blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0d8a1a782977b0022bfff3a86ef92db06ee046fe
|
aec98d8112c24b54f8d7758580414fcc70746662
|
/src/ros_adc.py
|
5162bec61d06097218b64a8a90a5e6dfcce64fe8
|
[] |
no_license
|
kpykc/robovero_ros
|
f0131f4f5c98659cdaf8e69e4f04aee1d6fce877
|
81fd7bf9385ccbebdf6b700b3e596feeb4b1c13f
|
refs/heads/master
| 2021-01-13T02:14:31.074722 | 2013-12-01T02:44:07 | 2013-12-01T02:44:07 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,240 |
py
|
#!/usr/bin/env python
"""Acquire and display ADC readings using the Arduino API.
"""
import roslib
roslib.load_manifest('robovero_ros')
import rospy
import sys,struct,time,os
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '../lib/robovero'))
#sys.path.append('/home/kp/rosws/catkin/src/robovero_ros/lib/robovero')
# Give ourselves the ability to run a dynamic reconfigure server.
from dynamic_reconfigure.server import Server as DynamicReconfigureServer
# Import custom message data and dynamic reconfigure variables.
from robovero_ros.msg import adc
from robovero_ros.cfg import ADCRateConfig as ConfigType
from robovero.extras import roboveroConfig
from robovero.arduino import analogRead, pinMode, AD0_0, AD0_1, AD0_2, AD0_3, AD0_5, AD0_6, AD0_7
from time import sleep
__author__ = "Neil MacMunn"
__email__ = "[email protected]"
__copyright__ = "Copyright 2010, Gumstix Inc"
__license__ = "BSD 2-Clause"
__version__ = "0.1"
roboveroConfig()
class robovero_adc:
"""
adc
"""
def __init__(self):
print "robovero adc init"
rate = float(rospy.get_param('~rate', '10'))
rospy.loginfo('rate = %d', rate)
self.data = adc()
self.server = DynamicReconfigureServer(ConfigType, self.reconfigure_cb)
self.pub = rospy.Publisher("/robovero/adc", adc)
def spin(self):
while not rospy.is_shutdown():
self.time = rospy.Time.now()
self.data.header.frame_id = "/imu_frame"
self.data.header.seq = 1
self.data.header.stamp = self.time
self.data.AD0_0 = analogRead(AD0_0)
self.data.AD0_1 = analogRead(AD0_1)
self.data.AD0_2 = analogRead(AD0_2)
self.data.AD0_3 = analogRead(AD0_3)
self.data.AD0_4 = analogRead(AD0_5)
self.data.AD0_5 = analogRead(AD0_6)
self.data.AD0_6 = analogRead(AD0_7)
self.pub.publish(self.data)
if self.rate:
rospy.sleep(1/self.rate)
else:
rospy.sleep(0.1)
def reconfigure_cb(self, config, level):
self.rate = config["rate"]
return config
if __name__ == '__main__':
rospy.init_node('robovero_adc0')
robovero_adc0 = robovero_adc()
try:
robovero_adc0.spin()
except rospy.ROSInterruptException: pass
except IOError: pass
except KeyError: pass
|
[
"[email protected]"
] | |
5e5357fef252f520de3542b9abd782bda72e28fb
|
2c114ffbbc20163a2d1bd0b0ddf3490a7a640d24
|
/venv/Scripts/easy_install-3.7-script.py
|
f43a8ed6789f6a81bb2d73d27d7d6e98356b638f
|
[
"MIT"
] |
permissive
|
dadances/Baidu_api_OCR
|
f5ec856db0703fc0a3545076eb1dcbdaf16c7843
|
df5149284e63522478f71247e74a2418100bdff7
|
refs/heads/master
| 2021-03-22T17:36:57.143987 | 2020-03-15T12:09:32 | 2020-03-15T12:09:32 | 247,387,914 | 5 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 452 |
py
|
#!C:\Users\Liang\Desktop\Baidu_OCR\venv\Scripts\python.exe
# EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7'
__requires__ = 'setuptools==40.8.0'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')()
)
|
[
"[email protected]"
] | |
d2669e23bfc199cd2b0f481099012e03524dc9b0
|
48c9fcc9d7856f92f9cda06aae0c5dcf350e48ea
|
/matchbook/endpoints/marketdata.py
|
670579a7d6b05033308759dfb454fc6635fd1266
|
[
"MIT"
] |
permissive
|
rozzac90/matchbook
|
1753d29918eadf5f26ba61611f27c3569ad6850e
|
d29f4704a0f69fa623422243d0b8372c8c172a2d
|
refs/heads/master
| 2021-12-25T18:25:05.002996 | 2018-11-24T17:34:35 | 2018-11-24T17:34:35 | 96,877,596 | 14 | 12 |
MIT
| 2021-12-15T18:07:03 | 2017-07-11T09:45:34 |
Python
|
UTF-8
|
Python
| false | false | 10,544 |
py
|
import datetime
from matchbook import resources
from matchbook.endpoints.baseendpoint import BaseEndpoint
from matchbook.enums import Boolean, Side, MarketNames, MarketType, MarketStates
from matchbook.utils import clean_locals
class MarketData(BaseEndpoint):
def get_events(self, event_id=None, before=None, after=None, sport_ids=None, category_ids=None,
states=MarketStates.All, tag_url_names=None, per_page=500, offset=0,
include_event_participants=Boolean.T, price_depth=3, side=Side.All,
minimum_liquidity=None, session=None):
"""
Get paginated events. Results can be filtered using various different parameters.
:param event_id: specific event id. Default None.
:type event_id: int
:param after: event start time lower cutoff. Default None.
:type after: UNIX timestamp
:param before: event start time upper cutoff. Default None.
:type before: UNIX timestamp
:param category_ids: filter results by category id. Default None.
:type category_ids: comma separated string
:param sport_ids: filter results by sports id(s). Default None.
:type sport_ids: comma separated string
:param states: filter results by event state or comma separated string of types. Default None.
:type states: matchbook.enums.MarketStates
:param tag_url_names:Only events with tags having url-name in the provided list are included in the response.
:type tag_url_names: comma separated string
:param per_page: number of results to show in a single result. Max=500. Default 20.
:type per_page: int
:param offset: starting page of results to show. Default 0.
:type offset: int
:param include_event_participants: A boolean indicating whether to return the event participants information
:type include_event_participants: matchbook.enums.Boolean
:param price_depth: max depth to be returned for prices. Default 3.
:type price_depth: int
:param side: filter results by side (dependent on exchange-type). Default None.
:type side: matchbook.enums.Side
:param minimum_liquidity: Only prices with available-amount greater than or equal to this value are included.
:type minimum_liquidity: float
:param session: requests session to be used.
:type session: requests.Session
:returns: Breakdown to each runner if they are included.
:rtype: json
:raises: matchbook.exceptions.ApiError
"""
params = clean_locals(locals())
date_time_sent = datetime.datetime.utcnow()
method = 'events'
params['odds-type'] = self.client.odds_type
params['exchange-type'] = self.client.exchange_type
params['currency'] = self.client.currency
if event_id:
method = 'events/%s' % event_id
del_keys = ['event-id', 'after', 'before', 'category-ids', 'sport-ids',
'states', 'per-page', 'offset', 'tag-url-names']
params = {k: v for k, v in params.items() if k not in del_keys}
response = self.request("GET", self.client.urn_edge, method, params=params, session=session)
response = response.json().get('event', response.json())
else:
response = self.request(
"GET", self.client.urn_edge, method, params=params, target='events', session=session
)
return self.process_response(response, resources.Event, date_time_sent, datetime.datetime.utcnow())
def get_markets(self, event_id, market_id=None, names=MarketNames.All, types=MarketType.All, offset=0, per_page=500,
states=MarketStates.All, price_depth=3, side=Side.Default, minimum_liquidity=None, session=None):
"""
Get paginated markets for an event specified by the event_id.
:param event_id: specific event id.
:type event_id: int
:param market_id: specific market id to pull data for.
:type market_id: int
:param states: filter results by market state or a comma separated string of states. Default 'open', 'suspended'
:type states: matchbook.enums.MarketStates
:param types: filter results by market type or a comma separated string of types. Default None.
:type types: matchbook.enums.MarketType
:param names: filter results by market name. Default None.
:type names: matchbook.enums.MarketNames
:param per_page: number of results to show in a single result. Max=500. Default 20.
:type per_page: int
:param offset: starting page of results to show. Default 0.
:type offset: int
:param price_depth: max depth to be returned for prices. Default 3.
:type price_depth: int
:param side: filter results by side (dependent on exchange-type). Default None.
:type side: matchbook.enums.Side
:param minimum_liquidity: Only prices with available-amount greater than or equal to this value are included.
:type minimum_liquidity: float
:param session: requests session to be used.
:type session: requests.Session
:returns: Breakdown of each runner if they are included.
:rtype: json
:raises: matchbook.exceptions.ApiError
"""
params = clean_locals(locals())
date_time_sent = datetime.datetime.utcnow()
params['odds-type'] = self.client.odds_type
params['exchange-type'] = self.client.exchange_type
params['currency'] = self.client.currency
method = 'events/%s/markets' % event_id
if market_id:
method = 'events/%s/markets/%s' % (event_id, market_id)
del_keys = ['names', 'types', 'per-page', 'offset', 'states']
params = {k: v for k, v in params.items() if k not in del_keys}
response = self.request('GET', self.client.urn_edge, method, params=params, session=session)
response = response.json().get('market', response.json())
else:
response = self.request(
"GET", self.client.urn_edge, method, params=params, target='markets', session=session
)
return self.process_response(response, resources.Market, date_time_sent, datetime.datetime.utcnow())
def get_runners(self, event_id, market_id, runner_id=None, states=MarketStates.All, include_withdrawn=Boolean.T,
include_prices=Boolean.T, price_depth=3, side=Side.All, minimum_liquidity=None, session=None):
"""
Get runner data for an event and market specified by their ids.
:param event_id: specific event id.
:type event_id: int
:param market_id: specific market id to pull data for.
:type market_id: int
:param runner_id: specific runner to pull data for.
:type runner_id: int
:param states: filter results by runner state or a comma separated string of states. Default 'open', 'suspended'
:param include_withdrawn: boolean for returning or not the withdrawn runners in the response.
:type include_withdrawn: matchbook.enums.Boolean
:param include_prices: boolean indicating whether to return the prices for the runners.
:type include_prices: matchbook.enums.Boolean
:type states: matchbook.enums.MarketStates
:param price_depth: max depth to be returned for prices. Default 3.
:type price_depth: int
:param side: filter results by side (dependent on exchange-type). Default None.
:type side: matchbook.enums.Side
:param minimum_liquidity: Only prices with available-amount greater than or equal to this value are included.
:type minimum_liquidity: float
:param session: requests session to be used.
:type session: requests.Session
:returns: Breakdown of each runner if they are included.
:rtype: json
:raises: matchbook.exceptions.ApiError
"""
params = clean_locals(locals())
date_time_sent = datetime.datetime.utcnow()
params['odds-type'] = self.client.odds_type
params['exchange-type'] = self.client.exchange_type
params['currency'] = self.client.currency
method = 'events/%s/markets/%s/runners' % (event_id, market_id)
if runner_id:
method = 'events/%s/markets/%s/runners/%s' % (event_id, market_id, runner_id)
del_keys = ['include-withdraw', 'states']
params = {k: v for k, v in params.items() if k not in del_keys}
response = self.request('GET', self.client.urn_edge, method, params=params, session=session)
response = response.json().get('runner', response.json())
else:
response = self.request(
'GET', self.client.urn_edge, method, params=params, target='runners', session=session
).json()
return self.process_response(response, resources.Runner, date_time_sent, datetime.datetime.utcnow())
def get_popular_markets(self, price_depth=3, side=Side.All, minimum_liquidity=None,
old_format=Boolean.F, session=None):
"""
Get popular markets as defined by matchbook.
:param price_depth: max depth to be returned for prices. Default 3.
:type price_depth: int
:param side: filter results by side (dependent on exchange-type). Default None.
:type side: matchbook.enums.Side
:param minimum_liquidity: Only prices with available-amount greater than or equal to this value are included.
:type minimum_liquidity: float
:param old_format:
:type old_format:
:param session: requests session to be used.
:type session: requests.Session
:returns: Breakdown of each runner if they are included.
:rtype: json
:raises: matchbook.exceptions.ApiError
"""
params = clean_locals(locals())
date_time_sent = datetime.datetime.utcnow()
params['odds-type'] = self.client.odds_type
params['exchange-type'] = self.client.exchange_type
params['currency'] = self.client.currency
response = self.request('GET', self.client.urn_edge, 'popular-markets', params=params, session=session)
return self.process_response(
response.json().get('markets', response.json()), resources.Market,
date_time_sent, datetime.datetime.utcnow()
)
|
[
"[email protected]"
] | |
9197c523ea42693d744f433b5eff9c963bb6e0f8
|
69af51175c05350d4f8e1d3986c267232817efe2
|
/scripts/figure_4.py
|
c119bc0d99cbcedbebaaa0314f62c754faf56abb
|
[] |
no_license
|
cudbg/rain-scripts
|
8d0c50f03f7968d6ae4688c7d9821a0e3ac648cc
|
e2ac306031c7453fac6afa6d79a4455f11308afd
|
refs/heads/master
| 2020-08-22T21:43:00.150611 | 2019-10-23T18:48:13 | 2019-10-23T18:48:13 | 216,482,381 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 698 |
py
|
from util import *
def f(_, items):
d = dict(items[0])
f1s = list(map(float, pluckone(items, "F1")))
d['y'] = np.mean(f1s)
d['ymax'] = d['y'] + np.std(f1s)
d['ymin'] = d['y'] - np.std(f1s)
return d
data = load_csv("../data/figure_4.csv")
data = split_and_run(data, ["proc", "Corruption"], f)
p = ggplot(data, aes(x="Corruption", y="y", ymax='ymax', ymin='ymin'))
p += geom_line()
p += geom_linerange()
p = p + geom_point(color=esc("white"), size=2.5)
p = p + geom_point(size=1.5)
p += axis_labels("Corruption Rate", "F1 on Training Set",
ykwargs=dict(breaks=[0.25, 0.5, 0.75, 1]))
p += legend_none
ggsave("../assets/F1-DBLP-positive-3.png", p, width=4, height=2.5, scale=0.8)
|
[
"[email protected]"
] | |
882ecd305b42a60c92502be43bfd2f9327957b9c
|
443178cedeba3ab80c8d20db7a5b8e6938928e29
|
/serverless/apps/tests/qctokyo/test_notificator.py
|
fc301ec7b634dfbfdbce7c5443a3b29b4c00110c
|
[
"Apache-2.0"
] |
permissive
|
silky/qctokyo
|
ba49aff4dc611d7245fa6bcdb5143a4b1b474553
|
ae81f50b6ddc70f2aa78300c98e4d0d1d33f2f39
|
refs/heads/master
| 2022-10-27T08:11:55.460674 | 2020-06-15T16:09:52 | 2020-06-15T16:09:52 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 7,082 |
py
|
import json
from logging import INFO, ERROR
import os
import requests
import requests_mock
from qctokyo import notificator
def setup_module(module):
os.environ["STAGE"] = "dev"
os.environ["SLACK_WEBHOOK_URL"] = "hooks.slack.com/services/dummy"
def teardown_module(module):
del os.environ["STAGE"]
del os.environ["SLACK_WEBHOOK_URL"]
def test_notify_horoscope_success_to_slack(caplog):
event = {
"job_id": "dummy_job_id",
"backend_name": "dummy_backend_name",
"creation_date": "2019-07-01T00:01:02.123456Z",
}
context = None
with requests_mock.Mocker() as m:
m.post("https://hooks.slack.com/services/dummy")
# execution
actual = notificator.notify_horoscope_success_to_slack(event, context)
# validate return value
assert actual == event
assert m.call_count == 1
attachments = json.loads(m.request_history[0].text)["attachments"]
assert len(attachments) == 1
attachment0 = attachments[0]
assert attachment0["color"] == "good"
assert attachment0["pretext"] == "[dev] storing horoscope is success:smile:"
assert (
attachment0["text"]
== "job_id: dummy_job_id\nbackend_name: dummy_backend_name\ncreation_date: 2019-07-01T00:01:02.123456Z UTC"
)
# validate logger
assert caplog.record_tuples[1] == (
"root",
INFO,
"slack_webhook_response status_code=200",
)
def test_notify_horoscope_failed_to_slack(caplog):
event = {
"job_id": "dummy_job_id",
"backend_name": "dummy_backend_name",
"creation_date": "2019-07-01T00:01:02.123456Z",
"detail": {"status": "FAILED"},
}
context = None
with requests_mock.Mocker() as m:
m.post("https://hooks.slack.com/services/dummy")
# execution
actual = notificator.notify_horoscope_failed_to_slack(event, context)
# validate return value
assert actual == event
assert m.call_count == 1
attachments = json.loads(m.request_history[0].text)["attachments"]
assert len(attachments) == 1
attachment0 = attachments[0]
assert attachment0["color"] == "danger"
assert attachment0["pretext"] == "[dev] storing horoscope is failure:rage:"
assert attachment0["text"] == "Check detail!\nstatus: FAILED"
# validate logger
assert caplog.record_tuples[1] == (
"root",
INFO,
"slack_webhook_response status_code=200",
)
def test_notify_horoscope_update_to_slack(caplog):
event = {
"rank1": "<td>Aquarius</td><td>Jan 20 - Feb 18</td>",
"rank2": "<td>Pisces</td><td>Feb 19 - Mar 20</td>",
"rank3": "<td>Aries</td><td>Mar 21 - Apr 19</td>",
"rank4": "<td>Taurus</td><td>Apr 20 - May 20</td>",
"rank5": "<td>Gemini</td><td>May 21 - Jun 20</td>",
"rank6": "<td>Cancer</td><td>Jun 21 - Jul 22</td>",
"rank7": "<td>Leo</td><td>Jul 23 - Aug 22</td>",
"rank8": "<td>Virgo</td><td>Aug 23 - Sep 22</td>",
"rank9": "<td>Libra</td><td>Sep 23 - Oct 22</td>",
"rank10": "<td>Scorpio</td><td>Oct 23 - Nov 21</td>",
"rank11": "<td>Sagittarius</td><td>Nov 22 - Dec 21</td>",
"rank12": "<td>Capricorn</td><td>Dec 22 -Jan 19</td>",
"backend_name": "dummy_backend_name",
"creation_date": "2019-07-01 00:01",
}
context = None
with requests_mock.Mocker() as m:
m.post("https://hooks.slack.com/services/dummy")
# execution
actual = notificator.notify_horoscope_update_to_slack(event, context)
# validate return value
assert actual == event
assert m.call_count == 1
attachments = json.loads(m.request_history[0].text)["attachments"]
assert len(attachments) == 1
attachment0 = attachments[0]
assert attachment0["color"] == "good"
assert attachment0["pretext"] == "[dev] updating horoscope is success:smile:"
expected_text = "\n".join(
[
"received new oracle at 2019-07-01 00:01 UTC",
"1: Aquarius, Jan20-Feb18",
"2: Pisces, Feb19-Mar20",
"3: Aries, Mar21-Apr19",
"4: Taurus, Apr20-May20",
"5: Gemini, May21-Jun20",
"6: Cancer, Jun21-Jul22",
"7: Leo, Jul23-Aug22",
"8: Virgo, Aug23-Sep22",
"9: Libra, Sep23-Oct22",
"10: Scorpio, Oct23-Nov21",
"11: Sagittarius, Nov22-Dec21",
"12: Capricorn, Dec22-Jan19",
"https://www.quantumcomputer.tokyo/horoscope.html",
]
)
assert attachment0["text"] == expected_text
# validate logger
assert caplog.record_tuples[1] == (
"root",
INFO,
"slack_webhook_response status_code=200",
)
def test_notify_horoscope_update_failed_to_slack(caplog):
event = {
"job_id": "dummy_job_id",
"backend_name": "dummy_backend_name",
"creation_date": "2019-07-01T00:01:02.123456Z",
"detail": {"status": "FAILED"},
}
context = None
with requests_mock.Mocker() as m:
m.post("https://hooks.slack.com/services/dummy")
# execution
actual = notificator.notify_horoscope_update_failed_to_slack(event, context)
# validate return value
assert actual == event
assert m.call_count == 1
attachments = json.loads(m.request_history[0].text)["attachments"]
assert len(attachments) == 1
attachment0 = attachments[0]
assert attachment0["color"] == "danger"
assert attachment0["pretext"] == "[dev] updating horoscope is failure:rage:"
assert attachment0["text"] == "Check detail!\nstatus: FAILED"
# validate logger
assert caplog.record_tuples[1] == (
"root",
INFO,
"slack_webhook_response status_code=200",
)
def test_post_slack(caplog):
with requests_mock.Mocker() as m:
m.post("https://hooks.slack.com/services/dummy")
title = "updating horoscope is success:smile:"
color = "good"
detail = "test message"
# execution
notificator._post_slack(title, color, detail)
# validate return value
assert m.call_count == 1
attachments = json.loads(m.request_history[0].text)["attachments"]
assert len(attachments) == 1
attachment0 = attachments[0]
assert attachment0["color"] == "good"
assert attachment0["pretext"] == "[dev] updating horoscope is success:smile:"
assert attachment0["text"] == "test message"
# validate logger
assert caplog.record_tuples == [
("root", INFO, "slack_webhook_response status_code=200"),
]
def test_post_slack_exception(mocker, caplog):
mocker.patch.object(
requests,
"post",
side_effect=requests.exceptions.RequestException("test exception"),
)
title = "updating horoscope is success:smile:"
color = "good"
detail = "test message"
# execution
notificator._post_slack(title, color, detail)
# validate logger
assert caplog.record_tuples == [
("root", ERROR, "failed to call slack_webhook"),
]
|
[
"[email protected]"
] | |
1bd983fda08cc124332618ea8d57b23525828d1e
|
9e3335031701144d34780466febb13ab3e5f7ce6
|
/k/flask1.py
|
6fc6d0b81b9c9edea46d9d9dd5267dc1c5bce20d
|
[] |
no_license
|
Ananthan7/students-portal-flask
|
876a29bd48c94a2eba2f1fd3665ff6992f5e529f
|
067253be8f9740d46a1aaec8399345d810de08cd
|
refs/heads/main
| 2023-04-18T08:33:59.202499 | 2021-04-24T13:11:31 | 2021-04-24T13:11:31 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 492 |
py
|
from flask import Flask
from flask import redirect
from flask import url_for
app=Flask(__name__)
@app.route('/admin')
def hello_admin():
return 'hello admin'
@app.route('/guest/<guest>')
def hello_guest(guest):
return 'hello %s as guest'%guest
@app.route('/user/<name>')
def hello_user(name):
if(name=='admin'):
return redirect(url_for('hello_admin'))
else:
return redirect(url_for('hello_guest',guest=name))
if (__name__=='__main__'):
app.run(debug=True)
|
[
"[email protected]"
] | |
1f45dcf7f0f4b3b2d3317758fe808c0da08e5812
|
749831b8cea53b9f10926512b34d6a0e97a9df98
|
/traffic/examples/camera.py
|
5c9a6bbd5c2e78a814af07b7d5c1c69089270182
|
[
"MIT"
] |
permissive
|
tasigabi97/traffic
|
cab0422382c0e4cf78b468c2e9ab94da02240bae
|
f90c6679b77a6c55717ccb9e5d53daff56fa30d2
|
refs/heads/master
| 2023-02-12T16:27:19.004386 | 2020-12-23T20:22:27 | 2020-12-23T20:22:27 | 291,692,793 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 644 |
py
|
"""
Egy példa arra, hogyan lehet használni a cv2-es kamera ablakokat.
"""
def main():
from traffic.camera import choose_camera
from traffic.imports import imshow_cv2
from traffic.cv2_input import cv2_input
with choose_camera() as camera: # Feldobja az elérhető kamerákat, amikből egyet kell kiválasztani.
cv2_input.wait_keys = "q"
while True:
imshow_cv2("Chosen-> ({})".format(camera.name), camera.img)
if cv2_input.pressed_key is not None: # A q betű lenyomásval be lehet zárni a kiválasztott kamera képét.
break
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
a61bcf5f3d6879f58d5f4e1c60775ac205314da1
|
ab835c5d8127892dab0effa55773fe727de1f931
|
/local_group_to_global.py
|
24cbbf4bd0492ce6c3480d3594ca5a1bf4a1e713
|
[
"Apache-2.0"
] |
permissive
|
CheckPointSW/LocalToGlobal
|
5524d0aee43524b376f13a9d2f408b501e099db3
|
ed112d85ffb476d89c1fac5608c65ac6900e7996
|
refs/heads/master
| 2022-05-21T10:24:18.432127 | 2022-03-15T12:39:10 | 2022-03-15T12:39:10 | 101,554,125 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,385 |
py
|
"""
This class moves group object from local domain to global domain, by creating on the global domain new object
which is similar to the object in the local domain
"""
import sys
import local_object_to_global
from args_container import ArgsContainer
from login_manager import *
from util_functions import UtilFunctions
class LocalServiceGroupToGlobal:
def __init__(self, args_container_input):
group = LocalGroupToGlobal(args_container_input, True)
self.new_obj_uid = group.new_obj_uid
class LocalGroupToGlobal:
def __init__(self, args_container_input, service=False):
if args_container_input.initialize is False:
args_container_input.log("\nThe arguments are not initialize, try to run build function in order "
"to initialize the arguments ", True)
return
self.args_container = args_container_input
# Original network info
self.group_details = GroupDetails()
self.group_details.service = service
# New network Info
self.utils = UtilFunctions()
self.members = None
self.new_obj_uid = []
self.orig_group_name = None
login_res = LoginManager(self.args_container)
try:
self.run_local_group_to_global()
finally:
LogoutManager(self.args_container, login_res.need_to_logout_from)
def get_info_of_local_group(self):
"""
This function gets the information of the original object and fill the details for the new object
:return: False if an error occurred
"""
command = "show-group"
if self.group_details.service:
command = "show-service-group"
group_res = self.args_container.local_client.api_call(command, {"uid": self.args_container.obj_uid})
if group_res.success is False:
self.args_container.log("Couldn't get the group: '{}' data".format(self.args_container.obj_uid))
return False
self.orig_group_name = group_res.data["name"]
self.group_details.name = self.args_container.prefix + "_" + self.orig_group_name
self.group_details.color = group_res.data["color"]
self.group_details.comments = group_res.data["comments"]
self.members = group_res.data["members"]
def handle_global_domain(self):
"""
This function creates the new network in the global domain and assign the changes on the local domain
:return: True on success, otherwise False
"""
obj_type = "group"
if self.group_details.service:
obj_type = "service-group"
group_uid = self.utils.find_obj_uid_if_exist(self.args_container, obj_type, self.group_details.name)
# error occurred while executing "show-network"
if group_uid is False:
return
# the network doesn't exist
elif group_uid is True:
# create new network
self.group_details.members = local_object_to_global.Dispatcher(self.args_container, self.members).uids
pay = self.group_details.to_object
self.args_container.log("\nCreating new group: " + self.group_details.name, False)
command = "add-" + obj_type
add_group_res = self.args_container.global_client.api_call(command, pay)
if add_group_res.success is False:
self.utils.error_creating_new_object(self.args_container, self.orig_group_name,
self.args_container.obj_uid, "Failed to create new group",
add_group_res)
return
publish_res = self.args_container.global_client.api_call("publish")
if publish_res.success is False:
self.utils.error_creating_new_object(self.args_container, self.orig_group_name,
self.args_container.obj_uid, "Publish failed", publish_res)
return
self.utils.successful_object_creation(self.args_container, self.orig_group_name,
self.args_container.obj_uid, self.group_details.name,
add_group_res.data["uid"])
# saving the new network uid
self.new_obj_uid.append(add_group_res.data["uid"])
else:
self.args_container.log("\n{} already exist and won't be created again".format(self.orig_group_name), False)
self.new_obj_uid.append(group_uid)
def run_local_group_to_global(self):
# handle global domain
if self.get_info_of_local_group() is False:
return
self.handle_global_domain()
if __name__ == "__main__":
args = ArgsContainer(sys.argv[1:])
LocalGroupToGlobal(args)
class GroupDetails:
def __init__(self):
self.service = False
self.name = None
self.color = None
self.comments = None
self.members = []
@property
def to_object(self):
obj = {"name": self.name, "comments": self.comments, "color": self.color, "members": self.members}
return obj
|
[
"[email protected]"
] | |
6a42d49d7d83b0b0520c6e6d394d79b1e6c4fd48
|
b8302a17ad124b2432380c7274e4780ec5adfe55
|
/exercises/de/solution_04_03.py
|
e63f7c7a9d4320eaae8436a4c058573e32639ff4
|
[
"MIT",
"CC-BY-NC-4.0"
] |
permissive
|
FrankGrimm/spacy-course
|
10da4ebf976d93aec50aa1b200019b4217f4043e
|
5e09ef9d296dad2b0fd5ff1945f4cf9a55109906
|
refs/heads/master
| 2022-04-24T18:18:06.202131 | 2020-04-21T19:17:09 | 2020-04-21T19:17:09 | 257,692,388 | 1 | 0 |
MIT
| 2020-04-21T19:14:21 | 2020-04-21T19:14:20 | null |
UTF-8
|
Python
| false | false | 650 |
py
|
import json
from spacy.matcher import Matcher
from spacy.lang.de import German
with open("exercises/de/iphone.json") as f:
TEXTS = json.loads(f.read())
nlp = German()
matcher = Matcher(nlp.vocab)
# Zwei Tokens, deren kleingeschriebene Formen "iphone" und "x" sind
pattern1 = [{"LOWER": "iphone"}, {"LOWER": "x"}]
# Token mit der kleingeschriebenen Form "iphone" und eine Ziffer
pattern2 = [{"LOWER": "iphone"}, {"IS_DIGIT": True}]
# Füge Patterns zum Matcher hinzu und überprüfe die Resultate
matcher.add("GADGET", None, pattern1, pattern2)
for doc in nlp.pipe(TEXTS):
print([doc[start:end] for match_id, start, end in matcher(doc)])
|
[
"[email protected]"
] | |
91ed919fe4f82d66d4c1e181233dc01892ee1182
|
420376c5a1fbf8a4572545a9c891a0f8f204ed5b
|
/scrapy_amazon/items.py
|
d2aeed20eb2ea2833ebfb79da6fce00b903d6891
|
[] |
no_license
|
kishoresurana/scrapy_amazon
|
946fb8fe198736ba4233a2f3727ca1a1873ae937
|
bbb72cdb5f468d5c8b605d273bb5c93b9a2b249a
|
refs/heads/master
| 2020-12-25T21:55:35.192394 | 2014-07-27T20:09:24 | 2014-07-27T20:09:24 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 451 |
py
|
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class ScrapyAmazonItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
price = scrapy.Field()
condition = scrapy.Field()
seller = scrapy.Field()
delivery = scrapy.Field()
title = scrapy.Field()
date = scrapy.Field()
|
[
"[email protected]"
] | |
f7f9744bf1fc6dcfe13ecd4704d0c9abeda68979
|
4257cb2b8bdd008ed7ce42001d92e496b5e84194
|
/PerformanceComparison/Regression/Models/RegressionThreeLayers/regression_three_layers_test.py
|
3279d696c36c6c5bd4fcde3d6456bd4ec80f2cf3
|
[] |
no_license
|
atkinssamuel/cryptonet-research
|
d91b4633c7307c42585065110dfb4533599db80f
|
69d59b4528ed92c918b5d75327f60b57be07309d
|
refs/heads/master
| 2022-04-26T06:21:14.132695 | 2020-04-27T22:54:40 | 2020-04-27T22:54:40 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,891 |
py
|
import numpy as np
import tensorflow as tf
from Project.consts import *
def regression_three_layers_test(x_test, y_test):
print("regression_three_layers_test")
# Parameters:
input_dimension = x_test.shape[1]
output_dimension = y_test.shape[1]
l1_scaling, l2_scaling, l3_scaling = 0.00000001, 0.00000001, 0.00000001
layer_complexity_growth = 1.5
hidden_layer_1 = round(input_dimension * layer_complexity_growth)
hidden_layer_2 = round(hidden_layer_1 * layer_complexity_growth)
hidden_layer_3 = round(hidden_layer_2 * 0.5)
output_layer = 1
# Placeholder for batch of inputs:
x = tf.placeholder(tf.float32, [None, input_dimension])
# Layer 1 Variables:
W1 = tf.Variable(tf.truncated_normal([input_dimension, hidden_layer_1], stddev=0.15))
b1 = tf.Variable(tf.zeros([hidden_layer_1]))
y1 = l1_scaling * tf.math.square(tf.matmul(x, W1) + b1)
# Layer 2 Variables:
W2 = tf.Variable(tf.truncated_normal([hidden_layer_1, hidden_layer_2], stddev=0.15))
b2 = tf.Variable(tf.zeros([hidden_layer_2]))
y2 = l2_scaling * tf.math.square(tf.matmul(y1, W2) + b2)
# Layer 3 Variables:
W3 = tf.Variable(tf.truncated_normal([hidden_layer_2, hidden_layer_3], stddev=0.15))
b3 = tf.Variable(tf.zeros([hidden_layer_3]))
y3 = l3_scaling * tf.math.square(tf.matmul(y2, W3) + b3)
# Output Layer Variables:
W4 = tf.Variable(tf.truncated_normal([hidden_layer_3, output_layer], stddev=0.15))
b4 = tf.Variable(tf.zeros([output_layer]))
y = tf.matmul(y3, W4) + b4
# Placeholder for batch of targets:
y_ = tf.placeholder(tf.float32, [None, output_dimension])
cost = tf.reduce_sum(tf.math.square(y - y_))
optimizer = tf.train.AdamOptimizer(TrainingParameters.learning_rate).minimize(cost)
# For weight saving:
saver = tf.train.Saver()
checkpoint = TestingParameters.checkpoint_file_location
start_time = time.time()
with tf.Session(config=EncryptionParameters.config) as sess:
saver.restore(sess, checkpoint)
test_output, test_loss = sess.run([y, cost], feed_dict={x: x_test, y_: y_test})
time_elapsed = round(time.time() - start_time, 3)
print(f"Testing Time Elapsed = {time_elapsed}s")
print(f"Test Loss = {test_loss}")
np.save(testing_results_numpy_save_dir + TestingParameters.testing_output_numpy_file_path, test_output)
np.save(testing_results_numpy_save_dir + TestingParameters.testing_targets_numpy_file_path, y_test)
np.save(testing_results_save_dir + "testing_time_elapsed", time_elapsed)
np.save(testing_results_save_dir + "testing_loss", test_loss)
test_output = np.array(test_output)
difference = np.abs(test_output - y_test)
correct_count = np.sum(difference <= 10)
accuracy = (correct_count / test_output.shape[0]) * 100
print(f"Testing Accuracy = {round(accuracy, 2)}%")
return
|
[
"[email protected]"
] | |
3107387d5fc4b538b140c287cf51aa5e4414d44b
|
940c664cd3c64d21a4d6197cd0aff79d0c6b0532
|
/src/common/functions/external_memory_func.py
|
088f20ce34b264d52d0b8abbe72febeb40191fed
|
[
"MIT"
] |
permissive
|
0shimax/chainer-learning-to-remember-rare-events
|
2093385adee2ad3ec2c189cc9ffb3738f8cee5d6
|
8cf27a6afbaa058f8ad03df4d2ee91a62cccdf7d
|
refs/heads/master
| 2021-01-22T23:37:05.765437 | 2017-04-23T10:32:36 | 2017-04-23T10:32:36 | 85,662,113 | 4 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,692 |
py
|
import numpy as np
import chainer
from chainer import cuda, function
class ExternalMemoryFunction(function.Function):
def forward(self, inputs):
self.xp = cuda.get_array_module(*inputs)
if len(inputs)==5:
embedding_vecs, t, self.memory, self.update_weight, train = inputs
else:
embedding_vecs, self.memory, self.update_weight, train = inputs
self.n_class, self.n_unit = self.memory.shape
weight = self._compute_attention(embedding_vecs)
if train:
self._calculate_center(embedding_vecs, t)
return weight, self.memory,
def backward(self, inputs, grad_outputs):
"""never backward
"""
if len(inputs)==5:
return None,None,None,None,None,
else:
return None,None,None,None
def _normalize(self, vec, vec_sum):
normalized_vec = \
self.xp.where( \
vec==0, \
self.xp.zeros_like(vec), \
vec/vec_sum \
).transpose(1,0)
return normalized_vec
def _calculate_channel_idx(self, embedding_vecs, t):
represented_vec = self.xp.zeros( \
(self.n_class, embedding_vecs.shape[1]), dtype=embedding_vecs.dtype)
for vec, klass_idx in zip(embedding_vecs, t):
represented_vec[klass_idx] += vec
return represented_vec
def _calculate_center(self, embedding_vecs, t):
n_batch, n_unit, _, _ = embedding_vecs.shape
vecs = embedding_vecs.reshape((n_batch, n_unit))
represented_vec = self._calculate_channel_idx(vecs, t) # (n_class, n_unit)
represented_vec_sum = represented_vec.sum(axis=1)
represented_vec = represented_vec.transpose(1,0)
# normalize
represented_vec = self._normalize(represented_vec, represented_vec_sum)
self.memory = \
(1-self.update_weight)*self.memory \
+ self.update_weight*represented_vec
external_memory_sum = self.memory.sum(axis=1)
t_external_memory = self.memory.transpose(1,0)
# normalize
self.memory = \
self._normalize(t_external_memory, external_memory_sum)
def _compute_attention(self, embedding_vecs):
'''
context_vec: (batch_size, n_unit). default (20, 4096).
'''
n_batch, n_unit, _, _ = embedding_vecs.shape
vecs = embedding_vecs.reshape((n_batch, n_unit))
vecs = self._normalize(vecs.transpose(1,0), vecs.sum(axis=1))
weights = vecs.dot(self.memory.T) # (batch_size, n_class)
weights = self._normalize(weights.transpose(1,0), weights.sum(axis=1))
return weights
|
[
"[email protected]"
] | |
85e88feb381eeaebe8cd19e82b3cf2a9e88051bc
|
c8d7f2da5ff9e13a5bb6f92b9387a336e7059644
|
/dolo/numeric/matrix_equations.py
|
0d3eb87483d5360957fdf884ec03b391a427d468
|
[
"BSD-2-Clause"
] |
permissive
|
TomAugspurger/dolo
|
675e5c051e7fdcc8d0af441335d526408128b71f
|
5d9f0f772860eadf3b9df79e47d158155835bd6b
|
refs/heads/master
| 2020-12-25T12:47:30.156775 | 2013-02-11T20:13:56 | 2013-02-11T20:13:56 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,339 |
py
|
from dolo.numeric.tensor import sdot,mdot
import numpy as np
TOL = 1e-10
# credits : second_order_solver is adapted from Sven Schreiber's port of Uhlig's Toolkit.
def second_order_solver(FF,GG,HH):
from scipy.linalg import qz
from dolo.numeric.extern.qz import qzdiv
from numpy import array,mat,c_,r_,eye,zeros,real_if_close,diag,allclose,where,diagflat
from numpy.linalg import solve
Psi_mat = array(FF)
Gamma_mat = array(-GG)
Theta_mat = array(-HH)
m_states = FF.shape[0]
Xi_mat = r_[c_[Gamma_mat, Theta_mat],
c_[eye(m_states), zeros((m_states, m_states))]]
Delta_mat = r_[c_[Psi_mat, zeros((m_states, m_states))],
c_[zeros((m_states, m_states)), eye(m_states)]]
AAA,BBB,Q,Z = qz(Delta_mat, Xi_mat)
Delta_up,Xi_up,UUU,VVV = [real_if_close(mm) for mm in (AAA,BBB,Q,Z)]
Xi_eigval = diag(Xi_up)/where(diag(Delta_up)>TOL, diag(Delta_up), TOL)
Xi_sortindex = abs(Xi_eigval).argsort()
# (Xi_sortabs doesn't really seem to be needed)
Xi_sortval = Xi_eigval[Xi_sortindex]
Xi_select = slice(0, m_states)
stake = (abs(Xi_sortval[Xi_select])).max() + TOL
Delta_up,Xi_up,UUU,VVV = qzdiv(stake,Delta_up,Xi_up,UUU,VVV)
try:
# check that all unused roots are unstable
assert abs(Xi_sortval[m_states]) > (1-TOL)
# check that all used roots are stable
assert abs(Xi_sortval[Xi_select]).max() < 1+TOL
except:
raise BKError('generic')
# check for unit roots anywhere
# assert (abs((abs(Xi_sortval) - 1)) > TOL).all()
Lambda_mat = diagflat(Xi_sortval[Xi_select])
VVVH = VVV.T
VVV_2_1 = VVVH[m_states:2*m_states, :m_states]
VVV_2_2 = VVVH[m_states:2*m_states, m_states:2*m_states]
UUU_2_1 = UUU[m_states:2*m_states, :m_states]
PP = - solve(VVV_2_1, VVV_2_2)
# slightly different check than in the original toolkit:
assert allclose(real_if_close(PP), PP.real)
PP = PP.real
## end of solve_qz!
print(PP.__class__)
return [Xi_sortval[Xi_select],PP]
def solve_sylvester(A,B,C,D,Ainv = None):
# Solves equation : A X + B X [C,...,C] + D = 0
# where X is a multilinear function whose dimension is determined by D
# inverse of A can be optionally specified as an argument
import slycot
n_d = D.ndim - 1
n_v = C.shape[1]
n_c = D.size/n_v**n_d
# import dolo.config
# opts = dolo.config.use_engine
# if opts['sylvester']:
# DD = D.flatten().reshape( n_c, n_v**n_d)
# [err,XX] = dolo.config.engine.engine.feval(2,'gensylv',n_d,A,B,C,-DD)
# X = XX.reshape( (n_c,)+(n_v,)*(n_d))
DD = D.reshape( n_c, n_v**n_d )
if n_d == 1:
CC = C
else:
CC = np.kron(C,C)
for i in range(n_d-2):
CC = np.kron(CC,C)
if Ainv != None:
Q = sdot(Ainv,B)
S = sdot(Ainv,DD)
else:
Q = np.linalg.solve(A,B)
S = np.linalg.solve(A,DD)
n = n_c
m = n_v**n_d
XX = slycot.sb04qd(n,m,Q,CC,-S)
X = XX.reshape( (n_c,)+(n_v,)*(n_d) )
return X
class BKError(Exception):
def __init__(self,type):
self.type = type
def __str__(self):
return 'Blanchard-Kahn error ({0})'.format(self.type)
|
[
"[email protected]"
] | |
61cb7f3485bd6f3f5d33ac83b9b52e22c3713c3e
|
9dbd3b20c33ec93c0ade5032287db728de6fa712
|
/src/intent_service.py
|
e030a7d34ab679697601e3e08b286405f1bdb703
|
[] |
no_license
|
xs2pranjal/intent_via_audio
|
bd1ec058b51935463e781c159fbed2be02d18bd5
|
f57bce6ff9d8bcb7801bac362f2f52e57cba9204
|
refs/heads/master
| 2022-12-28T17:36:20.609023 | 2018-08-15T19:34:27 | 2018-08-15T19:34:27 | 144,739,836 | 0 | 0 | null | 2022-12-08T02:22:14 | 2018-08-14T15:35:49 |
Python
|
UTF-8
|
Python
| false | false | 2,388 |
py
|
import traceback
import numpy as np
from heapq import nlargest
from sklearn.metrics.pairwise import cosine_similarity
from helpers.noun_chunking import NounPhraseExtraction
from docs.config import CATEGORIES
from helpers.model_loader import GloveService
class IntentService():
''' The class is for Extracting the top n intents from the input text.'''
def __init__(self, top_n):
self.top_n = top_n
self.__noun_phrase_tokens=[]
self.__default_categories = CATEGORIES
self.__glove_model = GloveService()
def __generate_text_vector(self):
'''Generates the text vector for the present noun phrases vocab'''
token_vector_dict={}
for token in self.__noun_phrase_tokens:
# print(token)
try:
# print(type(self.__glove_model.get_vector(token)))
token_vector_dict[token] = self.__glove_model.get_vector(token)
except Exception as e:
pass
vector_mean = np.mean(list(token_vector_dict.values()),axis=0)
return vector_mean
def __get_text_category_affinity(self, text):
'''Computes the affinity between the text and the category'''
try:
self.__noun_phrase_tokens = NounPhraseExtraction().get_noun_phrases(text)
except Exception as e:
traceback.print_exc()
affinity_dict={}
affinity_dict["aspects"]=self.__noun_phrase_tokens
text_vector=self.__generate_text_vector()
#calculate text affinity from each category
category_affinity_dict={}
for category in self.__default_categories:
try:
category_vector = self.__glove_model.get_vector(category)
category_affinity_dict[category] = cosine_similarity(text_vector.reshape(1,-1),category_vector.reshape(1,-1)).item(0)
except Exception as e:
category_affinity_dict[category] = None
affinity_dict["affinity"] = category_affinity_dict
return affinity_dict
def get_default_category(self,text):
'''Returns the top-n intents closest to the text'''
category_affinity_dict=self.__get_text_category_affinity(text)
affinity_dict=category_affinity_dict.get('affinity')
five_largest=nlargest(self.top_n,affinity_dict,key=affinity_dict.get)
return five_largest
|
[
"[email protected]"
] | |
e3f9b9ccd9704d797def23c50f582b8c877f8f37
|
9059d9cbad4188ed2980f551151b9678ffb68b44
|
/Chapter12_logging/12-3.logging_config_example.py
|
0262db2fa4267b523bc6fa234849422e7c5042d2
|
[] |
no_license
|
mhee4321/python_basic
|
ad0e64fa21ecfab231a6627ba6abeea82d725690
|
86031975a9121efe5785e83f663255a7b4e4ba77
|
refs/heads/master
| 2023-02-11T20:31:54.353219 | 2021-01-07T05:44:31 | 2021-01-07T05:44:31 | 326,850,491 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 750 |
py
|
import logging # 로깅 모듈 탑재
import logging.config # 로깅 설정 모듈 탑재
# 설정 파일 읽어 오기
logging.config.fileConfig('12-2.logging.conf')
# 로거 생성
logger = logging.getLogger(__name__) # 로거 생성
# 로그 메시지 출력
logger.debug('이 메시지는 개발자만 이해해요.') # DEBUG 로그 출력
logger.info('생각대로 동작 하고 있어요.') # INFO 로그 출력
logger.warning('곧 문제가 생길 가능성이 높습니다.') # WARNING 로그 출력
logger.error('문제가 생겼어요.기능이 동작 안해요.') # ERROR 로그 출력
logger.critical('시스템이 다운됩니다!!!!') # CRITICAL 로그 출력
|
[
"[email protected]"
] | |
c4e8389d93f36f8805d8c3cdf58cabc747343f84
|
91fe8f479fa921fa84111d19222a5c6aa6eff030
|
/basis/execute-unit/aiohttp-and-asyncio-test.py
|
25312be5c6ecba564f33a7ed14ddc40b68021a95
|
[] |
no_license
|
romanticair/python
|
2055c9cdaa46894c9788d5797643283786ed46dd
|
6f91fe5e7cbedcdf4b8f7baa7641fd615b4d6141
|
refs/heads/master
| 2022-11-03T17:17:17.608786 | 2019-07-05T07:07:29 | 2019-07-05T07:07:29 | 195,356,190 | 0 | 1 | null | 2022-10-14T20:51:14 | 2019-07-05T07:00:33 |
Python
|
UTF-8
|
Python
| false | false | 1,355 |
py
|
"""
asyncio 可以实现单线程并发IO操作。如果仅用在客户端,发挥的威力不大。
如果把asyncio用在服务器端,例如Web服务器,由于HTTP连接就是IO操作,
因此可以用单线程+coroutine实现多用户的高并发支持
asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架
aiohttp的初始化函数init()也是一个coroutine,loop.create_server()则利用asyncio创建TCP服务
编写一个HTTP服务器,分别处理以下URL
1. / - 首页返回b'<h1>Index</h1>';
2. /hello/{name} - 根据URL参数返回文本hello, %s!
"""
import asyncio
from aiohttp import web
async def index(request):
await asyncio.sleep(0.5)
return web.Response(body=b'<h1>Index</h1>')
async def hello(request):
await asyncio.sleep(0.5)
text = '<h1>hello, %s!</h1>' % request.match_info['name']
return web.Response(body=text.encode('utf-8'))
async def init(loop):
app = web.Application(loop=loop)
app.router.add_route('GET', '/', index)
app.router.add_route('GET', '/hello/{name}', hello)
srv = await loop.create_server(app.make_handler(), '127.0.0.1', 3000)
print('Server started at http://127.0.0.1:3000...')
return srv
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(init(loop))
loop.run_forever()
|
[
"[email protected]"
] | |
e6080c62d3170229f32b8403d65ad8f216e5cae7
|
090d9e9dd0e8c1cf7a3338ea1464897c72ab82be
|
/KerasCNN.py
|
ddfb334d5b546ccf31c08de75d4af2c1c3e12db4
|
[] |
no_license
|
zhanming-wang/CNN_digit_recognizer_kaggle
|
f5451514a2990ae60342e96b715cbe9cd2708d31
|
e0dded47d0a44ef2c0a74bc6ff459fa83e78a246
|
refs/heads/master
| 2020-12-04T00:26:33.478317 | 2020-01-03T07:59:45 | 2020-01-03T07:59:45 | 231,537,504 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,465 |
py
|
import plaidml.keras
plaidml.keras.install_backend() #use AMD GPU
'''
import cv2
import os
import random
import pickle
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import confusion_matrix
import itertools
'''
import numpy as np
import pandas as pd
import keras
from sklearn.model_selection import train_test_split
from keras.layers import Conv2D, Dense, Dropout, MaxPool2D, Flatten
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau, TensorBoard, ModelCheckpoint
#Establishing the data directory
trainDataDir = '/Users/zhanmingwang/OneDrive/Programming/kaggle-digitRecognizer/data/train.csv'
testDataDir = '/Users/zhanmingwang/OneDrive/Programming/kaggle-digitRecognizer/data/test.csv'
#read data from CSV files
train = pd.read_csv(trainDataDir)
test = pd.read_csv(testDataDir)
#create the training data
y_train = train['label']
x_train = train.drop('label', axis=1)
#free up memory
del train
#Check for null and missing values
x_train.isnull().any().describe()
test.isnull().any().describe() #in this case, there is none
#normalization
x_train = x_train/ 255.0
test = test/ 255.0
#reshaping (reshape image in 3 dimensions)
x_train = x_train.values.reshape(-1, 28, 28, 1)
test = test.values.reshape(-1, 28, 28, 1)
#OneHot encode the labels --> [0, 0, 0, 0, 1, 0, 0 ...]
y_train = keras.utils.np_utils.to_categorical(y_train, num_classes= 10)
#split train and test
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1)
#build CNN
model = Sequential()
model.add(Conv2D(filters= 32, kernel_size=(5,1), padding= 'Same',
activation='relu', input_shape= (28,28,1)))
model.add(Conv2D(filters= 32, kernel_size=(1,5), padding= 'Same',
activation='relu', input_shape= (28,28,1)))
model.add(MaxPool2D(pool_size=(1,1)))
model.add(Conv2D(filters= 32, kernel_size=(5,1), padding='Same',
activation='relu'))
model.add(Conv2D(filters= 32, kernel_size=(1,5), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.1))
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.1))
model.add(Conv2D(filters=128, kernel_size=(2,2), padding='Same',
activation='relu'))
model.add(Conv2D(filters=128, kernel_size=(2,2), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(10, activation='softmax'))
#Define the optimizer
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) #RMSprop decreases gradient decent oscillation
#Compile the model
model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics=['accuracy'])
#Set a learning rate annealer (basically decreasing the lr dynamically with steps)
learning_rate_reduction = ReduceLROnPlateau(monitor= 'val_acc', #this will be use in the model.fit/ model.fit_generator
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00000001) #ReduceLROnPlateau decreases the learning rate when the model stops improving
epochs = 100 #theroetically it should get to 0.9967 accuracy
batch_size = 85
##DATA AUGMENTATION (prevent overfitting)
datagen = ImageDataGenerator( # used below in model.fit_generator
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10, #randomly roate image my 10 degrees
zoom_range= 0.1, #randomly zoon some images by 10%
width_shift_range=0.1, #randomly shift image to 10% of the left and right
height_shift_range=0.1, #randomly shift image to 10% of the height
horizontal_flip=False, #Not flipping because of 6 and 9
vertical_flip=False #Same reason why
)
datagen.fit(x_train) #horizontal or vertical flip might result in misclassifying symetircal numbers such as 6 and 9
#TRAIN!
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
epochs=epochs, validation_data=(x_val, y_val),
verbose=2, steps_per_epoch=x_train.shape[0] // batch_size,
callbacks=[learning_rate_reduction]) #fit_generator runs the training and image augmentation in parallel
#Evaluation
#Trainig and validation curves
#predict results
results = model.predict(test)
#Select the index with the maximum probability
results = np.argmax(results, axis = 1)
results = pd.Series(results, name='Label')
submission = pd.concat([pd.Series(range(1, 28001), name='ImageId'), results],
axis=1)
submission.to_csv('cnn_mnist_datagen.csv', index=False)
|
[
"[email protected]"
] | |
af8a3b38fbead6a7a3ba30581b9640acb8c35af4
|
a2f23955ccdb9cad17db9f5928832d4e7d17b69d
|
/run/webpy/test/application.py
|
95be395c07d881ac053a00d12fe1fcc9d65b76f8
|
[] |
no_license
|
wellcomez/crash
|
03ae8d66e21145a478aa62961f442c6f7823b96c
|
a0e39dfa34bb26934ae2497777c242b959c02f76
|
refs/heads/master
| 2020-06-01T18:33:25.321334 | 2014-08-08T09:27:16 | 2014-08-08T09:27:16 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 14,670 |
py
|
U2FsdGVkX194ECcAAAAAAATGQIXb2zXj73unbe7350FFFgQW6R4P8H+QKEu3sqOj
WfjXJZAGD55cBlTsacM7I+aassp5XxR9yscnxaDhZjrgcJYfe2N20VTPlWTDFSA8
x5UTSu7ESRkbC1TOW5VaKhRga+PrIctYQD+QYqad5fXzK9WgwZlCUXIuSBb8CnWf
3KkP3qR9AgyRdZf96EXmuB36JqNh0H0n0sowrzIUWbF2Ofgr+qQtFhe6Crfa8iQA
eAaivYO7sFt1St1qtA6K7gO0+T8I9tu9+sZFYiqLCaxC+4sVNAfGcjj5JVCcRaln
s3wuTGJVFh4vdE6Km2i94yJZqajkq1I7JnfWhSDwIpvfNsto/Fcp3jINhSopJW35
doUv9VgjlCPQrbimDyW+HLld6ZAKhCM9+mZHZ/iSobXjaiZsXG/caNU5uGCyYChe
QYwfBIfjlivgN0ShiHNHqpHR9L0da789NX7jWrlAot5iuNozSAZ+bMY6nXcyrWiK
3nUi9jWjf5BJOTjF971IqqOdSZj+flV+CzixNdLFrcgTxkoWNTQQ+v1jDJhqVSgc
/mS35FurvwtHquI4ku0iTVdg/9PLPyYNgvk51tjRbEuZoikrtnFS992zrSbPPZjB
DHqFaHoYOXNgrJPNFvjoXc1z2DqBKO8AcAegJP3FuN7k2tzwXtO9CYBB9Jtg25MA
wxK9mazhSrArTwiS/Ly5rYK56b632GjEQD4eIpFll5EcFpEi5lkwXMRqneVBgxPS
1yGL3CXCOh5uqxm34XroyXzk/B4YbDcmNOLFfIWdNJIExYtQwU3VWXJi719L36AB
ZrcTbQ3Syac4Kvw1POBdbSoD6nSx/Uyst2y25HYOOVj/X07EPPVRtaOacWNnCuDM
7PIPl2wNcqV+o1za49Nmps71S3uUUPg6Hajuo+N8w27YLHwXhWCKmD9jz3Qm/GY2
j9lMuBo8KmPybT4Z6vZX8fFV9SpSOGOk+1PU/VjAzS2ZJzjaxXgsH9y8lmtK6Q1M
8tT4XTQMBP0p/55nSmbGhitHTZUXvsmD/Bms8HZAkR62JDcksMYQH8jDQdoIFA4V
RffE8sxspX1Xkf6yxK9BHgssdf8DQvK4iatfHnpqhC9w3tuzhFtIFpf3MZAaaTk+
/NUyPs9KrNLioB0RoZ8mFTNN1mjsJvh2jcFfWa9gqxiRh92+fi/rKADxjg8LMtTj
u377DUoeKpdWZjJw/mzMF4kbsiBCbMGUl5napmTIj7lZvF71fLP6jaUgIOYQsWb0
ThKur5rLnDKgwFZPSEn2Jc0CpmuTHpovNANL5Pegpt0cOOWVECUj9LwMw9ValGiV
Aaq7hRJXtujeKxw+Az5NcN9ttagk0JX1a7E5lGPBrVy9Rcl464RjuvAd5F9hXCab
cHCZiYY/sNBOSBj7BB29js3zQx6jprf9LBt1Vdc+ckKsIexPVh00uW3BPl+shmb5
An+nXPlYGt7odLsHmqgI0WAgcCxBfLSVg7SdpKEbBOQU5rmEPWW7Js6scrw3tAqK
1dahFDrLbBkNOL8re3l2bGG0+EyX+y7d2qdKIX5XWDq6Ay+B6eeUSTIt34Mf+y9W
bldmFcKrubDoI+8+2LkZLZR9fm+D4KlTd6vjcb6h69OwNQqC8S/A2rEJqsRIF5xd
QGDroRF7N80AVXWFJFOVqMDxzxb4FRUEjZ9itNBh/3An1uhU0zAvyD0IZCWOCePW
MyHClj6Ge/RVfdlnnGtCvG1aFtRw8xc0Ei3MMEmwq+tSY4+AZMtavdpsIcRx3Xq3
PuSRdRlCyrKuv/WmiUyp1nzUCp7UhqW1+KNC8cr7o5leb/S91QOyughhX4+NUORu
h3mH1c8T9ZLuCp7HIPTyF36B9RL6ZobMqdsLmGmy3IDtpLkUoD5d436hs10p2jKW
1jCVtMjZZb8TU9D5OgNelTMjlW0+dMNZXJwiau03NkjmHBHDYou1JmOeLUYWogT2
OkkgHBMx/+RNmBFy4uLXMX+lZzYAH6QaOx6L1gUPq/uddKKc8PcDYaCQ+0hiHRK5
DUhpT/nyqvhcTGRTO/5v+eKELtS1pkZqJsfcXTu0wEcNnaj6cPGWt4XA/WJUSdpo
qOOXr2GeZk4zbuctX8/CXtDPq7c+MWAIjPKCYO1JFsYhmjPO70Yj7sG/yUEDbUJJ
7Fdrra5WiG7GTwOI+JZIVj9uyVrx6D4PTK9bNkaDNU28keheowVBBF+t0muMsKvp
OLteVxr8/NiK5at6xRdkxxntAMCXuaTqarnVqtxVBZnNk3iN/QbyE0mvaWKTXkGd
7c+QjqEWwO+IfwFuCiUYtI+rTsBBXV4Nc5LnwCfVslHViqUEMqKoSpUqm9VtQO7S
KLS2e31xJxrdQV7/IkPdi63QE+lNCdU1s44Ur5hLTwLBRB0nPX60c38iBfCXrTpD
vaYk41oxeQ4mn3N887+n7n76WbVs7hJybJZZ5X2QUFVpZ8HO5CTXsyOOQWAScvqz
riD+qp6ejwKpX7YIlj16Jifyx4e58z07c2wTbqwlRBunkBEIzCcano9EfPWUgfAA
LLH9xIyAMBXg685lfwAM4O3aKVMLob9f3XQgplFcMkVrt2R69XvxWnu/D9eUGITI
NOFwZ6zN4k5XZ1qIB5iKcPFV9SpSOGOk+1PU/VjAzS178QwKjGEaBDTuL3CAS6X9
7rLQTStCDtgkLG7F+aIXWbETHRp4rxQn3BAcUYOcQaWvBoSgm4U3X4oieVLFjcv4
4CW+F7J4SS94/uHrDdRlMCfyx4e58z07c2wTbqwlRBsTMNYB9xxlcqsw1NWB1u2L
8VX1KlI4Y6T7U9T9WMDNLXvxDAqMYRoENO4vcIBLpf0koPo7THNYLPGlHjlWnNSc
Cmq7SisHBKOiR90JTj7OxzaSceDY34GEOlFMa8dcyj8spNAmxiLGqPYLaYoMoaiK
+9Q2sjCMQuYyco9z4FZ/V+gwASgbo4G0B2fGDAVNMXxHFib9c3ArwyrVmB9z5Za5
xSq5bGOrdH3jEWO1WIg78UEton8fMq/LUYfl/cn8p6W+9x7khJcvgBjvE3jKXwV7
k0QqvxAyhQ0eOl/nI3VC5iyx/cSMgDAV4OvOZX8ADODt2ilTC6G/X910IKZRXDJF
a7dkevV78Vp7vw/XlBiEyDThcGeszeJOV2daiAeYinDxVfUqUjhjpPtT1P1YwM0t
e/EMCoxhGgQ07i9wgEul/e6y0E0rQg7YJCxuxfmiF1mxEx0aeK8UJ9wQHFGDnEGl
rwaEoJuFN1+KInlSxY3L+KfScEbUfk0Sm7k/cKgRYjB3+b87aDEAp8m+ghuR3rhN
wOf80HwW1irVRzNFNVuorX6Os+sajU2WKHcttB3Ujy6dQk0UOgQrh5+pVrMm8CJR
QWUPJJesi0/s5ZEi8v29rG2FW3bA1u87kOoppcUV+moi/kCfEdbopKMk8D14eTvF
J9boVNMwL8g9CGQljgnj1mDzOU1chgKjcausWSQKmuWpws0CI7OxlfFZd5ffqtTH
bKYuxuWzEkvFrxYrvtwcA4LVQ5+xZcknf9dgGBeOjTDgweMYeD7+7DvQsSA8EvzM
1mheg9psSDmRJ6NH4lsRheBLT0v+zrecLiC5IuLncNJVvz+MvdOXgTh9zpCq5d9c
GF97pL7WhqqV2Y0wx6tVV55BiA/UBYCEitUv+AN/9M1TCl/ZhyHZ6HgJYIFrHPre
2sPnBo+XqIeEKm+3n2vkkNRvaSVyZiI7IQOZS2DFX8HJu5lzbDlhKni9DGlKTl2S
ZuhpYi/yTW4lmBRgdmPSt5XWefhPBw+7R30xy92t5ZEsoM/fAbeo/QRzLOl+XGTK
Rb8Y0TRwql73h6KmaYxlPf/e1G/TpNDDE91w4TjUDmDcqQ/epH0CDJF1l/3oRea4
7C6IAx7LgCW2yxLCHr+o6wwmRnwtHTEmFArLOcGFcujWMJW0yNllvxNT0Pk6A16V
s8x5uZPrdKrG6WDvkdZOCaVKrpPYhFU4xFaOGGD6VSaDr3UzRc0e9PJUbHldsCtj
8VX1KlI4Y6T7U9T9WMDNLZknONrFeCwf3LyWa0rpDUwmjgzbZuQrgO+iKuJm/Ba0
hirtOqvQk0SZmBfkngGjurGraiBzkqrmEQ7x1D99Sc1BEeLqOVmi3oqiV01TuwJ+
OnvPQHZcdSFh5RQjxgIg0YvDEkOFk8EHdWs6x1o9PxGLa8IBznwo5fY+Mae4VDXx
7XjdV6tb71SeHXwcSr9hTRmKJzCgjtG/lgC1bDmXX86XLrBS7Dt0TcH53ps4KMGt
u377DUoeKpdWZjJw/mzMF4kbsiBCbMGUl5napmTIj7lhmdmZO1CQDZAvXpEfk9Wk
wpoMUjE8b/lXMpM8wrm7ekx5Nix1xG+Q5yfVI/xe4MclqwQdsYu9vfNWIOhOu/TU
sKNVnWU5R5a2xk2pFGRwX7YilPIxND08P+0hqQIMRXGiBQM40tloX6Hz8d/yZK4Z
eZeZC9SNPZhCPCXQ5KU1j0YfcJQ0kLJ1ViR00I1C5c1n6czK1kKAGakwC+Fa0seJ
WZQwp9MO+eGeJ8xqCy77fZ+FX1YPB4N1WWrYEaufrKhiuNozSAZ+bMY6nXcyrWiK
AZV5iG96+h74XFmVVY3I/MUdwrxPZ1ztwup+gfwXS6KO6hB47w67tfc72iazYST+
exwKtoWThOL23WEOsIkM1HEnUbY4TRe5uFYjCFEK7jDkKM+sk1VltSNEwapYsGvT
jHhh+U86usGFp8mMyzkUcaA2JuomLvg574HlndUvh7Nadjb2CFsrxvrNxpIQ9x13
5gxd4wwYiDNEbfnLmXXqgI8aJD3iiN4u4t7489uLh7teNXcJOs6Hzhrqz0Igo/Hz
M5gdYvxGL9r5nFfNcSlodV2R74oSCRKJYZKGIpQtIoOXcsfIvXSj+0jzR8Z9gioC
mqfKM5+ITuFIIF9IleVzTz6e9Es41qTzwGSr31Gks3hmx7HKDfMvWKTatmBg/SkX
zZN4jf0G8hNJr2lik15BnfRSeMKrhcfhy5JtMKE9I+3z4mn07G1qCd2h89IMx5Xr
i55CcZz1g9ehUUCWBq7Bg6cumT0opM0jo+47JBtXgzHE6mKJNc43Px37mPFRz/gh
8ULt6zDjzikr6Gd55FM+VldJO7OwKnA/tBh6vq0a+LUssf3EjIAwFeDrzmV/AAzg
SLbu8ol+b69lC1qFf2OFmtU1jIa6CsqNnlaGzG/n2sqij9bBbEuMjAbaK1gBssZ3
xaHN4XauBOT9KtDOwtypG+KJeuTYhsuEtRe/64Dhx4Zc/tn/7EgqYiaY0r3KwB81
Z2fazZFbd5pPYK5rOaay8dskXC/IG+jRxZ8aOStKXLhg7pv/HhBB+SWtN2v9aUDr
L5gPyL2wJJguArToZMzPuYnsCZS4/4WpTil7Zy4WhaDPnotkMk9o/1eLRmGfLPJW
d/m/O2gxAKfJvoIbkd64Te5DKckJj+JAvAxWjGLTADogrswT9RNtg8L+Jj5wineK
8q5lRYb06UCux4vKa+TzDOzoR+oKilyb/1F1nF6tSHyZVhgVdcpOcLOjAr2X9G/k
ZF9KgG6tehiP3GAnhulJn3Zbei+7WbE/PPN5vyMr5dzh7GgDV1KiF47nL3Zahexo
AxoOBrD3AIEeobxxxJFZMwB01MTEaDzycD94U5r/i1zP5qKZOYyotCLQSURS4X7C
kmZeX5A5cmWD2YLfvIbhtyL/ncvTl62FEMh/0rg28pP7oETliLaL+OiGjBD0bI5a
z+aimTmMqLQi0ElEUuF+wgFQwjzjPlqjWaeqLfbfxmFFvhRke1hA240MS5yOaC6U
7/9v0dTWkTmgChCzeMWbfIufyw2yXt+0pT1Tf8eJOz2Vj++wXxBgMJZHtCwSJvFI
NGy37smzxhQ6olybMmcor4mHE3hCLUEHwOSANOKhIPob4D+tdT8NcLSa6QKUTSlR
nUJNFDoEK4efqVazJvAiUf984ZH0FO4Qj8xzqPnMe6ELYYNwlQHXfSoGL5ZU3b12
8F1q6Z3blojKFTyR5hhnt22FW3bA1u87kOoppcUV+mpf3LiQY2jVpeX1tq5hLBcs
dlt6L7tZsT8883m/Iyvl3OHsaANXUqIXjucvdlqF7GjA80r+iR3tSprN/ItZifGr
u/wQeIsjJh2bKqFad2NDF3SM83+M7k36+IqSRxM519+nLmpadTwPOTVr+54sOZXv
0FryCPxlVnF/o9RuKtRoXsemVGWEGqpYLb2rHoW8Zpe6w4+SOVZySYhA6acf3wY4
5o5myk8WWjChtxbOCKdQDBFLdePi1m4bo9/BzBKcFmesIexPVh00uW3BPl+shmb5
O+b6QMEBzuyxqqrb5tziIGrBuhb1ehSJB9cL3sSCaLENclw3+YpdrkPzxrV1muV8
2HkIH8S2blrk7DWH0V/CTa4g/qqeno8CqV+2CJY9eiYn8seHufM9O3NsE26sJUQb
Qu5jL5MWKjw4rqVICbnEHvpTdoENZyUdgp8SWG/94h3IpynykrR2aplhEn1QVj0Z
LBBBrLlHV24fHeY9Y0drGhY3VpJUYdNQ7Cyi+G/8PYjB/Ar56Fzcct4bIH7JZMm4
WARSEOO8t0wJf9auhnmHojBKurARp7eAl/qfbwUIylgByZvfvgL88oo/mLMvkuro
/qf3r6Q1zU/sb8WqaE23pUrZQOPRJYahmX0xzRH0OsQzWok40CO3PrsksrOxwg/9
02DCNA3toC/bIIJgWkRXAaAZvICG51pVXTVCofEXAuyFDun++ZZydcdr8l5v+0qj
5f6PatczjMU9VI8P+UneJSyRp9NvifMHafnRbDwaaTVeb/S91QOyughhX4+NUORu
h3mH1c8T9ZLuCp7HIPTyF6H9zcbkGSG70pwdgDTcAGoOkKvxmBiBmWkWjCMbdRwc
bpUkNs+svMuaxQlj2msmliyx/cSMgDAV4OvOZX8ADOAvbUTmHayNQeDAt7iefF2R
7ejbjelbPlZlMzdPrZe4I1UFcM4NHpI0wKrViTxnukgA7OHXbi81DP+dRV0yocir
MdiKUpG6/96m3kjnZhOWFEBxOZ3E33IcpJ7M21EfKhdpUl9SBvgaQYt8Sv0ErE6U
CAxYX3RNn1IIJyzwLQhtjFfFuwrZFVMB49ix/QwvA0Z9EvsVsnDFyQntJ6StOcjV
bCqkfLmJkTnKZaZW0rQkf2KKZ2UGVIqBMAAOJNX3Qn/u+M6wX2BD/vPk5gd6K29c
WdNAxPaZqytlYS59ksrBfIc2cULn46OLa9UcHMv6DX1KRWlrUaWweRQiUlHkUTum
d9Gv2IVhNVd99x9llFBGHJqdWCZQMKDwusH+WcSXZ9QzMUuFOld3XAFKhdjTS/lA
xJQW0Ucxc0XLuJpUT8KR2xYuz8ZPDSuBX2rP1cBRLg4S6SzN6Q++hJ4v39WYXjlZ
tkKDnOuzpEdnigIZ6w5PkuSJoln0Seo4beNuPAW2P00STmRb3CfP4PifJ9J7nGqU
6dzazrG6s49R82CHv0t6lz0cuwV5UZkFdNIRmXLQrBwZzRBzFcI7+X6Es+WDeLZe
CAxYX3RNn1IIJyzwLQhtjOy9FVfnWN7gUsVbSVzBVEPKM5mKGCMR0jwU37QDC6YF
UflSLOVCVj4HOEgLfn/rdyTOOZUZikiLn0mKBHZfrZcuJ9rFM+LWPK+d1+v2ZZhf
rOfzEvPtH9dNeykLIeeUOIIm5vZGFql1nanN72M0wtsAeDSl4btSYN8vsA1OvJHl
fvpZtWzuEnJsllnlfZBQVaaBBO8cG3iXLd4BnRgAaLqUfX5vg+CpU3er43G+oevT
sDUKgvEvwNqxCarESBecXUBg66ERezfNAFV1hSRTlaggwQ9Xcet0jZhHLGHIUwes
7+lOQOexxZ93xKzErmy9kqKjsT+KYqAPfHxt6uR8k33p3NrOsbqzj1HzYIe/S3qX
CO+mG5GZ6CktQDO7R1iwc7P6ZCv1DCq5FOUwlAVa8qg1imxaDlmwGqeh4QVIYylx
A8JxcA8VmCr+c03QCyDuHTOsKEatOszx6KpB4sDhTQXRTbxhQIuRURUl+m/tZqWd
FN8n7P7/BUiA+0iCoFjHfp3DYylV98RZPpdOJi9AD/Wt2Eg3aiJbWJkI8h1KRaHU
VMzl28Keixqdgv712MBNnpQa7jlt5jky5kfeCtUo2qEL+uMPBnFFNAD6sWYcz1o2
FOa5hD1luybOrHK8N7QKinGR8VW4HDwQgpYQhWOCSY0gXGl8ZR3PU9K439XqOXKU
jHhh+U86usGFp8mMyzkUcRlzjCH6GmQP9Agd+JBR72HLSQR0lKPhvoudD6jO86Tp
NV/0cg6WRpV3BiAVOuWKE2KKZ2UGVIqBMAAOJNX3Qn/u+M6wX2BD/vPk5gd6K29c
WdNAxPaZqytlYS59ksrBfMibKs4nPYg31Tf+bPpFoh3to44qxlZG2pf6p09rRGo7
3sC30F8bT2Q67phaDHe7MTHiWG+O1kQw9K+kHX8uTxpnaIew+1jUresI79U+Yw/Y
Lc/xean24e0qlOphNuD5Kh5RTvXL5BzyNCaCZCtDb/ABlXmIb3r6HvhcWZVVjcj8
vnuOOhAomHCN5MEFnoAxifN4wqN9iQbAETDrxWS3AaVRC73x/RCaFhe5aO6bfM7a
7GS3UTi4q1Lnkn0/3tR99hvtrhrPUfzV9RCRnbh5wtLiZQS3CsXshY5dKv4/mtUP
vZyB50gwUl1yYhgwWnFhxU4mmDokm7oz18YbNBq4JQxZ00DE9pmrK2VhLn2SysF8
wnwL6z1B6236L4xG1nGmCvYk3VfFAB3HiQjiPPAhGTxDNTq4D4taVGsLuPpZTBx2
p5jB1VeR7DAPcvZObIjE/Ddco3UnkHfoyroNLHMb26EnDfkWutxf2QC1E5hJs5Tg
a8hd7DLjcK6cLRWyAnvxdIF2fAkqIvfsLQGh1G/9iJSraA9jTUBgz1FewpO9U+FA
jVu08fm49NarWhPbU8k4SBykDIQuqXimq9K8y8r4HQdJs5cyj1TeIhUll7a6Tond
utca9DgwuIj7u/p1us7+9GRmdLIzzh7ql566GODODxiDx5p98sJ9nezJdCOw3eHS
1jCVtMjZZb8TU9D5OgNelbPMebmT63Sqxulg75HWTglZV/avhZ37GqpvYD47wa8E
VuZVk5S8an8Nn0PY486b7ORsLETh+5vI06dlLfH07WjpzGUiTC42jYcuH7Q1BFpm
rsvGvajA7O1PcJ0DTKgybHjaOwhSLkWFB488IovMEioT1Vq+WBcbducC2OpEB5M9
WaTOahsJuvqWO6HRA/hYkER/o7SoyagDHUQVUeM65pUUB7VKwUFf/l9J5QufFLg0
Xke52GVeb992gCmVrawauvIk7JlFVsxVybc8Uc6Vajd2g4LNagOQgQIfxQJh+G28
sO0yart4MKXi/E9aER5ElIqKnxsHssjpI+rC04jTXJpQg6O5RNb36828z3ECAxQF
E98Ls4m/kX7il6oWS6JsMbwDg0lG5QBJB35bZcbfo0qRQdmXM9vUd7/5UsXx4rMR
HshjoimnR/l+tZyUtZWSWNEFAwhuDJAr6NUwZP+jQUk19SWqixk0JRlDmi1E1kmI
7UoOjZcBoL59IJAVBmunV5l0QPGivL/6LtBJT2SYBMo28xt7/61IXuYjrLlSt28c
yJt5D/ftJ2Nshzu1M8qjbIDO3tm+t55dJOuERJPxte1u3A/5ugq153qeMOp40/EB
zrzpEwQOjMR7qpH83nYC5jraQYEXk5R38noD9FZv69CqVVveuglTLmUQH/0I/0RC
7/iw1Fi/dThByDBSY8QBT9kDSq+EoyWJTtNdCGM82oZmy73GWq3LwqrJ51Dp540w
dgBznaA9eUbOwiskSekllApbVoS9vc5Pyp4rUi0LONVBmqwYA1ntA5FY7ookIBJn
l7Qqx6iYDoMbIBlNVwmHzjl2YCciqNRTXTnO1gr1yzAduTha7thY4Sjhi0JPCgeA
cWXT4gGqiZzLxLK3SP34W88DA0MFIi9pvocDgH9GOIMC3deDr3LnbKy1CAWhpEaT
UYxcq7TVBtysql81RkmvoPibuWJgxgs7JitOWaFq5o6lNXc7bwtebe/O9Oi10oIL
Nc75iLwCPY6yUncGni26MjKCUbo6/b4UPNnBKhgMjseb9Nesrg7znRRuakHPVNMl
tKNq0px05xCPE2A5Zi5zMlZNyxNc3BOWNT0Zxpfd1cGlW3H+CQtfBW0D+HJ4cOAJ
CIHJ/tZAOgNrEfTK9ONQekBg66ERezfNAFV1hSRTlahbCfOk+Pz1k78By4nziC/F
KL1RbxRt9fl01T1XePP3mt4a5AA73YlnYyYSCF/kerExI+XvqWN2CC9ZSKQwV8JC
Hya3x7A0H89dwBZxt8ASQaKGKbxOF0BzWIZbUuM5r1vdnvQofbU+4Bp5ev5XbQQg
BdMS3SPoYQ8zq76yWFj6IQk0VFpnmOue2/xIKLkhekWsuAQuxaMCZ9W8Zm0Nx7eq
bYVbdsDW7zuQ6imlxRX6aoD0bfvTMMYyxziIeBBcfq7WaF6D2mxIOZEno0fiWxGF
4EtPS/7Ot5wuILki4udw0mwklFZXOhzDA8Do9FMp+YiBFdWWeFYrmLh0btJnSZxd
iydQhEBi7CmMo+mCXnxTQ/P3mDCqHz6fp9Yvpfle4XIPQXR2C/AyfZ2xSq5j5Lfv
OnSmpAhAlavkSQpxPaoB1Kwh7E9WHTS5bcE+X6yGZvn+D9M0ehoBfClMXFBiVPSa
tItwlhXFQ4hnzoGoG7b8HbkF8sIKy95HJo49la73WQk5dmAnIqjUU105ztYK9csw
Hbk4Wu7YWOEo4YtCTwoHgMQXqsORPoftTbkpQFEX9uNxqmaLadpA3NpwU/C3yxew
v6Zk31lHg++x690To260FjkPzkEbuWxKmPI8kdmA/jZPCQf53f1LFdqdDWeSaWuH
kxUOBAbv67kHkIugYq7JuFaRTm+xWd0ljQxeHwEE1x46GjP2nbRgMdQnF6B8CDJu
YYqhNfa4UeSHCBrseFlidoN/S/Jszat7xCNwwQicMUBUgHc+DDG+XUb+i0tKluHw
kDswbg26SR8AGvqhpnP47pZkoxdhjX6s6vRopDj6rvpxf9lZO0KYIlYYnDtvfWwU
AGp9V7Sj7ifnf3GuV4/4uwh/uet1IDvmZckxy70bOx1SH8g8a+Q4gw+8TDv+ZC/x
+P7IOsxdC40UosM5cK5J8Ig2emEX49YwGdLV0rj6rJwYxW5odcSze07Ba+kVkb76
DeKAfae1mdA96n6KMVT/2iwQQay5R1duHx3mPWNHaxr9Bmas/1ESe+nc2Has+LPq
nz9bXkT1mfAFWOg6xffGQP99SR5Z2cp4ZPmrhrpxbxczWok40CO3PrsksrOxwg/9
oOqZRfBf+exv+kUbixu2Zmr9MJDjjHdWsnb838+A/v5xfp/eJB3iDZaPzw5xEcuI
bhqSx5wp0Az68hwIB0BhMPFV9SpSOGOk+1PU/VjAzS2ZJzjaxXgsH9y8lmtK6Q1M
xSrtT1EWd97lPBZllWse1gd9d/GQCqaNpD3IQ8I3AaDe3msXIVeUOL5mIu9Mg3A7
G+zm50pPH4RuUI/fsD1bfgfBRQtTxCJHLTJzvpl/+pvIpNvRj8+2szBnunVA8rFf
pt+6zemunhOA3W+vHbZMB2hjAlMSGRHp2YocUDDUE784zG+bcEvIZUIocRnjyHNx
TYiTop+WWgIWUMa0QOYO+8Pj4wiFi+d+EyQTnqwmoNh/v+No4phk/wRCQdzWkMp6
UgwTFQ7Hdh/3BzaDw9TqbFW/P4y905eBOH3OkKrl31ykEDnBgJCExkTz/5Z6IVF0
H8OY/38PPFGeFnBW+A6uEr5xWVoVx1WphqjwlC+NPATrY9FHMza+yg3r4zaYe/b2
TofYPqDMTMpTk7lVyngwf2+R9H/QQQ+os/jBNNiHEtIgcQd1ozsvsxkdmjZnVLDy
qcLNAiOzsZXxWXeX36rUx/zQLfzTF3HAamC315dIY6cUQ4oL86GTdMmh2t8Jfglm
dlt6L7tZsT8883m/Iyvl3M8nw8vkWzaY6NUVx0QZUOM7RUejEVtgo1Y1cDyNqHQd
1xh8egw4zhoBOP6hdGI5uXyA+l6wD1vgtQmO5yZjR722QoOc67OkR2eKAhnrDk+S
5ImiWfRJ6jht4248BbY/TfqCUgTqjhnSXC5OGK1AHLG9vlQIiBusS1bubFsQA5oF
xC2JrVrdRxYbLrZINJXjwh72rd3Zc60I7GE9t3REFRoaX95T3yhH4aS5U78rbq/8
UBKvvgT5JNCCJ9ED6wIW657isSWz3lJjDCeqovpO9jVKJdH216g8E8gzBEaw3P7K
VuYzmApM/+l43OeALROLBvIqK4ksxvzMxIoottUfuJpjVycjFoCzGma4FzgrKlUy
5HnqMXaH/mptblD0U4ug9D7/v1Pjg9UwwsdF7kGivJQ6btamSuLh6l19Vv+VJWzu
bpsANjTkScEh9asJRTJCOu7WIj6k6e5BkvYDtHnQnpbY/sSZSw86SfPSFqHbhEDq
5AYGnSOQTnEJChkrmrkyHiM7cAeRPl8z6MrR1TJgZeydxN9HmkrHjktke1I/l1KF
gNPF1zzgxk1evDO9gg6se7ED8CNSLuWyM6uyZsdT+oLiqKRLPJr+2ONza0XQ+LVJ
i8MSQ4WTwQd1azrHWj0/ETqqx+Whevn9L9mjVZGOQd43vAxwsTHs5bhAsFOYjiv9
Qw9HWnkAp9Zpoauvk56ttAskgvvMgoNPcaDLKDJ+QkYBlXmIb3r6HvhcWZVVjcj8
N1T919wFxEuTW3cJSkYJmlrOJKsu+a5b6vk31V2aLr5OEzCAwnkZkGWxoAAdkf/H
79aSBkrvMsV7TnA0WylG+QGVeYhvevoe+FxZlVWNyPy7fvsNSh4ql1ZmMnD+bMwX
dhzfTa2UKhPpLhPDl2O0WJH+yoXWQj0DHgAhLeqHTlbxVfUqUjhjpPtT1P1YwM0t
cYWHX9ls+xFW9hmaoxO1x/Krd91effyS/J+l8SnQLW7nRlPqzUR/Oc9M1ia94rD0
FOa5hD1luybOrHK8N7QKiss4VGLSk/eqgam343YKXLVpUl9SBvgaQYt8Sv0ErE6U
CAxYX3RNn1IIJyzwLQhtjG7LzwzobihgO/NbpKldy/I6FtZfcXMQtTsp+SxKEndz
W9HOq2DJBxgPAkazTotYAxdvVMnYJaSj2QV6TjRGTgsxZ+FYth151PmSAzUWFME1
QounLJ+NjR0Ez0BYHov60a0E23/qKqaDXVIpNtiXfIJIjEkZaqhXxNFnG/pAHWmN
YAGlAQFYifv4bF2Mkw/bXL3eYOF83CfPEBhhZVGv0XWnLmpadTwPOTVr+54sOZXv
0FryCPxlVnF/o9RuKtRoXi7bD6Hg6jqN/cIRzahqT99hVW5aVZrX7D31oL7YZfRp
VFc/CO7fOCsNtEuYWfJt9ifyx4e58z07c2wTbqwlRBsYXj257xD9tAYJnpC4l35+
mc9YZklpUtWrKvT2lO5b5Vawozf21JR+lU7Vjp2yFi3ewLfQXxtPZDrumFoMd7sx
PCfeAZ/HtJaYKfQsU3zamxUG1LUqiPDce2kx1JOnUf3kKM+sk1VltSNEwapYsGvT
Xke52GVeb992gCmVrawauhhC+1MMx+uwLpoYHvknLG59BuSom/VJ2o+LUKT9W2xr
LLH9xIyAMBXg685lfwAM4CoD3Z+9O2XTEX3MdeAWTYGWtAeowzBHYuJiJHKn+uf8
SfdG1kjHAr2fqohSyNBolF5NXcYSnlpQJZa3IbCetzh0T2IR3yjKpDf9Xop7X2X3
fo6z6xqNTZYody20HdSPLrbNQQcr1K7JK8tqZl/R2FDknE2rTakoaLvk6iWlVTdr
1G9pJXJmIjshA5lLYMVfwcm7mXNsOWEqeL0MaUpOXZJm6GliL/JNbiWYFGB2Y9K3
6eY0nYudXbheYNaWKoGkAx/aG+9AT6Apj5jZayYm7OdnsHvG4YWgbutUclUGc4pU
41BBXFLfhjQt+0ywV2JAApTPQ1Kp54AaZEJUaIDULYKk91aXHWmQIH8NnL2/HT+N
1VPNdO05L4uNxCvUlwuyGnC7POt1oxH7gxtR7FtmywmbtpMJB4sOgz3Mfc2ffthQ
sTUtoteW7CEYyF36fazu6VcwQw7q3vHEq4nnuwqZLvoBKSacIUlPBE1oDKjoKm4U
deoucGEqLhmyB5qUMgXMvx4xzPdwfxAMHxSRAADmEebm3XQl5YsL55VDEz7AOu2L
1FzCRn87UPm/1Td2ISgGRR6hMgoAWbYBiE03dEG8nEpdCnI7DLOfobSIMFUcEVTw
Vg6Ug3E9H7F3z9flr1igRcWgvIH2PvAkkUql+k6RM9XvCPMFLNQ4vCzX+dYsBFaH
OqTl5o8ZvjgE+qNbk+3Nua4ZYngYGTLFZL11u521fAw=
|
[
"[email protected]"
] | |
4fa5e4bfbcb5d4dec360160ee5738b8e68aa6d1d
|
60b0e49d153f7581ce89372c2b2d237359872b8d
|
/billboard/wsgi.py
|
48984655e483643c48ff8a25e6963156a348ba03
|
[] |
no_license
|
talkl/billboard
|
b8bd306b3b74ef193351e181077d3149cf534edb
|
040c344c73fb7f6099b7e1d461e2951dea2cbb16
|
refs/heads/master
| 2020-04-16T10:17:00.388726 | 2019-01-13T11:46:18 | 2019-01-13T11:46:18 | 164,896,745 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 402 |
py
|
"""
WSGI config for {{ project_name }} project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "billboard.settings")
application = get_wsgi_application()
|
[
"[email protected]"
] | |
ddb052956a9b3c82471c441582e3b5d983378e07
|
690ed5a6611f9b3ffb272fce1c48ce7ded67791d
|
/audio/dial_tone_wav.py
|
6a0b51ebfd6c3ea6491853ebeae69988ab675f2d
|
[] |
no_license
|
dservo/expl_wireless
|
96d0ec4e783a3834c35edc156f89a0d83fba74d5
|
31a40b176c13978d5752372aa01082db1025b1f3
|
refs/heads/master
| 2020-04-07T05:46:28.576866 | 2018-11-20T16:57:30 | 2018-11-20T16:57:30 | 158,109,241 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,499 |
py
|
#!Z:\gr-build\src-stage2-python\gr-python27\python.exe
#
# Copyright 2004,2005,2007,2008,2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
# GNU Radio example program to record a dial tone to a WAV file
from gnuradio import gr
from gnuradio import blocks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
try:
from gnuradio import analog
except ImportError:
sys.stderr.write("Error: Program requires gr-analog.\n")
sys.exit(1)
class my_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
usage = "%prog: [options] filename"
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option("-r", "--sample-rate", type="eng_float", default=48000,
help="set sample rate to RATE (48000)")
parser.add_option("-N", "--samples", type="eng_float", default=None,
help="number of samples to record")
(options, args) = parser.parse_args ()
if len(args) != 1 or options.samples is None:
parser.print_help()
raise SystemExit, 1
sample_rate = int(options.sample_rate)
ampl = 0.1
src0 = analog.sig_source_f(sample_rate, analog.GR_SIN_WAVE, 350, ampl)
src1 = analog.sig_source_f(sample_rate, analog.GR_SIN_WAVE, 440, ampl)
head0 = blocks.head(gr.sizeof_float, int(options.samples))
head1 = blocks.head(gr.sizeof_float, int(options.samples))
dst = blocks.wavfile_sink(args[0], 2, int(options.sample_rate), 16)
self.connect(src0, head0, (dst, 0))
self.connect(src1, head1, (dst, 1))
if __name__ == '__main__':
try:
my_top_block().run()
except KeyboardInterrupt:
pass
|
[
"[email protected]"
] | |
d3c659c5b2ff919672ec54e7eac8e65d13674bbe
|
9e510a65df0400925845a29e43ae5ddd010671f8
|
/appengine/subscription_handlers.py
|
53b1e2c41d7691ccc796637e5b3b77dcdb81ffe2
|
[] |
no_license
|
nstahl/scoping_nyc
|
bda4c8beee8c5c9e3c3aab1ddc8a38b63da11f2b
|
bfb8b00f0d3196534551ad89aa0b8fd335e61897
|
refs/heads/master
| 2020-06-05T07:02:40.072555 | 2013-04-06T16:26:19 | 2013-04-06T16:26:19 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,575 |
py
|
import app_constants
import json
import logging
import time
import urllib
import webapp2
from google.appengine.ext import db
from google.appengine.api import urlfetch
class LocationInfo(db.Model):
""" Models a location and everything we want to keep about it """
object_id = db.StringProperty(indexed = False) # Object Id of the subscription
id = db.StringProperty(indexed = False) # id of the subscription
loc = db.StringProperty(indexed = False)
date = db.DateTimeProperty(auto_now_add=True, indexed = False)
def to_dict(self):
return dict([(p, unicode(getattr(self, p))) for p in self.properties()])
class ListSubscriptions(webapp2.RequestHandler):
""" Lists the subscriptions that SnapCity app has on the Instagram Server.
The response is the response that we get from Instagram.
Example usage: http://localhost:8080/listsubscriptions
"""
def get(self):
form_fields = {
'client_id': app_constants.CLIENT_ID,
'client_secret' : app_constants.CLIENT_SECRET
}
form_data = urllib.urlencode(form_fields)
result = urlfetch.fetch(url='%s?%s'%(app_constants.SUBSCRIPTION_URL,form_data),
method=urlfetch.GET)
json_data = json.loads(result.content)
logging.info("List of subscribers:%s", json.dumps(json_data,indent=2))
self.response.write("<pre>")
self.response.write(json.dumps(json_data,indent=2))
self.response.write("</pre>")
class DeleteSubscriptions(webapp2.RequestHandler):
""" Deletes subscriptions both from Instagram and from the DB we keep.
You can delete single subscriptions by providing the id, or
you can delete all the subscriptions.
Parameters:
id : id of the subscription you want to delete.
if you omit id, or set id to all, it will delete all subscriptions.
Example usage: http://localhost:8080/deletesubscriptions?id=all
This class does the same thing both for get or post requests.
"""
def get(self):
return self.post()
def post(self):
id = self.request.get('id').lower()
if not id:
id = 'all'
self.response.headers['Content-Type'] = 'text/plain'
if self._delete_subscriber(id):
self.response.write('Deleted subscriptions for %s'%id)
else:
self.response.write('Failed to delete subscriptions for %s'%id)
def _delete_subscriber(self, id):
form_fields = {
'client_id': app_constants.CLIENT_ID,
'client_secret' : app_constants.CLIENT_SECRET,
}
if id == "all":
form_fields["object"] = "all"
else:
form_fields['id'] = id
form_data = urllib.urlencode(form_fields)
logging.info("Calling delete with: %s", form_data)
result = urlfetch.fetch(url='%s?%s'%(app_constants.SUBSCRIPTION_URL, form_data),
method=urlfetch.DELETE)
json_data = json.loads(result.content)
logging.info("Delete returned:%s", json.dumps(json_data,indent=2))
if json_data["meta"]["code"]!= 200 :
logging.info("Status code not 200: %s", result.content)
return False
return True
class MakeSubscription(webapp2.RequestHandler):
""" Makes a subscription for a location.
Only certain locations are supported.
Example usage:
http://localhost/makesubsciption?loc=newyork
"""
def get(self):
loc = self.request.get('loc').lower()
return_msg = ''
if loc not in app_constants.GEOCODES:
return_msg = 'Error: \'%s\' is not a recognized location\n'%loc
return_msg += 'This app only works with %s'%app_constants.MATCHERS.keys()
else:
response_arr = self._register_subscriber(loc)
if response_arr:
#store it
db_id = int(time.mktime(time.gmtime()))
new_key = db.Key.from_path('LocationInfo', db_id)
locsub = LocationInfo(key=new_key)
locsub.id = response_arr[0]
locsub.object_id = response_arr[1]
locsub.loc = loc
locsub.put()
return_msg = 'Made subscription with id:%s for loc:%s '%(str(response_arr[0]),loc)
else:
return_msg = 'Failed to make subscription'
self.response.headers['Content-Type'] = 'text/plain'
self.response.write(return_msg)
def _register_subscriber(self, loc):
form_fields = {
'client_id': app_constants.CLIENT_ID,
'client_secret' : app_constants.CLIENT_SECRET,
'verify_token' : app_constants.VERIFY_TOKEN,
'object' : 'geography',
'aspect' : 'media',
'lat' : app_constants.GEOCODES[loc][0],
'lng' : app_constants.GEOCODES[loc][1],
'radius' : '5000',
'callback_url' : 'http://snapcity02.appspot.com/stream'
}
form_data = urllib.urlencode(form_fields)
#post to instagram
result = urlfetch.fetch(url=app_constants.SUBSCRIPTION_URL,
payload=form_data,
method=urlfetch.POST)
if result.status_code != 200:
logging.info("Status code not 200, it is %s: %s", result.status_code, result.content)
return
#success,some info about the subscription follows
data = json.loads(result.content)
object_id = data["data"]["object_id"]
id = data["data"]["id"]
logging.info("Registered subscriber for loc:%s, id:%s and object_id:%s", loc, id, object_id)
return [id, object_id]
class Helper(object):
@staticmethod
def getLocation():
locsubs = db.GqlQuery("SELECT * FROM LocationInfo")
if not locsubs.count():
logging.error('Cannot fetch. No current subscription')
return
return locsubs[0]
|
[
"[email protected]"
] | |
7886885f54375d2f98bbbf17d45a2cb79cd2a9ec
|
46040c370239ac6e91372e61d9729a22ba9af33c
|
/lw/translations/models/__init__.py
|
cbb5793539bbcc7a879c4befabaaaa02af0411ee
|
[] |
no_license
|
lesswrong-ru/django-site
|
85e066ab42857fa0d81c98a1efaf2a0dc403d4d2
|
ac4d6f0a5a11751ea9d3eb16f5b8bab53cb4f731
|
refs/heads/master
| 2021-06-17T01:22:58.764120 | 2021-03-26T14:20:11 | 2021-03-26T14:20:11 | 196,754,119 | 0 | 1 | null | 2021-03-26T14:20:12 | 2019-07-13T18:32:09 |
Python
|
UTF-8
|
Python
| false | false | 201 |
py
|
from lw.translations.models.translation_index_page import TranslationIndexPage
from lw.translations.models.translation_page import TranslationPage
from lw.translations.models.book_page import BookPage
|
[
"[email protected]"
] | |
e9056dcc8a8628a344e0ddf4e9add6e257ddabae
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_310/ch25_2019_03_01_00_00_25_791523.py
|
70bb03eaebe4809ffcc0bcea7e9b4073d6f8312b
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628 | 2020-12-16T05:21:31 | 2020-12-16T05:21:31 | 306,735,108 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 160 |
py
|
km=int(input(distancia):
if km <=200:
preco= km*0.5
print("{:.2f}".format(preco))
else:
preco= km*0.45
print("{:.2f}".format(preco))
|
[
"[email protected]"
] | |
3cc7dc94fdb029bb70bc409a3dc8ffef0368bf06
|
2cec0797981b73c497866a75fb6d33f4c3a4c06c
|
/brain_tumor_classification/modules/data/utils.py
|
e5cd18bf3458f2de6aa299ac09b545c77cfc04b4
|
[] |
no_license
|
Vadbeg/brain_tumor_classification
|
ed44e50076627a0682e2eca13cf115716c510ed1
|
ba87b65717cd1fe75871f3108db1394de271c62d
|
refs/heads/master
| 2023-08-01T13:46:27.176780 | 2021-09-19T15:14:32 | 2021-09-19T15:14:32 | 397,667,617 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,718 |
py
|
"""Module with utilities for dataset"""
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
from monai.transforms import (
AddChanneld,
Compose,
LoadImaged,
Resized,
ScaleIntensityRanged,
Transform,
)
from torch.utils.data import DataLoader, Dataset
def get_train_val_paths(
train_path: Union[str, Path],
train_split_percent: float = 0.7,
ct_file_extension: str = '*.nii.gz',
item_limit: Optional[int] = None,
shuffle: bool = True,
) -> Tuple[List[Path], List[Path]]:
train_path = Path(train_path)
list_of_paths = list(train_path.glob(ct_file_extension))
if shuffle:
np.random.shuffle(list_of_paths)
edge_value = int(train_split_percent * len(list_of_paths))
train_list_of_paths = list_of_paths[:edge_value]
val_list_of_paths = list_of_paths[edge_value:]
if item_limit:
train_list_of_paths = train_list_of_paths[:item_limit]
val_list_of_paths = val_list_of_paths[:item_limit]
return train_list_of_paths, val_list_of_paths
def create_data_loader(
dataset: Dataset, batch_size: int = 1, shuffle: bool = True, num_workers: int = 2
) -> DataLoader:
data_loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=True,
)
return data_loader
def get_load_transforms(
img_key: str,
original_min: float = 0.0,
original_max: float = 200.0,
res_min: float = 0.0,
res_max: float = 1.0,
spatial_size: Tuple[int, int, int] = (196, 196, 128),
) -> Compose:
preprocessing_transforms = get_preprocessing_transforms(
img_key=img_key,
original_min=original_min,
original_max=original_max,
res_min=res_min,
res_max=res_max,
spatial_size=spatial_size,
)
load_transforms = Compose(
[LoadImaged(keys=[img_key], dtype=np.float32), preprocessing_transforms]
)
return load_transforms
def get_preprocessing_transforms(
img_key: str,
original_min: float = 0.0,
original_max: float = 200.0,
res_min: float = 0.0,
res_max: float = 1.0,
spatial_size: Tuple[int, int, int] = (196, 196, 128),
) -> Compose:
preprocessing_transforms = Compose(
[
AddChanneld(keys=[img_key]),
ScaleIntensityRanged(
keys=[img_key],
a_min=original_min,
a_max=original_max,
b_min=res_min,
b_max=res_max,
clip=True,
),
Resized(keys=[img_key], spatial_size=spatial_size),
]
)
return preprocessing_transforms
|
[
"[email protected]"
] | |
99dc52c0d9b077fb1c98d68ddd2a713856f59b3b
|
8cacc6f6ba0f18f0ea051869d631d2b3fa0e64f1
|
/whitechapel_blog/migrations/0007_auto_20170407_1124.py
|
05d461b9cfa2f565b5fa44b091946f6a67c5319b
|
[] |
no_license
|
ddunc23/survey-of-london-whitechapel
|
9099d644a8b3616a6be6b32f9b412e933d65a75d
|
0a37ade163a260d670b020f243e1fa4322f8c655
|
refs/heads/master
| 2022-06-28T14:16:23.167916 | 2018-07-20T15:19:34 | 2018-07-20T15:19:34 | 51,997,516 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 637 |
py
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
class Migration(migrations.Migration):
dependencies = [
('whitechapel_blog', '0006_post_past_event'),
]
operations = [
migrations.AddField(
model_name='post',
name='post_preview',
field=models.CharField(max_length=140, blank=True),
),
migrations.AddField(
model_name='post',
name='post_thumbnail',
field=models.ImageField(upload_to=b'', null=True, verbose_name=b'Thumbnail Image', blank=True),
),
]
|
[
"[email protected]"
] | |
b7d7318c9811ece1a6235ddd3b823c0e77caf9d3
|
c760566d38787fc212d95d1b18172ad8093e2758
|
/muse_redshifting.py
|
e58c15958c9b05998a506c259f6572abaf9f230c
|
[
"Unlicense"
] |
permissive
|
sdjohnson-astro/redshifting
|
86b35111607034d59621e78823fc862fc30992f6
|
2aa81524fec8717cd4469f64d729a609bec1a9b9
|
refs/heads/master
| 2022-12-26T14:25:49.720710 | 2022-12-13T13:59:41 | 2022-12-13T13:59:41 | 170,399,163 | 7 | 4 |
Unlicense
| 2021-02-10T03:27:14 | 2019-02-12T22:10:25 |
Python
|
UTF-8
|
Python
| false | false | 72,406 |
py
|
#!/usr/bin/env python
from PyQt5 import QtGui, QtCore # (the example applies equally well to PySide)
import pyqtgraph as pg
import sys
import os
from astropy.io import fits
from astropy.table import Table, Column, vstack, unique
from scipy.signal import savgol_filter
from scipy.interpolate import interp1d
from astropy.table import Table
import numpy as np
import glob
import argparse
import pyqtgraph.parametertree as pt
import redshift
import shutil
import mpdaf
def formatspectrum(wave, flux, error=0.0, mask=1, model=0.0, flat=0.0, arc=0.0,raw=0.0,rawerr=0.0):
spec = np.zeros(len(flux),
dtype={'names':('wave', 'flux', 'error',
'mask', 'model', 'flat', 'arc', 'raw', 'rawerr'),
'formats':(float, float, float, float, float,
float, float,float,float)})
# spec['wave'] = 0.0
# spec['flux'] = 0.0
# spec['error'] = 0.0
# spec['mask'] = 1
# spec['model'] = 0.0
# spec['flat'] = 0.0
# spec['arc'] = 0.0
spec['wave'] = wave
spec['flux'] = flux
spec['error'] = error
spec['model'] = model
spec['mask'] = mask
spec['flat'] = flat
spec['arc'] = arc
spec['raw'] = raw
spec['rawerr'] = rawerr
spec['error'][~np.isfinite(spec['flux'])] = 0.0
spec['flux'][~np.isfinite(spec['flux'])] = 0.0
spec['flux'][~np.isfinite(spec['error'])] = 0.0
spec['error'][~np.isfinite(spec['error'])] = 0.0
index = np.where((spec['error'] == 0.0) | ((spec['flux'] == 0.0) & (spec['error'] == 1.0)))
spec['mask'][index] = 0.0
return spec
def getspec1Dname(mask, row, id, name):
path = '{}_spec1D'.format(mask)
return '{}/{}_{}_{}_spec1D.fits'.format(path, row, id, name)
def getspec2Dname(mask, row, id, name):
path = '{}_spec1D'.format(mask)
return '{}/{}_{}_{}_spec2D.fits'.format(path, row, id, name)
def getredshift1Dname(mask, row, id, name):
path = '{}_spec1D'.format(mask)
return '{}/{}_{}_{}_redshift.fits'.format(path, row, id, name)
#for CarPy output
def createmusefiles(mask):
#if version=='cosmos':
# print('Creating spec1D files')
# spec1Darray = fits.getdata(mask + '_1spec.fits')
# header1D = fits.getheader(mask + '_1spec.fits')
# # Create wavelength array
# wave = header1D['CRVAL1'] + np.arange(header1D['NAXIS1'])*header1D['CDELT1']
# nRows = spec1Darray.shape[1]
# path = '{}_spec1D'.format(mask)
# os.mkdir(path)
#
# rows = Column(np.arange(nRows, dtype='int') + 1, name='row')
# ids = Column(np.chararray(nRows, itemsize=20), name='id')
# classes = Column(np.chararray(nRows, itemsize=6), name='class')
# redshifts = Column(np.zeros(nRows), name='redshift')
# qualities = Column(np.zeros(nRows, dtype='int') - 1, name='quality')
# comments = Column(np.chararray(nRows, itemsize=100), name='comment')
#
# extpos = Column(np.zeros(nRows,dtype='float'), name='extpos')
# extaper = Column(np.zeros(nRows,dtype='float'), name='extaper')
# extflag = Column(np.zeros(nRows,dtype=bool), name='extflag')
# boxes = Column(np.zeros(nRows,dtype=bool), name='alignbox')
# # objects = Table([rows, ids, classes, redshifts, qualities, comments])
# objects = Table([rows, ids, classes, redshifts, qualities, comments, extpos, extaper,extflag])
# objects['comment'] = 'none'
#
# for i in range(nRows):
# flux1Draw = spec1Darray[0, i, :]
# error1Draw = spec1Darray[1, i, :]
# flat1D = spec1Darray[2, i, :]
# arc1D = spec1Darray[3, i, :]
# flux1D = spec1Darray[4, i, :]
# error1D = spec1Darray[5, i, :]
# spec = formatspectrum(wave, flux1D, error1D, 1.0, 0.0, flat1D, arc1D)
# apnum1D = header1D['APNUM{}'.format(i+1)]
# apnum1Darray = apnum1D.split(' ')
# id = apnum1Darray[1]
# savename = getspec1Dname(mask, i+1, id)
# fits.writeto(savename, spec)
# objects[i]['id'] = id
# print(i+1)
# objects['class'] = 'galaxy'
# objects['quality'] = -1
# objects.write('{}/{}_objects.fits'.format(path, mask), overwrite=True)
print('Creating spec1D and 2D files')
objects = Table.read('{}.dat'.format(mask), format='ascii.fixed_width')
objects['class'] = 'galaxy'
objects['quality'] = -1
objects['redshift'] = 0.0
objects['comment'] = 'none '
# Create spec1D files
path = '{}_spec1D'.format(mask)
os.mkdir(path)
# Crate object file
objects.write('{}_spec1D/{}_objects.fits'.format(mask, mask), overwrite=True)
cube = mpdaf.obj.Cube('{}.fits'.format(mask))
data = np.array(cube.data)
dimW, dimY, dimX = np.shape(data)
wave = cube[:, 0, 0].wave.coord(np.arange(0, cube.shape[0], 1.0))
wcs = cube.wcs
for object in objects:
# Get the 1D spectrum
print('{} {}'.format(object['row'], object['id']))
spec = cube.aperture((object['dec'], object['ra']), object['radius'])
flux = np.array(spec.data)
ivar = np.array(1/(spec.var*1.4))
error = np.sqrt(1/ivar)
spec = formatspectrum(wave, flux, error)
# Save the 1D spectrum
savename = getspec1Dname(mask, object['row'], object['id'], object['name'])
print(savename)
fits.writeto(savename, spec, overwrite=True)
# Get the 2D spectrum
yx = wcs.sky2pix((object['dec'], object['ra']))[0]
y = yx[0]
x = yx[1]
#print('{}'.format(object['id']))
#print('y, x={}, {}'.format(y, x))
#print(np.shape(data))
minx = int(x-0.6/0.2)
if minx < 0:
minx = 0
maxx = int(x+0.6/0.2)
if maxx >= dimX:
maxx = dimX - 1
miny = int(y-3.0/0.2)
if miny < 0:
miny = 0
maxy = int(y+3.0/0.2)
if maxy >= dimY:
maxy = dimY - 1
#print('x={} {} to {}'.format(x, minx, maxx))
#print('y={} {} to {}'.format(y, miny, maxy))
spec2D = data[:, miny:maxy, minx:maxx]
spec2D = np.nansum(spec2D, axis=2)
#print('spec2D = {}'.format(np.shape(spec2D)))
#print('')
savename = getspec2Dname(mask, object['row'], object['id'], object['name'])
fits.writeto(savename, spec2D, overwrite=True)
#print(objects)
class muse_redshiftgui:
"""Defining the GUI class for MUSE redshift assignment"""
def __init__(self, mask, xsize=1000, ysize=1000):
self.mask = mask
self.xsize = xsize
self.ysize = ysize
# Read in the data cube
self.cube = mpdaf.obj.Cube('{}.fits'.format(self.mask))
self.whitelight = np.rot90(fits.getdata('{}_WHITE.fits'.format(self.mask)), 3)
self.cube_wcs = self.cube.wcs
self.wave = self.cube[:, 0, 0].wave.coord(np.arange(0, self.cube.shape[0], 1.0))
path = '{}_spec1D'.format(mask)
self.objects = Table.read('{}/{}_objects.fits'.format(path, mask))
# Set the initial row number to zero
self.row = 1
self.nRows = len(self.objects)
self.smoothing = 1
self.z = 0.0
self.redshifted = 0
# masking flags
self.mask_flag = 0
self.mask_left = np.array([0.0, 0.0])
self.mask_right = np.array([0.0, 0.0])
self.object_labelled = False
# Get the GUI ready
self.app = QtGui.QApplication([]) # Always start by initializing Qt
self.widget = QtGui.QWidget() # Define a top-level widget
# Set the widget size
self.widget.resize(self.xsize, self.ysize)
# Create the white-light image gui
#self.widget_whitelight = QtGui.QWidget() # Define a top-level widget
#self.widget_whitelight.resize(np.shape(self.whitelight)[0]*5, np.shape(self.whitelight)[1]*5)
#self.plot_whitelight_win = pg.GraphicsLayoutWidget()
#self.plot_whitelight_plot = self.plot_whitelight_win.addPlot()
#self.plot_whitelight = pg.ImageItem(border='w')
#self.plot_whitelight_plot.addItem(self.plot_whitelight)
#self.plot_whitelight_plot.setMouseEnabled(x=False, y=False)
#self.plot_whitelight_hist = pg.HistogramLUTWidget()
#self.plot_whitelight_hist.setImageItem(self.plot_whitelight)
#self.plot_whitelight_win.setAspectLocked(True)
#
#cm = self.plot_whitelight_hist.gradient.colorMap()
#cm.pos=np.array([1.,0.]) #is this really the easiest way to make white->black into black->white?
#self.plot_whitelight_hist.gradient.setColorMap(cm)
#self.layout_whitelight = QtGui.QGridLayout()
#self.widget_whitelight.setLayout(self.layout_whitelight)
#self.layout_whitelight.addWidget(self.plot_whitelight_win, 0, 0)
#self.layout_whitelight.addWidget(self.plot_whitelight_hist, 0, 1)
self.whitelight_win = QtGui.QMainWindow()
self.whitelight_win.resize(800,800)
self.whitelight_view = pg.ImageView()
self.whitelight_win.setCentralWidget(self.whitelight_view)
self.whitelight_win.show()
self.whitelight_win.setWindowTitle('pyqtgraph example: ImageView')
cm = self.whitelight_view.getHistogramWidget().gradient.colorMap()
cm.pos=np.array([1.,0.])
self.whitelight_view.setColorMap(cm)
#self.draw_whitelight()
#self.widget_whitelight.show()
#self.app.exec_()
# Set the background plotting widget
self.plot_redshift = pg.PlotWidget()
self.plot_redshift.getAxis('bottom').setPen(pg.mkPen('w', width=2))
self.plot_redshift.getAxis('top').setPen(pg.mkPen('w', width=2))
self.plot_redshift.getAxis('left').setPen(pg.mkPen('w', width=2))
self.plot_redshift.getAxis('right').setPen(pg.mkPen('w', width=2))
self.plot_redshift.getAxis('bottom').setStyle(tickLength=-15)
self.plot_redshift.getAxis('top').setStyle(tickLength=-15)
self.plot_redshift.getAxis('left').setStyle(tickLength=-15)
self.plot_redshift.getAxis('right').setStyle(tickLength=-15)
self.plot_redshift.showAxis('right')
self.plot_redshift.showAxis('top')
self.plot_redshift.setLabel('bottom', 'redshift')
self.plot_redshift.setLabel('left', 'chi2')
# Set the 2D spectrum
#self.plot_spec2D = pg.ImageView()
#self.plot_spec2D.removeItem(self.plot_spec2D.getHistogramWidget())
self.plot_spec2D_win = pg.GraphicsLayoutWidget()
# self.plot_spec2D_view = self.plot_spec2D_win.addViewBox()
self.plot_spec2D_plot = self.plot_spec2D_win.addPlot()
self.plot_spec2D = pg.ImageItem(border='w')
self.plot_spec2D_plot.addItem(self.plot_spec2D)
self.plot_spec2D_plot.setMouseEnabled(x=False, y=False)
self.plot_spec2D_hist = pg.HistogramLUTWidget()
self.plot_spec2D_hist.setImageItem(self.plot_spec2D)
cm = self.plot_spec2D_hist.gradient.colorMap()
cm.pos=np.array([1.,0.]) #is this really the easiest way to make white->black into black->white?
self.plot_spec2D_hist.gradient.setColorMap(cm)
# self.plot_spec2D.scene().sigMouseMoved.connect(self.mouseMoved_spec2D)
# Set the 1D spectrum
self.plot_spec1D = pg.PlotWidget()
self.plot_spec1D.getAxis('bottom').setPen(pg.mkPen('w', width=2))
self.plot_spec1D.getAxis('top').setPen(pg.mkPen('w', width=2))
self.plot_spec1D.getAxis('left').setPen(pg.mkPen('w', width=2))
self.plot_spec1D.getAxis('right').setPen(pg.mkPen('w', width=2))
self.plot_spec1D.getAxis('bottom').setStyle(tickLength=-15)
self.plot_spec1D.getAxis('top').setStyle(tickLength=-15)
self.plot_spec1D.getAxis('left').setStyle(tickLength=-15)
self.plot_spec1D.getAxis('right').setStyle(tickLength=-15)
self.plot_spec1D.showAxis('right')
self.plot_spec1D.showAxis('top')
self.plot_spec1D.setLabel('bottom', 'Wavelength [Å]')
# self.plot_spec2D.getAxis('bottom').linkToView(self.plot_spec1D.getVieWBox())
#self.plot_spec1D.setLabel('left', 'Flux')
self.mouse_x_spec1D = 0.0
self.mouse_y_spec1D = 0.0
self.mouse_x_spec2D = 0.0
self.mouse_y_spec2D = 0.0
# Tie the image and spectrum
# self.plot_spec2D.translate(4000,0)
# self.plot_spec2D.scale(2,1)
# self.plot_spec2D_view.linkView(self.plot_spec2D_view.XAxis,self.plot_spec1D.getViewBox())
# Setup the layout
self.layout = QtGui.QGridLayout()
self.widget.setLayout(self.layout)
# Set up right click menu
self.featureListMenu = QtGui.QMenu("Galaxy lines")
self.OVI1033 = QtGui.QAction("OVI 1033.82", self.featureListMenu)
self.OVI1033.triggered.connect(self.setRedshiftOVI1033)
self.featureListMenu.addAction(self.OVI1033)
self.HI1215 = QtGui.QAction("HI Lya 1215.24", self.featureListMenu)
self.HI1215.triggered.connect(self.setRedshiftHI1215)
self.featureListMenu.addAction(self.HI1215)
self.NV1240 = QtGui.QAction("NV 1240.81", self.featureListMenu)
self.NV1240.triggered.connect(self.setRedshiftNV1240)
self.featureListMenu.addAction(self.NV1240)
self.CIV1549 = QtGui.QAction("CIV 1549.48", self.featureListMenu)
self.CIV1549.triggered.connect(self.setRedshiftCIV1549)
self.featureListMenu.addAction(self.CIV1549)
self.OIII1665 = QtGui.QAction("OIII 1665.85", self.featureListMenu)
self.OIII1665.triggered.connect(self.setRedshiftOIII1665)
self.featureListMenu.addAction(self.OIII1665)
self.CIII1908 = QtGui.QAction("CIII 1908.734", self.featureListMenu)
self.CIII1908.triggered.connect(self.setRedshiftCIII1908)
self.featureListMenu.addAction(self.CIII1908)
self.MgII2799 = QtGui.QAction("MgII 2799.117", self.featureListMenu)
self.MgII2799.triggered.connect(self.setRedshiftMgII2799)
self.featureListMenu.addAction(self.MgII2799)
self.OII3728 = QtGui.QAction("[OII] 3728.60", self.featureListMenu)
self.OII3728.triggered.connect(self.setRedshiftOII3728)
self.featureListMenu.addAction(self.OII3728)
self.CaIIK3934 = QtGui.QAction("CaII K 3934.777", self.featureListMenu)
self.CaIIK3934.triggered.connect(self.setRedshiftCaIIK3934)
self.featureListMenu.addAction(self.CaIIK3934)
self.CaIIH3969 = QtGui.QAction("CaII H 3969.588", self.featureListMenu)
self.CaIIH3969.triggered.connect(self.setRedshiftCaIIH3969)
self.featureListMenu.addAction(self.CaIIH3969)
self.Hd4102 = QtGui.QAction("Hd 4102.89", self.featureListMenu)
self.Hd4102.triggered.connect(self.setRedshiftHd4102)
self.featureListMenu.addAction(self.Hd4102)
self.Gband4305 = QtGui.QAction("G-band 4305.61", self.featureListMenu)
self.Gband4305.triggered.connect(self.setRedshiftGband4305)
self.featureListMenu.addAction(self.Gband4305)
self.Hg4341 = QtGui.QAction("Hg 4341.68", self.featureListMenu)
self.Hg4341.triggered.connect(self.setRedshiftHg4341)
self.featureListMenu.addAction(self.Hg4341)
self.OIII4364 = QtGui.QAction("[OIII] 4364.436", self.featureListMenu)
self.OIII4364.triggered.connect(self.setRedshiftOIII4364)
self.featureListMenu.addAction(self.OIII4364)
self.Hb4862 = QtGui.QAction("Hb 4862", self.featureListMenu)
self.Hb4862.triggered.connect(self.setRedshiftHb4862)
self.featureListMenu.addAction(self.Hb4862)
self.OIII4960 = QtGui.QAction("[OIII] 4960.295", self.featureListMenu)
self.OIII4960.triggered.connect(self.setRedshiftOIII4960)
self.featureListMenu.addAction(self.OIII4960)
self.OIII5008 = QtGui.QAction("[OIII] 5008.240", self.featureListMenu)
self.OIII5008.triggered.connect(self.setRedshiftOIII5008)
self.featureListMenu.addAction(self.OIII5008)
self.MgI5176 = QtGui.QAction("MgI 5176.7", self.featureListMenu)
self.MgI5176.triggered.connect(self.setRedshiftMgI5176)
self.featureListMenu.addAction(self.MgI5176)
self.NaI5895 = QtGui.QAction("NaI 5895.6", self.featureListMenu)
self.NaI5895.triggered.connect(self.setRedshiftNaI5895)
self.featureListMenu.addAction(self.NaI5895)
self.OI6302 = QtGui.QAction("[OI] 6302.046", self.featureListMenu)
self.OI6302.triggered.connect(self.setRedshiftOI6302)
self.featureListMenu.addAction(self.OI6302)
self.OI6365 = QtGui.QAction("[OI] 6365.536", self.featureListMenu)
self.OI6365.triggered.connect(self.setRedshiftOI6365)
self.featureListMenu.addAction(self.OI6365)
self.NII6549 = QtGui.QAction("[NII] 6549.86", self.featureListMenu)
self.NII6549.triggered.connect(self.setRedshiftNII6549)
self.featureListMenu.addAction(self.NII6549)
self.Ha6564 = QtGui.QAction("Ha 6564.61", self.featureListMenu)
self.Ha6564.triggered.connect(self.setRedshiftHa6564)
self.featureListMenu.addAction(self.Ha6564)
self.NII6585 = QtGui.QAction("[NII] 6585.27", self.featureListMenu)
self.NII6585.triggered.connect(self.setRedshiftNII6585)
self.featureListMenu.addAction(self.NII6585)
self.SII6718 = QtGui.QAction("[SII] 6718.29", self.featureListMenu)
self.SII6718.triggered.connect(self.setRedshiftSII6718)
self.featureListMenu.addAction(self.SII6718)
self.SII6732 = QtGui.QAction("[SII] 6732.67", self.featureListMenu)
self.SII6732.triggered.connect(self.setRedshiftSII6732)
self.featureListMenu.addAction(self.SII6732)
self.CaII8500 = QtGui.QAction("CaII 8500.36", self.featureListMenu)
self.CaII8500.triggered.connect(self.setRedshiftCaII8500)
self.featureListMenu.addAction(self.CaII8500)
self.CaII8544 = QtGui.QAction("CaII 8544.44", self.featureListMenu)
self.CaII8544.triggered.connect(self.setRedshiftCaII8544)
self.featureListMenu.addAction(self.CaII8544)
self.CaII8664 = QtGui.QAction("CaII 8664.52", self.featureListMenu)
self.CaII8664.triggered.connect(self.setRedshiftCaII8664)
self.featureListMenu.addAction(self.CaII8664)
self.plot_spec1D.getPlotItem().ctrlMenu = []
self.plot_spec1D.getPlotItem().ctrlMenu = [self.featureListMenu]
# Add listeners
self.plot_spec1D.scene().sigMouseMoved.connect(self.mouseMoved_spec1D)
self.plot_spec1D.keyPressEvent = self.keypress_spec1D
self.plot_redshift.scene().sigMouseMoved.connect(self.mouseMoved_redshift)
self.plot_redshift.keyPressEvent = self.keypress_redshift
self.paramSpec = [
dict(name='z=', type='str', value='{:0.5f}'.format(self.z), dec=False, readonly=True),
dict(name='quality:', type='str', value='', readonly=True),
dict(name='class:', type='str', value='', readonly=True),
dict(name='row:', type='str', value='', readonly=True),
dict(name='id:', type='str', value='', readonly=True),
dict(name='x, y:', type='str', value='(0.0, 0.0)', readonly=True),
dict(name='Show lines', type='bool', value=True),
dict(name='r=', type='float', value=0.8, step=0.2, limits=[0.0, None]),
dict(name='Re-extract', type='action')
# dict(name='extraction center:', type='str', value='', readonly=True)
# dict(name='extraction aper:', type='str', value='', readonly=True)
]
self.param = pt.Parameter.create(name='Options', type='group', children=self.paramSpec)
#Redraw when the boolean option buttons are pressed
self.param.children()[6].sigValueChanged.connect(self.draw)
self.param.children()[8].sigStateChanged.connect(self.reExtract)
# self.param.children()[6].sigValueChanged.connect(self.draw)
# self.param.children()[7].sigValueChanged.connect(self.draw)
# self.param.children()[8].sigValueChanged.connect(self.setExtFlag)
self.tree = pt.ParameterTree()
self.tree.setParameters(self.param)
self.features = Table.read(os.environ['REDSHIFTING'] + '/redshiftLines.dat', format='ascii')
self.objectsTable = pg.TableWidget(editable=False, sortable=False)
self.objectsTable.setFormat('%0.5f', 3)
self.setTable()
self.objectsTable.setSelectionBehavior(QtGui.QAbstractItemView.SelectRows)
self.objectsTable.setSelectionMode(QtGui.QAbstractItemView.SingleSelection)
self.objectsTable.doubleClicked.connect(self.goToObject)
# Add comment bar
self.comment_text = QtGui.QLineEdit('comments here')
self.comment_text.focusOutEvent = self.updateComment
# Add plot_bg to the layout
self.layout.addWidget(self.plot_redshift, 0, 0)
self.layout.addWidget(self.plot_spec2D_win, 1, 0)
self.layout.addWidget(self.plot_spec2D_hist, 1, 1)
self.layout.addWidget(self.tree, 0, 1)
self.layout.addWidget(self.objectsTable, 2, 1)
self.layout.addWidget(self.plot_spec1D, 2, 0)
self.layout.addWidget(self.comment_text, 4, 0)
self.layout.setColumnStretch(0, 4)
self.layout.setColumnStretch(1, 1)
self.layout.setColumnStretch(1, 1)
#self.layout.setColumnStretch(0, 2)
#self.layout.setColumnStretch(0, 2)
#self.layout.setColumnStretch(3, 1)
#self.layout.setColumnStretch(3, 0)
self.layout.setRowStretch(0, 2)
self.layout.setRowStretch(1, 1)
self.layout.setRowStretch(2, 3)
self.setSpec()
#Set 2D X-axis values to be equal to the 1D--this works so long as all spectra are the same size
#since it is just based on the first one read in
self.plot_spec2D.translate(min(self.wave),0)
self.plot_spec2D.scale((max(self.wave)-min(self.wave))/len(self.wave),1)
self.plot_spec2D_plot.setXLink(self.plot_spec1D)
self.draw()
self.widget.show()
self.app.exec_()
def reExtract(self):
print('Re-extracting!')
self.objects[self.row-1]['radius'] = self.param['r=']
# Get the 1D spectrum
object = self.objects[self.row-1]
spec = self.cube.aperture((object['dec'], object['ra']), object['radius'])
flux = np.array(spec.data)
ivar = np.array(1/(spec.var*1.4))
error = np.sqrt(1/ivar)
spec = formatspectrum(self.wave, flux, error)
# Save the 1D spectrum
savename = getspec1Dname(self.mask, object['row'], object['id'], object['name'])
print(savename)
fits.writeto(savename, spec, overwrite=True)
self.setTable()
self.setSpec()
self.draw()
def updateComment(self, event):
self.objects[self.row-1]['comment'] = self.comment_text.text()
def setTable(self):
self.objectsTable.setData(np.array(self.objects['id', 'name', 'class', 'redshift', 'quality', 'comment']))
def goToObject(self):
#print('Going to object...')
self.row = self.objectsTable.selectedItems()[0].row()+1
self.setSpec()
# self.draw()
def setRedshiftOVI1033(self):
wave0 = 1033.82
self.z = self.mouse_x_spec1D/wave0 - 1
#self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftHI1215(self):
wave0 = 1215.24
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftNV1240(self):
wave0 = 1240.81
self.z = self.mouse_x_spec1D/wave0 - 1
#self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCIV1549(self):
wave0 = 1549.48
self.z = self.mouse_x_spec1D/wave0 - 1
#self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOIII1665(self):
wave0 = 1665.85
self.z = self.mouse_x_spec1D/wave0 - 1
#self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCIII1908(self):
wave0 = 1908.734
self.z = self.mouse_x_spec1D/wave0 - 1
#self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftMgII2799(self):
wave0 = 2799.117
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOII3728(self):
wave0 = 3728.60
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCaIIK3934(self):
wave0 = 3934.777
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCaIIH3969(self):
wave0 = 3969.588
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftHd4102(self):
wave0 = 4102.89
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftGband4305(self):
wave0 = 4305.61
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftHg4341(self):
wave0 = 4341.68
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOIII4364(self):
wave0 = 4364.436
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftHb4862(self):
wave0 = 4862.68
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOIII4960(self):
wave0 = 4960.295
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOIII5008(self):
wave0 = 5008.240
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftMgI5176(self):
wave0 = 5176.7
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftNaI5895(self):
wave0 = 5895.6
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOI6302(self):
wave0 = 6302.046
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftOI6365(self):
wave0 = 6365.536
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftNII6549(self):
wave0 = 6549.86
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftHa6564(self):
wave0 = 6564.61
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.fitObjectAtRedshift()
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftNII6585(self):
wave0 = 6585.27
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftSII6718(self):
wave0 = 6718.29
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftSII6732(self):
wave0 = 6732.67
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCaII8500(self):
wave0 = 8500.36
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCaII8544(self):
wave0 = 8544.44
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setRedshiftCaII8664(self):
wave0 = 8664.52
self.z = self.mouse_x_spec1D/wave0 - 1
self.fitObjectAtRedshift()
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def setClass(self, classification):
self.objects[self.row-1]['class'] = classification
self.param['class:'] = classification
self.draw()
def setQuality(self, quality):
self.objects[self.row-1]['quality'] = quality
self.param['quality:'] = quality
self.draw()
def setExtFlag(self):
self.objects[self.row-1]['extflag']=self.param['Bad Extraction:']
self.save()
def keypress_redshift(self, event):
if self.plot_redshift_current:
#print('')
#print(event.text())
#print(event.key())
#print('{:0.4f}, {:0.2f}'.format(self.mouse_x_redshift, self.mouse_y_redshift))
if (event.text() == 'n'):
self.advance(1)
if (event.text() == 'N'):
self.advance(10)
if (event.text() == 'b'):
self.advance(-1)
if (event.text() == 'B'):
self.advance(-10)
if event.text() == '[':
self.panx_redshift(-1.0/3.0)
if event.text() == ']':
self.panx_redshift(1.0/3.0)
if event.text() == '{':
self.panx_redshift(-1.0)
if event.text() == '}':
self.panx_redshift(1.0)
if event.text() == 'x':
self.zoomxy_redshift(1.0/1.5, 1.0)
if event.text() == 'X':
self.zoomxy_redshift(1.5, 1.0)
if event.text() == 'y':
self.zoomxy_redshift(1.0, 1.0/1.5)
if event.text() == 'Y':
self.zoomxy_redshift(1.0, 1.5)
if (event.text() == 'w') | (event.text() == 'W'):
self.plot_redshift.autoRange()
# Set redshift
if event.text() == 'z':
self.z = self.mouse_x_redshift
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.fitObjectAtRedshift()
self.draw()
if (event.text() == 'h') | (event.text() == 'H'):
self.setClass('star')
if (event.text() == 'g') | (event.text() == 'G'):
self.setClass('galaxy')
if (event.text() == 'j') | (event.text() == 'J'):
self.setClass('quasar')
if (event.text() == 'k') | (event.text() == 'K'):
self.setClass('hizgal')
# if event.text() == 'R':
# self.redshiftAll()
if event.text() == 'r':
self.redshiftObject()
if event.text() == 'l':
self.redshiftObjectLocal()
if (event.text() == 'a') | (event.text() == 'A'):
self.setQuality(2)
if (event.text() == 's') | (event.text() == 'S'):
self.setQuality(1)
if (event.text() == 'd') | (event.text() == 'D'):
self.setQuality(0)
if (event.text() == 'f') | (event.text() == 'F'):
self.setQuality(-1)
if event.text() == ';':
self.incrementRedshift(-0.0001)
if event.text() == "'":
self.incrementRedshift(+0.0001)
if event.text() == ':':
self.incrementRedshift(-0.001)
if event.text() == '"':
self.incrementRedshift(+0.001)
if event.text() == ',':
self.incrementRedshift(-0.01)
if event.text() == '.':
self.incrementRedshift(+0.01)
if event.text() == '<':
self.incrementRedshift(-0.1)
if event.text() == '>':
self.incrementRedshift(+0.1)
# left arrow
if event.key() == 16777234:
self.incrementRedshift(-1)
# Right arrow
if event.key() == 16777236:
self.incrementRedshift(+1)
def zoomxy_redshift(self, scalex, scaley):
"""Zoom in or out in wavelength (x) and/or flux (y)"""
xRange = self.plot_redshift.getViewBox().state['viewRange'][0]
x0 = xRange[0]
x1 = xRange[1]
xRange = (x1 - x0)*scalex
x0_new = self.mouse_x_redshift - xRange/2.0
x1_new = self.mouse_x_redshift + xRange/2.0
self.plot_redshift.setXRange(x0_new, x1_new, padding=0)
yRange = self.plot_redshift.getViewBox().state['viewRange'][1]
y0 = yRange[0]
y1 = yRange[1]
yRange = (y1 - y0)*scaley
y0_new = self.mouse_y_redshift - yRange/2.0
y1_new = self.mouse_y_redshift + yRange/2.0
self.plot_redshift.setYRange(y0_new, y1_new, padding=0)
def zoom_default(self):
q1,q2=np.percentile(self.flux1D[self.spec['mask'].astype('bool')],[0.1,99.9])
q1 = np.min([0.0, q1, -0.1*q2])
self.plot_spec1D.setYRange(q1,2*q2,padding=0)
self.plot_spec1D.setXRange(np.min(self.wave), np.max(self.wave), padding=0)
# def zoom_redshift(self, key, ):
# """Zoom in or out in wavelength (x) and/or flux (y)"""
# xRange = self.plot_redshift.getViewBox().state['viewRange'][0]
# x0 = xRange[0]
# x1 = xRange[1]
# xRange = (x1 - x0)*scalex
# x0_new = self.mouse_x_redshift - xRange/2.0
# x1_new = self.mouse_x_redshift + xRange/2.0
# self.plot_redshift.setXRange(x0_new, x1_new, padding=0)
# yRange = self.plot_redshift.getViewBox().state['viewRange'][1]
# y0 = yRange[0]
# y1 = yRange[1]
# yRange = (y1 - y0)*scaley
# y0_new = self.mouse_y_redshift - yRange/2.0
# y1_new = self.mouse_y_redshift + yRange/2.0
# self.plot_redshift.setYRange(y0_new, y1_new, padding=0)
def panx_redshift(self, scalex):
"""Pan in the wavelength direction"""
xRange = self.plot_redshift.getViewBox().state['viewRange'][0]
x0 = xRange[0]
x1 = xRange[1]
shift = scalex*(x1 - x0)
x0_new = x0 + shift
x1_new = x1 + shift
self.plot_redshift.setXRange(x0_new, x1_new, padding=0)
def keypress_spec1D(self, event):
if self.plot_spec1D_current:
#print(event.text())
#print(event.key())
#print('')
if (event.text() == 'n'):
self.advance(1)
if (event.text() == 'N'):
self.advance(10)
if (event.text() == 'b'):
self.advance(-1)
if (event.text() == 'B'):
self.advance(-10)
if event.text() == '[':
self.panx_spec(-1.0/3.0)
if event.text() == ']':
self.panx_spec(1.0/3.0)
if event.text() == '{':
self.panx_spec(-1.0)
if event.text() == '}':
self.panx_spec(1.0)
if event.text() == 'x':
self.zoomxy_spec(1.0/1.5, 1.0)
if event.text() == 'X':
self.zoomxy_spec(1.5, 1.0)
if event.text() == 'y':
self.zoomxy_spec(1.0, 1.0/1.5)
if event.text() == 'Y':
self.zoomxy_spec(1.0, 1.5)
if event.text() in ['t','T','e','E']:
#The not is because empty strings (pressing shift) get included too!
self.trimxy_spec(event.text())
if (event.text() == 'w') | (event.text() == 'W'):
self.zoom_default()
# self.plot_spec1D.autoRange()
# self.updateXrange_1D()
if (event.text() == '=') | (event.text() == '+'):
self.smoothing = self.smoothing + 2
if self.smoothing == 3:
self.smoothing = 5
self.smoothSpec()
if (event.text() == '-') | (event.text() == '_'):
self.smoothing = self.smoothing - 2
if self.smoothing < 5:
self.smoothing = 1
self.smoothSpec()
if event.text() == 'm':
self.changeMask(0)
if event.text() == 'M':
# self.changeMask(0)
self.autoMask()
if event.text() == 'u':
self.changeMask(1)
if event.text() == 'U':
self.changeMask(1)
if (event.text() == 'h') | (event.text() == 'H'):
self.setClass('star')
if (event.text() == 'g') | (event.text() == 'G'):
self.setClass('galaxy')
if (event.text() == 'j') | (event.text() == 'J'):
self.setClass('quasar')
if (event.text() == 'k') | (event.text() == 'K'):
self.setClass('hizgal')
if event.text() == '/':
self.redshiftAll()
if event.text() == 'r':
self.redshiftObject()
if event.text() == 'l':
self.redshiftObjectLocal()
if (event.text() == 'a') | (event.text() == 'A'):
self.setQuality(2)
if (event.text() == 's') | (event.text() == 'S'):
self.setQuality(1)
if (event.text() == 'd') | (event.text() == 'D'):
self.setQuality(0)
if (event.text() == 'f') | (event.text() == 'F'):
self.setQuality(-1)
# if (event.text() == 'c') & (self.version=='carpy'):
# self.setExtFlag()
if event.text() == ';':
self.incrementRedshift(-0.0001)
if event.text() == "'":
self.incrementRedshift(+0.0001)
if event.text() == ':':
self.incrementRedshift(-0.001)
if event.text() == '"':
self.incrementRedshift(+0.001)
if event.text() == ',':
self.incrementRedshift(-0.01)
if event.text() == '.':
self.incrementRedshift(+0.01)
if event.text() == '<':
self.incrementRedshift(-0.1)
if event.text() == '>':
self.incrementRedshift(+0.1)
# left arrow
if event.key() == 16777234:
self.incrementRedshift(-1)
# Right arrow
if event.key() == 16777236:
self.incrementRedshift(+1)
if event.text() == '1':
self.setRedshiftHa6564()
if event.text() == '2':
self.setRedshiftOIII5008()
if event.text() == '3':
self.setRedshiftOIII4960()
if event.text() == '4':
self.setRedshiftHb4862()
if event.text() == '5':
self.setRedshiftHg4341()
if event.text() == '6':
self.setRedshiftHd4102()
if event.text() == '7':
self.setRedshiftOII3728()
if event.text() == '8':
self.setRedshiftCIII1908()
if event.text() == '9':
self.setRedshiftCIV1549()
if event.text() == '0':
self.setRedshiftHI1215()
if event.text() == '!':
self.setRedshiftNaI5895()
if event.text() == '@':
self.setRedshiftMgI5176()
if event.text() == '#':
self.setRedshiftGband4305()
if event.text() == '$':
self.setRedshiftCaIIH3969()
if event.text() == '%':
self.setRedshiftCaIIK3934()
if event.text() == '^':
self.setRedshiftMgII2799()
if event.text() == 'z':
self.fitObjectAtRedshift()
# if return or enter is pressed then save.
if (event.key() == 16777220) | (event.key() == 16777221) | (event.key() == 96) | (event.key() == 126):
self.save()
def incrementRedshift(self, dz):
self.z = self.z + dz
self.objects[self.row-1]['redshift'] = self.z
self.param['z='] = '{:0.5f}'.format(self.z)
self.draw()
def redshiftAll(self):
# Start at row 1
for object in self.objects:
# if it already has a redshift:
# continue
self.row = object['row']
self.setSpec()
if self.redshifted:
print('{}/{} {} already redshifted. Skipping'.format(self.row, self.nRows, object['class']))
else:
self.autoMask()
self.redshiftObject()
print('{}/{} {} z_best={:0.4f}'.format(self.row, self.nRows, object['class'], object['redshift']))
def fitObjectAtRedshift(self):
spec = self.spec
if self.objects[self.row-1]['class'] == 'galaxy':
z = self.z
eigenvalues, model, chi2pdf = redshift.fitatz_galaxy(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'star':
z = self.z
eigenvalues, model, chi2pdf = redshift.fitatz_star(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'quasar':
z = self.z
eigenvalues, model, chi2pdf = redshift.fitatz_qso(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'hizgal':
z = self.z
if z > 2.5:
eigenvalues, model, chi2pdf = redshift.fitatz_latis(spec, z)
spec['model'] = model
print('Redshift assigned by hand {} {} z={:0.4f} and saved'.format(self.objects[self.row-1]['row'],self.objects[self.row-1]['id'], z))
self.objects[self.row-1]['redshift'] = z
#self.redshifted = 1
#self.redshifts = Table(redshifts)
self.save()
self.draw()
def redshiftObjectLocal(self):
spec = self.spec
z = self.z
if self.objects[self.row-1]['class'] == 'galaxy':
redshifts = redshift.findz_galaxy(spec, zmin=z-0.01, zmax=z+0.01, dz=0.0001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_galaxy(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'star':
redshifts = redshift.findz_star(spec, zmin=self.z-0.001, zmax=self.z+0.001, dz=0.0001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_star(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'quasar':
redshifts = redshift.findz_qso(spec, zmin=self.z-0.01, zmax=self.z+0.01, dz=0.0001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_qso(spec, z)
spec['model'] = model
if self.objects[self.row-1]['class'] == 'hizgal':
redshifts = redshift.findz_latis(spec, zmin=z-0.01, zmax=z+0.01, dz=0.0001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_latis(spec, z)
spec['model'] = model
self.objects[self.row-1]['redshift'] = z
if self.redshifted == 0:
self.redshifted = 1
self.redshifts = Table(redshifts)
else:
redshifts = vstack((Table(self.redshifts), Table(redshifts)))
redshifts = unique(redshifts, keys='z')
redshifts.sort('z')
self.redshifts = redshifts
self.model1D = spec['model']
self.spec = spec
print('Redshifting Locally {} {} z={:0.4f} and saved'.format(self.objects[self.row-1]['row'],self.objects[self.row-1]['id'], z))
self.z = z
self.param['z='] = '{:0.5f}'.format(self.z)
self.save()
self.draw()
def redshiftObject(self):
#spec = self.spec
nGoodPix = np.sum(self.spec['mask'])
if nGoodPix > 5:
if self.objects[self.row-1]['class'] == 'galaxy':
redshifts = redshift.findz_galaxy(self.spec, zmin=-0.01, zmax=1.5, dz=0.0003)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
redshifts_fine = redshift.findz_galaxy(self.spec, zmin=z-0.01, zmax=z+0.01, dz=0.0001)
redshifts = vstack((Table(redshifts), Table(redshifts_fine)))
redshifts = unique(redshifts, keys='z')
redshifts.sort('z')
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
redshifts = np.array(redshifts)
eigenvalues, model, chi2pdf = redshift.fitatz_galaxy(self.spec, z)
self.spec['model'] = model
if self.objects[self.row-1]['class'] == 'star':
redshifts = redshift.findz_star(self.spec, zmin=-0.01, zmax=0.01, dz=0.0001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_star(self.spec, z)
self.spec['model'] = model
if self.objects[self.row-1]['class'] == 'quasar':
redshifts = redshift.findz_qso(self.spec, zmin=-0.01, zmax=4.0, dz=0.001)
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
redshifts_fine = redshift.findz_qso(self.spec, zmin=z-0.01, zmax=z+0.01, dz=0.0001)
redshifts = vstack((Table(redshifts), Table(redshifts_fine)))
redshifts = unique(redshifts, keys='z')
redshifts.sort('z')
minIndex = np.argmin(redshifts['chi2_pdf'])
z = redshifts[minIndex]['z']
redshifts = np.array(redshifts)
eigenvalues, model, chi2pdf = redshift.fitatz_qso(self.spec, z)
self.spec['model'] = model
if self.objects[self.row-1]['class'] == 'hizgal':
redshifts = redshift.findz_latis(self.spec)
minIndex = np.argmin(redshifts['chi2_pdf'])
print(Table(redshifts))
z = redshifts[minIndex]['z']
eigenvalues, model, chi2pdf = redshift.fitatz_latis(self.spec, z)
self.spec['model'] = model
print('Redshifting {} {} z={:0.4f} and saved'.format(self.objects[self.row-1]['row'],
self.objects[self.row-1]['id'], z))
print()
self.objects[self.row-1]['redshift'] = z
self.z = z
self.redshifted = 1
self.redshifts = Table(redshifts)
self.model1D = self.spec['model']
self.param['z='] = '{:0.5f}'.format(self.z)
self.save()
self.draw()
else:
self.z = 0.0
self.redshift = 0
def save(self):
self.setTable()
#
path = '{}_spec1D'.format(self.mask)
self.objects.write('{}/{}_objects.fits'.format(path, self.mask), overwrite=True)
savename = getspec1Dname(self.mask, self.objects[self.row-1]['row'],
self.objects[self.row-1]['id'],
self.objects[self.row-1]['name'])
if not os.path.isfile(savename):
return
fits.writeto(savename, self.spec, overwrite=True)
# If we have a redshift array, store it
if self.redshifted == 1:
savename = getredshift1Dname(self.mask, self.objects[self.row-1]['row'],
self.objects[self.row-1]['id'],
self.objects[self.row-1]['name'])
self.redshifts.write(savename, overwrite=True)
print(Table(self.spec))
print('Saved')
# if os.path.isfile(path):
# savename = getspec1Dname(self.mask, self.objects[self.row-1]['row'],
# self.objects[self.row-1]['id'])
# fits.writeto(savename, self.spec, overwrite=True)
# self.objects.write('{}/{}_objects.fits'.format(path, self.mask), overwrite=True)
# # If we have a redshift array, store it
# if self.redshifted == 1:
# savename = getredshift1Dname(self.mask, self.objects[self.row-1]['row'],
# self.objects[self.row-1]['id'])
# self.redshifts.write(savename, overwrite=True)
# print('Saved')
def autoMask(self):
"""Automatically mask things below and above some range, and the A band"""
sky5580 = [5578.5 - 7.0, 5578.5 + 7.0]
index = np.where(((self.wave > sky5580[0]) & (self.wave < sky5580[1])) | (self.error1D == 0))
self.spec['mask'][index] = 0
self.draw()
def changeMask(self, newvalue):
"""Change the mask"""
if self.mask_flag == 0:
self.mask_left = np.array([self.mouse_x_spec1D, self.mouse_y_spec1D])
self.mask_flag = 1
else:
self.mask_right = np.array([self.mouse_x_spec1D, self.mouse_y_spec1D])
wave0 = np.min([self.mask_left[0], self.mask_right[0]])
wave1 = np.max([self.mask_left[0], self.mask_right[0]])
index = np.where((self.wave > wave0) & (self.wave < wave1))
self.spec['mask'][index] = newvalue
self.mask_flag = 0
self.draw()
def smoothSpec(self):
"""Smooth the spectrum using Savitzky-Golay filter."""
if self.smoothing > 1:
self.flux1D = savgol_filter(self.spec['flux'], self.smoothing, 2)
self.error1D = savgol_filter(self.spec['error'], self.smoothing, 2)/np.sqrt(self.smoothing)
self.model1D = savgol_filter(self.spec['model'], self.smoothing, 2)
if self.smoothing == 1:
self.flux1D = self.spec['flux']
self.error1D = self.spec['error']
self.model1D = self.spec['model']
self.draw()
def trimxy_spec(self, key):
"""Trim plotting region in wavelength (x) and/or flux (y)"""
if key in 'eE':
xRange = self.plot_spec1D.getViewBox().state['viewRange'][0]
x0 = xRange[0]
x1 = xRange[1]
xnew = self.mouse_x_spec1D
if key=='E': x1=xnew
else: x0=xnew
self.plot_spec1D.setXRange(x0, x1, padding=0)
elif key in 'tT':
yRange = self.plot_spec1D.getViewBox().state['viewRange'][1]
y0 = yRange[0]
y1 = yRange[1]
ynew = self.mouse_y_spec1D
if key=='t': y1=ynew
else: y0=ynew
self.plot_spec1D.setYRange(y0, y1, padding=0)
self.updateXrange_1D()
def zoomxy_spec(self, scalex, scaley):
"""Zoom in or out in wavelength (x) and/or flux (y)"""
xRange = self.plot_spec1D.getViewBox().state['viewRange'][0]
x0 = xRange[0]
x1 = xRange[1]
xRange = (x1 - x0)*scalex
x0_new = self.mouse_x_spec1D - xRange/2.0
x1_new = self.mouse_x_spec1D + xRange/2.0
self.plot_spec1D.setXRange(x0_new, x1_new, padding=0)
yRange = self.plot_spec1D.getViewBox().state['viewRange'][1]
y0 = yRange[0]
y1 = yRange[1]
yRange = (y1 - y0)*scaley
y0_new = self.mouse_y_spec1D - yRange/2.0
y1_new = self.mouse_y_spec1D + yRange/2.0
self.plot_spec1D.setYRange(y0_new, y1_new, padding=0)
self.updateXrange_1D()
# self.specCursor.setPos((x1_new-x0_new)/2,(y1_new-y0_new)/2)
def panx_spec(self, scalex):
"""Pan in the wavelength direction"""
xRange = self.plot_spec1D.getViewBox().state['viewRange'][0]
x0 = xRange[0]
x1 = xRange[1]
shift = scalex*(x1 - x0)
x0_new = x0 + shift
x1_new = x1 + shift
self.plot_spec1D.setXRange(x0_new, x1_new, padding=0)
self.updateXrange_1D()
def mouseMoved_spec1D(self, pos):
"""Keep track of where the mouse and update the xrange on the 2D plot to match the 1D"""
self.plot_spec1D_current = True
self.plot_spec2D_current = False
self.plot_redshift_current = False
self.mouse_x_spec1D = self.plot_spec1D.mapToView(pos).x()
self.mouse_y_spec1D = self.plot_spec1D.mapToView(pos).y()
self.updateXrange_1D()
self.setTitle_1D()
#This is now obsolete since the axes are linked
def updateXrange_1D(self):
pass
# xRange = self.plot_spec1D.getViewBox().state['viewRange'][0]
# x0 = xRange[0]
# x1 = xRange[1]
# # Interpolate wavelength to index very inefficient way to do this but I am lazy
# indexes = np.arange(len(self.wave))
# indexes_interp = interp1d(self.wave, indexes, bounds_error=False, fill_value='extrapolate')
# index0 = indexes_interp(x0)
# index1 = indexes_interp(x1)
# #index = np.where((self.wave > x0) & (self.wave < x1))[0]
# #if len(index) > 0:
# #index0 = np.min(index)
# #index1 = np.max(index)
# self.plot_spec2D_view.setXRange(index0, index1, padding=0.035)
def advance(self, delt):
self.save()
self.row = self.row + delt
if self.row < 1:
self.row = self.nRows
if self.row > self.nRows:
self.row = 1
self.setSpec()
#print('{}/{}'.format(self.row, self.nRows))
#self.draw()
def setSpec(self, autoRange=True):
print('setSpect')
"""Set the spectrum to current row"""
self.z = self.objects[self.row-1]['redshift']
self.id = self.objects[self.row-1]['id']
self.name = self.objects[self.row-1]['name']
self.comment_text.setText(self.objects[self.row-1]['comment'])
#if self.version=='carpy':
# self.id=self.objects[self.row-1]['id']
# if not os.path.isfile(getspec1Dname(self.mask, self.row, self.id)):
# print('Files for {} do not exist. Moving on.'.format(self.id))
# self.redshifted=0
# self.advance(1)
# return
# self.flux2D=fits.getdata(getspec2Dname(self.mask,self.id)).transpose()
#
#elif self.version=='cosmos':
# # Get the apnum header parameter
# self.apnum1D = self.header1D['APNUM{}'.format(self.row)]
# self.apnum2D = self.header2D['APNUM{}'.format(self.row)]
# self.apnum1Darray = self.apnum1D.split(' ')
# self.apnum2Darray = self.apnum2D.split(' ')
# self.id = self.apnum1Darray[1]
# self.y0=int(self.header2D['CSECT{}A'.format(self.row)])
# self.y1=int(self.header2D['CSECT{}B'.format(self.row)])
# self.y0 = int(float(self.apnum2Darray[2]))
# self.y1 = int(float(self.apnum2Darray[3]))
# self.flux2D = self.spec2Darray[self.y0:self.y1, :].transpose()
self.spec = fits.getdata(getspec1Dname(self.mask, self.row, self.id, self.name))
print(Table(self.spec))
self.flux2D = fits.getdata(getspec2Dname(self.mask, self.row, self.id, self.name))
self.wave = self.spec['wave']
self.flux1D = self.spec['flux']
self.flux1Draw = self.spec['raw']
self.error1D = self.spec['error']
self.error1Draw=self.spec['rawerr']
self.model1D = self.spec['model']
self.flat1D = self.spec['flat']
self.arc1D = self.spec['arc']
print('Done reading')
self.smoothSpec()
print('Done smoothing)')
# Check for redshift filename and read in if present.
redshiftFilename = getredshift1Dname(self.mask,
self.objects[self.row-1]['row'],
self.objects[self.row-1]['id'],
self.objects[self.row-1]['name'])
if os.path.isfile(redshiftFilename):
self.redshifted = 1
self.redshifts = Table.read(redshiftFilename)
#print('Already redshifted')
else:
self.redshifted = 0
self.redshifts = None
print('drawing')
self.draw()
print('done drawing')
self.plot_redshift.autoRange()
if autoRange:
self.plot_spec1D.autoRange()
self.zoom_default()
#self.plot_spec2D_hist.setHistogramRange(*np.percentile(self.flux2D,[0.1,99.9]))
self.plot_spec2D_hist.setLevels(*np.percentile(self.flux2D,[0.5,99.5]))
self.param['row:'] = '{}/{}'.format(self.row, self.nRows)
self.param['id:'] = '{}'.format(self.objects[self.row-1]['id'])
self.param['class:'] = '{}'.format(self.objects[self.row-1]['class'])
self.param['z='] = '{:0.5f}'.format(self.objects[self.row-1]['redshift'])
self.param['r='] = '{:0.2f}'.format(self.objects[self.row-1]['radius'])
self.param['quality:'] = '{}'.format(self.objects[self.row-1]['quality'])
ra = self.objects[self.row-1]['ra']
dec = self.objects[self.row-1]['dec']
yx = self.cube_wcs.sky2pix((dec, ra))[0]
self.param['x, y:'] = '{:0.2f}, {:0.2f}'.format(float(yx[1]), float(yx[0]))
print('Set spec done')
print('')
def mouseMoved_redshift(self, pos):
"""Keep track of where the mouse and update the xrange on the 2D plot to match the 1D"""
self.plot_spec1D_current = False
self.plot_spec2D_current = False
self.plot_redshift_current = True
self.mouse_x_redshift = self.plot_redshift.mapToView(pos).x()
self.mouse_y_redshift = self.plot_redshift.mapToView(pos).y()
def mouseMoved_spec2D(self, pos):
"""Keep track of where the mouse and update the xrange on the 2D plot to match the 1D"""
self.plot_spec1D_current = False
self.plot_spec2D_current = True
self.plot_redshift_current = False
self.mouse_x_spec2D = self.plot_spec2D.mapToView(pos).x()
self.mouse_y_spec2D = self.plot_spec2D.mapToView(pos).y()
def setTitle_1D(self):
self.plot_spec1D.setTitle('{} {}/{} {:0.2f}, {:.2E}'.format(self.id, self.row, self.nRows, self.mouse_x_spec1D, self.mouse_y_spec1D))
def draw(self):
# Clear plots
self.plot_redshift.clear()
self.plot_spec1D.clear()
if self.param['Show lines']:
features = self.features
observedWaves = features['wave']*(1 + self.z)
features = features[((observedWaves > np.min(self.wave)) & (observedWaves < np.max(self.wave))) | (features['list'] == 'sky')]
for feature in features:
if feature['list'] == 'sky':
self.plot_spec1D.addItem(pg.InfiniteLine(feature['wave'],
pen=pg.mkPen('g', width=2, style=QtCore.Qt.DotLine),
label='{} {:0.1f}'.format(feature['name'], feature['wave']),
labelOpts={'position':0.8, 'rotateAxis':[1, 0]}))
elif feature['list'] == 'quasar':
self.plot_spec1D.addItem(pg.InfiniteLine(feature['wave']*(1 + self.z),
pen=pg.mkPen('b', width=2, style=QtCore.Qt.DotLine),
label='{} {:0.1f}'.format(feature['name'], feature['wave']),
labelOpts={'position':0.8, 'rotateAxis':[1, 0]}))
elif feature['list'] == 'absorption':
self.plot_spec1D.addItem(pg.InfiniteLine(feature['wave']*(1 + self.z),
pen=pg.mkPen('r', width=2, style=QtCore.Qt.DotLine),
label='{} {:0.1f}'.format(feature['name'], feature['wave']),
labelOpts={'position':0.8, 'rotateAxis':[1, 0]}))
elif feature['list'] == 'qsoals':
self.plot_spec1D.addItem(pg.InfiniteLine(feature['wave']*(1 + self.z),
pen=pg.mkPen('r', width=2, style=QtCore.Qt.DotLine),
label='{} {:0.1f}'.format(feature['name'], feature['wave']),
labelOpts={'position':0.8, 'rotateAxis':[1, 0]}))
elif feature['list'] == 'emission':
self.plot_spec1D.addItem(pg.InfiniteLine(feature['wave']*(1 + self.z),
pen=pg.mkPen('y', width=2, style=QtCore.Qt.DotLine),
label='{} {:0.1f}'.format(feature['name'], feature['wave']),
labelOpts={'position':0.8, 'rotateAxis':[1, 0]}))
if self.redshifted == 1:
self.plot_redshift.plot(self.redshifts['z'], self.redshifts['chi2_pdf'],
pen=pg.mkPen('w', width=1))
self.plot_redshift.addItem(pg.InfiniteLine(self.z,
pen=pg.mkPen('r', width=2, style=QtCore.Qt.DotLine)))
self.plot_redshift.autoRange()
print(np.shape(self.flux1D))
self.plot_spec1D.plot(self.wave, self.flux1D*self.spec['mask'],
pen=pg.mkPen('w', width=1))
self.plot_spec1D.plot(self.wave, self.error1D*self.spec['mask'],
pen=pg.mkPen('c', width=1))
self.plot_spec1D.plot(self.wave, self.model1D,pen=pg.mkPen('r', width=2))
self.setTitle_1D()
# 2D spectrum
self.plot_spec2D.setImage(self.flux2D, xvals=self.wave,
levels=self.plot_spec2D_hist.getLevels(),
border=pg.mkPen('w', width=2))
# whitelight image
self.whitelight_view.setImage(self.whitelight, levels=[-2, 50])
ra = self.objects[self.row-1]['ra']
dec = self.objects[self.row-1]['dec']
yx = self.cube_wcs.sky2pix((dec, ra))[0]
x = yx[1]
y = yx[0]
diameter = self.objects[self.row-1]['radius']*2/0.2
#self.whitelight_view.removeItem(objectMarker)
if self.object_labelled == False:
self.objectMarker = pg.CircleROI(np.array([x - diameter/2, np.shape(self.whitelight)[1] - y - diameter/2]), [diameter, diameter],
pen=pg.mkPen('r', width=2),
movable=False, removable=False)
diameter = 10.0/0.2
self.objectMarker_outer = pg.CircleROI(np.array([x - diameter/2, np.shape(self.whitelight)[1] - y - diameter/2]), [diameter, diameter],
pen=pg.mkPen('r', width=1),
movable=False, removable=False)
self.whitelight_view.addItem(self.objectMarker)
self.whitelight_view.addItem(self.objectMarker_outer)
self.object_labelled = True
else:
self.whitelight_view.removeItem(self.objectMarker)
self.whitelight_view.removeItem(self.objectMarker_outer)
self.objectMarker = pg.CircleROI(np.array([x - diameter/2, np.shape(self.whitelight)[1] - y - diameter/2]), [diameter, diameter],
pen=pg.mkPen('r', width=2),
movable=False, removable=False)
diameter = 10.0/0.2
self.objectMarker_outer = pg.CircleROI(np.array([x - diameter/2, np.shape(self.whitelight)[1] - y - diameter/2]), [diameter, diameter],
pen=pg.mkPen('r', width=1),
movable=False, removable=False)
self.whitelight_view.addItem(self.objectMarker)
self.whitelight_view.addItem(self.objectMarker_outer)
self.object_labelled = True
#self.whitelight_view.autoLevels()
self.objectsTable.selectRow(self.row-1)
self.objectsTable.scrollToItem(self.objectsTable.item(self.row-1,0),QtGui.QAbstractItemView.PositionAtCenter)
# temp=self.objectsTable.indexFromItem(self.objectsTable.item(self.row-1,0))
# import pdb
# pdb.set_trace()
# self.objectsTable.scrollTo(temp,QtGui.QAbstractItemView.PositionAtCenter)
# Set up the command line argument parser
parser = argparse.ArgumentParser(description='Assign redshifts for sources in MUSE. Requires a MUSE datacube and input catalog file with object coordinates.')
parser.add_argument('-m', metavar='muse cube filename', type=str, help='muse cube filename', required=True)
parser.add_argument('-xsize', metavar='xsize', type=int, help='xsize in pixels', default=2500)
parser.add_argument('-ysize', metavar='ysize', type=int, help='ysize in pixels', default=1500)
args = parser.parse_args()
# Check for the 1d spectrum files.
if not os.path.isdir('{}_spec1D'.format(args.m)):
print('Creating 1D spectrum files')
createmusefiles(args.m)
else:
print('1D spectrum files already present. Copying objects file to backup')
shutil.copy('{}_spec1D/{}_objects.fits'.format(args.m,args.m),'{}_spec1D/{}_objects_bkp.fits'.format(args.m,args.m))
redshiftgui = muse_redshiftgui(args.m, args.xsize, args.ysize)
|
[
"[email protected]"
] | |
bf69580ef7eca1b5b2b9c34696e053a163f42e56
|
dd0122daefdc6010dc7409278880d6e9371d67cb
|
/OLD/DAWdjango/mysite/myapp/urls.py
|
0b53d47e81ceea86b1f3af453ef607410702e0be
|
[] |
no_license
|
mblancca/Videoclub-DAW-2018
|
03957db284a86c170dd4395dfa58b116d098fff2
|
cf61d98e1ed9f73884bdf5a2b4bf3802cc8b839c
|
refs/heads/master
| 2021-09-17T14:45:19.576400 | 2018-07-02T19:38:12 | 2018-07-02T19:38:12 | 126,895,120 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 525 |
py
|
from django.urls import path
from . import views
from django.conf.urls import include, url
from myapp.views import SignUpView, BienvenidaView, SignInView, SignOutView
urlpatterns = [
#path('', views.acceso, name='acceso'),
path('index/', views.index, name='index'),
url(r'^$', BienvenidaView.as_view(), name='bienvenida'),
url(r'^registrate/$', SignUpView.as_view(), name='sign_up'),
url(r'^incia-sesion/$', SignInView.as_view(), name='sign_in'),
url(r'^cerrar-sesion/$', SignOutView.as_view(), name='sign_out'),
]
|
[
"[email protected]"
] | |
3cb0647035b2f6a5cfed330277424565ed81fa27
|
e6131b2525336441085560920a4283d36125bcb6
|
/turtlebot3_RL/src/Interpolated-Policy-Gradient-with-PPO-for-Robotics-Control-/IPG_for_PPO/Critic/layers.py
|
53e19a66c35f2be5c37aca81bfa1658701e388b3
|
[] |
no_license
|
michaelyeah7/turtlebot3_ws
|
93b64b8d607b4214c2c7230a3c0666528f3fd82e
|
265d26d4ab43203025b510942a4f9509b695a4b5
|
refs/heads/master
| 2020-05-18T03:21:28.298969 | 2019-07-06T02:25:15 | 2019-07-06T02:25:15 | 184,142,654 | 3 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 77,148 |
py
|
# -*- coding: utf-8 -*-
import functools
import math
from collections import OrderedDict
from collections import deque
from difflib import get_close_matches
from inspect import getargspec
from itertools import chain
from warnings import warn
import numpy as np
import tensorflow as tf
from tensorflow.python.training import moving_averages
class G(object):
pass
G._n_layers = 0
def create_param(spec, shape, name, trainable=True, regularizable=True):
if not hasattr(spec, '__call__'):
assert isinstance(spec, (tf.Tensor, tf.Variable))
return spec
assert hasattr(spec, '__call__')
if regularizable:
# use the default regularizer
regularizer = None
else:
# do not regularize this variable
regularizer = lambda _: tf.constant(0.)
return tf.get_variable(
name=name, shape=shape, initializer=spec, trainable=trainable,
regularizer=regularizer, dtype=tf.float32
)
def as_tuple(x, N, t=None):
try:
X = tuple(x)
except TypeError:
X = (x,) * N
if (t is not None) and not all(isinstance(v, t) for v in X):
raise TypeError("expected a single value or an iterable "
"of {0}, got {1} instead".format(t.__name__, x))
if len(X) != N:
raise ValueError("expected a single value or an iterable "
"with length {0}, got {1} instead".format(N, x))
return X
def conv_output_length(input_length, filter_size, stride, pad=0):
"""Helper function to compute the output size of a convolution operation
This function computes the length along a single axis, which corresponds
to a 1D convolution. It can also be used for convolutions with higher
dimensionalities by using it individually for each axis.
Parameters
----------
input_length : int or None
The size of the input.
filter_size : int
The size of the filter.
stride : int
The stride of the convolution operation.
pad : int, 'full' or 'same' (default: 0)
By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When ``stride=1``, this
yields an output that is smaller than the input by ``filter_size - 1``.
The `pad` argument allows you to implicitly pad the input with zeros,
extending the output size.
A single integer results in symmetric zero-padding of the given size on
both borders.
``'full'`` pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.
``'same'`` pads with half the filter size on both sides (one less on
the second side for an even filter size). When ``stride=1``, this
results in an output size equal to the input size.
Returns
-------
int or None
The output size corresponding to the given convolution parameters, or
``None`` if `input_size` is ``None``.
Raises
------
ValueError
When an invalid padding is specified, a `ValueError` is raised.
"""
if input_length is None:
return None
if pad == 'valid':
output_length = input_length - filter_size + 1
elif pad == 'full':
output_length = input_length + filter_size - 1
elif pad == 'same':
output_length = input_length
elif isinstance(pad, int):
output_length = input_length + 2 * pad - filter_size + 1
else:
raise ValueError('Invalid pad: {0}'.format(pad))
# This is the integer arithmetic equivalent to
# np.ceil(output_length / stride)
output_length = (output_length + stride - 1) // stride
return output_length
class Layer(object):
def __init__(self, incoming, name=None, variable_reuse=None, weight_normalization=False, **kwargs):
if isinstance(incoming, tuple):
self.input_shape = incoming
self.input_layer = None
else:
self.input_shape = incoming.output_shape
self.input_layer = incoming
self.params = OrderedDict()
self.weight_normalization = weight_normalization
if name is None:
name = "%s_%d" % (type(self).__name__, G._n_layers)
G._n_layers += 1
self.name = name
self.variable_reuse = variable_reuse
self.get_output_kwargs = []
if any(d is not None and d <= 0 for d in self.input_shape):
raise ValueError((
"Cannot create Layer with a non-positive input_shape "
"dimension. input_shape=%r, self.name=%r") % (
self.input_shape, self.name))
@property
def output_shape(self):
shape = self.get_output_shape_for(self.input_shape)
if any(isinstance(s, (tf.Variable, tf.Tensor)) for s in shape):
raise ValueError("%s returned a symbolic output shape from its "
"get_output_shape_for() method: %r. This is not "
"allowed; shapes must be tuples of integers for "
"fixed-size dimensions and Nones for variable "
"dimensions." % (self.__class__.__name__, shape))
return shape
def get_output_shape_for(self, input_shape):
raise NotImplementedError
def get_output_for(self, input, **kwargs):
raise NotImplementedError
def add_param_plain(self, spec, shape, name, **tags):
with tf.variable_scope(self.name, reuse=self.variable_reuse):
tags['trainable'] = tags.get('trainable', True)
tags['regularizable'] = tags.get('regularizable', True)
param = create_param(spec, shape, name, **tags)
self.params[param] = set(tag for tag, value in list(tags.items()) if value)
return param
def add_param(self, spec, shape, name, **kwargs):
param = self.add_param_plain(spec, shape, name, **kwargs)
if name is not None and name.startswith("W") and self.weight_normalization:
# Hacky: check if the parameter is a weight matrix. If so, apply weight normalization
if len(param.get_shape()) == 2:
v = param
g = self.add_param_plain(tf.ones_initializer(), (shape[1],), name=name + "_wn/g")
param = v * (tf.reshape(g, (1, -1)) / tf.sqrt(tf.reduce_sum(tf.square(v), 0, keep_dims=True)))
elif len(param.get_shape()) == 4:
v = param
g = self.add_param_plain(tf.ones_initializer(), (shape[3],), name=name + "_wn/g")
param = v * (tf.reshape(g, (1, 1, 1, -1)) / tf.sqrt(tf.reduce_sum(tf.square(v), [0, 1, 2],
keep_dims=True)))
else:
raise NotImplementedError
return param
def get_params(self, **tags):
result = list(self.params.keys())
only = set(tag for tag, value in list(tags.items()) if value)
if only:
# retain all parameters that have all of the tags in `only`
result = [param for param in result
if not (only - self.params[param])]
exclude = set(tag for tag, value in list(tags.items()) if not value)
if exclude:
# retain all parameters that have none of the tags in `exclude`
result = [param for param in result
if not (self.params[param] & exclude)]
return result
class InputLayer(Layer):
def __init__(self, shape, input_var=None, var_type=tf.float32, **kwargs):
super(InputLayer, self).__init__(shape, **kwargs)
self.shape = shape
if input_var is None:
if self.name is not None:
with tf.variable_scope(self.name):
input_var = tf.placeholder(var_type, shape=shape, name="input")
else:
input_var = tf.placeholder(var_type, shape=shape, name="input")
self.input_var = input_var
@Layer.output_shape.getter
def output_shape(self):
return self.shape
class MergeLayer(Layer):
def __init__(self, incomings, name=None, **kwargs):
self.input_shapes = [incoming if isinstance(incoming, tuple)
else incoming.output_shape
for incoming in incomings]
self.input_layers = [None if isinstance(incoming, tuple)
else incoming
for incoming in incomings]
self.name = name
self.params = OrderedDict()
self.get_output_kwargs = []
@Layer.output_shape.getter
def output_shape(self):
shape = self.get_output_shape_for(self.input_shapes)
if any(isinstance(s, (tf.Variable, tf.Tensor)) for s in shape):
raise ValueError("%s returned a symbolic output shape from its "
"get_output_shape_for() method: %r. This is not "
"allowed; shapes must be tuples of integers for "
"fixed-size dimensions and Nones for variable "
"dimensions." % (self.__class__.__name__, shape))
return shape
def get_output_shape_for(self, input_shapes):
raise NotImplementedError
def get_output_for(self, inputs, **kwargs):
raise NotImplementedError
class ConcatLayer(MergeLayer):
"""
Concatenates multiple inputs along the specified axis. Inputs should have
the same shape except for the dimension specified in axis, which can have
different sizes.
Parameters
-----------
incomings : a list of :class:`Layer` instances or tuples
The layers feeding into this layer, or expected input shapes
axis : int
Axis which inputs are joined over
"""
def __init__(self, incomings, axis=1, **kwargs):
super(ConcatLayer, self).__init__(incomings, **kwargs)
self.axis = axis
def get_output_shape_for(self, input_shapes):
# Infer the output shape by grabbing, for each axis, the first
# input size that is not `None` (if there is any)
output_shape = [next((s for s in sizes if s is not None), None)
for sizes in zip(*input_shapes)]
def match(shape1, shape2):
return (len(shape1) == len(shape2) and
all(i == self.axis or s1 is None or s2 is None or s1 == s2
for i, (s1, s2) in enumerate(zip(shape1, shape2))))
# Check for compatibility with inferred output shape
if not all(match(shape, output_shape) for shape in input_shapes):
raise ValueError("Mismatch: input shapes must be the same except "
"in the concatenation axis")
# Infer output shape on concatenation axis and return
sizes = [input_shape[self.axis] for input_shape in input_shapes]
concat_size = None if any(s is None for s in sizes) else sum(sizes)
output_shape[self.axis] = concat_size
return tuple(output_shape)
def get_output_for(self, inputs, **kwargs):
dtypes = [x.dtype.as_numpy_dtype for x in inputs]
if len(set(dtypes)) > 1:
# need to convert to common data type
common_dtype = np.core.numerictypes.find_common_type([], dtypes)
inputs = [tf.cast(x, common_dtype) for x in inputs]
return tf.concat(axis=self.axis, values=inputs)
concat = ConcatLayer # shortcut
class ZerosInitializer(object):
def __call__(self, *args, **kwargs):
return tf.zeros_initializer()(*args, **kwargs)
class XavierUniformInitializer(object):
def __call__(self, shape, dtype=tf.float32, *args, **kwargs):
if len(shape) == 2:
n_inputs, n_outputs = shape
else:
receptive_field_size = np.prod(shape[:2])
n_inputs = shape[-2] * receptive_field_size
n_outputs = shape[-1] * receptive_field_size
init_range = math.sqrt(6.0 / (n_inputs + n_outputs))
return tf.random_uniform_initializer(-init_range, init_range, dtype=dtype)(shape)
class HeUniformInitializer(object):
def __call__(self, shape, dtype=tf.float32, *args, **kwargs):
if len(shape) == 2:
n_inputs, _ = shape
else:
receptive_field_size = np.prod(shape[:2])
n_inputs = shape[-2] * receptive_field_size
init_range = math.sqrt(1.0 / n_inputs)
return tf.random_uniform_initializer(-init_range, init_range, dtype=dtype)(shape)
def py_ortho_init(scale):
def _init(shape):
u, s, v = np.linalg.svd(np.random.uniform(size=shape))
return np.cast['float32'](u * scale)
return _init
class OrthogonalInitializer(object):
def __init__(self, scale=1.1):
self.scale = scale
def __call__(self, shape, dtype=tf.float32, *args, **kwargs):
result, = tf.py_func(py_ortho_init(self.scale), [shape], [tf.float32])
result.set_shape(shape)
return result
class ParamLayer(Layer):
def __init__(self, incoming, num_units, param=ZerosInitializer(),
trainable=True, **kwargs):
super(ParamLayer, self).__init__(incoming, **kwargs)
self.num_units = num_units
self.param = self.add_param(
param,
(num_units,),
name="param",
trainable=trainable
)
def get_output_shape_for(self, input_shape):
return input_shape[:-1] + (self.num_units,)
def get_output_for(self, input, **kwargs):
ndim = input.get_shape().ndims
reshaped_param = tf.reshape(self.param, (1,) * (ndim - 1) + (self.num_units,))
tile_arg = tf.concat(axis=0, values=[tf.shape(input)[:ndim - 1], [1]])
tiled = tf.tile(reshaped_param, tile_arg)
return tiled
class OpLayer(MergeLayer):
def __init__(self, incoming, op,
shape_op=lambda x: x, extras=None, **kwargs):
if extras is None:
extras = []
incomings = [incoming] + extras
super(OpLayer, self).__init__(incomings, **kwargs)
self.op = op
self.shape_op = shape_op
self.incomings = incomings
def get_output_shape_for(self, input_shapes):
return self.shape_op(*input_shapes)
def get_output_for(self, inputs, **kwargs):
return self.op(*inputs)
class DenseLayer(Layer):
def __init__(self, incoming, num_units, nonlinearity=None, W=XavierUniformInitializer(), b=ZerosInitializer(),
**kwargs):
super(DenseLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = tf.identity if nonlinearity is None else nonlinearity
self.num_units = num_units
num_inputs = int(np.prod(self.input_shape[1:]))
self.W = self.add_param(W, (num_inputs, num_units), name="W")
# self.W = self.add_param(W, (num_units, num_inputs), name="W")
if b is None:
self.b = None
else:
self.b = self.add_param(b, (num_units,), name="b", regularizable=False)
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
def get_output_for(self, input, **kwargs):
if input.get_shape().ndims > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = tf.reshape(input, tf.stack([tf.shape(input)[0], -1]))
activation = tf.matmul(input, self.W)
if self.b is not None:
activation = activation + tf.expand_dims(self.b, 0)
return self.nonlinearity(activation)
class BaseConvLayer(Layer):
def __init__(self, incoming, num_filters, filter_size, stride=1, pad="VALID",
untie_biases=False,
W=XavierUniformInitializer(), b=ZerosInitializer(),
nonlinearity=tf.nn.relu, n=None, **kwargs):
"""
Input is assumed to be of shape batch*height*width*channels
"""
super(BaseConvLayer, self).__init__(incoming, **kwargs)
if nonlinearity is None:
self.nonlinearity = tf.identity
else:
self.nonlinearity = nonlinearity
if n is None:
n = len(self.input_shape) - 2
elif n != len(self.input_shape) - 2:
raise ValueError("Tried to create a %dD convolution layer with "
"input shape %r. Expected %d input dimensions "
"(batchsize, channels, %d spatial dimensions)." %
(n, self.input_shape, n + 2, n))
self.n = n
self.num_filters = num_filters
self.filter_size = as_tuple(filter_size, n, int)
self.stride = as_tuple(stride, n, int)
self.untie_biases = untie_biases
self.pad = pad
if pad == 'SAME':
if any(s % 2 == 0 for s in self.filter_size):
raise NotImplementedError(
'`same` padding requires odd filter size.')
self.W = self.add_param(W, self.get_W_shape(), name="W")
if b is None:
self.b = None
else:
if self.untie_biases:
biases_shape = self.output_shape[1:3] + (num_filters,) # + self.output_shape[2:]
else:
biases_shape = (num_filters,)
self.b = self.add_param(b, biases_shape, name="b",
regularizable=False)
def get_W_shape(self):
"""Get the shape of the weight matrix `W`.
Returns
-------
tuple of int
The shape of the weight matrix.
"""
num_input_channels = self.input_shape[-1]
return self.filter_size + (num_input_channels, self.num_filters)
def get_output_shape_for(self, input_shape):
if self.pad == 'SAME':
pad = ('same',) * self.n
elif self.pad == 'VALID':
pad = (0,) * self.n
else:
import ipdb;
ipdb.set_trace()
raise NotImplementedError
# pad = self.pad if isinstance(self.pad, tuple) else (self.pad,) * self.n
batchsize = input_shape[0]
return ((batchsize,) +
tuple(conv_output_length(input, filter, stride, p)
for input, filter, stride, p
in zip(input_shape[1:3], self.filter_size,
self.stride, pad))) + (self.num_filters,)
def get_output_for(self, input, **kwargs):
conved = self.convolve(input, **kwargs)
if self.b is None:
activation = conved
elif self.untie_biases:
# raise NotImplementedError
activation = conved + tf.expand_dims(self.b, 0)
else:
activation = conved + tf.reshape(self.b, (1, 1, 1, self.num_filters))
return self.nonlinearity(activation)
def convolve(self, input, **kwargs):
"""
Symbolically convolves `input` with ``self.W``, producing an output of
shape ``self.output_shape``. To be implemented by subclasses.
Parameters
----------
input : Theano tensor
The input minibatch to convolve
**kwargs
Any additional keyword arguments from :meth:`get_output_for`
Returns
-------
Theano tensor
`input` convolved according to the configuration of this layer,
without any bias or nonlinearity applied.
"""
raise NotImplementedError("BaseConvLayer does not implement the "
"convolve() method. You will want to "
"use a subclass such as Conv2DLayer.")
class Conv2DLayer(BaseConvLayer):
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
pad="VALID", untie_biases=False,
W=XavierUniformInitializer(), b=ZerosInitializer(),
nonlinearity=tf.nn.relu,
convolution=tf.nn.conv2d, **kwargs):
super(Conv2DLayer, self).__init__(incoming=incoming, num_filters=num_filters, filter_size=filter_size,
stride=stride, pad=pad, untie_biases=untie_biases, W=W, b=b,
nonlinearity=nonlinearity, n=2, **kwargs)
self.convolution = convolution
def convolve(self, input, **kwargs):
conved = self.convolution(input, self.W, strides=(1,) + self.stride + (1,), padding=self.pad)
return conved
def pool_output_length(input_length, pool_size, stride, pad):
if input_length is None or pool_size is None:
return None
if pad == "SAME":
return int(np.ceil(float(input_length) / float(stride)))
return int(np.ceil(float(input_length - pool_size + 1) / float(stride)))
class Pool2DLayer(Layer):
def __init__(self, incoming, pool_size, stride=None, pad="VALID", mode='max', **kwargs):
super(Pool2DLayer, self).__init__(incoming, **kwargs)
self.pool_size = as_tuple(pool_size, 2)
if len(self.input_shape) != 4:
raise ValueError("Tried to create a 2D pooling layer with "
"input shape %r. Expected 4 input dimensions "
"(batchsize, 2 spatial dimensions, channels)."
% (self.input_shape,))
if stride is None:
self.stride = self.pool_size
else:
self.stride = as_tuple(stride, 2)
self.pad = pad
self.mode = mode
def get_output_shape_for(self, input_shape):
output_shape = list(input_shape) # copy / convert to mutable list
output_shape[1] = pool_output_length(input_shape[1],
pool_size=self.pool_size[0],
stride=self.stride[0],
pad=self.pad,
)
output_shape[2] = pool_output_length(input_shape[2],
pool_size=self.pool_size[1],
stride=self.stride[1],
pad=self.pad,
)
return tuple(output_shape)
def get_output_for(self, input, **kwargs):
assert self.mode == "max"
pooled = tf.nn.max_pool(
input,
ksize=(1,) + self.pool_size + (1,),
strides=(1,) + self.stride + (1,),
padding=self.pad,
)
return pooled
def spatial_expected_softmax(x, temp=1):
assert len(x.get_shape()) == 4
vals = []
for dim in [0, 1]:
dim_val = x.get_shape()[dim + 1].value
lin = tf.linspace(-1.0, 1.0, dim_val)
lin = tf.expand_dims(lin, 1 - dim)
lin = tf.expand_dims(lin, 0)
lin = tf.expand_dims(lin, 3)
m = tf.reduce_max(x, [1, 2], keep_dims=True)
e = tf.exp((x - m) / temp) + 1e-5
val = tf.reduce_sum(e * lin, [1, 2]) / (tf.reduce_sum(e, [1, 2]))
vals.append(tf.expand_dims(val, 2))
return tf.reshape(tf.concat(axis=2, values=vals), [-1, x.get_shape()[-1].value * 2])
class SpatialExpectedSoftmaxLayer(Layer):
"""
Computes the softmax across a spatial region, separately for each channel, followed by an expectation operation.
"""
def __init__(self, incoming, **kwargs):
super().__init__(incoming, **kwargs)
# self.temp = self.add_param(tf.ones_initializer, shape=(), name="temperature")
def get_output_shape_for(self, input_shape):
return (input_shape[0], input_shape[-1] * 2)
def get_output_for(self, input, **kwargs):
return spatial_expected_softmax(input) # , self.temp)
# max_ = tf.reduce_max(input, reduction_indices=[1, 2], keep_dims=True)
# exp = tf.exp(input - max_) + 1e-5
# vals = []
#
# for dim in [0, 1]:
# dim_val = input.get_shape()[dim + 1].value
# lin = tf.linspace(-1.0, 1.0, dim_val)
# lin = tf.expand_dims(lin, 1 - dim)
# lin = tf.expand_dims(lin, 0)
# lin = tf.expand_dims(lin, 3)
# m = tf.reduce_max(input, [1, 2], keep_dims=True)
# e = tf.exp(input - m) + 1e-5
# val = tf.reduce_sum(e * lin, [1, 2]) / (tf.reduce_sum(e, [1, 2]))
# vals.append(tf.expand_dims(val, 2))
#
# return tf.reshape(tf.concat(2, vals), [-1, input.get_shape()[-1].value * 2])
# import ipdb; ipdb.set_trace()
# input.get_shape()
# exp / tf.reduce_sum(exp, reduction_indices=[1, 2], keep_dims=True)
# import ipdb;
# ipdb.set_trace()
# spatial softmax?
# for dim in range(2):
# val = obs.get_shape()[dim + 1].value
# lin = tf.linspace(-1.0, 1.0, val)
# lin = tf.expand_dims(lin, 1 - dim)
# lin = tf.expand_dims(lin, 0)
# lin = tf.expand_dims(lin, 3)
# m = tf.reduce_max(e, [1, 2], keep_dims=True)
# e = tf.exp(e - m) + 1e-3
# val = tf.reduce_sum(e * lin, [1, 2]) / (tf.reduce_sum(e, [1, 2]))
class DropoutLayer(Layer):
def __init__(self, incoming, p=0.5, rescale=True, **kwargs):
super(DropoutLayer, self).__init__(incoming, **kwargs)
self.p = p
self.rescale = rescale
def get_output_for(self, input, deterministic=False, **kwargs):
"""
Parameters
----------
input : tensor
output from the previous layer
deterministic : bool
If true dropout and scaling is disabled, see notes
"""
if deterministic or self.p == 0:
return input
else:
# Using theano constant to prevent upcasting
# one = T.constant(1)
retain_prob = 1. - self.p
if self.rescale:
input /= retain_prob
# use nonsymbolic shape for dropout mask if possible
return tf.nn.dropout(input, keep_prob=retain_prob)
def get_output_shape_for(self, input_shape):
return input_shape
# TODO: add Conv3DLayer
class FlattenLayer(Layer):
"""
A layer that flattens its input. The leading ``outdim-1`` dimensions of
the output will have the same shape as the input. The remaining dimensions
are collapsed into the last dimension.
Parameters
----------
incoming : a :class:`Layer` instance or a tuple
The layer feeding into this layer, or the expected input shape.
outdim : int
The number of dimensions in the output.
See Also
--------
flatten : Shortcut
"""
def __init__(self, incoming, outdim=2, **kwargs):
super(FlattenLayer, self).__init__(incoming, **kwargs)
self.outdim = outdim
if outdim < 1:
raise ValueError('Dim must be >0, was %i', outdim)
def get_output_shape_for(self, input_shape):
to_flatten = input_shape[self.outdim - 1:]
if any(s is None for s in to_flatten):
flattened = None
else:
flattened = int(np.prod(to_flatten))
return input_shape[:self.outdim - 1] + (flattened,)
def get_output_for(self, input, **kwargs):
# total_entries = tf.reduce_prod(tf.shape(input))
pre_shape = tf.shape(input)[:self.outdim - 1]
to_flatten = tf.reduce_prod(tf.shape(input)[self.outdim - 1:])
return tf.reshape(input, tf.concat(axis=0, values=[pre_shape, tf.stack([to_flatten])]))
flatten = FlattenLayer # shortcut
class ReshapeLayer(Layer):
def __init__(self, incoming, shape, **kwargs):
super(ReshapeLayer, self).__init__(incoming, **kwargs)
shape = tuple(shape)
for s in shape:
if isinstance(s, int):
if s == 0 or s < - 1:
raise ValueError("`shape` integers must be positive or -1")
elif isinstance(s, list):
if len(s) != 1 or not isinstance(s[0], int) or s[0] < 0:
raise ValueError("`shape` input references must be "
"single-element lists of int >= 0")
elif isinstance(s, (tf.Tensor, tf.Variable)): # T.TensorVariable):
raise NotImplementedError
# if s.ndim != 0:
# raise ValueError(
# "A symbolic variable in a shape specification must be "
# "a scalar, but had %i dimensions" % s.ndim)
else:
raise ValueError("`shape` must be a tuple of int and/or [int]")
if sum(s == -1 for s in shape) > 1:
raise ValueError("`shape` cannot contain multiple -1")
self.shape = shape
# try computing the output shape once as a sanity check
self.get_output_shape_for(self.input_shape)
def get_output_shape_for(self, input_shape, **kwargs):
# Initialize output shape from shape specification
output_shape = list(self.shape)
# First, replace all `[i]` with the corresponding input dimension, and
# mask parts of the shapes thus becoming irrelevant for -1 inference
masked_input_shape = list(input_shape)
masked_output_shape = list(output_shape)
for dim, o in enumerate(output_shape):
if isinstance(o, list):
if o[0] >= len(input_shape):
raise ValueError("specification contains [%d], but input "
"shape has %d dimensions only" %
(o[0], len(input_shape)))
output_shape[dim] = input_shape[o[0]]
masked_output_shape[dim] = input_shape[o[0]]
if (input_shape[o[0]] is None) \
and (masked_input_shape[o[0]] is None):
# first time we copied this unknown input size: mask
# it, we have a 1:1 correspondence between out[dim] and
# in[o[0]] and can ignore it for -1 inference even if
# it is unknown.
masked_input_shape[o[0]] = 1
masked_output_shape[dim] = 1
# Secondly, replace all symbolic shapes with `None`, as we cannot
# infer their size here.
for dim, o in enumerate(output_shape):
if isinstance(o, (tf.Tensor, tf.Variable)): # T.TensorVariable):
raise NotImplementedError
# output_shape[dim] = None
# masked_output_shape[dim] = None
# From the shapes, compute the sizes of the input and output tensor
input_size = (None if any(x is None for x in masked_input_shape)
else np.prod(masked_input_shape))
output_size = (None if any(x is None for x in masked_output_shape)
else np.prod(masked_output_shape))
del masked_input_shape, masked_output_shape
# Finally, infer value for -1 if needed
if -1 in output_shape:
dim = output_shape.index(-1)
if (input_size is None) or (output_size is None):
output_shape[dim] = None
output_size = None
else:
output_size *= -1
output_shape[dim] = input_size // output_size
output_size *= output_shape[dim]
# Sanity check
if (input_size is not None) and (output_size is not None) \
and (input_size != output_size):
raise ValueError("%s cannot be reshaped to specification %s. "
"The total size mismatches." %
(input_shape, self.shape))
return tuple(output_shape)
def get_output_for(self, input, **kwargs):
# Replace all `[i]` with the corresponding input dimension
output_shape = list(self.shape)
for dim, o in enumerate(output_shape):
if isinstance(o, list):
output_shape[dim] = tf.shape(input)[o[0]]
# Everything else is handled by Theano
return tf.reshape(input, tf.stack(output_shape))
reshape = ReshapeLayer # shortcut
class SliceLayer(Layer):
def __init__(self, incoming, indices, axis=-1, **kwargs):
super(SliceLayer, self).__init__(incoming, **kwargs)
self.slice = indices
self.axis = axis
def get_output_shape_for(self, input_shape):
output_shape = list(input_shape)
if isinstance(self.slice, int):
del output_shape[self.axis]
elif input_shape[self.axis] is not None:
output_shape[self.axis] = len(
list(range(*self.slice.indices(input_shape[self.axis]))))
else:
output_shape[self.axis] = None
return tuple(output_shape)
def get_output_for(self, input, **kwargs):
axis = self.axis
ndims = input.get_shape().ndims
if axis < 0:
axis += ndims
if isinstance(self.slice, int) and self.slice < 0:
return tf.reverse(input, [self.axis + 1])[
(slice(None),) * axis + (-1 - self.slice,) + (slice(None),) * (ndims - axis - 1)
]
# import ipdb; ipdb.set_trace()
return input[(slice(None),) * axis + (self.slice,) + (slice(None),) * (ndims - axis - 1)]
class DimshuffleLayer(Layer):
def __init__(self, incoming, pattern, **kwargs):
super(DimshuffleLayer, self).__init__(incoming, **kwargs)
# Sanity check the pattern
used_dims = set()
for p in pattern:
if isinstance(p, int):
# Dimension p
if p in used_dims:
raise ValueError("pattern contains dimension {0} more "
"than once".format(p))
used_dims.add(p)
elif p == 'x':
# Broadcast
pass
else:
raise ValueError("pattern should only contain dimension"
"indices or 'x', not {0}".format(p))
self.pattern = pattern
# try computing the output shape once as a sanity check
self.get_output_shape_for(self.input_shape)
def get_output_shape_for(self, input_shape):
# Build output shape while keeping track of the dimensions that we are
# attempting to collapse, so we can ensure that they are broadcastable
output_shape = []
dims_used = [False] * len(input_shape)
for p in self.pattern:
if isinstance(p, int):
if p < 0 or p >= len(input_shape):
raise ValueError("pattern contains {0}, but input shape "
"has {1} dimensions "
"only".format(p, len(input_shape)))
# Dimension p
o = input_shape[p]
dims_used[p] = True
elif p == 'x':
# Broadcast; will be of size 1
o = 1
output_shape.append(o)
for i, (dim_size, used) in enumerate(zip(input_shape, dims_used)):
if not used and dim_size != 1 and dim_size is not None:
raise ValueError(
"pattern attempted to collapse dimension "
"{0} of size {1}; dimensions with size != 1/None are not"
"broadcastable and cannot be "
"collapsed".format(i, dim_size))
return tuple(output_shape)
def get_output_for(self, input, **kwargs):
return tf.transpose(input, self.pattern)
dimshuffle = DimshuffleLayer # shortcut
def apply_ln(layer):
def _normalize(x, prefix):
EPS = 1e-5
dim = x.get_shape()[-1].value
bias_name = prefix + "_ln/bias"
scale_name = prefix + "_ln/scale"
if bias_name not in layer.norm_params:
layer.norm_params[bias_name] = layer.add_param(
ZerosInitializer(), (dim,), name=bias_name, regularizable=False)
if scale_name not in layer.norm_params:
layer.norm_params[scale_name] = layer.add_param(
tf.ones_initializer(), (dim,), name=scale_name)
bias = layer.norm_params[bias_name]
scale = layer.norm_params[scale_name]
mean, var = tf.nn.moments(x, axes=[1], keep_dims=True)
x_normed = (x - mean) / tf.sqrt(var + EPS)
return x_normed * scale + bias
return _normalize
class GRULayer(Layer):
"""
A gated recurrent unit implements the following update mechanism:
Reset gate: r(t) = f_r(x(t) @ W_xr + h(t-1) @ W_hr + b_r)
Update gate: u(t) = f_u(x(t) @ W_xu + h(t-1) @ W_hu + b_u)
Cell gate: c(t) = f_c(x(t) @ W_xc + r(t) * (h(t-1) @ W_hc) + b_c)
New hidden state: h(t) = (1 - u(t)) * h(t-1) + u_t * c(t)
Note that the reset, update, and cell vectors must have the same dimension as the hidden state
"""
def __init__(self, incoming, num_units, hidden_nonlinearity,
gate_nonlinearity=tf.nn.sigmoid, W_x_init=XavierUniformInitializer(), W_h_init=OrthogonalInitializer(),
b_init=ZerosInitializer(), hidden_init=ZerosInitializer(), hidden_init_trainable=False,
layer_normalization=False, **kwargs):
if hidden_nonlinearity is None:
hidden_nonlinearity = tf.identity
if gate_nonlinearity is None:
gate_nonlinearity = tf.identity
super(GRULayer, self).__init__(incoming, **kwargs)
input_shape = self.input_shape[2:]
input_dim = np.prod(input_shape)
self.layer_normalization = layer_normalization
# Weights for the initial hidden state
self.h0 = self.add_param(hidden_init, (num_units,), name="h0", trainable=hidden_init_trainable,
regularizable=False)
# Weights for the reset gate
self.W_xr = self.add_param(W_x_init, (input_dim, num_units), name="W_xr")
self.W_hr = self.add_param(W_h_init, (num_units, num_units), name="W_hr")
self.b_r = self.add_param(b_init, (num_units,), name="b_r", regularizable=False)
# Weights for the update gate
self.W_xu = self.add_param(W_x_init, (input_dim, num_units), name="W_xu")
self.W_hu = self.add_param(W_h_init, (num_units, num_units), name="W_hu")
self.b_u = self.add_param(b_init, (num_units,), name="b_u", regularizable=False)
# Weights for the cell gate
self.W_xc = self.add_param(W_x_init, (input_dim, num_units), name="W_xc")
self.W_hc = self.add_param(W_h_init, (num_units, num_units), name="W_hc")
self.b_c = self.add_param(b_init, (num_units,), name="b_c", regularizable=False)
self.W_x_ruc = tf.concat(axis=1, values=[self.W_xr, self.W_xu, self.W_xc])
self.W_h_ruc = tf.concat(axis=1, values=[self.W_hr, self.W_hu, self.W_hc])
self.W_x_ru = tf.concat(axis=1, values=[self.W_xr, self.W_xu])
self.W_h_ru = tf.concat(axis=1, values=[self.W_hr, self.W_hu])
self.b_ruc = tf.concat(axis=0, values=[self.b_r, self.b_u, self.b_c])
self.gate_nonlinearity = gate_nonlinearity
self.num_units = num_units
self.nonlinearity = hidden_nonlinearity
self.norm_params = dict()
# pre-run the step method to initialize the normalization parameters
h_dummy = tf.placeholder(dtype=tf.float32, shape=(None, num_units), name="h_dummy")
x_dummy = tf.placeholder(dtype=tf.float32, shape=(None, input_dim), name="x_dummy")
self.step(h_dummy, x_dummy)
def step(self, hprev, x):
if self.layer_normalization:
ln = apply_ln(self)
x_ru = ln(tf.matmul(x, self.W_x_ru), "x_ru")
h_ru = ln(tf.matmul(hprev, self.W_h_ru), "h_ru")
x_r, x_u = tf.split(axis=1, num_or_size_splits=2, value=x_ru)
h_r, h_u = tf.split(axis=1, num_or_size_splits=2, value=h_ru)
x_c = ln(tf.matmul(x, self.W_xc), "x_c")
h_c = ln(tf.matmul(hprev, self.W_hc), "h_c")
r = self.gate_nonlinearity(x_r + h_r)
u = self.gate_nonlinearity(x_u + h_u)
c = self.nonlinearity(x_c + r * h_c)
h = (1 - u) * hprev + u * c
return h
else:
xb_ruc = tf.matmul(x, self.W_x_ruc) + tf.reshape(self.b_ruc, (1, -1))
h_ruc = tf.matmul(hprev, self.W_h_ruc)
xb_r, xb_u, xb_c = tf.split(axis=1, num_or_size_splits=3, value=xb_ruc)
h_r, h_u, h_c = tf.split(axis=1, num_or_size_splits=3, value=h_ruc)
r = self.gate_nonlinearity(xb_r + h_r)
u = self.gate_nonlinearity(xb_u + h_u)
c = self.nonlinearity(xb_c + r * h_c)
h = (1 - u) * hprev + u * c
return h
def get_step_layer(self, l_in, l_prev_hidden, name=None):
return GRUStepLayer(incomings=[l_in, l_prev_hidden], recurrent_layer=self, name=name)
def get_output_shape_for(self, input_shape):
n_batch, n_steps = input_shape[:2]
return n_batch, n_steps, self.num_units
def get_output_for(self, input, **kwargs):
input_shape = tf.shape(input)
n_batches = input_shape[0]
n_steps = input_shape[1]
input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
h0s = kwargs['recurrent_state'][self]
else:
h0s = tf.tile(
tf.reshape(self.h0, (1, self.num_units)),
(n_batches, 1)
)
# flatten extra dimensions
shuffled_input = tf.transpose(input, (1, 0, 2))
hs = tf.scan(
self.step,
elems=shuffled_input,
initializer=h0s
)
shuffled_hs = tf.transpose(hs, (1, 0, 2))
if 'recurrent_state_output' in kwargs:
kwargs['recurrent_state_output'][self] = shuffled_hs
return shuffled_hs
class GRUStepLayer(MergeLayer):
def __init__(self, incomings, recurrent_layer, **kwargs):
super(GRUStepLayer, self).__init__(incomings, **kwargs)
self._gru_layer = recurrent_layer
def get_params(self, **tags):
return self._gru_layer.get_params(**tags)
def get_output_shape_for(self, input_shapes):
n_batch = input_shapes[0][0]
return n_batch, self._gru_layer.num_units
def get_output_for(self, inputs, **kwargs):
x, hprev = inputs
n_batch = tf.shape(x)[0]
x = tf.reshape(x, tf.stack([n_batch, -1]))
x.set_shape((None, self.input_shapes[0][1]))
return self._gru_layer.step(hprev, x)
class TfGRULayer(Layer):
"""
Use TensorFlow's built-in GRU implementation
"""
def __init__(self, incoming, num_units, hidden_nonlinearity, horizon=None, hidden_init_trainable=False,
**kwargs):
assert len(incoming.output_shape) == 3
input_dim = incoming.shape[2]
gru = tf.nn.rnn_cell.GRUCell(num_units=num_units, activation=hidden_nonlinearity)
self.num_units = num_units
self.horizon = horizon
self.gru = gru
self.hidden_nonlinearity = hidden_nonlinearity
Layer.__init__(self, incoming=incoming, **kwargs)
# dummy input variable
input_dummy = tf.placeholder(tf.float32, (None, input_dim), "input_dummy")
hidden_dummy = tf.placeholder(tf.float32, (None, num_units), "hidden_dummy")
with tf.variable_scope(self.name) as vs:
gru(input_dummy, hidden_dummy, scope=vs)
vs.reuse_variables()
self.scope = vs
all_vars = [v for v in tf.global_variables() if v.name.startswith(vs.name)]
trainable_vars = [v for v in tf.trainable_variables() if v.name.startswith(vs.name)]
for var in trainable_vars:
self.add_param(spec=var, shape=None, name=None, trainable=True)
for var in set(all_vars) - set(trainable_vars):
self.add_param(spec=var, shape=None, name=None, trainable=False)
self.h0 = self.add_param(ZerosInitializer(), (num_units,), name="h0", trainable=hidden_init_trainable,
regularizable=False)
def step(self, hprev, x):
return self.gru(x, hprev, scope=self.scope)[1]
def get_output_for(self, input, **kwargs):
input_shape = tf.shape(input)
n_batches = input_shape[0]
state = tf.tile(
tf.reshape(self.h0, (1, self.num_units)),
(n_batches, 1)
)
state.set_shape((None, self.num_units))
if self.horizon is not None:
outputs = []
for idx in range(self.horizon):
output, state = self.gru(input[:, idx, :], state, scope=self.scope) # self.name)
outputs.append(tf.expand_dims(output, 1))
outputs = tf.concat(axis=1, values=outputs)
return outputs
else:
n_steps = input_shape[1]
input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
# flatten extra dimensions
shuffled_input = tf.transpose(input, (1, 0, 2))
shuffled_input.set_shape((None, None, self.input_shape[-1]))
hs = tf.scan(
self.step,
elems=shuffled_input,
initializer=state
)
shuffled_hs = tf.transpose(hs, (1, 0, 2))
return shuffled_hs
def get_output_shape_for(self, input_shape):
n_batch, n_steps = input_shape[:2]
return n_batch, n_steps, self.num_units
def get_step_layer(self, l_in, l_prev_hidden, name=None):
return GRUStepLayer(incomings=[l_in, l_prev_hidden], recurrent_layer=self, name=name)
class PseudoLSTMLayer(Layer):
"""
A Pseudo LSTM unit implements the following update mechanism:
Incoming gate: i(t) = σ(W_hi @ h(t-1)) + W_xi @ x(t) + b_i)
Forget gate: f(t) = σ(W_hf @ h(t-1)) + W_xf @ x(t) + b_f)
Out gate: o(t) = σ(W_ho @ h(t-1)) + W_xo @ x(t) + b_o)
New cell gate: c_new(t) = ϕ(W_hc @ (o(t) * h(t-1)) + W_xc @ x(t) + b_c)
Cell gate: c(t) = f(t) * c(t-1) + i(t) * c_new(t)
Hidden state: h(t) = ϕ(c(t))
Output: out = h(t)
If gate_squash_inputs is set to True, we have the following updates instead:
Out gate: o(t) = σ(W_ho @ h(t-1)) + W_xo @ x(t) + b_o)
Incoming gate: i(t) = σ(W_hi @ (o(t) * h(t-1)) + W_xi @ x(t) + b_i)
Forget gate: f(t) = σ(W_hf @ (o(t) * h(t-1)) + W_xf @ x(t) + b_f)
New cell gate: c_new(t) = ϕ(W_hc @ (o(t) * h(t-1)) + W_xc @ x(t) + b_c)
Cell state: c(t) = f(t) * c(t-1) + i(t) * c_new(t)
Hidden state: h(t) = ϕ(c(t))
Output: out = h(t)
Note that the incoming, forget, cell, and out vectors must have the same dimension as the hidden state
The notation is slightly different from
http://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html: here we introduce the cell
gate and swap its role with the hidden state, so that the output is the same as the hidden state (and we can use
this as a drop-in replacement for LSTMLayer).
"""
def __init__(self, incoming, num_units, hidden_nonlinearity=tf.tanh,
gate_nonlinearity=tf.nn.sigmoid, W_x_init=XavierUniformInitializer(), W_h_init=OrthogonalInitializer(),
forget_bias=1.0, b_init=ZerosInitializer(), hidden_init=ZerosInitializer(),
hidden_init_trainable=False, cell_init=ZerosInitializer(), cell_init_trainable=False,
gate_squash_inputs=False, layer_normalization=False, **kwargs):
if hidden_nonlinearity is None:
hidden_nonlinearity = tf.identity
if gate_nonlinearity is None:
gate_nonlinearity = tf.identity
super(PseudoLSTMLayer, self).__init__(incoming, **kwargs)
self.layer_normalization = layer_normalization
input_shape = self.input_shape[2:]
input_dim = np.prod(input_shape)
# Weights for the initial hidden state (this is actually not used, since the initial hidden state is
# determined by the initial cell state via h0 = self.nonlinearity(c0)). It is here merely for
# interface convenience
self.h0 = self.add_param(hidden_init, (num_units,), name="h0", trainable=hidden_init_trainable,
regularizable=False)
# Weights for the initial cell state
self.c0 = self.add_param(cell_init, (num_units,), name="c0", trainable=cell_init_trainable,
regularizable=False)
# Weights for the incoming gate
self.W_xi = self.add_param(W_x_init, (input_dim, num_units), name="W_xi")
self.W_hi = self.add_param(W_h_init, (num_units, num_units), name="W_hi")
self.b_i = self.add_param(b_init, (num_units,), name="b_i", regularizable=False)
# Weights for the forget gate
self.W_xf = self.add_param(W_x_init, (input_dim, num_units), name="W_xf")
self.W_hf = self.add_param(W_h_init, (num_units, num_units), name="W_hf")
self.b_f = self.add_param(b_init, (num_units,), name="b_f", regularizable=False)
# Weights for the out gate
self.W_xo = self.add_param(W_x_init, (input_dim, num_units), name="W_xo")
self.W_ho = self.add_param(W_h_init, (num_units, num_units), name="W_ho")
self.b_o = self.add_param(b_init, (num_units,), name="b_o", regularizable=False)
# Weights for the cell gate
self.W_xc = self.add_param(W_x_init, (input_dim, num_units), name="W_xc")
self.W_hc = self.add_param(W_h_init, (num_units, num_units), name="W_hc")
self.b_c = self.add_param(b_init, (num_units,), name="b_c", regularizable=False)
self.gate_nonlinearity = gate_nonlinearity
self.num_units = num_units
self.nonlinearity = hidden_nonlinearity
self.forget_bias = forget_bias
self.gate_squash_inputs = gate_squash_inputs
self.W_x_ifo = tf.concat(axis=1, values=[self.W_xi, self.W_xf, self.W_xo])
self.W_h_ifo = tf.concat(axis=1, values=[self.W_hi, self.W_hf, self.W_ho])
self.W_x_if = tf.concat(axis=1, values=[self.W_xi, self.W_xf])
self.W_h_if = tf.concat(axis=1, values=[self.W_hi, self.W_hf])
self.norm_params = dict()
def step(self, hcprev, x):
hprev = hcprev[:, :self.num_units]
cprev = hcprev[:, self.num_units:]
if self.layer_normalization:
ln = apply_ln(self)
else:
ln = lambda x, *args: x
if self.gate_squash_inputs:
"""
Out gate: o(t) = σ(W_ho @ h(t-1)) + W_xo @ x(t) + b_o)
Incoming gate: i(t) = σ(W_hi @ (o(t) * h(t-1)) + W_xi @ x(t) + b_i)
Forget gate: f(t) = σ(W_hf @ (o(t) * h(t-1)) + W_xf @ x(t) + b_f)
New cell gate: c_new(t) = ϕ(W_hc @ (o(t) * h(t-1)) + W_xc @ x(t) + b_c)
Cell state: c(t) = f(t) * c(t-1) + i(t) * c_new(t)
Hidden state: h(t) = ϕ(c(t))
Output: out = h(t)
"""
o = self.nonlinearity(
ln(tf.matmul(hprev, self.W_ho), "h_o") +
ln(tf.matmul(x, self.W_xo), "x_o") + self.b_o
)
x_if = ln(tf.matmul(x, self.W_x_if), "x_if")
h_if = ln(tf.matmul(o * hprev, self.W_h_if), "h_if")
x_i, x_f = tf.split(axis=1, num_or_size_splits=2, value=x_if)
h_i, h_f = tf.split(axis=1, num_or_size_splits=2, value=h_if)
i = self.gate_nonlinearity(x_i + h_i + self.b_i)
f = self.gate_nonlinearity(x_f + h_f + self.b_f + self.forget_bias)
c_new = self.nonlinearity(
ln(tf.matmul(o * hprev, self.W_hc), "h_c") +
ln(tf.matmul(x, self.W_xc), "x_c") +
self.b_c
)
c = f * cprev + i * c_new
h = self.nonlinearity(ln(c, "c"))
return tf.concat(axis=1, values=[h, c])
else:
"""
Incoming gate: i(t) = σ(W_hi @ h(t-1)) + W_xi @ x(t) + b_i)
Forget gate: f(t) = σ(W_hf @ h(t-1)) + W_xf @ x(t) + b_f)
Out gate: o(t) = σ(W_ho @ h(t-1)) + W_xo @ x(t) + b_o)
New cell gate: c_new(t) = ϕ(W_hc @ (o(t) * h(t-1)) + W_xc @ x(t) + b_c)
Cell gate: c(t) = f(t) * c(t-1) + i(t) * c_new(t)
Hidden state: h(t) = ϕ(c(t))
Output: out = h(t)
"""
x_ifo = ln(tf.matmul(x, self.W_x_ifo), "x_ifo")
h_ifo = ln(tf.matmul(hprev, self.W_h_ifo), "h_ifo")
x_i, x_f, x_o = tf.split(axis=1, num_or_size_splits=3, value=x_ifo)
h_i, h_f, h_o = tf.split(axis=1, num_or_size_splits=3, value=h_ifo)
i = self.gate_nonlinearity(x_i + h_i + self.b_i)
f = self.gate_nonlinearity(x_f + h_f + self.b_f + self.forget_bias)
o = self.gate_nonlinearity(x_o + h_o + self.b_o)
c_new = self.nonlinearity(
ln(tf.matmul(o * hprev, self.W_hc), "h_c") +
ln(tf.matmul(x, self.W_xc), "x_c") +
self.b_c
)
c = f * cprev + i * c_new
h = self.nonlinearity(ln(c, "c"))
return tf.concat(axis=1, values=[h, c])
def get_step_layer(self, l_in, l_prev_state, name=None):
return LSTMStepLayer(incomings=[l_in, l_prev_state], recurrent_layer=self, name=name)
def get_output_shape_for(self, input_shape):
n_batch, n_steps = input_shape[:2]
return n_batch, n_steps, self.num_units
def get_output_for(self, input, **kwargs):
input_shape = tf.shape(input)
n_batches = input_shape[0]
n_steps = input_shape[1]
input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
c0s = tf.tile(
tf.reshape(self.c0, (1, self.num_units)),
(n_batches, 1)
)
h0s = self.nonlinearity(c0s)
# flatten extra dimensions
shuffled_input = tf.transpose(input, (1, 0, 2))
hcs = tf.scan(
self.step,
elems=shuffled_input,
initializer=tf.concat(axis=1, values=[h0s, c0s])
)
shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
shuffled_hs = shuffled_hcs[:, :, :self.num_units]
shuffled_cs = shuffled_hcs[:, :, self.num_units:]
return shuffled_hs
class LSTMLayer(Layer):
"""
A LSTM unit implements the following update mechanism:
Incoming gate: i(t) = f_i(x(t) @ W_xi + h(t-1) @ W_hi + w_ci * c(t-1) + b_i)
Forget gate: f(t) = f_f(x(t) @ W_xf + h(t-1) @ W_hf + w_cf * c(t-1) + b_f)
Cell gate: c(t) = f(t) * c(t - 1) + i(t) * f_c(x(t) @ W_xc + h(t-1) @ W_hc + b_c)
Out gate: o(t) = f_o(x(t) @ W_xo + h(t-1) W_ho + w_co * c(t) + b_o)
New hidden state: h(t) = o(t) * f_h(c(t))
Note that the incoming, forget, cell, and out vectors must have the same dimension as the hidden state
"""
def __init__(self, incoming, num_units, hidden_nonlinearity=tf.tanh,
gate_nonlinearity=tf.nn.sigmoid, W_x_init=XavierUniformInitializer(), W_h_init=OrthogonalInitializer(),
forget_bias=1.0, use_peepholes=False, w_init=tf.random_normal_initializer(stddev=0.1),
b_init=ZerosInitializer(), hidden_init=ZerosInitializer(), hidden_init_trainable=False,
cell_init=ZerosInitializer(), cell_init_trainable=False, layer_normalization=False,
**kwargs):
if hidden_nonlinearity is None:
hidden_nonlinearity = tf.identity
if gate_nonlinearity is None:
gate_nonlinearity = tf.identity
super(LSTMLayer, self).__init__(incoming, **kwargs)
self.layer_normalization = layer_normalization
input_shape = self.input_shape[2:]
input_dim = np.prod(input_shape)
# Weights for the initial hidden state
self.h0 = self.add_param(hidden_init, (num_units,), name="h0", trainable=hidden_init_trainable,
regularizable=False)
# Weights for the initial cell state
self.c0 = self.add_param(cell_init, (num_units,), name="c0", trainable=cell_init_trainable,
regularizable=False)
# Weights for the incoming gate
self.W_xi = self.add_param(W_x_init, (input_dim, num_units), name="W_xi")
self.W_hi = self.add_param(W_h_init, (num_units, num_units), name="W_hi")
if use_peepholes:
self.w_ci = self.add_param(w_init, (num_units,), name="w_ci")
self.b_i = self.add_param(b_init, (num_units,), name="b_i", regularizable=False)
# Weights for the forget gate
self.W_xf = self.add_param(W_x_init, (input_dim, num_units), name="W_xf")
self.W_hf = self.add_param(W_h_init, (num_units, num_units), name="W_hf")
if use_peepholes:
self.w_cf = self.add_param(w_init, (num_units,), name="w_cf")
self.b_f = self.add_param(b_init, (num_units,), name="b_f", regularizable=False)
# Weights for the cell gate
self.W_xc = self.add_param(W_x_init, (input_dim, num_units), name="W_xc")
self.W_hc = self.add_param(W_h_init, (num_units, num_units), name="W_hc")
self.b_c = self.add_param(b_init, (num_units,), name="b_c", regularizable=False)
# Weights for the reset gate
self.W_xr = self.add_param(W_x_init, (input_dim, num_units), name="W_xr")
self.W_hr = self.add_param(W_h_init, (num_units, num_units), name="W_hr")
self.b_r = self.add_param(b_init, (num_units,), name="b_r", regularizable=False)
# Weights for the out gate
self.W_xo = self.add_param(W_x_init, (input_dim, num_units), name="W_xo")
self.W_ho = self.add_param(W_h_init, (num_units, num_units), name="W_ho")
if use_peepholes:
self.w_co = self.add_param(w_init, (num_units,), name="w_co")
self.b_o = self.add_param(b_init, (num_units,), name="b_o", regularizable=False)
self.gate_nonlinearity = gate_nonlinearity
self.num_units = num_units
self.nonlinearity = hidden_nonlinearity
self.forget_bias = forget_bias
self.use_peepholes = use_peepholes
self.W_x_ifco = tf.concat(axis=1, values=[self.W_xi, self.W_xf, self.W_xc, self.W_xo])
self.W_h_ifco = tf.concat(axis=1, values=[self.W_hi, self.W_hf, self.W_hc, self.W_ho])
if use_peepholes:
self.w_c_ifo = tf.concat(axis=0, values=[self.w_ci, self.w_cf, self.w_co])
self.norm_params = dict()
def step(self, hcprev, x):
"""
Incoming gate: i(t) = f_i(x(t) @ W_xi + h(t-1) @ W_hi + w_ci * c(t-1) + b_i)
Forget gate: f(t) = f_f(x(t) @ W_xf + h(t-1) @ W_hf + w_cf * c(t-1) + b_f)
Cell gate: c(t) = f(t) * c(t - 1) + i(t) * f_c(x(t) @ W_xc + h(t-1) @ W_hc + b_c)
Out gate: o(t) = f_o(x(t) @ W_xo + h(t-1) W_ho + w_co * c(t) + b_o)
New hidden state: h(t) = o(t) * f_h(c(t))
"""
hprev = hcprev[:, :self.num_units]
cprev = hcprev[:, self.num_units:]
if self.layer_normalization:
ln = apply_ln(self)
else:
ln = lambda x, *args: x
x_ifco = ln(tf.matmul(x, self.W_x_ifco), "x_ifco")
h_ifco = ln(tf.matmul(hprev, self.W_h_ifco), "h_ifco")
x_i, x_f, x_c, x_o = tf.split(axis=1, num_or_size_splits=4, value=x_ifco)
h_i, h_f, h_c, h_o = tf.split(axis=1, num_or_size_splits=4, value=h_ifco)
if self.use_peepholes:
i = self.gate_nonlinearity(x_i + h_i + self.w_ci * cprev + self.b_i)
f = self.gate_nonlinearity(x_f + h_f + self.w_cf * cprev + self.b_f + self.forget_bias)
o = self.gate_nonlinearity(x_o + h_o + self.w_co * cprev + self.b_o)
else:
i = self.gate_nonlinearity(x_i + h_i + self.b_i)
f = self.gate_nonlinearity(x_f + h_f + self.b_f + self.forget_bias)
o = self.gate_nonlinearity(x_o + h_o + self.b_o)
c = f * cprev + i * self.nonlinearity(x_c + h_c + self.b_c)
h = o * self.nonlinearity(ln(c, "c"))
return tf.concat(axis=1, values=[h, c])
def get_step_layer(self, l_in, l_prev_state, name=None):
return LSTMStepLayer(incomings=[l_in, l_prev_state], recurrent_layer=self, name=name)
def get_output_shape_for(self, input_shape):
n_batch, n_steps = input_shape[:2]
return n_batch, n_steps, self.num_units
def get_output_for(self, input, **kwargs):
input_shape = tf.shape(input)
n_batches = input_shape[0]
n_steps = input_shape[1]
input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
h0s = tf.tile(
tf.reshape(self.h0, (1, self.num_units)),
(n_batches, 1)
)
c0s = tf.tile(
tf.reshape(self.c0, (1, self.num_units)),
(n_batches, 1)
)
# flatten extra dimensions
shuffled_input = tf.transpose(input, (1, 0, 2))
hcs = tf.scan(
self.step,
elems=shuffled_input,
initializer=tf.concat(axis=1, values=[h0s, c0s])
)
shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
shuffled_hs = shuffled_hcs[:, :, :self.num_units]
shuffled_cs = shuffled_hcs[:, :, self.num_units:]
if 'recurrent_state_output' in kwargs:
kwargs['recurrent_state_output'][self] = shuffled_hcs
return shuffled_hs
class LSTMStepLayer(MergeLayer):
def __init__(self, incomings, recurrent_layer, **kwargs):
super(LSTMStepLayer, self).__init__(incomings, **kwargs)
self._recurrent_layer = recurrent_layer
def get_params(self, **tags):
return self._recurrent_layer.get_params(**tags)
def get_output_shape_for(self, input_shapes):
n_batch = input_shapes[0][0]
return n_batch, 2 * self._recurrent_layer.num_units
def get_output_for(self, inputs, **kwargs):
x, hcprev = inputs
n_batch = tf.shape(x)[0]
x = tf.reshape(x, tf.stack([n_batch, -1]))
hc = self._recurrent_layer.step(hcprev, x)
return hc
class TfBasicLSTMLayer(Layer):
"""
Use TensorFlow's built-in (basic) LSTM implementation
"""
def __init__(self, incoming, num_units, hidden_nonlinearity, horizon=None, hidden_init_trainable=False,
forget_bias=1.0, use_peepholes=False, **kwargs):
assert not use_peepholes, "Basic LSTM does not support peepholes!"
assert len(incoming.output_shape) == 3
input_dim = incoming.shape[2]
lstm = tf.contrib.rnn.BasicLSTMCell(
num_units=num_units,
activation=hidden_nonlinearity,
state_is_tuple=True,
forget_bias=forget_bias
)
self.num_units = num_units
self.horizon = horizon
self.lstm = lstm
self.hidden_nonlinearity = hidden_nonlinearity
Layer.__init__(self, incoming=incoming, **kwargs)
# dummy input variable
input_dummy = tf.placeholder(tf.float32, (None, input_dim), "input_dummy")
hidden_dummy = tf.placeholder(tf.float32, (None, num_units), "hidden_dummy")
cell_dummy = tf.placeholder(tf.float32, (None, num_units), "cell_dummy")
with tf.variable_scope(self.name) as vs:
lstm(input_dummy, (cell_dummy, hidden_dummy), scope=vs)
vs.reuse_variables()
self.scope = vs
all_vars = [v for v in tf.global_variables() if v.name.startswith(vs.name)]
trainable_vars = [v for v in tf.trainable_variables() if v.name.startswith(vs.name)]
for var in trainable_vars:
self.add_param(spec=var, shape=None, name=None, trainable=True)
for var in set(all_vars) - set(trainable_vars):
self.add_param(spec=var, shape=None, name=None, trainable=False)
self.h0 = self.add_param(ZerosInitializer(), (num_units,), name="h0", trainable=hidden_init_trainable,
regularizable=False)
self.c0 = self.add_param(ZerosInitializer(), (num_units,), name="c0", trainable=hidden_init_trainable,
regularizable=False)
def step(self, hcprev, x):
hprev = hcprev[:, :self.num_units]
cprev = hcprev[:, self.num_units:]
x.set_shape((None, self.input_shape[-1]))
c, h = self.lstm(x, (cprev, hprev), scope=self.scope)[1]
return tf.concat(axis=1, values=[h, c])
def get_output_for(self, input, **kwargs):
input_shape = tf.shape(input)
n_batches = input_shape[0]
h0s = tf.tile(
tf.reshape(self.h0, (1, self.num_units)),
(n_batches, 1)
)
h0s.set_shape((None, self.num_units))
c0s = tf.tile(
tf.reshape(self.c0, (1, self.num_units)),
(n_batches, 1)
)
c0s.set_shape((None, self.num_units))
state = (c0s, h0s)
if self.horizon is not None:
outputs = []
for idx in range(self.horizon):
output, state = self.lstm(input[:, idx, :], state, scope=self.scope) # self.name)
outputs.append(tf.expand_dims(output, 1))
outputs = tf.concat(axis=1, values=outputs)
return outputs
else:
n_steps = input_shape[1]
input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
# flatten extra dimensions
shuffled_input = tf.transpose(input, (1, 0, 2))
shuffled_input.set_shape((None, None, self.input_shape[-1]))
hcs = tf.scan(
self.step,
elems=shuffled_input,
initializer=tf.concat(axis=1, values=[h0s, c0s]),
)
shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
shuffled_hs = shuffled_hcs[:, :, :self.num_units]
shuffled_cs = shuffled_hcs[:, :, self.num_units:]
return shuffled_hs
def get_output_shape_for(self, input_shape):
n_batch, n_steps = input_shape[:2]
return n_batch, n_steps, self.num_units
def get_step_layer(self, l_in, l_prev_state, name=None):
return LSTMStepLayer(incomings=[l_in, l_prev_state], recurrent_layer=self, name=name)
def get_all_layers(layer, treat_as_input=None):
"""
:type layer: Layer | list[Layer]
:rtype: list[Layer]
"""
# We perform a depth-first search. We add a layer to the result list only
# after adding all its incoming layers (if any) or when detecting a cycle.
# We use a LIFO stack to avoid ever running into recursion depth limits.
try:
queue = deque(layer)
except TypeError:
queue = deque([layer])
seen = set()
done = set()
result = []
# If treat_as_input is given, we pretend we've already collected all their
# incoming layers.
if treat_as_input is not None:
seen.update(treat_as_input)
while queue:
# Peek at the leftmost node in the queue.
layer = queue[0]
if layer is None:
# Some node had an input_layer set to `None`. Just ignore it.
queue.popleft()
elif layer not in seen:
# We haven't seen this node yet: Mark it and queue all incomings
# to be processed first. If there are no incomings, the node will
# be appended to the result list in the next iteration.
seen.add(layer)
if hasattr(layer, 'input_layers'):
queue.extendleft(reversed(layer.input_layers))
elif hasattr(layer, 'input_layer'):
queue.appendleft(layer.input_layer)
else:
# We've been here before: Either we've finished all its incomings,
# or we've detected a cycle. In both cases, we remove the layer
# from the queue and append it to the result list.
queue.popleft()
if layer not in done:
result.append(layer)
done.add(layer)
return result
class NonlinearityLayer(Layer):
def __init__(self, incoming, nonlinearity=tf.nn.relu, **kwargs):
super(NonlinearityLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = (tf.identity if nonlinearity is None
else nonlinearity)
def get_output_for(self, input, **kwargs):
return self.nonlinearity(input)
def get_output_shape_for(self, input_shape):
return input_shape
class BatchNormLayer(Layer):
def __init__(self, incoming, center=True, scale=False, epsilon=0.001, decay=0.9,
beta=ZerosInitializer(), gamma=tf.ones_initializer(), moving_mean=ZerosInitializer(),
moving_variance=tf.ones_initializer(), **kwargs):
super(BatchNormLayer, self).__init__(incoming, **kwargs)
self.center = center
self.scale = scale
self.epsilon = epsilon
self.decay = decay
input_shape = incoming.output_shape
axis = list(range(len(input_shape) - 1))
params_shape = input_shape[-1:]
if center:
self.beta = self.add_param(beta, shape=params_shape, name='beta', trainable=True, regularizable=False)
else:
self.beta = None
if scale:
self.gamma = self.add_param(gamma, shape=params_shape, name='gamma', trainable=True, regularizable=True)
else:
self.gamma = None
self.moving_mean = self.add_param(moving_mean, shape=params_shape, name='moving_mean', trainable=False,
regularizable=False)
self.moving_variance = self.add_param(moving_variance, shape=params_shape, name='moving_variance',
trainable=False, regularizable=False)
self.axis = axis
def get_output_for(self, input, phase='train', **kwargs):
if phase == 'train':
# Calculate the moments based on the individual batch.
mean, variance = tf.nn.moments(input, self.axis, shift=self.moving_mean)
# Update the moving_mean and moving_variance moments.
update_moving_mean = moving_averages.assign_moving_average(
self.moving_mean, mean, self.decay)
update_moving_variance = moving_averages.assign_moving_average(
self.moving_variance, variance, self.decay)
# Make sure the updates are computed here.
with tf.control_dependencies([update_moving_mean,
update_moving_variance]):
output = tf.nn.batch_normalization(
input, mean, variance, self.beta, self.gamma, self.epsilon)
else:
output = tf.nn.batch_normalization(
input, self.moving_mean, self.moving_variance, self.beta, self.gamma, self.epsilon)
output.set_shape(self.input_shape)
return output
def get_output_shape_for(self, input_shape):
return input_shape
def batch_norm(layer, **kwargs):
nonlinearity = getattr(layer, 'nonlinearity', None)
scale = True
if nonlinearity is not None:
layer.nonlinearity = tf.identity
if nonlinearity is tf.nn.relu:
scale = False
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
bn_name = (kwargs.pop('name', None) or
(getattr(layer, 'name', None) and layer.name + '_bn'))
raise NotImplementedError("applying batchnorm!!!")
layer = BatchNormLayer(layer, name=bn_name, scale=scale, **kwargs)
if nonlinearity is not None:
nonlin_name = bn_name and bn_name + '_nonlin'
layer = NonlinearityLayer(layer, nonlinearity=nonlinearity, name=nonlin_name)
return layer
class ElemwiseSumLayer(MergeLayer):
def __init__(self, incomings, **kwargs):
super(ElemwiseSumLayer, self).__init__(incomings, **kwargs)
def get_output_for(self, inputs, **kwargs):
return functools.reduce(tf.add, inputs)
def get_output_shape_for(self, input_shapes):
assert len(set(input_shapes)) == 1
return input_shapes[0]
def get_output(layer_or_layers, inputs=None, **kwargs):
# track accepted kwargs used by get_output_for
accepted_kwargs = {'deterministic'}
# obtain topological ordering of all layers the output layer(s) depend on
treat_as_input = list(inputs.keys()) if isinstance(inputs, dict) else []
all_layers = get_all_layers(layer_or_layers, treat_as_input)
# initialize layer-to-expression mapping from all input layers
all_outputs = dict((layer, layer.input_var)
for layer in all_layers
if isinstance(layer, InputLayer) and
layer not in treat_as_input)
# update layer-to-expression mapping from given input(s), if any
if isinstance(inputs, dict):
all_outputs.update((layer, tf.convert_to_tensor(expr))
for layer, expr in list(inputs.items()))
elif inputs is not None:
if len(all_outputs) > 1:
raise ValueError("get_output() was called with a single input "
"expression on a network with multiple input "
"layers. Please call it with a dictionary of "
"input expressions instead.")
for input_layer in all_outputs:
all_outputs[input_layer] = tf.convert_to_tensor(inputs)
# update layer-to-expression mapping by propagating the inputs
for layer in all_layers:
if layer not in all_outputs:
try:
if isinstance(layer, MergeLayer):
layer_inputs = [all_outputs[input_layer]
for input_layer in layer.input_layers]
else:
layer_inputs = all_outputs[layer.input_layer]
except KeyError:
# one of the input_layer attributes must have been `None`
raise ValueError("get_output() was called without giving an "
"input expression for the free-floating "
"layer %r. Please call it with a dictionary "
"mapping this layer to an input expression."
% layer)
all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs)
try:
names, _, _, defaults = getargspec(layer.get_output_for)
except TypeError:
# If introspection is not possible, skip it
pass
else:
if defaults is not None:
accepted_kwargs |= set(names[-len(defaults):])
accepted_kwargs |= set(layer.get_output_kwargs)
unused_kwargs = set(kwargs.keys()) - accepted_kwargs
if unused_kwargs:
suggestions = []
for kwarg in unused_kwargs:
suggestion = get_close_matches(kwarg, accepted_kwargs)
if suggestion:
suggestions.append('%s (perhaps you meant %s)'
% (kwarg, suggestion[0]))
else:
suggestions.append(kwarg)
warn("get_output() was called with unused kwargs:\n\t%s"
% "\n\t".join(suggestions))
# return the output(s) of the requested layer(s) only
try:
return [all_outputs[layer] for layer in layer_or_layers]
except TypeError:
return all_outputs[layer_or_layers]
def unique(l):
"""Filters duplicates of iterable.
Create a new list from l with duplicate entries removed,
while preserving the original order.
Parameters
----------
l : iterable
Input iterable to filter of duplicates.
Returns
-------
list
A list of elements of `l` without duplicates and in the same order.
"""
new_list = []
seen = set()
for el in l:
if el not in seen:
new_list.append(el)
seen.add(el)
return new_list
def get_all_params(layer, **tags):
"""
:type layer: Layer|list[Layer]
"""
layers = get_all_layers(layer)
params = chain.from_iterable(l.get_params(**tags) for l in layers)
return unique(params)
|
[
"[email protected]"
] | |
2b1c5f19d53ea7c2b14a5fb15ce6cec51689d316
|
732585af552e79c8f1bff48a75b6929ff28e106a
|
/pvapp/models/ExperimentData.py
|
5976bf674745532c9d82e8f45341c8638d38b74b
|
[] |
no_license
|
urbanophile/ui
|
7c3b5cef12d273700d0e7971757f83eef696f593
|
a594ace92c3d032b98719afb38777f409342efaa
|
refs/heads/master
| 2020-12-28T20:31:24.283673 | 2015-11-16T04:06:25 | 2015-11-16T04:06:25 | 38,616,477 | 0 | 1 | null | 2015-12-19T02:36:17 | 2015-07-06T12:08:34 |
Python
|
UTF-8
|
Python
| false | false | 2,159 |
py
|
import numpy as np
import scipy
from util.Constants import (
CHANNEL_INDEX,
)
from test.utils import make_sin_data
class ExperimentData(object):
"""docstring for ExperimentData"""
def __init__(self, data=None, metadata=None):
super(ExperimentData, self).__init__()
# make secondary dataset
data = make_sin_data(duration=100)
self.Data = data
self.RawData = data
self.metadata = metadata
def isDataEmpty(self):
return self.Data is None
def updateRawData(self, data):
self.Data = data
self.RawData = np.copy(data)
def revertData(self):
self.Data = np.copy(self.RawData)
def invertHandler(self, channel):
self.Data[:, CHANNEL_INDEX[channel]] *= -1
self.metadata.inverted_channels[channel] = not self.metadata.inverted_channels[channel]
def offsetHandler(self, offset_type=None, offset=None, channel=None):
if offset_type == 'y':
index = CHANNEL_INDEX[channel]
self.Data[:, index] = self.Data[:, index] + offset
elif offset_type == 'start_x':
self.Data = self.Data[self.Data[:, 0] > offset, :]
elif offset_type == 'end_x':
# so this isn't cumulative
offset = self.RawData[-1, 0] - offset
self.Data = self.Data[self.Data[:, 0] < offset, :]
def fftOperator(self, channel_name, total_duration):
# get FFT of data
# pass FFT of data to plotting function
# frequency spectrum data
t = scipy.linspace(0, total_duration, self.metadata.sample_rate)
signal = self.Data[:, CHANNEL_INDEX[channel_name]]
FFT = abs(scipy.fft(signal))
# returns DFT sample frequencies
freqs = scipy.fftpack.fftfreq(
signal.size, # window length
t[1] - t[0] # sample spacing
)
pos_freqs = freqs[freqs >= 0]
FFT_transf = FFT[len(pos_freqs) - 1:]
# print(pos_freqs.size, FFT_transf.size)
return np.vstack((pos_freqs, FFT_transf)).T
def binHandler(self, bin_size):
self.Data = utils.bin_data(self.Data, bin_size)
|
[
"[email protected]"
] | |
deca86cac4f0a3e968294001655f7a01e2beeb98
|
1060ba4bf43f92d91ade4fc33f7fa36cc76a1029
|
/batch/das_client.py
|
2b2109491430d7b9c4b4f0505ad14544562a49ee
|
[] |
no_license
|
CMS-PD/ALPHA
|
599035f9d328b126c34362030fceebd56881fb94
|
22ed23d28f8a6ad041c8be574732e68c2a850975
|
refs/heads/master
| 2021-01-17T02:49:11.755447 | 2017-12-12T08:45:25 | 2017-12-12T08:45:25 | 58,551,780 | 0 | 11 | null | 2017-12-12T08:45:26 | 2016-05-11T14:23:33 |
C++
|
UTF-8
|
Python
| false | false | 19,324 |
py
|
#!/usr/bin/env python
#-*- coding: utf-8 -*-
#pylint: disable=C0301,C0103,R0914,R0903
"""
DAS command line tool
"""
from __future__ import print_function
__author__ = "Valentin Kuznetsov"
# system modules
import os
import sys
import pwd
if sys.version_info < (2, 6):
raise Exception("DAS requires python 2.6 or greater")
DAS_CLIENT = 'das-client/1.1::python/%s.%s' % sys.version_info[:2]
import os
import re
import time
import json
import urllib
import urllib2
import httplib
import cookielib
from optparse import OptionParser
from math import log
from types import GeneratorType
# define exit codes according to Linux sysexists.h
EX_OK = 0 # successful termination
EX__BASE = 64 # base value for error messages
EX_USAGE = 64 # command line usage error
EX_DATAERR = 65 # data format error
EX_NOINPUT = 66 # cannot open input
EX_NOUSER = 67 # addressee unknown
EX_NOHOST = 68 # host name unknown
EX_UNAVAILABLE = 69 # service unavailable
EX_SOFTWARE = 70 # internal software error
EX_OSERR = 71 # system error (e.g., can't fork)
EX_OSFILE = 72 # critical OS file missing
EX_CANTCREAT = 73 # can't create (user) output file
EX_IOERR = 74 # input/output error
EX_TEMPFAIL = 75 # temp failure; user is invited to retry
EX_PROTOCOL = 76 # remote error in protocol
EX_NOPERM = 77 # permission denied
EX_CONFIG = 78 # configuration error
class HTTPSClientAuthHandler(urllib2.HTTPSHandler):
"""
Simple HTTPS client authentication class based on provided
key/ca information
"""
def __init__(self, key=None, cert=None, level=0):
if level > 1:
urllib2.HTTPSHandler.__init__(self, debuglevel=1)
else:
urllib2.HTTPSHandler.__init__(self)
self.key = key
self.cert = cert
def https_open(self, req):
"""Open request method"""
#Rather than pass in a reference to a connection class, we pass in
# a reference to a function which, for all intents and purposes,
# will behave as a constructor
return self.do_open(self.get_connection, req)
def get_connection(self, host, timeout=300):
"""Connection method"""
if self.key:
return httplib.HTTPSConnection(host, key_file=self.key,
cert_file=self.cert)
return httplib.HTTPSConnection(host)
def x509():
"Helper function to get x509 either from env or tmp file"
proxy = os.environ.get('X509_USER_PROXY', '')
if not proxy:
proxy = '/tmp/x509up_u%s' % pwd.getpwuid( os.getuid() ).pw_uid
if not os.path.isfile(proxy):
return ''
return proxy
def check_glidein():
"Check glideine environment and exit if it is set"
glidein = os.environ.get('GLIDEIN_CMSSite', '')
if glidein:
msg = "ERROR: das_client is running from GLIDEIN environment, it is prohibited"
print(msg)
sys.exit(EX__BASE)
def check_auth(key):
"Check if user runs das_client with key/cert and warn users to switch"
if not key:
msg = "WARNING: das_client is running without user credentials/X509 proxy, create proxy via 'voms-proxy-init -voms cms -rfc'"
print(msg, file=sys.stderr)
class DASOptionParser:
"""
DAS cache client option parser
"""
def __init__(self):
usage = "Usage: %prog [options]\n"
usage += "For more help please visit https://cmsweb.cern.ch/das/faq"
self.parser = OptionParser(usage=usage)
self.parser.add_option("-v", "--verbose", action="store",
type="int", default=0, dest="verbose",
help="verbose output")
self.parser.add_option("--query", action="store", type="string",
default=False, dest="query",
help="specify query for your request")
msg = "host name of DAS cache server, default is https://cmsweb.cern.ch"
self.parser.add_option("--host", action="store", type="string",
default='https://cmsweb.cern.ch', dest="host", help=msg)
msg = "start index for returned result set, aka pagination,"
msg += " use w/ limit (default is 0)"
self.parser.add_option("--idx", action="store", type="int",
default=0, dest="idx", help=msg)
msg = "number of returned results (default is 10),"
msg += " use --limit=0 to show all results"
self.parser.add_option("--limit", action="store", type="int",
default=10, dest="limit", help=msg)
msg = 'specify return data format (json or plain), default plain.'
self.parser.add_option("--format", action="store", type="string",
default="plain", dest="format", help=msg)
msg = 'query waiting threshold in sec, default is 5 minutes'
self.parser.add_option("--threshold", action="store", type="int",
default=300, dest="threshold", help=msg)
msg = 'specify private key file name, default $X509_USER_PROXY'
self.parser.add_option("--key", action="store", type="string",
default=x509(), dest="ckey", help=msg)
msg = 'specify private certificate file name, default $X509_USER_PROXY'
self.parser.add_option("--cert", action="store", type="string",
default=x509(), dest="cert", help=msg)
msg = 'specify number of retries upon busy DAS server message'
self.parser.add_option("--retry", action="store", type="string",
default=0, dest="retry", help=msg)
msg = 'show DAS headers in JSON format'
msg += ' (obsolete, keep for backward compatibility)'
self.parser.add_option("--das-headers", action="store_true",
default=False, dest="das_headers", help=msg)
msg = 'specify power base for size_format, default is 10 (can be 2)'
self.parser.add_option("--base", action="store", type="int",
default=0, dest="base", help=msg)
msg = 'a file which contains a cached json dictionary for query -> files mapping'
self.parser.add_option("--cache", action="store", type="string",
default=None, dest="cache", help=msg)
msg = 'List DAS key/attributes, use "all" or specific DAS key value, e.g. site'
self.parser.add_option("--list-attributes", action="store", type="string",
default="", dest="keys_attrs", help=msg)
def get_opt(self):
"""
Returns parse list of options
"""
return self.parser.parse_args()
def convert_time(val):
"Convert given timestamp into human readable format"
if isinstance(val, int) or isinstance(val, float):
return time.strftime('%d/%b/%Y_%H:%M:%S_GMT', time.gmtime(val))
return val
def size_format(uinput, ibase=0):
"""
Format file size utility, it converts file size into KB, MB, GB, TB, PB units
"""
if not ibase:
return uinput
try:
num = float(uinput)
except Exception as _exc:
return uinput
if ibase == 2.: # power of 2
base = 1024.
xlist = ['', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB']
else: # default base is 10
base = 1000.
xlist = ['', 'KB', 'MB', 'GB', 'TB', 'PB']
for xxx in xlist:
if num < base:
return "%3.1f%s" % (num, xxx)
num /= base
def unique_filter(rows):
"""
Unique filter drop duplicate rows.
"""
old_row = {}
row = None
for row in rows:
row_data = dict(row)
try:
del row_data['_id']
del row_data['das']
del row_data['das_id']
del row_data['cache_id']
except:
pass
old_data = dict(old_row)
try:
del old_data['_id']
del old_data['das']
del old_data['das_id']
del old_data['cache_id']
except:
pass
if row_data == old_data:
continue
if old_row:
yield old_row
old_row = row
yield row
def extract_value(row, key):
"""Generator which extracts row[key] value"""
if isinstance(row, dict) and key in row:
if key == 'creation_time':
row = convert_time(row[key])
elif key == 'size':
row = size_format(row[key], base)
else:
row = row[key]
yield row
if isinstance(row, list) or isinstance(row, GeneratorType):
for item in row:
for vvv in extract_value(item, key):
yield vvv
def get_value(data, filters, base=10):
"""Filter data from a row for given list of filters"""
for ftr in filters:
if ftr.find('>') != -1 or ftr.find('<') != -1 or ftr.find('=') != -1:
continue
row = dict(data)
values = []
keys = ftr.split('.')
for key in keys:
val = [v for v in extract_value(row, key)]
if key == keys[-1]: # we collect all values at last key
values += [json.dumps(i) for i in val]
else:
row = val
if len(values) == 1:
yield values[0]
else:
yield values
def fullpath(path):
"Expand path to full path"
if path and path[0] == '~':
path = path.replace('~', '')
path = path[1:] if path[0] == '/' else path
path = os.path.join(os.environ['HOME'], path)
return path
def get_data(host, query, idx, limit, debug, threshold=300, ckey=None,
cert=None, das_headers=True):
"""Contact DAS server and retrieve data for given DAS query"""
params = {'input':query, 'idx':idx, 'limit':limit}
path = '/das/cache'
pat = re.compile('http[s]{0,1}://')
if not pat.match(host):
msg = 'Invalid hostname: %s' % host
raise Exception(msg)
url = host + path
client = '%s (%s)' % (DAS_CLIENT, os.environ.get('USER', ''))
headers = {"Accept": "application/json", "User-Agent": client}
encoded_data = urllib.urlencode(params, doseq=True)
url += '?%s' % encoded_data
req = urllib2.Request(url=url, headers=headers)
if ckey and cert:
ckey = fullpath(ckey)
cert = fullpath(cert)
http_hdlr = HTTPSClientAuthHandler(ckey, cert, debug)
else:
http_hdlr = urllib2.HTTPHandler(debuglevel=debug)
proxy_handler = urllib2.ProxyHandler({})
cookie_jar = cookielib.CookieJar()
cookie_handler = urllib2.HTTPCookieProcessor(cookie_jar)
opener = urllib2.build_opener(http_hdlr, proxy_handler, cookie_handler)
fdesc = opener.open(req)
data = fdesc.read()
fdesc.close()
pat = re.compile(r'^[a-z0-9]{32}')
if data and isinstance(data, str) and pat.match(data) and len(data) == 32:
pid = data
else:
pid = None
iwtime = 2 # initial waiting time in seconds
wtime = 20 # final waiting time in seconds
sleep = iwtime
time0 = time.time()
while pid:
params.update({'pid':data})
encoded_data = urllib.urlencode(params, doseq=True)
url = host + path + '?%s' % encoded_data
req = urllib2.Request(url=url, headers=headers)
try:
fdesc = opener.open(req)
data = fdesc.read()
fdesc.close()
except urllib2.HTTPError as err:
return {"status":"fail", "reason":str(err)}
if data and isinstance(data, str) and pat.match(data) and len(data) == 32:
pid = data
else:
pid = None
time.sleep(sleep)
if sleep < wtime:
sleep *= 2
elif sleep == wtime:
sleep = iwtime # start new cycle
else:
sleep = wtime
if (time.time()-time0) > threshold:
reason = "client timeout after %s sec" % int(time.time()-time0)
return {"status":"fail", "reason":reason}
jsondict = json.loads(data)
return jsondict
def prim_value(row):
"""Extract primary key value from DAS record"""
prim_key = row['das']['primary_key']
if prim_key == 'summary':
return row[prim_key]
key, att = prim_key.split('.')
if isinstance(row[key], list):
for item in row[key]:
if att in item:
return item[att]
else:
return row[key][att]
def print_summary(rec):
"Print summary record information on stdout"
if 'summary' not in rec:
msg = 'Summary information is not found in record:\n', rec
raise Exception(msg)
for row in rec['summary']:
keys = [k for k in row.keys()]
maxlen = max([len(k) for k in keys])
for key, val in row.items():
pkey = '%s%s' % (key, ' '*(maxlen-len(key)))
print('%s: %s' % (pkey, val))
print()
def print_from_cache(cache, query):
"print the list of files reading it from cache"
data = open(cache).read()
jsondict = json.loads(data)
if query in jsondict:
print("\n".join(jsondict[query]))
exit(0)
exit(1)
def keys_attrs(lkey, oformat, host, ckey, cert, debug=0):
"Contact host for list of key/attributes pairs"
url = '%s/das/keys?view=json' % host
headers = {"Accept": "application/json", "User-Agent": DAS_CLIENT}
req = urllib2.Request(url=url, headers=headers)
if ckey and cert:
ckey = fullpath(ckey)
cert = fullpath(cert)
http_hdlr = HTTPSClientAuthHandler(ckey, cert, debug)
else:
http_hdlr = urllib2.HTTPHandler(debuglevel=debug)
proxy_handler = urllib2.ProxyHandler({})
cookie_jar = cookielib.CookieJar()
cookie_handler = urllib2.HTTPCookieProcessor(cookie_jar)
opener = urllib2.build_opener(http_hdlr, proxy_handler, cookie_handler)
fdesc = opener.open(req)
data = json.load(fdesc)
fdesc.close()
if oformat.lower() == 'json':
if lkey == 'all':
print(json.dumps(data))
else:
print(json.dumps({lkey:data[lkey]}))
return
for key, vdict in data.items():
if lkey == 'all':
pass
elif lkey != key:
continue
print()
print("DAS key:", key)
for attr, examples in vdict.items():
prefix = ' '
print('%s%s' % (prefix, attr))
for item in examples:
print('%s%s%s' % (prefix, prefix, item))
def main():
"""Main function"""
optmgr = DASOptionParser()
opts, _ = optmgr.get_opt()
host = opts.host
debug = opts.verbose
query = opts.query
idx = opts.idx
limit = opts.limit
thr = opts.threshold
ckey = opts.ckey
cert = opts.cert
base = opts.base
check_glidein()
check_auth(ckey)
if opts.keys_attrs:
keys_attrs(opts.keys_attrs, opts.format, host, ckey, cert, debug)
return
if not query:
print('Input query is missing')
sys.exit(EX_USAGE)
if opts.format == 'plain':
jsondict = get_data(host, query, idx, limit, debug, thr, ckey, cert)
cli_msg = jsondict.get('client_message', None)
if cli_msg:
print("DAS CLIENT WARNING: %s" % cli_msg)
if 'status' not in jsondict and opts.cache:
print_from_cache(opts.cache, query)
if 'status' not in jsondict:
print('DAS record without status field:\n%s' % jsondict)
sys.exit(EX_PROTOCOL)
if jsondict["status"] != 'ok' and opts.cache:
print_from_cache(opts.cache, query)
if jsondict['status'] != 'ok':
print("status: %s, reason: %s" \
% (jsondict.get('status'), jsondict.get('reason', 'N/A')))
if opts.retry:
found = False
for attempt in xrange(1, int(opts.retry)):
interval = log(attempt)**5
print("Retry in %5.3f sec" % interval)
time.sleep(interval)
data = get_data(host, query, idx, limit, debug, thr, ckey, cert)
jsondict = json.loads(data)
if jsondict.get('status', 'fail') == 'ok':
found = True
break
else:
sys.exit(EX_TEMPFAIL)
if not found:
sys.exit(EX_TEMPFAIL)
nres = jsondict.get('nresults', 0)
if not limit:
drange = '%s' % nres
else:
drange = '%s-%s out of %s' % (idx+1, idx+limit, nres)
if opts.limit:
msg = "\nShowing %s results" % drange
msg += ", for more results use --idx/--limit options\n"
print(msg)
mongo_query = jsondict.get('mongo_query', {})
unique = False
fdict = mongo_query.get('filters', {})
filters = fdict.get('grep', [])
aggregators = mongo_query.get('aggregators', [])
if 'unique' in fdict.keys():
unique = True
if filters and not aggregators:
data = jsondict['data']
if isinstance(data, dict):
rows = [r for r in get_value(data, filters, base)]
print(' '.join(rows))
elif isinstance(data, list):
if unique:
data = unique_filter(data)
for row in data:
rows = [r for r in get_value(row, filters, base)]
print(' '.join(rows))
else:
print(json.dumps(jsondict))
elif aggregators:
data = jsondict['data']
if unique:
data = unique_filter(data)
for row in data:
if row['key'].find('size') != -1 and \
row['function'] == 'sum':
val = size_format(row['result']['value'], base)
else:
val = row['result']['value']
print('%s(%s)=%s' \
% (row['function'], row['key'], val))
else:
data = jsondict['data']
if isinstance(data, list):
old = None
val = None
for row in data:
prim_key = row.get('das', {}).get('primary_key', None)
if prim_key == 'summary':
print_summary(row)
return
val = prim_value(row)
if not opts.limit:
if val != old:
print(val)
old = val
else:
print(val)
if val != old and not opts.limit:
print(val)
elif isinstance(data, dict):
print(prim_value(data))
else:
print(data)
else:
jsondict = get_data(\
host, query, idx, limit, debug, thr, ckey, cert)
print(json.dumps(jsondict))
#
# main
#
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
030cdfb3525f9d9fc8ae8a7fe08cf161d7ff1b7d
|
f59866c0dc5c8d9ff8b1f9073b00e952dbf2821a
|
/convnet3d/maxpool3d.py
|
afe4acf0f26c7bbb9975d0e5ff7d8f48719f225a
|
[] |
no_license
|
FancccyRay/ChaLearn2014-Gesture-Recognition
|
a27a22c8c1ec487a1bbf5eefc6a5eae74d470c4e
|
e696fdbca0602463da58dfa89f839232eebf6a43
|
refs/heads/master
| 2020-03-27T12:48:59.052115 | 2019-11-14T07:13:27 | 2019-11-14T07:13:27 | 146,571,629 | 4 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,389 |
py
|
"""
Max pooling spatio-temporal inputs for Theano
"""
from theano import tensor
from theano.tensor.signal.downsample import DownsampleFactorMax, max_pool_2d
def max_pool_3d(input, ds, ignore_border=False):
"""
Takes as input a N-D tensor, where N >= 3. It downscales the input video by
the specified factor, by keeping only the maximum value of non-overlapping
patches of size (ds[0],ds[1],ds[2]) (time, height, width)
:type input: N-D theano tensor of input images.
:param input: input images. Max pooling will be done over the 3 last dimensions.
:type ds: tuple of length 3
:param ds: factor by which to downscale. (2,2,2) will halve the video in each dimension.
:param ignore_border: boolean value. When True, (5,5,5) input with ds=(2,2,2) will generate a
(2,2,2) output. (3,3,3) otherwise.
"""
if input.ndim < 3:
raise NotImplementedError('max_pool_3d requires a dimension >= 3')
if ds[0]==1:
return max_pool_2d(input, ds[1:], ignore_border=ignore_border)
# extract nr dimensions
vid_dim = input.ndim
# max pool in two different steps, so we can use the 2d implementation of
# downsamplefactormax. First maxpool frames as usual.
# Then maxpool the time dimension. Shift the time dimension to the third
# position, so rows and cols are in the back
# extract dimensions
frame_shape = input.shape[-2:]
# count the number of "leading" dimensions, store as dmatrix
batch_size = tensor.prod(input.shape[:-2])
batch_size = tensor.shape_padright(batch_size,1)
# store as 4D tensor with shape: (batch_size,1,height,width)
new_shape = tensor.cast(tensor.join(0, batch_size,
tensor.as_tensor([1,]),
frame_shape), 'int32')
input_4D = tensor.reshape(input, new_shape, ndim=4)
# downsample mini-batch of videos in rows and cols
op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)
output = op(input_4D)
# restore to original shape
outshape = tensor.join(0, input.shape[:-2], output.shape[-2:])
out = tensor.reshape(output, outshape, ndim=input.ndim)
# now maxpool time
# output (time, rows, cols), reshape so that time is in the back
shufl = (list(range(vid_dim-3)) + [vid_dim-2]+[vid_dim-1]+[vid_dim-3])
input_time = out.dimshuffle(shufl)
# reset dimensions
vid_shape = input_time.shape[-2:]
# count the number of "leading" dimensions, store as dmatrix
batch_size = tensor.prod(input_time.shape[:-2])
batch_size = tensor.shape_padright(batch_size,1)
# store as 4D tensor with shape: (batch_size,1,width,time)
new_shape = tensor.cast(tensor.join(0, batch_size,
tensor.as_tensor([1,]),
vid_shape), 'int32')
input_4D_time = tensor.reshape(input_time, new_shape, ndim=4)
# downsample mini-batch of videos in time
op = DownsampleFactorMax((1,ds[0]), ignore_border)
outtime = op(input_4D_time)
# output
# restore to original shape (xxx, rows, cols, time)
outshape = tensor.join(0, input_time.shape[:-2], outtime.shape[-2:])
shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
return tensor.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
|
[
"[email protected]"
] | |
e844333d221d13709680224fc0f09e232050f599
|
f21ec456a7a1d136e70585bbdf34a72e19cd418c
|
/examples/her/her_ant_goal.py
|
65d0dea6ae25948d7f88ddffab00c0330713f37e
|
[
"MIT"
] |
permissive
|
cmoyacal/rlkit-offline-rl-benchmark
|
6d22b57913dc8039b223c03648e0fd28e2ecba79
|
55193e63b2e3303fba1815dc1754fc94dd6850e0
|
refs/heads/master
| 2023-03-19T19:07:23.569069 | 2020-03-20T22:03:21 | 2020-03-20T22:03:21 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,937 |
py
|
import gym
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.obs_dict_replay_buffer import ObsDictRelabelingBuffer
from rlkit.launchers.launcher_util import setup_logger
from rlkit.samplers.data_collector import GoalConditionedPathCollector
from rlkit.torch.her.her import HERTrainer
from rlkit.torch.networks import FlattenMlp
from rlkit.torch.sac.policies import MakeDeterministic, TanhGaussianPolicy
from rlkit.torch.sac.sac import SACTrainer
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
from locomotion import ant, swimmer, point
def experiment(variant):
if variant['env_name'] == 'Ant-Goal':
eval_env = ant.GoalReachingAntDictEnv(expose_all_qpos=True)
expl_env = ant.GoalReachingAntDictEnv(expose_all_qpos=True)
elif variant['env_name'] == 'Ant-Maze':
expl_env = ant.MazeReachingAntDictEnv(expose_all_qpos=True)
eval_env = ant.MazeReachingAntDictEnv(expose_all_qpos=True)
elif variant['env_name'] == 'Point-Goal':
expl_env = point.GoalReachingPointDictEnv(expose_all_qpos=True)
eval_env = point.GoalReachingPointDictEnv(expose_all_qpos=True)
elif variant['env_name'] == 'Swimmer-Goal':
expl_env = swimmer.GoalReachingSwimmerDictEnv(expose_all_qpos=True)
eval_env = swimmer.GoalReachingSwimmerDictEnv(expose_all_pos=True)
observation_key = 'observation'
desired_goal_key = 'desired_goal'
# import ipdb; ipdb.set_trace()
achieved_goal_key = desired_goal_key.replace("desired", "achieved")
replay_buffer = ObsDictRelabelingBuffer(
env=eval_env,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
achieved_goal_key=achieved_goal_key,
**variant['replay_buffer_kwargs']
)
obs_dim = eval_env.observation_space.spaces['observation'].low.size
action_dim = eval_env.action_space.low.size
goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size # Hardcoded for now
print (obs_dim, action_dim, goal_dim)
qf1 = FlattenMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
qf2 = FlattenMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf1 = FlattenMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf2 = FlattenMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
policy = TanhGaussianPolicy(
obs_dim=obs_dim + goal_dim,
action_dim=action_dim,
**variant['policy_kwargs']
)
eval_policy = MakeDeterministic(policy)
trainer = SACTrainer(
env=eval_env,
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
**variant['sac_trainer_kwargs']
)
trainer = HERTrainer(trainer)
eval_path_collector = GoalConditionedPathCollector(
eval_env,
eval_policy,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
)
expl_path_collector = GoalConditionedPathCollector(
expl_env,
policy,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algo_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
if __name__ == '__main__':
variant = dict(
algorithm='HER-SAC',
version='normal',
env_name='Point-Goal',
algo_kwargs=dict(
batch_size=128,
num_epochs=1000,
num_eval_steps_per_epoch=5000,
num_expl_steps_per_train_loop=1000,
num_trains_per_train_loop=1000,
min_num_steps_before_training=1000,
max_path_length=20,
),
sac_trainer_kwargs=dict(
discount=0.99,
soft_target_tau=5e-3,
target_update_period=1,
policy_lr=3E-4,
qf_lr=3E-4,
reward_scale=1,
use_automatic_entropy_tuning=True,
),
replay_buffer_kwargs=dict(
max_size=int(1E6),
fraction_goals_rollout_goals=0.0, # equal to k = 4 in HER paper
fraction_goals_env_goals=0.0,
),
qf_kwargs=dict(
hidden_sizes=[400, 300],
),
policy_kwargs=dict(
hidden_sizes=[400, 300],
),
)
setup_logger('her-sac-ant_experiment', variant=variant)
ptu.set_gpu_mode(True)
experiment(variant)
|
[
"[email protected]"
] | |
d7bbfb79de6ceb4fe82fa686f5fa0434db9fbde8
|
d608974e671f57b949950125108da49c43753725
|
/news_app/models.py
|
da8b15bdfc64fb873a59cb71fc7c593446d30498
|
[] |
no_license
|
swooshnews/swoosh-news
|
67b1cb0f520b723e29913f0aeda6eb34fd188a5c
|
0530ecd5e0632519376496cbc0701779371987a1
|
refs/heads/master
| 2021-01-23T20:14:13.313887 | 2009-09-18T00:50:27 | 2009-09-18T00:50:27 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 11,434 |
py
|
"""
These are models for news that are in the database.
"""
from django.db import models
from django.contrib.auth.models import User
import news.conf as news_settings
# This is used to set up the signals and callbacks for this app.
# The signal stuff needs to get imported early on, so it should go here.
import news.signals
import datetime
from urlparse import urlparse
class UserProfile(models.Model):
"""
This is a profile to a user. It is intrinsically
linked to django's default User model. This UserProfile
holds additional info about the user.
"""
# a link to the user's website
website = models.URLField(default="", verify_exists=False,
max_length=news_settings.NEWS_MAX_URL_LENGTH)
# the remaining comment points
comment_points = models.IntegerField(default=0)
user = models.ForeignKey(User, unique=True)
date_created = models.DateTimeField(default=datetime.datetime.now)
# the about box on the user's profile page
about = models.TextField(default="")
option_show_email = models.BooleanField(default=False)
option_use_javascript = models.BooleanField(default=False)
option_show_dead = models.BooleanField(default=False)
# log user's ip address
created_from_ip = models.IPAddressField(null=True)
last_login_ip = models.IPAddressField(null=True)
def __unicode__(self):
return self.user.username
def _get_username(self):
return self.user.username
username = property(_get_username)
class Rated(models.Model):
"""
This is the manager for the ManyToManyField
holding the person who rates the Rankable object.
"""
DIRECTION_CHOICES = (('up', 'Up'), ('down', 'Down'))
rankable = models.ForeignKey('Rankable')
userprofile = models.ForeignKey(UserProfile)
date_rated = models.DateTimeField(default=datetime.datetime.now)
direction = models.CharField(max_length=4, choices=DIRECTION_CHOICES)
ranked_from_ip = models.IPAddressField(null=True)
class Rankable(models.Model):
"""
This is anything that can be ranked (i.e., have a rating).
Mainly this is just for Comment and NewsItem.
"""
poster = models.ForeignKey(UserProfile)
date_posted = models.DateTimeField(default=datetime.datetime.now)
# if a rankable has been deleted
dead = models.BooleanField(default=False)
# http://www.djangoproject.com/documentation/models/many_to_many/
raters = models.ManyToManyField(UserProfile, related_name="rated_%(class)ss",
through='Rated')
# the rating for the field (if someone up votes this Rankable,
# the rating will go up by one)
rating = models.IntegerField(default=1)
# the ranking, which is calculated by the function below
ranking = models.FloatField(default=0)
last_ranked_date = models.DateTimeField(default=datetime.datetime.now)
posted_from_ip = models.IPAddressField(null=True)
def calculate_ranking(self):
"""
Easy algorithm:
http://www.seomoz.org/blog/reddit-stumbleupon-delicious-and-hacker-news-algorithms-exposed
More complicated algorithm:
http://arcfn.com/2009/06/how-does-newsyc-ranking-work.html
"""
delta = datetime.datetime.now() - self.date_posted
hours = (delta.days * 24.0) + (delta.seconds / 3600.0)
# simpler way
return (self.rating - 1.0) / ((hours + 2.0) ** 1.5)
# more compllicated way
# return ((rating - 1.0) ** .8) / ((hours + 2.0) ** 1.8)
def update_ranking(self):
"""
Update the ranking for the Rankable.
The rankable is saved to the database after updating.
"""
self.ranking = self.calculate_ranking()
self.last_ranked_date = datetime.datetime.now()
# TODO: should this save?
self.save()
def is_news_item(self):
"""Returns true if this rankable is a news item."""
if NewsItem.objects.filter(id=self.id):
return True
else:
return False
def is_comment(self):
"""Returns true if this rankable is a comment."""
if Comment.objects.filter(id=self.id):
return True
else:
return False
def __unicode__(self):
uni_string = ""
if self.is_news_item():
uni_string += "NewsItem: " + unicode(self.newsitem)
elif self.is_comment():
uni_string += "Comment: " + unicode(self.comment)
else:
uni_string += "id " + unicode(self.id)
return uni_string
def num_child_comments(self):
"""
This returns the number of comments a news item (or a comment) has
"""
if hasattr(self, 'child_set'):
from news.helpers import get_child_comments
return len(get_child_comments(self.child_set, return_dead=False))
else:
return 0
def has_children(self):
"""
This returns wheter or not a news item (or comment) has children.
"""
if hasattr(self, 'child_set'):
from news.helpers import get_child_comments
return len(get_child_comments(self.child_set)) > 0
else:
return False
def has_nondead_children(self):
"""
This returns wheter or not a news item (or comment) has children and
at least one of them is not dead.
"""
if hasattr(self, 'child_set'):
from news.helpers import get_child_comments
return len(get_child_comments(self.child_set, return_dead=False)) > 0
else:
return False
def can_be_edited(self, userprofile):
""" Return whether the given userprofile can edit a rankable. """
from news.helpers import datetime_ago
if self.poster == userprofile and \
self.date_posted > \
datetime_ago(minutes=news_settings.NEWS_COMMENT_EDITABLE_MINS):
return True
return False
def can_be_deleted(self, userprofile):
""" Return whether the given userprofile can delete a rankable. """
return self.can_be_edited(userprofile)
def get_parent_news_item(self):
"""
If this rankable is a news item, just return the
news item. If this rankable is a comment,
return the news item this comment is posted to.
"""
if self.is_news_item():
return self.newsitem
elif self.is_comment():
return self.comment.get_newsitem()
else:
return None
def can_be_downvoted(self):
""" Return true if this rankable can be down-voted. """
if self.is_comment():
return False
else:
return True
def can_post_comment(self, userprofile):
"""
Return True if userprofile can post a comment to this rankable.
Checks to make sure whehter we are posting to a regular news item,
or an "Ask SN:" news item.
"""
return userprofile.comment_points - \
self.comment_cost(userprofile) >= 0
def comment_cost(self, userprofile):
"""
Calculate the cost of posting a comment. It it different
depending on whether we are posting to a regular news item,
or to an "Ask SN:" item.
"""
parent_news_item = self.get_parent_news_item()
if parent_news_item:
if parent_news_item.is_normal_news_item():
return news_settings.NEWS_COST_RESPOND_NEWS_ITEM
elif parent_news_item.is_ask_sn():
return news_settings.NEWS_COST_RESPOND_ASK_SN
return 0
def can_vote(self, userprofile):
"""
Return True if userprofile can vote on this rankable.
This function makes sure that the user has enough comment_points.
"""
return userprofile.comment_points - \
self.vote_cost(userprofile) >= 0
def vote_cost(self, userprofile):
"""
Calculate the cost of voting a comment. It differs
depending on what we are voting on.
"""
if self.is_news_item():
parent_news_item = self.get_parent_news_item()
if parent_news_item.is_ask_sn():
return news_settings.NEWS_COST_VOTE_ASK_SN
elif parent_news_item.is_normal_news_item():
return news_settings.NEWS_COST_VOTE_NEWS_ITEM
if self.is_comment():
parent_news_item = self.get_parent_news_item()
if parent_news_item:
if parent_news_item.is_normal_news_item():
return news_settings.NEWS_COST_VOTE_NORMAL_COMMENT
elif parent_news_item.is_ask_sn():
return news_settings.NEWS_COST_VOTE_ASK_SN_COMMENT
return 0
def already_voted(self, userprofile):
""" Returns True if userprofile already voted on this rankable. """
return len(self.raters.filter(id=userprofile.id)) > 0
class NewsItem(Rankable):
"""
A news item or an "Ask Swoosh News" item. Not a comment.
"""
# Every News item needs to be either a link to some other page
# OR some text.
title = models.CharField(max_length=news_settings.NEWS_MAX_TITLE_LENGTH)
url = models.URLField(null=True, verify_exists=False,
max_length=news_settings.NEWS_MAX_URL_LENGTH)
text = models.TextField(null=True)
def __unicode__(self):
if self.url:
return '%s (%s)' % (self.title, self.url)
elif self.text:
return '%s (%s)' % (self.title, self.text[0:20])
else:
return '%s (%s)' % (self.title, "ERROR! No URL or text!")
def is_normal_news_item(self):
"""
Returns true if this is a normal news item. It's not a
text post, but a post with a URL.
"""
if self.text:
return False
else:
return True
def is_ask_sn(self):
"""
Returns true if this is an "Ask Swoosh News"-type news post.
(no url to another site)
"""
return not self.is_normal_news_item()
def abbr_url(self):
"""
Returns an abbreviated url with just the domain name and tld.
"""
if not self.url:
return ''
(scheme, netloc, path, params, query, fragment) = urlparse(self.url)
if netloc.startswith("www."):
return netloc[4:]
return netloc
def response_cost(self):
""" Cost for responding to this news item in comment points. """
if self.is_normal_news_item():
return news_settings.NEWS_COST_RESPOND_NEWS_ITEM
elif self.is_ask_sn():
return news_settings.NEWS_COST_RESPOND_ASK_SN
else:
return 0
class Comment(Rankable):
"""
This represents a comment to a news item or a comment to a comment.
"""
# the text for the comment
text = models.TextField()
parent = models.ForeignKey(Rankable, related_name='child_set')
def get_newsitem(self):
""" Get the newsitem that this is posted to."""
if self.parent.is_news_item():
return self.parent.newsitem
else:
return self.parent.comment.get_newsitem()
def __unicode__(self):
return '%s ("%s")' % (self.poster.username, self.text[0:20])
|
[
"[email protected]"
] | |
4b32a00c650bafd26ad85ee0f76ed96d200dfce0
|
d99ac626d62c663704444a9cce7e7fc793a9e75e
|
/crypto_implementations/virgil-crypto-c/wrappers/python/virgil_crypto_lib/foundation/_c_bridge/_vscf_alg_info_der_serializer.py
|
222936908c80c90638db7d52f3cdf4d1a644e7ae
|
[
"LicenseRef-scancode-warranty-disclaimer",
"BSD-2-Clause",
"BSD-3-Clause",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
Experiment5X/CryptoFunctionDetection
|
3ab32d5573a249d24db1faf772721bc80b8d905d
|
dac700193e7e84963943593e36844b173211a8a1
|
refs/heads/master
| 2023-04-19T09:12:35.828268 | 2021-05-13T22:39:27 | 2021-05-13T22:39:27 | 355,299,557 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,174 |
py
|
# Copyright (C) 2015-2020 Virgil Security, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# (1) Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# (2) Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# (3) Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
# IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Lead Maintainer: Virgil Security Inc. <[email protected]>
from virgil_crypto_lib._libs import *
from ctypes import *
from ._vscf_impl import vscf_impl_t
from virgil_crypto_lib.common._c_bridge import vsc_buffer_t
class vscf_alg_info_der_serializer_t(Structure):
pass
class VscfAlgInfoDerSerializer(object):
"""Provide DER serializer of algorithm information."""
def __init__(self):
"""Create underlying C context."""
self._ll = LowLevelLibs()
self._lib = self._ll.foundation
def vscf_alg_info_der_serializer_new(self):
vscf_alg_info_der_serializer_new = self._lib.vscf_alg_info_der_serializer_new
vscf_alg_info_der_serializer_new.argtypes = []
vscf_alg_info_der_serializer_new.restype = POINTER(vscf_alg_info_der_serializer_t)
return vscf_alg_info_der_serializer_new()
def vscf_alg_info_der_serializer_delete(self, ctx):
vscf_alg_info_der_serializer_delete = self._lib.vscf_alg_info_der_serializer_delete
vscf_alg_info_der_serializer_delete.argtypes = [POINTER(vscf_alg_info_der_serializer_t)]
vscf_alg_info_der_serializer_delete.restype = None
return vscf_alg_info_der_serializer_delete(ctx)
def vscf_alg_info_der_serializer_use_asn1_writer(self, ctx, asn1_writer):
vscf_alg_info_der_serializer_use_asn1_writer = self._lib.vscf_alg_info_der_serializer_use_asn1_writer
vscf_alg_info_der_serializer_use_asn1_writer.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)]
vscf_alg_info_der_serializer_use_asn1_writer.restype = None
return vscf_alg_info_der_serializer_use_asn1_writer(ctx, asn1_writer)
def vscf_alg_info_der_serializer_serialized_len(self, ctx, alg_info):
"""Return buffer size enough to hold serialized algorithm."""
vscf_alg_info_der_serializer_serialized_len = self._lib.vscf_alg_info_der_serializer_serialized_len
vscf_alg_info_der_serializer_serialized_len.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)]
vscf_alg_info_der_serializer_serialized_len.restype = c_size_t
return vscf_alg_info_der_serializer_serialized_len(ctx, alg_info)
def vscf_alg_info_der_serializer_serialize(self, ctx, alg_info, out):
"""Serialize algorithm info to buffer class."""
vscf_alg_info_der_serializer_serialize = self._lib.vscf_alg_info_der_serializer_serialize
vscf_alg_info_der_serializer_serialize.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t), POINTER(vsc_buffer_t)]
vscf_alg_info_der_serializer_serialize.restype = None
return vscf_alg_info_der_serializer_serialize(ctx, alg_info, out)
def vscf_alg_info_der_serializer_setup_defaults(self, ctx):
"""Setup predefined values to the uninitialized class dependencies."""
vscf_alg_info_der_serializer_setup_defaults = self._lib.vscf_alg_info_der_serializer_setup_defaults
vscf_alg_info_der_serializer_setup_defaults.argtypes = [POINTER(vscf_alg_info_der_serializer_t)]
vscf_alg_info_der_serializer_setup_defaults.restype = None
return vscf_alg_info_der_serializer_setup_defaults(ctx)
def vscf_alg_info_der_serializer_serialize_inplace(self, ctx, alg_info):
"""Serialize by using internal ASN.1 writer.
Note, that caller code is responsible to reset ASN.1 writer with
an output buffer."""
vscf_alg_info_der_serializer_serialize_inplace = self._lib.vscf_alg_info_der_serializer_serialize_inplace
vscf_alg_info_der_serializer_serialize_inplace.argtypes = [POINTER(vscf_alg_info_der_serializer_t), POINTER(vscf_impl_t)]
vscf_alg_info_der_serializer_serialize_inplace.restype = c_size_t
return vscf_alg_info_der_serializer_serialize_inplace(ctx, alg_info)
def vscf_alg_info_der_serializer_shallow_copy(self, ctx):
vscf_alg_info_der_serializer_shallow_copy = self._lib.vscf_alg_info_der_serializer_shallow_copy
vscf_alg_info_der_serializer_shallow_copy.argtypes = [POINTER(vscf_alg_info_der_serializer_t)]
vscf_alg_info_der_serializer_shallow_copy.restype = POINTER(vscf_alg_info_der_serializer_t)
return vscf_alg_info_der_serializer_shallow_copy(ctx)
def vscf_alg_info_der_serializer_impl(self, ctx):
vscf_alg_info_der_serializer_impl = self._lib.vscf_alg_info_der_serializer_impl
vscf_alg_info_der_serializer_impl.argtypes = [POINTER(vscf_alg_info_der_serializer_t)]
vscf_alg_info_der_serializer_impl.restype = POINTER(vscf_impl_t)
return vscf_alg_info_der_serializer_impl(ctx)
|
[
"[email protected]"
] | |
d67b665d803c3b6550f549ca34cb453a74320f06
|
02f0e89f7e3a67fe5787f2cc7c7e7d790efb6541
|
/pac_bot/network.py
|
ca9f1677557c6ca4286f5ace8095d98751fb3770
|
[] |
no_license
|
walter090/PacManBot
|
c087e365ac404314e2cfe8ed44e1d58941868424
|
e177d2c7572a9607de6baa6db546e0544edc2984
|
refs/heads/master
| 2021-07-07T03:41:49.973861 | 2017-10-06T18:54:42 | 2017-10-06T18:54:42 | 103,622,161 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,650 |
py
|
import tensorflow as tf
from . import layers
class Network(object):
def __init__(self):
self._encoded = None
self._lstm = None
self._lstm_output = None
def encoding_network(self, x, layers_config=None, activation='lrelu', name='encoding'):
"""Build the encoding network.
Args:
x: Input tensor.
layers_config: Configuration for each convolution layer;
each layer is a list with three elements: filter size, stride, and
number of output channels.
activation: Choose activation function, between 'lrelu' and 'elu.'
name: Name of variable scope.
Returns:
fc: Output from the conv net.
"""
with tf.variable_scope(name):
if layers_config is None:
layers_config = [
# Filter size, stride, num output channels
[(8, 8), (2, 2), 32],
[(8, 8), (4, 4), 64],
[(4, 4), (2, 2), 128],
[(4, 4), (2, 2), 256],
]
conv_output = x
for layer in layers_config:
conv_output = layers.conv_layer(x=conv_output,
conv_ksize=layer[0],
conv_stride=layer[1],
out_channels=layer[2],
activation=activation)
flattened = layers.flatten(conv_output)
fc = layers.fully_conn(x=flattened, num_output=516)
self._encoded = layers.fully_conn(x=fc, num_output=256)
return self._encoded
def lstm_network(self, x, actions, cell_size=512, stacked_layers=4, name='lstm'):
"""Build the LSTM network.
Args:
x: Input tensor.
actions: List of available actions.
cell_size: LSTM cell size.
stacked_layers: Number of stacked LSTM cells.
name: Name for the variable scope.
Returns:
"""
with tf.variable_scope(name):
self._lstm, _ = layers.lstm(x=x,
cell_size=cell_size,
stacked_layers=stacked_layers)
lstm_flattened = layers.flatten(self._lstm)
self._lstm_output = layers.fully_conn(lstm_flattened,
num_output=len(actions),
activation='softmax')
return self._lstm_output
|
[
"[email protected]"
] | |
8a4871b4d661ef4a0a122394b00d6b5f55566f2e
|
9d2bafb07baf657c447d09a6bc5a6e551ba1806d
|
/ros2_ws/build/std_msgs/rosidl_generator_py/std_msgs/msg/_multi_array_layout.py
|
e830a59dc03efc5d1893c4f8d32f97cabca4ecd6
|
[] |
no_license
|
weidafan/ros2_dds
|
f65c4352899a72e1ade662b4106e822d80a99403
|
c0d9e6ff97cb7cc822fe25a62c0b1d56f7d12c59
|
refs/heads/master
| 2021-09-05T20:47:49.088161 | 2018-01-30T21:03:59 | 2018-01-30T21:03:59 | 119,592,597 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,630 |
py
|
# generated from rosidl_generator_py/resource/_msg.py.em
# generated code does not contain a copyright notice
import logging
import traceback
class Metaclass(type):
"""Metaclass of message 'MultiArrayLayout'."""
_CONVERT_FROM_PY = None
_CONVERT_TO_PY = None
_DESTROY_ROS_MESSAGE = None
_TYPE_SUPPORT = None
__constants = {
}
@classmethod
def __import_type_support__(cls):
try:
from rosidl_generator_py import import_type_support
module = import_type_support('std_msgs')
except ImportError:
logger = logging.getLogger('rosidl_generator_py.MultiArrayLayout')
logger.debug(
'Failed to import needed modules for type support:\n' + traceback.format_exc())
else:
cls._CONVERT_FROM_PY = module.convert_from_py_msg_multi_array_layout
cls._CONVERT_TO_PY = module.convert_to_py_msg_multi_array_layout
cls._TYPE_SUPPORT = module.type_support_msg_multi_array_layout
cls._DESTROY_ROS_MESSAGE = module.destroy_ros_message_msg_multi_array_layout
from std_msgs.msg import MultiArrayDimension
if MultiArrayDimension.__class__._TYPE_SUPPORT is None:
MultiArrayDimension.__class__.__import_type_support__()
@classmethod
def __prepare__(cls, name, bases, **kwargs):
# list constant names here so that they appear in the help text of
# the message class under "Data and other attributes defined here:"
# as well as populate each message instance
return {
}
class MultiArrayLayout(metaclass=Metaclass):
"""Message class 'MultiArrayLayout'."""
__slots__ = [
'_dim',
'_data_offset',
]
def __init__(self, **kwargs):
assert all(['_' + key in self.__slots__ for key in kwargs.keys()]), \
'Invalid arguments passed to constructor: %r' % kwargs.keys()
self.dim = kwargs.get('dim', list())
self.data_offset = kwargs.get('data_offset', int())
def __repr__(self):
typename = self.__class__.__module__.split('.')
typename.pop()
typename.append(self.__class__.__name__)
args = [s[1:] + '=' + repr(getattr(self, s, None)) for s in self.__slots__]
return '%s(%s)' % ('.'.join(typename), ', '.join(args))
@property
def dim(self):
"""Message field 'dim'."""
return self._dim
@dim.setter
def dim(self, value):
from std_msgs.msg import MultiArrayDimension
from collections import Sequence
from collections import Set
from collections import UserList
from collections import UserString
assert \
((isinstance(value, Sequence) or
isinstance(value, Set) or
isinstance(value, UserList)) and
not isinstance(value, str) and
not isinstance(value, UserString) and
all([isinstance(v, MultiArrayDimension) for v in value]) and
True), \
"The 'dim' field must be a set or sequence and each value of type 'MultiArrayDimension'"
self._dim = value
@property
def data_offset(self):
"""Message field 'data_offset'."""
return self._data_offset
@data_offset.setter
def data_offset(self, value):
assert \
isinstance(value, int), \
"The 'data_offset' field must of type 'int'"
assert value >= 0 and value < 4294967296, \
"The 'data_offset' field must be an unsigned integer in [0, 4294967296)"
self._data_offset = value
|
[
"[email protected]"
] | |
4635cefeb2889b33eeeaced1b5abbd2302c4e626
|
20a1250a7fb5f601b12d58acfd2607fa6d8d672f
|
/knockblock/knockblock/tasks.py
|
957924e88f6dc0bcfaf013c13e3c3f250889133b
|
[] |
no_license
|
pboes/Knockblock
|
a7aa9e523c69a795e6c914c2a6ddb189f06a0cc1
|
420357fef5df5e1949cf6b90fd5c17b7194e3dba
|
refs/heads/main
| 2023-02-19T10:22:29.965680 | 2021-01-19T10:25:47 | 2021-01-19T10:25:47 | 330,638,902 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 387 |
py
|
from __future__ import absolute_import
#from django.conf import settings
from celery import shared_task
import json
@shared_task(name="twitter_job")
def twitter_job(twitt_input):
idd = twitter_job.request.id
inputdict = {"inputt": twitt_input,"idd" : idd}
print inputdict
#sys.argv = [settings.STATIC_BREV + static('last24h/tweet.py'), inputt]
execfile('static/tweet.py',inputdict)
|
[
"pvboesgmail.com"
] |
pvboesgmail.com
|
bc889162571b4332bdf0ce4453e6b6200902ad6e
|
103a0b3baba5a8fecade0fe4aca0aef68bf875b8
|
/projects/helloapp/howdy/urls.py
|
08ad118e8a783ebd0669998d01f5d4bc9ece8b8c
|
[] |
no_license
|
royce-matthew/royce-matthew.github.io
|
e1acdd10b27c6e98c5fadff62d7a0b6036030ad6
|
d5a107364ef3f155bcb3856f0e2e69519a713559
|
refs/heads/master
| 2021-05-02T02:57:11.567475 | 2018-07-02T16:32:29 | 2018-07-02T16:32:29 | 120,889,131 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 395 |
py
|
from django.conf.urls import url
from rest_framework.urlpatterns import format_suffix_patterns
from howdy import views
from rest_framework import generics
urlpatterns = [
url(r'^$', views.HomePageView.as_view()),
url(r'^products/$', views.ProductList.as_view()),
url(r'^products/(?P<pk>[0-9]+)/$', views.ProductDetail.as_view()),
]
urlpatterns = format_suffix_patterns(urlpatterns)
|
[
"[email protected]"
] | |
d1ec7fe86549c7f36ecf5a7f839e9777eb08de7c
|
7722801646278ecf6a027858b08bdd0e88e7d3a2
|
/cnblog/settings.py
|
3290a5e1d5a2a831e425538c69bc8ef48705f7a1
|
[] |
no_license
|
ExBurner/BBS-Blog
|
39fbb17ffe1bc6d73db25b0c52434e6175a57860
|
bd57b2251f67b0b1c99adea9a02cec4deb4f1774
|
refs/heads/master
| 2020-03-23T21:26:45.309556 | 2018-07-24T05:14:20 | 2018-07-24T05:14:20 | 142,107,257 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,780 |
py
|
"""
Django settings for cnblog project.
Generated by 'django-admin startproject' using Django 2.0.6.
For more information on this file, see
https://docs.djangoproject.com/en/2.0/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.0/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '2llw9uvzo1tl&%*@%-kbltz$ky)jpkc!7h!et27r2tn1m=#e*v'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'cnblog.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')]
,
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'cnblog.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.0/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'cnblog',
'USER': 'root',
'PASSWORD': 'admin',
'HOST': 'localhost',
'PORT': 3306
}
}
# Password validation
# https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
AUTH_USER_MODEL = "blog.User"
# Internationalization
# https://docs.djangoproject.com/en/2.0/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'Asia/Shanghai'
USE_I18N = True
USE_L10N = True
USE_TZ = False
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.0/howto/static-files/
STATIC_URL = '/static/'
STATICFILES_DIRS = [
os.path.join(BASE_DIR, "static")
]
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level': 'DEBUG',
},
}
}
MEDIA_ROOT = os.path.join(BASE_DIR, "media")
MEDIA_URL = "/media/"
LOGIN_URL = "/login/"
|
[
"[email protected]"
] | |
e0829e4a8d084cfe4241b760879020b048ba1451
|
09b6b680637080805587e83f8d5c1c166a0dc476
|
/asset_management/myapp/views.py
|
6dbe31081198406230cdcdfb09ddd0f175dd38f7
|
[] |
no_license
|
Mamtha-Vathar/Asset_Management
|
8ce19b6068ce1c47f375cb83cfc8a9e1a719c1bf
|
172ef8a5e2a4f774c0e7ea6f9fca926edc22f8c2
|
refs/heads/master
| 2023-01-14T09:13:14.040053 | 2020-11-25T17:31:56 | 2020-11-25T17:31:56 | 315,995,208 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,189 |
py
|
from pyexpat.errors import messages
import logging, requests
import urllib
from django.views.generic import View
from .models import motor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from django.core.serializers import json
from django.http import HttpResponse, JsonResponse, HttpResponseRedirect
from django.template import Context, loader
from django.db.models import Count, Q
from django.shortcuts import render
from django.urls import reverse
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import authentication, permissions
from django.contrib.auth.models import User
from django.shortcuts import render, get_object_or_404
def index(request):
template = loader.get_template("./myapp/index.html")
return HttpResponse(template.render())
def login(request):
template = loader.get_template("./myapp/login.html")
return HttpResponse(template.render())
def register(request):
template = loader.get_template("./myapp/register.html")
return HttpResponse(template.render())
def showmotors(request):
last_five =motor.objects.order_by('-id')[:6]
allmotors = reversed(last_five)
context = {'allmotors': allmotors}
return context
def anomalies(request):
path = './myapp/anomalies.html'
data = showmotors(request)
return render(request, path, data)
def manuals(request):
template = loader.get_template("./myapp/manuals.html")
return HttpResponse(template.render())
def spareparts(request):
template = loader.get_template("./myapp/spareparts.html")
return HttpResponse(template.render())
def aboutus(request):
template = loader.get_template("./myapp/aboutus.html")
return HttpResponse(template.render())
def dashboard(request):
template = loader.get_template("./myapp/dashboard.html")
return HttpResponse(template.render())
# def home(request):
# template = loader.get_template("./charts.html")
# return HttpResponse(template.render())
def geolocation(request):
template = "./myapp/index.html"
loc = loc_data(request)
return render(request, template, loc)
def temperature(request):
template = loader.get_template("./myapp/temperature.html")
return HttpResponse(template.render())
def Current(request):
template = loader.get_template("./myapp/current.html")
return HttpResponse(template.render())
def Voltage(request):
template = loader.get_template("./myapp/voltage.html")
return HttpResponse(template.render())
def trial(request):
template = loader.get_template("./myapp/trial.html")
return HttpResponse(template.render())
def add_data(request):
motor_data = []
url = 'https://api.thingspeak.com/channels/984447/feeds.json'
header = {'Content-Type': 'application/json'}
r = requests.get(url, headers=header)
data = r.json()
count = motor.objects.all().count()
for i in range(count, (len(data["feeds"]))):
motor.objects.create(
mid="m1",
Temp=float(data["feeds"][i]["field1"]),
voltage=float(data["feeds"][i]["field2"]),
current=float(data["feeds"][i]["field3"]),
x=float(data["feeds"][i]["field4"]),
y=float(data["feeds"][i]["field5"]),
z=float(data["feeds"][i]["field6"]),
status=(data["feeds"][i]["field7"][2:-2]),
)
return Response('Data added successfully')
def loc_data(request):
loc = []
url = 'https://api.thingspeak.com/channels/984447/feeds.json'
header = {'Content-Type': 'application/json'}
r = requests.get(url, headers=header)
data = r.json()
# for i in range(len(data["feeds"])):
# lat = float(data["feeds"][i]["field7"])
# lon = float(data["feeds"][i]["field8"])
lat = 12.940538;
lon = 77.566287;
context = {'lat': lat, 'lon': lon}
return context
def get(self, request):
data = example.objects.all()
context = {'data': data}
print(data)
return render(request, './myapp/anomalies.html', context)
def firebase(request):
return render(request, './myapp/firebase.html')
# Create your views here.
|
[
"[email protected]"
] | |
519e6d1ad5bda54f6ed5b6ff5dc4202c57d10141
|
6f0d8416daeb787b13938d5fa49c3d2e08d15e02
|
/tests/test_cam.py
|
5a5dbc61b10d60caf62b858b4f880f2bed62d9ec
|
[
"MIT"
] |
permissive
|
MartinHjelmare/matrixscreener
|
cbfc0ba95614c7dd6e152bb63a24b67ed03045ca
|
b6e93d9c96139cf5f2b8942d61681e45d7b6b4e5
|
refs/heads/master
| 2021-01-22T14:21:16.758654 | 2015-02-19T11:53:46 | 2015-02-19T11:53:46 | 57,959,734 | 0 | 0 | null | 2016-05-03T10:03:40 | 2016-05-03T10:03:40 | null |
UTF-8
|
Python
| false | false | 1,526 |
py
|
from matrixscreener.cam import *
import pytest
class EchoSocket:
"Dummy echo socket for mocking."
msg = ''
def send(self, msg):
self.msg = msg
return len(msg)
def recv(self, buffer_size):
return self.msg[0:buffer_size]
def connect(self, where):
pass
def settimeout(self, timeout):
pass
# TEST
#- key (here cli) overrided if defined several times
#- prefix added
#- types (integer, float) should be converted to strings
def test_echo(monkeypatch):
"Prefix + command sent should be same as echoed socket message."
# mock socket
monkeypatch.setattr("socket.socket", EchoSocket)
# setup cam
cam = CAM()
cmd = [('cli', 'custom'), ('cmd', 'enableall'), ('value', 'true'),
('integer', 1234), ('float', 0.00234)]
# monkeypathced EchoSocket will never flush
def flush():
pass
cam.flush = flush
echoed = cam.send(cmd)[0]
sent = tuples_as_dict(cam.prefix + cmd)
assert sent == echoed
def test_commands(monkeypatch):
"short hand commands should work as intended"
# mock socket
monkeypatch.setattr("socket.socket", EchoSocket)
# setup cam
cam = CAM()
# monkeypathced EchoSocket will never flush
def flush():
pass
cam.flush = flush
# get_information
cmd = cam.prefix + [
('cmd', 'getinfo'),
('dev', 'stage')
]
information = cam.get_information()
should_be = tuples_as_dict(cmd)
assert information == should_be
|
[
"[email protected]"
] | |
df6468f53af378e405bda553802e02e64b84587f
|
fa1e281807939511dbbefaf58e8ecd59436188c4
|
/cinebot_mini_display_server/server.py
|
85674e722628a4bb7a25e6fffdc7eb69bd291c3f
|
[
"MIT"
] |
permissive
|
cheng-chi/cinebot_mini
|
2292204fad3d072012d8b336033430f394e7889f
|
708a7c80d2f203dfe3b52bf84d9cbafac7673d27
|
refs/heads/master
| 2020-05-20T10:29:33.526060 | 2019-05-08T04:16:53 | 2019-05-08T04:16:53 | 185,526,427 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,845 |
py
|
from cinebot_mini import SERVERS
from aiohttp import web
import aiohttp_cors
import json
from copy import *
import os
from shutil import copy2
import asyncio
from aiohttp_sse import sse_response
screenConfirmed = {}
screenDisplay = {}
nextDisplay = {}
routes = web.RouteTableDef()
routes.static('/ui', 'lightbox-ui', name='ui')
routes.static('/api/static', 'static', name='static')
@routes.get('/')
async def root_handler(request):
return web.HTTPFound('/ui/index.html')
@routes.get('/api')
async def hello(request):
return web.Response(text="Hello, world")
@routes.get('/api/screens')
async def screens(request):
cfg = {}
with open("screenCfg.json", "r") as cfgFile:
try:
cfg = json.load(cfgFile)
except:
pass
for k in cfg:
cfg[k]["width_pixels"] = float(cfg[k]["wPx"])
cfg[k]["height_pixels"] = float(cfg[k]["hPx"])
if ("wCm" in cfg[k]):
cfg[k]["width_meters"] = float(cfg[k]["wCm"]) / 100
cfg[k]["height_meters"] = cfg[k]["height_pixels"] / cfg[k]["width_pixels"] * cfg[k]["width_meters"]
del cfg[k]["wCm"]
else:
cfg[k]["width_meters"] = float(cfg[k]["wPx"]) / float(cfg[k]["ppcm"]) / 100
cfg[k]["height_meters"] = float(cfg[k]["hPx"]) / float(cfg[k]["ppcm"]) / 100
del cfg[k]["wPx"]
del cfg[k]["hPx"]
del cfg[k]["ppcm"]
return web.json_response(cfg)
@routes.get('/api/confirm/{id}')
async def confirm(request):
global screenConfirmed
screenid = request.match_info["id"]
screenConfirmed[screenid] = True
print(screenConfirmed)
return web.Response(text="confirmed, screen {}".format(screenid))
@routes.post('/api/login')
async def login(request):
global screenConfirmed
data = await request.text()
data = json.loads(data)
screenid = data["screenid"]
wPx = None if ("wPx" not in data or data["wPx"] == "") else data["wPx"]
hPx = None if ("hPx" not in data or data["hPx"] == "") else data["hPx"]
ppcm = None if ("ppcm" not in data or data["ppcm"] == "") else data["ppcm"]
wCm = None if ("wCm" not in data or data["wCm"] == "") else data["wCm"]
print("received dimensions: ", (wPx, hPx))
with open("screenCfg.json", "a+") as file:
pass
prevCfg = {}
with open("screenCfg.json", "r+") as cfgFile:
try:
prevCfg = json.load(cfgFile)
except:
pass
resp = {}
with open("screenCfg.json", "w") as cfgFile:
config = deepcopy(prevCfg)
if (wPx is not None and hPx is not None):
config[str(screenid)] = {
"wPx": wPx,
"hPx": hPx
}
resp["wPx"] = wPx
resp["hPX"] = hPx
else:
print(config, screenid)
if (str(screenid) in config):
wPx = config[screenid]["wPx"]
hPx = config[screenid]["hPx"]
else:
(wPx, hPx) = (1920, 1080)
if (ppcm is None):
if (str(screenid) in prevCfg and "ppcm" in prevCfg[str(screenid)]):
ppcm = prevCfg[str(screenid)]["ppcm"]
else:
ppcm = 72
config[str(screenid)] = {
"wPx": wPx,
"hPx": hPx,
"ppcm": ppcm
}
if (wCm is not None):
config[str(screenid)]["wCm"] = wCm
json.dump(config, cfgFile)
resp = {
"wPx": wPx,
"hPx": hPx,
"rgb": [128, 128, 128]
}
screenConfirmed[screenid] = False
screenDisplay[screenid] = {"rgb": resp["rgb"]}
return web.json_response(resp)
@routes.put('/api/showimgs')
async def showimgs(request):
global screenDisplay, nextDisplay
data = await request.text()
data = json.loads(data)
resp = {}
for d in data:
id = d["id"]
if (id not in screenDisplay):
resp = {
"status": "failed",
"message": "no screen with id {}".format(id)
}
break
if ("img_url" in d):
nextDisplay[id] = {
"img_url": d["img_url"]
}
elif ("img_path" in d):
path = d["img_path"]
if (not os.path.isfile(path)):
resp = {
"status": "failed",
"message": "unable to find file {}".format(path)
}
break
splitted = os.path.split(path)
prefixHash = hash(splitted[0])
if (prefixHash < 0):
prefix = hex(prefixHash).lstrip("-0x") + "_1"
else:
prefix = hex(prefixHash).lstrip("0x") + "_0"
filename = "{}_{}".format(prefix, splitted[1])
if (not os.path.isfile("./static/{}".format(filename))):
copy2(path, "./static/{}".format(filename))
nextDisplay[id] = {
"img_path": str(resources.url_for(filename=filename))
}
elif ("rgb" in d):
nextDisplay[id] = {
"rgb": d["rgb"]
}
if (len(resp) == 0):
resp["status"] = "success"
return web.json_response(resp)
# @routes.get('/changeImg')
# async def changeImg(request):
# global imageIdx, nextIdx
# nextIdx = (imageIdx + 1) % 2
# return web.Response(text="done")
@routes.get('/api/serverloop/{id}')
async def hello(request):
global screenDisplay, nextDisplay, screenConfirmed
screenid = request.match_info["id"]
loop = request.app.loop
async with sse_response(request) as resp:
while True:
await asyncio.sleep(0.01, loop=loop)
if (screenid not in screenDisplay): continue
# print("screen ", screenid, screenDisplay[screenid])
if (screenid not in nextDisplay): continue
if (screenDisplay[screenid] != nextDisplay[screenid]):
# print("sending message now, ", screenid)
screenConfirmed[screenid] = False
screenDisplay[screenid] = nextDisplay[screenid]
del nextDisplay[screenid]
# await resp.send(str(resources.url_for(filename="image_{}.jpg".format(imageIdx))))
await resp.send(json.dumps(screenDisplay[screenid]))
app = web.Application()
app.add_routes(routes)
cors = aiohttp_cors.setup(app, defaults={
"*": aiohttp_cors.ResourceOptions(
allow_credentials=True,
expose_headers="*",
allow_headers="*",
)
})
resources = app.router.named_resources().get("static")
print(type(resources))
for route in list(app.router.routes()):
cors.add(route)
print(route)
server_config = SERVERS["display"]
web.run_app(app, host=server_config["host"], port=server_config["port"])
|
[
"[email protected]"
] | |
e2fab65a5b6ecf140c91a2424279ee50dad96516
|
352baad0e880b5de14e8fa497edb7effab484423
|
/no_greedy_repetion.py
|
733db3229f85d28a0ae4acc4fa894a352ac6ae4b
|
[] |
no_license
|
avicse007/python
|
ac714e0b58fafa2f9f6db993f36546a1d9d46c7e
|
56ab13aa411af0e3fc2d58e9ce4a61b99ef5583b
|
refs/heads/master
| 2021-08-24T00:28:53.280371 | 2017-12-07T08:14:49 | 2017-12-07T08:14:49 | 113,421,914 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 313 |
py
|
#no_greedy_repetion.py
import re
from pattern_syntax import test_pattern
test_pattern(
'abbaabbba',
[ ('ab*?', 'a followed by zero or more b'),
('ab+?', 'a followed by one or more b'),
('ab??', 'a followed by zero or one b'),
('ab{3}?', 'a followed by three b'),
('ab{2,3}?', 'a followed by two to three b'),
])
|
[
"[email protected]"
] | |
25e43d5322bcc7e128c8c0debcbe2fe7cc9c0bb3
|
357488978a1436f1ef6d93f757c0ef06a21be50a
|
/setup.py
|
70d8a8f9fd8a1a5232c392041962f633dbec95be
|
[
"MIT"
] |
permissive
|
bgraver/Irelia
|
bd4fdd3a0fb5d925f871ccee6cc64d741df5313c
|
d1785fac7a3dadfa3af523f0637f5a838f830408
|
refs/heads/main
| 2023-03-18T15:14:11.416314 | 2021-03-20T23:16:57 | 2021-03-20T23:16:57 | 342,065,708 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,031 |
py
|
import pathlib
from setuptools import setup, find_packages
HERE = pathlib.Path(__file__).parent.resolve()
README = (HERE / "README.md").read_text()
description = "A lolesports api wrapper"
keywords = "api, lol, league of legends, lolesports, esports, wrapper"
VERSION = "0.0.7"
setup(
name="irelia",
version=VERSION,
description=description,
long_description=README,
long_description_content_type="text/markdown",
url="https://github.com/bgraver/Irelia",
author="Brandon Graver",
author_email="[email protected]",
classifiers=[
'Development Status :: 3 - Alpha',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
],
keywords=keywords,
packages=find_packages(),
python_requires=">=3",
install_requires=["requests"],
project_urls={
"Source": "https://github.com/bgraver/Irelia",
"Original API": "https://vickz84259.github.io/lolesports-api-docs/"
}
)
|
[
"[email protected]"
] | |
e40999a46c01874385822376d0d5db29b424fbeb
|
b232603cf25a61a2f5f78c3041360e3188883049
|
/KNN Movie Recommendation/movie-recom.py
|
8d9adcb6027ff45e631fcba90b1cbefa08d7afb6
|
[] |
no_license
|
charankurru/Recomendation_systems
|
2a9f75feb03dfbbfbfdacfb1c2673c51a7f46131
|
144f6a30a24df4ffc155119007aa1d3804b392b3
|
refs/heads/master
| 2022-12-01T15:06:31.544847 | 2020-08-22T08:16:58 | 2020-08-22T08:16:58 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,281 |
py
|
# importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#importing datasets
movie_df = pd.read_csv('movies.csv')
ratings_df = pd.read_csv('ratings.csv')
#merging datasets
movie_ratings = pd.merge(ratings_df,movie_df,on = 'movieId')
movie_ratings = movie_ratings.drop(["timestamp","genres"],axis = 1)
movie_ratings = movie_ratings.dropna(axis = 0, subset = ['title'])
# finding total number of ratings per each movie
movie_ratingCount = (movie_ratings.
groupby(by = ['title'])['rating'].
count().
reset_index().
rename(columns = {'rating': 'totalRatingCount'})
[['title', 'totalRatingCount']]
)
movie_ratingCount.head()
# merging the total number of ratings per each movie dataframe to movie_ratings dataset
movie_ratings = movie_ratings.merge(movie_ratingCount,on = 'title')
# filtering the data by making an threshold value
movie_ratings = movie_ratings.query('totalRatingCount >= 50')
#converting the dataset into pivot table
movie_ratings_pivot = movie_ratings.pivot_table(index = 'title',columns = 'userId',values = 'rating').fillna(0)
#converting pivot table into sparse matrix
from scipy.sparse import csr_matrix
movie_ratings_matrix = csr_matrix(movie_ratings_pivot.values)
movie_ratings_matrix.head()
#fitting the knn model ie NearestNeighbours
from sklearn.neighbors import NearestNeighbors
model_knn = NearestNeighbors(metric = 'cosine', algorithm = 'brute')
model_knn.fit(movie_ratings_matrix)
# predicting the results
query_index = np.random.choice(movie_ratings_pivot.shape[0])
print(query_index)
distances, indices = model_knn.kneighbors(movie_ratings_pivot.iloc[query_index,:].values.reshape(1, -1), n_neighbors = 6)
# =============================================================================
# print(distances)
# print(distances.flatten())
# print(movie_ratings_pivot.iloc[query_index,:].values.reshape(1,-1))
#
# =============================================================================
for i in range(0, len(distances.flatten())):
if i == 0:
print('Recommendations for {0}:\n'.format(movie_ratings_pivot.index[query_index]))
else:
print('{0}: {1}, with distance of {2}:'.format(i, movie_ratings_pivot.index[indices.flatten()[i]], distances.flatten()[i]))
|
[
"[email protected]"
] | |
5d1dd29b6073c8dc28f947bfaa07c99c5d3c2bdb
|
b316b7af230857311abe9071fa8118118d4c9cad
|
/test_utils/test_utils/vpcsc_config.py
|
b8854b2a46a48d88caab4bca7c85286c994efe33
|
[
"Apache-2.0"
] |
permissive
|
chrisrossi/google-cloud-python
|
686c7bf432696686df5a208ed91b8fec4643a37e
|
7a3a74d2cd3d3fef6c875b347ebd8595fb9b08fb
|
refs/heads/master
| 2020-04-03T22:45:10.899398 | 2019-11-06T16:36:30 | 2019-11-06T16:36:30 | 155,608,683 | 0 | 0 |
Apache-2.0
| 2018-10-31T18:56:39 | 2018-10-31T18:56:38 | null |
UTF-8
|
Python
| false | false | 4,174 |
py
|
# -*- coding: utf-8 -*-
#
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
INSIDE_VPCSC_ENVVAR = "GOOGLE_CLOUD_TESTS_IN_VPCSC"
PROJECT_INSIDE_ENVVAR = "PROJECT_ID"
PROJECT_OUTSIDE_ENVVAR = "GOOGLE_CLOUD_TESTS_VPCSC_OUTSIDE_PERIMETER_PROJECT"
BUCKET_OUTSIDE_ENVVVAR = "GOOGLE_CLOUD_TESTS_VPCSC_OUTSIDE_PERIMETER_BUCKET"
class VPCSCTestConfig(object):
"""System test utility for VPCSC detection.
See: https://cloud.google.com/vpc-service-controls/docs/
"""
@property
def inside_vpcsc(self):
"""Test whether the test environment is configured to run inside VPCSC.
Returns:
bool:
true if the environment is configured to run inside VPCSC,
else false.
"""
return INSIDE_VPCSC_ENVVAR in os.environ
@property
def project_inside(self):
"""Project ID for testing outside access.
Returns:
str: project ID used for testing outside access; None if undefined.
"""
return os.environ.get(PROJECT_INSIDE_ENVVAR, None)
@property
def project_outside(self):
"""Project ID for testing inside access.
Returns:
str: project ID used for testing inside access; None if undefined.
"""
return os.environ.get(PROJECT_OUTSIDE_ENVVAR, None)
@property
def bucket_outside(self):
"""GCS bucket for testing inside access.
Returns:
str: bucket ID used for testing inside access; None if undefined.
"""
return os.environ.get(BUCKET_OUTSIDE_ENVVAR, None)
def skip_if_inside_vpcsc(self, testcase):
"""Test decorator: skip if running inside VPCSC."""
reason = (
"Running inside VPCSC. "
"Set the {} environment variable to enable this test."
).format(INSIDE_VPCSC_ENVVAR)
skip = pytest.mark.skipif(self.inside_vpcsc, reason=reason)
return skip(testcase)
def skip_unless_inside_vpcsc(self, testcase):
"""Test decorator: skip if running outside VPCSC."""
reason = (
"Running outside VPCSC. "
"Unset the {} environment variable to enable this test."
).format(INSIDE_VPCSC_ENVVAR)
skip = pytest.mark.skipif(not self.inside_vpcsc, reason=reason)
return skip(testcase)
def skip_unless_inside_project(self, testcase):
"""Test decorator: skip if inside project env var not set."""
reason = (
"Project ID for running inside VPCSC not set. "
"Set the {} environment variable to enable this test."
).format(PROJECT_INSIDE_ENVVAR)
skip = pytest.mark.skipif(self.project_inside is None, reason=reason)
return skip(testcase)
def skip_unless_outside_project(self, testcase):
"""Test decorator: skip if outside project env var not set."""
reason = (
"Project ID for running outside VPCSC not set. "
"Set the {} environment variable to enable this test."
).format(PROJECT_OUTSIDE_ENVVAR)
skip = pytest.mark.skipif(self.project_outside is None, reason=reason)
return skip(testcase)
def skip_unless_outside_bucket(self, testcase):
"""Test decorator: skip if outside bucket env var not set."""
reason = (
"Bucket ID for running outside VPCSC not set. "
"Set the {} environment variable to enable this test."
).format(BUCKET_OUTSIDE_ENVVAR)
skip = pytest.mark.skipif(self.bucket_outside is None, reason=reason)
return skip(testcase)
vpcsc_config = VPCSCTestConfig()
|
[
"[email protected]"
] | |
6c8f6d9c70fff9f3031bcd03deeb4a685a6af478
|
985b52bd0c0a569fb97ee334de544ba18fcbd90c
|
/code/提取表达量.py
|
dfd391a5543ef18be4e93103569cd23e0f1f3563
|
[] |
no_license
|
Lch-SYSU/Undergraduate-Graduation-Project
|
e10a73ddf9b63fa1d6df684c938a8752aff654e8
|
a51668eae203664e4a5b342747d29a600ecb0236
|
refs/heads/master
| 2020-04-30T15:17:43.932341 | 2019-05-05T15:44:14 | 2019-05-05T15:44:14 | 176,916,735 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,232 |
py
|
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 24 13:44:55 2019
@author: lin
"""
import pandas as pd
with open(r'D:\学习\毕设\数据\data\HELA\SRR3589958.T.txt') as f1:
# 读入ENSG数据,储存于列表
data = pd.read_table(r'D:\学习\毕设\数据\data\HELA\GC0.5 ENSG.txt', encoding = 'UTF-8', engine = 'python')
seq_engs = data['EnsemblGeneID'].tolist()
# 初始化变量
i = 0
expr = []
engs_expr = {}
# 根据ENSG号寻找TPM,写入列表中
for i in range(len(seq_engs)):
for line in f1:
if seq_engs[i] in line:
expr.append(float(line.strip().split(sep = '\t')[3]))
# TPM从大到小排序后写入字典中
expr.sort(reverse = True)
engs_expr.setdefault(seq_engs[i], expr)
# 初始化变量,文件指针回到0
expr = []
f1.seek(0)
print(engs_expr)
# 字典转为数据框
writing = pd.DataFrame(pd.Series(engs_expr))
# 将数据框写入文件中
writing.to_csv(r'D:\学习\毕设\数据\data\HELA\GC0.5 TPM SRR3589958.csv', sep = ',', na_rep = 'NULL', header = True)
|
[
"[email protected]"
] | |
20d215ab84216efee4da368d5a8ad6e24ed57fc4
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03679/s358798230.py
|
083bf4ccd4da704fe0bfff938691cf5dbc1ec004
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 133 |
py
|
X, A, B = map(int, input().split())
if A >= B:
print('delicious')
elif A + X < B:
print('dangerous')
else:
print('safe')
|
[
"[email protected]"
] | |
7671b176825739808ea2026fb1ee698eaf08d5a7
|
7282797285061f0394f5e4050d57141762749d71
|
/aoc-5-1.py
|
9bb4c1722a3d4fbe48395f0b6c2c71b20162a4bc
|
[] |
no_license
|
woodgern/AdventOfCode2018
|
c54804d5190af8d91c3625a1a9edd3d1953bf82c
|
d6d17310e81b38d9a930c230f442a2463c5394b2
|
refs/heads/master
| 2020-04-17T12:21:29.811465 | 2019-01-19T18:36:51 | 2019-01-19T18:36:51 | 166,576,351 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 468 |
py
|
def match(string1, string2):
return string1.lower() == string2.lower() and string1 != string2
with open("aoc-5-1.txt") as f:
content = f.readlines()
content = [x.strip() for x in content][0]
checking = False
while True:
i = 0
while i < len(content) - 1:
if match(content[i], content[i + 1]):
checking = False
content = content[:i] + content[i + 2:]
else:
i = i + 1
if checking:
break
checking = True
print(len(content))
|
[
"[email protected]"
] | |
a62efcd438da500c37657f34872bc7490d540f54
|
29d803b14ceb73cdbdd48083824cf474babee1af
|
/pygta5-4.py
|
c48ce88085f2a87bf285d08bc660750b13e727f7
|
[] |
no_license
|
burak-karakus/pygta5
|
5aa20c18d9b012afca7fced5be498e10723caab4
|
72d681570b4e12f782827e75084d94930f71e9bf
|
refs/heads/master
| 2022-07-06T08:14:02.855621 | 2020-05-15T15:06:59 | 2020-05-15T15:06:59 | 263,359,658 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 990 |
py
|
import numpy as np
from PIL import ImageGrab
import cv2
import time
from directkeys_mac import KeyPress,KeyDown,KeyUp
def roi(img, vertices):
mask = np.zeros_like(img)
cv2.fillPoly(mask, vertices, 255)
masked = cv2.bitwise_and(img, mask)
return masked
def process_img(org_img):
p_img = cv2.cvtColor(np.float32(org_img), cv2.COLOR_BGR2GRAY)
p_img = cv2.Canny(np.uint8(p_img), threshold1=200, threshold2=300)
vertices = np.array(([10,500],[10,300],[300,200],[500,200],[800, 300],[800,500]))
p_img = roi(p_img, [vertices])
return p_img
def main():
last_time = time.time()
while(True):
screen = ImageGrab.grab(bbox=(0,40,800,640))
new_screen = process_img(screen)
print('loop took {} seconds'.format(time.time()-last_time))
last_time=time.time()
cv2.imshow('window', new_screen)
#cv2.imshow('window', cv2.cvtColor(np.array(screen), cv2.COLOR_BGR2RGB))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
da878145baa16b59947043420038f917d29d43bd
|
e7b483d88f80703c89553e1b9e2f5dd0322f7e38
|
/sketch/util/http.py
|
e69fe5f151af3818aae7e26ffc6a7d32826a3f52
|
[
"BSD-2-Clause"
] |
permissive
|
nikcub/Sketch
|
0f559ff9948bd355407257c25c261c1e0f237021
|
5d2d5f7e51c3eed374a8b12441dc8577b16c101e
|
refs/heads/master
| 2016-09-09T23:32:10.243530 | 2011-11-04T13:56:03 | 2011-11-04T13:56:03 | 2,592,091 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,451 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# vim:ts=2:sw=2:expandtab
#
# Copyright (c) 2011, Nik Cubrilovic. All rights reserved.
#
# <[email protected]> <http://nikcub.appspot.com>
#
# Licensed under a BSD license. You may obtain a copy of the License at
#
# http://nikcub.appspot.com/bsd-license
#
"""
Sketch - TM_FILENAME}
desc
"""
import webob
import urlparse
def extract_dataurl(dataurl):
if not dataurl[:5] == 'data:':
return (None, None)
img_index = dataurl.index(',')
if not img_index:
return (None, None)
img_type = dataurl[5:img_index].split(';')[0]
img_dat_enc = dataurl[img_index + 1:]
import base64
img_dat = base64.decodestring(img_dat_enc)
return (img_dat, img_type)
def urlunsplit(scheme=None, netloc=None, path=None, query=None, fragment=None):
"""Similar to ``urlparse.urlunsplit``, but will escape values and
urlencode and sort query arguments.
:param scheme:
URL scheme, e.g., `http` or `https`.
:param netloc:
Network location, e.g., `localhost:8080` or `www.google.com`.
:param path:
URL path.
:param query:
URL query as an escaped string, or a dictionary or list of key-values
tuples to build a query.
:param fragment:
Fragment identifier, also known as "anchor".
:returns:
An assembled absolute or relative URL.
"""
if not scheme or not netloc:
scheme = None
netloc = None
if path:
path = urllib.quote(to_utf8(path))
if query and not isinstance(query, basestring):
if isinstance(query, dict):
query = query.items()
query_args = []
for key, values in query:
if isinstance(values, basestring):
values = (values,)
for value in values:
query_args.append((to_utf8(key), to_utf8(value)))
# Sorting should be optional? Sorted args are commonly needed to build
# URL signatures for services.
query_args.sort()
query = urllib.urlencode(query_args)
if fragment:
fragment = urllib.quote(to_utf8(fragment))
return urlparse.urlunsplit((scheme, netloc, path, query, fragment))
def test_normalize_url():
urls = [
# 'example.com',
# 'example.com/',
# 'http://example.com/',
# 'http://example.com',
# 'http://example.com?',
# 'http://example.com/?',
# 'http://example.com//',
# 'http://example.com/a',
# 'http://example.com/a/',
# 'http://example.com/a/?',
# 'http://example.com/a/../',
# 'http://example.com/a/../?',
# 'http://example.com/a/b/../?',
# 'http://example.com/a/../',
# 'http://example.com/a/b/?z=1',
'http://example.com/a/?',
'http://@example.com/a/?',
'http://example.com:/a/?',
'http://@example.com:/a/?',
'http://example.com:80/a/?',
]
for url in urls:
print "%s \t\t\t\t\t\tclean: %s" % (url, normalize_url(url))
def normalize_url(s, charset='utf-8'):
"""
function that attempts to mimic browser URL normalization.
Partly taken from werkzeug.utils
<http://www.bitbucket.org/mitsuhiko/werkzeug-main/src/tip/werkzeug/utils.py>
There is a lot to URL normalization, see:
<http://en.wikipedia.org/wiki/URL_normalization>
:param charset: The target charset for the URL if the url was
given as unicode string.
"""
if isinstance(s, unicode):
s = s.encode(charset, 'ignore')
scheme, netloc, path, qs, anchor = urlparse.urlsplit(s)
# print "scheme: %s\n netloc:%s\n path:%s\n qs:%s\n anchor:%s\n" % (scheme, netloc, path, qs, anchor)
path = urllib.unquote(path)
if not netloc:
netloc = path.strip("/\\:?&")
path = '/'
if not scheme:
scheme = "http"
if not path:
path = '/'
netloc = netloc.strip("/\\:@?&")
path = posixpath.normpath(path)
path = urlparse.urljoin('/', path)
# path = urllib.quote(path, '/%')
qs = urllib.quote_plus(qs, ':&=')
# print "scheme: %s\n netloc:%s\n path:%s\n qs:%s\n anchor:%s\n" % (scheme, netloc, path, qs, anchor)
return urlparse.urlunsplit((scheme, netloc, path, qs, anchor))
def redirect(location, code = 302):
assert code in (301, 302, 303, 305, 307), 'invalid code'
from sketch import Response
display_location = location
response = Response(
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">\n'
'<title>Redirecting...</title>\n'
'<h1>Redirecting...</h1>\n'
'<p>You should be redirected automatically to target URL: '
'<a href="%s">%s</a>. If not click the link.' %
(location, display_location), code, mimetype='text/html')
response.headers['Location'] = location
return response
def abort_old(code, *args, **kwargs):
"""Raises an ``HTTPException``. The exception is instantiated passing
*args* and *kwargs*.
:param code:
A valid HTTP error code from ``webob.exc.status_map``, a dictionary
mapping status codes to subclasses of ``HTTPException``.
:param args:
Arguments to be used to instantiate the exception.
:param kwargs:
Keyword arguments to be used to instantiate the exception.
"""
cls = webob.exc.status_map.get(code)
if not cls:
raise KeyError('No exception is defined for code %r.' % code)
raise cls(*args, **kwargs)
def get_valid_methods(handler):
"""Returns a list of HTTP methods supported by a handler.
:param handler:
A :class:`RequestHandler` instance.
:returns:
A list of HTTP methods supported by the handler.
"""
return [method for method in Application.ALLOWED_METHODS if getattr(handler,
method.lower().replace('-', '_'), None)]
|
[
"[email protected]"
] | |
cde5214a36a39b2137d3749a9e9e6e5bb14a2891
|
e56bba9d878de6cf3bb5fa39955606d5688c46c2
|
/.net/lib/python3.9/site-packages/aws_cdk/aws_cloudwatch/_jsii/__init__.py
|
504e0454e7246e627e3583773da9cce29f22a376
|
[] |
no_license
|
marrnik/network-pipeline
|
ce8132344f564c9e114602d0dc72e1c81e41d708
|
9715d51c187cd230c366fd1d3b8273435c5a7fe0
|
refs/heads/master
| 2023-03-16T06:29:34.787374 | 2021-03-10T23:43:48 | 2021-03-10T23:43:48 | 345,172,191 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 419 |
py
|
import abc
import builtins
import datetime
import enum
import typing
import jsii
import publication
import typing_extensions
import aws_cdk.aws_iam._jsii
import aws_cdk.core._jsii
import constructs._jsii
__jsii_assembly__ = jsii.JSIIAssembly.load(
"@aws-cdk/aws-cloudwatch",
"1.92.0",
__name__[0:-6],
"[email protected]",
)
__all__ = [
"__jsii_assembly__",
]
publication.publish()
|
[
"[email protected]"
] | |
ac4cec9c23d857374e16c812fac948e0c272797e
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03108/s870352488.py
|
0b87a41dcc411c3fbc8ae14366e08bef4bb0f7fc
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,652 |
py
|
import sys
import collections
readline = sys.stdin.readline
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1]*n
self.rank = [0]*n
self.size = [1]*n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.rank[x] < self.rank[y]:
self.size[y] += self.size[x]
self.parents[x] = y
else:
self.size[x] += self.size[y]
self.parents[y] = x
if self.rank[x] == self.rank[y]:
self.rank[x] += 1
def msize(self, x):
return -self.size[self.find(x)]
def main():
N, M = map(int, readline().split())
nodelist = []
for _ in range(M):
A, B = map(int, readline().split())
A -= 1; B -= 1
nodelist.append((A, B))
uf = UnionFind(N)
anstmp = (N*(N-1))//2
anslist = [anstmp]
for _ in range(M):
node = nodelist.pop()
n0 = uf.find(node[0])
n1 = uf.find(node[1])
if n0 != n1:
n0size = uf.size[n0]
n1size = uf.size[n1]
else:
n0size = 0; n1size = 0
uf.union(node[0], node[1])
anstmp = anslist[-1]
ans = anstmp - n0size*n1size
anslist.append(ans)
anslist = anslist[:-1]
for _ in range(len(anslist)):
ans = anslist.pop()
print(ans)
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
4c160b362ff7db0589bf52739596171879e3d409
|
190d442aa9db6ef7e5a66e3e69db3c7737fbf48b
|
/Site/data_collections/signals/handlers.py
|
243b2a951143a853c36bbebcb0b4762968aeb213
|
[] |
no_license
|
Darbados/SWAnalysis
|
68e01482872403577dd08be2c63a9a2826a29ab7
|
2f097202694383f56fee997e1ea9a8ad8ec9491f
|
refs/heads/master
| 2023-09-01T03:50:49.439716 | 2021-10-13T08:12:34 | 2021-10-13T08:12:34 | 371,733,539 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 462 |
py
|
import os
from django.db import models
from django.dispatch import receiver
from data_collections.models import DataCollection
@receiver(models.signals.pre_delete, sender=DataCollection)
def auto_delete_collection_file_on_collection_delete(sender, instance, **kwargs):
if instance.file:
path = instance.file.path
if os.path.isfile(path):
try:
os.remove(path)
except Exception:
pass
|
[
"[email protected]"
] | |
4766634f83d00a14b213b92a3c117857d6d36625
|
910e5b56553854330276789852a5fb447aa3f360
|
/planner/urls.py
|
41c3ce6b4a47bf8a1bfadf608672b3002aed0b95
|
[] |
no_license
|
Dhakshinn/Planner
|
a9bbda2c41ff39f7eacdfb1c07187c36d069c8fb
|
e5e1852937b9fcdb4b5c9374f290a0ce37a256eb
|
refs/heads/master
| 2022-12-08T04:21:42.199217 | 2019-05-23T06:05:28 | 2019-05-23T06:05:28 | 187,867,191 | 0 | 0 | null | 2022-11-22T03:49:39 | 2019-05-21T15:38:25 |
Python
|
UTF-8
|
Python
| false | false | 687 |
py
|
from django.conf.urls import url,include
from django.contrib import admin
from django.contrib.auth import views as auth_views
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'^login/$',auth_views.login,{'template_name':'dashboard/login.html'}, name='login'),
url(r'^logout/$', auth_views.logout, name='logout'),
url(r'^event_task/',include('event_task.urls')),
url(r'',include('dashboard.urls')),
]
if settings.DEBUG:
urlpatterns += static(settings.STATIC_URL,document_root=settings.STATIC_ROOT)
urlpatterns += static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
|
[
"[email protected]"
] | |
bbb6268281ee09c15af62c26d0df2d1c6065e735
|
f9d5bc590bd6c6274d7a6efec0f60cac1d8286b2
|
/assets/coins/monero/moneroImportPrices.py
|
6a92df9ceca004c233c3ecc5ce2799c0931dad42
|
[] |
no_license
|
pr0logas/grepblockBEpython
|
35c83c1bf2114fc9417bedff6cf2a6e2ad2e667e
|
bbeaa290d13d80f993d843c7f1dbbfd373eee332
|
refs/heads/master
| 2022-10-03T23:35:44.600740 | 2020-03-09T08:24:53 | 2020-03-09T08:24:53 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 782 |
py
|
#:: By GrepBlock.com developers // pr0logas
#:: Modified date: 2019-11-30
#:: Description: This file is a workspace for Prices importation.
import sys, time
from time import gmtime, strftime
from monero import *
sys.path.append('../../../')
from mongoDB import *
from parsePrices import parseCoinGeckoPrices
db = database
col = collectionForPricesUSD
# Init Classes;
MC = mongoConnection(mongoAuth, db, col)
PP = parseCoinGeckoPrices(apiProvider, vsCurrencyUSD, assetName)
# CoinGecko
result = PP.parsePrice()
# Insert Unix Time
aggregatedData = PP.aggregateInsertUnixTime(result)
#Insert to MongoDB
res = MC.insertPricesData(collectionForPricesUSD, aggregatedData)
timeSet = strftime("%Y-%m-%d %H:%M:%S", gmtime())
print timeSet + " Succefully inserted asset price: $" + res
|
[
"[email protected]"
] | |
84d52f4962391da32f236a15c38fbc7c6a56035a
|
0d15d68b4e9c466ed63cd860887f3b49c219ec3d
|
/super_admin/backends.py
|
9b2c9c848d779187de3200e1e78ec8052880a7ff
|
[] |
no_license
|
shaheenhyderk/primis
|
729ac88ebc048bb5f2e5f56f47a8778c75146d05
|
0b737943df3a45ac432b85b101e5b91c36982534
|
refs/heads/master
| 2023-01-02T06:22:41.589842 | 2020-10-25T01:45:24 | 2020-10-25T01:45:24 | 306,910,593 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 889 |
py
|
import jwt
from rest_framework import authentication, exceptions
from django.conf import settings
from django.contrib.auth.models import User
class JWTAuthentication(authentication.BaseAuthentication):
def authenticate(self, request):
auth_data = authentication.get_authorization_header(request)
if not auth_data:
return None
prefix, token = auth_data.decode('utf-9').split(' ')
try:
payload = jwt.decode(token, settings.JWT_SECRET_KEY)
user = User.objects.get(username=payload['username'])
return (user, token)
except jwt.DecodeError as identifier:
raise exceptions.AuthenticationFailed('Token is invalid')
except jwt.ExpiredSignatureError as identifier:
raise exceptions.AuthenticationFailed('Token is expired')
return super().authenticate(request)
|
[
"[email protected]"
] | |
a3b674690a85d8b1b49ae220b7ba9776a941d9a3
|
740847ec6c7b70b97418d8ee517a3cb8ffff7fea
|
/hidroponic_server/hidroponic_server/urls.py
|
5e9a98e21d7b1e518dc58afa329a0805cd1374d5
|
[] |
no_license
|
JoaquinIMT/hidroponic_project
|
7dea723f30e74dbc9b9914afda55182f78562cf3
|
63c7620162669e9943e112ba29375454548b9e51
|
refs/heads/main
| 2023-08-23T18:58:33.805046 | 2021-09-19T03:29:38 | 2021-09-19T03:29:38 | 408,020,922 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 806 |
py
|
"""hidroponic_server URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.2/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
path('admin/', admin.site.urls),
path('api/', include('api.urls'))
]
|
[
"[email protected]"
] | |
cfd0ccbddf683ab936c9b2d0b3b2a16fbce0b47d
|
8ac9111348c1a6239aa44491c8204b4567bf8a30
|
/mtsp_planner/scripts/solvers/tsp_trajectory.py
|
80ab1922fbbcb65c4bd08ba1418ab61879cb65df
|
[] |
no_license
|
semberecki/mrsss
|
d4f878ade8b1620a3872eee9bf06c6a11939285c
|
e150b07430b4a90e5fd317dc27fcccfb5025db08
|
refs/heads/master
| 2020-06-27T20:54:23.483221 | 2019-08-02T10:41:13 | 2019-08-02T10:41:13 | 200,046,555 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 21,162 |
py
|
"""
Custom TSP Loader
@author: R.Penicka
"""
import rospy
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import math
import time
from mrs_msgs.msg import TrackerPoint
from mrs_msgs.msg import TrackerTrajectory
import dubins
# #{ dist_euclidean_squared()
def dist_euclidean_squared(coord1, coord2):
""" euclidean distance between coord1 and coord2"""
(x1, y1) = coord1
(x2, y2) = coord2
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)
# #} end of dist_euclidean_squared()
# #{ dist_euclidean()
def dist_euclidean(coord1, coord2):
""" euclidean distance between coord1 and coord2"""
return math.sqrt(dist_euclidean_squared(coord1, coord2))
# #} end of dist_euclidean()
# #{ pos_in_distance()
def pos_in_distance(start , stop , dist):
dist_tot = dist_euclidean(start, stop)
(x1, y1) = start
(x2, y2) = stop
x = x1 + (x2 - x1) * dist / dist_tot
y = y1 + (y2 - y1) * dist / dist_tot
return [x, y]
# #} end of pos_in_distance()
class TSPTrajectory():
# #{ __init__()
def __init__(self, max_velocity, max_acceleration):
self.time_sample = 0.2
self.max_velocity = max_velocity
self.max_acceleration = max_acceleration
# #} end of __init__()
# #{ sample_trajectory_euclidean()
def sample_euclidean_with_stops(self, start, stop, init_velocity=0, final_velocity=0, sample_start_time=0):
""" euclidean trajectory with stops between start and stop"""
#print("sample_euclidean_with_stops from", start, "to", stop)
samples = []
trajectory_part_time = 0
# acc = 0 # no jeck jet
dist_total = dist_euclidean(start, stop)
#print("dist_total", dist_total)
time_from_init_to_max_vel = (self.max_velocity - init_velocity) / self.max_acceleration
time_from_max_to_final_vel = (self.max_velocity - final_velocity) / self.max_acceleration
dist_from_init_to_max_vel = 0.5 * (self.max_velocity + init_velocity) * time_from_init_to_max_vel # average speed * time
dist_from_max_vel_to_final = 0.5 * (self.max_velocity + final_velocity) * time_from_max_to_final_vel # average speed * time
"""
print("time_from_init_to_max_vel", time_from_init_to_max_vel, "s")
print("time_from_max_to_final_vel", time_from_max_to_final_vel, "s")
print("dist_from_init_to_max_vel", dist_from_init_to_max_vel, "m")
print("dist_from_max_vel_to_final", dist_from_max_vel_to_final, "m")
"""
if dist_total < dist_from_init_to_max_vel + dist_from_max_vel_to_final: # can not reach maximal speed in straigh line
#print("can not reach max vel in trajectory")
t = 0
sample = 0
if init_velocity == 0 and final_velocity == 0:
time_to_possible_max_vel = math.sqrt(dist_total / self.max_acceleration)
velocity_in_middle = time_to_possible_max_vel * self.max_acceleration
trajectory_part_time = 2 * time_to_possible_max_vel
else:
if init_velocity > final_velocity: # initial velocity is larger than final, in the end is additinal decelerating
time_final_decel = (init_velocity - final_velocity) / self.max_acceleration
dist_final_decel = time_final_decel * (init_velocity + final_velocity) * 0.5
dist_acc_decc = dist_total - dist_final_decel
time_to_possible_max_vel = (-init_velocity + math.sqrt(init_velocity ** 2 + self.max_acceleration * dist_acc_decc)) / self.max_acceleration
velocity_in_middle = init_velocity + time_to_possible_max_vel * self.max_acceleration
trajectory_part_time = time_to_possible_max_vel + time_final_decel
else:
time_init_accel = (final_velocity - init_velocity) / self.max_acceleration
dist_init_accel = time_init_accel * (init_velocity + final_velocity) * 0.5
dist_acc_decc = dist_total - dist_init_accel
time_to_possible_max_vel = time_init_accel + (-final_velocity + math.sqrt(final_velocity ** 2 + self.max_acceleration * dist_acc_decc)) / self.max_acceleration
velocity_in_middle = init_velocity + time_to_possible_max_vel * self.max_acceleration
"""
print("time_init_accel", time_init_accel)
print("dist_init_accel", dist_init_accel)
print("dist_total", dist_total)
print("dist_acc_decc", dist_acc_decc)
print("such dist is", 0.5 * (velocity_in_middle + init_velocity) * time_to_possible_max_vel * 2)
"""
trajectory_part_time = 2 * time_to_possible_max_vel - time_init_accel
"""
print("time_to_possible_max_vel", time_to_possible_max_vel)
print("velocity_in_middle", velocity_in_middle)
print("sample_start_time", sample_start_time)
"""
while (sample + 1) * self.time_sample <= time_to_possible_max_vel - sample_start_time:
t = (sample + 1) * self.time_sample + sample_start_time
sample += 1
v = init_velocity + self.max_acceleration * t
s = init_velocity * t + 0.5 * self.max_acceleration * (t ** 2)
#print("t", t, "v", v, "s", s, "sample", sample)
pos_in_dist = pos_in_distance(start, stop, s)
samples.append(pos_in_dist)
#print("end acc")
while (sample + 1) * self.time_sample <= trajectory_part_time - sample_start_time:
t = (sample + 1) * self.time_sample + sample_start_time
sample += 1
t_part = t - time_to_possible_max_vel
v = velocity_in_middle - self.max_acceleration * t_part
s = time_to_possible_max_vel * 0.5 * (velocity_in_middle + init_velocity) + velocity_in_middle * t_part - 0.5 * self.max_acceleration * (t_part ** 2)
#print("t", t, "v", v, "s", s, "sample", sample)
pos_in_dist = pos_in_distance(start, stop, s)
samples.append(pos_in_dist)
#print("end decc")
else: # can reach maximal speed in straigh line
#print("can reach max vel")
dist_constant_speed = dist_total - dist_from_init_to_max_vel - dist_from_max_vel_to_final
time_constant_speed = dist_constant_speed / self.max_velocity
trajectory_part_time = time_from_init_to_max_vel + time_constant_speed + time_from_max_to_final_vel
"""
print("time_constant_speed", time_constant_speed, "s")
print("dist_constant_speed", dist_constant_speed, "m")
print("trajectory_part_time", trajectory_part_time)
"""
t = 0
sample = 0
while (sample + 1) * self.time_sample <= time_from_init_to_max_vel - sample_start_time:
t = (sample + 1) * self.time_sample + sample_start_time
sample += 1
v = init_velocity + self.max_acceleration * t
s = init_velocity * t + 0.5 * self.max_acceleration * (t ** 2)
pos_in_dist = pos_in_distance(start, stop, s)
samples.append(pos_in_dist)
#print("t", t, "v", v, "s", s, "sample", sample)
#print("end acc")
while (sample + 1) * self.time_sample <= time_from_init_to_max_vel + time_constant_speed - sample_start_time:
t = (sample + 1) * self.time_sample + sample_start_time
sample += 1
t_part = t - time_from_init_to_max_vel
v = self.max_velocity
s = dist_from_init_to_max_vel + v * t_part
pos_in_dist = pos_in_distance(start, stop, s)
samples.append(pos_in_dist)
#print("t", t, "v", v, "s", s, "sample", sample)
#print("end const")
while (sample + 1) * self.time_sample <= time_from_init_to_max_vel + time_constant_speed + time_from_max_to_final_vel - sample_start_time:
t = (sample + 1) * self.time_sample + sample_start_time
sample += 1
t_part = t - (time_from_init_to_max_vel + time_constant_speed)
v = self.max_velocity - self.max_acceleration * t_part
s = (dist_total - dist_from_max_vel_to_final) + self.max_velocity * t_part - 0.5 * self.max_acceleration * (t_part ** 2)
#print("t", t, "v", v, "s", s, "sample", sample)
pos_in_dist = pos_in_distance(start, stop, s)
samples.append(pos_in_dist)
if final_velocity == 0 and samples[-1] != stop:
#print("t last", "v", 0, "s", dist_total)
samples.append(stop)
return samples, trajectory_part_time
# #} end of sample_trajectory_euclidean()
# #{ sample_trajectory_euclidean()
def sample_trajectory_euclidean(self, sequence):
""" sample euclidean tarjectory over sequence """
print("sample_trajectory_euclidean in sequence", sequence)
samples = []
samples.append(sequence[0]) # add first point of trajectory
trajectory_time = 0
for target_id in range(1, len(sequence)):
from_target = sequence[target_id - 1]
to_target = sequence[target_id]
part_samples, part_time = self.sample_euclidean_with_stops(from_target, to_target)
trajectory_time += part_time
#print("part_time", part_time)
samples.extend(part_samples)
# return samples, trajectory_time
return samples, trajectory_time
# #} end of sample_trajectory_euclidean()
# #{ sampleTrajectoryDubins()
def sample_trajectory_dubins(self, sequence, turning_velocity=None):
""" sample dubins tarjectory over sequence """
print("sample_trajectory_dubins in sequence", sequence)
if turning_velocity is None:
turning_velocity = self.max_velocity
print("using turning_velocity", turning_velocity ," and acceleration ",self.max_acceleration)
turning_radius = (turning_velocity * turning_velocity) / self.max_acceleration
print("which means turning_radius", turning_radius)
sequence_start = 0
init_velocity = 0
time_to_turning_velocity = (turning_velocity - init_velocity) / self.max_acceleration
dist_to_turning_velocity = 0.5 * (turning_velocity + init_velocity) * time_to_turning_velocity # average speed * time
samples = []
sample = 0
t = 0
last_segment_end_time = 0
next_sample_start_time = 0
samples.append(sequence[sequence_start])
#print("t", t, "v", 0, "s", 0, "sample", sample, "start")
for target_id in range(sequence_start + 1, len(sequence)):
start = sequence[target_id - 1]
end = sequence[target_id]
dubins_path = dubins.shortest_path(start, end, turning_radius)
"""
print("segment 0", dubins_path.segment_length(0))
print("segment 1", dubins_path.segment_length(1))
print("segment 2", dubins_path.segment_length(2))
print("dubins lenght", dubins_path.path_length())
"""
# first segment of dubins
if (sample + 1) * self.time_sample < time_to_turning_velocity:
init_velocity = last_segment_end_time * self.max_acceleration
time_accel = (turning_velocity - init_velocity) / self.max_acceleration
dist_accel = init_velocity * time_accel + 0.5 * self.max_acceleration * time_accel * time_accel
if dubins_path.segment_length(0) < dist_accel : # accel whole time
segment_1_time = (-init_velocity + math.sqrt(init_velocity ** 2 + 2 * self.max_acceleration * dubins_path.segment_length(0))) / self.max_acceleration # turning segment 0
else: # accel only part time
segment_1_time = time_accel + (dubins_path.segment_length(0) - dist_accel) / turning_velocity
else:
segment_1_time = dubins_path.segment_length(0) / turning_velocity # turning segment 0
init_velocity = turning_velocity
#print("last_segment_end_time", last_segment_end_time)
#print("segment_1_time",segment_1_time)
acc_time = turning_velocity/self.max_acceleration
segment_1_time_dist = 0.5*self.max_acceleration*acc_time*acc_time + (segment_1_time-acc_time)*turning_velocity
while (sample + 1) * self.time_sample <= last_segment_end_time + segment_1_time:
t = (sample + 1) * self.time_sample - last_segment_end_time
if init_velocity != turning_velocity:
if (sample + 1) * self.time_sample <= time_to_turning_velocity: # still accelerating from init_velocity
s = init_velocity * t + 0.5 * self.max_acceleration * (t ** 2)
else:
dist_init_acc = 0.5 * (turning_velocity + init_velocity) * time_to_turning_velocity # alreaddy accelerated from init_velocity to turning_velocity
time_after_init_acc = t - time_to_turning_velocity
s = dist_init_acc + turning_velocity * time_after_init_acc
else: # already turning velocity from begining
s = turning_velocity * t
sample += 1
samples.append(dubins_path.sample(s))
#print("t", t, "s", s, "sample", sample,"sample time", sample*self.time_sample, "dubins length", dubins_path.path_length(), "dubins part len", dubins_path.segment_length(0), "rot1")
last_segment_end_time += segment_1_time
next_sample_start_time = sample * self.time_sample - last_segment_end_time
if last_segment_end_time < time_to_turning_velocity:
init_velocity = last_segment_end_time * self.max_acceleration
else:
init_velocity = turning_velocity
#print("---------- end fist segment --------------- at time", last_segment_end_time)
# second segment of Dubins
if dubins_path.path_type() != dubins.LRL and dubins_path.path_type() != dubins.RLR: # straight line segment
start_straight_line = dubins_path.sample(dubins_path.segment_length(0))
stop_straight_line = dubins_path.sample(dubins_path.segment_length(0) + dubins_path.segment_length(1))
"""
print("start_straight_line", start_straight_line)
print("stop_straight_line", stop_straight_line)
print("init_velocity", init_velocity)
print("final_velocity", turning_velocity)
print("next_sample_start_time", next_sample_start_time)
"""
straight_line_samples, segment_2_time = self.sample_euclidean_with_stops(start_straight_line[0:2], stop_straight_line[0:2], init_velocity=init_velocity, final_velocity=turning_velocity, sample_start_time=next_sample_start_time)
phi = start_straight_line[2]
straight_line_samples_w_head = [(x, y, phi) for x, y in straight_line_samples]
samples += straight_line_samples_w_head
sample += len(straight_line_samples_w_head)
else: # also circular segment
segment_2_time = dubins_path.segment_length(1) / turning_velocity # turning segment 1
while (sample + 1) * self.time_sample <= last_segment_end_time + segment_2_time:
t = (sample + 1) * self.time_sample - last_segment_end_time
sample += 1
# t_part = t - last_segment_end_time
s = dubins_path.segment_length(0) + turning_velocity * t
samples.append(dubins_path.sample(s))
#print("t", t, "s", s, "sample", sample, "dubins length", dubins_path.path_length(), "rot middle")
last_segment_end_time += segment_2_time
next_sample_start_time = sample * self.time_sample - last_segment_end_time
if (sample + 1) * self.time_sample < time_to_turning_velocity:
init_velocity = last_segment_end_time * self.max_acceleration
else:
init_velocity = turning_velocity
#print("---------- end second segment --------------- at time", last_segment_end_time)
segment_3_time = dubins_path.segment_length(2) / turning_velocity # turning segment 2
while (sample + 1) * self.time_sample <= last_segment_end_time + segment_3_time:
t = (sample + 1) * self.time_sample - last_segment_end_time
sample += 1
if init_velocity != turning_velocity:
s = dubins_path.segment_length(0) + dubins_path.segment_length(1) + init_velocity * t + 0.5 * self.max_acceleration * (t ** 2)
else:
s = dubins_path.segment_length(0) + dubins_path.segment_length(1) + turning_velocity * t
samples.append(dubins_path.sample(s))
#print("t", t, "v", turning_velocity, "s", s, "sample", sample, "rot2")
last_segment_end_time += segment_3_time
next_sample_start_time = sample * self.time_sample - last_segment_end_time
#print("---------- end last segment --------------- at time", last_segment_end_time)
return samples, last_segment_end_time
# #} end of sample_trajectory_dubins()
# #{ plotVelocityProfile()
def plot_velocity_profile(self, samples, color='k',title='Velocity profile'):
figsize = (8, 5)
fig = plt.figure(figsize=figsize)
ax = fig.gca()
ax.set_title(title)
ax.set_ylabel('velocity [m/s]')
ax.set_xlabel('time [s]')
velocities = [0]
for i in range(1, len(samples)):
dist = dist_euclidean(samples[i - 1][0:2], samples[i][0:2])
velocities.append(dist / self.time_sample)
velocities_time = [self.time_sample * i for i in range(len(velocities))]
accelerations = [0]
for i in range(1, len(velocities)):
vel_change = velocities[i] - velocities[i - 1]
accelerations.append(vel_change / self.time_sample)
accelerations_time = [self.time_sample * i for i in range(len(accelerations))]
plt.axhline(self.max_velocity, 0, len(velocities), ls='-', color='k')
plt.plot(velocities_time, velocities, '-', color=color, label='velocity')
plt.axhline(self.max_acceleration, 0, len(accelerations), ls='-.', color='k')
plt.axhline(-self.max_acceleration, 0, len(accelerations), ls='-.', color='k')
plt.plot(accelerations_time, accelerations, '-.', color=color, label='acc')
ax.legend(loc='upper right')
ax2 = ax.twinx()
ax2.set_ylabel('acceleration [m/s^2]')
# #} end of plot_velocity_profile()
# #{ create_ros_trajectory()
def create_ros_trajectory(self, trajectory, height):
""" create the ROS trajectory object """
default_yaw = 1.57
trajectory_msg = TrackerTrajectory()
trajectory_msg.fly_now = False
trajectory_msg.use_yaw = True
trajectory_msg.loop = False
trajectory_msg.start_index = 0
trajectory_msg.header.frame_id = "local_origin"
trajectory_msg.header.stamp = rospy.Time.now();
for point in trajectory:
if len(point) == 2: # x and y
new_point = TrackerPoint()
new_point.x = point[0]
new_point.y = point[1]
new_point.z = height
new_point.yaw = default_yaw
trajectory_msg.points.append(new_point)
elif len(point) == 3: # x, y and yaw
new_point = TrackerPoint()
new_point.x = point[0]
new_point.y = point[1]
new_point.z = height
new_point.yaw = default_yaw
trajectory_msg.points.append(new_point)
return trajectory_msg
# #} end of create_ros_trajectory()
|
[
"[email protected]"
] | |
e9850940fb4d78027c9ef247607e23a58b0feaaa
|
c12e9e88ca22a1c85eb55d5fa1b6e593e71edbb0
|
/duplicate_edit_pipeline/duplicate_pipeline.py
|
81b0ccbcda8d7362c1f93933050afeea31992dfb
|
[] |
no_license
|
deanproctor/streamsets_sdk_examples
|
a39e0b9484669f81c304df5a856547c360f05566
|
7fba054b9e0f475a9579c6e40d3b0da980809668
|
refs/heads/master
| 2020-05-23T16:30:58.084556 | 2019-05-15T15:17:10 | 2019-05-15T15:17:10 | 186,851,007 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 804 |
py
|
#!/usr/bin/env python
from streamsets.sdk import ControlHub
sch_url = 'https://cloud.streamsets.com'
sch_user = 'user@org'
sch_pass = 'mypassword123'
sch = ControlHub(sch_url, username=sch_user, password=sch_pass)
pipeline = sch.pipelines.get(name='myPipeline')
builder = sch.get_pipeline_builder()
builder.add_error_stage('Discard')
new_pipeline = builder.build()
pipeline_definition = pipeline._pipeline_definition
pipeline_stages = pipeline.stages
pipeline_definition['title'] = 'myNewPipeline'
pipeline_definition['stages'] = []
for stage in pipeline_stages:
pipeline_definition['stages'].append(stage._data)
new_pipeline._pipeline_definition = pipeline_definition
new_pipeline._data['pipeline_definition'] = pipeline_definition
sch.publish_pipeline(new_pipeline, 'My New Commit Message')
|
[
"[email protected]"
] | |
2182531e49175062ac8b030e998b5c2c6ca3ae8d
|
cad91ae76d2746a6c28ddda0f33a58f9d461378f
|
/PyTorch/Recommendation/NCF/feature_spec.py
|
40d56a0e310d345e17261e9bbfbd4618f5acb691
|
[
"Apache-2.0"
] |
permissive
|
NVIDIA/DeepLearningExamples
|
fe677521e7e2a16e3cb0b77e358f9aab72f8c11a
|
a5388a45f71a949639b35cc5b990bd130d2d8164
|
refs/heads/master
| 2023-08-31T20:57:08.798455 | 2023-08-23T10:09:12 | 2023-08-23T10:09:12 | 131,881,622 | 11,838 | 3,124 | null | 2023-08-28T16:57:33 | 2018-05-02T17:04:05 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 1,943 |
py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
import os
from typing import List, Dict
class FeatureSpec:
def __init__(self, feature_spec, source_spec, channel_spec, metadata, base_directory):
self.feature_spec: Dict = feature_spec
self.source_spec: Dict = source_spec
self.channel_spec: Dict = channel_spec
self.metadata: Dict = metadata
self.base_directory: str = base_directory
@classmethod
def from_yaml(cls, path):
with open(path, 'r') as feature_spec_file:
base_directory = os.path.dirname(path)
feature_spec = yaml.safe_load(feature_spec_file)
return cls.from_dict(feature_spec, base_directory=base_directory)
@classmethod
def from_dict(cls, source_dict, base_directory):
return cls(base_directory=base_directory, **source_dict)
def to_dict(self) -> Dict:
attributes_to_dump = ['feature_spec', 'source_spec', 'channel_spec', 'metadata']
return {attr: self.__dict__[attr] for attr in attributes_to_dump}
def to_string(self):
return yaml.dump(self.to_dict())
def to_yaml(self, output_path=None):
if not output_path:
output_path = self.base_directory + '/feature_spec.yaml'
with open(output_path, 'w') as output_file:
print(yaml.dump(self.to_dict()), file=output_file)
|
[
"[email protected]"
] | |
9d31dd701cf90d929170893cddab05db06011ba7
|
c4544c22c0618451746795090e07c80bc85a0877
|
/file_upload/article/forms.py
|
fd00ffba0492b96c7d39b7f2448d488bfccf1d67
|
[] |
no_license
|
RelaxedDong/Django_course
|
35f7027dc552ad148d2dc8679a19a1ffb12b8d14
|
2965089d15e4c80cd6402d362ee37f8cc675c08b
|
refs/heads/master
| 2022-01-09T14:28:40.503099 | 2019-05-24T07:07:03 | 2019-05-24T07:07:03 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 379 |
py
|
#encoding:utf-8
# __author__ = 'donghao'
# __time__ = 2019/5/13 21:52
from django import forms
from .models import Book
from django.core import validators
class BookForm(forms.ModelForm):
cover_url = forms.FileField(validators=[validators.FileExtensionValidator(allowed_extensions=['jpg','jpeg'])])
class Meta:
model = Book
fields = ['title','cover_url']
|
[
"[email protected]"
] | |
a22c4a5d4c713c99170baa66626b92928dfab26e
|
3acdc5bd817913a2eed491ea58087a9c9d2d5bec
|
/100/thirties/thirty-two.py
|
2574190641982c2bcd8b90e29168be3b119f2b56
|
[] |
no_license
|
o-90/project-euler
|
a6a1f968107803bdf75f5835bf0ae1e670158599
|
f64f9b600b41b2c2af8aaaae68eafd7fe48374c9
|
refs/heads/master
| 2023-01-27T12:57:48.921347 | 2017-01-23T15:43:04 | 2017-01-23T15:43:04 | 49,388,553 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 925 |
py
|
# -*- coding: utf-8 -*-
from itertools import permutations
# 32)
# We shall say that an n-digit number is pandigital if it makes use of all the
# digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1
# through 5 pandigital.
#
# The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing
# multiplicand, multiplier, and product is 1 through 9 pandigital.
#
# Find the sum of all products whose multiplicand/multiplier/product identity
# can be written as a 1 through 9 pandigital.
def get_prod(n, k=1):
"""
"""
str_num = str(n)
prod = int(str_num[5:])
if int(str_num[:k]) * int(str_num[k:5]) == prod:
return prod
else:
return 0
perms = [''.join(str(i) for i in x) for x in permutations(range(1, 10), 9)]
ans = []
for k in xrange(1, 5):
for perm in perms:
ans.append(get_prod(perm, k))
ans = sum(list(set(ans)))
print ans # 45228
|
[
"[email protected]"
] | |
0d86c1a673ca1bf515b589a6acb7e6df2a38dbe3
|
62664aed311b6f1e67895893ebbfc36d186f7053
|
/Modules/Config/Config.py
|
ce59cd9fc0dda896df415975ca25a30ad7987f22
|
[] |
no_license
|
mdobrychlop/pyry3d
|
0a9c332a530c11f1cdd891d379253d92f8d44cba
|
44ea539179e41545fbbf5c38f515e377934dbd67
|
refs/heads/master
| 2021-05-08T00:36:11.839372 | 2017-10-20T13:40:13 | 2017-10-20T13:40:13 | 107,682,963 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 35,180 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#
# www.genesilico.pl
#
#creates ranked 3D models of macromoleular complexes
#based on experimental restraints and a whole complex shape.
__author__ = "Joanna M. Kasprzak"
__copyright__ = "Copyright 2010, The PyRy3D Project"
__credits__ = ["Janusz Bujnicki"]
__license__ = "GPL"
__version__ = "0.1.0"
__maintainer__ = "Joanna Kasprzak"
__email__ = "[email protected]"
__status__ = "Prototype"
from Modules.Error.Errors import ConfigError, Component_movesError
from Modules.Constans.Logfile import logfile
from Modules.Trans.Component import Movable
import os
#@TODO: clean this module!!!
#@TODO: remove code duplications
#@TODO: check data correctness provided by the user and default values
class Config:
"""
class which represents simulation configuration data:
gets simulation parameters and delegates them to SIMUL module;
gets simulation output data and delegates them to OUT_set module;
#prepare input data for simulation:
#outside a map, no restraints kept, collisions, empty spaces in the map
#give a Simul module information about number os simulation steps
"""
def __init__(self):
self.anntemp = 10 #annealing temperature
self.disabled_mutations = [] #names of mutations with frequencies of 0
self.clashes_penalty = [1., 1.] #penalty for collisions between complex components
self.curve = False #True if user provides curve file
self.components_indexes = {} #how components are indexed in complex.components list
self.chi2_penalty = [0.,0.] #penalty for disagreement with SAXS curve according to chi2 value
self.crysol_path = "" #path to CRYSOL installed on Ubuntu system
self.density_penalty = [0., 0,] #penalty ranges for occuping points of map with low density
self.exchange_freq = 0.0 #frequency of components' exchange mutation
self.exchangeandsample_freq = 0.0 #frequency of components' exchange mutation
self.freespace_penalty = [1., 1.] #penalty for empty spaces in density map
self.identify_disorders = False #True if PyRy3D should check for disorders, False if not (faster)
self.iter_nr = 0 #simulation step number
self.kvol = 1.0 #how many complex volumes will define density map
self.linked_components = {} #if some somponents are linked by covalent bond
self.is_chi2_defined = False
self.is_rg_penalty_defined = False
self.max_rot_angle = 5. #max rotation angle in single simulation move
self.max_trans_vec = [5.,5.,5.] #max translation vector in single simulation move
self.maxpoolsize = 100 #maximum pool size for genetic algorithm
self.movable = [] #list of components with defined movements
self.movehistory = "" #filename with history of moves for all saved complexes
self.niter = 0 #which steps will be added to trajectory
self.outbox_penalty = [1., 1.] #penalty for beeing outside simulation box
self.out_steps = ["FIRST","LAST"] #which steps to include in output data? default None
self.param_scaling = "off" #scaling procedure can be "on" or "off"
self.param_scaling_ranges = [0,25,50] #values for scaling ranges during simulation
self.scaling_ranges = [[50,100], [25,50], [0,25]] #values of scaled params
self.param_scaling_range1 = [50,100] #values of scaled params in first range
self.param_scaling_range2 = [25,50] #values of scaled params in second range
self.param_scaling_range3 = [0,25] #values of scaled params in third range
self.rg_penalty = [0.,0.] #penalty for disagreement with SAXS curve according to Rg value
self.rg_val = 0.0 #Rg value given by user
self.reductmethod = "Roulette" #reduction method for genetic algorithm
self.reheat = False
self.reheat_rejections = None
self.replica_exchange_freq = 1 #how often replicas will be exchanged; default every 10% of simulation steps
self.repl_exch_freq = False #parameter replicaexhchangefreq not defined by the user
self.replica_temps = [400, 350, 300, 250, 200, 150, 100, 50, 25, 0] #list of replica simulations' temperatures
self.representation = "ca" #structure representation for components; #CA - only calfas/c4'; cg - coarse grain, fa - full atom (default)
self.restraints_penalty = [1., 1.] #penalty for not keeping user defined restraints
self.mutation_frequencies = {"rotation" : 0.5, "translation" : 0.5}
self.rotation_freq = 0.5 #frequency of component's rotation mutation
self.rotation_all_freq = 0.0
self.rotation_cov_freq = 0.0
self.rotation_whole_freq = 0.0
self.saxsradius = 0.0
self.symmetry_penalty = [0.,0.]
self.write_eachbetter = False
self.save_res_mode = "outsteps" #by default only best energy complex is saved
self.shapedesc = True #True when modeling is with use of map or saxs shape
self.simbox = 1.2 #how many times bigger than map is a simulbox
self.simboxradius = 2. #radius of a single grid cell in Angstroms
self.simgridtype = "cubic" #type of simulation grid; at the moment only cubic grid is available
self.simmethod = "simulatedannealing" #simulation algorithm
self.simul_dd_freq = 0.0 #frequency of components' simulate disorder mutation
self.simul_steps = 100 #number of simulation step to perform
self.start_orient = False #has a user set first complex conformation
self.struct_nr = 1 #number of best scores out structures; default 0.1simul_steps
self.threshold = None #min density value accepted in simulation
self.translation_freq = 0.5 #frequency of component's translation mutation
self.translation_all_freq = 0.0
self.required_clashes_penalty = False
self.required_clashes_penalty_allatoms = False
self.is_density_defined = False
self.is_freespace_defined = False
self.kvol_given = False
self.threshold_given = False
def __str__(self):
return "%s %s %s %s %s %s %s" % \
( self.simul_steps, self.freespace_penalty, \
self.clashes_penalty, self.outbox_penalty, self.restraints_penalty,\
self.out_steps, self.struct_nr)
def __open_config_file(self,filename):
try:
fh = open(filename, "r")
except ConfigError: print "Cannot open config file!!", filename
return fh
def __parse_covalent_links(self, line):
try: linked_components = eval(line.split()[2].strip()) #.replace("[","").replace("]","").replace(",",""))
except ConfigError: print "Please provide correct format for COVALENT_BONDS parameter in configuration file"
#linked_components = line.split()[2].replace("[","").replace("]","").replace(",","")
component = line.split()[1]
if component not in self.linked_components.keys():
for el in linked_components:
if el == component:
raise ConfigError("Component %s cannot be bound with %s "%(component, el))
#self.linked_components[component] = linked_components
at1 = eval(line.split()[3])
at2 = eval(line.split()[4])
covbond = CovalentBond(linked_components, at1, at2)
if self.linked_components.has_key(component):
self.linked_components[component].append(covbond)
else:
self.linked_components[component] = [covbond]
#else:
# raise ConfigError("You provided more than one covalent bond info for a component:%s"%(component))
#print "!!!!!", self.linked_components
def __parse_crysol_path(self, line):
"parse path to crysol"
path = line.split()[1]
try:
os.path.exists(path)
except ConfigError: print "Please provide valid path to CRYSOL program on your disk"
self.crysol_path = path
def __parse_reheating_param(self, line):
line = line.split()
reheat = line[1]
reheat_rejections = line[2]
if reheat.upper() not in ["TRUE", "FALSE"]: raise ConfigError("Reheat is of value True or False")
if reheat_rejections.isalpha(): raise ConfigError("Rejection must be float value")
elif reheat.upper() == "TRUE" and float(reheat_rejections) > self.simul_steps : raise ConfigError ("Rejection frequency cannot be larger than number of simulation steps")
elif float(reheat_rejections) <= 0 : raise ConfigError ("Rejection frequency cannot be lower than 0")
if reheat.upper() == "TRUE": self.reheat = True
else: self.reheat = False
self.reheat_rejections = float(reheat_rejections)
def __parse_score_weights_penalties(self, line, param_name):
values = [line.split()[1], line.split()[2]]
if len(values) != 2 : raise ConfigError(str(param_name).upper()+" parameter you must provide 2 values")
if values[0].upper() == "X" or values[1].upper() == "X": return 1
if values[0].isalpha() or values[1].isalpha(): raise ConfigError(str(param_name).upper()+"must be DIGID not alfanumeric value")
elif float(values[0]) >= 0 and float(values[1]) >=0 : setattr(self, param_name, [float(values[0]), float(values[1])])
else: raise ConfigError(str(param_name).upper()+"value must be positive value!")
if param_name == "freespace_penalty":
if float(values[0]) == 0. and float(values[1]) == 0:
self.is_freespace_defined = False
else:
self.is_freespace_defined = True
if param_name == "density_penalty":
if float(values[0]) == 0. and float(values[1]) == 0:
self.is_density_defined = False
else:
self.is_density_defined = True
if param_name == "chi2_penalty":
if float(values[0]) == 0. and float(values[1]) == 0:
self.is_chi2_defined = False
else:
self.is_chi2_defined = True
if param_name == "rg_penalty":
if float(values[0]) == 0. and float(values[1]) == 0:
self.is_rg_penalty_defined = False
else:
self.is_rg_penalty_defined = True
def __parse_mutation_frequencies(self, line, param_name):
value = line.split()[1]
floatValue = float(value)
if value.upper() == "X": return 1
#mutation_name = param_name.split("_")[0]
mutation_name = param_name.replace("_freq","")
if mutation_name == "simul_dd": mutation_name = "SimulateDisorder"
if floatValue == 0: self.disabled_mutations.append(mutation_name)
if value.isalpha() : raise ConfigError(str(param_name)+"must be DIGID not alfanumeric value")
elif 0. <= floatValue <= 1. : setattr(self, param_name, floatValue)
else: raise ConfigError("Frequency of"+str(param_name).upper()+"must be defined in range from 0 to 1")
return {mutation_name: floatValue}
def __parse_positive_params(self, line, param_name, type = "float"):
"""
"""
value = line.split()[1]
if value.upper() == "X": return 1
if value.isalpha() : raise ConfigError(str(param_name)+"must be DIGID not alfanumeric value")
if not param_name == "threshold":
try:
float(value) < 0
except:
raise ConfigError(str(param_name).upper()+"must be positive value! Use dots for float numbers.")
if type == "float":
setattr(self, param_name, float(value))
if type == "int":
setattr(self, param_name, int(value))
def __parse_param_value(self, line, param_name, list_of_values):
"""
"""
value = line.split()[1]
found = False
if value.upper() == "X" : return 1
if value.isdigit() : raise ConfigError(str(param_name).upper()+"must be alfanumeric not DIGIT value")
for val in list_of_values:
if value.lower() == val.lower():
found = True
break
if found == False:
raise ConfigError(str(param_name).upper()+" has only possible values "+"".join(list_of_values) )
if param_name == "simmethod" and value.upper() == "X": setattr(self,param_name, "simulatedannealing")
else: setattr(self,param_name, value.lower())
def __parse_rot_angle(self, line):
"""
"""
maxrot = line.split()[1]
if maxrot.upper() == "X": return 1
if maxrot.isalpha() : raise ConfigError("MAXROT must be DIGID not alfanumeric value")
if -360.0 > float(maxrot) > 360.: raise ConfigError("Rotation angle cannot be larger than 360 degrees or smaller than -360")
else: self.max_rot_angle = float(maxrot)
def __parse_outsteps(self, line):
"""
"""
out_steps = [line.split()[1], line.split()[2]]
if len(out_steps) != 2 : raise ConfigError("for OUTSTEPS parameter you must provide 2 values")
if (out_steps[0].upper() == "X" and out_steps[1].upper() == "X") \
or (out_steps[0].upper() == "FIRST" and out_steps[1].upper() == "LAST"):
self.out_steps.append(1)
self.out_steps.append(self.simul_steps-1)
elif float(out_steps[1]) > self.simul_steps:
raise ConfigError("Steps value cannot be larger than number of simulations!")
elif (out_steps[0] > 0 and out_steps[1] > 0): self.out_steps = [int(line.split()[1]), int(line.split()[2])]
else: raise ConfigError("OutSteps value must be positive value!")
def __parse_trans_vector(self, line):
"""
"""
trans_vec = [line.split()[1], line.split()[2], line.split()[3]]
if len(trans_vec) != 3 : raise ConfigError("for MAXTRANS parameter you must provide 3 values")
if trans_vec[0].upper() == "X" or trans_vec[1].upper() == "X" or trans_vec[2].upper() == "X": return 1
elif trans_vec[0].isalpha() or trans_vec[1].isalpha() or trans_vec[2].isalpha() : raise ConfigError("MAXTRANS must be DIGIDS not alfanumeric value")
self.max_trans_vec = [float(trans_vec[0]), float(trans_vec[1]), float(trans_vec[2])]
def __parse_scaling(self, line, param_name, counter):
"""
"""
if counter == 3:
values = [float(line.split()[1]), float(line.split()[2]), float(line.split()[3])]
elif counter == 2:
values = [float(line.split()[1]), float(line.split()[2])]
percentValues = []
for val in values:
if str(val).isalpha(): raise ConfigError(param_name.upper()+"must be DIGITS not alfanumeric value")
elif 100 < val < 0: raise ConfigError(param_name.upper()+"must be from range 0 to 100")
percentValues.append(val/100.0)
setattr(self, param_name, percentValues)
return percentValues
def __parse_movestate(self, line):
"""
"""
chain_name = line.split()[1]
move_state = line.split()[2]
if move_state.lower() == "fixed" or move_state.lower() == "movable": pass
else: raise ConfigError("unknown state %s"%(move_state))
move_state = Movable(chain_name, line)
#print "@@@@@@@@@@2", move_state
self.movable.append(move_state)
def __parse_kvol(self, line):
"""
"""
kvol = line.split()[1]
if kvol.isalpha() : raise ConfigError("KVOL must be DIGIDS not alfanumeric value")
if kvol.upper() == "X": return 1
else:
if (float(kvol) > 10 or float(kvol) < 0):
raise ConfigError("Volume you provided is not in the range from 0 to 10!%s "%(kvol))
elif float(kvol) == 0:
raise ConfigError("Volume must be larger than 0!")
self.kvol = float(kvol)
def __parse_bool_param(self,line, param_name):
val = line.split()[1]
if val.upper() not in ["TRUE", "FALSE"]:
raise ConfigError('%s can be "True" or "False"'%(param_name.upper()))
else:
if val.upper() == "TRUE": val = True
else: val=False
setattr(self, param_name, val)
def __parse_values_list(self, line, param_name):
"""
retrieves list of digits of unknown length
"""
li = line.split()[1:]
temps = []
for el in li:
#do not parse elements after comment indicator '#'
if "#" in el:
break
elif el.isdigit(): temps.append(float(el))
setattr(self, param_name, temps)
def parse_config_file(self, filename, curvefile, shapedesc = True):
"""
parses input config file which contains simulation parameters and
scoring function elements (e.g. penalties for collisions)
Parameters:
-----------
filename : name of file with simulation parameters
comp_names : names of complex components
Returns:
--------
config object storing all simulation data
"""
self.shapedesc = shapedesc
self.curve = curvefile
if filename == "":
self.save_logfile()
return 1
fh = self.__open_config_file(filename)
#to check whether both params are not defined at the same time
for line in fh:
if line.startswith("#"): continue
elif line.upper().startswith("STEPS"):
self.__parse_positive_params(line,'simul_steps', "int")
elif line.upper().startswith("REHEAT"):
self.__parse_reheating_param(line)
#parse score weights ---------------------------------
elif line.upper().startswith("OUTBOX"):
self.__parse_score_weights_penalties(line,'outbox_penalty')
elif line.upper().startswith("MAP_FREESPACE"):
self.__parse_score_weights_penalties(line, 'freespace_penalty')
elif line.upper().startswith("CLASHES "):
self.required_clashes_penalty = True
self.__parse_score_weights_penalties(line, 'clashes_penalty')
elif line.upper().startswith("CLASHES_ALLATOMS"):
self.required_clashes_penalty_allatoms = True
self.__parse_score_weights_penalties(line, 'clashes_penalty')
elif line.upper().startswith("RESTRAINTS"):
self.__parse_score_weights_penalties(line, 'restraints_penalty')
elif line.upper().startswith("DENSITY"):
self.__parse_score_weights_penalties(line, 'density_penalty')
elif line.upper().startswith("SYMMETRY"):
self.__parse_score_weights_penalties(line, 'symmetry_penalty')
elif line.upper().startswith("CHI2"):
self.__parse_score_weights_penalties(line, 'chi2_penalty')
elif line.upper().startswith("RG "):
self.__parse_score_weights_penalties(line, 'rg_penalty')
#parse mutation frequencies-----------------------------
elif line.upper().startswith("ROTATION_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'rotation_freq') )
elif line.upper().startswith("ROTATION_COV_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'rotation_cov_freq') )
elif line.upper().startswith("TRANSLATION_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'translation_freq') )
elif line.upper().startswith("TRANSLATION_ALL_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'translation_all_freq') )
elif line.upper().startswith("ROTATION_ALL_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'rotation_all_freq') )
elif line.upper().startswith("ROTATION_WHOLE_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'rotation_whole_freq') )
elif line.upper().startswith("EXCHANGE_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'exchange_freq') )
elif line.upper().startswith("EXCHANGESAMPLE_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'exchangeandsample_freq') )
elif line.upper().startswith("ROTATION_WHOLE_FREQ"):
self.__parse_mutation_frequencies(line,'rotation_whole_freq')
elif line.upper().startswith("SIMUL_DD_FREQ"):
self.mutation_frequencies.update( self.__parse_mutation_frequencies(line,'simul_dd_freq') )
elif line.upper().startswith("WRITE_N_ITER"):
self.__parse_positive_params(line,'niter', "int")
self.out_steps = []
elif line.upper().startswith("WRITE_EACHBETTER"):
self.__parse_bool_param(line, "write_eachbetter")
self.out_steps = []
elif line.upper().startswith("OUT_STEPS"):
self.__parse_outsteps(line)
elif line.upper().startswith("STRUCT_NR"):
self.__parse_positive_params(line,'struct_nr', "int")
elif line.upper().startswith("MAXROT"):
self.__parse_rot_angle(line)
elif line.upper().startswith("MAXTRANS"):
self.__parse_trans_vector(line)
elif line.upper().startswith("COMPONENT_REPRESENTATION"):
self.__parse_param_value(line, "representation", ["fa","ca", "cacb", "3p", "sphere", "ellipsoid"])
elif line.upper().startswith("SCALEPARAMS"):
self.__parse_param_value(line, "param_scaling", ["on", "off"])
elif line.upper().startswith("PARAMSCALINGRANGES"):
self.__parse_scaling(line, "param_scaling_ranges", 3)
elif line.upper().startswith("PARAMSCALINGR1"):
self.scaling_ranges.append( self.__parse_scaling(line, "param_scaling_range1", 2) )
elif line.upper().startswith("PARAMSCALINGR2"):
self.scaling_ranges.append( self.__parse_scaling(line, "param_scaling_range2", 2) )
elif line.upper().startswith("PARAMSCALINGR3"):
self.scaling_ranges.append( self.__parse_scaling(line, "param_scaling_range3", 2) )
elif line.upper().startswith("KVOL"):
self.kvol_given = True
self.__parse_kvol(line)
elif line.upper().startswith("THRESHOLD"):
self.threshold_given = True
self.__parse_positive_params(line, "threshold")
elif line.upper().startswith("SIMBOX"):
self.__parse_positive_params(line,'simbox', "float")
elif line.upper().startswith("CRYSOL_PATH"):
self.__parse_crysol_path(line)
elif line.upper().startswith("GRIDRADIUS"):
self.__parse_positive_params(line,'simboxradius', "float")
elif line.upper().startswith("SAXSRADIUS"):
self.__parse_positive_params(line,'saxsradius', "float")
elif line.upper().startswith("RG_VAL"):
self.__parse_positive_params(line,'rg_val', "float")
elif line.upper().startswith("GRIDTYPE"):
self.__parse_param_value(line, "simgridtype", ["cubic", "diamond"])
elif line.startswith("SIMMETHOD"):
self.__parse_param_value(line, "simmethod", ["SimulatedAnnealing", "Genetic", "ReplicaExchange"])
elif line.upper().startswith("REPLICAEXCHANGE_FREQ"):
self.__parse_positive_params(line, "replica_exchange_freq", "int")
self.repl_exch_freq = True
elif line.upper().startswith("MAXPOOLSIZE"):
self.__parse_positive_params(line, "maxpoolsize", "int")
elif line.upper().startswith("REPLICATEMPERATURES"):
self.__parse_values_list(line, "replica_temps")
elif line.upper().startswith("ANNTEMP"):
self.__parse_positive_params(line,'anntemp', "float")
elif line.upper().startswith("REDUCTMETHOD"):
self.__parse_param_value(line, "reductmethod", ["Roulette", "Tournament", "Cutoff"])
elif line.upper().startswith("MOVE_STATE"):
self.__parse_movestate(line)
elif line.upper().startswith("START_ORIENTATION"):
self.__parse_bool_param(line, "start_orient")
elif line.upper().startswith("IDENTIFY_DISORDERS"):
self.__parse_bool_param(line, "identify_disorders")
elif line.upper().startswith("COVALENT_BONDS"):
self.__parse_covalent_links(line)
fh.close()
#parameter replicaexchangefreq not defined in config file
if self.repl_exch_freq == False:
self.replica_exchange_freq = self.simul_steps/10
if self.replica_exchange_freq == 0: self.replica_exchange_freq = 1
self.__check_save_structnr(["struct_nr", "replica_exchange_freq"])
self.__check_shape_descriptors()
self.__check_mutual_clashes_options()
self.__check_mut_freq_correctness()
self.__set_outsave_mode()
self.save_logfile()
def __check_save_structnr(self, params):
"""
"""
for param in params:
if self.simul_steps == 0: pass
elif getattr(self, param) > self.simul_steps:
print getattr(self, param)
raise ConfigError(str(param).upper()+" value cannot be larger than number of simulations!")
def __check_mutual_clashes_options(self):
if self.required_clashes_penalty == True and self.required_clashes_penalty_allatoms == True:
raise ConfigError("Only one option can be applied CLASHES or CLASHES_ALLATOMS. \
Please change values into 0 for one of the parameters or comment one option in configuarion file")
def __check_shape_descriptors(self):
"""
"""
if self.shapedesc:
if self.kvol_given == False and self.threshold_given == False and self.shapedesc == "map":
raise ConfigError("You must provide kvol or threshold value when you provide density map as input")
if self.kvol_given and self.threshold_given:
raise ConfigError("Please provide only one of these two parameters: KVOL or THRESHOLD!")
if self.threshold != None:
self.kvol = None
if self.is_freespace_defined == False:
self.freespace_penalty = [0.,0.]
if self.is_density_defined == False:
self.density_penalty = [0.,0.]
if self.density_penalty[0] != 0. and self.freespace_penalty[0] != 0.:
print ConfigError("Scoring function will penalyze shape filling twice since you defined two parameters: DENSITY and MAP_FREESPACE!")
logfile.write_file("Scoring function will penalyze shape filling twice since you defined two parameters: DENSITY and MAP_FREESPACE!\n")
if self.simbox > 10:
raise ConfigError("The size of the system you want to use is very large. Max simbox value is 10")
#when no file with density map or ab initio model was provided but density filling or mapspace weights were provided
if self.shapedesc == False and self.is_density_defined == True: #and (self.density_penalty[0] != 0):
raise ConfigError("Map filling cannot be calculated when no shape descriptor was provided!\n")
logfile.write_file("Map filling cannot be calculated when no shape descriptor was provided!")
#print "@@@@@@", self.shapedesc, self.is_freespace_defined
if self.shapedesc == False and self.is_freespace_defined == True: #(self.freespace_penalty[0] != 0):
#print "****", self.shapedesc, self.is_freespace_defined
raise ConfigError("Map filling cannot be calculated when no shape descriptor was provided!")
logfile.write_file("Map filling cannot be calculated when no shape descriptor was provided!\n")
if self.shapedesc == "map" or self.shapedesc == "saxs": self.shapedesc = True
if self.is_chi2_defined == True or self.is_rg_penalty_defined == True:
if not self.curve:
raise ConfigError("To verify discrepancy with SAXS/SANS curves you must provide .dat file!")
else:
self.crysol_outfile = open("crysol_summary.txt", "w")
if self.representation == "sphere" and self.restraints_penalty[0] == 0 and self.restraints_penalty[1] == 0:
raise ConfigError ("To validate clashes between spheres PyRy3D calculates violation of distances betweeen\
spheres centres. To allow this option penalty for RESTRAINTS must be different than 0 0")
if self.identify_disorders == False and self.simul_dd_freq != 0.:
raise ConfigError ("You must allow PyRy3D to identify disorders to use simulate disorder mutation. Please set IDENTIFY_DISORDER parameter into True or disable simulate disorder mutation by setting SIMUL_DD_FREQ to 0 0 values")
def __check_mut_freq_correctness(self):
"""
"""
sumpar = float(self.rotation_freq + self.rotation_cov_freq + self.translation_freq + self.exchange_freq + self.exchangeandsample_freq\
+ self.simul_dd_freq + self.translation_all_freq + self.rotation_all_freq \
+ self.rotation_whole_freq)
if sumpar == 0: raise ConfigError("Frequencies of mutations must sum up to 1. You provided %s"%(sumpar))
if round(sumpar,1) > float(1.0):
raise ConfigError("Frequencies of mutations must sum up to 1. You provided %s"%(sumpar))
if round(sumpar,1) < float(1.0):
self.rotation_freq = self.rotation_freq/sumpar *1.0
self.rotation_cov_freq = self.rotation_cov_freq/sumpar *1.0
self.translation_freq = self.translation_freq/sumpar *1.0
self.exchange_freq = self.exchange_freq/sumpar *1.0
self.exchangesample_freq = self.exchangeandsample_freq/sumpar *1.0
self.simul_dd_freq = self.simul_dd_freq/sumpar *1.0
self.translation_all_freq = self.translation_all_freq/sumpar *1.0
self.rotation_all_freq = self.rotation_all_freq/sumpar *1.0
self.rotation_whole_freq = self.rotation_whole_freq/sumpar *1.0
def __set_outsave_mode(self):
"""
"""
if self.simul_steps == 0: pass
elif self.niter > self.simul_steps:
raise ConfigError("Steps to write cannot be larger than number of simulation steps!")
#self.out_steps = []
if self.out_steps and self.niter and self.write_eachbetter:
raise ConfigError("You can select only one of output save methods either WRITE_N_ITER or or WRITE_EACHBETTER or OUT_STEPS")
if self.out_steps : self.save_res_mode = "outsteps"
elif self.write_eachbetter : self.save_res_mode = "eachbetter"
elif self.niter : self.save_res_mode = "niter"
def save_logfile(self):
"""
saves all alphabetically sorted config attributes to logfile
"""
attribs = self.__dict__
for a in sorted(attribs.keys()):
logfile.write_file(str(a).upper()+"."*20+" "+str(attribs[a])+"\n")
def set_movehistory_file(self, movehist_file):
"""
"""
self.movehistory = movehist_file
class CovalentBond:
def __init__(self, chains, at1=None, at2=None):
self.atom1 = at1
self.atom2 = at2
self.chains = chains
self.chains_indexes = []
self.__check_atoms(self.atom1)
self.__check_atoms(self.atom2)
def __str__(self):
return "%s %s %s" % (self.atom1, self.atom2, self.chains)
def __check_atoms(self, atom):
if len(atom) != 2: raise ConfigError("You haven't provided enough information about covalent bonds atoms")
if not str(atom[0]).isdigit(): raise ConfigError ("Residue number should be number not string")
if not str(atom[1]).isalpha(): raise ConfigError ("Atom name must be string, not number")
|
[
"[email protected]"
] | |
6c011191d8a77acf3a5f735a391eecb401da6ef2
|
44281037e35d704856554ae78a63a421b9ed530e
|
/work12.py
|
b07c991967000bd06c431b79d6e10225edf5192b
|
[] |
no_license
|
adivyas99/Gender-Recognition-Times-Internet-
|
97d8207afb9ceb473d91b3f841af25ec10ed1e3b
|
dfb3bfd2a40f466463b4b635930c72dce31b1c64
|
refs/heads/master
| 2020-07-07T14:44:54.877609 | 2019-09-19T10:54:06 | 2019-09-19T10:54:06 | 203,379,122 | 3 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 23,947 |
py
|
# taking by each user so that we can exact stuff
# Combining features and then applying this thing
# Implement UNDER sampling and both sampling -->>>
import numpy as np
import ast
import pandas as pd
from googletrans import Translator
translator = Translator()
translator.translate('good boy').text
Translator.translate(['The quick brown fox', 'jumps over', 'the lazy dog'])
#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-
# Making UrlsData.csv--->>>
'''
with open('Urls_data.txt') as json_file:
data = json_file.readlines()
user_id=[]
title=[]
link=[]
description=[]
long_desc=[]
brand=[]
entities=[]
tags = []
count=0
for i in data:
count+=1
x = ast.literal_eval(i)
print(count)
user_id.append(x['id'])
try:
title.append(x['title'])
except:
title.append('none')
try:
link.append(x['link'])
except:
link.append('none')
try:
description.append(x['description'])
except:
description.append('none')
try:
long_desc.append(x['long_description'])
except:
long_desc.append('none')
try:
brand.append(x['brand'])
except:
brand.append('none')
try:
tags.append(x['tags'])
except:
tags.append('none')
try:
entities.append(x['entities'])
except:
entities.append('none')
urls_data = pd.DataFrame({
'id': user_id,
'title': title,
'link': link,
'desc': description,
'long_desc': long_desc,
'brand': brand,
'tags': tags,
'entities': entities
})
urls_data.to_csv('urls_data.csv')
ast.literal_eval(data[109443]).keys()
'''
#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-
# Combining UserIdtoUrl folder (will be used for train and test data features!)
# inner merging it with train data making intermediate training data -->>>
'''
user_id=[]
url=[]
count=0
for i in range(0,10):
print(i)
j = '0000'+str(i)
with open('UserIdToUrl/part-'+j) as file:
data = file.readlines()
for i in data[1:]:
count+=1
print(count)
print(j)
av = i.split(',')
user_id.append(str(av[0]))
url.append(str(av[1]))
for i in range(10,12):
print(i)
j = '000'+str(i)
with open('UserIdToUrl/part-'+j) as file:
data = file.readlines()
for i in data[1:]:
count+=1
print(count)
print(j)
av = i.split(',')
user_id.append(str(av[0]))
url.append(str(av[1]))
print('dataframe--')
user_id_url_data = pd.DataFrame({
'userid': user_id,
'url': url
})
print('dataframe to csv--')
user_id_url_data.to_csv('user_id_url_data.csv')
UserIdToGender_Train = pd.read_csv('UserIdToGender_Train.csv')
print('string me convert--')
UserIdToGender_Train = UserIdToGender_Train.astype(str)
print('merge--')
df_merged = pd.merge(user_id_url_data, UserIdToGender_Train, on='userid')
print('mergefile to csv--')
df_merged.to_csv('df_merged.csv')
test_df = pd.read_csv('UserId_Test.csv')
df_merged_nonduplicates_train = df_merged.drop_duplicates()
df_merged_nonduplicates_train.to_csv('df_merged_nonduplicates_train.csv')
'''
#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-
user_id_url_data = pd.read_csv('user_id_url_data.csv')
user_id_url_data = user_id_url_data.loc[:, ~user_id_url_data.columns.str.contains('^Unnamed')]
user_id_url_data = user_id_url_data.astype(str)
UserIdToGender_Train = pd.read_csv('UserIdToGender_Train.csv')
UserIdToGender_Train = UserIdToGender_Train.loc[:, ~UserIdToGender_Train.columns.str.contains('^Unnamed')]
UserIdToGender_Train = UserIdToGender_Train.astype(str)
urls_data = pd.read_csv('urls_data.csv')
urls_data = urls_data.loc[:, ~urls_data.columns.str.contains('^Unnamed')]
urls_data = urls_data.astype(str)
#len(urls_data.url.unique())
def preprocess_strip(x):
x= str(x)
x= x.strip()
return x
user_id_url_data['url'] = user_id_url_data['url'].map(preprocess_strip)
# df_merged = Contain data for both train and test--
df_merged = pd.merge(user_id_url_data, UserIdToGender_Train, on='userid')
df_merged['url'] = df_merged['url'].map(preprocess_strip)
df_merged = df_merged.drop_duplicates()
# This will be only used only for training-->>>
df_merged_train = pd.merge(df_merged, urls_data, on='url')
df_merged_train = df_merged_train.drop_duplicates()
################
grouped = df_merged_train[df_merged_train['title'] != 'none']
grouped = grouped[grouped['title'] != 'nan']
grouped = grouped.groupby('userid')
#df_grouped = pd.DataFrame(columns = ['userid','title','gender'])
user_ids = []
descriptions = []
genders = []
j=0
for name,group in grouped:
print(j)
j+=1
#print(name_of_group)
#print(df)
group = group.drop_duplicates(subset = 'title')
#desc_s = ''
gen = group.gender.iloc[0]
#print(gen)
descs = group.title.str.cat(sep=' ')
#print(descs)
#print(len(descs))
#desc_ +=group.desc.map(add_all_desc)
#print(len(str(desc_)))
#y = group.desc.map(add_all_desc_y)
#print(len(str(y)))
#print(y)
user_ids.append(name)
descriptions.append(descs)
genders.append(gen)
#df_grouped = df_grouped.append({'userid' : name , 'desc' : descs,'gender':gen} , ignore_index=True)
df_grouped = pd.DataFrame({'userid':user_ids,
'title':descriptions,
'gender':genders})
# To CSVs-->>>
'''
user_id_url_data.to_csv('user_id_url_data.csv')
UserIdToGender_Train.to_csv('UserIdToGender_Train.csv')
urls_data.to_csv('urls_data.csv')
df_merged.to_csv('df_merged.csv')
df_merged_train.to_csv('df_merged_train.csv')
'''
#==
#df_merged_train_exp = df_merged_train.drop_duplicates(subset = 'tags')
## Female Keywords-
Female_df = df_merged_train[df_merged_train['gender'] == 'F']
#Female_df = Female_df.drop_duplicates(subset = 'tags')
Female_df = Female_df[Female_df['tags'] != 'none']
keywords_F = []
for i in Female_df.tags[:]:
print(i)
#i= exec('%s'%(i))
exec('k=list(%s)'%(i))
#k=list(k)
#print(k)
for j in k:
keywords_F.append(j)
keywords_F = list(set(keywords_F))
keywords_F.remove('')
## Male Keywords-
Male_df = df_merged_train[df_merged_train['gender'] == 'M']
#Male_df = Male_df.drop_duplicates(subset = 'tags')
Male_df = Male_df[Male_df['tags'] != 'none']
keywords_M = []
for i in Male_df.tags[:]:
print(i)
#i= exec('%s'%(i))
exec('k=list(%s)'%(i))
#k=list(k)
#print(k)
for j in k:
keywords_M.append(j)
keywords_M = list(set(keywords_M))
keywords_M.remove('')
#--------------------
## Converting for Male-
Male_df = urls_data.copy()
Male_df = Male_df[Male_df['tags'] != 'none']
#dele = Male_df[Male_df.duplicated(['desc'])]
#dele = Male_df.duplicated(subset='desc', keep='first')
Male_df = Male_df.drop_duplicates(subset ='desc')
#Male_df = Male_df.drop_duplicates()
Male_df_copy = Male_df.copy()
Male_df_copy['gender']=[''for i in range(Male_df_copy.shape[0])]
sz = Male_df.shape[0]
indices = list(Male_df.index)
c=0
j=0
for i in indices:
#print(type(i))
av = Male_df.tags[i]
print(c)
c+=1
exec('k=list(%s)'%(av))
a_set = set(keywords_F)
b_set = set(k)
if len(a_set.intersection(b_set))>4:
j+=1
print('--')
Male_df_copy.gender[i]='F'
Male_df_copy = Male_df_copy[Male_df_copy['gender']=='F']
## Converting for Female-
Female_df = urls_data.copy()
Female_df = Female_df[Female_df['tags'] != 'none']
#dele = Female_df[Female_df.duplicated(['desc'])]
#dele = Female_df.duplicated(subset='desc', keep='first')
Female_df = Female_df.drop_duplicates(subset ='desc')
#Female_df = Female_df.drop_duplicates()
Female_df_copy = Female_df.copy()
Female_df_copy['gender']=[''for i in range(Female_df_copy.shape[0])]
sz = Female_df.shape[0]
indices = list(Female_df.index)
c=0
j=0
for i in indices:
#print(type(i))
av = Female_df.tags[i]
print(c)
c+=1
exec('k=list(%s)'%(av))
a_set = set(keywords_M)
b_set = set(k)
if len(a_set.intersection(b_set))>4:
j+=1
print('--')
Female_df_copy.gender[i]='M'
Female_df_copy = Female_df_copy[Female_df_copy['gender']=='M']
#--------------------
df_merged_train_c = df_merged_train.copy()
df_merged_train_c = df_merged_train_c.drop('userid', axis=1)
columns_for_d_fmerged_train = ['id', 'title', 'url', 'desc', 'long_desc', 'brand', 'tags', 'entities', 'gender']
df_merged_train_c = df_merged_train_c[columns_for_d_fmerged_train]
df_merged_train_c_F = df_merged_train_c.copy()[df_merged_train_c['gender']=='F']
df_merged_train_c_F['gender'] = ['M' for i in range(df_merged_train_c_F.shape[0])]
df_merged_train_c_M = df_merged_train_c.copy()[df_merged_train_c['gender']=='M']
df_merged_train_c_M['gender'] = ['F' for i in range(df_merged_train_c_M.shape[0])]
df_all_rows = pd.concat([Female_df_copy, Male_df_copy, df_merged_train_c, df_merged_train_c_F,df_merged_train_c_M])
#--------------------
# Making Final Training datsets-->>>
df_merged_train_final = df_grouped.copy().loc[:,['title','gender']]
#df_grouped.to_csv('df_grouped.csv')
# to english language--
import string
translate_string = str.maketrans(string.punctuation, ' '*len(string.punctuation))
exclude = set(string.punctuation)
import re
c=0
import json
alpha_set=set('qwertyuiopasdfghjklzxcvbnm')
any_to_en={}
def to_english(x):
global c
print(c,'------\n')
#print(x)
c+=1
#x = "{0}".format(x)
x=x.strip()
x = x.lower()
x = x.replace("\'"," ")
x = re.sub(r'\d+', " ", x)
x = ''.join(ch for ch in x if ch not in exclude)
x = x.translate(translate_string)
exec('x="%s"'%(x))
#x=x.replace(r"'", r"\' ")
#print('-------\n')
#print(x)
#x = x.strip()
#print('********')
#x=x.__repr__()
#x=json.dumps(x)
if x in any_to_en.keys():
trans_final = any_to_en[x]
else:
#else:
#x=x[:2000]
final=" "
trans_final = " "
words=x.split()
#print(words)
for i in range(len(words)):
#print(i)
#print(words[i])
if len(set(words[i]).intersection(alpha_set))==0:
final = final+' '+words[i]
try:
#print('cccccccccccccccccç')
if len(set(words[i+1]).intersection(alpha_set))==0:
#print('*')
continue
else:
trans_final = trans_final+ " " + translator.translate(final).text
final=" "
#print('cooooooooolooooooooo')
except:
#print('***')
break
else:
trans_final = trans_final+" " +words[i]
any_to_en[x]=trans_final
#print(len(words))
#print('>>>>>>>>>>>>')
trans_final = trans_final.strip()
print(trans_final)
#print(final)
#if y.src !='en':
#try:
#print('iiiii\n')
#y=str(y.text)
#print('av'*10)
#except:
#print (len(x))
#else:
#y= str(y.origin)
#any_to_en[x] = x
#print(y)
return trans_final
df_merged_train_final_translated = df_merged_train.copy()
df_merged_train_final_translated['title'] = df_merged_train['title'].map(to_english)
df_merged_train_final = df_merged_train_final_translated.copy()
#df_merged_train_final = df_all_rows.loc[:,['desc','gender']]
df_merged_train_final = df_merged_train_final.drop_duplicates()
df_merged_train_final = df_merged_train_final.astype(str)
def unique_word_only(x):
x = x.lower()
y = x.split()
y = ' '.join(list(Counter(y).keys()))
return y
df_merged_train_final['desc'] = df_merged_train_final['desc'].map(unique_word_only)
#df_merged_train_final['desc'] = df_merged_train['desc']+df_merged_train['desc']
#df_merged_train_final.to_csv('df_merged_train_final.csv')
#len(df_merged_train_final[df_merged_train_final['desc']=='none'])
'''# Under Sampling-->>
# Class count
count_class_M, count_class_F = df_merged_train_final.gender.value_counts()
# Divide by class
df_class_M = df_merged_train_final[df_merged_train_final['gender'] == 'M']
df_class_F = df_merged_train_final[df_merged_train_final['gender'] == 'F']
df_class_M_under = df_class_M.sample(count_class_F+20000,random_state=42)
df_merged_train_final = pd.concat([df_class_F, df_class_M_under], axis=0)
print('Random over-sampling:')
print(df_merged_train_final.gender.value_counts())'''
# Class count Under
count_class_M, count_class_F = df_merged_train_final.gender.value_counts()
# Divide by class
df_class_M = df_merged_train_final[df_merged_train_final['gender'] == 'M']
df_class_F = df_merged_train_final[df_merged_train_final['gender'] == 'F']
df_class_M_under = df_class_M.sample(count_class_F+25000,random_state=42)
df_merged_train_final = pd.concat([df_class_F, df_class_M_under], axis=0)
print('Random over-sampling:')
print(df_merged_train_final.gender.value_counts())
# Class count Over
count_class_M, count_class_F = df_merged_train_final.gender.value_counts()
# Divide by class
df_class_M = df_merged_train_final[df_merged_train_final['gender'] == 'M']
df_class_F = df_merged_train_final[df_merged_train_final['gender'] == 'F']
df_class_F_over = df_class_F.sample(count_class_M-25000, replace=True, random_state=42)
df_merged_train_final = pd.concat([df_class_M, df_class_F_over], axis=0)
df_merged_train_final = df_merged_train_final.astype(str)
print('Random over-sampling:')
print(df_merged_train_final.gender.value_counts())
'''
#### Preprocessing-->>>
# Normalizing and encoding
import unicodedata
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tokenize import ToktokTokenizer
# making short name-
lemma=WordNetLemmatizer()
token=ToktokTokenizer()
from nltk.corpus import stopwords
stopWordList=stopwords.words('english')
stopWordList.remove('no')
stopWordList.remove('not')
#import spacy
#nlp = spacy.load('en_core', parse=True, tag=True, entity=True)
# NFKD - Compatibility Decomposition
def removeAscendingChar(data):
data=unicodedata.normalize('NFKD', data).encode('ascii', 'ignore').decode('utf-8', 'ignore')
return data
# Removing diff characters-
def removeCharDigit(text):
str='`1234567890-=~@#$%^&*()_+[!{;":\'><.,/?"}]'
for w in text:
if w in str:
text=text.replace(w,'')
return text
# choosing root word-
def lemitizeWords(text):
words=token.tokenize(text)
listLemma=[]
for w in words:
x=lemma.lemmatize(w,'v')
#print(x)
listLemma.append(x)
return text
# Removing stop words-
def stopWordsRemove(text):
wordList=[x.lower().strip() for x in token.tokenize(text)]
removedList=[x for x in wordList if not x in stopWordList]
text=' '.join(removedList)
#print(text)
return text
# Running above functions-
def PreProcessing(text):
text=removeCharDigit(text)
#print(text)
text=removeAscendingChar(text)
#print(text)
text=lemitizeWords(text)
#print(text)
text=stopWordsRemove(text)
#print(text)
return(text)'''
'''
totalText=''
count=0
for x in df_merged_train_final['desc']:
ps=PreProcessing(x)
totalText=totalText+" "+ps # Single variable with all the body
print (count)
count+=1
f= open("/Users/anilvyas/Desktop/TILCompleteDataSet/totalText.txt","w+")
f.write(totalText)'''
#0-F
#1-M
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(df_merged_train_final.title)
X_train_counts.shape
from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
X_train_tfidf.shape
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
df_merged_train_final.gender = labelencoder_X.fit_transform(df_merged_train_final.gender)
labelencoder_X.inverse_transform([0])
from sklearn.pipeline import Pipeline
'''
from sklearn.linear_model import SGDClassifier
text_clf_svm = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()),
('clf-svm', SGDClassifier( random_state=42))])
text_clf_svm = text_clf_svm.fit(df_merged_train_final.desc, df_merged_train_final.gender)
'''
'''
from sklearn.tree import DecisionTreeClassifier
text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', DecisionTreeClassifier()) ])
text_clf = text_clf.fit(df_merged_train_final.desc, df_merged_train_final.gender)
'''
'''
from sklearn import ensemble,feature_extraction
clf=Pipeline([
('tfidf_vectorizer', feature_extraction.text.TfidfVectorizer(lowercase=True)),
('rf_classifier', ensemble.RandomForestClassifier(n_estimators=500,verbose=1,n_jobs=-1))
])
clf.fit(df_merged_train_final.desc,df_merged_train_final.gender)
'''
'''
from sklearn.naive_bayes import MultinomialNB
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english", ignore_stopwords=True)
class StemmedCountVectorizer(CountVectorizer):
def build_analyzer(self):
analyzer = super(StemmedCountVectorizer, self).build_analyzer()
return lambda doc: ([stemmer.stem(w) for w in analyzer(doc)])
stemmed_count_vect = StemmedCountVectorizer(stop_words='english')
text_clf = Pipeline([('vect', stemmed_count_vect), ('tfidf', TfidfTransformer()),
('mnb', MultinomialNB(fit_prior=True))])
text_clf = text_clf.fit(df_merged_train_final.desc, df_merged_train_final.gender)
predicted_mnb_stemmed = text_clf.predict(test_df_merged_final.desc)
predicted = predicted_mnb_stemmed
'''
#from sklearn.naive_bayes import GaussianNB
'''clf = MultinomialNB().fit(X_train_tfidf, df_merged_train_final.gender)'''
'''
from sklearn.naive_bayes import MultinomialNB
text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()) ])
text_clf = text_clf.fit(df_merged_train_final.title, df_merged_train_final.gender)
'''
len(df_merged_train_final.loc[df_merged_train_final['gender']==1])
len(df_merged_train_final[(df_merged_train_final.desc=='none')])
### Check that the desc is none--ABOVE
#For Test-->>>
test_df = pd.read_csv('UserId_Test.csv')
test_df = test_df.drop_duplicates()
test_df = test_df.astype('str')
test_df_merged = pd.merge(user_id_url_data, test_df, on='userid')
test_df_merged['url'] = test_df_merged['url'].map(preprocess_strip)
test_df_merged = test_df_merged.drop_duplicates()
test_df_merged_final = pd.merge(urls_data, test_df_merged, on='url')
#test_df_merged_final['desc']= test_df_merged_final['title']+ test_df_merged_final['desc']
test_grouped = test_df_merged_final[test_df_merged_final['title'] != 'none']
test_grouped = test_grouped[test_grouped['title'] != 'nan']
test_grouped = test_df_merged_final.groupby('userid')
#df_grouped = pd.DataFrame(columns = ['userid','desc','gender'])
user_ids = []
descriptions = []
#genders = []
j=0
for name,group in test_grouped:
print(j)
j+=1
#print(name_of_group)
#print(df)
group = group.drop_duplicates(subset = 'title')
#desc_s = ''
#gen = group.gender.iloc[0]
#print(gen)
descs = group.title.str.cat(sep=' ')
#print(descs)
#print(len(descs))
#desc_ +=group.desc.map(add_all_desc)
#print(len(str(desc_)))
#y = group.desc.map(add_all_desc_y)
#print(len(str(y)))
#print(y)
user_ids.append(name)
descriptions.append(descs)
#genders.append(gen)
#df_grouped = df_grouped.append({'userid' : name , 'desc' : descs,'gender':gen} , ignore_index=True)
test_df_grouped = pd.DataFrame({'userid':user_ids,
'title':descriptions})
test_df_grouped.to_csv('test_df_grouped.csv')
test_df_merged_final = test_df_grouped.copy()
test_df_merged_final['desc'] = test_df_merged_final['desc'].map(unique_word_only)
## Prediction
#av = pd.Series(['av cool'])
#text_clf.predict(av)
predicted = text_clf.predict(test_df_merged_final.title) #747
#np.mean(predicted == twenty_test.target)
predicted_copy = predicted.tolist()
'''
from imblearn.over_sampling import SMOTE
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(df_merged_train_final.desc, df_merged_train_final.gender)
'''
from collections import OrderedDict
test_cases = OrderedDict()
test_cases2 = OrderedDict()
for i in test_df.iloc[:,0]:
test_cases[str(i)] = []
test_cases2[str(i)] = []
predicted=predicted.reshape(88384,1)
size = test_df_merged_final.shape[0]
for i in range(size):
print(i)
#predicted = text_clf.predict(pd.Series([test_df_merged_final.loc[i,'desc']]))
av=str(predicted[i,0])
usr_id = str(test_df_merged_final.loc[i,'userid'])
if usr_id not in test_cases.keys():
test_cases[usr_id]=[]
test_cases[usr_id].append(av)
else:
test_cases[usr_id].append(av)
#test_cases[str(test_df_merged_final.loc[i,'userid'])].append(predicted[0])
'''count=0
from collections import Counter
for i in test_cases.keys():
print(count)
count+=1
av = list(Counter(test_cases[i]).keys())
cool = list(Counter(test_cases[i]).values())
print(cool)
try:
if cool[0]>cool[1]:
test_cases2[i] = av[0]
elif cool[0]<cool[1]:
test_cases2[i] = av[1]
else:
test_cases2[i] = 'M'
except:
test_cases2[i] = []'''
#gk = test_df_merged_final.groupby('userid').get_group('1000021')
#gk.first()
'''submission = test_df.copy()
submission['gender'] = ['M']*88384
submission.to_csv('submission.csv',index=False)
'''
'''test_on_predicted=list(predicted.reshape(1834125,))
cc = pd.Series(test_on_predicted[:])
cc.value_counts()'''
#small
#classify acc to subcategory like business
'''# Single presence-->>>
count=0
from collections import Counter
for i in test_cases.keys():
print(count)
count+=1
#av = list(Counter(test_cases[i]).keys())
#cool = list(Counter(test_cases[i]).values())
#print(cool)
if 'F' in test_cases[i]:
test_cases2[str(i)] = ['F']
else:
test_cases2[str(i)] = ['M']
'''
#test_cases2 = OrderedDict()
# Another logic-->>
count=0
from collections import Counter
for i in test_cases.keys():
print(count)
count+=1
av = list(Counter(test_cases[i]).keys())
cool = list(Counter(test_cases[i]).values())
#print(cool)
if 'F' in test_cases[i] and 'M' not in test_cases[i]:
test_cases2[str(i)] = ['F']
elif 'F' in test_cases[i]:
av = list(Counter(test_cases[i]).keys())
cool = list(Counter(test_cases[i]).values())
ind = av.index('F')
if cool[ind]/sum(cool)> 1-cool[ind]/sum(cool):
test_cases2[str(i)] = ['F']
else:
test_cases2[str(i)] = ['M']
else:
test_cases2[str(i)] = ['M']
submission = pd.DataFrame.from_dict(test_cases, orient='index')
submission['userid'] = submission.index
submission['gender'] = submission[0]
submission = submission.iloc[:,1:]
submission = submission.astype('str')
submission.to_csv('submission.csv',index=False)
print(submission['gender'].value_counts())
#print('\a')
# 81.6%
# Resampling over wali and also to dec the no pf male exampkes
# Bert classifier
# Using long dess,desc and combi to detect the same as above
# Classifier
# both over and under resampling
# COlumn that is most efficient in predicting that shit- Desc_col is good one
|
[
"[email protected]"
] | |
e44931d7645146a5f5ccd3e49417ae4ec7fc5af8
|
1115935baf990eaa474e6bd66b090e9e226432d2
|
/hujan_ui/maas/vlans/forms.py
|
ad5564c7e1b989238f54ed9e1472d85c8f09ad05
|
[
"Apache-2.0"
] |
permissive
|
hasanasari/hujan_ui
|
3cea8159622152c6cfef1949c8ef574091556d60
|
90dd7545478662a3e648507f36cb7079109be442
|
refs/heads/main
| 2023-03-19T01:41:27.675866 | 2021-03-03T03:29:52 | 2021-03-03T03:29:52 | 351,787,722 | 1 | 0 |
Apache-2.0
| 2021-03-26T13:16:04 | 2021-03-26T13:16:03 | null |
UTF-8
|
Python
| false | false | 1,828 |
py
|
from django import forms
from hujan_ui import maas
class BaseVlanForm(forms.Form):
fabric_id = forms.ChoiceField(required=True,label='Fabric',)
space = forms.ChoiceField(required=False)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fields['fabric_id'].choices = self.get_choice_fabric()
self.fields['space'].choices = self.get_choice_space()
def get_choice_fabric(self):
fabrics = maas.get_fabrics()
choices = [(x['id'], x['name']) for x in fabrics]
choices.insert(0, (None, '-----'))
return choices
def get_choice_space(self):
space = maas.get_spaces()
choices = [(x['id'], x['name']) for x in space]
choices.insert(0, (None, '-----'))
return choices
class VlanForm(forms.Form):
name = forms.CharField(required=True)
vid = forms.CharField(required=True)
fabric_id = forms.ChoiceField(required=True,label='Fabric',)
space = forms.ChoiceField(required=False)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fields['fabric_id'].choices = self.get_choice_fabric()
self.fields['space'].choices = self.get_choice_space()
def get_choice_fabric(self):
fabrics = maas.get_fabrics()
choices = [(x['id'], x['name']) for x in fabrics]
choices.insert(0, (None, '-----'))
return choices
def get_choice_space(self):
space = maas.get_spaces()
choices = [(x['id'], x['name']) for x in space]
choices.insert(0, (None, '-----'))
return choices
class VlanEditForm(BaseVlanForm):
name = forms.CharField(required=False)
vid = forms.CharField(required=True)
mtu = forms.IntegerField(required=False)
description = forms.TextInput()
|
[
"[email protected]"
] | |
76bd6b923760ccfa252ad5ce041eb33e2cb9fc88
|
b72f8c38be680d56b710a41fc7e34821523588b9
|
/iletisim/urls.py
|
831fc7524163572bc8215056b4fc17e153cc1c3d
|
[] |
no_license
|
gnyylm/ams
|
7c96eed3c568d23548d737485b4f97276f8d8d44
|
8c8f4b99b4aaceb903c87fef854e5e88519c642a
|
refs/heads/master
| 2020-04-24T20:55:18.856755 | 2019-03-03T19:14:19 | 2019-03-03T19:14:19 | 172,260,125 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 117 |
py
|
from django.conf.urls import url
from . import views
urlpatterns = [
url(r'^$', views.index, name="iletisim"),
]
|
[
"[email protected]"
] | |
cfa3dd642fe26db896b36347b90e698533b6c023
|
097ab159765aef32c7d05a1bc21b1abb3bc6f520
|
/orders/admin.py
|
7fbc0af18bb6ea0b0e96de50364052263b476adb
|
[] |
no_license
|
vijayrajmane/Pinocchio-s-Pizza-Django
|
ea42ca11e9e29b077a8f38f6f5b3fa754f5c3cb8
|
f8c26c7e15d5b0c634e536c01fc7f1de3b17fe27
|
refs/heads/master
| 2022-11-28T14:12:04.455263 | 2020-08-05T12:26:06 | 2020-08-05T12:26:06 | 284,448,929 | 0 | 0 | null | 2020-08-05T12:24:44 | 2020-08-02T11:34:28 |
Python
|
UTF-8
|
Python
| false | false | 512 |
py
|
from django.contrib import admin
from .models import pizza_category,pizza,topping,sub,salad,pasta,dinner_platter,Category,user_order,Order_counter,order
# Register your models here.
admin.site.register(pizza)
admin.site.register(pizza_category)
admin.site.register(topping)
admin.site.register(sub)
admin.site.register(salad)
admin.site.register(pasta)
admin.site.register(dinner_platter)
admin.site.register(Category)
admin.site.register(user_order)
admin.site.register(order)
admin.site.register(Order_counter)
|
[
"[email protected]"
] | |
2ec758ced961e2640d9cce5faf9debaa46c1e165
|
959ecb8444de4f5dfd8bd309d31ec23e9b09f972
|
/twitter/pipeline.py
|
b638b230247f58327c9d4e90362a259d9ee78ac5
|
[] |
no_license
|
themichaelusa/dealeye
|
c5072ac9cfadee43747789a6dcece31824bcd47d
|
5f49e1bedb8a6cd437839b86efaad3c16eb21bb3
|
refs/heads/master
| 2023-03-09T11:34:58.081187 | 2020-04-22T23:32:39 | 2020-04-22T23:32:39 | 253,937,917 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,986 |
py
|
### STDLIB IMPORTS
import sys
## INIT COMMANDS
sys.path.append('../')
### LOCAL IMPORTS
import export
from store import TwitterDataDB
from scrape import TwitterScraper
from extract import TwitterDataExtractor
from url_utils import RedirectURLResolver
from email_utils import HunterEmailResolver
### PACKAGE IMPORTS
pass
### CONSTANTS
from constants import STATUS
from constants import SCHOOLS
### MACROS/LAMBDAS/GLOBALS
TW_DB = TwitterDataDB('../dealeye.db')
TW_SCRAPER = TwitterScraper()
TW_CLEANER = TwitterDataExtractor()
REDIR_URL_RESOLVER = RedirectURLResolver()
CONTACT_EMAIL_SCRAPER = HunterEmailResolver()
### MAIN ###
def scrape_users(location, status):
TW_SCRAPER.gen_keyword_space(location, status)
users_dict = TW_SCRAPER.pull_users_by_keywords_space()
TW_CLEANER.set_target(users_dict)
data_dicts = TW_CLEANER.gen_default_data_dicts()
for uid, data in data_dicts:
tw_db.add(str(uid), data)
def extract_user_contact_links():
users_dict = TW_DB.get_all_users_as_dict()
TW_CLEANER.set_target(users_dict)
### resolve profile urls
raw_profile_urls = TW_CLEANER.get_all_users_profile_urls()
profile_urls = REDIR_URL_RESOLVER(raw_profile_urls)
TW_CLEANER.filter_profile_urls(profile_urls)
### get valid twitter accounts from user acct descriptions
descs_data = TW_CLEANER.get_twitter_accounts_from_desc()
unames_dict, all_floating_urls = descs_data
urls_dict = TW_SCRAPER.get_twitter_urls_by_unames(unames_dict)
### prep all urls for redirect resolution + run resolver
urls_final = TW_CLEANER.get_all_desc_urls(*descs_data, urls_dict)
redir_urls = REDIR_URL_RESOLVER(urls_final)
TW_CLEANER.filter_desc_urls(redir_urls)
### after all data engineering --> store in DB
for id, data in TW_CLEANER.get_target().items():
TW_DB.write(id=id, data=data)
def extract_contact_emails_for_users():
users_dict = TW_DB.get_all_users_as_dict()
CONTACT_EMAIL_SCRAPER.set_target(users_dict)
## filter which emails to parse
ids_to_parse = []
for id, data in users_dict.items():
if len(data['description_urls']):
if not len(data['valid_contact_emails']):
ids_to_parse.append(id)
CONTACT_EMAIL_SCRAPER.scrape_contact_emails_for_users(
set(ids_to_parse))
for id, data in CONTACT_EMAIL_SCRAPER.get_target().items():
TW_DB.write(id=id, data=data)
def export_db_to_excel(ex_path):
users_dict = TW_DB.get_all_users_as_dict()
for id, data in users_dict.items():
data['valid_contact_emails'] = set(data['valid_contact_emails'])
try:
if not len(data['valid_contact_emails']):
data['valid_contact_emails'] = None
except Exception as e:
pass
data['checked_contact_domains'] = set(data['checked_contact_domains'])
try:
if not len(data['valid_contact_emails']):
data['checked_contact_domains'] = None
except Exception as e:
pass
users_dict[id] = data
export.users_to_xlsx(ex_path, users_dict.values())
if __name__ == '__main__':
#export_db_to_excel('../broader_terms.xlsx')
extract_user_contact_links()
|
[
"[email protected]"
] | |
f6d2ffae909f5992e8ceea3bdc223d04acc73d4b
|
2c3da6e0bddf55d64d650040bbf286c47b31811a
|
/学习路线/1.python基础/day05/02-for-else语句.py
|
ec56422c4833eede814e9a25e0dca957f39f600e
|
[
"MIT"
] |
permissive
|
Bngzifei/PythonNotes
|
76bd53db3033a9c51ab4bdd727842cd89607b584
|
01590e1b6c1bc0f04aa2d355fa2553c04cce27f2
|
refs/heads/master
| 2023-02-04T06:49:00.725463 | 2020-12-15T09:26:40 | 2020-12-15T09:26:40 | 155,154,662 | 1 | 2 |
MIT
| 2020-09-08T01:30:19 | 2018-10-29T05:02:48 |
Python
|
UTF-8
|
Python
| false | false | 670 |
py
|
list1 = ["zhansan", "lisi1", 'ww']
# for name in list1: # 运行2次,出现逻辑错误
# if name == 'lisi':
# print('找到')
# else:
# print("没有找到")
"""当for执行完成后,默认for后面的else都会执行一次,如果不想让for后面的else执行,在for里面写个break"""
for name in list1: # 批量查找数据 if ... in...(判断有没有,True或False) 判断有没有我要的那个并返回(因为后续要用这个返回的)用for(break) else (判断有没有我要的那个)
if name == 'lisi':
print('找到')
break
else:
print('没找到')
# for ...else ... 是一个循环体内的.用于批量查找并返回一次提示信息
|
[
"[email protected]"
] | |
2da64711a5d90ce39dce1b13f6653c5df230d136
|
fcc83583ed505381c7e1e2ca961a54e52552e8b4
|
/scylla/providers/pubproxy_provider.py
|
a8bacaafebdaa91022adc689f232b03b0b343820
|
[
"Apache-2.0"
] |
permissive
|
imWildCat/scylla
|
959485585c5ed742ce1659f5305a46b6198c798d
|
46f6f6bd2eba6e49603d263209efc59b74badf07
|
refs/heads/main
| 2023-09-02T23:10:23.000529 | 2023-05-22T17:48:29 | 2023-05-22T17:48:29 | 128,911,431 | 3,898 | 566 |
Apache-2.0
| 2023-08-14T21:53:20 | 2018-04-10T09:55:11 |
Python
|
UTF-8
|
Python
| false | false | 286 |
py
|
from scylla.providers.plain_text_provider import PlainTextProvider
class PubproxyProvider(PlainTextProvider):
def urls(self) -> [str]:
return [
'http://pubproxy.com/api/proxy?limit=5&format=txt&type=http&level=anonymous&last_check=60&no_country=CN',
]
|
[
"[email protected]"
] | |
6413fd233edd0ff1cd6d551d5f116647d2c3bd63
|
b961139f628cbda2221df78599f919847e9962b6
|
/[2020][modulo][Processamento_Linguagem_Natural]/codigos/venv2/bin/pip
|
a98340eaf9a3968d8ce912b3cdb5c05496b87bf1
|
[] |
no_license
|
rafaelstojoao/pos-unip
|
167fe60e752b1660172c71cd5a3607101b8b3d49
|
50d9711e313fdcac59fa89498b0a3ea5d004ac49
|
refs/heads/master
| 2022-12-21T14:20:36.790476 | 2020-10-25T11:52:41 | 2020-10-25T11:52:41 | 246,832,526 | 4 | 1 | null | 2022-12-19T10:12:14 | 2020-03-12T12:47:17 |
Python
|
UTF-8
|
Python
| false | false | 298 |
#!/mnt/DADOS/DOCS/Unip/[2020][modulo][Processamento_Linguagem_Natural]/codigos/venv2/bin/python
# -*- coding: utf-8 -*-
import re
import sys
from pip._internal.cli.main import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"[email protected]"
] | ||
e5029b3854dbaef24fb6cce6c6025ff4d71cca34
|
e8e2f3cb21e3f3c289b890dcf3cde567bb92dc32
|
/venv/bin/chardetect
|
a471d60fdc696af75d4b511e1d3b9a0af3f271c1
|
[] |
no_license
|
Timur597/Feliz
|
a0071b93a87eab015dd205e14cba88bcb5f34926
|
6f712ded791c84dee71f75934fb77d0ae101f5e6
|
refs/heads/master
| 2023-05-27T15:54:54.782528 | 2021-06-09T16:34:45 | 2021-06-09T16:34:45 | 373,058,036 | 0 | 1 | null | 2021-06-09T16:47:59 | 2021-06-02T06:07:12 |
Python
|
UTF-8
|
Python
| false | false | 262 |
#!/home/timur/PyCharmProjects/feeliz-master/venv/bin/python
# -*- coding: utf-8 -*-
import re
import sys
from chardet.cli.chardetect import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"[email protected]"
] | ||
a72ef93895eefdf271fe78bdf774e556db7d501f
|
53963fb073afb4719e60fad3d4b1ed94326559b3
|
/wordcount/urls.py
|
6af4dbaae5e584f262af2bf2ea7503b3fdc7519c
|
[] |
no_license
|
harshaldesai01/wordcount-project
|
5754f030a418a43e35a763110a3263e155ef4a1f
|
01c59f3f10eeecbd6157fee506fd3a22a596ec10
|
refs/heads/master
| 2020-05-24T16:38:24.641312 | 2019-07-13T17:33:52 | 2019-07-13T17:33:52 | 187,365,060 | 0 | 0 | null | 2019-07-13T17:29:29 | 2019-05-18T14:04:16 |
Python
|
UTF-8
|
Python
| false | false | 215 |
py
|
from django.urls import path
from . import views
urlpatterns = [
path('',views.homepage, name='home'),
path('count/', views.count, name='count'),
path('about/', views.about, name='about'),
]
|
[
"[email protected]"
] | |
059bcedd66f7ef96cab189652c770b168fc24da1
|
0d0711c5588e80995d83cfd1fa814d8031f591a6
|
/offer/cut_rope.py
|
bb70a92793eef8546003539c57593d7c2c8027a9
|
[] |
no_license
|
lxlscut/leecode
|
f215a85e42904cf40c6ff83b04ac1e0b9cd12ee0
|
121256d6d488869dcd19e0df3fe3142206cad6dc
|
refs/heads/master
| 2022-12-26T15:11:39.888532 | 2020-10-12T03:13:32 | 2020-10-12T03:13:32 | 303,265,125 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 339 |
py
|
def cut_rope(length):
max = 0
# cut成m段
for i in range(2, length + 1):
# 取整数部分
a = length // i
# 取余数部分
b = length % i
val = a**(i-b)*(a+1)**b
if val>max:
max = val
return max
if __name__ == '__main__':
res = cut_rope(2)
print(res)
|
[
"[email protected]"
] | |
1950e1b780b8b85a152cd64094e8bcc0f574803a
|
04d3a5621916e0538fccf15d61b68b83566c6bdf
|
/Assignment_2/Rides/rideservice/models.py
|
aa96364c25b322a1da27128d1358fb6423cedfd6
|
[] |
no_license
|
rachana-dani/Rideshare-CC-S6-2020
|
03a1e6515944a1edea5ef10ec457e7210d442a56
|
c243b5eaacfc99c3c0a412e054121c8139ebaec4
|
refs/heads/master
| 2022-07-29T10:35:40.379545 | 2020-05-14T06:50:45 | 2020-05-14T06:50:45 | 263,821,981 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 677 |
py
|
from django.db import models
from django.utils import timezone
import datetime
class Ride(models.Model):
ride_id = models.IntegerField(primary_key=True)
created_by = models.CharField(max_length=50)
timestamp = models.DateTimeField(max_length=30)
source = models.IntegerField()
destination = models.IntegerField()
def __str__(self):
return str(self.ride_id)
class User_rides(models.Model):
username = models.CharField(max_length=50)
ride_id = models.ForeignKey(Ride, on_delete=models.CASCADE)
class Meta:
unique_together = ['username', 'ride_id']
def __str__(self):
return str(self.username)+str(self.ride_id)
|
[
"[email protected]"
] | |
d969b067a8794040e593162a61272a1202f041c6
|
4beabfbff92f922269ac96cc5a2b5ae04781cb13
|
/arduino_flattener.py
|
38b17dabd44be78587811b5d8b36229f380e6f48
|
[
"Apache-2.0"
] |
permissive
|
rumpeltux/sd-spi-communications-library
|
895520b50b6406dd861d46cc2928fa8ce13c2424
|
72eb81c41d31a3ea614af75e7f9a01e2776d74f1
|
refs/heads/master
| 2020-09-27T12:28:58.567943 | 2019-12-07T10:20:33 | 2019-12-07T10:20:33 | 226,516,743 | 1 | 0 |
Apache-2.0
| 2019-12-07T13:20:24 | 2019-12-07T13:20:24 | null |
UTF-8
|
Python
| false | false | 3,087 |
py
|
##
# @file arduino_flattener.py
# @author Wade Penson
# @date June, 2015
# @brief Flattens the folder structure making it easy to use the library
# with the Arduino IDE.
# @copyright Copyright 2015 Wade Penson
#
# @license Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
import re
import sys
import shutil
core = (
"sd_spi_commands\.h",
"sd_spi_info\.h",
"sd_spi(\.c|\.h)",
"arduino_platform_dependencies\.cpp",
"sd_spi_platform_dependencies\.h",
)
unit_tests = (
"sd_spi_tests\.c",
"unit_tests\.ino",
"planckunit(\.c|\.h)",
"printf_redirect\.h",
"serial_c_iface(\.cpp|\.h)"
)
card_info = (
"card_info\.ino",
)
source_dir = "./"
default_dest_dir = "flatten"
source_paths = []
def copy_files(files, dest_dir):
for i in range(len(source_paths)):
if any(re.match(file_name_reg, source_paths[i][1]) for file_name_reg in files):
source_path = os.path.join(source_paths[i][0], source_paths[i][1])
dest_path = os.path.join(dest_dir, source_paths[i][1])
# print('Copied {} to {}'.format(source_path, dest_path))
shutil.copy(source_path, dest_path)
fix_includes(dest_path)
def fix_includes(file):
with open(file) as f:
out_fname = file + ".tmp"
out = open(out_fname, "w")
for line in f:
out.write(re.sub("#include\s*[\"](?:.*\/|)(.*\.h)\s*\"", "#include \"\g<1>\"", line))
out.close()
os.rename(out_fname, file)
for root, dirs, files in os.walk(source_dir):
for filename in files:
source_paths.append([root, filename])
# Create output folder
while True:
temp_dest_dir = raw_input("Output folder (default = flatten/): ")
if temp_dest_dir == "" or re.match("^\s+$", temp_dest_dir):
temp_dest_dir = default_dest_dir
if os.path.isdir(temp_dest_dir):
print "Folder " + temp_dest_dir + " already exists."
else:
try:
os.makedirs(temp_dest_dir)
os.makedirs(temp_dest_dir + "/core_files")
os.makedirs(temp_dest_dir + "/card_info")
os.makedirs(temp_dest_dir + "/unit_tests")
except OSError:
print "Error creating directory."
continue
break
# Copy files
copy_files(core, temp_dest_dir + "/core_files")
copy_files(core + card_info, temp_dest_dir + "/card_info")
copy_files(core + unit_tests, temp_dest_dir + "/unit_tests")
|
[
"[email protected]"
] | |
9154c2615a4416e3641be86e6dd82525a25bdeda
|
2ecb310c0be7eb44bef347f69eb67ca28ba1fd69
|
/Ej_1.py
|
1f54b185b6b48e7cd50c40511a2d06bcb91f6022
|
[] |
no_license
|
DianaEstradaGarcia/PracticasPython
|
0a3a3c9a936b1eae4983fccc5e8dda84ca942973
|
b287cb381742c44f6543d27f2b81cea85c9b374e
|
refs/heads/master
| 2023-04-04T12:30:45.804064 | 2021-04-06T17:03:53 | 2021-04-06T17:03:53 | 341,021,508 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 912 |
py
|
numero1=int(input("enter first value "))
print(numero1)
#Uso "print" para comprabar que la función input funciona
numero2=int(input("enter second value "))
print(numero2)
print(type(numero1))
# Uso la funcion "type" para ver que tipo de varibale es numero1. En este caso es un numero entero (int)
mayor_que=numero1>numero2
print(mayor_que)
if mayor_que:
print("Number 1 is bigger than Number 2")
# prueba nº1. Imprimo solo con cadena de texto
print(str(numero1) + " is bigger than " + str(numero2))
# prueba nº2. Imprimo usando las variables, convertidas de nuevo a cadena de texto,
# concatenadas para obtener una única cadena
elif numero1==numero2:
print(str(numero1) + " is equal to " + str(numero2))
else:
print(str(numero2) + " is bigger than " + str(numero1))
# if not mayor_que: #equivalente a "else"
# print(str(numero2) + " is much bigger than " + str(numero1))
|
[
"[email protected]"
] | |
057d9202a1f973f830d044a22df3ad832451bb6b
|
1aab2661491a7241096d75471aaa51c2a3f794f0
|
/para_parsing/main.py
|
18eb9a980088722380c8f0372bd1cd12bc1a2bde
|
[] |
no_license
|
UdaySwami/qa_mapper
|
42b1e2d276b90106207153c5ce5991deccc0b851
|
4021e871da3d1e389f034c2a28dcc8f7b9a1f71a
|
refs/heads/master
| 2022-11-05T00:52:51.857567 | 2020-06-23T09:57:32 | 2020-06-23T09:57:32 | 274,156,462 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,107 |
py
|
import os
from qa_mapper.para_parsing.file_parser import Parser
# from qa_mapper.para_parsing import Parser
import nltk
nltk.data.path.append(os.path.abspath(os.path.curdir))
# nltk.download('punkt')
# nltk.download('averaged_perceptron_tagger')
class QAMapper:
def __init__(self, paragraph_file_name):
self.parser = Parser(paragraph_file_name)
def tokenize_questions(self):
word_tokenize_questions = [nltk.word_tokenize(q) for q in self.parser.questions]
self.token_questions = [nltk.pos_tag(q) for q in word_tokenize_questions]
def tokenize_sentences(self):
word_tokenize_sentences = [nltk.word_tokenize(s) for s in self.parser.answer_sentences]
self.token_sentences = [nltk.pos_tag(s) for s in word_tokenize_sentences]
def find_answers(self):
# Tokenize questions and sentences from paragraph to find similarity
self.tokenize_questions()
self.tokenize_sentences()
self.qa_mapper = {}
for i in range(len(self.token_questions)):
q = self.token_questions[i]
original_question = self.parser.questions[i]
max_similarity = 0
for j in range(len(self.token_sentences)):
s = self.token_sentences[j]
original_sentence = self.parser.answer_sentences[j]
similarity = 0
for w in q:
if w in s:
similarity = similarity + 1
# Question matching max similarity with sentence will contain answer to it
if similarity >= max_similarity:
self.qa_mapper[original_question] = (original_sentence, self.parser.get_answer_from_sentence(original_sentence))
max_similarity = similarity
for q in self.qa_mapper:
s,a = self.qa_mapper[q]
print("Answer to Question %s is: %s" % (q,a))
if __name__ == '__main__':
paragraph_file_name = "para"
# paragraph_file_name = "sachin_tendulkar_test_para"
mapper = QAMapper(paragraph_file_name)
mapper.find_answers()
|
[
"[email protected]"
] | |
cc8316692d63ad5a54a62873075af4ebc3c51ddf
|
34b9b39442bde1a3c8fa670ef60bcc84d772a067
|
/Assignment 4 - Deadline 17 oct 2017/wallCalculations_MARRUGO.py
|
a00655f65a7afe19d116f4477dd8fb5e2329c415
|
[] |
no_license
|
bnajafi/Scientific_Python_Assignments_POLIMI_EETBS
|
b398fc2754b843d63cd06d517235c16177a87dcf
|
8da926e995dcaf02a297c6bb2f3120c49d6d63da
|
refs/heads/master
| 2021-05-07T22:36:14.715936 | 2018-01-16T21:12:33 | 2018-01-16T21:12:33 | 107,265,075 | 38 | 86 | null | 2018-01-16T21:12:34 | 2017-10-17T12:24:04 |
Python
|
UTF-8
|
Python
| false | false | 7,174 |
py
|
# -*- coding: utf-8 -*-
# Assigment 4 Functions for Calculation of the overall unit thermal resistance (the R-value)
# and the overall heat transfer coefficient (the U-factor) in parallel and series
# Librery of materials
material={"Inside_surface":0.12,"Outside_surface_winter": 0.030,
"Outside_surface_summer": 0.044,"Common_brick":0.12,
"Wood_bevel_lapped_siding": 0.14,"Wood_fiberboard_sheeting":0.23,
"Glass_fiber_insulation":2.52,"Wood stud":0.63,"Gypsum_wallboard":0.079,"Wood":0.44,"Asphalt_shingle_roofing":0.077,"Plywood":0.11}
def matSeries(List):
"""Function designed for calculate the overall unit thermal resistance (the R-value)
# and the overall heat transfer coefficient (the U-factor) for a element with all materials in series"""
# Adding the thermal resistance for the inside and outside surface for winter and summer
Winter=["Inside_surface","Outside_surface_winter"]
Summer=["Inside_surface","Outside_surface_summer"]
# Defining the total list of materials in series for winter and summer
LSwinter=List+Winter
LSsummer=List+Summer
# Defining the variables for the total unit thermal resistance in series and parallel
Rtotals=0
Rtotalw=0
# Defining the variable for the unit thermal resistance of each material
Rvalues_layers={}
# Defining the for cycle to acquired and compute the unit thermal resistance for
# Summer season
for anylayer in LSsummer:
# Acquiring the thermal resistance for the specific material of the list in [m2*ºC/W]
Rvalue_layer=material[anylayer]
# Computing the sum of each unit thermal resistance of each material in series in [m2*ºC/W]
Rtotals=Rtotals+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
for anylayer in LSwinter:
# Acquiring the thermal resistance for the specific material of the list in [m2*ºC/W]
Rvalue_layer=material[anylayer]
# Computing the sum of each unit thermal resistance of each material in series in [m2*ºC/W]
Rtotalw=Rtotalw+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
# Computing the overall heat transfer coefficient of the wall according with its
# respectively U-factor and area percentages for the list of materials
# in series and parallel in winter and summer [W/m2*ºC]
Uoverallw=(1/Rtotalw)
Uoveralls=(1/Rtotals)
Results={"Resistances":Rvalues_layers,"Rtotal_Winter":Rtotalw,"Utotal_winter":Uoverallw,"Rtotal_Summer":Rtotals,"Utotal_Summer":Uoveralls}
return Results
def matParallel(ListS,ListP,percentage):
"""Function designed for calculate the overall unit thermal resistance (the R-value)
# and the overall heat transfer coefficient (the U-factor) for a element with materials in parallel"""
# Adding the thermal resistance for the inside and outside surface for winter and summer
Winter=["Inside_surface","Outside_surface_winter"]
Summer=["Inside_surface","Outside_surface_summer"]
# Defining the total list of materials in series for winter and summer
LSwinter=ListS+Winter
LSsummer=ListS+Summer
# Defining the total list of materials in parallel for winter and summer
LPwinter=ListP+Winter
LPsummer=ListP+Summer
# Defining lenght of list of materials
x=len(LSwinter)
# Defining an accounter
y=0
# Defining the total list of materials for winter and summer
ListWinter=LSwinter+LPwinter
ListSummer=LSsummer+LPsummer
# Defining the variables for the total unit thermal resistance in series and parallel
Rtotals=0
Rtotalp=0
# Defining the variable for the unit thermal resistance of each material
Rvalues_layers={}
# Defining the for cycle to acquired and compute the unit thermal resistance for
# Summer season
for anylayer in ListSummer:
# Acquiring the thermal resistance for the specific material of the list in [m2*ºC/W]
Rvalue_layer=material[anylayer]
if y<x:
# Computing the sum of each unit thermal resistance of each material in series in [m2*ºC/W]
Rtotals=Rtotals+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
else:
# Computing the sum of each unit thermal resistance of each material in parallel in [m2*ºC/W]
Rtotalp=Rtotalp+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
# Counting
y=y+1
# Computing the overall heat transfer coefficient of the wall according with its
# respectively U-factor and area percentages for the list of materials
# in series and parallel in summer [W/m2*ºC]
UoverallS=(1/Rtotals)*(float(percentage))+(1/Rtotalp)*(1-float(percentage))
# Computing the overall unit thermal resistance for the wall in summer [m2*ºC/W]
RoverallS=1/UoverallS
# Reset of accounter variables
Rtotals=0
Rtotalp=0
y=0
# Defining the for cycle to acquired and compute the unit thermal resistance for
# Winter season
for anylayer in ListWinter:
# Acquiring the thermal resistance for the specific material of the list in [m2*ºC/W]
Rvalue_layer=material[anylayer]
if y<x:
# Computing the sum of each unit thermal resistance of each material in series in [m2*ºC/W]
Rtotals=Rtotals+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
else:
# Computing the sum of each unit thermal resistance of each material in parallel in [m2*ºC/W]
Rtotalp=Rtotalp+Rvalue_layer
# Saving the value of each unit thermal resistance of each material in [m2*ºC/W]
Rdict={anylayer:Rvalue_layer}
Rvalues_layers.update(Rdict)
# Counting
y=y+1
# Computing the overall heat transfer coefficient of the wall according with its
# respectively U-factor and area percentages for the list of materials
# in series and parallel in winter [W/m2*ºC]
UoverallW=(1/Rtotals)*(float(percentage))+(1/Rtotalp)*(1-float(percentage))
# Computing the overall unit thermal resistance for the wall winter [m2*ºC/W]
RoverallW=1/UoverallW
# Returning of the results
Results={"Resistances":Rvalues_layers,"Rtotal_Winter":RoverallW,"Utotal_winter":UoverallW,"Rtotal_Summer":RoverallS,"Utotal_Summer":UoverallS}
return Results
|
[
"[email protected]"
] | |
8edf7add9dd89a5a59c9d84008f56f0adbe83abc
|
b7b40fffd7d192b89a7ad3bdb791a7dbd072ac64
|
/axelrod/tests/test_memoryone.py
|
44167991b5bf6387399275371a16858e90bad540
|
[
"MIT"
] |
permissive
|
DEFALT303/Axelrod
|
f91911ad7a404c30edfef38afd02319fcd12bc15
|
e59fc40ebb705afe05cea6f30e282d1e9c621259
|
refs/heads/master
| 2020-09-24T08:39:49.107919 | 2015-04-16T16:15:42 | 2015-04-16T16:15:42 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 7,640 |
py
|
"""Test for the memoryone strategies."""
import random
import axelrod
from test_player import TestPlayer
class TestWinStayLostShift(TestPlayer):
name = "Win-Stay Lose-Shift"
player = axelrod.WinStayLoseShift
def test_strategy(self):
"""Starts by cooperating"""
P1 = self.player()
P2 = axelrod.Player()
self.assertEqual(P1.strategy(P2), 'C')
def test_effect_of_strategy(self):
"""Check that switches if does not get best payoff."""
P1 = self.player()
P2 = axelrod.Player()
P1.history = ['C']
P2.history = ['C']
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['D']
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['C']
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['D']
self.assertEqual(P1.strategy(P2), 'C')
class TestGTFT(TestPlayer):
name = "Generous Tit-For-Tat"
player = axelrod.GTFT
stochastic = True
def test_strategy(self):
P1 = self.player()
P2 = axelrod.Player()
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['C']
random.seed(2)
# With probability .05 will defect
self.assertEqual(P1.strategy(P2), 'D')
# But otherwise will cooperate
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['D']
random.seed(31)
# With probability .05 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['C']
random.seed(2)
# With probability .05 will defect
self.assertEqual(P1.strategy(P2), 'D')
# But otherwise will cooperate
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['D']
P2.history = ['D']
random.seed(31)
# With probability .05 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
class TestStochasticCooperator(TestPlayer):
name = "Stochastic Cooperator"
player = axelrod.StochasticCooperator
stochastic = True
def test_strategy(self):
P1 = self.player()
P2 = axelrod.Player()
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['C']
random.seed(15)
# With probability .065 will defect
self.assertEqual(P1.strategy(P2), 'D')
# But otherwise will cooperate
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['D']
random.seed(1)
# With probability .229 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['C']
random.seed(3)
# With probability .266 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['D']
random.seed(13)
# With probability .42 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
class TestStochasticWSLS(TestPlayer):
name = "Stochastic WSLS"
player = axelrod.StochasticWSLS
stochastic = True
def test_strategy(self):
P1 = self.player()
P2 = axelrod.Player()
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['C']
random.seed(2)
# With probability .05 will defect
self.assertEqual(P1.strategy(P2), 'D')
# But otherwise will cooperate
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['D']
random.seed(31)
# With probability .05 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['C']
random.seed(31)
# With probability .05 will cooperate
self.assertEqual(P1.strategy(P2), 'C')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
P1.history = ['D']
P2.history = ['D']
random.seed(2)
# With probability .05 will defect
self.assertEqual(P1.strategy(P2), 'D')
# But otherwise will defect
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
class TestZDChi(TestPlayer):
name = "ZDChi"
player = axelrod.ZDChi
stochastic = True
def test_four_vector(self):
P1 = self.player()
expected_dictionary = {('C', 'D'): 0.5, ('D', 'C'): 0.75, ('D', 'D'): 0.0, ('C', 'C'): 1.1666666666666667}
for key in sorted(expected_dictionary.keys()):
self.assertAlmostEqual(P1._four_vector[key],
expected_dictionary[key])
def test_strategy(self):
# Testing the expected value is difficult here so these just ensure that
# future changes that break these tests will be examined carefully.
P1 = self.player()
P2 = axelrod.Player()
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['C']
random.seed(2)
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['C']
P2.history = ['D']
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['D']
P2.history = ['C']
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
self.assertEqual(P1.strategy(P2), 'C')
P1.history = ['D']
P2.history = ['D']
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
self.assertEqual(P1.strategy(P2), 'D')
|
[
"[email protected]"
] | |
fea402ed06f40785cacbf954f34865f10e62de55
|
76dba08689db40edf2d01a98856fa2a20d98d679
|
/甲鱼python/课程代码/第11讲/第11讲课后作业.py
|
f38d6087bebb08ecebe94960c7ce4388591454c7
|
[] |
no_license
|
pangfeiyo/PythonLearn
|
ce0747d75b53eb21acb6199acfe10934778420b2
|
b514b3d7baa62fa7b801d26ff49266f02cb9cbd2
|
refs/heads/master
| 2021-05-11T10:20:14.818774 | 2020-01-16T15:47:16 | 2020-01-16T15:47:16 | 118,096,858 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 515 |
py
|
# 从列表末尾取出一个元素,并将这个元素插入列表最前边
member = ['一','甲鱼','玩笑']
member.insert(0,member.pop())
print(member)
#python支持负数下标,列表最后一个元素为-1
list2 = [1,3,2,9,7,8]
print(list2[-3:-1])
#切片和赋值的区别
#切片相当于复制
sy1 = [1,3,2,9,7,8]
sy2 = sy1[:] #切片复制sy1的内容给sy2
sy3 = sy1 #sy1赋值给sy3
sy1.sort() #对sy1进行大小排序
print('sy1:',sy1)
print('sy2:',sy2)
print('sy3:',sy3)
|
[
"[email protected]"
] | |
0968ad217bcbd03cf908a4a1ff9df1b5fa2ba861
|
1c03f99fe47a528254a3b579f78714d914d6b893
|
/classes/entity/Size.py
|
1517182b4c82122b3d4530821a028338fc0aac92
|
[] |
no_license
|
yuryprokashev/dress-plot
|
8ae569d2c445008fafbde235bdb117cac0134b00
|
10f240dcc8678b3465d9baa4842bf6faf41ef613
|
refs/heads/master
| 2020-04-08T04:30:01.074591 | 2018-12-08T09:48:15 | 2018-12-08T09:48:15 | 159,019,174 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 524 |
py
|
class Size(object):
def __init__(self,
half_neck,
half_chest,
half_waist,
half_hip,
back_till_waist,
full_length,
full_shoulder):
self.half_neck = half_neck
self.half_chest = half_chest
self.half_waist = half_waist
self.half_hip = half_hip
self.back_till_waist = back_till_waist
self.full_length = full_length
self.full_shoulder = full_shoulder
|
[
"[email protected]"
] | |
3e30025d633cb0e086cacf1445281398ac862d4f
|
9c470198881812e20b8047529bd52cac5dcd5cb1
|
/quickread.py
|
4b4be7a7db20db45d7ac026bcfd2e5d80324ef79
|
[] |
no_license
|
briochh/ptproc
|
43d679637b9fd9b574def7357623224a25fc060c
|
cfda2fb4784fb8670313e3c96427037137be6b26
|
refs/heads/master
| 2021-01-24T17:39:08.844093 | 2015-11-23T11:30:46 | 2015-11-23T11:30:46 | 30,016,083 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 669 |
py
|
# -*- coding: utf-8 -*-
"""
Spyder Editor
This temporary script file is located here:
/Users/briochh/.spyder2/.temp.py
"""
from t2data import *
from t2grids import *
from t2listing import *
import os
import pytoughgrav as ptg
os.chdir('C:/Users/glbjch/Local Documents/Work/Modelling/Cotapaxi')
mod='Cota20150604_1' # define model name
os.chdir(mod)
if not os.path.exists('results'):
os.makedirs('results')
dat=t2data('flow2.inp')
grid=dat.grid
geo=mulgrid('grd.dat')
width=geo.bounds[1][1]-geo.bounds[0][1] #10.0
ptg.makeradial(geo,None,width)
results=t2listing('flow2.out')
os.chdir('results')
results.write_vtk(geo,'output.vtk',grid=grid,flows=True)
|
[
"[email protected]"
] | |
1935e57dd7a332b65b5a71f3867409bf2495116c
|
a3783b1f5c075bb1ee3cb2d2d486710677204378
|
/lesson3_step6.py
|
eeeb095d79233f83dea0e89ddbfaaa2d99726a5e
|
[] |
no_license
|
Yuliya4325/Auto-tests-course
|
2c1a3240f3c8d8ececa63ea5cec03c4ab07f3d64
|
b70fcaf0f04c5374e7c3f8ac77c42b1aad67f1dc
|
refs/heads/master
| 2022-11-25T23:27:21.961714 | 2020-07-15T20:08:32 | 2020-07-19T15:48:00 | 278,929,533 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 683 |
py
|
from selenium import webdriver
import time
import math
try:
link = "http://suninjuly.github.io/redirect_accept.html"
browser = webdriver.Chrome()
browser.get(link)
button1 = browser.find_element_by_css_selector("button.trollface")
button1.click()
new_window = browser.window_handles[1]
browser.switch_to.window(new_window)
def calc(x):
return str(math.log(abs(12*math.sin(int(x)))))
x_element = browser.find_element_by_id("input_value")
x = x_element.text
y = calc(x)
input1 = browser.find_element_by_id("answer")
input1.send_keys(y)
button2 = browser.find_element_by_css_selector("button.btn")
button2.click()
finally:
time.sleep(10)
browser.quit()
|
[
"[email protected]"
] | |
b66f70766f6fe3c97d830918ab3d7c33e5f9c1d4
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/59/usersdata/161/49113/submittedfiles/testes.py
|
3ede0d9001c5c08b41881d224976a6c2ae167e4c
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146 | 2017-12-22T16:05:45 | 2017-12-22T16:05:45 | 69,566,344 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 113 |
py
|
n=int(input('numero:'))
soma=0
for i in range(1,n+1,1):
soma=4*(-1*i/(2*i+1)
print('%.4f' %soma)
|
[
"[email protected]"
] | |
88945a0a1f5a054699efb8b22abb6da368245cad
|
5576dffdcd0f6fcd3ca54041c7a7f82e5911f06f
|
/src/modules/linear.py
|
bd9f3009e0a7a787b38aa2da9c16e586f495252a
|
[
"MIT"
] |
permissive
|
bcaitech1/p4-mod-model_diet
|
4268091d829ba0667807a88a523682385aca8df7
|
36d8a747e12c375b07d132ed4d08f9fc77126a8b
|
refs/heads/main
| 2023-05-29T03:10:51.761647 | 2021-06-20T08:56:41 | 2021-06-20T08:56:41 | 370,229,481 | 1 | 0 |
MIT
| 2021-06-20T08:56:43 | 2021-05-24T04:43:39 |
Python
|
UTF-8
|
Python
| false | false | 1,480 |
py
|
"""Linear module, generator.
- Author: Jongkuk Lim
- Contact: [email protected]
"""
from typing import Union
import torch
from torch import nn as nn
from src.modules.base_generator import GeneratorAbstract
from src.utils.torch_utils import Activation
class Linear(nn.Module):
"""Linear module."""
def __init__(self, in_channel: int, out_channel: int, activation: Union[str, None]):
"""
Args:
in_channel: input channels.
out_channel: output channels.
activation: activation name. If None is given, nn.Identity is applied
which is no activation.
"""
super().__init__()
self.linear = nn.Linear(in_channel, out_channel)
self.activation = Activation(activation)()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward."""
return self.activation(self.linear(x))
class LinearGenerator(GeneratorAbstract):
"""Linear (fully connected) module generator for parsing."""
def __init__(self, *args, **kwargs):
"""Initailize."""
super().__init__(*args, **kwargs)
@property
def out_channel(self) -> int:
"""Get out channel size."""
return self.args[0]
def __call__(self, repeat: int = 1):
# TODO: Apply repeat
act = self.args[1] if len(self.args) > 1 else None
return self._get_module(
Linear(self.in_channel, self.out_channel, activation=act)
)
|
[
"[email protected]"
] | |
c68f7274b878d6ce38cc6f4bf60a1f81062543ae
|
a6a046433cfccb68693f88fc37922d0696790002
|
/guessNumber.py
|
2c5b4effd3c82b8c205c1ab9739ff662d8ac9587
|
[] |
no_license
|
SrishtiC-008/guessingGame
|
60a936847a836d5f2bba2d58b1742c78826e5038
|
cb28cbfa85b871f04013de645efb0556ac48fcc7
|
refs/heads/main
| 2023-07-18T03:04:10.119025 | 2021-09-02T11:36:16 | 2021-09-02T11:36:16 | 402,397,274 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 558 |
py
|
import random
print("Number Guessing Game")
chances = 0
number = random.randint(1,9)
guess = int(input("Guess a number between 1 and 9: "))
while chances < 5:
guess = int(input("Enter your guess: "))
if guess == number:
print("Congratulations, you won")
break
elif guess < number:
print("You are too low guess a higher number",guess)
else:
print("You are to high you need to guess lower",guess)
chances += 1
if not chances < 5:
print("You loose!!, the number is ",number)
|
[
"[email protected]"
] | |
46a2e88f482b70548c82568f1d10bf2234d6b0e0
|
7bededcada9271d92f34da6dae7088f3faf61c02
|
/pypureclient/flasharray/FA_2_20/models/array.py
|
b454053102b55f917520181b04db56e7ba183f91
|
[
"BSD-2-Clause"
] |
permissive
|
PureStorage-OpenConnect/py-pure-client
|
a5348c6a153f8c809d6e3cf734d95d6946c5f659
|
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
|
refs/heads/master
| 2023-09-04T10:59:03.009972 | 2023-08-25T07:40:41 | 2023-08-25T07:40:41 | 160,391,444 | 18 | 29 |
BSD-2-Clause
| 2023-09-08T09:08:30 | 2018-12-04T17:02:51 |
Python
|
UTF-8
|
Python
| false | false | 7,115 |
py
|
# coding: utf-8
"""
FlashArray REST API
No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen)
OpenAPI spec version: 2.20
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flasharray.FA_2_20 import models
class Array(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'str',
'name': 'str',
'banner': 'str',
'capacity': 'int',
'console_lock_enabled': 'bool',
'encryption': 'ArrayEncryption',
'eradication_config': 'EradicationConfig',
'idle_timeout': 'int',
'ntp_servers': 'list[str]',
'os': 'str',
'parity': 'float',
'scsi_timeout': 'int',
'space': 'Space',
'version': 'str'
}
attribute_map = {
'id': 'id',
'name': 'name',
'banner': 'banner',
'capacity': 'capacity',
'console_lock_enabled': 'console_lock_enabled',
'encryption': 'encryption',
'eradication_config': 'eradication_config',
'idle_timeout': 'idle_timeout',
'ntp_servers': 'ntp_servers',
'os': 'os',
'parity': 'parity',
'scsi_timeout': 'scsi_timeout',
'space': 'space',
'version': 'version'
}
required_args = {
}
def __init__(
self,
id=None, # type: str
name=None, # type: str
banner=None, # type: str
capacity=None, # type: int
console_lock_enabled=None, # type: bool
encryption=None, # type: models.ArrayEncryption
eradication_config=None, # type: models.EradicationConfig
idle_timeout=None, # type: int
ntp_servers=None, # type: List[str]
os=None, # type: str
parity=None, # type: float
scsi_timeout=None, # type: int
space=None, # type: models.Space
version=None, # type: str
):
"""
Keyword args:
id (str): A globally unique, system-generated ID. The ID cannot be modified and cannot refer to another resource.
name (str): A user-specified name. The name must be locally unique and can be changed.
banner (str)
capacity (int): The usable capacity in bytes.
console_lock_enabled (bool)
encryption (ArrayEncryption)
eradication_config (EradicationConfig)
idle_timeout (int): The idle timeout in milliseconds. Valid values include `0` and any multiple of `60000` in the range of `300000` and `10800000`. Any other values are rounded down to the nearest multiple of `60000`.
ntp_servers (list[str])
os (str): Specifies the operating system. Valid values are `Purity`, `Purity//FA`, and `Purity//FB`.
parity (float): A representation of data redundancy on the array. Data redundancy is rebuilt automatically by the system whenever parity is less than `1.0`.
scsi_timeout (int): The SCSI timeout. If not specified, defaults to `60s`.
space (Space)
version (str)
"""
if id is not None:
self.id = id
if name is not None:
self.name = name
if banner is not None:
self.banner = banner
if capacity is not None:
self.capacity = capacity
if console_lock_enabled is not None:
self.console_lock_enabled = console_lock_enabled
if encryption is not None:
self.encryption = encryption
if eradication_config is not None:
self.eradication_config = eradication_config
if idle_timeout is not None:
self.idle_timeout = idle_timeout
if ntp_servers is not None:
self.ntp_servers = ntp_servers
if os is not None:
self.os = os
if parity is not None:
self.parity = parity
if scsi_timeout is not None:
self.scsi_timeout = scsi_timeout
if space is not None:
self.space = space
if version is not None:
self.version = version
def __setattr__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `Array`".format(key))
self.__dict__[key] = value
def __getattribute__(self, item):
value = object.__getattribute__(self, item)
if isinstance(value, Property):
raise AttributeError
else:
return value
def __getitem__(self, key):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `Array`".format(key))
return object.__getattribute__(self, key)
def __setitem__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `Array`".format(key))
object.__setattr__(self, key, value)
def __delitem__(self, key):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `Array`".format(key))
object.__delattr__(self, key)
def keys(self):
return self.attribute_map.keys()
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(Array, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, Array):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""Returns true if both objects are not equal"""
return not self == other
|
[
"[email protected]"
] | |
6d3a407300be31a52b42c56933a379199611b440
|
28c82784b17dd8bb1cbeb133e81958c33e875684
|
/6_lab_resonance.py
|
922e2997ef2b5ccbfd8c1ea04a5d26cc392c69dd
|
[
"MIT"
] |
permissive
|
dwahme/physics_calc_enabler
|
7e7c673601a1fda720114a9fea0e2a9b7e52e311
|
f0fc4c9214cd024344c5f0d3684b29666339395e
|
refs/heads/master
| 2020-04-03T00:27:56.566201 | 2018-12-31T17:48:17 | 2018-12-31T17:48:17 | 154,900,221 | 0 | 0 |
MIT
| 2018-12-31T17:48:18 | 2018-10-26T22:16:38 |
Python
|
UTF-8
|
Python
| false | false | 435 |
py
|
import functions as f
##################
# BEGIN DATA INPUT
##################
mass_g = 0
mass_g_uncert = 0
k_const = 0
oscillation_periods = [
0, 0
]
################
# END DATA INPUT
################
# CALCULATIONS
# predict the period of oscillation using mass_g and k_const
# get average oscillation period
# get uncertainty of oscillation period using spread
# determine if consistent? can be done manually
# RESULTS
|
[
"[email protected]"
] | |
00df566357d11d45e4d51f2dfaeb0fec227b0d60
|
9e7e7125dff233fdd9b2722199f103b4df66e7f0
|
/ex4.py
|
f0b8c0ce790b38c5602b4cdcfc8617445dda7a17
|
[] |
no_license
|
natalijascekic/MidtermExample1
|
d43b3478607bf6e8cc8b8a5db1d15e347cf6a565
|
5894d4d2ce5768c8d49f0aef4e0294fcb3e0e5b3
|
refs/heads/master
| 2021-04-06T08:27:00.915557 | 2018-03-08T10:45:33 | 2018-03-08T10:45:33 | 124,368,836 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 356 |
py
|
#suma cifara prirodnog broja
def suma_cifara(broj):
suma = 0
for i in str(broj):
cifra = int(i)
suma = suma + cifra
return suma
def suma_cifara_matematicara(broj):
while (broj > 0):
cifra = broj % 10
broj = broj // 10
print(cifra)
print(suma_cifara(12345))
print(suma_cifara_matematicara(12345))
|
[
"[email protected]"
] | |
8b01c8a8e52c317ded383e0ea010e85e3d6512d6
|
1b9c3440db918240045ac9c271a8c4d5f376383c
|
/cogs/help.py
|
f9bd8227f94e6ed511ff09a7c356cfd922d0ab6f
|
[] |
no_license
|
wyz3r0/Sewayaki-bot-no-Aruya-chan
|
c535260901281f619278bde1e6c61d7dae6332c0
|
f8a8ffec0ac8cd5ca0dd9c0604639d986641f0ef
|
refs/heads/master
| 2023-05-08T03:36:39.692081 | 2021-05-25T19:53:25 | 2021-05-25T19:53:25 | 349,130,132 | 0 | 0 | null | 2021-05-25T19:53:25 | 2021-03-18T15:45:21 |
Python
|
UTF-8
|
Python
| false | false | 1,698 |
py
|
from discord import Embed
from discord.ext import menus
from discord.ext import commands
from discord.utils import get
from typing import Optional
from configparser import ConfigParser
cfg = ConfigParser()
cfg.read('/home/runner/Sewayaki-bot-no-Aruya-chan/cfg.ini')
def syntax(command):
cmd_and_aliases = "|".join([str(command), *command.aliases])
params = []
for key, value in command.params.items():
if key not in ("self", "ctx"):
params.append(f"[{key}]" if "NoneType" in str(value) else f"<{key}>")
params = " ".join(params)
return f"`{default_cfg.bot_prefix}{cmd_and_aliases} {params}`"
"""
class help_menue(ListPageSources):
def __init__(self, ctx, data):
self.ctx = ctx
super().__init__(data, per_page = 3)
async def write_page(self, menu, fielsd = []):
return
async def format_page(self, menu, commands):
fields = []
for cmd in commands:
fields.appaend()
"""
class help(commands.Cog):
def __init__(self, client):
self.client = client
self.client.remove_command("help")
async def cmd_help(self, ctx, command):
embed = Embed(title = f"`{command}`", description = syntax(command), colour = cfg.getint('general', 'bot_colour'))
embed.add_field(name = "Command description", value = command.help)
await ctx.send(embed = embed)
@commands.command(name = "help", aliases = ["h"])
async def h(self, ctx, cmd: Optional[str]):
"""shows this message"""
if cmd is None:
pass
else:
if (command := get(self.client.commands, name = cmd)):
await self.cmd_help(ctx, command)
else:
await ctx.send(f"> {cmd} dose not exist")
def setup(client):
client.add_cog(help(client))
|
[
""
] | |
33a9ca4954a0be409500c41ace35ca2aa409ae49
|
524c0d4a584caef20abc6745037e100a2a0c0655
|
/cryptomath.py
|
d2e6fe2a83026fb2689ad4d4f51068c4f6c23d53
|
[] |
no_license
|
Anthem9/CTF_Crypto
|
d26d4fe8ee99893e460ad68e17e18e4b54fb2555
|
de55e27fc1b371f3462bd1c32920aab440ef1958
|
refs/heads/master
| 2021-05-01T06:04:19.556653 | 2018-02-11T15:09:40 | 2018-02-11T15:09:40 | 121,135,226 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 405 |
py
|
#Cryptomath Module
def gcd(a, b):
#计算最大公约数
while a != 0:
a, b = b % a, a
return b
def findModInverse(a, m):
#计算模逆
if gcd(a, m) != 1:
return None
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:
q = u3 // v3
v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q * v3), v1, v2 , v3
return u1 % m
|
[
"[email protected]"
] | |
a6a8afa4e3ca2f14f48f0c9ebd11520a7b0e9b34
|
a65622c6b3d8c570f113af3ee49b4c4f2ec4995c
|
/PY_files/username.py
|
0cf47754330637e87f5921af0ad86947059ec343
|
[] |
no_license
|
muthu255/python
|
62a88d32450d71a9297b65ae1865c6125a716a8d
|
4c1135388b2ba36ac4c23e952e064496db9cab82
|
refs/heads/master
| 2022-07-03T14:49:35.008669 | 2020-05-13T19:22:40 | 2020-05-13T19:22:40 | 263,722,427 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 662 |
py
|
import tkinter
from tkinter import filedialog
from tkinter import *
root=tkinter.Tk()
root.title('Enter your database crendtials')
e1=Entry(root,width=20,borderwidth=5,)
e1.grid(row=2,column=4,columnspan=3,padx=10,pady=10)
e2=Entry(root,width=20,borderwidth=5,show='*')
e2.grid(row=3,column=4,columnspan=5,padx=10,pady=10)
lb1=Label(root,text='USER NAME :').grid(row=2,column=3)
lb2=Label(root,text='PASSWORD :').grid(row=3,column=3)
def check():
user_name=e1.get()
Password=e2.get()
print('USER NAME :',user_name)
print('PASSWORD :',Password)
but=Button(root,text='OK',command=check)
but.grid(row=4,column=5)
|
[
"[email protected]"
] | |
376795b7290cf0947523c2c0f3d9bb3656459d5c
|
9157478eaf508276049f5fb80c2ec42f42b0d614
|
/oop/bus.py
|
ec44898aeacfa1d77877d105ded7ef2ef2a156c5
|
[] |
no_license
|
JorgeRobins/python-blockchain
|
f640a9c3fa74e9b2bcf107d08d10f10025a19111
|
7b60ca0178cccb893e6d21040fa1c4c7d3f10bac
|
refs/heads/master
| 2020-04-27T22:03:13.819268 | 2019-03-23T23:07:04 | 2019-03-23T23:07:04 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 447 |
py
|
from vehicle import Vehicle
class Bus(Vehicle):
def __init__(self, starting_top_speed=100):
# super calls the constructor of the base class so we also include them not overwrite
super().__init__()
self.passengers = []
def add_group(self, passengers):
self.passengers.extend(passengers)
bus1 = Bus(150)
bus1.add_warning('Test')
bus1.add_group(['Max', 'Manuel', 'Anna'])
print(bus1.passengers)
bus1.drive()
|
[
"[email protected]"
] | |
400773e1388d41b266ef404a2c92ffa8990ba3f4
|
f5b4ff16138994d97bbdd7bc6bc9f3d6bbba9a1e
|
/Otp.spec
|
583003b8b3484a4d402bb0b891fb09e75127aa0b
|
[] |
no_license
|
Sudhir7832/Otp.pyw
|
903b31d7b21a79e3f1e5d5fa2718a1f1cdc45863
|
2365721fc1b684ce74652c3ee870ef1d5573a5f2
|
refs/heads/master
| 2023-07-11T16:18:26.864103 | 2021-08-12T15:31:28 | 2021-08-12T15:31:28 | 395,364,366 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 974 |
spec
|
# -*- mode: python ; coding: utf-8 -*-
block_cipher = None
a = Analysis(['Otp.pyw'],
pathex=['C:\\Users\\DELL\\Desktop\\otp'],
binaries=[],
datas=[],
hiddenimports=[],
hookspath=[],
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False)
pyz = PYZ(a.pure, a.zipped_data,
cipher=block_cipher)
exe = EXE(pyz,
a.scripts,
[],
exclude_binaries=True,
name='Otp',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
console=False )
coll = COLLECT(exe,
a.binaries,
a.zipfiles,
a.datas,
strip=False,
upx=True,
upx_exclude=[],
name='Otp')
|
[
"[email protected]"
] | |
4484b30afa060356763fe6262633868b534151bc
|
58d91b99f252ce924906bf0bbe054bf3b9706f74
|
/utils/data.py
|
e76a2f9af02635874507c42545a41849050e2792
|
[
"MIT"
] |
permissive
|
rnoxy/ProjectDL2-Segmentation
|
c84df2da1f441bdfe674444d222c76405b6262fa
|
94c1ff41e770e56a01f115f64721173c66073f50
|
refs/heads/master
| 2022-11-11T18:24:56.890658 | 2020-06-18T10:55:08 | 2020-06-18T10:55:08 | 273,213,659 | 0 | 0 |
MIT
| 2020-06-18T10:54:09 | 2020-06-18T10:54:09 | null |
UTF-8
|
Python
| false | false | 4,903 |
py
|
from base.data_preprocessing import BaseDataPreprocessing
import tensorflow as tf
import os
import numpy as np
from utils.types import Datapoint
from dataclasses import dataclass
from typing import Sequence, Dict, Callable, Any
import math
DATASET_SIZE = 2913
"""
Splits: 70%/15%/15%
"""
SUBSET_SIZES = {
"train": int(0.7 * DATASET_SIZE),
"valid": int(0.15 * DATASET_SIZE),
"test": DATASET_SIZE - int(0.7 * DATASET_SIZE) - int(0.15 * DATASET_SIZE)
}
def color_map(n):
def bitget(byteval, idx):
return (byteval & (1 << idx)) != 0
indices = set(range(n)) | {255}
cmap = np.zeros((len(indices), 3), dtype=np.uint8)
for i in indices:
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7 - j)
g = g | (bitget(c, 1) << 7 - j)
b = b | (bitget(c, 2) << 7 - j)
c = c >> 3
if i == 255:
i = -1
cmap[i] = np.array([r, g, b])
return cmap
N_PROPER_CLASSES = 21
N_CLASSES = N_PROPER_CLASSES + 1
CMAP = color_map(N_PROPER_CLASSES)
def cmap_to_one_hot(img):
label = tf.equal(img[:, :, None, :], CMAP[None, None, :, :])
label = tf.reduce_all(label, axis=3)
label = tf.cast(label, tf.uint8)
return label
def indices_to_cmap(indices):
return tf.gather(CMAP, indices, axis=0)
def get_train_batch_count(config) -> int:
batch_size = config.data.get("batch_size", 1)
return math.ceil(SUBSET_SIZES["train"] / batch_size)
@dataclass
class Split:
split: Callable[[tf.data.Dataset], tf.data.Dataset]
preprocessing: Callable[[Datapoint], Any]
def get_train_valid_data(config, preprocessing: BaseDataPreprocessing) -> Dict[str, tf.data.Dataset]:
root = os.path.join(config.data.get("data_dir", "data"), "VOCdevkit", "VOC2012")
splits = {
"train": Split(
split=lambda ds: ds.take(SUBSET_SIZES["train"]),
preprocessing=lambda datapoint: preprocessing.preprocess_train(datapoint),
),
"valid": Split(
split=lambda ds: ds.skip(SUBSET_SIZES["train"]).take(SUBSET_SIZES["valid"]),
preprocessing=lambda datapoint: preprocessing.preprocess_valid(datapoint),
),
}
batch_size = config.data.get("batch_size", 1)
dataset = _create_dataset(
root,
_get_filenames(root, "trainval"),
splits,
config.data.get("workers", None),
batch_size,
)
if config.data.shuffle:
dataset["train"] = dataset["train"].shuffle(
config.data.get("shuffle_buffer_size", get_train_batch_count(config)))
if config.data.prefetch:
dataset = {k: ds.prefetch(config.data.get("prefetch_buffer_size", 50)) for k, ds in dataset.items()}
return dataset
def get_test_data(config, preprocessing: BaseDataPreprocessing) -> Dict[str, tf.data.Dataset]:
root = os.path.join(config.data.get("data_dir", "data"), "VOCdevkit", "VOC2012")
splits = {"test": Split(
split=lambda ds: ds.skip(SUBSET_SIZES["train"] + SUBSET_SIZES["valid"]),
preprocessing=lambda datapoint: preprocessing.preprocess_valid(datapoint),
)}
dataset = _create_dataset(
root,
_get_filenames(root, "trainval"),
splits,
config.data.get("workers"),
config.data.get("batch_size", 1),
)
if config.data.prefetch:
dataset["test"] = dataset["test"].prefetch(config.data.get("prefetch_buffer_size", 10))
return dataset
def _get_filenames(root, split):
path = os.path.join(root, "ImageSets", "Segmentation", split + ".txt")
with open(path) as f:
filenames = [line.strip() for line in f.readlines()]
return filenames
def _create_dataset(
root: str,
filenames: Sequence[str],
splits: Dict[str, Split],
workers: int,
batch_size: int,
) -> Dict[str, tf.data.Dataset]:
def gen():
yield from filenames
dataset = tf.data.Dataset.from_generator(gen, output_types=tf.string)
split_datasets = {}
for name, s in splits.items():
def load_and_preprocess(filename):
datapoint = _load_sample(root, filename)
return s.preprocessing(datapoint)
split_datasets[name] = s.split(dataset) \
.map(load_and_preprocess, num_parallel_calls=workers) \
.batch(batch_size)
return split_datasets
def _load_sample(root: str, filename: tf.Tensor) -> Datapoint:
image_path = tf.strings.join([root, "JPEGImages", filename + ".jpg"], separator=os.sep)
label_path = tf.strings.join([root, "SegmentationClass", filename + ".png"], separator=os.sep)
image = tf.io.read_file(image_path)
label = tf.io.read_file(label_path)
image = tf.image.decode_jpeg(image, channels=3)
label = tf.image.decode_png(label, channels=3)
label = cmap_to_one_hot(label)
return Datapoint(filename, image, label)
|
[
"[email protected]"
] | |
7a0acf73291ae56248b13eac72392da0f2c746b1
|
fb843a509e03efd4220715582766fda5e763879d
|
/business/Store.py
|
32cf230804943fb10a40d15be48b4ec7ac2aeba8
|
[] |
no_license
|
santybm/mom
|
0c37bd579064f91b68b365ed63132b69d26b2651
|
e44ee6383eb6d3b09687c32d2709d22794046895
|
refs/heads/master
| 2021-01-10T04:00:21.506275 | 2015-11-01T18:56:55 | 2015-11-01T18:56:55 | 45,311,004 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 92 |
py
|
__author__ = 'Herb'
from parse_rest.datatypes import Object
class Store(Object):
pass
|
[
"[email protected]"
] | |
2ca40c9745cafec57f504ad00865b8a15eb016d0
|
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
|
/python/python_15419.py
|
b16cd84c9dd57f33adebb10f84dbec1286edafa9
|
[] |
no_license
|
AK-1121/code_extraction
|
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
|
5297a4a3aab3bb37efa24a89636935da04a1f8b6
|
refs/heads/master
| 2020-05-23T08:04:11.789141 | 2015-10-22T19:19:40 | 2015-10-22T19:19:40 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 79 |
py
|
# Python comparing individual lists of lists elements
if x[i][0] > y[i][0]:
|
[
"[email protected]"
] | |
c5934f4b90758b7b0e1417135576b43e12408f78
|
8f941c27b2fef6ca001d4c961b9969fb5c3af7aa
|
/farming/settings.py
|
7d23e64948b9ff1a2aaa94e2bccbdc121df5f5bf
|
[] |
no_license
|
smithellis/farming
|
1671e51a42109aa43e0df138e6dbb5df68e572a2
|
5073a0880ce63e54718d58c6036e3c05dd302dbc
|
refs/heads/master
| 2021-01-15T11:18:45.301090 | 2014-11-04T19:23:42 | 2014-11-04T19:23:42 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,045 |
py
|
"""
Django settings for farming project.
For more information on this file, see
https://docs.djangoproject.com/en/1.7/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.7/ref/settings/
"""
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'g7u73@1(*r3ht(o57q^z=j5k00)e1dts(kg!j@b_z(w=&4e2n='
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
TEMPLATE_DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
)
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
)
ROOT_URLCONF = 'farming.urls'
WSGI_APPLICATION = 'farming.wsgi.application'
# Database
# https://docs.djangoproject.com/en/1.7/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Internationalization
# https://docs.djangoproject.com/en/1.7/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.7/howto/static-files/
STATIC_URL = '/static/'
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.