dict[x.group()], kor) if not is_count and kor.startswith("일") and len(kor) > 1: kor = kor[1:] if float_str is not None: kor += "쩜 " kor += re.sub('\d', lambda x: num_to_kor[x.group()], float_str) if num_str.startswith("+"): kor = "플러스 " + kor elif num_str.startswith("-"): kor = "마이너스 " + kor return kor + unit_str if __name__ == "__main__": def test_normalize(text): print(text) print(normalize(text)) print("="*30) test_normalize("JTBC는 JTBCs를 DY는 A가 Absolute") test_normalize("오늘(13일) 101마리 강아지가") test_normalize('"저돌"(猪突) 입니다.') test_normalize('비대위원장이 지난 1월 이런 말을 했습니다. “난 그냥 산돼지처럼 돌파하는 스타일이다”') test_normalize("지금은 -12.35%였고 종류는 5가지와 19가지, 그리고 55가지였다") test_normalize("JTBC는 TH와 K 양이 2017년 9월 12일 오후 12시에 24살이 된다")
7accaa8ad9e3c45b158dd9537e55e683338dea29
70e1159856750f04e58c0ffc3f54d094a4602c07
/booktest/views.py
84958fd19d5631e83ebfd2b20bac16190adc186f
[]
no_license
wxp19940506/django_test
032e78a4eb45eb0c54dbafd43dfd0e463d455bb5
c586cb62d1bb1a21f3430155b3d82ab7b2a65da6
refs/heads/master
2021-05-10T11:52:54.186422
2018-01-22T07:55:11
2018-01-22T07:55:11
118,424,555
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
from django.shortcuts import render from django.http import * from django.template import RequestContext,loader from .models import * # Create your views here. def index(request): # temp = loader.get_template("booktest/index.html") # # return HttpResponse(temp.render()) booklist = BookInfo.objects.all() context = {'lists':booklist} return render(request,'booktest/index.html',context) def show(request,id): book = BookInfo.objects.get(pk=id) herolist = book.heroinfo_set.all() context = {'list':herolist} return render(request,'booktest/show.html',context)
98a0e20e32aeea3d66d4be4ae64280c5eb0c2367
4963ee575127f4f966db61fbb6900db54538ee07
/shuttle/migrations/0008_shuttle_route.py
b4ac83cb9d1359ae0e443b22802dfeec7397d945
[]
no_license
spahan/shuttle
f85dcb954cfe3c90032c32ef1d2d554139a1120e
6b7e5619410e8d4af41807450028f389dda560d9
refs/heads/master
2020-08-04T07:19:28.539156
2019-10-02T14:18:20
2019-10-02T14:18:20
212,053,934
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# Generated by Django 2.2.5 on 2019-09-29 18:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shuttle', '0007_auto_20190929_2034'), ] operations = [ migrations.AddField( model_name='shuttle', name='route', field=models.URLField(blank=True, null=True), ), ]
1f4e873eab2fcd41f293bcb80c7e8ae1e5eb4377
0019ea5621577ab9a9a694e3ef91d913e981a28e
/missing_data_complementor/__init__.py
47ea50802fb334e4e0fffda9b4c61d9c2aa1527b
[]
no_license
sungc1/fake-news-framework_Py3
676710b3bf7b8feb4c237ffed7d1d280f4967890
e3552b5bc2a30dbd52ad893ce8dd29aa2242f864
refs/heads/main
2023-01-19T23:42:13.294446
2020-12-01T18:38:31
2020-12-01T18:38:31
428,178,049
1
0
null
2021-11-15T08:18:23
2021-11-15T08:18:23
null
UTF-8
Python
false
false
47
py
# # Created by Aviad on 03-Jun-16 11:40 AM. #
ae27520913674390e809620c54463d13c4e88d63
8afb5afd38548c631f6f9536846039ef6cb297b9
/GIT-USERS/TOM-Lambda/CS35_IntroPython_GP/day3/intro/11_args.py
2ec2eca832f454921138650bfb137e422a0c4711
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
2,852
py
# Experiment with positional arguments, arbitrary arguments, and keyword # arguments. # Write a function f1 that takes two integer positional arguments and returns # the sum. This is what you'd consider to be a regular, normal function. <<<<<<< HEAD def f1(a, b): return a + b ======= def f1(a, b): return a + b >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea print(f1(1, 2)) # Write a function f2 that takes any number of integer arguments and prints the # sum. Google for "python arbitrary arguments" and look for "*args" <<<<<<< HEAD def f2(*args): sum = 0 for i in args: sum += i return sum print(f2(1)) # Should print 1 print(f2(1, 3)) # Should print 4 print(f2(1, 4, -12)) # Should print -7 ======= def f2(*args): sum = 0 for i in args: sum += i return sum print(f2(1)) # Should print 1 print(f2(1, 3)) # Should print 4 print(f2(1, 4, -12)) # Should print -7 >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea print(f2(7, 9, 1, 3, 4, 9, 0)) # Should print 33 a = [7, 6, 5, 4] # What thing do you have to add to make this work? <<<<<<< HEAD print(f2(*a)) # Should print 22 ======= print(f2(*a)) # Should print 22 >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea # Write a function f3 that accepts either one or two arguments. If one argument, # it returns that value plus 1. If two arguments, it returns the sum of the # arguments. Google "python default arguments" for a hint. <<<<<<< HEAD def f3(a, b=1): return a + b print(f3(1, 2)) # Should print 3 print(f3(8)) # Should print 9 ======= def f3(a, b=1): return a + b print(f3(1, 2)) # Should print 3 print(f3(8)) # Should print 9 >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea # Write a function f4 that accepts an arbitrary number of keyword arguments and # prints out the keys and values like so: # # key: foo, value: bar # key: baz, value: 12 # # Google "python keyword arguments". <<<<<<< HEAD def f4(**kwargs): for k, v in kwargs.items(): print(f'key: {k}, value: {v}') # Alternate: # for k in kwargs: # print(f'key: {k}, value: {kwargs[k]}') ======= def f4(**kwargs): for k, v in kwargs.items(): print(f"key: {k}, value: {v}") # Alternate: # for k in kwargs: # print(f'key: {k}, value: {kwargs[k]}') >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea # Should print # key: a, value: 12 # key: b, value: 30 f4(a=12, b=30) # Should print # key: city, value: Berkeley # key: population, value: 121240 # key: founded, value: "March 23, 1868" f4(city="Berkeley", population=121240, founded="March 23, 1868") <<<<<<< HEAD d = { "monster": "goblin", "hp": 3 } ======= d = {"monster": "goblin", "hp": 3} >>>>>>> 23fb4d348bb9c7b7b370cb2afcd785793e3816ea # What thing do you have to add to make this work? f4(**d)
3c6dc99ca36a539efb2e696f6b57cbd205a83f8b
ae7ba9c83692cfcb39e95483d84610715930fe9e
/baidu/Paddle/paddle/trainer/tests/config_parser_test.py
5ca874cec7914a20f79c2c7b1873c5bd04f60dca
[ "Apache-2.0" ]
permissive
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
1,002
py
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer.config_parser import parse_config_and_serialize if __name__ == '__main__': parse_config_and_serialize('trainer/tests/test_config.conf', '') parse_config_and_serialize( 'trainer/tests/sample_trainer_config.conf', 'extension_module_name=paddle.trainer.config_parser_extension') parse_config_and_serialize('gserver/tests/pyDataProvider/trainer.conf', '')
ff91934bcf4db590a09adef32a78ed3f8b3aab2e
12a653d0add7e975419c3aa05966f593d31b99c4
/syplaylist_downloader.py
e537a7faf2272acc73ee0b925a1f844f141d6ea3
[]
no_license
avinashpai94/playlist_downloader
dd9438a8a5313a9bbb6b24d7ad71cb478e447d57
90f42edff6f113e971710481d4d73fb7fea8b352
refs/heads/master
2023-02-25T05:58:15.993194
2021-02-12T20:32:45
2021-02-12T20:32:45
297,176,946
0
0
null
null
null
null
UTF-8
Python
false
false
2,092
py
from __future__ import unicode_literals import getopt import re import sys import urllib from urllib.parse import urlparse import requests import youtube_dl from bs4 import BeautifulSoup ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '256', }], } def youtube_download(video_link): with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([video_link]) def youtube_playlist_downloader(url): html = urllib.request.urlopen(url) video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode()) for video_id in video_ids: link = "https://www.youtube.com/watch?v=" + video_id youtube_download(link) def spotify_playlist_downloader(url): playlist_url = url page = requests.get(playlist_url) soup = BeautifulSoup(page.content, 'html.parser') track_selection = 'track-name' artist_selection = 'artists-albums' tracks = soup.find_all("span", class_=track_selection) artists = soup.find_all("span", class_=artist_selection) contents = [] for track, artist in zip(tracks, artists): contents.append([track.text, artist.text]) for line in contents: track, artist = line video_search = re.sub(r"\s+", " ", track) search_url = ('https://www.youtube.com/results?search_query={}&page=&utm_source=opensearch'.format( video_search.replace(' ', '+'))) html = urllib.request.urlopen(search_url) video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode()) link = "https://www.youtube.com/watch?v=" + video_ids[0] youtube_download(link) def main(): try: url = sys.argv[1] except getopt.GetoptError: print("Run as 'python playlist_downloader.py <playlist_url>") sys.exit() parsed_uri = urlparse(url) if parsed_uri.netloc == "www.youtube.com": youtube_playlist_downloader(url) else: spotify_playlist_downloader(url) if __name__ == '__main__': main()
7d8115df6fa61bc6f721bc8db8bd47858dc75982
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/primu.py
74ed5f7f4b48b1b61044808885c34bd9dce48229
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
255
py
ii = [('WilbRLW.py', 1), ('WilkJMC3.py', 3), ('ClarGE2.py', 2), ('GellWPT2.py', 1), ('WilkJMC2.py', 1), ('LyelCPG.py', 1), ('SoutRD.py', 3), ('WilkJMC.py', 3), ('WestJIT.py', 1), ('FitzRNS.py', 1), ('DibdTRL.py', 1), ('EvarJSP.py', 1), ('SadlMLP2.py', 1)]
29a3f1ee6f24d5c055b6e71d19a8a65a470c9846
31999cc128d2ee577d349e6d1f1f0306aeab4298
/script/01test_01.py
67db4101ad1adbfdc4e4fa3e2e487528b27fe34e
[]
no_license
jimozonguo/P_Jenkins20210111
10c38cf6053e959dfa33162751fb36fe42d88d7e
8a72079e63ac473e98075667bfcd82d916ed68b4
refs/heads/master
2023-04-08T20:07:54.034449
2021-04-01T08:50:13
2021-04-01T08:50:13
353,633,714
0
0
null
null
null
null
UTF-8
Python
false
false
491
py
#案例:研究pytest框架中的setup_class、teardown_class! #1.某测试类中只允许一份! #2.不管测试类中有个N个测试函数,这两个函数都只会运行一次! #3.setup_class/普通测试函数/teardown_class的执行顺序! class TestLogin: def setup_class(self): print("setup_class") def teardown_class(self): print("teardown_class") def test_01(self): print("test01") def test_02(self): print("test02")
774fb2e2fbb6aeaf5a787bf6a574383945b0fea9
4407d9ce4604d6a5cbbf5cd502146d24ea7c52c2
/New folder/task1.py
d99e6a976c4bf596d876dabf98072cb55663ae0b
[]
no_license
mstalokdwivedi/task1
b371c536b0761262a0e7d8ca46265afdf47f57f6
82cb08806ffbaf6d5cf35f1a66a32a3ad0575fd9
refs/heads/main
2023-02-24T20:35:37.315642
2021-01-21T16:30:10
2021-01-21T16:30:10
327,593,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import seaborn as sns url= 'https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv' s_data = pd.read_csv(url) s_data.head(10) s_data.shape s_data.info() print("\nMissing values :",s_data.isnull().sum().values.sum()) s_data.describe() s_data.info() s_data.plot(kind='scatter',x='Hours',y='Scores'); plt.show() s_data.corr(method='pearson') s_data.corr(method='spearman') hours=s_data['Hours'] Scores=s_data['Scores'] sns.distplot(hours) sns.distplot(Scores) x=s_data.iloc[:, :-1].values y=s_data.iloc[:, 1].values from sklearn.model_selection import train_test_split x_train, x_test, y_train ,y_test = train_test_split(x,y,test_size=0.2,random_state=50) from sklearn.linear_model import LinearRegression reg=LinearRegression() reg.fit(x_train,y_train) m=reg.coef_ c=reg.intercept_ line=m*x+c plt.scatter(x, y) plt.plot(x, line); plt.show() y_pred=reg.predict(x_test) actual_predicted=pd.DataFrame({'Target':y_test,'Predicted':y_pred}) actual_predicted sns.set_style('whitegrid') sns.distplot(np.array(y_test-y_pred)) plt.show() hours=np.array(9.25) hours=hours.reshape(-1,1) pred=reg.predict(hours) print("no of hours={}",format(hours)) print("No of Hours={}",format(hours)) print("predicted score ={}",format(pred[0])) from sklearn import metrics print("mean absolute error:",metrics.mean_absolute_error(y_test,y_pred)) print('adjusted R square:',metrics.r2_score(y_test,y_pred))
58c7561bb30c4afd5ffb7dd7f6899788528703c2
8f5240f3d27778632aa340fa535e4c8ce48cd756
/example.py
ada4fc221ea66f2f81b0d679ffc02b82863d0a11
[]
no_license
jy00295005/ML
590ac15f9556141269238186289c56b48f80db7b
210c9ed77d634803e0503cdcbc3c5af10913e579
refs/heads/master
2020-05-18T11:05:25.256160
2014-10-31T08:23:05
2014-10-31T08:23:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,826
py
#!/usr/bin/env python # Copyright 2013 AlchemyAPI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from alchemyapi import AlchemyAPI import json demo_text = 'Yesterday dumb Bob destroyed my fancy iPhone in beautiful Denver, Colorado. I guess I will have to head over to the Apple Store and buy a new one.' # Create the AlchemyAPI Object alchemyapi = AlchemyAPI() print('') print('') print('') print('############################################') print('# Keyword Extraction Example #') print('############################################') print('') print('') print('Processing text: ', demo_text) print('') response = alchemyapi.keywords('text', demo_text, {'sentiment': 1}) if response['status'] == 'OK': print('## Response Object ##') # print(json.dumps(response, indent=4)) print('') print('## Keywords ##') for keyword in response['keywords']: print('text: ', keyword['text'].encode('utf-8')) print('relevance: ', keyword['relevance']) print('sentiment: ', keyword['sentiment']['type']) if 'score' in keyword['sentiment']: print('sentiment score: ' + keyword['sentiment']['score']) print('') else: print('Error in keyword extaction call: ', response['statusInfo'])
9d62bfba10a1058c0896956b027b84b51b6a9859
0e11f5c196d0536778c466066e0992f844d575c3
/apps/cate/views.py
380bed3e49642d96e879205492334cc39f54ef80
[]
no_license
tonnychina/sjdpro
ab06d51ca2a4286b2df1b3d98d4131b57b2ed212
739ec23e1d39548b896277c88d7e4d9f460557e5
refs/heads/master
2020-05-21T05:54:49.272264
2019-03-16T02:23:20
2019-03-16T02:23:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
from django.shortcuts import render from rest_framework import viewsets from rest_framework import mixins from rest_framework.response import Response from rest_framework import status from .models import * from .serializers import * # Create your views here. class CateViewsets(viewsets.GenericViewSet,mixins.ListModelMixin,mixins.RetrieveModelMixin): """ list: 栏目分类 retrieve: 获取单个Id下的所有下级分类 """ queryset = Cates.objects.all() serializer_class = CatesSerializers class CateCaseViewsets(viewsets.GenericViewSet,mixins.RetrieveModelMixin): """ retrieve: 获取单个Id下的所有案例 """ queryset = Cates.objects.all() serializer_class = CateCaseSerializers
e4eeae8029b83e01c7c094792e3fa684b7ee6199
e8e9eb353965e9c4e5a215e3c0dd4361c6f3b83f
/Python/movie-crud/curd/settings.py
3b4cb69e27ce285175200c1854ed9a68b1f2ebc6
[]
no_license
Jin-Woong/TIL
74135c937b7daf3f06af0297601d9596ca90ea8e
a3db43a996458818a8efd1610e62e839c4672d8f
refs/heads/master
2022-04-27T16:15:08.167151
2020-01-20T00:15:17
2020-01-20T00:15:17
188,746,786
0
0
null
2022-04-22T21:32:05
2019-05-27T00:45:14
Python
UTF-8
Python
false
false
3,135
py
""" Django settings for curd project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'n3o72rk@v-8)c%frnzjdvv-61+ivrk%6(=mo!he=7u1a*(sl(@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ # Local app 'movies', # django apps 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'curd.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'curd.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
812652e5617f9a47aa6e3f5493cd2f65111596b4
c3351062731885d604a39856b2f933144cac70bc
/tools/Sikuli/OpenDialogClickFolderSelect.sikuli/OpenDialogClickFolderSelect.py
2786d858099aaf9188c804348c69087d2b935727
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-3-Clause" ]
permissive
Pr-Mex/vanessa-automation
4efb7924242b70d86f1ef34b48de638602a6d8f3
e9fcb486384a3c96db8ee7218294550c78bf096c
refs/heads/develop
2023-09-04T00:48:40.953195
2023-08-30T19:28:16
2023-08-30T19:28:16
133,170,708
395
356
BSD-3-Clause
2023-09-11T17:17:02
2018-05-12T17:55:53
1C Enterprise
UTF-8
Python
false
false
31
py
click("Bb60pnanxm.png") exit(0)
ad49890521b48fb274e7238b8242e87c6d3fac1b
36a7958d7df92be80a35806bf18f5345b0dd5c2b
/pre.py
23166158b596c4da9175976fa6187ac88d9b6b3e
[]
no_license
natsumeshow/fujitsu_hackathon_2021
eb9e06be9e6585f51eb73300f1ef6cc0a8b14334
412b79c87547371a9654b6049a3db08c2b3984ec
refs/heads/main
2023-02-27T15:47:22.553212
2021-02-06T15:58:16
2021-02-06T15:58:16
333,308,211
0
1
null
2021-02-04T02:24:12
2021-01-27T04:56:58
CSS
UTF-8
Python
false
false
1,419
py
import cv2 from pathlib import Path import numpy as np from dammy import model def path2id(videoPath): videoInfo = videoPath.name.split('.') if len(videoInfo)<1: return False, False elif not videoInfo[1] in ['mp4']: return False, False else: return True, videoInfo[0] def make_landmark(videoPath, landmarkPath): cap = cv2.VideoCapture(videoPath) # fps = cap.get(cv2.CAP_PROP_FPS) # frames = [] ret, frame = cap.read() lms = [] while ret: # frames.append(frame) ret, frame = cap.read() lm = np.zeros([18,2]) y = model(frame, 0, (True,True), 4) for key in y: lm[key,:] = y[key] lms.append(lm) print(np.array(lms).shape) # print(len(frames)) # print(frames[0].shape) np.save(landmarkPath, np.array(lms)) dataDir = Path('data') landmarkDir = Path('landmark') try: dataDir.mkdir() except: None try: landmarkDir.mkdir() except: None for videoPath in dataDir.iterdir(): isVideo, videoId = path2id(videoPath) if not isVideo: print('{} is not video ?'.format(videoPath)) continue landmarkPath = landmarkDir / (videoId + '.npy') if not landmarkPath.is_file(): make_landmark(str(videoPath), str(landmarkPath)) print('landmark -> {}'.format(landmarkPath)) else: print('{} is already made'.format(landmarkPath))
0b2d61e829acf57861e9f91e5531cbffee674fd6
ba8295dc0d69dc3a70b38141a939f007c8238864
/python-practice-problems/integersums.py
c3778faae25e821d2780a4ae74f7dd32a2ab0dbe
[ "MIT" ]
permissive
michael-huber2772/realpython-material
c830954acd813cc2cd15e16516e9ffbf9032b83a
29b2cc21dcb328e679f3e0ddb8a92a658842181d
refs/heads/main
2023-05-13T23:48:24.026074
2021-06-09T04:39:29
2021-06-09T04:39:29
375,227,494
1
1
null
null
null
null
UTF-8
Python
false
false
866
py
#!/usr/bin/env python3 """ Sum of Integers Up To n Write a function, add_it_up, which returns the sum of the integers from 0 to the single integer input parameter. The function should return 0 if a non-integer is passed in. """ import unittest def add_it_up(n): try: result = sum(range(n + 1)) except TypeError: result = 0 return result class IntegerSumTestCase(unittest.TestCase): def test_to_ten(self): results = [0, 1, 3, 6, 10, 15, 21, 28, 36, 45] for n in range(10): self.assertEqual(add_it_up(n), results[n]) def test_string(self): self.assertEqual(add_it_up("testing"), 0) def test_float(self): self.assertEqual(add_it_up(0.124), 0) def test_negative(self): self.assertEqual(add_it_up(-19), 0) if __name__ == "__main__": unittest.main()
8aa6022860474550f15b53fd56bd38684e14aaea
1e59f50e3abab92ba9ed8156a62aec2731248e78
/photos/views.py
2d98a9191c03e70b4d1e4935b4a31a8bad680d18
[ "MIT" ]
permissive
kiptoo-rotich/Gallery
56290325aa0747e0ef9b4e6efe99ced9d961bd28
1124701ce3b24bdd9848f3a8e8196fb8188bfee7
refs/heads/master
2023-06-16T20:15:41.343778
2021-07-05T14:05:57
2021-07-05T14:05:57
382,277,852
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
from django.shortcuts import render from .models import Image,User,Category,Location import datetime as dt from django.http import Http404 def photos(request): photos=Image.objects.all() date=dt.date.today() users=User.objects.all() category=Category.objects.all() location=Location.objects.all() return render(request,'main/photos.html',{'photos':photos,'date':date,'category':category,'location':location}) def search(request): if 'Photo' in request.GET and request.GET['Photo']: search_term=request.GET.get('Photo') searched_photo=Category.search(search_term) message=f"{search_term}" return render(request,'main/search.html',{"message":message,"photos":searched_photo}) else: message="You haven't searched for any term" return render(request,"main/search.html",{"message":message}) def single_photo(request,photo_id): try: photo=Image.objects.get(id=photo_id) image_description=Image.objects.get(id=photo_id) except DoesNotExist: raise Http404() return render(request,'main/photo.html',{'photo':photo,"image_decription":image_description})
a75a10fc3aaed639fdc8957c9020250fded2d7a3
44edd98c9d69e79378bd2b25b1d7c7f6fa95b87f
/new.py
76023d073af4cfcc8a1a6f316049a2ed3cf6b70d
[]
no_license
UvinduIndumewan/git-test
f2d4b53269e3626948835e5381e80250a1c463cf
199bae4f6c9b4888a5d810681e14120a8d8fc91a
refs/heads/master
2022-11-07T17:09:44.805801
2020-06-13T12:09:48
2020-06-13T12:09:48
271,993,625
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
"""hello world""" """This is a test subject""" """This is test"""
9aaf6ea0955df89b95dda0aeccfac6b4787de1fc
5396712984717c2f8b6f1ac90cbe8d8f92a1e88d
/WebProject/route/redis.py
65ae89ebbd291b1e83c232a6afc0ec5644d2cf52
[]
no_license
xzhsy/flaskcm
ead7f4b5ea636bfb31b95f399d9c1b71f8a75630
c43630fb3ec020b57cdd9fcfc05b79827016441f
refs/heads/master
2020-03-24T22:37:37.809110
2019-10-31T11:39:16
2019-10-31T11:39:16
143,094,955
0
0
null
null
null
null
UTF-8
Python
false
false
2,062
py
""" Routes and views for the bottle application. REDIS数据管理部分 """ from datetime import datetime from flask import (render_template, request) from WebProject import app from WebProject.common import web_helper from WebProject.models.models import Rediscfg from WebProject.route import repository @app.route('/redis') def redisIndex(): """Renders the about page.""" # 创建session对象: session = repository.GetSession() items = session.query(Rediscfg).all() return render_template('/redis/redis_index.html', data=items, year=datetime.now().year) @app.route('/redis/append') def redisAppend(): # 创建对象 data = Rediscfg() return render_template('/redis/redis_edit.html', title='Redis 信息', year=datetime.now().year, model=data ) @app.route('/redis/update') def redisUpdate(): # 创建session对象 session = repository.GetSession() data = Rediscfg() data.Redis_Id = request.forms.get('Redis_Id') data.DomainName = request.forms.get('DomainName') data.IPAddress = request.forms.get('IPAddress') data.Username = request.forms.get('Username') data.Note = request.forms.get('Note') if(data.Redis_Id == 'None' or data.Redis_Id == None): data.Redis_Id = None session.add(data) session.commit() else: session.query(Rediscfg).filter(Rediscfg.Redis_Id == data.Redis_Id).update( {"DomainName": data.DomainName, "IPAddress": data.IPAddress, "Username": data.Username, "Note": data.Note, }, synchronize_session=False) session.commit() return web_helper.return_msg(0, "保存成功!") @app.route('/redis/edit/<redisId>') def redisEdit(redisId): # 创建session对象: session = repository.GetSession() redis = session.query(Rediscfg).get(redisId) return render_template('/redis/redis_edit.html', year=datetime.now().year, model=redis)
b58032f56c0d13ae8dea75ef3b8fab87a713489d
19e3072705182e24a6387cdbece4ce6d4797695b
/AndroidAppUploader/venv/bin/tkconch
ca9721301be9eeb68e834b4d60a2e281d125d0ff
[]
no_license
pramodgobburi3/Android-CDN
b83fe019415a1dd4681db4f5c37a8bfebf12b7ec
d01aea8ea3c106fd3a9f4cb670932b7704b34b2c
refs/heads/master
2020-04-24T06:44:16.043704
2019-02-21T01:10:40
2019-02-21T01:10:40
171,775,364
0
0
null
null
null
null
UTF-8
Python
false
false
440
#!/Users/pramodgobburi/PycharmProjects/AndroidAppUploader/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==18.9.0','console_scripts','tkconch' __requires__ = 'Twisted==18.9.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==18.9.0', 'console_scripts', 'tkconch')() )
e7fc2c8eede38ab1d057f2930410a29a6191871a
f14946892dcc62732cffd0dba364d2098e6de607
/converter.py
40fb58d5f55a79226720f093675f16897083b36c
[]
no_license
DollaR84/notes
556368c12b0ead9901b05b95a5691138b588eb86
a74ec7cf41b842501d1c24ec3b180d76be1fbef1
refs/heads/master
2023-03-26T21:04:37.415037
2020-06-18T14:11:15
2020-06-18T14:11:15
223,773,925
0
0
null
null
null
null
UTF-8
Python
false
false
7,300
py
""" Converter database from old versions to new. Created on 19.04.2020 @author: Ruslan Dolovanyuk """ from copy import deepcopy from datetime import datetime import os from database import Database import tables import updates class DBConverter: """Converter database on new update versions.""" def __init__(self, db_name): """initialization converter database.""" self.__db_name = db_name self.__db = Database() self.__update_functions = [ 'update_db2', 'update_db3', 'update_db4', 'update_db5', ] def __get_old_data(self, tables_list): """Get all data from old database.""" self.__old_data = {table: self.__db.get("SELECT * FROM %s" % table) for table in tables_list} def checker(self, db, tables_dict): """Check and return version input database.""" tables_db = db.get_tables_names() tables_cr = tables.get_tables_names(tables_dict) diff_tables = list(set(tables_cr) - set(tables_db)) if not diff_tables: for table in tables_cr: columns_db = db.get_columns_names(table) diff_columns = list(set(tables.get_columns_names(tables_dict[table])) - set(columns_db)) if 'order_sort' in diff_columns: return 1 elif 'readonly' in diff_columns: return 2 elif ('date_create' in diff_columns) and ('date_update' in diff_columns): return 3 elif ('state_check' in diff_columns) and ('state' in diff_columns): return 4 else: pass elif 'states' in diff_tables: return 4 else: pass return tables.VERSION def __save_old_db(self, db_name, version): """Saving old databases before updates.""" date = datetime.strftime(datetime.now(), "%d.%m.%Y") time = datetime.strftime(datetime.now(), "%H.%M.%S") try: os.rename(''.join([db_name, '.db']), ''.join([db_name, '.v{}.'.format(version), date, '.db'])) except: os.rename(''.join([db_name, '.db']), ''.join([db_name, '.v{}.'.format(version), date, '.', time, '.db'])) def update_db(self, db_ver, tables_dict_default, update_func): """Run update database tables.""" self.__db.connect(self.__db_name + '.db') self.__get_old_data(self.__db.get_tables_names()) self.__db.disconnect() self.__save_old_db(self.__db_name, db_ver) self.__db.connect(self.__db_name + '.db') tables_dict = deepcopy(tables_dict_default) for table in tables_dict.keys(): tables_dict[table].extend(updates.columns_all(table, db_ver+1)) script = 'CREATE TABLE {} ({}) WITHOUT ROWID'.format(table, ', '.join([' '.join(row) for row in tables_dict[table]])) self.__db.put(script) columns = tables.get_columns_names(tables_dict[table]) rows = self.__old_data.get(table, []) update_func(table, columns, rows) self.__db.commit() self.__db.disconnect() def update_db2(self, table, columns, rows): """Update database tables from version database 1 to version 2.""" counter = {} for row in rows: if table == 'notes': parent = row[-1] if parent not in counter: counter[parent] = 0 counter[parent] += 1 script = 'INSERT INTO {} ({}) VALUES ({}, {})'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))]), counter[parent]) else: script = 'INSERT INTO {} ({}) VALUES ({})'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) self.__db.put(script, *row) def update_db3(self, table, columns, rows): """Update database tables from version database 2 to version 3.""" for row in rows: if table == 'notes': script = 'INSERT INTO {} ({}) VALUES ({}, 0)'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) else: script = 'INSERT INTO {} ({}) VALUES ({})'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) self.__db.put(script, *row) def update_db4(self, table, columns, rows): """Update database tables from version database 3 to version 4.""" for row in rows: if table == 'notes': script = 'INSERT INTO {} ({}) VALUES ({}, "", "")'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) else: script = 'INSERT INTO {} ({}) VALUES ({})'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) self.__db.put(script, *row) def update_db5(self, table, columns, rows): """Update database tables from version database 4 to version 5.""" for row in rows: if table == 'notes': script = 'INSERT INTO {} ({}) VALUES ({}, 0, "")'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) else: script = 'INSERT INTO {} ({}) VALUES ({})'.format(table, ', '.join(columns), ', '.join(['?' for _ in range(len(row))])) self.__db.put(script, *row) def check_rows(self, db, tables_dict): """Add rows in updates databases.""" for table in list(tables_dict.keys()): update_dict = updates.ROWS.get(table, {}) for version, rows in update_dict.items(): if version <= tables.VERSION: if db.get_last_id(table) < int(rows[-1].split(', ')[0]): columns = tables.get_columns_names(tables_dict[table]) for row in rows: script = 'INSERT INTO {} ({}) VALUES ({})'.format(table, ', '.join(columns), row) db.put(script) db.commit() def run(self, tables_dict_default, tables_dict): """Run convert data from old database to new.""" try: self.__db.connect(self.__db_name + '.db') db_ver = self.checker(self.__db, tables_dict) self.__db.disconnect() for index in range(db_ver-1, tables.VERSION-1): self.update_db(index+1, tables_dict_default, getattr(self, self.__update_functions[index])) except Exception as e: print(e) return False return True def main(): """Main running this script.""" dbconv = DBConverter('notes') dbconv.run() if __name__ == "__main__": main()
f3af49040dcee4f510c7bed61a3e84e70e7f951b
3d1b309bedcdf5fbd8b93c9e615b632ac7c96956
/day23/solution1.py
91db7b3aa712855e8487fe3eccccba6dbcc767d4
[]
no_license
sebschneid/adventofcode2019
61877364fece04fe5aed3e5e99e7179da4945d31
601e01427c185b910bb94ce2782e4e55593c960a
refs/heads/master
2020-09-22T22:03:22.201455
2019-12-23T22:22:39
2019-12-23T22:22:39
225,330,761
0
0
null
null
null
null
UTF-8
Python
false
false
1,400
py
from typing import Dict, List, NamedTuple, NewType, Optional import intcode import network if __name__ == "__main__": with open("input.txt") as file: intcode_string = file.read() intcode_start = intcode.get_intcode_from_input(intcode_string) computers = {} for adress in range(50): program = intcode.Program( intcode_start.copy(), inputs=[adress], outputs=[] ) output = program.run_to_next_input() program.clear_output() computers[network.Adress(adress)] = network.NetworkController( program=program, adress=network.Adress(adress), queue=[] ) program = intcode.Program(intcode_start.copy(), inputs=[adress], outputs=[]) computers[network.Adress(255)] = network.NatMonitor(program) test_network = network.Network(computers) solved = False while not solved: for adress, computer in test_network.computers.items(): computer.receive() if adress != network.Adress(255): messages = test_network.send(adress, listen=True) if messages: for message in messages: if message.adress == 255: print( f"Y value of the first message sent to adreess 255 is {message.packet.y}" ) solved = True
4ca9dc4520f70c25ecf171ea6f53ba448000faba
33f5e287fdc6d8f4798142237255db79d25b084d
/FirstPythonProject/UsingStrings.py
dca6f210ca22c0f3c680aa9645d068cd210149b3
[]
no_license
comingback2life/LearningPython
27859f140aee2dde9fbe990f7c53861d6b857d87
354318a0ce49096e345ac47dcca543eeb7956f54
refs/heads/master
2021-06-23T23:21:06.994686
2017-09-10T16:59:12
2017-09-10T16:59:12
100,623,839
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
my_name= 'Samip Pokharel' my_age=18 # This age is not a lie and is true my_height= 75 # The height is in inches my_weight=175 # The weight is in lbs my_eyes= 'Brown' my_teeth='White' my_hair='Black' print "Let's talk about %s" % my_name print "I am %d inches tall" % my_height print "I am %d LBS heavy" %my_weight print "I have %s eyes , %s teeth and %s hair"% (my_eyes,my_teeth,my_hair) print "My First name is ", my_name[0:5] my_name= my_name[:6]+ "Dada" print my_name
4060c4756bedc230b3f811d7db77fa12fd939ba3
b02a6441c68303c4e171ca1355d4c4c583a548ec
/aedb-mls/epsilon-compare.py
e815fdf1c6748268aa4ca1d30fbd887f26666b6e
[]
no_license
santiago-iturriaga/itu-maestria
672da91a1f1fb7abfa0ba1aa24385bc23fdc7b5a
f79e9e6706a8a6bbd7eccf425ee61766e9b4de00
refs/heads/master
2020-06-01T07:44:01.550679
2015-03-05T02:00:33
2015-03-05T02:00:33
32,400,201
0
0
null
null
null
null
UTF-8
Python
false
false
7,189
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # epsilon.py # # Copyright 2013 Unknown <santiago@marga> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # import sys import math import re from scipy.stats import mstats from scipy import stats obj = (0,1,0) # min, max, min def avg_stdev(values): sum_v = 0.0 for v in values: sum_v = sum_v + v avg = sum_v / len(values) diff_sq = 0.0 for v in values: diff_sq = diff_sq + pow(v - avg, 2) stdev = math.sqrt(diff_sq/(len(values)-1)) return (avg, stdev) def euclidean_distance(point_a, point_b): distance = 0.0 assert(len(point_a) == len(point_b)) dimension = len(point_a) for coord in range(dimension): distance = distance + pow(point_a[coord]-point_b[coord],2) return math.sqrt(distance) def epsilon_metric(ref_pf, comp_pf): assert(len(ref_pf) > 0) assert(len(comp_pf) > 0) min_distances = [] for comp_sol in comp_pf: min_sol = None min_sol_dist = None for ref_sol in ref_pf: if min_sol is None: min_sol = ref_sol min_sol_dist = euclidean_distance(ref_sol, comp_sol) else: aux_distance = euclidean_distance(ref_sol, comp_sol) if aux_distance < min_sol_dist: min_sol = comp_sol min_sol_dist = aux_distance min_distances.append(min_sol_dist) return max(min_distances) def epsilon_jmetal_metric(ref_pf, comp_pf): assert(len(ref_pf) > 0) assert(len(comp_pf) > 0) eps = None for comp_sol in comp_pf: eps_j = None for ref_sol in ref_pf: assert(len(comp_sol)==len(ref_sol)) for k in range(len(comp_sol)): if obj[k]==0: eps_temp = ref_sol[k]-comp_sol[k] else: eps_temp = comp_sol[k]-ref_sol[k] if k==0: eps_k=eps_temp elif eps_k < eps_temp: eps_k=eps_temp if eps_j is None: eps_j = eps_k elif eps_j > eps_k: eps_j = eps_k if eps is None: eps = eps_j elif eps < eps_j: eps = eps_j return eps def main(): if len(sys.argv) != 7: print("[ERROR] Usage: {0} <best PF> <moea PF> <num. exec.> <computed PF> <num. exec.> <min. coverage>".format(sys.argv[0])) exit(-1) best_pf_file = sys.argv[1] moea_pf_file = sys.argv[2] moea_num_exec = int(sys.argv[3]) comp_pf_file = sys.argv[4] comp_num_exec = int(sys.argv[5]) min_cover = float(sys.argv[6]) print("Best PF file : {0}".format(best_pf_file)) print("MOEA PF file : {0} ({1})".format(moea_pf_file, moea_num_exec)) print("Computed PF file: {0} ({1})".format(comp_pf_file, comp_num_exec)) print("Min. coverage : {0}".format(min_cover)) print() best_pf = [] with open(best_pf_file) as f: for line in f: if len(line.strip()) > 0: data = line.strip().split(" ") assert(len(data)==3) if float(data[1]) >= min_cover: best_pf.append((float(data[0]),float(data[1]),float(data[2]))) moea_pf = [] moea_pf_value = [] for e in range(moea_num_exec): moea_pf_exec = [] with open(moea_pf_file + "." + str(e)) as f: for line in f: if len(line.strip()) > 0: data = line.strip().split("\t") if len(data) == 3: energy = float(data[0]) coverage = -1*float(data[1]) nforwardings = float(data[2]) if coverage > min_cover and energy > 0: moea_pf_exec.append((energy,coverage,nforwardings)) moea_pf.append(moea_pf_exec) moea_pf_value.append(epsilon_metric(best_pf, moea_pf_exec)) comp_pf = [] comp_pf_value = [] for e in range(comp_num_exec): comp_pf_exec = [] with open(comp_pf_file + "." + str(e) + ".out") as f: for line in f: if len(line.strip()) > 0: data = line.strip().split(",") if len(data) == 10: if (data[0] != "id"): energy = float(data[-4]) coverage = float(data[-3]) nforwardings = float(data[-2]) if coverage > min_cover: comp_pf_exec.append((energy,coverage,nforwardings)) comp_pf.append(comp_pf_exec) comp_pf_value.append(epsilon_metric(best_pf, comp_pf_exec)) #print ("===================================") #for i in best_pf: # print("{0},{1},{2}".format(i[0],i[1],i[2])) #print ("===================================") #for i in comp_pf[0]: # print("{0},{1},{2}".format(i[0],i[1],i[2])) #print (comp_pf_value[0]) #print ("===================================") #for i in moea_pf[0]: # print("{0},{1},{2}".format(i[0],i[1],i[2])) #print (moea_pf_value[0]) #print ("===================================") #print(comp_pf_value) #print(moea_pf_value) (comp_avg, comp_stdev) = avg_stdev(comp_pf_value) (moea_avg, moea_stdev) = avg_stdev(moea_pf_value) (hstatic, pvalue) = mstats.kruskalwallis(moea_pf_value, comp_pf_value) #(u, prob) = stats.mannwhitneyu(moea_pf_value, comp_pf_value) print("alg|avg|stdev") print("comp|{0}|{1}".format(comp_avg, comp_stdev)) print("moea|{0}|{1}".format(moea_avg, moea_stdev)) print("h-static {0}|p-value {1}".format(hstatic, pvalue)) #print("u {0}|prob {1}".format(u, prob)) #0.05 0.01 0.001 if pvalue <= 0.001: print("1x10^-3") elif pvalue <= 0.01: print("1x10^-2") elif pvalue <= 0.05: print("5x10^-2") moea_total = 0 for e in moea_pf: moea_total = moea_total + len(e) comp_total = 0 for e in comp_pf: comp_total = comp_total + len(e) print("count moea={0} comp={1}".format(moea_total/len(moea_pf), comp_total/len(comp_pf))) return 0 if __name__ == '__main__': main()
[ "santiago.iturriaga@04019538-fc05-46f8-052f-b547bbfd49f0" ]
santiago.iturriaga@04019538-fc05-46f8-052f-b547bbfd49f0
46b48c04fb8bbadb23ad70789b4a6ccc79e2387b
11074677f25db134ac13345f17ec300524ff442a
/django-ecom/account/models.py
6687658c6b85fa17cb2396512805fd64d35f18e3
[]
no_license
leonidBoiko/ecommerce
508e60bce7b5f849546250b8656dbffc0abe6678
13ad80622793b543d8180b081513a257d3418a2c
refs/heads/main
2023-05-15T10:49:07.934662
2021-06-04T11:48:00
2021-06-04T11:48:00
373,624,998
0
0
null
null
null
null
UTF-8
Python
false
false
2,657
py
from django.contrib.auth.models import (AbstractBaseUser, BaseUserManager, PermissionsMixin) from django.core.mail import send_mail from django.db import models from django.utils.translation import gettext_lazy as _ from django_countries.fields import CountryField class CustomAccountManager(BaseUserManager): def create_superuser(self, email, user_name, password, **other_fields): other_fields.setdefault("is_staff", True) other_fields.setdefault("is_superuser", True) other_fields.setdefault("is_active", True) if other_fields.get("is_staff") is not True: raise ValueError("Superuser must be assigned to is_staff=True.") if other_fields.get("is_superuser") is not True: raise ValueError( "Superuser must be assigned to is_superuser=True.") return self.create_user(email, user_name, password, **other_fields) def create_user(self, email, user_name, password, **other_fields): if not email: raise ValueError(_("You must provide an email address")) email = self.normalize_email(email) user = self.model(email=email, user_name=user_name, **other_fields) user.set_password(password) user.save() return user class UserBase(AbstractBaseUser, PermissionsMixin): email = models.EmailField(_("email address"), unique=True) user_name = models.CharField(max_length=150, unique=True) first_name = models.CharField(max_length=150, blank=True) about = models.TextField(_("about"), max_length=500, blank=True) # Delivery details country = CountryField() phone_number = models.CharField(max_length=15, blank=True) postcode = models.CharField(max_length=12, blank=True) address_line_1 = models.CharField(max_length=150, blank=True) address_line_2 = models.CharField(max_length=150, blank=True) town_city = models.CharField(max_length=150, blank=True) # User Status is_active = models.BooleanField(default=False) is_staff = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) objects = CustomAccountManager() USERNAME_FIELD = "email" REQUIRED_FIELDS = ["user_name"] class Meta: verbose_name = "Accounts" verbose_name_plural = "Accounts" def email_user(self, subject, message): send_mail( subject, message, "[email protected]", [self.email], fail_silently=False, ) def __str__(self): return self.user_name
a3aa43118751541e2a307ba24d34db091940fc53
85ed87b30b2ee23141898671714daf03910f8635
/getRandomSamAllHits.py
ca78ad49a5dbf664693e27d64be036dd2240beac
[]
no_license
boruch/RNA-seq-0.1.3
92fd6d89985f16ff202f20049cce4ea71f1763a2
c460810f766db2aa3583739cb6281dcd9fdeab50
refs/heads/master
2020-04-29T09:45:27.372852
2014-03-27T23:20:54
2014-03-27T23:20:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
import sys def getRandomSamAllHits(sam, numReads): import random f=open(sam,"r") g=open(str("sample_any_"+str(numReads)+"_"+sam),"w") line=f.readline() while line[0] is "@": g.write(line) line=f.readline() f.seek(-1,2) end=f.tell() ids={} nb=1000 f.seek(nb,0) window=end/numReads while len(ids) < numReads and nb < end: rbt=random.randrange(1,window) f.seek(rbt,1) line=f.readline() line=f.readline() nb=f.tell() id=line g.write(id) ids[id]=1 f.close() g.close() return sys.path.append("/u/home/eeskin/charlesb/PIPELINE/RNA-seq-0.1.3/bin") from getRandomSamAllHits import * sam=sys.argv[1] numReads=sys.argv[2] getRandomSamAllHits(sam,int(numReads))
44caae0369ae3b0650a6e50733c989c424ea1f2d
06ee29e29e090ab81c3d9905a8a0bcc639ec387a
/2.Monk and Inversions.py
583408f5188a4aeef6cc467e44238b9aea79853f
[]
no_license
thisissagnik/HackerEarth_Code_Practice
9606365e9f819d92838f7bb7422450d8976a6a03
9cfaf3dc903d656225e3d68b97a05a7ae12f02a3
refs/heads/master
2023-05-27T13:43:53.703762
2021-05-29T14:17:57
2021-05-29T14:17:57
306,936,293
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
def cnt_inversion(n, arr): count = 0 index_com = [] for i in range(n): for j in range(n): index_com.append((i, j)) for x, y in index_com: for p, q in index_com: if x <= p and y <= q: if arr[x][y] > arr[p][q]: count += 1 return count # Driver Program def main(): t = input() for _ in range(int(t)): n = int(input()) arr = [] for _ in range(n): arr.append(list(map(int, input().strip().split()))) print(cnt_inversion(n, arr)) main()
d71a9c81d2b1ec632e59baa49eb16b03c6266e56
f2b150b6ea3da084f5f1e48c817d7f45434cdbdb
/eva_benton/planning_pseudocode_challenge.py
74ff1e4f25322eb52bdfb2d24577710aaf1794ae
[]
no_license
jaimienakayama/wolfpack_pod_repo
a3ccd2651f271719bad73c24cdc5c7760befbb75
a3325cba163a4d333c123d74afc548308f834d9c
refs/heads/main
2023-04-19T05:49:34.207213
2021-05-05T23:52:26
2021-05-05T23:52:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,222
py
''' Planning & pseudocode challenge! For each piece here, write out the pseudocode as comments FIRST, then write your code! At many points, you'll have to choose between using a list vs. dictionary. Justify your choices! ''' ''' 1. Shipping You are building a system to handle shipping orders. Each order should have 3 pieces of information: -destination (string) (for the purposes of this challenge this can be any place, no need to make a full address) -date_shipped (string) -weight (float) (how many pounds the package is) Will you choose to make each shipping order as a dictionary or list? Why? Assign 3 separate orders to 3 separate variables ''' print('\nPART 1') ''' Each order will contain a: destination which will be a string, a date_shipped which will also be a string, and a weight which will be a float. ''' # I am choosing to create a dictionary instead of a listbbecause dictionaries allow me to use lables. # I am also assigning 3 separate orders to the 3 separate variables created. order_1 = {'destination' : 'New York','date_shipped' : '03/11/2021','weight' : 5} order_2 = {'destination' : 'California','date_shipped' : '03/11/2021','weight' : 5} order_3 = {'destination' : 'Texas','date_shipped' : '03/11/2021','weight' : 5} print(order_1) print(order_2) print(order_3) ''' 2. Building the database Now, let's put the orders all into a database togther (all the orders are stored in 1 variable). Your database as a whole can either be a dictionary or a list (hint, you'll want nesting!). Print out the database to make sure all the info is in there. ''' print('\nPART 2') '''I will create a single variable and database to put all of the orders into. ''' # Here I am creating a database by using 'order_database' as a variable, # in a list that includes each of the orders to complete the database. order_database = [order_1, order_2, order_3] print(order_database) ''' ''' '''3. Define a function called add_order() that adds one more order to your database, and make sure it works! Any new orders should be in the same format as your existing ones. ''' print('\nPART 3') # Defining an "add_order" function to facilitate the process of adding more orders, # to be included in the database as needed using the append function, which will work # because this a list and not a dictionary. def add_order(order_database, order): order_database.append(order) # Creating two new orders that include all order information same as previous orders. order_4 = {'destination' : 'Guam','date_shipped' : '03/12/2021','weight' : 10.5} order_5 = {'destination' : 'Prague','date_shipped' : '03/12/2021','weight' : 10.5} # Adding the two new orders to the order_database in the same format as the previous orders. order_database.append(order_4) order_database.append(order_5) print(order_database) ''' 4. Define a function called complete_order() to mark a specific order in your database complete This means you'll need a new piece of data inside the order that is True when the order is complete. Test this out and print out your database to make sure it works! HINT: Think about how your choice of list/dictionary in part 2 informs how someone would reference an order in the database ''' print('\nPART 4') # Creating a variable called 'complete_order' and defining the complete_order function to designate # specific orders as completed using booleans True/False. # I have to create a variable that defines each order's status, # in the form of a boolean questioning whether order is complete : True or False, if True... def complete_order(order_database, order): order_database[order]['complete'] = 'True' # I am going to print at this point to make sure the coding works before I continue. print(complete_order) # I can create a variable that lists all of the complete orders, # such as 'complete_order_list' and print out a list of all of the completed orders, # then reference specific orders in that list by item number based on where they exist # in the new list: ie., [0,1,2,3, etc.]. def complete_order_list(order_database, order): order_database[order] # Running to make sure coding works for the variable 'complted_orders_list'. print(complete_order_list)
a14be45bebd00cf7e9681b2e864d3db524bca8d5
d159f0c3774dce7f26db6e5c1035c9358be57ef2
/SIG2019/function_tests.py
5cbc30ee8974da6992a0878a5be4ab8a046a27ab
[]
no_license
Susanou/MachineLearning
77f11d4376052260c85c56989b943c383470e8b5
870a4e38777c7ce98965481a70deb7a2026514d4
refs/heads/master
2021-07-14T16:46:25.760891
2020-07-02T16:12:54
2020-07-02T16:12:54
176,060,701
1
0
null
null
null
null
UTF-8
Python
false
false
4,308
py
#!/usr/bin/env python3 import mysql.connector import sys, time import configparser import fonctions_reader as fonctions def test(theme: str): config = configparser.ConfigParser() config.read('config.ini') db = mysql.connector.connect( host=config['mysqlDB']['host'], user=config['mysqlDB']['user'], passwd=config['mysqlDB']['pass'], db=config['mysqlDB']['db'] ) cursor = db.cursor() cursor.execute("SELECT * FROM Themes where nom='%s'" % theme) result = cursor.fetchone() print(result) print("\033[0;37;40m Normal text\n") print("\033[2;37;40m Underlined text\033[0;37;40m \n") print("\033[1;37;40m Bright Colour\033[0;37;40m \n") print("\033[3;37;40m Negative Colour\033[0;37;40m \n") print("\033[5;37;40m Negative Colour\033[0;37;40m\n") print("\033[1;37;40m \033[2;37:40m TextColour BlackBackground TextColour GreyBackground WhiteText ColouredBackground\033[0;37;40m\n") print("\033[1;30;40m Dark Gray \033[0m 1;30;40m \033[0;30;47m Black \033[0m 0;30;47m \033[0;37;41m Black \033[0m 0;37;41m") print("\033[1;31;40m Bright Red \033[0m 1;31;40m \033[0;31;47m Red \033[0m 0;31;47m \033[0;37;42m Black \033[0m 0;37;42m") print("\033[1;32;40m Bright Green \033[0m 1;32;40m \033[0;32;47m Green \033[0m 0;32;47m \033[0;37;43m Black \033[0m 0;37;43m") print("\033[1;33;40m Yellow \033[0m 1;33;40m \033[0;33;47m Brown \033[0m 0;33;47m \033[0;37;44m Black \033[0m 0;37;44m") print("\033[1;34;40m Bright Blue \033[0m 1;34;40m \033[0;34;47m Blue \033[0m 0;34;47m \033[0;37;45m Black \033[0m 0;37;45m") print("\033[1;35;40m Bright Magenta \033[0m 1;35;40m \033[0;35;47m Magenta \033[0m 0;35;47m \033[0;37;46m Black \033[0m 0;37;46m") print("\033[1;36;40m Bright Cyan \033[0m 1;36;40m \033[0;36;47m Cyan \033[0m 0;36;47m \033[0;37;47m Black \033[0m 0;37;47m") print("\033[1;37;40m White \033[0m 1;37;40m \033[0;37;40m Light Grey \033[0m 0;37;40m \033[0;37;48m Black \033[0m 0;37;48m") def loading_animation(n): """Function to animate de waiting time """ animation = "|/-\\" sys.stdout.write("\r[+] Loading " + animation[n % len(animation)]) sys.stdout.flush() time.sleep(0.5) return n%len(animation)+1 def connectDB(): """Fonction utilisee pour se connecter a la base de donnee Returns ------- mysql.connector database object to use for cursor and commits """ print("\033[1;32;40m[+] \033[0m Accessing DB") config = configparser.ConfigParser() config.read('config.ini') db = mysql.connector.connect( host=config['mysqlDB']['host'], user=config['mysqlDB']['user'], passwd=config['mysqlDB']['pass'], db=config['mysqlDB']['db'] ) return db def query_test(word: str, theme: str): db = connectDB() cursor = db.cursor() occurence_query = (""" SELECT frequence FROM frequences where frequences.mot=(select id from word where mot=%s) and frequences.theme=(select id from themes where nom=%s ) """) cursor.execute(occurence_query, (word, theme)) freq = cursor.fetchone()[0] string = ("%s") print(string % (theme)) total_query = (""" select n from total where theme='%s' """) cursor.execute(total_query % theme) total = cursor.fetchone()[0] print(freq) print(total) print("resultat= ", freq/total) return freq/total, total def get_all_url(): """Fonction permettant d'obtenir toutes les URLs sans prendre en compte le flag Returns ------- list Renvoi la liste des URLs """ db = fonctions.connectDB() cursor = db.cursor() cursor.execute("SELECT url, cluster FROM url") urls = cursor.fetchall() cursor.close() db.close() return urls if __name__ == "__main__": test = get_all_url() print(test) print(test[0])
c8705454f5b80ca5aca9c2228cd462665605112d
f8e03a0724516b7cc2299f6c7a8cef544fa32484
/source/pic2card/mystique/group_design_objects.py
e59231d840bf9b34a839f234137c4999867a8772
[ "MIT" ]
permissive
isabella232/AdaptiveCards
cc3904f0782bd94087ae0a0df0ee2db954facdde
766750517196d05f4466941647e07a8a298257b2
refs/heads/main
2023-03-07T22:13:55.327587
2020-11-17T02:02:15
2020-11-17T02:02:15
313,699,024
0
0
MIT
2021-02-23T16:14:48
2020-11-17T17:51:17
null
UTF-8
Python
false
false
21,437
py
"""Module for grouping deisgn objects into different containers""" from operator import itemgetter from typing import List, Dict, Callable, Tuple, Optional from mystique import config from mystique.extract_properties import CollectProperties class GroupObjects: """ Handles the grouping of given list of objects for any set conditions that is passed. """ def object_grouping(self, design_objects: List[Dict], condition: Callable[[Dict, Dict], bool]) -> List[List[Dict]]: """ Groups the given List of design objects for the any given condition. @param design_objects: objects @param condition: Grouping condition function @return: Grouped list of design objects. """ groups = [] grouped_positions = [] for ctr1, design_object1 in enumerate(design_objects): temp_list = [] for ctr2, design_object2 in enumerate(design_objects): if condition(design_object1, design_object2): present = False present_position = -1 append_object = False append_position = -1 for ctr, gr in enumerate(groups): if design_object2 in gr: present = True present_position = ctr if design_object1 in gr: append_object = True append_position = ctr if not present and not append_object: temp_list.append(design_object2) grouped_positions.append(ctr2) elif not present and append_object: groups[append_position].append(design_object2) grouped_positions.append(ctr2) elif present and not append_object: groups[present_position].append(design_object1) grouped_positions.append(ctr1) elif (present and append_object and present_position != append_position): groups[present_position] += groups[append_position] del groups[append_position] if temp_list: groups.append(temp_list) for ctr, design_object in enumerate(design_objects): if ctr not in grouped_positions: groups.append([design_object]) return groups class ImageGrouping(GroupObjects): """ Groups the image objects of the adaptive card objects into a imagesets or individual image objects. """ # Image objects within the 10px ymin range and 100px range difference are # grouped into imagesets. IMAGE_SET_YMIN_RANGE = 10.0 IMAGE_SET_X_RANGE = 100.0 def __init__(self, card_arrange): self.card_arrange = card_arrange def imageset_condition(self, design_object1: Dict, design_object2: Dict) -> bool: """ Returns a condition boolean value for grouping image objects into imagesets @param design_object1: image object @param design_object2: image object @return: boolean value """ if design_object1.get("xmin") < design_object2.get("xmin"): xmax = design_object1.get("xmax") xmin = design_object2.get("xmin") else: xmax = design_object2.get("xmax") xmin = design_object1.get("xmin") ymin_diff = abs( design_object1.get("ymin") - design_object2.get("ymin") ) x_diff = abs(xmax - xmin) return (ymin_diff <= self.IMAGE_SET_YMIN_RANGE and x_diff <= self.IMAGE_SET_X_RANGE) def group_image_objects(self, image_objects, body, objects, ymins=None, is_column=None) -> [List, Optional[Tuple]]: """ Groups the image objects into imagesets which are in closer ymin range. @param image_objects: list of image objects @param body: list card deisgn elements. @param ymins: list of ymins of card design elements @param objects: list of all design objects @param is_column: boolean value to check if an object is inside a columnset or not @return: List of remaining image objects after the grouping if the grouping is done outside the columnset container else returned list of remaining image objects along with its coordinate values. """ # group the image objects based on ymin groups = self.object_grouping(image_objects, self.imageset_condition) delete_positions = [] design_object_coords = [] for group in groups: group = [dict(t) for t in {tuple(d.items()) for d in group}] # group = self.remove_duplicates(group) if len(group) > 1: group = sorted(group, key=lambda i: i["xmin"]) image_set = { "type": "ImageSet", "imageSize": "Auto", "images": [] } sizes = [] alignment = [] image_xmins = [] for ctr, design_object in enumerate(group): index = objects.index(design_object) if index not in delete_positions: delete_positions.append(index) sizes.append(design_object.get("size", "Auto")) alignment.append(design_object.get( "horizontal_alignment", "Left")) image_xmins.append(design_object.get("xmin")) self.card_arrange.append_objects(design_object, image_set["images"]) image_set["images"] = [x for _, x in sorted( zip(image_xmins, image_set["images"]), key=lambda x: x[0])] # Assign the imageset's size and alignment property based on # each image's alignment and size properties inside the imgaeset image_set["imageSize"] = max(set(sizes), key=sizes.count) preference_order = ["Left", "Center", "Right"] if len(alignment) == len(list(set(alignment))): alignment.sort(key=(preference_order + alignment).index) image_set["horizontalAlignment"] = alignment[0] else: image_set["horizontalAlignment"] = max(set(alignment), key=alignment.count) image_set["coords"] = str(group[0].get("coords")) body.append(image_set) if ymins: ymins.append(design_object.get("ymin")) if is_column: design_object_coords.append(group[0].get("xmin")) design_object_coords.append(group[0].get("ymin")) design_object_coords.append(group[0].get("xmax")) design_object_coords.append(group[0].get("ymax")) objects = [design_objects for ctr, design_objects in enumerate(objects) if ctr not in delete_positions] if is_column: return objects, design_object_coords else: return objects class ColumnsGrouping(GroupObjects): """ Groups the design objects into different columns of a columnset """ def __init__(self, card_arrange): self.card_arrange = card_arrange def horizontal_inclusive(self, object_one: Dict, object_two: Dict) -> bool: """ Returns the horizonral inclusive condition @param object_one: design object one @param object_two: design object two @return: the boolean value of the inclusive condition """ return (((object_one and object_two) and ( (object_one.get("xmin") <= object_two.get( "xmin") <= object_one.get( "xmax") and object_one.get( "xmin") <= object_two.get( "xmax") <= object_one.get( "xmax")) or (object_two.get("xmin") <= object_one.get( "xmin") <= object_two.get( "xmax") <= object_one.get("xmax") and object_two.get( "xmax") <= object_one.get( "xmax") ) or (object_one.get( "xmin") <= object_two.get( "xmin") <= object_one.get( "xmax") <= object_two.get( "xmax") and object_two.get( "xmax") >= object_one.get("xmin") )) ) or ((object_two and object_one) and ((object_two.get("xmin") <= object_one.get("xmin") <= object_two.get("xmax") and object_two.get("xmin") <= object_one.get("xmax") <= object_two.get("xmax")) or (object_one.get("xmin") <= object_one.get("xmin") and object_one.get("xmax") <= object_two.get("xmax") and object_two.get("xmin") <= object_one.get("xmax") <= object_two.get("xmax")) or (object_two.get("xmin") <= object_one.get("xmin") <= object_two.get("xmax") <= object_one.get("xmax") and object_one.get("xmax") >= object_two.get("xmin")))) ) def vertical_inclusive(self, object_one: Dict, object_two: Dict) -> bool: """ Returns the vertical inclusive condition @param object_one: design object one @param object_two: design object two @return: the boolean value of the inclusive condition """ return ( ((object_one and object_two) and ((object_one.get("ymin") <= object_two.get("ymin") <= object_one.get("ymax") and object_one.get("ymin") <= object_two.get("ymax") <= object_one.get("ymax")) or (object_two.get("ymin") <= object_one.get( "ymin") <= object_two.get( "ymax") <= object_one.get("ymax") and object_two.get("ymax") <= object_one.get("ymax")) or (object_one.get("ymin") <= object_two.get("ymin") <= object_one.get("ymax") <= object_two.get("ymax") and object_two.get("ymax") >= object_one.get("ymin")) )) or ((object_two and object_one) and ((object_two.get("ymin") <= object_one.get("ymin") <= object_two.get("ymax") and object_two.get("ymin") <= object_one.get("ymax") <= object_two.get("ymax")) or (object_one.get("ymin") <= object_one.get("ymin") and object_one.get("ymax") <= object_two.get("ymax") and object_two.get("ymin") <= object_one.get("ymax") <= object_two.get("ymax")) or (object_two.get("ymin") <= object_one.get("ymin") <= object_two.get("ymax") <= object_one.get("ymax") and object_one.get("ymax") >= object_two.get("ymin")) )) ) def max_min_difference(self, design_object1: Dict, design_object2: Dict, way: str) -> float: """ Returns the ymax-ymin difference of the 2 deisgn objects @param design_object1: design object one @param design_object2: design object two @param way: xmax-xmin or ymax-ymin difference @return: rounded ymax-ymin difference """ max = "ymax" min = "ymin" if way == "x": max = "xmax" min = "xmin" if design_object1.get(min) < design_object2.get(min): return round(abs(design_object2.get(min) - design_object1.get(max))) else: return round(abs(design_object1.get(min) - design_object2.get(max))) def columns_condition(self, design_object1: Dict, design_object2: Dict) -> bool: """ Returns a condition boolean value for grouping objects into columnsets @param design_object1: design object @param design_object2: design object @return: boolean value """ y_diff = self.max_min_difference(design_object1, design_object2, way="y") object_one = None object_two = None if (design_object1.get("object") == "image" and design_object2.get("object") != "image"): object_one = design_object1 object_two = design_object2 elif (design_object2.get("object") == "image" and design_object1.get("object") != "image"): object_one = design_object2 object_two = design_object1 elif (design_object2.get("object") == "image" and design_object1.get("object") == "image"): object_one = design_object1 object_two = design_object2 return (design_object1 != design_object2 and ( (abs(design_object1.get("ymin", 0) - design_object2.get("ymin", 0)) <= config.COLUMNSET_GROUPING.get("ymin_difference", "")) or self.vertical_inclusive(object_one, object_two) or (y_diff < config.COLUMNSET_GROUPING.get("ymax-ymin_difference", "") and self.horizontal_inclusive(object_one, object_two) ))) def columns_row_condition(self, design_object1: Dict, design_object2: Dict) -> bool: """ Returns a condition boolean value for grouping columnset grouped objects into different columns. @param design_object1: design object @param design_object2: design object @return: boolean value """ extract_properites = CollectProperties() x_diff = self.max_min_difference(design_object1, design_object2, way="x") point1 = (design_object1.get("xmin"), design_object1.get("ymin"), design_object1.get("xmax"), design_object1.get("ymax")) point2 = (design_object2.get("xmin"), design_object2.get("ymin"), design_object2.get("xmax"), design_object2.get("ymax")) if design_object1.get("ymin") < design_object2.get("ymin"): object_one = design_object1 object_two = design_object2 else: object_one = design_object2 object_two = design_object1 condition = (design_object1 != design_object2 and ((design_object1.get("object") == "image" and design_object2.get("object") == "image" and abs(design_object1.get("ymin") - design_object2.get("ymin")) <= config.COLUMNSET_GROUPING.get("ymin_difference") and x_diff <= config.COLUMNSET_GROUPING.get( "xmax-xmin_difference", "")) or self.horizontal_inclusive(object_one, object_two) ) ) intersection = extract_properites.find_iou(point1, point2, columns_group=True)[0] if intersection and point1 != point2: condition = condition and ( intersection and ( (object_one.get("xmin") <= object_two.get("xmin") <= object_one.get("xmax") and object_one.get("xmin") <= object_two.get("xmax") <= object_one.get("xmax") ) or (object_two.get("xmin") <= object_one.get("xmin") <= object_two.get("xmax") and object_two.get("xmin") <= object_one.get("xmax") <= object_two.get("xmax") ) ) ) return condition class ChoicesetGrouping(GroupObjects): """ Groups the radiobutton objects of the adaptive card objects into a choiceset or individual radiobuttion objects. """ # The design objects are grouped in choicesets based on 2 conditions: # If the radiobuttons are within the range of 10px of ymax - ymin # If the radiobuttons are within the rnage of 30px of ymins. CHOICESET_Y_RANGE = 10 CHOICESET_YMIN_RANGE = 30 def __init__(self, card_arrange): self.card_arrange = card_arrange def choiceset_condition(self, design_object1: Dict, design_object2: Dict) -> bool: """ Returns a condition boolean value for grouping radio buttion objects into choiceset @param design_object1: image object @param design_object2: image object @return: boolean value """ design_object1_ymin = float(design_object1.get("ymin")) design_object2_ymin = float(design_object2.get("ymin")) difference_in_ymin = abs(design_object1_ymin - design_object2_ymin) if design_object1_ymin > design_object2_ymin: difference_in_y = float( design_object2.get("ymax")) - design_object1_ymin else: difference_in_y = float( design_object1.get("ymax")) - design_object2_ymin return (abs(difference_in_y) <= self.CHOICESET_Y_RANGE and difference_in_ymin <= self.CHOICESET_YMIN_RANGE) def group_choicesets(self, radiobutton_objects: Dict, body: List[Dict], ymins=None) -> None: """ Groups the choice elements into choicesets based on the closer ymin range @param radiobutton_objects: list of individual choice elements @param body: list of card deisgn elements @param ymins: list of ymin of deisgn elements """ groups = [] radio_buttons = [] if isinstance(radiobutton_objects, dict): for key, values in radiobutton_objects.items(): radio_buttons.append(values) radiobutton_objects = radio_buttons if len(radiobutton_objects) == 1: # radiobutton_objects = [radiobutton_objects] groups = [radiobutton_objects] if not groups: groups = self.object_grouping(radiobutton_objects, self.choiceset_condition) for group in groups: group = sorted(group, key=itemgetter("ymin")) choice_set = { "type": "Input.ChoiceSet", "choices": [], "style": "expanded" } alignment = [] for design_object in group: self.card_arrange.append_objects(design_object, choice_set["choices"]) alignment.append(design_object.get("horizontal_alignment", "Left")) preference_order = ["Left", "Center", "Right"] if len(alignment) == len(list(set(alignment))): alignment.sort(key=(preference_order + alignment).index) choice_set["horizontalAlignment"] = alignment[0] else: choice_set["horizontalAlignment"] = max(set(alignment), key=alignment.count) body.append(choice_set) if ymins is not None and len(group) > 0: ymins.append(design_object.get("ymin"))
8ef6b58674a55f6236df4da9f882ab9310c12fb8
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/GstGL/GLMemoryAllocatorClass.py
09d94c14d0970b096b8877bf3ada06ef684d53ce
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
5,176
py
# encoding: utf-8 # module gi.repository.GstGL # from /usr/lib64/girepository-1.0/GstGL-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.repository.Gst as __gi_repository_Gst import gi.repository.GstBase as __gi_repository_GstBase import gobject as __gobject class GLMemoryAllocatorClass(__gi.Struct): """ :Constructors: :: GLMemoryAllocatorClass() """ def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self): # real signature unknown; restored from __doc__ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass copy = property(lambda self: object(), lambda self, v: None, lambda self: None) # default map = property(lambda self: object(), lambda self, v: None, lambda self: None) # default parent_class = property(lambda self: object(), lambda self, v: None, lambda self: None) # default unmap = property(lambda self: object(), lambda self, v: None, lambda self: None) # default _padding = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(GLMemoryAllocatorClass), '__module__': 'gi.repository.GstGL', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'GLMemoryAllocatorClass' objects>, '__weakref__': <attribute '__weakref__' of 'GLMemoryAllocatorClass' objects>, '__doc__': None, 'parent_class': <property object at 0x7f56a4000bd0>, 'map': <property object at 0x7f56a4000cc0>, 'copy': <property object at 0x7f56a4000db0>, 'unmap': <property object at 0x7f56a4000ea0>, '_padding': <property object at 0x7f56a4000f90>})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(GLMemoryAllocatorClass)
9f3670c4d707a3e54c70d0a55f2059c21cb3d607
bc39bf7466f06503807bb39366a99ecdd5cab81e
/rdfttl_to_csv.py
3a92fb8f6c76f113afdd3fd6e763951eeabad5c7
[]
no_license
SreeSingamsetty/Master-Thesis
cd68e32d243c81865bc2cb4f8c55f1d3f5d43d63
b6a27acbe1919f07f04194249df22d3d8e5a6f88
refs/heads/master
2020-03-18T06:46:24.399820
2018-05-22T13:04:22
2018-05-22T13:04:22
134,414,582
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
from rdflib import Graph g = Graph() g.parse("short_abstracts_copy.ttl", format="ttl") g.serialize("short_abstracts_copy.csv", format="ttl", base="http://dbpedia.org/resource/")
e3a69ab66c5f9cb1d085346a0716780128beced1
7334d7669807d3bf9fe165fe916ca7b1a06f8b7c
/app.py
4ed8e62dd07a1e26c268baf57efc01886f061091
[]
no_license
Sreehari-BGK/Tinkerhub_Practicial_AI_Bootcamp_Project
3a75a414d33328f31a592a273788d9df89b02b57
651c7d5bcf3009603c678e10bef21e98fb4f80aa
refs/heads/main
2023-07-23T13:02:54.599057
2021-09-10T07:54:03
2021-09-10T07:54:03
404,999,471
0
0
null
null
null
null
UTF-8
Python
false
false
4,197
py
from __future__ import division, print_function import sys import os import glob import re import numpy as np from keras.applications.imagenet_utils import preprocess_input, decode_predictions from keras.models import load_model from keras.preprocessing import image from keras import backend as K from flask import Flask, redirect, url_for, request, render_template from werkzeug.utils import secure_filename from gevent.pywsgi import WSGIServer from scipy.misc import imread, imresize import tensorflow as tf import skimage.transform as st from skimage.transform import resize app = Flask(__name__) MODEL_PATH = 'model.h5' config = tf.ConfigProto( device_count={'GPU': 1}, intra_op_parallelism_threads=1, allow_soft_placement=True ) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.6 session = tf.Session(config=config) K.set_session(session) # Load your trained model model = load_model(MODEL_PATH) model._make_predict_function() # Necessary print('Model loaded. Start serving...') # You can also use pretrained model from Keras # Check https://keras.io/applications/ # from keras.applications.resnet50 import ResNet50 # model = ResNet50(weights='imagenet') graph = tf.get_default_graph() # Change print('Model loaded. Check http://127.0.0.1:5000/') # def classify(image, model): # class_names = ['airplane','automobile','bird','cat','deer', # 'dog','frog','horse','ship','truck'] # preds = model.predict(image) # classification = np.argmax(preds) # final = pd.DataFrame({'name' : np.array(class_names),'probability' :preds[0]}) # return final.sort_values(by = 'probability',ascending=False),class_names[classification] def model_predict(img_path, model): try: with session.as_default(): with session.graph.as_default(): img = image.load_img(img_path, target_size=(32, 32,3)) # Preprocessing the image # x = image.img_to_array(img) # x = np.true_divide(x, 255) x = np.expand_dims(img, axis=0) # x = preprocess_input(x, mode='caffe') preds = model.predict(np.array(x)) return preds except Exception as ex: log.log('Seatbelt Prediction Error', ex, ex.__traceback__.tb_lineno) @app.route('/', methods=['GET']) def index(): # Main page return render_template('index.html') @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'POST': # Get the file from post request f = request.files['file'] basepath = os.path.dirname(__file__) file_path = os.path.join( basepath, 'uploads', secure_filename(f.filename)) f.save(file_path) # # image_url = request.form['image_url'] # # image = io.imread(image_url) # image_small = st.resize(file_path, (32,32,3)) # x = np.expand_dims(image_small.transpose(2, 0, 1), axis=0) # final,pred_class = classify(x, model) # print(pred_class) # print(final) #Store model prediction results to pass to the web page # message = "Model prediction: {}".format(pred_class) # Make prediction preds = model_predict(file_path, model) print(preds) number_to_class = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] index = np.argsort(preds[0,:]) # for x in range(len(number_to_class)): # if number_to_class[x] == 1: # print(preds[0][i]) # Process your result for human pred_class = preds.argmax(axis=-1) # Simple argmax # pred_class = decode_predictions(preds, top=1) # ImageNet Decode # result = str(pred_class[0][1]) # Convert to string return str(number_to_class[index[9]])+str(" index : ")+str(pred_class) return None if __name__ == '__main__': app.run()
aa36fc5578e1ff9d3e2ca3774590d9e2ac4b034b
353def93fa77384ee3a5e3de98cfed318c480634
/.history/week01/hoework01/gettop10frommaoyam01_20200626091702.py
d2722f72cb3c318b6baafd5cd7fd7285bc7c6d98
[]
no_license
ydbB/Python001-class01
d680abc3ea1ccaeb610751e3488421417d381156
ad80037ccfc68d39125fa94d2747ab7394ac1be8
refs/heads/master
2022-11-25T11:27:45.077139
2020-07-19T12:35:12
2020-07-19T12:35:12
272,783,233
0
0
null
2020-06-16T18:28:15
2020-06-16T18:28:15
null
UTF-8
Python
false
false
2,407
py
# 使用requests,bs4库,爬取猫眼电影top10的电影名称、电影类型、上映时间,并以utf-8的字符集保存到csv文件中 import requests from bs4 import BeautifulSoup as bs maoyanUrl = "https://maoyan.com/board/4"; user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36' header = { 'Content-Type': 'text/plain; charset=UTF-8', 'Cookie' : '__mta=251934006.1593072991075.1593100662316.1593100664951.15; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593075275703.1593078726963.7; mojo-session-id={"id":"435818e6a726415f46defffa27f7abc6","time":1593100221937}; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593100665; mojo-trace-id=17; _lxsdk_s=172ec2bff67-0c2-e9f-c64%7C%7C24__mta=251934006.1593072991075.1593100690175.1593100868002.17; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593075275703.1593078726963.7; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593100868; _lxsdk_s=172ee2f4a3e-1c2-3a1-5a4%7C%7C1', # 'Host' : 'http://www.baidu.com', 'Origin': 'https://maoyan.com', 'Referer': 'https://maoyan.com/board/4', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36', } response = requests.get(maoyanUrl,headers=header) response.encoding = 'utf-8' bs_info = bs(response.text,"html.parser") # print(response.text) for tag in bs_info.find_all('div',attrs={'class' : 'movie-item-content'}): print(tag)
291422589918cff1a01a7a361b4c182bc37e09c5
65dba58b620e89db5113a60cf184cd6b26129e05
/terms.py
4b022f5ca152be0c0bbc7c9cb89af0bf9d827ca0
[]
no_license
PriyankVIT/laughing-octo-journey
de3b32d69a170b97e71e4124dee0210e88d66a7b
a6849f4b42527ef4ccc67de6225954447e5a653a
refs/heads/master
2020-08-23T10:59:00.633921
2019-10-21T15:09:15
2019-10-21T15:09:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,586
py
import pandas as pd import numpy as np from nltk import sent_tokenize,word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from sklearn.metrics.pairwise import cosine_similarity import networkx as nx stop = set(stopwords.words("english")) path="terms.txt" parsedata=[] count=0 with open(path) as fp: while True: messages=[] line=fp.readline() line=line.lower() if not line: print("False") break else: sent=sent_tokenize(line) for y in sent: count+=1 print(y) messages=[count,y] parsedata.append(messages) print(messages) data= pd.DataFrame(parsedata,columns=['index','article']) data.to_csv("terms.csv") print(count) terms=pd.read_csv("terms.csv") terms=terms[['index','article']] def stopwords_removal(line): line=" ".join(x for x in line.split() if x not in stop) return line porter = PorterStemmer() lancaster=LancasterStemmer() def stemSentence(sentence): token_words=word_tokenize(sentence) token_words stem_sentence=[] for word in token_words: stem_sentence.append(lancaster.stem(word)) stem_sentence.append(" ") return "".join(stem_sentence) terms['article']=terms['article'].apply(stopwords_removal) sentences = [] for s in terms['article']: sentences.append(sent_tokenize(s)) sentences = [y for x in sentences for y in x] # flatten list word_embeddings = {} f = open('./glove/glove.6B.100d.txt', encoding='utf-8') for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') word_embeddings[word] = coefs f.close() sentence_vectors = [] for i in sentences: if len(i) != 0: v = sum([word_embeddings.get(w, np.zeros((100,))) for w in i.split()])/(len(i.split())+0.001) else: v = np.zeros((100,)) sentence_vectors.append(v) sim_mat = np.zeros([len(sentences), len(sentences)]) for i in range(len(sentences)): for j in range(len(sentences)): if i != j: sim_mat[i][j] = cosine_similarity(sentence_vectors[i].reshape(1,100), sentence_vectors[j].reshape(1,100))[0,0] nx_graph = nx.from_numpy_array(sim_mat) scores = nx.pagerank(nx_graph) ranked_sentences = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True) for i in range(10): print(ranked_sentences[i][1])
5e44fefed00ea0624611ac5adddfb6765354a441
6b48567be365c5a8129511418b87dd1ace781662
/artshop/apps.py
ecaad5d816515cf3f594cc3d3fcde153e768304d
[]
no_license
rachitptah/ptah
8c7e42c5adb57412df2c5b07799d49104abbfc5c
28757e68c7008b13d1c3ad1880fc8b1e0647e35d
refs/heads/master
2020-05-29T08:54:08.475804
2016-10-15T06:22:59
2016-10-15T06:22:59
69,261,039
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
from __future__ import unicode_literals from django.apps import AppConfig class ArtshopConfig(AppConfig): name = 'artshop'
[ "Rachit Agarwal" ]
Rachit Agarwal
c4675dce2279ea3da44cfb77ff37f04d65a568de
b40c523eb48e899763cefbc5cbac1a9538b7524c
/test.py
a55de7e64221ef48a92e6455c286761886ce54cd
[]
no_license
kalexrt/Image-Colorization-using-CNN
b5ad355fa286280a61535bf245015d25d3108b16
f69f4e7b6e550f22c289e44d977af0602b8309d9
refs/heads/master
2023-03-16T08:31:15.299794
2018-10-11T08:23:17
2018-10-11T08:23:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
905
py
#dependencies import numpy as np import cv2 import os def read_images(path): images = [] all_paths = os.listdir(path) mini_set = all_paths[:400] for i in mini_set: file = path+"/"+i image = cv2.imread(file) image = cv2.resize(image,(128,128)) images.append(image) return images x = read_images("C:/Users/Arghyadeep/Desktop/image colorization/new process/val2017") #cv2.imshow('image',x[1]) def extract_channels(lab_images): l_channels = [] a_channels = [] b_channels = [] for i in lab_images: l,a,b = cv2.split(i) l_channels.append(l) a_channels.append(a) b_channels.append(b) return np.array(l_channels), np.array(a_channels), np.array(b_channels) l,a,b = cv2.split(x[1]) l = np.array(l) l = l.reshape(128,128) l = np.array(l) print(l) cv2.imshow('img',l)
1196e65bd8eaa474fa05264612daeb33c78b55f2
61b02c4ce6aee3ff3d04c35f56c15f312c93928c
/2-strings/8-regex-multiline-patterns.py
6b6ba7195872bba422a36229b34c938fa8b8d36c
[]
no_license
thales-mro/python-cookbook
1156c1a5d54b746e46dc49e8db73b324a7f8bd94
c45e5f698aaeab5c1baa018e209d10d7b26f0a04
refs/heads/master
2020-11-25T20:33:43.859266
2020-01-15T22:30:03
2020-01-15T22:30:03
228,833,582
0
0
null
null
null
null
UTF-8
Python
false
false
568
py
import re def main(): print("Dot operator does not take into consideration line breaks. Adaptation with non-capture group is needed.") comment = re.compile(r'/\*((?:.|\n)*?)\*/') text1 = '/* this is a comment in C */' text2 = '''/* this is a multiline comment in C */ ''' print(comment.findall(text1)) print(comment.findall(text2)) print("Or, using the DOTALL flag:") comment = re.compile(r'/\*(.*?)\*/', re.DOTALL) print(comment.findall(text1)) print(comment.findall(text2)) if __name__ == "__main__": main()
615479573109830cab79f8034fdf70a64c7497c5
56a813086d56a1c5c7c7dd84cf1da70d98f6cca8
/csv-tools/find_key_word.py
d6c1af658e9fe88fc7ccadcba0a3905ba596f6b9
[ "MIT" ]
permissive
kokdemo/nlp-toolkit-for-pm
1c475d870748171f26a166c6801bd673d2d2d1c1
dd34307e8ffc1280443a2268b07e27a5d7bf1f3e
refs/heads/master
2022-02-01T05:21:53.593690
2022-01-19T03:27:22
2022-01-19T03:27:22
148,502,424
0
0
null
null
null
null
UTF-8
Python
false
false
943
py
import csv def read_csv(file_path_name,origin_row_header,keyword): res_arr = [] csv_file = open(file_path_name,"r") print('文件打开完成,地址在'+file_path_name) dict_reader = csv.DictReader(csv_file) for row in dict_reader: if if_find_keyword(row[origin_row_header],keyword) == 1: res_arr.append(row) csv_file.close() return res_arr def if_find_keyword(text,keyword): if text.find(keyword) == -1: return 0 else: return 1 def write_csv(data,file_path_name,file_header): csv_file = open(file_path_name, "w") dict_writer = csv.DictWriter(csv_file, file_header) dict_writer.writeheader() for row in data: dict_writer.writerow(row) csv_file.close() print('文件写入完成,地址在'+file_path_name) return 0 res_data = read_csv(file_path_name,origin_row_header,keyword); write_csv(data,file_path_name,file_header);
8a344aae06dbeb32785b94bf82c33c8f84c20b41
55d13d3e41d8651facf7c26d60de5e8b8ace4be5
/piedpiper/crab/multicrab-0.py
ac77e6ce915307348ba0838f04a1b7373744c932
[]
no_license
phylsix/Firefighter
e8ab5fdbde2dab341a67740aa62c5710683e9bab
8f1d8d6e59b443a8216c70ebdd334b48945aeed0
refs/heads/master
2020-12-19T18:31:14.312639
2020-08-04T00:35:45
2020-08-04T00:35:45
235,812,142
0
1
null
null
null
null
UTF-8
Python
false
false
4,190
py
#!/usr/bin/env python from __future__ import print_function import os import sys import time from os.path import basename, join import yaml from CRABAPI.RawCommand import crabCommand from crabConfig_0 import * from Firefighter.piedpiper.utils import * verbose = False alwaysDoCmd = True if os.environ["CMSSW_BASE"] not in os.path.abspath(__file__): print("$CMSSW_BASE: ", os.environ["CMSSW_BASE"]) print("__file__: ", os.path.abspath(__file__)) sys.exit("Inconsistant release environment!") BASEDIR = join(os.environ["CMSSW_BASE"], "src/Firefighter/piedpiper") CONFIG_NAME = sys.argv[1] assert os.path.isfile(CONFIG_NAME) def main(): multiconf = yaml.load(open(CONFIG_NAME).read()) gridpacks = multiconf["gridpacks"] njobs = multiconf["njobs"] year = multiconf["year"] lxy = multiconf["lxy"] ctaus = multiconf.get("ctaus", None) assert len(gridpacks) == len(ctaus) ctaumap = dict(zip(gridpacks, ctaus)) config.Data.totalUnits = config.Data.unitsPerJob * njobs config.Data.outLFNDirBase += "/{0}".format(year) # loop through donelist = list() for gridpack in gridpacks: print("gridpack:", gridpack) #'SIDM_XXTo2ATo4Mu_mXX-1000_mA-0p25_slc6_amd64_gcc481_CMSSW_7_1_30_tarball.tar.xz' gridpack_name = basename(gridpack) ## outputPrimaryDataset: SIDM_XXTo2ATo4Mu or SIDM_XXTo2ATo2Mu2e config.Data.outputPrimaryDataset = gridpack_name.split("_mXX")[0] ## outputDatasetTag: mXX-1000_mA-0p25_lxy-0p3_ctau-0p001875_GENSIM_2018 mxxma = gridpack_name.split("_", 2)[-1].split("_slc")[0] lxystr = str(lxy).replace(".", "p") ctaustr = str(ctaumap[gridpack]).replace(".", "p") config.Data.outputDatasetTag = "{}_lxy-{}_ctau-{}_GENSIM_{}".format( mxxma, lxystr, ctaustr, year ) ## requestName config.General.requestName = "_".join( [ config.Data.outputPrimaryDataset, config.Data.outputDatasetTag, time.strftime("%y%m%d-%H%M%S"), ] ) if gridpack.startswith("root://"): cpcmd = "xrdcp -f {0} {1}".format(gridpack, join(BASEDIR, "cfg/gridpack.tar.xz")) elif gridpack.startswith("http"): cpcmd = "wget -q {} -O {}".format(gridpack, join(BASEDIR, "cfg/gridpack.tar.xz")) else: cpcmd = "cp {0} {1}".format(gridpack, join(BASEDIR, "cfg/gridpack.tar.xz")) if verbose: print("$", cpcmd) print( "$ cat", join(BASEDIR, "python/externalLHEProducer_and_PYTHIA8_Hadronizer_cff.py") ) print(get_gentemplate(year).format(CTAU=ctaumap[gridpack])) print("------------------------------------------------------------") print(config) print("------------------------------------------------------------") doCmd = True if alwaysDoCmd else raw_input("OK to go? [y/n]").lower() in ["y", "yes"] if doCmd: # 1. copy gridpack os.system(cpcmd) # 2. write genfrag_cfi with open( join(BASEDIR, "python/externalLHEProducer_and_PYTHIA8_Hadronizer_cff.py"), "w" ) as genfrag_cfi: genfrag_cfi.write(get_gentemplate(year).format(CTAU=ctaumap[gridpack])) # 3. write gen_cfg cfgcmd = get_command("GEN-SIM", year, rand=False) os.system(cfgcmd) # 4. crab submit crabCommand("submit", config=config) donelist.append(gridpack) print("submitted: ", len(donelist)) for x in donelist: print(x) print("------------------------------------------------------------") undonelist = [x for x in gridpacks if x not in donelist] print("unsubmitted: ", len(undonelist)) for x in undonelist: print(x) if undonelist: with open("unsubmitted-0.yml.log", "w") as outf: yaml.dump( {"gridpacks": undonelist, "njobs": njobs, "year": year}, outf, default_flow_style=False, ) if __name__ == "__main__": main()
5fdc08551c6d8e928a2cdfe94f16b447b3157fe9
90d7e077d4b5aac29d9aac2352d7d56da35bdd65
/spell_checker.py
b6785324e2771cf2b86fc9705823d40153543c5c
[]
no_license
Apoorv7092/Ori
2d0fb807b50dfb3f4ac64d6a33992ac2cb4db3ee
46af2ee06d7427d36697bf1f3c1a1d6ad39d0224
refs/heads/main
2023-06-24T07:49:59.339665
2021-07-23T05:23:01
2021-07-23T05:23:01
388,685,970
0
0
null
null
null
null
UTF-8
Python
false
false
3,381
py
import pandas as pd import parameters import re from collections import Counter def words(text): return re.findall(r'\w+', text.lower()) fdf = pd.read_excel(parameters.training_data) #message_col=list(fdf['message']) tadaa = " ".join(list(fdf["message"])) #tadaa = open('/home/rajput/Documents/Fasttext_final/testting/fastText-0.9.1/fastText-0.9.1/saddam70M').read() tadaa1 = open(parameters.spell_checker_file).read() tadaa+=tadaa1 word_list=tadaa.split() words_dict={} for i in range(len(word_list)): words_dict[word_list[i]]=i # print(type(tadaa)) # print(tadaa) WORDS = Counter(words(tadaa)) def P(word, N=sum(WORDS.values())): "Probability of `word`." return WORDS[word] / N def correction(word): "Most probable spelling correction for word." return max(candidates(word), key=P) def correction1(word): return max(candidates1(word), key=P) def candidates1(word): "Generate possible spelling corrections for word." #return (known([word]) or known(edits1(word)) or known(edits2(word)) or known(edit3(word)) or [word]) return (known([word]) or known(edits1(word)) or [word]) def candidates(word): "Generate possible spelling corrections for word." #return (known([word]) or known(edits1(word)) or known(edits2(word)) or known(edit3(word)) or [word]) return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word]) def known(words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in WORDS) def edits1(word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(word): "All edits that are two edits away from `word`." return (e2 for e1 in edits1(word) for e2 in edits1(e1)) # def edit3(word): # return (e3 for e2 in edits2(word) for e3 in edits2(e2)) def spell_checker(text): #print('enter text') #text1=input() text=text.split() modified_text=[] for word in text: if len(word)<=3: modified_text.append(word) elif len(word)==4: if word not in words_dict: modified_text.append(correction1(word)) else: modified_text.append(word) elif len(word)>4: if word not in words_dict: modified_text.append(correction(word)) else: modified_text.append(word) return " ".join(modified_text) #print(correction('recharg')) # while True: # text=input() # print(spell_checker(text)) # while True: # print('enter text') # text1=input() # text=text1.split() # modified_text=[] # for word in text: # if len(word)<=3: # modified_text.append(word) # else: # modified_text.append(correction(word)) # print(" ".join(modified_text)) # print(text1) # #print(correction('recharg'))
7b2362395c81e42eeb6741f5b8f5029495d61f19
182147503928530968928be0f0dbfd721f4f6bc5
/test/transforms/test_minmaxscaler.py
827e5f4f14772038a4afaa5b1dcf6013db683b13
[ "MIT" ]
permissive
omarirfa/praudio
dd04378b858f0d88382fbcf398deb318ed1e6cf1
cc01f904eb22ff4c8a3dc4d69991c52feb843f3b
refs/heads/main
2023-07-22T18:15:59.056767
2021-08-27T21:41:00
2021-08-27T21:41:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
import numpy as np import pytest from praudio.transforms.scaling.minmaxscaler import MinMaxScaler from praudio.transforms.transform import TransformType from utils_transforms import sample_signal @pytest.fixture def min_max_scaler(): return MinMaxScaler(-1., 1.) def test_loader_instance_is_instantiated_correctly(min_max_scaler): assert isinstance(min_max_scaler, MinMaxScaler) assert min_max_scaler.min_val == -1. assert min_max_scaler.max_val == 1. assert min_max_scaler.name == TransformType.MINMAXSCALER def test_signal_is_normalised(min_max_scaler, sample_signal): """ GIVEN a Signal object AND a min_val max_val normaliser object WHEN the signal is passed to process THEN the signal is normalised """ original_signal = sample_signal.data[:] signal = min_max_scaler.process(sample_signal) assert signal.name == "minmaxscaler_dummy" assert type(signal.data) == np.ndarray assert len(signal.data) == len(original_signal) assert signal.data.max() == 1 assert signal.data.min() == -1 def test_1d_array_is_min_max_normalised(min_max_scaler): array = np.array([-2, 0, 2]) norm_array = min_max_scaler._scale(array) assert np.array_equal(norm_array, np.array([-1, 0, 1])) def test_2d_array_is_min_max_normalised(min_max_scaler): array = np.array([ [-2, 0, 2], [-4, 0, 4] ]) expected_norm_array = np.array([ [-.5, 0, .5], [-1, 0, 1] ]) norm_array = min_max_scaler._scale(array) assert np.array_equal(norm_array, expected_norm_array)
cfaca9464e29f20b8f94525c65c6d37541644890
37c7336cc40a133027460574a3afb6d4657ea2dd
/imgur/imgur
d9cfe70042cc57835226a51a17c9e6ad57251c1a
[]
no_license
udion/config
c1dc12e76ee00f379d293099b8b539e38a71a818
5c41cc81ad237d992318e9f5a20152b808292a5e
refs/heads/master
2020-03-23T17:46:20.610632
2018-07-20T20:05:59
2018-07-20T20:05:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
537
#! /usr/bin/python from sh import curl # install `sh` with `pip install sh` import json import sys try: resp = curl( "https://api.imgur.com/3/image", H="Authorization: Client-ID 4dda043bff518d8", # Get your client ID from imgur.com X="POST", F='image=@%s' % sys.argv[1] ) objresp = json.loads(resp.stdout) if objresp.get('success', False): print objresp['data']['link'] else: print 'Error: ', objresp['data']['error'] except Exception as e: print 'Error: ', e
d3bd8c51d6239f19186109f0ca17cf57933c4503
1d26fcc1673c78a03b2474102dddd63234863657
/440 Final Project/neuralDigits.py
b692034f3653646f7b23a8fecc18f034a5786ea0
[]
no_license
taotao-mars/AI-final-project
b47622927f87c83e863d28e59fb7a59d6afdc7f1
b3e5892afad3dce64843b4c5efaab42917af42ff
refs/heads/master
2020-03-16T17:38:34.619149
2018-05-10T03:18:27
2018-05-10T03:18:27
132,841,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
import samples import numpy as np from neuralNetwork import NeuralNetworkClassifier def testing(num): trainData = np.load("traindigitbasic.npy") trainLabels = samples.loadLabelsFile("data/digitdata/traininglabels", num) testData = np.load("testdigitbasic.npy") testLabels = samples.loadLabelsFile("data/digitdata/testlabels", 1000) validData = np.load("validationdigitbasic.npy") validLabels = samples.loadLabelsFile("data/digitdata/validationlabels", 1000) neural = NeuralNetworkClassifier(28 * 28, 50, 10, num, 3.5) neural.train(trainData[:,0:num], trainLabels, 100) print "*************Test Data*************" guess = neural.classify(testData) samples.verify(neural, guess, testLabels) print "***********************************" print "************Valid Data*************" guess = neural.classify(validData) samples.verify(neural, guess, validLabels) if __name__ == "__main__": sampleDigit=[500,1000,1500,2000,2500,3000,3500,4000,4500,5000] sampleFace=[45,90,135,180,225,270,315,300,405,450] sample=sampleDigit for i in range(len(sample)): print str(10*(i+1))+"%% training data, %d" % sample[i] testing(sample[i]) print "***********************************"
b01aad91cb35baf3abbd1c78c8d260ab60c60cd9
a4e2274db63cc2ab16ef3eda7cfde21d368e9605
/N_50_59/N_58_2_leftReverse.py
1970cf81a0388c97f4821fb038a00eee97e37f20
[]
no_license
Simple-fang/sword-offer2-python
3bfcae25697afc9fc152bc7ef808c5bf18035af5
8e16b3f647d6e7d29ac18352a109b20630feb688
refs/heads/master
2020-07-08T22:28:10.129057
2019-08-29T15:18:44
2019-08-29T15:18:44
203,797,038
0
0
null
null
null
null
UTF-8
Python
false
false
877
py
# -*- coding:utf-8 -*- class Solution: # 整体和部分分别旋转 def leftReverse(self, s, k): if not isinstance(s, str) or len(s) == 0 or s == None or k <= 0: return '' strList = list(s) self.reverse(strList, 0, k-1) self.reverse(strList, k, len(strList)-1) self.reverse(strList, 0, len(strList)-1) return ''.join(strList) def reverse(self, s, i, j): if i > j: return '' while i <= j: c = s[i] s[i] = s[j] s[j] = c i += 1 j -= 1 # 直接使用python字符串拼接 def leftReverse2(self, s, k): if not isinstance(s,str) or len(s)<=0 or s==None or k<0: return '' return s[k:] + s[:k] test = Solution() s = "123456789" print test.leftReverse(s,4) print test.leftReverse2(s,4)
59b5cc9e5c1652af2d3ffa90116d914e8aaf7578
985c66c2fcdf22545dd27a1c9e299a5e862fdf06
/020.py
88c4480d684a50fd9e59da83a614b7ee0fbb1aa7
[]
no_license
arpit0891/project-euler-1
a9a6016158a15ea45f1eba1698bd914fb1d10a52
e0dcec507a708265e655baec5a4d7bdb7b8540fa
refs/heads/master
2021-02-23T01:31:32.843196
2013-05-04T10:43:20
2013-05-04T10:43:20
245,389,882
1
0
null
2020-03-06T10:21:39
2020-03-06T10:21:38
null
UTF-8
Python
false
false
392
py
#!/usr/bin/python # -*- coding: utf-8 -*- #n! means n × (n − 1) × ... × 3 × 2 × 1 #For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, #and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. #Find the sum of the digits in the number 100! #Answer: #648 from mathplus import factorial M = 100 print(sum(int(digit) for digit in str(factorial(M))))
cc6617779ee02a128a2381e1bb8d2819c9b0c84c
726d8518a8c7a38b0db6ba9d4326cec172a6dde6
/1282. Group the People Given the Group Size They Belong To/Solution.py
4944ab7312ab85c95887d096c509715247085dc7
[]
no_license
faterazer/LeetCode
ed01ef62edbcfba60f5e88aad401bd00a48b4489
d7ba416d22becfa8f2a2ae4eee04c86617cd9332
refs/heads/master
2023-08-25T19:14:03.494255
2023-08-25T03:34:44
2023-08-25T03:34:44
128,856,315
4
0
null
null
null
null
UTF-8
Python
false
false
365
py
from typing import List class Solution: def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]: res = [] groups = {} for i, e in enumerate(groupSizes): groups.setdefault(e, []).append(i) if len(groups[e]) == e: res.append(groups[e]) groups[e] = [] return res
5504d599f5231dfb970d783217327010a3757c72
e5e2b7da41fda915cb849f031a0223e2ac354066
/sdk/python/pulumi_azure_native/netapp/v20201201/snapshot.py
5dc6e64c2d7c5f24cdb196fcb956b80495f2cc6e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
johnbirdau/pulumi-azure-native
b7d3bdddeb7c4b319a7e43a892ddc6e25e3bfb25
d676cc331caa0694d8be99cb90b93fa231e3c705
refs/heads/master
2023-05-06T06:48:05.040357
2021-06-01T20:42:38
2021-06-01T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,959
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['SnapshotArgs', 'Snapshot'] @pulumi.input_type class SnapshotArgs: def __init__(__self__, *, account_name: pulumi.Input[str], pool_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], volume_name: pulumi.Input[str], location: Optional[pulumi.Input[str]] = None, snapshot_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Snapshot resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[str] pool_name: The name of the capacity pool :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] volume_name: The name of the volume :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] snapshot_name: The name of the mount target """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "pool_name", pool_name) pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "volume_name", volume_name) if location is not None: pulumi.set(__self__, "location", location) if snapshot_name is not None: pulumi.set(__self__, "snapshot_name", snapshot_name) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ The name of the NetApp account """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter(name="poolName") def pool_name(self) -> pulumi.Input[str]: """ The name of the capacity pool """ return pulumi.get(self, "pool_name") @pool_name.setter def pool_name(self, value: pulumi.Input[str]): pulumi.set(self, "pool_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="volumeName") def volume_name(self) -> pulumi.Input[str]: """ The name of the volume """ return pulumi.get(self, "volume_name") @volume_name.setter def volume_name(self, value: pulumi.Input[str]): pulumi.set(self, "volume_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="snapshotName") def snapshot_name(self) -> Optional[pulumi.Input[str]]: """ The name of the mount target """ return pulumi.get(self, "snapshot_name") @snapshot_name.setter def snapshot_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "snapshot_name", value) class Snapshot(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, pool_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, snapshot_name: Optional[pulumi.Input[str]] = None, volume_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Snapshot of a Volume :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] pool_name: The name of the capacity pool :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] snapshot_name: The name of the mount target :param pulumi.Input[str] volume_name: The name of the volume """ ... @overload def __init__(__self__, resource_name: str, args: SnapshotArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Snapshot of a Volume :param str resource_name: The name of the resource. :param SnapshotArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SnapshotArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, pool_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, snapshot_name: Optional[pulumi.Input[str]] = None, volume_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SnapshotArgs.__new__(SnapshotArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["location"] = location if pool_name is None and not opts.urn: raise TypeError("Missing required property 'pool_name'") __props__.__dict__["pool_name"] = pool_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["snapshot_name"] = snapshot_name if volume_name is None and not opts.urn: raise TypeError("Missing required property 'volume_name'") __props__.__dict__["volume_name"] = volume_name __props__.__dict__["created"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["snapshot_id"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20201201:Snapshot"), pulumi.Alias(type_="azure-native:netapp:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20170815:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20170815:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20190501:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20190501:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20190601:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20190601:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20190701:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20190701:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20190801:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20190801:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20191001:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20191001:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20191101:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20191101:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200201:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200201:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200301:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200301:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200501:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200601:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200701:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200801:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20200901:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20201101:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20210201:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20210201:Snapshot"), pulumi.Alias(type_="azure-native:netapp/v20210401preview:Snapshot"), pulumi.Alias(type_="azure-nextgen:netapp/v20210401preview:Snapshot")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Snapshot, __self__).__init__( 'azure-native:netapp/v20201201:Snapshot', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Snapshot': """ Get an existing Snapshot resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SnapshotArgs.__new__(SnapshotArgs) __props__.__dict__["created"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["snapshot_id"] = None __props__.__dict__["type"] = None return Snapshot(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def created(self) -> pulumi.Output[str]: """ The creation date of the snapshot """ return pulumi.get(self, "created") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="snapshotId") def snapshot_id(self) -> pulumi.Output[str]: """ UUID v4 used to identify the Snapshot """ return pulumi.get(self, "snapshot_id") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type")
d21dbb0c57c7a975df7de3bd6cb16ad4802d1866
e4104ad99575a394157b480dc8724a026cb743b7
/web_develop/apps.py
1ca6c73e9d7223367f11a829f9805584c1b696dd
[]
no_license
fourston/UnitCube
f0ca2e40e296db60f0aa3d2769fe360205da2eb0
c008ef0947e4448c433d4b5a7615ae1ca8f41fc5
refs/heads/master
2021-05-06T21:42:45.015419
2017-11-29T23:53:12
2017-11-29T23:53:12
112,540,816
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
from django.apps import AppConfig class WebDevelopConfig(AppConfig): name = 'web_develop'
e1ca10f66fe6e4a01b92ace526335679d0427751
42f4238073a70d1494537f8c8b07835b531e73a9
/benchmarks/beach/redist_beach_erosion_board_waves_3d_c0p1_n.py
e0d724264d63efa1c4516fe87fb96968f2ac296f
[]
no_license
erdc/proteus-mprans
bd99257af7b3bbe08386533faf072dba22e93a61
f8f4d20bc870b361c64c8ca2ceb99f045b373323
refs/heads/master
2022-09-11T13:18:39.973962
2022-08-11T16:27:29
2022-08-11T16:27:29
2,303,947
3
1
null
null
null
null
UTF-8
Python
false
false
2,767
py
from proteus import * from proteus.default_n import * from redist_beach_erosion_board_waves_3d_p import * from beach_erosion_board_waves_3d import * if rdtimeIntegration == 'newton': timeIntegration = NoIntegration stepController = Newton_controller elif rdtimeIntegration == 'tte': timeIntegration = BackwardEuler_cfl timeIntegration = PsiTCtte elif rdtimeIntegration == 'osher-fmm': timeIntegration = BackwardEuler_cfl stepController = Osher_FMM_controller runCFL=1.0 else: timeIntegration = BackwardEuler_cfl stepController = Osher_PsiTC_controller #stepController = Osher_controller runCFL=1.0 # timeIntegration = PsiTCtte # stepController = PsiTCtte_controller # rtol_res[0] = 0.0 # atol_res[0] = 0.1*L[0]/(nn-1.0)#10% of he #runCFL=1.0 #DT=None if spaceOrder == 1: femSpaces = {0:C0_AffineLinearOnSimplexWithNodalBasis} if spaceOrder == 2: femSpaces = {0:C0_AffineQuadraticOnSimplexWithNodalBasis} elementQuadrature = SimplexGaussQuadrature(nd,sloshbox_quad_order) elementBoundaryQuadrature = SimplexGaussQuadrature(nd-1,sloshbox_quad_order) subgridErrorType = HamiltonJacobi_ASGS if LevelModelType == RDLS.LevelModel:#RDLSV2.OneLevelRDLSV2 and not RDLSV2.debugRDLS: subgridErrorType = HamiltonJacobi_ASGS_opt if rdtimeIntegration == 'newton': subgridError = subgridErrorType(coefficients,nd,stabFlag='2',lag=False) else: subgridError = subgridErrorType(coefficients,nd,stabFlag='2',lag=True) #subgridError = HamiltonJacobi_ASGS(coefficients,nd,lag=True) shockCapturing = None #shockCapturing = ResGrad_SC(coefficients,nd,shockCapturingFactor=0.9,lag=False) if rdtimeIntegration == 'newton': shockCapturing = ResGradQuad_SC(coefficients,nd,shockCapturingFactor=rd_shockCapturingFactor,lag=False) else: shockCapturing = ResGradQuad_SC(coefficients,nd,shockCapturingFactor=rd_shockCapturingFactor,lag=True) massLumping = False #multilevelNonlinearSolver = MultilevelEikonalSolver #levelNonlinearSolver = UnstructuredFMMandFSWsolvers.FMMEikonalSolver multilevelNonlinearSolver = NLNI levelNonlinearSolver = Newton if rdtimeIntegration != 'newton': maxLineSearches = 0 nonlinearSmoother = NLGaussSeidel fullNewtonFlag = True #this needs to be set appropriately for pseudo-transient tolFac = 0.0 nl_atol_res = 0.01*L[0]/nn atol_res[0] = 1.0e-6 #for pseudo transient rtol_res[0] = 0.0 numericalFluxType = DoNothing maxNonlinearIts = 50 #1 for PTC matrix = SparseMatrix if usePETSc: numericalFluxType = DoNothing multilevelLinearSolver = PETSc levelLinearSolver = PETSc else: multilevelLinearSolver = LU levelLinearSolver = LU linearSmoother = GaussSeidel linTolFac = 0.001 conservativeFlux = None
68f09c614ab5f1231f49f77c4804d2cb9765d55d
90df1c6ccfd65a51e44c067f5079c2262f0fd767
/BarChart.py
b397a0ab5bcf7d788b23b72807454aa8c7e45f50
[]
no_license
sudalvi/First-Week
f8083211721d16e051d7898225cd8c17912fbc14
7a6e952229c6af12d69e27b9486e7aee4480779e
refs/heads/master
2020-06-01T06:59:23.991506
2019-06-07T04:52:35
2019-06-07T04:52:35
190,689,426
0
0
null
null
null
null
UTF-8
Python
false
false
1,812
py
import matplotlib.pyplot as plt x = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++'] popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7] pos = [ i for i , _ in enumerate(x)] plt.bar(pos, popularity, color =(0.4, 0.6, 0.8, 1.0), edgecolor="blue") plt.xticks(pos, x) plt.minorticks_on() plt.xlabel("Language") plt.ylabel("Popularity") plt.title("Bar Chart For Programing Language Poularity") plt.grid(which="major", linestyle='-', linewidth='0.5', color="red") plt.grid(which="minor", linestyle=":", linewidth='0.5', color="black") plt.show() #Horizental Chart y = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++'] popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7] pos = [ i for i , _ in enumerate(y)] plt.barh(pos, popularity, color =['purple', 'red', 'orange', 'yellow', 'pink','cyan'], edgecolor="blue") plt.yticks(pos, y) plt.minorticks_on() plt.ylabel("Language") plt.xlabel("Popularity") plt.title("Bar Chart For Programing Language Poularity") plt.grid(which="major", linestyle='-', linewidth='0.5', color="red") plt.grid(which="minor", linestyle=":", linewidth='0.5', color="black") plt.show() #Text Lable On Bar x = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++'] popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7] x_pos = [i for i, _ in enumerate(x)] fig, ax = plt.subplots() rects1 = ax.bar(x_pos, popularity, color='b') plt.xlabel("X axis") plt.ylabel("Y axis") plt.title("Text Lable on Bar Chart") plt.xticks(x_pos, x) plt.minorticks_on() plt.grid(which="major", linestyle="-", linewidth="0.5", color="red") plt.grid(which="minor", linestyle=":", linewidth="0.5", color="blue") def autolabel(rects): for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%f' % float(height), ha="center", va="bottom") autolabel(rects1) plt.show()
a9bb0f690afa0a9da4041ea70f4527cbe0ef2c3a
761beb2a465800f992c8590767d8cd84e1480a4c
/pySON.py
1175a5b0a060e8d6f1118ad7b2cf3bb8819ff340
[]
no_license
willh99/PRESS-RPi
5109aed872ef1f65249f683a3f68d141d4e995bb
5b0587158890c42f01538f36db91124cf507abe5
refs/heads/master
2021-04-28T08:05:17.638496
2018-04-11T17:46:10
2018-04-11T17:46:10
122,240,347
1
0
null
null
null
null
UTF-8
Python
false
false
1,814
py
import json import time import random import datetime def read_json(filename): if '.json' not in filename: return -1 try: with open(filename, 'r') as f: print("File \"", filename, "\" found", sep='') data = json.load(f) return data except FileNotFoundError: print("File Not Found") return -1 def append_json(data, filename): with open(filename, 'w') as f: json.dump(data, f, indent=2) # print("wrote to file") def create_status(buy, sell, isprice): now = datetime.datetime.now() now = now.strftime('%d-%m-%Y %X') data = {"Sell": sell, "Buy": buy, "Timestamp": now} if isprice: filename = 'price_status.json' else: filename = 'status.json' with open(filename, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) def profit_file(mode, profit): try: if mode == 'Read': with open('profit.txt', 'r') as f: return f.readline().split()[0] except FileNotFoundError: print("File Not Found") return 0 with open('profit.txt', 'w') as f: f.write(str(profit)) if __name__ == "__main__": json_list = [] for x in range(0, 100): i = random.random()*12.8 dictionary = {"Timestamp": time.asctime(time.localtime()), "Voltage": round(i, 6)} if len(json_list) >= 50: json_list.pop(0) json_list.append(dictionary) # time.sleep(.2) append_json(json_list) something = read_json('status.json') if something is not -1: print(json.dumps(something, indent=2)) profit_file('Write', 1129.124) print(profit_file('Read', 0))
e0887b70f4b7024270a588e59d6a5d81ec0959c3
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/signalrservice/v20210601preview/get_signal_r.py
e126d745e3c8f5f3fc1a5876c117c9fc8754627f
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,073
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetSignalRResult', 'AwaitableGetSignalRResult', 'get_signal_r', 'get_signal_r_output', ] @pulumi.output_type class GetSignalRResult: """ A class represent a resource. """ def __init__(__self__, cors=None, disable_aad_auth=None, disable_local_auth=None, external_ip=None, features=None, host_name=None, id=None, identity=None, kind=None, location=None, name=None, network_acls=None, private_endpoint_connections=None, provisioning_state=None, public_network_access=None, public_port=None, server_port=None, shared_private_link_resources=None, sku=None, system_data=None, tags=None, tls=None, type=None, upstream=None, version=None): if cors and not isinstance(cors, dict): raise TypeError("Expected argument 'cors' to be a dict") pulumi.set(__self__, "cors", cors) if disable_aad_auth and not isinstance(disable_aad_auth, bool): raise TypeError("Expected argument 'disable_aad_auth' to be a bool") pulumi.set(__self__, "disable_aad_auth", disable_aad_auth) if disable_local_auth and not isinstance(disable_local_auth, bool): raise TypeError("Expected argument 'disable_local_auth' to be a bool") pulumi.set(__self__, "disable_local_auth", disable_local_auth) if external_ip and not isinstance(external_ip, str): raise TypeError("Expected argument 'external_ip' to be a str") pulumi.set(__self__, "external_ip", external_ip) if features and not isinstance(features, list): raise TypeError("Expected argument 'features' to be a list") pulumi.set(__self__, "features", features) if host_name and not isinstance(host_name, str): raise TypeError("Expected argument 'host_name' to be a str") pulumi.set(__self__, "host_name", host_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_acls and not isinstance(network_acls, dict): raise TypeError("Expected argument 'network_acls' to be a dict") pulumi.set(__self__, "network_acls", network_acls) if private_endpoint_connections and not isinstance(private_endpoint_connections, list): raise TypeError("Expected argument 'private_endpoint_connections' to be a list") pulumi.set(__self__, "private_endpoint_connections", private_endpoint_connections) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if public_network_access and not isinstance(public_network_access, str): raise TypeError("Expected argument 'public_network_access' to be a str") pulumi.set(__self__, "public_network_access", public_network_access) if public_port and not isinstance(public_port, int): raise TypeError("Expected argument 'public_port' to be a int") pulumi.set(__self__, "public_port", public_port) if server_port and not isinstance(server_port, int): raise TypeError("Expected argument 'server_port' to be a int") pulumi.set(__self__, "server_port", server_port) if shared_private_link_resources and not isinstance(shared_private_link_resources, list): raise TypeError("Expected argument 'shared_private_link_resources' to be a list") pulumi.set(__self__, "shared_private_link_resources", shared_private_link_resources) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if tls and not isinstance(tls, dict): raise TypeError("Expected argument 'tls' to be a dict") pulumi.set(__self__, "tls", tls) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if upstream and not isinstance(upstream, dict): raise TypeError("Expected argument 'upstream' to be a dict") pulumi.set(__self__, "upstream", upstream) if version and not isinstance(version, str): raise TypeError("Expected argument 'version' to be a str") pulumi.set(__self__, "version", version) @property @pulumi.getter def cors(self) -> Optional['outputs.SignalRCorsSettingsResponse']: """ Cross-Origin Resource Sharing (CORS) settings. """ return pulumi.get(self, "cors") @property @pulumi.getter(name="disableAadAuth") def disable_aad_auth(self) -> Optional[bool]: """ DisableLocalAuth Enable or disable aad auth When set as true, connection with AuthType=aad won't work. """ return pulumi.get(self, "disable_aad_auth") @property @pulumi.getter(name="disableLocalAuth") def disable_local_auth(self) -> Optional[bool]: """ DisableLocalAuth Enable or disable local auth with AccessKey When set as true, connection with AccessKey=xxx won't work. """ return pulumi.get(self, "disable_local_auth") @property @pulumi.getter(name="externalIP") def external_ip(self) -> str: """ The publicly accessible IP of the resource. """ return pulumi.get(self, "external_ip") @property @pulumi.getter def features(self) -> Optional[Sequence['outputs.SignalRFeatureResponse']]: """ List of the featureFlags. FeatureFlags that are not included in the parameters for the update operation will not be modified. And the response will only include featureFlags that are explicitly set. When a featureFlag is not explicitly set, its globally default value will be used But keep in mind, the default value doesn't mean "false". It varies in terms of different FeatureFlags. """ return pulumi.get(self, "features") @property @pulumi.getter(name="hostName") def host_name(self) -> str: """ FQDN of the service instance. """ return pulumi.get(self, "host_name") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource Id for the resource. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ManagedIdentityResponse']: """ The managed identity response """ return pulumi.get(self, "identity") @property @pulumi.getter def kind(self) -> Optional[str]: """ The kind of the service - e.g. "SignalR" for "Microsoft.SignalRService/SignalR" """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> Optional[str]: """ The GEO location of the resource. e.g. West US | East US | North Central US | South Central US. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkACLs") def network_acls(self) -> Optional['outputs.SignalRNetworkACLsResponse']: """ Network ACLs """ return pulumi.get(self, "network_acls") @property @pulumi.getter(name="privateEndpointConnections") def private_endpoint_connections(self) -> Sequence['outputs.PrivateEndpointConnectionResponse']: """ Private endpoint connections to the resource. """ return pulumi.get(self, "private_endpoint_connections") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicNetworkAccess") def public_network_access(self) -> Optional[str]: """ Enable or disable public network access. Default to "Enabled". When it's Enabled, network ACLs still apply. When it's Disabled, public network access is always disabled no matter what you set in network ACLs. """ return pulumi.get(self, "public_network_access") @property @pulumi.getter(name="publicPort") def public_port(self) -> int: """ The publicly accessible port of the resource which is designed for browser/client side usage. """ return pulumi.get(self, "public_port") @property @pulumi.getter(name="serverPort") def server_port(self) -> int: """ The publicly accessible port of the resource which is designed for customer server side usage. """ return pulumi.get(self, "server_port") @property @pulumi.getter(name="sharedPrivateLinkResources") def shared_private_link_resources(self) -> Sequence['outputs.SharedPrivateLinkResourceResponse']: """ The list of shared private link resources. """ return pulumi.get(self, "shared_private_link_resources") @property @pulumi.getter def sku(self) -> Optional['outputs.ResourceSkuResponse']: """ The billing information of the resource.(e.g. Free, Standard) """ return pulumi.get(self, "sku") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Tags of the service which is a list of key value pairs that describe the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def tls(self) -> Optional['outputs.SignalRTlsSettingsResponse']: """ TLS settings. """ return pulumi.get(self, "tls") @property @pulumi.getter def type(self) -> str: """ The type of the resource - e.g. "Microsoft.SignalRService/SignalR" """ return pulumi.get(self, "type") @property @pulumi.getter def upstream(self) -> Optional['outputs.ServerlessUpstreamSettingsResponse']: """ Upstream settings when the service is in server-less mode. """ return pulumi.get(self, "upstream") @property @pulumi.getter def version(self) -> str: """ Version of the resource. Probably you need the same or higher version of client SDKs. """ return pulumi.get(self, "version") class AwaitableGetSignalRResult(GetSignalRResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSignalRResult( cors=self.cors, disable_aad_auth=self.disable_aad_auth, disable_local_auth=self.disable_local_auth, external_ip=self.external_ip, features=self.features, host_name=self.host_name, id=self.id, identity=self.identity, kind=self.kind, location=self.location, name=self.name, network_acls=self.network_acls, private_endpoint_connections=self.private_endpoint_connections, provisioning_state=self.provisioning_state, public_network_access=self.public_network_access, public_port=self.public_port, server_port=self.server_port, shared_private_link_resources=self.shared_private_link_resources, sku=self.sku, system_data=self.system_data, tags=self.tags, tls=self.tls, type=self.type, upstream=self.upstream, version=self.version) def get_signal_r(resource_group_name: Optional[str] = None, resource_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSignalRResult: """ A class represent a resource. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str resource_name: The name of the resource. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['resourceName'] = resource_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:signalrservice/v20210601preview:getSignalR', __args__, opts=opts, typ=GetSignalRResult).value return AwaitableGetSignalRResult( cors=__ret__.cors, disable_aad_auth=__ret__.disable_aad_auth, disable_local_auth=__ret__.disable_local_auth, external_ip=__ret__.external_ip, features=__ret__.features, host_name=__ret__.host_name, id=__ret__.id, identity=__ret__.identity, kind=__ret__.kind, location=__ret__.location, name=__ret__.name, network_acls=__ret__.network_acls, private_endpoint_connections=__ret__.private_endpoint_connections, provisioning_state=__ret__.provisioning_state, public_network_access=__ret__.public_network_access, public_port=__ret__.public_port, server_port=__ret__.server_port, shared_private_link_resources=__ret__.shared_private_link_resources, sku=__ret__.sku, system_data=__ret__.system_data, tags=__ret__.tags, tls=__ret__.tls, type=__ret__.type, upstream=__ret__.upstream, version=__ret__.version) @_utilities.lift_output_func(get_signal_r) def get_signal_r_output(resource_group_name: Optional[pulumi.Input[str]] = None, resource_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetSignalRResult]: """ A class represent a resource. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str resource_name: The name of the resource. """ ...
fedf9a4adf68e18a4d492e204426b009e4c03540
299c07abf832ba8b0a4181c526f95d6f861c3623
/pages/views.py
483e3caba3bab343c52bb5dfe15734215146eb40
[]
no_license
ananyajana/hello-world
37640880b8df2b170a4d64a7893eced35cf07293
c498ec70016e22978f2c3f0365d6a38522254b72
refs/heads/master
2023-08-14T22:52:25.634216
2020-05-25T11:38:28
2020-05-25T11:38:28
266,763,806
0
0
null
2021-09-22T19:09:50
2020-05-25T11:39:56
Python
UTF-8
Python
false
false
166
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def homePageView(request): return HttpResponse('Hello, World!')
89baa3c77a0325571b7687166c88e9b24ca6bc99
22e496318558b8ad489fcd1f1a40de96161f29e8
/source/body2d.py
3bbf70ca732140f600fb41dc3755aa2c6a80595c
[]
no_license
x00001101/py
a56000c07683521329cec7e13cfbb6ae5cb0a296
418b467353edf6d82cde35c140486cb47d875c97
refs/heads/master
2023-06-12T09:28:11.541361
2021-07-04T12:11:09
2021-07-04T12:11:09
381,191,900
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
import pygame from source.variable import * class body2d: def __init__(self): pass def render(self, x, y, width, height): body = pygame.Rect(x, y + height//2, width, height//2)
2b17091186348ffd159fcb0740f2e1355f414123
42407abcb0b5bae8f2becd20995b3272ddf24a8c
/GANs/simple_gan.py
7f95539411e188a86db54d87fed8d2239dcd0d93
[]
no_license
xeddmc/POCs
4313e6a3c8b473db6f8d975bbf27fba37e13dfc6
b8c8ea1a839c23fc5c35997eb484ce9b0e9031b8
refs/heads/master
2023-03-15T11:58:35.438310
2020-04-03T05:14:27
2020-04-03T05:14:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,012
py
import os os.environ["KERAS_BACKEND"] = "tensorflow" import numpy as np import matplotlib.pyplot as plt from keras.layers import Input from keras.models import Model, Sequential from keras.layers.core import Reshape, Dense, Dropout, Flatten from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Convolution2D, UpSampling2D from keras.layers.normalization import BatchNormalization from keras.datasets import mnist from keras.optimizers import Adam from keras import backend as K from keras import initializers (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = (X_train.astype(np.float32) - 127.5)/127.5 X_train = X_train.reshape(60000, 784) def generator(): gen=Sequential() gen.add(Dense(256,input_dim=100)) gen.add(LeakyReLU(0.2)) gen.add(Dense(512)) gen.add(LeakyReLU(0.2)) gen.add(Dense(1024)) gen.add(LeakyReLU(0.2)) gen.add(Dense(784,activation='tanh')) gen.compile(loss='binary_crossentropy',optimizer=Adam(lr=0.0002, beta_1=0.5)) return gen def discriminator(): disc=Sequential() disc.add(Dense(1024,input_dim=784)) disc.add(LeakyReLU(0.2)) disc.add(Dropout(0.2)) disc.add(Dense(512)) disc.add(LeakyReLU(0.2)) disc.add(Dropout(0.2)) disc.add(Dense(256)) disc.add(LeakyReLU(0.2)) disc.add(Dropout(0.2)) disc.add(Dense(1,activation='sigmoid')) disc.compile(loss='binary_crossentropy',optimizer=Adam(lr=0.0002, beta_1=0.5)) return disc def stacked_GAN(gen,disc): disc.trainable=False gan_input=Input(shape=(100,)) x=gen(gan_input) gan_out=disc(x) gan_stack=Model(inputs=gan_input,outputs=gan_out) gan_stack.compile(loss='binary_crossentropy',optimizer=Adam(lr=0.0002, beta_1=0.5)) return gan_stack def test(gen,i): noise=np.random.normal(0,1,(1,100)) image=np.squeeze(gen.predict(noise),axis=0) plt.imsave('/home/vaibhav/deep_learning/gan/code/images2/epoch_%d'%i,image.reshape(28,28),format='jpg',cmap='gray') def train(max_iter,batch_size,gen,disc,gan_stack): for i in range(0,max_iter): noise=np.random.normal(0,1,(batch_size,100)) image_batch = X_train[np.random.randint(0, X_train.shape[0], size=batch_size)] fake_images=gen.predict(noise) final_images=np.concatenate([image_batch,fake_images]) final_labels=np.concatenate((np.ones((np.int64(batch_size), 1)), np.zeros((np.int64(batch_size), 1)))) disc.trainable=True disc_loss=disc.train_on_batch(final_images,final_labels) disc.trainable=False noise_gen=np.random.normal(0,1,(batch_size,100)) y_mis_labels=np.ones(batch_size) gen_loss=gan_stack.train_on_batch(noise,y_mis_labels) print('epoch_%d---->gen_loss:[%f]---->disc_loss:[%f]'%(i,gen_loss,disc_loss)) if i%100==0: #gen.save_weights('/home/vaibhav/deep_learning/gan/code/gen_weights/epoch_%d.h5'%i) #disc.save_weights('/home/vaibhav/deep_learning/gan/code/disc_weights/epoch_%d.h5'%i) test(gen,i) pass gen=generator() disc=discriminator() gan_stack=stacked_GAN(gen,disc) max_iter=20000 batch_size=32 train(max_iter,batch_size,gen,disc,gan_stack)
03622786a4de2d5c12beee1a16d5fba75dcf2347
29ad9caf139fab91580d7be36c9bd07623c4ca4d
/py/edu_freq_min.py
fc3b361beeafe60bea31d57a072936492e1f99f0
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-unknown" ]
permissive
bcgov/flatfile-tools
f324687389a508aad641131f70bb66c533917bbe
749071129cab7a598bd4c2edf050dce59324a97f
refs/heads/master
2021-06-10T15:14:08.266856
2021-05-13T14:23:48
2021-05-13T14:23:48
183,680,156
2
0
Apache-2.0
2020-04-15T02:21:47
2019-04-26T18:58:46
Python
UTF-8
Python
false
false
3,247
py
# 20190315 take pharmanet dispensations, look for earliest dispense date of drug type, as well as dispense frequency # output has same data, with freq and min_srv_date added import os import sys import time from misc import* def expected(f_name, lookup): if f_name not in lookup: err("expected field: " + str(f_name)) def freq_min(fn): f = open(fn) if f == None: err("failed to open file: " + str(fn)) fields = f.readline().strip().split(",") print fields lookup = {} for i in range(0, len(fields)): lookup[fields[i].lower()] = i print " ", lookup for i in ["studyid", "hp.din_pin"]: expected(i, lookup) #mindate, freq = f(studyid, hp.din_pin) dat = {} ci = 0 f_size = os.stat(fn).st_size tt = ttt = t_0 = time.time() while True: words = None try: words = f.readline().strip().split(",") except: break if words == ['']: continue for i in range(0, len(words)): words[i] = words[i].strip().lower() if len(words) != len(fields): print words err("wrong number of fields, check csv file") key = words[lookup["studyid"]] + "," + words[lookup["hp.gen_drug"]] if key not in dat: # freq = 1, min(serv_date) = serve_date dat[key] = [1, words[lookup["srv_date"]]] else: freq, min_serv_date = dat[key] freq += 1 date = words[lookup["srv_date"]] min_serv_date = min_serv_date if min_serv_date < date else date dat[key] = [freq, min_serv_date] ci += 1 if ci % 100000 == 0: ttt = tt tt = time.time() print "file", " %: ", 100. * (float(f.tell()) / float(f_size)), " MB/s:", (float(f.tell()) / 1000000.) / (tt- t_0)# f.close() f = open(fn) if f is None: err("failed to open file: " + str(fn)) print " +r " + fn g_n = fn + "_freq-min.csv" print " +w " + g_n g = open(g_n, "wb") print " +w " + g_n if g is None: err("failed to open file: " + str(g_n)) fields.append("freq") fields.append("min_srv_date") g.write(",".join(fields)) f.readline() # fields ci = 0 while True: line, words = None, None try: line = f.readline().strip() except: break if line == "": continue words = line.split(",") for i in range(0, len(words)): words[i] = words[i].strip().lower() key = words[lookup["studyid"]] + "," + words[lookup["hp.gen_drug"]] if key not in dat: err("key should have been found") freq, min_serv_date = dat[key] g.write("\n" + line + "," + str(freq) + "," + str(min_serv_date)) ci += 1 if ci % 100000 == 0: ttt = tt tt = time.time() print "file", " %: ", 100. * (float(f.tell()) / float(f_size)), " MB/s:", (float(f.tell()) / 1000000.) / (tt- t_0)# f.close() g.close() freq_min("dsp_rpt.dat_slice.csv_select-STUDY.csv_lookup.csv") freq_min("dsp_rpt.dat_slice.csv_select-CONTROL.csv_lookup.csv")
2c9cc86f812212a89a8a7ef7beb3f89062ce51fa
af8c27af80884e5d0d4ccb51ba469802bce9e8f3
/hari/urls.py
d3b079dd634fa575e3ada9ff0f1f9f73e1458429
[]
no_license
HariVardhanReddy123/Django
8b8b1bcb011d5a807b37597803dea392d92661bd
a12555fd2191997469b8032c6696a404560203a5
refs/heads/master
2023-07-07T23:15:46.388132
2021-08-22T11:12:13
2021-08-22T11:12:13
398,777,375
0
0
null
null
null
null
UTF-8
Python
false
false
788
py
"""hari URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('',include('home.urls')) ]
b7042ac12c864cf87d88242eccf186629d33bcf7
5c2b39d11d201110ec58fe04d96577189f768928
/WebServerSocketPt2.py
c7148a56e2e995e7279459270e3b017dd79a71c6
[]
no_license
Thaileaf/WebServer
4d34b02d16975522c547a76a00985a637b7170f2
5be24e60bfec9c5d788405b2432c80ebea7525be
refs/heads/main
2023-02-24T07:56:32.906769
2021-01-24T08:10:00
2021-01-24T08:10:00
332,134,472
0
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
import io import socket import sys class WSGIServer: address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 1 def __init__(self, server_address): # Initializes the listening socke self.listen_socket = listen_socket = socket.socket( self.address_family, self.socket_type ) # Sets socket option of reusing address at level of sol_socket(socket level) to 1 (True) listen_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Binds address to socket listen_socket.bind(server_address) # Listen to (request size) amount of requests listen_socket.listen(self.request_queue_size) # Gets server host name and port host, port = self.listen_socket.getsockname()[:2] # Get fully qualified domain name self.server_name = socket.getfqdn(host) self.server_port = port self.headers_set = []
15513b01280cc9299dd44d32f89de0877a1a65ee
41b743de20560539b3da72730ea7a3202b496225
/subcat/urls.py
c435b509c989147d90f2c15a556a3fa1ccb2d7b9
[]
no_license
V1TO-C/Django_Tutorial
ea379d53d48683393708e59eb8371c30b32a58c1
123801be0ca1eb5debc3329dabed6d313fb3b7b9
refs/heads/master
2023-01-04T22:23:04.775915
2020-10-28T17:54:36
2020-10-28T17:54:36
301,209,207
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^panel/subcat_list/$', views.subcat_list, name='subcat_list'), url(r'^panel/subcat_add/$', views.subcat_add, name='subcat_add'), url(r'^panel/subcat_delete/(?P<pk>\d+)$', views.subcat_delete, name='subcat_delete'), ]
dde81e93ee1d134f92771c4281c3c3de4a81daac
94478c8ecd9b2f4a9b0c37c7c43b3061d971c0ba
/test/test_parser.py
ef7b34e21a0640bf90749b4300f76e853b49b0a9
[ "MIT" ]
permissive
Larryun/coursenotify
fd7854774bce8f2d8d785e790726cbcee77dca69
e82794ba83d42c2cca9b2dc7c6e6108dcecaba54
refs/heads/master
2023-02-12T08:32:18.950579
2021-01-13T06:18:18
2021-01-13T06:18:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
import unittest from cn_v2.parser.course import * class TestParser(unittest.TestCase): def test_run(self): p = CourseParser("../config/dev.yaml", CourseParser.DA) # soup = p.get_soup() # p.save_soup(soup) result = list(set(p.parse())) print(len(result))
c7c0b024c76f35d87b2037f5b47756c06d171305
d5e251fee00fa17ceb1834a37ac2c5d0426cfab6
/firstapp/untitled.py
48dab678758d1fe41b17861e5d70740e94a17adc
[]
no_license
unique1o1/SmartSociety
068382dd203489c607cee9dbeb0db94268c4c03d
03b6b5fe8e2eb015cd4125c99a16c8d8988cc346
refs/heads/master
2021-01-21T06:39:46.820830
2019-03-08T13:00:38
2019-03-08T13:00:38
83,269,214
0
1
null
2017-02-27T07:59:56
2017-02-27T04:48:43
CSS
UTF-8
Python
false
false
233
py
from pyfirmata import Arduino, util class runcommmand(): def __init__(self): board = Arduino('/dev/ttyACM0') x=board.get_pin('d:13:i') x=x.read() return x def main(): hey=runcommmand() if __name__=="__main__": main()
73ca263730fd3355239897a0ff055657d5d6bcb3
f22fa4e546e2e3c441429ffbc9639411b858a903
/pylex/visit_nodes.py
6843396bd1d3d68a6cbd640e268caa8d1f85d4fc
[]
no_license
aleert/pylex
47f38f0554abfce06b2676d33c0f9fd34e99dff9
b13097247e3ef03de60c168fc4cbf0f47e6b0d3c
refs/heads/master
2020-05-19T04:23:25.128638
2019-05-17T21:20:38
2019-05-17T21:20:38
184,823,737
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
# -*- coding: utf-8 -*- import ast from ast import NodeVisitor from pathlib import Path from typing import Iterable from pylex import visitor_mixins NODE_TYPES = { 'FunctionDef': visitor_mixins.FunctionDefMixin, 'function': visitor_mixins.FunctionDefMixin, 'ClassDef': visitor_mixins.ClassDefMixin, 'class': visitor_mixins.ClassDefMixin, 'Assign': visitor_mixins.AssignMixin, 'assign': visitor_mixins.AssignMixin, } def count_pt_of_speech_in_tree( tree_path: Path, node_types: Iterable, target_part='VB', exclude_dunder=True, exclude_private=False, ): """Return (Counter(matching_names), num_nodes_explored) tuple.""" mixins = [] for node_type in node_types: if node_type in NODE_TYPES.keys(): mixins.append(NODE_TYPES[node_type]) mixins.append(NodeVisitor) Visitor = type('Visitor', tuple(mixins), {}) tree = ast.parse(tree_path.read_bytes()) visitor = Visitor(target_part, exclude_dunder=exclude_dunder, exclude_private=exclude_private) visitor.visit(tree) return visitor.counter, visitor.nodes_explored
9891cf6da61e8f98c7f2e72b7c09beb73584ed3a
b1e6e029dee2c8c2d9c2439e4295b85bfed36469
/zad1.py
51d35c733991ac4582cf130eb7f481e5da9d4121
[]
no_license
InsaneM666/cw2_programowanie
b12d9ef50634bc6594be64e37a863e271d29a57b
a86e7c99e85d4f6a920460f40058629f425ba1bd
refs/heads/master
2022-09-11T23:24:34.641223
2014-11-14T11:55:22
2014-11-14T11:55:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,937
py
import time #Uzytkownik podaje dowolny plik tekstowy, oczywiscie z zalozeniem ze jest w tym samym folderze co program, jesli nie musialby podac cala sciezke sciezka=raw_input("Podaj nazwe pliku do analizowania (wraz z rozszerzeniem!): ") plik=open(str(sciezka),"r") tekst=[] #plik wejsciowy czysto po odczytaniu for linia in plik: linijka=linia.split(" ") tekst.append(linijka) plik.close() zn=0 #flaga do znakow interpunkcyjnych i zalamania linii tekst2=[] #tekst bez znakow interpunkcyjnych i zalamania linii, tworzony w ponizszej petli, ponadto usuwa wielkie litery for i in xrange(0,len(tekst)): for slowo in tekst[i]: for znak in slowo: if znak==".": zn=1 elif znak==",": zn=2 elif znak=="\n": zn=3 if zn==1: tekst2.append(str(slowo).replace(".","").lower()) elif zn==2: tekst2.append(str(slowo).replace(",","").lower()) elif zn==3: tekst2.append(str(slowo).replace("\n","").lower()) else: tekst2.append(str(slowo).lower()) #Zbior slow unikalnych z wykluczeniem pustych miejsc i spacji jako slow unikalne=set(tekst2) unikalne.discard("") unikalne.discard(" ") wynik=[] #wynikowa lista, ktora zawiera krotki z nazwa slowa i iloscia jego wystepowania w tekscie for element in unikalne: krotka=(element,tekst2.count(element)) wynik.append(krotka) #Zapisanie do pliku plik=open("statystyki.txt","a") plik.writelines("\nSTATYSTYKI dla pliku tekstowego, stan na " + time.strftime("%H:%M dnia:%d.%m.%Y")+"\n") for krotka in wynik: if krotka[1]!=1: plik.writelines( "Slowo '" +str(krotka[0]) + "' wystepuje "+ str(krotka[1])+ " razy.\n") else: plik.writelines( "Slowo '" +str(krotka[0]) + "' wystepuje "+ str(krotka[1])+ " raz.\n") plik.close() print "Statystyki przeprowadzono i dopisano do pliku 'statystyki.txt'."
e409feb2418cef1b05aab8d5cafb1f0a54bf02ae
0df96f1d85717a72c9b989e133845a6c6bb73129
/src/main.py
02cc3d754b0824331b92fbd79e5878bf3efc9df2
[]
no_license
madrigals1/table_api
212aac3cfaedd1286486661cb80234be12935f7b
0f4e230dee1de6c7f700444b7b2b86a420ce4c70
refs/heads/master
2023-03-28T11:28:05.237635
2021-04-01T15:10:08
2021-04-01T15:10:08
308,363,547
1
0
null
null
null
null
UTF-8
Python
false
false
676
py
from flask import Flask, jsonify from src.utils import create_png_from_dict from flask import request app = Flask(__name__) @app.route("/") def index(): return jsonify( detail="Table API is working. Use /convert to convert dict into table PNG" ) @app.route("/convert", methods=["POST", "GET"]) def convert(): if request.method == "GET": return jsonify( detail="Please, make POST request and provide 'table' in request body" ) data = request.json table = data.get("table") if not table: return jsonify(detail="Please, provide 'table' in request body") return {"link": create_png_from_dict(table)}
8e40d17b1e7ee23dfb1b35a3e3c00db329b41ea3
dedcad2f2cb8004437cdd63b3560b0c65a83b0f7
/python/Juno-Show/border1-show.py
958566a7abd3a1a724a3feba04592240730c64ff
[]
no_license
dlakey/Don-RePo
e488f54c3bafe2a3eb297aca8b5ab500ff4048fe
1afdeafb24a356b6fc91813117949339c635107d
refs/heads/master
2021-01-20T02:25:46.538963
2018-05-05T15:53:23
2018-05-05T15:53:23
89,405,034
0
0
null
2017-05-22T04:21:52
2017-04-25T20:43:34
Roff
UTF-8
Python
false
false
235
py
import jnpr.junos import os import sys from pprint import pprint from jnpr.junos import Device r0 = Device(host='172.16.1.250',user='root',password='Juniper').open() response = r0.cli('show configuration | display set') print response
2c730e56bc9a5b4983cd6e076bc899c0964737a6
58e15fca047ece58bfa391a6efb88ec1b46997b2
/venv/lib/python3.8/site-packages/selenium/webdriver/common/actions/wheel_input.py
64bb6db22df1194f5b148b59bd4fabff2289bdc4
[]
no_license
su2708/WebScraper
6594f102336de0bb0ebc2c3feafdb4d87da52ad3
a084afce4a8dacb4d4beb43924aa85a831c3b4ec
refs/heads/main
2023-02-20T15:43:37.246448
2023-01-15T17:26:28
2023-01-15T17:26:28
323,025,342
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/f6/5c/a4/99012d79ffc30cf1b681f61f329c7ebd8c280d8c5fcc537385cf91bd63
b1ce34d6104532c2b825d24a36c9abbea3db79c8
67699ac3e2813dfd42c02489d67bdbd3d9d28b41
/apigo.py
b81e7be6939f7f5bc0f99756796aa02cb223f16a
[ "CC0-1.0" ]
permissive
christianbos/smsmap
884b1bc13901f688986f71259b2c6e69cafa0de7
650efcdeffdf337d1d8748f042b6246a7300c407
refs/heads/master
2016-08-11T17:02:46.684911
2016-03-06T19:13:03
2016-03-06T19:13:03
53,243,002
0
0
null
2016-03-06T16:59:06
2016-03-06T07:23:58
Python
UTF-8
Python
false
false
311
py
import requests url = 'https://maps.googleapis.com/maps/api/geocode/json' params = {'sensor': 'false', 'address': 'rio suchiate, colinas del lago'} r = requests.get(url, params=params) results = r.json()['results'] location = results[0]['geometry']['location'] location['lat'], location['lng'] print(location)
ab91542f9a2835ef223506eb04c12d468ce365f8
b9676dfd72aaa92e0167ea305bb0a46e022d4d9e
/django-essencial/0-django-startproject/hello/hello/urls.py
283d6ff750922a6c57d77f38acdc55908cdd53e4
[]
no_license
GuidoBR/learning-python
c3ea91419adbc80e01c75b744c02c5e7290c4479
032ac862bf0660c535879e1985ca63a10296df17
refs/heads/master
2023-05-26T01:01:54.654117
2022-10-28T12:51:47
2022-10-28T12:51:47
25,278,144
0
0
null
2023-05-22T21:33:34
2014-10-15T23:36:37
Python
UTF-8
Python
false
false
761
py
"""hello URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
54dfeffbc029f3eb10e189a93c48b3df35ca9d62
74313467bf7c950897d11ee131595e87b7aeabb9
/apps/pipitor/telega/admin.py
79810af556243052f7f19494cc39a722670adf60
[]
no_license
cobravsninja/telekafka
8442cfff0b890580db6f2c830fea42c24ce1813a
d280036fa664f2fc2b36dde1457540b92e4431a3
refs/heads/master
2020-06-19T04:42:58.238408
2019-07-17T08:33:14
2019-07-17T08:33:14
196,566,576
1
1
null
null
null
null
UTF-8
Python
false
false
312
py
from django.contrib import admin # Register your models here. from .models import ( ActiveGoogleSearch, ActiveInstagramSearch, GoogleUrl, InstagramUrl ) admin.site.register(ActiveGoogleSearch) admin.site.register(ActiveInstagramSearch) admin.site.register(GoogleUrl) admin.site.register(InstagramUrl)
450e45abb2e6f78121b9289dfc49ce668ece839a
5fa293d0ef6f3bdc4791d869cf503b107cc3a5fb
/soap_client/urls.py
5e70df6a51ac6d70d04e1a6e01da2fd63ec1b6aa
[ "MIT" ]
permissive
alldevic/nav_info
0779ab116dd7718ac1d63fecfbc2d47dd8863c22
32681d1cd3ad43472c8f7fb49922094c4045111c
refs/heads/master
2023-08-27T00:23:57.233994
2021-11-05T15:24:48
2021-11-05T15:24:48
278,404,502
0
0
MIT
2021-11-05T15:24:49
2020-07-09T15:37:41
Python
UTF-8
Python
false
false
317
py
from django.urls import path, include from rest_framework.routers import DefaultRouter from soap_client import views router = DefaultRouter() router.register('raw', views.RawViewSet, basename='raw') router.register('data', views.DataViewSet, basename='data') urlpatterns = [ path('', include(router.urls)), ]
9dca95f0eadc9b7576cb73579313ffa2ab36aaa3
444670e6d73ae9d95c0bb0459c8e02423876d2fb
/pycharm/LoginSite/mylogin/migrations/0001_initial.py
08c4cb3c5cfd13d3c86c5e92dc2a59b4d175f342
[]
no_license
zhangxingxing12138/web-pycharm
c8b6822be95bfb904f81f772185fe9e17fc77fc3
5f212e6805b0734aa3c791830526a95b24a930f4
refs/heads/master
2020-04-04T18:03:45.458309
2018-11-08T12:03:51
2018-11-08T12:03:51
156,148,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,056
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-11-06 00:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, unique=True)), ('password', models.CharField(max_length=256)), ('email', models.EmailField(max_length=254, unique=True)), ('sex', models.CharField(choices=[('male', '男'), ('female', '女')], default='男', max_length=32)), ('c_time', models.DateTimeField(auto_now_add=True)), ], options={ 'ordering': ['-c_time'], 'verbose_name': '用户', 'verbose_name_plural': '用户', }, ), ]
12d339f30ce38a04f1c2b747619c8fd0a1edc622
ebed065ca38c964aef3173138542e06d53f257f5
/web_chat/forms.py
2d64241e353a0de6854e7376fca0fb5f6b1f2895
[]
no_license
Megachell0/simple-chat-api
d40e8de7e3e682480b393ef53e36edf942358caf
ed10d365a7e5ea7aa2faeb5853ccc06ebf989934
refs/heads/master
2023-02-10T12:18:24.769993
2021-01-03T20:05:06
2021-01-03T20:05:06
326,023,800
0
0
null
null
null
null
UTF-8
Python
false
false
1,016
py
''' class UserRegisterForm(UserCreationForm): email = forms.EmailField(label='E-mail') class Meta: model = User fields = ('username', 'email', 'password1', 'password2') widgets = { 'username':forms.TextInput(attrs ={"class":"form-control"}), 'email':forms.EmailInput(attrs ={"class":"form-control"}), 'password1':forms.PasswordInput(attrs ={"class":"form-control"}), 'password2':forms.PasswordInput(attrs ={"class":"form-control"}), } def __init__(self, *args, **kwargs): super(UserRegisterForm, self).__init__(*args, **kwargs) self.fields['username'].widget = forms.TextInput(attrs ={"class":"form-control"}) self.fields['email'].widget = forms.EmailInput(attrs ={"class":"form-control"}) self.fields['password1'].widget = forms.PasswordInput(attrs ={"class":"form-control"}) self.fields['password2'].widget = forms.PasswordInput(attrs ={"class":"form-control"}) '''
da8bfd38abbbf54a7826c085acb0360c43d51b33
2cc7d7b2e2219a7b7d00027ec5c3106eab10a30c
/send_winks.py
2659ef31381fd850b7e1675a9a88608abf3c1812
[]
no_license
9whoami/match_parser
409c6831edb232b70b97d0a560b8007bccf2b832
5bdffd990d09703861924f5856875ede7bc66258
refs/heads/master
2020-06-10T09:11:41.156289
2016-12-08T21:37:29
2016-12-08T21:37:29
75,976,800
0
0
null
null
null
null
UTF-8
Python
false
false
3,167
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- import settings as config import sys from argparse import ArgumentParser from imports import base_error from imports import Logger from imports import ThreadPool from imports import ApiMethods from imports import WebDriver from sites.match import signin from sites.match import send_winks __author__ = 'whoami' __version__ = '0.0.0' __date__ = '07.03.16 18:21' __description__ = """ Description for the python module """ @ThreadPool.thread def start_winks(**kwargs): api = kwargs['api'] = ApiMethods(custom_id=kwargs['uid']) logger = Logger(api) try: browser = WebDriver(**kwargs) if not api.winks_continue(): raise base_error.WorkingEnd( message="Работа завершена пользователем", api=api) signin(browser, **kwargs) send_winks(browser, **kwargs) except Exception as e: logger.debug("Поймано исключение с сообщением {!r}".format(str(e))) finally: base_error.raising(base_error.WorkingEnd, api=api) return def main(uid, btn_freeze): thread_pool = ThreadPool(max_threads=config.thread_count) api = ApiMethods() match_data = api.get_signin_data(**dict(id=uid)) timeout_winks = [match_data.__next__(), match_data.__next__()] for signin_data in match_data: working_data = dict( uid=signin_data['id'], sleep=timeout_winks, login=signin_data['email'], acc_pass=signin_data['acc_pass'], name=signin_data['name'], # proxy="69.113.241.140:9752", proxy=signin_data.get('socks'), proxy_type=config.proxy_type, user_agent=signin_data['user_agent'], online=bool(signin_data.get('online')), btn_freeze=btn_freeze, answer=signin_data.get('answer')) start_winks(**working_data) thread_pool.loop() def create_parser(): parser = ArgumentParser(prog='WinksForFree', description='Подмигивает пользователям на сайте', epilog='''(c) April 2016. Автор программы, как всегда, не несет никакой ответственности ни за что.''', add_help=False ) parser.add_argument('-h', '--help', action='help', help='Справка') parser.add_argument('-i', '--id', nargs='?', default=None, type=int, help='Параметр id', metavar='ID') parser.add_argument('-f', '--freeze', nargs='?', default=20, type=int, help='Таймаут после нажатия на кнопку', metavar='КОЛИЧЕСТВО') return parser if __name__ in "__main__": arguments = create_parser().parse_args(sys.argv[1:]) uid = arguments.id btn_freeze = arguments.freeze if uid is not None: config.thread_count = 1 # uid = int(input('Type id:')) main(uid, btn_freeze)
ec6651c3903b2913600b233e85032b05d63dd901
3f1873d63ccb215ec88105661f1cd44927e222b3
/dl4mir/chords/models.py
2a95e79cc0b937d4a3c2becd586573782efa5c39
[]
no_license
bmcfee/dl4mir
50dd467687991163a819fc7560b9d9f9c4c6e568
c9438a221d1e853c25e1867673c1c3efca2e1756
refs/heads/master
2023-07-11T10:35:54.041154
2016-01-20T03:57:58
2016-01-20T03:57:58
69,293,002
1
0
null
2016-09-26T21:09:15
2016-09-26T21:09:14
null
UTF-8
Python
false
false
38,495
py
import optimus import dl4mir.chords.labels as L import numpy as np TIME_DIM = 20 VOCAB = 157 GRAPH_NAME = "classifier-V%03d" % VOCAB def classifier_init(nodes): for n in nodes: for p in n.params.values(): if 'classifier' in n.name and 'bias' in p.name: continue optimus.random_init(p) def i8c4b10_nll_dropout(size='large'): k0, k1, k2 = dict( large=(24, 48, 64))[size] input_data = optimus.Input( name='cqt', shape=(None, 1, 8, 252)) chord_idx = optimus.Input( name='chord_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, 3, 13), pool_shape=(1, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, 3, 37), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, 3, 33), act_type='relu') layer3 = optimus.Conv3D( name='layer3', input_shape=layer2.output.shape, weight_shape=(10, None, 2, 1), act_type='relu') chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer3.output.shape, weight_shape=(13, None, 1, 1), act_type='linear') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer3.output.shape, output_shape=(None, 1), act_type='linear') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) softmax = optimus.Softmax('softmax') param_nodes = [layer0, layer1, layer2, layer3, null_classifier, chord_classifier] misc_nodes = [flatten, cat, softmax] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') log = optimus.Log(name='log') neg = optimus.Gain(name='gain') neg.weight.value = -1.0 loss = optimus.Mean(name='negative_log_likelihood') loss_nodes = [likelihoods, log, neg, loss] total_loss = optimus.Output(name='total_loss') layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, layer3.input), (layer3.output, chord_classifier.input), (layer3.output, null_classifier.input), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1), (cat.output, softmax.input)] trainer_edges = optimus.ConnectionManager( base_edges + [ (dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout), (softmax.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, log.input), (log.output, neg.input), (neg.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes[:-1]) + map(lambda n: (learning_rate, n.bias), param_nodes[:-1])) trainer = optimus.Graph( name=GRAPH_NAME, inputs=[input_data, chord_idx, learning_rate, dropout], nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss], loss=total_loss, updates=update_manager.connections, verbose=True) classifier_init(param_nodes[:-1]) semitones = L.semitone_matrix(157)[:13, 2:] chord_classifier.weights.value = semitones.reshape(13, 10, 1, 1) posterior = optimus.Output(name='posterior') predictor_edges = optimus.ConnectionManager( base_edges + [(softmax.output, posterior)]) layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=predictor_edges.connections, outputs=[posterior]) return trainer, predictor def iXc3_nll(n_in, size='large', use_dropout=False): k0, k1, k2 = dict( small=(10, 20, 40), med=(12, 24, 48), large=(16, 32, 64), xlarge=(20, 40, 80), xxlarge=(24, 48, 96))[size] n0, n1, n2 = { 1: (1, 1, 1), 4: (3, 2, 1), 8: (5, 3, 2), 10: (3, 3, 1), 20: (5, 5, 1)}[n_in] p0, p1, p2 = { 1: (1, 1, 1), 4: (1, 1, 1), 8: (1, 1, 1), 10: (2, 2, 1), 12: (2, 2, 1), 20: (2, 2, 2)}[n_in] input_data = optimus.Input( name='data', shape=(None, 1, n_in, 252)) chord_idx = optimus.Input( name='class_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) inputs = [input_data, chord_idx, learning_rate] dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, n0, 13), pool_shape=(p0, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, n1, 37), pool_shape=(p1, 1), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, n2, 33), pool_shape=(p2, 1), act_type='relu') dropout_edges = [] if use_dropout: layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() inputs += [dropout] dropout_edges += [(dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout)] chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(13, None, 1, 1), act_type='linear') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer2.output.shape, output_shape=(None, 1), act_type='linear') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) softmax = optimus.Softmax('softmax') prior = optimus.Multiply("prior", weight_shape=(1, 157), broadcast=[0]) prior.weight.value = np.ones([1, 157]) param_nodes = [layer0, layer1, layer2, null_classifier, chord_classifier] misc_nodes = [flatten, cat, softmax, prior] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') log = optimus.Log(name='log') neg = optimus.Multiply(name='gain', weight_shape=None) neg.weight.value = -1.0 loss = optimus.Mean(name='negative_log_likelihood') loss_nodes = [likelihoods, log, neg, loss] total_loss = optimus.Output(name='total_loss') # features = optimus.Output(name='features') posterior = optimus.Output(name='posterior') # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (layer2.output, null_classifier.input), # (layer2.output, features), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1), (cat.output, softmax.input), (softmax.output, prior.input), (prior.output, posterior)] trainer_edges = optimus.ConnectionManager( base_edges + dropout_edges + [ (softmax.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, log.input), (log.output, neg.input), (neg.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=inputs, nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss, posterior], # features], loss=total_loss, updates=update_manager.connections, verbose=True) if use_dropout: layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[posterior], # features], verbose=True) return trainer, predictor def iXc3_fc_nll(n_in, size='large', use_dropout=False): k0, k1, k2 = dict( small=(10, 20, 40), med=(12, 24, 48), large=(16, 32, 64), xlarge=(20, 40, 80), xxlarge=(24, 48, 96))[size] n0, n1, n2 = { 1: (1, 1, 1), 4: (3, 2, 1), 8: (5, 3, 2), 10: (3, 3, 1), 20: (5, 5, 1)}[n_in] p0, p1, p2 = { 1: (1, 1, 1), 4: (1, 1, 1), 8: (1, 1, 1), 10: (2, 2, 1), 12: (2, 2, 1), 20: (2, 2, 2)}[n_in] input_data = optimus.Input( name='data', shape=(None, 1, n_in, 252)) chord_idx = optimus.Input( name='class_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) inputs = [input_data, chord_idx, learning_rate] dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, n0, 13), pool_shape=(p0, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, n1, 37), pool_shape=(p1, 1), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, n2, 33), pool_shape=(p2, 1), act_type='relu') dropout_edges = [] if use_dropout: layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() inputs += [dropout] dropout_edges += [(dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout)] chord_classifier = optimus.Affine( name='chord_classifier', input_shape=layer2.output.shape, output_shape=(None, VOCAB), act_type='softmax') prior = optimus.Multiply("prior", weight_shape=(1, 157), broadcast=[0]) prior.weight.value = np.ones([1, 157]) param_nodes = [layer0, layer1, layer2, chord_classifier] misc_nodes = [prior] # 1.1 Create Loss nll = optimus.NegativeLogLikelihoodLoss(name='negative_log_likelihood') total_loss = optimus.Output(name='total_loss') # features = optimus.Output(name='features') posterior = optimus.Output(name='posterior') # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (chord_classifier.output, prior.input), (prior.output, posterior)] trainer_edges = optimus.ConnectionManager( base_edges + dropout_edges + [ (chord_classifier.output, nll.likelihoods), (chord_idx, nll.index), (nll.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=inputs, nodes=param_nodes + misc_nodes + [nll], connections=trainer_edges.connections, outputs=[total_loss, posterior], loss=total_loss, updates=update_manager.connections, verbose=True) if use_dropout: layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[posterior], verbose=True) return trainer, predictor def iXc3_nll2(n_in, size='large', use_dropout=False): k0, k1, k2 = dict( small=(10, 20, 40), med=(12, 24, 48), large=(16, 32, 64), xlarge=(20, 40, 80), xxlarge=(24, 48, 96))[size] n0, n1, n2 = { 1: (1, 1, 1), 4: (3, 2, 1), 8: (5, 3, 2), 10: (3, 3, 1), 20: (5, 5, 1)}[n_in] p0, p1, p2 = { 1: (1, 1, 1), 4: (1, 1, 1), 8: (1, 1, 1), 10: (2, 2, 1), 12: (2, 2, 1), 20: (2, 2, 2)}[n_in] input_data = optimus.Input( name='data', shape=(None, 1, n_in, 252)) chord_idx = optimus.Input( name='class_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) inputs = [input_data, chord_idx, learning_rate] dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, n0, 13), pool_shape=(p0, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, n1, 37), pool_shape=(p1, 1), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, n2, 33), pool_shape=(p2, 1), act_type='relu') dropout_edges = [] if use_dropout: layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() inputs += [dropout] dropout_edges += [(dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout)] chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(13, None, 1, 1), act_type='linear') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer0.output.shape, output_shape=(None, 1), act_type='linear') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) softmax = optimus.Softmax('softmax') prior = optimus.Multiply("prior", weight_shape=(1, 157), broadcast=[0]) prior.weight.value = np.ones([1, 157]) param_nodes = [layer0, layer1, layer2, null_classifier, chord_classifier] misc_nodes = [flatten, cat, softmax, prior] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') log = optimus.Log(name='log') neg = optimus.Multiply(name='gain', weight_shape=None) neg.weight.value = -1.0 loss = optimus.Mean(name='negative_log_likelihood') loss_nodes = [likelihoods, log, neg, loss] total_loss = optimus.Output(name='total_loss') posterior = optimus.Output(name='posterior') # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (layer0.output, null_classifier.input), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1), (cat.output, softmax.input), (softmax.output, prior.input), (prior.output, posterior)] trainer_edges = optimus.ConnectionManager( base_edges + dropout_edges + [ (softmax.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, log.input), (log.output, neg.input), (neg.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=inputs, nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss, posterior], loss=total_loss, updates=update_manager.connections, verbose=True) if use_dropout: layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[posterior], verbose=True) return trainer, predictor def i8x1c3T_nll2(size, use_dropout=False): k0, k1, k2 = dict( small=(10, 20, 40), med=(12, 24, 48), large=(16, 32, 64), xlarge=(20, 40, 80), xxlarge=(24, 48, 96))[size] n0, n1, n2 = (3, 3, 4) p0, p1, p2 = (1, 1, 1) input_data = optimus.Input( name='data', shape=(None, 8, 1, 252)) chord_idx = optimus.Input( name='class_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) inputs = [input_data, chord_idx, learning_rate] dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes transpose = optimus.Dimshuffle('rearrange', axes=(0, 2, 1, 3)) layer0 = optimus.Conv3D( name='layer0', input_shape=(None, 1, 8, 252), weight_shape=(k0, None, n0, 13), pool_shape=(p0, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, n1, 37), pool_shape=(p1, 1), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, n2, 33), pool_shape=(p2, 1), act_type='relu') dropout_edges = [] if use_dropout: layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() inputs += [dropout] dropout_edges += [(dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout)] chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(13, None, 1, 1), act_type='linear') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer0.output.shape, output_shape=(None, 1), act_type='linear') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) softmax = optimus.Softmax('softmax') prior = optimus.Multiply("prior", weight_shape=(1, 157), broadcast=[0]) prior.weight.value = np.ones([1, 157]) param_nodes = [layer0, layer1, layer2, null_classifier, chord_classifier] misc_nodes = [transpose, flatten, cat, softmax, prior] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') log = optimus.Log(name='log') neg = optimus.Multiply(name='gain', weight_shape=None) neg.weight.value = -1.0 loss = optimus.Mean(name='negative_log_likelihood') loss_nodes = [likelihoods, log, neg, loss] total_loss = optimus.Output(name='total_loss') posterior = optimus.Output(name='posterior') # 2. Define Edges base_edges = [ (input_data, transpose.input), (transpose.output, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (layer0.output, null_classifier.input), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1), (cat.output, softmax.input), (softmax.output, prior.input), (prior.output, posterior)] trainer_edges = optimus.ConnectionManager( base_edges + dropout_edges + [ (softmax.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, log.input), (log.output, neg.input), (neg.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=inputs, nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss, posterior], loss=total_loss, updates=update_manager.connections, verbose=True) if use_dropout: layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[posterior], verbose=True) return trainer, predictor def i8x1a3T_nll2(size, use_dropout=False): k0, k1, k2 = dict( large=(2048, 2048, 40),)[size] input_data = optimus.Input( name='data', shape=(None, 8, 1, 252)) chord_idx = optimus.Input( name='class_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) inputs = [input_data, chord_idx, learning_rate] dropout = optimus.Input( name='dropout', shape=None) # 1.2 Create Nodes layer0 = optimus.Affine( name='layer0', input_shape=input_data.shape, output_shape=(None, k0), act_type='relu') layer1 = optimus.Affine( name='layer1', input_shape=layer0.output.shape, output_shape=(None, k1), act_type='relu') layer2 = optimus.Affine( name='layer2', input_shape=layer1.output.shape, output_shape=(None, k2, 1, 12), act_type='relu') dropout_edges = [] if use_dropout: layer0.enable_dropout() layer1.enable_dropout() layer2.enable_dropout() inputs += [dropout] dropout_edges += [(dropout, layer0.dropout), (dropout, layer1.dropout), (dropout, layer2.dropout)] chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(13, None, 1, 1), act_type='linear') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer0.output.shape, output_shape=(None, 1), act_type='linear') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) softmax = optimus.Softmax('softmax') prior = optimus.Multiply("prior", weight_shape=(1, 157), broadcast=[0]) prior.weight.value = np.ones([1, 157]) param_nodes = [layer0, layer1, layer2, null_classifier, chord_classifier] misc_nodes = [flatten, cat, softmax, prior] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') log = optimus.Log(name='log') neg = optimus.Multiply(name='gain', weight_shape=None) neg.weight.value = -1.0 loss = optimus.Mean(name='negative_log_likelihood') loss_nodes = [likelihoods, log, neg, loss] total_loss = optimus.Output(name='total_loss') posterior = optimus.Output(name='posterior') # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (layer0.output, null_classifier.input), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1), (cat.output, softmax.input), (softmax.output, prior.input), (prior.output, posterior)] trainer_edges = optimus.ConnectionManager( base_edges + dropout_edges + [ (softmax.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, log.input), (log.output, neg.input), (neg.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=inputs, nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss, posterior], loss=total_loss, updates=update_manager.connections, verbose=True) if use_dropout: layer0.disable_dropout() layer1.disable_dropout() layer2.disable_dropout() predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[posterior], verbose=True) return trainer, predictor def i8c3_pwmse(size='large'): k0, k1, k2 = dict( small=(8, 16, 20), med=(12, 24, 32), large=(16, 32, 48))[size] input_data = optimus.Input( name='cqt', shape=(None, 1, 8, 252)) target = optimus.Input( name='target', shape=(None, 1)) chord_idx = optimus.Input( name='chord_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, 3, 13), pool_shape=(1, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, 3, 37), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, 3, 33), act_type='relu') chord_classifier = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(13, None, 2, 1), act_type='sigmoid') flatten = optimus.Flatten('flatten', 2) null_classifier = optimus.Affine( name='null_classifier', input_shape=layer2.output.shape, output_shape=(None, 1), act_type='sigmoid') cat = optimus.Concatenate('concatenate', num_inputs=2, axis=1) param_nodes = [layer0, layer1, layer2, chord_classifier, null_classifier] misc_nodes = [flatten, cat] # 1.1 Create Loss likelihoods = optimus.SelectIndex(name='likelihoods') dimshuffle = optimus.Dimshuffle('dimshuffle', (0, 'x')) squared_error = optimus.SquaredEuclidean(name='squared_error') loss = optimus.Mean(name='mean_squared_error') loss_nodes = [likelihoods, dimshuffle, squared_error, loss] # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chord_classifier.input), (layer2.output, null_classifier.input), (chord_classifier.output, flatten.input), (flatten.output, cat.input_0), (null_classifier.output, cat.input_1)] trainer_edges = optimus.ConnectionManager( base_edges + [ (cat.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, dimshuffle.input), (dimshuffle.output, squared_error.input_a), (target, squared_error.input_b), (squared_error.output, loss.input)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) trainer = optimus.Graph( name=GRAPH_NAME, inputs=[input_data, target, chord_idx, learning_rate], nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[loss.output], loss=loss.output, updates=update_manager.connections, verbose=True) classifier_init(param_nodes) posterior = optimus.Output(name='posterior') predictor_edges = optimus.ConnectionManager( base_edges + [(cat.output, posterior)]) predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=predictor_edges.connections, outputs=[posterior]) return trainer, predictor def wcqt_likelihood_wmoia(n_dim=VOCAB): input_data = optimus.Input( name='cqt', shape=(None, 6, TIME_DIM, 40)) target = optimus.Input( name='target', shape=(None, 1)) chord_idx = optimus.Input( name='chord_idx', shape=(None,), dtype='int32') learning_rate = optimus.Input( name='learning_rate', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(32, None, 5, 5), pool_shape=(2, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(64, None, 5, 7), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(128, None, 3, 6), act_type='relu') layer3 = optimus.Affine( name='layer3', input_shape=layer2.output.shape, output_shape=(None, 1024,), act_type='relu') chord_estimator = optimus.Affine( name='chord_estimator', input_shape=layer3.output.shape, output_shape=(None, n_dim), act_type='sigmoid') param_nodes = [layer0, layer1, layer2, layer3, chord_estimator] # 1.1 Create Loss likelihoods = optimus.SelectIndex('select') dimshuffle = optimus.Dimshuffle('dimshuffle', (0, 'x')) error = optimus.SquaredEuclidean(name='squared_error') main_loss = optimus.Mean(name='mean_squared_error') loss_nodes1 = [likelihoods, dimshuffle, error, main_loss] negone = optimus.Gain(name='negate') negone.weight.value = -1.0 summer = optimus.Add(name='moia_sum') flatten = optimus.Sum('flatten', axis=1) dimshuffle2 = optimus.Dimshuffle('dimshuffle2', (0, 'x')) margin = optimus.RectifiedLinear(name='margin') weight = optimus.Multiply(name="margin_weight") margin_loss = optimus.Mean(name='margin_loss', axis=None) loss_nodes2 = [negone, summer, margin, flatten, dimshuffle2, margin_loss, weight] total_loss = optimus.Add("total_loss") # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, layer3.input), (layer3.output, chord_estimator.input)] trainer_edges = optimus.ConnectionManager( base_edges + [ (chord_estimator.output, likelihoods.input), (chord_idx, likelihoods.index), (likelihoods.output, dimshuffle.input), (dimshuffle.output, error.input_a), (target, error.input_b), (error.output, main_loss.input), # Margin loss (dimshuffle.output, negone.input), (negone.output, summer.input_list), (chord_estimator.output, summer.input_list), (summer.output, margin.input), (margin.output, flatten.input), (flatten.output, dimshuffle2.input), (dimshuffle2.output, weight.input_a), (target, weight.input_b), (weight.output, margin_loss.input), (margin_loss.output, total_loss.input_list), (main_loss.output, total_loss.input_list)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) all_nodes = param_nodes + loss_nodes1 + loss_nodes2 + [total_loss] trainer = optimus.Graph( name=GRAPH_NAME, inputs=[input_data, target, chord_idx, learning_rate], nodes=all_nodes, connections=trainer_edges.connections, outputs=[total_loss.output], loss=total_loss.output, updates=update_manager.connections, verbose=True) for n in param_nodes: for p in n.params.values(): optimus.random_init(p) posterior = optimus.Output( name='posterior') predictor_edges = optimus.ConnectionManager( base_edges + [(chord_estimator.output, posterior)]) predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes, connections=predictor_edges.connections, outputs=[posterior]) return trainer, predictor def i20c3_mse12(size='large'): k0, k1, k2 = dict( small=(10, 20, 40), med=(12, 24, 48), large=(16, 32, 64))[size] input_data = optimus.Input( name='cqt', shape=(None, 1, 20, 252)) target = optimus.Input( name='target', shape=(None, 12)) learning_rate = optimus.Input( name='learning_rate', shape=None) # 1.2 Create Nodes layer0 = optimus.Conv3D( name='layer0', input_shape=input_data.shape, weight_shape=(k0, None, 5, 13), pool_shape=(2, 3), act_type='relu') layer1 = optimus.Conv3D( name='layer1', input_shape=layer0.output.shape, weight_shape=(k1, None, 5, 37), pool_shape=(2, 1), act_type='relu') layer2 = optimus.Conv3D( name='layer2', input_shape=layer1.output.shape, weight_shape=(k2, None, 1, 33), pool_shape=(2, 1), act_type='relu') chroma_estimator = optimus.Conv3D( name='chord_classifier', input_shape=layer2.output.shape, weight_shape=(1, None, 1, 1), act_type='sigmoid') flatten = optimus.Flatten('flatten', 2) param_nodes = [layer0, layer1, layer2, chroma_estimator] misc_nodes = [flatten] # 1.1 Create Loss error = optimus.SquaredEuclidean(name='squared_error') loss = optimus.Mean(name='mean_squared_error') loss_nodes = [error, loss] chroma = optimus.Output(name='chroma') total_loss = optimus.Output(name='total_loss') # 2. Define Edges base_edges = [ (input_data, layer0.input), (layer0.output, layer1.input), (layer1.output, layer2.input), (layer2.output, chroma_estimator.input), (chroma_estimator.output, flatten.input), (flatten.output, chroma)] trainer_edges = optimus.ConnectionManager( base_edges + [ (flatten.output, error.input_a), (target, error.input_b), (error.output, loss.input), (loss.output, total_loss)]) update_manager = optimus.ConnectionManager( map(lambda n: (learning_rate, n.weights), param_nodes) + map(lambda n: (learning_rate, n.bias), param_nodes)) classifier_init(param_nodes) trainer = optimus.Graph( name=GRAPH_NAME, inputs=[input_data, target, learning_rate], nodes=param_nodes + misc_nodes + loss_nodes, connections=trainer_edges.connections, outputs=[total_loss, chroma], loss=total_loss, updates=update_manager.connections, verbose=True) predictor = optimus.Graph( name=GRAPH_NAME, inputs=[input_data], nodes=param_nodes + misc_nodes, connections=optimus.ConnectionManager(base_edges).connections, outputs=[chroma]) return trainer, predictor MODELS = { 'L': lambda: iXc3_nll(20, 'large'), 'XL': lambda: iXc3_nll(20, 'xlarge'), 'XXL': lambda: iXc3_nll(20, 'xxlarge'), 'XXL_dropout': lambda: iXc3_nll(20, 'xxlarge', True), 'XL_dropout': lambda: iXc3_nll(20, 'xlarge', True), 'L_dropout': lambda: iXc3_nll(20, 'large', True), 'L_fc': lambda: iXc3_fc_nll(20, 'large'), 'XL_fc': lambda: iXc3_fc_nll(20, 'xlarge'), 'XXL_fc': lambda: iXc3_fc_nll(20, 'xxlarge'), 'XXL_fc_dropout': lambda: iXc3_fc_nll(20, 'xxlarge', True), 'XL_fc_dropout': lambda: iXc3_fc_nll(20, 'xlarge', True), 'L_fc_dropout': lambda: iXc3_fc_nll(20, 'large', True)}
c9fc082fe4fbd76e705f0cb575bd33862df73465
686c9ccf7d15c1dbc1c5ea1ffd67bb8afc5a99ea
/tests/data/create_configs.py
3fd3627b8cbcc2c11261afd36f22e208c9b134ea
[ "MIT" ]
permissive
RJaikanth/torch-cv
90129db1ae3dcdab445bd3c7437bd41f83770792
8102aaae840b674389f09a01c5c45df559cb3819
refs/heads/master
2023-01-20T18:41:24.929046
2020-10-31T11:21:01
2020-11-02T14:14:16
297,047,627
1
0
MIT
2020-09-30T13:11:23
2020-09-20T10:01:05
Python
UTF-8
Python
false
false
1,245
py
import os from .file_strings import * default_dir = "/tmp/torch-cv-test/config" os.makedirs(default_dir, exist_ok=True) def create_empty_config(): dest = os.path.join(default_dir, "empty.yml") with open(dest, "w") as f: pass def create_none_config(): dest = os.path.join(default_dir, "none.yml") with open(dest, "w") as f: f.write(none_config) def create_join_config(): dest = os.path.join(default_dir, "join.yml") with open(dest, "w") as f: f.write(join_config) def create_preprocess_config_with_annotation(): dest = os.path.join(default_dir, "preprocess.yml") with open(dest, "w") as f: f.write(preprocess_config) def create_custom_preprocess_config(): dest = os.path.join(default_dir, "custom_preprocess.yml") with open(dest, "w") as f: f.write(custom_preprocess_yml) def create_custom_preprocess_config_fail(): dest = os.path.join(default_dir, "custom_preprocess_fail.yml") with open(dest, "w") as f: f.write(custom_preprocess_yml_fail) def create_preprocess_config(): dest = os.path.join(default_dir, "preprocess_without_annotation.yml") with open(dest, "w") as f: f.write(preprocess_config_without_annotations)
5e3db41925d6b128b1ecd55c0ce2009b26a47a22
7c735a6ea6012c7f8a454987b5fc040c6a244580
/staff/views.py
39a2ef30ddc18b0c029da8b1c4e6abfbfb4ed155
[]
no_license
mbabikir4/blog-11
031bcd19c24112f8e27cbbdbc3dd2ee36913d926
03be666e772a3585a7d0b1856bebf8553c19da21
refs/heads/master
2022-11-30T05:36:24.303298
2020-08-13T19:04:17
2020-08-13T19:04:17
287,359,447
0
0
null
null
null
null
UTF-8
Python
false
false
1,805
py
from django.shortcuts import render,redirect from .forms import CreateUserForm,CreateBlog from django.contrib import messages from django.contrib.auth import authenticate,login,logout from django.contrib.auth.decorators import login_required # Create your views here. login_required(login_url='login') def staff(request): return render(request,'staff/staff.html') def signup(request): if request.user.is_authenticated: return redirect('staff:staff') form = CreateUserForm() if request.method == 'POST': form = CreateUserForm(request.POST) if form.is_valid(): form.save() messages.success(request,'Account created successfully') return redirect('staff:login') dicti = {'form':form} return render(request,'staff/signup.html', dicti) def logina(request): if request.user.is_authenticated: return redirect('staff:staff') if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username,password=password) if user is not None: login(request, user) return redirect('staff:staff') else: messages.error(request,'Username or password is incorrect. ') return render(request,'staff/login.html') return render(request,'staff/login.html') def logouta(request): logout(request) return redirect('staff:login') def create(request): form = CreateBlog() if request.method == 'POST': form = CreateBlog(request.POST,request.FILES) if form.is_valid(): form.save() return redirect('blog:blog') blogs = {'form':form} return render(request,'staff/create.html',blogs)
e1e2acf9091c80c3e8265213248d8fb20def628c
7ad9c3d06c74e65670636522f894edebd9586f86
/gauge.py
628f757c49fee321bcccd55e36d39674f5bd1b76
[]
no_license
rishavb123/GeneralizedRiemannIntegral
05a57863a59e5ca831c175391beeec889df024ed
ac8ab3ee36985d4dd91ed2bd6009a35d585397db
refs/heads/master
2022-09-17T06:23:07.092861
2020-06-07T04:41:50
2020-06-07T04:41:50
257,092,339
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
import numpy as np from intervals import R class Gauge: def __init__(self, func, interval, validate=True): self.delta = func self.interval = interval if validate: self.__validate__() def __validate__(self): for x in self.interval.discretize(): assert self.delta(x) > 0 def __call__(self, x, validate=True): if validate: assert self.interval.contains(x) return self.delta(x) @staticmethod def constant(delta): assert delta > 0 return Gauge(lambda x:delta, R, validate=False)
1a71d1d48c8c1e7899c78ae5ffffd819170fff8b
0c5fed6415f7a307d0885d7579969d4e8f0121c8
/Assignements/MT17143_Assignment5&6/MT17143_Problem1.py
fb5a51bc4753c66cf95906fd1944be7a9261bf8c
[]
no_license
akshitasawhney3008/Machine-Learning
4032dfb3efaa7fdeb794913bb30e39f7a2fece31
bef1672ecb51e07b291349af9df219d2bfea8f2d
refs/heads/master
2023-02-02T16:22:01.016505
2020-12-10T10:37:49
2020-12-10T10:37:49
320,232,766
0
0
null
null
null
null
UTF-8
Python
false
false
3,121
py
#MT17143 Akshita Sawhney #Problem 1 RNA Sequencing from sklearn.metrics import accuracy_score from sklearn.cross_validation import train_test_split from sklearn.cluster import KMeans from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import SpectralClustering from sklearn.manifold import TSNE from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np import math montpick= open("Read_count_rattus.txt",'r') matrix = [] read_file = montpick.readlines() for line in read_file: #file is extracted in a 2D matrix row = [] list_of_words = line.split() for i in range(1, len(list_of_words)): row.append(int(list_of_words[i])) matrix.append(row) #Normalization trc = 0 # total read count is calculated for l in matrix: for el in l: trc+=el sum=0 count=0 # print(len(matrix[1])) for i in range(len(matrix[0])): # Sum of each column is calculated column_sum = 0 for l in matrix: column_sum += l[i] sum+=column_sum sum=sum/len(matrix[0]) for l in matrix: #Each readcount value is divided by the total read count for i in range(len(l)): div = float(l[i]/trc) l[i]=div for l in matrix: #Each readcount value is then multiplied by the sum of columns for i in range(len(l)): l[i]= float(l[i] * sum) #Log Transform for l in matrix: for i in range(len(l)): l[i]=math.log(1+l[i],2) # print(matrix) # print("hi") input_matrix = np.array(matrix) # print(M) #The actual data matrix is extracted from the phenodata which acts as the true data. phenotype = [] phenodata = open("Phenotype.txt",'r') lines= phenodata.readlines() for l in lines: phen = l.split() phenotype.append(int(phen[0])) # phenotype1 = phenotype[1:] true_matrix= np.array(phenotype) #Input Data is split into Train and Test set with test size to be 33% X_train, X_test, y_train, y_test = train_test_split(np.transpose(input_matrix),true_matrix,test_size=0.33) #Kmeans Clustering is performed kmeans=KMeans(n_clusters=2, random_state= 0).fit(X_train) kmean_prediction = kmeans.predict(X_test) #Test data is passed to check the results. print(accuracy_score(y_test,kmean_prediction)*100) # Accuracy of the predicted output with true data is taken out. X_train, X_test, y_train, y_test = train_test_split(np.transpose(input_matrix),true_matrix,test_size=0.33) #MiniBatchKmeans clustering is performed Minibatchkmeans = MiniBatchKMeans(n_clusters=2, random_state= 0).fit(X_train) minibatchkmean_prediction = Minibatchkmeans.predict(X_test) print(accuracy_score(y_test,minibatchkmean_prediction)*100) #Principle Component Analysis is performed to reduce the input data to 2Dimensional data. pca = PCA(n_components=2).fit_transform(np.transpose(input_matrix)) # pca_fit = pca.fit(np.transpose(input_matrix)) y_trans = np.transpose(true_matrix) plt.scatter(pca[:, 0], pca[:, 1], y_trans.shape[0], c = y_trans) #Scatter is used to visualize the graph plt.show()
c73cbe77e12eb7d42f02c99be8e900a957f29c3a
d10ce6055ec577cea66447e436dfb8f34083c429
/line_trace.py
cd9afa114c8fc99270d98475cf8bd330f7dcf687
[]
no_license
dlwjdxo21/ev3_aircleaner
2deaec6e47bd4073e352d35b032815c631949c52
11c0683a0fbc042bccbd18ad95bb32f0652d80b6
refs/heads/master
2020-09-02T19:57:53.048363
2019-11-02T07:15:52
2019-11-02T07:15:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
// line trace using ev3dev, python
dc68438bc369293cbf262f10722059dbc20ee2e8
57094f0d09fd3e74eeb511e94400c3ec97051ad3
/Quax_dev_archive/quax_misc/angular_momentum/tensor_approach/contracted/contracted_overlap.py
1d41836be55f7685a172233f95c91a9581ffd5c8
[]
no_license
adabbott/Research_Notes
cccba246e81065dc4a663703fe225fc1ebbf806b
644394edff99dc6542e8ae6bd0ce8bcf158cff69
refs/heads/master
2023-05-12T20:26:58.938617
2021-06-02T17:15:35
2021-06-02T17:15:35
119,863,228
1
0
null
null
null
null
UTF-8
Python
false
false
13,501
py
import jax import jax.numpy as np import numpy as onp from jax.config import config; config.update("jax_enable_x64", True) np.set_printoptions(precision=10) onp.set_printoptions(precision=10) def double_factorial(n): '''The double factorial function for small Python integer `n`.''' return np.prod(np.arange(n, 1, -2)) @jax.jit def odd_double_factorial(x): # this ones jittable, roughly equal speed n = (x + 1)/2 return 2**n * np.exp(jax.scipy.special.gammaln(n + 0.5)) / (np.pi**(0.5)) @jax.jit def normalize(aa,ax,ay,az): ''' Normalization constant for gaussian basis function. aa : orbital exponent ax : angular momentum component x ay : angular momentum component y az : angular momentum component z ''' #f = np.sqrt(double_factorial(2*ax-1) * double_factorial(2*ay-1) * double_factorial(2*az-1)) f = np.sqrt(odd_double_factorial(2*ax-1) * odd_double_factorial(2*ay-1) * odd_double_factorial(2*az-1)) N = (2*aa/np.pi)**(3/4) * (4 * aa)**((ax+ay+az)/2) / f return N @jax.jit def overlap_ss(A, B, alpha_bra, alpha_ket): ss = ((np.pi / (alpha_bra + alpha_ket))**(3/2) * np.exp((-alpha_bra * alpha_ket * np.dot(A-B,A-B)) / (alpha_bra + alpha_ket))) return ss #@jax.jit def contracted_normalize(exponents,coeff,ax,ay,az): '''Normalization constant for a single contracted gaussian basis function''' K = exponents.shape[0] # Degree of contraction K L = ax + ay + az # Total angular momentum L # all possible combinations of ci * cj c_times_c = np.outer(coeff,coeff) # all possible combinations of alphai + alphaj a_plus_a = np.broadcast_to(exponents, (K,K)) + np.transpose(np.broadcast_to(exponents, (K,K)), (1,0)) prefactor = (np.pi**(1.5) * double_factorial(2*ax-1) * double_factorial(2*ay-1) * double_factorial(2*az-1)) / 2**L #prefactor = (np.pi**(1.5) * odd_double_factorial(2*ax-1) * odd_double_factorial(2*ay-1) * odd_double_factorial(2*az-1)) / 2**L sum_term = np.sum(c_times_c / (a_plus_a**(L + 1.5))) return (prefactor * sum_term) ** -0.5 @jax.jit def contracted_overlap_ss(A, B, alpha_bra, alpha_ket, c_bra, c_ket): size = alpha_bra.shape[0] AB = np.dot(A-B,A-B) # rather than looping over all primitive combinations, vectorize by expanding data into arrays # all possible combinations of c_bra * c_ket c_times_c = np.outer(c_bra,c_ket) # all possible combinations of alpha_bra * alpha_ket a_times_a = np.outer(alpha_bra,alpha_ket) # all possible combinations of alpha_bra + alpha_ket a_plus_a = np.outer(alpha_bra, np.ones_like(alpha_ket)) + np.transpose(np.outer(alpha_ket, np.ones_like(alpha_bra))) ss = np.sum((np.pi / a_plus_a)**(1.5) * np.exp(-a_times_a * AB / a_plus_a) * c_times_c) return ss geom = np.array([[0.0,0.0,-0.849220457955], [0.0,0.0, 0.849220457955]]) charge = np.array([1.0,1.0]) A = np.array([0.0,0.0,-0.849220457955]) B = np.array([0.0,0.0, 0.849220457955]) # This is a basis function exps = np.array([0.5, 0.5]) coeffs = np.array([1.00, 1.00]) # Bake the normalizations into the coefficients, like Psi4 primitive_norms = jax.vmap(normalize)(exps, np.array([0,0]), np.array([0,0]),np.array([0,0])) ang_mom_x, ang_mom_y, ang_mom_z = np.zeros_like(exps), np.zeros_like(exps), np.zeros_like(exps) # Use vmap to auto vectorize the primitve normalization function primitive_norms = jax.vmap(normalize)(exps, ang_mom_x, ang_mom_y, ang_mom_z) coeffs = coeffs * primitive_norms contracted_norm = contracted_normalize(exps, coeffs, 0, 0, 0) coeffs = coeffs * contracted_norm @jax.jit def overlap_ps_block(A, B, alpha_bra, alpha_ket): oot_alpha_bra = 1 / (2 * alpha_bra) return oot_alpha_bra * jax.jacrev(overlap_ss,0)(A,B,alpha_bra,alpha_ket) @jax.jit def overlap_pp_block(A, B, alpha_bra, alpha_ket): # We are promoting the ket, so the factor is the ket exponent oot_alpha_ket = 1 / (2 * alpha_ket) # No second term, ai is 0 since we are promoting the ket and theres no AM in the ket. return oot_alpha_ket * (jax.jacfwd(overlap_ps_block, 1)(A,B,alpha_bra,alpha_ket)) # Try (p|p) This is a basis function exp1 = np.array([0.5, 0.4]) exp2 = np.array([0.5, 0.4]) #coeffs1 = np.array([1.00, # 1.00]) #coeffs2 = np.array([1.00, # 1.00]) # #N1 = contracted_normalize(exp1, coeffs1, 1, 0, 0) #N2 = contracted_normalize(exp2, coeffs2, 0, 0, 0) full_c = 0.5993114751532237 * 0.4534350390443813 primitive_1 = overlap_pp_block(A,B, 0.5, 0.4) primitive_2 = overlap_pp_block(A,B, 0.5, 0.4) print(full_c * primitive_1) print(full_c * primitive_2) print(primitive_1 + primitive_2) full_c = 0.30081673988809127 * 0.2275959260774826 #print( print(full_c * (primitive_1 + primitive_2)) #c = 0.15905414575341015 #c = 0.22671751952219066 #print(c * primitive_1 + c * primitive_2) #print("EHHHH") # Compute all unnormalized primitives test_func = jax.vmap(overlap_pp_block, in_axes=(None,None,0,0)) test = test_func(A, B, exp1, exp2) #print('og') #print(test) #print('sum') #print(test[0] + test[1]) #print('sum, double, * c**2') #c = .22671751952219066 #print( 2 * (test[0] + test[1]) * c**2) #c1 = 0.30081673988809127 #c2 = 0.2275959260774826 #print((c1 * c1 * test[0] + c2 * c2 * test[1])) #print((c1 * test[0] + c2 * test[1])) #print(( test[0] + test[1]) * c1 * c2) #erd_c1 = 0.21103860739153443 #erd_c2 = 0.15967039369300745 #print((erd_c1 * test[0] + erd_c2 * test[1])) #* c1 * c2) #print('sum, 1/2alpha, * c**2') #print( 1/(2*exp1[0]) * (test[0] + test[1]) * c**2) #print(test * 0.29965573757661185) #print(test * 0.29965573757661185 * 0.5) #jprint(test * 0.29965573757661185**2 ) #primitive_norm = normalize(0.5, 1,0,0) #print(primitive_norm) #print(contracted_normalize(exp1,primitive_norm, 1,0,0)) coeffs1 = np.array([0.30081673988809127, 0.2275959260774826]) coeffs2 = np.array([0.21238156276178832, 0.17965292907913089]) # Now contract #print( test[0] * coeffs1[0] + test[1] * coeffs1[1]) #print( test[1] * coeffs1[0] + test[0] * coeffs1[1]) #print(test * coeffs1[0] + test * coeffs2[1]) # #print(0.29965573757661185 * (test[0] + test[1])) #print(0.29965573757661185**2 * (test[0] + test[1])) #print(coeffs1[0] * coeffs[1] test[0] + test[1])) #TODO temp #coeffs1 = np.array([0.30081673988809127, # 0.2275959260774826]) #coeffs2 = np.array([0.21238156276178832, # 0.17965292907913089]) # ## This is the correct (px|s) #N1 = contracted_normalize(exp1, coeffs1, 1, 0, 0) #N2 = contracted_normalize(exp2, coeffs2, 0, 0, 0) #test = contracted_overlap_ps_block(A,B,exp1,exp2,coeffs1,coeffs2) #print(test) #print(test * N1 * N2) #vectorized_overlap_ps_block = jax.vmap(overlap_ps_block, in_axes=(None,None, 0, 0)) #c_o = vectorized_overlap_ps_block(A, B, exps, exps) #print(c_o) #print(c_o * 0.5993114751532237 * 0.4237772081237576) # Coef's from Psi4 #print(overlap_pp_block(A,B,0.5,0.5)) #vectorized_overlap_pp_block = jax.vmap(overlap_pp_block, in_axes=(None,None, 0, 0)) #c_o = vectorized_overlap_pp_block(A, B, exps, exps) #print(c_o) #print(coeffs) #coeffs = np.tile(coeffs,3).reshape(2,3) #print(c_o * coeffs) #print("Raw normalization constant") #print(tmp_N) #print("normalization constant times coefficients") #print(tmp_N * coeffs) #print("Raw overlap") #print(c_o) #print("normalized overlap") #print(tmp_N * tmp_N * c_o) #print(tmp_N * c_o) s_N = 0.4237772081237576 p_N = 0.5993114751532237 d_N = 0.489335770373359 ## (s|s) #print(s_N * s_N * overlap_ss(A,B,alpha_bra,alpha_ket)) # YUP ## (p|s) #print(p_N * s_N * overlap_ps_block(A,B,alpha_bra,alpha_ket)) # YUP ## (p|p) #print(p_N * p_N * overlap_pp_block(A,B,alpha_bra,alpha_ket)) # YUP ## (d|s) #print(d_N * s_N * overlap_ds_block(A,B,alpha_bra,alpha_ket)) # YUP ## (d|p) #print(d_N * p_N * overlap_dp_block(A,B,alpha_bra,alpha_ket).reshape(6,3)) # YUP ## (d|d) #print(d_N * d_N * overlap_dd_block(A,B,alpha_bra,alpha_ket)) #print('hard coded') #print(overlap_ps_block(A,B,alpha_bra,alpha_ket)) #print('hard coded') #print(overlap_pp_block(A,B,alpha_bra,alpha_ket)) #print('hard coded') #print(overlap_ds_block(A,B,alpha_bra,alpha_ket)) #overlap_dp_block(A,B,alpha_bra,alpha_ket) #dd_block = overlap_dd_block(A,B,alpha_bra,alpha_ket) #print(dd_block * 0.489335770373359) #for i in range(1000): # overlap_pp_block(A,B,alpha_bra,alpha_ket) @jax.jit def overlap_ps_block(A, B, alpha_bra, alpha_ket): oot_alpha_bra = 1 / (2 * alpha_bra) return oot_alpha_bra * jax.jacrev(overlap_ss,0)(A,B,alpha_bra,alpha_ket) @jax.jit def overlap_sp_block(A, B, alpha_bra, alpha_ket): # not really needed is it? oot_alpha_bra = 1 / (2 * alpha_bra) return oot_alpha_bra * jax.jacrev(overlap_ss,1)(A,B,alpha_bra,alpha_ket) @jax.jit def overlap_pp_block(A, B, alpha_bra, alpha_ket): # We are promoting the ket, so the factor is the ket exponent oot_alpha_ket = 1 / (2 * alpha_ket) # No second term, ai is 0 since we are promoting the ket and theres no AM in the ket. return oot_alpha_ket * (jax.jacfwd(overlap_ps_block, 1)(A,B,alpha_bra,alpha_ket)) #@jax.jit #def overlap_ds_block(A,B,alpha_bra,alpha_ket): # # We are promoting the bra a second time, factor is bra exponent # oot_alpha_bra = 1 / (2 * alpha_bra) # # # This is of shape (3,3) all dij combos symmetric matrix # Thus a_i factor has to be 3x3 identity, so that only # return oot_alpha_bra * (jax.jacfwd(overlap_ps_block, 0)(A,B,alpha_bra,alpha_ket) + np.eye(3) * overlap_ss(A,B,alpha_bra,alpha_ket)) @jax.jit def overlap_ds_block(A,B,alpha_bra,alpha_ket): ''' Returns a 1x6 array: (dxx,s) (dxy,s) (dxz,s) (dyy,s) (dyz,s) (dzz,s) ''' # We are promoting the bra a second time, factor is bra exponent oot_alpha_bra = 1 / (2 * alpha_bra) # # This is of shape (3,3) all dij combos symmetric matrix # Thus a_i factor has to be 3x3 identity, so that only result = oot_alpha_bra * (jax.jacfwd(overlap_ps_block, 0)(A,B,alpha_bra,alpha_ket) + np.eye(3) * overlap_ss(A,B,alpha_bra,alpha_ket)) # This result is a 3x3 array containing all (dxx,s) (dxy,s) (dyx,s), only need upper or lower triangle # Return upper triangle ((dxx, dxy, dxz, dyy, dyz, dzz) | s) as a vector iu = np.triu_indices(3) return result[iu] @jax.jit def overlap_dp_block(A,B,alpha_bra,alpha_ket): ''' Returns a 1x18 array: (dxx,px) (dxx,py) (dxx,pz) (dxy,px) (dxy,py) (dxy,pz) (dxz,px) (dxz,py) (dxz,pz) (dyy,px) (dyy,py) (dyy,pz) (dyz,px) (dyz,py) (dyz,pz) (dzz,px) (dzz,py) (dzz,pz) If called directly, should reshape into a 6x3 block! (dxx,px) (dxx,py) (dxx,pz) (dxy,px) (dxy,py) (dxy,pz) (dxz,px) (dxz,py) (dxz,pz) (dyy,px) (dyy,py) (dyy,pz) (dyz,px) (dyz,py) (dyz,pz) (dzz,px) (dzz,py) (dzz,pz) ''' oot_alpha_ket = 1 / (2 * alpha_ket) # use ket, since we are promoting ket from s-->p # This is a 18x1 array of d by p functions. Could also use overlap_pp_block instead, i think? return np.ravel(oot_alpha_ket * jax.jacfwd(overlap_ds_block, 1)(A,B,alpha_bra,alpha_ket)) @jax.jit def overlap_dd_block(A,B,alpha_bra,alpha_ket): ''' Returns a 6x6 array: (dxx,dxx) (dxx,dxy) (dxx,dxz) (dxx,dyy) (dxx,dyz) (dxx,dzz) (dxy,dxx) (dxy,dxy) (dxy,dxz) (dxy,dyy) (dxy,dyz) (dxy,dzz) (dxz,dxx) (dxz,dxy) (dxz,dxz) (dxz,dyy) (dxz,dyz) (dxz,dzz) (dyy,dxx) (dyy,dxy) (dyy,dxz) (dyy,dyy) (dyy,dyz) (dyy,dzz) (dyz,dxx) (dyz,dxy) (dyz,dxz) (dyz,dyy) (dyz,dyz) (dyz,dzz) (dzz,dxx) (dzz,dxy) (dzz,dxz) (dzz,dyy) (dzz,dyz) (dzz,dzz) ''' oot_alpha_ket = 1 / (2 * alpha_ket) # use ket, since we are promoting ket from p-->d # The jacfwd (first) term is an 18x3 array # ai coeffs are # the second term is # (dxx,px) --> (dxx,dxx) (dxx, dxy), (dxx, dxz) 1, 0, 0 (dxx|s) (dxx|s) (dxx|s) # (dxx,py) --> (dxx,dyx) (dxx, dyy), (dxx, dyz) 0, 1, 0 (dxx|s) (dxx|s) (dxx|s) # (dxx,pz) --> (dxx,dzx) (dxx, dzy), (dxx, dzz) 0, 0, 1 (dxx|s) (dxx|s) (dxx|s) # (dxy,px) --> (dxy,dxx) (dxy, dxy), (dxy, dxz) 1, 0, 0 (dxy|s) (dxy|s) (dxy|s) # (dxy,py) --> (dxy,dyx) (dxy, dyy), (dxy, dyz) 0, 1, 0 (dxy|s) (dxy|s) (dxy|s) # (dxy,pz) --> (dxy,dzx) (dxy, dzy), (dxy, dzz) 0, 0, 1 (dxy|s) (dxy|s) (dxy|s) # .... ... # (dzz,px) --> (dzz,dxx) (dzz, dxy), (dzz, dxz) 1, 0, 0 (dzz|s) (dzz|s) (dzz|s) # (dzz,py) --> (dzz,dyx) (dzz, dyy), (dzz, dyz) 0, 1, 0 (dzz|s) (dzz|s) (dzz|s) # (dzz,pz) --> (dzz,dzx) (dzz, dzy), (dzz, dzz) 0, 0, 1 (dzz|s) (dzz|s) (dzz|s) first_term = jax.jacfwd(overlap_dp_block, 1)(A,B,alpha_bra,alpha_ket) factor = np.tile(np.eye(3),(6,1)) tmp_second_term = overlap_ds_block(A,B,alpha_bra,alpha_ket) second_term = factor * np.repeat(tmp_second_term, 9).reshape(18,3) result = oot_alpha_ket * (first_term + second_term) # result is of same signature as jacfwd (first) term above # It contains duplicates in each 3x3 sub-array (upper and lower triangle are equal) # reshape and grab out just upper triangle as a vector, reshape into matrix iu1,iu2 = np.triu_indices(3) result = result.reshape(6,3,3)[:,iu1,iu2].reshape(6,6) return result
fe5cd719aeb4318becc6e6168757a6ea2f21449c
44d1b566b7790e260d1e64246a31fd1919faed79
/Vuelos.py
611c4f07cceeed6ef57294e23ed5a3ed829ea77b
[]
no_license
wildaz/VuelaFacil
841729851b3f120b96e752f730c67402d488f26a
bb90da54393a9ac658c3fcde71a5f4b6a463cc8c
refs/heads/master
2023-08-05T12:24:05.173659
2021-09-09T01:33:51
2021-09-09T01:33:51
400,677,749
0
3
null
2021-09-09T01:33:52
2021-08-28T01:55:26
null
UTF-8
Python
false
false
217
py
class Reg_Vuelos: Aviones=0 sillas=0 trayectos="" def _init_(self,Aviones,sillas,trayectos): self.Aviones=aviones self.sillas=sillas self.trayectos=trayectos
b3953b62fa3db6523934640dd6efa14908a3bbea
c5744c2fda48ae6a79c155c641fe98021a0cb7f3
/PP4E/System/setenv.py
a03d7c04233f64c0efbc11ad24b5bc1eaace0f37
[]
no_license
skinkie/Scripts
e0fd3d3f767612ade111f28bc7af3e1b25fc2947
80a1ba71ddf9a0c5ff33866832cb5c42aca0c0b1
refs/heads/master
2021-05-31T16:57:21.100919
2016-05-23T09:58:59
2016-05-23T09:58:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
#!/usr/bin/env python # eg. 3-3 import os print('setenv...', end=' ') print(os.environ['USER']) os.environ['USER'] = 'Brian' os.system('python echoenv.py') os.environ['USER'] = 'Arthur' os.system('python echoenv.py') os.environ['USER'] = input('?') print(os.popen('python3.5 echoenv.py').read())
794b0f3fabf741ae7f69f0b347bca4f1e8e0e5ca
df7d65014edd57612adbb12a2c37b074ca0479e0
/poo/instancias.py
331002d9490d2713f562b069a79a7e2fcaa1a9da
[]
no_license
palomaYPR/OOP-and-Algorithms-with-Python
94380e18f71edcaaa8813eb914098263f609eb4e
90f83aa9f2262cce9971b1df092ff3eba4fc8ec3
refs/heads/main
2023-02-07T14:17:49.716211
2020-12-26T23:19:37
2020-12-26T23:19:37
323,775,886
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
class Coordenadas: def __init__(self, x, y): self.x = x self.y = y def distancia(self, otra_coordenada): x_diff = (self.x - otra_coordenada.x)**2 y_diff = (self.y - otra_coordenada.y)**2 return (x_diff + y_diff)**0.5 if __name__ == '__main__': coord_1 = Coordenadas(3, 30) coord_2 = Coordenadas(4, 8) print(coord_1.distancia(coord_2)) # Nos permite sdeterminar sí, alguna de las coo es instancia de Coordenadas print(isinstance(coord_2, Coordenadas))
205b0401f53dfb46f0c7e497fb932518c4ceafd5
dc3113b6247324e664860928763c2eaedec6ec7b
/djitter/djitter/settings.py
7f022325ebb6a0ccc9e86520806e14a8c94a3252
[]
no_license
adwanAK/django-djitter
49da757e556a34661219ad7d6c23a07629da1db0
23f85c5cd0f176229b6b2af933d5c46605f37bda
refs/heads/master
2020-04-01T14:59:37.403860
2018-10-16T16:15:12
2018-10-16T16:15:12
153,316,306
0
0
null
null
null
null
UTF-8
Python
false
false
3,538
py
""" Django settings for djitter project. Generated by 'django-admin startproject' using Django 2.1.2. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm70&w8cwaz^k1-4u@fotd9oq(gs3lf_fu$v5$f_e=qum=yy8#p' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'djeeterprofile.apps.DjeeterprofileConfig', 'djeet.apps.DjeetConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'djitter.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,''), os.path.join(BASE_DIR,'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'djitter.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': os.environ['NAME'], 'USER': os.environ['USER'], 'PASSWORD': os.environ['PASSWORD'], 'PORT': '3306' } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') #from djitter tutorial
fb602658c47b01a30ff2c7ae2b51eec8b1d10712
faf2b052e7f8cd79467ad34fbc173f3bf4b1a21d
/test/test_ws_equipment_list_result.py
7230f7e81388c99a49ad58906a36598acb75af45
[]
no_license
atbe/MSU-Scholar-Api-Client-Python
5d39577ce07ab285f0df9ee58a1ed7ff8ab08d2a
31b263e5ad848fc6593c4662fbf2828ab9e2594c
refs/heads/master
2021-05-04T00:51:46.720474
2018-03-12T23:52:17
2018-03-12T23:52:17
120,354,270
0
0
null
null
null
null
UTF-8
Python
false
false
1,853
py
# coding: utf-8 """ PURE API 510 This is the Pure Web Service. Listed below are all available endpoints, along with a short description.<br/>In order to use the Pure Web Service, you must enter an API key. These are generated in the Administrator tab of Pure, and issues with a given set of available endpoints.<br/>To enter your API key and begin your use, press the Authorize button to at the top of the page. You are then presented with two options for entering the API key: the first option is to use the API key in query format, and the second option is to use the API key in a header.<br/> For further documentation, see <a href=\"documentation/Default.htm\">API Documentation</a>.<br/>A new version of the API is released with each major version of Pure, and remains available for one year. This version is no longer available in Pure 5.14<br/>The old web service is deprecated, but still available <a href=\"../../../doc/\">here</a>, and it will no longer be available in Pure 5.13 OpenAPI spec version: 510 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import msu_scholars_api from msu_scholars_api.rest import ApiException from msu_scholars_api.models.ws_equipment_list_result import WSEquipmentListResult class TestWSEquipmentListResult(unittest.TestCase): """ WSEquipmentListResult unit test stubs """ def setUp(self): pass def tearDown(self): pass def testWSEquipmentListResult(self): """ Test WSEquipmentListResult """ # FIXME: construct object with mandatory attributes with example values #model = msu_scholars_api.models.ws_equipment_list_result.WSEquipmentListResult() pass if __name__ == '__main__': unittest.main()
53cfd776131f3422dda00ac67dccaa0ac17829ce
4c8cd4fff6fb734b127b03275a13b45822cef1df
/src/top/views.py
c260314a79c830de595a3b70a8f4fc4a3dfcf134
[]
no_license
hiro13255/onlineSlone
fdfcd6ffed88d5067eeed018fd3cbc4da619531c
42dae344b8735a39c44b30c4b685c33333b45f68
refs/heads/master
2023-06-15T12:26:40.843206
2021-07-12T03:03:50
2021-07-12T03:03:50
363,617,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
import environ import logging from django.shortcuts import render from django.http import HttpResponse from django.core.mail import send_mail logger = logging.getLogger(__name__) env = environ.Env() env.read_env('.env') # Create your views here. def index(request): logger.info('Function call index') return render(request, 'top/index.html') def join(request): logger.info('Function call join') if request.POST["email"] == "": logger.info('email empty!') return render(request, 'top/fail.html') else: subject = "エンジニア集会場の参加リンクの送付" message = "エンジニア集会場にご参加して頂きありがとうございます。以下のURLからご参加ください。\n" + env('SEND_MESSAGE_LINK') + "\n参加後は「自己紹介」チャンネルにて簡単に自己紹介をお願いします! \\n\n今後とも宜しくお願いいたします。" from_email = env('EMAIL_HOST_USER') # 送信者 recipient_list = [request.POST["email"]] # 宛先リスト send_mail(subject, message, from_email, recipient_list) logger.info('Send Mail OK!') return render(request, 'top/success.html')
5f465d48674d60080950304420497ee045db7783
0aa972be2cf4a3c76d9e72d9f90eed5171de312c
/venv/bin/conch
b4375d25cdde38c95d4db6eff3acbe92a4c702c9
[ "MIT" ]
permissive
MATTTYMA/chemist_crawler
335784b2815061b328b23f0c5c307baa6eddbd33
28fdf1e93c38cddc5f8b16e7098a60e2a51b1a7a
refs/heads/master
2021-10-26T10:24:15.793086
2019-04-12T02:16:00
2019-04-12T02:16:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
429
#!/Users/mattewma/Developer/Python/chemist_crawler/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==18.9.0','console_scripts','conch' __requires__ = 'Twisted==18.9.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==18.9.0', 'console_scripts', 'conch')() )
d8613587821bcdfec7eb5aa4ed92301b19e65ea2
e9898a7428f318d6537affc515d86517c9e39800
/shopping_paradise/users/urls.py
455e9e38abbc800010351eb6cadab50eaf4316b8
[]
no_license
mihaivalentistoica/shoping-paradise-sda
2ba463f31857359fae8bba767b0c8a0917bc6bfd
477aae6a78d7f8d1b5da697b08a1f77ca007934d
refs/heads/master
2022-12-24T03:52:06.492464
2020-10-04T08:52:09
2020-10-04T08:52:09
298,762,509
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
from django.urls import path from . import views urlpatterns = [ path('login/', views.UserLoginView.as_view(), name="user-login"), path('logout/', views.UserLogoutViews.as_view(), name="user-logout"), path('password_reset/', views.UserPasswordResetFormView.as_view(), name="user-password-reset"), path('password_reset/done', views.UserPasswordResetDoneView.as_view(), name="user-password-reset-done"), path('password_reset/complete', views.UserResetPasswordComplet.as_view(), name="user-password_reset_complete"), path('reset/<uidb64>/<token>/', views.UserPasswordResetConfirmView.as_view(), name='user-password_reset_confirm'), ]
2ac0d5a5ddce621330c25fccc3359641c3461d91
fa42ae42e12948b17989d93c3d3c11ea3b520170
/users/views.py
9cae081f8f998126092232ccc251852aeb564209
[]
no_license
jarookiee/Django_learning_log
b9f6f3e7da53a289f018c7af20c59c82bd4346da
a33d6fb1504263b74e4dc6b54d68a9df01869591
refs/heads/master
2023-08-10T16:12:34.061581
2021-03-14T15:17:02
2021-03-14T15:17:02
160,336,482
0
0
null
2021-09-22T19:47:53
2018-12-04T09:59:50
Python
UTF-8
Python
false
false
1,120
py
from django.shortcuts import render from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth import login, logout, authenticate from django.contrib.auth.forms import UserCreationForm def logout_view(request): """Log the user out.""" logout(request) return HttpResponseRedirect(reverse('learning_logs:index')) def register(request): """Register a new user.""" if request.method != 'POST': # Display blank registration form. form = UserCreationForm() else: # Process completed form. form = UserCreationForm(data=request.POST) if form.is_valid(): new_user = form.save() # Log the user in, and then redirect to home page. authenticated_user = authenticate(username=new_user.username, password=request.POST['password1']) login(request, authenticated_user) return HttpResponseRedirect(reverse('learning_logs:index')) context = {'form': form} return render(request, 'users/register.html', context)
2c01c22fde0bafa7b2cf2ea3083d8131e8b95ac9
42b94a81ab09a41dc0b4d4607405a8af1fbd61f2
/send_keys_from_image.py
729601c3dadd3f38644179b37378c4a4c8b178e9
[]
no_license
solominh/Python-SendKeysFromImage
e88ca725c5402751850e745c8b4ce7b0fa80e035
40b2a8157d49a59a7a6e192e3ed8daf58d437650
refs/heads/master
2021-01-12T01:18:21.297572
2017-01-09T09:04:28
2017-01-09T09:04:28
78,368,421
0
0
null
null
null
null
UTF-8
Python
false
false
1,195
py
import keyboard import pyautogui import cv2 from get_image_region import draw_region from subprocess import call def main(): # Take screenshot screenshot_path = './screenshot.png' pyautogui.screenshot(screenshot_path) # Draw image region image = cv2.imread(screenshot_path) ref_points = draw_region(image) print(ref_points) # Sanity check if not ref_points: print('Region not selected') return False # Save cropped image cropped_image = image[ref_points['topleft'][1]:ref_points['bottomright'][1], ref_points['topleft'][0]:ref_points['bottomright'][0]] cv2.imwrite(screenshot_path, cropped_image) # Convert image to text text_ouput_path = './text_from_image' call(["tesseract", screenshot_path, text_ouput_path]) return True def send_keys(): with open('./text_from_image.txt') as f: first_time = True for line in f: cleaned_line = line.strip() if first_time: first_time = False else: cleaned_line = ' ' + cleaned_line print(cleaned_line) keyboard.write(cleaned_line)
425f7a07c2c56758032421f3933a362bb9efea4a
25276b0b8cb9fbecd3074e2d0928c4d8a913c023
/papermario/diff_settings.py
8c451ad9c1e364f5738b026efd8cf282a12d7acc
[]
no_license
ethteck/PaperMarioDecompilation
25447120625852e4e1da572f6ec80e7c8e8251f0
d62e76cef49db24b0a211da6f09287ea2093eb7a
refs/heads/master
2022-12-06T17:32:22.007613
2020-08-15T06:28:22
2020-08-15T06:28:22
258,404,731
11
8
null
2020-08-15T06:25:44
2020-04-24T04:24:08
Assembly
UTF-8
Python
false
false
217
py
#!/usr/bin/env python3 def apply(config, args): config['baseimg'] = '../baserom.z64' config['myimg'] = 'papermario.z64' config['mapfile'] = 'build/papermario.map' config['source_directories'] = ['.']
5edebc4c6027c3117dc8ccb537693d29b68c04b9
afc8d5a9b1c2dd476ea59a7211b455732806fdfd
/Configurations/EFT/ggH/Full2018/nAODv7_Full2018v7/plot.py
568328f17254972378fbcc30b53eb168bb744218
[]
no_license
latinos/PlotsConfigurations
6d88a5ad828dde4a7f45c68765081ed182fcda21
02417839021e2112e740607b0fb78e09b58c930f
refs/heads/master
2023-08-18T20:39:31.954943
2023-08-18T09:23:34
2023-08-18T09:23:34
39,819,875
10
63
null
2023-08-10T14:08:04
2015-07-28T07:36:50
Python
UTF-8
Python
false
false
16,841
py
# plot configuration # groupPlot = {} # # Groups of samples to improve the plots. # If not defined, normal plots is used # groupPlot['top'] = { 'nameHR' : 'tW and t#bar{t}', 'isSignal' : 0, 'color': 400, # kYellow 'samples' : ['top'] } groupPlot['WW'] = { 'nameHR' : 'WW', 'isSignal' : 0, 'color': 851, # kAzure -9 'samples' : ['WW', 'ggWW', 'WWewk'] } groupPlot['Fake'] = { 'nameHR' : 'Non-prompt', 'isSignal' : 0, 'color': 921, # kGray + 1 'samples' : ['Fake_em', 'Fake_me'] } groupPlot['DY'] = { 'nameHR' : "DY", 'isSignal' : 0, 'color': 418, # kGreen+2 'samples' : ['DY','Dyemb'] } groupPlot['VVV'] = { 'nameHR' : 'VVV', 'isSignal' : 0, 'color': 857, # kAzure -3 'samples' : ['VVV'] } groupPlot['VZ'] = { 'nameHR' : "VZ", 'isSignal' : 0, 'color' : 617, # kViolet + 1 'samples' : ['VZ', 'WZ', 'ZZ'] } groupPlot['Vg'] = { 'nameHR' : "V#gamma", 'isSignal' : 0, 'color' : 810, # kOrange + 10 'samples' : ['Vg', 'Wg'] } groupPlot['VgS'] = { 'nameHR' : "V#gamma*", 'isSignal' : 0, 'color' : 409, # kGreen - 9 'samples' : ['VgS_L','VgS_H'] } ''' groupPlot['Higgs'] = { 'nameHR' : 'Higgs SM', 'isSignal' : 0, 'color': 632, # kRed #'samples' : ['H_htt', 'H_hww', 'ZH_hww', 'ggZH_hww', 'WH_hww', 'qqH_hww', 'ggH_hww','bbH_hww','ttH_hww','ZH_htt', 'ggZH_htt', 'WH_htt', 'qqH_htt', 'ggH_htt','bbH_htt','ttH_htt' ] 'samples' : ['H_htt', 'ZH_hww', 'ggZH_hww', 'WH_hww', 'qqH_hww', 'ggH_hww','ttH_hww'] } ''' groupPlot['H0PM'] = { 'nameHR' : 'SM H', 'color' : 851, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['H0PM','VBF_H0PM','WH_H0PM','ZH_H0PM'] } ''' groupPlot['H0M'] = { 'nameHR' : 'H 0^{-}', 'color' : 617, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['H0M'] } groupPlot['H0PH'] = { 'nameHR' : 'H 0+', 'color' : 632, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['H0PH'] } groupPlot['H0L1'] = { 'nameHR' : 'H #Lambda1', 'color' : 409, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['H0L1'] } ''' ''' groupPlot['VBF_H0PM'] = { 'nameHR' : 'VBF h', 'color' : 851, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['VBF_H0PM'] } groupPlot['VBF_H0M'] = { 'nameHR' : 'VBF H0^{-}', 'color' : 617, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['VBF_H0M'] } groupPlot['VBF_H0PH'] = { 'nameHR' : 'VBF H0+', 'color' : 632, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['VBF_H0PH'] } groupPlot['VBF_H0L1'] = { 'nameHR' : 'VBF H#Lambda1', 'color' : 409, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, 'samples' : ['VBF_H0L1'] } ''' #ggF plot['H0PM'] = { 'nameHR' : 'ggH h ', 'color': 3, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['H0M'] = { 'nameHR' : 'ggH 0^{-}', 'color' : 4, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['H0PH'] = { 'nameHR' : 'ggH h+ ', 'color': 5, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['H0L1'] = { 'nameHR' : 'ggH #Lambda1', 'color' : 6, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } # VBF plot['VBF_H0PM'] = { 'nameHR' : 'VBF h ', 'color': 3, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['VBF_H0M'] = { 'nameHR' : 'VBF 0^{-}', 'color' : 4, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['VBF_H0PH'] = { 'nameHR' : 'VBF h+ ', 'color': 5, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['VBF_H0L1'] = { 'nameHR' : 'VBF #Lambda1', 'color' : 6, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } # VH plot['WH_H0PM'] = { 'nameHR' : 'WH h ', 'color': 3, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['WH_H0M'] = { 'nameHR' : 'WH 0^{-}', 'color' : 4, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['WH_H0PH'] = { 'nameHR' : 'WH h+ ', 'color': 5, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['WH_H0L1'] = { 'nameHR' : 'WH #Lambda1', 'color' : 6, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['ZH_H0PM'] = { 'nameHR' : 'ZH h ', 'color': 5, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['ZH_H0M'] = { 'nameHR' : 'ZH 0^{-}', 'color' : 6, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['ZH_H0PH'] = { 'nameHR' : 'ZH h+ ', 'color': 5, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } plot['ZH_H0L1'] = { 'nameHR' : 'ZH #Lambda1', 'color' : 6, 'isSignal' : 1, 'isData' : 0, 'scale' : 1, } #plot = {} # keys here must match keys in samples.py # ''' plot['ggH_hww_0PH'] = { 'nameHR' : 'ggH0PH', 'color' : 999, 'isSignal' : 1, 'isData' : 0, 'scale' : 1 } plot['qqH_hww_0PH'] = { 'nameHR' : 'qqH0PH', 'color' : 617, 'isSignal' : 1, 'isData' : 0, 'scale' : 1 } plot['ggH_hww_ALT'] = { 'nameHR' : 'ggH_ALT', 'color' : 851, 'isSignal' : 1, 'isData' : 0, 'scale' : 1 } plot['qqH_hww_ALT'] = { 'nameHR' : 'qqH_ALT', 'color' : 617, 'isSignal' : 1, 'isData' : 0, 'scale' : 1 } ''' plot['DY'] = { 'color': 418, # kGreen+2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0, } plot['Dyemb'] = { 'color': 418, # kGreen+2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0, } plot['Fake_em'] = { 'color': 921, # kGray + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['Fake_me'] = { 'color': 921, # kGray + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['top'] = { 'nameHR' : 'tW and t#bar{t}', 'color': 400, # kYellow 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0, #'cuts' : { #'hww2l2v_13TeV_of0j' : 0.94 , #'hww2l2v_13TeV_top_of0j' : 0.94 , #'hww2l2v_13TeV_dytt_of0j' : 0.94 , #'hww2l2v_13TeV_em_0j' : 0.94 , #'hww2l2v_13TeV_me_0j' : 0.94 , ## #'hww2l2v_13TeV_of1j' : 0.86 , #'hww2l2v_13TeV_top_of1j' : 0.86 , #'hww2l2v_13TeV_dytt_of1j' : 0.86 , #'hww2l2v_13TeV_em_1j' : 0.86 , #'hww2l2v_13TeV_me_1j' : 0.86 , #}, } plot['WW'] = { 'color': 851, # kAzure -9 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 # ele/mu trigger efficiency datadriven } plot['ggWW'] = { 'color': 850, # kAzure -10 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['WWewk'] = { 'color': 851, # kAzure -9 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 # ele/mu trigger efficiency datadriven } plot['Vg'] = { 'color': 859, # kAzure -1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['VgS_L'] = { 'color' : 617, # kViolet + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['VgS_H'] = { 'color' : 617, # kViolet + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['VZ'] = { 'color': 858, # kAzure -2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['VVV'] = { 'color': 857, # kAzure -3 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } ''' # Htautau plot['H_htt'] = { 'nameHR' : 'Htt', 'color': 632+4, # kRed+4 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } #plot['ZH_htt'] = { # 'nameHR' : 'ZHtt', # 'color': 632+3, # kRed+3 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # #plot['bbH_htt'] = { # 'nameHR' : 'bbHtt', # 'color': 632-1, # kRed-1 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # #plot['ttH_htt'] = { # 'nameHR' : 'bbHtt', # 'color': 632-2, # kRed-1 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # # #plot['ggZH_htt'] = { # 'nameHR' : 'ggZHtt', # 'color': 632+4, # kRed+4 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # #plot['WH_htt'] = { # 'nameHR' : 'WHtt', # 'color': 632+2, # kRed+2 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # # #plot['qqH_htt'] = { # 'nameHR' : 'qqHtt', # 'color': 632+1, # kRed+1 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # # #plot['ggH_htt'] = { # 'nameHR' : 'ggHtt', # 'color': 632, # kRed # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } # HWW #plot['H_hww'] = { # 'nameHR' : 'Hww', # 'color': 632, # kRed # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } plot['ZH_hww'] = { 'nameHR' : 'ZH', 'color': 632+3, # kRed+3 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } plot['ggZH_hww'] = { 'nameHR' : 'ggZH', 'color': 632+4, # kRed+4 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } plot['WH_hww'] = { 'nameHR' : 'WH', 'color': 632+2, # kRed+2 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } plot['qqH_hww'] = { 'nameHR' : 'qqH', 'color': 632+1, # kRed+1 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } plot['ggH_hww'] = { 'nameHR' : 'ggH', 'color': 632, # kRed 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } #plot['bbH_hww'] = { # 'nameHR' : 'bbH', # 'color': 632+5, # kRed+5 # 'isSignal' : 1, # 'isData' : 0, # 'scale' : 1 # # } plot['ttH_hww'] = { 'nameHR' : 'ttH', 'color': 632+6, # kRed+6 'isSignal' : 0, 'isData' : 0, 'scale' : 1 # } ''' # data plot['DATA'] = { 'nameHR' : 'Data', 'color': 1 , 'isSignal' : 0, 'isData' : 1 , 'isBlind' : 0 } # additional options legend['lumi'] = 'L = 59.74/fb' legend['sqrt'] = '#sqrt{s} = 13 TeV' #comboPlot['SMvsALT'] = { # 'groups' : ['H0PM','H0PH','H0M','H0L1'] #}
705ff0311f1e83b1691af0fa9a0639bced211d37
6e365df9ff647336bb5a8b72aa4b4bc8748a74b3
/week8/day5/CS231n-Python3-master/assignment1/cs231n/classifiers/k_nearest_neighbor.py
4c83d90fc2c9448a8abba71788ea63f8b52649b2
[]
no_license
DongIk-Jang/programmers_dev_course
4cf03b926e556018956fb77e553ec9fb26b0f30d
07a002c23853bac457ebb25ded908d17420fff6f
refs/heads/master
2023-06-09T07:00:05.748284
2021-07-05T09:16:09
2021-07-05T09:16:09
359,708,866
0
0
null
null
null
null
UTF-8
Python
false
false
9,422
py
import numpy as np class KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): for j in range(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension. # ##################################################################### # dists[i,j] = np.sqrt(np.sum(np.square(self.X_train[j, :] - X[i, :]))) dists[i,j] = np.linalg.norm(self.X_train[j,:]-X[i,:]) ##################################################################### # END OF YOUR CODE # ##################################################################### return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # ####################################################################### # dists[i] = np.sqrt(np.sum(np.square(X[i] - self.X_train), axis=1)) dists[i, :] = np.linalg.norm(self.X_train - X[i,:], axis = 1) ####################################################################### # END OF YOUR CODE # ####################################################################### return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy. # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### te = np.square(X).sum(axis=1) tr = np.square(self.X_train).sum(axis=1) te = te.T.reshape(te.shape[0], 1) tr = tr.reshape(1, tr.shape[0]) M = -2 * np.dot(X, self.X_train.T) # print('te shape:', te.shape) # print('tr shape:', tr.shape) # print('M shape:', M.shape) dists = np.sqrt(te + tr + M) ######################################################################### # END OF YOUR CODE # ######################################################################### return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in range(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # testing point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### # index = np.argpartition(dists[i, :], -(self.X_train.shape[0] - k))[:k] # index = np.argpartition(dists[i, :], k)[:k] index = np.argsort(dists[i, :])[:k] # print('index:', index) label = list(self.y_train[index]) # print('label:', label) ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### from collections import Counter y_pred[i] = int(Counter(label).most_common()[0][0]) # print('pred:', y_pred[i]) ######################################################################### # END OF YOUR CODE # ######################################################################### return y_pred
a5eec233d2b08c4926a8a84437e4236890b3e12a
2e8272bad04f2fb1d5c7dbafbcceca0afa02d53a
/parser.py
cc6652816c0742a5d3b9611d780271b2425ddff4
[]
no_license
lowweb/ostiePY
e138642efe8c7c5544f9588feaeee8481f701c99
fe7c72c820e293c7fa0966804af86c11be22979f
refs/heads/master
2021-02-06T14:08:41.997316
2020-02-29T06:52:17
2020-02-29T06:52:17
243,919,914
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
import csv from insert_music import insert_music array_music = [] unic_nconst = set() with open('data/name.basics.tsv', newline='') as tsvfile: reader = csv.DictReader(tsvfile, dialect='excel-tab') countrow = 0 for row in reader: prof = row['primaryProfession'].strip(" ").split(",") if 'composer' in prof or 'soundtrack' in prof: if row['nconst'] not in unic_nconst: insert_row = [int(row['nconst'][2:]), row['nconst'], row['primaryName'], row['primaryProfession'],row['knownForTitles'] ] array_music.append(insert_row) unic_nconst.add(row['nconst']) countrow += 1 print(countrow) insert_music(array_music)
607f0c745c7df74bf1cbfc3ebac73ac5b92debb3
8d03310627f1f625eddda8f4a3e680892872e0ec
/batemaneq/__init__.py
09ee7bcfa329b2d98875fd9beb5ea50bbdbf1f40
[ "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
Rolleroo/batemaneq
4da15e4bff32484d27ea9dc2b3338edc4956b0df
bd8c24d1f77ccb166b3210d81d9468f7789813ad
refs/heads/master
2021-02-05T12:43:40.639427
2020-02-23T20:47:48
2020-02-23T20:47:48
243,781,711
1
0
BSD-2-Clause
2020-02-28T14:31:36
2020-02-28T14:31:36
null
UTF-8
Python
false
false
356
py
# -*- coding: utf-8 -*- """ batemaneq provides a Python package for evaluating the Bateman equation """ from __future__ import absolute_import from ._release import __version__ from .bateman import bateman_parent, bateman_full from ._bateman_double import bateman_parent as bateman_parent_arr from ._bateman_double import bateman_full as bateman_full_arr
31f063a4f2c10039d18c2b50fa5313f550fd0ea6
11964177956aa6d5d26f8838af794b33b7887bf3
/Secret_Santa/wsgi.py
1f6fd0559de7eb7453e1a41bf756c5cf0d9585a1
[]
no_license
Tyler-Irving/Secret-Santa
fa134a27ca6803aa20591a778f2f00c7f480c778
49f026cb005fdf8d6b42b32501c4892f34fa0fe0
refs/heads/master
2020-09-14T18:02:09.871886
2019-11-21T15:51:35
2019-11-21T15:51:35
223,208,431
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for Secret_Santa project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Secret_Santa.settings') application = get_wsgi_application()