blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
74c0f20f27a5b7bcad076b8a5b964d41878080ab
0a6b07635bfe1cda46fb9a537c3f5974c091f89a
/ExprGCNPPI.py
ec9a99c34d0d184b7f45fec3b1df86c652ecaa91
[]
no_license
sabdollahi/WinBinVec
89096b48612a1efa24c4f9ea63f27cdc185059b4
5b4b2e7f0e9d97eccc9d558449d4dfaf36d53da3
refs/heads/main
2023-07-11T05:24:05.141008
2021-08-25T09:50:12
2021-08-25T09:50:12
309,229,996
0
0
null
null
null
null
UTF-8
Python
false
false
16,400
py
from __future__ import division from __future__ import print_function import time import argparse import numpy as np import torch import torch.nn.functional as F import torch.optim as optim import math import torch.nn as nn from torch.nn.parameter import Parameter from torch.nn.modules.module import Module import numpy as np import seaborn as sns from sklearn.metrics import roc_curve, auc from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_auc_score import os import pickle from sklearn.model_selection import KFold from torch.autograd import Variable from sklearn.utils import shuffle #"GraphConvolution" and "GCN" classes are obtained from the following GitHub repository #https://github.com/tkipf/pygcn class GraphConvolution(Module): def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')' class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) #ExprGCNPPI implemented by Sina Abdollahi for WinBinVec paper class ExprGCNPPI(nn.Module): def __init__(self): super(ExprGCNPPI, self).__init__() self.gcn = GCN(nfeat=1, nhid=8, nclass=1, dropout=0.5) #626: The number of partner proteins involve in the PPIs self.fc1 = nn.Linear(572, 256) self.fc2 = nn.Linear(256, 8) self.fc3 = nn.Linear(8, 2) self.bn1 = nn.BatchNorm1d(num_features=256) self.drop1 = torch.nn.Dropout(0.4) self.bn2 = nn.BatchNorm1d(num_features=8) self.drop2 = torch.nn.Dropout(0.4) def forward(self, adj, expr, batch_size): outs = [] for i in range(batch_size): outs.append(self.gcn(expr[i,:], adj[i,:]).view(1,adj.size(1))) concat_gcn = outs[0] for i in range(1,batch_size): concat_gcn = torch.cat([concat_gcn, outs[i]], dim=0) output = self.drop1(F.relu(self.bn1(self.fc1(concat_gcn)))) output = self.drop2(F.relu(self.bn2(self.fc2(output)))) output = self.fc3(output) return output ppi_adj_matrix = pickle.load(open("DATASET/Adj.pickle", "rb")) #adj -> Adjacency matrix (N by N ---> N is the number of nodes) #expr -> Features (Expression) matrix (N by 1 ---> 1 is for gene expression value for each protein) tcga_clinical_dataframe = pickle.load(open("DATASET/TCGA_clinical_dataframe.pickle","rb")) classes = {"adrenal gland":0, "bladder":1, "breast":2, "GYN":3, "bile duct":4, "CRC":5, "bone marrow":6, "esophagus":7, "brain":8, "head and neck":9, "Kidney":10, "liver":11, "Lung":12, "pleura":13, "pancreatic":14, "male reproductive system":15, "other":16, "Melanoma":17, "stomach":18, "thyroid":19, "thymus":20} which_clinicals = ['cancer_class'] tcga_clinical_dataframe = tcga_clinical_dataframe[which_clinicals] for cancer_class in classes: print(">>>>>>" + cancer_class) folds_accuracy = [] folds_roc_auc = [] folds_PR_auc = [] replace_statement = {} for cl in classes: if(cl != cancer_class): replace_statement[cl] = 0 else: replace_statement[cl] = 1 specific_cancer_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["cancer_class"] == cancer_class] specific_cancer_patients = specific_cancer_patients.replace({'cancer_class': replace_statement}) other_cancer_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["cancer_class"] != cancer_class] other_cancer_patients = shuffle(other_cancer_patients).sample(n = len(specific_cancer_patients)) other_cancer_patients = other_cancer_patients.replace({'cancer_class': replace_statement}) K = 10 #Kfold (number of parts = K) kf_other = KFold(n_splits = K, shuffle = True) kf_specific = KFold(n_splits = K, shuffle = True) parts_specific = kf_specific.split(specific_cancer_patients) parts_other = kf_other.split(other_cancer_patients) indices_specific = next(parts_specific, None) indices_other = next(parts_other, None) fold = 1 while(indices_specific): #Define the model model = ExprGCNPPI() # Mean Squared Error criterion = torch.nn.CrossEntropyLoss() # Stochastic Gradient Descent optimizer = torch.optim.SGD(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) batch_size = 20 print("Shuffled Epoch (20): ", end="") for shuffled_epoch in range(20): if(shuffled_epoch == 19): print((shuffled_epoch+1)) else: print((shuffled_epoch+1), end=", ") training = specific_cancer_patients.iloc[indices_specific[0]] training_other = other_cancer_patients.iloc[indices_other[0]] training = shuffle(training.append(training_other)) Y = training[['cancer_class']].values Y = Variable(torch.LongTensor(Y.flatten()), requires_grad=False) training = training.index for epoch in range(50): for index in range(0, len(training), batch_size): y = Y[index : index + batch_size] batch_X = [] kk = 0 for patient in training[index : index + batch_size]: kk += 1 p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb")) batch_X.append(p_data) X = np.asarray(batch_X) adj = np.array([ppi_adj_matrix]*batch_size) adj = adj.astype(np.float32) adj = torch.FloatTensor(adj) X = X.astype(np.float32) X = torch.FloatTensor(X) X = X.view(X.size(0), X.size(1), 1) optimizer.zero_grad() Y_hat = model(adj, X, kk) loss = criterion(Y_hat, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() test = specific_cancer_patients.iloc[indices_specific[1]] test_other = other_cancer_patients.iloc[indices_other[1]] test = shuffle(test.append(test_other)) Y_test = test[['cancer_class']].values Y_test = Variable(torch.LongTensor(Y_test.flatten()), requires_grad=False) test = test.index avg_acc = 0 isFirstTime = True output_predicted = "" ii = 0 for index in range(0, len(training), batch_size): y = Y_test[index : index + batch_size] test_list = [] kk = 0 for patient in test[index : index + batch_size]: kk += 1 p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb")) test_list.append(p_data) #test_list = torch.FloatTensor(test_list) if(len(test_list) <= 1): break X_test = np.asarray(test_list) adj = np.array([ppi_adj_matrix]*batch_size) adj = adj.astype(np.float32) adj = torch.FloatTensor(adj) X_test = X_test.astype(np.float32) X_test = torch.FloatTensor(X_test) X_test = X_test.view(X_test.size(0), X_test.size(1), 1) test_batch_Y_hat = model.forward(adj, X_test, kk) if(isFirstTime): output_predicted = test_batch_Y_hat isFirstTime = False else: output_predicted = torch.cat((output_predicted, test_batch_Y_hat), 0) dummy, preds_test = torch.max (test_batch_Y_hat, dim = 1) accuracy_test = (preds_test == y).long().sum().float() / preds_test.size()[0] avg_acc += accuracy_test ii += 1 avg_acc = avg_acc / ii Y_prediction = torch.softmax(output_predicted, dim=1) Y_prediction = np.array(Y_prediction.tolist()) Y_real = np.array([[1,0] if y == 0 else [0,1] for y in Y_test]) fpr = dict() tpr = dict() precision = dict() recall = dict() roc_auc = dict() PR_auc = dict() for i in range(2): fpr[i], tpr[i], _ = roc_curve(Y_real[:, i], Y_prediction[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) precision[i], recall[i], _ = precision_recall_curve(Y_real[:, i], Y_prediction[:, i]) PR_auc[i] = auc(recall[i], precision[i]) print("Fold " + str(fold) + " Accuracy: " + str(avg_acc)) print("Fold " + str(fold) + " ROC AUC: " + str(roc_auc[1])) print("Fold " + str(fold) + " PR AUC: " + str(PR_auc[1])) fold += 1 folds_accuracy.append(avg_acc) folds_roc_auc.append(roc_auc[1]) folds_PR_auc.append(PR_auc[1]) indices_specific = next(parts_specific, None) indices_other = next(parts_other, None) if not os.path.exists('RESULTS/ExprGCNPPIResults'): os.makedirs('RESULTS/ExprGCNPPIResults') pickle.dump(folds_accuracy, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_Accuracy.pickle","wb")) pickle.dump(folds_roc_auc, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_ROC_AUC.pickle","wb")) pickle.dump(folds_PR_auc, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_PR_AUC.pickle","wb")) #Predict Metastasis (Stage IV) or not (Stages I, II, and III) #tcga_clinical_dataframe[tcga_clinical_dataframe['stage'] == 'Stage IVA'] tcga_clinical_dataframe = pickle.load(open("DATASET/TCGA_clinical_dataframe.pickle","rb")) which_clinicals = ['stage'] tcga_clinical_dataframe = tcga_clinical_dataframe[which_clinicals] replace_statement = {} metastasis_list = ['Stage IV','Stage IVA','Stage IVB','Stage IVC'] other_list = ['Stage I','Stage IA','Stage IB','Stage II','Stage IIA','Stage IIB','Stage IIC','Stage III','Stage IIIA','Stage IIIB','Stage IIIC'] #Metastasis Stage for m in metastasis_list: replace_statement[m] = 1 #Non-metastasis Stage for o in other_list: replace_statement[o] = 0 metastasis_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["stage"].isin(metastasis_list)] metastasis_patients = metastasis_patients.replace({'stage': replace_statement}) other_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["stage"].isin(other_list)] other_patients = other_patients.replace({'stage': replace_statement}) start_and_end_for_other = [0,793,1586,2379,3172,3965,4758,5554] for i in range(7): print("PART: " + str(i)) selected_other_patients = other_patients[start_and_end_for_other[i]:start_and_end_for_other[i+1]] folds_accuracy = [] K = 10 #Kfold (number of parts = K) kf_other = KFold(n_splits = K, shuffle = True) kf_metastasis = KFold(n_splits = K, shuffle = True) parts_metastasis = kf_metastasis.split(metastasis_patients) parts_other = kf_other.split(selected_other_patients) indices_metastasis = next(parts_metastasis, None) indices_other = next(parts_other, None) fold_number = 1 while(indices_metastasis): model = ExprGCNPPI() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) batch_size = 20 print("Shuffled Epoch (20): ", end="") for shuffled_epoch in range(20): if(shuffled_epoch == 19): print((shuffled_epoch+1)) else: print((shuffled_epoch+1), end=", ") training = metastasis_patients.iloc[indices_metastasis[0]] training_other = selected_other_patients.iloc[indices_other[0]] training = shuffle(training.append(training_other)) Y = training[['stage']].values Y = Variable(torch.LongTensor(Y.flatten()), requires_grad=False) training = training.index for epoch in range(50): for index in range(0, len(training), batch_size): y = Y[index : index + batch_size] batch_X = [] kk = 0 for patient in training[index : index + batch_size]: kk += 1 p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb")) batch_X.append(p_data) X = np.asarray(batch_X) adj = np.array([ppi_adj_matrix]*batch_size) adj = adj.astype(np.float32) adj = torch.FloatTensor(adj) X = X.astype(np.float32) X = torch.FloatTensor(X) X = X.view(X.size(0), X.size(1), 1) optimizer.zero_grad() Y_hat = model(adj, X, kk) loss = criterion(Y_hat, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() test = metastasis_patients.iloc[indices_metastasis[1]] test_other = selected_other_patients.iloc[indices_other[1]] test = shuffle(test.append(test_other)) Y_test = test[['stage']].values Y_test = Variable(torch.LongTensor(Y_test.flatten()), requires_grad=False) test = test.index avg_acc = 0 ii = 0 for index in range(0, len(training), batch_size): y = Y_test[index : index + batch_size] test_list = [] kk = 0 for patient in test[index : index + batch_size]: kk += 1 p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb")) test_list.append(p_data) if(len(test_list) <= 1): break X_test = np.asarray(test_list) adj = np.array([ppi_adj_matrix]*batch_size) adj = adj.astype(np.float32) adj = torch.FloatTensor(adj) X_test = X_test.astype(np.float32) X_test = torch.FloatTensor(X_test) X_test = X_test.view(X_test.size(0), X_test.size(1), 1) test_batch_Y_hat = model.forward(adj, X_test, kk) dummy, preds_test = torch.max (test_batch_Y_hat, dim = 1) accuracy_test = (preds_test == y).long().sum().float() / preds_test.size()[0] avg_acc += accuracy_test ii += 1 avg_acc = avg_acc / ii print("Fold: " + str(fold_number) + " ACC: " + str(avg_acc)) fold_number += 1 folds_accuracy.append(avg_acc) indices_metastasis = next(parts_metastasis, None) indices_other = next(parts_other, None) if not os.path.exists('RESULTS/ExprGCNPPI-StagePrediction'): os.makedirs('RESULTS/ExprGCNPPI-StagePrediction') pickle.dump(folds_accuracy, open("RESULTS/ExprGCNPPI-StagePrediction/Part" + str(i) + "_folds_accuracy.pickle","wb"))
bf38c9ba21a9178526560f3d4d833892fc472830
4ac6645c5925feefc8a3ab8587d08edc6edb220e
/school/unit/tests/test_api.py
0abf5166aa3e74b405609fa0d4013d54c6ac092d
[ "MIT" ]
permissive
yucealiosman/school
4a4b701a8ef87fc15b637e655f4d995a0b243adf
630059760f411c163db57f980b780d8501aa1a6d
refs/heads/main
2023-09-04T05:25:36.278730
2021-03-19T12:28:33
2021-03-19T15:05:17
349,236,587
0
0
null
null
null
null
UTF-8
Python
false
false
5,007
py
import json from unittest.mock import patch from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase, APIClient from school.unit import models from school.unit.tests import factories from school.unit.tests.factories import SuperUserFactory class BaseTest(APITestCase): def setUp(self): self.client = APIClient() self.client.force_authenticate(user=SuperUserFactory()) class StudentApiTest(BaseTest): def test_student_list(self): student_count = 5 teacher = factories.TeacherFactory() class_room = factories.ClassRoomFactory(teachers=[teacher]) student_list = factories.StudentFactory.create_batch( class_room=class_room, size=student_count) expected_student_pk_set = {str(student.pk) for student in student_list} response = self.client.get(reverse('students-list')) data = response.json() self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) self.assertEqual(data['count'], student_count) student_pk_set_from_resp = {student["pk"] for student in data["results"]} self.assertEqual(expected_student_pk_set, student_pk_set_from_resp) def test_student_detail(self): teacher = factories.TeacherFactory() class_room = factories.ClassRoomFactory(teachers=[teacher]) student = factories.StudentFactory(class_room=class_room) response = self.client.get( reverse('students-detail', kwargs={'pk': str(student.pk)})) self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) data = response.json() self.assertEqual(class_room.code, data["class_room"]["code"]) teacher_pk_list_from_resp = [teacher["pk"] for teacher in data["class_room"]["teachers"]] self.assertEqual(teacher_pk_list_from_resp, [str(teacher.pk)]) class HomeWorkApiTest(BaseTest): @patch('school.unit.services.HomeWorkService.notify') def test_create_homework(self, notify_mock): teacher = factories.TeacherFactory() class_room = factories.ClassRoomFactory(teachers=[teacher]) hw_not_created = factories.ClassHomeWorkFactory.build() data = { 'title': hw_not_created.title, 'description': hw_not_created.description, 'class_room': str(class_room.pk) } response = self.client.post( reverse('homeworks-by-teacher-list', kwargs={'teacher__pk': str(teacher.pk)}), data=json.dumps(data), content_type='application/json') self.assertEqual(response.status_code, status.HTTP_201_CREATED, response.data) data = response.json() hw_created = models.ClassHomeWork.objects.get(pk=data["pk"]) self.assertEqual(data["title"], hw_not_created.title) self.assertEqual(data["description"], hw_not_created.description) self.assertEqual(data["teacher"], str(teacher.pk)) self.assertEqual(data["class_room"], str(class_room.pk)) notify_mock.assert_called_once_with(hw_created, 'created') @patch('school.unit.services.HomeWorkService.notify') def test_update_homework(self, notify_mock): teacher = factories.TeacherFactory() class_room = factories.ClassRoomFactory(teachers=[teacher]) homework = factories.ClassHomeWorkFactory(class_room=class_room, teacher=teacher) new_description = "New HomeWork description" update_data = { 'description': new_description } response = self.client.patch( reverse('homeworks-by-teacher-detail', kwargs={'teacher__pk': str(teacher.pk), 'pk': str(homework.pk)}), data=json.dumps(update_data), content_type='application/json') self.assertEqual(response.status_code, status.HTTP_200_OK, response.data) data = response.json() self.assertEqual(data["description"], new_description) notify_mock.assert_called_once_with(homework, 'updated') @patch('school.unit.services.HomeWorkService.notify') def test_delete_homework(self, notify_mock): homework = factories.ClassHomeWorkFactory() response = self.client.delete( reverse('homeworks-by-teacher-detail', kwargs={'teacher__pk': str(homework.teacher.pk), 'pk': str(homework.pk)})) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT, response.data) self.assertFalse( models.ClassHomeWork.objects.filter(pk=homework.pk).exists()) notify_mock.assert_called_once()
[ "aliosmanyuce@gmail" ]
aliosmanyuce@gmail
06d3b8b17c46a0ae3faf7387123f73c73bea8d78
4766d241bbc736e070f79a6ae6a919a8b8bb442d
/20200215Python-China/0094. Binary Tree Inorder Traversal.py
08893a77b8777c433e17edf90f755b8b4b58c958
[]
no_license
yangzongwu/leetcode
f7a747668b0b5606050e8a8778cc25902dd9509b
01f2edd79a1e922bfefecad69e5f2e1ff3a479e5
refs/heads/master
2021-07-08T06:45:16.218954
2020-07-18T10:20:24
2020-07-18T10:20:24
165,957,437
10
8
null
null
null
null
UTF-8
Python
false
false
733
py
''' Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 Output: [1,3,2] Follow up: Recursive solution is trivial, could you do it iteratively? ''' # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def inorderTraversal(self, root: TreeNode) -> List[int]: rep=[] self.getInOrderTra(root,rep) return rep def getInOrderTra(self,root,rep): if not root: return self.getInOrderTra(root.left,rep) rep.append(root.val) self.getInOrderTra(root.right,rep)
e5fefc6b8e0ec0d00e467d6808038193d92e8aa7
683b73e0c95c755a08e019529aed3ff1a8eb30f8
/machina/apps/forum_moderation/__init__.py
f1911a14dbd6195e896b647fa949fa08a0c6abce
[ "BSD-3-Clause" ]
permissive
DrJackilD/django-machina
b3a7be9da22afd457162e0f5a147a7ed5802ade4
76858921f2cd247f3c1faf4dc0d9a85ea99be3e1
refs/heads/master
2020-12-26T08:19:09.838794
2016-03-11T03:55:25
2016-03-11T03:55:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
# -*- coding: utf-8 -*- # Standard library imports # Third party imports # Local application / specific library imports default_app_config = 'machina.apps.forum_moderation.registry_config.ModerationRegistryConfig'
ec390ae9d26d00c9987dcba374799b70c1c22380
704f50b7df466bd30811707f81561a5d8ace3127
/screens/admin/delitem.py
98c82f6ecbe218fb770c82cb71eed836c5b1a469
[]
no_license
Maulik747/LostandFound
0e7c4e4c3c3561151fbc35ff463caeda428f1803
f31c0e8f9e9e50f1c62c9b7040560d5e21a24426
refs/heads/main
2023-02-18T22:17:52.377378
2021-01-18T19:26:10
2021-01-18T19:26:10
330,764,457
0
0
null
null
null
null
UTF-8
Python
false
false
1,709
py
#!/usr/bin/env python import cgitb import cgi import mysql.connector cgitb.enable() print("Content-Type: text/html;charset=utf-8\n\n") mydb = mysql.connector.connect( host="localhost", user="root", password="root", database = 'group6', auth_plugin='mysql_native_password' ) cursor = mydb.cursor() head = '''<html> <head> <link rel="stylesheet" href="../admin.css"> <meta name="viewport" content="width=device-width, initial-scale=1"> </head> <body> <div style="text-align: center;margin-top: 10%;"> <form action="../../scripts/delitem.py" method="POST"> <label class="label">Item Id:</label><br> <div style="display: inline"> <select name='id'> ''' print(head) cursor.execute("select * from Item") items = cursor.fetchall() for i in items: print("<option value = '{}'>{}</option>".format(i[0],i[0])) body = ''' </select> </div><br><br> <label class = 'label'>Moderator</label><br> <div> <select name ='mod'> ''' print(body) cursor.execute('select * from Moderator') people = cursor.fetchall() for j in people: print('<option value = {}>{}</option>'.format(j[0],j[0])) footer = ''' </select> </div><br> <label class="label">Description:</label><br> <div style="display: inline"> <div ><textarea name='description' style="width: 25%; height: 15%;"> </textarea></div> </div> <input class="button" type="submit" value="Delete"> </form> </div> </body> </html> ''' print(footer)
075c8636339cb3b08aa5c4c3815994408a005e38
853d7bd91f4ba254fba0ff28f2e0a3eb2b74fa48
/errata_tool/release.py
b5c1211cb9a8c86556c758725ad9297bc11a9fbb
[ "MIT" ]
permissive
smunilla/errata-tool
b07614daeceda4a1bfc18ce59679be0a93bb084f
91bdfb17f15308b46298210fbb2fe5af786276bc
refs/heads/master
2020-04-10T00:18:12.471123
2018-11-19T17:33:02
2018-11-28T15:40:08
160,681,680
1
0
null
null
null
null
UTF-8
Python
false
false
6,800
py
from __future__ import print_function import sys from datetime import date from errata_tool import ErrataConnector from errata_tool.product import Product from errata_tool.product_version import ProductVersion from errata_tool.user import User class NoReleaseFoundError(Exception): pass class MultipleReleasesFoundError(Exception): pass class ReleaseCreationError(Exception): pass class Release(ErrataConnector): def __init__(self, **kwargs): if 'id' not in kwargs and 'name' not in kwargs: raise ValueError('missing release "id" or "name" kwarg') self.id = kwargs.get('id') self.name = kwargs.get('name') self.refresh() def refresh(self): url = self._url + '/api/v1/releases?' if self.id is not None: url += 'filter[id]=%s' % self.id elif self.name is not None: url += 'filter[name]=%s' % self.name result = self._get(url) if len(result['data']) < 1: raise NoReleaseFoundError() if len(result['data']) > 1: # it's possible to accidentally have identically named releases, # see engineering RT 461783 raise MultipleReleasesFoundError() self.data = result['data'][0] self.id = self.data['id'] self.name = self.data['attributes']['name'] self.description = self.data['attributes']['description'] self.type = self.data['attributes']['type'] self.is_active = self.data['attributes']['is_active'] self.enabled = self.data['attributes']['enabled'] self.blocker_flags = self.data['attributes']['blocker_flags'] self.is_pdc = self.data['attributes']['is_pdc'] self.product_versions = self.data['relationships']['product_versions'] self.url = self._url + '/release/show/%d' % self.id # For displaying in scripts/logs: self.edit_url = self._url + '/release/edit/%d' % self.id def advisories(self): """ Find all advisories for this release. :returns: a list of dicts, one per advisory. For example: [{ "id": 32972, "advisory_name": "RHSA-2018:0546", "product": "Red Hat Ceph Storage", "release": "rhceph-3.0", "synopsis": "Important: ceph security update", "release_date": None, "qe_owner": "[email protected]", "qe_group": "RHC (Ceph) QE", "status": "SHIPPED_LIVE", "status_time": "March 15, 2018 18:29" }] """ url = '/release/%d/advisories.json' % self.id return self._get(url) @classmethod def create(klass, name, product, product_versions, type, program_manager, default_brew_tag, blocker_flags, ship_date=None): """ Create a new release in the ET. See https://bugzilla.redhat.com/1401608 for background. Note this method enforces certain conventions: * Always disables PDC for a release * Always creates the releases as "enabled" * Always allows multiple advisories per package * Description is always the combination of the product's own description (for example "Red Hat Ceph Storage") with the number from the latter part of the release's name. So a new "rhceph-3.0" release will have a description "Red Hat Ceph Storage 3.0". :param name: short name for this release, eg "rhceph-3.0" :param product: short name, eg. "RHCEPH". :param product_versions: list of names, eg. ["RHEL-7-CEPH-3"] :param type: "Zstream" or "QuarterlyUpdate" :param program_manager: for example "anharris" (Drew Harris, Ceph PgM) :param default_brew_tag: for example "ceph-3.0-rhel-7-candidate" :param blocker_flags: for example, "ceph-3.0" :param ship_date: date formatted as strftime("%Y-%b-%d"). For example, "2017-Nov-17". If ommitted, the ship_date will be set to today's date. (This can always be updated later to match the ship date value in Product Pages.) """ product = Product(product) (_, number) = name.split('-', 1) description = '%s %s' % (product.description, number) program_manager = User(program_manager) product_version_ids = set([]) for pv_name in product_versions: pv = ProductVersion(pv_name) product_version_ids.add(pv.id) if ship_date is None: today = date.today() ship_date = today.strftime("%Y-%b-%d") et = ErrataConnector() url = et._url + '/release/create' payload = { 'type': type, 'release[allow_blocker]': 0, 'release[allow_exception]': 0, 'release[allow_pkg_dupes]': 1, 'release[allow_shadow]': 0, 'release[blocker_flags]': blocker_flags, 'release[default_brew_tag]': default_brew_tag, 'release[description]': description, 'release[enable_batching]': 0, 'release[enabled]': 1, 'release[is_deferred]': 0, 'release[is_pdc]': 0, 'release[name]': name, 'release[product_id]': product.id, 'release[product_version_ids][]': product_version_ids, 'release[program_manager_id]': program_manager.id, 'release[ship_date]': ship_date, 'release[type]': type, } result = et._post(url, data=payload) if (sys.version_info > (3, 0)): body = result.text else: # Found during live testing: # UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' # in position 44306: ordinal not in range(128) # Not sure why there was a non-ascii character in the ET's HTTP # response, but this fixes it. body = result.text.encode('utf-8') if result.status_code != 200: # help with debugging: print(body) result.raise_for_status() # We can get a 200 HTTP status_code here even when the POST failed to # create the release in the ET database. (This happens, for example, if # there are no Approved Components defined in Bugzilla for the release # flag, and the ET hits Bugzilla's XMLRPC::FaultException.) if 'field_errors' in body: print(body) raise ReleaseCreationError('see field_errors <div>') return klass(name=name)
552fea4e7e4a404550ffa6236bc4c30f22f33e18
3f9f7c73bb2f9da31c586d2b64e2cc94f35239dc
/django-polls/polls/tests/test_models.py
94b7c24fbee98fcaf5c51ee69dd5ad670600b45b
[ "MIT" ]
permissive
jsterling23/DPY_Refresher
eb57e37d4bbad14143800719668b990b459fb56d
4646b7ebd79ba853f5ccc172183f41257cc12b60
refs/heads/master
2020-03-23T19:11:32.626731
2018-07-29T01:17:49
2018-07-29T01:17:49
141,959,227
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
from django.test import TestCase import datetime from django.utils import timezone from ..models import Question from django.urls import reverse class QuestionModelTests(TestCase): def test_was_published_recently_with_future_question(self): # method should return false for future dated questions. time = timezone.now() + datetime.timedelta(days=1, seconds=1) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_past_question(self): # method should return false for past dated questions. time = timezone.now() - datetime.timedelta(days=1, seconds=1) past_question = Question(pub_date=time) self.assertIs(past_question.was_published_recently(), False) def test_was_published_recently_with_current_question(self): # should return True for current question time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59) current_question = Question(pub_date=time) self.assertIs(current_question.was_published_recently(), True)
004e7568fbdb3e5a639501d4dd91b45601254179
702f403e33c94b32bd95e9284349e3c5aa751361
/TextAcquisition.py
6823d079b79c833821e7b6ae76b37cacd842ea56
[]
no_license
Timmichi/ICSearch-Engine
71bcc0cefe24afe974ca13f8a6ee15d254776c43
471f3b9cd83fbfe2686037f285cdfb787e003146
refs/heads/main
2023-03-27T01:30:04.997265
2021-03-24T22:07:05
2021-03-24T22:07:05
351,213,421
2
1
null
null
null
null
UTF-8
Python
false
false
8,935
py
import json import re from bs4 import BeautifulSoup import os import sys import math from nltk.stem import PorterStemmer # Index = Token : [(DocID, ((SearchWord*Priority)+(SearchWord*BasicWords)), [Positions in the text])] # DocID = DocID : URL # IndexMarkers = InitialLetter : (StartPosition,EndPosition) # DocIDMarkers = lineNumber : (StartPosition,EndPosition) def tokenize(token): tokens = [] try: ps = PorterStemmer() tokens += [ps.stem(token.lower()) for token in re.findall('[a-zA-Z0-9]+', token)] return tokens except: print("ERROR: Tokenize Function Error") return tokens def computeWordData(tokens): if not isinstance(tokens, list): return {} freq = {} positions = {} for i, t in enumerate(tokens): if t in freq.keys(): freq[t] += 1 positions[t].append(i) else: freq[t] = 1 positions[t] = [i] return freq, positions def updateIndex(index, tokenFrequency, totalPositions, importantFrequency, totalWordsInDoc, docID): for k, v in tokenFrequency.items(): # calculate tf score tf = v if tf > 0 and k in importantFrequency: tf = 2 + math.log10(tf) + math.log(importantFrequency[k]) elif tf > 0 and k not in importantFrequency: tf = 1 + math.log10(tf) # add tf score and DocID to posting if k in index.keys(): index[k].append((docID, tf)) else: index[k] = [(docID, tf)] return index def writeIndex(index): for k, v in index.items(): directory = ".\letters" fileName = k + ".txt" filePath = os.path.join(directory, fileName) if not os.path.exists(filePath): f = open(filePath, "w", encoding='utf-8') for key, value in sorted(v.items(), key=lambda posting: len(posting[1]), reverse=True): f.write(f"{key} {str(value)}\n") f.close() continue storedData = {} f = open(filePath, "r", encoding='utf-8') for txt in f: val = re.search("^([a-zA-Z0-9]+) (.+)", txt) token = val.group(1) posting = eval(val.group(2)) storedData[token] = posting f.close() f = open(filePath, "w", encoding='utf-8') for token, posting in v.items(): if token in storedData: storedData[token] = storedData[token] + posting else: storedData[token] = posting sortedTuple = sorted(storedData.items(), key=lambda posting: len(posting[1]), reverse=True) for k, v in sortedTuple: f.write(f"{k} {str(v)}\n") f.close() def writeDocID(docID, IDline): for k, v in docID.items(): directory = "." + "\\" + "numbers" fileName = str(IDline) + ".txt" filePath = os.path.join(directory, fileName) f = open(filePath, "a", encoding='utf-8') f.write(f"{k} {v}\n") f.close() def mwMarkers(marker, directory, mergeFile): endPos = 0 for root, dirs, files in os.walk(directory, topdown=False): for file in files: filePath = os.path.join(directory, file) k = file[0:-4] with open(filePath, "r", encoding='utf-8', errors='ignore') as f, open(mergeFile, "a", encoding='utf-8') as f2: for line in f: f2.write(line) f2.close() startPos = endPos f.seek(0, 2) endPos = f.tell() + startPos f.close() v = (startPos, endPos) marker[k] = v def convertIndexToAlphaIndex(index): alphaIndex = {} for k, v in index.items(): key = k[0] if key in alphaIndex.keys(): alphaIndex[key][k] = v else: alphaIndex[key] = {} alphaIndex[key][k] = v return alphaIndex def getTitleParagraph(soup): title = soup.find('title') if title: title = soup.find('title').getText() paragraph = soup.findAll('p') if paragraph: preParagraph = soup.findAll('p') paragraph = '' for p in preParagraph: for x in p.findAll(text=True): paragraph += x else: paragraph = soup.getText() paragraph = re.findall("[A-Z].*?[\.!?,]", paragraph, re.MULTILINE | re.DOTALL) if title == None and paragraph: title = '' if len(paragraph) < 2: loop = len(paragraph) else: loop = 2 for i in range(0, loop): title += paragraph[i] if title and len(title) > 65: l = title.split(" ") title = '' if len(l) < 5: loop = len(l) else: loop = 5 for i in range(0, loop): title += ' ' + l[i] title += '...' if paragraph: tempParagraph = '' if len(paragraph) < 5: loop = len(paragraph) else: loop = 5 for i in range(0, loop): tempParagraph += paragraph[i] paragraph = tempParagraph[0:250] + "..." return title, paragraph def getCondensedUrl(preUrl): preUrl = preUrl.split("//") preUrl = preUrl[1] preUrl = preUrl.split("/") url = f'{preUrl[0]}' preUrl.pop(0) iters = 0 while len(url) < 25 and iters < len(preUrl): segment = preUrl[iters] if len(segment) > 10: url += " > " + segment[0:10] + "..." else: url += " > " + segment iters += 1 return url filePaths = list() index = dict() docID = dict() for root, dirs, files in os.walk(".\DEV", topdown=False): for name in files: filePaths.append(os.path.join(root, name)) fileNumber = 1 initIDLine = 1 currIDLine = initIDLine total = len(filePaths) count = 0 for filePath in filePaths: try: with open(filePath) as f: data = json.load(f) soup = BeautifulSoup(data["content"], "html.parser") # computes frequency of tokens that are "important" importantList = ["strong", "h1", "h2", "h3", "title", "b"] importantText = [words.text.strip() for words in soup.findAll(importantList)] importantText = ' '.join([elem for elem in importantText]) importantToken = tokenize(importantText) importantFrequency = computeWordData(importantToken)[0] url = data["url"] con = getCondensedUrl(url) title, paragraph = getTitleParagraph(soup) docID[fileNumber] = [url, con, title, paragraph] text = soup.getText() fileToken = tokenize(text) totalWordsInDoc = len(fileToken) tokenFrequency, totalPositions = computeWordData(fileToken) updateIndex(index, tokenFrequency, totalPositions, importantFrequency, totalWordsInDoc, fileNumber) print(int(float(fileNumber)*100/float(total)), "%") fileNumber += 1 count += 1 currIDLine += 1 # At 1000 iterations, store index/docID, clear index/docID and reset count if count == 1000: # key is sorted by alphanumeric characters, values are the postings for tokens that start with those characters aIndex = convertIndexToAlphaIndex(index) writeIndex(aIndex) writeDocID(docID, initIDLine) count = 0 initIDLine = currIDLine docID.clear() index.clear() aIndex.clear() except: print("Error: Error opening JSON file and using BeautifulSoup") break # writes remaining index (iteration that didn't make it to 1000) if index: aIndex = convertIndexToAlphaIndex(index) writeIndex(aIndex) writeDocID(docID, initIDLine) docID.clear() index.clear() aIndex.clear() print(len(filePaths)) print(len(index)) print(sys.getsizeof(index)) # creates indexMarker.txt and merges index files in index.txt indexMarker = dict() indexDirectory = ".\letters" mergedIndexFile = "index.txt" mwMarkers(indexMarker, indexDirectory, mergedIndexFile) # creates docIDMarker.txt and merges docID files in docID.txt docIDMarker = dict() docIDDirectory = "." + "\\" + "numbers" mergedDocIDFile = "docID.txt" mwMarkers(docIDMarker, docIDDirectory, mergedDocIDFile) # writes markers to files f = open("indexMarkers.txt", "w", encoding='utf-8') f2 = open("docIDMarkers.txt", "w", encoding='utf-8') f.write(str(indexMarker)) f2.write(str(docIDMarker))
4a9da798422a975372d4ef89f748d76b9d09eea2
f4bce35934800e93a2b3eeb14c568001ff70954a
/build/catkin_generated/installspace/_setup_util.py
e3fd8feae7abd1be35880d57a1957a608abe6e88
[]
no_license
SamLyuubc/CarisRoboticsTestbench
94d07519ad3c2d210dd09a51c5278af5986edab2
5a60aca3c5f0ef5d12f3d617b86282ed00ea5487
refs/heads/master
2020-05-04T02:30:17.961966
2019-04-03T20:36:36
2019-04-03T20:36:36
178,927,596
0
0
null
2019-04-22T23:12:45
2019-04-01T18:56:23
C++
UTF-8
Python
false
false
13,042
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. '''This file generates shell code for the setup.SHELL scripts to set environment variables''' from __future__ import print_function import argparse import copy import errno import os import platform import sys CATKIN_MARKER_FILE = '.catkin' system = platform.system() IS_DARWIN = (system == 'Darwin') IS_WINDOWS = (system == 'Windows') # subfolder of workspace prepended to CMAKE_PREFIX_PATH ENV_VAR_SUBFOLDERS = { 'CMAKE_PREFIX_PATH': '', 'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')], 'PATH': 'bin', 'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')], 'PYTHONPATH': 'lib/python2.7/dist-packages', } def rollback_env_variables(environ, env_var_subfolders): ''' Generate shell code to reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH. This does not cover modifications performed by environment hooks. ''' lines = [] unmodified_environ = copy.copy(environ) for key in sorted(env_var_subfolders.keys()): subfolders = env_var_subfolders[key] if not isinstance(subfolders, list): subfolders = [subfolders] value = _rollback_env_variable(unmodified_environ, key, subfolders) if value is not None: environ[key] = value lines.append(assignment(key, value)) if lines: lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH')) return lines def _rollback_env_variable(environ, name, subfolders): ''' For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolders: list of str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. ''' value = environ[name] if name in environ else '' env_paths = [path for path in value.split(os.pathsep) if path] value_modified = False for subfolder in subfolders: if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) value_modified = True new_value = os.pathsep.join(env_paths) return new_value if value_modified else None def _get_workspaces(environ, include_fuerte=False, include_non_existing=False): ''' Based on CMAKE_PREFIX_PATH return all catkin workspaces. :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` ''' # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' value = environ[env_name] if env_name in environ else '' paths = [path for path in value.split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))] return workspaces def prepend_env_variables(environ, env_var_subfolders, workspaces): ''' Generate shell code to prepend environment variables for the all workspaces. ''' lines = [] lines.append(comment('prepend folders of workspaces to environment variables')) paths = [path for path in workspaces.split(os.pathsep) if path] prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '') lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix)) for key in sorted([key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH']): subfolder = env_var_subfolders[key] prefix = _prefix_env_variable(environ, key, paths, subfolder) lines.append(prepend(environ, key, prefix)) return lines def _prefix_env_variable(environ, name, paths, subfolders): ''' Return the prefix to prepend to the environment variable NAME, adding any path in NEW_PATHS_STR without creating duplicate or empty items. ''' value = environ[name] if name in environ else '' environ_paths = [path for path in value.split(os.pathsep) if path] checked_paths = [] for path in paths: if not isinstance(subfolders, list): subfolders = [subfolders] for subfolder in subfolders: path_tmp = path if subfolder: path_tmp = os.path.join(path_tmp, subfolder) # skip nonexistent paths if not os.path.exists(path_tmp): continue # exclude any path already in env and any path we already added if path_tmp not in environ_paths and path_tmp not in checked_paths: checked_paths.append(path_tmp) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def assignment(key, value): if not IS_WINDOWS: return 'export %s="%s"' % (key, value) else: return 'set %s=%s' % (key, value) def comment(msg): if not IS_WINDOWS: return '# %s' % msg else: return 'REM %s' % msg def prepend(environ, key, prefix): if key not in environ or not environ[key]: return assignment(key, prefix) if not IS_WINDOWS: return 'export %s="%s$%s"' % (key, prefix, key) else: return 'set %s=%s%%%s%%' % (key, prefix, key) def find_env_hooks(environ, cmake_prefix_path): ''' Generate shell code with found environment hooks for the all workspaces. ''' lines = [] lines.append(comment('found environment hooks in workspaces')) generic_env_hooks = [] generic_env_hooks_workspace = [] specific_env_hooks = [] specific_env_hooks_workspace = [] generic_env_hooks_by_filename = {} specific_env_hooks_by_filename = {} generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh' specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None # remove non-workspace paths workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))] for workspace in reversed(workspaces): env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d') if os.path.isdir(env_hook_dir): for filename in sorted(os.listdir(env_hook_dir)): if filename.endswith('.%s' % generic_env_hook_ext): # remove previous env hook with same name if present if filename in generic_env_hooks_by_filename: i = generic_env_hooks.index(generic_env_hooks_by_filename[filename]) generic_env_hooks.pop(i) generic_env_hooks_workspace.pop(i) # append env hook generic_env_hooks.append(os.path.join(env_hook_dir, filename)) generic_env_hooks_workspace.append(workspace) generic_env_hooks_by_filename[filename] = generic_env_hooks[-1] elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext): # remove previous env hook with same name if present if filename in specific_env_hooks_by_filename: i = specific_env_hooks.index(specific_env_hooks_by_filename[filename]) specific_env_hooks.pop(i) specific_env_hooks_workspace.pop(i) # append env hook specific_env_hooks.append(os.path.join(env_hook_dir, filename)) specific_env_hooks_workspace.append(workspace) specific_env_hooks_by_filename[filename] = specific_env_hooks[-1] env_hooks = generic_env_hooks + specific_env_hooks env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace count = len(env_hooks) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count)) for i in range(count): lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i])) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i])) return lines def _parse_arguments(args=None): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context') parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment') return parser.parse_known_args(args=args)[0] if __name__ == '__main__': try: try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) sys.exit(1) if not args.local: # environment at generation time CMAKE_PREFIX_PATH = '/home/samlyu/testbench_ws/devel;/opt/ros/kinetic'.split(';') else: # don't consider any other prefix path than this one CMAKE_PREFIX_PATH = [] # prepend current workspace if not already part of CPP base_path = os.path.dirname(__file__) # CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent # base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison if os.path.sep != '/': base_path = base_path.replace(os.path.sep, '/') if base_path not in CMAKE_PREFIX_PATH: CMAKE_PREFIX_PATH.insert(0, base_path) CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH) environ = dict(os.environ) lines = [] if not args.extend: lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS) lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH) lines += find_env_hooks(environ, CMAKE_PREFIX_PATH) print('\n'.join(lines)) # need to explicitly flush the output sys.stdout.flush() except IOError as e: # and catch potential "broken pipe" if stdout is not writable # which can happen when piping the output to a file but the disk is full if e.errno == errno.EPIPE: print(e, file=sys.stderr) sys.exit(2) raise sys.exit(0)
818def7bc87a5c0bcf797c372ee7fd1af118ce87
cebc0b59e26dc564de8eade8510b1d7cd01cd46a
/bspider/master/controller/rabbitmq.py
d0cbcbfbc3221e15006b6946d16b74a3335d8272
[ "BSD-3-Clause" ]
permissive
littlebai3618/bspider
0f18548ef66fbb06a8a95cbcfdaf05db5990c7d1
ff4d003cd0825247db4efe62db95f9245c0a303c
refs/heads/master
2023-04-26T14:47:43.228774
2021-05-13T02:58:35
2021-05-13T02:58:35
255,865,935
2
0
BSD-3-Clause
2021-05-12T02:11:18
2020-04-15T09:20:28
Python
UTF-8
Python
false
false
660
py
from flask import Blueprint from bspider.core.api import auth from bspider.master.service.rabbitmq import RabbitMQService rabbitmq = Blueprint('rabbitmq_bp', __name__) rabbitmq_service = RabbitMQService() @rabbitmq.route('/project/<int:project_id>', methods=['GET']) @auth.login_required def project_queue_info(project_id): """project相关队列的详细信息""" return rabbitmq_service.get_project_queue_info(project_id) @rabbitmq.route('/project/purge/<int:project_id>', methods=['DELETE']) @auth.login_required def purge_project_queue(project_id): """清空待下载链接""" return rabbitmq_service.purge_project_queue(project_id)
2261ff42ef53ff6f7e29b4575773ca2548c73283
bf348f0a5dbde6052f0cf6e4c9e570bd07c13533
/src/ManageDatabases/SettingDatabase.py
ef2a44a44127f3c18a555bccf54ff38bc30b8f18
[]
no_license
PaoloGraziani/webAppFlask
7b114c59108bdfff9d9f768325c3ebcf3b3b90f0
7808c276645215f121def4850ada251f708d41ee
refs/heads/main
2023-07-25T01:33:20.566515
2021-09-09T17:28:27
2021-09-09T17:28:27
383,222,178
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
import psycopg2 ''' Inizializzazione DATABASE di Autenticazione ''' Authentication_HOST = "localhost" Authentication_DATABASE = "AuthDATA" Authentication_USERNAME = "postgres" Authentication_PASSWORD = "postgres" ''' Inizializzazione DATABASE di Applicazione ''' Application_HOST = "localhost" Application_DATABASE = "DbWebApp" Application_USERNAME = "postgres" Application_PASSWORD = "postgres" def closeCursor(cur): cur.close() def connectDatabase(host, database, username, password): newConnection = psycopg2.connect(host=host, database=database, user=username, password=password) return newConnection def closeConnection(conn): conn.close()
b668d29096563112db9bbe2fb4adc91d5dcac26e
34354acd20aba20dc78909edb80376d82ee31efb
/partsix/TestQueue.py
f775be4e01a141aeb458bf93d9d1a12a482c8fe5
[]
no_license
yzw1102/study_python
40de23db9f4f5270d7b8fae0739148e50e4792d7
d8cc929475827925d9135167b5afd5a47232efd0
refs/heads/master
2020-04-13T10:00:16.405293
2019-01-09T07:30:22
2019-01-09T07:30:22
163,126,969
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
from queue import Queue from threading import Thread import time isRead = True def write(q): for value in ['ye1','ye2','ye3']: print('the value write in queue is : {0} '.format(value)) q.put(value) time.sleep(1) def read(q): while isRead: value = q.get(True) print('the value get from queue is : {0}'.format(value)) if __name__ == '__main__': q = Queue() t1 = Thread(target = write,args = (q,)) t2 = Thread(target = read, args = (q,)) t1.start() t2.start()
[ "ye19861102" ]
ye19861102
0ce1a22c0597a986e8737dfbfc156758588401b4
ef44bc7b484f817de597352d948309a98d5b8cf9
/request_batcher/monitor.py
149462ef5076586029f890899e0ab81c590794ed
[]
no_license
j-dutton/request-batcher
f5a5771c0b44f3a589cda5e52c1f857e3f38f9a6
6d740bc787f4125227f87a28f936196416506687
refs/heads/master
2022-12-26T01:36:30.422556
2020-10-12T21:27:25
2020-10-12T21:27:25
302,417,954
0
0
null
null
null
null
UTF-8
Python
false
false
1,252
py
from clicks import click_state from constants import MONITOR_INTERVAL_SECONDS, MAX_OPENS_ALLOWED_IN_STATE, MAX_CLICKS_ALLOWED_IN_STATE from logger import LOG from opens import open_state from utils import repeat @repeat(seconds=MONITOR_INTERVAL_SECONDS) async def monitor(): logger = LOG.getChild('monitor') logger.info('Running Monitor') awaiting_open_batch = len(open_state) awaiting_click_batch = len(click_state) # Opens if awaiting_open_batch > 0: logger.info('Batch of OpenData currently awaiting processing', extra={'length': awaiting_open_batch}) if awaiting_open_batch > MAX_OPENS_ALLOWED_IN_STATE: logger.error( 'Too many OpenData stuck in memory. Dropping all of them.', extra={'length': awaiting_open_batch} ) await open_state.flush_all() # Clicks if awaiting_click_batch > 0: logger.info('Batch of ClickData currently awaiting processing', extra={'length': awaiting_click_batch}) if awaiting_click_batch > MAX_CLICKS_ALLOWED_IN_STATE: logger.error( 'Too many ClickData stuck in memory. Dropping all of them.', extra={'length': awaiting_click_batch} ) await click_state.flush_all()
d8884ed1dbc5f3c83a5ccf73929b638983c841d0
218f2672af3c01422c26051432b34986d490d69a
/01_catboost_enrichi_tuto.py
0d7a620351fb55f660caae721f88ebc8c9425eee
[]
no_license
PatDecideOm/DataScience
a801aacbfcd0b849eaae66a44f1b55e001f18cd2
6818d7859ae49cbe5d19497317b3279fd8c870bf
refs/heads/master
2023-05-30T18:08:23.413375
2021-06-08T09:49:16
2021-06-08T09:49:16
368,841,937
1
0
null
null
null
null
UTF-8
Python
false
false
3,787
py
# Import libraries import pandas as pd import numpy as np import catboost from catboost import CatBoostClassifier import xgboost as xgb import sklearn from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings("ignore") print('Scikit Learn: %s' % sklearn.__version__) print('Catboost: %s' % catboost.__version__) print('xgboost: %s' % xgb.__version__) print('numpy: %s' % np.__version__) print('numpy: %s' % pd.__version__) print('--- DEB ---') dataset = pd.read_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/train_enrichi.csv') unseen = pd.read_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/test_enrichi.csv') print(dataset.shape) print(unseen.shape) dataset = dataset[0:300000] unseen = unseen[0:200000] y = dataset.target X = dataset.drop('target', axis=1) columns = X.columns[1:] print('Columns: %s' % columns) cat_features = columns[:19] print('Features: %s' % cat_features) num_features = columns[20:] print('Numerics: %s' % num_features) train_test = pd.concat([X, unseen], ignore_index=True) for feature in cat_features: le = LabelEncoder() le.fit(train_test[feature]) X[feature] = le.transform(X[feature]) unseen[feature] = le.transform(unseen[feature]) ''' for feature in num_features: X[feature] = (X[feature] - X[feature].mean(0)) / X[feature].std(0) unseen[feature] = (unseen[feature] - unseen[feature].mean(0)) / unseen[feature].std(0) ''' X_train, X_validation, y_train, y_validation = train_test_split(X, y, train_size=0.80, random_state=2021) # Initialize CatBoostClassifier model = CatBoostClassifier(iterations=5000, learning_rate=0.01, depth=8, #loss_function='CrossEntropy', loss_function='Logloss', #custom_loss=['AUC', 'Accuracy'], task_type='GPU', ignored_features=['id'] ) ''' grid = {'learning_rate': [0.03, 0.1], 'depth': [4, 6, 10], 'l2_leaf_reg': [1, 3, 5, 7, 9]} grid_search_result = model.grid_search(grid, X=X_train, y=y_train, plot=False) ''' # Fit model model.fit(X_train, y_train, cat_features, eval_set=(X_validation, y_validation), verbose=250, plot=False) print('Model is fitted : ' + str(model.is_fitted())) print('Model params :') print(model.get_params()) preds = model.predict(unseen) probs= model.predict_proba(unseen) unseen['target'] = probs[:,1] submission = unseen[['id', 'target']] print(submission.head()) submission.to_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/submission_cat_enrichi.csv', columns=['id', 'target'], header=True, index=False) ''' xgb_params = { "objective": "binary:logistic", "eval_metric": "logloss", "learning_rate": 0.010, "max_depth": 8, "n_jobs": 2, "seed": 2021, 'tree_method': "hist" } train_df = xgb.DMatrix(X_train, label=y_train) val_df = xgb.DMatrix(X_validation, label=y_validation) model = xgb.train(xgb_params, train_df, 500) temp_target = model.predict(val_df) best_preds = [0 if line < 0.5 else 1 for line in temp_target] from sklearn.metrics import precision_score print(precision_score(best_preds, y_validation, average='macro')) df_unseen = xgb.DMatrix(unseen) # preds = model.predict(df_unseen) ''' print('--- FIN ---')
52d3a05067138b36faf6b476467edbebd184d716
622bd4fb4cb50361a5e887544d92a04debb0dd2b
/databus/client/user.py
230a222d78e3993622a008dc484972f4a37cea4f
[ "Apache-2.0" ]
permissive
tedrepo/databus
aec06bd28f761ca4beff290fc856e93dd2948c07
0f1f290c1b061175a652c3f72efc0d091a5e08c9
refs/heads/master
2022-12-01T03:10:15.182783
2020-08-08T18:40:54
2020-08-08T18:40:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
""" Module for web users """ import uuid class Credential: # pylint: disable=R0903 """ Class defining a user credential """ def __init__(self, username: str = "Guest", password: str = "", token: str = ""): self.username = username self.password = password self.token = token def generate_token(self): """ Generates and assigns a new token """ self.token = str(uuid.uuid1()) class User: # pylint: disable=R0903 """ Class defining a web user """ def __init__(self, credential: Credential = None): if credential is None: self.credential = Credential() else: self.credential = credential def authenticate(self, credential: Credential) -> bool: """ Checks if the user & password matches """ if credential.username != self.credential.username: return False if credential.password != "" and credential.password == self.credential.password: return True if credential.token != "" and credential.token == self.credential.token: return True return False
83932b497fb4b87191f07e51e57a976f85c5e3b7
8005bde2cfeba49c5cd1b88dc2c0d1c0fc4d85dc
/manage_class.py
6d9d43699f03cfed55fba6a29376876956fd2ed2
[]
no_license
coulibaly-mouhamed/Basic_Fake_News_detector
85ab75d39a65b98ea2724f02564c196fbbdc08a8
7fd985b4ab3335212f6f0ba8242ec1c6f5439658
refs/heads/master
2023-04-06T17:22:19.180102
2021-04-26T10:37:47
2021-04-26T10:37:47
252,579,017
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
############################################################## class news(): def __init__(self,headline,domain): self.headline = headline self.domain = domain def __str__(self): return '%.2c:%2.c' %(self.domain,self.headline) class invalid_input(Exception): pass ######################################################### #Prevent dealing with class not_a_link(Exception): pass
a42f30fc4aa79865a8e957a7231fab17cdcac3f8
568bc70dca53f0d095313f00d572383284243e34
/Project/wine_last/wine/device.py
16fd35980551f5ec948644712c176cd54a98f7ff
[]
no_license
msanchezalcon/Dialogue-Systems-2
07d3b1200646bb9a0197eae7fff3c0606a7f40a9
a834f819a35457a4954917d82a158147001d29f6
refs/heads/master
2020-08-03T18:28:48.317591
2019-11-04T12:42:58
2019-11-04T12:42:58
211,845,302
0
0
null
null
null
null
UTF-8
Python
false
false
2,594
py
from tdm.lib.device import DddDevice, DeviceWHQuery, DeviceAction from urllib2 import Request,urlopen import json import requests class PairingDevice(DddDevice): key = "e51e73fba2ce4002899dc7aec175063f" def request_api_wine_pairing(self, food_type, max_price): """ Find a wine that goes well with a food. Food can be a dish name ("steak"), an ingredient name ("salmon"), or a cuisine ("italian"). """ url = "https://api.spoonacular.com/food/wine/pairing?apiKey=%s&food=%s&price=%s" % (self.key, food_type, max_price) #print(url) response = requests.get(url) data = response.json() return data def request_api_wine_recommendation(self, max_price, min_rating, wine_type): """ Get a specific wine recommendation (concrete product) for a given wine type, e.g. "merlot". """ url = "https://api.spoonacular.com/food/wine/recommendation?apiKey={}&wine={}&maxPrice={}&minRating={}".format(self.key, wine_type, max_price, min_rating) response = requests.get(url) data = response.json() #print(data) return data class GetWinePairing(DeviceAction): def perform(self, max_price, food_type, get_wine_pairing_from_api): success = True return success class GetWineRecommendation(DeviceAction): def perform(self, max_price, min_rating, wine_type, get_wine_recommendation_from_api): success = True return success class get_wine_pairing_from_api(DeviceWHQuery): def perform(self, food_type, max_price): if max_price == '': max_price = None data = self.device.request_api_wine_pairing(food_type, max_price) wine_pairing = str(data["pairedWines"][0]) return [wine_pairing] class get_wine_recommendation_from_api(DeviceWHQuery): def perform(self, wine_type, max_price, min_rating): min_rating = "0.{}".format(min_rating) if max_price == '': max_price = None if min_rating == '': min_rating = None data = self.device.request_api_wine_recommendation(max_price, min_rating, wine_type) wine_recommendation = str(data["recommendedWines"][0]["title"]) #print(wine_recommendation) return [wine_recommendation] class ask_min_rating(DeviceWHQuery): def perform(self): return [""]
0c86204fe5c33368162d5f576953acf36b7bdb95
41ea3e67428a59c665fcb189d392a6fb1a374ffe
/prg3.py.copy
5f7f6337e48a0c9544bcdfefc83a4eead9dc5913
[]
no_license
hitesh2402/carrom
fcd154f3f760528f0adb15f843fcbf4be763d014
0e4fe67eb1be3ed7ea92d7e8775ec92cead30355
refs/heads/master
2021-05-13T20:43:18.477110
2018-01-10T06:53:59
2018-01-10T06:53:59
116,917,919
0
0
null
null
null
null
UTF-8
Python
false
false
1,566
copy
#!/usr/bin/env python import pygame class Colors(): WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) class Application(object): _instance = None def initialize(title='Empty Title'display_width = 800, display_height = 600): pygame.init() gameDisplay = pygame.display.set_mode((display_width,display_height)) pygame.display.set_caption(title) clock = pygame.time.Clock() = False carImg = pygame.image.load('racecar.png') def car(x,y): gameDisplay.blit(carImg, (x,y)) x = (display_width * 0.45) y = (display_height * 0.8) x_change = 0 y_change = 0 car_speed = 0 while not crashed: for event in pygame.event.get(): if event.type == pygame.QUIT: crashed = True ############################ if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: x_change = -5 elif event.key == pygame.K_RIGHT: x_change = 5 elif event.key == pygame.K_UP: y_change = -5 elif event.key == pygame.K_DOWN: y_change = 5 if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT or event.key == pygame.K_UP or event.key == pygame.K_DOWN: x_change = 0 y_change = 0 ###################### ## x += x_change y += y_change ## gameDisplay.fill(white) car(x,y) pygame.display.update() clock.tick(60) pygame.quit() quit()
85190e278f5252ba76b1a7efadbcd85d7aafd277
cdf782224f9b74cf8acce919406d03791254fd3c
/assignment3/main.py
c17bd67d590ec107763c46e32b476e5acfcc9709
[]
no_license
tollefj/information-retrieval
1bcc46e9fcc15c74ee8dccb31a015935d7e850a7
43535384ace262d0b293c26d249b11622f18e470
refs/heads/master
2022-07-14T22:11:06.716504
2017-10-28T17:10:39
2017-10-28T17:10:39
106,025,641
1
0
null
null
null
null
UTF-8
Python
false
false
208
py
from _gensim import GenSim if __name__ == '__main__': gs = GenSim() gs.read_stopwords() gs.load() gs.build_dictionary() gs.build_bag() gs.build_tfidf_model() gs.build_lsi_model()
d8331a4aaa0fc5a0db2f7d9cafbd092f009019ed
b62177a84db5d209f37dfc60d56f1dc9ab3174c2
/kleague/data/transfercentre.py
3f0bc79348879b983945c0a34c1a0687a2a23d83
[]
no_license
bsmmoon/kleague
12f8e9de8b4131ec37e33da4c822438fb9b8dd2a
dfdc1ecb79badb0529fd624ca1743bc69d1408b9
refs/heads/master
2021-01-09T21:45:00.626003
2015-12-05T08:17:44
2015-12-05T08:17:44
47,249,837
0
0
null
2015-12-05T08:17:45
2015-12-02T09:13:17
Python
UTF-8
Python
false
false
353
py
class TransferCentre(): def __init__(self): self._windowList = [] self._contracts = [] @property def contracts(self): return self._contracts def addContract(self, contract): contract.contractID = len(self._contracts) self._contracts.append(contract) def printContracts(self): for contract in self._contracts: print(contract)
4ab4fec920df659a95a12694df60fd03dfca6791
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
/SDKs/swig/Examples/test-suite/python/abstract_virtual_runme.py
2a8411578017fc06324e210386ddd29a61e19eb8
[]
no_license
Personwithhat/CE_SDKs
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
refs/heads/master
2020-04-09T22:14:56.917176
2019-07-04T00:19:11
2019-07-04T00:19:11
160,623,495
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
version https://git-lfs.github.com/spec/v1 oid sha256:fce41bedc93abe3933ce0f2546b68f02a08faf0778e211b1ba7b30a7f3909ed8 size 50
602ee7bb28019e48deae7c70a09530a5bd967e5d
b8f718a0265a345512ea4df423d161e84ca2b869
/true _skip_1/TrueCase/1qna/1qna_chimera.py
deadae6e68203e09882bbb83aed808a7a150b1fc
[]
no_license
tunazislam/twist-angle-calculation
16894ca19c46f3bc875e9c80b2e62b741ef19511
18320d886b8e29bccbdd26e303450cfc0ad606a3
refs/heads/master
2021-06-14T08:51:31.611126
2017-05-04T15:20:51
2017-05-04T15:20:51
84,751,769
0
0
null
null
null
null
UTF-8
Python
false
false
550,124
py
import cPickle, base64 try: from SimpleSession.versions.v62 import beginRestore,\ registerAfterModelsCB, reportRestoreError, checkVersion except ImportError: from chimera import UserError raise UserError('Cannot open session that was saved in a' ' newer version of Chimera; update your version') checkVersion([1, 10, 2, 40686]) import chimera from chimera import replyobj replyobj.status('Restoring session...', \ blankAfter=0) replyobj.status('Beginning session restore...', \ blankAfter=0, secondary=True) beginRestore() def restoreCoreModels(): from SimpleSession.versions.v62 import init, restoreViewer, \ restoreMolecules, restoreColors, restoreSurfaces, \ restoreVRML, restorePseudoBondGroups, restoreModelAssociations molInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVRFyaWJib25JbnNpZGVDb2xvcnECSwNOfYdVCWJhbGxTY2FsZXEDSwNHP9AAAAAAAAB9h1UJcG9pbnRTaXplcQRLA0c/8AAAAAAAAH2HVQVjb2xvcnEFSwNLAH1xBihLAV1xB0sBYUsCXXEISwJhdYdVCnJpYmJvblR5cGVxCUsDSwB9h1UKc3RpY2tTY2FsZXEKSwNHP/AAAAAAAAB9h1UMYXJvbWF0aWNNb2RlcQtLA0sBfYdVCnZkd0RlbnNpdHlxDEsDR0AUAAAAAAAAfYdVBmhpZGRlbnENSwOJfYdVDWFyb21hdGljQ29sb3JxDksDTn2HVQ9yaWJib25TbW9vdGhpbmdxD0sDSwB9h1UJYXV0b2NoYWlucRBLA4h9h1UIb3B0aW9uYWxxEX1xElUIb3BlbmVkQXNxE4iJSwMoWHsAAABaOlxTcHJpbmcgMjAxN1xHcmFwaHMgaW4gQmlvaW5mb3JtYXRpY3NcUHJvamVjdFxBQ01fQkNCXzIwMTdcNCBjb25zZWN1dGl2ZV91c2luZyBpbWFnZSBkYXRhXDFxbmFcYmFkXF90cmFuc18wX29yaWVudF82MC5wZGJxFFUDUERCcRVOiXRxFn1xFygoWFwAAABaOlxTcHJpbmcgMjAxN1xHcmFwaHMgaW4gQmlvaW5mb3JtYXRpY3NcUHJvamVjdFxBQ01fQkNCXzIwMTdcMy4yLjE3XDFxbmFcb3V0cHV0X3BkYl8xcW5hLnBkYnEYaBVOiXRxGV1xGksCYShYfAAAAFo6XFNwcmluZyAyMDE3XEdyYXBocyBpbiBCaW9pbmZvcm1hdGljc1xQcm9qZWN0XEFDTV9CQ0JfMjAxN1w0IGNvbnNlY3V0aXZlX3VzaW5nIGltYWdlIGRhdGFcMXFuYVxnb29kXF90cmFuc18wX29yaWVudF8zMC5wZGJxG2gVTol0cRxdcR1LAGF1h4dzVQ9sb3dlckNhc2VDaGFpbnNxHksDiX2HVQlsaW5lV2lkdGhxH0sDRz/wAAAAAAAAfYdVD3Jlc2lkdWVMYWJlbFBvc3EgSwNLAH2HVQRuYW1lcSFLA1gWAAAAX3RyYW5zXzBfb3JpZW50XzYwLnBkYn1xIihYFgAAAF90cmFuc18wX29yaWVudF8zMC5wZGJdcSNLAGFYEwAAAG91dHB1dF9wZGJfMXFuYS5wZGJdcSRLAmF1h1UPYXJvbWF0aWNEaXNwbGF5cSVLA4l9h1UPcmliYm9uU3RpZmZuZXNzcSZLA0c/6ZmZmZmZmn2HVQpwZGJIZWFkZXJzcSddcSgofXEpfXEqfXErZVUDaWRzcSxLA0sDSwCGfXEtKEsCSwCGXXEuSwFhSwFLAIZdcS9LAGF1h1UOc3VyZmFjZU9wYWNpdHlxMEsDR7/wAAAAAAAAfYdVEGFyb21hdGljTGluZVR5cGVxMUsDSwJ9h1UUcmliYm9uSGlkZXNNYWluY2hhaW5xMksDiH2HVQdkaXNwbGF5cTNLA4h9h3Uu')) resInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQZpbnNlcnRxAksDVQEgfYdVC2ZpbGxEaXNwbGF5cQNLA4l9h1UEbmFtZXEESwNYAwAAAEhPSH1xBVgDAAAATEVVXXEGSwJhc4dVBWNoYWlucQdLA1gBAAAAQX2HVQ5yaWJib25EcmF3TW9kZXEISwNLAn2HVQJzc3EJSwOJiYZ9h1UIbW9sZWN1bGVxCksDSwB9cQsoSwFOXXEMSwFLAYZxDWGGSwJOXXEOSwJLAYZxD2GGdYdVC3JpYmJvbkNvbG9ycRBLA059h1UFbGFiZWxxEUsDWAAAAAB9h1UKbGFiZWxDb2xvcnESSwNOfYdVCGZpbGxNb2RlcRNLA0sBfYdVBWlzSGV0cRRLA4l9h1ULbGFiZWxPZmZzZXRxFUsDTn2HVQhwb3NpdGlvbnEWXXEXKEsBSwGGcRhLAUsBhnEZS1FLAYZxGmVVDXJpYmJvbkRpc3BsYXlxG0sDiX2HVQhvcHRpb25hbHEcfVUEc3NJZHEdSwNK/////32HdS4=')) atomInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQdyZXNpZHVlcQJNaS1LA31xAyhLBE5dcQRNlBtNeRGGcQVhhksFTl1xBk0NLUtchnEHYYZ1h1UIdmR3Q29sb3JxCE1pLU59h1UEbmFtZXEJTWktWAEAAABIfXEKWAEAAABTXXELKE0NLU0OLU0PLU0QLU0RLU0SLU0TLU0ULU0VLU0WLU0XLU0YLU0ZLU0aLU0bLU0cLU0dLU0eLU0fLU0gLU0hLU0iLU0jLU0kLU0lLU0mLU0nLU0oLU0pLU0qLU0rLU0sLU0tLU0uLU0vLU0wLU0xLU0yLU0zLU00LU01LU02LU03LU04LU05LU06LU07LU08LU09LU0+LU0/LU1ALU1BLU1CLU1DLU1ELU1FLU1GLU1HLU1ILU1JLU1KLU1LLU1MLU1NLU1OLU1PLU1QLU1RLU1SLU1TLU1ULU1VLU1WLU1XLU1YLU1ZLU1aLU1bLU1cLU1dLU1eLU1fLU1gLU1hLU1iLU1jLU1kLU1lLU1mLU1nLU1oLWVzh1UDdmR3cQxNaS2JfYdVDnN1cmZhY2VEaXNwbGF5cQ1NaS2JfYdVBWNvbG9ycQ5NaS1LA31xDyhLBF1xEChNlBtNlRtNlhtNlxtNmBtNmRtNmhtNmxtNnBtNnRtNnhtNnxtNoBtNoRtNohtNoxtNpBtNpRtNphtNpxtNqBtNqRtNqhtNqxtNrBtNrRtNrhtNrxtNsBtNsRtNshtNsxtNtBtNtRtNthtNtxtNuBtNuRtNuhtNuxtNvBtNvRtNvhtNvxtNwBtNwRtNwhtNwxtNxBtNxRtNxhtNxxtNyBtNyRtNyhtNyxtNzBtNzRtNzhtNzxtN0BtN0RtN0htN0xtN1BtN1RtN1htN1xtN2BtN2RtN2htN2xtN3BtN3RtN3htN3xtN4BtN4RtN4htN4xtN5BtN5RtN5htN5xtN6BtN6RtN6htN6xtN7BtN7RtN7htN7xtN8BtN8RtN8htN8xtN9BtN9RtN9htN9xtN+BtN+RtN+htN+xtN/BtN/RtN/htN/xtNABxNARxNAhxNAxxNBBxNBRxNBhxNBxxNCBxNCRxNChxNCxxNDBxNDRxNDhxNDxxNEBxNERxNEhxNExxNFBxNFRxNFhxNFxxNGBxNGRxNGhxNGxxNHBxNHRxNHhxNHxxNIBxNIRxNIhxNIxxNJBxNJRxNJhxNJxxNKBxNKRxNKhxNKxxNLBxNLRxNLhxNLxxNMBxNMRxNMhxNMxxNNBxNNRxNNhxNNxxNOBxNORxNOhxNOxxNPBxNPRxNPhxNPxxNQBxNQRxNQhxNQxxNRBxNRRxNRhxNRxxNSBxNSRxNShxNSxxNTBxNTRxNThxNTxxNUBxNURxNUhxNUxxNVBxNVRxNVhxNVxxNWBxNWRxNWhxNWxxNXBxNXRxNXhxNXxxNYBxNYRxNYhxNYxxNZBxNZRxNZhxNZxxNaBxNaRxNahxNaxxNbBxNbRxNbhxNbxxNcBxNcRxNchxNcxxNdBxNdRxNdhxNdxxNeBxNeRxNehxNexxNfBxNfRxNfhxNfxxNgBxNgRxNghxNgxxNhBxNhRxNhhxNhxxNiBxNiRxNihxNixxNjBxNjRxNjhxNjxxNkBxNkRxNkhxNkxxNlBxNlRxNlhxNlxxNmBxNmRxNmhxNmxxNnBxNnRxNnhxNnxxNoBxNoRxNohxNoxxNpBxNpRxNphxNpxxNqBxNqRxNqhxNqxxNrBxNrRxNrhxNrxxNsBxNsRxNshxNsxxNtBxNtRxNthxNtxxNuBxNuRxNuhxNuxxNvBxNvRxNvhxNvxxNwBxNwRxNwhxNwxxNxBxNxRxNxhxNxxxNyBxNyRxNyhxNyxxNzBxNzRxNzhxNzxxN0BxN0RxN0hxN0xxN1BxN1RxN1hxN1xxN2BxN2RxN2hxN2xxN3BxN3RxN3hxN3xxN4BxN4RxN4hxN4xxN5BxN5RxN5hxN5xxN6BxN6RxN6hxN6xxN7BxN7RxN7hxN7xxN8BxN8RxN8hxN8xxN9BxN9RxN9hxN9xxN+BxN+RxN+hxN+xxN/BxN/RxN/hxN/xxNAB1NAR1NAh1NAx1NBB1NBR1NBh1NBx1NCB1NCR1NCh1NCx1NDB1NDR1NDh1NDx1NEB1NER1NEh1NEx1NFB1NFR1NFh1NFx1NGB1NGR1NGh1NGx1NHB1NHR1NHh1NHx1NIB1NIR1NIh1NIx1NJB1NJR1NJh1NJx1NKB1NKR1NKh1NKx1NLB1NLR1NLh1NLx1NMB1NMR1NMh1NMx1NNB1NNR1NNh1NNx1NOB1NOR1NOh1NOx1NPB1NPR1NPh1NPx1NQB1NQR1NQh1NQx1NRB1NRR1NRh1NRx1NSB1NSR1NSh1NSx1NTB1NTR1NTh1NTx1NUB1NUR1NUh1NUx1NVB1NVR1NVh1NVx1NWB1NWR1NWh1NWx1NXB1NXR1NXh1NXx1NYB1NYR1NYh1NYx1NZB1NZR1NZh1NZx1NaB1NaR1Nah1Nax1NbB1NbR1Nbh1Nbx1NcB1NcR1Nch1Ncx1NdB1NdR1Ndh1Ndx1NeB1NeR1Neh1Nex1NfB1NfR1Nfh1Nfx1NgB1NgR1Ngh1Ngx1NhB1NhR1Nhh1Nhx1NiB1NiR1Nih1Nix1NjB1NjR1Njh1Njx1NkB1NkR1Nkh1Nkx1NlB1NlR1Nlh1Nlx1NmB1NmR1Nmh1Nmx1NnB1NnR1Nnh1Nnx1NoB1NoR1Noh1Nox1NpB1NpR1Nph1Npx1NqB1NqR1Nqh1Nqx1NrB1NrR1Nrh1Nrx1NsB1NsR1Nsh1Nsx1NtB1NtR1Nth1Ntx1NuB1NuR1Nuh1Nux1NvB1NvR1Nvh1Nvx1NwB1NwR1Nwh1Nwx1NxB1NxR1Nxh1Nxx1NyB1NyR1Nyh1Nyx1NzB1NzR1Nzh1Nzx1N0B1N0R1N0h1N0x1N1B1N1R1N1h1N1x1N2B1N2R1N2h1N2x1N3B1N3R1N3h1N3x1N4B1N4R1N4h1N4x1N5B1N5R1N5h1N5x1N6B1N6R1N6h1N6x1N7B1N7R1N7h1N7x1N8B1N8R1N8h1N8x1N9B1N9R1N9h1N9x1N+B1N+R1N+h1N+x1N/B1N/R1N/h1N/x1NAB5NAR5NAh5NAx5NBB5NBR5NBh5NBx5NCB5NCR5NCh5NCx5NDB5NDR5NDh5NDx5NEB5NER5NEh5NEx5NFB5NFR5NFh5NFx5NGB5NGR5NGh5NGx5NHB5NHR5NHh5NHx5NIB5NIR5NIh5NIx5NJB5NJR5NJh5NJx5NKB5NKR5NKh5NKx5NLB5NLR5NLh5NLx5NMB5NMR5NMh5NMx5NNB5NNR5NNh5NNx5NOB5NOR5NOh5NOx5NPB5NPR5NPh5NPx5NQB5NQR5NQh5NQx5NRB5NRR5NRh5NRx5NSB5NSR5NSh5NSx5NTB5NTR5NTh5NTx5NUB5NUR5NUh5NUx5NVB5NVR5NVh5NVx5NWB5NWR5NWh5NWx5NXB5NXR5NXh5NXx5NYB5NYR5NYh5NYx5NZB5NZR5NZh5NZx5NaB5NaR5Nah5Nax5NbB5NbR5Nbh5Nbx5NcB5NcR5Nch5Ncx5NdB5NdR5Ndh5Ndx5NeB5NeR5Neh5Nex5NfB5NfR5Nfh5Nfx5NgB5NgR5Ngh5Ngx5NhB5NhR5Nhh5Nhx5NiB5NiR5Nih5Nix5NjB5NjR5Njh5Njx5NkB5NkR5Nkh5Nkx5NlB5NlR5Nlh5Nlx5NmB5NmR5Nmh5Nmx5NnB5NnR5Nnh5Nnx5NoB5NoR5Noh5Nox5NpB5NpR5Nph5Npx5NqB5NqR5Nqh5Nqx5NrB5NrR5Nrh5Nrx5NsB5NsR5Nsh5Nsx5NtB5NtR5Nth5Ntx5NuB5NuR5Nuh5Nux5NvB5NvR5Nvh5Nvx5NwB5NwR5Nwh5Nwx5NxB5NxR5Nxh5Nxx5NyB5NyR5Nyh5Nyx5NzB5NzR5Nzh5Nzx5N0B5N0R5N0h5N0x5N1B5N1R5N1h5N1x5N2B5N2R5N2h5N2x5N3B5N3R5N3h5N3x5N4B5N4R5N4h5N4x5N5B5N5R5N5h5N5x5N6B5N6R5N6h5N6x5N7B5N7R5N7h5N7x5N8B5N8R5N8h5N8x5N9B5N9R5N9h5N9x5N+B5N+R5N+h5N+x5N/B5N/R5N/h5N/x5NAB9NAR9NAh9NAx9NBB9NBR9NBh9NBx9NCB9NCR9NCh9NCx9NDB9NDR9NDh9NDx9NEB9NER9NEh9NEx9NFB9NFR9NFh9NFx9NGB9NGR9NGh9NGx9NHB9NHR9NHh9NHx9NIB9NIR9NIh9NIx9NJB9NJR9NJh9NJx9NKB9NKR9NKh9NKx9NLB9NLR9NLh9NLx9NMB9NMR9NMh9NMx9NNB9NNR9NNh9NNx9NOB9NOR9NOh9NOx9NPB9NPR9NPh9NPx9NQB9NQR9NQh9NQx9NRB9NRR9NRh9NRx9NSB9NSR9NSh9NSx9NTB9NTR9NTh9NTx9NUB9NUR9NUh9NUx9NVB9NVR9NVh9NVx9NWB9NWR9NWh9NWx9NXB9NXR9NXh9NXx9NYB9NYR9NYh9NYx9NZB9NZR9NZh9NZx9NaB9NaR9Nah9Nax9NbB9NbR9Nbh9Nbx9NcB9NcR9Nch9Ncx9NdB9NdR9Ndh9Ndx9NeB9NeR9Neh9Nex9lKE18H019H01+H01/H02AH02BH02CH02DH02EH02FH02GH02HH02IH02JH02KH02LH02MH02NH02OH02PH02QH02RH02SH02TH02UH02VH02WH02XH02YH02ZH02aH02bH02cH02dH02eH02fH02gH02hH02iH02jH02kH02lH02mH02nH02oH02pH02qH02rH02sH02tH02uH02vH02wH02xH02yH02zH020H021H022H023H024H025H026H027H028H029H02+H02/H03AH03BH03CH03DH03EH03FH03GH03HH03IH03JH03KH03LH03MH03NH03OH03PH03QH03RH03SH03TH03UH03VH03WH03XH03YH03ZH03aH03bH03cH03dH03eH03fH03gH03hH03iH03jH03kH03lH03mH03nH03oH03pH03qH03rH03sH03tH03uH03vH03wH03xH03yH03zH030H031H032H033H034H035H036H037H038H039H03+H03/H00AIE0BIE0CIE0DIE0EIE0FIE0GIE0HIE0IIE0JIE0KIE0LIE0MIE0NIE0OIE0PIE0QIE0RIE0SIE0TIE0UIE0VIE0WIE0XIE0YIE0ZIE0aIE0bIE0cIE0dIE0eIE0fIE0gIE0hIE0iIE0jIE0kIE0lIE0mIE0nIE0oIE0pIE0qIE0rIE0sIE0tIE0uIE0vIE0wIE0xIE0yIE0zIE00IE01IE02IE03IE04IE05IE06IE07IE08IE09IE0+IE0/IE1AIE1BIE1CIE1DIE1EIE1FIE1GIE1HIE1IIE1JIE1KIE1LIE1MIE1NIE1OIE1PIE1QIE1RIE1SIE1TIE1UIE1VIE1WIE1XIE1YIE1ZIE1aIE1bIE1cIE1dIE1eIE1fIE1gIE1hIE1iIE1jIE1kIE1lIE1mIE1nIE1oIE1pIE1qIE1rIE1sIE1tIE1uIE1vIE1wIE1xIE1yIE1zIE10IE11IE12IE13IE14IE15IE16IE17IE18IE19IE1+IE1/IE2AIE2BIE2CIE2DIE2EIE2FIE2GIE2HIE2IIE2JIE2KIE2LIE2MIE2NIE2OIE2PIE2QIE2RIE2SIE2TIE2UIE2VIE2WIE2XIE2YIE2ZIE2aIE2bIE2cIE2dIE2eIE2fIE2gIE2hIE2iIE2jIE2kIE2lIE2mIE2nIE2oIE2pIE2qIE2rIE2sIE2tIE2uIE2vIE2wIE2xIE2yIE2zIE20IE21IE22IE23IE24IE25IE26IE27IE28IE29IE2+IE2/IE3AIE3BIE3CIE3DIE3EIE3FIE3GIE3HIE3IIE3JIE3KIE3LIE3MIE3NIE3OIE3PIE3QIE3RIE3SIE3TIE3UIE3VIE3WIE3XIE3YIE3ZIE3aIE3bIE3cIE3dIE3eIE3fIE3gIE3hIE3iIE3jIE3kIE3lIE3mIE3nIE3oIE3pIE3qIE3rIE3sIE3tIE3uIE3vIE3wIE3xIE3yIE3zIE30IE31IE32IE33IE34IE35IE36IE37IE38IE39IE3+IE3/IE0AIU0BIU0CIU0DIU0EIU0FIU0GIU0HIU0IIU0JIU0KIU0LIU0MIU0NIU0OIU0PIU0QIU0RIU0SIU0TIU0UIU0VIU0WIU0XIU0YIU0ZIU0aIU0bIU0cIU0dIU0eIU0fIU0gIU0hIU0iIU0jIU0kIU0lIU0mIU0nIU0oIU0pIU0qIU0rIU0sIU0tIU0uIU0vIU0wIU0xIU0yIU0zIU00IU01IU02IU03IU04IU05IU06IU07IU08IU09IU0+IU0/IU1AIU1BIU1CIU1DIU1EIU1FIU1GIU1HIU1IIU1JIU1KIU1LIU1MIU1NIU1OIU1PIU1QIU1RIU1SIU1TIU1UIU1VIU1WIU1XIU1YIU1ZIU1aIU1bIU1cIU1dIU1eIU1fIU1gIU1hIU1iIU1jIU1kIU1lIU1mIU1nIU1oIU1pIU1qIU1rIU1sIU1tIU1uIU1vIU1wIU1xIU1yIU1zIU10IU11IU12IU13IU14IU15IU16IU17IU18IU19IU1+IU1/IU2AIU2BIU2CIU2DIU2EIU2FIU2GIU2HIU2IIU2JIU2KIU2LIU2MIU2NIU2OIU2PIU2QIU2RIU2SIU2TIU2UIU2VIU2WIU2XIU2YIU2ZIU2aIU2bIU2cIU2dIU2eIU2fIU2gIU2hIU2iIU2jIU2kIU2lIU2mIU2nIU2oIU2pIU2qIU2rIU2sIU2tIU2uIU2vIU2wIU2xIU2yIU2zIU20IU21IU22IU23IU24IU25IU26IU27IU28IU29IU2+IU2/IU3AIU3BIU3CIU3DIU3EIU3FIU3GIU3HIU3IIU3JIU3KIU3LIU3MIU3NIU3OIU3PIU3QIU3RIU3SIU3TIU3UIU3VIU3WIU3XIU3YIU3ZIU3aIU3bIU3cIU3dIU3eIU3fIU3gIU3hIU3iIU3jIU3kIU3lIU3mIU3nIU3oIU3pIU3qIU3rIU3sIU3tIU3uIU3vIU3wIU3xIU3yIU3zIU30IU31IU32IU33IU34IU35IU36IU37IU38IU39IU3+IU3/IU0AIk0BIk0CIk0DIk0EIk0FIk0GIk0HIk0IIk0JIk0KIk0LIk0MIk0NIk0OIk0PIk0QIk0RIk0SIk0TIk0UIk0VIk0WIk0XIk0YIk0ZIk0aIk0bIk0cIk0dIk0eIk0fIk0gIk0hIk0iIk0jIk0kIk0lIk0mIk0nIk0oIk0pIk0qIk0rIk0sIk0tIk0uIk0vIk0wIk0xIk0yIk0zIk00Ik01Ik02Ik03Ik04Ik05Ik06Ik07Ik08Ik09Ik0+Ik0/Ik1AIk1BIk1CIk1DIk1EIk1FIk1GIk1HIk1IIk1JIk1KIk1LIk1MIk1NIk1OIk1PIk1QIk1RIk1SIk1TIk1UIk1VIk1WIk1XIk1YIk1ZIk1aIk1bIk1cIk1dIk1eIk1fIk1gIk1hIk1iIk1jIk1kIk1lIk1mIk1nIk1oIk1pIk1qIk1rIk1sIk1tIk1uIk1vIk1wIk1xIk1yIk1zIk10Ik11Ik12Ik13Ik14Ik15Ik16Ik17Ik18Ik19Ik1+Ik1/Ik2AIk2BIk2CIk2DIk2EIk2FIk2GIk2HIk2IIk2JIk2KIk2LIk2MIk2NIk2OIk2PIk2QIk2RIk2SIk2TIk2UIk2VIk2WIk2XIk2YIk2ZIk2aIk2bIk2cIk2dIk2eIk2fIk2gIk2hIk2iIk2jIk2kIk2lIk2mIk2nIk2oIk2pIk2qIk2rIk2sIk2tIk2uIk2vIk2wIk2xIk2yIk2zIk20Ik21Ik22Ik23Ik24Ik25Ik26Ik27Ik28Ik29Ik2+Ik2/Ik3AIk3BIk3CIk3DIk3EIk3FIk3GIk3HIk3IIk3JIk3KIk3LIk3MIk3NIk3OIk3PIk3QIk3RIk3SIk3TIk3UIk3VIk3WIk3XIk3YIk3ZIk3aIk3bIk3cIk3dIk3eIk3fIk3gIk3hIk3iIk3jIk3kIk3lIk3mIk3nIk3oIk3pIk3qIk3rIk3sIk3tIk3uIk3vIk3wIk3xIk3yIk3zIk30Ik31Ik32Ik33Ik34Ik35Ik36Ik37Ik38Ik39Ik3+Ik3/Ik0AI00BI00CI00DI00EI00FI00GI00HI00II00JI00KI00LI00MI00NI00OI00PI00QI00RI00SI00TI00UI00VI00WI00XI00YI00ZI00aI00bI00cI00dI00eI00fI00gI00hI00iI00jI00kI00lI00mI00nI00oI00pI00qI00rI00sI00tI00uI00vI00wI00xI00yI00zI000I001I002I003I004I005I006I007I008I009I00+I00/I01AI01BI01CI01DI01EI01FI01GI01HI01II01JI01KI01LI01MI01NI01OI01PI01QI01RI01SI01TI01UI01VI01WI01XI01YI01ZI01aI01bI01cI01dI01eI01fI01gI01hI01iI01jI2UoTWQjTWUjTWYjTWcjTWgjTWkjTWojTWsjTWwjTW0jTW4jTW8jTXAjTXEjTXIjTXMjTXQjTXUjTXYjTXcjTXgjTXkjTXojTXsjTXwjTX0jTX4jTX8jTYAjTYEjTYIjTYMjTYQjTYUjTYYjTYcjTYgjTYkjTYojTYsjTYwjTY0jTY4jTY8jTZAjTZEjTZIjTZMjTZQjTZUjTZYjTZcjTZgjTZkjTZojTZsjTZwjTZ0jTZ4jTZ8jTaAjTaEjTaIjTaMjTaQjTaUjTaYjTacjTagjTakjTaojTasjTawjTa0jTa4jTa8jTbAjTbEjTbIjTbMjTbQjTbUjTbYjTbcjTbgjTbkjTbojTbsjTbwjTb0jTb4jTb8jTcAjTcEjTcIjTcMjTcQjTcUjTcYjTccjTcgjTckjTcojTcsjTcwjTc0jTc4jTc8jTdAjTdEjTdIjTdMjTdQjTdUjTdYjTdcjTdgjTdkjTdojTdsjTdwjTd0jTd4jTd8jTeAjTeEjTeIjTeMjTeQjTeUjTeYjTecjTegjTekjTeojTesjTewjTe0jTe4jTe8jTfAjTfEjTfIjTfMjTfQjTfUjTfYjTfcjTfgjTfkjTfojTfsjTfwjTf0jTf4jTf8jTQAkTQEkTQIkTQMkTQQkTQUkTQYkTQckTQgkTQkkTQokTQskTQwkTQ0kTQ4kTQ8kTRAkTREkTRIkTRMkTRQkTRUkTRYkTRckTRgkTRkkTRokTRskTRwkTR0kTR4kTR8kTSAkTSEkTSIkTSMkTSQkTSUkTSYkTSckTSgkTSkkTSokTSskTSwkTS0kTS4kTS8kTTAkTTEkTTIkTTMkTTQkTTUkTTYkTTckTTgkTTkkTTokTTskTTwkTT0kTT4kTT8kTUAkTUEkTUIkTUMkTUQkTUUkTUYkTUckTUgkTUkkTUokTUskTUwkTU0kTU4kTU8kTVAkTVEkTVIkTVMkTVQkTVUkTVYkTVckTVgkTVkkTVokTVskTVwkTV0kTV4kTV8kTWAkTWEkTWIkTWMkTWQkTWUkTWYkTWckTWgkTWkkTWokTWskTWwkTW0kTW4kTW8kTXAkTXEkTXIkTXMkTXQkTXUkTXYkTXckTXgkTXkkTXokTXskTXwkTX0kTX4kTX8kTYAkTYEkTYIkTYMkTYQkTYUkTYYkTYckTYgkTYkkTYokTYskTYwkTY0kTY4kTY8kTZAkTZEkTZIkTZMkTZQkTZUkTZYkTZckTZgkTZkkTZokTZskTZwkTZ0kTZ4kTZ8kTaAkTaEkTaIkTaMkTaQkTaUkTaYkTackTagkTakkTaokTaskTawkTa0kTa4kTa8kTbAkTbEkTbIkTbMkTbQkTbUkTbYkTbckTbgkTbkkTbokTbskTbwkTb0kTb4kTb8kTcAkTcEkTcIkTcMkTcQkTcUkTcYkTcckTcgkTckkTcokTcskTcwkTc0kTc4kTc8kTdAkTdEkTdIkTdMkTdQkTdUkTdYkTdckTdgkTdkkTdokTdskTdwkTd0kTd4kTd8kTeAkTeEkTeIkTeMkTeQkTeUkTeYkTeckTegkTekkTeokTeskTewkTe0kTe4kTe8kTfAkTfEkTfIkTfMkTfQkTfUkTfYkTfckTfgkTfkkTfokTfskTfwkTf0kTf4kTf8kTQAlTQElTQIlTQMlTQQlTQUlTQYlTQclTQglTQklTQolTQslTQwlTQ0lTQ4lTQ8lTRAlTRElTRIlTRMlTRQlTRUlTRYlTRclTRglTRklTRolTRslTRwlTR0lTR4lTR8lTSAlTSElTSIlTSMlTSQlTSUlTSYlTSclTSglTSklTSolTSslTSwlTS0lTS4lTS8lTTAlTTElTTIlTTMlTTQlTTUlTTYlTTclTTglTTklTTolTTslTTwlTT0lTT4lTT8lTUAlTUElTUIlTUMlTUQlTUUlTUYlTUclTUglTUklTUolTUslTUwlTU0lTU4lTU8lTVAlTVElTVIlTVMlTVQlTVUlTVYlTVclTVglTVklTVolTVslTVwlTV0lTV4lTV8lTWAlTWElTWIlTWMlTWQlTWUlTWYlTWclTWglTWklTWolTWslTWwlTW0lTW4lTW8lTXAlTXElTXIlTXMlTXQlTXUlTXYlTXclTXglTXklTXolTXslTXwlTX0lTX4lTX8lTYAlTYElTYIlTYMlTYQlTYUlTYYlTYclTYglTYklTYolTYslTYwlTY0lTY4lTY8lTZAlTZElTZIlTZMlTZQlTZUlTZYlTZclTZglTZklTZolTZslTZwlTZ0lTZ4lTZ8lTaAlTaElTaIlTaMlTaQlTaUlTaYlTaclTaglTaklTaolTaslTawlTa0lTa4lTa8lTbAlTbElTbIlTbMlTbQlTbUlTbYlTbclTbglTbklTbolTbslTbwlTb0lTb4lTb8lTcAlTcElTcIlTcMlTcQlTcUlTcYlTcclTcglTcklTcolTcslTcwlTc0lTc4lTc8lTdAlTdElTdIlTdMlTdQlTdUlTdYlTdclTdglTdklTdolTdslTdwlTd0lTd4lTd8lTeAlTeElTeIlTeMlTeQlTeUlTeYlTeclTeglTeklTeolTeslTewlTe0lTe4lTe8lTfAlTfElTfIlTfMlTfQlTfUlTfYlTfclTfglTfklTfolTfslTfwlTf0lTf4lTf8lTQAmTQEmTQImTQMmTQQmTQUmTQYmTQcmTQgmTQkmTQomTQsmTQwmTQ0mTQ4mTQ8mTRAmTREmTRImTRMmTRQmTRUmTRYmTRcmTRgmTRkmTRomTRsmTRwmTR0mTR4mTR8mTSAmTSEmTSImTSMmTSQmTSUmTSYmTScmTSgmTSkmTSomTSsmTSwmTS0mTS4mTS8mTTAmTTEmTTImTTMmTTQmTTUmTTYmTTcmTTgmTTkmTTomTTsmTTwmTT0mTT4mTT8mTUAmTUEmTUImTUMmTUQmTUUmTUYmTUcmTUgmTUkmTUomTUsmTUwmTU0mTU4mTU8mTVAmTVEmTVImTVMmTVQmTVUmTVYmTVcmTVgmTVkmTVomTVsmTVwmTV0mTV4mTV8mTWAmTWEmTWImTWMmTWQmTWUmTWYmTWcmTWgmTWkmTWomTWsmTWwmTW0mTW4mTW8mTXAmTXEmTXImTXMmTXQmTXUmTXYmTXcmTXgmTXkmTXomTXsmTXwmTX0mTX4mTX8mTYAmTYEmTYImTYMmTYQmTYUmTYYmTYcmTYgmTYkmTYomTYsmTYwmTY0mTY4mTY8mTZAmTZEmTZImTZMmTZQmTZUmTZYmTZcmTZgmTZkmTZomTZsmTZwmTZ0mTZ4mTZ8mTaAmTaEmTaImTaMmTaQmTaUmTaYmTacmTagmTakmTaomTasmTawmTa0mTa4mTa8mTbAmTbEmTbImTbMmTbQmTbUmTbYmTbcmTbgmTbkmTbomTbsmTbwmTb0mTb4mTb8mTcAmTcEmTcImTcMmTcQmTcUmTcYmTccmTcgmTckmTcomTcsmTcwmTc0mTc4mTc8mTdAmTdEmTdImTdMmTdQmTdUmTdYmTdcmTdgmTdkmTdomTdsmTdwmTd0mTd4mTd8mTeAmTeEmTeImTeMmTeQmTeUmTeYmTecmTegmTekmTeomTesmTewmTe0mTe4mTe8mTfAmTfEmTfImTfMmTfQmTfUmTfYmTfcmTfgmTfkmTfomTfsmTfwmTf0mTf4mTf8mTQAnTQEnTQInTQMnTQQnTQUnTQYnTQcnTQgnTQknTQonTQsnTQwnTQ0nTQ4nTQ8nTRAnTREnTRInTRMnTRQnTRUnTRYnTRcnTRgnTRknTRonTRsnTRwnTR0nTR4nTR8nTSAnTSEnTSInTSMnTSQnTSUnTSYnTScnTSgnTSknTSonTSsnTSwnTS0nTS4nTS8nTTAnTTEnTTInTTMnTTQnTTUnTTYnTTcnTTgnTTknTTonTTsnTTwnTT0nTT4nTT8nTUAnTUEnTUInTUMnTUQnTUUnTUYnTUcnTUgnTUknTUonTUsnZShNTCdNTSdNTidNTydNUCdNUSdNUidNUydNVCdNVSdNVidNVydNWCdNWSdNWidNWydNXCdNXSdNXidNXydNYCdNYSdNYidNYydNZCdNZSdNZidNZydNaCdNaSdNaidNaydNbCdNbSdNbidNbydNcCdNcSdNcidNcydNdCdNdSdNdidNdydNeCdNeSdNeidNeydNfCdNfSdNfidNfydNgCdNgSdNgidNgydNhCdNhSdNhidNhydNiCdNiSdNiidNiydNjCdNjSdNjidNjydNkCdNkSdNkidNkydNlCdNlSdNlidNlydNmCdNmSdNmidNmydNnCdNnSdNnidNnydNoCdNoSdNoidNoydNpCdNpSdNpidNpydNqCdNqSdNqidNqydNrCdNrSdNridNrydNsCdNsSdNsidNsydNtCdNtSdNtidNtydNuCdNuSdNuidNuydNvCdNvSdNvidNvydNwCdNwSdNwidNwydNxCdNxSdNxidNxydNyCdNySdNyidNyydNzCdNzSdNzidNzydN0CdN0SdN0idN0ydN1CdN1SdN1idN1ydN2CdN2SdN2idN2ydN3CdN3SdN3idN3ydN4CdN4SdN4idN4ydN5CdN5SdN5idN5ydN6CdN6SdN6idN6ydN7CdN7SdN7idN7ydN8CdN8SdN8idN8ydN9CdN9SdN9idN9ydN+CdN+SdN+idN+ydN/CdN/SdN/idN/ydNAChNAShNAihNAyhNBChNBShNBihNByhNCChNCShNCihNCyhNDChNDShNDihNDyhNEChNEShNEihNEyhNFChNFShNFihNFyhNGChNGShNGihNGyhNHChNHShNHihNHyhNIChNIShNIihNIyhNJChNJShNJihNJyhNKChNKShNKihNKyhNLChNLShNLihNLyhNMChNMShNMihNMyhNNChNNShNNihNNyhNOChNOShNOihNOyhNPChNPShNPihNPyhNQChNQShNQihNQyhNRChNRShNRihNRyhNSChNSShNSihNSyhNTChNTShNTihNTyhNUChNUShNUihNUyhNVChNVShNVihNVyhNWChNWShNWihNWyhNXChNXShNXihNXyhNYChNYShNYihNYyhNZChNZShNZihNZyhNaChNaShNaihNayhNbChNbShNbihNbyhNcChNcShNcihNcyhNdChNdShNdihNdyhNeChNeShNeihNeyhNfChNfShNfihNfyhNgChNgShNgihNgyhNhChNhShNhihNhyhNiChNiShNiihNiyhNjChNjShNjihNjyhNkChNkShNkihNkyhNlChNlShNlihNlyhNmChNmShNmihNmyhNnChNnShNnihNnyhNoChNoShNoihNoyhNpChNpShNpihNpyhNqChNqShNqihNqyhNrChNrShNrihNryhNsChNsShNsihNsyhNtChNtShNtihNtyhNuChNuShNuihNuyhNvChNvShNvihNvyhNwChNwShNwihNwyhNxChNxShNxihNxyhNyChNyShNyihNyyhNzChNzShNzihNzyhN0ChN0ShN0ihN0yhN1ChN1ShN1ihN1yhN2ChN2ShN2ihN2yhN3ChN3ShN3ihN3yhN4ChN4ShN4ihN4yhN5ChN5ShN5ihN5yhN6ChN6ShN6ihN6yhN7ChN7ShN7ihN7yhN8ChN8ShN8ihN8yhN9ChN9ShN9ihN9yhN+ChN+ShN+ihN+yhN/ChN/ShN/ihN/yhNAClNASlNAilNAylNBClNBSlNBilNBylNCClNCSlNCilNCylNDClNDSlNDilNDylNEClNESlNEilNEylNFClNFSlNFilNFylNGClNGSlNGilNGylNHClNHSlNHilNHylNIClNISlNIilNIylNJClNJSlNJilNJylNKClNKSlNKilNKylNLClNLSlNLilNLylNMClNMSlNMilNMylNNClNNSlNNilNNylNOClNOSlNOilNOylNPClNPSlNPilNPylNQClNQSlNQilNQylNRClNRSlNRilNRylNSClNSSlNSilNSylNTClNTSlNTilNTylNUClNUSlNUilNUylNVClNVSlNVilNVylNWClNWSlNWilNWylNXClNXSlNXilNXylNYClNYSlNYilNYylNZClNZSlNZilNZylNaClNaSlNailNaylNbClNbSlNbilNbylNcClNcSlNcilNcylNdClNdSlNdilNdylNeClNeSlNeilNeylNfClNfSlNfilNfylNgClNgSlNgilNgylNhClNhSlNhilNhylNiClNiSlNiilNiylNjClNjSlNjilNjylNkClNkSlNkilNkylNlClNlSlNlilNlylNmClNmSlNmilNmylNnClNnSlNnilNnylNoClNoSlNoilNoylNpClNpSlNpilNpylNqClNqSlNqilNqylNrClNrSlNrilNrylNsClNsSlNsilNsylNtClNtSlNtilNtylNuClNuSlNuilNuylNvClNvSlNvilNvylNwClNwSlNwilNwylNxClNxSlNxilNxylNyClNySlNyilNyylNzClNzSlNzilNzylN0ClN0SlN0ilN0ylN1ClN1SlN1ilN1ylN2ClN2SlN2ilN2ylN3ClN3SlN3ilN3ylN4ClN4SlN4ilN4ylN5ClN5SlN5ilN5ylN6ClN6SlN6ilN6ylN7ClN7SlN7ilN7ylN8ClN8SlN8ilN8ylN9ClN9SlN9ilN9ylN+ClN+SlN+ilN+ylN/ClN/SlN/ilN/ylNACpNASpNAipNAypNBCpNBSpNBipNBypNCCpNCSpNCipNCypNDCpNDSpNDipNDypNECpNESpNEipNEypNFCpNFSpNFipNFypNGCpNGSpNGipNGypNHCpNHSpNHipNHypNICpNISpNIipNIypNJCpNJSpNJipNJypNKCpNKSpNKipNKypNLCpNLSpNLipNLypNMCpNMSpNMipNMypNNCpNNSpNNipNNypNOCpNOSpNOipNOypNPCpNPSpNPipNPypNQCpNQSpNQipNQypNRCpNRSpNRipNRypNSCpNSSpNSipNSypNTCpNTSpNTipNTypNUCpNUSpNUipNUypNVCpNVSpNVipNVypNWCpNWSpNWipNWypNXCpNXSpNXipNXypNYCpNYSpNYipNYypNZCpNZSpNZipNZypNaCpNaSpNaipNaypNbCpNbSpNbipNbypNcCpNcSpNcipNcypNdCpNdSpNdipNdypNeCpNeSpNeipNeypNfCpNfSpNfipNfypNgCpNgSpNgipNgypNhCpNhSpNhipNhypNiCpNiSpNiipNiypNjCpNjSpNjipNjypNkCpNkSpNkipNkypNlCpNlSpNlipNlypNmCpNmSpNmipNmypNnCpNnSpNnipNnypNoCpNoSpNoipNoypNpCpNpSpNpipNpypNqCpNqSpNqipNqypNrCpNrSpNripNrypNsCpNsSpNsipNsypNtCpNtSpNtipNtypNuCpNuSpNuipNuypNvCpNvSpNvipNvypNwCpNwSpNwipNwypNxCpNxSpNxipNxypNyCpNySpNyipNyypNzCpNzSpNzipNzypN0CpN0SpN0ipN0ypN1CpN1SpN1ipN1ypN2CpN2SpN2ipN2ypN3CpN3SpN3ipN3ypN4CpN4SpN4ipN4ypN5CpN5SpN5ipN5ypN6CpN6SpN6ipN6ypN7CpN7SpN7ipN7ypN8CpN8SpN8ipN8ypN9CpN9SpN9ipN9ypN+CpN+SpN+ipN+ypN/CpN/SpN/ipN/ypNACtNAStNAitNAytNBCtNBStNBitNBytNCCtNCStNCitNCytNDCtNDStNDitNDytNECtNEStNEitNEytNFCtNFStNFitNFytNGCtNGStNGitNGytNHCtNHStNHitNHytNICtNIStNIitNIytNJCtNJStNJitNJytNKCtNKStNKitNKytNLCtNLStNLitNLytNMCtNMStNMitNMytlKE00K001K002K003K004K005K006K007K008K009K00+K00/K01AK01BK01CK01DK01EK01FK01GK01HK01IK01JK01KK01LK01MK01NK01OK01PK01QK01RK01SK01TK01UK01VK01WK01XK01YK01ZK01aK01bK01cK01dK01eK01fK01gK01hK01iK01jK01kK01lK01mK01nK01oK01pK01qK01rK01sK01tK01uK01vK01wK01xK01yK01zK010K011K012K013K014K015K016K017K018K019K01+K01/K02AK02BK02CK02DK02EK02FK02GK02HK02IK02JK02KK02LK02MK02NK02OK02PK02QK02RK02SK02TK02UK02VK02WK02XK02YK02ZK02aK02bK02cK02dK02eK02fK02gK02hK02iK02jK02kK02lK02mK02nK02oK02pK02qK02rK02sK02tK02uK02vK02wK02xK02yK02zK020K021K022K023K024K025K026K027K028K029K02+K02/K03AK03BK03CK03DK03EK03FK03GK03HK03IK03JK03KK03LK03MK03NK03OK03PK03QK03RK03SK03TK03UK03VK03WK03XK03YK03ZK03aK03bK03cK03dK03eK03fK03gK03hK03iK03jK03kK03lK03mK03nK03oK03pK03qK03rK03sK03tK03uK03vK03wK03xK03yK03zK030K031K032K033K034K035K036K037K038K039K03+K03/K00ALE0BLE0CLE0DLE0ELE0FLE0GLE0HLE0ILE0JLE0KLE0LLE0MLE0NLE0OLE0PLE0QLE0RLE0SLE0TLE0ULE0VLE0WLE0XLE0YLE0ZLE0aLE0bLE0cLE0dLE0eLE0fLE0gLE0hLE0iLE0jLE0kLE0lLE0mLE0nLE0oLE0pLE0qLE0rLE0sLE0tLE0uLE0vLE0wLE0xLE0yLE0zLE00LE01LE02LE03LE04LE05LE06LE07LE08LE09LE0+LE0/LE1ALE1BLE1CLE1DLE1ELE1FLE1GLE1HLE1ILE1JLE1KLE1LLE1MLE1NLE1OLE1PLE1QLE1RLE1SLE1TLE1ULE1VLE1WLE1XLE1YLE1ZLE1aLE1bLE1cLE1dLE1eLE1fLE1gLE1hLE1iLE1jLE1kLE1lLE1mLE1nLE1oLE1pLE1qLE1rLE1sLE1tLE1uLE1vLE1wLE1xLE1yLE1zLE10LE11LE12LE13LE14LE15LE16LE17LE18LE19LE1+LE1/LE2ALE2BLE2CLE2DLE2ELE2FLE2GLE2HLE2ILE2JLE2KLE2LLE2MLE2NLE2OLE2PLE2QLE2RLE2SLE2TLE2ULE2VLE2WLE2XLE2YLE2ZLE2aLE2bLE2cLE2dLE2eLE2fLE2gLE2hLE2iLE2jLE2kLE2lLE2mLE2nLE2oLE2pLE2qLE2rLE2sLE2tLE2uLE2vLE2wLE2xLE2yLE2zLE20LE21LE22LE23LE24LE25LE26LE27LE28LE29LE2+LE2/LE3ALE3BLE3CLE3DLE3ELE3FLE3GLE3HLE3ILE3JLE3KLE3LLE3MLE3NLE3OLE3PLE3QLE3RLE3SLE3TLE3ULE3VLE3WLE3XLE3YLE3ZLE3aLE3bLE3cLE3dLE3eLE3fLE3gLE3hLE3iLE3jLE3kLE3lLE3mLE3nLE3oLE3pLE3qLE3rLE3sLE3tLE3uLE3vLE3wLE3xLE3yLE3zLE30LE31LE32LE33LE34LE35LE36LE37LE38LE39LE3+LE3/LE0ALU0BLU0CLU0DLU0ELU0FLU0GLU0HLU0ILU0JLU0KLU0LLU0MLWVLBV1xEShNDS1NDi1NDy1NEC1NES1NEi1NEy1NFC1NFS1NFi1NFy1NGC1NGS1NGi1NGy1NHC1NHS1NHi1NHy1NIC1NIS1NIi1NIy1NJC1NJS1NJi1NJy1NKC1NKS1NKi1NKy1NLC1NLS1NLi1NLy1NMC1NMS1NMi1NMy1NNC1NNS1NNi1NNy1NOC1NOS1NOi1NOy1NPC1NPS1NPi1NPy1NQC1NQS1NQi1NQy1NRC1NRS1NRi1NRy1NSC1NSS1NSi1NSy1NTC1NTS1NTi1NTy1NUC1NUS1NUi1NUy1NVC1NVS1NVi1NVy1NWC1NWS1NWi1NWy1NXC1NXS1NXi1NXy1NYC1NYS1NYi1NYy1NZC1NZS1NZi1NZy1NaC1ldYdVCWlkYXRtVHlwZXESTWktiX2HVQZhbHRMb2NxE01pLVUAfYdVBWxhYmVscRRNaS1YAAAAAH2HVQ5zdXJmYWNlT3BhY2l0eXEVTWktR7/wAAAAAAAAfYdVB2VsZW1lbnRxFk1pLUsBfXEXSxBdcRgoTQ0tTQ4tTQ8tTRAtTREtTRItTRMtTRQtTRUtTRYtTRctTRgtTRktTRotTRstTRwtTR0tTR4tTR8tTSAtTSEtTSItTSMtTSQtTSUtTSYtTSctTSgtTSktTSotTSstTSwtTS0tTS4tTS8tTTAtTTEtTTItTTMtTTQtTTUtTTYtTTctTTgtTTktTTotTTstTTwtTT0tTT4tTT8tTUAtTUEtTUItTUMtTUQtTUUtTUYtTUctTUgtTUktTUotTUstTUwtTU0tTU4tTU8tTVAtTVEtTVItTVMtTVQtTVUtTVYtTVctTVgtTVktTVotTVstTVwtTV0tTV4tTV8tTWAtTWEtTWItTWMtTWQtTWUtTWYtTWctTWgtZXOHVQpsYWJlbENvbG9ycRlNaS1OfYdVDHN1cmZhY2VDb2xvcnEaTWktTn2HVQ9zdXJmYWNlQ2F0ZWdvcnlxG01pLVgHAAAAc29sdmVudH1xHChYBAAAAGlvbnNOXXEdTQ0tSwKGcR5hhlgEAAAAbWFpbk5dcR9NDy1LWoZxIGGGdYdVBnJhZGl1c3EhTWktRz/wAAAAAAAAfXEiRz/8UeuAAAAAXXEjKE0NLU0OLU0PLU0QLU0RLU0SLU0TLU0ULU0VLU0WLU0XLU0YLU0ZLU0aLU0bLU0cLU0dLU0eLU0fLU0gLU0hLU0iLU0jLU0kLU0lLU0mLU0nLU0oLU0pLU0qLU0rLU0sLU0tLU0uLU0vLU0wLU0xLU0yLU0zLU00LU01LU02LU03LU04LU05LU06LU07LU08LU09LU0+LU0/LU1ALU1BLU1CLU1DLU1ELU1FLU1GLU1HLU1ILU1JLU1KLU1LLU1MLU1NLU1OLU1PLU1QLU1RLU1SLU1TLU1ULU1VLU1WLU1XLU1YLU1ZLU1aLU1bLU1cLU1dLU1eLU1fLU1gLU1hLU1iLU1jLU1kLU1lLU1mLU1nLU1oLWVzh1UKY29vcmRJbmRleHEkXXElKEsATZQbhnEmSwBNeRGGcSdLAEtchnEoZVULbGFiZWxPZmZzZXRxKU1pLU59h1USbWluaW11bUxhYmVsUmFkaXVzcSpNaS1HAAAAAAAAAAB9h1UIZHJhd01vZGVxK01pLUsCfYdVCG9wdGlvbmFscSx9cS0oVQxzZXJpYWxOdW1iZXJxLoiIXXEvKEsBTZQbhnEwSwFNeRGGcTFLV0tchnEyZYdVB2JmYWN0b3JxM4iJTWktRwAAAAAAAAAAfYeHVQlvY2N1cGFuY3lxNIiJTWktRwAAAAAAAAAAfYeHdVUHZGlzcGxheXE1TWktiH2HdS4=')) bondInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQVjb2xvcnECS1JOfYdVBWF0b21zcQNdcQQoXXEFKE0VLU0WLWVdcQYoTRYtTRctZV1xByhNFy1NGC1lXXEIKE0YLU0ZLWVdcQkoTRktTRotZV1xCihNGi1NGy1lXXELKE0bLU0cLWVdcQwoTRwtTR0tZV1xDShNHS1NHi1lXXEOKE0fLU0gLWVdcQ8oTSAtTSEtZV1xEChNIS1NIi1lXXERKE0iLU0jLWVdcRIoTSMtTSQtZV1xEyhNJC1NJS1lXXEUKE0lLU0mLWVdcRUoTSYtTSctZV1xFihNJy1NKC1lXXEXKE0pLU0qLWVdcRgoTSotTSstZV1xGShNKy1NLC1lXXEaKE0sLU0tLWVdcRsoTS0tTS4tZV1xHChNLi1NLy1lXXEdKE0vLU0wLWVdcR4oTTAtTTEtZV1xHyhNMS1NMi1lXXEgKE0yLU0zLWVdcSEoTTMtTTQtZV1xIihNNS1NNi1lXXEjKE02LU03LWVdcSQoTTctTTgtZV1xJShNOC1NOS1lXXEmKE05LU06LWVdcScoTTotTTstZV1xKChNOy1NPC1lXXEpKE08LU09LWVdcSooTT0tTT4tZV1xKyhNPi1NPy1lXXEsKE0/LU1ALWVdcS0oTUAtTUEtZV1xLihNQS1NQi1lXXEvKE1CLU1DLWVdcTAoTUMtTUQtZV1xMShNRC1NRS1lXXEyKE1FLU1GLWVdcTMoTUctTUgtZV1xNChNSC1NSS1lXXE1KE1JLU1KLWVdcTYoTUotTUstZV1xNyhNSy1NTC1lXXE4KE1MLU1NLWVdcTkoTU0tTU4tZV1xOihNTi1NTy1lXXE7KE1PLU1QLWVdcTwoTVAtTVEtZV1xPShNUS1NUi1lXXE+KE1TLU1ULWVdcT8oTVQtTVUtZV1xQChNVS1NVi1lXXFBKE1WLU1XLWVdcUIoTVctTVgtZV1xQyhNWC1NWS1lXXFEKE1ZLU1aLWVdcUUoTVotTVstZV1xRihNWy1NXC1lXXFHKE1cLU1dLWVdcUgoTV0tTV4tZV1xSShNXy1NYC1lXXFKKE1gLU1hLWVdcUsoTWEtTWItZV1xTChNYi1NYy1lXXFNKE1jLU1kLWVdcU4oTWQtTWUtZV1xTyhNZS1NZi1lXXFQKE1nLU1oLWVdcVEoTWgtTWktZV1xUihNaS1Nai1lXXFTKE1qLU1rLWVdcVQoTWstTWwtZV1xVShNbC1NbS1lXXFWKE1tLU1uLWVlVQVsYWJlbHFXS1JYAAAAAH2HVQhoYWxmYm9uZHFYS1KIfYdVBnJhZGl1c3FZS1JHP8mZmaAAAAB9h1ULbGFiZWxPZmZzZXRxWktSTn2HVQhkcmF3TW9kZXFbS1JLAX2HVQhvcHRpb25hbHFcfVUHZGlzcGxheXFdS1JLAn2HdS4=')) crdInfo = cPickle.loads(base64.b64decode('gAJ9cQEoSwB9cQIoSwBdcQMoR8ACR64UeuFIR0BaLS8an753R0BEpP3ztkWih3EER8ACGp++dsi0R0BaLhR64UeuR0BEpul41P30h3EFR8ACEGJN0vGqR0BaLkWhysCDR0BEp2yLQ5WBh3EGR8ACBiTdLxqgR0BaLnbItDlYR0BEp87ZFocrh3EHR8AB2RaHKwIMR0BaL1wo9cKPR0BEqdsi0OVgh3EIR8AB0OVgQYk3R0BaL41P3ztkR0BEqj1wo9cKh3EJR8ABocrAgxJvR0BaMHKwIMScR0BErEm6XjU/h3EKR8ABmZmZmZmaR0BaMKPXCj1xR0BErKwIMSbph3ELR8ABj1wo9cKPR0BaMNT987ZGR0BErS8an753h3EMR8ABYk3S8an8R0BaMbpeNT99R0BErztkWhysh3ENR8ABWBBiTdLyR0BaMeuFHrhSR0BEr52yLQ5Wh3EOR8ABTdLxqfvnR0BaMhysCDEnR0BEsCDEm6Xjh3EPR8ABIMSbpeNUR0BaMvGp++dtR0BEsgxJul41h3EQR8ABFocrAgxKR0BaMyLQ5WBCR0BEso9cKPXDh3ERR8AA6XjU/fO2R0BaNAgxJul5R0BEtJul41P4h3ESR8AA3ztkWhysR0BaNDlYEGJOR0BEtP3ztkWih3ETR8AA1wo9cKPXR0BaNGp++dsjR0BEtWBBiTdMh3EUR8AAp++dsi0OR0BaNU/fO2RaR0BEt2yLQ5WBh3EVR8AAZmZmZmZmR0BaNpeNT987R0BEul41P3zuh3EWR8AAXjU/fO2RR0BaNrhR64UfR0BEusCDEm6Yh3EXR8AALxqfvnbJR0BaN52yLQ5WR0BEvMzMzMzNh3EYR8AAJul41P30R0BaN87ZFocrR0BEvU/fO2Rah3EZR8AAHKwIMSbpR0BaOAAAAAAAR0BEvbItDlYEh3EaR7//2yLQ5WBCR0BaOOVgQYk3R0BEv752yLQ5h3EbR7//WBBiTdLyR0BaOhysCDEnR0BEwrAgxJumh3EcR7//R64UeuFIR0BaOk3S8an8R0BEwxJul41Qh3EdR7/+6XjU/fO2R0BaOzMzMzMzR0BExR64UeuFh3EeR7/+1P3ztkWiR0BaO2RaHKwIR0BExaHKwIMSh3EfR7/+ZmZmZmZmR0BaPGp++dsjR0BEyBBiTdLyh3EgR7/941P3ztkXR0BaPbItDlYER0BEywIMSbpeh3EhR7/9dLxqfvnbR0BaPrhR64UfR0BEzXCj1wo9h3EiR7/9YEGJN0vHR0BaPul41P30R0BEzfO2RaHLh3EjR7/87ZFocrAhR0BaQAAAAAAAR0BE0GJN0vGqh3EkR7/8xJul41P4R0BaQGJN0vGqR0BE0UeuFHrhh3ElR7/8an752yLRR0BaQTdLxqfwR0BE01P3ztkXh3EmR7/7++dsi0OWR0BaQj1wo9cKR0BE1cKPXCj2h3EnR7/752yLQ5WBR0BaQm6XjU/fR0BE1kWhysCDh3EoR7/70vGp++dtR0BaQp++dsi0R0BE1qfvnbIth3EpR7/7dLxqfvnbR0BaQ4UeuFHsR0BE2LQ5WBBih3EqR7/7YEGJN0vHR0BaQ7ZFocrBR0BE2TdLxqfwh3ErR7/7AgxJul41R0BaRItDlYEGR0BE20OVgQYlh3EsR7/68an752yLR0BaRLxqfvnbR0BE26XjU/fPh3EtR7/63S8an753R0BaRO2RaHKwR0BE3Cj1wo9ch3EuR7/6fvnbItDlR0BaRcKPXCj2R0BE3jU/fO2Rh3EvR7/6an752yLRR0BaRfO2RaHLR0BE3peNT987h3EwR7/6VgQYk3S8R0BaRiTdLxqgR0BE3xqfvnbJh3ExR7/5987ZFocrR0BaRvnbItDlR0BE4SbpeNT+h3EyR7/541P3ztkXR0BaRysCDEm6R0BE4Yk3S8aoh3EzR7/5iTdLxqfwR0BaSBBiTdLyR0BE45WBBiTdh3E0R7/5dLxqfvnbR0BaSEGJN0vHR0BE5BiTdLxqh3E1R7/5YEGJN0vHR0BaSGJN0vGqR0BE5HrhR64Uh3E2R7/5AgxJul41R0BaSUeuFHrhR0BE5ocrAgxKh3E3R7/47ZFocrAhR0BaSXjU/fO2R0BE5wo9cKPXh3E4R7/42RaHKwIMR0BaSan752yLR0BE541P3ztkh3E5R7/4euFHrhR7R0BaSn752yLRR0BE6ZmZmZmah3E6R7/4ZmZmZmZmR0BaSrAgxJumR0BE6fvnbItEh3E7R7/4CDEm6XjVR0BaS4UeuFHsR0BE7AgxJul5h3E8R7/3987ZFocrR0BaS7ZFocrBR0BE7ItDlYEGh3E9R7/33ztkWhysR0BaS+dsi0OWR0BE7O2RaHKwh3E+R7/3hR64UeuFR0BaTLxqfvnbR0BE7vnbItDlh3E/R7/3cKPXCj1xR0BaTO2RaHKwR0BE73ztkWhzh3FAR7/3Em6XjU/fR0BaTcKPXCj2R0BE8Yk3S8aoh3FBR7/2/fO2RaHLR0BaTfO2RaHLR0BE8euFHrhSh3FCR7/26XjU/fO2R0BaTiTdLxqgR0BE8m6XjU/fh3FDR7/2i0OVgQYlR0BaTvnbItDlR0BE9HrhR64Uh3FER7/2dsi0OVgQR0BaTysCDEm6R0BE9P3ztkWih3FFR7/2Yk3S8an8R0BaT1wo9cKPR0BE9WBBiTdMh3FGR7/2BBiTdLxqR0BaUDEm6XjVR0BE92yLQ5WBh3FHR7/1752yLQ5WR0BaUGJN0vGqR0BE9++dsi0Oh3FIR7/1kWhysCDFR0BaUTdLxqfwR0BE+fvnbItEh3FJR7/1fO2RaHKwR0BaUWhysCDFR0BE+n752yLRh3FKR7/1aHKwIMScR0BaUZmZmZmaR0BE+uFHrhR7h3FLR7/1Cj1wo9cKR0BaUm6XjU/fR0BE/O2RaHKwh3FMR7/0fvnbItDlR0BaU6XjU/fPR0BFAAAAAAAAh3FNR7/0DEm6XjU/R0BaVJul41P4R0BFAm6XjU/fh3FOR7/z987ZFocrR0BaVMzMzMzNR0BFAvGp++dth3FPR7/zhR64UeuFR0BaVdLxqfvnR0BFBYEGJN0vh3FQR7/y/fO2RaHLR0BaVwo9cKPXR0BFCHKwIMSch3FRR7/yhysCDEm6R0BaWBBiTdLyR0BFCwIMSbpeh3FSR7/ycrAgxJumR0BaWDEm6XjVR0BFC2RaHKwIh3FTR7/yAAAAAAAAR0BaWTdLxqfwR0BFDfO2RaHLh3FUR7/x1wo9cKPXR0BaWZmZmZmaR0BFDtkWhysCh3FVR7/xeNT987ZGR0BaWm6XjU/fR0BFEOVgQYk3h3FWR7/xAgxJul41R0BaW2RaHKwIR0BFE3S8an76h3FXR7/w7ZFocrAhR0BaW5WBBiTdR0BFE/fO2RaHh3FYR7/w2RaHKwIMR0BaW8an752yR0BFFHrhR64Uh3FZR7/weuFHrhR7R0BaXJul41P4R0BFFocrAgxKh3FaR7/wYk3S8an8R0BaXMzMzMzNR0BFFul41P30h3FbR7/wTdLxqfvnR0BaXP3ztkWiR0BFF2yLQ5WBh3FcR7/v3ztkWhysR0BaXcKPXCj2R0BFGXjU/fO2h3FdR7/vtkWhysCDR0BaXfO2RaHLR0BFGfvnbItEh3FeR7/u8an752yLR0BaXsi0OVgQR0BFHAgxJul5h3FfR7/uyLQ5WBBiR0BaXvnbItDlR0BFHItDlYEGh3FgR7/un752yLQ5R0BaXysCDEm6R0BFHO2RaHKwh3FhR7/t41P3ztkXR0BaYAAAAAAAR0BFHxqfvnbJh3FiR7/tul41P3zuR0BaYCDEm6XjR0BFH3ztkWhzh3FjR7/tiTdLxqfwR0BaYFHrhR64R0BFIAAAAAAAh3FkR7/s9cKPXCj2R0BaYPXCj1wpR0BFIan752yLh3FlR7/szMzMzMzNR0BaYSbpeNT+R0BFIgxJul41h3FmR7/so9cKPXCkR0BaYVgQYk3TR0BFIo9cKPXDh3FnR7/r3ztkWhysR0BaYhysCDEnR0BFJJul41P4h3FoR7/rtkWhysCDR0BaYk3S8an8R0BFJR64UeuFh3FpR7/rjU/fO2RaR0BaYn752yLRR0BFJYEGJN0vh3FqR7/qyLQ5WBBiR0BaY1P3ztkXR0BFJ64UeuFIh3FrR7/qn752yLQ5R0BaY4UeuFHsR0BFKBBiTdLyh3FsR7/p41P3ztkXR0BaZEm6XjU/R0BFKj1wo9cKh3FtR7/pul41P3zuR0BaZHrhR64UR0BFKp++dsi0h3FuR7/piTdLxqfwR0BaZKwIMSbpR0BFKyLQ5WBCh3FvR7/ozMzMzMzNR0BaZYEGJN0vR0BFLS8an753h3FwR7/oo9cKPXCkR0BaZaHKwIMSR0BFLbItDlYEh3FxR7/ocrAgxJumR0BaZdLxqfvnR0BFLjU/fO2Rh3FyR7/ntkWhysCDR0BaZqfvnbItR0BFMEGJN0vHh3FzR7/nhR64UeuFR0BaZsi0OVgQR0BFMMSbpeNUh3F0R7/myLQ5WBBiR0BaZ52yLQ5WR0BFMtDlYEGJh3F1R7/mn752yLQ5R0BaZ87ZFocrR0BFM1P3ztkXh3F2R7/mbpeNT987R0BaaAAAAAAAR0BFM7ZFocrBh3F3R7/lsi0OVgQZR0BaaMSbpeNUR0BFNeNT987Zh3F4R7/kk3S8an76R0BaaeuFHrhSR0BFONT987ZGh3F5R7/kan752yLRR0BaahysCDEnR0BFOVgQYk3Th3F6R7/jpeNT987ZR0BaavGp++dtR0BFO4UeuFHsh3F7R7/ij1wo9cKPR0BabBiTdLxqR0BFPnbItDlYh3F8R7/hocrAgxJvR0BabQ5WBBiTR0BFQQYk3S8bh3F9R7/heNT987ZGR0BabT987ZFoR0BFQYk3S8aoh3F+R7/gi0OVgQYlR0BabjU/fO2RR0BFRBiTdLxqh3F/R7/e2RaHKwIMR0Bab1wo9cKPR0BFRysCDEm6h3GAR7/eNT987ZFoR0Bab64UeuFIR0BFSBBiTdLyh3GBR7/c/fO2RaHLR0BacFHrhR64R0BFSbpeNT99h3GCR7/crAgxJul5R0BacIMSbpeNR0BFSj1wo9cKh3GDR7/a0OVgQYk3R0BacXjU/fO2R0BFTMzMzMzNh3GER7/abpeNT987R0Bacan752yLR0BFTU/fO2Rah3GFR7/aHKwIMSbpR0BaccrAgxJvR0BFTbItDlYEh3GGR7/Yk3S8an76R0Bacp++dsi0R0BFT987ZFodh3GHR7/X3ztkWhysR0BacvGp++dtR0BFUMSbpeNUh3GIR7/WuFHrhR64R0Bac5WBBiTdR0BFUm6XjU/fh3GJR7/WVgQYk3S8R0Bac7ZFocrBR0BFUvGp++dth3GKR7/WBBiTdLxqR0Bac+dsi0OWR0BFU3S8an76h3GLR7/UeuFHrhR7R0BadKwIMSbpR0BFVYEGJN0vh3GMR7/UKPXCj1wpR0BadN0vGp++R0BFVgQYk3S8h3GNR7/TxqfvnbItR0BadQ5WBBiTR0BFVmZmZmZmh3GOR7/SPXCj1wo9R0BaddLxqfvnR0BFWJN0vGp/h3GPR7/R64UeuFHsR0BadgQYk3S8R0BFWRaHKwIMh3GQR7/RmZmZmZmaR0BadjU/fO2RR0BFWXjU/fO2h3GRR7/QYk3S8an8R0Badsi0OVgQR0BFWyLQ5WBCh3GSR7/QAAAAAAAAR0BadvnbItDlR0BFW6XjU/fPh3GTR7/PXCj1wo9cR0BadysCDEm6R0BFXCj1wo9ch3GUR7/MSbpeNT99R0Bad++dsi0OR0BFXjU/fO2Rh3GVR7/LpeNT987ZR0BaeCDEm6XjR0BFXrhR64Ufh3GWR7/K4UeuFHrhR0BaeEGJN0vHR0BFXztkWhysh3GXR7/HztkWhysCR0BaeQYk3S8bR0BFYUeuFHrhh3GYR7/HKwIMSbpeR0BaeTdLxqfwR0BFYcrAgxJvh3GZR7/EGJN0vGp/R0BaefvnbItER0BFY/fO2RaHh3GaR7/DU/fO2RaHR0Baei0OVgQZR0BFZFocrAgxh3GbR7/CsCDEm6XjR0Bael41P3zuR0BFZN0vGp++h3GcR7+/O2RaHKwIR0BaeyLQ5WBCR0BFZwo9cKPXh3GdR7+9si0OVgQZR0Bae1P3ztkXR0BFZ2yLQ5WBh3GeR7+8an752yLRR0Bae3S8an76R0BFZ++dsi0Oh3GfR7+2RaHKwIMSR0BafDlYEGJOR0BFahysCDEnh3GgR7+0vGp++dsjR0BafGp++dsjR0BFan752yLRh3GhR7+tLxqfvnbJR0BafS8an753R0BFbKwIMSbph3GiR7+qn752yLQ5R0BafWBBiTdMR0BFbS8an753h3GjR7+njU/fO2RaR0BafZFocrAhR0BFbbItDlYEh3GkR7+WhysCDEm6R0BaflYEGJN1R0BFb752yLQ5h3GlR7+QYk3S8an8R0BafnbItDlYR0BFcEGJN0vHh3GmRz+AYk3S8an8R0Baf0vGp++eR0BFcm6XjU/fh3GnRz+Kn752yLQ5R0Baf2yLQ5WBR0BFctDlYEGJh3GoRz+TdLxqfvnbR0Baf52yLQ5WR0BFc1P3ztkXh3GpRz+mBBiTdLxqR0BagGJN0vGqR0BFdYEGJN0vh3GqRz+pFocrAgxKR0BagIMSbpeNR0BFdgQYk3S8h3GrRz+rpeNT987ZR0BagLQ5WBBiR0BFdmZmZmZmh3GsRz+0OVgQYk3TR0BagXjU/fO2R0BFeJN0vGp/h3GtRz+1gQYk3S8bR0Bagan752yLR0BFeRaHKwIMh3GuRz+752yLQ5WBR0Bagm6XjU/fR0BFe0OVgQYlh3GvRz++dsi0OVgQR0BagsCDEm6YR0BFfCj1wo9ch3GwRz/CbpeNT987R0Bag4UeuFHsR0BFflYEGJN1h3GxRz/G6XjU/fO2R0BahJul41P4R0BFgWhysCDFh3GyRz/IUeuFHrhSR0BahP3ztkWiR0BFgm6XjU/fh3GzRz/KwIMSbpeNR0BahZFocrAhR0BFhBiTdLxqh3G0Rz/M7ZFocrAhR0BahhR64UeuR0BFhYEGJN0vh3G1Rz/PXCj1wo9cR0BahqfvnbItR0BFhysCDEm6h3G2Rz/RmZmZmZmaR0Bah52yLQ5WR0BFibpeNT99h3G3Rz/R64UeuFHsR0Bah752yLQ5R0BFij1wo9cKh3G4Rz/Sn752yLQ5R0BaiCDEm6XjR0BFi0OVgQYlh3G5Rz/T52yLQ5WBR0BaiLQ5WBBiR0BFjO2RaHKwh3G6Rz/UOVgQYk3TR0BaiNT987ZGR0BFjXCj1wo9h3G7Rz/U7ZFocrAhR0BaiTdLxqfwR0BFjlYEGJN1h3G8Rz/WJN0vGp++R0BaicrAgxJvR0BFkAAAAAAAh3G9Rz/W2RaHKwIMR0BaihysCDEnR0BFkQYk3S8bh3G+Rz/YEGJN0vGqR0BairAgxJumR0BFkrAgxJumh3G/Rz/YcrAgxJumR0BaiuFHrhR7R0BFkxJul41Qh3HARz/ZJul41P30R0BaizMzMzMzR0BFlBiTdLxqh3HBRz/aXjU/fO2RR0Bai8an752yR0BFlcKPXCj2h3HCRz/awIMSbpeNR0Bai/fO2RaHR0BFlkWhysCDh3HDRz/bEm6XjU/fR0BajCj1wo9cR0BFlsi0OVgQh3HERz/crAgxJul5R0BajN0vGp++R0BFmPXCj1wph3HFRz/dDlYEGJN1R0BajQ5WBBiTR0BFmVgQYk3Th3HGRz/dYEGJN0vHR0BajT987ZFoR0BFmdsi0OVgh3HHRz/el41P3ztkR0BajdLxqfvnR0BFm4UeuFHsh3HIRz/e+dsi0OVgR0BajfO2RaHLR0BFnAgxJul5h3HJRz/fS8an752yR0BajiTdLxqgR0BFnItDlYEGh3HKRz/frhR64UeuR0BajlYEGJN1R0BFnO2RaHKwh3HLRz/gcrAgxJumR0Bajul41P30R0BFnrhR64Ufh3HMRz/go9cKPXCkR0Bajwo9cKPXR0BFnxqfvnbJh3HNRz/gzMzMzMzNR0BajztkWhysR0BFn52yLQ5Wh3HORz/hmZmZmZmaR0BakAAAAAAAR0BFocrAgxJvh3HPRz/hysCDEm6YR0BakCDEm6XjR0BFok3S8an8h3HQRz/h87ZFocrBR0BakFHrhR64R0BFotDlYEGJh3HRRz/il41P3ztkR0BakOVgQYk3R0BFpHrhR64Uh3HSRz/iwIMSbpeNR0BakQYk3S8bR0BFpP3ztkWih3HTRz/i8an752yLR0BakTdLxqfwR0BFpWBBiTdMh3HURz/jvnbItDlYR0BakfvnbItER0BFp41P3ztkh3HVRz/j52yLQ5WBR0BakhysCDEnR0BFqBBiTdLyh3HWRz/kGJN0vGp/R0Bakk3S8an8R0BFqJN0vGp/h3HXRz/k5WBBiTdMR0BakwIMSbpeR0BFqsCDEm6Yh3HYRz/lDlYEGJN1R0BakzMzMzMzR0BFq0OVgQYlh3HZRz/lP3ztkWhzR0Bak2RaHKwIR0BFq6XjU/fPh3HaRz/l2yLQ5WBCR0Bak/fO2RaHR0BFrXCj1wo9h3HbRz/mDEm6XjU/R0BalBiTdLxqR0BFrdLxqfvnh3HcRz/mPXCj1wo9R0BalEm6XjU/R0BFrlYEGJN1h3HdRz/nCj1wo9cKR0BalP3ztkWiR0BFsIMSbpeNh3HeRz/nMzMzMzMzR0BalS8an753R0BFsQYk3S8bh3HfRz/nZFocrAgxR0BalU/fO2RaR0BFsYk3S8aoh3HgRz/oMSbpeNT+R0BalhR64UeuR0BFs7ZFocrBh3HhRz/oWhysCDEnR0BalkWhysCDR0BFtDlYEGJOh3HiRz/pLxqfvnbJR0BalvnbItDlR0BFtmZmZmZmh3HjRz/pWBBiTdLyR0BalysCDEm6R0BFtsi0OVgQh3HkRz/piTdLxqfwR0Bal0vGp++eR0BFt0vGp++eh3HlRz/qVgQYk3S8R0BamBBiTdLyR0BFuXjU/fO2h3HmRz/rU/fO2RaHR0BamPXCj1wpR0BFvCj1wo9ch3HnRz/rfO2RaHKwR0BamRaHKwIMR0BFvKwIMSbph3HoRz/rrhR64UeuR0BamUeuFHrhR0BFvS8an753h3HpRz/seuFHrhR7R0BamfvnbItER0BFv1wo9cKPh3HqRz/tBiTdLxqgR0Bamn752yLRR0BFwMSbpeNUh3HrRz/tqfvnbItER0BamxJul41QR0BFwo9cKPXDh3HsRz/up++dsi0OR0Bam/fO2RaHR0BFxT987ZFoh3HtRz/vMzMzMzMzR0BanGp++dsjR0BFxqfvnbIth3HuRz/vztkWhysCR0BanP3ztkWiR0BFyFHrhR64h3HvRz/wLQ5WBBiTR0BanYEGJN0vR0BFydsi0OVgh3HwRz/wfvnbItDlR0BanhR64UeuR0BFy4UeuFHsh3HxRz/wrAgxJul5R0BanmZmZmZmR0BFzItDlYEGh3HyRz/w/fO2RaHLR0BanvnbItDlR0BFzjU/fO2Rh3HzRz/xFocrAgxKR0BanxqfvnbJR0BFzrhR64Ufh3H0Rz/xQ5WBBiTdR0Ban2yLQ5WBR0BFz752yLQ5h3H1Rz/xlYEGJN0vR0BaoAAAAAAAR0BF0WhysCDFh3H2Rz/xwo9cKPXDR0BaoFHrhR64R0BF0k3S8an8h3H3Rz/x2yLQ5WBCR0BaoIMSbpeNR0BF0tDlYEGJh3H4Rz/yFHrhR64UR0BaoOVgQYk3R0BF1BiTdLxqh3H5Rz/yKPXCj1wpR0BaoQYk3S8bR0BF1Jul41P4h3H6Rz/yWhysCDEnR0BaoVgQYk3TR0BF1YEGJN0vh3H7Rz/yrAgxJul5R0BaoeuFHrhSR0BF10vGp++eh3H8Rz/ywIMSbpeNR0BaohysCDEnR0BF187ZFocrh3H9Rz/y2RaHKwIMR0Baoj1wo9cKR0BF2DEm6XjVh3H+Rz/y8an752yLR0Baom6XjU/fR0BF2LQ5WBBih3H/Rz/zP3ztkWhzR0BaovGp++dtR0BF2n752yLRh3IAAQAARz/zWBBiTdLyR0BaoyLQ5WBCR0BF2uFHrhR7h3IBAQAARz/zcKPXCj1xR0Bao0OVgQYlR0BF22RaHKwIh3ICAQAARz/zwo9cKPXDR0Bao9cKPXCkR0BF3S8an753h3IDAQAARz/z1wo9cKPXR0BapAgxJul5R0BF3ZFocrAhh3IEAQAARz/z752yLQ5WR0BapCj1wo9cR0BF3hR64Ueuh3IFAQAARz/0CDEm6XjVR0BapFocrAgxR0BF3peNT987h3IGAQAARz/0WhysCDEnR0BapN0vGp++R0BF4GJN0vGqh3IHAQAARz/0bpeNT987R0BapQ5WBBiTR0BF4MSbpeNUh3IIAQAARz/0hysCDEm6R0BapS8an753R0BF4UeuFHrhh3IJAQAARz/0n752yLQ5R0BapWBBiTdMR0BF4crAgxJvh3IKAQAARz/08an752yLR0BapeNT987ZR0BF43S8an76h3ILAQAARz/1BiTdLxqgR0BaphR64UeuR0BF4/fO2RaHh3IMAQAARz/1HrhR64UfR0BapjU/fO2RR0BF5HrhR64Uh3INAQAARz/1cKPXCj1xR0Bapsi0OVgQR0BF5kWhysCDh3IOAQAARz/1iTdLxqfwR0BapvnbItDlR0BF5qfvnbIth3IPAQAARz/1nbItDlYER0BapxqfvnbJR0BF5ysCDEm6h3IQAQAARz/1tkWhysCDR0Bap0vGp++eR0BF564UeuFIh3IRAQAARz/2CDEm6XjVR0Bap87ZFocrR0BF6VgQYk3Th3ISAQAARz/2IMSbpeNUR0BaqAAAAAAAR0BF6dsi0OVgh3ITAQAARz/2NT987ZFoR0BaqCDEm6XjR0BF6l41P3zuh3IUAQAARz/2n752yLQ5R0BaqNT987ZGR0BF7ItDlYEGh3IVAQAARz/2uFHrhR64R0BaqQYk3S8bR0BF7Q5WBBiTh3IWAQAARz/20OVgQYk3R0BaqSbpeNT+R0BF7ZFocrAhh3IXAQAARz/3ItDlYEGJR0BaqbpeNT99R0BF71wo9cKPh3IYAQAARz/3N0vGp++eR0Baqdsi0OVgR0BF7752yLQ5h3IZAQAARz/3T987ZFodR0BaqgxJul41R0BF8EGJN0vHh3IaAQAARz/3ul41P3zuR0BaqsCDEm6YR0BF8o9cKPXDh3IbAQAARz/30vGp++dtR0BaquFHrhR7R0BF8xJul41Qh3IcAQAARz/352yLQ5WBR0BaqxJul41QR0BF83S8an76h3IdAQAARz/4UeuFHrhSR0Baq8an752yR0BF9cKPXCj2h3IeAQAARz/4an752yLRR0Baq+dsi0OWR0BF9kWhysCDh3IfAQAARz/4gxJul41QR0BarBiTdLxqR0BF9qfvnbIth3IgAQAARz/41P3ztkWiR0BarJul41P4R0BF+HKwIMSch3IhAQAARz/46XjU/fO2R0BarMzMzMzNR0BF+PXCj1wph3IiAQAARz/5AgxJul41R0BarO2RaHKwR0BF+XjU/fO2h3IjAQAARz/5bItDlYEGR0BaraHKwIMSR0BF+6XjU/fPh3IkAQAARz/5hR64UeuFR0BardLxqfvnR0BF/Cj1wo9ch3IlAQAARz/5nbItDlYER0BarfO2RaHLR0BF/KwIMSbph3ImAQAARz/5tkWhysCDR0BariTdLxqgR0BF/S8an753h3InAQAARz/6CDEm6XjVR0BarqfvnbItR0BF/tkWhysCh3IoAQAARz/6HKwIMSbpR0BartkWhysCR0BF/1wo9cKPh3IpAQAARz/6hysCDEm6R0Bar41P3ztkR0BGAan752yLh3IqAQAARz/6uFHrhR64R0Bar87ZFocrR0BGAo9cKPXDh3IrAQAARz/60OVgQYk3R0BasAAAAAAAR0BGAxJul41Qh3IsAQAARz/7ItDlYEGJR0BasIMSbpeNR0BGBN0vGp++h3ItAQAARz/7aHKwIMScR0BasQYk3S8bR0BGBkWhysCDh3IuAQAARz/764UeuFHsR0Basdsi0OVgR0BGCRaHKwIMh3IvAQAARz/8PXCj1wo9R0Basm6XjU/fR0BGCsCDEm6Yh3IwAQAARz/8hysCDEm6R0BasuFHrhR7R0BGDEm6XjU/h3IxAQAARz/82RaHKwIMR0Bas2RaHKwIR0BGDfO2RaHLh3IyAQAARz/9HrhR64UfR0Bas9cKPXCkR0BGD3ztkWhzh3IzAQAARz/9XCj1wo9cR0BatEm6XjU/R0BGEMSbpeNUh3I0AQAARz/9dLxqfvnbR0BatGp++dsjR0BGEUeuFHrhh3I1AQAARz/9ocrAgxJvR0BatLxqfvnbR0BGEi0OVgQZh3I2AQAARz/9987ZFocrR0BatT987ZFoR0BGE/fO2RaHh3I3AQAARz/+PXCj1wo9R0BatbItDlYER0BGFYEGJN0vh3I4AQAARz/+j1wo9cKPR0BatkWhysCDR0BGFysCDEm6h3I5AQAARz/+wIMSbpeNR0BatpeNT987R0BGGDEm6XjVh3I6AQAARz//FocrAgxKR0BatxqfvnbJR0BGGfvnbItEh3I7AQAARz//KwIMSbpeR0BatztkWhysR0BGGl41P3zuh3I8AQAARz//XCj1wo9cR0Bat41P3ztkR0BGG2RaHKwIh3I9AQAARz//rhR64UeuR0BauCDEm6XjR0BGHS8an753h3I+AQAARz//xqfvnbItR0BauEGJN0vHR0BGHbItDlYEh3I/AQAARz//3ztkWhysR0BauGJN0vGqR0BGHjU/fO2Rh3JAAQAARz//987ZFocrR0BauJN0vGp/R0BGHrhR64Ufh3JBAQAAR0AAJN0vGp++R0BauRaHKwIMR0BGIGJN0vGqh3JCAQAAR0AAMSbpeNT+R0BauTdLxqfwR0BGIOVgQYk3h3JDAQAAR0AAPXCj1wo9R0BauWhysCDFR0BGIWhysCDFh3JEAQAAR0AAZmZmZmZmR0BaueuFHrhSR0BGIzMzMzMzh3JFAQAAR0AAcrAgxJumR0BauhysCDEnR0BGI7ZFocrBh3JGAQAAR0AAfvnbItDlR0Bauj1wo9cKR0BGJBiTdLxqh3JHAQAAR0AAi0OVgQYlR0Baul41P3zuR0BGJJul41P4h3JIAQAAR0AAtkWhysCDR0BauvGp++dtR0BGJmZmZmZmh3JJAQAAR0AAwIMSbpeNR0BauxJul41QR0BGJul41P30h3JKAQAAR0AAzMzMzMzNR0BauzMzMzMzR0BGJ2yLQ5WBh3JLAQAAR0AA987ZFocrR0Bau8an752yR0BGKRaHKwIMh3JMAQAAR0ABBBiTdLxqR0Bau+dsi0OWR0BGKZmZmZmah3JNAQAAR0ABDlYEGJN1R0BavAgxJul5R0BGKhysCDEnh3JOAQAAR0ABGp++dsi0R0BavDlYEGJOR0BGKp++dsi0h3JPAQAAR0ABRaHKwIMSR0BavLxqfvnbR0BGLGp++dsjh3JQAQAAR0ABUeuFHrhSR0BavN0vGp++R0BGLO2RaHKwh3JRAQAAR0ABXjU/fO2RR0BavQ5WBBiTR0BGLXCj1wo9h3JSAQAAR0ABaHKwIMScR0BavS8an753R0BGLfO2RaHLh3JTAQAAR0ABk3S8an76R0BavbItDlYER0BGL52yLQ5Wh3JUAQAAR0ABn752yLQ5R0BaveNT987ZR0BGMCDEm6Xjh3JVAQAAR0ABrAgxJul5R0BavgQYk3S8R0BGMKPXCj1xh3JWAQAAR0AB1P3ztkWiR0BavocrAgxKR0BGMm6XjU/fh3JXAQAAR0AB4UeuFHrhR0BavrhR64UfR0BGMvGp++dth3JYAQAAR0AB7ZFocrAhR0BavtkWhysCR0BGM3S8an76h3JZAQAAR0AB+dsi0OVgR0BavvnbItDlR0BGM/fO2RaHh3JaAQAAR0ACJN0vGp++R0Bav41P3ztkR0BGNaHKwIMSh3JbAQAAR0ACLxqfvnbJR0Bav64UeuFIR0BGNiTdLxqgh3JcAQAAR0ACO2RaHKwIR0Bav87ZFocrR0BGNqfvnbIth3JdAQAAR0ACcrAgxJumR0BawIMSbpeNR0BGOPXCj1wph3JeAQAAR0ACfvnbItDlR0BawKPXCj1xR0BGOXjU/fO2h3JfAQAAR0ACi0OVgQYlR0BawNT987ZGR0BGOfvnbItEh3JgAQAAR0ACtDlYEGJOR0BawVgQYk3TR0BGO6XjU/fPh3JhAQAAR0ACwIMSbpeNR0BawXjU/fO2R0BGPCj1wo9ch3JiAQAAR0ACzMzMzMzNR0Bawan752yLR0BGPKwIMSbph3JjAQAAR0AC2RaHKwIMR0BawcrAgxJvR0BGPS8an753h3JkAQAAR0AC5WBBiTdMR0BaweuFHrhSR0BGPbItDlYEh3JlAQAAR0ADBBiTdLxqR0Bawk3S8an8R0BGPvnbItDlh3JmAQAAR0ADEGJN0vGqR0Bawm6XjU/fR0BGP3ztkWhzh3JnAQAAR0ADHKwIMSbpR0Bawp++dsi0R0BGQAAAAAAAh3JoAQAAR0ADUeuFHrhSR0Baw0OVgQYlR0BGQi0OVgQZh3JpAQAAR0ADXjU/fO2RR0Baw3S8an76R0BGQrAgxJumh3JqAQAAR0ADan752yLRR0Baw5WBBiTdR0BGQzMzMzMzh3JrAQAAR0ADdsi0OVgQR0Baw7ZFocrBR0BGQ7ZFocrBh3JsAQAAR0ADlYEGJN0vR0BaxBiTdLxqR0BGRP3ztkWih3JtAQAAR0ADocrAgxJvR0BaxDlYEGJOR0BGRYEGJN0vh3JuAQAAR0ADrhR64UeuR0BaxGp++dsjR0BGRgQYk3S8h3JvAQAAR0AD41P3ztkXR0BaxQ5WBBiTR0BGSFHrhR64h3JwAQAAR0AD++dsi0OWR0BaxWBBiTdMR0BGSTdLxqfwh3JxAQAAR0AECDEm6XjVR0BaxYEGJN0vR0BGSdsi0OVgh3JyAQAAR0AEWBBiTdLyR0BaxnbItDlYR0BGTQ5WBBiTh3JzAQAAR0AEdsi0OVgQR0BaxtkWhysCR0BGTlYEGJN1h3J0AQAAR0AEjU/fO2RaR0BaxysCDEm6R0BGT1wo9cKPh3J1AQAAR0AEm6XjU/fPR0Bax0vGp++eR0BGT987ZFodh3J2AQAAR0AEtDlYEGJOR0Bax52yLQ5WR0BGUOVgQYk3h3J3AQAAR0AExJul41P4R0Bax87ZFocrR0BGUan752yLh3J4AQAAR0AE6XjU/fO2R0BayEGJN0vHR0BGUzMzMzMzh3J5AQAAR0AFFHrhR64UR0BayMSbpeNUR0BGVN0vGp++h3J6AQAAR0AFLQ5WBBiTR0BayRaHKwIMR0BGVeNT987Zh3J7AQAAR0AFRaHKwIMSR0BayVgQYk3TR0BGVul41P30h3J8AQAAR0AFWBBiTdLyR0BayZmZmZmaR0BGV64UeuFIh3J9AQAAR0AFfO2RaHKwR0BaygxJul41R0BGWTdLxqfwh3J+AQAAR0AFp++dsi0OR0Bayo9cKPXDR0BGWwIMSbpeh3J/AQAAR0AFzMzMzMzNR0BaywIMSbpeR0BGXItDlYEGh3KAAQAAR0AF2RaHKwIMR0BayyLQ5WBCR0BGXQ5WBBiTh3KBAQAAR0AF987ZFocrR0Bay4UeuFHsR0BGXjU/fO2Rh3KCAQAAR0AGEGJN0vGqR0Bay8an752yR0BGXztkWhysh3KDAQAAR0AGKPXCj1wpR0BazBiTdLxqR0BGYEGJN0vHh3KEAQAAR0AGO2RaHKwIR0BazEm6XjU/R0BGYQYk3S8bh3KFAQAAR0AGR64UeuFIR0BazGp++dsjR0BGYYk3S8aoh3KGAQAAR0AGU/fO2RaHR0BazJul41P4R0BGYgxJul41h3KHAQAAR0AGXjU/fO2RR0BazLxqfvnbR0BGYo9cKPXDh3KIAQAAR0AGiTdLxqfwR0BazT987ZFoR0BGZFocrAgxh3KJAQAAR0AGlYEGJN0vR0BazWBBiTdMR0BGZN0vGp++h3KKAQAAR0AGocrAgxJvR0BazZFocrAhR0BGZWBBiTdMh3KLAQAAR0AGvGp++dsjR0BazdLxqfvnR0BGZmZmZmZmh3KMAQAAR0AGzMzMzMzNR0BazhR64UeuR0BGZysCDEm6h3KNAQAAR0AG2RaHKwIMR0BazjU/fO2RR0BGZ64UeuFIh3KOAQAAR0AG5WBBiTdMR0BazlYEGJN1R0BGaDEm6XjVh3KPAQAAR0AG8an752yLR0BaznbItDlYR0BGaLQ5WBBih3KQAQAAR0AHHKwIMSbpR0BazvnbItDlR0BGan752yLRh3KRAQAAR0AHKwIMSbpeR0BazysCDEm6R0BGawIMSbpeh3KSAQAAR0AHN0vGp++eR0Baz0vGp++eR0BGa4UeuFHsh3KTAQAAR0AHQ5WBBiTdR0Baz2yLQ5WBR0BGbAgxJul5h3KUAQAAR0AHT987ZFodR0Baz41P3ztkR0BGbItDlYEGh3KVAQAAR0AHbpeNT987R0Baz++dsi0OR0BGbbItDlYEh3KWAQAAR0AHeuFHrhR7R0Ba0BBiTdLyR0BGbjU/fO2Rh3KXAQAAR0AHhysCDEm6R0Ba0EGJN0vHR0BGbrhR64Ufh3KYAQAAR0AHn752yLQ5R0Ba0IMSbpeNR0BGb752yLQ5h3KZAQAAR0AHsi0OVgQZR0Ba0LQ5WBBiR0BGcIMSbpeNh3KaAQAAR0AHvnbItDlYR0Ba0OVgQYk3R0BGcQYk3S8bh3KbAQAAR0AHysCDEm6YR0Ba0QYk3S8bR0BGcYk3S8aoh3KcAQAAR0AH1wo9cKPXR0Ba0SbpeNT+R0BGcgxJul41h3KdAQAAR0AH41P3ztkXR0Ba0VgQYk3TR0BGco9cKPXDh3KeAQAAR0AIAgxJul41R0Ba0an752yLR0BGc9cKPXCkh3KfAQAAR0AIDlYEGJN1R0Ba0crAgxJvR0BGdFocrAgxh3KgAQAAR0AIGp++dsi0R0Ba0fvnbItER0BGdN0vGp++h3KhAQAAR0AIMzMzMzMzR0Ba0j1wo9cKR0BGdeNT987Zh3KiAQAAR0AIUeuFHrhSR0Ba0p++dsi0R0BGdysCDEm6h3KjAQAAR0AIXjU/fO2RR0Ba0sCDEm6YR0BGd64UeuFIh3KkAQAAR0AIan752yLRR0Ba0uFHrhR7R0BGeDEm6XjVh3KlAQAAR0AIlYEGJN0vR0Ba02RaHKwIR0BGefvnbItEh3KmAQAAR0AIocrAgxJvR0Ba04UeuFHsR0BGen752yLRh3KnAQAAR0AIrhR64UeuR0Ba07ZFocrBR0BGewIMSbpeh3KoAQAAR0AIul41P3zuR0Ba09cKPXCkR0BGe4UeuFHsh3KpAQAAR0AIyLQ5WBBiR0Ba0/fO2RaHR0BGfAgxJul5h3KqAQAAR0AI1P3ztkWiR0Ba1Cj1wo9cR0BGfItDlYEGh3KrAQAAR0AI52yLQ5WBR0Ba1FocrAgxR0BGfU/fO2Rah3KsAQAAR0AI87ZFocrBR0Ba1HrhR64UR0BGfdLxqfvnh3KtAQAAR0AJAAAAAAAAR0Ba1Jul41P4R0BGflYEGJN1h3KuAQAAR0AJKwIMSbpeR0Ba1R64UeuFR0BGgCDEm6Xjh3KvAQAAR0AJN0vGp++eR0Ba1T987ZFoR0BGgKPXCj1xh3KwAQAAR0AJQ5WBBiTdR0Ba1XCj1wo9R0BGgSbpeNT+h3KxAQAAR0AJT987ZFodR0Ba1ZFocrAhR0BGgan752yLh3KyAQAAR0AJXCj1wo9cR0Ba1bItDlYER0BGgi0OVgQZh3KzAQAAR0AJeuFHrhR7R0Ba1hR64UeuR0BGg3S8an76h3K0AQAAR0AJhysCDEm6R0Ba1jU/fO2RR0BGg/fO2RaHh3K1AQAAR0AJk3S8an76R0Ba1lYEGJN1R0BGhHrhR64Uh3K2AQAAR0AJrhR64UeuR0Ba1qfvnbItR0BGhYEGJN0vh3K3AQAAR0AJul41P3zuR0Ba1si0OVgQR0BGhgQYk3S8h3K4AQAAR0AJzMzMzMzNR0Ba1vnbItDlR0BGhsi0OVgQh3K5AQAAR0AJ2RaHKwIMR0Ba1xqfvnbJR0BGh0vGp++eh3K6AQAAR0AJ5WBBiTdMR0Ba10vGp++eR0BGh87ZFocrh3K7AQAAR0AJ8an752yLR0Ba12yLQ5WBR0BGiFHrhR64h3K8AQAAR0AKEGJN0vGqR0Ba1752yLQ5R0BGiZmZmZmah3K9AQAAR0AKHKwIMSbpR0Ba1++dsi0OR0BGihysCDEnh3K+AQAAR0AKKPXCj1wpR0Ba2BBiTdLyR0BGip++dsi0h3K/AQAAR0AKQ5WBBiTdR0Ba2FHrhR64R0BGi6XjU/fPh3LAAQAAR0AKT987ZFodR0Ba2IMSbpeNR0BGjCj1wo9ch3LBAQAAR0AKYk3S8an8R0Ba2LQ5WBBiR0BGjO2RaHKwh3LCAQAAR0AKbpeNT987R0Ba2NT987ZGR0BGjXCj1wo9h3LDAQAAR0AKeuFHrhR7R0Ba2PXCj1wpR0BGjfO2RaHLh3LEAQAAR0AKhysCDEm6R0Ba2SbpeNT+R0BGjnbItDlYh3LFAQAAR0AKocrAgxJvR0Ba2WhysCDFR0BGj3ztkWhzh3LGAQAAR0AKsi0OVgQZR0Ba2ZmZmZmaR0BGkEGJN0vHh3LHAQAAR0AK2RaHKwIMR0Ba2gxJul41R0BGkcrAgxJvh3LIAQAAR0AK987ZFocrR0Ba2l41P3zuR0BGkxJul41Qh3LJAQAAR0ALEGJN0vGqR0Ba2rAgxJumR0BGlBiTdLxqh3LKAQAAR0ALKPXCj1wpR0Ba2vGp++dtR0BGlR64UeuFh3LLAQAAR0ALN0vGp++eR0Ba2yLQ5WBCR0BGlaHKwIMSh3LMAQAAR0ALSbpeNT99R0Ba21P3ztkXR0BGlmZmZmZmh3LNAQAAR0ALYk3S8an8R0Ba25WBBiTdR0BGl2yLQ5WBh3LOAQAAR0ALbpeNT987R0Ba27ZFocrBR0BGl++dsi0Oh3LPAQAAR0ALhysCDEm6R0Ba3AgxJul5R0BGmPXCj1wph3LQAQAAR0ALmZmZmZmaR0Ba3DlYEGJOR0BGmbpeNT99h3LRAQAAR0ALwIMSbpeNR0Ba3KwIMSbpR0BGm0OVgQYlh3LSAQAAR0ALzMzMzMzNR0Ba3MzMzMzNR0BGm8an752yh3LTAQAAR0AL987ZFocrR0Ba3T987ZFoR0BGnZFocrAhh3LUAQAAR0AMBBiTdLxqR0Ba3XCj1wo9R0BGnhR64Ueuh3LVAQAAR0AMHrhR64UfR0Ba3bItDlYER0BGnxqfvnbJh3LWAQAAR0AMMSbpeNT+R0Ba3eNT987ZR0BGn987ZFodh3LXAQAAR0AMVgQYk3S8R0Ba3lYEGJN1R0BGoWhysCDFh3LYAQAAR0AMYk3S8an8R0Ba3nbItDlYR0BGogxJul41h3LZAQAAR0AMgxJul41QR0Ba3tkWhysCR0BGozMzMzMzh3LaAQAAR0AMm6XjU/fPR0Ba3xqfvnbJR0BGpDlYEGJOh3LbAQAAR0AMtDlYEGJOR0Ba31wo9cKPR0BGpWBBiTdMh3LcAQAAR0AMxqfvnbItR0Ba352yLQ5WR0BGpiTdLxqgh3LdAQAAR0AM0vGp++dtR0Ba3752yLQ5R0BGpqfvnbIth3LeAQAAR0AM7ZFocrAhR0Ba4AAAAAAAR0BGp64UeuFIh3LfAQAAR0ANGJN0vGp/R0Ba4IMSbpeNR0BGqXjU/fO2h3LgAQAAR0ANJN0vGp++R0Ba4KPXCj1xR0BGqfvnbItEh3LhAQAAR0ANMzMzMzMzR0Ba4MSbpeNUR0BGqn752yLRh3LiAQAAR0ANP3ztkWhzR0Ba4OVgQYk3R0BGqwIMSbpeh3LjAQAAR0ANS8an752yR0Ba4RaHKwIMR0BGq4UeuFHsh3LkAQAAR0ANan752yLRR0Ba4WhysCDFR0BGrMzMzMzNh3LlAQAAR0ANdsi0OVgQR0Ba4Yk3S8aoR0BGrU/fO2Rah3LmAQAAR0ANhR64UeuFR0Ba4an752yLR0BGrdLxqfvnh3LnAQAAR0ANnbItDlYER0Ba4fvnbItER0BGrtkWhysCh3LoAQAAR0ANsCDEm6XjR0Ba4i0OVgQZR0BGr52yLQ5Wh3LpAQAAR0ANvGp++dsjR0Ba4k3S8an8R0BGsCDEm6Xjh3LqAQAAR0ANyLQ5WBBiR0Ba4m6XjU/fR0BGsKPXCj1xh3LrAQAAR0AN1wo9cKPXR0Ba4o9cKPXDR0BGsSbpeNT+h3LsAQAAR0AN41P3ztkXR0Ba4sCDEm6YR0BGsan752yLh3LtAQAAR0AOAgxJul41R0Ba4xJul41QR0BGsvGp++dth3LuAQAAR0AODlYEGJN1R0Ba4zMzMzMzR0BGs3S8an76h3LvAQAAR0AOGp++dsi0R0Ba41P3ztkXR0BGs/fO2RaHh3LwAQAAR0AONT987ZFoR0Ba46XjU/fPR0BGtR64UeuFh3LxAQAAR0AOR64UeuFIR0Ba49cKPXCkR0BGteNT987Zh3LyAQAAR0AOU/fO2RaHR0Ba4/fO2RaHR0BGtmZmZmZmh3LzAQAAR0AOYEGJN0vHR0Ba5BiTdLxqR0BGtul41P30h3L0AQAAR0AObpeNT987R0Ba5DlYEGJOR0BGt2yLQ5WBh3L1AQAAR0AOeuFHrhR7R0Ba5Gp++dsjR0BGt++dsi0Oh3L2AQAAR0AOmZmZmZmaR0Ba5LxqfvnbR0BGuTdLxqfwh3L3AQAAR0AOpeNT987ZR0Ba5N0vGp++R0BGubpeNT99h3L4AQAAR0AOtDlYEGJOR0Ba5P3ztkWiR0BGuj1wo9cKh3L5AQAAR0AOwIMSbpeNR0Ba5R64UeuFR0BGusCDEm6Yh3L6AQAAR0AOzMzMzMzNR0Ba5T987ZFoR0BGu0OVgQYlh3L7AQAAR0AO2yLQ5WBCR0Ba5XCj1wo9R0BGu8an752yh3L8AQAAR0AO64UeuFHsR0Ba5aHKwIMSR0BGvItDlYEGh3L9AQAAR0AO+dsi0OVgR0Ba5cKPXCj2R0BGvQ5WBBiTh3L+AQAAR0APBiTdLxqgR0Ba5eNT987ZR0BGvZFocrAhh3L/AQAAR0APHrhR64UfR0Ba5iTdLxqgR0BGvpeNT987h3IAAgAAR0APMSbpeNT+R0Ba5mZmZmZmR0BGv1wo9cKPh3IBAgAAR0APP3ztkWhzR0Ba5ocrAgxKR0BGv987ZFodh3ICAgAAR0APS8an752yR0Ba5qfvnbItR0BGwGJN0vGqh3IDAgAAR0APWBBiTdLyR0Ba5si0OVgQR0BGwQYk3S8bh3IEAgAAR0APZFocrAgxR0Ba5ul41P30R0BGwYk3S8aoh3IFAgAAR0APcrAgxJumR0Ba5wo9cKPXR0BGwgxJul41h3IGAgAAR0APhR64UeuFR0Ba50vGp++eR0BGwtDlYEGJh3IHAgAAR0APkWhysCDFR0Ba52yLQ5WBR0BGw1P3ztkXh3IIAgAAR0APnbItDlYER0Ba541P3ztkR0BGw9cKPXCkh3IJAgAAR0APuFHrhR64R0Ba587ZFocrR0BGxN0vGp++h3IKAgAAR0APxJul41P4R0Ba5++dsi0OR0BGxWBBiTdMh3ILAgAAR0AP1wo9cKPXR0Ba6CDEm6XjR0BGxiTdLxqgh3IMAgAAR0AP41P3ztkXR0Ba6FHrhR64R0BGxqfvnbIth3INAgAAR0AP752yLQ5WR0Ba6HKwIMScR0BGxysCDEm6h3IOAgAAR0AP/fO2RaHLR0Ba6JN0vGp/R0BGx64UeuFIh3IPAgAAR0AQDlYEGJN1R0Ba6OVgQYk3R0BGyPXCj1wph3IQAgAAR0AQFHrhR64UR0Ba6QYk3S8bR0BGyXjU/fO2h3IRAgAAR0AQG6XjU/fPR0Ba6SbpeNT+R0BGyfvnbItEh3ISAgAAR0AQIcrAgxJvR0Ba6UeuFHrhR0BGyp++dsi0h3ITAgAAR0AQJ++dsi0OR0Ba6XjU/fO2R0BGyyLQ5WBCh3IUAgAAR0AQLxqfvnbJR0Ba6ZmZmZmaR0BGy6XjU/fPh3IVAgAAR0AQOFHrhR64R0Ba6crAgxJvR0BGzGp++dsjh3IWAgAAR0AQPnbItDlYR0Ba6euFHrhSR0BGzO2RaHKwh3IXAgAAR0AQRJul41P4R0Ba6gxJul41R0BGzXCj1wo9h3IYAgAAR0AQWBBiTdLyR0Ba6n752yLRR0BGzvnbItDlh3IZAgAAR0AQYUeuFHrhR0Ba6rAgxJumR0BGz752yLQ5h3IaAgAAR0AQZ2yLQ5WBR0Ba6tDlYEGJR0BG0EGJN0vHh3IbAgAAR0AQbZFocrAhR0Ba6vGp++dtR0BG0MSbpeNUh3IcAgAAR0AQdLxqfvnbR0Ba6xJul41QR0BG0WhysCDFh3IdAgAAR0AQeuFHrhR7R0Ba6zMzMzMzR0BG0euFHrhSh3IeAgAAR0AQhBiTdLxqR0Ba62RaHKwIR0BG0rAgxJumh3IfAgAAR0AQi0OVgQYlR0Ba64UeuFHsR0BG0zMzMzMzh3IgAgAAR0AQkWhysCDFR0Ba67ZFocrBR0BG07ZFocrBh3IhAgAAR0AQnbItDlYER0Ba6/fO2RaHR0BG1Lxqfvnbh3IiAgAAR0AQpN0vGp++R0Ba7BiTdLxqR0BG1T987ZFoh3IjAgAAR0AQrhR64UeuR0Ba7Em6XjU/R0BG1gQYk3S8h3IkAgAAR0AQtDlYEGJOR0Ba7Gp++dsjR0BG1ocrAgxKh3IlAgAAR0AQul41P3zuR0Ba7ItDlYEGR0BG1wo9cKPXh3ImAgAAR0AQwYk3S8aoR0Ba7LxqfvnbR0BG141P3ztkh3InAgAAR0AQ0OVgQYk3R0Ba7Q5WBBiTR0BG2NT987ZGh3IoAgAAR0AQ1wo9cKPXR0Ba7S8an753R0BG2VgQYk3Th3IpAgAAR0AQ3jU/fO2RR0Ba7U/fO2RaR0BG2fvnbItEh3IqAgAAR0AQ6n752yLRR0Ba7ZFocrAhR0BG2wIMSbpeh3IrAgAAR0AQ8an752yLR0Ba7bItDlYER0BG24UeuFHsh3IsAgAAR0AQ+uFHrhR7R0Ba7eNT987ZR0BG3Em6XjU/h3ItAgAAR0ARBysCDEm6R0Ba7jU/fO2RR0BG3U/fO2Rah3IuAgAAR0ARDlYEGJN1R0Ba7lYEGJN1R0BG3dLxqfvnh3IvAgAAR0ARG6XjU/fPR0Ba7peNT987R0BG3vnbItDlh3IwAgAAR0ARI9cKPXCkR0Ba7si0OVgQR0BG352yLQ5Wh3IxAgAAR0ARN0vGp++eR0Ba7ysCDEm6R0BG4UeuFHrhh3IyAgAAR0ARPnbItDlYR0Ba71wo9cKPR0BG4crAgxJvh3IzAgAAR0ARU/fO2RaHR0Ba787ZFocrR0BG45WBBiTdh3I0AgAAR0ARaHKwIMScR0Ba8DEm6XjVR0BG5T987ZFoh3I1AgAAR0ARcan752yLR0Ba8GJN0vGqR0BG5eNT987Zh3I2AgAAR0ARffO2RaHLR0Ba8KPXCj1xR0BG5ul41P30h3I3AgAAR0ARhR64UeuFR0Ba8NT987ZGR0BG541P3ztkh3I4AgAAR0ARm6XjU/fPR0Ba8UeuFHrhR0BG6VgQYk3Th3I5AgAAR0ARrxqfvnbJR0Ba8an752yLR0BG6uFHrhR7h3I6AgAAR0ARtT987ZFoR0Ba8crAgxJvR0BG64UeuFHsh3I7AgAAR0AR0euFHrhSR0Ba8l41P3zuR0BG7dLxqfvnh3I8AgAAR0AR3ztkWhysR0Ba8rAgxJumR0BG7tkWhysCh3I9AgAAR0AR6HKwIMScR0Ba8uFHrhR7R0BG752yLQ5Wh3I+AgAAR0AR++dsi0OWR0Ba80OVgQYlR0BG8SbpeNT+h3I/AgAAR0ASAxJul41QR0Ba82RaHKwIR0BG8crAgxJvh3JAAgAAR0ASEm6XjU/fR0Ba87ZFocrBR0BG8xJul41Qh3JBAgAAR0ASGJN0vGp/R0Ba89cKPXCkR0BG85WBBiTdh3JCAgAAR0ASH752yLQ5R0Ba8/fO2RaHR0BG9BiTdLxqh3JDAgAAR0ASLQ5WBBiTR0Ba9Em6XjU/R0BG9R64UeuFh3JEAgAAR0ASNkWhysCDR0Ba9HrhR64UR0BG9eNT987Zh3JFAgAAR0ASPGp++dsjR0Ba9Jul41P4R0BG9mZmZmZmh3JGAgAAR0ASQo9cKPXDR0Ba9LxqfvnbR0BG9ul41P30h3JHAgAAR0ASSbpeNT99R0Ba9N0vGp++R0BG941P3ztkh3JIAgAAR0AST987ZFodR0Ba9P3ztkWiR0BG+BBiTdLyh3JJAgAAR0ASYEGJN0vHR0Ba9U/fO2RaR0BG+VgQYk3Th3JKAgAAR0ASZmZmZmZmR0Ba9XCj1wo9R0BG+dsi0OVgh3JLAgAAR0ASbItDlYEGR0Ba9ZFocrAhR0BG+l41P3zuh3JMAgAAR0ASc7ZFocrBR0Ba9bItDlYER0BG+uFHrhR7h3JNAgAAR0ASedsi0OVgR0Ba9dLxqfvnR0BG+2RaHKwIh3JOAgAAR0ASgQYk3S8bR0Ba9fO2RaHLR0BG/AgxJul5h3JPAgAAR0ASij1wo9cKR0Ba9iTdLxqgR0BG/MzMzMzNh3JQAgAAR0ASkGJN0vGqR0Ba9kWhysCDR0BG/U/fO2Rah3JRAgAAR0ASlocrAgxKR0Ba9mZmZmZmR0BG/dLxqfvnh3JSAgAAR0ASo9cKPXCkR0Ba9rhR64UfR0BG/tkWhysCh3JTAgAAR0ASrhR64UeuR0Ba9ul41P30R0BG/52yLQ5Wh3JUAgAAR0AStDlYEGJOR0Ba9wo9cKPXR0BHACDEm6Xjh3JVAgAAR0ASul41P3zuR0Ba9ysCDEm6R0BHAKPXCj1xh3JWAgAAR0ASwYk3S8aoR0Ba90vGp++eR0BHASbpeNT+h3JXAgAAR0ASx64UeuFIR0Ba92yLQ5WBR0BHAcrAgxJvh3JYAgAAR0ASztkWhysCR0Ba941P3ztkR0BHAk3S8an8h3JZAgAAR0AS2BBiTdLyR0Ba9752yLQ5R0BHAxJul41Qh3JaAgAAR0AS3jU/fO2RR0Ba9987ZFodR0BHA5WBBiTdh3JbAgAAR0AS5FocrAgxR0Ba+AAAAAAAR0BHBBiTdLxqh3JcAgAAR0AS8an752yLR0Ba+EGJN0vHR0BHBR64UeuFh3JdAgAAR0AS+NT987ZGR0Ba+GJN0vGqR0BHBcKPXCj2h3JeAgAAR0ATAgxJul41R0Ba+JN0vGp/R0BHBocrAgxKh3JfAgAAR0ATCDEm6XjVR0Ba+LQ5WBBiR0BHBwo9cKPXh3JgAgAAR0ATD1wo9cKPR0Ba+NT987ZGR0BHB41P3ztkh3JhAgAAR0ATFYEGJN0vR0Ba+PXCj1wpR0BHCBBiTdLyh3JiAgAAR0ATJeNT987ZR0Ba+VgQYk3TR0BHCVgQYk3Th3JjAgAAR0ATLAgxJul5R0Ba+XjU/fO2R0BHCdsi0OVgh3JkAgAAR0ATMi0OVgQZR0Ba+ZmZmZmaR0BHCl41P3zuh3JlAgAAR0ATOVgQYk3TR0Ba+bpeNT99R0BHCwIMSbpeh3JmAgAAR0ATP3ztkWhzR0Ba+dsi0OVgR0BHC4UeuFHsh3JnAgAAR0ATRqfvnbItR0Ba+fvnbItER0BHDAgxJul5h3JoAgAAR0ATT987ZFodR0Ba+i0OVgQZR0BHDMzMzMzNh3JpAgAAR0ATVgQYk3S8R0Ba+k3S8an8R0BHDU/fO2Rah3JqAgAAR0ATXS8an753R0Ba+m6XjU/fR0BHDdLxqfvnh3JrAgAAR0ATan752yLRR0Ba+rAgxJumR0BHDvnbItDlh3JsAgAAR0ATcKPXCj1xR0Ba+tDlYEGJR0BHD3ztkWhzh3JtAgAAR0ATc7ZFocrBR0Ba+uFHrhR7R0BHD752yLQ5h3JuAgAAR0ATedsi0OVgR0Ba+wIMSbpeR0BHEEGJN0vHh3JvAgAAR0ATgQYk3S8bR0Ba+yLQ5WBCR0BHEMSbpeNUh3JwAgAAR0AThysCDEm6R0Ba+0OVgQYlR0BHEUeuFHrhh3JxAgAAR0ATjlYEGJN1R0Ba+2RaHKwIR0BHEcrAgxJvh3JyAgAAR0ATlHrhR64UR0Ba+4UeuFHsR0BHEm6XjU/fh3JzAgAAR0ATnbItDlYER0Ba+7ZFocrBR0BHExJul41Qh3J0AgAAR0ATpN0vGp++R0Ba+9cKPXCkR0BHE7ZFocrBh3J1AgAAR0ATqwIMSbpeR0Ba+/fO2RaHR0BHFDlYEGJOh3J2AgAAR0ATuFHrhR64R0Ba/DlYEGJOR0BHFT987ZFoh3J3AgAAR0ATv3ztkWhzR0Ba/FocrAgxR0BHFcKPXCj2h3J4AgAAR0ATyLQ5WBBiR0Ba/ItDlYEGR0BHFocrAgxKh3J5AgAAR0ATztkWhysCR0Ba/KwIMSbpR0BHFwo9cKPXh3J6AgAAR0AT1gQYk3S8R0Ba/MzMzMzNR0BHF41P3ztkh3J7AgAAR0AT3Cj1wo9cR0Ba/O2RaHKwR0BHGDEm6XjVh3J8AgAAR0AT7ItDlYEGR0Ba/T987ZFoR0BHGXjU/fO2h3J9AgAAR0AT8rAgxJumR0Ba/WBBiTdMR0BHGfvnbItEh3J+AgAAR0AT+dsi0OVgR0Ba/YEGJN0vR0BHGn752yLRh3J/AgAAR0AUBysCDEm6R0Ba/cKPXCj2R0BHG6XjU/fPh3KAAgAAR0AUDU/fO2RaR0Ba/fO2RaHLR0BHHCj1wo9ch3KBAgAAR0AUFocrAgxKR0Ba/hR64UeuR0BHHO2RaHKwh3KCAgAAR0AUHbItDlYER0Ba/jU/fO2RR0BHHXCj1wo9h3KDAgAAR0AUI9cKPXCkR0Ba/lYEGJN1R0BHHfO2RaHLh3KEAgAAR0AUOFHrhR64R0Ba/si0OVgQR0BHH52yLQ5Wh3KFAgAAR0AUQYk3S8aoR0Ba/ul41P30R0BHIGJN0vGqh3KGAgAAR0AUR64UeuFIR0Ba/wo9cKPXR0BHIOVgQYk3h3KHAgAAR0AUTtkWhysCR0Ba/ysCDEm6R0BHIWhysCDFh3KIAgAAR0AUVP3ztkWiR0Ba/1wo9cKPR0BHIeuFHrhSh3KJAgAAR0AUXCj1wo9cR0Ba/3ztkWhzR0BHIm6XjU/fh3KKAgAAR0AUZWBBiTdMR0Ba/64UeuFIR0BHIzMzMzMzh3KLAgAAR0AUcrAgxJumR0Ba/++dsi0OR0BHJFocrAgxh3KMAgAAR0AUgAAAAAAAR0BbADEm6XjVR0BHJWBBiTdMh3KNAgAAR0AUhysCDEm6R0BbAFHrhR64R0BHJeNT987Zh3KOAgAAR0AUkGJN0vGqR0BbAIMSbpeNR0BHJqfvnbIth3KPAgAAR0AUnKwIMSbpR0BbAMSbpeNUR0BHJ87ZFocrh3KQAgAAR0AUo9cKPXCkR0BbAOVgQYk3R0BHKFHrhR64h3KRAgAAR0AUul41P3zuR0BbAUeuFHrhR0BHKhysCDEnh3KSAgAAR0AUwYk3S8aoR0BbAWhysCDFR0BHKp++dsi0h3KTAgAAR0AUztkWhysCR0BbAbpeNT99R0BHK8an752yh3KUAgAAR0AU1P3ztkWiR0BbAdsi0OVgR0BHLEm6XjU/h3KVAgAAR0AU3ztkWhysR0BbAfvnbItER0BHLQ5WBBiTh3KWAgAAR0AU64UeuFHsR0BbAj1wo9cKR0BHLhR64Ueuh3KXAgAAR0AU8rAgxJumR0BbAl41P3zuR0BHLrhR64Ufh3KYAgAAR0AVAAAAAAAAR0BbArAgxJumR0BHL752yLQ5h3KZAgAAR0AVHbItDlYER0BbAzMzMzMzR0BHMi0OVgQZh3KaAgAAR0AVJN0vGp++R0BbA1P3ztkXR0BHMrAgxJumh3KbAgAAR0AVTtkWhysCR0BbBCj1wo9cR0BHNiTdLxqgh3KcAgAAR0AVbItDlYEGR0BbBLxqfvnbR0BHOHKwIMSch3KdAgAAR0AVc7ZFocrBR0BbBN0vGp++R0BHORaHKwIMh3KeAgAAR0AVhBiTdLxqR0BbBS8an753R0BHOl41P3zuh3KfAgAAR0AVl41P3ztkR0BbBZFocrAhR0BHO+dsi0OWh3KgAgAAR0AVnrhR64UfR0BbBbItDlYER0BHPItDlYEGh3KhAgAAR0AVu2RaHKwIR0BbBkWhysCDR0BHPtkWhysCh3KiAgAAR0AVybpeNT99R0BbBocrAgxKR0BHQAAAAAAAh3KjAgAAR0AV0vGp++dtR0BbBrhR64UfR0BHQMSbpeNUh3KkAgAAR0AV4EGJN0vHR0BbBvnbItDlR0BHQcrAgxJvh3KlAgAAR0AV5mZmZmZmR0BbBwo9cKPXR0BHQk3S8an8h3KmAgAAR0AV7ZFocrAhR0BbBztkWhysR0BHQvGp++dth3KnAgAAR0AV9LxqfvnbR0BbB1wo9cKPR0BHQ3S8an76h3KoAgAAR0AV/fO2RaHLR0BbB3ztkWhzR0BHRDlYEGJOh3KpAgAAR0AWBBiTdLxqR0BbB52yLQ5WR0BHRLxqfvnbh3KqAgAAR0AWC0OVgQYlR0BbB752yLQ5R0BHRT987ZFoh3KrAgAAR0AWGJN0vGp/R0BbCAAAAAAAR0BHRmZmZmZmh3KsAgAAR0AWH752yLQ5R0BbCCDEm6XjR0BHRul41P30h3KtAgAAR0AWKPXCj1wpR0BbCFHrhR64R0BHR64UeuFIh3KuAgAAR0AWLxqfvnbJR0BbCHKwIMScR0BHSDEm6XjVh3KvAgAAR0AWNkWhysCDR0BbCJN0vGp/R0BHSLQ5WBBih3KwAgAAR0AWPXCj1wo9R0BbCLQ5WBBiR0BHSVgQYk3Th3KxAgAAR0AWTdLxqfvnR0BbCQYk3S8bR0BHSp++dsi0h3KyAgAAR0AWWyLQ5WBCR0BbCUeuFHrhR0BHS6XjU/fPh3KzAgAAR0AWYUeuFHrhR0BbCWhysCDFR0BHTCj1wo9ch3K0AgAAR0AWaHKwIMScR0BbCYk3S8aoR0BHTMzMzMzNh3K1AgAAR0AWb52yLQ5WR0BbCan752yLR0BHTU/fO2Rah3K2AgAAR0AWeNT987ZGR0BbCcrAgxJvR0BHThR64Ueuh3K3AgAAR0AWfvnbItDlR0BbCeuFHrhSR0BHTpeNT987h3K4AgAAR0AWhiTdLxqgR0BbCgxJul41R0BHTxqfvnbJh3K5AgAAR0AWk3S8an76R0BbCk3S8an8R0BHUEGJN0vHh3K6AgAAR0AWnKwIMSbpR0BbCn752yLRR0BHUQYk3S8bh3K7AgAAR0AWo9cKPXCkR0BbCp++dsi0R0BHUYk3S8aoh3K8AgAAR0AWqfvnbItER0BbCsCDEm6YR0BHUgxJul41h3K9AgAAR0AWsSbpeNT+R0BbCuFHrhR7R0BHUrAgxJumh3K+AgAAR0AWuFHrhR64R0BbCwIMSbpeR0BHUzMzMzMzh3K/AgAAR0AWvnbItDlYR0BbCyLQ5WBCR0BHU7ZFocrBh3LAAgAAR0AWyLQ5WBBiR0BbC1P3ztkXR0BHVHrhR64Uh3LBAgAAR0AWztkWhysCR0BbC3S8an76R0BHVP3ztkWih3LCAgAAR0AW1gQYk3S8R0BbC5WBBiTdR0BHVaHKwIMSh3LDAgAAR0AW41P3ztkXR0BbC9cKPXCkR0BHVqfvnbIth3LEAgAAR0AW6n752yLRR0BbC/fO2RaHR0BHVysCDEm6h3LFAgAAR0AW87ZFocrBR0BbDBiTdLxqR0BHV++dsi0Oh3LGAgAAR0AW+dsi0OVgR0BbDDlYEGJOR0BHWJN0vGp/h3LHAgAAR0AXAQYk3S8bR0BbDFocrAgxR0BHWRaHKwIMh3LIAgAAR0AXCDEm6XjVR0BbDHrhR64UR0BHWZmZmZmah3LJAgAAR0AXGJN0vGp/R0BbDMzMzMzNR0BHWuFHrhR7h3LKAgAAR0AXHrhR64UfR0BbDO2RaHKwR0BHW4UeuFHsh3LLAgAAR0AXJeNT987ZR0BbDQ5WBBiTR0BHXAgxJul5h3LMAgAAR0AXLAgxJul5R0BbDS8an753R0BHXItDlYEGh3LNAgAAR0AXMzMzMzMzR0BbDU/fO2RaR0BHXQ5WBBiTh3LOAgAAR0AXOl41P3zuR0BbDXCj1wo9R0BHXbItDlYEh3LPAgAAR0AXQ5WBBiTdR0BbDZFocrAhR0BHXnbItDlYh3LQAgAAR0AXSbpeNT99R0BbDbItDlYER0BHXvnbItDlh3LRAgAAR0AXUOVgQYk3R0BbDdLxqfvnR0BHX3ztkWhzh3LSAgAAR0AXXjU/fO2RR0BbDhR64UeuR0BHYIMSbpeNh3LTAgAAR0AXZWBBiTdMR0BbDjU/fO2RR0BHYSbpeNT+h3LUAgAAR0AXbpeNT987R0BbDmZmZmZmR0BHYeuFHrhSh3LVAgAAR0AXdcKPXCj2R0BbDocrAgxKR0BHYm6XjU/fh3LWAgAAR0AXe+dsi0OWR0BbDqfvnbItR0BHYvGp++dth3LXAgAAR0AXgxJul41QR0BbDsi0OVgQR0BHY5WBBiTdh3LYAgAAR0AXij1wo9cKR0BbDul41P30R0BHZBiTdLxqh3LZAgAAR0AXk3S8an76R0BbDwo9cKPXR0BHZN0vGp++h3LaAgAAR0AXoMSbpeNUR0BbD0vGp++eR0BHZeNT987Zh3LbAgAAR0AXrxqfvnbJR0BbD41P3ztkR0BHZwo9cKPXh3LcAgAAR0AXtT987ZFoR0BbD64UeuFIR0BHZ41P3ztkh3LdAgAAR0AXv3ztkWhzR0BbD987ZFodR0BHaFHrhR64h3LeAgAAR0AXxaHKwIMSR0BbEAAAAAAAR0BHaNT987ZGh3LfAgAAR0AXzMzMzMzNR0BbECDEm6XjR0BHaVgQYk3Th3LgAgAAR0AX0vGp++dtR0BbEEGJN0vHR0BHafvnbItEh3LhAgAAR0AX6n752yLRR0BbEKPXCj1xR0BHa8an752yh3LiAgAAR0AX8an752yLR0BbEMSbpeNUR0BHbGp++dsjh3LjAgAAR0AX/vnbItDlR0BbEQYk3S8bR0BHbXCj1wo9h3LkAgAAR0AYBiTdLxqgR0BbESbpeNT+R0BHbhR64Ueuh3LlAgAAR0AYD1wo9cKPR0BbEVgQYk3TR0BHbrhR64Ufh3LmAgAAR0AYHKwIMSbpR0BbEZmZmZmaR0BHb987ZFodh3LnAgAAR0AYI9cKPXCkR0BbEbpeNT99R0BHcGJN0vGqh3LoAgAAR0AYMSbpeNT+R0BbEeuFHrhSR0BHcYk3S8aoh3LpAgAAR0AYO2RaHKwIR0BbEhysCDEnR0BHck3S8an8h3LqAgAAR0AYQYk3S8aoR0BbEj1wo9cKR0BHctDlYEGJh3LrAgAAR0AYT987ZFodR0BbEn752yLRR0BHc/fO2RaHh3LsAgAAR0AYVgQYk3S8R0BbEp++dsi0R0BHdHrhR64Uh3LtAgAAR0AYYEGJN0vHR0BbEsCDEm6YR0BHdT987ZFoh3LuAgAAR0AYbZFocrAhR0BbEwIMSbpeR0BHdkWhysCDh3LvAgAAR0AYeuFHrhR7R0BbE0OVgQYlR0BHd2yLQ5WBh3LwAgAAR0AYggxJul41R0BbE2RaHKwIR0BHd++dsi0Oh3LxAgAAR0AYi0OVgQYlR0BbE5WBBiTdR0BHeLQ5WBBih3LyAgAAR0AYmJN0vGp/R0BbE9cKPXCkR0BHedsi0OVgh3LzAgAAR0AYn752yLQ5R0BbE/fO2RaHR0BHel41P3zuh3L0AgAAR0AYy8an752yR0BbFLxqfvnbR0BHfdLxqfvnh3L1AgAAR0AY0vGp++dtR0BbFN0vGp++R0BHfnbItDlYh3L2AgAAR0AY6XjU/fO2R0BbFT987ZFoR0BHgEGJN0vHh3L3AgAAR0AY8KPXCj1xR0BbFWBBiTdMR0BHgOVgQYk3h3L4AgAAR0AZHKwIMSbpR0BbFiTdLxqgR0BHhFocrAgxh3L5AgAAR0AZI9cKPXCkR0BbFkWhysCDR0BHhN0vGp++h3L6AgAAR0AZKwIMSbpeR0BbFmZmZmZmR0BHhYEGJN0vh3L7AgAAR0AZT987ZFodR0BbFwo9cKPXR0BHiHKwIMSch3L8AgAAR0AZbZFocrAhR0BbF52yLQ5WR0BHiuFHrhR7h3L9AgAAR0AZdLxqfvnbR0BbF752yLQ5R0BHi2RaHKwIh3L+AgAAR0AZkm6XjU/fR0BbGEGJN0vHR0BHjdLxqfvnh3L/AgAAR0AZmZmZmZmaR0BbGGJN0vGqR0BHjlYEGJN1h3IAAwAAR0AZoMSbpeNUR0BbGIMSbpeNR0BHjvnbItDlh3IBAwAAR0AZp++dsi0OR0BbGKPXCj1xR0BHj3ztkWhzh3ICAwAAR0AZvnbItDlYR0BbGQYk3S8bR0BHkUeuFHrhh3IDAwAAR0AZ5FocrAgxR0BbGan752yLR0BHlFocrAgxh3IEAwAAR0AZ6n752yLRR0BbGcrAgxJvR0BHlN0vGp++h3IFAwAAR0AZ8an752yLR0BbGeuFHrhSR0BHlWBBiTdMh3IGAwAAR0AZ+NT987ZGR0BbGgxJul41R0BHlgQYk3S8h3IHAwAAR0AaEGJN0vGqR0BbGm6XjU/fR0BHl87ZFocrh3IIAwAAR0AaHbItDlYER0BbGrAgxJumR0BHmPXCj1wph3IJAwAAR0AaJN0vGp++R0BbGtDlYEGJR0BHmXjU/fO2h3IKAwAAR0AaNT987ZFoR0BbGxJul41QR0BHmsCDEm6Yh3ILAwAAR0AaPGp++dsjR0BbGzMzMzMzR0BHm2RaHKwIh3IMAwAAR0AaQ5WBBiTdR0BbG1P3ztkXR0BHm+dsi0OWh3INAwAAR0AaU/fO2RaHR0BbG6XjU/fPR0BHnU/fO2Rah3IOAwAAR0AaYUeuFHrhR0BbG9cKPXCkR0BHnlYEGJN1h3IPAwAAR0AaaHKwIMScR0BbG/fO2RaHR0BHntkWhysCh3IQAwAAR0Aab52yLQ5WR0BbHBiTdLxqR0BHn3ztkWhzh3IRAwAAR0Aadsi0OVgQR0BbHDlYEGJOR0BHoAAAAAAAh3ISAwAAR0AahysCDEm6R0BbHHrhR64UR0BHoUeuFHrhh3ITAwAAR0AajlYEGJN1R0BbHJul41P4R0BHoeuFHrhSh3IUAwAAR0AaotDlYEGJR0BbHP3ztkWiR0BHo5WBBiTdh3IVAwAAR0AaszMzMzMzR0BbHT987ZFoR0BHpN0vGp++h3IWAwAAR0Aaul41P3zuR0BbHWBBiTdMR0BHpWBBiTdMh3IXAwAAR0AawYk3S8aoR0BbHYEGJN0vR0BHpgQYk3S8h3IYAwAAR0AayLQ5WBBiR0BbHaHKwIMSR0BHpocrAgxKh3IZAwAAR0Aa0euFHrhSR0BbHdLxqfvnR0BHp0vGp++eh3IaAwAAR0Aa3ztkWhysR0BbHgQYk3S8R0BHqHKwIMSch3IbAwAAR0Aa7ZFocrAhR0BbHkWhysCDR0BHqXjU/fO2h3IcAwAAR0Aa9LxqfvnbR0BbHmZmZmZmR0BHqhysCDEnh3IdAwAAR0AbBR64UeuFR0BbHqfvnbItR0BHq2RaHKwIh3IeAwAAR0AbDEm6XjU/R0BbHsi0OVgQR0BHq+dsi0OWh3IfAwAAR0AbEm6XjU/fR0BbHul41P30R0BHrItDlYEGh3IgAwAAR0AbMSbpeNT+R0BbH2yLQ5WBR0BHrvnbItDlh3IhAwAAR0AbP3ztkWhzR0BbH64UeuFIR0BHsAAAAAAAh3IiAwAAR0AbRqfvnbItR0BbH87ZFocrR0BHsKPXCj1xh3IjAwAAR0AbT987ZFodR0BbH++dsi0OR0BHsWhysCDFh3IkAwAAR0AbXjU/fO2RR0BbIDEm6XjVR0BHsm6XjU/fh3IlAwAAR0Aba4UeuFHsR0BbIHKwIMScR0BHs5WBBiTdh3ImAwAAR0AbcrAgxJumR0BbIJN0vGp/R0BHtBiTdLxqh3InAwAAR0AouNT987ZGR0BcAyLQ5WBCR0BG+ZmZmZmah3IoAwAAR0AotkWhysCDR0BcAvGp++dtR0BG+RaHKwIMh3IpAwAAR0AoszMzMzMzR0BcAsCDEm6YR0BG+JN0vGp/h3IqAwAAR0AopFocrAgxR0BcAcrAgxJvR0BG9gQYk3S8h3IrAwAAR0AomJN0vGp/R0BcAQYk3S8bR0BG8/fO2RaHh3IsAwAAR0AolgQYk3S8R0BcANT987ZGR0BG85WBBiTdh3ItAwAAR0AokvGp++dtR0BcAKPXCj1xR0BG8xJul41Qh3IuAwAAR0AohysCDEm6R0Bb/87ZFocrR0BG8QYk3S8bh3IvAwAAR0AogYk3S8aoR0Bb/3ztkWhzR0BG8AAAAAAAh3IwAwAAR0AodcKPXCj2R0Bb/qfvnbItR0BG7fO2RaHLh3IxAwAAR0AoczMzMzMzR0Bb/nbItDlYR0BG7XCj1wo9h3IyAwAAR0AoZ2yLQ5WBR0Bb/bItDlYER0BG62RaHKwIh3IzAwAAR0AoZFocrAgxR0Bb/YEGJN0vR0BG6uFHrhR7h3I0AwAAR0AoYcrAgxJvR0Bb/U/fO2RaR0BG6n752yLRh3I1AwAAR0AoUvGp++dtR0Bb/Em6XjU/R0BG5++dsi0Oh3I2AwAAR0AoRJul41P4R0Bb+1P3ztkXR0BG5WBBiTdMh3I3AwAAR0AoQYk3S8aoR0Bb+yLQ5WBCR0BG5N0vGp++h3I4AwAAR0AoPGp++dsjR0Bb+sCDEm6YR0BG4/fO2RaHh3I5AwAAR0AoNcKPXCj2R0Bb+k3S8an8R0BG4tDlYEGJh3I6AwAAR0AoMCDEm6XjR0Bb+fvnbItER0BG4crAgxJvh3I7AwAAR0AoJFocrAgxR0Bb+SbpeNT+R0BG3752yLQ5h3I8AwAAR0AoIcrAgxJvR0Bb+PXCj1wpR0BG31wo9cKPh3I9AwAAR0AoHCj1wo9cR0Bb+JN0vGp/R0BG3lYEGJN1h3I+AwAAR0AoFgQYk3S8R0Bb+DEm6XjVR0BG3U/fO2Rah3I/AwAAR0AoEvGp++dtR0Bb+AAAAAAAR0BG3MzMzMzNh3JAAwAAR0AoEGJN0vGqR0Bb987ZFocrR0BG3Em6XjU/h3JBAwAAR0AoDdLxqfvnR0Bb952yLQ5WR0BG28an752yh3JCAwAAR0AoBJul41P4R0Bb9vnbItDlR0BG2j1wo9cKh3JDAwAAR0An/Gp++dsjR0Bb9mZmZmZmR0BG2NT987ZGh3JEAwAAR0An8zMzMzMzR0Bb9dLxqfvnR0BG1ysCDEm6h3JFAwAAR0An8KPXCj1xR0Bb9aHKwIMSR0BG1si0OVgQh3JGAwAAR0An7ZFocrAhR0Bb9XCj1wo9R0BG1kWhysCDh3JHAwAAR0An6wIMSbpeR0Bb9T987ZFoR0BG1cKPXCj2h3JIAwAAR0An5N0vGp++R0Bb9MzMzMzNR0BG1Lxqfvnbh3JJAwAAR0An3ztkWhysR0Bb9Gp++dsjR0BG07ZFocrBh3JKAwAAR0An3KwIMSbpR0Bb9DlYEGJOR0BG0zMzMzMzh3JLAwAAR0An03S8an76R0Bb86XjU/fPR0BG0an752yLh3JMAwAAR0An0OVgQYk3R0Bb83S8an76R0BG0SbpeNT+h3JNAwAAR0Any0OVgQYlR0Bb8xJul41QR0BG0EGJN0vHh3JOAwAAR0AnwgxJul41R0Bb8m6XjU/fR0BGzpeNT987h3JPAwAAR0Anv3ztkWhzR0Bb8j1wo9cKR0BGzjU/fO2Rh3JQAwAAR0AnvO2RaHKwR0Bb8gxJul41R0BGzbItDlYEh3JRAwAAR0Anq4UeuFHsR0Bb8OVgQYk3R0BGysCDEm6Yh3JSAwAAR0Anok3S8an8R0Bb8EGJN0vHR0BGyRaHKwIMh3JTAwAAR0Ann752yLQ5R0Bb8BBiTdLyR0BGyJN0vGp/h3JUAwAAR0AnnKwIMSbpR0Bb7987ZFodR0BGyDEm6XjVh3JVAwAAR0Ank/fO2RaHR0Bb7ztkWhysR0BGxocrAgxKh3JWAwAAR0Ani8an752yR0Bb7rhR64UfR0BGxR64UeuFh3JXAwAAR0Ango9cKPXDR0Bb7hR64UeuR0BGw5WBBiTdh3JYAwAAR0AngAAAAAAAR0Bb7eNT987ZR0BGwxJul41Qh3JZAwAAR0AnfXCj1wo9R0Bb7bItDlYER0BGwo9cKPXDh3JaAwAAR0Ancan752yLR0Bb7N0vGp++R0BGwIMSbpeNh3JbAwAAR0AnbpeNT987R0Bb7KwIMSbpR0BGwCDEm6Xjh3JcAwAAR0AnbAgxJul5R0Bb7HrhR64UR0BGv52yLQ5Wh3JdAwAAR0AnWyLQ5WBCR0Bb61P3ztkXR0BGvKwIMSbph3JeAwAAR0AnUeuFHrhSR0Bb6rAgxJumR0BGuwIMSbpeh3JfAwAAR0AnT1wo9cKPR0Bb6n752yLRR0BGup++dsi0h3JgAwAAR0AnTEm6XjU/R0Bb6k3S8an8R0BGuhysCDEnh3JhAwAAR0AnQIMSbpeNR0Bb6XjU/fO2R0BGuBBiTdLyh3JiAwAAR0AnO2RaHKwIR0Bb6RaHKwIMR0BGtwo9cKPXh3JjAwAAR0AnL52yLQ5WR0Bb6FHrhR64R0BGtP3ztkWih3JkAwAAR0AnLQ5WBBiTR0Bb6CDEm6XjR0BGtJul41P4h3JlAwAAR0AnJ2yLQ5WBR0Bb5752yLQ5R0BGs5WBBiTdh3JmAwAAR0AnIUeuFHrhR0Bb50vGp++eR0BGso9cKPXDh3JnAwAAR0AnHjU/fO2RR0Bb5xqfvnbJR0BGsgxJul41h3JoAwAAR0AnG6XjU/fPR0Bb5ul41P30R0BGsYk3S8aoh3JpAwAAR0AnFocrAgxKR0Bb5ocrAgxKR0BGsKPXCj1xh3JqAwAAR0AnDU/fO2RaR0Bb5eNT987ZR0BGrvnbItDlh3JrAwAAR0AnB64UeuFIR0Bb5YEGJN0vR0BGrhR64Ueuh3JsAwAAR0Am/vnbItDlR0Bb5N0vGp++R0BGrItDlYEGh3JtAwAAR0Am/Gp++dsjR0Bb5KwIMSbpR0BGrAgxJul5h3JuAwAAR0Am9si0OVgQR0Bb5FocrAgxR0BGqyLQ5WBCh3JvAwAAR0Am8KPXCj1xR0Bb4+dsi0OWR0BGqfvnbItEh3JwAwAAR0Am6wIMSbpeR0Bb44UeuFHsR0BGqRaHKwIMh3JxAwAAR0Am3752yLQ5R0Bb4rAgxJumR0BGpwo9cKPXh3JyAwAAR0Am3KwIMSbpR0Bb4n752yLRR0BGpocrAgxKh3JzAwAAR0Am141P3ztkR0Bb4hysCDEnR0BGpaHKwIMSh3J0AwAAR0Am0WhysCDFR0Bb4an752yLR0BGpHrhR64Uh3J1AwAAR0AmzlYEGJN1R0Bb4XjU/fO2R0BGpBiTdLxqh3J2AwAAR0Amy8an752yR0Bb4UeuFHrhR0BGo5WBBiTdh3J3AwAAR0AmxqfvnbItR0Bb4OVgQYk3R0BGoo9cKPXDh3J4AwAAR0AmwAAAAAAAR0Bb4HKwIMScR0BGoYk3S8aoh3J5AwAAR0Amt87ZFocrR0Bb3987ZFodR0BGoCDEm6Xjh3J6AwAAR0AmrxqfvnbJR0Bb3ztkWhysR0BGnpeNT987h3J7AwAAR0AmrItDlYEGR0Bb3wo9cKPXR0BGnhR64Ueuh3J8AwAAR0AmqXjU/fO2R0Bb3tkWhysCR0BGnZFocrAhh3J9AwAAR0Ampul41P30R0Bb3rhR64UfR0BGnS8an753h3J+AwAAR0AmoMSbpeNUR0Bb3kWhysCDR0BGnAgxJul5h3J/AwAAR0Amm6XjU/fPR0Bb3eNT987ZR0BGmyLQ5WBCh3KAAwAAR0AmmJN0vGp/R0Bb3bItDlYER0BGmp++dsi0h3KBAwAAR0AmlgQYk3S8R0Bb3YEGJN0vR0BGmhysCDEnh3KCAwAAR0Amj987ZFodR0Bb3Q5WBBiTR0BGmRaHKwIMh3KDAwAAR0AmjMzMzMzNR0Bb3N0vGp++R0BGmJN0vGp/h3KEAwAAR0Amh64UeuFIR0Bb3HrhR64UR0BGl64UeuFIh3KFAwAAR0AmfvnbItDlR0Bb29cKPXCkR0BGlgQYk3S8h3KGAwAAR0Ame+dsi0OWR0Bb26XjU/fPR0BGlaHKwIMSh3KHAwAAR0AmeVgQYk3TR0Bb23S8an76R0BGlR64UeuFh3KIAwAAR0Amdsi0OVgQR0Bb20OVgQYlR0BGlJul41P4h3KJAwAAR0AmcKPXCj1xR0Bb2tDlYEGJR0BGk5WBBiTdh3KKAwAAR0AmaHKwIMScR0Bb2j1wo9cKR0BGki0OVgQZh3KLAwAAR0AmX752yLQ5R0Bb2ZmZmZmaR0BGkIMSbpeNh3KMAwAAR0AmXKwIMSbpR0Bb2WhysCDFR0BGkCDEm6Xjh3KNAwAAR0AmWhysCDEnR0Bb2TdLxqfwR0BGj52yLQ5Wh3KOAwAAR0AmV41P3ztkR0Bb2QYk3S8bR0BGjxqfvnbJh3KPAwAAR0AmS8an752yR0Bb2DEm6XjVR0BGjS8an753h3KQAwAAR0AmSTdLxqfwR0Bb2AAAAAAAR0BGjKwIMSbph3KRAwAAR0AmQIMSbpeNR0Bb11wo9cKPR0BGiyLQ5WBCh3KSAwAAR0AmPXCj1wo9R0Bb1ysCDEm6R0BGip++dsi0h3KTAwAAR0AmOFHrhR64R0Bb1si0OVgQR0BGibpeNT99h3KUAwAAR0AmL52yLQ5WR0Bb1iTdLxqgR0BGiBBiTdLyh3KVAwAAR0AmLItDlYEGR0Bb1fO2RaHLR0BGh64UeuFIh3KWAwAAR0AmKfvnbItER0Bb1cKPXCj2R0BGhysCDEm6h3KXAwAAR0AmGRaHKwIMR0Bb1ItDlYEGR0BGhDlYEGJOh3KYAwAAR0AmEGJN0vGqR0Bb0+dsi0OWR0BGgrAgxJumh3KZAwAAR0AmDdLxqfvnR0Bb07ZFocrBR0BGgi0OVgQZh3KaAwAAR0AmCsCDEm6YR0Bb04UeuFHsR0BGgan752yLh3KbAwAAR0Al/O2RaHKwR0Bb0n752yLRR0BGfztkWhysh3KcAwAAR0Al+l41P3zuR0Bb0k3S8an8R0BGfrhR64Ufh3KdAwAAR0Al7peNT987R0Bb0XjU/fO2R0BGfKwIMSbph3KeAwAAR0Al7AgxJul5R0Bb0UeuFHrhR0BGfEm6XjU/h3KfAwAAR0Al5ul41P30R0Bb0OVgQYk3R0BGe0OVgQYlh3KgAwAAR0Al4EGJN0vHR0Bb0HKwIMScR0BGej1wo9cKh3KhAwAAR0Al3bItDlYER0Bb0EGJN0vHR0BGebpeNT99h3KiAwAAR0Al2yLQ5WBCR0Bb0BBiTdLyR0BGeTdLxqfwh3KjAwAAR0Alyj1wo9cKR0BbztkWhysCR0BGdkWhysCDh3KkAwAAR0Alx64UeuFIR0BbzqfvnbItR0BGdeNT987Zh3KlAwAAR0AlvvnbItDlR0BbzgQYk3S8R0BGdDlYEGJOh3KmAwAAR0Alu+dsi0OWR0BbzdLxqfvnR0BGc9cKPXCkh3KnAwAAR0Altsi0OVgQR0BbzXCj1wo9R0BGcvGp++dth3KoAwAAR0Alq4UeuFHsR0BbzJul41P4R0BGcOVgQYk3h3KpAwAAR0AlqPXCj1wpR0BbzGp++dsjR0BGcGJN0vGqh3KqAwAAR0Aln752yLQ5R0Bby8an752yR0BGbtkWhysCh3KrAwAAR0AlnS8an753R0Bby4UeuFHsR0BGblYEGJN1h3KsAwAAR0AlmBBiTdLyR0BbyyLQ5WBCR0BGbXCj1wo9h3KtAwAAR0Alj1wo9cKPR0Bbyn752yLRR0BGa+dsi0OWh3KuAwAAR0AljEm6XjU/R0Bbyk3S8an8R0BGa2RaHKwIh3KvAwAAR0AlhysCDEm6R0BbyeuFHrhSR0BGan752yLRh3KwAwAAR0AlgQYk3S8bR0BbyXjU/fO2R0BGaVgQYk3Th3KxAwAAR0AlfnbItDlYR0BbyUeuFHrhR0BGaPXCj1wph3KyAwAAR0AleVgQYk3TR0BbyOVgQYk3R0BGZ++dsi0Oh3KzAwAAR0AldDlYEGJOR0BbyIMSbpeNR0BGZwo9cKPXh3K0AwAAR0AlcCDEm6XjR0BbyEGJN0vHR0BGZmZmZmZmh3K1AwAAR0AlbZFocrAhR0BbyBBiTdLyR0BGZgQYk3S8h3K2AwAAR0AlaHKwIMScR0Bbx64UeuFIR0BGZP3ztkWih3K3AwAAR0AlXS8an753R0BbxtkWhysCR0BGYxJul41Qh3K4AwAAR0AlWhysCDEnR0BbxqfvnbItR0BGYo9cKPXDh3K5AwAAR0AlV41P3ztkR0BbxnbItDlYR0BGYgxJul41h3K6AwAAR0AlUWhysCDFR0BbxgQYk3S8R0BGYQYk3S8bh3K7AwAAR0AlTtkWhysCR0BbxcKPXCj2R0BGYIMSbpeNh3K8AwAAR0AlSbpeNT99R0BbxWBBiTdMR0BGX52yLQ5Wh3K9AwAAR0AlRJul41P4R0BbxQ5WBBiTR0BGXrhR64Ufh3K+AwAAR0AlQQYk3S8bR0BbxLxqfvnbR0BGXhR64Ueuh3K/AwAAR0AlPnbItDlYR0BbxItDlYEGR0BGXZFocrAhh3LAAwAAR0AlO2RaHKwIR0BbxFocrAgxR0BGXQ5WBBiTh3LBAwAAR0AlONT987ZGR0BbxCj1wo9cR0BGXKwIMSbph3LCAwAAR0AlMrAgxJumR0Bbw7ZFocrBR0BGW4UeuFHsh3LDAwAAR0AlKwIMSbpeR0BbwyLQ5WBCR0BGWhysCDEnh3LEAwAAR0AlKHKwIMScR0BbwvGp++dtR0BGWbpeNT99h3LFAwAAR0AlIk3S8an8R0Bbwn752yLRR0BGWJN0vGp/h3LGAwAAR0AlH752yLQ5R0Bbwk3S8an8R0BGWDEm6XjVh3LHAwAAR0AlHKwIMSbpR0BbwhysCDEnR0BGV64UeuFIh3LIAwAAR0AlGhysCDEnR0BbweuFHrhSR0BGVysCDEm6h3LJAwAAR0AlFP3ztkWiR0BbwYk3S8aoR0BGVkWhysCDh3LKAwAAR0AlDtkWhysCR0BbwQYk3S8bR0BGVT987ZFoh3LLAwAAR0AlDEm6XjU/R0BbwNT987ZGR0BGVLxqfvnbh3LMAwAAR0AlCbpeNT99R0BbwKPXCj1xR0BGVFocrAgxh3LNAwAAR0AlA5WBBiTdR0BbwDEm6XjVR0BGUzMzMzMzh3LOAwAAR0AlAQYk3S8bR0BbwAAAAAAAR0BGUrAgxJumh3LPAwAAR0Ak++dsi0OWR0Bbv52yLQ5WR0BGUcrAgxJvh3LQAwAAR0Ak8zMzMzMzR0BbvvnbItDlR0BGUEGJN0vHh3LRAwAAR0Ak8CDEm6XjR0Bbvsi0OVgQR0BGT752yLQ5h3LSAwAAR0Ak7ZFocrAhR0BbvpeNT987R0BGT1wo9cKPh3LTAwAAR0Ak6wIMSbpeR0BbvmZmZmZmR0BGTtkWhysCh3LUAwAAR0Ak3S8an753R0BbvU/fO2RaR0BGTGp++dsjh3LVAwAAR0Ak1HrhR64UR0BbvKwIMSbpR0BGSuFHrhR7h3LWAwAAR0Ak0euFHrhSR0BbvHrhR64UR0BGSl41P3zuh3LXAwAAR0AkztkWhysCR0BbvEm6XjU/R0BGSdsi0OVgh3LYAwAAR0AkzMzMzMzNR0BbvBiTdLxqR0BGSXjU/fO2h3LZAwAAR0AkwQYk3S8bR0BbuzMzMzMzR0BGR2yLQ5WBh3LaAwAAR0AkvnbItDlYR0BbuwIMSbpeR0BGRul41P30h3LbAwAAR0AkszMzMzMzR0Bbui0OVgQZR0BGRP3ztkWih3LcAwAAR0AkpWBBiTdMR0BbuSbpeNT+R0BGQo9cKPXDh3LdAwAAR0AkotDlYEGJR0BbuPXCj1wpR0BGQgxJul41h3LeAwAAR0AkoEGJN0vHR0BbuMSbpeNUR0BGQYk3S8aoh3LfAwAAR0Akj1wo9cKPR0Bbt3ztkWhzR0BGPpeNT987h3LgAwAAR0AkjMzMzMzNR0Bbt0vGp++eR0BGPjU/fO2Rh3LhAwAAR0AkhBiTdLxqR0BbtqfvnbItR0BGPKwIMSbph3LiAwAAR0AkgYk3S8aoR0BbtnbItDlYR0BGPCj1wo9ch3LjAwAAR0AkcSbpeNT+R0BbtS8an753R0BGOTdLxqfwh3LkAwAAR0AkbpeNT987R0BbtP3ztkWiR0BGONT987ZGh3LlAwAAR0AkaXjU/fO2R0BbtJul41P4R0BGN++dsi0Oh3LmAwAAR0AkZeNT987ZR0BbtFocrAgxR0BGN0vGp++eh3LnAwAAR0AkY1P3ztkXR0BbtCj1wo9cR0BGNsi0OVgQh3LoAwAAR0AkXjU/fO2RR0Bbs7ZFocrBR0BGNeNT987Zh3LpAwAAR0AkWRaHKwIMR0Bbs1P3ztkXR0BGNP3ztkWih3LqAwAAR0AkVYEGJN0vR0BbsxJul41QR0BGNFocrAgxh3LrAwAAZShHQCRS8an7521HQFuy4UeuFHtHQEYz1wo9cKSHcuwDAABHQCRN0vGp++dHQFuyfvnbItFHQEYy8an7522Hcu0DAABHQCRLQ5WBBiVHQFuyTdLxqfxHQEYybpeNT9+Hcu4DAABHQCRHrhR64UhHQFuyDEm6XjVHQEYxysCDEm+Hcu8DAABHQCRCj1wo9cNHQFuxmZmZmZpHQEYw5WBBiTeHcvADAABHQCRAAAAAAABHQFuxaHKwIMVHQEYwgxJul42HcvEDAABHQCQ64UeuFHtHQFuxBiTdLxtHQEYvnbItDlaHcvIDAABHQCQ3S8an755HQFuwxJul41RHQEYu+dsi0OWHcvMDAABHQCQ0vGp++dtHQFuwk3S8an9HQEYudsi0OViHcvQDAABHQCQvnbItDlZHQFuwMSbpeNVHQEYtkWhysCGHcvUDAABHQCQtDlYEGJNHQFuwAAAAAABHQEYtDlYEGJOHcvYDAABHQCQkWhysCDFHQFuvS8an755HQEYrhR64UeyHcvcDAABHQCQhysCDEm9HQFuvGp++dslHQEYrItDlYEKHcvgDAABHQCQfO2RaHKxHQFuu6XjU/fRHQEYqn752yLSHcvkDAABHQCQcrAgxJulHQFuuuFHrhR9HQEYqPXCj1wqHcvoDAABHQCQZFocrAgxHQFuudsi0OVhHQEYpmZmZmZqHcvsDAABHQCQWhysCDEpHQFuuRaHKwINHQEYpFocrAgyHcvwDAABHQCQRaHKwIMVHQFut0vGp++dHQEYoMSbpeNWHcv0DAABHQCQMSbpeNT9HQFutcKPXCj1HQEYnS8an756Hcv4DAABHQCQItDlYEGJHQFutLxqfvndHQEYmp++dsi2Hcv8DAABHQCQGJN0vGqBHQFus/fO2RaJHQEYmJN0vGqCHcgAEAABHQCQDlYEGJN1HQFuszMzMzM1HQEYlwo9cKPaHcgEEAABHQCQBBiTdLxtHQFusm6XjU/hHQEYlP3ztkWiHcgIEAABHQCP+dsi0OVhHQFusan752yNHQEYk3S8an76HcgMEAABHQCP64UeuFHtHQFusGJN0vGpHQEYkOVgQYk6HcgQEAABHQCP4UeuFHrhHQFur52yLQ5ZHQEYjtkWhysGHcgUEAABHQCPzMzMzMzNHQFurhR64UexHQEYi0OVgQYmHcgYEAABHQCPwo9cKPXFHQFurU/fO2RdHQEYiTdLxqfyHcgcEAABHQCPuFHrhR65HQFurItDlYEJHQEYh64UeuFKHcggEAABHQCPqfvnbItFHQFuq4UeuFHtHQEYhR64UeuGHcgkEAABHQCPn752yLQ5HQFuqsCDEm6ZHQEYgxJul41SHcgoEAABHQCPlYEGJN0xHQFuqfvnbItFHQEYgYk3S8aqHcgsEAABHQCPi0OVgQYlHQFuqPXCj1wpHQEYf3ztkWh2HcgwEAABHQCPgQYk3S8dHQFuqDEm6XjVHQEYffO2RaHOHcg0EAABHQCPdsi0OVgRHQFup2yLQ5WBHQEYe+dsi0OWHcg4EAABHQCPXjU/fO2RHQFupaHKwIMVHQEYd87ZFocuHcg8EAABHQCPU/fO2RaJHQFupN0vGp/BHQEYdcKPXCj2HchAEAABHQCPSbpeNT99HQFupBiTdLxtHQEYdDlYEGJOHchEEAABHQCPP3ztkWh1HQFuo1P3ztkZHQEYci0OVgQaHchIEAABHQCPMSbpeNT9HQFuogxJul41HQEYb52yLQ5aHchMEAABHQCPJul41P31HQFuoUeuFHrhHQEYbZFocrAiHchQEAABHQCPEm6XjU/hHQFun752yLQ5HQEYafvnbItGHchUEAABHQCPCDEm6XjVHQFunvnbItDlHQEYaHKwIMSeHchYEAABHQCO/fO2RaHNHQFunjU/fO2RHQEYZmZmZmZqHchcEAABHQCO752yLQ5ZHQFunS8an755HQEYY9cKPXCmHchgEAABHQCO5WBBiTdNHQFunGp++dslHQEYYk3S8an+HchkEAABHQCO2yLQ5WBBHQFum2RaHKwJHQEYYEGJN0vKHchoEAABHQCO0OVgQYk5HQFump++dsi1HQEYXrhR64UiHchsEAABHQCOxqfvnbItHQFumdsi0OVhHQEYXKwIMSbqHchwEAABHQCOvnbItDlZHQFumRaHKwINHQEYWyLQ5WBCHch0EAABHQCOrhR64UexHQFumBBiTdLxHQEYWJN0vGqCHch4EAABHQCOmZmZmZmZHQFulocrAgxJHQEYVHrhR64WHch8EAABHQCOkWhysCDFHQFulcKPXCj1HQEYUvGp++duHciAEAABHQCOhysCDEm9HQFulLxqfvndHQEYUWhysCDGHciEEAABHQCOeNT987ZFHQFuk7ZFocrBHQEYTtkWhysGHciIEAABHQCObpeNT989HQFukvGp++dtHQEYTMzMzMzOHciMEAABHQCOZFocrAgxHQFuki0OVgQZHQEYSsCDEm6aHciQEAABHQCOWhysCDEpHQFukWhysCDFHQEYSTdLxqfyHciUEAABHQCORaHKwIMVHQFuj987ZFodHQEYRaHKwIMWHciYEAABHQCOLQ5WBBiVHQFujdLxqfvpHQEYQQYk3S8eHcicEAABHQCOItDlYEGJHQFujQ5WBBiVHQEYP3ztkWh2HcigEAABHQCOGJN0vGqBHQFujEm6XjVBHQEYPXCj1wo+HcikEAABHQCODlYEGJN1HQFui4UeuFHtHQEYO+dsi0OWHcioEAABHQCOAAAAAAABHQFuin752yLRHQEYOVgQYk3WHcisEAABHQCN9cKPXCj1HQFuiXjU/fO5HQEYN0vGp++eHciwEAABHQCN4UeuFHrhHQFuh++dsi0RHQEYM7ZFocrCHci0EAABHQCN1wo9cKPZHQFuhysCDEm9HQEYMi0OVgQaHci4EAABHQCNztkWhysFHQFuhmZmZmZpHQEYMCDEm6XmHci8EAABHQCNwIMSbpeNHQFuhWBBiTdNHQEYLZFocrAiHcjAEAABHQCNtkWhysCFHQFuhJul41P5HQEYLAgxJul6HcjEEAABHQCNrAgxJul5HQFug5WBBiTdHQEYKfvnbItGHcjIEAABHQCNocrAgxJxHQFugtDlYEGJHQEYJ++dsi0SHcjMEAABHQCNjU/fO2RdHQFugUeuFHrhHQEYJFocrAgyHcjQEAABHQCNfvnbItDlHQFugEGJN0vJHQEYIcrAgxJyHcjUEAABHQCNan752yLRHQFufnbItDlZHQEYHjU/fO2SHcjYEAABHQCNPXCj1wo9HQFueyLQ5WBBHQEYFocrAgxKHcjcEAABHQCNMzMzMzM1HQFuel41P3ztHQEYFHrhR64WHcjgEAABHQCNFocrAgxJHQFud87ZFoctHQEYD1wo9cKSHcjkEAABHQCM/fO2RaHNHQFudgQYk3S9HQEYCsCDEm6aHcjoEAABHQCM87ZFocrBHQFudT987ZFpHQEYCTdLxqfyHcjsEAABHQCMxqfvnbItHQFucan752yNHQEYAQYk3S8eHcjwEAABHQCMhysCDEm9HQFubItDlYEJHQEX9cKPXCj2Hcj0EAABHQCMfO2RaHKxHQFua8an7521HQEX87ZFocrCHcj4EAABHQCMT987ZFodHQFuaDEm6XjVHQEX7AgxJul6Hcj8EAABHQCMO2RaHKwJHQFuZqfvnbItHQEX5++dsi0SHckAEAABHQCMMSbpeNT9HQFuZeNT987ZHQEX5mZmZmZqHckEEAABHQCMHKwIMSbpHQFuZFocrAgxHQEX4tDlYEGKHckIEAABHQCMEGJN0vGpHQFuYxJul41RHQEX4EGJN0vKHckMEAABHQCMBiTdLxqhHQFuYk3S8an9HQEX3jU/fO2SHckQEAABHQCL8an752yNHQFuYMSbpeNVHQEX2p++dsi2HckUEAABHQCL52yLQ5WBHQFuYAAAAAABHQEX2RaHKwIOHckYEAABHQCLxJul41P5HQFuXS8an755HQEX0vGp++duHckcEAABHQCLul41P3ztHQFuXGp++dslHQEX0OVgQYk6HckgEAABHQCLpeNT987ZHQFuWuFHrhR9HQEXzU/fO2ReHckkEAABHQCLmZmZmZmZHQFuWZmZmZmZHQEXysCDEm6aHckoEAABHQCLj1wo9cKRHQFuWNT987ZFHQEXyTdLxqfyHcksEAABHQCLeuFHrhR9HQFuV0vGp++dHQEXxaHKwIMWHckwEAABHQCLZmZmZmZpHQFuVcKPXCj1HQEXwgxJul42Hck0EAABHQCLWBBiTdLxHQFuVHrhR64VHQEXv3ztkWh2Hck4EAABHQCLTdLxqfvpHQFuU7ZFocrBHQEXvXCj1wo+Hck8EAABHQCLQ5WBBiTdHQFuUvGp++dtHQEXu+dsi0OWHclAEAABHQCLOVgQYk3VHQFuUi0OVgQZHQEXudsi0OViHclEEAABHQCLMSbpeNT9HQFuUWhysCDFHQEXuFHrhR66HclIEAABHQCLItDlYEGJHQFuUCDEm6XlHQEXtcKPXCj2HclMEAABHQCLBBiTdLxtHQFuTdLxqfvpHQEXsCDEm6XmHclQEAABHQCK+dsi0OVhHQFuTQ5WBBiVHQEXrpeNT98+HclUEAABHQCK752yLQ5ZHQFuTAgxJul5HQEXrItDlYEKHclYEAABHQCK41P3ztkZHQFuSwIMSbphHQEXqn752yLSHclcEAABHQCK2RaHKwINHQFuSj1wo9cNHQEXqHKwIMSeHclgEAABHQCKxJul41P5HQFuSLQ5WBBlHQEXpN0vGp/CHclkEAABHQCKul41P3ztHQFuR64UeuFJHQEXotDlYEGKHcloEAABHQCKsCDEm6XlHQFuRul41P31HQEXoUeuFHriHclsEAABHQCKl41P3ztlHQFuRR64UeuFHQEXnKwIMSbqHclwEAABHQCKjU/fO2RdHQFuRBiTdLxtHQEXmyLQ5WBCHcl0EAABHQCKhR64UeuFHQFuQ1P3ztkZHQEXmRaHKwIOHcl4EAABHQCKeuFHrhR9HQFuQo9cKPXFHQEXl41P3ztmHcl8EAABHQCKbItDlYEJHQFuQYk3S8apHQEXlP3ztkWiHcmAEAABHQCKYk3S8an9HQFuQMSbpeNVHQEXk3S8an76HcmEEAABHQCKTdLxqfvpHQFuPvnbItDlHQEXj1wo9cKSHcmIEAABHQCKQ5WBBiTdHQFuPjU/fO2RHQEXjdLxqfvqHcmMEAABHQCKO2RaHKwJHQFuPXCj1wo9HQEXjEm6XjVCHcmQEAABHQCKLQ5WBBiVHQFuPGp++dslHQEXibpeNT9+HcmUEAABHQCKItDlYEGJHQFuO2RaHKwJHQEXh64UeuFKHcmYEAABHQCKGJN0vGqBHQFuOp++dsi1HQEXhiTdLxqiHcmcEAABHQCKDlYEGJN1HQFuOdsi0OVhHQEXhBiTdLxuHcmgEAABHQCKBBiTdLxtHQFuORaHKwINHQEXgo9cKPXGHcmkEAABHQCJ+dsi0OVhHQFuOFHrhR65HQEXgIMSbpeOHcmoEAABHQCJ9cKPXCj1HQFuOBBiTdLxHQEXgAAAAAACHcmsEAABHQCJ64UeuFHtHQFuNwo9cKPZHQEXffO2RaHOHcmwEAABHQCJ2RaHKwINHQFuNYEGJN0xHQEXel41P3zuHcm0EAABHQCJztkWhysFHQFuNLxqfvndHQEXeNT987ZGHcm4EAABHQCJxJul41P5HQFuM/fO2RaJHQEXdsi0OVgSHcm8EAABHQCJtkWhysCFHQFuMrAgxJulHQEXdDlYEGJOHcnAEAABHQCJrAgxJul5HQFuMeuFHrhRHQEXcrAgxJumHcnEEAABHQCJocrAgxJxHQFuMSbpeNT9HQEXcKPXCj1yHcnIEAABHQCJmZmZmZmZHQFuMGJN0vGpHQEXbxqfvnbKHcnMEAABHQCJj1wo9cKRHQFuL52yLQ5ZHQEXbQ5WBBiWHcnQEAABHQCJhR64UeuFHQFuLtkWhysFHQEXa4UeuFHuHcnUEAABHQCJbItDlYEJHQFuLMzMzMzNHQEXZul41P32HcnYEAABHQCJYk3S8an9HQFuLAgxJul5HQEXZWBBiTdOHcncEAABHQCJWBBiTdLxHQFuK0OVgQYlHQEXY1P3ztkaHcngEAABHQCJT987ZFodHQFuKj1wo9cNHQEXYcrAgxJyHcnkEAABHQCJQYk3S8apHQFuKTdLxqfxHQEXXztkWhyuHcnoEAABHQCJN0vGp++dHQFuKHKwIMSdHQEXXS8an756HcnsEAABHQCJItDlYEGJHQFuJqfvnbItHQEXWZmZmZmaHcnwEAABHQCJGJN0vGqBHQFuJeNT987ZHQEXWBBiTdLyHcn0EAABHQCJEGJN0vGpHQFuJR64UeuFHQEXVocrAgxKHcn4EAABHQCJAgxJul41HQFuJBiTdLxtHQEXU/fO2RaKHcn8EAABHQCI987ZFoctHQFuI1P3ztkZHQEXUeuFHrhSHcoAEAABHQCI7ZFocrAhHQFuIk3S8an9HQEXUGJN0vGqHcoEEAABHQCI41P3ztkZHQFuIYk3S8apHQEXTlYEGJN2HcoIEAABHQCI2RaHKwINHQFuIMSbpeNVHQEXTMzMzMzOHcoMEAABHQCI0OVgQYk5HQFuIAAAAAABHQEXSsCDEm6aHcoQEAABHQCIwo9cKPXFHQFuHrhR64UhHQEXSDEm6XjWHcoUEAABHQCIrhR64UexHQFuHS8an755HQEXRJul41P6HcoYEAABHQCIo9cKPXClHQFuHGp++dslHQEXQxJul41SHcocEAABHQCImZmZmZmZHQFuG6XjU/fRHQEXQQYk3S8eHcogEAABHQCIjU/fO2RdHQFuGl41P3ztHQEXPnbItDlaHcokEAABHQCIgxJul41RHQFuGZmZmZmZHQEXPO2RaHKyHcooEAABHQCIeNT987ZFHQFuGNT987ZFHQEXOuFHrhR+HcosEAABHQCIbpeNT989HQFuGBBiTdLxHQEXOVgQYk3WHcowEAABHQCIZFocrAgxHQFuF0vGp++dHQEXN0vGp++eHco0EAABHQCIXCj1wo9dHQFuFkWhysCFHQEXNcKPXCj2Hco4EAABHQCIQ5WBBiTdHQFuFHrhR64VHQEXMan752yOHco8EAABHQCIOVgQYk3VHQFuE3S8an75HQEXL52yLQ5aHcpAEAABHQCILxqfvnbJHQFuErAgxJulHQEXLhR64UeyHcpEEAABHQCIJN0vGp/BHQFuEeuFHrhRHQEXLAgxJul6HcpIEAABHQCIHKwIMSbpHQFuESbpeNT9HQEXKn752yLSHcpMEAABHQCIDlYEGJN1HQFuD987ZFodHQEXJ++dsi0SHcpQEAABHQCH+dsi0OVhHQFuDlYEGJN1HQEXJFocrAgyHcpUEAABHQCH752yLQ5ZHQFuDZFocrAhHQEXIk3S8an+HcpYEAABHQCH52yLQ5WBHQFuDMzMzMzNHQEXIMSbpeNWHcpcEAABHQCHztkWhysFHQFuCsCDEm6ZHQEXHCj1wo9eHcpgEAABHQCHxJul41P5HQFuCfvnbItFHQEXGp++dsi2HcpkEAABHQCHp++dsi0RHQFuB2yLQ5WBHQEXFYEGJN0yHcpoEAABHQCHmZmZmZmZHQFuBmZmZmZpHQEXEvGp++duHcpsEAABHQCHhR64UeuFHQFuBJul41P5HQEXD1wo9cKSHcpwEAABHQCHWhysCDEpHQFuAQYk3S8dHQEXBysCDEm+Hcp0EAABHQCHT987ZFodHQFuAEGJN0vJHQEXBaHKwIMWHcp4EAABHQCHMzMzMzM1HQFt/fO2RaHNHQEXAIMSbpeOHcp8EAABHQCHEGJN0vGpHQFt+yLQ5WBBHQEW+l41P3zuHcqAEAABHQCHBiTdLxqhHQFt+hysCDEpHQEW+FHrhR66HcqEEAABHQCG87ZFocrBHQFt+JN0vGqBHQEW9LxqfvneHcqIEAABHQCG5WBBiTdNHQFt941P3ztlHQEW8i0OVgQaHcqMEAABHQCGyLQ5WBBlHQFt9P3ztkWhHQEW7Q5WBBiWHcqQEAABHQCGp++dsi0RHQFt8i0OVgQZHQEW5ul41P32HcqUEAABHQCGnbItDlYFHQFt8WhysCDFHQEW5WBBiTdOHcqYEAABHQCGfvnbItDlHQFt7tkWhysFHQEW3752yLQ6HcqcEAABHQCGcrAgxJulHQFt7dLxqfvpHQEW3S8an756HcqgEAABHQCGXjU/fO2RHQFt7AgxJul5HQEW2ZmZmZmaHcqkEAABHQCGU/fO2RaJHQFt60OVgQYlHQEW2BBiTdLyHcqoEAABHQCGQYk3S8apHQFt6bpeNT99HQEW1HrhR64WHcqsEAABHQCGMzMzMzM1HQFt6HKwIMSdHQEW0euFHrhSHcqwEAABHQCGKPXCj1wpHQFt564UeuFJHQEW0GJN0vGqHcq0EAABHQCGFHrhR64VHQFt5eNT987ZHQEWzMzMzMzOHcq4EAABHQCGDEm6XjVBHQFt5R64UeuFHQEWysCDEm6aHcq8EAABHQCGAgxJul41HQFt5FocrAgxHQEWyTdLxqfyHcrAEAABHQCF6XjU/fO5HQFt4k3S8an9HQEWxJul41P6HcrEEAABHQCF4UeuFHrhHQFt4Yk3S8apHQEWwxJul41SHcrIEAABHQCF1wo9cKPZHQFt4MSbpeNVHQEWwQYk3S8eHcrMEAABHQCFzMzMzMzNHQFt4AAAAAABHQEWv3ztkWh2HcrQEAABHQCFvnbItDlZHQFt3rhR64UhHQEWvO2RaHKyHcrUEAABHQCFtkWhysCFHQFt3fO2RaHNHQEWu2RaHKwKHcrYEAABHQCFocrAgxJxHQFt3Cj1wo9dHQEWt87ZFocuHcrcEAABHQCFl41P3ztlHQFt22RaHKwJHQEWtcKPXCj2HcrgEAABHQCFj1wo9cKRHQFt2p++dsi1HQEWtDlYEGJOHcrkEAABHQCFgQYk3S8dHQFt2ZmZmZmZHQEWsan752yOHcroEAABHQCFdsi0OVgRHQFt2JN0vGqBHQEWsCDEm6XmHcrsEAABHQCFbItDlYEJHQFt187ZFoctHQEWrhR64UeyHcrwEAABHQCFYk3S8an9HQFt1wo9cKPZHQEWrItDlYEKHcr0EAABHQCFWhysCDEpHQFt1kWhysCFHQEWqn752yLSHcr4EAABHQCFS8an7521HQFt1P3ztkWhHQEWp++dsi0SHcr8EAABHQCFLxqfvnbJHQFt0m6XjU/hHQEWotDlYEGKHcsAEAABHQCFJN0vGp/BHQFt0an752yNHQEWoMSbpeNWHcsEEAABHQCFGp++dsi1HQFt0OVgQYk5HQEWnztkWhyuHcsIEAABHQCFDlYEGJN1HQFtz987ZFodHQEWnKwIMSbqHcsMEAABHQCFBBiTdLxtHQFtztkWhysFHQEWmyLQ5WBCHcsQEAABHQCE+dsi0OVhHQFtzhR64UexHQEWmRaHKwIOHcsUEAABHQCE752yLQ5ZHQFtzU/fO2RdHQEWl41P3ztmHcsYEAABHQCE52yLQ5WBHQFtzItDlYEJHQEWlYEGJN0yHcscEAABHQCE3S8an755HQFty4UeuFHtHQEWk/fO2RaKHcsgEAABHQCExJul41P5HQFtybpeNT99HQEWj987ZFoeHcskEAABHQCEul41P3ztHQFtyLQ5WBBlHQEWjdLxqfvqHcsoEAABHQCEsi0OVgQZHQFtx++dsi0RHQEWjEm6XjVCHcssEAABHQCEp++dsi0RHQFtxysCDEm9HQEWij1wo9cOHcswEAABHQCEmZmZmZmZHQFtxeNT987ZHQEWh64UeuFKHcs0EAABHQCEkWhysCDFHQFtxR64UeuFHQEWhiTdLxqiHcs4EAABHQCEfO2RaHKxHQFtw5WBBiTdHQEWgo9cKPXGHcs8EAABHQCEcrAgxJulHQFtwo9cKPXFHQEWgQYk3S8eHctAEAABHQCEan752yLRHQFtwcrAgxJxHQEWfvnbItDmHctEEAABHQCEXCj1wo9dHQFtwMSbpeNVHQEWfGp++dsmHctIEAABHQCEUeuFHrhRHQFtv752yLQ5HQEWeuFHrhR+HctMEAABHQCER64UeuFJHQFtvvnbItDlHQEWeNT987ZGHctQEAABHQCEP3ztkWh1HQFtvjU/fO2RHQEWd0vGp++eHctUEAABHQCENT987ZFpHQFtvXCj1wo9HQEWdcKPXCj2HctYEAABHQCEKwIMSbphHQFtvGp++dslHQEWc7ZFocrCHctcEAABHQCEHrhR64UhHQFtu2RaHKwJHQEWcSbpeNT+HctgEAABHQCECj1wo9cNHQFtuZmZmZmZHQEWbZFocrAiHctkEAABHQCEAAAAAAABHQFtuNT987ZFHQEWbAgxJul6HctoEAABHQCD987ZFoctHQFtuBBiTdLxHQEWafvnbItGHctsEAABHQCD6XjU/fO5HQFttsi0OVgRHQEWZ++dsi0SHctwEAABHQCD3ztkWhytHQFttgQYk3S9HQEWZeNT987aHct0EAABHQCD1P3ztkWhHQFttT987ZFpHQEWZFocrAgyHct4EAABHQCDzMzMzMzNHQFttDlYEGJNHQEWYk3S8an+Hct8EAABHQCDwo9cKPXFHQFts3S8an75HQEWYMSbpeNWHcuAEAABHQCDuFHrhR65HQFtsrAgxJulHQEWXrhR64UiHcuEEAABHQCDocrAgxJxHQFtsKPXCj1xHQEWWp++dsi2HcuIEAABHQCDl41P3ztlHQFtr987ZFodHQEWWRaHKwIOHcuMEAABHQCDjU/fO2RdHQFtrxqfvnbJHQEWVwo9cKPaHcuQEAABHQCDhR64UeuFHQFtrhR64UexHQEWVYEGJN0yHcuUEAABHQCDeuFHrhR9HQFtrU/fO2RdHQEWU3S8an76HcuYEAABHQCDbItDlYEJHQFtrEm6XjVBHQEWUOVgQYk6HcucEAABHQCDWhysCDEpHQFtqn752yLRHQEWTdLxqfvqHcugEAABHQCDT987ZFodHQFtqbpeNT99HQEWS8an7522HcukEAABHQCDR64UeuFJHQFtqPXCj1wpHQEWSj1wo9cOHcuoEAABHQCDLxqfvnbJHQFtpul41P31HQEWRaHKwIMWHcusEAABHQCDJN0vGp/BHQFtpeNT987ZHQEWRBiTdLxuHcuwEAABHQCDHKwIMSbpHQFtpR64UeuFHQEWQo9cKPXGHcu0EAABHQCDEm6XjU/hHQFtpFocrAgxHQEWQIMSbpeOHcu4EAABHQCDCDEm6XjVHQFto5WBBiTdHQEWPvnbItDmHcu8EAABHQCC++dsi0OVHQFtok3S8an9HQEWPGp++dsmHcvAEAABHQCC52yLQ5WBHQFtoMSbpeNVHQEWONT987ZGHcvEEAABHQCC3ztkWhytHQFtn752yLQ5HQEWN0vGp++eHcvIEAABHQCC1P3ztkWhHQFtnvnbItDlHQEWNT987ZFqHcvMEAABHQCCvGp++dslHQFtnO2RaHKxHQEWMSbpeNT+HcvQEAABHQCCtDlYEGJNHQFtnCj1wo9dHQEWLxqfvnbKHcvUEAABHQCCqfvnbItFHQFtm2RaHKwJHQEWLZFocrAiHcvYEAABHQCCn752yLQ5HQFtmp++dsi1HQEWLAgxJul6HcvcEAABHQCCl41P3ztlHQFtmZmZmZmZHQEWKfvnbItGHcvgEAABHQCCdsi0OVgRHQFtlsi0OVgRHQEWI9cKPXCmHcvkEAABHQCCYk3S8an9HQFtlT987ZFpHQEWIMSbpeNWHcvoEAABHQCCWhysCDEpHQFtlDlYEGJNHQEWHrhR64UiHcvsEAABHQCCS8an7521HQFtkzMzMzM1HQEWHCj1wo9eHcvwEAABHQCCN0vGp++dHQFtkWhysCDFHQEWGJN0vGqCHcv0EAABHQCCJN0vGp/BHQFtj987ZFodHQEWFYEGJN0yHcv4EAABHQCCDlYEGJN1HQFtjdLxqfvpHQEWEOVgQYk6Hcv8EAABHQCCBBiTdLxtHQFtjMzMzMzNHQEWD1wo9cKSHcgAFAABHQCB52yLQ5WBHQFtin752yLRHQEWCj1wo9cOHcgEFAABHQCB2RaHKwINHQFtiTdLxqfxHQEWB64UeuFKHcgIFAABHQCBxqfvnbItHQFth2yLQ5WBHQEWBBiTdLxuHcgMFAABHQCBvGp++dslHQFthqfvnbItHQEWAgxJul42HcgQFAABHQCBm6XjU/fRHQFtg9cKPXClHQEV/Gp++dsmHcgUFAABHQCBk3S8an75HQFtgxJul41RHQEV+l41P3zuHcgYFAABHQCBdsi0OVgRHQFtgIMSbpeNHQEV9T987ZFqHcgcFAABHQCBaHKwIMSdHQFtfztkWhytHQEV8rAgxJumHcggFAABHQCBVgQYk3S9HQFtfbItDlYFHQEV752yLQ5aHcgkFAABHQCBS8an7521HQFtfKwIMSbpHQEV7ZFocrAiHcgoFAABHQCBOVgQYk3VHQFteyLQ5WBBHQEV6fvnbItGHcgsFAABHQCBKwIMSbphHQFtedsi0OVhHQEV5++dsi0SHcgwFAABHQCBIMSbpeNVHQFteRaHKwINHQEV5eNT987aHcg0FAABHQCBDlYEGJN1HQFtd0vGp++dHQEV4k3S8an+Hcg4FAABHQCA++dsi0OVHQFtdcKPXCj1HQEV3rhR64UiHcg8FAABHQCA5WBBiTdNHQFtc7ZFocrBHQEV2p++dsi2HchAFAABHQCAyLQ5WBBlHQFtcSbpeNT9HQEV1YEGJN0yHchEFAABHQCAul41P3ztHQFtb987ZFodHQEV0vGp++duHchIFAABHQCAp++dsi0RHQFtblYEGJN1HQEVz1wo9cKSHchMFAABHQCAnbItDlYFHQFtbU/fO2RdHQEVzdLxqfvqHchQFAABHQCAk3S8an75HQFtbItDlYEJHQEVzEm6XjVCHchUFAABHQCAi0OVgQYlHQFta8an7521HQEVyj1wo9cOHchYFAABHQCAfO2RaHKxHQFtan752yLRHQEVx64UeuFKHchcFAABHQCAcrAgxJulHQFtabpeNT99HQEVxiTdLxqiHchgFAABHQCAYEGJN0vJHQFtZ++dsi0RHQEVwo9cKPXGHchkFAABHQCAWBBiTdLxHQFtZysCDEm9HQEVwQYk3S8eHchoFAABHQCATdLxqfvpHQFtZmZmZmZpHQEVvvnbItDmHchsFAABHQCAN0vGp++dHQFtZFocrAgxHQEVuuFHrhR+HchwFAABHQCALQ5WBBiVHQFtY1P3ztkZHQEVuVgQYk3WHch0FAABHQCAItDlYEGJHQFtYo9cKPXFHQEVt0vGp++eHch4FAABHQCAGp++dsi1HQFtYcrAgxJxHQEVtcKPXCj2Hch8FAABHQCADEm6XjVBHQFtYIMSbpeNHQEVszMzMzM2HciAFAABHQCAAgxJul41HQFtX752yLQ5HQEVsan752yOHciEFAABHQB/3ztkWhytHQFtXfO2RaHNHQEVrhR64UeyHciIFAABHQB/ztkWhysFHQFtXS8an755HQEVrAgxJul6HciMFAABHQB/ul41P3ztHQFtXGp++dslHQEVqn752yLSHciQFAABHQB/jU/fO2RdHQFtWl41P3ztHQEVpmZmZmZqHciUFAABHQB/eNT987ZFHQFtWVgQYk3VHQEVpFocrAgyHciYFAABHQB/ZFocrAgxHQFtWJN0vGqBHQEVotDlYEGKHcicFAABHQB/U/fO2RaJHQFtV87ZFoctHQEVoUeuFHriHcigFAABHQB/P3ztkWh1HQFtVsi0OVgRHQEVnztkWhyuHcikFAABHQB+/fO2RaHNHQFtU/fO2RaJHQEVmZmZmZmaHcioFAABHQB+7ZFocrAhHQFtUzMzMzM1HQEVl41P3ztmHcisFAABHQB+2RaHKwINHQFtUm6XjU/hHQEVlgQYk3S+HciwFAABHQB+wIMSbpeNHQFtUSbpeNT9HQEVk3S8an76Hci0FAABHQB+rAgxJul5HQFtUGJN0vGpHQEVkeuFHrhSHci4FAABHQB+l41P3ztlHQFtT1wo9cKRHQEVj987ZFoeHci8FAABHQB+hysCDEm9HQFtTpeNT989HQEVjlYEGJN2HcjAFAABHQB+crAgxJulHQFtTdLxqfvpHQEVjEm6XjVCHcjEFAABHQB+Yk3S8an9HQFtTMzMzMzNHQEVisCDEm6aHcjIFAABHQB+IMSbpeNVHQFtSfvnbItFHQEVhJul41P6HcjMFAABHQB+DEm6XjVBHQFtSTdLxqfxHQEVgxJul41SHcjQFAABHQB9++dsi0OVHQFtSDEm6XjVHQEVgYk3S8aqHcjUFAABHQB9ysCDEm6ZHQFtRiTdLxqhHQEVfXCj1wo+HcjYFAABHQB9peNT987ZHQFtRJul41P5HQEVedsi0OViHcjcFAABHQB9lYEGJN0xHQFtQ5WBBiTdHQEVd87ZFocuHcjgFAABHQB9gQYk3S8dHQFtQtDlYEGJHQEVdkWhysCGHcjkFAABHQB9U/fO2RaJHQFtQMSbpeNVHQEVci0OVgQaHcjoFAABHQB9P3ztkWh1HQFtQAAAAAABHQEVcCDEm6XmHcjsFAABHQB9LxqfvnbJHQFtPvnbItDlHQEVbpeNT98+HcjwFAABHQB9Gp++dsi1HQFtPjU/fO2RHQEVbQ5WBBiWHcj0FAABHQB9BiTdLxqhHQFtPXCj1wo9HQEVawIMSbpiHcj4FAABHQB87ZFocrAhHQFtPCj1wo9dHQEVaHKwIMSeHcj8FAABHQB8yLQ5WBBlHQFtOl41P3ztHQEVZWBBiTdOHckAFAABHQB8tDlYEGJNHQFtOZmZmZmZHQEVY1P3ztkaHckEFAABHQB8o9cKPXClHQFtONT987ZFHQEVYcrAgxJyHckIFAABHQB8crAgxJulHQFtNsi0OVgRHQEVXbItDlYGHckMFAABHQB8Yk3S8an9HQFtNcKPXCj1HQEVW6XjU/fSHckQFAABHQB8TdLxqfvpHQFtNP3ztkWhHQEVWhysCDEqHckUFAABHQB8PXCj1wo9HQFtNDlYEGJNHQEVWJN0vGqCHckYFAABHQB8KPXCj1wpHQFtMzMzMzM1HQEVVocrAgxKHckcFAABHQB752yLQ5WBHQFtMGJN0vGpHQEVUOVgQYk6HckgFAABHQB71wo9cKPZHQFtL52yLQ5ZHQEVTtkWhysGHckkFAABHQB7wo9cKPXFHQFtLpeNT989HQEVTU/fO2ReHckoFAABHQB7si0OVgQZHQFtLdLxqfvpHQEVS8an7522HcksFAABHQB7lYEGJN0xHQFtLItDlYEJHQEVSTdLxqfyHckwFAABHQB7cKPXCj1xHQFtKsCDEm6ZHQEVRaHKwIMWHck0FAABHQB7XCj1wo9dHQFtKfvnbItFHQEVRBiTdLxuHck4FAABHQB7S8an7521HQFtKTdLxqfxHQEVQgxJul42Hck8FAABHQB7Cj1wo9cNHQFtJiTdLxqhHQEVPGp++dsmHclAFAABHQB69cKPXCj1HQFtJWBBiTdNHQEVOl41P3zuHclEFAABHQB65WBBiTdNHQFtJJul41P5HQEVONT987ZGHclIFAABHQB60OVgQYk5HQFtI5WBBiTdHQEVN0vGp++eHclMFAABHQB6uFHrhR65HQFtIo9cKPXFHQEVNLxqfvneHclQFAABHQB6k3S8an75HQFtIMSbpeNVHQEVMSbpeNT+HclUFAABHQB6bpeNT989HQFtHvnbItDlHQEVLZFocrAiHclYFAABHQB6PXCj1wo9HQFtHO2RaHKxHQEVKXjU/fO6HclcFAABHQB6LQ5WBBiVHQFtHCj1wo9dHQEVJ++dsi0SHclgFAABHQB587ZFocrBHQFtGZmZmZmZHQEVItDlYEGKHclkFAABHQB5tkWhysCFHQFtFocrAgxJHQEVHKwIMSbqHcloFAABHQB5fO2RaHKxHQFtE/fO2RaJHQEVF41P3ztmHclsFAABHQB5YEGJN0vJHQFtEvGp++dtHQEVFP3ztkWiHclwFAABHQB5O2RaHKwJHQFtESbpeNT9HQEVEeuFHrhSHcl0FAABHQB5FocrAgxJHQFtD1wo9cKRHQEVDlYEGJN2Hcl4FAABHQB42RaHKwINHQFtDItDlYEJHQEVCDEm6XjWHcl8FAABHQB4n752yLQ5HQFtCfvnbItFHQEVAxJul41SHcmAFAABHQB4hysCDEm9HQFtCLQ5WBBlHQEVAIMSbpeOHcmEFAABHQB4XjU/fO2RHQFtBul41P31HQEU/XCj1wo+HcmIFAABHQB4TdLxqfvpHQFtBiTdLxqhHQEU+2RaHKwKHcmMFAABHQB4KPXCj1wpHQFtBFocrAgxHQEU+FHrhR66HcmQFAABHQB3++dsi0OVHQFtAk3S8an9HQEU9DlYEGJOHcmUFAABHQB3hR64UeuFHQFs/KwIMSbpHQEU6PXCj1wqHcmYFAABHQB3cKPXCj1xHQFs++dsi0OVHQEU52yLQ5WCHcmcFAABHQB3S8an7521HQFs+hysCDEpHQEU49cKPXCmHcmgFAABHQB2+dsi0OVhHQFs9kWhysCFHQEU3Cj1wo9eHcmkFAABHQB25WBBiTdNHQFs9YEGJN0xHQEU2p++dsi2HcmoFAABHQB21P3ztkWhHQFs9HrhR64VHQEU2JN0vGqCHcmsFAABHQB2p++dsi0RHQFs8m6XjU/hHQEU1HrhR64WHcmwFAABHQB2k3S8an75HQFs8an752yNHQEU0vGp++duHcm0FAABHQB2gxJul41RHQFs8OVgQYk5HQEU0WhysCDGHcm4FAABHQB2bpeNT989HQFs7987ZFodHQEUz1wo9cKSHcm8FAABHQB2HKwIMSbpHQFs7AgxJul5HQEUx64UeuFKHcnAFAABHQB2DEm6XjVBHQFs60OVgQYlHQEUxiTdLxqiHcnEFAABHQB1++dsi0OVHQFs6n752yLRHQEUxJul41P6HcnIFAABHQB1ztkWhysFHQFs6DEm6XjVHQEUwIMSbpeOHcnMFAABHQB1ul41P3ztHQFs52yLQ5WBHQEUvnbItDlaHcnQFAABHQB1peNT987ZHQFs5mZmZmZpHQEUvO2RaHKyHcnUFAABHQB1lYEGJN0xHQFs5aHKwIMVHQEUu2RaHKwKHcnYFAABHQB1hR64UeuFHQFs5N0vGp/BHQEUuVgQYk3WHcncFAABHQB1Q5WBBiTdHQFs4crAgxJxHQEUs7ZFocrCHcngFAABHQB1LxqfvnbJHQFs4QYk3S8dHQEUsan752yOHcnkFAABHQB1HrhR64UhHQFs4AAAAAABHQEUsCDEm6XmHcnoFAABHQB0zMzMzMzNHQFs3Cj1wo9dHQEUqHKwIMSeHcnsFAABHQB0vGp++dslHQFs22RaHKwJHQEUpul41P32HcnwFAABHQB0p++dsi0RHQFs2p++dsi1HQEUpWBBiTdOHcn0FAABHQB0an752yLRHQFs141P3ztlHQEUnztkWhyuHcn4FAABHQB0VgQYk3S9HQFs1si0OVgRHQEUnbItDlYGHcn8FAABHQB0RaHKwIMVHQFs1cKPXCj1HQEUnCj1wo9eHcoAFAABHQB0MSbpeNT9HQFs1P3ztkWhHQEUmhysCDEqHcoEFAABHQBz87ZFocrBHQFs0euFHrhRHQEUlHrhR64WHcoIFAABHQBz3ztkWhytHQFs0SbpeNT9HQEUkm6XjU/iHcoMFAABHQBzztkWhysFHQFs0CDEm6XlHQEUkOVgQYk6HcoQFAABHQBzjU/fO2RdHQFszU/fO2RdHQEUi0OVgQYmHcoUFAABHQBzfO2RaHKxHQFszEm6XjVBHQEUiTdLxqfyHcoYFAABHQBzbItDlYEJHQFsy4UeuFHtHQEUh64UeuFKHcocFAABHQBzWBBiTdLxHQFsysCDEm6ZHQEUhiTdLxqiHcogFAABHQBzGp++dsi1HQFsx64UeuFJHQEUgAAAAAACHcokFAABHQBzBiTdLxqhHQFsxul41P31HQEUfnbItDlaHcooFAABHQBy9cKPXCj1HQFsxeNT987ZHQEUfO2RaHKyHcosFAABHQBy4UeuFHrhHQFsxR64UeuFHQEUeuFHrhR+HcowFAABHQByo9cKPXClHQFswgxJul41HQEUdT987ZFqHco0FAABHQByk3S8an75HQFswUeuFHrhHQEUc7ZFocrCHco4FAABHQByfvnbItDlHQFswEGJN0vJHQEUcan752yOHco8FAABHQByQYk3S8apHQFsvXCj1wo9HQEUbAgxJul6HcpAFAABHQByLQ5WBBiVHQFsvGp++dslHQEUan752yLSHcpEFAABHQByHKwIMSbpHQFsu6XjU/fRHQEUaHKwIMSeHcpIFAABHQByCDEm6XjVHQFsup++dsi1HQEUZul41P32HcpMFAABHQBxysCDEm6ZHQFst87ZFoctHQEUYUeuFHriHcpQFAABHQBxul41P3ztHQFstsi0OVgRHQEUXztkWhyuHcpUFAABHQBxpeNT987ZHQFstgQYk3S9HQEUXbItDlYGHcpYFAABHQBxaHKwIMSdHQFssvGp++dtHQEUWBBiTdLyHcpcFAABHQBxU/fO2RaJHQFssi0OVgQZHQEUVgQYk3S+HcpgFAABHQBxQ5WBBiTdHQFssSbpeNT9HQEUVHrhR64WHcpkFAABHQBxMzMzMzM1HQFssGJN0vGpHQEUUvGp++duHcpoFAABHQBw8an752yNHQFsrU/fO2RdHQEUTMzMzMzOHcpsFAABHQBwzMzMzMzNHQFsq4UeuFHtHQEUSbpeNT9+HcpwFAABHQBwvGp++dslHQFsqsCDEm6ZHQEUR64UeuFKHcp0FAABHQBwfvnbItDlHQFsp64UeuFJHQEUQgxJul42Hcp4FAABHQBwWhysCDEpHQFspeNT987ZHQEUPnbItDlaHcp8FAABHQBwHKwIMSbpHQFsoxJul41RHQEUONT987ZGHcqAFAABHQBv41P3ztkZHQFsoEGJN0vJHQEUM7ZFocrCHcqEFAABHQBvpeNT987ZHQFsnXCj1wo9HQEULhR64UeyHcqIFAABHQBvgQYk3S8dHQFsm6XjU/fRHQEUKn752yLSHcqMFAABHQBvcKPXCj1xHQFsmp++dsi1HQEUKPXCj1wqHcqQFAABHQBvQ5WBBiTdHQFsmJN0vGqBHQEUJN0vGp/CHcqUFAABHQBvDlYEGJN1HQFslgQYk3S9HQEUH752yLQ6HcqYFAABHQBu0OVgQYk5HQFskvGp++dtHQEUGZmZmZmaHcqcFAABHQBum6XjU/fRHQFskGJN0vGpHQEUFP3ztkWiHcqgFAABHQBuWhysCDEpHQFsjU/fO2RdHQEUDtkWhysGHcqkFAABHQBt987ZFoctHQFsiHKwIMSdHQEUBaHKwIMWHcqoFAABHQBtwo9cKPXFHQFsheNT987ZHQEUAQYk3S8eHcqsFAABHQBthR64UeuFHQFsgtDlYEGJHQET+uFHrhR+HcqwFAABHQBtcKPXCj1xHQFsgcrAgxJxHQET+VgQYk3WHcq0FAABHQBtT987ZFodHQFsgEGJN0vJHQET9cKPXCj2Hcq4FAABHQBs/fO2RaHNHQFsfCj1wo9dHQET7peNT98+Hcq8FAABHQBs7ZFocrAhHQFse2RaHKwJHQET7ItDlYEKHcrAFAABHQBssCDEm6XlHQFseFHrhR65HQET5ul41P32HcrEFAABHQBsm6XjU/fRHQFsd0vGp++dHQET5WBBiTdOHcrIFAABHQBsi0OVgQYlHQFsdocrAgxJHQET41P3ztkaHcrMFAABHQBseuFHrhR9HQFsdcKPXCj1HQET4crAgxJyHcrQFAABHQBsKPXCj1wpHQFscan752yNHQET2p++dsi2HcrUFAABHQBsGJN0vGqBHQFscOVgQYk5HQET2JN0vGqCHcrYFAABHQBsCDEm6XjVHQFsb987ZFodHQET1wo9cKPaHcrcFAABHQBrxqfvnbItHQFsbMzMzMzNHQET0WhysCDGHcrgFAABHQBrtkWhysCFHQFsbAgxJul5HQETz1wo9cKSHcrkFAABHQBrpeNT987ZHQFsawIMSbphHQETzdLxqfvqHcroFAABHQBrU/fO2RaJHQFsZysCDEm9HQETxqfvnbIuHcrsFAABHQBrQ5WBBiTdHQFsZmZmZmZpHQETxJul41P6HcrwFAABHQBrMzMzMzM1HQFsZWBBiTdNHQETwxJul41SHcr0FAABHQBq4UeuFHrhHQFsYYk3S8apHQETu+dsi0OWHcr4FAABHQBq0OVgQYk5HQFsYIMSbpeNHQETudsi0OViHcr8FAABHQBqvGp++dslHQFsX752yLQ5HQETuFHrhR66HcsAFAABHQBqfvnbItDlHQFsXKwIMSbpHQETsrAgxJumHcsEFAABHQBqbpeNT989HQFsW6XjU/fRHQETsKPXCj1yHcsIFAABHQBqXjU/fO2RHQFsWuFHrhR9HQETrxqfvnbKHcsMFAABHQBqDEm6XjVBHQFsVwo9cKPZHQETp++dsi0SHcsQFAABHQBp++dsi0OVHQFsVgQYk3S9HQETpeNT987aHcsUFAABHQBp64UeuFHtHQFsVT987ZFpHQETpFocrAgyHcsYFAABHQBprhR64UexHQFsUi0OVgQZHQETnrhR64UiHcscFAABHQBpmZmZmZmZHQFsUSbpeNT9HQETnS8an756HcsgFAABHQBpiTdLxqfxHQFsUGJN0vGpHQETmyLQ5WBCHcskFAABHQBpeNT987ZFHQFsT1wo9cKRHQETmZmZmZmaHcsoFAABHQBpO2RaHKwJHQFsTEm6XjVBHQETk/fO2RaKHcssFAABHQBpJul41P31HQFsS4UeuFHtHQETkm6XjU/iHcswFAABHQBpFocrAgxJHQFsSn752yLRHQETkGJN0vGqHcs0FAABHQBo2RaHKwINHQFsR2yLQ5WBHQETisCDEm6aHcs4FAABHQBoyLQ5WBBlHQFsRqfvnbItHQETiTdLxqfyHcs8FAABHQBouFHrhR65HQFsRaHKwIMVHQETh64UeuFKHctAFAABHQBoo9cKPXClHQFsRN0vGp/BHQEThaHKwIMWHctEFAABHQBoZmZmZmZpHQFsQcrAgxJxHQETgAAAAAACHctIFAABHQBoVgQYk3S9HQFsQMSbpeNVHQETfnbItDlaHctMFAABHQBoRaHKwIMVHQFsQAAAAAABHQETfO2RaHKyHctQFAABHQBoMSbpeNT9HQFsPvnbItDlHQETeuFHrhR+HctUFAABHQBn87ZFocrBHQFsO+dsi0OVHQETdT987ZFqHctYFAABHQBn41P3ztkZHQFsOyLQ5WBBHQETc7ZFocrCHctcFAABHQBn0vGp++dtHQFsOhysCDEpHQETci0OVgQaHctgFAABHQBnlYEGJN0xHQFsNwo9cKPZHQETbAgxJul6HctkFAABHQBnhR64UeuFHQFsNkWhysCFHQETan752yLSHctoFAABHQBncKPXCj1xHQFsNT987ZFpHQETaPXCj1wqHctsFAABHQBnYEGJN0vJHQFsNHrhR64VHQETZ2yLQ5WCHctwFAABHQBnItDlYEGJHQFsMWhysCDFHQETYUeuFHriHct0FAABHQBnAgxJul41HQFsL52yLQ5ZHQETXjU/fO2SHct4FAABHQBm7ZFocrAhHQFsLpeNT989HQETXKwIMSbqHct8FAABHQBmxJul41P5HQFsLItDlYEJHQETWJN0vGqCHcuAFAABHQBmsCDEm6XlHQFsK4UeuFHtHQETVocrAgxKHcuEFAABHQBmj1wo9cKRHQFsKbpeNT99HQETU3S8an76HcuIFAABHQBmUeuFHrhRHQFsJqfvnbItHQETTdLxqfvqHcuMFAABHQBmLQ5WBBiVHQFsJN0vGp/BHQETSj1wo9cOHcuQFAABHQBmHKwIMSbpHQFsJBiTdLxtHQETSLQ5WBBmHcuUFAABHQBl3ztkWhytHQFsIQYk3S8dHQETQxJul41SHcuYFAABHQBlvnbItDlZHQFsHztkWhytHQETP3ztkWh2HcucFAABHQBlgQYk3S8dHQFsG+dsi0OVHQETOdsi0OViHcugFAABHQBlS8an7521HQFsGVgQYk3VHQETNLxqfvneHcukFAABHQBlDlYEGJN1HQFsFkWhysCFHQETLxqfvnbKHcuoFAABHQBk3S8an755HQFsE3S8an75HQETKn752yLSHcusFAABHQBkeuFHrhR9HQFsDpeNT989HQETIUeuFHriHcuwFAABHQBkQYk3S8apHQFsC4UeuFHtHQETG6XjU/fSHcu0FAABHQBkDEm6XjVBHQFsCPXCj1wpHQETFocrAgxKHcu4FAABHQBjvnbItDlZHQFsBN0vGp/BHQETD1wo9cKSHcu8FAABHQBjqfvnbItFHQFsA9cKPXClHQETDU/fO2ReHcvAFAABHQBjmZmZmZmZHQFsAxJul41RHQETC8an7522HcvEFAABHQBjO2RaHKwJHQFr/jU/fO2RHQETAxJul41SHcvIFAABHQBi7ZFocrAhHQFr+hysCDEpHQES+2RaHKwKHcvMFAABHQBi3S8an755HQFr+RaHKwINHQES+dsi0OViHcvQFAABHQBizMzMzMzNHQFr+FHrhR65HQES+FHrhR66HcvUFAABHQBifvnbItDlHQFr9DlYEGJNHQES8KPXCj1yHcvYFAABHQBian752yLRHQFr8zMzMzM1HQES7xqfvnbKHcvcFAABHQBiIMSbpeNVHQFr71wo9cKRHQES5++dsi0SHcvgFAABHQBiDEm6XjVBHQFr7lYEGJN1HQES5mZmZmZqHcvkFAABHQBh++dsi0OVHQFr7ZFocrAhHQES5N0vGp/CHcvoFAABHQBhrhR64UexHQFr6XjU/fO5HQES3S8an756HcvsFAABHQBhnbItDlYFHQFr6HKwIMSdHQES26XjU/fSHcvwFAABHQBhjU/fO2RdHQFr564UeuFJHQES2hysCDEqHcv0FAABHQBhT987ZFodHQFr5FocrAgxHQES1HrhR64WHcv4FAABHQBhP3ztkWh1HQFr45WBBiTdHQES0m6XjU/iHcv8FAABHQBhLxqfvnbJHQFr4o9cKPXFHQES0OVgQYk6HcgAGAABHQBg4UeuFHrhHQFr3nbItDlZHQESybpeNT9+HcgEGAABHQBg0OVgQYk5HQFr3bItDlYFHQESyDEm6XjWHcgIGAABHQBgwIMSbpeNHQFr3O2RaHKxHQESxqfvnbIuHcgMGAABHQBgcrAgxJulHQFr2NT987ZFHQESvvnbItDmHcgQGAABHQBgYk3S8an9HQFr187ZFoctHQESvXCj1wo+HcgUGAABHQBgTdLxqfvpHQFr1wo9cKPZHQESu+dsi0OWHcgYGAABHQBgFHrhR64VHQFr07ZFocrBHQEStkWhysCGHcgcGAABHQBgBBiTdLxtHQFr0vGp++dtHQEStDlYEGJOHcggGAABHQBf87ZFocrBHQFr0euFHrhRHQESsrAgxJumHcgkGAABHQBfpeNT987ZHQFrzdLxqfvpHQESq4UeuFHuHcgoGAABHQBflYEGJN0xHQFrzQ5WBBiVHQESqfvnbItGHcgsGAABHQBfhR64UeuFHQFrzAgxJul5HQESqHKwIMSeHcgwGAABHQBfR64UeuFJHQFryPXCj1wpHQESotDlYEGKHcg0GAABHQBfN0vGp++dHQFrx++dsi0RHQESoMSbpeNWHcg4GAABHQBfJul41P31HQFrxysCDEm9HQESnztkWhyuHcg8GAABHQBfEm6XjU/hHQFrxiTdLxqhHQESnbItDlYGHchAGAABHQBe2RaHKwINHQFrwxJul41RHQESmBBiTdLyHchEGAABHQBeyLQ5WBBlHQFrwgxJul41HQESlocrAgxKHchIGAABHQBeuFHrhR65HQFrwUeuFHrhHQESlP3ztkWiHchMGAABHQBean752yLRHQFrvS8an755HQESjU/fO2ReHchQGAABHQBeWhysCDEpHQFrvCj1wo9dHQESi8an7522HchUGAABHQBeSbpeNT99HQFru2RaHKwJHQESij1wo9cOHchYGAABHQBeDEm6XjVBHQFruBBiTdLxHQEShJul41P6HchcGAABHQBd64UeuFHtHQFrtkWhysCFHQESgYk3S8aqHchgGAABHQBd2yLQ5WBBHQFrtYEGJN0xHQESf3ztkWh2HchkGAABHQBdnbItDlYFHQFrsi0OVgQZHQESedsi0OViHchoGAABHQBdfO2RaHKxHQFrsGJN0vGpHQESdsi0OVgSHchsGAABHQBdP3ztkWh1HQFrrU/fO2RdHQEScSbpeNT+HchwGAABHQBdHrhR64UhHQFrq0OVgQYlHQESbhR64UeyHch0GAABHQBdDlYEGJN1HQFrqn752yLRHQESbAgxJul6Hch4GAABHQBc0OVgQYk5HQFrpysCDEm9HQESZmZmZmZqHch8GAABHQBcsCDEm6XlHQFrpWBBiTdNHQESY1P3ztkaHciAGAABHQBcn752yLQ5HQFrpJul41P5HQESYcrAgxJyHciEGAABHQBcQYk3S8apHQFrn3ztkWh1HQESWJN0vGqCHciIGAABHQBcCDEm6XjVHQFrnGp++dslHQESUvGp++duHciMGAABHQBb1wo9cKPZHQFrmZmZmZmZHQESTlYEGJN2HciQGAABHQBbmZmZmZmZHQFrlkWhysCFHQESSLQ5WBBmHciUGAABHQBbeNT987ZFHQFrlHrhR64VHQESRaHKwIMWHciYGAABHQBbCj1wo9cNHQFrjpeNT989HQESOuFHrhR+HcicGAABHQBawIMSbpeNHQFrin752yLRHQESM7ZFocrCHcigGAABHQBan752yLQ5HQFriLQ5WBBlHQESMKPXCj1yHcikGAABHQBaUeuFHrhRHQFrhFocrAgxHQESKPXCj1wqHcioGAABHQBaQYk3S8apHQFrg5WBBiTdHQESJ2yLQ5WCHcisGAABHQBZ987ZFoctHQFrf3ztkWh1HQESIEGJN0vKHciwGAABHQBZ52yLQ5WBHQFrfnbItDlZHQESHrhR64UiHci0GAABHQBZ1wo9cKPZHQFrfbItDlYFHQESHS8an756Hci4GAABHQBZiTdLxqfxHQFreVgQYk3VHQESFgQYk3S+Hci8GAABHQBZeNT987ZFHQFreJN0vGqBHQESE/fO2RaKHcjAGAABHQBZaHKwIMSdHQFrd41P3ztlHQESEm6XjU/iHcjEGAABHQBZHrhR64UhHQFrc3S8an75HQESC0OVgQYmHcjIGAABHQBZDlYEGJN1HQFrcrAgxJulHQESCbpeNT9+HcjMGAABHQBYwIMSbpeNHQFrblYEGJN1HQESAo9cKPXGHcjQGAABHQBYsCDEm6XlHQFrbZFocrAhHQESAQYk3S8eHcjUGAABHQBYn752yLQ5HQFrbItDlYEJHQER/3ztkWh2HcjYGAABHQBYVgQYk3S9HQFraHKwIMSdHQER+FHrhR66HcjcGAABHQBYRaHKwIMVHQFrZ2yLQ5WBHQER9kWhysCGHcjgGAABHQBX987ZFoctHQFrY1P3ztkZHQER7xqfvnbKHcjkGAABHQBX52yLQ5WBHQFrYk3S8an9HQER7ZFocrAiHcjoGAABHQBX2yLQ5WBBHQFrYYk3S8apHQER7AgxJul6HcjsGAABHQBXjU/fO2RdHQFrXS8an755HQER5N0vGp/CHcjwGAABHQBXfO2RaHKxHQFrXGp++dslHQER41P3ztkaHcj0GAABHQBXbItDlYEJHQFrW2RaHKwJHQER4crAgxJyHcj4GAABHQBXItDlYEGJHQFrV0vGp++dHQER2p++dsi2Hcj8GAABHQBXEm6XjU/hHQFrVkWhysCFHQER2RaHKwIOHckAGAABHQBWyLQ5WBBlHQFrUi0OVgQZHQER0WhysCDGHckEGAABHQBWuFHrhR65HQFrUSbpeNT9HQERz987ZFoeHckIGAABHQBWp++dsi0RHQFrUGJN0vGpHQERzlYEGJN2HckMGAABHQBWWhysCDEpHQFrTAgxJul5HQERxysCDEm+HckQGAABHQBWSbpeNT99HQFrS0OVgQYlHQERxaHKwIMWHckUGAABHQBWOVgQYk3VHQFrSj1wo9cNHQERxBiTdLxuHckYGAABHQBWAAAAAAABHQFrRul41P31HQERvnbItDlaHckcGAABHQBV752yLQ5ZHQFrRiTdLxqhHQERvO2RaHKyHckgGAABHQBV3ztkWhytHQFrRR64UeuFHQERu2RaHKwKHckkGAABHQBVlYEGJN0xHQFrQQYk3S8dHQERtDlYEGJOHckoGAABHQBVhR64UeuFHQFrQAAAAAABHQERsrAgxJumHcksGAABHQBVdLxqfvndHQFrPztkWhytHQERsSbpeNT+HckwGAABHQBVKwIMSbphHQFrOuFHrhR9HQERqfvnbItGHck0GAABHQBVGp++dsi1HQFrOhysCDEpHQERp++dsi0SHck4GAABHQBVCj1wo9cNHQFrORaHKwINHQERpmZmZmZqHck8GAABHQBU0OVgQYk5HQFrNcKPXCj1HQERoMSbpeNWHclAGAABHQBUsCDEm6XlHQFrM/fO2RaJHQERnbItDlYGHclEGAABHQBUZmZmZmZpHQFrL987ZFodHQERlocrAgxKHclIGAABHQBUVgQYk3S9HQFrLtkWhysFHQERlP3ztkWiHclMGAABHQBURaHKwIMVHQFrLdLxqfvpHQERk3S8an76HclQGAABHQBT64UeuFHtHQFrKLQ5WBBlHQERisCDEm6aHclUGAABHQBT2yLQ5WBBHQFrJ++dsi0RHQERiTdLxqfyHclYGAABHQBTocrAgxJxHQFrJJul41P5HQERg5WBBiTeHclcGAABHQBTgQYk3S8dHQFrIo9cKPXFHQERgIMSbpeOHclgGAABHQBTFocrAgxJHQFrHKwIMSbpHQERdkWhysCGHclkGAABHQBSvGp++dslHQFrF41P3ztlHQERbZFocrAiHcloGAABHQBSrAgxJul5HQFrFocrAgxJHQERa4UeuFHuHclsGAABHQBSUeuFHrhRHQFrEWhysCDFHQERYtDlYEGKHclwGAABHQBR52yLQ5WBHQFrC0OVgQYlHQERWJN0vGqCHcl0GAABHQBRnbItDlYFHQFrBul41P31HQERUWhysCDGHcl4GAABHQBRjU/fO2RdHQFrBiTdLxqhHQERT987ZFoeHcl8GAABHQBRJul41P31HQFrAAAAAAABHQERRaHKwIMWHcmAGAABHQBQ3S8an755HQFq+6XjU/fRHQERPnbItDlaHcmEGAABHQBQzMzMzMzNHQFq+p++dsi1HQERPO2RaHKyHcmIGAABHQBQvGp++dslHQFq+dsi0OVhHQERO2RaHKwKHcmMGAABHQBQcrAgxJulHQFq9YEGJN0xHQERNDlYEGJOHcmQGAABHQBQYk3S8an9HQFq9LxqfvndHQERMrAgxJumHcmUGAABHQBQGJN0vGqBHQFq8GJN0vGpHQERK4UeuFHuHcmYGAABHQBQDEm6XjVBHQFq71wo9cKRHQERKfvnbItGHcmcGAABHQBP++dsi0OVHQFq7peNT989HQERKHKwIMSeHcmgGAABHQBPsi0OVgQZHQFq6j1wo9cNHQERIUeuFHriHcmkGAABHQBPocrAgxJxHQFq6TdLxqfxHQERH752yLQ6HcmoGAABHQBPkWhysCDFHQFq6HKwIMSdHQERHjU/fO2SHcmsGAABHQBPR64UeuFJHQFq5BiTdLxtHQERFwo9cKPaHcmwGAABHQBPO2RaHKwJHQFq4xJul41RHQERFYEGJN0yHcm0GAABHQBO8an752yNHQFq3rhR64UhHQERDlYEGJN2Hcm4GAABHQBO4UeuFHrhHQFq3fO2RaHNHQERDMzMzMzOHcm8GAABHQBO0OVgQYk5HQFq3O2RaHKxHQERC0OVgQYmHcnAGAABHQBOhysCDEm9HQFq2JN0vGqBHQERBBiTdLxuHcnEGAABHQBOdsi0OVgRHQFq187ZFoctHQERAo9cKPXGHcnIGAABHQBOan752yLRHQFq1si0OVgRHQERAQYk3S8eHcnMGAABHQBOMSbpeNT9HQFq03S8an75HQEQ+2RaHKwKHcnQGAABHQBOIMSbpeNVHQFq0m6XjU/hHQEQ+dsi0OViHcnUGAABHQBOEGJN0vGpHQFq0WhysCDFHQEQ+FHrhR66HcnYGAABHQBNxqfvnbItHQFqzU/fO2RdHQEQ8an752yOHcncGAABHQBNtkWhysCFHQFqzEm6XjVBHQEQ752yLQ5aHcngGAABHQBNqfvnbItFHQFqy0OVgQYlHQEQ7peNT98+HcnkGAABHQBNYEGJN0vJHQFqxysCDEm9HQEQ52yLQ5WCHcnoGAABHQBNT987ZFodHQFqxiTdLxqhHQEQ5eNT987aHcnsGAABHQBNCj1wo9cNHQFqwcrAgxJxHQEQ3rhR64UiHcnwGAABHQBM+dsi0OVhHQFqwMSbpeNVHQEQ3S8an756Hcn0GAABHQBM6XjU/fO5HQFqwAAAAAABHQEQ26XjU/fSHcn4GAABHQBMn752yLQ5HQFqu6XjU/fRHQEQ1HrhR64WHcn8GAABHQBMj1wo9cKRHQFqup++dsi1HQEQ0vGp++duHcoAGAABHQBMgxJul41RHQFqudsi0OVhHQEQ0WhysCDGHcoEGAABHQBMKPXCj1wpHQFqtHrhR64VHQEQyLQ5WBBmHcoIGAABHQBL41P3ztkZHQFqsCDEm6XlHQEQwYk3S8aqHcoMGAABHQBLwo9cKPXFHQFqrlYEGJN1HQEQvnbItDlaHcoQGAABHQBLbItDlYEJHQFqqPXCj1wpHQEQtcKPXCj2HcoUGAABHQBLXCj1wo9dHQFqp++dsi0RHQEQtDlYEGJOHcoYGAABHQBLBiTdLxqhHQFqotDlYEGJHQEQrAgxJul6HcocGAABHQBKn752yLQ5HQFqnGp++dslHQEQocrAgxJyHcogGAABHQBKRaHKwIMVHQFql0vGp++dHQEQmRaHKwIOHcokGAABHQBKOVgQYk3VHQFqlkWhysCFHQEQl41P3ztmHcooGAABHQBJ3ztkWhytHQFqkOVgQYk5HQEQjtkWhysGHcosGAABHQBJeNT987ZFHQFqisCDEm6ZHQEQhR64UeuGHcowGAABHQBJMzMzMzM1HQFqhmZmZmZpHQEQffO2RaHOHco0GAABHQBJItDlYEGJHQFqhWBBiTdNHQEQfGp++dsmHco4GAABHQBJFocrAgxJHQFqhFocrAgxHQEQeuFHrhR+Hco8GAABHQBIzMzMzMzNHQFqgAAAAAABHQEQc7ZFocrCHcpAGAABHQBIvGp++dslHQFqfztkWhytHQEQci0OVgQaHcpEGAABHQBIdsi0OVgRHQFqep++dsi1HQEQawIMSbpiHcpIGAABHQBIZmZmZmZpHQFqedsi0OVhHQEQaXjU/fO6HcpMGAABHQBIWhysCDEpHQFqeNT987ZFHQEQZ++dsi0SHcpQGAABHQBIEGJN0vGpHQFqdHrhR64VHQEQYUeuFHriHcpUGAABHQBIBBiTdLxtHQFqc3S8an75HQEQX752yLQ6HcpYGAABHQBH87ZFocrBHQFqcrAgxJulHQEQXjU/fO2SHcpcGAABHQBHrhR64UexHQFqbhR64UexHQEQVwo9cKPaHcpgGAABHQBHnbItDlYFHQFqbU/fO2RdHQEQVYEGJN0yHcpkGAABHQBHWBBiTdLxHQFqaPXCj1wpHQEQTlYEGJN2HcpoGAABHQBHR64UeuFJHQFqZ++dsi0RHQEQTMzMzMzOHcpsGAABHQBHN0vGp++dHQFqZul41P31HQEQS8an7522HcpwGAABHQBG8an752yNHQFqYo9cKPXFHQEQRJul41P6Hcp0GAABHQBG4UeuFHrhHQFqYYk3S8apHQEQQxJul41SHcp4GAABHQBGm6XjU/fRHQFqXS8an755HQEQO+dsi0OWHcp8GAABHQBGi0OVgQYlHQFqXCj1wo9dHQEQOl41P3zuHcqAGAABHQBGfvnbItDlHQFqW2RaHKwJHQEQONT987ZGHcqEGAABHQBGOVgQYk3VHQFqVsi0OVgRHQEQMi0OVgQaHcqIGAABHQBGKPXCj1wpHQFqVgQYk3S9HQEQMKPXCj1yHcqMGAABHQBGGJN0vGqBHQFqVP3ztkWhHQEQLxqfvnbKHcqQGAABHQBF0vGp++dtHQFqUKPXCj1xHQEQJ++dsi0SHcqUGAABHQBFwo9cKPXFHQFqT52yLQ5ZHQEQJmZmZmZqHcqYGAABHQBFfO2RaHKxHQFqS0OVgQYlHQEQH752yLQ6HcqcGAABHQBFbItDlYEJHQFqSj1wo9cNHQEQHjU/fO2SHcqgGAABHQBFYEGJN0vJHQFqSTdLxqfxHQEQHKwIMSbqHcqkGAABHQBFGp++dsi1HQFqRN0vGp/BHQEQFYEGJN0yHcqoGAABHQBFCj1wo9cNHQFqQ9cKPXClHQEQE/fO2RaKHcqsGAABHQBE+dsi0OVhHQFqQtDlYEGJHQEQEm6XjU/iHcqwGAABHQBEtDlYEGJNHQFqPnbItDlZHQEQC0OVgQYmHcq0GAABHQBEp++dsi0RHQFqPXCj1wo9HQEQCbpeNT9+Hcq4GAABHQBEYk3S8an9HQFqORaHKwINHQEQAxJul41SHcq8GAABHQBEUeuFHrhRHQFqOBBiTdLxHQEQAYk3S8aqHcrAGAABHQBEQYk3S8apHQFqN0vGp++dHQEQAAAAAAACHcrEGAABHQBD752yLQ5ZHQFqMan752yNHQEP90vGp++eHcrIGAABHQBDqfvnbItFHQFqLU/fO2RdHQEP8KPXCj1yHcrMGAABHQBDiTdLxqfxHQFqK4UeuFHtHQEP7ZFocrAiHcrQGAABHQBDN0vGp++dHQFqJiTdLxqhHQEP5WBBiTdOHcrUGAABHQBDJul41P31HQFqJR64UeuFHQEP49cKPXCmHcrYGAABHQBC1P3ztkWhHQFqH752yLQ5HQEP2yLQ5WBCHcrcGAABHQBCbpeNT989HQFqGVgQYk3VHQEP0WhysCDGHcrgGAABHQBCHKwIMSbpHQFqE7ZFocrBHQEPyLQ5WBBmHcrkGAABHQBCDEm6XjVBHQFqEvGp++dtHQEPxysCDEm+HcroGAABHQBBxqfvnbItHQFqDlYEGJN1HQEPwIMSbpeOHcrsGAABHQBBul41P3ztHQFqDU/fO2RdHQEPvvnbItDmHcrwGAABHQBBWBBiTdLxHQFqBul41P31HQEPtT987ZFqHcr0GAABHQBBEm6XjU/hHQFqAo9cKPXFHQEPrhR64UeyHcr4GAABHQBBAgxJul41HQFqAYk3S8apHQEPrItDlYEKHcr8GAABHQBA9cKPXCj1HQFqAIMSbpeNHQEPqwIMSbpiHcsAGAABHQBAsCDEm6XlHQFp/Cj1wo9dHQEPpFocrAgyHcsEGAABHQBAn752yLQ5HQFp+yLQ5WBBHQEPotDlYEGKHcsIGAABHQBAPXCj1wo9HQFp9LxqfvndHQEPmRaHKwIOHcsMGAABHQA/987ZFoctHQFp8CDEm6XlHQEPkeuFHrhSHcsQGAABHQA/1wo9cKPZHQFp7xqfvnbJHQEPkGJN0vGqHcsUGAABHQA/vnbItDlZHQFp7lYEGJN1HQEPjtkWhysGHcsYGAABHQA/MzMzMzM1HQFp6bpeNT99HQEPiDEm6XjWHcscGAABHQA/Em6XjU/hHQFp6LQ5WBBlHQEPhqfvnbIuHcsgGAABHQA+j1wo9cKRHQFp5FocrAgxHQEPgAAAAAACHcskGAABHQA+bpeNT989HQFp41P3ztkZHQEPfnbItDlaHcsoGAABHQA+VgQYk3S9HQFp4k3S8an9HQEPfO2RaHKyHcssGAABHQA9ysCDEm6ZHQFp3fO2RaHNHQEPdcKPXCj2HcswGAABHQA9qfvnbItFHQFp3O2RaHKxHQEPdDlYEGJOHcs0GAABHQA9kWhysCDFHQFp2+dsi0OVHQEPcrAgxJumHcs4GAABHQA9BiTdLxqhHQFp10vGp++dHQEPbAgxJul6Hcs8GAABHQA87ZFocrAhHQFp1ocrAgxJHQEPan752yLSHctAGAABHQA8Yk3S8an9HQFp0euFHrhRHQEPY9cKPXCmHctEGAABHQA8SbpeNT99HQFp0OVgQYk5HQEPYk3S8an+HctIGAABHQA8KPXCj1wpHQFpz987ZFodHQEPYMSbpeNWHctMGAABHQA7nbItDlYFHQFpy4UeuFHtHQEPWhysCDEqHctQGAABHQA7hR64UeuFHQFpyn752yLRHQEPWJN0vGqCHctUGAABHQA64UeuFHrhHQFpxN0vGp/BHQEPT987ZFoeHctYGAABHQA6wIMSbpeNHQFpw9cKPXClHQEPTtkWhysGHctcGAABHQA6PXCj1wo9HQFpv3ztkWh1HQEPR64UeuFKHctgGAABHQA6HKwIMSbpHQFpvnbItDlZHQEPRiTdLxqiHctkGAABHQA6BBiTdLxtHQFpvXCj1wo9HQEPRJul41P6HctoGAABHQA5eNT987ZFHQFpuNT987ZFHQEPPfO2RaHOHctsGAABHQA5YEGJN0vJHQFpt87ZFoctHQEPPGp++dsmHctwGAABHQA41P3ztkWhHQFps3S8an75HQEPNcKPXCj2Hct0GAABHQA4vGp++dslHQFpsm6XjU/hHQEPNDlYEGJOHct4GAABHQA4m6XjU/fRHQFpsWhysCDFHQEPMrAgxJumHct8GAABHQA4GJN0vGqBHQFprMzMzMzNHQEPLAgxJul6HcuAGAABHQA3987ZFoctHQFpq8an7521HQEPKn752yLSHcuEGAABHQA3O2RaHKwJHQFppWBBiTdNHQEPIMSbpeNWHcuIGAABHQA2uFHrhR65HQFpoMSbpeNVHQEPGhysCDEqHcuMGAABHQA2fvnbItDlHQFpnrhR64UhHQEPFwo9cKPaHcuQGAABHQA12yLQ5WBBHQFpmVgQYk3VHQEPDtkWhysGHcuUGAABHQA1ul41P3ztHQFpmFHrhR65HQEPDU/fO2ReHcuYGAABHQA1HrhR64UhHQFpkrAgxJulHQEPBR64UeuGHcucGAABHQA0WhysCDEpHQFpjEm6XjVBHQEO+2RaHKwKHcugGAABHQAz1wo9cKPZHQFph64UeuFJHQEO9DlYEGJOHcukGAABHQAzvnbItDlZHQFphqfvnbItHQEO8zMzMzM2HcuoGAABHQAznbItDlYFHQFphaHKwIMVHQEO8an752yOHcusGAABHQAzGp++dsi1HQFpgQYk3S8dHQEO6n752yLSHcuwGAABHQAzAgxJul41HQFpgAAAAAABHQEO6XjU/fO6Hcu0GAABHQAyPXCj1wo9HQFpeVgQYk3VHQEO3752yLQ6Hcu4GAABHQAxul41P3ztHQFpdLxqfvndHQEO2JN0vGqCHcu8GAABHQAxocrAgxJxHQFpc/fO2RaJHQEO141P3ztmHcvAGAABHQAw/fO2RaHNHQFpblYEGJN1HQEOztkWhysGHcvEGAABHQAw5WBBiTdNHQFpbU/fO2RdHQEOzdLxqfvqHcvIGAABHQAwYk3S8an9HQFpaLQ5WBBlHQEOxysCDEm+HcvMGAABHQAwQYk3S8apHQFpZ64UeuFJHQEOxaHKwIMWHcvQGAABHQAwKPXCj1wpHQFpZqfvnbItHQEOxBiTdLxuHcvUGAABHQAvpeNT987ZHQFpYgxJul41HQEOvXCj1wo+HcvYGAABHQAvjU/fO2RdHQFpYQYk3S8dHQEOu+dsi0OWHcvcGAABHQAu6XjU/fO5HQFpW2RaHKwJHQEOs7ZFocrCHcvgGAABHQAu0OVgQYk5HQFpWl41P3ztHQEOsi0OVgQaHcvkGAABHQAuTdLxqfvpHQFpVcKPXCj1HQEOq4UeuFHuHcvoGAABHQAuLQ5WBBiVHQFpVLxqfvndHQEOqfvnbItGHcvsGAABHQAuFHrhR64VHQFpU/fO2RaJHQEOqHKwIMSeHcvwGAABHQAtkWhysCDFHQFpTxqfvnbJHQEOocrAgxJyHcv0GAABHQAtcKPXCj1xHQFpTlYEGJN1HQEOoEGJN0vKHcv4GAABHQAs1P3ztkWhHQFpSLQ5WBBlHQEOmBBiTdLyHcv8GAABHQAsvGp++dslHQFpR64UeuFJHQEOlocrAgxKHcgAHAABHQAsOVgQYk3VHQFpQxJul41RHQEOj987ZFoeHcgEHAABHQAsGJN0vGqBHQFpQgxJul41HQEOjlYEGJN2HcgIHAABHQAsAAAAAAABHQFpQQYk3S8dHQEOjU/fO2ReHcgMHAABHQArfO2RaHKxHQFpPGp++dslHQEOhqfvnbIuHcgQHAABHQArZFocrAgxHQFpO2RaHKwJHQEOhR64UeuGHcgUHAABHQAq4UeuFHrhHQFpNsi0OVgRHQEOfnbItDlaHcgYHAABHQAqwIMSbpeNHQFpNcKPXCj1HQEOfO2RaHKyHcgcHAABHQAqp++dsi0RHQFpNLxqfvndHQEOe2RaHKwKHcggHAABHQAqJN0vGp/BHQFpMCDEm6XlHQEOdLxqfvneHcgkHAABHQAqDEm6XjVBHQFpLxqfvnbJHQEOczMzMzM2HcgoHAABHQApT987ZFodHQFpKDEm6XjVHQEOaXjU/fO6HcgsHAABHQAo1P3ztkWhHQFpI5WBBiTdHQEOYtDlYEGKHcgwHAABHQAotDlYEGJNHQFpIo9cKPXFHQEOYUeuFHriHcg0HAABHQAom6XjU/fRHQFpIYk3S8apHQEOYEGJN0vKHcg4HAABHQAoAAAAAAABHQFpG+dsi0OVHQEOWBBiTdLyHcg8HAABHQAnQ5WBBiTdHQFpFT987ZFpHQEOTlYEGJN2HchAHAABHQAmp++dsi0RHQFpD52yLQ5ZHQEORiTdLxqiHchEHAABHQAmj1wo9cKRHQFpDpeNT989HQEORJul41P6HchIHAABHQAmDEm6XjVBHQFpCfvnbItFHQEOPfO2RaHOHchMHAABHQAl87ZFocrBHQFpCPXCj1wpHQEOPO2RaHKyHchQHAABHQAlP3ztkWh1HQFpAgxJul41HQEOMzMzMzM2HchUHAABHQAko9cKPXClHQFo/Gp++dslHQEOKwIMSbpiHchYHAABHQAkgxJul41RHQFo+2RaHKwJHQEOKfvnbItGHchcHAABHQAkCDEm6XjVHQFo9si0OVgRHQEOI1P3ztkaHchgHAABHQAj752yLQ5ZHQFo9cKPXCj1HQEOIcrAgxJyHchkHAABHQAjMzMzMzM1HQFo7tkWhysFHQEOGBBiTdLyHchoHAABHQAiuFHrhR65HQFo6j1wo9cNHQEOEWhysCDGHchsHAABHQAin752yLQ5HQFo6TdLxqfxHQEOEGJN0vGqHchwHAABHQAifvnbItDlHQFo6DEm6XjVHQEODtkWhysGHch0HAABHQAiBBiTdLxtHQFo45WBBiTdHQEOCDEm6XjWHch4HAABHQAh64UeuFHtHQFo4o9cKPXFHQEOBqfvnbIuHch8HAABHQAhT987ZFodHQFo3KwIMSbpHQEN/nbItDlaHciAHAABHQAhN0vGp++dHQFo26XjU/fRHQEN/XCj1wo+HciEHAABHQAgtDlYEGJNHQFo1wo9cKPZHQEN9si0OVgSHciIHAABHQAgm6XjU/fRHQFo1gQYk3S9HQEN9T987ZFqHciMHAABHQAggxJul41RHQFo1P3ztkWhHQEN87ZFocrCHciQHAABHQAgAAAAAAABHQFo0CDEm6XlHQEN7Q5WBBiWHciUHAABHQAf52yLQ5WBHQFozxqfvnbJHQEN7AgxJul6HciYHAABHQAfbItDlYEJHQFoyn752yLRHQEN5WBBiTdOHcicHAABHQAfS8an7521HQFoyXjU/fO5HQEN49cKPXCmHcigHAABHQAfMzMzMzM1HQFoyHKwIMSdHQEN4k3S8an+HcikHAABHQAeuFHrhR65HQFow5WBBiTdHQEN26XjU/fSHcioHAABHQAel41P3ztlHQFowo9cKPXFHQEN2hysCDEqHcisHAABHQAeBBiTdLxtHQFovO2RaHKxHQEN0m6XjU/iHciwHAABHQAd64UeuFHtHQFou+dsi0OVHQEN0OVgQYk6Hci0HAABHQAdaHKwIMSdHQFotwo9cKPZHQENyj1wo9cOHci4HAABHQAdT987ZFodHQFotgQYk3S9HQENyLQ5WBBmHci8HAABHQAdN0vGp++dHQFotP3ztkWhHQENx64UeuFKHcjAHAABHQAcvGp++dslHQFosGJN0vGpHQENwQYk3S8eHcjEHAABHQAcm6XjU/fRHQFor1wo9cKRHQENv3ztkWh2HcjIHAABHQAcCDEm6XjVHQFoqXjU/fO5HQENt87ZFocuHcjMHAABHQAb752yLQ5ZHQFoqHKwIMSdHQENtkWhysCGHcjQHAABHQAbdLxqfvndHQFoo5WBBiTdHQENr52yLQ5aHcjUHAABHQAbU/fO2RaJHQFooo9cKPXFHQENrhR64UeyHcjYHAABHQAawIMSbpeNHQFonO2RaHKxHQENpmZmZmZqHcjcHAABHQAap++dsi0RHQFom+dsi0OVHQENpN0vGp/CHcjgHAABHQAaDEm6XjVBHQFolgQYk3S9HQENnKwIMSbqHcjkHAABHQAZ87ZFocrBHQFolP3ztkWhHQENm6XjU/fSHcjoHAABHQAZeNT987ZFHQFokCDEm6XlHQENlP3ztkWiHcjsHAABHQAZYEGJN0vJHQFojxqfvnbJHQENk3S8an76HcjwHAABHQAYrAgxJul5HQFoiDEm6XjVHQENij1wo9cOHcj0HAABHQAYAAAAAAABHQFogUeuFHrhHQENgQYk3S8eHcj4HAABHQAXbItDlYEJHQFoe6XjU/fRHQENeNT987ZGHcj8HAABHQAW2RaHKwINHQFodcKPXCj1HQENcSbpeNT+HckAHAABHQAWuFHrhR65HQFodLxqfvndHQENb52yLQ5aHckEHAABHQAWDEm6XjVBHQFobdLxqfvpHQENZmZmZmZqHckIHAABHQAVkWhysCDFHQFoaPXCj1wpHQENX752yLQ6HckMHAABHQAVeNT987ZFHQFoZ++dsi0RHQENXjU/fO2SHckQHAABHQAU5WBBiTdNHQFoYgxJul41HQENVocrAgxKHckUHAABHQAUzMzMzMzNHQFoYQYk3S8dHQENVP3ztkWiHckYHAABHQAUIMSbpeNVHQFoWhysCDEpHQENS8an7522HckcHAABHQATpeNT987ZHQFoVT987ZFpHQENRaHKwIMWHckgHAABHQATjU/fO2RdHQFoVDlYEGJNHQENRBiTdLxuHckkHAABHQAS+dsi0OVhHQFoTlYEGJN1HQENO+dsi0OWHckoHAABHQAS4UeuFHrhHQFoTU/fO2RdHQENOuFHrhR+HcksHAABHQASZmZmZmZpHQFoSHKwIMSdHQENNDlYEGJOHckwHAABHQASTdLxqfvpHQFoR2yLQ5WBHQENMrAgxJumHck0HAABHQASNT987ZFpHQFoRmZmZmZpHQENMan752yOHck4HAABHQARul41P3ztHQFoQYk3S8apHQENKwIMSbpiHck8HAABHQARocrAgxJxHQFoQIMSbpeNHQENKXjU/fO6HclAHAABHQARDlYEGJN1HQFoOp++dsi1HQENIcrAgxJyHclEHAABHQAQ9cKPXCj1HQFoOZmZmZmZHQENIEGJN0vKHclIHAABHQAQeuFHrhR9HQFoNLxqfvndHQENGhysCDEqHclMHAABHQAQYk3S8an9HQFoM7ZFocrBHQENGJN0vGqCHclQHAABHQAQSbpeNT99HQFoMrAgxJulHQENFwo9cKPaHclUHAABHQAPztkWhysFHQFoLdLxqfvpHQENEOVgQYk6HclYHAABHQAPtkWhysCFHQFoLItDlYEJHQEND1wo9cKSHclcHAABHQAPKwIMSbphHQFoJqfvnbItHQENB64UeuFKHclgHAABHQAPEm6XjU/hHQFoJaHKwIMVHQENBiTdLxqiHclkHAABHQAOl41P3ztlHQFoIMSbpeNVHQENAAAAAAACHcloHAABHQAOfvnbItDlHQFoH752yLQ5HQEM/nbItDlaHclsHAABHQAN64UeuFHtHQFoGdsi0OVhHQEM9si0OVgSHclwHAABHQAN0vGp++dtHQFoGNT987ZFHQEM9T987ZFqHcl0HAABHQANYEGJN0vJHQFoE/fO2RaJHQEM7xqfvnbKHcl4HAABHQANR64UeuFJHQFoErAgxJulHQEM7ZFocrAiHcl8HAABHQAMtDlYEGJNHQFoDMzMzMzNHQEM5eNT987aHcmAHAABHQAMm6XjU/fRHQFoC8an7521HQEM5FocrAgyHcmEHAABHQAL752yLQ5ZHQFoBN0vGp/BHQEM2yLQ5WBCHcmIHAABHQALfO2RaHKxHQFoAAAAAAABHQEM1P3ztkWiHcmMHAABHQALZFocrAgxHQFn/rhR64UhHQEM03S8an76HcmQHAABHQAKuFHrhR65HQFn987ZFoctHQEMyj1wo9cOHcmUHAABHQAKFHrhR64VHQFn8KPXCj1xHQEMwQYk3S8eHcmYHAABHQAJiTdLxqfxHQFn6sCDEm6ZHQEMuVgQYk3WHcmcHAABHQAI9cKPXCj1HQFn5N0vGp/BHQEMsan752yOHcmgHAABHQAI3S8an755HQFn49cKPXClHQEMsKPXCj1yHcmkHAABHQAIOVgQYk3VHQFn3KwIMSbpHQEMp2yLQ5WCHcmoHAABHQAHrhR64UexHQFn1si0OVgRHQEMn752yLQ6HcmsHAABHQAHGp++dsi1HQFn0KPXCj1xHQEMmBBiTdLyHcmwHAABHQAHAgxJul41HQFnz52yLQ5ZHQEMlocrAgxKHcm0HAABHQAGdsi0OVgRHQFnyXjU/fO5HQEMjtkWhysGHcm4HAABHQAGXjU/fO2RHQFnyHKwIMSdHQEMjU/fO2ReHcm8HAABHQAF64UeuFHtHQFnw5WBBiTdHQEMhysCDEm+HcnAHAABHQAFR64UeuFJHQFnvGp++dslHQEMffO2RaHOHcnEHAABHQAFLxqfvnbJHQFnu2RaHKwJHQEMfO2RaHKyHcnIHAABHQAEo9cKPXClHQFntT987ZFpHQEMdT987ZFqHcnMHAABHQAEi0OVgQYlHQFntDlYEGJNHQEMc7ZFocrCHcnQHAABHQAEGJN0vGqBHQFnr1wo9cKRHQEMbZFocrAiHcnUHAABHQAEAAAAAAABHQFnrhR64UexHQEMbAgxJul6HcnYHAABHQADdLxqfvndHQFnqDEm6XjVHQEMZFocrAgyHcncHAABHQAC0OVgQYk5HQFnoQYk3S8dHQEMW6XjU/fSHcngHAABHQACuFHrhR65HQFnoAAAAAABHQEMWhysCDEqHcnkHAABHQACRaHKwIMVHQFnmuFHrhR9HQEMU/fO2RaKHcnoHAABHQACLQ5WBBiVHQFnmdsi0OVhHQEMUm6XjU/iHcnsHAABHQABocrAgxJxHQFnk7ZFocrBHQEMSsCDEm6aHcnwHAABHQABiTdLxqfxHQFnkrAgxJulHQEMSTdLxqfyHcn0HAABHQABHrhR64UhHQFnjdLxqfvpHQEMQxJul41SHcn4HAABHQABBiTdLxqhHQFnjItDlYEJHQEMQgxJul42Hcn8HAABHQAAeuFHrhR9HQFnhqfvnbItHQEMOl41P3zuHcoAHAABHQAAYk3S8an9HQFnhWBBiTdNHQEMONT987ZGHcoEHAABHP//rhR64UexHQFnf3ztkWh1HQEMMSbpeNT+HcoIHAABHP//fO2RaHKxHQFnfjU/fO2RHQEMMCDEm6XmHcoMHAABHP/+p++dsi0RHQFneVgQYk3VHQEMKfvnbItGHcoQHAABHP/+dsi0OVgRHQFneFHrhR65HQEMKHKwIMSeHcoUHAABHP/9LxqfvnbJHQFncOVgQYk5HQEMHztkWhyuHcoYHAABHP/8GJN0vGqBHQFnawIMSbphHQEMGBBiTdLyHcocHAABHP/752yLQ5WBHQFnabpeNT99HQEMFocrAgxKHcogHAABHP/64UeuFHrhHQFnY9cKPXClHQEMDtkWhysGHcokHAABHP/5mZmZmZmZHQFnXGp++dslHQEMBiTdLxqiHcooHAABHP/4Yk3S8an9HQFnVT987ZFpHQEL/XCj1wo+HcosHAABHP/3S8an7521HQFnTxqfvnbJHQEL9cKPXCj2HcowHAABHP/2RaHKwIMVHQFnSPXCj1wpHQEL7hR64UeyHco0HAABHP/2FHrhR64VHQFnR++dsi0RHQEL7Q5WBBiWHco4HAABHP/z1wo9cKPZHQFnOp++dsi1HQEL3KwIMSbqHco8HAABHP/ywIMSbpeNHQFnNDlYEGJNHQEL1P3ztkWiHcpAHAABHP/yj1wo9cKRHQFnMzMzMzM1HQEL03S8an76HcpEHAABHP/xiTdLxqfxHQFnLQ5WBBiVHQELzEm6XjVCHcpIHAABHP/wgxJul41RHQFnJul41P31HQELxJul41P6HcpMHAABHP/wUeuFHrhRHQFnJaHKwIMVHQELwxJul41SHcpQHAABHP/vS8an7521HQFnH3ztkWh1HQELu+dsi0OWHcpUHAABHP/uFHrhR64VHQFnGFHrhR65HQELszMzMzM2HcpYHAABHP/tDlYEGJN1HQFnEi0OVgQZHQELq4UeuFHuHcpcHAABHP/s3S8an755HQFnEOVgQYk5HQELqfvnbItGHcpgHAABHP/r1wo9cKPZHQFnCsCDEm6ZHQELotDlYEGKHcpkHAABHP/qn752yLQ5HQFnA1P3ztkZHQELmhysCDEqHcpoHAABHP/pmZmZmZmZHQFm/S8an755HQELkm6XjU/iHcpsHAABHP/paHKwIMSdHQFm/Cj1wo9dHQELkWhysCDGHcpwHAABHP/oYk3S8an9HQFm9gQYk3S9HQELibpeNT9+Hcp0HAABHP/nXCj1wo9dHQFm752yLQ5ZHQELgo9cKPXGHcp4HAABHP/nKwIMSbphHQFm7peNT989HQELgQYk3S8eHcp8HAABHP/mNT987ZFpHQFm6HKwIMSdHQELedsi0OViHcqAHAABHP/mBBiTdLxtHQFm5ysCDEm9HQELeFHrhR66HcqEHAABHQC664UeuFHtHQFz90vGp++dHQEWQo9cKPXGHcqIHAABHQC6vGp++dslHQFz8KPXCj1xHQEWONT987ZGHcqMHAABHQC6tDlYEGJNHQFz752yLQ5ZHQEWN0vGp++eHcqQHAABHQC6lYEGJN0xHQFz6wIMSbphHQEWMKPXCj1yHcqUHAABHQC6jU/fO2RdHQFz6fvnbItFHQEWLxqfvnbKHcqYHAABHQC6hysCDEm9HQFz6PXCj1wpHQEWLZFocrAiHcqcHAABHQC6ZmZmZmZpHQFz5Jul41P5HQEWJul41P32HcqgHAABHQC6N0vGp++dHQFz3bItDlYFHQEWHS8an756HcqkHAABHQC6LxqfvnbJHQFz3KwIMSbpHQEWG6XjU/fSHcqoHAABHQC6EGJN0vGpHQFz2FHrhR65HQEWFYEGJN0yHcqsHAABHQC54UeuFHrhHQFz0an752yNHQEWC8an7522HcqwHAABHQC52RaHKwINHQFz0GJN0vGpHQEWCj1wo9cOHcq0HAABHQC5ul41P3ztHQFzzAgxJul5HQEWA5WBBiTeHcq4HAABHQC5si0OVgQZHQFzywIMSbphHQEWAgxJul42Hcq8HAABHQC5rAgxJul5HQFzybpeNT99HQEWAIMSbpeOHcrAHAABHQC5o9cKPXClHQFzyLQ5WBBlHQEV/vnbItDmHcrEHAABHQC5i0OVgQYlHQFzxWBBiTdNHQEV+dsi0OViHcrIHAABHQC5XCj1wo9dHQFzvrhR64UhHQEV8CDEm6XmHcrMHAABHQC5VgQYk3S9HQFzvXCj1wo9HQEV7peNT98+HcrQHAABHQC5TdLxqfvpHQFzvGp++dslHQEV7Q5WBBiWHcrUHAABHQC5NT987ZFpHQFzuRaHKwINHQEV6HKwIMSeHcrYHAABHQC5HrhR64UhHQFztcKPXCj1HQEV49cKPXCmHcrcHAABHQC5BiTdLxqhHQFzsm6XjU/hHQEV3rhR64UiHcrgHAABHQC5AAAAAAABHQFzsSbpeNT9HQEV3S8an756HcrkHAABHQC4987ZFoctHQFzsCDEm6XlHQEV26XjU/fSHcroHAABHQC42RaHKwINHQFzq8an7521HQEV1P3ztkWiHcrsHAABHQC40OVgQYk5HQFzqn752yLRHQEV03S8an76HcrwHAABHQC4ysCDEm6ZHQFzqXjU/fO5HQEV0euFHrhSHcr0HAABHQC4si0OVgQZHQFzpiTdLxqhHQEVzMzMzMzOHcr4HAABHQC4gxJul41RHQFzn3ztkWh1HQEVwxJul41SHcr8HAABHQC4euFHrhR9HQFznjU/fO2RHQEVwYk3S8aqHcsAHAABHQC4dLxqfvndHQFznS8an755HQEVwAAAAAACHcsEHAABHQC4U/fO2RaJHQFzmNT987ZFHQEVudsi0OViHcsIHAABHQC4RaHKwIMVHQFzlocrAgxJHQEVtsi0OVgSHcsMHAABHQC4Jul41P31HQFzkeuFHrhRHQEVsCDEm6XmHcsQHAABHQC4HrhR64UhHQFzkOVgQYk5HQEVrpeNT98+HcsUHAABHQC4AAAAAAABHQFzjEm6XjVBHQEVp++dsi0SHcsYHAABHQC3987ZFoctHQFzi0OVgQYlHQEVpmZmZmZqHcscHAABHQC3752yLQ5ZHQFzij1wo9cNHQEVpN0vGp/CHcsgHAABHQC3yLQ5WBBlHQFzhJul41P5HQEVnKwIMSbqHcskHAABHQC3qfvnbItFHQFzgAAAAAABHQEVlgQYk3S+HcsoHAABHQC3ocrAgxJxHQFzfvnbItDlHQEVlHrhR64WHcssHAABHQC3m6XjU/fRHQFzffO2RaHNHQEVkvGp++duHcswHAABHQC3euFHrhR9HQFzeVgQYk3VHQEVjMzMzMzOHcs0HAABHQC3bItDlYEJHQFzd0vGp++dHQEVibpeNT9+Hcs4HAABHQC3TdLxqfvpHQFzcrAgxJulHQEVgxJul41SHcs8HAABHQC3RaHKwIMVHQFzcan752yNHQEVgYk3S8aqHctAHAABHQC3Jul41P31HQFzbQ5WBBiVHQEVeuFHrhR+HctEHAABHQC3HrhR64UhHQFzbAgxJul5HQEVeVgQYk3WHctIHAABHQC3GJN0vGqBHQFzawIMSbphHQEVd87ZFocuHctMHAABlKEdALbxqfvnbI0dAXNlYEGJN00dARVvnbItDlody1AcAAEdALbKwIMSbpkdAXNfvnbItDkdARVn752yLRIdy1QcAAEdALbCj1wo9cUdAXNedsi0OVkdARVmZmZmZmody1gcAAEdALa0OVgQYk0dAXNcan752yUdARVjU/fO2Rody1wcAAEdALaj1wo9cKUdAXNaHKwIMSkdARVfvnbItDody2AcAAEdALaVgQYk3TEdAXNXztkWhy0dARVcrAgxJuody2QcAAEdALZ0vGp++d0dAXNTMzMzMzUdARVWBBiTdL4dy2gcAAEdALZul41P3z0dAXNSLQ5WBBkdARVUeuFHrhYdy2wcAAEdALZgQYk3S8kdAXNQIMSbpeUdARVRaHKwIMYdy3AcAAEdALZN0vGp++kdAXNNkWhysCEdARVOVgQYk3Ydy3QcAAEdALZHrhR64UkdAXNMi0OVgQkdARVMzMzMzM4dy3gcAAEdALY/fO2RaHUdAXNLhR64Ue0dARVLQ5WBBiYdy3wcAAEdALY5WBBiTdUdAXNKfvnbItEdARVJul41P34dy4AcAAEdALYgxJul41UdAXNG6XjU/fUdARVEm6XjU/ody4QcAAEdALYKPXCj1w0dAXND1wo9cKUdARVAAAAAAAIdy4gcAAEdALXxqfvnbI0dAXNAQYk3S8kdARU64UeuFH4dy4wcAAEdALXrhR64Ue0dAXM/O2RaHK0dARU5WBBiTdYdy5AcAAEdALXjU/fO2RkdAXM987ZFoc0dARU3ztkWhy4dy5QcAAEdALXdLxqfvnkdAXM87ZFocrEdARU2RaHKwIYdy5gcAAEdALXMzMzMzM0dAXM6n752yLUdARUysCDEm6Ydy5wcAAEdALW8an752yUdAXM4UeuFHrkdARUvnbItDlody6AcAAEdALW2RaHKwIUdAXM3S8an750dARUuFHrhR7Idy6QcAAEdALWdsi0OVgUdAXMztkWhysEdARUpeNT987ody6gcAAEdALWVgQYk3TEdAXMysCDEm6UdARUn752yLRIdy6wcAAEdALWHKwIMSb0dAXMwo9cKPXEdARUk3S8an8Idy7AcAAEdALVwo9cKPXEdAXMtDlYEGJUdARUfvnbItDody7QcAAEdALVocrAgxJ0dAXMsCDEm6XkdARUeNT987ZIdy7gcAAEdALViTdLxqf0dAXMrAgxJumEdARUcrAgxJuody7wcAAEdALUzMzMzMzUdAXMkWhysCDEdARUS8an7524dy8AcAAEdALUan752yLUdAXMgxJul41UdARUOVgQYk3Ydy8QcAAEdALUUeuFHrhUdAXMfvnbItDkdARUMzMzMzM4dy8gcAAEdALUMSbpeNUEdAXMedsi0OVkdARULQ5WBBiYdy8wcAAEdALT1wo9cKPUdAXMbItDlYEEdARUGJN0vGqIdy9AcAAEdALTfO2RaHK0dAXMXztkWhy0dARUBiTdLxqody9QcAAEdALTGp++dsi0dAXMUOVgQYk0dART8an752yYdy9gcAAEdALTAgxJul40dAXMTMzMzMzUdART64UeuFH4dy9wcAAEdALS4UeuFHrkdAXMSLQ5WBBkdART5WBBiTdYdy+AcAAEdALSZmZmZmZkdAXMNkWhysCEdARTzMzMzMzYdy+QcAAEdALSRaHKwIMUdAXMMi0OVgQkdARTxqfvnbI4dy+gcAAEdALSLQ5WBBiUdAXMLhR64Ue0dARTwIMSbpeYdy+wcAAEdALReNT987ZEdAXMEm6XjU/kdARTmZmZmZmody/AcAAEdALRFocrAgxUdAXMBBiTdLx0dARThR64UeuIdy/QcAAEdALQ9cKPXCj0dAXMAAAAAAAEdARTfvnbItDody/gcAAEdALQ3S8an750dAXL++dsi0OUdARTeNT987ZIdy/wcAAEdALQYk3S8aoEdAXL6XjU/fO0dARTYEGJN0vIdyAAgAAEdALQKPXCj1w0dAXL4UeuFHrkdARTU/fO2RaIdyAQgAAEdALPpeNT987kdAXLztkWhysEdARTOVgQYk3YdyAggAAEdALPjU/fO2RkdAXLybpeNT+EdARTMzMzMzM4dyAwgAAEdALPU/fO2RaEdAXLwYk3S8akdARTJul41P34dyBAgAAEdALPEm6XjU/kdAXLuFHrhR7EdARTGp++dsi4dyBQgAAEdALO8an752yUdAXLszMzMzM0dARTFHrhR64YdyBggAAEdALO2RaHKwIUdAXLrxqfvnbUdARTDlYEGJN4dyBwgAAEdALOn752yLREdAXLpul41P30dARTAgxJul44dyCAgAAEdALOPXCj1wpEdAXLmJN0vGqEdARS7ZFocrAodyCQgAAEdALOBBiTdLx0dAXLkGJN0vG0dARS4UeuFHrodyCggAAEdALNocrAgxJ0dAXLggxJul40dARSzMzMzMzYdyCwgAAEdALNiTdLxqf0dAXLffO2RaHUdARSxqfvnbI4dyDAgAAEdALNT987ZFokdAXLdLxqfvnkdARSvGp++dsodyDQgAAEdALNDlYEGJN0dAXLa4UeuFH0dARSrhR64Ue4dyDggAAEdALMzMzMzMzUdAXLYk3S8aoEdARSocrAgxJ4dyDwgAAEdALMUeuFHrhUdAXLT987ZFokdARShysCDEnIdyEAgAAEdALMOVgQYk3UdAXLS8an7520dARSgQYk3S8odyEQgAAEdALMAAAAAAAEdAXLQ5WBBiTkdARSdLxqfvnodyEggAAEdALLvnbItDlkdAXLOVgQYk3UdARSaHKwIMSodyEwgAAEdALLnbItDlYEdAXLNT987ZF0dARSYk3S8aoIdyFAgAAEdALLhR64UeuEdAXLMCDEm6XkdARSXCj1wo9odyFQgAAEdALLS8an7520dAXLJ++dsi0UdARST987ZFoodyFggAAEdALLAgxJul40dAXLHbItDlYEdARSQYk3S8aodyFwgAAEdALKsCDEm6XkdAXLEWhysCDEdARSLxqfvnbYdyGAgAAEdALKTdLxqfvkdAXLAxJul41UdARSGp++dsi4dyGQgAAEdALKNT987ZF0dAXK/vnbItDkdARSFocrAgxYdyGggAAEdALKFHrhR64UdAXK+dsi0OVkdARSEGJN0vG4dyGwgAAEdALJ++dsi0OUdAXK9cKPXCj0dARSCj1wo9cYdyHAgAAEdALJul41P3z0dAXK7ItDlYEEdARR++dsi0OYdyHQgAAEdALJgQYk3S8kdAXK41P3ztkUdARR752yLQ5YdyHggAAEdALJYEGJN0vEdAXK3ztkWhy0dARR6XjU/fO4dyHwgAAEdALJR64UeuFEdAXK2yLQ5WBEdARR41P3ztkYdyIAgAAEdALJBiTdLxqkdAXK0OVgQYk0dARR1P3ztkWodyIQgAAEdALI5WBBiTdUdAXKzMzMzMzUdARRztkWhysIdyIggAAEdALIrAgxJumEdAXKxJul41P0dARRxJul41P4dyIwgAAEdALIUeuFHrhUdAXKtkWhysCEdARRsCDEm6XodyJAgAAEdALIMSbpeNUEdAXKsSbpeNUEdARRqfvnbItIdyJQgAAEdALIEGJN0vG0dAXKrQ5WBBiUdARRo9cKPXCodyJggAAEdALH987ZFoc0dAXKqPXCj1w0dARRnbItDlYIdyJwgAAEdALHtkWhysCEdAXKnrhR64UkdARRj1wo9cKYdyKAgAAEdALHXCj1wo9kdAXKkm6XjU/kdARRfO2RaHK4dyKQgAAEdALHAgxJul40dAXKhBiTdLx0dARRan752yLYdyKggAAEdALG4UeuFHrkdAXKgAAAAAAEdARRZFocrAg4dyKwgAAEdALGyLQ5WBBkdAXKeuFHrhSEdARRXjU/fO2YdyLAgAAEdALGp++dsi0UdAXKdsi0OVgUdARRWBBiTdL4dyLQgAAEdALGLQ5WBBiUdAXKZFocrAg0dARRPXCj1wpIdyLggAAEdALGFHrhR64UdAXKYEGJN0vEdARRN0vGp++odyLwgAAEdALFsi0OVgQkdAXKUeuFHrhUdARRJN0vGp/IdyMAgAAEdALFmZmZmZmkdAXKTdLxqfvkdARRHrhR64UodyMQgAAEdALFYEGJN0vEdAXKRJul41P0dARREm6XjU/odyMggAAEdALE/fO2RaHUdAXKNkWhysCEdARQ/fO2RaHYdyMwgAAEdALE5WBBiTdUdAXKMi0OVgQkdARQ987ZFoc4dyNAgAAEdALExJul41P0dAXKLhR64Ue0dARQ8an752yYdyNQgAAEdALEEGJN0vG0dAXKEm6XjU/kdARQzMzMzMzYdyNggAAEdALDtkWhysCEdAXKBBiTdLx0dARQuFHrhR7IdyNwgAAEdALDlYEGJN00dAXKAAAAAAAEdARQsi0OVgQodyOAgAAEdALDfO2RaHK0dAXJ++dsi0OUdARQrAgxJumIdyOQgAAEdALC4UeuFHrkdAXJ5WBBiTdUdARQjU/fO2RodyOggAAEdALCyLQ5WBBkdAXJ4EGJN0vEdARQhysCDEnIdyOwgAAEdALCTdLxqfvkdAXJzdLxqfvkdARQbItDlYEIdyPAgAAEdALCLQ5WBBiUdAXJybpeNT+EdARQZmZmZmZodyPQgAAEdALB++dsi0OUdAXJwYk3S8akdARQWhysCDEodyPggAAEdALBul41P3z0dAXJt0vGp++kdARQTdLxqfvodyPwgAAEdALBmZmZmZmkdAXJszMzMzM0dARQR64UeuFIdyQAgAAEdALBgQYk3S8kdAXJrhR64Ue0dARQQYk3S8aodyQQgAAEdALAzMzMzMzUdAXJk3S8an8EdARQGp++dsi4dyQggAAEdALArAgxJumEdAXJj1wo9cKUdARQFHrhR64YdyQwgAAEdALAUeuFHrhUdAXJgQYk3S8kdARQAgxJul44dyRAgAAEdALAMSbpeNUEdAXJe+dsi0OUdARP++dsi0OYdyRQgAAEdAK/987ZFoc0dAXJc7ZFocrEdARP752yLQ5YdyRggAAEdAK/fO2RaHK0dAXJYUeuFHrkdARP1P3ztkWodyRwgAAEdAK/ZFocrAg0dAXJXCj1wo9kdARP0OVgQYk4dySAgAAEdAK/Cj1wo9cUdAXJTdLxqfvkdARPvGp++dsodySQgAAEdAK+6XjU/fO0dAXJSbpeNT+EdARPtkWhysCIdySggAAEdAK+sCDEm6XkdAXJQYk3S8akdARPqfvnbItIdySwgAAEdAK+VgQYk3TEdAXJMzMzMzM0dARPlYEGJN04dyTAgAAEdAK+NT987ZF0dAXJLxqfvnbUdARPkWhysCDIdyTQgAAEdAK9++dsi0OUdAXJJeNT987kdARPhR64UeuIdyTggAAEdAK9ul41P3z0dAXJG6XjU/fUdARPdsi0OVgYdyTwgAAEdAK9ocrAgxJ0dAXJF41P3ztkdARPcKPXCj14dyUAgAAEdAK9aHKwIMSkdAXJD1wo9cKUdARPZFocrAg4dyUQgAAEdAK9LxqfvnbUdAXJBysCDEnEdARPWhysCDEodyUggAAEdAK9DlYEGJN0dAXJAQYk3S8kdARPUeuFHrhYdyUwgAAEdAK87ZFocrAkdAXI++dsi0OUdARPS8an7524dyVAgAAEdAK8tDlYEGJUdAXI87ZFocrEdARPP3ztkWh4dyVQgAAEdAK8OVgQYk3UdAXI4UeuFHrkdARPJN0vGp/IdyVggAAEdAK8IMSbpeNUdAXI3S8an750dARPHrhR64UodyVwgAAEdAK8CDEm6XjUdAXI2BBiTdL0dARPGJN0vGqIdyWAgAAEdAK7vnbItDlkdAXIzdLxqfvkdARPDEm6XjVIdyWQgAAEdAK7peNT987kdAXIybpeNT+EdARPBiTdLxqodyWggAAEdAK7bItDlYEEdAXIwYk3S8akdARO+dsi0OVodyWwgAAEdAK7O2RaHKwUdAXIuVgQYk3UdARO7ZFocrAodyXAgAAEdAK7Em6XjU/kdAXIszMzMzM0dARO5WBBiTdYdyXQgAAEdAK68an752yUdAXIrxqfvnbUdARO3ztkWhy4dyXggAAEdAK62RaHKwIUdAXIqfvnbItEdARO2RaHKwIYdyXwgAAEdAK6wIMSbpeUdAXIpeNT987kdARO1P3ztkWodyYAgAAEdAK6dsi0OVgUdAXIm6XjU/fUdAROxqfvnbI4dyYQgAAEdAK6JN0vGp/EdAXIj1wo9cKUdAROtDlYEGJYdyYggAAEdAK6DEm6XjVEdAXIij1wo9cUdAROrhR64Ue4dyYwgAAEdAK5ysCDEm6UdAXIgAAAAAAEdAROn752yLRIdyZAgAAEdAK5qfvnbItEdAXIe+dsi0OUdAROm6XjU/fYdyZQgAAEdAK5kWhysCDEdAXId87ZFoc0dAROlYEGJN04dyZggAAEdAK5eNT987ZEdAXIc7ZFocrEdAROj1wo9cKYdyZwgAAEdAK5P3ztkWh0dAXIa4UeuFH0dAROgxJul41YdyaAgAAEdAK4/fO2RaHUdAXIYUeuFHrkdAROdLxqfvnodyaQgAAEdAK43S8an750dAXIXCj1wo9kdARObpeNT99IdyaggAAEdAK4xJul41P0dAXIWBBiTdL0dAROaHKwIMSodyawgAAEdAK4gxJul41UdAXITdLxqfvkdAROXCj1wo9odybAgAAEdAK4Yk3S8aoEdAXISbpeNT+EdAROVgQYk3TIdybQgAAEdAK4MSbpeNUEdAXIQIMSbpeUdAROSbpeNT+IdybggAAEdAK3ztkWhysEdAXIMi0OVgQkdARONT987ZF4dybwgAAEdAK3tkWhysCEdAXILhR64Ue0dAROLxqfvnbYdycAgAAEdAK3lYEGJN00dAXIKfvnbItEdAROKwIMSbpodycQgAAEdAK3fO2RaHK0dAXIJeNT987kdAROJN0vGp/IdycggAAEdAK26XjU/fO0dAXIDlYEGJN0dAROBBiTdLx4dycwgAAEdAK2hysCDEnEdAXIAAAAAAAEdARN8an752yYdydAgAAEdAK2bpeNT99EdAXH++dsi0OUdARN64UeuFH4dydQgAAEdAK2VgQYk3TEdAXH9si0OVgUdARN5WBBiTdYdydggAAEdAK2NT987ZF0dAXH8rAgxJukdARN3ztkWhy4dydwgAAEdAK1ul41P3z0dAXH4EGJN0vEdARNxJul41P4dyeAgAAEdAK1ocrAgxJ0dAXH3Cj1wo9kdARNvnbItDlodyeQgAAEdAK1Jul41P30dAXHyLQ5WBBkdARNpeNT987odyeggAAEdAK0k3S8an8EdAXHsi0OVgQkdARNhysCDEnIdyewgAAEdAK0euFHrhSEdAXHrQ5WBBiUdARNgQYk3S8odyfAgAAEdAK0WhysCDEkdAXHqPXCj1w0dARNeuFHrhSIdyfQgAAEdAKzrhR64Ue0dAXHjU/fO2RkdARNVgQYk3TIdyfggAAEdAKzjU/fO2RkdAXHiTdLxqf0dARNT987ZFoodyfwgAAEdAKzMzMzMzM0dAXHeuFHrhSEdARNO2RaHKwYdygAgAAEdAKzGp++dsi0dAXHdsi0OVgUdARNNT987ZF4dygQgAAEdAKyZmZmZmZkdAXHWyLQ5WBEdARNEGJN0vG4dygggAAEdAKyTdLxqfvkdAXHVwo9cKPUdARNCj1wo9cYdygwgAAEdAKyFHrhR64UdAXHTdLxqfvkdARM/fO2RaHYdyhAgAAEdAKx64UeuFH0dAXHR64UeuFEdARM9cKPXCj4dyhQgAAEdAKx0vGp++d0dAXHQ5WBBiTkdARM752yLQ5YdyhggAAEdAKxmZmZmZmkdAXHO2RaHKwUdARM5WBBiTdYdyhwgAAEdAKxaHKwIMSkdAXHMi0OVgQkdARM2RaHKwIYdyiAgAAEdAKxP3ztkWh0dAXHLQ5WBBiUdARM0OVgQYk4dyiQgAAEdAKxJul41P30dAXHJ++dsi0UdARMysCDEm6YdyiggAAEdAKw7ZFocrAkdAXHH752yLREdARMvnbItDlodyiwgAAEdAKw1P3ztkWkdAXHG6XjU/fUdARMul41P3z4dyjAgAAEdAKwrAgxJumEdAXHFYEGJN00dARMsi0OVgQodyjQgAAEdAKwcrAgxJukdAXHDEm6XjVEdARMpeNT987odyjggAAEdAKwWhysCDEkdAXHCDEm6XjUdARMn752yLRIdyjwgAAEdAKwIMSbpeNUdAXHAAAAAAAEdARMk3S8an8IdykAgAAEdAKwAAAAAAAEdAXG+dsi0OVkdARMi0OVgQYodykQgAAEdAKv3ztkWhy0dAXG9cKPXCj0dARMhysCDEnIdykggAAEdAKvpeNT987kdAXG7ItDlYEEdARMeuFHrhSIdykwgAAEdAKvjU/fO2RkdAXG6HKwIMSkdARMdLxqfvnodylAgAAEdAKvMzMzMzM0dAXG2hysCDEkdARMYEGJN0vIdylQgAAEdAKvEm6XjU/kdAXG1P3ztkWkdARMWhysCDEodylggAAEdAKu+dsi0OVkdAXG0OVgQYk0dARMVgQYk3TIdylwgAAEdAKu4UeuFHrkdAXGzMzMzMzUdARMT987ZFoodymAgAAEdAKuuFHrhR7EdAXGxqfvnbI0dARMR64UeuFIdymQgAAEdAKun752yLREdAXGwo9cKPXEdARMQYk3S8aodymggAAEdAKuZmZmZmZkdAXGuVgQYk3UdARMNT987ZF4dymwgAAEdAKuLQ5WBBiUdAXGsSbpeNUEdARMKwIMSbpodynAgAAEdAKuDEm6XjVEdAXGqwIMSbpkdARMItDlYEGYdynQgAAEdAKt64UeuFH0dAXGpul41P30dARMHKwIMSb4dynggAAEdAKt0vGp++d0dAXGotDlYEGUdARMFocrAgxYdynwgAAEdAKtul41P3z0dAXGnrhR64UkdARMEGJN0vG4dyoAgAAEdAKtmZmZmZmkdAXGmZmZmZmkdARMCj1wo9cYdyoQgAAEdAKteNT987ZEdAXGk3S8an8EdARMAgxJul44dyoggAAEdAKtWBBiTdL0dAXGj1wo9cKUdARL++dsi0OYdyowgAAEdAKtJul41P30dAXGhysCDEnEdARL8an752yYdypAgAAEdAKtBiTdLxqkdAXGgxJul41UdARL64UeuFH4dypQgAAEdAKs7ZFocrAkdAXGffO2RaHUdARL5WBBiTdYdypggAAEdAKsxJul41P0dAXGeNT987ZEdARL3S8an754dypwgAAEdAKsrAgxJumEdAXGc7ZFocrEdARL1wo9cKPYdyqAgAAEdAKsk3S8an8EdAXGb52yLQ5UdARL0OVgQYk4dyqQgAAEdAKscrAgxJukdAXGa4UeuFH0dARLzMzMzMzYdyqggAAEdAKsWhysCDEkdAXGZ2yLQ5WEdARLxqfvnbI4dyqwgAAEdAKsQYk3S8akdAXGYk3S8aoEdARLwIMSbpeYdyrAgAAEdAKsAAAAAAAEdAXGWBBiTdL0dARLsi0OVgQodyrQgAAEdAKr3ztkWhy0dAXGU/fO2RaEdARLrAgxJumIdyrggAAEdAKrxqfvnbI0dAXGT987ZFokdARLpeNT987odyrwgAAEdAKrrhR64Ue0dAXGS8an7520dARLocrAgxJ4dysAgAAEdAKrhR64UeuEdAXGRaHKwIMUdARLmZmZmZmodysQgAAEdAKrbItDlYEEdAXGQIMSbpeUdARLk3S8an8IdysggAAEdAKrMzMzMzM0dAXGOFHrhR7EdARLhysCDEnIdyswgAAEdAKrGp++dsi0dAXGNDlYEGJUdARLgQYk3S8odytAgAAEdAKrAgxJul40dAXGMCDEm6XkdARLeuFHrhSIdytQgAAEdAKq2RaHKwIUdAXGKfvnbItEdARLdLxqfvnodytggAAEdAKqwIMSbpeUdAXGJN0vGp/EdARLbpeNT99IdytwgAAEdAKqn752yLREdAXGIMSbpeNUdARLaHKwIMSodyuAgAAEdAKqhysCDEnEdAXGHKwIMSb0dARLYk3S8aoIdyuQgAAEdAKqbpeNT99EdAXGGJN0vGqEdARLXCj1wo9odyuggAAEdAKqTdLxqfvkdAXGFHrhR64UdARLVgQYk3TIdyuwgAAEdAKqLQ5WBBiUdAXGDlYEGJN0dARLTdLxqfvodyvAgAAEdAKp87ZFocrEdAXGBR64UeuEdARLQ5WBBiTodyvQgAAEdAKp2yLQ5WBEdAXGAQYk3S8kdARLPXCj1wpIdyvggAAEdAKpul41P3z0dAXF/O2RaHK0dARLN0vGp++odyvwgAAEdAKpmZmZmZmkdAXF9si0OVgUdARLLxqfvnbYdywAgAAEdAKpeNT987ZEdAXF8rAgxJukdARLKPXCj1w4dywQgAAEdAKpYEGJN0vEdAXF7ZFocrAkdARLItDlYEGYdywggAAEdAKpR64UeuFEdAXF6XjU/fO0dARLHKwIMSb4dywwgAAEdAKpDlYEGJN0dAXF4UeuFHrkdARLEm6XjU/odyxAgAAEdAKozMzMzMzUdAXF1gQYk3TEdARLBBiTdLx4dyxQgAAEdAKotDlYEGJUdAXF0euFHrhUdARK/fO2RaHYdyxggAAEdAKom6XjU/fUdAXFzdLxqfvkdARK987ZFoc4dyxwgAAEdAKoeuFHrhSEdAXFybpeNT+EdARK87ZFocrIdyyAgAAEdAKoWhysCDEkdAXFw5WBBiTkdARK64UeuFH4dyyQgAAEdAKoOVgQYk3UdAXFv3ztkWh0dARK5WBBiTdYdyyggAAEdAKoCDEm6XjUdAXFtkWhysCEdARK2RaHKwIYdyywgAAEdAKn52yLQ5WEdAXFsi0OVgQkdARK0vGp++d4dyzAgAAEdAKnztkWhysEdAXFrhR64Ue0dARKzMzMzMzYdyzQgAAEdAKnrhR64Ue0dAXFp++dsi0UdARKxJul41P4dyzggAAEdAKnjU/fO2RkdAXFo9cKPXCkdARKwIMSbpeYdyzwgAAEdAKndLxqfvnkdAXFnrhR64UkdARKul41P3z4dy0AgAAEdAKnXCj1wo9kdAXFmp++dsi0dARKtDlYEGJYdy0QgAAEdAKnItDlYEGUdAXFkm6XjU/kdARKp++dsi0Ydy0ggAAEdAKm+dsi0OVkdAXFjEm6XjVEdARKn752yLRIdy0wgAAEdAKmyLQ5WBBkdAXFgxJul41UdARKlYEGJN04dy1AgAAEdAKmTdLxqfvkdAXFcKPXCj10dARKeuFHrhSIdy1QgAAEdAKmNT987ZF0dAXFa4UeuFH0dARKdLxqfvnody1ggAAEdAKl41P3ztkUdAXFXztkWhy0dARKZFocrAg4dy1wgAAEdAKlocrAgxJ0dAXFU/fO2RaEdARKVgQYk3TIdy2AgAAEdAKliTdLxqf0dAXFT987ZFokdARKT987ZFoody2QgAAEdAKlDlYEGJN0dAXFPGp++dskdARKN0vGp++ody2ggAAEdAKkYk3S8aoEdAXFIMSbpeNUdARKEm6XjU/ody2wgAAEdAKkSbpeNT+EdAXFHKwIMSb0dARKDEm6XjVIdy3AgAAEdAKjztkWhysEdAXFCTdLxqf0dARJ87ZFocrIdy3QgAAEdAKjnbItDlYEdAXFAQYk3S8kdARJ52yLQ5WIdy3ggAAEdAKjhR64UeuEdAXE/O2RaHK0dARJ4UeuFHrody3wgAAEdAKjS8an7520dAXE87ZFocrEdARJ1P3ztkWody4AgAAEdAKjItDlYEGUdAXE7ZFocrAkdARJzMzMzMzYdy4QgAAEdAKjCj1wo9cUdAXE6XjU/fO0dARJyLQ5WBBody4ggAAEdAKi2RaHKwIUdAXE4EGJN0vEdARJvGp++dsody4wgAAEdAKiuFHrhR7EdAXE3Cj1wo9kdARJtkWhysCIdy5AgAAEdAKiXjU/fO2UdAXEzdLxqfvkdARJo9cKPXCody5QgAAEdAKiRaHKwIMUdAXEyLQ5WBBkdARJnbItDlYIdy5ggAAEdAKiDEm6XjVEdAXEwIMSbpeUdARJkWhysCDIdy5wgAAEdAKh64UeuFH0dAXEul41P3z0dARJiTdLxqf4dy6AgAAEdAKhysCDEm6UdAXEtkWhysCEdARJgxJul41Ydy6QgAAEdAKhmZmZmZmkdAXErQ5WBBiUdARJeNT987ZIdy6ggAAEdAKhYEGJN0vEdAXEpN0vGp/EdARJbItDlYEIdy6wgAAEdAKhP3ztkWh0dAXEnrhR64UkdARJZFocrAg4dy7AgAAEdAKhHrhR64UkdAXEmp++dsi0dARJXjU/fO2Ydy7QgAAEdAKhBiTdLxqkdAXElYEGJN00dARJWBBiTdL4dy7ggAAEdAKg7ZFocrAkdAXEkWhysCDEdARJU/fO2RaIdy7wgAAEdAKg1P3ztkWkdAXEjU/fO2RkdARJTdLxqfvody8AgAAEdAKgrAgxJumEdAXEhysCDEnEdARJRaHKwIMYdy8QgAAEdAKgWhysCDEkdAXEedsi0OVkdARJMzMzMzM4dy8ggAAEdAKgQYk3S8akdAXEdcKPXCj0dARJLxqfvnbYdy8wgAAEdAKgKPXCj1w0dAXEcan752yUdARJKPXCj1w4dy9AgAAEdAKgAAAAAAAEdAXEa4UeuFH0dARJIMSbpeNYdy9QgAAEdAKf52yLQ5WEdAXEZmZmZmZkdARJGp++dsi4dy9ggAAEdAKfrhR64Ue0dAXEXjU/fO2UdARJDlYEGJN4dy9wgAAEdAKflYEGJN00dAXEWhysCDEkdARJCj1wo9cYdy+AgAAEdAKffO2RaHK0dAXEVP3ztkWkdARJBBiTdLx4dy+QgAAEdAKfO2RaHKwUdAXESsCDEm6UdARI9cKPXCj4dy+ggAAEdAKfItDlYEGUdAXERqfvnbI0dARI752yLQ5Ydy+wgAAEdAKfAgxJul40dAXEQYk3S8akdARI6XjU/fO4dy/AgAAEdAKe6XjU/fO0dAXEPXCj1wpEdARI5WBBiTdYdy/QgAAEdAKeyLQ5WBBkdAXEN0vGp++kdARI3S8an754dy/ggAAEdAKep++dsi0UdAXEMzMzMzM0dARI1wo9cKPYdy/wgAAEdAKedsi0OVgUdAXEKfvnbItEdARIysCDEm6YdyAAkAAEdAKeXjU/fO2UdAXEJeNT987kdARIxJul41P4dyAQkAAEdAKePXCj1wpEdAXEIcrAgxJ0dARIwIMSbpeYdyAgkAAEdAKeHKwIMSb0dAXEG6XjU/fUdARIuFHrhR7IdyAwkAAEdAKd++dsi0OUdAXEF41P3ztkdARIsi0OVgQodyBAkAAEdAKd41P3ztkUdAXEEm6XjU/kdARIrAgxJumIdyBQkAAEdAKdysCDEm6UdAXEDlYEGJN0dARIpeNT987odyBgkAAEdAKdsi0OVgQkdAXECj1wo9cUdARIn752yLRIdyBwkAAEdAKdmZmZmZmkdAXEBiTdLxqkdARIm6XjU/fYdyCAkAAEdAKdiTdLxqf0dAXEBBiTdLx0dARImZmZmZmodyCQkAAEdAKdcKPXCj10dAXEAAAAAAAEdARIk3S8an8IdyCgkAAEdAKdN0vGp++kdAXD9si0OVgUdARIhysCDEnIdyCwkAAEdAKdHrhR64UkdAXD8rAgxJukdARIgQYk3S8odyDAkAAEdAKdBiTdLxqkdAXD7peNT99EdARIfO2RaHK4dyDQkAAEdAKc3S8an750dAXD6HKwIMSkdARIdLxqfvnodyDgkAAEdAKcxJul41P0dAXD41P3ztkUdARIbpeNT99IdyDwkAAEdAKcrAgxJumEdAXD3ztkWhy0dARIaHKwIMSodyEAkAAEdAKck3S8an8EdAXD2yLQ5WBEdARIYk3S8aoIdyEQkAAEdAKccrAgxJukdAXD1wo9cKPUdARIXCj1wo9odyEgkAAEdAKcWhysCDEkdAXD0euFHrhUdARIWBBiTdL4dyEwkAAEdAKcGJN0vGqEdAXDx64UeuFEdARISbpeNT+IdyFAkAAEdAKcAAAAAAAEdAXDw5WBBiTkdARIQ5WBBiTodyFQkAAEdAKb52yLQ5WEdAXDvnbItDlkdARIPXCj1wpIdyFgkAAEdAKbztkWhysEdAXDul41P3z0dARIN0vGp++odyFwkAAEdAKbpeNT987kdAXDtDlYEGJUdARILxqfvnbYdyGAkAAEdAKbjU/fO2RkdAXDsCDEm6XkdARIKwIMSbpodyGQkAAEdAKbU/fO2RaEdAXDpul41P30dARIHrhR64UodyGgkAAEdAKbO2RaHKwUdAXDotDlYEGUdARIGJN0vGqIdyGwkAAEdAKbItDlYEGUdAXDnrhR64UkdARIEm6XjU/odyHAkAAEdAKa+dsi0OVkdAXDmJN0vGqEdARIDEm6XjVIdyHQkAAEdAKa4UeuFHrkdAXDlHrhR64UdARIBiTdLxqodyHgkAAEdAKayLQ5WBBkdAXDj1wo9cKUdARIAAAAAAAIdyHwkAAEdAKap++dsi0UdAXDi0OVgQYkdARH+dsi0OVodyIAkAAEdAKaj1wo9cKUdAXDhysCDEnEdARH87ZFocrIdyIQkAAEdAKadsi0OVgUdAXDgxJul41UdARH752yLQ5YdyIgkAAEdAKaTdLxqfvkdAXDe+dsi0OUdARH5WBBiTdYdyIwkAAEdAKaHKwIMSb0dAXDc7ZFocrEdARH2yLQ5WBIdyJAkAAEdAKaBBiTdLx0dAXDb52yLQ5UdARH1P3ztkWodyJQkAAEdAKZ64UeuFH0dAXDan752yLUdARHztkWhysIdyJgkAAEdAKZwo9cKPXEdAXDZFocrAg0dARHxqfvnbI4dyJwkAAEdAKZqfvnbItEdAXDYEGJN0vEdARHwo9cKPXIdyKAkAAEdAKZiTdLxqf0dAXDXCj1wo9kdARHvGp++dsodyKQkAAEdAKZcKPXCj10dAXDVwo9cKPUdARHtkWhysCIdyKgkAAEdAKZWBBiTdL0dAXDUvGp++d0dARHsCDEm6XodyKwkAAEdAKZP3ztkWh0dAXDTtkWhysEdARHqfvnbItIdyLAkAAEdAKY/fO2RaHUdAXDRJul41P0dARHnbItDlYIdyLQkAAEdAKY5WBBiTdUdAXDP3ztkWh0dARHl41P3ztodyLgkAAEdAKYzMzMzMzUdAXDO2RaHKwUdARHkWhysCDIdyLwkAAEdAKYrAgxJumEdAXDN0vGp++kdARHi0OVgQYodyMAkAAEdAKYk3S8an8EdAXDMzMzMzM0dARHhysCDEnIdyMQkAAEdAKYcrAgxJukdAXDLQ5WBBiUdARHfvnbItDodyMgkAAEdAKYOVgQYk3UdAXDI9cKPXCkdARHcrAgxJuodyMwkAAEdAKYIMSbpeNUdAXDH752yLREdARHbItDlYEIdyNAkAAEdAKYCDEm6XjUdAXDG6XjU/fUdARHZmZmZmZodyNQkAAEdAKXxqfvnbI0dAXDEGJN0vG0dARHWhysCDEodyNgkAAEdAKXrhR64Ue0dAXDDEm6XjVEdARHU/fO2RaIdyNwkAAEdAKXXCj1wo9kdAXC/vnbItDkdARHQ5WBBiTodyOAkAAEdAKXMzMzMzM0dAXC+NT987ZEdARHOVgQYk3YdyOQkAAEdAKXAgxJul40dAXC752yLQ5UdARHLxqfvnbYdyOgkAAEdAKWj1wo9cKUdAXC3Cj1wo9kdARHFocrAgxYdyOwkAAEdAKWdsi0OVgUdAXC2BBiTdL0dARHEGJN0vG4dyPAkAAEdAKWJN0vGp/EdAXCysCDEm6UdARHAAAAAAAIdyPQkAAEdAKVysCDEm6UdAXCvGp++dskdARG64UeuFH4dyPgkAAEdAKVsi0OVgQkdAXCt0vGp++kdARG5WBBiTdYdyPwkAAEdAKVeNT987ZEdAXCrxqfvnbUdARG2yLQ5WBIdyQAkAAEdAKVWBBiTdL0dAXCqPXCj1w0dARG0vGp++d4dyQQkAAEdAKVBiTdLxqkdAXCm6XjU/fUdARGwIMSbpeYdyQgkAAEdAKUrAgxJumEdAXCjEm6XjVEdARGrhR64Ue4dyQwkAAEdAKUk3S8an8EdAXCiDEm6XjUdARGp++dsi0YdyRAkAAEdAKUQYk3S8akdAXCeuFHrhSEdARGl41P3ztodyRQkAAEdAKUIMSbpeNUdAXCdLxqfvnkdARGj1wo9cKYdyRgkAAEdAKT752yLQ5UdAXCa4UeuFH0dARGgxJul41YdyRwkAAEdAKTztkWhysEdAXCZ2yLQ5WEdARGfO2RaHK4dySAkAAEdAKTnbItDlYEdAXCXztkWhy0dARGcrAgxJuodySQkAAEdAKTdLxqfvnkdAXCWRaHKwIUdARGan752yLYdySgkAAEdAKTXCj1wo9kdAXCU/fO2RaEdARGZFocrAg4dySwkAAEdAKTKwIMSbpkdAXCS8an7520dARGWBBiTdL4dyTAkAAEdAKTEm6XjU/kdAXCRqfvnbI0dARGU/fO2RaIdyTQkAAEdAKS8an752yUdAXCQo9cKPXEdARGTdLxqfvodyTgkAAEdAKSuFHrhR7EdAXCOFHrhR7EdARGP3ztkWh4dyTwkAAEdAKSl41P3ztkdAXCMzMzMzM0dARGOVgQYk3YdyUAkAAEdAKSfvnbItDkdAXCLxqfvnbUdARGNT987ZF4dyUQkAAEdAKSZmZmZmZkdAXCKwIMSbpkdARGLxqfvnbYdyUgkAAEdAKSRaHKwIMUdAXCJN0vGp/EdARGJul41P34dyUwkAAEdAKSJN0vGp/EdAXCH752yLREdARGIMSbpeNYdyVAkAAEdAKR87ZFocrEdAXCF41P3ztkdARGFocrAgxYdyVQkAAEdAKR2yLQ5WBEdAXCE3S8an8EdARGEGJN0vG4dyVgkAAEdAKRwo9cKPXEdAXCDlYEGJN0dARGCj1wo9cYdyVwkAAEdAKRmZmZmZmkdAXCCDEm6XjUdARGAgxJul44dyWAkAAEdAKRgQYk3S8kdAXCBBiTdLx0dARF++dsi0OYdyWQkAAEdAKRaHKwIMSkdAXB/vnbItDkdARF987ZFoc4dyWgkAAEdAKRT987ZFokdAXB+uFHrhSEdARF8an752yYdyWwkAAEdAKRLxqfvnbUdAXB9si0OVgUdARF64UeuFH4dyXAkAAEdAKRDlYEGJN0dAXB8KPXCj10dARF41P3ztkYdyXQkAAEdAKQvGp++dskdAXB41P3ztkUdARF0vGp++d4dyXgkAAEdAKQo9cKPXCkdAXB3ztkWhy0dARFzMzMzMzYdyXwkAAEdAKQi0OVgQYkdAXB2hysCDEkdARFxqfvnbI4dyYAkAAEdAKQan752yLUdAXB0/fO2RaEdARFvnbItDlodyYQkAAEdAKQSbpeNT+EdAXBz987ZFokdARFul41P3z4dyYgkAAEdAKQMSbpeNUEdAXBy8an7520dARFtDlYEGJYdyYwkAAEdAKQGJN0vGqEdAXBxqfvnbI0dARFrhR64Ue4dyZAkAAEdAKQAAAAAAAEdAXBwo9cKPXEdARFp++dsi0YdyZQkAAEdAKP52yLQ5WEdAXBvnbItDlkdARFocrAgxJ4dyZgkAAEdAKPpeNT987kdAXBszMzMzM0dARFlYEGJN04dyZwkAAEdAKPjU/fO2RkdAXBrxqfvnbUdARFj1wo9cKYdyaAkAAEdAKPdLxqfvnkdAXBqwIMSbpkdARFiTdLxqf4dyaQkAAEdAKPU/fO2RaEdAXBpeNT987kdARFgxJul41YdyagkAAEdAKPMzMzMzM0dAXBn752yLREdARFfO2RaHK4dyawkAAEdAKPGp++dsi0dAXBm6XjU/fUdARFdsi0OVgYdybAkAAEdAKO4UeuFHrkdAXBkm6XjU/kdARFan752yLYdybQkAAEdAKOyLQ5WBBkdAXBjlYEGJN0dARFZFocrAg4dybgkAAEdAKOsCDEm6XkdAXBij1wo9cUdARFYEGJN0vIdybwkAAEdAKOj1wo9cKUdAXBhBiTdLx0dARFWBBiTdL4dycAkAAEdAKObpeNT99EdAXBfvnbItDkdARFUeuFHrhYdycQkAAEdAKOVgQYk3TEdAXBeuFHrhSEdARFS8an7524dycgkAAEdAKOPXCj1wpEdAXBdsi0OVgUdARFRaHKwIMYdycwkAAEdAKOJN0vGp/EdAXBcan752yUdARFQYk3S8aodydAkAAEdAKODEm6XjVEdAXBbZFocrAkdARFO2RaHKwYdydQkAAEdAKN41P3ztkUdAXBZ2yLQ5WEdARFMzMzMzM4dydgkAAEdAKNsi0OVgQkdAXBXjU/fO2UdARFJul41P34dydwkAAEdAKNmZmZmZmkdAXBWhysCDEkdARFItDlYEGYdyeAkAAEdAKNgQYk3S8kdAXBVgQYk3TEdARFHKwIMSb4dyeQkAAEdAKNWBBiTdL0dAXBT987ZFokdARFFHrhR64YdyegkAAEdAKNP3ztkWh0dAXBSsCDEm6UdARFDlYEGJN4dyewkAAEdAKNJul41P30dAXBRqfvnbI0dARFCDEm6XjYdyfAkAAEdAKNDlYEGJN0dAXBQo9cKPXEdARFBBiTdLx4dyfQkAAEdAKM7ZFocrAkdAXBPXCj1wpEdARE/fO2RaHYdyfgkAAEdAKM1P3ztkWkdAXBOVgQYk3UdARE987ZFoc4dyfwkAAEdAKMm6XjU/fUdAXBLxqfvnbUdARE6XjU/fO4dygAkAAEdAKMeuFHrhSEdAXBKfvnbItEdARE5WBBiTdYdygQkAAEdAKMYk3S8aoEdAXBJeNT987kdARE3ztkWhy4dyggkAAEdAKMSbpeNT+EdAXBIcrAgxJ0dARE2RaHKwIYdygwkAAEdAKMMSbpeNUEdAXBHbItDlYEdARE0vGp++d4dyhAkAAEdAKMEGJN0vG0dAXBFocrAgxUdAREysCDEm6YdyhQkAAEdAKL1wo9cKPUdAXBDlYEGJN0dAREwIMSbpeYdyhgkAAEdAKLvnbItDlkdAXBCTdLxqf0dAREul41P3z4dyhwkAAEdAKLpeNT987kdAXBBR64UeuEdAREtDlYEGJYdyiAkAAEdAKLZFocrAg0dAXA+uFHrhSEdAREp++dsi0YdyiQkAAEdAKLS8an7520dAXA9cKPXCj0dAREocrAgxJ4dyigkAAEdAKLMzMzMzM0dAXA8an752yUdAREm6XjU/fYdyiwkAAEdAKLGp++dsi0dAXA7ZFocrAkdAREl41P3ztodyjAkAAEdAKLAgxJul40dAXA6HKwIMSkdAREkWhysCDIdyjQkAAEdAKK2RaHKwIUdAXA4k3S8aoEdAREiTdLxqf4dyjgkAAEdAKKp++dsi0UdAXA2RaHKwIUdAREfO2RaHK4dyjwkAAEdAKKj1wo9cKUdAXA1P3ztkWkdAREeNT987ZIdykAkAAEdAKKdsi0OVgUdAXA0OVgQYk0dAREcrAgxJuodykQkAAEdAKKNT987ZF0dAXAxaHKwIMUdAREZFocrAg4dykgkAAEdAKKHKwIMSb0dAXAwYk3S8akdAREXjU/fO2YdykwkAAEdAKKBBiTdLx0dAXAvXCj1wpEdAREWhysCDEodylAkAAEdAKJ64UeuFH0dAXAuFHrhR7EdAREU/fO2RaIdylQkAAEdAKJysCDEm6UdAXAtDlYEGJUdARETdLxqfvodylgkAAEdAKJeNT987ZEdAXApN0vGp/EdAREO2RaHKwYdylwkAAEdAKJP3ztkWh0dAXAnKwIMSb0dARELxqfvnbYdymAkAAEdAKJJul41P30dAXAl41P3ztkdAREKPXCj1w4dymQkAAEdAKJBiTdLxqkdAXAkWhysCDEdAREIMSbpeNYdymgkAAEdAKIzMzMzMzUdAXAiTdLxqf0dAREFocrAgxYdymwkAAEdAKIm6XjU/fUdAXAgAAAAAAEdAREDEm6XjVIdynAkAAEdAKIYk3S8aoEdAXAdLxqfvnkdARD/fO2RaHYdynQkAAEdAKIQYk3S8akdAXAcKPXCj10dARD987ZFoc4dyngkAAEdAKH987ZFoc0dAXAY1P3ztkUdARD52yLQ5WIdynwkAAEdAKH1wo9cKPUdAXAXS8an750dARD3ztkWhy4dyoAkAAEdAKHnbItDlYEdAXAU/fO2RaEdARD0vGp++d4dyoQkAAEdAKHhR64UeuEdAXAT987ZFokdARDztkWhysIdyogkAAEdAKHMzMzMzM0dAXAQIMSbpeUdARDul41P3z4dyowkAAEdAKHEm6XjU/kdAXAPGp++dskdARDtDlYEGJYdypAkAAEdAKGyLQ5WBBkdAXALxqfvnbUdARDo9cKPXCodypQkAAEdAKGp++dsi0UdAXAKPXCj1w0dARDm6XjU/fYdypgkAAEdAKGbpeNT99EdAXAH752yLREdARDkWhysCDIdypwkAAEdAKGVgQYk3TEdAXAGp++dsi0dARDi0OVgQYodyqAkAAEdAKGJN0vGp/EdAXAEm6XjU/kdARDgQYk3S8odyqQkAAEdAKGBBiTdLx0dAXADEm6XjVEdARDeNT987ZIdyqgkAAEdAKF41P3ztkUdAXABysCDEnEdARDcrAgxJuodyqwkAAEdAKFsi0OVgQkdAW//vnbItDkdARDZmZmZmZodyrAkAAEdAKFgQYk3S8kdAW/9cKPXCj0dARDXCj1wo9odyrQkAAEdAKFP3ztkWh0dAW/64UeuFH0dARDTdLxqfvodyrgkAAEdAKE9cKPXCj0dAW/3jU/fO2UdARDPXCj1wpIdyrwkAAEdAKE1P3ztkWkdAW/1wo9cKPUdARDNT987ZF4dysAkAAEdAKEm6XjU/fUdAW/ztkWhysEdARDKwIMSbpodysQkAAEdAKEgxJul41UdAW/ybpeNT+EdARDJN0vGp/IdysgkAAEdAKEan752yLUdAW/xaHKwIMUdARDHrhR64UodyswkAAEdAKEUeuFHrhUdAW/wYk3S8akdARDGp++dsi4dytAkAAEdAKEMSbpeNUEdAW/u2RaHKwUdARDEm6XjU/odytQkAAEdAKEEGJN0vG0dAW/tkWhysCEdARDDEm6XjVIdytgkAAEdAKD3ztkWhy0dAW/rQ5WBBiUdARDAAAAAAAIdytwkAAEdAKDxqfvnbI0dAW/qPXCj1w0dARC++dsi0OYdyuAkAAEdAKDrhR64Ue0dAW/pN0vGp/EdARC9cKPXCj4dyuQkAAEdAKDdLxqfvnkdAW/mZmZmZmkdARC52yLQ5WIdyugkAAEdAKDU/fO2RaEdAW/lYEGJN00dARC4UeuFHrodyuwkAAEdAKDO2RaHKwUdAW/kGJN0vG0dARC3S8an754dyvAkAAEdAKDItDlYEGUdAW/jEm6XjVEdARC1wo9cKPYdyvQkAAEdAKDAgxJul40dAW/hiTdLxqkdARCztkWhysIdyvgkAAEdAKC6XjU/fO0dAW/ggxJul40dARCyLQ5WBBodyvwkAAEdAKCsCDEm6XkdAW/eNT987ZEdARCvnbItDlodywAkAAEdAKCl41P3ztkdAW/dLxqfvnkdARCuFHrhR7IdywQkAAEdAKCfvnbItDkdAW/b52yLQ5UdARCsi0OVgQodywgkAAEdAKCRaHKwIMUdAW/ZWBBiTdUdARCpeNT987odywwkAAEdAKCLQ5WBBiUdAW/YEGJN0vEdARCn752yLRIdyxAkAAEdAKCFHrhR64UdAW/XCj1wo9kdARCmZmZmZmodyxQkAAEdAKB++dsi0OUdAW/WBBiTdL0dARClYEGJN04dyxgkAAEdAKB2yLQ5WBEdAW/UvGp++d0dARCj1wo9cKYdyxwkAAEdAKBiTdLxqf0dAW/Q5WBBiTkdARCeuFHrhSIdyyAkAAEdAKBcKPXCj10dAW/P3ztkWh0dARCdsi0OVgYdyyQkAAEdAKBWBBiTdL0dAW/O2RaHKwUdARCcKPXCj14dyygkAAEdAKBLxqfvnbUdAW/NT987ZF0dARCaHKwIMSodyywkAAEdAKBFocrAgxUdAW/MCDEm6XkdARCYk3S8aoIdyzAkAAEdAKA/fO2RaHUdAW/LAgxJumEdARCXjU/fO2YdyzQkAAEdAKA5WBBiTdUdAW/Jul41P30dARCWBBiTdL4dyzgkAAEdAKAzMzMzMzUdAW/ItDlYEGUdARCUeuFHrhYdyzwkAAEdAKAtDlYEGJUdAW/HrhR64UkdARCS8an7524dy0AkAAEdAKAWhysCDEkdAW/D1wo9cKUdARCOVgQYk3Ydy0QkAAEdAKAQYk3S8akdAW/Cj1wo9cUdARCMzMzMzM4dy0gkAAEdAKAKPXCj1w0dAW/BiTdLxqkdARCLxqfvnbYdy0wkAAEdAJ/752yLQ5UdAW++uFHrhSEdARCIMSbpeNYdy1AkAAEdAJ/tkWhysCEdAW+8rAgxJukdARCFHrhR64Ydy1QkAAEdAJ/nbItDlYEdAW+7ZFocrAkdARCEGJN0vG4dy1gkAAEdAJ/hR64UeuEdAW+6XjU/fO0dARCCj1wo9cYdy1wkAAEdAJ/S8an7520dAW+3jU/fO2UdARB++dsi0OYdy2AkAAEdAJ/MzMzMzM0dAW+2hysCDEkdARB987ZFoc4dy2QkAAEdAJ/Gp++dsi0dAW+1gQYk3TEdARB8an752yYdy2gkAAEdAJ++dsi0OVkdAW+0OVgQYk0dARB64UeuFH4dy2wkAAEdAJ+4UeuFHrkdAW+zMzMzMzUdARB52yLQ5WIdy3AkAAEdAJ+wIMSbpeUdAW+xqfvnbI0dARB3ztkWhy4dy3QkAAEdAJ+j1wo9cKUdAW+vXCj1wpEdARB0vGp++d4dy3gkAAEdAJ+dsi0OVgUdAW+uVgQYk3UdARBzMzMzMzYdy3wkAAEdAJ+XjU/fO2UdAW+tDlYEGJUdARByLQ5WBBody4AkAAEdAJ+HKwIMSb0dAW+qfvnbItEdARBul41P3z4dy4QkAAEdAJ+BBiTdLx0dAW+pN0vGp/EdARBtDlYEGJYdy4gkAAEdAJ964UeuFH0dAW+oMSbpeNUdARBsCDEm6Xody4wkAAEdAJ90vGp++d0dAW+nKwIMSb0dARBqfvnbItIdy5AkAAEdAJ9ul41P3z0dAW+l41P3ztkdARBo9cKPXCody5QkAAEdAJ9YEGJN0vEdAW+iDEm6XjUdARBkWhysCDIdy5gkAAEdAJ9R64UeuFEdAW+hBiTdLx0dARBi0OVgQYody5wkAAEdAJ9LxqfvnbUdAW+gAAAAAAEdARBhR64UeuIdy6AkAAEdAJ9FocrAgxUdAW+euFHrhSEdARBgQYk3S8ody6QkAAEdAJ89cKPXCj0dAW+dLxqfvnkdARBeNT987ZIdy6gkAAEdAJ8xJul41P0dAW+a4UeuFH0dARBbItDlYEIdy6wkAAEdAJ8rAgxJumEdAW+Z2yLQ5WEdARBaHKwIMSody7AkAAEdAJ8k3S8an8EdAW+Y1P3ztkUdARBYk3S8aoIdy7QkAAEdAJ8OVgQYk3UdAW+UvGp++d0dARBT987ZFoody7gkAAEdAJ8IMSbpeNUdAW+TtkWhysEdARBSbpeNT+Idy7wkAAEdAJ8CDEm6XjUdAW+SsCDEm6UdARBQ5WBBiTody8AkAAEdAJ7752yLQ5UdAW+RaHKwIMUdARBP3ztkWh4dy8QkAAEdAJ7ztkWhysEdAW+P3ztkWh0dARBN0vGp++ody8gkAAEdAJ7lYEGJN00dAW+NkWhysCEdARBKwIMSbpody8wkAAEdAJ7ZFocrAg0dAW+LhR64Ue0dARBIMSbpeNYdy9AkAAEdAJ7KwIMSbpkdAW+ItDlYEGUdARBEm6XjU/ody9QkAAEdAJ7Em6XjU/kdAW+HrhR64UkdARBDEm6XjVIdy9gkAAEdAJ6yLQ5WBBkdAW+EWhysCDEdARA++dsi0OYdy9wkAAEdAJ6bpeNT99EdAW+AQYk3S8kdARA6XjU/fO4dy+AkAAEdAJ6JN0vGp/EdAW99LxqfvnkdARA2RaHKwIYdy+QkAAEdAJ6BBiTdLx0dAW97ZFocrAkdARA0OVgQYk4dy+gkAAEdAJ50vGp++d0dAW95FocrAg0dARAxJul41P4dy+wkAAEdAJ5ocrAgxJ0dAW93Cj1wo9kdARAul41P3z4dy/AkAAEdAJ5R64UeuFEdAW9zMzMzMzUdARAp++dsi0Ydy/QkAAEdAJ4/fO2RaHUdAW9v3ztkWh0dARAl41P3ztody/gkAAEdAJ43S8an750dAW9uFHrhR7EdARAj1wo9cKYdy/wkAAEdAJ4rAgxJumEdAW9rxqfvnbUdARAgxJul41YdyAAoAAEdAJ4i0OVgQYkdAW9qwIMSbpkdARAfvnbItDodyAQoAAEdAJ4Yk3S8aoEdAW9ocrAgxJ0dARAcrAgxJuodyAgoAAEdAJ4IMSbpeNUdAW9l41P3ztkdARAZmZmZmZodyAwoAAEdAJ3hR64UeuEdAW9edsi0OVkdARAQYk3S8aodyBAoAAEdAJ3ZFocrAg0dAW9dcKPXCj0dARAO2RaHKwYdyBQoAAEdAJ3O2RaHKwUdAW9bItDlYEEdARAMSbpeNUIdyBgoAAEdAJ2yLQ5WBBkdAW9WRaHKwIUdARAGJN0vGqIdyBwoAAEdAJ2sCDEm6XkdAW9U/fO2RaEdARAEm6XjU/odyCAoAAEdAJ2l41P3ztkdAW9T987ZFokdARADlYEGJN4dyCQoAAEdAJ2XjU/fO2UdAW9RJul41P0dARAAAAAAAAIdyCgoAAEdAJ2PXCj1wpEdAW9QIMSbpeUdAQ/+dsi0OVodyCwoAAEdAJ2LQ5WBBiUdAW9O2RaHKwUdAQ/9cKPXCj4dyDAoAAEdAJ2FHrhR64UdAW9N0vGp++kdAQ/752yLQ5YdyDQoAAEdAJ1ocrAgxJ0dAW9ItDlYEGUdAQ/1wo9cKPYdyDgoAAEdAJ1iTdLxqf0dAW9HrhR64UkdAQ/0OVgQYk4dyDwoAAEdAJ1cKPXCj10dAW9Gp++dsi0dAQ/zMzMzMzYdyEAoAAEdAJ1N0vGp++kdAW9D1wo9cKUdAQ/vnbItDlodyEQoAAEdAJ1HrhR64UkdAW9C0OVgQYkdAQ/uFHrhR7IdyEgoAAEdAJ1BiTdLxqkdAW9BiTdLxqkdAQ/tDlYEGJYdyEwoAAEdAJ07ZFocrAkdAW9AgxJul40dAQ/rhR64Ue4dyFAoAAEdAJ01P3ztkWkdAW8/fO2RaHUdAQ/p++dsi0YdyFQoAAEdAJ0euFHrhSEdAW87ZFocrAkdAQ/lYEGJN04dyFgoAAEdAJ0Yk3S8aoEdAW86XjU/fO0dAQ/j1wo9cKYdyFwoAAEdAJ0SbpeNT+EdAW85WBBiTdUdAQ/i0OVgQYodyGAoAAEdAJz3ztkWhy0dAW80OVgQYk0dAQ/crAgxJuodyGQoAAEdAJzxqfvnbI0dAW8zMzMzMzUdAQ/bItDlYEIdyGgoAAEdAJzrhR64Ue0dAW8x64UeuFEdAQ/ZmZmZmZodyGwoAAEdAJzXCj1wo9kdAW8uFHrhR7EdAQ/U/fO2RaIdyHAoAAEdAJzQ5WBBiTkdAW8tDlYEGJUdAQ/TdLxqfvodyHQoAAEdAJzKwIMSbpkdAW8rxqfvnbUdAQ/SbpeNT+IdyHgoAAEdAJzEm6XjU/kdAW8qwIMSbpkdAQ/Q5WBBiTodyHwoAAEdAJyuFHrhR7EdAW8m6XjU/fUdAQ/MSbpeNUIdyIAoAAEdAJyn752yLREdAW8locrAgxUdAQ/KwIMSbpodyIQoAAEdAJyhysCDEnEdAW8km6XjU/kdAQ/JN0vGp/IdyIgoAAEdAJyNT987ZF0dAW8gxJul41UdAQ/Em6XjU/odyIwoAAEdAJyHKwIMSb0dAW8ffO2RaHUdAQ/DEm6XjVIdyJAoAAEdAJyBBiTdLx0dAW8edsi0OVkdAQ/CDEm6XjYdyJQoAAEdAJx64UeuFH0dAW8dcKPXCj0dAQ/AgxJul44dyJgoAAEdAJxmZmZmZmkdAW8ZWBBiTdUdAQ+752yLQ5YdyJwoAAEdAJxgQYk3S8kdAW8YUeuFHrkdAQ+6XjU/fO4dyKAoAAEdAJxaHKwIMSkdAW8XS8an750dAQ+41P3ztkYdyKQoAAEdAJxT987ZFokdAW8WBBiTdL0dAQ+3ztkWhy4dyKgoAAEdAJw9cKPXCj0dAW8SLQ5WBBkdAQ+ysCDEm6YdyKwoAAEdAJw5WBBiTdUdAW8RJul41P0dAQ+xqfvnbI4dyLAoAAEdAJwzMzMzMzUdAW8P3ztkWh0dAQ+wIMSbpeYdyLQoAAEdAJwcrAgxJukdAW8MCDEm6XkdAQ+rhR64Ue4dyLgoAAEdAJwWhysCDEkdAW8LAgxJumEdAQ+p++dsi0YdyLwoAAEdAJwQYk3S8akdAW8Jul41P30dAQ+o9cKPXCodyMAoAAEdAJwKPXCj1w0dAW8ItDlYEGUdAQ+nbItDlYIdyMQoAAEdAJv1wo9cKPUdAW8E3S8an8EdAQ+i0OVgQYodyMgoAAEdAJvvnbItDlkdAW8DlYEGJN0dAQ+hR64UeuIdyMwoAAEdAJvpeNT987kdAW8Cj1wo9cUdAQ+fvnbItDodyNAoAAEdAJvU/fO2RaEdAW7+uFHrhSEdAQ+bItDlYEIdyNQoAAEdAJvO2RaHKwUdAW79cKPXCj0dAQ+ZmZmZmZodyNgoAAEdAJvItDlYEGUdAW78an752yUdAQ+Yk3S8aoIdyNwoAAEdAJvCj1wo9cUdAW77ItDlYEEdAQ+XCj1wo9odyOAoAAEdAJuuFHrhR7EdAW73S8an750dAQ+SbpeNT+IdyOQoAAEdAJuhysCDEnEdAW70/fO2RaEdAQ+PXCj1wpIdyOgoAAEdAJubpeNT99EdAW7z987ZFokdAQ+OVgQYk3YdyOwoAAEdAJuHKwIMSb0dAW7wIMSbpeUdAQ+JN0vGp/IdyPAoAAEdAJt64UeuFH0dAW7t0vGp++kdAQ+Gp++dsi4dyPQoAAEdAJtkWhysCDEdAW7p++dsi0UdAQ+CDEm6XjYdyPgoAAEdAJtT987ZFokdAW7mZmZmZmkdAQ9987ZFoc4dyPwoAAEdAJs9cKPXCj0dAW7ij1wo9cUdAQ95WBBiTdYdyQAoAAEdAJsxJul41P0dAW7gQYk3S8kdAQ92RaHKwIYdyQQoAAEdAJstDlYEGJUdAW7fO2RaHK0dAQ91P3ztkWodyQgoAAEdAJscrAgxJukdAW7can752yUdAQ9xqfvnbI4dyQwoAAEdAJsKPXCj1w0dAW7ZFocrAg0dAQ9tkWhysCIdyRAoAAEdAJr1wo9cKPUdAW7U/fO2RaEdAQ9o9cKPXCodyRQoAAEdAJrjU/fO2RkdAW7RqfvnbI0dAQ9k3S8an8IdyRgoAAEdAJrO2RaHKwUdAW7N0vGp++kdAQ9gQYk3S8odyRwoAAEdAJquFHrhR7EdAW7HrhR64UkdAQ9Yk3S8aoIdySAoAAEdAJqbpeNT99EdAW7EWhysCDEdAQ9UeuFHrhYdySQoAAEdAJqHKwIMSb0dAW7AQYk3S8kdAQ9P3ztkWh4dySgoAAEdAJqBBiTdLx0dAW6/O2RaHK0dAQ9OVgQYk3YdySwoAAEdAJp0vGp++d0dAW687ZFocrEdAQ9LxqfvnbYdyTAoAAEdAJpaHKwIMSkdAW63ztkWhy0dAQ9FocrAgxYdyTQoAAEdAJpT987ZFokdAW62yLQ5WBEdAQ9Em6XjU/odyTgoAAEdAJo/fO2RaHUdAW6ysCDEm6UdAQ8/fO2RaHYdyTwoAAEdAJo5WBBiTdUdAW6xqfvnbI0dAQ8+dsi0OVodyUAoAAEdAJozMzMzMzUdAW6wYk3S8akdAQ887ZFocrIdyUQoAAEdAJovGp++dskdAW6vXCj1wpEdAQ8752yLQ5YdyUgoAAEdAJoSbpeNT+EdAW6qPXCj1w0dAQ81wo9cKPYdyUwoAAEdAJoMSbpeNUEdAW6pN0vGp/EdAQ80OVgQYk4dyVAoAAEdAJoIMSbpeNUdAW6oMSbpeNUdAQ8ysCDEm6YdyVQoAAEdAJnxqfvnbI0dAW6kGJN0vG0dAQ8uFHrhR7IdyVgoAAEdAJntkWhysCEdAW6jEm6XjVEdAQ8si0OVgQodyVwoAAEdAJnnbItDlYEdAW6hysCDEnEdAQ8rhR64Ue4dyWAoAAEdAJnMzMzMzM0dAW6crAgxJukdAQ8lYEGJN04dyWQoAAEdAJnGp++dsi0dAW6bpeNT99EdAQ8j1wo9cKYdyWgoAAEdAJnAgxJul40dAW6an752yLUdAQ8i0OVgQYodyWwoAAEdAJml41P3ztkdAW6VgQYk3TEdAQ8crAgxJuodyXAoAAEdAJmfvnbItDkdAW6UOVgQYk0dAQ8bItDlYEIdyXQoAAEdAJmZmZmZmZkdAW6TMzMzMzUdAQ8aHKwIMSodyXgoAAEdAJmFHrhR64UdAW6PGp++dskdAQ8U/fO2RaIdyXwoAAEdAJl++dsi0OUdAW6OFHrhR7EdAQ8T987ZFoodyYAoAAEdAJl41P3ztkUdAW6NDlYEGJUdAQ8SbpeNT+IdyYQoAAEdAJleNT987ZEdAW6H752yLREdAQ8MSbpeNUIdyYgoAAEdAJlYEGJN0vEdAW6Gp++dsi0dAQ8LQ5WBBiYdyYwoAAEdAJlT987ZFokdAW6FocrAgxUdAQ8Jul41P34dyZAoAAEdAJk9cKPXCj0dAW6BiTdLxqkdAQ8FHrhR64YdyZQoAAEdAJk3S8an750dAW6AgxJul40dAQ8DlYEGJN4dyZgoAAEdAJkzMzMzMzUdAW5/fO2RaHUdAQ8Cj1wo9cYdyZwoAAEdAJktDlYEGJUdAW5+NT987ZEdAQ8BBiTdLx4dyaAoAAEdAJkYk3S8aoEdAW56XjU/fO0dAQ78an752yYdyaQoAAEdAJkSbpeNT+EdAW55FocrAg0dAQ764UeuFH4dyagoAAEdAJkMSbpeNUEdAW54EGJN0vEdAQ752yLQ5WIdyawoAAEdAJj3ztkWhy0dAW5z987ZFokdAQ70vGp++d4dybAoAAEdAJjxqfvnbI0dAW5y8an7520dAQ7ztkWhysIdybQoAAEdAJjrhR64Ue0dAW5x64UeuFEdAQ7yLQ5WBBodybgoAAEdAJjlYEGJN00dAW5wo9cKPXEdAQ7xJul41P4dybwoAAEdAJjQ5WBBiTkdAW5szMzMzM0dAQ7sCDEm6XodycAoAAEdAJjKwIMSbpkdAW5rhR64Ue0dAQ7rAgxJumIdycQoAAEdAJjEm6XjU/kdAW5qfvnbItEdAQ7peNT987odycgoAAEdAJjAgxJul40dAW5pN0vGp/EdAQ7ocrAgxJ4dycwoAAEdAJip++dsi0UdAW5lYEGJN00dAQ7jU/fO2RodydAoAAEdAJil41P3ztkdAW5kGJN0vG0dAQ7iTdLxqf4dydQoAAEdAJifvnbItDkdAW5jEm6XjVEdAQ7gxJul41YdydgoAAEdAJiLQ5WBBiUdAW5e+dsi0OUdAQ7cKPXCj14dydwoAAEdAJiFHrhR64UdAW5d87ZFoc0dAQ7an752yLYdyeAoAAEdAJh++dsi0OUdAW5c7ZFocrEdAQ7ZmZmZmZodyeQoAAEdAJh41P3ztkUdAW5bpeNT99EdAQ7YEGJN0vIdyegoAAEdAJhkWhysCDEdAW5XztkWhy0dAQ7TdLxqfvodyewoAAEdAJhYEGJN0vEdAW5VgQYk3TEdAQ7Q5WBBiTodyfAoAAEdAJhT987ZFokdAW5UOVgQYk0dAQ7PXCj1wpIdyfQoAAEdAJhDlYEGJN0dAW5RaHKwIMUdAQ7MSbpeNUIdyfgoAAEdAJg/fO2RaHUdAW5QYk3S8akdAQ7KwIMSbpodyfwoAAEdAJgzMzMzMzUdAW5OFHrhR7EdAQ7IMSbpeNYdygAoAAEdAJgeuFHrhSEdAW5J++dsi0UdAQ7DlYEGJN4dygQoAAEdAJgSbpeNT+EdAW5H752yLREdAQ7AgxJul44dyggoAAEdAJgMSbpeNUEdAW5Gp++dsi0dAQ6/fO2RaHYdygwoAAEdAJf3ztkWhy0dAW5C0OVgQYkdAQ664UeuFH4dyhAoAAEdAJftkWhysCEdAW5AgxJul40dAQ63ztkWhy4dyhQoAAEdAJfZFocrAg0dAW48an752yUdAQ6zMzMzMzYdyhgoAAEdAJfGp++dsi0dAW45FocrAg0dAQ6vGp++dsodyhwoAAEdAJeyLQ5WBBkdAW40/fO2RaEdAQ6qfvnbItIdyiAoAAEdAJehysCDEnEdAW4xqfvnbI0dAQ6m6XjU/fYdyiQoAAEdAJeBBiTdLx0dAW4rQ5WBBiUdAQ6fO2RaHK4dyigoAAEdAJdsi0OVgQkdAW4nbItDlYEdAQ6an752yLYdyiwoAAEdAJdcKPXCj10dAW4j1wo9cKUdAQ6WhysCDEodyjAoAAEdAJdBiTdLxqkdAW4euFHrhSEdAQ6QYk3S8aodyjQoAAEdAJc7ZFocrAkdAW4dsi0OVgUdAQ6PXCj1wpIdyjgoAAEdAJc1P3ztkWkdAW4can752yUdAQ6N0vGp++odyjwoAAEdAJcWhysCDEkdAW4WRaHKwIUdAQ6Gp++dsi4dykAoAAEdAJb752yLQ5UdAW4RJul41P0dAQ6AgxJul44dykQoAAEdAJb1wo9cKPUdAW4P3ztkWh0dAQ5/fO2RaHYdykgoAAEdAJbxqfvnbI0dAW4O2RaHKwUdAQ5987ZFoc4dykwoAAEdAJbXCj1wo9kdAW4Jul41P30dAQ53ztkWhy4dylAoAAEdAJbQ5WBBiTkdAW4IcrAgxJ0dAQ52yLQ5WBIdylQoAAEdAJa2RaHKwIUdAW4DU/fO2RkdAQ5wo9cKPXIdylgoAAEdAJayLQ5WBBkdAW4CTdLxqf0dAQ5vGp++dsodylwoAAEdAJasCDEm6XkdAW4BBiTdLx0dAQ5uFHrhR7IdymAoAAEdAJaRaHKwIMUdAW3752yLQ5UdAQ5n752yLRIdymQoAAEdAJaLQ5WBBiUdAW364UeuFH0dAQ5m6XjU/fYdymgoAAEdAJaHKwIMSb0dAW35mZmZmZkdAQ5lYEGJN04dymwoAAEdAJZysCDEm6UdAW31gQYk3TEdAQ5gxJul41YdynAoAAEdAJZsi0OVgQkdAW30euFHrhUdAQ5fO2RaHK4dynQoAAEdAJZmZmZmZmkdAW3zdLxqfvkdAQ5eNT987ZIdyngoAAEdAJZLxqfvnbUdAW3uFHrhR7EdAQ5YEGJN0vIdynwoAAEdAJZHrhR64UkdAW3tDlYEGJUdAQ5XCj1wo9odyoAoAAEdAJZBiTdLxqkdAW3sCDEm6XkdAQ5VgQYk3TIdyoQoAAEdAJYm6XjU/fUdAW3mp++dsi0dAQ5PXCj1wpIdyogoAAEdAJYgxJul41UdAW3locrAgxUdAQ5OVgQYk3YdyowoAAEdAJYcrAgxJukdAW3kWhysCDEdAQ5MzMzMzM4dypAoAAEdAJYIMSbpeNUdAW3ggxJul40dAQ5IMSbpeNYdypQoAAEdAJYCDEm6XjUdAW3fO2RaHK0dAQ5Gp++dsi4dypgoAAEdAJX752yLQ5UdAW3eNT987ZEdAQ5FocrAgxYdypwoAAEdAJXjU/fO2RkdAW3ZFocrAg0dAQ4/fO2RaHYdyqAoAAEdAJXdLxqfvnkdAW3XztkWhy0dAQ4+dsi0OVodyqQoAAEdAJXXCj1wo9kdAW3WyLQ5WBEdAQ487ZFocrIdyqgoAAEdAJXCj1wo9cUdAW3SsCDEm6UdAQ44UeuFHrodyqwoAAEdAJW+dsi0OVkdAW3RaHKwIMUdAQ42yLQ5WBIdyrAoAAEdAJW4UeuFHrkdAW3QYk3S8akdAQ41wo9cKPYdyrQoAAEdAJWyLQ5WBBkdAW3PGp++dskdAQ40OVgQYk4dyrgoAAEdAJWdsi0OVgUdAW3LQ5WBBiUdAQ4vnbItDlodyrwoAAEdAJWZmZmZmZkdAW3J++dsi0UdAQ4ul41P3z4dysAoAAEdAJWTdLxqfvkdAW3I9cKPXCkdAQ4tDlYEGJYdysQoAAEdAJV41P3ztkUdAW3D1wo9cKUdAQ4m6XjU/fYdysgoAAEdAJV0vGp++d0dAW3Cj1wo9cUdAQ4l41P3ztodyswoAAEdAJVul41P3z0dAW3BiTdLxqkdAQ4kWhysCDIdytAoAAEdAJVaHKwIMSkdAW29cKPXCj0dAQ4fvnbItDodytQoAAEdAJVP3ztkWh0dAW27ItDlYEEdAQ4dLxqfvnodytgoAAEdAJVJul41P30dAW252yLQ5WEdAQ4cKPXCj14dytwoAAEdAJU1P3ztkWkdAW22BBiTdL0dAQ4XjU/fO2YdyuAoAAEdAJUrAgxJumEdAW2ztkWhysEdAQ4UeuFHrhYdyuQoAAEdAJUWhysCDEkdAW2vnbItDlkdAQ4P3ztkWh4dyugoAAEdAJUKPXCj1w0dAW2tT987ZF0dAQ4NT987ZF4dyuwoAAEdAJUGJN0vGqEdAW2sCDEm6XkdAQ4MSbpeNUIdyvAoAAEdAJTxqfvnbI0dAW2oMSbpeNUdAQ4HrhR64UodyvQoAAEdAJTlYEGJN00dAW2l41P3ztkdAQ4FHrhR64YdyvgoAAEdAJThR64UeuEdAW2km6XjU/kdAQ4DlYEGJN4dyvwoAAEdAJTCj1wo9cUdAW2eNT987ZEdAQ38an752yYdywAoAAEdAJSuFHrhR7EdAW2aXjU/fO0dAQ33ztkWhy4dywQoAAEdAJSdsi0OVgUdAW2WyLQ5WBEdAQ3ztkWhysIdywgoAAEdAJSJN0vGp/EdAW2SsCDEm6UdAQ3vGp++dsodywwoAAEdAJR++dsi0OUdAW2QYk3S8akdAQ3si0OVgQodyxAoAAEdAJRaHKwIMSkdAW2I9cKPXCkdAQ3j1wo9cKYdyxQoAAEdAJQ/fO2RaHUdAW2DlYEGJN0dAQ3eNT987ZIdyxgoAAEdAJQ1P3ztkWkdAW2BiTdLxqkdAQ3bpeNT99IdyxwoAAEdAJQan752yLUdAW18KPXCj10dAQ3VgQYk3TIdyyAoAAEdAJQWhysCDEkdAW17ItDlYEEdAQ3UeuFHrhYdyyQoAAEdAJP752yLQ5UdAW11wo9cKPUdAQ3OVgQYk3YdyygoAAEdAJP3ztkWhy0dAW10vGp++d0dAQ3MzMzMzM4dyywoAAEdAJPxqfvnbI0dAW1zdLxqfvkdAQ3LxqfvnbYdyzAoAAEdAJPZFocrAg0dAW1uVgQYk3UdAQ3FocrAgxYdyzQoAAEdAJPS8an7520dAW1tDlYEGJUdAQ3Em6XjU/odyzgoAAEdAJPMzMzMzM0dAW1sCDEm6XkdAQ3DEm6XjVIdyzwoAAEdAJO0OVgQYk0dAW1mp++dsi0dAQ29cKPXCj4dy0AoAAEdAJOuFHrhR7EdAW1locrAgxUdAQ2752yLQ5Ydy0QoAAEdAJOVgQYk3TEdAW1gQYk3S8kdAQ22RaHKwIYdy0goAAEdAJOPXCj1wpEdAW1fO2RaHK0dAQ20vGp++d4dy0woAAEdAJOLQ5WBBiUdAW1eNT987ZEdAQ2ztkWhysIdy1AoAAEdAJNwo9cKPXEdAW1Y1P3ztkUdAQ2tkWhysCIdy1QoAAEdAJNsi0OVgQkdAW1XjU/fO2UdAQ2sCDEm6Xody1goAAEdAJNR64UeuFEdAW1SbpeNT+EdAQ2mZmZmZmody1woAAEdAJNN0vGp++kdAW1RaHKwIMUdAQ2k3S8an8Idy2AoAAEdAJNHrhR64UkdAW1QIMSbpeUdAQ2j1wo9cKYdy2QoAAEdAJMvGp++dskdAW1LAgxJumEdAQ2dsi0OVgYdy2goAAEdAJMo9cKPXCkdAW1Jul41P30dAQ2crAgxJuody2woAAEdAJMk3S8an8EdAW1ItDlYEGUdAQ2bItDlYEIdy3AoAAEdAJMKPXCj1w0dAW1DU/fO2RkdAQ2VgQYk3TIdy3QoAAEdAJMGJN0vGqEdAW1CTdLxqf0dAQ2T987ZFoody3goAAEdAJLrhR64Ue0dAW087ZFocrEdAQ2OVgQYk3Ydy3woAAEdAJLnbItDlYEdAW0752yLQ5UdAQ2MzMzMzM4dy4AoAAEdAJLhR64UeuEdAW06n752yLUdAQ2LxqfvnbYdy4QoAAEdAJLItDlYEGUdAW01gQYk3TEdAQ2FocrAgxYdy4goAAEdAJLCj1wo9cUdAW00OVgQYk0dAQ2Em6XjU/ody4woAAEdAJK+dsi0OVkdAW0zMzMzMzUdAQ2DEm6XjVIdy5AoAAEdAJKp++dsi0UdAW0vGp++dskdAQ1+dsi0OVody5QoAAEdAJKj1wo9cKUdAW0t0vGp++kdAQ19cKPXCj4dy5goAAEdAJKfvnbItDkdAW0si0OVgQkdAQ1752yLQ5Ydy5woAAEdAJKHKwIMSb0dAW0nbItDlYEdAQ12RaHKwIYdy6AoAAEdAJKBBiTdLx0dAW0mJN0vGqEdAQ10vGp++d4dy6QoAAEdAJJ64UeuFH0dAW0lHrhR64UdAQ1ztkWhysIdy6goAAEdAJJiTdLxqf0dAW0fvnbItDkdAQ1tkWhysCIdy6woAAEdAJJcKPXCj10dAW0euFHrhSEdAQ1si0OVgQody7AoAAEdAJJYEGJN0vEdAW0dcKPXCj0dAQ1rAgxJumIdy7QoAAEdAJJDlYEGJN0dAW0ZWBBiTdUdAQ1mZmZmZmody7goAAEdAJI5WBBiTdUdAW0XCj1wo9kdAQ1j1wo9cKYdy7woAAEdAJIgxJul41UdAW0R64UeuFEdAQ1eNT987ZIdy8AoAAEdAJIan752yLUdAW0Qo9cKPXEdAQ1crAgxJuody8QoAAEdAJIWhysCDEkdAW0PnbItDlkdAQ1bpeNT99Idy8goAAEdAJH3ztkWhy0dAW0I9cKPXCkdAQ1UeuFHrhYdy8woAAEdAJHxqfvnbI0dAW0H752yLREdAQ1S8an7524dy9AoAAEdAJHfO2RaHK0dAW0D1wo9cKUdAQ1OVgQYk3Ydy9QoAAEdAJHU/fO2RaEdAW0BiTdLxqkdAQ1LxqfvnbYdy9goAAEdAJGwIMSbpeUdAWz52yLQ5WEdAQ1DlYEGJN4dy9woAAEdAJGTdLxqfvkdAWzzdLxqfvkdAQ08an752yYdy+AoAAEdAJGNT987ZF0dAWzyLQ5WBBkdAQ064UeuFH4dy+QoAAEdAJFul41P3z0dAWzrxqfvnbUdAQ0ztkWhysIdy+goAAEdAJFLxqfvnbUdAWzkGJN0vG0dAQ0rhR64Ue4dy+woAAEdAJEzMzMzMzUdAWze+dsi0OUdAQ0l41P3ztody/AoAAEdAJEvGp++dskdAWzdsi0OVgUdAQ0kWhysCDIdy/QoAAEdAJEMSbpeNUEdAWzWBBiTdL0dAQ0cKPXCj14dy/goAAEdAJDztkWhysEdAWzQ5WBBiTkdAQ0WBBiTdL4dy/woAAEdAJDtkWhysCEdAWzPnbItDlkdAQ0U/fO2RaIdyAAsAAEdAJDnbItDlYEdAWzOl41P3z0dAQ0TdLxqfvodyAQsAAEdAJDO2RaHKwUdAWzJN0vGp/EdAQ0N0vGp++odyAgsAAEdAJDKwIMSbpkdAWzH752yLREdAQ0MzMzMzM4dyAwsAAEdAJCyLQ5WBBkdAWzC0OVgQYkdAQ0Gp++dsi4dyBAsAAEdAJCsCDEm6XkdAWzBiTdLxqkdAQ0FocrAgxYdyBQsAAEdAJCn752yLREdAWzAgxJul40dAQ0EGJN0vG4dyBgsAAEdAJCPXCj1wpEdAWy7ItDlYEEdAQz+dsi0OVodyBwsAAEdAJCJN0vGp/EdAWy52yLQ5WEdAQz87ZFocrIdyCAsAAEdAJCFHrhR64UdAWy41P3ztkUdAQz752yLQ5YdyCQsAAEdAJBsi0OVgQkdAWyzdLxqfvkdAQz1wo9cKPYdyCgsAAEdAJBmZmZmZmkdAWyyLQ5WBBkdAQz0vGp++d4dyCwsAAEdAJBP3ztkWh0dAWytDlYEGJUdAQzvGp++dsodyDAsAAEdAJBJul41P30dAWyrxqfvnbUdAQztkWhysCIdyDQsAAEdAJBDlYEGJN0dAWyqwIMSbpkdAQzsi0OVgQodyDgsAAEdAJAtDlYEGJUdAWylYEGJN00dAQzmZmZmZmodyDwsAAEdAJAm6XjU/fUdAWykGJN0vG0dAQzlYEGJN04dyEAsAAEdAJAgxJul41UdAWyjEm6XjVEdAQzj1wo9cKYdyEQsAAEdAJAOVgQYk3UdAWyeuFHrhSEdAQzfvnbItDodyEgsAAEdAJAKPXCj1w0dAWydsi0OVgUdAQzeNT987ZIdyEwsAAEdAJAEGJN0vG0dAWycan752yUdAQzdLxqfvnodyFAsAAEdAI/rhR64Ue0dAWyXCj1wo9kdAQzXCj1wo9odyFQsAAEdAI/nbItDlYEdAWyWBBiTdL0dAQzWBBiTdL4dyFgsAAEdAI/hR64UeuEdAWyUvGp++d0dAQzUeuFHrhYdyFwsAAEdAI/ItDlYEGUdAWyPXCj1wpEdAQzO2RaHKwYdyGAsAAEdAI/Em6XjU/kdAWyOVgQYk3UdAQzNT987ZF4dyGQsAAEdAI+sCDEm6XkdAWyI9cKPXCkdAQzHrhR64UodyGgsAAEdAI+n752yLREdAWyHrhR64UkdAQzGp++dsi4dyGwsAAEdAI+hysCDEnEdAWyGp++dsi0dAQzFHrhR64YdyHAsAAEdAI+JN0vGp/EdAWyBR64UeuEdAQy/fO2RaHYdyHQsAAEdAI+FHrhR64UdAWyAAAAAAAEdAQy987ZFoc4dyHgsAAEdAI9++dsi0OUdAWx++dsi0OUdAQy87ZFocrIdyHwsAAEdAI9iTdLxqf0dAWx4UeuFHrkdAQy1wo9cKPYdyIAsAAEdAI9Jul41P30dAWxy8an7520dAQywIMSbpeYdyIQsAAEdAI8/fO2RaHUdAWxwo9cKPXEdAQytkWhysCIdyIgsAAEdAI8i0OVgQYkdAWxqPXCj1w0dAQymZmZmZmodyIwsAAEdAI8crAgxJukdAWxo9cKPXCkdAQylYEGJN04dyJAsAAEdAI8AAAAAAAEdAWxij1wo9cUdAQyeNT987ZIdyJQsAAEdAI7dLxqfvnkdAWxa4UeuFH0dAQyWBBiTdL4dyJgsAAEdAI7AgxJul40dAWxUOVgQYk0dAQyO2RaHKwYdyJwsAAEdAI68an752yUdAWxS8an7520dAQyN0vGp++odyKAsAAEdAI6fvnbItDkdAWxMi0OVgQkdAQyGp++dsi4dyKQsAAEdAI587ZFocrEdAWxE3S8an8EdAQx+dsi0OVodyKgsAAEdAI5mZmZmZmkdAWw/fO2RaHUdAQx41P3ztkYdyKwsAAEdAI5gQYk3S8kdAWw+NT987ZEdAQx3S8an754dyLAsAAEdAI5cKPXCj10dAWw9LxqfvnkdAQx2RaHKwIYdyLQsAAEdAI5DlYEGJN0dAWw3jU/fO2UdAQxwIMSbpeYdyLgsAAEdAI4/fO2RaHUdAWw2hysCDEkdAQxvGp++dsodyLwsAAEdAI4m6XjU/fUdAWwxJul41P0dAQxpeNT987odyMAsAAEdAI4gxJul41UdAWwv3ztkWh0dAQxn752yLRIdyMQsAAEdAI4crAgxJukdAWwu2RaHKwUdAQxm6XjU/fYdyMgsAAEdAI4GJN0vGqEdAWwpeNT987kdAQxhR64UeuIdyMwsAAEdAI4AAAAAAAEdAWwoMSbpeNUdAQxfvnbItDodyNAsAAEdAI3752yLQ5UdAWwnKwIMSb0dAQxeuFHrhSIdyNQsAAEdAI3jU/fO2RkdAWwhiTdLxqkdAQxZFocrAg4dyNgsAAEdAI3fO2RaHK0dAWwggxJul40dAQxXjU/fO2YdyNwsAAEdAI3Gp++dsi0dAWwbItDlYEEdAQxR64UeuFIdyOAsAAEdAI3Cj1wo9cUdAWwZ2yLQ5WEdAQxQ5WBBiTodyOQsAAEdAI28an752yUdAWwY1P3ztkUdAQxPXCj1wpIdyOgsAAEdAI2l41P3ztkdAWwTMzMzMzUdAQxJul41P34dyOwsAAEdAI2fvnbItDkdAWwSLQ5WBBkdAQxIMSbpeNYdyPAsAAEdAI2JN0vGp/EdAWwMzMzMzM0dAQxCj1wo9cYdyPQsAAEdAI2DEm6XjVEdAWwLhR64Ue0dAQxBiTdLxqodyPgsAAEdAI1++dsi0OUdAWwKfvnbItEdAQxAAAAAAAIdyPwsAAEdAI1mZmZmZmkdAWwE3S8an8EdAQw6XjU/fO4dyQAsAAEdAI1iTdLxqf0dAWwD1wo9cKUdAQw5WBBiTdYdyQQsAAEdAI1eNT987ZEdAWwCj1wo9cUdAQw3ztkWhy4dyQgsAAEdAI1FocrAgxUdAWv9LxqfvnkdAQwyLQ5WBBodyQwsAAEdAI1BiTdLxqkdAWv752yLQ5UdAQwxJul41P4dyRAsAAEdAI0o9cKPXCkdAWv2hysCDEkdAQwrhR64Ue4dyRQsAAEdAI0k3S8an8EdAWv1gQYk3TEdAQwp++dsi0YdyRgsAAEdAI0euFHrhSEdAWv0OVgQYk0dAQwo9cKPXCodyRwsAAEdAI0IMSbpeNUdAWvu2RaHKwUdAQwjU/fO2RodySAsAAEdAI0EGJN0vG0dAWvtkWhysCEdAQwhysCDEnIdySQsAAEdAIz987ZFoc0dAWvsi0OVgQkdAQwgxJul41YdySgsAAEdAIznbItDlYEdAWvnKwIMSb0dAQwbItDlYEIdySwsAAEdAIzhR64UeuEdAWvl41P3ztkdAQwZmZmZmZodyTAsAAEdAIzKwIMSbpkdAWvggxJul40dAQwT987ZFoodyTQsAAEdAIzGp++dsi0dAWvfO2RaHK0dAQwS8an7524dyTgsAAEdAIzAgxJul40dAWveNT987ZEdAQwRaHKwIMYdyTwsAAEdAIyj1wo9cKUdAWvXjU/fO2UdAQwKwIMSbpodyUAsAAEdAIyNT987ZF0dAWvSLQ5WBBkdAQwFHrhR64YdyUQsAAEdAIyDEm6XjVEdAWvPnbItDlkdAQwCj1wo9cYdyUgsAAEdAIxocrAgxJ0dAWvI9cKPXCkdAQv7ZFocrAodyUwsAAEdAIxiTdLxqf0dAWvH752yLREdAQv6XjU/fO4dyVAsAAEdAIxHrhR64UkdAWvBR64UeuEdAQvzMzMzMzYdyVQsAAEdAIwm6XjU/fUdAWu5WBBiTdUdAQvrAgxJumIdyVgsAAEdAIwKPXCj1w0dAWuysCDEm6UdAQvkWhysCDIdyVwsAAEdAIwEGJN0vG0dAWuxqfvnbI0dAQvjU/fO2RodyWAsAAEdAIvtkWhysCEdAWusCDEm6XkdAQvdLxqfvnodyWQsAAEdAIvpeNT987kdAWurAgxJumEdAQvcKPXCj14dyWgsAAEdAIvItDlYEGUdAWujEm6XjVEdAQvT987ZFoodyWwsAAEdAIuyLQ5WBBkdAWudsi0OVgUdAQvOVgQYk3YdyXAsAAEdAIusCDEm6XkdAWucan752yUdAQvNT987ZF4dyXQsAAEdAIun752yLREdAWubZFocrAkdAQvLxqfvnbYdyXgsAAEdAIuRaHKwIMUdAWuVwo9cKPUdAQvGJN0vGqIdyXwsAAEdAIuNT987ZF0dAWuUvGp++d0dAQvFHrhR64YdyYAsAAEdAItsi0OVgQkdAWuMzMzMzM0dAQu87ZFocrIdyYQsAAEdAItWBBiTdL0dAWuHKwIMSb0dAQu3S8an754dyYgsAAEdAItP3ztkWh0dAWuGJN0vGqEdAQu2RaHKwIYdyYwsAAEdAItLxqfvnbUdAWuE3S8an8EdAQu0vGp++d4dyZAsAAEdAIs1P3ztkWkdAWt/fO2RaHUdAQuvGp++dsodyZQsAAEdAIsvGp++dskdAWt+NT987ZEdAQuuFHrhR7IdyZgsAAEdAIsYk3S8aoEdAWt41P3ztkUdAQuocrAgxJ4dyZwsAAEdAIsUeuFHrhUdAWt3jU/fO2UdAQum6XjU/fYdyaAsAAEdAIsQYk3S8akdAWt2hysCDEkdAQul41P3ztodyaQsAAEdAIr52yLQ5WEdAWtw5WBBiTkdAQugQYk3S8odyagsAAEdAIrztkWhysEdAWtvnbItDlkdAQufO2RaHK4dyawsAAEdAIrvnbItDlkdAWtul41P3z0dAQudsi0OVgYdybAsAAEdAIrZFocrAg0dAWto9cKPXCkdAQuYEGJN0vIdybQsAAEdAIrU/fO2RaEdAWtn752yLREdAQuXCj1wo9odybgsAAEdAIq+dsi0OVkdAWtiTdLxqf0dAQuRaHKwIMYdybwsAAEdAIq4UeuFHrkdAWthBiTdLx0dAQuP3ztkWh4dycAsAAEdAIq0OVgQYk0dAWtgAAAAAAEdAQuO2RaHKwYdycQsAAEdAIqdsi0OVgUdAWtaXjU/fO0dAQuJN0vGp/IdycgsAAEdAIqXjU/fO2UdAWtZWBBiTdUdAQuIMSbpeNYdycwsAAEdAIp87ZFocrEdAWtSsCDEm6UdAQuBBiTdLx4dydAsAAEdAIp41P3ztkUdAWtRaHKwIMUdAQuAAAAAAAIdydQsAAEdAIpiTdLxqf0dAWtLxqfvnbUdAQt6XjU/fO4dydgsAAEdAIpeNT987ZEdAWtKwIMSbpkdAQt5WBBiTdYdydwsAAEdAIpYEGJN0vEdAWtJeNT987kdAQt3ztkWhy4dyeAsAAEdAIpBiTdLxqkdAWtEGJN0vG0dAQtyLQ5WBBodyeQsAAEdAIo9cKPXCj0dAWtC0OVgQYkdAQtxJul41P4dyegsAAEdAIom6XjU/fUdAWs9LxqfvnkdAQtrhR64Ue4dyewsAAEdAIoi0OVgQYkdAWs8KPXCj10dAQtqfvnbItIdyfAsAAEdAIocrAgxJukdAWs64UeuFH0dAQto9cKPXCodyfQsAAEdAIoIMSbpeNUdAWs1gQYk3TEdAQtjU/fO2RodyfgsAAEdAIoCDEm6XjUdAWs0OVgQYk0dAQtiTdLxqf4dyfwsAAEdAInjU/fO2RkdAWssSbpeNUEdAQtaHKwIMSodygAsAAEdAInMzMzMzM0dAWsmp++dsi0dAQtUeuFHrhYdygQsAAEdAInCj1wo9cUdAWskWhysCDEdAQtSbpeNT+IdyggsAAEdAImn752yLREdAWsdsi0OVgUdAQtLQ5WBBiYdygwsAAEdAImj1wo9cKUdAWscan752yUdAQtKPXCj1w4dyhAsAAEdAImJN0vGp/EdAWsVwo9cKPUdAQtDlYEGJN4dyhQsAAEdAIlqfvnbItEdAWsN0vGp++kdAQs7ZFocrAodyhgsAAEdAIlT987ZFokdAWsIMSbpeNUdAQs1wo9cKPYdyhwsAAEdAIlP3ztkWh0dAWsG6XjU/fUdAQs0vGp++d4dyiAsAAEdAIlJul41P30dAWsF41P3ztkdAQsztkWhysIdyiQsAAEdAIkzMzMzMzUdAWsAQYk3S8kdAQsuFHrhR7IdyigsAAEdAIkvGp++dskdAWr++dsi0OUdAQssi0OVgQodyiwsAAEdAIkQYk3S8akdAWr3Cj1wo9kdAQsk3S8an8IdyjAsAAEdAIj52yLQ5WEdAWrxqfvnbI0dAQsfO2RaHK4dyjQsAAEdAIj1wo9cKPUdAWrwYk3S8akdAQseNT987ZIdyjgsAAEdAIjbItDlYEEdAWrpeNT987kdAQsXCj1wo9odyjwsAAEdAIjXCj1wo9kdAWrocrAgxJ0dAQsWBBiTdL4dykAsAAEdAIjAgxJul40dAWri0OVgQYkdAQsQYk3S8aodykQsAAEdAIi8an752yUdAWrhiTdLxqkdAQsPXCj1wpIdykgsAAEdAIi4UeuFHrkdAWrggxJul40dAQsN0vGp++odykwsAAEdAIihysCDEnEdAWra4UeuFH0dAQsItDlYEGYdylAsAAEdAIidsi0OVgUdAWrZmZmZmZkdAQsHKwIMSb4dylQsAAEdAIiDEm6XjVEdAWrS8an7520dAQsAgxJul44dylgsAAEdAIh++dsi0OUdAWrRqfvnbI0dAQr/fO2RaHYdylwsAAEdAIhocrAgxJ0dAWrMCDEm6XkdAQr52yLQ5WIdymAsAAEdAIhkWhysCDEdAWrLAgxJumEdAQr41P3ztkYdymQsAAEdAIhgQYk3S8kdAWrJul41P30dAQr3S8an754dymgsAAEdAIhJul41P30dAWrEGJN0vG0dAQryLQ5WBBodymwsAAEdAIhFocrAgxUdAWrC0OVgQYkdAQrwo9cKPXIdynAsAAEdAIgrAgxJumEdAWq8KPXCj10dAQrp++dsi0YdynQsAAEdAIgm6XjU/fUdAWq64UeuFH0dAQro9cKPXCodyngsAAEdAIgQYk3S8akdAWq1P3ztkWkdAQrjU/fO2RodynwsAAEdAIgMSbpeNUEdAWq0OVgQYk0dAQriTdLxqf4dyoAsAAEdAIgIMSbpeNUdAWqy8an7520dAQrgxJul41YdyoQsAAEdAIfxqfvnbI0dAWqtT987ZF0dAQrbItDlYEIdyogsAAEdAIftkWhysCEdAWqsCDEm6XkdAQraHKwIMSodyowsAAEdAIfZFocrAg0dAWqmp++dsi0dAQrUeuFHrhYdypAsAAEdAIfS8an7520dAWqlYEGJN00dAQrTdLxqfvodypQsAAEdAIfO2RaHKwUdAWqkGJN0vG0dAQrSbpeNT+IdypgsAAEdAIe6XjU/fO0dAWqedsi0OVkdAQrMzMzMzM4dypwsAAEdAIe0OVgQYk0dAWqdLxqfvnkdAQrLxqfvnbYdyqAsAAEdAIeXjU/fO2UdAWqVP3ztkWkdAQrDlYEGJN4dyqQsAAEdAIeBBiTdLx0dAWqPnbItDlkdAQq+dsi0OVodyqgsAAEdAId87ZFocrEdAWqOl41P3z0dAQq87ZFocrIdyqwsAAEdAId41P3ztkUdAWqNT987ZF0dAQq752yLQ5YdyrAsAAEdAIdeNT987ZEdAWqGZmZmZmkdAQq1P3ztkWodyrQsAAEdAIc/fO2RaHUdAWp+dsi0OVkdAQqtDlYEGJYdyrgsAAEdAIcm6XjU/fUdAWp3jU/fO2UdAQqmZmZmZmodyrwsAAEdAIci0OVgQYkdAWp2RaHKwIUdAQqlYEGJN04dysAsAAEdAIcMSbpeNUEdAWpwo9cKPXEdAQqfvnbItDodysQsAAEdAIcIMSbpeNUdAWpvnbItDlkdAQqeuFHrhSIdysgsAAEdAIbpeNT987kdAWpnbItDlYEdAQqXCj1wo9odyswsAAEdAIbQ5WBBiTkdAWpggxJul40dAQqQYk3S8aodytAsAAEdAIbMzMzMzM0dAWpffO2RaHUdAQqO2RaHKwYdytQsAAEdAIa4UeuFHrkdAWpZ2yLQ5WEdAQqJul41P34dytgsAAEdAIayLQ5WBBkdAWpYk3S8aoEdAQqIMSbpeNYdytwsAAEdAIaVgQYk3TEdAWpQYk3S8akdAQqAgxJul44dyuAsAAEdAIaBBiTdLx0dAWpKwIMSbpkdAQp7ZFocrAodyuQsAAEdAIZ64UeuFH0dAWpJul41P30dAQp52yLQ5WIdyugsAAEdAIZ2yLQ5WBEdAWpIcrAgxJ0dAQp41P3ztkYdyuwsAAGUoR0AhmJN0vGp/R0BakLQ5WBBiR0BCnMzMzMzNh3K8CwAAR0Ahl41P3ztkR0BakGJN0vGqR0BCnItDlYEGh3K9CwAAR0AhkWhysCDFR0BajqfvnbItR0BCmuFHrhR7h3K+CwAAR0Ahj987ZFodR0BajlYEGJN1R0BCmp++dsi0h3K/CwAAR0AhisCDEm6YR0BajO2RaHKwR0BCmTdLxqfwh3LACwAAR0AhibpeNT99R0BajKwIMSbpR0BCmPXCj1wph3LBCwAAR0AhiLQ5WBBiR0BajFocrAgxR0BCmLQ5WBBih3LCCwAAR0Ahg5WBBiTdR0BaivGp++dtR0BCl0vGp++eh3LDCwAAR0Ahgo9cKPXDR0Baip++dsi0R0BClwo9cKPXh3LECwAAR0AhfXCj1wo9R0BaiTdLxqfwR0BClaHKwIMSh3LFCwAAR0Ahe+dsi0OWR0BaiOVgQYk3R0BClWBBiTdMh3LGCwAAR0AheuFHrhR7R0BaiJN0vGp/R0BClP3ztkWih3LHCwAAR0AhdcKPXCj2R0BahysCDEm6R0BCk7ZFocrBh3LICwAAR0AhdLxqfvnbR0BahtkWhysCR0BCk1P3ztkXh3LJCwAAR0AhbpeNT987R0BahS8an753R0BCkcrAgxJvh3LKCwAAR0AhbZFocrAhR0BahN0vGp++R0BCkWhysCDFh3LLCwAAR0AhaHKwIMScR0Bag3S8an76R0BCkCDEm6Xjh3LMCwAAR0AhZ2yLQ5WBR0BagyLQ5WBCR0BCj752yLQ5h3LNCwAAR0AhZmZmZmZmR0BagtDlYEGJR0BCj3ztkWhzh3LOCwAAR0AhYUeuFHrhR0BagWhysCDFR0BCjjU/fO2Rh3LPCwAAR0AhX752yLQ5R0BagRaHKwIMR0BCjdLxqfvnh3LQCwAAR0AhWZmZmZmaR0Baf1wo9cKPR0BCjCj1wo9ch3LRCwAAR0AhWJN0vGp/R0Bafwo9cKPXR0BCi+dsi0OWh3LSCwAAR0AhU3S8an76R0BafaHKwIMSR0BCip++dsi0h3LTCwAAR0AhUm6XjU/fR0BafU/fO2RaR0BCij1wo9cKh3LUCwAAR0AhTEm6XjU/R0Bae5WBBiTdR0BCiLQ5WBBih3LVCwAAR0AhS0OVgQYlR0Bae0OVgQYlR0BCiFHrhR64h3LWCwAAR0AhRR64UeuFR0BaeYk3S8aoR0BChqfvnbIth3LXCwAAR0AhRBiTdLxqR0BaeUeuFHrhR0BChmZmZmZmh3LYCwAAR0AhPvnbItDlR0Bad987ZFodR0BChR64UeuFh3LZCwAAR0AhPfO2RaHLR0Bad41P3ztkR0BChLxqfvnbh3LaCwAAR0AhNsi0OVgQR0BadYEGJN0vR0BCgtDlYEGJh3LbCwAAR0AhL52yLQ5WR0Bac3S8an76R0BCgOVgQYk3h3LcCwAAR0AhKXjU/fO2R0BacbpeNT99R0BCf1wo9cKPh3LdCwAAR0AhI1P3ztkXR0BacAAAAAAAR0BCfbItDlYEh3LeCwAAR0AhIk3S8an8R0Bab64UeuFIR0BCfU/fO2Rah3LfCwAAR0AhGyLQ5WBCR0BabaHKwIMSR0BCe2RaHKwIh3LgCwAAR0AhFgQYk3S8R0BabCj1wo9cR0BCehysCDEnh3LhCwAAR0AhFP3ztkWiR0Baa+dsi0OWR0BCedsi0OVgh3LiCwAAR0AhDtkWhysCR0BaahysCDEnR0BCeDEm6XjVh3LjCwAAR0AhDdLxqfvnR0Baadsi0OVgR0BCd++dsi0Oh3LkCwAAR0AhBqfvnbItR0BaZ87ZFocrR0BCdgQYk3S8h3LlCwAAR0AhAgxJul41R0BaZlYEGJN1R0BCdJul41P4h3LmCwAAR0AhAQYk3S8bR0BaZgQYk3S8R0BCdFocrAgxh3LnCwAAR0Ag+uFHrhR7R0BaZEm6XjU/R0BCcrAgxJumh3LoCwAAR0Ag+dsi0OVgR0BaY/fO2RaHR0BCcm6XjU/fh3LpCwAAR0Ag9LxqfvnbR0BaYo9cKPXDR0BCcSbpeNT+h3LqCwAAR0Ag87ZFocrBR0BaYj1wo9cKR0BCcOVgQYk3h3LrCwAAR0Ag8rAgxJumR0BaYeuFHrhSR0BCcIMSbpeNh3LsCwAAR0Ag7ZFocrAhR0BaYIMSbpeNR0BCbztkWhysh3LtCwAAR0Ag7ItDlYEGR0BaYDEm6XjVR0BCbvnbItDlh3LuCwAAR0Ag5ul41P30R0BaXnbItDlYR0BCbU/fO2Rah3LvCwAAR0Ag5eNT987ZR0BaXiTdLxqgR0BCbQ5WBBiTh3LwCwAAR0Ag4MSbpeNUR0BaXKwIMSbpR0BCa6XjU/fPh3LxCwAAR0Ag3752yLQ5R0BaXFocrAgxR0BCa2RaHKwIh3LyCwAAR0Ag3rhR64UfR0BaXBiTdLxqR0BCayLQ5WBCh3LzCwAAR0Ag2ZmZmZmaR0BaWp++dsi0R0BCabpeNT99h3L0CwAAR0Ag2JN0vGp/R0BaWk3S8an8R0BCaXjU/fO2h3L1CwAAR0Ag0vGp++dtR0BaWJN0vGp/R0BCZ++dsi0Oh3L2CwAAR0Ag0euFHrhSR0BaWEGJN0vHR0BCZ41P3ztkh3L3CwAAR0AgzMzMzMzNR0BaVtkWhysCR0BCZkWhysCDh3L4CwAAR0Agy8an752yR0BaVocrAgxKR0BCZgQYk3S8h3L5CwAAR0AgxiTdLxqgR0BaVLxqfvnbR0BCZFocrAgxh3L6CwAAR0AgxR64UeuFR0BaVGp++dsjR0BCZBiTdLxqh3L7CwAAR0AgwAAAAAAAR0BaUwIMSbpeR0BCYtDlYEGJh3L8CwAAR0AgvvnbItDlR0BaUrAgxJumR0BCYm6XjU/fh3L9CwAAR0AguVgQYk3TR0BaUPXCj1wpR0BCYOVgQYk3h3L+CwAAR0AguFHrhR64R0BaUKPXCj1xR0BCYKPXCj1xh3L/CwAAR0AgsSbpeNT+R0BaTocrAgxKR0BCXrhR64Ufh3IADAAAR0AgrItDlYEGR0BaTR64UeuFR0BCXXCj1wo9h3IBDAAAR0Agq4UeuFHsR0BaTMzMzMzNR0BCXQ5WBBiTh3ICDAAAR0AgpN0vGp++R0BaSsCDEm6YR0BCW0OVgQYlh3IDDAAAR0AgnbItDlYER0BaSKPXCj1xR0BCWVgQYk3Th3IEDAAAR0AgmBBiTdLyR0BaRul41P30R0BCV64UeuFIh3IFDAAAR0Agkm6XjU/fR0BaRR64UeuFR0BCViTdLxqgh3IGDAAAR0AgkWhysCDFR0BaRMzMzMzNR0BCVeNT987Zh3IHDAAAR0AgisCDEm6YR0BaQsCDEm6YR0BCU/fO2RaHh3IIDAAAR0AghJul41P4R0BaQPXCj1wpR0BCUm6XjU/fh3IJDAAAR0AgfvnbItDlR0BaPysCDEm6R0BCUMSbpeNUh3IKDAAAR0AgffO2RaHLR0BaPul41P30R0BCUIMSbpeNh3ILDAAAR0AgeFHrhR64R0BaPR64UeuFR0BCTtkWhysCh3IMDAAAR0Agd0vGp++eR0BaPMzMzMzNR0BCTpeNT987h3INDAAAR0AgcrAgxJumR0BaO1P3ztkXR0BCTU/fO2Rah3IODAAAR0AgbAgxJul5R0BaOUeuFHrhR0BCS2RaHKwIh3IPDAAAR0AgawIMSbpeR0BaOPXCj1wpR0BCSyLQ5WBCh3IQDAAAR0AgZWBBiTdMR0BaNysCDEm6R0BCSZmZmZmah3IRDAAAR0AgZFocrAgxR0BaNtkWhysCR0BCSVgQYk3Th3ISDAAAR0AgX752yLQ5R0BaNWBBiTdMR0BCR++dsi0Oh3ITDAAAR0AgXrhR64UfR0BaNQ5WBBiTR0BCR64UeuFIh3IUDAAAR0AgWRaHKwIMR0BaM1P3ztkXR0BCRiTdLxqgh3IVDAAAR0AgUm6XjU/fR0BaMTdLxqfwR0BCRDlYEGJOh3IWDAAAR0AgUWhysCDFR0BaMOVgQYk3R0BCQ/fO2RaHh3IXDAAAR0AgTMzMzMzNR0BaL2yLQ5WBR0BCQrAgxJumh3IYDAAAR0AgS8an752yR0BaLxqfvnbJR0BCQm6XjU/fh3IZDAAAR0AgRiTdLxqgR0BaLWBBiTdMR0BCQMSbpeNUh3IaDAAAR0AgRR64UeuFR0BaLQ5WBBiTR0BCQIMSbpeNh3IbDAAAR0AgQIMSbpeNR0BaK5WBBiTdR0BCPztkWhysh3IcDAAAR0AgP3ztkWhzR0BaK0OVgQYlR0BCPvnbItDlh3IdDAAAR0AgOl41P3zuR0BaKXjU/fO2R0BCPXCj1wo9h3IeDAAAR0AgOVgQYk3TR0BaKSbpeNT+R0BCPQ5WBBiTh3IfDAAAR0AgM7ZFocrBR0BaJ1wo9cKPR0BCO4UeuFHsh3IgDAAAR0AgMrAgxJumR0BaJwo9cKPXR0BCO0OVgQYlh3IhDAAAR0AgLhR64UeuR0BaJaHKwIMSR0BCOfvnbItEh3IiDAAAR0AgLQ5WBBiTR0BaJU/fO2RaR0BCObpeNT99h3IjDAAAR0AgJmZmZmZmR0BaIzMzMzMzR0BCN87ZFocrh3IkDAAAR0AgIUeuFHrhR0BaIWhysCDFR0BCNkWhysCDh3IlDAAAR0AgIEGJN0vHR0BaIRaHKwIMR0BCNgQYk3S8h3ImDAAAR0AgGp++dsi0R0BaH0vGp++eR0BCNFocrAgxh3InDAAAR0AgE/fO2RaHR0BaHS8an753R0BCMo9cKPXDh3IoDAAAR0AgDdLxqfvnR0BaGxJul41QR0BCMMSbpeNUh3IpDAAAR0AgCDEm6XjVR0BaGUeuFHrhR0BCLxqfvnbJh3IqDAAAR0AgAxJul41QR0BaF3ztkWhzR0BCLZFocrAhh3IrDAAAR0AgAgxJul41R0BaFysCDEm6R0BCLU/fO2Rah3IsDAAAR0Af7ItDlYEGR0BaE0OVgQYlR0BCKdsi0OVgh3ItDAAAR0Af4UeuFHrhR0BaEXjU/fO2R0BCKFHrhR64h3IuDAAAR0Af4EGJN0vHR0BaESbpeNT+R0BCKBBiTdLyh3IvDAAAR0Af1P3ztkWiR0BaD1wo9cKPR0BCJocrAgxKh3IwDAAAR0AfysCDEm6YR0BaDZFocrAhR0BCJP3ztkWih3IxDAAAR0AfyLQ5WBBiR0BaDT987ZFoR0BCJLxqfvnbh3IyDAAAR0AfvXCj1wo9R0BaC3S8an76R0BCIzMzMzMzh3IzDAAAR0AfsSbpeNT+R0BaCUeuFHrhR0BCIUeuFHrhh3I0DAAAR0Afpul41P30R0BaB3ztkWhzR0BCH752yLQ5h3I1DAAAR0AfpN0vGp++R0BaBysCDEm6R0BCH3ztkWhzh3I2DAAAR0Afmp++dsi0R0BaBWBBiTdMR0BCHfO2RaHLh3I3DAAAR0AfjU/fO2RaR0BaA0OVgQYlR0BCHCj1wo9ch3I4DAAAR0AfgxJul41QR0BaAXjU/fO2R0BCGp++dsi0h3I5DAAAR0AfgQYk3S8bR0BaASbpeNT+R0BCGl41P3zuh3I6DAAAR0Afdsi0OVgQR0BZ/0vGp++eR0BCGLQ5WBBih3I7DAAAR0AfbItDlYEGR0BZ/YEGJN0vR0BCFysCDEm6h3I8DAAAR0Afan752yLRR0BZ/S8an753R0BCFul41P30h3I9DAAAR0AfYEGJN0vHR0BZ+2RaHKwIR0BCFWBBiTdMh3I+DAAAR0AfXjU/fO2RR0BZ+xJul41QR0BCFR64UeuFh3I/DAAAR0AfU/fO2RaHR0BZ+UeuFHrhR0BCE5WBBiTdh3JADAAAR0AfR64UeuFIR0BZ9xqfvnbJR0BCEcrAgxJvh3JBDAAAR0AfO2RaHKwIR0BZ9P3ztkWiR0BCEAAAAAAAh3JCDAAAR0AfMSbpeNT+R0BZ8yLQ5WBCR0BCDnbItDlYh3JDDAAAR0AfJN0vGp++R0BZ8QYk3S8bR0BCDKwIMSbph3JEDAAAR0AfGZmZmZmaR0BZ7ul41P30R0BCCuFHrhR7h3JFDAAAR0AfAxJul41QR0BZ6vGp++dtR0BCB41P3ztkh3JGDAAAR0Ae9si0OVgQR0BZ6MSbpeNUR0BCBcKPXCj2h3JHDAAAR0Ae4UeuFHrhR0BZ5MzMzMzNR0BCAm6XjU/fh3JIDAAAR0AeysCDEm6YR0BZ4NT987ZGR0BB/xqfvnbJh3JJDAAAR0AewYk3S8aoR0BZ3vnbItDlR0BB/ZFocrAhh3JKDAAAR0AetT987ZFoR0BZ3MzMzMzNR0BB+8an752yh3JLDAAAR0AeqfvnbItER0BZ2rAgxJumR0BB+fvnbItEh3JMDAAAR0Aen752yLQ5R0BZ2NT987ZGR0BB+JN0vGp/h3JNDAAAR0AenbItDlYER0BZ2IMSbpeNR0BB+DEm6XjVh3JODAAAR0AelHrhR64UR0BZ1qfvnbItR0BB9si0OVgQh3JPDAAAR0AeiDEm6XjVR0BZ1ItDlYEGR0BB9P3ztkWih3JQDAAAR0AefvnbItDlR0BZ0rAgxJumR0BB83S8an76h3JRDAAAR0AefO2RaHKwR0BZ0l41P3zuR0BB8zMzMzMzh3JSDAAAR0Aec7ZFocrBR0BZ0IMSbpeNR0BB8an752yLh3JTDAAAR0AeZ2yLQ5WBR0BZzlYEGJN1R0BB7987ZFodh3JUDAAAR0AeXCj1wo9cR0BZzCj1wo9cR0BB7jU/fO2Rh3JVDAAAR0AeUvGp++dtR0BZyl41P3zuR0BB7KwIMSbph3JWDAAAR0AeR64UeuFIR0BZyDEm6XjVR0BB6uFHrhR7h3JXDAAAR0AePGp++dsjR0BZxgQYk3S8R0BB6RaHKwIMh3JYDAAAR0AeMi0OVgQZR0BZxCj1wo9cR0BB564UeuFIh3JZDAAAR0AeJul41P30R0BZwfvnbItER0BB5eNT987Zh3JaDAAAR0AeEm6XjU/fR0BZvfO2RaHLR0BB4rAgxJumh3JbDAAAR0AeBysCDEm6R0BZu8an752yR0BB4OVgQYk3h3JcDAAAR0Ad6n752yLRR0BZthR64UeuR0BB3Em6XjU/h3JdDAAAR0Ad0/fO2RaHR0BZsXjU/fO2R0BB2LQ5WBBih3JeDAAAR0Adv3ztkWhzR0BZrXCj1wo9R0BB1YEGJN0vh3JfDAAAR0AdtT987ZFoR0BZq0OVgQYlR0BB07ZFocrBh3JgDAAAR0AdoMSbpeNUR0BZpysCDEm6R0BB0IMSbpeNh3JhDAAAR0AdlocrAgxKR0BZpP3ztkWiR0BBztkWhysCh3JiDAAAR0AdggxJul41R0BZoOVgQYk3R0BBy6XjU/fPh3JjDAAAR0Add87ZFocrR0BZnrhR64UfR0BBydsi0OVgh3JkDAAAR0AdZFocrAgxR0BZmp++dsi0R0BBxsi0OVgQh3JlDAAAR0AdWhysCDEnR0BZmGJN0vGqR0BBxP3ztkWih3JmDAAAR0AdRqfvnbItR0BZlFocrAgxR0BBwcrAgxJvh3JnDAAAR0AdPGp++dsjR0BZkhysCDEnR0BBwCDEm6Xjh3JoDAAAR0AdKPXCj1wpR0BZjgQYk3S8R0BBvO2RaHKwh3JpDAAAR0AdDlYEGJN1R0BZiEGJN0vHR0BBuJN0vGp/h3JqDAAAR0AdDEm6XjU/R0BZh64UeuFIR0BBuDEm6XjVh3JrDAAAR0Ac8an752yLR0BZgeuFHrhSR0BBs7ZFocrBh3JsDAAAR0Ac752yLQ5WR0BZgVgQYk3TR0BBs1P3ztkXh3JtDAAAR0Ac3S8an753R0BZfT987ZFoR0BBsCDEm6Xjh3JuDAAAR0Ac0vGp++dtR0BZewIMSbpeR0BBrnbItDlYh3JvDAAAR0AcwIMSbpeNR0BZdtkWhysCR0BBq2RaHKwIh3JwDAAAR0Act0vGp++eR0BZdJul41P4R0BBqbpeNT99h3JxDAAAR0AcpN0vGp++R0BZcHKwIMScR0BBpqfvnbIth3JyDAAAR0AcjEm6XjU/R0BZarAgxJumR0BBok3S8an8h3JzDAAAR0AciTdLxqfwR0BZahysCDEnR0BBocrAgxJvh3J0DAAAR0AccKPXCj1xR0BZZEm6XjU/R0BBnZFocrAhh3J1DAAAR0AcbpeNT987R0BZY6XjU/fPR0BBnQ5WBBiTh3J2DAAAR0AcVgQYk3S8R0BZXdLxqfvnR0BBmNT987ZGh3J3DAAAR0AcUvGp++dtR0BZXT987ZFoR0BBmFHrhR64h3J4DAAAR0AcO2RaHKwIR0BZV2yLQ5WBR0BBlBiTdLxqh3J5DAAAR0AcJ++dsi0OR0BZUp++dsi0R0BBkKPXCj1xh3J6DAAAR0AcEGJN0vGqR0BZTLxqfvnbR0BBjGp++dsjh3J7DAAAR0AcDlYEGJN1R0BZTCj1wo9cR0BBi+dsi0OWh3J8DAAAR0Ab9si0OVgQR0BZRkWhysCDR0BBh64UeuFIh3J9DAAAR0Ab9LxqfvnbR0BZRbItDlYER0BBh0vGp++eh3J+DAAAR0Ab3S8an753R0BZP87ZFocrR0BBgxJul41Qh3J/DAAAR0Ab2yLQ5WBCR0BZPysCDEm6R0BBgrAgxJumh3KADAAAR0AbxJul41P4R0BZOUeuFHrhR0BBfnbItDlYh3KBDAAAR0Abwo9cKPXDR0BZOLQ5WBBiR0BBffO2RaHLh3KCDAAAR0AbrQ5WBBiTR0BZMsCDEm6YR0BBedsi0OVgh3KDDAAAR0Abl41P3ztkR0BZLN0vGp++R0BBdcKPXCj2h3KEDAAAR0AbggxJul41R0BZJvnbItDlR0BBcan752yLh3KFDAAAR0AbbItDlYEGR0BZIQYk3S8bR0BBbZFocrAhh3KGDAAAR0AbVwo9cKPXR0BZGyLQ5WBCR0BBaXjU/fO2h3KHDAAAR0AbRJul41P4R0BZFfO2RaHLR0BBZeNT987Zh3KIDAAAR0AbMCDEm6XjR0BZEAAAAAAAR0BBYcrAgxJvh3KJDAAAR0AqI1P3ztkXR0BZ+p++dsi0R0BA5BiTdLxqh3KKDAAAR0AqJ2yLQ5WBR0BZ/ztkWhysR0BA5ocrAgxKh3KLDAAAR0AqKXjU/fO2R0BaAbpeNT99R0BA5++dsi0Oh3KMDAAAR0AqLQ5WBBiTR0BaBkWhysCDR0BA6n752yLRh3KNDAAAR0AqL52yLQ5WR0BaCMSbpeNUR0BA6+dsi0OWh3KODAAAR0AqMzMzMzMzR0BaDU/fO2RaR0BA7nbItDlYh3KPDAAAR0AqONT987ZGR0BaE3S8an76R0BA8euFHrhSh3KQDAAAR0AqPfO2RaHLR0BaGPXCj1wpR0BA9P3ztkWih3KRDAAAR0AqQAAAAAAAR0BaG2RaHKwIR0BA9mZmZmZmh3KSDAAAR0AqRBiTdLxqR0BaH++dsi0OR0BA+PXCj1wph3KTDAAAR0AqRqfvnbItR0BaIm6XjU/fR0BA+l41P3zuh3KUDAAAR0AqSLQ5WBBiR0BaJHrhR64UR0BA+4UeuFHsh3KVDAAAR0AqSsCDEm6YR0BaJvnbItDlR0BA/O2RaHKwh3KWDAAAR0AqTU/fO2RaR0BaKWhysCDFR0BA/lYEGJN1h3KXDAAAR0AqT1wo9cKPR0BaK4UeuFHsR0BA/52yLQ5Wh3KYDAAAR0AqUWhysCDFR0BaLfO2RaHLR0BBAQYk3S8bh3KZDAAAR0AqU/fO2RaHR0BaMHKwIMScR0BBAm6XjU/fh3KaDAAAR0AqVgQYk3S8R0BaMn752yLRR0BBA5WBBiTdh3KbDAAAR0AqVocrAgxKR0BaMuFHrhR7R0BBA9cKPXCkh3KcDAAAR0AqWJN0vGp/R0BaNO2RaHKwR0BBBP3ztkWih3KdDAAAR0AqWp++dsi0R0BaN2yLQ5WBR0BBBmZmZmZmh3KeDAAAR0AqXKwIMSbpR0BaOXjU/fO2R0BBB41P3ztkh3KfDAAAR0AqXS8an753R0BaOdsi0OVgR0BBB87ZFocrh3KgDAAAR0AqXztkWhysR0BaO+dsi0OWR0BBCPXCj1wph3KhDAAAR0AqYcrAgxJvR0BaPmZmZmZmR0BBCl41P3zuh3KiDAAAR0AqZFocrAgxR0BaQNT987ZGR0BBC+dsi0OWh3KjDAAAR0AqZmZmZmZmR0BaQuFHrhR7R0BBDQ5WBBiTh3KkDAAAR0AqawIMSbpeR0BaR2yLQ5WBR0BBD752yLQ5h3KlDAAAR0Aqb52yLQ5WR0BaS/fO2RaHR0BBEk3S8an8h3KmDAAAR0Aqci0OVgQZR0BaTmZmZmZmR0BBE7ZFocrBh3KnDAAAR0Aqdsi0OVgQR0BaUuFHrhR7R0BBFmZmZmZmh3KoDAAAR0AqeVgQYk3TR0BaVU/fO2RaR0BBF87ZFocrh3KpDAAAR0Aqe+dsi0OWR0BaV87ZFocrR0BBGTdLxqfwh3KqDAAAR0AqfnbItDlYR0BaWdsi0OVgR0BBGn752yLRh3KrDAAAR0AqgQYk3S8bR0BaXEm6XjU/R0BBG+dsi0OWh3KsDAAAR0Aqg5WBBiTdR0BaXrhR64UfR0BBHU/fO2Rah3KtDAAAR0AqhaHKwIMSR0BaYMSbpeNUR0BBHpeNT987h3KuDAAAR0AqhiTdLxqgR0BaYSbpeNT+R0BBHrhR64Ufh3KvDAAAR0AqiDEm6XjVR0BaYzMzMzMzR0BBIAAAAAAAh3KwDAAAR0AqiLQ5WBBiR0BaY5WBBiTdR0BBIEGJN0vHh3KxDAAAR0Aqi0OVgQYlR0BaZaHKwIMSR0BBIWhysCDFh3KyDAAAR0AqjU/fO2RaR0BaZ64UeuFIR0BBIrAgxJumh3KzDAAAR0AqjdLxqfvnR0BaaBBiTdLyR0BBItDlYEGJh3K0DAAAR0Aqj987ZFodR0BaahysCDEnR0BBJBiTdLxqh3K1DAAAR0AqkvGp++dtR0BabItDlYEGR0BBJYEGJN0vh3K2DAAAR0AqlP3ztkWiR0BabpeNT987R0BBJsi0OVgQh3K3DAAAR0AqlYEGJN0vR0BabvnbItDlR0BBJul41P30h3K4DAAAR0Aql41P3ztkR0BacQYk3S8bR0BBKDEm6XjVh3K5DAAAR0Aqmp++dsi0R0Bac3S8an76R0BBKZmZmZmah3K6DAAAR0AqnKwIMSbpR0BadYEGJN0vR0BBKuFHrhR7h3K7DAAAR0AqnS8an753R0BadeNT987ZR0BBKyLQ5WBCh3K8DAAAR0Aqn752yLQ5R0Bad++dsi0OR0BBLEm6XjU/h3K9DAAAR0AqocrAgxJvR0BaefvnbItER0BBLZFocrAhh3K+DAAAR0Aqok3S8an8R0Bael41P3zuR0BBLdLxqfvnh3K/DAAAR0AqpN0vGp++R0BafGp++dsjR0BBLvnbItDlh3LADAAAR0AqqfvnbItER0BagOVgQYk3R0BBMan752yLh3LBDAAAR0Aqqn752yLRR0BagUeuFHrhR0BBMeuFHrhSh3LCDAAAR0AqrItDlYEGR0Bag1P3ztkXR0BBMzMzMzMzh3LDDAAAR0AqrxqfvnbJR0BahWBBiTdMR0BBNFocrAgxh3LEDAAAR0Aqsi0OVgQZR0Bah87ZFocrR0BBNeNT987Zh3LFDAAAR0AqtLxqfvnbR0Baii0OVgQZR0BBN0vGp++eh3LGDAAAR0Aqt0vGp++eR0BajDlYEGJOR0BBOJN0vGp/h3LHDAAAR0Aqt87ZFocrR0BajJul41P4R0BBONT987ZGh3LIDAAAR0Aqudsi0OVgR0BajqfvnbItR0BBOfvnbItEh3LJDAAAR0AqvO2RaHKwR0BakRaHKwIMR0BBO4UeuFHsh3LKDAAAR0AqvXCj1wo9R0BakWhysCDFR0BBO6XjU/fPh3LLDAAAR0Aqv3ztkWhzR0BakyLQ5WBCR0BBPKwIMSbph3LMDAAAR0AqwAAAAAAAR0Bak3S8an76R0BBPO2RaHKwh3LNDAAAR0Aqwo9cKPXDR0BalYEGJN0vR0BBPjU/fO2Rh3LODAAAR0AqwxJul41QR0BaleNT987ZR0BBPnbItDlYh3LPDAAAR0AqxR64UeuFR0Bal++dsi0OR0BBP52yLQ5Wh3LQDAAAR0AqxaHKwIMSR0BamFHrhR64R0BBP987ZFodh3LRDAAAR0Aqx64UeuFIR0BamfvnbItER0BBQOVgQYk3h3LSDAAAR0AqyDEm6XjVR0Bamk3S8an8R0BBQSbpeNT+h3LTDAAAR0AqysCDEm6YR0BanFocrAgxR0BBQk3S8an8h3LUDAAAR0Aqy0OVgQYlR0BanLxqfvnbR0BBQo9cKPXDh3LVDAAAR0AqzU/fO2RaR0BanmZmZmZmR0BBQ5WBBiTdh3LWDAAAR0AqzdLxqfvnR0Bansi0OVgQR0BBQ9cKPXCkh3LXDAAAR0Aq0OVgQYk3R0BaoSbpeNT+R0BBRT987ZFoh3LYDAAAR0Aq03S8an76R0BaozMzMzMzR0BBRocrAgxKh3LZDAAAR0Aq03S8an76R0Bao5WBBiTdR0BBRsi0OVgQh3LaDAAAR0Aq1gQYk3S8R0BapT987ZFoR0BBR87ZFocrh3LbDAAAR0Aq1gQYk3S8R0BapaHKwIMSR0BBSBBiTdLyh3LcDAAAR0Aq2JN0vGp/R0Bap64UeuFIR0BBSVgQYk3Th3LdDAAAR0Aq2RaHKwIMR0BaqAAAAAAAR0BBSXjU/fO2h3LeDAAAR0Aq3Cj1wo9cR0Baqm6XjU/fR0BBSwIMSbpeh3LfDAAAR0Aq3jU/fO2RR0BarBiTdLxqR0BBTAgxJul5h3LgDAAAR0Aq3rhR64UfR0BarHrhR64UR0BBTEm6XjU/h3LhDAAAR0Aq4UeuFHrhR0BarocrAgxKR0BBTZFocrAhh3LiDAAAR0Aq4crAgxJvR0BartkWhysCR0BBTbItDlYEh3LjDAAAR0Aq5FocrAgxR0BasOVgQYk3R0BBTvnbItDlh3LkDAAAR0Aq5ul41P30R0BasvGp++dtR0BBUEGJN0vHh3LlDAAAR0Aq6fvnbItER0BatU/fO2RaR0BBUan752yLh3LmDAAAR0Aq6n752yLRR0BatbItDlYER0BBUeuFHrhSh3LnDAAAR0Aq7Q5WBBiTR0Bat752yLQ5R0BBUzMzMzMzh3LoDAAAR0Aq752yLQ5WR0BaubpeNT99R0BBVHrhR64Uh3LpDAAAR0Aq8zMzMzMzR0BavCj1wo9cR0BBVgQYk3S8h3LqDAAAR0Aq9kWhysCDR0BavocrAgxKR0BBV2yLQ5WBh3LrDAAAR0Aq9si0OVgQR0Bavul41P30R0BBV64UeuFIh3LsDAAAR0Aq+NT987ZGR0BawJN0vGp/R0BBWLQ5WBBih3LtDAAAR0Aq++dsi0OWR0BawvGp++dtR0BBWj1wo9cKh3LuDAAAR0Aq/Gp++dsjR0Baw1P3ztkXR0BBWl41P3zuh3LvDAAAR0Aq/vnbItDlR0BaxU/fO2RaR0BBW6XjU/fPh3LwDAAAR0Aq/3ztkWhzR0BaxbItDlYER0BBW+dsi0OWh3LxDAAAR0ArAYk3S8aoR0Bax1wo9cKPR0BBXO2RaHKwh3LyDAAAR0ArAgxJul41R0Bax752yLQ5R0BBXS8an753h3LzDAAAR0ArBR64UeuFR0BaybpeNT99R0BBXnbItDlYh3L0DAAAR0ArBaHKwIMSR0BayhysCDEnR0BBXrhR64Ufh3L1DAAAR0ArB64UeuFIR0Bay8an752yR0BBX752yLQ5h3L2DAAAR0ArCDEm6XjVR0BazCj1wo9cR0BBYAAAAAAAh3L3DAAAR0ArCsCDEm6YR0BaziTdLxqgR0BBYUeuFHrhh3L4DAAAR0ArC0OVgQYlR0BazocrAgxKR0BBYWhysCDFh3L5DAAAR0ArDU/fO2RaR0Ba0DEm6XjVR0BBYm6XjU/fh3L6DAAAR0ArDdLxqfvnR0Ba0IMSbpeNR0BBYrAgxJumh3L7DAAAR0ArDlYEGJN1R0Ba0OVgQYk3R0BBYvGp++dth3L8DAAAR0ArEOVgQYk3R0Ba0o9cKPXDR0BBY/fO2RaHh3L9DAAAR0ArEWhysCDFR0Ba0vGp++dtR0BBZDlYEGJOh3L+DAAAR0ArE/fO2RaHR0Ba1O2RaHKwR0BBZYEGJN0vh3L/DAAAR0ArFHrhR64UR0Ba1U/fO2RaR0BBZcKPXCj2h3IADQAAR0ArFocrAgxKR0Ba1vnbItDlR0BBZsi0OVgQh3IBDQAAR0ArFwo9cKPXR0Ba10vGp++eR0BBZwo9cKPXh3ICDQAAR0ArF41P3ztkR0Ba164UeuFIR0BBZysCDEm6h3IDDQAAR0ArGhysCDEnR0Ba2VgQYk3TR0BBaFHrhR64h3IEDQAAR0ArGp++dsi0R0Ba2bpeNT99R0BBaHKwIMSch3IFDQAAR0ArHS8an753R0Ba27ZFocrBR0BBabpeNT99h3IGDQAAR0ArHbItDlYER0Ba3BiTdLxqR0BBafvnbItEh3IHDQAAR0ArIEGJN0vHR0Ba3cKPXCj2R0BBawIMSbpeh3IIDQAAR0ArI1P3ztkXR0Ba4CDEm6XjR0BBbItDlYEGh3IJDQAAR0ArI9cKPXCkR0Ba4IMSbpeNR0BBbMzMzMzNh3IKDQAAR0ArJmZmZmZmR0Ba4n752yLRR0BBbhR64Ueuh3ILDQAAR0ArJul41P30R0Ba4uFHrhR7R0BBblYEGJN1h3IMDQAAR0ArKXjU/fO2R0Ba5ItDlYEGR0BBb1wo9cKPh3INDQAAR0ArLItDlYEGR0Ba5ul41P30R0BBcOVgQYk3h3IODQAAR0ArLQ5WBBiTR0Ba5ztkWhysR0BBcQYk3S8bh3IPDQAAR0ArMCDEm6XjR0Ba6UeuFHrhR0BBck3S8an8h3IQDQAAR0ArMrAgxJumR0Ba60OVgQYlR0BBc5WBBiTdh3IRDQAAR0ArNkWhysCDR0Ba7aHKwIMSR0BBdR64UeuFh3ISDQAAR0ArOdsi0OVgR0Ba8AAAAAAAR0BBdqfvnbIth3ITDQAAR0ArOl41P3zuR0Ba8GJN0vGqR0BBdul41P30h3IUDQAAR0ArPGp++dsjR0Ba8gxJul41R0BBd++dsi0Oh3IVDQAAR0ArPO2RaHKwR0Ba8l41P3zuR0BBeDEm6XjVh3IWDQAAR0ArQAAAAAAAR0Ba9Gp++dsjR0BBeXjU/fO2h3IXDQAAR0ArQIMSbpeNR0Ba9LxqfvnbR0BBebpeNT99h3IYDQAAR0ArQxJul41QR0Ba9si0OVgQR0BBewIMSbpeh3IZDQAAR0ArQ5WBBiTdR0Ba9xqfvnbJR0BBe0OVgQYlh3IaDQAAR0ArRiTdLxqgR0Ba+MSbpeNUR0BBfEm6XjU/h3IbDQAAR0ArRqfvnbItR0Ba+SbpeNT+R0BBfItDlYEGh3IcDQAAR0ArSbpeNT99R0Ba+yLQ5WBCR0BBfdLxqfvnh3IdDQAAR0ArSj1wo9cKR0Ba+4UeuFHsR0BBfhR64Ueuh3IeDQAAR0ArTEm6XjU/R0Ba/S8an753R0BBfxqfvnbJh3IfDQAAR0ArTMzMzMzNR0Ba/YEGJN0vR0BBf1wo9cKPh3IgDQAAR0ArTdLxqfvnR0Ba/eNT987ZR0BBf52yLQ5Wh3IhDQAAR0ArT987ZFodR0Ba/3ztkWhzR0BBgKPXCj1xh3IiDQAAR0ArUGJN0vGqR0Ba/987ZFodR0BBgOVgQYk3h3IjDQAAR0ArU3S8an76R0BbAdsi0OVgR0BBgi0OVgQZh3IkDQAAR0ArU/fO2RaHR0BbAj1wo9cKR0BBgm6XjU/fh3IlDQAAR0ArVocrAgxKR0BbA+dsi0OWR0BBg3S8an76h3ImDQAAR0ArVwo9cKPXR0BbBDlYEGJOR0BBg7ZFocrBh3InDQAAR0ArV41P3ztkR0BbBJul41P4R0BBg9cKPXCkh3IoDQAAR0ArWZmZmZmaR0BbBkWhysCDR0BBhP3ztkWih3IpDQAAR0ArWhysCDEnR0BbBpeNT987R0BBhT987ZFoh3IqDQAAR0ArXKwIMSbpR0BbCEGJN0vHR0BBhkWhysCDh3IrDQAAR0ArXS8an753R0BbCJN0vGp/R0BBhocrAgxKh3IsDQAAR0ArXbItDlYER0BbCPXCj1wpR0BBhsi0OVgQh3ItDQAAR0ArYEGJN0vHR0BbCp++dsi0R0BBh87ZFocrh3IuDQAAR0ArYMSbpeNUR0BbCvGp++dtR0BBiBBiTdLyh3IvDQAAR0ArY9cKPXCkR0BbDP3ztkWiR0BBiVgQYk3Th3IwDQAAR0ArZFocrAgxR0BbDU/fO2RaR0BBiZmZmZmah3IxDQAAR0ArZul41P30R0BbDvnbItDlR0BBip++dsi0h3IyDQAAR0ArZ2yLQ5WBR0BbD1wo9cKPR0BBiuFHrhR7h3IzDQAAR0ArZ++dsi0OR0BbD64UeuFIR0BBiyLQ5WBCh3I0DQAAR0Aran752yLRR0BbEVgQYk3TR0BBjCj1wo9ch3I1DQAAR0ArbZFocrAhR0BbE7ZFocrBR0BBjbItDlYEh3I2DQAAR0ArbhR64UeuR0BbFAgxJul5R0BBjfO2RaHLh3I3DQAAR0ArcKPXCj1xR0BbFbItDlYER0BBjvnbItDlh3I4DQAAR0ArcSbpeNT+R0BbFgQYk3S8R0BBjztkWhysh3I5DQAAR0ArdDlYEGJOR0BbGBBiTdLyR0BBkIMSbpeNh3I6DQAAR0Ard87ZFocrR0BbGl41P3zuR0BBkgxJul41h3I7DQAAR0AreFHrhR64R0BbGsCDEm6YR0BBkk3S8an8h3I8DQAAR0AreuFHrhR7R0BbHFocrAgxR0BBk1P3ztkXh3I9DQAAR0Are2RaHKwIR0BbHLxqfvnbR0BBk5WBBiTdh3I+DQAAR0ArfnbItDlYR0BbHrhR64UfR0BBlN0vGp++h3I/DQAAR0ArggxJul41R0BbIRaHKwIMR0BBlmZmZmZmh3JADQAAR0ArhR64UeuFR0BbIxJul41QR0BBl64UeuFIh3JBDQAAR0ArhaHKwIMSR0BbI3S8an76R0BBl++dsi0Oh3JCDQAAR0ArhiTdLxqgR0BbI8an752yR0BBmDEm6XjVh3JDDQAAR0AriLQ5WBBiR0BbJXCj1wo9R0BBmVgQYk3Th3JEDQAAR0ArjEm6XjU/R0BbJ87ZFocrR0BBmuFHrhR7h3JFDQAAR0ArjMzMzMzNR0BbKCDEm6XjR0BBmwIMSbpeh3JGDQAAR0Arj1wo9cKPR0BbKcrAgxJvR0BBnCj1wo9ch3JHDQAAR0Arj987ZFodR0BbKhysCDEnR0BBnGp++dsjh3JIDQAAR0ArkOVgQYk3R0BbKn752yLRR0BBnKwIMSbph3JJDQAAR0ArkvGp++dtR0BbLBiTdLxqR0BBnbItDlYEh3JKDQAAR0Ark/fO2RaHR0BbLHrhR64UR0BBnfO2RaHLh3JLDQAAR0ArlocrAgxKR0BbLiTdLxqgR0BBnvnbItDlh3JMDQAAR0Arlwo9cKPXR0BbLnbItDlYR0BBnztkWhysh3JNDQAAR0Arl41P3ztkR0BbLtkWhysCR0BBn3ztkWhzh3JODQAAR0ArmhysCDEnR0BbMHKwIMScR0BBoIMSbpeNh3JPDQAAR0Armp++dsi0R0BbMNT987ZGR0BBoMSbpeNUh3JQDQAAR0ArnbItDlYER0BbMtDlYEGJR0BBogxJul41h3JRDQAAR0ArnjU/fO2RR0BbMyLQ5WBCR0BBok3S8an8h3JSDQAAR0AroMSbpeNUR0BbNMzMzMzNR0BBo3S8an76h3JTDQAAR0AroUeuFHrhR0BbNR64UeuFR0BBo5WBBiTdh3JUDQAAR0ArocrAgxJvR0BbNYEGJN0vR0BBo9cKPXCkh3JVDQAAR0ArpFocrAgxR0BbNxqfvnbJR0BBpP3ztkWih3JWDQAAR0ArpN0vGp++R0BbN3ztkWhzR0BBpT987ZFoh3JXDQAAR0Arp++dsi0OR0BbOXjU/fO2R0BBpocrAgxKh3JYDQAAR0ArqPXCj1wpR0BbOcrAgxJvR0BBpsi0OVgQh3JZDQAAR0Arq4UeuFHsR0BbO3S8an76R0BBp87ZFocrh3JaDQAAR0ArrAgxJul5R0BbO8an752yR0BBqBBiTdLyh3JbDQAAR0ArrItDlYEGR0BbPCj1wo9cR0BBqFHrhR64h3JcDQAAR0ArrxqfvnbJR0BbPdLxqfvnR0BBqVgQYk3Th3JdDQAAR0Arr52yLQ5WR0BbPiTdLxqgR0BBqZmZmZmah3JeDQAAR0ArsrAgxJumR0BbQCDEm6XjR0BBquFHrhR7h3JfDQAAR0ArszMzMzMzR0BbQIMSbpeNR0BBqyLQ5WBCh3JgDQAAR0ArtcKPXCj2R0BbQhysCDEnR0BBrEm6XjU/h3JhDQAAR0Arudsi0OVgR0BbRHrhR64UR0BBrdLxqfvnh3JiDQAAR0Arul41P3zuR0BbRMzMzMzNR0BBrhR64Ueuh3JjDQAAR0ArvO2RaHKwR0BbRnbItDlYR0BBrxqfvnbJh3JkDQAAR0ArvXCj1wo9R0BbRsi0OVgQR0BBr1wo9cKPh3JlDQAAR0ArvfO2RaHLR0BbRysCDEm6R0BBr52yLQ5Wh3JmDQAAR0ArwIMSbpeNR0BbSMSbpeNUR0BBsKPXCj1xh3JnDQAAR0ArxJul41P4R0BbSyLQ5WBCR0BBsk3S8an8h3JoDQAAR0Arx64UeuFIR0BbTQ5WBBiTR0BBs5WBBiTdh3JpDQAAR0AryDEm6XjVR0BbTXCj1wo9R0BBs9cKPXCkh3JqDQAAR0Ary0OVgQYlR0BbT2yLQ5WBR0BBtR64UeuFh3JrDQAAR0ArzMzMzMzNR0BbUCDEm6XjR0BBtaHKwIMSh3JsDQAAR0Arz1wo9cKPR0BbUbpeNT99R0BBtqfvnbIth3JtDQAAR0Ar0vGp++dtR0BbVBiTdLxqR0BBuFHrhR64h3JuDQAAR0Ar03S8an76R0BbVGp++dsjR0BBuHKwIMSch3JvDQAAR0Ar1ocrAgxKR0BbVhR64UeuR0BBuZmZmZmah3JwDQAAR0Ar1wo9cKPXR0BbVmZmZmZmR0BBudsi0OVgh3JxDQAAR0Ar141P3ztkR0BbVsi0OVgQR0BBuhysCDEnh3JyDQAAR0Ar2hysCDEnR0BbWGJN0vGqR0BBuyLQ5WBCh3JzDQAAR0Ar2p++dsi0R0BbWMSbpeNUR0BBu2RaHKwIh3J0DQAAR0Ar3bItDlYER0BbWl41P3zuR0BBvItDlYEGh3J1DQAAR0Ar3jU/fO2RR0BbWrAgxJumR0BBvKwIMSbph3J2DQAAR0Ar3rhR64UfR0BbWxJul41QR0BBvO2RaHKwh3J3DQAAR0Ar4UeuFHrhR0BbXKwIMSbpR0BBvhR64Ueuh3J4DQAAR0Ar4crAgxJvR0BbXQ5WBBiTR0BBvlYEGJN1h3J5DQAAR0Ar5WBBiTdMR0BbXwo9cKPXR0BBv52yLQ5Wh3J6DQAAR0Ar5eNT987ZR0BbX1wo9cKPR0BBv987ZFodh3J7DQAAR0Ar6HKwIMScR0BbYQYk3S8bR0BBwOVgQYk3h3J8DQAAR0Ar6PXCj1wpR0BbYVgQYk3TR0BBwSbpeNT+h3J9DQAAR0Ar6XjU/fO2R0BbYbpeNT99R0BBwWhysCDFh3J+DQAAR0Ar7ItDlYEGR0BbY1P3ztkXR0BBwo9cKPXDh3J/DQAAR0Ar7Q5WBBiTR0BbY6XjU/fPR0BBwtDlYEGJh3KADQAAR0Ar752yLQ5WR0BbZU/fO2RaR0BBw9cKPXCkh3KBDQAAR0Ar8CDEm6XjR0BbZaHKwIMSR0BBxBiTdLxqh3KCDQAAR0Ar8KPXCj1xR0BbZgQYk3S8R0BBxFocrAgxh3KDDQAAR0Ar87ZFocrBR0BbZ52yLQ5WR0BBxWBBiTdMh3KEDQAAR0Ar9DlYEGJOR0BbZ++dsi0OR0BBxaHKwIMSh3KFDQAAR0Ar9LxqfvnbR0BbaFHrhR64R0BBxeNT987Zh3KGDQAAR0Ar90vGp++eR0BbaeuFHrhSR0BBxwo9cKPXh3KHDQAAR0Ar+FHrhR64R0Bbak3S8an8R0BBx0vGp++eh3KIDQAAR0Ar+uFHrhR7R0Bba+dsi0OWR0BByFHrhR64h3KJDQAAR0Ar+2RaHKwIR0BbbEm6XjU/R0BByJN0vGp/h3KKDQAAR0Ar++dsi0OWR0BbbJul41P4R0BByNT987ZGh3KLDQAAR0Ar/vnbItDlR0BbbjU/fO2RR0BBydsi0OVgh3KMDQAAR0AsAo9cKPXDR0BbcJN0vGp/R0BBy4UeuFHsh3KNDQAAR0AsA5WBBiTdR0BbcOVgQYk3R0BBy8an752yh3KODQAAR0AsBiTdLxqgR0Bbcn752yLRR0BBzMzMzMzNh3KPDQAAR0AsBqfvnbItR0BbcuFHrhR7R0BBzQ5WBBiTh3KQDQAAR0AsBysCDEm6R0BbczMzMzMzR0BBzU/fO2Rah3KRDQAAR0AsCj1wo9cKR0BbdN0vGp++R0BBznbItDlYh3KSDQAAR0AsDdLxqfvnR0BbdysCDEm6R0BB0AAAAAAAh3KTDQAAR0AsDtkWhysCR0Bbd3ztkWhzR0BB0EGJN0vHh3KUDQAAR0AsEWhysCDFR0BbeSbpeNT+R0BB0UeuFHrhh3KVDQAAR0AsEeuFHrhSR0BbeXjU/fO2R0BB0Yk3S8aoh3KWDQAAR0AsFYEGJN0vR0Bbe3S8an76R0BB0vGp++dth3KXDQAAR0AsGZmZmZmaR0BbfcKPXCj2R0BB1HrhR64Uh3KYDQAAR0AsHKwIMSbpR0Bbf752yLQ5R0BB1eNT987Zh3KZDQAAR0AsHbItDlYER0BbgBBiTdLyR0BB1iTdLxqgh3KaDQAAR0AsIMSbpeNUR0BbggxJul41R0BB12yLQ5WBh3KbDQAAR0AsIk3S8an8R0BbgsCDEm6YR0BB1++dsi0Oh3KcDQAAR0AsJN0vGp++R0BbhFocrAgxR0BB2PXCj1wph3KdDQAAR0AsKHKwIMScR0BbhlYEGJN1R0BB2l41P3zuh3KeDQAAR0AsKPXCj1wpR0BbhqfvnbItR0BB2p++dsi0h3KfDQAAR0AsKXjU/fO2R0Bbhwo9cKPXR0BB2uFHrhR7h3KgDQAAR0AsLItDlYEGR0BbiKPXCj1xR0BB2+dsi0OWh3KhDQAAR0AsLQ5WBBiTR0BbiPXCj1wpR0BB3Cj1wo9ch3KiDQAAR0AsL52yLQ5WR0Bbip++dsi0R0BB3U/fO2Rah3KjDQAAR0AsMKPXCj1xR0BbivGp++dtR0BB3ZFocrAhh3KkDQAAR0AsMSbpeNT+R0Bbi0OVgQYlR0BB3dLxqfvnh3KlDQAAR0AsM7ZFocrBR0BbjN0vGp++R0BB3tkWhysCh3KmDQAAR0AsNDlYEGJOR0BbjT987ZFoR0BB3xqfvnbJh3KnDQAAR0AsNT987ZFoR0BbjaHKwIMSR0BB31wo9cKPh3KoDQAAR0AsN87ZFocrR0BbjztkWhysR0BB4IMSbpeNh3KpDQAAR0AsOFHrhR64R0Bbj41P3ztkR0BB4MSbpeNUh3KqDQAAR0AsO2RaHKwIR0BbkSbpeNT+R0BB4crAgxJvh3KrDQAAR0AsO+dsi0OWR0BbkYk3S8aoR0BB4gxJul41h3KsDQAAR0AsPGp++dsjR0Bbkdsi0OVgR0BB4k3S8an8h3KtDQAAR0AsP3ztkWhzR0Bbk3S8an76R0BB43S8an76h3KuDQAAR0AsQAAAAAAAR0Bbk9cKPXCkR0BB47ZFocrBh3KvDQAAR0AsQIMSbpeNR0BblCj1wo9cR0BB4/fO2RaHh3KwDQAAR0AsQ5WBBiTdR0BblcKPXCj2R0BB5P3ztkWih3KxDQAAR0AsRBiTdLxqR0BbliTdLxqgR0BB5T987ZFoh3KyDQAAR0AsRysCDEm6R0Bbl752yLQ5R0BB5mZmZmZmh3KzDQAAR0AsR64UeuFIR0BbmBBiTdLyR0BB5qfvnbIth3K0DQAAR0AsSDEm6XjVR0BbmHKwIMScR0BB5ul41P30h3K1DQAAR0AsS0OVgQYlR0BbmgxJul41R0BB5++dsi0Oh3K2DQAAR0AsS8an752yR0Bbml41P3zuR0BB6DEm6XjVh3K3DQAAR0AsTtkWhysCR0BbnAgxJul5R0BB6VgQYk3Th3K4DQAAR0AsT1wo9cKPR0BbnFocrAgxR0BB6ZmZmZmah3K5DQAAR0AsT987ZFodR0BbnKwIMSbpR0BB6dsi0OVgh3K6DQAAR0AsUvGp++dtR0BbnlYEGJN1R0BB6uFHrhR7h3K7DQAAR0AsU3S8an76R0BbnqfvnbItR0BB6yLQ5WBCh3K8DQAAR0AsU/fO2RaHR0BbnvnbItDlR0BB62RaHKwIh3K9DQAAR0AsVwo9cKPXR0BboKPXCj1xR0BB7ItDlYEGh3K+DQAAR0AsV41P3ztkR0BboPXCj1wpR0BB7MzMzMzNh3K/DQAAR0AsWp++dsi0R0Bboo9cKPXDR0BB7dLxqfvnh3LADQAAR0AsWyLQ5WBCR0BbovGp++dtR0BB7hR64Ueuh3LBDQAAR0AsW6XjU/fPR0Bbo0OVgQYlR0BB7lYEGJN1h3LCDQAAR0AsXrhR64UfR0BbpN0vGp++R0BB73ztkWhzh3LDDQAAR0AsYtDlYEGJR0BbpysCDEm6R0BB8QYk3S8bh3LEDQAAR0AsZmZmZmZmR0BbqRaHKwIMR0BB8m6XjU/fh3LFDQAAR0AsZul41P30R0BbqXjU/fO2R0BB8rAgxJumh3LGDQAAR0Asan752yLRR0Bbq2RaHKwIR0BB9BiTdLxqh3LHDQAAR0AsbpeNT987R0BbrbItDlYER0BB9aHKwIMSh3LIDQAAR0Asci0OVgQZR0Bbr64UeuFIR0BB9wo9cKPXh3LJDQAAR0AsczMzMzMzR0BbsAAAAAAAR0BB90vGp++eh3LKDQAAR0Asdsi0OVgQR0BbsfvnbItER0BB+JN0vGp/h3LLDQAAR0Asd87ZFocrR0BbsrAgxJumR0BB+RaHKwIMh3LMDQAAR0AseuFHrhR7R0BbtEm6XjU/R0BB+j1wo9cKh3LNDQAAR0AsfnbItDlYR0BbtjU/fO2RR0BB+4UeuFHsh3LODQAAR0AsfvnbItDlR0BbtpeNT987R0BB+8an752yh3LPDQAAR0Asf3ztkWhzR0Bbtul41P30R0BB/AgxJul5h3LQDQAAR0Asgo9cKPXDR0BbuIMSbpeNR0BB/S8an753h3LRDQAAR0AsgxJul41QR0BbuNT987ZGR0BB/XCj1wo9h3LSDQAAR0AshBiTdLxqR0BbuTdLxqfwR0BB/bItDlYEh3LTDQAAR0AshqfvnbItR0BbutDlYEGJR0BB/tkWhysCh3LUDQAAR0Ash64UeuFIR0BbuyLQ5WBCR0BB/xqfvnbJh3LVDQAAR0Asij1wo9cKR0BbvLxqfvnbR0BCACDEm6Xjh3LWDQAAR0Asi0OVgQYlR0BbvR64UeuFR0BCAGJN0vGqh3LXDQAAR0Asi8an752yR0BbvXCj1wo9R0BCAKPXCj1xh3LYDQAAR0AsjtkWhysCR0Bbvwo9cKPXR0BCAcrAgxJvh3LZDQAAR0Asj1wo9cKPR0Bbv1wo9cKPR0BCAgxJul41h3LaDQAAR0Asj987ZFodR0Bbv752yLQ5R0BCAk3S8an8h3LbDQAAR0Askm6XjU/fR0BbwQYk3S8bR0BCAzMzMzMzh3LcDQAAR0AskvGp++dtR0BbwVgQYk3TR0BCA1P3ztkXh3LdDQAAR0Ask3S8an76R0Bbwan752yLR0BCA5WBBiTdh3LeDQAAR0AslocrAgxKR0Bbw0OVgQYlR0BCBLxqfvnbh3LfDQAAR0Asl41P3ztkR0Bbw6XjU/fPR0BCBP3ztkWih3LgDQAAR0AsmBBiTdLyR0Bbw/fO2RaHR0BCBT987ZFoh3LhDQAAR0AsmyLQ5WBCR0BbxZFocrAhR0BCBmZmZmZmh3LiDQAAR0Asm6XjU/fPR0BbxeNT987ZR0BCBqfvnbIth3LjDQAAR0AsnrhR64UfR0Bbx3ztkWhzR0BCB87ZFocrh3LkDQAAR0AsnztkWhysR0Bbx987ZFodR0BCB++dsi0Oh3LlDQAAR0Asn752yLQ5R0BbyDEm6XjVR0BCCDEm6XjVh3LmDQAAR0AsotDlYEGJR0BbycrAgxJvR0BCCVgQYk3Th3LnDQAAR0Aso1P3ztkXR0Bbyi0OVgQZR0BCCZmZmZmah3LoDQAAR0AspFocrAgxR0Bbyn752yLRR0BCCdsi0OVgh3LpDQAAR0Asp2yLQ5WBR0BbzBiTdLxqR0BCCwIMSbpeh3LqDQAAR0Asp++dsi0OR0BbzGp++dsjR0BCC0OVgQYlh3LrDQAAR0AsqwIMSbpeR0BbzgQYk3S8R0BCDEm6XjU/h3LsDQAAR0Asq4UeuFHsR0BbzmZmZmZmR0BCDItDlYEGh3LtDQAAR0AsrAgxJul5R0BbzrhR64UfR0BCDMzMzMzNh3LuDQAAR0AsrxqfvnbJR0Bb0FHrhR64R0BCDfO2RaHLh3LvDQAAR0Ass7ZFocrBR0Bb0p++dsi0R0BCD52yLQ5Wh3LwDQAAR0AstDlYEGJOR0Bb0vGp++dtR0BCD987ZFodh3LxDQAAR0Ast0vGp++eR0Bb1ItDlYEGR0BCEQYk3S8bh3LyDQAAR0Asu2RaHKwIR0Bb1tkWhysCR0BCEo9cKPXDh3LzDQAAR0Asv3ztkWhzR0Bb2MSbpeNUR0BCE/fO2RaHh3L0DQAAR0AswAAAAAAAR0Bb2SbpeNT+R0BCFDlYEGJOh3L1DQAAR0Asw5WBBiTdR0Bb2xJul41QR0BCFaHKwIMSh3L2DQAAR0AsyDEm6XjVR0Bb3U/fO2RaR0BCFysCDEm6h3L3DQAAR0AsyTdLxqfwR0Bb3gQYk3S8R0BCF64UeuFIh3L4DQAAR0Asy8an752yR0Bb30vGp++eR0BCGJN0vGp/h3L5DQAAR0AszEm6XjU/R0Bb352yLQ5WR0BCGNT987ZGh3L6DQAAR0As0GJN0vGqR0Bb4Yk3S8aoR0BCGj1wo9cKh3L7DQAAR0As0OVgQYk3R0Bb4euFHrhSR0BCGn752yLRh3L8DQAAR0As0WhysCDFR0Bb4j1wo9cKR0BCGsCDEm6Yh3L9DQAAR0As1HrhR64UR0Bb49cKPXCkR0BCG8an752yh3L+DQAAR0As1gQYk3S8R0Bb5ItDlYEGR0BCHEm6XjU/h3L/DQAAR0As2JN0vGp/R0Bb5cKPXCj2R0BCHS8an753h3IADgAAR0As2RaHKwIMR0Bb5iTdLxqgR0BCHXCj1wo9h3IBDgAAR0As2ZmZmZmaR0Bb5nbItDlYR0BCHbItDlYEh3ICDgAAR0As3KwIMSbpR0Bb6BBiTdLyR0BCHtkWhysCh3IDDgAAR0As3bItDlYER0Bb6GJN0vGqR0BCHxqfvnbJh3IEDgAAR0As3jU/fO2RR0Bb6MSbpeNUR0BCH1wo9cKPh3IFDgAAR0As4UeuFHrhR0Bb6k3S8an8R0BCIIMSbpeNh3IGDgAAR0As4crAgxJvR0Bb6rAgxJumR0BCIMSbpeNUh3IHDgAAR0As4tDlYEGJR0Bb6wIMSbpeR0BCIQYk3S8bh3IIDgAAR0As5N0vGp++R0Bb7Em6XjU/R0BCIcrAgxJvh3IJDgAAR0As5eNT987ZR0Bb7Jul41P4R0BCIgxJul41h3IKDgAAR0As5mZmZmZmR0Bb7P3ztkWiR0BCIk3S8an8h3ILDgAAR0As6XjU/fO2R0Bb7ocrAgxKR0BCI3S8an76h3IMDgAAR0As6fvnbItER0Bb7ul41P30R0BCI7ZFocrBh3INDgAAR0As6wIMSbpeR0Bb7ztkWhysR0BCI/fO2RaHh3IODgAAR0As7hR64UeuR0Bb8NT987ZGR0BCJR64UeuFh3IPDgAAR0As7peNT987R0Bb8SbpeNT+R0BCJWBBiTdMh3IQDgAAR0As8an752yLR0Bb8sCDEm6YR0BCJocrAgxKh3IRDgAAR0As8i0OVgQZR0Bb8xJul41QR0BCJsi0OVgQh3ISDgAAR0As8zMzMzMzR0Bb83S8an76R0BCJwo9cKPXh3ITDgAAR0As9kWhysCDR0Bb9P3ztkWiR0BCKDEm6XjVh3IUDgAAR0As9si0OVgQR0Bb9WBBiTdMR0BCKHKwIMSch3IVDgAAR0As90vGp++eR0Bb9bItDlYER0BCKJN0vGp/h3IWDgAAR0As+l41P3zuR0Bb90vGp++eR0BCKbpeNT99h3IXDgAAR0As+2RaHKwIR0Bb964UeuFIR0BCKfvnbItEh3IYDgAAR0As/nbItDlYR0Bb+TdLxqfwR0BCKyLQ5WBCh3IZDgAAR0As/vnbItDlR0Bb+ZmZmZmaR0BCK2RaHKwIh3IaDgAAR0AtAAAAAAAAR0Bb+euFHrhSR0BCK6XjU/fPh3IbDgAAR0AtAxJul41QR0Bb+4UeuFHsR0BCLMzMzMzNh3IcDgAAR0AtA5WBBiTdR0Bb+9cKPXCkR0BCLQ5WBBiTh3IdDgAAR0AtBqfvnbItR0Bb/XCj1wo9R0BCLjU/fO2Rh3IeDgAAR0AtBysCDEm6R0Bb/cKPXCj2R0BCLnbItDlYh3IfDgAAR0AtCDEm6XjVR0Bb/iTdLxqgR0BCLrhR64Ufh3IgDgAAR0AtC0OVgQYlR0Bb/752yLQ5R0BCL987ZFodh3IhDgAAR0AtC8an752yR0BcABBiTdLyR0BCMCDEm6Xjh3IiDgAAR0AtDMzMzMzNR0BcAGJN0vGqR0BCMGJN0vGqh3IjDgAAR0AtD987ZFodR0BcAfvnbItER0BCMWhysCDFh3IkDgAAR0AtEGJN0vGqR0BcAk3S8an8R0BCMan752yLh3IlDgAAR0AtE3S8an76R0BcA+dsi0OWR0BCMtDlYEGJh3ImDgAAR0AtFP3ztkWiR0BcBJul41P4R0BCM1P3ztkXh3InDgAAR0AtGBBiTdLyR0BcBjU/fO2RR0BCNHrhR64Uh3IoDgAAR0AtHKwIMSbpR0BcCHKwIMScR0BCNiTdLxqgh3IpDgAAR0AtHjU/fO2RR0BcCSbpeNT+R0BCNqfvnbIth3IqDgAAR0AtIMSbpeNUR0BcCl41P3zuR0BCN41P3ztkh3IrDgAAR0AtItDlYEGJR0BcC2RaHKwIR0BCOFHrhR64h3IsDgAAR0AtJN0vGp++R0BcDKwIMSbpR0BCOTdLxqfwh3ItDgAAR0AtKPXCj1wpR0BcDpeNT987R0BCOp++dsi0h3IuDgAAR0AtKXjU/fO2R0BcDul41P30R0BCOsCDEm6Yh3IvDgAAR0AtKwIMSbpeR0BcD52yLQ5WR0BCO0OVgQYlh3IwDgAAR0AtLZFocrAhR0BcENT987ZGR0BCPCj1wo9ch3IxDgAAR0AtLhR64UeuR0BcESbpeNT+R0BCPGp++dsjh3IyDgAAR0AtL52yLQ5WR0BcEdsi0OVgR0BCPO2RaHKwh3IzDgAAR0AtMi0OVgQZR0BcExJul41QR0BCPdLxqfvnh3I0DgAAR0AtM7ZFocrBR0BcE8an752yR0BCPlYEGJN1h3I1DgAAR0AtNcKPXCj2R0BcFP3ztkWiR0BCPztkWhysh3I2DgAAR0AtNsi0OVgQR0BcFWBBiTdMR0BCP3ztkWhzh3I3DgAAR0AtOFHrhR64R0BcFhR64UeuR0BCQAAAAAAAh3I4DgAAR0AtOl41P3zuR0BcF0vGp++eR0BCQOVgQYk3h3I5DgAAR0AtO2RaHKwIR0BcF52yLQ5WR0BCQSbpeNT+h3I6DgAAR0AtO+dsi0OWR0BcGAAAAAAAR0BCQWhysCDFh3I7DgAAR0AtPvnbItDlR0BcGYk3S8aoR0BCQo9cKPXDh3I8DgAAR0AtQAAAAAAAR0BcGeuFHrhSR0BCQtDlYEGJh3I9DgAAR0AtQIMSbpeNR0BcGj1wo9cKR0BCQxJul41Qh3I+DgAAR0AtQxJul41QR0BcG3S8an76R0BCQ/fO2RaHh3I/DgAAR0AtQ5WBBiTdR0BcG9cKPXCkR0BCRDlYEGJOh3JADgAAR0AtRJul41P4R0BcHCj1wo9cR0BCRHrhR64Uh3JBDgAAR0AtRR64UeuFR0BcHItDlYEGR0BCRLxqfvnbh3JCDgAAR0AtR64UeuFIR0BcHcKPXCj2R0BCRaHKwIMSh3JDDgAAR0AtSDEm6XjVR0BcHhR64UeuR0BCReNT987Zh3JEDgAAR0AtSTdLxqfwR0BcHmZmZmZmR0BCRiTdLxqgh3JFDgAAR0AtTEm6XjU/R0BcIAAAAAAAR0BCR0vGp++eh3JGDgAAR0AtTMzMzMzNR0BcIFHrhR64R0BCR41P3ztkh3JHDgAAR0AtTdLxqfvnR0BcILQ5WBBiR0BCR87ZFocrh3JIDgAAR0AtUGJN0vGqR0BcIeuFHrhSR0BCSJN0vGp/h3JJDgAAR0AtUOVgQYk3R0BcIj1wo9cKR0BCSNT987ZGh3JKDgAAR0AtUeuFHrhSR0BcIp++dsi0R0BCSRaHKwIMh3JLDgAAR0AtVP3ztkWiR0BcJCj1wo9cR0BCSj1wo9cKh3JMDgAAR0AtVYEGJN0vR0BcJItDlYEGR0BCSn752yLRh3JNDgAAR0AtVocrAgxKR0BcJN0vGp++R0BCSsCDEm6Yh3JODgAAR0AtWZmZmZmaR0BcJnbItDlYR0BCS+dsi0OWh3JPDgAAR0AtWhysCDEnR0BcJsi0OVgQR0BCTCj1wo9ch3JQDgAAR0AtWyLQ5WBCR0BcJxqfvnbJR0BCTGp++dsjh3JRDgAAR0AtXbItDlYER0BcKFHrhR64R0BCTU/fO2Rah3JSDgAAR0AtXjU/fO2RR0BcKLQ5WBBiR0BCTZFocrAhh3JTDgAAR0AtXrhR64UfR0BcKQYk3S8bR0BCTdLxqfvnh3JUDgAAR0AtYk3S8an8R0BcKp++dsi0R0BCTvnbItDlh3JVDgAAR0AtYtDlYEGJR0BcKvGp++dtR0BCTztkWhysh3JWDgAAR0AtY1P3ztkXR0BcK1P3ztkXR0BCT3ztkWhzh3JXDgAAR0AtZul41P30R0BcLN0vGp++R0BCUKPXCj1xh3JYDgAAR0AtZ2yLQ5WBR0BcLT987ZFoR0BCUOVgQYk3h3JZDgAAR0AtawIMSbpeR0BcLsi0OVgQR0BCUgxJul41h3JaDgAAR0Ata4UeuFHsR0BcLxqfvnbJR0BCUk3S8an8h3JbDgAAR0AtbAgxJul5R0BcL3ztkWhzR0BCUo9cKPXDh3JcDgAAR0Atb52yLQ5WR0BcMRaHKwIMR0BCU7ZFocrBh3JdDgAAR0AtczMzMzMzR0BcMvGp++dtR0BCVR64UeuFh3JeDgAAR0AtdDlYEGJOR0BcM1P3ztkXR0BCVWBBiTdMh3JfDgAAR0AtdLxqfvnbR0BcM6XjU/fPR0BCVaHKwIMSh3JgDgAAR0AteFHrhR64R0BcNT987ZFoR0BCVsi0OVgQh3JhDgAAR0Atel41P3zuR0BcNkWhysCDR0BCV41P3ztkh3JiDgAAR0AtfO2RaHKwR0BcN3ztkWhzR0BCWHKwIMSch3JjDgAAR0AtgQYk3S8bR0BcOWhysCDFR0BCWdsi0OVgh3JkDgAAR0AtgxJul41QR0BcOm6XjU/fR0BCWp++dsi0h3JlDgAAR0AthaHKwIMSR0BcO6XjU/fPR0BCW4UeuFHsh3JmDgAAR0Ath64UeuFIR0BcPKwIMSbpR0BCXEm6XjU/h3JnDgAAR0Atij1wo9cKR0BcPeNT987ZR0BCXS8an753h3JoDgAAR0Ati8an752yR0BcPpeNT987R0BCXbItDlYEh3JpDgAAR0AtjlYEGJN1R0BcP87ZFocrR0BCXpeNT987h3JqDgAAR0AtjtkWhysCR0BcQDEm6XjVR0BCXtkWhysCh3JrDgAAR0AtkGJN0vGqR0BcQNT987ZGR0BCX1wo9cKPh3JsDgAAR0AtkvGp++dtR0BcQgxJul41R0BCYEGJN0vHh3JtDgAAR0AtlHrhR64UR0BcQsCDEm6YR0BCYMSbpeNUh3JuDgAAR0AtlP3ztkWiR0BcQyLQ5WBCR0BCYQYk3S8bh3JvDgAAR0Atlwo9cKPXR0BcQ/fO2RaHR0BCYan752yLh3JwDgAAR0Atl41P3ztkR0BcRFocrAgxR0BCYeuFHrhSh3JxDgAAR0AtmRaHKwIMR0BcRP3ztkWiR0BCYm6XjU/fh3JyDgAAR0Atm6XjU/fPR0BcRjU/fO2RR0BCY1P3ztkXh3JzDgAAR0AtnKwIMSbpR0BcRpeNT987R0BCY5WBBiTdh3J0DgAAR0AtnS8an753R0BcRul41P30R0BCY9cKPXCkh3J1DgAAR0AtnjU/fO2RR0BcR0vGp++eR0BCZBiTdLxqh3J2DgAAR0AtoMSbpeNUR0BcSIMSbpeNR0BCZP3ztkWih3J3DgAAR0AtoUeuFHrhR0BcSNT987ZGR0BCZT987ZFoh3J4DgAAR0AtocrAgxJvR0BcSSbpeNT+R0BCZYEGJN0vh3J5DgAAR0AtpFocrAgxR0BcSl41P3zuR0BCZmZmZmZmh3J6DgAAR0AtpWBBiTdMR0BcSsCDEm6YR0BCZqfvnbIth3J7DgAAR0AtpeNT987ZR0BcSxJul41QR0BCZul41P30h3J8DgAAR0Atpul41P30R0BcS3S8an76R0BCZysCDEm6h3J9DgAAR0AtqXjU/fO2R0BcTJul41P4R0BCaBBiTdLyh3J+DgAAR0AtqfvnbItER0BcTP3ztkWiR0BCaFHrhR64h3J/DgAAR0AtqwIMSbpeR0BcTU/fO2RaR0BCaJN0vGp/h3KADgAAR0Atq4UeuFHsR0BcTbItDlYER0BCaNT987ZGh3KBDgAAR0AtrhR64UeuR0BcTul41P30R0BCabpeNT99h3KCDgAAR0AtrxqfvnbJR0BcTztkWhysR0BCafvnbItEh3KDDgAAR0Atr52yLQ5WR0BcT41P3ztkR0BCaj1wo9cKh3KEDgAAR0Atsi0OVgQZR0BcUMSbpeNUR0BCayLQ5WBCh3KFDgAAR0AtsrAgxJumR0BcUSbpeNT+R0BCa2RaHKwIh3KGDgAAR0Ats7ZFocrBR0BcUXjU/fO2R0BCa6XjU/fPh3KHDgAAR0AttDlYEGJOR0BcUdsi0OVgR0BCa+dsi0OWh3KIDgAAR0Attsi0OVgQR0BcUxJul41QR0BCbMzMzMzNh3KJDgAAR0Att87ZFocrR0BcU2RaHKwIR0BCbQ5WBBiTh3KKDgAAR0AtuFHrhR64R0BcU7ZFocrBR0BCbU/fO2Rah3KLDgAAR0Atu+dsi0OWR0BcVU/fO2RaR0BCbnbItDlYh3KMDgAAR0AtvGp++dsjR0BcVaHKwIMSR0BCbrhR64Ufh3KNDgAAR0AtvXCj1wo9R0BcVfO2RaHLR0BCbvnbItDlh3KODgAAR0AtwAAAAAAAR0BcVysCDEm6R0BCb987ZFodh3KPDgAAR0AtwIMSbpeNR0BcV41P3ztkR0BCcCDEm6Xjh3KQDgAAR0AtwYk3S8aoR0BcV987ZFodR0BCcGJN0vGqh3KRDgAAR0AtxJul41P4R0BcWXjU/fO2R0BCcYk3S8aoh3KSDgAAR0AtxaHKwIMSR0BcWcrAgxJvR0BCccrAgxJvh3KTDgAAR0AtxiTdLxqgR0BcWhysCDEnR0BCcgxJul41h3KUDgAAR0AtyTdLxqfwR0BcW7ZFocrBR0BCczMzMzMzh3KVDgAAR0Atyj1wo9cKR0BcXAgxJul5R0BCc3S8an76h3KWDgAAR0AtysCDEm6YR0BcXFocrAgxR0BCc7ZFocrBh3KXDgAAR0AtzU/fO2RaR0BcXZFocrAhR0BCdJul41P4h3KYDgAAR0AtzlYEGJN1R0BcXfO2RaHLR0BCdN0vGp++h3KZDgAAR0AtztkWhysCR0BcXkWhysCDR0BCdR64UeuFh3KaDgAAR0At0m6XjU/fR0BcX87ZFocrR0BCdkWhysCDh3KbDgAAR0At0vGp++dtR0BcYDEm6XjVR0BCdocrAgxKh3KcDgAAR0At0/fO2RaHR0BcYIMSbpeNR0BCdsi0OVgQh3KdDgAAR0At1HrhR64UR0BcYOVgQYk3R0BCdwo9cKPXh3KeDgAAR0At1wo9cKPXR0BcYhysCDEnR0BCd++dsi0Oh3KfDgAAR0At2BBiTdLyR0BcYm6XjU/fR0BCeDEm6XjVh3KgDgAAR0At2yLQ5WBCR0BcY/fO2RaHR0BCeXjU/fO2h3KhDgAAR0At3KwIMSbpR0BcZKwIMSbpR0BCedsi0OVgh3KiDgAAR0At3bItDlYER0BcZQ5WBBiTR0BCej1wo9cKh3KjDgAAR0At4EGJN0vHR0BcZkWhysCDR0BCeyLQ5WBCh3KkDgAAR0At4k3S8an8R0BcZ0vGp++eR0BCe+dsi0OWh3KlDgAAR0At5mZmZmZmR0BcaSbpeNT+R0BCfU/fO2Rah3KmDgAAR0At6PXCj1wpR0Bcal41P3zuR0BCfjU/fO2Rh3KnDgAAR0At64UeuFHsR0Bca2RaHKwIR0BCfvnbItDlh3KoDgAAR0At7hR64UeuR0BcbJul41P4R0BCf987ZFodh3KpDgAAR0At8CDEm6XjR0BcbaHKwIMSR0BCgKPXCj1xh3KqDgAAR0At8i0OVgQZR0BcbocrAgxKR0BCgUeuFHrhh3KrDgAAR0At8rAgxJumR0BcbtkWhysCR0BCgYk3S8aoh3KsDgAAR0At9DlYEGJOR0Bcb41P3ztkR0BCggxJul41h3KtDgAAR0At90vGp++eR0BccMSbpeNUR0BCgvGp++dth3KuDgAAR0At+VgQYk3TR0BcccrAgxJvR0BCg7ZFocrBh3KvDgAAR0At++dsi0OWR0BccwIMSbpeR0BChJul41P4h3KwDgAAR0At/XCj1wo9R0Bcc7ZFocrBR0BChR64UeuFh3KxDgAAR0AuAAAAAAAAR0BcdO2RaHKwR0BChgQYk3S8h3KyDgAAR0AuAQYk3S8bR0BcdT987ZFoR0BChkWhysCDh3KzDgAAR0AuAo9cKPXDR0BcdfO2RaHLR0BChsi0OVgQh3K0DgAAR0AuBR64UeuFR0BcdysCDEm6R0BCh64UeuFIh3K1DgAAR0AuBaHKwIMSR0Bcd3ztkWhzR0BCh++dsi0Oh3K2DgAAR0AuBqfvnbItR0Bcd87ZFocrR0BCiFHrhR64h3K3DgAAR0AuBysCDEm6R0BceDEm6XjVR0BCiJN0vGp/h3K4DgAAR0AuCbpeNT99R0BceWhysCDFR0BCiXjU/fO2h3K5DgAAR0AuCsCDEm6YR0BcebpeNT99R0BCibpeNT99h3K6DgAAR0AuC0OVgQYlR0BcegxJul41R0BCifvnbItEh3K7DgAAR0AuDlYEGJN1R0Bce0OVgQYlR0BCiuFHrhR7h3K8DgAAR0AuDtkWhysCR0Bce6XjU/fPR0BCiyLQ5WBCh3K9DgAAR0AuD1wo9cKPR0Bce/fO2RaHR0BCi2RaHKwIh3K+DgAAR0AuEGJN0vGqR0BcfEm6XjU/R0BCi6XjU/fPh3K/DgAAR0AuEvGp++dtR0BcfYEGJN0vR0BCjItDlYEGh3LADgAAR0AuE/fO2RaHR0BcfeNT987ZR0BCjMzMzMzNh3LBDgAAR0AuFHrhR64UR0BcfjU/fO2RR0BCjQ5WBBiTh3LCDgAAR0AuFwo9cKPXR0Bcf2yLQ5WBR0BCjfO2RaHLh3LDDgAAR0AuGBBiTdLyR0Bcf752yLQ5R0BCjjU/fO2Rh3LEDgAAR0AuGJN0vGp/R0BcgCDEm6XjR0BCjnbItDlYh3LFDgAAR0AuGZmZmZmaR0BcgHKwIMScR0BCjrhR64Ufh3LGDgAAR0AuHCj1wo9cR0Bcgan752yLR0BCj52yLQ5Wh3LHDgAAR0AuHKwIMSbpR0BcgfvnbItER0BCj987ZFodh3LIDgAAR0AuHbItDlYER0Bcgk3S8an8R0BCkCDEm6Xjh3LJDgAAR0AuHjU/fO2RR0BcgrAgxJumR0BCkGJN0vGqh3LKDgAAR0AuIUeuFHrhR0Bcg+dsi0OWR0BCkUeuFHrhh3LLDgAAR0AuIcrAgxJvR0BchDlYEGJOR0BCkYk3S8aoh3LMDgAAR0AuItDlYEGJR0BchItDlYEGR0BCkcrAgxJvh3LNDgAAR0AuJWBBiTdMR0BchcKPXCj2R0BCkrAgxJumh3LODgAAR0AuJeNT987ZR0BchiTdLxqgR0BCkvGp++dth3LPDgAAR0AuJul41P30R0BchnbItDlYR0BCk1P3ztkXh3LQDgAAR0AuJ2yLQ5WBR0Bchsi0OVgQR0BCk5WBBiTdh3LRDgAAR0AuKfvnbItER0BciAAAAAAAR0BClHrhR64Uh3LSDgAAR0AuKwIMSbpeR0BciGJN0vGqR0BClLxqfvnbh3LTDgAAR0AuK4UeuFHsR0BciLQ5WBBiR0BClP3ztkWih3LUDgAAR0AuLxqfvnbJR0Bcij1wo9cKR0BCliTdLxqgh3LVDgAAR0AuMCDEm6XjR0Bcio9cKPXDR0BClmZmZmZmh3LWDgAAR0AuMKPXCj1xR0BcivGp++dtR0BClqfvnbIth3LXDgAAR0AuMzMzMzMzR0BcjCj1wo9cR0BCl41P3ztkh3LYDgAAR0AuNDlYEGJOR0BcjHrhR64UR0BCl87ZFocrh3LZDgAAR0AuNLxqfvnbR0BcjMzMzMzNR0BCmBBiTdLyh3LaDgAAR0AuNcKPXCj2R0BcjS8an753R0BCmFHrhR64h3LbDgAAR0AuNkWhysCDR0BcjYEGJN0vR0BCmJN0vGp/h3LcDgAAR0AuOFHrhR64R0BcjmZmZmZmR0BCmTdLxqfwh3LdDgAAR0AuOVgQYk3TR0BcjrhR64UfR0BCmXjU/fO2h3LeDgAAR0AuOdsi0OVgR0Bcjwo9cKPXR0BCmbpeNT99h3LfDgAAR0AuPXCj1wo9R0BckJN0vGp/R0BCmuFHrhR7h3LgDgAAR0AuPfO2RaHLR0BckPXCj1wpR0BCmyLQ5WBCh3LhDgAAR0AuPvnbItDlR0BckUeuFHrhR0BCm2RaHKwIh3LiDgAAR0AuP3ztkWhzR0Bckan752yLR0BCm8an752yh3LjDgAAR0AuQYk3S8aoR0Bckn752yLRR0BCnGp++dsjh3LkDgAAR0AuQo9cKPXDR0BcktDlYEGJR0BCnKwIMSbph3LlDgAAR0AuQxJul41QR0BckzMzMzMzR0BCnO2RaHKwh3LmDgAAR0AuRqfvnbItR0BclLxqfvnbR0BCnhR64Ueuh3LnDgAAR0AuSDEm6XjVR0BclXCj1wo9R0BCnpeNT987h3LoDgAAR0AuSLQ5WBBiR0BclcKPXCj2R0BCntkWhysCh3LpDgAAR0AuTdLxqfvnR0BcmAAAAAAAR0BCoIMSbpeNh3LqDgAAR0AuT987ZFodR0BcmNT987ZGR0BCoSbpeNT+h3LrDgAAR0AuUWhysCDFR0BcmYk3S8aoR0BCoan752yLh3LsDgAAR0AuUeuFHrhSR0BcmeuFHrhSR0BCoeuFHrhSh3LtDgAAR0AuU3S8an76R0Bcmo9cKPXDR0BCom6XjU/fh3LuDgAAR0AuVP3ztkWiR0BcmxJul41QR0BCotDlYEGJh3LvDgAAR0AuVwo9cKPXR0BcnBiTdLxqR0BCo7ZFocrBh3LwDgAAR0AuWZmZmZmaR0BcnU/fO2RaR0BCpJul41P4h3LxDgAAR0AuWyLQ5WBCR0BcngQYk3S8R0BCpR64UeuFh3LyDgAAR0AuXS8an753R0BcnrhR64UfR0BCpaHKwIMSh3LzDgAAR0AuXjU/fO2RR0BcnztkWhysR0BCpgQYk3S8h3L0DgAAR0AuYEGJN0vHR0BcoEGJN0vHR0BCpsi0OVgQh3L1DgAAR0AuY1P3ztkXR0BcoWhysCDFR0BCp64UeuFIh3L2DgAAR0AuZWBBiTdMR0Bcon752yLRR0BCqHKwIMSch3L3DgAAR0AuZmZmZmZmR0BcotDlYEGJR0BCqLQ5WBBih3L4DgAAR0AuZ++dsi0OR0Bco6XjU/fPR0BCqVgQYk3Th3L5DgAAR0AuaXjU/fO2R0BcpFocrAgxR0BCqdsi0OVgh3L6DgAAR0AuawIMSbpeR0BcpQ5WBBiTR0BCqn752yLRh3L7DgAAR0AubItDlYEGR0BcpZFocrAhR0BCquFHrhR7h3L8DgAAR0AubQ5WBBiTR0BcpeNT987ZR0BCqyLQ5WBCh3L9DgAAR0AubhR64UeuR0BcpjU/fO2RR0BCq2RaHKwIh3L+DgAAR0AubpeNT987R0BcppeNT987R0BCq6XjU/fPh3L/DgAAR0Aucan752yLR0Bcp87ZFocrR0BCrItDlYEGh3IADwAAR0Auci0OVgQZR0BcqCDEm6XjR0BCrMzMzMzNh3IBDwAAR0AuczMzMzMzR0BcqHKwIMScR0BCrQ5WBBiTh3ICDwAAR0AudLxqfvnbR0BcqSbpeNT+R0BCrZFocrAhh3IDDwAAR0AudcKPXCj2R0Bcqan752yLR0BCrfO2RaHLh3IEDwAAR0AudkWhysCDR0BcqfvnbItER0BCrjU/fO2Rh3IFDwAAR0Aud0vGp++eR0Bcql41P3zuR0BCrnbItDlYh3IGDwAAR0Aud87ZFocrR0BcqrAgxJumR0BCrrhR64Ufh3IHDwAAR0AueuFHrhR7R0Bcq+dsi0OWR0BCr52yLQ5Wh3IIDwAAR0Aue2RaHKwIR0BcrDlYEGJOR0BCr987ZFodh3IJDwAAR0AufGp++dsjR0BcrJul41P4R0BCsCDEm6Xjh3IKDwAAR0AufO2RaHKwR0BcrO2RaHKwR0BCsGJN0vGqh3ILDwAAR0AuffO2RaHLR0BcrT987ZFoR0BCsKPXCj1xh3IMDwAAR0AugAAAAAAAR0BcriTdLxqgR0BCsUeuFHrhh3INDwAAR0AugIMSbpeNR0BcrnbItDlYR0BCsan752yLh3IODwAAR0AugYk3S8aoR0Bcrsi0OVgQR0BCseuFHrhSh3IPDwAAR0AugxJul41QR0Bcr3ztkWhzR0BCsm6XjU/fh3IQDwAAR0AuhBiTdLxqR0BcsAAAAAAAR0BCstDlYEGJh3IRDwAAR0AuhR64UeuFR0BcsFHrhR64R0BCsxJul41Qh3ISDwAAR0AuhaHKwIMSR0BcsLQ5WBBiR0BCs1P3ztkXh3ITDwAAR0AuhqfvnbItR0BcsQYk3S8bR0BCs5WBBiTdh3IUDwAAR0AuhysCDEm6R0BcsWhysCDFR0BCs9cKPXCkh3IVDwAAR0AuiTdLxqfwR0Bcsj1wo9cKR0BCtHrhR64Uh3IWDwAAR0AuibpeNT99R0Bcso9cKPXDR0BCtLxqfvnbh3IXDwAAR0AuisCDEm6YR0BcsvGp++dtR0BCtP3ztkWih3IYDwAAR0AujEm6XjU/R0Bcs5WBBiTdR0BCtYEGJN0vh3IZDwAAR0AujlYEGJN1R0BctHrhR64UR0BCtiTdLxqgh3IaDwAAR0AujtkWhysCR0BctMzMzMzNR0BCtmZmZmZmh3IbDwAAR0Auj987ZFodR0BctR64UeuFR0BCtqfvnbIth3IcDwAAR0Aukm6XjU/fR0BctlYEGJN1R0BCt64UeuFIh3IdDwAAR0Auk3S8an76R0BctqfvnbItR0BCt++dsi0Oh3IeDwAAR0Auk/fO2RaHR0Bctwo9cKPXR0BCuDEm6XjVh3IfDwAAR0AulP3ztkWiR0Bct1wo9cKPR0BCuHKwIMSch3IgDwAAR0AulYEGJN0vR0Bct752yLQ5R0BCuLQ5WBBih3IhDwAAR0AulocrAgxKR0BcuBBiTdLyR0BCuPXCj1wph3IiDwAAR0Aul41P3ztkR0BcuJN0vGp/R0BCuVgQYk3Th3IjDwAAR0AumJN0vGp/R0BcuOVgQYk3R0BCuZmZmZmah3IkDwAAR0AumRaHKwIMR0BcuTdLxqfwR0BCudsi0OVgh3IlDwAAR0AunCj1wo9cR0Bcum6XjU/fR0BCusCDEm6Yh3ImDwAAR0AunKwIMSbpR0BcutDlYEGJR0BCuwIMSbpeh3InDwAAR0AunbItDlYER0BcuyLQ5WBCR0BCu0OVgQYlh3IoDwAAR0AunjU/fO2RR0Bcu3S8an76R0BCu4UeuFHsh3IpDwAAR0AunztkWhysR0Bcu9cKPXCkR0BCu8an752yh3IqDwAAR0AuoUeuFHrhR0BcvKwIMSbpR0BCvGp++dsjh3IrDwAAR0AuocrAgxJvR0BcvP3ztkWiR0BCvKwIMSbph3IsDwAAR0AuotDlYEGJR0BcvWBBiTdMR0BCvO2RaHKwh3ItDwAAR0AupFocrAgxR0BcvhR64UeuR0BCvZFocrAhh3IuDwAAR0AupN0vGp++R0BcvmZmZmZmR0BCvdLxqfvnh3IvDwAAR0AupmZmZmZmR0Bcvul41P30R0BCvjU/fO2Rh3IwDwAAR0Aupul41P30R0BcvztkWhysR0BCvnbItDlYh3IxDwAAR0Aup++dsi0OR0Bcv41P3ztkR0BCvrhR64Ufh3IyDwAAR0AuqHKwIMScR0Bcv++dsi0OR0BCvvnbItDlh3IzDwAAR0Auqn752yLRR0BcwMSbpeNUR0BCv52yLQ5Wh3I0DwAAR0Auq4UeuFHsR0BcwRaHKwIMR0BCv987ZFodh3I1DwAAR0AurAgxJul5R0BcwXjU/fO2R0BCwCDEm6Xjh3I2DwAAR0AurZFocrAhR0Bcwi0OVgQZR0BCwKPXCj1xh3I3DwAAR0AurpeNT987R0Bcwn752yLRR0BCwOVgQYk3h3I4DwAAR0Aur52yLQ5WR0BcwwIMSbpeR0BCwUeuFHrhh3I5DwAAR0AusKPXCj1xR0Bcw1P3ztkXR0BCwYk3S8aoh3I6DwAAR0AusSbpeNT+R0Bcw6XjU/fPR0BCwcrAgxJvh3I7DwAAR0Ausi0OVgQZR0BcxAgxJul5R0BCwgxJul41h3I8DwAAR0Aus7ZFocrBR0BcxLxqfvnbR0BCwrAgxJumh3I9DwAAR0AutLxqfvnbR0BcxS8an753R0BCwxJul41Qh3I+DwAAR0Aut0vGp++eR0BcxkWhysCDR0BCw9cKPXCkh3I/DwAAR0AuuNT987ZGR0BcxxqfvnbJR0BCxHrhR64Uh3JADwAAR0AuuuFHrhR7R0Bcx87ZFocrR0BCxP3ztkWih3JBDwAAR0AuvGp++dsjR0BcyHKwIMScR0BCxYEGJN0vh3JCDwAAR0AuvO2RaHKwR0BcyNT987ZGR0BCxcKPXCj2h3JDDwAAR0AuvnbItDlYR0BcyVgQYk3TR0BCxiTdLxqgh3JEDwAAR0AuwAAAAAAAR0BcyfvnbItER0BCxqfvnbIth3JFDwAAR0AuwIMSbpeNR0Bcyl41P3zuR0BCxul41P30h3JGDwAAR0AuwgxJul41R0BcyxJul41QR0BCx41P3ztkh3JHDwAAR0Auw5WBBiTdR0Bcy4UeuFHsR0BCx++dsi0Oh3JIDwAAR0AuxaHKwIMSR0BczItDlYEGR0BCyLQ5WBBih3JJDwAAR0AuxqfvnbItR0BczO2RaHKwR0BCyPXCj1wph3JKDwAAR0AuyTdLxqfwR0BczhR64UeuR0BCydsi0OVgh3JLDwAAR0Auyj1wo9cKR0BcznbItDlYR0BCyhysCDEnh3JMDwAAR0Auy8an752yR0BczysCDEm6R0BCyp++dsi0h3JNDwAAR0AuzMzMzMzNR0Bcz52yLQ5WR0BCywIMSbpeh3JODwAAR0Auz1wo9cKPR0Bc0KPXCj1xR0BCy8an752yh3JPDwAAR0Auz987ZFodR0Bc0QYk3S8bR0BCzAgxJul5h3JQDwAAR0Au0euFHrhSR0Bc0dsi0OVgR0BCzKwIMSbph3JRDwAAR0Au03S8an76R0Bc0o9cKPXDR0BCzU/fO2Rah3JSDwAAR0Au1P3ztkWiR0Bc00OVgQYlR0BCzdLxqfvnh3JTDwAAR0Au1ocrAgxKR0Bc07ZFocrBR0BCzjU/fO2Rh3JUDwAAR0Au1wo9cKPXR0Bc1BiTdLxqR0BCznbItDlYh3JVDwAAR0Au2JN0vGp/R0Bc1LxqfvnbR0BCzvnbItDlh3JWDwAAR0Au26XjU/fPR0Bc1fO2RaHLR0BCz987ZFodh3JXDwAAR0Au3Cj1wo9cR0Bc1kWhysCDR0BC0CDEm6Xjh3JYDwAAR0Au3S8an753R0Bc1qfvnbItR0BC0GJN0vGqh3JZDwAAR0Au3bItDlYER0Bc1vnbItDlR0BC0KPXCj1xh3JaDwAAR0Au3rhR64UfR0Bc11wo9cKPR0BC0OVgQYk3h3JbDwAAR0Au4MSbpeNUR0Bc2DEm6XjVR0BC0Yk3S8aoh3JcDwAAR0Au4UeuFHrhR0Bc2IMSbpeNR0BC0euFHrhSh3JdDwAAR0Au4k3S8an8R0Bc2NT987ZGR0BC0i0OVgQZh3JeDwAAR0Au49cKPXCkR0Bc2Yk3S8aoR0BC0rAgxJumh3JfDwAAR0Au5N0vGp++R0Bc2gxJul41R0BC0xJul41Qh3JgDwAAR0Au5eNT987ZR0Bc2l41P3zuR0BC01P3ztkXh3JhDwAAR0Au5ul41P30R0Bc2sCDEm6YR0BC05WBBiTdh3JiDwAAR0Au52yLQ5WBR0Bc2xJul41QR0BC09cKPXCkh3JjDwAAR0Au6HKwIMScR0Bc23S8an76R0BC1BiTdLxqh3JkDwAAR0Au6n752yLRR0Bc3Em6XjU/R0BC1Lxqfvnbh3JlDwAAR0Au6wIMSbpeR0Bc3Jul41P4R0BC1P3ztkWih3JmDwAAR0Au7AgxJul5R0Bc3O2RaHKwR0BC1T987ZFoh3JnDwAAR0Au7ZFocrAhR0Bc3aHKwIMSR0BC1cKPXCj2h3JoDwAAR0Au7peNT987R0Bc3iTdLxqgR0BC1iTdLxqgh3JpDwAAR0Au752yLQ5WR0Bc3nbItDlYR0BC1ocrAgxKh3JqDwAAR0Au8CDEm6XjR0Bc3tkWhysCR0BC1si0OVgQh3JrDwAAR0Au8SbpeNT+R0Bc3ysCDEm6R0BC1wo9cKPXh3JsDwAAR0Au8an752yLR0Bc341P3ztkR0BC10vGp++eh3JtDwAAR0Au87ZFocrBR0Bc4GJN0vGqR0BC1++dsi0Oh3JuDwAAR0Au9LxqfvnbR0Bc4LQ5WBBiR0BC2DEm6XjVh3JvDwAAR0Au9T987ZFoR0Bc4QYk3S8bR0BC2HKwIMSch3JwDwAAR0Au9kWhysCDR0Bc4WhysCDFR0BC2LQ5WBBih3JxDwAAR0Au90vGp++eR0Bc4bpeNT99R0BC2PXCj1wph3JyDwAAR0Au987ZFocrR0Bc4hysCDEnR0BC2TdLxqfwh3JzDwAAR0Au+NT987ZGR0Bc4o9cKPXDR0BC2ZmZmZmah3J0DwAAR0Au+dsi0OVgR0Bc4vGp++dtR0BC2dsi0OVgh3J1DwAAR0Au+uFHrhR7R0Bc40OVgQYlR0BC2hysCDEnh3J2DwAAR0Au/Gp++dsjR0Bc4/fO2RaHR0BC2sCDEm6Yh3J3DwAAR0Au/XCj1wo9R0Bc5HrhR64UR0BC2yLQ5WBCh3J4DwAAR0Au/nbItDlYR0Bc5MzMzMzNR0BC22RaHKwIh3J5DwAAR0Au/vnbItDlR0Bc5R64UeuFR0BC26XjU/fPh3J6DwAAR0AvAAAAAAAAR0Bc5XCj1wo9R0BC2+dsi0OWh3J7DwAAR0AvAIMSbpeNR0Bc5dLxqfvnR0BC3Cj1wo9ch3J8DwAAR0AvAYk3S8aoR0Bc5jU/fO2RR0BC3Gp++dsjh3J9DwAAR0AvAo9cKPXDR0Bc5qfvnbItR0BC3MzMzMzNh3J+DwAAR0AvA5WBBiTdR0Bc5vnbItDlR0BC3Q5WBBiTh3J/DwAAR0AvBBiTdLxqR0Bc51wo9cKPR0BC3U/fO2Rah3KADwAAR0AvBiTdLxqgR0Bc6BBiTdLyR0BC3dLxqfvnh3KBDwAAR0AvBqfvnbItR0Bc6GJN0vGqR0BC3hR64Ueuh3KCDwAAR0AvB64UeuFIR0Bc6OVgQYk3R0BC3nbItDlYh3KDDwAAR0AvCLQ5WBBiR0Bc6TdLxqfwR0BC3rhR64Ufh3KEDwAAR0AvCbpeNT99R0Bc6Yk3S8aoR0BC3vnbItDlh3KFDwAAR0AvCj1wo9cKR0Bc6euFHrhSR0BC31wo9cKPh3KGDwAAR0AvDEm6XjU/R0Bc6sCDEm6YR0BC4AAAAAAAh3KHDwAAR0AvDU/fO2RaR0Bc6xJul41QR0BC4EGJN0vHh3KIDwAAR0AvDdLxqfvnR0Bc63S8an76R0BC4IMSbpeNh3KJDwAAR0AvDtkWhysCR0Bc68an752yR0BC4MSbpeNUh3KKDwAAR0AvD1wo9cKPR0Bc7BiTdLxqR0BC4QYk3S8bh3KLDwAAR0AvEGJN0vGqR0Bc7HrhR64UR0BC4UeuFHrhh3KMDwAAR0AvEWhysCDFR0Bc7P3ztkWiR0BC4an752yLh3KNDwAAR0AvEm6XjU/fR0Bc7U/fO2RaR0BC4euFHrhSh3KODwAAR0AvEvGp++dtR0Bc7aHKwIMSR0BC4i0OVgQZh3KPDwAAR0AvFYEGJN0vR0Bc7rhR64UfR0BC4vGp++dth3KQDwAAR0AvFocrAgxKR0Bc7ysCDEm6R0BC41P3ztkXh3KRDwAAR0AvF41P3ztkR0Bc73ztkWhzR0BC45WBBiTdh3KSDwAAR0AvGJN0vGp/R0Bc7987ZFodR0BC4/fO2RaHh3KTDwAAR0AvGRaHKwIMR0Bc8DEm6XjVR0BC5DlYEGJOh3KUDwAAR0AvGhysCDEnR0Bc8JN0vGp/R0BC5HrhR64Uh3KVDwAAR0AvGyLQ5WBCR0Bc8QYk3S8bR0BC5N0vGp++h3KWDwAAR0AvHCj1wo9cR0Bc8WhysCDFR0BC5R64UeuFh3KXDwAAR0AvHKwIMSbpR0Bc8bpeNT99R0BC5WBBiTdMh3KYDwAAR0AvHjU/fO2RR0Bc8m6XjU/fR0BC5eNT987Zh3KZDwAAR0AvHztkWhysR0Bc8sCDEm6YR0BC5iTdLxqgh3KaDwAAR0AvIEGJN0vHR0Bc80OVgQYlR0BC5ocrAgxKh3KbDwAAR0AvIUeuFHrhR0Bc85WBBiTdR0BC5si0OVgQh3KcDwAAR0AvIcrAgxJvR0Bc8/fO2RaHR0BC5wo9cKPXh3KdDwAAR0AvItDlYEGJR0Bc9Em6XjU/R0BC50vGp++eh3KeDwAAR0AvJN0vGp++R0Bc9R64UeuFR0BC6BBiTdLyh3KfDwAAR0AvJWBBiTdMR0Bc9XCj1wo9R0BC6FHrhR64h3KgDwAAR0AvJmZmZmZmR0Bc9dLxqfvnR0BC6JN0vGp/h3KhDwAAR0AvJ++dsi0OR0Bc9ocrAgxKR0BC6RaHKwIMh3KiDwAAR0AvKPXCj1wpR0Bc9tkWhysCR0BC6VgQYk3Th3KjDwAAZShHQC8p++dsi0RHQFz3XCj1wo9HQELpul41P32HcqQPAABHQC8rhR64UexHQFz4AAAAAABHQELqPXCj1wqHcqUPAABHQC8si0OVgQZHQFz4Yk3S8apHQELqfvnbItGHcqYPAABHQC8uFHrhR65HQFz5FocrAgxHQELrAgxJul6HcqcPAABHQC8vGp++dslHQFz5iTdLxqhHQELrZFocrAiHcqgPAABHQC8xqfvnbItHQFz6j1wo9cNHQELsSbpeNT+HcqkPAABHQC8ysCDEm6ZHQFz68an7521HQELsi0OVgQaHcqoPAABHQC81P3ztkWhHQFz8GJN0vGpHQELtcKPXCj2HcqsPAABHQC83ztkWhytHQFz9HrhR64VHQELuNT987ZGHcqwPAABHQC841P3ztkZHQFz9ocrAgxJHQELul41P3zuHcq0PAABHQC864UeuFHtHQFz+VgQYk3VHQELvGp++dsmHcq4PAABHQC87ZFocrAhHQFz+p++dsi1HQELvXCj1wo+Hcq8PAABHQC8+dsi0OVhHQFz/3ztkWh1HQELwYk3S8aqHcrAPAABHQC9AgxJul41HQF0A5WBBiTdHQELxJul41P6HcrEPAABHQC9BiTdLxqhHQF0BN0vGp/BHQELxaHKwIMWHcrIPAABHQC9FHrhR64VHQF0CwIMSbphHQELyj1wo9cOHcrMPAABHQC9Gp++dsi1HQF0DdLxqfvpHQELzEm6XjVCHcrQPAABHQC9IMSbpeNVHQF0D52yLQ5ZHQELzdLxqfvqHcrUPAABHQC9KPXCj1wpHQF0E7ZFocrBHQEL0WhysCDGHcrYPAABHQC9LQ5WBBiVHQF0FT987ZFpHQEL0m6XjU/iHcrcPAABHQC9NT987ZFpHQF0GJN0vGqBHQEL1P3ztkWiHcrgPAABHQC9OVgQYk3VHQF0Gdsi0OVhHQEL1gQYk3S+HcrkPAABHQC9O2RaHKwJHQF0G2RaHKwJHQEL1wo9cKPaHcroPAABHQC9QYk3S8apHQF0HfO2RaHNHQEL2RaHKwIOHcrsPAABHQC9R64UeuFJHQF0IAAAAAABHQEL2p++dsi2HcrwPAABHQC9SbpeNT99HQF0IUeuFHrhHQEL26XjU/fSHcr0PAABHQC9TdLxqfvpHQF0ItDlYEGJHQEL3KwIMSbqHcr4PAABHQC9UeuFHrhRHQF0JBiTdLxtHQEL3jU/fO2SHcr8PAABHQC9U/fO2RaJHQF0JaHKwIMVHQEL3ztkWhyuHcsAPAABHQC9XCj1wo9dHQF0KPXCj1wpHQEL4crAgxJyHcsEPAABHQC9YEGJN0vJHQF0Kj1wo9cNHQEL4tDlYEGKHcsIPAABHQC9Yk3S8an9HQF0K4UeuFHtHQEL49cKPXCmHcsMPAABHQC9ZmZmZmZpHQF0LQ5WBBiVHQEL5N0vGp/CHcsQPAABHQC9an752yLRHQF0LlYEGJN1HQEL5eNT987aHcsUPAABHQC9bItDlYEJHQF0L987ZFodHQEL5ul41P32HcsYPAABHQC9cKPXCj1xHQF0Man752yNHQEL6HKwIMSeHcscPAABHQC9dLxqfvndHQF0MvGp++dtHQEL6XjU/fO6HcsgPAABHQC9eNT987ZFHQF0NHrhR64VHQEL6n752yLSHcskPAABHQC9fvnbItDlHQF0Nwo9cKPZHQEL7Q5WBBiWHcsoPAABHQC9gxJul41RHQF0ORaHKwINHQEL7peNT98+HcssPAABHQC9hysCDEm9HQF0Op++dsi1HQEL752yLQ5aHcswPAABHQC9iTdLxqfxHQF0O+dsi0OVHQEL8KPXCj1yHcs0PAABHQC9jU/fO2RdHQF0PS8an755HQEL8an752yOHcs4PAABHQC9kWhysCDFHQF0PrhR64UhHQEL8rAgxJumHcs8PAABHQC9k3S8an75HQF0QAAAAAABHQEL87ZFocrCHctAPAABHQC9mZmZmZmZHQF0QgxJul41HQEL9T987ZFqHctEPAABHQC9m6XjU/fRHQF0Q1P3ztkZHQEL9kWhysCGHctIPAABHQC9n752yLQ5HQF0RJul41P5HQEL90vGp++eHctMPAABHQC9peNT987ZHQF0R2yLQ5WBHQEL+VgQYk3WHctQPAABHQC9qfvnbItFHQF0SPXCj1wpHQEL+uFHrhR+HctUPAABHQC9rhR64UexHQF0SsCDEm6ZHQEL/Gp++dsmHctYPAABHQC9sCDEm6XlHQF0TAgxJul5HQEL/XCj1wo+HctcPAABHQC9tDlYEGJNHQF0TZFocrAhHQEL/nbItDlaHctgPAABHQC9uFHrhR65HQF0TtkWhysFHQEL/3ztkWh2HctkPAABHQC9wIMSbpeNHQF0Ui0OVgQZHQEMAgxJul42HctoPAABHQC9wo9cKPXFHQF0U7ZFocrBHQEMAxJul41SHctsPAABHQC9xqfvnbItHQF0VP3ztkWhHQEMBBiTdLxuHctwPAABHQC9yLQ5WBBlHQF0VkWhysCFHQEMBR64UeuGHct0PAABHQC9zMzMzMzNHQF0V87ZFoctHQEMBiTdLxqiHct4PAABHQC90OVgQYk5HQF0WRaHKwINHQEMBysCDEm+Hct8PAABHQC91P3ztkWhHQF0WyLQ5WBBHQEMCLQ5WBBmHcuAPAABHQC92RaHKwINHQF0XGp++dslHQEMCbpeNT9+HcuEPAABHQC92yLQ5WBBHQF0XbItDlYFHQEMC0OVgQYmHcuIPAABHQC941P3ztkZHQF0YIMSbpeNHQEMDU/fO2ReHcuMPAABHQC95WBBiTdNHQF0YgxJul41HQEMDlYEGJN2HcuQPAABHQC952yLQ5WBHQF0Yo9cKPXFHQEMDtkWhysGHcuUPAABHQC96XjU/fO5HQF0Y9cKPXClHQEMD987ZFoeHcuYPAABHQC97ZFocrAhHQF0ZWBBiTdNHQEMEOVgQYk6HcucPAABHQC98an752yNHQF0ZqfvnbItHQEMEeuFHrhSHcugPAABHQC987ZFocrBHQF0Z++dsi0RHQEMEvGp++duHcukPAABHQC9987ZFoctHQF0aXjU/fO5HQEME/fO2RaKHcuoPAABHQC9++dsi0OVHQF0a0OVgQYlHQEMFYEGJN0yHcusPAABHQC+AAAAAAABHQF0bMzMzMzNHQEMFocrAgxKHcuwPAABHQC+AgxJul41HQF0bhR64UexHQEMF41P3ztmHcu0PAABHQC+Cj1wo9cNHQF0cOVgQYk5HQEMGhysCDEqHcu4PAABHQC+DEm6XjVBHQF0ci0OVgQZHQEMGyLQ5WBCHcu8PAABHQC+Em6XjU/hHQF0dDlYEGJNHQEMHKwIMSbqHcvAPAABHQC+FHrhR64VHQF0dYEGJN0xHQEMHbItDlYGHcvEPAABHQC+GJN0vGqBHQF0dsi0OVgRHQEMHrhR64UiHcvIPAABHQC+HKwIMSbpHQF0eFHrhR65HQEMH752yLQ6HcvMPAABHQC+ItDlYEGJHQF0e6XjU/fRHQEMIk3S8an+HcvQPAABHQC+Jul41P31HQF0fO2RaHKxHQEMI1P3ztkaHcvUPAABHQC+KwIMSbphHQF0fnbItDlZHQEMJFocrAgyHcvYPAABHQC+MSbpeNT9HQF0gQYk3S8dHQEMJul41P32HcvcPAABHQC+NT987ZFpHQF0go9cKPXFHQEMJ++dsi0SHcvgPAABHQC+OVgQYk3VHQF0hFocrAgxHQEMKXjU/fO6HcvkPAABHQC+O2RaHKwJHQF0heNT987ZHQEMKn752yLSHcvoPAABHQC+P3ztkWh1HQF0hysCDEm9HQEMK4UeuFHuHcvsPAABHQC+SbpeNT99HQF0i0OVgQYlHQEMLpeNT98+HcvwPAABHQC+TdLxqfvpHQF0jU/fO2RdHQEMMCDEm6XmHcv0PAABHQC+UeuFHrhRHQF0jpeNT989HQEMMSbpeNT+Hcv4PAABHQC+VgQYk3S9HQF0j987ZFodHQEMMi0OVgQaHcv8PAABHQC+WBBiTdLxHQF0kWhysCDFHQEMMzMzMzM2HcgAQAABHQC+XCj1wo9dHQF0krAgxJulHQEMNLxqfvneHcgEQAABHQC+YEGJN0vJHQF0lLxqfvndHQEMNkWhysCGHcgIQAABHQC+ZmZmZmZpHQF0l0vGp++dHQEMOFHrhR66HcgMQAABHQC+bpeNT989HQF0mhysCDEpHQEMOl41P3zuHcgQQAABHQC+cKPXCj1xHQF0m6XjU/fRHQEMO2RaHKwKHcgUQAABHQC+dsi0OVgRHQF0nXCj1wo9HQEMPO2RaHKyHcgYQAABHQC+fO2RaHKxHQF0oEGJN0vJHQEMPvnbItDmHcgcQAABHQC+fvnbItDlHQF0oYk3S8apHQEMQAAAAAACHcggQAABHQC+i0OVgQYlHQF0pmZmZmZpHQEMRBiTdLxuHcgkQAABHQC+j1wo9cKRHQF0p64UeuFJHQEMRR64UeuGHcgoQAABHQC+lYEGJN0xHQF0qn752yLRHQEMRysCDEm+HcgsQAABHQC+mZmZmZmZHQF0q8an7521HQEMSDEm6XjWHcgwQAABHQC+nbItDlYFHQF0rdLxqfvpHQEMSbpeNT9+Hcg0QAABHQC+o9cKPXClHQF0sGJN0vGpHQEMS8an7522Hcg4QAABHQC+p++dsi0RHQF0seuFHrhRHQEMTMzMzMzOHcg8QAABHQC+rhR64UexHQF0tLxqfvndHQEMT1wo9cKSHchAQAABHQC+vGp++dslHQF0up++dsi1HQEMU/fO2RaKHchEQAABHQC+wIMSbpeNHQF0vCj1wo9dHQEMVP3ztkWiHchIQAABHQC+1P3ztkWhHQF0xN0vGp/BHQEMXCj1wo9eHchMQAABHQC+5WBBiTdNHQF0ywIMSbphHQEMYMSbpeNWHchQQAABHQC+52yLQ5WBHQF0zEm6XjVBHQEMYcrAgxJyHchUQAABHQC+752yLQ5ZHQF0z52yLQ5ZHQEMZFocrAgyHchYQAABHQC++dsi0OVhHQF007ZFocrBHQEMZ2yLQ5WCHchcQAABHQC+/fO2RaHNHQF01T987ZFpHQEMaPXCj1wqHchgQAABHQC/DEm6XjVBHQF02yLQ5WBBHQEMbZFocrAiHchkQAABHQC/Em6XjU/hHQF03fO2RaHNHQEMb52yLQ5aHchoQAABHQC/GJN0vGqBHQF04AAAAAABHQEMcSbpeNT+HchsQAABHQC/HrhR64UhHQF04o9cKPXFHQEMczMzMzM2HchwQAABHQC/ItDlYEGJHQF05BiTdLxtHQEMdDlYEGJOHch0QAABHQC/JN0vGp/BHQF05WBBiTdNHQEMdcKPXCj2Hch4QAABHQC/KPXCj1wpHQF05ul41P31HQEMdsi0OVgSHch8QAABHQC/LQ5WBBiVHQF06LQ5WBBlHQEMeFHrhR66HciAQAABHQC/MSbpeNT9HQF06fvnbItFHQEMeVgQYk3WHciEQAABHQC/MzMzMzM1HQF064UeuFHtHQEMel41P3zuHciIQAABHQC/O2RaHKwJHQF07hR64UexHQEMfGp++dsmHciMQAABHQC/PXCj1wo9HQF0752yLQ5ZHQEMfXCj1wo+HciQQAABHQC/Q5WBBiTdHQF08WhysCDFHQEMfvnbItDmHciUQAABHQC/RaHKwIMVHQF08vGp++dtHQEMgAAAAAACHciYQAABHQC/SbpeNT99HQF09DlYEGJNHQEMgQYk3S8eHcicQAABHQC/TdLxqfvpHQF09YEGJN0xHQEMgo9cKPXGHcigQAABHQC/VgQYk3S9HQF0+NT987ZFHQEMhR64UeuGHcikQAABHQC/XCj1wo9dHQF0+6XjU/fRHQEMhysCDEm+HcioQAABHQC/YEGJN0vJHQF0/O2RaHKxHQEMiDEm6XjWHcisQAABHQC/Yk3S8an9HQF0/nbItDlZHQEMiTdLxqfyHciwQAABHQC/ZmZmZmZpHQF0/752yLQ5HQEMij1wo9cOHci0QAABHQC/an752yLRHQF1AcrAgxJxHQEMi8an7522Hci4QAABHQC/bpeNT989HQF1AxJul41RHQEMjMzMzMzOHci8QAABHQC/cKPXCj1xHQF1BFocrAgxHQEMjdLxqfvqHcjAQAABHQC/eNT987ZFHQF1BysCDEm9HQEMkGJN0vGqHcjEQAABHQC/fO2RaHKxHQF1CTdLxqfxHQEMkeuFHrhSHcjIQAABHQC/gQYk3S8dHQF1Cn752yLRHQEMkvGp++duHcjMQAABHQC/gxJul41RHQF1C8an7521HQEMk/fO2RaKHcjQQAABHQC/hysCDEm9HQF1DU/fO2RdHQEMlP3ztkWiHcjUQAABHQC/i0OVgQYlHQF1DpeNT989HQEMlgQYk3S+HcjYQAABHQC/jU/fO2RdHQF1ECDEm6XlHQEMlwo9cKPaHcjcQAABHQC/k3S8an75HQF1EeuFHrhRHQEMmJN0vGqCHcjgQAABHQC/lYEGJN0xHQF1EzMzMzM1HQEMmZmZmZmaHcjkQAABHQC/mZmZmZmZHQF1FLxqfvndHQEMmp++dsi2HcjoQAABHQC/n752yLQ5HQF1F0vGp++dHQEMnS8an756HcjsQAABHQC/o9cKPXClHQF1GNT987ZFHQEMnjU/fO2SHcjwQAABHQC/p++dsi0RHQF1Gp++dsi1HQEMn752yLQ6Hcj0QAABHQC/rAgxJul5HQF1HCj1wo9dHQEMoMSbpeNWHcj4QAABHQC/sCDEm6XlHQF1HXCj1wo9HQEMocrAgxJyHcj8QAABHQC/si0OVgQZHQF1HvnbItDlHQEMotDlYEGKHckAQAABHQC/ul41P3ztHQF1Ik3S8an9HQEMpWBBiTdOHckEQAABHQC/vnbItDlZHQF1I5WBBiTdHQEMpmZmZmZqHckIQAABHQC/wIMSbpeNHQF1JN0vGp/BHQEMp2yLQ5WCHckMQAABHQC/xJul41P5HQF1JiTdLxqhHQEMqPXCj1wqHckQQAABHQC/yLQ5WBBlHQF1J64UeuFJHQEMqfvnbItGHckUQAABHQC/ysCDEm6ZHQF1KPXCj1wpHQEMqwIMSbpiHckYQAABHQC/0OVgQYk5HQF1KwIMSbphHQEMrItDlYEKHckcQAABHQC/0vGp++dtHQF1LEm6XjVBHQEMrZFocrAiHckgQAABHQC/1wo9cKPZHQF1LZFocrAhHQEMrpeNT98+HckkQAABHQC/3S8an755HQF1MGJN0vGpHQEMsKPXCj1yHckoQAABHQC/4UeuFHrhHQF1MeuFHrhRHQEMsan752yOHcksQAABHQC/5WBBiTdNHQF1M7ZFocrBHQEMszMzMzM2HckwQAABHQC/6XjU/fO5HQF1NP3ztkWhHQEMtDlYEGJOHck0QAABHQC/7ZFocrAhHQF1NocrAgxJHQEMtcKPXCj2Hck4QAABHQC/752yLQ5ZHQF1N87ZFoctHQEMtsi0OVgSHck8QAABHQC/87ZFocrBHQF1OVgQYk3VHQEMt87ZFocuHclAQAABHQC/987ZFoctHQF1OyLQ5WBBHQEMuVgQYk3WHclEQAABHQDAAAAAAAABHQF1PfO2RaHNHQEMu2RaHKwKHclIQAABHQDAAxJul41RHQF1QIMSbpeNHQEMvXCj1wo+HclMQAABHQDABR64UeuFHQF1QgxJul41HQEMvnbItDlaHclQQAABHQDABysCDEm9HQF1Q9cKPXClHQEMwAAAAAACHclUQAABHQDACTdLxqfxHQF1RWBBiTdNHQEMwYk3S8aqHclYQAABHQDACj1wo9cNHQF1RqfvnbItHQEMwo9cKPXGHclcQAABHQDADEm6XjVBHQF1R++dsi0RHQEMw5WBBiTeHclgQAABHQDAEm6XjU/hHQF1TMzMzMzNHQEMxysCDEm+HclkQAABHQDAE3S8an75HQF1ThR64UexHQEMyDEm6XjWHcloQAABHQDAF41P3ztlHQF1UOVgQYk5HQEMyj1wo9cOHclsQAABHQDAGJN0vGqBHQF1Ui0OVgQZHQEMy8an7522HclwQAABHQDAG6XjU/fRHQF1VDlYEGJNHQEMzMzMzMzOHcl0QAABHQDAHrhR64UhHQF1Vsi0OVgRHQEMz1wo9cKSHcl4QAABHQDAIMSbpeNVHQF1WFHrhR65HQEM0GJN0vGqHcl8QAABHQDAI9cKPXClHQF1WyLQ5WBBHQEM0m6XjU/iHcmAQAABHQDAJeNT987ZHQF1XO2RaHKxHQEM0/fO2RaKHcmEQAABHQDAJ++dsi0RHQF1XjU/fO2RHQEM1P3ztkWiHcmIQAABHQDAKwIMSbphHQF1YQYk3S8dHQEM1wo9cKPaHcmMQAABHQDALQ5WBBiVHQF1Yo9cKPXFHQEM2JN0vGqCHcmQQAABHQDALxqfvnbJHQF1ZFocrAgxHQEM2hysCDEqHcmUQAABHQDAMi0OVgQZHQF1ZysCDEm9HQEM3Cj1wo9eHcmYQAABHQDANkWhysCFHQF1abpeNT99HQEM3jU/fO2SHcmcQAABHQDAOFHrhR65HQF1a0OVgQYlHQEM3ztkWhyuHcmgQAABHQDAOl41P3ztHQF1bQ5WBBiVHQEM4MSbpeNWHcmkQAABHQDAPXCj1wo9HQF1b987ZFodHQEM4tDlYEGKHcmoQAABHQDAP3ztkWh1HQF1cSbpeNT9HQEM5FocrAgyHcmsQAABHQDASbpeNT99HQF1ehysCDEpHQEM6wIMSbpiHcmwQAABHQDAS8an7521HQF1e2RaHKwJHQEM7AgxJul6Hcm0QAABHQDAUeuFHrhRHQF1gAAAAAABHQEM752yLQ5aHcm4QAABHQDAUvGp++dtHQF1gYk3S8apHQEM8SbpeNT+Hcm8QAABHQDAXjU/fO2RHQF1ij1wo9cNHQEM987ZFocuHcnAQAABHQDAYEGJN0vJHQF1i4UeuFHtHQEM+NT987ZGHcnEQAABHQDAYk3S8an9HQF1jQ5WBBiVHQEM+l41P3zuHcnIQAABHQDAa4UeuFHtHQF1lHrhR64VHQENAAAAAAACHcnMQAABHQDAcrAgxJulHQF1ml41P3ztHQENBJul41P6HcnQQAABHQDAdLxqfvndHQF1m+dsi0OVHQENBiTdLxqiHcnUQAABHQDAe+dsi0OVHQF1ocrAgxJxHQENCsCDEm6aHcnYQAABHQDAffO2RaHNHQF1oxJul41RHQENC8an7522HcncQAABHQDAfvnbItDlHQF1pJul41P5HQENDMzMzMzOHcngQAABHQDAgQYk3S8dHQF1peNT987ZHQENDdLxqfvqHcnkQAABHQDAhysCDEm9HQF1qn752yLRHQENEWhysCDGHcnoQAABHQDAkGJN0vGpHQF1seuFHrhRHQENF41P3ztmHcnsQAABHQDAkWhysCDFHQF1s3S8an75HQENGJN0vGqCHcnwQAABHQDAk3S8an75HQF1tLxqfvndHQENGZmZmZmaHcn0QAABHQDAlYEGJN0xHQF1tgQYk3S9HQENGp++dsi2Hcn4QAABHQDAmp++dsi1HQF1up++dsi1HQENHrhR64UiHcn8QAABHQDAnrhR64UhHQF1vXCj1wo9HQENIMSbpeNWHcoAQAABHQDAn752yLQ5HQF1vvnbItDlHQENIcrAgxJyHcoEQAABHQDAo9cKPXClHQF1wgxJul41HQENJFocrAgyHcoIQAABHQDApeNT987ZHQF1w5WBBiTdHQENJWBBiTdOHcoMQAABHQDAp++dsi0RHQF1xN0vGp/BHQENJmZmZmZqHcoQQAABHQDArAgxJul5HQF1yDEm6XjVHQENKXjU/fO6HcoUQAABHQDArxqfvnbJHQF1ywIMSbphHQENK4UeuFHuHcoYQAABHQDAsSbpeNT9HQF1zEm6XjVBHQENLItDlYEKHcocQAABHQDAszMzMzM1HQF1zZFocrAhHQENLZFocrAiHcogQAABHQDAtDlYEGJNHQF1zxqfvnbJHQENLpeNT98+HcokQAABHQDAuFHrhR65HQF10m6XjU/hHQENMSbpeNT+HcooQAABHQDAul41P3ztHQF107ZFocrBHQENMi0OVgQaHcosQAABHQDAv3ztkWh1HQF1187ZFoctHQENNcKPXCj2HcowQAABHQDAw5WBBiTdHQF12yLQ5WBBHQENOFHrhR66Hco0QAABHQDAxaHKwIMVHQF13Gp++dslHQENOVgQYk3WHco4QAABHQDAxqfvnbItHQF13fO2RaHNHQENOl41P3zuHco8QAABHQDAyLQ5WBBlHQF13ztkWhytHQENO2RaHKwKHcpAQAABHQDAysCDEm6ZHQF14UeuFHrhHQENPO2RaHKyHcpEQAABHQDAztkWhysFHQF149cKPXClHQENP3ztkWh2HcpIQAABHQDA0euFHrhRHQF15qfvnbItHQENQYk3S8aqHcpMQAABHQDA0/fO2RaJHQF15++dsi0RHQENQo9cKPXGHcpQQAABHQDA2BBiTdLxHQF160OVgQYlHQENRR64UeuGHcpUQAABHQDA2RaHKwINHQF17ItDlYEJHQENRiTdLxqiHcpYQAABHQDA2yLQ5WBBHQF17hR64UexHQENRysCDEm+HcpcQAABHQDA41P3ztkZHQF18/fO2RaJHQENTEm6XjVCHcpgQAABHQDA5mZmZmZpHQF19si0OVgRHQENTlYEGJN2HcpkQAABHQDA6HKwIMSdHQF1+BBiTdLxHQENT1wo9cKSHcpoQAABHQDA6n752yLRHQF1+hysCDEpHQENUOVgQYk6HcpsQAABHQDA7ZFocrAhHQF1/KwIMSbpHQENUvGp++duHcpwQAABHQDA8an752yNHQF1/3ztkWh1HQENVYEGJN0yHcp0QAABHQDA8rAgxJulHQF2AQYk3S8dHQENVocrAgxKHcp4QAABHQDA9si0OVgRHQF2BBiTdLxtHQENWRaHKwIOHcp8QAABHQDA+uFHrhR9HQF2Bul41P31HQENWyLQ5WBCHcqAQAABHQDA++dsi0OVHQF2CDEm6XjVHQENXCj1wo9eHcqEQAABHQDBAgxJul41HQF2DMzMzMzNHQENYEGJN0vKHcqIQAABHQDBBiTdLxqhHQF2D52yLQ5ZHQENYk3S8an+HcqMQAABHQDBBysCDEm9HQF2ESbpeNT9HQENY1P3ztkaHcqQQAABHQDBDU/fO2RdHQF2FcKPXCj1HQENZul41P32HcqUQAABHQDBD1wo9cKRHQF2Fwo9cKPZHQENZ++dsi0SHcqYQAABHQDBFocrAgxJHQF2HS8an755HQENbQ5WBBiWHcqcQAABHQDBGZmZmZmZHQF2H752yLQ5HQENbxqfvnbKHcqgQAABHQDBG6XjU/fRHQF2IUeuFHrhHQENcCDEm6XmHcqkQAABHQDBIcrAgxJxHQF2JeNT987ZHQENc7ZFocrCHcqoQAABHQDBI9cKPXClHQF2JysCDEm9HQENdT987ZFqHcqsQAABHQDBLhR64UexHQF2L987ZFodHQENe+dsi0OWHcqwQAABHQDBMCDEm6XlHQF2MWhysCDFHQENfO2RaHKyHcq0QAABHQDBMi0OVgQZHQF2MrAgxJulHQENfnbItDlaHcq4QAABHQDBNkWhysCFHQF2NgQYk3S9HQENgQYk3S8eHcq8QAABHQDBOVgQYk3VHQF2ONT987ZFHQENgxJul41SHcrAQAABHQDBO2RaHKwJHQF2OhysCDEpHQENhBiTdLxuHcrEQAABHQDBQo9cKPXFHQF2QAAAAAABHQENiLQ5WBBmHcrIQAABHQDBRJul41P5HQF2QYk3S8apHQENij1wo9cOHcrMQAABHQDBTdLxqfvpHQF2SPXCj1wpHQENj987ZFoeHcrQQAABHQDBT987ZFodHQF2Sj1wo9cNHQENkOVgQYk6HcrUQAABHQDBUeuFHrhRHQF2S8an7521HQENkeuFHrhSHcrYQAABHQDBVwo9cKPZHQF2UCDEm6XlHQENlgQYk3S+HcrcQAABHQDBYk3S8an9HQF2WRaHKwINHQENnKwIMSbqHcrgQAABHQDBZFocrAgxHQF2Wl41P3ztHQENnbItDlYGHcrkQAABHQDBZmZmZmZpHQF2W+dsi0OVHQENnztkWhyuHcroQAABHQDBa4UeuFHtHQF2YIMSbpeNHQENotDlYEGKHcrsQAABHQDBb52yLQ5ZHQF2YxJul41RHQENpN0vGp/CHcrwQAABHQDBcKPXCj1xHQF2ZJul41P5HQENpeNT987aHcr0QAABHQDBdsi0OVgRHQF2aTdLxqfxHQENqfvnbItGHcr4QAABHQDBeNT987ZFHQF2an752yLRHQENqwIMSbpiHcr8QAABHQDBgAAAAAABHQF2cKPXCj1xHQENr52yLQ5aHcsAQAABHQDBggxJul41HQF2ceuFHrhRHQENsKPXCj1yHcsEQAABHQDBhBiTdLxtHQF2czMzMzM1HQENsan752yOHcsIQAABHQDBhR64UeuFHQF2dLxqfvndHQENszMzMzM2HcsMQAABHQDBi0OVgQYlHQF2eVgQYk3VHQENtsi0OVgSHcsQQAABHQDBkGJN0vGpHQF2fXCj1wo9HQENudsi0OViHcsUQAABHQDBlHrhR64VHQF2gMSbpeNVHQENvGp++dsmHcsYQAABHQDBlocrAgxJHQF2ggxJul41HQENvXCj1wo+HcscQAABHQDBmJN0vGqBHQF2g1P3ztkZHQENvvnbItDmHcsgQAABHQDBmZmZmZmZHQF2hN0vGp/BHQENwAAAAAACHcskQAABHQDBn752yLQ5HQF2iXjU/fO5HQENw5WBBiTeHcsoQAABHQDBo9cKPXClHQF2jAgxJul5HQENxaHKwIMWHcssQAABHQDBpN0vGp/BHQF2jZFocrAhHQENxysCDEm+HcswQAABHQDBqPXCj1wpHQF2kOVgQYk5HQENybpeNT9+Hcs0QAABHQDBqwIMSbphHQF2ki0OVgQZHQENysCDEm6aHcs4QAABHQDBrQ5WBBiVHQF2k3S8an75HQENy8an7522Hcs8QAABHQDBsCDEm6XlHQF2lkWhysCFHQENzdLxqfvqHctAQAABHQDBtDlYEGJNHQF2mZmZmZmZHQEN0GJN0vGqHctEQAABHQDBtkWhysCFHQF2muFHrhR9HQEN0WhysCDGHctIQAABHQDBuFHrhR65HQF2nCj1wo9dHQEN0vGp++duHctMQAABHQDBuVgQYk3VHQF2nbItDlYFHQEN0/fO2RaKHctQQAABHQDBv3ztkWh1HQF2ok3S8an9HQEN141P3ztmHctUQAABHQDBxJul41P5HQF2pmZmZmZpHQEN2p++dsi2HctYQAABHQDByLQ5WBBlHQF2qbpeNT99HQEN3bItDlYGHctcQAABHQDBzMzMzMzNHQF2rEm6XjVBHQEN3752yLQ6HctgQAABHQDBzdLxqfvpHQF2rdLxqfvpHQEN4MSbpeNWHctkQAABHQDBz987ZFodHQF2rxqfvnbJHQEN4crAgxJyHctoQAABHQDB0/fO2RaJHQF2sm6XjU/hHQEN5FocrAgyHctsQAABHQDB2BBiTdLxHQF2tP3ztkWhHQEN5ul41P32HctwQAABHQDB2RaHKwINHQF2tocrAgxJHQEN5++dsi0SHct0QAABHQDB4UeuFHrhHQF2vGp++dslHQEN7ItDlYEKHct4QAABHQDB5FocrAgxHQF2vztkWhytHQEN7xqfvnbKHct8QAABHQDB6HKwIMSdHQF2wo9cKPXFHQEN8an752yOHcuAQAABHQDB7ItDlYEJHQF2xR64UeuFHQEN87ZFocrCHcuEQAABHQDB7ZFocrAhHQF2xqfvnbItHQEN9LxqfvneHcuIQAABHQDB87ZFocrBHQF2y0OVgQYlHQEN+FHrhR66HcuMQAABHQDB987ZFoctHQF2zdLxqfvpHQEN+uFHrhR+HcuQQAABHQDB/O2RaHKxHQF20rAgxJulHQEN/nbItDlaHcuUQAABHQDCAQYk3S8dHQF21T987ZFpHQEOAIMSbpeOHcuYQAABHQDCAxJul41RHQF21si0OVgRHQEOAYk3S8aqHcucQAABHQDCBBiTdLxtHQF22BBiTdLxHQEOAxJul41SHcugQAABHQDCCDEm6XjVHQF222RaHKwJHQEOBaHKwIMWHcukQAABHQDCDEm6XjVBHQF23fO2RaHNHQEOB64UeuFKHcuoQAABHQDCDlYEGJN1HQF233ztkWh1HQEOCLQ5WBBmHcusQAABHQDCFYEGJN0xHQF25WBBiTdNHQEODU/fO2ReHcuwQAABHQDCGJN0vGqBHQF26DEm6XjVHQEOD987ZFoeHcu0QAABHQDCIMSbpeNVHQF27hR64UexHQEOFHrhR64WHcu4QAABHQDCItDlYEGJHQF2752yLQ5ZHQEOFYEGJN0yHcu8QAABHQDCI9cKPXClHQF28OVgQYk5HQEOFwo9cKPaHcvAQAABHQDCKfvnbItFHQF29YEGJN0xHQEOGp++dsi2HcvEQAABHQDCNT987ZFpHQF2/jU/fO2RHQEOIUeuFHriHcvIQAABHQDCN0vGp++dHQF2/752yLQ5HQEOItDlYEGKHcvMQAABHQDCOVgQYk3VHQF3AQYk3S8dHQEOI9cKPXCmHcvQQAABHQDCQIMSbpeNHQF3Bul41P31HQEOKHKwIMSeHcvUQAABHQDCQo9cKPXFHQF3CHKwIMSdHQEOKXjU/fO6HcvYQAABHQDCRJul41P5HQF3CbpeNT99HQEOKwIMSbpiHcvcQAABHQDCSbpeNT99HQF3DlYEGJN1HQEOLpeNT98+HcvgQAABHQDCT987ZFodHQF3Em6XjU/hHQEOMan752yOHcvkQAABHQDCVP3ztkWhHQF3Fwo9cKPZHQEONT987ZFqHcvoQAABHQDCVwo9cKPZHQF3GJN0vGqBHQEONsi0OVgSHcvsQAABHQDCWRaHKwINHQF3Gdsi0OVhHQEON87ZFocuHcvwQAABHQDCXjU/fO2RHQF3HnbItDlZHQEOO2RaHKwKHcv0QAABHQDCaXjU/fO5HQF3JysCDEm9HQEOQo9cKPXGHcv4QAABHQDCa4UeuFHtHQF3KLQ5WBBlHQEOQ5WBBiTeHcv8QAABHQDCbZFocrAhHQF3KfvnbItFHQEORJul41P6HcgARAABHQDCc7ZFocrBHQF3LpeNT989HQEOSDEm6XjWHcgERAABHQDCdsi0OVgRHQF3MWhysCDFHQEOSsCDEm6aHcgIRAABHQDCeNT987ZFHQF3MrAgxJulHQEOS8an7522HcgMRAABHQDCfvnbItDlHQF3N0vGp++dHQEOT1wo9cKSHcgQRAABHQDCgAAAAAABHQF3OJN0vGqBHQEOUGJN0vGqHcgURAABHQDChBiTdLxtHQF3O2RaHKwJHQEOUvGp++duHcgYRAABHQDCiDEm6XjVHQF3PrhR64UhHQEOVYEGJN0yHcgcRAABHQDCij1wo9cNHQF3QAAAAAABHQEOVocrAgxKHcggRAABHQDCi0OVgQYlHQF3QUeuFHrhHQEOV41P3ztmHcgkRAABHQDCjU/fO2RdHQF3QtDlYEGJHQEOWJN0vGqCHcgoRAABHQDCk3S8an75HQF3R2yLQ5WBHQEOXKwIMSbqHcgsRAABHQDCmJN0vGqBHQF3S4UeuFHtHQEOX752yLQ6HcgwRAABHQDCnrhR64UhHQF3UCDEm6XlHQEOY1P3ztkaHcg0RAABHQDCoMSbpeNVHQF3UWhysCDFHQEOZFocrAgyHcg4RAABHQDCocrAgxJxHQF3UvGp++dtHQEOZeNT987aHcg8RAABHQDCo9cKPXClHQF3VDlYEGJNHQEOZul41P32HchARAABHQDCp++dsi0RHQF3V41P3ztlHQEOaXjU/fO6HchERAABHQDCrAgxJul5HQF3WhysCDEpHQEOa4UeuFHuHchIRAABHQDCrQ5WBBiVHQF3W6XjU/fRHQEObItDlYEKHchMRAABHQDCtT987ZFpHQF3YYk3S8apHQEOcan752yOHchQRAABHQDCuFHrhR65HQF3ZFocrAgxHQEOc7ZFocrCHchURAABHQDCvGp++dslHQF3Z64UeuFJHQEOdkWhysCGHchYRAABHQDCwIMSbpeNHQF3aj1wo9cNHQEOeNT987ZGHchcRAABHQDCwo9cKPXFHQF3a8an7521HQEOedsi0OViHchgRAABHQDCy8an7521HQF3cvGp++dtHQEOf3ztkWh2HchkRAABHQDC1P3ztkWhHQF3el41P3ztHQEOhaHKwIMWHchoRAABHQDC1wo9cKPZHQF3e6XjU/fRHQEOhqfvnbIuHchsRAABHQDC2RaHKwINHQF3fS8an755HQEOh64UeuFKHchwRAABHQDC4EGJN0vJHQF3gxJul41RHQEOjMzMzMzOHch0RAABHQDC4k3S8an9HQF3hFocrAgxHQEOjdLxqfvqHch4RAABHQDC6n752yLRHQF3in752yLRHQEOkm6XjU/iHch8RAABHQDC7ZFocrAhHQF3jU/fO2RdHQEOlP3ztkWiHciARAABHQDC9cKPXCj1HQF3kzMzMzM1HQEOmZmZmZmaHciERAABHQDC9si0OVgRHQF3lHrhR64VHQEOmp++dsi2HciIRAABHQDC+NT987ZFHQF3lgQYk3S9HQEOm6XjU/fSHciMRAABHQDDAQYk3S8dHQF3m+dsi0OVHQEOoMSbpeNWHciQRAABHQDDCj1wo9cNHQF3o1P3ztkZHQEOpmZmZmZqHciURAABHQDDDEm6XjVBHQF3pJul41P5HQEOp++dsi0SHciYRAABHQDDDU/fO2RdHQF3piTdLxqhHQEOqPXCj1wqHcicRAABHQDDFYEGJN0xHQF3rAgxJul5HQEOrZFocrAiHcigRAABHQDDF41P3ztlHQF3rU/fO2RdHQEOrpeNT98+HcikRAABHQDDHrhR64UhHQF3szMzMzM1HQEOs7ZFocrCHcioRAABHQDDItDlYEGJHQF3tgQYk3S9HQEOtcKPXCj2HcisRAABHQDDKfvnbItFHQF3u+dsi0OVHQEOuuFHrhR+HciwRAABHQDDLAgxJul5HQF3vXCj1wo9HQEOu+dsi0OWHci0RAABHQDDLhR64UexHQF3vrhR64UhHQEOvO2RaHKyHci4RAABHQDDOVgQYk3VHQF3x64UeuFJHQEOxBiTdLxuHci8RAABHQDDP3ztkWh1HQF3zAgxJul5HQEOx64UeuFKHcjARAABHQDDQIMSbpeNHQF3zZFocrAhHQEOyLQ5WBBmHcjERAABHQDDQo9cKPXFHQF3ztkWhysFHQEOybpeNT9+HcjIRAABHQDDSsCDEm6ZHQF31LxqfvndHQEOztkWhysGHcjMRAABHQDDS8an7521HQF31kWhysCFHQEOz987ZFoeHcjQRAABHQDDTdLxqfvpHQF3141P3ztlHQEO0OVgQYk6HcjURAABHQDDU/fO2RaJHQF33Cj1wo9dHQEO1HrhR64WHcjYRAABHQDDWRaHKwINHQF34EGJN0vJHQEO2BBiTdLyHcjcRAABHQDDXztkWhytHQF35N0vGp/BHQEO26XjU/fSHcjgRAABHQDDYUeuFHrhHQF35iTdLxqhHQEO3KwIMSbqHcjkRAABHQDDY1P3ztkZHQF3564UeuFJHQEO3jU/fO2SHcjoRAABHQDDbpeNT989HQF38GJN0vGpHQEO5N0vGp/CHcjsRAABHQDDc7ZFocrBHQF39P3ztkWhHQEO6PXCj1wqHcjwRAABHQDDdcKPXCj1HQF39kWhysCFHQEO6fvnbItGHcj0RAABHQDDd87ZFoctHQF3987ZFoctHQEO6wIMSbpiHcj4RAABHQDDedsi0OVhHQF3+RaHKwINHQEO7AgxJul6Hcj8RAABHQDDgQYk3S8dHQF3/vnbItDlHQEO8KPXCj1yHckARAABHQDDgxJul41RHQF4AIMSbpeNHQEO8i0OVgQaHckERAABHQDDjlYEGJN1HQF4CTdLxqfxHQEO+VgQYk3WHckIRAABHQDDlocrAgxJHQF4DxqfvnbJHQEO/fO2RaHOHckMRAABHQDDl41P3ztlHQF4EGJN0vGpHQEO/vnbItDmHckQRAABHQDDo9cKPXClHQF4GVgQYk3VHQEPBiTdLxqiHckURAABHQDDqwIMSbphHQF4HztkWhytHQEPCsCDEm6aHckYRAABHQDDrQ5WBBiVHQF4IIMSbpeNHQEPDEm6XjVCHckcRAABHQDDrxqfvnbJHQF4IcrAgxJxHQEPDU/fO2ReHckgRAABHQDDtkWhysCFHQF4J++dsi0RHQEPEeuFHrhSHckkRAABHQDDuFHrhR65HQF4KTdLxqfxHQEPEvGp++duHckoRAABHQDDw5WBBiTdHQF4MeuFHrhRHQEPGhysCDEqHcksRAABHQDDy8an7521HQF4N87ZFoctHQEPHztkWhyuHckwRAABHQDDzMzMzMzNHQF4OVgQYk3VHQEPIEGJN0vKHck0RAABHQDDztkWhysFHQF4Op++dsi1HQEPIUeuFHriHck4RAABHQDD1wo9cKPZHQF4QIMSbpeNHQEPJeNT987aHck8RAABHQDD4EGJN0vJHQF4R++dsi0RHQEPLAgxJul6HclARAABHQDD4k3S8an9HQF4STdLxqfxHQEPLQ5WBBiWHclERAABHQDD5FocrAgxHQF4SsCDEm6ZHQEPLhR64UeyHclIRAABHQDD64UeuFHtHQF4UKPXCj1xHQEPMzMzMzM2HclMRAABHQDD7ZFocrAhHQF4UeuFHrhRHQEPNDlYEGJOHclQRAABHQDD9cKPXCj1HQF4WBBiTdLxHQEPONT987ZGHclURAABHQDD+NT987ZFHQF4WuFHrhR9HQEPO2RaHKwKHclYRAABHQDEAQYk3S8dHQF4YMSbpeNVHQEPQAAAAAACHclcRAABHQDEAgxJul41HQF4YgxJul41HQEPQQYk3S8eHclgRAABHQDEBBiTdLxtHQF4Y5WBBiTdHQEPQo9cKPXGHclkRAABHQDEDEm6XjVBHQF4aXjU/fO5HQEPRysCDEm+HcloRAABHQDED1wo9cKRHQF4bEm6XjVBHQEPSTdLxqfyHclsRAABHQDEFYEGJN0xHQF4cKPXCj1xHQEPTU/fO2ReHclwRAABHQDEF41P3ztlHQF4ci0OVgQZHQEPTlYEGJN2Hcl0RAABHQDEGZmZmZmZHQF4c3S8an75HQEPT1wo9cKSHcl4RAABHQDEIMSbpeNVHQF4eVgQYk3VHQEPU/fO2RaKHcl8RAABHQDEItDlYEGJHQF4euFHrhR9HQEPVYEGJN0yHcmARAABHQDEJN0vGp/BHQF4fCj1wo9dHQEPVocrAgxKHcmERAABHQDELhR64UexHQF4g5WBBiTdHQEPXCj1wo9eHcmIRAABHQDEMCDEm6XlHQF4hN0vGp/BHQEPXbItDlYGHcmMRAABHQDENkWhysCFHQF4iXjU/fO5HQEPYUeuFHriHcmQRAABHQDEOFHrhR65HQF4isCDEm6ZHQEPYk3S8an+HcmURAABHQDEOVgQYk3VHQF4jEm6XjVBHQEPY1P3ztkaHcmYRAABHQDEQYk3S8apHQF4ki0OVgQZHQEPaHKwIMSeHcmcRAABHQDERJul41P5HQF4lP3ztkWhHQEPan752yLSHcmgRAABHQDESsCDEm6ZHQF4mZmZmZmZHQEPbhR64UeyHcmkRAABHQDETMzMzMzNHQF4muFHrhR9HQEPb52yLQ5aHcmoRAABHQDETtkWhysFHQF4nGp++dslHQEPcKPXCj1yHcmsRAABHQDEUOVgQYk5HQF4nbItDlYFHQEPcan752yOHcmwRAABHQDEVgQYk3S9HQF4ok3S8an9HQEPdT987ZFqHcm0RAABHQDEWBBiTdLxHQF4o5WBBiTdHQEPdkWhysCGHcm4RAABHQDEWhysCDEpHQF4pR64UeuFHQEPd87ZFocuHcm8RAABHQDEZWBBiTdNHQF4rdLxqfvpHQEPfnbItDlaHcnARAABHQDEa4UeuFHtHQF4si0OVgQZHQEPgo9cKPXGHcnERAABHQDEbZFocrAhHQF4s7ZFocrBHQEPg5WBBiTeHcnIRAABHQDEbpeNT989HQF4tP3ztkWhHQEPhJul41P6HcnMRAABHQDEeuFHrhR9HQF4vbItDlYFHQEPi8an7522HcnQRAABHQDEggxJul41HQF4w5WBBiTdHQEPkGJN0vGqHcnURAABHQDEhBiTdLxtHQF4xR64UeuFHQEPkWhysCDGHcnYRAABHQDEhiTdLxqhHQF4xmZmZmZpHQEPkvGp++duHcncRAABHQDEjU/fO2RdHQF4zEm6XjVBHQEPl41P3ztmHcngRAABHQDEj1wo9cKRHQF4zdLxqfvpHQEPmJN0vGqCHcnkRAABHQDEmp++dsi1HQF41ocrAgxJHQEPn752yLQ6HcnoRAABHQDEotDlYEGJHQF43Gp++dslHQEPpN0vGp/CHcnsRAABHQDEpN0vGp/BHQF43bItDlYFHQEPpeNT987aHcnwRAABHQDEpeNT987ZHQF43ztkWhytHQEPpul41P32Hcn0RAABHQDErhR64UexHQF45R64UeuFHQEPq4UeuFHuHcn4RAABHQDEsCDEm6XlHQF45qfvnbItHQEPrQ5WBBiWHcn8RAABHQDEt0vGp++dHQF47ItDlYEJHQEPsan752yOHcoARAABHQDEuVgQYk3VHQF47dLxqfvpHQEPsrAgxJumHcoERAABHQDEu2RaHKwJHQF471wo9cKRHQEPs7ZFocrCHcoIRAABHQDEw5WBBiTdHQF49T987ZFpHQEPuNT987ZGHcoMRAABHQDExJul41P5HQF49ocrAgxJHQEPudsi0OViHcoQRAABHQDE0OVgQYk5HQF4/ztkWhytHQEPwQYk3S8eHcoURAABHQDE2BBiTdLxHQF5BR64UeuFHQEPxaHKwIMWHcoYRAABHQDE2hysCDEpHQF5BqfvnbItHQEPxqfvnbIuHcocRAABHQDE3Cj1wo9dHQF5B++dsi0RHQEPyDEm6XjWHcogRAABHQDE41P3ztkZHQF5DdLxqfvpHQEPzMzMzMzOHcokRAABHQDE7ZFocrAhHQF5FT987ZFpHQEP0vGp++duHcooRAABHQDE7peNT989HQF5FocrAgxJHQEP0/fO2RaKHcosRAABHQDE8KPXCj1xHQF5GBBiTdLxHQEP1P3ztkWiHcowRAABHQDE+NT987ZFHQF5HfO2RaHNHQEP2hysCDEqHco0RAABHQDE+uFHrhR9HQF5HztkWhytHQEP2yLQ5WBCHco4RAABHQDFBiTdLxqhHQF5J++dsi0RHQEP4k3S8an+Hco8RAABHQDFDU/fO2RdHQF5LdLxqfvpHQEP5ul41P32HcpARAABHQDFD1wo9cKRHQF5L1wo9cKRHQEP5++dsi0SHcpERAABHQDFEWhysCDFHQF5MKPXCj1xHQEP6PXCj1wqHcpIRAABHQDFGZmZmZmZHQF5NocrAgxJHQEP7hR64UeyHcpMRAABHQDFHKwIMSbpHQF5OVgQYk3VHQEP8CDEm6XmHcpQRAABHQDFItDlYEGJHQF5PfO2RaHNHQEP9DlYEGJOHcpURAABHQDFJN0vGp/BHQF5P3ztkWh1HQEP9T987ZFqHcpYRAABHQDFJul41P31HQF5QMSbpeNVHQEP9kWhysCGHcpcRAABHQDFLhR64UexHQF5RqfvnbItHQEP+uFHrhR+HcpgRAABHQDFMCDEm6XlHQF5R++dsi0RHQEP/Gp++dsmHcpkRAABHQDFMi0OVgQZHQF5SXjU/fO5HQEP/XCj1wo+HcpoRAABHQDFO2RaHKwJHQF5UOVgQYk5HQEQAxJul41SHcpsRAABHQDFPXCj1wo9HQF5Ui0OVgQZHQEQBJul41P6HcpwRAABHQDFQ5WBBiTdHQF5Vsi0OVgRHQEQCDEm6XjWHcp0RAABHQDFRJul41P5HQF5WBBiTdLxHQEQCTdLxqfyHcp4RAABHQDFRqfvnbItHQF5WVgQYk3VHQEQCj1wo9cOHcp8RAABHQDFTtkWhysFHQF5X3ztkWh1HQEQD1wo9cKSHcqARAABHQDFUeuFHrhRHQF5Yk3S8an9HQEQEWhysCDGHcqERAABHQDFWhysCDEpHQF5aDEm6XjVHQEQFocrAgxKHcqIRAABHQDFXCj1wo9dHQF5aXjU/fO5HQEQF41P3ztmHcqMRAABHQDFXjU/fO2RHQF5awIMSbphHQEQGJN0vGqCHcqQRAABHQDFY1P3ztkZHQF5b1wo9cKRHQEQHCj1wo9eHcqURAABHQDFZWBBiTdNHQF5cOVgQYk5HQEQHS8an756HcqYRAABHQDFZ2yLQ5WBHQF5ci0OVgQZHQEQHrhR64UiHcqcRAABHQDFcKPXCj1xHQF5eZmZmZmZHQEQJFocrAgyHcqgRAABHQDFcrAgxJulHQF5euFHrhR9HQEQJWBBiTdOHcqkRAABHQDFeuFHrhR9HQF5gMSbpeNVHQEQKn752yLSHcqoRAABHQDFfO2RaHKxHQF5gk3S8an9HQEQK4UeuFHuHcqsRAABHQDFiDEm6XjVHQF5iwIMSbphHQEQMrAgxJumHcqwRAABHQDFj1wo9cKRHQF5kOVgQYk5HQEQN0vGp++eHcq0RAABHQDFkWhysCDFHQF5ki0OVgQZHQEQONT987ZGHcq4RAABHQDFk3S8an75HQF5k7ZFocrBHQEQOdsi0OViHcq8RAABHQDFm6XjU/fRHQF5mZmZmZmZHQEQPnbItDlaHcrARAABHQDFnKwIMSbpHQF5muFHrhR9HQEQP3ztkWh2HcrERAABHQDFpul41P31HQF5ok3S8an9HQEQRaHKwIMWHcrIRAABHQDFqPXCj1wpHQF5o5WBBiTdHQEQRqfvnbIuHcrMRAABHQDFsCDEm6XlHQF5qXjU/fO5HQEQS8an7522HcrQRAABHQDFsi0OVgQZHQF5qwIMSbphHQEQTMzMzMzOHcrURAABHQDFtDlYEGJNHQF5rEm6XjVBHQEQTdLxqfvqHcrYRAABHQDFu2RaHKwJHQF5si0OVgQZHQEQUm6XjU/iHcrcRAABHQDFvXCj1wo9HQF5s7ZFocrBHQEQU/fO2RaKHcrgRAABHQDFxaHKwIMVHQF5uZmZmZmZHQEQWJN0vGqCHcrkRAABHQDFx64UeuFJHQF5uuFHrhR9HQEQWZmZmZmaHcroRAABHQDFyLQ5WBBlHQF5vGp++dslHQEQWyLQ5WBCHcrsRAABHQDF0OVgQYk5HQF5wk3S8an9HQEQX752yLQ6HcrwRAABHQDF0vGp++dtHQF5w5WBBiTdHQEQYMSbpeNWHcr0RAABHQDF3jU/fO2RHQF5zEm6XjVBHQEQZ++dsi0SHcr4RAABHQDF5mZmZmZpHQF50m6XjU/hHQEQbItDlYEKHcr8RAABHQDF52yLQ5WBHQF507ZFocrBHQEQbhR64UeyHcsARAABHQDF6XjU/fO5HQF51P3ztkWhHQEQbxqfvnbKHcsERAABHQDF8an752yNHQF52uFHrhR9HQEQc7ZFocrCHcsIRAABHQDF/O2RaHKxHQF549cKPXClHQEQeuFHrhR+HcsMRAABHQDF/vnbItDlHQF55R64UeuFHQEQe+dsi0OWHcsQRAABHQDGBiTdLxqhHQF56wIMSbphHQEQgQYk3S8eHcsURAABHQDGCDEm6XjVHQF57Em6XjVBHQEQggxJul42HcsYRAABHQDGE3S8an75HQF59T987ZFpHQEQiTdLxqfyHcscRAABHQDGFYEGJN0xHQF59ocrAgxJHQEQij1wo9cOHcsgRAABHQDGG6XjU/fRHQF5+yLQ5WBBHQEQjdLxqfvqHcskRAABHQDGHbItDlYFHQF5/Gp++dslHQEQjtkWhysGHcsoRAABHQDGH752yLQ5HQF5/bItDlYFHQEQkGJN0vGqHcssRAABHQDGJul41P31HQF6A9cKPXClHQEQlP3ztkWiHcswRAABHQDGKwIMSbphHQF6BqfvnbItHQEQl41P3ztmHcs0RAABHQDGMi0OVgQZHQF6DItDlYEJHQEQnCj1wo9eHcs4RAABHQDGNDlYEGJNHQF6DdLxqfvpHQEQnS8an756Hcs8RAABHQDGPGp++dslHQF6E7ZFocrBHQEQok3S8an+HctARAABHQDGPnbItDlZHQF6FT987ZFpHQEQo1P3ztkaHctERAABHQDGP3ztkWh1HQF6FocrAgxJHQEQpFocrAgyHctIRAABHQDGSbpeNT99HQF6HfO2RaHNHQEQqn752yLSHctMRAABHQDGS8an7521HQF6HztkWhytHQEQq4UeuFHuHctQRAABHQDGUvGp++dtHQF6JR64UeuFHQEQsCDEm6XmHctURAABHQDGVP3ztkWhHQF6JqfvnbItHQEQsSbpeNT+HctYRAABHQDGXS8an755HQF6LItDlYEJHQEQtkWhysCGHctcRAABHQDGXjU/fO2RHQF6LdLxqfvpHQEQt0vGp++eHctgRAABHQDGYEGJN0vJHQF6L1wo9cKRHQEQuFHrhR66HctkRAABHQDGaHKwIMSdHQF6NT987ZFpHQEQvXCj1wo+HctoRAABHQDGan752yLRHQF6NocrAgxJHQEQvnbItDlaHctsRAABHQDGa4UeuFHtHQF6OBBiTdLxHQEQv3ztkWh2HctwRAABHQDGc7ZFocrBHQF6PfO2RaHNHQEQxJul41P6Hct0RAABHQDGdcKPXCj1HQF6PztkWhytHQEQxaHKwIMWHct4RAABHQDGfvnbItDlHQF6RqfvnbItHQEQy0OVgQYmHct8RAABHQDGgQYk3S8dHQF6R++dsi0RHQEQzMzMzMzOHcuARAABHQDGiTdLxqfxHQF6TdLxqfvpHQEQ0WhysCDGHcuERAABHQDGij1wo9cNHQF6T1wo9cKRHQEQ0m6XjU/iHcuIRAABHQDGlHrhR64VHQF6VocrAgxJHQEQ2JN0vGqCHcuMRAABHQDGlocrAgxJHQF6WBBiTdLxHQEQ2ZmZmZmaHcuQRAABHQDGnbItDlYFHQF6XfO2RaHNHQEQ3rhR64UiHcuURAABHQDGn752yLQ5HQF6XztkWhytHQEQ3752yLQ6HcuYRAABHQDGocrAgxJxHQF6YMSbpeNVHQEQ4MSbpeNWHcucRAABHQDGqPXCj1wpHQF6ZqfvnbItHQEQ5WBBiTdOHcugRAABHQDGqwIMSbphHQF6Z++dsi0RHQEQ5ul41P32HcukRAABHQDGtT987ZFpHQF6b1wo9cKRHQEQ7ItDlYEKHcuoRAABHQDGtkWhysCFHQF6cKPXCj1xHQEQ7hR64UeyHcusRAABHQDGvnbItDlZHQF6docrAgxJHQEQ8rAgxJumHcuwRAABHQDGwIMSbpeNHQF6eBBiTdLxHQEQ87ZFocrCHcu0RAABHQDGwo9cKPXFHQF6eVgQYk3VHQEQ9LxqfvneHcu4RAABHQDGybpeNT99HQF6fztkWhytHQEQ+dsi0OViHcu8RAABHQDG1P3ztkWhHQF6h++dsi0RHQERAQYk3S8eHcvARAABHQDG1wo9cKPZHQF6iXjU/fO5HQERAgxJul42HcvERAABHQDG3ztkWhytHQF6j1wo9cKRHQERBqfvnbIuHcvIRAABHQDG4UeuFHrhHQF6kKPXCj1xHQERB64UeuFKHcvMRAABHQDG7ItDlYEJHQF6mVgQYk3VHQERDtkWhysGHcvQRAABHQDG87ZFocrBHQF6n3ztkWh1HQERE/fO2RaKHcvURAABHQDG9cKPXCj1HQF6oMSbpeNVHQERFP3ztkWiHcvYRAABHQDG987ZFoctHQF6ogxJul41HQERFgQYk3S+HcvcRAABHQDHAAAAAAABHQF6p++dsi0RHQERGyLQ5WBCHcvgRAABHQDHAxJul41RHQF6qwIMSbphHQERHS8an756HcvkRAABHQDHC0OVgQYlHQF6sOVgQYk5HQERIcrAgxJyHcvoRAABHQDHDU/fO2RdHQF6si0OVgQZHQERI1P3ztkaHcvsRAABHQDHFHrhR64VHQF6uBBiTdLxHQERJ++dsi0SHcvwRAABHQDHFocrAgxJHQF6uVgQYk3VHQERKPXCj1wqHcv0RAABHQDHIcrAgxJxHQF6wk3S8an9HQERMCDEm6XmHcv4RAABHQDHI9cKPXClHQF6w5WBBiTdHQERMSbpeNT+Hcv8RAABHQDHLAgxJul5HQF6yXjU/fO5HQERNkWhysCGHcgASAABHQDHLQ5WBBiVHQF6ywIMSbphHQERN0vGp++eHcgESAABHQDHNT987ZFpHQF60OVgQYk5HQERO+dsi0OWHcgISAABHQDHN0vGp++dHQF60i0OVgQZHQERPXCj1wo+HcgMSAABHQDHOVgQYk3VHQF607ZFocrBHQERPnbItDlaHcgQSAABHQDHQIMSbpeNHQF62ZmZmZmZHQERQxJul41SHcgUSAABHQDHQo9cKPXFHQF62uFHrhR9HQERRBiTdLxuHcgYSAABHQDHSsCDEm6ZHQF64MSbpeNVHQERSTdLxqfyHcgcSAABHQDHS8an7521HQF64k3S8an9HQERSj1wo9cOHcggSAABHQDHTdLxqfvpHQF645WBBiTdHQERS0OVgQYmHcgkSAABHQDHWBBiTdLxHQF66wIMSbphHQERUWhysCDGHcgoSAABHQDHWRaHKwINHQF67Em6XjVBHQERUm6XjU/iHcgsSAABHQDHYUeuFHrhHQF68i0OVgQZHQERV41P3ztmHcgwSAABHQDHY1P3ztkZHQF687ZFocrBHQERWJN0vGqCHcg0SAABHQDHbItDlYEJHQF6+uFHrhR9HQERXjU/fO2SHcg4SAABHQDHbpeNT989HQF6/Gp++dslHQERX752yLQ6Hcg8SAABHQDHdcKPXCj1HQF7Ak3S8an9HQERZFocrAgyHchASAABHQDHd87ZFoctHQF7A5WBBiTdHQERZWBBiTdOHchESAABHQDHedsi0OVhHQF7BR64UeuFHQERZmZmZmZqHchISAABHQDHggxJul41HQF7CwIMSbphHQERa4UeuFHuHchMSAABHQDHgxJul41RHQF7DEm6XjVBHQERbItDlYEKHchQSAABHQDHjU/fO2RdHQF7E7ZFocrBHQERcrAgxJumHchUSAABHQDHj1wo9cKRHQF7FP3ztkWhHQERc7ZFocrCHchYSAABHQDHlocrAgxJHQF7GuFHrhR9HQEReFHrhR66HchcSAABHQDHmJN0vGqBHQF7HGp++dslHQERedsi0OViHchgSAABHQDHocrAgxJxHQF7I5WBBiTdHQERf3ztkWh2HchkSAABHQDHo9cKPXClHQF7JR64UeuFHQERgIMSbpeOHchoSAABHQDHrhR64UexHQF7LEm6XjVBHQERhqfvnbIuHchsSAABHQDHrxqfvnbJHQF7LdLxqfvpHQERh64UeuFKHchwSAABHQDHt0vGp++dHQF7M7ZFocrBHQERjMzMzMzOHch0SAABHQDHuVgQYk3VHQF7NP3ztkWhHQERjdLxqfvqHch4SAABHQDHwo9cKPXFHQF7PGp++dslHQERk/fO2RaKHch8SAABHQDHxJul41P5HQF7PfO2RaHNHQERlP3ztkWiHciASAABHQDHzMzMzMzNHQF7Q9cKPXClHQERmZmZmZmaHciESAABHQDHzdLxqfvpHQF7RR64UeuFHQERmp++dsi2HciISAABHQDHz987ZFodHQF7RmZmZmZpHQERnCj1wo9eHciMSAABHQDH2BBiTdLxHQF7TItDlYEJHQERoMSbpeNWHciQSAABHQDH41P3ztkZHQF7VT987ZFpHQERp++dsi0SHciUSAABHQDH5WBBiTdNHQF7VocrAgxJHQERqPXCj1wqHciYSAABHQDH7ItDlYEJHQF7XGp++dslHQERrZFocrAiHcicSAABHQDH7peNT989HQF7XfO2RaHNHQERrxqfvnbKHcigSAABHQDH+dsi0OVhHQF7ZqfvnbItHQERtcKPXCj2HcikSAABHQDIAgxJul41HQF7bItDlYEJHQERuuFHrhR+HcioSAABHQDIBBiTdLxtHQF7bdLxqfvpHQERu+dsi0OWHcisSAABHQDIBR64UeuFHQF7b1wo9cKRHQERvO2RaHKyHciwSAABHQDIDU/fO2RdHQF7dT987ZFpHQERwgxJul42Hci0SAABHQDID1wo9cKRHQF7docrAgxJHQERwxJul41SHci4SAABHQDIEWhysCDFHQF7eBBiTdLxHQERxBiTdLxuHci8SAABHQDIGJN0vGqBHQF7ffO2RaHNHQERyTdLxqfyHcjASAABHQDIGp++dsi1HQF7fztkWhytHQERyj1wo9cOHcjESAABHQDIIcrAgxJxHQF7hR64UeuFHQERztkWhysGHcjISAABHQDII9cKPXClHQF7hqfvnbItHQERz987ZFoeHcjMSAABHQDILxqfvnbJHQF7j1wo9cKRHQER1wo9cKPaHcjQSAABHQDIMSbpeNT9HQF7kKPXCj1xHQER2BBiTdLyHcjUSAABHQDIOVgQYk3VHQF7lsi0OVgRHQER3S8an756HcjYSAABHQDIO2RaHKwJHQF7mBBiTdLxHQER3jU/fO2SHcjcSAABHQDIQo9cKPXFHQF7nfO2RaHNHQER4tDlYEGKHcjgSAABHQDIRJul41P5HQF7nztkWhytHQER5FocrAgyHcjkSAABHQDIRqfvnbItHQF7oMSbpeNVHQER5WBBiTdOHcjoSAABHQDITdLxqfvpHQF7pqfvnbItHQER6fvnbItGHcjsSAABHQDIT987ZFodHQF7qDEm6XjVHQER6wIMSbpiHcjwSAABHQDIWRaHKwINHQF7r1wo9cKRHQER8SbpeNT+Hcj0SAABHQDIWyLQ5WBBHQF7sOVgQYk5HQER8i0OVgQaHcj4SAABHQDIZWBBiTdNHQF7uBBiTdLxHQER+FHrhR66Hcj8SAABHQDIZmZmZmZpHQF7uZmZmZmZHQER+VgQYk3WHckASAABHQDIbpeNT989HQF7v3ztkWh1HQER/nbItDlaHckESAABHQDIcKPXCj1xHQF7wMSbpeNVHQER/3ztkWh2HckISAABHQDIedsi0OVhHQF7yDEm6XjVHQESBR64UeuGHckMSAABHQDIe+dsi0OVHQF7yXjU/fO5HQESBqfvnbIuHckQSAABHQDIhR64UeuFHQF70OVgQYk5HQESDEm6XjVCHckUSAABHQDIhysCDEm9HQF70i0OVgQZHQESDU/fO2ReHckYSAABHQDIj1wo9cKRHQF72BBiTdLxHQESEm6XjU/iHckcSAABHQDIkGJN0vGpHQF72ZmZmZmZHQESE3S8an76HckgSAABHQDImp++dsi1HQF74QYk3S8dHQESGZmZmZmaHckkSAABHQDIm6XjU/fRHQF74k3S8an9HQESGp++dsi2HckoSAABHQDIo9cKPXClHQF76DEm6XjVHQESHztkWhyuHcksSAABHQDIpeNT987ZHQF76bpeNT99HQESIEGJN0vKHckwSAABHQDIrxqfvnbJHQF78OVgQYk5HQESJmZmZmZqHck0SAABHQDIul41P3ztHQF7+ZmZmZmZHQESLZFocrAiHck4SAABHQDIvGp++dslHQF7+yLQ5WBBHQESLpeNT98+Hck8SAABHQDIxJul41P5HQF8AQYk3S8dHQESMzMzMzM2HclASAABHQDIxaHKwIMVHQF8Ak3S8an9HQESNLxqfvneHclESAABHQDI0euFHrhRHQF8CwIMSbphHQESO+dsi0OWHclISAABHQDI2RaHKwINHQF8EOVgQYk5HQESQIMSbpeOHclMSAABHQDI2yLQ5WBBHQF8Em6XjU/hHQESQYk3S8aqHclQSAABHQDI3S8an755HQF8E7ZFocrBHQESQo9cKPXGHclUSAABHQDI5FocrAgxHQF8GZmZmZmZHQESR64UeuFKHclYSAABHQDI5mZmZmZpHQF8GyLQ5WBBHQESSLQ5WBBmHclcSAABHQDI752yLQ5ZHQF8Io9cKPXFHQESTtkWhysGHclgSAABHQDI8an752yNHQF8I9cKPXClHQEST987ZFoeHclkSAABHQDI+dsi0OVhHQF8KbpeNT99HQESVHrhR64WHcloSAABHQDI+uFHrhR9HQF8K0OVgQYlHQESVYEGJN0yHclsSAABHQDJBysCDEm9HQF8M/fO2RaJHQESXKwIMSbqHclwSAABHQDJEGJN0vGpHQF8OyLQ5WBBHQESYtDlYEGKHcl0SAABHQDJEm6XjU/hHQF8PKwIMSbpHQESY9cKPXCmHcl4SAABHQDJGZmZmZmZHQF8Qo9cKPXFHQESaHKwIMSeHcl8SAABHQDJG6XjU/fRHQF8Q9cKPXClHQESafvnbItGHcmASAABHQDJHbItDlYFHQF8RWBBiTdNHQESawIMSbpiHcmESAABHQDJJN0vGp/BHQF8S0OVgQYlHQESb52yLQ5aHcmISAABHQDJJul41P31HQF8TMzMzMzNHQEScKPXCj1yHcmMSAABHQDJMCDEm6XlHQF8U/fO2RaJHQESdsi0OVgSHcmQSAABHQDJMi0OVgQZHQF8VT987ZFpHQESd87ZFocuHcmUSAABHQDJO2RaHKwJHQF8XKwIMSbpHQESffO2RaHOHcmYSAABHQDJPXCj1wo9HQF8XjU/fO2RHQESfvnbItDmHcmcSAABHQDJRaHKwIMVHQF8ZBiTdLxtHQESg5WBBiTeHcmgSAABHQDJRqfvnbItHQF8ZWBBiTdNHQEShR64UeuGHcmkSAABHQDJUOVgQYk5HQF8bMzMzMzNHQESisCDEm6aHcmoSAABHQDJUvGp++dtHQF8bhR64UexHQESi8an7522HcmsSAABHQDJXCj1wo9dHQF8dYEGJN0xHQESkeuFHrhSHcmwSAABHQDJXjU/fO2RHQF8dsi0OVgRHQESkvGp++duHcm0SAABHQDJZWBBiTdNHQF8fO2RaHKxHQESmBBiTdLyHcm4SAABHQDJZ2yLQ5WBHQF8fjU/fO2RHQESmRaHKwIOHcm8SAABHQDJcKPXCj1xHQF8haHKwIMVHQESnrhR64UiHcnASAABHQDJcrAgxJulHQF8hul41P31HQESoEGJN0vKHcnESAABHQDJeuFHrhR9HQF8jMzMzMzNHQESpN0vGp/CHcnISAABHQDJe+dsi0OVHQF8jlYEGJN1HQESpeNT987aHcnMSAABHQDJhiTdLxqhHQF8lYEGJN0xHQESrAgxJul6HcnQSAABHQDJhysCDEm9HQF8lwo9cKPZHQESrQ5WBBiWHcnUSAABHQDJkWhysCDFHQF8nnbItDlZHQESszMzMzM2HcnYSAABHQDJkm6XjU/hHQF8n752yLQ5HQEStDlYEGJOHcncSAABHQDJmp++dsi1HQF8paHKwIMVHQESuNT987ZGHcngSAABHQDJnKwIMSbpHQF8pysCDEm9HQESudsi0OViHcnkSAABHQDJpeNT987ZHQF8rlYEGJN1HQESwAAAAAACHcnoSAABHQDJp++dsi0RHQF8r987ZFodHQESwQYk3S8eHcnsSAABHQDJsSbpeNT9HQF8two9cKPZHQESxysCDEm+HcnwSAABHQDJul41P3ztHQF8vnbItDlZHQESzMzMzMzOHcn0SAABHQDJvGp++dslHQF8v752yLQ5HQESzdLxqfvqHcn4SAABHQDJxaHKwIMVHQF8xysCDEm9HQES0/fO2RaKHcn8SAABHQDJx64UeuFJHQF8yLQ5WBBlHQES1P3ztkWiHcoASAABHQDJz987ZFodHQF8zpeNT989HQES2hysCDEqHcoESAABHQDJ0OVgQYk5HQF8z987ZFodHQES2yLQ5WBCHcoISAABHQDJ2yLQ5WBBHQF810vGp++dHQES4MSbpeNWHcoMSAABHQDJ3Cj1wo9dHQF82JN0vGqBHQES4k3S8an+HcoQSAABHQDJ5mZmZmZpHQF84AAAAAABHQES5++dsi0SHcoUSAABHQDJ52yLQ5WBHQF84UeuFHrhHQES6PXCj1wqHcoYSAABHQDJ752yLQ5ZHQF852yLQ5WBHQES7hR64UeyHcocSAABHQDJ8an752yNHQF86LQ5WBBlHQES7xqfvnbKHcogSAABHQDJ+uFHrhR9HQF88CDEm6XlHQES9T987ZFqHcokSAABHQDJ/O2RaHKxHQF88WhysCDFHQES9kWhysCGHcooSAABHQDKBBiTdLxtHQF890vGp++dHQES+uFHrhR+HcosSAABHQDKBiTdLxqhHQF8+NT987ZFHQES++dsi0OWHcowSAABHQDKD1wo9cKRHQF9AAAAAAABHQETAgxJul42Hco0SAABHQDKEWhysCDFHQF9AYk3S8apHQETAxJul41SHco4SAABHQDKGp++dsi1HQF9CPXCj1wpHQETCTdLxqfyHco8SAABHQDKHKwIMSbpHQF9Cj1wo9cNHQETCj1wo9cOHcpASAABHQDKI9cKPXClHQF9ECDEm6XlHQETDtkWhysGHcpESAABHQDKJeNT987ZHQF9Ean752yNHQETD987ZFoeHcpISAABHQDKJ++dsi0RHQF9EvGp++dtHQETEWhysCDGHcpMSAABHQDKMSbpeNT9HQF9Gl41P3ztHQETFwo9cKPaHcpQSAABHQDKOl41P3ztHQF9IcrAgxJxHQETHS8an756HcpUSAABHQDKPGp++dslHQF9IxJul41RHQETHjU/fO2SHcpYSAABHQDKRaHKwIMVHQF9Kn752yLRHQETI9cKPXCmHcpcSAABHQDKR64UeuFJHQF9K8an7521HQETJWBBiTdOHcpgSAABHQDKT987ZFodHQF9Man752yNHQETKfvnbItGHcpkSAABHQDKUOVgQYk5HQF9MzMzMzM1HQETKwIMSbpiHcpoSAABHQDKWyLQ5WBBHQF9Ol41P3ztHQETMSbpeNT+HcpsSAABHQDKXCj1wo9dHQF9O+dsi0OVHQETMi0OVgQaHcpwSAABHQDKZmZmZmZpHQF9Q1P3ztkZHQETOFHrhR66Hcp0SAABHQDKb52yLQ5ZHQF9Sn752yLRHQETPfO2RaHOHcp4SAABHQDKcan752yNHQF9TAgxJul5HQETPvnbItDmHcp8SAABHQDKeuFHrhR9HQF9UzMzMzM1HQETRR64UeuGHcqASAABHQDKfO2RaHKxHQF9VLxqfvndHQETRiTdLxqiHcqESAABHQDKhiTdLxqhHQF9XCj1wo9dHQETTEm6XjVCHcqISAABHQDKj1wo9cKRHQF9Y1P3ztkZHQETUeuFHrhSHcqMSAABHQDKkWhysCDFHQF9ZN0vGp/BHQETUvGp++duHcqQSAABHQDKmp++dsi1HQF9bEm6XjVBHQETWRaHKwIOHcqUSAABHQDKnKwIMSbpHQF9bZFocrAhHQETWhysCDEqHcqYSAABHQDKo9cKPXClHQF9c3S8an75HQETXrhR64UiHcqcSAABHQDKpeNT987ZHQF9dP3ztkWhHQETYEGJN0vKHcqgSAABHQDKrxqfvnbJHQF9fCj1wo9dHQETZeNT987aHcqkSAABHQDKsSbpeNT9HQF9fbItDlYFHQETZul41P32HcqoSAABHQDKul41P3ztHQF9hR64UeuFHQETbQ5WBBiWHcqsSAABHQDKw5WBBiTdHQF9jEm6XjVBHQETcrAgxJumHcqwSAABHQDKxaHKwIMVHQF9jdLxqfvpHQETdDlYEGJOHcq0SAABHQDKztkWhysFHQF9lT987ZFpHQETedsi0OViHcq4SAABHQDK0OVgQYk5HQF9locrAgxJHQETeuFHrhR+Hcq8SAABHQDK2BBiTdLxHQF9nGp++dslHQETgAAAAAACHcrASAABHQDK2hysCDEpHQF9nfO2RaHNHQETgQYk3S8eHcrESAABHQDK41P3ztkZHQF9pR64UeuFHQEThqfvnbIuHcrISAABHQDK5WBBiTdNHQF9pqfvnbItHQETiDEm6XjWHcrMSAABHQDK7peNT989HQF9rhR64UexHQETjdLxqfvqHcrQSAABHQDK8KPXCj1xHQF9r1wo9cKRHQETjtkWhysGHcrUSAABHQDK987ZFoctHQF9tT987ZFpHQETk/fO2RaKHcrYSAABHQDK+dsi0OVhHQF9tsi0OVgRHQETlP3ztkWiHcrcSAABHQDLBR64UeuFHQF9v3ztkWh1HQETnCj1wo9eHcrgSAABHQDLDlYEGJN1HQF9xul41P31HQETocrAgxJyHcrkSAABHQDLF41P3ztlHQF9zhR64UexHQETp++dsi0SHcroSAABHQDLGZmZmZmZHQF9z52yLQ5ZHQETqPXCj1wqHcrsSAABHQDLItDlYEGJHQF91wo9cKPZHQETrpeNT98+HcrwSAABHQDLJN0vGp/BHQF92FHrhR65HQETsCDEm6XmHcr0SAABHQDLLhR64UexHQF93752yLQ5HQETtcKPXCj2Hcr4SAABHQDLOVgQYk3VHQF96HKwIMSdHQETvO2RaHKyHcr8SAABHQDLQo9cKPXFHQF97987ZFodHQETwo9cKPXGHcsASAABHQDLRJul41P5HQF98SbpeNT9HQETw5WBBiTeHcsESAABHQDLTdLxqfvpHQF9+JN0vGqBHQETybpeNT9+HcsISAABHQDLT987ZFodHQF9+hysCDEpHQETysCDEm6aHcsMSAABHQDLWRaHKwINHQF+AUeuFHrhHQET0OVgQYk6HcsQSAABHQDLYk3S8an9HQF+CLQ5WBBlHQET1ocrAgxKHcsUSAABHQDLbZFocrAhHQF+EWhysCDFHQET3bItDlYGHcsYSAABHQDLdsi0OVgRHQF+GNT987ZFHQET41P3ztkaHcscSAABHQDLeNT987ZFHQF+Gl41P3ztHQET5N0vGp/CHcsgSAABHQDLggxJul41HQF+IYk3S8apHQET6n752yLSHcskSAABHQDLgxJul41RHQF+IxJul41RHQET64UeuFHuHcsoSAABHQDLjU/fO2RdHQF+Kn752yLRHQET8an752yOHcssSAABHQDLlocrAgxJHQF+Man752yNHQET90vGp++eHcswSAABHQDLl41P3ztlHQF+MzMzMzM1HQET+FHrhR66Hcs0SAABHQDLoMSbpeNVHQF+Op++dsi1HQET/nbItDlaHcs4SAABHQDLotDlYEGJHQF+O+dsi0OVHQET/3ztkWh2Hcs8SAABHQDLrAgxJul5HQF+Q1P3ztkZHQEUBaHKwIMWHctASAABHQDLtT987ZFpHQF+SsCDEm6ZHQEUC0OVgQYmHctESAABHQDLt0vGp++dHQF+TAgxJul5HQEUDEm6XjVCHctISAABHQDLwIMSbpeNHQF+U3S8an75HQEUEm6XjU/iHctMSAABHQDLybpeNT99HQF+WuFHrhR9HQEUGBBiTdLyHctQSAABHQDLy8an7521HQF+XCj1wo9dHQEUGZmZmZmaHctUSAABHQDL1P3ztkWhHQF+Y5WBBiTdHQEUHztkWhyuHctYSAABHQDL1wo9cKPZHQF+ZR64UeuFHQEUIEGJN0vKHctcSAABHQDL4EGJN0vJHQF+bEm6XjVBHQEUJmZmZmZqHctgSAABHQDL6XjU/fO5HQF+c7ZFocrBHQEULAgxJul6HctkSAABHQDL64UeuFHtHQF+dT987ZFpHQEULQ5WBBiWHctoSAABHQDL9LxqfvndHQF+fGp++dslHQEUMzMzMzM2HctsSAABHQDL9cKPXCj1HQF+ffO2RaHNHQEUNDlYEGJOHctwSAABHQDL/fO2RaHNHQF+g9cKPXClHQEUONT987ZGHct0SAABHQDL/vnbItDlHQF+hWBBiTdNHQEUOdsi0OViHct4SAABHQDMCDEm6XjVHQF+jItDlYEJHQEUQAAAAAACHct8SAABHQDMCj1wo9cNHQF+jhR64UexHQEUQQYk3S8eHcuASAABHQDME3S8an75HQF+lYEGJN0xHQEURysCDEm+HcuESAABHQDMFYEGJN0xHQF+lsi0OVgRHQEUSDEm6XjWHcuISAABHQDMHKwIMSbpHQF+nO2RaHKxHQEUTMzMzMzOHcuMSAABHQDMHrhR64UhHQF+njU/fO2RHQEUTdLxqfvqHcuQSAABHQDMKfvnbItFHQF+pul41P31HQEUVP3ztkWiHcuUSAABHQDMMzMzMzM1HQF+rlYEGJN1HQEUWp++dsi2HcuYSAABHQDMPXCj1wo9HQF+t0vGp++dHQEUYcrAgxJyHcucSAABHQDMRqfvnbItHQF+vnbItDlZHQEUZ++dsi0SHcugSAABHQDMSLQ5WBBlHQF+wAAAAAABHQEUaPXCj1wqHcukSAABHQDMUeuFHrhRHQF+x2yLQ5WBHQEUbpeNT98+HcuoSAABHQDMXS8an755HQF+0CDEm6XlHQEUdcKPXCj2HcusSAABHQDMZmZmZmZpHQF+141P3ztlHQEUe2RaHKwKHcuwSAABHQDMcKPXCj1xHQF+4EGJN0vJHQEUgo9cKPXGHcu0SAABHQDMe+dsi0OVHQF+6TdLxqfxHQEUiTdLxqfyHcu4SAABHQDMhR64UeuFHQF+8GJN0vGpHQEUj1wo9cKSHcu8SAABHQDMkGJN0vGpHQF++VgQYk3VHQEUlocrAgxKHcvASAABHQDMmZmZmZmZHQF/AMSbpeNVHQEUnCj1wo9eHcvESAABHQDMmp++dsi1HQF/AgxJul41HQEUnS8an756HcvISAABHQDMo9cKPXClHQF/CXjU/fO5HQEUo1P3ztkaHcvMSAABHQDMrxqfvnbJHQF/Em6XjU/hHQEUqfvnbItGHcvQSAABHQDMuFHrhR65HQF/GZmZmZmZHQEUsCDEm6XmHcvUSAABHQDMul41P3ztHQF/GyLQ5WBBHQEUsSbpeNT+HcvYSAABHQDMwo9cKPXFHQF/Io9cKPXFHQEUtsi0OVgSHcvcSAABHQDMzdLxqfvpHQF/K0OVgQYlHQEUvfO2RaHOHcvgSAABHQDM1wo9cKPZHQF/MrAgxJulHQEUw5WBBiTeHcvkSAABHQDM2RaHKwINHQF/NDlYEGJNHQEUxJul41P6HcvoSAABHQDM4k3S8an9HQF/O6XjU/fRHQEUysCDEm6aHcvsSAABHQDM6n752yLRHQF/QtDlYEGJHQEU0GJN0vGqHcvwSAABHQDM7ItDlYEJHQF/RFocrAgxHQEU0euFHrhSHcv0SAABHQDM987ZFoctHQF/TQ5WBBiVHQEU2JN0vGqCHcv4SAABHQDNAQYk3S8dHQF/VHrhR64VHQEU3jU/fO2SHcv8SAABHQDNCj1wo9cNHQF/W+dsi0OVHQEU5FocrAgyHcgATAABHQDNC0OVgQYlHQF/XXCj1wo9HQEU5WBBiTdOHcgETAABHQDNFHrhR64VHQF/ZN0vGp/BHQEU6wIMSbpiHcgITAABHQDNFocrAgxJHQF/ZiTdLxqhHQEU7ItDlYEKHcgMTAABHQDNH752yLQ5HQF/bZFocrAhHQEU8i0OVgQaHcgQTAABHQDNKfvnbItFHQF/docrAgxJHQEU+VgQYk3WHcgUTAABHQDNMzMzMzM1HQF/fbItDlYFHQEU/vnbItDmHcgYTAABHQDNPnbItDlZHQF/hqfvnbItHQEVBiTdLxqiHcgcTAABHQDNSLQ5WBBlHQF/j1wo9cKRHQEVDMzMzMzOHcggTAABHQDNUeuFHrhRHQF/lsi0OVgRHQEVEm6XjU/iHcgkTAABHQDNXS8an755HQF/n752yLQ5HQEVGZmZmZmaHcgoTAABHQDNZWBBiTdNHQF/pysCDEm9HQEVHztkWhyuHcgsTAABHQDNeuFHrhR9HQF/uNT987ZFHQEVLZFocrAiHcgwTAABHQDNhBiTdLxtHQF/wEGJN0vJHQEVMzMzMzM2Hcg0TAABHQDNj1wo9cKRHQF/yPXCj1wpHQEVOdsi0OViHcg4TAABHQDNmZmZmZmZHQF/0euFHrhRHQEVQQYk3S8eHcg8TAABHQDNotDlYEGJHQF/2VgQYk3VHQEVRqfvnbIuHchATAABHQDNrQ5WBBiVHQF/4gxJul41HQEVTdLxqfvqHchETAABHQDNtkWhysCFHQF/6XjU/fO5HQEVU3S8an76HchITAABHQDNuFHrhR65HQF/6wIMSbphHQEVVHrhR64WHchMTAABHQDNy8an7521HQF/+yLQ5WBBHQEVYUeuFHriHchQTAABHQDN1P3ztkWhHQGAAUeuFHrhHQEVZ2yLQ5WCHchUTAABHQDN1gQYk3S9HQGAAgxJul41HQEVaHKwIMSeHchYTAABHQDN3ztkWhytHQGABcKPXCj1HQEVbhR64UeyHchcTAABHQDN6XjU/fO5HQGAChysCDEpHQEVdT987ZFqHchgTAABHQDN9LxqfvndHQGADpeNT989HQEVe+dsi0OWHchkTAABHQDN/fO2RaHNHQGAEk3S8an9HQEVgYk3S8aqHchoTAABHQDOCDEm6XjVHQGAFsi0OVgRHQEViLQ5WBBmHchsTAABHQDOEm6XjU/hHQGAGyLQ5WBBHQEVj1wo9cKSHchwTAABHQDOG6XjU/fRHQGAHtkWhysFHQEVlYEGJN0yHch0TAABHQDOJeNT987ZHQGAI1P3ztkZHQEVnCj1wo9eHch4TAABHQDOLxqfvnbJHQGAJwo9cKPZHQEVok3S8an+Hch8TAABHQDOOVgQYk3VHQGAK2RaHKwJHQEVqPXCj1wqHciATAABHQDORJul41P5HQGAL987ZFodHQEVsCDEm6XmHciETAABHQDOTMzMzMzNHQGAM5WBBiTdHQEVtcKPXCj2HciITAABHQDOWBBiTdLxHQGAOBBiTdLxHQEVvGp++dsmHciMTAABHQDOcrAgxJulHQGAQ5WBBiTdHQEVzlYEGJN2HciQTAABHQDOdcKPXCj1HQGARJul41P5HQEV0GJN0vGqHciUTAABHQDOkGJN0vGpHQGAUCDEm6XlHQEV4crAgxJyHciYTAABHQDOm6XjU/fRHQGAVN0vGp/BHQEV6XjU/fO6HcicTAABHQDOpul41P31HQGAWVgQYk3VHQEV8CDEm6XmHcigTAABHQDOuVgQYk3VHQGAYYk3S8apHQEV/O2RaHKyHcikTAABHQDOxJul41P5HQGAZgQYk3S9HQEWBBiTdLxuHcioTAABHQDOztkWhysFHQGAan752yLRHQEWCsCDEm6aHcisTAABHQDO6XjU/fO5HQGAdgQYk3S9HQEWHKwIMSbqHciwTAABHQDO7ItDlYEJHQGAdwo9cKPZHQEWHjU/fO2SHci0TAABHQDO/vnbItDlHQGAfztkWhytHQEWKwIMSbpiHci4TAABHQDPCTdLxqfxHQGAg7ZFocrBHQEWMan752yOHci8TAABHQDGLQ5WBBiVHQFzUeuFHrhRHQEC3ztkWhyuHcjATAABHQDGLQ5WBBiVHQFzWZmZmZmZHQEC4k3S8an+HcjETAABHQDGLQ5WBBiVHQFzZBiTdLxtHQEC5ul41P32HcjITAABHQDGLQ5WBBiVHQFzZ2yLQ5WBHQEC6HKwIMSeHcjMTAABHQDGLQ5WBBiVHQFzbU/fO2RdHQEC6wIMSbpiHcjQTAABHQDGLQ5WBBiVHQFzci0OVgQZHQEC7Q5WBBiWHcjUTAABHQDGLQ5WBBiVHQFzd87ZFoctHQEC752yLQ5aHcjYTAABHQDGLQ5WBBiVHQFzgQYk3S8dHQEC8zMzMzM2HcjcTAABHQDGLAgxJul5HQFzgo9cKPXFHQEC9DlYEGJOHcjgTAABHQDGLAgxJul5HQFzheNT987ZHQEC9T987ZFqHcjkTAABHQDGLAgxJul5HQFzi4UeuFHtHQEC987ZFocuHcjoTAABHQDGLAgxJul5HQFzjU/fO2RdHQEC+NT987ZGHcjsTAABHQDGLAgxJul5HQFzkKPXCj1xHQEC+dsi0OViHcjwTAABHQDGLAgxJul5HQFzlkWhysCFHQEC/Gp++dsmHcj0TAABHQDGLAgxJul5HQFzmZmZmZmZHQEC/fO2RaHOHcj4TAABHQDGLAgxJul5HQFznztkWhytHQEDAIMSbpeOHcj8TAABHQDGLAgxJul5HQFzoQYk3S8dHQEDAQYk3S8eHckATAABHQDGLAgxJul5HQFzpFocrAgxHQEDAo9cKPXGHckETAABHQDGLAgxJul5HQFzqfvnbItFHQEDBR64UeuGHckITAABHQDGLAgxJul5HQFzq4UeuFHtHQEDBaHKwIMWHckMTAABHQDGLAgxJul5HQFzrU/fO2RdHQEDBiTdLxqiHckQTAABHQDGLAgxJul5HQFztLxqfvndHQEDCbpeNT9+HckUTAABHQDGLAgxJul5HQFztkWhysCFHQEDCj1wo9cOHckYTAABHQDGLAgxJul5HQFzuBBiTdLxHQEDCsCDEm6aHckcTAABHQDGKwIMSbphHQFzvbItDlYFHQEDDU/fO2ReHckgTAABHQDGKwIMSbphHQFzvztkWhytHQEDDdLxqfvqHckkTAABHQDGKwIMSbphHQFzwQYk3S8dHQEDDtkWhysGHckoTAABHQDGKwIMSbphHQFzwo9cKPXFHQEDD1wo9cKSHcksTAABHQDGKwIMSbphHQFzyHKwIMSdHQEDEeuFHrhSHckwTAABHQDGKwIMSbphHQFzyfvnbItFHQEDEm6XjU/iHck0TAABHQDGKwIMSbphHQFzy4UeuFHtHQEDE3S8an76Hck4TAABHQDGKwIMSbphHQFz0vGp++dtHQEDFocrAgxKHck8TAABHQDGKwIMSbphHQFz1LxqfvndHQEDFwo9cKPaHclATAABHQDGKwIMSbphHQFz1kWhysCFHQEDGBBiTdLyHclETAABHQDGKwIMSbphHQFz3Cj1wo9dHQEDGp++dsi2HclITAABHQDGKwIMSbphHQFz3bItDlYFHQEDGyLQ5WBCHclMTAABHQDGKwIMSbphHQFz3ztkWhytHQEDG6XjU/fSHclQTAABHQDGKwIMSbphHQFz5qfvnbItHQEDHrhR64UiHclUTAABHQDGKwIMSbphHQFz6HKwIMSdHQEDH752yLQ6HclYTAABHQDGKwIMSbphHQFz6fvnbItFHQEDIEGJN0vKHclcTAABHQDGKwIMSbphHQFz8WhysCDFHQEDI1P3ztkaHclgTAABHQDGKwIMSbphHQFz8vGp++dtHQEDJFocrAgyHclkTAABHQDGKwIMSbphHQFz9LxqfvndHQEDJN0vGp/CHcloTAABHQDGKwIMSbphHQFz+l41P3ztHQEDJ2yLQ5WCHclsTAABHQDGKwIMSbphHQFz/Cj1wo9dHQEDJ++dsi0SHclwTAABHQDGKfvnbItFHQFz/bItDlYFHQEDKPXCj1wqHcl0TAABHQDGKfvnbItFHQF0BR64UeuFHQEDLAgxJul6Hcl4TAABHQDGKfvnbItFHQF0BqfvnbItHQEDLItDlYEKHcl8TAABHQDGKfvnbItFHQF0CHKwIMSdHQEDLZFocrAiHcmATAABHQDGKfvnbItFHQF0D987ZFodHQEDMKPXCj1yHcmETAABHQDGKfvnbItFHQF0EWhysCDFHQEDMSbpeNT+HcmITAABHQDGKfvnbItFHQF0GNT987ZFHQEDNDlYEGJOHcmMTAABHQDGKfvnbItFHQF0Gl41P3ztHQEDNT987ZFqHcmQTAABHQDGKfvnbItFHQF0HCj1wo9dHQEDNcKPXCj2HcmUTAABHQDGKfvnbItFHQF0I5WBBiTdHQEDONT987ZGHcmYTAABHQDGKfvnbItFHQF0LItDlYEJHQEDPO2RaHKyHcmcTAABHQDGKfvnbItFHQF0LhR64UexHQEDPXCj1wo+HcmgTAABHQDGKfvnbItFHQF0L987ZFodHQEDPnbItDlaHcmkTAABHQDGKfvnbItFHQF0N0vGp++dHQEDQYk3S8aqHcmoTAABHQDGKfvnbItFHQF0PCj1wo9dHQEDQ5WBBiTeHcmsTAABHQDGKfvnbItFHQF0QgxJul41HQEDRiTdLxqiHcmwTAABHQDGKPXCj1wpHQF0SwIMSbphHQEDSbpeNT9+Hcm0TAABHQDGKPXCj1wpHQF0T987ZFodHQEDTEm6XjVCHcm4TAABHQDGKPXCj1wpHQF0VYEGJN0xHQEDTlYEGJN2Hcm8TAABHQDGKPXCj1wpHQF0Wp++dsi1HQEDUOVgQYk6HcnATAABHQDGKPXCj1wpHQF0YEGJN0vJHQEDUvGp++duHcnETAABHQDGKPXCj1wpHQF0Y5WBBiTdHQEDVHrhR64WHcnITAABHQDGKPXCj1wpHQF0aTdLxqfxHQEDVwo9cKPaHcnMTAABHQDGKPXCj1wpHQF0awIMSbphHQEDV41P3ztmHcnQTAABHQDGKPXCj1wpHQF0blYEGJN1HQEDWRaHKwIOHcnUTAABHQDGKPXCj1wpHQF0c/fO2RaJHQEDW6XjU/fSHcnYTAABHQDGKPXCj1wpHQF0d0vGp++dHQEDXS8an756HcncTAABHQDGKPXCj1wpHQF0eNT987ZFHQEDXbItDlYGHcngTAABHQDGKPXCj1wpHQF0fO2RaHKxHQEDX752yLQ6HcnkTAABHQDGKPXCj1wpHQF0frhR64UhHQEDYEGJN0vKHcnoTAABHQDGKPXCj1wpHQF0ggxJul41HQEDYcrAgxJyHcnsTAABHQDGKPXCj1wpHQF0h64UeuFJHQEDY9cKPXCmHcnwTAABHQDGKPXCj1wpHQF0iTdLxqfxHQEDZN0vGp/CHcn0TAABHQDGKPXCj1wpHQF0iwIMSbphHQEDZWBBiTdOHcn4TAABHQDGKPXCj1wpHQF0jItDlYEJHQEDZmZmZmZqHcn8TAABHQDGKPXCj1wpHQF0km6XjU/hHQEDaHKwIMSeHcoATAABHQDGKPXCj1wpHQF0k/fO2RaJHQEDaXjU/fO6HcoETAABHQDGKPXCj1wpHQF0lYEGJN0xHQEDafvnbItGHcoITAABHQDGJ++dsi0RHQF0m2RaHKwJHQEDbItDlYEKHcoMTAABHQDGJ++dsi0RHQF0nO2RaHKxHQEDbQ5WBBiWHcoQTAABHQDGJ++dsi0RHQF0nrhR64UhHQEDbhR64UeyHcoUTAABHQDGJ++dsi0RHQF0oEGJN0vJHQEDbpeNT98+HcoYTAABHQDGJ++dsi0RHQF0piTdLxqhHQEDcSbpeNT+HcocTAABHQDGJ++dsi0RHQF0p64UeuFJHQEDcan752yOHcogTAABHQDGJ++dsi0RHQF0qTdLxqfxHQEDcrAgxJumHcokTAABHQDGJ++dsi0RHQF0qwIMSbphHQEDczMzMzM2HcooTAABHQDGJ++dsi0RHQF0sKPXCj1xHQEDdcKPXCj2HcosTAABlKEdAMYn752yLREdAXSybpeNT+EdAQN2RaHKwIYdyjBMAAEdAMYn752yLREdAXSz987ZFokdAQN3S8an754dyjRMAAEdAMYn752yLREdAXS5mZmZmZkdAQN52yLQ5WIdyjhMAAEdAMYn752yLREdAXS7ZFocrAkdAQN6XjU/fO4dyjxMAAEdAMYn752yLREdAXS87ZFocrEdAQN64UeuFH4dykBMAAEdAMYn752yLREdAXS+uFHrhSEdAQN752yLQ5YdykRMAAEdAMYn752yLREdAXTEWhysCDEdAQN987ZFoc4dykhMAAEdAMYn752yLREdAXTGJN0vGqEdAQN++dsi0OYdykxMAAEdAMYn752yLREdAXTHrhR64UkdAQN/fO2RaHYdylBMAAEdAMYn752yLREdAXTPGp++dskdAQOCj1wo9cYdylRMAAEdAMYn752yLREdAXTQo9cKPXEdAQODlYEGJN4dylhMAAEdAMYn752yLREdAXTSbpeNT+EdAQOEGJN0vG4dylxMAAEdAMYn752yLREdAXTYEGJN0vEdAQOGp++dsi4dymBMAAEdAMYn752yLREdAXTZmZmZmZkdAQOHKwIMSb4dymRMAAEdAMYn752yLREdAXTbZFocrAkdAQOIMSbpeNYdymhMAAEdAMYn752yLREdAXTi0OVgQYkdAQOLQ5WBBiYdymxMAAEdAMYn752yLREdAXTkWhysCDEdAQOLxqfvnbYdynBMAAEdAMYn752yLREdAXTl41P3ztkdAQOMzMzMzM4dynRMAAEdAMYn752yLREdAXTtT987ZF0dAQOP3ztkWh4dynhMAAEdAMYn752yLREdAXTvGp++dskdAQOQYk3S8aodynxMAAEdAMYn752yLREdAXTwo9cKPXEdAQORaHKwIMYdyoBMAAEdAMYn752yLREdAXT2hysCDEkdAQOT987ZFoodyoRMAAEdAMYn752yLREdAXT4EGJN0vEdAQOUeuFHrhYdyohMAAEdAMYn752yLREdAXT5mZmZmZkdAQOU/fO2RaIdyoxMAAEdAMYm6XjU/fUdAXUBBiTdLx0dAQOYk3S8aoIdypBMAAEdAMYm6XjU/fUdAXUC0OVgQYkdAQOZFocrAg4dypRMAAEdAMYm6XjU/fUdAXUEWhysCDEdAQOZmZmZmZodyphMAAEdAMYm6XjU/fUdAXUGJN0vGqEdAQOan752yLYdypxMAAEdAMYm6XjU/fUdAXULxqfvnbUdAQOdLxqfvnodyqBMAAEdAMYm6XjU/fUdAXUNT987ZF0dAQOdsi0OVgYdyqRMAAEdAMYm6XjU/fUdAXUUvGp++d0dAQOgxJul41YdyqhMAAEdAMYm6XjU/fUdAXUYEGJN0vEdAQOiTdLxqf4dyqxMAAEdAMYm6XjU/fUdAXUZ2yLQ5WEdAQOi0OVgQYodyrBMAAEdAMYm6XjU/fUdAXUffO2RaHUdAQOlYEGJN04dyrRMAAEdAMYm6XjU/fUdAXUkWhysCDEdAQOnbItDlYIdyrhMAAEdAMYm6XjU/fUdAXUtT987ZF0dAQOrhR64Ue4dyrxMAAEdAMYm6XjU/fUdAXUzMzMzMzUdAQOuFHrhR7IdysBMAAEdAMYm6XjU/fUdAXU4EGJN0vEdAQOwIMSbpeYdysRMAAEdAMYm6XjU/fUdAXU987ZFoc0dAQOysCDEm6YdyshMAAEdAMYm6XjU/fUdAXVC0OVgQYkdAQO0vGp++d4dysxMAAEdAMYm6XjU/fUdAXVG6XjU/fUdAQO2RaHKwIYdytBMAAEdAMYm6XjU/fUdAXVIcrAgxJ0dAQO3S8an754dytRMAAEdAMYm6XjU/fUdAXVLxqfvnbUdAQO4UeuFHrodythMAAEdAMYm6XjU/fUdAXVRaHKwIMUdAQO64UeuFH4dytxMAAEdAMYm6XjU/fUdAXVWhysCDEkdAQO87ZFocrIdyuBMAAEdAMYm6XjU/fUdAXVcKPXCj10dAQO/fO2RaHYdyuRMAAEdAMYm6XjU/fUdAXVffO2RaHUdAQPBBiTdLx4dyuhMAAEdAMYm6XjU/fUdAXVlHrhR64UdAQPDlYEGJN4dyuxMAAEdAMYm6XjU/fUdAXVm6XjU/fUdAQPEGJN0vG4dyvBMAAEdAMYm6XjU/fUdAXVqPXCj1w0dAQPFocrAgxYdyvRMAAEdAMYl41P3ztkdAXVv3ztkWh0dAQPIMSbpeNYdyvhMAAEdAMYl41P3ztkdAXVxaHKwIMUdAQPItDlYEGYdyvxMAAEdAMYl41P3ztkdAXVzMzMzMzUdAQPJul41P34dywBMAAEdAMYl41P3ztkdAXV0vGp++d0dAQPKPXCj1w4dywRMAAEdAMYl41P3ztkdAXV6n752yLUdAQPMzMzMzM4dywhMAAEdAMYl41P3ztkdAXV8KPXCj10dAQPNT987ZF4dywxMAAEdAMYl41P3ztkdAXV9si0OVgUdAQPOVgQYk3YdyxBMAAEdAMYl41P3ztkdAXWDlYEGJN0dAQPQYk3S8aodyxRMAAEdAMYl41P3ztkdAXWFHrhR64UdAQPRaHKwIMYdyxhMAAEdAMYl41P3ztkdAXWG6XjU/fUdAQPR64UeuFIdyxxMAAEdAMYl41P3ztkdAXWIcrAgxJ0dAQPSbpeNT+IdyyBMAAEdAMYl41P3ztkdAXWOFHrhR7EdAQPU/fO2RaIdyyRMAAEdAMYl41P3ztkdAXWP3ztkWh0dAQPWBBiTdL4dyyhMAAEdAMYl41P3ztkdAXWRaHKwIMUdAQPWhysCDEodyyxMAAEdAMYl41P3ztkdAXWXS8an750dAQPZFocrAg4dyzBMAAEdAMYl41P3ztkdAXWY1P3ztkUdAQPZmZmZmZodyzRMAAEdAMYl41P3ztkdAXWan752yLUdAQPan752yLYdyzhMAAEdAMYl41P3ztkdAXWcKPXCj10dAQPbItDlYEIdyzxMAAEdAMYl41P3ztkdAXWhysCDEnEdAQPdsi0OVgYdy0BMAAEdAMYl41P3ztkdAXWjlYEGJN0dAQPeNT987ZIdy0RMAAEdAMYl41P3ztkdAXWlHrhR64UdAQPfO2RaHK4dy0hMAAEdAMYl41P3ztkdAXWm6XjU/fUdAQPfvnbItDody0xMAAEdAMYl41P3ztkdAXWsi0OVgQkdAQPiTdLxqf4dy1BMAAEdAMYl41P3ztkdAXWuFHrhR7EdAQPi0OVgQYody1RMAAEdAMYl41P3ztkdAXWv3ztkWh0dAQPj1wo9cKYdy1hMAAEdAMYl41P3ztkdAXW1gQYk3TEdAQPl41P3ztody1xMAAEdAMYl41P3ztkdAXW3S8an750dAQPm6XjU/fYdy2BMAAEdAMYl41P3ztkdAXW41P3ztkUdAQPnbItDlYIdy2RMAAEdAMYl41P3ztkdAXW6XjU/fO0dAQPocrAgxJ4dy2hMAAEdAMYl41P3ztkdAXXAQYk3S8kdAQPqfvnbItIdy2xMAAEdAMYl41P3ztkdAXXBysCDEnEdAQPrhR64Ue4dy3BMAAEdAMYl41P3ztkdAXXDlYEGJN0dAQPsCDEm6Xody3RMAAEdAMYl41P3ztkdAXXKwIMSbpkdAQPvGp++dsody3hMAAEdAMYl41P3ztkdAXXMi0OVgQkdAQPwIMSbpeYdy3xMAAEdAMYl41P3ztkdAXXOFHrhR7EdAQPwo9cKPXIdy4BMAAEdAMYl41P3ztkdAXXT987ZFokdAQPzMzMzMzYdy4RMAAEdAMYl41P3ztkdAXXVgQYk3TEdAQPztkWhysIdy4hMAAEdAMYl41P3ztkdAXXXS8an750dAQP0vGp++d4dy4xMAAEdAMYl41P3ztkdAXXY1P3ztkUdAQP1P3ztkWody5BMAAEdAMYl41P3ztkdAXXan752yLUdAQP2RaHKwIYdy5RMAAEdAMYl41P3ztkdAXXedsi0OVkdAQP3ztkWhy4dy5hMAAEdAMYl41P3ztkdAXXgQYk3S8kdAQP4UeuFHrody5xMAAEdAMYl41P3ztkdAXXhysCDEnEdAQP5WBBiTdYdy6BMAAEdAMYl41P3ztkdAXXpN0vGp/EdAQP8an752yYdy6RMAAEdAMYl41P3ztkdAXXqwIMSbpkdAQP87ZFocrIdy6hMAAEdAMYl41P3ztkdAXXsi0OVgQkdAQP987ZFoc4dy6xMAAEdAMYl41P3ztkdAXXuFHrhR7EdAQP+dsi0OVody7BMAAEdAMYl41P3ztkdAXXyLQ5WBBkdAQQAgxJul44dy7RMAAEdAMYl41P3ztkdAXXz987ZFokdAQQBBiTdLx4dy7hMAAEdAMYk3S8an8EdAXX1gQYk3TEdAQQBiTdLxqody7xMAAEdAMYk3S8an8EdAXX87ZFocrEdAQQFHrhR64Ydy8BMAAEdAMYk3S8an8EdAXYAQYk3S8kdAQQGJN0vGqIdy8RMAAEdAMYk3S8an8EdAXYBysCDEnEdAQQHKwIMSb4dy8hMAAEdAMYk3S8an8EdAXYMi0OVgQkdAQQLxqfvnbYdy8xMAAEdAMYk3S8an8EdAXYQo9cKPXEdAQQNT987ZF4dy9BMAAEdAMYk3S8an8EdAXYT987ZFokdAQQO2RaHKwYdy9RMAAEdAMYk3S8an8EdAXYVgQYk3TEdAQQPXCj1wpIdy9hMAAEdAMYk3S8an8EdAXYY1P3ztkUdAQQQ5WBBiTody9xMAAEdAMYk3S8an8EdAXYbZFocrAkdAQQR64UeuFIdy+BMAAEdAMYk3S8an8EdAXYgQYk3S8kdAQQT987ZFoody+RMAAEdAMYk3S8an8EdAXYl41P3ztkdAQQWhysCDEody+hMAAEdAMYk3S8an8EdAXYpN0vGp/EdAQQYEGJN0vIdy+xMAAEdAMYk3S8an8EdAXYsi0OVgQkdAQQZmZmZmZody/BMAAEdAMYk3S8an8EdAXYu2RaHKwUdAQQan752yLYdy/RMAAEdAMYk3S8an8EdAXYz987ZFokdAQQcrAgxJuody/hMAAEdAMYk3S8an8EdAXY5mZmZmZkdAQQfO2RaHK4dy/xMAAEdAMYk3S8an8EdAXY+dsi0OVkdAQQhR64UeuIdyABQAAEdAMYk3S8an8EdAXZAQYk3S8kdAQQhysCDEnIdyARQAAEdAMYk3S8an8EdAXZEWhysCDEdAQQj1wo9cKYdyAhQAAEdAMYk3S8an8EdAXZHrhR64UkdAQQk3S8an8IdyAxQAAEdAMYk3S8an8EdAXZLAgxJumEdAQQmZmZmZmodyBBQAAEdAMYk3S8an8EdAXZNT987ZF0dAQQnbItDlYIdyBRQAAEdAMYk3S8an8EdAXZO2RaHKwUdAQQocrAgxJ4dyBhQAAEdAMYk3S8an8EdAXZQo9cKPXEdAQQo9cKPXCodyBxQAAEdAMYk3S8an8EdAXZSLQ5WBBkdAQQpeNT987odyCBQAAEdAMYk3S8an8EdAXZYEGJN0vEdAQQsCDEm6XodyCRQAAEdAMYk3S8an8EdAXZZmZmZmZkdAQQtDlYEGJYdyChQAAEdAMYk3S8an8EdAXZbItDlYEEdAQQtkWhysCIdyCxQAAEdAMYk3S8an8EdAXZedsi0OVkdAQQvGp++dsodyDBQAAEdAMYk3S8an8EdAXZhBiTdLx0dAQQwIMSbpeYdyDRQAAEdAMYk3S8an8EdAXZij1wo9cUdAQQwo9cKPXIdyDhQAAEdAMYk3S8an8EdAXZkWhysCDEdAQQxqfvnbI4dyDxQAAEdAMYk3S8an8EdAXZl41P3ztkdAQQyLQ5WBBodyEBQAAEdAMYk3S8an8EdAXZrhR64Ue0dAQQ0vGp++d4dyERQAAEdAMYk3S8an8EdAXZtT987ZF0dAQQ1P3ztkWodyEhQAAEdAMYk3S8an8EdAXZu2RaHKwUdAQQ2RaHKwIYdyExQAAEdAMYk3S8an8EdAXZwo9cKPXEdAQQ2yLQ5WBIdyFBQAAEdAMYk3S8an8EdAXZyLQ5WBBkdAQQ3S8an754dyFRQAAEdAMYk3S8an8EdAXZ2RaHKwIUdAQQ5WBBiTdYdyFhQAAEdAMYk3S8an8EdAXZ3ztkWhy0dAQQ52yLQ5WIdyFxQAAEdAMYk3S8an8EdAXZ5mZmZmZkdAQQ64UeuFH4dyGBQAAEdAMYk3S8an8EdAXZ87ZFocrEdAQQ752yLQ5YdyGRQAAEdAMYk3S8an8EdAXZ/O2RaHK0dAQQ87ZFocrIdyGhQAAEdAMYk3S8an8EdAXaBBiTdLx0dAQQ987ZFoc4dyGxQAAEdAMYk3S8an8EdAXaCj1wo9cUdAQQ+dsi0OVodyHBQAAEdAMYj1wo9cKUdAXaEWhysCDEdAQQ/fO2RaHYdyHRQAAEdAMYj1wo9cKUdAXaF41P3ztkdAQRAAAAAAAIdyHhQAAEdAMYj1wo9cKUdAXaJ++dsi0UdAQRBiTdLxqodyHxQAAEdAMYj1wo9cKUdAXaLhR64Ue0dAQRCj1wo9cYdyIBQAAEdAMYj1wo9cKUdAXaNT987ZF0dAQRDEm6XjVIdyIRQAAEdAMYj1wo9cKUdAXaQo9cKPXEdAQREm6XjU/odyIhQAAEdAMYj1wo9cKUdAXaUvGp++d0dAQRGJN0vGqIdyIxQAAEdAMYj1wo9cKUdAXaWRaHKwIUdAQRHKwIMSb4dyJBQAAEdAMYj1wo9cKUdAXaXztkWhy0dAQRHrhR64UodyJRQAAEdAMYj1wo9cKUdAXadsi0OVgUdAQRKPXCj1w4dyJhQAAEdAMYj1wo9cKUdAXafO2RaHK0dAQRKwIMSbpodyJxQAAEdAMYj1wo9cKUdAXahBiTdLx0dAQRLxqfvnbYdyKBQAAEdAMYj1wo9cKUdAXaij1wo9cUdAQRMSbpeNUIdyKRQAAEdAMYj1wo9cKUdAXakWhysCDEdAQRNT987ZF4dyKhQAAEdAMYj1wo9cKUdAXal41P3ztkdAQRN0vGp++odyKxQAAEdAMYj1wo9cKUdAXaoMSbpeNUdAQRO2RaHKwYdyLBQAAEdAMYj1wo9cKUdAXap++dsi0UdAQRPXCj1wpIdyLRQAAEdAMYj1wo9cKUdAXarhR64Ue0dAQRQYk3S8aodyLhQAAEdAMYj1wo9cKUdAXaxaHKwIMUdAQRS8an7524dyLxQAAEdAMYj1wo9cKUdAXay8an7520dAQRTdLxqfvodyMBQAAEdAMYj1wo9cKUdAXa0euFHrhUdAQRT987ZFoodyMRQAAEdAMYj1wo9cKUdAXa2RaHKwIUdAQRU/fO2RaIdyMhQAAEdAMYj1wo9cKUdAXa4EGJN0vEdAQRVgQYk3TIdyMxQAAEdAMYj1wo9cKUdAXa752yLQ5UdAQRXjU/fO2YdyNBQAAEdAMYj1wo9cKUdAXa9si0OVgUdAQRYEGJN0vIdyNRQAAEdAMYj1wo9cKUdAXa/O2RaHK0dAQRYk3S8aoIdyNhQAAEdAMYj1wo9cKUdAXbCj1wo9cUdAQRaHKwIMSodyNxQAAEdAMYj1wo9cKUdAXbEWhysCDEdAQRbItDlYEIdyOBQAAEdAMYj1wo9cKUdAXbGp++dsi0dAQRcKPXCj14dyORQAAEdAMYj1wo9cKUdAXbIMSbpeNUdAQRcrAgxJuodyOhQAAEdAMYj1wo9cKUdAXbJ++dsi0UdAQRdLxqfvnodyOxQAAEdAMYj1wo9cKUdAXbLhR64Ue0dAQReNT987ZIdyPBQAAEdAMYj1wo9cKUdAXbPnbItDlkdAQRfvnbItDodyPRQAAEdAMYj1wo9cKUdAXbRaHKwIMUdAQRgxJul41YdyPhQAAEdAMYj1wo9cKUdAXbS8an7520dAQRhR64UeuIdyPxQAAEdAMYj1wo9cKUdAXbWRaHKwIUdAQRi0OVgQYodyQBQAAEdAMYj1wo9cKUdAXbYEGJN0vEdAQRjU/fO2RodyQRQAAEdAMYj1wo9cKUdAXbaXjU/fO0dAQRkWhysCDIdyQhQAAEdAMYj1wo9cKUdAXbb52yLQ5UdAQRlYEGJN04dyQxQAAEdAMYj1wo9cKUdAXbdsi0OVgUdAQRl41P3ztodyRBQAAEdAMYj1wo9cKUdAXbfO2RaHK0dAQRmZmZmZmodyRRQAAEdAMYj1wo9cKUdAXbij1wo9cUdAQRn752yLRIdyRhQAAEdAMYj1wo9cKUdAXbk3S8an8EdAQRo9cKPXCodyRxQAAEdAMYj1wo9cKUdAXbp++dsi0UdAQRrAgxJumIdySBQAAEdAMYj1wo9cKUdAXbuFHrhR7EdAQRtDlYEGJYdySRQAAEdAMYj1wo9cKUdAXbxJul41P0dAQRuFHrhR7IdyShQAAEdAMYj1wo9cKUdAXb0vGp++d0dAQRvnbItDlodySxQAAEdAMYj1wo9cKUdAXb2RaHKwIUdAQRwo9cKPXIdyTBQAAEdAMYj1wo9cKUdAXb41P3ztkUdAQRxqfvnbI4dyTRQAAEdAMYj1wo9cKUdAXb752yLQ5UdAQRysCDEm6YdyThQAAEdAMYj1wo9cKUdAXb9si0OVgUdAQRztkWhysIdyTxQAAEdAMYj1wo9cKUdAXcBBiTdLx0dAQR1P3ztkWodyUBQAAEdAMYj1wo9cKUdAXcDU/fO2RkdAQR2RaHKwIYdyURQAAEdAMYj1wo9cKUdAXcIMSbpeNUdAQR4UeuFHrodyUhQAAEdAMYj1wo9cKUdAXcJ++dsi0UdAQR41P3ztkYdyUxQAAEdAMYi0OVgQYkdAXcPnbItDlkdAQR7ZFocrAodyVBQAAEdAMYi0OVgQYkdAXcRaHKwIMUdAQR752yLQ5YdyVRQAAEdAMYi0OVgQYkdAXcUvGp++d0dAQR9cKPXCj4dyVhQAAEdAMYi0OVgQYkdAXcXCj1wo9kdAQR+dsi0OVodyVxQAAEdAMYi0OVgQYkdAXcb52yLQ5UdAQSAgxJul44dyWBQAAEdAMYi0OVgQYkdAXcdsi0OVgUdAQSBiTdLxqodyWRQAAEdAMYi0OVgQYkdAXchysCDEnEdAQSDEm6XjVIdyWhQAAEdAMYi0OVgQYkdAXclHrhR64UdAQSEm6XjU/odyWxQAAEdAMYi0OVgQYkdAXcocrAgxJ0dAQSGJN0vGqIdyXBQAAEdAMYi0OVgQYkdAXcqwIMSbpkdAQSHKwIMSb4dyXRQAAEdAMYi0OVgQYkdAXcsSbpeNUEdAQSHrhR64UodyXhQAAEdAMYi0OVgQYkdAXcvnbItDlkdAQSJN0vGp/IdyXxQAAEdAMYi0OVgQYkdAXc1gQYk3TEdAQSLxqfvnbYdyYBQAAEdAMYi0OVgQYkdAXc3Cj1wo9kdAQSMSbpeNUIdyYRQAAEdAMYi0OVgQYkdAXc4k3S8aoEdAQSNT987ZF4dyYhQAAEdAMYi0OVgQYkdAXc6XjU/fO0dAQSN0vGp++odyYxQAAEdAMYi0OVgQYkdAXc752yLQ5UdAQSOVgQYk3YdyZBQAAEdAMYi0OVgQYkdAXdAAAAAAAEdAQSQYk3S8aodyZRQAAEdAMYi0OVgQYkdAXdBysCDEnEdAQSQ5WBBiTodyZhQAAEdAMYi0OVgQYkdAXdDU/fO2RkdAQSR64UeuFIdyZxQAAEdAMYi0OVgQYkdAXdGp++dsi0dAQSS8an7524dyaBQAAEdAMYi0OVgQYkdAXdI9cKPXCkdAQST987ZFoodyaRQAAEdAMYi0OVgQYkdAXdKwIMSbpkdAQSU/fO2RaIdyahQAAEdAMYi0OVgQYkdAXdMSbpeNUEdAQSVgQYk3TIdyaxQAAEdAMYi0OVgQYkdAXdOFHrhR7EdAQSWhysCDEodybBQAAEdAMYi0OVgQYkdAXdPnbItDlkdAQSXCj1wo9odybRQAAEdAMYi0OVgQYkdAXdTtkWhysEdAQSYk3S8aoIdybhQAAEdAMYi0OVgQYkdAXdVgQYk3TEdAQSZmZmZmZodybxQAAEdAMYi0OVgQYkdAXdXCj1wo9kdAQSaHKwIMSodycBQAAEdAMYi0OVgQYkdAXdaXjU/fO0dAQSbpeNT99IdycRQAAEdAMYi0OVgQYkdAXdcrAgxJukdAQScrAgxJuodychQAAEdAMYi0OVgQYkdAXdedsi0OVkdAQSdLxqfvnodycxQAAEdAMYi0OVgQYkdAXdgAAAAAAEdAQSeNT987ZIdydBQAAEdAMYi0OVgQYkdAXdhysCDEnEdAQSeuFHrhSIdydRQAAEdAMYi0OVgQYkdAXdjU/fO2RkdAQSfvnbItDodydhQAAEdAMYi0OVgQYkdAXdnbItDlYEdAQShR64UeuIdydxQAAEdAMYi0OVgQYkdAXdo9cKPXCkdAQShysCDEnIdyeBQAAEdAMYi0OVgQYkdAXdqwIMSbpkdAQSi0OVgQYodyeRQAAEdAMYi0OVgQYkdAXdsSbpeNUEdAQSjU/fO2RodyehQAAEdAMYi0OVgQYkdAXduFHrhR7EdAQSkWhysCDIdyexQAAEdAMYi0OVgQYkdAXdv3ztkWh0dAQSk3S8an8IdyfBQAAEdAMYi0OVgQYkdAXdyLQ5WBBkdAQSl41P3ztodyfRQAAEdAMYi0OVgQYkdAXdztkWhysEdAQSmZmZmZmodyfhQAAEdAMYi0OVgQYkdAXd1P3ztkWkdAQSnbItDlYIdyfxQAAEdAMYi0OVgQYkdAXd41P3ztkUdAQSocrAgxJ4dygBQAAEdAMYi0OVgQYkdAXd7ItDlYEEdAQSp++dsi0YdygRQAAEdAMYi0OVgQYkdAXd8rAgxJukdAQSqfvnbItIdyghQAAEdAMYi0OVgQYkdAXd+dsi0OVkdAQSrAgxJumIdygxQAAEdAMYi0OVgQYkdAXeAAAAAAAEdAQSsCDEm6XodyhBQAAEdAMYhysCDEnEdAXeBysCDEnEdAQSsi0OVgQodyhRQAAEdAMYhysCDEnEdAXeDU/fO2RkdAQStkWhysCIdyhhQAAEdAMYhysCDEnEdAXeF41P3ztkdAQSuFHrhR7IdyhxQAAEdAMYhysCDEnEdAXeHbItDlYEdAQSvGp++dsodyiBQAAEdAMYhysCDEnEdAXeI9cKPXCkdAQSvnbItDlodyiRQAAEdAMYhysCDEnEdAXeMSbpeNUEdAQSxJul41P4dyihQAAEdAMYhysCDEnEdAXeOFHrhR7EdAQSxqfvnbI4dyixQAAEdAMYhysCDEnEdAXeQYk3S8akdAQSysCDEm6YdyjBQAAEdAMYhysCDEnEdAXeSLQ5WBBkdAQSztkWhysIdyjRQAAEdAMYhysCDEnEdAXeTtkWhysEdAQS0OVgQYk4dyjhQAAEdAMYhysCDEnEdAXeVgQYk3TEdAQS1P3ztkWodyjxQAAEdAMYhysCDEnEdAXeZWBBiTdUdAQS2yLQ5WBIdykBQAAEdAMYhysCDEnEdAXebItDlYEEdAQS3S8an754dykRQAAEdAMYhysCDEnEdAXecrAgxJukdAQS4UeuFHrodykhQAAEdAMYhysCDEnEdAXeedsi0OVkdAQS41P3ztkYdykxQAAEdAMYhysCDEnEdAXegAAAAAAEdAQS52yLQ5WIdylBQAAEdAMYhysCDEnEdAXehysCDEnEdAQS6XjU/fO4dylRQAAEdAMYhysCDEnEdAXekGJN0vG0dAQS7ZFocrAodylhQAAEdAMYhysCDEnEdAXelocrAgxUdAQS752yLQ5YdylxQAAEdAMYhysCDEnEdAXenbItDlYEdAQS87ZFocrIdymBQAAEdAMYhysCDEnEdAXesi0OVgQkdAQS++dsi0OYdymRQAAEdAMYhysCDEnEdAXeu2RaHKwUdAQTAAAAAAAIdymhQAAEdAMYhysCDEnEdAXewYk3S8akdAQTAgxJul44dymxQAAEdAMYhysCDEnEdAXeyLQ5WBBkdAQTBiTdLxqodynBQAAEdAMYhysCDEnEdAXeztkWhysEdAQTCDEm6XjYdynRQAAEdAMYhysCDEnEdAXe1gQYk3TEdAQTDEm6XjVIdynhQAAEdAMYhysCDEnEdAXe3ztkWhy0dAQTEGJN0vG4dynxQAAEdAMYhysCDEnEdAXe5WBBiTdUdAQTEm6XjU/odyoBQAAEdAMYhysCDEnEdAXe7ItDlYEEdAQTFHrhR64YdyoRQAAEdAMYhysCDEnEdAXe+dsi0OVkdAQTGp++dsi4dyohQAAEdAMYhysCDEnEdAXfAQYk3S8kdAQTHrhR64UodyoxQAAEdAMYhysCDEnEdAXfCj1wo9cUdAQTItDlYEGYdypBQAAEdAMYhysCDEnEdAXfEGJN0vG0dAQTJN0vGp/IdypRQAAEdAMYhysCDEnEdAXfFocrAgxUdAQTJul41P34dyphQAAEdAMYhysCDEnEdAXfHbItDlYEdAQTKwIMSbpodypxQAAEdAMYhysCDEnEdAXfLhR64Ue0dAQTMSbpeNUIdyqBQAAEdAMYhysCDEnEdAXfNDlYEGJUdAQTMzMzMzM4dyqRQAAEdAMYhysCDEnEdAXfO2RaHKwUdAQTN0vGp++odyqhQAAEdAMYhysCDEnEdAXfSLQ5WBBkdAQTPXCj1wpIdyqxQAAEdAMYhysCDEnEdAXfTtkWhysEdAQTP3ztkWh4dyrBQAAEdAMYhysCDEnEdAXfWRaHKwIUdAQTQ5WBBiTodyrRQAAEdAMYhysCDEnEdAXfZWBBiTdUdAQTSbpeNT+IdyrhQAAEdAMYhysCDEnEdAXfbItDlYEEdAQTS8an7524dyrxQAAEdAMYhysCDEnEdAXfedsi0OVkdAQTUeuFHrhYdysBQAAEdAMYhysCDEnEdAXfgxJul41UdAQTVgQYk3TIdysRQAAEdAMYgxJul41UdAXfl41P3ztkdAQTXjU/fO2YdyshQAAEdAMYgxJul41UdAXfnbItDlYEdAQTYk3S8aoIdysxQAAEdAMYgxJul41UdAXftDlYEGJUdAQTan752yLYdytBQAAEdAMYgxJul41UdAXfyLQ5WBBkdAQTdLxqfvnodytRQAAEdAMYgxJul41UdAXf0euFHrhUdAQTeNT987ZIdythQAAEdAMYgxJul41UdAXf3ztkWhy0dAQTfO2RaHK4dytxQAAEdAMYgxJul41UdAXf5mZmZmZkdAQTgQYk3S8odyuBQAAEdAMYgxJul41UdAXf/O2RaHK0dAQTi0OVgQYodyuRQAAEdAMYgxJul41UdAXgEGJN0vG0dAQTk3S8an8IdyuhQAAEdAMYgxJul41UdAXgF41P3ztkdAQTlYEGJN04dyuxQAAEdAMYgxJul41UdAXgNT987ZF0dAQTocrAgxJ4dyvBQAAEdAMYgxJul41UdAXgQo9cKPXEdAQTp++dsi0YdyvRQAAEdAMYgxJul41UdAXgS8an7520dAQTrAgxJumIdyvhQAAEdAMYgxJul41UdAXgXztkWhy0dAQTtDlYEGJYdyvxQAAEdAMYgxJul41UdAXgZmZmZmZkdAQTuFHrhR7IdywBQAAEdAMYgxJul41UdAXgdsi0OVgUdAQTvnbItDlodywRQAAEdAMYgxJul41UdAXgfO2RaHK0dAQTwIMSbpeYdywhQAAEdAMYgxJul41UdAXggxJul41UdAQTxJul41P4dywxQAAEdAMYgxJul41UdAXgkWhysCDEdAQTysCDEm6YdyxBQAAEdAMYgxJul41UdAXgmp++dsi0dAQTztkWhysIdyxRQAAEdAMYgxJul41UdAXgoMSbpeNUdAQT0OVgQYk4dyxhQAAEdAMYgxJul41UdAXgp++dsi0UdAQT0vGp++d4dyxxQAAEdAMYgxJul41UdAXgrhR64Ue0dAQT1wo9cKPYdyyBQAAEdAMYgxJul41UdAXgtT987ZF0dAQT2RaHKwIYdyyRQAAEdAMYgxJul41UdAXgxaHKwIMUdAQT4UeuFHrodyyhQAAEdAMYgxJul41UdAXgy8an7520dAQT41P3ztkYdyyxQAAEdAMYgxJul41UdAXg0euFHrhUdAQT5WBBiTdYdyzBQAAEdAMYgxJul41UdAXg2RaHKwIUdAQT6XjU/fO4dyzRQAAEdAMYgxJul41UdAXg3ztkWhy0dAQT64UeuFH4dyzhQAAEdAMYgxJul41UdAXg5mZmZmZkdAQT752yLQ5YdyzxQAAEdAMYfvnbItDkdAXg752yLQ5UdAQT87ZFocrIdy0BQAAEdAMYfvnbItDkdAXg9si0OVgUdAQT9cKPXCj4dy0RQAAEdAMYfvnbItDkdAXg/O2RaHK0dAQT987ZFoc4dy0hQAAEdAMYfvnbItDkdAXhCj1wo9cUdAQT/fO2RaHYdy0xQAAEdAMYfvnbItDkdAXhE3S8an8EdAQUAgxJul44dy1BQAAEdAMYfvnbItDkdAXhGp++dsi0dAQUBiTdLxqody1RQAAEdAMYfvnbItDkdAXhIMSbpeNUdAQUCDEm6XjYdy1hQAAEdAMYfvnbItDkdAXhJ++dsi0UdAQUCj1wo9cYdy1xQAAEdAMYfvnbItDkdAXhLhR64Ue0dAQUDlYEGJN4dy2BQAAEdAMYfvnbItDkdAXhNT987ZF0dAQUEGJN0vG4dy2RQAAEdAMYfvnbItDkdAXhPnbItDlkdAQUFHrhR64Ydy2hQAAEdAMYfvnbItDkdAXhRaHKwIMUdAQUFocrAgxYdy2xQAAEdAMYfvnbItDkdAXhS8an7520dAQUGp++dsi4dy3BQAAEdAMYfvnbItDkdAXhWRaHKwIUdAQUIMSbpeNYdy3RQAAEdAMYfvnbItDkdAXhYEGJN0vEdAQUItDlYEGYdy3hQAAEdAMYfvnbItDkdAXhaXjU/fO0dAQUJul41P34dy3xQAAEdAMYfvnbItDkdAXhb52yLQ5UdAQUKPXCj1w4dy4BQAAEdAMYfvnbItDkdAXhdsi0OVgUdAQULQ5WBBiYdy4RQAAEdAMYfvnbItDkdAXhfO2RaHK0dAQULxqfvnbYdy4hQAAEdAMYfvnbItDkdAXhjU/fO2RkdAQUN0vGp++ody4xQAAEdAMYfvnbItDkdAXhlHrhR64UdAQUOVgQYk3Ydy5BQAAEdAMYfvnbItDkdAXhmp++dsi0dAQUO2RaHKwYdy5RQAAEdAMYfvnbItDkdAXhoMSbpeNUdAQUP3ztkWh4dy5hQAAEdAMYfvnbItDkdAXhp++dsi0UdAQUQYk3S8aody5xQAAEdAMYfvnbItDkdAXhrxqfvnbUdAQURaHKwIMYdy6BQAAEdAMYfvnbItDkdAXhuFHrhR7EdAQUSbpeNT+Idy6RQAAEdAMYfvnbItDkdAXhvnbItDlkdAQUS8an7524dy6hQAAEdAMYfvnbItDkdAXhxaHKwIMUdAQUTdLxqfvody6xQAAEdAMYfvnbItDkdAXh0vGp++d0dAQUU/fO2RaIdy7BQAAEdAMYfvnbItDkdAXh2RaHKwIUdAQUWBBiTdL4dy7RQAAEdAMYfvnbItDkdAXh3Cj1wo9kdAQUWBBiTdL4dy7hQAAEdAMYfvnbItDkdAXh4k3S8aoEdAQUXCj1wo9ody7xQAAEdAMYfvnbItDkdAXh6XjU/fO0dAQUXjU/fO2Ydy8BQAAEdAMYfvnbItDkdAXh752yLQ5UdAQUYEGJN0vIdy8RQAAEdAMYfvnbItDkdAXh9si0OVgUdAQUZFocrAg4dy8hQAAEdAMYfvnbItDkdAXh/fO2RaHUdAQUZmZmZmZody8xQAAEdAMYfvnbItDkdAXiBysCDEnEdAQUan752yLYdy9BQAAEdAMYfvnbItDkdAXiDU/fO2RkdAQUbItDlYEIdy9RQAAEdAMYfvnbItDkdAXiFHrhR64UdAQUcKPXCj14dy9hQAAEdAMYeuFHrhSEdAXiIcrAgxJ0dAQUdsi0OVgYdy9xQAAEdAMYeuFHrhSEdAXiJ++dsi0UdAQUeNT987ZIdy+BQAAEdAMYeuFHrhSEdAXiMSbpeNUEdAQUfO2RaHK4dy+RQAAEdAMYeuFHrhSEdAXiOFHrhR7EdAQUfvnbItDody+hQAAEdAMYeuFHrhSEdAXiPnbItDlkdAQUgxJul41Ydy+xQAAEdAMYeuFHrhSEdAXiRaHKwIMUdAQUhR64UeuIdy/BQAAEdAMYeuFHrhSEdAXiVgQYk3TEdAQUjU/fO2Rody/RQAAEdAMYeuFHrhSEdAXiXCj1wo9kdAQUj1wo9cKYdy/hQAAEdAMYeuFHrhSEdAXiY1P3ztkUdAQUkWhysCDIdy/xQAAEdAMYeuFHrhSEdAXicKPXCj10dAQUl41P3ztodyABUAAEdAMYeuFHrhSEdAXidsi0OVgUdAQUm6XjU/fYdyARUAAEdAMYeuFHrhSEdAXigAAAAAAEdAQUn752yLRIdyAhUAAEdAMYeuFHrhSEdAXihysCDEnEdAQUocrAgxJ4dyAxUAAEdAMYeuFHrhSEdAXijU/fO2RkdAQUo9cKPXCodyBBUAAEdAMYeuFHrhSEdAXiocrAgxJ0dAQUrhR64Ue4dyBRUAAEdAMYeuFHrhSEdAXiqwIMSbpkdAQUsi0OVgQodyBhUAAEdAMYeuFHrhSEdAXisSbpeNUEdAQUtDlYEGJYdyBxUAAEdAMYeuFHrhSEdAXiuFHrhR7EdAQUtkWhysCIdyCBUAAEdAMYeuFHrhSEdAXiv3ztkWh0dAQUul41P3z4dyCRUAAEdAMYeuFHrhSEdAXixaHKwIMUdAQUvGp++dsodyChUAAEdAMYeuFHrhSEdAXiztkWhysEdAQUwIMSbpeYdyCxUAAEdAMYeuFHrhSEdAXi3Cj1wo9kdAQUxqfvnbI4dyDBUAAEdAMYeuFHrhSEdAXi6XjU/fO0dAQUzMzMzMzYdyDRUAAEdAMYeuFHrhSEdAXi8KPXCj10dAQUztkWhysIdyDhUAAEdAMYeuFHrhSEdAXi+dsi0OVkdAQU0vGp++d4dyDxUAAEdAMYeuFHrhSEdAXjBysCDEnEdAQU2RaHKwIYdyEBUAAEdAMYeuFHrhSEdAXjDlYEGJN0dAQU2yLQ5WBIdyERUAAEdAMYdsi0OVgUdAXjJN0vGp/EdAQU5WBBiTdYdyEhUAAEdAMYdsi0OVgUdAXjKwIMSbpkdAQU52yLQ5WIdyExUAAEdAMYdsi0OVgUdAXjOFHrhR7EdAQU7ZFocrAodyFBUAAEdAMYdsi0OVgUdAXjP3ztkWh0dAQU8an752yYdyFRUAAEdAMYdsi0OVgUdAXjSLQ5WBBkdAQU9cKPXCj4dyFhUAAEdAMYdsi0OVgUdAXjVgQYk3TEdAQU+dsi0OVodyFxUAAEdAMYdsi0OVgUdAXjXS8an750dAQU/fO2RaHYdyGBUAAEdAMYdsi0OVgUdAXjan752yLUdAQVBBiTdLx4dyGRUAAEdAMYdsi0OVgUdAXjhysCDEnEdAQVEGJN0vG4dyGhUAAEdAMYdsi0OVgUdAXjjlYEGJN0dAQVEm6XjU/odyGxUAAEdAMYdsi0OVgUdAXjuVgQYk3UdAQVJN0vGp/IdyHBUAAEdAMYdsi0OVgUdAXj1gQYk3TEdAQVMSbpeNUIdyHRUAAEdAMYdsi0OVgUdAXj3S8an750dAQVNT987ZF4dyHhUAAEdAMYdsi0OVgUdAXj7ZFocrAkdAQVO2RaHKwYdyHxUAAEdAMYdsi0OVgUdAXkAQYk3S8kdAQVQ5WBBiTodyIBUAAEdAMYdsi0OVgUdAXkCDEm6XjUdAQVRaHKwIMYdyIRUAAEdAMYcrAgxJukdAXkJN0vGp/EdAQVU/fO2RaIdyIhUAAEdAMYcrAgxJukdAXkMi0OVgQkdAQVWBBiTdL4dyIxUAAEdAMYcrAgxJukdAXkPGp++dskdAQVXCj1wo9odyJBUAAEdAMYcrAgxJukdAXkSbpeNT+EdAQVYk3S8aoIdyJRUAAEdAMYcrAgxJukdAXkT987ZFokdAQVZmZmZmZodyJhUAAEdAMYcrAgxJukdAXkVwo9cKPUdAQVaHKwIMSodyJxUAAEdAMYcrAgxJukdAXkXS8an750dAQVan752yLYdyKBUAAEdAMYcrAgxJukdAXkZmZmZmZkdAQVbpeNT99IdyKRUAAEdAMYcrAgxJukdAXkbZFocrAkdAQVcrAgxJuodyKhUAAEdAMYcrAgxJukdAXkc7ZFocrEdAQVdLxqfvnodyKxUAAEdAMYcrAgxJukdAXkgQYk3S8kdAQVeuFHrhSIdyLBUAAEdAMYcrAgxJukdAXkiDEm6XjUdAQVfO2RaHK4dyLRUAAEdAMYcrAgxJukdAXkkWhysCDEdAQVgQYk3S8odyLhUAAEdAMYcrAgxJukdAXkmJN0vGqEdAQVhR64UeuIdyLxUAAEdAMYcrAgxJukdAXknrhR64UkdAQVhysCDEnIdyMBUAAEdAMYcrAgxJukdAXkpeNT987kdAQViTdLxqf4dyMRUAAEdAMYcrAgxJukdAXktT987ZF0dAQVkWhysCDIdyMhUAAEdAMYcrAgxJukdAXkwo9cKPXEdAQVl41P3ztodyMxUAAEdAMYcrAgxJukdAXkybpeNT+EdAQVmZmZmZmodyNBUAAEdAMYcrAgxJukdAXkz987ZFokdAQVm6XjU/fYdyNRUAAEdAMYcrAgxJukdAXk1wo9cKPUdAQVn752yLRIdyNhUAAEdAMYcrAgxJukdAXk4EGJN0vEdAQVo9cKPXCodyNxUAAEdAMYbpeNT99EdAXk52yLQ5WEdAQVpeNT987odyOBUAAEdAMYbpeNT99EdAXk7ZFocrAkdAQVqfvnbItIdyORUAAEdAMYbpeNT99EdAXk+uFHrhSEdAQVrhR64Ue4dyOhUAAEdAMYbpeNT99EdAXlBBiTdLx0dAQVsi0OVgQodyOxUAAEdAMYbpeNT99EdAXlC0OVgQYkdAQVtkWhysCIdyPBUAAEdAMYbpeNT99EdAXlEWhysCDEdAQVuFHrhR7IdyPRUAAEdAMYbpeNT99EdAXlGJN0vGqEdAQVul41P3z4dyPhUAAEdAMYbpeNT99EdAXlHrhR64UkdAQVvnbItDlodyPxUAAEdAMYbpeNT99EdAXlJeNT987kdAQVwIMSbpeYdyQBUAAEdAMYbpeNT99EdAXlLxqfvnbUdAQVxJul41P4dyQRUAAEdAMYbpeNT99EdAXlNkWhysCEdAQVyLQ5WBBodyQhUAAEdAMYbpeNT99EdAXlPGp++dskdAQVysCDEm6YdyQxUAAEdAMYbpeNT99EdAXlSbpeNT+EdAQV0OVgQYk4dyRBUAAEdAMYbpeNT99EdAXlUOVgQYk0dAQV0vGp++d4dyRRUAAEdAMYbpeNT99EdAXlWhysCDEkdAQV1wo9cKPYdyRhUAAEdAMYbpeNT99EdAXlYEGJN0vEdAQV2yLQ5WBIdyRxUAAEdAMYbpeNT99EdAXlZ2yLQ5WEdAQV3S8an754dySBUAAEdAMYbpeNT99EdAXlbZFocrAkdAQV3ztkWhy4dySRUAAEdAMYbpeNT99EdAXlffO2RaHUdAQV52yLQ5WIdyShUAAEdAMYbpeNT99EdAXlhR64UeuEdAQV6XjU/fO4dySxUAAEdAMYbpeNT99EdAXli0OVgQYkdAQV64UeuFH4dyTBUAAEdAMYbpeNT99EdAXlkm6XjU/kdAQV752yLQ5YdyTRUAAEdAMYbpeNT99EdAXlmJN0vGqEdAQV8an752yYdyThUAAEdAMYbpeNT99EdAXln752yLREdAQV9cKPXCj4dyTxUAAEdAMYan752yLUdAXlqPXCj1w0dAQV+dsi0OVodyUBUAAEdAMYan752yLUdAXlrxqfvnbUdAQV++dsi0OYdyURUAAEdAMYan752yLUdAXltkWhysCEdAQV/fO2RaHYdyUhUAAEdAMYan752yLUdAXlw5WBBiTkdAQWBBiTdLx4dyUxUAAEdAMYan752yLUdAXlysCDEm6UdAQWCDEm6XjYdyVBUAAEdAMYan752yLUdAXl0/fO2RaEdAQWDEm6XjVIdyVRUAAEdAMYan752yLUdAXl2hysCDEkdAQWDlYEGJN4dyVhUAAEdAMYan752yLUdAXl4UeuFHrkdAQWEGJN0vG4dyVxUAAEdAMYan752yLUdAXl52yLQ5WEdAQWFHrhR64YdyWBUAAEdAMYan752yLUdAXl7peNT99EdAQWFocrAgxYdyWRUAAEdAMYan752yLUdAXl987ZFoc0dAQWGp++dsi4dyWhUAAEdAMYan752yLUdAXmBR64UeuEdAQWIMSbpeNYdyWxUAAEdAMYan752yLUdAXmEm6XjU/kdAQWJul41P34dyXBUAAEdAMYan752yLUdAXmGZmZmZmkdAQWKPXCj1w4dyXRUAAEdAMYan752yLUdAXmItDlYEGUdAQWLQ5WBBiYdyXhUAAEdAMYan752yLUdAXmKPXCj1w0dAQWLxqfvnbYdyXxUAAEdAMYan752yLUdAXmMCDEm6XkdAQWMzMzMzM4dyYBUAAEdAMYan752yLUdAXmNkWhysCEdAQWNT987ZF4dyYRUAAEdAMYan752yLUdAXmTdLxqfvkdAQWP3ztkWh4dyYhUAAEdAMYan752yLUdAXmU/fO2RaEdAQWQYk3S8aodyYxUAAEdAMYZmZmZmZkdAXmYUeuFHrkdAQWR64UeuFIdyZBUAAEdAMYZmZmZmZkdAXmaHKwIMSkdAQWSbpeNT+IdyZRUAAEdAMYZmZmZmZkdAXmcan752yUdAQWTdLxqfvodyZhUAAEdAMYZmZmZmZkdAXmfvnbItDkdAQWU/fO2RaIdyZxUAAEdAMYZmZmZmZkdAXmhR64UeuEdAQWWBBiTdL4dyaBUAAEdAMYZmZmZmZkdAXmkm6XjU/kdAQWXCj1wo9odyaRUAAEdAMYZmZmZmZkdAXmnKwIMSb0dAQWYEGJN0vIdyahUAAEdAMYZmZmZmZkdAXmotDlYEGUdAQWZFocrAg4dyaxUAAEdAMYZmZmZmZkdAXmsCDEm6XkdAQWaHKwIMSodybBUAAEdAMYZmZmZmZkdAXmt0vGp++kdAQWbItDlYEIdybRUAAEdAMYZmZmZmZkdAXmwIMSbpeUdAQWcKPXCj14dybhUAAEdAMYZmZmZmZkdAXmzdLxqfvkdAQWdsi0OVgYdybxUAAEdAMYZmZmZmZkdAXm2yLQ5WBEdAQWeuFHrhSIdycBUAAEdAMYZmZmZmZkdAXm4k3S8aoEdAQWfvnbItDodycRUAAEdAMYZmZmZmZkdAXm64UeuFH0dAQWgxJul41YdychUAAEdAMYZmZmZmZkdAXm+NT987ZEdAQWiTdLxqf4dycxUAAEdAMYZmZmZmZkdAXm/vnbItDkdAQWi0OVgQYodydBUAAEdAMYYk3S8aoEdAXnKfvnbItEdAQWnbItDlYIdydRUAAEdAMYYk3S8aoEdAXnMSbpeNUEdAQWn752yLRIdydhUAAEdAMYYk3S8aoEdAXnR64UeuFEdAQWqfvnbItIdydxUAAEdAMYYk3S8aoEdAXnTdLxqfvkdAQWrAgxJumIdyeBUAAEdAMYYk3S8aoEdAXneNT987ZEdAQWvnbItDlodyeRUAAEdAMYYk3S8aoEdAXngAAAAAAEdAQWwo9cKPXIdyehUAAEdAMYYk3S8aoEdAXnhiTdLxqkdAQWxJul41P4dyexUAAEdAMYXjU/fO2UdAXnqwIMSbpkdAQW1P3ztkWodyfBUAAEdAMYXjU/fO2UdAXnx64UeuFEdAQW4UeuFHrodyfRUAAEdAMYXjU/fO2UdAXnztkWhysEdAQW41P3ztkYdyfhUAAEdAMYXjU/fO2UdAXn7ItDlYEEdAQW752yLQ5YdyfxUAAEdAMYXjU/fO2UdAXn8rAgxJukdAQW87ZFocrIdygBUAAEdAMYXjU/fO2UdAXn+dsi0OVkdAQW9cKPXCj4dygRUAAEdAMYXjU/fO2UdAXoAAAAAAAEdAQW987ZFoc4dyghUAAEdAMYXjU/fO2UdAXoFocrAgxUdAQXAgxJul44dygxUAAEdAMYWhysCDEkdAXoO2RaHKwUdAQXEm6XjU/odyhBUAAEdAMYWhysCDEkdAXoQYk3S8akdAQXFHrhR64YdyhRUAAEdAMYWhysCDEkdAXoSLQ5WBBkdAQXFocrAgxYdyhhUAAEdAMYWhysCDEkdAXoT987ZFokdAQXGp++dsi4dyhxUAAEdAMYWhysCDEkdAXoZmZmZmZkdAQXItDlYEGYdyiBUAAEdAMYWhysCDEkdAXoc7ZFocrEdAQXKPXCj1w4dyiRUAAEdAMYWhysCDEkdAXoedsi0OVkdAQXLQ5WBBiYdyihUAAEdAMYWhysCDEkdAXoij1wo9cUdAQXMzMzMzM4dyixUAAEdAMYWhysCDEkdAXokGJN0vG0dAQXNT987ZF4dyjBUAAEdAMYWhysCDEkdAXol41P3ztkdAQXOVgQYk3YdyjRUAAEdAMYWhysCDEkdAXop++dsi0UdAQXP3ztkWh4dyjhUAAEdAMYWhysCDEkdAXotT987ZF0dAQXRaHKwIMYdyjxUAAEdAMYWhysCDEkdAXou2RaHKwUdAQXR64UeuFIdykBUAAEdAMYWhysCDEkdAXowo9cKPXEdAQXS8an7524dykRUAAEdAMYVgQYk3TEdAXoyLQ5WBBkdAQXTdLxqfvodykhUAAEdAMYVgQYk3TEdAXo2RaHKwIUdAQXU/fO2RaIdykxUAAEdAMYVgQYk3TEdAXo3ztkWhy0dAQXWBBiTdL4dylBUAAEdAMYVgQYk3TEdAXo87ZFocrEdAQXYEGJN0vIdylRUAAEdAMYVgQYk3TEdAXpBBiTdLx0dAQXZmZmZmZodylhUAAEdAMYVgQYk3TEdAXpCj1wo9cUdAQXan752yLYdylxUAAEdAMYVgQYk3TEdAXpEWhysCDEdAQXbItDlYEIdymBUAAEdAMYVgQYk3TEdAXpGJN0vGqEdAQXbpeNT99IdymRUAAEdAMYVgQYk3TEdAXpIcrAgxJ0dAQXcrAgxJuodymhUAAEdAMYVgQYk3TEdAXpLxqfvnbUdAQXeNT987ZIdymxUAAEdAMYVgQYk3TEdAXpPGp++dskdAQXfvnbItDodynBUAAEdAMYVgQYk3TEdAXpQo9cKPXEdAQXgQYk3S8odynRUAAEdAMYUeuFHrhUdAXpUvGp++d0dAQXiTdLxqf4dynhUAAEdAMYUeuFHrhUdAXpWRaHKwIUdAQXi0OVgQYodynxUAAEdAMYUeuFHrhUdAXpYEGJN0vEdAQXjU/fO2RodyoBUAAEdAMYUeuFHrhUdAXpffO2RaHUdAQXm6XjU/fYdyoRUAAEdAMYUeuFHrhUdAXpi0OVgQYkdAQXn752yLRIdyohUAAEdAMYUeuFHrhUdAXpkm6XjU/kdAQXo9cKPXCodyoxUAAEdAMYUeuFHrhUdAXpm6XjU/fUdAQXp++dsi0YdypBUAAEdAMYUeuFHrhUdAXpqPXCj1w0dAQXrAgxJumIdypRUAAEdAMYUeuFHrhUdAXptkWhysCEdAQXsi0OVgQodyphUAAEdAMYUeuFHrhUdAXpvGp++dskdAQXtkWhysCIdypxUAAEdAMYTdLxqfvkdAXpzMzMzMzUdAQXvGp++dsodyqBUAAEdAMYTdLxqfvkdAXp2hysCDEkdAQXwo9cKPXIdyqRUAAEdAMYTdLxqfvkdAXp4UeuFHrkdAQXxJul41P4dyqhUAAEdAMYTdLxqfvkdAXp987ZFoc0dAQXztkWhysIdyqxUAAEdAMYTdLxqfvkdAXqBR64UeuEdAQX1P3ztkWodyrBUAAEdAMYTdLxqfvkdAXqDEm6XjVEdAQX1wo9cKPYdyrRUAAEdAMYTdLxqfvkdAXqItDlYEGUdAQX4UeuFHrodyrhUAAEdAMYTdLxqfvkdAXqKPXCj1w0dAQX41P3ztkYdyrxUAAEdAMYSbpeNT+EdAXqRqfvnbI0dAQX752yLQ5YdysBUAAEdAMYSbpeNT+EdAXqU/fO2RaEdAQX9cKPXCj4dysRUAAEdAMYSbpeNT+EdAXqWyLQ5WBEdAQX987ZFoc4dyshUAAEdAMYSbpeNT+EdAXqcan752yUdAQYAgxJul44dysxUAAEdAMYSbpeNT+EdAXqeNT987ZEdAQYBBiTdLx4dytBUAAEdAMYSbpeNT+EdAXqotDlYEGUdAQYFocrAgxYdytRUAAEdAMYSbpeNT+EdAXqqfvnbItEdAQYGp++dsi4dythUAAEdAMYSbpeNT+EdAXqsSbpeNUEdAQYHKwIMSb4dytxUAAEdAMYRaHKwIMUdAXqwIMSbpeUdAQYItDlYEGYdyuBUAAEdAMYRaHKwIMUdAXqzdLxqfvkdAQYKPXCj1w4dyuRUAAEdAMYRaHKwIMUdAXq1P3ztkWkdAQYLQ5WBBiYdyuhUAAEdAMYRaHKwIMUdAXq8rAgxJukdAQYOVgQYk3YdyuxUAAEdAMYRaHKwIMUdAXq+NT987ZEdAQYO2RaHKwYdyvBUAAEdAMYRaHKwIMUdAXrHKwIMSb0dAQYSbpeNT+IdyvRUAAEdAMYRaHKwIMUdAXrI9cKPXCkdAQYTdLxqfvodyvhUAAEdAMYQYk3S8akdAXrKwIMSbpkdAQYT987ZFoodyvxUAAEdAMYQYk3S8akdAXrQYk3S8akdAQYWhysCDEodywBUAAEdAMYQYk3S8akdAXrbItDlYEEdAQYbItDlYEIdywRUAAEdAMYQYk3S8akdAXrcrAgxJukdAQYbpeNT99IdywhUAAEdAMYQYk3S8akdAXredsi0OVkdAQYcrAgxJuodywxUAAEdAMYQYk3S8akdAXrkGJN0vG0dAQYeuFHrhSIdyxBUAAEdAMYPXCj1wpEdAXrnbItDlYEdAQYgQYk3S8odyxRUAAEdAMYPXCj1wpEdAXrpN0vGp/EdAQYgxJul41YdyxhUAAEdAMYPXCj1wpEdAXru2RaHKwUdAQYjU/fO2RodyxxUAAEdAMYPXCj1wpEdAXrwo9cKPXEdAQYj1wo9cKYdyyBUAAEdAMYPXCj1wpEdAXr3ztkWhy0dAQYnbItDlYIdyyRUAAEdAMYPXCj1wpEdAXr5mZmZmZkdAQYn752yLRIdyyhUAAEdAMYPXCj1wpEdAXr7ZFocrAkdAQYocrAgxJ4dyyxUAAEdAMYPXCj1wpEdAXr87ZFocrEdAQYpeNT987odyzBUAAEdAMYOVgQYk3UdAXsCj1wo9cUdAQYrhR64Ue4dyzRUAAEdAMYOVgQYk3UdAXsHrhR64UkdAQYuFHrhR7IdyzhUAAEdAMYOVgQYk3UdAXsLxqfvnbUdAQYvnbItDlodyzxUAAEdAMYOVgQYk3UdAXsNT987ZF0dAQYwIMSbpeYdy0BUAAEdAMYOVgQYk3UdAXsPGp++dskdAQYxJul41P4dy0RUAAEdAMYOVgQYk3UdAXsQ5WBBiTkdAQYxqfvnbI4dy0hUAAEdAMYOVgQYk3UdAXsWhysCDEkdAQY0OVgQYk4dy0xUAAEdAMYNT987ZF0dAXsZ2yLQ5WEdAQY1P3ztkWody1BUAAEdAMYNT987ZF0dAXsbZFocrAkdAQY2RaHKwIYdy1RUAAEdAMYNT987ZF0dAXsffO2RaHUdAQY3ztkWhy4dy1hUAAEdAMYNT987ZF0dAXshR64UeuEdAQY41P3ztkYdy1xUAAEdAMYNT987ZF0dAXsi0OVgQYkdAQY5WBBiTdYdy2BUAAEdAMYNT987ZF0dAXsmZmZmZmkdAQY64UeuFH4dy2RUAAEdAMYNT987ZF0dAXsqPXCj1w0dAQY8an752yYdy2hUAAEdAMYNT987ZF0dAXsrxqfvnbUdAQY87ZFocrIdy2xUAAEdAMYNT987ZF0dAXstkWhysCEdAQY987ZFoc4dy3BUAAEdAMYNT987ZF0dAXsvXCj1wpEdAQY+dsi0OVody3RUAAEdAMYMSbpeNUEdAXs0/fO2RaEdAQZBBiTdLx4dy3hUAAEdAMYMSbpeNUEdAXs6HKwIMSkdAQZDEm6XjVIdy3xUAAEdAMYMSbpeNUEdAXs987ZFoc0dAQZEm6XjU/ody4BUAAEdAMYMSbpeNUEdAXtBR64UeuEdAQZGJN0vGqIdy4RUAAEdAMYMSbpeNUEdAXtDEm6XjVEdAQZGp++dsi4dy4hUAAEdAMYMSbpeNUEdAXtE3S8an8EdAQZHrhR64Uody4xUAAEdAMYLQ5WBBiUdAXtItDlYEGUdAQZJN0vGp/Idy5BUAAEdAMYLQ5WBBiUdAXtMCDEm6XkdAQZKwIMSbpody5RUAAEdAMYLQ5WBBiUdAXtN0vGp++kdAQZLQ5WBBiYdy5hUAAEdAMYLQ5WBBiUdAXtVP3ztkWkdAQZOVgQYk3Ydy5xUAAEdAMYLQ5WBBiUdAXtYk3S8aoEdAQZP3ztkWh4dy6BUAAEdAMYLQ5WBBiUdAXtcrAgxJukdAQZRaHKwIMYdy6RUAAEdAMYKPXCj1w0dAXtgAAAAAAEdAQZS8an7524dy6hUAAEdAMYKPXCj1w0dAXthiTdLxqkdAQZT987ZFoody6xUAAEdAMYKPXCj1w0dAXtnKwIMSb0dAQZWBBiTdL4dy7BUAAEdAMYKPXCj1w0dAXtqwIMSbpkdAQZXjU/fO2Ydy7RUAAEdAMYKPXCj1w0dAXtwYk3S8akdAQZaHKwIMSody7hUAAEdAMYKPXCj1w0dAXtztkWhysEdAQZbItDlYEIdy7xUAAEdAMYJN0vGp/EdAXt1gQYk3TEdAQZcKPXCj14dy8BUAAEdAMYJN0vGp/EdAXt3Cj1wo9kdAQZcrAgxJuody8RUAAEdAMYJN0vGp/EdAXt7ItDlYEEdAQZeNT987ZIdy8hUAAEdAMYJN0vGp/EdAXt+dsi0OVkdAQZfvnbItDody8xUAAEdAMYJN0vGp/EdAXuAQYk3S8kdAQZgxJul41Ydy9BUAAEdAMYJN0vGp/EdAXuHbItDlYEdAQZj1wo9cKYdy9RUAAEdAMYIMSbpeNUdAXuLAgxJumEdAQZk3S8an8Idy9hUAAEdAMYIMSbpeNUdAXuSLQ5WBBkdAQZn752yLRIdy9xUAAEdAMYIMSbpeNUdAXuT987ZFokdAQZo9cKPXCody+BUAAEdAMYIMSbpeNUdAXuVwo9cKPUdAQZpeNT987ody+RUAAEdAMYIMSbpeNUdAXubZFocrAkdAQZsCDEm6Xody+hUAAEdAMYHKwIMSb0dAXumJN0vGqEdAQZwo9cKPXIdy+xUAAEdAMYHKwIMSb0dAXun752yLREdAQZxJul41P4dy/BUAAEdAMYHKwIMSb0dAXupeNT987kdAQZxqfvnbI4dy/RUAAEdAMYHKwIMSb0dAXuw5WBBiTkdAQZ0vGp++d4dy/hUAAEdAMYHKwIMSb0dAXuybpeNT+EdAQZ1wo9cKPYdy/xUAAEdAMYHKwIMSb0dAXu0OVgQYk0dAQZ2RaHKwIYdyABYAAEdAMYGJN0vGqEdAXu52yLQ5WEdAQZ41P3ztkYdyARYAAEdAMYGJN0vGqEdAXu++dsi0OUdAQZ64UeuFH4dyAhYAAEdAMYGJN0vGqEdAXvEm6XjU/kdAQZ9cKPXCj4dyAxYAAEdAMYGJN0vGqEdAXvGZmZmZmkdAQZ987ZFoc4dyBBYAAEdAMYGJN0vGqEdAXvIMSbpeNUdAQZ+dsi0OVodyBRYAAEdAMYFHrhR64UdAXvN0vGp++kdAQaBBiTdLx4dyBhYAAEdAMYFHrhR64UdAXvYk3S8aoEdAQaFocrAgxYdyBxYAAEdAMYFHrhR64UdAXvaHKwIMSkdAQaGJN0vGqIdyCBYAAEdAMYFHrhR64UdAXvb52yLQ5UdAQaHKwIMSb4dyCRYAAEdAMYEGJN0vG0dAXvhiTdLxqkdAQaJN0vGp/IdyChYAAEdAMYEGJN0vG0dAXvk3S8an8EdAQaKwIMSbpodyCxYAAEdAMYEGJN0vG0dAXvmp++dsi0dAQaLQ5WBBiYdyDBYAAEdAMYEGJN0vG0dAXvsSbpeNUEdAQaN0vGp++odyDRYAAEdAMYEGJN0vG0dAXvuFHrhR7EdAQaOVgQYk3YdyDhYAAEdAMYDEm6XjVEdAXvxaHKwIMUdAQaP3ztkWh4dyDxYAAEdAMYDEm6XjVEdAXv1gQYk3TEdAQaRaHKwIMYdyEBYAAEdAMYDEm6XjVEdAXv3Cj1wo9kdAQaSbpeNT+IdyERYAAEdAMYDEm6XjVEdAXv41P3ztkUdAQaS8an7524dyEhYAAEdAMYDEm6XjVEdAXv6n752yLUdAQaT987ZFoodyExYAAEdAMYDEm6XjVEdAXwAQYk3S8kdAQaWBBiTdL4dyFBYAAEdAMYCDEm6XjUdAXwFYEGJN00dAQaYEGJN0vIdyFRYAAEdAMYCDEm6XjUdAXwLAgxJumEdAQaan752yLYdyFhYAAEdAMYCDEm6XjUdAXwMi0OVgQkdAQabItDlYEIdyFxYAAEdAMYCDEm6XjUdAXwOVgQYk3UdAQacKPXCj14dyGBYAAEdAMYCDEm6XjUdAXwQIMSbpeUdAQacrAgxJuodyGRYAAEdAMYCDEm6XjUdAXwT987ZFokdAQaeNT987ZIdyGhYAAEdAMYBBiTdLx0dAXwXS8an750dAQafvnbItDodyGxYAAEdAMYBBiTdLx0dAXwZFocrAg0dAQagxJul41YdyHBYAAEdAMYBBiTdLx0dAXwggxJul40dAQaj1wo9cKYdyHRYAAEdAMYBBiTdLx0dAXwj1wo9cKUdAQak3S8an8IdyHhYAAEdAMYAAAAAAAEdAXwn752yLREdAQam6XjU/fYdyHxYAAEdAMYAAAAAAAEdAXwrQ5WBBiUdAQan752yLRIdyIBYAAEdAMYAAAAAAAEdAXwtDlYEGJUdAQao9cKPXCodyIRYAAEdAMYAAAAAAAEdAXw2BBiTdL0dAQasi0OVgQodyIhYAAEdAMX++dsi0OUdAXw++dsi0OUdAQawIMSbpeYdyIxYAAEdAMX++dsi0OUdAXxAxJul41UdAQaxJul41P4dyJBYAAEdAMX++dsi0OUdAXxCj1wo9cUdAQaxqfvnbI4dyJRYAAEdAMX987ZFoc0dAXxJul41P30dAQa0vGp++d4dyJhYAAEdAMX987ZFoc0dAXxLhR64Ue0dAQa1wo9cKPYdyJxYAAEdAMX987ZFoc0dAXxS8an7520dAQa41P3ztkYdyKBYAAEdAMX987ZFoc0dAXxWRaHKwIUdAQa52yLQ5WIdyKRYAAEdAMX87ZFocrEdAXxdsi0OVgUdAQa87ZFocrIdyKhYAAEdAMX87ZFocrEdAXxffO2RaHUdAQa987ZFoc4dyKxYAAEdAMX87ZFocrEdAXxhBiTdLx0dAQa+dsi0OVodyLBYAAEdAMX87ZFocrEdAXxocrAgxJ0dAQbBiTdLxqodyLRYAAEdAMX752yLQ5UdAXxxqfvnbI0dAQbFHrhR64YdyLhYAAEdAMX752yLQ5UdAXxzMzMzMzUdAQbGJN0vGqIdyLxYAAEdAMX752yLQ5UdAXx0/fO2RaEdAQbGp++dsi4dyMBYAAEdAMX64UeuFH0dAXx8an752yUdAQbJul41P34dyMRYAAEdAMX64UeuFH0dAXx987ZFoc0dAQbKwIMSbpodyMhYAAEdAMX64UeuFH0dAXyFYEGJN00dAQbN0vGp++odyMxYAAEdAMX64UeuFH0dAXyI9cKPXCkdAQbO2RaHKwYdyNBYAAEdAMX52yLQ5WEdAXyQIMSbpeUdAQbR64UeuFIdyNRYAAEdAMX52yLQ5WEdAXyR64UeuFEdAQbS8an7524dyNhYAAEdAMX52yLQ5WEdAXyTtkWhysEdAQbTdLxqfvodyNxYAAEdAMX41P3ztkUdAXyedsi0OVkdAQbYEGJN0vIdyOBYAAEdAMX41P3ztkUdAXykGJN0vG0dAQbaHKwIMSodyORYAAEdAMX41P3ztkUdAXyl41P3ztkdAQbbItDlYEIdyOhYAAEdAMX41P3ztkUdAXynbItDlYEdAQbbpeNT99IdyOxYAAEdAMX3ztkWhy0dAXyu2RaHKwUdAQbeuFHrhSIdyPBYAAEdAMX3ztkWhy0dAXywo9cKPXEdAQbfO2RaHK4dyPRYAAEdAMX3ztkWhy0dAXyyLQ5WBBkdAQbgQYk3S8odyPhYAAEdAMX3ztkWhy0dAXy4EGJN0vEdAQbiTdLxqf4dyPxYAAEdAMX2yLQ5WBEdAXy9LxqfvnkdAQbk3S8an8IdyQBYAAEdAMX2yLQ5WBEdAXzC0OVgQYkdAQbm6XjU/fYdyQRYAAEdAMX2yLQ5WBEdAXzEWhysCDEdAQbn752yLRIdyQhYAAEdAMX2yLQ5WBEdAXzGJN0vGqEdAQbocrAgxJ4dyQxYAAEdAMX1wo9cKPUdAXzQ5WBBiTkdAQbtDlYEGJYdyRBYAAEdAMX0vGp++d0dAXzWhysCDEkdAQbvGp++dsodyRRYAAEdAMX0vGp++d0dAXzYUeuFHrkdAQbwIMSbpeYdyRhYAAEdAMX0vGp++d0dAXzaHKwIMSkdAQbwo9cKPXIdyRxYAAEdAMX0vGp++d0dAXzb52yLQ5UdAQbxJul41P4dySBYAAEdAMX0vGp++d0dAXzjEm6XjVEdAQb0OVgQYk4dySRYAAEdAMX0vGp++d0dAXzk3S8an8EdAQb1P3ztkWodyShYAAEdAMXztkWhysEdAXzvnbItDlkdAQb5WBBiTdYdySxYAAEdAMXysCDEm6UdAXz3Cj1wo9kdAQb8an752yYdyTBYAAEdAMXysCDEm6UdAXz41P3ztkUdAQb9cKPXCj4dyTRYAAEdAMXxqfvnbI0dAX0DlYEGJN0dAQcBiTdLxqodyThYAAEdAMXxqfvnbI0dAX0LAgxJumEdAQcEm6XjU/odyTxYAAEdAMXxqfvnbI0dAX0Mi0OVgQkdAQcFocrAgxYdyUBYAAEdAMXxqfvnbI0dAX0OVgQYk3UdAQcGJN0vGqIdyURYAAEdAMXwo9cKPXEdAX0Vwo9cKPUdAQcJN0vGp/IdyUhYAAEdAMXwo9cKPXEdAX0XS8an750dAQcJul41P34dyUxYAAEdAMXvnbItDlkdAX0iTdLxqf0dAQcOVgQYk3YdyVBYAAEdAMXvnbItDlkdAX0pul41P30dAQcRaHKwIMYdyVRYAAEdAMXul41P3z0dAX0rQ5WBBiUdAQcR64UeuFIdyVhYAAEdAMXul41P3z0dAX0tDlYEGJUdAQcS8an7524dyVxYAAEdAMXul41P3z0dAX00euFHrhUdAQcWBBiTdL4dyWBYAAEdAMXtkWhysCEdAX09cKPXCj0dAQcZmZmZmZodyWRYAAEdAMXtkWhysCEdAX0/O2RaHK0dAQcaHKwIMSodyWhYAAEdAMXtkWhysCEdAX1BBiTdLx0dAQcbItDlYEIdyWxYAAEdAMXsi0OVgQkdAX1IMSbpeNUdAQceNT987ZIdyXBYAAEdAMXsi0OVgQkdAX1J++dsi0UdAQceuFHrhSIdyXRYAAEdAMXsi0OVgQkdAX1RaHKwIMUdAQchysCDEnIdyXhYAAEdAMXrhR64Ue0dAX1U/fO2RaEdAQcjU/fO2RodyXxYAAEdAMXrhR64Ue0dAX1cKPXCj10dAQcmZmZmZmodyYBYAAEdAMXrhR64Ue0dAX1d87ZFoc0dAQcm6XjU/fYdyYRYAAEdAMXqfvnbItEdAX1fvnbItDkdAQcnbItDlYIdyYhYAAEdAMXqfvnbItEdAX1m6XjU/fUdAQcqfvnbItIdyYxYAAEdAMXqfvnbItEdAX1qfvnbItEdAQcsCDEm6XodyZBYAAEdAMXpeNT987kdAX1wIMSbpeUdAQcul41P3z4dyZRYAAEdAMXpeNT987kdAX1x64UeuFEdAQcvGp++dsodyZhYAAEdAMXpeNT987kdAX1ztkWhysEdAQcvnbItDlodyZxYAAEdAMXocrAgxJ0dAX164UeuFH0dAQcysCDEm6YdyaBYAAEdAMXocrAgxJ0dAX18rAgxJukdAQcztkWhysIdyaRYAAEdAMXocrAgxJ0dAX1+dsi0OVkdAQc0OVgQYk4dyahYAAEdAMXnbItDlYEdAX2HrhR64UkdAQc3ztkWhy4dyaxYAAEdAMXnbItDlYEdAX2JN0vGp/EdAQc41P3ztkYdybBYAAEdAMXnbItDlYEdAX2O2RaHKwUdAQc64UeuFH4dybRYAAEdAMXmZmZmZmkdAX2Qo9cKPXEdAQc752yLQ5YdybhYAAEdAMXmZmZmZmkdAX2SbpeNT+EdAQc8an752yYdybxYAAEdAMXmZmZmZmkdAX2ZmZmZmZkdAQc/fO2RaHYdycBYAAEdAMXlYEGJN00dAX2dLxqfvnkdAQdBBiTdLx4dycRYAAEdAMXlYEGJN00dAX2i0OVgQYkdAQdDEm6XjVIdychYAAEdAMXlYEGJN00dAX2km6XjU/kdAQdDlYEGJN4dycxYAAEdAMXlYEGJN00dAX2mZmZmZmkdAQdEm6XjU/odydBYAAEdAMXlYEGJN00dAX2n752yLREdAQdFHrhR64YdydRYAAEdAMXkWhysCDEdAX2tkWhysCEdAQdHrhR64UodydhYAAEdAMXkWhysCDEdAX2vXCj1wpEdAQdIMSbpeNYdydxYAAEdAMXkWhysCDEdAX2xJul41P0dAQdItDlYEGYdyeBYAAEdAMXjU/fO2RkdAX2752yLQ5UdAQdNT987ZF4dyeRYAAEdAMXiTdLxqf0dAX3BiTdLxqkdAQdP3ztkWh4dyehYAAEdAMXiTdLxqf0dAX3DU/fO2RkdAQdQYk3S8aodyexYAAEdAMXiTdLxqf0dAX3FHrhR64UdAQdQ5WBBiTodyfBYAAEdAMXhR64UeuEdAX3P3ztkWh0dAQdVgQYk3TIdyfRYAAEdAMXgQYk3S8kdAX3XS8an750dAQdYk3S8aoIdyfhYAAEdAMXgQYk3S8kdAX3ZFocrAg0dAQdZFocrAg4dyfxYAAEdAMXgQYk3S8kdAX3a4UeuFH0dAQdaHKwIMSodygBYAAEdAMXfO2RaHK0dAX3iDEm6XjUdAQdcrAgxJuodygRYAAEdAMXfO2RaHK0dAX3j1wo9cKUdAQddsi0OVgYdyghYAAEdAMXeNT987ZEdAX3ul41P3z0dAQdiTdLxqf4dygxYAAEdAMXeNT987ZEdAX32BBiTdL0dAQdk3S8an8IdyhBYAAEdAMXeNT987ZEdAX33ztkWhy0dAQdl41P3ztodyhRYAAEdAMXdLxqfvnkdAX35mZmZmZkdAQdmZmZmZmodyhhYAAEdAMXdLxqfvnkdAX4AxJul41UdAQdpeNT987odyhxYAAEdAMXdLxqfvnkdAX4C0OVgQYkdAQdp++dsi0YdyiBYAAEdAMXcKPXCj10dAX4J++dsi0UdAQdtDlYEGJYdyiRYAAEdAMXcKPXCj10dAX4LxqfvnbUdAQduFHrhR7IdyihYAAEdAMXcKPXCj10dAX4NkWhysCEdAQdul41P3z4dyixYAAEdAMXbItDlYEEdAX4U/fO2RaEdAQdxqfvnbI4dyjBYAAEdAMXbItDlYEEdAX4WhysCDEkdAQdyLQ5WBBodyjRYAAEdAMXaHKwIMSkdAX4hiTdLxqkdAQd2yLQ5WBIdyjhYAAEdAMXZFocrAg0dAX4o9cKPXCkdAQd52yLQ5WIdyjxYAAEdAMXZFocrAg0dAX4qfvnbItEdAQd6XjU/fO4dykBYAAEdAMXZFocrAg0dAX4sSbpeNUEdAQd64UeuFH4dykRYAAEdAMXYEGJN0vEdAX4ztkWhysEdAQd987ZFoc4dykhYAAEdAMXXCj1wo9kdAX487ZFocrEdAQeBiTdLxqodykxYAAEdAMXXCj1wo9kdAX4+dsi0OVkdAQeCj1wo9cYdylBYAAEdAMXXCj1wo9kdAX5AQYk3S8kdAQeDEm6XjVIdylRYAAEdAMXWBBiTdL0dAX5HrhR64UkdAQeGJN0vGqIdylhYAAEdAMXWBBiTdL0dAX5JeNT987kdAQeGp++dsi4dylxYAAEdAMXU/fO2RaEdAX5UOVgQYk0dAQeLQ5WBBiYdymBYAAEdAMXT987ZFokdAX5bpeNT99EdAQeOVgQYk3YdymRYAAEdAMXT987ZFokdAX5dcKPXCj0dAQeO2RaHKwYdymhYAAEdAMXT987ZFokdAX5fO2RaHK0dAQeP3ztkWh4dymxYAAEdAMXS8an7520dAX5mZmZmZmkdAQeSbpeNT+IdynBYAAEdAMXS8an7520dAX5p++dsi0UdAQeT987ZFoodynRYAAEdAMXR64UeuFEdAX5vnbItDlkdAQeWhysCDEodynhYAAEdAMXR64UeuFEdAX5xaHKwIMUdAQeXCj1wo9odynxYAAEdAMXR64UeuFEdAX5zMzMzMzUdAQeXjU/fO2YdyoBYAAEdAMXQ5WBBiTkdAX56n752yLUdAQean752yLYdyoRYAAEdAMXQ5WBBiTkdAX58KPXCj10dAQebItDlYEIdyohYAAEdAMXQ5WBBiTkdAX5987ZFoc0dAQecKPXCj14dyoxYAAEdAMXP3ztkWh0dAX6HKwIMSb0dAQefvnbItDodypBYAAEdAMXO2RaHKwUdAX6I9cKPXCkdAQegQYk3S8odypRYAAEdAMXO2RaHKwUdAX6Ol41P3z0dAQei0OVgQYodyphYAAEdAMXO2RaHKwUdAX6QYk3S8akdAQejU/fO2RodypxYAAEdAMXN0vGp++kdAX6R64UeuFEdAQekWhysCDIdyqBYAAEdAMXN0vGp++kdAX6ZWBBiTdUdAQem6XjU/fYdyqRYAAEdAMXMzMzMzM0dAX6c7ZFocrEdAQeocrAgxJ4dyqhYAAEdAMXMzMzMzM0dAX6kWhysCDEdAQerhR64Ue4dyqxYAAEdAMXLxqfvnbUdAX6mJN0vGqEdAQesCDEm6XodyrBYAAEdAMXLxqfvnbUdAX6nrhR64UkdAQetDlYEGJYdyrRYAAEdAMXLxqfvnbUdAX6tT987ZF0dAQevGp++dsodyrhYAAEdAMXKwIMSbpkdAX6vGp++dskdAQevnbItDlodyrxYAAEdAMXKwIMSbpkdAX6w5WBBiTkdAQewo9cKPXIdysBYAAEdAMXJul41P30dAX66HKwIMSkdAQe0OVgQYk4dysRYAAEdAMXJul41P30dAX6752yLQ5UdAQe0vGp++d4dyshYAAEdAMXItDlYEGUdAX7DEm6XjVEdAQe3ztkWhy4dysxYAAEdAMXItDlYEGUdAX7E3S8an8EdAQe41P3ztkYdytBYAAEdAMXHrhR64UkdAX7P3ztkWh0dAQe87ZFocrIdytRYAAEdAMXGp++dsi0dAX7XS8an750dAQfAAAAAAAIdythYAAEdAMXGp++dsi0dAX7Y1P3ztkUdAQfAgxJul44dytxYAAEdAMXGp++dsi0dAX7an752yLUdAQfBiTdLxqodyuBYAAEdAMXFocrAgxUdAX7iDEm6XjUdAQfEGJN0vG4dyuRYAAEdAMXFocrAgxUdAX7j1wo9cKUdAQfFHrhR64YdyuhYAAEdAMXEm6XjU/kdAX7tDlYEGJUdAQfItDlYEGYdyuxYAAEdAMXDlYEGJN0dAX7u2RaHKwUdAQfJN0vGp/IdyvBYAAEdAMXDlYEGJN0dAX72BBiTdL0dAQfMSbpeNUIdyvRYAAEdAMXCj1wo9cUdAX73ztkWhy0dAQfMzMzMzM4dyvhYAAEdAMXCj1wo9cUdAX75mZmZmZkdAQfN0vGp++odyvxYAAEdAMXBiTdLxqkdAX8BBiTdLx0dAQfQ5WBBiTodywBYAAEdAMXBiTdLxqkdAX8C0OVgQYkdAQfRaHKwIMYdywRYAAEdAMXAgxJul40dAX8KPXCj1w0dAQfUeuFHrhYdywhYAAEdAMXAgxJul40dAX8MCDEm6XkdAQfU/fO2RaIdywxYAAEdAMXAgxJul40dAX8NkWhysCEdAQfVgQYk3TIdyxBYAAEdAMW/fO2RaHUdAX8U/fO2RaEdAQfYk3S8aoIdyxRYAAEdAMW/fO2RaHUdAX8WyLQ5WBEdAQfZmZmZmZodyxhYAAEdAMW+dsi0OVkdAX8hysCDEnEdAQfdsi0OVgYdyxxYAAEdAMW9cKPXCj0dAX8pN0vGp/EdAQfgxJul41YdyyBYAAEdAMW8an752yUdAX8qwIMSbpkdAQfhR64UeuIdyyRYAAEdAMW8an752yUdAX8si0OVgQkdAQfhysCDEnIdyyhYAAEdAMW7ZFocrAkdAX8z987ZFokdAQfk3S8an8IdyyxYAAEdAMW6XjU/fO0dAX8++dsi0OUdAQfpeNT987odyzBYAAEdAMW6XjU/fO0dAX9AxJul41UdAQfp++dsi0YdyzRYAAEdAMW5WBBiTdUdAX9H752yLREdAQftDlYEGJYdyzhYAAEdAMW5WBBiTdUdAX9Jul41P30dAQftkWhysCIdyzxYAAEdAMW3S8an750dAX9UvGp++d0dAQfyLQ5WBBody0BYAAEdAMW3S8an750dAX9WhysCDEkdAQfysCDEm6Ydy0RYAAEdAMW3S8an750dAX9cKPXCj10dAQf0vGp++d4dy0hYAAEdAMW2RaHKwIUdAX9d87ZFoc0dAQf1wo9cKPYdy0xYAAEdAMW2RaHKwIUdAX9ffO2RaHUdAQf2RaHKwIYdy1BYAAEdAMW1P3ztkWkdAX9m6XjU/fUdAQf5WBBiTdYdy1RYAAEdAMW1P3ztkWkdAX9qfvnbItEdAQf64UeuFH4dy1hYAAEdAMW0OVgQYk0dAX9x64UeuFEdAQf9cKPXCj4dy1xYAAEdAMW0OVgQYk0dAX9ztkWhysEdAQf+dsi0OVody2BYAAEdAMWzMzMzMzUdAX97ItDlYEEdAQgBBiTdLx4dy2RYAAEdAMWyLQ5WBBkdAX987ZFocrEdAQgCDEm6XjYdy2hYAAEdAMWyLQ5WBBkdAX9+dsi0OVkdAQgCj1wo9cYdy2xYAAEdAMWxJul41P0dAX+HrhR64UkdAQgGJN0vGqIdy3BYAAEdAMWxJul41P0dAX+JeNT987kdAQgHKwIMSb4dy3RYAAEdAMWwIMSbpeUdAX+Q5WBBiTkdAQgJul41P34dy3hYAAEdAMWwIMSbpeUdAX+SsCDEm6UdAQgKwIMSbpody3xYAAEdAMWvGp++dskdAX+aHKwIMSkdAQgNT987ZF4dy4BYAAEdAMWuFHrhR7EdAX+b52yLQ5UdAQgOVgQYk3Ydy4RYAAEdAMWuFHrhR7EdAX+dsi0OVgUdAQgO2RaHKwYdy4hYAAEdAMWtDlYEGJUdAX+lHrhR64UdAQgR64UeuFIdy4xYAAEdAMWtDlYEGJUdAX+m6XjU/fUdAQgSbpeNT+Idy5BYAAEdAMWtDlYEGJUdAX+ocrAgxJ0dAQgTdLxqfvody5RYAAEdAMWsCDEm6XkdAX+v3ztkWh0dAQgWBBiTdL4dy5hYAAEdAMWsCDEm6XkdAX+xqfvnbI0dAQgXCj1wo9ody5xYAAEdAMWp++dsi0UdAX+64UeuFH0dAQgan752yLYdy6BYAAEdAMWp++dsi0UdAX+8rAgxJukdAQgbItDlYEIdy6RYAAEdAMWo9cKPXCkdAX/EGJN0vG0dAQgeNT987ZIdy6hYAAEdAMWo9cKPXCkdAX/F41P3ztkdAQgeuFHrhSIdy6xYAAEdAMWn752yLREdAX/O2RaHKwUdAQgiTdLxqf4dy7BYAAEdAMWn752yLREdAX/Q5WBBiTkdAQgjU/fO2Rody7RYAAEdAMWm6XjU/fUdAX/YUeuFHrkdAQgl41P3ztody7hYAAEdAMWl41P3ztkdAX/Z2yLQ5WEdAQgm6XjU/fYdy7xYAAEdAMWl41P3ztkdAX/bpeNT99EdAQgnbItDlYIdy8BYAAEdAMWk3S8an8EdAX/jEm6XjVEdAQgqfvnbItIdy8RYAAEdAMWk3S8an8EdAX/k3S8an8EdAQgrAgxJumIdy8hYAAEdAMWj1wo9cKUdAX/uFHrhR7EdAQgul41P3z4dy8xYAAEdAMWi0OVgQYkdAX/v3ztkWh0dAQgvGp++dsody9BYAAEdAMWhysCDEnEdAX/3S8an750dAQgyLQ5WBBody9RYAAEdAMWhysCDEnEdAX/5FocrAg0dAQgysCDEm6Ydy9hYAAEdAMWhysCDEnEdAX/6n752yLUdAQgztkWhysIdy9xYAAEdAMWgxJul41UdAYABBiTdLx0dAQg2RaHKwIYdy+BYAAEdAMWeuFHrhSEdAYAGhysCDEkdAQg64UeuFH4dy+RYAAEdAMWeuFHrhSEdAYAHbItDlYEdAQg7ZFocrAody+hYAAEdAMWdsi0OVgUdAYALItDlYEEdAQg+dsi0OVody+xYAAEdAMWdsi0OVgUdAYAMCDEm6XkdAQg++dsi0OYdy/BYAAEdAMWbpeNT99EdAYARiTdLxqkdAQhDlYEGJN4dy/RYAAEdAMWan752yLUdAYAVP3ztkWkdAQhGJN0vGqIdy/hYAAEdAMWan752yLUdAYAWJN0vGqEdAQhHKwIMSb4dy/xYAAEdAMWan752yLUdAYAXCj1wo9kdAQhHrhR64UodyABcAAEdAMWYk3S8aoEdAYAawIMSbpkdAQhKwIMSbpodyARcAAEdAMWYk3S8aoEdAYAcan752yUdAQhLxqfvnbYdyAhcAAEdAMWXjU/fO2UdAYAgIMSbpeUdAQhO2RaHKwYdyAxcAAEdAMWXjU/fO2UdAYAhBiTdLx0dAQhPXCj1wpIdyBBcAAEdAMWWhysCDEkdAYAkvGp++d0dAQhSbpeNT+IdyBRcAAEdAMWVgQYk3TEdAYAlocrAgxUdAQhS8an7524dyBhcAAEdAMWUeuFHrhUdAYArItDlYEEdAQhXjU/fO2YdyBxcAAEdAMWTdLxqfvkdAYAsCDEm6XkdAQhYEGJN0vIdyCBcAAEdAMWSbpeNT+EdAYAvvnbItDkdAQhbItDlYEIdyCRcAAEdAMWSbpeNT+EdAYAwo9cKPXEdAQhbpeNT99IdyChcAAEdAMWRaHKwIMUdAYA0WhysCDEdAQheuFHrhSIdyCxcAAEdAMWRaHKwIMUdAYA1P3ztkWkdAQhfO2RaHK4dyDBcAAEdAMWQYk3S8akdAYA2JN0vGqEdAQhfvnbItDodyDRcAAEdAMWPXCj1wpEdAYA52yLQ5WEdAQhi0OVgQYodyDhcAAEdAMWPXCj1wpEdAYA6wIMSbpkdAQhjU/fO2RodyDxcAAEdAMWOVgQYk3UdAYA+dsi0OVkdAQhmZmZmZmodyEBcAAEdAMWOVgQYk3UdAYA/XCj1wpEdAQhm6XjU/fYdyERcAAEdAMWNT987ZF0dAYBAIMSbpeUdAQhn752yLRIdyEhcAAEdAMWMSbpeNUEdAYBE3S8an8EdAQhrhR64Ue4dyExcAAEdAMWMSbpeNUEdAYBFocrAgxUdAQhsCDEm6XodyFBcAAEdAMWKPXCj1w0dAYBJWBBiTdUdAQhvGp++dsodyFRcAAEdAMWKPXCj1w0dAYBKPXCj1w0dAQhvnbItDlodyFhcAAEdAMWJN0vGp/EdAYBO2RaHKwUdAQhzMzMzMzYdyFxcAAEdAMWJN0vGp/EdAYBPvnbItDkdAQhztkWhysIdyGBcAAEdAMWHKwIMSb0dAYBTdLxqfvkdAQh2yLQ5WBIdyGRcAAEdAMWHKwIMSb0dAYBUWhysCDEdAQh3S8an754dyGhcAAEdAMWHKwIMSb0dAYBVP3ztkWkdAQh3ztkWhy4dyGxcAAEdAMWGJN0vGqEdAYBY9cKPXCkdAQh64UeuFH4dyHBcAAEdAMWFHrhR64UdAYBZ2yLQ5WEdAQh7ZFocrAodyHRcAAEdAMWEGJN0vG0dAYBedsi0OVkdAQh++dsi0OYdyHhcAAEdAMWEGJN0vG0dAYBfXCj1wpEdAQiAAAAAAAIdyHxcAAEdAMWCDEm6XjUdAYBjEm6XjVEdAQiCj1wo9cYdyIBcAAEdAMWCDEm6XjUdAYBj987ZFokdAQiDlYEGJN4dyIRcAAEdAMWBBiTdLx0dAYBok3S8aoEdAQiHKwIMSb4dyIhcAAEdAMWAAAAAAAEdAYBpeNT987kdAQiHrhR64UodyIxcAAEdAMV++dsi0OUdAYBuFHrhR7EdAQiLQ5WBBiYdyJBcAAEdAMV++dsi0OUdAYBu+dsi0OUdAQiLxqfvnbYdyJRcAAEdAMV87ZFocrEdAYBysCDEm6UdAQiO2RaHKwYdyJhcAAEdAMV87ZFocrEdAYBzlYEGJN0dAQiPXCj1wpIdyJxcAAEdAMV752yLQ5UdAYB4MSbpeNUdAQiS8an7524dyKBcAAEdAMV64UeuFH0dAYB5FocrAg0dAQiTdLxqfvodyKRcAAEdAMV52yLQ5WEdAYB8zMzMzM0dAQiWhysCDEodyKhcAAEdAMV52yLQ5WEdAYB9si0OVgUdAQiXCj1wo9odyKxcAAEdAMV41P3ztkUdAYB+l41P3z0dAQiYEGJN0vIdyLBcAAEdAMV3ztkWhy0dAYCCTdLxqf0dAQian752yLYdyLRcAAEdAMV1wo9cKPUdAYCHztkWhy0dAQifO2RaHK4dyLhcAAEdAMV1wo9cKPUdAYCItDlYEGUdAQifvnbItDodyLxcAAEdAMV0vGp++d0dAYCMan752yUdAQiiTdLxqf4dyMBcAAEdAMVztkWhysEdAYCNT987ZF0dAQijU/fO2RodyMRcAAEdAMVysCDEm6UdAYCS0OVgQYkdAQinbItDlYIdyMhcAAEdAMVwo9cKPXEdAYCWhysCDEkdAQiqfvnbItIdyMxcAAEdAMVwo9cKPXEdAYCXbItDlYEdAQirAgxJumIdyNBcAAEdAMVwo9cKPXEdAYCYUeuFHrkdAQirhR64Ue4dyNRcAAEdAMVul41P3z0dAYCcCDEm6XkdAQiul41P3z4dyNhcAAEdAMVul41P3z0dAYCc7ZFocrEdAQivGp++dsodyNxcAAEdAMVul41P3z0dAYCd0vGp++kdAQivnbItDlodyOBcAAEdAMVtkWhysCEdAYChiTdLxqkdAQiysCDEm6YdyORcAAEdAMVsi0OVgQkdAYCibpeNT+EdAQizMzMzMzYdyOhcAAEdAMVrhR64Ue0dAYCmJN0vGqEdAQi2RaHKwIYdyOxcAAEdAMVrhR64Ue0dAYCnCj1wo9kdAQi2yLQ5WBIdyPBcAAEdAMVpeNT987kdAYCsi0OVgQkdAQi64UeuFH4dyPRcAAEdAMVocrAgxJ0dAYCtcKPXCj0dAQi752yLQ5YdyPhcAAEdAMVnbItDlYEdAYCxJul41P0dAQi+dsi0OVodyPxcAAEdAMVnbItDlYEdAYCyDEm6XjUdAQi/fO2RaHYdyQBcAAEdAMVlYEGJN00dAYC1wo9cKPUdAQjCDEm6XjYdyQRcAAEdAMVlYEGJN00dAYC2p++dsi0dAQjCj1wo9cYdyQhcAAEdAMVlYEGJN00dAYC3jU/fO2UdAQjDlYEGJN4dyQxcAAEdAMVjU/fO2RkdAYC7Q5WBBiUdAQjGJN0vGqIdyRBcAAEdAMVjU/fO2RkdAYC8KPXCj10dAQjHKwIMSb4dyRRcAAEdAMVhR64UeuEdAYDAxJul41UdAQjKwIMSbpodyRhcAAEdAMVhR64UeuEdAYDBqfvnbI0dAQjLQ5WBBiYdyRxcAAEdAMVfO2RaHK0dAYDGZmZmZmkdAQjO2RaHKwYdySBcAAEdAMVfO2RaHK0dAYDHS8an750dAQjPXCj1wpIdySRcAAEdAMVeNT987ZEdAYDLAgxJumEdAQjSbpeNT+IdyShcAAEdAMVdLxqfvnkdAYDL52yLQ5UdAQjS8an7524dySxcAAEdAMVcKPXCj10dAYDQgxJul40dAQjWhysCDEodyTBcAAEdAMVbItDlYEEdAYDRaHKwIMUdAQjXCj1wo9odyTRcAAEdAMVaHKwIMSkdAYDWBBiTdL0dAQjan752yLYdyThcAAEdAMVZFocrAg0dAYDW6XjU/fUdAQjbItDlYEIdyTxcAAEdAMVYEGJN0vEdAYDan752yLUdAQjeNT987ZIdyUBcAAEdAMVYEGJN0vEdAYDbhR64Ue0dAQjeuFHrhSIdyURcAAEdAMVWBBiTdL0dAYDgIMSbpeUdAQjiTdLxqf4dyUhcAAEdAMVU/fO2RaEdAYDhBiTdLx0dAQji0OVgQYodyUxcAAEdAMVT987ZFokdAYDkvGp++d0dAQjl41P3ztodyVBcAAEdAMVT987ZFokdAYDlocrAgxUdAQjmZmZmZmodyVRcAAEdAMVR64UeuFEdAYDqPXCj1w0dAQjp++dsi0YdyVhcAAEdAMVP3ztkWh0dAYDv3ztkWh0dAQjuFHrhR7IdyVxcAAEdAMVP3ztkWh0dAYDwxJul41UdAQjul41P3z4dyWBcAAEdAMVN0vGp++kdAYD0euFHrhUdAQjxqfvnbI4dyWRcAAEdAMVN0vGp++kdAYD1YEGJN00dAQjyLQ5WBBodyWhcAAEdAMVLxqfvnbUdAYD64UeuFH0dAQj2RaHKwIYdyWxcAAEdAMVJul41P30dAYD+l41P3z0dAQj5WBBiTdYdyXBcAAEdAMVJul41P30dAYD/fO2RaHUdAQj52yLQ5WIdyXRcAAEdAMVItDlYEGUdAYEAYk3S8akdAQj6XjU/fO4dyXhcAAEdAMVHrhR64UkdAYEEGJN0vG0dAQj9cKPXCj4dyXxcAAEdAMVHrhR64UkdAYEE/fO2RaEdAQj987ZFoc4dyYBcAAEdAMVFocrAgxUdAYEJul41P30dAQkBiTdLxqodyYRcAAEdAMVEm6XjU/kdAYEKn752yLUdAQkCDEm6XjYdyYhcAAEdAMVDlYEGJN0dAYEOVgQYk3UdAQkFHrhR64YdyYxcAAEdAMVDlYEGJN0dAYEPO2RaHK0dAQkFocrAgxYdyZBcAAEdAMVAgxJul40dAYEUvGp++d0dAQkJul41P34dyZRcAAEdAMU+dsi0OVkdAYEZWBBiTdUdAQkNT987ZF4dyZhcAAEdAMU+dsi0OVkdAYEaPXCj1w0dAQkN0vGp++odyZxcAAEdAMU9cKPXCj0dAYEeFHrhR7EdAQkQ5WBBiTodyaBcAAEdAMU8an752yUdAYEe+dsi0OUdAQkRaHKwIMYdyaRcAAEdAMU8an752yUdAYEf3ztkWh0dAQkR64UeuFIdyahcAAEdAMU6XjU/fO0dAYEjlYEGJN0dAQkU/fO2RaIdyaxcAAEdAMU6XjU/fO0dAYEkeuFHrhUdAQkVgQYk3TIdybBcAAEdAMU4UeuFHrkdAYEpFocrAg0dAQkZFocrAg4dybRcAAEdAMU4UeuFHrkdAYEp++dsi0UdAQkZmZmZmZodybhcAAEdAMU2RaHKwIUdAYEuuFHrhSEdAQkdLxqfvnodybxcAAEdAMU1P3ztkWkdAYEvnbItDlkdAQkdsi0OVgYdycBcAAEdAMU0OVgQYk0dAYEzU/fO2RkdAQkgxJul41YdycRcAAEdAMUzMzMzMzUdAYE0OVgQYk0dAQkhR64UeuIdychcAAEdAMUyLQ5WBBkdAYE41P3ztkUdAQkk3S8an8IdycxcAAGUoR0AxTEm6XjU/R0BgTm6XjU/fR0BCSVgQYk3Th3J0FwAAR0AxS8an752yR0BgT52yLQ5WR0BCSj1wo9cKh3J1FwAAR0AxS8an752yR0BgT87ZFocrR0BCSl41P3zuh3J2FwAAR0AxS0OVgQYlR0BgUMSbpeNUR0BCSwIMSbpeh3J3FwAAR0AxS0OVgQYlR0BgUP3ztkWiR0BCS0OVgQYlh3J4FwAAR0AxSsCDEm6YR0BgUiTdLxqgR0BCTAgxJul5h3J5FwAAR0AxSn752yLRR0BgUl41P3zuR0BCTEm6XjU/h3J6FwAAR0AxSj1wo9cKR0BgU1P3ztkXR0BCTO2RaHKwh3J7FwAAR0AxSfvnbItER0BgU4UeuFHsR0BCTQ5WBBiTh3J8FwAAR0AxSXjU/fO2R0BgVLQ5WBBiR0BCTfO2RaHLh3J9FwAAR0AxSXjU/fO2R0BgVO2RaHKwR0BCTjU/fO2Rh3J+FwAAR0AxSPXCj1wpR0BgVhR64UeuR0BCTvnbItDlh3J/FwAAR0AxSPXCj1wpR0BgVk3S8an8R0BCTztkWhysh3KAFwAAR0AxSHKwIMScR0BgV0OVgQYlR0BCT987ZFodh3KBFwAAR0AxSHKwIMScR0BgV3ztkWhzR0BCUAAAAAAAh3KCFwAAR0AxR++dsi0OR0BgWKPXCj1xR0BCUOVgQYk3h3KDFwAAR0AxR64UeuFIR0BgWN0vGp++R0BCUQYk3S8bh3KEFwAAR0AxRysCDEm6R0BgWgQYk3S8R0BCUeuFHrhSh3KFFwAAR0AxRqfvnbItR0BgWzMzMzMzR0BCUtDlYEGJh3KGFwAAR0AxRqfvnbItR0BgW2yLQ5WBR0BCUvGp++dth3KHFwAAR0AxRiTdLxqgR0BgXJN0vGp/R0BCU9cKPXCkh3KIFwAAR0AxReNT987ZR0BgXMzMzMzNR0BCU/fO2RaHh3KJFwAAR0AxRaHKwIMSR0BgXcKPXCj2R0BCVJul41P4h3KKFwAAR0AxRWBBiTdMR0BgXfvnbItER0BCVN0vGp++h3KLFwAAR0AxRN0vGp++R0BgXyLQ5WBCR0BCVaHKwIMSh3KMFwAAR0AxRN0vGp++R0BgX1wo9cKPR0BCVeNT987Zh3KNFwAAR0AxRBiTdLxqR0BgYItDlYEGR0BCVqfvnbIth3KOFwAAR0AxRBiTdLxqR0BgYLxqfvnbR0BCVsi0OVgQh3KPFwAAR0AxQ5WBBiTdR0BgYbItDlYER0BCV41P3ztkh3KQFwAAR0AxQ5WBBiTdR0BgYeuFHrhSR0BCV64UeuFIh3KRFwAAR0AxQxJul41QR0BgYxqfvnbJR0BCWJN0vGp/h3KSFwAAR0AxQtDlYEGJR0BgY0vGp++eR0BCWLQ5WBBih3KTFwAAR0AxQo9cKPXDR0BgZEGJN0vHR0BCWVgQYk3Th3KUFwAAR0AxQk3S8an8R0BgZHrhR64UR0BCWZmZmZmah3KVFwAAR0AxQcrAgxJvR0BgZaHKwIMSR0BCWl41P3zuh3KWFwAAR0AxQcrAgxJvR0BgZdsi0OVgR0BCWp++dsi0h3KXFwAAR0AxQQYk3S8bR0BgZwo9cKPXR0BCW2RaHKwIh3KYFwAAR0AxQQYk3S8bR0BgZ0OVgQYlR0BCW6XjU/fPh3KZFwAAR0AxQIMSbpeNR0BgaDEm6XjVR0BCXEm6XjU/h3KaFwAAR0AxQIMSbpeNR0BgaGp++dsjR0BCXGp++dsjh3KbFwAAR0AxQEGJN0vHR0BgaKPXCj1xR0BCXItDlYEGh3KcFwAAR0AxP752yLQ5R0BgadLxqfvnR0BCXXCj1wo9h3KdFwAAR0AxPztkWhysR0BgavnbItDlR0BCXlYEGJN1h3KeFwAAR0AxPztkWhysR0BgazMzMzMzR0BCXnbItDlYh3KfFwAAR0AxPnbItDlYR0BgbGJN0vGqR0BCX1wo9cKPh3KgFwAAR0AxPnbItDlYR0BgbJul41P4R0BCX3ztkWhzh3KhFwAAR0AxPfO2RaHLR0BgbZFocrAhR0BCYCDEm6Xjh3KiFwAAR0AxPfO2RaHLR0BgbcKPXCj2R0BCYEGJN0vHh3KjFwAAR0AxPS8an753R0BgbvGp++dtR0BCYSbpeNT+h3KkFwAAR0AxPS8an753R0BgbysCDEm6R0BCYUeuFHrhh3KlFwAAR0AxPKwIMSbpR0BgcFocrAgxR0BCYi0OVgQZh3KmFwAAR0AxO+dsi0OWR0BgcYEGJN0vR0BCYxJul41Qh3KnFwAAR0AxO+dsi0OWR0BgcbpeNT99R0BCYzMzMzMzh3KoFwAAR0AxO2RaHKwIR0Bgcul41P30R0BCY/fO2RaHh3KpFwAAR0AxOyLQ5WBCR0BgcyLQ5WBCR0BCZDlYEGJOh3KqFwAAR0AxOp++dsi0R0BgdEm6XjU/R0BCZP3ztkWih3KrFwAAR0AxOdsi0OVgR0BgdXjU/fO2R0BCZeNT987Zh3KsFwAAR0AxOdsi0OVgR0BgdbItDlYER0BCZgQYk3S8h3KtFwAAR0AxOVgQYk3TR0BgduFHrhR7R0BCZul41P30h3KuFwAAR0AxORaHKwIMR0BgdxqfvnbJR0BCZwo9cKPXh3KvFwAAR0AxOJN0vGp/R0BgeAgxJul5R0BCZ64UeuFIh3KwFwAAR0AxOJN0vGp/R0BgeEGJN0vHR0BCZ++dsi0Oh3KxFwAAR0AxN87ZFocrR0BgeXCj1wo9R0BCaLQ5WBBih3KyFwAAR0AxN87ZFocrR0Bgean752yLR0BCaNT987ZGh3KzFwAAR0AxN0vGp++eR0BgetkWhysCR0BCabpeNT99h3K0FwAAR0AxNocrAgxKR0BgfAAAAAAAR0BCan752yLRh3K1FwAAR0AxNocrAgxKR0BgfDlYEGJOR0BCasCDEm6Yh3K2FwAAR0AxNcKPXCj2R0BgfWhysCDFR0BCa4UeuFHsh3K3FwAAR0AxNcKPXCj2R0BgfaHKwIMSR0BCa8an752yh3K4FwAAR0AxNT987ZFoR0BgfpeNT987R0BCbGp++dsjh3K5FwAAR0AxNP3ztkWiR0BgftDlYEGJR0BCbItDlYEGh3K6FwAAR0AxNHrhR64UR0Bgf/fO2RaHR0BCbXCj1wo9h3K7FwAAR0AxNHrhR64UR0BggDEm6XjVR0BCbZFocrAhh3K8FwAAR0AxM7ZFocrBR0BggWBBiTdMR0BCblYEGJN1h3K9FwAAR0AxM7ZFocrBR0BggZmZmZmaR0BCbpeNT987h3K+FwAAR0AxMzMzMzMzR0Bggo9cKPXDR0BCbztkWhysh3K/FwAAR0AxMvGp++dtR0Bggsi0OVgQR0BCb1wo9cKPh3LAFwAAR0AxMi0OVgQZR0BghCj1wo9cR0BCcGJN0vGqh3LBFwAAR0AxMan752yLR0BghVgQYk3TR0BCcSbpeNT+h3LCFwAAR0AxMOVgQYk3R0BghocrAgxKR0BCcgxJul41h3LDFwAAR0AxMOVgQYk3R0BghsCDEm6YR0BCci0OVgQZh3LEFwAAR0AxMCDEm6XjR0Bgh++dsi0OR0BCcxJul41Qh3LFFwAAR0AxMCDEm6XjR0BgiCj1wo9cR0BCczMzMzMzh3LGFwAAR0AxL1wo9cKPR0BgiU/fO2RaR0BCc/fO2RaHh3LHFwAAR0AxLpeNT987R0BgirhR64UfR0BCdP3ztkWih3LIFwAAR0AxLhR64UeuR0Bgi+dsi0OWR0BCdeNT987Zh3LJFwAAR0AxLdLxqfvnR0BgjCDEm6XjR0BCdgQYk3S8h3LKFwAAR0AxLQ5WBBiTR0BgjU/fO2RaR0BCdsi0OVgQh3LLFwAAR0AxLQ5WBBiTR0BgjYk3S8aoR0BCdwo9cKPXh3LMFwAAR0AxLEm6XjU/R0BgjrhR64UfR0BCd87ZFocrh3LNFwAAR0AxK8an752yR0Bgj987ZFodR0BCeJN0vGp/h3LOFwAAR0AxKwIMSbpeR0BgkUeuFHrhR0BCeZmZmZmah3LPFwAAR0AxKj1wo9cKR0BgknbItDlYR0BCen752yLRh3LQFwAAR0AxKfvnbItER0BgkrAgxJumR0BCep++dsi0h3LRFwAAR0AxKXjU/fO2R0Bgk987ZFodR0BCe2RaHKwIh3LSFwAAR0AxKTdLxqfwR0BglBiTdLxqR0BCe6XjU/fPh3LTFwAAR0AxKLQ5WBBiR0BglUeuFHrhR0BCfGp++dsjh3LUFwAAR0AxJ++dsi0OR0BglnbItDlYR0BCfS8an753h3LVFwAAR0AxJ64UeuFIR0BglrAgxJumR0BCfXCj1wo9h3LWFwAAR0AxJysCDEm6R0Bgl987ZFodR0BCfjU/fO2Rh3LXFwAAR0AxJul41P30R0BgmBiTdLxqR0BCflYEGJN1h3LYFwAAR0AxJiTdLxqgR0BgmT987ZFoR0BCfztkWhysh3LZFwAAR0AxJaHKwIMSR0Bgmm6XjU/fR0BCgAAAAAAAh3LaFwAAR0AxJWBBiTdMR0BgmrAgxJumR0BCgCDEm6Xjh3LbFwAAR0AxJJul41P4R0Bgm9cKPXCkR0BCgQYk3S8bh3LcFwAAR0AxJBiTdLxqR0BgnQYk3S8bR0BCgcrAgxJvh3LdFwAAR0AxI9cKPXCkR0BgnT987ZFoR0BCgeuFHrhSh3LeFwAAR0AxIxJul41QR0Bgnm6XjU/fR0BCgtDlYEGJh3LfFwAAR0AxIxJul41QR0BgnqfvnbItR0BCgvGp++dth3LgFwAAR0AxIk3S8an8R0Bgn9cKPXCkR0BCg7ZFocrBh3LhFwAAR0AxIYk3S8aoR0BgoQYk3S8bR0BChJul41P4h3LiFwAAR0AxIYk3S8aoR0BgoT987ZFoR0BChLxqfvnbh3LjFwAAR0AxIMSbpeNUR0Bgom6XjU/fR0BChYEGJN0vh3LkFwAAR0AxIIMSbpeNR0BgoqfvnbItR0BChcKPXCj2h3LlFwAAR0AxIAAAAAAAR0Bgo52yLQ5WR0BChmZmZmZmh3LmFwAAR0AxIAAAAAAAR0Bgo9cKPXCkR0BChocrAgxKh3LnFwAAR0AxHztkWhysR0BgpQYk3S8bR0BCh0vGp++eh3LoFwAAR0AxHvnbItDlR0BgpT987ZFoR0BCh41P3ztkh3LpFwAAR0AxHjU/fO2RR0Bgpm6XjU/fR0BCiFHrhR64h3LqFwAAR0AxHjU/fO2RR0BgpqfvnbItR0BCiHKwIMSch3LrFwAAR0AxHXCj1wo9R0Bgp52yLQ5WR0BCiRaHKwIMh3LsFwAAR0AxHXCj1wo9R0Bgp9cKPXCkR0BCiTdLxqfwh3LtFwAAR0AxHGp++dsjR0BgqT987ZFoR0BCij1wo9cKh3LuFwAAR0AxG+dsi0OWR0Bgqm6XjU/fR0BCiwIMSbpeh3LvFwAAR0AxGuFHrhR7R0Bgq9cKPXCkR0BCjAgxJul5h3LwFwAAR0AxGhysCDEnR0BgrQYk3S8bR0BCjMzMzMzNh3LxFwAAR0AxGhysCDEnR0BgrT987ZFoR0BCjO2RaHKwh3LyFwAAR0AxGVgQYk3TR0Bgrm6XjU/fR0BCjdLxqfvnh3LzFwAAR0AxGFHrhR64R0Bgr987ZFodR0BCjrhR64Ufh3L0FwAAR0AxF41P3ztkR0BgsQ5WBBiTR0BCj52yLQ5Wh3L1FwAAR0AxFocrAgxKR0BgsnbItDlYR0BCkIMSbpeNh3L2FwAAR0AxFcKPXCj2R0Bgs987ZFodR0BCkYk3S8aoh3L3FwAAR0AxFP3ztkWiR0BgtQ5WBBiTR0BCkk3S8an8h3L4FwAAR0AxE/fO2RaHR0BgtnbItDlYR0BCkzMzMzMzh3L5FwAAR0AxEzMzMzMzR0Bgt6XjU/fPR0BClBiTdLxqh3L6FwAAR0AxEzMzMzMzR0Bgt987ZFodR0BClDlYEGJOh3L7FwAAR0AxEi0OVgQZR0BguQ5WBBiTR0BClP3ztkWih3L8FwAAR0AxEWhysCDFR0Bgun752yLRR0BCleNT987Zh3L9FwAAR0AxEKPXCj1xR0Bgu64UeuFIR0BClsi0OVgQh3L+FwAAR0AxEGJN0vGqR0Bgu+dsi0OWR0BClul41P30h3L/FwAAR0AxD52yLQ5WR0BgvRaHKwIMR0BCl64UeuFIh3IAGAAAR0AxDpeNT987R0Bgvn752yLRR0BCmLQ5WBBih3IBGAAAR0AxDdLxqfvnR0Bgv64UeuFIR0BCmXjU/fO2h3ICGAAAR0AxDZFocrAhR0Bgv++dsi0OR0BCmZmZmZmah3IDGAAAR0AxDMzMzMzNR0BgwR64UeuFR0BCml41P3zuh3IEGAAAR0AxDAgxJul5R0Bgwk3S8an8R0BCmyLQ5WBCh3IFGAAAR0AxC8an752yR0BgwocrAgxKR0BCm2RaHKwIh3IGGAAAR0AxCwIMSbpeR0Bgw/fO2RaHR0BCnEm6XjU/h3IHGAAAR0AxCfvnbItER0BgxSbpeNT+R0BCnQ5WBBiTh3IIGAAAR0AxCTdLxqfwR0BgxlYEGJN1R0BCndLxqfvnh3IJGAAAR0AxCTdLxqfwR0Bgxo9cKPXDR0BCnhR64Ueuh3IKGAAAR0AxCDEm6XjVR0Bgx752yLQ5R0BCntkWhysCh3ILGAAAR0AxCDEm6XjVR0Bgx/fO2RaHR0BCnvnbItDlh3IMGAAAR0AxBysCDEm6R0BgyS8an753R0BCn752yLQ5h3INGAAAR0AxBmZmZmZmR0BgypeNT987R0BCoMSbpeNUh3IOGAAAR0AxBWBBiTdMR0Bgy8an752yR0BCoYk3S8aoh3IPGAAAR0AxBFocrAgxR0BgzTdLxqfwR0BCom6XjU/fh3IQGAAAR0AxA1P3ztkXR0Bgzp++dsi0R0BCo1P3ztkXh3IRGAAAR0AxAo9cKPXDR0Bgz87ZFocrR0BCpDlYEGJOh3ISGAAAR0AxAYk3S8aoR0Bg0T987ZFoR0BCpR64UeuFh3ITGAAAR0AxAMSbpeNUR0Bg0m6XjU/fR0BCpeNT987Zh3IUGAAAR0Aw/nbItDlYR0Bg1UeuFHrhR0BCp87ZFocrh3IVGAAAR0Aw/bItDlYER0Bg1n752yLRR0BCqJN0vGp/h3IWGAAAR0Aw/KwIMSbpR0Bg1+dsi0OWR0BCqXjU/fO2h3IXGAAAR0Aw+6XjU/fPR0Bg2VgQYk3TR0BCql41P3zuh3IYGAAAR0Aw+p++dsi0R0Bg2ocrAgxKR0BCqyLQ5WBCh3IZGAAAR0Aw+ZmZmZmaR0Bg2/fO2RaHR0BCrCj1wo9ch3IaGAAAR0AvBqfvnbItR0Bg+KPXCj1xR0A/SPXCj1wph3IbGAAAR0AvCDEm6XjVR0Bg+FocrAgxR0A/SLQ5WBBih3IcGAAAR0AvCTdLxqfwR0Bg+BiTdLxqR0A/SLQ5WBBih3IdGAAAR0AvDlYEGJN1R0Bg9vnbItDlR0A/SDEm6XjVh3IeGAAAR0AvFgQYk3S8R0Bg9U/fO2RaR0A/R64UeuFIh3IfGAAAR0AvF41P3ztkR0Bg9QYk3S8bR0A/R2yLQ5WBh3IgGAAAR0AvHKwIMSbpR0Bg8+dsi0OWR0A/RysCDEm6h3IhGAAAR0AvHbItDlYER0Bg86XjU/fPR0A/Rul41P30h3IiGAAAR0AvJWBBiTdMR0Bg8fvnbItER0A/RmZmZmZmh3IjGAAAR0AvKwIMSbpeR0Bg8NT987ZGR0A/ReNT987Zh3IkGAAAR0AvLAgxJul5R0Bg8JN0vGp/R0A/RaHKwIMSh3IlGAAAR0AvLQ5WBBiTR0Bg8FHrhR64R0A/RaHKwIMSh3ImGAAAR0AvMi0OVgQZR0Bg7ysCDEm6R0A/RR64UeuFh3InGAAAR0AvM7ZFocrBR0Bg7ul41P30R0A/RR64UeuFh3IoGAAAR0AvOdsi0OVgR0Bg7YEGJN0vR0A/RJul41P4h3IpGAAAR0AvO2RaHKwIR0Bg7T987ZFoR0A/RFocrAgxh3IqGAAAR0AvQIMSbpeNR0Bg7CDEm6XjR0A/Q9cKPXCkh3IrGAAAR0AvQYk3S8aoR0Bg6987ZFodR0A/Q9cKPXCkh3IsGAAAR0AvSDEm6XjVR0Bg6nbItDlYR0A/Q1P3ztkXh3ItGAAAR0AvSTdLxqfwR0Bg6jU/fO2RR0A/QxJul41Qh3IuGAAAR0AvT987ZFodR0Bg6MzMzMzNR0A/Qo9cKPXDh3IvGAAAR0AvUOVgQYk3R0Bg6ItDlYEGR0A/Qo9cKPXDh3IwGAAAR0AvVgQYk3S8R0Bg52yLQ5WBR0A/QgxJul41h3IxGAAAR0AvVwo9cKPXR0Bg5yLQ5WBCR0A/QcrAgxJvh3IyGAAAR0AvXbItDlYER0Bg5cKPXCj2R0A/QUeuFHrhh3IzGAAAR0AvXrhR64UfR0Bg5XjU/fO2R0A/QUeuFHrhh3I0GAAAR0AvY9cKPXCkR0Bg5FocrAgxR0A/QMSbpeNUh3I1GAAAR0AvZWBBiTdMR0Bg5BiTdLxqR0A/QIMSbpeNh3I2GAAAR0AvZmZmZmZmR0Bg49cKPXCkR0A/QIMSbpeNh3I3GAAAR0Ava4UeuFHsR0Bg4rhR64UfR0A/QAAAAAAAh3I4GAAAR0AvbItDlYEGR0Bg4m6XjU/fR0A/QAAAAAAAh3I5GAAAR0AvczMzMzMzR0Bg4Q5WBBiTR0A/PztkWhysh3I6GAAAR0AvdDlYEGJOR0Bg4MSbpeNUR0A/PztkWhysh3I7GAAAR0AveVgQYk3TR0Bg36XjU/fPR0A/PrhR64Ufh3I8GAAAR0Avel41P3zuR0Bg32RaHKwIR0A/PrhR64Ufh3I9GAAAR0AvgQYk3S8bR0Bg3fvnbItER0A/PfO2RaHLh3I+GAAAR0AvggxJul41R0Bg3bpeNT99R0A/PfO2RaHLh3I/GAAAR0AvgxJul41QR0Bg3XjU/fO2R0A/PfO2RaHLh3JAGAAAR0AviDEm6XjVR0Bg3FocrAgxR0A/PXCj1wo9h3JBGAAAR0AvibpeNT99R0Bg3BBiTdLyR0A/PS8an753h3JCGAAAR0AvjtkWhysCR0Bg2vGp++dtR0A/PKwIMSbph3JDGAAAR0Avj987ZFodR0Bg2rAgxJumR0A/PKwIMSbph3JEGAAAR0AvkOVgQYk3R0Bg2mZmZmZmR0A/PGp++dsjh3JFGAAAR0AvlgQYk3S8R0Bg2UeuFHrhR0A/PCj1wo9ch3JGGAAAR0Avlwo9cKPXR0Bg2QYk3S8bR0A/O+dsi0OWh3JHGAAAR0AvnCj1wo9cR0Bg1+dsi0OWR0A/O2RaHKwIh3JIGAAAR0AvnbItDlYER0Bg16XjU/fPR0A/O2RaHKwIh3JJGAAAR0AvpN0vGp++R0Bg1fvnbItER0A/Op++dsi0h3JKGAAAR0AvpmZmZmZmR0Bg1bpeNT99R0A/Op++dsi0h3JLGAAAR0AvqwIMSbpeR0Bg1Jul41P4R0A/OhysCDEnh3JMGAAAR0AvrItDlYEGR0Bg1FHrhR64R0A/Odsi0OVgh3JNGAAAR0Avsan752yLR0Bg0zMzMzMzR0A/OVgQYk3Th3JOGAAAR0Avs7ZFocrBR0Bg0rAgxJumR0A/ORaHKwIMh3JPGAAAR0AvuNT987ZGR0Bg0ZFocrAhR0A/OJN0vGp/h3JQGAAAR0Avudsi0OVgR0Bg0UeuFHrhR0A/OJN0vGp/h3JRGAAAR0Avu2RaHKwIR0Bg0QYk3S8bR0A/OJN0vGp/h3JSGAAAR0AvwIMSbpeNR0Bgz+dsi0OWR0A/OBBiTdLyh3JTGAAAR0Avx64UeuFIR0Bgzj1wo9cKR0A/N0vGp++eh3JUGAAAR0AvyLQ5WBBiR0BgzfvnbItER0A/Nwo9cKPXh3JVGAAAR0AvzdLxqfvnR0BgzN0vGp++R0A/NocrAgxKh3JWGAAAR0AvztkWhysCR0BgzJul41P4R0A/NocrAgxKh3JXGAAAR0Av1ocrAgxKR0BgyvGp++dtR0A/NcKPXCj2h3JYGAAAR0Av26XjU/fPR0BgydLxqfvnR0A/NT987ZFoh3JZGAAAR0Av3KwIMSbpR0BgyZFocrAhR0A/NT987ZFoh3JaGAAAR0Av3bItDlYER0BgyU/fO2RaR0A/NP3ztkWih3JbGAAAR0Av4tDlYEGJR0BgyDEm6XjVR0A/NHrhR64Uh3JcGAAAR0Av49cKPXCkR0Bgx++dsi0OR0A/NHrhR64Uh3JdGAAAR0Av6fvnbItER0BgxocrAgxKR0A/M7ZFocrBh3JeGAAAR0Av6wIMSbpeR0BgxkWhysCDR0A/M7ZFocrBh3JfGAAAR0Av8CDEm6XjR0BgxSbpeNT+R0A/MzMzMzMzh3JgGAAAR0Av8SbpeNT+R0BgxOVgQYk3R0A/MzMzMzMzh3JhGAAAR0Av8rAgxJumR0BgxJul41P4R0A/MvGp++dth3JiGAAAR0Av90vGp++eR0Bgw4UeuFHsR0A/Mm6XjU/fh3JjGAAAR0Av+NT987ZGR0BgwztkWhysR0A/Mm6XjU/fh3JkGAAAR0Av/vnbItDlR0Bgwdsi0OVgR0A/Man752yLh3JlGAAAR0AwAAAAAAAAR0BgwZmZmZmaR0A/Man752yLh3JmGAAAR0AwAo9cKPXDR0BgwHrhR64UR0A/MSbpeNT+h3JnGAAAR0AwAxJul41QR0BgwDlYEGJOR0A/MOVgQYk3h3JoGAAAR0AwBiTdLxqgR0BgvtDlYEGJR0A/MGJN0vGqh3JpGAAAR0AwBqfvnbItR0Bgvo9cKPXDR0A/MCDEm6Xjh3JqGAAAR0AwCTdLxqfwR0BgvXCj1wo9R0A/L52yLQ5Wh3JrGAAAR0AwCbpeNT99R0BgvS8an753R0A/L52yLQ5Wh3JsGAAAR0AwCj1wo9cKR0BgvO2RaHKwR0A/L1wo9cKPh3JtGAAAR0AwDMzMzMzNR0Bgu87ZFocrR0A/LtkWhysCh3JuGAAAR0AwDU/fO2RaR0Bgu4UeuFHsR0A/LtkWhysCh3JvGAAAR0AwDdLxqfvnR0Bgu0OVgQYlR0A/LpeNT987h3JwGAAAR0AwEGJN0vGqR0BguiTdLxqgR0A/LhR64Ueuh3JxGAAAR0AwEOVgQYk3R0BgueNT987ZR0A/LhR64Ueuh3JyGAAAR0AwE3S8an76R0BguMSbpeNUR0A/LZFocrAhh3JzGAAAR0AwE/fO2RaHR0BguIMSbpeNR0A/LU/fO2Rah3J0GAAAR0AwFwo9cKPXR0BgtyLQ5WBCR0A/LMzMzMzNh3J1GAAAR0AwF41P3ztkR0BgttkWhysCR0A/LItDlYEGh3J2GAAAR0AwGBBiTdLyR0BgtpeNT987R0A/LItDlYEGh3J3GAAAR0AwGp++dsi0R0BgtXjU/fO2R0A/LAgxJul5h3J4GAAAR0AwGyLQ5WBCR0BgtTdLxqfwR0A/K8an752yh3J5GAAAR0AwHbItDlYER0BgtBiTdLxqR0A/K0OVgQYlh3J6GAAAR0AwHrhR64UfR0Bgs5WBBiTdR0A/KwIMSbpeh3J7GAAAR0AwIUeuFHrhR0BgsnbItDlYR0A/Kn752yLRh3J8GAAAR0AwIcrAgxJvR0BgsjU/fO2RR0A/Kn752yLRh3J9GAAAR0AwIk3S8an8R0BgsfO2RaHLR0A/Kj1wo9cKh3J+GAAAR0AwJBiTdLxqR0BgsRaHKwIMR0A/KfvnbItEh3J/GAAAR0AwJN0vGp++R0BgsNT987ZGR0A/KbpeNT99h3KAGAAAR0AwKHKwIMScR0BgrysCDEm6R0A/KPXCj1wph3KBGAAAR0AwKPXCj1wpR0Bgrul41P30R0A/KPXCj1wph3KCGAAAR0AwK0OVgQYlR0BgrcrAgxJvR0A/KHKwIMSch3KDGAAAR0AwLAgxJul5R0BgrYk3S8aoR0A/KDEm6XjVh3KEGAAAR0AwL52yLQ5WR0Bgq+dsi0OWR0A/J2yLQ5WBh3KFGAAAR0AwMeuFHrhSR0Bgqsi0OVgQR0A/Jul41P30h3KGGAAAR0AwMm6XjU/fR0BgqocrAgxKR0A/Jul41P30h3KHGAAAR0AwMvGp++dtR0BgqkWhysCDR0A/JqfvnbIth3KIGAAAR0AwNYEGJN0vR0BgqSbpeNT+R0A/JiTdLxqgh3KJGAAAR0AwORaHKwIMR0Bgp3ztkWhzR0A/JWBBiTdMh3KKGAAAR0AwOZmZmZmaR0BgpztkWhysR0A/JWBBiTdMh3KLGAAAR0AwO+dsi0OWR0BgpiTdLxqgR0A/JJul41P4h3KMGAAAR0AwPKwIMSbpR0Bgpdsi0OVgR0A/JJul41P4h3KNGAAAR0AwPS8an753R0BgpZmZmZmaR0A/JFocrAgxh3KOGAAAR0AwP3ztkWhzR0BgpIMSbpeNR0A/I9cKPXCkh3KPGAAAR0AwQAAAAAAAR0BgpDlYEGJOR0A/I9cKPXCkh3KQGAAAR0AwQo9cKPXDR0BgoxqfvnbJR0A/I1P3ztkXh3KRGAAAR0AwQxJul41QR0BgotkWhysCR0A/IxJul41Qh3KSGAAAR0AwQ5WBBiTdR0BgopeNT987R0A/IxJul41Qh3KTGAAAR0AwRiTdLxqgR0BgoXjU/fO2R0A/Io9cKPXDh3KUGAAAR0AwRqfvnbItR0BgoTdLxqfwR0A/Ik3S8an8h3KVGAAAR0AwSXjU/fO2R0Bgn9cKPXCkR0A/IYk3S8aoh3KWGAAAR0AwSj1wo9cKR0Bgn5WBBiTdR0A/IYk3S8aoh3KXGAAAR0AwTItDlYEGR0BgnnbItDlYR0A/IQYk3S8bh3KYGAAAR0AwTQ5WBBiTR0BgnjU/fO2RR0A/IMSbpeNUh3KZGAAAR0AwTZFocrAhR0BgnfO2RaHLR0A/IMSbpeNUh3KaGAAAR0AwT987ZFodR0BgnNT987ZGR0A/IEGJN0vHh3KbGAAAR0AwU3S8an76R0BgmzMzMzMzR0A/H3ztkWhzh3KcGAAAR0AwU/fO2RaHR0BgmvGp++dtR0A/HztkWhysh3KdGAAAR0AwVocrAgxKR0BgmdLxqfvnR0A/HrhR64Ufh3KeGAAAR0AwVwo9cKPXR0BgmZFocrAhR0A/HnbItDlYh3KfGAAAR0AwWdsi0OVgR0BgmDEm6XjVR0A/HfO2RaHLh3KgGAAAR0AwWp++dsi0R0Bgl++dsi0OR0A/HbItDlYEh3KhGAAAR0AwWyLQ5WBCR0Bgl64UeuFIR0A/HbItDlYEh3KiGAAAR0AwXO2RaHKwR0BgltDlYEGJR0A/HS8an753h3KjGAAAR0AwXXCj1wo9R0Bglo9cKPXDR0A/HS8an753h3KkGAAAR0AwXfO2RaHLR0Bglk3S8an8R0A/HO2RaHKwh3KlGAAAR0AwYEGJN0vHR0BglS8an753R0A/HGp++dsjh3KmGAAAR0AwYYk3S8aoR0BglKwIMSbpR0A/HCj1wo9ch3KnGAAAR0AwY9cKPXCkR0Bgk41P3ztkR0A/G6XjU/fPh3KoGAAAR0AwZFocrAgxR0Bgk0vGp++eR0A/G2RaHKwIh3KpGAAAR0AwZN0vGp++R0Bgkwo9cKPXR0A/G2RaHKwIh3KqGAAAR0AwZqfvnbItR0Bgki0OVgQZR0A/GuFHrhR7h3KrGAAAR0AwZysCDEm6R0BgkeuFHrhSR0A/Gp++dsi0h3KsGAAAR0Awaj1wo9cKR0BgkItDlYEGR0A/GhysCDEnh3KtGAAAR0AwasCDEm6YR0BgkEm6XjU/R0A/Gdsi0OVgh3KuGAAAR0Awa0OVgQYlR0BgkAgxJul5R0A/Gdsi0OVgh3KvGAAAR0AwbZFocrAhR0Bgjul41P30R0A/GVgQYk3Th3KwGAAAR0AwblYEGJN1R0BgjqfvnbItR0A/GRaHKwIMh3KxGAAAR0AwbtkWhysCR0BgjmZmZmZmR0A/GRaHKwIMh3KyGAAAR0AwcKPXCj1xR0BgjZFocrAhR0A/GJN0vGp/h3KzGAAAR0Awcan752yLR0BgjQYk3S8bR0A/GFHrhR64h3K0GAAAR0Awc/fO2RaHR0Bgi++dsi0OR0A/F87ZFocrh3K1GAAAR0AwdHrhR64UR0Bgi6XjU/fPR0A/F41P3ztkh3K2GAAAR0AwdP3ztkWiR0Bgi2RaHKwIR0A/F41P3ztkh3K3GAAAR0Awd41P3ztkR0Bgik3S8an8R0A/Fsi0OVgQh3K4GAAAR0AweuFHrhR7R0BgiKwIMSbpR0A/FgQYk3S8h3K5GAAAR0Awe2RaHKwIR0BgiGp++dsjR0A/FgQYk3S8h3K6GAAAR0AwfbItDlYER0Bgh0vGp++eR0A/FT987ZFoh3K7GAAAR0AwfjU/fO2RR0Bghwo9cKPXR0A/FT987ZFoh3K8GAAAR0AwfvnbItDlR0Bghsi0OVgQR0A/FP3ztkWih3K9GAAAR0AwgcrAgxJvR0BghWhysCDFR0A/FDlYEGJOh3K+GAAAR0AwhBiTdLxqR0BghEm6XjU/R0A/E7ZFocrBh3K/GAAAR0AwhJul41P4R0BghAgxJul5R0A/E7ZFocrBh3LAGAAAR0AwhR64UeuFR0Bgg8an752yR0A/E3S8an76h3LBGAAAR0Awh2yLQ5WBR0BggrAgxJumR0A/EvGp++dth3LCGAAAR0AwiwIMSbpeR0BggQ5WBBiTR0A/Ei0OVgQZh3LDGAAAR0Awi4UeuFHsR0BggMSbpeNUR0A/EeuFHrhSh3LEGAAAR0AwjdLxqfvnR0Bgf64UeuFIR0A/EWhysCDFh3LFGAAAR0AwjlYEGJN1R0Bgf2yLQ5WBR0A/ESbpeNT+h3LGGAAAR0AwjtkWhysCR0BgfysCDEm6R0A/ESbpeNT+h3LHGAAAR0AwkSbpeNT+R0BgfgxJul41R0A/EKPXCj1xh3LIGAAAR0Awkan752yLR0BgfcrAgxJvR0A/EGJN0vGqh3LJGAAAR0Awk/fO2RaHR0BgfKwIMSbpR0A/D987ZFodh3LKGAAAR0AwlHrhR64UR0BgfGp++dsjR0A/D52yLQ5Wh3LLGAAAR0AwlP3ztkWiR0BgfCj1wo9cR0A/D52yLQ5Wh3LMGAAAR0Awl0vGp++eR0BgexJul41QR0A/DtkWhysCh3LNGAAAR0AwmuFHrhR7R0BgeXCj1wo9R0A/DhR64Ueuh3LOGAAAR0Awm2RaHKwIR0BgeS8an753R0A/DdLxqfvnh3LPGAAAR0AwnbItDlYER0BgeBBiTdLyR0A/DU/fO2Rah3LQGAAAR0AwnjU/fO2RR0Bgd87ZFocrR0A/DU/fO2Rah3LRGAAAR0AwnrhR64UfR0Bgd41P3ztkR0A/DQ5WBBiTh3LSGAAAR0AwoQYk3S8bR0BgdnbItDlYR0A/DItDlYEGh3LTGAAAR0AwpFocrAgxR0BgdNT987ZGR0A/C4UeuFHsh3LUGAAAR0AwpN0vGp++R0BgdJN0vGp/R0A/C4UeuFHsh3LVGAAAR0AwpWBBiTdMR0BgdFHrhR64R0A/C0OVgQYlh3LWGAAAR0AwpysCDEm6R0Bgc3S8an76R0A/CwIMSbpeh3LXGAAAR0Awqn752yLRR0BgcdLxqfvnR0A/CfvnbItEh3LYGAAAR0AwqwIMSbpeR0BgcZFocrAhR0A/CfvnbItEh3LZGAAAR0Awq4UeuFHsR0BgcU/fO2RaR0A/CbpeNT99h3LaGAAAR0AwrU/fO2RaR0BgcHrhR64UR0A/CTdLxqfwh3LbGAAAR0AwrdLxqfvnR0BgcDlYEGJOR0A/CTdLxqfwh3LcGAAAR0AwrlYEGJN1R0Bgb/fO2RaHR0A/CPXCj1wph3LdGAAAR0AwrtkWhysCR0Bgb7ZFocrBR0A/CPXCj1wph3LeGAAAR0AwsKPXCj1xR0BgbtkWhysCR0A/CHKwIMSch3LfGAAAR0Awsan752yLR0BgblYEGJN1R0A/CDEm6XjVh3LgGAAAR0Aws/fO2RaHR0BgbT987ZFoR0A/B64UeuFIh3LhGAAAR0AwtHrhR64UR0BgbP3ztkWiR0A/B2yLQ5WBh3LiGAAAR0AwtP3ztkWiR0BgbLQ5WBBiR0A/BysCDEm6h3LjGAAAR0Awtsi0OVgQR0Bga987ZFodR0A/Bul41P30h3LkGAAAR0Awt0vGp++eR0Bga52yLQ5WR0A/BqfvnbIth3LlGAAAR0AwuhysCDEnR0Bgaj1wo9cKR0A/BeNT987Zh3LmGAAAR0Awup++dsi0R0BgafvnbItER0A/BeNT987Zh3LnGAAAR0AwuyLQ5WBCR0BgabpeNT99R0A/BaHKwIMSh3LoGAAAR0AwvXCj1wo9R0BgaKPXCj1xR0A/BR64UeuFh3LpGAAAR0AwvfO2RaHLR0BgaGJN0vGqR0A/BN0vGp++h3LqGAAAR0AwvnbItDlYR0BgaCDEm6XjR0A/BN0vGp++h3LrGAAAR0AwwEGJN0vHR0BgZ0vGp++eR0A/BFocrAgxh3LsGAAAR0AwwUeuFHrhR0BgZsCDEm6YR0A/BBiTdLxqh3LtGAAAR0Aww5WBBiTdR0BgZan752yLR0A/A1P3ztkXh3LuGAAAR0AwxBiTdLxqR0BgZWhysCDFR0A/A1P3ztkXh3LvGAAAR0AwxJul41P4R0BgZSbpeNT+R0A/AxJul41Qh3LwGAAAR0Awxul41P30R0BgZAgxJul5R0A/Ao9cKPXDh3LxGAAAR0Awx++dsi0OR0BgY4UeuFHsR0A/Ak3S8an8h3LyGAAAR0Awyj1wo9cKR0BgYm6XjU/fR0A/AYk3S8aoh3LzGAAAR0AwysCDEm6YR0BgYiTdLxqgR0A/AYk3S8aoh3L0GAAAR0AwzQ5WBBiTR0BgYQ5WBBiTR0A/AMSbpeNUh3L1GAAAR0AwzZFocrAhR0BgYMzMzMzNR0A/AMSbpeNUh3L2GAAAR0AwzhR64UeuR0BgYItDlYEGR0A/AIMSbpeNh3L3GAAAR0Aw0OVgQYk3R0BgXysCDEm6R0A+/752yLQ5h3L4GAAAR0Aw0vGp++dtR0BgXhR64UeuR0A+/ztkWhysh3L5GAAAR0Aw07ZFocrBR0BgXdLxqfvnR0A+/vnbItDlh3L6GAAAR0Aw1DlYEGJOR0BgXZFocrAhR0A+/vnbItDlh3L7GAAAR0Aw1kWhysCDR0BgXHrhR64UR0A+/nbItDlYh3L8GAAAR0Aw2ZmZmZmaR0BgWtkWhysCR0A+/XCj1wo9h3L9GAAAR0Aw2hysCDEnR0BgWpeNT987R0A+/S8an753h3L+GAAAR0Aw3Gp++dsjR0BgWYEGJN0vR0A+/KwIMSbph3L/GAAAR0Aw3O2RaHKwR0BgWT987ZFoR0A+/Gp++dsjh3IAGQAAR0Aw3XCj1wo9R0BgWP3ztkWiR0A+/Gp++dsjh3IBGQAAR0Aw3752yLQ5R0BgV+dsi0OWR0A++6XjU/fPh3ICGQAAR0Aw4tDlYEGJR0BgVkWhysCDR0A++uFHrhR7h3IDGQAAR0Aw41P3ztkXR0BgVgQYk3S8R0A++p++dsi0h3IEGQAAR0Aw5aHKwIMSR0BgVO2RaHKwR0A++hysCDEnh3IFGQAAR0Aw6PXCj1wpR0BgU0vGp++eR0A++RaHKwIMh3IGGQAAR0Aw6XjU/fO2R0BgUwo9cKPXR0A++RaHKwIMh3IHGQAAR0Aw64UeuFHsR0BgUfO2RaHLR0A++FHrhR64h3IIGQAAR0Aw7AgxJul5R0BgUbItDlYER0A++FHrhR64h3IJGQAAR0Aw7ItDlYEGR0BgUXCj1wo9R0A++BBiTdLyh3IKGQAAR0Aw7U/fO2RaR0BgUS8an753R0A++BBiTdLyh3ILGQAAR0Aw7tkWhysCR0BgUFocrAgxR0A+941P3ztkh3IMGQAAR0Aw8i0OVgQZR0BgTrhR64UfR0A+9ocrAgxKh3INGQAAR0Aw8rAgxJumR0BgTnbItDlYR0A+9ocrAgxKh3IOGQAAR0Aw8zMzMzMzR0BgTjU/fO2RR0A+9kWhysCDh3IPGQAAR0Aw9LxqfvnbR0BgTWBBiTdMR0A+9cKPXCj2h3IQGQAAR0Aw9kWhysCDR0BgTJul41P4R0A+9T987ZFoh3IRGQAAR0Aw+BBiTdLyR0BgS752yLQ5R0A+9P3ztkWih3ISGQAAR0Aw+JN0vGp/R0BgS3ztkWhzR0A+9Lxqfvnbh3ITGQAAR0Aw+RaHKwIMR0BgSztkWhysR0A+9HrhR64Uh3IUGQAAR0Aw+2RaHKwIR0BgSiTdLxqgR0A+8/fO2RaHh3IVGQAAR0Aw++dsi0OWR0BgSeNT987ZR0A+87ZFocrBh3IWGQAAR0Aw/Gp++dsjR0BgSaHKwIMSR0A+87ZFocrBh3IXGQAAR0Aw/fO2RaHLR0BgSMzMzMzNR0A+8zMzMzMzh3IYGQAAR0AxAUeuFHrhR0BgRysCDEm6R0A+8i0OVgQZh3IZGQAAR0AxAcrAgxJvR0BgRul41P30R0A+8i0OVgQZh3IaGQAAR0AxAk3S8an8R0BgRqfvnbItR0A+8euFHrhSh3IbGQAAR0AxBFocrAgxR0BgRZFocrAhR0A+8WhysCDFh3IcGQAAR0AxBWBBiTdMR0BgRQ5WBBiTR0A+8OVgQYk3h3IdGQAAR0AxB64UeuFIR0BgQ/fO2RaHR0A+8GJN0vGqh3IeGQAAR0AxCDEm6XjVR0BgQ7ZFocrBR0A+8CDEm6Xjh3IfGQAAR0AxCj1wo9cKR0BgQp++dsi0R0A+752yLQ5Wh3IgGQAAR0AxCsCDEm6YR0BgQl41P3zuR0A+71wo9cKPh3IhGQAAR0AxC0OVgQYlR0BgQhysCDEnR0A+71wo9cKPh3IiGQAAR0AxDhR64UeuR0BgQLxqfvnbR0A+7peNT987h3IjGQAAR0AxECDEm6XjR0BgP6XjU/fPR0A+7dLxqfvnh3IkGQAAR0AxEKPXCj1xR0BgP2RaHKwIR0A+7dLxqfvnh3IlGQAAR0AxESbpeNT+R0BgPyLQ5WBCR0A+7ZFocrAhh3ImGQAAR0AxE3S8an76R0BgPgxJul41R0A+7MzMzMzNh3InGQAAR0AxFHrhR64UR0BgPYk3S8aoR0A+7ItDlYEGh3IoGQAAR0AxFocrAgxKR0BgPHKwIMScR0A+7AgxJul5h3IpGQAAR0AxFwo9cKPXR0BgPDEm6XjVR0A+68an752yh3IqGQAAR0AxGVgQYk3TR0BgOxJul41QR0A+60OVgQYlh3IrGQAAR0AxGdsi0OVgR0BgOtDlYEGJR0A+6wIMSbpeh3IsGQAAR0AxGl41P3zuR0BgOo9cKPXDR0A+6sCDEm6Yh3ItGQAAR0AxHO2RaHKwR0BgOTdLxqfwR0A+6fvnbItEh3IuGQAAR0AxH3ztkWhzR0BgN987ZFodR0A+6TdLxqfwh3IvGQAAR0AxIAAAAAAAR0BgN52yLQ5WR0A+6TdLxqfwh3IwGQAAR0AxIQYk3S8bR0BgNxqfvnbJR0A+6LQ5WBBih3IxGQAAR0AxIk3S8an8R0BgNocrAgxKR0A+6HKwIMSch3IyGQAAR0AxI1P3ztkXR0BgNgQYk3S8R0A+6DEm6XjVh3IzGQAAR0AxJWBBiTdMR0BgNO2RaHKwR0A+52yLQ5WBh3I0GQAAR0AxJeNT987ZR0BgNKwIMSbpR0A+52yLQ5WBh3I1GQAAR0AxJul41P30R0BgNCj1wo9cR0A+5ysCDEm6h3I2GQAAR0AxJ++dsi0OR0BgM5WBBiTdR0A+5qfvnbIth3I3GQAAR0AxKHKwIMScR0BgM1P3ztkXR0A+5qfvnbIth3I4GQAAR0AxKPXCj1wpR0BgMxJul41QR0A+5mZmZmZmh3I5GQAAR0AxKXjU/fO2R0BgMtDlYEGJR0A+5iTdLxqgh3I6GQAAR0AxK0OVgQYlR0BgMfvnbItER0A+5aHKwIMSh3I7GQAAR0AxLMzMzMzNR0BgMTdLxqfwR0A+5WBBiTdMh3I8GQAAR0AxLlYEGJN1R0BgMFocrAgxR0A+5N0vGp++h3I9GQAAR0AxLtkWhysCR0BgMBiTdLxqR0A+5Jul41P4h3I+GQAAR0AxL1wo9cKPR0BgL9cKPXCkR0A+5FocrAgxh3I/GQAAR0AxL987ZFodR0BgL52yLQ5WR0A+5FocrAgxh3JAGQAAR0AxMOVgQYk3R0BgLwIMSbpeR0A+5BiTdLxqh3JBGQAAR0AxMeuFHrhSR0BgLn752yLRR0A+45WBBiTdh3JCGQAAR0AxMm6XjU/fR0BgLj1wo9cKR0A+45WBBiTdh3JDGQAAR0AxNDlYEGJOR0BgLWhysCDFR0A+4xJul41Qh3JEGQAAR0AxNHrhR64UR0BgLSbpeNT+R0A+4tDlYEGJh3JFGQAAR0AxNYEGJN0vR0BgLKPXCj1xR0A+4o9cKPXDh3JGGQAAR0AxN0vGp++eR0BgK87ZFocrR0A+4gxJul41h3JHGQAAR0AxN87ZFocrR0BgK41P3ztkR0A+4crAgxJvh3JIGQAAR0AxOFHrhR64R0BgK0vGp++eR0A+4crAgxJvh3JJGQAAR0AxO2RaHKwIR0BgKbItDlYER0A+4MSbpeNUh3JKGQAAR0AxPO2RaHKwR0BgKN0vGp++R0A+4EGJN0vHh3JLGQAAR0AxPXCj1wo9R0BgKJul41P4R0A+4AAAAAAAh3JMGQAAR0AxPfO2RaHLR0BgKFocrAgxR0A+4AAAAAAAh3JNGQAAR0AxP3ztkWhzR0BgJ4UeuFHsR0A+33ztkWhzh3JOGQAAR0AxQQYk3S8bR0BgJsCDEm6YR0A+3vnbItDlh3JPGQAAR0AxQtDlYEGJR0BgJeuFHrhSR0A+3nbItDlYh3JQGQAAR0AxQ1P3ztkXR0BgJan752yLR0A+3jU/fO2Rh3JRGQAAR0AxQ5WBBiTdR0BgJWhysCDFR0A+3jU/fO2Rh3JSGQAAR0AxReNT987ZR0BgJFHrhR64R0A+3XCj1wo9h3JTGQAAR0AxRmZmZmZmR0BgJBBiTdLyR0A+3XCj1wo9h3JUGQAAR0AxRul41P30R0BgI87ZFocrR0A+3S8an753h3JVGQAAR0AxSfvnbItER0BgIjU/fO2RR0A+3Cj1wo9ch3JWGQAAR0AxS4UeuFHsR0BgIWBBiTdMR0A+26XjU/fPh3JXGQAAR0AxTAgxJul5R0BgIR64UeuFR0A+26XjU/fPh3JYGQAAR0AxTItDlYEGR0BgIN0vGp++R0A+22RaHKwIh3JZGQAAR0AxTpeNT987R0BgH8an752yR0A+2p++dsi0h3JaGQAAR0AxT52yLQ5WR0BgH0OVgQYlR0A+2l41P3zuh3JbGQAAR0AxUan752yLR0BgHi0OVgQZR0A+2ZmZmZmah3JcGQAAR0AxUi0OVgQZR0BgHeuFHrhSR0A+2ZmZmZmah3JdGQAAR0AxUzMzMzMzR0BgHWhysCDFR0A+2VgQYk3Th3JeGQAAR0AxVDlYEGJOR0BgHNT987ZGR0A+2NT987ZGh3JfGQAAR0AxVLxqfvnbR0BgHJN0vGp/R0A+2NT987ZGh3JgGQAAR0AxVT987ZFoR0BgHFHrhR64R0A+2JN0vGp/h3JhGQAAR0AxVkWhysCDR0BgG87ZFocrR0A+2FHrhR64h3JiGQAAR0AxV87ZFocrR0BgGvnbItDlR0A+187ZFocrh3JjGQAAR0AxWNT987ZGR0BgGnbItDlYR0A+10vGp++eh3JkGQAAR0AxWl41P3zuR0BgGaHKwIMSR0A+1si0OVgQh3JlGQAAR0AxWuFHrhR7R0BgGWBBiTdMR0A+1si0OVgQh3JmGQAAR0AxW+dsi0OWR0BgGN0vGp++R0A+1ocrAgxKh3JnGQAAR0AxXO2RaHKwR0BgGEm6XjU/R0A+1gQYk3S8h3JoGQAAR0AxXfO2RaHLR0BgF8an752yR0A+1cKPXCj2h3JpGQAAR0AxYAAAAAAAR0BgFrAgxJumR0A+1P3ztkWih3JqGQAAR0AxYIMSbpeNR0BgFm6XjU/fR0A+1P3ztkWih3JrGQAAR0AxYYk3S8aoR0BgFeuFHrhSR0A+1HrhR64Uh3JsGQAAR0AxYo9cKPXDR0BgFVgQYk3TR0A+1DlYEGJOh3JtGQAAR0AxYxJul41QR0BgFRaHKwIMR0A+0/fO2RaHh3JuGQAAR0AxY5WBBiTdR0BgFNT987ZGR0A+0/fO2RaHh3JvGQAAR0AxZJul41P4R0BgFFocrAgxR0A+07ZFocrBh3JwGQAAR0AxZaHKwIMSR0BgE752yLQ5R0A+0zMzMzMzh3JxGQAAR0AxZysCDEm6R0BgEwIMSbpeR0A+0rAgxJumh3JyGQAAR0AxaLQ5WBBiR0BgEiTdLxqgR0A+0i0OVgQZh3JzGQAAR0AxaTdLxqfwR0BgEeNT987ZR0A+0i0OVgQZh3J0GQAAR0AxabpeNT99R0BgEaHKwIMSR0A+0euFHrhSh3J1GQAAR0Axaj1wo9cKR0BgEWhysCDFR0A+0an752yLh3J2GQAAR0Axa0OVgQYlR0BgENT987ZGR0A+0WhysCDFh3J3GQAAR0AxbEm6XjU/R0BgEFHrhR64R0A+0SbpeNT+h3J4GQAAR0AxbMzMzMzNR0BgEBBiTdLyR0A+0OVgQYk3h3J5GQAAR0AxbU/fO2RaR0BgD87ZFocrR0A+0KPXCj1xh3J6GQAAR0AxblYEGJN1R0BgDztkWhysR0A+0GJN0vGqh3J7GQAAR0AxbtkWhysCR0BgDvnbItDlR0A+0CDEm6Xjh3J8GQAAR0Axb987ZFodR0BgDnbItDlYR0A+z987ZFodh3J9GQAAR0AxcWhysCDFR0BgDaHKwIMSR0A+z1wo9cKPh3J+GQAAR0AxceuFHrhSR0BgDWBBiTdMR0A+zxqfvnbJh3J/GQAAR0Axcm6XjU/fR0BgDR64UeuFR0A+zxqfvnbJh3KAGQAAR0AxcvGp++dtR0BgDN0vGp++R0A+ztkWhysCh3KBGQAAR0Axc/fO2RaHR0BgDEm6XjU/R0A+zpeNT987h3KCGQAAR0AxdYEGJN0vR0BgC4UeuFHsR0A+zhR64Ueuh3KDGQAAR0Axdwo9cKPXR0BgCrAgxJumR0A+zZFocrAhh3KEGQAAR0Axd41P3ztkR0BgCm6XjU/fR0A+zU/fO2Rah3KFGQAAR0AxeBBiTdLyR0BgCi0OVgQZR0A+zU/fO2Rah3KGGQAAR0AxeFHrhR64R0BgCfO2RaHLR0A+zQ5WBBiTh3KHGQAAR0Axel41P3zuR0BgCN0vGp++R0A+zEm6XjU/h3KIGQAAR0AxeuFHrhR7R0BgCJul41P4R0A+zEm6XjU/h3KJGQAAR0AxfKwIMSbpR0BgB752yLQ5R0A+y8an752yh3KKGQAAR0AxfO2RaHKwR0BgB3ztkWhzR0A+y4UeuFHsh3KLGQAAR0AxffO2RaHLR0BgBwIMSbpeR0A+y0OVgQYlh3KMGQAAR0Axf3ztkWhzR0BgBi0OVgQZR0A+ysCDEm6Yh3KNGQAAR0AxgAAAAAAAR0BgBeuFHrhSR0A+yn752yLRh3KOGQAAR0AxgIMSbpeNR0BgBan752yLR0A+yj1wo9cKh3KPGQAAR0Axg5WBBiTdR0BgBBBiTdLyR0A+yTdLxqfwh3KQGQAAR0AxhR64UeuFR0BgAztkWhysR0A+yLQ5WBBih3KRGQAAR0AxhaHKwIMSR0BgAvnbItDlR0A+yLQ5WBBih3KSGQAAR0AxhiTdLxqgR0BgArhR64UfR0A+yHKwIMSch3KTGQAAR0AxiLQ5WBBiR0BgAWhysCDFR0A+x64UeuFIh3KUGQAAR0AxiPXCj1wpR0BgASbpeNT+R0A+x2yLQ5WBh3KVGQAAR0AxiwIMSbpeR0BgABBiTdLyR0A+xqfvnbIth3KWGQAAR0Axi4UeuFHsR0Bf/52yLQ5WR0A+xqfvnbIth3KXGQAAR0AxjItDlYEGR0Bf/peNT987R0A+xiTdLxqgh3KYGQAAR0AxjZFocrAhR0Bf/XCj1wo9R0A+xeNT987Zh3KZGQAAR0AxjhR64UeuR0Bf/O2RaHKwR0A+xaHKwIMSh3KaGQAAR0AxjpeNT987R0Bf/Gp++dsjR0A+xaHKwIMSh3KbGQAAR0Axkan752yLR0Bf+TdLxqfwR0A+xJul41P4h3KcGQAAR0AxkeuFHrhSR0Bf+MSbpeNUR0A+xFocrAgxh3KdGQAAR0Axk7ZFocrBR0Bf9wo9cKPXR0A+w9cKPXCkh3KeGQAAR0Axk/fO2RaHR0Bf9peNT987R0A+w5WBBiTdh3KfGQAAR0AxlP3ztkWiR0Bf9ZFocrAhR0A+w1P3ztkXh3KgGQAAR0Axlwo9cKPXR0Bf82RaHKwIR0A+wo9cKPXDh3KhGQAAR0Axl41P3ztkR0Bf8uFHrhR7R0A+wo9cKPXDh3KiGQAAR0AxmRaHKwIMR0Bf8TdLxqfwR0A+wcrAgxJvh3KjGQAAR0AxmZmZmZmaR0Bf8LQ5WBBiR0A+wcrAgxJvh3KkGQAAR0Axml41P3zuR0Bf7752yLQ5R0A+wYk3S8aoh3KlGQAAR0AxnCj1wo9cR0Bf7gQYk3S8R0A+wMSbpeNUh3KmGQAAR0AxnGp++dsjR0Bf7ZFocrAhR0A+wMSbpeNUh3KnGQAAR0AxnXCj1wo9R0Bf7ItDlYEGR0A+wEGJN0vHh3KoGQAAR0AxnnbItDlYR0Bf62RaHKwIR0A+wAAAAAAAh3KpGQAAR0AxnvnbItDlR0Bf6uFHrhR7R0A+v752yLQ5h3KqGQAAR0AxoAAAAAAAR0Bf6dsi0OVgR0A+v3ztkWhzh3KrGQAAR0AxoMSbpeNUR0Bf6OVgQYk3R0A+vztkWhysh3KsGQAAR0AxoYk3S8aoR0Bf6DEm6XjVR0A+vvnbItDlh3KtGQAAR0AxogxJul41R0Bf564UeuFIR0A+vrhR64Ufh3KuGQAAR0AxotDlYEGJR0Bf5rhR64UfR0A+vnbItDlYh3KvGQAAR0AxpN0vGp++R0Bf5ItDlYEGR0A+vbItDlYEh3KwGQAAR0AxpWBBiTdMR0Bf5AgxJul5R0A+vbItDlYEh3KxGQAAR0AxpeNT987ZR0Bf44UeuFHsR0A+vXCj1wo9h3KyGQAAR0Axpul41P30R0Bf4l41P3zuR0A+vO2RaHKwh3KzGQAAR0Axp2yLQ5WBR0Bf4dsi0OVgR0A+vO2RaHKwh3K0GQAAR0AxqHKwIMScR0Bf4NT987ZGR0A+vKwIMSbph3K1GQAAR0AxqTdLxqfwR0Bf3987ZFodR0A+vCj1wo9ch3K2GQAAR0AxqfvnbItER0Bf3ysCDEm6R0A+u+dsi0OWh3K3GQAAR0Axqn752yLRR0Bf3qfvnbItR0A+u+dsi0OWh3K4GQAAR0AxqsCDEm6YR0Bf3iTdLxqgR0A+u6XjU/fPh3K5GQAAR0Axq0OVgQYlR0Bf3bItDlYER0A+u2RaHKwIh3K6GQAAR0AxrEm6XjU/R0Bf3HrhR64UR0A+uyLQ5WBCh3K7GQAAR0AxrdLxqfvnR0Bf2wIMSbpeR0A+up++dsi0h3K8GQAAR0AxrlYEGJN1R0Bf2n752yLRR0A+ul41P3zuh3K9GQAAR0Axr1wo9cKPR0Bf2VgQYk3TR0A+uhysCDEnh3K+GQAAR0Axr987ZFodR0Bf2NT987ZGR0A+udsi0OVgh3K/GQAAR0AxsGJN0vGqR0Bf2FHrhR64R0A+udsi0OVgh3LAGQAAR0AxsKPXCj1xR0Bf187ZFocrR0A+uZmZmZmah3LBGQAAR0Axsan752yLR0Bf1tkWhysCR0A+uVgQYk3Th3LCGQAAR0AxsrAgxJumR0Bf1aHKwIMSR0A+uNT987ZGh3LDGQAAR0AxszMzMzMzR0Bf1S8an753R0A+uJN0vGp/h3LEGQAAR0Axs7ZFocrBR0Bf1KwIMSbpR0A+uJN0vGp/h3LFGQAAR0AxtLxqfvnbR0Bf04UeuFHsR0A+uBBiTdLyh3LGGQAAR0AxtT987ZFoR0Bf0wIMSbpeR0A+uBBiTdLyh3LHGQAAR0AxtgQYk3S8R0Bf0fvnbItER0A+t41P3ztkh3LIGQAAR0Axt41P3ztkR0Bf0FHrhR64R0A+two9cKPXh3LJGQAAR0AxuBBiTdLyR0Bfz87ZFocrR0A+two9cKPXh3LKGQAAR0AxuJN0vGp/R0Bfz0vGp++eR0A+tsi0OVgQh3LLGQAAR0AxuRaHKwIMR0BfztkWhysCR0A+tocrAgxKh3LMGQAAR0Axu6XjU/fPR0BfzCj1wo9cR0A+tcKPXCj2h3LNGQAAR0AxvS8an753R0Bfyn752yLRR0A+tT987ZFoh3LOGQAAR0AxvXCj1wo9R0BfyfvnbItER0A+tP3ztkWih3LPGQAAR0AxvfO2RaHLR0BfyXjU/fO2R0A+tLxqfvnbh3LQGQAAR0AxvnbItDlYR0BfyPXCj1wpR0A+tLxqfvnbh3LRGQAAR0AxwIMSbpeNR0BfxtkWhysCR0A+s/fO2RaHh3LSGQAAR0AxwQYk3S8bR0BfxlYEGJN1R0A+s7ZFocrBh3LTGQAAR0AxwtDlYEGJR0BfxCj1wo9cR0A+svGp++dth3LUGQAAR0AxxWBBiTdMR0BfwXjU/fO2R0A+si0OVgQZh3LVGQAAR0AxxeNT987ZR0BfwPXCj1wpR0A+seuFHrhSh3LWGQAAR0AxxiTdLxqgR0BfwIMSbpeNR0A+seuFHrhSh3LXGQAAR0AxyTdLxqfwR0BfvU/fO2RaR0A+sKPXCj1xh3LYGQAAR0AxybpeNT99R0BfvMzMzMzNR0A+sKPXCj1xh3LZGQAAR0Axy0OVgQYlR0BfuyLQ5WBCR0A+sCDEm6Xjh3LaGQAAR0Axy4UeuFHsR0Bfup++dsi0R0A+r987ZFodh3LbGQAAR0AxzpeNT987R0Bft3ztkWhzR0A+rtkWhysCh3LcGQAAR0AxztkWhysCR0BftvnbItDlR0A+rpeNT987h3LdGQAAR0Axz987ZFodR0BftgQYk3S8R0A+rlYEGJN1h3LeGQAAR0Ax0GJN0vGqR0BftU/fO2RaR0A+rhR64Ueuh3LfGQAAR0Ax0OVgQYk3R0BftMzMzMzNR0A+rdLxqfvnh3LgGQAAR0Ax0euFHrhSR0Bfs9cKPXCkR0A+rZFocrAhh3LhGQAAR0Ax0rAgxJumR0BfsuFHrhR7R0A+rU/fO2Rah3LiGQAAR0Ax03S8an76R0Bfsi0OVgQZR0A+rQ5WBBiTh3LjGQAAR0Ax07ZFocrBR0Bfsan752yLR0A+rMzMzMzNh3LkGQAAR0Ax1LxqfvnbR0BfsLQ5WBBiR0A+rItDlYEGh3LlGQAAR0Ax1T987ZFoR0BfsDEm6XjVR0A+rEm6XjU/h3LmGQAAR0Ax1cKPXCj2R0Bfr3ztkWhzR0A+rAgxJul5h3LnGQAAR0Ax1si0OVgQR0BfrocrAgxKR0A+q8an752yh3LoGQAAR0Ax10vGp++eR0BfrgQYk3S8R0A+q4UeuFHsh3LpGQAAR0Ax2BBiTdLyR0BfrQ5WBBiTR0A+q0OVgQYlh3LqGQAAR0Ax2JN0vGp/R0BfrFocrAgxR0A+qwIMSbpeh3LrGQAAR0Ax2RaHKwIMR0Bfq9cKPXCkR0A+qsCDEm6Yh3LsGQAAR0Ax2hysCDEnR0BfquFHrhR7R0A+qn752yLRh3LtGQAAR0Ax2l41P3zuR0Bfql41P3zuR0A+qj1wo9cKh3LuGQAAR0Ax2+dsi0OWR0BfqLQ5WBBiR0A+qbpeNT99h3LvGQAAR0Ax3Gp++dsjR0BfqDEm6XjVR0A+qXjU/fO2h3LwGQAAR0Ax3O2RaHKwR0Bfp64UeuFIR0A+qXjU/fO2h3LxGQAAR0Ax3XCj1wo9R0BfpztkWhysR0A+qTdLxqfwh3LyGQAAR0Ax3fO2RaHLR0BfpocrAgxKR0A+qPXCj1wph3LzGQAAR0Ax3nbItDlYR0BfpgQYk3S8R0A+qPXCj1wph3L0GQAAR0Ax3ztkWhysR0BfpQ5WBBiTR0A+qHKwIMSch3L1GQAAR0Ax4EGJN0vHR0BfpAgxJul5R0A+qDEm6XjVh3L2GQAAR0Ax4MSbpeNUR0Bfo2RaHKwIR0A+p++dsi0Oh3L3GQAAR0Ax4UeuFHrhR0BfouFHrhR7R0A+p64UeuFIh3L4GQAAR0Ax4crAgxJvR0Bfol41P3zuR0A+p64UeuFIh3L5GQAAR0Ax4k3S8an8R0Bfodsi0OVgR0A+p2yLQ5WBh3L6GQAAR0Ax4o9cKPXDR0BfoWhysCDFR0A+pysCDEm6h3L7GQAAR0Ax41P3ztkXR0BfoLQ5WBBiR0A+pysCDEm6h3L8GQAAR0Ax49cKPXCkR0BfoDEm6XjVR0A+pul41P30h3L9GQAAR0Ax5Jul41P4R0BfnztkWhysR0A+pqfvnbIth3L+GQAAR0Ax5R64UeuFR0BfnrhR64UfR0A+pmZmZmZmh3L/GQAAR0Ax5WBBiTdMR0BfnjU/fO2RR0A+piTdLxqgh3IAGgAAR0Ax5iTdLxqgR0BfnZFocrAhR0A+peNT987Zh3IBGgAAR0Ax5qfvnbItR0BfnQ5WBBiTR0A+peNT987Zh3ICGgAAR0Ax5ul41P30R0BfnItDlYEGR0A+paHKwIMSh3IDGgAAR0Ax52yLQ5WBR0BfnAgxJul5R0A+pWBBiTdMh3IEGgAAR0Ax5++dsi0OR0Bfm5WBBiTdR0A+pWBBiTdMh3IFGgAAR0Ax6HKwIMScR0BfmxJul41QR0A+pR64UeuFh3IGGgAAR0Ax6XjU/fO2R0BfmeuFHrhSR0A+pJul41P4h3IHGgAAR0Ax6fvnbItER0BfmWhysCDFR0A+pJul41P4h3IIGgAAR0Ax6j1wo9cKR0BfmOVgQYk3R0A+pFocrAgxh3IJGgAAR0Ax6sCDEm6YR0BfmHKwIMScR0A+pBiTdLxqh3IKGgAAR0Ax60OVgQYlR0Bfl752yLQ5R0A+o9cKPXCkh3ILGgAAR0Ax68an752yR0BflztkWhysR0A+o9cKPXCkh3IMGgAAR0Ax7MzMzMzNR0BfljU/fO2RR0A+o1P3ztkXh3INGgAAR0Ax7Q5WBBiTR0BflcKPXCj2R0A+o1P3ztkXh3IOGgAAR0Ax7ZFocrAhR0BflT987ZFoR0A+oxJul41Qh3IPGgAAR0Ax7lYEGJN1R0BflJul41P4R0A+otDlYEGJh3IQGgAAR0Ax7peNT987R0BflBiTdLxqR0A+otDlYEGJh3IRGgAAR0Ax7xqfvnbJR0Bfk5WBBiTdR0A+oo9cKPXDh3ISGgAAR0Ax752yLQ5WR0BfkxJul41QR0A+ok3S8an8h3ITGgAAR0Ax8CDEm6XjR0Bfkp++dsi0R0A+ok3S8an8h3IUGgAAR0Ax8GJN0vGqR0BfkhysCDEnR0A+ogxJul41h3IVGgAAR0Ax8SbpeNT+R0BfkWhysCDFR0A+ocrAgxJvh3IWGgAAR0Ax8euFHrhSR0BfkHKwIMScR0A+oYk3S8aoh3IXGgAAR0Ax8m6XjU/fR0Bfj++dsi0OR0A+oUeuFHrhh3IYGgAAR0Ax8vGp++dtR0Bfj3ztkWhzR0A+oQYk3S8bh3IZGgAAR0Ax83S8an76R0Bfjsi0OVgQR0A+oMSbpeNUh3IaGgAAR0Ax8/fO2RaHR0BfjkWhysCDR0A+oMSbpeNUh3IbGgAAR0Ax9HrhR64UR0BfjcKPXCj2R0A+oIMSbpeNh3IcGgAAR0Ax9LxqfvnbR0BfjT987ZFoR0A+oEGJN0vHh3IdGgAAR0Ax9cKPXCj2R0BfjEm6XjU/R0A+oAAAAAAAh3IeGgAAR0Ax9si0OVgQR0BfiyLQ5WBCR0A+n3ztkWhzh3IfGgAAR0Ax90vGp++eR0Bfip++dsi0R0A+n3ztkWhzh3IgGgAAR0Ax941P3ztkR0BfihysCDEnR0A+nztkWhysh3IhGgAAR0Ax+BBiTdLyR0Bfian752yLR0A+nztkWhysh3IiGgAAR0Ax+NT987ZGR0BfiPXCj1wpR0A+nvnbItDlh3IjGgAAR0Ax+RaHKwIMR0BfiHKwIMScR0A+nrhR64Ufh3IkGgAAR0Ax+hysCDEnR0Bfh3ztkWhzR0A+nnbItDlYh3IlGgAAR0Ax+l41P3zuR0BfhvnbItDlR0A+njU/fO2Rh3ImGgAAR0Ax+uFHrhR7R0BfhocrAgxKR0A+nfO2RaHLh3InGgAAR0Ax+6XjU/fPR0BfhdLxqfvnR0A+nbItDlYEh3IoGgAAR0Ax++dsi0OWR0BfhU/fO2RaR0A+nbItDlYEh3IpGgAAR0Ax/Gp++dsjR0BfhMzMzMzNR0A+nXCj1wo9h3IqGgAAR0Ax/O2RaHKwR0BfhFocrAgxR0A+nS8an753h3IrGgAAR0Ax/bItDlYER0Bfg1P3ztkXR0A+nO2RaHKwh3IsGgAAR0Ax/nbItDlYR0Bfgp++dsi0R0A+nKwIMSbph3ItGgAAR0Ax/ztkWhysR0Bfgan752yLR0A+nGp++dsjh3IuGgAAR0AyAUeuFHrhR0Bff3ztkWhzR0A+m6XjU/fPh3IvGgAAR0AyAYk3S8aoR0BffvnbItDlR0A+m2RaHKwIh3IwGgAAR0AyAtDlYEGJR0BffZFocrAhR0A+muFHrhR7h3IxGgAAR0AyBBiTdLxqR0BffFocrAgxR0A+ml41P3zuh3IyGgAAR0AyBFocrAgxR0Bfe9cKPXCkR0A+ml41P3zuh3IzGgAAR0AyBmZmZmZmR0Bfean752yLR0A+mZmZmZmah3I0GgAAR0AyCTdLxqfwR0BfdocrAgxKR0A+mJN0vGp/h3I1GgAAR0AyCbpeNT99R0BfdhR64UeuR0A+mFHrhR64h3I2GgAAR0AyC4UeuFHsR0Bfc+dsi0OWR0A+l41P3ztkh3I3GgAAR0AyDItDlYEGR0BfcuFHrhR7R0A+l0vGp++eh3I4GgAAR0AyDMzMzMzNR0Bfcm6XjU/fR0A+lwo9cKPXh3I5GgAAR0AyDdLxqfvnR0BfcWhysCDFR0A+lsi0OVgQh3I6GgAAR0AyDlYEGJN1R0BfcMSbpeNUR0A+locrAgxKh3I7GgAAR0AyDtkWhysCR0BfcEGJN0vHR0A+lkWhysCDh3I8GgAAR0AyD52yLQ5WR0BfbztkWhysR0A+lgQYk3S8h3I9GgAAR0AyECDEm6XjR0Bfbsi0OVgQR0A+lcKPXCj2h3I+GgAAR0AyEan752yLR0BfbR64UeuFR0A+lT987ZFoh3I/GgAAR0AyEi0OVgQZR0BfbJul41P4R0A+lP3ztkWih3JAGgAAR0AyEvGp++dtR0Bfa6XjU/fPR0A+lLxqfvnbh3JBGgAAR0AyE3S8an76R0BfavGp++dtR0A+lHrhR64Uh3JCGgAAR0AyE/fO2RaHR0Bfam6XjU/fR0A+lDlYEGJOh3JDGgAAR0AyFLxqfvnbR0BfaXjU/fO2R0A+k/fO2RaHh3JEGgAAR0AyFcKPXCj2R0BfaIMSbpeNR0A+k3S8an76h3JFGgAAR0AyFkWhysCDR0BfZ87ZFocrR0A+kzMzMzMzh3JGGgAAR0AyFsi0OVgQR0BfZ0vGp++eR0A+kzMzMzMzh3JHGgAAR0AyF0vGp++eR0BfZsi0OVgQR0A+kvGp++dth3JIGgAAR0AyF41P3ztkR0BfZlYEGJN1R0A+krAgxJumh3JJGgAAR0AyGBBiTdLyR0BfZdLxqfvnR0A+krAgxJumh3JKGgAAR0AyGJN0vGp/R0BfZS8an753R0A+km6XjU/fh3JLGgAAR0AyGhysCDEnR0BfY6XjU/fPR0A+keuFHrhSh3JMGgAAR0AyGl41P3zuR0BfYzMzMzMzR0A+kan752yLh3JNGgAAR0AyGuFHrhR7R0BfYrAgxJumR0A+kWhysCDFh3JOGgAAR0AyG2RaHKwIR0BfYgxJul41R0A+kSbpeNT+h3JPGgAAR0AyG+dsi0OWR0BfYYk3S8aoR0A+kSbpeNT+h3JQGgAAR0AyHKwIMSbpR0BfYIMSbpeNR0A+kKPXCj1xh3JRGgAAR0AyHS8an753R0BfYBBiTdLyR0A+kKPXCj1xh3JSGgAAR0AyHbItDlYER0BfX41P3ztkR0A+kGJN0vGqh3JTGgAAR0AyHrhR64UfR0BfXmZmZmZmR0A+j987ZFodh3JUGgAAR0AyHztkWhysR0BfXeNT987ZR0A+j987ZFodh3JVGgAAR0AyH3ztkWhzR0BfXWBBiTdMR0A+j52yLQ5Wh3JWGgAAR0AyIAAAAAAAR0BfXO2RaHKwR0A+j1wo9cKPh3JXGgAAR0AyIIMSbpeNR0BfXDlYEGJOR0A+jxqfvnbJh3JYGgAAR0AyIQYk3S8bR0BfW7ZFocrBR0A+jxqfvnbJh3JZGgAAR0AyIcrAgxJvR0BfWsCDEm6YR0A+jpeNT987h3JaGgAAR0AyIk3S8an8R0BfWj1wo9cKR0A+jlYEGJN1h3JbGgAAR0AyItDlYEGJR0BfWcrAgxJvR0A+jlYEGJN1h3JcGgAAR0AyI1P3ztkXR0BfWRaHKwIMR0A+jhR64Ueuh3JdGgAAR0AyI9cKPXCkR0BfWJN0vGp/R0A+jdLxqfvnh3JeGgAAR0AyJFocrAgxR0BfWBBiTdLyR0A+jZFocrAhh3JfGgAAR0AyJJul41P4R0BfV52yLQ5WR0A+jZFocrAhh3JgGgAAR0AyJR64UeuFR0BfVxqfvnbJR0A+jU/fO2Rah3JhGgAAR0AyJaHKwIMSR0BfVqfvnbItR0A+jQ5WBBiTh3JiGgAAR0AyJaHKwIMSR0BfVnbItDlYR0A+jQ5WBBiTh3JjGgAAR0AyJiTdLxqgR0BfVfO2RaHLR0A+jMzMzMzNh3JkGgAAR0AyJul41P30R0BfVO2RaHKwR0A+jItDlYEGh3JlGgAAR0AyJ2yLQ5WBR0BfVHrhR64UR0A+jEm6XjU/h3JmGgAAR0AyJ++dsi0OR0BfU/fO2RaHR0A+jEm6XjU/h3JnGgAAR0AyKHKwIMScR0BfU1P3ztkXR0A+jAgxJul5h3JoGgAAR0AyKPXCj1wpR0BfUtDlYEGJR0A+i8an752yh3JpGgAAR0AyKTdLxqfwR0BfUk3S8an8R0A+i4UeuFHsh3JqGgAAR0AyKbpeNT99R0BfUcrAgxJvR0A+i4UeuFHsh3JrGgAAR0AyKj1wo9cKR0BfUVgQYk3TR0A+i0OVgQYlh3JsGgAAR0AyKn752yLRR0BfUNT987ZGR0A+iwIMSbpeh3JtGgAAR0AyK8an752yR0BfT64UeuFIR0A+isCDEm6Yh3JuGgAAR0AyLAgxJul5R0BfTysCDEm6R0A+in752yLRh3JvGgAAR0AyLItDlYEGR0BfTqfvnbItR0A+ij1wo9cKh3JwGgAAR0AyLQ5WBBiTR0BfTjU/fO2RR0A+ij1wo9cKh3JxGgAAR0AyLZFocrAhR0BfTYEGJN0vR0A+ifvnbItEh3JyGgAAR0AyLhR64UeuR0BfTP3ztkWiR0A+ibpeNT99h3JzGgAAR0AyLtkWhysCR0BfTAgxJul5R0A+iXjU/fO2h3J0GgAAR0AyL1wo9cKPR0BfS4UeuFHsR0A+iTdLxqfwh3J1GgAAR0AyL52yLQ5WR0BfSxJul41QR0A+iPXCj1wph3J2GgAAR0AyMGJN0vGqR0BfSl41P3zuR0A+iLQ5WBBih3J3GgAAR0AyMKPXCj1xR0BfSdsi0OVgR0A+iLQ5WBBih3J4GgAAR0AyMSbpeNT+R0BfSVgQYk3TR0A+iHKwIMSch3J5GgAAR0AyMan752yLR0BfSOVgQYk3R0A+iDEm6XjVh3J6GgAAR0AyMeuFHrhSR0BfSGJN0vGqR0A+iDEm6XjVh3J7GgAAR0AyMm6XjU/fR0BfR++dsi0OR0A+h++dsi0Oh3J8GgAAR0AyMvGp++dtR0BfRztkWhysR0A+h64UeuFIh3J9GgAAR0AyM/fO2RaHR0BfRjU/fO2RR0A+h2yLQ5WBh3J+GgAAR0AyNDlYEGJOR0BfRcKPXCj2R0A+hysCDEm6h3J/GgAAR0AyNLxqfvnbR0BfRT987ZFoR0A+hul41P30h3KAGgAAR0AyNT987ZFoR0BfRJul41P4R0A+hqfvnbIth3KBGgAAR0AyNcKPXCj2R0BfRBiTdLxqR0A+hmZmZmZmh3KCGgAAR0AyNkWhysCDR0BfQ5WBBiTdR0A+hmZmZmZmh3KDGgAAR0AyNsi0OVgQR0BfQyLQ5WBCR0A+hiTdLxqgh3KEGgAAR0AyNwo9cKPXR0BfQp++dsi0R0A+heNT987Zh3KFGgAAR0AyN41P3ztkR0BfQhysCDEnR0A+heNT987Zh3KGGgAAR0AyOJN0vGp/R0BfQPXCj1wpR0A+hWBBiTdMh3KHGgAAR0AyORaHKwIMR0BfQHKwIMScR0A+hR64UeuFh3KIGgAAR0AyOVgQYk3TR0BfQAAAAAAAR0A+hR64UeuFh3KJGgAAR0AyOdsi0OVgR0BfP3ztkWhzR0A+hN0vGp++h3KKGgAAR0AyOl41P3zuR0BfPwo9cKPXR0A+hJul41P4h3KLGgAAR0AyOuFHrhR7R0BfPlYEGJN1R0A+hFocrAgxh3KMGgAAR0AyO6XjU/fPR0BfPU/fO2RaR0A+hBiTdLxqh3KNGgAAR0AyPCj1wo9cR0BfPN0vGp++R0A+g9cKPXCkh3KOGgAAR0AyPKwIMSbpR0BfPFocrAgxR0A+g9cKPXCkh3KPGgAAR0AyPbItDlYER0BfOzMzMzMzR0A+g1P3ztkXh3KQGgAAR0AyPfO2RaHLR0BfOrAgxJumR0A+gxJul41Qh3KRGgAAR0AyPztkWhysR0BfOTdLxqfwR0A+go9cKPXDh3KSGgAAR0AyQAAAAAAAR0BfOIMSbpeNR0A+gk3S8an8h3KTGgAAR0AyQMSbpeNUR0BfN41P3ztkR0A+ggxJul41h3KUGgAAR0AyQo9cKPXDR0BfNWBBiTdMR0A+gUeuFHrhh3KVGgAAR0AyQxJul41QR0BfNO2RaHKwR0A+gQYk3S8bh3KWGgAAR0AyRFocrAgxR0BfM3S8an76R0A+gIMSbpeNh3KXGgAAR0AyReNT987ZR0BfMcrAgxJvR0A+gAAAAAAAh3KYGgAAR0AyRiTdLxqgR0BfMUeuFHrhR0A+f752yLQ5h3KZGgAAR0AyRysCDEm6R0BfMFHrhR64R0A+f3ztkWhzh3KaGgAAR0AyR64UeuFIR0BfL52yLQ5WR0A+fztkWhysh3KbGgAAR0AySPXCj1wpR0BfLiTdLxqgR0A+fnbItDlYh3KcGgAAR0AySn752yLRR0BfLHrhR64UR0A+ffO2RaHLh3KdGgAAR0AySsCDEm6YR0BfK/fO2RaHR0A+fbItDlYEh3KeGgAAR0AyTAgxJul5R0BfKo9cKPXDR0A+fS8an753h3KfGgAAR0AyTMzMzMzNR0BfKdsi0OVgR0A+fO2RaHKwh3KgGgAAR0AyTZFocrAhR0BfKOVgQYk3R0A+fKwIMSbph3KhGgAAR0AyThR64UeuR0BfKGJN0vGqR0A+fGp++dsjh3KiGgAAR0AyTtkWhysCR0BfJ2yLQ5WBR0A+fCj1wo9ch3KjGgAAR0AyT1wo9cKPR0BfJrhR64UfR0A+e+dsi0OWh3KkGgAAR0AyT987ZFodR0BfJjU/fO2RR0A+e6XjU/fPh3KlGgAAR0AyUKPXCj1xR0BfJT987ZFoR0A+e2RaHKwIh3KmGgAAR0AyUSbpeNT+R0BfJLxqfvnbR0A+eyLQ5WBCh3KnGgAAR0AyUWhysCDFR0BfJEm6XjU/R0A+euFHrhR7h3KoGgAAR0AyUm6XjU/fR0BfIxJul41QR0A+ep++dsi0h3KpGgAAR0AyUvGp++dtR0BfIp++dsi0R0A+el41P3zuh3KqGgAAR0AyU3S8an76R0BfIhysCDEnR0A+ehysCDEnh3KrGgAAR0AyU7ZFocrBR0BfIan752yLR0A+ehysCDEnh3KsGgAAR0AyVHrhR64UR0BfIPXCj1wpR0A+edsi0OVgh3KtGgAAR0AyVLxqfvnbR0BfIHKwIMScR0A+eZmZmZmah3KuGgAAR0AyVcKPXCj2R0BfH3ztkWhzR0A+eVgQYk3Th3KvGgAAR0AyVgQYk3S8R0BfHvnbItDlR0A+eRaHKwIMh3KwGgAAR0AyVocrAgxKR0BfHocrAgxKR0A+eNT987ZGh3KxGgAAR0AyVwo9cKPXR0BfHdLxqfvnR0A+eJN0vGp/h3KyGgAAR0AyV41P3ztkR0BfHU/fO2RaR0A+eFHrhR64h3KzGgAAR0AyWBBiTdLyR0BfHMzMzMzNR0A+eFHrhR64h3K0GgAAR0AyWFHrhR64R0BfHFocrAgxR0A+eBBiTdLyh3K1GgAAR0AyWNT987ZGR0BfG9cKPXCkR0A+d87ZFocrh3K2GgAAR0AyWVgQYk3TR0BfGzMzMzMzR0A+d41P3ztkh3K3GgAAR0AyWp++dsi0R0BfGbpeNT99R0A+dwo9cKPXh3K4GgAAR0AyWyLQ5WBCR0BfGTdLxqfwR0A+dwo9cKPXh3K5GgAAR0AyW2RaHKwIR0BfGMSbpeNUR0A+dsi0OVgQh3K6GgAAR0AyXCj1wo9cR0BfGBBiTdLyR0A+docrAgxKh3K7GgAAR0AyXGp++dsjR0BfF41P3ztkR0A+dkWhysCDh3K8GgAAR0AyXO2RaHKwR0BfFwo9cKPXR0A+dgQYk3S8h3K9GgAAR0AyXXCj1wo9R0BfFpeNT987R0A+dgQYk3S8h3K+GgAAR0AyXbItDlYER0BfFhR64UeuR0A+dcKPXCj2h3K/GgAAR0AyXjU/fO2RR0BfFaHKwIMSR0A+dYEGJN0vh3LAGgAAR0AyXztkWhysR0BfFGp++dsjR0A+dT987ZFoh3LBGgAAR0AyX752yLQ5R0BfE+dsi0OWR0A+dP3ztkWih3LCGgAAR0AyYAAAAAAAR0BfE3S8an76R0A+dLxqfvnbh3LDGgAAR0AyYIMSbpeNR0BfEvGp++dtR0A+dLxqfvnbh3LEGgAAR0AyYQYk3S8bR0BfEk3S8an8R0A+dHrhR64Uh3LFGgAAR0AyYYk3S8aoR0BfEcrAgxJvR0A+dDlYEGJOh3LGGgAAR0AyYk3S8an8R0BfENT987ZGR0A+c7ZFocrBh3LHGgAAR0AyYtDlYEGJR0BfEFHrhR64R0A+c7ZFocrBh3LIGgAAR0AyYxJul41QR0BfD987ZFodR0A+c3S8an76h3LJGgAAR0AyY9cKPXCkR0BfDysCDEm6R0A+czMzMzMzh3LKGgAAR0AyZBiTdLxqR0BfDqfvnbItR0A+cvGp++dth3LLGgAAR0AyZJul41P4R0BfDiTdLxqgR0A+cvGp++dth3LMGgAAR0AyZN0vGp++R0BfDbItDlYER0A+crAgxJumh3LNGgAAR0AyZWBBiTdMR0BfDS8an753R0A+cm6XjU/fh3LOGgAAR0AyZeNT987ZR0BfDLxqfvnbR0A+cm6XjU/fh3LPGgAAR0AyZmZmZmZmR0BfDAgxJul5R0A+ci0OVgQZh3LQGgAAR0AyZysCDEm6R0BfCxJul41QR0A+can752yLh3LRGgAAR0AyZ64UeuFIR0BfCo9cKPXDR0A+cWhysCDFh3LSGgAAR0AyaDEm6XjVR0BfChysCDEnR0A+cWhysCDFh3LTGgAAR0AyaLQ5WBBiR0BfCWhysCDFR0A+cSbpeNT+h3LUGgAAR0AyaTdLxqfwR0BfCOVgQYk3R0A+cOVgQYk3h3LVGgAAR0AyaXjU/fO2R0BfCGJN0vGqR0A+cKPXCj1xh3LWGgAAR0AyafvnbItER0BfB++dsi0OR0A+cKPXCj1xh3LXGgAAR0Ayaj1wo9cKR0BfB2yLQ5WBR0A+cGJN0vGqh3LYGgAAR0AyasCDEm6YR0BfBvnbItDlR0A+cCDEm6Xjh3LZGgAAR0Aya8an752yR0BfBcKPXCj2R0A+b987ZFodh3LaGgAAR0AybEm6XjU/R0BfBU/fO2RaR0A+b52yLQ5Wh3LbGgAAR0AybItDlYEGR0BfBMzMzMzNR0A+b1wo9cKPh3LcGgAAR0AybQ5WBBiTR0BfBFocrAgxR0A+bxqfvnbJh3LdGgAAR0AybU/fO2RaR0BfA9cKPXCkR0A+bxqfvnbJh3LeGgAAR0AybhR64UeuR0BfAyLQ5WBCR0A+btkWhysCh3LfGgAAR0AybtkWhysCR0BfAi0OVgQZR0A+blYEGJN1h3LgGgAAR0Ayb1wo9cKPR0BfAan752yLR0A+blYEGJN1h3LhGgAAR0Ayb52yLQ5WR0BfATdLxqfwR0A+bhR64Ueuh3LiGgAAR0AycKPXCj1xR0BfAAAAAAAAR0A+bZFocrAhh3LjGgAAR0AycSbpeNT+R0Be/41P3ztkR0A+bU/fO2Rah3LkGgAAR0AycWhysCDFR0Be/wo9cKPXR0A+bU/fO2Rah3LlGgAAR0AyceuFHrhSR0Be/peNT987R0A+bQ5WBBiTh3LmGgAAR0Aycm6XjU/fR0Be/hR64UeuR0A+bMzMzMzNh3LnGgAAR0AycvGp++dtR0Be/WBBiTdMR0A+bItDlYEGh3LoGgAAR0Ayc7ZFocrBR0Be/Gp++dsjR0A+bEm6XjU/h3LpGgAAR0AydDlYEGJOR0Be++dsi0OWR0A+bAgxJul5h3LqGgAAR0AydHrhR64UR0Be+3S8an76R0A+a8an752yh3LrGgAAR0AydYEGJN0vR0Be+j1wo9cKR0A+a4UeuFHsh3LsGgAAR0AydgQYk3S8R0Be+crAgxJvR0A+a0OVgQYlh3LtGgAAR0AydocrAgxKR0Be+UeuFHrhR0A+awIMSbpeh3LuGgAAR0Aydsi0OVgQR0Be+NT987ZGR0A+awIMSbpeh3LvGgAAR0Ayd0vGp++eR0Be+FHrhR64R0A+asCDEm6Yh3LwGgAAR0AyeJN0vGp/R0Be9qfvnbItR0A+afvnbItEh3LxGgAAR0AyeZmZmZmaR0Be9bItDlYER0A+abpeNT99h3LyGgAAR0Ayedsi0OVgR0Be9S8an753R0A+aXjU/fO2h3LzGgAAR0Ayep++dsi0R0Be9ItDlYEGR0A+aTdLxqfwh3L0GgAAR0Aye2RaHKwIR0Be84UeuFHsR0A+aPXCj1wph3L1GgAAR0AyfCj1wo9cR0Be8o9cKPXDR0A+aLQ5WBBih3L2GgAAR0AyfS8an753R0Be8WhysCDFR0A+aDEm6XjVh3L3GgAAR0AyfbItDlYER0Be8OVgQYk3R0A+Z++dsi0Oh3L4GgAAR0AyfrhR64UfR0Be73ztkWhzR0A+Z2yLQ5WBh3L5GgAAR0Ayf3ztkWhzR0Be7si0OVgQR0A+ZysCDEm6h3L6GgAAR0AygEGJN0vHR0Be7cKPXCj2R0A+Zul41P30h3L7GgAAR0AygMSbpeNUR0Be7U/fO2RaR0A+ZqfvnbIth3L8GgAAR0AyggxJul41R0Be66XjU/fPR0A+ZeNT987Zh3L9GgAAR0Aygo9cKPXDR0Be6yLQ5WBCR0A+ZeNT987Zh3L+GgAAR0Ayg5WBBiTdR0Be6bpeNT99R0A+ZWBBiTdMh3L/GgAAR0AyhFocrAgxR0Be6QYk3S8bR0A+ZR64UeuFh3IAGwAAR0AyhR64UeuFR0Be6BBiTdLyR0A+ZJul41P4h3IBGwAAR0AyhaHKwIMSR0Be541P3ztkR0A+ZFocrAgxh3ICGwAAR0AyhmZmZmZmR0Be5peNT987R0A+ZBiTdLxqh3IDGwAAR0Ayhul41P30R0Be5eNT987ZR0A+Y9cKPXCkh3IEGwAAR0Ayh2yLQ5WBR0Be5WBBiTdMR0A+Y5WBBiTdh3IFGwAAR0AyiDEm6XjVR0Be5Gp++dsjR0A+Y1P3ztkXh3IGGwAAR0AyiPXCj1wpR0Be43S8an76R0A+YtDlYEGJh3IHGwAAR0AyifvnbItER0Be4k3S8an8R0A+Yo9cKPXDh3IIGwAAR0Ayi0OVgQYlR0Be4NT987ZGR0A+YcrAgxJvh3IJGwAAR0Ayi8an752yR0Be4CDEm6XjR0A+YYk3S8aoh3IKGwAAR0AyjItDlYEGR0Be3ysCDEm6R0A+YUeuFHrhh3ILGwAAR0AyjQ5WBBiTR0Be3qfvnbItR0A+YQYk3S8bh3IMGwAAR0AyjZFocrAhR0Be3jU/fO2RR0A+YQYk3S8bh3INGwAAR0AyjdLxqfvnR0Be3cKPXCj2R0A+YMSbpeNUh3IOGwAAR0AyjlYEGJN1R0Be3Q5WBBiTR0A+YIMSbpeNh3IPGwAAR0AyjtkWhysCR0Be3ItDlYEGR0A+YEGJN0vHh3IQGwAAR0Ayj52yLQ5WR0Be25WBBiTdR0A+YAAAAAAAh3IRGwAAR0AykCDEm6XjR0Be2xJul41QR0A+X752yLQ5h3ISGwAAR0AykGJN0vGqR0Be2p++dsi0R0A+X3ztkWhzh3ITGwAAR0AykWhysCDFR0Be2WhysCDFR0A+XztkWhysh3IUGwAAR0AykeuFHrhSR0Be2OVgQYk3R0A+XvnbItDlh3IVGwAAR0Ayki0OVgQZR0Be2HKwIMScR0A+XrhR64Ufh3IWGwAAR0AykrAgxJumR0Be2AAAAAAAR0A+XnbItDlYh3IXGwAAR0AykzMzMzMzR0Be10vGp++eR0A+XjU/fO2Rh3IYGwAAR0Ayk7ZFocrBR0Be1si0OVgQR0A+XjU/fO2Rh3IZGwAAR0AylHrhR64UR0Be1dLxqfvnR0A+XbItDlYEh3IaGwAAR0AylP3ztkWiR0Be1U/fO2RaR0A+XXCj1wo9h3IbGwAAR0AylT987ZFoR0Be1N0vGp++R0A+XXCj1wo9h3IcGwAAR0AylkWhysCDR0Be06XjU/fPR0A+XO2RaHKwh3IdGwAAR0Aylsi0OVgQR0Be0zMzMzMzR0A+XKwIMSbph3IeGwAAR0Aylwo9cKPXR0Be0rAgxJumR0A+XKwIMSbph3IfGwAAR0Ayl41P3ztkR0Be0j1wo9cKR0A+XGp++dsjh3IgGwAAR0AymBBiTdLyR0Be0bpeNT99R0A+XCj1wo9ch3IhGwAAR0AymVgQYk3TR0Be0BBiTdLyR0A+W6XjU/fPh3IiGwAAR0Aymdsi0OVgR0Bez52yLQ5WR0A+W2RaHKwIh3IjGwAAR0AymhysCDEnR0BezxqfvnbJR0A+WyLQ5WBCh3IkGwAAR0Aymp++dsi0R0BeznbItDlYR0A+WuFHrhR7h3IlGwAAR0AymyLQ5WBCR0BezfO2RaHLR0A+WuFHrhR7h3ImGwAAR0Aym6XjU/fPR0BezXCj1wo9R0A+Wp++dsi0h3InGwAAR0Aym+dsi0OWR0BezP3ztkWiR0A+Wl41P3zuh3IoGwAAR0AynGp++dsjR0BezHrhR64UR0A+WhysCDEnh3IpGwAAR0AynKwIMSbpR0BezAgxJul5R0A+WhysCDEnh3IqGwAAR0AynjU/fO2RR0Beyk3S8an8R0A+WVgQYk3Th3IrGwAAR0AynnbItDlYR0Beydsi0OVgR0A+WRaHKwIMh3IsGwAAR0AynvnbItDlR0BeyVgQYk3TR0A+WRaHKwIMh3ItGwAAR0AyoAAAAAAAR0BeyDEm6XjVR0A+WJN0vGp/h3IuGwAAR0AyoMSbpeNUR0BexztkWhysR0A+WFHrhR64h3IvGwAAR0AyoUeuFHrhR0BexrhR64UfR0A+WBBiTdLyh3IwGwAAR0AyoYk3S8aoR0BexkWhysCDR0A+V87ZFocrh3IxGwAAR0Ayoo9cKPXDR0BexQ5WBBiTR0A+V0vGp++eh3IyGwAAR0AyoxJul41QR0BexJul41P4R0A+V0vGp++eh3IzGwAAR0Ayo1P3ztkXR0BexBiTdLxqR0A+Vwo9cKPXh3I0GwAAR0Ayo9cKPXCkR0Bew6XjU/fPR0A+Vsi0OVgQh3I1GwAAR0AypBiTdLxqR0BewyLQ5WBCR0A+VocrAgxKh3I2GwAAR0AypN0vGp++R0Bewm6XjU/fR0A+VkWhysCDh3I3GwAAR0AypaHKwIMSR0BewXjU/fO2R0A+VgQYk3S8h3I4GwAAR0AypeNT987ZR0BewQYk3S8bR0A+VcKPXCj2h3I5GwAAR0AypmZmZmZmR0BewIMSbpeNR0A+VcKPXCj2h3I6GwAAR0Ayp2yLQ5WBR0Bev1wo9cKPR0A+VT987ZFoh3I7GwAAR0Ayp64UeuFIR0BevtkWhysCR0A+VP3ztkWih3I8GwAAR0AyqDEm6XjVR0BevmZmZmZmR0A+VLxqfvnbh3I9GwAAR0AyqLQ5WBBiR0BeveNT987ZR0A+VLxqfvnbh3I+GwAAR0AyqPXCj1wpR0BevXCj1wo9R0A+VHrhR64Uh3I/GwAAR0Ayqn752yLRR0Beu8an752yR0A+U7ZFocrBh3JAGwAAR0AyqsCDEm6YR0Beu0OVgQYlR0A+U7ZFocrBh3JBGwAAR0Ayq0OVgQYlR0BeutDlYEGJR0A+U3S8an76h3JCGwAAR0Ayq4UeuFHsR0Beuk3S8an8R0A+UzMzMzMzh3JDGwAAR0AyrEm6XjU/R0BeuZmZmZmaR0A+UvGp++dth3JEGwAAR0AyrQ5WBBiTR0BeuKPXCj1xR0A+UrAgxJumh3JFGwAAR0AyrU/fO2RaR0BeuDEm6XjVR0A+Um6XjU/fh3JGGwAAR0AyrdLxqfvnR0Bet64UeuFIR0A+Ui0OVgQZh3JHGwAAR0AyrxqfvnbJR0BetgQYk3S8R0A+Uan752yLh3JIGwAAR0Ayr52yLQ5WR0BetYEGJN0vR0A+UWhysCDFh3JJGwAAR0Ayr987ZFodR0BetQ5WBBiTR0A+USbpeNT+h3JKGwAAR0AysGJN0vGqR0BetJul41P4R0A+USbpeNT+h3JLGwAAR0AysOVgQYk3R0Bes+dsi0OWR0A+UOVgQYk3h3JMGwAAR0Aysan752yLR0BesuFHrhR7R0A+UGJN0vGqh3JNGwAAR0Aysm6XjU/fR0BeseuFHrhSR0A+UCDEm6Xjh3JOGwAAR0Ays3S8an76R0BesMSbpeNUR0A+T52yLQ5Wh3JPGwAAR0Ays/fO2RaHR0BesEGJN0vHR0A+T1wo9cKPh3JQGwAAR0AytT987ZFoR0BertkWhysCR0A+TtkWhysCh3JRGwAAR0AytocrAgxKR0BerS8an753R0A+ThR64Ueuh3JSGwAAR0Ayt87ZFocrR0Beq7ZFocrBR0A+TZFocrAhh3JTGwAAR0AyuFHrhR64R0BeqxJul41QR0A+TU/fO2Rah3JUGwAAR0AyuRaHKwIMR0BeqgxJul41R0A+TQ5WBBiTh3JVGwAAR0Ayudsi0OVgR0BeqRaHKwIMR0A+TItDlYEGh3JWGwAAR0Ayu2RaHKwIR0Bep2yLQ5WBR0A+TAgxJul5h3JXGwAAR0AyvGp++dsjR0BepgQYk3S8R0A+S4UeuFHsh3JYGwAAR0AyvS8an753R0BepU/fO2RaR0A+S0OVgQYlh3JZGwAAR0AyvfO2RaHLR0BepFocrAgxR0A+SsCDEm6Yh3JaGwAAR0AyvjU/fO2RR0Beo9cKPXCkR0A+Sn752yLRh3JbGwAAZShHQDK++dsi0OVHQF6i4UeuFHtHQD5KPXCj1wqHclwbAABHQDLAAAAAAABHQF6hul41P31HQD5Jul41P32Hcl0bAABHQDLCj1wo9cNHQF6el41P3ztHQD5IcrAgxJyHcl4bAABHQDLDEm6XjVBHQF6eJN0vGqBHQD5IcrAgxJyHcl8bAABHQDLD1wo9cKRHQF6dLxqfvndHQD5H752yLQ6HcmAbAABHQDLFocrAgxJHQF6bAgxJul5HQD5HKwIMSbqHcmEbAABHQDLF41P3ztlHQF6aj1wo9cNHQD5G6XjU/fSHcmIbAABHQDLGZmZmZmZHQF6aDEm6XjVHQD5G6XjU/fSHcmMbAABHQDLHbItDlYFHQF6Y5WBBiTdHQD5GZmZmZmaHcmQbAABHQDLHrhR64UhHQF6YYk3S8apHQD5GJN0vGqCHcmUbAABHQDLIMSbpeNVHQF6X752yLQ5HQD5F41P3ztmHcmYbAABHQDLIcrAgxJxHQF6XbItDlYFHQD5F41P3ztmHcmcbAABHQDLKPXCj1wpHQF6VT987ZFpHQD5E3S8an76HcmgbAABHQDLKwIMSbphHQF6UzMzMzM1HQD5E3S8an76HcmkbAABHQDLLAgxJul5HQF6UWhysCDFHQD5Em6XjU/iHcmobAABHQDLMCDEm6XlHQF6TItDlYEJHQD5EGJN0vGqHcmsbAABHQDLMi0OVgQZHQF6SsCDEm6ZHQD5D1wo9cKSHcmwbAABHQDLMzMzMzM1HQF6SLQ5WBBlHQD5D1wo9cKSHcm0bAABHQDLNT987ZFpHQF6Rul41P31HQD5DlYEGJN2Hcm4bAABHQDLNkWhysCFHQF6RN0vGp/BHQD5DU/fO2ReHcm8bAABHQDLPGp++dslHQF6PjU/fO2RHQD5C0OVgQYmHcnAbAABHQDLPXCj1wo9HQF6PGp++dslHQD5Cj1wo9cOHcnEbAABHQDLP3ztkWh1HQF6Ol41P3ztHQD5CTdLxqfyHcnIbAABHQDLRqfvnbItHQF6MeuFHrhRHQD5BiTdLxqiHcnMbAABHQDLR64UeuFJHQF6L987ZFodHQD5BR64UeuGHcnQbAABHQDLSbpeNT99HQF6LhR64UexHQD5BBiTdLxuHcnUbAABHQDLTtkWhysFHQF6J2yLQ5WBHQD5AgxJul42HcnYbAABHQDLUOVgQYk5HQF6JWBBiTdNHQD5AQYk3S8eHcncbAABHQDLUeuFHrhRHQF6I5WBBiTdHQD5AAAAAAACHcngbAABHQDLU/fO2RaJHQF6IYk3S8apHQD5AAAAAAACHcnkbAABHQDLWRaHKwINHQF6GuFHrhR9HQD4/O2RaHKyHcnobAABHQDLWyLQ5WBBHQF6GRaHKwINHQD4++dsi0OWHcnsbAABHQDLXCj1wo9dHQF6F0vGp++dHQD4++dsi0OWHcnwbAABHQDLYUeuFHrhHQF6EGJN0vGpHQD4+NT987ZGHcn0bAABHQDLY1P3ztkZHQF6DpeNT989HQD4987ZFocuHcn4bAABHQDLZFocrAgxHQF6DMzMzMzNHQD4987ZFocuHcn8bAABHQDLZmZmZmZpHQF6CsCDEm6ZHQD49si0OVgSHcoAbAABHQDLa4UeuFHtHQF6BBiTdLxtHQD487ZFocrCHcoEbAABHQDLbZFocrAhHQF6Ak3S8an9HQD487ZFocrCHcoIbAABHQDLbpeNT989HQF6AEGJN0vJHQD48rAgxJumHcoMbAABHQDLcKPXCj1xHQF5/nbItDlZHQD48an752yOHcoQbAABHQDLdcKPXCj1HQF5987ZFoctHQD4752yLQ5aHcoUbAABHQDLd87ZFoctHQF59cKPXCj1HQD47peNT98+HcoYbAABHQDLeNT987ZFHQF58/fO2RaJHQD47ZFocrAiHcocbAABHQDLfvnbItDlHQF57U/fO2RdHQD464UeuFHuHcogbAABHQDLgAAAAAABHQF560OVgQYlHQD46n752yLSHcokbAABHQDLggxJul41HQF56XjU/fO5HQD46XjU/fO6HcoobAABHQDLgxJul41RHQF552yLQ5WBHQD46HKwIMSeHcosbAABHQDLiTdLxqfxHQF54MSbpeNVHQD45mZmZmZqHcowbAABHQDLij1wo9cNHQF53vnbItDlHQD45WBBiTdOHco0bAABHQDLjEm6XjVBHQF53O2RaHKxHQD45FocrAgyHco4bAABHQDLkWhysCDFHQF51kWhysCFHQD44k3S8an+Hco8bAABHQDLkm6XjU/hHQF51HrhR64VHQD44UeuFHriHcpAbAABHQDLlHrhR64VHQF50rAgxJulHQD44EGJN0vKHcpEbAABHQDLlYEGJN0xHQF50KPXCj1xHQD44EGJN0vKHcpIbAABHQDLm6XjU/fRHQF5yfvnbItFHQD43S8an756HcpMbAABHQDLnrhR64UhHQF5xiTdLxqhHQD43Cj1wo9eHcpQbAABHQDLn752yLQ5HQF5xFocrAgxHQD42yLQ5WBCHcpUbAABHQDLpeNT987ZHQF5vbItDlYFHQD42BBiTdLyHcpYbAABHQDLqPXCj1wpHQF5udsi0OVhHQD41wo9cKPaHcpcbAABlVQZhY3RpdmVymBsAAEsAdUsBfXKZGwAAKEsAXXKaGwAAKEfABQAAAAAAAEdAWmcKPXCj10dARkm6XjU/fYdymxsAAEfABKPXCj1wpEdAWmfO2RaHK0dARkrAgxJumIdynBsAAEfABBBiTdLxqkdAWmj1wo9cKUdARkxqfvnbI4dynRsAAEfAA8CDEm6XjUdAWmmZmZmZmkdARk1P3ztkWodynhsAAEfAA2RaHKwIMUdAWmpeNT987kdARk5WBBiTdYdynxsAAEfAAxR64UeuFEdAWmsCDEm6XkdARk8an752yYdyoBsAAEfAArhR64UeuEdAWmu2RaHKwUdARlAgxJul44dyoRsAAEfAAoMSbpeNUEdAWmwo9cKPXEdARlDEm6XjVIdyohsAAEfAAibpeNT99EdAWmztkWhysEdARlHKwIMSb4dyoxsAAEfAAgxJul41P0dAWm0euFHrhUdARlIMSbpeNYdypBsAAEfAAdcKPXCj10dAWm2RaHKwIUdARlKwIMSbpodypRsAAEfAAXrhR64Ue0dAWm5WBBiTdUdARlO2RaHKwYdyphsAAEfAAUWhysCDEkdAWm64UeuFH0dARlQ5WBBiTodypxsAAEfAASsCDEm6XkdAWm752yLQ5UdARlR64UeuFIdyqBsAAEfAAOl41P3ztkdAWm987ZFoc0dARlU/fO2RaIdyqRsAAEfAAM7ZFocrAkdAWm++dsi0OUdARlWBBiTdL4dyqhsAAEfAAJmZmZmZmkdAWnAgxJul40dARlYk3S8aoIdyqxsAAEfAAD1wo9cKPUdAWnDlYEGJN0dARlcrAgxJuodyrBsAAEfAACLQ5WBBiUdAWnEm6XjU/kdARldsi0OVgYdyrRsAAEfAAAgxJul41UdAWnFYEGJN00dARleuFHrhSIdyrhsAAEe//9si0OVgQkdAWnGJN0vGqEdARlfvnbItDodyrxsAAEe//yLQ5WBBiUdAWnJN0vGp/EdARlj1wo9cKYdysBsAAEe//u2RaHKwIUdAWnKPXCj1w0dARlk3S8an8IdysRsAAEe//rhR64UeuEdAWnLAgxJumEdARlmZmZmZmodyshsAAEe//gAAAAAAAEdAWnOFHrhR7EdARlp++dsi0YdysxsAAEe//crAgxJumEdAWnO2RaHKwUdARlrhR64Ue4dytBsAAEe//ZWBBiTdL0dAWnP3ztkWh0dARlsi0OVgQodytRsAAEe//WRaHKwIMUdAWnQo9cKPXEdARltkWhysCIdythsAAEe//KwIMSbpeUdAWnTtkWhysEdARlxqfvnbI4dytxsAAEe//HbItDlYEEdAWnUvGp++d0dARlysCDEm6YdyuBsAAEe//EGJN0vGqEdAWnVgQYk3TEdARlztkWhysIdyuRsAAEe//AxJul41P0dAWnWRaHKwIUdARl1P3ztkWodyuhsAAEe/+1P3ztkWh0dAWnZWBBiTdUdARl41P3ztkYdyuxsAAEe/+x64UeuFH0dAWnaXjU/fO0dARl6XjU/fO4dyvBsAAEe/+ul41P3ztkdAWnbItDlYEEdARl7ZFocrAodyvRsAAEe/+jU/fO2RaEdAWneNT987ZEdARl/fO2RaHYdyvhsAAEe/+gAAAAAAAEdAWnfO2RaHK0dARmAgxJul44dyvxsAAEe/+crAgxJumEdAWngAAAAAAEdARmBiTdLxqodywBsAAEe/+ZWBBiTdL0dAWnhBiTdLx0dARmCj1wo9cYdywRsAAEe/+N0vGp++d0dAWnkGJN0vG0dARmGp++dsi4dywhsAAEe/+KfvnbItDkdAWnk3S8an8EdARmHrhR64UodywxsAAEe/+HbItDlYEEdAWnlocrAgxUdARmItDlYEGYdyxBsAAEe/94k3S8an8EdAWnpul41P30dARmN0vGp++odyxRsAAEe/91P3ztkWh0dAWnqfvnbItEdARmPXCj1wpIdyxhsAAEe/9x64UeuFH0dAWnrhR64Ue0dARmQYk3S8aodyxxsAAEe/9mp++dsi0UdAWnul41P3z0dARmT987ZFoodyyBsAAEe/9jU/fO2RaEdAWnvXCj1wpEdARmVgQYk3TIdyyRsAAEe/9gAAAAAAAEdAWnwYk3S8akdARmWhysCDEodyyhsAAEe/9RaHKwIMSkdAWn0euFHrhUdARmbpeNT99IdyyxsAAEe/9OFHrhR64UdAWn1P3ztkWkdARmcrAgxJuodyzBsAAEe/9KwIMSbpeUdAWn2BBiTdL0dARmdsi0OVgYdyzRsAAEe/88KPXCj1w0dAWn6HKwIMSkdARmi0OVgQYodyzhsAAEe/841P3ztkWkdAWn7ItDlYEEdARmj1wo9cKYdyzxsAAEe/81gQYk3S8kdAWn752yLQ5UdARmk3S8an8Idy0BsAAEe/8qPXCj1wpEdAWn++dsi0OUdARmo9cKPXCody0RsAAEe/8m6XjU/fO0dAWoAAAAAAAEdARmp++dsi0Ydy0hsAAEe/8jlYEGJN00dAWoAxJul41UdARmrAgxJumIdy0xsAAEe/8U/fO2RaHUdAWoE3S8an8EdARmwIMSbpeYdy1BsAAEe/8RqfvnbItEdAWoF41P3ztkdARmxJul41P4dy1RsAAEe/8Ol41P3ztkdAWoGp++dsi0dARmyLQ5WBBody1hsAAEe/8LAgxJul40dAWoHrhR64UkdARmztkWhysIdy1xsAAEe/7/fO2RaHK0dAWoKwIMSbpkdARm3S8an754dy2BsAAEe/75WBBiTdL0dAWoLhR64Ue0dARm4UeuFHrody2RsAAEe/7bpeNT987kdAWoPnbItDlkdARm9cKPXCj4dy2hsAAEe/7O2RaHKwIUdAWoRaHKwIMUdARm/fO2RaHYdy2xsAAEe/7IMSbpeNUEdAWoSbpeNT+EdARnBBiTdLx4dy3BsAAEe/6xqfvnbItEdAWoVgQYk3TEdARnEm6XjU/ody3RsAAEe/6dsi0OVgQkdAWoYUeuFHrkdARnIMSbpeNYdy3hsAAEe/56XjU/fO2UdAWodLxqfvnkdARnOVgQYk3Ydy3xsAAEe/5j1wo9cKPUdAWoggxJul40dARnR64UeuFIdy4BsAAEe/5QYk3S8aoEdAWojEm6XjVEdARnVgQYk3TIdy4RsAAEe/45WBBiTdL0dAWomZmZmZmkdARnZFocrAg4dy4hsAAEe/4l41P3ztkUdAWopN0vGp/EdARncKPXCj14dy4xsAAEe/4WBBiTdLx0dAWorQ5WBBiUdARnfO2RaHK4dy5BsAAEe/4PXCj1wo9kdAWosSbpeNUEdARngQYk3S8ody5RsAAEe/4Cj1wo9cKUdAWouFHrhR7EdARniTdLxqf4dy5hsAAEe/3YEGJN0vG0dAWoxaHKwIMUdARnmZmZmZmody5xsAAEe/2xJul41P30dAWoz987ZFokdARnpeNT987ody6BsAAEe/2EGJN0vGqEdAWo3S8an750dARntDlYEGJYdy6RsAAEe/1qfvnbItDkdAWo5FocrAg0dARnvnbItDlody6hsAAEe/09cKPXCj10dAWo8an752yUdARnzMzMzMzYdy6xsAAEe/0wIMSbpeNUdAWo9LxqfvnkdARn0OVgQYk4dy7BsAAEe/0WhysCDEnEdAWo/O2RaHK0dARn2RaHKwIYdy7RsAAEe/zS8an752yUdAWpCTdLxqf0dARn6XjU/fO4dy7hsAAEe/y6XjU/fO2UdAWpDU/fO2RkdARn7ZFocrAody7xsAAEe/yfvnbItDlkdAWpEGJN0vG0dARn8an752yYdy8BsAAEe/yFHrhR64UkdAWpFHrhR64UdARn9cKPXCj4dy8RsAAEe/wtDlYEGJN0dAWpIcrAgxJ0dARoBBiTdLx4dy8hsAAEe/wSbpeNT99EdAWpJN0vGp/EdARoCDEm6XjYdy8xsAAEe/vvnbItDlYEdAWpKPXCj1w0dARoDlYEGJN4dy9BsAAEe/s/fO2RaHK0dAWpNkWhysCEdARoHKwIMSb4dy9RsAAEe/sKPXCj1wpEdAWpOVgQYk3UdARoIMSbpeNYdy9hsAAEe/qyLQ5WBBiUdAWpPXCj1wpEdARoJN0vGp/Idy9xsAAEe/pHrhR64Ue0dAWpQYk3S8akdARoKPXCj1w4dy+BsAAEc/cGJN0vGp/EdAWpTdLxqfvkdARoN0vGp++ody+RsAAEc/kGJN0vGp/EdAWpUeuFHrhUdARoPXCj1wpIdy+hsAAEc/nbItDlYEGUdAWpVgQYk3TEdARoQYk3S8aody+xsAAEc/srAgxJul40dAWpYk3S8aoEdARoT987ZFoody/BsAAEc/tcKPXCj1w0dAWpZmZmZmZkdARoU/fO2RaIdy/RsAAEc/uRaHKwIMSkdAWpan752yLUdARoWBBiTdL4dy/hsAAEc/vCj1wo9cKUdAWpbZFocrAkdARoXCj1wo9ody/xsAAEc/w7ZFocrAg0dAWpeuFHrhSEdARoan752yLYdyABwAAEc/xT987ZFoc0dAWpfvnbItDkdARobpeNT99IdyARwAAEc/xul41P3ztkdAWpggxJul40dARodLxqfvnodyAhwAAEc/yHKwIMSbpkdAWphiTdLxqkdARoeNT987ZIdyAxwAAEc/zhR64UeuFEdAWpk3S8an8EdARohysCDEnIdyBBwAAEc/z52yLQ5WBEdAWpl41P3ztkdARoi0OVgQYodyBRwAAEc/0KPXCj1wpEdAWpmp++dsi0dARoj1wo9cKYdyBhwAAEc/03S8an7520dAWpp++dsi0UdARonbItDlYIdyBxwAAEc/1DlYEGJN00dAWprAgxJumEdARoocrAgxJ4dyCBwAAEc/1P3ztkWhy0dAWpsCDEm6XkdARopeNT987odyCRwAAEc/1dLxqfvnbUdAWpszMzMzM0dARoqfvnbItIdyChwAAEc/2JN0vGp++kdAWpwIMSbpeUdARoul41P3z4dyCxwAAEc/2WhysCDEnEdAWpxJul41P0dARovnbItDlodyDBwAAEc/2i0OVgQYk0dAWpyLQ5WBBkdARowo9cKPXIdyDRwAAEc/3cKPXCj1w0dAWp2RaHKwIUdARo1P3ztkWodyDhwAAEc/3peNT987ZEdAWp3S8an750dARo2RaHKwIYdyDxwAAEc/31wo9cKPXEdAWp4UeuFHrkdARo3S8an754dyEBwAAEc/4RaHKwIMSkdAWp7peNT99EdARo64UeuFH4dyERwAAEc/4XjU/fO2RkdAWp8an752yUdARo752yLQ5YdyEhwAAEc/4dsi0OVgQkdAWp9cKPXCj0dARo87ZFocrIdyExwAAEc/4kWhysCDEkdAWp+dsi0OVkdARo987ZFoc4dyFBwAAEc/4rAgxJul40dAWp/fO2RaHUdARo++dsi0OYdyFRwAAEc/46XjU/fO2UdAWqBysCDEnEdARpBiTdLxqodyFhwAAEc/5BBiTdLxqkdAWqC0OVgQYkdARpCj1wo9cYdyFxwAAEc/5HKwIMSbpkdAWqDlYEGJN0dARpDlYEGJN4dyGBwAAEc/5j1wo9cKPUdAWqH752yLREdARpItDlYEGYdyGRwAAEc/5p++dsi0OUdAWqI9cKPXCkdARpJul41P34dyGhwAAEc/5wIMSbpeNUdAWqJ++dsi0UdARpKwIMSbpodyGxwAAEc/52yLQ5WBBkdAWqLAgxJumEdARpLxqfvnbYdyHBwAAEc/6Gp++dsi0UdAWqNT987ZF0dARpOVgQYk3YdyHRwAAEc/6MzMzMzMzUdAWqOFHrhR7EdARpPXCj1wpIdyHhwAAEc/6S8an752yUdAWqPGp++dskdARpQYk3S8aodyHxwAAEc/6vnbItDlYEdAWqTdLxqfvkdARpU/fO2RaIdyIBwAAEc/68an752yLUdAWqVgQYk3TEdARpXCj1wo9odyIRwAAEc/7Cj1wo9cKUdAWqWhysCDEkdARpYEGJN0vIdyIhwAAEc/7sCDEm6XjUdAWqcrAgxJukdARpeuFHrhSIdyIxwAAEc/77ZFocrAg0dAWqfO2RaHK0dARphR64UeuIdyJBwAAEc/8EGJN0vGqEdAWqhBiTdLx0dARpjU/fO2RodyJRwAAEc/8HKwIMSbpkdAWqiDEm6XjUdARpkWhysCDIdyJhwAAEc/8NkWhysCDEdAWqkGJN0vG0dARpmZmZmZmodyJxwAAEc/8SLQ5WBBiUdAWqlYEGJN00dARpn752yLRIdyKBwAAEc/8bpeNT987kdAWqocrAgxJ0dARprAgxJumIdyKRwAAEc/8mp++dsi0UdAWqrxqfvnbUdARpul41P3z4dyKhwAAEc/8tDlYEGJN0dAWqtkWhysCEdARpwo9cKPXIdyKxwAAEc/8zdLxqfvnkdAWqvnbItDlkdARpysCDEm6YdyLBwAAEc/84EGJN0vG0dAWqxJul41P0dARp0OVgQYk4dyLRwAAEc/9BiTdLxqf0dAWqz987ZFokdARp3S8an754dyLhwAAEc/9Mi0OVgQYkdAWq3jU/fO2UdARp64UeuFH4dyLxwAAEc/9Vwo9cKPXEdAWq6XjU/fO0dARp9cKPXCj4dyMBwAAEc/9ZFocrAgxUdAWq7ZFocrAkdARp++dsi0OYdyMRwAAEc/9gxJul41P0dAWq9si0OVgUdARqBBiTdLx4dyMhwAAEc/9nKwIMSbpkdAWq/vnbItDkdARqDEm6XjVIdyMxwAAEc/9tkWhysCDEdAWrBysCDEnEdARqFHrhR64YdyNBwAAEc/9x64UeuFH0dAWrDU/fO2RkdARqGp++dsi4dyNRwAAEc/91P3ztkWh0dAWrEGJN0vG0dARqHrhR64UodyNhwAAEc/94UeuFHrhUdAWrFHrhR64UdARqItDlYEGYdyNxwAAEc/97ZFocrAg0dAWrGJN0vGqEdARqJul41P34dyOBwAAEc/+GZmZmZmZkdAWrJul41P30dARqNT987ZF4dyORwAAEc/+JeNT987ZEdAWrKfvnbItEdARqOVgQYk3YdyOhwAAEc/+Mi0OVgQYkdAWrLhR64Ue0dARqPXCj1wpIdyOxwAAEc/+S8an752yUdAWrNkWhysCEdARqRaHKwIMYdyPBwAAEc/+XjU/fO2RkdAWrPGp++dskdARqS8an7524dyPRwAAEc/+an752yLREdAWrQIMSbpeUdARqT987ZFoodyPhwAAEc/+dsi0OVgQkdAWrRJul41P0dARqUeuFHrhYdyPxwAAEc/+gxJul41P0dAWrR64UeuFEdARqVgQYk3TIdyQBwAAEc/+rxqfvnbI0dAWrVgQYk3TEdARqZFocrAg4dyQRwAAEc/+u2RaHKwIUdAWrWhysCDEkdARqaHKwIMSodyQhwAAEc/+x64UeuFH0dAWrXjU/fO2UdARqbItDlYEIdyQxwAAEc/+0/fO2RaHUdAWrYk3S8aoEdARqcKPXCj14dyRBwAAEc/+4UeuFHrhUdAWrZmZmZmZkdARqdLxqfvnodyRRwAAEc//AAAAAAAAEdAWrb52yLQ5UdARqfvnbItDodyRhwAAEc//DEm6XjU/kdAWrc7ZFocrEdARqgxJul41YdyRxwAAEc//GJN0vGp/EdAWrd87ZFoc0dARqhysCDEnIdySBwAAEc//Mi0OVgQYkdAWrgAAAAAAEdARqj1wo9cKYdySRwAAEc//RJul41P30dAWrhiTdLxqkdARqk3S8an8IdyShwAAEc//UOVgQYk3UdAWrij1wo9cUdARql41P3ztodySxwAAEc//XS8an7520dAWrjlYEGJN0dARqm6XjU/fYdyTBwAAEc//aXjU/fO2UdAWrkWhysCDEdARqn752yLRIdyTRwAAEc//dsi0OVgQkdAWrlocrAgxUdARqo9cKPXCodyThwAAEc//lYEGJN0vEdAWrn752yLREdARqrhR64Ue4dyTxwAAEc//ocrAgxJukdAWro9cKPXCkdARqsi0OVgQodyUBwAAEc//rhR64UeuEdAWrp++dsi0UdARqtkWhysCIdyURwAAEc//x64UeuFH0dAWrsCDEm6XkdARqvnbItDlodyUhwAAEc//5WBBiTdL0dAWrul41P3z0dARqxqfvnbI4dyUxwAAEc//8rAgxJumEdAWrvnbItDlkdARqysCDEm6YdyVBwAAEc///vnbItDlkdAWrwYk3S8akdARqztkWhysIdyVRwAAEdAAFP3ztkWh0dAWrz987ZFokdARq3S8an754dyVhwAAEdAAGyLQ5WBBkdAWr0/fO2RaEdARq4UeuFHrodyVxwAAEdAAIUeuFHrhUdAWr2BBiTdL0dARq5WBBiTdYdyWBwAAEdAAJ2yLQ5WBEdAWr3Cj1wo9kdARq52yLQ5WIdyWRwAAEdAALhR64UeuEdAWr4EGJN0vEdARq64UeuFH4dyWhwAAEdAANDlYEGJN0dAWr5FocrAg0dARq752yLQ5YdyWxwAAEdAAPXCj1wo9kdAWr6n752yLUdARq9cKPXCj4dyXBwAAEdAAQ5WBBiTdUdAWr7peNT99EdARq+dsi0OVodyXRwAAEdAASbpeNT99EdAWr8rAgxJukdARq/fO2RaHYdyXhwAAEdAAXztkWhysEdAWsAQYk3S8kdARrDEm6XjVIdyXxwAAEdAAZWBBiTdL0dAWsBR64UeuEdARrDlYEGJN4dyYBwAAEdAAa4UeuFHrkdAWsCTdLxqf0dARrEm6XjU/odyYRwAAEdAAcan752yLUdAWsDEm6XjVEdARrFocrAgxYdyYhwAAEdAAeFHrhR64UdAWsEWhysCDEdARrGp++dsi4dyYxwAAEdAAhysCDEm6UdAWsGp++dsi0dARrJN0vGp/IdyZBwAAEdAAjU/fO2RaEdAWsHrhR64UkdARrKPXCj1w4dyZRwAAEdAAk3S8an750dAWsItDlYEGUdARrLQ5WBBiYdyZhwAAEdAAoEGJN0vG0dAWsKwIMSbpkdARrMzMzMzM4dyZxwAAEdAApmZmZmZmkdAWsMCDEm6XkdARrN0vGp++odyaBwAAEdAArxqfvnbI0dAWsNT987ZF0dARrPXCj1wpIdyaRwAAEdAAtT987ZFokdAWsOVgQYk3UdARrQYk3S8aodyahwAAEdAAu2RaHKwIUdAWsPXCj1wpEdARrRaHKwIMYdyaxwAAEdAAwgxJul41UdAWsQYk3S8akdARrSbpeNT+IdybBwAAEdAA0OVgQYk3UdAWsS8an7520dARrUeuFHrhYdybRwAAEdAA1wo9cKPXEdAWsT987ZFokdARrVgQYk3TIdybhwAAEdAA3S8an7520dAWsU/fO2RaEdARrWhysCDEodybxwAAEdAA6fvnbItDkdAWsXCj1wo9kdARrYk3S8aoIdycBwAAEdAA8CDEm6XjUdAWsYEGJN0vEdARrZmZmZmZodycRwAAEdAA+NT987ZF0dAWsZmZmZmZkdARran752yLYdychwAAEdAA/vnbItDlkdAWsan752yLUdARrbpeNT99IdycxwAAEdABBR64UeuFEdAWsbpeNT99EdARrcrAgxJuodydBwAAEdABC8an752yUdAWscrAgxJukdARrdsi0OVgYdydRwAAEdABGBBiTdLx0dAWseuFHrhSEdARrfvnbItDodydhwAAEdABIMSbpeNUEdAWsgQYk3S8kdARrgxJul41YdydxwAAEdABM7ZFocrAkdAWsjU/fO2RkdARrj1wo9cKYdyeBwAAEdABQo9cKPXCkdAWsl41P3ztkdARrmZmZmZmodyeRwAAEdABTtkWhysCEdAWsn752yLREdARrn752yLRIdyehwAAEdABWyLQ5WBBkdAWsqPXCj1w0dARrp++dsi0YdyexwAAEdABYcrAgxJukdAWsrQ5WBBiUdARrrAgxJumIdyfBwAAEdABan752yLREdAWsszMzMzM0dARrsi0OVgQodyfRwAAEdABdsi0OVgQkdAWsu2RaHKwUdARruFHrhR7IdyfhwAAEdABfO2RaHKwUdAWsv3ztkWh0dARrvGp++dsodyfxwAAEdABiTdLxqfvkdAWsx64UeuFEdARrxJul41P4dygBwAAEdABkm6XjU/fUdAWszdLxqfvkdARrysCDEm6YdygRwAAEdABpN0vGp++kdAWs2hysCDEkdARr1P3ztkWodyghwAAEdABqwIMSbpeUdAWs3jU/fO2UdARr2RaHKwIYdygxwAAEdABwAAAAAAAEdAWs7ItDlYEEdARr5WBBiTdYdyhBwAAEdABxiTdLxqf0dAWs8an752yUdARr6XjU/fO4dyhRwAAEdAB0m6XjU/fUdAWs+dsi0OVkdARr8an752yYdyhhwAAEdAB26XjU/fO0dAWtAAAAAAAEdARr9cKPXCj4dyhxwAAEdAB7ZFocrAg0dAWtDEm6XjVEdARsAgxJul44dyiBwAAEdAB9DlYEGJN0dAWtEGJN0vG0dARsBiTdLxqodyiRwAAEdACAxJul41P0dAWtGp++dsi0dARsDlYEGJN4dyihwAAEdACD1wo9cKPUdAWtItDlYEGUdARsFocrAgxYdyixwAAEdACG6XjU/fO0dAWtLAgxJumEdARsHKwIMSb4dyjBwAAEdACJFocrAgxUdAWtMi0OVgQkdARsItDlYEGYdyjRwAAEdACKn752yLREdAWtNkWhysCEdARsJul41P34dyjhwAAEdACNsi0OVgQkdAWtPnbItDlkdARsLQ5WBBiYdyjxwAAEdACS8an752yUdAWtTMzMzMzUdARsO2RaHKwYdykBwAAEdACUeuFHrhSEdAWtUeuFHrhUdARsP3ztkWh4dykRwAAEdACWBBiTdLx0dAWtVgQYk3TEdARsQYk3S8aodykhwAAEdACXjU/fO2RkdAWtWhysCDEkdARsRaHKwIMYdykxwAAEdACZFocrAgxUdAWtXjU/fO2UdARsSbpeNT+IdylBwAAEdACczMzMzMzUdAWtaHKwIMSkdARsUeuFHrhYdylRwAAEdACeVgQYk3TEdAWtbItDlYEEdARsVgQYk3TIdylhwAAEdACf3ztkWhy0dAWtcKPXCj10dARsWhysCDEodylxwAAEdACi8an752yUdAWtedsi0OVkdARsYk3S8aoIdymBwAAEdAClHrhR64UkdAWtgAAAAAAEdARsZmZmZmZodymRwAAEdACmp++dsi0UdAWthBiTdLx0dARsan752yLYdymhwAAEdACoMSbpeNUEdAWtiDEm6XjUdARsbpeNT99IdymxwAAEdACpmZmZmZmkdAWtjEm6XjVEdARscrAgxJuodynBwAAEdACrQ5WBBiTkdAWtkWhysCDEdARsdLxqfvnodynRwAAEdACu+dsi0OVkdAWtm6XjU/fUdARsfvnbItDodynhwAAEdACwYk3S8aoEdAWtn752yLREdARsgxJul41YdynxwAAEdACx64UeuFH0dAWto9cKPXCkdARshR64UeuIdyoBwAAEdAC0/fO2RaHUdAWtrQ5WBBiUdARsjU/fO2RodyoRwAAEdAC3KwIMSbpkdAWtszMzMzM0dARskWhysCDIdyohwAAEdAC4tDlYEGJUdAWtt0vGp++kdARslYEGJN04dyoxwAAEdAC6PXCj1wpEdAWtu2RaHKwUdARsmZmZmZmodypBwAAEdAC7xqfvnbI0dAWtv3ztkWh0dARsnbItDlYIdypRwAAEdAC9T987ZFokdAWtw5WBBiTkdARsocrAgxJ4dyphwAAEdADBBiTdLxqkdAWtztkWhysEdARsqfvnbItIdypxwAAEdADCj1wo9cKUdAWt0vGp++d0dARsrhR64Ue4dyqBwAAEdADD987ZFoc0dAWt1wo9cKPUdARssCDEm6XodyqRwAAEdADFgQYk3S8kdAWt2yLQ5WBEdARstDlYEGJYdyqhwAAEdADHCj1wo9cUdAWt4EGJN0vEdARsuFHrhR7IdyqxwAAEdADIk3S8an8EdAWt5FocrAg0dARsvGp++dsodyrBwAAEdADKwIMSbpeUdAWt6n752yLUdARswIMSbpeYdyrRwAAEdADMSbpeNT+EdAWt7peNT99EdARsxJul41P4dyrhwAAEdADN0vGp++d0dAWt8rAgxJukdARsyLQ5WBBodyrxwAAEdADQxJul41P0dAWt++dsi0OUdARsztkWhysIdysBwAAEdADTEm6XjU/kdAWuAgxJul40dARs1P3ztkWodysRwAAEdADUeuFHrhSEdAWuBiTdLxqkdARs2RaHKwIYdyshwAAEdADWBBiTdLx0dAWuCj1wo9cUdARs2yLQ5WBIdysxwAAEdADXjU/fO2RkdAWuD1wo9cKUdARs3ztkWhy4dytBwAAEdADZFocrAgxUdAWuE3S8an8EdARs41P3ztkYdytRwAAEdADan752yLREdAWuF41P3ztkdARs52yLQ5WIdythwAAEdADczMzMzMzUdAWuHbItDlYEdARs64UeuFH4dytxwAAEdADeNT987ZF0dAWuIcrAgxJ0dARs752yLQ5YdyuBwAAEdADfvnbItDlkdAWuJul41P30dARs87ZFocrIdyuRwAAEdADi0OVgQYk0dAWuLxqfvnbUdARs+dsi0OVodyuhwAAEdADkWhysCDEkdAWuNDlYEGJUdARs/fO2RaHYdyuxwAAEdADmhysCDEnEdAWuOl41P3z0dARtAgxJul44dyvBwAAEdADn752yLQ5UdAWuPnbItDlkdARtBiTdLxqodyvRwAAEdADpeNT987ZEdAWuQo9cKPXEdARtCj1wo9cYdyvhwAAEdADrAgxJul40dAWuRqfvnbI0dARtDlYEGJN4dyvxwAAEdADuuFHrhR7EdAWuUeuFHrhUdARtFocrAgxYdywBwAAEdADwIMSbpeNUdAWuVgQYk3TEdARtGp++dsi4dywRwAAEdADxqfvnbItEdAWuWhysCDEkdARtHKwIMSb4dywhwAAEdADzMzMzMzM0dAWuXztkWhy0dARtIMSbpeNYdywxwAAEdAD0vGp++dskdAWuY1P3ztkUdARtJN0vGp/IdyxBwAAEdAD2RaHKwIMUdAWuZ2yLQ5WEdARtKPXCj1w4dyxRwAAEdAD4UeuFHrhUdAWubZFocrAkdARtLQ5WBBiYdyxhwAAEdAD52yLQ5WBEdAWucrAgxJukdARtMSbpeNUIdyxxwAAEdAD7ZFocrAg0dAWudsi0OVgUdARtMzMzMzM4dyyBwAAEdAEAAAAAAAAEdAWuhBiTdLx0dARtP3ztkWh4dyyRwAAEdAEBBiTdLxqkdAWuij1wo9cUdARtQ5WBBiTodyyhwAAEdAEBysCDEm6UdAWujlYEGJN0dARtR64UeuFIdyyxwAAEdAECfvnbItDkdAWuk3S8an8EdARtS8an7524dyzBwAAEdAEDQ5WBBiTkdAWul41P3ztkdARtTdLxqfvodyzRwAAEdAEECDEm6XjUdAWum6XjU/fUdARtUeuFHrhYdyzhwAAEdAEFHrhR64UkdAWuocrAgxJ0dARtVgQYk3TIdyzxwAAEdAEF41P3ztkUdAWupul41P30dARtWhysCDEody0BwAAEdAEGl41P3ztkdAWuqwIMSbpkdARtXjU/fO2Ydy0RwAAEdAEIIMSbpeNUdAWutDlYEGJUdARtZFocrAg4dy0hwAAEdAEI5WBBiTdUdAWuuFHrhR7EdARtaHKwIMSody0xwAAEdAEJ64UeuFH0dAWuvnbItDlkdARtbItDlYEIdy1BwAAEdAEKsCDEm6XkdAWuw5WBBiTkdARtcKPXCj14dy1RwAAEdAELdLxqfvnkdAWux64UeuFEdARtdLxqfvnody1hwAAEdAEMOVgQYk3UdAWuy8an7520dARteNT987ZIdy1xwAAEdAEOBBiTdLx0dAWu1wo9cKPUdARtgQYk3S8ody2BwAAEdAEOyLQ5WBBkdAWu2yLQ5WBEdARtgxJul41Ydy2RwAAEdAEPfO2RaHK0dAWu3ztkWhy0dARthysCDEnIdy2hwAAEdAERBiTdLxqkdAWu6HKwIMSkdARtjU/fO2Rody2xwAAEdAERysCDEm6UdAWu7ZFocrAkdARtkWhysCDIdy3BwAAEdAES0OVgQYk0dAWu87ZFocrEdARtl41P3ztody3RwAAEdAEUSbpeNT+EdAWu++dsi0OUdARtnbItDlYIdy3hwAAEdAEVDlYEGJN0dAWvAQYk3S8kdARtocrAgxJ4dy3xwAAEdAEWl41P3ztkdAWvCj1wo9cUdARtp++dsi0Ydy4BwAAEdAEXnbItDlYEdAWvEGJN0vG0dARtrAgxJumIdy4RwAAEdAEZ2yLQ5WBEdAWvHbItDlYEdARttkWhysCIdy4hwAAEdAEan752yLREdAWvIcrAgxJ0dARtul41P3z4dy4xwAAEdAEdLxqfvnbUdAWvMSbpeNUEdARtxqfvnbI4dy5BwAAEdAEfbItDlYEEdAWvP3ztkWh0dARt0OVgQYk4dy5RwAAEdAEggxJul41UdAWvRaHKwIMUdARt1P3ztkWody5hwAAEdAEh64UeuFH0dAWvTdLxqfvkdARt3S8an754dy5xwAAEdAEisCDEm6XkdAWvUvGp++d0dARt3ztkWhy4dy6BwAAEdAElT987ZFokdAWvYk3S8aoEdARt64UeuFH4dy6RwAAEdAEnfO2RaHK0dAWvb52yLQ5UdARt9cKPXCj4dy6hwAAEdAEoQYk3S8akdAWvdLxqfvnkdARt+dsi0OVody6xwAAEdAErhR64UeuEdAWviDEm6XjUdARuCDEm6XjYdy7BwAAEdAEs/fO2RaHUdAWvkWhysCDEdARuDlYEGJN4dy7RwAAEdAEuFHrhR64UdAWvmJN0vGqEdARuFHrhR64Ydy7hwAAEdAEwQYk3S8akdAWvpeNT987kdARuHKwIMSb4dy7xwAAEdAExBiTdLxqkdAWvqfvnbItEdARuIMSbpeNYdy8BwAAEdAEy0OVgQYk0dAWvtT987ZF0dARuKPXCj1w4dy8RwAAEdAEzlYEGJN00dAWvul41P3z0dARuLQ5WBBiYdy8hwAAEdAE0SbpeNT+EdAWvvnbItDlkdARuLxqfvnbYdy8xwAAEdAE1wo9cKPXEdAWvx64UeuFEdARuN0vGp++ody9BwAAEdAE22RaHKwIUdAWvzdLxqfvkdARuO2RaHKwYdy9RwAAEdAE3nbItDlYEdAWv0vGp++d0dARuP3ztkWh4dy9hwAAEdAE4UeuFHrhUdAWv1wo9cKPUdARuQYk3S8aody9xwAAEdAE5BiTdLxqkdAWv3Cj1wo9kdARuRaHKwIMYdy+BwAAEdAE5ysCDEm6UdAWv4EGJN0vEdARuR64UeuFIdy+RwAAEdAE7lYEGJN00dAWv64UeuFH0dARuT987ZFoody+hwAAEdAE8WhysCDEkdAWv752yLQ5UdARuU/fO2RaIdy+xwAAEdAE9DlYEGJN0dAWv9LxqfvnkdARuWBBiTdL4dy/BwAAEdAE9wo9cKPXEdAWv+NT987ZEdARuWhysCDEody/RwAAEdAE+hysCDEnEdAWv/fO2RaHUdARuXjU/fO2Ydy/hwAAEdAE/S8an7520dAWwAgxJul40dARuYk3S8aoIdy/xwAAEdAFAUeuFHrhUdAWwCTdLxqf0dARuZmZmZmZodyAB0AAEdAFBFocrAgxUdAWwDU/fO2RkdARuaHKwIMSodyAR0AAEdAFBysCDEm6UdAWwEm6XjU/kdARubItDlYEIdyAh0AAEdAFDQ5WBBiTkdAWwG6XjU/fUdARucrAgxJuodyAx0AAEdAFEWhysCDEkdAWwIcrAgxJ0dARueNT987ZIdyBB0AAEdAFFDlYEGJN0dAWwJul41P30dARueuFHrhSIdyBR0AAEdAFFwo9cKPXEdAWwKwIMSbpkdARufvnbItDodyBh0AAEdAFGhysCDEnEdAWwMCDEm6XkdARugQYk3S8odyBx0AAEdAFHO2RaHKwUdAWwNDlYEGJUdARuhR64UeuIdyCB0AAEdAFIAAAAAAAEdAWwOVgQYk3UdARuiTdLxqf4dyCR0AAEdAFJBiTdLxqkdAWwP3ztkWh0dARujU/fO2RodyCh0AAEdAFJysCDEm6UdAWwRJul41P0dARuj1wo9cKYdyCx0AAEdAFKfvnbItDkdAWwSLQ5WBBkdARuk3S8an8IdyDB0AAEdAFL987ZFoc0dAWwUeuFHrhUdARumZmZmZmodyDR0AAEdAFMvGp++dskdAWwVwo9cKPUdARunbItDlYIdyDh0AAEdAFNwo9cKPXEdAWwXS8an750dARuocrAgxJ4dyDx0AAEdAFOdsi0OVgUdAWwYk3S8aoEdARupeNT987odyEB0AAEdAFPO2RaHKwUdAWwZmZmZmZkdARup++dsi0YdyER0AAEdAFP752yLQ5UdAWwa4UeuFH0dARurAgxJumIdyEh0AAEdAFRul41P3z0dAWwdsi0OVgUdARutDlYEGJYdyEx0AAEdAFSbpeNT99EdAWweuFHrhSEdARutkWhysCIdyFB0AAEdAFTMzMzMzM0dAWwgAAAAAAEdARuul41P3z4dyFR0AAEdAFT52yLQ5WEdAWwhBiTdLx0dARuvGp++dsodyFh0AAEdAFUrAgxJumEdAWwiTdLxqf0dARuwIMSbpeYdyFx0AAEdAFVYEGJN0vEdAWwjlYEGJN0dARuxJul41P4dyGB0AAEdAFWZmZmZmZkdAWwlHrhR64UdARuyLQ5WBBodyGR0AAEdAFXKwIMSbpkdAWwmJN0vGqEdARuysCDEm6YdyGh0AAEdAFX3ztkWhy0dAWwnbItDlYEdARuztkWhysIdyGx0AAEdAFZWBBiTdL0dAWwpul41P30dARu1P3ztkWodyHB0AAEdAFaHKwIMSb0dAWwrAgxJumEdARu2RaHKwIYdyHR0AAEdAFaXjU/fO2UdAWwrhR64Ue0dARu2RaHKwIYdyHh0AAEdAFbItDlYEGUdAWwsi0OVgQkdARu3S8an754dyHx0AAEdAFb1wo9cKPUdAWwt0vGp++kdARu3ztkWhy4dyIB0AAEdAFci0OVgQYkdAWwu2RaHKwUdARu41P3ztkYdyIR0AAEdAFdT987ZFokdAWwwIMSbpeUdARu5WBBiTdYdyIh0AAEdAFeBBiTdLx0dAWwxaHKwIMUdARu6XjU/fO4dyIx0AAEdAFfCj1wo9cUdAWwy8an7520dARu7ZFocrAodyJB0AAEdAFfztkWhysEdAWw0OVgQYk0dARu8an752yYdyJR0AAEdAFggxJul41UdAWw1P3ztkWkdARu87ZFocrIdyJh0AAEdAFh++dsi0OUdAWw3jU/fO2UdARu+dsi0OVodyJx0AAEdAFisCDEm6XkdAWw41P3ztkUdARu/fO2RaHYdyKB0AAEdAFjtkWhysCEdAWw6XjU/fO0dARvAgxJul44dyKR0AAEdAFkeuFHrhSEdAWw7peNT99EdARvBiTdLxqodyKh0AAEdAFlLxqfvnbUdAWw87ZFocrEdARvCDEm6XjYdyKx0AAEdAFl87ZFocrEdAWw987ZFoc0dARvDEm6XjVIdyLB0AAEdAFnrhR64Ue0dAWxAxJul41UdARvFHrhR64YdyLR0AAEdAFoYk3S8aoEdAWxCDEm6XjUdARvFocrAgxYdyLh0AAEdAFpFocrAgxUdAWxDU/fO2RkdARvGp++dsi4dyLx0AAEdAFqj1wo9cKUdAWxFocrAgxUdARvIMSbpeNYdyMB0AAEdAFrU/fO2RaEdAWxG6XjU/fUdARvItDlYEGYdyMR0AAEdAFsWhysCDEkdAWxIcrAgxJ0dARvJul41P34dyMh0AAEdAFtDlYEGJN0dAWxJul41P30dARvKwIMSbpodyMx0AAEdAFtwo9cKPXEdAWxKwIMSbpkdARvLQ5WBBiYdyNB0AAEdAFwAAAAAAAEdAWxOVgQYk3UdARvN0vGp++odyNR0AAEdAFw9cKPXCj0dAWxQIMSbpeUdARvO2RaHKwYdyNh0AAEdAFxul41P3z0dAWxRJul41P0dARvP3ztkWh4dyNx0AAEdAFybpeNT99EdAWxSbpeNT+EdARvQYk3S8aodyOB0AAEdAFzItDlYEGUdAWxTtkWhysEdARvRaHKwIMYdyOR0AAEdAFz52yLQ5WEdAWxUvGp++d0dARvR64UeuFIdyOh0AAEdAF07ZFocrAkdAWxWhysCDEkdARvS8an7524dyOx0AAEdAF2VgQYk3TEdAWxY1P3ztkUdARvUeuFHrhYdyPB0AAEdAF3ztkWhysEdAWxbZFocrAkdARvWBBiTdL4dyPR0AAEdAF4gxJul41UdAWxcan752yUdARvXCj1wo9odyPh0AAEdAF5iTdLxqf0dAWxeNT987ZEdARvYEGJN0vIdyPx0AAEdAF68an752yUdAWxggxJul40dARvZmZmZmZodyQB0AAEdAF7tkWhysCEdAWxhysCDEnEdARvan752yLYdyQR0AAEdAF+JN0vGp/EdAWxl41P3ztkdARvdLxqfvnodyQh0AAEdAF+2RaHKwIUdAWxm6XjU/fUdARvdsi0OVgYdyQx0AAEdAGAUeuFHrhUdAWxpeNT987kdARvfO2RaHK4dyRB0AAEdAGBFocrAgxUdAWxqwIMSbpkdARvgQYk3S8odyRR0AAEdAGCDEm6XjVEdAWxsSbpeNUEdARvhR64UeuIdyRh0AAEdAGDdLxqfvnkdAWxul41P3z0dARvi0OVgQYodyRx0AAEdAGEOVgQYk3UdAWxv3ztkWh0dARvjU/fO2RodySB0AAEdAGFsi0OVgQkdAWxybpeNT+EdARvk3S8an8IdySR0AAEdAGI1P3ztkWkdAWx3jU/fO2UdARvocrAgxJ4dySh0AAEdAGJiTdLxqf0dAWx41P3ztkUdARvo9cKPXCodySx0AAEdAGOJN0vGp/EdAWyAxJul41UdARvuFHrhR7IdyTB0AAEdAGRR64UeuFEdAWyF41P3ztkdARvxJul41P4dyTR0AAEdAGSDEm6XjVEdAWyHKwIMSb0dARvyLQ5WBBodyTh0AAEdAGTxqfvnbI0dAWyKPXCj1w0dARvztkWhysIdyTx0AAEdAGV41P3ztkUdAWyN0vGp++kdARv2RaHKwIYdyUB0AAEdAGWl41P3ztkdAWyPGp++dskdARv2yLQ5WBIdyUR0AAEdAGZul41P3z0dAWyUeuFHrhUdARv52yLQ5WIdyUh0AAEdAGbMzMzMzM0dAWyWyLQ5WBEdARv7ZFocrAodyUx0AAEdAGcOVgQYk3UdAWyYk3S8aoEdARv8an752yYdyVB0AAEdAGdkWhysCDEdAWybItDlYEEdARv987ZFoc4dyVR0AAEdAGeRaHKwIMUdAWycKPXCj10dARv++dsi0OYdyVh0AAEdAGfCj1wo9cUdAWydcKPXCj0dARv/fO2RaHYdyVx0AAEdAGfvnbItDlkdAWyeuFHrhSEdARwAgxJul44dyWB0AAEdAGgxJul41P0dAWyggxJul40dARwBiTdLxqodyWR0AAEdAGheNT987ZEdAWyhysCDEnEdARwCDEm6XjYdyWh0AAEdAGiLQ5WBBiUdAWyi0OVgQYkdARwCj1wo9cYdyWx0AAEdAGjlYEGJN00dAWylYEGJN00dARwEGJN0vG4dyXB0AAEdAGkSbpeNT+EdAWymp++dsi0dARwFHrhR64YdyXR0AAEdAGlT987ZFokdAWyocrAgxJ0dARwGJN0vGqIdyXh0AAEdAGmBBiTdLx0dAWypeNT987kdARwGp++dsi4dyXx0AAEdAGmuFHrhR7EdAWyqwIMSbpkdARwHKwIMSb4dyYB0AAEdAGnbItDlYEEdAWysCDEm6XkdARwIMSbpeNYdyYR0AAEdAGpJul41P30dAWyvGp++dskdARwJul41P34dyYh0AAEdAGqj1wo9cKUdAWyxaHKwIMUdARwLQ5WBBiYdyYx0AAEdAGrQ5WBBiTkdAWyysCDEm6UdARwMSbpeNUIdyZB0AAEdAGr987ZFoc0dAWyz987ZFokdARwMzMzMzM4dyZR0AAEdAGsrAgxJumEdAWy1P3ztkWkdARwNT987ZF4dyZh0AAEdAGtsi0OVgQkdAWy3Cj1wo9kdARwOVgQYk3YdyZx0AAEdAGuZmZmZmZkdAWy4EGJN0vEdARwPXCj1wpIdyaB0AAEdAGvCj1wo9cUdAWy5WBBiTdUdARwP3ztkWh4dyaR0AAEdAGwgxJul41UdAWy752yLQ5UdARwRaHKwIMYdyah0AAEdAGxeNT987ZEdAWy9si0OVgUdARwSbpeNT+Idyax0AAEdAGyLQ5WBBiUdAWy++dsi0OUdARwS8an7524dybB0AAEdAGy4UeuFHrkdAWzAAAAAAAEdARwT987ZFoodybR0AAEdAGzlYEGJN00dAWzBR64UeuEdARwUeuFHrhYdybh0AAEdAG0SbpeNT+EdAWzCj1wo9cUdARwU/fO2RaIdybx0AAEdAG1DlYEGJN0dAWzD1wo9cKUdARwWBBiTdL4dycB0AAEdAG2BBiTdLx0dAWzFocrAgxUdARwXCj1wo9odycR0AAEdAG2uFHrhR7EdAWzG6XjU/fUdARwXjU/fO2Ydych0AAEdAG3bItDlYEEdAWzH752yLREdARwYk3S8aoIdycx0AAEdAG41P3ztkWkdAWzKfvnbItEdARwZmZmZmZodydB0AAEdAG5iTdLxqf0dAWzLxqfvnbUdARwan752yLYdydR0AAEdAG6fvnbItDkdAWzNkWhysCEdARwbpeNT99Idydh0AAEdAG7MzMzMzM0dAWzO2RaHKwUdARwcKPXCj14dydx0AAEdAG752yLQ5WEdAWzQIMSbpeUdARwcrAgxJuodyeB0AAEdAG8m6XjU/fUdAWzRaHKwIMUdARwdsi0OVgYdyeR0AAEdAG+VgQYk3TEdAWzUeuFHrhUdARwfO2RaHK4dyeh0AAEdAG/Cj1wo9cUdAWzVgQYk3TEdARwgQYk3S8odyex0AAEdAG/rhR64Ue0dAWzWyLQ5WBEdARwgxJul41YdyfB0AAEdAHAYk3S8aoEdAWzYEGJN0vEdARwhR64UeuIdyfR0AAEdAHBJul41P30dAWzZWBBiTdUdARwiTdLxqf4dyfh0AAEdAHB2yLQ5WBEdAWzan752yLUdARwi0OVgQYodyfx0AAEdAHC0OVgQYk0dAWzcan752yUdARwj1wo9cKYdygB0AAEdAHDhR64UeuEdAWzdsi0OVgUdARwkWhysCDIdygR0AAEdAHEOVgQYk3UdAWze+dsi0OUdARwlYEGJN04dygh0AAEdAHFocrAgxJ0dAWzhR64UeuEdARwmZmZmZmodygx0AAEdAHGVgQYk3TEdAWzij1wo9cUdARwnbItDlYIdyhB0AAEdAHHS8an7520dAWzkWhysCDEdARwocrAgxJ4dyhR0AAEdAHIAAAAAAAEdAWzlocrAgxUdARwo9cKPXCodyhh0AAEdAHItDlYEGJUdAWzm6XjU/fUdARwpeNT987odyhx0AAEdAHJaHKwIMSkdAWzoMSbpeNUdARwqfvnbItIdyiB0AAEdAHKHKwIMSb0dAWzpeNT987kdARwrAgxJumIdyiR0AAEdAHLEm6XjU/kdAWzrQ5WBBiUdARwsCDEm6Xodyih0AAEdAHMeuFHrhSEdAWzt0vGp++kdARwtkWhysCIdyix0AAEdAHN41P3ztkUdAWzwYk3S8akdARwul41P3z4dyjB0AAEdAHOl41P3ztkdAWzxqfvnbI0dARwvnbItDlodyjR0AAEdAHPjU/fO2RkdAWzzdLxqfvkdARwwIMSbpeYdyjh0AAEdAHQQYk3S8akdAWz0vGp++d0dARwxJul41P4dyjx0AAEdAHQ5WBBiTdUdAWz1wo9cKPUdARwxqfvnbI4dykB0AAEdAHRqfvnbItEdAWz3S8an750dARwyLQ5WBBodykR0AAEdAHUCDEm6XjUdAWz7ZFocrAkdARw0vGp++d4dykh0AAEdAHUrAgxJumEdAWz8rAgxJukdARw1P3ztkWodykx0AAEdAHWFHrhR64UdAWz/O2RaHK0dARw2yLQ5WBIdylB0AAEdAHWyLQ5WBBkdAW0AgxJul40dARw3S8an754dylR0AAEdAHXvnbItDlkdAW0CTdLxqf0dARw4UeuFHrodylh0AAEdAHZJul41P30dAW0E3S8an8EdARw52yLQ5WIdylx0AAEdAHZ2yLQ5WBEdAW0GJN0vGqEdARw6XjU/fO4dymB0AAEdAHbQ5WBBiTkdAW0ItDlYEGUdARw752yLQ5YdymR0AAEdAHcOVgQYk3UdAW0KfvnbItEdARw87ZFocrIdymh0AAEdAHc3S8an750dAW0LxqfvnbUdARw9cKPXCj4dymx0AAEdAHeRaHKwIMUdAW0OVgQYk3UdARw+dsi0OVodynB0AAEdAHe+dsi0OVkdAW0PnbItDlkdARw/fO2RaHYdynR0AAEdAHf752yLQ5UdAW0RaHKwIMUdARxAgxJul44dynh0AAEdAHhWBBiTdL0dAW0T987ZFokdARxBiTdLxqodynx0AAEdAHisCDEm6XkdAW0WhysCDEkdARxDEm6XjVIdyoB0AAEdAHjZFocrAg0dAW0XztkWhy0dARxDlYEGJN4dyoR0AAEdAHkWhysCDEkdAW0Z2yLQ5WEdARxEm6XjU/odyoh0AAEdAHlwo9cKPXEdAW0cKPXCj10dARxFocrAgxYdyox0AAEdAHmdsi0OVgUdAW0dsi0OVgUdARxGp++dsi4dypB0AAEdAHq4UeuFHrkdAW0l41P3ztkdARxKwIMSbpodypR0AAEdAHrlYEGJN00dAW0nKwIMSb0dARxLQ5WBBiYdyph0AAEdAHt41P3ztkUdAW0rhR64Ue0dARxNT987ZF4dypx0AAEdAHul41P3ztkdAW0szMzMzM0dARxOVgQYk3YdyqB0AAEdAHy8an752yUdAW01P3ztkWkdARxSbpeNT+IdyqR0AAEdAHzpeNT987kdAW02hysCDEkdARxS8an7524dyqh0AAEdAH0WhysCDEkdAW03ztkWhy0dARxTdLxqfvodyqx0AAEdAH4EGJN0vG0dAW0+uFHrhSEdARxXCj1wo9odyrB0AAEdAH7Em6XjU/kdAW1Em6XjU/kdARxaHKwIMSodyrR0AAEdAH7xqfvnbI0dAW1F41P3ztkdARxan752yLYdyrh0AAEdAH+uFHrhR7EdAW1LhR64Ue0dARxdLxqfvnodyrx0AAEdAH/bItDlYEEdAW1MzMzMzM0dARxeNT987ZIdysB0AAEdAIAEGJN0vG0dAW1OVgQYk3UdARxeuFHrhSIdysR0AAEdAIAan752yLUdAW1PnbItDlkdARxfO2RaHK4dysh0AAEdAIBiTdLxqf0dAW1T987ZFokdARxhR64UeuIdysx0AAEdAIDZFocrAg0dAW1bItDlYEEdARxk3S8an8IdytB0AAEdAIDtkWhysCEdAW1can752yUdARxlYEGJN04dytR0AAEdAIEEGJN0vG0dAW1dsi0OVgUdARxl41P3ztodyth0AAEdAIEan752yLUdAW1fO2RaHK0dARxmZmZmZmodytx0AAEdAIFkWhysCDEdAW1jlYEGJN0dARxo9cKPXCodyuB0AAEdAIGPXCj1wpEdAW1mJN0vGqEdARxp++dsi0YdyuR0AAEdAIGl41P3ztkdAW1nrhR64UkdARxqfvnbItIdyuh0AAEdAIHZFocrAg0dAW1qwIMSbpkdARxsCDEm6Xodyux0AAEdAIHvnbItDlkdAW1sCDEm6XkdARxsi0OVgQodyvB0AAEdAIIEGJN0vG0dAW1tT987ZF0dARxtDlYEGJYdyvR0AAEdAII5WBBiTdUdAW1wo9cKPXEdARxul41P3z4dyvh0AAEdAIJkWhysCDEdAW1zMzMzMzUdARxwIMSbpeYdyvx0AAEdAIJ41P3ztkUdAW10euFHrhUdARxwo9cKPXIdywB0AAEdAIKPXCj1wpEdAW12BBiTdL0dARxxJul41P4dywR0AAEdAIKl41P3ztkdAW13S8an750dARxxqfvnbI4dywh0AAEdAILZFocrAg0dAW16XjU/fO0dARxzMzMzMzYdywx0AAEdAILtkWhysCEdAW17peNT99EdARxztkWhysIdyxB0AAEdAIMvGp++dskdAW1/vnbItDkdARx1wo9cKPYdyxR0AAEdAINiTdLxqf0dAW2DEm6XjVEdARx3S8an754dyxh0AAEdAIN2yLQ5WBEdAW2EWhysCDEdARx3ztkWhy4dyxx0AAEdAIONT987ZF0dAW2FocrAgxUdARx4UeuFHrodyyB0AAEdAIOj1wo9cKUdAW2G6XjU/fUdARx41P3ztkYdyyR0AAEdAIPAgxJul40dAW2I9cKPXCkdARx52yLQ5WIdyyh0AAEdAIPrhR64Ue0dAW2LhR64Ue0dARx64UeuFH4dyyx0AAEdAIQWhysCDEkdAW2OVgQYk3UdARx752yLQ5YdyzB0AAEdAIQtDlYEGJUdAW2PnbItDlkdARx87ZFocrIdyzR0AAEdAIRgQYk3S8kdAW2SsCDEm6UdARx987ZFoc4dyzh0AAEdAIR0vGp++d0dAW2UOVgQYk0dARx+dsi0OVodyzx0AAEdAISLQ5WBBiUdAW2VgQYk3TEdARx/fO2RaHYdy0B0AAEdAITpeNT987kdAW2bZFocrAkdARyCDEm6XjYdy0R0AAEdAIVcKPXCj10dAW2wYk3S8akdARx9cKPXCj4dy0h0AAEdAIXQ5WBBiTkdAW3FYEGJN00dARx5WBBiTdYdy0x0AAEdAIZDlYEGJN0dAW3aXjU/fO0dARx1P3ztkWody1B0AAEdAIa2RaHKwIUdAW3vnbItDlkdARxwo9cKPXIdy1R0AAEdAIcrAgxJumEdAW4Em6XjU/kdARxsi0OVgQody1h0AAEdAIedsi0OVgUdAW4ZmZmZmZkdARxocrAgxJ4dy1x0AAEdAIgSbpeNT+EdAW4ul41P3z0dARxkWhysCDIdy2B0AAEdAIiFHrhR64UdAW5DlYEGJN0dARxfvnbItDody2R0AAEdAIj52yLQ5WEdAW5Yk3S8aoEdARxbpeNT99Idy2h0AAEdAIlsi0OVgQkdAW5tkWhysCEdARxXjU/fO2Ydy2x0AAEdAInhR64UeuEdAW6Cj1wo9cUdARxS8an7524dy3B0AAEdAIpT987ZFokdAW6XztkWhy0dARxO2RaHKwYdy3R0AAEdAIrItDlYEGUdAW6szMzMzM0dARxKwIMSbpody3h0AAEdAIs7ZFocrAkdAW7BysCDEnEdARxGp++dsi4dy3x0AAEdAIuuFHrhR7EdAW7WyLQ5WBEdARxCDEm6XjYdy4B0AAEdAIwi0OVgQYkdAW7rxqfvnbUdARw987ZFoc4dy4R0AAEdAIyVgQYk3TEdAW8AxJul41UdARw52yLQ5WIdy4h0AAEdAI0KPXCj1w0dAW8Vwo9cKPUdARw1P3ztkWody4x0AAEdAI187ZFocrEdAW8qwIMSbpkdARwxJul41P4dy5B0AAEdAI3xqfvnbI0dAW9AAAAAAAEdARwtDlYEGJYdy5R0AAEdAI5kWhysCDEdAW9U/fO2RaEdARwo9cKPXCody5h0AAEdAI7ZFocrAg0dAW9p++dsi0UdARwkWhysCDIdy5x0AAEdAI9LxqfvnbUdAW9++dsi0OUdARwgQYk3S8ody6B0AAEdAI++dsi0OVkdAW+T987ZFokdARwcKPXCj14dy6R0AAEdAJAzMzMzMzUdAW+o9cKPXCkdARwYEGJN0vIdy6h0AAEdAJCl41P3ztkdAW+987ZFoc0dARwTdLxqfvody6x0AAEdAJEan752yLUdAW/S8an7520dARwPXCj1wpIdy7B0AAEdAJGNT987ZF0dAW/oMSbpeNUdARwLQ5WBBiYdy7R0AAEdAJICDEm6XjUdAW/9LxqfvnkdARwGp++dsi4dy7h0AAEdAJJ0vGp++d0dAXASLQ5WBBkdARwCj1wo9cYdy7x0AAEdAJLpeNT987kdAXAnKwIMSb0dARv+dsi0OVody8B0AAEdAJNcKPXCj10dAXA8KPXCj10dARv6XjU/fO4dy8R0AAEdAJPQ5WBBiTkdAXBRJul41P0dARv1wo9cKPYdy8h0AAEdAJRDlYEGJN0dAXBmJN0vGqEdARvxqfvnbI4dy8x0AAEdAJS2RaHKwIUdAXB7ItDlYEEdARvtkWhysCIdy9B0AAEdAJUrAgxJumEdAXCQYk3S8akdARvo9cKPXCody9R0AAEdAJWdsi0OVgUdAXClYEGJN00dARvk3S8an8Idy9h0AAEdAJYSbpeNT+EdAXC6XjU/fO0dARvgxJul41Ydy9x0AAEdAJaFHrhR64UdAXDPXCj1wpEdARvcrAgxJuody+B0AAEdAJb52yLQ5WEdAXDkWhysCDEdARvYEGJN0vIdy+R0AAEdAJdsi0OVgQkdAXD5WBBiTdUdARvT987ZFoody+h0AAEdAJfhR64UeuEdAXEOVgQYk3UdARvP3ztkWh4dy+x0AAEdAJhT987ZFokdAXEjU/fO2RkdARvLQ5WBBiYdy/B0AAEdAJjGp++dsi0dAXE4k3S8aoEdARvHKwIMSb4dy/R0AAEdAJk7ZFocrAkdAXFNkWhysCEdARvDEm6XjVIdy/h0AAEdAJmuFHrhR7EdAXFij1wo9cUdARu++dsi0OYdy/x0AAEdAJoi0OVgQYkdAXF3jU/fO2UdARu6XjU/fO4dyAB4AAEdAJqVgQYk3TEdAXGMi0OVgQkdARu2RaHKwIYdyAR4AAEdAJsKPXCj1w0dAXGhiTdLxqkdARuyLQ5WBBodyAh4AAEdAJt87ZFocrEdAXG2hysCDEkdARutkWhysCIdyAx4AAEdAJvxqfvnbI0dAXHLxqfvnbUdARupeNT987odyBB4AAEdAJxkWhysCDEdAXHgxJul41UdARulYEGJN04dyBR4AAEdAJzXCj1wo9kdAXH1wo9cKPUdARuhR64UeuIdyBh4AAEdAJ1LxqfvnbUdAXIKwIMSbpkdARucrAgxJuodyBx4AAEdAJ2+dsi0OVkdAXIfvnbItDkdARuYk3S8aoIdyCB4AAEdAJ4zMzMzMzUdAXI0vGp++d0dARuUeuFHrhYdyCR4AAEdAJ6l41P3ztkdAXJJul41P30dARuP3ztkWh4dyCh4AAEdAJ8an752yLUdAXJeuFHrhSEdARuLxqfvnbYdyCx4AAEdAJ+NT987ZF0dAXJz987ZFokdARuHrhR64UodyDB4AAEdAKACDEm6XjUdAXKI9cKPXCkdARuDlYEGJN4dyDR4AAEdAKB0vGp++d0dAXKd87ZFoc0dARt++dsi0OYdyDh4AAEdAKDpeNT987kdAXKy8an7520dARt64UeuFH4dyDx4AAEdAKFcKPXCj10dAXLH752yLREdARt2yLQ5WBIdyEB4AAEdAKHO2RaHKwUdAXLc7ZFocrEdARtyLQ5WBBodyER4AAEdAKJDlYEGJN0dAXLx64UeuFEdARtuFHrhR7IdyEh4AAEdAKK2RaHKwIUdAXMG6XjU/fUdARtp++dsi0YdyEx4AAEdAKMrAgxJumEdAXMcKPXCj10dARtl41P3ztodyFB4AAEdAKOdsi0OVgUdAXMxJul41P0dARthR64UeuIdyFR4AAEdAKQSbpeNT+EdAXNGJN0vGqEdARtdLxqfvnodyFh4AAEdAKSFHrhR64UdAXNbItDlYEEdARtZFocrAg4dyFx4AAEdAKT52yLQ5WEdAXNwIMSbpeUdARtU/fO2RaIdyGB4AAEdAKVsi0OVgQkdAXOFHrhR64UdARtQYk3S8aodyGR4AAEdAKXfO2RaHK0dAXOaHKwIMSkdARtMSbpeNUIdyGh4AAEdAKZT987ZFokdAXOvGp++dskdARtIMSbpeNYdyGx4AAEdAKbGp++dsi0dAXPEWhysCDEdARtDlYEGJN4dyHB4AAEdAKc7ZFocrAkdAXPZWBBiTdUdARs/fO2RaHYdyHR4AAEdAKeuFHrhR7EdAXPuVgQYk3UdARs7ZFocrAodyHh4AAEdAKgi0OVgQYkdAXQDU/fO2RkdARs3S8an754dyHx4AAEdAKiVgQYk3TEdAXQYUeuFHrkdARsysCDEm6YdyIB4AAEdAKkKPXCj1w0dAXQtT987ZF0dARsul41P3z4dyIR4AAEdAKl87ZFocrEdAXRCTdLxqf0dARsqfvnbItIdyIh4AAEdAKnxqfvnbI0dAXRXS8an750dARsl41P3ztodyIx4AAEdAKpkWhysCDEdAXRsi0OVgQkdARshysCDEnIdyJB4AAEdAKrXCj1wo9kdAXSBiTdLxqkdARsdsi0OVgYdyJR4AAEdAKtLxqfvnbUdAXSWhysCDEkdARsZmZmZmZodyJh4AAEdAKu+dsi0OVkdAXSrhR64Ue0dARsU/fO2RaIdyJx4AAEdAKwzMzMzMzUdAXTAgxJul40dARsQ5WBBiTodyKB4AAEdAKyl41P3ztkdAXTVgQYk3TEdARsMzMzMzM4dyKR4AAEdAK0an752yLUdAXTqfvnbItEdARsIMSbpeNYdyKh4AAEdAK2NT987ZF0dAXT/fO2RaHUdARsEGJN0vG4dyKx4AAEdAK4CDEm6XjUdAXUUvGp++d0dARsAAAAAAAIdyLB4AAEdAK50vGp++d0dAXUpul41P30dARr752yLQ5YdyLR4AAEdAK7nbItDlYEdAXU+uFHrhSEdARr3S8an754dyLh4AAEdAK9cKPXCj10dAXVTtkWhysEdARrzMzMzMzYdyLx4AAEdAK/O2RaHKwUdAXVotDlYEGUdARrvGp++dsodyMB4AAEdALBDlYEGJN0dAXV9si0OVgUdARrqfvnbItIdyMR4AAEdALC2RaHKwIUdAXWSsCDEm6UdARrmZmZmZmodyMh4AAEdALErAgxJumEdAXWnrhR64UkdARriTdLxqf4dyMx4AAEdALGdsi0OVgUdAXW87ZFocrEdARreNT987ZIdyNB4AAEdALISbpeNT+EdAXXR64UeuFEdARrZmZmZmZodyNR4AAEdALKFHrhR64UdAXXm6XjU/fUdARrVgQYk3TIdyNh4AAEdALL52yLQ5WEdAXX752yLQ5UdARrRaHKwIMYdyNx4AAEdALNsi0OVgQkdAXYQ5WBBiTkdARrMzMzMzM4dyOB4AAEdALPfO2RaHK0dAXYl41P3ztkdARrItDlYEGYdyOR4AAEdALRT987ZFokdAXY64UeuFH0dARrEm6XjU/odyOh4AAEdALTGp++dsi0dAXZP3ztkWh0dARrAgxJul44dyOx4AAEdALU7ZFocrAkdAXZlHrhR64UdARq752yLQ5YdyPB4AAEdALWuFHrhR7EdAXZ6HKwIMSkdARq3ztkWhy4dyPR4AAEdALYi0OVgQYkdAXaPGp++dskdARqztkWhysIdyPh4AAEdALaVgQYk3TEdAXakGJN0vG0dARqvnbItDlodyPx4AAEdALcKPXCj1w0dAXa5FocrAg0dARqrAgxJumIdyQB4AAEdALd87ZFocrEdAXbOFHrhR7EdARqm6XjU/fYdyQR4AAEdALfvnbItDlkdAXbjEm6XjVEdARqi0OVgQYodyQh4AAEdALhkWhysCDEdAXb4UeuFHrkdARqeNT987ZIdyQx4AAEdALjXCj1wo9kdAXcNT987ZF0dARqaHKwIMSodyRB4AAEdALlLxqfvnbUdAXciTdLxqf0dARqWBBiTdL4dyRR4AAEdALm+dsi0OVkdAXc3S8an750dARqR64UeuFIdyRh4AAEdALozMzMzMzUdAXdMSbpeNUEdARqNT987ZF4dyRx4AAEdALql41P3ztkdAXdhR64UeuEdARqJN0vGp/IdySB4AAEdALsan752yLUdAXd2RaHKwIUdARqFHrhR64YdySR4AAEdALuNT987ZF0dAXeLQ5WBBiUdARqAgxJul44dySh4AAEdALwCDEm6XjUdAXeggxJul40dARp8an752yYdySx4AAEdALx0vGp++d0dAXe1gQYk3TEdARp4UeuFHrodyTB4AAEdALznbItDlYEdAXfKfvnbItEdARp0OVgQYk4dyTR4AAEdAL1cKPXCj10dAXfffO2RaHUdARpvnbItDlodyTh4AAEdAL3O2RaHKwUdAXf0euFHrhUdARprhR64Ue4dyTx4AAEdAL5DlYEGJN0dAXgJeNT987kdARpnbItDlYIdyUB4AAEdAL62RaHKwIUdAXgedsi0OVkdARpi0OVgQYodyUR4AAEdAL8rAgxJumEdAXgzdLxqfvkdARpeuFHrhSIdyUh4AAEdAL+dsi0OVgUdAXhItDlYEGUdARpan752yLYdyUx4AAEdAMAJN0vGp/EdAXhdsi0OVgUdARpWhysCDEodyVB4AAEdAMBCj1wo9cUdAXhysCDEm6UdARpR64UeuFIdyVR4AAEdAMB752yLQ5UdAXiHrhR64UkdARpN0vGp++odyVh4AAEdAMC2RaHKwIUdAXicrAgxJukdARpJul41P34dyVx4AAEdAMDvnbItDlkdAXixqfvnbI0dARpFHrhR64YdyWB4AAEdAMEp++dsi0UdAXjGp++dsi0dARpBBiTdLx4dyWR4AAEdAMFjU/fO2RkdAXjbpeNT99EdARo87ZFocrIdyWh4AAEdAMGdsi0OVgUdAXjw5WBBiTkdARo41P3ztkYdyWx4AAEdAMHXCj1wo9kdAXkF41P3ztkdARo0OVgQYk4dyXB4AAEdAMIRaHKwIMUdAXka4UeuFH0dARowIMSbpeYdyXR4AAEdAMJKwIMSbpkdAXkv3ztkWh0dARosCDEm6XodyXh4AAEdAMKEGJN0vG0dAXlE3S8an8EdARonbItDlYIdyXx4AAEdAMK+dsi0OVkdAXlZ2yLQ5WEdARojU/fO2RodyYB4AAEdAML3ztkWhy0dAXlu2RaHKwUdARofO2RaHK4dyYR4AAEdAMMyLQ5WBBkdAXmD1wo9cKUdARobItDlYEIdyYh4AAEdAMNrhR64Ue0dAXmZFocrAg0dARoWhysCDEodyYx4AAEdAMOl41P3ztkdAXmuFHrhR7EdARoSbpeNT+IdyZB4AAEdAMPfO2RaHK0dAXnDEm6XjVEdARoOVgQYk3YdyZR4AAEdAMQZmZmZmZkdAXnYEGJN0vEdARoJul41P34dyZh4AAEdAMRS8an7520dAXntDlYEGJUdARoFocrAgxYdyZx4AAEdAMSNT987ZF0dAXoCDEm6XjUdARoBiTdLxqodyaB4AAEdAMTGp++dsi0dAXoXCj1wo9kdARn9cKPXCj4dyaR4AAEdAMUAAAAAAAEdAXosCDEm6XkdARn41P3ztkYdyah4AAEdAMU6XjU/fO0dAXpBR64UeuEdARn0vGp++d4dyax4AAEdAMVztkWhysEdAXpWRaHKwIUdARnwo9cKPXIdybB4AAEdAMWuFHrhR7EdAXprQ5WBBiUdARnsi0OVgQodybR4AAEdAMXnbItDlYEdAXqAQYk3S8kdARnn752yLRIdybh4AAEdAMYhysCDEnEdAXqVP3ztkWkdARnj1wo9cKYdybx4AAEdAMZbItDlYEEdAXqqPXCj1w0dARnfvnbItDodycB4AAEdAMaVgQYk3TEdAXq/O2RaHK0dARnbItDlYEIdycR4AAEdAMbO2RaHKwUdAXrUOVgQYk0dARnXCj1wo9odych4AAEdAMcIMSbpeNUdAXrpeNT987kdARnS8an7524dycx4AAEdAMdCj1wo9cUdAXr+dsi0OVkdARnO2RaHKwYdydB4AAEdAMd752yLQ5UdAXsTdLxqfvkdARnKPXCj1w4dydR4AAEdAMe2RaHKwIUdAXsocrAgxJ0dARnGJN0vGqIdydh4AAEdAMfvnbItDlkdAXs9cKPXCj0dARnCDEm6XjYdydx4AAEdAMgp++dsi0UdAXtSbpeNT+EdARm9cKPXCj4dyeB4AAEdAMhjU/fO2RkdAXtnbItDlYEdARm5WBBiTdYdyeR4AAEdAMidsi0OVgUdAXt8an752yUdARm1P3ztkWodyeh4AAEdAMjXCj1wo9kdAXuRqfvnbI0dARmxJul41P4dyex4AAEdAMkRaHKwIMUdAXump++dsi0dARmsi0OVgQodyfB4AAEdAMlKwIMSbpkdAXu7peNT99EdARmocrAgxJ4dyfR4AAEdAMmEGJN0vG0dAXvQo9cKPXEdARmkWhysCDIdyfh4AAEdAMm+dsi0OVkdAXvlocrAgxUdARmfvnbItDodyfx4AAEdAMn3ztkWhy0dAXv6n752yLUdARmbpeNT99IdygB4AAEdAMoyLQ5WBBkdAXwPnbItDlkdARmXjU/fO2YdygR4AAEdAMprhR64Ue0dAXwk3S8an8EdARmTdLxqfvodygh4AAEdAMql41P3ztkdAXw52yLQ5WEdARmO2RaHKwYdygx4AAEdAMrfO2RaHK0dAXxO2RaHKwUdARmKwIMSbpodyhB4AAEdAMsZmZmZmZkdAXxj1wo9cKUdARmGp++dsi4dyhR4AAEdAMtS8an7520dAXx41P3ztkUdARmCDEm6XjYdyhh4AAEdAMuMSbpeNUEdAXyN0vGp++kdARl987ZFoc4dyhx4AAEdAMvGp++dsi0dAXyi0OVgQYkdARl52yLQ5WIdyiB4AAEdAMwAAAAAAAEdAXy3ztkWhy0dARl1wo9cKPYdyiR4AAEdAMw6XjU/fO0dAXzNDlYEGJUdARlxJul41P4dyih4AAEdAMxztkWhysEdAXziDEm6XjUdARltDlYEGJYdyix4AAEdAMyuFHrhR7EdAXz3Cj1wo9kdARlo9cKPXCodyjB4AAEdAMznbItDlYEdAX0MCDEm6XkdARlkWhysCDIdyjR4AAEdAM0hysCDEnEdAX0hBiTdLx0dARlgQYk3S8odyjh4AAEdAM1bItDlYEEdAX02BBiTdL0dARlcKPXCj14dyjx4AAEdAM2VgQYk3TEdAX1LAgxJumEdARlYEGJN0vIdykB4AAEdAM3O2RaHKwUdAX1gAAAAAAEdARlTdLxqfvodykR4AAEdAM4IMSbpeNUdAX11P3ztkWkdARlPXCj1wpIdykh4AAEdAM5Cj1wo9cUdAX2KPXCj1w0dARlLQ5WBBiYdykx4AAEdAM5752yLQ5UdAX2fO2RaHK0dARlHKwIMSb4dylB4AAEdAM62RaHKwIUdAX20OVgQYk0dARlCj1wo9cYdylR4AAEdAM7vnbItDlkdAX3JN0vGp/EdARk+dsi0OVodylh4AAEdAM8p++dsi0UdAX3eNT987ZEdARk6XjU/fO4dylx4AAEdAM9jU/fO2RkdAX3zMzMzMzUdARk1wo9cKPYdymB4AAEdAM+dsi0OVgUdAX4IMSbpeNUdARkxqfvnbI4dymR4AAEdAM/XCj1wo9kdAX4dcKPXCj0dARktkWhysCIdymh4AAEdANAQYk3S8akdAX4ybpeNT+EdARkpeNT987odymx4AAEdANBKwIMSbpkdAX5HbItDlYEdARkk3S8an8IdynB4AAEdANCEGJN0vG0dAX5can752yUdARkgxJul41YdynR4AAEdANC+dsi0OVkdAX5xaHKwIMUdARkcrAgxJuodynh4AAEdAND3ztkWhy0dAX6GZmZmZmkdARkYEGJN0vIdynx4AAEdANEl41P3ztkdAX6XCj1wo9kdARkU/fO2RaIdyoB4AAEdANEm6XjU/fUdAX6rhR64Ue0dARkKPXCj1w4dyoR4AAEdANEn752yLREdAX7EGJN0vG0dARj87ZFocrIdyoh4AAEdANEn752yLREdAX7Qo9cKPXEdARj2RaHKwIYdyox4AAEdAMKNT987ZF0dAYOTU/fO2RkdAQjk3S8an8IdypB4AAEdAMKm6XjU/fUdAYOHjU/fO2UdAQj0OVgQYk4dypR4AAEdAMKo9cKPXCkdAYOGyLQ5WBEdAQj1wo9cKPYdyph4AAEdAMKuFHrhR7EdAYOEvGp++d0dAQj4UeuFHrodypx4AAEdAMLEm6XjU/kdAYN6HKwIMSkdAQkGp++dsi4dyqB4AAEdAMLbItDlYEEdAYNvnbItDlkdAQkUeuFHrhYdyqR4AAEdAMLfO2RaHK0dAYNtkWhysCEdAQkXCj1wo9odyqh4AAEdAML1wo9cKPUdAYNjEm6XjVEdAQklYEGJN04dyqx4AAEdAMMOVgQYk3UdAYNXS8an750dAQk1P3ztkWodyrB4AAEdAMMQYk3S8akdAYNWp++dsi0dAQk1wo9cKPYdyrR4AAEdAMMl41P3ztkdAYNMSbpeNUEdAQlDlYEGJN4dyrh4AAEdAMMp++dsi0UdAYNKPXCj1w0dAQlGp++dsi4dyrx4AAEdAMM/fO2RaHUdAYM/vnbItDkdAQlUeuFHrhYdysB4AAEdAMNYEGJN0vEdAYMz987ZFokdAQlkWhysCDIdysR4AAEdAMNZFocrAg0dAYMzU/fO2RkdAQlk3S8an8Idysh4AAEdAMNul41P3z0dAYMo9cKPXCkdAQlysCDEm6Ydysx4AAEdAMNysCDEm6UdAYMnCj1wo9kdAQl1P3ztkWodytB4AAEdAMOHKwIMSb0dAYMcrAgxJukdAQmDEm6XjVIdytR4AAEdAMOfvnbItDkdAYMQxJul41UdAQmS8an7524dyth4AAEdAMOgxJul41UdAYMQQYk3S8kdAQmTdLxqfvodytx4AAEdAMO1P3ztkWkdAYMGBBiTdL0dAQmhR64UeuIdyuB4AAEdAMPLxqfvnbUdAYL6HKwIMSkdAQmwo9cKPXIdyuR4AAEdAMPMzMzMzM0dAYL5ul41P30dAQmxJul41P4dyuh4AAEdAMPkWhysCDEdAYLt0vGp++kdAQnBBiTdLx4dyux4AAEdAMPlYEGJN00dAYLtcKPXCj0dAQnBiTdLxqodyvB4AAEdAMP41P3ztkUdAYLjMzMzMzUdAQnO2RaHKwYdyvR4AAEdAMQPXCj1wpEdAYLXS8an750dAQneNT987ZIdyvh4AAEdAMQQYk3S8akdAYLW6XjU/fUdAQneuFHrhSIdyvx4AAEdAMQj1wo9cKUdAYLMrAgxJukdAQnsCDEm6XodywB4AAEdAMQm6XjU/fUdAYLKwIMSbpkdAQnul41P3z4dywR4AAEdAMQ6XjU/fO0dAYLAgxJul40dAQn752yLQ5Ydywh4AAEdAMRP3ztkWh0dAYK0m6XjU/kdAQoLxqfvnbYdywx4AAEdAMRQ5WBBiTkdAYK0WhysCDEdAQoLxqfvnbYdyxB4AAEdAMRjU/fO2RkdAYKqPXCj1w0dAQoZFocrAg4dyxR4AAEdAMR41P3ztkUdAYKeVgQYk3UdAQoocrAgxJ4dyxh4AAEdAMR41P3ztkUdAYKeNT987ZEdAQoo9cKPXCodyxx4AAEdAMR87ZFocrEdAYKcKPXCj10dAQorhR64Ue4dyyB4AAEdAMSLQ5WBBiUdAYKT987ZFokdAQo2RaHKwIYdyyR4AAEdAMSPXCj1wpEdAYKSDEm6XjUdAQo41P3ztkYdyyh4AAEdAMSgxJul41UdAYKH752yLREdAQpFocrAgxYdyyx4AAEdAMSj1wo9cKUdAYKF41P3ztkdAQpIMSbpeNYdyzB4AAEdAMS2RaHKwIUdAYJ752yLQ5UdAQpVgQYk3TIdyzR4AAEdAMS5WBBiTdUdAYJ5++dsi0UdAQpXjU/fO2Ydyzh4AAEdAMTHrhR64UkdAYJxysCDEnEdAQpiTdLxqf4dyzx4AAEdAMTKwIMSbpkdAYJv3ztkWh0dAQpk3S8an8Idy0B4AAEdAMTcKPXCj10dAYJl41P3ztkdAQpxqfvnbI4dy0R4AAEdAMTfO2RaHK0dAYJj1wo9cKUdAQp0OVgQYk4dy0h4AAEdAMTwo9cKPXEdAYJZ2yLQ5WEdAQqBBiTdLx4dy0x4AAEdAMUBBiTdLx0dAYJP3ztkWh0dAQqN0vGp++ody1B4AAEdAMUEGJN0vG0dAYJN87ZFoc0dAQqQYk3S8aody1R4AAEdAMUUeuFHrhUdAYJD987ZFokdAQqdLxqfvnody1h4AAEdAMUYk3S8aoEdAYJCDEm6XjUdAQqfvnbItDody1x4AAEdAMUn752yLREdAYI4EGJN0vEdAQqsi0OVgQody2B4AAEdAMU4UeuFHrkdAYIuNT987ZEdAQq41P3ztkYdy2R4AAEdAMU7ZFocrAkdAYIsKPXCj10dAQq7ZFocrAody2h4AAEdAMVLxqfvnbUdAYIiTdLxqf0dAQrIMSbpeNYdy2x4AAEdAMVbItDlYEEdAYIYUeuFHrkdAQrUeuFHrhYdy3B4AAEdAMVeNT987ZEdAYIWhysCDEkdAQrXCj1wo9ody3R4AAEdAMVtkWhysCEdAYIMi0OVgQkdAQrj1wo9cKYdy3h4AAEdAMVwo9cKPXEdAYIKn752yLUdAQrl41P3ztody3x4AAEdAMWAAAAAAAEdAYIAxJul41UdAQrysCDEm6Ydy4B4AAEdAMWOVgQYk3UdAYH26XjU/fUdAQr++dsi0OYdy4R4AAEdAMWRaHKwIMUdAYH0/fO2RaEdAQsBiTdLxqody4h4AAEdAMWgxJul41UdAYHrQ5WBBiUdAQsN0vGp++ody4x4AAEdAMWi0OVgQYkdAYHpWBBiTdUdAQsQYk3S8aody5B4AAEdAMWxJul41P0dAYHffO2RaHUdAQscrAgxJuody5R4AAEdAMXCj1wo9cUdAYHT1wo9cKUdAQsrAgxJumIdy5h4AAEdAMXQ5WBBiTkdAYHKHKwIMSkdAQs3S8an754dy5x4AAEdAMXeNT987ZEdAYHAYk3S8akdAQtDlYEGJN4dy6B4AAEdAMXhR64UeuEdAYG+dsi0OVkdAQtGJN0vGqIdy6R4AAEdAMXul41P3z0dAYG0vGp++d0dAQtR64UeuFIdy6h4AAEdAMXxqfvnbI0dAYGy0OVgQYkdAQtUeuFHrhYdy6x4AAEdAMX++dsi0OUdAYGpFocrAg0dAQtgxJul41Ydy7B4AAEdAMYOVgQYk3UdAYGdkWhysCEdAQtvGp++dsody7R4AAEdAMYbpeNT99EdAYGT1wo9cKUdAQt64UeuFH4dy7h4AAEdAMYdsi0OVgUdAYGSDEm6XjUdAQt9cKPXCj4dy7x4AAEdAMYrAgxJumEdAYGIUeuFHrkdAQuJN0vGp/Idy8B4AAEdAMYtDlYEGJUdAYGGhysCDEkdAQuLQ5WBBiYdy8R4AAEdAMY5WBBiTdUdAYF8zMzMzM0dAQuXjU/fO2Ydy8h4AAEdAMZFocrAgxUdAYFzMzMzMzUdAQujU/fO2Rody8x4AAEdAMZT987ZFokdAYFnztkWhy0dAQuxJul41P4dy9B4AAEdAMZWBBiTdL0dAYFl41P3ztkdAQuztkWhysIdy9R4AAEdAMZgQYk3S8kdAYFeNT987ZEdAQu87ZFocrIdy9h4AAEdAMZiTdLxqf0dAYFcan752yUdAQu/fO2RaHYdy9x4AAEdAMZtkWhysCEdAYFS0OVgQYkdAQvLQ5WBBiYdy+B4AAEdAMZvnbItDlkdAYFQ5WBBiTkdAQvNT987ZF4dy+R4AAEdAMZ752yLQ5UdAYFHbItDlYEdAQvZFocrAg4dy+h4AAEdAMZ987ZFoc0dAYFFocrAgxUdAQvbItDlYEIdy+x4AAEdAMaGJN0vGqEdAYE987ZFoc0dAQvk3S8an8Idy/B4AAEdAMaIMSbpeNUdAYE8CDEm6XkdAQvm6XjU/fYdy/R4AAEdAMaTdLxqfvkdAYEyj1wo9cUdAQvysCDEm6Ydy/h4AAEdAMaVgQYk3TEdAYEwxJul41UdAQv0vGp++d4dy/x4AAEdAMagxJul41UdAYEnS8an750dAQwAAAAAAAIdyAB8AAEdAMarAgxJumEdAYEd0vGp++kdAQwLxqfvnbYdyAR8AAEdAMatDlYEGJUdAYEb52yLQ5UdAQwN0vGp++odyAh8AAEdAMa3S8an750dAYESbpeNT+EdAQwZmZmZmZodyAx8AAEdAMa5WBBiTdUdAYEQo9cKPXEdAQwbpeNT99IdyBB8AAEdAMbBiTdLxqkdAYEJFocrAg0dAQwk3S8an8IdyBR8AAEdAMbDlYEGJN0dAYEHS8an750dAQwm6XjU/fYdyBh8AAEdAMbMzMzMzM0dAYD90vGp++kdAQwyLQ5WBBodyBx8AAEdAMbO2RaHKwUdAYD8CDEm6XkdAQw0OVgQYk4dyCB8AAEdAMbYEGJN0vEdAYDysCDEm6UdAQw/fO2RaHYdyCR8AAEdAMbiTdLxqf0dAYDpWBBiTdUdAQxKwIMSbpodyCh8AAEdAMbjU/fO2RkdAYDnjU/fO2UdAQxNT987ZF4dyCx8AAEdAMbsi0OVgQkdAYDeFHrhR7EdAQxYk3S8aoIdyDB8AAEdAMbul41P3z0dAYDcSbpeNUEdAQxan752yLYdyDR8AAEdAMb3ztkWhy0dAYDS8an7520dAQxlYEGJN04dyDh8AAEdAMcAAAAAAAEdAYDJul41P30dAQxwo9cKPXIdyDx8AAEdAMcCDEm6XjUdAYDHztkWhy0dAQxysCDEm6YdyEB8AAEdAMcKPXCj1w0dAYC+l41P3z0dAQx987ZFoc4dyER8AAEdAMcMSbpeNUEdAYC8zMzMzM0dAQyAAAAAAAIdyEh8AAEdAMcSbpeNT+EdAYC1P3ztkWkdAQyItDlYEGYdyEx8AAEdAMcUeuFHrhUdAYCzlYEGJN0dAQyLQ5WBBiYdyFB8AAEdAMccrAgxJukdAYCqPXCj1w0dAQyWBBiTdL4dyFR8AAEdAMcdsi0OVgUdAYCocrAgxJ0dAQyYEGJN0vIdyFh8AAEdAMcl41P3ztkdAYCfO2RaHK0dAQyi0OVgQYodyFx8AAEdAMctDlYEGJUdAYCWBBiTdL0dAQyuFHrhR7IdyGB8AAEdAMcvGp++dskdAYCUOVgQYk0dAQywIMSbpeYdyGR8AAEdAMcwIMSbpeUdAYCSbpeNT+EdAQyyLQ5WBBodyGh8AAEdAMc2RaHKwIUdAYCLAgxJumEdAQy64UeuFH4dyGx8AAEdAMc3S8an750dAYCJN0vGp/EdAQy87ZFocrIdyHB8AAEdAMc+dsi0OVkdAYCAIMSbpeUdAQzHrhR64UodyHR8AAEdAMdAgxJul40dAYB+VgQYk3UdAQzJul41P34dyHh8AAEdAMdHrhR64UkdAYB1HrhR64UdAQzUeuFHrhYdyHx8AAEdAMdItDlYEGUdAYBzU/fO2RkdAQzWhysCDEodyIB8AAEdAMdN0vGp++kdAYBsCDEm6XkdAQzfO2RaHK4dyIR8AAEdAMdO2RaHKwUdAYBqPXCj1w0dAQzhR64UeuIdyIh8AAEdAMdWBBiTdL0dAYBhBiTdLx0dAQzsCDEm6XodyIx8AAEdAMdXCj1wo9kdAYBfXCj1wpEdAQzuFHrhR7IdyJB8AAEdAMdcKPXCj10dAYBX752yLREdAQz2RaHKwIYdyJR8AAEdAMddLxqfvnkdAYBWRaHKwIUdAQz4UeuFHrodyJh8AAEdAMdjU/fO2RkdAYBNLxqfvnkdAQ0DEm6XjVIdyJx8AAEdAMdkWhysCDEdAYBLZFocrAkdAQ0FHrhR64YdyKB8AAEdAMdqfvnbItEdAYBCTdLxqf0dAQ0PXCj1wpIdyKR8AAEdAMdrhR64Ue0dAYBAo9cKPXEdAQ0RaHKwIMYdyKh8AAEdAMdwo9cKPXEdAYA5N0vGp/EdAQ0aHKwIMSodyKx8AAEdAMdxqfvnbI0dAYA3jU/fO2UdAQ0cKPXCj14dyLB8AAEdAMd2yLQ5WBEdAYAudsi0OVkdAQ0mZmZmZmodyLR8AAEdAMd3ztkWhy0dAYAsrAgxJukdAQ0ocrAgxJ4dyLh8AAEdAMd87ZFocrEdAYAjtkWhysEdAQ0ysCDEm6YdyLx8AAEdAMeCDEm6XjUdAYAawIMSbpkdAQ087ZFocrIdyMB8AAEdAMeDEm6XjVEdAYAY9cKPXCkdAQ0++dsi0OYdyMR8AAEdAMeIMSbpeNUdAYAQAAAAAAEdAQ1JN0vGp/IdyMh8AAEdAMeJN0vGp/EdAYAOVgQYk3UdAQ1LQ5WBBiYdyMx8AAEdAMeMSbpeNUEdAYAHCj1wo9kdAQ1TdLxqfvodyNB8AAEdAMeNT987ZF0dAYAFYEGJN00dAQ1VgQYk3TIdyNR8AAEdAMeSbpeNT+EdAX/41P3ztkUdAQ1fvnbItDodyNh8AAEdAMeSbpeNT+EdAX/1P3ztkWkdAQ1hysCDEnIdyNx8AAEdAMeXjU/fO2UdAX/jU/fO2RkdAQ1sCDEm6XodyOB8AAEdAMeXjU/fO2UdAX/gAAAAAAEdAQ1tkWhysCIdyOR8AAEdAMean752yLUdAX/RqfvnbI0dAQ11wo9cKPYdyOh8AAEdAMebpeNT99EdAX/OVgQYk3UdAQ13ztkWhy4dyOx8AAEdAMefvnbItDkdAX+8an752yUdAQ2CDEm6XjYdyPB8AAEdAMegxJul41UdAX+5FocrAg0dAQ2DlYEGJN4dyPR8AAEdAMei0OVgQYkdAX+qwIMSbpkdAQ2LxqfvnbYdyPh8AAEdAMej1wo9cKUdAX+nKwIMSb0dAQ2N0vGp++odyPx8AAEdAMem6XjU/fUdAX+VgQYk3TEdAQ2XjU/fO2YdyQB8AAEdAMen752yLREdAX+SLQ5WBBkdAQ2ZmZmZmZodyQR8AAEdAMerAgxJumEdAX+AgxJul40dAQ2jU/fO2RodyQh8AAEdAMesCDEm6XkdAX99LxqfvnkdAQ2lYEGJN04dyQx8AAEdAMeuFHrhR7EdAX9u2RaHKwUdAQ2tkWhysCIdyRB8AAEdAMeuFHrhR7EdAX9rhR64Ue0dAQ2vGp++dsodyRR8AAEdAMexJul41P0dAX9Z2yLQ5WEdAQ25WBBiTdYdyRh8AAEdAMeyLQ5WBBkdAX9WhysCDEkdAQ264UeuFH4dyRx8AAEdAMe0OVgQYk0dAX9E3S8an8EdAQ3Em6XjU/odySB8AAEdAMe1P3ztkWkdAX9BiTdLxqkdAQ3Gp++dsi4dySR8AAEdAMe2RaHKwIUdAX8zdLxqfvkdAQ3OVgQYk3YdySh8AAEdAMe3S8an750dAX8v3ztkWh0dAQ3QYk3S8aodySx8AAEdAMe3S8an750dAX8si0OVgQkdAQ3SbpeNT+IdyTB8AAEdAMe5WBBiTdUdAX8edsi0OVkdAQ3aHKwIMSodyTR8AAEdAMe5WBBiTdUdAX8bItDlYEEdAQ3bpeNT99IdyTh8AAEdAMe7ZFocrAkdAX8Jul41P30dAQ3lYEGJN04dyTx8AAEdAMe9cKPXCj0dAX70vGp++d0dAQ3xJul41P4dyUB8AAEdAMe9cKPXCj0dAX7xqfvnbI0dAQ3ysCDEm6YdyUR8AAEdAMe/fO2RaHUdAX7jlYEGJN0dAQ36XjU/fO4dyUh8AAEdAMe/fO2RaHUdAX7gQYk3S8kdAQ38an752yYdyUx8AAEdAMfAgxJul40dAX7O2RaHKwUdAQ4FocrAgxYdyVB8AAEdAMfAgxJul40dAX7LhR64Ue0dAQ4HrhR64UodyVR8AAEdAMfBiTdLxqkdAX69cKPXCj0dAQ4PXCj1wpIdyVh8AAEdAMfBiTdLxqkdAX66HKwIMSkdAQ4Q5WBBiTodyVx8AAEdAMfBiTdLxqkdAX62yLQ5WBEdAQ4S8an7524dyWB8AAEdAMfCj1wo9cUdAX6o9cKPXCkdAQ4an752yLYdyWR8AAEdAMfDlYEGJN0dAX6UOVgQYk0dAQ4l41P3ztodyWh8AAEdAMfDlYEGJN0dAX6Q5WBBiTkdAQ4nbItDlYIdyWx8AAEdAMfDlYEGJN0dAX6DEm6XjVEdAQ4vGp++dsodyXB8AAEdAMfDlYEGJN0dAX5/vnbItDkdAQ4wo9cKPXIdyXR8AAEdAMfEm6XjU/kdAX5rQ5WBBiUdAQ4752yLQ5YdyXh8AAEdAMfEm6XjU/kdAX5aHKwIMSkdAQ5FHrhR64YdyXx8AAEdAMfEm6XjU/kdAX5WyLQ5WBEdAQ5Gp++dsi4dyYB8AAEdAMfDlYEGJN0dAX5I9cKPXCkdAQ5OVgQYk3YdyYR8AAEdAMfDlYEGJN0dAX5F41P3ztkdAQ5P3ztkWh4dyYh8AAEdAMfDlYEGJN0dAX40vGp++d0dAQ5ZFocrAg4dyYx8AAEdAMfDlYEGJN0dAX4xaHKwIMUdAQ5bItDlYEIdyZB8AAEdAMfCj1wo9cUdAX4jlYEGJN0dAQ5iTdLxqf4dyZR8AAEdAMfCj1wo9cUdAX4ggxJul40dAQ5j1wo9cKYdyZh8AAEdAMfBiTdLxqkdAX4PXCj1wpEdAQ5tDlYEGJYdyZx8AAEdAMfBiTdLxqkdAX4MCDEm6XkdAQ5vGp++dsodyaB8AAEdAMfAgxJul40dAX37ItDlYEEdAQ53ztkWhy4dyaR8AAEdAMfAgxJul40dAX34EGJN0vEdAQ55WBBiTdYdyah8AAEdAMe/fO2RaHUdAX3qPXCj1w0dAQ6BBiTdLx4dyax8AAEdAMe/fO2RaHUdAX3m6XjU/fUdAQ6Cj1wo9cYdybB8AAEdAMe+dsi0OVkdAX3WBBiTdL0dAQ6LQ5WBBiYdybR8AAEdAMe9cKPXCj0dAX3S8an7520dAQ6NT987ZF4dybh8AAEdAMe8an752yUdAX3CDEm6XjUdAQ6WBBiTdL4dybx8AAEdAMe7ZFocrAkdAX2+uFHrhSEdAQ6XjU/fO2YdycB8AAEdAMe6XjU/fO0dAX2xJul41P0dAQ6euFHrhSIdycR8AAEdAMe6XjU/fO0dAX2t0vGp++kdAQ6gxJul41Ydych8AAEdAMe5WBBiTdUdAX2qwIMSbpkdAQ6iTdLxqf4dycx8AAEdAMe4UeuFHrkdAX2dLxqfvnkdAQ6peNT987odydB8AAEdAMe3S8an750dAX2Z2yLQ5WEdAQ6rAgxJumIdydR8AAEdAMe1P3ztkWkdAX2MSbpeNUEdAQ6yLQ5WBBodydh8AAEdAMe1P3ztkWkdAX2JN0vGp/EdAQ6ztkWhysIdydx8AAEdAMeyLQ5WBBkdAX11P3ztkWkdAQ6987ZFoc4dyeB8AAEdAMeyLQ5WBBkdAX1yLQ5WBBkdAQ7AAAAAAAIdyeR8AAEdAMewIMSbpeUdAX1km6XjU/kdAQ7Gp++dsi4dyeh8AAEdAMevGp++dskdAX1hR64UeuEdAQ7ItDlYEGYdyex8AAEdAMetDlYEGJUdAX1T987ZFokdAQ7PXCj1wpIdyfB8AAEdAMesCDEm6XkdAX1Qo9cKPXEdAQ7RaHKwIMYdyfR8AAEdAMesCDEm6XkdAX1NkWhysCEdAQ7S8an7524dyfh8AAEdAMeo9cKPXCkdAX1AAAAAAAEdAQ7ZmZmZmZodyfx8AAEdAMeo9cKPXCkdAX087ZFocrEdAQ7bItDlYEIdygB8AAEdAMen752yLREdAX052yLQ5WEdAQ7dLxqfvnodygR8AAEdAMel41P3ztkdAX0sSbpeNUEdAQ7j1wo9cKYdygh8AAGUoR0Ax6HKwIMScR0BfRiTdLxqgR0BDu4UeuFHsh3KDHwAAR0Ax6DEm6XjVR0BfRWBBiTdMR0BDu+dsi0OWh3KEHwAAR0Ax52yLQ5WBR0BfQgxJul41R0BDvZFocrAhh3KFHwAAR0Ax5ysCDEm6R0BfQTdLxqfwR0BDvfO2RaHLh3KGHwAAR0Ax5iTdLxqgR0BfPEm6XjU/R0BDwIMSbpeNh3KHHwAAR0Ax5WBBiTdMR0BfOPXCj1wpR0BDwi0OVgQZh3KIHwAAR0Ax5R64UeuFR0BfODEm6XjVR0BDwo9cKPXDh3KJHwAAR0Ax5N0vGp++R0BfN2yLQ5WBR0BDwvGp++dth3KKHwAAR0Ax5BiTdLxqR0BfNBiTdLxqR0BDxLxqfvnbh3KLHwAAR0Ax49cKPXCkR0BfM1P3ztkXR0BDxR64UeuFh3KMHwAAR0Ax4o9cKPXDR0BfLztkWhysR0BDxysCDEm6h3KNHwAAR0Ax4o9cKPXDR0BfLnbItDlYR0BDx41P3ztkh3KOHwAAR0Ax4Yk3S8aoR0BfKyLQ5WBCR0BDyTdLxqfwh3KPHwAAR0Ax4UeuFHrhR0BfKl41P3zuR0BDyZmZmZmah3KQHwAAR0Ax4AAAAAAAR0BfJkWhysCDR0BDy6XjU/fPh3KRHwAAR0Ax3752yLQ5R0BfJYEGJN0vR0BDzAgxJul5h3KSHwAAR0Ax3nbItDlYR0BfIWhysCDFR0BDzhR64Ueuh3KTHwAAR0Ax3nbItDlYR0BfIKPXCj1xR0BDznbItDlYh3KUHwAAR0Ax3S8an753R0BfHWBBiTdMR0BD0CDEm6Xjh3KVHwAAR0Ax3O2RaHKwR0BfHJul41P4R0BD0IMSbpeNh3KWHwAAR0Ax26XjU/fPR0BfGIMSbpeNR0BD0o9cKPXDh3KXHwAAR0Ax22RaHKwIR0BfF752yLQ5R0BD0vGp++dth3KYHwAAR0Ax2l41P3zuR0BfFHrhR64UR0BD1HrhR64Uh3KZHwAAR0Ax2hysCDEnR0BfE7ZFocrBR0BD1N0vGp++h3KaHwAAR0Ax2ZmZmZmaR0BfEvGp++dtR0BD1T987ZFoh3KbHwAAR0Ax2JN0vGp/R0BfD64UeuFIR0BD1ul41P30h3KcHwAAR0Ax2FHrhR64R0BfDul41P30R0BD10vGp++eh3KdHwAAR0Ax1si0OVgQR0BfCuFHrhR7R0BD2TdLxqfwh3KeHwAAR0Ax1ocrAgxKR0BfChysCDEnR0BD2ZmZmZmah3KfHwAAR0Ax1T987ZFoR0BfBtkWhysCR0BD20OVgQYlh3KgHwAAR0Ax1P3ztkWiR0BfBiTdLxqgR0BD26XjU/fPh3KhHwAAR0Ax0zMzMzMzR0BfAhysCDEnR0BD3ZFocrAhh3KiHwAAR0Ax0vGp++dtR0BfAVgQYk3TR0BD3fO2RaHLh3KjHwAAR0Ax0rAgxJumR0BfAJN0vGp/R0BD3lYEGJN1h3KkHwAAR0Ax0WhysCDFR0Be/U/fO2RaR0BD3987ZFodh3KlHwAAR0Ax0OVgQYk3R0Be/ItDlYEGR0BD4EGJN0vHh3KmHwAAR0Axz52yLQ5WR0Be+VgQYk3TR0BD4crAgxJvh3KnHwAAR0Axz1wo9cKPR0Be+JN0vGp/R0BD4i0OVgQZh3KoHwAAR0AxztkWhysCR0Be987ZFocrR0BD4o9cKPXDh3KpHwAAR0AxzZFocrAhR0Be9Jul41P4R0BD5BiTdLxqh3KqHwAAR0AxzQ5WBBiTR0Be89cKPXCkR0BD5HrhR64Uh3KrHwAAR0Axy8an752yR0Be8KPXCj1xR0BD5gQYk3S8h3KsHwAAR0Axy0OVgQYlR0Be7987ZFodR0BD5mZmZmZmh3KtHwAAR0AxyTdLxqfwR0Be6yLQ5WBCR0BD6LQ5WBBih3KuHwAAR0AxyLQ5WBBiR0Be6l41P3zuR0BD6RaHKwIMh3KvHwAAR0AxxysCDEm6R0Be5ysCDEm6R0BD6p++dsi0h3KwHwAAR0Axxul41P30R0Be5mZmZmZmR0BD6wIMSbpeh3KxHwAAR0AxxWBBiTdMR0Be4zMzMzMzR0BD7ItDlYEGh3KyHwAAR0AxxJul41P4R0Be4an752yLR0BD7S8an753h3KzHwAAR0AxwtDlYEGJR0Be3ocrAgxKR0BD7rhR64Ufh3K0HwAAR0Axwo9cKPXDR0Be3cKPXCj2R0BD7xqfvnbJh3K1HwAAR0AxwgxJul41R0Be3P3ztkWiR0BD73ztkWhzh3K2HwAAR0AxwIMSbpeNR0Be2dsi0OVgR0BD8OVgQYk3h3K3HwAAR0AxvfO2RaHLR0Be1R64UeuFR0BD8zMzMzMzh3K4HwAAR0AxvbItDlYER0Be1Gp++dsjR0BD85WBBiTdh3K5HwAAR0Axu+dsi0OWR0Be0TdLxqfwR0BD9P3ztkWih3K6HwAAR0Axu2RaHKwIR0Be0IMSbpeNR0BD9WBBiTdMh3K7HwAAR0AxuNT987ZGR0Bey9cKPXCkR0BD941P3ztkh3K8HwAAR0Axtwo9cKPXR0BeyKPXCj1xR0BD+RaHKwIMh3K9HwAAR0AxtocrAgxKR0Bex++dsi0OR0BD+VgQYk3Th3K+HwAAR0AxtgQYk3S8R0BexysCDEm6R0BD+bpeNT99h3K/HwAAR0AxtDlYEGJOR0BexAgxJul5R0BD+yLQ5WBCh3LAHwAAR0Axs/fO2RaHR0Bew0OVgQYlR0BD+4UeuFHsh3LBHwAAR0AxsWhysCDFR0Bev1wo9cKPR0BD/U/fO2Rah3LCHwAAR0AxsSbpeNT+R0BevqfvnbItR0BD/bItDlYEh3LDHwAAR0AxrxqfvnbJR0Beu4UeuFHsR0BD/xqfvnbJh3LEHwAAR0AxrpeNT987R0BeutDlYEGJR0BD/3ztkWhzh3LFHwAAR0AxrhR64UeuR0BeugxJul41R0BD/987ZFodh3LGHwAAR0AxrEm6XjU/R0Betul41P30R0BEAUeuFHrhh3LHHwAAR0Axq8an752yR0BetiTdLxqgR0BEAan752yLh3LIHwAAR0AxqTdLxqfwR0Besk3S8an8R0BEA1P3ztkXh3LJHwAAR0AxqLQ5WBBiR0BesZmZmZmaR0BEA7ZFocrBh3LKHwAAR0AxpqfvnbItR0BernbItDlYR0BEBR64UeuFh3LLHwAAR0AxpiTdLxqgR0BercKPXCj2R0BEBYEGJN0vh3LMHwAAR0Axo5WBBiTdR0Beqdsi0OVgR0BEB0vGp++eh3LNHwAAR0AxoxJul41QR0BeqSbpeNT+R0BEB41P3ztkh3LOHwAAR0AxoQYk3S8bR0BepgQYk3S8R0BECPXCj1wph3LPHwAAR0AxoIMSbpeNR0BepU/fO2RaR0BECVgQYk3Th3LQHwAAR0AxoAAAAAAAR0BepJul41P4R0BECZmZmZmah3LRHwAAR0AxnfO2RaHLR0BeoXjU/fO2R0BECwIMSbpeh3LSHwAAR0AxnXCj1wo9R0BeoMSbpeNUR0BEC2RaHKwIh3LTHwAAR0AxnO2RaHKwR0BeoAAAAAAAR0BEC8an752yh3LUHwAAR0Axmp++dsi0R0BenO2RaHKwR0BEDQ5WBBiTh3LVHwAAR0AxmhysCDEnR0BenDlYEGJOR0BEDXCj1wo9h3LWHwAAR0Axl87ZFocrR0BemSbpeNT+R0BEDtkWhysCh3LXHwAAR0Axl0vGp++eR0BemGJN0vGqR0BEDxqfvnbJh3LYHwAAR0AxlHrhR64UR0BelJul41P4R0BEEOVgQYk3h3LZHwAAR0Axk/fO2RaHR0Bek9cKPXCkR0BEESbpeNT+h3LaHwAAR0Axk3S8an76R0BekyLQ5WBCR0BEEYk3S8aoh3LbHwAAR0AxkSbpeNT+R0BekBBiTdLyR0BEEtDlYEGJh3LcHwAAR0AxkKPXCj1xR0Bej1wo9cKPR0BEEzMzMzMzh3LdHwAAR0AxjhR64UeuR0BejEm6XjU/R0BEFHrhR64Uh3LeHwAAR0AxjQ5WBBiTR0BeitDlYEGJR0BEFT987ZFoh3LfHwAAR0AxisCDEm6YR0Beh87ZFocrR0BEFocrAgxKh3LgHwAAR0AxifvnbItER0Behwo9cKPXR0BEFul41P30h3LhHwAAR0AxiXjU/fO2R0BehlYEGJN1R0BEFysCDEm6h3LiHwAAR0Axh64UeuFIR0BehAgxJul5R0BEGDEm6XjVh3LjHwAAR0AxhysCDEm6R0Beg1P3ztkXR0BEGJN0vGp/h3LkHwAAR0Axg5WBBiTdR0Befsi0OVgQR0BEGn752yLRh3LlHwAAR0AxgtDlYEGJR0BefhR64UeuR0BEGsCDEm6Yh3LmHwAAR0AxgEGJN0vHR0BeexJul41QR0BEHCj1wo9ch3LnHwAAR0Axf752yLQ5R0Beel41P3zuR0BEHGp++dsjh3LoHwAAR0Axe+dsi0OWR0BedeNT987ZR0BEHlYEGJN1h3LpHwAAR0AxeVgQYk3TR0BectDlYEGJR0BEH752yLQ5h3LqHwAAR0AxeNT987ZGR0BechysCDEnR0BEIAAAAAAAh3LrHwAAR0AxeFHrhR64R0BecWhysCDFR0BEIEGJN0vHh3LsHwAAR0AxdYEGJN0vR0BebmZmZmZmR0BEIan752yLh3LtHwAAR0Axcan752yLR0BeafvnbItER0BEI5WBBiTdh3LuHwAAR0AxcOVgQYk3R0BeaUeuFHrhR0BEI9cKPXCkh3LvHwAAR0AxblYEGJN1R0BeZkWhysCDR0BEJR64UeuFh3LwHwAAR0AxbZFocrAhR0BeZZFocrAhR0BEJWBBiTdMh3LxHwAAR0AxbQ5WBBiTR0BeZN0vGp++R0BEJcKPXCj2h3LyHwAAR0Axaj1wo9cKR0BeYdsi0OVgR0BEJwo9cKPXh3LzHwAAR0AxabpeNT99R0BeYSbpeNT+R0BEJ0vGp++eh3L0HwAAR0AxZul41P30R0BeXiTdLxqgR0BEKJN0vGp/h3L1HwAAR0AxZiTdLxqgR0BeXXCj1wo9R0BEKNT987ZGh3L2HwAAR0AxZaHKwIMSR0BeXLxqfvnbR0BEKTdLxqfwh3L3HwAAR0AxYtDlYEGJR0BeWbpeNT99R0BEKn752yLRh3L4HwAAR0AxYgxJul41R0BeWQYk3S8bR0BEKsCDEm6Yh3L5HwAAR0AxXnbItDlYR0BeVWBBiTdMR0BELEm6XjU/h3L6HwAAR0AxXfO2RaHLR0BeVKwIMSbpR0BELItDlYEGh3L7HwAAR0AxWuFHrhR7R0BeUan752yLR0BELdLxqfvnh3L8HwAAR0AxWl41P3zuR0BeUPXCj1wpR0BELhR64Ueuh3L9HwAAR0AxWZmZmZmaR0BeUFHrhR64R0BELnbItDlYh3L+HwAAR0AxVsi0OVgQR0BeTU/fO2RaR0BEL52yLQ5Wh3L/HwAAR0AxUm6XjU/fR0BeSPXCj1wpR0BEMWhysCDFh3IAIAAAR0AxUan752yLR0BeSEGJN0vHR0BEMcrAgxJvh3IBIAAAR0AxTpeNT987R0BeRU/fO2RaR0BEMvGp++dth3ICIAAAR0AxTdLxqfvnR0BeRJul41P4R0BEM1P3ztkXh3IDIAAAR0AxSj1wo9cKR0BeQPXCj1wpR0BENLxqfvnbh3IEIAAAR0AxSXjU/fO2R0BeQEGJN0vHR0BENR64UeuFh3IFIAAAR0AxSLQ5WBBiR0BeP41P3ztkR0BENWBBiTdMh3IGIAAAR0AxRmZmZmZmR0BePU/fO2RaR0BENkWhysCDh3IHIAAAR0AxRaHKwIMSR0BePKwIMSbpR0BENocrAgxKh3IIIAAAR0AxRN0vGp++R0BeO/fO2RaHR0BENsi0OVgQh3IJIAAAR0AxQcrAgxJvR0BeOQYk3S8bR0BEOBBiTdLyh3IKIAAAR0AxQEGJN0vHR0BeN52yLQ5WR0BEOJN0vGp/h3ILIAAAR0AxPS8an753R0BeNKwIMSbpR0BEObpeNT99h3IMIAAAR0AxPGp++dsjR0BeNAgxJul5R0BEOhysCDEnh3INIAAAR0AxO6XjU/fPR0BeM1P3ztkXR0BEOl41P3zuh3IOIAAAR0AxOVgQYk3TR0BeMRaHKwIMR0BEO0OVgQYlh3IPIAAAR0AxOJN0vGp/R0BeMGJN0vGqR0BEO4UeuFHsh3IQIAAAR0AxNHrhR64UR0BeLMzMzMzNR0BEPO2RaHKwh3IRIAAAR0AxM7ZFocrBR0BeLBiTdLxqR0BEPU/fO2Rah3ISIAAAR0AxMvGp++dtR0BeK2RaHKwIR0BEPZFocrAhh3ITIAAAR0AxL987ZFodR0BeKIMSbpeNR0BEPrhR64Ufh3IUIAAAR0AxLxqfvnbJR0BeJ87ZFocrR0BEPvnbItDlh3IVIAAAR0AxLlYEGJN1R0BeJysCDEm6R0BEPztkWhysh3IWIAAAR0AxK8an752yR0BeJO2RaHKwR0BEQCDEm6Xjh3IXIAAAR0AxKfvnbItER0BeI4UeuFHsR0BEQKPXCj1xh3IYIAAAR0AxJqfvnbItR0BeIKPXCj1xR0BEQcrAgxJvh3IZIAAAR0AxJeNT987ZR0BeIAAAAAAAR0BEQgxJul41h3IaIAAAR0AxJR64UeuFR0BeH0vGp++eR0BEQm6XjU/fh3IbIAAAR0AxIcrAgxJvR0BeHGp++dsjR0BEQ3S8an76h3IcIAAAR0AxHO2RaHKwR0BeGCDEm6XjR0BERT987ZFoh3IdIAAAR0AxG+dsi0OWR0BeF3ztkWhzR0BERYEGJN0vh3IeIAAAR0AxGJN0vGp/R0BeFJul41P4R0BERocrAgxKh3IfIAAAR0AxF87ZFocrR0BeE+dsi0OWR0BERul41P30h3IgIAAAR0AxFwo9cKPXR0BeE0OVgQYlR0BERysCDEm6h3IhIAAAR0AxErAgxJumR0BeD64UeuFIR0BESHKwIMSch3IiIAAAR0AxDxqfvnbJR0BeDMzMzMzNR0BESZmZmZmah3IjIAAAR0AxDlYEGJN1R0BeDCj1wo9cR0BESdsi0OVgh3IkIAAAR0AxDZFocrAhR0BeC3S8an76R0BEShysCDEnh3IlIAAAR0AxCfvnbItER0BeCKPXCj1xR0BES0OVgQYlh3ImIAAAR0AxBJul41P4R0BeBGp++dsjR0BETMzMzMzNh3InIAAAR0AxA9cKPXCkR0BeA8an752yR0BETQ5WBBiTh3IoIAAAR0AxAEGJN0vHR0BeAOVgQYk3R0BETjU/fO2Rh3IpIAAAR0Aw/ztkWhysR0BeAEGJN0vHR0BETnbItDlYh3IqIAAAR0Aw/nbItDlYR0Bd/41P3ztkR0BETrhR64Ufh3IrIAAAR0Aw+uFHrhR7R0Bd/LxqfvnbR0BET752yLQ5h3IsIAAAR0Aw+dsi0OVgR0Bd/AgxJul5R0BEUAAAAAAAh3ItIAAAR0Aw9kWhysCDR0Bd+TdLxqfwR0BEUSbpeNT+h3IuIAAAR0Aw9T987ZFoR0Bd+JN0vGp/R0BEUWhysCDFh3IvIAAAR0Aw9HrhR64UR0Bd9987ZFodR0BEUan752yLh3IwIAAAR0Aw8KPXCj1xR0Bd9Q5WBBiTR0BEUrAgxJumh3IxIAAAR0Aw60OVgQYlR0Bd8OVgQYk3R0BEVDlYEGJOh3IyIAAAR0Aw6j1wo9cKR0Bd8EGJN0vHR0BEVHrhR64Uh3IzIAAAR0Aw5mZmZmZmR0Bd7XCj1wo9R0BEVYEGJN0vh3I0IAAAR0Aw5aHKwIMSR0Bd7LxqfvnbR0BEVcKPXCj2h3I1IAAAR0Aw5Jul41P4R0Bd7BiTdLxqR0BEVgQYk3S8h3I2IAAAR0Aw4MSbpeNUR0Bd6UeuFHrhR0BEVwo9cKPXh3I3IAAAR0Aw2yLQ5WBCR0Bd5R64UeuFR0BEWJN0vGp/h3I4IAAAR0Aw2hysCDEnR0Bd5HrhR64UR0BEWNT987ZGh3I5IAAAR0Aw2VgQYk3TR0Bd49cKPXCkR0BEWRaHKwIMh3I6IAAAR0Aw1kWhysCDR0Bd4bpeNT99R0BEWdsi0OVgh3I7IAAAR0Aw0GJN0vGqR0Bd3ZFocrAhR0BEW2RaHKwIh3I8IAAAR0Awz52yLQ5WR0Bd3O2RaHKwR0BEW6XjU/fPh3I9IAAAR0AwzpeNT987R0Bd3Em6XjU/R0BEW+dsi0OWh3I+IAAAR0Awy4UeuFHsR0Bd2hysCDEnR0BEXKwIMSbph3I/IAAAR0AwysCDEm6YR0Bd2XjU/fO2R0BEXO2RaHKwh3JAIAAAR0AwybpeNT99R0Bd2NT987ZGR0BEXQ5WBBiTh3JBIAAAR0AwyLQ5WBBiR0Bd2DEm6XjVR0BEXU/fO2Rah3JCIAAAR0AwxaHKwIMSR0Bd1hR64UeuR0BEXhR64Ueuh3JDIAAAR0Aww9cKPXCkR0Bd1LxqfvnbR0BEXpeNT987h3JEIAAAR0Awv752yLQ5R0Bd0fvnbItER0BEX52yLQ5Wh3JFIAAAR0AwvrhR64UfR0Bd0VgQYk3TR0BEX987ZFodh3JGIAAAR0AwvfO2RaHLR0Bd0KPXCj1xR0BEYAAAAAAAh3JHIAAAR0Awup++dsi0R0BdzocrAgxKR0BEYMSbpeNUh3JIIAAAR0Awudsi0OVgR0BdzeNT987ZR0BEYQYk3S8bh3JJIAAAR0AwtLxqfvnbR0Bdyn752yLRR0BEYk3S8an8h3JKIAAAR0Aws7ZFocrBR0Bdydsi0OVgR0BEYm6XjU/fh3JLIAAAR0AwsrAgxJumR0BdySbpeNT+R0BEYrAgxJumh3JMIAAAR0AwrpeNT987R0BdxmZmZmZmR0BEY7ZFocrBh3JNIAAAR0AwrZFocrAhR0BdxcKPXCj2R0BEY/fO2RaHh3JOIAAAR0AwrItDlYEGR0BdxR64UeuFR0BEZBiTdLxqh3JPIAAAR0AwqXjU/fO2R0BdwwIMSbpeR0BEZN0vGp++h3JQIAAAR0Awp2yLQ5WBR0BdwbpeNT99R0BEZWBBiTdMh3JRIAAAR0AwoxJul41QR0BdvvnbItDlR0BEZkWhysCDh3JSIAAAR0AwogxJul41R0BdvlYEGJN1R0BEZocrAgxKh3JTIAAAR0AwoQYk3S8bR0BdvbItDlYER0BEZsi0OVgQh3JUIAAAR0AwnO2RaHKwR0BduvGp++dtR0BEZ64UeuFIh3JVIAAAR0AwmuFHrhR7R0Bduan752yLR0BEaDEm6XjVh3JWIAAAR0AwlocrAgxKR0Bdtul41P30R0BEaRaHKwIMh3JXIAAAR0AwlYEGJN0vR0BdtkWhysCDR0BEaVgQYk3Th3JYIAAAR0AwkSbpeNT+R0Bds5WBBiTdR0BEaj1wo9cKh3JZIAAAR0AwkCDEm6XjR0BdsvGp++dtR0BEan752yLRh3JaIAAAR0AwjxqfvnbJR0Bdsk3S8an8R0BEap++dsi0h3JbIAAAR0AwibpeNT99R0Bdrul41P30R0BEa8an752yh3JcIAAAR0AwhWBBiTdMR0BdrDlYEGJOR0BEbMzMzMzNh3JdIAAAR0AwhFocrAgxR0Bdq5WBBiTdR0BEbO2RaHKwh3JeIAAAR0Awg1P3ztkXR0BdqvGp++dtR0BEbS8an753h3JfIAAAR0AwfrhR64UfR0BdqEGJN0vHR0BEbhR64Ueuh3JgIAAAR0AweBBiTdLyR0BdpDlYEGJOR0BEb3ztkWhzh3JhIAAAR0Awdwo9cKPXR0Bdo6XjU/fPR0BEb52yLQ5Wh3JiIAAAR0AwcrAgxJumR0BdoOVgQYk3R0BEcIMSbpeNh3JjIAAAR0Awcan752yLR0BdoFHrhR64R0BEcMSbpeNUh3JkIAAAR0AwcGJN0vGqR0Bdn64UeuFIR0BEcQYk3S8bh3JlIAAAR0AwbAgxJul5R0BdnP3ztkWiR0BEceuFHrhSh3JmIAAAR0AwZR64UeuFR0BdmQYk3S8bR0BEczMzMzMzh3JnIAAAR0AwZBiTdLxqR0BdmGJN0vGqR0BEc1P3ztkXh3JoIAAAR0AwX3ztkWhzR0BdlbItDlYER0BEdDlYEGJOh3JpIAAAR0AwWJN0vGp/R0BdkcrAgxJvR0BEdYEGJN0vh3JqIAAAR0AwV41P3ztkR0BdkSbpeNT+R0BEdcKPXCj2h3JrIAAAR0AwUvGp++dtR0BdjnbItDlYR0BEdqfvnbIth3JsIAAAR0AwUeuFHrhSR0BdjeNT987ZR0BEdsi0OVgQh3JtIAAAR0AwUKPXCj1xR0BdjT987ZFoR0BEdwo9cKPXh3JuIAAAR0AwT52yLQ5WR0BdjJul41P4R0BEdysCDEm6h3JvIAAAR0AwTAgxJul5R0Bdio9cKPXDR0BEd87ZFocrh3JwIAAAR0AwRN0vGp++R0BdhqfvnbItR0BEeRaHKwIMh3JxIAAAR0AwQ9cKPXCkR0BdhgQYk3S8R0BEeVgQYk3Th3JyIAAAR0AwQtDlYEGJR0BdhXCj1wo9R0BEeXjU/fO2h3JzIAAAR0AwPvnbItDlR0Bdg2RaHKwIR0BEehysCDEnh3J0IAAAR0AwO6XjU/fPR0BdgYk3S8aoR0BEesCDEm6Yh3J1IAAAR0AwOBBiTdLyR0Bdf3ztkWhzR0BEe2RaHKwIh3J2IAAAR0AwNsi0OVgQR0BdftkWhysCR0BEe4UeuFHsh3J3IAAAR0AwNcKPXCj2R0BdfkWhysCDR0BEe8an752yh3J4IAAAR0AwMOVgQYk3R0Bde6XjU/fPR0BEfItDlYEGh3J5IAAAR0AwL52yLQ5WR0BdewIMSbpeR0BEfMzMzMzNh3J6IAAAR0AwLpeNT987R0Bdel41P3zuR0BEfO2RaHKwh3J7IAAAR0AwKsCDEm6YR0BdeGJN0vGqR0BEfZFocrAhh3J8IAAAR0AwI5WBBiTdR0BddHrhR64UR0BEftkWhysCh3J9IAAAR0AwIk3S8an8R0Bdc+dsi0OWR0BEfvnbItDlh3J+IAAAR0AwIUeuFHrhR0Bdc0OVgQYlR0BEfxqfvnbJh3J/IAAAR0AwHGp++dsjR0BdcKPXCj1xR0BEgAAAAAAAh3KAIAAAR0AwGdsi0OVgR0Bdb2yLQ5WBR0BEgGJN0vGqh3KBIAAAR0AwFP3ztkWiR0BdbMzMzMzNR0BEgSbpeNT+h3KCIAAAR0AwE7ZFocrBR0BdbCj1wo9cR0BEgUeuFHrhh3KDIAAAR0AwDtkWhysCR0BdaZmZmZmaR0BEgi0OVgQZh3KEIAAAR0AwDZFocrAhR0BdaPXCj1wpR0BEgk3S8an8h3KFIAAAR0AwDEm6XjU/R0BdaGJN0vGqR0BEgm6XjU/fh3KGIAAAR0AwBiTdLxqgR0BdZR64UeuFR0BEg3S8an76h3KHIAAAR0AwAQYk3S8bR0BdYo9cKPXDR0BEhDlYEGJOh3KIIAAAR0Av/3ztkWhzR0BdYeuFHrhSR0BEhFocrAgxh3KJIAAAR0Av/XCj1wo9R0BdYVgQYk3TR0BEhJul41P4h3KKIAAAR0Av8zMzMzMzR0BdXrhR64UfR0BEhWBBiTdMh3KLIAAAR0Av7hR64UeuR0BdXYEGJN0vR0BEhcKPXCj2h3KMIAAAR0Av49cKPXCkR0BdWvGp++dtR0BEhocrAgxKh3KNIAAAR0Av4UeuFHrhR0BdWk3S8an8R0BEhqfvnbIth3KOIAAAR0Av1wo9cKPXR0BdV752yLQ5R0BEh2yLQ5WBh3KPIAAAR0Av1HrhR64UR0BdVysCDEm6R0BEh41P3ztkh3KQIAAAR0Av0euFHrhSR0BdVocrAgxKR0BEh87ZFocrh3KRIAAAR0AvxR64UeuFR0BdU1P3ztkXR0BEiLQ5WBBih3KSIAAAR0AvuFHrhR64R0BdUDEm6XjVR0BEiZmZmZmah3KTIAAAR0AvtcKPXCj2R0BdT52yLQ5WR0BEibpeNT99h3KUIAAAR0AvsKPXCj1xR0BdTmZmZmZmR0BEihysCDEnh3KVIAAAR0AvqwIMSbpeR0BdTQ5WBBiTR0BEin752yLRh3KWIAAAR0AvpeNT987ZR0BdS9cKPXCkR0BEiuFHrhR7h3KXIAAAR0AvmyLQ5WBCR0BdSUeuFHrhR0BEi4UeuFHsh3KYIAAAR0AvmJN0vGp/R0BdSKPXCj1xR0BEi8an752yh3KZIAAAR0Avk/fO2RaHR0BdR3ztkWhzR0BEjAgxJul5h3KaIAAAR0AvjlYEGJN1R0BdRiTdLxqgR0BEjGp++dsjh3KbIAAAR0Avi8an752yR0BdRYEGJN0vR0BEjItDlYEGh3KcIAAAR0AviTdLxqfwR0BdRO2RaHKwR0BEjMzMzMzNh3KdIAAAR0AvhqfvnbItR0BdREm6XjU/R0BEjO2RaHKwh3KeIAAAR0AvfnbItDlYR0BdQl41P3zuR0BEjXCj1wo9h3KfIAAAR0Avdsi0OVgQR0BdQJN0vGp/R0BEjfO2RaHLh3KgIAAAR0AvbhR64UeuR0BdPqfvnbItR0BEjnbItDlYh3KhIAAAR0Ava4UeuFHsR0BdPgQYk3S8R0BEjrhR64Ufh3KiIAAAR0AvaPXCj1wpR0BdPXCj1wo9R0BEjtkWhysCh3KjIAAAR0AvZul41P30R0BdPN0vGp++R0BEjvnbItDlh3KkIAAAR0AvYMSbpeNUR0BdO4UeuFHsR0BEj1wo9cKPh3KlIAAAR0AvW6XjU/fPR0BdOk3S8an8R0BEj752yLQ5h3KmIAAAR0AvWRaHKwIMR0BdObpeNT99R0BEj987ZFodh3KnIAAAR0AvUGJN0vGqR0BdN87ZFocrR0BEkGJN0vGqh3KoIAAAR0AvTdLxqfvnR0BdNysCDEm6R0BEkIMSbpeNh3KpIAAAR0AvSTdLxqfwR0BdNgQYk3S8R0BEkOVgQYk3h3KqIAAAR0AvQIMSbpeNR0BdNBiTdLxqR0BEkWhysCDFh3KrIAAAR0AvPfO2RaHLR0BdM3S8an76R0BEkYk3S8aoh3KsIAAAR0AvO2RaHKwIR0BdMuFHrhR7R0BEkan752yLh3KtIAAAR0AvKwIMSbpeR0BdLztkWhysR0BEkrAgxJumh3KuIAAAR0AvIk3S8an8R0BdLT987ZFoR0BEkzMzMzMzh3KvIAAAR0AvH752yLQ5R0BdLKwIMSbpR0BEk1P3ztkXh3KwIAAAR0AvHS8an753R0BdLBiTdLxqR0BEk3S8an76h3KxIAAAR0AvFHrhR64UR0BdKi0OVgQZR0BEk/fO2RaHh3KyIAAAR0AvDEm6XjU/R0BdKHKwIMScR0BElHrhR64Uh3KzIAAAR0AvA5WBBiTdR0BdJnbItDlYR0BElP3ztkWih3K0IAAAR0AvAQYk3S8bR0BdJeNT987ZR0BElR64UeuFh3K1IAAAR0Au/nbItDlYR0BdJU/fO2RaR0BElT987ZFoh3K2IAAAR0Au8zMzMzMzR0BdItDlYEGJR0BEleNT987Zh3K3IAAAR0Au8CDEm6XjR0BdIj1wo9cKR0BEliTdLxqgh3K4IAAAR0Au7ZFocrAhR0BdIan752yLR0BElkWhysCDh3K5IAAAR0Au3KwIMSbpR0BdHgQYk3S8R0BElysCDEm6h3K6IAAAR0Au0/fO2RaHR0BdHBiTdLxqR0BEl64UeuFIh3K7IAAAR0Au0WhysCDFR0BdG4UeuFHsR0BEl87ZFocrh3K8IAAAR0AuzlYEGJN1R0BdGvGp++dtR0BEl++dsi0Oh3K9IAAAR0AuwxJul41QR0BdGHKwIMScR0BEmJN0vGp/h3K+IAAAR0AuvXCj1wo9R0BdF0vGp++eR0BEmNT987ZGh3K/IAAAR0Ausan752yLR0BdFMzMzMzNR0BEmXjU/fO2h3LAIAAAR0AurxqfvnbJR0BdFDlYEGJOR0BEmZmZmZmah3LBIAAAR0AuqXjU/fO2R0BdExJul41QR0BEmdsi0OVgh3LCIAAAR0Auo1P3ztkXR0BdEcrAgxJvR0BEmj1wo9cKh3LDIAAAR0AuoMSbpeNUR0BdETdLxqfwR0BEml41P3zuh3LEIAAAR0AunbItDlYER0BdEKPXCj1xR0BEmn752yLRh3LFIAAAR0AumJN0vGp/R0BdD3ztkWhzR0BEmsCDEm6Yh3LGIAAAR0Auj1wo9cKPR0BdDZFocrAhR0BEm0OVgQYlh3LHIAAAR0AuibpeNT99R0BdDGp++dsjR0BEm4UeuFHsh3LIIAAAR0AugIMSbpeNR0BdCo9cKPXDR0BEnAgxJul5h3LJIAAAR0AuffO2RaHLR0BdCfvnbItER0BEnCj1wo9ch3LKIAAAR0AueFHrhR64R0BdCNT987ZGR0BEnGp++dsjh3LLIAAAR0Auci0OVgQZR0BdB41P3ztkR0BEnKwIMSbph3LMIAAAR0AubItDlYEGR0BdBmZmZmZmR0BEnQ5WBBiTh3LNIAAAR0AuYEGJN0vHR0BdA+dsi0OWR0BEnZFocrAhh3LOIAAAR0AuXbItDlYER0BdA1P3ztkXR0BEnbItDlYEh3LPIAAAR0AuWBBiTdLyR0BdAj1wo9cKR0BEnfO2RaHLh3LQIAAAR0AuUWhysCDFR0BdAOVgQYk3R0BEnlYEGJN1h3LRIAAAR0AuTtkWhysCR0BdAFHrhR64R0BEnnbItDlYh3LSIAAAR0AuS8an752yR0Bc/752yLQ5R0BEnpeNT987h3LTIAAAR0AuRiTdLxqgR0Bc/qfvnbItR0BEntkWhysCh3LUIAAAR0AuP3ztkWhzR0Bc/U/fO2RaR0BEnxqfvnbJh3LVIAAAR0AuN0vGp++eR0Bc+6XjU/fPR0BEn3ztkWhzh3LWIAAAR0AuLhR64UeuR0Bc+bpeNT99R0BEoAAAAAAAh3LXIAAAR0AuKwIMSbpeR0Bc+TdLxqfwR0BEoCDEm6Xjh3LYIAAAR0AuJ++dsi0OR0Bc+KPXCj1xR0BEoEGJN0vHh3LZIAAAR0AuJWBBiTdMR0Bc+BBiTdLyR0BEoGJN0vGqh3LaIAAAR0AuHrhR64UfR0Bc9si0OVgQR0BEoKPXCj1xh3LbIAAAR0AuGRaHKwIMR0Bc9aHKwIMSR0BEoOVgQYk3h3LcIAAAR0AuFgQYk3S8R0Bc9Q5WBBiTR0BEoQYk3S8bh3LdIAAAR0AuE3S8an76R0Bc9ItDlYEGR0BEoSbpeNT+h3LeIAAAR0AuDMzMzMzNR0Bc8zMzMzMzR0BEoYk3S8aoh3LfIAAAR0AuCbpeNT99R0Bc8p++dsi0R0BEoan752yLh3LgIAAAR0AuBBiTdLxqR0Bc8Yk3S8aoR0BEocrAgxJvh3LhIAAAR0At+l41P3zuR0Bc764UeuFIR0BEok3S8an8h3LiIAAAR0At987ZFocrR0Bc7xqfvnbJR0BEom6XjU/fh3LjIAAAR0At9LxqfvnbR0Bc7ocrAgxKR0BEoo9cKPXDh3LkIAAAR0At8i0OVgQZR0Bc7gQYk3S8R0BEorAgxJumh3LlIAAAR0At6wIMSbpeR0Bc7KwIMSbpR0BEovGp++dth3LmIAAAR0At4k3S8an8R0Bc6wIMSbpeR0BEo1P3ztkXh3LnIAAAR0At2RaHKwIMR0Bc6SbpeNT+R0BEo7ZFocrBh3LoIAAAR0At1gQYk3S8R0Bc6JN0vGp/R0BEo9cKPXCkh3LpIAAAR0At0vGp++dtR0Bc6BBiTdLyR0BEo/fO2RaHh3LqIAAAR0At0GJN0vGqR0Bc53ztkWhzR0BEpBiTdLxqh3LrIAAAR0Atw5WBBiTdR0Bc5Q5WBBiTR0BEpJul41P4h3LsIAAAR0AtwIMSbpeNR0Bc5ItDlYEGR0BEpLxqfvnbh3LtIAAAR0Attsi0OVgQR0Bc4rAgxJumR0BEpR64UeuFh3LuIAAAR0Ats7ZFocrBR0Bc4hysCDEnR0BEpT987ZFoh3LvIAAAR0AtrhR64UeuR0Bc4QYk3S8bR0BEpYEGJN0vh3LwIAAAR0AtpFocrAgxR0Bc3ysCDEm6R0BEpeNT987Zh3LxIAAAR0AtoUeuFHrhR0Bc3qfvnbItR0BEpgQYk3S8h3LyIAAAR0AtnjU/fO2RR0Bc3hR64UeuR0BEpiTdLxqgh3LzIAAAR0Ati8an752yR0Bc2o9cKPXDR0BEpsi0OVgQh3L0IAAAR0AtgYk3S8aoR0Bc2MSbpeNUR0BEpysCDEm6h3L1IAAAR0AtfvnbItDlR0Bc2DEm6XjVR0BEp0vGp++eh3L2IAAAR0Ate+dsi0OWR0Bc152yLQ5WR0BEp2yLQ5WBh3L3IAAAR0AtbAgxJul5R0Bc1LxqfvnbR0BEqBBiTdLyh3L4IAAAR0AtaPXCj1wpR0Bc1Cj1wo9cR0BEqDEm6XjVh3L5IAAAR0AtW6XjU/fPR0Bc0crAgxJvR0BEqJN0vGp/h3L6IAAAR0AtWJN0vGp/R0Bc0TdLxqfwR0BEqLQ5WBBih3L7IAAAR0AtUvGp++dtR0Bc0CDEm6XjR0BEqPXCj1wph3L8IAAAR0AtS8an752yR0Bczul41P30R0BEqTdLxqfwh3L9IAAAR0AtSLQ5WBBiR0BczlYEGJN1R0BEqVgQYk3Th3L+IAAAR0AtRaHKwIMSR0BczcKPXCj2R0BEqXjU/fO2h3L/IAAAR0AtMrAgxJumR0Bcyk3S8an8R0BEqhysCDEnh3IAIQAAR0AtL52yLQ5WR0BcycrAgxJvR0BEqj1wo9cKh3IBIQAAR0AtJWBBiTdMR0BcyAAAAAAAR0BEqp++dsi0h3ICIQAAR0AtIk3S8an8R0Bcx2yLQ5WBR0BEqsCDEm6Yh3IDIQAAR0AtHCj1wo9cR0BcxlYEGJN1R0BEquFHrhR7h3IEIQAAR0AtDtkWhysCR0Bcw/fO2RaHR0BEq2RaHKwIh3IFIQAAR0AtC8an752yR0Bcw3S8an76R0BEq4UeuFHsh3IGIQAAR0AtAYk3S8aoR0Bcwan752yLR0BEq8an752yh3IHIQAAR0As/nbItDlYR0BcwRaHKwIMR0BEq+dsi0OWh3IIIQAAR0As+FHrhR64R0BcwAAAAAAAR0BErCj1wo9ch3IJIQAAR0As7hR64UeuR0BcvjU/fO2RR0BErGp++dsjh3IKIQAAR0As6wIMSbpeR0BcvbItDlYER0BErItDlYEGh3ILIQAAR0As5N0vGp++R0BcvJul41P4R0BErMzMzMzNh3IMIQAAR0As3bItDlYER0Bcu1P3ztkXR0BErQ5WBBiTh3INIQAAR0As2p++dsi0R0BcutDlYEGJR0BErQ5WBBiTh3IOIQAAR0As1HrhR64UR0BcubpeNT99R0BErU/fO2Rah3IPIQAAR0AszlYEGJN1R0BcuLQ5WBBiR0BErXCj1wo9h3IQIQAAR0AsybpeNT99R0Bct++dsi0OR0BErZFocrAhh3IRIQAAR0AsxqfvnbItR0Bct1wo9cKPR0BErbItDlYEh3ISIQAAR0AswIMSbpeNR0BctlYEGJN1R0BErfO2RaHLh3ITIQAAR0AsszMzMzMzR0Bcs/fO2RaHR0BErlYEGJN1h3IUIQAAR0Asr52yLQ5WR0Bcs3S8an76R0BErnbItDlYh3IVIQAAR0AsrQ5WBBiTR0BcsvGp++dtR0BErpeNT987h3IWIQAAR0AspWBBiTdMR0Bcsan752yLR0BErrhR64Ufh3IXIQAAR0Asok3S8an8R0BcsSbpeNT+R0BErtkWhysCh3IYIQAAR0AsnCj1wo9cR0BcsBBiTdLyR0BErxqfvnbJh3IZIQAAR0AslgQYk3S8R0Bcrwo9cKPXR0BErztkWhysh3IaIQAAR0AskWhysCDFR0BcrkWhysCDR0BEr1wo9cKPh3IbIQAAR0AsjlYEGJN1R0BcrcKPXCj2R0BEr3ztkWhzh3IcIQAAR0Asi0OVgQYlR0BcrS8an753R0BEr3ztkWhzh3IdIQAAR0AsiDEm6XjVR0BcrKwIMSbpR0BEr52yLQ5Wh3IeIQAAR0AsgIMSbpeNR0Bcq3S8an76R0BEr987ZFodh3IfIQAAR0Asdsi0OVgQR0Bcqdsi0OVgR0BEsCDEm6Xjh3IgIQAAR0Asc7ZFocrBR0BcqVgQYk3TR0BEsEGJN0vHh3IhIQAAR0AsbItDlYEGR0BcqBBiTdLyR0BEsGJN0vGqh3IiIQAAR0AsaPXCj1wpR0Bcp41P3ztkR0BEsIMSbpeNh3IjIQAAR0AsZeNT987ZR0BcpvnbItDlR0BEsKPXCj1xh3IkIQAAR0AsYtDlYEGJR0BcpnbItDlYR0BEsMSbpeNUh3IlIQAAR0AsXKwIMSbpR0BcpXCj1wo9R0BEsOVgQYk3h3ImIQAAR0AsVP3ztkWiR0BcpCj1wo9cR0BEsSbpeNT+h3InIQAAR0AsUeuFHrhSR0Bco6XjU/fPR0BEsSbpeNT+h3IoIQAAR0AsTtkWhysCR0BcoyLQ5WBCR0BEsUeuFHrhh3IpIQAAR0AsRysCDEm6R0Bcodsi0OVgR0BEsYk3S8aoh3IqIQAAR0AsQ5WBBiTdR0BcoVgQYk3TR0BEsYk3S8aoh3IrIQAAR0AsPXCj1wo9R0BcoFHrhR64R0BEscrAgxJvh3IsIQAAR0AsMrAgxJumR0BcnocrAgxKR0BEsgxJul41h3ItIQAAR0AsL52yLQ5WR0BcngQYk3S8R0BEsi0OVgQZh3IuIQAAR0AsLAgxJul5R0BcnXCj1wo9R0BEsi0OVgQZh3IvIQAAR0AsKPXCj1wpR0BcnO2RaHKwR0BEsk3S8an8h3IwIQAAR0AsF41P3ztkR0BcmhysCDEnR0BEsrAgxJumh3IxIQAAR0AsDMzMzMzNR0BcmGJN0vGqR0BEsxJul41Qh3IyIQAAR0AsCbpeNT99R0Bcl987ZFodR0BEsxJul41Qh3IzIQAAR0AsBiTdLxqgR0Bcl0vGp++eR0BEszMzMzMzh3I0IQAAR0AsAxJul41QR0Bclsi0OVgQR0BEs1P3ztkXh3I1IQAAR0Ar9LxqfvnbR0BclItDlYEGR0BEs5WBBiTdh3I2IQAAR0Ar8an752yLR0BclAgxJul5R0BEs7ZFocrBh3I3IQAAR0Ar41P3ztkXR0BckbpeNT99R0BEtBiTdLxqh3I4IQAAR0Ar0euFHrhSR0BcjvnbItDlR0BEtHrhR64Uh3I5IQAAR0ArzlYEGJN1R0BcjnbItDlYR0BEtJul41P4h3I6IQAAR0Ary0OVgQYlR0BcjeNT987ZR0BEtJul41P4h3I7IQAAR0ArtkWhysCDR0Bcip++dsi0R0BEtR64UeuFh3I8IQAAR0ArsrAgxJumR0BcihysCDEnR0BEtT987ZFoh3I9IQAAR0Arp++dsi0OR0BciGJN0vGqR0BEtYEGJN0vh3I+IQAAR0ArpFocrAgxR0Bch87ZFocrR0BEtYEGJN0vh3I/IQAAR0Arj1wo9cKPR0BchItDlYEGR0BEtgQYk3S8h3JAIQAAR0Ari8an752yR0BchAgxJul5R0BEtiTdLxqgh3JBIQAAR0ArhaHKwIMSR0BcgwIMSbpeR0BEtkWhysCDh3JCIQAAR0ArgIMSbpeNR0Bcgk3S8an8R0BEtmZmZmZmh3JDIQAAR0ArfXCj1wo9R0BcgcrAgxJvR0BEtmZmZmZmh3JEIQAAR0Ardsi0OVgQR0BcgMSbpeNUR0BEtocrAgxKh3JFIQAAR0ArcCDEm6XjR0Bcf752yLQ5R0BEtqfvnbIth3JGIQAAR0Ara4UeuFHsR0Bcfwo9cKPXR0BEtsi0OVgQh3JHIQAAR0ArZ++dsi0OR0BcfocrAgxKR0BEtul41P30h3JIIQAAR0ArYUeuFHrhR0BcfYEGJN0vR0BEtwo9cKPXh3JJIQAAR0ArXjU/fO2RR0BcfP3ztkWiR0BEtwo9cKPXh3JKIQAAR0ArWZmZmZmaR0BcfEm6XjU/R0BEtysCDEm6h3JLIQAAR0ArUvGp++dtR0Bce0OVgQYlR0BEt0vGp++eh3JMIQAAR0ArT1wo9cKPR0BcesCDEm6YR0BEt2yLQ5WBh3JNIQAAR0ArSLQ5WBBiR0BcebpeNT99R0BEt41P3ztkh3JOIQAAR0ArRBiTdLxqR0BceQYk3S8bR0BEt41P3ztkh3JPIQAAR0ArQIMSbpeNR0BceIMSbpeNR0BEt64UeuFIh3JQIQAAR0ArOdsi0OVgR0Bcd3ztkWhzR0BEt87ZFocrh3JRIQAAR0ArNkWhysCDR0BcdvnbItDlR0BEt++dsi0Oh3JSIQAAR0ArKwIMSbpeR0BcdT987ZFoR0BEuBBiTdLyh3JTIQAAR0ArJ2yLQ5WBR0BcdLxqfvnbR0BEuDEm6XjVh3JUIQAAR0ArJFocrAgxR0BcdDlYEGJOR0BEuDEm6XjVh3JVIQAAR0ArIMSbpeNUR0Bcc8an752yR0BEuFHrhR64h3JWIQAAR0ArHCj1wo9cR0BccxJul41QR0BEuHKwIMSch3JXIQAAR0ArGJN0vGp/R0Bcco9cKPXDR0BEuHKwIMSch3JYIQAAR0ArEeuFHrhSR0BccYk3S8aoR0BEuJN0vGp/h3JZIQAAR0ArC0OVgQYlR0BccIMSbpeNR0BEuLQ5WBBih3JaIQAAR0ArBqfvnbItR0Bcb87ZFocrR0BEuNT987ZGh3JbIQAAR0ArAxJul41QR0Bcb0vGp++eR0BEuNT987ZGh3JcIQAAR0Aq/3ztkWhzR0Bcbsi0OVgQR0BEuPXCj1wph3JdIQAAR0Aq/Gp++dsjR0BcbkWhysCDR0BEuPXCj1wph3JeIQAAR0Aq+NT987ZGR0BcbdLxqfvnR0BEuRaHKwIMh3JfIQAAR0Aq9DlYEGJOR0BcbR64UeuFR0BEuRaHKwIMh3JgIQAAR0Aq8KPXCj1xR0BcbJul41P4R0BEuTdLxqfwh3JhIQAAR0Aq6XjU/fO2R0Bca5WBBiTdR0BEuVgQYk3Th3JiIQAAR0Aq5mZmZmZmR0BcaxJul41QR0BEuVgQYk3Th3JjIQAAR0Aq4tDlYEGJR0Bcao9cKPXDR0BEuXjU/fO2h3JkIQAAR0Aq3jU/fO2RR0Bcadsi0OVgR0BEuXjU/fO2h3JlIQAAR0Aq2p++dsi0R0BcaVgQYk3TR0BEuZmZmZmah3JmIQAAR0Aq1wo9cKPXR0BcaNT987ZGR0BEuZmZmZmah3JnIQAAR0Aq0/fO2RaHR0BcaGJN0vGqR0BEubpeNT99h3JoIQAAR0Aq0GJN0vGqR0BcZ987ZFodR0BEubpeNT99h3JpIQAAR0AqzMzMzMzNR0BcZ1wo9cKPR0BEudsi0OVgh3JqIQAAR0AqxJul41P4R0BcZiTdLxqgR0BEufvnbItEh3JrIQAAR0AqwQYk3S8bR0BcZaHKwIMSR0BEufvnbItEh3JsIQAAR0AqvfO2RaHLR0BcZS8an753R0BEuhysCDEnh3JtIQAAR0Aqul41P3zuR0BcZKwIMSbpR0BEuhysCDEnh3JuIQAAR0AqtcKPXCj2R0BcY/fO2RaHR0BEuj1wo9cKh3JvIQAAR0Aqsi0OVgQZR0BcY3S8an76R0BEuj1wo9cKh3JwIQAAR0AqqwIMSbpeR0BcYm6XjU/fR0BEul41P3zuh3JxIQAAR0Aqp++dsi0OR0BcYfvnbItER0BEun752yLRh3JyIQAAR0AqpFocrAgxR0BcYXjU/fO2R0BEun752yLRh3JzIQAAR0AqnztkWhysR0BcYMSbpeNUR0BEup++dsi0h3J0IQAAR0AqnCj1wo9cR0BcYEGJN0vHR0BEup++dsi0h3J1IQAAR0AqmJN0vGp/R0BcX752yLQ5R0BEusCDEm6Yh3J2IQAAR0AqlP3ztkWiR0BcXztkWhysR0BEusCDEm6Yh3J3IQAAR0AqkWhysCDFR0BcXsi0OVgQR0BEuuFHrhR7h3J4IQAAR0AqjlYEGJN1R0BcXkWhysCDR0BEuuFHrhR7h3J5IQAAR0AqiTdLxqfwR0BcXZFocrAhR0BEuwIMSbpeh3J6IQAAR0AqggxJul41R0BcXItDlYEGR0BEuwIMSbpeh3J7IQAAR0AqfnbItDlYR0BcXBiTdLxqR0BEuyLQ5WBCh3J8IQAAR0Aqe2RaHKwIR0BcW5WBBiTdR0BEuyLQ5WBCh3J9IQAAR0AqdkWhysCDR0BcWuFHrhR7R0BEu0OVgQYlh3J+IQAAR0AqcrAgxJumR0BcWl41P3zuR0BEu0OVgQYlh3J/IQAAR0AqbxqfvnbJR0BcWdsi0OVgR0BEu2RaHKwIh3KAIQAAR0AqbAgxJul5R0BcWWhysCDFR0BEu2RaHKwIh3KBIQAAR0AqZN0vGp++R0BcWHKwIMScR0BEu4UeuFHsh3KCIQAAR0AqXKwIMSbpR0BcVztkWhysR0BEu6XjU/fPh3KDIQAAR0AqWRaHKwIMR0BcVrhR64UfR0BEu6XjU/fPh3KEIQAAR0AqVYEGJN0vR0BcVjU/fO2RR0BEu8an752yh3KFIQAAR0AqUeuFHrhSR0BcVcKPXCj2R0BEu8an752yh3KGIQAAR0AqTMzMzMzNR0BcVQ5WBBiTR0BEu+dsi0OWh3KHIQAAR0AqSTdLxqfwR0BcVItDlYEGR0BEu+dsi0OWh3KIIQAAR0AqQo9cKPXDR0BcU4UeuFHsR0BEvAgxJul5h3KJIQAAR0AqPvnbItDlR0BcUxJul41QR0BEvAgxJul5h3KKIQAAR0AqO2RaHKwIR0BcUo9cKPXDR0BEvCj1wo9ch3KLIQAAR0AqNkWhysCDR0BcUeuFHrhSR0BEvCj1wo9ch3KMIQAAR0AqMrAgxJumR0BcUWhysCDFR0BEvEm6XjU/h3KNIQAAR0AqLxqfvnbJR0BcUOVgQYk3R0BEvEm6XjU/h3KOIQAAR0AqLAgxJul5R0BcUGJN0vGqR0BEvEm6XjU/h3KPIQAAR0AqJN0vGp++R0BcT2yLQ5WBR0BEvGp++dsjh3KQIQAAR0AqH752yLQ5R0BcTrhR64UfR0BEvItDlYEGh3KRIQAAR0AqGJN0vGp/R0BcTcKPXCj2R0BEvItDlYEGh3KSIQAAR0AqCTdLxqfwR0BcS5WBBiTdR0BEvMzMzMzNh3KTIQAAR0AqBR64UeuFR0BcSxJul41QR0BEvMzMzMzNh3KUIQAAR0Ap+uFHrhR7R0BcSan752yLR0BEvO2RaHKwh3KVIQAAR0Ap8i0OVgQZR0BcSHKwIMScR0BEvQ5WBBiTh3KWIQAAR0Ap7peNT987R0BcR++dsi0OR0BEvS8an753h3KXIQAAR0Ap3rhR64UfR0BcRdLxqfvnR0BEvU/fO2Rah3KYIQAAR0Apx64UeuFIR0BcQrAgxJumR0BEvZFocrAhh3KZIQAAR0ApxBiTdLxqR0BcQi0OVgQZR0BEvbItDlYEh3KaIQAAR0AptDlYEGJOR0BcQBBiTdLyR0BEvdLxqfvnh3KbIQAAR0AprQ5WBBiTR0BcPxqfvnbJR0BEvfO2RaHLh3KcIQAAR0ApqXjU/fO2R0BcPpeNT987R0BEvfO2RaHLh3KdIQAAR0Apok3S8an8R0BcPaHKwIMSR0BEvhR64Ueuh3KeIQAAR0ApnS8an753R0BcPO2RaHKwR0BEvhR64Ueuh3KfIQAAR0ApmZmZmZmaR0BcPGp++dsjR0BEvhR64Ueuh3KgIQAAR0Apkm6XjU/fR0BcO3S8an76R0BEvjU/fO2Rh3KhIQAAR0ApjtkWhysCR0BcOwIMSbpeR0BEvjU/fO2Rh3KiIQAAR0ApggxJul41R0BcOVgQYk3TR0BEvlYEGJN1h3KjIQAAR0ApfnbItDlYR0BcONT987ZGR0BEvlYEGJN1h3KkIQAAR0Apd0vGp++eR0BcN++dsi0OR0BEvnbItDlYh3KlIQAAR0Apci0OVgQZR0BcNztkWhysR0BEvnbItDlYh3KmIQAAR0ApbpeNT987R0BcNrhR64UfR0BEvpeNT987h3KnIQAAR0ApZ2yLQ5WBR0BcNcKPXCj2R0BEvpeNT987h3KoIQAAR0ApYEGJN0vHR0BcNMzMzMzNR0BEvrhR64Ufh3KpIQAAR0ApWyLQ5WBCR0BcNCj1wo9cR0BEvrhR64Ufh3KqIQAAR0ApVwo9cKPXR0BcM6XjU/fPR0BEvtkWhysCh3KrIQAAR0ApU3S8an76R0BcMyLQ5WBCR0BEvtkWhysCh3KsIQAAR0ApT987ZFodR0BcMrAgxJumR0BEvtkWhysCh3KtIQAAR0ApTEm6XjU/R0BcMj1wo9cKR0BEvtkWhysCh3KuIQAAR0ApRysCDEm6R0BcMYk3S8aoR0BEvvnbItDlh3KvIQAAR0ApO+dsi0OWR0BcMBBiTdLyR0BEvvnbItDlh3KwIQAAR0ApOFHrhR64R0BcL52yLQ5WR0BEvxqfvnbJh3KxIQAAR0ApNLxqfvnbR0BcLysCDEm6R0BEvxqfvnbJh3KyIQAAR0ApL52yLQ5WR0BcLnbItDlYR0BEvxqfvnbJh3KzIQAAR0ApK4UeuFHsR0BcLfO2RaHLR0BEvztkWhysh3K0IQAAR0ApJFocrAgxR0BcLP3ztkWiR0BEvztkWhysh3K1IQAAR0ApIMSbpeNUR0BcLItDlYEGR0BEvztkWhysh3K2IQAAR0ApHS8an753R0BcLBiTdLxqR0BEv1wo9cKPh3K3IQAAR0ApE/fO2RaHR0BcKvGp++dtR0BEv1wo9cKPh3K4IQAAR0ApEGJN0vGqR0BcKm6XjU/fR0BEv1wo9cKPh3K5IQAAR0ApDMzMzMzNR0BcKfvnbItER0BEv3ztkWhzh3K6IQAAR0ApCTdLxqfwR0BcKXjU/fO2R0BEv3ztkWhzh3K7IQAAR0ApA5WBBiTdR0BcKNT987ZGR0BEv3ztkWhzh3K8IQAAR0ApAAAAAAAAR0BcKFHrhR64R0BEv3ztkWhzh3K9IQAAR0Ao+FHrhR64R0BcJ1wo9cKPR0BEv52yLQ5Wh3K+IQAAR0Ao9LxqfvnbR0BcJul41P30R0BEv52yLQ5Wh3K/IQAAR0Ao8SbpeNT+R0BcJnbItDlYR0BEv52yLQ5Wh3LAIQAAR0Ao7AgxJul5R0BcJcKPXCj2R0BEv752yLQ5h3LBIQAAR0Ao6HKwIMScR0BcJU/fO2RaR0BEv752yLQ5h3LCIQAAR0Ao5FocrAgxR0BcJMzMzMzNR0BEv752yLQ5h3LDIQAAR0Ao4MSbpeNUR0BcJFocrAgxR0BEv752yLQ5h3LEIQAAR0Ao3S8an753R0BcI9cKPXCkR0BEv987ZFodh3LFIQAAR0Ao2ZmZmZmaR0BcI2RaHKwIR0BEv987ZFodh3LGIQAAR0Ao2BBiTdLyR0BcIzMzMzMzR0BEv987ZFodh3LHIQAAR0Ao0/fO2RaHR0BcIrAgxJumR0BEv987ZFodh3LIIQAAR0AozEm6XjU/R0BcIbpeNT99R0BEv987ZFodh3LJIQAAR0AoyLQ5WBBiR0BcIUeuFHrhR0BEwAAAAAAAh3LKIQAAR0AoxR64UeuFR0BcINT987ZGR0BEwAAAAAAAh3LLIQAAR0AowAAAAAAAR0BcIDEm6XjVR0BEwAAAAAAAh3LMIQAAR0Aou+dsi0OWR0BcH64UeuFIR0BEwAAAAAAAh3LNIQAAR0AouFHrhR64R0BcHysCDEm6R0BEwCDEm6Xjh3LOIQAAR0AotLxqfvnbR0BcHrhR64UfR0BEwCDEm6Xjh3LPIQAAR0AosKPXCj1xR0BcHkWhysCDR0BEwCDEm6Xjh3LQIQAAR0AorQ5WBBiTR0BcHdLxqfvnR0BEwCDEm6Xjh3LRIQAAR0Aoo9cKPXCkR0BcHKwIMSbpR0BEwEGJN0vHh3LSIQAAR0AooEGJN0vHR0BcHCj1wo9cR0BEwEGJN0vHh3LTIQAAR0AonKwIMSbpR0BcG7ZFocrBR0BEwEGJN0vHh3LUIQAAR0AomJN0vGp/R0BcG0OVgQYlR0BEwEGJN0vHh3LVIQAAR0Aok3S8an76R0BcGo9cKPXDR0BEwEGJN0vHh3LWIQAAR0Aoj1wo9cKPR0BcGhysCDEnR0BEwGJN0vGqh3LXIQAAR0AoiDEm6XjVR0BcGSbpeNT+R0BEwGJN0vGqh3LYIQAAR0AohBiTdLxqR0BcGLQ5WBBiR0BEwGJN0vGqh3LZIQAAR0AogIMSbpeNR0BcGDEm6XjVR0BEwGJN0vGqh3LaIQAAR0Aoe2RaHKwIR0BcF41P3ztkR0BEwGJN0vGqh3LbIQAAR0Aod0vGp++eR0BcFxqfvnbJR0BEwIMSbpeNh3LcIQAAR0Aoc7ZFocrBR0BcFpeNT987R0BEwIMSbpeNh3LdIQAAR0Aob52yLQ5WR0BcFiTdLxqgR0BEwIMSbpeNh3LeIQAAR0AobAgxJul5R0BcFbItDlYER0BEwIMSbpeNh3LfIQAAR0AoaHKwIMScR0BcFS8an753R0BEwIMSbpeNh3LgIQAAR0AoYtDlYEGJR0BcFItDlYEGR0BEwKPXCj1xh3LhIQAAR0AoWyLQ5WBCR0BcE5WBBiTdR0BEwKPXCj1xh3LiIQAAR0AoV41P3ztkR0BcEyLQ5WBCR0BEwKPXCj1xh3LjIQAAR0AoU/fO2RaHR0BcErAgxJumR0BEwKPXCj1xh3LkIQAAR0AoTlYEGJN1R0BcEfvnbItER0BEwKPXCj1xh3LlIQAAR0AoSj1wo9cKR0BcEYk3S8aoR0BEwKPXCj1xh3LmIQAAR0AoRqfvnbItR0BcERaHKwIMR0BEwMSbpeNUh3LnIQAAR0AoQxJul41QR0BcEJN0vGp/R0BEwMSbpeNUh3LoIQAAR0AoPvnbItDlR0BcECDEm6XjR0BEwMSbpeNUh3LpIQAAR0AoO2RaHKwIR0BcD64UeuFIR0BEwMSbpeNUh3LqIQAAR0AoMi0OVgQZR0BcDocrAgxKR0BEwMSbpeNUh3LrIQAAR0AoLhR64UeuR0BcDhR64UeuR0BEwOVgQYk3h3LsIQAAR0AoKn752yLRR0BcDaHKwIMSR0BEwOVgQYk3h3LtIQAAR0AoJmZmZmZmR0BcDR64UeuFR0BEwOVgQYk3h3LuIQAAR0AoItDlYEGJR0BcDKwIMSbpR0BEwOVgQYk3h3LvIQAAR0AoHS8an753R0BcDAgxJul5R0BEwOVgQYk3h3LwIQAAR0AoFYEGJN0vR0BcCxJul41QR0BEwOVgQYk3h3LxIQAAR0AoEeuFHrhSR0BcCp++dsi0R0BEwOVgQYk3h3LyIQAAR0AoDdLxqfvnR0BcCi0OVgQZR0BEwQYk3S8bh3LzIQAAR0AoBJul41P4R0BcCQYk3S8bR0BEwQYk3S8bh3L0IQAAR0AoAIMSbpeNR0BcCJN0vGp/R0BEwQYk3S8bh3L1IQAAR0An9T987ZFoR0BcBysCDEm6R0BEwQYk3S8bh3L2IQAAR0An752yLQ5WR0BcBocrAgxKR0BEwQYk3S8bh3L3IQAAR0An5++dsi0OR0BcBZFocrAhR0BEwSbpeNT+h3L4IQAAR0An1wo9cKPXR0BcA5WBBiTdR0BEwSbpeNT+h3L5IQAAR0An0vGp++dtR0BcAxJul41QR0BEwSbpeNT+h3L6IQAAR0Anx64UeuFIR0BcAbpeNT99R0BEwSbpeNT+h3L7IQAAR0Anul41P3zuR0BcACDEm6XjR0BEwUeuFHrhh3L8IQAAR0AntkWhysCDR0Bb/64UeuFIR0BEwUeuFHrhh3L9IQAAR0AnrpeNT987R0Bb/si0OVgQR0BEwUeuFHrhh3L+IQAAR0AnqPXCj1wpR0Bb/hR64UeuR0BEwUeuFHrhh3L/IQAAR0AnnS8an753R0Bb/KwIMSbpR0BEwUeuFHrhh3IAIgAAR0Anj987ZFodR0Bb+yLQ5WBCR0BEwUeuFHrhh3IBIgAAR0AnjEm6XjU/R0Bb+rAgxJumR0BEwWhysCDFh3ICIgAAR0AngIMSbpeNR0Bb+UeuFHrhR0BEwWhysCDFh3IDIgAAR0AneuFHrhR7R0Bb+KPXCj1xR0BEwWhysCDFh3IEIgAAR0AnczMzMzMzR0Bb9752yLQ5R0BEwWhysCDFh3IFIgAAR0AnbxqfvnbJR0Bb90vGp++eR0BEwWhysCDFh3IGIgAAR0AnZ2yLQ5WBR0Bb9mZmZmZmR0BEwWhysCDFh3IHIgAAR0AnYcrAgxJvR0Bb9cKPXCj2R0BEwWhysCDFh3IIIgAAR0AnXbItDlYER0Bb9T987ZFoR0BEwWhysCDFh3IJIgAAR0AnVgQYk3S8R0Bb9FocrAgxR0BEwWhysCDFh3IKIgAAR0AnUeuFHrhSR0Bb8+dsi0OWR0BEwWhysCDFh3ILIgAAR0AnTdLxqfvnR0Bb83S8an76R0BEwWhysCDFh3IMIgAAR0AnRJul41P4R0Bb8l41P3zuR0BEwWhysCDFh3INIgAAR0AnQIMSbpeNR0Bb8dsi0OVgR0BEwWhysCDFh3IOIgAAR0AnPGp++dsjR0Bb8WhysCDFR0BEwWhysCDFh3IPIgAAR0AnONT987ZGR0Bb8PXCj1wpR0BEwWhysCDFh3IQIgAAR0AnMzMzMzMzR0Bb8FHrhR64R0BEwWhysCDFh3IRIgAAR0AnLxqfvnbJR0Bb7987ZFodR0BEwWhysCDFh3ISIgAAR0AnJul41P30R0Bb7vnbItDlR0BEwYk3S8aoh3ITIgAAR0AnI1P3ztkXR0Bb7ocrAgxKR0BEwYk3S8aoh3IUIgAAR0AnHztkWhysR0Bb7hR64UeuR0BEwYk3S8aoh3IVIgAAR0AnGZmZmZmaR0Bb7XCj1wo9R0BEwYk3S8aoh3IWIgAAR0AnFYEGJN0vR0Bb7P3ztkWiR0BEwYk3S8aoh3IXIgAAR0AnEWhysCDFR0Bb7HrhR64UR0BEwYk3S8aoh3IYIgAAR0AnDdLxqfvnR0Bb7AgxJul5R0BEwYk3S8aoh3IZIgAAR0AnCbpeNT99R0Bb65WBBiTdR0BEwYk3S8aoh3IaIgAAR0AnBBiTdLxqR0Bb6vGp++dtR0BEwYk3S8aoh3IbIgAAR0Am+FHrhR64R0Bb6ZmZmZmaR0BEwYk3S8aoh3IcIgAAR0Am9DlYEGJOR0Bb6SbpeNT+R0BEwYk3S8aoh3IdIgAAR0Am8CDEm6XjR0Bb6LQ5WBBiR0BEwYk3S8aoh3IeIgAAR0Am6n752yLRR0Bb6BBiTdLyR0BEwYk3S8aoh3IfIgAAR0Am5mZmZmZmR0Bb552yLQ5WR0BEwYk3S8aoh3IgIgAAR0Am4k3S8an8R0Bb5ysCDEm6R0BEwYk3S8aoh3IhIgAAR0Am3rhR64UfR0Bb5rhR64UfR0BEwYk3S8aoh3IiIgAAR0Am2p++dsi0R0Bb5kWhysCDR0BEwYk3S8aoh3IjIgAAR0Am1ocrAgxKR0Bb5dLxqfvnR0BEwWhysCDFh3IkIgAAR0AmzMzMzMzNR0Bb5LxqfvnbR0BEwWhysCDFh3IlIgAAR0AmyLQ5WBBiR0Bb5DlYEGJOR0BEwWhysCDFh3ImIgAAR0AmxJul41P4R0Bb49cKPXCkR0BEwWhysCDFh3InIgAAR0AmwQYk3S8bR0Bb42RaHKwIR0BEwWhysCDFh3IoIgAAR0Amu2RaHKwIR0Bb4sCDEm6YR0BEwWhysCDFh3IpIgAAR0Amt0vGp++eR0Bb4k3S8an8R0BEwWhysCDFh3IqIgAAR0AmrxqfvnbJR0Bb4VgQYk3TR0BEwWhysCDFh3IrIgAAR0AmqwIMSbpeR0Bb4OVgQYk3R0BEwWhysCDFh3IsIgAAR0Ampul41P30R0Bb4IMSbpeNR0BEwWhysCDFh3ItIgAAR0AmoUeuFHrhR0Bb3987ZFodR0BEwWhysCDFh3IuIgAAR0AmnS8an753R0Bb32yLQ5WBR0BEwWhysCDFh3IvIgAAR0AmmRaHKwIMR0Bb3ul41P30R0BEwWhysCDFh3IwIgAAR0AmlYEGJN0vR0Bb3nbItDlYR0BEwWhysCDFh3IxIgAAR0AmkWhysCDFR0Bb3hR64UeuR0BEwWhysCDFh3IyIgAAR0AmjU/fO2RaR0Bb3aHKwIMSR0BEwWhysCDFh3IzIgAAR0Amh64UeuFIR0Bb3P3ztkWiR0BEwWhysCDFh3I0IgAAR0Amf3ztkWhzR0Bb3BiTdLxqR0BEwWhysCDFh3I1IgAAR0Ame2RaHKwIR0Bb26XjU/fPR0BEwWhysCDFh3I2IgAAR0Amd0vGp++eR0Bb2zMzMzMzR0BEwWhysCDFh3I3IgAAR0Amcan752yLR0Bb2o9cKPXDR0BEwWhysCDFh3I4IgAAR0AmbZFocrAhR0Bb2hysCDEnR0BEwUeuFHrhh3I5IgAAR0AmaXjU/fO2R0Bb2an752yLR0BEwUeuFHrhh3I6IgAAR0AmZWBBiTdMR0Bb2TdLxqfwR0BEwUeuFHrhh3I7IgAAR0AmYUeuFHrhR0Bb2MSbpeNUR0BEwUeuFHrhh3I8IgAAR0AmXS8an753R0Bb2FHrhR64R0BEwUeuFHrhh3I9IgAAR0AmU3S8an76R0Bb1ztkWhysR0BEwUeuFHrhh3I+IgAAR0AmT1wo9cKPR0Bb1si0OVgQR0BEwUeuFHrhh3I/IgAAR0AmS0OVgQYlR0Bb1lYEGJN1R0BEwUeuFHrhh3JAIgAAR0AmRysCDEm6R0Bb1eNT987ZR0BEwUeuFHrhh3JBIgAAR0AmQ5WBBiTdR0Bb1XCj1wo9R0BEwUeuFHrhh3JCIgAAR0AmPXCj1wo9R0Bb1MzMzMzNR0BEwUeuFHrhh3JDIgAAR0AmNT987ZFoR0Bb0/fO2RaHR0BEwSbpeNT+h3JEIgAAR0AmMSbpeNT+R0Bb04UeuFHsR0BEwSbpeNT+h3JFIgAAR0AmLQ5WBBiTR0Bb0xJul41QR0BEwSbpeNT+h3JGIgAAR0AmI1P3ztkXR0Bb0fvnbItER0BEwSbpeNT+h3JHIgAAR0AmHztkWhysR0Bb0Yk3S8aoR0BEwSbpeNT+h3JIIgAAR0AmGyLQ5WBCR0Bb0RaHKwIMR0BEwSbpeNT+h3JJIgAAR0AmFwo9cKPXR0Bb0KPXCj1xR0BEwSbpeNT+h3JKIgAAR0AmEvGp++dtR0Bb0DEm6XjVR0BEwSbpeNT+h3JLIgAAR0AmDU/fO2RaR0Bbz41P3ztkR0BEwSbpeNT+h3JMIgAAR0AmBJul41P4R0BbzrhR64UfR0BEwQYk3S8bh3JNIgAAR0AmAQYk3S8bR0BbzkWhysCDR0BEwQYk3S8bh3JOIgAAR0Al/O2RaHKwR0BbzdLxqfvnR0BEwQYk3S8bh3JPIgAAR0Al8rAgxJumR0BbzLxqfvnbR0BEwQYk3S8bh3JQIgAAR0Al7peNT987R0BbzEm6XjU/R0BEwQYk3S8bh3JRIgAAR0Al6n752yLRR0Bby9cKPXCkR0BEwQYk3S8bh3JSIgAAR0Al5mZmZmZmR0Bby3S8an76R0BEwQYk3S8bh3JTIgAAR0Al4k3S8an8R0BbywIMSbpeR0BEwOVgQYk3h3JUIgAAR0Al0/fO2RaHR0BbyXjU/fO2R0BEwOVgQYk3h3JVIgAAR0Aly8an752yR0BbyJN0vGp/R0BEwOVgQYk3h3JWIgAAR0AlyDEm6XjVR0BbyDEm6XjVR0BEwOVgQYk3h3JXIgAAR0AlwgxJul41R0Bbx41P3ztkR0BEwMSbpeNUh3JYIgAAR0Aludsi0OVgR0BbxqfvnbItR0BEwMSbpeNUh3JZIgAAR0Alsan752yLR0BbxcKPXCj2R0BEwMSbpeNUh3JaIgAAR0Alp2yLQ5WBR0BbxLxqfvnbR0BEwMSbpeNUh3JbIgAAR0Alo1P3ztkXR0BbxEm6XjU/R0BEwKPXCj1xh3JcIgAAR0Allwo9cKPXR0BbwwIMSbpeR0BEwKPXCj1xh3JdIgAAR0AlkOVgQYk3R0Bbwl41P3zuR0BEwKPXCj1xh3JeIgAAR0AliLQ5WBBiR0BbwXjU/fO2R0BEwIMSbpeNh3JfIgAAR0AlhBiTdLxqR0BbwQYk3S8bR0BEwIMSbpeNh3JgIgAAR0AldkWhysCDR0Bbv41P3ztkR0BEwIMSbpeNh3JhIgAAR0Alci0OVgQZR0BbvxqfvnbJR0BEwIMSbpeNh3JiIgAAR0AlZWBBiTdMR0BbvdLxqfvnR0BEwGJN0vGqh3JjIgAAR0AlX752yLQ5R0BbvS8an753R0BEwGJN0vGqh3JkIgAAR0AlVwo9cKPXR0BbvEm6XjU/R0BEwGJN0vGqh3JlIgAAR0AlUvGp++dtR0Bbu9cKPXCkR0BEwEGJN0vHh3JmIgAAR0AlSsCDEm6YR0BbuwIMSbpeR0BEwEGJN0vHh3JnIgAAR0AlRJul41P4R0Bbul41P3zuR0BEwEGJN0vHh3JoIgAAR0AlQIMSbpeNR0BbufvnbItER0BEwEGJN0vHh3JpIgAAR0AlN87ZFocrR0BbuRaHKwIMR0BEwCDEm6Xjh3JqIgAAR0AlL52yLQ5WR0BbuEGJN0vHR0BEwCDEm6Xjh3JrIgAAR0AlJWBBiTdMR0BbtysCDEm6R0BEwAAAAAAAh3JsIgAAR0AlGRaHKwIMR0BbteNT987ZR0BEwAAAAAAAh3JtIgAAR0AlEvGp++dtR0BbtT987ZFoR0BEwAAAAAAAh3JuIgAAR0AlCsCDEm6YR0BbtGp++dsjR0BEv987ZFodh3JvIgAAR0AlBiTdLxqgR0Bbs/fO2RaHR0BEv987ZFodh3JwIgAAR0AlAgxJul41R0Bbs4UeuFHsR0BEv987ZFodh3JxIgAAR0Ak/fO2RaHLR0BbsyLQ5WBCR0BEv987ZFodh3JyIgAAR0Ak987ZFocrR0Bbsn752yLRR0BEv752yLQ5h3JzIgAAR0Ak87ZFocrBR0BbsgxJul41R0BEv752yLQ5h3J0IgAAR0Ak6wIMSbpeR0BbsTdLxqfwR0BEv752yLQ5h3J1IgAAR0Ak5ul41P30R0BbsMSbpeNUR0BEv52yLQ5Wh3J2IgAAR0Ak4tDlYEGJR0BbsFHrhR64R0BEv52yLQ5Wh3J3IgAAR0Ak2JN0vGp/R0Bbr0vGp++eR0BEv52yLQ5Wh3J4IgAAR0Ak0/fO2RaHR0BbrtkWhysCR0BEv3ztkWhzh3J5IgAAR0Akz987ZFodR0BbrnbItDlYR0BEv3ztkWhzh3J6IgAAR0Aky8an752yR0BbrgQYk3S8R0BEv3ztkWhzh3J7IgAAR0AkxaHKwIMSR0BbrXCj1wo9R0BEv3ztkWhzh3J8IgAAR0AkwYk3S8aoR0BbrP3ztkWiR0BEv1wo9cKPh3J9IgAAR0AkuNT987ZGR0BbrBiTdLxqR0BEv1wo9cKPh3J+IgAAR0AktLxqfvnbR0Bbq7ZFocrBR0BEv1wo9cKPh3J/IgAAR0AksKPXCj1xR0Bbq0OVgQYlR0BEv1wo9cKPh3KAIgAAR0AkpeNT987ZR0Bbqj1wo9cKR0BEvztkWhysh3KBIgAAR0AkocrAgxJvR0BbqcrAgxJvR0BEvztkWhysh3KCIgAAR0AknbItDlYER0BbqVgQYk3TR0BEvxqfvnbJh3KDIgAAR0AkmRaHKwIMR0BbqPXCj1wpR0BEvxqfvnbJh3KEIgAAR0AklP3ztkWiR0BbqIMSbpeNR0BEvxqfvnbJh3KFIgAAR0AkhiTdLxqgR0Bbpwo9cKPXR0BEvvnbItDlh3KGIgAAR0AkggxJul41R0BbppeNT987R0BEvvnbItDlh3KHIgAAR0AkffO2RaHLR0BbpjU/fO2RR0BEvvnbItDlh3KIIgAAR0Akd87ZFocrR0BbpaHKwIMSR0BEvtkWhysCh3KJIgAAR0Akc7ZFocrBR0BbpS8an753R0BEvtkWhysCh3KKIgAAR0AkbxqfvnbJR0BbpLxqfvnbR0BEvtkWhysCh3KLIgAAR0AkawIMSbpeR0BbpEm6XjU/R0BEvtkWhysCh3KMIgAAR0AkZul41P30R0Bbo+dsi0OWR0BEvrhR64Ufh3KNIgAAR0AkYk3S8an8R0Bbo3S8an76R0BEvrhR64Ufh3KOIgAAR0AkU3S8an76R0BbofvnbItER0BEvpeNT987h3KPIgAAR0AkT1wo9cKPR0BboZmZmZmaR0BEvpeNT987h3KQIgAAR0AkS0OVgQYlR0BboSbpeNT+R0BEvpeNT987h3KRIgAAR0AkQIMSbpeNR0BboCDEm6XjR0BEvnbItDlYh3KSIgAAR0AkN87ZFocrR0Bbn0vGp++eR0BEvlYEGJN1h3KTIgAAR0AkM7ZFocrBR0BbntkWhysCR0BEvlYEGJN1h3KUIgAAR0AkL52yLQ5WR0BbnnbItDlYR0BEvlYEGJN1h3KVIgAAR0AkJN0vGp++R0BbnXCj1wo9R0BEvjU/fO2Rh3KWIgAAR0AkIMSbpeNUR0BbnP3ztkWiR0BEvjU/fO2Rh3KXIgAAR0AkHCj1wo9cR0BbnItDlYEGR0BEvhR64Ueuh3KYIgAAR0AkGBBiTdLyR0BbnCj1wo9cR0BEvhR64Ueuh3KZIgAAR0AkE/fO2RaHR0Bbm7ZFocrBR0BEvhR64Ueuh3KaIgAAR0AkDU/fO2RaR0BbmyLQ5WBCR0BEvfO2RaHLh3KbIgAAR0AkBJul41P4R0Bbmj1wo9cKR0BEvfO2RaHLh3KcIgAAR0AkAIMSbpeNR0Bbmdsi0OVgR0BEvfO2RaHLh3KdIgAAR0Aj/Gp++dsjR0BbmWhysCDFR0BEvdLxqfvnh3KeIgAAR0Aj8an752yLR0BbmGJN0vGqR0BEvdLxqfvnh3KfIgAAR0Aj7Q5WBBiTR0BbmAAAAAAAR0BEvbItDlYEh3KgIgAAR0Aj6PXCj1wpR0Bbl41P3ztkR0BEvbItDlYEh3KhIgAAR0Aj5N0vGp++R0BblysCDEm6R0BEvbItDlYEh3KiIgAAR0Aj4EGJN0vHR0BblrhR64UfR0BEvZFocrAhh3KjIgAAR0Aj0WhysCDFR0BblU/fO2RaR0BEvXCj1wo9h3KkIgAAR0AjzU/fO2RaR0BblN0vGp++R0BEvXCj1wo9h3KlIgAAR0AjyLQ5WBBiR0BblHrhR64UR0BEvXCj1wo9h3KmIgAAR0AjxJul41P4R0BblAgxJul5R0BEvU/fO2Rah3KnIgAAR0AjvnbItDlYR0Bbk3S8an76R0BEvU/fO2Rah3KoIgAAR0AjtT987ZFoR0Bbkp++dsi0R0BEvS8an753h3KpIgAAR0AjsSbpeNT+R0Bbki0OVgQZR0BEvS8an753h3KqIgAAR0AjrQ5WBBiTR0BbkcrAgxJvR0BEvS8an753h3KrIgAAR0AjnbItDlYER0BbkFHrhR64R0BEvO2RaHKwh3KsIgAAR0AjmZmZmZmaR0Bbj++dsi0OR0BEvO2RaHKwh3KtIgAAR0AjlP3ztkWiR0Bbj3ztkWhzR0BEvO2RaHKwh3KuIgAAR0AjkOVgQYk3R0BbjxqfvnbJR0BEvMzMzMzNh3KvIgAAR0Ajij1wo9cKR0BbjnbItDlYR0BEvMzMzMzNh3KwIgAAR0AjgYk3S8aoR0BbjaHKwIMSR0BEvKwIMSbph3KxIgAAR0AjeNT987ZGR0BbjMzMzMzNR0BEvKwIMSbph3KyIgAAR0AjbhR64UeuR0Bbi9cKPXCkR0BEvItDlYEGh3KzIgAAR0AjafvnbItER0Bbi2RaHKwIR0BEvGp++dsjh3K0IgAAR0AjXKwIMSbpR0Bbii0OVgQZR0BEvEm6XjU/h3K1IgAAR0AjTU/fO2RaR0BbiLQ5WBBiR0BEvCj1wo9ch3K2IgAAR0AjQIMSbpeNR0Bbh3ztkWhzR0BEvAgxJul5h3K3IgAAR0AjOdsi0OVgR0Bbhul41P30R0BEu+dsi0OWh3K4IgAAR0AjMSbpeNT+R0BbhhR64UeuR0BEu+dsi0OWh3K5IgAAR0AjKHKwIMScR0BbhT987ZFoR0BEu8an752yh3K6IgAAR0AjGRaHKwIMR0Bbg9cKPXCkR0BEu6XjU/fPh3K7IgAAR0AjDEm6XjU/R0Bbgo9cKPXDR0BEu2RaHKwIh3K8IgAAR0AjBaHKwIMSR0BbgfvnbItER0BEu2RaHKwIh3K9IgAAR0Ai/O2RaHKwR0BbgSbpeNT+R0BEu0OVgQYlh3K+IgAAR0Ai+FHrhR64R0BbgMSbpeNUR0BEu0OVgQYlh3K/IgAAR0Ai752yLQ5WR0Bbf++dsi0OR0BEuyLQ5WBCh3LAIgAAR0Ai5FocrAgxR0Bbful41P30R0BEuwIMSbpeh3LBIgAAR0AiyDEm6XjVR0BbfEm6XjU/R0BEup++dsi0h3LCIgAAR0Aiw5WBBiTdR0Bbe9cKPXCkR0BEup++dsi0h3LDIgAAR0AiuuFHrhR7R0BbexJul41QR0BEun752yLRh3LEIgAAR0Aipul41P30R0BbeTdLxqfwR0BEuj1wo9cKh3LFIgAAR0Aiok3S8an8R0BbeNT987ZGR0BEuj1wo9cKh3LGIgAAR0AinbItDlYER0BbeHKwIMScR0BEuhysCDEnh3LHIgAAR0AikvGp++dtR0Bbd2yLQ5WBR0BEufvnbItEh3LIIgAAR0AijlYEGJN1R0Bbdwo9cKPXR0BEufvnbItEh3LJIgAAR0AiibpeNT99R0BbdpeNT987R0BEufvnbItEh3LKIgAAR0AihaHKwIMSR0BbdjU/fO2RR0BEudsi0OVgh3LLIgAAR0Aican752yLR0BbdGp++dsjR0BEuZmZmZmah3LMIgAAR0AibQ5WBBiTR0Bbc/fO2RaHR0BEuZmZmZmah3LNIgAAR0AiaPXCj1wpR0Bbc5WBBiTdR0BEuXjU/fO2h3LOIgAAR0AiXbItDlYER0Bbcp++dsi0R0BEuVgQYk3Th3LPIgAAR0AiWRaHKwIMR0Bbci0OVgQZR0BEuVgQYk3Th3LQIgAAR0AiVHrhR64UR0BbccrAgxJvR0BEuTdLxqfwh3LRIgAAR0AiUGJN0vGqR0BbcWhysCDFR0BEuTdLxqfwh3LSIgAAR0AiS8an752yR0BbcPXCj1wpR0BEuTdLxqfwh3LTIgAAR0AiPGp++dsjR0Bbb52yLQ5WR0BEuPXCj1wph3LUIgAAR0AiN87ZFocrR0BbbysCDEm6R0BEuNT987ZGh3LVIgAAR0AiMzMzMzMzR0Bbbsi0OVgQR0BEuNT987ZGh3LWIgAAR0AiHztkWhysR0BbbP3ztkWiR0BEuJN0vGp/h3LXIgAAR0AiGp++dsi0R0BbbJul41P4R0BEuJN0vGp/h3LYIgAAR0AiFgQYk3S8R0BbbCj1wo9cR0BEuHKwIMSch3LZIgAAR0AiBqfvnbItR0BbatDlYEGJR0BEuDEm6XjVh3LaIgAAR0AiAgxJul41R0Bbal41P3zuR0BEuDEm6XjVh3LbIgAAR0Ah/XCj1wo9R0BbafvnbItER0BEuDEm6XjVh3LcIgAAR0Ah+VgQYk3TR0BbaZmZmZmaR0BEuBBiTdLyh3LdIgAAR0Ah6XjU/fO2R0BbaDEm6XjVR0BEt87ZFocrh3LeIgAAR0Ah5N0vGp++R0BbZ87ZFocrR0BEt87ZFocrh3LfIgAAR0Ah4EGJN0vHR0BbZ2yLQ5WBR0BEt64UeuFIh3LgIgAAR0Ah0GJN0vGqR0BbZgQYk3S8R0BEt41P3ztkh3LhIgAAR0AhzEm6XjU/R0BbZaHKwIMSR0BEt2yLQ5WBh3LiIgAAR0Ahx64UeuFIR0BbZT987ZFoR0BEt2yLQ5WBh3LjIgAAR0AhwxJul41QR0BbZMzMzMzNR0BEt0vGp++eh3LkIgAAR0AhszMzMzMzR0BbY3S8an76R0BEtysCDEm6h3LlIgAAR0AhrpeNT987R0BbYxJul41QR0BEtwo9cKPXh3LmIgAAR0Ahqn752yLRR0BbYp++dsi0R0BEtwo9cKPXh3LnIgAAR0AhpeNT987ZR0BbYj1wo9cKR0BEtul41P30h3LoIgAAR0AhlgQYk3S8R0BbYOVgQYk3R0BEtqfvnbIth3LpIgAAR0AhkWhysCDFR0BbYHKwIMScR0BEtqfvnbIth3LqIgAAR0AhjMzMzMzNR0BbYBBiTdLyR0BEtocrAgxKh3LrIgAAR0AhfO2RaHKwR0BbXrhR64UfR0BEtmZmZmZmh3LsIgAAR0AheFHrhR64R0BbXlYEGJN1R0BEtkWhysCDh3LtIgAAR0AhdDlYEGJOR0BbXeNT987ZR0BEtiTdLxqgh3LuIgAAR0Ahb52yLQ5WR0BbXYEGJN0vR0BEtiTdLxqgh3LvIgAAR0AhX752yLQ5R0BbXCj1wo9cR0BEteNT987Zh3LwIgAAR0AhWyLQ5WBCR0BbW8an752yR0BEteNT987Zh3LxIgAAR0AhVocrAgxKR0BbW1P3ztkXR0BEtcKPXCj2h3LyIgAAR0AhRqfvnbItR0BbWfvnbItER0BEtYEGJN0vh3LzIgAAR0AhQgxJul41R0BbWZmZmZmaR0BEtYEGJN0vh3L0IgAAR0AhPXCj1wo9R0BbWTdLxqfwR0BEtWBBiTdMh3L1IgAAR0AhONT987ZGR0BbWNT987ZGR0BEtWBBiTdMh3L2IgAAR0AhKPXCj1wpR0BbV2yLQ5WBR0BEtR64UeuFh3L3IgAAR0AhH752yLQ5R0BbVqfvnbItR0BEtP3ztkWih3L4IgAAR0AhGyLQ5WBCR0BbVkWhysCDR0BEtN0vGp++h3L5IgAAR0AhC0OVgQYlR0BbVO2RaHKwR0BEtJul41P4h3L6IgAAR0AhAgxJul41R0BbVBiTdLxqR0BEtHrhR64Uh3L7IgAAR0Ag8i0OVgQZR0BbUsCDEm6YR0BEtDlYEGJOh3L8IgAAR0Ag5FocrAgxR0BbUZmZmZmaR0BEtBiTdLxqh3L9IgAAR0Ag0/fO2RaHR0BbUDEm6XjVR0BEs9cKPXCkh3L+IgAAR0AgysCDEm6YR0BbT2yLQ5WBR0BEs5WBBiTdh3L/IgAAR0AgxiTdLxqgR0BbTwo9cKPXR0BEs5WBBiTdh3IAIwAAR0AguuFHrhR7R0BbThR64UeuR0BEs1P3ztkXh3IBIwAAR0AgrQ5WBBiTR0BbTO2RaHKwR0BEszMzMzMzh3ICIwAAR0AgnKwIMSbpR0BbS5WBBiTdR0BEsvGp++dth3IDIwAAR0AgjtkWhysCR0BbSm6XjU/fR0BEsrAgxJumh3IEIwAAR0AgfvnbItDlR0BbSQYk3S8bR0BEsm6XjU/fh3IFIwAAR0AgZWBBiTdMR0BbRul41P30R0BEsgxJul41h3IGIwAAR0AgV41P3ztkR0BbRcKPXCj2R0BEscrAgxJvh3IHIwAAR0AgRysCDEm6R0BbRGp++dsjR0BEsYk3S8aoh3IIIwAAR0AgQo9cKPXDR0BbRAgxJul5R0BEsWhysCDFh3IJIwAAR0AgOVgQYk3TR0BbQ0OVgQYlR0BEsUeuFHrhh3IKIwAAR0AgI9cKPXCkR0BbQYk3S8aoR0BEsOVgQYk3h3ILIwAAR0AgHztkWhysR0BbQSbpeNT+R0BEsOVgQYk3h3IMIwAAR0AgD1wo9cKPR0BbP87ZFocrR0BEsIMSbpeNh3INIwAAR0AgCj1wo9cKR0BbP2yLQ5WBR0BEsIMSbpeNh3IOIwAAR0AgBaHKwIMSR0BbPwo9cKPXR0BEsGJN0vGqh3IPIwAAR0AgAYk3S8aoR0BbPqfvnbItR0BEsEGJN0vHh3IQIwAAR0Af2BBiTdLyR0BbPO2RaHKwR0BEsAAAAAAAh3IRIwAAR0AfztkWhysCR0BbPItDlYEGR0BEr987ZFodh3ISIwAAR0AfxaHKwIMSR0BbPDlYEGJOR0BEr752yLQ5h3ITIwAAR0AfpN0vGp++R0BbOuFHrhR7R0BEr3ztkWhzh3IUIwAAR0Afm6XjU/fPR0BbOn752yLRR0BEr1wo9cKPh3IVIwAAR0AfkWhysCDFR0BbOhysCDEnR0BEr1wo9cKPh3IWIwAAR0AfZ2yLQ5WBR0BbOGJN0vGqR0BErvnbItDlh3IXIwAAR0AfXjU/fO2RR0BbOAAAAAAAR0BErtkWhysCh3IYIwAAR0AfVP3ztkWiR0BbN52yLQ5WR0BErtkWhysCh3IZIwAAR0AfKfvnbItER0BbNeNT987ZR0BErnbItDlYh3IaIwAAR0AfIMSbpeNUR0BbNZFocrAhR0BErlYEGJN1h3IbIwAAR0AfF41P3ztkR0BbNS8an753R0BErjU/fO2Rh3IcIwAAR0Ae9si0OVgQR0BbM9cKPXCkR0BErfO2RaHLh3IdIwAAR0Ae7ZFocrAhR0BbM3S8an76R0BErdLxqfvnh3IeIwAAR0Ae41P3ztkXR0BbMxJul41QR0BErdLxqfvnh3IfIwAAR0AeuVgQYk3TR0BbMWhysCDFR0BErXCj1wo9h3IgIwAAR0AesCDEm6XjR0BbMQYk3S8bR0BErU/fO2Rah3IhIwAAR0Aepul41P30R0BbMKPXCj1xR0BErS8an753h3IiIwAAR0AehR64UeuFR0BbL0vGp++eR0BErO2RaHKwh3IjIwAAR0Aee+dsi0OWR0BbLul41P30R0BErMzMzMzNh3IkIwAAR0Aecan752yLR0BbLocrAgxKR0BErMzMzMzNh3IlIwAAR0AeaHKwIMScR0BbLiTdLxqgR0BErKwIMSbph3ImIwAAR0AeR64UeuFIR0BbLN0vGp++R0BErEm6XjU/h3InIwAAR0AePXCj1wo9R0BbLHrhR64UR0BErEm6XjU/h3IoIwAAR0AeNDlYEGJOR0BbLBiTdLxqR0BErCj1wo9ch3IpIwAAR0AeE3S8an76R0BbKtDlYEGJR0BEq+dsi0OWh3IqIwAAR0AeCTdLxqfwR0BbKm6XjU/fR0BEq8an752yh3IrIwAAR0AeAAAAAAAAR0BbKgxJul41R0BEq6XjU/fPh3IsIwAAR0Ad9si0OVgQR0BbKan752yLR0BEq6XjU/fPh3ItIwAAR0Ad1P3ztkWiR0BbKGJN0vGqR0BEq0OVgQYlh3IuIwAAR0Ady8an752yR0BbKAAAAAAAR0BEqyLQ5WBCh3IvIwAAR0Adwo9cKPXDR0BbJ52yLQ5WR0BEqyLQ5WBCh3IwIwAAR0AduFHrhR64R0BbJztkWhysR0BEqwIMSbpeh3IxIwAAR0Adl41P3ztkR0BbJfO2RaHLR0BEqp++dsi0h3IyIwAAR0AdjU/fO2RaR0BbJZFocrAhR0BEqp++dsi0h3IzIwAAR0AdhBiTdLxqR0BbJS8an753R0BEqn752yLRh3I0IwAAR0AdYk3S8an8R0BbI+dsi0OWR0BEqhysCDEnh3I1IwAAR0AdWRaHKwIMR0BbI4UeuFHsR0BEqhysCDEnh3I2IwAAR0AdT987ZFodR0BbIyLQ5WBCR0BEqfvnbItEh3I3IwAAR0AdRaHKwIMSR0BbIsCDEm6YR0BEqdsi0OVgh3I4IwAAR0AdI9cKPXCkR0BbIXjU/fO2R0BEqZmZmZmah3I5IwAAR0AdEWhysCDFR0BbILQ5WBBiR0BEqVgQYk3Th3I6IwAAR0AdBysCDEm6R0BbIGJN0vGqR0BEqTdLxqfwh3I7IwAAR0Ac752yLQ5WR0BbH2yLQ5WBR0BEqRaHKwIMh3I8IwAAR0Ac5WBBiTdMR0BbHwo9cKPXR0BEqPXCj1wph3I9IwAAR0Ac0vGp++dtR0BbHlYEGJN1R0BEqLQ5WBBih3I+IwAAR0AcsSbpeNT+R0BbHP3ztkWiR0BEqHKwIMSch3I/IwAAR0AcnbItDlYER0BbHEm6XjU/R0BEqDEm6XjVh3JAIwAAR0Ack3S8an76R0BbG+dsi0OWR0BEqDEm6XjVh3JBIwAAR0Accan752yLR0BbGp++dsi0R0BEp87ZFocrh3JCIwAAR0AcXztkWhysR0BbGdsi0OVgR0BEp41P3ztkh3JDIwAAR0AcPXCj1wo9R0BbGJN0vGp/R0BEp0vGp++eh3JEIwAAR0AcH752yLQ5R0BbF3ztkWhzR0BEpul41P30h3JFIwAAR0Ab/fO2RaHLR0BbFjU/fO2RR0BEpqfvnbIth3JGIwAAR0Ab4UeuFHrhR0BbFR64UeuFR0BEpkWhysCDh3JHIwAAR0AbrAgxJul5R0BbExJul41QR0BEpcKPXCj2h3JIIwAAR0AbiTdLxqfwR0BbEcrAgxJvR0BEpWBBiTdMh3JJIwAAR0AbbItDlYEGR0BbELQ5WBBiR0BEpR64UeuFh3JKIwAAR0AbQIMSbpeNR0BbDwo9cKPXR0BEpJul41P4h3JLIwAAR0AbNkWhysCDR0BbDrhR64UfR0BEpJul41P4h3JMIwAAR0AbLQ5WBBiTR0BbDlYEGJN1R0BEpHrhR64Uh3JNIwAAR0Aa9si0OVgQR0BbDFocrAgxR0BEo9cKPXCkh3JOIwAAR0AaysCDEm6YR0BbCrAgxJumR0BEo3S8an76h3JPIwAAR0AawYk3S8aoR0BbCk3S8an8R0BEo1P3ztkXh3JQIwAAR0Aat0vGp++eR0BbCfvnbItER0BEozMzMzMzh3JRIwAAR0Aai0OVgQYlR0BbCFHrhR64R0BEorAgxJumh3JSIwAAR0AagQYk3S8bR0BbB++dsi0OR0BEoo9cKPXDh3JTIwAAR0AaVP3ztkWiR0BbBlYEGJN1R0BEoi0OVgQZh3JUIwAAR0AaS8an752yR0BbBfO2RaHLR0BEogxJul41h3JVIwAAR0AaQYk3S8aoR0BbBaHKwIMSR0BEoeuFHrhSh3JWIwAAR0AaFYEGJN0vR0BbA/fO2RaHR0BEoWhysCDFh3JXIwAAR0AaC0OVgQYlR0BbA6XjU/fPR0BEoWhysCDFh3JYIwAAR0AaAgxJul41R0BbA0OVgQYlR0BEoUeuFHrhh3JZIwAAR0AZ3ztkWhysR0BbAfvnbItER0BEoOVgQYk3h3JaIwAAR0AZ1P3ztkWiR0BbAan752yLR0BEoMSbpeNUh3JbIwAAR0AZysCDEm6YR0BbAUeuFHrhR0BEoKPXCj1xh3JcIwAAR0AZnrhR64UfR0Ba/64UeuFIR0BEoCDEm6Xjh3JdIwAAR0AZlHrhR64UR0Ba/0vGp++eR0BEoAAAAAAAh3JeIwAAR0AZi0OVgQYlR0Ba/vnbItDlR0BEn987ZFodh3JfIwAAR0AZXjU/fO2RR0Ba/WBBiTdMR0BEn3ztkWhzh3JgIwAAR0AZVP3ztkWiR0Ba/P3ztkWiR0BEn1wo9cKPh3JhIwAAR0AZSsCDEm6YR0Ba/Jul41P4R0BEnztkWhysh3JiIwAAR0AZJ++dsi0OR0Ba+2RaHKwIR0BEntkWhysCh3JjIwAAR0AZHbItDlYER0Ba+wIMSbpeR0BEnrhR64Ufh3JkIwAAR0AZFHrhR64UR0Ba+rAgxJumR0BEnpeNT987h3JlIwAAR0AY52yLQ5WBR0Ba+QYk3S8bR0BEnhR64Ueuh3JmIwAAR0AY3S8an753R0Ba+LQ5WBBiR0BEnfO2RaHLh3JnIwAAR0AY0/fO2RaHR0Ba+GJN0vGqR0BEndLxqfvnh3JoIwAAR0AYsSbpeNT+R0Ba9xqfvnbJR0BEnXCj1wo9h3JpIwAAR0AYpul41P30R0Ba9rhR64UfR0BEnU/fO2Rah3JqIwAAZShHQBicrAgxJulHQFr2ZmZmZmZHQESdT987ZFqHcmsjAABHQBiSbpeNT99HQFr2BBiTdLxHQESdLxqfvneHcmwjAABHQBhvnbItDlZHQFr0zMzMzM1HQESczMzMzM2Hcm0jAABHQBhmZmZmZmZHQFr0an752yNHQEScrAgxJumHcm4jAABHQBhcKPXCj1xHQFr0GJN0vGpHQESci0OVgQaHcm8jAABHQBgvGp++dslHQFryfvnbItFHQEScCDEm6XmHcnAjAABHQBgk3S8an75HQFryHKwIMSdHQESb52yLQ5aHcnEjAABHQBgan752yLRHQFrxysCDEm9HQESbxqfvnbKHcnIjAABHQBf3ztkWhytHQFrwgxJul41HQESbZFocrAiHcnMjAABHQBfkWhysCDFHQFrvztkWhytHQESbItDlYEKHcnQjAABHQBfaHKwIMSdHQFrvfO2RaHNHQESbAgxJul6HcnUjAABHQBe3S8an755HQFruNT987ZFHQESan752yLSHcnYjAABHQBei0OVgQYlHQFrtgQYk3S9HQESaXjU/fO6HcncjAABHQBeAAAAAAABHQFrsSbpeNT9HQESZ++dsi0SHcngjAABHQBdrhR64UexHQFrrlYEGJN1HQESZul41P32HcnkjAABHQBdhR64UeuFHQFrrQ5WBBiVHQESZmZmZmZqHcnojAABHQBc+dsi0OVhHQFrqDEm6XjVHQESZN0vGp/CHcnsjAABHQBcp++dsi0RHQFrpWBBiTdNHQESY9cKPXCmHcnwjAABHQBcfvnbItDlHQFro9cKPXClHQESY1P3ztkaHcn0jAABHQBbocrAgxJxHQFrnCj1wo9dHQESYMSbpeNWHcn4jAABHQBbFocrAgxJHQFrl0vGp++dHQESXrhR64UiHcn8jAABHQBam6XjU/fRHQFrkvGp++dtHQESXbItDlYGHcoAjAABHQBaDEm6XjVBHQFrjhR64UexHQESW6XjU/fSHcoEjAABHQBZvnbItDlZHQFri0OVgQYlHQESWp++dsi2HcoIjAABHQBYtDlYEGJNHQFrgk3S8an9HQESV41P3ztmHcoMjAABHQBX++dsi0OVHQFre+dsi0OVHQESVYEGJN0yHcoQjAABHQBXrhR64UexHQFreVgQYk3VHQESVHrhR64WHcoUjAABHQBW9cKPXCj1HQFrcvGp++dtHQESUeuFHrhSHcoYjAABHQBWzMzMzMzNHQFrcan752yNHQESUWhysCDGHcocjAABHQBWFHrhR64VHQFra4UeuFHtHQEST1wo9cKSHcogjAABHQBV64UeuFHtHQFrafvnbItFHQESTtkWhysGHcokjAABHQBVwo9cKPXFHQFraLQ5WBBlHQESTlYEGJN2HcoojAABHQBVCj1wo9cNHQFrYk3S8an9HQESTEm6XjVCHcosjAABHQBU4UeuFHrhHQFrYQYk3S8dHQESS8an7522HcowjAABHQBUvGp++dslHQFrX752yLQ5HQESS0OVgQYmHco0jAABHQBUAAAAAAABHQFrWVgQYk3VHQESSLQ5WBBmHco4jAABHQBT2yLQ5WBBHQFrWBBiTdLxHQESSDEm6XjWHco8jAABHQBTHrhR64UhHQFrUeuFHrhRHQESRiTdLxqiHcpAjAABHQBS9cKPXCj1HQFrUKPXCj1xHQESRaHKwIMWHcpEjAABHQBS0OVgQYk5HQFrTxqfvnbJHQESRR64UeuGHcpIjAABHQBSFHrhR64VHQFrSPXCj1wpHQESQo9cKPXGHcpMjAABHQBR64UeuFHtHQFrR64UeuFJHQESQgxJul42HcpQjAABHQBRMzMzMzM1HQFrQYk3S8apHQESP3ztkWh2HcpUjAABHQBRCj1wo9cNHQFrQAAAAAABHQESPvnbItDmHcpYjAABHQBQ4UeuFHrhHQFrPrhR64UhHQESPnbItDlaHcpcjAABHQBQKPXCj1wpHQFrOJN0vGqBHQESPGp++dsmHcpgjAABHQBQAAAAAAABHQFrN0vGp++dHQESO+dsi0OWHcpkjAABHQBP1wo9cKPZHQFrNgQYk3S9HQESO2RaHKwKHcpojAABHQBPGp++dsi1HQFrL52yLQ5ZHQESONT987ZGHcpsjAABHQBO8an752yNHQFrLlYEGJN1HQESOFHrhR66HcpwjAABHQBOOVgQYk3VHQFrKDEm6XjVHQESNcKPXCj2Hcp0jAABHQBOEGJN0vGpHQFrJul41P31HQESNT987ZFqHcp4jAABHQBN52yLQ5WBHQFrJaHKwIMVHQESNLxqfvneHcp8jAABHQBNKwIMSbphHQFrH3ztkWh1HQESMi0OVgQaHcqAjAABHQBNAgxJul41HQFrHfO2RaHNHQESMan752yOHcqEjAABHQBM2RaHKwINHQFrHKwIMSbpHQESMSbpeNT+HcqIjAABHQBMRaHKwIMVHQFrGBBiTdLxHQESL52yLQ5aHcqMjAABHQBMHKwIMSbpHQFrFocrAgxJHQESLxqfvnbKHcqQjAABHQBL87ZFocrBHQFrFT987ZFpHQESLhR64UeyHcqUjAABHQBLN0vGp++dHQFrDxqfvnbJHQESLAgxJul6HcqYjAABHQBLDlYEGJN1HQFrDdLxqfvpHQESK4UeuFHuHcqcjAABHQBK5WBBiTdNHQFrDItDlYEJHQESKwIMSbpiHcqgjAABHQBKKPXCj1wpHQFrBmZmZmZpHQESKHKwIMSeHcqkjAABHQBKAAAAAAABHQFrBR64UeuFHQESJ++dsi0SHcqojAABHQBJ1wo9cKPZHQFrA9cKPXClHQESJ2yLQ5WCHcqsjAABHQBJQ5WBBiTdHQFq/vnbItDlHQESJWBBiTdOHcqwjAABHQBI8an752yNHQFq/Gp++dslHQESJFocrAgyHcq0jAABHQBINT987ZFpHQFq9kWhysCFHQESIcrAgxJyHcq4jAABHQBIDEm6XjVBHQFq9P3ztkWhHQESIUeuFHriHcq8jAABHQBH41P3ztkZHQFq87ZFocrBHQESIMSbpeNWHcrAjAABHQBG/fO2RaHNHQFq7Em6XjVBHQESHbItDlYGHcrEjAABHQBG1P3ztkWhHQFq6wIMSbphHQESHKwIMSbqHcrIjAABHQBGQYk3S8apHQFq5iTdLxqhHQESGyLQ5WBCHcrMjAABHQBF64UeuFHtHQFq45WBBiTdHQESGZmZmZmaHcrQjAABHQBE3S8an755HQFq2uFHrhR9HQESFgQYk3S+HcrUjAABHQBD87ZFocrBHQFq07ZFocrBHQESEvGp++duHcrYjAABHQBDysCDEm6ZHQFq0i0OVgQZHQESEm6XjU/iHcrcjAABHQBC5WBBiTdNHQFqywIMSbphHQESD1wo9cKSHcrgjAABHQBB0vGp++dtHQFqwk3S8an9HQESC0OVgQYmHcrkjAABHQBBEm6XjU/hHQFqvGp++dslHQESCLQ5WBBmHcrojAABHQBA6XjU/fO5HQFquyLQ5WBBHQESCDEm6XjWHcrsjAABHQA/rhR64UexHQFqsm6XjU/hHQESBJul41P6HcrwjAABHQA+LQ5WBBiVHQFqrItDlYEJHQESAgxJul42Hcr0jAABHQA92yLQ5WBBHQFqq0OVgQYlHQESAQYk3S8eHcr4jAABHQA9iTdLxqfxHQFqqfvnbItFHQESAIMSbpeOHcr8jAABHQA8CDEm6XjVHQFqpBiTdLxtHQER/fO2RaHOHcsAjAABHQA7tkWhysCFHQFqotDlYEGJHQER/XCj1wo+HcsEjAABHQA6NT987ZFpHQFqnO2RaHKxHQER+uFHrhR+HcsIjAABHQA52yLQ5WBBHQFqm6XjU/fRHQER+dsi0OViHcsMjAABHQA5iTdLxqfxHQFqml41P3ztHQER+VgQYk3WHcsQjAABHQA4CDEm6XjVHQFqlDlYEGJNHQER9si0OVgSHcsUjAABHQA3tkWhysCFHQFqkvGp++dtHQER9kWhysCGHcsYjAABHQA3ZFocrAgxHQFqkan752yNHQER9cKPXCj2HcscjAABHQA12yLQ5WBBHQFqi8an7521HQER8rAgxJumHcsgjAABHQA1iTdLxqfxHQFqin752yLRHQER8i0OVgQaHcskjAABHQA0CDEm6XjVHQFqhJul41P5HQER752yLQ5aHcsojAABHQAztkWhysCFHQFqg1P3ztkZHQER7xqfvnbKHcssjAABHQAzZFocrAgxHQFqggxJul41HQER7peNT98+HcswjAABHQAx2yLQ5WBBHQFqfCj1wo9dHQER64UeuFHuHcs0jAABHQAxiTdLxqfxHQFqeuFHrhR9HQER6wIMSbpiHcs4jAABHQAxN0vGp++dHQFqeZmZmZmZHQER6n752yLSHcs8jAABHQAwCDEm6XjVHQFqdT987ZFpHQER6HKwIMSeHctAjAABHQAvrhR64UexHQFqc7ZFocrBHQER52yLQ5WCHctEjAABHQAvXCj1wo9dHQFqcm6XjU/hHQER5ul41P32HctIjAABHQAt2yLQ5WBBHQFqbMzMzMzNHQER5FocrAgyHctMjAABHQAtgQYk3S8dHQFqa4UeuFHtHQER49cKPXCmHctQjAABHQAtLxqfvnbJHQFqaj1wo9cNHQER4tDlYEGKHctUjAABHQArrhR64UexHQFqZFocrAgxHQER4EGJN0vKHctYjAABHQArU/fO2RaJHQFqYxJul41RHQER3752yLQ6HctcjAABHQAp0vGp++dtHQFqXS8an755HQER3KwIMSbqHctgjAABHQApgQYk3S8dHQFqW+dsi0OVHQER3Cj1wo9eHctkjAABHQApJul41P31HQFqWp++dsi1HQER26XjU/fSHctojAABHQAnpeNT987ZHQFqVP3ztkWhHQER2JN0vGqCHctsjAABHQAnS8an7521HQFqU7ZFocrBHQER2BBiTdLyHctwjAABHQAm+dsi0OVhHQFqUm6XjU/hHQER141P3ztmHct0jAABHQAlHrhR64UhHQFqS0OVgQYlHQER0/fO2RaKHct4jAABHQAjlYEGJN0xHQFqRaHKwIMVHQER0OVgQYk6Hct8jAABHQAi6XjU/fO5HQFqQxJul41RHQERz987ZFoeHcuAjAABHQAhDlYEGJN1HQFqO+dsi0OVHQERzEm6XjVCHcuEjAABHQAgvGp++dslHQFqOp++dsi1HQERy8an7522HcuIjAABHQAe2RaHKwINHQFqM7ZFocrBHQERyDEm6XjWHcuMjAABHQAcrAgxJul5HQFqK4UeuFHtHQERxBiTdLxuHcuQjAABHQAayLQ5WBBlHQFqJFocrAgxHQERwIMSbpeOHcuUjAABHQAadsi0OVgRHQFqIxJul41RHQERwAAAAAACHcuYjAABHQAYk3S8an75HQFqHCj1wo9dHQERvGp++dsmHcucjAABHQAWXjU/fO2RHQFqE/fO2RaJHQERt87ZFocuHcugjAABHQAU1P3ztkWhHQFqDlYEGJN1HQERtLxqfvneHcukjAABHQAUeuFHrhR9HQFqDQ5WBBiVHQERtDlYEGJOHcuojAABHQAUKPXCj1wpHQFqC8an7521HQERs7ZFocrCHcusjAABHQASl41P3ztlHQFqBiTdLxqhHQERsKPXCj1yHcuwjAABHQASRaHKwIMVHQFqBN0vGp/BHQERsCDEm6XmHcu0jAABHQAQvGp++dslHQFp/ztkWhytHQERrQ5WBBiWHcu4jAABHQAQYk3S8an9HQFp/fO2RaHNHQERrItDlYEKHcu8jAABHQAQEGJN0vGpHQFp/KwIMSbpHQERq4UeuFHuHcvAjAABHQAOfvnbItDlHQFp9wo9cKPZHQERqHKwIMSeHcvEjAABHQAOLQ5WBBiVHQFp9cKPXCj1HQERp++dsi0SHcvIjAABHQAN0vGp++dtHQFp9HrhR64VHQERp2yLQ5WCHcvMjAABHQAMQYk3S8apHQFp7tkWhysFHQERpFocrAgyHcvQjAABHQAL752yLQ5ZHQFp7dLxqfvpHQERo9cKPXCmHcvUjAABHQAKXjU/fO2RHQFp6DEm6XjVHQERoMSbpeNWHcvYjAABHQAKDEm6XjVBHQFp5ul41P31HQERn752yLQ6HcvcjAABHQAJsi0OVgQZHQFp5aHKwIMVHQERnztkWhyuHcvgjAABHQAIKPXCj1wpHQFp4AAAAAABHQERnCj1wo9eHcvkjAABHQAHztkWhysFHQFp3rhR64UhHQERm6XjU/fSHcvojAABHQAGPXCj1wo9HQFp2RaHKwINHQERmJN0vGqCHcvsjAABHQAF64UeuFHtHQFp187ZFoctHQERl41P3ztmHcvwjAABHQAFkWhysCDFHQFp1si0OVgRHQERlwo9cKPaHcv0jAABHQAEAAAAAAABHQFp0SbpeNT9HQERk/fO2RaKHcv4jAABHQADrhR64UexHQFpz987ZFodHQERk3S8an76Hcv8jAABHQADU/fO2RaJHQFpzpeNT989HQERkvGp++duHcgAkAABHQABwo9cKPXFHQFpyPXCj1wpHQERj1wo9cKSHcgEkAABHQABcKPXCj1xHQFpx++dsi0RHQERjtkWhysGHcgIkAABHP//vnbItDlZHQFpwk3S8an9HQERi8an7522HcgMkAABHP//Cj1wo9cNHQFpwQYk3S8dHQERi0OVgQYmHcgQkAABHP/+ZmZmZmZpHQFpv752yLQ5HQERij1wo9cOHcgUkAABHP/7Q5WBBiTdHQFpul41P3ztHQERhysCDEm+HcgYkAABHP/6j1wo9cKRHQFpuRaHKwINHQERhqfvnbIuHcgckAABHP/52yLQ5WBBHQFpt87ZFoctHQERhiTdLxqiHcggkAABHP/2uFHrhR65HQFpsi0OVgQZHQERgo9cKPXGHcgkkAABHP/2BBiTdLxtHQFpsSbpeNT9HQERggxJul42HcgokAABHP/y8an752yNHQFpq4UeuFHtHQERfvnbItDmHcgskAABHP/yPXCj1wo9HQFpqj1wo9cNHQERffO2RaHOHcgwkAABHP/xiTdLxqfxHQFpqTdLxqfxHQERfXCj1wo+Hcg0kAABHP/tsi0OVgQZHQFpok3S8an9HQERedsi0OViHcg4kAABHP/qj1wo9cKRHQFpnO2RaHKxHQERdkWhysCGHcg8kAABHP/pN0vGp++dHQFpml41P3ztHQERdT987ZFqHchAkAABHP/lYEGJN0vJHQFpk7ZFocrBHQERcSbpeNT+HchEkAABHP/krAgxJul5HQFpkm6XjU/hHQERcKPXCj1yHchIkAABHP/g1P3ztkWhHQFpi8an7521HQERbItDlYEKHchMkAABHP/cSbpeNT99HQFpg9cKPXClHQERZ++dsi0SHchQkAABHP/YcrAgxJulHQFpfS8an755HQERY9cKPXCmHchUkAABHP/XvnbItDlZHQFpe+dsi0OVHQERY1P3ztkaHchYkAABHP/Ui0OVgQYlHQFpdocrAgxJHQERX752yLQ6HchckAABHP/T52yLQ5WBHQFpdT987ZFpHQERXztkWhyuHchgkAABHP/PS8an7521HQFpbZFocrAhHQERWp++dsi2HchkkAABHP/MGJN0vGqBHQFpaDEm6XjVHQERVwo9cKPaHchokAABHP/LdLxqfvndHQFpZul41P31HQERVocrAgxKHchskAABHP/KwIMSbpeNHQFpZaHKwIMVHQERVYEGJN0yHchwkAABHP/HjU/fO2RdHQFpYEGJN0vJHQERUm6XjU/iHch0kAABHP/G6XjU/fO5HQFpXztkWhytHQERUeuFHrhSHch4kAABHP/CTdLxqfvpHQFpV0vGp++dHQERTMzMzMzOHch8kAABHP++NT987ZFpHQFpUeuFHrhRHQERSbpeNT9+HciAkAABHP+8zMzMzMzNHQFpUKPXCj1xHQERSLQ5WBBmHciEkAABHP+7ZFocrAgxHQFpT52yLQ5ZHQERSDEm6XjWHciIkAABHP+0/fO2RaHNHQFpSj1wo9cNHQERRJul41P6HciMkAABHP+ztkWhysCFHQFpSPXCj1wpHQERRBiTdLxuHciQkAABHP+tT987ZFodHQFpQ5WBBiTdHQERQIMSbpeOHciUkAABHP+r52yLQ5WBHQFpQk3S8an9HQERQAAAAAACHciYkAABHP+qfvnbItDlHQFpQUeuFHrhHQERP3ztkWh2HcickAABHP+kGJN0vGqBHQFpO+dsi0OVHQERO+dsi0OWHcigkAABHP+isCDEm6XlHQFpOp++dsi1HQEROuFHrhR+HcikkAABHP+hR64UeuFJHQFpOZmZmZmZHQEROl41P3zuHciokAABHP+a4UeuFHrhHQFpNDlYEGJNHQERNsi0OVgSHciskAABHP+ZeNT987ZFHQFpMvGp++dtHQERNkWhysCGHciwkAABHP+TEm6XjU/hHQFpLZFocrAhHQERMrAgxJumHci0kAABHP+RqfvnbItFHQFpLEm6XjVBHQERMi0OVgQaHci4kAABHP+QQYk3S8apHQFpK0OVgQYlHQERMSbpeNT+Hci8kAABHP+J2yLQ5WBBHQFpJeNT987ZHQERLhR64UeyHcjAkAABHP+IcrAgxJulHQFpJJul41P5HQERLQ5WBBiWHcjEkAABHP+Ao9cKPXClHQFpHjU/fO2RHQERKPXCj1wqHcjIkAABHP9+dsi0OVgRHQFpHS8an755HQERKHKwIMSeHcjMkAABHP9xaHKwIMSdHQFpF87ZFoctHQERJN0vGp/CHcjQkAABHP9ul41P3ztlHQFpFocrAgxJHQERI9cKPXCmHcjUkAABHP9sCDEm6XjVHQFpFYEGJN0xHQERI1P3ztkaHcjYkAABHP9e+dsi0OVhHQFpECDEm6XlHQERH752yLQ6HcjckAABHP9cKPXCj1wpHQFpDtkWhysFHQERHztkWhyuHcjgkAABHP9PXCj1wo9dHQFpCbpeNT99HQERG6XjU/fSHcjkkAABHP9MSbpeNT99HQFpCHKwIMSdHQERGp++dsi2HcjokAABHP9JeNT987ZFHQFpB2yLQ5WBHQERGhysCDEqHcjskAABHP85WBBiTdLxHQFpAgxJul41HQERFocrAgxKHcjwkAABHP8ztkWhysCFHQFpAMSbpeNVHQERFgQYk3S+Hcj0kAABHP8OVgQYk3S9HQFo+VgQYk3VHQEREOVgQYk6Hcj4kAABHP7peNT987ZFHQFo8/fO2RaJHQERDU/fO2ReHcj8kAABHP7S8an752yNHQFo8an752yNHQERC8an7522HckAkAABHP5N0vGp++dtHQFo60OVgQYlHQERB64UeuFKHckEkAABHP4BiTdLxqfxHQFo6j1wo9cNHQERBqfvnbIuHckIkAABHv6ul41P3ztlHQFo49cKPXClHQERAo9cKPXGHckMkAABHv8BBiTdLxqhHQFo3Cj1wo9dHQEQ/XCj1wo+HckQkAABHv8bItDlYEGJHQFo1wo9cKPZHQEQ+dsi0OViHckUkAABHv8gxJul41P5HQFo1cKPXCj1HQEQ+NT987ZGHckYkAABHv8mZmZmZmZpHQFo1LxqfvndHQEQ+FHrhR66HckckAABHv9AQYk3S8apHQFoz52yLQ5ZHQEQ9LxqfvneHckgkAABHv9DEm6XjU/hHQFozlYEGJN1HQEQ87ZFocrCHckkkAABHv9Vwo9cKPXFHQFoxul41P31HQEQ7peNT98+HckokAABHv9i0OVgQYk5HQFowcrAgxJxHQEQ6wIMSbpiHckskAABHv9locrAgxJxHQFowIMSbpeNHQEQ6n752yLSHckwkAABHv91wo9cKPXFHQFouhysCDEpHQEQ5eNT987aHck0kAABHv94k3S8an75HQFouRaHKwINHQEQ5WBBiTdOHck4kAABHv+C0OVgQYk5HQFos/fO2RaJHQEQ4UeuFHriHck8kAABHv+EOVgQYk3VHQFosrAgxJulHQEQ4MSbpeNWHclAkAABHv+FocrAgxJxHQFosan752yNHQEQ3752yLQ6HclEkAABHv+MSbpeNT99HQForItDlYEJHQEQ3Cj1wo9eHclIkAABHv+NkWhysCDFHQFoq0OVgQYlHQEQ26XjU/fSHclMkAABHv+VocrAgxJxHQFopR64UeuFHQEQ1wo9cKPaHclQkAABHv+XCj1wo9cNHQFopBiTdLxtHQEQ1gQYk3S+HclUkAABHv+dsi0OVgQZHQFonrhR64UhHQEQ0m6XjU/iHclYkAABHv+fGp++dsi1HQFonbItDlYFHQEQ0euFHrhSHclckAABHv+ggxJul41RHQFonKwIMSbpHQEQ0OVgQYk6HclgkAABHv+nCj1wo9cNHQFol0vGp++dHQEQzU/fO2ReHclkkAABHv+ocrAgxJulHQFolkWhysCFHQEQzEm6XjVCHclokAABHv+wgxJul41RHQFokCDEm6XlHQEQyDEm6XjWHclskAABHv+x64UeuFHtHQFojtkWhysFHQEQxysCDEm+HclwkAABHv+4k3S8an75HQFoibpeNT99HQEQw5WBBiTeHcl0kAABHv+5++dsi0OVHQFoiLQ5WBBlHQEQwo9cKPXGHcl4kAABHv+7ZFocrAgxHQFoh64UeuFJHQEQwgxJul42Hcl8kAABHv/BBiTdLxqhHQFogo9cKPXFHQEQvfO2RaHOHcmAkAABHv/Bul41P3ztHQFogUeuFHrhHQEQvXCj1wo+HcmEkAABHv/FDlYEGJN1HQFofCj1wo9dHQEQudsi0OViHcmIkAABHv/Fwo9cKPXFHQFoeyLQ5WBBHQEQuNT987ZGHcmMkAABHv/Gdsi0OVgRHQFoehysCDEpHQEQt87ZFocuHcmQkAABHv/JysCDEm6ZHQFodP3ztkWhHQEQtDlYEGJOHcmUkAABHv/KfvnbItDlHQFoc7ZFocrBHQEQszMzMzM2HcmYkAABHv/PS8an7521HQFobItDlYEJHQEQrhR64UeyHcmckAABHv/Sj1wo9cKRHQFoZ2yLQ5WBHQEQqn752yLSHcmgkAABHv/TU/fO2RaJHQFoZmZmZmZpHQEQqXjU/fO6HcmkkAABHv/UCDEm6XjVHQFoZR64UeuFHQEQqHKwIMSeHcmokAABHv/YEGJN0vGpHQFoXvnbItDlHQEQo9cKPXCmHcmskAABHv/c3S8an755HQFoV87ZFoctHQEQnrhR64UiHcmwkAABHv/g5WBBiTdNHQFoUan752yNHQEQmhysCDEqHcm0kAABHv/hmZmZmZmZHQFoUKPXCj1xHQEQmRaHKwIOHcm4kAABHv/k7ZFocrAhHQFoS4UeuFHtHQEQlYEGJN0yHcm8kAABHv/locrAgxJxHQFoSn752yLRHQEQlHrhR64WHcnAkAABHv/qbpeNT989HQFoQ1P3ztkZHQEQjtkWhysGHcnEkAABHQC8Gp++dsi1HQGD3Q5WBBiVHQD8euFHrhR+HcnIkAABHQC8JN0vGp/BHQGD2wIMSbphHQD8gQYk3S8eHcnMkAABHQC8MSbpeNT9HQGD2NT987ZFHQD8hysCDEm+HcnQkAABHQC8XjU/fO2RHQGD0AAAAAABHQD8n752yLQ6HcnUkAABHQC8aHKwIMSdHQGDzfO2RaHNHQD8peNT987aHcnYkAABHQC8ocrAgxJxHQGDwtDlYEGJHQD8xJul41P6HcnckAABHQC8rAgxJul5HQGDwMSbpeNVHQD8ybpeNT9+HcngkAABHQC82RaHKwINHQGDt++dsi0RHQD84k3S8an+HcnkkAABHQC841P3ztkZHQGDteNT987ZHQD86HKwIMSeHcnokAABHQC9Gp++dsi1HQGDquFHrhR9HQD9BysCDEm+HcnskAABHQC9JN0vGp/BHQGDqLQ5WBBlHQD9DEm6XjVCHcnwkAABHQC9XCj1wo9dHQGDndLxqfvpHQD9KwIMSbpiHcn0kAABHQC9ZmZmZmZpHQGDm8an7521HQD9MCDEm6XmHcn4kAABHQC9kWhysCDFHQGDkvGp++dtHQD9SLQ5WBBmHcn8kAABHQC9m6XjU/fRHQGDkOVgQYk5HQD9TtkWhysGHcoAkAABHQC90vGp++dtHQGDhgQYk3S9HQD9bItDlYEKHcoEkAABHQC93S8an755HQGDg9cKPXClHQD9crAgxJumHcoIkAABHQC+CDEm6XjVHQGDeyLQ5WBBHQD9ij1wo9cOHcoMkAABHQC+Em6XjU/hHQGDeRaHKwINHQD9kGJN0vGqHcoQkAABHQC+HKwIMSbpHQGDdwo9cKPZHQD9lYEGJN0yHcoUkAABHQC+RaHKwIMVHQGDbjU/fO2RHQD9rhR64UeyHcoYkAABHQC+UeuFHrhRHQGDbCj1wo9dHQD9tDlYEGJOHcockAABHQC+hR64UeuFHQGDYUeuFHrhHQD90euFHrhSHcogkAABHQC+j1wo9cKRHQGDXztkWhytHQD91wo9cKPaHcokkAABHQC+uFHrhR65HQGDVocrAgxJHQD9752yLQ5aHcookAABHQC+wo9cKPXFHQGDVHrhR64VHQD99LxqfvneHcoskAABHQC+987ZFoctHQGDSZmZmZmZHQD+Em6XjU/iHcowkAABHQC/AAAAAAABHQGDR41P3ztlHQD+GJN0vGqCHco0kAABHQC/Cj1wo9cNHQGDRYEGJN0xHQD+HbItDlYGHco4kAABHQC/MzMzMzM1HQGDPMzMzMzNHQD+NT987ZFqHco8kAABHQC/PXCj1wo9HQGDOsCDEm6ZHQD+O2RaHKwKHcpAkAABHQC/ZmZmZmZpHQGDMi0OVgQZHQD+UvGp++duHcpEkAABHQC/cKPXCj1xHQGDMAAAAAABHQD+WRaHKwIOHcpIkAABHQC/eNT987ZFHQGDLfO2RaHNHQD+XjU/fO2SHcpMkAABHQC/ocrAgxJxHQGDJT987ZFpHQD+dcKPXCj2HcpQkAABHQC/rAgxJul5HQGDIzMzMzM1HQD+euFHrhR+HcpUkAABHQC/0vGp++dtHQGDGp++dsi1HQD+km6XjU/iHcpYkAABHQC/3S8an755HQGDGJN0vGqBHQD+mJN0vGqCHcpckAABHQDACTdLxqfxHQGDDO2RaHKxHQD+uFHrhR66HcpgkAABHQDADEm6XjVBHQGDC8an7521HQD+u2RaHKwKHcpkkAABHQDAEGJN0vGpHQGDCbpeNT99HQD+wIMSbpeOHcpokAABHQDAJN0vGp/BHQGDASbpeNT9HQD+2BBiTdLyHcpskAABHQDAKPXCj1wpHQGC/xqfvnbJHQD+3S8an756HcpwkAABHQDAPGp++dslHQGC9ocrAgxJHQD+9LxqfvneHcp0kAABHQDARaHKwIMVHQGC8m6XjU/hHQD/AAAAAAACHcp4kAABHQDAWRaHKwINHQGC6dsi0OVhHQD/F41P3ztmHcp8kAABHQDAXjU/fO2RHQGC587ZFoctHQD/HKwIMSbqHcqAkAABHQDAYk3S8an9HQGC5cKPXCj1HQD/IcrAgxJyHcqEkAABHQDAdcKPXCj1HQGC3S8an755HQD/OVgQYk3WHcqIkAABHQDAj1wo9cKRHQGC0Yk3S8apHQD/WRaHKwIOHcqMkAABHQDAkWhysCDFHQGC0IMSbpeNHQD/WyLQ5WBCHcqQkAABHQDAlYEGJN0xHQGCzpeNT989HQD/YUeuFHriHcqUkAABHQDAqPXCj1wpHQGCxgQYk3S9HQD/d87ZFocuHcqYkAABHQDArQ5WBBiVHQGCw/fO2RaJHQD/fO2RaHKyHcqckAABHQDAxqfvnbItHQGCuDEm6XjVHQD/nKwIMSbqHcqgkAABHQDAyLQ5WBBlHQGCt2yLQ5WBHQD/nrhR64UiHcqkkAABHQDA2yLQ5WBBHQGCrtkWhysFHQD/tkWhysCGHcqokAABHQDA3ztkWhytHQGCrO2RaHKxHQD/u2RaHKwKHcqskAABHQDA41P3ztkZHQGCquFHrhR9HQD/wIMSbpeOHcqwkAABHQDA9cKPXCj1HQGCom6XjU/hHQD/2BBiTdLyHcq0kAABHQDA+dsi0OVhHQGCoGJN0vGpHQD/3S8an756Hcq4kAABHQDBEGJN0vGpHQGCleNT987ZHQD/+NT987ZGHcq8kAABHQDBFYEGJN0xHQGCk9cKPXClHQD//vnbItDmHcrAkAABHQDBJul41P31HQGCi2RaHKwJHQEACsCDEm6aHcrEkAABHQDBKwIMSbphHQGCiVgQYk3VHQEADU/fO2ReHcrIkAABHQDBLxqfvnbJHQGCh2yLQ5WBHQEAD987ZFoeHcrMkAABHQDBQIMSbpeNHQGCfvnbItDlHQEAGyLQ5WBCHcrQkAABHQDBRaHKwIMVHQGCfO2RaHKxHQEAHbItDlYGHcrUkAABHQDBWyLQ5WBBHQGCcm6XjU/hHQEAK4UeuFHuHcrYkAABHQDBXztkWhytHQGCcIMSbpeNHQEALpeNT98+HcrckAABHQDBcKPXCj1xHQGCaBBiTdLxHQEAOVgQYk3WHcrgkAABHQDBdLxqfvndHQGCZiTdLxqhHQEAPGp++dsmHcrkkAABHQDBij1wo9cNHQGCW6XjU/fRHQEASj1wo9cOHcrokAABHQDBjlYEGJN1HQGCWbpeNT99HQEATMzMzMzOHcrskAABHQDBnrhR64UhHQGCUUeuFHrhHQEAWBBiTdLyHcrwkAABHQDBotDlYEGJHQGCT1wo9cKRHQEAWp++dsi2Hcr0kAABHQDBpul41P31HQGCTU/fO2RdHQEAXS8an756Hcr4kAABHQDBt0vGp++dHQGCRP3ztkWhHQEAZ++dsi0SHcr8kAABHQDBu2RaHKwJHQGCQvGp++dtHQEAawIMSbpiHcsAkAABHQDBv3ztkWh1HQGCQQYk3S8dHQEAbZFocrAiHcsEkAABHQDBz987ZFodHQGCOJN0vGqBHQEAeFHrhR66HcsIkAABHQDB0/fO2RaJHQGCNqfvnbItHQEAeuFHrhR+HcsMkAABHQDB5FocrAgxHQGCLlYEGJN1HQEAhiTdLxqiHcsQkAABHQDB6HKwIMSdHQGCLGp++dslHQEAiLQ5WBBmHcsUkAABHQDB/O2RaHKxHQGCIgxJul41HQEAlgQYk3S+HcsYkAABHQDCAQYk3S8dHQGCIAAAAAABHQEAmJN0vGqCHcsckAABHQDCBBiTdLxtHQGCHhR64UexHQEAm6XjU/fSHcsgkAABHQDCFHrhR64VHQGCFcKPXCj1HQEApmZmZmZqHcskkAABHQDCGJN0vGqBHQGCE9cKPXClHQEAqPXCj1wqHcsokAABHQDCJ++dsi0RHQGCC4UeuFHtHQEAs7ZFocrCHcsskAABHQDCMCDEm6XlHQGCB41P3ztlHQEAuNT987ZGHcswkAABHQDCP3ztkWh1HQGB/ztkWhytHQEAw5WBBiTeHcs0kAABHQDCQ5WBBiTdHQGB/U/fO2RdHQEAxiTdLxqiHcs4kAABHQDCRqfvnbItHQGB+2RaHKwJHQEAyLQ5WBBmHcs8kAABHQDCUvGp++dtHQGB9R64UeuFHQEA0WhysCDGHctAkAABHQDCVgQYk3S9HQGB8xJul41RHQEA0/fO2RaKHctEkAABHQDCbItDlYEJHQGB50vGp++dHQEA41P3ztkaHctIkAABHQDCbZFocrAhHQGB5ul41P31HQEA49cKPXCmHctMkAABHQDCcKPXCj1xHQGB5P3ztkWhHQEA5mZmZmZqHctQkAABHQDCgAAAAAABHQGB3MzMzMzNHQEA8SbpeNT+HctUkAABHQDChBiTdLxtHQGB2uFHrhR9HQEA8zMzMzM2HctYkAABHQDCmZmZmZmZHQGBzvnbItDlHQEBAxJul41SHctckAABHQDCmZmZmZmZHQGBzrhR64UhHQEBAxJul41SHctgkAABHQDCqPXCj1wpHQGBxocrAgxJHQEBDdLxqfvqHctkkAABHQDCrAgxJul5HQGBxHrhR64VHQEBEGJN0vGqHctokAABHQDCsCDEm6XlHQGBwo9cKPXFHQEBEvGp++duHctskAABHQDCvnbItDlZHQGBul41P3ztHQEBHbItDlYGHctwkAABHQDC0/fO2RaJHQGBrnbItDlZHQEBLQ5WBBiWHct0kAABHQDC0/fO2RaJHQGBrlYEGJN1HQEBLQ5WBBiWHct4kAABHQDC1wo9cKPZHQGBrGp++dslHQEBL52yLQ5aHct8kAABHQDC5WBBiTdNHQGBpDlYEGJNHQEBOl41P3zuHcuAkAABHQDC6XjU/fO5HQGBok3S8an9HQEBPO2RaHKyHcuEkAABHQDC7ItDlYEJHQGBoGJN0vGpHQEBPvnbItDmHcuIkAABHQDC+uFHrhR9HQGBmFHrhR65HQEBSbpeNT9+HcuMkAABHQDC/fO2RaHNHQGBlkWhysCFHQEBTEm6XjVCHcuQkAABHQDDDEm6XjVBHQGBjjU/fO2RHQEBVocrAgxKHcuUkAABHQDDD1wo9cKRHQGBjEm6XjVBHQEBWRaHKwIOHcuYkAABHQDDEm6XjU/hHQGBil41P3ztHQEBW6XjU/fSHcuckAABHQDDIMSbpeNVHQGBgi0OVgQZHQEBZeNT987aHcugkAABHQDDI9cKPXClHQGBgGJN0vGpHQEBaHKwIMSeHcukkAABHQDDNDlYEGJNHQGBdkWhysCFHQEBdT987ZFqHcuokAABHQDDN0vGp++dHQGBdFocrAgxHQEBd87ZFocuHcuskAABHQDDRaHKwIMVHQGBbEm6XjVBHQEBggxJul42HcuwkAABHQDDSLQ5WBBlHQGBal41P3ztHQEBhJul41P6Hcu0kAABHQDDS8an7521HQGBaHKwIMSdHQEBhysCDEm+Hcu4kAABHQDDWRaHKwINHQGBYGJN0vGpHQEBkWhysCDGHcu8kAABHQDDbItDlYEJHQGBVHrhR64VHQEBoMSbpeNWHcvAkAABHQDDb52yLQ5ZHQGBUo9cKPXFHQEBotDlYEGKHcvEkAABHQDDe+dsi0OVHQGBSn752yLRHQEBrQ5WBBiWHcvIkAABHQDDfvnbItDlHQGBSLQ5WBBlHQEBr52yLQ5aHcvMkAABHQDDj1wo9cKRHQGBPrhR64UhHQEBvGp++dsmHcvQkAABHQDDkm6XjU/hHQGBPMzMzMzNHQEBvvnbItDmHcvUkAABHQDDlYEGJN0xHQGBOuFHrhR9HQEBwQYk3S8eHcvYkAABHQDDnrhR64UhHQGBNLxqfvndHQEByLQ5WBBmHcvckAABHQDDocrAgxJxHQGBMvGp++dtHQEBy0OVgQYmHcvgkAABHQDDpN0vGp/BHQGBMQYk3S8dHQEBzdLxqfvqHcvkkAABHQDDsSbpeNT9HQGBKRaHKwINHQEB2BBiTdLyHcvokAABHQDDt0vGp++dHQGBJT987ZFpHQEB3KwIMSbqHcvskAABHQDDw5WBBiTdHQGBHS8an755HQEB5ul41P32HcvwkAABHQDDxqfvnbItHQGBG2RaHKwJHQEB6PXCj1wqHcv0kAABHQDDyLQ5WBBlHQGBGXjU/fO5HQEB64UeuFHuHcv4kAABHQDD0euFHrhRHQGBE1P3ztkZHQEB8zMzMzM2Hcv8kAABHQDD1P3ztkWhHQGBEYk3S8apHQEB9cKPXCj2HcgAlAABHQDD5FocrAgxHQGBB64UeuFJHQECAgxJul42HcgElAABHQDD5mZmZmZpHQGBBcKPXCj1HQECBJul41P6HcgIlAABHQDD6XjU/fO5HQGBA9cKPXClHQECBqfvnbIuHcgMlAABHQDD9LxqfvndHQGA++dsi0OVHQECEOVgQYk6HcgQlAABHQDD987ZFoctHQGA+hysCDEpHQECEvGp++duHcgUlAABHQDD+uFHrhR9HQGA+DEm6XjVHQECFYEGJN0yHcgYlAABHQDEAxJul41RHQGA8i0OVgQZHQECHS8an756HcgclAABHQDECTdLxqfxHQGA7lYEGJN1HQECIcrAgxJyHcgglAABHQDEFHrhR64VHQGA5ocrAgxJHQECK4UeuFHuHcgklAABHQDEF41P3ztlHQGA5Jul41P5HQECLhR64UeyHcgolAABHQDEGZmZmZmZHQGA4tDlYEGJHQECMCDEm6XmHcgslAABHQDEJN0vGp/BHQGA2uFHrhR9HQECOl41P3zuHcgwlAABHQDENT987ZFpHQGAzztkWhytHQECSLQ5WBBmHcg0lAABHQDEOFHrhR65HQGAzU/fO2RdHQECS0OVgQYmHcg4lAABHQDEQo9cKPXFHQGAxYEGJN0xHQECVP3ztkWiHcg8lAABHQDERaHKwIMVHQGAw7ZFocrBHQECVwo9cKPaHchAlAABHQDER64UeuFJHQGAwcrAgxJxHQECWZmZmZmaHchElAABHQDEVP3ztkWhHQGAuBBiTdLxHQECZWBBiTdOHchIlAABHQDEYEGJN0vJHQGAsEGJN0vJHQECbxqfvnbKHchMlAABHQDEYk3S8an9HQGArlYEGJN1HQECcan752yOHchQlAABHQDEZFocrAgxHQGArItDlYEJHQECc7ZFocrCHchUlAABHQDEbpeNT989HQGApLxqfvndHQECfXCj1wo+HchYlAABHQDEffO2RaHNHQGAmTdLxqfxHQECi8an7522HchclAABHQDEgQYk3S8dHQGAl0vGp++dHQECjlYEGJN2HchglAABHQDEij1wo9cNHQGAj52yLQ5ZHQECl41P3ztmHchklAABHQDEjU/fO2RdHQGAjbItDlYFHQECmhysCDEqHcholAABHQDEj1wo9cKRHQGAi+dsi0OVHQECnCj1wo9eHchslAABHQDEmZmZmZmZHQGAhBiTdLxtHQECpeNT987aHchwlAABHQDEm6XjU/fRHQGAgi0OVgQZHQECqHKwIMSeHch0lAABHQDEpN0vGp/BHQGAen752yLRHQECsan752yOHch4lAABHQDEp++dsi0RHQGAeLQ5WBBlHQECtDlYEGJOHch8lAABHQDEqfvnbItFHQGAdsi0OVgRHQECtkWhysCGHciAlAABHQDEszMzMzM1HQGAbxqfvnbJHQECwAAAAAACHciElAABHQDEwYk3S8apHQGAY5WBBiTdHQECzdLxqfvqHciIlAABHQDEw5WBBiTdHQGAYcrAgxJxHQECz987ZFoeHciMlAABHQDEzMzMzMzNHQGAWhysCDEpHQEC2ZmZmZmaHciQlAABHQDEztkWhysFHQGAWFHrhR65HQEC26XjU/fSHciUlAABHQDE0OVgQYk5HQGAVocrAgxJHQEC3bItDlYGHciYlAABHQDE2hysCDEpHQGATrhR64UhHQEC52yLQ5WCHciclAABHQDE52yLQ5WBHQGAQ3S8an75HQEC9T987ZFqHciglAABHQDE6XjU/fO5HQGAQYk3S8apHQEC90vGp++eHciklAABHQDE64UeuFHtHQGAP752yLQ5HQEC+VgQYk3WHciolAABHQDE8an752yNHQGAOfvnbItFHQEDAIMSbpeOHcislAABHQDE/fO2RaHNHQGALpeNT989HQEDDlYEGJN2HciwlAABHQDFAAAAAAABHQGALMzMzMzNHQEDEGJN0vGqHci0lAABHQDFAgxJul41HQGAKwIMSbphHQEDEvGp++duHci4lAABHQDFCTdLxqfxHQGAJR64UeuFHQEDGZmZmZmaHci8lAABHQDFC0OVgQYlHQGAI1P3ztkZHQEDHCj1wo9eHcjAlAABHQDFDEm6XjVBHQGAIYk3S8apHQEDHjU/fO2SHcjElAABHQDFDlYEGJN1HQGAH752yLQ5HQEDIEGJN0vKHcjIlAABHQDFFHrhR64VHQGAGfvnbItFHQEDJ2yLQ5WCHcjMlAABHQDFGJN0vGqBHQGAFkWhysCFHQEDLAgxJul6HcjQlAABHQDFIMSbpeNVHQGADrhR64UhHQEDNT987ZFqHcjUlAABHQDFItDlYEGJHQGADO2RaHKxHQEDN0vGp++eHcjYlAABHQDFJN0vGp/BHQGACyLQ5WBBHQEDOVgQYk3WHcjclAABHQDFKwIMSbphHQGABT987ZFpHQEDQIMSbpeOHcjglAABHQDFLAgxJul5HQGAA3S8an75HQEDQo9cKPXGHcjklAABHQDFNkWhysCFHQF/8/fO2RaJHQEDTdLxqfvqHcjolAABHQDFN0vGp++dHQF/8KPXCj1xHQEDT987ZFoeHcjslAABHQDFOVgQYk3VHQF/7Q5WBBiVHQEDUeuFHrhSHcjwlAABHQDFQYk3S8apHQF/3bItDlYFHQEDWyLQ5WBCHcj0lAABHQDFQo9cKPXFHQF/2l41P3ztHQEDXS8an756Hcj4lAABHQDFRJul41P5HQF/1si0OVgRHQEDXztkWhyuHcj8lAABHQDFSbpeNT99HQF/ywIMSbphHQEDZmZmZmZqHckAlAABHQDFTdLxqfvpHQF/w9cKPXClHQEDan752yLSHckElAABHQDFVP3ztkWhHQF/tLxqfvndHQEDc7ZFocrCHckIlAABHQDFVwo9cKPZHQF/sSbpeNT9HQEDdcKPXCj2HckMlAABHQDFWBBiTdLxHQF/rdLxqfvpHQEDd87ZFocuHckQlAABHQDFXztkWhytHQF/nrhR64UhHQEDgQYk3S8eHckUlAABHQDFYk3S8an9HQF/l41P3ztlHQEDhR64UeuGHckYlAABHQDFaXjU/fO5HQF/iHKwIMSdHQEDjlYEGJN2HckclAABHQDFa4UeuFHtHQF/hN0vGp/BHQEDkGJN0vGqHckglAABHQDFcan752yNHQF/dcKPXCj1HQEDmRaHKwIOHckklAABHQDFc7ZFocrBHQF/cm6XjU/hHQEDmyLQ5WBCHckolAABHQDFdLxqfvndHQF/btkWhysFHQEDnS8an756HckslAABHQDFfO2RaHKxHQF/XCj1wo9dHQEDqHKwIMSeHckwlAABHQDFgxJul41RHQF/TU/fO2RdHQEDsSbpeNT+Hck0lAABHQDFhR64UeuFHQF/SbpeNT99HQEDszMzMzM2Hck4lAABHQDFhiTdLxqhHQF/RiTdLxqhHQEDtT987ZFqHck8lAABHQDFjEm6XjVBHQF/N0vGp++dHQEDvfO2RaHOHclAlAABHQDFlYEGJN0xHQF/IUeuFHrhHQEDy0OVgQYmHclElAABHQDFlocrAgxJHQF/HbItDlYFHQEDzU/fO2ReHclIlAABHQDFnKwIMSbpHQF/DtkWhysFHQED1gQYk3S+HclMlAABHQDFnbItDlYFHQF/C4UeuFHtHQED2BBiTdLyHclQlAABHQDFn752yLQ5HQF/B++dsi0RHQED2hysCDEqHclUlAABHQDFpN0vGp/BHQF++RaHKwINHQED4tDlYEGKHclYlAABHQDFrQ5WBBiVHQF+4xJul41RHQED752yLQ5aHclclAABHQDFrxqfvnbJHQF+3752yLQ5HQED8an752yOHclglAABHQDFtDlYEGJNHQF+0OVgQYk5HQED+dsi0OViHclklAABHQDFu2RaHKwJHQF+uyLQ5WBBHQEEBqfvnbIuHclolAABHQDFvXCj1wo9HQF+t41P3ztlHQEECLQ5WBBmHclslAABHQDFwo9cKPXFHQF+qPXCj1wpHQEEEWhysCDGHclwlAABHQDFw5WBBiTdHQF+pWBBiTdNHQEEE3S8an76Hcl0lAABHQDFxJul41P5HQF+ogxJul41HQEEFYEGJN0yHcl4lAABHQDFxaHKwIMVHQF+nnbItDlZHQEEF41P3ztmHcl8lAABHQDFybpeNT99HQF+kzMzMzM1HQEEHbItDlYGHcmAlAABHQDF0OVgQYk5HQF+fbItDlYFHQEEKn752yLSHcmElAABHQDF0euFHrhRHQF+ehysCDEpHQEELItDlYEKHcmIlAABHQDF0vGp++dtHQF+dsi0OVgRHQEELpeNT98+HcmMlAABHQDF1gQYk3S9HQF+a4UeuFHtHQEENLxqfvneHcmQlAABHQDF2RaHKwINHQF+YUeuFHrhHQEEOuFHrhR+HcmUlAABHQDF3S8an755HQF+VgQYk3S9HQEEQQYk3S8eHcmYlAABHQDF3jU/fO2RHQF+Um6XjU/hHQEEQxJul41SHcmclAABHQDF3ztkWhytHQF+TxqfvnbJHQEERR64UeuGHcmglAABHQDF41P3ztkZHQF+QIMSbpeNHQEETdLxqfvqHcmklAABHQDF5FocrAgxHQF+PO2RaHKxHQEET1wo9cKSHcmolAABHQDF5WBBiTdNHQF+OZmZmZmZHQEEUWhysCDGHcmslAABHQDF6HKwIMSdHQF+LpeNT989HQEEWBBiTdLyHcmwlAABHQDF7ZFocrAhHQF+GRaHKwINHQEEZFocrAgyHcm0lAABHQDF7peNT989HQF+FYEGJN0xHQEEZmZmZmZqHcm4lAABHQDF752yLQ5ZHQF+Ei0OVgQZHQEEZ++dsi0SHcm8lAABHQDF87ZFocrBHQF+A5WBBiTdHQEEcCDEm6XmHcnAlAABHQDF9cKPXCj1HQF9/O2RaHKxHQEEdDlYEGJOHcnElAABHQDF+NT987ZFHQF97lYEGJN1HQEEfGp++dsmHcnIlAABHQDF+dsi0OVhHQF96sCDEm6ZHQEEfnbItDlaHcnMlAABHQDF/O2RaHKxHQF93Gp++dslHQEEhqfvnbIuHcnQlAABHQDF/fO2RaHNHQF92RaHKwINHQEEiLQ5WBBmHcnUlAABHQDF/vnbItDlHQF91YEGJN0xHQEEisCDEm6aHcnYlAABHQDGAxJul41RHQF9w5WBBiTdHQEElHrhR64WHcnclAABHQDGBiTdLxqhHQF9tT987ZFpHQEEnKwIMSbqHcnglAABHQDGBysCDEm9HQF9seuFHrhRHQEEnrhR64UiHcnklAABHQDGBysCDEm9HQF9rpeNT989HQEEoMSbpeNWHcnolAABHQDGCj1wo9cNHQF9oEGJN0vJHQEEqPXCj1wqHcnslAABHQDGDEm6XjVBHQF9mVgQYk3VHQEErItDlYEKHcnwlAABHQDGDlYEGJN1HQF9iwIMSbphHQEEtLxqfvneHcn0lAABHQDGD1wo9cKRHQF9h64UeuFJHQEEtsi0OVgSHcn4lAABHQDGEm6XjU/hHQF9eVgQYk3VHQEEvnbItDlaHcn8lAABHQDGEm6XjU/hHQF9dcKPXCj1HQEEwIMSbpeOHcoAlAABHQDGE3S8an75HQF9cm6XjU/hHQEEwo9cKPXGHcoElAABHQDGFocrAgxJHQF9YMSbpeNVHQEEzEm6XjVCHcoIlAABHQDGGZmZmZmZHQF9TxqfvnbJHQEE1gQYk3S+HcoMlAABHQDGGZmZmZmZHQF9S8an7521HQEE2BBiTdLyHcoQlAABHQDGGp++dsi1HQF9RR64UeuFHQEE26XjU/fSHcoUlAABHQDGG6XjU/fRHQF9PbItDlYFHQEE3752yLQ6HcoYlAABHQDGHKwIMSbpHQF9Nsi0OVgRHQEE49cKPXCmHcoclAABHQDGHrhR64UhHQF9KHKwIMSdHQEE64UeuFHuHcoglAABHQDGH752yLQ5HQF9JR64UeuFHQEE7ZFocrAiHcoklAABHQDGIMSbpeNVHQF9HrhR64UhHQEE8SbpeNT+HcoolAABHQDGIcrAgxJxHQF9Fwo9cKPZHQEE9T987ZFqHcoslAABHQDGIcrAgxJxHQF9E7ZFocrBHQEE90vGp++eHcowlAABHQDGIcrAgxJxHQF9EGJN0vGpHQEE+NT987ZGHco0lAABHQDGItDlYEGJHQF9DQ5WBBiVHQEE+uFHrhR+Hco4lAABHQDGI9cKPXClHQF9Ak3S8an9HQEFAQYk3S8eHco8lAABHQDGJN0vGp/BHQF8+FHrhR65HQEFBqfvnbIuHcpAlAABHQDGJeNT987ZHQF87U/fO2RdHQEFDEm6XjVCHcpElAABHQDGJul41P31HQF86fvnbItFHQEFDlYEGJN2HcpIlAABHQDGJul41P31HQF85qfvnbItHQEFD987ZFoeHcpMlAABHQDGJul41P31HQF845WBBiTdHQEFEeuFHrhSHcpQlAABHQDGJ++dsi0RHQF82+dsi0OVHQEFFgQYk3S+HcpUlAABHQDGKPXCj1wpHQF81T987ZFpHQEFGZmZmZmaHcpYlAABHQDGKPXCj1wpHQF80euFHrhRHQEFG6XjU/fSHcpclAABHQDGKfvnbItFHQF8xysCDEm9HQEFIUeuFHriHcpglAABHQDGKfvnbItFHQF8w9cKPXClHQEFI1P3ztkaHcpklAABHQDGKwIMSbphHQF8vXCj1wo9HQEFJul41P32HcpolAABHQDGKwIMSbphHQF8sm6XjU/hHQEFLItDlYEKHcpslAABHQDGLAgxJul5HQF8rxqfvnbJHQEFLpeNT98+HcpwlAABHQDGLAgxJul5HQF8q8an7521HQEFMKPXCj1yHcp0lAABHQDGLQ5WBBiVHQF8l0vGp++dHQEFO2RaHKwKHcp4lAABHQDGLhR64UexHQF8jItDlYEJHQEFQYk3S8aqHcp8lAABHQDGLhR64UexHQF8iTdLxqfxHQEFQ5WBBiTeHcqAlAABHQDGLhR64UexHQF8heNT987ZHQEFRR64UeuGHcqElAABHQDGLxqfvnbJHQF8eyLQ5WBBHQEFSsCDEm6aHcqIlAABHQDGLxqfvnbJHQF8cWhysCDFHQEFUGJN0vGqHcqMlAABHQDGLxqfvnbJHQF8ZqfvnbItHQEFVgQYk3S+HcqQlAABHQDGLxqfvnbJHQF8Y1P3ztkZHQEFWBBiTdLyHcqUlAABHQDGLxqfvnbJHQF8YAAAAAABHQEFWZmZmZmaHcqYlAABHQDGMCDEm6XlHQF8Ui0OVgQZHQEFYUeuFHriHcqclAABHQDGMCDEm6XlHQF8TtkWhysFHQEFYtDlYEGKHcqglAABHQDGMCDEm6XlHQF8S4UeuFHtHQEFZN0vGp/CHcqklAABHQDGMCDEm6XlHQF8N0vGp++dHQEFb52yLQ5aHcqolAABHQDGMCDEm6XlHQF8LItDlYEJHQEFdcKPXCj2HcqslAABHQDGMCDEm6XlHQF8KTdLxqfxHQEFd0vGp++eHcqwlAABHQDGMCDEm6XlHQF8JeNT987ZHQEFeNT987ZGHcq0lAABHQDGMCDEm6XlHQF8GBBiTdLxHQEFgIMSbpeOHcq4lAABHQDGMCDEm6XlHQF8Ean752yNHQEFhBiTdLxuHcq8lAABHQDGLxqfvnbJHQF8A9cKPXClHQEFi0OVgQYmHcrAlAABHQDGLxqfvnbJHQF8AIMSbpeNHQEFjU/fO2ReHcrElAABHQDGLxqfvnbJHQF7+hysCDEpHQEFkGJN0vGqHcrIlAABHQDGLxqfvnbJHQF78rAgxJulHQEFlHrhR64WHcrMlAABHQDGLxqfvnbJHQF7752yLQ5ZHQEFlgQYk3S+HcrQlAABHQDGLxqfvnbJHQF77Em6XjVBHQEFmBBiTdLyHcrUlAABHQDGLhR64UexHQF75eNT987ZHQEFmyLQ5WBCHcrYlAABHQDGLhR64UexHQF72yLQ5WBBHQEFoUeuFHriHcrclAABHQDGLhR64UexHQF71LxqfvndHQEFpFocrAgyHcrglAABHQDGLQ5WBBiVHQF7yj1wo9cNHQEFqfvnbItGHcrklAABHQDGLQ5WBBiVHQF7xul41P31HQEFq4UeuFHuHcrolAABHQDGLAgxJul5HQF7wMSbpeNVHQEFrxqfvnbKHcrslAABHQDGLAgxJul5HQF7uVgQYk3VHQEFszMzMzM2HcrwlAABHQDGKwIMSbphHQF7svGp++dtHQEFtkWhysCGHcr0lAABHQDGKfvnbItFHQF7pR64UeuFHQEFvfO2RaHOHcr4lAABHQDGKfvnbItFHQF7ocrAgxJxHQEFv3ztkWh2Hcr8lAABHQDGKfvnbItFHQF7m6XjU/fRHQEFwo9cKPXGHcsAlAABHQDGKPXCj1wpHQF7lDlYEGJNHQEFxqfvnbIuHcsElAABHQDGKPXCj1wpHQF7kOVgQYk5HQEFyDEm6XjWHcsIlAABHQDGJ++dsi0RHQF7jdLxqfvpHQEFyj1wo9cOHcsMlAABHQDGJ++dsi0RHQF7h2yLQ5WBHQEFzU/fO2ReHcsQlAABHQDGJul41P31HQF7gAAAAAABHQEF0WhysCDGHcsUlAABHQDGJeNT987ZHQF7docrAgxJHQEF1gQYk3S+HcsYlAABHQDGJN0vGp/BHQF7bAgxJul5HQEF26XjU/fSHcsclAABHQDGI9cKPXClHQF7aPXCj1wpHQEF3S8an756HcsglAABHQDGI9cKPXClHQF7ZaHKwIMVHQEF3ztkWhyuHcsklAABHQDGI9cKPXClHQF7Yo9cKPXFHQEF4MSbpeNWHcsolAABHQDGItDlYEGJHQF7W2RaHKwJHQEF5FocrAgyHcsslAABHQDGIcrAgxJxHQF7VP3ztkWhHQEF5++dsi0SHcswlAABHQDGIcrAgxJxHQF7Uan752yNHQEF6XjU/fO6Hcs0lAABHQDGIMSbpeNVHQF7TpeNT989HQEF6wIMSbpiHcs4lAABHQDGH752yLQ5HQF7RysCDEm9HQEF7xqfvnbKHcs8lAABHQDGH752yLQ5HQF7RBiTdLxtHQEF8KPXCj1yHctAlAABHQDGHrhR64UhHQF7PfO2RaHNHQEF87ZFocrCHctElAABHQDGHKwIMSbpHQF7M3S8an75HQEF+VgQYk3WHctIlAABHQDGHKwIMSbpHQF7MCDEm6XlHQEF+uFHrhR+HctMlAABHQDGG6XjU/fRHQF7LQ5WBBiVHQEF/Gp++dsmHctQlAABHQDGG6XjU/fRHQF7KfvnbItFHQEF/fO2RaHOHctUlAABHQDGGp++dsi1HQF7Io9cKPXFHQEGAgxJul42HctYlAABHQDGGJN0vGqBHQF7GVgQYk3VHQEGBqfvnbIuHctclAABHQDGF41P3ztlHQF7DtkWhysFHQEGDEm6XjVCHctglAABHQDGFocrAgxJHQF7C8an7521HQEGDdLxqfvqHctklAABHQDGFYEGJN0xHQF7CHKwIMSdHQEGD1wo9cKSHctolAABHQDGFYEGJN0xHQF7BWBBiTdNHQEGEOVgQYk6HctslAABHQDGEm6XjU/hHQF6987ZFoctHQEGGBBiTdLyHctwlAABHQDGEm6XjU/hHQF69LxqfvndHQEGGZmZmZmaHct0lAABHQDGEGJN0vGpHQF66n752yLRHQEGHztkWhyuHct4lAABHQDGD1wo9cKRHQF65ysCDEm9HQEGIMSbpeNWHct8lAABHQDGDlYEGJN1HQF64QYk3S8dHQEGI9cKPXCmHcuAlAABHQDGDEm6XjVBHQF61si0OVgRHQEGKPXCj1wqHcuElAABHQDGC0OVgQYlHQF603S8an75HQEGKwIMSbpiHcuIlAABHQDGC0OVgQYlHQF60GJN0vGpHQEGLItDlYEKHcuMlAABHQDGBysCDEm9HQF6vO2RaHKxHQEGNkWhysCGHcuQlAABHQDGBBiTdLxtHQF6sm6XjU/hHQEGO+dsi0OWHcuUlAABHQDGAxJul41RHQF6r1wo9cKRHQEGPXCj1wo+HcuYlAABHQDGAxJul41RHQF6rEm6XjVBHQEGPvnbItDmHcuclAABHQDF/vnbItDlHQF6m+dsi0OVHQEGRysCDEm+HcuglAABHQDF/fO2RaHNHQF6mJN0vGqBHQEGSLQ5WBBmHcuklAABHQDF+uFHrhR9HQF6i0OVgQYlHQEGT987ZFoeHcuolAABHQDF+dsi0OVhHQF6iDEm6XjVHQEGUWhysCDGHcuslAABHQDF+NT987ZFHQF6ggxJul41HQEGVHrhR64WHcuwlAABHQDF9si0OVgRHQF6euFHrhR9HQEGWBBiTdLyHcu0lAABHQDF9cKPXCj1HQF6d87ZFoctHQEGWZmZmZmaHcu4lAABHQDF9LxqfvndHQF6dLxqfvndHQEGWyLQ5WBCHcu8lAABHQDF752yLQ5ZHQF6YUeuFHrhHQEGZN0vGp/CHcvAlAABHQDF7peNT989HQF6XjU/fO2RHQEGZmZmZmZqHcvElAABHQDF64UeuFHtHQF6U/fO2RaJHQEGa4UeuFHuHcvIlAABHQDF6n752yLRHQF6UOVgQYk5HQEGbQ5WBBiWHcvMlAABHQDF6HKwIMSdHQF6SsCDEm6ZHQEGcCDEm6XmHcvQlAABHQDF5FocrAgxHQF6PXCj1wo9HQEGdsi0OVgSHcvUlAABHQDF5FocrAgxHQF6Ol41P3ztHQEGeFHrhR66HcvYlAABHQDF4EGJN0vJHQF6MCDEm6XlHQEGfXCj1wo+HcvclAABHQDF3ztkWhytHQF6LQ5WBBiVHQEGfvnbItDmHcvglAABHQDF3jU/fO2RHQF6Jul41P31HQEGggxJul42HcvklAABHQDF2hysCDEpHQF6HO2RaHKxHQEGhysCDEm+HcvolAABHQDF2RaHKwINHQF6Gdsi0OVhHQEGiLQ5WBBmHcvslAABHQDF1wo9cKPZHQF6E7ZFocrBHQEGi8an7522HcvwlAABHQDF1P3ztkWhHQF6DItDlYEJHQEGj1wo9cKSHcv0lAABHQDF0/fO2RaJHQF6CXjU/fO5HQEGkOVgQYk6Hcv4lAABHQDF0euFHrhRHQF6A5WBBiTdHQEGk/fO2RaKHcv8lAABHQDFz987ZFodHQF5/XCj1wo9HQEGlocrAgxKHcgAmAABHQDFztkWhysFHQF5+VgQYk3VHQEGmJN0vGqCHcgEmAABHQDFzdLxqfvpHQF59kWhysCFHQEGmhysCDEqHcgImAABHQDFysCDEm6ZHQF58CDEm6XlHQEGnS8an756HcgMmAABHQDFxqfvnbItHQF54xJul41RHQEGo9cKPXCmHcgQmAABHQDFxaHKwIMVHQF54AAAAAABHQEGpWBBiTdOHcgUmAABHQDFxJul41P5HQF53S8an755HQEGpul41P32HcgYmAABHQDFwYk3S8apHQF51gQYk3S9HQEGqn752yLSHcgcmAABHQDFwIMSbpeNHQF50vGp++dtHQEGrAgxJul6HcggmAABHQDFvnbItDlZHQF5zMzMzMzNHQEGrpeNT98+HcgkmAABHQDFvGp++dslHQF5xul41P31HQEGsan752yOHcgomAABHQDFul41P3ztHQF5wtDlYEGJHQEGs7ZFocrCHcgsmAABHQDFuVgQYk3VHQF5v752yLQ5HQEGtT987ZFqHcgwmAABHQDFuFHrhR65HQF5vKwIMSbpHQEGtsi0OVgSHcg0mAABHQDFtkWhysCFHQF5udsi0OVhHQEGuFHrhR66Hcg4mAABHQDFtDlYEGJNHQF5srAgxJulHQEGu2RaHKwKHcg8mAABHQDFsCDEm6XlHQF5qbpeNT99HQEGwAAAAAACHchAmAABHQDFrxqfvnbJHQF5pqfvnbItHQEGwYk3S8aqHchEmAABHQDFrAgxJul5HQF5n752yLQ5HQEGxR64UeuGHchImAABHQDFqwIMSbphHQF5nKwIMSbpHQEGxqfvnbIuHchMmAABHQDFqfvnbItFHQF5mZmZmZmZHQEGx64UeuFKHchQmAABHQDFqPXCj1wpHQF5locrAgxJHQEGyTdLxqfyHchUmAABHQDFpeNT987ZHQF5kOVgQYk5HQEGzEm6XjVCHchYmAABHQDFotDlYEGJHQF5iXjU/fO5HQEGz987ZFoeHchcmAABHQDFocrAgxJxHQF5hqfvnbItHQEG0OVgQYk6HchgmAABHQDFoMSbpeNVHQF5g5WBBiTdHQEG0m6XjU/iHchkmAABHQDFnbItDlYFHQF5fKwIMSbpHQEG1gQYk3S+HchomAABHQDFm6XjU/fRHQF5eZmZmZmZHQEG141P3ztmHchsmAABHQDFmZmZmZmZHQF5c7ZFocrBHQEG2hysCDEqHchwmAABHQDFlYEGJN0xHQF5abpeNT99HQEG3ztkWhyuHch0mAABHQDFk3S8an75HQF5ZqfvnbItHQEG4MSbpeNWHch4mAABHQDFkm6XjU/hHQF5Y5WBBiTdHQEG4k3S8an+Hch8mAABHQDFkWhysCDFHQF5YMSbpeNVHQEG41P3ztkaHciAmAABHQDFij1wo9cNHQF5UKPXCj1xHQEG6wIMSbpiHciEmAABHQDFhR64UeuFHQF5Rul41P31HQEG8CDEm6XmHciImAABHQDFhBiTdLxtHQF5Q9cKPXClHQEG8an752yOHciMmAABHQDFggxJul41HQF5QMSbpeNVHQEG8rAgxJumHciQmAABHQDFgQYk3S8dHQF5PfO2RaHNHQEG9DlYEGJOHciUmAABHQDFeuFHrhR9HQF5MOVgQYk5HQEG+l41P3zuHciYmAABHQDFeNT987ZFHQF5LdLxqfvpHQEG++dsi0OWHcicmAABHQDFcrAgxJulHQF5IQYk3S8dHQEHAgxJul42HcigmAABHQDFan752yLRHQF5EWhysCDFHQEHCbpeNT9+HcikmAABHQDFaXjU/fO5HQF5DlYEGJN1HQEHCsCDEm6aHciomAABHQDFZ2yLQ5WBHQF5C0OVgQYlHQEHDEm6XjVCHcismAABHQDFXjU/fO2RHQF4+JN0vGqBHQEHFYEGJN0yHciwmAABHQDFXCj1wo9dHQF49YEGJN0xHQEHFocrAgxKHci0mAABHQDFVwo9cKPZHQF468an7521HQEHGyLQ5WBCHci4mAABHQDFVgQYk3S9HQF46LQ5WBBlHQEHHKwIMSbqHci8mAABHQDFS8an7521HQF41kWhysCFHQEHJWBBiTdOHcjAmAABHQDFSbpeNT99HQF40zMzMzM1HQEHJul41P32HcjEmAABHQDFRqfvnbItHQF4zZFocrAhHQEHKXjU/fO6HcjImAABHQDFRJul41P5HQF4yXjU/fO5HQEHK4UeuFHuHcjMmAABHQDFQo9cKPXFHQF4xmZmZmZpHQEHLQ5WBBiWHcjQmAABHQDFP3ztkWh1HQF4wIMSbpeNHQEHL52yLQ5aHcjUmAABHQDFPGp++dslHQF4uuFHrhR9HQEHMi0OVgQaHcjYmAABHQDFOl41P3ztHQF4tsi0OVgRHQEHNDlYEGJOHcjcmAABHQDFOFHrhR65HQF4s/fO2RaJHQEHNcKPXCj2HcjgmAABHQDFNT987ZFpHQF4rhR64UexHQEHOFHrhR66HcjkmAABHQDFMzMzMzM1HQF4q0OVgQYlHQEHOdsi0OViHcjomAABHQDFMSbpeNT9HQF4pysCDEm9HQEHO2RaHKwKHcjsmAABHQDFLhR64UexHQF4oUeuFHrhHQEHPnbItDlaHcjwmAABHQDFLAgxJul5HQF4nnbItDlZHQEHP3ztkWh2Hcj0mAABHQDFKPXCj1wpHQF4mNT987ZFHQEHQo9cKPXGHcj4mAABHQDFJeNT987ZHQF4lLxqfvndHQEHRBiTdLxuHcj8mAABHQDFJN0vGp/BHQF4kan752yNHQEHRaHKwIMWHckAmAABHQDFIMSbpeNVHQF4jAgxJul5HQEHSDEm6XjWHckEmAABHQDFH752yLQ5HQF4iTdLxqfxHQEHSbpeNT9+HckImAABHQDFGZmZmZmZHQF4fztkWhytHQEHTlYEGJN2HckMmAABHQDFF41P3ztlHQF4fGp++dslHQEHT1wo9cKSHckQmAABHQDFFYEGJN0xHQF4eZmZmZmZHQEHUOVgQYk6HckUmAABHQDFFHrhR64VHQF4docrAgxJHQEHUm6XjU/iHckYmAABHQDFEWhysCDFHQF4crAgxJulHQEHU/fO2RaKHckcmAABHQDFD1wo9cKRHQF4b52yLQ5ZHQEHVYEGJN0yHckgmAABHQDFDEm6XjVBHQF4afvnbItFHQEHWBBiTdLyHckkmAABHQDFCDEm6XjVHQF4ZFocrAgxHQEHWp++dsi2HckomAABHQDFBiTdLxqhHQF4YEGJN0vJHQEHXKwIMSbqHcksmAABHQDFBBiTdLxtHQF4XS8an755HQEHXbItDlYGHckwmAABHQDFAgxJul41HQF4Wl41P3ztHQEHXztkWhyuHck0mAABHQDFAQYk3S8dHQF4V41P3ztlHQEHYMSbpeNWHck4mAABHQDE/vnbItDlHQF4VLxqfvndHQEHYcrAgxJyHck8mAABHQDE++dsi0OVHQF4UKPXCj1xHQEHY9cKPXCmHclAmAABHQDE+dsi0OVhHQF4TdLxqfvpHQEHZN0vGp/CHclEmAABHQDE9si0OVgRHQF4R++dsi0RHQEHZ++dsi0SHclImAABHQDE9LxqfvndHQF4RR64UeuFHQEHaPXCj1wqHclMmAABHQDE8rAgxJulHQF4Qk3S8an9HQEHan752yLSHclQmAABHQDE8KPXCj1xHQF4PnbItDlZHQEHbAgxJul6HclUmAABHQDE7peNT989HQF4O2RaHKwJHQEHbZFocrAiHclYmAABHQDE7ItDlYEJHQF4OJN0vGqBHQEHbpeNT98+HclcmAABHQDE6n752yLRHQF4NcKPXCj1HQEHcCDEm6XmHclgmAABHQDE6HKwIMSdHQF4MvGp++dtHQEHcSbpeNT+HclkmAABHQDE5mZmZmZpHQF4MCDEm6XlHQEHcrAgxJumHclomAABHQDE4k3S8an9HQF4KTdLxqfxHQEHdcKPXCj2HclsmAABHQDE4EGJN0vJHQF4JiTdLxqhHQEHd0vGp++eHclwmAABHQDE3jU/fO2RHQF4I5WBBiTdHQEHeFHrhR66Hcl0mAABHQDE3Cj1wo9dHQF4IMSbpeNVHQEHedsi0OViHcl4mAABHQDE2hysCDEpHQF4HKwIMSbpHQEHe2RaHKwKHcl8mAABHQDE2BBiTdLxHQF4Gdsi0OVhHQEHfO2RaHKyHcmAmAABHQDE0/fO2RaJHQF4E/fO2RaJHQEHf3ztkWh2HcmEmAABHQDE0euFHrhRHQF4ESbpeNT9HQEHgIMSbpeOHcmImAABHQDEz987ZFodHQF4DlYEGJN1HQEHggxJul42HcmMmAABHQDEzMzMzMzNHQF4Cn752yLRHQEHg5WBBiTeHcmQmAABHQDEysCDEm6ZHQF4B2yLQ5WBHQEHhR64UeuGHcmUmAABHQDEyLQ5WBBlHQF4BJul41P5HQEHhqfvnbIuHcmYmAABHQDExqfvnbItHQF4AcrAgxJxHQEHh64UeuFKHcmcmAABHQDExJul41P5HQF3/vnbItDlHQEHiLQ5WBBmHcmgmAABHQDEw5WBBiTdHQF3/Cj1wo9dHQEHij1wo9cOHcmkmAABHQDEwIMSbpeNHQF3+BBiTdLxHQEHjEm6XjVCHcmomAABHQDEvGp++dslHQF38m6XjU/hHQEHjtkWhysGHcmsmAABHQDEul41P3ztHQF3752yLQ5ZHQEHj987ZFoeHcmwmAABHQDEuFHrhR65HQF37MzMzMzNHQEHkOVgQYk6Hcm0mAABHQDEtT987ZFpHQF36PXCj1wpHQEHkvGp++duHcm4mAABHQDEszMzMzM1HQF35iTdLxqhHQEHk/fO2RaKHcm8mAABHQDEsSbpeNT9HQF34xJul41RHQEHlYEGJN0yHcnAmAABHQDErxqfvnbJHQF34EGJN0vJHQEHlocrAgxKHcnEmAABHQDEqwIMSbphHQF32uFHrhR9HQEHmRaHKwIOHcnImAABHQDEpeNT987ZHQF30/fO2RaJHQEHnCj1wo9eHcnMmAABHQDEo9cKPXClHQF30SbpeNT9HQEHnbItDlYGHcnQmAABHQDEocrAgxJxHQF3zlYEGJN1HQEHnrhR64UiHcnUmAABHQDEn752yLQ5HQF3y4UeuFHtHQEHoEGJN0vKHcnYmAABHQDEnKwIMSbpHQF3x2yLQ5WBHQEHocrAgxJyHcncmAABHQDEmp++dsi1HQF3xJul41P5HQEHo1P3ztkaHcngmAABHQDElocrAgxJHQF3vvnbItDlHQEHpeNT987aHcnkmAABHQDElHrhR64VHQF3vCj1wo9dHQEHpul41P32HcnomAABHQDEkm6XjU/hHQF3uVgQYk3VHQEHqHKwIMSeHcnsmAABHQDEj1wo9cKRHQF3tYEGJN0xHQEHqfvnbItGHcnwmAABHQDEjU/fO2RdHQF3srAgxJulHQEHqwIMSbpiHcn0mAABHQDEi0OVgQYlHQF3r52yLQ5ZHQEHrItDlYEKHcn4mAABHQDEiTdLxqfxHQF3rQ5WBBiVHQEHrZFocrAiHcn8mAABHQDEhBiTdLxtHQF3p2yLQ5WBHQEHsCDEm6XmHcoAmAABHQDEgQYk3S8dHQF3o1P3ztkZHQEHsi0OVgQaHcoEmAABHQDEfO2RaHKxHQF3nbItDlYFHQEHtLxqfvneHcoImAABHQDEc7ZFocrBHQF3kWhysCDFHQEHudsi0OViHcoMmAABHQDEcan752yNHQF3jpeNT989HQEHu2RaHKwKHcoQmAABHQDEan752yLRHQF3hmZmZmZpHQEHvvnbItDmHcoUmAABHQDEZWBBiTdNHQF3f3ztkWh1HQEHwgxJul42HcoYmAABHQDEY1P3ztkZHQF3fKwIMSbpHQEHwxJul41SHcocmAABHQDEWRaHKwINHQF3cGJN0vGpHQEHyLQ5WBBmHcogmAABHQDESsCDEm6ZHQF3XnbItDlZHQEH0GJN0vGqHcokmAABHQDER64UeuFJHQF3W6XjU/fRHQEH0WhysCDGHcoomAABHQDEPXCj1wo9HQF3T1wo9cKRHQEH1wo9cKPaHcosmAABHQDEOVgQYk3VHQF3SbpeNT99HQEH2ZmZmZmaHcowmAABHQDEN0vGp++dHQF3Rul41P31HQEH2p++dsi2Hco0mAABHQDEMi0OVgQZHQF3QYk3S8apHQEH3S8an756Hco4mAABHQDELxqfvnbJHQF3PbItDlYFHQEH3rhR64UiHco8mAABHQDELAgxJul5HQF3OuFHrhR9HQEH3752yLQ6HcpAmAABHQDEJ++dsi0RHQF3NT987ZFpHQEH4k3S8an+HcpEmAABHQDEJN0vGp/BHQF3Mm6XjU/hHQEH41P3ztkaHcpImAABHQDEHKwIMSbpHQF3KPXCj1wpHQEH52yLQ5WCHcpMmAABHQDEGp++dsi1HQF3JiTdLxqhHQEH6PXCj1wqHcpQmAABHQDEFYEGJN0xHQF3IMSbpeNVHQEH6wIMSbpiHcpUmAABHQDEEm6XjU/hHQF3HO2RaHKxHQEH7Q5WBBiWHcpYmAABHQDEEGJN0vGpHQF3GhysCDEpHQEH7hR64UeyHcpcmAABHQDEC0OVgQYlHQF3FHrhR64VHQEH8KPXCj1yHcpgmAABHQDEBiTdLxqhHQF3DxqfvnbJHQEH8rAgxJumHcpkmAABHQDEAxJul41RHQF3C0OVgQYlHQEH9DlYEGJOHcpomAABHQDEAAAAAAABHQF3CHKwIMSdHQEH9cKPXCj2HcpsmAABHQDD/fO2RaHNHQF3BaHKwIMVHQEH9si0OVgSHcpwmAABHQDD++dsi0OVHQF3AtDlYEGJHQEH987ZFocuHcp0mAABHQDD+NT987ZFHQF3AAAAAAABHQEH+VgQYk3WHcp4mAABHQDD9cKPXCj1HQF2/Cj1wo9dHQEH+uFHrhR+Hcp8mAABHQDD7ZFocrAhHQF28/fO2RaJHQEH/nbItDlaHcqAmAABHQDD64UeuFHtHQF28SbpeNT9HQEH/3ztkWh2HcqEmAABHQDD6XjU/fO5HQF27peNT989HQEIAIMSbpeOHcqImAABHQDD5WBBiTdNHQF26sCDEm6ZHQEIAo9cKPXGHcqMmAABHQDD41P3ztkZHQF25++dsi0RHQEIA5WBBiTeHcqQmAABHQDD3jU/fO2RHQF24k3S8an9HQEIBiTdLxqiHcqUmAABHQDD2yLQ5WBBHQF233ztkWh1HQEIBysCDEm+HcqYmAABHQDD2RaHKwINHQF23O2RaHKxHQEICDEm6XjWHcqcmAABHQDD0vGp++dtHQF21kWhysCFHQEIC0OVgQYmHcqgmAABHQDDz987ZFodHQF203S8an75HQEIDEm6XjVCHcqkmAABHQDDzdLxqfvpHQF20KPXCj1xHQEIDU/fO2ReHcqomAABHQDDysCDEm6ZHQF2zhR64UexHQEIDlYEGJN2HcqsmAABHQDDx64UeuFJHQF2yj1wo9cNHQEIEGJN0vGqHcqwmAABHQDDxJul41P5HQF2x2yLQ5WBHQEIEWhysCDGHcq0mAABHQDDv3ztkWh1HQF2wcrAgxJxHQEIE3S8an76Hcq4mAABHQDDvXCj1wo9HQF2vztkWhytHQEIFP3ztkWiHcq8mAABHQDDul41P3ztHQF2vGp++dslHQEIFgQYk3S+HcrAmAABHQDDt0vGp++dHQF2uJN0vGqBHQEIF41P3ztmHcrEmAABHQDDtDlYEGJNHQF2tgQYk3S9HQEIGJN0vGqCHcrImAABHQDDsSbpeNT9HQF2szMzMzM1HQEIGhysCDEqHcrMmAABHQDDrxqfvnbJHQF2sGJN0vGpHQEIGyLQ5WBCHcrQmAABHQDDrAgxJul5HQF2rdLxqfvpHQEIHCj1wo9eHcrUmAABHQDDqfvnbItFHQF2qwIMSbphHQEIHS8an756HcrYmAABHQDDqPXCj1wpHQF2qfvnbItFHQEIHbItDlYGHcrcmAABHQDDpeNT987ZHQF2pysCDEm9HQEIHrhR64UiHcrgmAABHQDDoMSbpeNVHQF2oYk3S8apHQEIIUeuFHriHcrkmAABHQDDnbItDlYFHQF2nvnbItDlHQEIIk3S8an+HcromAABHQDDm6XjU/fRHQF2nCj1wo9dHQEII1P3ztkaHcrsmAABHQDDl41P3ztlHQF2mJN0vGqBHQEIJN0vGp/CHcrwmAABHQDDlHrhR64VHQF2lcKPXCj1HQEIJmZmZmZqHcr0mAABHQDDkm6XjU/hHQF2kvGp++dtHQEIJ2yLQ5WCHcr4mAABHQDDj1wo9cKRHQF2kCDEm6XlHQEIKHKwIMSeHcr8mAABHQDDjU/fO2RdHQF2jZFocrAhHQEIKXjU/fO6HcsAmAABHQDDij1wo9cNHQF2isCDEm6ZHQEIKwIMSbpiHcsEmAABHQDDhBiTdLxtHQF2hFocrAgxHQEILZFocrAiHcsImAABHQDDgQYk3S8dHQF2gYk3S8apHQEILpeNT98+HcsMmAABHQDDffO2RaHNHQF2frhR64UhHQEIL52yLQ5aHcsQmAABHQDDe+dsi0OVHQF2fCj1wo9dHQEIMSbpeNT+HcsUmAABHQDDd87ZFoctHQF2eFHrhR65HQEIMrAgxJumHcsYmAABHQDDdLxqfvndHQF2dYEGJN0xHQEIM7ZFocrCHcscmAABHQDDb52yLQ5ZHQF2cCDEm6XlHQEINcKPXCj2HcsgmAABHQDDbItDlYEJHQF2bZFocrAhHQEINsi0OVgSHcskmAABHQDDaXjU/fO5HQF2asCDEm6ZHQEIOFHrhR66HcsomAABHQDDZmZmZmZpHQF2Zul41P31HQEIOdsi0OViHcssmAABHQDDY1P3ztkZHQF2ZBiTdLxtHQEIOuFHrhR+HcswmAABHQDDYEGJN0vJHQF2YYk3S8apHQEIO+dsi0OWHcs0mAABHQDDXS8an755HQF2XrhR64UhHQEIPO2RaHKyHcs4mAABHQDDWyLQ5WBBHQF2XCj1wo9dHQEIPfO2RaHOHcs8mAABHQDDWBBiTdLxHQF2WVgQYk3VHQEIP3ztkWh2HctAmAABHQDDU/fO2RaJHQF2VYEGJN0xHQEIQQYk3S8eHctEmAABHQDDTtkWhysFHQF2UCDEm6XlHQEIQxJul41SHctImAABHQDDS8an7521HQF2TZFocrAhHQEIRBiTdLxuHctMmAABHQDDSLQ5WBBlHQF2SsCDEm6ZHQEIRR64UeuGHctQmAABHQDDRJul41P5HQF2RysCDEm9HQEIRqfvnbIuHctUmAABHQDDQo9cKPXFHQF2RFocrAgxHQEISDEm6XjWHctYmAABHQDDP3ztkWh1HQF2QYk3S8apHQEISTdLxqfyHctcmAABHQDDPGp++dslHQF2PvnbItDlHQEISj1wo9cOHctgmAABHQDDOVgQYk3VHQF2PCj1wo9dHQEIS0OVgQYmHctkmAABHQDDN0vGp++dHQF2OZmZmZmZHQEITEm6XjVCHctomAABHQDDMCDEm6XlHQF2MvGp++dtHQEITtkWhysGHctsmAABHQDDLQ5WBBiVHQF2MGJN0vGpHQEIUGJN0vGqHctwmAABHQDDKfvnbItFHQF2LZFocrAhHQEIUWhysCDGHct0mAABHQDDJul41P31HQF2KwIMSbphHQEIUm6XjU/iHct4mAABHQDDJN0vGp/BHQF2KHKwIMSdHQEIU3S8an76Hct8mAABHQDDIMSbpeNVHQF2JJul41P5HQEIVP3ztkWiHcuAmAABHQDDGp++dsi1HQF2HztkWhytHQEIVwo9cKPaHcuEmAABHQDDF41P3ztlHQF2HGp++dslHQEIWBBiTdLyHcuImAABHQDDFHrhR64VHQF2Gdsi0OVhHQEIWRaHKwIOHcuMmAABHQDDDU/fO2RdHQF2E3S8an75HQEIXCj1wo9eHcuQmAABHQDDC0OVgQYlHQF2EKPXCj1xHQEIXS8an756HcuUmAABHQDDAgxJul41HQF2CLQ5WBBlHQEIYEGJN0vKHcuYmAABHQDC/fO2RaHNHQF2BN0vGp/BHQEIYcrAgxJyHcucmAABHQDC987ZFoctHQF1/3ztkWh1HQEIY9cKPXCmHcugmAABHQDC6n752yLRHQF187ZFocrBHQEIaHKwIMSeHcukmAABHQDC52yLQ5WBHQF18OVgQYk5HQEIafvnbItGHcuomAABHQDC3ztkWhytHQF16TdLxqfxHQEIbQ5WBBiWHcusmAABHQDC1P3ztkWhHQF14AAAAAABHQEIcKPXCj1yHcuwmAABHQDC0euFHrhRHQF13S8an755HQEIcan752yOHcu0mAABHQDCy8an7521HQF12BBiTdLxHQEIc7ZFocrCHcu4mAABHQDCx64UeuFJHQF11DlYEGJNHQEIdT987ZFqHcu8mAABHQDCvnbItDlZHQF1zEm6XjVBHQEIeFHrhR66HcvAmAABHQDCszMzMzM1HQF1w1P3ztkZHQEIe+dsi0OWHcvEmAABHQDCsCDEm6XlHQF1wIMSbpeNHQEIfO2RaHKyHcvImAABHQDCpul41P31HQF1uJN0vGqBHQEIgAAAAAACHcvMmAABHQDCotDlYEGJHQF1tLxqfvndHQEIgYk3S8aqHcvQmAABHQDCnKwIMSbpHQF1r52yLQ5ZHQEIg5WBBiTeHcvUmAABHQDCmZmZmZmZHQF1rMzMzMzNHQEIhJul41P6HcvYmAABHQDCk3S8an75HQF1p64UeuFJHQEIhysCDEm+HcvcmAABHQDCj1wo9cKRHQF1o9cKPXClHQEIiDEm6XjWHcvgmAABHQDCjEm6XjVBHQF1oUeuFHrhHQEIiTdLxqfyHcvkmAABHQDChR64UeuFHQF1m+dsi0OVHQEIi0OVgQYmHcvomAABHQDCggxJul41HQF1mVgQYk3VHQEIjEm6XjVCHcvsmAABHQDCfvnbItDlHQF1lsi0OVgRHQEIjU/fO2ReHcvwmAABHQDCd87ZFoctHQF1kGJN0vGpHQEIj987ZFoeHcv0mAABHQDCdLxqfvndHQF1jZFocrAhHQEIkOVgQYk6Hcv4mAABHQDCcan752yNHQF1iwIMSbphHQEIkeuFHrhSHcv8mAABHQDCbpeNT989HQF1iHKwIMSdHQEIkvGp++duHcgAnAABHQDCaXjU/fO5HQF1hN0vGp/BHQEIlHrhR64WHcgEnAABHQDCZmZmZmZpHQF1ggxJul41HQEIlYEGJN0yHcgInAABHQDCYEGJN0vJHQF1fKwIMSbpHQEIl41P3ztmHcgMnAABHQDCXS8an755HQF1ehysCDEpHQEImJN0vGqCHcgQnAABHQDCWRaHKwINHQF1d41P3ztlHQEImZmZmZmaHcgUnAABHQDCVP3ztkWhHQF1c/fO2RaJHQEImyLQ5WBCHcgYnAABHQDCUeuFHrhRHQF1cSbpeNT9HQEInCj1wo9eHcgcnAABHQDCTtkWhysFHQF1bpeNT989HQEInS8an756HcggnAABHQDCS8an7521HQF1bAgxJul5HQEInjU/fO2SHcgknAABHQDCR64UeuFJHQF1aXjU/fO5HQEInztkWhyuHcgonAABHQDCQ5WBBiTdHQF1ZaHKwIMVHQEIoMSbpeNWHcgsnAABHQDCOVgQYk3VHQF1XbItDlYFHQEIo9cKPXCmHcgwnAABHQDCNkWhysCFHQF1WyLQ5WBBHQEIpN0vGp/CHcg0nAABHQDCMzMzMzM1HQF1WJN0vGqBHQEIpeNT987aHcg4nAABHQDCLxqfvnbJHQF1VP3ztkWhHQEIpul41P32Hcg8nAABHQDCKwIMSbphHQF1Ui0OVgQZHQEIp++dsi0SHchAnAABHQDCJ++dsi0RHQF1T52yLQ5ZHQEIqPXCj1wqHchEnAABHQDCJN0vGp/BHQF1TQ5WBBiVHQEIqfvnbItGHchInAABHQDCIcrAgxJxHQF1Sn752yLRHQEIqwIMSbpiHchMnAABHQDCHbItDlYFHQF1R++dsi0RHQEIrAgxJul6HchQnAABHQDCFocrAgxJHQF1QYk3S8apHQEIrpeNT98+HchUnAABHQDCEm6XjU/hHQF1PrhR64UhHQEIr52yLQ5aHchYnAABHQDCD1wo9cKRHQF1PCj1wo9dHQEIsKPXCj1yHchcnAABHQDCDEm6XjVBHQF1OZmZmZmZHQEIsan752yOHchgnAABHQDCBysCDEm9HQF1NgQYk3S9HQEIszMzMzM2HchknAABHQDCBBiTdLxtHQF1M3S8an75HQEItDlYEGJOHchonAABHQDB/O2RaHKxHQF1LhR64UexHQEItcKPXCj2HchsnAABHQDB+dsi0OVhHQF1K4UeuFHtHQEItsi0OVgSHchwnAABHQDB9si0OVgRHQF1KPXCj1wpHQEIt87ZFocuHch0nAABHQDB8an752yNHQF1JWBBiTdNHQEIuVgQYk3WHch4nAABHQDB7peNT989HQF1Io9cKPXFHQEIul41P3zuHch8nAABHQDB64UeuFHtHQF1IAAAAAABHQEIu2RaHKwKHciAnAABHQDB52yLQ5WBHQF1HXCj1wo9HQEIvGp++dsmHciEnAABHQDB5FocrAgxHQF1GuFHrhR9HQEIvXCj1wo+HciInAABHQDB4UeuFHrhHQF1GFHrhR65HQEIvnbItDlaHciMnAABHQDB3Cj1wo9dHQF1FHrhR64VHQEIv3ztkWh2HciQnAABHQDB1P3ztkWhHQF1D1wo9cKRHQEIwYk3S8aqHciUnAABHQDB0euFHrhRHQF1DMzMzMzNHQEIwo9cKPXGHciYnAABHQDBztkWhysFHQF1Cj1wo9cNHQEIw5WBBiTeHcicnAABHQDBybpeNT99HQF1BqfvnbItHQEIxR64UeuGHcignAABHQDBxqfvnbItHQF1BBiTdLxtHQEIxiTdLxqiHciknAABHQDBwo9cKPXFHQF1AUeuFHrhHQEIxqfvnbIuHcionAABHQDBv3ztkWh1HQF0/rhR64UhHQEIx64UeuFKHcisnAABHQDBvGp++dslHQF0/Cj1wo9dHQEIyLQ5WBBmHciwnAABHQDBuFHrhR65HQF0+ZmZmZmZHQEIybpeNT9+Hci0nAABHQDBsCDEm6XlHQF083S8an75HQEIzEm6XjVCHci4nAABHQDBrQ5WBBiVHQF08KPXCj1xHQEIzU/fO2ReHci8nAABHQDBqPXCj1wpHQF07lYEGJN1HQEIzdLxqfvqHcjAnAABHQDBpeNT987ZHQF068an7521HQEIztkWhysGHcjEnAABHQDBotDlYEGJHQF06TdLxqfxHQEIz987ZFoeHcjInAABHQDBnbItDlYFHQF05WBBiTdNHQEI0WhysCDGHcjMnAABHQDBlocrAgxJHQF04EGJN0vJHQEI03S8an76HcjQnAABHQDBkm6XjU/hHQF03bItDlYFHQEI1HrhR64WHcjUnAABHQDBj1wo9cKRHQF02yLQ5WBBHQEI1P3ztkWiHcjYnAABHQDBhysCDEm9HQF01P3ztkWhHQEI141P3ztmHcjcnAABHQDBgxJul41RHQF00i0OVgQZHQEI2JN0vGqCHcjgnAABHQDBgAAAAAABHQF0z52yLQ5ZHQEI2ZmZmZmaHcjknAABHQDBe+dsi0OVHQF0zU/fO2RdHQEI2hysCDEqHcjonAABHQDBeNT987ZFHQF0ysCDEm6ZHQEI2yLQ5WBCHcjsnAABHQDBc7ZFocrBHQF0xul41P31HQEI3KwIMSbqHcjwnAABHQDBbItDlYEJHQF0wcrAgxJxHQEI3rhR64UiHcj0nAABHQDBaXjU/fO5HQF0vztkWhytHQEI3752yLQ6Hcj4nAABHQDBZWBBiTdNHQF0vKwIMSbpHQEI4EGJN0vKHcj8nAABHQDBXS8an755HQF0tocrAgxJHQEI4tDlYEGKHckAnAABHQDBWRaHKwINHQF0s/fO2RaJHQEI49cKPXCmHckEnAABHQDBVgQYk3S9HQF0sWhysCDFHQEI5N0vGp/CHckInAABHQDBUeuFHrhRHQF0rtkWhysFHQEI5WBBiTdOHckMnAABHQDBTtkWhysFHQF0rEm6XjVBHQEI5mZmZmZqHckQnAABHQDBQo9cKPXFHQF0o5WBBiTdHQEI6XjU/fO6HckUnAABHQDBO2RaHKwJHQF0nnbItDlZHQEI64UeuFHuHckYnAABHQDBN0vGp++dHQF0m+dsi0OVHQEI7ItDlYEKHckcnAABHQDBMi0OVgQZHQF0mFHrhR65HQEI7ZFocrAiHckgnAABHQDBKwIMSbphHQF0kzMzMzM1HQEI752yLQ5aHckknAABHQDBI9cKPXClHQF0jhR64UexHQEI8an752yOHckonAABHQDBGp++dsi1HQF0h++dsi0RHQEI87ZFocrCHcksnAABHQDBF41P3ztlHQF0hWBBiTdNHQEI9LxqfvneHckwnAABHQDBDEm6XjVBHQF0fbItDlYFHQEI90vGp++eHck0nAABHQDBBysCDEm9HQF0ehysCDEpHQEI+NT987ZGHck4nAABHQDBAAAAAAABHQF0dP3ztkWhHQEI+l41P3zuHck8nAABHQDA++dsi0OVHQF0cm6XjU/hHQEI+2RaHKwKHclAnAABHQDA752yLQ5ZHQF0abpeNT99HQEI/nbItDlaHclEnAABHQDA64UeuFHtHQF0ZysCDEm9HQEI/3ztkWh2HclInAABlKEdAMDgQYk3S8kdAXRfvnbItDkdAQkCDEm6XjYdyUycAAEdAMDbItDlYEEdAXRcKPXCj10dAQkDlYEGJN4dyVCcAAEdAMDS8an7520dAXRXCj1wo9kdAQkFHrhR64YdyVScAAEdAMDP3ztkWh0dAXRUOVgQYk0dAQkGJN0vGqIdyVicAAEdAMDItDlYEGUdAXRPXCj1wpEdAQkIMSbpeNYdyVycAAEdAMDCj1wo9cUdAXRLxqfvnbUdAQkJN0vGp/IdyWCcAAEdAMC+dsi0OVkdAXRJN0vGp/EdAQkKPXCj1w4dyWScAAEdAMC3S8an750dAXREGJN0vG0dAQkLxqfvnbYdyWicAAEdAMCwIMSbpeUdAXQ/O2RaHK0dAQkN0vGp++odyWycAAEdAMCm6XjU/fUdAXQ5FocrAg0dAQkP3ztkWh4dyXCcAAEdAMCan752yLUdAXQxaHKwIMUdAQkSbpeNT+IdyXScAAEdAMCVgQYk3TEdAXQt0vGp++kdAQkT987ZFoodyXicAAEdAMCOVgQYk3UdAXQo9cKPXCkdAQkVgQYk3TIdyXycAAEdAMCKPXCj1w0dAXQmZmZmZmkdAQkWhysCDEodyYCcAAEdAMCGJN0vGqEdAXQj1wo9cKUdAQkXjU/fO2YdyYScAAEdAMCDEm6XjVEdAXQhiTdLxqkdAQkYEGJN0vIdyYicAAEdAMB87ZFocrEdAXQdsi0OVgUdAQkZmZmZmZodyYycAAEdAMB41P3ztkUdAXQbItDlYEEdAQkan752yLYdyZCcAAEdAMBxqfvnbI0dAXQWRaHKwIUdAQkcKPXCj14dyZScAAEdAMBtkWhysCEdAXQTtkWhysEdAQkdLxqfvnodyZicAAEdAMBpeNT987kdAXQRJul41P0dAQkdsi0OVgYdyZycAAEdAMBgQYk3S8kdAXQLQ5WBBiUdAQkgQYk3S8odyaCcAAEdAMBcKPXCj10dAXQIcrAgxJ0dAQkgxJul41YdyaScAAEdAMBYEGJN0vEdAXQGJN0vGqEdAQkhysCDEnIdyaicAAEdAMBU/fO2RaEdAXQDlYEGJN0dAQki0OVgQYodyaycAAEdAMBO2RaHKwUdAXQAAAAAAAEdAQkj1wo9cKYdybCcAAEdAMBKwIMSbpkdAXP9cKPXCj0dAQkk3S8an8IdybScAAEdAMBDlYEGJN0dAXP4k3S8aoEdAQkmZmZmZmodybicAAEdAMA/fO2RaHUdAXP2BBiTdL0dAQknbItDlYIdybycAAEdAMA7ZFocrAkdAXPztkWhysEdAQkocrAgxJ4dycCcAAEdAMAyLQ5WBBkdAXPtkWhysCEdAQkqfvnbItIdycScAAEdAMAuFHrhR7EdAXPrAgxJumEdAQkrAgxJumIdycicAAEdAMAp++dsi0UdAXPocrAgxJ0dAQksCDEm6XodycycAAEdAMAl41P3ztkdAXPmJN0vGqEdAQktDlYEGJYdydCcAAEdAMAhysCDEnEdAXPjlYEGJN0dAQktkWhysCIdydScAAEdAMAUeuFHrhUdAXPa4UeuFH0dAQkwo9cKPXIdydicAAEdAMAQYk3S8akdAXPYk3S8aoEdAQkxqfvnbI4dydycAAEdAMAMSbpeNUEdAXPWBBiTdL0dAQkyLQ5WBBodyeCcAAEdAMAHKwIMSb0dAXPSsCDEm6UdAQkztkWhysIdyeScAAEdAMADEm6XjVEdAXPQIMSbpeUdAQk0OVgQYk4dyeicAAEdAL/752yLQ5UdAXPNkWhysCEdAQk1P3ztkWodyeycAAEdAL/1wo9cKPUdAXPLAgxJumEdAQk2RaHKwIYdyfCcAAEdAL/tkWhysCEdAXPIcrAgxJ0dAQk2yLQ5WBIdyfScAAEdAL/lYEGJN00dAXPGJN0vGqEdAQk3ztkWhy4dyficAAEdAL/ItDlYEGUdAXO9cKPXCj0dAQk64UeuFH4dyfycAAEdAL/AgxJul40dAXO7ItDlYEEdAQk7ZFocrAodygCcAAEdAL+4UeuFHrkdAXO4k3S8aoEdAQk8an752yYdygScAAEdAL+l41P3ztkdAXOysCDEm6UdAQk+dsi0OVodygicAAEdAL+VgQYk3TEdAXOtkWhysCEdAQlAAAAAAAIdygycAAEdAL+NT987ZF0dAXOrQ5WBBiUdAQlBBiTdLx4dyhCcAAEdAL+FHrhR64UdAXOotDlYEGUdAQlBiTdLxqodyhScAAEdAL9wo9cKPXEdAXOi0OVgQYkdAQlDlYEGJN4dyhicAAEdAL9ocrAgxJ0dAXOgQYk3S8kdAQlEm6XjU/odyhycAAEdAL9gQYk3S8kdAXOdsi0OVgUdAQlFocrAgxYdyiCcAAEdAL9YEGJN0vEdAXObZFocrAkdAQlGJN0vGqIdyiScAAEdAL9P3ztkWh0dAXOY1P3ztkUdAQlHKwIMSb4dyiicAAEdAL9DlYEGJN0dAXOVP3ztkWkdAQlIMSbpeNYdyiycAAEdAL8zMzMzMzUdAXOQYk3S8akdAQlJul41P34dyjCcAAEdAL8rAgxJumEdAXOOFHrhR7EdAQlKwIMSbpodyjScAAEdAL8i0OVgQYkdAXOLhR64Ue0dAQlLQ5WBBiYdyjicAAEdAL8QYk3S8akdAXOFocrAgxUdAQlNT987ZF4dyjycAAEdAL8GJN0vGqEdAXODEm6XjVEdAQlOVgQYk3YdykCcAAEdAL7987ZFoc0dAXOAgxJul40dAQlPXCj1wpIdykScAAEdAL71wo9cKPUdAXN+NT987ZEdAQlP3ztkWh4dykicAAEdAL7tkWhysCEdAXN7peNT99EdAQlQ5WBBiTodykycAAEdAL7Q5WBBiTkdAXNzMzMzMzUdAQlTdLxqfvodylCcAAEdAL7ItDlYEGUdAXNw5WBBiTkdAQlUeuFHrhYdylScAAEdAL7AgxJul40dAXNuVgQYk3UdAQlU/fO2RaIdylicAAEdAL64UeuFHrkdAXNsCDEm6XkdAQlWBBiTdL4dylycAAEdAL6sCDEm6XkdAXNocrAgxJ0dAQlXCj1wo9odymCcAAEdAL6bpeNT99EdAXNjlYEGJN0dAQlYk3S8aoIdymScAAEdAL6TdLxqfvkdAXNhBiTdLx0dAQlZmZmZmZodymicAAEdAL6LQ5WBBiUdAXNeuFHrhSEdAQlaHKwIMSodymycAAEdAL5ul41P3z0dAXNWRaHKwIUdAQldLxqfvnodynCcAAEdAL5mZmZmZmkdAXNTtkWhysEdAQldsi0OVgYdynScAAEdAL5cKPXCj10dAXNRaHKwIMUdAQleuFHrhSIdynicAAEdAL5T987ZFokdAXNO2RaHKwUdAQlfO2RaHK4dynycAAEdAL5HrhR64UkdAXNLhR64Ue0dAQlgxJul41YdyoCcAAEdAL43S8an750dAXNGZmZmZmkdAQliTdLxqf4dyoScAAEdAL4m6XjU/fUdAXNBysCDEnEdAQlj1wo9cKYdyoicAAEdAL4SbpeNT+EdAXM752yLQ5UdAQll41P3ztodyoycAAEdAL4IMSbpeNUdAXM5WBBiTdUdAQlmZmZmZmodypCcAAEdAL3vnbItDlkdAXMyLQ5WBBkdAQlo9cKPXCodypScAAEdAL3Q5WBBiTkdAXMpul41P30dAQlrhR64Ue4dypicAAEdAL24UeuFHrkdAXMij1wo9cUdAQltkWhysCIdypycAAEdAL2sCDEm6XkdAXMe+dsi0OUdAQlvGp++dsodyqCcAAEdAL2ZmZmZmZkdAXMaHKwIMSkdAQlwo9cKPXIdyqScAAEdAL2JN0vGp/EdAXMVP3ztkWkdAQlyLQ5WBBodyqicAAEdAL1qfvnbItEdAXMMzMzMzM0dAQl0vGp++d4dyqycAAEdAL1P3ztkWh0dAXMFocrAgxUdAQl2yLQ5WBIdyrCcAAEdAL1DlYEGJN0dAXMCTdLxqf0dAQl3ztkWhy4dyrScAAEdAL0xJul41P0dAXL9cKPXCj0dAQl5WBBiTdYdyricAAEdAL0o9cKPXCkdAXL64UeuFH0dAQl6XjU/fO4dyrycAAEdAL0Yk3S8aoEdAXL2RaHKwIUdAQl752yLQ5YdysCcAAEdAL0CDEm6XjUdAXLwIMSbpeUdAQl9cKPXCj4dysScAAEdALzItDlYEGUdAXLgxJul41UdAQmCj1wo9cYdysicAAEdALzAgxJul40dAXLeNT987ZEdAQmDEm6XjVIdysycAAEdALyuFHrhR7EdAXLZmZmZmZkdAQmEm6XjU/odytCcAAEdALyHKwIMSb0dAXLO2RaHKwUdAQmIMSbpeNYdytScAAEdALx87ZFocrEdAXLMi0OVgQkdAQmItDlYEGYdyticAAEdALx0vGp++d0dAXLKPXCj1w0dAQmJul41P34dytycAAEdALxeNT987ZEdAXLEWhysCDEdAQmLQ5WBBiYdyuCcAAEdALxWBBiTdL0dAXLBysCDEnEdAQmMSbpeNUIdyuScAAEdALxLxqfvnbUdAXK/fO2RaHUdAQmMzMzMzM4dyuicAAEdALxDlYEGJN0dAXK9LxqfvnkdAQmNT987ZF4dyuycAAEdALwan752yLUdAXKybpeNT+EdAQmQ5WBBiTodyvCcAAEdALwSbpeNT+EdAXKwIMSbpeUdAQmRaHKwIMYdyvScAAEdALwKPXCj1w0dAXKt0vGp++kdAQmSbpeNT+IdyvicAAEdALvztkWhysEdAXKn752yLREdAQmT987ZFoodyvycAAEdALvpeNT987kdAXKlYEGJN00dAQmU/fO2RaIdywCcAAEdALvhR64UeuEdAXKjEm6XjVEdAQmVgQYk3TIdywScAAEdALvXCj1wo9kdAXKgxJul41UdAQmWBBiTdL4dywicAAEdALvO2RaHKwUdAXKedsi0OVkdAQmXCj1wo9odywycAAEdALuuFHrhR7EdAXKWRaHKwIUdAQmZmZmZmZodyxCcAAEdALul41P3ztkdAXKTtkWhysEdAQmaHKwIMSodyxScAAEdALudsi0OVgUdAXKRaHKwIMUdAQman752yLYdyxicAAEdALt0vGp++d0dAXKG6XjU/fUdAQmeNT987ZIdyxycAAEdALtqfvnbItEdAXKEm6XjU/kdAQmeuFHrhSIdyyCcAAEdALtiTdLxqf0dAXKCTdLxqf0dAQmfO2RaHK4dyyScAAEdALtBiTdLxqkdAXJ6HKwIMSkdAQmhysCDEnIdyyicAAEdALs3S8an750dAXJ3jU/fO2UdAQmi0OVgQYodyyycAAEdALsvGp++dskdAXJ1P3ztkWkdAQmjU/fO2RodyzCcAAEdALsk3S8an8EdAXJy8an7520dAQmj1wo9cKYdyzScAAEdALsGJN0vGqEdAXJqwIMSbpkdAQmmZmZmZmodyzicAAEdALr752yLQ5UdAXJocrAgxJ0dAQmm6XjU/fYdyzycAAEdALrztkWhysEdAXJmJN0vGqEdAQmn752yLRIdy0CcAAEdALrS8an7520dAXJd87ZFoc0dAQmp++dsi0Ydy0ScAAEdALrItDlYEGUdAXJbpeNT99EdAQmrAgxJumIdy0icAAEdALrAgxJul40dAXJZWBBiTdUdAQmrhR64Ue4dy0ycAAEdALq2RaHKwIUdAXJWyLQ5WBEdAQmsCDEm6Xody1CcAAEdALqVgQYk3TEdAXJO2RaHKwUdAQmul41P3z4dy1ScAAEdALqNT987ZF0dAXJMSbpeNUEdAQmvGp++dsody1icAAEdALqDEm6XjVEdAXJJ++dsi0UdAQmwIMSbpeYdy1ycAAEdALp41P3ztkUdAXJHrhR64UkdAQmwo9cKPXIdy2CcAAEdALpYEGJN0vEdAXI/fO2RaHUdAQmzMzMzMzYdy2ScAAEdALpP3ztkWh0dAXI9LxqfvnkdAQmztkWhysIdy2icAAEdALpFocrAgxUdAXI64UeuFH0dAQm0OVgQYk4dy2ycAAEdALok3S8an8EdAXIy8an7520dAQm2yLQ5WBIdy3CcAAEdALoan752yLUdAXIwYk3S8akdAQm3S8an754dy3ScAAEdALoSbpeNT+EdAXIuFHrhR7EdAQm4UeuFHrody3icAAEdALoIMSbpeNUdAXIrxqfvnbUdAQm41P3ztkYdy3ycAAEdALnnbItDlYEdAXIj1wo9cKUdAQm7ZFocrAody4CcAAEdALndLxqfvnkdAXIhiTdLxqkdAQm752yLQ5Ydy4ScAAEdALnU/fO2RaEdAXIfO2RaHK0dAQm8an752yYdy4icAAEdALmyLQ5WBBkdAXIXCj1wo9kdAQm++dsi0OYdy4ycAAEdALmp++dsi0UdAXIUvGp++d0dAQm/fO2RaHYdy5CcAAEdALmfvnbItDkdAXISbpeNT+EdAQnAAAAAAAIdy5ScAAEdALmVgQYk3TEdAXIQIMSbpeUdAQnAgxJul44dy5icAAEdALl0vGp++d0dAXIH752yLREdAQnDEm6XjVIdy5ycAAEdALliTdLxqf0dAXIDU/fO2RkdAQnEm6XjU/ody6CcAAEdALlYEGJN0vEdAXIBBiTdLx0dAQnFHrhR64Ydy6ScAAEdALk1P3ztkWkdAXH5FocrAg0dAQnHKwIMSb4dy6icAAEdALki0OVgQYkdAXH0euFHrhUdAQnItDlYEGYdy6ycAAEdALkAAAAAAAEdAXHsSbpeNUEdAQnKwIMSbpody7CcAAEdALjjU/fO2RkdAXHlYEGJN00dAQnMzMzMzM4dy7ScAAEdALjAgxJul40dAXHdcKPXCj0dAQnO2RaHKwYdy7icAAEdALiuFHrhR7EdAXHY1P3ztkUdAQnQYk3S8aody7ycAAEdALij1wo9cKUdAXHWhysCDEkdAQnQ5WBBiTody8CcAAEdALiLQ5WBBiUdAXHQ5WBBiTkdAQnSbpeNT+Idy8ScAAEdALhul41P3z0dAXHJ++dsi0UdAQnUeuFHrhYdy8icAAEdALhLxqfvnbUdAXHCDEm6XjUdAQnWhysCDEody8ycAAEdALgtDlYEGJUdAXG7ItDlYEEdAQnYk3S8aoIdy9CcAAEdALgKPXCj1w0dAXGzMzMzMzUdAQnan752yLYdy9ScAAEdALfU/fO2RaEdAXGmp++dsi0dAQneNT987ZIdy9icAAEdALe2RaHKwIUdAXGfvnbItDkdAQnfvnbItDody9ycAAEdALeTdLxqfvkdAXGXztkWhy0dAQnhysCDEnIdy+CcAAEdALeJN0vGp/EdAXGVgQYk3TEdAQni0OVgQYody+ScAAEdALd0vGp++d0dAXGQ5WBBiTkdAQnj1wo9cKYdy+icAAEdALdHrhR64UkdAXGGp++dsi0dAQnmZmZmZmody+ycAAEdALc9cKPXCj0dAXGEWhysCDEdAQnnbItDlYIdy/CcAAEdALcan752yLUdAXF8rAgxJukdAQnpeNT987ody/ScAAEdALcQYk3S8akdAXF6HKwIMSkdAQnp++dsi0Ydy/icAAEdALcGJN0vGqEdAXF4EGJN0vEdAQnqfvnbItIdy/ycAAEdALb752yLQ5UdAXF1wo9cKPUdAQnrAgxJumIdyACgAAEdALbO2RaHKwUdAXFrhR64Ue0dAQntkWhysCIdyASgAAEdALbEm6XjU/kdAXFpN0vGp/EdAQnuFHrhR7IdyAigAAEdALa6XjU/fO0dAXFnKwIMSb0dAQnvGp++dsodyAygAAEdALaVgQYk3TEdAXFfO2RaHK0dAQnxJul41P4dyBCgAAEdALaLQ5WBBiUdAXFc7ZFocrEdAQnxqfvnbI4dyBSgAAEdALaBBiTdLx0dAXFan752yLUdAQnyLQ5WBBodyBigAAEdALZR64UeuFEdAXFQYk3S8akdAQn0vGp++d4dyBygAAEdALZHrhR64UkdAXFOVgQYk3UdAQn1P3ztkWodyCCgAAEdALY/fO2RaHUdAXFMCDEm6XkdAQn1wo9cKPYdyCSgAAEdALYQYk3S8akdAXFBysCDEnEdAQn4UeuFHrodyCigAAEdALYGJN0vGqEdAXE/vnbItDkdAQn5WBBiTdYdyCygAAEdALX752yLQ5UdAXE9cKPXCj0dAQn52yLQ5WIdyDCgAAEdALXXCj1wo9kdAXE1gQYk3TEdAQn752yLQ5YdyDSgAAEdALXMzMzMzM0dAXEzMzMzMzUdAQn8an752yYdyDigAAEdALXCj1wo9cUdAXExJul41P0dAQn87ZFocrIdyDygAAEdALWTdLxqfvkdAXEm6XjU/fUdAQn/fO2RaHYdyECgAAEdALWJN0vGp/EdAXEk3S8an8EdAQoAAAAAAAIdyESgAAEdALV++dsi0OUdAXEij1wo9cUdAQoAgxJul44dyEigAAEdALVaHKwIMSkdAXEan752yLUdAQoCj1wo9cYdyEygAAEdALVP3ztkWh0dAXEYk3S8aoEdAQoDEm6XjVIdyFCgAAEdALVDlYEGJN0dAXEWRaHKwIUdAQoDlYEGJN4dyFSgAAEdALU5WBBiTdUdAXET987ZFokdAQoEGJN0vG4dyFigAAEdALUUeuFHrhUdAXEMSbpeNUEdAQoGJN0vGqIdyFygAAEdALUKPXCj1w0dAXEJ++dsi0UdAQoGp++dsi4dyGCgAAEdALUAAAAAAAEdAXEHrhR64UkdAQoHKwIMSb4dyGSgAAEdALTbItDlYEEdAXEAAAAAAAEdAQoJN0vGp/IdyGigAAEdALTQ5WBBiTkdAXD9si0OVgUdAQoJul41P34dyGygAAEdALTGp++dsi0dAXD7ZFocrAkdAQoKPXCj1w4dyHCgAAEdALS6XjU/fO0dAXD5WBBiTdUdAQoKwIMSbpodyHSgAAEdALSVgQYk3TEdAXDxaHKwIMUdAQoMzMzMzM4dyHigAAEdALSLQ5WBBiUdAXDvXCj1wpEdAQoNT987ZF4dyHygAAEdALSBBiTdLx0dAXDtDlYEGJUdAQoN0vGp++odyICgAAEdALR2yLQ5WBEdAXDqwIMSbpkdAQoOVgQYk3YdyISgAAEdALRP3ztkWh0dAXDjEm6XjVEdAQoQYk3S8aodyIigAAEdALRFocrAgxUdAXDgxJul41UdAQoQ5WBBiTodyIygAAEdALQ7ZFocrAkdAXDeuFHrhSEdAQoRaHKwIMYdyJCgAAEdALQUeuFHrhUdAXDXCj1wo9kdAQoS8an7524dyJSgAAEdALQKPXCj1w0dAXDUvGp++d0dAQoTdLxqfvodyJigAAEdALQAAAAAAAEdAXDSbpeNT+EdAQoT987ZFoodyJygAAEdALP1wo9cKPUdAXDQYk3S8akdAQoUeuFHrhYdyKCgAAEdALPO2RaHKwUdAXDItDlYEGUdAQoWhysCDEodyKSgAAEdALO6XjU/fO0dAXDEGJN0vG0dAQoXjU/fO2YdyKigAAEdALOuFHrhR7EdAXDCDEm6XjUdAQoYEGJN0vIdyKygAAEdALOTdLxqfvkdAXC8an752yUdAQoZmZmZmZodyLCgAAEdALOJN0vGp/EdAXC6XjU/fO0dAQoaHKwIMSodyLSgAAEdALNysCDEm6UdAXC1wo9cKPUdAQobItDlYEIdyLigAAEdALNN0vGp++kdAXCuFHrhR7EdAQocrAgxJuodyLygAAEdALM3S8an750dAXCpul41P30dAQodsi0OVgYdyMCgAAEdALMtDlYEGJUdAXCnrhR64UkdAQoeNT987ZIdyMSgAAEdALMGJN0vGqEdAXCgAAAAAAEdAQogQYk3S8odyMigAAEdALLvnbItDlkdAXCbZFocrAkdAQohR64UeuIdyMygAAEdALLKwIMSbpkdAXCTtkWhysEdAQoi0OVgQYodyNCgAAEdALKn752yLREdAXCNT987ZF0dAQokWhysCDIdyNSgAAEdALKDEm6XjVEdAXCFocrAgxUdAQomZmZmZmodyNigAAEdALJgQYk3S8kdAXB++dsi0OUdAQon752yLRIdyNygAAEdALIk3S8an8EdAXBzMzMzMzUdAQoqfvnbItIdyOCgAAEdALH987ZFoc0dAXBrhR64Ue0dAQosCDEm6XodyOSgAAEdALHbItDlYEEdAXBk3S8an8EdAQotkWhysCIdyOigAAEdALGn752yLREdAXBbItDlYEEdAQovnbItDlodyOygAAEdALGdsi0OVgUdAXBY1P3ztkUdAQowIMSbpeYdyPCgAAEdALGTdLxqfvkdAXBWyLQ5WBEdAQowo9cKPXIdyPSgAAEdALFWBBiTdL0dAXBLAgxJumEdAQozMzMzMzYdyPigAAEdALEgxJul41UdAXBBBiTdLx0dAQo1wo9cKPYdyPygAAEdALEWhysCDEkdAXA++dsi0OUdAQo1wo9cKPYdyQCgAAEdALEMSbpeNUEdAXA87ZFocrEdAQo2RaHKwIYdyQSgAAEdALDZFocrAg0dAXAy8an7520dAQo4UeuFHrodyQigAAEdALDMzMzMzM0dAXAw5WBBiTkdAQo41P3ztkYdyQygAAEdALCZmZmZmZkdAXAnKwIMSb0dAQo64UeuFH4dyRCgAAEdALCNT987ZF0dAXAlHrhR64UdAQo7ZFocrAodyRSgAAEdALCDEm6XjVEdAXAi0OVgQYkdAQo752yLQ5YdyRigAAEdALBP3ztkWh0dAXAZFocrAg0dAQo987ZFoc4dyRygAAEdALBDlYEGJN0dAXAXCj1wo9kdAQo+dsi0OVodySCgAAEdALA5WBBiTdUdAXAU/fO2RaEdAQo++dsi0OYdySSgAAEdALAQYk3S8akdAXANT987ZF0dAQpAgxJul44dySigAAEdALAEGJN0vG0dAXALQ5WBBiUdAQpBBiTdLx4dySygAAEdAK/52yLQ5WEdAXAI9cKPXCkdAQpBiTdLxqodyTCgAAEdAK/Em6XjU/kdAW//fO2RaHUdAQpDlYEGJN4dyTSgAAEdAK+6XjU/fO0dAW/9LxqfvnkdAQpEGJN0vG4dyTigAAEdAK+uFHrhR7EdAW/7ItDlYEEdAQpEm6XjU/odyTygAAEdAK964UeuFH0dAW/xaHKwIMUdAQpGp++dsi4dyUCgAAEdAK9ul41P3z0dAW/vXCj1wpEdAQpGp++dsi4dyUSgAAEdAK9iTdLxqf0dAW/tT987ZF0dAQpHKwIMSb4dyUigAAEdAK85WBBiTdUdAW/locrAgxUdAQpItDlYEGYdyUygAAEdAK8vGp++dskdAW/jlYEGJN0dAQpJN0vGp/IdyVCgAAEdAK8i0OVgQYkdAW/hiTdLxqkdAQpJul41P34dyVSgAAEdAK7tkWhysCEdAW/XztkWhy0dAQpLxqfvnbYdyVigAAEdAK7jU/fO2RkdAW/Vwo9cKPUdAQpMSbpeNUIdyVygAAEdAK7XCj1wo9kdAW/TtkWhysEdAQpMSbpeNUIdyWCgAAEdAK6uFHrhR7EdAW/MSbpeNUEdAQpN0vGp++odyWSgAAEdAK6hysCDEnEdAW/J++dsi0UdAQpOVgQYk3YdyWigAAEdAK6VgQYk3TEdAW/H752yLREdAQpO2RaHKwYdyWygAAEdAK6LQ5WBBiUdAW/F41P3ztkdAQpPXCj1wpIdyXCgAAEdAK5iTdLxqf0dAW++dsi0OVkdAQpQ5WBBiTodyXSgAAEdAK5WBBiTdL0dAW+8KPXCj10dAQpRaHKwIMYdyXigAAEdAK5Jul41P30dAW+6HKwIMSkdAQpRaHKwIMYdyXygAAEdAK4UeuFHrhUdAW+wo9cKPXEdAQpTdLxqfvodyYCgAAEdAK4IMSbpeNUdAW+ul41P3z0dAQpT987ZFoodyYSgAAEdAK3987ZFoc0dAW+sSbpeNUEdAQpUeuFHrhYdyYigAAEdAK3S8an7520dAW+k3S8an8EdAQpVgQYk3TIdyYygAAEdAK28an752yUdAW+gxJul41UdAQpWhysCDEodyZCgAAEdAK2wIMSbpeUdAW+euFHrhSEdAQpXCj1wo9odyZSgAAEdAK2FHrhR64UdAW+XS8an750dAQpYk3S8aoIdyZigAAEdAK1ul41P3z0dAW+S8an7520dAQpZFocrAg4dyZygAAEdAK1DlYEGJN0dAW+LxqfvnbUdAQpan752yLYdyaCgAAEdAK0tDlYEGJUdAW+HbItDlYEdAQpbpeNT99IdyaSgAAEdAK0gxJul41UdAW+FYEGJN00dAQpbpeNT99IdyaigAAEdAKz1wo9cKPUdAW9987ZFoc0dAQpdLxqfvnodyaygAAEdAKzfO2RaHK0dAW952yLQ5WEdAQpeNT987ZIdybCgAAEdAKzS8an7520dAW93ztkWhy0dAQpeNT987ZIdybSgAAEdAKyPXCj1wpEdAW9sCDEm6XkdAQpgxJul41YdybigAAEdAKxmZmZmZmkdAW9k3S8an8EdAQphysCDEnIdybygAAEdAKxBiTdLxqkdAW9edsi0OVkdAQpi0OVgQYodycCgAAEdAKwWhysCDEkdAW9XS8an750dAQpkWhysCDIdycSgAAEdAKv987ZFoc0dAW9S8an7520dAQpk3S8an8IdycigAAEdAKuuFHrhR7EdAW9FYEGJN00dAQpnbItDlYIdycygAAEdAKt2yLQ5WBEdAW88KPXCj10dAQppeNT987odydCgAAEdAKtgQYk3S8kdAW84EGJN0vEdAQpp++dsi0YdydSgAAEdAKsm6XjU/fUdAW8ul41P3z0dAQprhR64Ue4dydigAAEdAKscrAgxJukdAW8si0OVgQkdAQpsCDEm6XodydygAAEdAKrjU/fO2RkdAW8jEm6XjVEdAQptkWhysCIdyeCgAAEdAKrXCj1wo9kdAW8hBiTdLx0dAQpuFHrhR7IdyeSgAAEdAKrKwIMSbpkdAW8e+dsi0OUdAQpuFHrhR7IdyeigAAEdAKqTdLxqfvkdAW8Vwo9cKPUdAQpwIMSbpeYdyeygAAEdAKqHKwIMSb0dAW8TtkWhysEdAQpwIMSbpeYdyfCgAAEdAKp64UeuFH0dAW8RqfvnbI0dAQpwo9cKPXIdyfSgAAEdAKpBiTdLxqkdAW8IMSbpeNUdAQpyLQ5WBBodyfigAAEdAKo3S8an750dAW8GJN0vGqEdAQpysCDEm6YdyfygAAEdAKn987ZFoc0dAW787ZFocrEdAQp0OVgQYk4dygCgAAEdAKnxqfvnbI0dAW764UeuFH0dAQp0OVgQYk4dygSgAAEdAKnlYEGJN00dAW741P3ztkUdAQp0vGp++d4dygigAAEdAKmsCDEm6XkdAW7vnbItDlkdAQp2RaHKwIYdygygAAEdAKmfvnbItDkdAW7tkWhysCEdAQp2yLQ5WBIdyhCgAAEdAKlmZmZmZmkdAW7kWhysCDEdAQp4UeuFHrodyhSgAAEdAKlaHKwIMSkdAW7iTdLxqf0dAQp4UeuFHrodyhigAAEdAKlN0vGp++kdAW7gQYk3S8kdAQp41P3ztkYdyhygAAEdAKkUeuFHrhUdAW7WyLQ5WBEdAQp6XjU/fO4dyiCgAAEdAKkIMSbpeNUdAW7UvGp++d0dAQp64UeuFH4dyiSgAAEdAKj752yLQ5UdAW7S8an7520dAQp64UeuFH4dyiigAAEdAKjCj1wo9cUdAW7Jul41P30dAQp8an752yYdyiygAAEdAKi2RaHKwIUdAW7HrhR64UkdAQp87ZFocrIdyjCgAAEdAKh87ZFocrEdAW6+dsi0OVkdAQp+dsi0OVodyjSgAAEdAKhwo9cKPXEdAW68an752yUdAQp+dsi0OVodyjigAAEdAKhkWhysCDEdAW66XjU/fO0dAQp++dsi0OYdyjygAAEdAKgrAgxJumEdAW6xJul41P0dAQqAgxJul44dykCgAAEdAKgcrAgxJukdAW6vGp++dskdAQqAgxJul44dykSgAAEdAKgQYk3S8akdAW6tDlYEGJUdAQqBBiTdLx4dykigAAEdAKfjU/fO2RkdAW6l41P3ztkdAQqCDEm6XjYdykygAAEdAKfXCj1wo9kdAW6j1wo9cKUdAQqCDEm6XjYdylCgAAEdAKfKwIMSbpkdAW6hysCDEnEdAQqCj1wo9cYdylSgAAEdAKePXCj1wpEdAW6Y1P3ztkUdAQqEGJN0vG4dyligAAEdAKeDEm6XjVEdAW6WyLQ5WBEdAQqEGJN0vG4dylygAAEdAKd2yLQ5WBEdAW6UvGp++d0dAQqEm6XjU/odymCgAAEdAKc9cKPXCj0dAW6LhR64Ue0dAQqGJN0vGqIdymSgAAEdAKcvGp++dskdAW6JeNT987kdAQqGJN0vGqIdymigAAEdAKci0OVgQYkdAW6HbItDlYEdAQqGp++dsi4dymygAAEdAKb1wo9cKPUdAW6AgxJul40dAQqHrhR64UodynCgAAEdAKbbItDlYEEdAW58an752yUdAQqIMSbpeNYdynSgAAEdAKahysCDEnEdAW5zMzMzMzUdAQqJul41P34dynigAAEdAKaTdLxqfvkdAW5xaHKwIMUdAQqJul41P34dynygAAEdAKaHKwIMSb0dAW5vXCj1wpEdAQqKPXCj1w4dyoCgAAEdAKY/fO2RaHUdAW5kGJN0vG0dAQqLxqfvnbYdyoSgAAEdAKYzMzMzMzUdAW5iTdLxqf0dAQqLxqfvnbYdyoigAAEdAKYEGJN0vG0dAW5bItDlYEEdAQqMzMzMzM4dyoygAAEdAKXpeNT987kdAW5XCj1wo9kdAQqNT987ZF4dypCgAAEdAKWVgQYk3TEdAW5J++dsi0UdAQqPXCj1wpIdypSgAAEdAKVLxqfvnbUdAW4++dsi0OUdAQqQ5WBBiTodypigAAEdAKU/fO2RaHUdAW49LxqfvnkdAQqQ5WBBiTodypygAAEdAKT1wo9cKPUdAW4yLQ5WBBkdAQqSbpeNT+IdyqCgAAEdAKSfvnbItDkdAW4lHrhR64UdAQqT987ZFoodyqSgAAEdAKRkWhysCDEdAW4cKPXCj10dAQqVgQYk3TIdyqigAAEdAKRYEGJN0vEdAW4aHKwIMSkdAQqVgQYk3TIdyqygAAEdAKQAAAAAAAEdAW4NT987ZF0dAQqXCj1wo9odyrCgAAEdAKPCj1wo9cUdAW4EWhysCDEdAQqYk3S8aoIdyrSgAAEdAKO2RaHKwIUdAW4CTdLxqf0dAQqYk3S8aoIdyrigAAEdAKOp++dsi0UdAW4AQYk3S8kdAQqZFocrAg4dyrygAAEdAKNsi0OVgQkdAW33S8an750dAQqaHKwIMSodysCgAAEdAKNgQYk3S8kdAW31gQYk3TEdAQqaHKwIMSodysSgAAEdAKMi0OVgQYkdAW3si0OVgQkdAQqbItDlYEIdysigAAEdAKMUeuFHrhUdAW3qfvnbItEdAQqbpeNT99IdysygAAEdAKMIMSbpeNUdAW3otDlYEGUdAQqbpeNT99IdytCgAAEdAKLKwIMSbpkdAW3fvnbItDkdAQqcrAgxJuodytSgAAEdAKK8an752yUdAW3dsi0OVgUdAQqdLxqfvnodytigAAEdAKKwIMSbpeUdAW3b52yLQ5UdAQqdLxqfvnodytygAAEdAKJysCDEm6UdAW3S8an7520dAQqeNT987ZIdyuCgAAEdAKJkWhysCDEdAW3Q5WBBiTkdAQqeuFHrhSIdyuSgAAEdAKIm6XjU/fUdAW3IMSbpeNUdAQqfvnbItDodyuigAAEdAKIYk3S8aoEdAW3GJN0vGqEdAQqfvnbItDodyuygAAEdAKIMSbpeNUEdAW3EWhysCDEdAQqfvnbItDodyvCgAAEdAKHO2RaHKwUdAW27ZFocrAkdAQqgxJul41YdyvSgAAEdAKHAgxJul40dAW25WBBiTdUdAQqhR64UeuIdyvigAAEdAKG0OVgQYk0dAW23jU/fO2UdAQqhR64UeuIdyvygAAEdAKGDEm6XjVEdAW2wo9cKPXEdAQqiTdLxqf4dywCgAAEdAKF0vGp++d0dAW2ul41P3z0dAQqiTdLxqf4dywSgAAEdAKFocrAgxJ0dAW2si0OVgQkdAQqiTdLxqf4dywigAAEdAKEo9cKPXCkdAW2j1wo9cKUdAQqjU/fO2RodywygAAEdAKEcrAgxJukdAW2hysCDEnEdAQqj1wo9cKYdyxCgAAEdAKEOVgQYk3UdAW2gAAAAAAEdAQqj1wo9cKYdyxSgAAEdAKDQ5WBBiTkdAW2XS8an750dAQqk3S8an8IdyxigAAEdAKDCj1wo9cUdAW2VP3ztkWkdAQqk3S8an8IdyxygAAEdAKCFHrhR64UdAW2Mi0OVgQkdAQql41P3ztodyyCgAAEdAKB2yLQ5WBEdAW2KfvnbItEdAQqmZmZmZmodyySgAAEdAKBocrAgxJ0dAW2ItDlYEGUdAQqmZmZmZmodyyigAAEdAKArAgxJumEdAW1/vnbItDkdAQqnbItDlYIdyyygAAEdAKAcrAgxJukdAW1987ZFoc0dAQqnbItDlYIdyzCgAAEdAKAOVgQYk3UdAW18KPXCj10dAQqnbItDlYIdyzSgAAEdAJ/Cj1wo9cUdAW1xaHKwIMUdAQqocrAgxJ4dyzigAAEdAJ+DEm6XjVEdAW1otDlYEGUdAQqpeNT987odyzygAAEdAJ9mZmZmZmkdAW1km6XjU/kdAQqp++dsi0Ydy0CgAAEdAJ8an752yLUdAW1aHKwIMSkdAQqrAgxJumIdy0SgAAEdAJ8MSbpeNUEdAW1YEGJN0vEdAQqrAgxJumIdy0igAAEdAJ6+dsi0OVkdAW1NkWhysCEdAQqsCDEm6Xody0ygAAEdAJ5iTdLxqf0dAW1BBiTdLx0dAQqtDlYEGJYdy1CgAAEdAJ4UeuFHrhUdAW02hysCDEkdAQquFHrhR7Idy1SgAAEdAJ4IMSbpeNUdAW00euFHrhUdAQquFHrhR7Idy1igAAEdAJ24UeuFHrkdAW0p++dsi0UdAQqvGp++dsody1ygAAEdAJ1cKPXCj10dAW0dsi0OVgUdAQqwIMSbpeYdy2CgAAEdAJ0crAgxJukdAW0U/fO2RaEdAQqwo9cKPXIdy2SgAAEdAJ0OVgQYk3UdAW0TMzMzMzUdAQqxJul41P4dy2igAAEdAJ0AAAAAAAEdAW0RJul41P0dAQqxJul41P4dy2ygAAEdAJy+dsi0OVkdAW0ItDlYEGUdAQqxqfvnbI4dy3CgAAEdAJyyLQ5WBBkdAW0Gp++dsi0dAQqyLQ5WBBody3SgAAEdAJxwo9cKPXEdAWz+NT987ZEdAQqysCDEm6Ydy3igAAEdAJxiTdLxqf0dAWz8KPXCj10dAQqysCDEm6Ydy3ygAAEdAJxT987ZFokdAWz6XjU/fO0dAQqysCDEm6Ydy4CgAAEdAJwSbpeNT+EdAWzxqfvnbI0dAQqztkWhysIdy4SgAAEdAJwEGJN0vG0dAWzv3ztkWh0dAQqztkWhysIdy4igAAEdAJv1wo9cKPUdAWzuFHrhR7EdAQqztkWhysIdy4ygAAEdAJu0OVgQYk0dAWzlYEGJN00dAQq0OVgQYk4dy5CgAAEdAJun752yLREdAWzjlYEGJN0dAQq0vGp++d4dy5SgAAEdAJtmZmZmZmkdAWzbItDlYEEdAQq1P3ztkWody5igAAEdAJtYEGJN0vEdAWzZFocrAg0dAQq1P3ztkWody5ygAAEdAJtJul41P30dAWzXS8an750dAQq1P3ztkWody6CgAAEdAJsIMSbpeNUdAWzO2RaHKwUdAQq2RaHKwIYdy6SgAAEdAJr3ztkWhy0dAWzMzMzMzM0dAQq2RaHKwIYdy6igAAEdAJq2RaHKwIUdAWzEWhysCDEdAQq2yLQ5WBIdy6ygAAEdAJqn752yLREdAWzCj1wo9cUdAQq2yLQ5WBIdy7CgAAEdAJqbpeNT99EdAWzAxJul41UdAQq2yLQ5WBIdy7SgAAEdAJpYEGJN0vEdAWy4EGJN0vEdAQq3S8an754dy7igAAEdAJpJul41P30dAWy2RaHKwIUdAQq3ztkWhy4dy7ygAAEdAJo7ZFocrAkdAWy0euFHrhUdAQq3ztkWhy4dy8CgAAEdAJn52yLQ5WEdAWysCDEm6XkdAQq4UeuFHrody8SgAAEdAJnrhR64Ue0dAWyp++dsi0UdAQq4UeuFHrody8igAAEdAJmn752yLREdAWyhysCDEnEdAQq41P3ztkYdy8ygAAEdAJmZmZmZmZkdAWyfvnbItDkdAQq41P3ztkYdy9CgAAEdAJmLQ5WBBiUdAWyd87ZFoc0dAQq41P3ztkYdy9SgAAEdAJlJul41P30dAWyVgQYk3TEdAQq5WBBiTdYdy9igAAEdAJk7ZFocrAkdAWyTtkWhysEdAQq52yLQ5WIdy9ygAAEdAJktDlYEGJUdAWyR64UeuFEdAQq52yLQ5WIdy+CgAAEdAJjpeNT987kdAWyJeNT987kdAQq6XjU/fO4dy+SgAAEdAJjbItDlYEEdAWyHbItDlYEdAQq6XjU/fO4dy+igAAEdAJiXjU/fO2UdAWx/O2RaHK0dAQq64UeuFH4dy+ygAAEdAJiJN0vGp/EdAWx9LxqfvnkdAQq64UeuFH4dy/CgAAEdAJh64UeuFH0dAWx7ZFocrAkdAQq64UeuFH4dy/SgAAEdAJgo9cKPXCkdAWxxJul41P0dAQq7ZFocrAody/igAAEdAJflYEGJN00dAWxotDlYEGUdAQq752yLQ5Ydy/ygAAEdAJfItDlYEGUdAWxlHrhR64UdAQq752yLQ5YdyACkAAEdAJd2yLQ5WBEdAWxa4UeuFH0dAQq8an752yYdyASkAAEdAJdmZmZmZmkdAWxZFocrAg0dAQq8an752yYdyAikAAEdAJcUeuFHrhUdAWxO2RaHKwUdAQq87ZFocrIdyAykAAEdAJayLQ5WBBkdAWxC0OVgQYkdAQq9cKPXCj4dyBCkAAEdAJZgQYk3S8kdAWw41P3ztkUdAQq987ZFoc4dyBSkAAEdAJZR64UeuFEdAWw3Cj1wo9kdAQq987ZFoc4dyBikAAEdAJYMSbpeNUEdAWwul41P3z0dAQq+dsi0OVodyBykAAEdAJX987ZFoc0dAWwszMzMzM0dAQq+dsi0OVodyCCkAAEdAJWbpeNT99EdAWwhBiTdLx0dAQq+dsi0OVodyCSkAAEdAJVYEGJN0vEdAWwYk3S8aoEdAQq++dsi0OYdyCikAAEdAJVHrhR64UkdAWwWyLQ5WBEdAQq++dsi0OYdyCykAAEdAJU5WBBiTdUdAWwU/fO2RaEdAQq++dsi0OYdyDCkAAEdAJTztkWhysEdAWwMzMzMzM0dAQq/fO2RaHYdyDSkAAEdAJTlYEGJN00dAWwLAgxJumEdAQq/fO2RaHYdyDikAAEdAJSDEm6XjVEdAWv++dsi0OUdAQq/fO2RaHYdyDykAAEdAJQ9cKPXCj0dAWv2yLQ5WBEdAQrAAAAAAAIdyECkAAEdAJQtDlYEGJUdAWv0/fO2RaEdAQrAAAAAAAIdyESkAAEdAJQeuFHrhSEdAWvzMzMzMzUdAQrAAAAAAAIdyEikAAEdAJPZFocrAg0dAWvrAgxJumEdAQrAAAAAAAIdyEykAAEdAJPKwIMSbpkdAWvpN0vGp/EdAQrAAAAAAAIdyFCkAAEdAJOFHrhR64UdAWvhBiTdLx0dAQrAgxJul44dyFSkAAEdAJN2yLQ5WBEdAWvfO2RaHK0dAQrAgxJul44dyFikAAEdAJNmZmZmZmkdAWvdcKPXCj0dAQrAgxJul44dyFykAAEdAJMgxJul41UdAWvVP3ztkWkdAQrAgxJul44dyGCkAAEdAJMSbpeNT+EdAWvTdLxqfvkdAQrAgxJul44dyGSkAAEdAJMEGJN0vG0dAWvRqfvnbI0dAQrAgxJul44dyGikAAEdAJK8an752yUdAWvJeNT987kdAQrAgxJul44dyGykAAEdAJKuFHrhR7EdAWvHrhR64UkdAQrBBiTdLx4dyHCkAAEdAJJocrAgxJ0dAWu/fO2RaHUdAQrBBiTdLx4dyHSkAAEdAJJYEGJN0vEdAWu9si0OVgUdAQrBBiTdLx4dyHikAAEdAJJJul41P30dAWu752yLQ5UdAQrBBiTdLx4dyHykAAEdAJIEGJN0vG0dAWuz987ZFokdAQrBBiTdLx4dyICkAAEdAJHztkWhysEdAWux64UeuFEdAQrBBiTdLx4dyISkAAEdAJGdsi0OVgUdAWuoMSbpeNUdAQrBBiTdLx4dyIikAAEdAJGPXCj1wpEdAWumZmZmZmkdAQrBBiTdLx4dyIykAAEdAJFHrhR64UkdAWueNT987ZEdAQrBBiTdLx4dyJCkAAEdAJE5WBBiTdUdAWucan752yUdAQrBBiTdLx4dyJSkAAEdAJEo9cKPXCkdAWua4UeuFH0dAQrBBiTdLx4dyJikAAEdAJDjU/fO2RkdAWuSsCDEm6UdAQrBBiTdLx4dyJykAAEdAJDS8an7520dAWuQ5WBBiTkdAQrBBiTdLx4dyKCkAAEdAJCNT987ZF0dAWuItDlYEGUdAQrBBiTdLx4dyKSkAAEdAJB87ZFocrEdAWuG6XjU/fUdAQrBBiTdLx4dyKikAAEdAJBsi0OVgQkdAWuFHrhR64UdAQrBBiTdLx4dyKykAAEdAJAm6XjU/fUdAWt9LxqfvnkdAQrBBiTdLx4dyLCkAAEdAJAWhysCDEkdAWt7ZFocrAkdAQrBBiTdLx4dyLSkAAEdAI+wIMSbpeUdAWtv3ztkWh0dAQrBBiTdLx4dyLikAAEdAI9ocrAgxJ0dAWtn752yLREdAQrBBiTdLx4dyLykAAEdAI9Jul41P30dAWtkWhysCDEdAQrBBiTdLx4dyMCkAAEdAI7ztkWhysEdAWtan752yLUdAQrBBiTdLx4dyMSkAAEdAI7jU/fO2RkdAWtY1P3ztkUdAQrBBiTdLx4dyMikAAEdAI6LQ5WBBiUdAWtPGp++dskdAQrBBiTdLx4dyMykAAEdAI4k3S8an8EdAWtDlYEGJN0dAQrBBiTdLx4dyNCkAAEdAI3bItDlYEEdAWs7ZFocrAkdAQrAgxJul44dyNSkAAEdAI3MzMzMzM0dAWs52yLQ5WEdAQrAgxJul44dyNikAAEdAI28an752yUdAWs4EGJN0vEdAQrAgxJul44dyNykAAEdAI10vGp++d0dAWswIMSbpeUdAQrAgxJul44dyOCkAAEdAI1kWhysCDEdAWsuVgQYk3UdAQrAgxJul44dyOSkAAEdAIz752yLQ5UdAWsi0OVgQYkdAQrAgxJul44dyOikAAEdAIy0OVgQYk0dAWsa4UeuFH0dAQrAAAAAAAIdyOykAAEdAIyj1wo9cKUdAWsZWBBiTdUdAQrAAAAAAAIdyPCkAAEdAIxLxqfvnbUdAWsPnbItDlkdAQrAAAAAAAIdyPSkAAEdAIw7ZFocrAkdAWsN0vGp++kdAQrAAAAAAAIdyPikAAEdAIvztkWhysEdAWsF41P3ztkdAQq/fO2RaHYdyPykAAEdAIvjU/fO2RkdAWsEGJN0vG0dAQq/fO2RaHYdyQCkAAEdAIvS8an7520dAWsCj1wo9cUdAQq/fO2RaHYdyQSkAAEdAIuJN0vGp/EdAWr6n752yLUdAQq/fO2RaHYdyQikAAEdAIt64UeuFH0dAWr41P3ztkUdAQq++dsi0OYdyQykAAEdAIsgxJul41UdAWrvXCj1wpEdAQq++dsi0OYdyRCkAAEdAIsQYk3S8akdAWrtkWhysCEdAQq++dsi0OYdyRSkAAEdAIrGp++dsi0dAWrlocrAgxUdAQq+dsi0OVodyRikAAEdAIq2RaHKwIUdAWrj1wo9cKUdAQq+dsi0OVodyRykAAEdAIqn752yLREdAWriTdLxqf0dAQq+dsi0OVodySCkAAEdAIpeNT987ZEdAWraXjU/fO0dAQq+dsi0OVodySSkAAEdAIpN0vGp++kdAWrY1P3ztkUdAQq987ZFoc4dySikAAEdAInztkWhysEdAWrPGp++dskdAQq987ZFoc4dySykAAEdAInjU/fO2RkdAWrNkWhysCEdAQq987ZFoc4dyTCkAAEdAImZmZmZmZkdAWrFocrAgxUdAQq9cKPXCj4dyTSkAAEdAImJN0vGp/EdAWrD1wo9cKUdAQq9cKPXCj4dyTikAAEdAIl41P3ztkUdAWrCTdLxqf0dAQq9cKPXCj4dyTykAAEdAIkvGp++dskdAWq6XjU/fO0dAQq87ZFocrIdyUCkAAEdAIkeuFHrhSEdAWq4k3S8aoEdAQq87ZFocrIdyUSkAAEdAIjU/fO2RaEdAWqw5WBBiTkdAQq8an752yYdyUikAAEdAIjEm6XjU/kdAWqvGp++dskdAQq8an752yYdyUykAAEdAIi0OVgQYk0dAWqtkWhysCEdAQq8an752yYdyVCkAAEdAIhqfvnbItEdAWqlocrAgxUdAQq752yLQ5YdyVSkAAEdAIhaHKwIMSkdAWqkGJN0vG0dAQq752yLQ5YdyVikAAEdAIftkWhysCEdAWqY1P3ztkUdAQq7ZFocrAodyVykAAEdAIej1wo9cKUdAWqRJul41P0dAQq64UeuFH4dyWCkAAEdAIeTdLxqfvkdAWqPXCj1wpEdAQq64UeuFH4dyWSkAAEdAIeDEm6XjVEdAWqNkWhysCEdAQq64UeuFH4dyWikAAEdAIcm6XjU/fUdAWqEWhysCDEdAQq6XjU/fO4dyWykAAEdAIa8an752yUdAWp5FocrAg0dAQq52yLQ5WIdyXCkAAEdAIZgQYk3S8kdAWpv3ztkWh0dAQq5WBBiTdYdyXSkAAEdAIZP3ztkWh0dAWpuFHrhR7EdAQq41P3ztkYdyXikAAEdAIYEGJN0vG0dAWpmZmZmZmkdAQq4UeuFHrodyXykAAEdAIXztkWhysEdAWpkm6XjU/kdAQq4UeuFHrodyYCkAAEdAIWHKwIMSb0dAWpZmZmZmZkdAQq3ztkWhy4dyYSkAAEdAIUrAgxJumEdAWpQYk3S8akdAQq3S8an754dyYikAAEdAIUan752yLUdAWpOl41P3z0dAQq2yLQ5WBIdyYykAAEdAITO2RaHKwUdAWpG6XjU/fUdAQq2RaHKwIYdyZCkAAEdAIS+dsi0OVkdAWpFYEGJN00dAQq2RaHKwIYdyZSkAAEdAIRR64UeuFEdAWo6XjU/fO0dAQq1wo9cKPYdyZikAAEdAIQEGJN0vG0dAWoysCDEm6UdAQq1P3ztkWodyZykAAEdAIPztkWhysEdAWoxJul41P0dAQq0vGp++d4dyaCkAAEdAIPjU/fO2RkdAWovXCj1wpEdAQq0vGp++d4dyaSkAAEdAIOXjU/fO2UdAWonrhR64UkdAQq0OVgQYk4dyaikAAEdAIOHKwIMSb0dAWomJN0vGqEdAQq0OVgQYk4dyaykAAEdAIMo9cKPXCkdAWocrAgxJukdAQqzMzMzMzYdybCkAAEdAIMYk3S8aoEdAWobItDlYEEdAQqzMzMzMzYdybSkAAEdAILMzMzMzM0dAWoTdLxqfvkdAQqysCDEm6YdybikAAEdAIK6XjU/fO0dAWoR64UeuFEdAQqysCDEm6YdybykAAEdAIKp++dsi0UdAWoQYk3S8akdAQqyLQ5WBBodycCkAAEdAIJeNT987ZEdAWoItDlYEGUdAQqxqfvnbI4dycSkAAEdAIJN0vGp++kdAWoHKwIMSb0dAQqxqfvnbI4dycikAAEdAIIAAAAAAAEdAWn/fO2RaHUdAQqxJul41P4dycykAAEdAIHvnbItDlkdAWn9si0OVgUdAQqwo9cKPXIdydCkAAEdAIHfO2RaHK0dAWn8KPXCj10dAQqwo9cKPXIdydSkAAEdAIGRaHKwIMUdAWn0vGp++d0dAQqwIMSbpeYdydikAAEdAIGBBiTdLx0dAWny8an7520dAQqvnbItDlodydykAAEdAIEi0OVgQYkdAWnpul41P30dAQqvGp++dsodyeCkAAEdAIESbpeNT+EdAWnoMSbpeNUdAQqvGp++dsodyeSkAAEdAIDEm6XjU/kdAWnggxJul40dAQquFHrhR7IdyeikAAEdAICyLQ5WBBkdAWne+dsi0OUdAQquFHrhR7IdyeykAAEdAIChysCDEnEdAWndcKPXCj0dAQquFHrhR7IdyfCkAAEdAIBT987ZFokdAWnVwo9cKPUdAQqtDlYEGJYdyfSkAAEdAIBDlYEGJN0dAWnUOVgQYk0dAQqtDlYEGJYdyfikAAEdAH/KwIMSbpkdAWnLAgxJumEdAQqsCDEm6XodyfykAAEdAH+l41P3ztkdAWnJeNT987kdAQqsCDEm6XodygCkAAEdAH8OVgQYk3UdAWnCDEm6XjUdAQqrAgxJumIdygSkAAEdAH7peNT987kdAWnAQYk3S8kdAQqrAgxJumIdygikAAEdAH4tDlYEGJUdAWm3S8an750dAQqp++dsi0YdygykAAEdAH4IMSbpeNUdAWm1gQYk3TEdAQqp++dsi0YdyhCkAAEdAH1LxqfvnbUdAWmsi0OVgQkdAQqo9cKPXCodyhSkAAEdAH0rAgxJumEdAWmqwIMSbpkdAQqo9cKPXCodyhikAAEdAHyLQ5WBBiUdAWmjU/fO2RkdAQqn752yLRIdyhykAAEdAHxqfvnbItEdAWmhysCDEnEdAQqn752yLRIdyiCkAAEdAHuJN0vGp/EdAWmXCj1wo9kdAQqm6XjU/fYdyiSkAAEdAHqn752yLREdAWmMi0OVgQkdAQqlYEGJN04dyiikAAEdAHnnbItDlYEdAWmDU/fO2RkdAQqkWhysCDIdyiykAAEdAHkm6XjU/fUdAWl6XjU/fO0dAQqjU/fO2RodyjCkAAEdAHkGJN0vGqEdAWl41P3ztkUdAQqjU/fO2RodyjSkAAEdAHggxJul41UdAWluVgQYk3UdAQqiTdLxqf4dyjikAAEdAHeBBiTdLx0dAWlm6XjU/fUdAQqhR64UeuIdyjykAAEdAHdgQYk3S8kdAWllYEGJN00dAQqgxJul41YdykCkAAEdAHafvnbItDkdAWlcKPXCj10dAQqfvnbItDodykSkAAEdAHZ64UeuFH0dAWlan752yLUdAQqfvnbItDodykikAAEdAHWVgQYk3TEdAWlQIMSbpeUdAQqeNT987ZIdykykAAEdAHT1wo9cKPUdAWlItDlYEGUdAQqdsi0OVgYdylCkAAEdAHTU/fO2RaEdAWlHKwIMSb0dAQqdLxqfvnodylSkAAEdAHQQYk3S8akdAWk+NT987ZEdAQqcKPXCj14dylikAAEdAHPvnbItDlkdAWk8rAgxJukdAQqbpeNT99IdylykAAEdAHNP3ztkWh0dAWk1P3ztkWkdAQqbItDlYEIdymCkAAEdAHMrAgxJumEdAWkztkWhysEdAQqan752yLYdymSkAAEdAHMKPXCj1w0dAWkyLQ5WBBkdAQqan752yLYdymikAAEdAHJqfvnbItEdAWkrAgxJumEdAQqZmZmZmZodymykAAEdAHJFocrAgxUdAWkpN0vGp/EdAQqZFocrAg4dynCkAAEdAHGBBiTdLx0dAWkggxJul40dAQqYEGJN0vIdynSkAAEdAHFgQYk3S8kdAWke+dsi0OUdAQqYEGJN0vIdynikAAEdAHDAgxJul40dAWkXjU/fO2UdAQqXCj1wo9odynykAAEdAHCbpeNT99EdAWkWBBiTdL0dAQqWhysCDEodyoCkAAEdAHB64UeuFH0dAWkUeuFHrhUdAQqWhysCDEodyoSkAAEdAG/XCj1wo9kdAWkNDlYEGJUdAQqVgQYk3TIdyoikAAEdAG+yLQ5WBBkdAWkLhR64Ue0dAQqU/fO2RaIdyoykAAEdAG7xqfvnbI0dAWkC0OVgQYkdAQqT987ZFoodypCkAAEdAG7MzMzMzM0dAWkBR64UeuEdAQqTdLxqfvodypSkAAEdAG4tDlYEGJUdAWj52yLQ5WEdAQqSbpeNT+IdypikAAEdAG4IMSbpeNUdAWj4UeuFHrkdAQqSbpeNT+IdypykAAEdAG1DlYEGJN0dAWjvnbItDlkdAQqQ5WBBiTodyqCkAAEdAG0euFHrhSEdAWjuFHrhR7EdAQqQ5WBBiTodyqSkAAEdAGx++dsi0OUdAWjm6XjU/fUdAQqP3ztkWh4dyqikAAEdAGxaHKwIMSkdAWjlHrhR64UdAQqPXCj1wpIdyqykAAEdAGuVgQYk3TEdAWjcan752yUdAQqOVgQYk3YdyrCkAAEdAGtwo9cKPXEdAWja4UeuFH0dAQqN0vGp++odyrSkAAEdAGqHKwIMSb0dAWjQo9cKPXEdAQqMSbpeNUIdyrikAAEdAGnjU/fO2RkdAWjJeNT987kdAQqLQ5WBBiYdyrykAAEdAGm+dsi0OVkdAWjH752yLREdAQqKwIMSbpodysCkAAEdAGjU/fO2RaEdAWi9cKPXCj0dAQqJN0vGp/IdysSkAAEdAGfnbItDlYEdAWizMzMzMzUdAQqHrhR64UodysikAAEdAGci0OVgQYkdAWiqfvnbItEdAQqGJN0vGqIdysykAAEdAGZaHKwIMSkdAWihysCDEnEdAQqEm6XjU/odytCkAAEdAGY1P3ztkWkdAWigQYk3S8kdAQqEm6XjU/odytSkAAEdAGVHrhR64UkdAWiWBBiTdL0dAQqCj1wo9cYdytikAAEdAGSDEm6XjVEdAWiNkWhysCEdAQqBBiTdLx4dytykAAEdAGO2RaHKwIUdAWiE3S8an8EdAQp/fO2RaHYdyuCkAAEdAGOVgQYk3TEdAWiDU/fO2RkdAQp/fO2RaHYdyuSkAAEdAGLItDlYEGUdAWh6n752yLUdAQp987ZFoc4dyuikAAEdAGKn752yLREdAWh5FocrAg0dAQp9cKPXCj4dyuykAAEdAGIAAAAAAAEdAWhyLQ5WBBkdAQp8an752yYdyvCkAAEdAGESbpeNT+EdAWhn752yLREdAQp6XjU/fO4dyvSkAAEdAGDtkWhysCEdAWhmZmZmZmkdAQp6XjU/fO4dyvikAAEdAGAk3S8an8EdAWhdsi0OVgUdAQp41P3ztkYdyvykAAEdAGAAAAAAAAEdAWhcan752yUdAQp4UeuFHrodywCkAAEdAF9YEGJN0vEdAWhVP3ztkWkdAQp3S8an754dywSkAAEdAF8zMzMzMzUdAWhTtkWhysEdAQp2yLQ5WBIdywikAAEdAF5qfvnbItEdAWhLQ5WBBiUdAQp1P3ztkWodywykAAEdAF141P3ztkUdAWhBBiTdLx0dAQpzMzMzMzYdyxCkAAEdAF1YEGJN0vEdAWg/fO2RaHUdAQpzMzMzMzYdyxSkAAEdAFywIMSbpeUdAWg4k3S8aoEdAQpxqfvnbI4dyxikAAEdAFyLQ5WBBiUdAWg3Cj1wo9kdAQpxJul41P4dyxykAAEdAFu+dsi0OVkdAWgul41P3z0dAQpvnbItDlodyyCkAAEdAFuZmZmZmZkdAWgtDlYEGJUdAQpvGp++dsodyySkAAEdAFrxqfvnbI0dAWgmJN0vGqEdAQpuFHrhR7IdyyikAAEdAFrMzMzMzM0dAWgkm6XjU/kdAQptkWhysCIdyyykAAEdAFoAAAAAAAEdAWgcKPXCj10dAQpsCDEm6XodyzCkAAEdAFnbItDlYEEdAWgan752yLUdAQprhR64Ue4dyzSkAAEdAFkOVgQYk3UdAWgSLQ5WBBkdAQpp++dsi0YdyzikAAEdAFjpeNT987kdAWgQo9cKPXEdAQppeNT987odyzykAAEdAFhBiTdLxqkdAWgJul41P30dAQpocrAgxJ4dy0CkAAEdAFgcrAgxJukdAWgIMSbpeNUdAQpn752yLRIdy0SkAAEdAFcrAgxJumEdAWf+NT987ZEdAQpl41P3ztody0ikAAEdAFZeNT987ZEdAWf1wo9cKPUdAQpj1wo9cKYdy0ykAAEdAFY1P3ztkWkdAWf0OVgQYk0dAQpj1wo9cKYdy1CkAAEdAFVocrAgxJ0dAWfrxqfvnbUdAQphysCDEnIdy1SkAAEdAFR2yLQ5WBEdAWfhysCDEnEdAQpfvnbItDody1ikAAEdAFOBBiTdLx0dAWfYEGJN0vEdAQpdsi0OVgYdy1ykAAEdAFK0OVgQYk0dAWfPnbItDlkdAQpbpeNT99Idy2CkAAEdAFHjU/fO2RkdAWfHKwIMSb0dAQpaHKwIMSody2SkAAEdAFG+dsi0OVkdAWfF41P3ztkdAQpZmZmZmZody2ikAAEdAFBmZmZmZmkdAWe4EGJN0vEdAQpWhysCDEody2ykAAEdAE/3ztkWhy0dAWeztkWhysEdAQpVgQYk3TIdy3CkAAEdAE8m6XjU/fUdAWerQ5WBBiUdAQpTdLxqfvody3SkAAEdAE8CDEm6XjUdAWepul41P30dAQpTdLxqfvody3ikAAEdAE4xJul41P0dAWehiTdLxqkdAQpRaHKwIMYdy3ykAAEdAE1gQYk3S8kdAWeZFocrAg0dAQpPXCj1wpIdy4CkAAEdAE07ZFocrAkdAWeXztkWhy0dAQpPXCj1wpIdy4SkAAEdAExqfvnbItEdAWePXCj1wpEdAQpNT987ZF4dy4ikAAEdAEtwo9cKPXEdAWeFocrAgxUdAQpKwIMSbpody4ykAAEdAEqfvnbItDkdAWd9cKPXCj0dAQpItDlYEGYdy5CkAAEdAEp64UeuFH0dAWd752yLQ5UdAQpItDlYEGYdy5SkAAEdAEmp++dsi0UdAWdztkWhysEdAQpGp++dsi4dy5ikAAEdAEiwIMSbpeUdAWdp++dsi0UdAQpEGJN0vG4dy5ykAAEdAEffO2RaHK0dAWdhysCDEnEdAQpCDEm6XjYdy6CkAAEdAEe2RaHKwIUdAWdgQYk3S8kdAQpBiTdLxqody6SkAAEdAEblYEGJN00dAWdYEGJN0vEdAQo/fO2RaHYdy6ikAAEdAEYQYk3S8akdAWdP3ztkWh0dAQo9cKPXCj4dy6ykAAEdAEXrhR64Ue0dAWdOl41P3z0dAQo9cKPXCj4dy7CkAAEdAEUWhysCDEkdAWdGZmZmZmkdAQo7ZFocrAody7SkAAEdAETxqfvnbI0dAWdE3S8an8EdAQo64UeuFH4dy7ikAAEdAEQcrAgxJukdAWc8rAgxJukdAQo41P3ztkYdy7ykAAEdAEMi0OVgQYkdAWczMzMzMzUdAQo2RaHKwIYdy8CkAAEdAEIo9cKPXCkdAWcpeNT987kdAQoztkWhysIdy8SkAAEdAEFT987ZFokdAWchR64UeuEdAQoxqfvnbI4dy8ikAAEdAEBaHKwIMSkdAWcXztkWhy0dAQovGp++dsody8ykAAEdAD64UeuFHrkdAWcOVgQYk3UdAQosi0OVgQody9CkAAEdADwAAAAAAAEdAWcBBiTdLx0dAQoo9cKPXCody9SkAAEdADsan752yLUdAWb8rAgxJukdAQonbItDlYIdy9ikAAEdADkeuFHrhSEdAWbzMzMzMzUdAQok3S8an8Idy9ykAAEdADZeNT987ZEdAWbl41P3ztkdAQohR64UeuIdy+CkAAEdADV41P3ztkUdAWbhiTdLxqkdAQogQYk3S8ody+SkAAEdADK4UeuFHrkdAWbUeuFHrhUdAQocrAgxJuody+ikAAEdADHKwIMSbpkdAWbQIMSbpeUdAQobItDlYEIdy+ykAAEdADAYk3S8aoEdAWbIMSbpeNUdAQoZFocrAg4dy/CkAAEdAC4crAgxJukdAWa+uFHrhSEdAQoWBBiTdL4dy/SkAAEdACwgxJul41UdAWa1P3ztkWkdAQoTdLxqfvody/ikAAEdACpul41P3z0dAWatT987ZF0dAQoQ5WBBiTody/ykAAEdACocrAgxJukdAWarxqfvnbUdAQoQ5WBBiTodyACoAAEdAChysCDEm6UdAWaj1wo9cKUdAQoOVgQYk3YdyASoAAEdACZul41P3z0dAWaan752yLUdAQoLxqfvnbYdyAioAAEdACS8an752yUdAWaSsCDEm6UdAQoJN0vGp/IdyAyoAAEdACRysCDEm6UdAWaRJul41P0dAQoItDlYEGYdyBCoAAEdACK4UeuFHrkdAWaJN0vGp/EdAQoGJN0vGqIdyBSoAAEdACC8an752yUdAWaAAAAAAAEdAQoDlYEGJN4dyBioAAEdAB64UeuFHrkdAWZ2hysCDEkdAQoAgxJul44dyByoAAEdAIlDlYEGJN0dAWR87ZFocrEdAQRP3ztkWh4dyCCoAAEdAInbItDlYEEdAWSOVgQYk3UdAQRP3ztkWh4dyCSoAAEdAIpmZmZmZmkdAWSd87ZFoc0dAQRP3ztkWh4dyCioAAEdAIr752yLQ5UdAWSvXCj1wpEdAQRP3ztkWh4dyCyoAAEdAIuHKwIMSb0dAWS/O2RaHK0dAQRP3ztkWh4dyDCoAAEdAIwWhysCDEkdAWTRaHKwIMUdAQRO2RaHKwYdyDSoAAEdAIyl41P3ztkdAWTj1wo9cKUdAQRN0vGp++odyDioAAEdAI01P3ztkWkdAWT2BBiTdL0dAQRMzMzMzM4dyDyoAAEdAI3Em6XjU/kdAWUIcrAgxJ0dAQRLQ5WBBiYdyECoAAEdAI5R64UeuFEdAWUan752yLUdAQRKPXCj1w4dyESoAAEdAI7hR64UeuEdAWUszMzMzM0dAQRJN0vGp/IdyEioAAEdAI9wo9cKPXEdAWU/O2RaHK0dAQRIMSbpeNYdyEyoAAEdAJAAAAAAAAEdAWVRaHKwIMUdAQRHKwIMSb4dyFCoAAEdAJCPXCj1wpEdAWVj1wo9cKUdAQRGJN0vGqIdyFSoAAEdAJEeuFHrhSEdAWV2BBiTdL0dAQRFHrhR64YdyFioAAEdAJGuFHrhR7EdAWWIcrAgxJ0dAQREGJN0vG4dyFyoAAEdAJI9cKPXCj0dAWWan752yLUdAQRDEm6XjVIdyGCoAAEdAJLMzMzMzM0dAWWtDlYEGJUdAQRCDEm6XjYdyGSoAAEdAJNcKPXCj10dAWW/O2RaHK0dAQRAgxJul44dyGioAAEdAJPrhR64Ue0dAWXRaHKwIMUdAQQ/fO2RaHYdyGyoAAEdAJR64UeuFH0dAWXj1wo9cKUdAQQ+dsi0OVodyHCoAAEdAJUKPXCj1w0dAWX2BBiTdL0dAQQ9cKPXCj4dyHSoAAEdAJWZmZmZmZkdAWYIcrAgxJ0dAQQ8an752yYdyHioAAEdAJYo9cKPXCkdAWYan752yLUdAQQ7ZFocrAodyHyoAAEdAJa4UeuFHrkdAWYtDlYEGJUdAQQ6XjU/fO4dyICoAAEdAJdFocrAgxUdAWY/O2RaHK0dAQQ5WBBiTdYdyISoAAEdAJfU/fO2RaEdAWZRqfvnbI0dAQQ4UeuFHrodyIioAAEdAJhkWhysCDEdAWZj1wo9cKUdAQQ3S8an754dyIyoAAEdAJjztkWhysEdAWZ2BBiTdL0dAQQ1wo9cKPYdyJCoAAEdAJmDEm6XjVEdAWaIcrAgxJ0dAQQ0vGp++d4dyJSoAAEdAJoSbpeNT+EdAWaan752yLUdAQQztkWhysIdyJioAAEdAJqhysCDEnEdAWatDlYEGJUdAQQysCDEm6YdyJyoAAEdAJsxJul41P0dAWa/O2RaHK0dAQQxqfvnbI4dyKCoAAEdAJvAgxJul40dAWbRqfvnbI0dAQQwo9cKPXIdyKSoAAEdAJxP3ztkWh0dAWbj1wo9cKUdAQQvnbItDlodyKioAAEdAJzfO2RaHK0dAWb2RaHKwIUdAQQul41P3z4dyKyoAAEdAJ1ul41P3z0dAWcIcrAgxJ0dAQQtkWhysCIdyLCoAAEdAJ3987ZFoc0dAWcan752yLUdAQQsi0OVgQodyLSoAAEdAJ6NT987ZF0dAWctDlYEGJUdAQQrAgxJumIdyLioAAEdAJ8crAgxJukdAWc/O2RaHK0dAQQp++dsi0YdyLyoAAEdAJ+sCDEm6XkdAWdRqfvnbI0dAQQo9cKPXCodyMCoAAEdAKA5WBBiTdUdAWdj1wo9cKUdAQQn752yLRIdyMSoAAEdAKDItDlYEGUdAWd2RaHKwIUdAQQm6XjU/fYdyMioAAEdAKFYEGJN0vEdAWeIcrAgxJ0dAQQl41P3ztodyMyoAAEdAKHnbItDlYEdAWea4UeuFH0dAQQk3S8an8IdyNCoAAEdAKIOVgQYk3UdAWefvnbItDkdAQQkWhysCDIdyNSoAAEdAKJocrAgxJ0dAWesi0OVgQkdAQQjU/fO2RodyNioAAEdAKLtkWhysCEdAWe/vnbItDkdAQQgxJul41YdyNyoAAEdAKMMSbpeNUEdAWfEGJN0vG0dAQQgQYk3S8odyOCoAAEdAKNkWhysCDEdAWfQ5WBBiTkdAQQeuFHrhSIdyOSoAAEdAKPpeNT987kdAWfkGJN0vG0dAQQcrAgxJuodyOioAAEdAKQGJN0vGqEdAWfocrAgxJ0dAQQcKPXCj14dyOyoAAEdAKReNT987ZEdAWf1P3ztkWkdAQQan752yLYdyPCoAAEdAKThR64UeuEdAWgItDlYEGUdAQQYEGJN0vIdyPSoAAEdAKT987ZFoc0dAWgNDlYEGJUdAQQXjU/fO2YdyPioAAEdAKWDEm6XjVEdAWggxJul41UdAQQU/fO2RaIdyPyoAAEdAKYGJN0vGqEdAWg0OVgQYk0dAQQSbpeNT+IdyQCoAAEdAKaJN0vGp/EdAWhH752yLREdAQQP3ztkWh4dyQSoAAEdAKaVgQYk3TEdAWhJ++dsi0UdAQQP3ztkWh4dyQioAAEdAKbrhR64Ue0dAWhWyLQ5WBEdAQQOVgQYk3YdyQyoAAEdAKdsi0OVgQkdAWhqfvnbItEdAQQLQ5WBBiYdyRCoAAEdAKeJN0vGp/EdAWhu2RaHKwUdAQQKwIMSbpodyRSoAAEdAKffO2RaHK0dAWh752yLQ5UdAQQJN0vGp/IdyRioAAEdAKgm6XjU/fUdAWiG6XjU/fUdAQQHrhR64UodyRyoAAEdAKh64UeuFH0dAWiUOVgQYk0dAQQFocrAgxYdySCoAAEdAKjO2RaHKwUdAWihR64UeuEdAQQDlYEGJN4dySSoAAEdAKkWhysCDEkdAWisSbpeNUEdAQQCDEm6XjYdySioAAEdAKlqfvnbItEdAWi5mZmZmZkdAQQAAAAAAAIdySyoAAEdAKm+dsi0OVkdAWjGp++dsi0dAQP+dsi0OVodyTCoAAEdAKoGJN0vGqEdAWjR64UeuFEdAQP8an752yYdyTSoAAEdAKoSbpeNT+EdAWjTtkWhysEdAQP8an752yYdyTioAAEdAKpYEGJN0vEdAWje+dsi0OUdAQP6XjU/fO4dyTyoAAEdAKqsCDEm6XkdAWjsSbpeNUEdAQP4UeuFHrodyUCoAAEdAKrxqfvnbI0dAWj3jU/fO2UdAQP2yLQ5WBIdyUSoAAEdAKsAAAAAAAEdAWj5mZmZmZkdAQP2RaHKwIYdyUioAAEdAKtFocrAgxUdAWkEm6XjU/kdAQP0vGp++d4dyUyoAAEdAKuXjU/fO2UdAWkR64UeuFEdAQPysCDEm6YdyVCoAAEdAKvpeNT987kdAWkfO2RaHK0dAQPwo9cKPXIdyVSoAAEdAKwvGp++dskdAWkqfvnbItEdAQPul41P3z4dyVioAAEdAKyp++dsi0UdAWk++dsi0OUdAQPrhR64Ue4dyVyoAAEdAKzGp++dsi0dAWlDU/fO2RkdAQPqfvnbItIdyWCoAAEdAK1BiTdLxqkdAWlXztkWhy0dAQPm6XjU/fYdyWSoAAEdAK1cKPXCj10dAWlcKPXCj10dAQPmZmZmZmodyWioAAEdAK2sCDEm6XkdAWlpeNT987kdAQPkWhysCDIdyWyoAAEdAK4m6XjU/fUdAWl987ZFoc0dAQPgxJul41YdyXCoAAEdAK5BiTdLxqkdAWmCTdLxqf0dAQPfvnbItDodyXSoAAEdAK6RaHKwIMUdAWmP3ztkWh0dAQPdsi0OVgYdyXioAAEdAK7hR64UeuEdAWmdcKPXCj0dAQPbItDlYEIdyXyoAAEdAK8k3S8an8EdAWmotDlYEGUdAQPZFocrAg4dyYCoAAEdAK90vGp++d0dAWm2RaHKwIUdAQPWhysCDEodyYSoAAEdAK/Cj1wo9cUdAWnD1wo9cKUdAQPT987ZFoodyYioAAEdALAGJN0vGqEdAWnPXCj1wpEdAQPR64UeuFIdyYyoAAEdALASbpeNT+EdAWnRqfvnbI0dAQPRaHKwIMYdyZCoAAEdALBT987ZFokdAWndLxqfvnkdAQPPXCj1wpIdyZSoAAEdALBgQYk3S8kdAWnfO2RaHK0dAQPPXCj1wpIdyZioAAEdALChysCDEnEdAWnqwIMSbpkdAQPMzMzMzM4dyZyoAAEdALDlYEGJN00dAWn2RaHKwIUdAQPKwIMSbpodyaCoAAEdALDxqfvnbI0dAWn4UeuFHrkdAQPKPXCj1w4dyaSoAAEdALEzMzMzMzUdAWoD1wo9cKUdAQPIMSbpeNYdyaioAAEdALGBBiTdLx0dAWoRqfvnbI0dAQPFocrAgxYdyayoAAEdALHCj1wo9cUdAWodLxqfvnkdAQPDEm6XjVIdybCoAAEdALHMzMzMzM0dAWoffO2RaHUdAQPDEm6XjVIdybSoAAEdALIOVgQYk3UdAWorAgxJumEdAQPAgxJul44dybioAAEdALJcKPXCj10dAWo41P3ztkUdAQO987ZFoc4dybyoAAEdALKbpeNT99EdAWpEWhysCDEdAQO7ZFocrAodycCoAAEdALKn752yLREdAWpGp++dsi0dAQO7ZFocrAodycSoAAEdALLpeNT987kdAWpSLQ5WBBkdAQO41P3ztkYdycioAAEdALMo9cKPXCkdAWpd87ZFoc0dAQO2RaHKwIYdycyoAAEdALM1P3ztkWkdAWpgAAAAAAEdAQO2RaHKwIYdydCoAAEdALN0vGp++d0dAWpsCDEm6XkdAQOztkWhysIdydSoAAEdALPnbItDlYEdAWqBBiTdLx0dAQOvGp++dsodydioAAEdALQAAAAAAAEdAWqFocrAgxUdAQOul41P3z4dydyoAAEdALQMSbpeNUEdAWqHrhR64UkdAQOuFHrhR7IdyeCoAAEdALRLxqfvnbUdAWqTdLxqfvkdAQOrhR64Ue4dyeSoAAEdALSLQ5WBBiUdAWqfO2RaHK0dAQOo9cKPXCodyeioAAEdALTU/fO2RaEdAWqtT987ZF0dAQOl41P3ztodyeyoAAEdALUgxJul41UdAWq7ItDlYEEdAQOjU/fO2RodyfCoAAEdALVeNT987ZEdAWrHKwIMSb0dAQOgxJul41YdyfSoAAEdALVqfvnbItEdAWrJN0vGp/EdAQOgQYk3S8odyfioAAEdALWn752yLREdAWrU/fO2RaEdAQOdsi0OVgYdyfyoAAEdALXxqfvnbI0dAWrjEm6XjVEdAQOan752yLYdygCoAAEdALX987ZFoc0dAWrlYEGJN00dAQOaHKwIMSodygSoAAEdALYxJul41P0dAWrvGp++dskdAQOYEGJN0vIdygioAAEdALY7ZFocrAkdAWrxJul41P0dAQOXjU/fO2YdygyoAAEdALZ41P3ztkUdAWr9LxqfvnkdAQOU/fO2RaIdyhCoAAEdALaFHrhR64UdAWr/O2RaHK0dAQOUeuFHrhYdyhSoAAEdALbCj1wo9cUdAWsLQ5WBBiUdAQORaHKwIMYdyhioAAEdALbMzMzMzM0dAWsNT987ZF0dAQOQ5WBBiTodyhyoAAEdALcAAAAAAAEdAWsXS8an750dAQOO2RaHKwYdyiCoAAEdALcKPXCj1w0dAWsZWBBiTdUdAQOOVgQYk3YdyiSoAAEdALdHrhR64UkdAWslYEGJN00dAQOLxqfvnbYdyiioAAEdALdR64UeuFEdAWsnrhR64UkdAQOLQ5WBBiYdyiyoAAEdALeFHrhR64UdAWsxaHKwIMUdAQOItDlYEGYdyjCoAAEdALePXCj1wpEdAWszdLxqfvkdAQOItDlYEGYdyjSoAAEdALfXCj1wo9kdAWtBysCDEnEdAQOFHrhR64YdyjioAAEdALgUeuFHrhUdAWtN0vGp++kdAQOCj1wo9cYdyjyoAAEdALgeuFHrhSEdAWtQIMSbpeUdAQOCDEm6XjYdykCoAAEdALhP3ztkWh0dAWtZ2yLQ5WEdAQN/fO2RaHYdykSoAAEdALhcKPXCj10dAWtcKPXCj10dAQN++dsi0OYdykioAAEdALiXjU/fO2UdAWtoMSbpeNUdAQN8an752yYdykyoAAEdALihysCDEnEdAWtqPXCj1w0dAQN752yLQ5YdylCoAAEdALjpeNT987kdAWt4k3S8aoEdAQN4UeuFHrodylSoAAEdALkan752yLUdAWuCj1wo9cUdAQN2RaHKwIYdylioAAEdALkk3S8an8EdAWuE3S8an8EdAQN1wo9cKPYdylyoAAEdALlgQYk3S8kdAWuQ5WBBiTkdAQNysCDEm6YdymCoAAEdALlqfvnbItEdAWuTMzMzMzUdAQNyLQ5WBBodymSoAAEdALml41P3ztkdAWuffO2RaHUdAQNvGp++dsodymioAAEdALnhR64UeuEdAWurhR64Ue0dAQNsCDEm6XodymyoAAEdALom6XjU/fUdAWu52yLQ5WEdAQNocrAgxJ4dynCoAAEdALoxJul41P0dAWu8KPXCj10dAQNn752yLRIdynSoAAEdALpqfvnbItEdAWvIcrAgxJ0dAQNlYEGJN04dynioAAEdALql41P3ztkdAWvUvGp++d0dAQNiTdLxqf4dynyoAAEdALrpeNT987kdAWvjEm6XjVEdAQNeuFHrhSIdyoCoAAEdALstDlYEGJUdAWvxqfvnbI0dAQNan752yLYdyoSoAAEdALs5WBBiTdUdAWvz987ZFokdAQNaHKwIMSodyoioAAEdALtocrAgxJ0dAWv987ZFoc0dAQNXjU/fO2YdyoyoAAEdALusCDEm6XkdAWwMi0OVgQkdAQNT987ZFoodypCoAAEdALu2RaHKwIUdAWwO2RaHKwUdAQNTdLxqfvodypSoAAEdALvvnbItDlkdAWwbItDlYEEdAQNQYk3S8aodypioAAEdALv52yLQ5WEdAWwdcKPXCj0dAQNP3ztkWh4dypyoAAEdALwm6XjU/fUdAWwnbItDlYEdAQNNT987ZF4dyqCoAAEdALwxJul41P0dAWwpul41P30dAQNMzMzMzM4dyqSoAAEdALxqfvnbItEdAWw2BBiTdL0dAQNJN0vGp/IdyqioAAEdALx0vGp++d0dAWw4UeuFHrkdAQNItDlYEGYdyqyoAAEdALyj1wo9cKUdAWxCj1wo9cUdAQNGJN0vGqIdyrCoAAEdALysCDEm6XkdAWxEm6XjU/kdAQNFocrAgxYdyrSoAAEdALzlYEGJN00dAWxRJul41P0dAQNCj1wo9cYdyrioAAEdALzvnbItDlkdAWxTdLxqfvkdAQNBiTdLxqodyryoAAEdAL0crAgxJukdAWxdsi0OVgUdAQM++dsi0OYdysCoAAEdAL0m6XjU/fUdAWxfvnbItDkdAQM+dsi0OVodysSoAAEdAL0xJul41P0dAWxiDEm6XjUdAQM987ZFoc4dysioAAEdAL1eNT987ZEdAWxsSbpeNUEdAQM64UeuFH4dysyoAAEdAL1ocrAgxJ0dAWxul41P3z0dAQM6XjU/fO4dytCoAAEdAL2fvnbItDkdAWx7ItDlYEEdAQM3S8an754dytSoAAEdAL2p++dsi0UdAWx9LxqfvnkdAQM2yLQ5WBIdytioAAEdAL3XCj1wo9kdAWyHrhR64UkdAQMztkWhysIdytyoAAEdAL3hR64UeuEdAWyJul41P30dAQMzMzMzMzYdyuCoAAEdAL3rhR64Ue0dAWyMCDEm6XkdAQMysCDEm6YdyuSoAAEdAL4Yk3S8aoEdAWyWhysCDEkdAQMvnbItDlodyuioAAEdAL4i0OVgQYkdAWyYk3S8aoEdAQMvGp++dsodyuyoAAEdAL5aHKwIMSkdAWylHrhR64UdAQMsCDEm6XodyvCoAAEdAL5iTdLxqf0dAWynbItDlYEdAQMrAgxJumIdyvSoAAEdAL6PXCj1wpEdAWyx64UeuFEdAQMocrAgxJ4dyvioAAEdAL7O2RaHKwUdAWzAxJul41UdAQMkWhysCDIdyvyoAAEdAL7ZFocrAg0dAWzC0OVgQYkdAQMj1wo9cKYdywCoAAEdAL8QYk3S8akdAWzPnbItDlkdAQMgQYk3S8odywSoAAEdAL8Yk3S8aoEdAWzRqfvnbI0dAQMfvnbItDodywioAAEdAL9FocrAgxUdAWzcKPXCj10dAQMcrAgxJuodywyoAAEdAL+FHrhR64UdAWzrAgxJumEdAQMYk3S8aoIdyxCoAAEdAL+NT987ZF0dAWztT987ZF0dAQMYEGJN0vIdyxSoAAEdAL/Cj1wo9cUdAWz6HKwIMSkdAQMUeuFHrhYdyxioAAEdAL/3ztkWhy0dAW0Gp++dsi0dAQMQ5WBBiTodyxyoAAEdAMAbpeNT99EdAW0Vwo9cKPUdAQMMSbpeNUIdyyCoAAEdAMA6XjU/fO0dAW0k3S8an8EdAQMIMSbpeNYdyySoAAEdAMA/fO2RaHUdAW0nKwIMSb0dAQMHrhR64UodyyioAAEdAMBU/fO2RaEdAW0xqfvnbI0dAQMEm6XjU/odyyyoAAEdAMBZFocrAg0dAW0z987ZFokdAQMEGJN0vG4dyzCoAAEdAMBztkWhysEdAW1AxJul41UdAQMAAAAAAAIdyzSoAAEdAMB3ztkWhy0dAW1DEm6XjVEdAQL/fO2RaHYdyzioAAEdAMCRaHKwIMUdAW1P3ztkWh0dAQL752yLQ5YdyzyoAAEdAMCWhysCDEkdAW1SLQ5WBBkdAQL64UeuFH4dy0CoAAEdAMCsCDEm6XkdAW1crAgxJukdAQL3ztkWhy4dy0SoAAEdAMCwIMSbpeUdAW1e+dsi0OUdAQL3S8an754dy0ioAAEdAMDJul41P30dAW1rxqfvnbUdAQLztkWhysIdy0yoAAEdAMDgQYk3S8kdAW2EGJN0vG0dAQLo9cKPXCody1CoAAEdAMD2yLQ5WBEdAW2crAgxJukdAQLeuFHrhSIdy1SoAAEdAMENT987ZF0dAW20/fO2RaEdAQLUeuFHrhYdy1ioAAEdAMEi0OVgQYkdAW3NkWhysCEdAQLJul41P34dy1yoAAEdAME5WBBiTdUdAW3l41P3ztkdAQK/fO2RaHYdy2CoAAEdAMFP3ztkWh0dAW3+dsi0OVkdAQK1P3ztkWody2SoAAEdAMFmZmZmZmkdAW4WyLQ5WBEdAQKqfvnbItIdy2ioAAEdAMF87ZFocrEdAW4vGp++dskdAQKgQYk3S8ody2yoAAEdAMGSbpeNT+EdAW5HrhR64UkdAQKWBBiTdL4dy3CoAAEdAMGo9cKPXCkdAW5gAAAAAAEdAQKLQ5WBBiYdy3SoAAEdAMG/fO2RaHUdAW54k3S8aoEdAQKBBiTdLx4dy3ioAAEdAMHWBBiTdL0dAW6Q5WBBiTkdAQJ2RaHKwIYdy3yoAAEdAMHsi0OVgQkdAW6peNT987kdAQJsCDEm6Xody4CoAAEdAMICDEm6XjUdAW7BysCDEnEdAQJhysCDEnIdy4SoAAEdAMIYk3S8aoEdAW7aXjU/fO0dAQJXCj1wo9ody4ioAAEdAMIvGp++dskdAW7ysCDEm6UdAQJMzMzMzM4dy4yoAAEdAMJFocrAgxUdAW8LAgxJumEdAQJCj1wo9cYdy5CoAAEdAMJcKPXCj10dAW8jlYEGJN0dAQI3ztkWhy4dy5SoAAEdAMJxqfvnbI0dAW8752yLQ5UdAQItkWhysCIdy5ioAAEdAMKIMSbpeNUdAW9UeuFHrhUdAQIjU/fO2Rody5yoAAEdAMKeuFHrhSEdAW9szMzMzM0dAQIYk3S8aoIdy6CoAAEdAMK1P3ztkWkdAW+FYEGJN00dAQIOVgQYk3Ydy6SoAAEdAMLLxqfvnbUdAW+dsi0OVgUdAQIEGJN0vG4dy6ioAAEdAMLhR64UeuEdAW+2RaHKwIUdAQH5WBBiTdYdy6yoAAEdAML3ztkWhy0dAW/Ol41P3z0dAQHvGp++dsody7CoAAEdAMMOVgQYk3UdAW/nKwIMSb0dAQHkWhysCDIdy7SoAAEdAMMk3S8an8EdAW//fO2RaHUdAQHaHKwIMSody7ioAAEdAMM7ZFocrAkdAXAXztkWhy0dAQHP3ztkWh4dy7yoAAEdAMNR64UeuFEdAXAwYk3S8akdAQHFHrhR64Ydy8CoAAEdAMNnbItDlYEdAXBItDlYEGUdAQG64UeuFH4dy8SoAAEdAMN987ZFoc0dAXBhR64UeuEdAQGwo9cKPXIdy8ioAAEdAMOUeuFHrhUdAXB5mZmZmZkdAQGl41P3ztody8yoAAEdAMOrAgxJumEdAXCSLQ5WBBkdAQGbpeNT99Idy9CoAAEdAMPBiTdLxqkdAXCqfvnbItEdAQGRaHKwIMYdy9SoAAEdAMPXCj1wo9kdAXDDEm6XjVEdAQGGp++dsi4dy9ioAAEdAMPtkWhysCEdAXDbZFocrAkdAQF8an752yYdy9yoAAEdAMQEGJN0vG0dAXDztkWhysEdAQFyLQ5WBBody+CoAAEdAMQan752yLUdAXEMSbpeNUEdAQFnbItDlYIdy+SoAAEdAMQxJul41P0dAXEkm6XjU/kdAQFdLxqfvnody+ioAAEdAMRGp++dsi0dAXE9LxqfvnkdAQFSbpeNT+Idy+yoAAEdAMRdLxqfvnkdAXFVgQYk3TEdAQFIMSbpeNYdy/CoAAEdAMRztkWhysEdAXFuFHrhR7EdAQE987ZFoc4dy/SoAAEdAMSKPXCj1w0dAXGGZmZmZmkdAQEzMzMzMzYdy/ioAAEdAMSgxJul41UdAXGe+dsi0OUdAQEo9cKPXCody/yoAAEdAMS2RaHKwIUdAXG3S8an750dAQEeuFHrhSIdyACsAAEdAMTMzMzMzM0dAXHPnbItDlkdAQET987ZFoodyASsAAEdAMTjU/fO2RkdAXHoMSbpeNUdAQEJul41P34dyAisAAEdAMT52yLQ5WEdAXIAgxJul40dAQD/fO2RaHYdyAysAAEdAMUQYk3S8akdAXIZFocrAg0dAQD0vGp++d4dyBCsAAEdAMUl41P3ztkdAXIxaHKwIMUdAQDqfvnbItIdyBSsAAEdAMU8an752yUdAXJJ++dsi0UdAQDgQYk3S8odyBisAAEdAMVS8an7520dAXJiTdLxqf0dAQDVgQYk3TIdyBysAAEdAMVpeNT987kdAXJ64UeuFH0dAQDLQ5WBBiYdyCCsAAEdAMWAAAAAAAEdAXKTMzMzMzUdAQDAgxJul44dyCSsAAEdAMWVgQYk3TEdAXKrhR64Ue0dAQC2RaHKwIYdyCisAAEdAMWsCDEm6XkdAXLEGJN0vG0dAQCsCDEm6XodyCysAAEdAMXCj1wo9cUdAXLcan752yUdAQChR64UeuIdyDCsAAEdAMXZFocrAg0dAXL0/fO2RaEdAQCXCj1wo9odyDSsAAEdAMXvnbItDlkdAXMNT987ZF0dAQCMzMzMzM4dyDisAAEdAMYFHrhR64UdAXMl41P3ztkdAQCCDEm6XjYdyDysAAEdAMYbpeNT99EdAXM+NT987ZEdAQB3ztkWhy4dyECsAAEdAMYyLQ5WBBkdAXNWyLQ5WBEdAQBtkWhysCIdyESsAAEdAMZItDlYEGUdAXNvGp++dskdAQBi0OVgQYodyEisAAEdAMZfO2RaHK0dAXOHbItDlYEdAQBYk3S8aoIdyEysAAEdAMZ0vGp++d0dAXOgAAAAAAEdAQBOVgQYk3YdyFCsAAEdAMaLQ5WBBiUdAXO4UeuFHrkdAQBDlYEGJN4dyFSsAAEdAMahysCDEnEdAXPQ5WBBiTkdAQA5WBBiTdYdyFisAAEdAMa4UeuFHrkdAXPpN0vGp/EdAQAul41P3z4dyFysAAEdAMbO2RaHKwUdAXQBysCDEnEdAQAkWhysCDIdyGCsAAEdAMblYEGJN00dAXQaHKwIMSkdAQAaHKwIMSodyGSsAAEdAMb64UeuFH0dAXQysCDEm6UdAQAPXCj1wpIdyGisAAEdAMcRaHKwIMUdAXRLAgxJumEdAQAFHrhR64YdyGysAAEdAMcn752yLREdAXRjlYEGJN0dAP/1wo9cKPYdyHCsAAEdAMc+dsi0OVkdAXR752yLQ5UdAP/gQYk3S8odyHSsAAEdAMdU/fO2RaEdAXSUOVgQYk0dAP/LxqfvnbYdyHisAAEdAMdqfvnbItEdAXSszMzMzM0dAP+3S8an754dyHysAAEdAMeBBiTdLx0dAXTFHrhR64UdAP+hysCDEnIdyICsAAEdAMeXjU/fO2UdAXTdsi0OVgUdAP+NT987ZF4dyISsAAEdAMeuFHrhR7EdAXT2BBiTdL0dAP941P3ztkYdyIisAAEdAMfEm6XjU/kdAXUOl41P3z0dAP9jU/fO2RodyIysAAEdAMfaHKwIMSkdAXUm6XjU/fUdAP9O2RaHKwYdyJCsAAEdAMfwo9cKPXEdAXU/fO2RaHUdAP85WBBiTdYdyJSsAAEdAMgHKwIMSb0dAXVXztkWhy0dAP8k3S8an8IdyJisAAEdAMgdsi0OVgUdAXVwIMSbpeUdAP8QYk3S8aodyJysAAEdAMg0OVgQYk0dAXWItDlYEGUdAP764UeuFH4dyKCsAAEdAMhJul41P30dAXWhBiTdLx0dAP7mZmZmZmodyKSsAAEdAMhgQYk3S8kdAXW5mZmZmZkdAP7R64UeuFIdyKisAAEdAMh2yLQ5WBEdAXXR64UeuFEdAP68an752yYdyKysAAEdAMiNT987ZF0dAXXqfvnbItEdAP6n752yLRIdyLCsAAEdAMij1wo9cKUdAXYC0OVgQYkdAP6TdLxqfvodyLSsAAEdAMi5WBBiTdUdAXYbZFocrAkdAP5987ZFoc4dyLisAAEdAMjP3ztkWh0dAXYztkWhysEdAP5peNT987odyLysAAEdAMjmZmZmZmkdAXZMCDEm6XkdAP5U/fO2RaIdyMCsAAEdAMj87ZFocrEdAXZkm6XjU/kdAP4/fO2RaHYdyMSsAAEdAMkTdLxqfvkdAXZ87ZFocrEdAP4rAgxJumIdyMisAAEdAMko9cKPXCkdAXaVgQYk3TEdAP4VgQYk3TIdyMysAAEdAMk/fO2RaHUdAXat0vGp++kdAP4BBiTdLx4dyNCsAAEdAMlWBBiTdL0dAXbGZmZmZmkdAP3si0OVgQodyNSsAAEdAMlsi0OVgQkdAXbeuFHrhSEdAP3XCj1wo9odyNisAAEdAMmDEm6XjVEdAXb3S8an750dAP3Cj1wo9cYdyNysAAEdAMmYk3S8aoEdAXcPnbItDlkdAP2uFHrhR7IdyOCsAAEdAMmvGp++dskdAXcn752yLREdAP2Yk3S8aoIdyOSsAAEdAMnFocrAgxUdAXdAgxJul40dAP2EGJN0vG4dyOisAAGUoR0Aydwo9cKPXR0Bd1jU/fO2RR0A/W+dsi0OWh3I7KwAAR0AyfKwIMSbpR0Bd3FocrAgxR0A/VocrAgxKh3I8KwAAR0AyggxJul41R0Bd4m6XjU/fR0A/UWhysCDFh3I9KwAAR0Ayh64UeuFIR0Bd6JN0vGp/R0A/TEm6XjU/h3I+KwAAR0AyjU/fO2RaR0Bd7qfvnbItR0A/Rul41P30h3I/KwAAR0AykvGp++dtR0Bd9MzMzMzNR0A/QcrAgxJvh3JAKwAAR0AymJN0vGp/R0Bd+uFHrhR7R0A/PGp++dsjh3JBKwAAR0AynjU/fO2RR0BeAQYk3S8bR0A/N0vGp++eh3JCKwAAR0Ayo5WBBiTdR0BeBxqfvnbJR0A/Mi0OVgQZh3JDKwAAR0AyqTdLxqfwR0BeDS8an753R0A/LMzMzMzNh3JEKwAAR0AyrtkWhysCR0BeE1P3ztkXR0A/J64UeuFIh3JFKwAAR0AytHrhR64UR0BeGWhysCDFR0A/Io9cKPXDh3JGKwAAR0AyuJN0vGp/R0BeHhR64UeuR0A/HnbItDlYh3JHKwAAR0AyuJN0vGp/R0BeIGJN0vGqR0A/G+dsi0OWh3JIKwAAR0AyuJN0vGp/R0BeIl41P3zuR0A/Gdsi0OVgh3JJKwAAR0AyuJN0vGp/R0BeIyLQ5WBCR0A/GRaHKwIMh3JKKwAAR0AyuJN0vGp/R0BeJLxqfvnbR0A/F0vGp++eh3JLKwAAR0AyuJN0vGp/R0BeJ2yLQ5WBR0A/FHrhR64Uh3JMKwAAR0AyuJN0vGp/R0BeKcrAgxJvR0A/EeuFHrhSh3JNKwAAR0AyuJN0vGp/R0BeLItDlYEGR0A/DtkWhysCh3JOKwAAR0AyuJN0vGp/R0BeLiTdLxqgR0A/DU/fO2Rah3JPKwAAR0AyuJN0vGp/R0BeMOVgQYk3R0A/Cj1wo9cKh3JQKwAAR0AyuJN0vGp/R0BeMan752yLR0A/CXjU/fO2h3JRKwAAR0AyuFHrhR64R0BeM0OVgQYlR0A/B64UeuFIh3JSKwAAR0AyuFHrhR64R0BeNgQYk3S8R0A/BJul41P4h3JTKwAAR0AyuFHrhR64R0BeNsi0OVgQR0A/A9cKPXCkh3JUKwAAR0AyuFHrhR64R0BeN41P3ztkR0A/AtDlYEGJh3JVKwAAR0AyuFHrhR64R0BeOGJN0vGqR0A/AgxJul41h3JWKwAAR0AyuBBiTdLyR0BeOyLQ5WBCR0A+/vnbItDlh3JXKwAAR0AyuBBiTdLyR0BeO+dsi0OWR0A+/jU/fO2Rh3JYKwAAR0AyuBBiTdLyR0BePLxqfvnbR0A+/XCj1wo9h3JZKwAAR0Ayt87ZFocrR0BeP3ztkWhzR0A++l41P3zuh3JaKwAAR0Ayt87ZFocrR0BeQEGJN0vHR0A++ZmZmZmah3JbKwAAR0Ayt87ZFocrR0BeQRaHKwIMR0A++JN0vGp/h3JcKwAAR0Ayt87ZFocrR0BeQdsi0OVgR0A+987ZFocrh3JdKwAAR0Ayt41P3ztkR0BeRJul41P4R0A+9Lxqfvnbh3JeKwAAR0Ayt41P3ztkR0BeRXCj1wo9R0A+8/fO2RaHh3JfKwAAR0Ayt41P3ztkR0BeRjU/fO2RR0A+8vGp++dth3JgKwAAR0Ayt0vGp++eR0BeSQYk3S8bR0A+7987ZFodh3JhKwAAR0Ayt0vGp++eR0BeScrAgxJvR0A+7xqfvnbJh3JiKwAAR0Aytwo9cKPXR0BeSo9cKPXDR0A+7hR64Ueuh3JjKwAAR0Aytwo9cKPXR0BeS2RaHKwIR0A+7U/fO2Rah3JkKwAAR0Aytsi0OVgQR0BeTiTdLxqgR0A+6j1wo9cKh3JlKwAAR0Aytsi0OVgQR0BeTvnbItDlR0A+6XjU/fO2h3JmKwAAR0Aytsi0OVgQR0BeT752yLQ5R0A+6HKwIMSch3JnKwAAR0AytocrAgxKR0BeUIMSbpeNR0A+564UeuFIh3JoKwAAR0AytkWhysCDR0BeU1P3ztkXR0A+5Jul41P4h3JpKwAAR0AytkWhysCDR0BeVCj1wo9cR0A+45WBBiTdh3JqKwAAR0AytkWhysCDR0BeVO2RaHKwR0A+4tDlYEGJh3JrKwAAR0AytcKPXCj2R0BeV752yLQ5R0A+3752yLQ5h3JsKwAAR0AytcKPXCj2R0BeWIMSbpeNR0A+3vnbItDlh3JtKwAAR0AytcKPXCj2R0BeWVgQYk3TR0A+3fO2RaHLh3JuKwAAR0AytYEGJN0vR0BeWhysCDEnR0A+3S8an753h3JvKwAAR0AytT987ZFoR0BeXO2RaHKwR0A+2hysCDEnh3JwKwAAR0AytT987ZFoR0BeXbItDlYER0A+2RaHKwIMh3JxKwAAR0AytP3ztkWiR0BeXocrAgxKR0A+2FHrhR64h3JyKwAAR0AytLxqfvnbR0BeYhysCDEnR0A+1DlYEGJOh3JzKwAAR0AytHrhR64UR0BeYvGp++dtR0A+03S8an76h3J0KwAAR0AytHrhR64UR0BeY7ZFocrBR0A+0m6XjU/fh3J1KwAAR0Ays/fO2RaHR0BeZocrAgxKR0A+z1wo9cKPh3J2KwAAR0Ays/fO2RaHR0BeZ0vGp++eR0A+zpeNT987h3J3KwAAR0Ays/fO2RaHR0BeaCDEm6XjR0A+zZFocrAhh3J4KwAAR0Ays7ZFocrBR0BeaOVgQYk3R0A+zMzMzMzNh3J5KwAAR0Ays7ZFocrBR0BeacrAgxJvR0A+y8an752yh3J6KwAAR0Ays3S8an76R0Bea7ZFocrBR0A+yXjU/fO2h3J7KwAAR0AyszMzMzMzR0BebItDlYEGR0A+yLQ5WBBih3J8KwAAR0AyszMzMzMzR0BebWBBiTdMR0A+x64UeuFIh3J9KwAAR0Aysm6XjU/fR0BecPXCj1wpR0A+w9cKPXCkh3J+KwAAR0Aysm6XjU/fR0BeccrAgxJvR0A+wtDlYEGJh3J/KwAAR0Aysi0OVgQZR0Beco9cKPXDR0A+wgxJul41h3KAKwAAR0Aysi0OVgQZR0Bec2RaHKwIR0A+wQYk3S8bh3KBKwAAR0AyseuFHrhSR0BedWBBiTdMR0A+vrhR64Ufh3KCKwAAR0Aysan752yLR0BedjU/fO2RR0A+vfO2RaHLh3KDKwAAR0Aysan752yLR0Bedwo9cKPXR0A+vO2RaHKwh3KEKwAAR0AysOVgQYk3R0Beep++dsi0R0A+uNT987ZGh3KFKwAAR0AysKPXCj1xR0BefEm6XjU/R0A+two9cKPXh3KGKwAAR0AysGJN0vGqR0BefR64UeuFR0A+tkWhysCDh3KHKwAAR0Ayr1wo9cKPR0Begl41P3zuR0A+sCDEm6Xjh3KIKwAAR0AyrxqfvnbJR0BehGp++dsjR0A+rhR64Ueuh3KJKwAAR0AyrtkWhysCR0BehfO2RaHLR0A+rEm6XjU/h3KKKwAAR0AyrpeNT987R0BehtkWhysCR0A+q0OVgQYlh3KLKwAAR0AyrlYEGJN1R0BeiIMSbpeNR0A+qXjU/fO2h3KMKwAAR0AyrhR64UeuR0Beian752yLR0A+p++dsi0Oh3KNKwAAR0AyrZFocrAhR0BejBiTdLxqR0A+pWBBiTdMh3KOKwAAR0AyrMzMzMzNR0BejvnbItDlR0A+ogxJul41h3KPKwAAR0AyrItDlYEGR0BekJN0vGp/R0A+oEGJN0vHh3KQKwAAR0AyrEm6XjU/R0Bekj1wo9cKR0A+nnbItDlYh3KRKwAAR0AyrAgxJul5R0Bek3S8an76R0A+nO2RaHKwh3KSKwAAR0Ayq0OVgQYlR0BeleNT987ZR0A+mhysCDEnh3KTKwAAR0AyqsCDEm6YR0BemLQ5WBBiR0A+lwo9cKPXh3KUKwAAR0AyqfvnbItER0BemzMzMzMzR0A+lDlYEGJOh3KVKwAAR0AyqfvnbItER0BenAgxJul5R0A+kzMzMzMzh3KWKwAAR0AyqXjU/fO2R0BengQYk3S8R0A+kOVgQYk3h3KXKwAAR0AyqPXCj1wpR0Ben64UeuFIR0A+jxqfvnbJh3KYKwAAR0AyqLQ5WBBiR0BeoVgQYk3TR0A+jQ5WBBiTh3KZKwAAR0AyqDEm6XjVR0Beoo9cKPXDR0A+i8an752yh3KaKwAAR0AyqDEm6XjVR0Beo2RaHKwIR0A+iwIMSbpeh3KbKwAAR0Ayp++dsi0OR0BepCj1wo9cR0A+ifvnbItEh3KcKwAAR0Ayp64UeuFIR0BepP3ztkWiR0A+iPXCj1wph3KdKwAAR0Aypul41P30R0Bep987ZFodR0A+haHKwIMSh3KeKwAAR0AypqfvnbItR0BeqLQ5WBBiR0A+hN0vGp++h3KfKwAAR0AypmZmZmZmR0BeqYk3S8aoR0A+g9cKPXCkh3KgKwAAR0AypeNT987ZR0BeqzMzMzMzR0A+ggxJul41h3KhKwAAR0AypaHKwIMSR0BerGp++dsjR0A+gIMSbpeNh3KiKwAAR0AypWBBiTdMR0BerT987ZFoR0A+f752yLQ5h3KjKwAAR0AypR64UeuFR0BergQYk3S8R0A+frhR64Ufh3KkKwAAR0AypR64UeuFR0BertkWhysCR0A+fbItDlYEh3KlKwAAR0AypBiTdLxqR0BesbpeNT99R0A+el41P3zuh3KmKwAAR0Ayo9cKPXCkR0Beso9cKPXDR0A+eZmZmZmah3KnKwAAR0Ayo5WBBiTdR0Bes2RaHKwIR0A+eJN0vGp/h3KoKwAAR0Ayo5WBBiTdR0BetDlYEGJOR0A+d41P3ztkh3KpKwAAR0Ayo1P3ztkXR0BetQ5WBBiTR0A+docrAgxKh3KqKwAAR0Ayoo9cKPXDR0BetxqfvnbJR0A+dDlYEGJOh3KrKwAAR0Ayok3S8an8R0Bet++dsi0OR0A+c3S8an76h3KsKwAAR0AyogxJul41R0BeuMSbpeNUR0A+cm6XjU/fh3KtKwAAR0AyoYk3S8aoR0Beum6XjU/fR0A+cGJN0vGqh3KuKwAAR0AyoUeuFHrhR0Beu6XjU/fPR0A+bxqfvnbJh3KvKwAAR0AyoQYk3S8bR0BevHrhR64UR0A+bhR64Ueuh3KwKwAAR0AyoMSbpeNUR0BevU/fO2RaR0A+bQ5WBBiTh3KxKwAAR0AyoIMSbpeNR0BeviTdLxqgR0A+bEm6XjU/h3KyKwAAR0AyoEGJN0vHR0BevvnbItDlR0A+a0OVgQYlh3KzKwAAR0Ayn752yLQ5R0BewQYk3S8bR0A+aPXCj1wph3K0KwAAR0AynztkWhysR0Bewdsi0OVgR0A+Z++dsi0Oh3K1KwAAR0AynvnbItDlR0BewrAgxJumR0A+Zul41P30h3K2KwAAR0AynnbItDlYR0BexFocrAgxR0A+ZR64UeuFh3K3KwAAR0AynfO2RaHLR0BexmZmZmZmR0A+Yo9cKPXDh3K4KwAAR0AynbItDlYER0BexztkWhysR0A+YcrAgxJvh3K5KwAAR0AynXCj1wo9R0BeyBBiTdLyR0A+YMSbpeNUh3K6KwAAR0AynGp++dsjR0BeyvGp++dtR0A+XXCj1wo9h3K7KwAAR0AynCj1wo9cR0Bey8an752yR0A+XGp++dsjh3K8KwAAR0Aym+dsi0OWR0BezJul41P4R0A+W2RaHKwIh3K9KwAAR0Aym6XjU/fPR0BezXCj1wo9R0A+Wl41P3zuh3K+KwAAR0Aym2RaHKwIR0BezlYEGJN1R0A+WZmZmZmah3K/KwAAR0AymuFHrhR7R0BezysCDEm6R0A+WJN0vGp/h3LAKwAAR0Aymp++dsi0R0Be0GJN0vGqR0A+Vwo9cKPXh3LBKwAAR0Ayml41P3zuR0Be0TdLxqfwR0A+VgQYk3S8h3LCKwAAR0AymhysCDEnR0Be0gxJul41R0A+VT987ZFoh3LDKwAAR0AymRaHKwIMR0Be1O2RaHKwR0A+Uan752yLh3LEKwAAR0AymNT987ZGR0Be1cKPXCj2R0A+UOVgQYk3h3LFKwAAR0AymFHrhR64R0Be1peNT987R0A+T987ZFodh3LGKwAAR0AymBBiTdLyR0Be13ztkWhzR0A+TtkWhysCh3LHKwAAR0Ayl87ZFocrR0Be2FHrhR64R0A+TdLxqfvnh3LIKwAAR0Aylwo9cKPXR0Be2l41P3zuR0A+S4UeuFHsh3LJKwAAR0Aylsi0OVgQR0Be2zMzMzMzR0A+Sn752yLRh3LKKwAAR0AylocrAgxKR0Be3AgxJul5R0A+SXjU/fO2h3LLKwAAR0AylcKPXCj2R0Be3cKPXCj2R0A+R2yLQ5WBh3LMKwAAR0AylYEGJN0vR0Be3peNT987R0A+RmZmZmZmh3LNKwAAR0AylP3ztkWiR0Be387ZFocrR0A+RR64UeuFh3LOKwAAR0AylLxqfvnbR0Be4KPXCj1xR0A+RBiTdLxqh3LPKwAAR0AylHrhR64UR0Be4XjU/fO2R0A+QxJul41Qh3LQKwAAR0AylDlYEGJOR0Be4l41P3zuR0A+QgxJul41h3LRKwAAR0Ayk3S8an76R0Be5Gp++dsjR0A+P752yLQ5h3LSKwAAR0AykvGp++dtR0Be5T987ZFoR0A+PrhR64Ufh3LTKwAAR0AykrAgxJumR0Be5hR64UeuR0A+PbItDlYEh3LUKwAAR0Ayki0OVgQZR0Be587ZFocrR0A+O+dsi0OWh3LVKwAAR0Aykan752yLR0Be6LQ5WBBiR0A+OuFHrhR7h3LWKwAAR0AykSbpeNT+R0Be6dsi0OVgR0A+OVgQYk3Th3LXKwAAR0AykOVgQYk3R0Be6rAgxJumR0A+OFHrhR64h3LYKwAAR0AykKPXCj1xR0Be64UeuFHsR0A+N0vGp++eh3LZKwAAR0AykGJN0vGqR0Be7Gp++dsjR0A+NkWhysCDh3LaKwAAR0Ayj52yLQ5WR0Be7iTdLxqgR0A+NHrhR64Uh3LbKwAAR0AyjxqfvnbJR0Be71wo9cKPR0A+MvGp++dth3LcKwAAR0AyjhR64UeuR0Be8dsi0OVgR0A+L987ZFodh3LdKwAAR0AyjU/fO2RaR0Be8/fO2RaHR0A+LZFocrAhh3LeKwAAR0AyjItDlYEGR0Be9aHKwIMSR0A+K4UeuFHsh3LfKwAAR0Ayi8an752yR0Be91wo9cKPR0A+KXjU/fO2h3LgKwAAR0Ayi4UeuFHsR0Be+EGJN0vHR0A+KHKwIMSch3LhKwAAR0AyiwIMSbpeR0Be+XjU/fO2R0A+Jul41P30h3LiKwAAR0Ayij1wo9cKR0Be+yLQ5WBCR0A+JR64UeuFh3LjKwAAR0AyifvnbItER0Be/AgxJul5R0A+JBiTdLxqh3LkKwAAR0AyiTdLxqfwR0Be/bItDlYER0A+IgxJul41h3LlKwAAR0AyiLQ5WBBiR0Be/vnbItDlR0A+IIMSbpeNh3LmKwAAR0Ayh64UeuFIR0BfAXjU/fO2R0A+HXCj1wo9h3LnKwAAR0AyhysCDEm6R0BfAl41P3zuR0A+HGp++dsjh3LoKwAAR0AyheNT987ZR0BfBT987ZFoR0A+GRaHKwIMh3LpKwAAR0AyhaHKwIMSR0BfBiTdLxqgR0A+GBBiTdLyh3LqKwAAR0AyhN0vGp++R0BfB987ZFodR0A+FgQYk3S8h3LrKwAAR0AyhFocrAgxR0BfCSbpeNT+R0A+FHrhR64Uh3LsKwAAR0AygxJul41QR0BfC6XjU/fPR0A+EWhysCDFh3LtKwAAR0Aygo9cKPXDR0BfDItDlYEGR0A+EGJN0vGqh3LuKwAAR0AygcrAgxJvR0BfDqfvnbItR0A+DhR64Ueuh3LvKwAAR0AygQYk3S8bR0BfEFHrhR64R0A+DAgxJul5h3LwKwAAR0AygEGJN0vHR0BfEgxJul41R0A+CfvnbItEh3LxKwAAR0Ayf3ztkWhzR0BfE1P3ztkXR0A+CHKwIMSch3LyKwAAR0AyfztkWhysR0BfFCj1wo9cR0A+B2yLQ5WBh3LzKwAAR0AyfnbItDlYR0BfFeNT987ZR0A+BWBBiTdMh3L0KwAAR0AyfO2RaHKwR0BfGNT987ZGR0A+AcrAgxJvh3L1KwAAR0AyfKwIMSbpR0BfGbpeNT99R0A+AMSbpeNUh3L2KwAAR0AyfCj1wo9cR0BfGo9cKPXDR0A9/752yLQ5h3L3KwAAR0Aye6XjU/fPR0BfG2RaHKwIR0A9/rhR64Ufh3L4KwAAR0Aye2RaHKwIR0BfHEm6XjU/R0A9/bItDlYEh3L5KwAAR0Ayel41P3zuR0BfHmZmZmZmR0A9+yLQ5WBCh3L6KwAAR0Ayedsi0OVgR0BfHztkWhysR0A9+hysCDEnh3L7KwAAR0AyeZmZmZmaR0BfICDEm6XjR0A9+RaHKwIMh3L8KwAAR0AyeJN0vGp/R0BfIdsi0OVgR0A99wo9cKPXh3L9KwAAR0AyeBBiTdLyR0BfIyLQ5WBCR0A99YEGJN0vh3L+KwAAR0Ayd41P3ztkR0BfI/fO2RaHR0A99HrhR64Uh3L/KwAAR0Ayd0vGp++eR0BfJMzMzMzNR0A983S8an76h3IALAAAR0Aydsi0OVgQR0BfJbItDlYER0A98m6XjU/fh3IBLAAAR0AydkWhysCDR0BfJpeNT987R0A98WhysCDFh3ICLAAAR0AydT987ZFoR0BfKLQ5WBBiR0A97tkWhysCh3IDLAAAR0AydLxqfvnbR0BfKYk3S8aoR0A97dLxqfvnh3IELAAAR0AydHrhR64UR0BfKl41P3zuR0A97MzMzMzNh3IFLAAAR0Ayc3S8an76R0BfLCj1wo9cR0A96sCDEm6Yh3IGLAAAR0AycvGp++dtR0BfLWBBiTdMR0A96TdLxqfwh3IHLAAAR0Aycm6XjU/fR0BfLkWhysCDR0A96DEm6XjVh3IILAAAR0AyceuFHrhSR0BfLxqfvnbJR0A95ysCDEm6h3IJLAAAR0Aycan752yLR0BfMAAAAAAAR0A95iTdLxqgh3IKLAAAR0AycSbpeNT+R0BfMNT987ZGR0A95R64UeuFh3ILLAAAR0AycCDEm6XjR0BfMwIMSbpeR0A94o9cKPXDh3IMLAAAR0Ayb52yLQ5WR0BfM9cKPXCkR0A94Yk3S8aoh3INLAAAR0AybxqfvnbJR0BfNKwIMSbpR0A94IMSbpeNh3IOLAAAR0AybpeNT987R0BfNZFocrAhR0A933ztkWhzh3IPLAAAR0AybhR64UeuR0BfNnbItDlYR0A93jU/fO2Rh3IQLAAAR0AybdLxqfvnR0BfN1wo9cKPR0A93S8an753h3IRLAAAR0AybQ5WBBiTR0BfOJN0vGp/R0A926XjU/fPh3ISLAAAR0AybItDlYEGR0BfOWhysCDFR0A92p++dsi0h3ITLAAAR0AybEm6XjU/R0BfOk3S8an8R0A92ZmZmZmah3IULAAAR0Aya0OVgQYlR0BfPAgxJul5R0A9141P3ztkh3IVLAAAR0Ayan752yLRR0BfPU/fO2RaR0A91gQYk3S8h3IWLAAAR0AyafvnbItER0BfPjU/fO2RR0A91P3ztkWih3IXLAAAR0AyabpeNT99R0BfPwo9cKPXR0A90/fO2RaHh3IYLAAAR0AyaTdLxqfwR0BfP++dsi0OR0A90vGp++dth3IZLAAAR0AyaLQ5WBBiR0BfQNT987ZGR0A90euFHrhSh3IaLAAAR0AyaDEm6XjVR0BfQbpeNT99R0A90KPXCj1xh3IbLAAAR0AyZ2yLQ5WBR0BfQvGp++dtR0A9zxqfvnbJh3IcLAAAR0AyZysCDEm6R0BfQ8an752yR0A9zhR64Ueuh3IdLAAAR0AyZqfvnbItR0BfRKwIMSbpR0A9zQ5WBBiTh3IeLAAAR0AyZaHKwIMSR0BfRmZmZmZmR0A9ywIMSbpeh3IfLAAAR0AyZR64UeuFR0BfR0vGp++eR0A9yfvnbItEh3IgLAAAR0AyZFocrAgxR0BfSJN0vGp/R0A9yHKwIMSch3IhLAAAR0AyY9cKPXCkR0BfSWhysCDFR0A9x2yLQ5WBh3IiLAAAR0AyY1P3ztkXR0BfSk3S8an8R0A9xmZmZmZmh3IjLAAAR0AyYtDlYEGJR0BfSzMzMzMzR0A9xR64UeuFh3IkLAAAR0AyYcrAgxJvR0BfTU/fO2RaR0A9wo9cKPXDh3IlLAAAR0AyYUeuFHrhR0BfTjU/fO2RR0A9wYk3S8aoh3ImLAAAR0AyYMSbpeNUR0BfTwo9cKPXR0A9wIMSbpeNh3InLAAAR0AyYEGJN0vHR0BfT++dsi0OR0A9v3ztkWhzh3IoLAAAR0AyX752yLQ5R0BfUNT987ZGR0A9vnbItDlYh3IpLAAAR0AyXztkWhysR0BfUbpeNT99R0A9vS8an753h3IqLAAAR0AyXnbItDlYR0BfUvGp++dtR0A9u6XjU/fPh3IrLAAAR0AyXfO2RaHLR0BfU9cKPXCkR0A9up++dsi0h3IsLAAAR0AyXXCj1wo9R0BfVLxqfvnbR0A9uZmZmZmah3ItLAAAR0AyW+dsi0OWR0BfV1wo9cKPR0A9tkWhysCDh3IuLAAAR0AyWyLQ5WBCR0BfWKPXCj1xR0A9tLxqfvnbh3IvLAAAR0AyWp++dsi0R0BfWXjU/fO2R0A9s7ZFocrBh3IwLAAAR0AyWhysCDEnR0BfWl41P3zuR0A9srAgxJumh3IxLAAAR0AyWZmZmZmaR0BfW0OVgQYlR0A9san752yLh3IyLAAAR0AyWRaHKwIMR0BfXCj1wo9cR0A9sKPXCj1xh3IzLAAAR0AyWFHrhR64R0BfXXCj1wo9R0A9rxqfvnbJh3I0LAAAR0AyV87ZFocrR0BfXkWhysCDR0A9rdLxqfvnh3I1LAAAR0AyV0vGp++eR0BfXysCDEm6R0A9rMzMzMzNh3I2LAAAR0AyVkWhysCDR0BfYPXCj1wpR0A9qsCDEm6Yh3I3LAAAR0AyVcKPXCj2R0BfYdsi0OVgR0A9qXjU/fO2h3I4LAAAR0AyVP3ztkWiR0BfYxJul41QR0A9p++dsi0Oh3I5LAAAR0AyVHrhR64UR0BfY/fO2RaHR0A9pul41P30h3I6LAAAR0AyU/fO2RaHR0BfZN0vGp++R0A9peNT987Zh3I7LAAAR0AyU3S8an76R0BfZcKPXCj2R0A9pN0vGp++h3I8LAAAR0AyUi0OVgQZR0BfZ987ZFodR0A9ogxJul41h3I9LAAAR0AyUan752yLR0BfaMSbpeNUR0A9oQYk3S8bh3I+LAAAR0AyUSbpeNT+R0Bfaan752yLR0A9oAAAAAAAh3I/LAAAR0AyT987ZFodR0Bfa3S8an76R0A9nfO2RaHLh3JALAAAR0AyT1wo9cKPR0BfbFocrAgxR0A9nKwIMSbph3JBLAAAR0AyTpeNT987R0BfbZFocrAhR0A9myLQ5WBCh3JCLAAAR0AyTZFocrAhR0Bfb1wo9cKPR0A9mRaHKwIMh3JDLAAAR0AyTQ5WBBiTR0BfcEGJN0vHR0A9l87ZFocrh3JELAAAR0AyS8an752yR0BfcgxJul41R0A9lcKPXCj2h3JFLAAAR0AySwIMSbpeR0Bfc0OVgQYlR0A9lDlYEGJOh3JGLAAAR0AySXjU/fO2R0BfdfO2RaHLR0A9kOVgQYk3h3JHLAAAR0AySLQ5WBBiR0BfdtkWhysCR0A9j987ZFodh3JILAAAR0AyRul41P30R0Bfedsi0OVgR0A9jAgxJul5h3JJLAAAR0AyRR64UeuFR0BffJul41P4R0A9iLQ5WBBih3JKLAAAR0AyRFocrAgxR0BffeNT987ZR0A9hysCDEm6h3JLLAAAR0AyQxJul41QR0Bff52yLQ5WR0A9hN0vGp++h3JMLAAAR0AyQo9cKPXDR0BfgIMSbpeNR0A9g9cKPXCkh3JNLAAAR0AyQIMSbpeNR0Bfg6XjU/fPR0A9gAAAAAAAh3JOLAAAR0AyPrhR64UfR0BfhkWhysCDR0A9fKwIMSbph3JPLAAAR0AyPjU/fO2RR0BfhysCDEm6R0A9e6XjU/fPh3JQLAAAR0AyO6XjU/fPR0BfiyLQ5WBCR0A9dsi0OVgQh3JRLAAAR0AyOl41P3zuR0BfjO2RaHKwR0A9dHrhR64Uh3JSLAAAR0AyOZmZmZmaR0BfjjU/fO2RR0A9cvGp++dth3JTLAAAR0AyN87ZFocrR0BfkOVgQYk3R0A9b52yLQ5Wh3JULAAAR0AyNwo9cKPXR0BfkcrAgxJvR0A9blYEGJN1h3JVLAAAR0AyNYEGJN0vR0Bfk/fO2RaHR0A9a8an752yh3JWLAAAR0AyNP3ztkWiR0BflN0vGp++R0A9an752yLRh3JXLAAAR0AyNHrhR64UR0BflcKPXCj2R0A9aXjU/fO2h3JYLAAAR0AyMzMzMzMzR0Bfl41P3ztkR0A9ZysCDEm6h3JZLAAAR0AyMi0OVgQZR0BfmOVgQYk3R0A9ZaHKwIMSh3JaLAAAR0AyMan752yLR0BfmcrAgxJvR0A9ZJul41P4h3JbLAAAR0AyMSbpeNT+R0Bfmp++dsi0R0A9Y1P3ztkXh3JcLAAAR0AyMGJN0vGqR0Bfm4UeuFHsR0A9Yk3S8an8h3JdLAAAR0AyL987ZFodR0BfnHrhR64UR0A9YQYk3S8bh3JeLAAAR0AyLlYEGJN1R0BfnqfvnbItR0A9XnbItDlYh3JfLAAAR0AyLZFocrAhR0Bfn41P3ztkR0A9XS8an753h3JgLAAAR0AyLQ5WBBiTR0BfoHKwIMScR0A9XCj1wo9ch3JhLAAAR0AyLEm6XjU/R0BfoVgQYk3TR0A9WyLQ5WBCh3JiLAAAR0AyK8an752yR0Bfoj1wo9cKR0A9Wdsi0OVgh3JjLAAAR0AyKwIMSbpeR0BfozMzMzMzR0A9WNT987ZGh3JkLAAAR0AyKj1wo9cKR0BfpHrhR64UR0A9Vwo9cKPXh3JlLAAAR0AyKXjU/fO2R0BfpU/fO2RaR0A9VgQYk3S8h3JmLAAAR0AyKPXCj1wpR0BfpjU/fO2RR0A9VP3ztkWih3JnLAAAR0AyJ64UeuFIR0BfqBBiTdLyR0A9UrAgxJumh3JoLAAAR0AyJqfvnbItR0BfqVgQYk3TR0A9UOVgQYk3h3JpLAAAR0AyJiTdLxqgR0Bfqj1wo9cKR0A9T987ZFodh3JqLAAAR0AyJWBBiTdMR0BfqyLQ5WBCR0A9TtkWhysCh3JrLAAAR0AyJN0vGp++R0BfrAgxJul5R0A9TZFocrAhh3JsLAAAR0AyJBiTdLxqR0BfrP3ztkWiR0A9TItDlYEGh3JtLAAAR0AyI1P3ztkXR0BfreNT987ZR0A9S0OVgQYlh3JuLAAAR0AyIo9cKPXDR0BfrysCDEm6R0A9SbpeNT99h3JvLAAAR0AyIcrAgxJvR0BfsBBiTdLyR0A9SLQ5WBBih3JwLAAAR0AyIUeuFHrhR0BfsPXCj1wpR0A9R2yLQ5WBh3JxLAAAR0AyH752yLQ5R0BfstDlYEGJR0A9RR64UeuFh3JyLAAAR0AyHztkWhysR0Bfs7ZFocrBR0A9RBiTdLxqh3JzLAAAR0AyHjU/fO2RR0BftP3ztkWiR0A9Qk3S8an8h3J0LAAAR0AyHXCj1wo9R0BfteNT987ZR0A9QUeuFHrhh3J1LAAAR0AyHO2RaHKwR0Bftsi0OVgQR0A9QEGJN0vHh3J2LAAAR0AyHCj1wo9cR0Bft752yLQ5R0A9PvnbItDlh3J3LAAAR0AyGp++dsi0R0BfueuFHrhSR0A9PCj1wo9ch3J4LAAAR0AyGdsi0OVgR0BfutDlYEGJR0A9OyLQ5WBCh3J5LAAAR0AyGVgQYk3TR0Bfu7ZFocrBR0A9Odsi0OVgh3J6LAAAR0AyGJN0vGp/R0BfvJul41P4R0A9ONT987ZGh3J7LAAAR0AyF87ZFocrR0BfvZFocrAhR0A9N41P3ztkh3J8LAAAR0AyFwo9cKPXR0BfvnbItDlYR0A9NocrAgxKh3J9LAAAR0AyFkWhysCDR0Bfv752yLQ5R0A9NLxqfvnbh3J+LAAAR0AyFYEGJN0vR0BfwLQ5WBBiR0A9M7ZFocrBh3J/LAAAR0AyFLxqfvnbR0BfwZmZmZmaR0A9MrAgxJumh3KALAAAR0AyE3S8an76R0Bfw2RaHKwIR0A9MCDEm6Xjh3KBLAAAR0AyErAgxJumR0BfxFocrAgxR0A9LxqfvnbJh3KCLAAAR0AyEm6XjU/fR0BfxLxqfvnbR0A9LpeNT987h3KDLAAAR0AyEan752yLR0BfxaHKwIMSR0A9LZFocrAhh3KELAAAR0AyESbpeNT+R0BfxocrAgxKR0A9LEm6XjU/h3KFLAAAR0AyEGJN0vGqR0Bfx2yLQ5WBR0A9K0OVgQYlh3KGLAAAR0AyD52yLQ5WR0BfyGJN0vGqR0A9KfvnbItEh3KHLAAAR0AyDtkWhysCR0BfyUeuFHrhR0A9KLQ5WBBih3KILAAAR0AyDhR64UeuR0Bfyo9cKPXDR0A9JysCDEm6h3KJLAAAR0AyDU/fO2RaR0Bfy4UeuFHsR0A9JiTdLxqgh3KKLAAAR0AyDItDlYEGR0BfzGp++dsjR0A9JN0vGp++h3KLLAAAR0AyCwIMSbpeR0BfzjU/fO2RR0A9Io9cKPXDh3KMLAAAR0AyCn752yLRR0BfzysCDEm6R0A9IUeuFHrhh3KNLAAAR0AyCXjU/fO2R0Bf0HKwIMScR0A9H752yLQ5h3KOLAAAR0AyCLQ5WBBiR0Bf0VgQYk3TR0A9HnbItDlYh3KPLAAAR0AyB++dsi0OR0Bf0j1wo9cKR0A9HXCj1wo9h3KQLAAAR0AyBysCDEm6R0Bf0zMzMzMzR0A9HCj1wo9ch3KRLAAAR0AyBaHKwIMSR0Bf1XCj1wo9R0A9GVgQYk3Th3KSLAAAR0AyBN0vGp++R0Bf1lYEGJN1R0A9GFHrhR64h3KTLAAAR0AyBBiTdLxqR0Bf1ztkWhysR0A9Fwo9cKPXh3KULAAAR0AyAo9cKPXDR0Bf2RaHKwIMR0A9FLxqfvnbh3KVLAAAR0AyAcrAgxJvR0Bf2gxJul41R0A9E3S8an76h3KWLAAAR0AyAMSbpeNUR0Bf21P3ztkXR0A9EeuFHrhSh3KXLAAAR0AyAAAAAAAAR0Bf3DlYEGJOR0A9EKPXCj1xh3KYLAAAR0Ax/3ztkWhzR0Bf3R64UeuFR0A9D52yLQ5Wh3KZLAAAR0Ax/S8an753R0Bf3++dsi0OR0A9DAgxJul5h3KaLAAAR0Ax/Cj1wo9cR0Bf4TdLxqfwR0A9Cn752yLRh3KbLAAAR0Ax+2RaHKwIR0Bf4i0OVgQZR0A9CTdLxqfwh3KcLAAAR0Ax+p++dsi0R0Bf4xJul41QR0A9CDEm6XjVh3KdLAAAR0Ax+dsi0OVgR0Bf5AgxJul5R0A9Bul41P30h3KeLAAAR0Ax+RaHKwIMR0Bf5O2RaHKwR0A9BaHKwIMSh3KfLAAAR0Ax+BBiTdLyR0Bf5kWhysCDR0A9BBiTdLxqh3KgLAAAR0Ax9ocrAgxKR0Bf6BBiTdLyR0A9AcrAgxJvh3KhLAAAR0Ax9P3ztkWiR0Bf6euFHrhSR0A8/ztkWhysh3KiLAAAR0Ax9DlYEGJOR0Bf6uFHrhR7R0A8/jU/fO2Rh3KjLAAAR0Ax8zMzMzMzR0Bf7Cj1wo9cR0A8/Gp++dsjh3KkLAAAR0Ax8an752yLR0Bf7gQYk3S8R0A8+hysCDEnh3KlLAAAR0Ax8OVgQYk3R0Bf7ul41P30R0A8+NT987ZGh3KmLAAAR0Ax7lYEGJN1R0Bf8hysCDEnR0A89P3ztkWih3KnLAAAR0Ax7ZFocrAhR0Bf8wIMSbpeR0A887ZFocrBh3KoLAAAR0Ax7AgxJul5R0Bf9N0vGp++R0A88WhysCDFh3KpLAAAR0Ax60OVgQYlR0Bf9dLxqfvnR0A88CDEm6Xjh3KqLAAAR0Ax6j1wo9cKR0Bf9xqfvnbJR0A87lYEGJN1h3KrLAAAR0Ax6LQ5WBBiR0Bf+PXCj1wpR0A87AgxJul5h3KsLAAAR0Ax564UeuFIR0Bf+euFHrhSR0A86sCDEm6Yh3KtLAAAR0Ax5iTdLxqgR0Bf+8an752yR0A86HKwIMSch3KuLAAAR0Ax4tDlYEGJR0Bf/987ZFodR0A84xJul41Qh3KvLAAAR0Ax4crAgxJvR0BgAGp++dsjR0A84gxJul41h3KwLAAAR0Ax3KwIMSbpR0BgA2RaHKwIR0A82l41P3zuh3KxLAAAR0Ax3KwIMSbpR0BgA2RaHKwIR0A82l41P3zuh3KyLAAAR0Ax2VgQYk3TR0BgBXCj1wo9R0A81P3ztkWih3KzLAAAR0Ax2FHrhR64R0BgBeuFHrhSR0A807ZFocrBh3K0LAAAR0Ax1ocrAgxKR0BgBxJul41QR0A80OVgQYk3h3K1LAAAR0Ax0/fO2RaHR0BgCHKwIMScR0A8zU/fO2Rah3K2LAAAR0Ax0zMzMzMzR0BgCO2RaHKwR0A8zAgxJul5h3K3LAAAR0Axz52yLQ5WR0BgCvnbItDlR0A8xqfvnbIth3K4LAAAR0AxzdLxqfvnR0BgC++dsi0OR0A8xFocrAgxh3K5LAAAR0AxzItDlYEGR0BgDJul41P4R0A8wo9cKPXDh3K6LAAAR0AxywIMSbpeR0BgDYk3S8aoR0A8wAAAAAAAh3K7LAAAR0Axyj1wo9cKR0BgDfvnbItER0A8vvnbItDlh3K8LAAAR0AxyTdLxqfwR0BgDnbItDlYR0A8vbItDlYEh3K9LAAAR0AxyHKwIMScR0BgDvGp++dtR0A8vGp++dsjh3K+LAAAR0AxxysCDEm6R0BgD52yLQ5WR0A8up++dsi0h3K/LAAAR0AxxmZmZmZmR0BgEBBiTdLyR0A8uZmZmZmah3LALAAAR0AxxaHKwIMSR0BgEItDlYEGR0A8uFHrhR64h3LBLAAAR0Axw9cKPXCkR0BgEXjU/fO2R0A8tcKPXCj2h3LCLAAAR0AxwxJul41QR0BgEfO2RaHLR0A8tHrhR64Uh3LDLAAAR0AxwcrAgxJvR0BgEp++dsi0R0A8svGp++dth3LELAAAR0AxwQYk3S8bR0BgExJul41QR0A8san752yLh3LFLAAAR0AxwEGJN0vHR0BgE41P3ztkR0A8sGJN0vGqh3LGLAAAR0AxvztkWhysR0BgFAgxJul5R0A8rxqfvnbJh3LHLAAAR0AxvS8an753R0BgFS8an753R0A8rEm6XjU/h3LILAAAR0Axu2RaHKwIR0BgFhysCDEnR0A8qbpeNT99h3LJLAAAR0Axup++dsi0R0BgFo9cKPXDR0A8qLQ5WBBih3LKLAAAR0AxuZmZmZmaR0BgFwo9cKPXR0A8p2yLQ5WBh3LLLAAAR0AxuNT987ZGR0BgF41P3ztkR0A8piTdLxqgh3LMLAAAR0Axt41P3ztkR0BgGDEm6XjVR0A8pFocrAgxh3LNLAAAR0Axtsi0OVgQR0BgGKwIMSbpR0A8oxJul41Qh3LOLAAAR0AxtcKPXCj2R0BgGR64UeuFR0A8ogxJul41h3LPLAAAR0AxtDlYEGJOR0BgGhR64UeuR0A8n3ztkWhzh3LQLAAAR0AxsvGp++dtR0BgGsCDEm6YR0A8nbItDlYEh3LRLAAAR0AxseuFHrhSR0BgGztkWhysR0A8nGp++dsjh3LSLAAAR0AxsSbpeNT+R0BgG7ZFocrBR0A8myLQ5WBCh3LTLAAAR0AxsCDEm6XjR0BgHCj1wo9cR0A8mhysCDEnh3LULAAAR0Axr1wo9cKPR0BgHKPXCj1xR0A8mNT987ZGh3LVLAAAR0AxrlYEGJN1R0BgHR64UeuFR0A8l41P3ztkh3LWLAAAR0AxrQ5WBBiTR0BgHcrAgxJvR0A8lcKPXCj2h3LXLAAAR0AxrEm6XjU/R0BgHkWhysCDR0A8lHrhR64Uh3LYLAAAR0Axq0OVgQYlR0BgHrhR64UfR0A8kzMzMzMzh3LZLAAAR0AxqXjU/fO2R0BgH64UeuFIR0A8kOVgQYk3h3LaLAAAR0AxqLQ5WBBiR0BgICj1wo9cR0A8j52yLQ5Wh3LbLAAAR0Axp2yLQ5WBR0BgINT987ZGR0A8jdLxqfvnh3LcLAAAR0AxpmZmZmZmR0BgIU/fO2RaR0A8jItDlYEGh3LdLAAAR0AxpaHKwIMSR0BgIcKPXCj2R0A8i0OVgQYlh3LeLAAAR0AxpJul41P4R0BgIkWhysCDR0A8ifvnbItEh3LfLAAAR0Axoo9cKPXDR0BgI2yLQ5WBR0A8hul41P30h3LgLAAAR0AxoYk3S8aoR0BgI987ZFodR0A8heNT987Zh3LhLAAAR0AxoMSbpeNUR0BgJFocrAgxR0A8hJul41P4h3LiLAAAR0Axn752yLQ5R0BgJNT987ZGR0A8g1P3ztkXh3LjLAAAR0AxnvnbItDlR0BgJU/fO2RaR0A8ggxJul41h3LkLAAAR0AxnfO2RaHLR0BgJcrAgxJvR0A8gMSbpeNUh3LlLAAAR0AxnKwIMSbpR0BgJnbItDlYR0A8fvnbItDlh3LmLAAAR0Axm6XjU/fPR0BgJvGp++dtR0A8fbItDlYEh3LnLAAAR0AxmuFHrhR7R0BgJ2RaHKwIR0A8fKwIMSbph3LoLAAAR0AxmNT987ZGR0BgKFocrAgxR0A8ehysCDEnh3LpLAAAR0AxmBBiTdLyR0BgKN0vGp++R0A8eNT987ZGh3LqLAAAR0Axlsi0OVgQR0BgKYEGJN0vR0A8dwo9cKPXh3LrLAAAR0AxlcKPXCj2R0BgKfvnbItER0A8dcKPXCj2h3LsLAAAR0AxlLxqfvnbR0BgKnbItDlYR0A8dHrhR64Uh3LtLAAAR0Axk/fO2RaHR0BgKvGp++dtR0A8czMzMzMzh3LuLAAAR0AxkvGp++dtR0BgK2yLQ5WBR0A8ceuFHrhSh3LvLAAAR0Axkan752yLR0BgLBiTdLxqR0A8cCDEm6Xjh3LwLAAAR0Axj987ZFodR0BgLQ5WBBiTR0A8bZFocrAhh3LxLAAAR0AxjdLxqfvnR0BgLgQYk3S8R0A8a0OVgQYlh3LyLAAAR0AxjMzMzMzNR0BgLn752yLRR0A8afvnbItEh3LzLAAAR0Axi4UeuFHsR0BgLysCDEm6R0A8aDEm6XjVh3L0LAAAR0AxisCDEm6YR0BgL6XjU/fPR0A8Zul41P30h3L1LAAAR0AxibpeNT99R0BgMCDEm6XjR0A8ZaHKwIMSh3L2LAAAR0AxiLQ5WBBiR0BgMJul41P4R0A8ZFocrAgxh3L3LAAAR0AxhWBBiTdMR0BgMj1wo9cKR0A8YAAAAAAAh3L4LAAAR0AxhJul41P4R0BgMrhR64UfR0A8XrhR64Ufh3L5LAAAR0Axgo9cKPXDR0BgM64UeuFIR0A8XCj1wo9ch3L6LAAAR0AxgYk3S8aoR0BgNCj1wo9cR0A8WuFHrhR7h3L7LAAAR0AxgEGJN0vHR0BgNNT987ZGR0A8WRaHKwIMh3L8LAAAR0AxfjU/fO2RR0BgNcrAgxJvR0A8VocrAgxKh3L9LAAAR0AxfXCj1wo9R0BgNkWhysCDR0A8VT987ZFoh3L+LAAAR0Axe2RaHKwIR0BgN0OVgQYlR0A8UrAgxJumh3L/LAAAR0AxehysCDEnR0BgN++dsi0OR0A8UOVgQYk3h3IALQAAR0AxeRaHKwIMR0BgOGp++dsjR0A8T52yLQ5Wh3IBLQAAR0Axdwo9cKPXR0BgOWBBiTdMR0A8TQ5WBBiTh3ICLQAAR0AxdgQYk3S8R0BgOdsi0OVgR0A8S8an752yh3IDLQAAR0AxdLxqfvnbR0BgOocrAgxKR0A8SfvnbItEh3IELQAAR0AxcrAgxJumR0BgO3ztkWhzR0A8R2yLQ5WBh3IFLQAAR0AxcKPXCj1xR0BgPHKwIMScR0A8RN0vGp++h3IGLQAAR0Axb52yLQ5WR0BgPPXCj1wpR0A8Q5WBBiTdh3IHLQAAR0AxaXjU/fO2R0BgP+dsi0OWR0A8O6XjU/fPh3IILQAAR0AxY1P3ztkXR0BgQtkWhysCR0A8M/fO2RaHh3IJLQAAR0AxXS8an753R0BgRcrAgxJvR0A8LAgxJul5h3IKLQAAR0AxWNT987ZGR0BgR+dsi0OWR0A8JmZmZmZmh3ILLQAAR0AxV87ZFocrR0BgSGp++dsjR0A8JR64UeuFh3IMLQAAR0AxVsi0OVgQR0BgSOVgQYk3R0A8I5WBBiTdh3INLQAAR0AxUSbpeNT+R0BgS4UeuFHsR0A8HKwIMSbph3IOLQAAR0AxTItDlYEGR0BgTan752yLR0A8Fwo9cKPXh3IPLQAAR0AxS4UeuFHsR0BgTi0OVgQZR0A8FYEGJN0vh3IQLQAAR0AxRul41P30R0BgUFHrhR64R0A8D987ZFodh3IRLQAAR0AxRaHKwIMSR0BgUMzMzMzNR0A8DpeNT987h3ISLQAAR0AxRJul41P4R0BgUU/fO2RaR0A8DU/fO2Rah3ITLQAAZWqYGwAASwB1SwJ9chQtAAAoSwBdchUtAAAoR0Awu+dsi0OWR0BgvbpeNT99R0A8HvnbItDlh3IWLQAAR0AsmyLQ5WBCR0Bg7euFHrhSR0A9t0vGp++eh3IXLQAAR0At987ZFocrR0BgxrhR64UfR0BBo1P3ztkXh3IYLQAAR0Au3Cj1wo9cR0BgqU/fO2RaR0BBF++dsi0Oh3IZLQAAR0Av4EGJN0vHR0BgiysCDEm6R0BAlgQYk3S8h3IaLQAAR0AwgYk3S8aoR0BgbFHrhR64R0BAHXCj1wo9h3IbLQAAR0AxIo9cKPXDR0BgTMSbpeNUR0A/XKwIMSbph3IcLQAAR0Ax0vGp++dtR0BgLHrhR64UR0A+kSbpeNT+h3IdLQAAR0AykvGp++dtR0BgC3S8an76R0A92FHrhR64h3IeLQAAR0AzYo9cKPXDR0Bf03S8an76R0A9Mm6XjU/fh3IfLQAAR0A0QcrAgxJvR0BfjpeNT987R0A8n3ztkWhzh3IgLQAAR0A1MKPXCj1xR0BfSEGJN0vHR0A8HztkWhysh3IhLQAAR0AyTtkWhysCR0Beo0OVgQYlR0A/TlYEGJN1h3IiLQAAR0Ax8i0OVgQZR0Be6fvnbItER0BAHbItDlYEh3IjLQAAR0AxqbpeNT99R0BfMXjU/fO2R0BAkk3S8an8h3IkLQAAR0AxdYEGJN0vR0Bfean752yLR0BBBP3ztkWih3IlLQAAR0AxVT987ZFoR0Bfwo9cKPXDR0BBdYEGJN0vh3ImLQAAR0AxSTdLxqfwR0BgBhysCDEnR0BB5BiTdLxqh3InLQAAR0AxUSbpeNT+R0BgK0vGp++eR0BCUMSbpeNUh3IoLQAAR0AxbZFocrAhR0BgUN0vGp++R0BCu0OVgQYlh3IpLQAAR0AxnfO2RaHLR0Bgdsi0OVgQR0BDI9cKPXCkh3IqLQAAR0Ax4k3S8an8R0BgnQ5WBBiTR0BDin752yLRh3IrLQAAR0Azz987ZFodR0BgNLxqfvnbR0BFSHKwIMSch3IsLQAAR0AzNYEGJN0vR0BgDl41P3zuR0BE0xJul41Qh3ItLQAAR0AyrhR64UeuR0Bf0LQ5WBBiR0BEX1wo9cKPh3IuLQAAR0AyOZmZmZmaR0BfhT987ZFoR0BD7U/fO2Rah3IvLQAAR0Ax187ZFocrR0BfOm6XjU/fR0BDfO2RaHKwh3IwLQAAR0AxiTdLxqfwR0Be8EGJN0vHR0BDDjU/fO2Rh3IxLQAAR0AxTU/fO2RaR0BeprhR64UfR0BCoUeuFHrhh3IyLQAAR0AxJFocrAgxR0BeXdLxqfvnR0BCNgQYk3S8h3IzLQAAR0AxDlYEGJN1R0BeFYEGJN0vR0BBzGp++dsjh3I0LQAAR0AxCwIMSbpeR0BdzeNT987ZR0BBZHrhR64Uh3I1LQAAR0AxGp++dsi0R0BdhtkWhysCR0BA/jU/fO2Rh3I2LQAAR0AxPS8an753R0BdQIMSbpeNR0BAmZmZmZmah3I3LQAAR0Au/vnbItDlR0BalCj1wo9cR0BBNul41P30h3I4LQAAR0AudkWhysCDR0Ba7iTdLxqgR0BBWHKwIMSch3I5LQAAR0AuHjU/fO2RR0BbRlYEGJN1R0BBgrAgxJumh3I6LQAAR0At9kWhysCDR0BbnJul41P4R0BBtYEGJN0vh3I7LQAAR0At/vnbItDlR0Bb8RaHKwIMR0BB8QYk3S8bh3I8LQAAR0AuOFHrhR64R0BcQ6XjU/fPR0BCNT987ZFoh3I9LQAAR0AuocrAgxJvR0BclGp++dsjR0BCgi0OVgQZh3I+LQAAR0AvO+dsi0OWR0Bc40OVgQYlR0BC187ZFocrh3I/LQAAR0AwA1P3ztkXR0BdMFHrhR64R0BDNgQYk3S8h3JALQAAR0Awf752yLQ5R0Bde8an752yR0BDmsCDEm6Yh3JBLQAAR0AxESbpeNT+R0BdxnbItDlYR0BEAAAAAAAAh3JCLQAAR0Axtsi0OVgQR0BeEFHrhR64R0BEZT987ZFoh3JDLQAAR0AycOVgQYk3R0BeWWhysCDFR0BEyn752yLRh3JELQAAR0AzP3ztkWhzR0BeobpeNT99R0BFL987ZFodh3JFLQAAR0A0Io9cKPXDR0Be6UeuFHrhR0BFlT987ZFoh3JGLQAAR0A1GhysCDEnR0BfMBBiTdLyR0BF+p++dsi0h3JHLQAAR0A2JeNT987ZR0BfdhR64UeuR0BGYAAAAAAAh3JILQAAR0A3RmZmZmZmR0Bfu1P3ztkXR0BGxYEGJN0vh3JJLQAAR0AsPGp++dsjR0Bch64UeuFIR0BFD987ZFodh3JKLQAAR0ArUGJN0vGqR0BcQTdLxqfwR0BEhcKPXCj2h3JLLQAAR0AqYk3S8an8R0Bb+DEm6XjVR0BEBP3ztkWih3JMLQAAR0ApcrAgxJumR0BbrJul41P4R0BDjZFocrAhh3JNLQAAR0AogQYk3S8bR0BbXocrAgxKR0BDH1wo9cKPh3JOLQAAR0AnjdLxqfvnR0BbDdLxqfvnR0BCul41P3zuh3JPLQAAR0AmmJN0vGp/R0Baup++dsi0R0BCXrhR64Ufh3JQLQAAR0AlocrAgxJvR0BaZN0vGp++R0BCDGp++dsjh3JRLQAAR0AkqPXCj1wpR0BaDJul41P4R0BBw1P3ztkXh3JSLQAAR0AjrpeNT987R0BZsbpeNT99R0BBg3S8an76h3JTLQAAR0Aisi0OVgQZR0BZVFocrAgxR0BBTO2RaHKwh3JULQAAR0AhtDlYEGJOR0BY9Gp++dsjR0BBH752yLQ5h3JVLQAAR0ATFocrAgxKR0BZfnbItDlYR0BBY7ZFocrBh3JWLQAAR0AVBiTdLxqgR0BZzXCj1wo9R0BB1aHKwIMSh3JXLQAAR0AXBiTdLxqgR0BaGGJN0vGqR0BCSZmZmZmah3JYLQAAR0AZFocrAgxKR0BaX1wo9cKPR0BCwAAAAAAAh3JZLQAAR0AbN0vGp++eR0Baok3S8an8R0BDOJN0vGp/h3JaLQAAR0AdaHKwIMScR0Ba4UeuFHrhR0BDs1P3ztkXh3JbLQAAR0AfqfvnbItER0BbHEm6XjU/R0BEMGJN0vGqh3JcLQAAR0Ag/fO2RaHLR0BbU0OVgQYlR0BEr752yLQ5h3JdLQAAR0AiLxqfvnbJR0BbhkWhysCDR0BFMUeuFHrhh3JeLQAAR0AjaHKwIMScR0BbtT987ZFoR0BFtR64UeuFh3JfLQAAR0Akqn752yLRR0Bb4DEm6XjVR0BGOyLQ5WBCh3JgLQAAR0Al9DlYEGJOR0BcBysCDEm6R0BGw3S8an76h3JhLQAAR0AXZWBBiTdMR0BbLmZmZmZmR0BHEYk3S8aoh3JiLQAAR0AU/O2RaHKwR0BbFkWhysCDR0BGdiTdLxqgh3JjLQAAR0AShBiTdLxqR0Ba+rAgxJumR0BF3987ZFodh3JkLQAAR0AP987ZFocrR0Ba27ZFocrBR0BFTrhR64Ufh3JlLQAAR0AKxqfvnbItR0BauVgQYk3TR0BEwrAgxJumh3JmLQAAR0AFdLxqfvnbR0Bak4UeuFHsR0BEO8an752yh3JnLQAAR0AABBiTdLxqR0Baak3S8an8R0BDufvnbItEh3JoLQAARz/05WBBiTdMR0BaPbItDlYER0BDPU/fO2Rah3JpLQAAR8AEZFocrAgxR0Baqan752yLR0BEdJul41P4h3JqLQAAR7/+gxJul41QR0BasLQ5WBBiR0BFCp++dsi0h3JrLQAAR7/z3ztkWhysR0BatWBBiTdMR0BFnrhR64Ufh3JsLQAAR7/hul41P3zuR0Bat752yLQ5R0BGMOVgQYk3h3JtLQAARz/EGJN0vGp/R0Bat752yLQ5R0BGwSbpeNT+h3JuLQAARz/sgxJul41QR0BatWBBiTdMR0BHT3ztkWhzh3JvLQAARz/6Yk3S8an8R0BasKPXCj1xR0BH28an752yh3JwLQAAR0ADcKPXCj1xR0BaqYk3S8aoR0BIZkWhysCDh3JxLQAAZWqYGwAASwB1dS4=')) surfInfo = {'category': (0, None, {}), 'probeRadius': (0, None, {}), 'pointSize': (0, None, {}), 'name': [], 'density': (0, None, {}), 'colorMode': (0, None, {}), 'useLighting': (0, None, {}), 'transparencyBlendMode': (0, None, {}), 'molecule': [], 'smoothLines': (0, None, {}), 'lineWidth': (0, None, {}), 'allComponents': (0, None, {}), 'twoSidedLighting': (0, None, {}), 'customVisibility': [], 'drawMode': (0, None, {}), 'display': (0, None, {}), 'customColors': []} vrmlInfo = {'subid': (0, None, {}), 'display': (0, None, {}), 'id': (0, None, {}), 'vrmlString': [], 'name': (0, None, {})} colors = {'Ru': ((0.141176, 0.560784, 0.560784), 1, u'default'), 'Re': ((0.14902, 0.490196, 0.670588), 1, u'default'), 'Rf': ((0.8, 0, 0.34902), 1, u'default'), 'Ra': ((0, 0.490196, 0), 1, u'default'), 'Rb': ((0.439216, 0.180392, 0.690196), 1, u'default'), 'Rn': ((0.258824, 0.509804, 0.588235), 1, u'default'), 'Rh': ((0.0392157, 0.490196, 0.54902), 1, u'default'), 'Be': ((0.760784, 1, 0), 1, u'default'), 'Ba': ((0, 0.788235, 0), 1, u'default'), 'Bh': ((0.878431, 0, 0.219608), 1, u'default'), 'Bi': ((0.619608, 0.309804, 0.709804), 1, u'default'), 'Bk': ((0.541176, 0.309804, 0.890196), 1, u'default'), 'Br': ((0.65098, 0.160784, 0.160784), 1, u'default'), 'H': ((1, 1, 1), 1, u'default'), 'P': ((1, 0.501961, 0), 1, u'default'), 'Os': ((0.14902, 0.4, 0.588235), 1, u'default'), 'Ge': ((0.4, 0.560784, 0.560784), 1, u'default'), 'Gd': ((0.270588, 1, 0.780392), 1, u'default'), 'Ga': ((0.760784, 0.560784, 0.560784), 1, u'default'), 'Pr': ((0.85098, 1, 0.780392), 1, u'default'), 'Pt': ((0.815686, 0.815686, 0.878431), 1, u'default'), 'Pu': ((0, 0.419608, 1), 1, u'default'), 'C': ((0.564706, 0.564706, 0.564706), 1, u'default'), 'Pb': ((0.341176, 0.34902, 0.380392), 1, u'default'), 'Pa': ((0, 0.631373, 1), 1, u'default'), 'Pd': ((0, 0.411765, 0.521569), 1, u'default'), 'Cd': ((1, 0.85098, 0.560784), 1, u'default'), 'Po': ((0.670588, 0.360784, 0), 1, u'default'), 'Pm': ((0.639216, 1, 0.780392), 1, u'default'), 'Hs': ((0.901961, 0, 0.180392), 1, u'default'), 'Ho': ((0, 1, 0.611765), 1, u'default'), 'Hf': ((0.301961, 0.760784, 1), 1, u'default'), 'Hg': ((0.721569, 0.721569, 0.815686), 1, u'default'), 'He': ((0.85098, 1, 1), 1, u'default'), 'Md': ((0.701961, 0.0509804, 0.65098), 1, u'default'), 'Mg': ((0.541176, 1, 0), 1, u'default'), 'K': ((0.560784, 0.25098, 0.831373), 1, u'default'), 'Mn': ((0.611765, 0.478431, 0.780392), 1, u'default'), 'O': ((1, 0.0509804, 0.0509804), 1, u'default'), 'Mt': ((0.921569, 0, 0.14902), 1, u'default'), 'S': ((1, 1, 0.188235), 1, u'default'), 'W': ((0.129412, 0.580392, 0.839216), 1, u'default'), 'sky blue': ((0.529412, 0.807843, 0.921569), 1, u'default'), 'Zn': ((0.490196, 0.501961, 0.690196), 1, u'default'), 'plum': ((0.866667, 0.627451, 0.866667), 1, u'default'), 'Eu': ((0.380392, 1, 0.780392), 1, u'default'), 'Zr': ((0.580392, 0.878431, 0.878431), 1, u'default'), 'Er': ((0, 0.901961, 0.458824), 1, u'default'), 'Ni': ((0.313725, 0.815686, 0.313725), 1, u'default'), 'No': ((0.741176, 0.0509804, 0.529412), 1, u'default'), 'Na': ((0.670588, 0.360784, 0.94902), 1, u'default'), 'Nb': ((0.45098, 0.760784, 0.788235), 1, u'default'), 'Nd': ((0.780392, 1, 0.780392), 1, u'default'), 'Ne': ((0.701961, 0.890196, 0.960784), 1, u'default'), 'Np': ((0, 0.501961, 1), 1, u'default'), 'Fr': ((0.258824, 0, 0.4), 1, u'default'), 'Fe': ((0.878431, 0.4, 0.2), 1, u'default'), 'Fm': ((0.701961, 0.121569, 0.729412), 1, u'default'), 'B': ((1, 0.709804, 0.709804), 1, u'default'), 'F': ((0.564706, 0.878431, 0.313725), 1, u'default'), 'Sr': ((0, 1, 0), 1, u'default'), 'N': ((0.188235, 0.313725, 0.972549), 1, u'default'), 'Kr': ((0.360784, 0.721569, 0.819608), 1, u'default'), 'Si': ((0.941176, 0.784314, 0.627451), 1, u'default'), 'Sn': ((0.4, 0.501961, 0.501961), 1, u'default'), 'Sm': ((0.560784, 1, 0.780392), 1, u'default'), 'V': ((0.65098, 0.65098, 0.670588), 1, u'default'), 'Sc': ((0.901961, 0.901961, 0.901961), 1, u'default'), 'Sb': ((0.619608, 0.388235, 0.709804), 1, u'default'), 'Sg': ((0.85098, 0, 0.270588), 1, u'default'), 'Se': ((1, 0.631373, 0), 1, u'default'), 'Co': ((0.941176, 0.564706, 0.627451), 1, u'default'), 'Cm': ((0.470588, 0.360784, 0.890196), 1, u'default'), 'Cl': ((0.121569, 0.941176, 0.121569), 1, u'default'), 'Ca': ((0.239216, 1, 0), 1, u'default'), 'Cf': ((0.631373, 0.211765, 0.831373), 1, u'default'), 'Ce': ((1, 1, 0.780392), 1, u'default'), 'Xe': ((0.258824, 0.619608, 0.690196), 1, u'default'), 'Tm': ((0, 0.831373, 0.321569), 1, u'default'), 'light green': ((0.564706, 0.933333, 0.564706), 1, u'default'), 'Cs': ((0.341176, 0.0901961, 0.560784), 1, u'default'), 'Cr': ((0.541176, 0.6, 0.780392), 1, u'default'), 'Cu': ((0.784314, 0.501961, 0.2), 1, u'default'), 'La': ((0.439216, 0.831373, 1), 1, u'default'), 'Li': ((0.8, 0.501961, 1), 1, u'default'), 'Tl': ((0.65098, 0.329412, 0.301961), 1, u'default'), 'Lu': ((0, 0.670588, 0.141176), 1, u'default'), 'Lr': ((0.780392, 0, 0.4), 1, u'default'), 'Th': ((0, 0.729412, 1), 1, u'default'), 'Ti': ((0.74902, 0.760784, 0.780392), 1, u'default'), 'tan': ((0.823529, 0.705882, 0.54902), 1, u'default'), 'Te': ((0.831373, 0.478431, 0), 1, u'default'), 'Tb': ((0.188235, 1, 0.780392), 1, u'default'), 'Tc': ((0.231373, 0.619608, 0.619608), 1, u'default'), 'Ta': ((0.301961, 0.65098, 1), 1, u'default'), 'Yb': ((0, 0.74902, 0.219608), 1, u'default'), 'Db': ((0.819608, 0, 0.309804), 1, u'default'), 'Dy': ((0.121569, 1, 0.780392), 1, u'default'), 'At': ((0.458824, 0.309804, 0.270588), 1, u'default'), 'I': ((0.580392, 0, 0.580392), 1, u'default'), 'U': ((0, 0.560784, 1), 1, u'default'), 'Y': ((0.580392, 1, 1), 1, u'default'), 'Ac': ((0.439216, 0.670588, 0.980392), 1, u'default'), 'Ag': ((0.752941, 0.752941, 0.752941), 1, u'default'), 'Ir': ((0.0901961, 0.329412, 0.529412), 1, u'default'), 'Am': ((0.329412, 0.360784, 0.94902), 1, u'default'), 'Al': ((0.74902, 0.65098, 0.65098), 1, u'default'), 'As': ((0.741176, 0.501961, 0.890196), 1, u'default'), 'Ar': ((0.501961, 0.819608, 0.890196), 1, u'default'), 'Au': ((1, 0.819608, 0.137255), 1, u'default'), 'Es': ((0.701961, 0.121569, 0.831373), 1, u'default'), 'In': ((0.65098, 0.458824, 0.45098), 1, u'default'), 'Mo': ((0.329412, 0.709804, 0.709804), 1, u'default')} materials = {u'default': ((0.85, 0.85, 0.85), 30)} pbInfo = {'category': [u'distance monitor'], 'bondInfo': [{'color': (0, None, {}), 'atoms': [], 'label': (0, None, {}), 'halfbond': (0, None, {}), 'labelColor': (0, None, {}), 'drawMode': (0, None, {}), 'display': (0, None, {})}], 'lineType': (1, 2, {}), 'color': (1, 6, {}), 'optional': {'fixedLabels': (True, False, (1, False, {}))}, 'display': (1, True, {}), 'showStubBonds': (1, False, {}), 'lineWidth': (1, 1, {}), 'stickScale': (1, 1, {}), 'id': [-2]} modelAssociations = {} colorInfo = (8, (u'green', (0, 1, 0, 1)), {(u'', (1, 1, 0, 1)): [3], (u'', (1, 0, 0, 1)): [4], (u'sky blue', (0.529412, 0.807843, 0.921569, 1)): [0], (u'plum', (0.866667, 0.627451, 0.866667, 1)): [1], (u'light green', (0.564706, 0.933333, 0.564706, 1)): [2], (u'', (0, 0.952381, 1, 1)): [5], (u'yellow', (1, 1, 0, 1)): [6]}) viewerInfo = {'cameraAttrs': {'center': (14.603, 89.716, 42.4525), 'fieldOfView': 21.047063176378, 'nearFar': (72.430564952483, 25.667731025121), 'ortho': False, 'eyeSeparation': 50.8, 'focal': 42.4525}, 'viewerAttrs': {'silhouetteColor': None, 'clipping': False, 'showSilhouette': False, 'showShadows': False, 'viewSize': 64.859737679711, 'labelsOnTop': True, 'depthCueRange': (0.5, 1), 'silhouetteWidth': 2, 'singleLayerTransparency': True, 'shadowTextureSize': 2048, 'backgroundImage': [None, 1, 2, 1, 0, 0], 'backgroundGradient': [('Chimera default', [(1, 1, 1, 1), (0, 0, 1, 1)], 1), 1, 0, 0], 'depthCue': True, 'highlight': 0, 'scaleFactor': 1.190519264642, 'angleDependentTransparency': True, 'backgroundMethod': 0}, 'viewerHL': 7, 'cameraMode': 'mono', 'detail': 1.5, 'viewerFog': None, 'viewerBG': None} replyobj.status("Initializing session restore...", blankAfter=0, secondary=True) from SimpleSession.versions.v62 import expandSummary init(dict(enumerate(expandSummary(colorInfo)))) replyobj.status("Restoring colors...", blankAfter=0, secondary=True) restoreColors(colors, materials) replyobj.status("Restoring molecules...", blankAfter=0, secondary=True) restoreMolecules(molInfo, resInfo, atomInfo, bondInfo, crdInfo) replyobj.status("Restoring surfaces...", blankAfter=0, secondary=True) restoreSurfaces(surfInfo) replyobj.status("Restoring VRML models...", blankAfter=0, secondary=True) restoreVRML(vrmlInfo) replyobj.status("Restoring pseudobond groups...", blankAfter=0, secondary=True) restorePseudoBondGroups(pbInfo) replyobj.status("Restoring model associations...", blankAfter=0, secondary=True) restoreModelAssociations(modelAssociations) replyobj.status("Restoring camera...", blankAfter=0, secondary=True) restoreViewer(viewerInfo) try: restoreCoreModels() except: reportRestoreError("Error restoring core models") replyobj.status("Restoring extension info...", blankAfter=0, secondary=True) try: import StructMeasure from StructMeasure.DistMonitor import restoreDistances registerAfterModelsCB(restoreDistances, 1) except: reportRestoreError("Error restoring distances in session") def restoreMidasBase(): formattedPositions = {} import Midas Midas.restoreMidasBase(formattedPositions) try: restoreMidasBase() except: reportRestoreError('Error restoring Midas base state') def restoreMidasText(): from Midas import midas_text midas_text.aliases = {} midas_text.userSurfCategories = {} try: restoreMidasText() except: reportRestoreError('Error restoring Midas text state') geomData = {'AxisManager': {}, 'CentroidManager': {}, 'PlaneManager': {}} try: from StructMeasure.Geometry import geomManager geomManager._restoreSession(geomData) except: reportRestoreError("Error restoring geometry objects in session") def restoreSession_RibbonStyleEditor(): import SimpleSession import RibbonStyleEditor userScalings = [] userXSections = [] userResidueClasses = [] residueData = [(3, 'Chimera default', 'rounded', u'unknown'), (4, 'Chimera default', 'rounded', u'unknown'), (5, 'Chimera default', 'rounded', u'unknown')] flags = RibbonStyleEditor.NucleicDefault1 SimpleSession.registerAfterModelsCB(RibbonStyleEditor.restoreState, (userScalings, userXSections, userResidueClasses, residueData, flags)) try: restoreSession_RibbonStyleEditor() except: reportRestoreError("Error restoring RibbonStyleEditor state") trPickle = 'gAJjQW5pbWF0ZS5UcmFuc2l0aW9ucwpUcmFuc2l0aW9ucwpxASmBcQJ9cQMoVQxjdXN0b21fc2NlbmVxBGNBbmltYXRlLlRyYW5zaXRpb24KVHJhbnNpdGlvbgpxBSmBcQZ9cQcoVQZmcmFtZXNxCEsBVQ1kaXNjcmV0ZUZyYW1lcQlLAVUKcHJvcGVydGllc3EKXXELVQNhbGxxDGFVBG5hbWVxDWgEVQRtb2RlcQ5VBmxpbmVhcnEPdWJVCGtleWZyYW1lcRBoBSmBcRF9cRIoaAhLFGgJSwFoCl1xE2gMYWgNaBBoDmgPdWJVBXNjZW5lcRRoBSmBcRV9cRYoaAhLAWgJSwFoCl1xF2gMYWgNaBRoDmgPdWJ1Yi4=' scPickle = 'gAJjQW5pbWF0ZS5TY2VuZXMKU2NlbmVzCnEBKYFxAn1xA1UHbWFwX2lkc3EEfXNiLg==' kfPickle = 'gAJjQW5pbWF0ZS5LZXlmcmFtZXMKS2V5ZnJhbWVzCnEBKYFxAn1xA1UHZW50cmllc3EEXXEFc2Iu' def restoreAnimation(): 'A method to unpickle and restore animation objects' # Scenes must be unpickled after restoring transitions, because each # scene links to a 'scene' transition. Likewise, keyframes must be # unpickled after restoring scenes, because each keyframe links to a scene. # The unpickle process is left to the restore* functions, it's # important that it doesn't happen prior to calling those functions. import SimpleSession from Animate.Session import restoreTransitions from Animate.Session import restoreScenes from Animate.Session import restoreKeyframes SimpleSession.registerAfterModelsCB(restoreTransitions, trPickle) SimpleSession.registerAfterModelsCB(restoreScenes, scPickle) SimpleSession.registerAfterModelsCB(restoreKeyframes, kfPickle) try: restoreAnimation() except: reportRestoreError('Error in Animate.Session') def restoreLightController(): import Lighting Lighting._setFromParams({'ratio': 1.25, 'brightness': 1.16, 'material': [30.0, (0.85, 0.85, 0.85), 1.0], 'back': [(0.35740674433659325, 0.6604015517481454, -0.6604015517481455), (1.0, 1.0, 1.0), 0.0], 'mode': 'two-point', 'key': [(-0.35740674433659325, 0.6604015517481454, 0.6604015517481455), (1.0, 1.0, 1.0), 1.0], 'contrast': 0.83, 'fill': [(0.25056280708573153, 0.25056280708573153, 0.9351131265310293), (1.0, 1.0, 1.0), 0.0]}) try: restoreLightController() except: reportRestoreError("Error restoring lighting parameters") def restoreRemainder(): from SimpleSession.versions.v62 import restoreWindowSize, \ restoreOpenStates, restoreSelections, restoreFontInfo, \ restoreOpenModelsAttrs, restoreModelClip, restoreSilhouettes curSelIds = [] savedSels = [] openModelsAttrs = { 'cofrMethod': 4 } windowSize = (1920, 1096) xformMap = {0: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True), 1: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True), 2: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True)} fontInfo = {'face': ('Sans Serif', 'Normal', 16)} clipPlaneInfo = {} silhouettes = {0: True, 1: True, 2: True, 11713: True} replyobj.status("Restoring window...", blankAfter=0, secondary=True) restoreWindowSize(windowSize) replyobj.status("Restoring open states...", blankAfter=0, secondary=True) restoreOpenStates(xformMap) replyobj.status("Restoring font info...", blankAfter=0, secondary=True) restoreFontInfo(fontInfo) replyobj.status("Restoring selections...", blankAfter=0, secondary=True) restoreSelections(curSelIds, savedSels) replyobj.status("Restoring openModel attributes...", blankAfter=0, secondary=True) restoreOpenModelsAttrs(openModelsAttrs) replyobj.status("Restoring model clipping...", blankAfter=0, secondary=True) restoreModelClip(clipPlaneInfo) replyobj.status("Restoring per-model silhouettes...", blankAfter=0, secondary=True) restoreSilhouettes(silhouettes) replyobj.status("Restoring remaining extension info...", blankAfter=0, secondary=True) try: restoreRemainder() except: reportRestoreError("Error restoring post-model state") from SimpleSession.versions.v62 import makeAfterModelsCBs makeAfterModelsCBs() from SimpleSession.versions.v62 import endRestore replyobj.status('Finishing restore...', blankAfter=0, secondary=True) endRestore({}) replyobj.status('', secondary=True) replyobj.status('Restore finished.')
499d54707352d375b0249f2363e74f7d7f707d4c
7317d386b760a6a3db9bfa071c6c5a7243a5d4c2
/USA_COVID19.py
fcf3d2fbd17e113f7ddda8062e57206b5b9d665a
[]
no_license
KKanda900/Covid_Insight
db0ec607e2bd3faa55b83e38e793ea198a7f61cd
dce7e8c55aee42623d6be84e45928b3d1a882e40
refs/heads/master
2023-02-22T06:01:07.082541
2021-01-19T03:39:47
2021-01-19T03:39:47
329,475,361
0
0
null
null
null
null
UTF-8
Python
false
false
5,225
py
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.linear_model import BayesianRidge from sklearn.linear_model import Ridge import datetime as dt import Data as d import os def bayesian_prediction(state, days): # takes in argument for the number of days in future that theres going to be a increase d.update() pathname = d.find_file(state) dataset = pd.read_csv(pathname) dataset['date'] = pd.to_datetime(dataset['date']) dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D') X = dataset[['date_f']] y = dataset[['cases']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0) regressor = BayesianRidge() regressor.fit(X_train, y_train) X_prediction_array = X[-days:] # sample in the next 5 days y_pred = regressor.predict(X_prediction_array) return 'Using the Bayesian Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred) def linear_prediction(state, days): d.update() pathname = d.find_file(state) dataset = pd.read_csv(pathname) dataset['date'] = pd.to_datetime(dataset['date']) dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D') X = dataset[['date_f']] y = dataset[['cases']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) X_prediction_array = X[-days:] # sample in the next 5 days y_pred = regressor.predict(X_prediction_array) return 'Using the Linear Regression Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred) def ridge_prediction(state, days): # takes in argument for the number of days in future that theres going to be a increase d.update() pathname = d.find_file(state) dataset = pd.read_csv(pathname) dataset['date'] = pd.to_datetime(dataset['date']) dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D') X = dataset[['date_f']] y = dataset[['cases']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0) regressor = Ridge() regressor.fit(X_train, y_train) X_prediction_array = X[-days:] # sample in the next 5 days y_pred = regressor.predict(X_prediction_array) return 'Using the Ridge Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred) def get_rate_of_change(state): # takes in argument for the number of days in future that theres going to be a increase d.update() pathname = d.find_file(state) dataset = pd.read_csv(pathname) dataset['date'] = pd.to_datetime(dataset['date']) dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D') X = dataset[['date_f']] y = dataset[['cases']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0) regressor = BayesianRidge() # most accurate model prediction regressor.fit(X_train, y_train) return 'In {} the COVID-19 cases are increasing by {} daily'.format(state, regressor.intercept_) def positive_case_update(state): # initials of the state you want d.update() pathname = d.find_file(state) dataset = pd.read_csv(pathname) latest_cases = dataset.iloc[-1] # dataset.iloc[] is a dataframe object that contains the columns of the csv in this case (date, cases) return '{} positive cases on {}'.format(latest_cases.cases, latest_cases.date) def train_test_graphs(): # linear regression model => should i make more? d.update() dataset = pd.read_csv('NJ_Data.csv') dataset['date'] = pd.to_datetime(dataset['date']) dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D') X = dataset[['date_f']] y = dataset[['cases']] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=1/3, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) ''' Lets split the data into a training set and test set which: 1. the training set will help train the data 2. the test set will run test to test accuracy 3. using the combination of the two will help make predictions based on the linear regression line created ''' # Training Set viz_train = plt viz_train.scatter(X_train, y_train, color='red') viz_train.plot(X_train, regressor.predict(X_train), color='blue') viz_train.title('Positive Cases (Training set)') viz_train.xlabel('Date') viz_train.ylabel('Case') viz_train.show() # Test Set viz_test = plt viz_test.scatter(X_test, y_test, color='red') viz_test.plot(X_train, regressor.predict(X_train), color='blue') viz_test.title('Positive Cases (Test set)') viz_test.xlabel('Date') viz_test.ylabel('Case') viz_test.show() if __name__ == "__main__": num = cases_prediction('HI', 5) print(num)
1199528ac1386f543e6f07285d31d2c26cdf9b81
a9c5a1e0ab8427f249b2068cf93edffc8bd5c4de
/8 pics/8picsPvalue.py
c537fed3b8fac0ab5cd9080e7c0e3cc6af731eca
[]
no_license
DianaAtlas/Anomaly-Detection
b79680a581c7922f9286827d30415e87d0100ce1
d3c3a899f195a1da899350ede79f1d5d00cbe6f6
refs/heads/main
2023-03-31T04:20:57.003247
2021-04-07T13:12:19
2021-04-07T13:12:19
354,071,310
0
0
null
null
null
null
UTF-8
Python
false
false
6,726
py
import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats import math import scipy.stats as st import pandas as pd # ============================================================ # =================creating DATA============================== # ============================================================ def manPvalue8(signal, baground, amp1): precision = 500 indexv = [] for i in range(precision): indexv.append(i) indexv = np.array(indexv) def gaussian_generator8(mu1, mu2, mu3, mu4, mu5, mu6, mu7, mu8, sigma, amp, bground): result = 0.5*(amp*((stats.norm.pdf(indexv, mu1, sigma)) + stats.norm.pdf(indexv+1, mu1, sigma) + (stats.norm.pdf(indexv, mu2, sigma)) + stats.norm.pdf(indexv+1, mu2, sigma) + (stats.norm.pdf(indexv, mu3, sigma)) + stats.norm.pdf(indexv+1, mu3, sigma) + (stats.norm.pdf(indexv, mu4, sigma)) + stats.norm.pdf(indexv+1, mu4, sigma) + (stats.norm.pdf(indexv, mu5, sigma)) + stats.norm.pdf(indexv+1, mu5, sigma) + (stats.norm.pdf(indexv, mu6, sigma)) + stats.norm.pdf(indexv+1, mu6, sigma) + (stats.norm.pdf(indexv, mu7, sigma)) + stats.norm.pdf(indexv+1, mu7, sigma) + (stats.norm.pdf(indexv, mu8, sigma)) + stats.norm.pdf(indexv+1, mu8, sigma))) + bground return result def fluctuation_manufacture(numofevents_1, bground): np.array(numofevents_1) data_si_bg = np.random.poisson(numofevents_1, np.array(numofevents_1).shape) data_bg = np.random.poisson(1 * bground, np.array(numofevents_1).shape) return data_si_bg, data_bg def sum_all_values_over_manual(array, number): value_returned = 0 for i in range(len(array)): if array[i] >= number: value_returned += 1 return value_returned # ============================================================ # =================creating TRAINING data===================== # ============================================================ baground = baground mu2 = 30 mu3 = 90 Mu1 = 150 mu4 = 210 mu5 = 270 mu6 = 330 mu7 = 390 mu8 = 450 amp = amp1 sigma_training = signal bground_training = np.zeros(precision) + baground numofpredictions = 60000 normalization = 2 * math.sqrt(baground) # ============================================================ # =================creating TEST data========================= # ============================================================ gaussian_test = gaussian_generator8(Mu1, mu2, mu3, mu4, mu5, mu6, mu7, mu8, sigma_training, amp, bground_training) from1 = int(Mu1 - 1.5*sigma_training) to = int(Mu1 + 1.5*sigma_training) from2 = int(mu2 - 1.5*sigma_training) to2 = int(mu2 + 1.5*sigma_training) from3 = int(mu3 - 1.5*sigma_training) to3 = int(mu3 + 1.5*sigma_training) from4 = int(mu4 - 1.5*sigma_training) to4 = int(mu4 + 1.5*sigma_training) from5 = int(mu5 - 1.5*sigma_training) to5 = int(mu5 + 1.5*sigma_training) from6 = int(mu6 - 1.5*sigma_training) to6 = int(mu6 + 1.5*sigma_training) from7 = int(mu7 - 1.5*sigma_training) to7 = int(mu7 + 1.5*sigma_training) from8 = int(mu8 - 1.5*sigma_training) to8 = int(mu8 + 1.5*sigma_training) gausaray = [] for _ in range(numofpredictions): gausaray.append(gaussian_test) aa, bb = fluctuation_manufacture(gausaray, baground) aanorm = (np.array(aa) - baground) / normalization bbnorm = (np.array(bb) - baground) / normalization # manual_01 = (np.trapz(aanorm[:, from1:to], axis=1) + np.trapz(aanorm[:, from2:to2], axis=1) # + np.trapz(aanorm[:, from3:to3], axis=1) + np.trapz(aanorm[:, from4:to4], axis=1) # + np.trapz(aanorm[:, from5:to5], axis=1) + np.trapz(aanorm[:, from6:to6], axis=1) # + np.trapz(aanorm[:, from7:to7], axis=1) + np.trapz(aanorm[:, from8:to8], axis=1)) # # manual_00 = (np.trapz(bbnorm[:, from1:to]) + np.trapz(bbnorm[:, from2:to2]) # + np.trapz(bbnorm[:, from3:to3]) + np.trapz(bbnorm[:, from4:to4]) # + np.trapz(bbnorm[:, from5:to5]) + np.trapz(bbnorm[:, from6:to6]) # + np.trapz(bbnorm[:, from7:to7]) + np.trapz(bbnorm[:, from8:to8])) manual_01 = np.trapz(aanorm[:, ]) manual_00 = np.trapz(bbnorm[:, ]) manualmedian_00 = np.median(manual_01) manualsum_00 = sum_all_values_over_manual(manual_00, manualmedian_00) print('\033[1m', 'manual calc', '\033[0m') print('#of values after median manual', manualsum_00) print('presantage', manualsum_00 / numofpredictions, '+-', math.sqrt(manualsum_00 / numofpredictions)) pvalue = manualsum_00 / numofpredictions # print('z-score', abs(st.norm.ppf(pvalue)), 'sigma') # return abs(st.norm.ppf(pvalue)) return pvalue # ======== p value VS background 3 different sigma=============== # bg1222 = [] # pvalue1 = [] # pvalue2 = [] # pvalue3 = [] # # bg = 20 # sigma1 = 3 # sigma2 = 5 # sigma3 = 10 # for i in range(100): # # bg = bg + 5 # bg1222.append(bg) # pvalue1.append(manPvalue8(3, bg, 30)) # pvalue2.append(manPvalue8(5, bg, 30)) # pvalue3.append(manPvalue8(10, bg, 30)) # # # bg1222 = np.array(bg1222) # pvalue1 = np.array(pvalue1) # pvalue2 = np.array(pvalue2) # pvalue3 = np.array(pvalue3) # # print(pvalue1) # print(bg1222) # # plt.title('Sigma VS Background') # plt.ylabel('Sigma') # plt.xlabel('Background') # plt.plot(bg1222, pvalue2, label='\u03C3=5') # plt.plot(bg1222, pvalue3, label='\u03C3=10') # plt.plot(bg1222, pvalue1, label='\u03C3=3') # plt.legend() # # plt.yscale('log') # plt.grid() # plt.show() # # df1 = pd.DataFrame([bg1222, pvalue1, pvalue2, pvalue3], # index=['bg', 'sigma3', 'sigma5', 'sigma10']) # df1.to_excel("8picmanbg.xlsx") # =======p value VS signals amp ================ bg1222 = [] pvalue1 = [] pvalue2 = [] pvalue3 = [] amp = 0 for i in range(70): bg1222.append(amp) pvalue2.append(manPvalue8(5, 200, amp)) amp = amp + 1 bg1222 = np.array(bg1222) pvalue1 = np.array(pvalue1) pvalue2 = np.array(pvalue2) pvalue3 = np.array(pvalue3) plt.title('P-Value VS Signal Magnitude') plt.ylabel('P-Value') plt.yscale('log') plt.xlabel('Signal Magnitude [Events/GeV]') plt.plot(bg1222, pvalue2, label='\u03C3=5') plt.legend() plt.grid() plt.show() df1 = pd.DataFrame([bg1222, pvalue1, pvalue2, pvalue3], index=['amp', 'sigma3', 'sigma5', 'sigma10']) df1.to_excel("8pic_Naivefull.xlsx")
22214c4cf02d9139ebf68302682f68b55190d51e
3a7adfdcf7a5048045c8e95a93369a1796cfd532
/conftest.py
377ddc7028f2964dd5cf5621a68dc74e7967e513
[ "BSD-3-Clause" ]
permissive
theGreenJedi/nixpy
e06025077d5d224a7d051532ebfbd48845339c58
40b5ecdaa9b074c7bf73137d1a94cb84fcbae5be
refs/heads/master
2022-02-01T15:14:22.133157
2019-06-03T09:10:57
2019-06-03T09:10:57
197,896,640
1
0
null
2019-07-20T07:37:03
2019-07-20T07:37:02
null
UTF-8
Python
false
false
808
py
import pytest import tempfile from nixio.test.xcompat.compile import maketests BINDIR = tempfile.mkdtemp(prefix="nixpy-tests-") def pytest_addoption(parser): parser.addoption("--nix-compat", action="store_true", default=False, help=("Run nix compatibility tests " "(requires NIX library)")) @pytest.fixture def bindir(request): return BINDIR def pytest_collection_modifyitems(config, items): if config.getoption("--nix-compat"): print("Compiling NIX compatibility tests") maketests(BINDIR) return skip_compat = pytest.mark.skip( reason="Use --nix-compat option to run compatibility tests" ) for item in items: if "compatibility" in item.keywords: item.add_marker(skip_compat)
f872923d34e36892434be17b6427b39bcc4f8677
fb746b30a02ca6226498acf9ac66c849d74bf684
/Data_Ingestor/streaming.py
296f220dcc5eeafd98922f38f4c4639bc4a319c0
[]
no_license
miaozeyu/hackerjobnow
0d47eca65e4d9b9e936ce6d570a0d8d42801c4a8
7e7cf1fe5ede8075dae4b7c82428443b92ddef10
refs/heads/master
2022-12-09T22:04:15.014630
2019-04-26T15:13:11
2019-04-26T15:13:11
180,033,869
0
0
null
2022-12-08T05:00:47
2019-04-07T22:59:38
Python
UTF-8
Python
false
false
6,803
py
#!/usr/bin/env python # coding: utf-8 # In[12]: from flask import jsonify, make_response import sys sys.path.append("../") # go to parent dir import tweepy from tweepy import OAuthHandler, Stream, StreamListener from Data_Ingestor.accessconfig import * import json import re from time import sleep from Data_Ingestor.twitter_rest_producer import tweetParser from random import random # 1. Create a class inheriting from StreamListener # 2. Using that class create a Stream object # 3. Connect to the Twitter API using the Stream. def retrieve_authentication(): auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) return auth def makeJobpost(tweet): # must match def matchTitle(txt): find = re.findall( r"(software|data|bi|business intelligence|sales|solutions)\s?(engineer|developer|scientist|architect|consultant)", txt, re.IGNORECASE) if find: find = [' '.join(tp) for tp in find] return find else: return None # preferable def matchSkills(txt): find = re.findall(r"python|sql|sqlalchmey|flask|pandas|etl|aws|backend|spark|streaming|jinja", txt, re.IGNORECASE) if find: return list(set(find)) else: return None # optional def matchLocation(txt): find = re.findall(r"(new)\s?(york)|(new)\s?(jersey)|ny|nj|nyc|(jersey)\s?(city)|hoboken|brooklyn", txt, re.IGNORECASE) if find: find = [' '.join(tp) for tp in find] return find else: return None # optional: even if it's not in text, it's okay def matchFulltime(txt): find = re.findall(r"full(\s|\-)?time", txt, re.IGNORECASE) if find: return find else: return None created_at = tweet['created_at'] text = tweet['text'] hashtags = ''.join(tweet['hashtags']) place = tweet['place'] coordinates = tweet['coordinates'] urls = tweet['urls'] find_title = matchTitle(text) find_title_htag = matchTitle(hashtags) find_skills = matchSkills(text) find_skills_htag = matchSkills(hashtags) find_city = matchLocation(text) find_city_htag = matchLocation(hashtags) find_type = matchFulltime(text) find_type_htag = matchFulltime(hashtags) jobpost = { "city": None, "company": None, "date": None, "job_title": None, "job_type": None, "links": None, "technologies": None, "text": None } jobpost['text'] = text jobpost['date'] = created_at if find_title or find_title_htag: jobpost["job_title"] = ' '.join(find_title or find_title_htag) if find_skills or find_skills_htag: jobpost["technologies"] = ','.join(find_skills or find_skills_htag) if find_city or find_city_htag or place or coordinates: jobpost["city"] = ','.join(find_city or find_city_htag) or place or coordinates if find_type or find_type_htag: jobpost["job_type"] = ','.join(find_type or find_type_htag) if urls: jobpost["links"] = ', '.join(urls) return jobpost else: return None # In[42]: class TweeterStreamListener(StreamListener): def __init__(self, socketio): print("TweeterStreamListener is intiated") super().__init__() self.socketio = socketio def on_connect(self): print("Successfully connected to the Twitter stream") def on_data(self, data): number = round(random() * 10, 3) print(number) print("I'm getting tweets") all_data = json.loads(data) tweet = tweetParser(all_data) print(tweet) try: jobpost = makeJobpost(tweet) if jobpost: # data = {"jobpost": jobpost} # response = make_response(jsonify(data), 200) # print(jsonify(data)) #return response #sendToFirehose(jobpost) self.socketio.emit('newtweet', {'tweet': number}, namespace='/test') except tweepy.TweepError as e: self.log.error("Error when sending tweet: %s" % e) def on_error(self, status_code): print(status_code) if status_code == 420: return False class UndefinedChildClass(Exception): pass class DataFlow(): def __init__(self): print("initiated dataflow") self.auth = retrieve_authentication() @staticmethod def factory(child): print("factory") if child == 'historical': return HistoricalFlow() if child == 'live': return LiveFlow() err = 'The provided child argument (' + child + ') is not supported' raise UndefinedChildClass(err) class HistoricalFlow(DataFlow): def __init__(self): print("initiated historical") super().__init__() self.api = tweepy.API(self.auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) def start(self, socketio): query = """-hour -senior -frontend -staff -principal -contract -lead "data engineer" OR "data scientist" OR "software engineer" OR "software developer" OR "backend engineer" OR "python developer" OR flask (hiring OR "looking for" OR opening OR job)""" maxTweets = 10000000 # Some arbitrary large number tweetsPerQry = 100 # this is the max the API permits tweetCount = 0 while tweetCount < maxTweets: try: print("I'm trying to get historical tweets") tweets = tweepy.Cursor(self.api.search, q=query, lang="en", geocode="40.730610,-73.935242,40.0mi").items(tweetsPerQry) print('newsearch') for tweet in tweets: tweet = tweetParser(tweet._json) socketio.emit('newtweet', {'tweet': tweet['text']}, namespace='/test') sleep(3) tweetCount += len(tweets) print('currentTotalTweets: {}'.format(tweetCount)) except tweepy.TweepError as err: print(err) def stop(self): print('stop') class LiveFlow(DataFlow): def __init__(self): print("initiated live") super().__init__() self.stream = None def start(self, socketio): listener = TweeterStreamListener(socketio) self.stream = tweepy.Stream(self.auth, listener) self.stream.filter(languages=["en"]) def stop(self): self.stream.disconnect()
c7ebc6f32e1358ed20f23dc25b3df7d6a66daf88
4aeaca4c58858125e844aad1cd988182201b5120
/crane/files/timeHistoryParser.py
be957dd91e6668776b4c071a376eeffa2a646763
[]
no_license
tkarna/crane
f18442a010af0909b7f5af9358cf9080ca1dd1e4
b8313d0373d8206685d81aadccc425e432c6a010
refs/heads/master
2020-05-21T23:39:07.707777
2017-11-16T15:58:14
2017-11-16T15:58:14
53,163,424
1
2
null
null
null
null
UTF-8
Python
false
false
2,357
py
""" Read SELFE time history (.th) files to a data container. Jesse Lopez - 2016-04-15 """ import datetime import argparse import numpy as np from crane.data import timeArray from crane.data import dataContainer class thParser(object): def __init__(self, filename, start_time): self.filename = filename self.start_date = start_time self.time = None self.data = None def readFile(self): """Read time history file.""" th = np.loadtxt(self.filename) self.time = timeArray.simulationToEpochTime(th[:, 0], self.start_date) self.data = th[:, 1] def genDataContainer(self, variable='variable', station='bvao', depth='0', bracket='A', save=False): """Generate data container.""" x = y = z = 0 coordSys = '' meta = {} meta['tag'] = 'timeHistory' meta['variable'] = variable meta['location'] = station meta['msldepth'] = depth meta['bracket'] = bracket dc = dataContainer.dataContainer.fromTimeSeries( self.time, self.data, fieldNames=[variable], x=x, y=y, z=z, timeFormat='epoch', coordSys=coordSys, metaData=meta) if save: fname = './'+station+'_'+variable+'_'+'0'+'_'+self.start_date.strftime('%Y-%m-%d')+'.nc' print fname dc.saveAsNetCDF(fname) return dc def parseCommandLine(): parser = argparse.ArgumentParser(description='Read time history to dataContainer.') parser.add_argument('filepath', type=str, help='Path to time history file.') parser.add_argument('starttime', type=str, help='Start time of simulation YYYY-MM-DD') parser.add_argument('variable', type=str, help='Variable name (e.g. - salinity, temp, turbidity)') parser.add_argument('station', type=str, help='Station name (e.g. - saturn01, tpoin)') parser.add_argument('depth', type=str, help='Station depth (e.g. - 0.1, 4.0)') parser.add_argument('bracket', type=str, help='Bracket (e.g. - F, A, R)') args = parser.parse_args() st = datetime.datetime.strptime(args.starttime, '%Y-%m-%d') th = thParser(args.filepath, st) th.readFile() th.genDataContainer(args.variable, args.station, args.depth, args.bracket, True) if __name__ == '__main__': parseCommandLine()
7abf55677fdd5bfc466f4fc561c0487c4a3fda26
8f213f498bbd5a12aacdb57bd2921f11a336eb62
/test_shuzi.py
65fec5d71985b15d39c6c296efc6d50ee1e17ba2
[]
no_license
xiaocaiji945/HogwartsHttp
dd81641a2e34044dd845d589b113c0d5af61cc0e
66294964f978da238a052e0184f78e4b15884212
refs/heads/master
2023-01-12T22:34:52.067503
2020-11-20T10:10:33
2020-11-20T10:10:33
296,506,180
0
0
null
null
null
null
UTF-8
Python
false
false
1,471
py
arr = [20459440, 20458987, 20458733, 20458586, 20458284, 20458202, 20457860, 20457611, 20456391, 20455888, 20455269, 20454830, 20454212, 20454184, 20454146, 20453922, 20452542, 20450716, 20447814, 20438557, 20424174, 20419436, 20409217, 20394189, 20378130, 20356098, 20352091, 20343586, 20338069, 20337799, 20333280, 20318024, 20275819, 20269554, 20262684, 20258563, 20219905, 20142943, 20133957, 20121781, 20085324, 19987253, 19969031, 19942288, 19844122, 19804714, 19789399, 19770693, 19700226, 19576007, 19483542, 19425997, 19042165, 19000064, 18909725, 18904145, 18669822, 18565022, 18389987, 18259359, 18208953, 17988689, 17884456, 17790401, 17621170, 17553892, 17473537, 17466361, 17365278, 17328129, 17185953, 17152062, 17049913, 17002217, 16957514, 16924540, 16911050, 16644262, 16390849, 16120793, 15767106, 15712028, 15687846, 15649054, 15620747, 15559984, 15540739, 15525037, 15274479, 15188702, 15088029, 15005839, 14904846, 14711057, 14570473, 14493796, 14440953, 14434577, 14377384, 14222650, 14216684, 14164919, 14111535, 14089191, 13819282, 13717991, 13467012, 13272225, 13155286, 2904628, 2708180, 2495704, 2060841, 2025011, 2023169, 2007456, 1851034, 1338200, 1325433, 898261, 440324,440324,898261] def test_same(): n = len(arr) for i in range(0, n): for j in range(i + 1, n): if (arr[i] == arr[j]): print(f'相同的数字:{arr[i]}')
815fb4585091df66257a95e1e8b6fb45ebc6863f
fb65c39e3dffdc058fef85a58a43a3796aad09f4
/myweb/useroperations/models.py
963621c2ef221158f0792dc2338e930d5d72cfe7
[]
no_license
goodjobig/personal_site
8e130577dfb072f55e1cf832151a3069c67a9640
e13c7de978f3a890d05fa8793621ec861c9bc883
refs/heads/master
2020-04-14T16:48:54.679691
2019-01-10T03:37:13
2019-01-10T03:37:13
163,962,182
0
0
null
null
null
null
UTF-8
Python
false
false
837
py
from django.db import models from django.contrib.auth.models import User from blog.models import Blog # Create your models here. class UserProfile(models.Model): user = models.OneToOneField(User,on_delete=models.CASCADE) nickname = models.CharField(max_length=30,verbose_name='昵称') photo = models.ImageField(upload_to='userImage/',default='userImage/default_photo.jpg') collect = models.ManyToManyField(Blog,blank=True) number = models.CharField(max_length=11) class Meta: verbose_name = '用户信息' def __str__(self): return self.nickname # @property # def get_username_or_nickname(self): # if self.userprofile.nickname: # return self.userprofile.nickname # return self.username # User.get_username_or_nickname = get_username_or_nickname
8f7c4d3034f61a9ab811f38f93dc56ef056af395
3fb45a8d4760a3de6d2a666210b396e371b83e46
/PictoDedection/helpers/detect Camera.py
cc459331952c03df243b07b344a854558639e384
[]
no_license
josh2joshi/pren2
d40ec0e577f8c6c99b1619ea9b9696d7672ecb28
6a6be66fd41705db5c65182c6089509775a811fe
refs/heads/main
2023-06-04T00:39:13.001923
2021-06-27T11:34:08
2021-06-27T11:34:08
380,166,034
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
import cv2 as cv for x in range(10): cap = cv.VideoCapture(x) if cap.isOpened(): print(x)
8272a86881ba02c1d2a978d26fea4bdf43312b44
58c6e5eb626c7993472c74d635bcda79260e1dcb
/article07.py
0fd3de0562d97f68ac6dd3fc71ed2dffd9bb546f
[]
no_license
littlecoon/EffectivePython
8de8a531f8fc9a7ecabc0de999cbe84bcbe13906
a33ea90daefbf0f06450f13f0b2e88c87dee89e0
refs/heads/main
2023-03-12T12:32:33.008959
2021-02-28T09:00:14
2021-02-28T09:00:14
342,180,584
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
a = [1,2,3,4,5,6,7,8,9,10] #squares = [x**2 for x in a] squares = map(lambda x:x**2,a) print(list(squares)) even_squares = [x**2 for x in a if x %2 == 0] print(even_squares) alt = map(lambda x:x**2,filter(lambda x:x%2 == 0,a)) assert even_squares == list(alt) chile_ranks = {'ghost':1, 'habanero':2, 'cayenne':3} rank_dict = {rank:name for name,rank in chile_ranks.items()} # 把字典反过来 chile_len_set = {len(name) for name in rank_dict.values()} print(rank_dict) print(chile_len_set)
d39dbb85f0ea8a843010ed2ff417e14430ec8b04
ae381913c23385f004b82161624097645ba8c4c8
/Huaxian_eemd/projects/plot_decompositions.py
8dbd45db6556f91e1ce3f8e7adbb1107c6385152
[ "MIT" ]
permissive
zjy8006/MonthlyRunoffForecastByAutoReg
aa37910fdc66276d0df9d30af6885209d4a4ebfc
661fcb5dcdfbbb2ec6861e1668a035b50e69f7c2
refs/heads/master
2020-12-12T05:25:48.768993
2020-08-20T07:21:12
2020-08-20T07:21:12
259,588,564
7
3
null
null
null
null
UTF-8
Python
false
false
271
py
import pandas as pd import os root_path = os.path.dirname(os.path.abspath('__file__')) import sys sys.path.append(root_path) from tools.plot_utils import plot_decompositions signal = pd.read_csv(root_path+'/Huaxian_eemd/data/EEMD_TRAIN.csv') plot_decompositions(signal)
356818e7291c93fdbeb0b4e58bad4cb1e752aa41
55cb166b9d060d89d13848447a08a2b875e49e73
/CapitalCities/CapitalCities/CapitalCities.py
3d5962a73f828dde4f8e5270bb859adf640e0621
[]
no_license
mandyfarrugia2001/FundamentalsOfScripting
e39153a5047167f51fdc56a95517d57a0c94eea7
adaff9b90affd5af2d7d68c11c883487f1b74574
refs/heads/master
2022-04-06T03:57:50.042737
2020-02-19T16:29:54
2020-02-19T16:29:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,364
py
#Importing built-in Python modules to be used in this program. import random #To generate random country and capital city from the text file. """ These values represent the final score, thus values change according to user's guesses. """ timesWon = 0 timesLost = 0 def returnListCountries(): """ Filling list with countries and capital cities delimited by a dash. The text file will then be populated with all elements in the list. """ countriesCities = ["Albania-Tirana", "Andorra-Andorra la Vella", "Armenia-Yerevan", "Austria-Vienna", "Azerbaijan-Baku", "Belarus-Minsk", "Belgium-Brussels", "Bosnia and Herzegovina-Sarajevo", "Bulgaria-Sofia", "Croatia-Zagreb", "Cyprus-Nicosia", "Czech Republic-Prague", "Denmark-Copenhagen", "Estonia-Tallinn", "Finland-Helsinki", "France-Paris", "Georgia-Tbilisi", "Germany-Berlin", "Greece-Athens", "Hungary-Budapest", "Iceland-Reykjavik", "Ireland-Dublin", "Italy-Rome", "Kazakhstan-Astana", "Kosovo-Pristina", "Latvia-Riga", "Liechtenstein-Vaduz", "Lithuania-Vilnius", "Luxembourg-Luxembourg city", "Macedonia (FYROM)-Skopje", "Malta-Valletta", "Moldova-Chisinau", "Monaco-Monaco city", "Montenegro-Podgorica", "Netherlands-Amsterdam", "Norway-Oslo", "Poland-Warsaw", "Portugal-Lisbon", "Romania-Bucharest", "Russia-Moscow", "San Marino-San Marino city", "Serbia-Belgrade", "Slovakia-Bratislava", "Spain-Madrid", "Sweden-Stockholm", "Switzerland-Bern", "Turkey-Ankara", "Ukraine-Kyiv", "United Kingdom-London"] #Return list to be used in populateTextFile function. return countriesCities """ Accepts only one parameter (read/write rights accordingly). In case of issues with loading the text files, the author has taken care of handling I/O related exceptions. """ def accessFile(mode): """ By default, the try block should be executed, it contains potentially erroneous code. In case an exception arises, run the except block to prevent the program from crashing. """ try: #By default, we will only be using the text file created in populateTextField function. textFile = open("countries.txt", mode) return textFile except IOError: #Print a so-to-speak user-friendly error message. print("Could not access file! Try again later.") #Display the amount of times the user lost and won after all questions are answered. def displayScore(): #f and {} embody string interpolation. print(f"Total times won: {timesWon}\nTotal times lost: {timesLost}\n") def generateQuiz(): """ The scores are now accessible within generateQuiz() as they have been declared as global. The randomly generated country and capital city has been retrieved from splitData(). The user will be asked to guess the capital city of the country generated at random. If the user's guess is correct, a message is displayed and they are awarded one point. (increment timesWon by 1) The author has taken input validation into consideration, thus numeric input and blank spaces are penalized as though they are incorrect answers. Display a message and increment timesLost by 1. Same applies for incorrect guesses. """ global timesWon global timesLost #Retrieve values from splitData function. country, capitalCity = splitData() #Prompt user to guess the capital city of the randomly generated country. guessCapitalCity = input(f"What is the capital city of {country}?: ") """ Input validation stage: 1) If the input matches the capital city stored in its variable, award user with one point and display a message. (increment timesWon by 1) 2) If If the input contains numbers or input is blank, increment timesLost by 1 and display a message. Same applies for incorrect guesses. """ if guessCapitalCity == capitalCity: print("Correct!\n\n") timesWon += 1 elif guessCapitalCity.isdigit() or guessCapitalCity == "": print("Numeric input and blank spaces are not allowed!", end='\n\n') timesLost += 1 else: print(f"Incorrect! The answer was {capitalCity}.", end='\n\n') timesLost += 1 def splitData(): """ Split the country and capital city. Store each of them in their own variable. Then return the two values for use in other functions. """ #Access the file created in populateTextFile. file = accessFile("r").read().splitlines() #Read and split each line. #Select a random line from the text file. randomData = random.choice(file) #Get the index representing the first occurrence of the dash. delimiter = randomData.find('-') #Get the country from the first character to the delimiter. country = randomData[0:delimiter] #Exclude the delimiter and get the remaining characters representing the capital city. capitalCity = randomData[(delimiter + 1):] #Return country and capitalCity for use in other functions. return(country, capitalCity) def populateTextFile(): #Prepare the text file for creation. file = accessFile("w") """ Return the list from returnListCountries function. Stored in a variable to avoid having to refer to the function all the time. """ countriesCities = returnListCountries() #Copy every element in the list to the text file. for index in range(len(countriesCities)): #Leave a blank line between one element and another. file.write(countriesCities[index] + '\n') #It is important to close I/O operations. file.close() #Call the populateTextFile within the main method. populateTextFile() #Create the text file. #Ask three questions. for index in range(3): generateQuiz() #Display the score after all the questions are answered. displayScore()
04cbe077af6340cc04df22cf2ff03d306579a859
d7f1618d4269cd424ae6240aefa4046be6f764c3
/text/precommit.py
0d2d9e2c55d403a61a22409af57b9a06bd686b56
[]
no_license
slin63/talon_community
15e12459324d01e2fdb8005cf359f409a4cca000
a9b56684605407435ea5d08867d416dc81e0c614
refs/heads/master
2021-07-11T19:26:06.074440
2020-08-04T16:44:40
2020-08-04T16:44:40
181,937,276
0
0
null
2019-04-17T17:19:32
2019-04-17T17:19:32
null
UTF-8
Python
false
false
2,455
py
from talon.voice import Key, press, Str, Context from talon.webview import Webview from talon import app, clip, cron, resource from ..utils import parse_word from datetime import datetime ctx = Context("precommit") pick_context = Context("precommitpick") date = datetime.now().strftime("%m/%d/%Y") CLIPBOARD_DEFAULT = ["prettier $(git diff --name-only --cached) --write"] CLIPBOARD = CLIPBOARD_DEFAULT.copy() webview = Webview() css_template = """ <style type="text/css"> body { padding: 0; margin: 0; font-size: 18px; min-width: 600px; } td { text-align: left; margin: 0; padding: 5px 10px; } h3 { padding: 5px 0px; } table { counter-reset: rowNumber; } table .count { counter-increment: rowNumber; } .count td:first-child::after { content: counter(rowNumber); min-with: 1em; margin-right: 0.5em; } .pick { font-weight: normal; font-style: italic; font-family: Arial, Helvetica, sans-serif; } .cancel { text-align: center; } </style> """ template = ( css_template + """ <div class="contents"> <h3>clipboard</h3> <table> {% for v in data %} <tr class="count"><td class="pick">🔊 </td><td>{{ v[0:50] }}</td></tr> {% endfor %} <tr><td colspan="2" class="pick cancel">🔊 cancel</td></tr> </table> </div> """ ) def close_directories(): webview.hide() pick_context.unload() def set_selection(m): with clip.capture() as sel: press("cmd-c") print("sel:", sel.get()) value = sel.get() if value not in CLIPBOARD: CLIPBOARD.append(value) clip.set(value) def make_selection(m): cron.after("0s", close_directories) words = m._words print("CLIPBOARD:", CLIPBOARD) d = None if len(words) == 1: d = int(parse_word(words[0])) else: d = int(parse_word(words[1])) w = CLIPBOARD[d - 1] Key("ctrl-c")(None) Str(w)(None) press("enter")() def get_selection(m): valid_indices = range(len(CLIPBOARD)) webview.render(template, data=CLIPBOARD) webview.show() keymap = {"(cancel | 0)": lambda x: close_directories()} keymap.update( {"[pick] %s" % (i + 1): lambda m: make_selection(m) for i in valid_indices} ) pick_context.keymap(keymap) pick_context.load() def clear_clipboard(_): global CLIPBOARD CLIPBOARD = CLIPBOARD_DEFAULT.copy() PREFIX = "(pre)" keymap = { f"{PREFIX} paste": get_selection, } ctx.keymap(keymap)
c77fd07345b4fa49db9df43bb116aed6515d6331
84b08a60e49e702e51b8c3bd0c558fbd957e11ae
/AlgoLatestPrints/MLPerceptron.py
b872b52cb75df4afcda480bb4c40b39e466c1c69
[]
no_license
akhalayly/GoldenBoy
787732656250bc52ad0076dca35f15abbd2f4f14
fb88b656525c3bc614a24b982acf4d1ae745aa8b
refs/heads/main
2023-02-06T02:17:53.197336
2020-12-28T20:07:14
2020-12-28T20:07:14
304,894,027
0
0
null
null
null
null
UTF-8
Python
false
false
4,439
py
from sklearn.neural_network import MLPClassifier from sklearn.model_selection import KFold import numpy as np import matplotlib.pyplot as plt import pandas as pd import Positions_Traits as posT import helperFunctions as hf if __name__ == '__main__': files = ["CAMS", "CBs", "CMs", "CDMs", "GKs", "LBs", "LMs", "RBs", "RMs", "Strikers"] for file in files: dataset = pd.read_csv("Success_" + file + ".csv") attrbs = [] attrbs_names = [] attrbs = attrbs + hf.roleTraitIndexesFinder(["Age"], dataset.columns, hf.year_2012) attrbs = attrbs + hf.roleTraitIndexesFinder(posT.General_Info, dataset.columns, "") attrbs = attrbs + hf.roleTraitIndexesFinder(posT.Positive_Traits, dataset.columns, hf.year_2012) for role in posT.positionToTraits[file]: attrbs = attrbs + hf.roleTraitIndexesFinder(role, dataset.columns, hf.year_2012) attrbs = list(set(attrbs)) attrbs_names = list(set(attrbs_names)) X = dataset.iloc[:, attrbs].values.astype(float) y = dataset.iloc[:, -1].values X = hf.normalizeAge(hf.normalizeMarketValue(hf.normalizeCA(X, 1), -1, file), 0) kf = KFold(n_splits=5) splits = [] results = 0 for train, test in kf.split(X): splits.append((train, test)) last_results = { 'relu': [], 'logistic': [], 'tanh': [], 'identity': [] } for activation in ['relu', 'logistic', 'tanh', 'identity']: results = [0] * 3 index = 0 for solver in ['lbfgs', 'adam', 'sgd']: for train_index, test_index in splits: X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf = MLPClassifier(activation=activation, solver=solver, max_iter=10000, alpha=1) clf.fit(X_train, y_train) pred_i = clf.predict(X_test) results[index] += ((1 - np.mean(pred_i != y_test)) / splits.__len__()) index += 1 last_results[activation] = results plt.figure(figsize=(12, 6)) plt.plot(['lbfgs', 'adam', 'sgd'], last_results['relu'], color='red', marker='o', markerfacecolor='red', markersize=10) plt.plot(['lbfgs', 'adam', 'sgd'], last_results['logistic'], color='blue', marker='o', markerfacecolor='blue', markersize=10) plt.plot(['lbfgs', 'adam', 'sgd'], last_results['tanh'], color='black', marker='o', markerfacecolor='black', markersize=10) plt.plot(['lbfgs', 'adam', 'sgd'], last_results['identity'], color='brown', marker='o', markerfacecolor='brown', markersize=10) plt.title('Accuracy Rate Multi-Layer Perceptron ' + file) plt.xlabel('Solver') plt.ylabel('Mean Accuracy') plt.legend([str(i) for i in last_results.keys()]) plt.savefig("Results/MultiLayerPerceptron/Graph_" + file + ".png") plt.show() fig, ax = plt.subplots() # hide axes fig.patch.set_visible(False) ax.axis('off') ax.axis('tight') for key in last_results.keys(): for idx in range(len(last_results[key])): last_results[key][idx] = float("{:.4f}".format(last_results[key][idx])) df = pd.DataFrame(last_results, columns=last_results.keys()) header = ax.table(cellText=[['']], colLabels=['Activation'], loc='bottom', bbox=[0, -0.025, 1.0, 0.15] ) table = ax.table(cellText=df.values, rowLabels=['lbfgs', 'adam', 'sgd'], colLabels=df.columns, colWidths=[0.3, 0.3, 0.3, 0.3, 0.3], loc='bottom', cellLoc='center', rowColours=['r', 'r', 'r'], colColours=['r', 'r', 'r', 'r'], bbox=[0, -0.35, 1.0, 0.4]) table.auto_set_font_size(False) table.scale(1, 1.3) table.set_fontsize(7) table.add_cell(0, -1, width=0.4, height=0.090, text="Solver") plt.figure(figsize=(20, 10)) fig.tight_layout() fig.savefig("Results/MultiLayerPerceptron/" + file + ".png") plt.show()
6a337ebcad790f7341970c4a3e71d1686f6229c6
333b405c1775475ddfa9ed3f4fa05c06b4c2e3f2
/cv2/cvbackup/mycv_0.510464.py
c1b80110eb76fc4413a5cbbc9977af4cd86de47d
[]
no_license
daxiongshu/network
b77d5bb73dd353537f7687e61855d982cbd34464
842a778d310410ae39e58925257a9e9960ef560a
refs/heads/master
2020-04-15T16:11:31.101188
2016-02-16T01:32:21
2016-02-16T01:32:21
51,798,576
0
0
null
null
null
null
UTF-8
Python
false
false
4,405
py
from xgb_classifier import xgb_classifier import pandas as pd import numpy as np import pickle from sklearn.ensemble import AdaBoostClassifier,ExtraTreesClassifier,RandomForestRegressor from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_auc_score, f1_score, log_loss, make_scorer from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC,SVC from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split,KFold,StratifiedKFold from math import log, exp, sqrt,factorial import numpy as np from scipy import sparse from sklearn.ensemble import RandomForestRegressor from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file def rmsle(y,yp): return (np.mean((yp-y)**2))**0.5 def multiclass_log_loss(y_true, y_pred, eps=1e-15): predictions = np.clip(y_pred, eps, 1 - eps) # normalize row sums to 1 predictions /= predictions.sum(axis=1)[:, np.newaxis] actual = np.zeros(y_pred.shape) n_samples = actual.shape[0] #y_true-=1 actual[np.arange(n_samples), y_true.astype(int)] = 1 vectsum = np.sum(actual * np.log(predictions)) loss = -1.0 / n_samples * vectsum return loss def new_clf_train_predict(X,y,Xt): clf=single_model() clf.fit(X,y) return clf.predict_proba(Xt) def cut(yp): yp[yp<0]=0 yp[yp>7]=7 yp=yp.astype(int) return yp def kfold_cv(X_train, y_train,k): kf = StratifiedKFold(y_train,n_folds=k) xx=[] zz=[] ypred=np.zeros((y_train.shape[0],3)) for train_index, test_index in kf: X_train_cv, X_test_cv = X_train[train_index,:],X_train[test_index,:] y_train_cv, y_test_cv = y_train[train_index],y_train[test_index] clf=xgb_classifier(eta=0.1,gamma=0,col=0.4,min_child_weight=1,depth=7,num_round=160) y_pred=clf.multi(X_train_cv,y_train_cv,X_test_cv,3,y_test=y_test_cv) xx.append(multiclass_log_loss(y_test_cv,y_pred)) print xx[-1]#,y_pred.shape,zz[-1] ypred[test_index]=y_pred print xx print 'average:',np.mean(xx),'std',np.std(xx) return ypred,np.mean(xx) mem = Memory("./mycache") @mem.cache def get_data(name): data = load_svmlight_file(name) return data[0], data[1] X, _ = get_data('../sparse/rebuild1.svm') X1, _ =get_data('../sparse/rebuild2.svm') X2, _ = get_data('../sparse/rebuild3.svm') X3, _ =get_data('../sparse/rebuild4.svm') X4, _ =get_data('../sparse/rebuild5.svm') X5, _ =get_data('../sparse/rebuild6.svm') xx=[] xx.append(np.sum(X.todense(),axis=1)) xx.append(np.sum(X1.todense(),axis=1)) xx.append(np.sum(X2.todense(),axis=1)) xx.append(np.sum(X3.todense(),axis=1)) xx.append(np.sum(X4.todense(),axis=1)) xx.append(np.std(X.todense(),axis=1)) xx.append(np.std(X1.todense(),axis=1)) xx.append(np.std(X2.todense(),axis=1)) xx.append(np.std(X3.todense(),axis=1)) xx.append(np.std(X4.todense(),axis=1)) #xx.append(np.sum(sparse.hstack([X,X1,X2,X3,X4],format='csr').todense(),axis=1)) #xx.append(np.max(X.todense(),axis=1)-np.min(X.todense(),axis=1)) #xx.append(np.max(X1.todense(),axis=1)-np.min(X1.todense(),axis=1)) #xx.append(np.max(X2.todense(),axis=1)-np.min(X2.todense(),axis=1)) #xx.append(np.max(X3.todense(),axis=1)-np.min(X3.todense(),axis=1)) #xx.append(np.max(X4.todense(),axis=1)-np.min(X4.todense(),axis=1)) xx=np.hstack(xx) X=sparse.hstack([X,X1,X2,X3,X4,xx,pickle.load(open('../explore/X2.p'))],format='csr').todense() train=pd.read_csv('../explore/train1.csv') idname='id' label='fault_severity' idx=train[idname].as_matrix() y=np.array(train[label]) import pickle X=np.hstack([X,train.drop([label,idname],axis=1).as_matrix()]) #X=np.hstack([X,train[['location','volume']].as_matrix()]) print X.shape, y.shape from scipy.stats import pearsonr xx=[] for i in X.T: score=pearsonr(np.array(i.T).ravel(),y)[0] if np.abs(score)>1e-2: xx.append(np.array(i.T).ravel()) X=np.array(xx).T print X.shape, y.shape yp,score=kfold_cv(X,y,4) print X.shape, y.shape print yp.shape s=pd.DataFrame({idname:idx,'predict_0':yp[:,0],'predict_1':yp[:,1],'predict_2':yp[:,2],'real':y}) s.to_csv('va.csv',index=False) import subprocess cmd='cp mycv.py cvbackup/mycv_%f.py'%(score) subprocess.call(cmd,shell=True) cmd='cp va.csv cvbackup/va_%f.csv'%(score) subprocess.call(cmd,shell=True)
d711e028e5332f253d0de88ffe70a4eef5991499
bbdb856e9a0b96600668ac1f86d2ef009af74a41
/app/lib/HEM/centroid_peaks.py
3d91aaab0dd1b5d6cfea4d57b2c5a32483e1d776
[]
no_license
jarosenb/UV_POSIT
ce68646c377f6565ab25e606ebf70b675a8baec7
7230cc47cad9fc476af11af3ded6db59685aada2
refs/heads/master
2020-06-27T10:49:44.042408
2018-02-12T23:58:43
2018-02-12T23:58:43
97,050,603
0
0
null
null
null
null
UTF-8
Python
false
false
3,562
py
import math def centroid_peaks(mz_array, intensity_array): """ Perform a Gauss fit to centroid the peaks for the property :py:attr:`centroidedPeaks` """ tmp = [] print intensity_array for pos, i in enumerate(intensity_array[:-1]): if pos <= 1: continue if 0 < intensity_array[pos - 1] < i > intensity_array[pos + 1] > 0: # local maximum ... # if 827 <= mz_array[pos] <= 828: # print("::",i,"@",mz_array[pos]) # print("Found maximum",i,"@",mz_array[pos],intensity_array[pos-1] ,'<' ,i ,"> ",intensity_array[pos+1] ) x1 = mz_array[pos - 1] y1 = intensity_array[pos - 1] x2 = mz_array[pos] y2 = intensity_array[pos] x3 = mz_array[pos + 1] y3 = intensity_array[pos + 1] if x2 - x1 > (x3 - x2) * 10 or (x2 - x1) * 10 < x3 - x2: # no gauss fit if distance between mz values is too large continue if y3 == y1: # i.e. a reprofiledSpec # we start a bit closer to the mid point. before = 3 after = 4 # while (not 0 < y1 < y2 > y3 > 0) and y1 == y3 and after < 10: #we dont want to go too far # This used to be in here and I cannpt make sense out of it # while y1 == y3 and after < 10: # we dont want to go too far if pos - before < 0: lower_pos = 0 else: lower_pos = pos - before if pos + after >= len(mz_array): upper_pos = len(mz_array) - 1 else: upper_pos = pos + after x1 = mz_array[lower_pos] y1 = intensity_array[lower_pos] x3 = mz_array[upper_pos] y3 = intensity_array[upper_pos] if before % 2 == 0: after += 1 else: before += 1 # if not (0 < y1 < y2 > y3 > 0):# or y1 == y3: # # Then we wouldnt be in this loop # #If we dont check this, there is a chance to apply gauss fit to a section # #where there is no peak. # continue try: doubleLog = math.log(y2 / y1) / math.log(y3 / y1) mue = (doubleLog * (x1 * x1 - x3 * x3) - x1 * x1 + x2 * x2) / ( 2 * (x2 - x1) - 2 * doubleLog * (x3 - x1)) cSquarred = (x2 * x2 - x1 * x1 - 2 * x2 * mue + 2 * x1 * mue) / (2 * math.log(y1 / y2)) A = y1 * math.exp((x1 - mue) * (x1 - mue) / (2 * cSquarred)) # if A > 1e20: # print(mue, A, doubleLog, cSquarred) # print(x1, "\t", y1) # print(x2, "\t", y2) # print(x3, "\t", y3) # print() except: # doubleLog = math.log(y2 / y1) / math.log(y3 / y1) # mue = (doubleLog * ( x1 * x1 - x3 * x3 ) - x1 * x1 + x2 * x2 ) / (2 * (x2 - x1) - 2 * doubleLog * (x3 - x1)) # cSquarred = ( x2*x2 - x1*x1 - 2*x2*mue + 2*x1*mue )/ ( 2* math.log(y1/y2 )) # A = y1 * math.exp( (x1 - mue) * (x1 - mue) / ( 2 * cSquarred ) ) continue tmp.append((mue, A)) # for mue, A in tmp: # print(mue, "\t", A) return tmp
47c779bd08214c78b338335b09535b2076a65080
32e910718743cde564c5bdb042b5a3dfbf198fa8
/limbic/integrations/imdb.py
4dca4aa77c6838ffe9cc024dac762042ade2611a
[ "MIT" ]
permissive
maesfahani/limbic
3735d9c89ce6c63c9179501e495972311d7337b1
c7436d5243ed5e2819b7a4acee046f396e75a234
refs/heads/master
2023-01-20T08:14:44.751136
2020-11-21T16:17:42
2020-11-21T16:17:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,269
py
import json import os import time from collections import defaultdict from typing import Any, Dict, List, Optional import requests from bs4 import BeautifulSoup from tqdm import tqdm _OMDB_API_KEY = os.environ['OMDB_API_KEY'] _OMDB_API_BASE_URL = 'http://www.omdbapi.com/' _OMDB_API_WAIT_TIME = 0.3 _IMDB_BASE_URL = 'https://www.imdb.com/title/' def get_imdb_data(show_imdb_id: str, num_seasons: int, output_path: Optional[str]) -> Dict[int, List[Any]]: """ Given show_imdb_id and the number of seasons, get all metadata from IMDB, including ratings, viewers, etc.. """ seasons_episodes = _get_episodes_imdb_ids(show_imdb_id, num_seasons) seasons_data = _get_imdb_data(seasons_episodes) if output_path: with open(output_path, 'w') as imdb_file: json.dump(seasons_data, imdb_file) return seasons_data def _get_episodes_imdb_ids(show_imdb_id: str, seasons: int) -> Dict[int, List[str]]: """ Given a show imdb_id, gets all the IDs for the episodes of the show """ base_url = f'{_IMDB_BASE_URL}{show_imdb_id}/' seasons_episodes: Dict[int, List[str]] = defaultdict(list) for i in tqdm(range(1, seasons + 1)): season_url = base_url + f'episodes?season={i}' soup = BeautifulSoup(requests.get(season_url).content, 'lxml') for element in soup.find_all('a'): if 'ttep' in element['href'] and 'ttep_ep_tt' not in element['href'] and element.get( 'itemprop') == 'url': seasons_episodes[i].append(element['href'].split('/')[2]) return seasons_episodes def _get_imdb_data(seasons_episodes: Dict[int, List[str]]) -> Dict[int, List[Any]]: """ Using the OMDB API, get all episodes information given a """ seasons_data: Dict[int, List[Any]] = defaultdict(list) for season, episodes in seasons_episodes.items(): for episode_id in episodes: get_request = requests.get( _OMDB_API_BASE_URL, params={ 'apikey': _OMDB_API_KEY, 'i': episode_id }) seasons_data[season].append(json.loads(get_request.content.decode('utf-8'))) time.sleep(_OMDB_API_WAIT_TIME) return seasons_data
a7ace6a20bcb3bff13acaebfd48d19888ddf1099
ff3cb8b03374645eccd2bffcd386479793f38c3c
/Clustering.py
6dddbbc7a8703e652e24392b8c4c430b4e2e32b5
[]
no_license
ChunchunKumar/ML-DL
e39e6026aa2fc926d5f3136b46118593cfc87f2d
db06c967d69acb1f5c53a4b6669778d78ae696be
refs/heads/master
2021-05-05T02:59:35.360479
2018-04-08T00:05:07
2018-04-08T00:05:07
119,772,243
0
0
null
null
null
null
UTF-8
Python
false
false
2,918
py
import matplotlib.pyplot as plt import numpy as np import xlrd as x from scipy.stats import norm from random import randint def model(X1,X2,mean,Var): n=mean.shape[0] mult=norm(mean[0][0],var[0][0]).pdf(X1)*norm(mean[1][0],var[1][0]).pdf(X2) return mult file_location="E:/ML/Clustering/Data_KMean.xlsx" work_book=x.open_workbook(file_location) sheet=work_book.sheet_by_index(0) a=np.array([[sheet.cell_value(r,c) for c in range(sheet.ncols)] for r in range(sheet.nrows)]) train=a.T #plt.scatter(train[0,:],train[1,:]) def clustering(K,data): mean = np.random.uniform(3, 6, (data.shape[0],K)) C = np.zeros((1, data.shape[1])) for k in range(20): for i in range(data.shape[1]): min_index = 0 min = np.sum(np.square(data[:, i] - mean[:, 0])) for j in range(K): if (np.sum(np.square(data[:, i] - mean[:, j])) < min): min = np.sum(np.square(data[:, i] - mean[:, j])) min_index = j C[0][i] = min_index # print(C) for i in range(K): sum = np.zeros((data.shape[0], 1)) p = 0 for j in range(data.shape[1]): if (C[0][j] == i): sum[:, 0] = sum[:, 0] + data[:, j] p = p + 1 if (p != 0): mean[:, i] = sum[:, 0] / (p) return C, mean Error_K=np.zeros((1,10)) K=2 for u in range(10): error_final = 10000 C_final = np.zeros((1, train.shape[1])) mean_final = np.random.uniform(0, 20, (train.shape[0], K)) for i in range(20): C, mean = clustering(K, train) error = 0 for i in range(train.shape[1]): error = error+np.sum(np.square(train[:, i] - mean[:, int(C[0][i])])) error = error / train.shape[1] if (error_final > error): C_final = C error_final = error mean_final = mean Error_K[0][u]=error_final print(C_final) print(error_final) plot=np.zeros(train.shape) for j in range(K): plot = np.zeros(train.shape) for l in range(train.shape[1]): if (C[0][l] == j): plot[:, l] = train[:, l] plt.scatter(plot[0, :], plot[1, :], marker='*') plt.scatter(mean[0, :], mean[1, :]) plt.title(K) plt.show() '''plot = np.zeros(train.shape) for j in range(K): plot = np.zeros(train.shape) for l in range(train.shape[1]): if (C_final[0][l] == j): plot[:, l] = train[:, l] plt.scatter(plot[0, :], plot[1, :], marker='*') plt.scatter(mean_final[0, :], mean_final[1, :]) plt.show() ''' K=K+1 plt.scatter(np.linspace(2,11,10),Error_K) plt.show()
c6b283e81159a9fb6bf45114451caef761c95c9a
8d530e384f97d010f1d6d0a0f49ead48f9c90768
/TreaProject/dynamicForms/views.py
5327852e07af62c7f15fca054bfb6ffbf717ad9e
[ "Apache-2.0" ]
permissive
trea-uy/django-survey
e805e27d258f4be2b29681d45acf594038ef7fdb
2a04be76b92fc42dbc9ec8a634f9eea25d49328c
refs/heads/master
2021-01-19T17:59:43.703774
2014-09-11T21:22:37
2014-09-11T21:22:37
23,546,400
0
2
null
null
null
null
UTF-8
Python
false
false
102
py
from django.shortcuts import render def index(request): return render(request, 'index.html', [])
[ "federico@federico" ]
federico@federico
bf7b00e36b31a0a37313b18848b1f49598da38fb
ce53487c613503926315611e135854ca072bbbb8
/Codewars/Disemvowel_Trolls.py
5f7eb0bc77762cac1ac09f0b84362ff6d72b6204
[]
no_license
thequinn/Coding_Problems
8708ff30f51916c3ce29a608f6f34e5f020729ec
59e68780eef90f8a677abcd18ebbcef9e60b6272
refs/heads/master
2023-02-07T05:04:55.818652
2020-12-27T02:13:27
2020-12-27T02:13:27
205,428,717
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
def disemvowel(s): return s.translate(None, 'aeiouAEIOU')
df38200ba8f918671e616c6c8421dcbd97a60bcc
febf14390cc5548365077f0c72e3aac55e8d6bd5
/views/frame.py
92e4c7744937f702e21c84aa9fa7bb829c6f0cbb
[]
no_license
new-rich/Software-engineering
b932a71150bb84d5b50e8a73c3e15cb002193a26
487aba2fe21d9a2ff529ce694d8f0126608f1f93
refs/heads/master
2022-04-18T21:22:32.066740
2020-04-06T08:01:36
2020-04-06T08:01:36
252,339,948
1
0
null
null
null
null
UTF-8
Python
false
false
992
py
import wx import wx.aui from .editor import TextEditor class frame(wx.Frame): def __init__(self): super().__init__(None, title='Editor',size=(800,600)) self.aui_manager = wx.aui.AuiManager(self,wx.aui.AUI_MGR_TRANSPARENT_HINT) self.editor_panel = TextEditor(self) self.aui_manager.AddPane(self.editor_panel, self._get_default_pane_info().CenterPane().Position(0).BestSize(400,-1)) self.aui_manager.GetArtProvider().SetMetric(wx.aui.AUI_DOCKART_SASH_SIZE,0) self.aui_manager.Update() #self.Maximize(True) self._register_listeners() def _get_default_pane_info(self): return wx.aui.AuiPaneInfo().CaptionVisible(False).PaneBorder(False).CloseButton(False).PinButton(False).Gripper( False) def on_frame_closing(self, e): self.aui_manager.UnInit() del self.aui_manager self.Destroy() def _register_listeners(self): self.Bind(wx.EVT_CLOSE, self.on_frame_closing)
b9470a6364fcb617b3b2bbeb23ef97dce22221d7
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
/optin_manager/src/python/openflow/common/utils/formfields.py
adec249dc39015d89a6d299354718c9fd0f8e896
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
dana-i2cat/felix
4a87af639e4c7db686bfa03f1ae4ce62711615e3
059ed2b3308bda2af5e1942dc9967e6573dd6a53
refs/heads/master
2021-01-02T23:12:43.840754
2016-02-04T10:04:24
2016-02-04T10:04:24
17,132,912
4
4
null
null
null
null
UTF-8
Python
false
false
388
py
''' Created on Jul 17, 2010 @author: jnaous ''' from django import forms from expedient.common.utils import validators class MACAddressField(forms.CharField): """ A MAC Address form field. """ default_error_messages = { 'invalid': u'Enter a valid MAC address in "xx:xx:xx:xx:xx:xx" format.', } default_validators = [validators.validate_mac_address]
7355b8d086777562985e5de5563d15a37060c3e1
940b69579fdd126d254020469bbe54e553f8d7ea
/tests/test_markdown_light.py
0721fce994eb753acb8fe43a962d73ad7bb3ca13
[ "MIT" ]
permissive
nvtkaszpir/MarkdownLight
9edca79dc5fb513cfa6ab3aae52b5ab4e7360b91
38ad22267aa7b6327e39564f7c6c864104353e21
refs/heads/master
2021-01-18T10:45:31.864370
2015-03-27T15:51:00
2015-03-27T15:57:35
32,994,951
2
0
null
2015-03-27T15:48:46
2015-03-27T15:48:46
Python
UTF-8
Python
false
false
22,066
py
import syntax_test class TestMarkdownLight(syntax_test.SyntaxTestCase): def setUp(self): super().setUp() self.set_syntax_file("Packages/MarkdownLight/MarkdownLight.tmLanguage") def check_default(self, patterns): self.check_in_single_scope(patterns, 'text') def test_simple_text(self): self.set_text('A B C') self.check_default('A B C') def test_italic(self): self.set_text(''' A *B* _C_ D *E* ''') self.check_eq_scope([ r'\*B\*', '_C_', r'\*E\*' ], 'markup.italic') self.check_eq_scope(r'[\*_]', 'punctuation.definition') self.check_default(list('AD ')) def test_bold(self): self.set_text(''' A **B** __C__ D **E** ''') self.check_eq_scope([ r'\*\*B\*\*', r'__C__', r'\*\*E\*\*' ], 'markup.bold') self.check_eq_scope(r'[\*_]+', 'punctuation.definition') self.check_default(list('AD ')) def test_inline_markup_inside_inline_markup(self): self.set_text(''' A *B **C** D* E F **G *H* I** J ''') self.check_eq_scope(r'\*B \*\*C\*\* D\*', 'markup.italic') self.check_eq_scope(r'\*H\*', 'markup.italic') self.check_eq_scope(r'\*\*C\*\*', 'markup.bold') self.check_eq_scope(r'\*\*G \*H\* I\*\*', 'markup.bold') self.check_eq_scope(r'\*+', 'punctuation.definition') self.check_default(list('AEFJ')) def test_bold_italic(self): self.set_text(''' AA *__AB__* AC BA _**BB**_ BC CA **_CB_** CC DA __*DB*__ DC EA ***EB*** EC FA ___FB___ FC ''') self.check_eq_scope(r'\*__AB__\*', 'markup.italic') self.check_eq_scope(r'_\*\*BB\*\*_', 'markup.italic') self.check_eq_scope([ '_CB_', r'\*DB\*' ], 'markup.italic') self.check_eq_scope([ '__AB__', r'\*\*BB\*\*' ], 'markup.bold') self.check_eq_scope(r'\*\*_CB_\*\*', 'markup.bold') self.check_eq_scope(r'__\*DB\*__', 'markup.bold') self.check_eq_scope(r'\*+|_+', 'punctuation.definition') self.check_eq_scope(r'\*\*\*EB\*\*\*', 'markup.bold') self.check_eq_scope(r'\*\*\*EB\*\*\*', 'markup.italic') self.check_eq_scope(r'___FB___', 'markup.bold') self.check_eq_scope(r'___FB___', 'markup.italic') self.check_default([ r'[A-Z]A ', r' [A-Z]C\n' ]) def test_multiline_markup_not_supported(self): # Multiline inline markup is not supported due to # limitations in syntax definition language. self.set_text(''' A **B C** D E _F G_ H ''') self.check_default('.+') def test_inline_markup_before_punctuation(self): self.set_text(''' A *B*: *C*; *D*, *E*. *F*? G K **L**: **M**; **N**, **O**. **P**? Q ''') self.check_eq_scope([ r'\*B\*', r'\*C\*', r'\*D\*', r'\*E\*', r'\*F\*' ], 'markup.italic') self.check_eq_scope([ r'\*\*L\*\*', r'\*\*M\*\*', r'\*\*N\*\*', r'\*\*O\*\*', r'\*\*P\*\*' ], 'markup.bold') self.check_eq_scope(r'\*+', 'punctuation.definition') self.check_default(r'[AGKQ:;,\.?]') def test_inline_markup_inside_quotes_and_brackets(self): self.set_text(''' A "*B*" (*C*) '*D*' E K "**L**" (**M**) '**N**' O ''') self.check_eq_scope([ r'\*B\*', r'\*C\*', r'\*D\*' ], 'markup.italic') self.check_eq_scope([ r'\*\*L\*\*', r'\*\*M\*\*', r'\*\*N\*\*' ], 'markup.bold') self.check_eq_scope(r'\*+', 'punctuation.definition') self.check_default(r'''[AEKQ"\(\)'\.]''') def test_inline_markup_outside_quotes_and_brackets(self): self.set_text(''' *"A"* *(B)* *'C'* **"D"** **(E)** **'F'** *"A";* *(B).* *'C':* **"D"!** **(E)?** **'F',** Z ''') self.check_eq_scope([ r'\*"A"\*', r'\*\(B\)\*', r"\*'C'\*" ], 'markup.italic') self.check_eq_scope([ r'\*\*"D"\*\*', r'\*\*\(E\)\*\*', r"\*\*'F'\*\*" ], 'markup.bold') self.check_eq_scope([ r'\*"A";\*', r'\*\(B\)\.\*', r"\*'C':\*" ], 'markup.italic') self.check_eq_scope([ r'\*\*"D"!\*\*', r'\*\*\(E\)\?\*\*', r"\*\*'F',\*\*" ], 'markup.bold') self.check_default('Z') def test_brackets_inside_inline_markup(self): self.set_text(''' *A (B C)*: D *(K)* **(L)** ''') self.check_eq_scope([ r'\*A \(B C\)\*', r'\*\(K\)\*' ] , 'markup.italic') self.check_eq_scope( r'\*\*\(L\)\*\*', 'markup.bold') self.check_eq_scope(r'\*+', 'punctuation.definition') self.check_default(r': D') def test_inline_markup_combinations(self): self.set_text('_A _ B_C D_E _ F_ *G* **H** <a>_I_</a>') self.check_eq_scope([ '_A _ B_C D_E _ F_', r'\*G\*', '_I_' ], 'markup.italic') self.check_eq_scope(r'\*\*H\*\*', 'markup.bold') def test_escaping_of_inline_punctuation(self): self.set_text(r'A *\*B\** C **D\*** E') self.check_eq_scope(r'\*\\\*B\\\*\*', 'markup.italic') self.check_eq_scope(r'\*\*D\\\*\*\*', 'markup.bold') self.check_default(list('ACE ')) def test_inline_markup_does_not_work_inside_words(self): self.set_text('A_B C_D_E') self.check_default('.+') def test_inline_markup_does_not_work_without_text(self): self.set_text(''' A ____ B ''') self.check_default('^.+$') def test_valid_ampersands(self): self.set_text(''' & && A & B A && B & A &B && C &&D E& F&& &G; ''') self.check_no_scope('^.+$', 'invalid') def test_valid_brackets(self): self.set_text(''' < << A < B A << B A< A<< ''') self.check_no_scope('^.+$', 'invalid') def test_headings(self): self.set_text(''' # A ## B ### C #### D ##### E ###### F G #K ##L# ### M ## #### N ########### O ''') self.check_eq_scope(list('ABCDEFKLMN'), 'entity.name.section') self.check_in_scope(list('ABCDEFKLMN# '), 'markup.heading') self.check_eq_scope(r'#+', 'punctuation.definition') self.check_default(list('GO')) def test_setext_headings(self): self.set_text(''' A === B --- C D ======= E F ------- Z ''') self.check_eq_scope('=+', 'markup.heading.1') self.check_eq_scope('-+', 'markup.heading.2') self.check_default(r'\w+') def test_not_setext_headings(self): self.set_text(''' - A === > B --- C ======= D -- E - - - ------- ------- ======== Z ''') self.check_no_scope('.+', 'markup.heading') def test_inline_markup_inside_headings(self): self.set_text(''' #_A_ ## B _C_ ### D _E_ F #### K _L M_ N # Z ''') self.check_eq_scope([ '_A_', 'B _C_', 'D _E_ F', 'K _L M_ N' ], 'entity.name.section') self.check_in_scope(list('ABCDEFKLMN#_ '), 'markup.heading') self.check_eq_scope([ '_A_', '_C_', '_E_', '_L M_' ], 'markup.italic') self.check_eq_scope(r'#+', 'punctuation.definition') self.check_default(r'Z') def test_fenced_paragraph(self): self.set_text(''' K ``` A ``` L ''') self.check_eq_scope(r'```\nA\n```\n', 'markup.raw.block.fenced') self.check_eq_scope('`+', 'punctuation.definition') self.check_default([ r'K\n\n', r'\nL\n' ]) def test_fenced_block_inside_paragraph(self): self.set_text(''' K ``` A ``` L ''') self.check_eq_scope(r'```\nA\n```\n', 'markup.raw.block.fenced') self.check_eq_scope('`+', 'punctuation.definition') self.check_default([ r'\nK\n', r'L\n\n' ]) def test_syntax_highlighting_inside_fenced_blocks(self): self.set_text(''' ``` c++ int x = 123; ``` ```python def g(): return 567 ``` ''') self.check_eq_scope([ 'int', 'def' ], 'storage.type') self.check_eq_scope([ '123', '567' ], 'constant.numeric') self.check_eq_scope('g', 'entity.name') self.check_eq_scope('return', 'keyword.control') def test_indented_raw_blocks(self): self.set_text(''' A B C ''') self.check_eq_scope(r' B\n', 'markup.raw.block') self.check_default([ r'\nA\n\n', r'\nC\n' ]) def test_multiline_indented_raw_blocks(self): self.set_text(''' A B ''') self.check_eq_scope(r' A\n B\n', 'markup.raw.block') def test_indented_raw_blocks_glued_to_text(self): self.set_text(''' A B C D ''') self.check_eq_scope(r' C\n', 'markup.raw.block') self.check_default([ r'\nA\n B\n\n', r'D\n' ]) def test_blank_line_is_not_indented_raw_block(self): self.set_text('\n\n \n\n') self.check_default(r'\n[ ]+\n') def test_inline_raw_text(self): self.set_text(''' A `B` C D`E`F K `L **M` N** O ''') self.check_eq_scope(list('BE') + [ r'L \*\*M' ], 'markup.raw.inline.content') self.check_eq_scope('`', 'punctuation.definition') self.check_default(list('ACDFK') + [ r' N\*\* O' ]) def test_incomplete_or_multiline_inline_raw_text(self): self.set_text(''' A `B C` D ''') self.check_default('.+') def test_multiple_backquotes_as_inline_raw_delimiters(self): self.set_text(''' ``A`` ```B`` ``C``` ''') self.check_eq_scope(list('AC'), 'markup.raw.inline.content') self.check_eq_scope('`B', 'markup.raw.inline.content') self.check_eq_scope([ r'^``', r'(?<=\w)``' ], 'punctuation.definition') self.check_default([ r'(?<=C``)`', r'\n' ]) def test_inline_raw_delimiters_do_not_start_fenced_block(self): self.set_text(''' ```A``` B ''') self.check_eq_scope('```A```', 'markup.raw.inline.markdown') self.check_eq_scope('A', 'markup.raw.inline.content') self.check_eq_scope('```', 'punctuation.definition') self.check_default(r'B') def test_quoted_text_alone(self): self.set_text('>A\n') self.check_eq_scope(r'>A\n', 'markup.quote') self.check_eq_scope(r'>', 'punctuation.definition') def test_one_line_quoted_block(self): self.set_text(''' >A B ''') self.check_eq_scope(r'>A\n', 'markup.quote') self.check_eq_scope(r'>', 'punctuation.definition') self.check_default(r'\nB\n') def test_type_1_multiline_quoted_block(self): self.set_text(''' >A B C ''') self.check_eq_scope(r'>A\nB\n', 'markup.quote') self.check_eq_scope(r'>', 'punctuation.definition') self.check_default(r'\nC\n') def test_type_2_multiline_quoted_block(self): self.set_text(''' >A >B C ''') self.check_eq_scope(r'>A\n>B\n', 'markup.quote') self.check_eq_scope(r'>', 'punctuation.definition') self.check_default(r'\nC\n') def test_quoted_block_inside_paragraph(self): self.set_text(''' A >B C ''') self.check_eq_scope(r'>B\n', 'markup.quote') self.check_default([ r'\nA\n', r'\nC\n' ]) def test_spaces_before_and_after_quote_signs(self): self.set_text(''' > A > B > C D ''') self.check_eq_scope(r' > A\n {2}> {2}B\n {3}> {3}C\n', 'markup.quote') self.check_eq_scope(r'>', 'punctuation.definition') self.check_default(r'\nD\n') def test_inline_markup_inside_quoted_text(self): self.set_text(''' > `A` > _B_ > **C** ''') self.check_eq_scope('`A`', 'markup.raw.inline.markdown') self.check_eq_scope('_B_', 'markup.italic') self.check_eq_scope(r'\*\*C\*\*', 'markup.bold') def test_list_item_alone(self): self.set_text( '''- A ''') self.check_eq_scope(r'- A\n', 'meta.paragraph.list') self.check_eq_scope(r'-', 'punctuation.definition') def test_multiline_list(self): self.set_text(''' - A - B C ''') self.check_eq_scope(r'- A\n- B\n', 'meta.paragraph.list') self.check_eq_scope(r'-', 'punctuation.definition') self.check_default(r'\nC\n') def test_different_types_of_unnumbered_list_bullets(self): self.set_text(''' - A + B * C D ''') self.check_eq_scope(r'- A\n\+ B\n\* C\n', 'meta.paragraph.list') self.check_eq_scope([ r'\+', r'\*', '-' ], 'punctuation.definition') self.check_default(r'D') def test_numbered_list(self): self.set_text(''' 0. A 1. B 12345. C D ''') self.check_eq_scope(r'0\. A\n1\. B\n\d+\. C\n', 'meta.paragraph.list') self.check_eq_scope([ r'0\.', r'1\.', '12345\.' ], 'punctuation.definition') self.check_default(r'D') def test_nested_lists(self): self.set_text(''' - A * B + C 1. D 2. E Z ''') self.check_eq_scope(r'- A\n \* B\n \+ C\n +1\. D\n2\. E\n', 'meta.paragraph.list') self.check_eq_scope([ '-', r'\*', r'\+', r'1\.', r'2\.' ], 'punctuation.definition') self.check_default('Z') def test_spaces_after_bullet(self): self.set_text(''' -A - B - C Z ''') self.check_eq_scope(r'- B\n- +C\n', 'meta.paragraph.list') self.check_eq_scope([ r'-(?= B)', r'-(?= +C)' ], 'punctuation.definition') self.check_default('Z') def test_list_inside_paragraph(self): self.set_text(''' A - B ''') self.check_eq_scope(r'- B\n', 'meta.paragraph.list') self.check_default(r'\nA\n') def test_inline_markup_inside_list_items(self): self.set_text(''' - `A` - _B_ - **C** ''') self.check_in_scope(r'-.*$\n', 'meta.paragraph.list') self.check_eq_scope('`A`', 'markup.raw.inline.markdown') self.check_eq_scope('_B_', 'markup.italic') self.check_eq_scope(r'\*\*C\*\*', 'markup.bold') def test_multiline_list_items(self): self.set_text(''' - A B - C D Z ''') self.check_eq_scope(r' - A\n B\n - C\nD\n', 'meta.paragraph.list') self.check_default('Z') def test_multiline_list_item_with_paragraph(self): self.set_text(''' - A B C - D E F Z ''') self.check_eq_scope(r'- A\n', 'meta.paragraph.list') self.check_eq_scope(r' B\nC\n- D\n', 'meta.paragraph.list') self.check_eq_scope(r' E\nF\n', 'meta.paragraph.list') self.check_default('Z') def test_4_spaces_in_multiline_list_item(self): self.set_text(''' - A B C - D E F Z ''') self.check_eq_scope(r'- A\n {4}B\n {4}C\n', 'meta.paragraph.list') self.check_eq_scope(r'- D\n', 'meta.paragraph.list') self.check_eq_scope(r' {4}E\n {4}F\n', 'meta.paragraph.list') self.check_default('Z') def test_4_spaces_before_nested_list_items(self): self.set_text(''' - A - B - C Z ''') self.check_eq_scope(r'- A\n {4}- B\n {8}- C\n', 'meta.paragraph.list') self.check_default('Z') def test_fenced_block_is_not_part_of_a_list_item(self): self.set_text(''' - A ``` B ``` Z ''') self.check_eq_scope(r'- A\n', 'meta.paragraph.list') self.check_eq_scope(r'```\nB\b\n```\n', 'markup.raw.block.fenced') self.check_default('Z') def test_inline_links(self): self.set_text(''' [A](B) [C] (D) [E](F "G") ![A](B) ![C] (D) ![E](F "G") Z ''') self.check_eq_scope([ r'^\[A\]\(B\)', r'^\[C\]\s+\(D\)', r'^\[E\]\(F "G"\)' ], 'meta.link.inline') self.check_eq_scope([ r'^!\[A\]\(B\)', r'^!\[C\]\s+\(D\)', r'^!\[E\]\(F "G"\)' ], 'meta.image.inline') self.check_eq_scope(list('ACE'), 'string.other.link.title') self.check_eq_scope(list('BDF'), 'markup.underline.link') self.check_eq_scope('G', 'string.other.link.description.title') self.check_eq_scope([ r'!', r'\[', r'\]' ], 'punctuation.definition') self.check_default('Z') def test_reference_links(self): self.set_text(''' [A][B] [C] [D] ![E][F] ![G] [H] Z ''') self.check_eq_scope(r'\[A\]\[B\]', 'meta.link.reference') self.check_eq_scope(r'\[C\]\s+\[D\]', 'meta.link.reference') self.check_eq_scope(r'!\[E\]\[F\]', 'meta.image.reference') self.check_eq_scope(r'!\[G\]\s+\[H\]', 'meta.image.reference') self.check_eq_scope(list('ACEG'), 'string.other.link.title') self.check_eq_scope(list('BDFH'), 'constant.other.reference.link') self.check_eq_scope([ r'!', r'\[', r'\]' ], 'punctuation.definition') self.check_default('Z') def test_implicit_links(self): self.set_text(''' [A][] [B] [] ![C][] ![D] [] Z ''') self.check_eq_scope([ r'\[A\]\[\]', r'\[B\] \[\]' ], 'meta.link.reference') self.check_eq_scope([ r'!\[C\]\[\]', r'!\[D\] \[\]' ], 'meta.image.reference') self.check_eq_scope(list('ABCD'), 'constant.other.reference.link') self.check_eq_scope(r'[!\[\]]', 'punctuation.definition') self.check_default('Z') def test_multiline_links_not_supported(self): self.set_text(''' [A B](C) [D E][F] ![A B](C) ![D E][F] ''') self.check_default('.+') def test_inline_markup_inside_links(self): self.set_text(''' [__A__](B) [_C_][D] ![__E__](F) ![_G_][H] Z ''') self.check_eq_scope(r'\[__A__\]\(B\)', 'meta.link.inline') self.check_eq_scope(r'\[_C_\]\[D\]', 'meta.link.reference') self.check_eq_scope(r'!\[__E__\]\(F\)', 'meta.image.inline') self.check_eq_scope(r'!\[_G_\]\[H\]', 'meta.image.reference') self.check_eq_scope([ '__A__', '__E__' ], 'markup.bold') self.check_eq_scope([ '_C_', '_G_' ], 'markup.italic') self.check_default('Z') def test_inline_markup_outside_links(self): self.set_text(''' **[A](X)** __[B][X]__ *![C](X)* _![D][X]_ Z ''') self.check_eq_scope(r'\*\*\[A\]\(X\)\*\*', 'markup.bold') self.check_eq_scope(r'__\[B\]\[X\]__', 'markup.bold') self.check_eq_scope(r'\*!\[C\]\(X\)\*', 'markup.italic') self.check_eq_scope(r'_!\[D\]\[X\]_', 'markup.italic') self.check_default('Z') def test_references(self): self.set_text(''' [A]: B "C" [D]:<E> 'F' [K]: L (M) [N]: O Z ''') self.check_eq_scope(r'\[.*?(?=\s*$)', 'meta.link.reference.def') self.check_eq_scope(r'''[\[\]:'"()]''', 'punctuation') self.check_eq_scope(list('ADKN'), 'constant.other.reference.link') self.check_eq_scope(list('BELO'), 'markup.underline.link') self.check_eq_scope(list('CFM'), 'string.other.link.description.title') self.check_default('Z') def test_supported_urls(self): self.set_text(''' http://A.B https://C.D ftp://E.F http://H.I.J http://K.L/ http://M.N/O?P=Q&R=S http://Q.W:123 http://Q.W.E:123/ Z ''') self.check_eq_scope(r'^.+://.+$', 'markup.underline.link') self.check_eq_scope(r'^.+://.+$', 'meta.link.inet') self.check_default('Z') def test_unsupported_urls(self): self.set_text(''' http://A http://A:80 http://A:80.C ssh://B.C http://D/E http://A?B.C ''') self.check_default('.+') def test_urls_in_brackes(self): self.set_text(''' <http://A.B> <https://C.D> <ftp://E.F> <http://H.I.J> <http://K.L/> <http://M.N/O?P=Q&R=S> <http://Q.W:123> <http://Q.W.E:123/> Z ''') self.check_eq_scope(r'http://A\.B', 'markup.underline.link') self.check_eq_scope(r'^.+://.+$', 'meta.link.inet') self.check_eq_scope(r'[<>]', 'punctuation.definition') self.check_default('Z') def test_emails(self): self.set_text(''' <[email protected]> <mailto:[email protected]> [email protected] mailto:[email protected] Z ''') self.check_eq_scope(r'[email protected]', 'markup.underline.link') self.check_eq_scope(r'mailto:[email protected]', 'markup.underline.link') self.check_eq_scope(r'[^\s@]+@\S+', 'meta.link.email') self.check_eq_scope(r'[<>]', 'punctuation.definition') self.check_default('Z') def test_strikethrough(self): self.set_text(''' A ~~B~~ ~~C D~~ E ''') self.check_eq_scope([ '~~B~~', '~~C D~~' ], 'markup.strikethrough') self.check_eq_scope('~~', 'punctuation.definition.strikethrough') self.check_default(list('AE')) def test_unsupported_strikethrough(self): self.set_text(''' ~~A B~~ ~~ C~~ ~~D ~~ E~~F~~ ''') self.check_default('.+') def test_strikethrough_with_bold_italic(self): self.set_text(''' *__~~A~~__* *~~__B__~~* ~~*__C__*~~ ___~~D~~___ ~~___E___~~ Z ''') self.check_eq_scope([ r'~~A~~', r'~~__B__~~', r'~~\*__C__\*~~', r'~~D~~', r'~~___E___~~' ], 'markup.strikethrough') self.check_eq_scope([ r'__~~A~~__', r'__B__', r'__C__', r'___~~D~~___', r'___E___' ], 'markup.bold') self.check_eq_scope([ r'\*__~~A~~__\*', r'\*~~__B__~~\*', r'\*__C__\*', r'___~~D~~___', r'___E___' ], 'markup.italic') self.check_eq_scope(r'~+|_+|\*+', 'punctuation.definition') self.check_default('Z') def test_html_tags(self): self.set_text(''' A<br> <li>B <a href="http://C.D">E</a> ''') self.check_default([ r'\nA', r'\n', r'B\n', 'E' ]) self.check_eq_scope([ '<br>', '<li>', '<a href="http://C.D">', '</a>' ], 'meta.tag') def test_block_tags_turn_off_markdown_markup(self): self.set_text(''' <p> *A* ~~B~~ __C__ </p> <div>*D* ~~E~~ __F__</div> ''') self.check_no_scope(list('ABCDEF'), 'markup') def test_inline_markup_combined_with_html(self): self.set_text('<a>_A_</a>') self.check_eq_scope('_A_', 'markup.italic') self.check_eq_scope([ '<a>', '</a>' ], 'meta.tag') def test_horisontal_lines(self): self.set_text(''' *** * * * ___ __ __ __ - - - ---------------- ---_--- Z ''') self.check_eq_scope([ r'\*\*\*\n', r'\* \* \*\n', r'___\n', r' __ __ __\n', r' - - - \n', r' -----+ +\n' ], 'meta.separator') self.check_default(['---_---', 'Z']) def test_horisontal_lines_break_paragraphs(self): self.set_text(''' A - - - Z ''') self.check_eq_scope('- - -\n', 'meta.separator') self.check_default(['A', 'Z'])
1400cc7e36dc1608eda6cf944b667fb37a1ea0b3
b19dfd6a3ba5d107d110fb936de2e91d1d92bb99
/venv/lib/python3.7/site-packages/Satchmo-0.9.3-py3.7.egg/shipping/modules/ups/config.py
5c8e90a363eefc21999a9a0da571173a720a91b8
[]
no_license
siddhant3030/djangoecommerce
d8f5b21f29d17d2979b073fd9389badafc993b5c
b067cb1155c778fece4634d0a98631a0646dacff
refs/heads/master
2022-12-13T15:28:39.229377
2019-09-28T10:30:02
2019-09-28T10:30:02
207,240,716
2
1
null
2022-12-11T01:34:25
2019-09-09T06:35:36
Python
UTF-8
Python
false
false
3,913
py
from decimal import Decimal from django.utils.translation import ugettext_lazy as _ from livesettings.values import StringValue,ConfigurationGroup,BooleanValue,DecimalValue,MultipleStringValue from livesettings.functions import config_register_list,config_get SHIP_MODULES = config_get('SHIPPING', 'MODULES') SHIP_MODULES.add_choice(('shipping.modules.ups', 'UPS')) SHIPPING_GROUP = ConfigurationGroup('shipping.modules.ups', _('UPS Shipping Settings'), requires = SHIP_MODULES, ordering = 101) config_register_list( StringValue(SHIPPING_GROUP, 'XML_KEY', description=_("UPS XML Access Key"), help_text=_("XML Access Key Provided by UPS"), default=""), StringValue(SHIPPING_GROUP, 'USER_ID', description=_("UPS User ID"), help_text=_("User ID provided by UPS site."), default=""), StringValue(SHIPPING_GROUP, 'ACCOUNT', description=_("UPS Account Number"), help_text=_("UPS Account Number."), default=""), StringValue(SHIPPING_GROUP, 'USER_PASSWORD', description=_("UPS User Password"), help_text=_("User password provided by UPS site."), default=""), MultipleStringValue(SHIPPING_GROUP, 'UPS_SHIPPING_CHOICES', description=_("UPS Shipping Choices Available to customers. These are valid domestic codes only."), choices = ( (('01', 'Next Day Air')), (('02', 'Second Day Air')), (('03', 'Ground')), (('12', '3 Day Select')), (('13', 'Next Day Air Saver')), (('14', 'Next Day Air Early AM')), (('59', '2nd Day Air AM')), ), default = ('03',)), DecimalValue(SHIPPING_GROUP, 'HANDLING_FEE', description=_("Handling Fee"), help_text=_("The cost of packaging and getting the package off"), default=Decimal('0.00')), StringValue(SHIPPING_GROUP, 'SHIPPING_CONTAINER', description=_("Type of container used to ship product."), choices = ( (('00', 'Unknown')), (('01', 'UPS LETTER')), (('02', 'PACKAGE / CUSTOMER SUPPLIED')), ), default = "00"), BooleanValue(SHIPPING_GROUP, 'SINGLE_BOX', description=_("Single Box?"), help_text=_("Use just one box and ship by weight? If no then every item will be sent in its own box."), default=True), BooleanValue(SHIPPING_GROUP, 'TIME_IN_TRANSIT', description=_("Time in Transit?"), help_text=_("Use the UPS Time In Transit API? It is slower but delivery dates are more accurate."), default=False), StringValue(SHIPPING_GROUP, 'PICKUP_TYPE', description=_("UPS Pickup option."), choices = ( (('01', 'DAILY PICKUP')), (('03', 'CUSTOMER COUNTER')), (('06', 'ONE TIME PICKUP')), (('07', 'ON CALL PICKUP')), ), default = "07"), BooleanValue(SHIPPING_GROUP, 'LIVE', description=_("Access production UPS server"), help_text=_("Use this when your store is in production."), default=False), StringValue(SHIPPING_GROUP, 'CONNECTION', description=_("Submit to URL"), help_text=_("Address to submit live transactions."), default="https://onlinetools.ups.com/ups.app/xml/Rate"), StringValue(SHIPPING_GROUP, 'CONNECTION_TEST', description=_("Submit to TestURL"), help_text=_("Address to submit test transactions."), default="https://wwwcie.ups.com/ups.app/xml/Rate"), BooleanValue(SHIPPING_GROUP, 'VERBOSE_LOG', description=_("Verbose logs"), help_text=_("Send the entire request and response to the log - for debugging help when setting up UPS."), default=False) )
9c0801b8cdc06c03a0ea60a845b46f24d9fdb6f2
bd19ce3bbe4e79fd8be757fa1d7bad5324680973
/conf/settings.py
56cbd0c8e0cefd91694ea821643f83a8e36c3f85
[]
no_license
lushenao/Skycn.com
014026d9fa5d153a7dd8d2ff51c1191a68925b6b
b7531e080cef71253fa55437b7a23f6dc6fdaae8
refs/heads/master
2020-11-30T02:07:33.559455
2019-12-30T07:47:57
2019-12-30T07:47:57
230,271,269
1
0
null
null
null
null
UTF-8
Python
false
false
593
py
#__auth__:"Sky lu" # -*- coding:utf-8 -*- import os,sys BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) ''' 定义了mysql连接配置信息 ''' DATABASE_mysql = { 'engine':'mysql', 'host': '', 'port': 3306, 'user': '', 'pwd': '', 'db': '', 'file_path': '%s/db' % BASE_DIR } soft_desc = { '`soft_size`':'', '`soft_version`':'', '`soft_update_time`':'', '`soft_operating_system_bit`':'', '`soft_language`':'', '`soft_auth`':'', '`soft_operating_system`':'', '`soft_comment`':'' }
65ae8cba1ea4bcaf9819e245c5a7fdc2485f4a60
564a2f5a5a4269ce7e013511f78f8b8cd26ee81f
/toy_problem/data_preprocessing/transform.py
12ccb9a9232c6cf857470178d2cede9822bd9790
[]
no_license
sb-nmt-team/sb-nmt
7345cb967ec92dd87b5d649213ecd0483cba7d60
852418728642063967625c1a1473aa8e2b944d4d
refs/heads/master
2021-04-28T07:11:13.073176
2018-06-16T17:49:41
2018-06-16T17:49:41
122,219,302
0
0
null
2018-04-27T09:35:42
2018-02-20T15:49:32
Python
UTF-8
Python
false
false
4,670
py
import numpy as np import unicodedata import collections import matplotlib.pyplot as plt from collections import Counter, defaultdict import string import sys import pickle bad_characters = set(string.punctuation + string.digits) def read_dataset(dataset_name): dataset = defaultdict(list) rtlm = "\u200F" bos = '_' eos = ';' en_characters = set(["<\s>"]) he_characters = set(["<\s>"]) with open(dataset_name, "r") as fin: for line in fin: en,he = line.strip().lower().replace(bos,' ').replace(eos,' ').replace(rtlm, '').split('\t') word, trans = he, en en_characters |= set(en) he_characters |= set(he) # if len(word) < 3: continue # if EASY_MODE: # if max(len(word),len(trans))>20: # continue dataset[word].append(trans) en_characters = list(sorted(list(en_characters))) he_characters = list(sorted(list(he_characters))) # print ("size = ",len(dataset)) return dataset, en_characters, he_characters def filter_multiple_translations(data): result = {} for original, translations in data.items(): if len(set(translations)) > 1: continue if ' ' in translations[0]: continue result[original] = translations[0] # print ("size = ",len(result)) return result def filter_bad_characters(data, bad_characters): result = {} for source, translation in data.items(): assert isinstance(translation, str) if len(set(source) & bad_characters) != 0: continue if len(set(translation) & bad_characters) != 0: continue result[source] = translation # print ("size = ",len(result)) return result def filter_copied_words(data): result = {} for original, translation in data.items(): assert isinstance(translation, str) if len(set(original) & set(translation)) > 0: continue result[original] = translation # print ("size = ",len(result)) return result def filter_short_targets(data, target_threshold=2): result = {} for original, translation in data.items(): assert isinstance(translation, str) if len(translation) <= target_threshold: continue result[original] = translation # print ("size = ",len(result)) return result def split_train_test(data, valid_size=0.1, test_size=0.1): assert valid_size >= 0 and valid_size < 1.0 assert test_size >= 0 and test_size < 1.0 train_size = 1.0 - (valid_size + test_size) np.random.seed(42) sources = np.array(list(data.keys())) # print(sources) n_sources = len(sources) index_permutation = np.random.permutation(np.arange(n_sources)) train_border = int(n_sources * train_size) valid_border = int(n_sources * (train_size + valid_size)) train_sources = sources[index_permutation[: train_border]] valid_sources = sources[index_permutation[train_border : valid_border]] test_sources = sources[index_permutation[valid_border :]] def create_dataset(sources): result = {} for source in sources: result[source] = data[source] return result return create_dataset(train_sources), create_dataset(valid_sources), create_dataset(test_sources) def pipeline(dataset): filtered_dataset = filter_multiple_translations(dataset) f1 = filter_short_targets(filtered_dataset) f2 = filter_bad_characters(f1, bad_characters) f3 = filter_copied_words(f2) f4 = filter_bad_characters(f3, bad_characters | set([' '])) return [dataset, filtered_dataset, f1, f2, f3, f4] def transformation_pipeline(dataset, valid_size=0.1, test_size=0.1): train, valid, test = split_train_test(dataset) trains = pipeline(train) valids = pipeline(valid) tests = pipeline(test) # plt.title('Dataset changes with refinement') # plt.plot([len(x) for x in trains], label='train') # plt.plot([len(x) for x in valids], label='valid') # plt.plot([len(x) for x in tests], label='test') # plt.legend() # plt.show() return trains, valids, tests if __name__ == "__main__": dataset, en_characters, he_characters = read_dataset(sys.argv[1]) trains, valids, tests = transformation_pipeline(dataset) result = { "data" : dict(trains=trains, valids=valids, tests=tests), "characters": dict(en=en_characters, he=he_characters) } pickle.dump(result, open(sys.argv[2], "wb"))
4af4c6c67883138cb403bc55c20a57a17f3abf94
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_143/ch40_2020_03_25_11_34_14_842288.py
7b4cd03ca35996a28aee9136ab7f8fc3ef414f7a
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
def soma_valores(s): i=0 y[i]=s[i] while(i<=len(s)): y[i+1]+=s[i+1] i+=1 return y
07283b22209cfb94b928672e53ed1049ea4b9c9d
0e719bc0915f83d0fb96a252ab24af9159624a44
/Learning-python/Section 14 - Advanced Python Modules/scratch.py
86c443015441d8a7990c8567ccccb6af2b1a11f8
[]
no_license
skhadka007/learning_algos
09a0d89194fe610186e5af03a4683b971d1c7f2c
a9f7e432f5b6b5a2ccefb713e029c43be9421969
refs/heads/master
2023-09-02T03:11:27.855951
2021-10-04T14:11:34
2021-10-04T14:11:34
286,854,625
0
0
null
null
null
null
UTF-8
Python
false
false
30
py
# import math print(18 % 2)
2f5ddf89ea28919dce8937425bcddb68926a662d
a115b4a830b7d4a1e9efed9cdc429ea7233df2f1
/6_het/3_szokoev.py
593c8ca06fb65825f581ff46e46fb8f1ceafb9f2
[ "Unlicense" ]
permissive
ArDrift/InfoPy_scripts
b8dc78a8891a4c4e05adb4c2c0d6fcba9d3a8417
a8fb46c9b9f652d43094f886549b05c50f3ee9d2
refs/heads/master
2022-09-01T06:38:36.737921
2021-01-26T21:52:50
2021-01-26T21:52:50
333,116,648
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
#!/usr/bin/env python3 def szokoev_e(ev): return ev % 4 == 0 and (ev % 100 != 0 or ev % 400 == 0) def main(): evszam = int(input("Add meg az évszámot: ")) if szokoev_e(evszam): print("Szökőév.") else: print("Nem szökőév.") main()
0837ba02b802ee63615c49bcee086fe4059f3cdb
b980ac3d6ba8eac0902070c460ad1634ee19585b
/object_detection/utils/shape_utils.py
798c80cce647ff307d9f96a9f2c72e2f6a4f3682
[ "MIT" ]
permissive
gourav108/coreml
3d7d5ea6851bf9ae1fb77876bbec2fa2b8f9b763
6bc2d494dff23cff923368e735992a4f4a47483c
refs/heads/master
2022-11-28T19:56:27.172125
2019-01-07T18:44:33
2019-01-07T18:44:33
161,968,738
0
1
MIT
2022-11-21T18:48:27
2018-12-16T04:50:08
Python
UTF-8
Python
false
false
11,437
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils used to manipulate tensor shapes.""" import tensorflow as tf from utils import static_shape def _is_tensor(t): """Returns a boolean indicating whether the input is a tensor. Args: t: the input to be tested. Returns: a boolean that indicates whether t is a tensor. """ return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable)) def _set_dim_0(t, d0): """Sets the 0-th dimension of the input tensor. Args: t: the input tensor, assuming the rank is at least 1. d0: an integer indicating the 0-th dimension of the input tensor. Returns: the tensor t with the 0-th dimension set. """ t_shape = t.get_shape().as_list() t_shape[0] = d0 t.set_shape(t_shape) return t def pad_tensor(t, length): """Pads the input tensor with 0s along the first dimension up to the length. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after padding, assuming length <= t.shape[0]. Returns: padded_t: the padded tensor, whose first dimension is length. If the length is an integer, the first dimension of padded_t is set to length statically. """ t_rank = tf.rank(t) t_shape = tf.shape(t) t_d0 = t_shape[0] pad_d0 = tf.expand_dims(length - t_d0, 0) pad_shape = tf.cond( tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0), lambda: tf.expand_dims(length - t_d0, 0)) padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0) if not _is_tensor(length): padded_t = _set_dim_0(padded_t, length) return padded_t def clip_tensor(t, length): """Clips the input tensor along the first dimension up to the length. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after clipping, assuming length <= t.shape[0]. Returns: clipped_t: the clipped tensor, whose first dimension is length. If the length is an integer, the first dimension of clipped_t is set to length statically. """ clipped_t = tf.gather(t, tf.range(length)) if not _is_tensor(length): clipped_t = _set_dim_0(clipped_t, length) return clipped_t def pad_or_clip_tensor(t, length): """Pad or clip the input tensor along the first dimension. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after processing. Returns: processed_t: the processed tensor, whose first dimension is length. If the length is an integer, the first dimension of the processed tensor is set to length statically. """ processed_t = tf.cond( tf.greater(tf.shape(t)[0], length), lambda: clip_tensor(t, length), lambda: pad_tensor(t, length)) if not _is_tensor(length): processed_t = _set_dim_0(processed_t, length) return processed_t def combined_static_and_dynamic_shape(tensor): """Returns a list containing static and dynamic values for the dimensions. Returns a list of static and dynamic values for shape dimensions. This is useful to preserve static shapes when available in reshape operation. Args: tensor: A tensor of any type. Returns: A list of size tensor.shape.ndims containing integers or a scalar tensor. """ static_tensor_shape = tensor.shape.as_list() dynamic_tensor_shape = tf.shape(tensor) combined_shape = [] for index, dim in enumerate(static_tensor_shape): if dim is not None: combined_shape.append(dim) else: combined_shape.append(dynamic_tensor_shape[index]) return combined_shape def static_or_dynamic_map_fn(fn, elems, dtype=None, parallel_iterations=32, back_prop=True): """Runs map_fn as a (static) for loop when possible. This function rewrites the map_fn as an explicit unstack input -> for loop over function calls -> stack result combination. This allows our graphs to be acyclic when the batch size is static. For comparison, see https://www.tensorflow.org/api_docs/python/tf/map_fn. Note that `static_or_dynamic_map_fn` currently is not *fully* interchangeable with the default tf.map_fn function as it does not accept nested inputs (only Tensors or lists of Tensors). Likewise, the output of `fn` can only be a Tensor or list of Tensors. TODO(jonathanhuang): make this function fully interchangeable with tf.map_fn. Args: fn: The callable to be performed. It accepts one argument, which will have the same structure as elems. Its output must have the same structure as elems. elems: A tensor or list of tensors, each of which will be unpacked along their first dimension. The sequence of the resulting slices will be applied to fn. dtype: (optional) The output type(s) of fn. If fn returns a structure of Tensors differing from the structure of elems, then dtype is not optional and must have the same structure as the output of fn. parallel_iterations: (optional) number of batch items to process in parallel. This flag is only used if the native tf.map_fn is used and defaults to 32 instead of 10 (unlike the standard tf.map_fn default). back_prop: (optional) True enables support for back propagation. This flag is only used if the native tf.map_fn is used. Returns: A tensor or sequence of tensors. Each tensor packs the results of applying fn to tensors unpacked from elems along the first dimension, from first to last. Raises: ValueError: if `elems` a Tensor or a list of Tensors. ValueError: if `fn` does not return a Tensor or list of Tensors """ if isinstance(elems, list): for elem in elems: if not isinstance(elem, tf.Tensor): raise ValueError('`elems` must be a Tensor or list of Tensors.') elem_shapes = [elem.shape.as_list() for elem in elems] # Fall back on tf.map_fn if shapes of each entry of `elems` are None or fail # to all be the same size along the batch dimension. for elem_shape in elem_shapes: if (not elem_shape or not elem_shape[0] or elem_shape[0] != elem_shapes[0][0]): return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop) arg_tuples = zip(*[tf.unstack(elem) for elem in elems]) outputs = [fn(arg_tuple) for arg_tuple in arg_tuples] else: if not isinstance(elems, tf.Tensor): raise ValueError('`elems` must be a Tensor or list of Tensors.') elems_shape = elems.shape.as_list() if not elems_shape or not elems_shape[0]: return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop) outputs = [fn(arg) for arg in tf.unstack(elems)] # Stack `outputs`, which is a list of Tensors or list of lists of Tensors if all([isinstance(output, tf.Tensor) for output in outputs]): return tf.stack(outputs) else: if all([isinstance(output, list) for output in outputs]): if all([all( [isinstance(entry, tf.Tensor) for entry in output_list]) for output_list in outputs]): return [tf.stack(output_tuple) for output_tuple in zip(*outputs)] raise ValueError('`fn` should return a Tensor or a list of Tensors.') def check_min_image_dim(min_dim, image_tensor): """Checks that the image width/height are greater than some number. This function is used to check that the width and height of an image are above a certain value. If the image shape is static, this function will perform the check at graph construction time. Otherwise, if the image shape varies, an Assertion control dependency will be added to the graph. Args: min_dim: The minimum number of pixels along the width and height of the image. image_tensor: The image tensor to check size for. Returns: If `image_tensor` has dynamic size, return `image_tensor` with a Assert control dependency. Otherwise returns image_tensor. Raises: ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`. """ image_shape = image_tensor.get_shape() image_height = static_shape.get_height(image_shape) image_width = static_shape.get_width(image_shape) if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim), tf.greater_equal(tf.shape(image_tensor)[2], min_dim)), ['image size must be >= {} in both height and width.'.format(min_dim)]) with tf.control_dependencies([shape_assert]): return tf.identity(image_tensor) if image_height < min_dim or image_width < min_dim: raise ValueError( 'image size must be >= %d in both height and width; image dim = %d,%d' % (min_dim, image_height, image_width)) return image_tensor def assert_shape_equal(shape_a, shape_b): """Asserts that shape_a and shape_b are equal. If the shapes are static, raises a ValueError when the shapes mismatch. If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes mismatch. Args: shape_a: a list containing shape of the first tensor. shape_b: a list containing shape of the second tensor. Returns: Either a tf.no_op() when shapes are all static and a tf.assert_equal() op when the shapes are dynamic. Raises: ValueError: When shapes are both static and unequal. """ if (all(isinstance(dim, int) for dim in shape_a) and all(isinstance(dim, int) for dim in shape_b)): if shape_a != shape_b: raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b)) else: return tf.no_op() else: return tf.assert_equal(shape_a, shape_b) def assert_shape_equal_along_first_dimension(shape_a, shape_b): """Asserts that shape_a and shape_b are the same along the 0th-dimension. If the shapes are static, raises a ValueError when the shapes mismatch. If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes mismatch. Args: shape_a: a list containing shape of the first tensor. shape_b: a list containing shape of the second tensor. Returns: Either a tf.no_op() when shapes are all static and a tf.assert_equal() op when the shapes are dynamic. Raises: ValueError: When shapes are both static and unequal. """ if isinstance(shape_a[0], int) and isinstance(shape_b[0], int): if shape_a[0] != shape_b[0]: raise ValueError('Unequal first dimension {}, {}'.format( shape_a[0], shape_b[0])) else: return tf.no_op() else: return tf.assert_equal(shape_a[0], shape_b[0])
f84d0aaecefbe157929448dd97c574189ee4c716
acf190f6699975140a01b26546a52e94ec245f51
/sqrt_lasso_cvxpy.py
eecc2608f805aa9e9af3b7870e8bf787a37844f5
[]
no_license
HMJiangGatech/smoothed_concomitant_lasso
ffb6ed32f8a4eb65bf3e0d49008f429f3f0ac87b
776013a4e657f9c8c1dde239574e83d4958118d7
refs/heads/master
2021-05-12T16:02:10.468441
2018-01-10T21:14:10
2018-01-10T21:14:10
116,999,219
0
0
null
2018-01-10T19:07:55
2018-01-10T19:07:55
null
UTF-8
Python
false
false
859
py
from __future__ import division import numpy as np import cvxpy as cvx def belloni_path(X, y, lambda_grid, solver='ECOS'): ''' solve: min ||y - X*beta|| / sqrt(n_samples) + lambda ||beta||_1 ''' n_samples, n_features = X.shape lambda_ = cvx.Parameter(sign="Positive") beta = cvx.Variable(n_features) objective = cvx.Minimize(cvx.norm(X * beta - y, 2) / np.sqrt(n_samples) + lambda_ * cvx.norm(beta, 1)) prob = cvx.Problem(objective) betas = np.zeros((len(lambda_grid), n_features)) sigmas = np.zeros(len(lambda_grid)) for i, l in enumerate(lambda_grid): lambda_.value = l prob.solve(solver=solver) betas[i] = np.ravel(beta.value) sigmas[i] = \ np.linalg.norm(y - np.dot(X, betas[i])) / np.sqrt(n_samples) return sigmas, betas
118979bd5416c57a7c0e05109b92aa948efde4fa
adebcb38fb5abf69b05168c728271266c08bfd11
/main.py
ba05bbc0c664fbe9776ba176ea87ee68a2526b47
[]
no_license
ralcant/aws_diarization
5b403a17f3b35a4b9b4797a12263f019fc478ae2
ea35a979dd8902717797f55f2ec1decdf592935e
refs/heads/master
2022-04-28T07:07:12.080243
2020-04-30T21:12:38
2020-04-30T21:12:38
260,317,694
0
0
null
null
null
null
UTF-8
Python
false
false
10,819
py
from __future__ import print_function import json import time import boto3 import pprint import datetime import os from bucket_handler import upload_file import requests transcribe = boto3.client('transcribe') s3 = boto3.resource('s3') transcribe = boto3.client('transcribe') s3 = boto3.resource('s3') ## Note to self: in order to get the print statement as they happen in the command line, do "python -u main.py" class Project: def __init__(self, bucket_name="prgdiarization", video_folder_name="videos/"): super().__init__() self.video_to_transcription = dict() # maps the video -> MediaFileUri of the transcription self.bucket_name = bucket_name # bucket to be used for all the transactions self.transciption_job_name = "prg_diarization_test" self.video_folder_name = video_folder_name ''' Main method of the project class. It updates the output.json file with the results of the transcription for such video. ''' def get_transcription(self, video): print('started transcription!') video_name = self.get_video_name(video) # t = datetime.datetime.now() time_transcription_started = time.time() #to calculate how much time it takes to do the job job_uri = "https://{}.s3-us-west-1.amazonaws.com/{}{}".format(self.bucket_name, self.video_folder_name, video) if (video_name not in self.video_to_transcription.keys()): self.start_job(job_uri) while True: status = transcribe.get_transcription_job(TranscriptionJobName=self.transciption_job_name) if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']: break print("Not ready yet...") time.sleep(5) print('already got response and it took {} seconds!'.format(time.time() - time_transcription_started)) response = status MediaFileURI = response["TranscriptionJob"]["Transcript"]["TranscriptFileUri"] self.video_to_transcription[video_name] = MediaFileURI #for future reference #self.delete_job() else: print("it already exists!") MediaFileURI = self.video_to_transcription[video_name] #'https://s3.us-west-1.amazonaws.com/aws-transcribe-us-west-1-prod/115847983408/prg_diarization_test_9/946d2d28-827b-49b7-9136-55e17b1b6eb6/asrOutput.json?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEHYaCXVzLXdlc3QtMSJHMEUCIGeiQRZoD22XmzdRasfvXOEbpIGcKYFKSGJzaSlfHjUiAiEA9CRg8SIHAskooNPVB%2BurejmIvAiKldYTO9h5Pb6y3A0qtAMIbxABGgw5NzEzODk5ODIxNjgiDCzAQQqVwGhTjzYcsyqRA%2FF8yOgyiYMepEqlOR7Wel%2BLlP2Ol32C5pljhoCALRUQjpnlclBDpzQqAkcdEhSNlF3xehp0bB5QTwi0BwLF1tizzN5F8kPLLEtM%2FK40b4yV1RhT3kzFlVv9rXFRMvUMPM4cfunr%2BUiLkC%2F4h8uyedEIo4RTq584u0R1JIYTsMHTm9XiInlruqw%2BS%2BOedWDlksOvI1z4PF6uhYrxo87Hy8Jjb3Ws7nEBPFP8mJexybX53RxgXJ7sNnoe7ichWG9JU3d31wJSNjnsNdtCdpikaZPGJC8oAXN0tE057tC9NUqYaag4wTaF9tX6llII45RXnCHVY0xG14Cq8mTXKdiMxFFgDjKvsITMNsHr6XNhgu%2BU%2B7s%2BFzdTHnpzPBrvRUi7JcDrJ%2Fdy3IILyJe3hHHsyIFqjjCrbQrXO%2Bwq6WV7%2FfLfh4%2BLGtKNuvd34b1u5wgWrzChpN2ha5sibJxBVcN3%2FqtghhvhZvuORwGQdFVrSkD%2BtbJNSSf72I2CuWsnsCctV8VAJl6rxHatD3%2Btcvlm9FpXMJjv6%2FMFOusBABniLSVZHh54XvoJ4NPAqE44fj%2BbKdABKV8%2BuUxbG97IGRuBVFcZjG%2B5GZYHFlpcFz1k3vNXixYaXdeznrOKalJBGRYXUSEfirQbty2s%2B4MHxdIhrFVR%2BofgMy6CE1L%2Bi%2BYdEJ%2FOWCprKT7ztYTLESgbLClMyUFkCPMRCQrMez9m5JTgucjc3As6mWlgREjxUfu3kHujqG592wydfbaegIRzqcYpAEcXPx2rsBorx9UJn%2BDk1lv97imTpqXVDXQOVDy%2FzEChpJBLPDaysQfBbf2gRKU70k%2Bj5%2BCNtfuavse5A7AJy53sAwusqg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200325T070254Z&X-Amz-SignedHeaders=host&X-Amz-Expires=900&X-Amz-Credential=ASIA6EK222XMPPCNL4OQ%2F20200325%2Fus-west-1%2Fs3%2Faws4_request&X-Amz-Signature=3e6e2b818c4617412e3d094e46e3e05e03691845816f0e994c26da9cdf5a879d' #self.delete_job() r = requests.get(MediaFileURI) #response = r.json() response = json.loads(r.text) #getting the response from the given url self.delete_job() #we have the response, we can delete the job with open("outputs.json") as f: output = json.load(f) f.close() with open("outputs.json", "w") as json_output: #output= json.load(json_output) new_data = { video_name: { "name": video, "video_URI": job_uri, #"transcription_URI": MediaFileURI, #ignored because this is usually a very long name "transcription": self.extract_useful_information(response), } } output["items"].update(new_data) json.dump(output, json_output, indent=4) json_output.close() print("\n") ''' Starts a transciption job for a certain video. TODO: Need to add more security constraints, or everything public is fine for now? ''' def start_job(self, job_uri): transcribe.start_transcription_job( TranscriptionJobName = self.transciption_job_name, Media={'MediaFileUri': job_uri}, MediaFormat='mp4', LanguageCode='en-US', Settings = { "MaxSpeakerLabels": 2, "ShowSpeakerLabels": True, } ) # Useful for when a transcription is suddenly stopped, and we are not allowed to do # any other job because the name is already taken def delete_job(self): transcribe.delete_transcription_job( TranscriptionJobName= self.transciption_job_name ) print("deleted job with name {}".format(self.transciption_job_name)) ''' segments: a dictionarly that maps each speaker label to a list of the times that this speaker talked Returns a mapping from each interval (start, end) to the speaker label that happened during that time. ''' @staticmethod def get_interval_to_speaker_label(segments): interval_to_speaker = dict() for speaker_n in range(len(segments)): all_items = segments[speaker_n]["items"] for interval in all_items: start = interval["start_time"] end = interval["end_time"] speaker_label = interval["speaker_label"] interval_to_speaker[(start, end)] = speaker_label return interval_to_speaker ''' Converts a response from AWS Transcribe into a (maybe) more readable version of it. It returns a dictionary with the following keys, values: - "num_speakers" -> The number of speaker determined by AWS. Defaults to "undetermined" if none were found. - "transcripts" -> The complete transcript of the video. - "items" -> a list of dictionaries, where each item represents one word said, and it has info about the start_time, end_time, speaker_label and the text used for such word. ''' def extract_useful_information(self, response_dict): transcripts = response_dict["results"]["transcripts"] items = response_dict["results"]["items"] if "speaker_labels" not in response_dict["results"]: # when AWS doesnt detect speakers. This *usually* means return { # that there is no transcript detected either. "num_speakers": "undetermined", "transcripts": transcripts, "items": items, } speaker_labels = response_dict["results"]["speaker_labels"] num_speakers = speaker_labels["speakers"] interval_to_label = self.get_interval_to_speaker_label(speaker_labels["segments"]) timestamps_with_speaker_labels = [] for item in items: ## item is a dict for a particular timestamp if (item['type'] == "pronunciation"): #ignoring punctuation start = item["start_time"] end = item["end_time"] try: speaker_label = interval_to_label[(start, end)] item_copy = item.copy() item_copy["speaker_label"] = speaker_label #just adding this new key of the "item" dictionary timestamps_with_speaker_labels.append(item_copy) except: print("Didnt find {} as a valid timestamp!".format((start, end))) ## now timestamps_with_speaker_labels is a list of all the relevant info ### #TODO: sort them by the (start, end) return { "num_speakers": num_speakers, "transcript": transcripts, "items": timestamps_with_speaker_labels } ''' Extracts the name of a video. "example.mp4" --> "example" ''' def get_video_name(self, video): return video.split(".")[0] ''' Updates a certain video to our designed bucket. The video can be found in the directory video_folder_name/filename Filename includes the .mp4 extension. ''' def upload_video(self, filename): upload_file(self.bucket_name , self.video_folder_name, filename) ''' Helper method to update the outputs.json file with the videos found in self.video_folder_name If lazy_update = True, then it will only update the file with the elements that dont already exist. If not, then it will update the complete json file with all videos available. Assumes that all videos are mp4 files. ''' def update_output_json(self, lazy_update = False): #by default this is gonna do everything again with open("outputs.json") as f: output = json.load(f) f.close() for filename in os.listdir(self.video_folder_name): if (lazy_update and self.get_video_name(filename) in output["items"].keys()): print("lazy_update is True and the filename {} already exists in output.json, so we ignore this file.".format(filename)) else: if filename.endswith(".mp4"): #if a video print("uploading file {}...".format(filename)) upload_file(self.bucket_name , self.video_folder_name, filename) #uploading file to our bucket self.get_transcription(filename) #updates output.json print("done updating the json of the video: {}\n".format(filename)) else: print("not an .mp4 file! : {}. Ignoring :/ \n".format(filename)) if __name__ == "__main__": p = Project() ### updating the json file ####### p.update_output_json(lazy_update=True) #p.upload_video("clip-42.mp4") #p.get_transcription("clip-54.mp4") # with open("outputs.json", "r") as transcript: # pprint.pprint(json.load(transcript))
ef47575bb0a287208ee8f7a68519ff8275a7a1ac
14615571ee476a8c074832da94bc373ef92fd31c
/tdn.py
1ad57c6507c3fb40ed0ce6ec4e4e494397676aeb
[]
no_license
Maestro-Zacht/utilities_ghia
5b341c3226119c3b85164cc2e47eb6713756e484
6b8c5e16cd0d4a2f9d668b970778bc381693678f
refs/heads/master
2022-12-14T20:35:48.260443
2020-09-02T13:59:37
2020-09-02T13:59:37
291,035,644
0
0
null
null
null
null
UTF-8
Python
false
false
986
py
from math import sqrt elenco_numeri_primi = [] numeri_primi_caricati = False def is_primo(num): for i in range(2, int(sqrt(num)) + 1): if num % i == 0: return False return True def fattorizzazione(num): if not numeri_primi_caricati: with open('D:\\programmazione\\file per path\\utilities_ghia\\ris_feef.txt') as f: for numero in f.readlines(): elenco_numeri_primi.append(int(numero)) numeri_primi_caricati = True fattori = [] for i in elenco_numeri_primi: if num % i == 0: fattori.append([i, 1]) mul = i**2 while num % mul == 0: mul *= i fattori[-1][1] += 1 num //= fattori[-1][0]**fattori[-1][1] if num == 1: break return fattori def phi(num): fatt = fattorizzazione(num) R = 1 for base, esponente in fatt: R *= base**(esponente - 1) * (base - 1) return R
b6e0f50c9cbfc562e8f08c57b09d6864f63b1bc0
8db243a61d43e133aac01a67294d26df3381a8f5
/Tree/AE_BST_Find_Closest_Value.py
362a28df3347e842a7bd6eaa7cdd8b1aeacadff0
[]
no_license
Jyoti1706/Algortihms-and-Data-Structures
ccdd93ad0811585f9b3e1e9f639476ccdf15a359
3458a80e02b9957c9aeaf00bf691cc7aebfd3bff
refs/heads/master
2023-06-21T18:07:13.419498
2023-06-16T17:42:55
2023-06-16T17:42:55
149,984,584
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
# This is the class of the input tree. Do not edit. import math class BST: def __init__(self, value): self.value = value self.left = None self.right = None def findClosestValueInBst(tree, target): # Write your code here. diff = math.inf if tree.value == target: return target if target > tree.value : findClosestValueInBst(tree.right, target)
613939625c016e2ed72cd4b6885baa6b413b8c7e
5946112229fe1d9a04b7536f076a656438fcd05b
/dev_env/lib/python3.8/site-packages/pygments/styles/rrt.py
2b1908794c8703c74074b3c356e1d1022988809b
[]
no_license
Gear-Droid/openCV_study_project
3b117967eb8a28bb0c90088e1556fbc1d306a98b
28c9a494680c4a280f87dd0cc87675dfb2262176
refs/heads/main
2023-05-14T14:27:42.284265
2021-06-05T00:16:09
2021-06-05T00:16:09
307,807,458
0
1
null
null
null
null
UTF-8
Python
false
false
885
py
# -*- coding: utf-8 -*- """ pygments.styles.rrt ~~~~~~~~~~~~~~~~~~~ pygments "rrt" theme, based on Zap and Emacs defaults. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Comment, Name, Keyword, String class RrtStyle(Style): """ Minimalistic "rrt" theme, based on Zap and Emacs defaults. """ background_color = '#000000' highlight_color = '#0000ff' styles = { Comment: '#00ff00', Name.Function: '#ffff00', Name.Variable: '#eedd82', Name.Constant: '#7fffd4', Keyword: '#ff0000', Comment.Preproc: '#e5e5e5', String: '#87ceeb', Keyword.Type: '#ee82ee', }
5c0afd4b948ed839e06840db0f25384ad08fef7f
92661a6d27ac816b4227204bb66b3cb4bde21054
/primenumbers.py
2874e0dc40d038b59decab2fdb29bb737b0f1140
[]
no_license
masonbot/Wave-3
02d244565033d07eb6bb0454c2fbca1c99cac8ca
b6ecc8c68da6d680d94db87e28becfee5c4992ed
refs/heads/master
2022-08-06T16:32:39.849975
2020-05-20T22:34:56
2020-05-20T22:34:56
261,534,782
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
def integer(n): if (n==1): return False elif (n==2): return True; else: for x in range(2,n): if(n % x==0): return False return True print(integer(int(input("Insert integer: "))))
a8406818db1d2c025ee9daacb525168889da4d61
454f2125c2d49b6be8113e756f5f68fd75678b84
/effectivePython/tap7/tap7_2.py
61d678c925d65d1a2bf6c9c2344e8c856f0d05ff
[]
no_license
JackLovel/excuise-
c8a6977c96b8d6e41a937212f8e7dfc606328b4b
60418044c9387868043982c071ea1365b0d24057
refs/heads/master
2021-06-27T17:06:16.708054
2020-10-24T03:27:31
2020-10-24T03:27:31
164,762,577
0
0
null
2020-07-17T01:14:39
2019-01-09T01:27:43
JavaScript
UTF-8
Python
false
false
179
py
chile_ranks = {'ghost': 1, 'habanero': 2, 'cayenne': 3} rank_dict = {rank: name for name, rank in chile_ranks.items()} chile_len_set = {len(name) for name in rank_dict.values()}
703af6d3a3cd3e56e504a86f62c96136cac18b77
d941938417bab130154c78f732606daa7b107e4a
/testing_runtime/web/modules.py
5fa49e68e735185df2dcf8c001a735ef8ec2370a
[]
no_license
skliarpawlo/ganymede
abc8c7fac03b51a41cf92efacdf4170dd271d890
3a847635634d383d01dbeb70ef969202b0b7a8c9
refs/heads/master
2016-09-07T18:55:51.680687
2013-11-01T15:18:25
2013-11-01T15:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,315
py
# coding: utf-8 from decorators import html from django.shortcuts import render_to_response from django.http import HttpResponse from django.template import RequestContext from django.utils.translation import ugettext as _ from testing_runtime import models import json from core import db import traceback def verify_module(module_id=None,code=None) : errors = [] try : dc = {} exec code in dc except : errors.append( u'exec модуля рыгнул exception: {0}'.format(traceback.format_exc().decode('utf-8')) ) return errors def gather_modules_info() : res = [] all = db.session.query( models.Module ).all() for m in all : res.append( { "module_id" : m.module_id, "name" : m.name, "path" : m.path } ) return res def list_modules( request ) : title = html.title( [ _('Modules'), 'Ganymede' ] ) modules = gather_modules_info() return render_to_response( 'modules/list.html', { "modules" : modules, 'title' : title }, context_instance=RequestContext(request) ) def add_module(request) : title = html.title( [ _('Add module'), _('Modules'), 'Ganymede' ] ) if request.method == 'POST' : err = verify_module( module_id=None, code=request.POST['code'] ) if len(err) == 0 : name = request.POST['name'] code = request.POST['code'] path = request.POST['path'] test = models.Module( name=name, path=path, code=code ) db.session.add( test ) json_resp = json.dumps( { "status" : "ok" } ) return HttpResponse(json_resp, mimetype="application/json") else : json_resp = json.dumps( { "status" : "error", "content" : err } ) return HttpResponse(json_resp, mimetype="application/json") else : return render_to_response( 'modules/add.html', { 'title' : title }, context_instance=RequestContext(request) ) def update_module(request, module_id) : title = html.title( [ _('Update module'), _('Modules'), 'Ganymede' ] ) module = db.session.query( models.Module ).get( module_id ) if request.method == 'POST' : err = verify_module( module_id=None, code=request.POST['code'] ) if len(err) == 0 : module.name = request.POST['name'] module.code = request.POST['code'] module.path = request.POST['path'] json_resp = json.dumps( { "status" : "ok" } ) return HttpResponse(json_resp, mimetype="application/json") else : json_resp = json.dumps( { "status" : "error", "content" : err } ) return HttpResponse(json_resp, mimetype="application/json") else : return render_to_response( 'modules/update.html', { 'title' : title, 'module' : module }, context_instance=RequestContext(request) ) def remove_module(request) : if request.method == 'POST' : module = db.session.query( models.Module ).get( int(request.POST[ "module_id" ]) ) db.session.delete( module ) json_resp = json.dumps( { "status" : "ok" } ) return HttpResponse(json_resp, mimetype="application/json")
6b04ea00f8344a41a4c7af569e7ecea8d405d265
dd00da0254875c877a35a59ae372391484a9631c
/ngo_app_code/helpers.py
309f36088ce1a62bcfc25b5fe03112e9d0f1b8ff
[]
no_license
disissaikat/cfc_2020
9da8476f0eb26946b2d5fd1e63191e44573e8ab2
8222f9d1f6a8ba66190cf0dce19f9a5f15ebe789
refs/heads/master
2022-11-21T11:37:58.781244
2020-07-30T16:05:26
2020-07-30T16:05:26
282,971,756
1
0
null
null
null
null
UTF-8
Python
false
false
677
py
username_helper = """ MDTextField: hint_text: "Enter Phone Number" pos_hint: {'center_x':0.5, 'center_y':0.6} size_hint_x: None width: 200 max_text_length: 10 required: True icon_right: "cellphone" icon_right_color: app.theme_cls.primary_color """ password_helper = """ MDTextField: password: True hint_text: "Enter Password" pos_hint: {'center_x':0.5, 'center_y':0.5} helper_text: "Click Forgot Password if you do not remember it" helper_text_mode: "on_focus" size_hint_x: None width: 200 required: True icon_right: "cellphone-key" icon_right_color: app.theme_cls.primary_color """
3681c80ec59ac350c54b44f44a5944f4e755ddaa
2cbcfb9b9046ac131dc01a6fd048b6920d29cd42
/57. 插入区间.py
4b791d583f9803e977bfe4e1c5a3179d6edf7b92
[]
no_license
pulinghao/LeetCode_Python
6b530a0e491ea302b1160fa73582e838338da3d1
82ece6ed353235dcd36face80f5d87df12d56a2c
refs/heads/master
2022-08-12T21:19:43.510729
2022-08-08T03:04:52
2022-08-08T03:04:52
252,371,954
2
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
#!/usr/bin/env python # _*_coding:utf-8 _*_ """ @Time :2020/11/4 8:26 下午 @Author :[email protected] @File :57. 插入区间.py @Description : """ class Solution(object): def insert(self, intervals, newInterval): """ :type intervals: List[List[int]] :type newInterval: List[int] :rtype: List[List[int]] """ res = [] i = 0 # 1.先找到需要合并的位置 while i < len(intervals) and intervals[i][1] < newInterval[0]: res.append(intervals[i]) i += 1 # 2. 合并区间 while i < len(intervals) and intervals[i][0] <= newInterval[1]: newInterval[0] = min(newInterval[0],intervals[i][0]) newInterval[1] = max(newInterval[1],intervals[i][1]) i += 1 res.append(newInterval) while i < len(intervals): res.append(intervals[i]) i += 1 return res if __name__ == '__main__': intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]] newInterval = [4,8] print Solution().insert(intervals,newInterval)
f658dece9539cbce28833455e98d4617eab50735
88084a0735b6f10081b2367f27c8c598f350c269
/dev/ucb.py
600aef995bac446c3e00bb767db8c2afccaba2f8
[]
no_license
xnie/cMLE-debias
ceb2eef7a5f99c2264bb7b915708d1d31923adfc
16adc22b57c8ed5b39dda8c8a376e94840074621
refs/heads/master
2021-05-06T02:21:29.809063
2017-12-17T07:09:08
2017-12-17T07:09:08
114,514,961
6
0
null
null
null
null
UTF-8
Python
false
false
6,472
py
import math import pdb import random import copy import numpy as np from debias import CD, payoff_matrix def ucb(scen, greedy=False, lil_ucb=False, egreedy=False, rand=None, alpha=9, beta=1, lil_epsilon=0.01, greedy_epsilon=0.05, delta=0.005, gumbel_t_varies=False, held=False): # scen: a list of reward distr # rand: randomization noise generator num_actions = len(scen) payoff_sums = np.zeros(num_actions) payoff_sums_held = np.zeros(num_actions) num_pulls = np.zeros(num_actions, dtype=np.int8) num_pulls_held = np.zeros(num_actions, dtype=np.int8) ucbs = np.zeros(num_actions) debiaser = ucb_sgd(scen) if egreedy: debiaser.set_eps(greedy_epsilon) # initialize empirical sums for t in range(num_actions): payoff_sums[t] = scen[t].get_reward() payoff_sums_held[t] = payoff_sums[t] num_pulls[t] += 1 num_pulls_held[t] += 1 debiaser.update(t, payoff_sums[t], 0, ucbs) ind_sample = True yield t, payoff_sums[t], num_pulls, payoff_sums, ucbs, debiaser, num_pulls_held, payoff_sums_held, ind_sample t = num_actions last_action = None while True: if held and last_action is not None: action = last_action ind_sample = True last_action = None else: ind_sample = False if greedy or egreedy: ucbs_bound = np.zeros(num_actions) else: ucbs_bound = np.array([scen[i].get_upper_bound(t, num_pulls[i], lil_ucb, alpha, beta, lil_epsilon, delta) for i in range(num_actions)]) ucbs = np.array([payoff_sums[i] / num_pulls[i] + ucbs_bound[i] for i in range(num_actions)]) if rand: if gumbel_t_varies: ucbs += rand.rvs(size=num_actions) / np.sqrt(t) else: ucbs += rand.rvs(size=num_actions) mx = max(ucbs) all_maxes = [i for i in range(num_actions) if ucbs[i] == mx] if egreedy: if random.random() < greedy_epsilon: action = random.choice(range(num_actions)) else: action = random.choice(all_maxes) else: action = random.choice(all_maxes) last_action = action reward = scen[action].get_reward() if not held or (held and not ind_sample): num_pulls[action] += 1 payoff_sums[action] += reward else: num_pulls_held[action] += 1 payoff_sums_held[action] += reward if rand: if gumbel_t_varies: scale = rand.kwds["scale"] / np.sqrt(t) else: scale = rand.kwds["scale"] else: scale = 0 debiaser.update(action, reward, scale, ucbs_bound) yield action, reward, num_pulls, payoff_sums, ucbs_bound, debiaser, num_pulls_held, payoff_sums_held, ind_sample t = t + 1 class ucb_sgd(CD): """ This is a subclass of CD that implements the SGD for UCB type bandit algorithms """ def __init__(self, scen): CD.__init__(self, scen) # The UCB bounds are specific to UCB algorithms self.ucb_bounds = [] def set_eps(self, epsilon): self._eps = epsilon def update(self, action, reward, rand_scale, extra): """ extra: ucb_bounds """ CD.update(self, action, reward, rand_scale) self.ucb_bounds.append(extra) def get_decision_stat(self): """ add the ucb bounds to the arm means. X: is the arms averages up to time T """ if not hasattr(self, "X"): raise ValueError("Data matrix self.X is not computed.") self.ucb_upward = np.array(self.ucb_bounds) S = self.decision_stat(self.X) return S def proposal(self, mcmc_stepsize=0.5): """ The proposal distribution used for the reward is to add normal distribution with the known variances. """ new = [self.state[t] + mcmc_stepsize * self.scen[a].get_sigma() * np.random.standard_normal()\ for t, a in enumerate(self.choices)] X_new, _ = payoff_matrix(self.num_actions, self.choices, new) S_new = self.decision_stat(X_new) ll_new = self.log_likelihood(new, self.choices, self.hmu) if hasattr(self, "_eps"): ll_S_new = self.eps_log_likelihood(S_new) else: ll_S_new = self.softmax(S_new) grad = self.log_likelihood_gradient(X_new[-1,:], self.hmu) return new, ll_new, ll_S_new, grad, 0 def set_state(self, reward, grad): self.state = copy.deepcopy(list(reward)) self.state_grad = copy.deepcopy(grad) def init_sampler(self): self.total, self.accept = 0, 0 self.ll = self.log_likelihood(self.rewards, self.choices, self.hmu) if hasattr(self, "_eps"): self.ll_S = self.eps_log_likelihood(self.S) else: self.ll_S = self.softmax(self.S) # gradient evaluated on the data at last iteratio of hmu self.data_grad = self.log_likelihood_gradient(self.X[-1,:], self.hmu) self.ll_pos = 0 # initialize the state to the data self.set_state(self.rewards, self.data_grad) def decision_stat(self, X): if not hasattr(self, "ucb_upward"): raise ValueError("self.ucb_upward does not exist!") S = np.zeros(X.shape) T = S.shape[0] # total rounds start = S.shape[1] # time to start making decisions based on data for t in range(start, T): # the decision statistic at round t is the sums of # PREVIOUS means and UCB bounds at current time. S[t,:] = X[(t-1),:] + self.ucb_upward[t,:] return S def eps_log_likelihood(self, S): ll_S = 0 for t, action in enumerate(self.choices): if t >= self.num_actions: if self.scales[t] == 0: ll_S += np.log((1-self._eps) + self._eps / self.num_actions) if action == np.argmax(S[t,:]) else np.log(self._eps / self.num_actions) else: ll_S += np.log((1-self._eps) * np.exp(S[t, action] / self.scales[t]) / np.exp(S[t, :] / self.scales[t]).sum() + self._eps / self.num_actions) return ll_S
b25e6e9b2e19fe92e8f056172956ab4e7ce1587e
aae858329f9fe013cbd3d4d86f5608314f57f170
/private_rest_api/rest_api/sawtooth_rest_api/protobuf/state_context_pb2.py
d700f1d5541293d2b95ae2ef45f8fe5bfc2e5755
[ "LicenseRef-scancode-proprietary-license", "Apache-2.0", "LicenseRef-scancode-openssl", "OpenSSL", "MIT", "Zlib", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
b2lead/private-transaction-families
8c4abc8f30c5ba26e9f431911d06c9dd6ff4e0d3
2a52b430a947dc8e39ed4fcf664a44176f0547e3
refs/heads/master
2020-09-27T21:58:44.401120
2019-12-09T12:39:27
2019-12-09T12:39:27
226,619,397
0
0
Apache-2.0
2019-12-08T05:27:58
2019-12-08T05:27:57
null
UTF-8
Python
false
true
23,078
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: state_context.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from . import events_pb2 as events__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='state_context.proto', package='', syntax='proto3', serialized_pb=_b('\n\x13state_context.proto\x1a\x0c\x65vents.proto\"-\n\x0cTpStateEntry\x12\x0f\n\x07\x61\x64\x64ress\x18\x01 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\":\n\x11TpStateGetRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x11\n\taddresses\x18\x02 \x03(\t\"\x9d\x01\n\x12TpStateGetResponse\x12\x1e\n\x07\x65ntries\x18\x01 \x03(\x0b\x32\r.TpStateEntry\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpStateGetResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\"G\n\x11TpStateSetRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x1e\n\x07\x65ntries\x18\x02 \x03(\x0b\x32\r.TpStateEntry\"\x90\x01\n\x12TpStateSetResponse\x12\x11\n\taddresses\x18\x01 \x03(\t\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpStateSetResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\"=\n\x14TpStateDeleteRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x11\n\taddresses\x18\x02 \x03(\t\"\x96\x01\n\x15TpStateDeleteResponse\x12\x11\n\taddresses\x18\x01 \x03(\t\x12-\n\x06status\x18\x02 \x01(\x0e\x32\x1d.TpStateDeleteResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\";\n\x17TpReceiptAddDataRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x03 \x01(\x0c\"{\n\x18TpReceiptAddDataResponse\x12\x30\n\x06status\x18\x02 \x01(\x0e\x32 .TpReceiptAddDataResponse.Status\"-\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\t\n\x05\x45RROR\x10\x02\">\n\x11TpEventAddRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x15\n\x05\x65vent\x18\x02 \x01(\x0b\x32\x06.Event\"o\n\x12TpEventAddResponse\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpEventAddResponse.Status\"-\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\t\n\x05\x45RROR\x10\x02\x42,\n\x15sawtooth.sdk.protobufP\x01Z\x11state_context_pb2b\x06proto3') , dependencies=[events__pb2.DESCRIPTOR,]) _TPSTATEGETRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='TpStateGetResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STATUS_UNSET', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OK', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUTHORIZATION_ERROR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=243, serialized_end=302, ) _sym_db.RegisterEnumDescriptor(_TPSTATEGETRESPONSE_STATUS) _TPSTATESETRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='TpStateSetResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STATUS_UNSET', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OK', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUTHORIZATION_ERROR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=243, serialized_end=302, ) _sym_db.RegisterEnumDescriptor(_TPSTATESETRESPONSE_STATUS) _TPSTATEDELETERESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='TpStateDeleteResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STATUS_UNSET', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OK', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUTHORIZATION_ERROR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=243, serialized_end=302, ) _sym_db.RegisterEnumDescriptor(_TPSTATEDELETERESPONSE_STATUS) _TPRECEIPTADDDATARESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='TpReceiptAddDataResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STATUS_UNSET', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OK', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=879, serialized_end=924, ) _sym_db.RegisterEnumDescriptor(_TPRECEIPTADDDATARESPONSE_STATUS) _TPEVENTADDRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='TpEventAddResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STATUS_UNSET', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OK', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=879, serialized_end=924, ) _sym_db.RegisterEnumDescriptor(_TPEVENTADDRESPONSE_STATUS) _TPSTATEENTRY = _descriptor.Descriptor( name='TpStateEntry', full_name='TpStateEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='address', full_name='TpStateEntry.address', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='TpStateEntry.data', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=37, serialized_end=82, ) _TPSTATEGETREQUEST = _descriptor.Descriptor( name='TpStateGetRequest', full_name='TpStateGetRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='context_id', full_name='TpStateGetRequest.context_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='addresses', full_name='TpStateGetRequest.addresses', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=84, serialized_end=142, ) _TPSTATEGETRESPONSE = _descriptor.Descriptor( name='TpStateGetResponse', full_name='TpStateGetResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='entries', full_name='TpStateGetResponse.entries', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='TpStateGetResponse.status', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TPSTATEGETRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=145, serialized_end=302, ) _TPSTATESETREQUEST = _descriptor.Descriptor( name='TpStateSetRequest', full_name='TpStateSetRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='context_id', full_name='TpStateSetRequest.context_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='entries', full_name='TpStateSetRequest.entries', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=304, serialized_end=375, ) _TPSTATESETRESPONSE = _descriptor.Descriptor( name='TpStateSetResponse', full_name='TpStateSetResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='addresses', full_name='TpStateSetResponse.addresses', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='TpStateSetResponse.status', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TPSTATESETRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=378, serialized_end=522, ) _TPSTATEDELETEREQUEST = _descriptor.Descriptor( name='TpStateDeleteRequest', full_name='TpStateDeleteRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='context_id', full_name='TpStateDeleteRequest.context_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='addresses', full_name='TpStateDeleteRequest.addresses', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=524, serialized_end=585, ) _TPSTATEDELETERESPONSE = _descriptor.Descriptor( name='TpStateDeleteResponse', full_name='TpStateDeleteResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='addresses', full_name='TpStateDeleteResponse.addresses', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='TpStateDeleteResponse.status', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TPSTATEDELETERESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=588, serialized_end=738, ) _TPRECEIPTADDDATAREQUEST = _descriptor.Descriptor( name='TpReceiptAddDataRequest', full_name='TpReceiptAddDataRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='context_id', full_name='TpReceiptAddDataRequest.context_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='TpReceiptAddDataRequest.data', index=1, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=740, serialized_end=799, ) _TPRECEIPTADDDATARESPONSE = _descriptor.Descriptor( name='TpReceiptAddDataResponse', full_name='TpReceiptAddDataResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='TpReceiptAddDataResponse.status', index=0, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TPRECEIPTADDDATARESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=801, serialized_end=924, ) _TPEVENTADDREQUEST = _descriptor.Descriptor( name='TpEventAddRequest', full_name='TpEventAddRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='context_id', full_name='TpEventAddRequest.context_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='event', full_name='TpEventAddRequest.event', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=926, serialized_end=988, ) _TPEVENTADDRESPONSE = _descriptor.Descriptor( name='TpEventAddResponse', full_name='TpEventAddResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='TpEventAddResponse.status', index=0, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TPEVENTADDRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=990, serialized_end=1101, ) _TPSTATEGETRESPONSE.fields_by_name['entries'].message_type = _TPSTATEENTRY _TPSTATEGETRESPONSE.fields_by_name['status'].enum_type = _TPSTATEGETRESPONSE_STATUS _TPSTATEGETRESPONSE_STATUS.containing_type = _TPSTATEGETRESPONSE _TPSTATESETREQUEST.fields_by_name['entries'].message_type = _TPSTATEENTRY _TPSTATESETRESPONSE.fields_by_name['status'].enum_type = _TPSTATESETRESPONSE_STATUS _TPSTATESETRESPONSE_STATUS.containing_type = _TPSTATESETRESPONSE _TPSTATEDELETERESPONSE.fields_by_name['status'].enum_type = _TPSTATEDELETERESPONSE_STATUS _TPSTATEDELETERESPONSE_STATUS.containing_type = _TPSTATEDELETERESPONSE _TPRECEIPTADDDATARESPONSE.fields_by_name['status'].enum_type = _TPRECEIPTADDDATARESPONSE_STATUS _TPRECEIPTADDDATARESPONSE_STATUS.containing_type = _TPRECEIPTADDDATARESPONSE _TPEVENTADDREQUEST.fields_by_name['event'].message_type = events__pb2._EVENT _TPEVENTADDRESPONSE.fields_by_name['status'].enum_type = _TPEVENTADDRESPONSE_STATUS _TPEVENTADDRESPONSE_STATUS.containing_type = _TPEVENTADDRESPONSE DESCRIPTOR.message_types_by_name['TpStateEntry'] = _TPSTATEENTRY DESCRIPTOR.message_types_by_name['TpStateGetRequest'] = _TPSTATEGETREQUEST DESCRIPTOR.message_types_by_name['TpStateGetResponse'] = _TPSTATEGETRESPONSE DESCRIPTOR.message_types_by_name['TpStateSetRequest'] = _TPSTATESETREQUEST DESCRIPTOR.message_types_by_name['TpStateSetResponse'] = _TPSTATESETRESPONSE DESCRIPTOR.message_types_by_name['TpStateDeleteRequest'] = _TPSTATEDELETEREQUEST DESCRIPTOR.message_types_by_name['TpStateDeleteResponse'] = _TPSTATEDELETERESPONSE DESCRIPTOR.message_types_by_name['TpReceiptAddDataRequest'] = _TPRECEIPTADDDATAREQUEST DESCRIPTOR.message_types_by_name['TpReceiptAddDataResponse'] = _TPRECEIPTADDDATARESPONSE DESCRIPTOR.message_types_by_name['TpEventAddRequest'] = _TPEVENTADDREQUEST DESCRIPTOR.message_types_by_name['TpEventAddResponse'] = _TPEVENTADDRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) TpStateEntry = _reflection.GeneratedProtocolMessageType('TpStateEntry', (_message.Message,), dict( DESCRIPTOR = _TPSTATEENTRY, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateEntry) )) _sym_db.RegisterMessage(TpStateEntry) TpStateGetRequest = _reflection.GeneratedProtocolMessageType('TpStateGetRequest', (_message.Message,), dict( DESCRIPTOR = _TPSTATEGETREQUEST, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateGetRequest) )) _sym_db.RegisterMessage(TpStateGetRequest) TpStateGetResponse = _reflection.GeneratedProtocolMessageType('TpStateGetResponse', (_message.Message,), dict( DESCRIPTOR = _TPSTATEGETRESPONSE, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateGetResponse) )) _sym_db.RegisterMessage(TpStateGetResponse) TpStateSetRequest = _reflection.GeneratedProtocolMessageType('TpStateSetRequest', (_message.Message,), dict( DESCRIPTOR = _TPSTATESETREQUEST, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateSetRequest) )) _sym_db.RegisterMessage(TpStateSetRequest) TpStateSetResponse = _reflection.GeneratedProtocolMessageType('TpStateSetResponse', (_message.Message,), dict( DESCRIPTOR = _TPSTATESETRESPONSE, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateSetResponse) )) _sym_db.RegisterMessage(TpStateSetResponse) TpStateDeleteRequest = _reflection.GeneratedProtocolMessageType('TpStateDeleteRequest', (_message.Message,), dict( DESCRIPTOR = _TPSTATEDELETEREQUEST, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateDeleteRequest) )) _sym_db.RegisterMessage(TpStateDeleteRequest) TpStateDeleteResponse = _reflection.GeneratedProtocolMessageType('TpStateDeleteResponse', (_message.Message,), dict( DESCRIPTOR = _TPSTATEDELETERESPONSE, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpStateDeleteResponse) )) _sym_db.RegisterMessage(TpStateDeleteResponse) TpReceiptAddDataRequest = _reflection.GeneratedProtocolMessageType('TpReceiptAddDataRequest', (_message.Message,), dict( DESCRIPTOR = _TPRECEIPTADDDATAREQUEST, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpReceiptAddDataRequest) )) _sym_db.RegisterMessage(TpReceiptAddDataRequest) TpReceiptAddDataResponse = _reflection.GeneratedProtocolMessageType('TpReceiptAddDataResponse', (_message.Message,), dict( DESCRIPTOR = _TPRECEIPTADDDATARESPONSE, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpReceiptAddDataResponse) )) _sym_db.RegisterMessage(TpReceiptAddDataResponse) TpEventAddRequest = _reflection.GeneratedProtocolMessageType('TpEventAddRequest', (_message.Message,), dict( DESCRIPTOR = _TPEVENTADDREQUEST, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpEventAddRequest) )) _sym_db.RegisterMessage(TpEventAddRequest) TpEventAddResponse = _reflection.GeneratedProtocolMessageType('TpEventAddResponse', (_message.Message,), dict( DESCRIPTOR = _TPEVENTADDRESPONSE, __module__ = 'state_context_pb2' # @@protoc_insertion_point(class_scope:TpEventAddResponse) )) _sym_db.RegisterMessage(TpEventAddResponse) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\025sawtooth.sdk.protobufP\001Z\021state_context_pb2')) # @@protoc_insertion_point(module_scope)
4da4aa68a0cd83d1a57b20435439e06bad9395a2
fc6f709f916fcd201938157990c77fa9202eefa7
/model/optimizer.py
4a9ee5afce8f27d52a2e33ea778b94ad326ffc29
[ "MIT" ]
permissive
chenchy/StyleSpeech
441ffd6d71ac0269d205ad66c9536fe00cb5267c
e0e4ad25681f9ecc2a01ba1b87cbe0c59472b792
refs/heads/main
2023-05-27T21:39:04.790584
2021-06-13T10:32:03
2021-06-13T11:26:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,650
py
import torch import numpy as np class ScheduledOptimMain: """ A simple wrapper class for learning rate scheduling """ def __init__(self, model, train_config, model_config, current_step): self._optimizer = torch.optim.Adam( model.parameters(), betas=train_config["optimizer"]["betas"], eps=train_config["optimizer"]["eps"], weight_decay=train_config["optimizer"]["weight_decay"], ) self.n_warmup_steps = train_config["optimizer"]["warm_up_step"] self.anneal_steps = train_config["optimizer"]["anneal_steps"] self.anneal_rate = train_config["optimizer"]["anneal_rate"] self.current_step = current_step self.init_lr = np.power(model_config["transformer"]["encoder_hidden"], -0.5) def step_and_update_lr(self): self._update_learning_rate() self._optimizer.step() def zero_grad(self): # print(self.init_lr) self._optimizer.zero_grad() def load_state_dict(self, path): self._optimizer.load_state_dict(path) def _get_lr_scale(self): lr = np.min( [ np.power(self.current_step, -0.5), np.power(self.n_warmup_steps, -1.5) * self.current_step, ] ) for s in self.anneal_steps: if self.current_step > s: lr = lr * self.anneal_rate return lr def _update_learning_rate(self): """ Learning rate scheduling per step """ self.current_step += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self._optimizer.param_groups: param_group["lr"] = lr class ScheduledOptimDisc: """ A simple wrapper class for learning rate scheduling """ def __init__(self, model, train_config): self._optimizer = torch.optim.Adam( model.parameters(), betas=train_config["optimizer"]["betas"], eps=train_config["optimizer"]["eps"], weight_decay=train_config["optimizer"]["weight_decay"], ) self.init_lr = train_config["optimizer"]["lr_disc"] self._init_learning_rate() def step_and_update_lr(self): self._optimizer.step() def zero_grad(self): # print(self.init_lr) self._optimizer.zero_grad() def load_state_dict(self, path): self._optimizer.load_state_dict(path) def _init_learning_rate(self): lr = self.init_lr for param_group in self._optimizer.param_groups: param_group["lr"] = lr
7208ed98c23ba5ea533900ee0bf6dfbbb82d5a92
bbb89d13318df191b83716ad28633c6dd87147a5
/curso_em_video/mundo_03/ex095.py
d16fa09f866332300e254db544c647cd9c0b08f7
[]
no_license
matheusvictor/estudos_python
50745522d2801fd5e9c2c3307eb251c1f18dcdbd
627c01a5e89192388fb5c34f5fdccbc7a3129d9f
refs/heads/master
2022-10-28T09:00:52.972993
2022-10-06T17:45:28
2022-10-06T17:45:28
192,107,427
5
0
null
2022-10-05T18:09:22
2019-06-15T17:43:49
Python
UTF-8
Python
false
false
2,658
py
lista_jogadores = list() continua = True while continua: nome_jogador = str(input('Nome do jogador: ')) partidas_jogadas = int(input(f'Quantas partidas foram jogadas por {nome_jogador}?: ')) quantidade_gols_partida = list() total_gols = 0 for partida in range(partidas_jogadas): quantidade_gols_partida.append(int(input(f'Quantidade de gols feitos na {partida + 1}ª partida: '))) total_gols += quantidade_gols_partida[partida] estatisticas_jogador = {'nome': nome_jogador, 'partidas_jogadas': partidas_jogadas, 'gols_por_partida': quantidade_gols_partida, 'total_gols': total_gols} lista_jogadores.append(estatisticas_jogador.copy()) estatisticas_jogador.clear() resposta = str(input('Deseja continuar? [S/N]: ')) while resposta not in 'SsNn': resposta = str(input('Opção inválida! Tente novamente [S/N]: ')).upper()[0] if resposta in 'Nn': continua = False break print('-=' * 40) print(f'{"COD":<10}{"NOME":<10}{"GOLS":<10}{"TOTAL":<10}') print('-' * 40) for index, jogador in enumerate(lista_jogadores): print(f'{index:<5}{"":<5}{jogador["nome"]}{"":<10}{jogador["gols_por_partida"]}{"":<10}{jogador["total_gols"]}') print('-' * 40) while True: opcao = int(input('Deseja mostrar os dados de qual jogador? (999 para encerrar o programa): ')) while opcao != 999 and (opcao < 0 or opcao > len(lista_jogadores) - 1): opcao = int(input('Opção inválida! Tente novamente ou digite 999 para encerrar o programa: ')) if opcao <= len(lista_jogadores) - 1: print('-=' * 40) print(f'* Jogador: {lista_jogadores[opcao]["nome"]}.') print(f'* Nº partidas: {lista_jogadores[opcao]["partidas_jogadas"]}.') print(f'* Nº gols/partida: ', end='') if lista_jogadores[opcao]["partidas_jogadas"] == 0: print('Não houve partidas disputadas.') else: for partida in range(lista_jogadores[opcao]["partidas_jogadas"]): print(f'\n - {partida + 1}ª partida = {lista_jogadores[opcao]["gols_por_partida"][partida]} gol(s)') print(f'* Total de gol(s): {lista_jogadores[opcao]["total_gols"]}.') print('-=' * 40) elif opcao == 999: break print('Programa encerrado!') # print('-=' * 20) # print(f'O jogador {estatisticas_jogador["nome"]} jogou {estatisticas_jogador["partidas_jogadas"]} partida(s).') # for i, v in enumerate(estatisticas_jogador['gols_por_partida']): # print(f'Na {i + 1}ª partida fez {v} gol(s)') # print(f'Foi um total de {estatisticas_jogador["total_gols"]} gol(s)!') # print('-=' * 20)
9ebd7cc9e4666b0fb2c0d367f8dc2c3e0cea1522
bd5240c87cd9699cae088395cac180276210566f
/Day2/day2part2.py
83131ed0c1ff569d573e398610498f7e91b6236d
[]
no_license
GruberQZ/AoC-2016
decb15665b409be8fa57576f1d72aea1834ce98a
377ae2557225bdd61c19adcf72fed549ba363d56
refs/heads/master
2020-06-15T23:23:34.827074
2017-06-22T02:31:06
2017-06-22T02:31:06
75,258,578
0
0
null
null
null
null
UTF-8
Python
false
false
1,648
py
file = open('input.txt','r') password = '' cannotMoveLeft = [1,2,5,10,13] cannotMoveRight = [1,4,9,12,13] cannotMoveUp = [1,2,4,5,9] cannotMoveDown = [5,9,10,12,13] for line in file: # Starting number number = 5 # Go character by character for char in line: if char == 'U': if number not in cannotMoveUp: if number in [3,13]: number = number - 2 elif number in [6,7,8]: number = number - 4 elif number in [10,11,12]: number = number - 4 elif char == 'D': if number not in cannotMoveDown: if number in [1,11]: number = number + 2 elif number in [2,3,4]: number = number + 4 elif number in [6,7,8]: number = number + 4 elif char == 'R': if number not in cannotMoveRight: number = number + 1 elif char == 'L': if number not in cannotMoveLeft: number = number - 1 # Add character to the password string password = password + str(number) + ',' # Decode password split = password.split(',') finalPass = '' for char in split: if char != '': if int(char) < 10: finalPass = finalPass + char elif char == '10': finalPass = finalPass + 'A' elif char == '11': finalPass = finalPass + 'B' elif char == '12': finalPass = finalPass + 'C' elif char == '13': finalPass = finalPass + 'D' print(finalPass)
d950e9415f72c06a87c46adf8103dce0dae9f4fb
df52429f63a1983ec725fe1197edad77f0504d7d
/Python_Study/BUPT_homework/spider/test1/test1/spiders/spider.py
01613d207c0938b0c8b4c97eb3e26f10446594ab
[]
no_license
StupidRabbit29/Python_Practice
38b16baa7ecd4bd6f0bbd4840f37ba565c387857
0f7c43026410b4b7f07a9a266b2cf885de5d53b9
refs/heads/master
2020-05-31T07:26:32.631067
2019-12-05T11:19:26
2019-12-05T11:19:26
190,165,619
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
import scrapy from test1.items import MyItem class mySpider(scrapy.spiders.Spider): name = "xuetang" # 爬虫名称 allowed_domains = ["www.xuetangx.com/"] # 允许爬取的网站域名 start_urls = ["http://www.xuetangx.com/partners"] # 初始URL def parse(self, response): # 解析爬取的内容 item = MyItem() # 生成一个MyItem对象,接收爬取的数据 # 一共爬取143所大学的课程信息 for i in range(1, 144): item['university'] = response.xpath("/html/body/article[1]/section/ul/li[{}]" "/a/div[1]/span/img/@title".format(i)).extract() item['classnum'] = response.xpath("/html/body/article[1]/section/ul/li[{}]" "/a/div[2]/p/text()".format(i)).extract() if item['university'] and item['classnum']: # 去掉空值 yield(item)
56a09542f43d048bd4db774cddb2d81219f39b2a
99124299af27232720ad19df377cb90c20f514bb
/Ending_Animation.py
14eba34dfb108cc562dcd4bdd87915b78266901a
[]
no_license
senweim/JumpKingAtHome
7a2ae684fafffa1f910c68d8b02ea98e4e900ed6
6c3d1a7ba9246181b89e67b1f4857df99c85fa01
refs/heads/master
2023-01-12T15:01:31.174697
2020-11-10T06:49:45
2020-11-10T06:49:45
311,570,473
14
5
null
null
null
null
UTF-8
Python
false
false
5,129
py
#!/usr/bin/env python # # # # import pygame import os import sys import math class Ending_Animation: def __init__(self): self.end_counter = 0 self.end_pan = (-90, 90) self.stall_x = 240 self.stall_y = 220 self.channel = pygame.mixer.Channel(1) self.ending_music = pygame.mixer.Sound("Audio\\Misc\\ending.wav") self.end_image = pygame.image.load("images\\sheets\\imagecrown.png").convert() def update(self, level, king, babe): king_command = None babe_command = None if self.move_screen(level, king, babe): if self.end_counter < 50: pass elif self.end_counter == 50: babe_command = "Crouch" elif self.end_counter < 60: pass elif self.end_counter == 60: babe_command = "Jump" elif self.end_counter <= 120: pass elif self.end_counter <= 150: babe_command = "WalkLeft" elif self.end_counter <= 175: babe_command = "Kiss" elif self.end_counter <= 190: level.flyer.active = True elif self.end_counter <= 205: king_command = "LookUp" babe_command = "WalkRight" elif 330 <= self.end_counter < 360: king_command = "Crouch" elif self.end_counter == 360: king_command = "Jump" elif self.end_counter <= 420: if king.y <= level.flyer.rect.bottom: king.isWearingCrown = True king.rect_y = level.flyer.rect.bottom + (king.y - king.rect_y - 7) king_command = "Freeze" if self.end_counter == 360: level.flyer.channel.play(level.flyer.audio) elif self.end_counter <= 460: level.flyer.active = False elif self.end_counter <= 500: king.isHoldingUpHands = True elif self.end_counter == 501: king.isSnatch = True elif self.end_counter == 502: king.isSnatch = False king.isHoldingBabe = True babe_command = "Snatched" babe.channel.play(babe.audio["babe_pickup"]) elif self.end_counter <= 670: king_command = "WalkLeft" elif self.end_counter <= 730: pass elif self.end_counter <= 820: if self.end_counter == 731: babe.channel.play(babe.audio["babe_surprised2"]) self.scroll_screen(level, king) king_command = "WalkRight" king.update(king_command) elif self.end_counter <= 850: self.scroll_screen(level, king) king_command = "Crouch" elif self.end_counter == 851: babe.channel.play(babe.audio["babe_jump"]) self.scroll_screen(level, king) king_command = "JumpRight" elif self.end_counter <= 1700: self.scroll_screen(level, king) if self.end_counter == 930: king.channel.play(king.audio["Land"]["king_jump"]) if self.end_counter > 1000: king.isAdmiring = True if self.end_counter == 1100: babe.channel.play(babe.audio["babe_mou"]) if self.end_counter > 1200: king.isAdmiring = False else: if self.end_counter > 3000: sys.exit() return True self.end_counter += 1 king.update(king_command) babe.update(king, babe_command) def scroll_screen(self, level, king): if king.rect_x > self.stall_x: rel_x = self.stall_x - king.rect_x king.rect_x += rel_x if level.midground: level.midground.x += rel_x if level.props: for prop in level.props: prop.x += rel_x if level.npc: level.npc.x += rel_x if level.foreground: level.foreground.x += rel_x if level.platforms: for platform in level.platforms: platform.x += rel_x if king.rect_y > self.stall_y: rel_y = self.stall_y - king.rect_y if self.stall_y > level.screen.get_height() / 2: self.stall_y -= 2 king.rect_y += rel_y if level.midground: level.midground.y -= math.sqrt(abs(rel_y)) if level.props: for prop in level.props: prop.y -= math.sqrt(abs(rel_y)) if level.npc: level.npc.y -= math.sqrt(abs(rel_y)) if level.foreground: level.foreground.y -= math.sqrt(abs(rel_y)) if level.platforms: for platform in level.platforms: platform.y -= math.sqrt(abs(rel_y)) def move_screen(self, level, king, babe): if self.end_pan[0] != 0 or self.end_pan[1] != 0: try: x = self.end_pan[0]/abs(self.end_pan[0]) except ZeroDivisionError: x = 0 try: y = self.end_pan[1]/abs(self.end_pan[1]) except ZeroDivisionError: y = 0 if level.midground: level.midground.x += x level.midground.y += y if level.props: for prop in level.props: prop.x += x prop.y += y if level.npc: level.npc.x += x level.npc.y += y if level.foreground: level.foreground.x += x level.foreground.y += y if level.platforms: for platform in level.platforms: platform.x += x platform.y += y king.rect_x += x king.rect_y += y babe.rect_x += x babe.rect_y += y self.end_pan = (self.end_pan[0] - x, self.end_pan[1] - y) return False else: return True def update_audio(self): try: if not self.channel.get_busy(): self.channel.play(self.ending_music) except Exception as e: print("ENDINGUPDATEAUDIO ERROR: ", e) def blitme(self, screen): screen.blit(self.end_image, (0, 0))
0593545ee04a253e13349dd65da2311fddaf8735
6ec7a7b7bec26ae583ac0c1a29cffeb3875a6887
/learning_sites/basic_app/migrations/0002_auto_20190818_0321.py
a04ffe511222640813a7144448465ae87fde86c7
[]
no_license
MuhammadAhmedSiddiqui/Django-Deployment-Example
048420d562b5eb85562a8cf85efbaf7dcffd1082
fcef550ac6fa2d9986dfc2483f094f19294446a7
refs/heads/master
2021-07-10T20:24:32.377185
2019-08-18T21:02:06
2019-08-18T21:02:06
203,053,430
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
# Generated by Django 2.2.1 on 2019-08-17 22:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('basic_app', '0001_initial'), ] operations = [ migrations.AlterField( model_name='userprofileinfo', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL), ), ]
e3dc9fa2d3b12729be5417ea7d8dcfe2a1af40f1
57b639ef18f16cad499f56e74694b8109a2370e0
/IPN/__init__.py
cce32ae0f6274de65ccc173fe06ba3112e256a90
[]
no_license
Cranbaerry/RainyCogs
7eaf3e77650b2ea0393099f1507bf874b6888114
13d49439703731b3d705458b1f14c8af1677c3b0
refs/heads/master
2023-08-16T02:56:46.771142
2021-09-15T14:11:46
2021-09-15T14:11:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from .IPN import IPN def setup(bot): n = IPN(bot) bot.add_cog(n)
fbfcb0f207218d893dde5197920947a501840b4e
bebde3481cc5cae5c29d40e7492344dfc1cea388
/main.py
13c0f23cb3147c165b1fc90e44410804b686f484
[]
no_license
erichadley8/headless-firefox
dac87659569d63ad77f6a024303f745a15d02be8
198ebb2c954fe840de0ebf4823682e68ec772f8a
refs/heads/master
2023-01-18T17:55:31.575480
2020-12-01T02:18:25
2020-12-01T02:18:25
317,334,635
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
import os import datetime from colorama import Fore, Back from selenium import webdriver from selenium.webdriver.firefox.options import Options while True: try: ### Firefox Parameters executable_path = os.getcwd() + "/geckodriver" ### Firefox Options options = Options() options.headless = True ### Proxy Configuration ''' proxy = "34.203.142.175:80" webdriver.DesiredCapabilities.FIREFOX['proxy'] = { "httpProxy": proxy, "ftpProxy":proxy, "sslProxy":proxy, "proxyType":"MANUAL", } ''' ### Firefox Webdriver browser = webdriver.Firefox(options=options, executable_path=executable_path) ### Webdriver Logic browser.get('http://www.porngifs.xyz/') print(Fore.GREEN + browser.page_source) ### Popunder body = browser.find_element_by_tag_name("body") body.click() browser.save_screenshot("popunder.png") print(Fore.CYAN + "Clicked for popunder") ct = datetime.datetime.now() print("current time:-", ct) browser.switch_to.window(browser.window_handles[1]) print("Switched back from popunder") ct = datetime.datetime.now() print("current time:-", ct) ### Ads print(Fore.YELLOW + "Getting ads and clicking ads") ct = datetime.datetime.now() print("current time:-", ct) elements = browser.find_elements_by_tag_name('iframe') for element in elements: try: if "jads" in element.get_attribute("src"): try: element.click() print("Clicked " + str(element)) ct = datetime.datetime.now() print("current time:-", ct) except: print("Failed to click " +str(element)) ct = datetime.datetime.now() print("current time:-", ct) except: print("Element detached from dom") page = 1 print(Fore.RED + "Closing ads and tabs") ct = datetime.datetime.now() print("current time:-", ct) try: for tab in browser.window_handles: try: browser.switch_to.window(tab) browser.save_screenshot(str(page) + "_page.png") browser.close() print("Closed " + str(tab)) ct = datetime.datetime.now() print("current time:-", ct) page = page + 1 except: print("Failed to close") ct = datetime.datetime.now() print("current time:-", ct) except: print("Failed to close all tabs") finally: try: browser.quit() except: pass
7a264a8db4f4e8e02988b7289dd89107a02032e9
a30d505835c2376634279488878811eacc2de056
/landing_page/views.py
58d90cb2b886c86b6f4311194f888892ca78399c
[]
no_license
Aim-Entity/journalist-web
d996419b1177ea1405a9f45ff405c7502c721673
8deef8254c7823c6afd713fba36f2d73a9840412
refs/heads/master
2023-04-27T23:50:24.997849
2020-03-29T15:16:11
2020-03-29T15:16:11
251,063,144
0
0
null
2023-04-21T20:51:06
2020-03-29T15:18:03
HTML
UTF-8
Python
false
false
110
py
from django.shortcuts import render def index(request): return render(request, "landing/index.htm", {})
2e43f3798da5e37da76cc29d9895006b9acebf33
71baccb6082a2324ba9dc7d66dbc2ad04d4d5ff3
/complaint/views.py
8c7c5d048c0ebb203e34127e0cd6f9d45dc0d066
[]
no_license
pradyumnamahajan52/SVPCET-Hackathon-The-Hack-Backpackers-02
60eec408fd5f290f079b85b5c4982aac52dbd366
2c4df3ece041a0494c98d920c9538f01464d3c48
refs/heads/main
2023-01-12T01:19:41.794920
2020-11-08T05:15:15
2020-11-08T05:15:15
330,423,482
1
0
null
2021-01-17T15:33:13
2021-01-17T15:33:13
null
UTF-8
Python
false
false
535
py
from django.shortcuts import render from .models import Complaint_Category,Complaint_Subcategory,Complaint_User from user.models import Users # Create your views here. def user_solver(request): complaint_subcategory = Complaint_Subcategory.objects.get(solver_role=request.user.user_role) complaint_user = Complaint_User.objects.filter(complaint_subcategory=complaint_subcategory,is_otp_verify=True).all() params = { 'complaint_user':complaint_user, } return render(request,'user/user_solver.html',params)
46eb00aff3aeab2753beda53a5752b341bbe772b
3d308edef9d4f9feead0e024f08d45c00a45de95
/07_files/task_7_3b_script.py
dddc81ba98ff91185428ea3cf56181a0cfa39ec6
[]
no_license
noatre/pyneng
86ac9ff6cce16eef5e418d93e296a6255843b984
0b29d811fbae1bef9e0a3972f12edc82c7de52e0
refs/heads/master
2020-04-22T15:49:07.228343
2019-03-20T17:28:21
2019-03-20T17:28:21
170,488,747
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
#!/usr/bin/env python3 vlan_input = input('Enter VLAN number: ') mac_list = [] with open('CAM_table.txt') as f: for line in f: if line.count('Gi') == 1: line = line.replace('DYNAMIC', '') line = line.split() mac_list.append(line) for i in mac_list: if i[0] == vlan_input: print(i)
79fe6c6b4898f0cefa5a2ee82429b88161af2822
23f754a39b996ad3e50e539ac1ea88217545df8b
/app/models/host.py
830a796f3155ebb3a9e5d8f945ee6fd7cb954430
[]
no_license
huhaiqng/YWSystemB
576b0310cfe49086eaafb99eaa83042621d6fab5
cf601fe4b97e96187e66a084a7e43a0cd259e92f
refs/heads/master
2022-12-11T06:19:46.025055
2021-04-27T07:48:46
2021-04-27T07:48:46
245,122,835
0
0
null
2022-12-08T11:57:56
2020-03-05T09:40:26
Python
UTF-8
Python
false
false
1,241
py
from django.db import models from django.utils import timezone # 主机 class Host(models.Model): name = models.CharField('主机名', max_length=200) ip = models.GenericIPAddressField('内网 IP') outside_ip = models.GenericIPAddressField('外网 IP', default='0.0.0.0') manage_port = models.IntegerField('管理端口号', default=22) version = models.CharField('版本', max_length=200) cpu = models.IntegerField('CPU 核数', default=4) memory = models.CharField('内存大小', max_length=10, default='8G') disk = models.CharField('硬盘大小', max_length=10, default='80G') position = models.CharField('位置', max_length=200) admin = models.CharField('系统管理员', max_length=200, default='root') password = models.CharField('密码', max_length=200) type = models.CharField('类别', max_length=200) env = models.CharField('环境', max_length=200, default='test') ins_num = models.IntegerField('实例数量', default='0') status = models.BooleanField('状态', default=True) created = models.DateTimeField('创建时间', default=timezone.now) def __str__(self): return self.ip class Meta: unique_together = ['ip', 'type', 'name']
ec125359dc7d22f74de7a96d3cb57b767553b680
9650b24ac61edb013cc6264263eea67fd967783b
/FlightPy.py
569f3e3603e6143c904bc714d73c69995d83288e
[]
no_license
Delphae/flightaware
7e83dd11d9e714051070e15fd6815b3873510141
aa190221765015fcffae4e5b6ee92e1ef84cec49
refs/heads/master
2020-04-09T02:52:57.495731
2018-12-06T14:27:05
2018-12-06T14:27:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,395
py
#!/usr/bin/env python # coding: utf-8 ''' ____ _ _ | _ \ ___| |_ __ | |__ __ _ ___ | | | |/ _ \ | '_ \| '_ \ / _` |/ _ \ | |_| | __/ | |_) | | | | (_| | __/ |____/ \___|_| .__/|_| |_|\__,_|\___| |_| 1.1 2018-11-30 initial version 1.2 2018-12-01 AirportBoards 1.3 2018-12-02 validate username & apikey WeatherConditions 1.4 TailOwner ''' VERSION = '1.4' DATE = '2018-12-02' import requests, json from datetime import datetime as dt def readjson(method, params, auth): url = "https://flightxml.flightaware.com/json/FlightXML3/" response = requests.get(url+method, params=params, auth=auth) # print response.url # print response.status_code return response.json() class FlightResult: def __init__(self, result=dict()): self.__dict__ = result class FlightInfo: def __init__(self, info=dict()): self.__dict__ = info self.AAT = dt.fromtimestamp(self.actual_arrival_time['epoch']) self.EAT = dt.fromtimestamp(self.estimated_arrival_time['epoch']) self.ADT = dt.fromtimestamp(self.actual_departure_time['epoch']) self.EDT = dt.fromtimestamp(self.estimated_departure_time['epoch']) self.origin_code = self.origin['code'] self.origin_airport = self.origin['airport_name'] self.destination_code = self.destination['code'] self.destination_airport = self.destination['airport_name'] def __repr__(self): return self.faFlightID def __str__(self): try: origincity = self.origin['city'] destincity = self.destination['city'] return '%-3s %-5s %5s %-25s %5s %s' % (self.airline_iata, self.flightnumber, str(self.ADT.time())[:-3], origincity.encode('iso-8859-1'), str(self.AAT.time())[:-3], destincity.encode('iso-8859-1')) except: return '' class FlightRoute: def __init__(self, route=dict()): self.__dict__ = route self.last_departuretime = dt.fromtimestamp(self.last_departuretime) def __repr__(self): return self.route class FlightAware(object): __version__ = VERSION __date__ = DATE def __init__(self, username='', apikey=''): if not username or not apikey: conf = json.load(open('flightaware.json')) username = conf['username'] apikey = conf['apikey'] self.auth = (username,apikey) url = "https://flightxml.flightaware.com/json/FlightXML3/WeatherConditions" params = {'airport_code':'AMS'} response = requests.get(url, params=params, auth=self.auth) print ('%s %s' % (response.status_code, response.reason)) def AirportInfo(self, airport): result = readjson('AirportInfo', {'airport_code':airport}, self.auth) return FlightResult(result['AirportInfoResult']) def AirlineInfo(self, airline): result = readjson('AirlineInfo', {'airline_code':airline}, self.auth) return FlightResult (result['AirlineInfoResult']) def FlightInfoStatus(self, ident): result = readjson('FlightInfoStatus', {'ident':ident}, self.auth) flightresults = result['FlightInfoStatusResult']['flights'] return [FlightInfo(flight) for flight in flightresults] def RoutesBetweenAirports (self, origin, destination): result = readjson('RoutesBetweenAirports', {'origin':origin, 'destination':destination}, self.auth) routeresults = result['RoutesBetweenAirportsResult']['data'] return [FlightRoute(route) for route in routeresults] def LatLongsToDistance (self, (lat1,lon1), (lat2,lon2)): result = readjson('LatLongsToDistance', {'lat1':lat1, 'lon1':lon1, 'lat2':lat2, 'lon2':lon2}, self.auth) self.miles = result['LatLongsToDistanceResult'] self.km = self.miles * 1.609344 return FlightResult({'miles':self.miles, 'km':self.km}) def AirportBoards(self, airport): result = readjson('AirportBoards', {'airport_code':airport}, self.auth) boards = result['AirportBoardsResult'] arrivals = [FlightInfo(flight) for flight in boards['arrivals']['flights']] departures = [FlightInfo(flight) for flight in boards['departures']['flights']] enroute = [FlightInfo(flight) for flight in boards['enroute']['flights']] scheduled = [FlightInfo(flight) for flight in boards['scheduled']['flights']] resultdict = dict(arrivals=arrivals, departures=departures, enroute=enroute, scheduled=scheduled) return FlightResult(resultdict) def WeatherConditions(self, airport): result = readjson('WeatherConditions', {'airport_code':airport}, self.auth) conditionsresult = result['WeatherConditionsResult']['conditions'] return [FlightResult(condition) for condition in conditionsresult ] def TailOwner(self, ident): result = readjson('TailOwner', {'ident':ident}, self.auth) return FlightResult(result['TailOwnerResult'])
d4aac1f8ce31e6e240ac03540de859ff1aadfa10
c768e0fad0fd7faa0e727ab650a95424bb5fe45a
/ltp_cloud.py
484445858099785be975d738b9884e590fd4cb06
[]
no_license
shenwei0329/Irrigation-Proj
bcc2b2f8e6e0e9ef21ebe5d302f4fba051a84aae
98113cb7a71e49b3831d799ea28afba7c9b1c5e2
refs/heads/master
2020-11-30T07:20:12.628615
2019-12-30T08:13:24
2019-12-30T08:13:24
230,345,341
1
1
null
null
null
null
UTF-8
Python
false
false
2,588
py
# -*- coding:UTF-8 -*- # import sys from pyltp import Segmentor from pyltp import Postagger from pyltp import Parser from pyltp import SentenceSplitter from pyltp import NamedEntityRecognizer import re seg = Segmentor() seg.load_with_lexicon('ltp_data_v3.4.0/cws.model', './ext_word_cloud') post = Postagger() post.load_with_lexicon('ltp_data_v3.4.0/pos.model', './ext_word_cloud_pos') recognizer = NamedEntityRecognizer() recognizer.load('ltp_data_v3.4.0/ner.model') parser = Parser() parser.load('ltp_data_v3.4.0/parser.model') def segmentor(sentence): """ 断词 :param sentence: 语句 :return: 词列表 """"" global seg words = seg.segment(sentence) words_list = list(words) return words_list def postagger(words): """ 获取词性 :param words: 词 :return: 词性 """ global post pos = post.postag(words) pos_list = list(pos) return pos_list def hasSBV(arcs): sbv = False vob = False hed = False for nn in arcs: if "SBV" in nn.relation: sbv = True if "VOB" in nn.relation: vob = True if "HED" in nn.relation: hed = True if (hed and sbv) or (vob and sbv): return True return False """获取文本文件""" f = open(sys.argv[1]) while True: """读一段文本""" sentence = f.readline() if (sentence is "") or (len(sentence) == 0): """ Eof """ break """断句""" sents = SentenceSplitter.split(sentence) for ss in sents: """语句处理""" print ss words = segmentor(ss) # print words """ for _w in words: print _w """ pos = postagger(words) # print pos _idx = 0 _s = "" _cont = False for _p in pos: if "ws" in _p: _s = words[_idx] print _s, if "n" in _p: if not _cont: _s = words[_idx] _cont = True else: _s += words[_idx] else: _cont = False if len(_s)>0: print _s, _s = "" _idx += 1 print "" """ netags = list(recognizer.recognize(words, pos)) print netags _idx = 0 for _n in netags: if "Nh" in _n: print words[_idx] _idx += 1 """ parser.release() post.release() seg.release() print("Done.")
36310f74f8eaef7d3da7ef4f11b6d1c95f1ac4da
e52b9bbe2345d87b406caee4817a1770b45a6ae2
/scripts/BatchDefineProjection.py
453a2f66c343c7eb2ba97203805237bfffdc0e62
[]
no_license
tomay/marxan_toolbox
8712b2f1d56e185156a884a0888f2c03b5ed20f5
a6e002cf47b8388660365de7ab2aee22b543c12a
refs/heads/master
2020-06-06T06:15:59.018433
2013-04-08T16:53:52
2013-04-08T16:53:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,542
py
import sys, os, arcgisscripting, traceback def AddMsgAndPrint(message): gp.AddMessage(message) print message return 0 gp = arcgisscripting.create() gp.overwriteoutput = 1 try: # Get the parameters. gp.workspace = sys.argv[1] pattern = sys.argv[3] sr = sys.argv[2] #AddMsgAndPrint(pattern) ## TO DO: NOT WORKING #gp.workspace = r"C:\atom\python\shapes\test_shapes" ## TO DO: NOT WORKING # MANUAL FIX WORKS ## WHAT? IS IT BECAUSE sys.argv[3] and [2] were reversed? I fixed above 7/29/2011 pattern = "*.shp" sr = "PROJCS['laborde_wcs_2000',GEOGCS['GCS_Tananarive_1925',DATUM['D_Tananarive_1925',SPHEROID['International_1924',6378388.0,297.0]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azimuth_Natural_Origin'],PARAMETER['False_Easting',1113136.3146],PARAMETER['False_Northing',2882900.7279],PARAMETER['Scale_Factor',0.9995],PARAMETER['Azimuth',18.9],PARAMETER['Longitude_Of_Center',46.43722917],PARAMETER['Latitude_Of_Center',-18.9],UNIT['Meter',1.0]]" # find only specified features or datasets if pattern == "*.shp": datasets = gp.ListFeatureClasses("", "POLYGON") elif pattern == "RASTER": datasets = gp.ListDatasets("", "RASTER") datasets.Reset() dataset = datasets.next() z = 0 while dataset: z = z + 1 dataset = datasets.next() i = 1 datasets.Reset() dataset = datasets.next() while dataset: AddMsgAndPrint("Defining: " + dataset + ". (" + str(i) + " of " + str(z) + ")") gp.defineprojection_management(dataset,sr) i = i + 1 dataset = datasets.next() AddMsgAndPrint("Done") except: # get the traceback object tb = sys.exc_info()[2] # tbinfo contains the line number that the code failed on and the code from that line tbinfo = traceback.format_tb(tb)[0] # concatenate information together concerning the error into a message string pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo + "\nError Info:\n " + \ str(sys.exc_type)+ ": " + str(sys.exc_value) + "\n" # generate a message string for any geoprocessing tool errors msgs = "GP ERRORS:\n" + gp.GetMessages(2) + "\n" # return gp messages for use with a script tool gp.AddError(msgs) gp.AddError(pymsg) # print messages for use in Python/PythonWin print msgs print pymsg print "done"
eb388016f65246c4c31124d34d29159a438dc564
3d7039903da398ae128e43c7d8c9662fda77fbdf
/database/CSS/juejin_1927.py
4cf0fa0be8441db15c31d26e93685b0b19eb0256
[]
no_license
ChenYongChang1/spider_study
a9aa22e6ed986193bf546bb567712876c7be5e15
fe5fbc1a5562ff19c70351303997d3df3af690db
refs/heads/master
2023-08-05T10:43:11.019178
2021-09-18T01:30:22
2021-09-18T01:30:22
406,727,214
0
0
null
null
null
null
UTF-8
Python
false
false
78,514
py
{"err_no": 0, "err_msg": "success", "data": [{"article_id": "6844903865737822216", "article_info": {"article_id": "6844903865737822216", "user_id": "1380642335503256", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903865737822216", "cover_image": "", "is_gfw": 0, "title": "[译] 将第三方动画库集成到项目中 — 第 1 部分", "brief_content": "创建以 CSS 为基础的动画可能是一个挑战。它们可能是复杂且耗时的。你是否需要在时间紧迫的情况下调整出一个完美的动画(库)来推进项目?这时,你该考虑使用一个拥有现成的动画插件的第三方 CSS 动画库。可是,你仍然会想:它们是什么?它们提供什么?我如何使用它们? 我们来看看吧。 …", "is_english": 0, "is_original": 1, "user_index": 8.7806176006279, "original_type": 0, "original_author": "", "content": "", "ctime": "1560509321", "mtime": "1599966935", "rtime": "1560509321", "draft_id": "6845076341839101965", "view_count": 578, "collect_count": 2, "digg_count": 4, "comment_count": 0, "hot_index": 32, "is_hot": 0, "rank_index": 0.00010607, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1380642335503256", "user_name": "掘金翻译计划", "company": "掘金", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/cf1ff385ef84b2ef6001a7caa39476f7~300x300.image", "level": 3, "description": "可能是世界最大最好的英译中技术社区,最懂读者和译者的翻译平台 🤔", "followee_count": 25, "follower_count": 3400, "post_article_count": 55, "digg_article_count": 63, "got_digg_count": 1372, "got_view_count": 311309, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 1, "power": 4485, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903865737822216, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930489296285597696", "online_version_id": 6937212594310610981, "latest_version_id": 6937212594310610981, "power": 10141, "ctime": 1613630284, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6937212594310610981", "icon": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/9763b1fa556f4cbd8ced21b60d3ed40c~tplv-k3u1fbpfcp-watermark.image", "background": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/2254bf401c3444129f8e3612c4b16308~tplv-k3u1fbpfcp-watermark.image", "name": "掘金翻译计划", "introduction": "# 掘金翻译计划\n\n\n[掘金翻译计划](https://juejin.im/tag/%E6%8E%98%E9%87%91%E7%BF%BB%E8%AF%91%E8%AE%A1%E5%88%92) 是一个翻译优质互联网技术文章的社区,文章来源为 [掘金](https://juejin.im) 上的英文分享文章。内容覆盖[区块链](#区块链)、[人工智能](#ai--deep-learning--machine-learning)、[Android](#android)、[iOS](#ios)、[前端](#前端)、[后端](#后端)、[设计](#设计)、[产品](#产品)、[算法](https://github.com/xitu/gold-miner/blob/master/algorithm.md)和[其他](#其他)等领域,以及各大型优质 [官方文档及手册](#官方文档及手册),读者为热爱新技术的新锐开发者。\n\n掘金翻译计划目前翻译完成 [2027](#近期文章列表) 余篇文章,官方文档及手册 [13](#官方文档及手册) 个,共有 [1000](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E8%80%85%E7%A7%AF%E5%88%86%E8%A1%A8) 余名译者贡献翻译和校对。\n\n# 官方指南\n\n[**推荐优质英文文章到掘金翻译计划**](https://github.com/xitu/gold-miner/issues/new/choose)\n\n<!--\nhttps://github.com/xitu/gold-miner/issues/new?title=推荐优秀英文文章&body=-%20原文链接:推荐文章前%20Google%20一下,尽量保证本文未被翻译%0A-%20简要介绍:介绍一下好不好啦,毕竟小编也看不太懂哎_(:з」∠)_)\n-->\n\n### 翻译计划译者教程\n\n1. [如何参与翻译](https://github.com/xitu/gold-miner/wiki/%E5%A6%82%E4%BD%95%E5%8F%82%E4%B8%8E%E7%BF%BB%E8%AF%91)\n2. [关于如何提交翻译以及后续更新的教程](https://github.com/xitu/gold-miner/wiki/%E5%85%B3%E4%BA%8E%E5%A6%82%E4%BD%95%E6%8F%90%E4%BA%A4%E7%BF%BB%E8%AF%91%E4%BB%A5%E5%8F%8A%E5%90%8E%E7%BB%AD%E6%9B%B4%E6%96%B0%E7%9A%84%E6%95%99%E7%A8%8B)\n3. [如何参与校对及校对的正确姿势](https://github.com/xitu/gold-miner/wiki/%E5%8F%82%E4%B8%8E%E6%A0%A1%E5%AF%B9%E7%9A%84%E6%AD%A3%E7%A1%AE%E5%A7%BF%E5%8A%BF)\n4. [文章分享到掘金指南](https://github.com/xitu/gold-miner/wiki/%E5%88%86%E4%BA%AB%E5%88%B0%E6%8E%98%E9%87%91%E6%8C%87%E5%8D%97)\n5. [译文排版规则指北](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E6%96%87%E6%8E%92%E7%89%88%E8%A7%84%E5%88%99%E6%8C%87%E5%8C%97)\n6.[积分兑换:小礼物列表](https://github.com/xitu/gold-miner/wiki/%E7%A7%AF%E5%88%86%E5%85%91%E6%8D%A2)\n\n\n\n\n", "weibo_link": "", "github_link": "https://github.com/xitu/gold-miner", "homepage_link": "", "ctime": 1615486318, "mtime": 1615486318, "org_id": "6930489296285597696", "brief_introduction": "一个帮助开发者成长的社区", "introduction_preview": "掘金翻译计划\n掘金翻译计划 是一个翻译优质互联网技术文章的社区,文章来源为 掘金 上的英文分享文章。内容覆盖区块链、人工智能、Android、iOS、前端、后端、设计、产品、算法和其他等领域,以及各大型优质 官方文档及手册,读者为热爱新技术的新锐开发者。\n掘金翻译计划目前翻译完成 2027 余篇文章,官方文档及手册 13 个,共有 1000 余名译者贡献翻译和校对。\n官方指南\n推荐优质英文文章到掘金翻译计划\n翻译计划译者教程\n\n如何参与翻译\n关于如何提交翻译以及后续更新的教程\n如何参与校对及校对的正确姿势\n文章分享到掘金指南\n译文排版规则指北\n6.积分兑换:小礼物列表\n"}, "follower_count": 1080, "article_view_count": 504149, "article_digg_count": 5100}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903542549905416", "article_info": {"article_id": "6844903542549905416", "user_id": "2488950053713863", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "https://www.w3cplus.com/css/aspect-ratio.html", "cover_image": "", "is_gfw": 0, "title": "CSS实现长宽比的几种方案", "brief_content": "", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1514429375", "mtime": "1598443303", "rtime": "1514429375", "draft_id": "0", "view_count": 740, "collect_count": 16, "digg_count": 41, "comment_count": 0, "hot_index": 78, "is_hot": 0, "rank_index": 0.00010604, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2488950053713863", "user_name": "tony1915", "company": "", "job_title": "前端工程师、PHP工程师", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/mosaic-legacy/3791/5070639578~300x300.image", "level": 1, "description": "", "followee_count": 12, "follower_count": 0, "post_article_count": 6, "digg_article_count": 16, "got_digg_count": 41, "got_view_count": 1667, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 5, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844903542549905416, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903849723969544", "article_info": {"article_id": "6844903849723969544", "user_id": "2664871915159992", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640398105870343, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903849723969544", "cover_image": "", "is_gfw": 0, "title": "[译] 为什么 HTML 中复选框样式难写 — 本文给你答案", "brief_content": "在当今世界,大多数网页开发者认为掌握 JavaScript 是优先选择,这理所当然,因为 JS 是浏览器脚本语言。虽然 HTML 和 CSS 决定网站的样式,但是 JS 凭借它能调用 HTML 和 CSS API,优良性能以及它的多功能性,深受网页开发者喜爱。像 React、V…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1558602504", "mtime": "1598505345", "rtime": "1558612678", "draft_id": "6845076318858510343", "view_count": 737, "collect_count": 8, "digg_count": 6, "comment_count": 0, "hot_index": 42, "is_hot": 0, "rank_index": 0.00010561, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2664871915159992", "user_name": "JiLanlan", "company": "", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/414db4da0d7bba57c2bba82f4f61daab~300x300.image", "level": 1, "description": "这个人很懒", "followee_count": 25, "follower_count": 9, "post_article_count": 1, "digg_article_count": 17, "got_digg_count": 6, "got_view_count": 737, "post_shortmsg_count": 19, "digg_shortmsg_count": 20, "isfollowed": false, "favorable_author": 0, "power": 13, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903849723969544, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903506370002958", "article_info": {"article_id": "6844903506370002958", "user_id": "413072061127479", "category_id": "6809637767543259144", "tag_ids": [6809640369764958215, 6809640562514198535, 6809640394175971342, 6809640956946546702], "visible_level": 0, "link_url": "https://css-tricks.com/creating-vue-js-transitions-animations/", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2017/10/26/adeb3e07b36267bd0bc6899754a96842~tplv-t2oaga2asx-image.image", "is_gfw": 1, "title": "[英] 如何使用 Vue.js 里的 Transition 和 Animation", "brief_content": "好用", "is_english": 1, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1508989799", "mtime": "1598617695", "rtime": "1508989799", "draft_id": "0", "view_count": 1081, "collect_count": 8, "digg_count": 28, "comment_count": 0, "hot_index": 82, "is_hot": 0, "rank_index": 0.00010511, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "413072061127479", "user_name": "阴明", "company": "TikTok", "job_title": "PM", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/26ad64c3c75daaff920a9eae4a6a7fa1~300x300.image", "level": 4, "description": "🌈 Crazy Monster!", "followee_count": 847, "follower_count": 78189, "post_article_count": 961, "digg_article_count": 3875, "got_digg_count": 33540, "got_view_count": 1805862, "post_shortmsg_count": 1359, "digg_shortmsg_count": 7099, "isfollowed": false, "favorable_author": 1, "power": 7189, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546498, "tag_id": "6809640369764958215", "tag_name": "Vue.js", "color": "#41B883", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/7b5c3eb591b671749fee.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234520, "mtime": 1631692660, "id_type": 9, "tag_alias": "", "post_article_count": 31256, "concern_user_count": 313520}, {"id": 2546639, "tag_id": "6809640562514198535", "tag_name": "动效", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/b08d8f2616e6e236fd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1441745685, "mtime": 1631632027, "id_type": 9, "tag_alias": "", "post_article_count": 1137, "concern_user_count": 60264}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546923, "tag_id": "6809640956946546702", "tag_name": "Element", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/2c670995272515e48cea.svg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489435335, "mtime": 1631690287, "id_type": 9, "tag_alias": "", "post_article_count": 1925, "concern_user_count": 15229}], "user_interact": {"id": 6844903506370002958, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6977353622891790366", "article_info": {"article_id": "6977353622891790366", "user_id": "1918010987388829", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/39e4eaeb23ec44019017374f1125cec7~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "CSS基础知识要点(Y5)", "brief_content": "1.【border】边框(布局时会占用空间) 1.1设置边框 1.2边框方向 1.3边框宽度 1.4圆角边框 2.【outline】轮廓线(不影响布局) (同边框一致)", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1624541928", "mtime": "1624608507", "rtime": "1624608507", "draft_id": "6977348211337855007", "view_count": 54, "collect_count": 0, "digg_count": 0, "comment_count": 0, "hot_index": 2, "is_hot": 0, "rank_index": 0.00010498, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1918010987388829", "user_name": "Web程序贵", "company": "南京巅峰数据服务有限公司", "job_title": "前端开发实习生", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/6790a317242054936b8b900663fa6fc5~300x300.image", "level": 1, "description": "前端小白,只会基础知识。", "followee_count": 5, "follower_count": 6, "post_article_count": 25, "digg_article_count": 8, "got_digg_count": 17, "got_view_count": 1455, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 31, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6977353622891790366, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903645373267981", "article_info": {"article_id": "6844903645373267981", "user_id": "1275089218971021", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://zhuanlan.zhihu.com/p/40148221", "cover_image": "", "is_gfw": 0, "title": "使用CSS Grid的九大误区", "brief_content": "在Web世界中,大家都知道,使用任何一项新技术都易于犯错,特别是像CSS Grid这样的与过去有很大变化的东西。初学者或者有一定经验的Web开发人员,都无法一时之间就能把控所有。@Jen Simmons录制了一个视频,向大家阐述了使用CSS Grid的九大误区,也是使用CSS …", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1532409305", "mtime": "1598460652", "rtime": "1532409305", "draft_id": "0", "view_count": 875, "collect_count": 10, "digg_count": 19, "comment_count": 0, "hot_index": 62, "is_hot": 0, "rank_index": 0.00010467, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1275089218971021", "user_name": "清蒸不是水煮", "company": "前东家是掘金", "job_title": "前沸点运营", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/7/2/16459c1e94f61f29~tplv-t2oaga2asx-image.image", "level": 3, "description": "how r u today,掘金沸点了解下", "followee_count": 431, "follower_count": 13067, "post_article_count": 92, "digg_article_count": 2555, "got_digg_count": 2045, "got_view_count": 209280, "post_shortmsg_count": 267, "digg_shortmsg_count": 8818, "isfollowed": false, "favorable_author": 0, "power": 2713, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903645373267981, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903958452895752", "article_info": {"article_id": "6844903958452895752", "user_id": "2418581312908605", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903958452895752", "cover_image": "", "is_gfw": 0, "title": "CSS梳理之流的破坏float与BFC", "brief_content": "“流”,文档流,是CSS中最基本的定位和布局机制。 浏览器中的元素默认的从左到右(内联元素),从上到下(块级元素)如同流水一般堆砌的布局方式。 被设置了float属性的元素呈现包裹性,即其自身的width不是默认撑满父元素,而是和height属性一样由子元素决定。 脱离文档流,…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1570500757", "mtime": "1600147960", "rtime": "1570527267", "draft_id": "6845076485842141191", "view_count": 612, "collect_count": 0, "digg_count": 3, "comment_count": 0, "hot_index": 33, "is_hot": 0, "rank_index": 0.00010457, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2418581312908605", "user_name": "一不小心就😍 😞 😒", "company": "jsd", "job_title": "前端工程师", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/16c69bd772ce8163f5b~tplv-t2oaga2asx-image.image", "level": 1, "description": "js、css、html一把梭", "followee_count": 5, "follower_count": 4, "post_article_count": 6, "digg_article_count": 3, "got_digg_count": 22, "got_view_count": 4855, "post_shortmsg_count": 0, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 70, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903958452895752, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902797258434019336", "article_info": {"article_id": "6902797258434019336", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "2d和3d变换", "brief_content": "transform-origin将当前变换原点(x1,y1,z1)变为(x1+x2,y1+y2,z1+z2)%pxem水平方向取值,相对元素的宽,leftcenterbottom垂直方向取值,相对元素", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607182834", "mtime": "1607223129", "rtime": "1607223129", "draft_id": "6902793496462098445", "view_count": 170, "collect_count": 2, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010438, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902797258434019336, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903846930546695", "article_info": {"article_id": "6844903846930546695", "user_id": "694547079240798", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903846930546695", "cover_image": "", "is_gfw": 0, "title": "移动端适配--meta标签玩的是什么", "brief_content": "基本一直都在做移动端的开发,rem布局也写了很久,不过对于实现的原理有些模棱两可的盲点,自己总结一下留着以后回顾。 本文分以下几个层面,主打用最最通俗的语言来阐述。 viewport是什么?翻译过来就是视窗的意思,只不过在移动端,视窗稍微有点绕。在解释这个之前,不得不引出几个词…", "is_english": 0, "is_original": 1, "user_index": 0.65875638216419, "original_type": 0, "original_author": "", "content": "", "ctime": "1558275477", "mtime": "1599905366", "rtime": "1558275940", "draft_id": "6845076314139918350", "view_count": 746, "collect_count": 10, "digg_count": 4, "comment_count": 0, "hot_index": 41, "is_hot": 0, "rank_index": 0.00010411, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "694547079240798", "user_name": "Ace7523", "company": "58·转转", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2019/2/7/168c5bafba01c7e8~tplv-t2oaga2asx-image.image", "level": 2, "description": "一个前端", "followee_count": 6, "follower_count": 258, "post_article_count": 15, "digg_article_count": 0, "got_digg_count": 517, "got_view_count": 35896, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 875, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903846930546695, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903551945146381", "article_info": {"article_id": "6844903551945146381", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903551945146381", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS3系列-css3之线性渐变初探", "brief_content": "入行前端一年多的时间,想提高自己的css技术水平,于是在网上看了些关于css的书籍,想买几本比较好的css书籍啃啃,找来找去,终于找到了《CSS揭秘》这本书。入手这本书后,从开始看到后面,发现书中的很多效果都可以使用渐变来实现,于是,我对渐变产生了兴趣,决定好好掌握css3中的…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516243112", "mtime": "1598687005", "rtime": "1516243112", "draft_id": "6845075367766540296", "view_count": 774, "collect_count": 18, "digg_count": 37, "comment_count": 0, "hot_index": 75, "is_hot": 0, "rank_index": 0.00010406, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903551945146381, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903602125799431", "article_info": {"article_id": "6844903602125799431", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903602125799431", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS系列——CSS深入理解之absolute定位", "brief_content": "1. 写在前面 本篇将要介绍的绝对定位absolute属性和此前介绍的CSS系列——CSS深入理解之float浮动有着几分的相似性,可以认为两者是兄弟关系,都具有“包裹性”、“高度塌陷”、“块状化”的特性,它们在很多场合都可以互相替代。很多人可能有这样的疑问:一个属性名是“po…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1525501365", "mtime": "1599468445", "rtime": "1525748308", "draft_id": "6845075421478780936", "view_count": 846, "collect_count": 12, "digg_count": 25, "comment_count": 0, "hot_index": 67, "is_hot": 0, "rank_index": 0.00010393, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903602125799431, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6946083880734556167", "article_info": {"article_id": "6946083880734556167", "user_id": "1530949760190653", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "css布局----flex弹性布局(移动端完美解决方案)", "brief_content": "Flexible Box 模型,通常被称为 flexbox,是一种一维的布局模型。它给 flexbox 的子元素之间提供了强大的空间分布和对齐能力。本文给出了 flexbox 的主要特性。 我们说 flexbox 是一种一维的布局,是因为一个 flexbox 一次只能处理一个维…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1617261260", "mtime": "1617268073", "rtime": "1617268073", "draft_id": "6946083236044865544", "view_count": 64, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 5, "is_hot": 0, "rank_index": 0.00010386, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1530949760190653", "user_name": "李不要熬夜", "company": "", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/d2ea4973fef32ce3195174fc72296119~300x300.image", "level": 1, "description": "", "followee_count": 2, "follower_count": 2, "post_article_count": 73, "digg_article_count": 0, "got_digg_count": 20, "got_view_count": 4330, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 63, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6946083880734556167, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903656135852046", "article_info": {"article_id": "6844903656135852046", "user_id": "3298190613550462", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://www.zcfy.cc/article/everything-you-need-to-know-about-css-variables", "cover_image": "", "is_gfw": 0, "title": "关于CSS变量你需要知道的一切", "brief_content": "这是我新书的第一章(PDF和Mobi格式都有)。 多数编程语言都支持变量。但是CSS从最初就一直缺少对原生变量的功能支持。 你写CSS吧?那你就没办法用变量。不过,你还可以用Sass这样的预编译器。 Sass这样的预编译器就把变量作为一个巨大的卖点,一个尝试新东西的原因。你知道…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1534158219", "mtime": "1598463380", "rtime": "1534158219", "draft_id": "0", "view_count": 620, "collect_count": 8, "digg_count": 29, "comment_count": 0, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010366, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3298190613550462", "user_name": "众成翻译", "company": "", "job_title": "翻译,求知的另一种表达", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/30/16275a86e4bb52a2~tplv-t2oaga2asx-image.image", "level": 2, "description": "众成翻译官方账号", "followee_count": 35, "follower_count": 7819, "post_article_count": 567, "digg_article_count": 235, "got_digg_count": 8123, "got_view_count": 268377, "post_shortmsg_count": 1, "digg_shortmsg_count": 6, "isfollowed": false, "favorable_author": 0, "power": 416, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903656135852046, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903655770947597", "article_info": {"article_id": "6844903655770947597", "user_id": "1398234520749448", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342, 6809641113071124493, 6809640482725953550], "visible_level": 0, "link_url": "https://juejin.im/post/6844903655770947597", "cover_image": "", "is_gfw": 0, "title": "BFC 初体验", "brief_content": "BFC(Block Formatting Context),中文翻译为“块格式化上下文”。它有一个明显的特性,那就是如果一个元素拥有了 BFC 特性,那么它内部元素不受外部元素的影响,外部元素也不会受其内部元素的影响。 先来看看 MDN 对 BFC 的解释。 好像也没具体的说什…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1534134794", "mtime": "1599566968", "rtime": "1534140750", "draft_id": "6845075593206202382", "view_count": 802, "collect_count": 19, "digg_count": 19, "comment_count": 1, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010363, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1398234520749448", "user_name": "yyzclyang", "company": "平安", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08f23f2be8bbb96~tplv-t2oaga2asx-image.image", "level": 3, "description": "", "followee_count": 1, "follower_count": 51, "post_article_count": 27, "digg_article_count": 2, "got_digg_count": 675, "got_view_count": 40454, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 1079, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2547036, "tag_id": "6809641113071124493", "tag_name": "容器", "color": "", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/153024333442233331e5dd27e1829e0d4f73b714ce46b.jpg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1530152271, "mtime": 1631452898, "id_type": 9, "tag_alias": "docker", "post_article_count": 2140, "concern_user_count": 4343}, {"id": 2546581, "tag_id": "6809640482725953550", "tag_name": "程序员", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/63baec1130bde0284e98.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1438712834, "mtime": 1631686409, "id_type": 9, "tag_alias": "", "post_article_count": 16341, "concern_user_count": 275512}], "user_interact": {"id": 6844903655770947597, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902063717236604936", "article_info": {"article_id": "6902063717236604936", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "box-shadow和text-shadow", "brief_content": "box盒模型定义参考文章:https://zhuanlan.zhihu.com/p/291489867盒子内部盒子外部content-box(标准盒模型)boxWidth=width+border2+", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607012831", "mtime": "1607057355", "rtime": "1607057355", "draft_id": "6902062718887395341", "view_count": 167, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010347, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902063717236604936, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903568923688967", "article_info": {"article_id": "6844903568923688967", "user_id": "3562073403955902", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093, 6809640381920051207, 6809640625856577549], "visible_level": 0, "link_url": "https://www.liayal.com/article/5a96599bca0de01ec9713c43", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/2/161e571ddff83cc6~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "初探CSS Grid布局", "brief_content": "在CSS3中纳入的Flex Box布局给前端开发者带来了极大的便利,它的强大是有目共睹的。很多以前需要以前复查代码实现的布局,现在通过 Flex Box 很容易就实现。而在下一版本的CSS规范中正在讨论纳入一个更加强大的布局系统,它就是今天要说的: CSS Grid Layou…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1519972901", "mtime": "1598689120", "rtime": "1520219199", "draft_id": "0", "view_count": 812, "collect_count": 15, "digg_count": 30, "comment_count": 1, "hot_index": 71, "is_hot": 0, "rank_index": 0.0001031, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3562073403955902", "user_name": "MaelWeb", "company": "记小栈", "job_title": "Web攻城狮", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08807ec8e0f3c6b~tplv-t2oaga2asx-image.image", "level": 0, "description": "游走在技术与艺术的边缘地带,偶是一枚前端攻城狮!", "followee_count": 3, "follower_count": 3, "post_article_count": 13, "digg_article_count": 10, "got_digg_count": 236, "got_view_count": 10228, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 0, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}, {"id": 2546683, "tag_id": "6809640625856577549", "tag_name": "浏览器", "color": "#47ebc7", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/baf3558e2acdfa623201.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1460153459, "mtime": 1631677186, "id_type": 9, "tag_alias": "", "post_article_count": 3341, "concern_user_count": 28324}], "user_interact": {"id": 6844903568923688967, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6859685285127520269", "article_info": {"article_id": "6859685285127520269", "user_id": "1011206429616429", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/1f473330ce8d4127a0219a933de1f60f~tplv-k3u1fbpfcp-zoom-1.image", "is_gfw": 0, "title": "Re:从零开始の CSS 学习笔记——布局(下)", "brief_content": "container 中的子元素,与列数一一对应。且默认只占据第一行。所以添加 border 后 效果如下图所示", "is_english": 0, "is_original": 1, "user_index": 1.419022582702909, "original_type": 0, "original_author": "", "content": "", "ctime": "1597144973", "mtime": "1597210097", "rtime": "1597210097", "draft_id": "6859683107088531469", "view_count": 255, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 14, "is_hot": 0, "rank_index": 0.000103, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1011206429616429", "user_name": "SamRock", "company": "", "job_title": "随缘更新", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/7b99cc610e9bcf77091bfbe7c6414a2e~300x300.image", "level": 2, "description": "这人在尝试成为段子手/键盘侠/杠精失败后,终于回来老老实实的搬砖了 ~", "followee_count": 16, "follower_count": 29, "post_article_count": 38, "digg_article_count": 2, "got_digg_count": 58, "got_view_count": 12004, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 178, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6859685285127520269, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6901614433013858318", "article_info": {"article_id": "6901614433013858318", "user_id": "3799550220589549", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "CSS盒模型", "brief_content": "在 CSS 中,所有的元素都被一个个的“盒子(box)”包围。每一个盒子包括内容(content)、内边距(padding)、边框(border)、外边距(margin),这些元素共同组成盒模型。", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1606907364", "mtime": "1606972920", "rtime": "1606963918", "draft_id": "6901488070235947022", "view_count": 178, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010296, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3799550220589549", "user_name": "远方的朋友", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/mosaic-legacy/3793/3131589739~300x300.image", "level": 1, "description": "", "followee_count": 1, "follower_count": 0, "post_article_count": 23, "digg_article_count": 1, "got_digg_count": 5, "got_view_count": 1269, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 17, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6901614433013858318, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903552637206535", "article_info": {"article_id": "6844903552637206535", "user_id": "4388906147515367", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640858137133064, 6809640394175971342, 6809640381920051207], "visible_level": 0, "link_url": "https://juejin.im/post/6844903552637206535", "cover_image": "", "is_gfw": 0, "title": "奇舞周刊第 244 期:Web 前端中的 AR 开发技术", "brief_content": "“在使用 React Native 开发中,我们熟练的采用 JavaScript 的方式发送请求的方式发送一个请求到服务端,但是处理这个请求的过程其实和处理 Web 应用中发送的请求的过程是不一样的。” 科普文一篇,前端方向的 AR 技术总结。 “我们需要明确的一点是: 重构不…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516349545", "mtime": "1598444833", "rtime": "1516349545", "draft_id": "6845075368387280904", "view_count": 765, "collect_count": 9, "digg_count": 36, "comment_count": 0, "hot_index": 74, "is_hot": 0, "rank_index": 0.0001028, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4388906147515367", "user_name": "奇舞精选", "company": "奇虎360", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/8235463c80ecb19922c8ee10c40a1ca6~300x300.image", "level": 4, "description": "《奇舞精选》是由奇舞团维护的前端技术社区。除周五外,每天向大家推荐一篇前端相关技术文章,每周五向大家推送汇总的奇舞周刊。", "followee_count": 17, "follower_count": 7188, "post_article_count": 35, "digg_article_count": 39, "got_digg_count": 6416, "got_view_count": 246181, "post_shortmsg_count": 0, "digg_shortmsg_count": 5, "isfollowed": false, "favorable_author": 1, "power": 8858, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 1, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546852, "tag_id": "6809640858137133064", "tag_name": "ECharts", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/31cb8ecaf02c4a8f966b.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489098685, "mtime": 1631675169, "id_type": 9, "tag_alias": "", "post_article_count": 882, "concern_user_count": 13707}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}], "user_interact": {"id": 6844903552637206535, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930504142150434824", "online_version_id": 6932281596162605059, "latest_version_id": 6932281596162605059, "power": 20675, "ctime": 1613635306, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6932281596162605059", "icon": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/067e419907a94f4aa1099af8d9ba3ed5~tplv-k3u1fbpfcp-watermark.image", "background": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/051403ec6e1c482fa371dea0ab6b6475~tplv-k3u1fbpfcp-watermark.image", "name": "奇舞团", "introduction": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。", "weibo_link": "http://weibo.com/u/2565405913", "github_link": "", "homepage_link": "https://75.team/", "ctime": 1614052668, "mtime": 1614052668, "org_id": "6930504142150434824", "brief_introduction": "360奇舞团(奇虎75Team)是奇虎360公司技术中台前端工程师 + 部分特约嘉宾 组成的一个前端团队。 在这里,我们一起工作学习、一起沉淀、一起分享、一起为前端贡献影响。 开放是我们的特色,快乐是我们的使命。", "introduction_preview": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。"}, "follower_count": 8019, "article_view_count": 894502, "article_digg_count": 11730}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903590843121671", "article_info": {"article_id": "6844903590843121671", "user_id": "800100193937240", "category_id": "6809637767543259144", "tag_ids": [6809640837895585805, 6809640398105870343, 6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://codeburst.io/front-end-v-back-end-explained-by-waiting-tables-at-a-restaurant-174000a4498d", "cover_image": "", "is_gfw": 0, "title": "只要你去过餐厅就能理解的前后端通俗解释", "brief_content": "If you have ever visited a sit-down restaurant, then you can understand the difference between front-end and back-end in web development. W…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1523602862", "mtime": "1599463623", "rtime": "1523604632", "draft_id": "0", "view_count": 818, "collect_count": 8, "digg_count": 24, "comment_count": 4, "hot_index": 68, "is_hot": 0, "rank_index": 0.00010279, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "800100193937240", "user_name": "误入理工科的疯子", "company": "", "job_title": "前端", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/a48c3088705b3cb173ade00b5f3974a4~300x300.image", "level": 2, "description": "我们生活中最大的现实就是超现实", "followee_count": 1, "follower_count": 185, "post_article_count": 18, "digg_article_count": 50, "got_digg_count": 261, "got_view_count": 35314, "post_shortmsg_count": 0, "digg_shortmsg_count": 4, "isfollowed": false, "favorable_author": 0, "power": 515, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546837, "tag_id": "6809640837895585805", "tag_name": "服务器", "color": "#a3abad", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/be1879c7e9983dab0049.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489042149, "mtime": 1631666741, "id_type": 9, "tag_alias": "", "post_article_count": 10408, "concern_user_count": 20830}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903590843121671, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}], "cursor": "eyJ2IjoiNzAwNzgwMzIxNDc1ODE1MDE3NSIsImkiOjQyMjB9", "count": 4601, "has_more": true}
e432d53bf4acc34ba503bf71fa4f3cd3b005e150
59150a7613e2ba56dc94b0f0e236d2950bc3f854
/Practice/24/Python/24.py
2b9d6db6e2a9c4ec21fab36e18f5dcabc04ac233
[]
no_license
DONR69/Programming
9817aecf2708836c3e3d909bb922058eddbff5a1
6c91e33c5da5d931deb4f54d3bca51bfe5cd8082
refs/heads/main
2023-04-03T12:28:24.336901
2021-04-19T05:37:35
2021-04-19T05:37:35
334,436,608
0
0
null
null
null
null
UTF-8
Python
false
false
738
py
import json from array import * c=0 p=0 m=list('') x='a' with open('in.json','r') as f: a=f.read() data=json.loads(a) h=dict(data[0]) k=h['userId'] for l in range(len(data)): h=dict(data[l]) if (k==h['userId']): if (h['completed']==1): c+=1 else: d={'userId':k, 'task_completed':c } m.append(x) m[p]=d p+=1 c=0 k=h['userId'] if (h['completed']==1): c+=1 d={'userId':k, 'task_completed':c } m.append(x) m[p]=d print(m) with open ('out.json','w') as b: b=json.dump(m,b,indent=3)
8894a20e0f77e0e21c8eacd3308da64ff355e0b3
d0ad48ac376a7b8e54291ac3f920b90f43f4ab72
/apps/index/views.py
5913312194dfe756342f96eeaa63a5b6ed14624d
[]
no_license
LceRain/torna
a38d6f1ba2caf8ce8271fd52c2bcb28213dc3185
057d1cfdee9efa83ae6724f1c0fc3f2526811590
refs/heads/master
2022-11-06T06:28:47.891326
2020-06-17T10:19:16
2020-06-17T10:19:16
272,942,780
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
import json import time from json import JSONEncoder import tornado.web from abase.baseResponse.baseresponse import JsonResponse from abase.baseorm._sqlalchemy.basesqlal import session from abase.baseorm.models.basemodels import Model from apps.index.models import Person class A(JSONEncoder): def default(self, o): if isinstance(o, Model): dic = o.__dict__ print(dic) dic.pop("_sa_instance_state") return dic class IndextHandler(tornado.web.RequestHandler): async def get(self): persons = Person.objects.filter(Person.name == 'jerry').all() print(persons) # p = Person(name='jerry', age=13) # session.add(p) # session.commit() jso = {'data': persons} print(jso) self.write(json.dumps(jso, cls=A))
7c9d4bb9050e33900812f41157440397e1ba71db
f7f429aa2425049a7c787b2be0cf5ec431371988
/coding_problems/feb/feb8.py
1d202038978fd67c3e31a22427b512ae0a7a0f64
[]
no_license
happy96026/interview-prep
7fbef8642ff7e4f8746403c2a18eae8b173b64a2
5b8e974b9541a80dbb9e15055d76f78cd957637f
refs/heads/master
2021-12-28T17:26:01.347919
2020-07-26T07:10:59
2020-07-26T07:10:59
246,656,096
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
class Solution: def lengthOfLongestString(self, s): d = {} i = 0 max_len = 0 for j, c in enumerate(s): if c in d: i = max(i, d[c] + 1) d[c] = j max_len = max(max_len, j - i + 1) return max_len print(Solution().lengthOfLongestString('abrkaabcdefghijjxxx'))
88d706f4905e832162170794813647dc558628f1
7b2295bf19163e65449e502636ca1aa5224f3289
/orders/migrations/0008_auto__add_field_order_customer.py
2edb97ff3edfa727c860670db256fc40a3f2a9f3
[]
no_license
renata-ms/control_panel
7e22d4b627942dac7e0b61b33220eef8e15a5cec
746a6bbc62e09b8c1693893a5792c186ee69355d
refs/heads/master
2016-08-04T11:31:18.564018
2013-11-30T07:23:28
2013-11-30T07:23:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,447
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Order.customer' db.add_column(u'orders_order', 'customer', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['orders.Customer']), keep_default=False) def backwards(self, orm): # Deleting field 'Order.customer' db.delete_column(u'orders_order', 'customer_id') models = { u'library.author': { 'Meta': {'object_name': 'Author'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, u'library.book': { 'Meta': {'object_name': 'Book'}, 'authors': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['library.Author']", 'symmetrical': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'publication_date': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 11, 8, 0, 0)'}), 'publisher': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['library.Publisher']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, u'library.publisher': { 'Meta': {'object_name': 'Publisher'}, 'address': ('django.db.models.fields.TextField', [], {}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'country': ('django.db.models.fields.CharField', [], {'max_length': '64'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '32'}) }, u'orders.customer': { 'Meta': {'object_name': 'Customer'}, 'address': ('django.db.models.fields.TextField', [], {}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, u'orders.order': { 'Meta': {'object_name': 'Order'}, 'created': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 11, 8, 0, 0)'}), 'customer': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['orders.Customer']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'itemld': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['library.Book']"}) } } complete_apps = ['orders']
b42d9be8b182ddbef90e8894bb504742aed40a34
4fc407dd0763ae41002dc74de68603b576e5cc51
/extractor/extractor.py
722299420d5da5bb8af80c6a1f404a5568e50a23
[ "MIT" ]
permissive
tenda-cn/icesat2webview
331e162e3d0b20b439ee416a2ebca2a16157170c
c310986ceb8efb1f3a9937ca6b9eb29b020cb0ec
refs/heads/main
2023-02-10T19:20:31.584381
2021-01-10T02:16:23
2021-01-10T02:16:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,584
py
#!/usr/bin/python3 """ syntax: db-path -[fd] [file-1.h5 [file-2.h5 [...]]] -f forces -d add debug info the h5 files will be all parsed and the relevant data extracted into tiles at zoomlevel 11, the tiles are saved in the db path tile format: each tile consists of a simple csv file """ import gzip import sys import h5py import numpy as np import os import re import datetime import math CHANNELS = ['1l', '1r','2l', '2r','3l', '3r'] #CHANNELS =['1l'] ZOOM_LEVEL=11 tilesStore= {} coordsCnt=0 # https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames def coords2tilexy(lat_deg, lon_deg, zoom): lat_rad = math.radians(lat_deg) n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((1.0 - math.asinh(math.tan(lat_rad)) / math.pi) / 2.0 * n) return (xtile, ytile) def recordPoint(filename,channel,rgt,time,lat,lon,terrain,canopy,direction): global coordsCnt key=coords2tilexy(lat,lon,ZOOM_LEVEL) payload=filename+";"+channel+";"+str(rgt)+";"+str(round(time,3))+";"+str(lat)+";"+str(lon)+";"+str(terrain)+";"+str(canopy)+";"+str(direction) #print("=="+payload) tilesStore.setdefault(key, []).append(payload) coordsCnt=coordsCnt+1 def dumpAll(prefix,group,maxRow): for key in group.keys(): is_dataset = isinstance(group[key], h5py.Dataset) #print(key+": "+str(is_dataset)) if (not is_dataset): dumpAll(prefix+"/"+key,group[key],maxRow) else: for i in range(min(maxRow,len(group[key]))) : print(prefix+"/"+key+"["+str(i)+"]:"+str(group[key][i])) def processFile(filename,addDebugInfo): print("processFile "+filename) f = h5py.File(filename) #dumpAll("", f,3306) #return #list(f.keys()) #['METADATA', 'ancillary_data', 'ds_geosegments', 'ds_metrics', 'ds_surf_type', 'gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r', 'orbit_info', 'quality_assessment'] debugInfo="" if (addDebugInfo): debugInfo=os.path.basename(filename) for channel in CHANNELS: ancillary_data=f['/ancillary_data'] orbit_info=f['/orbit_info'] #dump('/orbit_info',orbit_info,0) print(filename+":"+" reading channel:"+channel) land_segments=f['/gt'+channel+'/land_segments'] terrain=f['/gt'+channel+'/land_segments/terrain'] canopy=f['/gt'+channel+'/land_segments/canopy'] signal_photons=f['/gt'+channel+'/signal_photons'] #print("ancillary_data" ,ancillary_data.keys()) ##start_delta_time=ancillary_data['start_delta_time'][0] ##print("start_delta_time:",start_delta_time) ##print("land_segments" ,land_segments.keys()) ##print("terrain" ,terrain.keys()) ##print("canopy" ,canopy.keys()) # previous latitude - 999 means uninitialized plat=-999 for i, x in enumerate(zip( land_segments['rgt'], land_segments['delta_time'], land_segments['latitude'], land_segments['longitude'], terrain['h_te_best_fit'], #canopy['canopy_flag'], canopy['h_canopy'], signal_photons['ph_segment_id'], signal_photons['classed_pc_indx'] )): if (x[5]<1000): #print("#"+str(i)) lat=x[2] #dump("signal_photons",signal_photons,i) #dump("land_segments",land_segments,i) #dump("canopy",canopy,i) #dump("terrain",terrain,i) # hacky detection of rgt direction if (not (plat == -999) and plat>lat): direction='s' else: direction='n' recordPoint(debugInfo,channel,x[0],x[1],lat,x[3],x[4],x[5],direction) #print("ph_segment_id:",str(x[6])) #print("classed_pc_indx:",str(x[7])) #return plat=lat # # empty the store # def resetStore(): global tilesStore tilesStore={} global coordsCnt coordsCnt=0 # # store the store :) # def saveStore(storePath): for tile in tilesStore: # print(tile) # tile[0] latDir=storePath+"/"+str(ZOOM_LEVEL)+"/"+str(tile[0]) os.makedirs(latDir, exist_ok=True) tileCsv=latDir+"/"+str(tile[1])+".csv" tileCsvGz=tileCsv+".gz" # print(tileCsv+" has "+str(len(tilesStore[tile]))+" records") if (os.path.exists(tileCsvGz)): with gzip.open(tileCsvGz, 'rt') as fin: tileCsvText = fin.read() else: tileCsvText="" #if (tile[0]==1103 and tile[1]==694): # print("====================================") # print("tileCsvGz:"+tileCsvGz) # print("tileCsvText:"+tileCsvText) # print("new lines:"+tileCsvText) # for line in tilesStore[tile]: # print(line) # print("====================================") # BRITTLE with gzip.open(tileCsvGz, 'wt') as fout: fout.write(tileCsvText) for line in tilesStore[tile]: print(line,file=fout) #-- main -- def main(storePath,options,granules): addDebugInfo="d" in options force="f" in options srcs={} # open or create src.txt (the list of already processed h5 files) if (not os.path.exists(storePath)): print("new tiles db will be created: "+storePath) os.mkdir(storePath) open(storePath+"/src.txt", 'a').close() else: print("found existing tiles db: "+storePath) with open(storePath+"/src.txt") as f: for line in f.read().splitlines(): tokens=re.split(';',line) srcs[tokens[0]]=tokens[1:] print(tokens[0]+";"+line) print("channels:"+str(CHANNELS)) # process each h5 file for filename in granules: if (not os.path.exists(filename)): print(filename+": does not exists") elif (not force and os.path.basename(filename) in srcs): print(filename+":already loaded") else : resetStore() processFile(filename,addDebugInfo) saveStore(storePath) srcInfoLine=datetime.datetime.now().replace(microsecond=0).isoformat()+";"+str(coordsCnt)+" records in "+str(len(tilesStore))+" tiles " print(os.path.basename(filename)+":"+srcInfoLine) with open(storePath+"/src.txt", 'a+') as out: print(os.path.basename(filename)+";"+srcInfoLine,file=out) # main if (not sys.argv[2].startswith("-")): print ("2nd param must start with dash") exit(1) main ( storePath=sys.argv[1], options=sys.argv[2],granules=sys.argv[3:])
187f0791b1a01c11df6c79633e0e5dd286b10dd7
e644c0a10c8d6b339106a34b67a393b57e038093
/source_code/data_cleaning.py
97ca7fe342c83ed2051bee3f6cee18cc09fc8195
[]
no_license
hvijay3/User-Review-Based-New-Business-Affinity-Prediction-System
f8c7c57b5d6e2e2e034b24b6435ad9b53164a973
77f74fe7f39f9e0e6263eb1752d3047f42889090
refs/heads/master
2021-05-13T15:24:47.418392
2018-01-09T04:55:18
2018-01-09T04:55:18
116,767,593
0
0
null
null
null
null
UTF-8
Python
false
false
4,021
py
import pandas as pd import pandasql as ps sentiment1 = pd.read_csv('AllFoodBusiness_Features&Sentiments.csv') sentiment = ps.sqldf("""select business_id, round(sentimental_rating,0) as sentimental_rating from sentiment1""", locals()) sentiment.describe() sentiment.head() business = pd.read_csv('business.csv') business.rename(columns = {'stars':'business_stars'}, inplace = True) business.head() business.describe() business.columns ####### REVIEW review = pd.read_csv('review.csv', iterator=True, chunksize=500) review = pd.concat(review, ignore_index =True) review.describe() review.columns review.head() business.head() business_eateries = business[(business['categories'].str.contains(pat = 'Restaurants',na=False)) | (business['categories'].str.contains(pat = 'Lounges',na=False)) | (business['categories'].str.contains(pat = 'Nightlife',na=False)) | (business['categories'].str.contains(pat = 'Bars',na=False)) | (business['categories'].str.contains(pat = 'Food',na=False)) | (business['categories'].str.contains(pat = 'Coffee&Tea',na=False))| (business['categories'].str.contains(pat = 'Bakeries',na=False))| (business['categories'].str.contains(pat = 'Pubs',na=False))| (business['categories'].str.contains(pat = 'Pizza',na=False))] business_eateries.describe() business_eateries.columns business_eateries.head() cols = business_eateries.columns cols = cols.map(lambda x: x.replace('.', '_')) business_eateries.columns = cols # write business_eateries csv business_eateries.to_csv('Businesses_Eateries.csv') business_eateries.head() business_eateries_sentiment = pd.merge(business_eateries, sentiment, on = 'business_id') business_eateries_sentiment.to_csv('Business_Eateries_Sentiment.csv') business_review = pd.merge(business, review, on = 'business_id') review_grouped = business_review.groupby(['city' , 'business_id'], as_index=False).mean() data = review_grouped[['business_id','stars']] review_eateries = data.apply(lambda x: x) review_eateries.rename(columns={'stars': 'review_avg_stars'}, inplace=True) review_eateries.head() business_reviews_eateries = pd.merge(business_eateries, review_eateries, on = 'business_id') business_reviews_eateries.head() print(business_reviews_eateries.columns) business_relevant_review_eateries = business_reviews_eateries[['business_id','latitude', 'longitude','review_count' ,'business_stars','review_avg_stars','attributes_RestaurantsPriceRange2','attributes_BusinessAcceptsCreditCards','attributes_RestaurantsTakeOut','attributes_RestaurantsDelivery', 'attributes_WheelchairAccessible','attributes_GoodForMeal_breakfast','attributes_GoodForMeal_latenight','attributes_GoodForMeal_dessert','attributes_GoodForMeal_lunch', 'attributes_GoodForMeal_brunch','attributes_RestaurantsReservations','attributes_BusinessParking_validated','attributes_BusinessParking_valet','attributes_BusinessParking_lot','attributes_BusinessParking_garage', 'attributes_BusinessParking_street','attributes_BikeParking','state','city','name','attributes_GoodForKids','attributes_RestaurantsGoodForGroups','attributes_Ambience_trendy','attributes_Ambience_casual','attributes_Ambience_classy','attributes_Ambience_touristy','attributes_Ambience_intimate' ,'attributes_Ambience_hipster']] business_relevant_review_eateries.head() business_relevant_review_eateries_sentiment = pd.merge(business_relevant_review_eateries, sentiment, on = 'business_id') business_relevant_review_eateries_sentiment.to_csv('Model_Input.csv') business_relevant_review_eateries_sentiment.head()
c8a58abf83afbf6366b65b7dc1ee8f6a5d6ef831
24ffbd64e1892ab633ca785e969ccef43f17a9f2
/picomotor/devices/h2_yr.py
efa1098cd7f197e7875e4fee3720cf40bfa6fb58
[]
no_license
yesrgang/labrad_tools.srq
e29fcbfc4f5228955de1faddab6a66df52ccdd03
0dfbf2609d2f7a7e499167decedb0d9ea3677978
refs/heads/master
2021-06-18T19:59:21.448762
2021-02-04T22:03:49
2021-02-04T22:03:49
155,478,765
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
from picomotor.devices.nf8742.device import NF8742 class Motor(NF8742): socket_address = ('192.168.1.20', 23) controller_axis = 4 Device = Motor
7bae5ccf98dd1173f76aac2b3c90247bbe4be0fd
b74a22c9e6da60a5085104d9ab9252d61a5d5dfe
/app.py
4e0c4b1cca9fcd5459600f681dd688c97730af71
[]
no_license
VinayKatare/Sab-Pool-Karo
1413a759eb00f7c105d78b1874e2c383390489b5
6a4c2b26a42c8d9d92e207c687823dc059ab1ba0
refs/heads/master
2020-04-20T00:46:38.983792
2019-04-10T18:38:46
2019-04-10T18:38:46
168,529,166
1
2
null
null
null
null
UTF-8
Python
false
false
5,153
py
from flask import Flask,render_template,request,url_for,redirect,session,flash from db import * from passlib.hash import sha256_crypt from functools import wraps app = Flask(__name__) app.secret_key = b'_5#y2L"F4Q8z\n\xec]/' global temp temp = False conn = connectDB() cursor = conn.cursor(dictionary=True) def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if 'logged_in' is session: return f(*args, **kwargs) else: return 'cannot access' return decorated_function @app.route("/") def menu(): return render_template("search.html",flag=temp) @app.route("/signup", methods = ['POST','GET']) def signup(): if request.method == 'POST': userdetails=request.form email = userdetails['email'] name = userdetails['name'] password = userdetails['password'] confirmPassword = userdetails['confirmPassword'] gender = userdetails['gender'] car = userdetails['car'] mobile = userdetails['mobile'] govtid = userdetails['govtid'] if password!=confirmPassword: return "not matched" pwd = sha256_crypt.encrypt(str(password)) cursor.execute('insert into users values(null,%s,%s,%s,%s,%s,%s,%s)',(pwd,name,gender,mobile,email,car,govtid)) conn.commit() return redirect(url_for('menu')) return render_template("signup.html",flag=temp) @app.route("/login",methods = ['POST','GET']) def login(): if request.method == 'POST': userdetails = request.form userid = userdetails['email'] passwed = userdetails['password'] cursor.execute('select * from users where email = %s', (userid,)) res = cursor.fetchone() #print(res) if res is None: return ("invalid user name") else: pwd= res['pwd'] if sha256_crypt.verify(passwed,pwd): session['logged_in']=True global temp temp= True #print("this is ",temp) session['userid']=int(res['userid']) #return 'You are now logged in','success' return redirect(url_for('menu')) else: return "invalid password" return render_template("login.html",flag=temp) @app.route("/searchresult") def searchresult(): src = request.args.get('source') dest = request.args.get('destination') #cursor.execute('select * from pool') #res=cursor.fetchall() cursor.execute('select * from pool p,users u, dest d, src s where p.userid= u.userid and p.src=s.srcid and p.dest=d.destid and p.src=%s and p.dest=%s',(src,dest)) res = cursor.fetchall() print(res) return render_template("searchresult.html",rows=res,l=len(res),flag=temp) @app.route("/createpool",methods = ['POST','GET']) def createpool(): if request.method == 'POST': userdetails=request.form userid = session['userid'] source = userdetails['source'] destination = userdetails['destination'] vacancy = userdetails['vacancy'] time = userdetails['time'] cost = userdetails['cost'] print("this is ",time) cursor.execute('insert into pool values(%s,null,%s,%s,%s,%s,%s)',(userid,source,destination,vacancy,time,cost)) conn.commit() return redirect(url_for('menu')) return render_template("createpool.html",flag=temp) # requestpool @app.route("/requestpool",methods = ['POST','GET']) def requestpool(): if request.method == 'GET': poolid = request.args.get('poolid') return render_template("requestpool.html", poolid=poolid) else: if not session['logged_in']: return redirect(url_for('menu')) userid = session['userid'] status='Requested' userdetails = request.form src=userdetails['source'] dest=userdetails['destination'] poolid = userdetails['poolid'] cursor.execute('insert into joinpool values(null,%s,%s,%s,%s,%s)',(userid, poolid, status, src, dest)) conn.commit() return "Success" #return redirect(url_for('menu')) @app.route("/mypools",methods = ['POST','GET']) def mypools(): if request.method == 'GET': userid = session['userid'] cursor.execute('select * from users u,joinpool j, pool p where j.userid=%s and p.poolid=j.poolid and j.userid= u.userid', (userid,)) res = cursor.fetchall() #print(res, len(res)) req=[] accreq=[] rejreq=[] for i in range(len(res)): if res[i]['status'] == 'Requested': req.append(res[i]) elif res[i]['status'] == 'Accepted': accreq.append(res[i]) else: rejreq.append(res[i]) return render_template("poolrequest.html",req=req,accreq=accreq,flag=temp,rejreq=rejreq,l=len(req),l1=len(accreq),l2=len(rejreq)) @app.route("/logout") def logout(): global temp temp= False session.clear() return redirect(url_for('menu')) if __name__ == '__main__': app.run(debug=True)
40397ccb95d1078ee9372f43fc59a3eb63a11174
e868cd3e0eb56ac8b4aa4290510b2d393ae8eaac
/relations-finder/tests/wikipedia_data_fetcher_test.py
fd2b8319b464c1010f09f9590af94aa2a70c661f
[ "MIT" ]
permissive
trisongz/wiki-relations
2ba0c24deb0d804633dbe1796443fbeabd36b5a3
9f8d20c512f993cab6065cb2695c996c076b6d13
refs/heads/main
2023-03-24T22:08:29.722531
2021-03-13T17:49:13
2021-03-13T17:49:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,180
py
import os import sys from unittest import TestCase from unittest.mock import patch import wikipedia sys.path.append(os.path.abspath('..')) from wikipedia_data_fetcher import Wikipedia_data_fetcher class Test_wikipedia_data_fetcher(TestCase): def setUp(self): self.fetcher = Wikipedia_data_fetcher() @patch('wikipedia_data_fetcher.wikipedia.page') @patch.object(Wikipedia_data_fetcher, 'chunk_page_content') def test_that_get_article_returns_correct_result(self, mock_chunk_page_content, mock_wikipedia_page): url = 'fake url' title = 'fake title' content = 'fake content' class Object: def __init__(self): self.url = url self.title = title mock_wikipedia_page.return_value = Object() mock_chunk_page_content.return_value = content expected = {'name': title, 'url': url, 'content_chunks': content} actual = self.fetcher.get_article('') self.assertDictEqual(expected, actual) @patch('wikipedia_data_fetcher.wikipedia.page') def test_that_get_article_returns_empty_dict_on_page_error(self, mock_wikipedia_page): page_error = wikipedia.exceptions.PageError('fake page id') mock_wikipedia_page.side_effect = page_error expected = {} actual = self.fetcher.get_article('') self.assertDictEqual(expected, actual) def test_that_get_section_titles_strips_title_names_from_text(self): content = '\n\n\n= First Title =\n text...\n\n\n== Second Title '\ '==\n\n more text...\n=== Sub Title ===\n finish.' expected = ['First Title', 'Second Title', 'Sub Title'] actual = self.fetcher.get_sections_titels(content) self.assertListEqual(expected, actual) def test_that_filter_sections_removes_unwanted_sections(self): sections = ['Foo', 'Publications', 'References', 'External links', 'Further reading', 'Bar'] sections_to_remove = {'Publications', 'References', 'External links', 'Further reading'} expected = ['Foo', 'Bar'] actual = self.fetcher.filter_sections(sections) self.assertListEqual(expected, actual) def test_that_clean_text_removes_quotes_and_newlines(self): text = 'Some text\n"quoted text"\nend.' expected = 'Some text quoted text end.' actual = self.fetcher.clean_text(text) self.assertEqual(expected, actual) def test_that_chunk_page_content_returns_list_with_sections_contents(self): summary = 'summary' content = '\n= Foo =\nFirst chunk\n\n== Bar ==\nSecond chunk.' expected = ['summary', 'First chunk', 'Second chunk.'] class Object: def __init__(self): self.summary = summary self.content = content def section(self, title): if title == 'Foo': return 'First chunk' elif title == 'Bar': return 'Second chunk.' actual = self.fetcher.chunk_page_content(Object()) self.assertEqual(expected, actual)
36cc3d83758e405e7b09ba3ceb504ad2feb85195
3282ccae547452b96c4409e6b5a447f34b8fdf64
/SimModel_Python_API/simmodel_swig/Release/ObtainPipeInfo.py
05eb5c5394e33c9bacfea57f6770abb9744c6491
[ "MIT" ]
permissive
EnEff-BIM/EnEffBIM-Framework
c8bde8178bb9ed7d5e3e5cdf6d469a009bcb52de
6328d39b498dc4065a60b5cc9370b8c2a9a1cddf
refs/heads/master
2021-01-18T00:16:06.546875
2017-04-18T08:03:40
2017-04-18T08:03:40
28,960,534
3
0
null
2017-04-18T08:03:40
2015-01-08T10:19:18
C++
UTF-8
Python
false
false
9,971
py
import os import networkx as nx # load SimModel hierarchy import SimModel_Hierachy # load SimModel mapped data import SimModel_Mapping # load SimModel translation engine import SimModel_Translator # load the SimModel classes you wanna access their properties, # e.g., if you need to access a class named A, then import A # as shown in the following code import SimProject_Project_DesignAlternative import SimSite_BuildingSite_Default import SimBuilding_Building_Default import SimBuildingStory_BuildingStory_Default import SimGroup_SpatialZoneGroup_ZoneGroup import SimGroup_SpatialZoneGroup_ZoneHvacGroup import SimSpatialZone_ThermalZone_Default import SimSpace_Occupied_Default import SimList_EquipmentList_ZoneHvac import SimSpaceBoundary_SecondLevel_SubTypeA import SimSlab_Default_Default import SimSlab_RoofSlab_RoofUnderAir import SimSlab_Floor_FloorOverEarth import SimSlab_Floor_InterzoneFloor import SimWall_Wall_Default import SimWall_Wall_ExteriorAboveGrade import SimWall_Wall_Interior import SimWindow_Window_Exterior import SimMaterialLayerSet_Default_Default import SimMaterialLayerSet_OpaqueLayerSet_Roof import SimMaterialLayerSet_OpaqueLayerSet_Floor import SimMaterialLayerSet_OpaqueLayerSet_Wall import SimMaterialLayerSet_GlazingLayerSet_Window import SimFeatureElementSubtraction_Void_Opening import SimMaterialLayer_OpaqueMaterialLayer_Default import SimMaterialLayer_GlazingMaterialLayer_Default import SimMaterial_Default_Default import SimMaterial_OpaqueMaterial_Default import SimMaterial_OpaqueMaterial_AirGap import SimMaterial_GlazingMaterial_Gas import SimMaterial_GlazingMaterial_SimpleGlazingSystem import SimMaterial_GlazingMaterial_Glazing import SimModelRepresentationContext_GeometricRepresentationContext_Default import SimPlacement_Axis2Placement3D_Default import SimGeomVector_Vector_Direction import SimSystem_HvacHotWater_FullSystem import SimSystem_HvacHotWater_Control import SimController_SupplyWater_Temperature import SimSensor_TemperatureSensor_DryBulb import SimSystem_HvacHotWater_Demand import SimFlowController_Valve_Default import SimFlowController_Valve_TemperingValve import SimFlowEnergyTransfer_ConvectiveHeater_Water import SimFlowEnergyTransfer_ConvectiveHeater_Radiant_Water import SimFlowEnergyTransferStorage_HotWaterTank_Expansion import SimFlowEnergyTransferStorage_HotWaterTank_Mixed import SimFlowFitting_Default_Default import SimFlowFitting_Mixer_DemandProxyMixerWater import SimFlowFitting_Splitter_DemandProxySplitterWater import SimFlowSegment_Pipe_Indoor import SimSystem_HvacHotWater_Supply import SimFlowMover_Pump_VariableSpeedReturn import SimFlowPlant_Boiler_BoilerHotWater import SimConnection_HotWaterFlow_Default import SimNode_HotWaterFlowPort_Water_Out import SimNode_HotWaterFlowPort_Water_In import SimDistributionPort_HotWaterFlowPort_Water_Out import SimDistributionPort_HotWaterFlowPort_Water_In import SimDistributionPort_HotWaterFlowPort_Water_InOrOut import SimNode_DigitalControl_HWLoop_DigitalSignal_In import SimTimeSeriesSchedule_Year_Default import SimTimeSeriesSchedule_Week_Daily import SimTimeSeriesSchedule_Day_Interval import SimTemplateZoneLoads_ZoneLoads_Default import SimTemplateZoneConditions_ZoneConditions_Default import SimInternalLoad_Equipment_Electric import SimInternalLoad_People_Default import SimInternalLoad_Lights_Default import SimController_ZoneControlTemperature_Thermostat import SimControlScheme_SetpointScheme_SingleHeating import SimPerformanceCurve_Mathematical_Cubic from SimModel_Translator import SimTranslator # create SimModel translator object translator = SimTranslator() # load and parse multiple SimXML files zoneFile_path = ("UseCase1_1_BoilerGasRadiatorFromSimergy.simxml") hvacFile_path = ("1.1_Architecture+HVAC+Zone_Curve+Schedule_korr.simxml") pathList = [zoneFile_path, hvacFile_path] simxml_data = translator.loadSimModel(zoneFile_path, hvacFile_path) # get SimModel mapped data simxml_mapped_data = translator.getSimMappedData(".\\mapping_rule\\mapping_rule_xml\\AixLib_v2.6.xml") mappedComonentList = simxml_mapped_data.getMappedComponentList() sim_hierarchy = translator.getSimHierarchy() nodeList = sim_hierarchy.getHierarchyNodeList() # iterate each hierarchy node saved in the list Structured_HVAC = [] for id in range(0, nodeList.size()): hierarchy_node = nodeList[id] #print("node ", id, ":", hierarchy_node.getSimModelObject().RefId()) # check the class type of the hierarchy node if hierarchy_node.isClassType("SimSystem_HvacHotWater_Supply") or hierarchy_node.isClassType("SimSystem_HvacHotWater_Demand"): # We are in Supply System: --> obtain child list. print("Extract childs from ", hierarchy_node.getSimModelObject().RefId()) child_node_list = hierarchy_node.getChildList() #print("child_node_list: ", child_node_list) #sim_object = hierarchy_node.getSimModelObject() #sim_object_id = sim_object.RefId() #print("current SimModel object id: ", sim_object_id, " has the childs: ", child_node_list, "\n") for child in child_node_list: #print("child: ", child.getSimModelObject().RefId()) selected_info = [] # Every child will eventually become a modelica component. Thus we need: # Name/ID - Type - & if applicable InPort and Outport from each TargePort and SourcePort # The following structure (list of lists) will be used: # for each node: [RefId,Type,[list of InPorts],[list of OutPorts],[list of InOrOutPorts]] where each element of the list InPorts # is a list of the form: [TargetPort,SourcePort] objectRefId = child.getSimModelObject().RefId() objectType = child.ClassType() selected_info.extend([objectRefId,objectType]) #InPort and Outport child_node_list_2 = child.getChildList() InPortlist = [] #SimDistributionPort_HotWaterFlowPort_Water_Out OutPortlist = [] #SimDistributionPort_HotWaterFlowPort_Water_In for child_2lvl in child_node_list_2: # We need to go 1 level deeper to get Source- and TargetPort. Both are in class SimConnection_HotWaterFlow_Default (Port[0]) # Attribute TargetPort = OutPort.RefId() (Water_In) and Attribute SourcePort = InPort.RefId() (Water_Out) #EXAMPLE: #ID0LMbjl8XfFaui1YxJs_D6D #InPort: ID3zs117w1n5lwSRidPGhKht (Water_Out) # SourcePort: ID3zs117w1n5lwSRidPGhKht # TargetPort: ID13UhRNCnX1rAwEBMyxljsq #OutPort: ID1a5meudDCPOBQD1vrPCFy (Water_In) # SourcePort: ID3mJZcz594IfdQpbAKBQkZ # TargetPort: ID1a5meudDCPOBQD1vrPCFy # # In case the calss is HotWaterFlowPort_Water_InOrOut # The above rule (compare attribute SourcePort and TargetPort with object RefId) # helps to know whether the object is an InPort or OutPort. # We will later associate InPort with OutPorts. # InPort.RefId() = InPort.SourcePort = OutPort.SourcePort --> Alternative --> InPort.TargetPort = OutPort.TargetPort = OutPort.RefId() # we use -> TargetPort if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_In"): Port = child_2lvl.getChildList() obj = Port[0].getSimModelObject() OutPortlist.append(child_2lvl.getSimModelObject().RefId()) if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_Out"): Port = child_2lvl.getChildList() obj = Port[0].getSimModelObject() class_name = getattr(obj,"TargetPort") instance = class_name() Port_Id = class_name().getValue() InPortlist.append(Port_Id) if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_InOrOut"): Port = child_2lvl.getChildList() obj = Port[0].getSimModelObject() class_name = getattr(obj,"TargetPort") instance = class_name() TargetPort_Id = class_name().getValue() class_name = getattr(obj,"SourcePort") instance = class_name() SourcePort_Id = class_name().getValue() # If TargetPort_Id = child_2lvl.getSimModelObject().RefId() we have an OutPort (Water_In class) # we append SourcePort_Id to OutPortlist otherwise # we have an InPort (Water_Out class) so we append SourcePort_Id to the InPort list! if child_2lvl.getSimModelObject().RefId() == TargetPort_Id: OutPortlist.append(TargetPort_Id) else: InPortlist.append(TargetPort_Id) # Finish reading second lvl childs: add list of OutPort and InPort into selected info selected_info.extend([InPortlist,OutPortlist]) # Finisch with HVAC child. append structured information of the node into global list. Structured_HVAC.append(selected_info) G=nx.DiGraph() listof_RefId = [elem[0] for elem in Structured_HVAC] listof_type = [elem[1] for elem in Structured_HVAC] listof_InPorts = [elem[2] for elem in Structured_HVAC] listof_OutPorts = [elem[3] for elem in Structured_HVAC] G.add_nodes_from(listof_RefId) for node in Structured_HVAC: G.node[node[0]]['Text'] = node[0] G.node[node[0]]['Description'] = node[1] for element_in in Structured_HVAC: for InPort in element_in[2]: for element_out in Structured_HVAC: for OutPort in element_out[3]: if InPort == OutPort: print("ElementIN: ", element_in[0]," with InPort: ", InPort, "found OutPort: ", OutPort, " in element ", element_out[0]) G.add_edge(element_in[0],element_out[0]) print("number of edges: ", G.number_of_edges(), " - number of nodes: ", G.number_of_nodes()) nx.write_graphml(G,"test.graphml") print("finish")
092db6afd0b046dcf1485a91be052fd57d5c502e
a177931c2914cc9820c578add9d57aa6c75084ce
/tips/customHTML/test_genTABHTML.py
cfd92464403354ae73e44a3df5bc666a81d2eb93
[]
no_license
zhangshoug/others
45d94f96701362cb077eb994c27295247a6fb712
3a8a8366f2598a5e88b44d18d346e81f4eef659e
refs/heads/master
2022-12-18T22:37:13.505543
2020-09-28T08:54:28
2020-09-28T08:54:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,021
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: test_genTABHTML Description : tab css style test Author : pchaos date: 2019/9/9 ------------------------------------------------- Change Activity: 2019/9/9: ------------------------------------------------- """ import unittest from unittest import TestCase from .genTabHTML import genTABHTML class TestGenTABHTML(TestCase): def test_genHTML(self): # 需要生成的文件名list。模板文件为:template.html,模板数据文件名为:需要生成的文件名+".ini" flist = ["main.htm", "main_tech.htm", "hacker.html"] # inifile = '{}.ini'.format(flist[0]) renderList = [] for fn in flist: inifile = '{}.ini'.format(fn) gh = genTABHTML() # gh.outputFilename = fn gh.outputFilename = "test" gh.iniFilename = inifile try: templateFile = "customHTML/template.tab.table.html" of, render = gh.genHTML(None, # of, render = gh.genHTML("a{}".format(fn), title=fn.split(".")[0], prettify=False, template=templateFile) except Exception as e: templateFile = "template.tab.table.html" of, render = gh.genHTML(None, # of, render = gh.genHTML("a{}".format(fn), title=fn.split(".")[0], prettify=False, template=templateFile) print("输出文件完成 {}".format(of)) # print(render) self.assertTrue(len(render) > 100) renderList.append(render) print(renderList) # main inifile = '{}.ini'.format(flist[0]) gh = genTABHTML() # gh.outputFilename = fn gh.iniFilename = inifile try: templateFile = "template.tab.html" render = gh.renders(renderList, prettify=True, # template="customHTML/template.tab.html", template=templateFile, title="Main") except Exception as e: templateFile = "customHTML/template.tab.html" render = gh.renders(renderList, prettify=True, # template="customHTML/template.tab.html", template=templateFile, title="Main") saveText = "" for r in render: saveText += r gh.save('main.htm', saveText) print("输出文件完成 {}".format(render)) if __name__ == '__main__': unittest.main()
c06bcf0c5bf8278caf07c0496ba1c817c184ba8d
3d2e5d1092acccfb73c07d68b6beeffc44b3f776
/imitation/src/environments/simulation/pybullet_env.py
10ef9e12e56c2333e0813282dd5bdfe598ed1611
[]
no_license
MatthijsBiondina/WorldModels
f6cbcfe5349da7119329ef10831810d1b85c9d02
ab468f1aa978e3aa4e05174db24922085d1e33b1
refs/heads/master
2022-12-22T11:54:46.040828
2020-09-23T11:41:48
2020-09-23T11:41:48
248,212,491
0
0
null
null
null
null
UTF-8
Python
false
false
2,560
py
import gym import pybulletgym import numpy as np from src.environments.general.environment_template import Environment from src.utils import config as cfg _ = pybulletgym PREP_VECTORS = {'InvertedPendulumSwingupPyBulletEnv-v0': np.array([1, 0.2, 1, 1, 0.067], dtype=np.float16)} def preprocess_observation(obs): """ :param obs: unprocessed observation :return: normalized observation """ return np.clip(obs * PREP_VECTORS[cfg.env_name], -1., 1.) class SimEnv(Environment): def __init__(self, save_loc: str): super().__init__(save_loc) self.env = gym.make(cfg.env_name) self.t = 0 self.actions = [np.zeros(self.action_size)] * cfg.latency def reset(self): """ Reset environment :return: observation at t=0 """ self.t = 0 self.actions = [np.zeros(self.action_size)] * cfg.latency return preprocess_observation(self.env.reset()) def step(self, action: np.ndarray): """ Perform action and observe next state. Action is repeated 'action_repeat' times. :param action: the action to take :return: next observation, reward, terminal state """ obs, done = None, None reward = 0 self.actions.append(action) for k in range(cfg.action_repeat): obs, reward_k, done, _ = self.env.step(self.actions[0]) reward += reward_k done = done or self.t == cfg.max_episode_length if done: break self.actions.pop(0) return preprocess_observation(obs), reward, done def render(self) -> np.ndarray: """ Renders the environment to RGB array :return: frame capture of environment """ return self.env.render(mode='rgb_array') def close(self): """ Cleanup :return: n/a """ self.env.close() def sample_random_action(self) -> np.ndarray: """ Sample an action randomly from a uniform distribution over all valid actions :return: random action """ return self.env.action_space.sample() @property def obs_size(self) -> int: """ GETTER METHOD :return: size of observations in this environment """ return self.env.observation_space.shape[0] @property def action_size(self): """ GETTER METHOD :return: size of actions in this environment """ return self.env.action_space.shape[0]
e3f0fa8530d803d47671f975bfbbc686baaee7bb
73be09853a2a303597825a5fe765610eeebbc5ef
/ForGPU/KerasCnn5.py
f6163ee71736ad8085652a59616dc5a78c1d025c
[ "MIT" ]
permissive
Annarien/GravitationalLenses
7375cded8a028f39b4426687f90b5d0f8ca92cde
c2606aacc62d2534fb199f5228dc21c0ea604251
refs/heads/main
2023-06-02T21:25:29.543234
2021-06-19T18:20:07
2021-06-19T18:20:07
341,883,049
0
0
null
null
null
null
UTF-8
Python
false
false
55,630
py
""" This is file performs the convolutional neural network algorithm, in which the k fold is performed as well. The results were saved in a csv file. """ import os import sys import random from datetime import datetime import numpy as np import tensorflow from astropy.io import fits from astropy.utils.data import get_pkg_data_filename from matplotlib import pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.utils import shuffle from tensorflow.python.keras import Sequential from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.python.keras.layers.convolutional import Conv2D, MaxPooling2D from tensorflow.python.keras.layers.core import Dense, Dropout, Flatten from tensorflow.python.keras.models import Model from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.python.keras.models import save_model # added Adam opt for learning rate from tensorflow.python.keras.optimizers import Adam # from tensorflow.keras.optimizers import Adam from tensorflow.python.keras import backend as K from ExcelUtils import createExcelSheet, writeToFile print(tensorflow.__version__) now = datetime.now() dt_string = now.strftime("%d_%m_%Y_%H_%M_%S") print(dt_string) excel_headers = [] excel_dictionary = [] excel_headers.append("Date and Time") excel_dictionary.append(dt_string) # Globals makeNewCSVFile = True max_num = sys.maxsize # Set to sys.maxsize when running entire data set max_num_testing = sys.maxsize # Set to sys.maxsize when running entire data set max_num_prediction = sys.maxsize # Set to sys.maxsize when running entire data set validation_split = 0.2 # A float value between 0 and 1 that determines what percentage of the training # data is used for validation. k_fold_num = 5 # A number between 2 and 10 that determines how many times the k-fold classifier # is trained. epochs = 50 # A number that dictates how many iterations should be run to train the classifier batch_size = 128 # The number of items batched together during training. run_k_fold_validation = True # Set this to True if you want to run K-Fold validation as well. input_shape = (100, 100, 3) # The shape of the images being learned & evaluated. augmented_multiple = 2 # This uses data augmentation to generate x-many times as much data as there is on file. use_augmented_data = True # Determines whether to use data augmentation or not. patience_num = 5 # Used in the early stopping to determine how quick/slow to react. use_early_stopping = True # Determines whether to use early stopping or not. use_model_checkpoint = True # Determines whether the classifiers keeps track of the most accurate iteration of itself. monitor_early_stopping = 'val_loss' monitor_model_checkpoint = 'val_acc' use_shuffle = True learning_rate = 0.001 training_positive_path = 'Training/PositiveAll' # training_positive_path = 'UnseenData/KnownLenses_training' training_negative_path = 'Training/Negative' testing_positive_path = 'Testing/PositiveAll' testing_negative_path = 'Testing/Negative' # unseen_known_file_path = 'UnseenData/Known131' unseen_known_file_path_select = 'UnseenData/SelectingSimilarLensesToPositiveSimulated' unseen_known_file_path_all = 'UnseenData/KnownLenses' # Adding global parameters to excel excel_headers.append("Max Training Num") excel_dictionary.append(max_num) excel_headers.append("Max Testing Num") excel_dictionary.append(max_num_testing) excel_headers.append("Max Prediction Num") excel_dictionary.append(max_num_prediction) excel_headers.append("Validation Split") excel_dictionary.append(validation_split) excel_headers.append("K fold Num") excel_dictionary.append(k_fold_num) excel_headers.append("Epochs") excel_dictionary.append(epochs) excel_headers.append("Batch Size") excel_dictionary.append(batch_size) excel_headers.append("Run K fold") excel_dictionary.append(run_k_fold_validation) excel_headers.append("Input Shape") excel_dictionary.append(input_shape) excel_headers.append("Augmented Multiple") excel_dictionary.append(augmented_multiple) excel_headers.append("Use Augmented Data") excel_dictionary.append(use_augmented_data) excel_headers.append("Patience") excel_dictionary.append(patience_num) excel_headers.append("Use Early Stopping") excel_dictionary.append(use_early_stopping) excel_headers.append("Use Model Checkpoint") excel_dictionary.append(use_model_checkpoint) excel_headers.append("Monitor Early Stopping") excel_dictionary.append(monitor_early_stopping) excel_headers.append("Monitor Model Checkpoint") excel_dictionary.append(monitor_model_checkpoint) excel_headers.append("Use Shuffle") excel_dictionary.append(use_shuffle) excel_headers.append("Learning Rate") excel_dictionary.append(learning_rate) if not os.path.exists('../Results/%s/' % dt_string): os.mkdir('../Results/%s/' % dt_string) # Helper methods def getPositiveImages(images_dir, max_num, input_shape): """ This gets the positively simulated images in the g, r and i bands. Args: images_dir(string): This is the file path address of the positively simulated images. max_num(integer): This is the number of sources of the positively simulated images to be used. input_shape(tuple): This is the shape of the images. Returns: positive_images(numpy array): This is the numpy array of the positively simulated images with the shape of (num of images, input_shape[0], input_shape[1], input_shape[2]) = (num_of_images, 100, 100, 3). """ global g_img_path, r_img_path, i_img_path for root, dirs, _ in os.walk(images_dir): num_of_images = min(max_num, len(dirs)) positive_images = np.zeros([num_of_images, 3, 100, 100]) index = 0 print('image_dir: ' + str(images_dir)) for folder in dirs: if images_dir == 'Training/PositiveAll': g_img_path = get_pkg_data_filename('%s/%s_g_norm.fits' % (os.path.join(root, folder), folder)) r_img_path = get_pkg_data_filename('%s/%s_r_norm.fits' % (os.path.join(root, folder), folder)) i_img_path = get_pkg_data_filename('%s/%s_i_norm.fits' % (os.path.join(root, folder), folder)) elif images_dir == 'UnseenData/KnownLenses_training': g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder))) r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder))) i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder))) # print('g_img_path: ' + str(g_img_path)) # print('r_img_path: ' + str(r_img_path)) # print('i_img_path: ' + str(i_img_path)) g_data = fits.open(g_img_path)[0].data[0:100, 0:100] r_data = fits.open(r_img_path)[0].data[0:100, 0:100] i_data = fits.open(i_img_path)[0].data[0:100, 0:100] img_data = [g_data, r_data, i_data] positive_images[index] = img_data index += 1 if index >= num_of_images: break return positive_images.reshape(num_of_images, input_shape[0], input_shape[1], input_shape[2]) def getNegativeImages(images_dir, max_num, input_shape): """ This gets the negative images in the g, r and i bands. Args: images_dir(string): This is the file path address of the negative images. max_num(integer): This is the number of sources of the negative images to be used. input_shape(tuple): This is the shape of the images. Returns: negative_images(numpy array): This is the numpy array of the negative images with the shape of (num of images, input_shape[0], input_shape[1], input_shape[2]) = (num_of_images, 100, 100, 3). """ for root, dirs, _ in os.walk(images_dir): num_of_images = min(max_num, len(dirs)) negative_images = np.zeros([num_of_images, 3, 100, 100]) index = 0 for folder in dirs: g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder))) r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder))) i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder))) g_data = fits.open(g_img_path)[0].data[0:100, 0:100] r_data = fits.open(r_img_path)[0].data[0:100, 0:100] i_data = fits.open(i_img_path)[0].data[0:100, 0:100] img_data = [g_data, r_data, i_data] negative_images[index] = img_data index += 1 if index >= num_of_images: break return negative_images.reshape(num_of_images, input_shape[0], input_shape[1], input_shape[2]) def getUnseenData(images_dir, max_num, input_shape): """ This gets the unseen images in the g, r and i bands containing the identified known lenses. Args: images_dir(string): This is the file path address of the unseen images. max_num(integer): This is the number of sources of the unseen images to be used. input_shape(tuple): This is the shape of the images. Returns: des_tiles(dictionary): This is the dictionary of the unseen images with the shape of (num of images, input_shape[0], input_shape[1], input_shape[2]) = (num_of_images, 100, 100, 3). """ des_tiles = {} for root, dirs, _ in os.walk(images_dir): num_of_images = min(max_num, len(dirs)) index = 0 for folder in dirs: g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder))) r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder))) i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder))) # print(g_img_path) g_data = fits.open(g_img_path)[0].data[0:100, 0:100] # print(np.shape(g_data)) r_data = fits.open(r_img_path)[0].data[0:100, 0:100] i_data = fits.open(i_img_path)[0].data[0:100, 0:100] img_data = np.array([g_data, r_data, i_data]).reshape(input_shape[0], input_shape[1], input_shape[2]) des_tiles.update({folder: img_data}) index += 1 if index >= num_of_images: break return des_tiles def makeImageSet(positive_images, negative_images=None, tile_names=None, shuffle_needed=use_shuffle): """ This is used to create data set of images and labels, in which the positive and negative images are all combined and shuffled. Args: positive_images(numpy array): This is the numpy array of the positively simulated images. negative_images(numpy array): This is the numpy array of the negative images, this is set to a default of None. tile_names(list): This is the dictionary of the unseen known lenses, this is set to a default of None. shuffle_needed(boolean): This is a boolean value to determine whether or not shuffling of the given data sets is required. Returns: image_set(numpy array): This is the image data set of numpy array of the combination positive and negative images. label_set(numpy array): This is the label data set of numpy array of the combination positive and negative label. des_names_set(numpy array): This is the des name data set of the known lenses and negative images used. """ image_set = [] label_set = [] tile_name_set = [] if positive_images is not None: for index in range(0, len(positive_images)): image_set.append(positive_images[index]) label_set.append(1) if tile_names is not None: tile_name_set.append(tile_names[index]) if negative_images is not None: for index in range(0, len(negative_images)): image_set.append(negative_images[index]) label_set.append(0) if tile_names is not None: tile_name_set.append(tile_names[index]) # print("Label Set: " + str(label_set)) if shuffle_needed: if tile_names is not None: image_set, label_set, tile_name_set = shuffle(image_set, label_set, tile_name_set) else: image_set, label_set = shuffle(image_set, label_set) # print("Shuffled Label Set: " + str(label_set)) return np.array(image_set), np.array(label_set), np.array(tile_name_set) def buildClassifier(input_shape=(100, 100, 3)): """ This creates the CNN algorithm. Args: input_shape(tuple): This is the image shape of (100,100,3) Returns: classifier(sequential): This is the sequential model. """ # Initialising the CNN opt = Adam(lr=learning_rate) # lr = learning rate # classifier = Sequential() # classifier.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape, padding='same')) # classifier.add(MaxPooling2D(pool_size=(4, 4), padding='same')) # classifier.add(Conv2D(32, (3, 3), activation='relu', padding='same')) # classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu')) # classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same')) # classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # classifier.add(Dropout(0.2)) # antes era 0.25 # classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu')) # classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same')) # classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # classifier.add(Dropout(0.2))# antes era 0.25 # classifier.add(Flatten()) # # classifier.add(Dense(units=512, activation='relu')) # classifier.add(Dropout(0.2)) # classifier.add(Dense(units=1, activation='sigmoid')) # classifier.summary() # # # Compiling the CNN # classifier.compile(optimizer=opt,loss = 'binary_crossentropy',metrics = ['accuracy']) # classifier.add(Conv2D(96, kernel_size=(2, 2), activation='relu', input_shape=input_shape)) # padding='same' # classifier.add(MaxPooling2D(pool_size=(2, 2))) # padding='same' # classifier.add(Dropout(0.2)) # classifier.add(Conv2D(128, (2, 2), activation='relu')) # padding='same' # classifier.add(MaxPooling2D(pool_size=(2, 2))) # padding='same' # classifier.add(Dropout(0.2)) # classifier.add(Conv2D(256, (2, 2), activation='relu')) # padding='same' # classifier.add(MaxPooling2D(pool_size=(2, 2))) # classifier.add(Dropout(0.2)) # classifier.add(Conv2D(256, (2, 2), activation='relu')) # padding='same' # classifier.add(Dropout(0.2)) # classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # padding='same' # classifier.add(Dropout(0.2)) # classifier.add(Flatten()) # classifier.add(Dense(units=2048, activation='relu')) # added new dense layer # classifier.add(Dense(units=1024, activation='relu')) # added new dense layer # classifier.add(Dropout(0.2)) # classifier.add(Dense(units=1024, activation='relu')) # added new dense layer # classifier.add(Dropout(0.2)) # classifier.add(Dense(units=1, activation='sigmoid')) # classifier.summary() # # # Compiling the CNN # classifier.compile(optimizer=opt, # loss='binary_crossentropy', # metrics=['accuracy']) classifier = Sequential() classifier.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape, padding='same')) classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) classifier.add(Dropout(0.5)) # added extra Dropout layer classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same')) classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) classifier.add(Conv2D(128, (3, 3), padding='same', activation='relu')) classifier.add(Dropout(0.5)) # added extra dropout layer classifier.add(Conv2D(256, (3, 3), activation='relu', padding='same')) classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) classifier.add(Dropout(0.2)) # antes era 0.25 # Adding a third convolutional layer classifier.add(Conv2D(512, (3, 3), padding='same', activation='relu')) classifier.add(MaxPooling2D(2,2)) classifier.add(Conv2D(1024, (3, 3), activation='relu', padding='same')) classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) classifier.add(Dropout(0.2)) # antes era 0.25 # Step 3 - Flattening classifier.add(Flatten()) # Step 4 - Full connection classifier.add(Dropout(0.2)) classifier.add(Dense(units=1, activation='sigmoid')) classifier.summary() # Compiling the CNN classifier.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) plot_model(classifier, to_file='model_plot.png', show_shapes=True, show_layer_names=True) return classifier def visualiseActivations(img_tensor, base_dir): """ This makes images of the activations, as the selected image passed through the model Args: img_tensor(numpy array): This is the numpy array of the selected image base_dir(string): This is the file path name Saves: This saves the activation images of the selected source. """ global predicted_class, size # Run prediction on that image predicted_class = classifier.predict_classes(img_tensor, batch_size=10) print("Predicted class is: ", predicted_class) # Visualize activations layer_outputs = [layer.output for layer in classifier.layers[:12]] activation_model = Model(inputs=classifier.input, outputs=layer_outputs) activations = activation_model.predict(img_tensor) layer_names = [] for layer in classifier.layers[:12]: layer_names.append(layer.name) images_per_row = 3 count = 0 for layer_name, layer_activation in zip(layer_names, activations): number_of_features = layer_activation.shape[-1] size = layer_activation.shape[1] number_of_columns = number_of_features // images_per_row display_grid = np.zeros((size * number_of_columns, images_per_row * size)) for col in range(number_of_columns): for row in range(images_per_row): channel_image = layer_activation[0, :, :, col * images_per_row + row] channel_image -= channel_image.mean() channel_image /= channel_image.std() channel_image *= 64 channel_image += 128 channel_image = np.clip(channel_image, 0, 255).astype('uint8') display_grid[col * size: (col + 1) * size, row * size: (row + 1) * size] = channel_image scale = 1. / size activations_figure = plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])) plt.title(layer_name) plt.grid(False) plt.imshow(display_grid, aspect='auto', cmap='viridis') activations_figure.savefig('%s/%s_Activation_%s.png' % (base_dir, count, layer_name)) plt.close() count += 1 def usingCnnModel(training_data, training_labels, val_data, val_labels): """ This is using the CNN model and setting it up. Args: training_data(numpy arrays): This is the numpy array of the training data. training_labels(numpy arrays): This is the numpy array of the training labels. val_data(numpy arrays): This is the numpy array of the validation data. val_labels(numpy arrays): This is the numpy array of the validation labels. Returns: history(history): This is the history of the classifier. classifier(sequential): This is the cnn model classifier fitted to the training data and labels. """ model_checkpoint = ModelCheckpoint(filepath="best_weights.hdf5", monitor=monitor_model_checkpoint, save_best_only=True) early_stopping = EarlyStopping(monitor=monitor_early_stopping, patience=patience_num) # original patience =3 classifier = buildClassifier() callbacks_array = [] if use_early_stopping: callbacks_array.append(early_stopping) if use_model_checkpoint: callbacks_array.append(model_checkpoint) print(len(training_data)) history = classifier.fit(training_data, training_labels, epochs=epochs, validation_data=(val_data, val_labels), callbacks=callbacks_array, batch_size=batch_size # steps_per_epoch=int(len(training_data) / batch_size), ) return history, classifier def createAugmentedData(training_data, training_labels): """ This is creates the augmented data. Args: training_data(numpy arrays): This is the numpy array of the training data. training_labels(numpy arrays): This is the numpy array of the training labels. Returns: complete_training_data_set(numpy array): This is the numpy array of the total training data, which is has undergone augmentation. complete_training_labels_set(numpy array): This is the numpy array of the total training labels, which is has undergone augmentation. """ complete_training_data_set = [] complete_training_labels_set = [] for data in training_data: complete_training_data_set.append(data) print("Complete Training Data: " + str(len(complete_training_data_set))) for label in training_labels: complete_training_labels_set.append(label) print("Complete Training Label: " + str(len(complete_training_labels_set))) # create augmented data data_augmented = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True, rotation_range=90, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, vertical_flip=True) # data_augmented = ImageDataGenerator(featurewise_center=False, # featurewise_std_normalization=False, # rotation_range=90, # horizontal_flip=True, # vertical_flip=True) data_augmented.fit(training_data) training_data_size = training_data.shape[0] aug_counter = 0 while aug_counter < (augmented_multiple - 1): iterator = data_augmented.flow(training_data, training_labels, batch_size=training_data_size) # iterator = data_augmented.flow(training_data, training_labels, batch_size=batch_size) augmented_data = iterator.next() for data in augmented_data[0]: complete_training_data_set.append(data) for label in augmented_data[1]: complete_training_labels_set.append(label) aug_counter += 1 print("Size of All Training Data: " + str(len(complete_training_data_set))) print("Size of All Training Labels: " + str(len(complete_training_labels_set))) array_training_data = np.array(complete_training_data_set) array_training_labels = np.array(complete_training_labels_set) print("Shape of complete training data: " + str(array_training_data.shape)) print("Shape of complete training labels: " + str(array_training_labels.shape)) return np.array(complete_training_data_set), np.array(complete_training_labels_set) def savePredictedLenses(des_names_array, predicted_class_probabilities, predicted_lenses_filepath, text_file_path): """ This saves the names of the predicted lenses in the respective textfiles. Args: des_names_array(numpy array): This is a list of the des names of the sources. predicted_class_probabilities(list): This is a list of the probabilities in which lenses are predicted by the algorithm. predicted_lenses_filepath(string): This is the string of the predicted lenses filepath, where this needs to be saved in the directory. text_file_path(string): This is the text file path address to which these images are saved. Saves: text_file(.txt file): This is the text file saved containing the predicted lenses DES names. """ predicted_lenses = [] predicted_no_lenses = [] if not os.path.exists(predicted_lenses_filepath): os.mkdir('%s/' % predicted_lenses_filepath) text_file = open('%s' % text_file_path, "a+") text_file.write('\n') text_file.write('Predicted Lenses: \n') for lens_index in range(len(predicted_class_probabilities)): if predicted_class_probabilities[lens_index] == 1: text_file.write("%s \n " % des_names_array[lens_index]) predicted_lenses.append(des_names_array[lens_index]) text_file.write('\n') text_file.write('No Lenses Predicted: \n') for lens_index in range(len(predicted_class_probabilities)): if predicted_class_probabilities[lens_index] == 0: text_file.write("%s \n " % des_names_array[lens_index]) predicted_no_lenses.append(des_names_array[lens_index]) text_file.close() return predicted_lenses, predicted_no_lenses def gettingTrueFalsePositiveNegatives(testing_data, testing_labels, text_file_path, predicted_lenses_filepath, kf_counter=0): """ This is used to get the True/False Positive and Negative values gained from the CNN confusion matrix. Args: testing_data(numpy array): This is the unseen testing data numpy array. testing_labels(numpy array): This is the unseen testing label numpy array. text_file_path(string): This is the file path name of the text file in which the confusion matrix is saved. predicted_lenses_filepath(string): This is the file path in which the text file is saved. Saves: This saves a confusion matrix of the True/False Positive and Negative values. """ if not os.path.exists(predicted_lenses_filepath): os.mkdir('%s/' % predicted_lenses_filepath) predicted_data = classifier.predict_classes(testing_data) rounded_predicted_data = predicted_data.round() conf_matrix = confusion_matrix(testing_labels, rounded_predicted_data, labels=[0, 1]) print(str(conf_matrix) + ' \n ') true_negative, false_positive, false_negative, true_positive = conf_matrix.ravel() print("True Positive: %s \n" % true_positive) print("False Negative: %s \n" % false_negative) print("False Positive: %s \n" % false_positive) print("True Negative: %s \n" % true_negative) text_file = open('%s' % text_file_path, "a+") text_file.write('\n') text_file.write('KFold Number: %s \n' % str(kf_counter)) text_file.write('Predicted vs True Matrix: \n') text_file.write(str(conf_matrix) + " \n ") text_file.write("True Negative: %s \n" % str(true_negative)) text_file.write("False Positive: %s \n" % str(false_positive)) text_file.write("False Negative: %s \n" % str(false_negative)) text_file.write("True Positive: %s \n" % str(true_positive)) text_file.write("\n") text_file.close() confusion_matrix_array = [true_negative, false_positive, false_negative, true_positive] return confusion_matrix_array def gettingKFoldConfusionMatrix(test_data, test_labels, unseen_images, unseen_labels, select_known_images, select_known_labels, kf_counter): test_confusion_matrix = gettingTrueFalsePositiveNegatives(test_data, test_labels, text_file_path='../Results/%s/TrainingTestingResults' '/KFold_PredictedMatrix.txt' % dt_string, predicted_lenses_filepath='../Results/%s' '/TrainingTestingResults ' % dt_string, kf_counter=kf_counter) unseen_confusion_matrix = gettingTrueFalsePositiveNegatives(unseen_images, unseen_labels, text_file_path='../Results/%s/UnseenKnownLenses/' 'KFold_LensesPredicted.txt' % dt_string, predicted_lenses_filepath='../Results/%s' '/UnseenKnownLenses/ ' % dt_string, kf_counter=kf_counter) select_confusion_matrix = gettingTrueFalsePositiveNegatives(select_known_images, select_known_labels, text_file_path='../Results/%s/UnseenKnownLensesSelect/' 'KFold_LensesPredicted.txt' % dt_string, predicted_lenses_filepath='../Results/%s' '/UnseenKnownLensesSelect/ ' % dt_string, kf_counter=kf_counter) return test_confusion_matrix, unseen_confusion_matrix, select_confusion_matrix def gettingRandomUnseenImage(filepath): g_img_path = get_pkg_data_filename('%s/g_norm.fits' % filepath) r_img_path = get_pkg_data_filename('%s/r_norm.fits' % filepath) i_img_path = get_pkg_data_filename('%s/i_norm.fits' % filepath) g_data = fits.open(g_img_path)[0].data[0:100, 0:100] r_data = fits.open(r_img_path)[0].data[0:100, 0:100] i_data = fits.open(i_img_path)[0].data[0:100, 0:100] img_data = np.array([g_data, r_data, i_data]).reshape(input_shape[0], input_shape[1], input_shape[2]) return img_data def executeKFoldValidation(train_data, train_labels, val_data, val_labels, testing_data, testing_labels, known_images, known_labels, known_des_names, select_known_images, select_known_labels): """ This does the k fold cross validation which is tested against the unseen testing and known lenses. Args: train_data(numpy arrays): This is the numpy array of the training data. train_labels(numpy arrays): This is the numpy array of the training labels. val_data(numpy arrays): This is the numpy array of the validation data. val_labels(numpy arrays): This is the numpy array of the validation labels. testing_data(numpy array): This is the numpy array of the unseen testing data. testing_labels(numpy array): This is the numpy array of the unseen testing label. images_47(numpy array): This is the numpy array of the unseen DES images data. labels_47(numpy array): This is the numpy array of the unseen DES images labels. images_84(numpy array): This is the numpy array of the unseen Jacobs images data. labels_84(numpy array): This is the numpy array of the unseen Jacobs images labels. all_unseen_images(numpy array): This is the numpy array of the unseen DES + Jacobs images data. all_unseen_labels(numpy array): This is the numpy array of the unseen DES + Jacobs images labels. Saves: This saves the scores, mean and std. of the unseen data that is evaluated in the k fold cross validation. """ if run_k_fold_validation: print("In executingKFoldValidation") # this is doing it manually: kfold = StratifiedKFold(n_splits=k_fold_num, shuffle=True) test_scores_list = [] test_loss_list = [] unseen_scores_list = [] unseen_loss_list = [] select_unseen_scores_list = [] select_unseen_loss_list = [] test_matrix_list = [] unseen_matrix_list = [] select_matrix_list = [] kf_counter = 0 true_positives = {} false_negatives = {} for train, test in kfold.split(train_data, train_labels): kf_counter += 1 print('KFold #:', kf_counter) model = buildClassifier() # fit the model model.fit(train_data[train], train_labels[train], epochs=epochs, validation_data=(val_data, val_labels), batch_size=batch_size) test_scores = model.evaluate(testing_data, testing_labels, batch_size=batch_size) test_scores_list.append(test_scores[1]) test_loss_list.append(test_scores[0]) print("Test Score: " + str(test_scores_list)) print("Test Loss: " + str(test_loss_list)) unseen_scores = model.evaluate(known_images, known_labels, batch_size=batch_size) unseen_scores_list.append(unseen_scores[1]) unseen_loss_list.append(unseen_scores[0]) print("Unseen Score: " + str(unseen_scores_list)) print("Unseen Loss: " + str(unseen_loss_list)) select_scores = model.evaluate(select_known_images, select_known_labels, batch_size=batch_size) select_unseen_scores_list.append(select_scores[1]) select_unseen_loss_list.append(select_scores[0]) # show confusion matrix test_confusion_matrix, unseen_confusion_matrix, select_confusion_matrix = gettingKFoldConfusionMatrix( testing_data, testing_labels, known_images, known_labels, select_known_images, select_known_labels, kf_counter) probabilities_known_lenses = classifier.predict_classes(known_images, batch_size=batch_size) predicted_lens = np.count_nonzero(probabilities_known_lenses == 1) predicted_no_lens = np.count_nonzero(probabilities_known_lenses == 0) print("%s/%s known lenses predicted" % (predicted_lens, len(known_images))) print("%s/%s non known lenses predicted" % (predicted_no_lens, len(known_images))) predicted_lenses, predicted_no_lenses = savePredictedLenses(known_des_names, predicted_class_probabilities_known_lenses, text_file_path='../Results/%s' '/UnseenKnownLenses/' 'KFold_LensesPredicted.txt' % dt_string, predicted_lenses_filepath='../Results/%s/' 'UnseenKnownLenses' % dt_string) randomTP = None imageTP = None if predicted_lenses: randomTP = random.choice(predicted_lenses) filepathTP = unseen_known_file_path_all + '/%s' % randomTP imageTP = gettingRandomUnseenImage(filepathTP) true_positives[kf_counter] = (randomTP, imageTP) randomFN = None imageFN = None if predicted_no_lenses: randomFN = random.choice(predicted_no_lenses) filepathFN = unseen_known_file_path_all + '/%s' % randomFN imageFN = gettingRandomUnseenImage(filepathFN) false_negatives[kf_counter] = (randomFN, imageFN) # print("Lenses Predicted: " + str(randomTP)) # print("Lenses Not Predicted: " + str(randomFN)) test_matrix_list.append(test_confusion_matrix) unseen_matrix_list.append(unseen_confusion_matrix) select_matrix_list.append(select_confusion_matrix) test_scores_mean = np.mean(test_scores_list) test_loss_mean = np.mean(test_loss_list) test_scores_std = np.std(test_scores_list) unseen_scores_mean = np.mean(unseen_scores_list) unseen_loss_mean = np.mean(unseen_loss_list) unseen_scores_std = np.std(unseen_scores_list) select_scores_mean = np.mean(select_unseen_scores_list) select_loss_mean = np.mean(select_unseen_loss_list) select_scores_std = np.std(select_unseen_scores_list) print("Test Confusion Matrices: " + str(test_matrix_list)) print("Test Scores: " + str(test_scores_list)) print("Test Scores Mean: " + str(test_scores_mean)) print("Test Scores Std: " + str(test_scores_std)) print("Test Loss: " + str(test_loss_list)) print("Test Loss Mean: " + str(test_loss_mean)) print("Unseen Confusion Matrices: " + str(unseen_matrix_list)) print("Unseen Scores: " + str(unseen_scores_list)) print("Unseen Scores Mean: " + str(unseen_scores_mean)) print("Unseen Scores Std: " + str(unseen_scores_std)) print("Unseen Loss: " + str(unseen_loss_list)) print("Unseen Loss Mean: " + str(unseen_loss_mean)) print("Select Confusion Matrices: " + str(select_matrix_list)) print("Select Score: " + str(select_unseen_scores_list)) print("Select Scores Mean: " + str(select_scores_mean)) print("Select Unseen Scores Std: " + str(select_scores_std)) print("Select Loss: " + str(select_unseen_loss_list)) print("Unseen Loss Mean: " + str(select_loss_mean)) excel_headers.append("Test Loss Mean") excel_dictionary.append(test_loss_mean) excel_headers.append("Test Scores Mean") excel_dictionary.append(test_scores_mean) excel_headers.append("Test Scores Std") excel_dictionary.append(test_scores_std) excel_headers.append("Unseen Loss Mean") excel_dictionary.append(unseen_loss_mean) excel_headers.append("Unseen Known Lenses Mean") excel_dictionary.append(unseen_scores_mean) excel_headers.append("Unseen Known Lenses Std") excel_dictionary.append(unseen_scores_std) excel_headers.append("Select Loss Mean") excel_dictionary.append(select_loss_mean) excel_headers.append("Select Scores Mean") excel_dictionary.append(select_scores_mean) excel_headers.append("Select Std") excel_dictionary.append(select_scores_std) plt.plot(test_scores_list, color='red', label='Testing Scores') plt.plot(unseen_scores_list, color='blue', label='Unseen Known Lenses Scores') plt.plot(select_unseen_scores_list, color='green', label="Selected Unseen Known Lenses Scores") plt.xlabel('Folds') plt.ylabel('Accuracy') plt.legend() plt.show() plt.savefig('../Results/%s/KFoldAccuracyScores.png' % dt_string) plotKFold(true_positives, false_negatives) def viewActivationLayers(): # make positive and negative directory if not os.path.exists('../Results/%s/PositiveResults/' % dt_string): os.mkdir('../Results/%s/PositiveResults/' % dt_string) if not os.path.exists('../Results/%s/NegativeResults/' % dt_string): os.mkdir('../Results/%s/NegativeResults/' % dt_string) # Plot original positive image img_positive_tensor = getPositiveImages('Training/PositiveAll', 1, input_shape=input_shape) positive_train_figure = plt.figure() plt.imshow(img_positive_tensor[0]) # plt.show() print(img_positive_tensor.shape) positive_train_figure.savefig('../Results/%s/PositiveResults/PositiveTrainingFigure.png' % dt_string) plt.close() # Visualise Activations of positive image visualiseActivations(img_positive_tensor, base_dir='../Results/%s/PositiveResults/' % dt_string) # Plot original negative image img_negative_tensor = getNegativeImages('Training/Negative', 1, input_shape=input_shape) negative_train_figure = plt.figure() plt.imshow(img_negative_tensor[0]) # plt.show() print(img_negative_tensor.shape) negative_train_figure.savefig('../Results/%s/NegativeResults/NegativeTrainingFigure.png' % dt_string) plt.close() # Visualise Activations of negative image visualiseActivations(img_negative_tensor, base_dir='../Results/%s/NegativeResults/' % dt_string) def plotKFold(true_positives, false_negatives): # print('True Positives: ' + str(true_positives)) # print('False Negatives: ' + str(false_negatives)) fig, axs = plt.subplots(k_fold_num, 2) fig.tight_layout(pad=3.0) cols = ['True Positive', 'False Negative'] for ax, col in zip(axs[0], cols): ax.set_title(col) # for ax, col in zip(axs[0], cols): # for i in range(len(cols)): # # axs[0, i].text(x=0.5, y=12, s="", ha="center", fontsize=12) # # axs[k_fold_num - 1, i].set_xlabel(cols[i]) # axs[0, i].set_title(cols[i]) # # ax.set_title(col) for i in range(0, k_fold_num): axs[i, 0].text(x=-0.8, y=5, s="", rotation=90, va="center") axs[i, 0].set_ylabel("k = %s" % (i + 1)) true_positive_tuple = true_positives[k_fold_num] if not true_positive_tuple[0] is None: axs[i, 0].set_xlabel(true_positive_tuple[0], fontsize=8) # axs[i, 0].set_title(true_positive_tuple[0], fontsize=6) axs[i, 0].imshow(true_positive_tuple[1]) axs[i, 0].set_xticks([], []) axs[i, 0].set_yticks([], []) false_negative_tuple = false_negatives[k_fold_num] if not false_negative_tuple[0] is None: axs[i, 1].set_xlabel(false_negative_tuple[0], fontsize=8) # axs[i, 1].set_title(false_negative_tuple[0], fontsize=6) axs[i, 1].imshow(false_negative_tuple[1]) axs[i, 1].set_xticks([], []) axs[i, 1].set_yticks([], []) fig.tight_layout() plt.show() fig.savefig('../Results/%s/UnseenKnownLenses/KFoldImages.png' % dt_string) # __________________________________________________________________________ # MAIN # Get positive training data train_pos = getPositiveImages(images_dir=training_positive_path, max_num=max_num, input_shape=input_shape) print("Train Positive Shape: " + str(train_pos.shape)) excel_headers.append("Train_Positive_Shape") excel_dictionary.append(train_pos.shape) # Get negative training data train_neg = getNegativeImages(images_dir=training_negative_path, max_num=max_num, input_shape=input_shape) print("Train Negative Shape: " + str(train_neg.shape)) excel_headers.append("Train_Negative_Shape") excel_dictionary.append(train_neg.shape) all_training_data, all_training_labels, _ = makeImageSet(train_pos, train_neg, shuffle_needed=use_shuffle) if use_augmented_data: all_training_data, all_training_labels = createAugmentedData(all_training_data, all_training_labels) training_data, val_data, training_labels, val_labels = train_test_split(all_training_data, all_training_labels, test_size=validation_split, shuffle=True) excel_headers.append("All_Training_Data_Shape") excel_dictionary.append(all_training_labels.shape) excel_headers.append("All_Training_Labels_Shape") excel_dictionary.append(all_training_labels.shape) excel_headers.append("Training_Data_Shape") excel_dictionary.append(training_data.shape) excel_headers.append("Validation_Data_Shape") excel_dictionary.append(val_data.shape) excel_headers.append("Training_Labels_Shape") excel_dictionary.append(training_labels.shape) excel_headers.append("Validation_Labels_Shape") excel_dictionary.append(val_labels.shape) excel_headers.append("Validation_Split") excel_dictionary.append(validation_split) history, classifier = usingCnnModel(training_data, training_labels, val_data, val_labels) #classifier.load_weights('best_weights.hdf5') #classifier.save_weights('galaxies_cnn.h5') excel_headers.append("Epochs") excel_dictionary.append(epochs) excel_headers.append("Batch_size") excel_dictionary.append(batch_size) # Plot run metrics acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] number_of_completed_epochs = range(1, len(acc) + 1) # Accuracies train_val_accuracy_figure = plt.figure() plt.plot(number_of_completed_epochs, acc, label='Training acc') plt.plot(number_of_completed_epochs, val_acc, label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.show() train_val_accuracy_figure.savefig('../Results/%s/TrainingValidationAccuracy.png' % dt_string) plt.close() # Losses train_val_loss_figure = plt.figure() plt.plot(number_of_completed_epochs, loss, label='Training loss') plt.plot(number_of_completed_epochs, val_loss, label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.xlabel("Epochs") plt.ylabel("Loss") plt.show() train_val_loss_figure.savefig('../Results/%s/TrainingValidationLoss.png' % dt_string) plt.close() # make positive and negative results and plotting the activations of positive and negative images viewActivationLayers() # Classifier evaluation test_pos = getPositiveImages(images_dir=testing_positive_path, max_num=max_num_testing, input_shape=input_shape) test_neg = getNegativeImages(images_dir=testing_negative_path, max_num=max_num_testing, input_shape=input_shape) testing_data, testing_labels, _ = makeImageSet(test_pos, test_neg, shuffle_needed=True) print("Testing Data Shape: " + str(testing_data.shape)) print("Testing Labels Shape: " + str(testing_labels.shape)) print("Got Unseen Testing data") scores = classifier.evaluate(testing_data, testing_labels, batch_size=batch_size) loss = scores[0] accuracy = scores[1] print("Test loss: %s" % loss) print("Test accuracy: %s" % accuracy) excel_headers.append("Test_Loss") excel_dictionary.append(loss) excel_headers.append("Test_Accuracy") excel_dictionary.append(accuracy) gettingTrueFalsePositiveNegatives(testing_data, testing_labels, text_file_path='../Results/%s/TrainingTestingResults/PredictedMatrixBeforeKFOLD.txt' % dt_string, predicted_lenses_filepath='../Results/%s/TrainingTestingResults' % dt_string) unseen_known_images = getUnseenData(images_dir=unseen_known_file_path_all, max_num=max_num_prediction, input_shape=input_shape) known_images, known_labels, known_des_names = makeImageSet(positive_images=list(unseen_known_images.values()), tile_names=list(unseen_known_images.keys()), shuffle_needed=True) print("Unseen Known Images Shape: " + str(known_images.shape)) print("Unseen Known Labels Shape: " + str(known_labels.shape)) print("Got Unseen Known Lenses Data") unseen_scores = classifier.evaluate(known_images, known_labels, batch_size=batch_size) unseen_loss_score = unseen_scores[0] unseen_accuracy_score = unseen_scores[1] print("Unseen loss: %s" % unseen_loss_score) print("Unseen accuracy: %s" % unseen_accuracy_score) excel_headers.append("Unseen_Loss") excel_dictionary.append(unseen_loss_score) excel_headers.append("Unseen_Accuracy") excel_dictionary.append(unseen_accuracy_score) predicted_class_probabilities_known_lenses = classifier.predict_classes(known_images, batch_size=batch_size) lens_predicted = np.count_nonzero(predicted_class_probabilities_known_lenses == 1) non_lens_predicted = np.count_nonzero(predicted_class_probabilities_known_lenses == 0) print("%s/%s known lenses predicted" % (lens_predicted, len(known_images))) print("%s/%s non known lenses predicted" % (non_lens_predicted, len(known_images))) gettingTrueFalsePositiveNegatives(known_images, known_labels, text_file_path='../Results/%s/UnseenKnownLenses/PredictedMatrixBeforeKFOLD.txt' % dt_string, predicted_lenses_filepath='../Results/%s/UnseenKnownLenses' % dt_string) predicted_lenses, predicted_no_lenses = savePredictedLenses(known_des_names, predicted_class_probabilities_known_lenses, text_file_path='../Results/%s/UnseenKnownLenses/' 'PredictedMatrixBeforeKFOLD.txt' % dt_string, predicted_lenses_filepath='../Results/%s/UnseenKnownLenses' % dt_string) ###################################################################################### unseen_known_images_select = getUnseenData(images_dir=unseen_known_file_path_select, max_num=max_num_prediction, input_shape=input_shape) select_known_images, select_known_labels, select_known_des_names = makeImageSet( positive_images=list(unseen_known_images_select.values()), tile_names=list(unseen_known_images_select.keys()), shuffle_needed=True) print("Unseen Selected Known Images Shape: " + str(select_known_images.shape)) print("Unseen Selected Known Labels Shape: " + str(select_known_labels.shape)) print("Got Unseen Selected Known Lenses Data") select_unseen_scores = classifier.evaluate(select_known_images, select_known_labels, batch_size=batch_size) select_unseen_loss_score = select_unseen_scores[0] select_unseen_accuracy_score = select_unseen_scores[1] print("Unseen Selected loss: %s" % select_unseen_loss_score) print("Unseen Selected accuracy: %s" % select_unseen_accuracy_score) excel_headers.append("Selected Unseen_Loss") excel_dictionary.append(select_unseen_loss_score) excel_headers.append("Select Unseen_Accuracy") excel_dictionary.append(select_unseen_accuracy_score) select_predicted_class_probabilities_known_lenses = classifier.predict_classes(select_known_images, batch_size=batch_size) select_lens_predicted = np.count_nonzero(select_predicted_class_probabilities_known_lenses == 1) select_non_lens_predicted = np.count_nonzero(select_predicted_class_probabilities_known_lenses == 0) print("%s/%s known lenses predicted" % (select_lens_predicted, len(select_known_images))) print("%s/%s non known lenses predicted" % (select_non_lens_predicted, len(select_known_images))) gettingTrueFalsePositiveNegatives(select_known_images, select_known_labels, text_file_path='../Results/%s/UnseenKnownLensesSelect/PredictedMatrixBeforeKFOLD.txt' % dt_string, predicted_lenses_filepath='../Results/%s/UnseenKnownLensesSelect' % dt_string) select_predicted_lenses, select_predicted_no_lenses = savePredictedLenses(select_known_des_names, select_predicted_class_probabilities_known_lenses, text_file_path='../Results/%s' '/UnseenKnownLensesSelect/ ' 'PredictedMatrixBeforeKFOLD' '.txt' % dt_string, predicted_lenses_filepath='../Results/%s' '/UnseenKnownLensesSelect' % dt_string) excel_headers.append("Selected Unseen_Known_Lenses_Predicted") excel_dictionary.append(select_lens_predicted) excel_headers.append("Selected Unseen_Known_Lenses_No_Lens_Predicted") excel_dictionary.append(select_non_lens_predicted) # K fold for training data executeKFoldValidation(training_data, training_labels, val_data, val_labels, testing_data, testing_labels, known_images, known_labels, known_des_names, select_known_images, select_known_labels) if makeNewCSVFile: createExcelSheet('../Results/Architecture_kerasCNN_Results.csv', excel_headers) writeToFile('../Results/Architecture_kerasCNN_Results.csv', excel_dictionary) else: writeToFile('../Results/Architecture_kerasCNN_Results.csv', excel_dictionary)
77cf3b81b38c32c26216a33749bc6f9e06bdd2f2
4f696b0712f530f0d8e7d968ee52ed4dda97a2c6
/admix/data/_geno.py
a9c94134a7a46b25037b8f1cab3bb634c3dd4e7f
[]
no_license
KangchengHou/admix-kit
5d0e1f4225f6339f10bece6fded7c156794bccbe
136e8999d94440d604a2dcfb7b7d1a340a5f6e67
refs/heads/main
2023-09-01T08:58:05.219692
2023-08-24T17:33:58
2023-08-24T17:33:58
335,100,490
7
1
null
2022-08-20T23:01:26
2021-02-01T22:23:02
Python
UTF-8
Python
false
false
22,616
py
import numpy as np import pandas as pd from tqdm import tqdm import dask.array as da import admix import dask from typing import Union, Tuple, List import dapgen def calc_snp_prior_var(df_snp_info, her_model): """ Calculate the SNP prior variance from SNP information """ assert her_model in ["uniform", "gcta", "ldak", "mafukb"] if her_model == "uniform": return np.ones(len(df_snp_info)) elif her_model == "gcta": freq = df_snp_info["FREQ"].values assert np.all(freq > 0), "frequencies should be larger than zero" return np.float_power(freq * (1 - freq), -1) elif her_model == "mafukb": # MAF-dependent genetic architecture, \alpha = -0.38 estimated from meta-analysis in UKB traits freq = df_snp_info["FREQ"].values assert np.all(freq > 0), "frequencies should be larger than zero" return np.float_power(freq * (1 - freq), -0.38) elif her_model == "ldak": freq, weight = df_snp_info["FREQ"].values, df_snp_info["LDAK_WEIGHT"].values return np.float_power(freq * (1 - freq), -0.25) * weight else: raise NotImplementedError def impute_with_mean(mat, inplace=False, axis=1): """impute the each entry using the mean of the input matrix np.mean(mat, axis=axis) axis = 1 corresponds to row-wise imputation axis = 0 corresponds to column-wise imputation Parameters ---------- mat : np.ndarray input matrix. For reminder, the genotype matrix is with shape (n_snp, n_indiv) inplace : bool whether to return a new dataset or modify the input dataset axis : int axis to impute along Returns ------- if inplace: mat : np.ndarray (n_snp, n_indiv) matrix else: None """ assert axis in [0, 1], "axis should be 0 or 1" if not inplace: mat = mat.copy() # impute the missing genotypes with the mean of each row mean = np.nanmean(mat, axis=axis) nanidx = np.where(np.isnan(mat)) # index the mean using the nanidx[1 - axis] # axis = 1, row-wise imputation, index the mean using the nanidx[0] # axis = 0, columnw-ise imputation, index the mean using the nanidx[1] mat[nanidx] = mean[nanidx[1 - axis]] if not inplace: return mat else: return None def geno_mult_mat( geno: da.Array, mat: np.ndarray, impute_geno: bool = True, mat_dim: str = "snp", return_snp_var: bool = False, ) -> np.ndarray: """Multiply genotype matrix with another matrix Chunk of genotype matrix will be read sequentially along the SNP dimension, and multiplied with the `mat`. Without transpose, result will be (n_snp, n_rep) With transpose, result will be (n_indiv, n_rep) Missing values in geno will be imputed with the mean of the genotype matrix. Parameters ---------- geno : da.Array Genotype matrix with shape (n_snp, n_indiv) geno.chunk contains the chunk of genotype matrix to be multiplied mat : np.ndarray Matrix to be multiplied with the genotype matrix. If the passed variable is a vector, it will be transformed to be a 1-column matrix. impute_geno : bool Whether to impute missing values with the mean of the genotype matrix mat_dim : str First dimension of the `mat`, either "snp" or "indiv" Whether to transpose the genotype matrix and calulate geno.T @ mat return_snp_var : bool Whether to return the variance of each SNP, useful in simple linear regression Returns ------- np.ndarray Result of the multiplication """ assert mat_dim in ["snp", "indiv"], "mat_dim should be `snp` or `indiv`" if mat.ndim == 1: mat = mat[:, np.newaxis] # chunks over SNPs chunks = geno.chunks[0] indices = np.insert(np.cumsum(chunks), 0, 0) n_snp, n_indiv = geno.shape n_rep = mat.shape[1] snp_var = np.zeros(n_snp) if mat_dim == "indiv": # geno: (n_snp, n_indiv) # mat: (n_indiv, n_rep) assert ( mat.shape[0] == n_indiv ), "when mat_dim is 'indiv', matrix should be of shape (n_indiv, n_rep)" ret = np.zeros((n_snp, n_rep)) for i in tqdm(range(len(indices) - 1), desc="admix.data.geno_mult_mat"): start, stop = indices[i], indices[i + 1] geno_chunk = geno[start:stop, :].compute() # impute missing genotype if impute_geno: impute_with_mean(geno_chunk, inplace=True) ret[start:stop, :] = np.dot(geno_chunk, mat) if return_snp_var: snp_var[start:stop] = np.var(geno_chunk, axis=0) elif mat_dim == "snp": # geno: (n_indiv, n_snp) # mat: (n_snp, n_rep) assert ( mat.shape[0] == n_snp ), "when mat_dim is 'snp', matrix should be of shape (n_snp, n_rep)" ret = np.zeros((n_indiv, n_rep)) for i in tqdm(range(len(indices) - 1), desc="admix.data.geno_mult_mat"): start, stop = indices[i], indices[i + 1] geno_chunk = geno[start:stop, :].compute() # impute missing genotype if impute_geno: impute_with_mean(geno_chunk, inplace=True) ret += np.dot(geno_chunk.T, mat[start:stop, :]) if return_snp_var: snp_var[start:stop] = np.var(geno_chunk, axis=0) else: raise ValueError("mat_dim should be `snp` or `indiv`") if return_snp_var: return ret, snp_var else: return ret def grm(geno: da.Array, subpopu: np.ndarray = None, std_method: str = "std"): """Calculate the GRM matrix This function is to serve as an alternative of GCTA --make-grm Parameters ---------- geno: admix.Dataset genotype (n_snp, n_indiv) matrix subpopu : np.ndarray subpopulation labels, with shape (n_indiv,). The allele frequencies and normalization are performed separately within each subpopulation. std_method : str Method to standardize the GRM. Currently supported: "std" (standardize to have mean 0 and variance 1), "allele" (standardize to have mean 0 but no scaling) Returns ------- np.ndarray GRM matrix (n_indiv, n_indiv) """ def normalize_geno(g): """Normalize the genotype matrix""" # impute missing genotypes g = impute_with_mean(g, inplace=False, axis=1) # normalize if std_method == "std": g = (g - np.mean(g, axis=1)[:, None]) / np.std(g, axis=1)[:, None] elif std_method == "allele": g = g - np.mean(g, axis=1)[:, None] else: raise ValueError("std_method should be either `std` or `allele`") return g assert std_method in ["std", "allele"], "std_method should be `std` or `allele`" n_snp = geno.shape[0] n_indiv = geno.shape[1] if subpopu is not None: assert ( n_indiv == subpopu.shape[0] ), "subpopu should have the same length as the number of individuals" unique_subpopu = np.unique(subpopu) admix.logger.info( f"{len(unique_subpopu)} subpopulations found: {unique_subpopu}" ) admix.logger.info( f"Calculating GRM matrix with {n_snp} SNPs and {n_indiv} individuals" ) mat = 0 snp_chunks = geno.chunks[0] indices = np.insert(np.cumsum(snp_chunks), 0, 0) for i in tqdm(range(len(indices) - 1), desc="admix.data.grm"): start, stop = indices[i], indices[i + 1] geno_chunk = geno[start:stop, :].compute() if subpopu is not None: for popu in np.unique(subpopu): geno_chunk[:, subpopu == popu] = normalize_geno( geno_chunk[:, subpopu == popu] ) else: geno_chunk = normalize_geno(geno_chunk) mat += np.dot(geno_chunk.T, geno_chunk) / n_snp return mat def admix_grm( geno: da.Array, lanc: da.Array, n_anc: int = 2, snp_prior_var: np.ndarray = None ): """Calculate ancestry specific GRM matrix Parameters ---------- geno : da.Array Genotype matrix with shape (n_snp, n_indiv, 2) lanc : np.ndarray Local ancestry matrix with shape (n_snp, n_indiv, 2) n_anc : int Number of ancestral populations snp_prior_var : np.ndarray Prior variance of each SNP, shape (n_snp,) Returns ------- G1: np.ndarray ancestry specific GRM matrix for the 1st ancestry G2: np.ndarray ancestry specific GRM matrix for the 2nd ancestry G12: np.ndarray ancestry specific GRM matrix for cross term of the 1st and 2nd ancestry """ assert n_anc == 2, "only two-way admixture is implemented" assert np.all(geno.shape == lanc.shape) apa = admix.data.allele_per_anc(geno, lanc, n_anc=n_anc) n_snp, n_indiv = apa.shape[0:2] if snp_prior_var is None: snp_prior_var = np.ones(n_snp) snp_prior_var_sum = snp_prior_var.sum() G1 = np.zeros([n_indiv, n_indiv]) G2 = np.zeros([n_indiv, n_indiv]) G12 = np.zeros([n_indiv, n_indiv]) snp_chunks = apa.chunks[0] indices = np.insert(np.cumsum(snp_chunks), 0, 0) for i in tqdm(range(len(indices) - 1), desc="admix.data.admix_grm"): start, stop = indices[i], indices[i + 1] apa_chunk = apa[start:stop, :, :].compute() # multiply by the prior variance on each SNP apa_chunk *= np.sqrt(snp_prior_var[start:stop])[:, None, None] a1_chunk, a2_chunk = apa_chunk[:, :, 0], apa_chunk[:, :, 1] G1 += np.dot(a1_chunk.T, a1_chunk) / snp_prior_var_sum G2 += np.dot(a2_chunk.T, a2_chunk) / snp_prior_var_sum G12 += np.dot(a1_chunk.T, a2_chunk) / snp_prior_var_sum return G1, G2, G12 def admix_grm_equal_var( geno: da.Array, lanc: da.Array, n_anc: int, snp_prior_var: np.ndarray = None ): """Calculate ancestry specific GRM matrix K1, K2 (assuming equal variances for ancestries) Parameters ---------- geno : da.Array Genotype matrix with shape (n_snp, n_indiv, 2) lanc : np.ndarray Local ancestry matrix with shape (n_snp, n_indiv, 2) n_anc : int Number of ancestral populations snp_prior_var : np.ndarray Prior variance of each SNP, shape (n_snp,) Returns ------- K1: np.ndarray sum of diagonal terms K2: np.ndarray off-diagonal terms """ assert np.all(geno.shape == lanc.shape) apa = admix.data.allele_per_anc(geno, lanc, n_anc=n_anc) n_snp, n_indiv = apa.shape[0:2] if snp_prior_var is None: snp_prior_var = np.ones(n_snp) snp_prior_var_sum = snp_prior_var.sum() K1 = np.zeros([n_indiv, n_indiv]) K2 = np.zeros([n_indiv, n_indiv]) snp_chunks = apa.chunks[0] indices = np.insert(np.cumsum(snp_chunks), 0, 0) for i in tqdm(range(len(indices) - 1), desc="admix.data.admix_grm_equal_var"): start, stop = indices[i], indices[i + 1] apa_chunk = apa[start:stop, :, :].compute() # multiply by the prior variance on each SNP apa_chunk *= np.sqrt(snp_prior_var[start:stop])[:, None, None] # diagonal terms for i_anc in range(n_anc): a_chunk = apa_chunk[:, :, i_anc] K1 += np.dot(a_chunk.T, a_chunk) / snp_prior_var_sum # off-diagonal terms for i_anc in range(n_anc): for j_anc in range(i_anc + 1, n_anc): a1_chunk, a2_chunk = apa_chunk[:, :, i_anc], apa_chunk[:, :, j_anc] K2 += np.dot(a1_chunk.T, a2_chunk) / snp_prior_var_sum K2 = K2 + K2.T return K1, K2 def admix_ld(dset: admix.Dataset, cov: np.ndarray = None): """Calculate ancestry specific LD matrices Parameters ---------- dset: admix.Dataset dataset containing geno, lanc cov : Optional[np.ndarray] (n_indiv, n_cov) covariates of the genotypes, an all `1` intercept covariate will always be added so there is no need to add the intercept in covariates. Returns ------- K1: np.ndarray ancestry specific LD matrix for the 1st ancestry K2: np.ndarray ancestry specific LD matrix for the 2nd ancestry K12: np.ndarray ancestry specific LD matrix for cross term of the 1st and 2nd ancestry """ assert dset.n_anc == 2, "admix_ld only works for 2 ancestries for now" apa = dset.allele_per_anc() n_snp, n_indiv = apa.shape[0:2] a1, a2 = apa[:, :, 0], apa[:, :, 1] if cov is None: cov = np.ones((n_indiv, 1)) else: cov = np.hstack([np.ones((n_indiv, 1)), cov]) # projection = I - X * (X'X)^-1 * X' cov_proj_mat = np.eye(n_indiv) - np.linalg.multi_dot( [cov, np.linalg.inv(np.dot(cov.T, cov)), cov.T] ) a1 = np.dot(a1, cov_proj_mat) a2 = np.dot(a2, cov_proj_mat) # center with row mean # a1 -= a1.mean(axis=1, keepdims=True) # a2 -= a2.mean(axis=1, keepdims=True) ld1 = np.dot(a1, a1.T) / n_indiv ld2 = np.dot(a2, a2.T) / n_indiv ld12 = np.dot(a1, a2.T) / n_indiv ld1, ld2, ld12 = dask.compute(ld1, ld2, ld12) return {"11": ld1, "22": ld2, "12": ld12} def af_per_anc( geno, lanc, n_anc=2, return_nhaplo=False ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """ Calculate allele frequency per ancestry If at one particular SNP locus, no SNP from one particular ancestry can be found the corresponding entries will be filled with np.NaN. Parameters ---------- geno: np.ndarray genotype matrix lanc: np.ndarray local ancestry matrix n_anc: int number of ancestries return_nhaplo: bool whether to return the number of haplotypes per ancestry Returns ------- np.ndarray (n_snp, n_anc) length list of allele frequencies. """ assert np.all(geno.shape == lanc.shape) n_snp = geno.shape[0] af = np.zeros((n_snp, n_anc)) lanc_nhaplo = np.zeros((n_snp, n_anc)) snp_chunks = geno.chunks[0] indices = np.insert(np.cumsum(snp_chunks), 0, 0) for i in tqdm(range(len(indices) - 1), desc="admix.data.af_per_anc"): start, stop = indices[i], indices[i + 1] geno_chunk = geno[start:stop, :, :].compute() lanc_chunk = lanc[start:stop, :, :].compute() for anc_i in range(n_anc): lanc_mask = lanc_chunk == anc_i lanc_nhaplo[start:stop, anc_i] = np.sum(lanc_mask, axis=(1, 2)) # mask SNPs with local ancestry not `i_anc` af[start:stop, anc_i] = ( np.ma.masked_where(np.logical_not(lanc_mask), geno_chunk) .sum(axis=(1, 2)) .data ) / lanc_nhaplo[start:stop, anc_i] if return_nhaplo: return af, lanc_nhaplo else: return af def allele_per_anc( geno: da.Array, lanc: da.Array, n_anc: int, center=False, ): """Get allele count per ancestry Parameters ---------- geno: da.Array genotype data lanc: da.Array local ancestry data n_anc: int number of ancestries Returns ------- Return allele counts per ancestries """ assert center is False, "center=True should not be used" assert np.all(geno.shape == lanc.shape), "shape of `hap` and `lanc` are not equal" assert geno.ndim == 3, "`hap` and `lanc` should have three dimension" n_snp, n_indiv, n_haplo = geno.shape assert n_haplo == 2, "`n_haplo` should equal to 2, check your data" assert isinstance(geno, da.Array) & isinstance( lanc, da.Array ), "`geno` and `lanc` should be dask array" # make sure the chunk size along the ploidy axis to be 2 geno = geno.rechunk({2: 2}) lanc = lanc.rechunk({2: 2}) assert ( geno.chunks == lanc.chunks ), "`geno` and `lanc` should have the same chunk size" assert len(geno.chunks[1]) == 1, ( "geno / lanc should not be chunked across the second dimension" "(individual dimension)" ) def helper(geno_chunk, lanc_chunk, n_anc): n_snp, n_indiv, n_haplo = geno_chunk.shape apa = np.zeros((n_snp, n_indiv, n_anc), dtype=np.float64) for i_haplo in range(n_haplo): haplo_hap = geno_chunk[:, :, i_haplo] haplo_lanc = lanc_chunk[:, :, i_haplo] for i_anc in range(n_anc): apa[:, :, i_anc][haplo_lanc == i_anc] += haplo_hap[haplo_lanc == i_anc] return apa # the resulting chunk sizes will be the same as the input for snp, indiv # while the third dimension will be (n_anc, ) output_chunks = (geno.chunks[0], geno.chunks[1], (n_anc,)) res = da.map_blocks( lambda geno_chunk, lanc_chunk: helper( geno_chunk=geno_chunk, lanc_chunk=lanc_chunk, n_anc=n_anc ), geno, lanc, dtype=np.float64, chunks=output_chunks, ) return res def calc_pgs(dset: admix.Dataset, df_weights: pd.DataFrame, method: str): """Calculate PGS for each individual Parameters ---------- dset: admix.Dataset dataset object df_weights: pd.DataFrame weights for each individual method: str method to calculate PGS. Options are: - "total": vanilla PGS - "partial": partial PGS, calculate partial PGS for each local ancestry Returns ------- np.ndarray PGS for each individual - method = "total": (n_indiv, ) - method = "partial": (n_indiv, n_anc) """ assert method in [ "total", "partial", ], "method should be either 'total' or 'partial'" assert np.all( dset.snp.index == df_weights.index ), "`dset` and `df_weights` should have exactly the same index" assert len(df_weights.columns) == 1, "`df_weights` should have only one column" if method == "total": pgs = admix.data.geno_mult_mat( dset.geno.sum(axis=2), df_weights.values ).flatten() elif method == "partial": n_anc = dset.n_anc pgs = np.zeros((dset.n_indiv, n_anc)) apa = dset.allele_per_anc() for i_anc in range(n_anc): pgs[:, i_anc] = admix.data.geno_mult_mat( apa[:, :, i_anc], df_weights.values ).flatten() else: raise ValueError("method should be either 'total' or 'partial'") return pgs def calc_partial_pgs( dset: admix.Dataset, df_weights: pd.DataFrame, dset_ref: admix.Dataset = None, ref_pop_indiv: List[List[str]] = None, weight_col="WEIGHT", ) -> pd.DataFrame: """Calculate PGS for each individual Parameters ---------- dset: admix.Dataset dataset object df_weights: pd.DataFrame weights for each individual dset_ref: admix.Dataset reference dataset object, use `dapgen.align_snp` to align the SNPs between `dset` and `dset_ref`. `CHROM` and `POS` must match, with potential flips of `REF` and `ALT` allele coding. ref_pop: List[List[str]] list of reference individual ID in `dset_ref` Returns ------- pd.DataFrame PGS for each individual - (n_indiv, n_anc) """ assert (dset_ref is None) == ( ref_pop_indiv is None ), "both `dset_ref` and `ref_pop_indiv` should be None or not None" CALC_REF = dset_ref is not None CHECK_COLS = ["CHROM", "POS", "REF", "ALT"] ## check input idx1, idx2, sample_wgt_flip = dapgen.align_snp( df1=dset.snp[CHECK_COLS], df2=df_weights[CHECK_COLS] ) assert np.all(idx1 == dset.snp.index) & np.all( idx2 == df_weights.index ), "`dset` and `df_weights` should align, with potential allele flip" if CALC_REF: idx1, idx2, ref_wgt_flip = dapgen.align_snp( df1=dset.snp[CHECK_COLS], df2=dset_ref.snp[CHECK_COLS] ) assert np.all(idx1 == dset.snp.index) & np.all( idx2 == dset_ref.snp.index ), "`dset` and `dset_ref` should align, with potential allele flip" weights = df_weights[weight_col].values sample_weights = weights * sample_wgt_flip if CALC_REF: ref_weights = weights * ref_wgt_flip * sample_wgt_flip assert ( len(ref_pop_indiv) == dset.n_anc ), "`len(ref_pops)` should match with `dset.n_anc`" ## scoring dset_geno, dset_lanc = dset.geno.compute(), dset.lanc.compute() sample_pgs = np.zeros((dset.n_indiv, dset.n_anc)) if CALC_REF: ref_geno_list = [dset_ref[:, pop].geno.compute() for pop in ref_pop_indiv] ref_pgs = [[] for pop in ref_pop_indiv] # iterate over each individuals for indiv_i in tqdm(range(dset.n_indiv), desc="admix.data.calc_partial_pgs"): indiv_ref_pgs = [0, 0] # pgs for sample individuals for haplo_i in range(2): geno = dset_geno[:, indiv_i, haplo_i] lanc = dset_lanc[:, indiv_i, haplo_i] for lanc_i in range(dset.n_anc): # sample sample_pgs[indiv_i, lanc_i] += np.dot( geno[lanc == lanc_i], sample_weights[lanc == lanc_i] ) # pgs for reference individuals if CALC_REF: ref_geno = ref_geno_list[lanc_i][lanc == lanc_i, :, :] if ref_geno.shape[0] > 0: ref_geno = ref_geno.reshape(ref_geno.shape[0], -1) s = np.dot(ref_weights[lanc == lanc_i], ref_geno) else: s = np.zeros(ref_geno.shape[1] * 2) indiv_ref_pgs[lanc_i] += s if CALC_REF: for lanc_i in range(dset.n_anc): ref_pgs[lanc_i].append(indiv_ref_pgs[lanc_i]) # format ref_pgs: for each ancestry, we have n_indiv x (n_ref_indiv x 2) # each reference has 2 haplotypes if CALC_REF: ref_pgs = [ pd.DataFrame( data=np.vstack(ref_pgs[i]), index=dset.indiv.index, columns=np.concatenate( [[str(i) + "_1", str(i) + "_2"] for i in ref_pop_indiv[i]] ), ) for i in range(dset.n_anc) ] sample_pgs = pd.DataFrame( data=sample_pgs, index=dset.indiv.index, columns=[f"ANC{i}" for i in range(1, dset.n_anc + 1)], ) if CALC_REF: return sample_pgs, ref_pgs else: return sample_pgs
2f15f7e40c8b0c4d24d57fc4badf32a92ac1ad85
989ce02251979f07d1b00f1c0baba18e1077e716
/cute/settings.py
a51be9375b1faef75b866ac12ea97b2378bc63b2
[]
no_license
Sara1527/cute
29f66ac3ffd88e8aeac4e9665f874f8f41016927
54c25132c1f04e8fdbd64339f273ae44d592b8a5
refs/heads/master
2023-03-23T01:02:55.027199
2021-03-21T13:36:26
2021-03-21T13:36:26
350,008,240
0
0
null
null
null
null
UTF-8
Python
false
false
3,330
py
""" Django settings for cute project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0x!yix%$)6^h17&$rdr2&01z^!mzis1g4v$68kd@7vndv8f&99' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # manually add * as wild character for server public private # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'import_export', # manually added 'gtalentpro', # manually added ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'cute.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'cute.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' # manually defined login redirection url for @login_required decorator LOGIN_URL = '/login/'
c7ac23c922c80e2332218811b21011cadfc091bc
e1d11efb8ed3f58ca1a4e3ac2ca3da45beb0a758
/automated_picture_translator_api.py
d1d5ec7262917224a5f25953e8b6658b29f3188f
[]
no_license
ShanSanear/AutomatedPictureTranslator
0ed09914e813145d42260ab8f3e885217066037e
27250624d079590aabd72a12ce9be98c424f699e
refs/heads/master
2023-07-30T10:52:39.312198
2021-09-22T18:54:51
2021-09-22T18:54:51
332,493,568
1
0
null
null
null
null
UTF-8
Python
false
false
1,802
py
from typing import Optional import uvicorn from fastapi import FastAPI, HTTPException from pydantic import BaseModel import translation_processing from picture_processing import PictureProcessing from utils import CapturePosition app = FastAPI() picture_processing = PictureProcessing() class Translation(BaseModel): sentence: str sentence_words: list[str] translated_sentence: str translated_words: list[str] @app.get("/") async def read_root(): return {"Hello": "World!"} @app.get("/translate") async def translate_screen_part(position: CapturePosition): pic = picture_processing.capture_picture(top_left=position.top_left, size=position.size) sentence = picture_processing.process_picture_white_to_black(pic) if not sentence: sentence = picture_processing.process_picture_ocr(pic) if not sentence: raise HTTPException(status_code=404, detail="Couldn't translate right now") translated_sentence = translation_processing.translate_text(sentence, source_language='en', target_language='pl') sentence_words = translation_processing.get_single_words_to_translate(sentence) translated_words = translation_processing.translate_all_words(sentence_words, source_language='en', target_language='pl') return Translation( sentence=sentence, sentence_words=sentence_words, translated_sentence=translated_sentence, translated_words=translated_words ) @app.get("/item/{item_id}") async def read_item(item_id: int, q: Optional[str] = None): return {"item_id": item_id, "q": q} def main(): uvicorn.run("automated_picture_translator_api:app", port=8000, reload=True, access_log=False) if __name__ == '__main__': main()
5b8aced9977d9f12adf0d4b703c3e25b1e55c899
e16911f1fae7bf90f405e055e0f90731ae8c8042
/etc/st2packgen/files/actions/lib/k8sbase.py
89df63259b4fbf47136ae2a8cdf29077dfb9461e
[]
no_license
bobhenkel/stackstorm-kubernetes
87136448434b1a6c821cfeb757f88833ca8ecf02
32b8538597bc5290a18cefadbf98fea7f8bb38bd
refs/heads/master
2021-04-25T22:06:36.392650
2017-11-02T04:30:02
2017-11-02T04:30:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,242
py
from __future__ import absolute_import from pyswagger.core import BaseClient from requests import Session, Request import six import json import base64 class Client(BaseClient): # declare supported schemes here __schemes__ = set(['http', 'https']) def __init__(self, config=None, auth=None, send_opt=None, extraheaders=None): """ constructor :param auth pyswagger.SwaggerAuth: auth info used when requesting :param send_opt dict: options used in requests.send, ex verify=False """ super(Client, self).__init__(auth) if send_opt is None: send_opt = {} self.__s = Session() self.__send_opt = send_opt self.extraheaders = extraheaders auth = base64.b64encode(config['user'] + ":" + config['password']) self.authhead = {"authorization": "Basic " + auth} def request(self, req_and_resp, opt): # passing to parent for default patching behavior, # applying authorizations, ...etc. req, resp = super(Client, self).request(req_and_resp, opt) req.prepare(scheme=self.prepare_schemes(req).pop(), handle_files=False) req._patch(opt) file_obj = [] def append(name, obj): f = obj.data or open(obj.filename, 'rb') if 'Content-Type' in obj.header: file_obj.append((name, (obj.filename, f, obj.header['Content-Type']))) else: file_obj.append((name, (obj.filename, f))) for k, v in six.iteritems(req.files): if isinstance(v, list): for vv in v: append(k, vv) else: append(k, v) rq = Request( method=req.method.upper(), url=req.url, params=req.query, data=req.data, headers=req.header, files=file_obj ) rq = self.__s.prepare_request(rq) rq.headers.update(self.authhead) rs = self.__s.send(rq, stream=True, **self.__send_opt) myresp = {} myresp['status'] = rs.status_code myresp['data'] = json.loads(rs.content.rstrip()) # myresp['headers'] = rs.headers return myresp
6b7ec47b7dfaed08aeefb1d1ec11acaff71addf7
447e9ec821dc7505cc9b73fb7abeb220fe2b3a86
/rvpy/logistic.py
2d66e011e93fb9f8e4dc0e7ab086276b4445ba04
[ "MIT" ]
permissive
timbook/rvpy
ecd574f91ed50fd47b6ead8517954f01e33c03a7
301fd61df894d4b300176e287bf9e725378c38eb
refs/heads/master
2020-03-19T04:01:49.283213
2018-12-18T19:21:07
2018-12-18T19:21:07
135,788,512
1
0
MIT
2018-12-18T19:21:08
2018-06-02T04:55:39
Python
UTF-8
Python
false
false
3,722
py
import numpy as np from math import log, exp from scipy.stats import logistic, fisk from . import distribution class Logistic(distribution.Distribution): """ Logistic Distribution using the following parameterization: f(x | loc, scale) = exp(-z) / (s * (1 + exp(-z))^2) where z = (x - loc) / scale Parameters ---------- loc : float, positive Location parameter scale : float, positive Scale parameter Methods ------- exp() Transforms self to LogLogistic Relationships ------------- Let X be Logistic, a, b float. Then: * aX + b is Logistic * exp(X) is Log-Logistic """ def __init__(self, loc=0, scale=1): """ Parameters ---------- loc : float, positive Location parameter scale : float, positive Scale parameter """ assert scale > 0, "scale parameter must be positive" # Parameters self.loc = loc self.scale = scale # Scipy backend self.sp = logistic(loc=loc, scale=scale) super().__init__() def __repr__(self): return f"Logistic(loc={self.loc}, scale={self.scale})" def __add__(self, other): if isinstance(other, (int, float)): return Logistic(self.loc + other, self.scale) else: raise TypeError(f"Can't add or subtract objects of type {type(other)} to Logistic") def __mul__(self, other): if isinstance(other, (int, float)): return Logistic(other * self.loc, other * self.scale) else: raise TypeError(f"Can't multiply objects of type {type(other)} by Logistic") def __truediv__(self, other): if isinstance(other, (int, float)): return self.__mul__(1/other) else: raise TypeError(f"Can't divide objects of type {type(other)} by Logistic") def exp(self): return LogLogistic(alpha=exp(self.loc), beta=1/self.scale) # TODO: Gumbel - Gumbel = Logistic class LogLogistic(distribution.Distribution): """ LogLogistic Distribution using the following parameterization: f(x | a, b) = (b/a) * (x/a)^(b-1) / (1 + (x/a)^b)^2 Parameters ---------- alpha : float, positive Scale parameter beta : float, positive Shape parameter Methods ------- log() Transforms self to Logistic Relationships ------------- Let X be LogLogistic, k > 0 float. Then: * kX is LogLogistic * log(X) is Logistic """ def __init__(self, alpha, beta): """ Parameters ---------- alpha : float, positive Scale parameter beta : float, positive Shape parameter """ assert alpha > 0, "alpha must be positive" assert beta > 0, "alpha must be positive" # Parameters self.alpha = alpha self.beta = beta # Scipy backend self.sp = fisk(c=beta, scale=alpha) super().__init__() def __repr__(self): return f"LogLogistic(alpha={self.alpha}, beta={self.beta})" def __mul__(self, other): if isinstance(other, (int, float)): return LogLogistic(other*self.alpha, self.beta) else: raise TypeError(f"Can't multiply objects of type {type(other)} by LogLogistic") def __truediv__(self, other): if isinstance(other, (int, float)): return self.__mul__(1/other) else: raise TypeError(f"Can't divide objects of type {type(other)} by LogLogistic") def log(self): return Logistic(loc=np.log(self.alpha), scale=1/self.beta)
a2d362eaf614a13071c77fff4712da108a1d9924
b1e8f4b70208c5d35fbe9aedd6239652960d99dc
/pgdrive/envs/pgdrive_env_v2.py
ed7917d3a1a9a9843bc4443b706e58204c024bec
[ "Apache-2.0" ]
permissive
Fredtoby/pgdrive
72b7cbcc22cbdb6d03adca8e344ce376c27c2ecb
d91fa9c7da3b0892765a4c163cf9da309997b310
refs/heads/main
2023-04-01T06:49:39.810785
2021-04-03T08:28:58
2021-04-03T08:28:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,057
py
import logging import os.path as osp import numpy as np from pgdrive.constants import DEFAULT_AGENT from pgdrive.envs.pgdrive_env import PGDriveEnv as PGDriveEnvV1 from pgdrive.scene_manager.traffic_manager import TrafficMode from pgdrive.utils import PGConfig, clip pregenerated_map_file = osp.join(osp.dirname(osp.dirname(osp.abspath(__file__))), "assets", "maps", "PGDrive-maps.json") class PGDriveEnvV2(PGDriveEnvV1): DEFAULT_AGENT = DEFAULT_AGENT @staticmethod def default_config() -> PGConfig: config = PGDriveEnvV1.default_config() config.update( dict( # ===== Traffic ===== traffic_density=0.1, traffic_mode=TrafficMode.Trigger, # "reborn", "trigger", "hybrid" random_traffic=False, # Traffic is randomized at default. # ===== Cost Scheme ===== crash_vehicle_cost=1., crash_object_cost=1., out_of_road_cost=1., # ===== Reward Scheme ===== # See: https://github.com/decisionforce/pgdrive/issues/283 success_reward=10.0, out_of_road_penalty=5.0, crash_vehicle_penalty=5.0, crash_object_penalty=5.0, acceleration_penalty=0.0, driving_reward=1.0, general_penalty=0.0, speed_reward=0.5, use_lateral=False, # See: https://github.com/decisionforce/pgdrive/issues/297 vehicle_config=dict(lidar=dict(num_lasers=120, distance=50, num_others=0)), # Disable map loading! load_map_from_json=False, _load_map_from_json="", ) ) config.remove_keys([]) return config def __init__(self, config: dict = None): super(PGDriveEnvV2, self).__init__(config=config) def done_function(self, vehicle_id: str): vehicle = self.vehicles[vehicle_id] done = False done_info = dict(crash_vehicle=False, crash_object=False, out_of_road=False, arrive_dest=False) if vehicle.arrive_destination: done = True logging.info("Episode ended! Reason: arrive_dest.") done_info["arrive_dest"] = True elif vehicle.crash_vehicle: done = True logging.info("Episode ended! Reason: crash. ") done_info["crash_vehicle"] = True elif vehicle.out_of_route or not vehicle.on_lane or vehicle.crash_sidewalk: done = True logging.info("Episode ended! Reason: out_of_road.") done_info["out_of_road"] = True elif vehicle.crash_object: done = True done_info["crash_object"] = True # for compatibility # crash almost equals to crashing with vehicles done_info["crash"] = done_info["crash_vehicle"] or done_info["crash_object"] return done, done_info def cost_function(self, vehicle_id: str): vehicle = self.vehicles[vehicle_id] step_info = dict() step_info["cost"] = 0 if vehicle.crash_vehicle: step_info["cost"] = self.config["crash_vehicle_cost"] elif vehicle.crash_object: step_info["cost"] = self.config["crash_object_cost"] elif vehicle.out_of_route: step_info["cost"] = self.config["out_of_road_cost"] return step_info['cost'], step_info def reward_function(self, vehicle_id: str): """ Override this func to get a new reward function :param vehicle_id: id of BaseVehicle :return: reward """ vehicle = self.vehicles[vehicle_id] step_info = dict() # Reward for moving forward in current lane current_lane = vehicle.lane if vehicle.lane in vehicle.routing_localization.current_ref_lanes else \ vehicle.routing_localization.current_ref_lanes[0] long_last, _ = current_lane.local_coordinates(vehicle.last_position) long_now, lateral_now = current_lane.local_coordinates(vehicle.position) reward = 0.0 # reward for lane keeping, without it vehicle can learn to overtake but fail to keep in lane if self.config["use_lateral"]: lateral_factor = clip( 1 - 2 * abs(lateral_now) / vehicle.routing_localization.get_current_lane_width(), 0.0, 1.0 ) else: lateral_factor = 1.0 reward += self.config["driving_reward"] * (long_now - long_last) * lateral_factor reward += self.config["speed_reward"] * (vehicle.speed / vehicle.max_speed) step_info["step_reward"] = reward if vehicle.crash_vehicle: reward = -self.config["crash_vehicle_penalty"] elif vehicle.crash_object: reward = -self.config["crash_object_penalty"] elif vehicle.out_of_route: reward = -self.config["out_of_road_penalty"] elif vehicle.arrive_destination: reward = +self.config["success_reward"] return reward, step_info def _get_reset_return(self): ret = {} self.for_each_vehicle(lambda v: v.update_state()) for v_id, v in self.vehicles.items(): self.observations[v_id].reset(self, v) ret[v_id] = self.observations[v_id].observe(v) return ret[DEFAULT_AGENT] if self.num_agents == 1 else ret if __name__ == '__main__': def _act(env, action): assert env.action_space.contains(action) obs, reward, done, info = env.step(action) assert env.observation_space.contains(obs) assert np.isscalar(reward) assert isinstance(info, dict) env = PGDriveEnvV2() try: obs = env.reset() assert env.observation_space.contains(obs) _act(env, env.action_space.sample()) for x in [-1, 0, 1]: env.reset() for y in [-1, 0, 1]: _act(env, [x, y]) finally: env.close()
df016bf13355458c6083ae6c2005a1cebd3ceecb
7b6313d1c4e0e8a5bf34fc8ac163ad446bc69354
/datastructure and algorithms/[hackerrank]The Hurdle Race.py
5bcab2ab43d0415da1bf267cba2ff15bee29380b
[]
no_license
menuka-maharjan/competitive_programming
c6032ae3ddcbc974e0e62744989a2aefa30864b2
22d0cea0f96d8bd6dc4d81b146ba20ea627022dd
refs/heads/master
2023-05-01T05:23:09.641733
2021-05-23T16:22:21
2021-05-23T16:22:21
332,250,476
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
nk=input().split() n=int(nk[0]) k=int(nk[1]) l=list(map(int,input().rstrip().split())) x=max(l) if((x-k)>=0): print(x-k) else: print(0)
8881f72660102dd5e42f6fb6a136b8c7c3c59e94
a3e80242b3e32c0779e9ab78c3de9ecfec499cb6
/models.py
4077b2094761e52c5c2242a8526ac736874fabee
[]
no_license
gitzart/multi-user-blog
c8924d8d9c0aae79a8ed46ec460c986b738a965a
c8fa7c2bd8e67e2ad1fabbb574ac060fdd465dca
refs/heads/master
2021-04-28T23:02:50.708986
2017-01-23T10:04:38
2017-01-23T10:04:38
77,741,138
0
0
null
null
null
null
UTF-8
Python
false
false
3,623
py
"""models.py: Google Datastore models and query related methods.""" __author__ = 'Alan' __copyright__ = 'Copyright 2017, Multi User Project' from google.appengine.ext import ndb class User(ndb.Model): username = ndb.StringProperty(required=True) password = ndb.StringProperty(required=True) email = ndb.StringProperty() created_on = ndb.DateTimeProperty(auto_now_add=True) @classmethod def pk(cls, group='default'): """Parent key of user.""" return ndb.Key(cls, group) @classmethod def create(cls, username, password, email): """Create a new user to add to the datastore.""" return cls( parent=cls.pk(), username=username, password=password, email=email ) @classmethod def by_name(cls, username): """Query a user by name.""" return cls.query(cls.username==username).get() class Post(ndb.Model): author = ndb.StringProperty(required=True) title = ndb.StringProperty(required=True) content = ndb.TextProperty(required=True) excerpt = ndb.StringProperty() likes = ndb.IntegerProperty(repeated=True) pub_date = ndb.DateTimeProperty(auto_now_add=True) update_date = ndb.DateTimeProperty(auto_now=True) @classmethod def pk(cls, name='default'): """Parent key of post.""" return ndb.Key(cls, name, parent=User.pk()) @classmethod def create(cls, author, title, content, excerpt, likes=[]): """Create a new post to add to the datastore.""" return cls( parent=cls.pk(), author=author, title=title, content=content, excerpt=excerpt, likes=likes ) @classmethod def by_id(cls, pid): """Query post by post id.""" return cls.get_by_id(pid, parent=cls.pk()) @classmethod def delete_post(cls, pid): """Delete individual post by post id.""" cls.by_id(pid).key.delete() @classmethod def query_post(cls): """Query all the posts in the descending publishing date order.""" return cls.query(ancestor=cls.pk()).order(-cls.pub_date) class Comment(ndb.Model): author = ndb.StringProperty() author_email = ndb.StringProperty() content = ndb.TextProperty(required=True) pub_date = ndb.DateTimeProperty(auto_now_add=True) update_date = ndb.DateTimeProperty(auto_now=True) @classmethod def pk(cls, pid): """Parent key of comment.""" return ndb.Key('Post', pid, parent=Post.pk()) @classmethod def create(cls, pid, author, email, content): """Create a new comment to add to the datastore.""" return cls( parent=cls.pk(pid), author=author, author_email=email, content=content ) @classmethod def by_id(cls, pid, cid): """Query comment by comment id.""" return cls.get_by_id(cid, parent=cls.pk(pid)) @classmethod def delete_comment(cls, pid, cid): """Delete individual comment by comment id and the post id it belongs to. """ cls.by_id(pid, cid).key.delete() @classmethod def delete_multi_comment(cls, pid): """Delete multiple comments by comment ids. and the post id they belong to. """ keys = cls.query_comment(cls.pk(pid)).fetch(keys_only=True) if keys: ndb.delete_multi(keys) @classmethod def query_comment(cls, ancestor_key): """Query all the comments in the descending update date order.""" return cls.query(ancestor=ancestor_key).order(-cls.update_date)