blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
sequencelengths
1
1
author
stringlengths
0
175
40a5badf20a8815924f3d9ea4e245dba81149a88
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03588/s910432178.py
314d7a583d1067ee67cd31e93342774353c07a3a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
import sys def solve(): readline = sys.stdin.buffer.readline mod = 10 ** 9 + 7 n = int(readline()) ab = [list(map(int, readline().split())) for _ in range(n)] ab.sort() print((ab[-1][0] - ab[0][0] + 1) + (ab[0][0] - 1) + (ab[-1][1])) if __name__ == '__main__': solve()
937d9d68a3ca6a4f6ea6bae2b249aa41d8a5a349
a94758b88353889c8186b32e7b5acbe7f77807e9
/iGottaDjango/urls.py
536178fc1455f03899b5d2b6817766bfc6c3b6ac
[]
no_license
Stephanie-Spears/iGottaDjango
fcc9bf9ec2ee9ceb5a71e88c0a285a4f032f0523
69326b2aac9926cf33810e46528370ebdfeacb05
refs/heads/master
2021-08-15T01:51:13.498214
2017-11-17T06:09:33
2017-11-17T06:09:33
109,955,044
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
"""iGotta URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^polls/', include('polls.urls')), url(r'^admin/', admin.site.urls), ]
bd5cb730104181ac2296d2a313eb30e514464624
6ae9ecca3049ea0df016db4d78eb93ae0edfedd3
/python/day6/if_elif_0.py
304427bc0cdf9efd6a90511fb4acbec7b0a517bd
[]
no_license
itcsoft/itcpython
41dc79534f4727a74ec24c651b06d7fba5c9d23b
208ad1e92ec8ea687878097696dff9b81e0dffb8
refs/heads/main
2023-06-15T08:38:30.316981
2021-07-08T13:19:19
2021-07-08T13:19:19
368,862,365
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
san = int(input('Сан бериниз мен ошол санды текст менен чыгарам: ')) if san == 0: print('Ноль') elif san == 1: print('Бир') elif san == 2: print('Эки') elif san == 3: print('Уч') elif san == 4: print('Торт') elif san == 5: print('Беш') elif san == 6: print('Алты')
702e397972e162ab5ddf2af196684a76f393bd61
71673d845952b50986d1c21dc5bbbcab2a2a2651
/introduction_to_lxml.py
0783fcf78d6a6982eff93f7b0558518976c20d60
[]
no_license
afcarl/introductionToWebScraping
77a44bfb7655e44231bed216d37b015e3cf52a5c
d1039aeee87365f2807dd198e53bd1bb6224a550
refs/heads/master
2020-03-26T04:23:54.052825
2015-06-18T14:23:40
2015-06-18T14:23:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
import requests import lxml.html base_url = "https://www.google.com" def scrape(url,base_url,depth): if depth == 0: return True r = requests.get(url) html = lxml.html.fromstring(r.text) links = html.xpath("//a/@href") for ind,link in enumerate(links): if "http" in link: print link else: print base_url+link links[ind] = base_url+link for link in links: scrape(link,base_url,depth-1) scrape(base_url,base_url,5)
8c9ed2c590e238e301a9e40e0b825621f0adc9fd
dad76c42edf331fe3c04d148401dce1736cc2601
/to_do_list/tasks/helper_functions.py
bf10576b218ffbd09a9581375c8ae5b1fcddd496
[ "MIT" ]
permissive
arnaudblois/to_do_list
2bb5c8ffd606be612808ba3ab31d1a19e7779b89
07a9e443110d14271a59bd8ff1a2f55ac753ea9d
refs/heads/master
2020-02-29T17:21:46.669980
2017-02-17T08:30:52
2017-02-17T08:30:52
82,172,054
1
0
null
null
null
null
UTF-8
Python
false
false
958
py
# -*- coding: utf-8 -*- """ Helper functions for the tasks app: calculate_reputation_gain and give_reputation_reward. """ from .models import Profile, Task from django.db.models import F def calculate_reputation_gain(task): """ Calculate the reputation gained by completing a task. Currently based on difficulty only. """ DIFF = Task.DIFFICULTIES d = task.difficulty if d == DIFF.trivial: return 1 if d == DIFF.easy: return 5 if d == DIFF.OK: return 10 if d == DIFF.hard: return 25 if d == DIFF.heroic: return 100 if d == DIFF.nightmare: return 500 def give_reputation_reward(task): """ Add the reputation reward to the profile of the user who completed the task. """ reward = calculate_reputation_gain(task) profile = Profile.objects.get(user=task.completed_by) profile.reputation = F('reputation') + reward profile.save()
89f125544944e622de6e320e5c6208ec3c790b7f
938db19c64a54105ebdba84948a3c3a02a14b673
/models.py
9e843ff314bc768a8c7e920a8329d439ec2eb6de
[]
no_license
ProductionsAutrementDit/PortalSynonymPlugin
894666ecfb61b99c9d28f4eb79d32d88407d4892
2663776169f26021b0415c8286fd7e59dbe0dba4
refs/heads/master
2021-01-10T22:38:16.514709
2017-04-26T10:00:51
2017-04-26T10:00:51
69,572,205
2
0
null
null
null
null
UTF-8
Python
false
false
363
py
from django.db import models class Synonym(models.Model): value = models.CharField(max_length=255) parent = models.ForeignKey("self", related_name="synonyms", max_length=100, on_delete=models.CASCADE, blank=True, null=True) class Meta: ordering = ['value'] class TagField(models.Model): fieldname = models.CharField(max_length=255)
611ca1b0710e080956b3f0259d5042c17ada5814
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/signalr/azure-mgmt-signalr/azure/mgmt/signalr/aio/operations/_usages_operations.py
aa1860efef37dbf2413c285639f2957501b5bfdb
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
5,150
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._usages_operations import build_list_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UsagesOperations: """UsagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.signalr.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, location: str, **kwargs: Any ) -> AsyncIterable["_models.SignalRUsageList"]: """List resource usage quotas by location. :param location: the location like "eastus". :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SignalRUsageList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.signalr.models.SignalRUsageList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SignalRUsageList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( location=location, subscription_id=self._config.subscription_id, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( location=location, subscription_id=self._config.subscription_id, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SignalRUsageList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.SignalRService/locations/{location}/usages'} # type: ignore
12b99157ef91baeba1b980e70567b5588589fb0c
a616d3f1491eae4a702d18ab30e2b3cfd43e1563
/scrollbar.py
a43c58dca1721d5742a1355ef8ec4ffaf02cb63d
[]
no_license
supriadi-yusuf/python-GUI
9d15c27fcaabb55aa61ccabef2afcc3f9a26370f
557ab9720442d7d810567441119c3efa4b1b7b34
refs/heads/master
2020-06-29T16:47:58.236428
2019-08-07T01:09:09
2019-08-07T01:09:09
200,570,926
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
from tkinter import ( Tk, RIGHT, Y, Scrollbar, Listbox, END, BOTH, LEFT ) layar=Tk() layar.title("Scrollbar") myScrollbar = Scrollbar(master=layar) #myScrollbar.pack(side=RIGHT, fill=Y) #myScrollbar.pack(side=LEFT, fill=Y) myList = Listbox(master=layar, #height=5, yscrollcommand=myScrollbar.set) for line in range(100): myList.insert(END, "This is line number " + str(line)) #myList.pack(side=LEFT,fill=BOTH) myList.pack(side=LEFT,fill=Y) myScrollbar.pack(side=LEFT, fill=Y) myScrollbar.config(command=myList.yview) layar.mainloop()
3eecda5d5aed0185231c064ba9d3916edaf9df22
eac6bd2191daab17189eb9f221048cda3179c216
/scripts/example_numbercounting.py
d95a2ab0cd72ae35b68503c252a47fe348106a6a
[]
no_license
ghl3/histfactoryUnitTests
83fb0e21b8b640f40170a254a7686308c5d03495
0bf9da7335707a7f9da658fb16005b3dc9da4583
refs/heads/master
2021-01-23T05:45:19.665227
2012-11-16T20:01:32
2012-11-16T20:01:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,171
py
#!/usr/bin/env python # # A pyROOT script demonstrating # an example of writing a HistFactory # model using python # # This example was written to match # the example.xml analysis in # $ROOTSYS/tutorials/histfactory/ # # Written by George Lewis # # # There are several way to use HistFactory to # create a model. # # In this example, the model is configured and built # entirely within this script. It requires no external # configuration files or any saved histograms. # def main(): try: import ROOT except: print "It seems that pyROOT isn't properly configured" return """ Create a HistFactory measurement from python """ # Create and name a measurement meas = ROOT.RooStats.HistFactory.Measurement("meas", "meas") #meas.SetOutputFilePrefix( "./results/example_UsingPy_SetVal" ) # Set the Parameter of interest, and set several # other parameters to be constant meas.SetPOI( "SigXsecOverSM" ) meas.AddConstantParam("Lumi") meas.AddConstantParam("alpha_syst1") meas.AddConstantParam("alpha_syst2") meas.AddConstantParam("alpha_syst3") # Set the Lumi (1.0 = nominal in this example, 10% error) meas.SetLumi( 1.0 ) meas.SetLumiRelErr( 0.10 ) # Here, this determines if the model is fit # within the "MakeModelFast" function or not meas.SetExportOnly( False ) # InputFile = "./data/NumberCounting.root" # Create a channel and set # the measured value of data # (no extenal hist necessar for cut-and-count) chan = ROOT.RooStats.HistFactory.Channel( "channel1" ) chan.SetData( 20 ) chan.SetStatErrorConfig( 0.05, "Poisson" ) # Create the signal sample and # set it's value signal = ROOT.RooStats.HistFactory.Sample( "signal" ) signal.SetValue( 5 ) # Add the parmaeter of interest and a systematic signal.AddNormFactor( "SigXsecOverSM", 1, 0, 3 ) signal.AddOverallSys( "syst1", 0.95, 1.05 ) chan.AddSample( signal ) # Create a background sample background1 = ROOT.RooStats.HistFactory.Sample( "background1" ) background1.SetValue( 10 ) background1.SetNormalizeByTheory( True ) # Add a systematic background1.AddOverallSys( "syst2", 0.95, 1.05 ) chan.AddSample( background1 ) # Create another background sample background2 = ROOT.RooStats.HistFactory.Sample( "background2" ) background2.SetValue( 4 ) background2.SetNormalizeByTheory( True ) # Add a systematic background2.AddOverallSys( "syst3", 0.95, 1.05 ) chan.AddSample( background2 ) # Add this channel to the measurement meas.AddChannel( chan ) # Print some info for debugging meas.PrintTree() # Now, do the measurement myFactory = ROOT.RootStats.HistFactory() myWorkspace = myFactory.MakeCombinedModel( measurement ) combinedWorkspace = ROOT.RooStats.HistFactory.MakeModelAndMeasurementFast( meas ) #combinedWorkspace = ROOT.RooStats.HistFactory.MakeModelFast( meas ) #combinedWorkspace = ROOT.RooStats.HistFactory.MakeModelFast( meas ) # combinedWorkspace.Print("V") pass if __name__ == "__main__": main()
8728234043cd78faea94c87589dea2b093ce9e0e
54483c7314149f73d559476a16c8f046fd21d987
/demo/migrations/0005_auto_20210720_1008.py
4ae48e3c085d0b72cbd7e941bbb13f085cd15aef
[]
no_license
phuongthao2145/testpython
27d514a895cddc74afaf768acff81f5e82591975
ab999b9771e90c0709998030051bcc4bce4873be
refs/heads/master
2023-06-27T06:55:46.711635
2021-07-26T11:27:39
2021-07-26T11:27:39
386,623,872
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
# Generated by Django 3.1.4 on 2021-07-20 10:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('demo', '0004_testresult_tag'), ] operations = [ migrations.RenameField( model_name='demo', old_name='f0', new_name='f_status', ), migrations.RemoveField( model_name='demo', name='f1', ), migrations.RemoveField( model_name='demo', name='f2', ), migrations.RemoveField( model_name='demo', name='f3', ), ]
875ef43560a7117ab76732fbd81c3a1778a3e8b5
6694cdf9827bc72262f6e5f37a419c292433dd61
/scripts/misc/config_abl_3dassembly_optimal_bc_loss.py
7f3c29e7322dfa637d0c4616bdfb86ac29df9610
[ "MIT" ]
permissive
shagunuppal/mopa-pd
ce07df4eb4390e0e24d8f2f1deafe83577fa44fc
ac55f568149d8e79c28326bcd9b63336ed065a61
refs/heads/master
2023-08-30T17:37:43.842057
2021-11-04T14:48:34
2021-11-04T14:48:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
# for this figure, we need to multiple all y values by 1e6 (y_data = y_data * 1e6) and set # y-tick labels directly plt.yticks([1.3, 1.4, 1.6, 2.0], fontsize=12). filename_prefix = 'SawyerAssembly-Abl-Optimal-BC-Loss' xlabel = 'Epoch' ylabel = 'Mean Square Error (x 1e-6)' max_step = 40 min_y_axis_value = 1e-6 max_y_axis_value = 2e-6 legend = True data_key = ["Action Prediction Loss (Train)", "Action Prediction Loss (Test)"] bc_y_value = 0 smoothing = False smoothing_weight = 0 legend_loc = 'upper right' wandb_api_path = 'arthur801031/mopa-rl-bc-visual' num_points = 40 x_scale = 1 divide_max_step_by_1mill = False build_log_from_multiple_keys = True limit_y_max = True limit_y_max_value = 2e-6 plot_labels = { 'Train': ['BC Visual Stochastic_3DAssembly_curious-spaceship-136'], 'Test': ['BC Visual Stochastic_3DAssembly_curious-spaceship-136'], } line_labels = {} line_colors = { 'Train': 'C0', 'Test': 'C1', }
df4017d719a457eb43a5aa6c9d289e9e674a9b84
e61802befd592a18d535999277e3d4767042a441
/problem_11.py
8c4304f4ad7e6f7973982931f25f9f46d2d2458a
[]
no_license
subenakhatun/pythonbasic
5962804d4aaee18c9bc5e8f1d178ae846efabd85
36066df0a9355c6d451e80e06fba2fb712759f3d
refs/heads/master
2021-07-20T23:21:49.113162
2020-05-15T04:11:19
2020-05-15T04:11:19
163,249,284
0
0
null
null
null
null
UTF-8
Python
false
false
31
py
str = 'subena' print(len(str))
4de4a3deb1892d8a98427efd454a04849d8f4eda
f2fcf807b441aabca1ad220b66770bb6a018b4ae
/coderbyte/letter_capitalize.py
0db39e3300d9e2d0d879d72ba1ae2420481d6fcb
[]
no_license
gokou00/python_programming_challenges
22d1c53ccccf1f438754edad07b1d7ed77574c2c
0214d60074a3b57ff2c6c71a780ce5f9a480e78c
refs/heads/master
2020-05-17T15:41:07.759580
2019-04-27T16:36:56
2019-04-27T16:36:56
183,797,459
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
def LetterCapitalize(str): # code goes here return str.title() print(LetterCapitalize("h3llo yo people"))
9573e2d03f021cd4eee80553f9755cffcb49464b
67d1deb7b3f5d6d03028e938dcba06c44392fe87
/code/util/datastorage/SPEngine.py
6a7a12a546407b6594073c15569ddfc6d1e5ddb7
[]
no_license
GGXH/DS_stock
389881403b0356072f2f5a7b64bd9098f87f9784
c516dd4a546cb48d98198239ed33260acfb2adb8
refs/heads/master
2020-04-05T19:31:43.306362
2019-01-16T15:37:44
2019-01-16T15:37:44
157,138,472
0
0
null
null
null
null
UTF-8
Python
false
false
78
py
import util.status.messager as msg class SPEngine: def __init__(self):
36e139de605165c83a26635746a0cfb6c93b6fe8
0b0ac289ed7fbb8e0012ca97ec6dc2f925be058f
/spray.py
edf293ad0f59e8809a8da962eadce4d5fdf18574
[]
no_license
KRHS-GameProgramming-2014/butterfly-game1
8b57dbb060a6aa6fd6539bed877551ba45e2a017
cf4c15b801354fff739bfb66e6f94ebaecb60dd4
refs/heads/master
2021-01-19T14:07:38.894097
2015-03-23T13:05:33
2015-03-23T13:05:33
32,520,307
0
0
null
null
null
null
UTF-8
Python
false
false
3,030
py
import math,sys,pygame class Spray(): def __init__(self,player): self.facing = player.facing if self.facing == "up": self.image = pygame.image.load("rsc/Projectiles/spray.png") self.speed = [0, -5] elif self.facing == "down": self.image = pygame.image.load("rsc/Projectiles/spray.png") self.speed = [0, 5] elif self.facing == "right": self.image = pygame.image.load("rsc/Projectiles/spray.png") self.speed = [5, 0] elif self.facing == "left": self.image = pygame.image.load("rsc/Projectiles/spray.png") self.speed = [-5, 0] self.rect = self.image.get_rect() self.damage = 250 self.place(player.rect.center) self.radius = 500 self.move() self.living = True def move(self): self.rect = self.rect.move(self.speed) def collideWall(self, width, height): if self.rect.left < 0 or self.rect.right > width: self.speedx = 0 #print "hit xWall" if self.rect.top < 0 or self.rect.bottom > height: self.speedy = 0 def collideSpray(self, other): if self != other: if self.rect.right > other.rect.left and self.rect.left < other.rect.right: if self.rect.bottom > other.rect.top and self.rect.top < other.rect.bottom: if (self.radius + other.radius) > self.distance(other.rect.center): self.living = False def collideGust(self, other): if self != other: if self.rect.right > other.rect.left and self.rect.left < other.rect.right: if self.rect.bottom > other.rect.top and self.rect.top < other.rect.bottom: if (self.radius + other.radius) > self.distance(other.rect.center): self.living = False def place(self, pt): self.rect.center = pt def update(self, width, height): #self.speed = [self.speedx, self.speedy] self.move() self.collideWall(width, height) def distance(self, pt): x1 = self.rect.center[0] y1 = self.rect.center[1] x2 = pt[0] y2 = pt[1] return math.sqrt(((x2-x1)**2) + ((y2-y1)**2)) def animate(self): if self.waitCount < self.maxWait: self.waitCount += 1 else: self.waitCount = 0 self.facingChanged = True if self.frame < self.maxFrame: self.frame += 1 else: self.frame = 0 if self.changed: if self.facing == "up": self.images = self.upImages elif self.facing == "down": self.images = self.downImages elif self.facing == "right": self.images = self.rightImages elif self.facing == "left": self.images = self.leftImages self.image = self.images[self.frame]
b107aba0725e0d5aa26ab156bc55db785eb5b9b1
ecc736ba966a235a4d07e5af298f97a4437defc9
/Assignment 4/p4.py
6e13ea7adee23ed2f568e69e4c583f37dc5abb36
[]
no_license
davifrossard/CSC321
6a832c245fdb683df57f47f5033e5b5de71ae2fa
e3f17bc5399800aee400261cb13b45d6c1437292
refs/heads/master
2020-04-14T05:49:10.742021
2016-04-20T14:33:21
2016-04-20T14:33:21
50,119,837
5
8
null
null
null
null
UTF-8
Python
false
false
4,847
py
from RNN import * from utils import print_warning from os import makedirs from time import sleep import datetime, time # Create results directory if not path.exists('results/'): makedirs('results/') # Data I/O data = open('shakespeare_train.txt', 'r').read() chars = list(set(data)) data_size, vocab_size = len(data), len(chars) print 'Data has %d characters, %d unique.' % (data_size, vocab_size) # Hyper-parameters hidden_size = 250 seq_length = 25 learning_rate = 1e-1 temperature = 1 # Create model RNN = RNN_Model(hidden_size, chars, temperature) # Smooth Out loss smooth_loss = -np.log(1.0/vocab_size)*seq_length p = 0 n = RNN.get_iter() print "Training RNN, hit Ctrl+C to stop." try: while True: n += 1 # Create training set from file inputs = data[p:p+seq_length] targets = data[p+1:p+seq_length+1] # Update RNN with data loss = RNN.update_rnn(inputs, targets, learning_rate) smooth_loss = smooth_loss * 0.999 + loss * 0.001 # Increment data pointer with wrap-around if p+2*seq_length+1 < len(data): p += seq_length else: p = 0 RNN.reset_state() print_warning("[I] Finished pass through file.") # Show progress if n % 250 == 0: print "---------------------------------------------" st = datetime.datetime.fromtimestamp(time.time()).strftime('%H:%M:%S') print "[%s] Iteration: \t\t%d" % (st, n) print "\t\t Loss: \t\t\t%7.4f" % smooth_loss print "\t\t Characters Fed: %d" % p print "\t\t Sample: \n\n" print RNN.sample_rnn(data[p], 200) print "---------------------------------------------\n\n" except KeyboardInterrupt: print "Halting training" # # ------------------------ # PART 1 # ------------------------ print_info("\n\n---------------------\n" "RUNNING PART 1\n" "---------------------\n") temperatures = [0.1, 0.5, 0.7, 1., 1.5] for i in temperatures: samples = [] for j in range(3): samples.append(RNN.sample_rnn(data[np.random.randint(0, len(data))], 200, i)) samples = '\n-----------------------------------------\n\n'.join(s.rstrip() for s in samples) print samples with open('results/samples_%4f.txt' % i, 'w+') as fl: fl.write(samples) # # ------------------------ # PART 2 # ------------------------ print_info("\n\n---------------------\n" "RUNNING PART 2\n" "---------------------\n") samples = [] for i in range(10): temp = np.random.choice(temperatures[-3::]) samples.append(RNN.complete_phrase("The answer to life the universe and everything is ", temp)) samples = '\n-----------------------------------------\n\n'.join(s.rstrip() for s in samples) print samples with open('results/completion.txt', 'w+') as fl: fl.write(samples) # # ------------------------ # PART 3 # ------------------------ print_info("\n\n---------------------\n" "RUNNING PART 3\n" "---------------------\n") RNN.reload_rnn('char-rnn-snapshot.npz') best_weights = RNN.test_sequence(':', '\n') init_ix = RNN.char_to_ix[':'] end_ix = RNN.char_to_ix['\n'] with open('results/part3_weights.txt', 'w+') as f: f.write('Input to State Weights: [%s, %d]\n' '\t%s\n\n' 'State to Output Weights: [%d, %s]\n' '\t%s\n\n' %(best_weights, init_ix, ', '.join((str(w) for w in RNN.Wxh[best_weights, init_ix])), end_ix, best_weights, ', '.join((str(w) for w in RNN.Why[end_ix, best_weights])))) # # ------------------------ # PART 4 # ------------------------ print_info("\n\n---------------------\n" "RUNNING PART 4\n" "---------------------\n") RNN.reload_rnn() associations = [] for char in sorted(chars): res = RNN.find_association(char, 1) association = repr("%s [%2d] -> %s [%2d]" % (char, RNN.char_to_ix[char], res, RNN.char_to_ix[res])) print association associations.append(association) with open('results/part4_associations.txt', 'w+') as f: f.write('%s' % '\n'.join(a for a in associations)) RNN.reload_rnn() best_weights = RNN.test_sequence('S', ':') init_ix = RNN.char_to_ix['S'] end_ix = RNN.char_to_ix[':'] with open('results/part4_weights.txt', 'w+') as f: f.write('Input to State Weights: [%s, %d]\n' '\t%s\n\n' 'State to Output Weights: [%d, %s]\n' '\t%s\n\n' %(best_weights, init_ix, ', '.join((str(w) for w in RNN.Wxh[best_weights, init_ix])), end_ix, best_weights, ', '.join((str(w) for w in RNN.Why[end_ix, best_weights]))))
cc7d6f4efb3081ed341d4a57cc74f148f229edf1
58afbd547a9bfc0449c2e88a80ec0606950f5473
/AudioToText.py
05ad2e2f0ac84d6e3aadca5cb1bbd4de0339e837
[]
no_license
suvashsumon/SpeechRecognitionDemo
1c37c0c59049f62bbb37f730c1a4eb87817d7323
f7c0c95b7c05a52d81f0d172abd340402b7bdfb5
refs/heads/master
2022-12-03T19:18:55.872325
2020-08-19T15:53:20
2020-08-19T15:53:20
288,773,782
1
0
null
null
null
null
UTF-8
Python
false
false
355
py
# Author : Suvash Kumar # Website : www.suvashkumar.xyz import speech_recognition as sr recognizer = sr.Recognizer() audio_file = "speech.wav" with sr.AudioFile(audio_file) as source: audio_data = recognizer.record(source) print("Recognizing this speech ......") text = recognizer.recognize_google(audio_data) print("Content of this audio : ",text)
ccfcd1900ee74cbfd43d8cee00efaa8ddc77b01a
2e85be12b106f8bcb159e267a2c97ad3a6ea0b9d
/lessons/lesson3/myre.py
cf4e0d0b377c59bd1a03a89f650c29080cd26680
[]
no_license
tinghe0928/awesome-python3-webapp
bb24af1a9e2898180c1252d4a70c92f7eadddc3e
3c840f605f360c93e22f2b41ef06886cab35a2ef
refs/heads/master
2020-05-26T14:46:17.536977
2019-10-16T08:30:48
2019-10-16T08:30:48
178,860,057
0
0
null
null
null
null
UTF-8
Python
false
false
1,388
py
import re # re.compile() # re.match() # re.search() # re.match().group(0) # return to Match object or None, if the first one do not match, fail to match and return None # re.match().groups() # return to Match object or None, when there is a match, then return the matched one #re.split() """ \d: for a numner \w: for a character \s: for space .: any one character *: any character include no character +: at lesat one character {8}: 8 character {3:9}: 3 to 9 character [0-9a-zA-z\_]: match one number/a character/_ [0-9a-zA-z\_]: match at least one number/a character/_ ^: mactch the first one $: match the last one """ str_tz = "UTC+8:00" t_delta = re.match(r'(^UTC)((\+|\-)(\d))(\:\d{2})',str_tz) print(t_delta.group(0)) print(t_delta.group(2)) print(re.match(r'^\d{3}\-\d{3,8}$', '010-12345').group(0)) print(re.match(r'[\w\,]+', 'a,b, c d').group(0)) print(re.split(r'[\s\,]+', 'a,b, c d')) print(re.split(r'[t\s]+', 'hththtttthhhh')) print(re.match(r'^(\w+?)(0*)$', '102334gg0g5500').groups()) """[email protected]""" re_rule = re.compile(r'([\w\.]+)@([\w\.]+)com$') print(re_rule.match('[email protected]').group(0)) print(re_rule.match('[email protected]').group(0)) print(re_rule.search(' [email protected]').group(0)) """the different between re.match and re.search""" print(re.search('www','sam.www.com').group(0)) print(re.match('www','sam.www.com').group(0))
45158fd73f856d10753fdab1158bbd52cbc902c4
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/es_maml/policies.py
f901bf44a33836629722349dd7c0953bd0a94da7
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
9,160
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains policies used in MAML.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import numpy as np import tensorflow.compat.v1 as tf import tensorflow_probability as tfp class Policy(object): r"""Abstract class for different policies \Pi: S -> A. Class is responsible for creating different policies and provides an interface for computing actions recommended by policies in different input states. In particular, this class provides an interface that accepts compressed vectorized form of the policy and decompresses it. Standard procedure for improving the parameters of the policy with an interface given by the class: policy = policies.ParticularClassThatInheritsFromBaseClass(...) vectorized_network = policy.get_initial() while(...): new_vectorized_network = SomeTransformationOf(vectorized_network) policy.update(new_vectorized_network) and SomeTransformationOf is a single step of some optimization procedure such as gradient descent that sees the policy in the vectorized form. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def update(self, vectorized_parameters): """Updates the policy using new parameters from <vectorized_parameters>. Updates the parameters of the policy using new parameters encoded by <vectorized_parameters>. The size of the vector <vectorized_parameters> should be the number of all biases and weights of the neural network. We use the convention where parameters encoding matrices of connections of the neural network come in <vectorized_parameters> before parameters encoding biases and furthermore the order in <vectorized_parameters> of parameters encoding weights for different matrices/biases-vectors is inherited from the order of these matrices/biases-vectors in the decompressed neural network. Details regarding compression depend on different neural network architectures used (such as: structured and unstructured) and are given in the implementations of that abstract method in specific classes that inherit from Policy. Args: vectorized_parameters: parameters of the neural network in the vectorized form. Returns: """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_action(self, state): """Returns the action proposed by a policy in a given state. Returns an action proposed by the policy in <state>. Args: state: input state Returns: Action proposed by the policy represented by an object of the class in a given state. """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_initial(self): """Returns the default parameters of the policy in the vectorized form. Initial parameters of the policy are output in the vectorized form. Args: Returns: Numpy array encoding in the vectorized form initial parameters of the policy. """ raise NotImplementedError('Abstract method') @abc.abstractmethod def get_total_num_parameters(self): """Outputs total number of parameters of the policy. Args: Returns: Total number of parameters used by the policy. """ raise NotImplementedError('Abstract method') class BasicTFPolicy(Policy): """Basic Policy implemented in Tensorflow.""" def __init__(self, state_dimensionality, action_dimensionality, hidden_layers, scope): self.state_dimensionality = state_dimensionality self.action_dimensionality = action_dimensionality self.input_ph = tf.placeholder( dtype=tf.float32, shape=[None, self.state_dimensionality]) self.output_ph = tf.placeholder( dtype=tf.float32, shape=[None, self.action_dimensionality]) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): self.out = self.input_ph for i, layer_size in enumerate(hidden_layers): self.out = tf.layers.dense( self.out, layer_size, activation=tf.nn.relu, name='h' + str(i)) self.main_out = tf.layers.dense( self.out, self.action_dimensionality, name='main_out') self.secondary_out = tf.layers.dense( self.out, self.action_dimensionality, name='secondary_out') self.action = tfp.distributions.Normal( loc=self.main_out, scale=self.secondary_out).sample() self.loss = tf.losses.mean_squared_error(self.main_out, self.output_ph) self.obj_tensor = -1.0 * self.loss self.tf_params = tf.trainable_variables(scope) self.shapes = [v.shape.as_list() for v in self.tf_params] self.sizes = [int(np.prod(s)) for s in self.shapes] self.total_nb_parameters = sum(self.sizes) self.assign_ph_dict = { v: tf.placeholder(dtype=tf.float32, shape=v.shape.as_list()) for v in self.tf_params } self.assign_ops = [] for v in self.tf_params: self.assign_ops.append(v.assign(self.assign_ph_dict[v])) with tf.control_dependencies(self.assign_ops): # This is needed to input Numpy Params into network temporarily self.action = tf.identity(self.action) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.np_params = np.concatenate([ self.sess.run(tf.reshape(tf_param, [-1])) for tf_param in self.tf_params ]) def update(self, flattened_weights): self.np_params = flattened_weights def get_action(self, state): ph_dict = {} for ind, v in enumerate(self.tf_params): numpy_flat_val = self.np_params[sum(self.sizes[:ind] ):sum(self.sizes[:ind + 1])] numpy_reshaped = np.reshape(numpy_flat_val, self.shapes[ind]) v_ph = self.assign_ph_dict[v] ph_dict[v_ph] = numpy_reshaped ph_dict[self.input_ph] = state.reshape(-1, self.state_dimensionality) action_numpy = self.sess.run(self.action, feed_dict=ph_dict) return action_numpy.flatten() def get_initial(self): return self.np_params def get_total_num_parameters(self): return self.total_nb_parameters class DeterministicNumpyPolicy(Policy): """Deterministic Policy implemented in Numpy.""" def __init__(self, state_dimensionality, action_dimensionality, hidden_layers, init_sd=None): self.state_dimensionality = state_dimensionality self.action_dimensionality = action_dimensionality self.layers = hidden_layers + [action_dimensionality] self.layers.insert(0, state_dimensionality) self.weights = [] self.biases = [] self.weight_positions = [] self.bias_positions = [] self.init_params = [] flat_pos = 0 for dims in zip(self.layers[:-1], self.layers[1:]): in_size = dims[0] out_size = dims[1] if init_sd is None: init_sd = np.sqrt(2.0 / (in_size)) init_weights = init_sd * np.random.normal(0, 1, size=(out_size * in_size)) self.init_params.extend(init_weights.tolist()) self.weights.append(np.reshape(init_weights, (out_size, in_size))) self.weight_positions.append(flat_pos) flat_pos += out_size * in_size init_biases = np.zeros(out_size) self.init_params.extend(init_biases.tolist()) self.biases.append(init_biases) self.bias_positions.append(flat_pos) flat_pos += out_size self.weight_positions.append(flat_pos) def update(self, flat_weights): for i, dims in enumerate(zip(self.layers[:-1], self.layers[1:])): in_size = dims[0] out_size = dims[1] start_pos = self.weight_positions[i] end_pos = start_pos + (out_size * in_size) self.weights[i] = np.reshape( np.array(flat_weights[start_pos:end_pos]), (out_size, in_size)) start_pos = self.bias_positions[i] end_pos = start_pos + out_size self.biases[i] = np.reshape( np.array(flat_weights[start_pos:end_pos]), (out_size)) def get_action(self, state): neuron_values = np.reshape(np.array(state), (self.state_dimensionality)) for i in range(len(self.weights)): neuron_values = np.matmul(self.weights[i], neuron_values) neuron_values += self.biases[i] if i < len(self.weights) - 1: np.maximum(neuron_values, 0, neuron_values) np.tanh(neuron_values, neuron_values) # this is sometimes not needed return neuron_values def get_initial(self): return np.array(self.init_params) def get_total_num_parameters(self): return self.weight_positions[-1]
3b8746a1cdd4600634297132c55f8cb3205475c4
d8349b7c3ca5289ea4627719699ae88b536fa24e
/uhr.py
bb9d4cef9887219b82c8773ba0814e754bdfe453
[]
no_license
Mighty-Yth/Affinity
8277ae59785f5663b1458e579f9f49e7719b4871
a4f92421f014c0b296596234b0727bb2b0f526f1
refs/heads/master
2020-03-28T20:29:42.009120
2018-09-17T06:00:18
2018-09-17T06:00:18
149,075,792
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
import discord from discord.ext import commands class Uhr: def __init__(self, identity,user,EXP): self.identity = identity self.user= user self.EXP = EXP def __str__(self): return self.identity + ':' + self.user+':' + str(self.EXP) def deposit(self,amount): if amount >= 0: self.EXP += amount def remove(self,amount): if amount >= 0 and amount<= self.EXP: self.EXP -= amount
cfc2649bb2c931a5ec92ad39694840b9daa025f2
9c1223036fd5259875458a8cf40eed7e2d3edf7a
/booktest/views.py
eea0893ab92e26959c416e885ce7ae0a1a3f0d2f
[]
no_license
oldestcrab/django_182
57c180a17d733026727b5f783195d8e0d009ecff
df4bb8933be6a189c0d4af7a55b33f60fff6289b
refs/heads/master
2020-05-31T14:57:20.585054
2019-06-26T06:28:49
2019-06-26T06:28:49
190,344,540
0
0
null
null
null
null
UTF-8
Python
false
false
3,095
py
from django.shortcuts import render, redirect from django.http import HttpResponse, JsonResponse from django.conf import settings import os from .models import * from django.core.paginator import * def index(request): return HttpResponse('hello') def detail(request, p1, p2, p3): return HttpResponse('year:{p1},month:{p2},day:{p3}'.format(p1=p1, p2=p2, p3=p3)) def get_test1(request): return render(request, 'booktest/get_test1.html') def get_test2(request): a1 = request.GET['a'] b1 = request.GET['b'] c1 = request.GET['c'] context = {'a':a1, 'b':b1, 'c':c1} return render(request, 'booktest/get_test2.html', context) def get_test3(request): a1 = request.GET.getlist('a') context = {'a':a1} return render(request, 'booktest/get_test3.html', context) def post_test1(request): return render(request, 'booktest/post_test1.html') def post_test2(request): uname = request.POST['uname'] upwd = request.POST['upwd'] ugender = request.POST['ugender'] uhobby = request.POST.getlist('uhobby') context = {'uname':uname, 'upwd':upwd, 'ugender':ugender, 'uhobby':uhobby} return render(request, 'booktest/post_test2.html', context) def session1(request): uname = request.session.get('myname') context = {'uname':uname} return render(request, 'booktest/session1.html', context) def session2(request): return render(request, 'booktest/session2.html') def session2_handle(request): uname = request.POST['uname'] request.session['myname'] = uname return redirect('/booktest/session1/') def session3(request): del request.session['myname'] return redirect('/booktest/session1/') # csrf def csrf1(request): return render(request, 'booktest/csrf1.html') def csrf2(request): uname = request.POST['uname'] return HttpResponse(uname) def upload_pic(request): return render(request, 'booktest/upload_pic.html') def upload_handle(request): pic1 = request.FILES['pic1'] fname = os.path.join(settings.MEDIA_ROOT[0], str(pic1.name)) with open(fname, 'wb') as f: for c in pic1.chunks(): f.write(c) return HttpResponse(fname) def herolist(request, pindex): list = HeroInfo.objects.all() paginator = Paginator(list, 4) print(pindex) if pindex =='': pindex = '1' page = paginator.page(int(pindex)) context = {'page':page} return render(request, 'booktest/herolist.html', context) def area(request): return render(request, 'booktest/area.html') def area2(request, id): id1 = int(id) if id1 == 0: data = AreaInfo.objects.filter(parea__isnull=True) else: data=[{}] list = [] for area in data: list.append([area.id, area.title]) return JsonResponse({'data':list}) def city(request, id): citylist = AreaInfo.objects.filter(parea_id=id) list = [] for item in citylist: list.append({'id':item.id, 'title':item.title}) return JsonResponse({'data':list}) def html_editor(request): return render(request, 'booktest/html_editor.html')
c92b4463310cabc5b593f28b34d7d29802149be3
8f4e9d24de3dfbd2efae58877ab0043a7da57831
/Learn_PhythonEx/ex6.py
a9b2054e8db34cbb6de3068fbfe0bc208451d780
[]
no_license
dersonnex/Python_learning
1cbcfe428a4765adabdca65d275b63c37acb0ea8
7827962c5f208b36c6511a20d220cba609494853
refs/heads/master
2021-01-12T06:00:52.179117
2017-11-14T09:43:54
2017-11-14T09:43:54
77,274,272
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
x= "There are %d types of people." % 10 # defines veriable X binary = "binary" # defines veriable binary do_not = "don't" # defines veriable do_not y = "Those who know %s and those who %s." % (binary, do_not) # defines veriable y print x print y print "I said: %r." % x #I said :there are 10 types of people. print "I also said: '%s'." % y hilarious = False joke_evaluation = "Isn't that joke so fanny?! %r" print joke_evaluation % hilarious w = "This is the left side of ..." e = "a string with a right side." print w + e
31541650d86bad1487aa424be00d8d85b69f5bed
a7da58ad91b007b3650003708eb91928f1e3684a
/bt5/erp5_wizard/WorkflowTemplateItem/portal_workflow/express_person_interaction_workflow/scripts/Assigment_openGlobalUserAssignment.py
edc6962f8dcdb769f3c5bbbaa8e6713520f5fb3f
[]
no_license
jgpjuniorj/j
042d1bd7710fa2830355d4312a6b76103e29639d
dc02bfa887ffab9841abebc3f5c16d874388cef5
refs/heads/master
2021-01-01T09:26:36.121339
2020-01-31T10:34:17
2020-02-07T04:39:18
239,214,398
1
0
null
null
null
null
UTF-8
Python
false
false
115
py
assignment = state_change['object'] person = assignment.getParentValue() person.Person_validateGlobalUserAccount()
29062d2f0a805afd6dd76b3910c7c60daac28586
4178f2916d2da72cbb45454fbed941dcfe8f6460
/POM_test/TestCase/Planting/TC_024.py
c2bd74617e33da7d058bb5c6912275c3dd5bd85e
[]
no_license
maxcrup007/Selenium_Webdriver_Python
15196cb04ba5cafdc5b776c26d167f0b48fb0e14
6be7f0b9f53df1ba592957029e8a4d22e409d1c4
refs/heads/main
2023-03-24T21:04:31.976451
2021-03-22T09:16:04
2021-03-22T09:16:04
349,379,454
0
0
null
null
null
null
UTF-8
Python
false
false
2,607
py
# ทดสอบการเข้าใช้งานของ "ปลูก" (เลือกจำนวนเพาะปลูกมากกว่าพื้นที่) import time import unittest import sys from selenium import webdriver from POM_test.login import * from POM_test.plantPage import * import os sys.path.append(os.path.join(os.path.dirname(__file__), "...", "...")) class TestPlanting_24(unittest.TestCase): @classmethod def setUpClass(self): self.driver = webdriver.Chrome(executable_path="C:/Users/voraw/Downloads/Compressed/webdriver/chromedriver/chromedriver") self.driver.implicitly_wait(10) self.driver.maximize_window() def test_login_valid(self): driver = self.driver self.driver.get("https://top-upstream-client.mulberrysoft.com/#/older/activity") login = LoginPage(driver) login.enter_username("demo005") login.enter_password("123456") login.click_login() time.sleep(2) plant = PlantPage(driver) plant.into_plantPage() plant.upload_picture() time.sleep(2) plant.next_function() time.sleep(2) plant.plant_enter_value("1000000") # เลือกจำนวนเพาะปลูกมากกว่าพื้นที่ time.sleep(2) plant.plant_enter_area("10") time.sleep(2) plant.plant_enter_crops() time.sleep(2) # driver.find_element_by_xpath("//ion-list[2]/ion-item/ion-select").click() # driver.find_element_by_xpath("//button/div/div[2]").click() # driver.find_element_by_xpath("//button[2]/span").click() plant.plant_enter_garden() time.sleep(2) plant.plant_enter_unit() time.sleep(2) plant.plant_enter_area_unit() time.sleep(2) ######################################################################## plant.plant_enter_products("100") time.sleep(2) plant.plant_enter_unit_products() time.sleep(2) plant.plant_enter_paid("1500") time.sleep(2) plant.plant_enter_submit() time.sleep(2) @classmethod def tearDownClass(cls): cls.driver.close() cls.driver.quit() print("Test Completed") if __name__ == '__main__': unittest.main()
e3275a76d2f0ad30f2d8dc25ef528b0dd70399d0
6f9a29946dc107cd44d88cf07c9d715ebe4208be
/source/services/music/music_service.py
61d9a993b50f6a801a8e9c6457c4172dae92f090
[]
no_license
cash2one/gongzhuhao
66bb14439a2265175bdd4b2f585456fcf47922bf
0596bcb429674b75243d343c73e0f022b6d86820
refs/heads/master
2021-01-18T15:38:37.258737
2015-10-28T09:13:33
2015-10-28T09:13:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,709
py
#encoding:utf-8 __author__ = 'frank' from services.base_services import BaseService from models.share_do import ShareMusic from utils.upload_utile import delete_from_oss from tornado.options import options class MusicServices(BaseService): def create_share_music(self,**kwargs): ''' todo:新增一首背景歌曲 :param kwargs: :return: ''' share_music = ShareMusic() share_music.Fmusic_name = kwargs.get('music_name') share_music.Fmusic_url = kwargs.get('request_url') self.db.add(share_music) self.db.commit() return share_music def query_share_music(self,**kwargs): ''' todo:查询背景歌曲 :param kwargs: :return: ''' query = self.db.query(ShareMusic).filter(ShareMusic.Fdeleted == 0) if kwargs.get('start_date',''): query = query.filter(ShareMusic.Fcreate_time > kwargs.get('start_date')) if kwargs.get('end_date',''): query = query.filter(ShareMusic.Fcreate_time < kwargs.get('end_date')+' 23:59:59') if kwargs.get('music_name',''): query = query.filter(ShareMusic.Fmusic_name.like('%'+kwargs.get('music_name')+'%')) return query def delete_music(self,music_id): ''' todo:删除背景歌曲 :param music_id: 歌曲id :return: ''' query = self.db.query(ShareMusic).filter(ShareMusic.Fdeleted == 0,ShareMusic.Fid == music_id) filename = query.scalar().Fmusic_url[34:] data = {} data['Fdeleted'] = 1 query.update(data) self.db.commit() delete_from_oss(options.MEDIA_BUCKET,filename)
87e809d46157208ddbaf6781030cfc9bc9ad8438
b3f1d75955f3ef15b4c55e4ad79d73b3797ec318
/django-backend/djangoapi/tests.py
448ec74fa89ea606bc66e2347098316c3cac403c
[]
no_license
christiancp100/VRecommender-3.0
da600008c5542fa10e4e10da110c7a9ea90f5494
9bfd0c1d4e1b536e70c3a32497c829fa099d22cf
refs/heads/master
2023-07-31T17:52:23.330726
2020-06-05T15:05:57
2020-06-05T15:05:57
269,671,457
0
0
null
2021-09-22T19:09:40
2020-06-05T14:48:43
Vue
UTF-8
Python
false
false
995
py
from django.test import TestCase from djangoapi import search from elasticsearch import Elasticsearch import requests class ElasticsearchTestCase(TestCase): def setUp(self): self.client = Elasticsearch("http://elasticsearch:9200") self.all_indices = self.client.indices.get_alias("*") def test_connection(self): status = self.client.ping() self.assertTrue(status) def test_index_existance(self): exist = "objects" in self.all_indices self.assertTrue(exist) class QueriesTestCase(TestCase): def setUp(self): self.fieldsList = requests.get('http://llocalhost:8000/columns') # TODO # def test_describe_query(self): # for field in self.fieldsList: # if field['type'] == numerical: # response = requests.get('http://localhost:8000/describe/?column=' + field['value']) # if responsep['count'] class EndPointsTestCase(TestCase): def setUp(self): pass
e64bb6ef3ac9bc9aa5a6be96f65b399ba60f4587
ee9d1da814af64064de49e777e6fe983f92e7621
/old/PSD_Plotter.py
0989cea9eff5da0e3e42fe57532f837a02d92550
[]
no_license
nm96/MSc_project_code
8506fab47b291cffb4a9558da52a486a4dca290f
7b8b02b6b5dce0c09adf8e5ca2c3f464c4e6eff1
refs/heads/master
2022-12-14T20:34:53.432790
2020-09-13T15:06:31
2020-09-13T15:06:31
274,463,955
0
0
null
null
null
null
UTF-8
Python
false
false
1,552
py
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker from matplotlib import rc import sys import pickle # Set a nice font for the plots when on Linux if sys.platform == 'linux': rc('font',**{'family':'serif','serif':['Computer Modern Roman']}) rc('text', usetex=True) # Get input file from commmand line inpf = sys.argv[1] # i.e. "spec_data.pkl" # Read input file with open(inpf, 'rb') as f: params, om, P = pickle.load(f) # Note: # model = (mdl.NHSommerfeld2,(Om,h,B)) # params = (eps,Om,m,c,k,model) # Get parameters to label the plot with om_max = om[-1] Om = params[1] om_nat = (params[4]/params[2])**0.5 B = params[-1][-1][-1] c = params[3] fn = 0 # Initialize figure number for plotting fn += 1; fig = plt.figure(fn,figsize=[12,6]) # Plot spectrum, label: ax = fig.add_subplot(111) ax.set_xlim([0,om_max]) ax.axvline(om_nat,ls='--',c='g',label=r"$\omega_{nat}$") ax.axvline(Om,ls='--',c='r',label=r"$\Omega$") ax.semilogy(om,P,c='k') locmaj = matplotlib.ticker.LogLocator(base=100,numticks=30) ax.yaxis.set_major_locator(locmaj) locmin = matplotlib.ticker.LogLocator(base=100,subs=(0.2,0.4,0.6,0.8),numticks=50) ax.yaxis.set_minor_locator(locmin) ax.yaxis.set_minor_formatter(matplotlib.ticker.NullFormatter()) ax.grid() ax.set_title(r"""$\beta = {:.2f}$, $\Omega = {:.2f}$, $c = {:.2f}$""".format(B,Om,c)) ax.set_ylabel("$P(\omega)$",rotation=0) ax.yaxis.labelpad = 20 ax.set_xlabel("$\omega$") ax.legend() plt.tight_layout() #fig.savefig("../plots/sparse_peak_spectrum.eps".format(B)) plt.show()
b652570059fbbb90741ee3a9330e616f982e32a2
7694cb360b98391fb0f5c57e3b396d8211d535ea
/GUI/config.py
e2d7fd5c94a6e14d041ed94caa21cfd5f2aaf723
[ "MIT" ]
permissive
trifwn/Atlas_Rocket
36ec1b0e59181dab45a16743a670532eb8e4e797
aeb8b6fea75b8f6b94af662bbaec0ae212e02bae
refs/heads/master
2022-04-17T03:34:30.614890
2020-04-05T21:40:49
2020-04-05T21:40:49
229,804,020
1
0
null
2020-03-31T14:52:34
2019-12-23T18:31:23
Python
UTF-8
Python
false
false
1,214
py
import os import time from collections import deque BASE_PATH = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(BASE_PATH, "data") def init(): ''' Defining globals and initializing them ''' max_length = 100 global times, temperature, pressure, humidity, altitude, or_x, or_y, or_z, vel_x, vel_y, vel_z, acc_x, acc_y, acc_z times = deque(maxlen=max_length) temperature = deque(maxlen=max_length) pressure = deque(maxlen=max_length) humidity = deque(maxlen=max_length) altitude = deque(maxlen=max_length) #orientation or_x = deque(maxlen=max_length) or_y = deque(maxlen=max_length) or_z = deque(maxlen=max_length) #velocity vel_x = deque(maxlen=max_length) vel_y = deque(maxlen=max_length) vel_z = deque(maxlen=max_length) #acceleration acc_x = deque(maxlen=max_length) acc_y = deque(maxlen=max_length) acc_z = deque(maxlen=max_length) global data_dict data_dict = { 'Temperature': temperature, 'Pressure': pressure, 'Humidity': humidity, 'Altitude': altitude, '3D Cone plot': (vel_x, vel_y, vel_z, or_x, or_y, or_z), 'x-y-z-move': (or_x, or_y, or_z), 'Velocity for x-y-z': (vel_x, vel_y, vel_z), 'Acceleration for x-y-z': (acc_x, acc_y, acc_z) }
ca80285ee2929ac20cf43ad7fff92fb60b9efdea
f81c8e4d702d5c88af92c691d35b6f9c0d2f4390
/backend/dark_waterfall_26026/wsgi.py
e5039146e98431c055564aea9a661c25a52173fd
[]
no_license
crowdbotics-apps/dark-waterfall-26026
bdfd44240dae3c1ad20ed8b7a8da701308db5958
95f9eda959b6d21778ff59db2c5c9a585d6a670c
refs/heads/master
2023-04-12T17:31:25.091727
2021-04-29T19:14:56
2021-04-29T19:14:56
362,922,208
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
""" WSGI config for dark_waterfall_26026 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dark_waterfall_26026.settings') application = get_wsgi_application()
504995a982f5fa75f2c1793615bc2e989fee7a9c
5663ad19d3773400f60da4e1cabcb3312894e62b
/linkedlist.py
a135fc32d30425de0164010c3654a25c10aef361
[]
no_license
maihan040/Python_Random_Scripts
a265a556f65d5f8b779b37dac1f68f089f4bf343
2c649c3668adcc3c155387b8c7c88a07b50af39a
refs/heads/main
2023-04-11T17:11:29.439860
2021-05-08T17:59:54
2021-05-08T17:59:54
360,765,179
0
0
null
null
null
null
UTF-8
Python
false
false
5,338
py
# #module name: linkedlist.py # #purpose: class definition for a linked list # #date created: 09/04/2019 # #version: 1.0 # ######################################################### # Import modules # ######################################################### import node ######################################################### # Class definition # ######################################################### class linkedlist: #constructor def __init__ (self, head=None): self.head = head #print def printList(self): current = self while current.next is not None: print(str(current.data) + "->", end="") current = current.next print(current.data) #iterative apprach def mergeListIterative(self, l1, l2): #locale names current = None root = None while(True): if(l1 == None): nextNode = l2 elif(l2 == None): nextNode = l1 elif(l1.data < l2.data): nextNode = l1 else: nextNode = l2 #advance the position in the respective linkedlist if(nextNode == l1): l1 = l1.next if l1 else None if(nextNode == l2): l2 = l2.next if l2 else None #check if end has been reached if(nextNode == None): break #merge the list if not current: current = nextNode root = current else: current.next = nextNode current = nextNode #return the root of the merged linked list return root #recuriseve approach def mergeListRecursive(self, l1, l2): #base case if(l1 == None): return l2 elif(l2 == None): return l1 elif(l1.data < l2.data): l1.next = self.mergeListRecursive(l1.next, l2) return l1 else: l2.next = self.mergeListRecursive(l1, l2.next) return l2 #add two numbers represented as linked lists #Recursive function def addNum(self, first, second): root = None prev = None temp = None carry = 0 while(first is not None and second is not None): fdata = 0 if first is None else first.data sdata = 0 if second is None else second.data sum = fdata + sdata + carry #compute the next carry carry = 1 if sum >= 10 else 0 sum = sum if sum < 10 else sum %10 print("Sum is : " +str(sum)) temp = node.node(sum) #check wheter the head of this list is empty if root is None: root = temp else: prev.next = temp prev = temp #advance both lists if first is not None: first = first.next if second is not None: second = second.next #add remaining carry if any if carry: temp.next = node.node(carry) #return the root return root #reverse list via an iterative approach def reverselistIteratively(self, head): if(head == None): return None #pointers used to keep track as we traverse the list root = None prev = head current = prev.next nxt = head.next.next prev.next = None #traverse the list while(nxt.next != None): current.next = prev prev = current current = nxt nxt = nxt.next #point the last two nodes current.next = prev nxt.next = current root = nxt #return the new head return root #reverse list via a recursive approach def reverseListRecursive(self, curr, prev=None): #base case if curr == None: return None if curr.next == None: curr.next = prev return ######################################### # Driver # ######################################### a = node.node(1) a.next = node.node(3) a.next.next = node.node(5) b = node.node(2) b.next = node.node(8) b.next.next = node.node(6) c = node.node(10) c.next = node.node(12) c.next.next = node.node(14) d = node.node(11) d.next = node.node(13) d.next.next = node.node(15) ''' #iteratirve approach print("-------------------------------------------------------------") print("Iterative apprach ") print("First list " ) a.printList() print("Second list ") b.printList() print("Merging both lists via iterative approach") result_iterative = linkedlist().mergeListIterative(a,b) print("The merged linked list is: ") result_iterative.printList() #recursive apprach print("-------------------------------------------------------------") print("Recursive apprach ") print("First list ") c.printList() print("Second list") d.printList() print("Merging both lists via recursive approach") result_recursive = linkedlist().mergeListRecursive(c,d) print("Merged linked list is: ") result_recursive.printList() #add numbers print("-------------------------------------------------------------") print("Adding lists") print("First list ") a.printList() print("Second list") b.printList() print("Adding both numbers") result_sum = linkedlist().addNum(a,b) print("Added linked list is: ") result_sum.printList() #reverse list via an iterative approach print("-------------------------------------------------------------") print("Reversing list iteratively") print("List before reversal ") a.printList() rev_list = linkedlist().reverseListRecursive(a, None) print("After reversal list is: ") rev_list.printList() ''' #recursive apprach print("-------------------------------------------------------------") print("Recursive apprach ") print("First list ") c.printList() print("Second list") d.printList() print("Merging both lists via recursive approach") result_recursive = linkedlist().mergeListRecursive(c,d) print("Merged linked list is: ") result_recursive.printList()
fa65a404c6278a30b5a8e1d2c8079c85f4f85dce
449f6888bff99d7e4fd86fa6ffa6b3316084e34e
/Solutions/018.py
b91be816ebd66827c26c6ae1526c59a9b3b118b9
[ "MIT" ]
permissive
All3yp/Daily-Coding-Problem-Solutions
e94679a5858b8a83ffe58d14b824fe80de21a694
199b9606474edb45bd14b20b511b691ada437586
refs/heads/master
2023-03-18T21:06:30.675503
2021-03-13T03:52:31
2021-03-13T03:52:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,622
py
""" Problem: Given an array of integers and a number k, where 1 <= k <= length of the array, compute the maximum values of each subarray of length k. For example, given array = [10, 5, 2, 7, 8, 7] and k = 3, we should get: [10, 7, 8, 8], since: 10 = max(10, 5, 2) 7 = max(5, 2, 7) 8 = max(2, 7, 8) 8 = max(7, 8, 7) Do this in O(n) time and O(k) space. You can modify the input array in-place and you do not need to store the results. You can simply print them out as you compute them. """ from collections import deque from typing import List def calc_max_per_k_elems(arr: List[int], k: int) -> List[int]: length = len(arr) if not arr: return None if length <= k: return max(arr) # storing results (even though the problem states it can be directly printed) result = [] dq = deque() # calculating the 1st element for i in range(k): while dq and arr[dq[-1]] < arr[i]: dq.pop() dq.append(i) result.append(arr[dq[0]]) # generating the rest of the resultant elements for i in range(k, length): # removing all elements apart from the last k elements while dq and dq[0] <= i - k: dq.popleft() # removing the elements smaller than the current element while dq and arr[dq[-1]] < arr[i]: dq.pop() dq.append(i) result.append(arr[dq[0]]) return result if __name__ == "__main__": print(calc_max_per_k_elems([10, 5, 2, 7, 8, 7], 3)) print(calc_max_per_k_elems([1, 91, 17, 46, 45, 36, 9], 3)) """ SPECS: TIME COMPLEXITY: O(n) SPACE COMPLEXITY: O(k) """
9717ae1685d9e0be1f4fca244bca7a10cb2aeb8b
c2cd846ea3d2947587a5bfe1ad8cfc419e0fc98f
/gui/app.py
c345b7be2ccd5925f810121a5350d92dcf4263aa
[ "MIT" ]
permissive
txxia/starbound-map
d5eac43add27076703a7918f574a32807b258f37
a0231cbc0d14aed072246061280084bb7eaf5d04
refs/heads/master
2023-07-19T20:05:10.729118
2019-08-08T01:19:10
2019-08-08T01:19:29
136,258,912
14
0
MIT
2023-07-16T23:45:16
2018-06-06T02:13:12
Python
UTF-8
Python
false
false
1,906
py
import glfw from gui.core import * from gui.widgets.job_overlay import JobOverlay from gui.windows.about import AboutWindow from gui.windows.mapcontrol import MapControllerWindow from gui.windows.mapview import MapWindow from gui.windows.usage import UsageWindow from map.renderer import WorldRenderer class StarboundMap(GUIElement): def __init__(self, world_renderer: WorldRenderer): state = GUIState(root=self) super().__init__(state) self.set_styles() self.add_child(MapWindow(self.state, renderer=world_renderer)) self.add_child(MapControllerWindow(self.state)) self.add_child(UsageWindow(self.state)) self.add_child(AboutWindow(self.state)) self.add_child(JobOverlay(self.state)) def gui(self): imgui.new_frame() self.show_menu_bar() self.state.render_params.time_in_seconds = glfw.get_time() # TODO remove glfw calls for child in self.children: child.gui() # imgui.show_test_window() # self.show_debug_window() imgui.render() def show_menu_bar(self): if imgui.begin_main_menu_bar(): if imgui.begin_menu("Help"): if imgui.menu_item("User Guide")[0]: self.send_event(GUIEventType.OPEN_WINDOW, arg=WindowName.USER_GUIDE) if imgui.menu_item("About")[0]: self.send_event(GUIEventType.OPEN_WINDOW, arg=WindowName.ABOUT) imgui.end_menu() imgui.end_main_menu_bar() def show_debug_window(self): imgui.label_text("time", '{:.1f}'.format(glfw.get_time())) imgui.label_text("fps", '{:.1f}'.format(self.io.framerate)) imgui.label_text("mouse", '{:.1f}, {:.1f}'.format(self.io.mouse_pos.x, self.io.mouse_pos.y)) def set_styles(self): pass
3e563019b3d7db6d3ec9a95f54d4b81a39d0a957
121ae77d5a4410d1a74c4d2abb35910fc1ee501c
/tests/mock_emr.py
988e8644763eee5ca08f517ccd3d29d747429469
[ "MIT" ]
permissive
warrenronsiek/emrcli
6baee85a27c3106cc55ca31feccfb804f6c3d17c
0874ae40be480e9f274867bc526fb6757b3db51e
refs/heads/master
2020-08-02T23:01:45.357969
2019-05-10T19:24:55
2019-05-10T19:24:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,895
py
from datetime import datetime def mock_emr_client(*args, **kwargs): class TestEmrClient: @classmethod def run_job_flow(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, "JobFlowId": "s-SNGBtA88"} @classmethod def terminate_job_flows(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}} @classmethod def describe_cluster(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, 'Cluster': { 'Id': 's-SNGBtA88l', 'Name': 'test_cluster', 'Status': { 'State': 'RUNNING', 'Timeline': { 'CreationDateTime': datetime(2017, 1, 1), 'ReadyDateTime': datetime(2017, 1, 1), 'EndDateTime': datetime(2017, 1, 1) } }, 'InstanceCollectionType': 'INSTANCE_GROUP', 'MasterPublicDnsName': 'ip-10-22-182-88', } } @classmethod def list_instance_fleets(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, 'InstanceFleets': [ { 'Id': 'id1', 'Name': 'Master', 'Status': { 'State': 'RUNNING', 'Timeline': { 'CreationDateTime': datetime(2017, 1, 1), 'ReadyDateTime': datetime(2017, 1, 1), 'EndDateTime': datetime(2017, 1, 1) } }, 'InstanceFleetType': 'MASTER', 'TargetOnDemandCapacity': 1, 'ProvisionedOnDemandCapacity': 1, 'InstanceTypeSpecifications': [ { 'InstanceType': 'm4.4xlarge', 'WeightedCapacity': 100, 'BidPrice': '0.40', 'BidPriceAsPercentageOfOnDemandPrice': 100.0, 'Configurations': [ { 'Classification': 'spark-defaults', 'Properties': { 'spark.ssl.ui.enabled': 'false', 'spark.authenticate.secret': 'foo' }, 'Configurations': [] }, { 'Classification': 'yarn-site', 'Properties': { 'yarn.resourcemanager.am.max-attempts': '1' }, 'Configurations': [] }, { 'Classification': 'core-site', 'Properties': { 'fs.s3.canned.acl': 'BucketOwnerFullControl' }, 'Configurations': [] } ], 'EbsBlockDevices': [ { 'VolumeSpecification': { 'VolumeType': 'gp2', 'SizeInGB': 100 }, 'Device': 'string' }, ], 'EbsOptimized': True | False }, ], 'LaunchSpecifications': { 'SpotSpecification': { 'TimeoutDurationMinutes': 5, 'TimeoutAction': 'SWITCH_TO_ON_DEMAND', 'BlockDurationMinutes': 120 } } }, { 'Id': 'id2', 'Name': 'Core', 'Status': { 'State': 'RUNNING', 'Timeline': { 'CreationDateTime': datetime(2017, 1, 1), 'ReadyDateTime': datetime(2017, 1, 1), 'EndDateTime': datetime(2017, 1, 1) } }, 'InstanceFleetType': 'CORE', 'TargetSpotCapacity': 2, 'ProvisionedSpotCapacity': 2, 'InstanceTypeSpecifications': [ { 'InstanceType': 'm4.4xlarge', 'WeightedCapacity': 100, 'BidPrice': '0.40', 'BidPriceAsPercentageOfOnDemandPrice': 100.0, 'Configurations': [ { 'Classification': 'spark-defaults', 'Properties': { 'spark.ssl.ui.enabled': 'false', 'spark.authenticate.secret': 'foo' }, 'Configurations': [] }, { 'Classification': 'yarn-site', 'Properties': { 'yarn.resourcemanager.am.max-attempts': '1' }, 'Configurations': [] }, { 'Classification': 'core-site', 'Properties': { 'fs.s3.canned.acl': 'BucketOwnerFullControl' }, 'Configurations': [] } ], 'EbsBlockDevices': [ { 'VolumeSpecification': { 'VolumeType': 'gp2', 'SizeInGB': 100 }, 'Device': 'string' }, ], 'EbsOptimized': True | False }, ], 'LaunchSpecifications': { 'SpotSpecification': { 'TimeoutDurationMinutes': 5, 'TimeoutAction': 'SWITCH_TO_ON_DEMAND', 'BlockDurationMinutes': 120 } } } ] } @classmethod def list_instance_groups(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, 'InstanceGroups': [ { 'Id': 'id1', 'Name': 'Master', 'Market': 'ON_DEMAND', 'InstanceGroupType': 'MASTER', 'InstanceType': 'm4.4xlarge', 'RequestedInstanceCount': 1, 'RunningInstanceCount': 1, 'Status': { 'State': 'RUNNING', 'Timeline': { 'CreationDateTime': datetime(2017, 1, 1), 'ReadyDateTime': datetime(2017, 1, 1), 'EndDateTime': datetime(2017, 1, 1) } }, 'Configurations': [ { 'Classification': 'spark-defaults', 'Properties': { 'spark.ssl.ui.enabled': 'false', 'spark.authenticate.secret': 'foo' }, 'Configurations': [] }, { 'Classification': 'yarn-site', 'Properties': { 'yarn.resourcemanager.am.max-attempts': '1' }, 'Configurations': [] }, { 'Classification': 'core-site', 'Properties': { 'fs.s3.canned.acl': 'BucketOwnerFullControl' }, 'Configurations': [] } ], 'EbsBlockDevices': [ { 'VolumeSpecification': { 'VolumeType': 'gp2', 'SizeInGB': 100 }, 'Device': 'string' }, ], 'EbsOptimized': False, }, { 'Id': 'id2', 'Name': 'Core', 'Market': 'SPOT', 'InstanceGroupType': 'CORE', 'BidPrice': '0.40', 'InstanceType': 'm4.4xlarge', 'RequestedInstanceCount': 2, 'RunningInstanceCount': 2, 'Status': { 'State': 'RUNNING', 'Timeline': { 'CreationDateTime': datetime(2017, 1, 1), 'ReadyDateTime': datetime(2017, 1, 1), 'EndDateTime': datetime(2017, 1, 1) } }, 'Configurations': [ { 'Classification': 'spark-defaults', 'Properties': { 'spark.ssl.ui.enabled': 'false', 'spark.authenticate.secret': 'foo' }, 'Configurations': [] }, { 'Classification': 'yarn-site', 'Properties': { 'yarn.resourcemanager.am.max-attempts': '1' }, 'Configurations': [] }, { 'Classification': 'core-site', 'Properties': { 'fs.s3.canned.acl': 'BucketOwnerFullControl' }, 'Configurations': [] } ], 'EbsBlockDevices': [ { 'VolumeSpecification': { 'VolumeType': 'gp2', 'SizeInGB': 100 }, 'Device': 'string' }, ], 'EbsOptimized': False, }, ] } @classmethod def add_job_flow_steps(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, 'StepIds': [ 'stepId1', 'stepId2' ] } @classmethod def list_instances(cls, **kwargs): return {"ResponseMetadata": {"HTTPHeaders": {"content-length": "1624", "content-type": "application/x-amz-json-1.1", "date": "Mon, 02 Jul 2017 23:44:46 GMT", "x-amzn-requestid": "e7371e56-7e51-11e8-b253-4754b23ad999"}, "HTTPStatusCode": 200, "RequestId": "e7371e56-7e51-11e8-b253-4754b23ad999", "RetryAttempts": 0}, 'Instances': [ {'Id': 'ci-3SC4IQXMO1PSK', 'Ec2InstanceId': 'i-0576b968542bb508f', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-183-7.ec2.internal', 'PrivateIpAddress': '11.225.183.7', 'Status': {'State': 'TERMINATED', 'StateChangeReason': {'Code': 'INTERNAL_ERROR', 'Message': 'Startup script failed.'}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9, 10), 'EndDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-035e6d6d63fd5b244'}]}, {'Id': 'ci-31W8Z97DPKISH', 'Ec2InstanceId': 'i-0f8a49595746000c6', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-181-246.ec2.internal', 'PrivateIpAddress': '11.225.181.246', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-024a827a0dfb1f020'}]}, {'Id': 'ci-LALR90A040LE', 'Ec2InstanceId': 'i-010785f4cc01291c6', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-182-177.ec2.internal', 'PrivateIpAddress': '11.225.182.177', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9, 10), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-0dfa83f26dba6d166'}]}, {'Id': 'ci-7EGA48KCGEPB', 'Ec2InstanceId': 'i-00165a7vv705de729', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-183-233.ec2.internal', 'PrivateIpAddress': '11.225.183.233', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-0fad27754481ed35f'}]}, {'Id': 'ci-2HFLSDMDWGQTO', 'Ec2InstanceId': 'i-0217e49225744ce71', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-180-81.ec2.internal', 'PrivateIpAddress': '11.225.180.81', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-00c62a333a2e2bbcf'}]}, {'Id': 'ci-26MIX2MMXOOY7', 'Ec2InstanceId': 'i-0938b90515b0b8adf', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-182-250.ec2.internal', 'PrivateIpAddress': '11.225.182.250', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': { 'CreationDateTime': datetime(2017, 10, 9), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3FR4STYY3V56R', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-051e3cb1c47348904'}]}, {'Id': 'ci-29QIUQ3NYBVG6', 'Ec2InstanceId': 'i-011513d5f9721926b', 'PublicDnsName': '', 'PrivateDnsName': 'ip-11-225-181-179.ec2.internal', 'PrivateIpAddress': '11.225.181.179', 'Status': {'State': 'RUNNING', 'StateChangeReason': {}, 'Timeline': {'CreationDateTime': datetime(2017, 10, 9), 'ReadyDateTime': datetime(2017, 10, 9)}}, 'InstanceGroupId': 'ig-3CVLDUSAEVB33', 'Market': 'ON_DEMAND', 'InstanceType': 'm4.4xlarge', 'EbsVolumes': [{'Device': '/dev/sdb', 'VolumeId': 'vol-090f8c3caac1a9ca4'}]}] } emr_client = TestEmrClient() return emr_client
10e96bc785ac19c2efd851c350ebe01d79ef24e4
7cc57bb8bf0f7219e2ed0b05fadc271a7b20bf0e
/DEVKITv1/oled/main.py
39341702169b799949baca2e15570e1b7d4e837e
[]
no_license
cloudymike/micropythonexamples
3bc03bccc1d3056f81e4d254b3f7a159648d85f1
953531451d89fb20ff81ceeef74d8bae6db3d4f3
refs/heads/master
2023-08-19T01:50:23.763464
2023-08-07T15:52:54
2023-08-07T15:52:54
200,582,793
0
2
null
2023-09-14T02:32:25
2019-08-05T04:35:00
Python
UTF-8
Python
false
false
1,128
py
# Complete project details at https://RandomNerdTutorials.com from machine import Pin, I2C import ssd1306 from time import sleep import os from time import sleep_ms import gfx import bignumber # ESP32 Pin assignment i2c = I2C(-1, scl=Pin(22), sda=Pin(21)) # ESP8266 Pin assignment #i2c = I2C(-1, scl=Pin(5), sda=Pin(24)) # Reset OLED oledReset=Pin(16, Pin.OUT) oledReset.value(0) sleep_ms(500) oledReset.value(1) oled_width = 128 oled_height = 64 oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c) oled.text('Hello, World 1!', 0, 0) oled.text('Hello, World 2!', 0, 10) oled.text('Hello, World 3!', 0, 20) oled.show() sleep_ms(1000) oled.fill(0) graphics = gfx.GFX(oled_width, oled_height, oled.pixel) graphics.fill_circle(64, 16, 16, 1) oled.show() sleep_ms(1000) oled.fill(1) oled.show() sleep_ms(1000) for number in range(15): oled.fill(0) bignumber.bigNumber(oled, number) oled.show() sleep_ms(10) oled.fill(0) bignumber.bigTemp(oled, 14.6, 'F') oled.show() sleep_ms(1000) oled.fill(0) oled.text('The end!', 60, 49) oled.show()
530008283c1d95b2bbd68b84c9530f2593eceb96
5de718a2ab00460f59621e1e3c100b37c0853f61
/env/Lib/site-packages/flask/app.py
b321c63f7c4bba6de67231bffec304fc04d9759d
[]
no_license
HenryVo31/Connect
3fd60d893edd1199663878b7b68505e57a410dd6
3783e5b4d6b58f19e37ccff66501cb78c35c1500
refs/heads/master
2023-02-13T14:21:12.692446
2021-01-08T21:40:16
2021-01-08T21:40:16
295,485,939
1
0
null
null
null
null
UTF-8
Python
false
false
97,137
py
# -*- coding: utf-8 -*- """ flask.app ~~~~~~~~~ This module implements the central WSGI application object. :copyright: © 2010 by the Pallets team. :license: BSD, see LICENSE for more details. """ import os import sys import warnings from datetime import timedelta from functools import update_wrapper from itertools import chain from threading import Lock from werkzeug.datastructures import Headers, ImmutableDict from werkzeug.exceptions import BadRequest, BadRequestKeyError, HTTPException, \ InternalServerError, MethodNotAllowed, default_exceptions from werkzeug.routing import BuildError, Map, RequestRedirect, \ RoutingException, Rule from . import cli, json from ._compat import integer_types, reraise, string_types, text_type from .config import Config, ConfigAttribute from .ctx import AppContext, RequestContext, _AppCtxGlobals from .globals import _request_ctx_stack, g, request, session from .helpers import ( _PackageBoundObject, _endpoint_from_view_func, find_package, get_env, get_debug_flag, get_flashed_messages, locked_cached_property, url_for, get_load_dotenv ) from .logging import create_logger from .sessions import SecureCookieSessionInterface from .signals import appcontext_tearing_down, got_request_exception, \ request_finished, request_started, request_tearing_down from .templating import DispatchingJinjaLoader, Environment, \ _default_template_ctx_processor from .wrappers import Request, Response # a singleton sentinel value for parameter defaults _sentinel = object() def _make_timedelta(value): if not isinstance(value, timedelta): return timedelta(seconds=value) return value def setupmethod(f): """Wraps a method so that it performs a check in debug mode if the first request was already handled. """ def wrapper_func(self, *args, **kwargs): if self.debug and self._got_first_request: raise AssertionError('A setup function was called after the ' 'first request was handled. This usually indicates a bug ' 'in the application where a module was not imported ' 'and decorators or other functionality was called too late.\n' 'To fix this make sure to import all your view modules, ' 'database models and everything related at a central place ' 'before the application starts serving requests.') return f(self, *args, **kwargs) return update_wrapper(wrapper_func, f) class Flask(_PackageBoundObject): """The flask object implements a WSGI application and acts as the central object. It is passed the name of the module or package of the application. Once it is created it will act as a central registry for the view functions, the URL rules, template configuration and much more. The name of the package is used to resolve resources from inside the package or the folder the module is contained in depending on if the package parameter resolves to an actual python package (a folder with an :file:`__init__.py` file inside) or a standard module (just a ``.py`` file). For more information about resource loading, see :func:`open_resource`. Usually you create a :class:`Flask` instance in your main module or in the :file:`__init__.py` file of your package like this:: from flask import Flask app = Flask(__name__) .. admonition:: About the First Parameter The idea of the first parameter is to give Flask an idea of what belongs to your application. This name is used to find resources on the filesystem, can be used by extensions to improve debugging information and a lot more. So it's important what you provide there. If you are using a single module, `__name__` is always the correct value. If you however are using a package, it's usually recommended to hardcode the name of your package there. For example if your application is defined in :file:`yourapplication/app.py` you should create it with one of the two versions below:: app = Flask('yourapplication') app = Flask(__name__.split('.')[0]) Why is that? The application will work even with `__name__`, thanks to how resources are looked up. However it will make debugging more painful. Certain extensions can make assumptions based on the import name of your application. For example the Flask-SQLAlchemy extension will look for the code in your application that triggered an SQL query in debug mode. If the import name is not properly set up, that debugging information is lost. (For example it would only pick up SQL queries in `yourapplication.app` and not `yourapplication.views.frontend`) .. versionadded:: 0.7 The `static_url_path`, `static_folder`, and `template_folder` parameters were added. .. versionadded:: 0.8 The `instance_path` and `instance_relative_config` parameters were added. .. versionadded:: 0.11 The `root_path` parameter was added. .. versionadded:: 1.0 The ``host_matching`` and ``static_host`` parameters were added. .. versionadded:: 1.0 The ``subdomain_matching`` parameter was added. Subdomain matching needs to be enabled manually now. Setting :data:`SERVER_NAME` does not implicitly enable it. :param import_name: the name of the application package :param static_url_path: can be used to specify a different path for the static files on the web. Defaults to the name of the `static_folder` folder. :param static_folder: the folder with static files that should be served at `static_url_path`. Defaults to the ``'static'`` folder in the root path of the application. :param static_host: the host to use when adding the static route. Defaults to None. Required when using ``host_matching=True`` with a ``static_folder`` configured. :param host_matching: set ``url_map.host_matching`` attribute. Defaults to False. :param subdomain_matching: consider the subdomain relative to :data:`SERVER_NAME` when matching routes. Defaults to False. :param template_folder: the folder that contains the templates that should be used by the application. Defaults to ``'templates'`` folder in the root path of the application. :param instance_path: An alternative instance path for the application. By default the folder ``'instance'`` next to the package or module is assumed to be the instance path. :param instance_relative_config: if set to ``True`` relative filenames for loading the config are assumed to be relative to the instance path instead of the application root. :param root_path: Flask by default will automatically calculate the path to the root of the application. In certain situations this cannot be achieved (for instance if the package is a Python 3 namespace package) and needs to be manually defined. """ #: The class that is used for request objects. See :class:`~flask.Request` #: for more information. request_class = Request #: The class that is used for response objects. See #: :class:`~flask.Response` for more information. response_class = Response #: The class that is used for the Jinja environment. #: #: .. versionadded:: 0.11 jinja_environment = Environment #: The class that is used for the :data:`~flask.g` instance. #: #: Example use cases for a custom class: #: #: 1. Store arbitrary attributes on flask.g. #: 2. Add a property for lazy per-request database connectors. #: 3. Return None instead of AttributeError on unexpected attributes. #: 4. Raise exception if an unexpected attr is set, a "controlled" flask.g. #: #: In Flask 0.9 this property was called `request_globals_class` but it #: was changed in 0.10 to :attr:`app_ctx_globals_class` because the #: flask.g object is now application context scoped. #: #: .. versionadded:: 0.10 app_ctx_globals_class = _AppCtxGlobals #: The class that is used for the ``config`` attribute of this app. #: Defaults to :class:`~flask.Config`. #: #: Example use cases for a custom class: #: #: 1. Default values for certain config options. #: 2. Access to config values through attributes in addition to keys. #: #: .. versionadded:: 0.11 config_class = Config #: The testing flag. Set this to ``True`` to enable the test mode of #: Flask extensions (and in the future probably also Flask itself). #: For example this might activate test helpers that have an #: additional runtime cost which should not be enabled by default. #: #: If this is enabled and PROPAGATE_EXCEPTIONS is not changed from the #: default it's implicitly enabled. #: #: This attribute can also be configured from the config with the #: ``TESTING`` configuration key. Defaults to ``False``. testing = ConfigAttribute('TESTING') #: If a secret key is set, cryptographic components can use this to #: sign cookies and other things. Set this to a complex random value #: when you want to use the secure cookie for instance. #: #: This attribute can also be configured from the config with the #: :data:`SECRET_KEY` configuration key. Defaults to ``None``. secret_key = ConfigAttribute('SECRET_KEY') #: The secure cookie uses this for the name of the session cookie. #: #: This attribute can also be configured from the config with the #: ``SESSION_COOKIE_NAME`` configuration key. Defaults to ``'session'`` session_cookie_name = ConfigAttribute('SESSION_COOKIE_NAME') #: A :class:`~datetime.timedelta` which is used to set the expiration #: date of a permanent session. The default is 31 days which makes a #: permanent session survive for roughly one month. #: #: This attribute can also be configured from the config with the #: ``PERMANENT_SESSION_LIFETIME`` configuration key. Defaults to #: ``timedelta(days=31)`` permanent_session_lifetime = ConfigAttribute('PERMANENT_SESSION_LIFETIME', get_converter=_make_timedelta) #: A :class:`~datetime.timedelta` which is used as default cache_timeout #: for the :func:`send_file` functions. The default is 12 hours. #: #: This attribute can also be configured from the config with the #: ``SEND_FILE_MAX_AGE_DEFAULT`` configuration key. This configuration #: variable can also be set with an integer value used as seconds. #: Defaults to ``timedelta(hours=12)`` send_file_max_age_default = ConfigAttribute('SEND_FILE_MAX_AGE_DEFAULT', get_converter=_make_timedelta) #: Enable this if you want to use the X-Sendfile feature. Keep in #: mind that the server has to support this. This only affects files #: sent with the :func:`send_file` method. #: #: .. versionadded:: 0.2 #: #: This attribute can also be configured from the config with the #: ``USE_X_SENDFILE`` configuration key. Defaults to ``False``. use_x_sendfile = ConfigAttribute('USE_X_SENDFILE') #: The JSON encoder class to use. Defaults to :class:`~flask.json.JSONEncoder`. #: #: .. versionadded:: 0.10 json_encoder = json.JSONEncoder #: The JSON decoder class to use. Defaults to :class:`~flask.json.JSONDecoder`. #: #: .. versionadded:: 0.10 json_decoder = json.JSONDecoder #: Options that are passed directly to the Jinja2 environment. jinja_options = ImmutableDict( extensions=['jinja2.ext.autoescape', 'jinja2.ext.with_'] ) #: Default configuration parameters. default_config = ImmutableDict({ 'ENV': None, 'DEBUG': None, 'TESTING': False, 'PROPAGATE_EXCEPTIONS': None, 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 'SECRET_KEY': None, 'PERMANENT_SESSION_LIFETIME': timedelta(days=31), 'USE_X_SENDFILE': False, 'SERVER_NAME': None, 'APPLICATION_ROOT': '/', 'SESSION_COOKIE_NAME': 'session', 'SESSION_COOKIE_DOMAIN': None, 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_HTTPONLY': True, 'SESSION_COOKIE_SECURE': False, 'SESSION_COOKIE_SAMESITE': None, 'SESSION_REFRESH_EACH_REQUEST': True, 'MAX_CONTENT_LENGTH': None, 'SEND_FILE_MAX_AGE_DEFAULT': timedelta(hours=12), 'TRAP_BAD_REQUEST_ERRORS': None, 'TRAP_HTTP_EXCEPTIONS': False, 'EXPLAIN_TEMPLATE_LOADING': False, 'PREFERRED_URL_SCHEME': 'http', 'JSON_AS_ASCII': True, 'JSON_SORT_KEYS': True, 'JSONIFY_PRETTYPRINT_REGULAR': False, 'JSONIFY_MIMETYPE': 'application/json', 'TEMPLATES_AUTO_RELOAD': None, 'MAX_COOKIE_SIZE': 4093, }) #: The rule object to use for URL rules created. This is used by #: :meth:`add_url_rule`. Defaults to :class:`werkzeug.routing.Rule`. #: #: .. versionadded:: 0.7 url_rule_class = Rule #: the test client that is used with when `test_client` is used. #: #: .. versionadded:: 0.7 test_client_class = None #: The :class:`~click.testing.CliRunner` subclass, by default #: :class:`~flask.testing.FlaskCliRunner` that is used by #: :meth:`test_cli_runner`. Its ``__init__`` method should take a #: Flask app object as the first argument. #: #: .. versionadded:: 1.0 test_cli_runner_class = None #: the session interface to use. By default an instance of #: :class:`~flask.sessions.SecureCookieSessionInterface` is used here. #: #: .. versionadded:: 0.8 session_interface = SecureCookieSessionInterface() # TODO remove the next three attrs when Sphinx :inherited-members: works # https://github.com/sphinx-doc/sphinx/issues/741 #: The name of the package or module that this app belongs to. Do not #: change this once it is set by the constructor. import_name = None #: Location of the template files to be added to the template lookup. #: ``None`` if templates should not be added. template_folder = None #: Absolute path to the package on the filesystem. Used to look up #: resources contained in the package. root_path = None def __init__( self, import_name, static_url_path=None, static_folder='static', static_host=None, host_matching=False, subdomain_matching=False, template_folder='templates', instance_path=None, instance_relative_config=False, root_path=None ): _PackageBoundObject.__init__( self, import_name, template_folder=template_folder, root_path=root_path ) if static_url_path is not None: self.static_url_path = static_url_path if static_folder is not None: self.static_folder = static_folder if instance_path is None: instance_path = self.auto_find_instance_path() elif not os.path.isabs(instance_path): raise ValueError( 'If an instance path is provided it must be absolute.' ' A relative path was given instead.' ) #: Holds the path to the instance folder. #: #: .. versionadded:: 0.8 self.instance_path = instance_path #: The configuration dictionary as :class:`Config`. This behaves #: exactly like a regular dictionary but supports additional methods #: to load a config from files. self.config = self.make_config(instance_relative_config) #: A dictionary of all view functions registered. The keys will #: be function names which are also used to generate URLs and #: the values are the function objects themselves. #: To register a view function, use the :meth:`route` decorator. self.view_functions = {} #: A dictionary of all registered error handlers. The key is ``None`` #: for error handlers active on the application, otherwise the key is #: the name of the blueprint. Each key points to another dictionary #: where the key is the status code of the http exception. The #: special key ``None`` points to a list of tuples where the first item #: is the class for the instance check and the second the error handler #: function. #: #: To register an error handler, use the :meth:`errorhandler` #: decorator. self.error_handler_spec = {} #: A list of functions that are called when :meth:`url_for` raises a #: :exc:`~werkzeug.routing.BuildError`. Each function registered here #: is called with `error`, `endpoint` and `values`. If a function #: returns ``None`` or raises a :exc:`BuildError` the next function is #: tried. #: #: .. versionadded:: 0.9 self.url_build_error_handlers = [] #: A dictionary with lists of functions that will be called at the #: beginning of each request. The key of the dictionary is the name of #: the blueprint this function is active for, or ``None`` for all #: requests. To register a function, use the :meth:`before_request` #: decorator. self.before_request_funcs = {} #: A list of functions that will be called at the beginning of the #: first request to this instance. To register a function, use the #: :meth:`before_first_request` decorator. #: #: .. versionadded:: 0.8 self.before_first_request_funcs = [] #: A dictionary with lists of functions that should be called after #: each request. The key of the dictionary is the name of the blueprint #: this function is active for, ``None`` for all requests. This can for #: example be used to close database connections. To register a function #: here, use the :meth:`after_request` decorator. self.after_request_funcs = {} #: A dictionary with lists of functions that are called after #: each request, even if an exception has occurred. The key of the #: dictionary is the name of the blueprint this function is active for, #: ``None`` for all requests. These functions are not allowed to modify #: the request, and their return values are ignored. If an exception #: occurred while processing the request, it gets passed to each #: teardown_request function. To register a function here, use the #: :meth:`teardown_request` decorator. #: #: .. versionadded:: 0.7 self.teardown_request_funcs = {} #: A list of functions that are called when the application context #: is destroyed. Since the application context is also torn down #: if the request ends this is the place to store code that disconnects #: from databases. #: #: .. versionadded:: 0.9 self.teardown_appcontext_funcs = [] #: A dictionary with lists of functions that are called before the #: :attr:`before_request_funcs` functions. The key of the dictionary is #: the name of the blueprint this function is active for, or ``None`` #: for all requests. To register a function, use #: :meth:`url_value_preprocessor`. #: #: .. versionadded:: 0.7 self.url_value_preprocessors = {} #: A dictionary with lists of functions that can be used as URL value #: preprocessors. The key ``None`` here is used for application wide #: callbacks, otherwise the key is the name of the blueprint. #: Each of these functions has the chance to modify the dictionary #: of URL values before they are used as the keyword arguments of the #: view function. For each function registered this one should also #: provide a :meth:`url_defaults` function that adds the parameters #: automatically again that were removed that way. #: #: .. versionadded:: 0.7 self.url_default_functions = {} #: A dictionary with list of functions that are called without argument #: to populate the template context. The key of the dictionary is the #: name of the blueprint this function is active for, ``None`` for all #: requests. Each returns a dictionary that the template context is #: updated with. To register a function here, use the #: :meth:`context_processor` decorator. self.template_context_processors = { None: [_default_template_ctx_processor] } #: A list of shell context processor functions that should be run #: when a shell context is created. #: #: .. versionadded:: 0.11 self.shell_context_processors = [] #: all the attached blueprints in a dictionary by name. Blueprints #: can be attached multiple times so this dictionary does not tell #: you how often they got attached. #: #: .. versionadded:: 0.7 self.blueprints = {} self._blueprint_order = [] #: a place where extensions can store application specific state. For #: example this is where an extension could store database engines and #: similar things. For backwards compatibility extensions should register #: themselves like this:: #: #: if not hasattr(app, 'extensions'): #: app.extensions = {} #: app.extensions['extensionname'] = SomeObject() #: #: The key must match the name of the extension module. For example in #: case of a "Flask-Foo" extension in `flask_foo`, the key would be #: ``'foo'``. #: #: .. versionadded:: 0.7 self.extensions = {} #: The :class:`~werkzeug.routing.Map` for this instance. You can use #: this to change the routing converters after the class was created #: but before any routes are connected. Example:: #: #: from werkzeug.routing import BaseConverter #: #: class ListConverter(BaseConverter): #: def to_python(self, value): #: return value.split(',') #: def to_url(self, values): #: return ','.join(super(ListConverter, self).to_url(value) #: for value in values) #: #: app = Flask(__name__) #: app.url_map.converters['list'] = ListConverter self.url_map = Map() self.url_map.host_matching = host_matching self.subdomain_matching = subdomain_matching # tracks internally if the application already handled at least one # request. self._got_first_request = False self._before_request_lock = Lock() # Add a static route using the provided static_url_path, static_host, # and static_folder if there is a configured static_folder. # Note we do this without checking if static_folder exists. # For one, it might be created while the server is running (e.g. during # development). Also, Google App Engine stores static files somewhere if self.has_static_folder: assert bool(static_host) == host_matching, 'Invalid static_host/host_matching combination' self.add_url_rule( self.static_url_path + '/<path:filename>', endpoint='static', host=static_host, view_func=self.send_static_file ) #: The click command line context for this application. Commands #: registered here show up in the :command:`flask` command once the #: application has been discovered. The default commands are #: provided by Flask itself and can be overridden. #: #: This is an instance of a :class:`click.Group` object. self.cli = cli.AppGroup(self.name) @locked_cached_property def name(self): """The name of the application. This is usually the import name with the difference that it's guessed from the run file if the import name is main. This name is used as a display name when Flask needs the name of the application. It can be set and overridden to change the value. .. versionadded:: 0.8 """ if self.import_name == '__main__': fn = getattr(sys.modules['__main__'], '__file__', None) if fn is None: return '__main__' return os.path.splitext(os.path.basename(fn))[0] return self.import_name @property def propagate_exceptions(self): """Returns the value of the ``PROPAGATE_EXCEPTIONS`` configuration value in case it's set, otherwise a sensible default is returned. .. versionadded:: 0.7 """ rv = self.config['PROPAGATE_EXCEPTIONS'] if rv is not None: return rv return self.testing or self.debug @property def preserve_context_on_exception(self): """Returns the value of the ``PRESERVE_CONTEXT_ON_EXCEPTION`` configuration value in case it's set, otherwise a sensible default is returned. .. versionadded:: 0.7 """ rv = self.config['PRESERVE_CONTEXT_ON_EXCEPTION'] if rv is not None: return rv return self.debug @locked_cached_property def logger(self): """The ``'flask.app'`` logger, a standard Python :class:`~logging.Logger`. In debug mode, the logger's :attr:`~logging.Logger.level` will be set to :data:`~logging.DEBUG`. If there are no handlers configured, a default handler will be added. See :ref:`logging` for more information. .. versionchanged:: 1.0 Behavior was simplified. The logger is always named ``flask.app``. The level is only set during configuration, it doesn't check ``app.debug`` each time. Only one format is used, not different ones depending on ``app.debug``. No handlers are removed, and a handler is only added if no handlers are already configured. .. versionadded:: 0.3 """ return create_logger(self) @locked_cached_property def jinja_env(self): """The Jinja2 environment used to load templates.""" return self.create_jinja_environment() @property def got_first_request(self): """This attribute is set to ``True`` if the application started handling the first request. .. versionadded:: 0.8 """ return self._got_first_request def make_config(self, instance_relative=False): """Used to create the config attribute by the Flask constructor. The `instance_relative` parameter is passed in from the constructor of Flask (there named `instance_relative_config`) and indicates if the config should be relative to the instance path or the root path of the application. .. versionadded:: 0.8 """ root_path = self.root_path if instance_relative: root_path = self.instance_path defaults = dict(self.default_config) defaults['ENV'] = get_env() defaults['DEBUG'] = get_debug_flag() return self.config_class(root_path, defaults) def auto_find_instance_path(self): """Tries to locate the instance path if it was not provided to the constructor of the application class. It will basically calculate the path to a folder named ``instance`` next to your main file or the package. .. versionadded:: 0.8 """ prefix, package_path = find_package(self.import_name) if prefix is None: return os.path.join(package_path, 'instance') return os.path.join(prefix, 'var', self.name + '-instance') def open_instance_resource(self, resource, mode='rb'): """Opens a resource from the application's instance folder (:attr:`instance_path`). Otherwise works like :meth:`open_resource`. Instance resources can also be opened for writing. :param resource: the name of the resource. To access resources within subfolders use forward slashes as separator. :param mode: resource file opening mode, default is 'rb'. """ return open(os.path.join(self.instance_path, resource), mode) def _get_templates_auto_reload(self): """Reload templates when they are changed. Used by :meth:`create_jinja_environment`. This attribute can be configured with :data:`TEMPLATES_AUTO_RELOAD`. If not set, it will be enabled in debug mode. .. versionadded:: 1.0 This property was added but the underlying config and behavior already existed. """ rv = self.config['TEMPLATES_AUTO_RELOAD'] return rv if rv is not None else self.debug def _set_templates_auto_reload(self, value): self.config['TEMPLATES_AUTO_RELOAD'] = value templates_auto_reload = property( _get_templates_auto_reload, _set_templates_auto_reload ) del _get_templates_auto_reload, _set_templates_auto_reload def create_jinja_environment(self): """Creates the Jinja2 environment based on :attr:`jinja_options` and :meth:`select_jinja_autoescape`. Since 0.7 this also adds the Jinja2 globals and filters after initialization. Override this function to customize the behavior. .. versionadded:: 0.5 .. versionchanged:: 0.11 ``Environment.auto_reload`` set in accordance with ``TEMPLATES_AUTO_RELOAD`` configuration option. """ options = dict(self.jinja_options) if 'autoescape' not in options: options['autoescape'] = self.select_jinja_autoescape if 'auto_reload' not in options: options['auto_reload'] = self.templates_auto_reload rv = self.jinja_environment(self, **options) rv.globals.update( url_for=url_for, get_flashed_messages=get_flashed_messages, config=self.config, # request, session and g are normally added with the # context processor for efficiency reasons but for imported # templates we also want the proxies in there. request=request, session=session, g=g ) rv.filters['tojson'] = json.tojson_filter return rv def create_global_jinja_loader(self): """Creates the loader for the Jinja2 environment. Can be used to override just the loader and keeping the rest unchanged. It's discouraged to override this function. Instead one should override the :meth:`jinja_loader` function instead. The global loader dispatches between the loaders of the application and the individual blueprints. .. versionadded:: 0.7 """ return DispatchingJinjaLoader(self) def select_jinja_autoescape(self, filename): """Returns ``True`` if autoescaping should be active for the given template name. If no template name is given, returns `True`. .. versionadded:: 0.5 """ if filename is None: return True return filename.endswith(('.html', '.htm', '.xml', '.xhtml')) def update_template_context(self, context): """Update the template context with some commonly used variables. This injects request, session, config and g into the template context as well as everything template context processors want to inject. Note that the as of Flask 0.6, the original values in the context will not be overridden if a context processor decides to return a value with the same key. :param context: the context as a dictionary that is updated in place to add extra variables. """ funcs = self.template_context_processors[None] reqctx = _request_ctx_stack.top if reqctx is not None: bp = reqctx.request.blueprint if bp is not None and bp in self.template_context_processors: funcs = chain(funcs, self.template_context_processors[bp]) orig_ctx = context.copy() for func in funcs: context.update(func()) # make sure the original values win. This makes it possible to # easier add new variables in context processors without breaking # existing views. context.update(orig_ctx) def make_shell_context(self): """Returns the shell context for an interactive shell for this application. This runs all the registered shell context processors. .. versionadded:: 0.11 """ rv = {'app': self, 'g': g} for processor in self.shell_context_processors: rv.update(processor()) return rv #: What environment the app is running in. Flask and extensions may #: enable behaviors based on the environment, such as enabling debug #: mode. This maps to the :data:`ENV` config key. This is set by the #: :envvar:`FLASK_ENV` environment variable and may not behave as #: expected if set in code. #: #: **Do not enable development when deploying in production.** #: #: Default: ``'production'`` env = ConfigAttribute('ENV') def _get_debug(self): return self.config['DEBUG'] def _set_debug(self, value): self.config['DEBUG'] = value self.jinja_env.auto_reload = self.templates_auto_reload #: Whether debug mode is enabled. When using ``flask run`` to start #: the development server, an interactive debugger will be shown for #: unhandled exceptions, and the server will be reloaded when code #: changes. This maps to the :data:`DEBUG` config key. This is #: enabled when :attr:`env` is ``'development'`` and is overridden #: by the ``FLASK_DEBUG`` environment variable. It may not behave as #: expected if set in code. #: #: **Do not enable debug mode when deploying in production.** #: #: Default: ``True`` if :attr:`env` is ``'development'``, or #: ``False`` otherwise. debug = property(_get_debug, _set_debug) del _get_debug, _set_debug def run(self, host=None, port=None, debug=None, load_dotenv=True, **options): """Runs the application on a local development server. Do not use ``run()`` in a production setting. It is not intended to meet security and performance requirements for a production server. Instead, see :ref:`deployment` for WSGI server recommendations. If the :attr:`debug` flag is set the server will automatically reload for code changes and show a debugger in case an exception happened. If you want to run the application in debug mode, but disable the code execution on the interactive debugger, you can pass ``use_evalex=False`` as parameter. This will keep the debugger's traceback screen active, but disable code execution. It is not recommended to use this function for development with automatic reloading as this is badly supported. Instead you should be using the :command:`flask` command line script's ``run`` support. .. admonition:: Keep in Mind Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable just the interactive debugger without the code reloading, you have to invoke :meth:`run` with ``debug=True`` and ``use_reloader=False``. Setting ``use_debugger`` to ``True`` without being in debug mode won't catch any exceptions because there won't be any to catch. :param host: the hostname to listen on. Set this to ``'0.0.0.0'`` to have the server available externally as well. Defaults to ``'127.0.0.1'`` or the host in the ``SERVER_NAME`` config variable if present. :param port: the port of the webserver. Defaults to ``5000`` or the port defined in the ``SERVER_NAME`` config variable if present. :param debug: if given, enable or disable debug mode. See :attr:`debug`. :param load_dotenv: Load the nearest :file:`.env` and :file:`.flaskenv` files to set environment variables. Will also change the working directory to the directory containing the first file found. :param options: the options to be forwarded to the underlying Werkzeug server. See :func:`werkzeug.serving.run_simple` for more information. .. versionchanged:: 1.0 If installed, python-dotenv will be used to load environment variables from :file:`.env` and :file:`.flaskenv` files. If set, the :envvar:`FLASK_ENV` and :envvar:`FLASK_DEBUG` environment variables will override :attr:`env` and :attr:`debug`. Threaded mode is enabled by default. .. versionchanged:: 0.10 The default port is now picked from the ``SERVER_NAME`` variable. """ # Change this into a no-op if the server is invoked from the # command line. Have a look at cli.py for more information. if os.environ.get('FLASK_RUN_FROM_CLI') == 'true': from .debughelpers import explain_ignored_app_run explain_ignored_app_run() return if get_load_dotenv(load_dotenv): cli.load_dotenv() # if set, let env vars override previous values if 'FLASK_ENV' in os.environ: self.env = get_env() self.debug = get_debug_flag() elif 'FLASK_DEBUG' in os.environ: self.debug = get_debug_flag() # debug passed to method overrides all other sources if debug is not None: self.debug = bool(debug) _host = '127.0.0.1' _port = 5000 server_name = self.config.get('SERVER_NAME') sn_host, sn_port = None, None if server_name: sn_host, _, sn_port = server_name.partition(':') host = host or sn_host or _host port = int(port or sn_port or _port) options.setdefault('use_reloader', self.debug) options.setdefault('use_debugger', self.debug) options.setdefault('threaded', True) cli.show_server_banner(self.env, self.debug, self.name, False) from werkzeug.serving import run_simple try: run_simple(host, port, self, **options) finally: # reset the first request information if the development server # reset normally. This makes it possible to restart the server # without reloader and that stuff from an interactive shell. self._got_first_request = False def test_client(self, use_cookies=True, **kwargs): """Creates a test client for this application. For information about unit testing head over to :ref:`testing`. Note that if you are testing for assertions or exceptions in your application code, you must set ``app.testing = True`` in order for the exceptions to propagate to the test client. Otherwise, the exception will be handled by the application (not visible to the test client) and the only indication of an AssertionError or other exception will be a 500 status code response to the test client. See the :attr:`testing` attribute. For example:: app.testing = True client = app.test_client() The test client can be used in a ``with`` block to defer the closing down of the context until the end of the ``with`` block. This is useful if you want to access the context locals for testing:: with app.test_client() as c: rv = c.get('/?vodka=42') assert request.args['vodka'] == '42' Additionally, you may pass optional keyword arguments that will then be passed to the application's :attr:`test_client_class` constructor. For example:: from flask.testing import FlaskClient class CustomClient(FlaskClient): def __init__(self, *args, **kwargs): self._authentication = kwargs.pop("authentication") super(CustomClient,self).__init__( *args, **kwargs) app.test_client_class = CustomClient client = app.test_client(authentication='Basic ....') See :class:`~flask.testing.FlaskClient` for more information. .. versionchanged:: 0.4 added support for ``with`` block usage for the client. .. versionadded:: 0.7 The `use_cookies` parameter was added as well as the ability to override the client to be used by setting the :attr:`test_client_class` attribute. .. versionchanged:: 0.11 Added `**kwargs` to support passing additional keyword arguments to the constructor of :attr:`test_client_class`. """ cls = self.test_client_class if cls is None: from flask.testing import FlaskClient as cls return cls(self, self.response_class, use_cookies=use_cookies, **kwargs) def test_cli_runner(self, **kwargs): """Create a CLI runner for testing CLI commands. See :ref:`testing-cli`. Returns an instance of :attr:`test_cli_runner_class`, by default :class:`~flask.testing.FlaskCliRunner`. The Flask app object is passed as the first argument. .. versionadded:: 1.0 """ cls = self.test_cli_runner_class if cls is None: from flask.testing import FlaskCliRunner as cls return cls(self, **kwargs) def open_session(self, request): """Creates or opens a new session. Default implementation stores all session data in a signed cookie. This requires that the :attr:`secret_key` is set. Instead of overriding this method we recommend replacing the :class:`session_interface`. .. deprecated: 1.0 Will be removed in 1.1. Use ``session_interface.open_session`` instead. :param request: an instance of :attr:`request_class`. """ warnings.warn(DeprecationWarning( '"open_session" is deprecated and will be removed in 1.1. Use' ' "session_interface.open_session" instead.' )) return self.session_interface.open_session(self, request) def save_session(self, session, response): """Saves the session if it needs updates. For the default implementation, check :meth:`open_session`. Instead of overriding this method we recommend replacing the :class:`session_interface`. .. deprecated: 1.0 Will be removed in 1.1. Use ``session_interface.save_session`` instead. :param session: the session to be saved (a :class:`~werkzeug.contrib.securecookie.SecureCookie` object) :param response: an instance of :attr:`response_class` """ warnings.warn(DeprecationWarning( '"save_session" is deprecated and will be removed in 1.1. Use' ' "session_interface.save_session" instead.' )) return self.session_interface.save_session(self, session, response) def make_null_session(self): """Creates a new instance of a missing session. Instead of overriding this method we recommend replacing the :class:`session_interface`. .. deprecated: 1.0 Will be removed in 1.1. Use ``session_interface.make_null_session`` instead. .. versionadded:: 0.7 """ warnings.warn(DeprecationWarning( '"make_null_session" is deprecated and will be removed in 1.1. Use' ' "session_interface.make_null_session" instead.' )) return self.session_interface.make_null_session(self) @setupmethod def register_blueprint(self, blueprint, **options): """Register a :class:`~flask.Blueprint` on the application. Keyword arguments passed to this method will override the defaults set on the blueprint. Calls the blueprint's :meth:`~flask.Blueprint.register` method after recording the blueprint in the application's :attr:`blueprints`. :param blueprint: The blueprint to register. :param url_prefix: Blueprint routes will be prefixed with this. :param subdomain: Blueprint routes will match on this subdomain. :param url_defaults: Blueprint routes will use these default values for view arguments. :param options: Additional keyword arguments are passed to :class:`~flask.blueprints.BlueprintSetupState`. They can be accessed in :meth:`~flask.Blueprint.record` callbacks. .. versionadded:: 0.7 """ first_registration = False if blueprint.name in self.blueprints: assert self.blueprints[blueprint.name] is blueprint, ( 'A name collision occurred between blueprints %r and %r. Both' ' share the same name "%s". Blueprints that are created on the' ' fly need unique names.' % ( blueprint, self.blueprints[blueprint.name], blueprint.name ) ) else: self.blueprints[blueprint.name] = blueprint self._blueprint_order.append(blueprint) first_registration = True blueprint.register(self, options, first_registration) def iter_blueprints(self): """Iterates over all blueprints by the order they were registered. .. versionadded:: 0.11 """ return iter(self._blueprint_order) @setupmethod def add_url_rule(self, rule, endpoint=None, view_func=None, provide_automatic_options=None, **options): """Connects a URL rule. Works exactly like the :meth:`route` decorator. If a view_func is provided it will be registered with the endpoint. Basically this example:: @app.route('/') def index(): pass Is equivalent to the following:: def index(): pass app.add_url_rule('/', 'index', index) If the view_func is not provided you will need to connect the endpoint to a view function like so:: app.view_functions['index'] = index Internally :meth:`route` invokes :meth:`add_url_rule` so if you want to customize the behavior via subclassing you only need to change this method. For more information refer to :ref:`url-route-registrations`. .. versionchanged:: 0.2 `view_func` parameter added. .. versionchanged:: 0.6 ``OPTIONS`` is added automatically as method. :param rule: the URL rule as string :param endpoint: the endpoint for the registered URL rule. Flask itself assumes the name of the view function as endpoint :param view_func: the function to call when serving a request to the provided endpoint :param provide_automatic_options: controls whether the ``OPTIONS`` method should be added automatically. This can also be controlled by setting the ``view_func.provide_automatic_options = False`` before adding the rule. :param options: the options to be forwarded to the underlying :class:`~werkzeug.routing.Rule` object. A change to Werkzeug is handling of method options. methods is a list of methods this rule should be limited to (``GET``, ``POST`` etc.). By default a rule just listens for ``GET`` (and implicitly ``HEAD``). Starting with Flask 0.6, ``OPTIONS`` is implicitly added and handled by the standard request handling. """ if endpoint is None: endpoint = _endpoint_from_view_func(view_func) options['endpoint'] = endpoint methods = options.pop('methods', None) # if the methods are not given and the view_func object knows its # methods we can use that instead. If neither exists, we go with # a tuple of only ``GET`` as default. if methods is None: methods = getattr(view_func, 'methods', None) or ('GET',) if isinstance(methods, string_types): raise TypeError('Allowed methods have to be iterables of strings, ' 'for example: @app.route(..., methods=["POST"])') methods = set(item.upper() for item in methods) # Methods that should always be added required_methods = set(getattr(view_func, 'required_methods', ())) # starting with Flask 0.8 the view_func object can disable and # force-enable the automatic options handling. if provide_automatic_options is None: provide_automatic_options = getattr(view_func, 'provide_automatic_options', None) if provide_automatic_options is None: if 'OPTIONS' not in methods: provide_automatic_options = True required_methods.add('OPTIONS') else: provide_automatic_options = False # Add the required methods now. methods |= required_methods rule = self.url_rule_class(rule, methods=methods, **options) rule.provide_automatic_options = provide_automatic_options self.url_map.add(rule) if view_func is not None: old_func = self.view_functions.get(endpoint) if old_func is not None and old_func != view_func: raise AssertionError('View function mapping is overwriting an ' 'existing endpoint function: %s' % endpoint) self.view_functions[endpoint] = view_func def route(self, rule, **options): """A decorator that is used to register a view function for a given URL rule. This does the same thing as :meth:`add_url_rule` but is intended for decorator usage:: @app.route('/') def index(): return 'Hello World' For more information refer to :ref:`url-route-registrations`. :param rule: the URL rule as string :param endpoint: the endpoint for the registered URL rule. Flask itself assumes the name of the view function as endpoint :param options: the options to be forwarded to the underlying :class:`~werkzeug.routing.Rule` object. A change to Werkzeug is handling of method options. methods is a list of methods this rule should be limited to (``GET``, ``POST`` etc.). By default a rule just listens for ``GET`` (and implicitly ``HEAD``). Starting with Flask 0.6, ``OPTIONS`` is implicitly added and handled by the standard request handling. """ def decorator(f): endpoint = options.pop('endpoint', None) self.add_url_rule(rule, endpoint, f, **options) return f return decorator @setupmethod def endpoint(self, endpoint): """A decorator to register a function as an endpoint. Example:: @app.endpoint('example.endpoint') def example(): return "example" :param endpoint: the name of the endpoint """ def decorator(f): self.view_functions[endpoint] = f return f return decorator @staticmethod def _get_exc_class_and_code(exc_class_or_code): """Ensure that we register only exceptions as handler keys""" if isinstance(exc_class_or_code, integer_types): exc_class = default_exceptions[exc_class_or_code] else: exc_class = exc_class_or_code assert issubclass(exc_class, Exception) if issubclass(exc_class, HTTPException): return exc_class, exc_class.code else: return exc_class, None @setupmethod def errorhandler(self, code_or_exception): """Register a function to handle errors by code or exception class. A decorator that is used to register a function given an error code. Example:: @app.errorhandler(404) def page_not_found(error): return 'This page does not exist', 404 You can also register handlers for arbitrary exceptions:: @app.errorhandler(DatabaseError) def special_exception_handler(error): return 'Database connection failed', 500 .. versionadded:: 0.7 Use :meth:`register_error_handler` instead of modifying :attr:`error_handler_spec` directly, for application wide error handlers. .. versionadded:: 0.7 One can now additionally also register custom exception types that do not necessarily have to be a subclass of the :class:`~werkzeug.exceptions.HTTPException` class. :param code_or_exception: the code as integer for the handler, or an arbitrary exception """ def decorator(f): self._register_error_handler(None, code_or_exception, f) return f return decorator @setupmethod def register_error_handler(self, code_or_exception, f): """Alternative error attach function to the :meth:`errorhandler` decorator that is more straightforward to use for non decorator usage. .. versionadded:: 0.7 """ self._register_error_handler(None, code_or_exception, f) @setupmethod def _register_error_handler(self, key, code_or_exception, f): """ :type key: None|str :type code_or_exception: int|T<=Exception :type f: callable """ if isinstance(code_or_exception, HTTPException): # old broken behavior raise ValueError( 'Tried to register a handler for an exception instance {0!r}.' ' Handlers can only be registered for exception classes or' ' HTTP error codes.'.format(code_or_exception) ) try: exc_class, code = self._get_exc_class_and_code(code_or_exception) except KeyError: raise KeyError( "'{0}' is not a recognized HTTP error code. Use a subclass of" " HTTPException with that code instead.".format(code_or_exception) ) handlers = self.error_handler_spec.setdefault(key, {}).setdefault(code, {}) handlers[exc_class] = f @setupmethod def template_filter(self, name=None): """A decorator that is used to register custom template filter. You can specify a name for the filter, otherwise the function name will be used. Example:: @app.template_filter() def reverse(s): return s[::-1] :param name: the optional name of the filter, otherwise the function name will be used. """ def decorator(f): self.add_template_filter(f, name=name) return f return decorator @setupmethod def add_template_filter(self, f, name=None): """Register a custom template filter. Works exactly like the :meth:`template_filter` decorator. :param name: the optional name of the filter, otherwise the function name will be used. """ self.jinja_env.filters[name or f.__name__] = f @setupmethod def template_test(self, name=None): """A decorator that is used to register custom template test. You can specify a name for the test, otherwise the function name will be used. Example:: @app.template_test() def is_prime(n): if n == 2: return True for i in range(2, int(math.ceil(math.sqrt(n))) + 1): if n % i == 0: return False return True .. versionadded:: 0.10 :param name: the optional name of the test, otherwise the function name will be used. """ def decorator(f): self.add_template_test(f, name=name) return f return decorator @setupmethod def add_template_test(self, f, name=None): """Register a custom template test. Works exactly like the :meth:`template_test` decorator. .. versionadded:: 0.10 :param name: the optional name of the test, otherwise the function name will be used. """ self.jinja_env.tests[name or f.__name__] = f @setupmethod def template_global(self, name=None): """A decorator that is used to register a custom template global function. You can specify a name for the global function, otherwise the function name will be used. Example:: @app.template_global() def double(n): return 2 * n .. versionadded:: 0.10 :param name: the optional name of the global function, otherwise the function name will be used. """ def decorator(f): self.add_template_global(f, name=name) return f return decorator @setupmethod def add_template_global(self, f, name=None): """Register a custom template global function. Works exactly like the :meth:`template_global` decorator. .. versionadded:: 0.10 :param name: the optional name of the global function, otherwise the function name will be used. """ self.jinja_env.globals[name or f.__name__] = f @setupmethod def before_request(self, f): """Registers a function to run before each request. For example, this can be used to open a database connection, or to load the logged in user from the session. The function will be called without any arguments. If it returns a non-None value, the value is handled as if it was the return value from the view, and further request handling is stopped. """ self.before_request_funcs.setdefault(None, []).append(f) return f @setupmethod def before_first_request(self, f): """Registers a function to be run before the first request to this instance of the application. The function will be called without any arguments and its return value is ignored. .. versionadded:: 0.8 """ self.before_first_request_funcs.append(f) return f @setupmethod def after_request(self, f): """Register a function to be run after each request. Your function must take one parameter, an instance of :attr:`response_class` and return a new response object or the same (see :meth:`process_response`). As of Flask 0.7 this function might not be executed at the end of the request in case an unhandled exception occurred. """ self.after_request_funcs.setdefault(None, []).append(f) return f @setupmethod def teardown_request(self, f): """Register a function to be run at the end of each request, regardless of whether there was an exception or not. These functions are executed when the request context is popped, even if not an actual request was performed. Example:: ctx = app.test_request_context() ctx.push() ... ctx.pop() When ``ctx.pop()`` is executed in the above example, the teardown functions are called just before the request context moves from the stack of active contexts. This becomes relevant if you are using such constructs in tests. Generally teardown functions must take every necessary step to avoid that they will fail. If they do execute code that might fail they will have to surround the execution of these code by try/except statements and log occurring errors. When a teardown function was called because of an exception it will be passed an error object. The return values of teardown functions are ignored. .. admonition:: Debug Note In debug mode Flask will not tear down a request on an exception immediately. Instead it will keep it alive so that the interactive debugger can still access it. This behavior can be controlled by the ``PRESERVE_CONTEXT_ON_EXCEPTION`` configuration variable. """ self.teardown_request_funcs.setdefault(None, []).append(f) return f @setupmethod def teardown_appcontext(self, f): """Registers a function to be called when the application context ends. These functions are typically also called when the request context is popped. Example:: ctx = app.app_context() ctx.push() ... ctx.pop() When ``ctx.pop()`` is executed in the above example, the teardown functions are called just before the app context moves from the stack of active contexts. This becomes relevant if you are using such constructs in tests. Since a request context typically also manages an application context it would also be called when you pop a request context. When a teardown function was called because of an unhandled exception it will be passed an error object. If an :meth:`errorhandler` is registered, it will handle the exception and the teardown will not receive it. The return values of teardown functions are ignored. .. versionadded:: 0.9 """ self.teardown_appcontext_funcs.append(f) return f @setupmethod def context_processor(self, f): """Registers a template context processor function.""" self.template_context_processors[None].append(f) return f @setupmethod def shell_context_processor(self, f): """Registers a shell context processor function. .. versionadded:: 0.11 """ self.shell_context_processors.append(f) return f @setupmethod def url_value_preprocessor(self, f): """Register a URL value preprocessor function for all view functions in the application. These functions will be called before the :meth:`before_request` functions. The function can modify the values captured from the matched url before they are passed to the view. For example, this can be used to pop a common language code value and place it in ``g`` rather than pass it to every view. The function is passed the endpoint name and values dict. The return value is ignored. """ self.url_value_preprocessors.setdefault(None, []).append(f) return f @setupmethod def url_defaults(self, f): """Callback function for URL defaults for all view functions of the application. It's called with the endpoint and values and should update the values passed in place. """ self.url_default_functions.setdefault(None, []).append(f) return f def _find_error_handler(self, e): """Return a registered error handler for an exception in this order: blueprint handler for a specific code, app handler for a specific code, blueprint handler for an exception class, app handler for an exception class, or ``None`` if a suitable handler is not found. """ exc_class, code = self._get_exc_class_and_code(type(e)) for name, c in ( (request.blueprint, code), (None, code), (request.blueprint, None), (None, None) ): handler_map = self.error_handler_spec.setdefault(name, {}).get(c) if not handler_map: continue for cls in exc_class.__mro__: handler = handler_map.get(cls) if handler is not None: return handler def handle_http_exception(self, e): """Handles an HTTP exception. By default this will invoke the registered error handlers and fall back to returning the exception as response. .. versionchanged:: 1.0.3 ``RoutingException``, used internally for actions such as slash redirects during routing, is not passed to error handlers. .. versionchanged:: 1.0 Exceptions are looked up by code *and* by MRO, so ``HTTPExcpetion`` subclasses can be handled with a catch-all handler for the base ``HTTPException``. .. versionadded:: 0.3 """ # Proxy exceptions don't have error codes. We want to always return # those unchanged as errors if e.code is None: return e # RoutingExceptions are used internally to trigger routing # actions, such as slash redirects raising RequestRedirect. They # are not raised or handled in user code. if isinstance(e, RoutingException): return e handler = self._find_error_handler(e) if handler is None: return e return handler(e) def trap_http_exception(self, e): """Checks if an HTTP exception should be trapped or not. By default this will return ``False`` for all exceptions except for a bad request key error if ``TRAP_BAD_REQUEST_ERRORS`` is set to ``True``. It also returns ``True`` if ``TRAP_HTTP_EXCEPTIONS`` is set to ``True``. This is called for all HTTP exceptions raised by a view function. If it returns ``True`` for any exception the error handler for this exception is not called and it shows up as regular exception in the traceback. This is helpful for debugging implicitly raised HTTP exceptions. .. versionchanged:: 1.0 Bad request errors are not trapped by default in debug mode. .. versionadded:: 0.8 """ if self.config['TRAP_HTTP_EXCEPTIONS']: return True trap_bad_request = self.config['TRAP_BAD_REQUEST_ERRORS'] # if unset, trap key errors in debug mode if ( trap_bad_request is None and self.debug and isinstance(e, BadRequestKeyError) ): return True if trap_bad_request: return isinstance(e, BadRequest) return False def handle_user_exception(self, e): """This method is called whenever an exception occurs that should be handled. A special case is :class:`~werkzeug .exceptions.HTTPException` which is forwarded to the :meth:`handle_http_exception` method. This function will either return a response value or reraise the exception with the same traceback. .. versionchanged:: 1.0 Key errors raised from request data like ``form`` show the bad key in debug mode rather than a generic bad request message. .. versionadded:: 0.7 """ exc_type, exc_value, tb = sys.exc_info() assert exc_value is e # ensure not to trash sys.exc_info() at that point in case someone # wants the traceback preserved in handle_http_exception. Of course # we cannot prevent users from trashing it themselves in a custom # trap_http_exception method so that's their fault then. if isinstance(e, BadRequestKeyError): if self.debug or self.config["TRAP_BAD_REQUEST_ERRORS"]: # Werkzeug < 0.15 doesn't add the KeyError to the 400 # message, add it in manually. description = e.get_description() if e.args[0] not in description: e.description = "KeyError: '{}'".format(*e.args) else: # Werkzeug >= 0.15 does add it, remove it in production e.args = () if isinstance(e, HTTPException) and not self.trap_http_exception(e): return self.handle_http_exception(e) handler = self._find_error_handler(e) if handler is None: reraise(exc_type, exc_value, tb) return handler(e) def handle_exception(self, e): """Default exception handling that kicks in when an exception occurs that is not caught. In debug mode the exception will be re-raised immediately, otherwise it is logged and the handler for a 500 internal server error is used. If no such handler exists, a default 500 internal server error message is displayed. .. versionadded:: 0.3 """ exc_type, exc_value, tb = sys.exc_info() got_request_exception.send(self, exception=e) handler = self._find_error_handler(InternalServerError()) if self.propagate_exceptions: # if we want to repropagate the exception, we can attempt to # raise it with the whole traceback in case we can do that # (the function was actually called from the except part) # otherwise, we just raise the error again if exc_value is e: reraise(exc_type, exc_value, tb) else: raise e self.log_exception((exc_type, exc_value, tb)) if handler is None: return InternalServerError() return self.finalize_request(handler(e), from_error_handler=True) def log_exception(self, exc_info): """Logs an exception. This is called by :meth:`handle_exception` if debugging is disabled and right before the handler is called. The default implementation logs the exception as error on the :attr:`logger`. .. versionadded:: 0.8 """ self.logger.error('Exception on %s [%s]' % ( request.path, request.method ), exc_info=exc_info) def raise_routing_exception(self, request): """Exceptions that are recording during routing are reraised with this method. During debug we are not reraising redirect requests for non ``GET``, ``HEAD``, or ``OPTIONS`` requests and we're raising a different error instead to help debug situations. :internal: """ if not self.debug \ or not isinstance(request.routing_exception, RequestRedirect) \ or request.method in ('GET', 'HEAD', 'OPTIONS'): raise request.routing_exception from .debughelpers import FormDataRoutingRedirect raise FormDataRoutingRedirect(request) def dispatch_request(self): """Does the request dispatching. Matches the URL and returns the return value of the view or error handler. This does not have to be a response object. In order to convert the return value to a proper response object, call :func:`make_response`. .. versionchanged:: 0.7 This no longer does the exception handling, this code was moved to the new :meth:`full_dispatch_request`. """ req = _request_ctx_stack.top.request if req.routing_exception is not None: self.raise_routing_exception(req) rule = req.url_rule # if we provide automatic options for this URL and the # request came with the OPTIONS method, reply automatically if getattr(rule, 'provide_automatic_options', False) \ and req.method == 'OPTIONS': return self.make_default_options_response() # otherwise dispatch to the handler for that endpoint return self.view_functions[rule.endpoint](**req.view_args) def full_dispatch_request(self): """Dispatches the request and on top of that performs request pre and postprocessing as well as HTTP exception catching and error handling. .. versionadded:: 0.7 """ self.try_trigger_before_first_request_functions() try: request_started.send(self) rv = self.preprocess_request() if rv is None: rv = self.dispatch_request() except Exception as e: rv = self.handle_user_exception(e) return self.finalize_request(rv) def finalize_request(self, rv, from_error_handler=False): """Given the return value from a view function this finalizes the request by converting it into a response and invoking the postprocessing functions. This is invoked for both normal request dispatching as well as error handlers. Because this means that it might be called as a result of a failure a special safe mode is available which can be enabled with the `from_error_handler` flag. If enabled, failures in response processing will be logged and otherwise ignored. :internal: """ response = self.make_response(rv) try: response = self.process_response(response) request_finished.send(self, response=response) except Exception: if not from_error_handler: raise self.logger.exception('Request finalizing failed with an ' 'error while handling an error') return response def try_trigger_before_first_request_functions(self): """Called before each request and will ensure that it triggers the :attr:`before_first_request_funcs` and only exactly once per application instance (which means process usually). :internal: """ if self._got_first_request: return with self._before_request_lock: if self._got_first_request: return for func in self.before_first_request_funcs: func() self._got_first_request = True def make_default_options_response(self): """This method is called to create the default ``OPTIONS`` response. This can be changed through subclassing to change the default behavior of ``OPTIONS`` responses. .. versionadded:: 0.7 """ adapter = _request_ctx_stack.top.url_adapter if hasattr(adapter, 'allowed_methods'): methods = adapter.allowed_methods() else: # fallback for Werkzeug < 0.7 methods = [] try: adapter.match(method='--') except MethodNotAllowed as e: methods = e.valid_methods except HTTPException as e: pass rv = self.response_class() rv.allow.update(methods) return rv def should_ignore_error(self, error): """This is called to figure out if an error should be ignored or not as far as the teardown system is concerned. If this function returns ``True`` then the teardown handlers will not be passed the error. .. versionadded:: 0.10 """ return False def make_response(self, rv): """Convert the return value from a view function to an instance of :attr:`response_class`. :param rv: the return value from the view function. The view function must return a response. Returning ``None``, or the view ending without returning, is not allowed. The following types are allowed for ``view_rv``: ``str`` (``unicode`` in Python 2) A response object is created with the string encoded to UTF-8 as the body. ``bytes`` (``str`` in Python 2) A response object is created with the bytes as the body. ``tuple`` Either ``(body, status, headers)``, ``(body, status)``, or ``(body, headers)``, where ``body`` is any of the other types allowed here, ``status`` is a string or an integer, and ``headers`` is a dictionary or a list of ``(key, value)`` tuples. If ``body`` is a :attr:`response_class` instance, ``status`` overwrites the exiting value and ``headers`` are extended. :attr:`response_class` The object is returned unchanged. other :class:`~werkzeug.wrappers.Response` class The object is coerced to :attr:`response_class`. :func:`callable` The function is called as a WSGI application. The result is used to create a response object. .. versionchanged:: 0.9 Previously a tuple was interpreted as the arguments for the response object. """ status = headers = None # unpack tuple returns if isinstance(rv, tuple): len_rv = len(rv) # a 3-tuple is unpacked directly if len_rv == 3: rv, status, headers = rv # decide if a 2-tuple has status or headers elif len_rv == 2: if isinstance(rv[1], (Headers, dict, tuple, list)): rv, headers = rv else: rv, status = rv # other sized tuples are not allowed else: raise TypeError( 'The view function did not return a valid response tuple.' ' The tuple must have the form (body, status, headers),' ' (body, status), or (body, headers).' ) # the body must not be None if rv is None: raise TypeError( 'The view function did not return a valid response. The' ' function either returned None or ended without a return' ' statement.' ) # make sure the body is an instance of the response class if not isinstance(rv, self.response_class): if isinstance(rv, (text_type, bytes, bytearray)): # let the response class set the status and headers instead of # waiting to do it manually, so that the class can handle any # special logic rv = self.response_class(rv, status=status, headers=headers) status = headers = None else: # evaluate a WSGI callable, or coerce a different response # class to the correct type try: rv = self.response_class.force_type(rv, request.environ) except TypeError as e: new_error = TypeError( '{e}\nThe view function did not return a valid' ' response. The return type must be a string, tuple,' ' Response instance, or WSGI callable, but it was a' ' {rv.__class__.__name__}.'.format(e=e, rv=rv) ) reraise(TypeError, new_error, sys.exc_info()[2]) # prefer the status if it was provided if status is not None: if isinstance(status, (text_type, bytes, bytearray)): rv.status = status else: rv.status_code = status # extend existing headers with provided headers if headers: rv.headers.extend(headers) return rv def create_url_adapter(self, request): """Creates a URL adapter for the given request. The URL adapter is created at a point where the request context is not yet set up so the request is passed explicitly. .. versionadded:: 0.6 .. versionchanged:: 0.9 This can now also be called without a request object when the URL adapter is created for the application context. .. versionchanged:: 1.0 :data:`SERVER_NAME` no longer implicitly enables subdomain matching. Use :attr:`subdomain_matching` instead. """ if request is not None: # If subdomain matching is disabled (the default), use the # default subdomain in all cases. This should be the default # in Werkzeug but it currently does not have that feature. subdomain = ((self.url_map.default_subdomain or None) if not self.subdomain_matching else None) return self.url_map.bind_to_environ( request.environ, server_name=self.config['SERVER_NAME'], subdomain=subdomain) # We need at the very least the server name to be set for this # to work. if self.config['SERVER_NAME'] is not None: return self.url_map.bind( self.config['SERVER_NAME'], script_name=self.config['APPLICATION_ROOT'], url_scheme=self.config['PREFERRED_URL_SCHEME']) def inject_url_defaults(self, endpoint, values): """Injects the URL defaults for the given endpoint directly into the values dictionary passed. This is used internally and automatically called on URL building. .. versionadded:: 0.7 """ funcs = self.url_default_functions.get(None, ()) if '.' in endpoint: bp = endpoint.rsplit('.', 1)[0] funcs = chain(funcs, self.url_default_functions.get(bp, ())) for func in funcs: func(endpoint, values) def handle_url_build_error(self, error, endpoint, values): """Handle :class:`~werkzeug.routing.BuildError` on :meth:`url_for`. """ exc_type, exc_value, tb = sys.exc_info() for handler in self.url_build_error_handlers: try: rv = handler(error, endpoint, values) if rv is not None: return rv except BuildError as e: # make error available outside except block (py3) error = e # At this point we want to reraise the exception. If the error is # still the same one we can reraise it with the original traceback, # otherwise we raise it from here. if error is exc_value: reraise(exc_type, exc_value, tb) raise error def preprocess_request(self): """Called before the request is dispatched. Calls :attr:`url_value_preprocessors` registered with the app and the current blueprint (if any). Then calls :attr:`before_request_funcs` registered with the app and the blueprint. If any :meth:`before_request` handler returns a non-None value, the value is handled as if it was the return value from the view, and further request handling is stopped. """ bp = _request_ctx_stack.top.request.blueprint funcs = self.url_value_preprocessors.get(None, ()) if bp is not None and bp in self.url_value_preprocessors: funcs = chain(funcs, self.url_value_preprocessors[bp]) for func in funcs: func(request.endpoint, request.view_args) funcs = self.before_request_funcs.get(None, ()) if bp is not None and bp in self.before_request_funcs: funcs = chain(funcs, self.before_request_funcs[bp]) for func in funcs: rv = func() if rv is not None: return rv def process_response(self, response): """Can be overridden in order to modify the response object before it's sent to the WSGI server. By default this will call all the :meth:`after_request` decorated functions. .. versionchanged:: 0.5 As of Flask 0.5 the functions registered for after request execution are called in reverse order of registration. :param response: a :attr:`response_class` object. :return: a new response object or the same, has to be an instance of :attr:`response_class`. """ ctx = _request_ctx_stack.top bp = ctx.request.blueprint funcs = ctx._after_request_functions if bp is not None and bp in self.after_request_funcs: funcs = chain(funcs, reversed(self.after_request_funcs[bp])) if None in self.after_request_funcs: funcs = chain(funcs, reversed(self.after_request_funcs[None])) for handler in funcs: response = handler(response) if not self.session_interface.is_null_session(ctx.session): self.session_interface.save_session(self, ctx.session, response) return response def do_teardown_request(self, exc=_sentinel): """Called after the request is dispatched and the response is returned, right before the request context is popped. This calls all functions decorated with :meth:`teardown_request`, and :meth:`Blueprint.teardown_request` if a blueprint handled the request. Finally, the :data:`request_tearing_down` signal is sent. This is called by :meth:`RequestContext.pop() <flask.ctx.RequestContext.pop>`, which may be delayed during testing to maintain access to resources. :param exc: An unhandled exception raised while dispatching the request. Detected from the current exception information if not passed. Passed to each teardown function. .. versionchanged:: 0.9 Added the ``exc`` argument. """ if exc is _sentinel: exc = sys.exc_info()[1] funcs = reversed(self.teardown_request_funcs.get(None, ())) bp = _request_ctx_stack.top.request.blueprint if bp is not None and bp in self.teardown_request_funcs: funcs = chain(funcs, reversed(self.teardown_request_funcs[bp])) for func in funcs: func(exc) request_tearing_down.send(self, exc=exc) def do_teardown_appcontext(self, exc=_sentinel): """Called right before the application context is popped. When handling a request, the application context is popped after the request context. See :meth:`do_teardown_request`. This calls all functions decorated with :meth:`teardown_appcontext`. Then the :data:`appcontext_tearing_down` signal is sent. This is called by :meth:`AppContext.pop() <flask.ctx.AppContext.pop>`. .. versionadded:: 0.9 """ if exc is _sentinel: exc = sys.exc_info()[1] for func in reversed(self.teardown_appcontext_funcs): func(exc) appcontext_tearing_down.send(self, exc=exc) def app_context(self): """Create an :class:`~flask.ctx.AppContext`. Use as a ``with`` block to push the context, which will make :data:`current_app` point at this application. An application context is automatically pushed by :meth:`RequestContext.push() <flask.ctx.RequestContext.push>` when handling a request, and when running a CLI command. Use this to manually create a context outside of these situations. :: with app.app_context(): init_db() See :doc:`/appcontext`. .. versionadded:: 0.9 """ return AppContext(self) def request_context(self, environ): """Create a :class:`~flask.ctx.RequestContext` representing a WSGI environment. Use a ``with`` block to push the context, which will make :data:`request` point at this request. See :doc:`/reqcontext`. Typically you should not call this from your own code. A request context is automatically pushed by the :meth:`wsgi_app` when handling a request. Use :meth:`test_request_context` to create an environment and context instead of this method. :param environ: a WSGI environment """ return RequestContext(self, environ) def test_request_context(self, *args, **kwargs): """Create a :class:`~flask.ctx.RequestContext` for a WSGI environment created from the given values. This is mostly useful during testing, where you may want to run a function that uses request data without dispatching a full request. See :doc:`/reqcontext`. Use a ``with`` block to push the context, which will make :data:`request` point at the request for the created environment. :: with test_request_context(...): generate_report() When using the shell, it may be easier to push and pop the context manually to avoid indentation. :: ctx = app.test_request_context(...) ctx.push() ... ctx.pop() Takes the same arguments as Werkzeug's :class:`~werkzeug.test.EnvironBuilder`, with some defaults from the application. See the linked Werkzeug docs for most of the available arguments. Flask-specific behavior is listed here. :param path: URL path being requested. :param base_url: Base URL where the app is being served, which ``path`` is relative to. If not given, built from :data:`PREFERRED_URL_SCHEME`, ``subdomain``, :data:`SERVER_NAME`, and :data:`APPLICATION_ROOT`. :param subdomain: Subdomain name to append to :data:`SERVER_NAME`. :param url_scheme: Scheme to use instead of :data:`PREFERRED_URL_SCHEME`. :param data: The request body, either as a string or a dict of form keys and values. :param json: If given, this is serialized as JSON and passed as ``data``. Also defaults ``content_type`` to ``application/json``. :param args: other positional arguments passed to :class:`~werkzeug.test.EnvironBuilder`. :param kwargs: other keyword arguments passed to :class:`~werkzeug.test.EnvironBuilder`. """ from flask.testing import make_test_environ_builder builder = make_test_environ_builder(self, *args, **kwargs) try: return self.request_context(builder.get_environ()) finally: builder.close() def wsgi_app(self, environ, start_response): """The actual WSGI application. This is not implemented in :meth:`__call__` so that middlewares can be applied without losing a reference to the app object. Instead of doing this:: app = MyMiddleware(app) It's a better idea to do this instead:: app.wsgi_app = MyMiddleware(app.wsgi_app) Then you still have the original application object around and can continue to call methods on it. .. versionchanged:: 0.7 Teardown events for the request and app contexts are called even if an unhandled error occurs. Other events may not be called depending on when an error occurs during dispatch. See :ref:`callbacks-and-errors`. :param environ: A WSGI environment. :param start_response: A callable accepting a status code, a list of headers, and an optional exception context to start the response. """ ctx = self.request_context(environ) error = None try: try: ctx.push() response = self.full_dispatch_request() except Exception as e: error = e response = self.handle_exception(e) except: error = sys.exc_info()[1] raise return response(environ, start_response) finally: if self.should_ignore_error(error): error = None ctx.auto_pop(error) def __call__(self, environ, start_response): """The WSGI server calls the Flask application object as the WSGI application. This calls :meth:`wsgi_app` which can be wrapped to applying middleware.""" return self.wsgi_app(environ, start_response) def __repr__(self): return '<%s %r>' % ( self.__class__.__name__, self.name, )
3daa552b34b92a1091491956c4ea13bf7738ada2
c48a8d16b609f51ec28ce735d69b3e71480d5fe3
/setup.py
bd5d830002ab82263ac25476fc7a82022a8d8806
[]
no_license
arii/pyrltools
c6d622761b7868a72e60c6cb5d35dbae2de1ffe1
45df3ecd4227529f3ce40fc9132c5dc42920fc5c
refs/heads/master
2021-01-18T05:00:58.103484
2014-10-16T00:18:14
2014-10-16T00:18:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
#from numpy.distutils.core import setup, Extension from setuptools import setup, Extension, find_packages import numpy setup(name = 'rltools', version = '0.1', include_dirs=[numpy.get_include(), '/usr/include'], packages = find_packages())
15b30860d116d827c4c3de9db43e689dffc3d70f
6c6531b6f93817a2720ff9b78fce6ad4d5bb500c
/PericiasMedicas/company/migrations/0007_auto_20191230_1711.py
5603642c2f74d64ccb13c8e644b23e6a6f6f2902
[]
no_license
massariolmc/periciasmedicas
6d3c142a5f5e308b049d57b30d698526c8aecda3
9b5b0e192bf51bb1b297f0983b2a0ab0c24b31b1
refs/heads/master
2022-12-08T11:13:10.981476
2020-02-21T23:32:44
2020-02-21T23:32:44
235,667,801
0
0
null
2022-11-22T05:15:44
2020-01-22T21:12:16
JavaScript
UTF-8
Python
false
false
472
py
# Generated by Django 2.2.7 on 2019-12-30 21:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('company', '0006_auto_20191230_1629'), ] operations = [ migrations.AlterField( model_name='company', name='state_registration', field=models.CharField(blank=True, default='', max_length=100, null=True, verbose_name='Inscrição Estadual'), ), ]
b03184fca3a98c1dcef9e6620aab908a13251857
c883f6029e05bffa8b34795d017bdcd2975fdc31
/venv/Scripts/conch-script.py
103a4e88c1d8e9ad5f3b7b6a22e01b2a6baec516
[]
no_license
Solin1998/AnalyzeGdeltData
be54ee71db375dc70b9da7f067215adb4c44f2d4
0e2e340fbbb1af4708edce11e034ccd0ee9c0e4d
refs/heads/master
2020-05-15T17:21:04.497117
2019-05-16T01:53:30
2019-05-16T01:53:30
182,401,301
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
#!D:\scrapy_gdelt\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==19.2.0','console_scripts','conch' __requires__ = 'Twisted==19.2.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==19.2.0', 'console_scripts', 'conch')() )
6035dce05ab1ceb238455998bedfa82823ff466e
3471728291ab015e6780763218f96a369897f5c4
/imagefactory_plugins/OpenStack/glance_upload.py
c2b28347f49d65700b6205043a0e6637b27930f4
[ "Apache-2.0" ]
permissive
zyga/imagefactory
913fb4a987a746cff72f3074e0e338e896ac2e65
b2a57168f1ef6608aedad73ed7ccd1e3626b2967
refs/heads/master
2020-03-24T07:33:43.270977
2018-06-26T19:37:55
2018-06-26T19:37:55
142,568,326
1
0
Apache-2.0
2018-07-27T11:20:36
2018-07-27T11:20:36
null
UTF-8
Python
false
false
1,452
py
# Copyright 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from glance import client as glance_client from pprint import pprint def glance_upload(image_filename, creds = {'auth_url': None, 'password': None, 'strategy': 'noauth', 'tenant': None, 'username': None}, host = "0.0.0.0", port = "9292", token = None): image_meta = {'container_format': 'bare', 'disk_format': 'qcow2', 'is_public': True, 'min_disk': 0, 'min_ram': 0, 'name': 'Factory Test Image', 'properties': {'distro': 'rhel'}} c = glance_client.Client(host=host, port=port, auth_tok=token, creds=creds) image_data = open(image_filename, "r") image_meta = c.add_image(image_meta, image_data) image_data.close() return image_meta['id'] image_id = glance_upload("/root/base-image-f19e3f9b-5905-4b66-acb2-2e25395fdff7.qcow2") print image_id
1946bfe1caf51887dc9a1fb940cb12a1a1f3c769
11424be5ccc50cef7b421c01be8fbdf0e9a6df16
/AY2021/attacks/LengthExtension/live/length_extension_md5_live.py
b1d6612a6e266c2a7a2ee96f65c26065210df06b
[]
no_license
MarcoSapio/cryptography-03lpyov-exercises
1ff7b6e189af9bc4af4a85690b1f3ecbcb96527d
b9234c3a88f6e43def61fcad4acbfcc3ced03068
refs/heads/master
2023-05-27T00:25:46.641506
2021-06-10T14:08:40
2021-06-10T14:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,288
py
#!/usr/bin/env python3 # # Derived from: # # MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm # # Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All # rights reserved. # # License to copy and use this software is granted provided that it # is identified as the "RSA Data Security, Inc. MD5 Message-Digest # Algorithm" in all material mentioning or referencing this software # or this function. # # License is also granted to make and use derivative works provided # that such works are identified as "derived from the RSA Data # Security, Inc. MD5 Message-Digest Algorithm" in all material # mentioning or referencing the derived work. # # RSA Data Security, Inc. makes no representations concerning either # the merchantability of this software or the suitability of this # software for any particular purpose. It is provided "as is" # without express or implied warranty of any kind. # # These notices must be retained in any copies of any part of this # documentation and/or software. __doc__ = """pymd5 module - The MD5 hash function in pure Python. md5(string='', state=None, count=0) - Returns a new md5 objects and processes string. Optional advanced parameters allow you to resume an earlier computation by setting the internal state of the function and the counter of message bits processed so far. Most of the interface matches Python's standard hashlib. md5 objects have these methods and attributes: - update(arg): Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the concatenation of all the arguments. - digest(): Return the digest of the strings passed to the update() method so far. This may contain non-ASCII characters, including NUL bytes. - hexdigest(): Like digest() except the digest is returned as a string of double length, containing only hexadecimal digits. - digest_size: The size of the resulting hash in bytes (16). - block_size: The internal block size of the hash algorithm in bytes (64). For example, to obtain the digest of the string 'Nobody inspects the spammish repetition': >>> import pymd5 >>> m = pymd5.md5() >>> m.update("Nobody inspects") >>> m.update(" the spammish repetition") >>> m.digest() More condensed: >>> pymd5.md5("Nobody inspects the spammish repetition").hexdigest() 'bb649c83dd1ea5c9d9dec9a18df0ffe9' The module also exposes two low-level methods to help with crypto experiments: - md5_compress(state, block): The MD5 compression function; returns a new 16-byte state based on the 16-byte previous state and a 512-byte message block. - padding(msg_bits): Generate the padding that should be appended to the end of a message of the given size to reach a multiple of the block size. """ # Constants for compression function. S11 = 7 S12 = 12 S13 = 17 S14 = 22 S21 = 5 S22 = 9 S23 = 14 S24 = 20 S31 = 4 S32 = 11 S33 = 16 S34 = 23 S41 = 6 S42 = 10 S43 = 15 S44 = 21 PADDING = b"\x80" + 63 * b"\0" # F, G, H and I: basic MD5 functions. def F(x, y, z): return (((x) & (y)) | ((~x) & (z))) def G(x, y, z): return (((x) & (z)) | ((y) & (~z))) def H(x, y, z): return ((x) ^ (y) ^ (z)) def I(x, y, z): return ((y) ^ ((x) | (~z))) def ROTATE_LEFT(x, n): x = x & 0xffffffff # make shift unsigned return (((x) << (n)) | ((x) >> (32 - (n)))) & 0xffffffff # FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. # Rotation is separate from addition to prevent recomputation. def FF(a, b, c, d, x, s, ac): a = a + F((b), (c), (d)) + (x) + (ac) a = ROTATE_LEFT((a), (s)) a = a + b return a # must assign this to a def GG(a, b, c, d, x, s, ac): a = a + G((b), (c), (d)) + (x) + (ac) a = ROTATE_LEFT((a), (s)) a = a + b return a # must assign this to a def HH(a, b, c, d, x, s, ac): a = a + H((b), (c), (d)) + (x) + (ac) a = ROTATE_LEFT((a), (s)) a = a + b return a # must assign this to a def II(a, b, c, d, x, s, ac): a = a + I((b), (c), (d)) + (x) + (ac) a = ROTATE_LEFT((a), (s)) a = a + b return a # must assign this to a class md5(object): digest_size = 16 # size of the resulting hash in bytes block_size = 64 # hash algorithm's internal block size def __init__(self, string='', state=None, count=0): """md5(string='', state=None, count=0) - Return a new md5 hash object, optionally initialized to a given internal state and count of message bits processed so far, then processes string. """ self.count = 0 self.buffer = b"" if state is None: # initial state defined by standard self.state = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476,) #128 bits ~ msg digest size else: self.state = _decode(state, md5.digest_size) if count is not None: self.count = count if string: self.update(string) def update(self, input): """update(input) - Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the concatenation of all the arguments. """ if not isinstance(input, bytes): input = input.encode('utf-8') inputLen = len(input) index = int(self.count >> 3) & 0x3F self.count = self.count + (inputLen << 3) # update number of bits partLen = md5.block_size - index # apply compression function to as many blocks as we have if inputLen >= partLen: self.buffer = self.buffer[:index] + input[:partLen] self.state = md5_compress(self.state, self.buffer) i = partLen while i + 63 < inputLen: self.state = md5_compress(self.state, input[i:i + md5.block_size]) i = i + md5.block_size index = 0 else: i = 0 # buffer remaining output self.buffer = self.buffer[:index] + input[i:inputLen] def digest(self): """digest() - Return the MD5 hash of the strings passed to the update() method so far. This is a string of digest_size bytes which may contain non-ASCII characters, including null bytes. """ _buffer, _count, _state = self.buffer, self.count, self.state self.update(padding(self.count)) result = self.state self.buffer, self.count, self.state = _buffer, _count, _state return _encode(result, md5.digest_size) def hexdigest(self): """hexdigest() - Like digest() except the hash value is returned as a string of hexadecimal digits. """ return self.digest().hex() ## end of class def padding(msg_bits): """padding(msg_bits) - Generates the padding that should be appended to the end of a message of the given size to reach a multiple of the block size.""" index = int((msg_bits >> 3) & 0x3f) if index < 56: padLen = (56 - index) else: padLen = (120 - index) # (the last 8 bytes store the number of bits in the message) return PADDING[:padLen] + _encode((msg_bits & 0xffffffff, msg_bits >> 32), 8) def md5_compress(state, block): """md5_compress(state, block) - The MD5 compression function. Outputs a 16-byte state based on a 16-byte previous state and a 512-byte message block. """ a, b, c, d = state x = _decode(block, md5.block_size) # Round a = FF(a, b, c, d, x[0], S11, 0xd76aa478) # 1 d = FF(d, a, b, c, x[1], S12, 0xe8c7b756) # 2 c = FF(c, d, a, b, x[2], S13, 0x242070db) # 3 b = FF(b, c, d, a, x[3], S14, 0xc1bdceee) # 4 a = FF(a, b, c, d, x[4], S11, 0xf57c0faf) # 5 d = FF(d, a, b, c, x[5], S12, 0x4787c62a) # 6 c = FF(c, d, a, b, x[6], S13, 0xa8304613) # 7 b = FF(b, c, d, a, x[7], S14, 0xfd469501) # 8 a = FF(a, b, c, d, x[8], S11, 0x698098d8) # 9 d = FF(d, a, b, c, x[9], S12, 0x8b44f7af) # 10 c = FF(c, d, a, b, x[10], S13, 0xffff5bb1) # 11 b = FF(b, c, d, a, x[11], S14, 0x895cd7be) # 12 a = FF(a, b, c, d, x[12], S11, 0x6b901122) # 13 d = FF(d, a, b, c, x[13], S12, 0xfd987193) # 14 c = FF(c, d, a, b, x[14], S13, 0xa679438e) # 15 b = FF(b, c, d, a, x[15], S14, 0x49b40821) # 16 # Round 2 a = GG(a, b, c, d, x[1], S21, 0xf61e2562) # 17 d = GG(d, a, b, c, x[6], S22, 0xc040b340) # 18 c = GG(c, d, a, b, x[11], S23, 0x265e5a51) # 19 b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aa) # 20 a = GG(a, b, c, d, x[5], S21, 0xd62f105d) # 21 d = GG(d, a, b, c, x[10], S22, 0x2441453) # 22 c = GG(c, d, a, b, x[15], S23, 0xd8a1e681) # 23 b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8) # 24 a = GG(a, b, c, d, x[9], S21, 0x21e1cde6) # 25 d = GG(d, a, b, c, x[14], S22, 0xc33707d6) # 26 c = GG(c, d, a, b, x[3], S23, 0xf4d50d87) # 27 b = GG(b, c, d, a, x[8], S24, 0x455a14ed) # 28 a = GG(a, b, c, d, x[13], S21, 0xa9e3e905) # 29 d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8) # 30 c = GG(c, d, a, b, x[7], S23, 0x676f02d9) # 31 b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8a) # 32 # Round 3 a = HH(a, b, c, d, x[5], S31, 0xfffa3942) # 33 d = HH(d, a, b, c, x[8], S32, 0x8771f681) # 34 c = HH(c, d, a, b, x[11], S33, 0x6d9d6122) # 35 b = HH(b, c, d, a, x[14], S34, 0xfde5380c) # 36 a = HH(a, b, c, d, x[1], S31, 0xa4beea44) # 37 d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9) # 38 c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60) # 39 b = HH(b, c, d, a, x[10], S34, 0xbebfbc70) # 40 a = HH(a, b, c, d, x[13], S31, 0x289b7ec6) # 41 d = HH(d, a, b, c, x[0], S32, 0xeaa127fa) # 42 c = HH(c, d, a, b, x[3], S33, 0xd4ef3085) # 43 b = HH(b, c, d, a, x[6], S34, 0x4881d05) # 44 a = HH(a, b, c, d, x[9], S31, 0xd9d4d039) # 45 d = HH(d, a, b, c, x[12], S32, 0xe6db99e5) # 46 c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8) # 47 b = HH(b, c, d, a, x[2], S34, 0xc4ac5665) # 48 # Round 4 a = II(a, b, c, d, x[0], S41, 0xf4292244) # 49 d = II(d, a, b, c, x[7], S42, 0x432aff97) # 50 c = II(c, d, a, b, x[14], S43, 0xab9423a7) # 51 b = II(b, c, d, a, x[5], S44, 0xfc93a039) # 52 a = II(a, b, c, d, x[12], S41, 0x655b59c3) # 53 d = II(d, a, b, c, x[3], S42, 0x8f0ccc92) # 54 c = II(c, d, a, b, x[10], S43, 0xffeff47d) # 55 b = II(b, c, d, a, x[1], S44, 0x85845dd1) # 56 a = II(a, b, c, d, x[8], S41, 0x6fa87e4f) # 57 d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0) # 58 c = II(c, d, a, b, x[6], S43, 0xa3014314) # 59 b = II(b, c, d, a, x[13], S44, 0x4e0811a1) # 60 a = II(a, b, c, d, x[4], S41, 0xf7537e82) # 61 d = II(d, a, b, c, x[11], S42, 0xbd3af235) # 62 c = II(c, d, a, b, x[2], S43, 0x2ad7d2bb) # 63 b = II(b, c, d, a, x[9], S44, 0xeb86d391) # 64 return (0xffffffff & (state[0] + a), 0xffffffff & (state[1] + b), 0xffffffff & (state[2] + c), 0xffffffff & (state[3] + d),) import struct, string def _encode(input, len): k = len // 4 res = struct.pack("<%iI" % k, *(list(input[:k]))) return res def _decode(input, len): k = len // 4 res = struct.unpack("<%iI" % k, input[:len]) return list(res) def test(input=""): """test(input): displays results of input hashed with our md5 function and the standard Python hashlib implementation """ print(md5(input).hexdigest()) import hashlib print(hashlib.md5(input.encode('utf-8')).hexdigest()) if __name__ == "__main__": # test("crypt") # secret = b'this is a secret' # 256 bit # MAC = edc707dda43b36386f36052b3446941f # message is b'ciao' # keyed-digest k || message --> MAC = m # starting from m --> we build keyed-digest(message||additional_data) without knowing k test_secret = b'my test secret' message = b'ciao' # public data (we are considering integrity, not confidentiality) to_add = b' ciao' # # message + something_else --> without knowing the secret we want to compute the MAC of message + something_else m = md5() m.update(test_secret+message) print(m.hexdigest()) known_MAC = m.digest() # --> adding the padding print("state =",end=' ') print(m.state) print(m.digest()) print("encode =" + str(_encode(m.state,md5.digest_size))) print("decode =" + str(_decode(m.digest(), md5.digest_size))) # m.state --> secret+message # m.digest --> secret+message+padding # MAC of #this is the lenght extension attack m2 = md5(state=known_MAC, count = 512) # m2.update(to_add) print(m2.hexdigest()) #m2.hexdigest() should be the digest of test_secret + message + to_add m3 = md5() pad = padding(len(test_secret+message)*8) m3.update(test_secret+message+ pad + to_add) # padding len(test_secret+message+ pad + to_add) print(m3.hexdigest()) m4 = md5() print(m.state)
139b190ed31d88e56031de11be07c1f4fe9af5b7
9785b5c8b997bc0241e8520b77bc7078d4c29029
/2018/picoctf/authenticate/exp.py
83476da0dbc034dd4f749350c757a078311fe650
[]
no_license
lucyoa/ctfs
4619571201bece8d7a6545f0cdc8291c153b6ef2
0726ee26052eabc5ee854fd976d0905d40668e8d
refs/heads/master
2020-07-31T01:49:00.736206
2020-06-25T19:46:53
2020-06-25T19:46:53
210,439,562
0
2
null
null
null
null
UTF-8
Python
false
false
268
py
#!/usr/bin/env python from pwn import * # r = process("./auth") r = remote("2018shell.picoctf.com", 52918) r.recvuntil("Would you like to read the flag? (yes/no)\n") payload = ( p32(0x804a04c) + "%11$n" ) r.sendline(payload) print(r.recvall()) r.close()
88670494c7efdc1374cdfb661ffb1ffe4df35dbf
50e8f9a4b25d543932d0a43656c12ec0b31fe87b
/random_seq.py
00513e85ca16590a6737c09d71f90fbf6047b890
[]
no_license
1gnatov/NRSAAM
b95e5f5d621863e73117d3014c67dc34bf1de40b
752cab91455bfcbda7f54f9f20bb336ea18daa02
refs/heads/master
2016-09-06T17:18:02.471806
2013-10-30T21:01:55
2013-10-30T21:01:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,449
py
""" idea = using lists of nuc_seq with separate nucl as lists ['G'], ['A'] etc. each round we look at unamb nucl - count lenth of this letter in dict{'D'=[['A'],['G'], ['T'], ..} and multiply starting lists to the len(dict['D']) and appending letter-lists from dict at the end all lists are joining with ''.join() restrictase = they have to be palindromes [ [['C'], ['T'], ['C'], ['G'], ['G'], ['G']] [['C'], ['C'], ['C'], ['G'], ['G'], ['G']] [['C'], ['T'], ['C'], ['G'], ['A'], ['G']] [['C'], ['C'], ['C'], ['G'], ['A'], ['G']] ] """ #nonstanddict = {['D']:[['G'], ['A'], ['T']], ['H']:[['A'], ['T'], ['C']], ['N']:[['G'], ['A'], ['T'], ['C']], ['S']:[['G'], ['C']], ['R']:[['G'], ['A']], ['W']:[['A'], ['T']], ['Y']:[['T'], ['C']]} nstanddict = {'D':[['G'], ['A'], ['T']], 'H':[['A'], ['T'], ['C']], 'N':[['G'], ['A'], ['T'], ['C']], 'S':[['G'], ['C']], 'R':[['G'], ['A']], 'W':[['A'], ['T']], 'Y':[['T'], ['C']], 'A':['A'], 'G':['G'], 'C':['C'], 'T':['T']} start_seq = 'CYCGRG' def prepare_seq_list(string): ''' converting 'AGTCAG' to [['A'], ['G'] ...] list ''' result = [] for char in string: result.append([char]) return result start_list = prepare_seq_list(start_seq) print start_list def multisequence(list_seq): result = [[], [], [], [], [], []] for element in list_seq: for i in range(0, len(nstanddict[element])): result[i].append([element]) return result res_list = multisequence(start_seq) print res_list
a88bad32c4bc419dba4eec0c3f96db48fa505f5b
149273fc2e0dd4b86f7eadc59a548e6caf154288
/experiments/run_experiments_tSNE.py
113b171133f943f80100d908c0283e27da55947a
[ "Apache-2.0" ]
permissive
Liyubov/PaCMAP
65eadb48c45187a8c8515fb626fd2ad63af0f2b2
91479ba60737a47eaa57dbd52fcac155821e9269
refs/heads/master
2023-08-02T15:23:00.580215
2021-10-09T02:31:10
2021-10-09T02:31:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,478
py
import FlowCal import json import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import manifold, datasets from time import time from MulticoreTSNE import MulticoreTSNE as TSNE from sklearn.decomposition import PCA from sklearn.datasets import make_swiss_roll, make_s_curve def data_prep(data_path, dataset='MNIST', size=10000): ''' This function loads the dataset as numpy array. Input: data_path: path of the folder you store all the data needed. dataset: the name of the dataset. size: the size of the dataset. This is useful when you only want to pick a subset of the data Output: X: the dataset in numpy array labels: the labels of the dataset. ''' if dataset == 'MNIST': X = np.load(data_path + '/mnist_images.npy', allow_pickle=True).reshape(70000, 28*28) labels = np.load(data_path + '/mnist_labels.npy', allow_pickle=True) elif dataset == 'FMNIST': X = np.load(data_path + '/fmnist_images.npy', allow_pickle=True).reshape(70000, 28*28) labels = np.load(data_path + '/fmnist_labels.npy', allow_pickle=True) elif dataset == 'coil_20': X = np.load(data_path + '/coil_20.npy', allow_pickle=True).reshape(1440, 128*128) labels = np.load(data_path + '/coil_20_labels.npy', allow_pickle=True) elif dataset == 'coil_100': X = np.load(data_path + '/coil_100.npy', allow_pickle=True).reshape(7200, -1) labels = np.load(data_path + '/usr/xtmp/hyhuang/MNIST/coil_100_labels.npy', allow_pickle=True) elif dataset == 'mammoth': with open(data_path + '/mammoth_3d.json', 'r') as f: X = json.load(f) X = np.array(X) with open(data_path + '/mammoth_umap.json', 'r') as f: labels = json.load(f) labels = labels['labels'] labels = np.array(labels) elif dataset == 'mammoth_50k': with open(data_path + '/mammoth_3d_50k.json', 'r') as f: X = json.load(f) X = np.array(X) labels = np.zeros(10) elif dataset == 'Flow_cytometry': X = FlowCal.io.FCSData(data_path + '/11-12-15_314.fcs') labels = np.zeros(10) elif dataset == 'Mouse_scRNA': data = pd.read_csv(data_path + '/GSE93374_Merged_all_020816_BatchCorrected_LNtransformed_doubletsremoved_Data.txt', sep='\t') X = data.to_numpy() labels = pd.read_csv(data_path + '/GSE93374_cell_metadata.txt', sep='\t') elif dataset == 'swiss_roll': X, labels = make_swiss_roll(n_samples=size, random_state=20200202) elif dataset == 's_curve': X, labels = make_s_curve(n_samples=size, random_state=20200202) elif dataset == 's_curve_hole': X, labels = make_s_curve(n_samples=size, random_state=20200202) anchor = np.array([0, 1, 0]) indices = np.sum(np.square(X-anchor), axis=1) > 0.3 X, labels = X[indices], labels[indices] elif dataset == 'swiss_roll_hole': X, labels = make_swiss_roll(n_samples=size, random_state=20200202) anchor = np.array([-10, 10, 0]) indices = np.sum(np.square(X-anchor), axis=1) > 20 X, labels = X[indices], labels[indices] elif dataset == 'kddcup99': X = np.load(data_path + '/KDDcup99_float.npy', allow_pickle=True) labels = np.load(data_path + '/KDDcup99_labels_int.npy', allow_pickle=True) elif dataset == '20NG': X = np.load(data_path + '/20NG.npy', allow_pickle=True) labels = np.load(data_path + '/20NG_labels.npy', allow_pickle=True) elif dataset == 'USPS': X = np.load(data_path + '/USPS.npy', allow_pickle=True) labels = np.load(data_path + '/USPS_labels.npy', allow_pickle=True) elif dataset == 'cifar10': X = np.load(data_path + '/cifar10_imgs.npy', allow_pickle=True) labels = np.load('/cifar10_labels.npy', allow_pickle=True) elif dataset == 'cifar100': X = np.load(data_path + '/cifar100_imgs.npy', allow_pickle=True) labels = np.load('/cifar100_labels.npy', allow_pickle=True) else: print('Unsupported dataset') assert(False) return X[:size], labels[:size] def experiment(X, method='PaCMAP', **kwargs): if method == 'PaCMAP': transformer = PaCMAP(**kwargs) elif method == 'UMAP': transformer = umap.UMAP(**kwargs) elif method == 'TriMAP': transformer = trimap.TRIMAP(**kwargs) elif method == 'LargeVis': transformer = LargeVis(**kwargs) elif method == 't-SNE': transformer = TSNE(**kwargs) else: print("Incorrect method specified") assert(False) start_time = time() X_low = transformer.fit_transform(X) total_time = time() - start_time print("This run's time:") print(total_time) return X_low, total_time def experiment_five(X, method='PaCMAP', **kwargs): length = X.shape[0] X_lows, all_times = [], [] for i in range(5): X_low, all_time = experiment(X, method, **kwargs) X_lows.append(X_low) all_times.append(all_time) X_lows = np.array(X_lows) all_times = np.array(all_times) return X_lows, all_times def main(data_path, output_path, dataset_name='MNIST', size=10000000): X, labels = data_prep(data_path, dataset=dataset_name, size=size) if dataset_name == 'Mouse_scRNA': pca = PCA(n_components=1000) X = pca.fit_transform(X) elif X.shape[1] > 100: pca = PCA(n_components=100) X = pca.fit_transform(X) print("Data loaded successfully") methods = ['t-SNE'] args = {'t-SNE':[{'perplexity':10}, {'perplexity':20}, {'perplexity':40}]} print("Experiment started") for method in methods: parameters = args[method] for parameter in parameters: X_low, total_time = experiment_five(X, method, **parameter) if 'n_neighbors' in parameter: n_neighbors = parameter['n_neighbors'] elif 'perplexity' in parameter: n_neighbors = parameter['perplexity'] else: n_neighbors = 10 # Default value loc_string = output_path + \ '{dataset_name}_{method}_{n_neighbors}'.format(dataset_name=dataset_name, method=method, n_neighbors=n_neighbors) np.save(loc_string, X_low) avg_time = np.mean(total_time) print('Average time for method {method} on {dataset_name} with param={n_neighbors} is {avg_time}'.format(dataset_name=dataset_name, method=method, n_neighbors=n_neighbors, avg_time=avg_time)) print('The detailed time is {total_time}'.format(total_time=total_time)) return 0 if __name__ == '__main__': # Please define the data_path and output_path here data_path = "../data/" output_path = "../output/" main(data_path, output_path, 'MNIST') main(data_path, output_path, 'FMNIST') main(data_path, output_path, 'coil_20') main(data_path, output_path, 'coil_100') main(data_path, output_path, 'Mouse_scRNA') main(data_path, output_path, 'mammoth') main(data_path, output_path, 's_curve', 10000) main(data_path, output_path, 's_curve_hole', 10000) main(data_path, output_path, '20NG', 100000) main(data_path, output_path, 'USPS', 100000) main(data_path, output_path, 'kddcup99', 10000000) main(data_path, output_path, 'cifar10', 10000000) main(data_path, output_path, 'cifar100', 10000000)
a8bbf6d28fbb80a9b6db4877e2b4247f033da24e
0412101e2cea53b471c0b79e531b30c10dbbeeb2
/read_statistics/migrations/0002_readdetail.py
8c7c4fc61bf78b165822c00ef689b9a741c41b5b
[]
no_license
Iceinmyvein/mysite
da42f142650741e740ac92be974915ee34643951
9ed82d63b605544d516869eb0f37cf862181d68a
refs/heads/main
2023-03-09T14:00:55.103640
2021-03-02T07:45:51
2021-03-02T07:45:51
342,994,221
0
0
null
null
null
null
UTF-8
Python
false
false
908
py
# Generated by Django 3.1.5 on 2021-02-08 02:18 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ('read_statistics', '0001_initial'), ] operations = [ migrations.CreateModel( name='ReadDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateField(default=django.utils.timezone.now)), ('read_num', models.IntegerField(default=0)), ('object_id', models.PositiveIntegerField()), ('content_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='contenttypes.contenttype')), ], ), ]
e7bb53eebb76b023b8e96330bb939ceaa0ee7d5e
5e3fb75d905481334177acba84f1e58839ecbab0
/euler92.py
1b58d9fa322e96f80ffc01fe7d09911cf2a5fc10
[]
no_license
fpgmaas/project-euler
e850acc570d2adc0cb23f9f92775c53592867313
738d13b21cbb156af874710b6d7269d963056000
refs/heads/master
2021-09-14T02:01:45.900043
2018-05-07T12:22:08
2018-05-07T12:22:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
def func(x): y = list(str(x)) return(sum([int(n)**2 for n in y])) total=0 set89 = set() for i in range(2,10000000): x = i while x!=1 and x!=89: x = func(x) if(x in set89): x=89 if x == 89: total+=1 if i<600 :set89.add(i)
60647221ba6f895f8718efe359f5473970104ffa
4cca71c31c7f89a219634d79c21404ca4eabe436
/d2l_thrive/base.py
c3c0a4b0adc980e897da0d5958bd97a262716935
[]
no_license
ucalgary/d2l-thrive-python
1a03fb99d5e0d370f3a1349cb0d4231895a5e19e
8c22d019c202aaa997c7333cf6711338c84621ee
refs/heads/master
2021-01-10T02:02:58.076443
2018-03-12T18:04:42
2018-03-12T18:04:42
43,977,081
0
0
null
null
null
null
UTF-8
Python
false
false
3,485
py
#!/usr/bin/env python # coding=utf-8 import os import sys from couchdb.client import Database from couchdb.http import ResourceNotFound, ResourceConflict class BaseObject(object): def __init__(self, args=None): self._args = args or sys.argv[1:] def run(self): """The main runloop. Scripts should call this method after instantiating an object.""" parser = self.argument_parser() self.args = parser.parse_args(self._args) self.unpack_arguments(self.args) # Give subclasses an opportunity to perform additional setup functions # before main is invoked. self.prepare_for_main() if not self.args.background: result = self.main() else: import daemon import grp import pwd import signal from lockfile.pidlockfile import PIDLockFile # Create and configure the daemon context ctx = daemon.DaemonContext() ctx.umask = 0o027 ctx.pidfile = PIDLockFile(self.args.pidfile) # ctx.signal_map = { # signal.SIGTERM: # program_cleanup, # signal.SIGUP: 'terminate', # signal.SIGUSR1: # reload_program_config # } ctx.uid = pwd.getpwnam('nobody').pw_uid ctx.gid = grp.getgrnam('nobody').gr_gid # Daemonize by running within the daemon context with ctx: result = self.main() # Exit with the code returned from main. sys.exit(result) # Configuring the observer def argument_parser(self): import argparse parser = argparse.ArgumentParser() parser.add_argument('-b', '--background', help='run as a background process', default=False, action='store_true') parser.add_argument('-p', '--pidfile', help='set the background PID FILE', default='/var/run/%s.pid' % self.__class__.__name__) return parser def unpack_arguments(self, args): pass def prepare_for_main(self): """A stub method for library classes to optionally implement. Typically, this is only used by classes that expect to be subclassed for actual use and wish to perform some functions at the start of main, without implementing main so that further subclasses can implement main to perform their actual work. Subclasses should call super on this function if it is implemented. """ pass def main(self): """A stub method for subclasses to implement. Subclasses should override ``main`` to perform their specific functions. """ pass class LMSObject(BaseObject): def __init__(self, args=None, connection_info=None): super(LMSObject, self).__init__(args=args) def couchdb_client(self, name): return self._named_client(name, self.create_couchdb_client) def _named_client(self, name, create_f): key_prefix = name + '_' info_keys = [key for key in os.environ.keys() if key.startswith(key_prefix)] if len(info_keys) == 0: return None # Dictionary comprehension replaced for Python 2.6 compatibility # info = { key[len(key_prefix):]: os.environ[key] for key in info_keys } info = dict((key[len(key_prefix):], os.environ[key]) for key in info_keys) if 'URL' in info: url = info['URL'] elif 'RESOURCE' in info: import pkg_resources path = pkg_resources.resource_filename('adsm', info['RESOURCE']) url = 'file://%s' % path args = info.get('args', {}) return create_f(url, **args) def create_couchdb_client(self, db_url, require_exists=True, **args): db = Database(db_url) if require_exists: try: db.info() except ResourceNotFound: raise Exception('No database found at %s' % db.resource.url) return db
3482043d0c0a812ef98f1ffb1e3a0e6e30a7ab0d
a35a56e1908a483be474bfc9d90de17ed62572c1
/flights/migrations/0001_initial.py
13f3fd70ddd1878edc1e1c249d243c09089d3a24
[]
no_license
glezluis/ca-reango
38156c189933a23916060d17af2178d40d37ebe3
ce3747796fe3887db531bf30f167695ee2a3346d
refs/heads/main
2023-06-05T13:34:31.405927
2021-06-29T03:20:44
2021-06-29T03:20:44
381,147,715
0
0
null
null
null
null
UTF-8
Python
false
false
664
py
# Generated by Django 3.2.2 on 2021-05-13 04:27 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Flight', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('origin', models.CharField(max_length=255)), ('destination', models.CharField(max_length=255)), ('depart_date', models.DateField()), ('return_date', models.DateField()), ], ), ]
c801f423eba575edaad8ae847ba8affbbb0388d1
7e2214619d5948d0d5f7e22f46dee679d722d7b3
/dealOrNoDeal.py
309ffe88c017c45a4345d69b454a2286181be26f
[]
no_license
udwivedi394/misc
ef6add31a92e0d2d0505e8be016f0a868a6ac730
64dffb5db04c38465fffb415bec1d433b1caa8f6
refs/heads/master
2021-09-09T06:16:32.124586
2018-03-14T05:10:55
2018-03-14T05:10:55
116,167,845
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
#Nest away import sys def dealorNoDeal05(A,B): lookup = [B-i for i in A] maxi = 0 for i in xrange(1,len(lookup)): if lookup[i] >= 0: lookup[i] = lookup[i]+(lookup[i-1] if lookup[i-1] >=0 else 0) maxi = max(maxi,lookup[i]) return maxi def dealorNoDeal(A,B): lookup = A#[B-i for i in A] maxi = 0 for i in xrange(len(lookup)): lookup[i] = max(lookup[i],lookup[i]+lookup[i-1] if i>0 else 0) maxi = max(maxi,lookup[i]) return maxi def dealorNoDeal03(A,B): lookup = A for i in xrange(len(lookup)): lookup[i] = B-lookup[i] maxi = 0 for i in xrange(1,len(lookup)): if lookup[i] >= 0: lookup[i] = lookup[i]+(lookup[i-1] if lookup[i-1] >=0 else 0) maxi = max(maxi,lookup[i]) return maxi def dealorNoDeal04(A,B): lookup = A maxi = 0 for i in xrange(len(lookup)): if B-lookup[i] >= 0: lookup[i] = (B-lookup[i])+(lookup[i-1] if i > 0 and lookup[i-1] >=0 else 0) maxi = max(maxi,lookup[i]) else: lookup[i] = B-lookup[i] print lookup return maxi """ if __name__=="__main__": f1 = open("testCaseMaxSeq02.txt",'r') for x in xrange(int(f1.readline().strip())): #n,c = map(int,sys.stdin.readline().strip().split()) n = map(int,f1.readline().strip().split()) A = map(int,f1.readline().strip().split()) c = 0 result = dealorNoDeal(A,c) sys.stdout.write(str(result)) print f1.close() """ if __name__=="__main__": for x in xrange(int(sys.stdin.readline().strip())): n,c = map(int,sys.stdin.readline().strip().split()) #n = map(int,sys.stdin.readline().strip().split()) A = map((lambda x: c-int(x)),sys.stdin.readline().strip().split()) #c = 0 result = dealorNoDeal(A,c) sys.stdout.write(str(result)) print #"""
ae7a1e257d3423cfd604b1e6c27ffe19ee1012f5
6b3e8b4291c67195ad51e356ba46602a15d5fe38
/rastervision2/examples/utils.py
d521e74560b2de4494f0d0ff4344208ee3e221b0
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
csaybar/raster-vision
4f5bb1125d4fb3ae5c455db603d8fb749221dd74
617ca15f64e3b8a391432306a743f7d0dfff352f
refs/heads/master
2021-02-26T19:02:53.752971
2020-02-27T17:25:31
2020-02-27T17:25:31
245,547,406
2
1
NOASSERTION
2020-03-07T01:24:09
2020-03-07T01:24:08
null
UTF-8
Python
false
false
4,864
py
import csv from io import StringIO import tempfile import os import rasterio from shapely.strtree import STRtree from shapely.geometry import shape, mapping import shapely from rastervision.core import Box from rastervision.data import RasterioCRSTransformer, GeoJSONVectorSource from rastervision.utils.files import (file_to_str, file_exists, get_local_path, upload_or_copy, make_dir, json_to_file) from rastervision.filesystem import S3FileSystem def str_to_bool(x): if type(x) == str: if x.lower() == 'true': return True elif x.lower() == 'false': return False else: raise ValueError('{} is expected to be true or false'.format(x)) return x def get_scene_info(csv_uri): csv_str = file_to_str(csv_uri) reader = csv.reader(StringIO(csv_str), delimiter=',') return list(reader) def crop_image(image_uri, window, crop_uri): im_dataset = rasterio.open(image_uri) rasterio_window = window.rasterio_format() im = im_dataset.read(window=rasterio_window) with tempfile.TemporaryDirectory() as tmp_dir: crop_path = get_local_path(crop_uri, tmp_dir) make_dir(crop_path, use_dirname=True) meta = im_dataset.meta meta['width'], meta['height'] = window.get_width(), window.get_height() meta['transform'] = rasterio.windows.transform( rasterio_window, im_dataset.transform) with rasterio.open(crop_path, 'w', **meta) as dst: dst.colorinterp = im_dataset.colorinterp dst.write(im) upload_or_copy(crop_path, crop_uri) def save_image_crop(image_uri, image_crop_uri, label_uri=None, label_crop_uri=None, size=600, min_features=10, vector_labels=True): """Save a crop of an image to use for testing. If label_uri is set, the crop needs to cover >= min_features. Args: image_uri: URI of original image image_crop_uri: URI of cropped image to save label_uri: optional URI of label file label_crop_uri: optional URI of cropped labels to save size: height and width of crop Raises: ValueError if cannot find a crop satisfying min_features constraint. """ if not file_exists(image_crop_uri): print('Saving test crop to {}...'.format(image_crop_uri)) old_environ = os.environ.copy() try: request_payer = S3FileSystem.get_request_payer() if request_payer == 'requester': os.environ['AWS_REQUEST_PAYER'] = request_payer im_dataset = rasterio.open(image_uri) h, w = im_dataset.height, im_dataset.width extent = Box(0, 0, h, w) windows = extent.get_windows(size, size) if label_uri and vector_labels: crs_transformer = RasterioCRSTransformer.from_dataset( im_dataset) vs = GeoJSONVectorSource(label_uri, crs_transformer) geojson = vs.get_geojson() geoms = [] for f in geojson['features']: g = shape(f['geometry']) geoms.append(g) tree = STRtree(geoms) def p2m(x, y, z=None): return crs_transformer.pixel_to_map((x, y)) for w in windows: use_window = True if label_uri and vector_labels: w_polys = tree.query(w.to_shapely()) use_window = len(w_polys) >= min_features if use_window and label_crop_uri is not None: print('Saving test crop labels to {}...'.format( label_crop_uri)) label_crop_features = [ mapping(shapely.ops.transform(p2m, wp)) for wp in w_polys ] label_crop_json = { 'type': 'FeatureCollection', 'features': [{ 'geometry': f } for f in label_crop_features] } json_to_file(label_crop_json, label_crop_uri) if use_window: crop_image(image_uri, w, image_crop_uri) if not vector_labels and label_uri and label_crop_uri: crop_image(label_uri, w, label_crop_uri) break if not use_window: raise ValueError('Could not find a good crop.') finally: os.environ.clear() os.environ.update(old_environ)
feac86219e5f5519a0cbe579616b2954b9665b74
bd185d3a4221c61f16fa52e282ce3ae5fcca1007
/node_modules/node-sass/build/config.gypi
479603f613e38a9dc4f31a142cdb320a66bda473
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
vijay-vadlamani/wiki_viewer
74f2f21b495e30333479d41d167493c329ff4e78
bbb5755ade4a85bf6255f99f3dc4c00d5fc77773
refs/heads/master
2020-03-18T10:32:54.152037
2018-05-23T19:56:26
2018-05-23T19:56:26
134,618,885
0
0
null
null
null
null
UTF-8
Python
false
false
5,270
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_file": "icudt60l.dat", "icu_data_in": "../../deps/icu-small/source/data/in/icudt60l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "60", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "57.dylib", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "xcode_version": "7.0", "nodedir": "/Users/yvxv011/.node-gyp/8.11.1", "standalone_static_library": 1, "libsass_ext": "", "libsass_cflags": "", "libsass_ldflags": "", "libsass_library": "", "save_dev": "", "legacy_bundling": "", "dry_run": "", "viewer": "man", "only": "", "commit_hooks": "true", "browser": "", "also": "", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "shell": "/bin/bash", "maxsockets": "50", "init_author_url": "", "shrinkwrap": "true", "parseable": "", "metrics_registry": "https://registry.npmjs.org/", "timing": "", "init_license": "ISC", "if_present": "", "sign_git_tag": "", "init_author_email": "", "cache_max": "Infinity", "long": "", "local_address": "", "git_tag_version": "true", "cert": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "versions": "", "message": "%s", "key": "", "globalconfig": "/usr/local/etc/npmrc", "prefer_online": "", "logs_max": "10", "always_auth": "", "global_style": "", "cache_lock_retries": "10", "heading": "npm", "searchlimit": "20", "read_only": "", "offline": "", "fetch_retry_mintimeout": "10000", "json": "", "access": "", "allow_same_version": "", "https_proxy": "", "engine_strict": "", "description": "true", "userconfig": "/Users/yvxv011/.npmrc", "init_module": "/Users/yvxv011/.npm-init.js", "cidr": "", "user": "", "node_version": "8.11.1", "save": "true", "ignore_prepublish": "", "editor": "vi", "auth_type": "legacy", "tag": "latest", "script_shell": "", "progress": "true", "global": "", "searchstaleness": "900", "optional": "true", "ham_it_up": "", "save_prod": "", "force": "", "bin_links": "true", "searchopts": "", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "depth": "Infinity", "sso_poll_frequency": "500", "rebuild_bundle": "true", "unicode": "true", "fetch_retry_maxtimeout": "60000", "tag_version_prefix": "v", "strict_ssl": "true", "sso_type": "oauth", "scripts_prepend_node_path": "warn-only", "save_prefix": "^", "ca": "", "save_exact": "", "group": "71667744", "fetch_retry_factor": "10", "dev": "", "version": "", "prefer_offline": "", "cache_lock_stale": "60000", "otp": "", "cache_min": "10", "searchexclude": "", "cache": "/Users/yvxv011/.npm", "color": "true", "package_lock": "true", "package_lock_only": "", "save_optional": "", "ignore_scripts": "", "user_agent": "npm/5.6.0 node/v8.11.1 darwin x64", "cache_lock_wait": "10000", "production": "", "send_metrics": "", "save_bundle": "", "umask": "0022", "node_options": "", "init_version": "1.0.0", "init_author_name": "", "git": "git", "scope": "", "unsafe_perm": "true", "tmp": "/var/folders/1g/46tcrdfj211c6_mksjhy8y685whv9l/T", "onload_script": "", "prefix": "/usr/local", "link": "" } }
e2c308aeae8a487bcc9a87178325d76964ca04fa
1cc11e1ee5bb3c39e6a61853a1913ef9aef60e5d
/neighbors.py
e53f3722ab3024e56282e997f61f39434cc68259
[]
no_license
hzc0097/machine-learning
a21dce5b1fe4838baa84147af10542401f2186e0
af4929c133a0c6f5c17531540885772fca0ebc72
refs/heads/master
2023-07-31T17:05:34.013712
2021-09-03T16:21:30
2021-09-03T16:21:30
402,630,292
0
0
null
null
null
null
UTF-8
Python
false
false
2,790
py
import pandas as pd import numpy as np import time from sklearn import neighbors from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt import pickle def singleRunKNN(): # read dataset df = pd.read_parquet('fullDataPASFaster.parquet') df.drop(['summonerName'], 1, inplace=True) df.fillna(0, inplace=True) X = np.array(df.drop(['win'], 1)) y = np.array(df['win']) X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train,y_train) accuracy = clf.score(X_test, y_test) print(X) print(accuracy) def assess(df, X_test, y_test): startTime = time.perf_counter() X_train = np.array(df.drop(['win'], 1)) y_train = np.array(df['win']) clf = neighbors.KNeighborsClassifier() print(f"training start {time.perf_counter()}") clf.fit(X_train, y_train) print(f"training done {time.perf_counter()}") endTime = time.perf_counter() runTime = endTime - startTime accuracy = clf.score(X_test, y_test) print(f"testing done {time.perf_counter()}") endTime = time.perf_counter() runTime2 = endTime - startTime return clf, accuracy, runTime, runTime2 def kNNGraphRun(): df = pd.read_parquet('fullDataPASFaster.parquet') df.drop(['summonerName'], 1, inplace=True) df.fillna(0, inplace=True) testdf = df[400000:] df = df[:400000] X_test = np.array(testdf.drop(['win'], 1)) y_test = np.array(testdf['win']) testValues = [100, 500, 1000, 2500, 5000, 7500, 10000, 15000, 20000, 40000, 80000, 100000, 150000, 200000, 300000, 400000] accuracyList = [] timeList = [] time2List = [] for i in testValues: tempdf = df[:i] model, accuracy, runTime, runTime2 = assess(tempdf, X_test, y_test) accuracyList.append(accuracy) timeList.append(runTime) time2List.append(runTime2) print(f"Finished size: {i}") fig, ax = plt.subplots(1,3) ax0 = ax[0] ax1 = ax[1] ax2 = ax[2] ax0.plot(testValues, accuracyList) ax1.plot(testValues, timeList) ax2.plot(testValues, time2List) ax2.set_title("Second RunTime against testing") ax0.set_yticks(np.arange(0,1.1,0.1)) ax0.set_title("kNN Accuracy w.r.t. data size") ax0.set_xscale("log") ax0.set_xlabel("Training Data Size") ax0.set_ylabel("Accuracy Against Test Set") ax0.grid() ax1.set_title("RunTime") plt.show() print(testValues) print(accuracyList) print(timeList) print(time2List) resultDict = [testValues, accuracyList, timeList, time2List] with open('ResultKNN.txt', 'wb') as f: pickle.dump(resultDict,f) if __name__=="__main__": singleRunKNN() kNNGraphRun()
24e8923ad779dc2cb7b8fd60ffb503312ae4b452
db259ea23fabb6bdddfc26ad6d3c8fd852d6a9fc
/python/case_test.py
19e755496002be90aee41ca9c49e5b57c53883ef
[]
no_license
bizzcat/codeguild
f5333996d80d1bb81373746f3368df5c72c9558d
08d87d55107466dca8c6d7e80a2bd61ecbb95a7c
refs/heads/master
2020-12-25T16:54:03.717775
2016-08-10T17:04:17
2016-08-10T17:04:17
55,080,415
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
# Create a test module for your case change program # import your case change program # create a test case class # write a test for your snake case to camel case functions # run the test via PyCharms testing run config # # * test your other transformations in the case change # * test one of the tic tac toe board classes # *duplicate those tests for the other board classes #~~~~~~~~~~~~~~~~ import unittest import encapsulation class TestEncapsulation(unittest.TestCase): def test_list_board_place(self): board1 = encapsulation.ListListTTTBoard() board1.place(0, 2, 'F') assert board1.rows[2][0] == 'F' TestCaseConversion.test_list_board_place(unittest.TestCase) import case_conversion class TestCaseConversion(unittest.TestCase): def test_word_to_title(self): word = 'this is my word' expected = 'This Is My Word' assert case_conversion.word_to_title(word) == expected TestCaseConversion.test_word_to_title(unittest.TestCase) #
811fd686f5129b674ddd6d46c77719477b3fb263
b2eb8af13e5532fc5c613bbd68af97fa5938b758
/beginner level/count digits.py
084171349b4c07bb3c473b3a1c85a5dcdc51e228
[]
no_license
rahasudha2910/python-programming
81964ffd61c6a814e22543a9315b05eca028fd59
f3cfbb9a3d368cd17fbd59c6ce4affa83fe36585
refs/heads/master
2021-04-06T00:24:45.160387
2018-05-03T06:16:38
2018-05-03T06:16:38
125,213,347
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
count=0 number=int(input()) while(number>0): number=number/10 count=count+1 print("numer of digits:",count)
c2835b1f8a3632284eca779d2dc1f17bfaf30295
6d501ea43b1a52bf4af44ae5677eba8b928ffec3
/directory/signals.py
e1d22e0a309d7321f2db634715374ef5fabc6e4f
[]
no_license
mozilla/hive-django
78d5e7bf687e2311a41d2b6d555b9671c4270b4d
bf95dce0af0148ecacde2256d235788fd79c7d5e
refs/heads/master
2023-08-27T12:47:36.977377
2016-05-04T21:12:47
2016-05-04T21:12:47
55,106,672
0
2
null
2016-05-04T21:12:47
2016-03-31T00:12:58
Python
UTF-8
Python
false
false
1,684
py
from django.dispatch import receiver from django.contrib.sites.models import Site from django.db.models.signals import post_save from django.contrib.auth.signals import user_logged_in from django.contrib import messages from registration.signals import user_activated from .models import City, User, Organization, Membership, is_user_vouched_for @receiver(post_save, sender=City) def clear_site_cache_when_city_changes(**kwargs): # It's possible that the site may be associated with a different # city now, so clear the site cache. Site.objects.clear_cache() @receiver(post_save, sender=User) def create_membership_for_user(sender, raw, instance, **kwargs): if raw: return if not len(Membership.objects.filter(user=instance)): membership = Membership(user=instance) membership.save() @receiver(user_activated) def auto_register_user_with_organization(sender, user, request, **kwargs): if user.membership.organization: return orgs = Organization.objects.possible_affiliations_for(user) if orgs.count() != 1: return org = orgs[0] user.membership.organization = org user.membership.save() @receiver(user_logged_in) def tell_user_to_update_their_profile(sender, user, request, **kwargs): if not is_user_vouched_for(user): return if not user.membership.bio: messages.info(request, 'You don\'t have a bio! You should write one ' 'so community members can learn more about you. ' 'Just visit your user profile by accessing the ' 'user menu at the top-right corner of this page.', fail_silently=True)
f264cbe12ec190255d0fe7fb1219395eaff22bc8
743c3b0cd875fe294fc15b96de678c93ecd8ab27
/foruser/myuser/urls.py
838fc3a9e5c5fdfd03f5f634b2ec6fe3d8967638
[]
no_license
yudian03/LOGIN
f3cc760ee25a34ce7b939de5475fc7f7097b59a3
3db6278bc15be6244187d9744f3bdf562c7d409f
refs/heads/master
2020-05-01T04:30:17.146513
2019-03-23T10:51:11
2019-03-23T10:51:11
177,276,374
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
from django.urls import path from . import views urlpatterns = [ path('register/',views.register), path('login/',views.login), path('home/',views.home), path('logout/',views.logout) ]
79ed0714d0c43d90dfdd81ec91c54c3b87f9b879
dbf65af61e62e9617d2bbc35fba625e005aed863
/ir-wuggy/dtw/plot/plot-dtw-profile.py
a99b386410fe9fae83ad6fbbda046e4a8bda24f5
[]
no_license
chorowski-lab/zs2021
bef261073d8a26bee62576ccf107e163ecf9fe89
bbcb97903aeeed861376a336a8af8f74a0d03ded
refs/heads/main
2023-06-19T01:01:51.904899
2021-04-08T19:52:34
2021-04-08T19:52:34
345,989,211
2
0
null
null
null
null
UTF-8
Python
false
false
5,993
py
# %% import numpy as np import os import pathlib import argparse import pickle import yaml import pandas import matplotlib.pyplot as plt # %% parser = argparse.ArgumentParser(description='Compute the pseudo log-proba of a list of sentences') parser.add_argument('config', type=str, help='Location of the .yaml config file') parser.add_argument('--gold', type=pathlib.Path, default=pathlib.Path('/pio/data/zerospeech2021/dataset/lexical/dev/gold.csv'), help='Location of the gold.csv file') args = parser.parse_args() # %% class Args: config = pathlib.Path('/pio/scratch/1/i290956/zs2021/lexical/configurations/train-960/train-960-dtw-dm-ext.yaml') gold = pathlib.Path('/pio/data/zerospeech2021/dataset/lexical/dev/gold.csv') q = 500 args = Args() # %% with open(args.config) as config_file: config = yaml.full_load(config_file) class Dataset: def __init__(self, path): self.data = [] self.filenames = [] self.filename_to_id = dict() self.n = 0 for line in open(path, 'r', encoding='utf8'): fname, sdesc = line.strip().split() self.filenames.append(fname) self.filename_to_id[fname] = self.n d = list(map(int, sdesc.split(','))) self.data.append(np.array(d, dtype='int32')) self.n += 1 self.filenames = np.array(self.filenames) self.maxlength = max(len(sample) for sample in self.data) def __getitem__(self, i): return self.filenames[i], self.data[i] def __len__(self): return self.n def get(self, fname): return self.data[self.filename_to_id[fname]] class Results: def __init__(self, path): self.filename_to_id = dict() self.n = 0 self.filenames = [] self.costs = [] ids = [int(fname.split('-')[1]) for fname in os.listdir(path) if fname.startswith('dev-')] n = max(ids) if len(set(range(1, n+1)) - set(ids)) > 0: raise ValueError(f'some dev-i files are missing') for i in range(1, n+1): for line in open(path / f'dev-{i}', 'r'): fname, costs, Fnames = line.strip().split() costs = list(map(float, costs[1:-1].split(','))) Fnames = list(map(lambda x: x[1:-1], Fnames[1:-1].split(','))) self.costs.append(costs) self.filenames.append(Fnames) self.filename_to_id[fname] = self.n self.n += 1 def get(self, fname): return self.costs[self.filename_to_id[fname]], self.filenames[self.filename_to_id[fname]] def dtw_ext(s, t, d): n, m = len(t), len(s) DTW = np.ones((2, m)) * 100000 costpath = np.zeros((2, m, n)) started = np.vstack((np.arange(m), np.zeros(m, dtype='int32'))) DTW[0, :] = 0 q = 1 for i in range(n): cost = s[0] != t[i] if d is None else d[s[0], t[i]] DTW[q, 0] = DTW[1-q,0] + cost if i > 0: costpath[q, 0, :i] = costpath[1-q,0,:i] costpath[q, 0, i] = cost started[1-q,0] = started[q,0] for j in range(1, m): cost = s[j] != t[i] if d is None else d[s[j], t[i]] costpath[q, j, i] = cost if DTW[1-q,j-1] <= DTW[1-q, j] and DTW[1-q,j-1] <= DTW[q, j-1]: DTW[q,j] = cost + DTW[1-q,j-1] costpath[q, j, :i] = costpath[1-q,j-1,:i] started[q,j] = started[1-q,j-1] elif DTW[1-q,j] <= DTW[1-q, j-1] and DTW[1-q,j] <= DTW[q,j-1]: DTW[q,j] = cost + DTW[1-q,j] costpath[q, j, :i] = costpath[1-q,j,:i] started[q,j] = started[1-q,j] else: DTW[q,j] = cost + DTW[q,j-1] costpath[q, j, :i] = costpath[q,j-1,:i] started[q,j] = started[q,j-1] q = 1 - q bi = np.argmin(DTW[1-q,:]) return DTW[1-q,bi], costpath[1-q,bi,:], started[1-q,bi], bi def load_entropy(): return pickle.load(open('/pio/scratch/2/mstyp/wav2vec/experiments/zerospeech_lm/lstm_3l_qt/entropy/12/entropy', 'rb')) # %% trainPath = pathlib.Path(config["trainFile"]) if "trainFile" in config else pathlib.Path(config["trainPath"]) / 'quantized_outputs.txt' testPath = pathlib.Path(config["testFile"]) if "testFile" in config else pathlib.Path(config["testPath"]) / 'quantized_outputs.txt' outPath = pathlib.Path(config['outPath']).parents[0] trainset = Dataset(trainPath) testset = Dataset(testPath) results = Results(outPath) gold = pandas.read_csv(args.gold, header=0).astype({'frequency': pandas.Int64Dtype()}) distMatrix = np.load(config['method']['distMatrix'], allow_pickle=True) entropy = load_entropy() # %% distMatrix = np.load('/pio/scratch/1/i290956/zs2021/lexical/dm/distMatrix1.npy') def gen_profile(fname, offset): testsample = testset.get(fname) costs, Fnames = results.get(fname) trainsample = trainset.get(Fnames[0]) c, p, a, b = dtw_ext(trainsample, testsample, distMatrix) ent = entropy[Fnames[0]] # return ent[a-offset:b+1+offset], offset - max(offset-a, 0), b+1-a return p w_colors = ['#00600f', '#6abf69', '#005b9f', '#5eb8ff'] nw_colors = ['#9a0007', '#ff6659', '#bb4d00', '#ffad42'] def generate_plots(id): samples = gold[gold['id'] == id] words = samples[samples['correct'] == 1]['filename'].to_numpy() nonwords = samples[samples['correct'] == 0]['filename'].to_numpy() offset = 50 words_profiles = [gen_profile(fname, offset) for fname in words] nonwords_profiles = [gen_profile(fname, offset) for fname in nonwords] plt.figure(figsize=(16,9)) plt.plot(np.arange(len(words_profiles[0])), words_profiles[0], color=w_colors[0]) plt.plot(np.arange(len(nonwords_profiles[0])), nonwords_profiles[0], color=nw_colors[0]) # plt.axvspan(off, off+lgh, facecolor='0.2', alpha=0.3) plt.xlabel('Time') plt.ylabel('Cost') plt.plot() # plt.close() generate_plots(5) # %%
1b1ab3e24221ed687e2f7b52f6c610a97ea72193
2a4aced6789a09b64caead20fd231ed104f4583b
/capture/ximea-usb3/python/openCV/example_openCV_video.py
d5ce3a8d0bd1f3d22183a1ff0102b73f72fcc20d
[ "MIT" ]
permissive
ruedijc/jetson-cam-utils
8dd2a8fa48b390b940b938c9a0519df5599ef63d
29fb26892cc150f9679ad7d5c3220e38f733ab04
refs/heads/main
2023-04-27T12:22:09.079527
2021-05-06T16:54:33
2021-05-06T16:54:33
329,092,484
3
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
from ximea import xiapi import cv2 import time #create instance for first connected camera cam = xiapi.Camera() #start communication print('Opening first camera...') cam.open_device() #settings cam.set_exposure(20000) #create instance of Image to store image data and metadata img = xiapi.Image() #start data acquisition print('Starting data acquisition...') cam.start_acquisition() try: print('Starting video. Press CTRL+C to exit.') t0 = time.time() while True: #get data and pass them from camera to img cam.get_image(img) #create numpy array with data from camera. Dimensions of the array are #determined by imgdataformat data = img.get_image_data_numpy() #show acquired image with time since the beginning of acquisition font = cv2.FONT_HERSHEY_SIMPLEX text = '{:5.2f}'.format(time.time()-t0) cv2.putText( data, text, (900,150), font, 4, (255, 255, 255), 2 ) cv2.imshow('XiCAM example', data) cv2.waitKey(1) except KeyboardInterrupt: cv2.destroyAllWindows() #stop data acquisition print('Stopping acquisition...') cam.stop_acquisition() #stop communication cam.close_device() print('Done.')
a955aa2adcf7d72b65e3af9165bf022c5a057ec0
9d29b302cca89a4ad816f99f1d3c708862dd4c0b
/client.py
73c58c8f77fdac730b4bde122ffd76801a4ac751
[]
no_license
Manoj-M-97/Flight-Booking-System
a28c57c770ea06cc4c8704dbddc2740ec3d86fcd
649d74c63d73a24a3fd97406008903f806ffa34b
refs/heads/master
2020-03-22T04:02:38.788029
2018-07-02T16:48:21
2018-07-02T16:48:21
139,468,945
0
0
null
null
null
null
UTF-8
Python
false
false
1,361
py
# Python program to implement client side of chat room. import socket import select import sys server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if len(sys.argv) != 3: print "Correct usage: script, IP address, port number" exit() IP_address = str(sys.argv[1]) Port = int(sys.argv[2]) server.connect((IP_address, Port)) cl="CLOSE" while True: # maintains a list of possible input streams sockets_list = [sys.stdin, server] """ There are two possible input situations. Either the user wants to give manual input to send to other people, or the server is sending a message to be printed on the screen. Select returns from sockets_list, the stream that is reader for input. So for example, if the server wants to send a message, then the if condition will hold true below.If the user wants to send a message, the else condition will evaluate as true""" read_sockets,write_socket, error_socket = select.select(sockets_list,[],[]) for socks in read_sockets: if socks == server: message = socks.recv(2048) if (message.endswith(cl)): print "Connection Terminated" exit() print message else: message = sys.stdin.readline() server.send(message) sys.stdout.flush() server.close()
c3b2ccf3279e3d6c131b50d1a8a089fc8ee00b32
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/BizListDataInfo.py
5f874dfae528b4b6592ad1306c025ec59eb0239e
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,206
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class BizListDataInfo(object): def __init__(self): self._code = None self._name = None @property def code(self): return self._code @code.setter def code(self, value): self._code = value @property def name(self): return self._name @name.setter def name(self, value): self._name = value def to_alipay_dict(self): params = dict() if self.code: if hasattr(self.code, 'to_alipay_dict'): params['code'] = self.code.to_alipay_dict() else: params['code'] = self.code if self.name: if hasattr(self.name, 'to_alipay_dict'): params['name'] = self.name.to_alipay_dict() else: params['name'] = self.name return params @staticmethod def from_alipay_dict(d): if not d: return None o = BizListDataInfo() if 'code' in d: o.code = d['code'] if 'name' in d: o.name = d['name'] return o
127f14137ff8c69323cb99a5ec67d900927cca5e
4b17225bc3860419edb6a8818bbac82e6b36e79d
/employee_tracker/settings.py
ce1b5d600785fc29625c723fdb419d1d986f35e8
[]
no_license
argon2008-aiti/employee_tracker
8ab45ee727e07b242d6ac3fb446ca5c1b9649bb0
5be7c3bb323f3b350d26df4d4813b6b071324277
refs/heads/master
2021-01-15T13:00:03.644233
2016-10-06T16:42:28
2016-10-06T16:42:28
35,000,045
0
0
null
null
null
null
UTF-8
Python
false
false
3,444
py
""" Django settings for employee_tracker project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'cdkxms9u50qs@ig3j3s771u55ntlvxp2h8pijlx2rr83ms)#7q' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [".herokuapp.com"] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'south', 'monitor', 'leaflet', 'djgeojson', 'django_ajax', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', #'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'employee_tracker.urls' WSGI_APPLICATION = 'employee_tracker.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # for graphviz GRAPH_MODELS = { } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ # static file directories STATICFILES_DIRS = ( ('assets', 'static'), ) # base url at which static files are served STATIC_URL = '/assets/' STATIC_ROOT = os.path.join(BASE_DIR,'assets') LOGIN_URL = '/login' STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.eggs.Loader', ) # Template files (html+django templates) TEMPLATE_DIRS = ( os.path.join(BASE_DIR, "templates"), ) # Production code if DEBUG==False: #parse database configuration from $DATABASE_URL import dj_database_url DATABASES['default'] = dj_database_url.config() # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Allow all host headers ALLOWED_HOSTS = ['*'] # Static asset configuration import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) STATIC_ROOT = 'staticfiles' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), )
9b104ec52e6584f2efd846c1fb6016f0c5fbebfd
f3a714a064b12ce957f496c97200d5b0c31f631e
/remove_current.py
de3697d60276efd9f98f89abb276c2b081da2181
[]
no_license
krachbumm3nte/playlistAdder
af06d6d0de731f42cb68cf5acf7d29a809d13578
7caac884101b59354a0aa2928b9f8089a3c0cdb9
refs/heads/master
2020-05-04T01:32:07.552438
2019-11-30T18:09:52
2019-11-30T18:09:52
178,907,025
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
from functools import partial import config from adder_utils import * def removetool(master, list_id, list_name, song_id, spotipy_instance): removefunc = partial(remove_song_from, song_id, list_id, spotipy_instance, list_name) query, query_label = continue_query(querytext=f"remove this song from {list_name}?", master=master, cancel_func=sys.exit, continue_func=removefunc) query.pack() query.focus_set() def remove_song_from(song_id, list_id, spotipy_instance, list_name, event=None): spotipy_instance.user_playlist_remove_all_occurrences_of_tracks(user=config.user, playlist_id=list_id, tracks=[song_id]) print(f'removed song from {list_name}') sys.exit()
[ "johannes.gmx.de" ]
johannes.gmx.de
98616241fbdcb931bae105f55cdfe34251a2d974
26408f11b938a00f8b97a3e195095a45a12dc2c7
/sneeze/Player.py
e1aecbdfcc7127f7257b5d20b68035b164acb822
[]
no_license
cz-fish/sneeze-dodger
a7ea25e9267d408e8f46a9fb7a988d52dca8bd8e
4fd333345d1f7d82c92ddcb15f18077362766844
refs/heads/master
2022-07-07T01:39:06.162125
2020-05-18T08:01:57
2020-05-18T08:01:57
255,090,774
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
from sneeze.Actor import Actor from sneeze.Sprite import Sprite from sneeze.Types import * class Player(Actor): def __init__(self): super().__init__() self.sprite = Sprite.load('guy') def move(self, inputs: Inputs, collision) -> None: self.update_speed(inputs.xvalue, inputs.yvalue) new_pos = collision(self.pos, self.speed_vec) if new_pos == self.pos: self.speed_vec = Pos(0, 0) self.move_to(new_pos) # walk phase; reset if not moving if abs(self.speed_vec.x) < 2 and abs(self.speed_vec.y) < 2: self.animation = Animation('idle', 0) else: key, phase = self.animation if key == 'walk': self.animation = Animation(key, phase + 1) else: self.animation = Animation('walk', 0)
0de2dcdd25e4cabb3723ac7cb45dbf917637dc3b
909b93b8df2a79a2ba7567587604d764a34281fc
/bot/app_streamer.py
9f885eb613ee7ad8498df4d050264a4778119448
[]
no_license
ArtemZaZ/PultBot
f321282534c02789ac5b868844da15fe4614b9ac
d23b867eb7eda78b006fa32f503148da2a4d6d7f
refs/heads/master
2020-03-07T05:52:29.748385
2019-12-06T12:23:14
2019-12-06T12:23:14
127,307,917
0
1
null
null
null
null
UTF-8
Python
false
false
13,613
py
import gi gi.require_version('Gst', '1.0') from gi.repository import Gst import sys import threading import logging import numpy as np from bot.common import * HOST = '127.0.0.1' RTP_PORT = 5000 class AppSrcStreamer(object): def __init__(self, video=VIDEO_MJPEG, resolution=(640, 480), framerate=30, onFrameCallback=None, useOMX=False, scale=1): self._host = HOST self._port = RTP_PORT self._width = resolution[0] self._height = resolution[1] self._scaleWidth = int(self._width * scale) self._scaleHeight = int(self._height * scale) self._needFrame = threading.Event() # флаг, необходимо сформировать OpenCV кадр self.playing = False self.paused = False self._onFrameCallback = None if video != VIDEO_RAW: if (not onFrameCallback is None) and callable(onFrameCallback): self._onFrameCallback = onFrameCallback # обработчик события OpenCV кадр готов # инициализация Gstreamer Gst.init(None) # создаем pipeline self._make_pipeline(video, self._width, self._height, framerate, useOMX, scale) self.bus = self.pipeline.get_bus() self.bus.add_signal_watch() self.bus.connect('message', self._onMessage) self.ready_pipeline() def _make_pipeline(self, video, width, height, framerate, useOMX, scale): # Создание GStreamer pipeline self.pipeline = Gst.Pipeline() self.rtpbin = Gst.ElementFactory.make('rtpbin') self.rtpbin.set_property('latency', 200) self.rtpbin.set_property('drop-on-latency', True) # отбрасывать устаревшие кадры self.rtpbin.set_property('buffer-mode', 4) self.rtpbin.set_property('ntp-time-source', 3) # источник времени clock-time self.rtpbin.set_property('ntp-sync', True) self.rtpbin.set_property('rtcp-sync-send-time', False) # настраиваем appsrc self.appsrc = Gst.ElementFactory.make('appsrc') self.appsrc.set_property('is-live', True) if video == VIDEO_H264: videoStr = 'video/x-h264' elif video == VIDEO_MJPEG: videoStr = 'image/jpeg' elif video == VIDEO_RAW: videoStr = 'video/x-raw,format=RGB' capstring = videoStr + ',width=' + str(width) \ + ',height=' + str(height) + ',framerate=' \ + str(framerate) + '/1' srccaps = Gst.Caps.from_string(capstring) self.appsrc.set_property('caps', srccaps) # print('RPi camera GST caps: %s' % capstring) if video == VIDEO_RAW: self.videoconvertRAW = Gst.ElementFactory.make('videoconvert') self.videoconvertRAWFilter = Gst.ElementFactory.make('capsfilter', 'videoconvertfilter') videoconvertCaps = Gst.caps_from_string( 'video/x-raw,format=I420') # формат данных для преобразования в JPEG self.videoconvertRAWFilter.set_property('caps', videoconvertCaps) self.jpegenc = Gst.ElementFactory.make('jpegenc') # self.jpegenc = Gst.ElementFactory.make('vaapijpegenc') # self.jpegenc = Gst.ElementFactory.make('avenc_ljpeg') # jpegencCaps = Gst.Caps.from_string('video/x-raw,format=I420') # self.jpegenc.set_property('caps', jpegencCaps) if video == VIDEO_H264: parserName = 'h264parse' else: parserName = 'jpegparse' self.parser = Gst.ElementFactory.make(parserName) if video == VIDEO_H264: payloaderName = 'rtph264pay' # rtph264pay.set_property('config-interval', 10) # payloadType = 96 else: payloaderName = 'rtpjpegpay' # payloadType = 26 self.payloader = Gst.ElementFactory.make(payloaderName) # payloader.set_property('pt', payloadType) # For RTP Video self.udpsink_rtpout = Gst.ElementFactory.make('udpsink', 'udpsink_rtpout') # self.udpsink_rtpout.set_property('host', self._host) # self.udpsink_rtpout.set_property('port', self._port) self.udpsink_rtpout.set_property('sync', False) self.udpsink_rtpout.set_property('async', False) self.udpsink_rtcpout = Gst.ElementFactory.make('udpsink', 'udpsink_rtcpout') # self.udpsink_rtcpout.set_property('host', self._host) # self.udpsink_rtcpout.set_property('port', self._port + 1) self.udpsink_rtcpout.set_property('sync', False) self.udpsink_rtcpout.set_property('async', False) self.udpsrc_rtcpin = Gst.ElementFactory.make('udpsrc', 'udpsrc_rtcpin') srcCaps = Gst.Caps.from_string('application/x-rtcp') # self.udpsrc_rtcpin.set_property('port', self._port + 5) self.udpsrc_rtcpin.set_property('caps', srcCaps) # Задаем IP адресс и порт self.setHost(self._host) self.setPort(self._port) if not self._onFrameCallback is None: self.tee = Gst.ElementFactory.make('tee') self.rtpQueue = Gst.ElementFactory.make('queue', 'rtp_queue') self.frameQueue = Gst.ElementFactory.make('queue', 'frame_queue') if video == VIDEO_H264: if useOMX: decoderName = 'omxh264dec' # отлично работает загрузка ЦП 200% else: decoderName = 'avdec_h264' # хреново работает загрузка ЦП 120% # decoder = Gst.ElementFactory.make('avdec_h264_mmal') #не заработал else: if useOMX: decoderName = 'omxmjpegdec' # else: decoderName = 'avdec_mjpeg' # # decoder = Gst.ElementFactory.make('jpegdec') # self.decoder = Gst.ElementFactory.make(decoderName) self.videoconvert = Gst.ElementFactory.make('videoconvert') if scale != 1: self.videoscale = Gst.ElementFactory.make('videoscale') self.videoscaleFilter = Gst.ElementFactory.make('capsfilter', 'scalefilter') videoscaleCaps = Gst.caps_from_string('video/x-raw, width=%d, height=%d' % ( self._scaleWidth, self._scaleHeight)) # формат данных после изменения размера self.videoscaleFilter.set_property('caps', videoscaleCaps) ### создаем свой sink для перевода из GST в CV self.appsink = Gst.ElementFactory.make('appsink') cvCaps = Gst.caps_from_string('video/x-raw, format=RGB') # формат принимаемых данных self.appsink.set_property('caps', cvCaps) self.appsink.set_property('sync', False) # appsink.set_property('async', False) self.appsink.set_property('drop', True) self.appsink.set_property('max-buffers', 5) self.appsink.set_property('emit-signals', True) self.appsink.connect('new-sample', self._newSample) # добавляем все элементы в pipeline elemList = [self.appsrc, self.rtpbin, self.parser, self.payloader, self.udpsink_rtpout, self.udpsink_rtcpout, self.udpsrc_rtcpin] if video == VIDEO_RAW: elemList.extend([self.videoconvertRAW, self.videoconvertRAWFilter, self.jpegenc]) if not self._onFrameCallback is None: elemList.extend([self.tee, self.rtpQueue, self.frameQueue, self.decoder, self.videoconvert, self.appsink]) if scale != 1: elemList.extend([self.videoscale, self.videoscaleFilter]) for elem in elemList: if elem is None: logging.critical('GST elements could not be null') sys.exit(1) self.pipeline.add(elem) # соединяем элементы if video == VIDEO_RAW: ret = self.appsrc.link(self.videoconvertRAW) ret = ret and self.videoconvertRAW.link(self.videoconvertRAWFilter) ret = ret and self.videoconvertRAWFilter.link(self.jpegenc) ret = ret and self.jpegenc.link(self.parser) else: ret = self.appsrc.link(self.parser) # соединяем элементы rtpbin ret = ret and self.payloader.link_pads('src', self.rtpbin, 'send_rtp_sink_0') ret = ret and self.rtpbin.link_pads('send_rtp_src_0', self.udpsink_rtpout, 'sink') ret = ret and self.rtpbin.link_pads('send_rtcp_src_0', self.udpsink_rtcpout, 'sink') ret = ret and self.udpsrc_rtcpin.link_pads('src', self.rtpbin, 'recv_rtcp_sink_0') if self._onFrameCallback is None: # трансляция без onFrameCallback, т.е. создаем одну ветку ret = ret and self.parser.link(self.payloader) else: # трансляция с передачей кадров в onFrameCallback, создаем две ветки ret = ret and self.parser.link(self.tee) # 1-я ветка RTP ret = ret and self.rtpQueue.link(self.payloader) # 2-я ветка onFrame ret = ret and self.frameQueue.link(self.decoder) if scale != 1: ret = ret and self.decoder.link(self.videoscale) ret = ret and self.videoscale.link(self.videoscaleFilter) ret = ret and self.videoscaleFilter.link(self.videoconvert) else: ret = ret and self.decoder.link(self.videoconvert) ret = ret and self.videoconvert.link(self.appsink) # подключаем tee к rtpQueue teeSrcPadTemplate = self.tee.get_pad_template('src_%u') rtpTeePad = self.tee.request_pad(teeSrcPadTemplate, None, None) rtpQueuePad = self.rtpQueue.get_static_pad('sink') ret = ret and (rtpTeePad.link(rtpQueuePad) == Gst.PadLinkReturn.OK) # подключаем tee к frameQueue frameTeePad = self.tee.request_pad(teeSrcPadTemplate, None, None) frameQueuePad = self.frameQueue.get_static_pad('sink') ret = ret and (frameTeePad.link(frameQueuePad) == Gst.PadLinkReturn.OK) if not ret: logging.critical('GST elements could not be linked') sys.exit(1) def setHost(self, host): self._host = host self.udpsink_rtpout.set_property('host', host) self.udpsink_rtcpout.set_property('host', host) def setPort(self, port): self._port = port self.udpsink_rtpout.set_property('port', port) self.udpsink_rtcpout.set_property('port', port + 1) self.udpsrc_rtcpin.set_property('port', port + 5) def _newSample(self, sink): # callback функция, вызываемая при каждом приходящем кадре if self._needFrame.is_set(): # если выставлен флаг нужен кадр self._needFrame.clear() # сбрасываем флаг sample = sink.emit('pull-sample') sampleBuff = sample.get_buffer() data = np.ndarray( (self._scaleHeight, self._scaleWidth, 3), buffer=sampleBuff.extract_dup(0, sampleBuff.get_size()), dtype=np.uint8) # вызываем обработчик в качестве параметра передаем массив данных, ширина и высота кадра # формат цвета RGB self._onFrameCallback(data, self._scaleWidth, self._scaleHeight) del sample return Gst.FlowReturn.OK def _onMessage(self, bus, message): # print('Message: %s' % str(message.type)) t = message.type if t == Gst.MessageType.EOS: logging.info('Received EOS-Signal') self.stop_pipeline() elif t == Gst.MessageType.ERROR: error, debug = message.parse_error() logging.error('Received Error-Signal #%u: %s', error.code, debug) self.null_pipeline() # else: # print('Message: %s' % str(t)) def play_pipeline(self): self.pipeline.set_state(Gst.State.PLAYING) logging.info('GST pipeline PLAYING') logging.info('Streaming RTP on %s:%d', self._host, self._port) def stop_pipeline(self): self.pause_pipeline() self.ready_pipeline() def ready_pipeline(self): self.pipeline.set_state(Gst.State.READY) logging.info('GST pipeline READY') def pause_pipeline(self): self.pipeline.set_state(Gst.State.PAUSED) logging.info('GST pipeline PAUSED') def null_pipeline(self): self.pipeline.set_state(Gst.State.NULL) logging.info('GST pipeline NULL') def write(self, s): gstBuff = Gst.Buffer.new_wrapped(s) if not (gstBuff is None): self.appsrc.emit('push-buffer', gstBuff) def flush(self): self.stop_pipeline() def frameRequest(self): # выставляем флаг запрос кадра, возвращает True, если запрос кадра удался if not self._needFrame.is_set(): self._needFrame.set() return True return False
92c2d34affd7b5ef8b641035988995b7157e86b1
ecb9a783694300b2ea5f77388b2d314995680808
/src/iter.py
3c97589dee843e70e392c3c7af4c7b23240a0335
[]
no_license
yaoyuanyy/python_demo
0ee5520027d2c406e320f25a0327b7a81155bab8
5a50fe900e1a254a17bbb623cb2fd9f8fbdb7079
refs/heads/master
2021-01-17T16:08:30.412766
2017-02-24T06:39:59
2017-02-24T06:39:59
83,010,359
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
import sys list = [1, 2, 3] it = iter(list) print(it) while True: try: print(next(it)) except StopIteration: sys.exit()
0df491aaf04bd5efd3e1d19660af119f72bb10a1
93a959b0458bcdb60d33a4504f483078a78a56b6
/CwnGraph/cwn_annotator.py
7b58fe2e65d190fd9571cc70e6a5695b91cfcc2f
[]
no_license
kylecomtw/CwnGraph
a82d763a645c3342502274e6760cb63593f23d42
86ddb17de548a61c57f925fb2d783467431db18b
refs/heads/master
2021-10-24T10:00:19.913420
2019-03-25T04:45:36
2019-03-25T04:45:36
84,843,165
3
2
null
null
null
null
UTF-8
Python
false
false
5,050
py
import os import json from datetime import datetime from . import cwnio from . import annot_merger from .cwn_types import * from .cwn_graph_utils import CwnGraphUtils class CwnAnnotator: PREFIX = "annot/cwn_annot" def __init__(self, cgu, session_name): self.parent_cgu = cgu self.name = session_name self.V = {} self.E = {} self.meta = { "session_name": session_name, "timestamp": "", "serial": 0, "base_hash": cgu.get_hash() } self.load(session_name) def load(self, name): fpath = f"{CwnAnnotator.PREFIX}_{name}.json" if os.path.exists(fpath): print("loading saved session from ", fpath) self.meta, self.V, self.E = \ cwnio.load_annot_json(fpath) base_hash = self.meta.get("base_hash", "") if base_hash and base_hash != self.parent_cgu.get_hash(): print("WARNING: loading with a different base image") return True else: print("Creating new session", name) return False def save(self, with_timestamp=False): name = self.meta["session_name"] timestamp = datetime.now().strftime("%y%m%d%H%M%S") self.meta["snapshot"] = timestamp cwnio.ensure_dir("annot") if with_timestamp: cwnio.dump_annot_json(self.meta, self.V, self.E, f"{CwnAnnotator.PREFIX}_{name}_{timestamp}.json") else: cwnio.dump_annot_json(self.meta, self.V, self.E, f"{CwnAnnotator.PREFIX}_{name}.json") def new_node_id(self): serial = self.meta.get("serial", 0) + 1 session_name = self.meta.get("session_name", "") self.meta["serial"] = serial return f"{session_name}_{serial:06d}" def create_lemma(self, lemma): node_id = self.new_node_id() new_lemma = CwnLemma(node_id, self) new_lemma.lemma = lemma self.set_lemma(new_lemma) return new_lemma def create_sense(self, definition): node_id = self.new_node_id() new_sense = CwnSense(node_id, self) new_sense.definition = definition self.set_sense(new_sense) return new_sense def create_relation(self, src_id, tgt_id, rel_type): if not self.get_node_data(src_id): raise ValueError(f"{src_id} not found") if not self.get_node_data(tgt_id): raise ValueError(f"{tgt_id} not found") edge_id = (src_id, tgt_id) new_rel = CwnRelation(edge_id, self) new_rel.relation_type = rel_type self.set_relation(new_rel) return new_rel def set_lemma(self, cwn_lemma): self.V[cwn_lemma.id] = cwn_lemma.data() def set_sense(self, cwn_sense): self.V[cwn_sense.id] = cwn_sense.data() def set_relation(self, cwn_relation): self.E[cwn_relation.id] = cwn_relation.data() def remove_lemma(self, cwn_lemma): cwn_lemma.action = "delete" self.set_lemma(cwn_lemma) def remove_sense(self, cwn_sense): cwn_sense.action = "delete" self.set_sense(cwn_sense) def remove_relation(self, cwn_relation): cwn_relation.action = "delete" self.set_relation(cwn_relation) def find_glyph(self, instr): return self.parent_cgu.find_glyph(instr) def find_senses(self, lemma="", definition="", examples=""): cgu = CwnGraphUtils(self.V, self.E) senses = cgu.find_senses(lemma, defintion, examples) parent_senses = self.parent_cgu.find_senses(lemma, definition, examples) ret = annot_merger.merge(senses, parent_senses, self) return ret def find_lemmas(self, instr_regex): cgu = CwnGraphUtils(self.V, self.E) lemmas = cgu.find_lemma(instr_regex) parent_lemmas = self.parent_cgu.find_lemma(instr_regex) ret = annot_merger.merge(lemmas, parent_lemmas, self) return ret def find_edges(self, node_id, is_directed = True): cgu = CwnGraphUtils(self.V, self.E) edges = cgu.find_edges(node_id, is_directed) parent_edges = self.parent_cgu.find_edges(node_id, is_directed) ret = annot_merger.merge(edges, parent_edges, self) return ret def get_node_data(self, node_id): node_data = self.V.get(node_id, {}) if not node_data: node_data = self.parent_cgu.get_node_data(node_id) return node_data def get_edge_data(self, edge_id): edge_data = self.E.get(edge_id, {}) if not edge_data: edge_data = self.parent_cgu.get_edge_data(edge_id) return edge_data def connected(self, node_id, is_directed = True, maxConn=100, sense_only=True): raise NotImplementedError("connected() is not implemented in CwnAnnotator")
99c78b4857e3bb376f9341fe3607dec6bb56d5d2
85bfd24a172bb4b35ff373599fca4096c9c4c529
/testinfra_tim/test_service.py
0e7f0d3101898495b917efb0ccfa88dfcdce58d5
[ "MIT" ]
permissive
scaleway/tim
503a0e7726da8e97636a09e5dcaa792bbd701a48
6bfa6113fdd2b18b1facee47353643544457f1f4
refs/heads/master
2020-12-02T07:57:05.616645
2017-09-08T15:29:50
2017-09-08T15:39:15
96,750,851
1
1
null
null
null
null
UTF-8
Python
false
false
2,419
py
''' Copyright (C) 2017 Scaleway. All rights reserved. Use of this source code is governed by a MIT-style license that can be found in the LICENSE file. ''' from functools import reduce from .tooling import yaml_params, listize, map_sum, params_warn def _get_services(params, running=True, enabled=True): """ This generator yields services names and expected states from an input tree. """ if isinstance(params, str): yield (params, running, enabled) elif isinstance(params, (list, tuple)): for subparam in params: yield from _get_services(subparam) elif isinstance(params, dict): running = params.pop('running', running) enabled = params.pop('enabled', enabled) get_name_attr = lambda name: listize(params.pop(name, [])) for subparam in map_sum(get_name_attr, ('name', 'names',)): yield from _get_services(subparam, running, enabled) params_warn(params) else: raise RuntimeError('service test takes a dict, list' ' or string as parameter') @yaml_params def test_service(host, params): """ Test the status of one or more services. By default, services are required to be enabled and running. It is meant to be very flexible and should accept any reasonable input. It even features inheritance :) You can use nested lists and dictionnaries to list service names. The tested state of the service is running and enabled by default. This behavior can be changed using the 'running' and 'enabled' attributes of dictionnarires. Child services are read from the name and names keys. Example: >> - service: >> names: >> - running_enabled >> - running_enabled >> running: true >> enabled: true >> >> - service: >> - running_enabled >> - running_enabled >> >> - service: running_enabled >> >> - service: >> - names: >> - stopped_disabled >> - name: running_disabled >> running: true >> running: false >> enabled: false >> - running_enabled """ for name, running, enabled in _get_services(params): service = host.service(name) assert name and service.is_running == running assert name and service.is_enabled == enabled
bd171b67cb9363e6bad907a04d5ab5e0bc909104
c16d80fa4837ca849056dc1e66191825037969ed
/gptneo_piqa.py
d804ccdcc15115883cf1b8dceb7408a4520b8371
[]
no_license
vivekvkashyap/gpt2-commonsens
c289819e440b52dfb7390c614494cd85437cd1c3
f5d884bcf27c2bd2cb3cf8fa55f6151d12e17b9d
refs/heads/main
2023-06-25T17:37:08.203910
2021-07-27T05:06:33
2021-07-27T05:06:33
389,845,411
0
0
null
null
null
null
UTF-8
Python
false
false
9,707
py
import jax print(jax.local_device_count()) import jax.numpy as jnp import flax import flax.linen as nn from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key from flax.training import train_state from flax.metrics.tensorboard import SummaryWriter from flax.training import checkpoints from datasets import load_dataset,load_metric from transformers import GPT2Tokenizer from tqdm import tqdm import logging import optax import math from pathlib import Path from typing import Callable from itertools import chain from flax.metrics import tensorboard from datasets import load_dataset,load_metric from transformers import GPTNeoConfig,GPT2Tokenizer from model_file import FlaxGPTNeoForMultipleChoice logger = logging.getLogger() logger.setLevel(logging.INFO) tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') dataset=load_dataset('piqa') num_choices=2 def preprocess(example): example['first_sentence']=[example['goal']]*num_choices example['second_sentence']=[example[f'sol{i}'] for i in [1,2]] return example train_dataset=dataset['train'].map(preprocess) validation_dataset=dataset['validation'].map(preprocess) test_dataset=dataset['test'].map(preprocess) len_train_dataset=16113 len_validation_dataset=1838 len_test_dataset=3084 train_dataset=train_dataset.select(range(len_train_dataset)) test_dataset=test_dataset.select(range(len_test_dataset)) validation_dataset=validation_dataset.select(range(len_validation_dataset)) remove_col=train_dataset.column_names def tokenize(examples): tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') tokenized_examples['labels']=int(examples['label']) return tokenized_examples train_dataset=train_dataset.map(tokenize) validation_dataset=validation_dataset.map(tokenize) train_dataset=train_dataset.remove_columns(remove_col) validation_dataset=validation_dataset.remove_columns(remove_col) test_dataset=test_dataset.remove_columns(remove_col) per_device_batch_size=4 seed=0 num_train_epochs=3 learning_rate=2e-5 model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1)) total_batch_size = per_device_batch_size * jax.local_device_count() print('The overall batch size (both for training and eval) is', total_batch_size) num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=0, transition_steps=num_train_steps) class TrainState(train_state.TrainState): logits_function:Callable=flax.struct.field(pytree_node=False) loss_function:Callable=flax.struct.field(pytree_node=False) def adamw(weight_decay): return optax.adafactor(learning_rate=learning_rate_function) decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight']) def traverse(function): def mask(data): flat=flax.traverse_util.flatten_dict(data) return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()}) return mask gradient_transformation=optax.chain( optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))), optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path)))) def loss_function(logits,labels): logits=flax.linen.log_softmax(logits) xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices)) return jnp.mean(xentropy) def eval_function(logits): return logits.argmax(-1) state=TrainState.create(apply_fn=model.__call__, params=model.params, tx=gradient_transformation, logits_function=eval_function, loss_function=loss_function) def train_step(state,batch,dropout_rng): targets=batch.pop("labels") dropout_rng,new_dropout_rng=jax.random.split(dropout_rng) def loss_function(params): logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0] loss=state.loss_function(logits,targets) return loss grad_function=jax.value_and_grad(loss_function) loss,grad=grad_function(state.params) grad=jax.lax.pmean(grad,"batch") new_state=state.apply_gradients(grads=grad) #Added. logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0] accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets) metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch") return new_state,metrics,new_dropout_rng parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) def eval_step(state, batch): targets=batch.pop('labels') logits = state.apply_fn(**batch, params=state.params, train=False) loss=state.loss_function(logits,targets) predictions=state.logits_function(logits) eval_accuracy=jnp.equal(predictions,targets) #eval_acc=jnp.equal(predictions,targets) metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch") #return state.logits_function(logits) #(8,4) return targets,predictions,metrics parallel_eval_step = jax.pmap(eval_step, axis_name="batch") def glue_train_data_loader(rng,dataset,batch_size): steps_per_epoch=len_train_dataset//batch_size perms=jax.random.permutation(rng,len_train_dataset) perms=perms[:steps_per_epoch*batch_size] perms=perms.reshape((steps_per_epoch,batch_size)) for perm in perms: batch=dataset[perm] #print(jnp.array(batch['label'])) batch={k:jnp.array(v) for k,v in batch.items()} batch=shard(batch) yield batch rng=jax.random.PRNGKey(seed) dropout_rngs=jax.random.split(rng,jax.local_device_count()) def glue_eval_data_loader(dataset, batch_size): for i in range(len_validation_dataset // batch_size): batch = dataset[i * batch_size : (i + 1) * batch_size] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch state = flax.jax_utils.replicate(state) actual_task = "mnli" metric = load_metric('glue', "mnli") actual_taskmetric = load_metric('glue', actual_task) workdir='./piqa_tensorboard' summary_writer = tensorboard.SummaryWriter(workdir) logger.info(f"***** Running training *****") logger.info(f" Num examples = {len_train_dataset}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {per_device_batch_size}") logger.info(f" Total train batch size = {total_batch_size}") logger.info(f" Total optimization steps = {num_train_steps}") for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)): rng, input_rng = jax.random.split(rng) train_acc_metrics=[] train_loss_metrics=[] eval_acc_metrics=[] eval_loss_metrics=[] # train with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train: for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)): state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs) train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item()) train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item()) if idx%5==0: summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx) summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx) if idx%20==0: logger.info(f"train_step_loss{idx}: {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}: {jax.device_get(train_metric['accuracy']).mean().item()} ") progress_bar_train.update(1) # evaluate with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval: for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)): labels,predictions,eval_metric=parallel_eval_step(state, batch) eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item()) eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item()) progress_bar_eval.update(1) if idx%5==0: logger.info(f"eval_step_loss {idx} : {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc {idx} : {jax.device_get(eval_metric['accuracy']).mean().item()}") summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx) summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx) logger.info(f"---------------------Epoch {epoch} done-----------------") logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}") logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}") if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained( './', params=params, push_to_hub=True, commit_message=f"Piqa:Saving weights of epoch {epoch} at step {idx}",) summary_writer.flush()
60a6d3c470672d39fae27e61c518fbf33c37c655
0d2a66d7f04c11f7ac655ffeee855def9f3b406d
/setup.py
d70de94d5c6d3ccc808c1c53110d146da07a1559
[]
no_license
lmbeccaria/python_network_tests
dd7d46850d0a440d95c36edbab78c94d3263f10a
18b0ba47399abd2f4aa736c1bc9095d90f3c5339
refs/heads/master
2016-09-16T04:23:00.752284
2014-08-07T01:32:05
2014-08-07T01:32:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
try: from setuptools import setup except ImportError: from distutils.core import setup config = { 'description':'Network Tests', 'author':'Luis B', 'url': 'URL to get it at.', 'download_url': 'Where to download it.', 'author_email': '[email protected]', 'version': '0.1', 'install_requires': ['nose'], 'packages': ['network_connection'], 'scripts': [], 'name': 'network_connection' } setup(**config)
[ "monkeyboy@intiwasi.(none)" ]
monkeyboy@intiwasi.(none)
57592e74791a7c3a6e0010ee1083835391f9c27f
530ce8ce026cf0ed96184e0739fa5fd109dd0b76
/ENotePadAlgorithm/strFind/boyerMoore.py
a115e4e07f743af7eea5f1ea3974edd50d020901
[ "MIT" ]
permissive
xioacd99/EnhancedNotePad
0c41eb64dc4ddb57975d521a6320414d0ed0f0fd
b95da1c4d957061ad60015f3b9ab5c445b5a1bc4
refs/heads/main
2023-07-13T13:47:50.804090
2021-08-25T15:53:55
2021-08-25T15:53:55
388,513,669
0
0
null
null
null
null
UTF-8
Python
false
false
6,319
py
import os # import time only for performance test import time # 单词结尾符号/单词分隔符 wordSplit = [',', '.', ':', '"', ",", '\n', ' ', '?', '!', '(', ')', ',', '。', '‘', '‘', '“', '”', '?', '!', '(', ')'] class BoyerMoore(object): def __init__(self): super(BoyerMoore, self).__init__() self.badCharTable = {} self.goodSuffixTable = {} def getBadCharTable(self, word): # find positions every char charLocations = {} matcherLen = len(word) for i in range(matcherLen): currentChar = word[i] locations = [] if currentChar in charLocations: locations = charLocations[currentChar] locations.append(i) charLocations[currentChar] = locations # build badCharTable self.badCharTable = {} for i in range(matcherLen, 0, -1): for charTmp in charLocations.keys(): innerResult = {} if charTmp in self.badCharTable: innerResult = self.badCharTable[charTmp] locationsTmp = charLocations[charTmp] finded = False for j in range(len(locationsTmp), 0, -1): locationTmp = locationsTmp[j - 1] if locationTmp <= i - 1: innerResult[str(i - 1)] = locationTmp finded = True break if finded == False: innerResult[str(i - 1)] = -1 self.badCharTable[charTmp] = innerResult def badCharOffset(self, char, pos): if char in self.badCharTable: innerLocationTable = self.badCharTable[char] return pos - innerLocationTable[str(pos)] else: return pos + 1 def getGoodSuffixTable(self, matcher): self.goodSuffixTable = {} matcherLen = len(matcher) for i in range(matcherLen, 1, -1): tmpSuffix = matcher[i - 1: matcherLen] tmpSuffixLen = len(tmpSuffix) finded = False locationTmp = matcherLen - tmpSuffixLen - 1 while True: if locationTmp <= 0 - tmpSuffixLen: break matchedThisTime = True for j in range(0, tmpSuffixLen, 1): if locationTmp + j < 0: continue if tmpSuffix[j] != matcher[locationTmp + j]: matchedThisTime = False if matchedThisTime == True: finded = True break locationTmp = locationTmp - 1 if finded == True: self.goodSuffixTable[tmpSuffix] = i - 1 - locationTmp else: self.goodSuffixTable[tmpSuffix] = matcherLen def goodSuffixOffset(self, matchedPart): if matchedPart == None or len(matchedPart) == 0: return 0 return self.goodSuffixTable[matchedPart] def strFind(self, source, target, pos=0, fullWord=True, caseSensitive=True): sLen = len(source) tLen = len(target) # 如果主串和子串有一方为空或子串长度小于主串则返回空 if (sLen == 0 or tLen == 0) or tLen < sLen: return [] # 如果不区分大小写 if not caseSensitive: source = source.lower() target = target.lower() idx = [] self.getBadCharTable(target) self.getGoodSuffixTable(target) while pos + tLen <= sLen: isFind = True step = tLen matchedPart = "" for i in range(tLen, 0, -1): curChar = source[pos + i - 1] currentMatcherChar = target[i - 1] if curChar != currentMatcherChar: offsetOfBadChar = self.badCharOffset(curChar, i - 1) offsetOfGoodSuffix = self.goodSuffixOffset(matchedPart) step = max(offsetOfBadChar, offsetOfGoodSuffix) isFind = False break else: matchedPart = curChar + matchedPart if isFind: step = 1 wordStart = pos # 是否全字匹配 if fullWord: wordEnd = pos while True: if source[wordEnd] in wordSplit: break else: wordEnd += 1 if wordEnd - wordStart == len(target): idx.append(wordStart) else: idx.append(wordStart) pos += step return idx def fileFind(self, filename, target): results = [] if os.path.exists(filename): lineNum = 1 with open(filename, 'r', encoding='utf-8') as file: line = file.readline() while line: idx = self.strFind(line, target) if idx: for pos in idx: results.append([lineNum, pos]) # 算法测试输入语句 ''' singleResult = 'The ' + target + ' occurs ' + str(len(idx)) + ' times in line ' + str( lineNum) + ', which positions are ' for pos in idx: singleResult += '(' + str(lineNum) + ', ' + str(pos) + ') ' results.append(singleResult) ''' line = file.readline() lineNum += 1 else: with open(filename, 'w', encoding='uft-8') as file: print('Create a new file named %s' % filename) return results if __name__ == '__main__': start = time.time() # write your test code test = BoyerMoore() ans = test.fileFind( 'F:\\.vscode\\Github\\EnhancedNotePad\\ENotePadAlgorithm\\algorithmTestData\\BigTest.txt', 'be') # end end = time.time() print('using time: %s seconds' % (end - start))
4716976f68bf061fef859306dd4192440aa5d090
94312b972c9ea96404535d26a297c72e75f84d22
/Weather_WebCrawl.py
350443ebd66136fe19578ad51278528825577cdc
[]
no_license
1LuvCode/My_Slut_TJ
2e8092d78857497a45a22d4af2270dc4c51cdada
d7f39542cccb51b46d4d53d6489ef3b82079bc4d
refs/heads/main
2023-02-25T20:16:32.461565
2021-02-02T11:28:37
2021-02-02T11:28:37
335,256,950
0
0
null
null
null
null
UTF-8
Python
false
false
5,695
py
import requests from bs4 import BeautifulSoup def Crawling_Weather(Finallocation): url = 'https://search.naver.com/search.naver?where=nexearch&sm=top_hty&fbm=1&ie=utf8&query=' + Finallocation hdr = {'User-Agent': ( 'mozilla/5.0 (windows nt 10.0; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/78.0.3904.70 safari/537.36')} req = requests.get(url, headers=hdr) html = req.text soup = BeautifulSoup(html, 'html.parser') LocationInfo = "" NowTemp = "" CheckDust = [] # 오류 체크 ErrorCheck = soup.find('span', {'class': 'btn_select'}) if 'None' in str(ErrorCheck): print("Error! 지역 검색 오류!") return None else: # 지역 정보 for i in soup.select('span[class=btn_select]'): LocationInfo = i.text # 현재 온도 NowTemp = soup.find('span', {'class': 'todaytemp'}).text + soup.find('span', {'class': 'tempmark'}).text[2:] # 날씨 캐스트 WeatherCast = soup.find('p', {'class': 'cast_txt'}).text # 오늘 오전온도, 오후온도, 체감온도 TodayMorningTemp = soup.find('span', {'class': 'min'}).text TodayAfternoonTemp = soup.find('span', {'class': 'max'}).text TodayFeelTemp = soup.find('span', {'class': 'sensible'}).text[5:] # 자외선 지수 TodayUV = soup.find('span', {'class': 'indicator'}).text[4:-2] + " " + soup.find('span', {'class': 'indicator'}).text[-2:] # 미세먼지, 초미세먼지, 오존 지수 CheckDust1 = soup.find('div', {'class': 'sub_info'}) CheckDust2 = CheckDust1.find('div', {'class': 'detail_box'}) for i in CheckDust2.select('dd'): CheckDust.append(i.text) FineDust = CheckDust[0][:-2] + " " + CheckDust[0][-2:] UltraFineDust = CheckDust[1][:-2] + " " + CheckDust[1][-2:] Ozon = CheckDust[2][:-2] + " " + CheckDust[2][-2:] # 내일 오전, 오후 온도 및 상태 체크 tomorrowArea = soup.find('div', {'class': 'tomorrow_area'}) tomorrowCheck = tomorrowArea.find_all('div', {'class': 'main_info morning_box'}) # 내일 오전온도 tomorrowMoring1 = tomorrowCheck[0].find('span', {'class': 'todaytemp'}).text tomorrowMoring2 = tomorrowCheck[0].find('span', {'class': 'tempmark'}).text[2:] tomorrowMoring = tomorrowMoring1 + tomorrowMoring2 # 내일 오전상태 tomorrowMState1 = tomorrowCheck[0].find('div', {'class': 'info_data'}) tomorrowMState2 = tomorrowMState1.find('ul', {'class': 'info_list'}) tomorrowMState3 = tomorrowMState2.find('p', {'class': 'cast_txt'}).text tomorrowMState4 = tomorrowMState2.find('div', {'class': 'detail_box'}) tomorrowMState5 = tomorrowMState4.find('span').text.strip() tomorrowMState = tomorrowMState3 + " " + tomorrowMState5 # 내일 오후온도 tomorrowAfter1 = tomorrowCheck[1].find('p', {'class': 'info_temperature'}) tomorrowAfter2 = tomorrowAfter1.find('span', {'class': 'todaytemp'}).text tomorrowAfter3 = tomorrowAfter1.find('span', {'class': 'tempmark'}).text[2:] tomorrowAfter = tomorrowAfter2 + tomorrowAfter3 # 내일 오후상태 tomorrowAState1 = tomorrowCheck[1].find('div', {'class': 'info_data'}) tomorrowAState2 = tomorrowAState1.find('ul', {'class': 'info_list'}) tomorrowAState3 = tomorrowAState2.find('p', {'class': 'cast_txt'}).text tomorrowAState4 = tomorrowAState2.find('div', {'class': 'detail_box'}) tomorrowAState5 = tomorrowAState4.find('span').text.strip() tomorrowAState = tomorrowAState3 + " " + tomorrowAState5 Weather_info_dict = { '지역':LocationInfo, '현재온도':NowTemp, '체감온도':TodayFeelTemp, '오전온도':TodayMorningTemp, '오후온도':TodayAfternoonTemp, '현재상태':WeatherCast, '현재자외선지수':TodayUV, '현재미세먼지농도':FineDust, '현재초미세먼지농도':UltraFineDust, '현재오존지수':Ozon, '내일오전온도':tomorrowMoring, '내일오전상태':tomorrowMState, '내일오후온도':tomorrowAfter, '내일오후상태':tomorrowAState } return Weather_info_dict # print("=========================================") # print(LocationInfo + " 날씨 정보입니다.") # print("=========================================") # print("현재온도: " + NowTemp) # print("체감온도: " + TodayFeelTemp) # print("오전/오후 온도: " + TodayMorningTemp + "/" + TodayAfternoonTemp) # print("현재 상태: " + WeatherCast) # print("현재 자외선 지수: " + TodayUV) # print("현재 미세먼지 농도: " + FineDust) # print("현재 초미세먼지 농도: " + UltraFineDust) # print("현재 오존 지수: " + Ozon) # print("=========================================") # print(LocationInfo + " 내일 날씨 정보입니다.") # print("=========================================") # print("내일 오전 온도: " + tomorrowMoring) # print("내일 오전 상태: " + tomorrowMState) # print("내일 오후 온도: " + tomorrowAfter) # print("내일 오후 상태: " + tomorrowAState)
707062ffa62600fed5892717cfc5efb6677b3277
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_plough.py
8524ffbb0f26cf406e78e16dbed5ed7ccee77fc1
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
#calss header class _PLOUGH(): def __init__(self,): self.name = "PLOUGH" self.definitions = [u'a large farming tool with blades that digs the soil in fields so that seeds can be planted', u'If land is under the plough, crops are grown on it: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
3a7f9382b72dd52806311d2bed487a411dca70e4
1c4309daf6e53cc3cdf7dc9074cbb94d2dc7c15b
/digital/trend/trend/wsgi.py
a9ca274a90cc165c19e43f4a454b1df36ea19a5c
[]
no_license
OBAMARIE13/digital-trend
be55827e398dffcead4345eed8af40abaa059077
07113e987163050cb94b022e85428bdfd673dd25
refs/heads/main
2023-05-11T11:26:50.344084
2021-05-31T17:04:22
2021-05-31T17:04:22
372,575,744
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
""" WSGI config for trend project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'trend.settings') application = get_wsgi_application()
0d45b58ea30bf2d1410cade9e95116631c1f3d7b
79dc13c4b3a6d7cf2ab53312e95493d57d99f8a6
/hw4/all_copied_features2
76911544a27ec4eccfcaafb70bd8a42d29505018
[]
no_license
vrobison/sp2015.11-731
311198e35f069f5f22dc7ee3abf2e98749215be8
972f3b5292c41f81b12b0c2364a2936b78c55390
refs/heads/master
2021-01-17T23:55:05.067828
2015-05-08T15:03:34
2015-05-08T15:03:34
29,400,593
0
0
null
2015-01-17T18:14:08
2015-01-17T18:14:07
Python
UTF-8
Python
false
false
11,771
#!/usr/bin/env python import sys import argparse import numpy as np from scipy.sparse import csr_matrix import random from collections import defaultdict from utils import read_ttable def dot(f, w): s = 0.0 for k in f.keys(): s += f[k] * w[wvocabulary[k]] return s def updatew(wi,xcy,ynot): #x,prev,next,y,origfeats a = 0.0001 dLdw = {} dLdw[xcy[1]] = -1.0 dLdw[xcy[2]] = -1.0 dLdw[ynot[1]] = 1.0 dLdw[ynot[2]] = 1.0 for f in ynot[4].keys(): dLdw[f] = ynot[4][f] - xcy[4][f] for i in range(5,len(xcy)): if xcy[i] != ynot[i]: dLdw[xcy[i]] = -1.0 dLdw[ynot[i]] = 1.0 adLdw = {} for i in dLdw.keys(): adLdw[i] = a*dLdw[i] wiplus = wi for k in adLdw.keys(): wiplus[wvocabulary[k]] = (wi[wvocabulary[k]] - adLdw[k]) return wiplus def L(xcy,ynot,g): #xcy: (x,prev,next,y*,feats) #ynot: (x,prev,next,y-,feats2) #0.000005 0.387528 #1->0.390202 #indexes in w of form f1,f2,f3,f4,x_y_cleft, x_y_cright #for ynot in fxcynot: #for each wrong y diff = {} #prev& next diff[xcy[1]] = 1.0 diff[xcy[2]] = 1.0 diff[ynot[1]] = -1.0 diff[ynot[2]] = -1.0 for f in ynot[4].keys(): #orig float features diff[f] = xcy[4][f] - ynot[4][f] for i in range(5,len(xcy)): if xcy[i] != ynot[i]: diff[xcy[i]] = 1.0 diff[ynot[i]] = -1.0 m = max(0, (g-dot(diff, weights))) return m parser = argparse.ArgumentParser() parser.add_argument('--input', '-i', default='data/dev+test.input') parser.add_argument('--train','-tr',default='data/train.input') parser.add_argument('--refs', '-r',default='data/train.refs') parser.add_argument('--ttable', '-t', default='data/ttable') parser.add_argument('--parses','-p',default='data/train.parses') parser.add_argument('--devparses','-dp',default='data/dev+test.parses') args = parser.parse_args() #line.decode('utf-8').strip() par= open(args.parses).read().split('\n\n') parses =[] for p in par: parses.append(p.split('\n')) for p in range(len(parses)): for l in range(len(parses[p])): parses[p][l] = parses[p][l].decode('utf-8').strip() dpar= open(args.devparses).read().split('\n\n') dparses =[] for dp in dpar: dparses.append(dp.split('\n')) for dp in range(len(dparses)): for dl in range(len(dparses[dp])): dparses[dp][dl] = dparses[dp][dl].decode('utf-8').strip() translation_table = read_ttable(args.ttable) startweights = {'log_prob_tgs': 0.0,'log_prob_sgt': 0.0,'log_lex_prob_tgs':0.0,'log_lex_prob_sgt':0.0} #simple weight vector (1 0 0 0) windptr = [0] windices = [] wdata = [] wvocabulary = {} ALLcsr = [] for f in startweights.keys(): windex = wvocabulary.setdefault(f,len(wvocabulary)) windices.append(windex) wdata.append(startweights[f]) ix = [] indptr = [0] indices = [] data = [] vocabulary = {} for l, line in enumerate(open(args.train)): left_context, phrase, right_context = [part.strip() for part in line.decode('utf-8').strip().split('|||')] candidates = [(target,features) for target, features in translation_table[phrase].iteritems()] xcynot = [] parse = parses[l] lineOfPhrase = parse[len(left_context.split())] dep = lineOfPhrase.split('\t')[-1] parentIdx = int(lineOfPhrase.split('\t')[-2])-1 parentword = '' if parentIdx == -1: parentword = 'ROOT' else: parentword = parse[parentIdx].split('\t')[1] POS = lineOfPhrase.split('\t')[3] parentPOS = parse[parentIdx].split('\t')[3] left_context = ('<s> '+left_context).strip() right_context = (right_context + ' <\s>').strip() left_word = left_context.split()[-1] right_word = right_context.split()[0] l2 = '' if len(left_context.split()) > 1: l2 = left_context.split()[-2] n2 = '' if len(right_context.split()) > 1: n2 = right_context.split()[1] for y,feat in candidates: prev = 'src:'+phrase+'_tgt:'+y+'_prev:'+left_word next = 'src:'+phrase+'_tgt:'+y+'_next:'+right_word parent = 'src:'+phrase+'_tgt:'+y+'_parent:'+parentword deprole = 'src:'+phrase+'_tgt:'+y+'_dep:'+dep suffix = y if len(y) > 2: suffix = y[-2:] POScase = 'POS:'+POS+'_case:'+suffix DEPcase = 'DEP:'+dep+'_case:'+suffix SUBJcase = 'SUBJ:'+parentword+'_case:'+suffix Pcase = 'PREV:'+left_word+'_case:'+suffix Ncase = 'NEXT:'+right_word+'_case:'+suffix parPOS = 'parentPOS'+parentPOS+'_case'+y+suffix prev2 = 'src:'+phrase+'_tgt:'+y+'_prev:'+l2+'_'+left_word next2 = 'src:'+phrase+'_tgt:'+y+'_next:'+right_word+'_'+n2 basic = 'src:'+phrase+'_tgt:'+y parCase = 'parent'+parentword+'_case:'+suffix windex = wvocabulary.setdefault(prev, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(next, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(parent, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(deprole, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(POScase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(DEPcase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(SUBJcase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(Pcase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(Ncase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(parPOS, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(prev2, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(next2, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(basic, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windex = wvocabulary.setdefault(parCase, len(wvocabulary)) windices.append(windex) wdata.append(0.0) windptr.append(len(windices)) #feats = csr_matrix((data,indices,indptr),dtype=float).toarray() #print wvocabulary #print feats weights = csr_matrix((wdata,windices,windptr),dtype=float).toarray() weights = weights[0] vocabset = set() for v in wvocabulary.keys(): vocabset.add(v) sys.stderr.write('finished weight setup') #print weights #sys.stderr.write(str(len(feats[0]))+' '+str(len(weights[0]))+' '+str(len(ix))) reffile = open(args.refs).readlines() refs =[] for r in reffile: refs.append(r.strip()) for iteration in range(3): #5->0.390308 #4-->0.39029 sys.stderr.write('starting iteration'+str(iteration+1)+'\n') data = [] for l, line in enumerate(open(args.train)): data.append((line + ' ||| '+refs[l])) #random.shuffle(data) for l, line in enumerate(data): left_context, phrase, right_context,ref = [part.strip() for part in line.decode('utf-8').strip().split('|||')] candidates = [(target,features) for target, features in sorted(translation_table[phrase].iteritems(), key=lambda (t, f): dot(f, weights), reverse=True)] xcynot = [] parse = parses[l] lineOfPhrase = parse[len(left_context.split())] dep = lineOfPhrase.split('\t')[-1] parentIdx = int(lineOfPhrase.split('\t')[-2])-1 parentword = '' if parentIdx == -1: parentword = 'ROOT' else: parentword = parse[parentIdx].split('\t')[1] POS = lineOfPhrase.split('\t')[3] parentPOS = parse[parentIdx].split('\t')[3] n = 0 left_context = ('<s> '+left_context).strip() right_context = (right_context + ' <\s>').strip() left_word = left_context.split()[-1] right_word = right_context.split()[0] l2 = '' if len(left_context.split()) > 1: l2 = left_context.split()[-2] n2 = '' if len(right_context.split()) > 1: n2 = right_context.split()[1] for (y,origfeat) in candidates: prev = 'src:'+phrase+'_tgt:'+y+'_prev:'+left_word next = 'src:'+phrase+'_tgt:'+y+'_next:'+right_word parent = 'src:'+phrase+'_tgt:'+y+'_parent:'+parentword deprole = 'src:'+phrase+'_tgt:'+y+'_dep:'+dep suffix = y if len(y) > 2: suffix = y[-2:] POScase = 'POS:'+POS+'_case:'+suffix DEPCase = 'DEP:'+dep+'_case:'+suffix SUBJcase = 'SUBJ:'+parentword+'_case:'+suffix Pcase = 'PREV:'+left_word+'_case:'+suffix Ncase = 'NEXT:'+right_word+'_case:'+suffix parPOS = 'parentPOS'+parentPOS+'_case'+y+suffix prev2 = 'src:'+phrase+'_tgt:'+y+'_prev:'+l2+'_'+left_word next2 = 'src:'+phrase+'_tgt:'+y+'_next:'+right_word+'_'+n2 basic = 'src:'+phrase+'_tgt:'+y parCase = 'parent'+parentword+'_case:'+suffix if y == ref: xcy = (phrase, prev, next, y, origfeat, parent, deprole, POScase, DEPcase, SUBJcase, Pcase, Ncase, parPOS, prev2 ,next2, basic, parCase) # xcy = (phrase,prev,next,y,origfeat,0,0,0,0,0,0,0) else: xcynot.append((phrase, prev, next, y, origfeat, parent, deprole, POScase, DEPcase, SUBJcase, Pcase, Ncase, parPOS, prev2, next2, basic, parCase)) #xcynot.append((phrase,prev,next,y,origfeat,0,0,0,0,0,0,0)) #incorrect for ynot in xcynot: if L(xcy,ynot,0.25) != 0: #float is gamma weights = updatew(weights,xcy,ynot) sys.stderr.write('finished training') for l,line in enumerate(open(args.input)): left_context, phrase, right_context = [part.strip() for part in line.decode('utf-8').strip().split('|||')] candidates = [(target,features) for target, features in sorted(translation_table[phrase].iteritems(), key=lambda (t, f): dot(f, weights), reverse=True)] c2 = [] parse = dparses[l] lineOfPhrase = parse[len(left_context.split())] dep = lineOfPhrase.split('\t')[-1] parentIdx = int(lineOfPhrase.split('\t')[-2])-1 parentword = '' if parentIdx == -1: parentword = 'ROOT' else: parentword = parse[parentIdx].split('\t')[1] POS = lineOfPhrase.split('\t')[3] parentPOS = parse[parentIdx].split('\t')[3] left_context = ('<s> '+left_context).strip() right_context = (right_context + ' <\s>').strip() left_word = left_context.split()[-1] right_word = right_context.split()[0] l2 = '' if len(left_context.split()) > 1: l2 = left_context.split()[-2] n2 = '' if len(right_context.split()) > 1: n2 = right_context.split()[1] for (y,feat) in candidates: prev = 'src:'+phrase+'_tgt:'+y+'_prev:'+left_context next = 'src:'+phrase+'_tgt:'+y+'_next:'+right_context parent = 'src:'+phrase+'_tgt:'+y+'_parent:'+parentword deprole = 'src:'+phrase+'_tgt:'+y+'_dep:'+dep suffix = y if len(y) > 2: suffix = y[-2:] POScase = 'POS:'+POS+'_case:'+suffix DEPcase = 'DEP:'+dep+'_case:'+suffix SUBJcase = 'SUBJ:'+parentword+'_case:'+suffix Pcase = 'PREV:'+left_context+'_case:'+suffix Ncase = 'NEXT:'+right_context+'_case:'+suffix parPOS = 'parentPOS'+parentPOS+'_case'+y+suffix prev2 = 'src:'+phrase+'_tgt:'+y+'_prev:'+l2+'_'+left_word next2 = 'src:'+phrase+'_tgt:'+y+'_next:'+right_word+'_'+n2 basic = 'src:'+phrase+'_tgt:'+y parCase = 'parent'+parentword+'_case:'+suffix if prev in vocabset: feat[prev] = 1.0 if next in vocabset: feat[next] = 1.0 if parent in vocabset: feat[parent] = 1.0 if deprole in vocabset: feat[deprole] = 1.0 if POScase in vocabset: feat[POScase] = 1.0 if DEPcase in vocabset: feat[DEPcase] = 1.0 if SUBJcase in vocabset: feat[SUBJcase] = 1.0 if Pcase in vocabset: feat[Pcase] = 1.0 if Ncase in vocabset: feat[Ncase] = 1.0 if parPOS in vocabset: feat[parPOS] = 1.0 if prev2 in vocabset: feat[prev2] = 1.0 if next2 in vocabset: feat[next2] = 1.0 if basic in vocabset: feat[basic] = 1.0 if parCase in vocabset: feat[parCase] = 1.0 #sys.stderr.write('using dep feature...') #sys.stderr.write(str(dot(feat,weights))+'\t') c2.append((y,dot(feat,weights))) c3 = sorted(c2, key=lambda x: x[1], reverse=True) cfinal = [] for i in range(len(c3)): cfinal.append(c3[i][0]) print ' ||| '.join(cfinal).encode('utf-8') sys.stderr.write('.') #sys.stderr.write(' ||| '.join(candidates).encode('utf-8'))
7a585f12998db78082bbf1742eaaebe96554b0df
54a6a6c07276cdb6436d833243e3a15d6742cfe5
/test/test_loop_snap_stop.py
1cee41b933b33232cc7c1c6a13c1f49623651a8b
[]
no_license
soleil-ica/Lima-camera-imxpad
6e17028dbe18a382c4e084426230da04bba127b0
cf1767b9058f43cc44f807c65c4b5e8876b27d60
refs/heads/master
2023-08-29T09:48:43.274381
2023-02-15T18:00:28
2023-02-17T14:58:09
61,614,724
0
4
null
2022-05-23T16:05:21
2016-06-21T08:05:19
C++
UTF-8
Python
false
false
4,351
py
#!/usr/bin/env python ######################################################### #Arafat NOUREDDINE #2014/11/19 #Purpose : Test LimaDetector state ######################################################### import os import sys import PyTango import time import datetime proxy = '' #------------------------------------------------------------------------------ # build exception #------------------------------------------------------------------------------ class BuildError(Exception): pass #------------------------------------------------------------------------------ # Colors #------------------------------------------------------------------------------ class bcolors: PINK = '\033[95m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' ENDC = '\033[0m' UNDERLINE = '\033[4m' def disable(self): self.PINK = '' self.BLUE = '' self.GREEN = '' self.YELLOW = '' self.FAIL = '' self.ENDC = '' self.UNDERLINE = '' #------------------------------------------------------------------------------ def snap(proxy, integration, latency, stop_after): print '\nSnap() \n------------------' #Configure the device #Display time when state is STANDBY (just before load()) timeBegin = datetime.datetime.now() print timeBegin.isoformat(), ' - ', proxy.state() proxy.exposureTime = integration proxy.latencyTime = latency proxy.Snap() #Display time when state is RUNNING (just after timeSnap()) timeSnap = datetime.datetime.now() print timeSnap.isoformat(), ' - ', proxy.state() time.sleep(stop_after/1000) #force stop after integration time proxy.Stop() #Display time when state is STANDBY (just after acquisition is finish) timeEnd = datetime.datetime.now() print '\n', timeEnd.isoformat(), ' - ', proxy.state() print '\nDuration = ', ((timeEnd-timeSnap).total_seconds()*1000),'(ms)' time.sleep(latency) return #return proxy.image #------------------------------------------------------------------------------ # Usage #------------------------------------------------------------------------------ def usage(): print "Usage: [python] test_loop_snap_stop.py <my/device/proxy> <integration time in ms> <latency in ms> <stop_after in ms> <nb_loops>" sys.exit(1) #------------------------------------------------------------------------------ # run #------------------------------------------------------------------------------ def run(proxy_name = 'test/lima/imxpad.1', integration = 5000, latency = 0, stop_after = 2000 , nb_loops = 100000): # print arguments print '\nProgram inputs :\n--------------' print 'proxy_name\t = ', proxy_name print 'integration\t = ', integration print 'latency\t = ', latency print 'stop_after\t = ', stop_after print 'nb_loops\t = ', nb_loops proxy = PyTango.DeviceProxy(proxy_name) #Configure the device print '\nConfigure Device attributes :\n--------------' proxy.Stop() nb_loops = int(nb_loops) integration = float(integration) latency = float(latency) stop_after = float(stop_after) alias = '1' print '\n' try: current_loop = 0 while(current_loop<nb_loops): print '\n========================================================' print '\t' + bcolors.PINK + 'Loop : ', current_loop, bcolors.ENDC, print '\n========================================================' snap(proxy, integration, latency, stop_after) current_loop=current_loop+1 state = proxy.state() if (state!=PyTango.DevState.STANDBY): # raise Exception('FAIL : Acquisition is end with state (%s)' %(state)) print bcolors.RED + 'Device is in FAULT !',bcolors.ENDC, print '\noutput :\n--------------' print '\nProgram outputs :\n--------------' except Exception as err: sys.stderr.write('--------------\nERROR :\n--------------\n%s\n' %err) #------------------------------------------------------------------------------ # Main Entry point #------------------------------------------------------------------------------ if __name__ == "__main__": # if len(sys.argv) < 4: # usage() print run(*sys.argv[1:])
a3a5d94d9d641fb85d1031115f2381f650289f28
46cb587e5473e6bb47878ebbaaf8fa76fcd97f89
/09-NeuralNetwork/20181028/mnist_loader.py
3fa24e108f8d4a4f8d6582b88155ce0ab44d70af
[]
no_license
AaronFlower/Jupyter
d342a3decb050985b4f4dcad4a0c1fd05a771f76
3fd252c10399e9057ba9a23e75651875ab6d89f2
refs/heads/master
2023-08-09T07:27:27.432826
2023-07-12T08:09:12
2023-07-12T08:09:12
84,337,325
1
1
null
2017-03-22T16:11:52
2017-03-08T15:42:13
Jupyter Notebook
UTF-8
Python
false
false
1,089
py
# -*- coding: utf-8 -*- import gzip import pickle import numpy as np import matplotlib import matplotlib.pyplot as plt def load_data(): f = gzip.open('../mnist.pkl.gz', 'rb') train, val, test = pickle.load(f, encoding='bytes') f.close() return train, val, test def load_data_wrapper(): train, val, test = load_data() train_X = [x.reshape(-1, 1) for x in train[0]] train_y = [vectorize(y) for y in train[1]] val_X = [x.reshape(-1, 1) for x in val[0]] test_X = [x.reshape(-1, 1) for x in test[0]] return ( list(zip(train_X, train_y)), list(zip(val_X, val[1])), list(zip(test_X, test[1])) ) def vectorize(i): y = np.zeros((10, 1)) y[i] = 1 return y def plot_images6(data): ilist = np.random.permutation(len(data)) fig = plt.figure() for i in range(1, 7): X, _ = data[ilist[i]] image = X.reshape(28, 28) ax = fig.add_subplot(1, 6, i) ax.matshow(image, cmap=matplotlib.cm.binary) plt.xticks(np.array([])) plt.yticks(np.array([])) plt.show()
0c448d5d9533485b666d5f11510eb4bdf0e13294
9fa07ba96a5330712bb1f1d0874375e6f4923ce7
/wait/www/387.py
3d6ab8263419dea2fd32e7413af8f4570a1f4842
[]
no_license
Ajatars/Ajatar
cf4460d881b18095ce968c883e68500d44f90570
943b71285e6b74ae38861aa305d26b0a9bef4050
refs/heads/master
2020-06-02T02:14:05.989075
2019-06-10T02:48:10
2019-06-10T02:48:10
191,002,958
11
2
null
null
null
null
UTF-8
Python
false
false
981
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ POC Name : Mvmmall search.php SQL Injection Reference : http://www.wooyun.org/bugs/wooyun-2011-01732 Author : NoName """ import re from urllib.parse import urlparse def assign(service, arg): if service == "www": r = urlparse(arg) return True, '%s://%s/' % (r.scheme, r.netloc) def audit(arg): payload = "search.php?tag_ids[goods_id]=uid))%20and(select%201%20from(select%20count(*),concat((select%20(select%20md5(12345))%20from%20information_schema.tables%20limit%200,1),floor(rand(0)*2))x%20from%20information_schema.tables%20group%20by%20x)a)%20and%201=1%23" code, head, res, errcode, _ = curl.curl(arg + payload) if code == 200: m = re.search("827ccb0eea8a706c4c34a16891f84e7b1",res) if m: security_hole('Mvmmall search.php SQL Injection exists.') if __name__ == '__main__': from dummy import * audit(assign('www', 'http://dajiamai.com/')[1])
8ffe39ec8cedaeb1bdc48e7cdab9d9db8a9f34ba
30013757093b79e83211fae3f6e2929d402c49e2
/tpred/mine_twitter_by_followers.py
13af02cd5b3d2b4a132a1d510a3682536fdebf06
[]
no_license
schetudiante/tpred
01031252046b566714878c3af7d870b4cec1b1e7
773d70d81d4e1478d641bd5f5f7ee3f4b6250bd8
refs/heads/master
2021-05-30T19:56:04.196543
2015-12-23T23:59:36
2015-12-23T23:59:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
import t import tweet_mine res = t.api.friends.ids(screen_name='amirpc')['ids'] ids = [str(twid) for twid in res] it = t.stream.statuses.filter(follow=",".join(ids)) tweet_mine.mine(it)
a0fde5ce97072b01e205d1e9ff8227da865e77ae
44d277aef0a9b2a8a4d2b8bd20e6402fab13f9f4
/Fantasy CricketTeam Prediction/WebApp/dbms/new/database.py
57d980b2785e184c42ad0026d48e920520406e35
[]
no_license
pikachua7/Fantasy-Cricket-Team-Prediction
d6eeb8c8a9bff0a8d480e9f6b2b877075f78c6ae
d991264a4d3f8f33e106e5a43b55f853018af51d
refs/heads/master
2023-01-05T14:12:56.440338
2020-11-07T17:38:28
2020-11-07T17:38:28
310,897,232
0
0
null
null
null
null
UTF-8
Python
false
false
3,841
py
import pymongo # from new.views import team # teams=team myc=pymongo.MongoClient('mongodb://localhost:27017/') mydb=myc['ipl'] class batsman_gen: batsman=mydb['batsman'] def generate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.batsman.find({'$or':[query1,query2]},{'_id':0,'Player':1}).sort('Player') for x in selected: array.append(x.get('Player')) return array else: array.append('0000') return array def mygenerate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.batsman.find({'$or':[query1,query2]},{'_id':0,'Player':1,'Batting_Parameter':1,'Team':1}).sort('Batting_Parameter',-1) for x in selected: array.append(x) return array else: array.append('0000') return array class bowler_gen: bowler=mydb['bowler'] def generate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.bowler.find({'$or':[query1,query2]},{'_id':0,'Player':1}).sort('Player') for x in selected: array.append(x.get('Player')) return array else: array.append('0000') return array def mygenerate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.bowler.find({'$or':[query1,query2]},{'_id':0,'Player':1,'Batting_Parameter':1,'Team':1}).sort('Bowling_Parameter') for x in selected: array.append(x) return array else: array.append('0000') return array class allrounder_gen: allrounder=mydb['allrounder'] def generate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.allrounder.find({'$or':[query1,query2]},{'_id':0,'Player':1}).sort('Player') for x in selected: array.append(x.get('Player')) return array else: array.append('0000') return array def mygenerate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.allrounder.find({'$or':[query1,query2]},{'_id':0,'Player':1,'Batting_Parameter':1,'Team':1}).sort('Allrounder_Parameter',-1) for x in selected: array.append(x) return array else: array.append('0000') return array class keeper_gen: keeper=mydb['keeper'] def generate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.keeper.find({'$or':[query1,query2]},{'_id':0,'Player':1,'Batting_Parameter':1,'Team':1}).sort('Player') for x in selected: array.append(x['Player']) return array else: array.append('0000') return array def mygenerate(self,teams): array=[] if len(teams)>=2: query1={'Team':teams[0]} query2={'Team':teams[1]} selected=self.keeper.find({'$or':[query1,query2]},{'_id':0,'Player':1,'Batting_Parameter':1,'Team':1}).sort('Batting_Parameter',-1) for x in selected: array.append(x) return array else: array.append('0000') return array
4bb8afa90a9835e931209b939aa2803521958601
2ee49dc0b16ddfd61bf4b2453edc7f733101a7fd
/bench_pyfftw_thread_4.py
d57613b2979e1a1f6f798571a1c6955caf1df2a8
[ "MIT" ]
permissive
zhouxzh/Jetson_nano_stft_benchmark
1e004f7fc53ff2ba1cfba60e9e00a559bd49e298
ffa97984f95b9862ac2a10b8459bb7ef241c6c72
refs/heads/master
2020-05-19T02:25:37.344384
2019-05-03T16:04:06
2019-05-03T16:04:06
184,780,356
0
0
null
null
null
null
UTF-8
Python
false
false
2,541
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Computes the spectrogram of a test signal using numpy and fftw. Author: Jan Schlüter """ import sys import os import timeit import numpy as np from pyfftw.builders import rfft as rfft_builder from testfile import make_test_signal INPUT_AS_FLOAT = False def spectrogram(samples, sample_rate=22050, frame_len=1024, fps=70, batch=50): """ Computes a magnitude spectrogram for a given vector of samples at a given sample rate (in Hz), frame length (in samples) and frame rate (in Hz). Allows to transform multiple frames at once for improved performance (with a default value of 50, more is not always better). Returns a numpy array. """ if len(samples) < frame_len: return np.empty((0, frame_len // 2 + 1), dtype=samples.dtype) win = np.hanning(frame_len).astype(samples.dtype) hopsize = sample_rate // fps num_frames = max(0, (len(samples) - frame_len) // hopsize + 1) batch = min(batch, num_frames) if batch <= 1 or not samples.flags.c_contiguous: rfft = rfft_builder(samples[:frame_len], n=frame_len, threads=4) spect = np.vstack(np.abs(rfft(samples[pos:pos + frame_len] * win)) for pos in range(0, len(samples) - frame_len + 1, int(hopsize))) else: rfft = rfft_builder(np.empty((batch, frame_len), samples.dtype), n=frame_len, threads=4) frames = np.lib.stride_tricks.as_strided( samples, shape=(num_frames, frame_len), strides=(samples.strides[0] * hopsize, samples.strides[0])) spect = [np.abs(rfft(frames[pos:pos + batch] * win)) for pos in range(0, num_frames - batch + 1, batch)] if num_frames % batch: spect.append(spectrogram( samples[(num_frames // batch * batch) * hopsize:], sample_rate, frame_len, fps, batch=1)) spect = np.vstack(spect) return spect def main(): # load input global x x = make_test_signal() if INPUT_AS_FLOAT: x = x.astype(np.float32) # benchmark times = timeit.repeat( setup='from __main__ import x, spectrogram, np', stmt='spectrogram(np.asarray(x, np.float32))', repeat=5, number=32) print("Took %.3fs." % (min(times) / 32)) # save result #np.save(sys.argv[0][:-2] + 'npy', spectrogram(x.astype(np.float32))) if __name__=="__main__": main()
5ae031aeb99d729fe90dc2b53d1bb9e39586fc7e
ed273db8304adf27b9117817b7d4376ffef6f375
/Carta.py
79c61ecaa0c38454a082b6a89ad021f634094efb
[]
no_license
mamerida/python-poo-curse
282a4cbe6704d18f7f59799354135bc1bc6d7ce5
b99d1736ac77eed3dbc0371ddbefcd148e85f4db
refs/heads/master
2023-07-13T05:35:40.103830
2021-08-23T15:46:50
2021-08-23T15:46:50
367,674,569
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
class Carta: def __init__(self, numero, palo ): self.palo = palo self.numero = numero def convertir_numero_a_letra(self): valor="" if (self.numero == 11): valor ="J" elif (self.numero == 12): valor ="Q" elif (self.numero == 13): valor ="K" elif (self.numero == 1): valor = "As" else: valor = str(self.numero) return valor def imprimir(self): numero = self.convertir_numero_a_letra() print(numero ," de ",self.palo) def obtener_numero(self): return 10 if self.numero > 10 else self.numero
619dff3fc4f5f34f2ea4f843e80b2f4d472b30d0
b6bcfd935f7876fc65416e7340fda1c9b0516fd7
/pyscf/tdscf/test/test_tduks.py
091c6b43834c92a378e73acb5b9bd073aa22e37b
[ "Apache-2.0" ]
permissive
lzypotato/pyscf
62f849b9a3ec8480c3da63a5822ea780608796b2
94c21e2e9745800c7efc7256de0d628fc60afc36
refs/heads/master
2020-09-06T22:45:04.191935
2019-06-18T06:04:48
2019-06-18T06:04:48
220,578,540
1
0
Apache-2.0
2019-11-09T02:13:16
2019-11-09T02:13:15
null
UTF-8
Python
false
false
13,906
py
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # import unittest import numpy import copy from pyscf import lib, gto, scf, dft from pyscf import tdscf mol = gto.Mole() mol.verbose = 5 mol.output = '/dev/null' mol.atom = [ ["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ] mol.spin = 2 mol.basis = '631g' mol.build() mf = scf.UHF(mol).run() td_hf = tdscf.TDHF(mf).run(conv_tol=1e-12) mf_lda = dft.UKS(mol).set(xc='lda', conv_tol=1e-12) mf_lda.grids.prune = None mf_lda = mf_lda.newton().run() mf_bp86 = dft.UKS(mol).set(xc='b88,p86', conv_tol=1e-12) mf_bp86.grids.prune = None mf_bp86 = mf_bp86.newton().run() mf_b3lyp = dft.UKS(mol).set(xc='b3lyp', conv_tol=1e-12) mf_b3lyp.grids.prune = None mf_b3lyp = mf_b3lyp.newton().run() def diagonalize(a, b, nroots=4): a_aa, a_ab, a_bb = a b_aa, b_ab, b_bb = b nocc_a, nvir_a, nocc_b, nvir_b = a_ab.shape a_aa = a_aa.reshape((nocc_a*nvir_a,nocc_a*nvir_a)) a_ab = a_ab.reshape((nocc_a*nvir_a,nocc_b*nvir_b)) a_bb = a_bb.reshape((nocc_b*nvir_b,nocc_b*nvir_b)) b_aa = b_aa.reshape((nocc_a*nvir_a,nocc_a*nvir_a)) b_ab = b_ab.reshape((nocc_a*nvir_a,nocc_b*nvir_b)) b_bb = b_bb.reshape((nocc_b*nvir_b,nocc_b*nvir_b)) a = numpy.bmat([[ a_aa , a_ab], [ a_ab.T, a_bb]]) b = numpy.bmat([[ b_aa , b_ab], [ b_ab.T, b_bb]]) e = numpy.linalg.eig(numpy.bmat([[a , b ], [-b.conj(),-a.conj()]]))[0] lowest_e = numpy.sort(e[e.real > 0].real)[:nroots] lowest_e = lowest_e[lowest_e > 1e-3] return lowest_e def tearDownModule(): global mol, mf, td_hf, mf_lda, mf_bp86, mf_b3lyp mol.stdout.close() del mol, mf, td_hf, mf_lda, mf_bp86, mf_b3lyp class KnownValues(unittest.TestCase): def test_nohbrid_lda(self): td = tdscf.uks.TDDFTNoHybrid(mf_lda).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] a,b = td.get_ab() e_ref = diagonalize(a, b, 6) self.assertAlmostEqual(abs(es[:3]-e_ref[:3]).max(), 0, 8) self.assertAlmostEqual(lib.finger(es[:3]*27.2114), 1.2946309669294163, 6) def test_nohbrid_b88p86(self): td = tdscf.uks.TDDFTNoHybrid(mf_bp86).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] a,b = td.get_ab() e_ref = diagonalize(a, b, 6) self.assertAlmostEqual(abs(es[:3]-e_ref[:3]).max(), 0, 8) self.assertAlmostEqual(lib.finger(es[:3]*27.2114), 1.4624730971221087, 6) def test_tddft_lda(self): td = tdscf.uks.TDDFT(mf_lda).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] * 27.2114 self.assertAlmostEqual(lib.finger(es[:3]), 1.2946309669294163, 6) def test_tddft_b88p86(self): td = tdscf.uks.TDDFT(mf_bp86).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] * 27.2114 self.assertAlmostEqual(lib.finger(es[:3]), 1.4624730971221087, 6) def test_tddft_b3lyp(self): td = tdscf.uks.TDDFT(mf_b3lyp).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] * 27.2114 self.assertAlmostEqual(lib.finger(es[:3]), 1.2984822994759448, 6) def test_tda_b3lyp(self): td = tdscf.TDA(mf_b3lyp).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] * 27.2114 self.assertAlmostEqual(lib.finger(es[:3]), 1.4303636271767162, 6) def test_tda_lda(self): td = tdscf.TDA(mf_lda).set(conv_tol=1e-12) es = td.kernel(nstates=4)[0] * 27.2114 self.assertAlmostEqual(lib.finger(es[:3]), 1.4581538269747121, 6) def test_ab_hf(self): mf = scf.UHF(mol).run() a, b = tdscf.TDDFT(mf).get_ab() ftda = tdscf.uhf.gen_tda_operation(mf)[0] ftdhf = tdscf.uhf.gen_tdhf_operation(mf)[0] nocc_a = numpy.count_nonzero(mf.mo_occ[0] == 1) nvir_a = numpy.count_nonzero(mf.mo_occ[0] == 0) nocc_b = numpy.count_nonzero(mf.mo_occ[1] == 1) nvir_b = numpy.count_nonzero(mf.mo_occ[1] == 0) numpy.random.seed(2) xa, ya = numpy.random.random((2,nocc_a,nvir_a)) xb, yb = numpy.random.random((2,nocc_b,nvir_b)) x = numpy.hstack((xa.ravel(), xb.ravel())) y = numpy.hstack((ya.ravel(), yb.ravel())) xy = numpy.hstack((x, y)) ax_a = numpy.einsum('iajb,jb->ia', a[0], xa) ax_a+= numpy.einsum('iajb,jb->ia', a[1], xb) ax_b = numpy.einsum('jbia,jb->ia', a[1], xa) ax_b+= numpy.einsum('iajb,jb->ia', a[2], xb) ax = numpy.hstack((ax_a.ravel(), ax_b.ravel())) self.assertAlmostEqual(abs(ax - ftda([x])).max(), 0, 9) ay_a = numpy.einsum('iajb,jb->ia', a[0], ya) ay_a+= numpy.einsum('iajb,jb->ia', a[1], yb) ay_b = numpy.einsum('jbia,jb->ia', a[1], ya) ay_b+= numpy.einsum('iajb,jb->ia', a[2], yb) ay = numpy.hstack((ay_a.ravel(), ay_b.ravel())) bx_a = numpy.einsum('iajb,jb->ia', b[0], xa) bx_a+= numpy.einsum('iajb,jb->ia', b[1], xb) bx_b = numpy.einsum('jbia,jb->ia', b[1], xa) bx_b+= numpy.einsum('iajb,jb->ia', b[2], xb) bx = numpy.hstack((bx_a.ravel(), bx_b.ravel())) by_a = numpy.einsum('iajb,jb->ia', b[0], ya) by_a+= numpy.einsum('iajb,jb->ia', b[1], yb) by_b = numpy.einsum('jbia,jb->ia', b[1], ya) by_b+= numpy.einsum('iajb,jb->ia', b[2], yb) by = numpy.hstack((by_a.ravel(), by_b.ravel())) ab1 = ax + by ab2 =-bx - ay ab12 = numpy.hstack((ab1.ravel(),ab2.ravel())) abxy_ref = ftdhf([xy]) self.assertAlmostEqual(abs(ab12 - abxy_ref).max(), 0, 9) def test_ab_lda(self): mf = mf_lda a, b = tdscf.TDDFT(mf).get_ab() ftda = tdscf.uhf.gen_tda_operation(mf)[0] ftdhf = tdscf.uhf.gen_tdhf_operation(mf)[0] nocc_a = numpy.count_nonzero(mf.mo_occ[0] == 1) nvir_a = numpy.count_nonzero(mf.mo_occ[0] == 0) nocc_b = numpy.count_nonzero(mf.mo_occ[1] == 1) nvir_b = numpy.count_nonzero(mf.mo_occ[1] == 0) numpy.random.seed(2) xa, ya = numpy.random.random((2,nocc_a,nvir_a)) xb, yb = numpy.random.random((2,nocc_b,nvir_b)) x = numpy.hstack((xa.ravel(), xb.ravel())) y = numpy.hstack((ya.ravel(), yb.ravel())) xy = numpy.hstack((x, y)) ax_a = numpy.einsum('iajb,jb->ia', a[0], xa) ax_a+= numpy.einsum('iajb,jb->ia', a[1], xb) ax_b = numpy.einsum('jbia,jb->ia', a[1], xa) ax_b+= numpy.einsum('iajb,jb->ia', a[2], xb) ax = numpy.hstack((ax_a.ravel(), ax_b.ravel())) self.assertAlmostEqual(abs(ax - ftda([x])).max(), 0, 9) ay_a = numpy.einsum('iajb,jb->ia', a[0], ya) ay_a+= numpy.einsum('iajb,jb->ia', a[1], yb) ay_b = numpy.einsum('jbia,jb->ia', a[1], ya) ay_b+= numpy.einsum('iajb,jb->ia', a[2], yb) ay = numpy.hstack((ay_a.ravel(), ay_b.ravel())) bx_a = numpy.einsum('iajb,jb->ia', b[0], xa) bx_a+= numpy.einsum('iajb,jb->ia', b[1], xb) bx_b = numpy.einsum('jbia,jb->ia', b[1], xa) bx_b+= numpy.einsum('iajb,jb->ia', b[2], xb) bx = numpy.hstack((bx_a.ravel(), bx_b.ravel())) by_a = numpy.einsum('iajb,jb->ia', b[0], ya) by_a+= numpy.einsum('iajb,jb->ia', b[1], yb) by_b = numpy.einsum('jbia,jb->ia', b[1], ya) by_b+= numpy.einsum('iajb,jb->ia', b[2], yb) by = numpy.hstack((by_a.ravel(), by_b.ravel())) ab1 = ax + by ab2 =-bx - ay ab12 = numpy.hstack((ab1.ravel(),ab2.ravel())) abxy_ref = ftdhf([xy]) self.assertAlmostEqual(abs(ab12 - abxy_ref).max(), 0, 9) def test_ab_b3lyp(self): mf = mf_b3lyp a, b = tdscf.TDDFT(mf).get_ab() ftda = tdscf.uhf.gen_tda_operation(mf)[0] ftdhf = tdscf.uhf.gen_tdhf_operation(mf)[0] nocc_a = numpy.count_nonzero(mf.mo_occ[0] == 1) nvir_a = numpy.count_nonzero(mf.mo_occ[0] == 0) nocc_b = numpy.count_nonzero(mf.mo_occ[1] == 1) nvir_b = numpy.count_nonzero(mf.mo_occ[1] == 0) numpy.random.seed(2) xa, ya = numpy.random.random((2,nocc_a,nvir_a)) xb, yb = numpy.random.random((2,nocc_b,nvir_b)) x = numpy.hstack((xa.ravel(), xb.ravel())) y = numpy.hstack((ya.ravel(), yb.ravel())) xy = numpy.hstack((x, y)) ax_a = numpy.einsum('iajb,jb->ia', a[0], xa) ax_a+= numpy.einsum('iajb,jb->ia', a[1], xb) ax_b = numpy.einsum('jbia,jb->ia', a[1], xa) ax_b+= numpy.einsum('iajb,jb->ia', a[2], xb) ax = numpy.hstack((ax_a.ravel(), ax_b.ravel())) self.assertAlmostEqual(abs(ax - ftda([x])).max(), 0, 9) ay_a = numpy.einsum('iajb,jb->ia', a[0], ya) ay_a+= numpy.einsum('iajb,jb->ia', a[1], yb) ay_b = numpy.einsum('jbia,jb->ia', a[1], ya) ay_b+= numpy.einsum('iajb,jb->ia', a[2], yb) ay = numpy.hstack((ay_a.ravel(), ay_b.ravel())) bx_a = numpy.einsum('iajb,jb->ia', b[0], xa) bx_a+= numpy.einsum('iajb,jb->ia', b[1], xb) bx_b = numpy.einsum('jbia,jb->ia', b[1], xa) bx_b+= numpy.einsum('iajb,jb->ia', b[2], xb) bx = numpy.hstack((bx_a.ravel(), bx_b.ravel())) by_a = numpy.einsum('iajb,jb->ia', b[0], ya) by_a+= numpy.einsum('iajb,jb->ia', b[1], yb) by_b = numpy.einsum('jbia,jb->ia', b[1], ya) by_b+= numpy.einsum('iajb,jb->ia', b[2], yb) by = numpy.hstack((by_a.ravel(), by_b.ravel())) ab1 = ax + by ab2 =-bx - ay ab12 = numpy.hstack((ab1.ravel(),ab2.ravel())) abxy_ref = ftdhf([xy]) self.assertAlmostEqual(abs(ab12 - abxy_ref).max(), 0, 9) def test_nto(self): mf = scf.UHF(mol).run() td = tdscf.TDA(mf).run() w, nto = td.get_nto(state=1) self.assertAlmostEqual(w[0][0], 0.00018520143461015, 9) self.assertAlmostEqual(w[1][0], 0.99963372674044326, 9) self.assertAlmostEqual(lib.finger(w[0]), 0.00027305600430816, 9) self.assertAlmostEqual(lib.finger(w[1]), 0.99964370569529093, 9) pmol = copy.copy(mol) pmol.symmetry = True pmol.build(0, 0) mf = scf.UHF(pmol).run() td = tdscf.TDA(mf).run(nstates=3) w, nto = td.get_nto(state=0) self.assertAlmostEqual(w[0][0], 0.00018520143461016, 9) self.assertAlmostEqual(w[1][0], 0.99963372674044326, 9) self.assertAlmostEqual(lib.finger(w[0]), 0.00027305600430816, 9) self.assertAlmostEqual(lib.finger(w[1]), 0.99964370569529093, 9) w, nto = td.get_nto(state=-1) self.assertAlmostEqual(w[0][0], 0.00236940007134660, 9) self.assertAlmostEqual(w[1][0], 0.99759687228056182, 9) def test_analyze(self): f = td_hf.oscillator_strength(gauge='length') self.assertAlmostEqual(lib.finger(f), 0.16147450863004867, 7) f = td_hf.oscillator_strength(gauge='velocity', order=2) self.assertAlmostEqual(lib.finger(f), 0.19750347627735745, 6) td_hf.analyze() def test_init(self): hf = scf.UHF(mol) ks = scf.UKS(mol) kshf = scf.UKS(mol).set(xc='HF') self.assertTrue(isinstance(tdscf.TDA(hf), tdscf.uhf.TDA)) self.assertTrue(isinstance(tdscf.TDA(ks), tdscf.uks.TDA)) self.assertTrue(isinstance(tdscf.TDA(kshf), tdscf.uks.TDA)) self.assertTrue(isinstance(tdscf.RPA(hf), tdscf.uhf.TDHF)) self.assertTrue(isinstance(tdscf.RPA(ks), tdscf.uks.TDDFTNoHybrid)) self.assertTrue(isinstance(tdscf.RPA(kshf), tdscf.uks.TDDFT)) self.assertTrue(isinstance(tdscf.TDDFT(hf), tdscf.uhf.TDHF)) self.assertTrue(isinstance(tdscf.TDDFT(ks), tdscf.uks.TDDFTNoHybrid)) self.assertTrue(isinstance(tdscf.TDDFT(kshf), tdscf.uks.TDDFT)) self.assertRaises(RuntimeError, tdscf.dRPA, hf) self.assertTrue(isinstance(tdscf.dRPA(kshf), tdscf.uks.dRPA)) self.assertTrue(isinstance(tdscf.dRPA(ks), tdscf.uks.dRPA)) self.assertRaises(RuntimeError, tdscf.dTDA, hf) self.assertTrue(isinstance(tdscf.dTDA(kshf), tdscf.uks.dTDA)) self.assertTrue(isinstance(tdscf.dTDA(ks), tdscf.uks.dTDA)) def test_tda_with_wfnsym(self): pmol = mol.copy() pmol.symmetry = True pmol.build(0, 0) mf = dft.UKS(pmol).run() td = tdscf.uks.TDA(mf) td.wfnsym = 'B1' es = td.kernel(nstates=3)[0] self.assertAlmostEqual(lib.finger(es), 0.16350926466999033, 6) td.analyze() def test_tdhf_with_wfnsym(self): pmol = mol.copy() pmol.symmetry = True pmol.build() mf = scf.UHF(pmol).run() td = tdscf.uhf.TDHF(mf) td.wfnsym = 'B1' td.nroots = 3 es = td.kernel()[0] self.assertAlmostEqual(lib.finger(es), 0.11306948533259675, 6) td.analyze() def test_tddft_with_wfnsym(self): pmol = mol.copy() pmol.symmetry = True pmol.build() mf = dft.UKS(pmol).run() td = tdscf.uks.TDDFTNoHybrid(mf) td.wfnsym = 'B1' td.nroots = 3 es = td.kernel()[0] self.assertAlmostEqual(lib.finger(es), 0.15403661700414412, 6) td.analyze() if __name__ == "__main__": print("Full Tests for TD-UKS") unittest.main()
8aa66e9bfbe8bd636da164d691be14c9753a0cf6
2e318c8fdbb8e8826937ffbf1eede7034a47960a
/GazeGAN_using_CSC/train_old1.py
3a4c6f4bdfa7d3250a264ab2b5f775c39e7fdeb4
[]
no_license
chenkeshuai/Sal-CFS-GAN
e06efbe5e49360c8f5634704c487483795c10d31
8ae0fb77efff503190bcc8b6333c1d21ea1bfbce
refs/heads/master
2022-06-06T01:18:00.664722
2020-05-06T10:54:11
2020-05-06T10:54:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,507
py
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. ### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). import time from collections import OrderedDict from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util from util.visualizer import Visualizer import os import numpy as np import torch from torch.autograd import Variable opt = TrainOptions().parse() iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') if opt.continue_train: try: start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int) except: start_epoch, epoch_iter = 1, 0 print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) else: start_epoch, epoch_iter = 1, 0 if opt.debug: opt.display_freq = 1 opt.print_freq = 1 opt.niter = 1 opt.niter_decay = 0 opt.max_dataset_size = 10 data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training images = %d' % dataset_size) model = create_model(opt) visualizer = Visualizer(opt) total_steps = (start_epoch-1) * dataset_size + epoch_iter display_delta = total_steps % opt.display_freq print_delta = total_steps % opt.print_freq save_delta = total_steps % opt.save_latest_freq My_Limit = 600 # just for debugging phase, to control the total training steps for saving time for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() if epoch != start_epoch: epoch_iter = epoch_iter % dataset_size for i, data in enumerate(dataset, start=epoch_iter): if(i > My_Limit): break iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize # whether to collect output images save_fake = total_steps % opt.display_freq == display_delta ############## Forward Pass ###################### losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake) # sum per device losses losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ] loss_dict = dict(zip(model.module.loss_names, losses)) print("loss dict is :", loss_dict) # calculate final loss scalar # loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 # loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + loss_dict.get('Loss_CC',0) print("CC loss is :", loss_dict.get('Loss_CC',0)) ############### Backward Pass #################### # update generator weights model.module.optimizer_G.zero_grad() loss_G.backward() model.module.optimizer_G.step() # update discriminator weights model.module.optimizer_D.zero_grad() loss_D.backward() model.module.optimizer_D.step() #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) ############## Display results and errors ########## ### print out errors if total_steps % opt.print_freq == print_delta: errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()} t = (time.time() - iter_start_time) / opt.batchSize visualizer.print_current_errors(epoch, epoch_iter, errors, t) visualizer.plot_current_errors(errors, total_steps) ### display output images if save_fake: visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0])), ('real_image', util.tensor2im(data['image'][0]))]) visualizer.display_current_results(visuals, epoch, total_steps) ### save latest model if total_steps % opt.save_latest_freq == save_delta: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.module.save('latest') np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') if epoch_iter >= dataset_size: break # end of epoch iter_end_time = time.time() print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ''' ### save model for this epoch if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.module.save('latest') model.module.save(epoch) np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d') ''' ### instead of only training the local enhancer, train the entire network after certain iterations if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): model.module.update_fixed_params() ### linearly decay learning rate after certain iterations if epoch > opt.niter: model.module.update_learning_rate()
effa795ba011f8dc2f6b6da9ac6642b41478c955
ac2567d2be46412f10a47aba6b062347fb831ec9
/twitterTest.py
d48b78dc469f066c5c8a5c8ce76e0454cb493cd7
[]
no_license
rhymg/TwitterScraping
e9e8d4098ba4d28cdb0d17f76de98a81c08432aa
769effdbdf83a170c13d2cac51ca5df7956e2dab
refs/heads/master
2022-11-24T11:46:46.637370
2020-07-18T19:19:17
2020-07-18T19:19:17
280,906,432
0
0
null
2020-07-19T16:34:18
2020-07-19T16:34:17
null
UTF-8
Python
false
false
531
py
import GetOldTweets3 as got; word = 'fuck'; f = open("usernameTest.txt", "a"); tweetCriteria = got.manager.TweetCriteria().setQuerySearch(word).setMaxTweets(10); tweets = got.manager.TweetManager.getTweets(tweetCriteria); for tweet in tweets: print(tweet.text + ' BY: ' + tweet.username + '\n'); if word in tweet.text.lower(): print('This has ' + word + ' in it.\n'); f.write(tweet.username + '\n'); else: print('This does not have ' + word + ' in it.\n'); f.close();
e0764768d0223253f5b731c708b8922ab74d8968
5ca0124a85bae76c73643246372898823345d5a9
/pc_smac/pc_smbo/pc_smbo.py
1f7aabbf310d2acffee21d378336e2e4064140b0
[]
no_license
jtuyls/pc_smac
8ebdd76e4ea2ce837dfd7d03d37f446a86094c57
0a6e8719438a3f510e0aaeda19c14dd8005d8c65
refs/heads/master
2021-08-14T18:15:00.162943
2017-06-10T10:52:56
2017-06-10T10:52:56
76,661,120
0
1
null
null
null
null
UTF-8
Python
false
false
13,167
py
# This file is heavily based on the pc_smbo file of SMAC which can be found here: # https://github.com/automl/SMAC3 import itertools import math import numpy as np import logging import typing import time import random from smac.optimizer.base_solver import BaseSolver from smac.epm.rf_with_instances import RandomForestWithInstances from smac.optimizer.local_search import LocalSearch from smac.intensification.intensification import Intensifier from smac.optimizer import pSMAC from smac.scenario.scenario import Scenario from smac.runhistory.runhistory import RunHistory from smac.runhistory.runhistory2epm import AbstractRunHistory2EPM from smac.stats.stats import Stats from smac.initial_design.initial_design import InitialDesign from smac.tae.execute_ta_run import FirstRunCrashedException from smac.optimizer.select_configurations import SelectConfigurations class PCSMBO(BaseSolver): def __init__(self, scenario: Scenario, stats: Stats, initial_design: InitialDesign, runhistory: RunHistory, runhistory2epm: AbstractRunHistory2EPM, intensifier: Intensifier, aggregate_func: callable, num_run: int, model: RandomForestWithInstances, rng: np.random.RandomState, select_configuration: SelectConfigurations, double_intensification: bool): ''' Interface that contains the main Bayesian optimization loop Parameters ---------- scenario: smac.scenario.scenario.Scenario Scenario object stats: Stats statistics object with configuration budgets initial_design: InitialDesign initial sampling design runhistory: RunHistory runhistory with all runs so far runhistory2epm : AbstractRunHistory2EPM Object that implements the AbstractRunHistory2EPM to convert runhistory data into EPM data intensifier: Intensifier intensification of new challengers against incumbent configuration (probably with some kind of racing on the instances) aggregate_func: callable how to aggregate the runs in the runhistory to get the performance of a configuration num_run: int id of this run (used for pSMAC) model: RandomForestWithInstances empirical performance model (right now, we support only RandomForestWithInstances) rng: np.random.RandomState Random number generator ''' self.logger = logging.getLogger("SMBO") self.incumbent = None self.scenario = scenario self.config_space = scenario.cs self.stats = stats self.initial_design = initial_design self.runhistory = runhistory self.rh2EPM = runhistory2epm self.intensifier = intensifier self.aggregate_func = aggregate_func self.num_run = num_run self.model = model self.rng = rng self.select_configuration = select_configuration self.double_intensification = double_intensification def run(self): ''' Runs the Bayesian optimization loop Returns ---------- incumbent: np.array(1, H) The best found configuration ''' self.stats.start_timing() try: self.incumbent = self.initial_design.run() except FirstRunCrashedException as err: if self.scenario.abort_on_first_run_crash: raise # Main BO loop iteration = 1 while True: if self.scenario.shared_model: pSMAC.read(run_history=self.runhistory, output_directory=self.scenario.output_dir, configuration_space=self.config_space, logger=self.logger) start_time = time.time() X, Y = self.rh2EPM.transform(self.runhistory) #print("Shapes: {}, {}".format(X.shape, Y.shape)) self.logger.debug("Search for next configuration") if self.double_intensification: # get all found configurations sorted according to acq challengers_smac, challengers_random = \ self.select_configuration.run(X, Y, incumbent=self.incumbent, num_configurations_by_random_search_sorted=100, num_configurations_by_local_search=10, double_intensification=self.double_intensification) time_spend = time.time() - start_time logging.debug( "Time spend to choose next configurations: %.2f sec" % (time_spend)) self.logger.debug("Intensify") start_time_random = time.time() self.incumbent, inc_perf = self.intensifier.intensify( challengers=challengers_random, incumbent=self.incumbent, run_history=self.runhistory, aggregate_func=self.aggregate_func, time_bound=max(0.01, time_spend / 2.), min_number_of_runs=1) time_spend_random = time.time() - start_time_random #print("IN BETWEEN INTENSIFICATIONS") self.incumbent, inc_perf = self.intensifier.intensify( challengers=challengers_smac, incumbent=self.incumbent, run_history=self.runhistory, aggregate_func=self.aggregate_func, time_bound=max(0.01, time_spend_random), min_number_of_runs=1) else: # get all found configurations sorted according to acq challengers = \ self.select_configuration.run(X, Y, incumbent=self.incumbent, num_configurations_by_random_search_sorted=100, num_configurations_by_local_search=10, double_intensification=self.double_intensification) #print("Challengers: {}".format(challengers)) time_spend = time.time() - start_time logging.debug( "Time spend to choose next configurations: %.2f sec" % (time_spend)) self.logger.debug("Intensify") self.incumbent, inc_perf = self.intensifier.intensify( challengers=challengers, incumbent=self.incumbent, run_history=self.runhistory, aggregate_func=self.aggregate_func, time_bound=max(0.01, time_spend), min_number_of_runs=2) print("Incumbent: {}, Performance: {}".format(self.incumbent, inc_perf)) if self.scenario.shared_model: pSMAC.write(run_history=self.runhistory, output_directory=self.scenario.output_dir, num_run=self.num_run) iteration += 1 logging.debug("Remaining budget: %f (wallclock), %f (ta costs), %f (target runs)" % ( self.stats.get_remaing_time_budget(), self.stats.get_remaining_ta_budget(), self.stats.get_remaining_ta_runs())) if self.stats.is_budget_exhausted(): break self.stats.print_stats(debug_out=True) return self.incumbent class PCSMBOSigmoidRandomSearch(BaseSolver): def __init__(self, scenario: Scenario, stats: Stats, initial_design: InitialDesign, runhistory: RunHistory, runhistory2epm: AbstractRunHistory2EPM, intensifier: Intensifier, aggregate_func: callable, num_run: int, model: RandomForestWithInstances, rng: np.random.RandomState, select_configuration: SelectConfigurations): ''' Interface that contains the main Bayesian optimization loop Parameters ---------- scenario: smac.scenario.scenario.Scenario Scenario object stats: Stats statistics object with configuration budgets initial_design: InitialDesign initial sampling design runhistory: RunHistory runhistory with all runs so far runhistory2epm : AbstractRunHistory2EPM Object that implements the AbstractRunHistory2EPM to convert runhistory data into EPM data intensifier: Intensifier intensification of new challengers against incumbent configuration (probably with some kind of racing on the instances) aggregate_func: callable how to aggregate the runs in the runhistory to get the performance of a configuration num_run: int id of this run (used for pSMAC) model: RandomForestWithInstances empirical performance model (right now, we support only RandomForestWithInstances) rng: np.random.RandomState Random number generator ''' self.logger = logging.getLogger("SMBO") self.incumbent = None self.scenario = scenario self.config_space = scenario.cs self.stats = stats self.initial_design = initial_design self.runhistory = runhistory self.rh2EPM = runhistory2epm self.intensifier = intensifier self.aggregate_func = aggregate_func self.num_run = num_run self.model = model self.rng = rng self.select_configuration = select_configuration def run(self): ''' Runs the Bayesian optimization loop Returns ---------- incumbent: np.array(1, H) The best found configuration ''' self.stats.start_timing() try: self.incumbent = self.initial_design.run() except FirstRunCrashedException as err: if self.scenario.abort_on_first_run_crash: raise # Main BO loop iteration = 1 intensification_runtime = 0 while True: if self.scenario.shared_model: pSMAC.read(run_history=self.runhistory, output_directory=self.scenario.output_dir, configuration_space=self.config_space, logger=self.logger) start_time = time.time() X, Y = self.rh2EPM.transform(self.runhistory) #print("Shapes: {}, {}".format(X.shape, Y.shape)) self.logger.debug("Search for next configuration") # get all found configurations sorted according to acq challengers = \ self.select_configuration.run(X, Y, incumbent=self.incumbent, timing_previous_run=intensification_runtime, num_configurations_by_random_search_sorted=100, num_configurations_by_local_search=10) #print("Challengers: {}".format(challengers)) time_spend = time.time() - start_time logging.debug( "Time spend to choose next configurations: %.2f sec" % (time_spend)) self.logger.debug("Intensify") start_time = time.time() self.incumbent, inc_perf = self.intensifier.intensify( challengers=challengers, incumbent=self.incumbent, run_history=self.runhistory, aggregate_func=self.aggregate_func, time_bound=max(0.01, time_spend), min_number_of_runs=2) intensification_runtime = time.time() - start_time #print("Intensification runtime: {}".format(intensification_runtime)) #print("Incumbent: {}, Performance: {}".format(self.incumbent, inc_perf)) if self.scenario.shared_model: pSMAC.write(run_history=self.runhistory, output_directory=self.scenario.output_dir, num_run=self.num_run) iteration += 1 logging.debug("Remaining budget: %f (wallclock), %f (ta costs), %f (target runs)" % ( self.stats.get_remaing_time_budget(), self.stats.get_remaining_ta_budget(), self.stats.get_remaining_ta_runs())) if self.stats.is_budget_exhausted(): break self.stats.print_stats(debug_out=True) return self.incumbent
ef7e4cf3a4bc9c1068b4866be245fb998a0ef38f
f8101363fff2bec14a152c3ba6d4d7f5e2e73c0a
/filehandler.py
00455f9644e5cda9f545d150b167edf7f9015dc4
[]
no_license
Adsime/TDT4173-A5
25e89ea4489454587a805bc5b58387c6c5bdf929
66d2547503c900b9d3e84d41c408fbc6243cdb31
refs/heads/master
2020-03-14T17:07:40.041536
2018-05-04T19:56:00
2018-05-04T19:56:00
131,712,698
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
import matplotlib.image as img from image import Image as dimg import numpy as np letter_path = "./data/chars74k-lite/" detection_path = "./data/detection-images/detection-" extension = ".jpg" def read_letter_images(letter): letter_images = [] try: i = 0 while True: image = dimg(img.imread(letter_path + letter + "/" + letter + "_" + i.__str__() + extension), letter) letter_images.append(image) i += 1 except FileNotFoundError: pass print("Images for " + letter + " loaded successfully") return np.array(letter_images) def read_detection_image(identifier): return img.imread(detection_path + identifier.__str__() + extension)
a1cc1637f3fb19d41494594668aa7c81e2d8aa00
2176442a012a0b73521d04e22bb9186a5e676321
/display.py
6a15632aad9ab6623c8adc9e5f6ee7278958dbf0
[]
no_license
caleb-kahan/z-scan
5e65c1382f60fed53fc36660ac5d36eecf2709e2
0ba703a99496c53a1d813ea0b9fa11679ec38d1f
refs/heads/master
2022-04-17T08:32:54.662716
2020-04-19T00:55:44
2020-04-19T00:55:44
256,568,578
0
0
null
null
null
null
UTF-8
Python
false
false
2,401
py
from subprocess import Popen, PIPE from os import remove #constants XRES = 500 YRES = 500 MAX_COLOR = 255 RED = 0 GREEN = 1 BLUE = 2 DEFAULT_COLOR = [0, 0, 0] def new_screen( width = XRES, height = YRES ): screen = [] for y in range( height ): row = [] screen.append( row ) for x in range( width ): screen[y].append( DEFAULT_COLOR[:] ) return screen def new_zbuffer( width = XRES, height = YRES ): zb = [] for y in range( height ): row = [ float('-inf') for x in range(width) ] zb.append( row ) return zb def plot( screen, zbuffer, color, x, y, z ): newy = YRES - 1 - y if ( x >= 0 and x < XRES and newy >= 0 and newy < YRES and z > zbuffer[newy][x]): screen[newy][x] = color[:] zbuffer[newy][x] = z def clear_screen( screen ): for y in range( len(screen) ): for x in range( len(screen[y]) ): screen[y][x] = DEFAULT_COLOR[:] def clear_zbuffer( zb ): for y in range( len(zb) ): for x in range( len(zb[y]) ): zb[y][x] = float('-inf') def save_ppm( screen, fname ): f = open( fname, 'wb' ) ppm = 'P6\n' + str(len(screen[0])) +' '+ str(len(screen)) +' '+ str(MAX_COLOR) +'\n' f.write(ppm.encode()) for y in range( len(screen) ): for x in range( len(screen[y]) ): pixel = screen[y][x] f.write( bytes(pixel) ) f.close() def save_ppm_ascii( screen, fname ): f = open( fname, 'w' ) ppm = 'P3\n' + str(len(screen[0])) +' '+ str(len(screen)) +' '+ str(MAX_COLOR) +'\n' for y in range( len(screen) ): row = '' for x in range( len(screen[y]) ): pixel = screen[y][x] row+= str( pixel[ RED ] ) + ' ' row+= str( pixel[ GREEN ] ) + ' ' row+= str( pixel[ BLUE ] ) + ' ' ppm+= row + '\n' f.write( ppm ) f.close() def save_extension( screen, fname ): ppm_name = fname[:fname.find('.')] + '.ppm' save_ppm( screen, ppm_name ) p = Popen( ['convert', ppm_name, fname ], stdin=PIPE, stdout = PIPE ) p.communicate() remove(ppm_name) def display( screen ): ppm_name = 'pic.ppm' save_ppm( screen, ppm_name ) p = Popen( ['display', ppm_name], stdin=PIPE, stdout = PIPE ) p.communicate() remove(ppm_name)
d897144be27bc308b3927bb78256939faeaab5ba
509bf02d033c6a3c274360ab16f75c109a0ba31c
/test/test_hunalign.py
c59304af881eb0c447039bdebeb687d76180c585
[]
no_license
israaar/textaligner
bb3a6b8210a12799ef40bec44b942f5ca325d2a8
a03e28cc8264e0c207a7f1b6f56b0dbcc04eeba1
refs/heads/master
2022-01-27T14:35:43.553965
2019-05-16T07:57:14
2019-05-16T07:57:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,470
py
# -*- coding: utf-8 -*- import os.path import unittest import sys from pprint import pprint import operator sys.path.append(os.path.abspath('..')) from align import align, align_html from hunalign import align_with_lang class TestHunalign(unittest.TestCase): def setUp(self): self.maxDiff = None pass def testUnalignedText(self): left_text = \ """シャーロックホームズにとって、彼女はいつも「あの女」である。ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。しかし、彼はアイリーン・アドラーに愛のような激情は一切感じていなかった。すべての激情は、そして特に愛というものは、 相容れなかった、彼の冷静で厳格だが見事に調整された心とは。 """ right_text = \ """TO SHERLOCK HOLMES she is always the woman. I have seldom heard him mention her under any other name. In his eyes she eclipses and predominates the whole of her sex. It was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one particularly, were abhorrent to his cold, precise but admirably balanced mind. """ split_text = align(left_text, right_text) split_text = list(split_text) self.assertEqual( split_text, [('シャーロックホームズにとって、彼女はいつも「あの女」である。', 'TO SHERLOCK HOLMES she is always the woman.'), ('ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。', 'I have seldom heard him mention her under any other name.'), ('彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。', 'In his eyes she eclipses and predominates the whole of her sex.'), ('しかし、彼はアイリーン・アドラーに愛のような激情は一切感じていなかった。', 'It was not that he felt any emotion akin to love for Irene Adler.'), ('すべての激情は、そして特に愛というものは、 相容れなかった、彼の冷静で厳格だが見事に調整された心とは。', 'All emotions, and that one particularly, were abhorrent to his cold, ' 'precise but admirably balanced mind.'), ('', '')] ) def testAlignedText(self): left_text = \ """シャーロックホームズにとって、彼女はいつも「あの女」である。 ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。 彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。 しかし、彼はアイリーン・アドラーに愛のような激情は一切感じていなかった。 すべての激情は、そして特に愛というものは、 相容れなかった、彼の冷静で厳格だが見事に調整された心とは。""" right_text = \ """TO SHERLOCK HOLMES she is always the woman. I have seldom heard him mention her under any other name. In his eyes she eclipses and predominates the whole of her sex. It was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one particularly, were abhorrent to his cold, precise but admirably balanced mind.""" split_text = align_with_lang('ja', left_text, 'en', right_text) split_text = list(split_text) # pprint(split_text) self.assertEqual( split_text, [('シャーロックホームズにとって、彼女はいつも「あの女」である。', 'TO SHERLOCK HOLMES she is always the woman.'), ('ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。', 'I have seldom heard him mention her under any other name.'), ('彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。', 'In his eyes she eclipses and predominates the whole of her sex.'), ('しかし、彼はアイリーン・アドラーに愛のような激情は一切感じていなかった。', 'It was not that he felt any emotion akin to love for Irene Adler.'), ('すべての激情は、そして特に愛というものは、 相容れなかった、彼の冷静で厳格だが見事に調整された心とは。', 'All emotions, and that one particularly, were abhorrent to his cold, ' 'precise but admirably balanced mind.')] ) # pprint(list(split_text)) def testHtmlText(self): left_text = \ """シャーロックホームズにとって、彼女はいつも「あの女」である。<br>ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。<br><br>彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。 """ right_text = \ """TO SHERLOCK HOLMES she is always the woman.<br>I have seldom heard him mention her under any other name.<br><br>In his eyes she eclipses and predominates the whole of her sex.""" split_text = align_html(left_text, right_text) split_text = list(split_text) self.assertEqual( split_text, [('シャーロックホームズにとって、彼女はいつも「あの女」である。', 'TO SHERLOCK HOLMES she is always the woman.'), ('ホームズが彼女を他の名前で呼ぶのはほとんど聞いたことがない。', 'I have seldom heard him mention her under any other name.'), ('彼の目には、 彼女がそびえ立って女という性全体を覆い隠している。', 'In his eyes she eclipses and predominates the whole of her sex.'), ('しかし、彼はアイリーン・アドラーに愛のような激情は一切感じていなかった。', 'It was not that he felt any emotion akin to love for Irene Adler.')] ) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestHunalign) unittest.TextTestRunner(verbosity=2).run(suite)
11c22d73f60539e4d366a803c0661c8593aee320
d889769f22d95d686ffce6564b1a5529e462d770
/utils/get_data.py
6bfb524940602e4ebf825f56b25e00790700921d
[]
no_license
ycpan/HbaseOperation
2051ad1992ca3dd57d8a180d88b56c46549e28ae
15f470fad590d9f4635d5b38407f8f739bd621f3
refs/heads/master
2022-02-13T05:15:18.745507
2019-07-09T02:51:40
2019-07-09T02:51:40
120,189,360
0
0
null
null
null
null
UTF-8
Python
false
false
8,498
py
import pandas as pd import pickle import happybase import struct import numpy as np import sys # from influxdb import DataFrameClient import re import time from datetime import datetime, timezone, timedelta # from utils.conf import sql_db_configs def get_csv_data(path, header=None): """load padas dataframe from csv file Arguments: path {str} -- filepath of the csv file Returns: pandas.DataFrame -- loaded data """ return pd.read_csv(path, sep=',', encoding='utf-8', header=header) def get_pickle_data(path): """load data from pickle file Arguments: path {str} -- filepath of the pickle file Returns: object -- loaded data """ with open(path, 'rb') as file: return pickle.load(file) def get_df_from_hbase(con, table_name, key, cf='hb', timestamp=None, include_timestamp=False): """Read a pandas DataFrame object from HBase table. Arguments: con {happybase.Connection} -- HBase connection object table_name {str} -- HBase table name to read key {str} -- row key from which the DataFrame should be read Keyword Arguments: cf {str} -- Column Family name (default: {'hb'}) Returns: [pandas.DataFrame] -- Pandas DataFrame object read from HBase """ table = con.table(table_name) column_dtype_key = key + 'columns' column_dtype = table.row(column_dtype_key, columns=[cf], timestamp=timestamp, include_timestamp=include_timestamp) columns = {col.decode().split(':')[1]: value.decode() for col, value in column_dtype.items()} column_order_key = key + 'column_order' column_order_dict = table.row(column_order_key, columns=[cf], timestamp=timestamp, include_timestamp=include_timestamp) column_order = list() for i in range(len(column_order_dict)): column_order.append(column_order_dict[bytes(':'.join((cf, str(i))), encoding='utf-8')].decode()) # # row_start = key + 'rows' + struct.pack('>q', 0) # row_start = key + 'rows' + str(column_order(0)) # # row_end = key + 'rows' + struct.pack('>q', sys.maxint) # row_end = key + 'rows' + str(column_order[len(column_order) - 1]) row_key_template = key + '_rows_' # scan_columns = ['{}{}'.format(row_key_template, item) for item in column_order] HBase_rows = table.scan(row_prefix=bytes(row_key_template, encoding='utf-8')) # HBase_rows = table.scan(columns='cf:') df = pd.DataFrame() for row in HBase_rows: column_name = row[0].decode().split('_')[len(row[0].decode().split('_')) - 1] df_column = {key.decode().split(':')[1]: value.decode() for key, value in row[1].items()} pd_series = pd.Series(df_column) # df = df.append(df_column, ignore_index=True) df[column_name] = pd_series for column, data_type in columns.items(): if len(list(columns.items())) == 1: column = df.columns[0] if column == '': continue try: df[column] = pd.to_numeric(df[column]) except ValueError: pass df[column] = df[column].astype(np.dtype(data_type)) return df def get_specify_maximum_version_from_cell(con, table_name, row_key, cf='hb', timestamp=None, include_timestamp=False): table = con.table(table_name) cell = table.row(row_key, columns=[cf], timestamp=timestamp, include_timestamp=include_timestamp) # cell1 = table.cells(row_key, column=cf, versions=5, timestamp=timestamp, # include_timestamp=True) type_set = set() columnsOrder = None SeriesName = None columnsType = None columnsOrder_cf = None SeriesName_cf = None columnsType_cf = None res = None for cf, value in cell.items(): if len(value) == 2: value, ts = value else: value = value ts = None cf_qualifier = cf.decode().split(':')[1] data_type = cf_qualifier.split('_')[0] type_set.add(data_type) data_content = cf_qualifier.split('_')[1] if data_content == 'columnsOrder': columnsOrder = eval(value.decode()) columnsOrder_cf = cf if data_content == 'SeriesName': SeriesName = value.decode() SeriesName_cf = cf if data_content == 'columnsType': try: columnsType = eval(value.decode()) except NameError: columnsType = value.decode() columnsType_cf = cf if columnsOrder_cf is not None: cell.pop(columnsOrder_cf) if SeriesName_cf is not None: cell.pop(SeriesName_cf) if columnsType_cf is not None: cell.pop(columnsType_cf) cell_keys = cell.keys() if columnsOrder_cf in cell_keys or SeriesName_cf in cell_keys or columnsType_cf in cell_keys: raise ValueError('more than one clean_log input one cell') # if len(type_set) > 2: # raise ValueError('more than one clean_log input one cell') # if len(type_set) >= 2: # raise ValueError('in one cell may have two data type, this can not deal it') if 'DataFrame' in type_set: if len(type_set) > 2: raise ValueError('in one cell may have two data type, this can not deal it') res = pd.DataFrame() for cf, value in cell.items(): if len(value) == 2: value, _ = value else: value = value cf_qualifier = cf.decode().split(':')[1] data_index = cf_qualifier.split('_')[1] value = eval(value.decode()) if 'None' in value: value = [None if v == 'None' else v for v in value] df_sub = pd.DataFrame(np.array(value).reshape(1, -1), columns=columnsOrder, index=[data_index]) res = res.append(df_sub) for column, data_type in columnsType.items(): if column == '': continue try: res[str(column)] = pd.to_numeric(res[str(column)]) except ValueError: pass res[str(column)] = res[str(column)].astype(np.dtype(data_type)) elif 'Series' in type_set: if len(type_set) > 2: raise ValueError('in one cell may have two data type, this can not deal it') res = pd.Series() for cf, value in cell.items(): if len(value) == 2: value, _ = value else: value = value cf_qualifier = cf.decode().split(':')[1] data_index = cf_qualifier.split('_')[1] df_sub = pd.Series(value.decode(), index=[data_index]) res = res.append(df_sub) if SeriesName is not None: res.name = SeriesName try: res = pd.to_numeric(res) except ValueError: pass res = res.astype(np.dtype(columnsType)) elif 'dict' in type_set: if len(type_set) >= 2: raise ValueError('in one cell may have two data type, this can not deal it') # for cf, value in cell.items(): if len(value) == 2: value, _ = value else: value = value res = eval(value.decode()) else: res = dict() for cf, value in cell.items(): if len(value) == 2: value, _ = value else: value = value cf_qualifier = cf.decode().split(':')[1] data_key = cf_qualifier.split('_')[1] # value = value.decode() value = value try: value = value.decode() value = eval(value) except: pass res[data_key] = value if ts is not None: return res, ts return res def get_specify_versions_data_from_cell(con, table_name, row_key, cf='hb', versions=None, timestamp=None, include_timestamp=False): table = con.table(table_name) # cell = table.row(row_key, columns=[cf], timestamp=timestamp, include_timestamp=include_timestamp) cell = table.cells(row_key, column=cf, versions=versions, timestamp=timestamp, include_timestamp=True) ts_set = set() for _, ts in cell: ts_set.add(ts) res = [] for ts in ts_set: res.append(get_specify_maximum_version_from_cell(con, table_name, row_key, cf, ts+1, include_timestamp)) return res
816403dc9d93b4276bffb4d8e162c51ea13231b8
0be45470f15f12872d81f98c72e3b8528100ad27
/pointCollection/tools/RDE.py
563e437d633d241e661519931619d6cf3b3cf410
[ "MIT" ]
permissive
SmithB/pointCollection
19a43bb19b1753542f693645fe4f537c2dbf7af9
026a60eb7e2fbe5333c7a30bd8299dda44c5878e
refs/heads/master
2023-08-23T18:56:49.943934
2023-08-18T16:41:12
2023-08-18T16:41:12
220,045,965
4
8
MIT
2023-07-03T15:47:58
2019-11-06T16:51:04
Jupyter Notebook
UTF-8
Python
false
false
584
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 23 16:31:30 2017 @author: ben """ import numpy as np def RDE(x): xs=x.copy() xs=np.isfinite(xs) # this changes xs from values to a boolean if np.sum(xs)<2 : return np.nan ind=np.arange(0.5, np.sum(xs)) LH=np.interp(np.array([0.16, 0.84])*np.sum(xs), ind, np.sort(x[xs])) #print('LH =',LH) return (LH[1]-LH[0])/2. # trying to get some kind of a width of the data ~variance #import scipy.stats as stats #def RDE(x): # return (stats.scoreatpercentile(x, 84 )-stats.scoreatpercentile(x, 16))/2.
56688f3f32ef27e8f1ae4b5c9144316bdf9ad2cd
21e2782bb70f183876c55940d7cefc1c82b16472
/interview/server/tests.py
066d157435dbd90bf9cbc7cd036fd76f04a93a3a
[]
no_license
RajsimmanRavi/backend-challenge
13bdc09417fe4d2a7cce54288e27c73c800cf854
f30860a868493a963ec98fc749b4ae3016a5c766
refs/heads/master
2020-08-09T04:29:56.057638
2019-10-09T18:53:30
2019-10-09T18:53:30
213,998,608
0
0
null
2019-10-09T18:50:22
2019-10-09T18:50:21
null
UTF-8
Python
false
false
2,011
py
import requests import unittest import random from random import randint from datetime import datetime random.seed(datetime.now()) class TestStringMethods(unittest.TestCase): def test_get(self): response = requests.get('http://127.0.0.1:8000/conversations/1234') self.assertIn("anson", response.text) def test_get_non_existent(self): response = requests.get('http://127.0.0.1:8000/conversations/12456') self.assertIn("matching query does not exist", response.text) def test_get_non_int(self): response = requests.get('http://127.0.0.1:8000/conversations/124abc') self.assertEqual(response.status_code, 404) def test_get_nothing(self): response = requests.get('http://127.0.0.1:8000/conversations/') self.assertEqual(response.status_code, 404) def test_post(self): rand_int = str(randint(1000,9999)) data = {"id": rand_int ,"sender": "anson", "message": "I am a coffee pot" } response = requests.post('http://127.0.0.1:8000/messages/', json=data) self.assertIn("Successfully stored", response.text) response = requests.get('http://127.0.0.1:8000/conversations/'+rand_int) self.assertIn("anson", response.text) def test_post_no_id(self): data = {"sender": "anson", "message": "I am a coffee pot"} response = requests.post('http://127.0.0.1:8000/messages/', json=data) self.assertIn("error", response.text) def test_post_no_sender(self): data = {"id": "12", "message": "I am a coffee pot"} response = requests.post('http://127.0.0.1:8000/messages/', json=data) self.assertIn("error", response.text) def test_post_no_message(self): data = {"id": "12", "sender": "raj", "message": "I am a coffee pot"} response = requests.post('http://127.0.0.1:8000/messages/', json=data) self.assertIn("error", response.text) if __name__ == '__main__': unittest.main()
11e480051d1e2e4b524f910449fa7a03d3d0f592
b3db0cb0849fc3c981077cc5dc071c6eac6fd1ed
/C.1.14.py
f9372e61feee0ec164fad2d51aa25739dd93f3b8
[]
no_license
Andi-Abdi/Tugas-Struktur-Data
bcfcfd3cf4ac28ce966b30d07041d775b33db778
49162ad9c5869161df01bc1a0f8697c2d7d1623a
refs/heads/main
2023-05-11T11:58:46.484954
2021-05-31T14:46:22
2021-05-31T14:46:22
372,522,215
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
def odd_product_pair(data): data = set(data) for y in data: for x in data: if y == x : continue if y*x % 2 == 1: return True return False print(odd_product_pair([5,7,9,14,16]))
35b215ad4099e666c114c8229187f42384aed2ee
62dcbce52fd9b47f97c8bd8df2f05fbf614d1abd
/ttvdb/tvdb_api.py
0a08be8cfb5645e6e03b9e9c4eb10664ed74cfbc
[ "MIT" ]
permissive
namgar/mythboxee
e7007e435eea5cd5c74fd31e422bf2a259c6168b
80129d47a85ad867bc1687958ba23387c705c789
refs/heads/master
2021-01-23T20:22:48.516873
2010-11-23T02:05:04
2010-11-23T02:05:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,282
py
#!/usr/bin/env python #encoding:utf-8 #author:dbr/Ben #project:tvdb_api #repository:http://github.com/dbr/tvdb_api #license:Creative Commons GNU GPL v2 # (http://creativecommons.org/licenses/GPL/2.0/) """Simple-to-use Python interface to The TVDB's API (www.thetvdb.com) Example usage: >>> from tvdb_api import Tvdb >>> t = Tvdb() >>> t['Lost'][4][11]['episodename'] u'Cabin Fever' """ __author__ = "dbr/Ben" __version__ = "1.2.1" import os import sys import urllib import urllib2 import tempfile import logging try: import xml.etree.cElementTree as ElementTree except ImportError: import xml.etree.ElementTree as ElementTree from cache import CacheHandler from tvdb_ui import BaseUI, ConsoleUI from tvdb_exceptions import (tvdb_error, tvdb_userabort, tvdb_shownotfound, tvdb_seasonnotfound, tvdb_episodenotfound, tvdb_attributenotfound) class ShowContainer(dict): """Simple dict that holds a series of Show instances """ pass class Show(dict): """Holds a dict of seasons, and show data. """ def __init__(self): dict.__init__(self) self.data = {} def __repr__(self): return "<Show %s (containing %s seasons)>" % ( self.data.get(u'seriesname', 'instance'), len(self) ) def __getitem__(self, key): if key in self: # Key is an episode, return it return dict.__getitem__(self, key) if key in self.data: # Non-numeric request is for show-data return dict.__getitem__(self.data, key) # Data wasn't found, raise appropriate error if isinstance(key, int) or key.isdigit(): # Episode number x was not found raise tvdb_seasonnotfound("Could not find season %s" % (repr(key))) else: # If it's not numeric, it must be an attribute name, which # doesn't exist, so attribute error. raise tvdb_attributenotfound("Cannot find attribute %s" % (repr(key))) def search(self, term = None, key = None): """ Search all episodes in show. Can search all data, or a specific key (for example, episodename) Always returns an array (can be empty). First index contains the first match, and so on. Each array index is an Episode() instance, so doing search_results[0]['episodename'] will retrieve the episode name of the first match. Search terms are converted to lower case (unicode) strings. # Examples These examples assume t is an instance of Tvdb(): >>> t = Tvdb() >>> To search for all episodes of Scrubs with a bit of data containing "my first day": >>> t['Scrubs'].search("my first day") [<Episode 01x01 - My First Day>] >>> Search for "My Name Is Earl" episode named "Faked His Own Death": >>> t['My Name Is Earl'].search('Faked His Own Death', key = 'episodename') [<Episode 01x04 - Faked His Own Death>] >>> To search Scrubs for all episodes with "mentor" in the episode name: >>> t['scrubs'].search('mentor', key = 'episodename') [<Episode 01x02 - My Mentor>, <Episode 03x15 - My Tormented Mentor>] >>> # Using search results >>> results = t['Scrubs'].search("my first") >>> print results[0]['episodename'] My First Day >>> for x in results: print x['episodename'] My First Day My First Step My First Kill >>> """ results = [] for cur_season in self.values(): searchresult = cur_season.search(term = term, key = key) if len(searchresult) != 0: results.extend(searchresult) #end for cur_season return results class Season(dict): def __repr__(self): return "<Season instance (containing %s episodes)>" % ( len(self.keys()) ) def __getitem__(self, episode_number): if episode_number not in self: raise tvdb_episodenotfound("Could not find episode %s" % (repr(episode_number))) else: return dict.__getitem__(self, episode_number) def search(self, term = None, key = None): """Search all episodes in season, returns a list of matching Episode instances. >>> t = Tvdb() >>> t['scrubs'][1].search('first day') [<Episode 01x01 - My First Day>] >>> See Show.search documentation for further information on search """ results = [] for ep in self.values(): searchresult = ep.search(term = term, key = key) if searchresult is not None: results.append( searchresult ) return results class Episode(dict): def __repr__(self): seasno = int(self.get(u'seasonnumber', 0)) epno = int(self.get(u'episodenumber', 0)) epname = self.get(u'episodename') if epname is not None: return "<Episode %02dx%02d - %s>" % (seasno, epno, epname) else: return "<Episode %02dx%02d>" % (seasno, epno) def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: raise tvdb_attributenotfound("Cannot find attribute %s" % (repr(key))) def search(self, term = None, key = None): """Search episode data for term, if it matches, return the Episode (self). The key parameter can be used to limit the search to a specific element, for example, episodename. This primarily for use use by Show.search and Season.search. See Show.search for further information on search Simple example: >>> e = Episode() >>> e['episodename'] = "An Example" >>> e.search("examp") <Episode 00x00 - An Example> >>> Limiting by key: >>> e.search("examp", key = "episodename") <Episode 00x00 - An Example> >>> """ if term == None: raise TypeError("must supply string to search for (contents)") term = unicode(term).lower() for cur_key, cur_value in self.items(): cur_key, cur_value = unicode(cur_key).lower(), unicode(cur_value).lower() if key is not None and cur_key != key: # Do not search this key continue if cur_value.find( unicode(term).lower() ) > -1: return self #end if cur_value.find() #end for cur_key, cur_value class Actors(list): """Holds all Actor instances for a show """ pass class Actor(dict): """Represents a single actor. Should contain.. id, image, name, role, sortorder """ def __repr__(self): return "<Actor \"%s\">" % (self.get("name")) class Tvdb: """Create easy-to-use interface to name of season/episode name >>> t = Tvdb() >>> t['Scrubs'][1][24]['episodename'] u'My Last Day' """ def __init__(self, interactive = False, select_first = False, debug = False, cache = True, banners = False, actors = False, custom_ui = None, language = None, search_all_languages = False, apikey = None): """interactive (True/False): When True, uses built-in console UI is used to select the correct show. When False, the first search result is used. select_first (True/False): Automatically selects the first series search result (rather than showing the user a list of more than one series). Is overridden by interactive = False, or specifying a custom_ui debug (True/False): shows verbose debugging information cache (True/False/str/unicode): Retrieved XML are persisted to to disc. If true, stores in tvdb_api folder under your systems TEMP_DIR, if set to str/unicode instance it will use this as the cache location. If False, disables caching. banners (True/False): Retrieves the banners for a show. These are accessed via the _banners key of a Show(), for example: >>> Tvdb(banners=True)['scrubs']['_banners'].keys() ['fanart', 'poster', 'series', 'season'] actors (True/False): Retrieves a list of the actors for a show. These are accessed via the _actors key of a Show(), for example: >>> t = Tvdb(actors=True) >>> t['scrubs']['_actors'][0]['name'] u'Zach Braff' custom_ui (tvdb_ui.BaseUI subclass): A callable subclass of tvdb_ui.BaseUI (overrides interactive option) language (2 character language abbreviation): The language of the returned data. Is also the language search uses. Default is "en" (English). For full list, run.. >>> Tvdb().config['valid_languages'] #doctest: +ELLIPSIS ['da', 'fi', 'nl', ...] search_all_languages (True/False): By default, Tvdb will only search in the language specified using the language option. When this is True, it will search for the show in and language apikey (str/unicode): Override the default thetvdb.com API key. By default it will use tvdb_api's own key (fine for small scripts), but you can use your own key if desired - this is recommended if you are embedding tvdb_api in a larger application) See http://thetvdb.com/?tab=apiregister to get your own key """ self.shows = ShowContainer() # Holds all Show classes self.corrections = {} # Holds show-name to show_id mapping self.config = {} if apikey is not None: self.config['apikey'] = apikey else: self.config['apikey'] = "0629B785CE550C8D" # tvdb_api's API key self.config['debug_enabled'] = debug # show debugging messages self.config['custom_ui'] = custom_ui self.config['interactive'] = interactive # prompt for correct series? self.config['select_first'] = select_first self.config['search_all_languages'] = search_all_languages if cache is True: self.config['cache_enabled'] = True self.config['cache_location'] = self._getTempDir() elif isinstance(cache, basestring): self.config['cache_enabled'] = True self.config['cache_location'] = cache else: self.config['cache_enabled'] = False if self.config['cache_enabled']: self.urlopener = urllib2.build_opener( CacheHandler(self.config['cache_location']) ) else: self.urlopener = urllib2.build_opener() self.config['banners_enabled'] = banners self.config['actors_enabled'] = actors self.log = self._initLogger() # Setups the logger (self.log.debug() etc) # List of language from http://www.thetvdb.com/api/0629B785CE550C8D/languages.xml # Hard-coded here as it is realtively static, and saves another HTTP request, as # recommended on http://thetvdb.com/wiki/index.php/API:languages.xml self.config['valid_languages'] = [ "da", "fi", "nl", "de", "it", "es", "fr","pl", "hu","el","tr", "ru","he","ja","pt","zh","cs","sl", "hr","ko","en","sv","no" ] if language is None: self.config['language'] = "en" elif language not in self.config['valid_languages']: raise ValueError("Invalid language %s, options are: %s" % ( language, self.config['valid_languages'] )) else: self.config['language'] = language # The following url_ configs are based of the # http://thetvdb.com/wiki/index.php/Programmers_API self.config['base_url'] = "http://www.thetvdb.com" if self.config['search_all_languages']: self.config['url_getSeries'] = "%(base_url)s/api/GetSeries.php?seriesname=%%s&language=all" % self.config else: self.config['url_getSeries'] = "%(base_url)s/api/GetSeries.php?seriesname=%%s&language=%(language)s" % self.config self.config['url_epInfo'] = "%(base_url)s/api/%(apikey)s/series/%%s/all/%(language)s.xml" % self.config self.config['url_seriesInfo'] = "%(base_url)s/api/%(apikey)s/series/%%s/%(language)s.xml" % self.config self.config['url_actorsInfo'] = "%(base_url)s/api/%(apikey)s/series/%%s/actors.xml" % self.config self.config['url_seriesBanner'] = "%(base_url)s/api/%(apikey)s/series/%%s/banners.xml" % self.config self.config['url_artworkPrefix'] = "%(base_url)s/banners/%%s" % self.config #end __init__ def _initLogger(self): """Setups a logger using the logging module, returns a log object """ logger = logging.getLogger("tvdb") formatter = logging.Formatter('%(asctime)s) %(levelname)s %(message)s') hdlr = logging.StreamHandler(sys.stdout) hdlr.setFormatter(formatter) logger.addHandler(hdlr) if self.config['debug_enabled']: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.WARNING) return logger #end initLogger def _getTempDir(self): """Returns the [system temp dir]/tvdb_api """ import mc return mc.GetTempDir() return os.path.join(tempfile.gettempdir(), "tvdb_api") def _loadUrl(self, url, recache = False): try: self.log.debug("Retrieving URL %s" % url) resp = self.urlopener.open(url) if 'x-local-cache' in resp.headers: self.log.debug("URL %s was cached in %s" % ( url, resp.headers['x-local-cache']) ) if recache: self.log.debug("Attempting to recache %s" % url) resp.recache() except urllib2.URLError, errormsg: raise tvdb_error("Could not connect to server: %s" % (errormsg)) #end try return resp.read() def _getetsrc(self, url): """Loads a URL sing caching, returns an ElementTree of the source """ src = self._loadUrl(url) try: return ElementTree.fromstring(src) except SyntaxError: src = self._loadUrl(url, recache=True) try: return ElementTree.fromstring(src) except SyntaxError, exceptionmsg: errormsg = "There was an error with the XML retrieved from thetvdb.com:\n%s" % ( exceptionmsg ) if self.config['cache_enabled']: errormsg += "\nFirst try emptying the cache folder at..\n%s" % ( self.config['cache_location'] ) errormsg += "\nIf this does not resolve the issue, please try again later. If the error persists, report a bug on" errormsg += "\nhttp://dbr.lighthouseapp.com/projects/13342-tvdb_api/overview\n" raise tvdb_error(errormsg) #end _getetsrc def _setItem(self, sid, seas, ep, attrib, value): """Creates a new episode, creating Show(), Season() and Episode()s as required. Called by _getShowData to populute Since the nice-to-use tvdb[1][24]['name] interface makes it impossible to do tvdb[1][24]['name] = "name" and still be capable of checking if an episode exists so we can raise tvdb_shownotfound, we have a slightly less pretty method of setting items.. but since the API is supposed to be read-only, this is the best way to do it! The problem is that calling tvdb[1][24]['episodename'] = "name" calls __getitem__ on tvdb[1], there is no way to check if tvdb.__dict__ should have a key "1" before we auto-create it """ if sid not in self.shows: self.shows[sid] = Show() if seas not in self.shows[sid]: self.shows[sid][seas] = Season() if ep not in self.shows[sid][seas]: self.shows[sid][seas][ep] = Episode() self.shows[sid][seas][ep][attrib] = value #end _set_item def _setShowData(self, sid, key, value): """Sets self.shows[sid] to a new Show instance, or sets the data """ if sid not in self.shows: self.shows[sid] = Show() self.shows[sid].data[key] = value def _cleanData(self, data): """Cleans up strings returned by TheTVDB.com Issues corrected: - Replaces &amp; with & - Trailing whitespace """ data = data.replace(u"&amp;", u"&") data = data.strip() return data #end _cleanData def _getSeries(self, series): """This searches TheTVDB.com for the series name, If a custom_ui UI is configured, it uses this to select the correct series. If not, and interactive == True, ConsoleUI is used, if not BaseUI is used to select the first result. """ series = urllib.quote(series.encode("utf-8")) self.log.debug("Searching for show %s" % series) seriesEt = self._getetsrc(self.config['url_getSeries'] % (series)) allSeries = [] for series in seriesEt: sn = series.find('SeriesName') value = self._cleanData(sn.text) cur_sid = series.find('id').text self.log.debug('Found series %s (id: %s)' % (value, cur_sid)) allSeries.append( {'sid':cur_sid, 'name':value} ) #end for series if len(allSeries) == 0: self.log.debug('Series result returned zero') raise tvdb_shownotfound("Show-name search returned zero results (cannot find show on TVDB)") if self.config['custom_ui'] is not None: self.log.debug("Using custom UI %s" % (repr(self.config['custom_ui']))) ui = self.config['custom_ui'](config = self.config, log = self.log) else: if not self.config['interactive']: self.log.debug('Auto-selecting first search result using BaseUI') ui = BaseUI(config = self.config, log = self.log) else: self.log.debug('Interactivily selecting show using ConsoleUI') ui = ConsoleUI(config = self.config, log = self.log) #end if config['interactive] #end if custom_ui != None return ui.selectSeries(allSeries) #end _getSeries def _parseBanners(self, sid): """Parses banners XML, from http://www.thetvdb.com/api/[APIKEY]/series/[SERIES ID]/banners.xml Banners are retrieved using t['show name]['_banners'], for example: >>> t = Tvdb(banners = True) >>> t['scrubs']['_banners'].keys() ['fanart', 'poster', 'series', 'season'] >>> t['scrubs']['_banners']['poster']['680x1000']['35308']['_bannerpath'] 'http://www.thetvdb.com/banners/posters/76156-2.jpg' >>> Any key starting with an underscore has been processed (not the raw data from the XML) This interface will be improved in future versions. """ self.log.debug('Getting season banners for %s' % (sid)) bannersEt = self._getetsrc( self.config['url_seriesBanner'] % (sid) ) banners = {} for cur_banner in bannersEt.findall('Banner'): bid = cur_banner.find('id').text btype = cur_banner.find('BannerType') btype2 = cur_banner.find('BannerType2') if btype is None or btype2 is None: continue btype, btype2 = btype.text, btype2.text if not btype in banners: banners[btype] = {} if not btype2 in banners[btype]: banners[btype][btype2] = {} if not bid in banners[btype][btype2]: banners[btype][btype2][bid] = {} self.log.debug("Banner: %s", bid) for cur_element in cur_banner.getchildren(): tag = cur_element.tag.lower() value = cur_element.text if tag is None or value is None: continue tag, value = tag.lower(), value.lower() self.log.debug("Banner info: %s = %s" % (tag, value)) banners[btype][btype2][bid][tag] = value for k, v in banners[btype][btype2][bid].items(): if k.endswith("path"): new_key = "_%s" % (k) self.log.debug("Transforming %s to %s" % (k, new_key)) new_url = self.config['url_artworkPrefix'] % (v) self.log.debug("New banner URL: %s" % (new_url)) banners[btype][btype2][bid][new_key] = new_url self._setShowData(sid, "_banners", banners) # Alternate tvdb_api's method for retrieving graphics URLs but returned as a list that preserves # the user rating order highest rated to lowest rated def ttvdb_parseBanners(self, sid): """Parses banners XML, from http://www.thetvdb.com/api/[APIKEY]/series/[SERIES ID]/banners.xml Banners are retrieved using t['show name]['_banners'], for example: >>> t = Tvdb(banners = True) >>> t['scrubs']['_banners'].keys() ['fanart', 'poster', 'series', 'season'] >>> t['scrubs']['_banners']['poster']['680x1000']['35308']['_bannerpath'] 'http://www.thetvdb.com/banners/posters/76156-2.jpg' >>> Any key starting with an underscore has been processed (not the raw data from the XML) This interface will be improved in future versions. Changed in this interface is that a list or URLs is created to preserve the user rating order from top rated to lowest rated. """ self.log.debug('Getting season banners for %s' % (sid)) bannersEt = self._getetsrc( self.config['url_seriesBanner'] % (sid) ) banners = {} bid_order = {'fanart': [], 'poster': [], 'series': [], 'season': []} for cur_banner in bannersEt.findall('Banner'): bid = cur_banner.find('id').text btype = cur_banner.find('BannerType') btype2 = cur_banner.find('BannerType2') if btype is None or btype2 is None: continue btype, btype2 = btype.text, btype2.text if not btype in banners: banners[btype] = {} if not btype2 in banners[btype]: banners[btype][btype2] = {} if not bid in banners[btype][btype2]: banners[btype][btype2][bid] = {} if btype in bid_order.keys(): if btype2 != u'blank': bid_order[btype].append([bid, btype2]) self.log.debug("Banner: %s", bid) for cur_element in cur_banner.getchildren(): tag = cur_element.tag.lower() value = cur_element.text if tag is None or value is None: continue tag, value = tag.lower(), value.lower() self.log.debug("Banner info: %s = %s" % (tag, value)) banners[btype][btype2][bid][tag] = value for k, v in banners[btype][btype2][bid].items(): if k.endswith("path"): new_key = "_%s" % (k) self.log.debug("Transforming %s to %s" % (k, new_key)) new_url = self.config['url_artworkPrefix'] % (v) self.log.debug("New banner URL: %s" % (new_url)) banners[btype][btype2][bid][new_key] = new_url graphics_in_order = {'fanart': [], 'poster': [], 'series': [], 'season': []} for key in bid_order.keys(): for bid in bid_order[key]: graphics_in_order[key].append(banners[key][bid[1]][bid[0]]) return graphics_in_order # end ttvdb_parseBanners() def _parseActors(self, sid): """Parsers actors XML, from http://www.thetvdb.com/api/[APIKEY]/series/[SERIES ID]/actors.xml Actors are retrieved using t['show name]['_actors'], for example: >>> t = Tvdb(actors = True) >>> actors = t['scrubs']['_actors'] >>> type(actors) <class 'tvdb_api.Actors'> >>> type(actors[0]) <class 'tvdb_api.Actor'> >>> actors[0] <Actor "Zach Braff"> >>> sorted(actors[0].keys()) ['id', 'image', 'name', 'role', 'sortorder'] >>> actors[0]['name'] u'Zach Braff' >>> actors[0]['image'] 'http://www.thetvdb.com/banners/actors/43640.jpg' Any key starting with an underscore has been processed (not the raw data from the XML) """ self.log.debug("Getting actors for %s" % (sid)) actorsEt = self._getetsrc(self.config['url_actorsInfo'] % (sid)) cur_actors = Actors() for curActorItem in actorsEt.findall("Actor"): curActor = Actor() for curInfo in curActorItem: tag = curInfo.tag.lower() value = curInfo.text if value is not None: if tag == "image": value = self.config['url_artworkPrefix'] % (value) else: value = self._cleanData(value) curActor[tag] = value cur_actors.append(curActor) self._setShowData(sid, '_actors', cur_actors) def _getShowData(self, sid): """Takes a series ID, gets the epInfo URL and parses the TVDB XML file into the shows dict in layout: shows[series_id][season_number][episode_number] """ # Parse show information self.log.debug('Getting all series data for %s' % (sid)) seriesInfoEt = self._getetsrc(self.config['url_seriesInfo'] % (sid)) for curInfo in seriesInfoEt.findall("Series")[0]: tag = curInfo.tag.lower() value = curInfo.text if value is not None: if tag in ['banner', 'fanart', 'poster']: value = self.config['url_artworkPrefix'] % (value) else: value = self._cleanData(value) self._setShowData(sid, tag, value) self.log.debug("Got info: %s = %s" % (tag, value)) #end for series # Parse banners if self.config['banners_enabled']: self._parseBanners(sid) # Parse actors if self.config['actors_enabled']: self._parseActors(sid) # Parse episode data self.log.debug('Getting all episodes of %s' % (sid)) epsEt = self._getetsrc( self.config['url_epInfo'] % (sid) ) for cur_ep in epsEt.findall("Episode"): seas_no = int(cur_ep.find('SeasonNumber').text) ep_no = int(cur_ep.find('EpisodeNumber').text) for cur_item in cur_ep.getchildren(): tag = cur_item.tag.lower() value = cur_item.text if value is not None: if tag == 'filename': value = self.config['url_artworkPrefix'] % (value) else: value = self._cleanData(value) self._setItem(sid, seas_no, ep_no, tag, value) #end for cur_ep #end _geEps def _nameToSid(self, name): """Takes show name, returns the correct series ID (if the show has already been grabbed), or grabs all episodes and returns the correct SID. """ if name in self.corrections: self.log.debug('Correcting %s to %s' % (name, self.corrections[name]) ) sid = self.corrections[name] else: self.log.debug('Getting show %s' % (name)) selected_series = self._getSeries( name ) sname, sid = selected_series['name'], selected_series['sid'] self.log.debug('Got %s, sid %s' % (sname, sid)) self.corrections[name] = sid self._getShowData(sid) #end if name in self.corrections return sid #end _nameToSid def __getitem__(self, key): """Handles tvdb_instance['seriesname'] calls. The dict index should be the show id """ if isinstance(key, (int, long)): # Item is integer, treat as show id if key not in self.shows: self._getShowData(key) return self.shows[key] key = key.lower() # make key lower case sid = self._nameToSid(key) self.log.debug('Got series id %s' % (sid)) return self.shows[sid] #end __getitem__ def __repr__(self): return str(self.shows) #end __repr__ #end Tvdb def main(): """Simple example of using tvdb_api - it just grabs an episode name interactively. """ tvdb_instance = Tvdb(interactive=True, debug=True, cache=False) print tvdb_instance['Lost']['seriesname'] print tvdb_instance['Lost'][1][4]['episodename'] if __name__ == '__main__': main()
7c9050279a3de4691a1bb15a38d626d1f8517c3e
6d6ad8fca4051e5b4e46bef431878059bac9161c
/howtouseMCP.py
88ec0503dfbf6fec198e37921c812fdae93fda4c
[]
no_license
weichen0407/MCP-Digit-Recognition
340b71e2542afcb7612bcb2a2134872afc4873a9
d0b250e7c6b3384e5f7b9f9939f1c192a8d10880
refs/heads/main
2023-08-15T12:36:19.795385
2021-09-27T20:43:37
2021-09-27T20:43:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
import numpy as np import mcp.py # First create the model with the desired inputs and outputs (inputs, outputs) mcpModel = mcp.MCP(784, 10) # Then use the MCP's getData function with a csv file to get the data as a matrix and labels as an array traindata, trainlabs = mcpModel.getData('train.csv') # If used for training, reshape into an array of size (numinstances x numoutputs) trainlabels = mcpModel.reshapeLabels(trainlabs) # Use getData function to separate file into data and labels testdata, testlabels = mcpModel.getData('test.csv') # Use the train function with testing data and reshaped labels mcpModel.train(traindata, trainlabels) # Predict function does one instance at a time, so use a for loop to iterate through all the testing instances # and calculate accuracy based off of that testaccuracy = 0 n = testdata.shape[0] for testIndex in range(n): # use predict with one instance of data at a time result = mcpModel.predict(testdata[testIndex]) actual = testlabels[testIndex] # Compare the actual label and the predicted label, if equal increment the count by 1 if (result == actual): testaccuracy+=1 # Get the total accuracy after testing finalaccuracy = (testaccuracy / n) * 100.0 # Just to display accuracy print("Accuracy of Multi-Class Perceptron is approximately {}%".format(finalaccuracy))
754705493d33379d2a6b30e114411413ba153370
0d2cd2a19d37a4edbda53d9b22fefe726fa06457
/while_list_indexes.py
ebb0808b61234444afa4cdc8acd38261c7ce5419
[]
no_license
gkalidas/python-django-bundle
22ab9b1cc798f6d995385e7959acf2057cd6ad01
66df9604d6b87d6398afca2127e70d8d11c8b95c
refs/heads/master
2023-03-15T10:02:23.495413
2020-08-12T16:55:05
2020-08-12T16:55:05
266,520,942
0
0
null
2021-03-25T23:56:47
2020-05-24T10:50:14
Python
UTF-8
Python
false
false
208
py
# while with list and indexes ex_list = ['one', 'two', 'three', 'four'] counter = 0 max_index = len(ex_list) - 1 while counter <= max_index: number = ex_list[counter] print(number) counter += 1
e7e2e35e74f6f746945d6189c17e6e7c5bf68ec4
4c852fab792606580acb3f3a61b7f86ae25930b0
/Python/MIT-CompThinking/MITx600.1x/ProblemSets/wk3/L5PROBLEM5.py
5fc93127f17702a2607600df981bd5e7b2f929a5
[]
no_license
hmchen47/Programming
a9767a78a35c0844a1366391f48b205ff1588591
9637e586eee5c3c751c96bfc5bc1d098ea5b331c
refs/heads/master
2022-05-01T01:57:46.573136
2021-08-09T04:29:40
2021-08-09T04:29:40
118,053,509
2
1
null
2021-09-20T19:54:02
2018-01-19T00:06:04
Python
UTF-8
Python
false
false
259
py
#!/usr/bin/python # _*_ coding = UTF-8 _*_ def gcdRecur(a, b): ''' a, b: positive integers returns: a positive integer, the greatest common divisor of a & b. ''' if b == 0: return a else: return gcdRecur(b, a % b)
5a7cf3eb0101279de44ad43c46ab42689bd0eb5e
8d6fb31cd96632d02db88663ea0a2112103033ce
/chaper7_compile_to_c/run.py
76688b919787e0b0416a76253310c6c695f7c7a0
[]
no_license
CodevilWang/high_perf_python
d75182732fed84b53f02f14d64b931ed0d1c001a
000672c006f3fd5604b45a7857d72e55003fc30e
refs/heads/master
2021-09-15T18:50:26.986311
2018-06-08T13:23:53
2018-06-08T13:23:53
114,531,549
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
#!/usr/bin/env python import sys def calculate_z_serialize_purepython(maxiter, zs, cs)
275aa3e362920aae1e2af84fe0380f36fa448f39
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/pygame/pygameweb/pygameweb/db.py
57c70ca70133b811d4447037d0df7cd54b72e632
[ "BSD-2-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:95c026dc0e7051336cd999158979e81f159d4470489660469d0e0175c66400da size 1274
ec81f69f8b35b27ca38c0fabe125ba6ef4bc3a1d
1975ee674b36084366b1bbe2c091d8f0f8795dc0
/demo/class_views.py
49ac0086b684256a0215318d23d4992296ad6f5e
[]
no_license
srikanthpragada/PYTHON_03_JULY_2018_WEBDEMO
f193213788deadcab7ac7b183328269ba1334488
56e076ad30703117cafc56d6d95449c6ec8eebb2
refs/heads/master
2020-03-25T11:45:53.128704
2018-08-23T15:29:05
2018-08-23T15:29:05
143,747,408
0
0
null
null
null
null
UTF-8
Python
false
false
877
py
from django.views.generic import TemplateView, ListView from django.shortcuts import render from .forms import LoginForm from .models import Course class ClassView1(TemplateView): template_name = 'class_view1.html' class LoginView(TemplateView): template_name = 'login.html' def get(self, request): form = LoginForm() return render(request, self.template_name, {'form': form}) def post(self, request): form = LoginForm(request.POST) if form.is_valid(): print(form.cleaned_data['username'], form.cleaned_data['password']) return render(request, self.template_name, {'form': form}) # Generic View - ListView demo class ListCourseView(ListView): model = Course template_name = "courses.html" # default is demo/course_list.html context_object_name = 'courses' # default is object_list
0fae2317ff82c61b45f4af1f32caf571d43b7215
a23139a3a1de7427843c5216e2abc90cced88487
/video_learn/03_keras_mnist.py
32bf1d15fbaf25ea10d614a0c50a9b84df6f4f12
[]
no_license
shxiangyan/Document
7aeb3e07665662fa67179de4484d20c138256205
10352279b8696bbd934adb7ffdb63e0c017b8adb
refs/heads/master
2021-02-07T01:04:58.884043
2020-04-27T14:48:13
2020-04-27T14:48:13
253,468,956
1
0
null
null
null
null
UTF-8
Python
false
false
2,969
py
import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D # 先读入数据 (X_train, y_train), (X_test, y_test) = mnist.load_data("../test_data_home") # 看一下数据集的样子 print(X_train[0].shape) print(y_train[0]) # 下面把训练集中的手写黑白字体变成标准的四维张量形式,即(样本数量,长,宽,1) # 并把像素值变成浮点格式 X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32') X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32') # 由于每个像素值都介于0到255,所以这里统一除以255,把像素值控制在0-1范围 X_train /= 255 X_test /= 255 # 由于输入层需要10个节点,所以最好把目标数字0-9做成One Hot编码的形式 def tran_y(y): y_ohe = np.zeros(10) y_ohe[y] = 1 return y_ohe # 把标签用One Hot编码重新表示一下 y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))]) y_test_ohe = np.array([tran_y(y_test[i]) for i in range(len(y_test))]) # 搭建卷积神经网络 model = Sequential() # 添加一层卷积层,构造64个过滤器,每个过滤器覆盖范围是3*3*1 # 过滤器步长为1,图像四周补一圈0,并用relu进行非线性变化 model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', input_shape=(28, 28, 1), activation='relu')) # 添加一层最大池化层 model.add(MaxPooling2D(pool_size=(2, 2))) # 设立Dropout层,Dropout的概率为0.5 model.add(Dropout(0.5)) # 重复构造,搭建深度网络 model.add(Conv2D(128, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(256, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) # 把当前层节点展平 model.add(Flatten()) # 构造全连接层神经网络层 model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(10, activation='softmax')) # 定义损失函数,一般来说分类问题的损失函数都选择采用交叉熵 model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) # 放入批量样本,进行训练 model.fit(X_train, y_train_ohe, validation_data=(X_test, y_test_ohe) , epochs=20, batch_size=128) # 在测试集上评价模型的准确率 # verbose : 进度表示方式。0表示不显示数据,1表示显示进度条 scores = model.evaluate(X_test, y_test_ohe, verbose=0)
8b04ac74aeadb6ba21d5c623f12f988aaa3af34c
bbfb3856386b7bbb0ec47e02d8be3f9764b8523a
/app.py
e104743f47838b66f9a0d73687f3f6529bd99019
[]
no_license
tonnysilas/sqlpractice
67f2fbb1e9c2074fbd59acd04e904c0955989bda
12cce4da59cac4f86aa226da5f731ac9b7cd6986
refs/heads/main
2023-04-28T21:13:38.881594
2021-05-31T09:40:04
2021-05-31T09:40:04
372,434,016
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
from enum import unique from flask import Flask import os from flask import render_template from flask_sqlalchemy import SQLAlchemy from flask import request app = Flask(__name__) project_dir = os.path.dirname(os.path.abspath(__file__)) #finding the current app path. (Location of this file) database_file = "sqlite:///{}".format(os.path.join(project_dir, "formdatabase.db")) # creating a database file (formdatabase.db) in the above found path. app.config["SQLALCHEMY_DATABASE_URI"] = database_file # connecting the database file (formdatabase.db) to the sqlalchemy dependency. db = SQLAlchemy(app) # connecting this app.py file to the sqlalchemy @app.before_first_request def create_table(): db.create_all() class Book(db.Model): #creating a model for the cell called title in the form title = db.Column(db.String(80), unique = True, nullable = False, primary_key = True) #this means that the cell will only accept 80 string characters at max without repeating any. It can not be empty and is a mandatory field def __repr__(self): return "<Title: {}>".format(self.title) @app.route('/', methods=["GET", "POST"]) def home(): # validating the content of the form. This condition shall be false if the request.form list is empty if request.form: title_from_form = request.form.get('title') # assigns the content of the title field to the variable book = Book(title=title_from_form) # instance of the Book class. assigned to the 'book' variable db.session.add(book) # adds the data to the session db.session.commit() # this commits the data to the database books = Book.query.all() # this retrieves all the contents of the book table. return render_template('form.html', iwe = books) # rendering the html page alongside the queried books to the browser. if __name__=="__main__": app.run(debug=True)