blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10320c2b5c5d228ae3ada19ae71d1c1b9d7fff71 | 77d7f2c1284b276c95ad31b15ac2bde077f1ceca | /fastreid/data/common.py | 959fefb3f17b62bcdefa3071913ff3df58331735 | [
"Apache-2.0"
]
| permissive | Cris-zj/fast-reid | a53f19fefe149eec93d0f1b2a1d61136d9c9eaf6 | db4b65444912cfd54675e6a52fa12e2d1321e971 | refs/heads/master | 2022-12-14T15:23:40.820118 | 2020-08-31T12:34:33 | 2020-08-31T12:34:33 | 291,639,026 | 2 | 0 | Apache-2.0 | 2020-08-31T06:56:24 | 2020-08-31T06:56:23 | null | UTF-8 | Python | false | false | 1,078 | py | # encoding: utf-8
"""
@author: liaoxingyu
@contact: [email protected]
"""
from torch.utils.data import Dataset
from .data_utils import read_image
class CommDataset(Dataset):
"""Image Person ReID Dataset"""
def __init__(self, img_items, transform=None, relabel=True):
self.img_items = img_items
self.transform = transform
self.relabel = relabel
pid_set = set([i[1] for i in img_items])
self.pids = sorted(list(pid_set))
if relabel: self.pid_dict = dict([(p, i) for i, p in enumerate(self.pids)])
def __len__(self):
return len(self.img_items)
def __getitem__(self, index):
img_path, pid, camid = self.img_items[index]
img = read_image(img_path)
if self.transform is not None: img = self.transform(img)
if self.relabel: pid = self.pid_dict[pid]
return {
"images": img,
"targets": pid,
"camid": camid,
"img_path": img_path
}
@property
def num_classes(self):
return len(self.pids)
| [
"[email protected]"
]
| |
3f38851402838e78a9602b3e882605fb1e2d4f86 | 14f4d045750f7cf45252838d625b2a761d5dee38 | /argo/test/test_io_k8s_kube_aggregator_pkg_apis_apiregistration_v1beta1_api_service_condition.py | 01d2de718c08b57e04b58fbd20a8e3d5c8c0eb44 | []
| no_license | nfillot/argo_client | cf8d7413d728edb4623de403e03d119fe3699ee9 | c8cf80842f9eebbf4569f3d67b9d8eff4ba405fa | refs/heads/master | 2020-07-11T13:06:35.518331 | 2019-08-26T20:54:07 | 2019-08-26T20:54:07 | 204,546,868 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,330 | py | # coding: utf-8
"""
Kubernetes
No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501
OpenAPI spec version: v1.14.0
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
from __future__ import absolute_import
import unittest
import argo
from models.io_k8s_kube_aggregator_pkg_apis_apiregistration_v1beta1_api_service_condition import IoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition # noqa: E501
from argo.rest import ApiException
class TestIoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition(unittest.TestCase):
"""IoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition unit test stubs"""
def setUp(self):
pass
def tearDown(self):
pass
def testIoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition(self):
"""Test IoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition"""
# FIXME: construct object with mandatory attributes with example values
# model = argo.models.io_k8s_kube_aggregator_pkg_apis_apiregistration_v1beta1_api_service_condition.IoK8sKubeAggregatorPkgApisApiregistrationV1beta1APIServiceCondition() # noqa: E501
pass
if __name__ == '__main__':
unittest.main()
| [
"[email protected]"
]
| |
37857bc4bb9559c9e3f68635744baf75a7cc8762 | c086a38a366b0724d7339ae94d6bfb489413d2f4 | /PythonEnv/Lib/site-packages/docutils/utils/urischemes.py | 01335601af86e67266b95a75aa5f0935ea92bcf5 | []
| no_license | FlowkoHinti/Dionysos | 2dc06651a4fc9b4c8c90d264b2f820f34d736650 | d9f8fbf3bb0713527dc33383a7f3e135b2041638 | refs/heads/master | 2021-03-02T01:14:18.622703 | 2020-06-09T08:28:44 | 2020-06-09T08:28:44 | 245,826,041 | 2 | 1 | null | null | null | null | UTF-8 | Python | false | false | 6,028 | py | # $Id: urischemes.py 8376 2019-08-27 19:49:29Z milde $
# Author: David Goodger <[email protected]>
# Copyright: This module has been placed in the public domain.
"""
`schemes` is a dictionary with lowercase URI addressing schemes as
keys and descriptions as values. It was compiled from the index at
http://www.iana.org/assignments/uri-schemes (revised 2005-11-28)
and an older list at http://www.w3.org/Addressing/schemes.html.
"""
# Many values are blank and should be filled in with useful descriptions.
schemes = {
'about': 'provides information on Navigator',
'acap': 'Application Configuration Access Protocol; RFC 2244',
'addbook': "To add vCard entries to Communicator's Address Book",
'afp': 'Apple Filing Protocol',
'afs': 'Andrew File System global file names',
'aim': 'AOL Instant Messenger',
'callto': 'for NetMeeting links',
'castanet': 'Castanet Tuner URLs for Netcaster',
'chttp': 'cached HTTP supported by RealPlayer',
'cid': 'content identifier; RFC 2392',
'crid': 'TV-Anytime Content Reference Identifier; RFC 4078',
'data': ('allows inclusion of small data items as "immediate" data; '
'RFC 2397'),
'dav': 'Distributed Authoring and Versioning Protocol; RFC 2518',
'dict': 'dictionary service protocol; RFC 2229',
'dns': 'Domain Name System resources',
'eid': ('External ID; non-URL data; general escape mechanism to allow '
'access to information for applications that are too '
'specialized to justify their own schemes'),
'fax': ('a connection to a terminal that can handle telefaxes '
'(facsimiles); RFC 2806'),
'feed': 'NetNewsWire feed',
'file': 'Host-specific file names; RFC 1738',
'finger': '',
'freenet': '',
'ftp': 'File Transfer Protocol; RFC 1738',
'go': 'go; RFC 3368',
'gopher': 'The Gopher Protocol',
'gsm-sms': ('Global System for Mobile Communications Short Message '
'Service'),
'h323': ('video (audiovisual) communication on local area networks; '
'RFC 3508'),
'h324': ('video and audio communications over low bitrate connections '
'such as POTS modem connections'),
'hdl': 'CNRI handle system',
'hnews': 'an HTTP-tunneling variant of the NNTP news protocol',
'http': 'Hypertext Transfer Protocol; RFC 2616',
'https': 'HTTP over SSL; RFC 2818',
'hydra': 'SubEthaEdit URI. See http://www.codingmonkeys.de/subethaedit.',
'iioploc': 'Internet Inter-ORB Protocol Location?',
'ilu': 'Inter-Language Unification',
'im': 'Instant Messaging; RFC 3860',
'imap': 'Internet Message Access Protocol; RFC 2192',
'info': 'Information Assets with Identifiers in Public Namespaces',
'ior': 'CORBA interoperable object reference',
'ipp': 'Internet Printing Protocol; RFC 3510',
'irc': 'Internet Relay Chat',
'iris.beep': 'iris.beep; RFC 3983',
'iseek': 'See www.ambrosiasw.com; a little util for OS X.',
'jar': 'Java archive',
'javascript': ('JavaScript code; evaluates the expression after the '
'colon'),
'jdbc': 'JDBC connection URI.',
'ldap': 'Lightweight Directory Access Protocol',
'lifn': '',
'livescript': '',
'lrq': '',
'mailbox': 'Mail folder access',
'mailserver': 'Access to data available from mail servers',
'mailto': 'Electronic mail address; RFC 2368',
'md5': '',
'mid': 'message identifier; RFC 2392',
'mocha': '',
'modem': ('a connection to a terminal that can handle incoming data '
'calls; RFC 2806'),
'mtqp': 'Message Tracking Query Protocol; RFC 3887',
'mupdate': 'Mailbox Update (MUPDATE) Protocol; RFC 3656',
'news': 'USENET news; RFC 1738',
'nfs': 'Network File System protocol; RFC 2224',
'nntp': 'USENET news using NNTP access; RFC 1738',
'opaquelocktoken': 'RFC 2518',
'phone': '',
'pop': 'Post Office Protocol; RFC 2384',
'pop3': 'Post Office Protocol v3',
'pres': 'Presence; RFC 3859',
'printer': '',
'prospero': 'Prospero Directory Service; RFC 4157',
'rdar': ('URLs found in Darwin source '
'(http://www.opensource.apple.com/darwinsource/).'),
'res': '',
'rtsp': 'real time streaming protocol; RFC 2326',
'rvp': '',
'rwhois': '',
'rx': 'Remote Execution',
'sdp': '',
'service': 'service location; RFC 2609',
'shttp': 'secure hypertext transfer protocol',
'sip': 'Session Initiation Protocol; RFC 3261',
'sips': 'secure session intitiaion protocol; RFC 3261',
'smb': 'SAMBA filesystems.',
'snews': 'For NNTP postings via SSL',
'snmp': 'Simple Network Management Protocol; RFC 4088',
'soap.beep': 'RFC 3288',
'soap.beeps': 'RFC 3288',
'ssh': 'Reference to interactive sessions via ssh.',
't120': 'real time data conferencing (audiographics)',
'tag': 'RFC 4151',
'tcp': '',
'tel': ('a connection to a terminal that handles normal voice '
'telephone calls, a voice mailbox or another voice messaging '
'system or a service that can be operated using DTMF tones; '
'RFC 3966.'),
'telephone': 'telephone',
'telnet': 'Reference to interactive sessions; RFC 4248',
'tftp': 'Trivial File Transfer Protocol; RFC 3617',
'tip': 'Transaction Internet Protocol; RFC 2371',
'tn3270': 'Interactive 3270 emulation sessions',
'tv': '',
'urn': 'Uniform Resource Name; RFC 2141',
'uuid': '',
'vemmi': 'versatile multimedia interface; RFC 2122',
'videotex': '',
'view-source': 'displays HTML code that was generated with JavaScript',
'wais': 'Wide Area Information Servers; RFC 4156',
'whodp': '',
'whois++': 'Distributed directory service.',
'x-man-page': ('Opens man page in Terminal.app on OS X '
'(see macosxhints.com)'),
'xmlrpc.beep': 'RFC 3529',
'xmlrpc.beeps': 'RFC 3529',
'z39.50r': 'Z39.50 Retrieval; RFC 2056',
'z39.50s': 'Z39.50 Session; RFC 2056', }
| [
"="
]
| = |
bc026c4ed31e48c1c7c6a8dad59f6f27b760e5de | d44b5a657e7cd69c875b55dd5cddf21812e89095 | /pixel_cnn/model/resnet.py | 4c7abe39625aca83798614a9c570268916820747 | [
"Apache-2.0"
]
| permissive | nel215/chainer-pixel-cnn | ca8ae17fda998f7677dea785e53319b3fc646e76 | 94b064f9e66355d141ed5d6cce0c38492203715b | refs/heads/master | 2020-04-02T02:11:29.546694 | 2018-10-21T12:10:43 | 2018-10-21T12:10:43 | 153,896,421 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 774 | py | from chainer import Chain
from chainer import links as L
from chainer import functions as F
def concat_elu(x):
return F.elu(F.concat([x, -x], 1))
class GatedResnet(Chain):
def __init__(self, n_out, Conv2D):
super(GatedResnet, self).__init__()
with self.init_scope():
self.conv1 = Conv2D(n_out)
self.conv2 = L.Convolution2D(None, n_out, ksize=1)
self.conv3 = Conv2D(2*n_out)
def __call__(self, x, a=None):
h = self.conv1(concat_elu(x))
if a is not None:
h += self.conv2(concat_elu(a))
h = F.dropout(concat_elu(h))
h = self.conv3(h)
# TODO: conditional generation
a, b = F.split_axis(h, 2, 1)
h = a * F.sigmoid(b)
return x + h
| [
"[email protected]"
]
| |
6a785fc558dbcc8272ad715017bef5db57b4b310 | 4124770492faac81ab962641d88c0bbf54e14d15 | /run_rnn_xz.py | a3ad8a679941b50e7043c8b0d0fd7e1f9216c66f | [
"MIT"
]
| permissive | lr12/textcnnrnn | 5c5f47b409fb1b402a8074b89178864da97a11b5 | aa0560b89a82225e7b2dbbd8223acb1c5a18eec7 | refs/heads/master | 2020-05-05T07:23:49.221143 | 2019-06-24T11:51:52 | 2019-06-24T11:51:52 | 179,823,664 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 7,165 | py | # coding: utf-8
from __future__ import print_function
import os
import sys
import time
from datetime import timedelta
import numpy as np
import tensorflow as tf
from sklearn import metrics
from rnn_model import TRNNConfig, TextRNN
from data.cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab
#base_dir = 'data/cnews'
base_dir = 'data/xz'
#base_dir = 'data/ay'
train_dir = os.path.join(base_dir, 'cnews.train.txt')
test_dir = os.path.join(base_dir, 'cnews.test.txt')
val_dir = os.path.join(base_dir, 'cnews.val.txt')
vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')
#save_dir = 'checkpoints/textrnn'
save_dir = 'checkpoints/textrnn/xz'
#save_dir = 'checkpoints/textrnn/ay'
save_path = os.path.join(save_dir, 'best_validation') # 最佳验证结果保存路径
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
def feed_data(x_batch, y_batch, keep_prob):
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.keep_prob: keep_prob
}
return feed_dict
def evaluate(sess, x_, y_):
"""评估在某一数据上的准确率和损失"""
data_len = len(x_)
batch_eval = batch_iter(x_, y_, 128)
total_loss = 0.0
total_acc = 0.0
for x_batch, y_batch in batch_eval:
batch_len = len(x_batch)
feed_dict = feed_data(x_batch, y_batch, 1.0)
loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
total_loss += loss * batch_len
total_acc += acc * batch_len
return total_loss / data_len, total_acc / data_len
def train():
print("Configuring TensorBoard and Saver...")
# 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
tensorboard_dir = 'tensorboard/textrnn'
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("accuracy", model.acc)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
# 配置 Saver
saver = tf.train.Saver()
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print("Loading training and validation data...")
# 载入训练集与验证集
start_time = time.time()
x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, config.seq_length)
x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, config.seq_length)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# 创建session
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph)
print('Training and evaluating...')
start_time = time.time()
total_batch = 0 # 总批次
best_acc_val = 0.0 # 最佳验证集准确率
last_improved = 0 # 记录上一次提升批次
require_improvement = 1000 # 如果超过1000轮未提升,提前结束训练
flag = False
for epoch in range(config.num_epochs):
print('Epoch:', epoch + 1)
batch_train = batch_iter(x_train, y_train, config.batch_size)
for x_batch, y_batch in batch_train:
feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob)
if total_batch % config.save_per_batch == 0:
# 每多少轮次将训练结果写入tensorboard scalar
s = session.run(merged_summary, feed_dict=feed_dict)
writer.add_summary(s, total_batch)
if total_batch % config.print_per_batch == 0:
# 每多少轮次输出在训练集和验证集上的性能
feed_dict[model.keep_prob] = 1.0
loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict)
loss_val, acc_val = evaluate(session, x_val, y_val) # todo
if acc_val > best_acc_val:
# 保存最好结果
best_acc_val = acc_val
last_improved = total_batch
saver.save(sess=session, save_path=save_path)
improved_str = '*'
else:
improved_str = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
+ ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str))
session.run(model.optim, feed_dict=feed_dict) # 运行优化
total_batch += 1
if total_batch - last_improved > require_improvement:
# 验证集正确率长期不提升,提前结束训练
print("No optimization for a long time, auto-stopping...")
flag = True
break # 跳出循环
if flag: # 同上
break
def test():
print("Loading test data...")
start_time = time.time()
x_test, y_test = process_file(test_dir, word_to_id, cat_to_id, config.seq_length)
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess=session, save_path=save_path) # 读取保存的模型
print('Testing...')
loss_test, acc_test = evaluate(session, x_test, y_test)
msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
print(msg.format(loss_test, acc_test))
batch_size = 128
data_len = len(x_test)
num_batch = int((data_len - 1) / batch_size) + 1
y_test_cls = np.argmax(y_test, 1)
y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32) # 保存预测结果
for i in range(num_batch): # 逐批次处理
start_id = i * batch_size
end_id = min((i + 1) * batch_size, data_len)
feed_dict = {
model.input_x: x_test[start_id:end_id],
model.keep_prob: 1.0
}
y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)
# 评估
print("Precision, Recall and F1-Score...")
print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories ,digits=4))
# 混淆矩阵
print("Confusion Matrix...")
cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
print(cm)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
if __name__ == '__main__':
# if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
# raise ValueError("""usage: python run_rnn.py [train / test]""")
print('Configuring RNN model...')
config = TRNNConfig()
if not os.path.exists(vocab_dir): # 如果不存在词汇表,重建
build_vocab(train_dir, vocab_dir, config.vocab_size)
categories, cat_to_id = read_category()
words, word_to_id = read_vocab(vocab_dir)
config.vocab_size = len(words)
model = TextRNN(config)
train()
test()
# if sys.argv[1] == 'train':
# train()
# else:
# test()
| [
"[email protected]"
]
| |
8fe298aaf5cf8b93c96ab107fbe0f5771e3f5e25 | b775940595617a13289ee7006cf837f8f3a34480 | /examples/ppk_plot.py | 24497e1d56f97c75755d7197f2dbe75215961c3c | []
| no_license | Nathan-Walk/manufacturing | 5d2f58c2be45c9ccb2263bd750b6c18809fe76d4 | 2a22457ff9ef695da649a1e11d0cf7cb8ddde348 | refs/heads/master | 2023-03-08T19:48:15.613729 | 2021-02-26T01:05:46 | 2021-02-26T01:05:46 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 276 | py | import logging
import matplotlib.pyplot as plt
from manufacturing import import_excel, ppk_plot
logging.basicConfig(level=logging.INFO)
data = import_excel('data/example_data_with_faults.xlsx', columnname='value (lcl=-7.4 ucl=7.4)', skiprows=3)
ppk_plot(**data)
plt.show()
| [
"[email protected]"
]
| |
e853707cdb0cd2cd268ce7a38fba29144661310f | fa6bc3c7733cb2728224b8ac71e04d3b4b50b184 | /alerts/sponsors/support.py | 413591435ccb4b2e87b2399feea4796d55a57b04 | [
"Apache-2.0"
]
| permissive | shanz/mirandum | 5636fbe599a539bf262e8f3da6e0e4e83d39cc73 | ce1d662a7cf64ed223d71fffed02acd3f9244e90 | refs/heads/master | 2021-01-21T03:09:14.287076 | 2016-04-30T06:39:47 | 2016-04-30T06:39:47 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,938 | py | # Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import httplib2
from sponsors.models import *
from googaccount.models import CredentialsModel
from django.contrib.auth.models import User
from oauth2client.contrib.django_orm import Storage
BASE_URL = "https://www.googleapis.com/youtube/v3/"
def run_sponsors(ffu):
added = 0
storage = Storage(CredentialsModel, 'id', ffu.credentials, 'credential')
credential = storage.get()
if credential is None or credential.invalid == True:
raise Exception("bad creds")
return added
http = httplib2.Http()
http = credential.authorize(http)
resp, data = http.request("%ssponsors?part=snippet&maxResults=5&filter=all" % BASE_URL)
data = json.loads(data)
if 'error' in data:
raise Exception("Error fetching sponsors: %s" % json.dumps(data['error']))
events = []
if 'items' in data:
for i in data['items']:
if SponsorEvent.objects.filter(external_id=i['etag'], updater=ffu).count() > 0:
break
details = json.dumps(i)
try:
ffe = SponsorEvent(external_id=i['etag'], updater=ffu, details=details)
ffe.save()
except Exception, E:
print "Failed in individual sponsor run: %s\nData:\n%s" % (E, details)
added += 1
return added
| [
"[email protected]"
]
| |
d7a475241f3c8632512754d85bd07dc6b8525b48 | 6b5142b5def59556942f91411a792ac5d15fc427 | /l2tshoot.py | 7ae899cee162ca115d4f8d2adc564046b703a3f2 | []
| no_license | karthiksjsu/codedump | 2a9c9ee4f75deba0b8cc8f460afd3b85f1ff239a | ac94fc8a259023ba804c0e587f72a9dfed89bbd6 | refs/heads/master | 2021-01-19T17:02:36.274907 | 2017-04-14T21:14:14 | 2017-04-14T21:14:14 | 88,301,373 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 627 | py | import logging
logging.getLogger("scapy runtime").setLevel(logging.ERROR)
from scapy.all import *
dstip=raw_input("Enter the IP for which the status needs to be checked\n")
logging.info("constructing ARP message")
arp=ARP()
arp.hwdst='00:00:00:00:00:00'
arp.hwsrc='08:00:27:dd:f5:3a'
arp.pdst=dstip
arp.src='10.0.2.15'
ether=Ether()
ether.dst='FF:FF:FF:FF:FF:FF'
ether.src='08:00:27:dd:f5:3a'
packet=ether/arp
reply=srp1(packet,timeout=5,verbose=0)
if(reply):
print "Layer2 status is up and at " +reply.src
#print reply.show()
else:
print "Layer2 status is down"
logging.warning(" Status is down")
| [
"[email protected]"
]
| |
20c3c2ce5f8c8c1514529d8e50833e1553d9df21 | c7ae47e0806c19cf3462c090fa9015f27a4d5e90 | /blog/migrations/0001_initial.py | c1734eec62851501c157060e7ceefd67a563537d | []
| no_license | micahchuim/portfolio | a1bc1cb89dbe9650235dbafc5bafffa4e25fdc32 | 0e5458e59fb6dc47a1b6cbb4f5214271defc39ec | refs/heads/master | 2023-01-10T03:14:46.642706 | 2020-11-16T03:04:14 | 2020-11-16T03:04:14 | 313,176,277 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 584 | py | # Generated by Django 3.1.3 on 2020-11-13 07:52
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Blog',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=200)),
('description', models.TextField()),
('date', models.DateField()),
],
),
]
| [
"[email protected]"
]
| |
add0c5f6565b30e25421cd87641a4403aaad57bc | 840c7884fe10902f11bceb6e7ef78d8fc7f92818 | /py_thread/fx_thread.py | 042be7780b7f16f47789eaead8704478df9fc359 | []
| no_license | johnnyem527/pyprac | 07a7a6c2a52169be5424d65a5f91aad815a4d08a | 5899c0c57a49121957f4fb9f56d47ee681dbe77b | refs/heads/master | 2021-05-08T18:02:21.836654 | 2018-04-11T12:22:48 | 2018-04-11T12:22:48 | 119,498,838 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 665 | py | # 函数式使用线程
import threading
tickets = 1000
lock = threading.Lock()
def buy_ticket(tid):
global lock
global tickets
while True:
lock.acquire()
if tickets != 0:
print("线程" + tid + ":买到了第" + str(tickets) + "张票")
tickets -= 1
print("还剩 :" + str(tickets) + "张票")
# print(threading.current_thread())
else:
print("线程" + tid + ": 票已抢完!")
lock.release()
break
lock.release()
for i in range(3):
new_thread = threading.Thread(target=buy_ticket, args=(str(i),))
new_thread.start()
| [
"[email protected]"
]
| |
cc35858bc95f4683d14d95919f9519628e61c9bc | 79067556d586128deadc846098010059d20f60e2 | /bikeshare.py | becb19cf9c26bfd2ec8cc95528a0b9e8cfc5025b | []
| no_license | mohamedkhnour/Explore-US-Bikeshare-Data | 656fe2f1bf39e9ea1aceefbc2c792940c0a69b8d | 87ca4bf6fba60cfbdf86653614ad85a00f40ffdb | refs/heads/main | 2023-04-08T16:15:10.654637 | 2021-04-15T20:11:38 | 2021-04-15T20:11:38 | 358,376,362 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 7,834 | py | import time
import pandas as pd
import numpy as np
CITY_DATA = { 'ch': 'chicago.csv',
'ny': 'new_york_city.csv',
'w': 'washington.csv' }
def get_filters():
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city_selection = input('to view available BS data, kindly type: \n The letter(ch) for Chicago \n The letter (ny) for New York City \n The letter (W) for Washington \n').lower()
while city_selection not in {'ch','ny','w'}:
print('that is invalid input .')
city_selection = input('to view available BS data, kindly type: \n The letter(ch) for Chicago \n The letter (ny) for New York City \n The letter (W) for Washington \n').lower()
# TO DO: get user input for month (all, january, february, ... , june)
monthes=['january','february','march','april','may','june','all']
month_selection = input('select month \n January \n February\n March\n April\n May\n June\n ALL\n').lower()
while month_selection not in monthes:
print('that is invalid input .')
month_selection = input('select month \nJA January \nFE February\n MA March\n AP April\n MA May\n JU June\n ALL\n').lower()
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
day_selection =input('select Day \nMonday \nTuesday\nWednesday\n Thursday\nFriday\n Saturday\n Sunday\n ALL').lower()
days=['monday', 'tuesday', 'wednesday', 'thursday','friday', 'saturday', 'sunday','all']
while day_selection not in days:
print('that is invalid input .')
day_selection = input('select Day \nMonday \nTuesday\nWednesday\n Thursday\nFriday\n Saturday\n Sunday\n ALL').lower()
print('-'*40)
return city_selection, month_selection, day_selection
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
return df
def time_stats(df1):
"""Displays statistics on the most frequent times of travel."""
df = df1
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
df['Start Time'] = pd.to_datetime(df['Start Time'])
# TO DO: display the most common month
df['month'] = df['Start Time'].dt.month
popular_month = df['month'].mode()[0]
print('Most Popular Start month:', popular_month)
# TO DO: display the most common day of week
df['day'] = df['Start Time'].dt.dayofweek
popular_day = df['day'].mode()[0]
print('Most Popular Start month:', popular_day)
# TO DO: display the most common start hour
df['hour'] = df['Start Time'].dt.hour
popular_hour = df['hour'].mode()[0]
print('Most Popular Start Hour:', popular_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
return(time.time() - start_time)
def station_stats(df1):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
df = df1
# TO DO: display most commonly used start station
common_start_station = df['Start Station'].mode()[0]
print("The most start station from data is: " + common_start_station)
# TO DO: display most commonly used end station
common_end_station = df['End Station'].mode()[0]
print("The most end station is: " + common_end_station)
# TO DO: display most frequent combination of start station and end station trip
frequent_combination = (df['Start Station'] + "||" + df['End Station']).mode()[0]
print("The moststart station and end station trip is : " + str(frequent_combination.split("||")))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
total_travel_time = df['Trip Duration'].sum()
print("The total travel time from the given fitered data is: " + str(total_travel_time))
# TO DO: display mean travel time
mean_travel_time = df['Trip Duration'].mean()
print("The mean travel time from the given fitered data is: " + str(mean_travel_time))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
gender = df['Gender'].value_counts()
print("The count of user gender from the given fitered data is: \n" + str(gender))
# TO DO: Display counts of gender
earliest_birth = df['Birth Year'].min()
most_recent_birth = df['Birth Year'].max()
most_common_birth = df['Birth Year'].mode()[0]
print('Earliest birth from the given fitered data is: {}\n'.format(earliest_birth))
print('Most recent birth from the given fitered data is: {}\n'.format(most_recent_birth))
print('Most common birth from the given fitered data is: {}\n'.format(most_common_birth) )
# TO DO: Display earliest, most recent, and most common year of birth
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
'''def main():
city,month,day=get_filters()
df=load_data(city,month,day)
#print(df.head())
time_stats(df)
station_stats(df)
trip_duration_stats(df)
if city=='ch':
user_stats(df)'''
def display_raw_data(df):
print(df.head())
next = 0
while True:
view_raw_data = input('\nWould you like to view next five row of raw data? Enter yes or no.\n')
if view_raw_data.lower() != 'yes':
return
next = next + 5
print(df.iloc[next:next+5])
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
if city=='ch':
user_stats(df)
while True:
view_raw_data = input('\nWould you like to view first five row of raw data? Enter yes or no.\n')
if view_raw_data.lower() != 'yes':
break
display_raw_data(df)
break
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()
| [
"[email protected]"
]
| |
3da20a20d29aa2f522c83f995e511782028cfdd3 | c405becd9f1a66dc3675adb106db01a7aedec840 | /sokoban.py | d327733d2888ea940d0e148d4f9ef6e8913deabd | []
| no_license | ssonkar/Sokoban-Solver | 7897f115497cb05f11d1401c9232f8264daa59f8 | 31a001de38327e5764c941f1e729b888ee988364 | refs/heads/master | 2020-04-10T10:45:09.673727 | 2018-12-08T23:25:36 | 2018-12-08T23:25:36 | 160,974,810 | 1 | 1 | null | null | null | null | UTF-8 | Python | false | false | 1,781 | py | from board import Board
#from boardastar import Boardastar
import bfs
import ucs
import ass
class Sokoban:
'''
Sokoban game class
'''
def new_board(self, filename):
''' Creates new board from file '''
e = [] # empty solution list
b = Board(e)
with open(filename, 'r') as f: # automatically closes file
read_data = f.read()
lines = read_data.split('\n')
height = lines.pop(0)
x = 0
y = 0
for line in lines:
for char in line:
# adds Spots to board's sets by reading in char
if char == '#':
b.add_wall(x, y)
elif char == '.':
b.add_goal(x, y)
elif char == '@':
b.set_player(x, y)
elif char == '+':
# player gets its own Spot marker
b.set_player(x, y)
b.add_goal(x, y)
elif char == '$':
b.add_box(x, y)
elif char == '*':
b.add_box(x, y)
b.add_goal(x, y)
x += 1
y += 1
x = 0
# check for a board with no player
if hasattr(b, 'player'):
return b
else:
print("No player on board")
return None
def doSearches(self, board, option):
if option == 1:
bfs.search(board)
if option == 2:
ucs.search(board)
if option == 3:
board.isAstar = True
ass.search(board)
| [
"[email protected]"
]
| |
d1362ba688ba94ce5fb4fef263f80e8985e67648 | 4fff1e1dd0218ff64f7d8221445ed4a6f6687f85 | /web/migrations/0002_income.py | f925f2ad4b92efbdfe984ad40793edda1f2977f8 | []
| no_license | fahim1377/bestoon | 02e98f34afc79382ab6076cba07e008767e49d14 | 9d1c94b01ff03ea5e3e74728f3130b6554e644a9 | refs/heads/master | 2020-06-18T03:03:06.958510 | 2019-07-10T06:10:41 | 2019-07-10T06:10:41 | 195,384,567 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 858 | py | # Generated by Django 2.2.3 on 2019-07-05 07:56
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('web', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Income',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('text', models.CharField(max_length=255)),
('date', models.DateTimeField()),
('amount', models.BigIntegerField()),
('user', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL)),
],
),
]
| [
"[email protected]"
]
| |
e6ffa0af18975bc4140bb2a0fd222509374d096d | 174975248ffa04bb0339ace7475a791842e99ffb | /reverse_bits.py | 141244053c843ee9fa1eb7c73d05ab32903b8c86 | []
| no_license | KONAPAVANKUMAR/code-library | 87a5525dcf71aaba47f233df17ad31227cb3c44b | 6839ef596858515119a3c300b031a107c8d72292 | refs/heads/main | 2023-06-02T09:33:21.382512 | 2021-06-24T09:49:00 | 2021-06-24T09:49:00 | 378,131,322 | 0 | 0 | null | 2021-06-24T09:41:12 | 2021-06-18T11:39:22 | Python | UTF-8 | Python | false | false | 415 | py | def get_reverse_bit_string(number: int) -> str:
bit_string = ""
for _ in range(0, 32):
bit_string += str(number % 2)
number = number >> 1
return bit_string
def reverse_bit(number):
result = 0
for _ in range(1, 33):
result = result << 1
end_bit = number % 2
number = number >> 1
result = result | end_bit
return get_reverse_bit_string(result) | [
"[email protected]"
]
| |
9a2930492647fe490bf485ff55258371f5687191 | 3a63a9af2693b7d2f87a6d2db0585d8ce5480934 | /vision-vgg_objects.py | 3eb6277cd8e7d427d5a26d0fbd15066c271bf1e7 | []
| no_license | andreeadeac22/HackCam2018 | d167f71069c6fe529f1e88dd92e31794b64e6773 | 0bb529b0d0cc11583722107b7125eb0671ca149a | refs/heads/master | 2021-05-09T09:45:34.945701 | 2018-01-30T00:21:57 | 2018-01-30T00:21:57 | 119,458,996 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 863 | py | import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision.models.vgg import vgg16
from torchvision import transforms as trn
from torch.nn import functional as F
from PIL import Image
def image_to_objects(img_name):
model = vgg16(pretrained=True)
model.eval()
# load the image transformer
centre_crop = trn.Compose([
trn.Resize((256,256)),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# load the class label
file_name = 'categories_imagenet.txt'
img = Image.open(img_name)
input_img = V(centre_crop(img).unsqueeze(0))
# forward pass
logit = model.forward(input_img)
h_x = F.softmax(logit, 1).data.squeeze()
return h_x
print(image_to_objects("arch.jpeg")) | [
"[email protected]"
]
| |
db4aa44c038f542b1cfbd7f627f200451105a7f6 | b6d40ed73a6c6923464759ad1a2350a27132b9a5 | /observe/observe_ckpt.py | 4ffc6000310dabe54da90cfd560d64bd92a1cc17 | [
"MIT"
]
| permissive | samirsahoo007/Audio-and-Speech-Processing | ccc83bc1f110d46ce73dfc83cce69bd55df5c6d8 | e77df17a7f63a983c3757140c7a1e8c199cac614 | refs/heads/master | 2022-10-17T23:42:57.369971 | 2020-01-04T12:22:13 | 2020-01-04T12:22:13 | 231,758,271 | 4 | 0 | MIT | 2022-09-30T19:55:35 | 2020-01-04T12:20:46 | Python | UTF-8 | Python | false | false | 142 | py | import sys
import torch
from utils import timer
from ipdb import set_trace
ckpt_path = sys.argv[1]
ckpt = torch.load(ckpt_path)
set_trace()
| [
"[email protected]"
]
| |
3c5be25c7266dbe9dc31662fbd3a7bed4a410f80 | 7a161c0ee14aeb9252243cb49ed05398b691d9f3 | /subset sum python problem.py | 214bc3c9e77cde345530264c4838bb477e777e99 | []
| no_license | pavleen14/DSA-Practice | 0a71d34a24635a9dc6714db95e2d71010fb5a70e | b5637e7b8512aa1f93841f372c7505152a156a29 | refs/heads/main | 2023-09-02T21:37:27.413673 | 2021-11-01T06:39:56 | 2021-11-01T06:39:56 | 415,584,545 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 412 | py | def subsetsum(sset, n, s):
if s == 0:
return True
if n == 0:
return False
if sset[n - 1] > s:
return subsetsum(sset, n - 1, s)
return subsetsum(sset, n - 1, s) or subsetsum(sset, n - 1, s - sset[n - 1])
sset = [13, 34, 65, 12, 43, 1]
s = 77
n = len(sset)
if subsetsum(sset, n, s):
print("Found a subset with given sum")
else:
print("No subset with given sum")
| [
"[email protected]"
]
| |
189ea70cf6263752fbb5770412f416730ce1b1e9 | e9a14806435ec8666fe240e252d4f8e4e9113238 | /context.py | f4e6840b1ce8dd17820deb9793395246418a02d3 | []
| no_license | jonpry/E | a8b1537dfcdac5129ddf33cac1bc747ba1ca56fc | ffec9f990982c05a89fc819ed73e9b73e9cf1a2c | refs/heads/master | 2020-12-02T19:28:01.385899 | 2017-10-15T05:31:55 | 2017-10-15T05:31:55 | 96,343,870 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 9,673 | py | # -*- coding: utf-8 -*-
import copy
import sys
import traceback
from llvmlite import ir
from collections import OrderedDict
import emit
context = {}
cstack = []
package = ""
def is_pointer(var):
if isinstance(var,ir.Type):
st = var
else:
st = var.type
return st.is_pointer
class funcs:
funcs = {}
func_stack = []
@staticmethod
def push(func):
funcs.func_stack.append(func)
@staticmethod
def pop():
funcs.func_stack.pop()
@staticmethod
def current():
return funcs.func_stack[-1]
@staticmethod
def create(name,d):
assert(name not in funcs.funcs)
funcs.funcs[name] = d;
@staticmethod
def get_native(name):
for f,v in funcs.funcs.items():
if v['func'].name == name:
return v['func']
return None
@staticmethod
def get(name):
if name in funcs.funcs:
return funcs.funcs[name]
class globals:
globals = {}
@staticmethod
def create(name,val):
assert(name not in globals.globals)
globals.globals[name] = val;
@staticmethod
def get(name):
return globals.globals[name]
class thiss:
thiss = []
@staticmethod
def push(this):
thiss.thiss.append(this)
@staticmethod
def pop():
thiss.thiss.pop()
class breaks:
breaks = []
@staticmethod
def push(tgt):
breaks.breaks.append(tgt)
@staticmethod
def pop():
breaks.breaks.pop()
@staticmethod
def get():
return breaks.breaks[-1]
class continues:
continues = []
@staticmethod
def push(tgt):
continues.continues.append(tgt)
@staticmethod
def pop():
continues.continues.pop()
@staticmethod
def get():
return continues.continues[-1]
class classs:
clzs = []
clz = {'class_members' : {}}
class_stack = [{}]
@staticmethod
def set_type(t,s,name):
global package
classs.clz['class_type'] = t;
classs.clz['static_type'] = s;
classs.clz['class_name'] = package + "." + name;
@staticmethod
def fqid():
return classs.clz['class_name']
@staticmethod
def new():
classs.clz = {'class_members' : {}, 'inherited_members' : {}, "static_members" : {}, 'extends' : None, 'class_type' : None, "static_type" : None, 'alloc_type' : None, 'constructor' : None, 'class_name' : '', 'static_init' : None, 'init' : None}
classs.clzs.append(classs.clz)
return classs.clz
@staticmethod
def push(name):
classs.clz = classs.get_class(name)
if classs.clz == None:
classs.clz = classs.new()
classs.class_stack.append(classs.clz)
@staticmethod
def pop():
classs.class_stack.pop()
clz = classs.class_stack[-1]
@staticmethod
def set_constructor(func):
classs.clz['constructor'] = func
@staticmethod
def set_extends(sup):
classs.clz['extends'] = sup
@staticmethod
def get_extends():
return classs.clz['extends']
@staticmethod
def get_type(cl,module,static):
if static:
if cl['static_type'] != None:
return cl['static_type']
else:
if cl['class_type'] != None:
return cl['class_type']
t = module.context.get_identified_type(cl['class_name'])
types = classs.get_member_types(cl,module,False)
t.set_body(*types)
cl['class_type'] = t
s = module.context.get_identified_type(cl['class_name'] + ".#static")
types = classs.get_member_types(cl,module,True)
s.set_body(*types)
cl['static_type'] = s
return classs.get_type(cl,module,static)
@staticmethod
def get_class_fq(ident):
for cls in classs.clzs:
if cls["class_name"] == ident:
return cls
return None
@staticmethod
def get_class(ident):
global package
c = classs.get_class_fq(ident)
if c != None:
return c
ident = package + "." + ident
return classs.get_class_fq(ident)
@staticmethod
def get_class_type(ident,module):
cls = classs.get_class(ident)
return classs.get_type(cls,module,False)
@staticmethod
def create_member(t,name,static):
if static:
assert(name not in classs.clz['static_members'])
classs.clz['static_members'][name] = t
else:
assert(name not in classs.clz['class_members'])
classs.clz['class_members'][name] = t
@staticmethod
def get_member_types(clz,module,static):
src = "class_members"
if static:
src = "static_members"
t = []
if not static:
if clz['extends'] != None:
t.append(classs.get_type(clz['extends'],module,static))
else:
t.append(emit.rtti_type)
for k,v in clz[src].items():
t.append(v)
return t
@staticmethod
def set_static_init(func):
classs.clz['static_init'] = func
@staticmethod
def set_init(func):
classs.clz['init'] = func
@staticmethod
def get_static_init():
return classs.clz['static_init']
@staticmethod
def get_init():
return classs.clz['init']
def set_package(p):
global package
package = p
def gep(ptr,this,var,builder,static):
#print traceback.print_stack()
src = "static_members" if static else "class_members"
if var in this[src]:
i = this[src].keys().index(var)
if static == False:
i += 1
return builder.gep(ptr,[ir.Constant(ir.IntType(32),0),ir.Constant(ir.IntType(32),i)])
if not static and var in this['inherited_members']:
chain = this['inherited_members'][var]
cchain = [ir.Constant(ir.IntType(32),0)]
for e in chain:
cchain.append(ir.Constant(ir.IntType(32),e))
ptr = builder.gep(ptr,cchain)
this = classs.get_class(ptr.type.pointee.name)
return gep(ptr,this,var.split(".")[-1],builder,static)
def get_one(var,obj,objclz,builder):
global context
if var in context:
return context[var]
#print objclz
#print var
if funcs.get(var) != None:
#print "png"
return {'func' : funcs.get(var), 'this' : None}
if objclz == None:
return None
fq = objclz["class_name"] + "." + var
#print var
#print objclz
#print fq
sys.stdout.flush()
# if fq in globals.globals:
# return globals.globals[fq]
if funcs.get(fq) != None:
return {'func' : funcs.get(fq), 'this': obj}
if var in objclz["static_members"]:
return gep(globals.get("#static." + objclz["class_name"]),objclz,var,builder, True)
if obj==None:
return None
return gep(obj,objclz,var,builder, False)
def get_one_poly(var,obj,objclz,builder):
t = get_one(var,obj,objclz,builder)
if t != None:
return t
if objclz['extends'] != None:
v = get_one(var,obj,objclz['extends'],builder)
if v!=None:
return v
return get_one_poly(var,obj,objclz['extends'],builder)
def get_no_length(var,builder,test):
thistype = classs.clz
if len(thiss.thiss) == 0 or thiss.thiss[-1] == None:
thisvar = None
else:
thisvar = thiss.thiss[-1]
if test:
print "type"
print var
t = get_one_poly(var,thisvar,thistype,builder)
if t != None:
return t
var = var.split(".")
for i in range(len(var)):
v = var[i]
e = get_one_poly(v,thisvar,thistype,builder)
if i == (len(var) - 1):
if e == None and i==0:
return classs.get_class_fq(package + "." + v)
return e
if e == None and i==0: #could be a class name
thistype = classs.get_class_fq(package + "." + v)
else:
thisvar = e
thistype = classs.get_class_fq(e.type.pointee.name)
def get(var,builder=None,test=False):
var = var.split(".")
if var[-1] == "length":
var = ".".join(var[:-1])
ary = get_no_length(var,builder,test)
return emit.get_array_length(ary,builder)
var = ".".join(var)
return get_no_length(var,builder,test)
def set(var, val, builder=None):
if var in context:
context[var] = val
return
assert(False)
def create(var,v):
global context
assert(var not in context)
context[var] = v
def items():
global context
return context.items()
def current():
global context
return context.copy()
def push(deep,force=None):
#print "push"
global context
global cstack
if force != None:
ret = force.copy()
context=force.copy()
elif deep:
ret = copy.deepcopy(context)
else:
ret = context.copy()
cstack.append(ret)
return ret.copy()
#returns items in both a and b that are different
def different_in(a,b):
ret = []
for k,v in a.items():
if k in b:
if v != b[k]:
ret.append( (k,v,b[k]) )
return ret
#returns items that went out of scope
def removed_in(a,b):
ret = []
for k,v in a.items():
if k not in b:
ret.append( (k,v) )
return ret
def pop(builder):
global context
global cstack
#print "pop"
ret = context.copy()
context = cstack.pop().copy()
#pop can only clear variables from scope, not change meaning
for k,v, nv in different_in(context,ret):
context[k] = nv
diff = removed_in(ret,context)
for n,t in diff:
if '.bb.' in n:
continue
#TODO: enoimpl
if is_pointer(t):
#print (n,t)
if not isinstance(t,ir.Argument):
emit.emit_lifetime(t,1,'end',builder)
return (context.copy(),diff)
nakeds = []
def naked(v):
nakeds.append(v)
def get_naked(v):
for vis in nakeds:
if v == vis:
nakeds.remove(vis)
return vis
| [
"[email protected]"
]
| |
90efc2d698bbd5551213318accc27bd6f924e258 | b7799e8cb21cb2d4c0a526a6f9395a3c620514f9 | /Tagging/KMeans.py | a5225641d480ed11c287e9a13d3760b89448fd5c | []
| no_license | Sivler9/IA_PR2_Color_Tagging | cc664eb2ac24c18612970f0dea5b042d6d9ebe89 | 1148a205c5e2fca32ffbaa832efe4dbb54ecb03a | refs/heads/master | 2020-03-13T07:47:36.215000 | 2018-05-29T20:31:51 | 2018-05-29T20:31:51 | 131,031,661 | 1 | 0 | null | 2018-05-15T07:38:21 | 2018-04-25T16:04:53 | Python | UTF-8 | Python | false | false | 15,838 | py | """
@author: ramon, bojana
"""
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.metrics.pairwise import pairwise_distances_argmin
import sklearn.metrics as metricas
import scipy
import scipy.cluster.vq
import scipy.spatial.distance
from sklearn.cluster import KMeans as camins
def gap(data, nrefs=3, maxClusters=15):
"""
Calculates KMeans optimal K using Gap Statistic from Tibshirani, Walther, Hastie
Params:
data: ndarry of shape (n_samples, n_features)
nrefs: number of sample reference datasets to create
maxClusters: Maximum number of clusters to test for
Returns: (optimalK)
"""
gaps = np.zeros((len(range(1, maxClusters)),))
for gap_index, k in enumerate(range(1, maxClusters)):
# Holder for reference dispersion results
refDisps = np.zeros(nrefs)
# For n references, generate random sample and perform kmeans getting resulting dispersion of each loop
for i in range(nrefs):
# Create new random reference set
randomReference = np.random.random_sample(size=data.shape)
# Fit to it
km = camins(k)
km.fit(randomReference)
refDisp = km.inertia_
refDisps[i] = refDisp
# Fit cluster to original data and create dispersion
km = camins(k)
km.fit(data)
origDisp = km.inertia_
# Calculate gap statistic
gap = np.mean(np.log(refDisps)) - np.log(origDisp)
# Assign this loop's gap statistic to gaps
gaps[gap_index] = gap
return gaps.argmax() + 1 # Plus 1 because index of 0 means 1 cluster is optimal, index 2 = 3 clusters are optimal
def distance(X, C):
"""@brief Calculates the distance between each pixcel and each centroid
@param X numpy array PxD 1st set of data points (usually data points)
@param C numpy array KxD 2nd set of data points (usually cluster centroids points)
@return dist: PxK numpy array position ij is the distance between the
i-th point of the first set an the j-th point of the second set
"""
return euclidean_distances(X,C)
class KMeans():
def __init__(self, X, K, options=None):
"""@brief Constructor of KMeans class
@param X LIST input data
@param K INT number of centroids
@param options DICT dctionary with options
"""
self._init_X(X) # LIST data coordinates
self._init_options(options) # DICT options
self._init_rest(K) # Initializes de rest of the object
#############################################################
## THIS FUNCTION CAN BE MODIFIED FROM THIS POINT, if needed
#############################################################
def _init_X(self, X):
"""@brief Initialization of all pixels
@param X LIST list of all pixel values. Usually it will be a numpy
array containing an image NxMx3
sets X an as an array of data in vector form (PxD where P=N*M and D=3 in the above example)
"""
if len(X.shape) >= 3:
self.X = X.reshape(-1, X.shape[2]).astype(np.float64)
else:
self.X = np.copy(X.astype(np.float64))
def _init_options(self, options):
"""@brief Initialization of options in case some fields are left undefined
@param options DICT dctionary with options
sets de options parameters
"""
if options == None:
options = {}
if not 'km_init' in options:
options['km_init'] = 'first'
if not 'verbose' in options:
options['verbose'] = False
if not 'tolerance' in options:
options['tolerance'] = 0
if not 'max_iter' in options:
options['max_iter'] = np.inf
if not 'fitting' in options:
options['fitting'] = 'Fisher'
self.options = options
#############################################################
## THIS FUNCTION CAN BE MODIFIED FROM THIS POINT, if needed
#############################################################
def _init_rest(self, K):
"""@brief Initialization of the remainig data in the class.
@param options DICT dctionary with options
"""
self.K = K # INT number of clusters
if self.K > 0:
self._init_centroids() # LIST centroids coordinates
self.old_centroids = np.empty_like(self.centroids) # LIST coordinates of centroids from previous iteration
self.clusters = np.zeros(len(self.X)) # LIST list that assignes each element of X into a cluster
self._cluster_points() # sets the first cluster assignation
self.num_iter = 0 # INT current iteration
#############################################################
## THIS FUNCTION CAN BE MODIFIED FROM THIS POINT, if needed
#############################################################
def _init_centroids(self):
"""@brief Initialization of centroids
depends on self.options['km_init']
"""
if self.options['km_init'].lower() == 'first':
unique, index = np.unique(self.X,axis=0, return_index=True)
index = np.sort(index)
self.centroids = np.array(self.X[index[:self.K]])
elif self.options['km_init'].lower() == 'custom':
self.centroids = np.zeros((self.K,self.X.shape[1]))
for k in range(self.K): self.centroids[k,:] = k*255/(self.K-1)
elif self.options['km_init'] == 'kmeans++':
self.centroids = camins(n_clusters=self.K, init='k-means++', n_init=1, max_iter=1).fit(self.X).cluster_centers_
else:
maxtmp = self.X.max(axis=0)
mintmp = self.X.min(axis=0)
centroids = np.zeros((self.X.shape[1],self.K))
for i in range(self.X.shape[1]):
centroids[i] = np.random.uniform(low=mintmp[i],high=maxtmp[i],size=self.K)
self.centroids = np.array(centroids.transpose())
def _cluster_points(self):
"""@brief Calculates the closest centroid of all points in X
"""
self.clusters = pairwise_distances_argmin(self.X, self.centroids)
def _get_centroids(self):
"""@brief Calculates coordinates of centroids based on the coordinates
of all the points assigned to the centroid
"""
self.old_centroids = np.copy(self.centroids)
self.centroids = np.array([self.X[self.clusters == i].mean(0) for i in range(self.K)])
if np.isnan(self.centroids).any():
mask = np.where(np.isnan(self.centroids).all(axis=1))[0]
self.centroids[mask] = self.old_centroids[mask]
def _converges(self):
"""@brief Checks if there is a difference between current and old centroids
"""
return np.allclose(self.centroids, self.old_centroids, self.options['tolerance'])
def _iterate(self, show_first_time=True):
"""@brief One iteration of K-Means algorithm. This method should
reassigne all the points from X to their closest centroids
and based on that, calculate the new position of centroids.
"""
self.num_iter += 1
self._cluster_points()
self._get_centroids()
if self.options['verbose']:
self.plot(show_first_time)
def run(self):
"""@brief Runs K-Means algorithm until it converges or until the number
of iterations is smaller than the maximum number of iterations.=
"""
if self.K == 0:
self.bestK()
return
self._iterate(True)
self.options['max_iter'] = np.inf
if self.options['max_iter'] > self.num_iter:
while not self._converges():
self._iterate(False)
def bestK(self):
"""@brief Runs K-Means multiple times to find the best K for the current
data given the 'fitting' method. In cas of Fisher elbow method
is recommended.
at the end, self.centroids and self.clusters contains the
information for the best K. NO need to rerun KMeans.
@return B is the best K found.
"""
#######################################################
## YOU MUST REMOVE THE REST OF THE CODE OF THIS FUNCTION
## AND CHANGE FOR YOUR OWN CODE
#######################################################
centroids = []
clusters = []
bestk = 4
#self.options['fitting'] ='gap'
if self.options['fitting'].lower() == 'jump':
return self.jumpMethod(clusters,centroids)
elif self.options['fitting'].lower() == 'gap':
bestk = gap(self.X, maxClusters=14)
self._init_rest(bestk)
self.run()
return bestk
elif self.options['fitting'].lower() == 'fisher':
bestk, center = -1, []
fit, threshold = np.inf, 2.3
self._init_rest(2)
self.run()
center.append([self.fitting(), self.centroids, self.clusters])
self._init_rest(3)
self.run()
center.append([self.fitting(), self.centroids, self.clusters])
for k in xrange(4, 13 + 1):
self._init_rest(k)
self.run()
center.append([self.fitting(), self.centroids, self.clusters])
if (center[-3][0] - center[-2][0]) > (center[-2][0] - center[-1][0])*threshold:
self.centroids, self.clusters = center[-2][1:]
bestk = k - 1
break
else:
bestk = 4
self.centroids, self.clusters = center[bestk-2][1:]
self.K = bestk
return bestk
else:
scores = []
for k in range(2,14):
self._init_rest(k)
self.run()
scores.append(self.fitting())
centroids.append(self.centroids)
clusters.append(self.clusters)
if self.options['fitting'].lower() == 'calinski' or self.options['fitting'].lower() == 'silhouette':
bestk = np.argmax(scores)+2
self.centroids = centroids[bestk-2]
self.clusters = clusters[bestk-2]
self.K = bestk
return bestk
def fitting(self):
"""@brief return a value describing how well the current kmeans fits the data
"""
if self.K == 1:
return 1
elif self.options['fitting'].lower() == 'fisher' and self.K > 1:
return 1/(metricas.calinski_harabaz_score(self.X, self.clusters)*(self.K -1)/(self.X.shape[0]-self.K)) #calinski = (Between_Variance/Whithin_Variance)*(N-k)/(K-1)
elif self.options['fitting'].lower() == 'silhouette':
return metricas.silhouette_score(self.X,self.clusters)
elif self.options['fitting'].lower() == 'calinski':
return metricas.calinski_harabaz_score(self.X, self.clusters)
else:
return np.random.rand(1)
def jumpMethod(self, clusters, centroids):
data = self.X
# dimension of 'data'; data.shape[0] would be size of 'data'
p = data.shape[1]
# vector of variances (1 by p)
#using squared error rather than Mahalanobis distance' (SJ, p. 12)
sigmas = np.var(data, axis=0)
## by following the authors we assume 0 covariance between p variables (SJ, p. 12)
# start with zero-matrix (p by p)
Sigma = np.zeros((p, p), dtype=np.float32)
# fill the main diagonal with variances for
np.fill_diagonal(Sigma, val=sigmas)
# calculate the inversed matrix
Sigma_inv = np.linalg.inv(Sigma)
cluster_range = range(1, 13 + 1)
distortions = np.repeat(0, len(cluster_range) + 1).astype(np.float32)
# for each k in cluster range implement
for k in cluster_range:
# initialize and fit the clusterer giving k in the loop
self._init_rest(k)
self.run()
centroids.append(self.centroids)
clusters.append(self.clusters)
# calculate centers of suggested k clusters
centers = self.centroids
# since we need to calculate the mean of mins create dummy vec
for_mean = np.repeat(0, len(data)).astype(np.float32)
# for each observation (i) in data implement
for i in range(len(data)):
# dummy for vec of distances between i-th obs and k-center
dists = np.repeat(0, k).astype(np.float32)
# for each cluster in KMean clusters implement
for cluster in range(k):
# calculate the within cluster dispersion
tmp = np.transpose(data[i] - centers[cluster])
#using squared error rather than Mahalanobis distance' (SJ, p. 12)
dists[cluster] = tmp.dot(Sigma_inv).dot(tmp)
#dists[cluster] = tmp.dot(tmp)
# take the lowest distance to a class
for_mean[i] = min(dists)
# take the mean for mins for each observation
distortions[k] = np.mean(for_mean) / p
Y = p / 2
# the first (by convention it is 0) and the second elements
jumps = [0] + [distortions[1] ** (-Y) - 0]
jumps += [distortions[k] ** (-Y) \
- distortions[k-1] ** (-Y) \
for k in range(2, len(distortions))]
# calculate recommended number of clusters
bestK = np.argmax(np.array(jumps))
self.centroids = centroids[bestK-1]
self.clusters = clusters[bestK-1]
self.K = bestK
"""plt.figure(2)
plt.cla()
plt.plot(range(16),jumps)
plt.xlabel('K')
plt.ylabel('fitting score')
plt.draw()
plt.pause(20)"""
return bestK
def plot(self, first_time=True):
"""@brief Plots the results
"""
# markersshape = 'ov^<>1234sp*hH+xDd'
markerscolor = 'bgrcmybgrcmybgrcmyk'
if first_time:
plt.gcf().add_subplot(111, projection='3d')
plt.ion()
plt.show()
if self.X.shape[1] > 3:
if not hasattr(self, 'pca'):
self.pca = PCA(n_components=3)
self.pca.fit(self.X)
Xt = self.pca.transform(self.X)
Ct = self.pca.transform(self.centroids)
else:
Xt = self.X
Ct = self.centroids
for k in range(self.K):
plt.gca().plot(Xt[self.clusters == k, 0], Xt[self.clusters == k, 1], Xt[self.clusters == k, 2],
'.' + markerscolor[k])
plt.gca().plot(Ct[k, 0:1], Ct[k, 1:2], Ct[k, 2:3], 'o' + 'k', markersize=12)
if first_time:
plt.xlabel('dim 1')
plt.ylabel('dim 2')
plt.gca().set_zlabel('dim 3')
plt.draw()
plt.pause(0.01)
| [
"[email protected]"
]
| |
0d59d8d0b71b7c382e97d7b56015fbfbbafc69d8 | 0227dab8e222d908d02d54ad13ec88b7f1f9ac1f | /AUTOMATAPROYECT-master/Front.py | 2d287391253e9ad5e29a2cb2152e4ae740d4d192 | []
| no_license | OrlandoMR/Automatas | 8c3a3e1fc3f45f6239a24ab2b03a5102b18a1a32 | a1213bf3ca6b7803d0aa82ce52947a86d31e0eca | refs/heads/master | 2021-10-25T10:01:25.564466 | 2019-04-03T19:47:59 | 2019-04-03T19:47:59 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,548 | py |
from tkinter import *
import os
#Interfaz gŕafica
#root widget
root = Tk()
root.title("Titulo de la historia")
root.resizable(False,False)
root.configure(bg="black")
#FirstFrame Creation
myFrame = Frame(root,width=500, height=400)
myFrame.pack()
myFrame.config(width="650", height="350")
myFrame.config(bd= 8,bg = "black")
myFrame.config(relief = "groove")
#LabelFirstText
textLabel = Label(myFrame, text="Hubo una época donde energía era sinónimo de suciedad," +
" encender las luces una importante elección, \nlas ciudades tenían apagones"+
" y los autos quemaban combustible para funcionar..."
, bg = "black", fg = "white", font=("Arial Unicode MS",15))
textLabel.grid(row= 0,column=1, padx=10, pady = 10)
#Image
img = PhotoImage(file='files/fondo.gif')#Reemplazar por función que pondra la imagen dependiendo del estado
imageLabel = Label(myFrame, image = img)
imageLabel.grid(row= 1,column=1, padx=10, pady = 10)
#Action Buttons
def actionYesButton():
print("Holaaaaa")
def actionNoButton():
print("AntiHola")
#Buttons
buttonNo = Button(myFrame, text="NO", bg = "black", fg = "green", font = (20),
width = 7, height =5, command = actionNoButton)
buttonNo.grid(row = 2,column = 0, padx = 10, pady = 10)
buttonYes = Button(myFrame, text="YES", bg = "black", fg = "green", font = (20),width = 7,
height =5, command = actionYesButton)
buttonYes.grid(row = 2, column = 3, padx = 10, pady = 10)
root.mainloop()
| [
"[email protected]"
]
| |
e3ad3b767fbd0d6d7edf4729792f6b837616eec6 | fea389d72e4e458c183ca40ab695d46bc5da5015 | /OMG/source/conf.py | 5fa8d544b7b569b693f643fdf2e2ce745b869795 | []
| no_license | zhangdaoxun/ON-MY-GENE | dfae4f3f135215edb65f79ac6b11f5c7b7405bab | 674819e65894de4ed283649dd9fce66596b73831 | refs/heads/master | 2020-05-02T12:56:12.902829 | 2019-06-06T13:45:16 | 2019-06-06T13:45:16 | 177,971,218 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,225 | py | # -*- coding: utf-8 -*-
#
# Configuration file for the Sphinx documentation builder.
#
# This file does only contain a selection of the most common options. For a
# full list see the documentation:
# http://www.sphinx-doc.org/en/master/config
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'omg'
copyright = '2019, zhangxun'
author = 'zhangxun'
# The short X.Y version
version = ''
# The full version, including alpha/beta/rc tags
release = ''
# -- General configuration ---------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
# source_suffix = ['.rst', '.md']
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = None
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
# html_theme_options = {}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# Custom sidebar templates, must be a dictionary that maps document names
# to template names.
#
# The default sidebars (for documents that don't match any pattern) are
# defined by theme itself. Builtin themes are using these templates by
# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
# 'searchbox.html']``.
#
# html_sidebars = {}
# -- Options for HTMLHelp output ---------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'omgdoc'
# -- Options for LaTeX output ------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'omg.tex', 'omg Documentation',
'zhangxun', 'manual'),
]
# -- Options for manual page output ------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'omg', 'omg Documentation',
[author], 1)
]
# -- Options for Texinfo output ----------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'omg', 'omg Documentation',
author, 'omg', 'One line description of project.',
'Miscellaneous'),
]
# -- Options for Epub output -------------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']
| [
"[email protected]"
]
| |
39802ef9bbb151ce9bc58a14a2eb6a04f2102cd3 | 89186f602196897d7fcbf4d1546b01316685e69a | /algorithem/expression_add_operation.py | 386afe36c79030b8e768d03586049b6eb8237522 | []
| no_license | xxpasswd/algorithms-and-data-structure | dfc25d0d4ac25ef7b138f6b1ad725c0832a0c2ee | 1868e660fcee4017307c335df105e5d3028f4166 | refs/heads/master | 2022-01-18T12:58:00.042361 | 2019-07-17T08:13:19 | 2019-07-17T08:13:19 | 110,533,692 | 1 | 1 | null | null | null | null | UTF-8 | Python | false | false | 1,334 | py | '''
给定一组数字,给这组数字中,添加+,-,*,使最后表达式的结果等于特定值
解决思路:
使用递归遍历所有的情况
'''
def expression_add_operators(nums,target):
out = []
helper(nums,target,0,0,0,'',out)
return out
def helper(nums,target,pos,pre,pre_num,path,out):
'''
nums:候选数字
target:目标值
pos:下一个数字开始的索引
pre:前一次计算的值
pre_num:前一个数字
path:已经过的运算路径
out:保存输出结果的列表
'''
# 判断路径的结果,是否满足条件,满足条件则添加到结果集中
if pos == len(nums):
if pre == target:
out.append(path)
return
elif pos == 0:
# 注意i+1这儿
for i in range(pos,len(nums)):
cur = int(nums[pos:i+1])
helper(nums,target,i+1,cur,cur,path + str(cur),out)
else:
for i in range(pos,len(nums)):
cur = int(nums[pos:i+1])
helper(nums,target,i+1,pre+cur,cur,path + '+' + str(cur),out)
helper(nums,target,i+1,pre-cur,-cur,path + '-' + str(cur),out)
helper(nums,target,i+1,pre-pre_num+pre_num*cur,pre_num*cur,path + '*' + str(cur),out)
nums = '123456'
target = 0
print(expression_add_operators(nums,target)) | [
"[email protected]"
]
| |
a52172f6e1c94d9bfe28ca0fbf6d6d6a3854c70e | cf522d29d40c2e8a780165cff7302922db5e82a4 | /jscribe/conf/pythontagsettings.py | 9a3ca51ddb06a20fab093fb298f24e97b90f094c | [
"BSD-3-Clause"
]
| permissive | mindbrave/jscribe | 3bd8eec23fd9ae839795d1b5fbf603e72fa90362 | 4d524a9f60b35fefbfe65c60717abcb8bce259c9 | refs/heads/master | 2020-05-24T15:45:13.177447 | 2014-01-31T00:45:49 | 2014-01-31T00:45:49 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 4,052 | py | # -*- coding: utf-8 -*-
#!/usr/bin/env python
"""* Builtin tag settings for python projects.
You can use them in project by setting TAG_SETTINGS to `jscribe.conf.pythontagsettings`, but
I admit you to create your own tag settings.
@module jscribe.conf.jstagsettings
"""
TAG_SETTINGS = {
"base": {
"parent_type": None,
"alias": [],
"separate": False,
"list": False,
"list_order": 0,
"name": "default name",
"title": "default plural name",
"source_visible": True,
"callable": False,
"attributes": {}
},
"index": {
"parent_type": "base",
"alias": ["a"],
"name": "",
"title": "Index",
"separate": True,
"source_visible": True,
"list": True,
"list_order": -2,
"attributes": {
}
},
"manual": {
"parent_type": "base",
"alias": ["m"],
"name": "",
"title": "Manual",
"separate": True,
"source_visible": True,
"list": True,
"list_order": -1,
"attributes": {
}
},
"paragraph": {
"parent_type": "base",
"alias": ["p"],
"name": "",
"title": "paragraphs",
"separate": False,
"source_visible": True,
"list": False,
"attributes": {
}
},
"package": {
"parent_type": "base",
"alias": ["pack"],
"name": "package",
"title": "API Packages",
"separate": True,
"list": True,
"list_order": 1,
"attributes": {
}
},
"module": {
"parent_type": "base",
"alias": [],
"name": "module",
"separate": True,
"list_order": 2,
"list": True,
"title": "API Modules",
"attributes": {
}
},
"class": {
"parent_type": "base",
"name": "class",
"title": "API Classes",
"separate": False,
"list_order": 0,
"list": True,
"attributes": {
}
},
"exception": {
"parent_type": "base",
"name": "exception",
"title": "Exceptions",
"separate": False,
"list_order": 0,
"list": False,
"attributes": {}
},
"method": {
"parent_type": "base",
"name": "method",
"title": "methods",
"callable": True,
"separate": False,
"attributes": {}
},
"property": {
"parent_type": "base",
"name": "property",
"title": "properties",
"callable": False,
"separate": False,
"attributes": {}
},
"instance": {
"parent_type": "base",
"name": "instance",
"title": "instances",
"separate": False,
"attributes": {
}
},
"function": {
"parent_type": "base",
"name": "function",
"title": "functions",
"callable": True,
"attributes": {
}
},
"attribute": {
"parent_type": "base",
"alias": ["attr"],
"name": "attribute",
"title": "attributes",
"callable": False,
"attributes": {
}
},
"number": {
"parent_type": "attribute",
"name": "number",
"alias": ["num"],
"attributes": {
}
},
"bytestring": {
"parent_type": "attribute",
"name": "bytestring",
"alias": ["str"],
"attributes": {
}
},
"unicode": {
"parent_type": "attribute",
"name": "unicode",
"alias": ["u"],
"attributes": {
}
},
"list": {
"parent_type": "attribute",
"name": "list",
"alias": [],
"attributes": {
}
},
"tuple": {
"parent_type": "attribute",
"name": "tuple",
"alias": [],
"attributes": {}
},
"dict": {
"parent_type": "attribute",
"name": "dict",
"alias": [],
"attributes": {}
},
} | [
"[email protected]"
]
| |
00c4fad7606971274a79c91af14dc8412935ba2e | c5becab2d4201f2e828d052c22b4496a3bbe4927 | /tests/pipelines/test_pipelines_conversational.py | 9ed32adda652d5983ed5995d8d94a7a0df5d635c | [
"Apache-2.0"
]
| permissive | thomwolf/transformers | ba665c456b2acd636d8e3876a87ea446ae0ae092 | 166dfa88e5dfdca1d99197e5006e4e2ea9e49cba | refs/heads/master | 2023-03-08T03:37:13.519336 | 2023-02-15T15:00:01 | 2023-02-15T15:00:01 | 238,908,404 | 4 | 1 | Apache-2.0 | 2023-02-25T16:09:30 | 2020-02-07T11:40:04 | Python | UTF-8 | Python | false | false | 17,110 | py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallTokenizer,
Conversation,
ConversationalPipeline,
TFAutoModelForCausalLM,
pipeline,
)
from transformers.testing_utils import require_tf, require_torch, slow, torch_device
from .test_pipelines_common import ANY, PipelineTestCaseMeta
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
class ConversationalPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = dict(
list(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
if MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
else [] + list(MODEL_FOR_CAUSAL_LM_MAPPING.items())
if MODEL_FOR_CAUSAL_LM_MAPPING
else []
)
tf_model_mapping = dict(
list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
if TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
else [] + list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.items())
if TF_MODEL_FOR_CAUSAL_LM_MAPPING
else []
)
def get_test_pipeline(self, model, tokenizer, processor):
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
return conversation_agent, [Conversation("Hi there!")]
def run_pipeline_test(self, conversation_agent, _):
# Simple
outputs = conversation_agent(Conversation("Hi there!"))
self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))
# Single list
outputs = conversation_agent([Conversation("Hi there!")])
self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))
# Batch
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
outputs = conversation_agent([conversation_1, conversation_2])
self.assertEqual(outputs, [conversation_1, conversation_2])
self.assertEqual(
outputs,
[
Conversation(
past_user_inputs=["Going to the movies tonight - any suggestions?"],
generated_responses=[ANY(str)],
),
Conversation(past_user_inputs=["What's the last book you have read?"], generated_responses=[ANY(str)]),
],
)
# One conversation with history
conversation_2.add_user_input("Why do you recommend it?")
outputs = conversation_agent(conversation_2)
self.assertEqual(outputs, conversation_2)
self.assertEqual(
outputs,
Conversation(
past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
generated_responses=[ANY(str), ANY(str)],
),
)
with self.assertRaises(ValueError):
conversation_agent("Hi there!")
with self.assertRaises(ValueError):
conversation_agent(Conversation())
# Conversation have been consumed and are not valid anymore
# Inactive conversations passed to the pipeline raise a ValueError
with self.assertRaises(ValueError):
conversation_agent(conversation_2)
@require_torch
@slow
def test_integration_torch_conversation(self):
# When
conversation_agent = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
# When
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 1)
self.assertEqual(len(result[1].past_user_inputs), 1)
self.assertEqual(len(result[0].generated_responses), 1)
self.assertEqual(len(result[1].generated_responses), 1)
self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
self.assertEqual(result[1].generated_responses[0], "The Last Question")
# When
conversation_2.add_user_input("Why do you recommend it?")
result = conversation_agent(conversation_2, do_sample=False, max_length=1000)
# Then
self.assertEqual(result, conversation_2)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
self.assertEqual(result.generated_responses[1], "It's a good book.")
@require_torch
@slow
def test_integration_torch_conversation_truncated_history(self):
# When
conversation_agent = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
# When
result = conversation_agent(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 1)
self.assertEqual(len(result.generated_responses), 1)
self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result.generated_responses[0], "The Big Lebowski")
# When
conversation_1.add_user_input("Is it an action movie?")
result = conversation_agent(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
self.assertEqual(result.generated_responses[1], "It's a comedy.")
@require_torch
def test_small_model_pt(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation = Conversation("hello")
output = conversation_agent(conversation)
self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))
@require_tf
def test_small_model_tf(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = TFAutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation = Conversation("hello")
output = conversation_agent(conversation)
self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))
@require_torch
@slow
def test_integration_torch_conversation_dialogpt_input_ids(self):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation_1 = Conversation("hello")
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]])
conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"])
inputs = conversation_agent.preprocess(conversation_2)
self.assertEqual(
inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]]
)
@require_torch
@slow
def test_integration_torch_conversation_blenderbot_400M_input_ids(self):
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
# test1
conversation_1 = Conversation("hello")
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]])
# test2
conversation_1 = Conversation(
"I like lasagne.",
past_user_inputs=["hello"],
generated_responses=[
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie."
],
)
inputs = conversation_agent.preprocess(conversation_1)
self.assertEqual(
inputs["input_ids"].tolist(),
[
# This should be compared with the same conversation on ParlAI `safe_interactive` demo.
[
1710, # hello
86,
228, # Double space
228,
946,
304,
398,
6881,
558,
964,
38,
452,
315,
265,
6252,
452,
322,
968,
6884,
3146,
278,
306,
265,
617,
87,
388,
75,
341,
286,
521,
21,
228, # Double space
228,
281, # I like lasagne.
398,
6881,
558,
964,
21,
2, # EOS
],
],
)
@require_torch
@slow
def test_integration_torch_conversation_blenderbot_400M(self):
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
conversation_1 = Conversation("hello")
result = conversation_agent(
conversation_1,
)
self.assertEqual(
result.generated_responses[0],
# ParlAI implementation output, we have a different one, but it's our
# second best, you can check by using num_return_sequences=10
# " Hello! How are you? I'm just getting ready to go to work, how about you?",
" Hello! How are you doing today? I just got back from a walk with my dog.",
)
conversation_1 = Conversation("Lasagne hello")
result = conversation_agent(conversation_1, encoder_no_repeat_ngram_size=3)
self.assertEqual(
result.generated_responses[0],
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.",
)
conversation_1 = Conversation(
"Lasagne hello Lasagne is my favorite Italian dish. Do you like lasagne? I like lasagne."
)
result = conversation_agent(
conversation_1,
encoder_no_repeat_ngram_size=3,
)
self.assertEqual(
result.generated_responses[0],
" Me too. I like how it can be topped with vegetables, meats, and condiments.",
)
@require_torch
@slow
def test_integration_torch_conversation_encoder_decoder(self):
# When
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("My name is Sarah and I live in London")
conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
# When
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 1)
self.assertEqual(len(result[1].past_user_inputs), 1)
self.assertEqual(len(result[0].generated_responses), 1)
self.assertEqual(len(result[1].generated_responses), 1)
self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
self.assertEqual(
result[0].generated_responses[0],
"hi sarah, i live in london as well. do you have any plans for the weekend?",
)
self.assertEqual(
result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
)
self.assertEqual(
result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
)
# When
conversation_1.add_user_input("Not yet, what about you?")
conversation_2.add_user_input("What's your name?")
result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 2)
self.assertEqual(len(result[1].past_user_inputs), 2)
self.assertEqual(len(result[0].generated_responses), 2)
self.assertEqual(len(result[1].generated_responses), 2)
self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
@require_torch
@slow
def test_from_pipeline_conversation(self):
model_id = "facebook/blenderbot_small-90M"
# from model id
conversation_agent_from_model_id = pipeline("conversational", model=model_id, tokenizer=model_id)
# from model object
model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_id)
tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_id)
conversation_agent_from_model = pipeline("conversational", model=model, tokenizer=tokenizer)
conversation = Conversation("My name is Sarah and I live in London")
conversation_copy = Conversation("My name is Sarah and I live in London")
result_model_id = conversation_agent_from_model_id([conversation])
result_model = conversation_agent_from_model([conversation_copy])
# check for equality
self.assertEqual(
result_model_id.generated_responses[0],
"hi sarah, i live in london as well. do you have any plans for the weekend?",
)
self.assertEqual(
result_model_id.generated_responses[0],
result_model.generated_responses[0],
)
| [
"[email protected]"
]
| |
dce072906381a649dc6463c6c5531217b5a67f44 | 6d7984b21819ffe0a9a969025af6a39eef7112dc | /tests/challenges/---test_multi_bracket_validation.py | 885ccee02de743da8ca3d6f333ef4043fa96fa84 | [
"MIT"
]
| permissive | 401-python-joseph-zabaleta/401-python-data-structures-and-algorithms | 593d4e1fee7f363cbe5e51d8ee9825237d44e799 | b11b5ef50f52e3d505474fe5fffe4357933da251 | refs/heads/master | 2022-11-04T21:23:56.211811 | 2020-07-25T22:19:09 | 2020-07-25T22:19:09 | 262,261,001 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,330 | py | import pytest
from dsa.challenges.multi_bracket_validation.multi_bracket_validation import multi_bracket_validation
def test_mbv_exists():
assert multi_bracket_validation('test')
def test_mbv_one():
string = '{}'
actual = multi_bracket_validation(string)
expected = True
assert actual == expected
def test_mbv_two():
string = '{}(){}'
actual = multi_bracket_validation(string)
expected = True
assert actual == expected
def test_mbv_three():
string = '()[[Extra Characters]]'
actual = multi_bracket_validation(string)
expected = True
assert actual == expected
def test_mbv_four():
string = '(){}[[]]'
actual = multi_bracket_validation(string)
expected = True
assert actual == expected
def test_mbv_five():
string = '{}{Code}[Fellows](())'
actual = multi_bracket_validation(string)
expected = True
assert actual == expected
def test_mbv_six():
string = '[({}]'
actual = multi_bracket_validation(string)
expected = False
assert actual == expected
def test_mbv_seven():
string = '(]('
actual = multi_bracket_validation(string)
expected = False
assert actual == expected
def test_mbv_eight():
string = '{(})'
actual = multi_bracket_validation(string)
expected = False
assert actual == expected
| [
"[email protected]"
]
| |
835e19c6b6158e1f8e9361ee8be1dee8469c39e7 | fc9774c15df5e3fda88fe82fd0c37f4ceabfcaa6 | /XGBoost/XGBoost.py | 71d6ac5568c8149baa01b952d036d5548a4fa254 | []
| no_license | jacobkuriala/moviemania | 600ff5cce5d383b459fa5dc1be2ea51289860acd | e17468732d5f5ce8d3c3cc6fb8c26c93e7291d71 | refs/heads/master | 2021-07-25T11:21:16.462369 | 2017-11-07T18:56:48 | 2017-11-07T18:56:48 | 109,197,864 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,248 | py |
# importing libraries
import numpy as np
import matplotlib as plt
import pandas as pd
# importing the dataset
dataset = pd.read_excel('Training Sheet.xlsx')
# X starts from production_year and omits total
X = dataset.iloc[:, 3:-2].values
# delete the board_rating_reason as it creates too many categories
X = np.delete(X, 7 , 1)
# Xarr = X.tolist()
y = dataset.iloc[:, 14].values
# dont need to take care of any missing values
# encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_x = LabelEncoder()
# production year
X[:, 0] = labelencoder_x.fit_transform(X[:, 0])
# creative_type
X[:, 2] = labelencoder_x.fit_transform(X[:, 2])
# source
X[:, 3] = labelencoder_x.fit_transform(X[:, 3])
# production_method
X[:, 4] = labelencoder_x.fit_transform(X[:, 4])
# genre
X[:, 5] = labelencoder_x.fit_transform(X[:, 5])
# language
X[:, 6] = labelencoder_x.fit_transform(X[:, 6])
# movie_board_rating_display_name
X[:, 7] = labelencoder_x.fit_transform(X[:, 7])
# movie_release_pattern_display_name
X[:, 8] = labelencoder_x.fit_transform(X[:, 8])
# Xarr = X.tolist()
onehotencoder = OneHotEncoder(categorical_features= [0,2,3,4,5,6,7,8])
X = onehotencoder.fit_transform(X).toarray()
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# feature Scaling - TODO: may have to feature scale the output
# from sklearn.preprocessing import StandardScaler
# sc = StandardScaler()
# y_train = sc.fit_transform(y_train)
# y_test = sc.transform(y_test)
# Fitting XGBoost to the Training set
from xgboost import XGBClassifier
classifier = XGBClassifier(objective='multi:softmax')
classifier.fit(X_train,y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)
print(accuracies)
print(accuracies.mean())
print(accuracies.std())
| [
"[email protected]"
]
| |
9d601337b6dc895c927f933e062c2575796415e6 | 2327d0bc2cc45a5504c39109846e0f4cba266606 | /QID-1799-SFEtimegarch/SFEtimegarch.py | 362457032fb2eddfb6adae28a3bbcca837f3cc90 | []
| no_license | QuantLet/SFE | 3d98a33cfcdc533210856c7618c32a78e111a6ce | d25a728a4371538eae982f44ea811b5b93328828 | refs/heads/master | 2022-06-15T13:35:17.387252 | 2022-06-08T01:22:00 | 2022-06-08T01:22:00 | 72,103,182 | 12 | 32 | null | 2022-01-30T18:58:21 | 2016-10-27T11:50:43 | R | UTF-8 | Python | false | false | 702 | py | import numpy as np
import matplotlib.pyplot as plt
#
np.random.seed(1234)
#omega = 0.1, alpha = 0.15, beta = 0.8
n=1000 # number of observations
n1=100 # drop first observations
alpha=(0.1,0.3) # GARCH (1,1) coefficients alpha0 and alpha1
beta=0.8
errors=np.random.normal(0,1,n+n1)
t=np.zeros(n+n1)
t[0]=np.random.normal(0,np.sqrt(alpha[0]/(1-alpha[1])),1)
#iterate over the oberservations
for i in range(1,n+n1-1):
t[i]=errors[i]*np.sqrt(alpha[0]+alpha[1]*errors[i-1]**2+beta*t[i-1]**2)
#
y=t[n1-1:-1] # drop n1 observations
plt.title('GARCH (1,1) process')
x=range(n)
plt.plot(x,y)
plt.xlabel('time')
plt.ylabel('y')
plt.savefig('SFEtimegarch_py.png')
plt.show() | [
"[email protected]"
]
| |
4eb51b17bb570e99d31b10c14927845d7a16bff8 | 48a22539cc273ebb1d4575ecc40566337a2c1c53 | /tests/functions/test_train_model.py | 6580cbd7f6aa173c717f65c26155f19e736a7976 | [
"BSD-3-Clause"
]
| permissive | ChenchenFat/LIBiFBTSVM | 50d88f4d2f8133672fe6831422f1e4bc0b0b798a | b1f8c346cdd79a6057a664255daabe2aa9c50ad7 | refs/heads/master | 2023-08-20T18:58:55.117122 | 2021-10-26T19:59:08 | 2021-10-26T19:59:08 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 660 | py |
import numpy as np
import pytest
from libifbtsvm.functions import train_model
from libifbtsvm.models.ifbtsvm import Hyperparameters
def test_train_model():
H_p = np.ones((5, 5))
H_n = np.ones((5, 5))
CCx = np.ones((5, 1))
C = 2
_mock_params = Hyperparameters()
_mock_params.max_iter = 1
_mock_params.epsilon = 0.0001
model = train_model(parameters=_mock_params, H=H_p, G=H_n, C=C, CCx=CCx)
assert np.array_equal(model.alpha, np.array([1, 1, 1, 1, 1]))
_truth = [np.array(val) for val in [-1, -0.8, -0.6, -0.4, -0.2]]
for i in range(5):
assert pytest.approx(model.projected_gradients[i], _truth[i])
| [
"[email protected]"
]
| |
f9375213f5507d9c9536460cb0a4616660787502 | ee410de6809032624f3b52023ba6efcae89aa5da | /shortable/shortable.py | f95e80f9568050d626a4849b375079a70272c22c | [
"MIT"
]
| permissive | webclinic017/shortable | cda32c4022a9ef1a92c085d7fe6cac948e140124 | 4ace06b484bd24a356300a9d15a02a902c853c63 | refs/heads/master | 2023-08-22T14:28:52.908734 | 2021-09-22T03:08:34 | 2021-09-22T03:08:34 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,041 | py | #!/usr/bin/env python
import json
import logging
import argparse
import textwrap
import alpaca_trade_api as alpaca
from winotify import Notification
#API = alpaca
#BROKER = alpaca
class Shortable():
def __init__(self):
self.old_short_status = dict()
self.new_short_status = dict()
self.report = ""
self.api = alpaca.REST()
def __del__(self):
del self.old_short_status
del self.new_short_status
del self.report
del self.api
def read_old_short_status(self):
with open('shortable.json', 'r') as shortable:
self.old_short_status = json.load(shortable)
def get_new_short_status(self):
#def get_new_short_status(self, broker_api):
#if self.api == 'ALPACA':
#if self.api == alpaca.REST():
# for asset in self.old_short_status:
# asset_update = self.api.get_asset(asset)
# self.new_short_status[asset] = asset_update.shortable
for asset in self.old_short_status:
asset_update = self.api.get_asset(asset)
self.new_short_status[asset] = asset_update.shortable
def check_short_status_changes(self):
for (old_short, old_short_stat), (new_short, new_short_stat) in zip(self.old_short_status.items(), self.new_short_status.items()):
# DEBUG
#print(asset)
#print("Tradable: {}".format(asset_update.tradable))
#print("Shortable: {}".format(asset_update.shortable))
#print("Easy-to-Borrow: {}".format(asset_update.easy_to_borrow))
if old_short_stat is False and new_short_stat is True:
logging.info('%s now shortable', old_short)
self.report += '{} now shortable\n'.format(old_short)
elif old_short_stat is True and new_short_stat is False:
logging.info('%s now non-shortable', old_short)
self.report += '{} now non-shortable\n'.format(old_short)
elif old_short_stat is None and new_short_stat is True:
logging.info('%s now shortable, previous status unknown', old_short)
self.report += '{} now shortable, previous status unknown\n'.format(old_short)
elif old_short_stat is None and new_short_stat is False:
logging.info('%s now non-shortable, previous status unknown', old_short)
self.report += '{} now non-shortable, previous status unknown\n'.format(old_short)
else:
# no change to asset shortable status
logging.info('No change to shortable status of %s', old_short)
# Update old shortable status to new shortable status
self.old_short_status = self.new_short_status
# Write new updated short list to file, clearing old list
def write_new_short_status(self):
with open('shortable.json', 'w') as shortable:
shortable.seek(0)
shortable.truncate()
json.dump(self.new_short_status, shortable)
# Create Windows 10 notification if new shortble status to report
def send_notification(self):
if self.report:
logging.info('%s', self.report)
toast = Notification(app_id='📉 shortable', title='📉 shortable', msg=self.report)
toast.build().show()
logging.info('toast notification fired')
# Entry point for running launch script after installing package, see setup.py
def run():
parser = argparse.ArgumentParser(
prog='shortable',
description='Receive an alert if an asset becomes shortable, e.g. from HTB to ETB, or vice versa',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=textwrap.dedent('''\
Setup
1. Define assets to track in shortable.json e.g. {"AMZN": true, "MSFT": true, "TSLA": false}.
2. Run shortable from the same directory as shortable.json. When there are no asset shortable changes there is no output or notification. Check shortable.log to verify operation.
3. Optionally schedule shortable to run routinely using Windows Task Scheduler.
''')
)
#parser.add_argument('ASSET', type=str.upper, help='Ticker of asset to check')
parser.add_argument('-v', '--version', action='version', version='%(prog)s 0.1.0')
args = parser.parse_args()
#logging.basicConfig(filename='shortable.log', encoding='utf-8', level=logging.INFO)
logging.basicConfig(filename='shortable.log', level=logging.INFO, format='%(asctime)s %(message)s')
shortable = Shortable()
shortable.read_old_short_status()
shortable.get_new_short_status()
shortable.check_short_status_changes()
shortable.write_new_short_status()
shortable.send_notification()
if __name__ == '__main__':
run()
| [
"[email protected]"
]
| |
137ca2c75fc5842bf99e607647a8c60484deb686 | 0f734b40fa25bdcff0d19c016fc7dcf11122c47a | /chapter_4/buffet.py | 65a46b00d3d129b9fff1b3d1bff7f70e11109530 | []
| no_license | ICANDIGITAL/crash_course_python | f47a0ce366736da1880aec08291867f491ac8bd3 | d1598b0397b4b2cdc7acccf0b9153fa2b96688c8 | refs/heads/master | 2023-06-08T17:37:50.566342 | 2023-05-26T15:09:52 | 2023-05-26T15:09:52 | 120,501,326 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 231 | py | simple_foods = ('fries', 'pizza', 'cake', 'pasta', 'mashed potatos')
for food in simple_foods:
print(food)
simple_foods = ('candy','fries', 'pizza', 'cake', 'pasta', 'mashed potatos')
for food in simple_foods:
print(food)
| [
"[email protected]"
]
| |
6779cf42ff406a6d5f99b51f95a9019573da268c | a79772a6da4b00c13ff36d2dd57a50ec6cc3cb08 | /store/store/urls.py | 5cf02fa9d72c1fb1efd93b07cc438e2bd85e8bef | []
| no_license | palzuncoff/CornelStore | edd9d5042446aed045ff0127daca934d92b1a904 | 63e221ee51d97f448ab69e58978caee1dbd25e11 | refs/heads/master | 2020-07-07T01:53:12.375940 | 2016-09-06T08:34:55 | 2016-09-06T08:34:55 | 67,118,732 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 868 | py | """store URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.9/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Add an import: from blog import urls as blog_urls
2. Import the include() function: from django.conf.urls import url, include
3. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls))
"""
from django.conf.urls import include, url
from django.contrib import admin
urlpatterns = [
url(r'^shop/', include('shop.urls')),
url(r'^admin/', admin.site.urls),
]
| [
"[email protected]"
]
| |
30cad6e1da61289d5c07870ba55492bb0edeb0f9 | 8aa78783dbb8c5a91b81b41d37ecf8bbd0804354 | /bld/blenderbpy/2.79/scripts/addons/ant_landscape/__init__.py | 0e10b8b407ffddcd4714e750e538acd39ac60319 | []
| no_license | priyesh16/food | e08c0307c7feba27285724e9766fb0f33223fb14 | 18ae58d7f796309e54b76db9a3757207f288b0aa | refs/heads/master | 2021-01-09T11:26:22.489059 | 2020-03-10T23:17:56 | 2020-03-10T23:17:56 | 242,281,395 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 32,182 | py | # ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# Another Noise Tool - Suite (W.I.P.)
# Jimmy Hazevoet 5/2017
bl_info = {
"name": "A.N.T.Landscape",
"author": "Jimmy Hazevoet",
"version": (0, 1, 8),
"blender": (2, 80, 0),
"location": "View3D > Sidebar > Create Tab",
"description": "Another Noise Tool: Landscape and Displace",
"warning": "",
"wiki_url": "https://docs.blender.org/manual/en/dev/addons/"
"add_mesh/ant_landscape.html",
"category": "Add Mesh",
}
if "bpy" in locals():
import importlib
importlib.reload(add_mesh_ant_landscape)
importlib.reload(mesh_ant_displace)
importlib.reload(ant_functions)
importlib.reload(ant_noise)
else:
from ant_landscape import add_mesh_ant_landscape
from ant_landscape import mesh_ant_displace
from ant_landscape import ant_functions
from ant_landscape import ant_noise
import bpy
from bpy.props import (
BoolProperty,
FloatProperty,
IntProperty,
StringProperty,
PointerProperty,
EnumProperty,
)
from .ant_functions import (
draw_ant_refresh,
draw_ant_main,
draw_ant_noise,
draw_ant_displace,
)
# ------------------------------------------------------------
# Menu's and panels
def menu_func_eroder(self, context):
ob = bpy.context.active_object
if ob and (ob.ant_landscape.keys() and not ob.ant_landscape['sphere_mesh']):
self.layout.operator('mesh.eroder', text="Landscape Eroder", icon='SMOOTHCURVE')
def menu_func_landscape(self, context):
layout = self.layout
layout.separator()
self.layout.operator('mesh.landscape_add', text="Landscape", icon="RNDCURVE")
# Landscape Add Panel
class AntLandscapeAddPanel(bpy.types.Panel):
bl_category = "Create"
bl_label = "Landscape"
bl_idname = "ANTLANDSCAPE_PT_add"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_context = "objectmode"
bl_options = {'DEFAULT_CLOSED'}
def draw(self, context):
col = self.layout.column()
col.operator('mesh.landscape_add', text="Landscape", icon="RNDCURVE")
# Landscape Tools:
class AntLandscapeToolsPanel(bpy.types.Panel):
bl_category = "Create"
bl_label = "Landscape Tools"
bl_idname = "ANTLANDSCAPE_PT_tools"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_context = "objectmode"
bl_options = {'DEFAULT_CLOSED'}
@classmethod
def poll(cls, context):
ob = bpy.context.active_object
return (ob and ob.type == 'MESH')
def draw(self, context):
layout = self.layout
ob = context.active_object
col = layout.column()
col.operator('mesh.ant_displace', text="Mesh Displace", icon="RNDCURVE")
col.operator('mesh.ant_slope_map', icon='GROUP_VERTEX')
if ob.ant_landscape.keys() and not ob.ant_landscape['sphere_mesh']:
col.operator('mesh.eroder', text="Landscape Eroder", icon='SMOOTHCURVE')
# Landscape Main Settings
class AntMainSettingsPanel(bpy.types.Panel):
bl_category = "Create"
bl_label = "Landscape Main"
bl_idname = "ANTLANDSCAPE_PT_main"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_options = {'DEFAULT_CLOSED'}
@classmethod
def poll(cls, context):
ob = bpy.context.active_object
return ob.ant_landscape.keys() if ob else False
def draw(self, context):
layout = self.layout
scene = context.scene
ob = bpy.context.active_object
ant = ob.ant_landscape
box = layout.box()
col = box.column(align=False)
col.scale_y = 1.5
col.operator('mesh.ant_landscape_regenerate', text="Regenerate", icon="LOOP_FORWARDS")
row = box.row(align=True)
split = row.split(align=True)
split.prop(ant, "smooth_mesh", toggle=True, text="Smooth", icon='SHADING_SOLID')
split.prop(ant, "tri_face", toggle=True, text="Triangulate", icon='MESH_DATA')
if ant.sphere_mesh:
split.prop(ant, "remove_double", toggle=True, text="Remove Doubles", icon='MESH_DATA')
box.prop(ant, "ant_terrain_name")
box.prop_search(ant, "land_material", bpy.data, "materials")
col = box.column(align=True)
col.prop(ant, "subdivision_x")
col.prop(ant, "subdivision_y")
col = box.column(align=True)
if ant.sphere_mesh:
col.prop(ant, "mesh_size")
else:
col.prop(ant, "mesh_size_x")
col.prop(ant, "mesh_size_y")
# Landscape Noise Settings
class AntNoiseSettingsPanel(bpy.types.Panel):
bl_category = "Create"
bl_label = "Landscape Noise"
bl_idname = "ANTLANDSCAPE_PT_noise"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_options = {'DEFAULT_CLOSED'}
@classmethod
def poll(cls, context):
ob = bpy.context.active_object
return ob.ant_landscape.keys() if ob else False
def draw(self, context):
layout = self.layout
scene = context.scene
ob = bpy.context.active_object
ant = ob.ant_landscape
box = layout.box()
col = box.column(align=True)
col.scale_y = 1.5
if ant.sphere_mesh:
col.operator('mesh.ant_landscape_regenerate', text="Regenerate", icon="LOOP_FORWARDS")
else:
col.operator('mesh.ant_landscape_refresh', text="Refresh", icon="FILE_REFRESH")
box.prop(ant, "noise_type")
if ant.noise_type == "blender_texture":
box.prop_search(ant, "texture_block", bpy.data, "textures")
else:
box.prop(ant, "basis_type")
col = box.column(align=True)
col.prop(ant, "random_seed")
col = box.column(align=True)
col.prop(ant, "noise_offset_x")
col.prop(ant, "noise_offset_y")
if ant.sphere_mesh:
col.prop(ant, "noise_offset_z")
col.prop(ant, "noise_size_x")
col.prop(ant, "noise_size_y")
if ant.sphere_mesh:
col.prop(ant, "noise_size_z")
col = box.column(align=True)
col.prop(ant, "noise_size")
col = box.column(align=True)
if ant.noise_type == "multi_fractal":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
elif ant.noise_type == "ridged_multi_fractal":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "gain")
elif ant.noise_type == "hybrid_multi_fractal":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "gain")
elif ant.noise_type == "hetero_terrain":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
elif ant.noise_type == "fractal":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
elif ant.noise_type == "turbulence_vector":
col.prop(ant, "noise_depth")
col.prop(ant, "amplitude")
col.prop(ant, "frequency")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
elif ant.noise_type == "variable_lacunarity":
box.prop(ant, "vl_basis_type")
box.prop(ant, "distortion")
elif ant.noise_type == "marble_noise":
box.prop(ant, "marble_shape")
box.prop(ant, "marble_bias")
box.prop(ant, "marble_sharp")
col = box.column(align=True)
col.prop(ant, "distortion")
col.prop(ant, "noise_depth")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
elif ant.noise_type == "shattered_hterrain":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "distortion")
elif ant.noise_type == "strata_hterrain":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "distortion", text="Strata")
elif ant.noise_type == "ant_turbulence":
col.prop(ant, "noise_depth")
col.prop(ant, "amplitude")
col.prop(ant, "frequency")
col.prop(ant, "distortion")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
elif ant.noise_type == "vl_noise_turbulence":
col.prop(ant, "noise_depth")
col.prop(ant, "amplitude")
col.prop(ant, "frequency")
col.prop(ant, "distortion")
col.separator()
box.prop(ant, "vl_basis_type")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
elif ant.noise_type == "vl_hTerrain":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "distortion")
col.separator()
box.prop(ant, "vl_basis_type")
elif ant.noise_type == "distorted_heteroTerrain":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "distortion")
col.separator()
col.prop(ant, "vl_basis_type")
elif ant.noise_type == "double_multiFractal":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "offset")
col.prop(ant, "gain")
col.separator()
box.prop(ant, "vl_basis_type")
elif ant.noise_type == "rocks_noise":
col.prop(ant, "noise_depth")
col.prop(ant, "distortion")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
elif ant.noise_type == "slick_rock":
col.prop(ant, "noise_depth")
col.prop(ant, "dimension")
col.prop(ant, "lacunarity")
col.prop(ant, "gain")
col.prop(ant, "offset")
col.prop(ant, "distortion")
col.separator()
box.prop(ant, "vl_basis_type")
elif ant.noise_type == "planet_noise":
col.prop(ant, "noise_depth")
col.separator()
row = col.row(align=True)
row.prop(ant, "hard_noise", expand=True)
# Effects mix
col = box.column(align=False)
box.prop(ant, "fx_type")
if ant.fx_type != "0":
if int(ant.fx_type) <= 12:
box.prop(ant, "fx_bias")
box.prop(ant, "fx_mix_mode")
col = box.column(align=True)
col.prop(ant, "fx_mixfactor")
col = box.column(align=True)
col.prop(ant, "fx_loc_x")
col.prop(ant, "fx_loc_y")
col.prop(ant, "fx_size")
col = box.column(align=True)
col.prop(ant, "fx_depth")
if ant.fx_depth != 0:
col.prop(ant, "fx_frequency")
col.prop(ant, "fx_amplitude")
col.prop(ant, "fx_turb")
col = box.column(align=True)
row = col.row(align=True).split(factor=0.92, align=True)
row.prop(ant, "fx_height")
row.prop(ant, "fx_invert", toggle=True, text="", icon='ARROW_LEFTRIGHT')
col.prop(ant, "fx_offset")
# Landscape Displace Settings
class AntDisplaceSettingsPanel(bpy.types.Panel):
bl_category = "Create"
bl_label = "Landscape Displace"
bl_idname = "ANTLANDSCAPE_PT_disp"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_options = {'DEFAULT_CLOSED'}
@classmethod
def poll(cls, context):
ob = bpy.context.active_object
return ob.ant_landscape.keys() if ob else False
def draw(self, context):
layout = self.layout
scene = context.scene
ob = bpy.context.active_object
ant = ob.ant_landscape
box = layout.box()
col = box.column(align=True)
col.scale_y = 1.5
if ant.sphere_mesh:
col.operator('mesh.ant_landscape_regenerate', text="Regenerate", icon="LOOP_FORWARDS")
else:
col.operator('mesh.ant_landscape_refresh', text="Refresh", icon="FILE_REFRESH")
col = box.column(align=True)
row = col.row(align=True).split(factor=0.92, align=True)
row.prop(ant, "height")
row.prop(ant, "height_invert", toggle=True, text="", icon='ARROW_LEFTRIGHT')
col.prop(ant, "height_offset")
col.prop(ant, "maximum")
col.prop(ant, "minimum")
if not ant.sphere_mesh:
col = box.column()
col.prop(ant, "edge_falloff")
if ant.edge_falloff != "0":
col = box.column(align=True)
col.prop(ant, "edge_level")
if ant.edge_falloff in ["2", "3"]:
col.prop(ant, "falloff_x")
if ant.edge_falloff in ["1", "3"]:
col.prop(ant, "falloff_y")
col = box.column()
col.prop(ant, "strata_type")
if ant.strata_type != "0":
col = box.column()
col.prop(ant, "strata")
col = box.column()
col.prop_search(ant, "vert_group", ob, "vertex_groups")
# ------------------------------------------------------------
# Properties group
class AntLandscapePropertiesGroup(bpy.types.PropertyGroup):
ant_terrain_name: StringProperty(
name="Name",
default="Landscape"
)
land_material: StringProperty(
name='Material',
default="",
description="Terrain material"
)
water_material: StringProperty(
name='Material',
default="",
description="Water plane material"
)
texture_block: StringProperty(
name="Texture",
default=""
)
at_cursor: BoolProperty(
name="Cursor",
default=True,
description="Place at cursor location",
)
smooth_mesh: BoolProperty(
name="Smooth",
default=True,
description="Shade smooth"
)
tri_face: BoolProperty(
name="Triangulate",
default=False,
description="Triangulate faces"
)
sphere_mesh: BoolProperty(
name="Sphere",
default=False,
description="Generate uv sphere - remove doubles when ready"
)
subdivision_x: IntProperty(
name="Subdivisions X",
default=128,
min=4,
max=6400,
description="Mesh X subdivisions"
)
subdivision_y: IntProperty(
default=128,
name="Subdivisions Y",
min=4,
max=6400,
description="Mesh Y subdivisions"
)
mesh_size: FloatProperty(
default=2.0,
name="Mesh Size",
min=0.01,
max=100000.0,
description="Mesh size"
)
mesh_size_x: FloatProperty(
default=2.0,
name="Mesh Size X",
min=0.01,
description="Mesh x size"
)
mesh_size_y: FloatProperty(
name="Mesh Size Y",
default=2.0,
min=0.01,
description="Mesh y size"
)
random_seed: IntProperty(
name="Random Seed",
default=0,
min=0,
description="Randomize noise origin"
)
noise_offset_x: FloatProperty(
name="Offset X",
default=0.0,
description="Noise X Offset"
)
noise_offset_y: FloatProperty(
name="Offset Y",
default=0.0,
description="Noise Y Offset"
)
noise_offset_z: FloatProperty(
name="Offset Z",
default=0.0,
description="Noise Z Offset"
)
noise_size_x: FloatProperty(
default=1.0,
name="Size X",
min=0.01,
max=1000.0,
description="Noise x size"
)
noise_size_y: FloatProperty(
name="Size Y",
default=1.0,
min=0.01,
max=1000.0,
description="Noise y size"
)
noise_size_z: FloatProperty(
name="Size Z",
default=1.0,
min=0.01,
max=1000.0,
description="Noise Z size"
)
noise_size: FloatProperty(
name="Noise Size",
default=1.0,
min=0.01,
max=1000.0,
description="Noise size"
)
noise_type: EnumProperty(
name="Noise Type",
default='hetero_terrain',
description="Noise type",
items = [
('multi_fractal', "Multi Fractal", "Blender: Multi Fractal algorithm", 0),
('ridged_multi_fractal', "Ridged MFractal", "Blender: Ridged Multi Fractal", 1),
('hybrid_multi_fractal', "Hybrid MFractal", "Blender: Hybrid Multi Fractal", 2),
('hetero_terrain', "Hetero Terrain", "Blender: Hetero Terrain", 3),
('fractal', "fBm Fractal", "Blender: fBm - Fractional Browninian motion", 4),
('turbulence_vector', "Turbulence", "Blender: Turbulence Vector", 5),
('variable_lacunarity', "Distorted Noise", "Blender: Distorted Noise", 6),
('marble_noise', "Marble", "A.N.T.: Marble Noise", 7),
('shattered_hterrain', "Shattered hTerrain", "A.N.T.: Shattered hTerrain", 8),
('strata_hterrain', "Strata hTerrain", "A.N.T: Strata hTerrain", 9),
('ant_turbulence', "Another Noise", "A.N.T: Turbulence variation", 10),
('vl_noise_turbulence', "vlNoise turbulence", "A.N.T: Real vlNoise turbulence", 11),
('vl_hTerrain', "vlNoise hTerrain", "A.N.T: vlNoise hTerrain", 12),
('distorted_heteroTerrain', "Distorted hTerrain", "A.N.T distorted hTerrain", 13),
('double_multiFractal', "Double MultiFractal", "A.N.T: double multiFractal", 14),
('rocks_noise', "Noise Rocks", "A.N.T: turbulence variation", 15),
('slick_rock', "Slick Rock", "A.N.T: slick rock", 16),
('planet_noise', "Planet Noise", "Planet Noise by: Farsthary", 17),
('blender_texture', "Blender Texture - Texture Nodes", "Blender texture data block", 18)]
)
basis_type: EnumProperty(
name="Noise Basis",
default=ant_noise.noise_basis_default,
description="Noise basis algorithms",
items = ant_noise.noise_basis
)
vl_basis_type: EnumProperty(
name="vlNoise Basis",
default=ant_noise.noise_basis_default,
description="VLNoise basis algorithms",
items = ant_noise.noise_basis
)
distortion: FloatProperty(
name="Distortion",
default=1.0,
min=0.01,
max=100.0,
description="Distortion amount"
)
hard_noise: EnumProperty(
name="Soft Hard",
default="0",
description="Soft Noise, Hard noise",
items = [
("0", "Soft", "Soft Noise", 0),
("1", "Hard", "Hard noise", 1)]
)
noise_depth: IntProperty(
name="Depth",
default=8,
min=0,
max=16,
description="Noise Depth - number of frequencies in the fBm"
)
amplitude: FloatProperty(
name="Amp",
default=0.5,
min=0.01,
max=1.0,
description="Amplitude"
)
frequency: FloatProperty(
name="Freq",
default=2.0,
min=0.01,
max=5.0,
description="Frequency"
)
dimension: FloatProperty(
name="Dimension",
default=1.0,
min=0.01,
max=2.0,
description="H - fractal dimension of the roughest areas"
)
lacunarity: FloatProperty(
name="Lacunarity",
min=0.01,
max=6.0,
default=2.0,
description="Lacunarity - gap between successive frequencies"
)
offset: FloatProperty(
name="Offset",
default=1.0,
min=0.01,
max=6.0,
description="Offset - raises the terrain from sea level"
)
gain: FloatProperty(
name="Gain",
default=1.0,
min=0.01,
max=6.0,
description="Gain - scale factor"
)
marble_bias: EnumProperty(
name="Bias",
default="0",
description="Marble bias",
items = [
("0", "Sin", "Sin", 0),
("1", "Cos", "Cos", 1),
("2", "Tri", "Tri", 2),
("3", "Saw", "Saw", 3)]
)
marble_sharp: EnumProperty(
name="Sharp",
default="0",
description="Marble sharpness",
items = [
("0", "Soft", "Soft", 0),
("1", "Sharp", "Sharp", 1),
("2", "Sharper", "Sharper", 2),
("3", "Soft inv.", "Soft", 3),
("4", "Sharp inv.", "Sharp", 4),
("5", "Sharper inv.", "Sharper", 5)]
)
marble_shape: EnumProperty(
name="Shape",
default="0",
description="Marble shape",
items= [
("0", "Default", "Default", 0),
("1", "Ring", "Ring", 1),
("2", "Swirl", "Swirl", 2),
("3", "Bump", "Bump", 3),
("4", "Wave", "Wave", 4),
("5", "Z", "Z", 5),
("6", "Y", "Y", 6),
("7", "X", "X", 7)]
)
height: FloatProperty(
name="Height",
default=0.5,
min=-10000.0,
max=10000.0,
description="Noise intensity scale"
)
height_invert: BoolProperty(
name="Invert",
default=False,
description="Height invert",
)
height_offset: FloatProperty(
name="Offset",
default=0.0,
min=-10000.0,
max=10000.0,
description="Height offset"
)
fx_mixfactor: FloatProperty(
name="Mix Factor",
default=0.0,
min=-1.0,
max=1.0,
description="Effect mix factor: -1.0 = Noise, +1.0 = Effect"
)
fx_mix_mode: EnumProperty(
name="Effect Mix",
default="0",
description="Effect mix mode",
items = [
("0", "Mix", "Mix", 0),
("1", "Add", "Add", 1),
("2", "Sub", "Subtract", 2),
("3", "Mul", "Multiply", 3),
("4", "Abs", "Absolute", 4),
("5", "Scr", "Screen", 5),
("6", "Mod", "Modulo", 6),
("7", "Min", "Minimum", 7),
("8", "Max", "Maximum", 8)
]
)
fx_type: EnumProperty(
name="Effect Type",
default="0",
description="Effect type",
items = [
("0", "None", "No effect", 0),
("1", "Gradient", "Gradient", 1),
("2", "Waves", "Waves - Bumps", 2),
("3", "Zigzag", "Zigzag", 3),
("4", "Wavy", "Wavy", 4),
("5", "Bump", "Bump", 5),
("6", "Dots", "Dots", 6),
("7", "Rings", "Rings", 7),
("8", "Spiral", "Spiral", 8),
("9", "Square", "Square", 9),
("10", "Blocks", "Blocks", 10),
("11", "Grid", "Grid", 11),
("12", "Tech", "Tech", 12),
("13", "Crackle", "Crackle", 13),
("14", "Cracks", "Cracks", 14),
("15", "Rock", "Rock noise", 15),
("16", "Lunar", "Craters", 16),
("17", "Cosine", "Cosine", 17),
("18", "Spikey", "Spikey", 18),
("19", "Stone", "Stone", 19),
("20", "Flat Turb", "Flat turbulence", 20),
("21", "Flat Voronoi", "Flat voronoi", 21)
]
)
fx_bias: EnumProperty(
name="Effect Bias",
default="0",
description="Effect bias type",
items = [
("0", "Sin", "Sin", 0),
("1", "Cos", "Cos", 1),
("2", "Tri", "Tri", 2),
("3", "Saw", "Saw", 3),
("4", "None", "None", 4)]
)
fx_turb: FloatProperty(
name="Distortion",
default=0.0,
min=0.0,
max=1000.0,
description="Effect turbulence distortion"
)
fx_depth: IntProperty(
name="Depth",
default=0,
min=0,
max=16,
description="Effect depth - number of frequencies"
)
fx_amplitude: FloatProperty(
name="Amp",
default=0.5,
min=0.01,
max=1.0,
description="Amplitude"
)
fx_frequency: FloatProperty(
name="Freq",
default=2.0,
min=0.01,
max=5.0,
description="Frequency"
)
fx_size: FloatProperty(
name="Effect Size",
default=1.0,
min=0.01,
max=1000.0,
description="Effect size"
)
fx_loc_x: FloatProperty(
name="Offset X",
default=0.0,
description="Effect x offset"
)
fx_loc_y: FloatProperty(
name="Offset Y",
default=0.0,
description="Effect y offset"
)
fx_height: FloatProperty(
name="Intensity",
default=1.0,
min=-1000.0,
max=1000.0,
description="Effect intensity scale"
)
fx_invert: BoolProperty(
name="Invert",
default=False,
description="Effect invert"
)
fx_offset: FloatProperty(
name="Offset",
default=0.0,
min=-1000.0,
max=1000.0,
description="Effect height offset"
)
edge_falloff: EnumProperty(
name="Falloff",
default="3",
description="Flatten edges",
items = [
("0", "None", "None", 0),
("1", "Y", "Y Falloff", 1),
("2", "X", "X Falloff", 2),
("3", "X Y", "X Y Falloff", 3)]
)
falloff_x: FloatProperty(
name="Falloff X",
default=4.0,
min=0.1,
max=100.0,
description="Falloff x scale"
)
falloff_y: FloatProperty(
name="Falloff Y",
default=4.0,
min=0.1,
max=100.0,
description="Falloff y scale"
)
edge_level: FloatProperty(
name="Edge Level",
default=0.0,
min=-10000.0,
max=10000.0,
description="Edge level, sealevel offset"
)
maximum: FloatProperty(
name="Maximum",
default=1.0,
min=-10000.0,
max=10000.0,
description="Maximum, flattens terrain at plateau level"
)
minimum: FloatProperty(
name="Minimum",
default=-1.0,
min=-10000.0,
max=10000.0,
description="Minimum, flattens terrain at seabed level"
)
vert_group: StringProperty(
name="Vertex Group",
default=""
)
strata: FloatProperty(
name="Amount",
default=5.0,
min=0.01,
max=1000.0,
description="Strata layers / terraces"
)
strata_type: EnumProperty(
name="Strata",
default="0",
description="Strata types",
items = [
("0", "None", "No strata", 0),
("1", "Smooth", "Smooth transitions", 1),
("2", "Sharp Sub", "Sharp subtract transitions", 2),
("3", "Sharp Add", "Sharp add transitions", 3),
("4", "Quantize", "Quantize", 4),
("5", "Quantize Mix", "Quantize mixed", 5)]
)
water_plane: BoolProperty(
name="Water Plane",
default=False,
description="Add water plane"
)
water_level: FloatProperty(
name="Level",
default=0.01,
min=-10000.0,
max=10000.0,
description="Water level"
)
remove_double: BoolProperty(
name="Remove Doubles",
default=False,
description="Remove doubles"
)
refresh: BoolProperty(
name="Refresh",
default=False,
description="Refresh"
)
auto_refresh: BoolProperty(
name="Auto",
default=True,
description="Automatic refresh"
)
# ------------------------------------------------------------
# Register:
classes = (
AntLandscapeAddPanel,
AntLandscapeToolsPanel,
AntMainSettingsPanel,
AntNoiseSettingsPanel,
AntDisplaceSettingsPanel,
AntLandscapePropertiesGroup,
add_mesh_ant_landscape.AntAddLandscape,
mesh_ant_displace.AntMeshDisplace,
ant_functions.AntLandscapeRefresh,
ant_functions.AntLandscapeRegenerate,
ant_functions.AntVgSlopeMap,
ant_functions.Eroder,
)
def register():
for cls in classes:
bpy.utils.register_class(cls)
bpy.types.VIEW3D_MT_mesh_add.append(menu_func_landscape)
bpy.types.Object.ant_landscape = PointerProperty(type=AntLandscapePropertiesGroup, name="ANT_Landscape", description="Landscape properties")
bpy.types.VIEW3D_MT_paint_weight.append(menu_func_eroder)
def unregister():
for cls in reversed(classes):
bpy.utils.unregister_class(cls)
bpy.types.VIEW3D_MT_mesh_add.remove(menu_func_landscape)
bpy.types.VIEW3D_MT_paint_weight.remove(menu_func_eroder)
if __name__ == "__main__":
register()
| [
"[email protected]"
]
| |
388430234a19c8d3bb7df514027066b68cf8fc68 | 3507fdc5012e55f6a784d70a7ad6da11224e5bfe | /caesar_cipher.py | 2fa71c8cece652f7e97971c772561d702a65ad0c | []
| no_license | jonasthiel/100-days-of-code-python | 640be865bdba10cca17ba72c4923cf9961ed570c | 94ad366d10ed862c6c699ae1f242bd462f2ba597 | refs/heads/main | 2023-04-03T11:53:16.993098 | 2021-04-09T14:20:41 | 2021-04-09T14:20:41 | 330,404,825 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,924 | py | from os import system
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
logo = """
,adPPYba, ,adPPYYba, ,adPPYba, ,adPPYba, ,adPPYYba, 8b,dPPYba,
a8" "" "" `Y8 a8P_____88 I8[ "" "" `Y8 88P' "Y8
8b ,adPPPPP88 8PP""""""" `"Y8ba, ,adPPPPP88 88
"8a, ,aa 88, ,88 "8b, ,aa aa ]8I 88, ,88 88
`"Ybbd8"' `"8bbdP"Y8 `"Ybbd8"' `"YbbdP"' `"8bbdP"Y8 88
88 88
"" 88
88
,adPPYba, 88 8b,dPPYba, 88,dPPYba, ,adPPYba, 8b,dPPYba,
a8" "" 88 88P' "8a 88P' "8a a8P_____88 88P' "Y8
8b 88 88 d8 88 88 8PP""""""" 88
"8a, ,aa 88 88b, ,a8" 88 88 "8b, ,aa 88
`"Ybbd8"' 88 88`YbbdP"' 88 88 `"Ybbd8"' 88
88
88
"""
end = False
while not end:
print(logo)
direction = input("Type 'encode' to encrypt, type 'decode' to decrypt:\n")
text = input("Type your message:\n").lower()
shift = int(input("Type the shift number:\n"))
def caesar(direction, text, shift):
output_text = ""
if shift > 26:
shift %= 26
if direction == "encode":
for i in text:
if i in alphabet:
index = alphabet.index(i)
if index + shift > 25:
output_text += alphabet[index + shift - 26]
else:
output_text += alphabet[index + shift]
else:
output_text += i
elif direction == "decode":
for i in text:
if i in alphabet:
index = alphabet.index(i)
if index - shift < 0:
output_text += alphabet[index - shift + 26]
else:
output_text += alphabet[index - shift]
else:
output_text += i
print(f"The {direction}d text is {output_text}")
caesar(direction, text, shift)
if input("Type 'yes' if you want to go again. Otherwise type 'no'.\n").lower() == "no":
end = True
else:
system('clear') | [
"[email protected]"
]
| |
70425764af9a4af7b00d9a87514deba1e28c8fda | 722af8e6fa81960a6119c2e45ba6795771bad595 | /agents/migrations/0043_veri.py | a9fbb71d81b2b140fcb68e8c4a02de3f0a744641 | []
| no_license | witty-technologies-empowerment/pmc | 85d21fa3c360d40adeec7ca93792b5bc68c258e5 | 201bee60197240eec911637e136cf14bc5814eec | refs/heads/master | 2023-05-27T12:37:48.894933 | 2021-06-13T04:34:57 | 2021-06-13T04:34:57 | 376,439,472 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 790 | py | # Generated by Django 2.2.6 on 2020-02-04 15:09
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('agents', '0042_auto_20191022_0303'),
]
operations = [
migrations.CreateModel(
name='Veri',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('user', models.CharField(max_length=20)),
('rcode', models.CharField(max_length=100)),
('count', models.CharField(default=1, max_length=2)),
('created', models.DateTimeField(auto_now_add=True)),
],
options={
'ordering': ['-created'],
},
),
]
| [
"[email protected]"
]
| |
4eaeed1619b3dcb639ee308019b90729a7124038 | bfc1b107b2ce8c664b17be7d96b93bf69aaa8665 | /lab_10_zadania/07.py | aea5b665b965041edf2d9d5e29141733e6f9acc7 | []
| no_license | bulwan/wizualizacja_danych | db16c97da765646a71a8a794030f8014022cbc19 | e305914105f42d22d42deb4e10a09b181534254f | refs/heads/main | 2023-05-01T07:16:23.954859 | 2021-05-26T11:59:18 | 2021-05-26T11:59:18 | 346,389,677 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 685 | py | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plik = pd.ExcelFile('imiona.xlsx')
imiona = pd.read_excel(plik,'Arkusz1')
kobiet=imiona[(imiona.Plec=='K')]
chlopcy=imiona[(imiona.Plec=='M')]
wynik_dziewczynki = kobiet.groupby(['Rok']).sum()
wynik_chlopcy = chlopcy.groupby(['Rok']).sum()
wynik_dziewczynki=wynik_dziewczynki.reset_index()
wynik_chlopcy=wynik_chlopcy.reset_index()
plt.xticks(np.arange(2000, 2018, 1))
plt.bar(wynik_dziewczynki.Rok,wynik_dziewczynki.Liczba, label="dziewczynki", color='pink')
plt.bar(wynik_chlopcy.Rok,wynik_chlopcy.Liczba, label="chlopcy", color='blue', bottom=wynik_dziewczynki.Liczba)
plt.legend()
plt.show() | [
"[email protected]"
]
| |
6b89a26de0e8969a9ee0367e605d705f6c3df52f | c96199d8b0502fb590094d99b58df4aecadff932 | /src/rysia/utils/monitor.py | 773b97c1268666dc368fdb06535b3070eb4775a2 | [
"Apache-2.0"
]
| permissive | vdeuschle/rysia | 1f8c6e8e6305d7c444107bbe5045f05f7e90ca22 | c8c5adc2c770424b3a328a936f23a80a38c9f0f2 | refs/heads/master | 2020-06-26T01:37:59.823644 | 2019-08-25T23:12:30 | 2019-09-08T16:53:12 | 199,485,229 | 2 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,647 | py | # Copyright 2018 Vincent Deuschle. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import time
from typing import Optional
import psutil as ps
import boto3
from py3nvml.py3nvml import *
from ..utils.misc import create_csv_string
class Monitor(threading.Thread):
def __init__(self,
filename: str,
aws: bool,
bucketname: str) -> None:
super(Monitor, self).__init__()
self.running = False
self.aws = aws
if self.aws:
self.s3_bucket = boto3.resource('s3').Bucket(bucketname)
self.filename = filename
def __enter__(self) -> None:
self.start()
def __exit__(self, *args) -> None:
self.running = False
self.join()
def run(self) -> None:
self.running = True
self.acc = []
try:
self.initialize()
while self.running:
time.sleep(1)
self.execute()
except (NVMLError, AttributeError, OSError) as e:
self.acc += [[f'Monitor {self.__class__.__name__} failed to execute']]
self.acc += [[str(e)]]
finally:
self.finalize()
def initialize(self) -> None:
raise NotImplementedError
def execute(self) -> None:
raise NotImplementedError
def finalize(self) -> None:
csv_string = create_csv_string(self.acc)
if self.aws:
self.s3_bucket.put_object(Key=self.filename, Body=csv_string)
else:
with open(self.filename, "w") as output:
output.write(csv_string)
class CPUMonitor(Monitor):
def __init__(self,
filename: str,
aws: bool = False,
bucketname: Optional[str] = None) -> None:
super(CPUMonitor, self).__init__(filename, aws, bucketname)
def initialize(self) -> None:
cpu_count = ps.cpu_count()
percent_label = [f'cpu{i}_percent' for i in range(cpu_count)]
self.acc += [['timestamp',
*percent_label,
'user_time',
'system_time']]
def execute(self) -> None:
timestamp = time.time()
cpu_percent = ps.cpu_percent(percpu=True)
cpu_times = ps.cpu_times()
self.acc += [[timestamp,
*cpu_percent,
cpu_times[0],
cpu_times[1]]]
class MemoryMonitor(Monitor):
def __init__(self,
filename: str,
aws: bool = False,
bucketname: Optional[str] = None) -> None:
super(MemoryMonitor, self).__init__(filename, aws, bucketname)
def initialize(self) -> None:
self.acc += [['timestamp',
'total_memory',
'available_memory',
'used_memory']]
def execute(self) -> None:
timestamp = time.time()
memory_info = ps.virtual_memory()
self.acc += [[timestamp,
memory_info.total,
memory_info.available,
memory_info.percent]]
class DiskIOMonitor(Monitor):
def __init__(self,
filename: str,
aws: bool = False,
bucketname: Optional[str] = None) -> None:
super(DiskIOMonitor, self).__init__(filename, aws, bucketname)
def initialize(self) -> None:
self.acc += [['timestamp',
'read_count',
'write_count',
'read_bytes',
'write_bytes']]
def execute(self) -> None:
timestamp = time.time()
diskIO = ps.disk_io_counters()
self.acc += [[timestamp,
diskIO.read_count,
diskIO.write_count,
diskIO.read_bytes,
diskIO.write_bytes]]
class GPUMonitor(Monitor):
def __init__(self,
filename: str,
aws: bool = False,
bucketname: Optional[str] = None) -> None:
super(GPUMonitor, self).__init__(filename, aws, bucketname)
def initialize(self) -> None:
self.acc += [['timestamp',
'id',
'memory_used',
'memory_total',
'memory_util_rate',
'gpu_util_rate']]
nvmlInit()
self.deviceCount = nvmlDeviceGetCount()
def execute(self) -> None:
timestamp = time.time()
for id in range(self.deviceCount):
handle = nvmlDeviceGetHandleByIndex(id)
memory_info = nvmlDeviceGetMemoryInfo(handle)
gpu_info = nvmlDeviceGetUtilizationRates(handle)
memory_used = memory_info.used
memory_total = memory_info.total
memory_util_rate = gpu_info.memory
gpu_util_rate = gpu_info.gpu
self.acc += [[timestamp,
id,
memory_used,
memory_total,
memory_util_rate,
gpu_util_rate]]
| [
"[email protected]"
]
| |
a8e4ef9b084180f0b52f64f6f6095abcc3c4c3d1 | 05fdaa1d1762399ce4d2fe04c3427e5ecf0e6588 | /ch10.statement/demo.py | 55af869bfb1b0c80af45197a337a3ced4edb0fd0 | []
| no_license | redice/learning | 598398802779a5f0e5b9ab2f47667f87d8850d55 | 1240bb6b8d709055236f3d9eb0ad247d1aa182aa | refs/heads/master | 2020-06-02T15:18:14.418812 | 2013-01-05T10:16:46 | 2013-01-05T10:16:46 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,674 | py | import os,sys
class MyDemo:
def callWhile(self):
while True:
reply = input('Enter text:')
if reply == 'stop':
break
elif not reply.isdigit():
print('Bad!' * 8)
else:
print(int(reply) ** 2)
print('Bye')
def callTryExcept(self):
while True:
reply = input('Enter text:')
if reply == 'stop':
break
try:
num = int(reply)
except:
print('Bad!' * 8)
else:
print(int(reply) ** 2)
print('Bye')
def callAssign(self):
for (a,b,c) in [(1,2,3), (4,5,6)]:
print("a = {0}, b = {1}, c = {2}".format(a,b,c))
for ((a,b), c) in [((1,2), 'aaa'), (('x', 'y'), 'good job')]:
print("a = {0}, b = {1}, c = {2}".format(a,b,c))
def callWhile(self):
L = [1, 2, 3, 4]
while L:
# front, L = L[0], L[1:]
front = L.pop(0)
print(front, L)
L = [4, 5, 6, 7]
while L:
front, *L = L
print(front, L)
def callListConcatenation(self):
L = M = [1, 2]
M += [3, 4]
print(L, M)
L = M = [1, 2]
M = M + [3, 4]
print(L, M)
def callPrint(self):
x = 'abc'
y = 99
z = ['1', 'cc']
print(x, y, z, sep=' => ', end = '...\n')
print(x, y, z, sep=' => ', end = '...\n', file=open('output/data.txt', 'w'))
def callWriteToFile(self):
sys.stdout = open('output/data.txt', 'a')
print('good', 'job', 'ya')
def callStdOut(self):
temp = sys.stdout
sys.stdout = open('output/data.txt', 'a')
print('good', 'job', '斌')
sys.stdout.close()
sys.stdout = temp
print('張', '宏', '斌')
if __name__ == '__main__':
app = MyDemo()
app.callStdOut() | [
"[email protected]"
]
| |
9e4ad41b6887c4346466c3663aea990a64d2eca2 | b0938f37ccaa7bdc363ef2bce03c172e521682d4 | /Test_PR_curve.py | 7ed9a83eaf41a0e65f3e9393f9d6679ae6b762a3 | []
| no_license | neuhzhj2012/python-scripts | 1c40ae8c2a1c75398723ee62c62ebc1f48b7136b | 75050c0fa73e619f8823046d380cb15ba121d62b | refs/heads/master | 2021-06-12T20:17:03.258332 | 2021-04-14T09:50:57 | 2021-04-14T09:50:57 | 180,062,098 | 2 | 1 | null | null | null | null | UTF-8 | Python | false | false | 3,189 | py | #encoding: utf-8
'''
类别的准确率和召回率曲线
文件内容 name label score
'''
import argparse
import numpy as np
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
import matplotlib.pyplot as plt
def draw(y_true, y_scores):
'''
:param y_true: N*classes,N表示样本数,classes表示类别数,每行数据为one-hot向量
:param y_scores: N*classes,表示所有样本预测的置信度
:return:
'''
precision, recall, thresholds = precision_recall_curve(y_true.ravel(), y_scores.ravel())
average_precision = average_precision_score(y_true, y_scores,
average="micro") #平均准确率
precision = np.array(precision[:-1][::-1]) #降序排列
recall = np.array(recall[:-1][::-1]) #升序排列
thresholds = np.array(thresholds[::-1]) #降序排列
# np.array(precision)>0.99
print(f'precision_head: {precision[:-1][:15]}\n precision_tail: {precision[:-1][-15:]}\n recall_head: {recall[:-1][:15]}\n recall_tail: {recall[:-1][-15:]}\n thresholds_head: {thresholds[:15]}\n thresholds_tail: {thresholds[-15:]}')
for i in [0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.6, 0.05, 0]:
if ((precision>i).tolist().count(1)==0):
print(f'conf: {i}\tP: 0\tR:0\tthresh:0')
continue
idx = precision.tolist().index(precision[precision>i][-1])
print(f'conf: {i}\tP: {precision[idx]}\tR:{recall[idx]}\tthresh:{thresholds[idx]}')
plt.figure()
plt.step(recall, precision, where='post')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(
'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.format(average_precision))
plt.savefig('pr.jpg')
def getArgs():
args = argparse.ArgumentParser()
args.add_argument('-i', '--input', help='input img',
default='1.jpg')
return vars(args.parse_args())
if __name__=='__main__':
classes = ['ad_ocr', 'gun', 'knife', 'normal_ocr', 'normal_people', 'normal_thing', 'qr_code']
classes = ['4739', '0'] #二维码
classes = ['1', '0'] #涉政类
args = getArgs()
pred_rst_path = args['input']
buffs = open(pred_rst_path, 'r').readlines()
lines = [line.strip() for line in buffs]
print('nums: {}'.format(len(lines)))
y_gt = list()
y_score = list()
# #多分类情况
# for idx,line in enumerate(lines):
#
# _, label, confs = line.split('\t')
#
# one_hot = len(classes) * [0]
# one_hot[classes.index(label)] = 1
# y_gt.append(one_hot)
# y_score.append(eval(confs))
# # y_score.append(float(confs))
# # print(idx, y_gt, y_score)
#二分类情况
for idx,line in enumerate(lines):
_, label, confs = line.split('\t')
one_hot = 0
if classes[0]==label:
one_hot=1
y_gt.append(one_hot)
y_score.append(eval(confs))
# y_score.append(float(confs))
# print(idx, y_gt, y_score)
draw(np.array(y_gt), np.array(y_score))
| [
"[email protected]"
]
| |
04080caf6c97351c69962daea7956dae2c3f7675 | c5c09eb267adca77a0e4cc0fc07f31564353f23d | /heterozygosity/effective_n_alleles.py | 964aba8d88bc5d8db30ceabfa12648d3ca272b0e | []
| no_license | redcurry/sgv_scripts | da31d85554bdf705d35fa53c1b444128fbdd1ccd | bed81a70b4c2902b49a439a2451a1303c4feaf93 | refs/heads/master | 2020-12-24T13:45:05.457886 | 2013-01-23T09:14:40 | 2013-01-23T09:14:40 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,080 | py | # Outputs the effective number of allele at every locus of the given population
from __future__ import division
import sys
def calc_allele_freqs(pop, locus):
allele_freqs = {}
for inst in alphabet:
allele_freqs[inst] = 0
for genotype in pop:
inst = genotype[locus]
allele_freqs[inst] += 1
# Calculate frequencies from counts
for inst in allele_freqs:
if allele_freqs[inst] > 0:
allele_freqs[inst] /= len(pop)
return allele_freqs
def calc_effective_n_alleles(allele_freqs):
# Calculate the sum of squares of allele frequencies
ss = sum([allele_freqs[inst] * allele_freqs[inst] for inst in alphabet])
return 1 / ss
alphabet = [chr(x) for x in range(ord('a'), ord('z') + 1)]
pop = []
for genotype in sys.stdin:
pop.append(genotype.strip())
genotype_length = len(pop[0])
for locus in range(genotype_length):
# Get allele frequencies as a dictionary, e.g., {a: 0.8, b: 0.2}
allele_freqs = calc_allele_freqs(pop, locus)
effective_n_alleles = calc_effective_n_alleles(allele_freqs)
print locus, effective_n_alleles
| [
"[email protected]"
]
| |
6bc8e6bda70fb29b075f4f3c8c40b9a6b2656fcf | 9c6e63eb1796bbf4c37d93fca941fb67b4cd4741 | /trunk/scarlett/app.py | 7f7179015d2a9cefbdbe4557f2fd080029521298 | []
| no_license | BGCX261/zizw-svn-to-git | ffc6636d8e0d91b24f124ba3d16c61af10d7441c | c8d068af7a36396ce707dc035b15330c77b02f2a | refs/heads/master | 2016-09-05T13:11:22.053860 | 2015-08-25T15:51:45 | 2015-08-25T15:51:45 | 41,585,036 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 4,466 | py |
import logging
import webob
import wsgiref.handlers
import simplejson.encoder
import simplejson.decoder
from google.appengine.ext import db
from google.appengine.api import users
from scarlett import model
from scarlett import utils
jsonEncoder = simplejson.encoder.JSONEncoder()
jsonDecoder = simplejson.decoder.JSONDecoder()
def scarlett(environ, start_response):
#
# create request & response objects
#
request = webob.Request(environ)
response = webob.Response()
#
# create session object
#
session = Session(request)
# do job
channel = session.message["channel"]
if channel == "refresh":
if session.isAdmin:
response.body = shell % ("Scarlett-Admin", "scarlett.Admin")
elif session.user:
response.body = shell % ("Scarlett", "scarlett.Main")
else:
response.body = shell % ("Login", "scarlett.Login")
elif channel == "locateservice":
fullName = str(session.message["fullName"])
service = utils.my_import(fullName)
simpleName = fullName.split('.')[-1]
response.body = generateServiceStub(service, fullName, simpleName)
response.content_type = "text/plain"
response.charset = "UTF-8"
elif channel == "rmi":
fullName = str(session.message["serviceName"])
methodName = str(session.message["methodName"])
args = session.message["args"];
argList = ""
for i in range(len(args)):
argList += "args[%s], " % i
argList = argList[:-2]
service = utils.my_import(fullName)
outMessage = {
"result": eval("service."+methodName+"(session, "+argList+")")
}
if fullName == "scarlett.admin" and methodName == "login" and outMessage["result"]:
response.set_cookie("sid", userToSid(args[0]))
response.body = jsonEncoder.encode(outMessage)
response.content_type = "text/plain"
response.charset = "UTF-8"
elif channel == "admin":
user = users.get_current_user()
if not user:
response.body = users.create_login_url("/")
logging.info("admin: do login")
else:
response.body = "/"
logging.info("admin: do normal")
else:
response.body = "unknown channel: %s" % str(channel)
#
return response(environ, start_response)
#
# Tips:
# session.message
# session.message.channel
# session.isAdmin
# session.user
# session.user.alias
#
class Session():
def __init__(self, request):
#
# setting message
#
if request.method == "GET":
self.message = {"channel":"refresh"}
else:
self.message = jsonDecoder.decode(request.body)
#
# setting isAdmin & user
#
if users.is_current_user_admin():
self.isAdmin = True
self.user = None
elif "sid" not in request.cookies:
self.isAdmin = False
self.user = None
elif not request.cookies["sid"]:
self.isAdmin = False
self.user = None
else:
self.isAdmin = False
self.user = sidToUser(request.cookies["sid"])
def sidToUser(sid):
#
# TODO: a real sid should be used
#
return model.User.get(db.Key.from_path("User", "ID_"+sid, _app="scarlett"))
def userToSid(userName):
#
# TODO: a real sid should be used
#
return userName
def generateServiceStub(service, fullName, simpleName):
methodList= filter(lambda x : x[0:1]!= "_", dir(service))
stub = "var " + simpleName + " = function(){\n"
stub += "}\n\n"
for method in methodList:
stub += simpleName + ".prototype." + method + " = function() {\n"
stub += "\treturn jsloader.doRmi('%s', '%s', arguments);\n" % (fullName, method)
stub += "};\n"
return stub
def main():
wsgiref.handlers.CGIHandler().run(scarlett)
shell = """
<html>
<head>
<title>%s</title>
<script>
var App = null;
var app = null;
function init() {
App = jsloader.resolve("%s")
app = new App(document.body);
var welcome = document.getElementById("welcome");
document.body.removeChild(welcome);
}
function destroy() {
app.destroy();
}
</script>
</head>
<body scroll="no" style="overflow: hidden; margin: 0px; padding: 0px" onload="init()" onunload="destroy()">
<span id="welcome">Loading ...</span>
</body>
<script src="js/lang/JSLoader.js"></script>
</html>
"""
if __name__ == "__main__":
main()
| [
"[email protected]"
]
| |
43a37eb509684f7705f8cb48e4017f6a8127ebdf | 5d79a0f01ad7fa0ff0c745aa534b9c17e2af7f60 | /src/authentication/mailchimp/http.py | 07ea72e13336f8b7630c8caacab4b2a82be79aaa | [
"MIT"
]
| permissive | pykulytsky/freelance-service | ade7b009aa183ce198277bec1178dcf15dadd3e3 | 0f6e36093128ae3e63bd7dcf21959882eae7e683 | refs/heads/master | 2023-07-03T16:58:07.838904 | 2021-04-01T20:20:21 | 2021-04-01T20:20:21 | 329,963,217 | 0 | 1 | MIT | 2021-08-02T07:40:11 | 2021-01-15T16:21:17 | Python | UTF-8 | Python | false | false | 1,936 | py | from typing import Optional
from urllib.parse import urljoin
import requests
from django.conf import settings
from requests.auth import HTTPBasicAuth
class MailchimpHTTPException(BaseException):
pass
class MailChimpWrongResponse(MailchimpHTTPException):
pass
class MailChimpNotFound(MailchimpHTTPException):
pass
class MailchimpHTTP:
@property
def base_url(self) -> str:
dc = settings.MAILCHIMP_API_KEY.split('-')[-1]
return f'https://{dc}.api.mailchimp.com/3.0/'
def format_url(self, url: str) -> str:
return urljoin(self.base_url, url.lstrip('/'))
def request(self, url, method, payload: Optional[dict] = None, expected_status_code: int = 200):
requests_payload = dict()
if payload is not None:
requests_payload['json'] = payload
response = requests.request(
method=method,
url=self.format_url(url),
auth=HTTPBasicAuth('user', settings.MAILCHIMP_API_KEY),
**requests_payload,
)
if response.status_code == 404:
raise MailChimpNotFound(f'{response.status_code}: {self.get_json(response)}')
if response.status_code != expected_status_code:
raise MailChimpWrongResponse(f'{response.status_code}: {self.get_json(response)}')
return self.get_json(response)
def get(self, url: str, *args, **kwargs):
return self.request(url, method='GET', *args, **kwargs)
def post(self, url: str, payload: dict, *args, **kwargs):
return self.request(url, method='POST', payload=payload, *args, **kwargs)
def delete(self, url: str, *args, **kwargs):
return self.request(url, method='DELETE', expected_status_code=204, *args, **kwargs)
@staticmethod
def get_json(response):
if len(response.text):
return response.json()
| [
"[email protected]"
]
| |
d7f8ed59ac3b21468f0ededb25e03a9e01e8d86f | 760707dab4c6496bc578dc84a58ec7b84058ab78 | /manage.py | 4a533795180784eaa422ace96a07f199fa8783c0 | []
| no_license | gflexx/zoohubmall | e0b947ec459f4b5e44db1216da256561f5678021 | 1eb6ec228d55c8caefd4f03f601729f295aae41d | refs/heads/main | 2023-04-14T06:34:43.756173 | 2021-04-20T08:35:07 | 2021-04-20T08:35:07 | 358,905,388 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 630 | py | #!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'zoohubmall.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
| [
"[email protected]"
]
| |
f293b8d004bc0d456cf629a869be1a28ca086346 | 831a728160e36c452dfe2d84f4d610a13063bbbf | /venv/bin/easy_install-3.7 | 06a018f9d6f908ae8e2ac22c43b4bb37cb0f641e | []
| no_license | wrongserenity/economi | 9102ac2a23e64b6170c48b983b58c0ce9096f19d | b6df63e28f19f2f88d78c6a80620f2f8b6327695 | refs/heads/master | 2022-11-03T23:32:31.663204 | 2022-10-29T12:00:20 | 2022-10-29T12:00:20 | 153,648,229 | 1 | 0 | null | 2018-12-13T19:16:35 | 2018-10-18T15:40:51 | Python | UTF-8 | Python | false | false | 435 | 7 | #!/home/nick/proj/economi/venv/bin/python
# EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7'
__requires__ = 'setuptools==39.1.0'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')()
)
| [
"[email protected]"
]
| |
def97356d610be85276a7f7aff23c352f8e67a64 | a37046fd0a42329967b735119e4fe16401b7e7fc | /nailezhuang/milk/MilkCommon.py | cb64759c37d2f15ad0bbf17b05aa1d75bd2fdad7 | []
| no_license | dengruquan/nailezhuang | 06aad63fdd83bd48c26c1aadaa52b5306a5a3fae | c799a92359724459583a389a31c52f75a45229b7 | refs/heads/master | 2021-05-07T06:59:21.738914 | 2017-11-27T02:51:54 | 2017-11-27T02:51:54 | 111,784,595 | 2 | 0 | null | 2017-11-27T03:25:05 | 2017-11-23T08:41:46 | Python | UTF-8 | Python | false | false | 6,474 | py | #-*- coding:utf8 -*-
import datetime
import sqlite3
from .models import FoodType, VIPInfo
time_format = "%Y-%m-%d %H:%M:%S"
statype_dict = {0:"每次喝奶数量", 1: "总共喝奶数量"}
dbname = "db.sqlite3"
sel_sql = "select foodname, sum(foodcnt), sum(foodmoney) from milk_foodrecord as fr join milk_foodtype as ft where fr.foodtype_id = ft.id and %s group by foodtype_id;"
vip_selper_sql = "select vipindex, vipname, viprecordcnt, viprecordtime from milk_viprecord as viprecord join milk_vipinfo as vipinfo where viprecord.viprecordname_id = vipinfo.vpiindex and %s ;"
vip_selsum_sql = "select vipindex, vipname, sum(viprecordcnt) from milk_viprecord as viprecord join milk_vipinfo as vipinfo where viprecord.viprecordname_id = vipinfo.vpiindex and %s group by viprecordname;;"
# vip_selper_sql = "select viprecordcnt from milk_viprecord as vipinfo where %s ;"
# vip_selsum_sql = "select viprecordcnt from milk_viprecord as vipinfo where %s ;"
def GetNowTime():
'''返回当前时间'''
tmp = datetime.datetime.now().strftime("%Y,%m,%d")
print("tmp", tmp)
return datetime.datetime(*eval(tmp))
def GetSomeDayAgo(day = 1):
'''返回指定天数前的时间,由day进行控制'''
return GetNowTime()- datetime.timedelta(days = day)
def GetStrfTime(timeobj):
'''返回指定的时间格式'''
return timeobj.strftime("{}".format(time_format))
def AsDateTime(GET_POST, name = "datetime"):
return datetime.datetime.strptime(GET_POST[name], "{}".format(time_format))
def GetFoodDict():
'''获取所有物品字典'''
foodtype = FoodType.objects.all()
food_dict = {0: "所有"} #{id:foodname}
for foodobj in foodtype:
food_dict[foodobj.id] = foodobj.foodname
return food_dict
def ConnectDB(dbname):
'''
连接到数据库
@parameter dbname: 数据库名
'''
return sqlite3.connect(dbname)
def MakeWhereSql(where_dict):
'''制作sql中where条件'''
where_list = []
if "foodid" in where_dict:
where_list.append("fr.foodtype_id = %d" % where_dict["foodid"])
where_list.append("foodtime >= '{}'".format(where_dict["start_time"]))
where_list.append("foodtime <= '{}'".format(where_dict["end_time"]))
return " and ".join(where_list)
def MakeVIPWhereSql(where_dict):
'''制作sql中where条件'''
where_list = []
if "vipindex" in where_dict:
where_list.append("vipinfo.vipindex = %s" % where_dict["vipindex"])
where_list.append("viprecordtime >= '{}'".format(where_dict["start_time"]))
where_list.append("viprecordtime <= '{}'".format(where_dict["end_time"]))
return " and ".join(where_list)
def GetStasticsResult(where_dict):
'''
获取指定条件下的销售记录
@parameter: where_dict: {"foodid": id, "start_time": time, "end_time": time}
@return : [[foodname, cnt, money]]
'''
con = ConnectDB(dbname)
# print(sel_sql % MakeWhereSql(where_dict))
with con as cur:
cur = cur.execute(sel_sql % MakeWhereSql(where_dict))
ret = cur.fetchall()
cur.close()
return ret
def MakeDataHtml(data_list):
'''
制作html页面内容
'''
html = [
'<!DOCTYPE html><html><head><title>销售统计</title><meta charset="UTF-8"></head><body><form>']
foodname = "物品名称"
foodcnt = "数量"
foodmoney = "金额"
sumname = "总销售额:"
sum_money = 0
# html.append('<table border="1px" cellpadding = "20" cellspacing="50" style= "border-collapse:collapse"><thead><tr><th>{}</th><th>{}</th><th>{}</th>'.format(foodname, foodcnt, foodmoney))
if data_list :
for name, cnt, money in data_list:
sum_money += money
html.append("<font size='6'>%s%s</font>" % (sumname, sum_money))
html.append("<br/>")
html.append('<table border="1px" cellpadding = "20" cellspacing="50" style= "border-collapse:collapse"><thead><tr><th>{}</th><th>{}</th><th>{}</th>'.format(foodname, foodcnt, foodmoney))
for name, cnt, money in data_list:
html.append("<tr><td> %s </td><td> %s </td><td> %s </td></tr>" % (name, cnt, money))
print("sum_money", sum_money)
html.append("</thead></table>")
html.append("</form></body></html>")
return html
def MakeIndexHtml(index_list):
html = []
# for urlname, funname in index_list:
# html.append('<a href="{% url {} %}">{}</a>')
# html.append("</html>")
return html
def _f():pass
def GetVIPInfoDict():
'''获取月卡用户信息字典'''
vipinfo = VIPInfo.objects.all()
vip_dict = {0: "所有"} #{id:foodname}
for vipobj in vipinfo:
vip_dict[vipobj.id] = vipobj.vipindex
return vip_dict
def GetVIPStasticsResult(where_dict, typeid):
'''
获取指定条件下的月卡用户喝奶统计
@parameter: where_dict: {"vipid": vipid, "start_time": time, "end_time": time}
@parameter: typeid: 数据统计类型{0:"每次喝奶数量", 1: "总共喝奶数量"}
@return : [[foodname, cnt, money]]
'''
con = ConnectDB(dbname)
# print(sel_sql % MakeVIPWhereSql(where_dict))
sql = vip_selsum_sql if typeid else vip_selper_sql
with con as cur:
cur = cur.execute(sql % MakeVIPWhereSql(where_dict))
ret = cur.fetchall()
cur.close()
return ret
def MakeVIPDataHtml(data_list):
'''
制作html页面内容
'''
html = [
'<!DOCTYPE html><html><head><title>销售统计</title><meta charset="UTF-8"></head><body><form>']
foodname = "物品名称"
foodcnt = "数量"
foodmoney = "金额"
sumname = "总销售额:"
sum_money = 0
# html.append('<table border="1px" cellpadding = "20" cellspacing="50" style= "border-collapse:collapse"><thead><tr><th>{}</th><th>{}</th><th>{}</th>'.format(foodname, foodcnt, foodmoney))
if data_list :
for name, cnt, money in data_list:
sum_money += money
html.append("<font size='6'>%s%s</font>" % (sumname, sum_money))
html.append("<br/>")
html.append('<table border="1px" cellpadding = "20" cellspacing="50" style= "border-collapse:collapse"><thead><tr><th>{}</th><th>{}</th><th>{}</th>'.format(foodname, foodcnt, foodmoney))
for name, cnt, money in data_list:
html.append("<tr><td> %s </td><td> %s </td><td> %s </td></tr>" % (name, cnt, money))
print("sum_money", sum_money)
html.append("</thead></table>")
html.append("</form></body></html>")
return html
if __name__ == "__main__":
GET_POST = {"start_time": "2017-11-16 09:53:44"}
# print(AsDateTime(GET_POST, name = "start_time"))
where_dict = { "start_time" : "2017-11-16 09:53:44", "end_time" : "2017-11-16 09:53:44"}
# print MakeWhereSql(where_dict)
# for value in globals().items():
# if type(value[1])==type(_f):
# print value[0]
pass | [
"[email protected]"
]
| |
b27fe17a593da8baccb2ea99aa6446531120b19a | 040ada107d1eab018dcfd464d9b7b2ee554fc801 | /5. Exceptions & Files/BookTitles.py | f7fe5a7d0d595df07334e437c6c763e70eeb17de | []
| no_license | RiKjess/SololearnPY | 2e3248d08bd84c3dd2843d41329958c5ee233d8c | 22c5af5f33b129658760d2f0edac02855d788d1b | refs/heads/master | 2023-08-14T14:11:42.900865 | 2021-09-27T08:10:48 | 2021-09-27T08:10:48 | 410,799,336 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 881 | py | """
Book Titles
You have been asked to make a special book categorization program, which assigns each book a special code based on its title.
The code is equal to the first letter of the book, followed by the number of characters in the title.
For example, for the book "Harry Potter", the code would be: H12, as it contains 12 characters (including the space).
You are provided a books.txt file, which includes the book titles, each one written on a separate line.
Read the title one by one and output the code for each book on a separate line.
For example, if the books.txt file contains:
Some book
Another book
Your program should output:
S9
A12
"""
file = open("/usercode/files/books.txt", "r") #file path
for line in file.readlines():
if line[-1] == "\n":
print(line[0] + str(len(line) - 1))
else:
print(line[0] + str(len(line)))
file.close() | [
"[email protected]"
]
| |
de8d14698ac3155b4d8131221fd5a3ef273e0fbe | 09608017cf183f96b4c6d942fef10b18c020f774 | /scripts/kdtree_old.py | ab32c9ae41f1219c630d98a1f1a6fa65a5c86a03 | []
| no_license | AmandaDoyle/BigDataTaxiFinalProject | fa2f173855b81fb1d82865e2a3b5021ba69a0f31 | 41101f5b8c380e81f7600f42a226d5c30ab10b52 | refs/heads/master | 2016-09-06T10:22:22.527352 | 2015-05-08T16:40:37 | 2015-05-08T16:40:37 | 33,154,325 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,077 | py | #!/usr/bin/python
import sys
import os
import json
import csv
from scipy import spatial
master = {}
def loadRoadNetwork(fileLocation):
f = open(fileLocation)
reader = csv.reader(f, delimiter= ',')
list_of_intersections = []
for l in reader:
try:
point = [float(l[1]), float(l[0])]
list_of_intersections.append(point)
except:
pass
return list_of_intersections
def kdTreeIntersection(list_of_intersections):
tree = spatial.KDTree(inputfile)
return tree
def IntersectionsMaster(tree, inputfile):
master = {}
f = open(fileLocation)
reader = csv.reader(f, delimiter= ',')
for row in reader:
key, value = line.split('\t')
key = eval(key)
year = key[0]
month = key[1]
value = eval(value)
lat = float(value[0])
lng = float(value[1])
loc = []
loc.append(lat)
loc.append(lng)
ind = tree.query_ball_point(loc, .001)
for item in ind:
if item not in master:
master[item] = {}
master[item][year] = {}
master[item][year][month] = 1
else:
if year in master[item]:
if month in master[item][year]:
master[item][year][month] += 1
else:
master[item][year][month] = 1
else:
master[item][year] = {}
master[item][year][month] = 1
return master
if __name__ == '__main__':
IntersectionsfileLocation = "/scratch/share/akabd/scripts/kl_scripts/TripCornerJoin/intersections.csv"
taxipickupfilelocation = ""
intersections = loadRoadNetwork(IntersectionsfileLocation)
KDtree = kdTreeIntersection(intersections)
intersections_dic = IntersectionsMaster(KDtree, taxipickupfilelocation)
json_file = open('lateNightDrops_KD.json', 'w+')
json.dump(intersections_dic, json_file)
| [
"[email protected]"
]
| |
d1b3168fa1a02ae0a1f8d21fb8cfd7e4a2da5d51 | bbdf70d28a5df9e337522ecdfcf04a470f6d2675 | /01_LED_Blink.py | 8a6e0ded30d32b0c27944a9fd0000ad9790ae8cf | []
| no_license | ankurm97/blink-py | 376c7e8eec38fe5cac5454802563966e8778b451 | 75bd31cbb0ad933a6790a7dc4fcfbe79ed6042a3 | refs/heads/master | 2022-11-14T11:52:04.585283 | 2020-07-08T07:38:21 | 2020-07-08T07:38:21 | 278,022,134 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 327 | py | # sudo apt-get install python3-rpi.gpio
import RPi.GPIO as GPIO
from time import sleep
GPIO.setwarnings(False) # Ignore Warnings
GPIO.setmode(GPIO.BOARD) # Use Physical Pin Numbering
GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)
while True:
GPIO.output(8, GPIO.HIGH)
sleep(1)
GPIO.output(8, GPIO.LOW)
sleep(1)
| [
"[email protected]"
]
| |
8a346a070eb4fa6939626f69eac6f9953b60dce0 | 5f792140b853f40e3c7be559c2a412d7b8296c96 | /2015/day1/day1.py | 11aaf8407b8800fe4172610f6f795fd3122349e8 | [
"Unlicense"
]
| permissive | winny-/aoc | 9d53666faf341f1cc2016a3d21e93d7f4064a72b | f986cacf14d81d220030bca94e99ec8179861e1b | refs/heads/master | 2022-12-05T00:19:47.570034 | 2022-12-04T09:55:11 | 2022-12-04T09:55:11 | 225,185,486 | 7 | 0 | null | null | null | null | UTF-8 | Python | false | false | 210 | py | import sys
MAP = {
'(': 1,
')': -1,
}
def calculate_floor(s):
return sum(MAP.get(c, 0) for c in s)
def main():
print(calculate_floor(sys.stdin.read()))
if __name__ == '__main__':
main()
| [
"[email protected]"
]
| |
7bdc11d833a29499705912fbb4eccbaa8d5f88ac | 9c26ada7c171936d736b5a90a95e1a1d0258a7b5 | /bot/commands/help.py | 67ecd73044cbb93c9b726c248de4fc17bc22903d | [
"CC0-1.0",
"GPL-1.0-or-later",
"MIT"
]
| permissive | vampboy1234/PomoBot | cc076d23724e1042a6a3a041d23bc22c71c9328c | 5df0cfeda80f2aac2e921073a28b7dbef33f4859 | refs/heads/master | 2022-06-02T19:40:35.425774 | 2020-04-20T14:07:31 | 2020-04-20T14:07:31 | 257,314,721 | 0 | 0 | MIT | 2020-04-20T14:56:25 | 2020-04-20T14:56:24 | null | UTF-8 | Python | false | false | 5,837 | py | import discord
from cmdClient import cmd
from utils.lib import prop_tabulate
from utils import interactive # noqa
# Set the command groups to appear in the help
help_groups = [
("Timer", "*View and interact with the guild group timers.*"),
("Registry", "*Timer leaderboard and session history.*"),
("Configuration", "*Create groups and configure their behaviour.*"),
("Misc", "*Other miscellaneous commands.*")
]
# Set the main help string
help_str = ("Flexible study or work group timer using a customisable Pomodoro system!\n"
"Supports multiple groups and different timer setups.\n"
"Use the `guide` command to see a quick usage guide.")
help_title = "CafePomodoro Documentation"
@cmd("help",
desc="Display information about commands.")
async def cmd_help(ctx):
"""
Usage:
help [cmdname]
Description:
When used with no arguments, displays a list of commands with brief descriptions.
Otherwise, shows documentation for the provided command.
Examples:
help
help help
"""
if ctx.arg_str:
# Attempt to fetch the command
command = ctx.client.cmd_cache.get(ctx.arg_str.strip(), None)
if command is None:
return await ctx.error_reply(
("Command `{}` not found!\n"
"Use the `help` command without arguments to see a list of commands.").format(ctx.arg_str)
)
help_fields = command.long_help.copy()
help_map = {field_name: i for i, (field_name, _) in enumerate(help_fields)}
if not help_map:
await ctx.reply("No documentation has been written for this command yet!")
for name, pos in help_map.items():
if name.endswith("``"):
# Handle codeline help fields
help_fields[pos] = (
name.strip("`"),
"`{}`".format('`\n`'.join(help_fields[pos][1].splitlines()))
)
elif name.endswith(":"):
# Handle property/value help fields
lines = help_fields[pos][1].splitlines()
names = []
values = []
for line in lines:
split = line.split(":", 1)
names.append(split[0] if len(split) > 1 else "")
values.append(split[-1])
help_fields[pos] = (
name.strip(':'),
prop_tabulate(names, values)
)
elif name == "Related":
# Handle the related field
names = [cmd_name.strip() for cmd_name in help_fields[pos][1].split(',')]
names.sort(key=len)
values = [getattr(ctx.client.cmd_cache.get(cmd_name, None), 'desc', "") for cmd_name in names]
help_fields[pos] = (
name,
prop_tabulate(names, values)
)
usage_index = help_map.get("Usage", None)
if usage_index is not None:
help_fields[usage_index] = ("Usage", "`{}`".format('`\n`'.join(help_fields[usage_index][1].splitlines())))
aliases = getattr(command, 'aliases', [])
alias_str = "(Aliases `{}`.)".format("`, `".join(aliases)) if aliases else ""
# Build the embed
embed = discord.Embed(
title="`{}` command documentation. {}".format(command.name, alias_str),
colour=discord.Colour(0x9b59b6)
)
for fieldname, fieldvalue in help_fields:
embed.add_field(name=fieldname, value=fieldvalue, inline=False)
embed.set_footer(text="[optional] and <required> denote optional and required arguments, respectively.")
# Post the embed
await ctx.reply(embed=embed)
else:
# Build the command groups
cmd_groups = {}
for command in ctx.client.cmds:
# Get the command group
group = getattr(command, 'group', "Misc")
cmd_group = cmd_groups.get(group, [])
if not cmd_group:
cmd_groups[group] = cmd_group
# Add the command name and description to the group
cmd_group.append((command.name, getattr(command, 'desc', "")))
# Turn the command groups into strings
stringy_cmd_groups = {}
for group_name, cmd_group in cmd_groups.items():
cmd_group.sort(key=lambda tup: len(tup[0]))
stringy_cmd_groups[group_name] = prop_tabulate(*zip(*cmd_group))
# Now put everything into a bunch of embeds
help_embeds = []
active_fields = []
for group_name, group_desc in help_groups:
group_str = stringy_cmd_groups.get(group_name, None)
if group_str is None:
continue
active_fields.append((group_name, group_desc + '\n' + group_str))
if group_name == help_groups[-1][0] or sum([len(field.splitlines()) for _, field in active_fields]) > 10:
# Roll a new embed
embed = discord.Embed(description=help_str, colour=discord.Colour(0x9b59b6), title=help_title)
# Add the active fields
for name, field in active_fields:
embed.add_field(name=name, value=field, inline=False)
help_embeds.append(embed)
# Clear the active fields
active_fields = []
# Add the page numbers
for i, embed in enumerate(help_embeds):
embed.set_footer(text="Page {}/{}".format(i+1, len(help_embeds)))
# Send the embeds
if help_embeds:
await ctx.pager(help_embeds)
else:
await ctx.reply(embed=discord.Embed(description=help_str, colour=discord.Colour(0x9b59b6)))
| [
"[email protected]"
]
| |
ceb0c0134cb3480fdab988077750fcef69ee298d | f8ea3582884df87172cb747e424ebd0c20223614 | /(sandbox,tobemerged)/setup.py | bfdf53b7357b1a52aaad77a7986bc61cc1b5ddd9 | [
"MIT"
]
| permissive | karimbahgat/PythonGis | 94f52f800a769ee54b12c7277604ead011465321 | fb99148a15bcbe0438ddca67b484a15076bd961a | refs/heads/master | 2023-04-12T15:59:08.522464 | 2022-09-09T22:48:32 | 2022-09-09T22:48:32 | 47,153,255 | 5 | 1 | null | null | null | null | UTF-8 | Python | false | false | 1,260 | py | ############
### allow building the exe by simply running this script
import sys
sys.argv.append("py2exe")
############
### imports
from distutils.core import setup
import py2exe
###########
### options
WINDOWS = [{"script": "guitester.py",
"icon_resources": [(1,"pythongis/app/logo.ico")] }]
OPTIONS = {"skip_archive": True,
"dll_excludes": ["python26.dll","python27.so"]}
###########
### create the application icon
##import PIL, PIL.Image
##img = PIL.Image.open("icon.png")
##img.save("icon.ico", sizes=[(255,255),(128,128),(64,64),(48,48),(32,32),(16,16),(8,8)])
###########
### build
setup(windows=WINDOWS,
options={"py2exe": OPTIONS}
)
###########
### manually copy pythongis package to dist
### ...because py2exe may not copy all files
import os
import shutil
frompath = "pythongis"
topath = os.path.join("dist","pythongis")
shutil.rmtree(topath) # deletes the folder copied by py2exe
shutil.copytree(frompath, topath)
###########
### and same with dependencies
for dependname in os.listdir("dependencies"):
frompath = os.path.join("dependencies", dependname)
topath = os.path.join("dist", dependname)
shutil.rmtree(topath) # deletes the folder copied by py2exe
shutil.copytree(frompath, topath)
| [
"[email protected]"
]
| |
ad232b4ee33908d60b0a9a445eccd44352cff4f9 | 4d4ef69dc8a0237973dde5ce0768cf21f043f717 | /Download image automatically.py | 674716ea927e334672127be0abeb83a8f0c5c51f | []
| no_license | zh-cse18/Selenium_Webdriver_Operation | b3b02adb4762e5b2c61e05d9211e3d90725fae42 | dd001057d84aae0fbaed062fea4725e0e3bea2cc | refs/heads/master | 2023-07-20T08:13:07.690387 | 2023-07-10T09:59:59 | 2023-07-10T09:59:59 | 230,744,441 | 4 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,463 | py | import os
import json
import requests # to sent GET requests
from bs4 import BeautifulSoup # to parse HTML
# user can input a topic and a number
# download first n images from google image search
GOOGLE_IMAGE = \
'https://www.google.com/search?site=&tbm=isch&source=hp&biw=1873&bih=990&'
# The User-Agent request header contains a characteristic string
# that allows the network protocol peers to identify the application type,
# operating system, and software version of the requesting software user agent.
# needed for google search
usr_agent = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
'Accept-Encoding': 'none',
'Accept-Language': 'en-US,en;q=0.8',
'Connection': 'keep-alive',
}
SAVE_FOLDER = 'images'
def main():
if not os.path.exists(SAVE_FOLDER):
os.mkdir(SAVE_FOLDER)
download_images()
def download_images():
# ask for user input
data = input('What are you looking for? ')
n_images = int(input('How many images do you want? '))
print('Start searching...')
# get url query string
searchurl = GOOGLE_IMAGE + 'q=' + data
print(searchurl)
# request url, without usr_agent the permission gets denied
response = requests.get(searchurl, headers=usr_agent)
html = response.text
# find all divs where class='rg_meta'
soup = BeautifulSoup(html, 'html.parser')
results = soup.findAll('div', {'class': 'rg_meta'}, limit=n_images)
# extract the link from the div tag
imagelinks = []
for re in results:
text = re.text # this is a valid json string
text_dict = json.loads(text) # deserialize json to a Python dict
link = text_dict['ou']
# image_type = text_dict['ity']
imagelinks.append(link)
print(f'found {len(imagelinks)} images')
print('Start downloading...')
for i, imagelink in enumerate(imagelinks):
# open image link and save as file
response = requests.get(imagelink)
imagename = SAVE_FOLDER + '/' + data + str(i + 1) + '.jpg'
with open(imagename, 'wb') as file:
file.write(response.content)
print('Done')
if __name__ == '__main__':
main() | [
"[email protected]"
]
| |
9943c20ed3a8ba5c8ddafb0759bb6a02bc89fb81 | 504d9b35e2265e2463a82511fd567d4c553c7a04 | /libvirt_qemu_map | 5c6013a3ba553b9ad149e9513a228a8bffc2df5b | []
| no_license | qiankehan/libvirt_qemu_api_map | 36a87bff5eb4dfafd98933ca6f143d1f67b4c1e7 | c73a3c78d075bff84b449c14ec8759ce4b3f0dd3 | refs/heads/master | 2020-06-14T11:50:06.592783 | 2019-07-03T07:10:49 | 2019-07-03T07:10:49 | 194,997,268 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 4,558 | #!/usr/bin/python3
import subprocess as sp
import argparse
import os
import sys
import csv
import tempfile
def rm_empty_str(objs):
return {i for i in objs if i != ''}
class LibvirtQemu:
def __init__(self, src, mode):
if mode not in {'qmp', 'ga'}:
raise TypeError('mode should be "qmp" or "ga"')
self.src = src
self.mode = mode
if mode == 'qmp':
self.makecmd = 'qemuMonitorJSONMakeCommand'
if mode == 'ga':
self.makecmd = 'qemuAgentMakeCommand'
self.tmpdir = tempfile.mkdtemp()
self.qemu_cscope_source = os.path.join(self.src, 'src/qemu')
self.qemu_cscope = self.gen_qemu_cscope('qemu')
self.libvirt_apis = self.get_libvirt_apis()
self.qemu_apis = {i.replace("vir", "qemu", 1)
for i in self.libvirt_apis}
self.mon_funcs = self.get_mon_funcs()
def get_libvirt_apis(self):
cmd = 'grep "virDomain[a-zA-Z0-9]*" %s -o' % os.path.join(
self.src, 'src/libvirt_public.syms')
return rm_empty_str(sp.check_output(cmd, shell=True, text=True).split('\n'))
def gen_qemu_cscope(self, name):
cscope = os.path.join(self.tmpdir, '%s.out' %name)
cmd = 'cscope -b -f %s -s %s -R' % (cscope, self.qemu_cscope_source)
try:
sp.check_output(cmd, shell=True)
except sp.CalledProcessError as e:
sys.exit("%s cscope generate failed: %s\nreturn: %d" %
(name, cmd, e.returncode))
return cscope
def get_mon_funcs(self):
cmd = "cscope -d -L3 %s -s %s -f %s|grep -v '^[a-zA-Z_0-9]*\.h'|grep -v ATTRIBUTE_ |awk '{print $2}'" % (
self.makecmd, self.qemu_cscope_source, self.qemu_cscope)
return rm_empty_str(sp.check_output(cmd, shell=True, text=True).split('\n'))
def get_qemu_exec(self, mon_func):
if self.mode == 'qmp':
mon_file = 'qemu_monitor_json.c'
if self.mode == 'ga':
mon_file = 'qemu_agent.c'
qemu_mon_src = os.path.join(self.src, 'src/qemu/%s' %mon_file)
cmd = """awk '/%s/,/^}/' %s|awk '/%s/,/)/'|grep '"[a-zA-Z:_-]*"' -o |tr '\n' ','""" % (
mon_func, qemu_mon_src, self.makecmd)
return sp.check_output(cmd, shell=True, text=True)
def get_callers(self, fn):
cmd = "cscope -d -L3 %s -f %s -s %s|grep -v '^[a-zA-Z_0-9]*\.h' | grep -v ATTRIBUTE_ | awk '{print $2}'" % (
fn, self.qemu_cscope, self.qemu_cscope_source)
return rm_empty_str(sp.check_output(cmd, shell=True, text=True).split('\n'))
def get_top_callers(self, fn, cscope):
stack = []
top_callers = set()
accessed = set()
func = fn
stack.append(func)
while stack != []:
func = stack.pop()
if func not in accessed:
accessed.add(func)
callers = self.get_callers(func)
if func in callers or callers == set():
top_callers.add(func)
for caller in callers:
stack.append(caller)
return top_callers
def writecsv(self, csv_path):
with open(csv_path, 'w') as csvfile:
header = ["Monitor Wrapper", "QMP", "API callers", "Callers not in APIs"]
writer = csv.DictWriter(csvfile, fieldnames=header, delimiter='|')
writer.writeheader()
for mon in self.mon_funcs:
qemu_exec = self.get_qemu_exec(mon)
top_callers = self.get_top_callers(mon, self.qemu_cscope)
callers_api = "\n".join([j.replace('qemu', 'vir', 1) for j in {i for i in top_callers if i in self.qemu_apis}])
callers_not_api = "\n".join([i for i in top_callers if i not in self.qemu_apis])
writer.writerow({
header[0]: mon,
header[1]: qemu_exec,
header[2]: callers_api,
header[3]: callers_not_api})
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source', help="The libvirt source directory", required=True)
parser.add_argument('-m', '--mode', help="The mode of API mappings.'qmp': The qemu qmp to libvirt API mappings; 'ga': The qemu guest agent command to libvirt API mappings", required=True)
parser.add_argument('-o', '--output', help="The csv output file", default='output.csv')
args = parser.parse_args()
LibvirtQemu(args.source, args.mode).writecsv(args.output)
| [
"[email protected]"
]
| ||
e21b32b6008b4c1156c4093df442d9254ff1ec55 | 5020abc0f35d0da7b7ba43e50bc017c4d5ca9bcd | /learn-from-liao/task_master.py | 30f9999589add76043fac223ce7318310f50f740 | []
| no_license | chick-tiger/python-module-learning | 7795291ec8a11b6a149191f97b4d7856609665a7 | 80d560bd22c7e85b2a2502113515f21a17512a3c | refs/heads/master | 2021-07-14T21:56:04.306101 | 2017-10-20T09:40:53 | 2017-10-20T09:40:53 | 104,312,051 | 0 | 1 | null | null | null | null | UTF-8 | Python | false | false | 715 | py | import random, time, queue
from multiprocessing.managers import BaseManager
task_queue = queue.Queue()
result_queue = queue.Queue()
class QueueManager(BaseManager):
pass
QueueManager.register('get_task_queue', callable=lambda:task_queue)
QueueManager.register('get_result_queue', callable=lambda:result_queue)
manager = QueueManager(address=('', 5000), authkey=b'abc')
manager.start()
task = manager.get_task_queue()
result = manager.get_result_queue()
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
print('Try get results...')
for i in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
manager.shutdown()
print('master exit.')
| [
"[email protected]"
]
| |
e51e15c2b6fcf05be02199a5d7b23019c613d8c6 | 52f2581585f5529b53d352ea4e0e1db986a17f7f | /AutoTest/public/Login_c.py | 022bab2c565f3cc0020da9f3c9dbb8e06837704e | []
| no_license | BaoYong-1/PyTesting1 | 253fda9d95435244ff79e37b16a62ba215637d3f | 9a8c4c02b3f592e48d93f98038be7e7f1bd63def | refs/heads/master | 2020-03-19T11:23:03.106788 | 2018-08-31T07:30:54 | 2018-08-31T07:30:54 | 136,452,033 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,357 | py | # coding=utf-8
import time
from selenium.webdriver.support import expected_conditions as EC
from selenium import webdriver
from GetVerifyCode import get_code
import os
os.environ['NLS_LANG'] = 'SIMPLIFIED CHINESE_CHINA.UTF8' # 设置中文
def is_element_visible(self, element):
driver = self.driver
try:
the_element = EC.visibility_of_element_located(element)
assert the_element(driver)
flag = True
except:
flag = False
return flag
def login(driver, username, password, CodeText):
driver.find_element_by_id("txt_username").clear()
driver.find_element_by_id("txt_username").send_keys(username)
driver.find_element_by_id("txt_password").clear()
driver.find_element_by_id("txt_password").send_keys(password)
driver.find_element_by_id("verifycode").clear()
driver.find_element_by_id("verifycode").send_keys(CodeText)
driver.find_element_by_class_name("button").click()
time.sleep(2)
if __name__ == '__main__':
options = webdriver.ChromeOptions()
options.add_experimental_option("excludeSwitches", ["ignore-certificate-errors"])
driver = webdriver.Chrome(chrome_options=options)
driver.maximize_window()
url = "http://192.168.10.110:8080/WebGis/login"
driver.get(url)
CodeText = get_code(driver)
login(driver, 'baoyong123', 'asdf1234', CodeText)
| [
"[email protected]"
]
| |
2e0aeb4b8cd540d392f6e5256c8fc9f78b3b1f04 | 0144353f5d129c0d95f96c717c9aee71d26ca153 | /app_mysql.py | 3e5c0f5eea15619e2f75aef0c838311ca947c354 | []
| no_license | rafat2427/IDP | 4b44239f3cb6b52d11baf47c97b49aa38ec7e5b5 | 16c02be0244cbf32e7d94363e3af40d3c447311d | refs/heads/main | 2023-02-16T17:53:11.009820 | 2021-01-20T20:04:10 | 2021-01-20T20:04:10 | 331,417,628 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,252 | py | from flask import Flask, render_template, url_for, request, redirect
from flask_mysqldb import MySQL
import pandas as pd
import numpy as np
import os.path
# import yaml
app = Flask(__name__)
# Configure db
# db = yaml.load(open('db.yaml'))
# app.config['MYSQL_HOST'] = db['mysql_host']
# app.config['MYSQL_USER'] = db['mysql_user']
# app.config['MYSQL_PASSWORD'] = db['mysql_password']
# app.config['MYSQL_DB'] = db['mysql_db']
app.config['MYSQL_HOST'] = 'localhost'
app.config['MYSQL_USER'] = 'root'
app.config['MYSQL_PASSWORD'] = ''
app.config['MYSQL_DB'] = 'test'
mysql = MySQL(app)
# Start coding
# @app.route('/')
# def index():
# return render_template("about.php")
#
#
# @app.route('/users')
# def users():
# cur = mysql.connection.cursor()
# resultValue = cur.execute("SELECT * FROM users")
# if resultValue > 0:
# userDetails = cur.fetchall()
# return render_template('users.html',userDetails=userDetails)
@app.route('/')
# @app.route('/', methods=['GET', 'POST'])
def index():
# if request.method == 'POST':
# # Fetch form data
# userDetails = request.form
# name = userDetails['name']
# email = userDetails['email']
# cur = mysql.connection.cursor()
# cur.execute("INSERT INTO users(name, email) VALUES(%s, %s)",(name, email))
# mysql.connection.commit()
# cur.close()
# return redirect('/users')
# return render_template('index.html')
#
# @app.route('/users')
# def users():
cur_member = mysql.connection.cursor()
cur_gp = mysql.connection.cursor()
resultValue = cur_member.execute("SELECT * FROM members")
groupValue = cur_gp.execute("SELECT * FROM gp")
if resultValue > 0 or groupValue > 0:
userDetails = cur_member.fetchall()
groupDetails = cur_gp.fetchall()
return render_template('members group.php',userDetails=userDetails, groupDetails=groupDetails)
@app.route('/show')
def show_data():
csv1 = pd.read_csv("status_1.csv")
print(csv1)
val_list = csv1.values.tolist()
c_yes=val_list.count('Yes')
c_no=val_list.count('No')
state=1
if c_no > c_yes:
state = 2
return render_template('show_status.php',val_list=val_list,c_yes=c_yes,c_no=c_no)
@app.route('/status')
def show_status():
csv1 = pd.read_csv("status_1.csv")
print(csv1)
val_list = csv1.values.tolist()
c_yes=val_list.count('Yes')
c_no=val_list.count('No')
# state=1
# if c_no > c_yes
# state = 2
state = 2
cur_state = mysql.connection.cursor()
cur_member = mysql.connection.cursor()
cur_gp = mysql.connection.cursor()
cur_state.execute("UPDATE `status` SET `sta_id` = %s WHERE `status`.`persno` = 12345 ", state)
resultValue = cur_member.execute("SELECT * FROM members")
groupValue = cur_gp.execute("SELECT * FROM status")
if resultValue > 0 or groupValue > 0:
userDetails = cur_member.fetchall()
groupDetails = cur_gp.fetchall()
return render_template('members group.php',userDetails=userDetails, groupDetails=groupDetails)
if __name__ == '__main__':
app.run(debug=True)
| [
"[email protected]"
]
| |
5ec94889a27094587c60ea1c2c2cce07b38e8860 | 0f43b7cfd605ee6be9ea563023835e0b4aa37226 | /survey-env/bin/pip3.7 | 3c23b1d64f8241cd424519d772222c119e0fe202 | []
| no_license | filipvandyck/survey_proj | b7ab78b41645db9cc45f9d52fb61b1aee046a76e | 198cb412553cb2e352d65cc5df831017211f785e | refs/heads/master | 2023-01-11T17:33:00.435334 | 2020-10-25T19:46:32 | 2020-10-25T19:46:32 | 262,762,370 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 260 | 7 | #!/home/filip/Python/survey_proj/survey-env/bin/python3.7
# -*- coding: utf-8 -*-
import re
import sys
from pip._internal.main import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(main())
| [
"[email protected]"
]
| |
d519581682c5b4acb68ab1878e3cda3a7b8c4ddd | 5e2655fb23e558c54695dea5c9456b5552570947 | /localdev/seed/management/commands/seed_data.py | f42ad2be00ea5d9f4f5111900de0d82b66bf4e16 | [
"BSD-3-Clause"
]
| permissive | mitodl/bootcamp-ecommerce | 992cb23243462d82c75cfae6c115a27728491219 | 339c67b84b661a37ffe32580da72383d95666c5c | refs/heads/master | 2023-08-31T10:45:57.827990 | 2023-07-25T13:55:32 | 2023-07-25T13:55:32 | 82,849,185 | 6 | 3 | BSD-3-Clause | 2023-08-24T20:25:47 | 2017-02-22T20:27:24 | Python | UTF-8 | Python | false | false | 709 | py | """Management command to create or update seed data"""
from django.core.management.base import BaseCommand
from localdev.seed.api import create_seed_data
from localdev.seed.utils import get_raw_seed_data_from_file
class Command(BaseCommand):
"""Creates or updates seed data based on a raw seed data file"""
help = __doc__
def handle(self, *args, **options):
raw_seed_data = get_raw_seed_data_from_file()
results = create_seed_data(raw_seed_data)
if not results.has_results:
self.stdout.write(self.style.WARNING("No results logged."))
else:
self.stdout.write(self.style.SUCCESS("RESULTS"))
self.stdout.write(results.report)
| [
"[email protected]"
]
| |
cbd2dcecce030b1b1ca054de015715d1db5327d7 | 79eec9f4b1dac6c085dd3783854b98d0c6c9769c | /dataset_tools/xml_writer_complementary.py | 6985d879017031359f32e16a00c3f5dc5402cd55 | [
"MIT"
]
| permissive | hangwudy/Mask_RCNN | c9b5efa0307a73dd5178988981f67762eab5ae36 | 8b5d896076b994e2f9136054114c551a8cb3119f | refs/heads/master | 2020-04-03T11:42:41.924893 | 2019-08-06T16:53:42 | 2019-08-06T16:53:42 | 142,773,778 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,283 | py | # coding: utf-8
# created by Hang Wu on 2018.10.07
# feedback: [email protected]
from lxml.etree import Element, SubElement, tostring
import pprint
from xml.dom.minidom import parseString
import cv2
from numpy import random
import os
# Eigen
import image_overlay
import load_image
import generate_dict
def xml_generator(bndbox, xml_destination_path):
# Root
node_root = Element('annotation')
## Folder
node_folder = SubElement(node_root, 'folder')
node_folder.text = bndbox['folder']
## Filename
node_filename = SubElement(node_root, 'filename')
node_filename.text = bndbox['filename']
## Path
node_path = SubElement(node_root, 'path')
node_path.text = bndbox['path']
## Source
node_source = SubElement(node_root, 'source')
node_database = SubElement(node_source, 'database')
node_database.text = 'Unknown'
## Size
node_size = SubElement(node_root, 'size')
### Width
node_width = SubElement(node_size, 'width')
node_width.text = str(bndbox['width'])
### Height
node_height = SubElement(node_size, 'height')
node_height.text = str(bndbox['height'])
### Depth
node_depth = SubElement(node_size, 'depth')
node_depth.text = str(bndbox['depth'])
## Segmented
node_segmented = SubElement(node_root, 'segmented')
node_segmented.text = '0'
## Object
node_object = SubElement(node_root, 'object')
### Name
node_name = SubElement(node_object, 'name')
node_name.text = 'car_door'
### Pose
node_pose = SubElement(node_object, 'pose')
node_pose.text = 'Unspecified'
### Truncated
node_truncated = SubElement(node_object, 'truncated')
node_truncated.text = '0'
### Difficult
node_difficult = SubElement(node_object, 'difficult')
node_difficult.text = '0'
### Bounding box
node_bndbox = SubElement(node_object, 'bndbox')
#### x-y value
node_xmin = SubElement(node_bndbox, 'xmin')
node_xmin.text = str(bndbox['xmin'])
node_ymin = SubElement(node_bndbox, 'ymin')
node_ymin.text = str(bndbox['ymin'])
node_xmax = SubElement(node_bndbox, 'xmax')
node_xmax.text = str(bndbox['xmax'])
node_ymax = SubElement(node_bndbox, 'ymax')
node_ymax.text = str(bndbox['ymax'])
# format display
xml = tostring(node_root, pretty_print=True)
xml_name = bndbox['filename'][:-4]+".xml"
xml_path = os.path.join(xml_destination_path, xml_name)
fp = open(xml_path, 'w')
fp.write(xml.decode())
fp.close()
if __name__ == '__main__':
# Foreground and background imags
fg_path = '/home/hangwu/Repositories/Dataset/dataset/ergaenzen'
bg_path = '/home/hangwu/Downloads/val2017'
# Output paths
xml_dest_path = "/home/hangwu/Repositories/Dataset/dataset/annotation_all/xml"
image_dest_path = "/home/hangwu/Repositories/Dataset/dataset/car_door_all"
mask_dest_path = "/home/hangwu/Repositories/Dataset/dataset/annotation_all/mask"
mask_bw_dest_path = "/home/hangwu/Repositories/Dataset/dataset/annotation_all/mask_bw"
# Car Door Subcategory: 1 or 2, IMPORTANT for naming the training data
cd_subcat = 2
# Test
test = False
if test:
fg_path = '/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/Foreground'
bg_path = '/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/Background'
xml_dest_path = "/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/output/xml"
image_dest_path = "/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/output/image"
mask_dest_path = "/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/output/mask"
mask_bw_dest_path = "/home/hangwu/Repositories/Mask_RCNN/dataset_tools/Test_Workspace/Image_Generation/output/mask_bw"
fg_list = load_image.loadim(fg_path)
# print(fg_list[1230:1250])
bg_list = load_image.loadim(bg_path,'jpg','0000')
# Counter
progress_show = 1
for fg_p in fg_list:
# IMPORTANT: if you want to resize images, don't forget resize in generate_dict
img_scale = 0.8
try:
bnd_info = generate_dict.object_dict(fg_p, img_scale)
fg = cv2.imread(fg_p, -1)
# resize the car door images
fg = cv2.resize(fg, (0,0), fx = img_scale, fy = img_scale, interpolation = cv2.INTER_CUBIC)
bg_path = random.choice(bg_list)
bg = cv2.imread(bg_path, -1)
object_bndbox = image_overlay.overlap(bg, fg, bnd_info, image_dest_path, mask_dest_path, mask_bw_dest_path, cd_subcat)
xml_generator(object_bndbox, xml_dest_path)
except:
print("===========================")
print(fg_p)
print(bg_path)
print("===========================")
# print(object_bndbox)
if progress_show % 1 == 0:
print("++++++++++++++")
print("{:.2f}%".format(progress_show/len(fg_list)*100))
print("++++++++++++++")
progress_show += 1
| [
"[email protected]"
]
| |
ad890fdf5086260c3c073c0dee7db830b7db3d9a | d33bd7e0c2cd91226d3dc7c3d927a52b8dbc05fd | /tiny_data/lip3x3_tiny/utils.py | a5f41725c9023fb3c1334631a8da4d29a58eb2e8 | [
"Apache-2.0"
]
| permissive | gamedx/tiny_lips | 80d7963abd9b8455aedcc342562f7ff55f6c501b | c15e1d152369ea69715313f6b6802ed05eab2b65 | refs/heads/master | 2020-06-29T17:59:25.717198 | 2019-08-05T07:57:03 | 2019-08-05T07:57:03 | 200,585,475 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,914 | py | import os
import scipy
import numpy as np
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"]="0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def load_mnist(batch_size, is_training=True):
path = os.path.join('data', 'mnist')
if is_training:
fd = open(os.path.join(path, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainX = loaded[16:].reshape((8400, 39, 39, 1)).astype(np.float32)
fd = open(os.path.join(path, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainY = loaded[8:].reshape((8400)).astype(np.int32)
trX = trainX[:7800] / 255.
trY = trainY[:7800]
valX = trainX[7800:, ] / 255.
valY = trainY[7800:]
num_tr_batch = 7800 // batch_size
num_val_batch = 600 // batch_size
return trX, trY, num_tr_batch, valX, valY, num_val_batch
else:
fd = open(os.path.join(path, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((600, 39, 39, 1)).astype(np.float)
fd = open(os.path.join(path, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((600)).astype(np.int32)
num_te_batch = 600 // batch_size
return teX / 255., teY, num_te_batch
def load_data(dataset, batch_size, is_training=True, one_hot=False):
if dataset == 'mnist':
return load_mnist(batch_size, is_training)
else:
raise Exception('Invalid dataset, please check the name of dataset:', dataset)
def get_batch_data(dataset, batch_size, num_threads):
if dataset == 'mnist':
trX, trY, num_tr_batch, valX, valY, num_val_batch = load_mnist(batch_size, is_training=True)
elif dataset == 'fashion-mnist':
trX, trY, num_tr_batch, valX, valY, num_val_batch = load_fashion_mnist(batch_size, is_training=True)
data_queues = tf.train.slice_input_producer([trX, trY])
X, Y = tf.train.shuffle_batch(data_queues, num_threads=num_threads,
batch_size=batch_size,
capacity=batch_size * 64,
min_after_dequeue=batch_size * 32,
allow_smaller_final_batch=False)
return(X, Y)
def save_images(imgs, size, path):
'''
Args:
imgs: [batch_size, image_height, image_width]
size: a list with tow int elements, [image_height, image_width]
path: the path to save images
'''
imgs = (imgs + 1.) / 2 # inverse_transform
return(scipy.misc.imsave(path, mergeImgs(imgs, size)))
def mergeImgs(images, size):
h, w = images.shape[1], images.shape[2]
imgs = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
imgs[j * h:j * h + h, i * w:i * w + w, :] = image
return imgs
# For version compatibility
def reduce_sum(input_tensor, axis=None, keepdims=False):
try:
return tf.reduce_sum(input_tensor, axis=axis, keepdims=keepdims)
except:
return tf.reduce_sum(input_tensor, axis=axis, keep_dims=keepdims)
# For version compatibility
def softmax(logits, axis=None):
try:
return tf.nn.softmax(logits, axis=axis)
except:
return tf.nn.softmax(logits, dim=axis)
def get_shape(inputs, name=None):
name = "shape" if name is None else name
with tf.name_scope(name):
static_shape = inputs.get_shape().as_list()
dynamic_shape = tf.shape(inputs)
shape = []
for i, dim in enumerate(static_shape):
dim = dim if dim is not None else dynamic_shape[i]
shape.append(dim)
return(shape)
| [
"[email protected]"
]
| |
049898e55896a5847ebcd12bfad533a56380fa13 | 63393a9f049587cc6825ddc905aa07244926e874 | /main.py | 7879ba20d5951ca35fbedc07e2c76ad674ff6777 | []
| no_license | sbzhu/designpattern | fa62e9e3321048ee220f1ee9c63af9f1bdd89d77 | aeafb2850923a7f1ed31957130fe7857e0fc5b19 | refs/heads/master | 2020-12-25T04:08:39.039958 | 2016-04-23T07:48:24 | 2016-04-23T07:48:24 | 56,907,165 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 190 | py | #!/usr/bin/env python
if __name__ == '__main__':
# op = raw_input('Operator : ')
# op1 = input('a : ')
# op2 = input('b : ')
try:
print 'Hello'
except:
print 'Wrong expression'
| [
"[email protected]"
]
| |
c7040497fddc70804c791aa8caffd6ee49621d0d | 98c6ea9c884152e8340605a706efefbea6170be5 | /examples/data/Assignment_2/hbbirf001/question3.py | 86f1543deb5d0d08303893c1de5d53fe0d63e38e | []
| no_license | MrHamdulay/csc3-capstone | 479d659e1dcd28040e83ebd9e3374d0ccc0c6817 | 6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2 | refs/heads/master | 2021-03-12T21:55:57.781339 | 2014-09-22T02:22:22 | 2014-09-22T02:22:22 | 22,372,174 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 260 | py | import math
pi =2
denom = math.sqrt(2)
while denom != 2:
pi = pi*2/denom
denom = math.sqrt(2+denom)
print('Approximation of pi:',round(pi,3),sep=' ')
radius = eval(input('Enter the radius:\n'))
area = pi*radius**2
print('Area:', round(area,3)) | [
"[email protected]"
]
| |
14e9d08e4c3d5917584fcfa34b8694b98266d25e | 5fbdb2fdf9544739ea5f4b72b835cb201b73ab39 | /app/main/views.py | a40898b4cf27fc1ecfd8df435912b4a2f64c2c68 | []
| no_license | nakuls003/flasky-app | add3bebe46c79ddc7d59b5b45a10c7ade444db5d | 97fd011dacf898070f2da597bb92577c476ac136 | refs/heads/master | 2020-04-14T01:27:19.513032 | 2019-01-01T06:26:00 | 2019-01-01T06:26:00 | 163,560,634 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 11,237 | py | from flask import render_template, flash, redirect, url_for, request, current_app, abort, make_response
from . import main
from flask_login import login_required, current_user
from ..decorators import admin_required
from ..models import User, Role, Permission, Post, Comment
from .forms import EditProfileForm, EditProfileAdminForm, PostForm, CommentForm
from .. import db
from ..decorators import permission_required
from flask_sqlalchemy import get_debug_queries
@main.route('/', methods=['GET', 'POST'])
def index():
form = PostForm()
if form.validate_on_submit() and current_user.can(Permission.WRITE):
post = Post(body=form.body.data, author=current_user._get_current_object())
db.session.add(post)
db.session.commit()
return redirect(url_for('.index'))
page = request.args.get('page', 1, type=int)
show_followed = False
if current_user.is_authenticated:
show_followed = bool(request.cookies.get('show_followed', ''))
if show_followed:
query = current_user.followed_posts
else:
query = Post.query
pagination = query.order_by(Post.timestamp.desc()).paginate(page, per_page=current_app.config['POSTS_PER_PAGE'],
error_out=False)
posts = pagination.items
return render_template('index.html', show_followed=show_followed, form=form, posts=posts, pagination=pagination)
@main.route('/show-all')
@login_required
def show_all():
resp = make_response(redirect(url_for('.index')))
resp.set_cookie('show_followed', '', max_age=30*24*60*60)
return resp
@main.route('/show-followed')
@login_required
def show_followed():
resp = make_response(redirect(url_for('.index')))
resp.set_cookie('show_followed', '1', max_age=30*24*60*60)
return resp
# @main.route('/admin')
# @login_required
# @admin_required
# def admin_route():
# return "for administrators!"
#
# @main.route('/moderate')
# @login_required
# @permission_required(Permission.MODERATE)
# def moderate_route():
# return "for moderators"
@main.route('/user/<username>')
def user(username):
user = User.query.filter_by(username=username).first_or_404()
page = request.args.get('page', 1, type=int)
pagination = user.posts.order_by(Post.timestamp.desc()).paginate(page, per_page=current_app.config['POSTS_PER_PAGE'],
error_out=False)
posts = pagination.items
return render_template('user.html', user=user, posts=posts, pagination=pagination)
@main.route('/post/<int:id>', methods=['GET', 'POST'])
def post(id):
post = Post.query.get_or_404(id)
form = CommentForm()
if form.validate_on_submit() and current_user.can(Permission.COMMENT):
comment = Comment(body = form.body.data, author = current_user._get_current_object(), post = post)
db.session.add(comment)
db.session.commit()
flash('comment added successfully')
return redirect(url_for('main.post', id=post.id, page=-1))
page = request.args.get('page', 1, type=int)
if page == -1:
page = ((post.comments.count() - 1) // current_app.config['COMMENTS_PER_PAGE']) + 1
pagination = post.comments.order_by(Comment.timestamp.asc()).paginate(page,
per_page=current_app.config['COMMENTS_PER_PAGE'],
error_out=False)
comments = pagination.items
return render_template('post.html', posts=[post], comments=comments, pagination=pagination, form=form)
@main.route('/edit/<int:id>', methods=['GET', 'POST'])
@login_required
def edit(id):
post = Post.query.get_or_404(id)
if current_user != post.author and not current_user.is_administrator():
abort(403)
form = PostForm()
if form.validate_on_submit():
post.body = form.body.data
db.session.add(post)
db.session.commit()
flash('Post updated successfully')
return redirect(url_for('.edit', id=post.id))
form.body.data = post.body
return render_template('edit_post.html', form=form)
@main.route('/edit-profile', methods=['GET', 'POST'])
@login_required
def edit_profile():
form = EditProfileForm()
if form.validate_on_submit():
current_user.name = form.name.data
current_user.location = form.location.data
current_user.about_me = form.about_me.data
db.session.add(current_user._get_current_object())
db.session.commit()
flash('Your info has been saved')
return redirect(url_for('.user', username=current_user.username))
form.name.data = current_user.name
form.location.data = current_user.location
form.about_me.data = current_user.about_me
return render_template('edit_profile.html', form=form)
@main.route('/edit-profile/<int:id>', methods=['GET', 'POST'])
@login_required
@admin_required
def edit_profile_admin(id):
user = User.query.get_or_404(id)
form = EditProfileAdminForm(user)
if form.validate_on_submit():
user.email = form.email.data
user.username = form.username.data
user.confirmed = form.confirmed.data
user.role = Role.query.get(form.role.data)
user.name = form.name.data
user.location = form.location.data
user.about_me = form.about_me.data
db.session.add(user)
db.session.commit()
flash('User updated successfully')
return redirect(url_for('.user', username=user.username))
form.email.data = user.email
form.username.data = user.username
form.confirmed.data = user.confirmed
form.role.data = user.role_id
form.name.data = user.name
form.location.data = user.location
form.about_me.data = user.about_me
return render_template('edit_profile.html', form=form, user=user)
@main.route('/follow/<username>')
@login_required
@permission_required(Permission.FOLLOW)
def follow(username):
user = User.query.filter_by(username=username).first()
if user is None or user == current_user:
flash('invalid user')
return redirect(url_for('.index'))
if current_user.is_following(user):
flash('You are already following this user')
return redirect(url_for('.user', username=username))
current_user.follow(user)
db.session.commit()
flash('You are now following {}'.format(username))
return redirect(url_for('.user', username=username))
@main.route('/unfollow/<username>')
@login_required
@permission_required(Permission.FOLLOW)
def unfollow(username):
user = User.query.filter_by(username=username).first()
if user is None or user == current_user:
flash('invalid user')
return redirect(url_for('.index'))
if not current_user.is_following(user):
flash('You are not already following this user')
return redirect(url_for('.user', username=username))
current_user.unfollow(user)
db.session.commit()
flash('You unfollowed {}'.format(username))
return redirect(url_for('.user', username=username))
@main.route('/followers/<username>')
def followers(username):
user = User.query.filter_by(username=username).first()
if user is None:
flash('invalid user')
return redirect(url_for('.index'))
page = request.args.get('page', 1, type=int)
pagination = user.followers.paginate(page, per_page=current_app.config['FOLLOW_RESULTS_PER_PAGE'], error_out=False)
follows = [{'user': item.follower, 'timestamp': item.timestamp} for item in pagination.items]
return render_template('followers.html', endpoint='.followers', pagination=pagination, follows=follows, user=user,
title='Followers of')
@main.route('/following/<username>')
def followed_by(username):
user = User.query.filter_by(username=username).first()
if user is None:
flash('invalid user')
return redirect(url_for('.index'))
page = request.args.get('page', 1, type=int)
pagination = user.followed.paginate(page, per_page=current_app.config['FOLLOW_RESULTS_PER_PAGE'], error_out=False)
follows = [{'user': item.followed, 'timestamp': item.timestamp} for item in pagination.items]
return render_template('followers.html', endpoint='.followed_by', pagination=pagination, follows=follows, user=user,
title='Followed by')
@main.route('/moderate')
@login_required
@permission_required(Permission.MODERATE)
def moderate():
page = request.args.get('page', 1, type=int)
pagination = Comment.query.order_by(Comment.timestamp.desc()).paginate(page, current_app.config['COMMENTS_PER_PAGE'],
error_out=False)
comments = pagination.items
return render_template('moderate.html', comments=comments, page=page, pagination=pagination)
@main.route('/moderate/enable/<int:id>')
@login_required
@permission_required(Permission.MODERATE)
def moderate_enable(id):
comment = Comment.query.get_or_404(id)
comment.disabled = False
db.session.add(comment)
db.session.commit()
page = request.args.get('page', 1 , type=int)
return redirect(url_for('main.moderate', page=page))
@main.route('/moderate/disable/<int:id>')
@login_required
@permission_required(Permission.MODERATE)
def moderate_disable(id):
comment = Comment.query.get_or_404(id)
comment.disabled = True
db.session.add(comment)
db.session.commit()
page = request.args.get('page', 1 , type=int)
return redirect(url_for('main.moderate', page=page))
@main.route('/shutdown')
def shutdown_server():
if not current_app.testing:
abort(404)
shutdown = request.environ.get('werkzeug.server.shutdown')
if not shutdown:
abort(500)
shutdown()
return "Shutting down.."
@main.after_app_request
def after_request(response):
for query in get_debug_queries():
if query.duration >= current_app.config['SLOW_DB_QUERY_TIME']:
current_app.logger.warning(
'Slow query: %s\nParameters: %s\nDuration: %fs\nContext: %s\n' %
(query.statement, query.parameters, query.duration, query.context)
)
return response
# @main.route('/user', methods=['GET', 'POST'])
# def user():
# form = NameForm()
# if form.validate_on_submit():
# # old_name = session.get('name')
# # if old_name is not None and old_name != form.name.data:
# # flash('Hey, looks like you changed your name.')
# user = User.query.filter_by(username=form.name.data).first()
# if user is None:
# user = User(username=form.name.data)
# db.session.add(user)
# db.session.commit()
# session['known'] = False
# send_email('New User', '[email protected]', 'mail/new_user', user=user)
# else:
# session['known'] = True
# session['name'] = form.name.data
# form.name.data = ''
# return redirect(url_for('main.user'))
# return render_template('user.html', form=form, name=session.get('name'), known=session.get('known', False)) | [
"[email protected]"
]
| |
104d203a342e3451de87019b3f772f1417367208 | 980a90caca1524f717c1d27aa489a094334614da | /2019-01 code.py | 11f18521ae9460f1053fdcca78f049acf28d236f | []
| no_license | tagoria/AdventOfCode2019 | 00fa03fa558f17a2bd3bb8650dcedff346902c01 | 41124e4f9604999ca6fa57bf2cc91ebc5e448e05 | refs/heads/master | 2023-04-10T01:17:00.152895 | 2021-04-17T11:26:57 | 2021-04-17T11:26:57 | 358,859,396 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 849 | py | import string
import fileinput
import os
import sys
def part1() :
currentFile = __file__
spacePosition = currentFile.find(" ")
inputPath = currentFile[0:spacePosition] + " input.txt"
fuelNeeded = 0
with open(inputPath, "r") as puzzleInput:
for line in puzzleInput:
massNeeded = int(line)
fuelNeeded = fuelNeeded + ((massNeeded//3) - 2)
print(fuelNeeded)
def part2() :
currentFile = __file__
spacePosition = currentFile.find(" ")
inputPath = currentFile[0:spacePosition] + " input.txt"
fuelNeeded = 0
with open(inputPath, "r") as puzzleInput:
for line in puzzleInput:
massNeeded = int(line)
while (massNeeded := massNeeded//3 - 2)>0:
fuelNeeded = fuelNeeded + massNeeded
print(fuelNeeded)
print (sys.version)
part2() | [
"[email protected]"
]
| |
6635fd14f1af6c49980003fc31b60603e13ea0a4 | 3cb8220aaf53ab07fddd3706af4524d94f5eeaad | /userproj/users/urls.py | ded0461b2885c25d46c0241e5458865911412a57 | []
| no_license | guguponce/userproject | 5741092923d1558ad93cc16813640d5e4db117bd | 7596192bd96dbd76587493d354015d7c620c7944 | refs/heads/main | 2023-03-30T21:19:17.709465 | 2021-04-07T10:33:34 | 2021-04-07T10:33:34 | 355,480,457 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 195 | py | from django.conf.urls import url
from users import views
app_name = 'users'
urlpatterns = [
url(r'^$', views.users, name='users'),
# url(r'^forms/',views.formulario, name='forms')
]
| [
"[email protected]"
]
| |
d09f267b12df0380d0b55ee7ff1d47fd0d49c160 | ed5b7eab164bf434e500e38a946fc902ee7eac47 | /nlp_pytorch/chapter8/main.py | 1ea8ba0c5f33c97ac1a6d2881e8883968b48c07c | []
| no_license | happybear1234/machine-learning | 54269397cb02932368dbfcebb1fdf6cb2829d9e0 | 675ff6753771e2167c2a5179b1ffe49a918e478d | refs/heads/master | 2022-02-27T21:45:50.401754 | 2019-07-15T09:21:04 | 2019-07-15T09:21:04 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 21,207 | py | # -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: main
Description :
Author : haxu
date: 2019/4/14
-------------------------------------------------
Change Activity:
2019/4/14:
-------------------------------------------------
"""
__author__ = 'haxu'
from argparse import Namespace
import json
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torch.nn import functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch import optim
class Vocabulary(object):
def __init__(self, token_to_idx=None):
if token_to_idx is None:
token_to_idx = {}
self._token_to_idx = token_to_idx
self._idx_to_token = {idx: token
for token, idx in self._token_to_idx.items()}
def to_serializable(self):
return {'token_to_idx': self._token_to_idx}
@classmethod
def from_serializable(cls, contents):
return cls(**contents)
def add_token(self, token):
if token in self._token_to_idx:
index = self._token_to_idx[token]
else:
index = len(self._token_to_idx)
self._token_to_idx[token] = index
self._idx_to_token[index] = token
return index
def add_many(self, tokens):
return [self.add_token(token) for token in tokens]
def lookup_token(self, token):
return self._token_to_idx[token]
def lookup_index(self, index):
if index not in self._idx_to_token:
raise KeyError("the index (%d) is not in the Vocabulary" % index)
return self._idx_to_token[index]
def __str__(self):
return "<Vocabulary(size=%d)>" % len(self)
def __len__(self):
return len(self._token_to_idx)
class SequenceVocabulary(Vocabulary):
def __init__(self, token_to_idx=None, unk_token="<UNK>",
mask_token="<MASK>", begin_seq_token="<BEGIN>",
end_seq_token="<END>"):
super(SequenceVocabulary, self).__init__(token_to_idx)
self._mask_token = mask_token
self._unk_token = unk_token
self._begin_seq_token = begin_seq_token
self._end_seq_token = end_seq_token
self.mask_index = self.add_token(self._mask_token)
self.unk_index = self.add_token(self._unk_token)
self.begin_seq_index = self.add_token(self._begin_seq_token)
self.end_seq_index = self.add_token(self._end_seq_token)
def to_serializable(self):
contents = super(SequenceVocabulary, self).to_serializable()
contents.update({'unk_token': self._unk_token,
'mask_token': self._mask_token,
'begin_seq_token': self._begin_seq_token,
'end_seq_token': self._end_seq_token})
return contents
def lookup_token(self, token):
if self.unk_index >= 0:
return self._token_to_idx.get(token, self.unk_index)
else:
return self._token_to_idx[token]
class NMTVectorizer(object):
def __init__(self, source_vocab, target_vocab, max_source_length, max_target_length):
"""
Args:
source_vocab (SequenceVocabulary): maps source words to integers
target_vocab (SequenceVocabulary): maps target words to integers
max_source_length (int): the longest sequence in the source dataset
max_target_length (int): the longest sequence in the target dataset
"""
self.source_vocab = source_vocab
self.target_vocab = target_vocab
self.max_source_length = max_source_length
self.max_target_length = max_target_length
def _vectorize(self, indices, vector_length=-1, mask_index=0):
"""Vectorize the provided indices
Args:
indices (list): a list of integers that represent a sequence
vector_length (int): an argument for forcing the length of index vector
mask_index (int): the mask_index to use; almost always 0
"""
if vector_length < 0:
vector_length = len(indices)
vector = np.zeros(vector_length, dtype=np.int)
vector[:len(indices)] = indices
vector[len(indices):] = mask_index
return vector
def _get_source_indices(self, text):
"""Return the vectorized source text
Args:
text (str): the source text; tokens should be separated by spaces
Returns:
indices (list): list of integers representing the text
"""
indices = [self.source_vocab.begin_seq_index]
indices.extend(self.source_vocab.lookup_token(token) for token in text.split(" "))
indices.append(self.source_vocab.end_seq_index)
return indices
def _get_target_indices(self, text):
"""Return the vectorized source text
Args:
text (str): the source text; tokens should be separated by spaces
Returns:
a tuple: (x_indices, y_indices)
x_indices (list): list of integers representing the observations in target decoder
y_indices (list): list of integers representing predictions in target decoder
"""
indices = [self.target_vocab.lookup_token(token) for token in text.split(" ")]
x_indices = [self.target_vocab.begin_seq_index] + indices
y_indices = indices + [self.target_vocab.end_seq_index]
return x_indices, y_indices
def vectorize(self, source_text, target_text, use_dataset_max_lengths=True):
source_vector_length = -1
target_vector_length = -1
if use_dataset_max_lengths:
source_vector_length = self.max_source_length + 2 # begin end
target_vector_length = self.max_target_length + 1 # end
source_indices = self._get_source_indices(source_text)
source_vector = self._vectorize(source_indices,
vector_length=source_vector_length,
mask_index=self.source_vocab.mask_index)
target_x_indices, target_y_indices = self._get_target_indices(target_text)
target_x_vector = self._vectorize(target_x_indices,
vector_length=target_vector_length,
mask_index=self.target_vocab.mask_index)
target_y_vector = self._vectorize(target_y_indices,
vector_length=target_vector_length,
mask_index=self.target_vocab.mask_index)
return {"source_vector": source_vector,
"target_x_vector": target_x_vector,
"target_y_vector": target_y_vector,
"source_length": len(source_indices)}
@classmethod
def from_dataframe(cls, bitext_df):
source_vocab = SequenceVocabulary()
target_vocab = SequenceVocabulary()
max_source_length = 0
max_target_length = 0
for _, row in bitext_df.iterrows():
source_tokens = row["source_language"].split(" ")
if len(source_tokens) > max_source_length:
max_source_length = len(source_tokens)
for token in source_tokens:
source_vocab.add_token(token)
target_tokens = row["target_language"].split(" ")
if len(target_tokens) > max_target_length:
max_target_length = len(target_tokens)
for token in target_tokens:
target_vocab.add_token(token)
return cls(source_vocab, target_vocab, max_source_length, max_target_length)
@classmethod
def from_serializable(cls, contents):
source_vocab = SequenceVocabulary.from_serializable(contents["source_vocab"])
target_vocab = SequenceVocabulary.from_serializable(contents["target_vocab"])
return cls(source_vocab=source_vocab,
target_vocab=target_vocab,
max_source_length=contents["max_source_length"],
max_target_length=contents["max_target_length"])
def to_serializable(self):
return {"source_vocab": self.source_vocab.to_serializable(),
"target_vocab": self.target_vocab.to_serializable(),
"max_source_length": self.max_source_length,
"max_target_length": self.max_target_length}
class NMTDataset(Dataset):
def __init__(self, text_df, vectorizer):
self.text_df = text_df
self._vectorizer = vectorizer
self.train_df = self.text_df[self.text_df.split == 'train']
self.train_size = len(self.train_df)
self.val_df = self.text_df[self.text_df.split == 'val']
self.validation_size = len(self.val_df)
self.test_df = self.text_df[self.text_df.split == 'test']
self.test_size = len(self.test_df)
self._lookup_dict = {'train': (self.train_df, self.train_size),
'val': (self.val_df, self.validation_size),
'test': (self.test_df, self.test_size)}
self.set_split('train')
@classmethod
def load_dataset_and_make_vectorizer(cls, dataset_csv):
text_df = pd.read_csv(dataset_csv)
train_subset = text_df[text_df.split == 'train']
return cls(text_df, NMTVectorizer.from_dataframe(train_subset))
@classmethod
def load_dataset_and_load_vectorizer(cls, dataset_csv, vectorizer_filepath):
text_df = pd.read_csv(dataset_csv)
vectorizer = cls.load_vectorizer_only(vectorizer_filepath)
return cls(text_df, vectorizer)
@staticmethod
def load_vectorizer_only(vectorizer_filepath):
with open(vectorizer_filepath) as fp:
return NMTVectorizer.from_serializable(json.load(fp))
def save_vectorizer(self, vectorizer_filepath):
with open(vectorizer_filepath, "w") as fp:
json.dump(self._vectorizer.to_serializable(), fp)
def get_vectorizer(self):
return self._vectorizer
def set_split(self, split="train"):
self._target_split = split
self._target_df, self._target_size = self._lookup_dict[split]
def __len__(self):
return self._target_size
def __getitem__(self, index):
row = self._target_df.iloc[index]
vector_dict = self._vectorizer.vectorize(row.source_language, row.target_language)
return {"x_source": vector_dict["source_vector"],
"x_target": vector_dict["target_x_vector"],
"y_target": vector_dict["target_y_vector"],
"x_source_length": vector_dict["source_length"]}
def get_num_batches(self, batch_size):
return len(self) // batch_size
def generate_nmt_batches(dataset, batch_size, shuffle=False,
drop_last=True, device="cpu"):
"""A generator function which wraps the PyTorch DataLoader. The NMT Version """
""" 同时对长度进行排序 从大到小"""
dataloader = DataLoader(dataset=dataset, batch_size=batch_size,
shuffle=shuffle, drop_last=drop_last)
for data_dict in dataloader:
lengths = data_dict['x_source_length'].numpy()
sorted_length_indices = lengths.argsort()[::-1].tolist()
out_data_dict = {}
for name, tensor in data_dict.items():
out_data_dict[name] = data_dict[name][sorted_length_indices].to(device)
yield out_data_dict
class NMTEncoder(nn.Module):
def __init__(self, num_embeddings, embedding_size, rnn_hidden_size):
super(NMTEncoder, self).__init__()
self.source_embedding = nn.Embedding(
num_embeddings=num_embeddings,
embedding_dim=embedding_size,
padding_idx=0,
)
self.birnn = nn.GRU(
embedding_size, rnn_hidden_size, bidirectional=True, batch_first=True
)
def forward(self, x_source, x_lengths):
"""
:param x_source: (bs, 25)
:param x_lengths: (bs, )
:return:
"""
x_embeded = self.source_embedding(x_source) # (bs, 25, 64)
x_lengths = x_lengths.numpy() # (bs,)
x_packed = pack_padded_sequence(x_embeded, x_lengths, batch_first=True) # (sum(x_lengths), 64)
x_birnn_out, x_birnn_h = self.birnn(x_packed) # [(sum(x_lengths), 128*2), (2, bs, 128)]
x_birnn_h = x_birnn_h.permute(1, 0, 2) # (bs, 2, 128)
x_birnn_h = x_birnn_h.contiguous().view(x_birnn_h.size(0), -1) # (bs, 256)
x_unpacked, _ = pad_packed_sequence(x_birnn_out, batch_first=True) # (bs, ?,256)
# (bs, 10, 256)
# (bs, 256)
return x_unpacked, x_birnn_h
def verbose_attention(encoder_state_vectors, query_vector):
# (bs, max_len, 256)
# (bs, 256)
batch_size, num_vectors, vector_size = encoder_state_vectors.size()
vector_scores = torch.sum(encoder_state_vectors * query_vector.view(batch_size, 1, vector_size),
dim=2) # (bs, max_len)
vector_probabilities = F.softmax(vector_scores, dim=1) # (bs, max_len)
weighted_vectors = encoder_state_vectors * vector_probabilities.view(batch_size,
num_vectors, 1) # (bs, max_len, 256)
context_vectors = torch.sum(weighted_vectors, dim=1) # (bs, 256)
return context_vectors, vector_probabilities, vector_scores
class NMTDecoder(nn.Module):
def __init__(self, num_embeddings, embedding_size, rnn_hidden_size, bos_index):
super(NMTDecoder, self).__init__()
self._rnn_hidden_size = rnn_hidden_size
self.target_embedding = nn.Embedding(num_embeddings=num_embeddings,
embedding_dim=embedding_size,
padding_idx=0)
self.gru_cell = nn.GRUCell(embedding_size + rnn_hidden_size,
rnn_hidden_size)
self.hidden_map = nn.Linear(rnn_hidden_size, rnn_hidden_size)
self.classifier = nn.Linear(rnn_hidden_size * 2, num_embeddings)
self.bos_index = bos_index
self._sampling_temperature = 3
def _init_indices(self, batch_size):
return torch.ones(batch_size, dtype=torch.int64) * self.bos_index
def _init_context_vectors(self, batch_size):
return torch.zeros(batch_size, self._rnn_hidden_size)
def forward(self, encoder_state, initial_hidden_state, target_sequence, sample_probability=0.0):
"""
:param encoder_state: (bs, max_len, 256)
:param initial_hidden_state: (bs, 256)
:param target_sequence: (bs, 25) target
:param sample_probability:
:return:
"""
if target_sequence is None:
sample_probability = 1.
else:
target_sequence = target_sequence.permute(1, 0) # (25,bs)
h_t = self.hidden_map(initial_hidden_state) # (bs, 256)
batch_size = encoder_state.size(0) # bs
context_vectors = self._init_context_vectors(batch_size) # (bs, 256)
y_t_index = self._init_indices(batch_size) # (bs, ) [2] * bs
device = encoder_state.device
h_t = h_t.to(device)
y_t_index = y_t_index.to(device)
context_vectors = context_vectors.to(device)
output_vectors = []
self._cached_p_attn = []
self._cached_ht = []
self._cached_decoder_state = encoder_state.cpu().detach().numpy() # (bs ,10, 256)
output_sequence_size = target_sequence.size(0) # 25
for i in range(output_sequence_size):
use_sample = np.random.random() < sample_probability
if not use_sample:
y_t_index = target_sequence[i]
y_input_vector = self.target_embedding(y_t_index) # (bs, 64)
rnn_input = torch.cat([y_input_vector, context_vectors], dim=1) # (bs, 64 + 256)
h_t = self.gru_cell(rnn_input, h_t) # (bs, 256)
self._cached_ht.append(h_t.cpu().data.numpy())
# (bs, max_len, 256)
# (bs, 256)
# 输出
# (bs ,256)
# (bs, max_len)
context_vectors, p_attn, _ = verbose_attention(
encoder_state_vectors=encoder_state,
query_vector=h_t,
)
self._cached_p_attn.append(p_attn.cpu().detach().numpy())
prediction_vector = torch.cat((context_vectors, h_t), dim=1)
score_for_y_t_index = self.classifier(F.dropout(prediction_vector, 0.3)) # (bs, 4911)
if use_sample:
p_y_t_index = F.softmax(score_for_y_t_index * self._sampling_temperature, dim=1)
y_t_index = torch.multinomial(p_y_t_index, 1).squeeze()
output_vectors.append(score_for_y_t_index)
# (25, 5, 4911)
output_vectors = torch.stack(output_vectors).permute(1, 0, 2) # (bs, 25, 4911)
return output_vectors
class NMTModel(nn.Module):
def __init__(self, source_vocab_size, source_embedding_size,
target_vocab_size, target_embedding_size, encoding_size,
target_bos_index):
super(NMTModel, self).__init__()
self.encoder = NMTEncoder(num_embeddings=source_vocab_size,
embedding_size=source_embedding_size,
rnn_hidden_size=encoding_size)
decoding_size = encoding_size * 2
self.decoder = NMTDecoder(num_embeddings=target_vocab_size,
embedding_size=target_embedding_size,
rnn_hidden_size=decoding_size,
bos_index=target_bos_index)
def forward(self, x_source, x_source_lengths, target_sequence, sample_probability=0.5):
"""
:param x_source: (batch, vectorizer.max_source_length) (bs,25)
:param x_source_lengths: length of the sequence (bs,)
:param target_sequence: target text data tensor (bs, 25)
:return: prediction vectors at each output step
"""
# (bs, 10, 256)
# (bs, 256)
encoder_state, final_hidden_states = self.encoder(x_source, x_source_lengths)
decoded_states = self.decoder(encoder_state,
final_hidden_states,
target_sequence,
sample_probability=sample_probability,
)
return decoded_states
def normalize_sizes(y_pred, y_true):
if len(y_pred.size()) == 3:
y_pred = y_pred.contiguous().view(-1, y_pred.size(2))
if len(y_true.size()) == 2:
y_true = y_true.contiguous().view(-1)
return y_pred, y_true
def compute_accuracy(y_pred, y_true, mask_index):
y_pred, y_true = normalize_sizes(y_pred, y_true)
_, y_pred_indices = y_pred.max(dim=1)
correct_indices = torch.eq(y_pred_indices, y_true).float()
valid_indices = torch.ne(y_true, mask_index).float()
n_correct = (correct_indices * valid_indices).sum().item()
n_valid = valid_indices.sum().item()
return n_correct / n_valid * 100
def sequence_loss(y_pred, y_true, mask_index):
y_pred, y_true = normalize_sizes(y_pred, y_true)
return F.cross_entropy(y_pred, y_true, ignore_index=mask_index)
if __name__ == '__main__':
args = Namespace(
dataset_csv="simplest_eng_fra.csv",
vectorizer_file="vectorizer.json",
learning_rate=5e-4,
batch_size=5,
source_embedding_size=64,
target_embedding_size=64,
encoding_size=128,
device='cpu',
)
dataset = NMTDataset.load_dataset_and_make_vectorizer(args.dataset_csv)
dataset.save_vectorizer(args.vectorizer_file)
vectorizer = dataset.get_vectorizer()
mask_index = vectorizer.target_vocab.mask_index
dataset.set_split('train')
batch_generator = generate_nmt_batches(dataset,
batch_size=args.batch_size,
device=args.device)
model = NMTModel(
source_vocab_size=len(vectorizer.source_vocab),
source_embedding_size=args.source_embedding_size,
target_vocab_size=len(vectorizer.target_vocab),
target_embedding_size=args.target_embedding_size,
encoding_size=args.encoding_size,
target_bos_index=vectorizer.target_vocab.begin_seq_index
)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
for batch_idx, batch_dict in enumerate(batch_generator):
optimizer.zero_grad()
y_pred = model(batch_dict['x_source'],
batch_dict['x_source_length'],
batch_dict['x_target'],
sample_probability=0.5,
)
loss = sequence_loss(y_pred, batch_dict['y_target'], mask_index)
loss.backward()
optimizer.step()
print(loss.item())
| [
"[email protected]"
]
| |
c0e496f15f2e4e536952162bbb5ccdacfbd87daf | fe6df3bca3c6f723dab6850cfc9bc5dcda028077 | /WhileLoop_08/App01.py | a7eb576fbeb7448345ee2e26783849e4fea3a4ba | []
| no_license | daadestroyer/20MCAOOPS | eb0b7a69868cadf70ed8c42669252fc8b7698689 | c96b887f963be17a5d969cb9e20b99090c57dedd | refs/heads/main | 2023-06-27T13:06:41.763583 | 2021-08-04T17:01:19 | 2021-08-04T17:01:19 | 331,950,642 | 1 | 1 | null | null | null | null | UTF-8 | Python | false | false | 343 | py | '''
Python Loops
Python has two primitive loop commands:
while loops
for loops
'''
i = 0
while i <= 10:
print(i)
i += 1
# The break Statement
print()
i = 1
while i < 6:
print(i)
if i == 3:
break
i += 1
# The continue Statement
print()
i = 0
while i < 6:
i += 1
if i == 3:
continue
print(i)
| [
"[email protected]"
]
| |
1cef0677f83c3d9e49ab455395e33c8517db3503 | 0558bf417f6dfccb802e39abe03130f8139d1126 | /LeetCode/3-longest-substring-without-repeating-characters.py | 67f989c7f898cb430ec0b3023f4f724b443f1d31 | []
| no_license | Zayu-Club/Playground | bdf2d4cf82031dac508df7ba01d969b56dacdc24 | e8b2cdbd9fdc2d9fe6da3289645530bb7bb20143 | refs/heads/master | 2023-09-05T23:01:38.823308 | 2021-11-21T09:36:34 | 2021-11-21T09:36:34 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 927 | py | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
if len(s) == 1 or len(s) == 0:
return len(s)
hashMap = dict()
max_len = 0
begin_index = 0
for i, si in enumerate(s):
if si in hashMap.keys():
new_begin_index = hashMap[si] + 1
begin_index = begin_index if begin_index > new_begin_index else new_begin_index
hashMap[si] = i
windows_len = i - begin_index
max_len = windows_len if windows_len > max_len else max_len
return max_len + 1
s = Solution()
print(s.lengthOfLongestSubstring("abcabcbb"), 3)
print(s.lengthOfLongestSubstring("bbbbb"), 1)
print(s.lengthOfLongestSubstring("pwwkew"), 3)
print(s.lengthOfLongestSubstring(""), 0)
print(s.lengthOfLongestSubstring(" "), 1)
print(s.lengthOfLongestSubstring("abba"), 2)
print(s.lengthOfLongestSubstring("dvdf"), 3)
| [
"[email protected]"
]
| |
907107ef98f88293e5eab6076021cbe6900e6c7d | 44acca58155b0a5a2b46d6a9ed255befece4f5d1 | /api_vendas/api_vendas/wsgi.py | 298a0f3193ddd7ce468b07db9e5f06b15df79e98 | []
| no_license | GeovaneCavalcante/appHubVendas | 6f6c74cb2f94b2534ab1c3d0f241422fb88b81f4 | 068bb08e2a270d132e60502c35edc11a4526f671 | refs/heads/master | 2020-03-20T07:22:32.555287 | 2018-06-13T22:38:53 | 2018-06-13T22:38:53 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 398 | py | """
WSGI config for api_vendas project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "api_vendas.settings")
application = get_wsgi_application()
| [
"[email protected]"
]
| |
57e50197193509c44c617169693c5d944c8f76f3 | 393ccacef32461f5d7f4b21419a7c695df9c62a7 | /lpo/sp/fmail/fmail.admin/datas/postcodes/81.cgi | 713794904723a1b6c22d73975a7aabfd7c129bf5 | []
| no_license | emoshu-yuta-okuma/nakagawa-dent-hp | ebc6c66efc624a256f0d7e30c2e26b9aae162cd7 | e83e8c7060881b7267f90ca3f2c599d614a219a1 | refs/heads/master | 2023-01-14T12:39:19.874341 | 2020-11-12T06:33:00 | 2020-11-12T06:33:00 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 160,735 | cgi | 40131,813,8130000,フクオカケン,フクオカシヒガシク,イカニケイサイガナイバアイ,福岡県,福岡市東区,以下に掲載がない場合,0,0,0,0,0,0
40131,813,8130025,フクオカケン,フクオカシヒガシク,アオバ,福岡県,福岡市東区,青葉,0,0,1,0,0,0
40131,81103,8110322,フクオカケン,フクオカシヒガシク,オオタケ,福岡県,福岡市東区,大岳,0,0,1,0,0,0
40131,812,8120052,フクオカケン,フクオカシヒガシク,カイヅカダンチ,福岡県,福岡市東区,貝塚団地,0,0,0,0,0,0
40131,813,8130011,フクオカケン,フクオカシヒガシク,カシイ,福岡県,福岡市東区,香椎,0,0,1,0,0,0
40131,813,8130013,フクオカケン,フクオカシヒガシク,カシイエキマエ,福岡県,福岡市東区,香椎駅前,0,0,1,0,0,0
40131,813,8130012,フクオカケン,フクオカシヒガシク,カシイエキヒガシ,福岡県,福岡市東区,香椎駅東,0,0,1,0,0,0
40131,813,8130014,フクオカケン,フクオカシヒガシク,カシイダイ,福岡県,福岡市東区,香椎台,0,0,1,0,0,0
40131,813,8130015,フクオカケン,フクオカシヒガシク,カシイダンチ,福岡県,福岡市東区,香椎団地,0,0,0,0,0,0
40131,813,8130017,フクオカケン,フクオカシヒガシク,カシイテリハ,福岡県,福岡市東区,香椎照葉,0,0,1,0,0,0
40131,813,8130016,フクオカケン,フクオカシヒガシク,カシイハマ,福岡県,福岡市東区,香椎浜,0,0,1,0,0,0
40131,813,8130018,フクオカケン,フクオカシヒガシク,カシイハマフトウ,福岡県,福岡市東区,香椎浜ふ頭,0,0,1,0,0,0
40131,813,8130003,フクオカケン,フクオカシヒガシク,カスミガオカ,福岡県,福岡市東区,香住ケ丘,0,0,1,0,0,0
40131,81103,8110325,フクオカケン,フクオカシヒガシク,カツマ,福岡県,福岡市東区,勝馬,0,0,0,0,0,0
40131,813,8130023,フクオカケン,フクオカシヒガシク,カマタ,福岡県,福岡市東区,蒲田,0,0,1,0,0,0
40131,81102,8110216,フクオカケン,フクオカシヒガシク,カミワジロ,福岡県,福岡市東区,上和白,0,0,0,0,0,0
40131,81102,8110206,フクオカケン,フクオカシヒガシク,ガンノス,福岡県,福岡市東区,雁の巣,0,0,1,0,0,0
40131,812,8120069,フクオカケン,フクオカシヒガシク,ゴウグチマチ,福岡県,福岡市東区,郷口町,0,0,0,0,0,0
40131,81103,8110321,フクオカケン,フクオカシヒガシク,サイトザキ,福岡県,福岡市東区,西戸崎,0,0,1,0,0,0
40131,81102,8110203,フクオカケン,フクオカシヒガシク,シオハマ,福岡県,福岡市東区,塩浜,0,0,1,0,0,0
40131,81103,8110323,フクオカケン,フクオカシヒガシク,シカシマ,福岡県,福岡市東区,志賀島,0,0,0,0,0,0
40131,813,8130002,フクオカケン,フクオカシヒガシク,シモバル,福岡県,福岡市東区,下原,0,0,1,0,0,0
40131,812,8120068,フクオカケン,フクオカシヒガシク,シャリョウ,福岡県,福岡市東区,社領,0,0,1,0,0,0
40131,813,8130045,フクオカケン,フクオカシヒガシク,シロハマダンチ,福岡県,福岡市東区,城浜団地,0,0,0,0,0,0
40131,81102,8110215,フクオカケン,フクオカシヒガシク,タカミダイ,福岡県,福岡市東区,高美台,0,0,1,0,0,0
40131,813,8130033,フクオカケン,フクオカシヒガシク,タタラ,福岡県,福岡市東区,多々良,0,0,1,0,0,0
40131,813,8130034,フクオカケン,フクオカシヒガシク,タノツ,福岡県,福岡市東区,多の津,0,0,1,0,0,0
40131,813,8130044,フクオカケン,フクオカシヒガシク,チハヤ,福岡県,福岡市東区,千早,0,0,1,0,0,0
40131,813,8130032,フクオカケン,フクオカシヒガシク,ドイ,福岡県,福岡市東区,土井,0,0,1,0,0,0
40131,813,8130001,フクオカケン,フクオカシヒガシク,トウノハル,福岡県,福岡市東区,唐原,0,0,1,0,0,0
40131,813,8130024,フクオカケン,フクオカシヒガシク,ナゴ,福岡県,福岡市東区,名子,0,0,1,0,0,0
40131,813,8130043,フクオカケン,フクオカシヒガシク,ナジマ,福岡県,福岡市東区,名島,0,0,1,0,0,0
40131,81102,8110204,フクオカケン,フクオカシヒガシク,ナタ,福岡県,福岡市東区,奈多,0,0,1,0,0,0
40131,81102,8110205,フクオカケン,フクオカシヒガシク,ナタダンチ,福岡県,福岡市東区,奈多団地,0,0,0,0,0,0
40131,812,8120053,フクオカケン,フクオカシヒガシク,ハコザキ,福岡県,福岡市東区,箱崎,0,0,1,0,0,0
40131,812,8120051,フクオカケン,フクオカシヒガシク,ハコザキフトウ,福岡県,福岡市東区,箱崎ふ頭,0,0,1,0,0,0
40131,812,8120061,フクオカケン,フクオカシヒガシク,ハコマツ,福岡県,福岡市東区,筥松,0,0,1,0,0,0
40131,812,8120067,フクオカケン,フクオカシヒガシク,ハコマツシンマチ,福岡県,福岡市東区,筥松新町,0,0,0,0,0,0
40131,813,8130031,フクオカケン,フクオカシヒガシク,ハッタ,福岡県,福岡市東区,八田,0,0,1,0,0,0
40131,812,8120063,フクオカケン,フクオカシヒガシク,ハラダ,福岡県,福岡市東区,原田,0,0,1,0,0,0
40131,812,8120055,フクオカケン,フクオカシヒガシク,ヒガシハマ,福岡県,福岡市東区,東浜,0,0,1,0,0,0
40131,81103,8110324,フクオカケン,フクオカシヒガシク,ヒロ,福岡県,福岡市東区,弘,0,0,0,0,0,0
40131,812,8120066,フクオカケン,フクオカシヒガシク,フタマタセ,福岡県,福岡市東区,二又瀬,0,0,0,0,0,0
40131,812,8120065,フクオカケン,フクオカシヒガシク,フタマタセシンマチ,福岡県,福岡市東区,二又瀬新町,0,0,0,0,0,0
40131,812,8120054,フクオカケン,フクオカシヒガシク,マイダシ,福岡県,福岡市東区,馬出,0,0,1,0,0,0
40131,813,8130042,フクオカケン,フクオカシヒガシク,マイマツバラ,福岡県,福岡市東区,舞松原,0,0,1,0,0,0
40131,813,8130004,フクオカケン,フクオカシヒガシク,マツカダイ,福岡県,福岡市東区,松香台,0,0,1,0,0,0
40131,813,8130035,フクオカケン,フクオカシヒガシク,マツザキ,福岡県,福岡市東区,松崎,0,0,1,0,0,0
40131,812,8120062,フクオカケン,フクオカシヒガシク,マツシマ(1、2チョウメ),福岡県,福岡市東区,松島(1、2丁目),1,0,1,0,0,0
40131,813,8130062,フクオカケン,フクオカシヒガシク,マツシマ(3-6チョウメ),福岡県,福岡市東区,松島(3〜6丁目),1,0,1,0,0,0
40131,812,8120064,フクオカケン,フクオカシヒガシク,マツダ,福岡県,福岡市東区,松田,0,0,1,0,0,0
40131,813,8130005,フクオカケン,フクオカシヒガシク,ミシマザキ,福岡県,福岡市東区,御島崎,0,0,1,0,0,0
40131,813,8130041,フクオカケン,フクオカシヒガシク,ミズタニ,福岡県,福岡市東区,水谷,0,0,1,0,0,0
40131,81102,8110201,フクオカケン,フクオカシヒガシク,ミトマ,福岡県,福岡市東区,三苫,0,0,1,0,0,0
40131,813,8130021,フクオカケン,フクオカシヒガシク,ミドリガオカ,福岡県,福岡市東区,みどりが丘,0,0,1,0,0,0
40131,813,8130019,フクオカケン,フクオカシヒガシク,ミナトカシイ,福岡県,福岡市東区,みなと香椎,0,0,1,0,0,0
40131,81102,8110212,フクオカケン,フクオカシヒガシク,ミワダイ,福岡県,福岡市東区,美和台,0,0,1,0,0,0
40131,81102,8110211,フクオカケン,フクオカシヒガシク,ミワダイシンマチ,福岡県,福岡市東区,美和台新町,0,0,0,0,0,0
40131,813,8130036,フクオカケン,フクオカシヒガシク,ワカミヤ,福岡県,福岡市東区,若宮,0,0,1,0,0,0
40131,81102,8110202,フクオカケン,フクオカシヒガシク,ワジロ,福岡県,福岡市東区,和白,0,0,1,0,0,0
40131,81102,8110213,フクオカケン,フクオカシヒガシク,ワジロガオカ,福岡県,福岡市東区,和白丘,0,0,1,0,0,0
40131,81102,8110214,フクオカケン,フクオカシヒガシク,ワジロヒガシ,福岡県,福岡市東区,和白東,0,0,1,0,0,0
40132,812,8120000,フクオカケン,フクオカシハカタク,イカニケイサイガナイバアイ,福岡県,福岡市博多区,以下に掲載がない場合,0,0,0,0,0,0
40132,816,8120885,フクオカケン,フクオカシハカタク,アイオイマチ,福岡県,福岡市博多区,相生町,0,0,1,0,0,0
40132,816,8120851,フクオカケン,フクオカシハカタク,アオキ,福岡県,福岡市博多区,青木,0,0,1,0,0,0
40132,816,8120881,フクオカケン,フクオカシハカタク,イソウダ,福岡県,福岡市博多区,井相田,0,0,1,0,0,0
40132,816,8120888,フクオカケン,フクオカシハカタク,イタヅケ,福岡県,福岡市博多区,板付,0,0,1,0,0,0
40132,816,8120861,フクオカケン,フクオカシハカタク,ウラタ,福岡県,福岡市博多区,浦田,0,0,1,0,0,0
40132,812,8120004,フクオカケン,フクオカシハカタク,エノキダ,福岡県,福岡市博多区,榎田,0,0,1,0,0,0
40132,812,8120001,フクオカケン,フクオカシハカタク,オオイ,福岡県,福岡市博多区,大井,0,0,1,0,0,0
40132,812,8120031,フクオカケン,フクオカシハカタク,オキハママチ,福岡県,福岡市博多区,沖浜町,0,0,0,0,0,0
40132,812,8120043,フクオカケン,フクオカシハカタク,カタカス,福岡県,福岡市博多区,堅粕,0,0,1,0,0,0
40132,816,8120863,フクオカケン,フクオカシハカタク,カネノクマ,福岡県,福岡市博多区,金の隈,0,0,1,0,0,0
40132,812,8120005,フクオカケン,フクオカシハカタク,カミウスイ,福岡県,福岡市博多区,上臼井,0,0,0,0,0,0
40132,812,8120026,フクオカケン,フクオカシハカタク,カミカワバタマチ,福岡県,福岡市博多区,上川端町,0,0,0,0,0,0
40132,812,8120036,フクオカケン,フクオカシハカタク,カミゴフクマチ,福岡県,福岡市博多区,上呉服町,0,0,0,0,0,0
40132,812,8120006,フクオカケン,フクオカシハカタク,カミムタ,福岡県,福岡市博多区,上牟田,0,0,1,0,0,0
40132,812,8120022,フクオカケン,フクオカシハカタク,カミヤマチ,福岡県,福岡市博多区,神屋町,0,0,0,0,0,0
40132,812,8120038,フクオカケン,フクオカシハカタク,ギオンマチ,福岡県,福岡市博多区,祇園町,0,0,0,0,0,0
40132,816,8120879,フクオカケン,フクオカシハカタク,ギンテンチョウ,福岡県,福岡市博多区,銀天町,0,0,1,0,0,0
40132,812,8120002,フクオカケン,フクオカシハカタク,クウコウマエ,福岡県,福岡市博多区,空港前,0,0,1,0,0,0
40132,812,8120037,フクオカケン,フクオカシハカタク,ゴクショマチ,福岡県,福岡市博多区,御供所町,0,0,0,0,0,0
40132,816,8120884,フクオカケン,フクオカシハカタク,コトブキチョウ,福岡県,福岡市博多区,寿町,0,0,1,0,0,0
40132,812,8120029,フクオカケン,フクオカシハカタク,コモンドマチ,福岡県,福岡市博多区,古門戸町,0,0,0,0,0,0
40132,816,8120891,フクオカケン,フクオカシハカタク,ササイ,福岡県,福岡市博多区,雀居,0,0,0,0,0,0
40132,816,8120887,フクオカケン,フクオカシハカタク,サンチク,福岡県,福岡市博多区,三筑,0,0,1,0,0,0
40132,812,8120015,フクオカケン,フクオカシハカタク,サンノウ,福岡県,福岡市博多区,山王,0,0,1,0,0,0
40132,816,8120871,フクオカケン,フクオカシハカタク,シノノメマチ,福岡県,福岡市博多区,東雲町,0,0,1,0,0,0
40132,812,8120003,フクオカケン,フクオカシハカタク,シモウスイ,福岡県,福岡市博多区,下臼井,0,0,0,0,0,0
40132,812,8120027,フクオカケン,フクオカシハカタク,シモカワバタマチ,福岡県,福岡市博多区,下川端町,0,0,0,0,0,0
40132,812,8120034,フクオカケン,フクオカシハカタク,シモゴフクマチ,福岡県,福岡市博多区,下呉服町,0,0,0,0,0,0
40132,816,8120855,フクオカケン,フクオカシハカタク,シモツキグマ,福岡県,福岡市博多区,下月隈,0,0,0,0,0,0
40132,816,8120876,フクオカケン,フクオカシハカタク,ショウナンマチ,福岡県,福岡市博多区,昭南町,0,0,1,0,0,0
40132,816,8120875,フクオカケン,フクオカシハカタク,シンワマチ,福岡県,福岡市博多区,新和町,0,0,1,0,0,0
40132,812,8120028,フクオカケン,フクオカシハカタク,スサキマチ,福岡県,福岡市博多区,須崎町,0,0,0,0,0,0
40132,812,8120018,フクオカケン,フクオカシハカタク,スミヨシ,福岡県,福岡市博多区,住吉,0,0,1,0,0,0
40132,812,8120032,フクオカケン,フクオカシハカタク,セキジョウマチ,福岡県,福岡市博多区,石城町,0,0,0,0,0,0
40132,812,8120033,フクオカケン,フクオカシハカタク,タイハクマチ,福岡県,福岡市博多区,大博町,0,0,0,0,0,0
40132,816,8120878,フクオカケン,フクオカシハカタク,タケオカマチ,福岡県,福岡市博多区,竹丘町,0,0,1,0,0,0
40132,816,8120895,フクオカケン,フクオカシハカタク,タケシタ,福岡県,福岡市博多区,竹下,0,0,1,0,0,0
40132,812,8120021,フクオカケン,フクオカシハカタク,チッコウホンマチ,福岡県,福岡市博多区,築港本町,0,0,0,0,0,0
40132,812,8120044,フクオカケン,フクオカシハカタク,チヨ,福岡県,福岡市博多区,千代,0,0,1,0,0,0
40132,816,8120858,フクオカケン,フクオカシハカタク,ツキグマ,福岡県,福岡市博多区,月隈,0,0,1,0,0,0
40132,812,8120024,フクオカケン,フクオカシハカタク,ツナバマチ,福岡県,福岡市博多区,綱場町,0,0,0,0,0,0
40132,812,8120020,フクオカケン,フクオカシハカタク,ツマショウジ,福岡県,福岡市博多区,対馬小路,0,0,0,0,0,0
40132,812,8120025,フクオカケン,フクオカシハカタク,テンヤマチ,福岡県,福岡市博多区,店屋町,0,0,0,0,0,0
40132,812,8120008,フクオカケン,フクオカシハカタク,トウコウ,福岡県,福岡市博多区,東光,0,0,1,0,0,0
40132,816,8120896,フクオカケン,フクオカシハカタク,トウコウジマチ,福岡県,福岡市博多区,東光寺町,0,0,1,0,0,0
40132,816,8120893,フクオカケン,フクオカシハカタク,ナカ,福岡県,福岡市博多区,那珂,0,0,1,0,0,0
40132,812,8120035,フクオカケン,フクオカシハカタク,ナカゴフクマチ,福岡県,福岡市博多区,中呉服町,0,0,0,0,0,0
40132,810,8100801,フクオカケン,フクオカシハカタク,ナカス,福岡県,福岡市博多区,中洲,0,0,1,0,0,0
40132,810,8100802,フクオカケン,フクオカシハカタク,ナカスナカシママチ,福岡県,福岡市博多区,中洲中島町,0,0,0,0,0,0
40132,812,8120023,フクオカケン,フクオカシハカタク,ナラヤマチ,福岡県,福岡市博多区,奈良屋町,0,0,0,0,0,0
40132,816,8120857,フクオカケン,フクオカシハカタク,ニシツキグマ,福岡県,福岡市博多区,西月隈,0,0,1,0,0,0
40132,816,8120873,フクオカケン,フクオカシハカタク,ニシハルマチ,福岡県,福岡市博多区,西春町,0,0,1,0,0,0
40132,812,8120012,フクオカケン,フクオカシハカタク,ハカタエキチュウオウガイ,福岡県,福岡市博多区,博多駅中央街,0,0,0,0,0,0
40132,812,8120011,フクオカケン,フクオカシハカタク,ハカタエキマエ,福岡県,福岡市博多区,博多駅前,0,0,1,0,0,0
40132,812,8120013,フクオカケン,フクオカシハカタク,ハカタエキヒガシ,福岡県,福岡市博多区,博多駅東,0,0,1,0,0,0
40132,812,8120016,フクオカケン,フクオカシハカタク,ハカタエキミナミ,福岡県,福岡市博多区,博多駅南,0,0,1,0,0,0
40132,816,8120872,フクオカケン,フクオカシハカタク,ハルマチ,福岡県,福岡市博多区,春町,0,0,1,0,0,0
40132,816,8120897,フクオカケン,フクオカシハカタク,ハンミチバシ,福岡県,福岡市博多区,半道橋,0,0,1,0,0,0
40132,812,8120014,フクオカケン,フクオカシハカタク,ヒエマチ,福岡県,福岡市博多区,比恵町,0,0,0,0,0,0
40132,816,8120874,フクオカケン,フクオカシハカタク,ヒカリガオカマチ,福岡県,福岡市博多区,光丘町,0,0,1,0,0,0
40132,812,8120045,フクオカケン,フクオカシハカタク,ヒガシコウエン,福岡県,福岡市博多区,東公園,0,0,0,0,0,0
40132,816,8120854,フクオカケン,フクオカシハカタク,ヒガシツキグマ,福岡県,福岡市博多区,東月隈,0,0,1,0,0,0
40132,816,8120892,フクオカケン,フクオカシハカタク,ヒガシナカ,福岡県,福岡市博多区,東那珂,0,0,1,0,0,0
40132,812,8120007,フクオカケン,フクオカシハカタク,ヒガシヒエ,福岡県,福岡市博多区,東比恵,0,0,1,0,0,0
40132,816,8120853,フクオカケン,フクオカシハカタク,ヒガシヒラオ,福岡県,福岡市博多区,東平尾,0,0,0,0,0,0
40132,816,8120852,フクオカケン,フクオカシハカタク,ヒガシヒラオコウエン,福岡県,福岡市博多区,東平尾公園,0,0,1,0,0,0
40132,816,8120886,フクオカケン,フクオカシハカタク,ミナミハチマンマチ,福岡県,福岡市博多区,南八幡町,0,0,1,0,0,0
40132,816,8120883,フクオカケン,フクオカシハカタク,ミナミホンマチ,福岡県,福岡市博多区,南本町,0,0,1,0,0,0
40132,812,8120017,フクオカケン,フクオカシハカタク,ミノシマ,福岡県,福岡市博多区,美野島,0,0,1,0,0,0
40132,816,8120882,フクオカケン,フクオカシハカタク,ムギノ,福岡県,福岡市博多区,麦野,0,0,1,0,0,0
40132,816,8120877,フクオカケン,フクオカシハカタク,モトマチ,福岡県,福岡市博多区,元町,0,0,1,0,0,0
40132,816,8120894,フクオカケン,フクオカシハカタク,モロオカ,福岡県,福岡市博多区,諸岡,0,0,1,0,0,0
40132,812,8120042,フクオカケン,フクオカシハカタク,ユタカ,福岡県,福岡市博多区,豊,0,0,1,0,0,0
40132,812,8120041,フクオカケン,フクオカシハカタク,ヨシヅカ,福岡県,福岡市博多区,吉塚,0,0,1,0,0,0
40132,812,8120046,フクオカケン,フクオカシハカタク,ヨシヅカホンマチ,福岡県,福岡市博多区,吉塚本町,0,0,0,0,0,0
40132,816,8120862,フクオカケン,フクオカシハカタク,リュウゲジ,福岡県,福岡市博多区,立花寺,0,0,1,0,0,0
40132,812,8120039,フクオカケン,フクオカシハカタク,レイセンマチ,福岡県,福岡市博多区,冷泉町,0,0,0,0,0,0
40133,810,8100000,フクオカケン,フクオカシチュウオウク,イカニケイサイガナイバアイ,福岡県,福岡市中央区,以下に掲載がない場合,0,0,0,0,0,0
40133,810,8100042,フクオカケン,フクオカシチュウオウク,アカサカ,福岡県,福岡市中央区,赤坂,0,0,1,0,0,0
40133,810,8100076,フクオカケン,フクオカシチュウオウク,アラツ,福岡県,福岡市中央区,荒津,0,0,1,0,0,0
40133,810,8100062,フクオカケン,フクオカシチュウオウク,アラト,福岡県,福岡市中央区,荒戸,0,0,1,0,0,0
40133,810,8100067,フクオカケン,フクオカシチュウオウク,イザキ,福岡県,福岡市中央区,伊崎,0,0,0,0,0,0
40133,810,8100021,フクオカケン,フクオカシチュウオウク,イマイズミ,福岡県,福岡市中央区,今泉,0,0,1,0,0,0
40133,810,8100054,フクオカケン,フクオカシチュウオウク,イマガワ,福岡県,福岡市中央区,今川,0,0,1,0,0,0
40133,810,8100074,フクオカケン,フクオカシチュウオウク,オオテモン,福岡県,福岡市中央区,大手門,0,0,1,0,0,0
40133,810,8100052,フクオカケン,フクオカシチュウオウク,オオホリ,福岡県,福岡市中央区,大濠,0,0,1,0,0,0
40133,810,8100051,フクオカケン,フクオカシチュウオウク,オオホリコウエン,福岡県,福岡市中央区,大濠公園,0,0,0,0,0,0
40133,810,8100013,フクオカケン,フクオカシチュウオウク,オオミヤ,福岡県,福岡市中央区,大宮,0,0,1,0,0,0
40133,810,8100033,フクオカケン,フクオカシチュウオウク,オザサ,福岡県,福岡市中央区,小笹,0,0,1,0,0,0
40133,810,8100005,フクオカケン,フクオカシチュウオウク,キヨカワ,福岡県,福岡市中央区,清川,0,0,1,0,0,0
40133,810,8100045,フクオカケン,フクオカシチュウオウク,クサガエ,福岡県,福岡市中央区,草香江,0,0,1,0,0,0
40133,810,8100055,フクオカケン,フクオカシチュウオウク,クロモン,福岡県,福岡市中央区,黒門,0,0,0,0,0,0
40133,810,8100023,フクオカケン,フクオカシチュウオウク,ケゴ,福岡県,福岡市中央区,警固,0,0,1,0,0,0
40133,810,8100027,フクオカケン,フクオカシチュウオウク,ゴショガダニ,福岡県,福岡市中央区,御所ケ谷,0,0,0,0,0,0
40133,810,8100024,フクオカケン,フクオカシチュウオウク,サクラザカ,福岡県,福岡市中央区,桜坂,0,0,1,0,0,0
40133,810,8100034,フクオカケン,フクオカシチュウオウク,ササオカ,福岡県,福岡市中央区,笹丘,0,0,1,0,0,0
40133,810,8100018,フクオカケン,フクオカシチュウオウク,サンソウドオリ,福岡県,福岡市中央区,山荘通,0,0,1,0,0,0
40133,810,8100028,フクオカケン,フクオカシチュウオウク,ジョウスイドオリ,福岡県,福岡市中央区,浄水通,0,0,0,0,0,0
40133,810,8100043,フクオカケン,フクオカシチュウオウク,ジョウナイ,福岡県,福岡市中央区,城内,0,0,0,0,0,0
40133,810,8100012,フクオカケン,フクオカシチュウオウク,シロガネ,福岡県,福岡市中央区,白金,0,0,1,0,0,0
40133,810,8100064,フクオカケン,フクオカシチュウオウク,ジギョウ,福岡県,福岡市中央区,地行,0,0,1,0,0,0
40133,810,8100065,フクオカケン,フクオカシチュウオウク,ジギョウハマ,福岡県,福岡市中央区,地行浜,0,0,1,0,0,0
40133,810,8100041,フクオカケン,フクオカシチュウオウク,ダイミョウ,福岡県,福岡市中央区,大名,0,0,1,0,0,0
40133,810,8100011,フクオカケン,フクオカシチュウオウク,タカサゴ,福岡県,福岡市中央区,高砂,0,0,1,0,0,0
40133,810,8100031,フクオカケン,フクオカシチュウオウク,タニ,福岡県,福岡市中央区,谷,0,0,1,0,0,0
40133,810,8100032,フクオカケン,フクオカシチュウオウク,テルクニ,福岡県,福岡市中央区,輝国,0,0,1,0,0,0
40133,810,8100001,フクオカケン,フクオカシチュウオウク,テンジン,福岡県,福岡市中央区,天神,0,0,1,0,0,0
40133,810,8100063,フクオカケン,フクオカシチュウオウク,トウジンマチ,福岡県,福岡市中央区,唐人町,0,0,1,0,0,0
40133,810,8100053,フクオカケン,フクオカシチュウオウク,トリカイ,福岡県,福岡市中央区,鳥飼,0,0,1,0,0,0
40133,810,8100072,フクオカケン,フクオカシチュウオウク,ナガハマ,福岡県,福岡市中央区,長浜,0,0,1,0,0,0
40133,810,8100015,フクオカケン,フクオカシチュウオウク,ナノカワ,福岡県,福岡市中央区,那の川,0,0,1,0,0,0
40133,810,8100071,フクオカケン,フクオカシチュウオウク,ナノツ,福岡県,福岡市中央区,那の津,0,0,1,0,0,0
40133,810,8100061,フクオカケン,フクオカシチュウオウク,ニシコウエン,福岡県,福岡市中央区,西公園,0,0,0,0,0,0
40133,810,8100002,フクオカケン,フクオカシチュウオウク,ニシナカス,福岡県,福岡市中央区,西中洲,0,0,0,0,0,0
40133,810,8100035,フクオカケン,フクオカシチュウオウク,バイコウエン,福岡県,福岡市中央区,梅光園,0,0,1,0,0,0
40133,810,8100036,フクオカケン,フクオカシチュウオウク,バイコウエンダンチ,福岡県,福岡市中央区,梅光園団地,0,0,0,0,0,0
40133,810,8100003,フクオカケン,フクオカシチュウオウク,ハルヨシ,福岡県,福岡市中央区,春吉,0,0,1,0,0,0
40133,810,8100014,フクオカケン,フクオカシチュウオウク,ヒラオ,福岡県,福岡市中央区,平尾,0,0,1,0,0,0
40133,810,8100017,フクオカケン,フクオカシチュウオウク,ヒラオカマチ,福岡県,福岡市中央区,平丘町,0,0,0,0,0,0
40133,810,8100029,フクオカケン,フクオカシチュウオウク,ヒラオジョウスイマチ,福岡県,福岡市中央区,平尾浄水町,0,0,0,0,0,0
40133,810,8100066,フクオカケン,フクオカシチュウオウク,フクハマ,福岡県,福岡市中央区,福浜,0,0,1,0,0,0
40133,810,8100026,フクオカケン,フクオカシチュウオウク,フルコガラスマチ,福岡県,福岡市中央区,古小烏町,0,0,0,0,0,0
40133,810,8100016,フクオカケン,フクオカシチュウオウク,ヘイワ,福岡県,福岡市中央区,平和,0,0,1,0,0,0
40133,810,8100073,フクオカケン,フクオカシチュウオウク,マイヅル,福岡県,福岡市中央区,舞鶴,0,0,1,0,0,0
40133,810,8100075,フクオカケン,フクオカシチュウオウク,ミナト,福岡県,福岡市中央区,港,0,0,1,0,0,0
40133,810,8100037,フクオカケン,フクオカシチュウオウク,ミナミコウエン,福岡県,福岡市中央区,南公園,0,0,0,0,0,0
40133,810,8100022,フクオカケン,フクオカシチュウオウク,ヤクイン,福岡県,福岡市中央区,薬院,0,0,1,0,0,0
40133,810,8100025,フクオカケン,フクオカシチュウオウク,ヤクインイフクマチ,福岡県,福岡市中央区,薬院伊福町,0,0,0,0,0,0
40133,810,8100044,フクオカケン,フクオカシチュウオウク,ロッポンマツ,福岡県,福岡市中央区,六本松,0,0,1,0,0,0
40133,810,8100004,フクオカケン,フクオカシチュウオウク,ワタナベドオリ,福岡県,福岡市中央区,渡辺通,0,0,1,0,0,0
40134,815,8150000,フクオカケン,フクオカシミナミク,イカニケイサイガナイバアイ,福岡県,福岡市南区,以下に掲載がない場合,0,0,0,0,0,0
40134,816,8111302,フクオカケン,フクオカシミナミク,イジリ,福岡県,福岡市南区,井尻,0,0,1,0,0,0
40134,815,8150084,フクオカケン,フクオカシミナミク,イチザキ,福岡県,福岡市南区,市崎,0,0,1,0,0,0
40134,815,8150073,フクオカケン,フクオカシミナミク,オオイケ,福岡県,福岡市南区,大池,0,0,1,0,0,0
40134,815,8150082,フクオカケン,フクオカシミナミク,オオグス,福岡県,福岡市南区,大楠,0,0,1,0,0,0
40134,815,8150033,フクオカケン,フクオカシミナミク,オオハシ,福岡県,福岡市南区,大橋,0,0,1,0,0,0
40134,815,8150038,フクオカケン,フクオカシミナミク,オオハシダンチ,福岡県,福岡市南区,大橋団地,0,0,0,0,0,0
40134,816,8111313,フクオカケン,フクオカシミナミク,オサ,福岡県,福岡市南区,曰佐,0,0,1,0,0,0
40134,816,8111303,フクオカケン,フクオカシミナミク,オリタテマチ,福岡県,福岡市南区,折立町,0,0,0,0,0,0
40134,815,8111353,フクオカケン,フクオカシミナミク,カシワラ,福岡県,福岡市南区,柏原,0,0,1,0,0,0
40134,816,8111324,フクオカケン,フクオカシミナミク,ケヤゴウ,福岡県,福岡市南区,警弥郷,0,0,1,0,0,0
40134,816,8150001,フクオカケン,フクオカシミナミク,ゴジッカワ,福岡県,福岡市南区,五十川,0,0,1,0,0,0
40134,815,8111365,フクオカケン,フクオカシミナミク,サラヤマ,福岡県,福岡市南区,皿山,0,0,1,0,0,0
40134,815,8150032,フクオカケン,フクオカシミナミク,シオバル,福岡県,福岡市南区,塩原,0,0,1,0,0,0
40134,815,8150031,フクオカケン,フクオカシミナミク,シミズ,福岡県,福岡市南区,清水,0,0,1,0,0,0
40134,815,8111354,フクオカケン,フクオカシミナミク,タイヘイジ,福岡県,福岡市南区,大平寺,0,0,1,0,0,0
40134,816,8150004,フクオカケン,フクオカシミナミク,タカキ,福岡県,福岡市南区,高木,0,0,1,0,0,0
40134,815,8150083,フクオカケン,フクオカシミナミク,タカミヤ,福岡県,福岡市南区,高宮,0,0,1,0,0,0
40134,815,8150072,フクオカケン,フクオカシミナミク,タガ,福岡県,福岡市南区,多賀,0,0,1,0,0,0
40134,815,8150037,フクオカケン,フクオカシミナミク,タマガワマチ,福岡県,福岡市南区,玉川町,0,0,0,0,0,0
40134,815,8150036,フクオカケン,フクオカシミナミク,チクシガオカ,福岡県,福岡市南区,筑紫丘,0,0,1,0,0,0
40134,815,8111352,フクオカケン,フクオカシミナミク,ツルタ,福岡県,福岡市南区,鶴田,0,0,1,0,0,0
40134,815,8150074,フクオカケン,フクオカシミナミク,テラヅカ,福岡県,福岡市南区,寺塚,0,0,1,0,0,0
40134,815,8111364,フクオカケン,フクオカシミナミク,ナカオ,福岡県,福岡市南区,中尾,0,0,1,0,0,0
40134,815,8150075,フクオカケン,フクオカシミナミク,ナガオカ,福岡県,福岡市南区,長丘,0,0,1,0,0,0
40134,815,8111362,フクオカケン,フクオカシミナミク,ナガズミ,福岡県,福岡市南区,長住,0,0,1,0,0,0
40134,815,8150081,フクオカケン,フクオカシミナミク,ナノカワ,福岡県,福岡市南区,那の川,0,0,1,0,0,0
40134,815,8111361,フクオカケン,フクオカシミナミク,ニシナガズミ,福岡県,福岡市南区,西長住,0,0,1,0,0,0
40134,815,8111347,フクオカケン,フクオカシミナミク,ノタメ,福岡県,福岡市南区,野多目,0,0,1,0,0,0
40134,815,8150041,フクオカケン,フクオカシミナミク,ノマ,福岡県,福岡市南区,野間,0,0,1,0,0,0
40134,815,8111356,フクオカケン,フクオカシミナミク,ハナハタ,福岡県,福岡市南区,花畑,0,0,1,0,0,0
40134,815,8111355,フクオカケン,フクオカシミナミク,ヒバル,福岡県,福岡市南区,桧原,0,0,1,0,0,0
40134,815,8150071,フクオカケン,フクオカシミナミク,ヘイワ,福岡県,福岡市南区,平和,0,0,1,0,0,0
40134,816,8111314,フクオカケン,フクオカシミナミク,マトバ,福岡県,福岡市南区,的場,0,0,1,0,0,0
40134,815,8150034,フクオカケン,フクオカシミナミク,ミナミオオハシ,福岡県,福岡市南区,南大橋,0,0,1,0,0,0
40134,815,8111344,フクオカケン,フクオカシミナミク,ミヤケ,福岡県,福岡市南区,三宅,0,0,1,0,0,0
40134,815,8111345,フクオカケン,フクオカシミナミク,ムカイシンマチ,福岡県,福岡市南区,向新町,0,0,1,0,0,0
40134,815,8150035,フクオカケン,フクオカシミナミク,ムカイノ,福岡県,福岡市南区,向野,0,0,1,0,0,0
40134,815,8111351,フクオカケン,フクオカシミナミク,ヤカタバル,福岡県,福岡市南区,屋形原,0,0,1,0,0,0
40134,816,8111323,フクオカケン,フクオカシミナミク,ヤナガ,福岡県,福岡市南区,弥永,0,0,1,0,0,0
40134,816,8111322,フクオカケン,フクオカシミナミク,ヤナガダンチ,福岡県,福岡市南区,弥永団地,0,0,0,0,0,0
40134,815,8150063,フクオカケン,フクオカシミナミク,ヤナゴウチ,福岡県,福岡市南区,柳河内,0,0,1,0,0,0
40134,816,8111321,フクオカケン,フクオカシミナミク,ヤナセ,福岡県,福岡市南区,柳瀬,0,0,1,0,0,0
40134,816,8111311,フクオカケン,フクオカシミナミク,ヨコテ,福岡県,福岡市南区,横手,0,0,1,0,0,0
40134,816,8111312,フクオカケン,フクオカシミナミク,ヨコテミナミマチ,福岡県,福岡市南区,横手南町,0,0,0,0,0,0
40134,815,8111346,フクオカケン,フクオカシミナミク,ロウジ,福岡県,福岡市南区,老司,0,0,1,0,0,0
40134,815,8150042,フクオカケン,フクオカシミナミク,ワカヒサ,福岡県,福岡市南区,若久,0,0,1,0,0,0
40134,815,8150048,フクオカケン,フクオカシミナミク,ワカヒサダンチ,福岡県,福岡市南区,若久団地,0,0,0,0,0,0
40134,815,8111343,フクオカケン,フクオカシミナミク,ワダ,福岡県,福岡市南区,和田,0,0,1,0,0,0
40135,819,8190000,フクオカケン,フクオカシニシク,イカニケイサイガナイバアイ,福岡県,福岡市西区,以下に掲載がない場合,0,0,0,0,0,0
40135,819,8190015,フクオカケン,フクオカシニシク,アタゴ,福岡県,福岡市西区,愛宕,0,0,1,0,0,0
40135,819,8190013,フクオカケン,フクオカシニシク,アタゴハマ,福岡県,福岡市西区,愛宕浜,0,0,1,0,0,0
40135,819,8190007,フクオカケン,フクオカシニシク,アタゴミナミ,福岡県,福岡市西区,愛宕南,0,0,1,0,0,0
40135,81903,8190371,フクオカケン,フクオカシニシク,イイジ,福岡県,福岡市西区,飯氏,0,0,0,0,0,0
40135,819,8190037,フクオカケン,フクオカシニシク,イイモリ,福岡県,福岡市西区,飯盛,0,0,0,0,0,0
40135,819,8190042,フクオカケン,フクオカシニシク,イキダンチ,福岡県,福岡市西区,壱岐団地,0,0,0,0,0,0
40135,819,8190055,フクオカケン,フクオカシニシク,イキノマツバラ,福岡県,福岡市西区,生の松原,0,0,1,0,0,0
40135,819,8190044,フクオカケン,フクオカシニシク,イキマツダイ,福岡県,福岡市西区,生松台,0,0,1,0,0,0
40135,819,8190025,フクオカケン,フクオカシニシク,イシマル,福岡県,福岡市西区,石丸,0,0,1,0,0,0
40135,81903,8190381,フクオカケン,フクオカシニシク,イズミ,福岡県,福岡市西区,泉,0,0,1,0,0,0
40135,81901,8190167,フクオカケン,フクオカシニシク,イマジュク,福岡県,福岡市西区,今宿,0,0,1,0,0,0
40135,81901,8190162,フクオカケン,フクオカシニシク,イマジュクアオキ,福岡県,福岡市西区,今宿青木,0,0,0,0,0,0
40135,81901,8190168,フクオカケン,フクオカシニシク,イマジュクエキマエ,福岡県,福岡市西区,今宿駅前,0,0,1,0,0,0
40135,81901,8190163,フクオカケン,フクオカシニシク,イマジュクカミノハル,福岡県,福岡市西区,今宿上ノ原,0,0,0,0,0,0
40135,81901,8190164,フクオカケン,フクオカシニシク,イマジュクマチ,福岡県,福岡市西区,今宿町,0,0,0,0,0,0
40135,81901,8190161,フクオカケン,フクオカシニシク,イマジュクヒガシ,福岡県,福岡市西区,今宿東,0,0,1,0,0,0
40135,81901,8190165,フクオカケン,フクオカシニシク,イマヅ,福岡県,福岡市西区,今津,0,0,0,0,0,0
40135,81903,8190372,フクオカケン,フクオカシニシク,ウダガワラ,福岡県,福岡市西区,宇田川原,0,0,0,0,0,0
40135,819,8190005,フクオカケン,フクオカシニシク,ウチハマ,福岡県,福岡市西区,内浜,0,0,1,0,0,0
40135,819,8190021,フクオカケン,フクオカシニシク,オオマチダンチ,福岡県,福岡市西区,大町団地,0,0,0,0,0,0
40135,819,8190001,フクオカケン,フクオカシニシク,オド,福岡県,福岡市西区,小戸,0,0,1,0,0,0
40135,819,8190011,フクオカケン,フクオカシニシク,オロノシマ,福岡県,福岡市西区,小呂島,0,0,0,0,0,0
40135,819,8190035,フクオカケン,フクオカシニシク,カナタケ,福岡県,福岡市西区,金武,0,0,0,0,0,0
40135,819,8190054,フクオカケン,フクオカシニシク,カミヤマト,福岡県,福岡市西区,上山門,0,0,1,0,0,0
40135,81903,8190388,フクオカケン,フクオカシニシク,キュウダイシンマチ,福岡県,福岡市西区,九大新町,0,0,0,0,0,0
40135,81902,8190204,フクオカケン,フクオカシニシク,クサバ,福岡県,福岡市西区,草場,0,0,0,0,0,0
40135,81903,8190382,フクオカケン,フクオカシニシク,クワバラ,福岡県,福岡市西区,桑原,0,0,0,0,0,0
40135,81902,8190205,フクオカケン,フクオカシニシク,ゲンカイシマ,福岡県,福岡市西区,玄界島,0,0,0,0,0,0
40135,81902,8190203,フクオカケン,フクオカシニシク,コタ,福岡県,福岡市西区,小田,0,0,0,0,0,0
40135,819,8190052,フクオカケン,フクオカシニシク,シモヤマト,福岡県,福岡市西区,下山門,0,0,1,0,0,0
40135,819,8190051,フクオカケン,フクオカシニシク,シモヤマトダンチ,福岡県,福岡市西区,下山門団地,0,0,0,0,0,0
40135,819,8190024,フクオカケン,フクオカシニシク,ジュウロウガワダンチ,福岡県,福岡市西区,十郎川団地,0,0,0,0,0,0
40135,819,8190041,フクオカケン,フクオカシニシク,ジュウロクチョウ,福岡県,福岡市西区,拾六町,0,0,1,0,0,0
40135,819,8190045,フクオカケン,フクオカシニシク,ジュウロクチョウダンチ,福岡県,福岡市西区,拾六町団地,0,0,0,0,0,0
40135,819,8190053,フクオカケン,フクオカシニシク,ジョウノハルダンチ,福岡県,福岡市西区,城の原団地,0,0,0,0,0,0
40135,81903,8190373,フクオカケン,フクオカシニシク,スセンジ,福岡県,福岡市西区,周船寺,0,0,1,0,0,0
40135,81903,8190374,フクオカケン,フクオカシニシク,センリ,福岡県,福岡市西区,千里,0,0,0,0,0,0
40135,819,8190034,フクオカケン,フクオカシニシク,タ,福岡県,福岡市西区,田,0,0,0,0,0,0
40135,81903,8190383,フクオカケン,フクオカシニシク,タジリ,福岡県,福岡市西区,田尻,0,0,1,0,0,0
40135,81903,8190384,フクオカケン,フクオカシニシク,タロウマル,福岡県,福岡市西区,太郎丸,0,0,1,0,0,0
40135,819,8190032,フクオカケン,フクオカシニシク,トギレ,福岡県,福岡市西区,戸切,0,0,1,0,0,0
40135,81903,8190375,フクオカケン,フクオカシニシク,トクナガ,福岡県,福岡市西区,徳永,0,0,0,0,0,0
40135,819,8190014,フクオカケン,フクオカシニシク,トヨハマ,福岡県,福岡市西区,豊浜,0,0,1,0,0,0
40135,819,8190039,フクオカケン,フクオカシニシク,ニシイリベ,福岡県,福岡市西区,西入部,0,0,0,0,0,0
40135,81902,8190202,フクオカケン,フクオカシニシク,ニシノウラ,福岡県,福岡市西区,西浦,0,0,0,0,0,0
40135,819,8190046,フクオカケン,フクオカシニシク,ニシノオカ,福岡県,福岡市西区,西の丘,0,0,1,0,0,0
40135,819,8190043,フクオカケン,フクオカシニシク,ノカタ,福岡県,福岡市西区,野方,0,0,1,0,0,0
40135,819,8190012,フクオカケン,フクオカシニシク,ノコ,福岡県,福岡市西区,能古,0,0,0,0,0,0
40135,819,8190033,フクオカケン,フクオカシニシク,ハシモト(オオアザ),福岡県,福岡市西区,橋本(大字),1,0,1,0,0,0
40135,819,8190031,フクオカケン,フクオカシニシク,ハシモト(チョウメ),福岡県,福岡市西区,橋本(丁目),1,0,1,0,0,0
40135,819,8190038,フクオカケン,フクオカシニシク,ハネド,福岡県,福岡市西区,羽根戸,0,0,0,0,0,0
40135,819,8190022,フクオカケン,フクオカシニシク,フクシゲ,福岡県,福岡市西区,福重,0,0,1,0,0,0
40135,819,8190023,フクオカケン,フクオカシニシク,フクシゲダンチ,福岡県,福岡市西区,福重団地,0,0,0,0,0,0
40135,81903,8190387,フクオカケン,フクオカシニシク,フジミ,福岡県,福岡市西区,富士見,0,0,1,0,0,0
40135,81902,8190201,フクオカケン,フクオカシニシク,ミヤノウラ,福岡県,福岡市西区,宮浦,0,0,0,0,0,0
40135,81903,8190376,フクオカケン,フクオカシニシク,ミョウバル,福岡県,福岡市西区,女原,0,0,0,0,0,0
40135,819,8190030,フクオカケン,フクオカシニシク,ムロミガオカ,福岡県,福岡市西区,室見が丘,0,0,1,0,0,0
40135,819,8190002,フクオカケン,フクオカシニシク,メイノハマ,福岡県,福岡市西区,姪の浜,0,0,1,0,0,0
40135,819,8190006,フクオカケン,フクオカシニシク,メイノハマエキミナミ,福岡県,福岡市西区,姪浜駅南,0,0,1,0,0,0
40135,81903,8190385,フクオカケン,フクオカシニシク,モトオカ,福岡県,福岡市西区,元岡,0,0,0,0,0,0
40135,81903,8190386,フクオカケン,フクオカシニシク,モトハマ,福岡県,福岡市西区,元浜,0,0,1,0,0,0
40135,81901,8190166,フクオカケン,フクオカシニシク,ヨコハマ(1-2チョウメ),福岡県,福岡市西区,横浜(1〜2丁目),1,0,1,0,0,0
40135,81903,8190366,フクオカケン,フクオカシニシク,ヨコハマ(3チョウメ),福岡県,福岡市西区,横浜(3丁目),1,0,1,0,0,0
40135,819,8190036,フクオカケン,フクオカシニシク,ヨシタケ,福岡県,福岡市西区,吉武,0,0,0,0,0,0
40136,81401,8140100,フクオカケン,フクオカシジョウナンク,イカニケイサイガナイバアイ,福岡県,福岡市城南区,以下に掲載がない場合,0,0,0,0,0,0
40136,81401,8140101,フクオカケン,フクオカシジョウナンク,アラエ,福岡県,福岡市城南区,荒江,0,0,1,0,0,0
40136,81401,8140102,フクオカケン,フクオカシジョウナンク,アラエダンチ,福岡県,福岡市城南区,荒江団地,0,0,0,0,0,0
40136,81401,8140134,フクオカケン,フクオカシジョウナンク,イイクラ,福岡県,福岡市城南区,飯倉,0,0,1,0,0,0
40136,81401,8140144,フクオカケン,フクオカシジョウナンク,ウメバヤシ,福岡県,福岡市城南区,梅林,0,0,1,0,0,0
40136,81401,8140142,フクオカケン,フクオカシジョウナンク,カタエ,福岡県,福岡市城南区,片江,0,0,0,0,0,0
40136,81401,8140114,フクオカケン,フクオカシジョウナンク,カナヤマダンチ,福岡県,福岡市城南区,金山団地,0,0,0,0,0,0
40136,81401,8140105,フクオカケン,フクオカシジョウナンク,ジョウセイダンチ,福岡県,福岡市城南区,城西団地,0,0,0,0,0,0
40136,81401,8140121,フクオカケン,フクオカシジョウナンク,シンショウジ,福岡県,福岡市城南区,神松寺,0,0,1,0,0,0
40136,81401,8140154,フクオカケン,フクオカシジョウナンク,タカラダイダンチ,福岡県,福岡市城南区,宝台団地,0,0,0,0,0,0
40136,81401,8140113,フクオカケン,フクオカシジョウナンク,タシマ,福岡県,福岡市城南区,田島,0,0,1,0,0,0
40136,81401,8140111,フクオカケン,フクオカシジョウナンク,チャヤマ,福岡県,福岡市城南区,茶山,0,0,1,0,0,0
40136,81401,8140151,フクオカケン,フクオカシジョウナンク,ツツミ,福岡県,福岡市城南区,堤,0,0,1,0,0,0
40136,81401,8140152,フクオカケン,フクオカシジョウナンク,ツツミダンチ,福岡県,福岡市城南区,堤団地,0,0,0,0,0,0
40136,81401,8140112,フクオカケン,フクオカシジョウナンク,トモオカ,福岡県,福岡市城南区,友丘,0,0,1,0,0,0
40136,81401,8140103,フクオカケン,フクオカシジョウナンク,トリカイ,福岡県,福岡市城南区,鳥飼,0,0,1,0,0,0
40136,81401,8140123,フクオカケン,フクオカシジョウナンク,ナガオ,福岡県,福岡市城南区,長尾,0,0,1,0,0,0
40136,81401,8140133,フクオカケン,フクオカシジョウナンク,ナナクマ,福岡県,福岡市城南区,七隈,0,0,0,0,0,0
40136,81401,8140141,フクオカケン,フクオカシジョウナンク,ニシカタエ,福岡県,福岡市城南区,西片江,0,0,1,0,0,0
40136,81401,8140153,フクオカケン,フクオカシジョウナンク,ヒイカワ,福岡県,福岡市城南区,樋井川,0,0,1,0,0,0
40136,81401,8140155,フクオカケン,フクオカシジョウナンク,ヒガシアブラヤマ,福岡県,福岡市城南区,東油山,0,0,1,0,0,0
40136,81401,8140104,フクオカケン,フクオカシジョウナンク,ベフ,福岡県,福岡市城南区,別府,0,0,1,0,0,0
40136,81401,8140106,フクオカケン,フクオカシジョウナンク,ベフダンチ,福岡県,福岡市城南区,別府団地,0,0,0,0,0,0
40136,81401,8140132,フクオカケン,フクオカシジョウナンク,ホシクマ,福岡県,福岡市城南区,干隈,0,0,1,0,0,0
40136,81401,8140131,フクオカケン,フクオカシジョウナンク,マツヤマ,福岡県,福岡市城南区,松山,0,0,1,0,0,0
40136,81401,8140143,フクオカケン,フクオカシジョウナンク,ミナミカタエ,福岡県,福岡市城南区,南片江,0,0,1,0,0,0
40136,81401,8140122,フクオカケン,フクオカシジョウナンク,ユウセンテイ,福岡県,福岡市城南区,友泉亭,0,0,0,0,0,0
40137,814,8140000,フクオカケン,フクオカシサワラク,イカニケイサイガナイバアイ,福岡県,福岡市早良区,以下に掲載がない場合,0,0,0,0,0,0
40137,814,8140004,フクオカケン,フクオカシサワラク,アケボノ,福岡県,福岡市早良区,曙,0,0,1,0,0,0
40137,814,8140021,フクオカケン,フクオカシサワラク,アラエ,福岡県,福岡市早良区,荒江,0,0,1,0,0,0
40137,814,8140033,フクオカケン,フクオカシサワラク,アリタ,福岡県,福岡市早良区,有田,0,0,1,0,0,0
40137,814,8140034,フクオカケン,フクオカシサワラク,アリタダンチ,福岡県,福岡市早良区,有田団地,0,0,0,0,0,0
40137,81401,8140161,フクオカケン,フクオカシサワラク,イイクラ,福岡県,福岡市早良区,飯倉,0,0,1,0,0,0
40137,81111,8111134,フクオカケン,フクオカシサワラク,イイバ,福岡県,福岡市早良区,飯場,0,0,0,0,0,0
40137,81111,8111132,フクオカケン,フクオカシサワラク,イシガマ,福岡県,福岡市早良区,石釜,0,0,0,0,0,0
40137,81111,8111113,フクオカケン,フクオカシサワラク,イタヤ,福岡県,福岡市早良区,板屋,0,0,0,0,0,0
40137,81111,8111123,フクオカケン,フクオカシサワラク,ウチノ,福岡県,福岡市早良区,内野,0,0,1,0,0,0
40137,81401,8140172,フクオカケン,フクオカシサワラク,ウメバヤシ,福岡県,福岡市早良区,梅林,0,0,1,0,0,0
40137,81111,8111112,フクオカケン,フクオカシサワラク,オカサギ,福岡県,福岡市早良区,小笠木,0,0,0,0,0,0
40137,81111,8111124,フクオカケン,フクオカシサワラク,カナタケ,福岡県,福岡市早良区,金武,0,0,0,0,0,0
40137,81401,8140164,フクオカケン,フクオカシサワラク,カモ,福岡県,福岡市早良区,賀茂,0,0,1,0,0,0
40137,814,8140032,フクオカケン,フクオカシサワラク,コタベ,福岡県,福岡市早良区,小田部,0,0,1,0,0,0
40137,81111,8111122,フクオカケン,フクオカシサワラク,サワラ,福岡県,福岡市早良区,早良,0,0,1,0,0,0
40137,81111,8111114,フクオカケン,フクオカシサワラク,シイバ,福岡県,福岡市早良区,椎原,0,0,0,0,0,0
40137,81111,8111103,フクオカケン,フクオカシサワラク,シカ,福岡県,福岡市早良区,四箇,0,0,1,0,0,0
40137,81401,8140176,フクオカケン,フクオカシサワラク,シカタダンチ,福岡県,福岡市早良区,四箇田団地,0,0,0,0,0,0
40137,81111,8111101,フクオカケン,フクオカシサワラク,シゲドメ,福岡県,福岡市早良区,重留,0,0,1,0,0,0
40137,814,8140003,フクオカケン,フクオカシサワラク,ジョウセイ,福岡県,福岡市早良区,城西,0,0,1,0,0,0
40137,814,8140012,フクオカケン,フクオカシサワラク,ショウダイ,福岡県,福岡市早良区,昭代,0,0,1,0,0,0
40137,81401,8140165,フクオカケン,フクオカシサワラク,ジロウマル,福岡県,福岡市早良区,次郎丸,0,0,1,0,0,0
40137,814,8140005,フクオカケン,フクオカシサワラク,ソハラ,福岡県,福岡市早良区,祖原,0,0,0,0,0,0
40137,81401,8140177,フクオカケン,フクオカシサワラク,タ,福岡県,福岡市早良区,田,0,0,0,0,0,0
40137,814,8140011,フクオカケン,フクオカシサワラク,タカトリ,福岡県,福岡市早良区,高取,0,0,1,0,0,0
40137,81401,8140174,フクオカケン,フクオカシサワラク,タグマ,福岡県,福岡市早良区,田隈,0,0,1,0,0,0
40137,81401,8140175,フクオカケン,フクオカシサワラク,タムラ,福岡県,福岡市早良区,田村,0,0,1,0,0,0
40137,81111,8111131,フクオカケン,フクオカシサワラク,ニシ,福岡県,福岡市早良区,西,0,0,0,0,0,0
40137,81401,8140173,フクオカケン,フクオカシサワラク,ニシアブラヤマ,福岡県,福岡市早良区,西油山,0,0,0,0,0,0
40137,81111,8111121,フクオカケン,フクオカシサワラク,ニシイルベ,福岡県,福岡市早良区,西入部,0,0,1,0,0,0
40137,814,8140002,フクオカケン,フクオカシサワラク,ニシジン,福岡県,福岡市早良区,西新,0,0,1,0,0,0
40137,81401,8140171,フクオカケン,フクオカシサワラク,ノケ,福岡県,福岡市早良区,野芥,0,0,1,0,0,0
40137,814,8140022,フクオカケン,フクオカシサワラク,ハラ,福岡県,福岡市早良区,原,0,0,1,0,0,0
40137,814,8140023,フクオカケン,フクオカシサワラク,ハラダンチ,福岡県,福岡市早良区,原団地,0,0,0,0,0,0
40137,81111,8111102,フクオカケン,フクオカシサワラク,ヒガシイルベ,福岡県,福岡市早良区,東入部,0,0,1,0,0,0
40137,814,8140013,フクオカケン,フクオカシサワラク,フジサキ,福岡県,福岡市早良区,藤崎,0,0,1,0,0,0
40137,81401,8140163,フクオカケン,フクオカシサワラク,ホシクマ,福岡県,福岡市早良区,干隈,0,0,1,0,0,0
40137,81401,8140162,フクオカケン,フクオカシサワラク,ホシノハラダンチ,福岡県,福岡市早良区,星の原団地,0,0,0,0,0,0
40137,81111,8111133,フクオカケン,フクオカシサワラク,マガリブチ,福岡県,福岡市早良区,曲渕,0,0,0,0,0,0
40137,814,8140031,フクオカケン,フクオカシサワラク,ミナミショウ,福岡県,福岡市早良区,南庄,0,0,1,0,0,0
40137,814,8140035,フクオカケン,フクオカシサワラク,ムロズミダンチ,福岡県,福岡市早良区,室住団地,0,0,0,0,0,0
40137,814,8140015,フクオカケン,フクオカシサワラク,ムロミ,福岡県,福岡市早良区,室見,0,0,1,0,0,0
40137,814,8140006,フクオカケン,フクオカシサワラク,モモチ,福岡県,福岡市早良区,百道,0,0,1,0,0,0
40137,814,8140001,フクオカケン,フクオカシサワラク,モモチハマ,福岡県,福岡市早良区,百道浜,0,0,1,0,0,0
40137,814,8140014,フクオカケン,フクオカシサワラク,ヤヨイ,福岡県,福岡市早良区,弥生,0,0,1,0,0,0
40137,81111,8111111,フクオカケン,フクオカシサワラク,ワキヤマ,福岡県,福岡市早良区,脇山,0,0,1,0,0,0
40217,818,8180000,フクオカケン,チクシノシ,イカニケイサイガナイバアイ,福岡県,筑紫野市,以下に掲載がない場合,0,0,0,0,0,0
40217,818,8180011,フクオカケン,チクシノシ,アシキ,福岡県,筑紫野市,阿志岐,0,0,0,0,0,0
40217,818,8180012,フクオカケン,チクシノシ,アマヤマ,福岡県,筑紫野市,天山,0,0,0,0,0,0
40217,818,8180068,フクオカケン,チクシノシ,イシザキ,福岡県,筑紫野市,石崎,0,0,1,0,0,0
40217,818,8180014,フクオカケン,チクシノシ,ウシジマ,福岡県,筑紫野市,牛島,0,0,0,0,0,0
40217,818,8180034,フクオカケン,チクシノシ,ウツクシガオカミナミ,福岡県,筑紫野市,美しが丘南,0,0,1,0,0,0
40217,818,8180035,フクオカケン,チクシノシ,ウツクシガオカキタ,福岡県,筑紫野市,美しが丘北,0,0,1,0,0,0
40217,818,8180033,フクオカケン,チクシノシ,ウマイチ,福岡県,筑紫野市,馬市,0,0,0,0,0,0
40217,818,8180006,フクオカケン,チクシノシ,オオイシ,福岡県,筑紫野市,大石,0,0,0,0,0,0
40217,818,8180013,フクオカケン,チクシノシ,オカダ,福岡県,筑紫野市,岡田,0,0,1,0,0,0
40217,818,8180041,フクオカケン,チクシノシ,カミコガ,福岡県,筑紫野市,上古賀,0,0,1,0,0,0
40217,818,8180031,フクオカケン,チクシノシ,クマ,福岡県,筑紫野市,隈,0,0,0,0,0,0
40217,818,8180002,フクオカケン,チクシノシ,コウゾノ,福岡県,筑紫野市,香園,0,0,0,0,0,0
40217,818,8180047,フクオカケン,チクシノシ,コガ,福岡県,筑紫野市,古賀,0,0,0,0,0,0
40217,818,8180063,フクオカケン,チクシノシ,サクラダイ,福岡県,筑紫野市,桜台,0,0,1,0,0,0
40217,818,8180021,フクオカケン,チクシノシ,シタミ,福岡県,筑紫野市,下見,0,0,0,0,0,0
40217,818,8180054,フクオカケン,チクシノシ,スギヅカ,福岡県,筑紫野市,杉塚,0,0,1,0,0,0
40217,818,8180067,フクオカケン,チクシノシ,ゾクミョウイン,福岡県,筑紫野市,俗明院,0,0,1,0,0,0
40217,818,8180025,フクオカケン,チクシノシ,チクシ,福岡県,筑紫野市,筑紫,0,0,0,0,0,0
40217,818,8180022,フクオカケン,チクシノシ,チクシエキマエドオリ,福岡県,筑紫野市,筑紫駅前通,0,0,1,0,0,0
40217,818,8180064,フクオカケン,チクシノシ,ツネマツ,福岡県,筑紫野市,常松,0,0,0,0,0,0
40217,818,8180053,フクオカケン,チクシノシ,テンパイザカ,福岡県,筑紫野市,天拝坂,0,0,1,0,0,0
40217,818,8180055,フクオカケン,チクシノシ,トウノハル,福岡県,筑紫野市,塔原,0,0,0,0,0,0
40217,818,8180059,フクオカケン,チクシノシ,トウノハルヒガシ,福岡県,筑紫野市,塔原東,0,0,1,0,0,0
40217,818,8180073,フクオカケン,チクシノシ,トウノハルニシ,福岡県,筑紫野市,塔原西,0,0,1,0,0,0
40217,818,8180074,フクオカケン,チクシノシ,トウノハルミナミ,福岡県,筑紫野市,塔原南,0,0,1,0,0,0
40217,818,8180066,フクオカケン,チクシノシ,ナガオカ,福岡県,筑紫野市,永岡,0,0,0,0,0,0
40217,818,8180032,フクオカケン,チクシノシ,ニシオダ,福岡県,筑紫野市,西小田,0,0,0,0,0,0
40217,818,8180044,フクオカケン,チクシノシ,ハギワラ,福岡県,筑紫野市,萩原,0,0,0,0,0,0
40217,818,8180062,フクオカケン,チクシノシ,ハリスリ,福岡県,筑紫野市,針摺,0,0,0,0,0,0
40217,818,8180085,フクオカケン,チクシノシ,ハリスリキタ,福岡県,筑紫野市,針摺北,0,0,1,0,0,0
40217,818,8180083,フクオカケン,チクシノシ,ハリスリチュウオウ,福岡県,筑紫野市,針摺中央,0,0,1,0,0,0
40217,818,8180084,フクオカケン,チクシノシ,ハリスリニシ,福岡県,筑紫野市,針摺西,0,0,1,0,0,0
40217,818,8180081,フクオカケン,チクシノシ,ハリスリヒガシ,福岡県,筑紫野市,針摺東,0,0,1,0,0,0
40217,818,8180082,フクオカケン,チクシノシ,ハリスリミナミ,福岡県,筑紫野市,針摺南,0,0,1,0,0,0
40217,818,8180005,フクオカケン,チクシノシ,ハル,福岡県,筑紫野市,原,0,0,0,0,0,0
40217,818,8180024,フクオカケン,チクシノシ,ハルダ,福岡県,筑紫野市,原田,0,0,1,0,0,0
40217,818,8180036,フクオカケン,チクシノシ,ヒカリガオカ,福岡県,筑紫野市,光が丘,0,0,1,0,0,0
40217,818,8180045,フクオカケン,チクシノシ,ビョウドウジ,福岡県,筑紫野市,平等寺,0,0,0,0,0,0
40217,818,8180051,フクオカケン,チクシノシ,フツカイチ,福岡県,筑紫野市,二日市,0,0,0,0,0,0
40217,818,8180056,フクオカケン,チクシノシ,フツカイチキタ,福岡県,筑紫野市,二日市北,0,0,1,0,0,0
40217,818,8180072,フクオカケン,チクシノシ,フツカイチチュウオウ,福岡県,筑紫野市,二日市中央,0,0,1,0,0,0
40217,818,8180071,フクオカケン,チクシノシ,フツカイチニシ,福岡県,筑紫野市,二日市西,0,0,1,0,0,0
40217,818,8180057,フクオカケン,チクシノシ,フツカイチミナミ,福岡県,筑紫野市,二日市南,0,0,1,0,0,0
40217,818,8180007,フクオカケン,チクシノシ,ホンドウジ,福岡県,筑紫野市,本道寺,0,0,0,0,0,0
40217,818,8180026,フクオカケン,チクシノシ,ミサキ,福岡県,筑紫野市,美咲,0,0,0,0,0,0
40217,818,8180052,フクオカケン,チクシノシ,ムサシ,福岡県,筑紫野市,武藏,0,0,1,0,0,0
40217,818,8180043,フクオカケン,チクシノシ,ムサシガオカ,福岡県,筑紫野市,むさしケ丘,0,0,1,0,0,0
40217,818,8180061,フクオカケン,チクシノシ,ムラサキ,福岡県,筑紫野市,紫,0,0,1,0,0,0
40217,818,8180065,フクオカケン,チクシノシ,モロタ,福岡県,筑紫野市,諸田,0,0,0,0,0,0
40217,818,8180003,フクオカケン,チクシノシ,ヤマエ,福岡県,筑紫野市,山家,0,0,0,0,0,0
40217,818,8180046,フクオカケン,チクシノシ,ヤマグチ,福岡県,筑紫野市,山口,0,0,0,0,0,0
40217,818,8180001,フクオカケン,チクシノシ,ユスバル,福岡県,筑紫野市,柚須原,0,0,0,0,0,0
40217,818,8180058,フクオカケン,チクシノシ,ユマチ,福岡県,筑紫野市,湯町,0,0,1,0,0,0
40217,818,8180004,フクオカケン,チクシノシ,ヨシキ,福岡県,筑紫野市,吉木,0,0,0,0,0,0
40217,818,8180042,フクオカケン,チクシノシ,リュウミョウジ,福岡県,筑紫野市,立明寺,0,0,0,0,0,0
40217,818,8180023,フクオカケン,チクシノシ,ワカエ,福岡県,筑紫野市,若江,0,0,0,0,0,0
40218,816,8160000,フクオカケン,カスガシ,イカニケイサイガナイバアイ,福岡県,春日市,以下に掲載がない場合,0,0,0,1,0,0
40218,816,8160853,フクオカケン,カスガシ,イズミ,福岡県,春日市,泉,0,0,1,0,0,0
40218,816,8160852,フクオカケン,カスガシ,イチノタニ,福岡県,春日市,一の谷,0,0,1,0,0,0
40218,816,8160831,フクオカケン,カスガシ,オオタニ,福岡県,春日市,大谷,0,0,1,0,0,0
40218,816,8160847,フクオカケン,カスガシ,オオドイ,福岡県,春日市,大土居,0,0,1,0,0,0
40218,816,8160861,フクオカケン,カスガシ,オカモト,福岡県,春日市,岡本,0,0,1,0,0,0
40218,816,8160814,フクオカケン,カスガシ,カスガ,福岡県,春日市,春日,0,0,1,0,0,0
40218,816,8160811,フクオカケン,カスガシ,カスガコウエン,福岡県,春日市,春日公園,0,0,1,0,0,0
40218,816,8160801,フクオカケン,カスガシ,カスガバルヒガシマチ,福岡県,春日市,春日原東町,0,0,1,0,0,0
40218,816,8160803,フクオカケン,カスガシ,カスガバルミナミマチ,福岡県,春日市,春日原南町,0,0,1,0,0,0
40218,816,8160802,フクオカケン,カスガシ,カスガバルキタマチ,福岡県,春日市,春日原北町,0,0,1,0,0,0
40218,816,8160844,フクオカケン,カスガシ,カミシロウズ,福岡県,春日市,上白水,0,0,1,0,0,0
40218,816,8160824,フクオカケン,カスガシ,コクラ,福岡県,春日市,小倉,0,0,1,0,0,0
40218,816,8160826,フクオカケン,カスガシ,コクラヒガシ,福岡県,春日市,小倉東,0,0,1,0,0,0
40218,816,8160872,フクオカケン,カスガシ,サクラガオカ,福岡県,春日市,桜ケ丘,0,0,1,0,0,0
40218,816,8160842,フクオカケン,カスガシ,シモシロウズ,福岡県,春日市,下白水,0,0,0,0,0,0
40218,816,8160854,フクオカケン,カスガシ,シモシロウズキタ,福岡県,春日市,下白水北,0,0,1,0,0,0
40218,816,8160846,フクオカケン,カスガシ,シモシロウズミナミ,福岡県,春日市,下白水南,0,0,1,0,0,0
40218,816,8160848,フクオカケン,カスガシ,シロウズイケ,福岡県,春日市,白水池,0,0,1,0,0,0
40218,816,8160845,フクオカケン,カスガシ,シロウズガオカ,福岡県,春日市,白水ケ丘,0,0,1,0,0,0
40218,816,8160871,フクオカケン,カスガシ,スグ,福岡県,春日市,須玖,0,0,0,0,0,0
40218,816,8160863,フクオカケン,カスガシ,スグミナミ,福岡県,春日市,須玖南,0,0,1,0,0,0
40218,816,8160864,フクオカケン,カスガシ,スグキタ,福岡県,春日市,須玖北,0,0,1,0,0,0
40218,816,8160813,フクオカケン,カスガシ,ソウリ,福岡県,春日市,惣利,0,0,1,0,0,0
40218,816,8160807,フクオカケン,カスガシ,タカラマチ,福岡県,春日市,宝町,0,0,1,0,0,0
40218,816,8160822,フクオカケン,カスガシ,チクシダイ,福岡県,春日市,ちくし台,0,0,1,0,0,0
40218,816,8160805,フクオカケン,カスガシ,チトセマチ,福岡県,春日市,千歳町,0,0,1,0,0,0
40218,816,8160841,フクオカケン,カスガシ,ツカハラダイ,福岡県,春日市,塚原台,0,0,1,0,0,0
40218,816,8160855,フクオカケン,カスガシ,テンジンヤマ,福岡県,春日市,天神山,0,0,1,0,0,0
40218,816,8160851,フクオカケン,カスガシ,ノボリマチ,福岡県,春日市,昇町,0,0,1,0,0,0
40218,816,8160825,フクオカケン,カスガシ,ハクゲンチョウ,福岡県,春日市,伯玄町,0,0,1,0,0,0
40218,816,8160804,フクオカケン,カスガシ,ハラマチ,福岡県,春日市,原町,0,0,1,0,0,0
40218,816,8160806,フクオカケン,カスガシ,ヒカリマチ,福岡県,春日市,光町,0,0,1,0,0,0
40218,816,8160873,フクオカケン,カスガシ,ヒノデマチ,福岡県,春日市,日の出町,0,0,1,0,0,0
40218,816,8160812,フクオカケン,カスガシ,ヒラタダイ,福岡県,春日市,平田台,0,0,1,0,0,0
40218,816,8160849,フクオカケン,カスガシ,ホシミガオカ,福岡県,春日市,星見ヶ丘,0,0,1,0,0,0
40218,816,8160843,フクオカケン,カスガシ,マツガオカ,福岡県,春日市,松ケ丘,0,0,1,0,0,0
40218,816,8160833,フクオカケン,カスガシ,モミジガオカヒガシ,福岡県,春日市,紅葉ケ丘東,0,0,1,0,0,0
40218,816,8160832,フクオカケン,カスガシ,モミジガオカニシ,福岡県,春日市,紅葉ケ丘西,0,0,1,0,0,0
40218,816,8160874,フクオカケン,カスガシ,ヤマトマチ,福岡県,春日市,大和町,0,0,1,0,0,0
40218,816,8160862,フクオカケン,カスガシ,ヤヨイ,福岡県,春日市,弥生,0,0,1,0,0,0
40218,816,8160821,フクオカケン,カスガシ,ワカバダイヒガシ,福岡県,春日市,若葉台東,0,0,1,0,0,0
40218,816,8160823,フクオカケン,カスガシ,ワカバダイニシ,福岡県,春日市,若葉台西,0,0,1,0,0,0
40219,816,8160000,フクオカケン,オオノジョウシ,イカニケイサイガナイバアイ,福岡県,大野城市,以下に掲載がない場合,0,0,0,1,0,0
40219,816,8160934,フクオカケン,オオノジョウシ,アケボノマチ,福岡県,大野城市,曙町,0,0,1,0,0,0
40219,816,8160953,フクオカケン,オオノジョウシ,アサヒガオカ,福岡県,大野城市,旭ケ丘,0,0,1,0,0,0
40219,816,8160971,フクオカケン,オオノジョウシ,ウシクビ,福岡県,大野城市,牛頸,0,0,1,0,0,0
40219,816,8160904,フクオカケン,オオノジョウシ,オオイケ,福岡県,大野城市,大池,0,0,1,0,0,0
40219,816,8160911,フクオカケン,オオノジョウシ,オオキ,福岡県,大野城市,大城,0,0,1,0,0,0
40219,816,8160902,フクオカケン,オオノジョウシ,オトガナ,福岡県,大野城市,乙金,0,0,1,0,0,0
40219,816,8160903,フクオカケン,オオノジョウシ,オトガナダイ,福岡県,大野城市,乙金台,0,0,1,0,0,0
40219,816,8160901,フクオカケン,オオノジョウシ,オトガナヒガシ,福岡県,大野城市,乙金東,0,0,1,0,0,0
40219,816,8160955,フクオカケン,オオノジョウシ,カミオオリ,福岡県,大野城市,上大利,0,0,1,0,0,0
40219,816,8160905,フクオカケン,オオノジョウシ,カワクボ,福岡県,大野城市,川久保,0,0,1,0,0,0
40219,816,8160932,フクオカケン,オオノジョウシ,カワラダ,福岡県,大野城市,瓦田,0,0,1,0,0,0
40219,816,8160924,フクオカケン,オオノジョウシ,サカエマチ,福岡県,大野城市,栄町,0,0,1,0,0,0
40219,816,8160923,フクオカケン,オオノジョウシ,ザツショノクママチ,福岡県,大野城市,雑餉隈町,0,0,1,0,0,0
40219,816,8160952,フクオカケン,オオノジョウシ,シモオオリ,福岡県,大野城市,下大利,0,0,1,0,0,0
40219,816,8160951,フクオカケン,オオノジョウシ,シモオオリダンチ,福岡県,大野城市,下大利団地,0,0,0,0,0,0
40219,816,8160943,フクオカケン,オオノジョウシ,シラキバル,福岡県,大野城市,白木原,0,0,1,0,0,0
40219,816,8160942,フクオカケン,オオノジョウシ,チュウオウ,福岡県,大野城市,中央,0,0,1,0,0,0
40219,816,8160983,フクオカケン,オオノジョウシ,ツキノウラ,福岡県,大野城市,月の浦,0,0,1,0,0,0
40219,816,8160931,フクオカケン,オオノジョウシ,ツツイ,福岡県,大野城市,筒井,0,0,1,0,0,0
40219,816,8160962,フクオカケン,オオノジョウシ,ツツジガオカ,福岡県,大野城市,つつじケ丘,0,0,1,0,0,0
40219,816,8160906,フクオカケン,オオノジョウシ,ナカ,福岡県,大野城市,中,0,0,1,0,0,0
40219,816,8160921,フクオカケン,オオノジョウシ,ナカハタ,福岡県,大野城市,仲畑,0,0,1,0,0,0
40219,816,8160935,フクオカケン,オオノジョウシ,ニシキマチ,福岡県,大野城市,錦町,0,0,1,0,0,0
40219,816,8160982,フクオカケン,オオノジョウシ,ハタガサカ,福岡県,大野城市,畑ケ坂,0,0,1,0,0,0
40219,816,8160941,フクオカケン,オオノジョウシ,ヒガシオオリ,福岡県,大野城市,東大利,0,0,1,0,0,0
40219,816,8160972,フクオカケン,オオノジョウシ,ヒラノダイ,福岡県,大野城市,平野台,0,0,1,0,0,0
40219,816,8160912,フクオカケン,オオノジョウシ,ミカサガワ,福岡県,大野城市,御笠川,0,0,1,0,0,0
40219,816,8160933,フクオカケン,オオノジョウシ,ミズホマチ,福岡県,大野城市,瑞穂町,0,0,1,0,0,0
40219,816,8160961,フクオカケン,オオノジョウシ,ミドリガオカ,福岡県,大野城市,緑ケ丘,0,0,1,0,0,0
40219,816,8160956,フクオカケン,オオノジョウシ,ミナミオオリ,福岡県,大野城市,南大利,0,0,1,0,0,0
40219,816,8160964,フクオカケン,オオノジョウシ,ミナミガオカ,福岡県,大野城市,南ケ丘,0,0,1,0,0,0
40219,816,8160963,フクオカケン,オオノジョウシ,ミヤノダイ,福岡県,大野城市,宮野台,0,0,0,0,0,0
40219,816,8160954,フクオカケン,オオノジョウシ,ムラサキダイ,福岡県,大野城市,紫台,0,0,0,0,0,0
40219,816,8160922,フクオカケン,オオノジョウシ,ヤマダ,福岡県,大野城市,山田,0,0,1,0,0,0
40219,816,8160973,フクオカケン,オオノジョウシ,ヨコミネ,福岡県,大野城市,横峰,0,0,1,0,0,0
40219,816,8160981,フクオカケン,オオノジョウシ,ワカクサ,福岡県,大野城市,若草,0,0,1,0,0,0
40220,81134,8113400,フクオカケン,ムナカタシ,イカニケイサイガナイバアイ,福岡県,宗像市,以下に掲載がない場合,0,0,0,0,0,0
40220,81141,8114162,フクオカケン,ムナカタシ,アオバダイ,福岡県,宗像市,青葉台,0,0,1,0,0,0
40220,81141,8114146,フクオカケン,ムナカタシ,アカマ,福岡県,宗像市,赤間,0,0,1,0,0,0
40220,81141,8114185,フクオカケン,ムナカタシ,アカマエキマエ,福岡県,宗像市,赤間駅前,0,0,1,0,0,0
40220,81141,8114176,フクオカケン,ムナカタシ,アカマガオカ,福岡県,宗像市,赤間ケ丘,0,0,0,0,0,0
40220,81141,8114148,フクオカケン,ムナカタシ,アカマブンキョウマチ,福岡県,宗像市,赤間文教町,0,0,0,0,0,0
40220,81134,8113415,フクオカケン,ムナカタシ,アサノ,福岡県,宗像市,朝野,0,0,0,0,0,0
40220,81141,8114161,フクオカケン,ムナカタシ,アサマチ,福岡県,宗像市,朝町,0,0,0,0,0,0
40220,81141,8114157,フクオカケン,ムナカタシ,アスティ,福岡県,宗像市,アスティ,0,0,1,0,0,0
40220,81134,8113401,フクオカケン,ムナカタシ,イケウラ,福岡県,宗像市,池浦,0,0,0,0,0,0
40220,81135,8113515,フクオカケン,ムナカタシ,イケダ,福岡県,宗像市,池田,0,0,0,0,0,0
40220,81141,8114147,フクオカケン,ムナカタシ,イシマル,福岡県,宗像市,石丸,0,0,1,0,0,0
40220,81141,8114142,フクオカケン,ムナカタシ,イズミガオカ,福岡県,宗像市,泉ケ丘,0,0,1,0,0,0
40220,81134,8113406,フクオカケン,ムナカタシ,イナモト,福岡県,宗像市,稲元,0,0,1,0,0,0
40220,81135,8113502,フクオカケン,ムナカタシ,エグチ,福岡県,宗像市,江口,0,0,0,0,0,0
40220,81141,8114177,フクオカケン,ムナカタシ,オウビダイ,福岡県,宗像市,桜美台,0,0,0,0,0,0
40220,81134,8113422,フクオカケン,ムナカタシ,オウマル,福岡県,宗像市,王丸,0,0,0,0,0,0
40220,81134,8113432,フクオカケン,ムナカタシ,オオイ,福岡県,宗像市,大井,0,0,0,0,0,0
40220,81134,8113433,フクオカケン,ムナカタシ,オオイダイ,福岡県,宗像市,大井台,0,0,0,0,0,0
40220,81134,8113440,フクオカケン,ムナカタシ,オオイミナミ,福岡県,宗像市,大井南,0,0,0,0,0,0
40220,81137,8113701,フクオカケン,ムナカタシ,オオシマ,福岡県,宗像市,大島,0,0,0,0,0,0
40220,81141,8114141,フクオカケン,ムナカタシ,オオタニ,福岡県,宗像市,大谷,0,0,0,0,0,0
40220,81134,8113421,フクオカケン,ムナカタシ,オオブ,福岡県,宗像市,大穂,0,0,0,0,0,0
40220,81134,8113402,フクオカケン,ムナカタシ,カトウ,福岡県,宗像市,河東,0,0,0,0,0,0
40220,81135,8113512,フクオカケン,ムナカタシ,カネザキ,福岡県,宗像市,鐘崎,0,0,0,0,0,0
40220,81134,8113437,フクオカケン,ムナカタシ,クバラ,福岡県,宗像市,久原,0,0,0,0,0,0
40220,81141,8114184,フクオカケン,ムナカタシ,クリエイト,福岡県,宗像市,くりえいと,0,0,1,0,0,0
40220,81135,8113516,フクオカケン,ムナカタシ,コウエンドオリ,福岡県,宗像市,公園通り,0,0,1,0,0,0
40220,81135,8113513,フクオカケン,ムナカタシ,コウジョウ,福岡県,宗像市,上八,0,0,0,0,0,0
40220,81135,8113501,フクオカケン,ムナカタシ,コウノミナト,福岡県,宗像市,神湊,0,0,0,0,0,0
40220,81141,8114165,フクオカケン,ムナカタシ,コウリョウダイ,福岡県,宗像市,広陵台,0,0,1,0,0,0
40220,81141,8114173,フクオカケン,ムナカタシ,サカエマチ,福岡県,宗像市,栄町,0,0,0,0,0,0
40220,81141,8114166,フクオカケン,ムナカタシ,サクラ,福岡県,宗像市,桜,0,0,1,0,0,0
40220,81141,8114143,フクオカケン,ムナカタシ,サブロウマル,福岡県,宗像市,三郎丸,0,0,1,0,0,0
40220,81135,8113511,フクオカケン,ムナカタシ,ジノシマ,福岡県,宗像市,地島,0,0,0,0,0,0
40220,81141,8114163,フクオカケン,ムナカタシ,ジユウガオカ,福岡県,宗像市,自由ケ丘,0,0,1,0,0,0
40220,81141,8114174,フクオカケン,ムナカタシ,ジユウガオカニシマチ,福岡県,宗像市,自由ケ丘西町,0,0,0,0,0,0
40220,81141,8114156,フクオカケン,ムナカタシ,ジユウガオカミナミ,福岡県,宗像市,自由ケ丘南,0,0,1,0,0,0
40220,81141,8114182,フクオカケン,ムナカタシ,ジョウガタニ,福岡県,宗像市,城ケ谷,0,0,0,0,0,0
40220,81134,8113404,フクオカケン,ムナカタシ,ジョウセイガオカ,福岡県,宗像市,城西ケ丘,0,0,1,0,0,0
40220,81141,8114151,フクオカケン,ムナカタシ,ジョウナンガオカ,福岡県,宗像市,城南ケ丘,0,0,0,0,0,0
40220,81141,8114181,フクオカケン,ムナカタシ,ジョウヤマニュータウン,福岡県,宗像市,城山ニュータウン,0,0,0,0,0,0
40220,81134,8113408,フクオカケン,ムナカタシ,ショウヨウダイ,福岡県,宗像市,樟陽台,0,0,1,0,0,0
40220,81134,8113405,フクオカケン,ムナカタシ,スエ,福岡県,宗像市,須恵,0,0,1,0,0,0
40220,81141,8114175,フクオカケン,ムナカタシ,タク,福岡県,宗像市,田久,0,0,1,0,0,0
40220,81134,8113431,フクオカケン,ムナカタシ,タグマ,福岡県,宗像市,田熊,0,0,1,0,0,0
40220,81141,8114152,フクオカケン,ムナカタシ,タケマル,福岡県,宗像市,武丸,0,0,0,0,0,0
40220,81135,8113505,フクオカケン,ムナカタシ,タシマ,福岡県,宗像市,田島,0,0,0,0,0,0
40220,81135,8113514,フクオカケン,ムナカタシ,タノ,福岡県,宗像市,田野,0,0,0,0,0,0
40220,81135,8113507,フクオカケン,ムナカタシ,タレ,福岡県,宗像市,多禮,0,0,0,0,0,0
40220,81141,8114183,フクオカケン,ムナカタシ,ツチアナ,福岡県,宗像市,土穴,0,0,1,0,0,0
40220,81134,8113407,フクオカケン,ムナカタシ,テンピョウダイ,福岡県,宗像市,天平台,0,0,0,0,0,0
40220,81134,8113436,フクオカケン,ムナカタシ,トウゴウ,福岡県,宗像市,東郷,0,0,0,0,0,0
40220,81141,8114164,フクオカケン,ムナカタシ,トクシゲ,福岡県,宗像市,徳重,0,0,1,0,0,0
40220,81141,8114155,フクオカケン,ムナカタシ,ナゴリ,福岡県,宗像市,名残,0,0,1,0,0,0
40220,81134,8113423,フクオカケン,ムナカタシ,ノサカ,福岡県,宗像市,野坂,0,0,0,0,0,0
40220,81141,8114171,フクオカケン,ムナカタシ,ハヤマ,福岡県,宗像市,葉山,0,0,1,0,0,0
40220,81134,8113424,フクオカケン,ムナカタシ,ハルマチ,福岡県,宗像市,原町,0,0,0,0,0,0
40220,81134,8113403,フクオカケン,ムナカタシ,ヒカリガオカ,福岡県,宗像市,ひかりケ丘,0,0,1,0,0,0
40220,81134,8113425,フクオカケン,ムナカタシ,ヒノサト,福岡県,宗像市,日の里,0,0,1,0,0,0
40220,81134,8113412,フクオカケン,ムナカタシ,ビョウドウジ,福岡県,宗像市,平等寺,0,0,0,0,0,0
40220,81134,8113430,フクオカケン,ムナカタシ,ヒライ,福岡県,宗像市,平井,0,0,1,0,0,0
40220,81135,8113504,フクオカケン,ムナカタシ,フカタ,福岡県,宗像市,深田,0,0,0,0,0,0
40220,81141,8114154,フクオカケン,ムナカタシ,フジワラ,福岡県,宗像市,冨地原,0,0,0,0,0,0
40220,81141,8114113,フクオカケン,ムナカタシ,マガリ(25、35),福岡県,宗像市,曲(25、35),1,0,0,0,0,0
40220,81134,8113413,フクオカケン,ムナカタシ,マガリ(ソノタ),福岡県,宗像市,曲(その他),1,0,0,0,0,0
40220,81134,8113439,フクオカケン,ムナカタシ,ミクラ,福岡県,宗像市,三倉,0,0,0,0,0,0
40220,81134,8113414,フクオカケン,ムナカタシ,ミツオカ,福岡県,宗像市,光岡,0,0,0,0,0,0
40220,81141,8114172,フクオカケン,ムナカタシ,ミドリマチ,福岡県,宗像市,緑町,0,0,0,0,0,0
40220,81134,8113416,フクオカケン,ムナカタシ,ミヤタ,福岡県,宗像市,宮田,0,0,1,0,0,0
40220,81135,8113503,フクオカケン,ムナカタシ,ムタジリ,福岡県,宗像市,牟田尻,0,0,0,0,0,0
40220,81134,8113434,フクオカケン,ムナカタシ,ムラヤマダ,福岡県,宗像市,村山田,0,0,0,0,0,0
40220,81134,8113435,フクオカケン,ムナカタシ,モチヤマ,福岡県,宗像市,用山,0,0,0,0,0,0
40220,81134,8113411,フクオカケン,ムナカタシ,ヤマダ,福岡県,宗像市,山田,0,0,0,0,0,0
40220,81135,8113506,フクオカケン,ムナカタシ,ヨシダ,福岡県,宗像市,吉田,0,0,0,0,0,0
40220,81141,8114153,フクオカケン,ムナカタシ,ヨシドメ,福岡県,宗像市,吉留,0,0,0,0,0,0
40220,81141,8114145,フクオカケン,ムナカタシ,リョウゲンジ,福岡県,宗像市,陵厳寺,0,0,1,0,0,0
40220,81134,8113438,フクオカケン,ムナカタシ,ワカミダイ,福岡県,宗像市,和歌美台,0,0,0,0,0,0
40221,81801,8180100,フクオカケン,ダザイフシ,イカニケイサイガナイバアイ,福岡県,太宰府市,以下に掲載がない場合,0,0,0,0,0,0
40221,81801,8180137,フクオカケン,ダザイフシ,アオバダイ,福岡県,太宰府市,青葉台,0,0,1,0,0,0
40221,81801,8180121,フクオカケン,ダザイフシ,アオヤマ,福岡県,太宰府市,青山,0,0,1,0,0,0
40221,81801,8180118,フクオカケン,ダザイフシ,イシザカ,福岡県,太宰府市,石坂,0,0,1,0,0,0
40221,81801,8180115,フクオカケン,ダザイフシ,ウチヤマ,福岡県,太宰府市,内山,0,0,0,0,0,0
40221,81801,8180123,フクオカケン,ダザイフシ,ウメガオカ,福岡県,太宰府市,梅ケ丘,0,0,1,0,0,0
40221,81801,8180134,フクオカケン,ダザイフシ,オオザノ,福岡県,太宰府市,大佐野,0,0,0,0,0,0
40221,81801,8180101,フクオカケン,ダザイフシ,カンゼオンジ,福岡県,太宰府市,観世音寺,0,0,1,0,0,0
40221,81801,8180114,フクオカケン,ダザイフシ,キタダニ,福岡県,太宰府市,北谷,0,0,0,0,0,0
40221,81801,8180132,フクオカケン,ダザイフシ,コクブ,福岡県,太宰府市,国分,0,0,1,0,0,0
40221,81801,8180125,フクオカケン,ダザイフシ,ゴジョウ,福岡県,太宰府市,五条,0,0,1,0,0,0
40221,81801,8180139,フクオカケン,ダザイフシ,サイト,福岡県,太宰府市,宰都,0,0,1,0,0,0
40221,81801,8180117,フクオカケン,ダザイフシ,サイフ,福岡県,太宰府市,宰府,0,0,1,0,0,0
40221,81801,8180133,フクオカケン,ダザイフシ,サカモト,福岡県,太宰府市,坂本,0,0,1,0,0,0
40221,81801,8180111,フクオカケン,ダザイフシ,サンジョウ,福岡県,太宰府市,三条,0,0,1,0,0,0
40221,81801,8180102,フクオカケン,ダザイフシ,シラカワ,福岡県,太宰府市,白川,0,0,0,0,0,0
40221,81801,8180103,フクオカケン,ダザイフシ,スザク,福岡県,太宰府市,朱雀,0,0,1,0,0,0
40221,81801,8180122,フクオカケン,ダザイフシ,タカオ,福岡県,太宰府市,高雄,0,0,1,0,0,0
40221,81801,8180104,フクオカケン,ダザイフシ,トオノコガ,福岡県,太宰府市,通古賀,0,0,1,0,0,0
40221,81801,8180105,フクオカケン,ダザイフシ,トフロウミナミ,福岡県,太宰府市,都府楼南,0,0,1,0,0,0
40221,81801,8180136,フクオカケン,ダザイフシ,ナガウラダイ,福岡県,太宰府市,長浦台,0,0,1,0,0,0
40221,81801,8180124,フクオカケン,ダザイフシ,バイコウエン,福岡県,太宰府市,梅香苑,0,0,1,0,0,0
40221,81801,8180110,フクオカケン,ダザイフシ,ミカサ,福岡県,太宰府市,御笠,0,0,1,0,0,0
40221,81801,8180131,フクオカケン,ダザイフシ,ミズキ,福岡県,太宰府市,水城,0,0,1,0,0,0
40221,81801,8180135,フクオカケン,ダザイフシ,ムカイザノ,福岡県,太宰府市,向佐野,0,0,0,0,0,0
40221,81801,8180138,フクオカケン,ダザイフシ,ヨシマツ,福岡県,太宰府市,吉松,0,0,1,0,0,0
40221,81801,8180119,フクオカケン,ダザイフシ,レンガヤ,福岡県,太宰府市,連歌屋,0,0,1,0,0,0
40223,81131,8113100,フクオカケン,コガシ,イカニケイサイガナイバアイ,福岡県,古賀市,以下に掲載がない場合,0,0,0,0,0,0
40223,81131,8113134,フクオカケン,コガシ,アオヤギ,福岡県,古賀市,青柳,0,0,0,0,0,0
40223,81131,8113133,フクオカケン,コガシ,アオヤギマチ,福岡県,古賀市,青柳町,0,0,0,0,0,0
40223,81131,8113136,フクオカケン,コガシ,イトガウラ,福岡県,古賀市,糸ケ浦,0,0,0,0,0,0
40223,81131,8113131,フクオカケン,コガシ,イマザイケ,福岡県,古賀市,今在家,0,0,0,0,0,0
40223,81131,8113117,フクオカケン,コガシ,イマノショウ,福岡県,古賀市,今の庄,0,0,1,0,0,0
40223,81131,8113102,フクオカケン,コガシ,エキヒガシ,福岡県,古賀市,駅東,0,0,1,0,0,0
40223,81131,8113135,フクオカケン,コガシ,オダケ,福岡県,古賀市,小竹,0,0,0,0,0,0
40223,81131,8113126,フクオカケン,コガシ,オヤマダ,福岡県,古賀市,小山田,0,0,0,0,0,0
40223,81131,8113104,フクオカケン,コガシ,カヅルガオカ,福岡県,古賀市,花鶴丘,0,0,1,0,0,0
40223,81131,8113132,フクオカケン,コガシ,カワバル,福岡県,古賀市,川原,0,0,0,0,0,0
40223,81131,8113115,フクオカケン,コガシ,クボ,福岡県,古賀市,久保,0,0,0,0,0,0
40223,81131,8113137,フクオカケン,コガシ,コガ,福岡県,古賀市,古賀,0,0,0,0,0,0
40223,81131,8113122,フクオカケン,コガシ,コモノ,福岡県,古賀市,薦野,0,0,0,0,0,0
40223,81131,8113105,フクオカケン,コガシ,シシブ,福岡県,古賀市,鹿部,0,0,0,0,0,0
40223,81131,8113116,フクオカケン,コガシ,ショウ,福岡県,古賀市,庄,0,0,0,0,0,0
40223,81131,8113118,フクオカケン,コガシ,シンクボ,福岡県,古賀市,新久保,0,0,1,0,0,0
40223,81131,8113127,フクオカケン,コガシ,シンバル,福岡県,古賀市,新原,0,0,0,0,0,0
40223,81131,8113125,フクオカケン,コガシ,タニヤマ,福岡県,古賀市,谷山,0,0,0,0,0,0
40223,81131,8113113,フクオカケン,コガシ,チドリ,福岡県,古賀市,千鳥,0,0,1,0,0,0
40223,81131,8113103,フクオカケン,コガシ,チュウオウ,福岡県,古賀市,中央,0,0,1,0,0,0
40223,81131,8113101,フクオカケン,コガシ,テンジン,福岡県,古賀市,天神,0,0,1,0,0,0
40223,81131,8113123,フクオカケン,コガシ,ネタビ,福岡県,古賀市,米多比,0,0,0,0,0,0
40223,81131,8113112,フクオカケン,コガシ,ハナミヒガシ,福岡県,古賀市,花見東,0,0,1,0,0,0
40223,81131,8113111,フクオカケン,コガシ,ハナミミナミ,福岡県,古賀市,花見南,0,0,1,0,0,0
40223,81131,8113106,フクオカケン,コガシ,ヒヨシ,福岡県,古賀市,日吉,0,0,1,0,0,0
40223,81131,8113114,フクオカケン,コガシ,マイノサト,福岡県,古賀市,舞の里,0,0,1,0,0,0
40223,81131,8113107,フクオカケン,コガシ,ミアケ,福岡県,古賀市,美明,0,0,1,0,0,0
40223,81131,8113121,フクオカケン,コガシ,ムシロウチ,福岡県,古賀市,筵内,0,0,0,0,0,0
40223,81131,8113124,フクオカケン,コガシ,ヤクオウジ,福岡県,古賀市,薬王寺,0,0,0,0,0,0
40224,81132,8113200,フクオカケン,フクツシ,イカニケイサイガナイバアイ,福岡県,福津市,以下に掲載がない場合,0,0,0,0,0,0
40224,81132,8113213,フクオカケン,フクツシ,フクツシノツギニバンチガクルバアイ,福岡県,福津市,福津市の次に番地がくる場合,0,0,0,0,0,0
40224,81132,8113220,フクオカケン,フクツシ,アケボノ,福岡県,福津市,あけぼの,0,0,0,0,0,0
40224,81132,8113202,フクオカケン,フクツシ,アゼマチ,福岡県,福津市,畦町,0,0,0,0,0,0
40224,81133,8113301,フクオカケン,フクツシ,アラジ,福岡県,福津市,在自,0,0,0,0,0,0
40224,81132,8113205,フクオカケン,フクツシ,ウチドノ,福岡県,福津市,内殿,0,0,0,0,0,0
40224,81133,8113302,フクオカケン,フクツシ,オオイシ,福岡県,福津市,大石,0,0,0,0,0,0
40224,81132,8113226,フクオカケン,フクツシ,オダケ,福岡県,福津市,小竹,0,0,1,0,0,0
40224,81135,8113521,フクオカケン,フクツシ,カツウラ,福岡県,福津市,勝浦,0,0,0,0,0,0
40224,81132,8113207,フクオカケン,フクツシ,カミサイゴウ,福岡県,福津市,上西郷,0,0,0,0,0,0
40224,81132,8113223,フクオカケン,フクツシ,コウヨウダイ,福岡県,福津市,光陽台,0,0,1,0,0,0
40224,81132,8113228,フクオカケン,フクツシ,コウヨウダイミナミ,福岡県,福津市,光陽台南,0,0,1,0,0,0
40224,81132,8113229,フクオカケン,フクツシ,サクラガワ,福岡県,福津市,桜川,0,0,0,0,0,0
40224,81132,8113204,フクオカケン,フクツシ,シャリクラ,福岡県,福津市,舎利蔵,0,0,0,0,0,0
40224,81133,8113303,フクオカケン,フクツシ,スダタ,福岡県,福津市,須多田,0,0,0,0,0,0
40224,81132,8113227,フクオカケン,フクツシ,タカヒラ,福岡県,福津市,高平,0,0,0,0,0,0
40224,81132,8113217,フクオカケン,フクツシ,チュウオウ,福岡県,福津市,中央,0,0,1,0,0,0
40224,81132,8113222,フクオカケン,フクツシ,ツマル,福岡県,福津市,津丸,0,0,0,0,0,0
40224,81133,8113304,フクオカケン,フクツシ,ツヤザキ,福岡県,福津市,津屋崎,0,0,1,0,0,0
40224,81132,8113224,フクオカケン,フクツシ,テビカ,福岡県,福津市,手光,0,0,0,0,0,0
40224,81132,8113218,フクオカケン,フクツシ,テビカミナミ,福岡県,福津市,手光南,0,0,1,0,0,0
40224,81132,8113219,フクオカケン,フクツシ,ニシフクマ,福岡県,福津市,西福間,0,0,1,0,0,0
40224,81135,8113522,フクオカケン,フクツシ,ヌヤマ,福岡県,福津市,奴山,0,0,0,0,0,0
40224,81132,8113214,フクオカケン,フクツシ,ハナミガオカ,福岡県,福津市,花見が丘,0,0,1,0,0,0
40224,81132,8113216,フクオカケン,フクツシ,ハナミガハマ,福岡県,福津市,花見が浜,0,0,1,0,0,0
40224,81132,8113215,フクオカケン,フクツシ,ハナミノサト,福岡県,福津市,花見の里,0,0,1,0,0,0
40224,81132,8113225,フクオカケン,フクツシ,ヒガシフクマ,福岡県,福津市,東福間,0,0,1,0,0,0
40224,81132,8113206,フクオカケン,フクツシ,ヒサスエ,福岡県,福津市,久末,0,0,0,0,0,0
40224,81132,8113208,フクオカケン,フクツシ,フクマエキヒガシ,福岡県,福津市,福間駅東,0,0,1,0,0,0
40224,81132,8113212,フクオカケン,フクツシ,フクマミナミ,福岡県,福津市,福間南,0,0,1,0,0,0
40224,81133,8113308,フクオカケン,フクツシ,ホシガオカ,福岡県,福津市,星ケ丘,0,0,0,0,0,0
40224,81133,8113305,フクオカケン,フクツシ,ミヤジ,福岡県,福津市,宮司,0,0,1,0,0,0
40224,81133,8113312,フクオカケン,フクツシ,ミヤジガオカ,福岡県,福津市,宮司ヶ丘,0,0,0,0,0,0
40224,81133,8113311,フクオカケン,フクツシ,ミヤジハマ,福岡県,福津市,宮司浜,0,0,1,0,0,0
40224,81133,8113309,フクオカケン,フクツシ,ミヤジモトマチ,福岡県,福津市,宮司元町,0,0,0,0,0,0
40224,81132,8113203,フクオカケン,フクツシ,モトギ,福岡県,福津市,本木,0,0,0,0,0,0
40224,81132,8113201,フクオカケン,フクツシ,ヤツナミ,福岡県,福津市,八並,0,0,0,0,0,0
40224,81133,8113306,フクオカケン,フクツシ,ユクエ,福岡県,福津市,生家,0,0,0,0,0,0
40224,81132,8113211,フクオカケン,フクツシ,ユミノサト,福岡県,福津市,有弥の里,0,0,1,0,0,0
40224,81132,8113221,フクオカケン,フクツシ,ワカギダイ,福岡県,福津市,若木台,0,0,1,0,0,0
40224,81133,8113307,フクオカケン,フクツシ,ワタリ,福岡県,福津市,渡,0,0,0,0,0,0
40230,81911,8191100,フクオカケン,イトシマシ,イカニケイサイガナイバアイ,福岡県,糸島市,以下に掲載がない場合,0,0,0,0,0,0
40230,81911,8191132,フクオカケン,イトシマシ,アリタ,福岡県,糸島市,有田,0,0,0,0,0,0
40230,81911,8191127,フクオカケン,イトシマシ,アリタチュウオウ,福岡県,糸島市,有田中央,0,0,1,0,0,0
40230,81911,8191152,フクオカケン,イトシマシ,イイバル,福岡県,糸島市,飯原,0,0,0,0,0,0
40230,81911,8191103,フクオカケン,イトシマシ,イケダ,福岡県,糸島市,池田,0,0,0,0,0,0
40230,81915,8191562,フクオカケン,イトシマシ,イタ,福岡県,糸島市,井田,0,0,0,0,0,0
40230,81911,8191101,フクオカケン,イトシマシ,イタモチ,福岡県,糸島市,板持,0,0,1,0,0,0
40230,81911,8191126,フクオカケン,イトシマシ,イワモト,福岡県,糸島市,岩本,0,0,0,0,0,0
40230,81915,8191582,フクオカケン,イトシマシ,イワラ,福岡県,糸島市,井原,0,0,0,0,0,0
40230,81911,8191112,フクオカケン,イトシマシ,ウラシ,福岡県,糸島市,浦志,0,0,1,0,0,0
40230,81911,8191105,フクオカケン,イトシマシ,ウルウ,福岡県,糸島市,潤,0,0,1,0,0,0
40230,81915,8191573,フクオカケン,イトシマシ,オウマル,福岡県,糸島市,王丸,0,0,0,0,0,0
40230,81911,8191135,フクオカケン,イトシマシ,オオウラ,福岡県,糸島市,大浦,0,0,0,0,0,0
40230,81911,8191121,フクオカケン,イトシマシ,オギノウラ,福岡県,糸島市,荻浦,0,0,0,0,0,0
40230,81911,8191124,フクオカケン,イトシマシ,カフリ,福岡県,糸島市,加布里,0,0,0,0,0,0
40230,81911,8191123,フクオカケン,イトシマシ,カミアリ,福岡県,糸島市,神在,0,0,0,0,0,0
40230,81911,8191155,フクオカケン,イトシマシ,カワツキ,福岡県,糸島市,川付,0,0,0,0,0,0
40230,81915,8191574,フクオカケン,イトシマシ,カワバル,福岡県,糸島市,川原,0,0,0,0,0,0
40230,81911,8191141,フクオカケン,イトシマシ,クラモチ,福岡県,糸島市,蔵持,0,0,0,0,0,0
40230,81915,8191563,フクオカケン,イトシマシ,コウライジ,福岡県,糸島市,高来寺,0,0,0,0,0,0
40230,81911,8191147,フクオカケン,イトシマシ,コウリキ,福岡県,糸島市,香力,0,0,0,0,0,0
40230,81911,8191106,フクオカケン,イトシマシ,シト,福岡県,糸島市,志登,0,0,0,0,0,0
40230,81911,8191131,フクオカケン,イトシマシ,シノワラ,福岡県,糸島市,篠原,0,0,0,0,0,0
40230,81911,8191129,フクオカケン,イトシマシ,シノワラニシ,福岡県,糸島市,篠原西,0,0,1,0,0,0
40230,81911,8191128,フクオカケン,イトシマシ,シノワラヒガシ,福岡県,糸島市,篠原東,0,0,1,0,0,0
40230,81913,8191301,フクオカケン,イトシマシ,シマイダハラ,福岡県,糸島市,志摩井田原,0,0,0,0,0,0
40230,81913,8191313,フクオカケン,イトシマシ,シマイナドメ,福岡県,糸島市,志摩稲留,0,0,0,0,0,0
40230,81913,8191315,フクオカケン,イトシマシ,シマイナバ,福岡県,糸島市,志摩稲葉,0,0,0,0,0,0
40230,81913,8191334,フクオカケン,イトシマシ,シマキシ,福岡県,糸島市,志摩岐志,0,0,0,0,0,0
40230,81913,8191331,フクオカケン,イトシマシ,シマクガ,福岡県,糸島市,志摩久家,0,0,0,0,0,0
40230,81913,8191335,フクオカケン,イトシマシ,シマケヤ,福岡県,糸島市,志摩芥屋,0,0,0,0,0,0
40230,81913,8191323,フクオカケン,イトシマシ,シマコガネマル,福岡県,糸島市,志摩小金丸,0,0,0,0,0,0
40230,81913,8191321,フクオカケン,イトシマシ,シマコフジ,福岡県,糸島市,志摩小富士,0,0,0,0,0,0
40230,81913,8191304,フクオカケン,イトシマシ,シマサクライ,福岡県,糸島市,志摩桜井,0,0,0,0,0,0
40230,81913,8191333,フクオカケン,イトシマシ,シマシンマチ,福岡県,糸島市,志摩新町,0,0,0,0,0,0
40230,81913,8191311,フクオカケン,イトシマシ,シマツワザキ,福岡県,糸島市,志摩津和崎,0,0,0,0,0,0
40230,81913,8191325,フクオカケン,イトシマシ,シマニシカイヅカ,福岡県,糸島市,志摩西貝塚,0,0,0,0,0,0
40230,81913,8191303,フクオカケン,イトシマシ,シマノギタ,福岡県,糸島市,志摩野北,0,0,0,0,0,0
40230,81913,8191312,フクオカケン,イトシマシ,シマハツ,福岡県,糸島市,志摩初,0,0,0,0,0,0
40230,81913,8191305,フクオカケン,イトシマシ,シマババ,福岡県,糸島市,志摩馬場,0,0,0,0,0,0
40230,81913,8191324,フクオカケン,イトシマシ,シマヒガシカイヅカ,福岡県,糸島市,志摩東貝塚,0,0,0,0,0,0
40230,81913,8191336,フクオカケン,イトシマシ,シマヒメシマ,福岡県,糸島市,志摩姫島,0,0,0,0,0,0
40230,81913,8191332,フクオカケン,イトシマシ,シマフナコシ,福岡県,糸島市,志摩船越,0,0,0,0,0,0
40230,81913,8191306,フクオカケン,イトシマシ,シママツグマ,福岡県,糸島市,志摩松隈,0,0,0,0,0,0
40230,81913,8191322,フクオカケン,イトシマシ,シマミトコ,福岡県,糸島市,志摩御床,0,0,0,0,0,0
40230,81913,8191314,フクオカケン,イトシマシ,シマモロヨシ,福岡県,糸島市,志摩師吉,0,0,0,0,0,0
40230,81913,8191302,フクオカケン,イトシマシ,シマヨシダ,福岡県,糸島市,志摩吉田,0,0,0,0,0,0
40230,81911,8191154,フクオカケン,イトシマシ,シライト,福岡県,糸島市,白糸,0,0,0,0,0,0
40230,81911,8191114,フクオカケン,イトシマシ,シンデン,福岡県,糸島市,新田,0,0,0,0,0,0
40230,81915,8191581,フクオカケン,イトシマシ,ズイバイジ,福岡県,糸島市,瑞梅寺,0,0,0,0,0,0
40230,81915,8191572,フクオカケン,イトシマシ,スエナガ,福岡県,糸島市,末永,0,0,0,0,0,0
40230,81911,8191156,フクオカケン,イトシマシ,セト,福岡県,糸島市,瀬戸,0,0,0,0,0,0
40230,81915,8191561,フクオカケン,イトシマシ,ソネ,福岡県,糸島市,曽根,0,0,0,0,0,0
40230,81915,8191564,フクオカケン,イトシマシ,ダイモン,福岡県,糸島市,大門,0,0,0,0,0,0
40230,81911,8191143,フクオカケン,イトシマシ,タカウエ,福岡県,糸島市,高上,0,0,0,0,0,0
40230,81915,8191571,フクオカケン,イトシマシ,タカス,福岡県,糸島市,高祖,0,0,0,0,0,0
40230,81911,8191102,フクオカケン,イトシマシ,タカタ,福岡県,糸島市,高田,0,0,1,0,0,0
40230,81911,8191134,フクオカケン,イトシマシ,タク,福岡県,糸島市,多久,0,0,0,0,0,0
40230,81911,8191125,フクオカケン,イトシマシ,チハヤシンデン,福岡県,糸島市,千早新田,0,0,0,0,0,0
40230,81911,8191111,フクオカケン,イトシマシ,トマリ,福岡県,糸島市,泊,0,0,0,0,0,0
40230,81911,8191133,フクオカケン,イトシマシ,トミ,福岡県,糸島市,富,0,0,0,0,0,0
40230,81911,8191153,フクオカケン,イトシマシ,ナガノ,福岡県,糸島市,長野,0,0,0,0,0,0
40230,81915,8191575,フクオカケン,イトシマシ,ニシノドウ,福岡県,糸島市,西堂,0,0,0,0,0,0
40230,81916,8191622,フクオカケン,イトシマシ,ニジョウイキサン,福岡県,糸島市,二丈一貴山,0,0,0,0,0,0
40230,81916,8191623,フクオカケン,イトシマシ,ニジョウイシザキ,福岡県,糸島市,二丈石崎,0,0,0,0,0,0
40230,81916,8191611,フクオカケン,イトシマシ,ニジョウカタヤマ,福岡県,糸島市,二丈片山,0,0,0,0,0,0
40230,81916,8191621,フクオカケン,イトシマシ,ニジョウカミフカエ,福岡県,糸島市,二丈上深江,0,0,0,0,0,0
40230,81916,8191642,フクオカケン,イトシマシ,ニジョウシカカ,福岡県,糸島市,二丈鹿家,0,0,0,0,0,0
40230,81916,8191616,フクオカケン,イトシマシ,ニジョウタケ,福岡県,糸島市,二丈武,0,0,0,0,0,0
40230,81916,8191615,フクオカケン,イトシマシ,ニジョウタナカ,福岡県,糸島市,二丈田中,0,0,0,0,0,0
40230,81916,8191625,フクオカケン,イトシマシ,ニジョウナガイシ,福岡県,糸島市,二丈長石,0,0,0,0,0,0
40230,81916,8191614,フクオカケン,イトシマシ,ニジョウハマクボ,福岡県,糸島市,二丈浜窪,0,0,0,0,0,0
40230,81916,8191626,フクオカケン,イトシマシ,ニジョウハロ,福岡県,糸島市,二丈波呂,0,0,0,0,0,0
40230,81916,8191601,フクオカケン,イトシマシ,ニジョウフカエ,福岡県,糸島市,二丈深江,0,0,0,0,0,0
40230,81916,8191631,フクオカケン,イトシマシ,ニジョウフクイ,福岡県,糸島市,二丈福井,0,0,0,0,0,0
40230,81916,8191612,フクオカケン,イトシマシ,ニジョウマスエ(シモマスエ),福岡県,糸島市,二丈松末(下松末),1,0,0,0,0,0
40230,81916,8191613,フクオカケン,イトシマシ,ニジョウマスエ(ソノタ),福岡県,糸島市,二丈松末(その他),1,0,0,0,0,0
40230,81916,8191627,フクオカケン,イトシマシ,ニジョウマツクニ,福岡県,糸島市,二丈松国,0,0,0,0,0,0
40230,81916,8191624,フクオカケン,イトシマシ,ニジョウミツヨシ,福岡県,糸島市,二丈満吉,0,0,0,0,0,0
40230,81916,8191641,フクオカケン,イトシマシ,ニジョウヨシイ,福岡県,糸島市,二丈吉井,0,0,0,0,0,0
40230,81911,8191104,フクオカケン,イトシマシ,ハタエ,福岡県,糸島市,波多江,0,0,0,0,0,0
40230,81911,8191107,フクオカケン,イトシマシ,ハタエエキキタ,福岡県,糸島市,波多江駅北,0,0,1,0,0,0
40230,81911,8191108,フクオカケン,イトシマシ,ハタエエキミナミ,福岡県,糸島市,波多江駅南,0,0,1,0,0,0
40230,81911,8191122,フクオカケン,イトシマシ,ヒガシ,福岡県,糸島市,東,0,0,0,0,0,0
40230,81911,8191151,フクオカケン,イトシマシ,ホン,福岡県,糸島市,本,0,0,0,0,0,0
40230,81911,8191113,フクオカケン,イトシマシ,マエバル,福岡県,糸島市,前原,0,0,0,0,0,0
40230,81911,8191138,フクオカケン,イトシマシ,マエバルエキミナミ,福岡県,糸島市,前原駅南,0,0,1,0,0,0
40230,81911,8191118,フクオカケン,イトシマシ,マエバルキタ,福岡県,糸島市,前原北,0,0,1,0,0,0
40230,81911,8191116,フクオカケン,イトシマシ,マエバルチュウオウ,福岡県,糸島市,前原中央,0,0,1,0,0,0
40230,81911,8191117,フクオカケン,イトシマシ,マエバルニシ,福岡県,糸島市,前原西,0,0,1,0,0,0
40230,81911,8191119,フクオカケン,イトシマシ,マエバルヒガシ,福岡県,糸島市,前原東,0,0,1,0,0,0
40230,81911,8191139,フクオカケン,イトシマシ,マエバルミナミ,福岡県,糸島市,前原南,0,0,1,0,0,0
40230,81915,8191583,フクオカケン,イトシマシ,ミクモ,福岡県,糸島市,三雲,0,0,0,0,0,0
40230,81911,8191146,フクオカケン,イトシマシ,ミサカ,福岡県,糸島市,三坂,0,0,0,0,0,0
40230,81911,8191136,フクオカケン,イトシマシ,ミサキガオカ,福岡県,糸島市,美咲が丘,0,0,1,0,0,0
40230,81911,8191137,フクオカケン,イトシマシ,ミナカゼダイ,福岡県,糸島市,南風台,0,0,1,0,0,0
40230,81911,8191142,フクオカケン,イトシマシ,ヤシマ,福岡県,糸島市,八島,0,0,0,0,0,0
40230,81911,8191144,フクオカケン,イトシマシ,ヤマギタ,福岡県,糸島市,山北,0,0,0,0,0,0
40230,81911,8191115,フクオカケン,イトシマシ,ユビ,福岡県,糸島市,油比,0,0,0,0,0,0
40230,81911,8191145,フクオカケン,イトシマシ,ライザン,福岡県,糸島市,雷山,0,0,0,0,0,0
40305,81112,8111200,フクオカケン,チクシグンナカガワマチ,イカニケイサイガナイバアイ,福岡県,筑紫郡那珂川町,以下に掲載がない場合,0,0,0,0,0,0
40305,81112,8111224,フクオカケン,チクシグンナカガワマチ,アントク,福岡県,筑紫郡那珂川町,安徳,0,0,0,0,0,0
40305,81112,8111233,フクオカケン,チクシグンナカガワマチ,イチノセ,福岡県,筑紫郡那珂川町,市ノ瀬,0,0,0,0,0,0
40305,81112,8111211,フクオカケン,チクシグンナカガワマチ,イマミツ,福岡県,筑紫郡那珂川町,今光,0,0,1,0,0,0
40305,81112,8111241,フクオカケン,チクシグンナカガワマチ,ウシロノ,福岡県,筑紫郡那珂川町,後野,0,0,0,0,0,0
40305,81112,8111232,フクオカケン,チクシグンナカガワマチ,ウメガネ,福岡県,筑紫郡那珂川町,埋金,0,0,0,0,0,0
40305,81112,8111255,フクオカケン,チクシグンナカガワマチ,エコ,福岡県,筑紫郡那珂川町,恵子,0,0,1,0,0,0
40305,81112,8111221,フクオカケン,チクシグンナカガワマチ,オウツカダイ,福岡県,筑紫郡那珂川町,王塚台,0,0,1,0,0,0
40305,81112,8111201,フクオカケン,チクシグンナカガワマチ,カタナワ,福岡県,筑紫郡那珂川町,片縄,0,0,1,0,0,0
40305,81112,8111203,フクオカケン,チクシグンナカガワマチ,カタナワキタ,福岡県,筑紫郡那珂川町,片縄北,0,0,1,0,0,0
40305,81112,8111202,フクオカケン,チクシグンナカガワマチ,カタナワニシ,福岡県,筑紫郡那珂川町,片縄西,0,0,1,0,0,0
40305,81112,8111204,フクオカケン,チクシグンナカガワマチ,カタナワヒガシ,福岡県,筑紫郡那珂川町,片縄東,0,0,1,0,0,0
40305,81112,8111223,フクオカケン,チクシグンナカガワマチ,カミカジワラ,福岡県,筑紫郡那珂川町,上梶原,0,0,0,0,0,0
40305,81112,8111234,フクオカケン,チクシグンナカガワマチ,ゴカヤマ,福岡県,筑紫郡那珂川町,五ケ山,0,0,0,0,0,0
40305,81112,8111252,フクオカケン,チクシグンナカガワマチ,ゴロウマル,福岡県,筑紫郡那珂川町,五郎丸,0,0,1,0,0,0
40305,81112,8111222,フクオカケン,チクシグンナカガワマチ,シモカジワラ,福岡県,筑紫郡那珂川町,下梶原,0,0,0,0,0,0
40305,81112,8111253,フクオカケン,チクシグンナカガワマチ,チュウ,福岡県,筑紫郡那珂川町,仲,0,0,1,0,0,0
40305,81112,8111256,フクオカケン,チクシグンナカガワマチ,チュウマル,福岡県,筑紫郡那珂川町,仲丸,0,0,1,0,0,0
40305,81112,8111254,フクオカケン,チクシグンナカガワマチ,ドウゼン,福岡県,筑紫郡那珂川町,道善,0,0,1,0,0,0
40305,81112,8111213,フクオカケン,チクシグンナカガワマチ,ナカバル,福岡県,筑紫郡那珂川町,中原,0,0,1,0,0,0
40305,81112,8111214,フクオカケン,チクシグンナカガワマチ,ナカバルヒガシ,福岡県,筑紫郡那珂川町,中原東,0,0,1,0,0,0
40305,81112,8111212,フクオカケン,チクシグンナカガワマチ,ナカバルミハルガオカ,福岡県,筑紫郡那珂川町,中原観晴が丘,0,0,0,0,0,0
40305,81112,8111236,フクオカケン,チクシグンナカガワマチ,ナメリ,福岡県,筑紫郡那珂川町,南面里,0,0,0,0,0,0
40305,81112,8111235,フクオカケン,チクシグンナカガワマチ,ナルタケ,福岡県,筑紫郡那珂川町,成竹,0,0,0,0,0,0
40305,81112,8111242,フクオカケン,チクシグンナカガワマチ,ニシグマ,福岡県,筑紫郡那珂川町,西隈,0,0,0,0,0,0
40305,81112,8111246,フクオカケン,チクシグンナカガワマチ,ニシハタ,福岡県,筑紫郡那珂川町,西畑,0,0,0,0,0,0
40305,81112,8111243,フクオカケン,チクシグンナカガワマチ,ヒガシグマ,福岡県,筑紫郡那珂川町,東隈,0,0,1,0,0,0
40305,81112,8111231,フクオカケン,チクシグンナカガワマチ,フニュウドウ,福岡県,筑紫郡那珂川町,不入道,0,0,0,0,0,0
40305,81112,8111245,フクオカケン,チクシグンナカガワマチ,ベッショ,福岡県,筑紫郡那珂川町,別所,0,0,0,0,0,0
40305,81112,8111251,フクオカケン,チクシグンナカガワマチ,マツノキ,福岡県,筑紫郡那珂川町,松木,0,0,1,0,0,0
40305,81112,8111215,フクオカケン,チクシグンナカガワマチ,マツバラ,福岡県,筑紫郡那珂川町,松原,0,0,0,0,0,0
40305,81112,8111216,フクオカケン,チクシグンナカガワマチ,ミハルガオカ,福岡県,筑紫郡那珂川町,観晴が丘,0,0,0,0,0,0
40305,81112,8111244,フクオカケン,チクシグンナカガワマチ,ヤマダ,福岡県,筑紫郡那珂川町,山田,0,0,0,0,0,0
40341,81121,8112100,フクオカケン,カスヤグンウミマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡宇美町,以下に掲載がない場合,0,0,0,1,0,0
40341,81121,8112104,フクオカケン,カスヤグンウミマチ,イノ,福岡県,糟屋郡宇美町,井野,0,0,0,0,0,0
40341,81121,8112101,フクオカケン,カスヤグンウミマチ,ウミ,福岡県,糟屋郡宇美町,宇美,0,0,1,0,0,0
40341,81121,8112128,フクオカケン,カスヤグンウミマチ,ウミチュウオウ,福岡県,糟屋郡宇美町,宇美中央,0,0,1,0,0,0
40341,81121,8112125,フクオカケン,カスヤグンウミマチ,ウミヒガシ,福岡県,糟屋郡宇美町,宇美東,0,0,1,0,0,0
40341,81121,8112131,フクオカケン,カスヤグンウミマチ,キフネ,福岡県,糟屋郡宇美町,貴船,0,0,1,0,0,0
40341,81121,8112123,フクオカケン,カスヤグンウミマチ,コウショウジ,福岡県,糟屋郡宇美町,光正寺,0,0,1,0,0,0
40341,81121,8112109,フクオカケン,カスヤグンウミマチ,サクラバル,福岡県,糟屋郡宇美町,桜原,0,0,1,0,0,0
40341,81121,8112105,フクオカケン,カスヤグンウミマチ,シオウジ,福岡県,糟屋郡宇美町,四王寺,0,0,0,0,0,0
40341,81121,8112103,フクオカケン,カスヤグンウミマチ,シオウジザカ,福岡県,糟屋郡宇美町,四王寺坂,0,0,1,0,0,0
40341,81121,8112127,フクオカケン,カスヤグンウミマチ,ショウジダケ,福岡県,糟屋郡宇美町,障子岳,0,0,1,0,0,0
40341,81121,8112126,フクオカケン,カスヤグンウミマチ,ショウジダケミナミ,福岡県,糟屋郡宇美町,障子岳南,0,0,1,0,0,0
40341,81121,8112102,フクオカケン,カスヤグンウミマチ,スミヤキ,福岡県,糟屋郡宇美町,炭焼,0,0,0,0,0,0
40341,81121,8112107,フクオカケン,カスヤグンウミマチ,トビタケ,福岡県,糟屋郡宇美町,とびたけ,0,0,1,0,0,0
40341,81121,8112132,フクオカケン,カスヤグンウミマチ,ハルダ,福岡県,糟屋郡宇美町,原田,0,0,1,0,0,0
40341,81121,8112106,フクオカケン,カスヤグンウミマチ,ヒバリガオカ,福岡県,糟屋郡宇美町,ひばりが丘,0,0,1,0,0,0
40341,81121,8112121,フクオカケン,カスヤグンウミマチ,ヘイワ,福岡県,糟屋郡宇美町,平和,0,0,1,0,0,0
40341,81121,8112122,フクオカケン,カスヤグンウミマチ,ミョウジンザカ,福岡県,糟屋郡宇美町,明神坂,0,0,1,0,0,0
40341,81121,8112108,フクオカケン,カスヤグンウミマチ,ユリガオカ,福岡県,糟屋郡宇美町,ゆりが丘,0,0,1,0,0,0
40341,81121,8112124,フクオカケン,カスヤグンウミマチ,ワカクサ,福岡県,糟屋郡宇美町,若草,0,0,1,0,0,0
40342,81124,8112400,フクオカケン,カスヤグンササグリマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡篠栗町,以下に掲載がない場合,0,0,0,0,0,0
40342,81124,8112412,フクオカケン,カスヤグンササグリマチ,オトイヌ,福岡県,糟屋郡篠栗町,乙犬,0,0,0,0,0,0
40342,81124,8112413,フクオカケン,カスヤグンササグリマチ,オナカ,福岡県,糟屋郡篠栗町,尾仲,0,0,0,0,0,0
40342,81124,8112402,フクオカケン,カスヤグンササグリマチ,カナイデ,福岡県,糟屋郡篠栗町,金出,0,0,0,0,0,0
40342,81124,8112405,フクオカケン,カスヤグンササグリマチ,ササグリ,福岡県,糟屋郡篠栗町,篠栗,0,0,0,0,0,0
40342,81124,8112401,フクオカケン,カスヤグンササグリマチ,タカタ,福岡県,糟屋郡篠栗町,高田,0,0,0,0,0,0
40342,81124,8112416,フクオカケン,カスヤグンササグリマチ,タナカ,福岡県,糟屋郡篠栗町,田中,0,0,0,0,0,0
40342,81124,8112415,フクオカケン,カスヤグンササグリマチ,ツバクロ,福岡県,糟屋郡篠栗町,津波黒,0,0,0,0,0,0
40342,81124,8112404,フクオカケン,カスヤグンササグリマチ,ナイジュウ,福岡県,糟屋郡篠栗町,内住,0,0,0,0,0,0
40342,81124,8112403,フクオカケン,カスヤグンササグリマチ,ハギノウ,福岡県,糟屋郡篠栗町,萩尾,0,0,0,0,0,0
40342,81124,8112411,フクオカケン,カスヤグンササグリマチ,ワカスギ,福岡県,糟屋郡篠栗町,若杉,0,0,0,0,0,0
40342,81124,8112414,フクオカケン,カスヤグンササグリマチ,ワダ,福岡県,糟屋郡篠栗町,和田,0,0,0,0,0,0
40343,81122,8112200,フクオカケン,カスヤグンシメマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡志免町,以下に掲載がない場合,0,0,0,0,0,0
40343,81122,8112203,フクオカケン,カスヤグンシメマチ,イシバシダイ,福岡県,糟屋郡志免町,石橋台,0,0,0,0,0,0
40343,81122,8112209,フクオカケン,カスヤグンシメマチ,オウジ,福岡県,糟屋郡志免町,王子,0,0,1,0,0,0
40343,81122,8112245,フクオカケン,カスヤグンシメマチ,カタミネ,福岡県,糟屋郡志免町,片峰,0,0,1,0,0,0
40343,81122,8112246,フクオカケン,カスヤグンシメマチ,カタミネチュウオウ,福岡県,糟屋郡志免町,片峰中央,0,0,1,0,0,0
40343,81122,8112248,フクオカケン,カスヤグンシメマチ,サカセ,福岡県,糟屋郡志免町,坂瀬,0,0,0,0,0,0
40343,81122,8112201,フクオカケン,カスヤグンシメマチ,サクラガオカ,福岡県,糟屋郡志免町,桜丘,0,0,1,0,0,0
40343,81122,8112202,フクオカケン,カスヤグンシメマチ,シメ,福岡県,糟屋郡志免町,志免,0,0,0,0,0,0
40343,81122,8112244,フクオカケン,カスヤグンシメマチ,シメチュウオウ,福岡県,糟屋郡志免町,志免中央,0,0,1,0,0,0
40343,81122,8112243,フクオカケン,カスヤグンシメマチ,シメヒガシ,福岡県,糟屋郡志免町,志免東,0,0,1,0,0,0
40343,81122,8112204,フクオカケン,カスヤグンシメマチ,タドミ,福岡県,糟屋郡志免町,田富,0,0,0,0,0,0
40343,81122,8112241,フクオカケン,カスヤグンシメマチ,ヒガシコウエンダイ,福岡県,糟屋郡志免町,東公園台,0,0,1,0,0,0
40343,81122,8112205,フクオカケン,カスヤグンシメマチ,ベフ,福岡県,糟屋郡志免町,別府,0,0,0,0,0,0
40343,81122,8112233,フクオカケン,カスヤグンシメマチ,ベフキタ,福岡県,糟屋郡志免町,別府北,0,0,1,0,0,0
40343,81122,8112232,フクオカケン,カスヤグンシメマチ,ベフニシ,福岡県,糟屋郡志免町,別府西,0,0,1,0,0,0
40343,81122,8112231,フクオカケン,カスヤグンシメマチ,ベフヒガシ,福岡県,糟屋郡志免町,別府東,0,0,1,0,0,0
40343,81122,8112242,フクオカケン,カスヤグンシメマチ,マツガオカ,福岡県,糟屋郡志免町,松ケ丘,0,0,0,0,0,0
40343,81122,8112206,フクオカケン,カスヤグンシメマチ,ミタライ,福岡県,糟屋郡志免町,御手洗,0,0,1,0,0,0
40343,81122,8112207,フクオカケン,カスヤグンシメマチ,ミナミザト,福岡県,糟屋郡志免町,南里,0,0,1,0,0,0
40343,81122,8112247,フクオカケン,カスヤグンシメマチ,ムカイガオカ,福岡県,糟屋郡志免町,向ケ丘,0,0,1,0,0,0
40343,81122,8112208,フクオカケン,カスヤグンシメマチ,ヨシハラ,福岡県,糟屋郡志免町,吉原,0,0,0,0,0,0
40344,81121,8112100,フクオカケン,カスヤグンスエマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡須惠町,以下に掲載がない場合,0,0,0,1,0,0
40344,81121,8112112,フクオカケン,カスヤグンスエマチ,ウエキ,福岡県,糟屋郡須惠町,植木,0,0,0,0,0,0
40344,81121,8112114,フクオカケン,カスヤグンスエマチ,カミスエ,福岡県,糟屋郡須惠町,上須惠,0,0,0,0,0,0
40344,81121,8112115,フクオカケン,カスヤグンスエマチ,サタニ,福岡県,糟屋郡須惠町,佐谷,0,0,0,0,0,0
40344,81121,8112111,フクオカケン,カスヤグンスエマチ,シンバル,福岡県,糟屋郡須惠町,新原,0,0,0,0,0,0
40344,81121,8112113,フクオカケン,カスヤグンスエマチ,スエ,福岡県,糟屋郡須惠町,須惠,0,0,0,0,0,0
40344,81122,8112221,フクオカケン,カスヤグンスエマチ,タビイシ,福岡県,糟屋郡須惠町,旅石,0,0,0,0,0,0
40345,81101,8110100,フクオカケン,カスヤグンシングウマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡新宮町,以下に掲載がない場合,0,0,0,0,0,0
40345,81101,8110118,フクオカケン,カスヤグンシングウマチ,アイノシマ,福岡県,糟屋郡新宮町,相島,0,0,0,0,0,0
40345,81101,8110117,フクオカケン,カスヤグンシングウマチ,カミノフ,福岡県,糟屋郡新宮町,上府,0,0,0,0,0,0
40345,81101,8110113,フクオカケン,カスヤグンシングウマチ,サクラヤマテ,福岡県,糟屋郡新宮町,桜山手,0,0,1,0,0,0
40345,81101,8110112,フクオカケン,カスヤグンシングウマチ,シモノフ,福岡県,糟屋郡新宮町,下府,0,0,1,0,0,0
40345,81101,8110115,フクオカケン,カスヤグンシングウマチ,シングウ,福岡県,糟屋郡新宮町,新宮,0,0,0,0,0,0
40345,81101,8110102,フクオカケン,カスヤグンシングウマチ,タチバナグチ,福岡県,糟屋郡新宮町,立花口,0,0,0,0,0,0
40345,81101,8110120,フクオカケン,カスヤグンシングウマチ,チュウオウエキマエ,福岡県,糟屋郡新宮町,中央駅前,0,0,1,0,0,0
40345,81101,8110103,フクオカケン,カスヤグンシングウマチ,ハナタチバナ,福岡県,糟屋郡新宮町,花立花,0,0,1,0,0,0
40345,81101,8110101,フクオカケン,カスヤグンシングウマチ,ハルガミ,福岡県,糟屋郡新宮町,原上,0,0,0,0,0,0
40345,81101,8110104,フクオカケン,カスヤグンシングウマチ,マトノ,福岡県,糟屋郡新宮町,的野,0,0,0,0,0,0
40345,81101,8110121,フクオカケン,カスヤグンシングウマチ,ミサキ,福岡県,糟屋郡新宮町,美咲,0,0,1,0,0,0
40345,81101,8110111,フクオカケン,カスヤグンシングウマチ,ミシロ,福岡県,糟屋郡新宮町,三代,0,0,0,0,0,0
40345,81101,8110119,フクオカケン,カスヤグンシングウマチ,ミドリガハマ,福岡県,糟屋郡新宮町,緑ケ浜,0,0,1,0,0,0
40345,81101,8110116,フクオカケン,カスヤグンシングウマチ,ミナト,福岡県,糟屋郡新宮町,湊,0,0,0,0,0,0
40345,81101,8110114,フクオカケン,カスヤグンシングウマチ,ミナトザカ,福岡県,糟屋郡新宮町,湊坂,0,0,1,0,0,0
40345,81101,8110122,フクオカケン,カスヤグンシングウマチ,モリノミヤ,福岡県,糟屋郡新宮町,杜の宮,0,0,1,0,0,0
40345,81101,8110110,フクオカケン,カスヤグンシングウマチ,ユウス,福岡県,糟屋郡新宮町,夜臼,0,0,1,0,0,0
40348,81125,8112500,フクオカケン,カスヤグンヒサヤママチ,イカニケイサイガナイバアイ,福岡県,糟屋郡久山町,以下に掲載がない場合,0,0,0,0,0,0
40348,81125,8112503,フクオカケン,カスヤグンヒサヤママチ,イノ,福岡県,糟屋郡久山町,猪野,0,0,0,0,0,0
40348,81125,8112501,フクオカケン,カスヤグンヒサヤママチ,クバラ,福岡県,糟屋郡久山町,久原,0,0,0,0,0,0
40348,81125,8112502,フクオカケン,カスヤグンヒサヤママチ,ヤマダ,福岡県,糟屋郡久山町,山田,0,0,0,0,0,0
40349,81123,8112300,フクオカケン,カスヤグンカスヤマチ,イカニケイサイガナイバアイ,福岡県,糟屋郡粕屋町,以下に掲載がない場合,0,0,0,0,0,0
40349,81123,8112306,フクオカケン,カスヤグンカスヤマチ,アエ,福岡県,糟屋郡粕屋町,阿恵,0,0,0,0,0,0
40349,813,8130008,フクオカケン,カスヤグンカスヤマチ,ウチハシ790-1(タノツダンチ),福岡県,糟屋郡粕屋町,内橋790の1(多ノ津団地),1,0,0,0,0,0
40349,81123,8112308,フクオカケン,カスヤグンカスヤマチ,ウチハシ(ソノタ),福岡県,糟屋郡粕屋町,内橋(その他),1,0,0,0,0,0
40349,81123,8112313,フクオカケン,カスヤグンカスヤマチ,エツジ,福岡県,糟屋郡粕屋町,江辻,0,0,0,0,0,0
40349,81123,8112302,フクオカケン,カスヤグンカスヤマチ,オオクマ,福岡県,糟屋郡粕屋町,大隈,0,0,0,0,0,0
40349,81123,8112301,フクオカケン,カスヤグンカスヤマチ,カミオオクマ,福岡県,糟屋郡粕屋町,上大隈,0,0,0,0,0,0
40349,81123,8112309,フクオカケン,カスヤグンカスヤマチ,カヨイチョウ,福岡県,糟屋郡粕屋町,駕与丁,0,0,1,0,0,0
40349,81123,8112315,フクオカケン,カスヤグンカスヤマチ,コウナカバル,福岡県,糟屋郡粕屋町,甲仲原,0,0,1,0,0,0
40349,81123,8112303,フクオカケン,カスヤグンカスヤマチ,サカド,福岡県,糟屋郡粕屋町,酒殿,0,0,0,0,0,0
40349,81123,8112311,フクオカケン,カスヤグンカスヤマチ,チョウジャバル,福岡県,糟屋郡粕屋町,長者原,0,0,0,0,0,0
40349,81123,8112312,フクオカケン,カスヤグンカスヤマチ,トバラ,福岡県,糟屋郡粕屋町,戸原,0,0,0,0,0,0
40349,81123,8112304,フクオカケン,カスヤグンカスヤマチ,ナカバル,福岡県,糟屋郡粕屋町,仲原,0,0,0,0,0,0
40349,81123,8112310,フクオカケン,カスヤグンカスヤマチ,ハナガウラ,福岡県,糟屋郡粕屋町,花ヶ浦,0,0,1,0,0,0
40349,81123,8112307,フクオカケン,カスヤグンカスヤマチ,ハルマチ,福岡県,糟屋郡粕屋町,原町,0,0,1,0,0,0
40349,81123,8112305,フクオカケン,カスヤグンカスヤマチ,ユス,福岡県,糟屋郡粕屋町,柚須,0,0,0,0,0,0
40349,81123,8112314,フクオカケン,カスヤグンカスヤマチ,ワカミヤ,福岡県,糟屋郡粕屋町,若宮,0,0,1,0,0,0
40383,81142,8114200,フクオカケン,オンガグンオカガキマチ,イカニケイサイガナイバアイ,福岡県,遠賀郡岡垣町,以下に掲載がない場合,0,0,0,0,0,0
40383,81142,8114215,フクオカケン,オンガグンオカガキマチ,アサヒダイ,福岡県,遠賀郡岡垣町,旭台,0,0,1,0,0,0
40383,81142,8114216,フクオカケン,オンガグンオカガキマチ,アサヒミナミ,福岡県,遠賀郡岡垣町,旭南,0,0,0,0,0,0
40383,81142,8114203,フクオカケン,オンガグンオカガキマチ,ウツラ,福岡県,遠賀郡岡垣町,内浦,0,0,0,0,0,0
40383,81142,8114231,フクオカケン,オンガグンオカガキマチ,エビツ,福岡県,遠賀郡岡垣町,海老津,0,0,1,0,0,0
40383,81142,8114236,フクオカケン,オンガグンオカガキマチ,エビツエキマエ,福岡県,遠賀郡岡垣町,海老津駅前,0,0,0,0,0,0
40383,81142,8114238,フクオカケン,オンガグンオカガキマチ,エビツエキミナミ,福岡県,遠賀郡岡垣町,海老津駅南,0,0,1,0,0,0
40383,81142,8114212,フクオカケン,オンガグンオカガキマチ,クロヤマ,福岡県,遠賀郡岡垣町,黒山,0,0,0,0,0,0
40383,81142,8114235,フクオカケン,オンガグンオカガキマチ,コウエンドオリ,福岡県,遠賀郡岡垣町,公園通り,0,0,1,0,0,0
40383,81142,8114227,フクオカケン,オンガグンオカガキマチ,コウヨウダイ,福岡県,遠賀郡岡垣町,高陽台,0,0,1,0,0,0
40383,81142,8114217,フクオカケン,オンガグンオカガキマチ,サクラダイ,福岡県,遠賀郡岡垣町,桜台,0,0,0,0,0,0
40383,81142,8114232,フクオカケン,オンガグンオカガキマチ,ジョウハタ,福岡県,遠賀郡岡垣町,上畑,0,0,0,0,0,0
40383,81142,8114234,フクオカケン,オンガグンオカガキマチ,タカクラ,福岡県,遠賀郡岡垣町,高倉,0,0,0,0,0,0
40383,81142,8114218,フクオカケン,オンガグンオカガキマチ,チュウオウダイ,福岡県,遠賀郡岡垣町,中央台,0,0,1,0,0,0
40383,81142,8114204,フクオカケン,オンガグンオカガキマチ,テノ,福岡県,遠賀郡岡垣町,手野,0,0,0,0,0,0
40383,81142,8114222,フクオカケン,オンガグンオカガキマチ,トギリ,福岡県,遠賀郡岡垣町,戸切,0,0,0,0,0,0
40383,81142,8114224,フクオカケン,オンガグンオカガキマチ,ナベタ,福岡県,遠賀郡岡垣町,鍋田,0,0,1,0,0,0
40383,81142,8114213,フクオカケン,オンガグンオカガキマチ,ヌカヅカ,福岡県,遠賀郡岡垣町,糠塚,0,0,0,0,0,0
40383,81142,8114233,フクオカケン,オンガグンオカガキマチ,ノマ,福岡県,遠賀郡岡垣町,野間,0,0,1,0,0,0
40383,81142,8114239,フクオカケン,オンガグンオカガキマチ,ノマミナミ,福岡県,遠賀郡岡垣町,野間南,0,0,0,0,0,0
40383,81142,8114201,フクオカケン,オンガグンオカガキマチ,ハツ,福岡県,遠賀郡岡垣町,波津,0,0,0,0,0,0
40383,81142,8114202,フクオカケン,オンガグンオカガキマチ,ハラ,福岡県,遠賀郡岡垣町,原,0,0,0,0,0,0
40383,81142,8114225,フクオカケン,オンガグンオカガキマチ,ヒガシコウヨウ,福岡県,遠賀郡岡垣町,東高陽,0,0,1,0,0,0
40383,81142,8114237,フクオカケン,オンガグンオカガキマチ,ヒガシタカクラ,福岡県,遠賀郡岡垣町,東高倉,0,0,1,0,0,0
40383,81142,8114228,フクオカケン,オンガグンオカガキマチ,ヒガシマツバラ,福岡県,遠賀郡岡垣町,東松原,0,0,1,0,0,0
40383,81142,8114220,フクオカケン,オンガグンオカガキマチ,ヒガシヤマダ,福岡県,遠賀郡岡垣町,東山田,0,0,1,0,0,0
40383,81142,8114214,フクオカケン,オンガグンオカガキマチ,マツガダイ,福岡県,遠賀郡岡垣町,松ケ台,0,0,1,0,0,0
40383,81142,8114226,フクオカケン,オンガグンオカガキマチ,ミナミコウヨウ,福岡県,遠賀郡岡垣町,南高陽,0,0,0,0,0,0
40383,81142,8114205,フクオカケン,オンガグンオカガキマチ,ミヨシ,福岡県,遠賀郡岡垣町,三吉,0,0,0,0,0,0
40383,81142,8114221,フクオカケン,オンガグンオカガキマチ,ヤマダ,福岡県,遠賀郡岡垣町,山田,0,0,0,0,0,0
40383,81142,8114223,フクオカケン,オンガグンオカガキマチ,ヤマダトウゲ,福岡県,遠賀郡岡垣町,山田峠,0,0,1,0,0,0
40383,81142,8114229,フクオカケン,オンガグンオカガキマチ,ユリガオカ,福岡県,遠賀郡岡垣町,百合ケ丘,0,0,1,0,0,0
40383,81142,8114211,フクオカケン,オンガグンオカガキマチ,ヨシキ,福岡県,遠賀郡岡垣町,吉木,0,0,0,0,0,0
40383,81142,8114242,フクオカケン,オンガグンオカガキマチ,ヨシキニシ,福岡県,遠賀郡岡垣町,吉木西,0,0,1,0,0,0
40383,81142,8114241,フクオカケン,オンガグンオカガキマチ,ヨシキヒガシ,福岡県,遠賀郡岡垣町,吉木東,0,0,1,0,0,0
40384,81143,8114300,フクオカケン,オンガグンオンガチョウ,イカニケイサイガナイバアイ,福岡県,遠賀郡遠賀町,以下に掲載がない場合,0,0,0,0,0,0
40384,81143,8114312,フクオカケン,オンガグンオンガチョウ,アサギ,福岡県,遠賀郡遠賀町,浅木,0,0,1,0,0,0
40384,81143,8114303,フクオカケン,オンガグンオンガチョウ,イマコガ,福岡県,遠賀郡遠賀町,今古賀,0,0,0,0,0,0
40384,81143,8114311,フクオカケン,オンガグンオンガチョウ,オイラ,福岡県,遠賀郡遠賀町,老良,0,0,0,0,0,0
40384,81143,8114342,フクオカケン,オンガグンオンガチョウ,オザキ,福岡県,遠賀郡遠賀町,尾崎,0,0,0,0,0,0
40384,81143,8114341,フクオカケン,オンガグンオンガチョウ,オニヅ,福岡県,遠賀郡遠賀町,鬼津,0,0,0,0,0,0
40384,81143,8114307,フクオカケン,オンガグンオンガチョウ,オンガガワ,福岡県,遠賀郡遠賀町,遠賀川,0,0,1,0,0,0
40384,81143,8114332,フクオカケン,オンガグンオンガチョウ,カミベフ,福岡県,遠賀郡遠賀町,上別府,0,0,0,0,0,0
40384,81143,8114313,フクオカケン,オンガグンオンガチョウ,キモリ,福岡県,遠賀郡遠賀町,木守,0,0,0,0,0,0
40384,81143,8114306,フクオカケン,オンガグンオンガチョウ,キュウテイ,福岡県,遠賀郡遠賀町,旧停,0,0,1,0,0,0
40384,81143,8114301,フクオカケン,オンガグンオンガチョウ,シマヅ,福岡県,遠賀郡遠賀町,島津,0,0,0,0,0,0
40384,81143,8114333,フクオカケン,オンガグンオンガチョウ,シマド,福岡県,遠賀郡遠賀町,島門,0,0,0,0,0,0
40384,81143,8114343,フクオカケン,オンガグンオンガチョウ,デンエン,福岡県,遠賀郡遠賀町,田園,0,0,1,0,0,0
40384,81143,8114302,フクオカケン,オンガグンオンガチョウ,ヒロワタリ,福岡県,遠賀郡遠賀町,広渡,0,0,1,0,0,0
40384,81143,8114322,フクオカケン,オンガグンオンガチョウ,フヨウ,福岡県,遠賀郡遠賀町,芙蓉,0,0,1,0,0,0
40384,81143,8114331,フクオカケン,オンガグンオンガチョウ,ベフ,福岡県,遠賀郡遠賀町,別府,0,0,0,0,0,0
40384,81143,8114305,フクオカケン,オンガグンオンガチョウ,マツノモト,福岡県,遠賀郡遠賀町,松の本,0,0,1,0,0,0
40384,81143,8114321,フクオカケン,オンガグンオンガチョウ,ムショウヅ,福岡県,遠賀郡遠賀町,虫生津,0,0,0,0,0,0
40384,81143,8114324,フクオカケン,オンガグンオンガチョウ,ムショウヅミナミ,福岡県,遠賀郡遠賀町,虫生津南,0,0,0,0,0,0
40384,81143,8114334,フクオカケン,オンガグンオンガチョウ,レンガク,福岡県,遠賀郡遠賀町,蓮角,0,0,0,0,0,0
40384,81143,8114323,フクオカケン,オンガグンオンガチョウ,ワカバダイ,福岡県,遠賀郡遠賀町,若葉台,0,0,0,0,0,0
40384,81143,8114304,フクオカケン,オンガグンオンガチョウ,ワカマツ,福岡県,遠賀郡遠賀町,若松,0,0,0,0,0,0
42209,817,8170000,ナガサキケン,ツシマシ,イカニケイサイガナイバアイ,長崎県,対馬市,以下に掲載がない場合,0,0,0,0,0,0
42209,817,8170034,ナガサキケン,ツシマシ,イヅハラマチアガミ,長崎県,対馬市,厳原町安神,0,0,0,0,0,0
42209,81701,8170153,ナガサキケン,ツシマシ,イヅハラマチアザモ,長崎県,対馬市,厳原町浅藻,0,0,0,0,0,0
42209,81702,8170241,ナガサキケン,ツシマシ,イヅハラマチアレ,長崎県,対馬市,厳原町阿連,0,0,0,0,0,0
42209,817,8170021,ナガサキケン,ツシマシ,イヅハラマチイマヤシキ,長崎県,対馬市,厳原町今屋敷,0,0,0,0,0,0
42209,81701,8170157,ナガサキケン,ツシマシ,イヅハラマチウチヤマ,長崎県,対馬市,厳原町内山,0,0,0,0,0,0
42209,817,8170033,ナガサキケン,ツシマシ,イヅハラマチオウラ,長崎県,対馬市,厳原町尾浦,0,0,0,0,0,0
42209,817,8170024,ナガサキケン,ツシマシ,イヅハラマチオオテバシ,長崎県,対馬市,厳原町大手橋,0,0,0,0,0,0
42209,81702,8170243,ナガサキケン,ツシマシ,イヅハラマチカシネ,長崎県,対馬市,厳原町樫根,0,0,0,0,0,0
42209,817,8170006,ナガサキケン,ツシマシ,イヅハラマチキタザト,長崎県,対馬市,厳原町北里,0,0,0,0,0,0
42209,817,8170032,ナガサキケン,ツシマシ,イヅハラマチクタ,長崎県,対馬市,厳原町久田,0,0,0,0,0,0
42209,817,8170031,ナガサキケン,ツシマシ,イヅハラマチクタミチ,長崎県,対馬市,厳原町久田道,0,0,0,0,0,0
42209,81702,8170245,ナガサキケン,ツシマシ,イヅハラマチクネイナカ,長崎県,対馬市,厳原町久根田舎,0,0,0,0,0,0
42209,81702,8170244,ナガサキケン,ツシマシ,イヅハラマチクネハマ,長崎県,対馬市,厳原町久根浜,0,0,0,0,0,0
42209,817,8170035,ナガサキケン,ツシマシ,イヅハラマチクワ,長崎県,対馬市,厳原町久和,0,0,0,0,0,0
42209,81702,8170246,ナガサキケン,ツシマシ,イヅハラマチコウツキ,長崎県,対馬市,厳原町上槻,0,0,0,0,0,0
42209,817,8170001,ナガサキケン,ツシマシ,イヅハラマチコウラ,長崎県,対馬市,厳原町小浦,0,0,0,0,0,0
42209,817,8170022,ナガサキケン,ツシマシ,イヅハラマチコクブ,長崎県,対馬市,厳原町国分,0,0,0,0,0,0
42209,81702,8170248,ナガサキケン,ツシマシ,イヅハラマチコモダ,長崎県,対馬市,厳原町小茂田,0,0,0,0,0,0
42209,817,8170005,ナガサキケン,ツシマシ,イヅハラマチサジキバラ,長崎県,対馬市,厳原町桟原,0,0,0,0,0,0
42209,81701,8170156,ナガサキケン,ツシマシ,イヅハラマチサスセ,長崎県,対馬市,厳原町佐須瀬,0,0,0,0,0,0
42209,81702,8170247,ナガサキケン,ツシマシ,イヅハラマチシイネ,長崎県,対馬市,厳原町椎根,0,0,0,0,0,0
42209,81702,8170242,ナガサキケン,ツシマシ,イヅハラマチシモバル,長崎県,対馬市,厳原町下原,0,0,0,0,0,0
42209,817,8170023,ナガサキケン,ツシマシ,イヅハラマチタブチ,長崎県,対馬市,厳原町田渕,0,0,0,0,0,0
42209,81701,8170154,ナガサキケン,ツシマシ,イヅハラマチツツ,長崎県,対馬市,厳原町豆酘,0,0,0,0,0,0
42209,81701,8170155,ナガサキケン,ツシマシ,イヅハラマチツツセ,長崎県,対馬市,厳原町豆酘瀬,0,0,0,0,0,0
42209,81701,8170152,ナガサキケン,ツシマシ,イヅハラマチツツナイイン,長崎県,対馬市,厳原町豆酘内院,0,0,0,0,0,0
42209,817,8170014,ナガサキケン,ツシマシ,イヅハラマチテンドウシゲ,長崎県,対馬市,厳原町天道茂,0,0,0,0,0,0
42209,817,8170013,ナガサキケン,ツシマシ,イヅハラマチナカムラ,長崎県,対馬市,厳原町中村,0,0,0,0,0,0
42209,817,8170003,ナガサキケン,ツシマシ,イヅハラマチナムロ,長崎県,対馬市,厳原町南室,0,0,0,0,0,0
42209,817,8170015,ナガサキケン,ツシマシ,イヅハラマチニシザト,長崎県,対馬市,厳原町西里,0,0,0,0,0,0
42209,817,8170016,ナガサキケン,ツシマシ,イヅハラマチヒガシザト,長崎県,対馬市,厳原町東里,0,0,0,0,0,0
42209,817,8170012,ナガサキケン,ツシマシ,イヅハラマチヒヨシ,長崎県,対馬市,厳原町日吉,0,0,0,0,0,0
42209,817,8170002,ナガサキケン,ツシマシ,イヅハラマチマガリ,長崎県,対馬市,厳原町曲,0,0,0,0,0,0
42209,817,8170011,ナガサキケン,ツシマシ,イヅハラマチミヤダニ,長崎県,対馬市,厳原町宮谷,0,0,0,0,0,0
42209,81701,8170151,ナガサキケン,ツシマシ,イヅハラマチヨラナイイン,長崎県,対馬市,厳原町与良内院,0,0,0,0,0,0
42209,81715,8171532,ナガサキケン,ツシマシ,カミアガタマチイナ,長崎県,対馬市,上県町伊奈,0,0,0,0,0,0
42209,81715,8171524,ナガサキケン,ツシマシ,カミアガタマチイヌガウラ,長崎県,対馬市,上県町犬ケ浦,0,0,0,0,0,0
42209,81715,8171513,ナガサキケン,ツシマシ,カミアガタマチウナツラ,長崎県,対馬市,上県町女連,0,0,0,0,0,0
42209,81715,8171521,ナガサキケン,ツシマシ,カミアガタマチカイドコロ,長崎県,対馬市,上県町飼所,0,0,0,0,0,0
42209,81715,8171522,ナガサキケン,ツシマシ,カミアガタマチカシタキ,長崎県,対馬市,上県町樫滝,0,0,0,0,0,0
42209,81715,8171512,ナガサキケン,ツシマシ,カミアガタマチクバラ,長崎県,対馬市,上県町久原,0,0,0,0,0,0
42209,81715,8171531,ナガサキケン,ツシマシ,カミアガタマチコシタカ,長崎県,対馬市,上県町越高,0,0,0,0,0,0
42209,81716,8171603,ナガサキケン,ツシマシ,カミアガタマチサゴ,長崎県,対馬市,上県町佐護,0,0,0,0,0,0
42209,81716,8171602,ナガサキケン,ツシマシ,カミアガタマチサスナ,長崎県,対馬市,上県町佐須奈,0,0,0,0,0,0
42209,81715,8171511,ナガサキケン,ツシマシ,カミアガタマチシシミ,長崎県,対馬市,上県町鹿見,0,0,0,0,0,0
42209,81715,8171533,ナガサキケン,ツシマシ,カミアガタマチシタル,長崎県,対馬市,上県町志多留,0,0,0,0,0,0
42209,81715,8171523,ナガサキケン,ツシマシ,カミアガタマチセタ,長崎県,対馬市,上県町瀬田,0,0,0,0,0,0
42209,81716,8171601,ナガサキケン,ツシマシ,カミアガタマチニシツヤ,長崎県,対馬市,上県町西津屋,0,0,0,0,0,0
42209,81715,8171525,ナガサキケン,ツシマシ,カミアガタマチミソ,長崎県,対馬市,上県町御園,0,0,0,0,0,0
42209,81722,8172243,ナガサキケン,ツシマシ,カミツシママチアシミ,長崎県,対馬市,上対馬町芦見,0,0,0,0,0,0
42209,81717,8171704,ナガサキケン,ツシマシ,カミツシママチアジロ,長崎県,対馬市,上対馬町網代,0,0,0,0,0,0
42209,81717,8171725,ナガサキケン,ツシマシ,カミツシママチイズミ,長崎県,対馬市,上対馬町泉,0,0,0,0,0,0
42209,81717,8171722,ナガサキケン,ツシマシ,カミツシママチオオウラ,長崎県,対馬市,上対馬町大浦,0,0,0,0,0,0
42209,81717,8171715,ナガサキケン,ツシマシ,カミツシママチオオマス,長崎県,対馬市,上対馬町大増,0,0,0,0,0,0
42209,81722,8172241,ナガサキケン,ツシマシ,カミツシママチオシカ,長崎県,対馬市,上対馬町小鹿,0,0,0,0,0,0
42209,81717,8171721,ナガサキケン,ツシマシ,カミツシママチカワチ,長崎県,対馬市,上対馬町河内,0,0,0,0,0,0
42209,81723,8172331,ナガサキケン,ツシマシ,カミツシママチキン,長崎県,対馬市,上対馬町琴,0,0,0,0,0,0
42209,81717,8171714,ナガサキケン,ツシマシ,カミツシママチクス,長崎県,対馬市,上対馬町玖須,0,0,0,0,0,0
42209,81723,8172332,ナガサキケン,ツシマシ,カミツシママチゴネオ,長崎県,対馬市,上対馬町五根緒,0,0,0,0,0,0
42209,81723,8172333,ナガサキケン,ツシマシ,カミツシママチシュウシ,長崎県,対馬市,上対馬町舟志,0,0,0,0,0,0
42209,81717,8171712,ナガサキケン,ツシマシ,カミツシママチトウジュウシ,長崎県,対馬市,上対馬町唐舟志,0,0,0,0,0,0
42209,81717,8171711,ナガサキケン,ツシマシ,カミツシママチトミガウラ,長崎県,対馬市,上対馬町冨浦,0,0,0,0,0,0
42209,81717,8171724,ナガサキケン,ツシマシ,カミツシママチトヨ,長崎県,対馬市,上対馬町豊,0,0,0,0,0,0
42209,81717,8171703,ナガサキケン,ツシマシ,カミツシママチニシドマリ,長崎県,対馬市,上対馬町西泊,0,0,0,0,0,0
42209,81717,8171713,ナガサキケン,ツシマシ,カミツシママチハマグス,長崎県,対馬市,上対馬町浜久須,0,0,0,0,0,0
42209,81717,8171701,ナガサキケン,ツシマシ,カミツシママチヒタカツ,長崎県,対馬市,上対馬町比田勝,0,0,0,0,0,0
42209,81722,8172242,ナガサキケン,ツシマシ,カミツシママチヒトエ,長崎県,対馬市,上対馬町一重,0,0,0,0,0,0
42209,81717,8171702,ナガサキケン,ツシマシ,カミツシママチフルサト,長崎県,対馬市,上対馬町古里,0,0,0,0,0,0
42209,81717,8171723,ナガサキケン,ツシマシ,カミツシママチワニウラ,長崎県,対馬市,上対馬町鰐浦,0,0,0,0,0,0
42209,81712,8171231,ナガサキケン,ツシマシ,トヨタママチイトセ,長崎県,対馬市,豊玉町糸瀬,0,0,0,0,0,0
42209,81712,8171253,ナガサキケン,ツシマシ,トヨタママチウムギ,長崎県,対馬市,豊玉町卯麦,0,0,0,0,0,0
42209,81712,8171252,ナガサキケン,ツシマシ,トヨタママチオオツナ,長崎県,対馬市,豊玉町大綱,0,0,0,0,0,0
42209,81712,8171241,ナガサキケン,ツシマシ,トヨタママチカイグチ,長崎県,対馬市,豊玉町貝口,0,0,0,0,0,0
42209,81712,8171233,ナガサキケン,ツシマシ,トヨタママチカイフナ,長崎県,対馬市,豊玉町貝鮒,0,0,0,0,0,0
42209,81712,8171245,ナガサキケン,ツシマシ,トヨタママチカラス,長崎県,対馬市,豊玉町唐洲,0,0,0,0,0,0
42209,81712,8171256,ナガサキケン,ツシマシ,トヨタママチコヅナ,長崎県,対馬市,豊玉町小綱,0,0,0,0,0,0
42209,81712,8171232,ナガサキケン,ツシマシ,トヨタママチサガ,長崎県,対馬市,豊玉町嵯峨,0,0,0,0,0,0
42209,81712,8171234,ナガサキケン,ツシマシ,トヨタママチサシカ,長崎県,対馬市,豊玉町佐志賀,0,0,0,0,0,0
42209,81712,8171254,ナガサキケン,ツシマシ,トヨタママチサホ,長崎県,対馬市,豊玉町佐保,0,0,0,0,0,0
42209,81712,8171255,ナガサキケン,ツシマシ,トヨタママチシタノウラ,長崎県,対馬市,豊玉町志多浦,0,0,0,0,0,0
42209,81712,8171212,ナガサキケン,ツシマシ,トヨタママチソ,長崎県,対馬市,豊玉町曽,0,0,0,0,0,0
42209,81712,8171251,ナガサキケン,ツシマシ,トヨタママチタ,長崎県,対馬市,豊玉町田,0,0,0,0,0,0
42209,81712,8171213,ナガサキケン,ツシマシ,トヨタママチチロモ,長崎県,対馬市,豊玉町千尋藻,0,0,0,0,0,0
42209,81712,8171201,ナガサキケン,ツシマシ,トヨタママチニイ,長崎県,対馬市,豊玉町仁位,0,0,0,0,0,0
42209,81712,8171246,ナガサキケン,ツシマシ,トヨタママチマワリ,長崎県,対馬市,豊玉町廻,0,0,0,0,0,0
42209,81712,8171257,ナガサキケン,ツシマシ,トヨタママチメイ,長崎県,対馬市,豊玉町銘,0,0,0,0,0,0
42209,81712,8171214,ナガサキケン,ツシマシ,トヨタママチヤリカワ,長崎県,対馬市,豊玉町鑓川,0,0,0,0,0,0
42209,81712,8171223,ナガサキケン,ツシマシ,トヨタママチヨコウラ,長崎県,対馬市,豊玉町横浦,0,0,0,0,0,0
42209,81712,8171202,ナガサキケン,ツシマシ,トヨタママチワイタ,長崎県,対馬市,豊玉町和板,0,0,0,0,0,0
42209,81711,8171106,ナガサキケン,ツシマシ,ミツシママチイヌボエ,長崎県,対馬市,美津島町犬吠,0,0,0,0,0,0
42209,81704,8170432,ナガサキケン,ツシマシ,ミツシママチイマザト,長崎県,対馬市,美津島町今里,0,0,0,0,0,0
42209,81703,8170323,ナガサキケン,ツシマシ,ミツシママチオオフナコシ,長崎県,対馬市,美津島町大船越,0,0,0,0,0,0
42209,81703,8170325,ナガサキケン,ツシマシ,ミツシママチオカタ,長崎県,対馬市,美津島町緒方,0,0,0,0,0,0
42209,81704,8170431,ナガサキケン,ツシマシ,ミツシママチオサキ,長崎県,対馬市,美津島町尾崎,0,0,0,0,0,0
42209,81711,8171105,ナガサキケン,ツシマシ,ミツシママチオヤマ,長崎県,対馬市,美津島町大山,0,0,0,0,0,0
42209,81704,8170433,ナガサキケン,ツシマシ,ミツシママチカシ,長崎県,対馬市,美津島町加志,0,0,0,0,0,0
42209,81711,8171107,ナガサキケン,ツシマシ,ミツシママチカモイセ,長崎県,対馬市,美津島町鴨居瀬,0,0,0,0,0,0
42209,81711,8171103,ナガサキケン,ツシマシ,ミツシママチガヤ,長崎県,対馬市,美津島町賀谷,0,0,0,0,0,0
42209,81703,8170324,ナガサキケン,ツシマシ,ミツシママチクスボ,長崎県,対馬市,美津島町久須保,0,0,0,0,0,0
42209,81705,8170512,ナガサキケン,ツシマシ,ミツシママチクロセ,長崎県,対馬市,美津島町黒瀬,0,0,0,0,0,0
42209,81703,8170322,ナガサキケン,ツシマシ,ミツシママチケチ,長崎県,対馬市,美津島町鶏知,0,0,0,0,0,0
42209,81711,8171101,ナガサキケン,ツシマシ,ミツシママチコフナコシ,長崎県,対馬市,美津島町小船越,0,0,0,0,0,0
42209,81705,8170514,ナガサキケン,ツシマシ,ミツシママチシマヤマ,長崎県,対馬市,美津島町島山,0,0,0,0,0,0
42209,81703,8170321,ナガサキケン,ツシマシ,ミツシママチスモ,長崎県,対馬市,美津島町洲藻,0,0,0,0,0,0
42209,81705,8170511,ナガサキケン,ツシマシ,ミツシママチタケシキ,長崎県,対馬市,美津島町竹敷,0,0,0,0,0,0
42209,81703,8170326,ナガサキケン,ツシマシ,ミツシママチネオ,長崎県,対馬市,美津島町根緒,0,0,0,0,0,0
42209,81711,8171104,ナガサキケン,ツシマシ,ミツシママチノブ,長崎県,対馬市,美津島町濃部,0,0,0,0,0,0
42209,81705,8170513,ナガサキケン,ツシマシ,ミツシママチヒルガウラ,長崎県,対馬市,美津島町昼ケ浦,0,0,0,0,0,0
42209,81704,8170434,ナガサキケン,ツシマシ,ミツシママチフクザキ,長崎県,対馬市,美津島町吹崎,0,0,0,0,0,0
42209,81704,8170435,ナガサキケン,ツシマシ,ミツシママチミカタ,長崎県,対馬市,美津島町箕形,0,0,0,0,0,0
42209,81711,8171102,ナガサキケン,ツシマシ,ミツシママチヨシガウラ,長崎県,対馬市,美津島町芦浦,0,0,0,0,0,0
42209,81713,8171304,ナガサキケン,ツシマシ,ミネマチオウミ,長崎県,対馬市,峰町青海,0,0,0,0,0,0
42209,81713,8171307,ナガサキケン,ツシマシ,ミネマチカサ,長崎県,対馬市,峰町賀佐,0,0,0,0,0,0
42209,81713,8171302,ナガサキケン,ツシマシ,ミネマチカリオ,長崎県,対馬市,峰町狩尾,0,0,0,0,0,0
42209,81713,8171303,ナガサキケン,ツシマシ,ミネマチキサカ,長崎県,対馬市,峰町木坂,0,0,0,0,0,0
42209,81714,8171411,ナガサキケン,ツシマシ,ミネマチクシ,長崎県,対馬市,峰町櫛,0,0,0,0,0,0
42209,81714,8171412,ナガサキケン,ツシマシ,ミネマチサカ,長崎県,対馬市,峰町佐賀,0,0,0,0,0,0
42209,81714,8171413,ナガサキケン,ツシマシ,ミネマチシタカ,長崎県,対馬市,峰町志多賀,0,0,0,0,0,0
42209,81713,8171305,ナガサキケン,ツシマシ,ミネマチツヤナギ,長崎県,対馬市,峰町津柳,0,0,0,0,0,0
42209,81713,8171301,ナガサキケン,ツシマシ,ミネマチミネ,長崎県,対馬市,峰町三根,0,0,0,0,0,0
42209,81713,8171306,ナガサキケン,ツシマシ,ミネマチヨシダ,長崎県,対馬市,峰町吉田,0,0,0,0,0,0
42210,81151,8115100,ナガサキケン,イキシ,イカニケイサイガナイバアイ,長崎県,壱岐市,以下に掲載がない場合,0,0,0,0,0,0
42210,81153,8115301,ナガサキケン,イキシ,アシベチョウアシベウラ,長崎県,壱岐市,芦辺町芦辺浦,0,0,0,0,0,0
42210,81157,8115733,ナガサキケン,イキシ,アシベチョウコクブカワムカエフレ,長崎県,壱岐市,芦辺町国分川迎触,0,0,0,0,0,0
42210,81157,8115731,ナガサキケン,イキシ,アシベチョウコクブトウダフレ,長崎県,壱岐市,芦辺町国分当田触,0,0,0,0,0,0
42210,81157,8115732,ナガサキケン,イキシ,アシベチョウコクブヒガシフレ,長崎県,壱岐市,芦辺町国分東触,0,0,0,0,0,0
42210,81157,8115734,ナガサキケン,イキシ,アシベチョウコクブホンムラフレ,長崎県,壱岐市,芦辺町国分本村触,0,0,0,0,0,0
42210,81157,8115744,ナガサキケン,イキシ,アシベチョウスミヨシウシロフレ,長崎県,壱岐市,芦辺町住吉後触,0,0,0,0,0,0
42210,81157,8115742,ナガサキケン,イキシ,アシベチョウスミヨシヒガシフレ,長崎県,壱岐市,芦辺町住吉東触,0,0,0,0,0,0
42210,81157,8115743,ナガサキケン,イキシ,アシベチョウスミヨシマエフレ,長崎県,壱岐市,芦辺町住吉前触,0,0,0,0,0,0
42210,81157,8115741,ナガサキケン,イキシ,アシベチョウスミヨシヤマノブフレ,長崎県,壱岐市,芦辺町住吉山信触,0,0,0,0,0,0
42210,81154,8115461,ナガサキケン,イキシ,アシベチョウセトウラ,長崎県,壱岐市,芦辺町瀬戸浦,0,0,0,0,0,0
42210,81157,8115751,ナガサキケン,イキシ,アシベチョウナカノゴウナカフレ,長崎県,壱岐市,芦辺町中野郷仲触,0,0,0,0,0,0
42210,81157,8115757,ナガサキケン,イキシ,アシベチョウナカノゴウニシフレ,長崎県,壱岐市,芦辺町中野郷西触,0,0,0,0,0,0
42210,81157,8115752,ナガサキケン,イキシ,アシベチョウナカノゴウヒガシフレ,長崎県,壱岐市,芦辺町中野郷東触,0,0,0,0,0,0
42210,81157,8115756,ナガサキケン,イキシ,アシベチョウナカノゴウホンムラフレ,長崎県,壱岐市,芦辺町中野郷本村触,0,0,0,0,0,0
42210,81154,8115467,ナガサキケン,イキシ,アシベチョウハコザキエスミフレ,長崎県,壱岐市,芦辺町箱崎江角触,0,0,0,0,0,0
42210,81154,8115465,ナガサキケン,イキシ,アシベチョウハコザキクギノオフレ,長崎県,壱岐市,芦辺町箱崎釘ノ尾触,0,0,0,0,0,0
42210,81154,8115462,ナガサキケン,イキシ,アシベチョウハコザキタイソウフレ,長崎県,壱岐市,芦辺町箱崎大左右触,0,0,0,0,0,0
42210,81154,8115464,ナガサキケン,イキシ,アシベチョウハコザキタニエフレ,長崎県,壱岐市,芦辺町箱崎谷江触,0,0,0,0,0,0
42210,81154,8115463,ナガサキケン,イキシ,アシベチョウハコザキナカヤマフレ,長崎県,壱岐市,芦辺町箱崎中山触,0,0,0,0,0,0
42210,81154,8115466,ナガサキケン,イキシ,アシベチョウハコザキホンムラフレ,長崎県,壱岐市,芦辺町箱崎本村触,0,0,0,0,0,0
42210,81154,8115468,ナガサキケン,イキシ,アシベチョウハコザキモロツフレ,長崎県,壱岐市,芦辺町箱崎諸津触,0,0,0,0,0,0
42210,81153,8115321,ナガサキケン,イキシ,アシベチョウフカエサカエフレ,長崎県,壱岐市,芦辺町深江栄触,0,0,0,0,0,0
42210,81153,8115322,ナガサキケン,イキシ,アシベチョウフカエツルキフレ,長崎県,壱岐市,芦辺町深江鶴亀触,0,0,0,0,0,0
42210,81153,8115324,ナガサキケン,イキシ,アシベチョウフカエヒガシフレ,長崎県,壱岐市,芦辺町深江東触,0,0,0,0,0,0
42210,81153,8115323,ナガサキケン,イキシ,アシベチョウフカエヒラフレ,長崎県,壱岐市,芦辺町深江平触,0,0,0,0,0,0
42210,81153,8115326,ナガサキケン,イキシ,アシベチョウフカエホンムラフレ,長崎県,壱岐市,芦辺町深江本村触,0,0,0,0,0,0
42210,81153,8115325,ナガサキケン,イキシ,アシベチョウフカエミナミフレ,長崎県,壱岐市,芦辺町深江南触,0,0,0,0,0,0
42210,81153,8115316,ナガサキケン,イキシ,アシベチョウモロヨシオオイシフレ,長崎県,壱岐市,芦辺町諸吉大石触,0,0,0,0,0,0
42210,81153,8115313,ナガサキケン,イキシ,アシベチョウモロヨシナカフレ,長崎県,壱岐市,芦辺町諸吉仲触,0,0,0,0,0,0
42210,81153,8115314,ナガサキケン,イキシ,アシベチョウモロヨシヒガシフレ,長崎県,壱岐市,芦辺町諸吉東触,0,0,0,0,0,0
42210,81153,8115315,ナガサキケン,イキシ,アシベチョウモロヨシフタマタフレ,長崎県,壱岐市,芦辺町諸吉二亦触,0,0,0,0,0,0
42210,81153,8115311,ナガサキケン,イキシ,アシベチョウモロヨシホンムラフレ,長崎県,壱岐市,芦辺町諸吉本村触,0,0,0,0,0,0
42210,81153,8115312,ナガサキケン,イキシ,アシベチョウモロヨシミナミフレ,長崎県,壱岐市,芦辺町諸吉南触,0,0,0,0,0,0
42210,81157,8115755,ナガサキケン,イキシ,アシベチョウユタケコウフレ,長崎県,壱岐市,芦辺町湯岳興触,0,0,0,0,0,0
42210,81157,8115754,ナガサキケン,イキシ,アシベチョウユタケコンザカフレ,長崎県,壱岐市,芦辺町湯岳今坂触,0,0,0,0,0,0
42210,81157,8115753,ナガサキケン,イキシ,アシベチョウユタケホンムラフレ,長崎県,壱岐市,芦辺町湯岳本村触,0,0,0,0,0,0
42210,81152,8115222,ナガサキケン,イキシ,イシダチョウイケダナカフレ,長崎県,壱岐市,石田町池田仲触,0,0,0,0,0,0
42210,81152,8115224,ナガサキケン,イキシ,イシダチョウイケダニシフレ,長崎県,壱岐市,石田町池田西触,0,0,0,0,0,0
42210,81152,8115221,ナガサキケン,イキシ,イシダチョウイケダヒガシフレ,長崎県,壱岐市,石田町池田東触,0,0,0,0,0,0
42210,81152,8115215,ナガサキケン,イキシ,イシダチョウイシダニシフレ,長崎県,壱岐市,石田町石田西触,0,0,0,0,0,0
42210,81152,8115211,ナガサキケン,イキシ,イシダチョウイシダヒガシフレ,長崎県,壱岐市,石田町石田東触,0,0,0,0,0,0
42210,81152,8115214,ナガサキケン,イキシ,イシダチョウインドオジウラ,長崎県,壱岐市,石田町印通寺浦,0,0,0,0,0,0
42210,81152,8115223,ナガサキケン,イキシ,イシダチョウクキフレ,長崎県,壱岐市,石田町久喜触,0,0,0,0,0,0
42210,81152,8115202,ナガサキケン,イキシ,イシダチョウツツキナカフレ,長崎県,壱岐市,石田町筒城仲触,0,0,0,0,0,0
42210,81152,8115204,ナガサキケン,イキシ,イシダチョウツツキニシフレ,長崎県,壱岐市,石田町筒城西触,0,0,0,0,0,0
42210,81152,8115203,ナガサキケン,イキシ,イシダチョウツツキヒガシフレ,長崎県,壱岐市,石田町筒城東触,0,0,0,0,0,0
42210,81152,8115212,ナガサキケン,イキシ,イシダチョウホンムラフレ,長崎県,壱岐市,石田町本村触,0,0,0,0,0,0
42210,81152,8115213,ナガサキケン,イキシ,イシダチョウミナミフレ,長崎県,壱岐市,石田町南触,0,0,0,0,0,0
42210,81152,8115201,ナガサキケン,イキシ,イシダチョウヤマサキフレ,長崎県,壱岐市,石田町山崎触,0,0,0,0,0,0
42210,81152,8115226,ナガサキケン,イキシ,イシダチョウユタケイテヨシフレ,長崎県,壱岐市,石田町湯岳射手吉触,0,0,0,0,0,0
42210,81152,8115225,ナガサキケン,イキシ,イシダチョウユタケコウフレ,長崎県,壱岐市,石田町湯岳興触,0,0,0,0,0,0
42210,81155,8115543,ナガサキケン,イキシ,カツモトチョウウワバフレ,長崎県,壱岐市,勝本町上場触,0,0,0,0,0,0
42210,81155,8115532,ナガサキケン,イキシ,カツモトチョウオオクボフレ,長崎県,壱岐市,勝本町大久保触,0,0,0,0,0,0
42210,81155,8115523,ナガサキケン,イキシ,カツモトチョウカタヤマフレ,長崎県,壱岐市,勝本町片山触,0,0,0,0,0,0
42210,81155,8115501,ナガサキケン,イキシ,カツモトチョウカツモトウラ,長崎県,壱岐市,勝本町勝本浦,0,0,0,0,0,0
42210,81155,8115513,ナガサキケン,イキシ,カツモトチョウキタフレ,長崎県,壱岐市,勝本町北触,0,0,0,0,0,0
42210,81155,8115521,ナガサキケン,イキシ,カツモトチョウサイドフレ,長崎県,壱岐市,勝本町西戸触,0,0,0,0,0,0
42210,81155,8115531,ナガサキケン,イキシ,カツモトチョウサカモトフレ,長崎県,壱岐市,勝本町坂本触,0,0,0,0,0,0
42210,81155,8115533,ナガサキケン,イキシ,カツモトチョウシンジョウニシフレ,長崎県,壱岐市,勝本町新城西触,0,0,0,0,0,0
42210,81155,8115522,ナガサキケン,イキシ,カツモトチョウシンジョウヒガシフレ,長崎県,壱岐市,勝本町新城東触,0,0,0,0,0,0
42210,81155,8115554,ナガサキケン,イキシ,カツモトチョウタテイシナカフレ,長崎県,壱岐市,勝本町立石仲触,0,0,0,0,0,0
42210,81155,8115556,ナガサキケン,イキシ,カツモトチョウタテイシニシフレ,長崎県,壱岐市,勝本町立石西触,0,0,0,0,0,0
42210,81155,8115553,ナガサキケン,イキシ,カツモトチョウタテイシヒガシフレ,長崎県,壱岐市,勝本町立石東触,0,0,0,0,0,0
42210,81155,8115555,ナガサキケン,イキシ,カツモトチョウタテイシミナミフレ,長崎県,壱岐市,勝本町立石南触,0,0,0,0,0,0
42210,81155,8115511,ナガサキケン,イキシ,カツモトチョウナカフレ,長崎県,壱岐市,勝本町仲触,0,0,0,0,0,0
42210,81155,8115512,ナガサキケン,イキシ,カツモトチョウヒガシフレ,長崎県,壱岐市,勝本町東触,0,0,0,0,0,0
42210,81155,8115544,ナガサキケン,イキシ,カツモトチョウフケフレ,長崎県,壱岐市,勝本町布気触,0,0,0,0,0,0
42210,81155,8115546,ナガサキケン,イキシ,カツモトチョウホングウナカフレ,長崎県,壱岐市,勝本町本宮仲触,0,0,0,0,0,0
42210,81155,8115541,ナガサキケン,イキシ,カツモトチョウホングウニシフレ,長崎県,壱岐市,勝本町本宮西触,0,0,0,0,0,0
42210,81155,8115542,ナガサキケン,イキシ,カツモトチョウホングウヒガシフレ,長崎県,壱岐市,勝本町本宮東触,0,0,0,0,0,0
42210,81155,8115545,ナガサキケン,イキシ,カツモトチョウホングウミナミフレ,長崎県,壱岐市,勝本町本宮南触,0,0,0,0,0,0
42210,81155,8115551,ナガサキケン,イキシ,カツモトチョウユノモトウラ,長崎県,壱岐市,勝本町湯本浦,0,0,0,0,0,0
42210,81155,8115552,ナガサキケン,イキシ,カツモトチョウユリハタフレ,長崎県,壱岐市,勝本町百合畑触,0,0,0,0,0,0
42210,81151,8115107,ナガサキケン,イキシ,ゴウノウラチョウアリヤスフレ,長崎県,壱岐市,郷ノ浦町有安触,0,0,0,0,0,0
42210,81151,8115113,ナガサキケン,イキシ,ゴウノウラチョウウシカタフレ,長崎県,壱岐市,郷ノ浦町牛方触,0,0,0,0,0,0
42210,81151,8115112,ナガサキケン,イキシ,ゴウノウラチョウオオウラフレ,長崎県,壱岐市,郷ノ浦町大浦触,0,0,0,0,0,0
42210,81151,8115161,ナガサキケン,イキシ,ゴウノウラチョウオオシマ,長崎県,壱岐市,郷ノ浦町大島,0,0,0,0,0,0
42210,81151,8115136,ナガサキケン,イキシ,ゴウノウラチョウカタバルフレ,長崎県,壱岐市,郷ノ浦町片原触,0,0,0,0,0,0
42210,81151,8115115,ナガサキケン,イキシ,ゴウノウラチョウキダフレ,長崎県,壱岐市,郷ノ浦町木田触,0,0,0,0,0,0
42210,81151,8115123,ナガサキケン,イキシ,ゴウノウラチョウクギヤマフレ,長崎県,壱岐市,郷ノ浦町釘山触,0,0,0,0,0,0
42210,81151,8115135,ナガサキケン,イキシ,ゴウノウラチョウゴウノウラ,長崎県,壱岐市,郷ノ浦町郷ノ浦,0,0,0,0,0,0
42210,81151,8115105,ナガサキケン,イキシ,ゴウノウラチョウコマキニシフレ,長崎県,壱岐市,郷ノ浦町小牧西触,0,0,0,0,0,0
42210,81151,8115106,ナガサキケン,イキシ,ゴウノウラチョウコマキヒガシフレ,長崎県,壱岐市,郷ノ浦町小牧東触,0,0,0,0,0,0
42210,81151,8115104,ナガサキケン,イキシ,ゴウノウラチョウサトフレ,長崎県,壱岐市,郷ノ浦町里触,0,0,0,0,0,0
42210,81151,8115125,ナガサキケン,イキシ,ゴウノウラチョウシハラニシフレ,長崎県,壱岐市,郷ノ浦町志原西触,0,0,0,0,0,0
42210,81151,8115124,ナガサキケン,イキシ,ゴウノウラチョウシハラミナミフレ,長崎県,壱岐市,郷ノ浦町志原南触,0,0,0,0,0,0
42210,81151,8115134,ナガサキケン,イキシ,ゴウノウラチョウショウフレ,長崎県,壱岐市,郷ノ浦町庄触,0,0,0,0,0,0
42210,81151,8115103,ナガサキケン,イキシ,ゴウノウラチョウシンデンフレ,長崎県,壱岐市,郷ノ浦町新田触,0,0,0,0,0,0
42210,81151,8115122,ナガサキケン,イキシ,ゴウノウラチョウタイバルフレ,長崎県,壱岐市,郷ノ浦町大原触,0,0,0,0,0,0
42210,81151,8115117,ナガサキケン,イキシ,ゴウノウラチョウタナカフレ,長崎県,壱岐市,郷ノ浦町田中触,0,0,0,0,0,0
42210,81151,8115142,ナガサキケン,イキシ,ゴウノウラチョウツボフレ,長崎県,壱岐市,郷ノ浦町坪触,0,0,0,0,0,0
42210,81151,8115162,ナガサキケン,イキシ,ゴウノウラチョウナガシマ,長崎県,壱岐市,郷ノ浦町長島,0,0,0,0,0,0
42210,81151,8115131,ナガサキケン,イキシ,ゴウノウラチョウナガタフレ,長崎県,壱岐市,郷ノ浦町永田触,0,0,0,0,0,0
42210,81151,8115102,ナガサキケン,イキシ,ゴウノウラチョウナガミネヒガシフレ,長崎県,壱岐市,郷ノ浦町長峰東触,0,0,0,0,0,0
42210,81151,8115101,ナガサキケン,イキシ,ゴウノウラチョウナガミネホンムラフレ,長崎県,壱岐市,郷ノ浦町長峰本村触,0,0,0,0,0,0
42210,81151,8115143,ナガサキケン,イキシ,ゴウノウラチョウハツヤマニシフレ,長崎県,壱岐市,郷ノ浦町初山西触,0,0,0,0,0,0
42210,81151,8115144,ナガサキケン,イキシ,ゴウノウラチョウハツヤマヒガシフレ,長崎県,壱岐市,郷ノ浦町初山東触,0,0,0,0,0,0
42210,81151,8115163,ナガサキケン,イキシ,ゴウノウラチョウハルシマ,長崎県,壱岐市,郷ノ浦町原島,0,0,0,0,0,0
42210,81151,8115111,ナガサキケン,イキシ,ゴウノウラチョウハンセイホンムラフレ,長崎県,壱岐市,郷ノ浦町半城本村触,0,0,0,0,0,0
42210,81151,8115132,ナガサキケン,イキシ,ゴウノウラチョウヒガシフレ,長崎県,壱岐市,郷ノ浦町東触,0,0,0,0,0,0
42210,81151,8115121,ナガサキケン,イキシ,ゴウノウラチョウヒロウトフレ,長崎県,壱岐市,郷ノ浦町平人触,0,0,0,0,0,0
42210,81151,8115133,ナガサキケン,イキシ,ゴウノウラチョウホンムラフレ,長崎県,壱岐市,郷ノ浦町本村触,0,0,0,0,0,0
42210,81151,8115155,ナガサキケン,イキシ,ゴウノウラチョウムギヤフレ,長崎県,壱岐市,郷ノ浦町麦谷触,0,0,0,0,0,0
42210,81151,8115116,ナガサキケン,イキシ,ゴウノウラチョウモノベホンムラフレ,長崎県,壱岐市,郷ノ浦町物部本村触,0,0,0,0,0,0
42210,81151,8115114,ナガサキケン,イキシ,ゴウノウラチョウヤナギダフレ,長崎県,壱岐市,郷ノ浦町柳田触,0,0,0,0,0,0
42210,81151,8115141,ナガサキケン,イキシ,ゴウノウラチョウワカマツフレ,長崎県,壱岐市,郷ノ浦町若松触,0,0,0,0,0,0
42210,81151,8115151,ナガサキケン,イキシ,ゴウノウラチョウワタラウラ,長崎県,壱岐市,郷ノ浦町渡良浦,0,0,0,0,0,0
42210,81151,8115153,ナガサキケン,イキシ,ゴウノウラチョウワタラニシフレ,長崎県,壱岐市,郷ノ浦町渡良西触,0,0,0,0,0,0
42210,81151,8115154,ナガサキケン,イキシ,ゴウノウラチョウワタラヒガシフレ,長崎県,壱岐市,郷ノ浦町渡良東触,0,0,0,0,0,0
42210,81151,8115152,ナガサキケン,イキシ,ゴウノウラチョウワタラミナミフレ,長崎県,壱岐市,郷ノ浦町渡良南触,0,0,0,0,0,0 | [
"[email protected]"
]
| |
67e3cc9231dfce6022f55788dfa686fe85569fad | cb013bac45f2e191a1fe6fbe1a4d5bb69651fbe9 | /week03/classContent/thread/p10_timer.py | 65d98a0ecc181a4f7b45d897b63c0ac8970d0eed | []
| no_license | hjzheng/Python001-class01 | a4529f775c1de0fe2ab6a6bc865328c1b9216df7 | a261a5bf4ca475bd20637a5377366eab409f5499 | refs/heads/master | 2022-11-19T11:09:59.347491 | 2020-07-13T09:51:25 | 2020-07-13T09:51:25 | 274,433,709 | 1 | 0 | null | 2020-06-23T14:53:44 | 2020-06-23T14:53:44 | null | UTF-8 | Python | false | false | 170 | py | # 定时器: 指定n秒后执行
from threading import Timer
def hello():
print("hello, world")
t = Timer(1, hello) # 表示1秒后执行hello函数
t.start()
| [
"[email protected]"
]
| |
f84990f5577daca09ced90271698a91eb116b6dd | 31ddcd6deda2398a5a730c858e9d8a08cb10d551 | /pythonstartup.py | 0a69fa9e210aae3272f872941050fa0b01ba170c | []
| no_license | hauwenc/dotfiles | e222f10630f76b9c56d2b6bd583011a1ecb0276d | 3a13040b43217e82a671287589baae1bbb597b1b | refs/heads/master | 2021-01-10T11:36:29.390314 | 2016-02-18T18:54:32 | 2016-02-18T18:54:32 | 45,560,244 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 95 | py | from __future__ import division
import os
import re
import numpy as np
import time
import sys
| [
"[email protected]"
]
| |
65fc92a79bd813ef453b821d8a02b1a20e6cd577 | e588da296dd6ec3bedee9d24444dfca6e8780aef | /classroom examples/10.py | ab241aa1417f606aba6c9459a043d03a16b9e3e0 | []
| no_license | sujith1919/TCS-Python | 98eac61a02500a0e8f3139e431c98a509828c867 | c988cf078616540fe7f56e3ebdfd964aebd14519 | refs/heads/master | 2023-03-02T09:03:10.052633 | 2021-02-02T16:40:18 | 2021-02-02T16:40:18 | 335,355,862 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 238 | py | import time
import os
starttime=time.time()
for x in range(1000):
x**x
endtime=time.time()
print(endtime-starttime)
time.sleep(1) #sleeps for 1 second
ts = os.path.getctime("10.py")
print(ts)
print(time.ctime(ts))
| [
"[email protected]"
]
| |
c4479c6eb8c2b3de6a56bf651e278fa061e0a46d | 9be1ab6f7cc9e1e8474b7c76ef89284b54782c46 | /chapter_remaining/3_importing.py | 74ab8e113a71fbe0f3835725cf596ca9ef7ba6e6 | []
| no_license | Nateque123/python_tutorials | 8d9842d46570e6cecd7aa5419b9f77bc4468d391 | 83743acf4862155c5837c154d0422f74d0629043 | refs/heads/master | 2022-11-20T11:39:02.565456 | 2020-07-24T11:08:34 | 2020-07-24T11:08:34 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 127 | py | # simple importing practice # check file2 also
import file2
print(file2.func('nateq'))
from file2 import a
print(a) | [
"[email protected]"
]
| |
2c88423e7b1d7a0eaa3ce0c6656b0463de03c32e | a8a657cecbe0deab6f589a1b949bb18d6ab3938e | /ChemicsEndpoints/Endpoints/ChlorineCount/predictChlorineCount.py | 6622a6274e5ad06d3e60fc38f9323bb3cfb63af9 | []
| no_license | JonnaStalring/WebServices | 44d222b75d0fe2313db1be8b9e3dc23e48fa0ed6 | a5deb8be22056d3538e52c46310d1d99610dd1fa | refs/heads/master | 2021-01-10T23:55:13.461407 | 2019-03-04T17:01:04 | 2019-03-04T17:01:04 | 70,786,598 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 579 | py | from rdkit.Chem import Descriptors
from rdkit import Chem
def ChlorineCount(ID, smiles, project, series, CHEMICSMODELDIR):
"""
Total number of Cl
"""
fragStr = "Cl"
mol = Chem.MolFromSmiles(fragStr)
sma = Chem.MolToSmarts(mol)
matchIdx = Chem.QuickSmartsMatch(smiles, sma)
ChlorineCount = len(matchIdx)
confidence = "NaN"
return ChlorineCount, confidence
if __name__ == "__main__":
ChlorineCount, confidence = ChlorineCount("MyMol", "c1(cc(c(cc1)Oc1c(ncc(c1)C(F)(F)F)C(N)=O)C)Cl", "project", "series", ".")
print ChlorineCount
| [
"[email protected]"
]
| |
8e590b6e190dead90a8370392f6dac800e826486 | 0a848b5b2ea31a7e2e997f27b13f363530df78d1 | /backend/cart/migrations/0009_auto_20210928_1845.py | 2b07b02da6e2d6fba28a5e641d9d8b827230cdee | []
| no_license | PhanVanThanh-hub/React-Django-Ecommerce | a88e4c0747a9a3d6179d45c60641595221fe701c | 00946075486495676595fe0a17dcdd0799756d4b | refs/heads/main | 2023-08-13T19:24:40.492000 | 2021-09-30T13:05:03 | 2021-09-30T13:05:03 | 412,066,886 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 595 | py | # Generated by Django 3.2.6 on 2021-09-28 11:45
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('cart', '0008_alter_orderitem_date_added'),
]
operations = [
migrations.AlterField(
model_name='order',
name='data_ordered',
field=models.DateTimeField(auto_now_add=True),
),
migrations.AlterField(
model_name='orderitem',
name='date_added',
field=models.DateTimeField(auto_now_add=True),
),
]
| [
"[email protected]"
]
| |
70deb99eb2fe58fe8366b806aeff04fe4948a09f | 86019cfe5500aa3bd93c6cf393d6de197ff824ef | /Sai_Vinay.py | d7ac0dd4e0e205ff28f7ab792672dd6e19c8c491 | []
| no_license | rohithavarada/Member-Submissions | 8039de18ca8e1ae5fb3800935c6c6beca504154f | 9784d76654eb6192c36dd89035c4d9a629e1d27b | refs/heads/master | 2020-03-27T16:10:25.438340 | 2018-08-30T14:54:53 | 2018-08-30T14:54:53 | 146,763,830 | 0 | 0 | null | 2018-08-30T14:42:16 | 2018-08-30T14:42:16 | null | UTF-8 | Python | false | false | 89 | py | # This is for testing
printf("Hello World");
import string
print(string.ascii_lowercase)
| [
"[email protected]"
]
| |
42e93c74b93ed26f5ed34a9a594feccb4b0f52de | 1e72b3defbae7498f887a763edff7c36333a3e47 | /app/migrations/0001_initial.py | 20e4ead86ba9fe8dfe9528620d819f80d801fb9c | []
| no_license | prabhuksgowda/ResumeBuilder-using-Django | 5dbc9f6b5b49fb57392d202975caf3cee07c07d8 | 47cb3ed8da278b618e6e9480c534e48d1332daf5 | refs/heads/master | 2023-04-04T21:13:41.265910 | 2021-03-26T06:58:56 | 2021-03-26T06:58:56 | 350,674,160 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,177 | py | # Generated by Django 2.2.1 on 2021-02-19 10:39
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Project',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('projecttitle', models.CharField(max_length=250)),
('prodescrip', models.CharField(max_length=800)),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
migrations.CreateModel(
name='Personaldetails',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('dob', models.CharField(max_length=100)),
('gender', models.CharField(max_length=100)),
('nationality', models.CharField(max_length=100)),
('fathername', models.CharField(max_length=100)),
('address', models.CharField(max_length=250)),
('strength', models.CharField(max_length=100, null=True)),
('hobbies', models.CharField(max_length=100, null=True)),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
migrations.CreateModel(
name='Education',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('collagename', models.CharField(max_length=100)),
('university', models.CharField(max_length=100)),
('branch', models.CharField(max_length=100)),
('yearofpass', models.CharField(max_length=4)),
('programinglang', models.CharField(max_length=250)),
('frontendlng', models.CharField(max_length=250, null=True)),
('framework', models.CharField(max_length=250, null=True)),
('cgpa', models.CharField(max_length=250)),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
migrations.CreateModel(
name='Details',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=100)),
('email', models.CharField(max_length=100)),
('mobile', models.CharField(max_length=100)),
('linkedin', models.CharField(max_length=100)),
('carrearobject', models.TextField()),
('user', models.OneToOneField(default='flash', on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
]
| [
"[email protected]"
]
| |
6b95c17b989818943a654bbc1f3ab4b6f493aa2e | 899bb004ecc5df96b36d95e11705b9bb8d4f48a3 | /balloonproptest.py | 793a394296014d1d9031e01802bfe8cca34044e5 | []
| no_license | CamronAlexanderHirst/drifter-project | a09aaa49579c5be7a9ab2868688df2ce142b8f3f | 2e266067863538627b0c5d5f5a87e09b5fedf562 | refs/heads/master | 2021-06-30T23:51:52.786046 | 2020-10-21T18:42:07 | 2020-10-21T18:42:07 | 174,581,113 | 0 | 0 | null | 2019-05-01T22:52:54 | 2019-03-08T17:33:20 | Python | UTF-8 | Python | false | false | 1,900 | py | #!/usr/bin/env python3
'''Used to test out balloon prop
Author: Alex Hirst
'''
from src import wind_field
from src import gen_random_field
from src import visualizer
import clear_folder
import numpy as np
import time as t
import random
random.seed(11)
# Generate a nxm field
n = 10 # cell height of field (y)
m = 15 # cell width of field (x)
length = 500
n_samples = 100
field = gen_random_field.field_generator(n, m, length, 0, 1, n_samples, 'Normal')
# speed statistics
field.nrm_mean_s = 0
field.nrm_sig_s = 2.5
# heading statistics
field.nrm_mean_h = 0
field.nrm_sig_h = 0.25
field.sample_heading_speed()
A = wind_field.wind_field(field.vel, field.loc, length, field.nsamps, field.samples)
A.dt = 2.5
A.t_end = 20
A.y_goal = 3000
dx = 1
xstart = 3500 # absolute starting point
xend = 3500 # abosulte end point
ystart = 5
num_release_pts = 1
# generate start vector
start = []
for i in np.linspace(0, xend-xstart, num_release_pts):
print('i:' + str(i))
start.append([xstart + i, ystart])
print(start)
for start in start:
A.prop_balloon(start[0], start[1], A.y_goal)
stats = A.calc_util()
print('Start: ' + str(start))
print('Mu: ' + str(stats[0]))
print('Std: ' + str(stats[1]))
# A.plot_orig = True
# A.plot_orig_mean = True
A.plot_samps = True
A.plot_samps_mean = True
input("press enter to plot")
# Plot the wind field
A.plot_wind_field()
savefig = input('save figure? (y/n)')
if savefig == 'y':
print('saving')
A.save_plot = True
A.plot_wind_field()
input("press enter to animate")
# Animate!!!
vis = visualizer.animator()
vis.save = True
vis.init_live_plot(A)
for time in range(len(A.position_history_y_orig)):
t.sleep(0.1)
vis.measurement_update(A, time)
input("press enter to create gif")
gif = input('make gif? (y/n)')
if gif == 'y':
vis.make_gif()
# Clear the figures folder
clear_folder.clear_figure_folder()
| [
"[email protected]"
]
| |
3d9077950ed07ab6d94f3b14341ecaa249574bf9 | 4569d707a4942d3451f3bbcfebaa8011cc5a128d | /tracformsplugin/tags/tracforms-0.4/0.11/tracforms/environment.py | fe98433758feac09b52fc49eb8a527b49c3b41db | []
| no_license | woochica/trachacks | 28749b924c897747faa411876a3739edaed4cff4 | 4fcd4aeba81d734654f5d9ec524218b91d54a0e1 | refs/heads/master | 2021-05-30T02:27:50.209657 | 2013-05-24T17:31:23 | 2013-05-24T17:31:23 | 13,418,837 | 0 | 1 | null | null | null | null | UTF-8 | Python | false | false | 3,263 | py | # -*- coding: utf-8 -*-
import fnmatch
import re
from api import _
from compat import json
class FormEnvironment(dict):
"""Handles the environment used by TracForms macros.
This dictionary is stackable and provides recursive context
for pseudo-variables.
>>> outer = FormEnvironment(None)
>>> outer['hello'] = 'World'
>>> outer['test:ACK'] = 'OOP'
>>> outer['test:FOO'] = 'BAR'
>>> inner = FormEnvironment(outer, ('test:',))
>>> inner['hello']
'World'
>>> inner['ACK']
'OOP'
>>> inner.getmany('test:*')
('OOP', 'BAR')
>>> tuple(sorted(inner.keyset('/.el/')))
('hello',)
>>> tuple(sorted(inner.keyset('/.el/')))
('hello',)
>>> tuple(sorted(inner.keyset('*')))
('test:ACK', 'test:FOO')
>>> tuple(sorted(inner.keyset('*', all=True)))
('hello', 'test:ACK', 'test:FOO')
>>> inner.getmany('/.el/')
('World',)
>>> web = FormEnvironment(None, ('test',))
>>> web.addform('a=5&a=7&b=hello', 'test')
>>> web['a']
'5\t7'
"""
def __init__(self, base=None, prefixes=()):
if base is not None:
self.update(base)
self.base = base
self.prefixes = prefixes + ('',)
def __getitem__(self, key, NOT_FOUND=KeyError):
obj = self.get(key, NOT_FOUND)
if obj is NOT_FOUND:
raise KeyError(key)
else:
return obj
def get(self, search, default=None, singleton=True, all=False):
values = tuple(dict.__getitem__(self, key)
for key in sorted(self.keyset(search, all)))
if singleton:
if not values:
return default
elif len(values) == 1:
return values[0]
else:
raise ValueError(
_("Too many results for singleton %r" % key))
else:
return values
def keyset(self, search, all=False):
if search[:1] == '/' and search[-1:] == '/':
def matches(prefix, keys):
regexp = re.compile(prefix + search[1:-1])
return (key for key in keys
if regexp.match(key))
elif '*' in search or '?' in search or '|' in search:
def matches(prefix, keys):
regexp = re.compile(fnmatch.translate(prefix + search))
return (key for key in keys
if regexp.match(key))
else:
def matches(prefix, keys):
check = prefix + search
return (key for key in keys
if key == check)
keys = self.sorted_keys
values = set()
for prefix in self.prefixes:
values |= set(key for key in matches(prefix, keys))
if values and not all:
break
return values
_sorted = None
@property
def sorted_keys(self):
keys = self._sorted
if keys is None:
keys = self._sorted = sorted(self)
return keys
def getmany(self, search, all=False):
return self.get(search, singleton=False, all=all)
def addform(self, data):
for name, value in json.loads(state or '{}').iteritems():
keys = [prefix + ':' + name for prefix in self.prefixes]
for key in keys:
self[key] = tuple(value)
| [
"hasienda@7322e99d-02ea-0310-aa39-e9a107903beb"
]
| hasienda@7322e99d-02ea-0310-aa39-e9a107903beb |
8f0ea1ddcb842afbdfefab10bdc1a50be19625f3 | a140b45f9f16b74353d15ed573ea765b3fef046d | /algorithms/leet.0693.src.1.py | 04b92c007caace7e60b187ff08050dfd9eefba49 | []
| no_license | fish-ball/leetcode | 258d4b37f05560d914bcd29f7c54820deeadb33f | 3dfd8f73c65d43cc2766c20700a619141acb927b | refs/heads/master | 2023-05-28T18:32:43.638675 | 2023-05-20T04:25:23 | 2023-05-20T04:25:23 | 31,968,994 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 207 | py | class Solution:
def hasAlternatingBits(self, n: int) -> bool:
if n <= 2:
return True
if n & 3 in (3, 0):
return False
return self.hasAlternatingBits(n>>1)
| [
"[email protected]"
]
| |
7c2820d6f5a8d4bf54d25dcbf7735c173f8122c3 | e303bf4fb1d1c6ba482788a142ce3f3f5ced9702 | /python_5_lesson_hw.py | 4aeb536f640a8ff6c3b54d8dc601096e06b21f0f | []
| no_license | isthatjoke/projects | 0d109c7f25aefb1c8e0c9d513807510ea51f5b8c | fa51cec43d6fd7b39ae9dbf4e40eca1033770782 | refs/heads/master | 2021-01-05T23:15:27.650953 | 2020-12-01T16:12:00 | 2020-12-01T16:12:00 | 241,164,290 | 1 | 0 | null | 2020-12-01T16:12:01 | 2020-02-17T17:12:37 | Python | UTF-8 | Python | false | false | 6,927 | py | # 1. Создать программно файл в текстовом формате, записать в него построчно данные,
# вводимые пользователем. Об окончании ввода данных свидетельствует пустая строка.
while True:
user_input = input("enter your text ")
if user_input == "":
break
my_file = open("new_file.txt", "a", encoding="utf-8")
my_file.writelines(user_input + "\n")
my_file.close()
# 2. Создать текстовый файл (не программно), сохранить в нем несколько строк, выполнить
# подсчет количества строк, количества слов в каждой строке.
i = 1
with open("new_file.txt", encoding="utf-8") as my_file:
content = my_file.readlines()
print("количество строк в файле ", len(content))
for el in content:
my_el = el.split(" ")
my_str = len(my_el)
print(f'количество символов в {i} строке - {my_str}')
i += 1
# 3. Создать текстовый файл (не программно), построчно записать фамилии сотрудников и величину их окладов.
# Определить, кто из сотрудников имеет оклад менее 20 тыс., вывести фамилии этих сотрудников.
# Выполнить подсчет средней величины дохода сотрудников.
with open("new_file.txt", "r", encoding="utf-8") as my_file:
my_f = list(my_file)
employee_list = []
for line in my_f:
s = line.rstrip().split(" ")
if s[1].isdigit and float(s[1]) < 20000:
employee_list.append(s[0])
print(employee_list)
# 4. Создать (не программно) текстовый файл со следующим содержимым:
# One — 1
# Two — 2
# Three — 3
# Four — 4
# Необходимо написать программу, открывающую файл на чтение и считывающую построчно данные.
# При этом английские числительные должны заменяться на русские.
# Новый блок строк должен записываться в новый текстовый файл.
lib = {'One': 'Один',
'Two': 'Два',
'Three': 'Три',
'Four': 'Четыре',
}
with open("new.txt", encoding="utf-8") as file:
my_f = list(file)
my_file = []
for line in my_f:
tmp1 = lib.get(line[:(line.find(" "))])
with open("last.txt", "a", encoding="utf-8") as new_file:
new_file.write(line.replace(line[:(line.find(" "))], tmp1))
# 5. Создать (программно) текстовый файл, записать в него программно набор чисел, разделенных пробелами.
# Программа должна подсчитывать сумму чисел в файле и выводить ее на экран.
user_input = input("введите цифры через пробел ")
if user_input.isalpha() or user_input.isspace():
print("Неверный ввод")
else:
with open("file.txt", "w") as file:
file.write(user_input)
with open("file.txt") as file:
temp = (file.read()).split(" ")
total_sum = 0
for el in temp:
total_sum = total_sum + int(el)
print(total_sum)
# 6. Необходимо создать (не программно) текстовый файл, где каждая строка описывает учебный предмет и наличие
# лекционных, практических и лабораторных занятий по этому предмету и их количество. Важно, чтобы для каждого предмета
# не обязательно были все типы занятий. Сформировать словарь, содержащий название предмета и общее количество занятий
# по нему. Вывести словарь на экран.
# Примеры строк файла:
# Информатика: 100(л) 50(пр) 20(лаб).
# Физика: 30(л) — 10(лаб)
# Физкультура: — 30(пр) —
#
# Пример словаря:
# {“Информатика”: 170, “Физика”: 40, “Физкультура”: 30}
import re
my_list = []
my_dict = {}
with open("file.txt", encoding="utf-8") as file:
for line in file:
my_list.append(line.rstrip())
for line in my_list:
fnd = line.find(":")
dlt = line[:fnd]
dig = map(int, re.findall('\d+', line))
my_dict.update({dlt: sum(dig)})
print(my_dict)
# 7. Создать (не программно) текстовый файл, в котором каждая строка должна содержать данные о фирме:
# название, форма собственности, выручка, издержки.
# Пример строки файла: firm_1 ООО 10000 5000.
# Необходимо построчно прочитать файл, вычислить прибыль каждой компании, а также среднюю прибыль.
# Если фирма получила убытки, в расчет средней прибыли ее не включать.
# Далее реализовать список. Он должен содержать словарь с фирмами и их прибылями, а также словарь со средней прибылью.
# Если фирма получила убытки, также добавить ее в словарь (со значением убытков).
# Пример списка: [{“firm_1”: 5000, “firm_2”: 3000, “firm_3”: 1000}, {“average_profit”: 2000}].
# Итоговый список сохранить в виде json-объекта в соответствующий файл.
# Пример json-объекта:
# [{"firm_1": 5000, "firm_2": 3000, "firm_3": 1000}, {"average_profit": 2000}]
#
# Подсказка: использовать менеджеры контекста.
import json
firms = {}
ave = []
ave_profit = {}
full_list = [firms, ave_profit]
with open("my_file.txt", encoding="utf-8") as file:
for line in file:
tmp = line[:(line.find(" "))]
a = (line.rstrip()).split(" ")
if int(a[2]) > int(a[3]):
tmp2 = int(a[2]) - int(a[3])
firms.update({tmp: tmp2})
ave.append(tmp2)
ave_profit.update({"average_profit": (sum(ave))})
with open("my_file.json", "w", encoding="utf-8") as j_file:
json.dump(full_list, j_file)
| [
"[email protected]"
]
| |
07b8a5019433683f2a6f9216935aaa0a5caa2f35 | f0b75bd94f133a13f469f429a696f26be3be9862 | /week 2/.history/python_second_assignment_20200204163718.py | b9cd1fdfdd8aa3efdde2ac692d9c4aefc42371f3 | []
| no_license | dechavez4/Python_handin_assignments | 023350fabd212cdf2a4ee9cd301306dc5fd6bea0 | 82fd8c991e560c18ecb2152ea5a8fc35dfc3c608 | refs/heads/master | 2023-01-11T23:31:27.220757 | 2020-05-22T10:33:56 | 2020-05-22T10:33:56 | 237,179,899 | 0 | 0 | null | 2022-12-30T20:14:04 | 2020-01-30T09:30:16 | Python | UTF-8 | Python | false | false | 2,196 | py | import csv
from sys import argv
import platform
import argparse
import os.path
from os import path
# Create a python file with 3 functions:
# A. def print_file_content(file) that can print content of a csv file to the console
def print_file_content(file):
with open(file) as csv_file:
content = csv_file.readlines()
for line in content[:20]:
print(line.strip().split(','))
# kan overskrive den gamle file.
# B. def write_list_to_file(output_file, lst) that can take a list of tuple and write each element to a new line in file
def write_list_to_file(output_file, *lst):
if platform.system() == 'Windows':
newline=''
else:
newline=None
with open (output_file, 'w', newline=newline) as output_file:
output_writer = csv.writer(output_file)
for ele in lst:
output_writer.writerow(ele)
# C. def read_csv(input_file) that take a csv file and read each row into a list
def read_line(file):
with open(file) as file_object:
lines = file_object.readlines()
print(lines)
for line in lines:
print(line.rstrip())
# 2. Add a functionality so that the file can be called from cli with 2 arguments
def run():
if args.print:
print_file_content(argv[2])
if args.write:
write_list_to_file(argv[2], argv[3:])
if args.read:
read_line(argv[2])
if args.file:
path.exists(argv[2])
write_list_to_file(argv[2], argv[3:])
else:
print("file doesnt exist", argv[2])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="this is my menu")
parser.add_argument("--print", help='function that can print content of a csv file to the console')
parser.add_argument("--write", nargs="*", help='function that can take a list of tuple and write each element to a new line in file')
parser.add_argument("--read", help='function that take a csv file and read each row into a list')
parser.add_argument("--
", nargs="*", help="an argument that if given will write the content to file_name or otherwise will print it to the console.")
args = parser.parse_args()
run() | [
"[email protected]"
]
| |
c4f0bdaff9911ea6c386f68965ceb757e4427d6d | e9a046b8fb7bf0c5f10d6c16c71e03bff71ff26e | /NTPC_WelfareMonitor/Tests/old/w1205.py | a1eff551aaddb4434074258d125f576120262a0a | []
| no_license | CityRay/NTPC_Project | b9fdd74980626cd953ebf0ed7150bec6cad50100 | 9fdc5f34b2c63771fc6e696c8a206328e2ecee7b | refs/heads/master | 2021-01-19T20:27:47.228092 | 2015-01-24T09:07:37 | 2015-01-24T09:07:37 | 29,771,285 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,586 | py | #-*- coding: utf-8 -*-
from selenium import selenium
import unittest, time, re
class welfare05(unittest.TestCase):
def setUp(self):
self.verificationErrors = []
self.selenium = selenium("localhost", 4444, "*chrome", "http://172.18.124.12")
self.selenium.start()
def test_welfare05(self):
sel = self.selenium
sel.open("/welfare")
sel.set_speed("800")
sel.click("//a[5]/div[2]/div[2]")
sel.click("//div[@id='fbox3']/a")
sel.wait_for_page_to_load("30000")
sel.click("id=submit")
sel.wait_for_page_to_load("30000")
sel.type("id=year-qsSS4globalglobal0", "50")
sel.type("id=___cmbinput___month-qsSS4globalglobal0", "2")
sel.type("name=day:qs%24SS4%24global%24global0", "2")
sel.type("id=___cmbinput___qsSS4globalglobal1", u"約12個月以上")
sel.type("id=___cmbinput___qsSS4globalglobal2", u"一般身分")
sel.click("id=submit")
sel.wait_for_page_to_load("30000")
sel.click("id=submit")
sel.wait_for_page_to_load("30000")
sel.click(u"link=生育獎勵金")
sel.wait_for_page_to_load("30000")
sel.click("id=button")
sel.wait_for_page_to_load("30000")
sel.click(u"link=孕婦乙型鏈球菌篩檢")
sel.wait_for_page_to_load("30000")
sel.click("id=button")
sel.wait_for_page_to_load("30000")
def tearDown(self):
self.selenium.stop()
self.assertEqual([], self.verificationErrors)
if __name__ == "__main__":
unittest.main()
| [
"[email protected]"
]
| |
ad8780f4445385ddc1e4194084b8981b92085a96 | fc557b9e46ee32e08860c58b29139ea377d62a16 | /robot_controller.py | a3529bb9dbc39c2451c4cb6e3ec4d18305d7407e | []
| no_license | CharmFlex-98/Quadruped_robot | 91e3fdb837b44377640c99d4883759530d9437cd | ebe56e83a8a07b4a74f84e4f95e3fe852be9114e | refs/heads/main | 2023-07-08T23:15:22.685269 | 2021-08-20T02:48:22 | 2021-08-20T02:48:22 | 398,134,223 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 7,643 | py | from __future__ import division
import time
import Adafruit_PCA9685
import pygame
import numpy as np
from inverse_kinematics import *
from math import *
class robot:
def __init__(self, width=640, height=480):
self.pwm = Adafruit_PCA9685.PCA9685()
self.pwm.set_pwm_freq(60)
self.direction={15:-1, 14:1, 13:-1, 12:1, 11:1, 10:-1, 9:1, 8:-1}
self.origin=[84, 49, 74, 63, 99, 117, 114, 124] # from 8 to 15, real servo degree!
self.stand_up=[58, 104, 50, 112, 123, 67, 136, 74]
self.thigh_calibration=[49, 63, 117, 124] # 9, 11, 13, 15
self.servo_arm_calibration=[43, 33, 140, 155] # 8, 10, 12, 14
self.calibration={8:43, 9:49, 10:33, 11:63, 12:140, 13:117, 14:155, 15:124} # from 8 to 15
self.servos={}
self.initial=[]
self.delta=[]
self.reset()
self.rad=0
self.y_offset=0
self.x_offset=0
self.vertical=0
self.vertical_direction=1
self.counter=0
self.status='sleep' #'normal', 'sleep', 'sit', 'forward', 'backward, reset'
def degree2pwm(self, degree):
pwm=round((degree/180)*(600-150)+150)
return pwm
def pwm2degree(self, pwm):
degree=round((pwm-150)/(600-150)*180)
return degree
def rotate_to(self, servo_index, target_degree, time_step, pov=False):
if pov:
target_degree=self.pov2servo_view(servo_index, target_degree)
for index, i in enumerate(servo_index):
self.initial.append(self.servos[i])
target_pwm=self.degree2pwm(target_degree[index])
self.delta.append((target_pwm-self.servos[i]))
for step in range(time_step):
for index, p in enumerate(servo_index):
self.servos[p]=self.initial[index]+self.delta[index]*((step+1)/time_step)
self.servos[p]=self.post_process_pwm(self.servos[p])
self.pwm.set_pwm(p, 0, round(self.servos[p]))
self.initial=[]
self.delta=[]
#print('rotate all done')
#self.check_pwm()
def rotate(self, servo_index, velocity):
for index, i in enumerate(servo_index):
self.servos[i]=self.servos[i]+velocity[index]*self.direction[i]
self.servos[i]=self.post_process_pwm(self.servos[i])
self.pwm.set_pwm(i, 0, round(self.servos[i]))
print('servo {} pwm is {}'.format(i, self.servos[i]))
def reset(self):
for index, i in enumerate(range(8, 16)):
self.servos[i]=self.degree2pwm(self.origin[index])
self.pwm.set_pwm(i, 0, self.degree2pwm(self.origin[index]))
time.sleep(0.01)
def check_pwm(self):
for i in self.servos:
print('servo {} in degree:{} pwm:{}'.format(i, self.pwm2degree(self.servos[i]), self.servos[i]))
time.sleep(1)
def post_process_pwm(self, pwm, min_pwm=150, max_pwm=600):
value=max(min(pwm, max_pwm), min_pwm)
return value
def pov2servo_view(self, servo_index, servo_pov_degree):
real_degree=servo_pov_degree
for index, i in enumerate(servo_index):
if self.direction[i]==-1:
real_degree[index]=180-servo_pov_degree[index]
print(real_degree)
return real_degree
def walk(self, radius1, radius2, velocity):
r1=radius1
r2=radius2
x1=r1*cos(self.rad)+self.x_offset
y1=r2*sin(self.rad)+self.y_offset
x2=r1*cos(self.rad+pi)+self.x_offset
y2=r2*sin(self.rad+pi)+self.y_offset
self.gait([15, 14, 9, 8], x1, y1, 1)
self.gait([13, 12, 11, 10], x2, y2, 1)
self.rad-=velocity
def walk_turn(self, radius1, radius2, velocity, turn_rate=2, direction='left'):
r1=radius1
r2=radius2
print(self.rad)
x1=r1*cos(self.rad)+self.x_offset
y1=r2*sin(self.rad)+self.y_offset
x2=r1*cos(self.rad+pi)+self.x_offset
y2=r2*sin(self.rad+pi)+self.y_offset
if direction=='right':
self.gait([15, 14], x1, y1, 1)
self.gait([9, 8], x1/turn_rate, y1, 1)
self.gait([13, 12], x2, y2, 1)
self.gait([11, 10], x2/turn_rate, y2, 1)
elif direction=='left':
self.gait([15, 14], x1/turn_rate, y1, 1)
self.gait([9, 8], x1, y1, 1)
self.gait([13, 12], x2/turn_rate, y2, 1)
self.gait([11, 10], x2/2, y2, 1)
else:
print('insert direction please!')
return
self.rad-=velocity
def up_down(self, velocity):
self.y_offset-=velocity
self.gait(range(8, 16), self.x_offset, self.y_offset, 1)
def front_back(self, velocity):
self.x_offset-=velocity
self.gait(range(8, 16), self.x_offset, self.y_offset, 1)
def turning_body(self, radius, velocity, radius_multiplier=2.5, x_multiplier=4, y_multiplier=4):
dif = radius * radius_multiplier * sin(self.rad)
x_offset = radius * x_multiplier * cos(self.rad / 2) + self.x_offset-radius*x_multiplier
y_offset = radius * y_multiplier * sin(self.rad/2) + self.y_offset
rad = math.asin(dif / 100)
x1 = (160 - dif - self.y_offset) * sin(rad) + x_offset + radius * cos(rad + pi / 2)
y1 = (160 - dif - self.y_offset) * (1 - sin(rad + pi / 2)) + y_offset + dif
x2 = (160 + dif - self.y_offset) * sin(rad) + x_offset + radius * cos(rad + pi / 2)
y2 = (160 + dif - self.y_offset) * (1 - sin(rad + pi / 2)) + y_offset - dif
self.gait([15, 14, 11, 10], x1, y1, 1)
self.gait([13, 12, 9, 8], x2, y2, 1)
self.rad += velocity
def jump(self, radius, velocity):
x=self.x_offset
self.vertical=self.vertical+velocity*self.vertical_direction
if self.vertical<=0:
self.counter+=1
self.vertical_direction*=-1
self.vertical=0
if self.vertical>=radius:
self.vertical_direction*=-1
self.vertical=radius
print(self.vertical)
y1=self.vertical*(self.counter%2)+self.y_offset
y2=self.vertical*((self.counter+1)%2)+self.y_offset
self.gait([15, 14, 9, 8], x, y1, 1)
self.gait([13, 12, 11, 10], x, y2, 1)
def body_slant(self, velocity):
self.rad+=velocity
dif=200*sin(self.rad)
dif=dif/2
front_legs_x=(160-dif-self.y_offset)*cos((pi/2)-self.rad)+self.x_offset
front_legs_y=(160-dif-self.y_offset)*(1-sin((pi/2)+self.rad))+self.y_offset+dif
hind_legs_x=(160+dif-self.y_offset)*cos((pi/2)-self.rad)+self.x_offset
hind_legs_y=(160+dif-self.y_offset)*(1-sin((pi/2)+self.rad))+self.y_offset-dif
self.gait([15, 14, 11, 10], front_legs_x, front_legs_y, 1)
self.gait([13, 12, 9, 8], hind_legs_x, hind_legs_y, 1)
def stand_reset(self, time_step, x=-22, y=-16):
self.y_offset=y #-13
self.x_offset=x #-6
self.rad=0
self.gait(range(8, 16), self.x_offset, self.y_offset, time_step)
def gait(self, servos, dx, dy, time_step):
servo_index=[]
servo_angle=[]
thigh_angle, arm_angle=ik_solver(dx, dy)
for x in servos:
servo_index.append(x)
if x in [9, 11, 13, 15]:
servo_angle.append(thigh_angle*self.direction[x]+self.calibration[x])
else:
servo_angle.append(arm_angle*self.direction[x]+self.calibration[x])
self.rotate_to(servo_index, servo_angle, time_step, pov=False)
#my_robot.rotate_to([15, 13, 11, 9], [110, 110, 110, 110], 50)
#my_robot.check_pwm() | [
"[email protected]"
]
| |
09e7abb9d2cb3efbfc704013ed50ea61b03e0a79 | 4b714c8fc2f90276c76474af7fec5ed975a8cb27 | /Chapter04/naive_baysian.py | a3aabee36ed18c1e33aa7be6678ec98df3b62152 | []
| no_license | quantumira/statistic_ml | ab9ae301248ed3bb832c0d0ae479d7bb8465e651 | e2ae6134b71ddb21b1dfa05b686e31db59a84242 | refs/heads/main | 2023-03-31T02:29:11.610238 | 2021-04-07T14:56:32 | 2021-04-07T14:56:32 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,345 | py | # coding: utf-8
from collections import Counter
"""
朴素贝叶斯
0. 在实现朴素贝叶斯的时候,笔者已经是第N次回顾朴素贝叶斯了,但直到这一次才开始有意识地将它与上一章的感知机做一些对比,
它也给了笔者一些收获。这种与前面的模型/方法做比较的意识,将贯彻整个repository。
1. 朴素贝叶斯的出发点是什么:当已知特征x的条件下,求概率最高的y,所以需要对P(y|x)建模。
而回顾下上一章,感知机的建模是f(x)。
2. 怎么建模: 根据贝叶斯公式:P(y|x)=P(x,y) / P(x)
=[P(x|y) * P(y)] / [Σ_{y_i}P(x,y_i)]
=[P(x|y) * P(y)] / [Σ_{y_i}P(x|y_i) * P(y_i)]
故需要对P(x|y)和P(y)建模 --> 为什么不能直接对P(y|x)建模,而可以反过来对P(x|y)建模 (其实可以!看看逻辑斯蒂回归)
但这里的任务转化为P(x|y)和P(y)建模后,这个模型必须得具备为P(x|y)和P(y)建模的能力才说得过去!
这就是"朴素贝叶斯法"的贝叶斯。
3. 进一步地,在P(x|y)中,x可能是多维特征,实际上这些特征可能是有关系的。
但朴素贝叶斯做了一个简单的、天真的、朴素的假设:特征之间没有关系。
这就是"朴素贝叶斯"的朴素之处。但是这个朴素的假设有什么用呢 (问题A的答案,下面揭晓)
4. 剩下的问题就是如何为P(x|y)和P(y)建模了
4.1 使用极大似然估计法估计相应的概率
4.1.2 P(y)用频数即可
4.1.3 P(x|y) = P(x1, x2, ..., xn|y)
= P(x1|y) * P(x2|y) * ... * P(xn|y) (从上一行到这一行就是基于朴素的"特征之间没有关系"的假设)
= [频数(x1, y) / 频数(y)] * [频数(x1, y) / 频数(y)] * ... * [频数(xn, y) / 频数(y)]
这里就是朴素假设的用途了,通过这个朴素假设,我们可以通过简单地估计各个P(xi|y)来达到目的
# todo: P(y|x) = P(y|x1) * P(y|x2) * ... * P(y|xn)???
4.2 使用贝叶斯估计来避免概率为0的情况
5. 对比下感知机和朴素贝叶斯法。朴素贝叶斯有一步很特别,就是它对P(x,y)建模了,
换句话说,原则上它掌握了(x,y)的生成规律,可以用来生成数据。我们把这类模型叫做生成模型
后续的逻辑斯蒂回归直接对P(y|x)建模,则没有这个生成的过程!
todo: 为什么我们需要对这个特性那么在意?有什么好处吗?
"""
class NaiveBaysian:
def __init__(self):
"""
:param features: 特征
:param labels: label
"""
self.prior_proba = {}
self.conditional_proba = []
self.y_options = {}
def fit(self, X, Y):
Y_counts = dict(Counter(Y))
self.prior_proba = {y: count / len(Y) for y, count in Y_counts.items()}
self.y_options = set(Y)
for i in range(len(X[0])):
X_i = [x[i] for x in X]
X_i_Y = list(zip(X_i, Y))
X_i_Y_count = dict(Counter(X_i_Y))
# P(xi, yi)
X_i_Y_proba = {x_i_y: count / len(Y) for x_i_y, count in X_i_Y_count.items()}
# P(xi|yi) = P(xi,yi) / P(yi)
conditional_proba = {x_i_y: proba / self.prior_proba[x_i_y[1]] for x_i_y, proba in # x_i_y[1]就是y
X_i_Y_proba.items()}
self.conditional_proba.append(conditional_proba)
# 最后self.conditional_proba形如
# [
# 第一个特征的条件概率:P(x1|y)={(x1=a, y): p1, (x1=b,y): p2, ..., (x1=z,y): pn}, # 这里的(x1=a,y)代表x1=a|y
# 第二个特征的条件概率:P(x2|y)={(x1=a, y): p1, (x2=b,y): p2, ..., (x2=z,y): pn},
# ...
# 最后的特征的条件概率:P(xm|y)={(xm=a, y): p1, (xm=b,y): p2, ..., (xm=z,y): pn},
# ]
def predict_single(self, x):
assert len(x) == len(self.conditional_proba)
y_result = 0
proba_result = 0
for y in self.y_options:
prior_proba = self.prior_proba.get(y, 0) # 这里要防止训练集中没有出现y
conditional_proba = 1
for idx, x_i in enumerate(x):
conditional_proba *= self.conditional_proba[idx].get((x_i, y), 0) # 这里要防止训练集中没有出现(x_i, y)
proba = prior_proba * conditional_proba
if proba > proba_result:
proba_result = proba
y_result = y
return y_result
def predict(self, X):
return [self.predict_single(x) for x in X]
def demo():
X = [
[1, 'S'],
[1, 'M'],
[1, 'M'],
[1, 'S'],
[1, 'S'],
[2, 'S'],
[2, 'M'],
[2, 'M'],
[2, 'L'],
[2, 'L'],
[3, 'L'],
[3, 'M'],
[3, 'M'],
[3, 'L'],
[3, 'L'],
]
Y = [
-1,
-1,
-1,
-1,
-1,
-1,
-1,
1,
1,
1,
1,
1,
1,
1,
-1
]
nb = NaiveBaysian()
nb.fit(X, Y)
prediction = nb.predict(X)
print(prediction)
print(f"正确率为{sum([1 if i == j else 0 for i, j in zip(prediction, Y)]) / len(prediction)}")
if __name__ == '__main__':
demo()
| [
"[email protected]"
]
| |
22256ba682801c86d92e53c516104a2ac18db1fd | b27b26462524984951bfbab9250abd145ecfd4c8 | /Demoing/stage_two/bloomingtonnormal/craigslist_sample/craigslist_sample/spiders/craigslist_spider.py | 9ccd525099e5b2802a2344337a1293d1d28242f0 | []
| no_license | afcarl/fastTraffickingGrab | cb813d066f1f69f359598e0b55e632dafd273c89 | 9ff274cb7c9b6c7b60d1436c209b2bfc5907267d | refs/heads/master | 2020-03-26T06:21:21.404931 | 2014-08-16T12:38:29 | 2014-08-16T12:38:29 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 6,042 | py |
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import HtmlXPathSelector
from craigslist_sample.items import CraigslistSampleItem
class CraigslistSpider(CrawlSpider):
name = "craigslist"
allowed_domains = ["craigslist.org"]
start_urls = [
"http://bn.craigslist.org",
"http://bn.craigslist.org/cas/",
"http://bn.craigslist.org/cas/index100.html",
"http://bn.craigslist.org/cas/index200.html",
"http://bn.craigslist.org/cas/index300.html",
"http://bn.craigslist.org/cas/index400.html",
"http://bn.craigslist.org/cas/index500.html",
"http://bn.craigslist.org/cas/index600.html",
"http://bn.craigslist.org/cas/index700.html",
"http://bn.craigslist.org/cas/index800.html",
"http://bn.craigslist.org/cas/index900.html",
"http://bn.craigslist.org/cas/index1000.html",
"http://bn.craigslist.org/cas/index1100.html",
"http://bn.craigslist.org/cas/index1200.html",
"http://bn.craigslist.org/cas/index1300.html",
"http://bn.craigslist.org/cas/index1400.html",
"http://bn.craigslist.org/cas/index1500.html",
"http://bn.craigslist.org/cas/index1600.html",
"http://bn.craigslist.org/cas/index1700.html",
"http://bn.craigslist.org/cas/index1800.html",
"http://bn.craigslist.org/cas/index1900.html",
"http://bn.craigslist.org/cas/index2000.html",
"http://bn.craigslist.org/cas/index2100.html",
"http://bn.craigslist.org/cas/index2200.html",
"http://bn.craigslist.org/cas/index2300.html",
"http://bn.craigslist.org/cas/index2400.html",
"http://bn.craigslist.org/cas/index2500.html",
"http://bn.craigslist.org/cas/index2600.html",
"http://bn.craigslist.org/cas/index2700.html",
"http://bn.craigslist.org/cas/index2800.html",
"http://bn.craigslist.org/cas/index2900.html",
"http://bn.craigslist.org/cas/index3000.html",
"http://bn.craigslist.org/cas/index3100.html",
"http://bn.craigslist.org/cas/index3200.html",
"http://bn.craigslist.org/cas/index3300.html",
"http://bn.craigslist.org/cas/index3400.html",
"http://bn.craigslist.org/cas/index3500.html",
"http://bn.craigslist.org/cas/index3600.html",
"http://bn.craigslist.org/cas/index3700.html",
"http://bn.craigslist.org/cas/index3800.html",
"http://bn.craigslist.org/cas/index3900.html",
"http://bn.craigslist.org/cas/index4000.html",
"http://bn.craigslist.org/cas/index4100.html",
"http://bn.craigslist.org/cas/index4200.html",
"http://bn.craigslist.org/cas/index4300.html",
"http://bn.craigslist.org/cas/index4400.html",
"http://bn.craigslist.org/cas/index4500.html",
"http://bn.craigslist.org/cas/index4600.html",
"http://bn.craigslist.org/cas/index4700.html",
"http://bn.craigslist.org/cas/index4800.html",
"http://bn.craigslist.org/cas/index4900.html",
"http://bn.craigslist.org/cas/index5000.html",
"http://bn.craigslist.org/cas/index5100.html",
"http://bn.craigslist.org/cas/index5200.html",
"http://bn.craigslist.org/cas/index5300.html",
"http://bn.craigslist.org/cas/index5400.html",
"http://bn.craigslist.org/cas/index5500.html",
"http://bn.craigslist.org/cas/index5600.html",
"http://bn.craigslist.org/cas/index5700.html",
"http://bn.craigslist.org/cas/index5800.html",
"http://bn.craigslist.org/cas/index5900.html",
"http://bn.craigslist.org/cas/index6000.html",
"http://bn.craigslist.org/cas/index6100.html",
"http://bn.craigslist.org/cas/index6200.html",
"http://bn.craigslist.org/cas/index6300.html",
"http://bn.craigslist.org/cas/index6400.html",
"http://bn.craigslist.org/cas/index6500.html",
"http://bn.craigslist.org/cas/index6600.html",
"http://bn.craigslist.org/cas/index6700.html",
"http://bn.craigslist.org/cas/index6800.html",
"http://bn.craigslist.org/cas/index6900.html",
"http://bn.craigslist.org/cas/index7000.html",
"http://bn.craigslist.org/cas/index7100.html",
"http://bn.craigslist.org/cas/index7200.html",
"http://bn.craigslist.org/cas/index7300.html",
"http://bn.craigslist.org/cas/index7400.html",
"http://bn.craigslist.org/cas/index7500.html",
"http://bn.craigslist.org/cas/index7600.html",
"http://bn.craigslist.org/cas/index7700.html",
"http://bn.craigslist.org/cas/index7800.html",
"http://bn.craigslist.org/cas/index7900.html",
"http://bn.craigslist.org/cas/index8000.html",
"http://bn.craigslist.org/cas/index8100.html",
"http://bn.craigslist.org/cas/index8200.html",
"http://bn.craigslist.org/cas/index8300.html",
"http://bn.craigslist.org/cas/index8400.html",
"http://bn.craigslist.org/cas/index8500.html",
"http://bn.craigslist.org/cas/index8600.html",
"http://bn.craigslist.org/cas/index8700.html",
"http://bn.craigslist.org/cas/index8800.html",
"http://bn.craigslist.org/cas/index8900.html",
"http://bn.craigslist.org/cas/index9000.html",
"http://bn.craigslist.org/cas/index9100.html",
"http://bn.craigslist.org/cas/index9200.html",
"http://bn.craigslist.org/cas/index9300.html",
"http://bn.craigslist.org/cas/index9400.html",
"http://bn.craigslist.org/cas/index9500.html",
"http://bn.craigslist.org/cas/index9600.html",
"http://bn.craigslist.org/cas/index9700.html",
"http://bn.craigslist.org/cas/index9800.html",
"http://bn.craigslist.org/cas/index9900.html"
]
rules = (Rule(SgmlLinkExtractor(allow=(),restrict_xpaths=('//a')), callback="parse", follow= True),)
def parse(self, response):
hxs = HtmlXPathSelector(response)
titles = hxs.select("//span[@class='pl']")
date_info = hxs.select("//h4[@class='ban']/span[@class='bantext']/text()")
items = []
file_to = open("things.txt","a")
file_to.write(response.body)
for titles in titles:
item = CraigslistSampleItem()
item ["title"] = titles.select("a/text()").extract()
item ["link"] = titles.select("a/@href").extract()
item ["date"] = date_info.extract()
items.append(item)
return items
| [
"[email protected]"
]
| |
0d9d68e345edd4103b78f052150f71d45a5a2562 | 2c8dd8f7d5e33794a4b5c14ba5f9b065c06853c8 | /instagram_analysis/sentiment_analysis.py | 7d26b2f473315eb92a20e3c54be589962448fc54 | []
| no_license | ritkulk/myprojects | 41e811b82fb7d731bb9fcf1eb405349aa9f2b4cc | b9ad8c640aa0ee3846c76b4158da25ddca7b8e6f | refs/heads/master | 2023-03-31T05:35:07.282618 | 2022-02-19T13:39:39 | 2022-02-19T13:39:39 | 82,113,251 | 0 | 0 | null | 2023-03-24T23:58:14 | 2017-02-15T22:27:59 | Python | UTF-8 | Python | false | false | 3,465 | py | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 8 19:10:54 2018
Implementation of a sentiment analysis model. The model used here has been trained
on IMDB sentiment data and the best performing model on the test set is saved
and used here.
@author: rtwik
"""
import pandas as pd
import _pickle
import os
from keras.models import load_model
from keras.preprocessing import sequence
from insta_word_freq import preprocess
import numpy
from sklearn.metrics import precision_recall_fscore_support
def get_mertrics(targets, predictions, upper_bound, lower_bound):
'''calculates precision, recall, fscore. labels = [], defines the desired labels
and their order to retuern'''
predicitons[predicitons > upper_bound] = 1
predicitons[predicitons < lower_bound] = 0
predicitons[(predicitons >= lower_bound) & (predicitons <= upper_bound)] = 2
precision, recall, fscore, support = precision_recall_fscore_support(
targets, predicitons, labels=[1,0,2])
return numpy.hstack([precision.reshape([3, 1]),
recall.reshape([3, 1]),
fscore.reshape([3, 1])])
CURRENT_DIR = os.getcwd()
DATA_DIR = CURRENT_DIR + '/data/'
MODELS_DIR = CURRENT_DIR + '/models/'
MODEL_FILENAME = 'sentiment_basic.h5' # saved model trained on IMDB data
TAGGED_FILENAME = 'NLPtask_manual_classification1.csv'
DATA_FILENAME = 'NLPTask_Instagram_dataset.csv'
WORD_INDEX_FILENAME = 'word_index' # _pickle file containing map of word to id for trained IMDB model
col_label = 'text'
def vectorise_text(sent, PROC):
'''transform text into vectors for the model'''
words = PROC.alphanumeric_and_split_text(sent)
vec = numpy.array([word_index[word] if word in word_index else 0 for word in words])
vec = sequence.pad_sequences([vec], maxlen=500)
return vec
data_tagged = pd.read_csv(DATA_DIR + TAGGED_FILENAME)
data_tagged = data_tagged[data_tagged['Sentiment'] != 'Other']
with open(DATA_DIR + WORD_INDEX_FILENAME, 'rb') as f:
word_index = _pickle.load(f)
model = load_model(MODELS_DIR + MODEL_FILENAME)
PROC = preprocess()
gram_num = 1
# calculate the overlap between model vocab and data vocab
freq = PROC.calculate_word_freq(data_tagged, col_label, gram_num
)
vocab = set([w for w in freq])
vocab_train = set([w for w in word_index])
common_vocab = len(vocab.intersection(vocab_train))/len(vocab)
print('{} % of vocab in common'.format(common_vocab*100))
inputs = []
for sent in data_tagged[col_label]:
inputs.append(vectorise_text(sent, PROC))
predicitons = model.predict(numpy.vstack(inputs)) # gets predictions for inputs
print(numpy.max(predicitons), numpy.min(predicitons), numpy.mean(predicitons), numpy.std(predicitons))
senti_labels = set(data_tagged['Sentiment'])
senti_to_id = {'Positive': 1, 'Neutral': 2, 'Negative': 0}
targets = list(data_tagged['Sentiment'].apply(lambda x: senti_to_id[x]))
results = get_mertrics(targets,predicitons,0.7, 0.1)
data_insta = pd.read_csv(DATA_DIR + DATA_FILENAME, error_bad_lines=False)
data_insta = data_insta.dropna()
sent_class = []
for sent in data_insta[col_label][:500]:
vec = vectorise_text(sent, PROC)
p = model.predict(vec)
if p > 0.7:
sentiment = 1
elif p < 0.1:
sentiment = 0
else:
sentiment = 2
sent_class.append([sent, sentiment])
sent_class = pd.DataFrame(sent_class)
| [
"[email protected]"
]
| |
1e4213aac33ad0743b8cb08489ebc3648ebe36e7 | 12b9f6b08ace058fafb8ada51a7747434065cfff | /manage.py | ac789c59102180f79efd24581edf2302ca4bb692 | []
| no_license | yunisuthn/python-solumada-API-1 | 83d484ec2aa48ee23dabd2eecbbcb219ccffcc5d | bc20d7ce9aa3d9fff049e6dd690ec8ed299cd532 | refs/heads/main | 2023-08-07T20:36:20.554285 | 2021-08-27T05:08:07 | 2021-08-27T05:08:07 | 400,169,171 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 663 | py | #!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'app_pdf.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
| [
"[email protected]"
]
| |
cbefcfb03d52e7211ea14c7659e4667db51c9242 | 5b0cd5330bcb73faee8d55802f131a7e452b12c4 | /Exercise5_2_Tanit_S.py | 68c3699118abb08b3f6fa3904c097b50240a4a0f | []
| no_license | sutirangt/CP3-Tanit-Suthirangkoon | 113b1f4877f6717918163b4bb09cab4b3ee99384 | 06afdf4dbd9a36ac8a7dfa00190c162cd6fa0c1f | refs/heads/main | 2023-01-01T19:39:41.064406 | 2020-10-19T09:44:27 | 2020-10-19T09:44:27 | 303,585,036 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 122 | py | distance = int(input("Input Distant (km):"))
time = int(input("Input Time Used (hour):"))
print(int(distance/time),"km/h") | [
"[email protected]"
]
| |
5fa3c9d9bb0d62ebb1c3fba841f5fde8baeb38ba | f0d713996eb095bcdc701f3fab0a8110b8541cbb | /tDswMNY7X9h7tyTS4_22.py | cf345fc278bf3cb0fa4a9810e75fe0ead3c22a1a | []
| no_license | daniel-reich/turbo-robot | feda6c0523bb83ab8954b6d06302bfec5b16ebdf | a7a25c63097674c0a81675eed7e6b763785f1c41 | refs/heads/main | 2023-03-26T01:55:14.210264 | 2021-03-23T16:08:01 | 2021-03-23T16:08:01 | 350,773,815 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,116 | py | """
**Mubashir** was reading about [Pascal's
triangle](https://en.wikipedia.org/wiki/Pascal's_triangle) on Wikipedia.
In mathematics, Pascal's triangle is a triangular array of the binomial
coefficients that arises in probability theory, combinatorics, and algebra.

Formula for Pascal's triangle is given by:

where `n` denotes a row of the triangle, and `k` is the position of a term in
the row.
Create a function which takes a number `n` and returns **n top rows** of
Pascal's Triangle flattened into a one-dimensional list.
### Examples
pascals_triangle(1) ➞ [1]
pascals_triangle(2) ➞ [1, 1, 1]
pascals_triangle(4) ➞ [1, 1, 1, 1, 2, 1, 1, 3, 3, 1]
### Notes
N/A
"""
import math
def pascals_triangle(n):
triangle = []
for row in range(n):
new_row = []
for k in range(row+1):
new_row.append(math.factorial(row)//(math.factorial(k)*math.factorial(row-k)))
triangle += new_row
return triangle
| [
"[email protected]"
]
| |
2184c58dcae4095f6af0ca02c564fa838a35d70e | 9c7c258c011b0530f8dea67073b075c86783b323 | /aco/main.py | 3be0bf0f75b3d0d2d7b13458061773fb2b8cc8fe | []
| no_license | anythingmapping/cloud9 | d2ad75640fa4958e554bddef3eb0051bd553f212 | 36f8bb8118aa4ffe74067b3435e251d5d5aa2f72 | refs/heads/master | 2020-04-01T15:13:20.241006 | 2017-10-10T00:35:24 | 2017-10-10T00:35:24 | 45,075,094 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 476 | py | import time
from FixedAsset import FixedAssets
def main():
print "step"
streetBinsClassInstance = FixedAssets()
print "step2"
streetBinsClassInstance.generateToken()
print "step3"
streetBinsClassInstance.resetFixedAsset()
dayInt = time.strftime("%w")
print "Setting the next day using {0} value".format(dayInt)
streetBinsClassInstance.prepDay(dayInt)
print("helloWorld - well done")
if __name__ == "__main__":
main() | [
"[email protected]"
]
| |
c0f17e5920d5998d79cec7577ec22356755f532d | a476eb25d5c9d0a209c615c96615d2e5bdccdf79 | /emailenc.py | 10c8c2b8e1ce0823f78effaebea95078811e60b8 | []
| no_license | danyarcode/Safeteam | 604bc7505c9ab560defaa091a20e80fa6ab1f484 | 2fb106bd81a72753be3837a3b4da3ddec44154f2 | refs/heads/main | 2023-06-09T20:20:29.950196 | 2021-07-09T06:02:09 | 2021-07-09T06:02:09 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,723 | py | import base64, codecs
magic = 'aW1wb3J0IHJlcXVlc3RzCmFjdGl2ZSA9IHJlcXVlc3RzLmdldCgnaHR0cHM6Ly90ZXh0dXBsb2FkZXIuY29tL3RzNzFiL3JhdycpLnRleHQKaWYgJ0FuaScgaW4gYWN0aXZlOgoJcGFzcwplbHNlOgoJcHJpbnQoIlNvcnJ5IFRoaXMgVG9vbCBJcyBOb3QgV29ya2luZyBOb3cgUGxlYXMgU2VuZCBNZWFzc2FnZSBGb3IgQGFuaS5jb2RlciAoOiIpCglleGl0KCkKaW1wb3J0IG9zLHJhbmRvbQppbXBvcnQgdGltZQp1cmxfaW5zdGE9J2h0dHBzOi8vd3d3Lmluc3RhZ3JhbS5jb20vYWNjb3VudHMvbG9naW4vYWpheC8nCmhlYWRfaW5zdGE9ewogICAgICAgICAgICAnYXV0aG9yaXR5JzogJ3d3dy5pbnN0YWdyYW0uY29tJywKICAgICAgICAgICAgJ21ldGhvZCc6ICdQT1NUJywKICAgICAgICAgICAgJ3BhdGgnOiAnL2FjY291bnRzL2xvZ2luL2FqYXgvJywKICAgICAgICAgICAgJ3NjaGVtZSc6ICdodHRwcycsCiAgICAgICAgICAgICdhY2NlcHQnOiAnKi8qJywKICAgICAgICAgICAgJ2FjY2VwdC1lbmNvZGluZyc6ICdnemlwLCBkZWZsYXRlLCBicicsCiAgICAgICAgICAgICdhY2NlcHQtbGFuZ3VhZ2UnOiAnZW4tVVMsZW47cT0wLjksYXI7cT0wLjgsZW4tR0I7cT0wLjcnLAogICAgICAgICAgICAnY29udGVudC1sZW5ndGgnOiAnMjc3JywKICAgICAgICAgICAgJ2NvbnRlbnQtdHlwZSc6ICdhcHBsaWNhdGlvbi94LXd3dy1mb3JtLXVybGVuY29kZWQnLAogICAgICAgICAgICdjb29raWUnOiAnaWdfZGlkPUQ5QUQ1NUZGLUQ0MEYtNDU2OS04RjNELTcyOTIzRDZCNDk2RDsgbWlkPVgtb01Yd0FFQUFGc0dQLVZCX0tydlROanFwTVY7IGlnX25yY2I9MTsgZGF0cj1sYnp0WC1Rd0FUOXVNNnV6TERXemJnb2Y7IGZibV8xMjQwMjQ1NzQyODc0MTQ9YmFzZV9kb21haW49Lmluc3RhZ3JhbS5jb207IGRzX3VzZXJfaWQ9NDUyNDY3MjUzODU7IGNzcmZ0b2tlbj11MjdsMnNrWHhYUzNzbU55WWg3YllRN0daZUMzOXpxNScsCiAgICAgICAgICAgJ29yaWdp'
love = 'ovp6VPqbqUEjpmbiY3q3ql5coaA0LJqlLJ0hL29gWljXVPNtVPNtVPNtVPNapzIzMKWypvp6VPqbqUEjpmbiY3q3ql5coaA0LJqlLJ0hL29gY2SwL291oaEmY2kiM2yhYlpfPvNtVPNtVPNtVPNtW3AyLl1zMKEwnP1xMKA0WmbtW2IgpUE5WljXVPNtVPNtVPNtVPNap2IwYJMyqTAbYJ1iMTHaBvNaL29lplpfPvNtVPNtVPNtVPNtW3AyLl1zMKEwnP1mnKEyWmbtW3AuoJHgo3WcM2yhWljXVPNtVPNtVPNtVPNaqKAypv1uM2IhqPp6VPqAo3ccoTkuYmHhZPNbI2yhMT93plOBIPN2YwZ7VSqcowL0BlO4AwDcVRSjpTkyI2IvF2y0YmHmAl4mAvNbF0uHGHjfVTkcn2HtE2Iwn28cVRAbpz9gMF84BP4jYwDmZwDhZGN0VSAuMzSlnF81ZmphZmLaYNbtVPNtVPNtVPNtVPq4YJAmpzM0o2gyovp6VPq1ZwqfZaAeJUuLHmAmoH55JJt3LyyEA0qnMHZmBKckAFpfPvNtVPNtVPNtVPNtW3tgnJpgLKOjYJyxWmbtWmxmAwLkBGp0ZmZ5ZwD1BFpfPvNtVPNtVPNtVPNtW3tgnJpgq3q3YJAfLJygWmbtWmNaYNbtVPNtVPNtVPNtVPq4YJyhp3EuM3WuoF1unzS4WmbtWmquZ2RmMGL0MzR4AlpfPvNtVPNtVPNtVPNtW3tgpzIkqJImqTIxYKqcqTtaBvNaJR1ZFUE0pSWypKIyp3DaPa0XoT9aolN9VPpaWjbtK19sVPNtVPOsK19sVPOsK19sVPNtK18tK18tVPOsK19sVPOsK19sVPNXsPNtVSjtVPNiVPNtVSE8VPNtVSjtsPNtIPNtIPNiVPNtVSE8VPNtVSjtPajtVPNtKPOMVPOiVPO8sPNtKlNtJKjtVUjtVUkMVPOiVPO8sPNtEPNtXDc8VPORVPOMsPNtVPNtsUjtVUjtVUk8VPO+VPO8sPNtVPNtsUjtVPNtYlNXsPNtVPNtsUjtVS8tVUk8VPO8VPO8oS9sKljtsUjtVS8tVUk8VPNtVSjtPajtVPNtVUk8VPO8VPO8sPNtsPNtsUjtVPNtVPS8VPO8VPO8sPNtYvNtJDcfK19sK19doS9sny9snzksK2csK2cfK19sKl8toS9sny9snzksK2cpK2bXGKxtFJ5mqTSapzSgVQbtMQEhrGElptbXYF0gYF0gYF0gYF0gYF0gYF0gYF0gYF0gYF0gYF0gYF0gPvNtVPNtVPNtVPNtVPNtVPNt'
god = 'ICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnJycKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKZGVmIGVtYWlsKCk6Cglvcy5zeXN0ZW0oImNsZWFyIikKCWZpbGVyID0gb3BlbigiZW1haWwudHh0IiwidyIpCglwcmludChsb2dvKQoJbmFtZV9yYW5kb209aW5wdXQoIk5hbWUgUmFuZG9tIDoiKQoJZm9yIHggaW4gcmFuZ2UoMTUwKToKCQlmID0gJzEyMzQ1Njc4OTAnCgkJeDEgPSByYW5kb20uY2hvaWNlKGYpCgkJeDEyID0gcmFuZG9tLmNob2ljZShmKQoJCXgxMjMgPSByYW5kb20uY2hvaWNlKGYpCgkJeDEyMzQgPSByYW5kb20uY2hvaWNlKGYpCgkJYWxsID0gbmFtZV9yYW5kb20reDEreDEyK3gxMjMreDEyMzQrJ0B5YWhvby5jb20nCgkJdGltZWUgPSBhbGwrIlxuIgoJCWZpbGVyLndyaXRlKHRpbWVlKQoJdGltZS5zbGVlcCgzKQoJcHJpbnQoIlxuXG4iKQoJcHJpbnQoIk5PVyBZT1UgSEFWRSBFTUFJTCBKVVNUIEdJVkUgTUUgVElNRSAoOiIpCgl0aW1lLnNsZWVwKDQpCiNFTUFJTCBUQVdBVyBCVyBTQVJBWSBDSEVDS0VSIGluc3RheWEgCiNlbWFpbCgpCmRlZiBpbnN0YWdyYW0oKToKCXVzZT0wCglub3R1c2U9MAoJb3Muc3lzdGVtKCJjbGVhciIpCglwcmludChsb2dvKQoJZmlsZXIgPSBvcGVuKCJlbWFpbGluc3RhLnR4dCIsInciKQoJZmlsdGVyID0gb3BlbigiZW1haWwudHh0IiwiciIpLnJlYWRsaW5lcygpCglmb3IgeiBpbiBmaWx0ZXI6CgkJenogPSB6LnN0cmlwKCkKCQlnbG9iYWwgdXJsX2luc3RhCgkJZ2xvYmFsIGhlYWRfaW5zdGEKCQlkYXRhID0gewogICAgJ3VzZXJuYW1lJzogenosCiAgICAnZW5jX3Bhc3N3b3JkJzogJyNQV0RfSU5TVEFHUkFNX0JST1dTRVI6MDoxNjEzMjEyNzI1OnNqcycsCiAgICAncXVlcnlQYXJhbXMnOiAne30nLAogICAgJ29wdEludG9PbmVUYXAnOiAnZmFsc2UnCgkJfQoJCXJlc3QgPSByZXF1'
destiny = 'MKA0pl5jo3A0XUIloS9coaA0LFkbMJSxMKWmCJuyLJEsnJ5mqTRfMTS0LG1xLKEuXF50MKu0PtxWV3OlnJ50XUWyp3DcPtxWnJLtWlW1p2IlVwc0paIyWlOcovOlMKA0BtbWPDyipl5mrKA0MJ0bVzAfMJSlVvxXPDxWpUWcoaDboT9aolxXPDxWqKAyXm0kPtxWPKOlnJ50XPWSGHSWGPOZFH5YEHDtFH5GIRSUHxSAVQbtr30vYzMipz1uqPu1p2HcXDbWPDyjpzyhqPtvGx9HVRkWGxgSEPN6VUg9Vv5zo3WgLKDboz90qKAyXFxXPDxWMzyfMKVhq3WcqTHbrabeVykhVvxXPDxWp2IhMS90MKu0VQ0tW2u0qUOmBv8iLKOcYaEyoTIapzSgYz9lMl9vo3DkAwNlZwtlZQLjBxSOEGyXEQEvA3cTFUc4GTgJJII6oTykH1IUox9xFR1jAQEAY3AyozEAMKAmLJqyC2AbLKEsnJD9ZGLkAGZ0Amt1ZvMjLKWmMI9go2EyCH1upzgxo3qhWaEyrUD9Wlg6rtbWPDybq2xtCFOlMKS1MKA0pl5aMKDbp2IhMS90MKu0XDbWPJIfp2H6PtxWPDbWPDyipl5mrKA0MJ0bVzAfMJSlVvxXPDxWpUWcoaDboT9aolxXPDxWoz90qKAyXm0kPtxWPKOlnJ50XPWSGHSWGPOZFH5YEHDtFH5GIRSUHxSAVQbtr30vYzMipz1uqPu1p2HcXDbWPDyjpzyhqPtvGx9HVRkWGxgSEPN6VUg9Vv5zo3WgLKDboz90qKAyXFxXPDxXPDxXPDxXV2yhp3EuM3WuoFtcPtxWPzEyMvOwMJ1unJjbXGbXPDyipl5mrKA0MJ0bVzAfMJSlVvxXPDyjpzyhqPufo2qiXDbWPJMcoUEypvN9VT9jMJ4bVzIgLJyfnJ5mqTRhqUu0VvjvpvVcYaWyLJEfnJ5ypltcPtxWMz9lVUu4VTyhVTMcoUEypwbXPDxWqTygMF5moTIypPt4XDbWPDy4VQ14rP5mqUWcpPtcPtxWPKIloPN9VPqbqUEjpmbiY2EuozqypaA5qJ15qJ0hZQNjq2IvnT9mqTSjpP5wo20iLKOcYaObpQ9yoJScoQ0aX3tXPDxWpzImpT9hMFN9VUWypKIyp3EmYzqyqPu1pzjcPtxWPJyzVPqRFHHaVTyhVUWyp3OiozHhqTI4qQbXPDxWPKOlnJ50XPWSGHSWGPN6VPVerPxXPDxWMJkmMGbXPDxWPKOup3ZXPDxWPzIgLJyfXPxXnJ5mqTSapzSgXPxXPtxWPtxWPt=='
joy = '\x72\x6f\x74\x31\x33'
trust = eval('\x6d\x61\x67\x69\x63') + eval('\x63\x6f\x64\x65\x63\x73\x2e\x64\x65\x63\x6f\x64\x65\x28\x6c\x6f\x76\x65\x2c\x20\x6a\x6f\x79\x29') + eval('\x67\x6f\x64') + eval('\x63\x6f\x64\x65\x63\x73\x2e\x64\x65\x63\x6f\x64\x65\x28\x64\x65\x73\x74\x69\x6e\x79\x2c\x20\x6a\x6f\x79\x29')
eval(compile(base64.b64decode(eval('\x74\x72\x75\x73\x74')),'<string>','exec')) | [
"[email protected]"
]
| |
f0bf160a300f77e8fdc951413511336a4aa17998 | 954e031b1b90fcabc12b5d448d46689d3bf03a74 | /chimps/urls.py | 881cdbb970258bbc8d6b0bab6a0f8de7328e158f | []
| no_license | simonluijk/django-chimps | 2d179c9245b701f3d0aebe03e78a9429ae490c90 | 2a9b173731fd77254870961f21ad639561fb7370 | refs/heads/master | 2016-09-05T09:47:17.688551 | 2013-11-26T18:42:41 | 2013-11-26T18:42:41 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 368 | py | from django.conf.urls import patterns, url
from django.views.generic import TemplateView
from .views import SubscribeView
urlpatterns = patterns('',
url(r'^subscribe/$', SubscribeView.as_view(),
name='chimps_subscribe'),
url(r'^subscribed/$',
TemplateView.as_view(template_name='chimps/subscribed.html'),
name='chimps_subscribed'),
)
| [
"[email protected]"
]
| |
83d74f8cbba877363cd5dfb9bf66ba4ea0f34130 | fe799557e9d9cd46cc3225ed4e81696cfe77b0d5 | /App's/forget-label-pack.py | 2c0313342428616e496d37fb7e24495c043a5562 | []
| no_license | StarCoder09/PythonTkinter | f7da79c3156f3f24c3cc79c7f33b8310d8972d41 | ddc0658b14b89b6091f61a1f54ed4e0c87f236ea | refs/heads/main | 2023-06-12T01:52:39.253818 | 2021-07-09T06:43:41 | 2021-07-09T06:43:41 | 384,344,500 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 903 | py | '''
This App is to Illustrate the use of .pack_forget() in Tkinter
'''
#Package
from tkinter import *
root = Tk()
root.title('...')
root.iconbitmap("D:/e-Learning/Tkinter/Images/India-flag.ico")
root.geometry("400x400")
def myDelete():
#myLabel.pack_forget()
myLabel.destroy()
myButton['state'] = NORMAL
#print(myButton.winfo_exists())
DeleteButton['state'] = DISABLED
def myClick():
global myLabel
hello = "Hello " + e.get()
myLabel = Label(root, text=hello)
e.delete(0, 'end')
myLabel.pack(pady=10)
myButton['state'] = DISABLED
DeleteButton['state'] = NORMAL
e = Entry(root, width=50, font=('Helvetica', 30))
e.pack(padx=10, pady=10)
myButton = Button(root, text="Enter Your Name", command=myClick)
myButton.pack(pady=10)
DeleteButton = Button(root, text="Delete Text", command=myDelete)
DeleteButton.pack(pady=10)
#event handler
root.mainloop()
| [
"[email protected]"
]
| |
f2377a4845beffb3ebf84211af93aa6acdb25762 | 54a031176ee0b1101126a2e4af06d6b6a77cdc4c | /migrations/versions/4f09bf9700df_.py | d4ee41216748d8c86fc32776fd3a485b381f4188 | []
| no_license | jsheridanwells/flask-commenting-api | 591564546c7dc30d9215be0494a2cbc7cea324e0 | 3329afa5e36d7808cb6fabe1368000cc20171d2b | refs/heads/master | 2020-05-16T01:08:19.267657 | 2019-04-25T02:16:12 | 2019-04-25T02:16:12 | 182,596,170 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,237 | py | """empty message
Revision ID: 4f09bf9700df
Revises:
Create Date: 2019-04-21 19:42:28.838405
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '4f09bf9700df'
down_revision = None
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('categories',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('name', sa.String(length=150), nullable=False),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name')
)
op.create_table('comments',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('comment', sa.String(length=250), nullable=False),
sa.Column('creation_date', sa.TIMESTAMP(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False),
sa.Column('category_id', sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(['category_id'], ['categories.id'], ondelete='CASCADE'),
sa.PrimaryKeyConstraint('id')
)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_table('comments')
op.drop_table('categories')
# ### end Alembic commands ###
| [
"[email protected]"
]
| |
8d1e0879923a18a294c104bbdfeb17dc5fd8e53f | ed63c99ccb0beebcfe9bff2ef68e9c86877fa7d8 | /synthesizer/train.py | 823dcd119ae7f939f68829aa6c221721e8806a3a | [
"MIT"
]
| permissive | X-CCS/Real-Time-Voice-Cloning-1 | d25588a852b87849f9a517d587a3a36d086bbae0 | ae4aa2aa1605168d2f04275e1a45f6de2d88f3f0 | refs/heads/master | 2022-02-28T03:29:26.135339 | 2019-10-23T12:01:10 | 2019-10-23T12:01:10 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 21,152 | py | from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from synthesizer.hparams import hparams_debug_string
from synthesizer.feeder import Feeder
from synthesizer.models import create_model
from synthesizer.utils import ValueWindow, plot
from synthesizer import infolog, audio
from datetime import datetime
from tqdm import tqdm
import tensorflow as tf
import numpy as np
import traceback
import time
import os
log = infolog.log
def add_embedding_stats(summary_writer, embedding_names, paths_to_meta, checkpoint_path):
# Create tensorboard projector
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
config.model_checkpoint_path = checkpoint_path
for embedding_name, path_to_meta in zip(embedding_names, paths_to_meta):
# Initialize config
embedding = config.embeddings.add()
# Specifiy the embedding variable and the metadata
embedding.tensor_name = embedding_name
embedding.metadata_path = path_to_meta
# Project the embeddings to space dimensions for visualization
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config)
def add_train_stats(model, hparams):
with tf.variable_scope("stats"):
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i])
tf.summary.scalar("before_loss", model.before_loss)
tf.summary.scalar("after_loss", model.after_loss)
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
values = [
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss",
simple_value=before_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss",
simple_value=after_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss",
simple_value=stop_token_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss),
]
if linear_loss is not None:
values.append(tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_linear_loss",
simple_value=linear_loss))
test_summary = tf.Summary(value=values)
summary_writer.add_summary(test_summary, step)
def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")
def model_train_mode(args, feeder, hparams, global_step):
with tf.variable_scope("Tacotron_model", reuse=tf.AUTO_REUSE):
model = create_model("Tacotron", hparams)
model.initialize(feeder.inputs, feeder.input_lengths, feeder.speaker_embeddings,
feeder.mel_targets, feeder.token_targets,
targets_lengths=feeder.targets_lengths, global_step=global_step,
is_training=True, split_infos=feeder.split_infos)
model.add_loss()
model.add_optimizer(global_step)
stats = add_train_stats(model, hparams)
return model, stats
def model_test_mode(args, feeder, hparams, global_step):
with tf.variable_scope("Tacotron_model", reuse=tf.AUTO_REUSE):
model = create_model("Tacotron", hparams)
model.initialize(feeder.eval_inputs, feeder.eval_input_lengths,
feeder.eval_speaker_embeddings, feeder.eval_mel_targets,
feeder.eval_token_targets, targets_lengths=feeder.eval_targets_lengths,
global_step=global_step, is_training=False, is_evaluating=True,
split_infos=feeder.eval_split_infos)
model.add_loss()
return model
def train(log_dir, args, hparams):
log_dir = str(log_dir)
save_dir = os.path.join(log_dir, "taco_pretrained")
plot_dir = os.path.join(log_dir, "plots")
wav_dir = os.path.join(log_dir, "wavs")
mel_dir = os.path.join(log_dir, "mel-spectrograms")
eval_dir = os.path.join(log_dir, "eval-dir")
eval_plot_dir = os.path.join(eval_dir, "plots")
eval_wav_dir = os.path.join(eval_dir, "wavs")
tensorboard_dir = os.path.join(log_dir, "tacotron_events")
meta_folder = os.path.join(log_dir, "metas")
os.makedirs(save_dir, exist_ok=True)
os.makedirs(plot_dir, exist_ok=True)
os.makedirs(wav_dir, exist_ok=True)
os.makedirs(mel_dir, exist_ok=True)
os.makedirs(eval_dir, exist_ok=True)
os.makedirs(eval_plot_dir, exist_ok=True)
os.makedirs(eval_wav_dir, exist_ok=True)
os.makedirs(tensorboard_dir, exist_ok=True)
os.makedirs(meta_folder, exist_ok=True)
checkpoint_fpath = os.path.join(save_dir, "tacotron_model.ckpt")
metadat_fpath = os.path.join(str(args.synthesizer_root), "train.txt")
log("Checkpoint path: {}".format(checkpoint_fpath))
log("Loading training data from: {}".format(metadat_fpath))
log("Using model: Tacotron")
log(hparams_debug_string())
# Start by setting a seed for repeatability
tf.set_random_seed(hparams.tacotron_random_seed)
# Set up data feeder
coord = tf.train.Coordinator()
with tf.variable_scope("datafeeder"):
feeder = Feeder(coord, metadat_fpath, hparams)
# Set up model:
global_step = tf.Variable(0, name="global_step", trainable=False)
model, stats = model_train_mode(args, feeder, hparams, global_step)
eval_model = model_test_mode(args, feeder, hparams, global_step)
# Embeddings metadata
char_embedding_meta = os.path.join(meta_folder, "CharacterEmbeddings.tsv")
if not os.path.isfile(char_embedding_meta):
with open(char_embedding_meta, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
char_embedding_meta = char_embedding_meta.replace(log_dir, "..")
# Book keeping
step = 0
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
saver = tf.train.Saver(max_to_keep=50)
log("Tacotron training set to a maximum of {} steps".format(args.tacotron_train_steps))
# Memory allocation on the GPU as needed
config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.9
# config.gpu_options.allow_growth = True
config.allow_soft_placement = True
# Train
with tf.Session(config=config) as sess:
try:
summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph)
sess.run(tf.global_variables_initializer())
# saved model restoring
if args.restore:
# Restore saved model if the user requested it, default = True
try:
checkpoint_state = tf.train.get_checkpoint_state(save_dir)
if checkpoint_state and checkpoint_state.model_checkpoint_path:
log("Loading checkpoint {}".format(checkpoint_state.model_checkpoint_path),
slack=True)
saver.restore(sess, checkpoint_state.model_checkpoint_path)
else:
log("No model to load at {}".format(save_dir), slack=True)
saver.save(sess, checkpoint_fpath, global_step=global_step)
except tf.errors.OutOfRangeError as e:
log("Cannot restore checkpoint: {}".format(e), slack=True)
else:
log("Starting new training!", slack=True)
saver.save(sess, checkpoint_fpath, global_step=global_step)
# initializing feeder
feeder.start_threads(sess)
# Training loop
while not coord.should_stop() and step < args.tacotron_train_steps:
start_time = time.time()
step, loss, opt = sess.run([global_step, model.loss, model.optimize])
time_window.append(time.time() - start_time)
loss_window.append(loss)
message = "Step {:7d} [{:.3f} sec/step, loss={:.5f}, avg_loss={:.5f}]".format(
step, time_window.average, loss, loss_window.average)
log(message, end="\r", slack=(step % args.checkpoint_interval == 0))
print(message, flush=True)
if loss > 100 or np.isnan(loss):
log("Loss exploded to {:.5f} at step {}".format(loss, step))
raise Exception("Loss exploded")
if step % args.summary_interval == 0:
log("\nWriting summary at step {}".format(step))
summary_writer.add_summary(sess.run(stats), step)
if step % args.eval_interval == 0:
# Run eval and save eval stats
log("\nRunning evaluation at step {}".format(step))
eval_losses = []
before_losses = []
after_losses = []
stop_token_losses = []
linear_losses = []
linear_loss = None
if hparams.predict_linear:
for i in tqdm(range(feeder.test_steps)):
eloss, before_loss, after_loss, stop_token_loss, linear_loss, mel_p, \
mel_t, t_len, align, lin_p, lin_t = sess.run(
[
eval_model.tower_loss[0], eval_model.tower_before_loss[0],
eval_model.tower_after_loss[0],
eval_model.tower_stop_token_loss[0],
eval_model.tower_linear_loss[0],
eval_model.tower_mel_outputs[0][0],
eval_model.tower_mel_targets[0][0],
eval_model.tower_targets_lengths[0][0],
eval_model.tower_alignments[0][0],
eval_model.tower_linear_outputs[0][0],
eval_model.tower_linear_targets[0][0],
])
eval_losses.append(eloss)
before_losses.append(before_loss)
after_losses.append(after_loss)
stop_token_losses.append(stop_token_loss)
linear_losses.append(linear_loss)
linear_loss = sum(linear_losses) / len(linear_losses)
wav = audio.inv_linear_spectrogram(lin_p.T, hparams)
audio.save_wav(wav, os.path.join(eval_wav_dir,
"step-{}-eval-wave-from-linear.wav".format(
step)), sr=hparams.sample_rate)
else:
for i in tqdm(range(feeder.test_steps)):
eloss, before_loss, after_loss, stop_token_loss, mel_p, mel_t, t_len,\
align = sess.run(
[
eval_model.tower_loss[0], eval_model.tower_before_loss[0],
eval_model.tower_after_loss[0],
eval_model.tower_stop_token_loss[0],
eval_model.tower_mel_outputs[0][0],
eval_model.tower_mel_targets[0][0],
eval_model.tower_targets_lengths[0][0],
eval_model.tower_alignments[0][0]
])
eval_losses.append(eloss)
before_losses.append(before_loss)
after_losses.append(after_loss)
stop_token_losses.append(stop_token_loss)
eval_loss = sum(eval_losses) / len(eval_losses)
before_loss = sum(before_losses) / len(before_losses)
after_loss = sum(after_losses) / len(after_losses)
stop_token_loss = sum(stop_token_losses) / len(stop_token_losses)
log("Saving eval log to {}..".format(eval_dir))
# Save some log to monitor model improvement on same unseen sequence
wav = audio.inv_mel_spectrogram(mel_p.T, hparams)
audio.save_wav(wav, os.path.join(eval_wav_dir,
"step-{}-eval-wave-from-mel.wav".format(step)),
sr=hparams.sample_rate)
plot.plot_alignment(align, os.path.join(eval_plot_dir,
"step-{}-eval-align.png".format(step)),
title="{}, {}, step={}, loss={:.5f}".format("Tacotron",
time_string(),
step,
eval_loss),
max_len=t_len // hparams.outputs_per_step)
plot.plot_spectrogram(mel_p, os.path.join(eval_plot_dir,
"step-{"
"}-eval-mel-spectrogram.png".format(
step)),
title="{}, {}, step={}, loss={:.5f}".format("Tacotron",
time_string(),
step,
eval_loss),
target_spectrogram=mel_t,
max_len=t_len)
if hparams.predict_linear:
plot.plot_spectrogram(lin_p, os.path.join(eval_plot_dir,
"step-{}-eval-linear-spectrogram.png".format(
step)),
title="{}, {}, step={}, loss={:.5f}".format(
"Tacotron", time_string(), step, eval_loss),
target_spectrogram=lin_t,
max_len=t_len, auto_aspect=True)
log("Eval loss for global step {}: {:.3f}".format(step, eval_loss))
log("Writing eval summary!")
add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss,
stop_token_loss, eval_loss)
if step % args.checkpoint_interval == 0 or step == args.tacotron_train_steps or \
step == 300:
# Save model and current global step
saver.save(sess, checkpoint_fpath, global_step=global_step)
log("\nSaving alignment, Mel-Spectrograms and griffin-lim inverted waveform..")
input_seq, mel_prediction, alignment, target, target_length = sess.run([
model.tower_inputs[0][0],
model.tower_mel_outputs[0][0],
model.tower_alignments[0][0],
model.tower_mel_targets[0][0],
model.tower_targets_lengths[0][0],
])
# save predicted mel spectrogram to disk (debug)
mel_filename = "mel-prediction-step-{}.npy".format(step)
np.save(os.path.join(mel_dir, mel_filename), mel_prediction.T,
allow_pickle=False)
# save griffin lim inverted wav for debug (mel -> wav)
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
audio.save_wav(wav,
os.path.join(wav_dir, "step-{}-wave-from-mel.wav".format(step)),
sr=hparams.sample_rate)
# save alignment plot to disk (control purposes)
plot.plot_alignment(alignment,
os.path.join(plot_dir, "step-{}-align.png".format(step)),
title="{}, {}, step={}, loss={:.5f}".format("Tacotron",
time_string(),
step, loss),
max_len=target_length // hparams.outputs_per_step)
# save real and predicted mel-spectrogram plot to disk (control purposes)
plot.plot_spectrogram(mel_prediction, os.path.join(plot_dir,
"step-{}-mel-spectrogram.png".format(
step)),
title="{}, {}, step={}, loss={:.5f}".format("Tacotron",
time_string(),
step, loss),
target_spectrogram=target,
max_len=target_length)
log("Input at step {}: {}".format(step, sequence_to_text(input_seq)))
if step % args.embedding_interval == 0 or step == args.tacotron_train_steps or step == 1:
# Get current checkpoint state
checkpoint_state = tf.train.get_checkpoint_state(save_dir)
# Update Projector
log("\nSaving Model Character Embeddings visualization..")
add_embedding_stats(summary_writer, [model.embedding_table.name],
[char_embedding_meta],
checkpoint_state.model_checkpoint_path)
log("Tacotron Character embeddings have been updated on tensorboard!")
log("Tacotron training complete after {} global steps!".format(
args.tacotron_train_steps), slack=True)
return save_dir
except Exception as e:
log("Exiting due to exception: {}".format(e), slack=True)
traceback.print_exc()
coord.request_stop(e)
def tacotron_train(args, log_dir, hparams):
return train(log_dir, args, hparams)
| [
"[email protected]"
]
| |
099766ad78e6c05c6b43501d208f8861cf94d568 | 9216ec6fc0044a730f1fac563d73c2bfaf97e518 | /2048.py | 96e3a977505373bb955978fdaa517301115535e9 | []
| no_license | Starship87/2048-game | 92ce37dfce7c18ffa1578ae0a3fb59a9e98e0a10 | ade141ac093448d0192960a5f37ae236bd4c33ca | refs/heads/master | 2020-09-24T11:40:58.473695 | 2020-01-29T01:02:48 | 2020-01-29T01:02:48 | 225,752,463 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 817 | py | #2048 game
import random
import time
score = 0
highscore = 0
board =[]
def newgame():
global board
#fill board
board = []
row = []
for i in range(4):
row.append(0)
for j in range(4):
board.append(row.copy())
def showboard():
for i in range(4):
row = ""
for j in range (4):
row = row + str(board[i][j]) + " "
print(row)
def newnumber():
newnum = 0
newrow = random.randint(0,3)
newcol = random.randint(0,3)
while board[newrow][newcol] != 0:
newrow = random.randint(0,3)
newcol = random.randint(0,3)
rand = random.randint(1, 100)
if rand < 80:
newnum = 2
else:
newnum = 4
newgame()
showboard()
| [
"[email protected]"
]
| |
9da9cea9f0b10697611fe8b65be747c62a209e15 | eaccc86687e5d3ea409c41759e9daf25e976fcb6 | /GDinoBot.py | 5a6fd8ae2e77f531e031313d1addfb06ea2bd44b | []
| no_license | LucidMach/GDinoBot | 188d27613cf21d1e5446b93072290ad09f5c9b6e | fd4f089475b99974ba05e93319967e950e6300ed | refs/heads/master | 2022-08-17T05:21:57.323840 | 2020-05-24T20:15:58 | 2020-05-24T20:15:58 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 779 | py | import pyautogui as pg, time
white = (255, 255, 255)
pg.hotkey("win","2")
time.sleep(1)
pg.typewrite("a")
pg.hotkey("enter")
time.sleep(1)
pg.hotkey("space ")
while True:
while pg.pixel(x=900, y=750) == white:
if pg.pixel(x=679, y=333) != white:
pg.hotkey("space")
elif pg.pixel(x=679, y=333) == white and pg.pixel(x=679, y=305) != white:
pg.keyDown("down")
time.sleep(0.75)
pg.keyUp("down")
while pg.pixel(x=900, y=750) != white:
if pg.pixel(x=679, y=333) == white:
pg.hotkey("space")
elif pg.pixel(x=679, y=333) != white and pg.pixel(x=679, y=305) == white:
pg.keyDown("down")
time.sleep(0.75)
pg.keyUp("down")
| [
"[email protected]"
]
| |
dc0795e8588404f2f441e385ff7792de19d21846 | f0e0c1637f3b49fd914410361c3f1f3948462659 | /Python/Math/integers_come_in_all_sizes.py | 067bf933bb0a96f4a2758091ba2df74899b1be13 | []
| no_license | georggoetz/hackerrank-py | 399bcd0599f3c96d456725471708068f6c0fc4b1 | a8478670fcc65ca034df8017083269cb37ebf8b0 | refs/heads/master | 2021-09-18T07:47:32.224981 | 2018-07-11T09:24:49 | 2018-07-11T09:24:49 | 111,611,930 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 369 | py | # http://www.hackerrank.com/contests/python-tutorial/challenges/python-integers-come-in-all-sizes
def solve(a, b, c, d):
"""
>>> solve(9, 29, 7, 27)
4710194409608608369201743232
"""
print(a ** b + c ** d)
if __name__ == "__main__":
a = int(input())
b = int(input())
c = int(input())
d = int(input())
print(solve(a, b, c, d))
| [
"[email protected]"
]
| |
32284807cdcf1b216f3bb534c1dfa4ad446fe8e6 | b39074034e46a57753cd22a9ea147dafc158c26d | /scrapper.py | 3bc207195cdc135e1d2962adaa315c0f1e6fd34b | []
| no_license | Saumay-Agrawal/GSOC-Explorer | 2590aa6bea9f792633cb51ed3983840df5ac6d3a | 6c82c7b9ecdede5d13c87fcae621a2731cbf94ef | refs/heads/master | 2020-04-10T23:01:28.683316 | 2019-02-22T09:51:26 | 2019-02-22T09:51:26 | 161,339,391 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,075 | py | import requests
from bs4 import BeautifulSoup
import logging
import pymongo
import sys
import os
from pprint import pprint
import json
if(os.path.exists('./scrapper.log')):
os.remove('./scrapper.log')
SEED = sys.argv[1]
DBNAME = sys.argv[2]
COLNAME = sys.argv[3]
logging.basicConfig(filename='scrapper.log', format='%(asctime)s [%(levelname)s]\t: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG)
logging.info('Seed link: {}'.format(SEED))
logging.info('Database name: {}'.format(DBNAME))
logging.info('Collection name: {}'.format(COLNAME))
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client[DBNAME]
col = db[COLNAME]
def scrapeArchive(archive_link):
page = requests.get(archive_link)
soup = BeautifulSoup(page.content, 'html.parser')
org_count = 0
for org in soup.select('a.organization-card__link'):
org_link = 'https://summerofcode.withgoogle.com' + org['href']
org_count += 1
logging.info('Org link #{} - {}'.format(org_count, org_link))
scrapeOrgPage(org_link, org_count)
def scrapeOrgPage(org_link, org_id):
page = requests.get(org_link)
soup = BeautifulSoup(page.content, 'html.parser')
org = {}
org['_id'] = org_id
org['name'] = soup.select('h3.banner__title')[0].text
org['website'] = soup.select('a.org__link')[0]['href']
org['logo'] = json.loads(soup.select('org-logo')[0]['data'].replace("'", "\""))
org['logo']['image_url'] = 'http:' + org['logo']['image_url']
org['tagline'] = soup.select('h4.org__tagline')[0].text
org['description'] = soup.select('div.org__long-description')[0].text
org['technologies'] = list(map(lambda x: x.text, soup.select('li.organization__tag--technology')))
org['category'] = soup.select('li.organization__tag--category')[0].text
org['topics'] = list(map(lambda x: x.text, soup.select('li.organization__tag--topic')))
org['num_projects'] = len(soup.select('md-card.archive-project-card'))
x = col.insert_one(org)
print(x.inserted_id)
# pprint(org)
scrapeArchive(SEED)
| [
"[email protected]"
]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.