blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
d8b556c744a5f3c7a16f4531c97f2d448deeae84
05c3f49bf4c204c77bee6c67d33501d7a1544a0b
/hw2/hw2.py.bak
818705cad97fcd5240258ae3481720e46d3fc10c
[]
no_license
krieghan/cs_homework
8b0fd4f7abe07b945ec179fefb8accfbaf950c78
35a96ba06dd5895c029bd066e3d1f4a62876340d
refs/heads/master
2021-01-08T03:27:59.829154
2020-02-20T14:07:56
2020-02-20T14:07:56
241,898,952
0
0
null
null
null
null
UTF-8
Python
false
false
3,695
bak
#!/usr/bin/env python # -*- coding: ISO-8859-1 -*- # generated by wxGlade 0.4.1 on Mon Apr 03 13:01:10 2006 import wx from turtle import GLPane class MyFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MyFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.panel_1 = wx.Panel(self, -1) self.window_1 = GLPane(self.panel_1, -1) self.label_1 = wx.StaticText(self.panel_1, -1, "Number of Iterations:") self.text_ctrl_1 = wx.TextCtrl(self.panel_1, -1, "") self.label_2 = wx.StaticText(self.panel_1, -1, "Seed String:") self.text_ctrl_2 = wx.TextCtrl(self.panel_1, -1, "") self.label_3 = wx.StaticText(self.panel_1, -1, "Turn Angle:") self.text_ctrl_3 = wx.TextCtrl(self.panel_1, -1, "") self.label_4 = wx.StaticText(self.panel_1, -1, "F Production: ") self.text_ctrl_4 = wx.TextCtrl(self.panel_1, -1, "") self.label_5 = wx.StaticText(self.panel_1, -1, "X Production:") self.text_ctrl_5 = wx.TextCtrl(self.panel_1, -1, "") self.label_6 = wx.StaticText(self.panel_1, -1, "Y Production:") self.text_ctrl_6 = wx.TextCtrl(self.panel_1, -1, "") self.button_1 = wx.Button(self.panel_1, -1, "Display:") self.__set_properties() self.__do_layout() self.Bind(wx.EVT_BUTTON, self.Handle_Button, self.button_1) # end wxGlade def __set_properties(self): # begin wxGlade: MyFrame.__set_properties self.SetTitle("frame_1") # end wxGlade def __do_layout(self): # begin wxGlade: MyFrame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_2 = wx.BoxSizer(wx.VERTICAL) grid_sizer_1 = wx.FlexGridSizer(7, 2, 0, 0) sizer_2.Add(self.window_1, 1, wx.EXPAND, 0) grid_sizer_1.Add(self.label_1, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_1, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.label_2, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_2, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.label_3, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_3, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.label_4, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_4, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.label_5, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_5, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.label_6, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.text_ctrl_6, 0, wx.ADJUST_MINSIZE, 0) grid_sizer_1.Add(self.button_1, 0, wx.ADJUST_MINSIZE, 0) sizer_2.Add(grid_sizer_1, 1, wx.EXPAND, 0) self.panel_1.SetAutoLayout(True) self.panel_1.SetSizer(sizer_2) sizer_2.Fit(self.panel_1) sizer_2.SetSizeHints(self.panel_1) sizer_1.Add(self.panel_1, 1, wx.EXPAND, 0) self.SetAutoLayout(True) self.SetSizer(sizer_1) sizer_1.Fit(self) sizer_1.SetSizeHints(self) self.Layout() # end wxGlade def Handle_Button(self, event): # wxGlade: MyFrame.<event_handler> print "Event handler `Handle_Button' not implemented!" event.Skip() # end of class MyFrame class MyApp(wx.App): def OnInit(self): wx.InitAllImageHandlers() frame_1 = MyFrame(None, -1, "") self.SetTopWindow(frame_1) frame_1.Show() return 1 # end of class MyApp if __name__ == "__main__": app = MyApp(0) app.MainLoop()
60cbed3e8914742866345a1fab9116a02d3a65ab
57c1f699f03f1bf015e99712b8445f0a4f57db9a
/Models/4/modelParams4.py
97cec0fd58111ca5c61e2ea4d2ab04122ffef38a
[]
no_license
DaphneHB/sBCBG
693cb610c7bc8a33d3148edc25afa9f6236c523b
ca08181121c4ba27b6f1df82bc92756f158e4058
refs/heads/master
2021-01-17T21:07:03.008080
2017-07-31T08:44:20
2017-07-31T08:44:20
84,159,012
1
1
null
2017-03-07T05:34:43
2017-03-07T05:34:43
null
UTF-8
Python
false
false
1,623
py
#!/apps/free/python/2.7.10/bin/python # defines the value of the parameters that will be used by testFullbG.py # should be generated by sangoScript.py params = {'LG14modelID':4, 'nbCh': 2, 'nbcpu': 6, 'nbMSN': 2644., 'nbFSI': 53., 'nbSTN': 8., 'nbGPe': 25., 'nbGPi': 14., 'nbCSN': 3000., 'nbPTN': 100., 'nbCMPf': 9., 'GMSN': 5., 'GFSI': 1.3, 'GSTN': 1.3, 'GGPe': 1.3, 'GGPi': 1., 'IeGPe': 13., 'IeGPi': 11., 'inDegCSNMSN': 97., 'inDegPTNMSN': 1., 'inDegCMPfMSN': 1., 'inDegFSIMSN': 30., # 30 : according to Humphries et al. 2010, 30-150 FSIs->MSN 'inDegMSNMSN': 70., # 70 = 210/3 : according to Koos et al. 2004, cited by Humphries et al., 2010, on avg 3 synpase per MSN-MSN connection 'inDegSTNMSN': 0.024, 'inDegGPeMSN': 0., 'inDegCSNFSI': 76., 'inDegPTNFSI': 1., 'inDegSTNFSI': 2., 'inDegGPeFSI': 16., 'inDegCMPfFSI': 9., 'inDegFSIFSI': 15., # 15 : according to Humphries et al., 2010, 13-63 FSIs->FSI 'inDegPTNSTN': 25., 'inDegCMPfSTN': 9., 'inDegGPeSTN': 25., 'inDegCMPfGPe': 9., 'inDegSTNGPe': 8., 'inDegMSNGPe':2644., 'inDegGPeGPe': 25., 'inDegMSNGPi':2644., 'inDegSTNGPi': 8., 'inDegGPeGPi': 23., 'inDegCMPfGPi': 9., }
be9b4d3e9c5944913c7318af6a50c9b2159cfa7c
fb4bf309b4d2db0597647c4dadda996b101f53f6
/Artificial Intelligence/r04exercise/logic.py
61c42f6a349b812f2151415b192e1ca7c266cac7
[ "Apache-2.0" ]
permissive
JayWu7/Machine-Learning-Courses-Study-Record
3eea44552287b1e48d50bb2a75a29aaf0bd68cfe
7586c3429514bc21c7cfe42f85ca8c0fcf8f072b
refs/heads/master
2020-07-24T18:08:41.445694
2020-05-27T03:55:46
2020-05-27T03:55:46
208,004,954
1
1
null
null
null
null
UTF-8
Python
false
false
4,576
py
#!/usr/bin/python3 import itertools # Representation of propositional formulas in Python. # # The basic connectives are NOT, AND and OR. # IMPL and EQVI are reduced to these through the obvious reductions. # We have a separate class for formulas with different outermost # connectives, as well as for atomic formulas (ATOM). # # The methods supported are: # negin(self) Negation of formula; negation pushed in one level (if possible) # clauses(self) Return clauses representing the formula # vars(self) Return variables occurring in a formula # # Translation to CNF: # Instead of applying the logical equivalences to incrementally transform # a formula to CNF, the 'clauses' methods below perform a recursive # transformation to sets of clauses for each formula type after # the subformulas have been translated into clauses. # # A clause set is a list of lists of literals. Literals here are represented # as pairs (nameOfAtom,truthValue), where the truthValue is either True or False. # # The translations for ATOM, NOT(ATOM ...), and AND(...) are trivial. # For example, a negative literal NOT(ATOM("X")) is simply [[("X",False)]], # ie. a clause set consisting of a single clause with only one literal. # For AND, the lists of the constituent clause sets are simply concatenated. # The complicated part is the translation for OR after its subformulas # have been translated to clauses, i.e. computing the disjunction # of two or more clause sets. See the accompanying Standard ML code in # FORMULAS.sml for more explanation. # auxiliary functions def concatlists(ll): return list(itertools.chain.from_iterable(ll)) # Both AND and OR will inherit __init__ and vars from NaryFormula # NaryFormula means formulas with multiple subformulas. # cCnjunction (AND) and disjunction (OR) are traditionally defined # as binary connectives, that is, with two subformulas. # Because of associativity, ie. A & (B & C) and (A & B) & C are equivalent, # it is often more convenient to write A & B & C. class NaryFormula: # N-ary formulas with multiple subformulas def __init__(self, subformulas): self.subformulas = subformulas def vars(self): vs = [f.vars() for f in self.subformulas] return set.union(*vs) class BinaryFormula: # Not used here def __init__(self, subformula1, subformula2): self.subformula1 = subformula1 self.subformula2 = subformula2 # AND and OR are defined with multiple subformulas (phi1 & phi2 & ... & phiN) class AND(NaryFormula): def __repr__(self): return "(and " + (' '.join([str(x) for x in self.subformulas])) + ")" def negin(self): return OR([NOT(f) for f in self.subformulas]) def clauses(self): cclauses = [c.clauses() for c in self.subformulas] return concatlists(cclauses) ### IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ### class OR(NaryFormula): def __repr__(self): return "(or " + (' '.join([str(x) for x in self.subformulas])) + ")" def negin(self): AND([NOT(f) for f in self.subformulas]) ### IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ### def clauses(self): cclauses = [c.clauses() for c in self.subformulas] return [concatlists(list(c)) for c in itertools.product(*cclauses)] class NOT: def __init__(self, subformula): self.subformula = subformula def __repr__(self): return "(not " + str(self.subformula) + ")" def negin(self): return self.subformula def clauses(self): if isinstance(self.subformula, ATOM): return [[(self.subformula.name, False)]] else: negsubformula = self.subformula.negin() return negsubformula.clauses() def vars(self): return self.subformula.vars() class ATOM: def __init__(self, name): self.name = name def __repr__(self): return self.name def negin(self): return [[(self.name, False)]] ### IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ### def clauses(self): return [[(self.name, True)]] ### IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ## IMPLEMENT THIS ### def vars(self): return {self.name} # Implication and equivalence reduced to the primitive connectives # A -> B is reduced to -A V B def IMPL(f1, f2): return OR([NOT(f1), f2]) # A <-> B is reduced to (-A V B) & (-B V A) def EQVI(f1, f2): return AND([IMPL(f1, f2), IMPL(f2, f1)])
b7e90fcda58d0566c7be66b95c4c017ebea9525f
d31c99522f70cf9888c6411be8c1fbe0f7441efe
/leapyear Testing/leapYear.py
02091de04405b188075a56b602034891bb68266a
[]
no_license
bhaveesh09/CS362-Homework-7
0e96d5390fd31b6abb9da3c7846c34b698d8fc19
b8979328ef53245ec423b222ac0965f6492e220a
refs/heads/main
2023-05-06T02:22:40.765563
2021-05-31T20:34:22
2021-05-31T20:34:22
372,339,566
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
def leapYear(x): if (x<0): #Now check if user input is a positive number print("Enter a postive number, program has quit") return False elif (x % 4== 0) and (x % 100 != 0): #conditions for leap year updated print(x, "is a leap year") return True elif (x % 400 == 0): print(x, "is a leap year") return True else: print(x, "is not a leap year") return False
9189ff6a8da588f5c8d74e069de80277af625faf
14c5bc2d802d5373efda230dd49c3f25fd8fbad0
/roboto_gui/pySSRL_bServer/bServer/bl_interaction.py
d8a93a91b0f0f003d771a313f7a5888db16ca4ce
[ "MIT" ]
permissive
rwalroth/roboto_gui
58c4e6712fc1cbb1a546191432443733d3de8190
210ab4fc4fbcddd1863f251cb7206fc7173a93d2
refs/heads/main
2023-04-04T15:26:46.019258
2021-04-14T18:55:50
2021-04-14T18:55:50
317,326,993
0
0
null
2021-03-22T19:51:47
2020-11-30T19:38:37
Python
UTF-8
Python
false
false
20,271
py
import socket import time import types import sys import yaml import copy import logging from logging import info, warning, critical, debug import asyncio import re from bServer.bl_communication import * from bServer.bl_command import * from bServer.BL_Error import * from bServer.PulpitObject import * from bServer.BL_Variables import * class BL_Interaction(): """This class is holds all of the beamline interaction objects and initilizes all of their functionality. This includes the beamline variables, rosetta object, beamline state configuration object, and subroutines for executing commands on the beamlines. Each beamline will have it's own LMD_beamlineInteraction() object.""" def __init__(self, beamline_name, loop): """Sets up all of the objects discussed above. The only argument is the 'fun' unique name of the beamline that appears in the beamline config YAML files.""" #Lets save the "fun" name self.beamline_name = beamline_name #Save a pointer to the loop for all the async functions self.loop = loop #Do the rest of the initialization in an async function - can't be done directly in __init__ since async tag is not allowed asyncio.ensure_future(self.setup(), loop=self.loop) async def setup(self): """Setup anything that depends on async functionality be available""" # Initialize the beamline communciations try: self.beamline = BL_SPEC(self) await self.beamline.setup() print("Finished beamline setup for '{}'".format(self.beamline_name)) except: print("Caught exception in setup of beamline communication") raise RuntimeError("Caught exception in setup of communication for '{}': {}".format(self.beamline_name, sys.exc_info()[0])) #Get the mnemonic self.mnemonic = self.beamline.mnemonic #Lets initialize the SPEC Infoserver Interaction. try: print("interface:: '{}'".format(getattr(self.beamline, 'interface'))) if self.beamline.interface == "SPEC Infoserver": print("starting beamline interface") debug("Setting up beamline interface for {}".format(self.beamline_name)) self.sis = self.SPECInfoserverInteraction(self) print("done starting beamline interface") else: debug("Could not find correct interface for {}".format(self.beamline_name)) raise RuntimeError("Could not find the correct interface to initialize") except: print("Caught exception starting SPEC Infoserver Interaction Class: {}".format(sys.exc_info()[0])) raise RuntimeError("Caught exception in setup of SPEC Infoserver Interaction for'{}': {}".format(self.beamline_name, sys.exc_info()[0])) # Lets refresh all of the values in the beamline registers debug("bl_interaction: init beamline variables") self.variables = BL_Variables(self) self.variables.manage_beamline_variables(self.variables, self) #await self.beamline_variables.refresh_variables() #create the pulpit objects. This framework uses multiple pulpits since the SIS framework actually has a few different ways of getting info self.command_pulpit = PulpitObject(loop=self.loop) self.motor_info_pulpit = PulpitObject(loop=self.loop) self.counter_pulpit = PulpitObject(loop=self.loop) #Create a lock for the communication and execute of commands for this beam line. This is necessary since we have multiple pulpits and socket communication may need to be grouped to prevent issues with our concurrancy framework from giving the wrong information between concrurrent commands (or trying to execute concurrently) self.beamline.comm_lock = asyncio.Lock(loop=self.loop) class SPECInfoserverInteraction: """Low level SPEC infoserver commands. These are just out of the SPEC infoserver doc""" def __init__(self, bi): debug("SPECInfoserverInteraction: init()") self.bi = bi self.beamline = bi.beamline #SIS has a bunch of canned text responses. Lets put them in once as a variable within the class so we don't make any mistakes when comparing values self.sis_text = {} self.sis_text['in_control'] = "client in control." self.sis_text['not_in_control'] = "client not in control." self.sis_text['control_not_available'] = "control not available." self.sis_text['logging on'] = "Logging is ON." self.sis_text['logging off'] = "Logging is OFF." async def get_version(self): """Run the ?ver command for spec infoserver""" cmd_text = "?ver" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() print("cmd: {}".format(cmd)) response = cmd.response[0] return response async def get_user(self): """Run the ?usr command for spec infoserver""" cmd_text = "?usr" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] return response async def get_console_output_buffer(self, N=None, return_after=False, get_buffer_index=False): """Run the ?usr command for spec infoserver""" if N is None and get_buffer_index is False: cmd_text = "?con" elif N is None and get_buffer_index is True: cmd_text = "?con idx" elif N is not None and return_after is True: cmd_text = "?con {}-".format(N) elif N is not None and return_after is False: cmd_text = "?con {}".format(N) cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator="\n") await cmd.execute() if N is None and get_buffer_index is True: response = int(cmd.response[0]) else: response = cmd.response return response async def is_available(self): """Run ?avl. Check if SPEC is available.""" cmd_text = "?avl" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() availability = cmd.typecastResponse([bool])[0] return availability async def is_busy(self): """Run ?bsy. This is the opposite of ?avl. Check if spec is busy.""" cmd_text = "?bsy" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() busy = cmd.typecastResponse([bool])[0] return busy async def get_motor_position(self, motor_name): """Run ?mp""" cmd_text = "?mp {}".format(motor_name) cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.typecastResponse([float])[0] return response async def get_motor_information(self, motor_name): """Run ?mi and get the motor info. Parse result and return a dict""" cmd_text = "?mi {}".format(motor_name) cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.typecastResponse([int])[0] mi_dict = self.decode_motor_status_bits(response) return mi_dict def decode_motor_status_bits(self, status): """Decode the 4-bit state of the motor. See SPEC infoserver doc. Returns a dictionary""" mi_dict = {} mi_dict['motor moving'] = True if status & 0x1 else False mi_dict['motor disabled'] = True if status & 0x2 else False mi_dict['low limit active'] = True if status & 0x4 else False mi_dict['high limit active'] = True if status & 0x8 else False return mi_dict async def get_all_motor_mnemonics(self): """Get all of the motor names as a list""" cmd_text = "?mne" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() response = cmd.response print(cmd) print(response) return response async def get_all_counter_mnemonics(self): """Get all of the counter names as a list. This is undocumented in the SIS documentation but I found it in Stefans code.""" cmd_text = "?mne c" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() response = cmd.response return response async def get_all_motor_positions(self): """Get all motor positions""" cmd_text = "?mpa" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() #Could have done the listSeparator above response = cmd.response converted_response = [float(x) for x in response] return converted_response async def get_all_motor_status(self): """Get all motor positions""" cmd_text = "?mia" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() response = cmd.response all_motor_status =[] for motor_status in response: all_motor_status.append(self.decode_motor_status_bits(int(motor_status))) return all_motor_status async def get_all_counters(self): """Get all motor positions""" cmd_text = "?cta" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() response = cmd.response converted_response = [float(x) for x in response] #Is floating point the right thing? I guess.... return converted_response async def get_detector_status(self): """Get the detector status string. Not sure what this actually is""" cmd_text = "?det" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, readterminator='\r\n') await cmd.execute() response = cmd.response[0] print(cmd) return response async def get_all_status_motors_and_counters(self): """This function will eventually return everything that is returned by ?all. Right now, not sure what the counter statuses actually mean. Returning the string right now.""" cmd_text = "?all" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator=", ") await cmd.execute() response = cmd.response #converted_response = [float(x) for x in response] #Is floating point the right thing? I guess.... return response async def get_current_scan_details(self): """Get the detector status string. Not sure what this actually is""" cmd_text = "?sci" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, readterminator='\r\n') await cmd.execute() response = cmd.response[0] print(cmd) return response async def get_current_plot_point_index(self): """Return the current buffer index""" cmd_text = "?plt idx" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] print(cmd) return response async def get_plot_points(self, num_pts = None): """Return the full buffer or the last 'num_pts' points. Default is the full buffer""" if num_pts is not None: #return the last num_pts points cmd_text = "?plt {}".format(num_pts) else: #Get everything cmd_text = "?plt all" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator="/") await cmd.execute() response = cmd.response print("len response: {}".format(len(response))) converted_response = [] t0 = time.time() for data_series in response: #c_line = list(map(float, data_series.split(", "))) c_line = data_series.split(", ") converted_response.append(c_line) print("conversion took {}sec".format(time.time()-t0)) return converted_response async def are_we_in_control(self): """Check if we already have control.""" cmd_text = "?inc" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() inc = cmd.typecastResponse([bool])[0] return inc async def get_remote_control(self): """Get the current plot. Not sure what this actually is""" cmd_text = "!rqc" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] print(response) return response async def release_remote_control(self): """Get the current plot. Not sure what this actually is""" cmd_text = "!rlc" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] print(response) return response async def execute_unix_command(self, unix_cmd): """Get the current plot. Not sure what this actually is. untested""" cmd_text = "!unx {}".format(unix_cmd) cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] m = re.match(r"(\d+), (.*)", response, re.DOTALL) #DOTALL catches newline characters as well", response) if m is not None: cmd_success = bool(int(m.groups()[0])) ret_val = m.groups()[1] debug("execute_unix_command: success = {}, response = '{}'".format(cmd_success, ret_val)) return {'success': cmd_success, 'response': ret_val} elif response == self.sis_text['not_in_control']: raise SISControlError(msg='execute_unix_command: not in control. Raising error') else: raise SPECCommandError(msg="execute_unix_command: unknown response: '{}'".format(response)) print(response) return response async def abort_command(self): """Abort the current SPEC command - equivelent to Ctrl^C""" cmd_text = "!abr" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() #can return not in control! response = cmd.response[0] print(response) return response async def execute_command(self, spec_cmd): """Execute a spec command and return the uuid of the command. In the case of SIS, this just an increasing number.""" cmd_text = "!cmd {}".format(spec_cmd) debug("execute_command: executing '{}'".format(cmd_text)) cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] debug("execute_command: received'{}'".format(cmd_text)) m = re.match(r"#(\d+)", response) if m is not None: spec_cmd_uuid = int(m.groups()[0]) debug("execute_command: command executed as #{}".format(spec_cmd_uuid)) return spec_cmd_uuid elif response == self.sis_text['not_in_control']: raise SISControlError(msg='execute_command: not in control. Raising error') else: raise SPECCommandError(msg="execute_command: unknown response: '{}'".format(response)) async def retrieve_result(self): """Get the most recent result from SIS. Sadly SIS only keeps track of the most recent result. Returns just the last one in memory. Does not block in any way.""" cmd_text = "?res" debug("retrieve_result: sending") cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] debug("retrieve_result: response '{}'".format(response)) spec_result = {} m = re.match(r"#(\d+), (\w+), (.*)", response, re.DOTALL) #DOTALL catches newline characters as well if m is not None: matched = m.groups() spec_result['uuid'] = int(matched[0]) spec_result['status ok'] = True if matched[1] == "OK" else False spec_result['result'] = matched[2] else: raise SPECCommandError(message="retrieve_result: Got a result we couldn't parse") debug('retrieve_result: parsed: {}'.format(spec_result)) return spec_result async def set_sis_logging(self, set_logging_on=None): """This is a poorly documented feature that appears to return enteries in the SIS log. Could be useful for debugging or potentially getting the response of commands in case we miss calling the ?res before executing another command. Need to experiment. untested""" if set_logging_on is None: set_logging_on = True if set_logging_on is True: cmd_text = "!log on" debug('set_sis_logging: turning on') else: cmd_text = "!log off" debug('set_sis_logging: turning off') cmd = BLCommand(self.beamline, cmd_text, needsResponse=True) await cmd.execute() response = cmd.response[0] debug("set_sis_logging: response '{}'".format(response)) if response == self.sis_text['logging on'] and set_logging_on is True: pass elif response == self.sis_text['logging off'] and set_logging_on is False: pass else: print("response vs loggingoff:", response == self.sis_text['logging off']) raise SPECCommandError(message="set_sis_logging: unknown response: '{}'".format(response)) return response async def get_sis_logs(self, num_entries=None): """A poorly documented feature that appears to return entries of SIS logging. Specifiy either the number of recent entries to return or 'None' to return the full log. I believe this is capped at 1000 entries from Stefan's code. untested""" debug('get_sis_logs: starting') if num_entries is not None: #return last N cmd_text = "!log {}".format(num_entries) else: #return everything cmd_text = "!log" cmd = BLCommand(self.beamline, cmd_text, needsResponse=True, listSeparator="\n") await cmd.execute() response = cmd.response debug("get_sis_log: response '{}'".format(response)) return response ################################################################################### # Universal Functions ################################################################################### ###################################################################################### # Lets add some fast diagnostic functions. These will rely on the get_many_vars ########################################################################################
16ea0ace51907afcbb377c98ac45a4b447646221
8af68426584e78d1913ed2342498d6bdf02a8923
/manage.py
3fd3eee148f2566cfe0e2d852573618afff5ded4
[]
no_license
RabbaniM/duafi_old
8edaccc78b38818ebf3df9397363f59b557ef185
791844efdbe80cea0d106edc660310d390531871
refs/heads/master
2020-12-28T19:46:24.236639
2015-07-13T02:09:59
2015-07-13T02:09:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "duafi.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
20744b85032062eeca0b6a483efed89f604b68a1
45887243a656490eafb6607dd7fb75111cc802ac
/app/models/models.py
9be81aab85aa6d928b2627b4e15e79bbe6880989
[]
no_license
liuxiaowei/dnf_server
f0d21f8ecf94b085c9bb7122c38c043e872164b2
f3b4c96fc54b9ffda940d1ccc292a938299d99a3
refs/heads/master
2020-04-30T15:20:48.296542
2019-04-09T08:52:38
2019-04-09T08:52:38
176,918,003
0
0
null
2019-04-09T08:52:39
2019-03-21T10:00:40
Python
UTF-8
Python
false
false
485
py
import json import string import random from datetime import datetime import hashlib from .base import Base, db class TUser(Base): __tablename__ = 't_user' mac = db.Column(db.String(255)) note = db.Column(db.String(255)) last_login = db.Column(db.DateTime) status = db.Column(db.SmallInteger) ip = db.Column(db.String(255)) class TUserConfig(Base): __tablename__ = 't_user_config' user_id = db.Column(db.Integer) config = db.Column(db.JSON)
a9029ca71800fd3d14b935d41f8dd774c74c1973
f3381f1b1f995b87eaf240428e902531e68ba95c
/algoprog/A2_3.py
408f7926360f45b75075246455faa0329623b210
[]
no_license
MorZxd/py
6565716d156511c6fb515ad50232edbce935dfea
b5291b2dbd4db59cdcf2f05344e145b32f1e74e2
refs/heads/master
2023-02-07T17:36:41.823961
2020-12-26T10:05:31
2020-12-26T10:05:31
321,710,657
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
f = int(input()) if (f>0): print("1") elif (f<0): print("-1") else: print("0")
0b747c2a7cc8c26a6f70888af30f80f3d9044a71
699c5894668e07bbb4ddae632730f0d218f72558
/Yeji-Lee/baekjoon/b_100/1297.py
24bcc07f02942fb4ba2f944171f1e631c24cbec9
[]
no_license
Sumsan38/learning-algorithm
0914ddbbd8786381dda807562e4529773b4aa987
59a1d7b53d4348a0320b0cbf48ee75b5086b3a29
refs/heads/master
2023-07-15T08:16:29.896218
2021-08-14T11:47:01
2021-08-14T11:47:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
# TV 크기 c, a, b, = map(int, input().split()) r = c / ((a ** 2 + b ** 2) ** 0.5) print(int(a * r), int(b * r))
0a7c0934e651558320e4ccc999fab5b29f046a66
3e54f3ad08a8d3e4f17b77394491e3f625672fbe
/hybrid_AC_DC_networks/optimal_power_flows/optimal_power_flow_hybrid_AC_DC_networks.py
56a26c844b511870eb9ff1ffdc9e590e8acb8383
[ "MIT" ]
permissive
shubhampachori12110095/EnergyManagementSourceCodes
ccb6f38c155e955624330a0f20b9ed2f4941b08a
1ea824941fe87528622ec7aa8148024752a3947c
refs/heads/master
2023-08-01T23:57:45.271895
2021-09-26T04:55:05
2021-09-26T04:55:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,158
py
""" Optimal power flow models for hybrid AC/DC microgrids @author: Tianyang Zhao @email: [email protected] Something should be noted for the hypothesis. 1) The energy losses on the bi-directional converters is modelled simply as used in [1]Concerted action on computer modeling and simulation [2]Energy management and operation modelling of hybrid AC–DC microgrid There are more complex modelling method for different types of converters, see the following references for details. [1]Mathematical Efficiency Modeling of Static Power Converters [2]Power Loss Modeling of Isolated AC/DC Converter The variations on the mathematical modelling result in significant differences in terms of the mathematical property. 2) Even renewable energy sources are assigned with operational cost, e.g., linear in this case. 3) The power losses is ignored in the real-time operation. @Reference: [1] """ from pypower import runopf from gurobipy import * from numpy import zeros, c_, shape, ix_, ones, r_, arange, sum, diag, concatenate, power from scipy.sparse import csr_matrix as sparse from scipy.sparse import hstack, vstack, diags from distribution_system_optimization.test_cases import case33 from distribution_system_optimization.data_format import case_converters # The following cases, data formats are imported from the Pypower package. from pypower import case6ww, case9, case30, case118, case300 from pypower.idx_brch import F_BUS, T_BUS, BR_R, BR_X, TAP, SHIFT, BR_STATUS, RATE_A from pypower.idx_cost import MODEL, NCOST, PW_LINEAR, COST, POLYNOMIAL from pypower.idx_bus import BUS_TYPE, REF, VA, VM, PD, GS, VMAX, VMIN, BUS_I, QD from pypower.idx_gen import GEN_BUS, VG, PG, QG, PMAX, PMIN, QMAX, QMIN from pypower.ext2int import ext2int def main(Case_AC=None, Case_DC=None, Converters=None): """ :param Case_AC: AC case :param Case_DC: DC case :param Converters: Bi-directional converters :return: Obtained solutions for hybrid AC DC networks """ # 1) Problem formulation model_AC = AC_network_formulation(Case_AC) model_DC = DC_network_formulation(Case_DC) # 2) Solve the initial problems sol_AC = AC_opf_solver(model_AC) sol_DC = DC_opf_solver(model_DC) # 3) Connect two systems via the BIC networks model_converters = BIC_network_formulation(model_AC, model_DC, Converters) # 4) Solve the merged functions # 4.1) Solve the problem return model_converters def DC_network_formulation(case): """ :param case: :return: """ case = ext2int(case) baseMVA, bus, gen, branch, gencost = case["baseMVA"], case["bus"], case["gen"], case["branch"], case["gencost"] nb = shape(case['bus'])[0] ## number of buses nl = shape(case['branch'])[0] ## number of branches ng = shape(case['gen'])[0] ## number of dispatchable injections f = branch[:, F_BUS] ## list of "from" buses t = branch[:, T_BUS] ## list of "to" buses i = range(nl) ## double set of row indices # Connection matrix Cf = sparse((ones(nl), (i, f)), (nl, nb)) Ct = sparse((ones(nl), (i, t)), (nl, nb)) Cg = sparse((ones(ng), (gen[:, GEN_BUS], range(ng))), (nb, ng)) # Modify the branch resistance Branch_R = branch[:, BR_X] for i in range(nl): if Branch_R[i] <= 0: Branch_R[i] = max(Branch_R) Cf = Cf.T Ct = Ct.T # Obtain the boundary information Slmax = branch[:, RATE_A] / baseMVA Pij_l = -Slmax Iij_l = zeros(nl) Vm_l = power(bus[:, VMIN], 2) Pg_l = gen[:, PMIN] / baseMVA Pij_u = Slmax Iij_u = Slmax # Vm_u = [max(turn_to_power(bus[:, VMAX], 2))] * nb Vm_u = power(bus[:, VMAX], 2) Pg_u = gen[:, PMAX] / baseMVA # Pg_l = -Pg_u lx = concatenate([Pij_l, Iij_l, Vm_l, Pg_l]) ux = concatenate([Pij_u, Iij_u, Vm_u, Pg_u]) # KCL equation Aeq_p = hstack([Ct - Cf, -diag(Ct * Branch_R) * Ct, zeros((nb, nb)), Cg]) beq_p = bus[:, PD] / baseMVA # KVL equation Aeq_KVL = hstack([-2 * diags(Branch_R), diags(power(Branch_R, 2)), Cf.T - Ct.T, zeros((nl, ng))]) beq_KVL = zeros(nl) Aeq = vstack([Aeq_p, Aeq_KVL]) Aeq = Aeq.todense() beq = concatenate([beq_p, beq_KVL]) neq = len(beq) nx = 2 * nl + nb + ng Q = zeros(nx) c = zeros(nx) c0 = zeros(nx) for i in range(ng): Q[i + 2 * nl + nb] = gencost[i, 4] * baseMVA * baseMVA c[i + 2 * nl + nb] = gencost[i, 5] * baseMVA c0[i + 2 * nl + nb] = gencost[i, 6] model = {"Q": Q, "c": c, "c0": c0, "Aeq": Aeq, "beq": beq, "lx": lx, "ux": ux, "nx": nx, "nb": nb, "nl": nl, "ng": ng, "f": f, "neq": neq} return model def AC_network_formulation(case): """ :param case: :return: """ case = ext2int(case) baseMVA, bus, gen, branch, gencost = case["baseMVA"], case["bus"], case["gen"], case["branch"], case["gencost"] nb = shape(case['bus'])[0] ## number of buses nl = shape(case['branch'])[0] ## number of branches ng = shape(case['gen'])[0] ## number of dispatchable injections f = branch[:, F_BUS] ## list of "from" buses t = branch[:, T_BUS] ## list of "to" buses i = range(nl) ## double set of row indices # Connection matrix Cf = sparse((ones(nl), (i, f)), (nl, nb)) Ct = sparse((ones(nl), (i, t)), (nl, nb)) Cg = sparse((ones(ng), (gen[:, GEN_BUS], range(ng))), (nb, ng)) Branch_R = branch[:, BR_R] Branch_X = branch[:, BR_X] Cf = Cf.T Ct = Ct.T # Obtain the boundary information Slmax = branch[:, RATE_A] / baseMVA Pij_l = -Slmax Qij_l = -Slmax Iij_l = zeros(nl) Vm_l = power(bus[:, VMIN], 2) Pg_l = gen[:, PMIN] / baseMVA Qg_l = gen[:, QMIN] / baseMVA Pij_u = Slmax Qij_u = Slmax Iij_u = Slmax Vm_u = 2 * power(bus[:, VMAX], 2) Pg_u = 2 * gen[:, PMAX] / baseMVA Qg_u = gen[:, QMAX] / baseMVA # Problem formulation lx = concatenate([Pij_l, Qij_l, Iij_l, Vm_l, Pg_l, Qg_l]) ux = concatenate([Pij_u, Qij_u, Iij_u, Vm_u, Pg_u, Qg_u]) # KCL equation, active power Aeq_p = hstack([Ct - Cf, zeros((nb, nl)), -diag(Ct * Branch_R) * Ct, zeros((nb, nb)), Cg, zeros((nb, ng))]) beq_p = bus[:, PD] / baseMVA # KCL equation, reactive power Aeq_q = hstack([zeros((nb, nl)), Ct - Cf, -diag(Ct * Branch_X) * Ct, zeros((nb, nb)), zeros((nb, ng)), Cg]) beq_q = bus[:, QD] / baseMVA # KVL equation Aeq_KVL = hstack([-2 * diags(Branch_R), -2 * diags(Branch_X), diags(power(Branch_R, 2)) + diags(power(Branch_X, 2)), Cf.T - Ct.T, zeros((nl, 2 * ng))]) beq_KVL = zeros(nl) Aeq = vstack([Aeq_p, Aeq_q, Aeq_KVL]) Aeq = Aeq.todense() beq = concatenate([beq_p, beq_q, beq_KVL]) neq = len(beq) nx = 3 * nl + nb + 2 * ng Q = zeros(nx) c = zeros(nx) c0 = zeros(nx) for i in range(ng): Q[i + 3 * nl + nb] = gencost[i, 4] * baseMVA * baseMVA c[i + 3 * nl + nb] = gencost[i, 5] * baseMVA c0[i + 3 * nl + nb] = gencost[i, 6] for i in range(nl): c[i + 3 * nl] = Branch_R[i] model = {"Q": Q, "c": c, "c0": c0, "Aeq": Aeq, "beq": beq, "lx": lx, "ux": ux, "nx": nx, "nb": nb, "nl": nl, "ng": ng, "f": f, "neq": neq} return model def AC_opf_solver(case): """ Optimal power flow solver for AC networks :param model: :return: AC OPF solution """ nl = case["nl"] nb = case["nb"] ng = case["ng"] f = case["f"] nx = case["nx"] lx = case["lx"] ux = case["ux"] Aeq = case["Aeq"] beq = case["beq"] neq = len(beq) Q = case["Q"] c = case["c"] c0 = case["c0"] model = Model("OPF") # Define the decision variables x = {} for i in range(nx): x[i] = model.addVar(lb=lx[i], ub=ux[i], vtype=GRB.CONTINUOUS) for i in range(neq): expr = 0 for j in range(nx): expr += x[j] * Aeq[i, j] model.addConstr(lhs=expr, sense=GRB.EQUAL, rhs=beq[i]) for i in range(nl): model.addConstr(x[i] * x[i] + x[i + nl] * x[i + nl] <= x[i + 2 * nl] * x[f[i] + 3 * nl]) obj = 0 for i in range(nx): obj += Q[i] * x[i] * x[i] + c[i] * x[i] + c0[i] model.setObjective(obj) model.Params.OutputFlag = 0 model.Params.LogToConsole = 0 model.Params.DisplayInterval = 1 model.optimize() xx = [] for v in model.getVars(): xx.append(v.x) obj = obj.getValue() Pij = xx[0:nl] Qij = xx[nl + 0:2 * nl] Iij = xx[2 * nl:3 * nl] Vi = xx[3 * nl:3 * nl + nb] Pg = xx[3 * nl + nb:3 * nl + nb + ng] Qg = xx[3 * nl + nb + ng:3 * nl + nb + 2 * ng] primal_residual = zeros(nl) for i in range(nl): primal_residual[i] = Pij[i] * Pij[i] + Qij[i] * Qij[i] - Iij[i] * Vi[int(f[i])] sol = {"Pij": Pij, "Qij": Qij, "Iij": Iij, "Vm": power(Vi, 0.5), "Pg": Pg, "Qg": Qg, "obj": obj} return sol, primal_residual def DC_opf_solver(case): """ Optimal power flow solver for DC networks :param model: :return: DC OPF solution """ nl = case["nl"] nb = case["nb"] ng = case["ng"] f = case["f"] nx = case["nx"] lx = case["lx"] ux = case["ux"] Aeq = case["Aeq"] beq = case["beq"] neq = len(beq) Q = case["Q"] c = case["c"] c0 = case["c0"] model = Model("OPF_DC") # Define the decision variables x = {} for i in range(nx): x[i] = model.addVar(lb=lx[i], ub=ux[i], vtype=GRB.CONTINUOUS) for i in range(neq): expr = 0 for j in range(nx): expr += x[j] * Aeq[i, j] model.addConstr(lhs=expr, sense=GRB.EQUAL, rhs=beq[i]) for i in range(nl): model.addConstr(x[i] * x[i] <= x[i + nl] * x[f[i] + 2 * nl]) obj = 0 for i in range(nx): obj += Q[i] * x[i] * x[i] + c[i] * x[i] + c0[i] model.setObjective(obj) model.Params.OutputFlag = 0 model.Params.LogToConsole = 0 model.Params.DisplayInterval = 1 model.optimize() xx = [] for v in model.getVars(): xx.append(v.x) obj = obj.getValue() Pij = xx[0:nl] Iij = xx[nl:2 * nl] Vi = xx[2 * nl:2 * nl + nb] Pg = xx[2 * nl + nb:2 * nl + nb + ng] primal_residual = zeros(nl) for i in range(nl): primal_residual[i] = Pij[i] * Pij[i] - Iij[i] * Vi[int(f[i])] sol = {"Pij": Pij, "Iij": Iij, "Vm": power(Vi, 0.5), "Pg": Pg, "obj": obj} return sol, primal_residual def BIC_network_formulation(case_AC, case_DC, case_BIC): """ Merger the AC network and DC networks :param case_AC: :param case_DC: :param case_BIC: :return: """ from distribution_system_optimization.data_format.case_converters import AC_ID, DC_ID, EFF_A2D, EFF_D2A, \ SMAX nx_BIC = shape(case_BIC["con"])[0] nx_AC = case_AC["nx"] nx_DC = case_DC["nx"] nx = nx_AC + nx_DC + nx_BIC * 2 lx = concatenate([case_AC["lx"], case_DC["lx"], zeros(2 * nx_BIC)]) ux = concatenate([case_AC["ux"], case_DC["ux"], case_BIC["con"][:, SMAX] / case_BIC["baseMVA"], case_BIC["con"][:, SMAX] / case_BIC["baseMVA"]]) Q = concatenate([case_AC["Q"], case_DC["Q"], zeros(nx_BIC * 2)]) c = concatenate([case_AC["c"], case_DC["c"], zeros(nx_BIC * 2)]) c0 = concatenate([case_AC["c0"], case_DC["c0"], zeros(nx_BIC * 2)]) # Update the equality constraints neq = case_AC["neq"] + case_DC["neq"] Aeq = zeros((neq, nx)) Aeq[0:case_AC["neq"], 0:case_AC["nx"]] = case_AC["Aeq"] Aeq[case_AC["neq"]:neq, case_AC["nx"]:case_AC["nx"] + case_DC["nx"]] = case_DC["Aeq"] # Update the KCL equations for i in range(nx_BIC): # Update the AC network information Aeq[int(case_BIC["con"][i][AC_ID]), case_AC["nx"] + case_DC["nx"] + i] = -1 Aeq[int(case_BIC["con"][i][AC_ID]), case_AC["nx"] + case_DC["nx"] + nx_BIC + i] = case_BIC["con"][ i, EFF_D2A] # Update the DC network information Aeq[case_AC["nx"] + int(case_BIC["con"][i][DC_ID]), case_AC["nx"] + case_DC["nx"] + nx_BIC + i] = -1 Aeq[case_AC["nx"] + int(case_BIC["con"][i][DC_ID]), case_AC["nx"] + case_DC["nx"] + i] = \ case_BIC["con"][i, EFF_A2D] beq = concatenate([case_AC["beq"], case_DC["beq"]]) model = Model("OPF_AC_DC") # Define the decision variables x = {} for i in range(nx): x[i] = model.addVar(lb=lx[i], ub=ux[i], vtype=GRB.CONTINUOUS) for i in range(neq): expr = 0 for j in range(nx): expr += x[j] * Aeq[i, j] model.addConstr(lhs=expr, sense=GRB.EQUAL, rhs=beq[i]) for i in range(case_AC["nl"]): model.addConstr(x[i] * x[i] + x[i + case_AC["nl"]] * x[i + case_AC["nl"]] <= x[i + 2 * case_AC["nl"]] * x[ case_AC["f"][i] + 3 * case_AC["nl"]]) for i in range(case_DC["nl"]): model.addConstr( x[case_AC["nx"] + i] * x[case_AC["nx"] + i] <= x[case_AC["nx"] + i + case_DC["nl"]] * x[ case_AC["nx"] + case_DC["f"][i] + 2 * case_DC["nl"]]) obj = 0 for i in range(nx): obj += Q[i] * x[i] * x[i] + c[i] * x[i] + c0[i] model.setObjective(obj) model.Params.OutputFlag = 0 model.Params.LogToConsole = 0 model.Params.DisplayInterval = 1 model.optimize() xx = [] for v in model.getVars(): xx.append(v.x) obj = obj.getValue() Pij_AC = xx[0:case_AC["nl"]] Qij_AC = xx[case_AC["nl"]:2 * case_AC["nl"]] Iij_AC = xx[2 * case_AC["nl"]:3 * case_AC["nl"]] Vi_AC = xx[3 * case_AC["nl"]:3 * case_AC["nl"] + case_AC["nb"]] Pg_AC = xx[3 * case_AC["nl"] + case_AC["nb"]:3 * case_AC["nl"] + case_AC["nb"] + case_AC["ng"]] Qg_AC = xx[3 * case_AC["nl"] + case_AC["nb"] + case_AC["ng"]:3 * case_AC["nl"] + case_AC["nb"] + 2 * case_AC["ng"]] primal_residual_AC = zeros(case_AC["nl"]) for i in range(case_AC["nl"]): primal_residual_AC[i] = Pij_AC[i] * Pij_AC[i] + Qij_AC[i] * Qij_AC[i] - Iij_AC[i] * Vi_AC[int(case_AC["f"][i])] Pij_DC = xx[case_AC["nx"]:case_AC["nx"] + case_DC["nl"]] Iij_DC = xx[case_AC["nx"] + case_DC["nl"]:case_AC["nx"] + 2 * case_DC["nl"]] Vi_DC = xx[case_AC["nx"] + 2 * case_DC["nl"]:case_AC["nx"] + 2 * case_DC["nl"] + case_DC["nb"]] Pg_DC = xx[case_AC["nx"] + 2 * case_DC["nl"] + case_DC["nb"]:case_AC["nx"] + 2 * case_DC["nl"] + case_DC["nb"] + case_DC["ng"]] primal_residual_DC = zeros(case_DC["nl"]) for i in range(case_DC["nl"]): primal_residual_DC[i] = Pij_DC[i] * Pij_DC[i] - Iij_DC[i] * Vi_DC[int(case_DC["f"][i])] primal_residual_BIC = zeros(nx_BIC) for i in range(nx_BIC): primal_residual_BIC[i] = xx[case_AC["nx"] + 2 * case_DC["nl"] + case_DC["nb"] + case_DC["ng"] + i] * xx[case_AC["nx"] + 2 * case_DC["nl"] + case_DC["nb"] + case_DC["ng"] + i + nx_BIC] sol = {"Pij_AC": Pij_AC, "Qij_AC": Qij_AC, "Iij_AC": Iij_AC, "Vm_AC": power(Vi_AC, 0.5), "Pg_AC": Pg_AC, "Qg_AC": Qg_AC, "Pij_DC": Pij_DC, "Iij_DC": Iij_DC, "Vm_DC": power(Vi_DC, 0.5), "Pg_DC": Pg_DC, "residual_AC": primal_residual_AC, "residual_DC": primal_residual_DC, "residual_BIC": primal_residual_BIC, "obj": obj} return sol if __name__ == '__main__': # A test hybrid AC DC network is connected via BIC networks caseAC = case33.case33() caseDC = case118.case118() converters = case_converters.con() sol = main(Case_AC=caseAC, Case_DC=caseDC, Converters=converters)
1b78135398abeca244e835d6de11727d963c8134
49ee49ee34fa518b0df934081f5ea44a0faa3451
/study-crow-framework/crow/examples/example_test.py
d252df0b805e995dadd5e2d37ab2bed1e000c5f6
[ "BSD-3-Clause", "MIT", "ISC" ]
permissive
kingsamchen/Eureka
a9458fcc7d955910bf2cefad3a1561cec3559702
e38774cab5cf757ed858547780a8582951f117b4
refs/heads/master
2023-09-01T11:32:35.575951
2023-08-27T15:21:42
2023-08-27T15:22:31
42,903,588
28
16
MIT
2023-09-09T07:33:29
2015-09-22T01:27:05
C++
UTF-8
Python
false
false
1,401
py
import urllib assert "Hello World!" == urllib.urlopen('http://localhost:18080').read() assert "About Crow example." == urllib.urlopen('http://localhost:18080/about').read() assert 404 == urllib.urlopen('http://localhost:18080/list').getcode() assert "3 bottles of beer!" == urllib.urlopen('http://localhost:18080/hello/3').read() assert "100 bottles of beer!" == urllib.urlopen('http://localhost:18080/hello/100').read() assert 400 == urllib.urlopen('http://localhost:18080/hello/500').getcode() assert "3" == urllib.urlopen('http://localhost:18080/add_json', data='{"a":1,"b":2}').read() assert "3" == urllib.urlopen('http://localhost:18080/add/1/2').read() # test persistent connection import socket import time s = socket.socket() s.connect(('localhost', 18080)) for i in xrange(10): s.send('''GET / HTTP/1.1 Host: localhost\r\n\r\n'''); assert 'Hello World!' in s.recv(1024) # test large s = socket.socket() s.connect(('localhost', 18080)) s.send('''GET /large HTTP/1.1 Host: localhost\r\nConnection: close\r\n\r\n''') r = '' while True: d = s.recv(1024*1024) if not d: break; r += d print len(r), len(d) print len(r), r[:100] assert len(r) > 512*1024 # test timeout s = socket.socket() s.connect(('localhost', 18080)) # invalid request, connection will be closed after timeout s.send('''GET / HTTP/1.1 hHhHHefhwjkefhklwejfklwejf ''') print s.recv(1024)
8fb3f79b350977c88931c3266b2db486922dcec9
ffad717edc7ab2c25d5397d46e3fcd3975ec845f
/Python/pyesri/ANSWERS/countwords.py
3cb94d4482bdf35763fd40b40028fc5136cad2d1
[]
no_license
shaunakv1/esri-developer-conference-2015-training
2f74caea97aa6333aa38fb29183e12a802bd8f90
68b0a19aac0f9755202ef4354ad629ebd8fde6ba
refs/heads/master
2021-01-01T20:35:48.543254
2015-03-09T22:13:14
2015-03-09T22:13:14
31,855,365
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
#!/usr/bin/python import sys if len(sys.argv) < 3: print "Syntax: countwords.py PATTERN FILE ..." sys.exit() pattern = sys.argv[1] for fname in sys.argv[2:]: count = 0 with open(fname) as f: for line in f: if pattern in line: count += 1 print '''"{0}" occurred on {1} lines in {2}'''.format(pattern,count,fname)
2c14b342ece31335f536bac793332b879a2c8b94
7f54637e347e5773dfbfded7b46b58b50544cfe5
/8-1/chainxy/settings.py
0f222740778cd9f63c7bbb6304924cd66e17b44f
[]
no_license
simba999/all-scrapy
5cc26fd92b1d03366b74d4fff58c4a0641c85609
d48aeb3c00fa2474153fbc8d131cf58402976e1d
refs/heads/master
2021-01-25T14:24:04.715550
2018-03-03T13:43:13
2018-03-03T13:43:13
123,695,640
1
0
null
null
null
null
UTF-8
Python
false
false
3,587
py
# -*- coding: utf-8 -*- # Scrapy settings for chainxy project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'chainxy' SPIDER_MODULES = ['chainxy.spiders'] NEWSPIDER_MODULE = 'chainxy.spiders' # Feed export FEED_FORMAT = 'csv' # exports to csv FEED_EXPORT_FIELDS = ['store_number', 'address'] # which fields should be exported # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'chainxy (+http://www.yourdomain.com)' USER_AGENT = "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36" DOWNLOADER_MIDDLEWARES = {'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,} # Obey robots.txt rules # ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # DOWNLOAD_DELAY = 1 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'chainxy.middlewares.ChainxySpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'chainxy.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'chainxy.pipelines.ChainxyPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
509ca1afcbfe5bbdeb744ed4f48259dbb9978d9f
775d3690f09f34347e2a7918b060f9dd9f83c10d
/research/vrgripper/vrgripper_env_models.py
36c7825380aeab82828057bd703230deea3186e6
[ "Apache-2.0" ]
permissive
HK2-D/tensor2robot
aa0ccc9a997ba72447a48d0dc3acf71d2f4af827
58d71467eecf02d3a1646d26cc9011f81753f560
refs/heads/master
2023-02-04T03:18:22.863436
2020-12-24T01:20:50
2020-12-24T01:21:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,221
py
# coding=utf-8 # Copyright 2020 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """T2RModels for VRGripper env tasks.""" from typing import Callable, Dict, List, Optional, Text, Tuple import gin import numpy as np from tensor2robot.layers import mdn from tensor2robot.layers import vision_layers from tensor2robot.meta_learning import meta_tfdata from tensor2robot.models import abstract_model from tensor2robot.models import regression_model from tensor2robot.preprocessors import abstract_preprocessor from tensor2robot.preprocessors import distortion from tensor2robot.utils import tensorspec_utils import tensorflow.compat.v1 as tf # tf import tensorflow_probability as tfp from tensorflow.contrib import layers as contrib_layers TensorSpec = tensorspec_utils.ExtendedTensorSpec TRAIN = tf.estimator.ModeKeys.TRAIN PREDICT = tf.estimator.ModeKeys.PREDICT FLOAT_DTYPES = [tf.bfloat16, tf.float32, tf.float64] @gin.configurable class DefaultVRGripperPreprocessor(abstract_preprocessor.AbstractPreprocessor): """The default VRGripperEnv preprocessor.""" def __init__(self, src_img_res = (220, 300), crop_size = (200, 280), mixup_alpha = 0.0, **kwargs): """Construct the preprocessor. Args: src_img_res: The true height and width of the image data. If the model expects images of a different size, we automatically resize the images. crop_size: Before resizing the image, take a crop of the image to this height and width. Is a no-op if equal to src_img_res. Crop is done randomly at train time, and is take from the center otherwise. mixup_alpha: If > 0., turns on Mixup data augmentation for features and labels. **kwargs: Keyword args passed to parent class. """ super(DefaultVRGripperPreprocessor, self).__init__(**kwargs) self._src_img_res = src_img_res self._crop_size = crop_size self._mixup_alpha = mixup_alpha def get_in_feature_specification(self, mode ): """See base class.""" feature_spec = tensorspec_utils.copy_tensorspec( self._model_feature_specification_fn(mode)) # Don't want to parse the original_image, since we don't want to parse it # and we are adding this feature in preprocess_fn to satisfy the model's # inputs. if mode != PREDICT and 'original_image' in feature_spec: del feature_spec['original_image'] if 'image' in feature_spec: true_img_shape = feature_spec.image.shape.as_list() # Overwrite the H, W dimensions. true_img_shape[-3:-1] = self._src_img_res feature_spec.image = TensorSpec.from_spec( feature_spec.image, shape=true_img_shape, dtype=tf.uint8) return tensorspec_utils.flatten_spec_structure(feature_spec) def get_in_label_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_label_specification_fn(mode)) def get_out_feature_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_feature_specification_fn(mode)) def get_out_label_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_label_specification_fn(mode)) def _preprocess_fn( self, features, labels, mode ): """Resize images and convert them from uint8 -> float32.""" if 'image' in features: ndim = len(features.image.shape) is_sequence = (ndim > 4) input_size = self._src_img_res target_size = self._crop_size features.original_image = features.image features.image = distortion.preprocess_image(features.image, mode, is_sequence, input_size, target_size) features.image = tf.image.convert_image_dtype(features.image, tf.float32) out_feature_spec = self.get_out_feature_specification(mode) if out_feature_spec.image.shape != features.image.shape: features.image = meta_tfdata.multi_batch_apply( tf.image.resize_images, 2, features.image, out_feature_spec.image.shape.as_list()[-3:-1]) if self._mixup_alpha > 0. and labels and mode == TRAIN: lmbda = tfp.distributions.Beta( self._mixup_alpha, self._mixup_alpha).sample() for key, x in features.items(): if x.dtype in FLOAT_DTYPES: features[key] = lmbda * x + (1-lmbda)*tf.reverse(x, axis=[0]) if labels is not None: for key, x in labels.items(): if x.dtype in FLOAT_DTYPES: labels[key] = lmbda * x + (1 - lmbda) * tf.reverse(x, axis=[0]) return features, labels @gin.configurable class VRGripperRegressionModel(regression_model.RegressionModel): """Continuous regression output model for VRGripper Env.""" def __init__(self, use_gripper_input = True, normalize_outputs = False, output_mean = None, output_stddev = None, outer_loss_multiplier = 1., num_mixture_components = 1, output_mixture_sample = False, condition_mixture_stddev = False, episode_length = 40, **kwargs): """Initialize the VRGripperRegressionModel. Args: use_gripper_input: If True, concatenate gripper pose with input to the fully connected layers when predicting actions. normalize_outputs: If True, scale actions by `output_stddev` and translate by `output_mean`. output_mean: The empirical mean of demonstration actions. output_stddev: The empirical standard deviation of demonstration actions. outer_loss_multiplier: A scaling factor for the outer loss. num_mixture_components: The number of gaussian mixture components. Use 1 for standard mean squared error regression. output_mixture_sample: If True (and num_mixture_components > 1), output actions by sampling from a gaussian mixture. Otherwise, we use the mean of the most likely component. condition_mixture_stddev: If True, the mixture standard deviations will be output from a neural net and thus conditioned on image/state. Otherwise, they will simply be learned variables (unconditioned on image/state). episode_length: The fixed length of an episode in the data. **kwargs: Passed to parent. Raises: ValueError: If `output_mean` or `output_stddev` have incorrect length. """ super(VRGripperRegressionModel, self).__init__(**kwargs) self._use_gripper_input = use_gripper_input self._normalize_outputs = normalize_outputs self._output_mean = None self._output_stddev = None self._outer_loss_multiplier = outer_loss_multiplier self._num_mixture_components = num_mixture_components self._output_mixture_sample = output_mixture_sample self._condition_mixture_stddev = condition_mixture_stddev self._episode_length = episode_length if output_mean and output_stddev: if not len(output_mean) == len(output_stddev) == self.action_size: raise ValueError( 'Output mean and stddev have lengths {:d} and {:d}.'.format( len(output_mean), len(output_stddev))) self._output_mean = np.array([output_mean]) self._output_stddev = np.array([output_stddev]) @property def default_preprocessor_cls(self): return DefaultVRGripperPreprocessor def get_feature_specification(self, mode): del mode image_spec = TensorSpec( shape=(100, 100, 3), dtype=tf.float32, name='image0', data_format='jpeg') gripper_pose_spec = TensorSpec( shape=(14,), dtype=tf.float32, name='world_pose_gripper') tspec = tensorspec_utils.TensorSpecStruct( image=image_spec, gripper_pose=gripper_pose_spec) return tensorspec_utils.copy_tensorspec( tspec, batch_size=self._episode_length) def get_label_specification(self, mode): del mode action_spec = TensorSpec( shape=(self._action_size,), dtype=tf.float32, name='action_world') tspec = tensorspec_utils.TensorSpecStruct(action=action_spec) return tensorspec_utils.copy_tensorspec( tspec, batch_size=self._episode_length) @property def action_size(self): return self._action_size def _single_batch_a_func(self, features, scope, mode, context_fn=None, reuse=tf.AUTO_REUSE): """A state -> action regression function that expects a single batch dim.""" gripper_pose = features.gripper_pose if self._use_gripper_input else None with tf.variable_scope(scope, reuse=reuse, use_resource=True): with tf.variable_scope('state_features', reuse=reuse, use_resource=True): feature_points, end_points = vision_layers.BuildImagesToFeaturesModel( features.image, is_training=(mode == TRAIN), normalizer_fn=contrib_layers.layer_norm) if context_fn: feature_points = context_fn(feature_points) fc_input = tf.concat([feature_points, gripper_pose], -1) outputs = {} if self._num_mixture_components > 1: dist_params = mdn.predict_mdn_params( fc_input, self._num_mixture_components, self._action_size, condition_sigmas=self._condition_mixture_stddev) gm = mdn.get_mixture_distribution( dist_params, self._num_mixture_components, self._action_size, self._output_mean if self._normalize_outputs else None) if self._output_mixture_sample: # Output a mixture sample as action. action = gm.sample() else: action = mdn.gaussian_mixture_approximate_mode(gm) outputs['dist_params'] = dist_params else: action, _ = vision_layers.BuildImageFeaturesToPoseModel( fc_input, num_outputs=self._action_size) action = self._output_mean + self._output_stddev * action outputs.update({ 'inference_output': action, 'image': features.image, 'feature_points': feature_points, 'softmax': end_points['softmax'] }) return outputs def a_func(self, features, scope, mode, context_fn=None, reuse=tf.AUTO_REUSE, config=None, params=None): """A (state) regression function. This function can return a stochastic or a deterministic tensor. Args: features: This is the first item returned from the input_fn and parsed by tensorspec_utils.validate_and_pack. A spec_structure which fulfills the requirements of the self.get_feature_spefication. scope: String specifying variable scope. mode: (ModeKeys) Specifies if this is training, evaluation or prediction. context_fn: Optional python function that takes in features and returns new features of same shape. For merging information like in RL^2. reuse: Whether or not to reuse variables under variable scope 'scope'. config: Optional configuration object. Will receive what is passed to Estimator in config parameter, or the default config. Allows updating things in your model_fn based on configuration such as num_ps_replicas, or model_dir. params: An optional dict of hyper parameters that will be passed into input_fn and model_fn. Keys are names of parameters, values are basic python types. There are reserved keys for TPUEstimator, including 'batch_size'. Returns: outputs: A {key: Tensor} mapping. The key 'action' is required. """ del config, params return meta_tfdata.multi_batch_apply(self._single_batch_a_func, 2, features, scope, mode, context_fn, reuse) def loss_fn(self, labels, inference_outputs, mode, params=None): """This implements outer loss and configurable inner losses.""" if params and params.get('is_outer_loss', False): pass if self._num_mixture_components > 1: gm = mdn.get_mixture_distribution( inference_outputs['dist_params'], self._num_mixture_components, self._action_size, self._output_mean if self._normalize_outputs else None) return -tf.reduce_mean(gm.log_prob(labels.action)) else: return self._outer_loss_multiplier * tf.losses.mean_squared_error( labels=labels.action, predictions=inference_outputs['inference_output']) @gin.configurable class VRGripperDomainAdaptiveModel(VRGripperRegressionModel): """Base model which uses a learned loss to do domain adaptive imitation. The model conditions on video only (no actions or gripper pose). """ def __init__(self, predict_con_gripper_pose = False, learned_loss_conv1d_layers = (10, 10, 6), **kwargs): """Initialize the model. Args: predict_con_gripper_pose: If True, predict the condition gripper pose input from the image features. Otherwise, set to zeros. learned_loss_conv1d_layers: A tuple describing the conv1d layers of the learned loss. If None, the learned loss won't use conv1d layers. **kwargs: Passed to parent. """ super(VRGripperDomainAdaptiveModel, self).__init__(**kwargs) self._predict_con_gripper_pose = predict_con_gripper_pose self._learned_loss_conv1d_layers = learned_loss_conv1d_layers def _predict_gripper_pose(self, feature_points): """Predict the condition gripper pose from feature points.""" out = feature_points out = tf.layers.dense(out, 40, activation=tf.nn.relu, use_bias=False) out = contrib_layers.layer_norm(out) out = tf.layers.dense(out, 14, activation=None) return out def single_batch_a_func( self, features, scope, mode, context_fn, reuse, config, params): """Single step action predictor when there is a single batch dim.""" del config with tf.variable_scope(scope, reuse=reuse, use_resource=True): with tf.variable_scope('state_features', reuse=reuse, use_resource=True): feature_points, end_points = vision_layers.BuildImagesToFeaturesModel( features.image, is_training=(mode == TRAIN), normalizer_fn=contrib_layers.layer_norm) if context_fn: feature_points = context_fn(feature_points) if params and params.get('is_inner_loop', False): if self._predict_con_gripper_pose: gripper_pose = self._predict_gripper_pose(feature_points) else: gripper_pose = tf.zeros_like(features.gripper_pose) else: gripper_pose = features.gripper_pose action, _ = vision_layers.BuildImageFeaturesToPoseModel( feature_points, aux_input=gripper_pose, num_outputs=self._action_size) action = self._output_mean + self._output_stddev * action return { 'inference_output': action, 'image': features.image, 'feature_points': feature_points, 'softmax': end_points['softmax'], } def a_func(self, features, scope, mode, context_fn = None, reuse=tf.AUTO_REUSE, config = None, params = None ): """Single step action predictor. See parent class.""" return meta_tfdata.multi_batch_apply(self.single_batch_a_func, 2, features, scope, mode, context_fn, reuse, config, params) def model_train_fn(self, features, labels, inference_outputs, mode, config = None, params = None ): """Output learned loss if inner loop, or behavior clone if outer loop.""" if params and params.get('is_outer_loss', False): # Outer loss case: use standard RegressionModel loss. return self.loss_fn(labels, inference_outputs, mode, params) # Inner loss case: compute learned loss function. with tf.variable_scope( 'learned_loss', reuse=tf.AUTO_REUSE, use_resource=True): predicted_action, _ = meta_tfdata.multi_batch_apply( vision_layers.BuildImageFeaturesToPoseModel, 2, inference_outputs['feature_points'], num_outputs=self._action_size) if self._learned_loss_conv1d_layers is None: return tf.losses.mean_squared_error(predicted_action, inference_outputs['action']) ll_input = tf.concat([ predicted_action, inference_outputs['feature_points'], inference_outputs['inference_output'] ], -1) net = ll_input for num_filters in self._learned_loss_conv1d_layers[:-1]: net = tf.layers.conv1d( net, num_filters, 10, activation=tf.nn.relu, use_bias=False) net = contrib_layers.layer_norm(net) net = tf.layers.conv1d(net, self._learned_loss_conv1d_layers[-1], 1) # 1x1 convolution. return tf.reduce_mean(tf.reduce_sum(tf.square(net), axis=(1, 2)))
0ea9bc7a81b5477b94cd0a274d0e8e74a3e7a894
97b2688fb68523f8350c951972c472425e5671d5
/test/test_invoice_line_tax_m.py
a9cc1195e7b0af6850828d47dd0fa4c3a0a50aff
[]
no_license
calebdlarson/aria-sdk-object-query
ab45e5a36d629f98cd58957eef72e53a28b3706b
b44abc9e6e3b86c109e65fdc4edf22d7c51edc2c
refs/heads/master
2020-06-26T19:33:36.880213
2019-07-30T22:04:10
2019-07-30T22:04:10
199,733,517
0
0
null
null
null
null
UTF-8
Python
false
false
897
py
# coding: utf-8 """ Object Query API Object Query API for Aria billing # noqa: E501 OpenAPI spec version: 23 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.vendor\ariasystems\model.invoice_line_tax_m import InvoiceLineTaxM # noqa: E501 from swagger_client.rest import ApiException class TestInvoiceLineTaxM(unittest.TestCase): """InvoiceLineTaxM unit test stubs""" def setUp(self): pass def tearDown(self): pass def testInvoiceLineTaxM(self): """Test InvoiceLineTaxM""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.invoice_line_tax_m.InvoiceLineTaxM() # noqa: E501 pass if __name__ == '__main__': unittest.main()
d4f824fdedc2fe9a5500cdeaba29ec74be9b9839
aa96ac0dda227bbbfc647c710524915dfae0240f
/tests/basic/vargs.py
31ca3e5fa2b9b2a9cc757e9658a8a34120b995b0
[ "BSD-3-Clause", "Python-2.0", "MIT" ]
permissive
certik/test3
c963e806e0ccba7a751543303df7137332a34e8a
5ed67b37bbff59981c3a9e55bb3d8bdc8924a1aa
refs/heads/master
2016-09-06T11:38:01.939907
2010-04-29T17:31:50
2010-04-29T17:31:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
def myfunc(a,b,*c): print a print b for i in c: print i myfunc(1,2) myfunc('a','b','c','d') myfunc(3,4,5,6,'hello')
3ef0aa3cd77321b32b02be7e5729cddcb6ed997a
425aa72cb1ca1edf15a6234647dd546e0d29a71b
/turtle_pkg/scripts/grid_path_planning.py
3b725eca7f70f7512c62e4ee74c8723b5a202f34
[]
no_license
TechnoYantra/robot-teleoperation
bbc652deaf1ed15fe54b91fef27d542c124705ef
c633169ac57ab1db36b0763fb7498c1722c93881
refs/heads/master
2023-04-06T03:41:21.440297
2020-04-24T06:51:28
2020-04-24T06:51:28
301,329,974
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
#! /home/hunter/development/anaconda3/bin/python import rospy from grid_based_sweep_path_planner import planning from sensor_msgs.msg import NavSatFix from move_base_msgs.msg import MoveBaseActionResult from std_srvs.srv import Empty class GridPathPlannig: def __init__(self): rospy.init_node('grid_path_planning') lat = 49.9000869191 lng = 8.89990548393 ox = [lat, lat+0.0000200, lat+0.0000200, lat, lat] oy = [lng, lng, lng+0.0000200, lng+0.0000200, lng] reso = 0.0000025 self.px, self.py = planning(ox, oy, reso) self.i = 0 rospy.wait_for_service('/move_base/clear_costmaps') self.clear_costmap = rospy.ServiceProxy('/move_base/clear_costmaps',Empty) move_sub = rospy.Subscriber('/move_base/result',MoveBaseActionResult,self.feedback_cb) rospy.spin() def feedback_cb(self,msg): if (msg.status.status == 3): rospy.loginfo('result is success') rospy.logwarn('clearing costmap') ret = self.clear_costmap() self.publish_next_goal(self.i) elif (msg.status.status == 2): rospy.loginfo('there is some error so clearing the costmap') ret = self.clear_costmap() self.publish_previous_goal(self.i) elif (msg.status.status == 4): rospy.loginfo('there is some warning so clearing the costmap') ret = self.clear_costmap() self.publish_previous_goal(self.i) def publish_previous_goal(self,i): gps_pub = rospy.Publisher('/gps_goal_fix', NavSatFix, queue_size=10) gps_data = NavSatFix() gps_data.header.frame_id='/world' gps_data.latitude=self.px[self.i] rospy.loginfo('latitude is : '+str(self.px[self.i])) gps_data.longitude=self.py[self.i] rospy.loginfo('longitude is : '+str(self.py[self.i])) rospy.logerr('number is '+str(self.i)) rospy.loginfo('publishing next goal') gps_pub.publish(gps_data) def publish_next_goal(self,i): self.i = self.i+1 gps_pub = rospy.Publisher('/gps_goal_fix',NavSatFix,queue_size=10) gps_data = NavSatFix() gps_data.header.frame_id='/world' rospy.logerr('number is '+str(self.i)) gps_data.latitude=self.px[self.i] rospy.loginfo('latitude is : '+str(self.px[self.i])) gps_data.longitude=self.py[self.i] rospy.loginfo('longitude is : '+str(self.py[self.i])) rospy.loginfo('publishing next goal') gps_pub.publish(gps_data) if __name__ == '__main__': grdpthpln= GridPathPlannig()
33ce5299478cdbc5d4c69e68261c0090083414ce
7f46fda936a5f4358e8b229668d7f4d94bc7fa33
/backend/env/bin/django-admin
9d20155efcf8be1a359c9b0f866b8abe7d34fd03
[]
no_license
souksavanhlkl/djreact-ant-test
22de7c2aaa202e002baa41020fd15a46269439dc
66f90a19770b39a5c3cb79a14b5c6fe12e49ca55
refs/heads/master
2020-06-18T07:26:30.601504
2019-07-12T17:51:57
2019-07-12T17:51:57
196,211,377
0
0
null
null
null
null
UTF-8
Python
false
false
309
#!/Users/ton/Downloads/Test/djreact/backend/env/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
58e695680127bb42f2f78903fc84e26e9f79b012
7822e658e88f3f948732e6e3e588ca4b2eb5662a
/guias/2012-2/octubre-17/torneos.py
3cc64246b4e91ed046f843aea8d045bff0ea5db2
[]
no_license
carlos2020Lp/progra-utfsm
632b910e96c17b9f9bb3d28329e70de8aff64570
a0231d62837c54d4eb8bbf00bb1b84484efc1af2
refs/heads/master
2021-05-28T06:00:35.711630
2015-02-05T02:19:18
2015-02-05T02:19:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,803
py
def contar_partidos(partidos): return len(partidos) def obtener_equipos(partidos): equipos = set() for local, visita in partidos: equipos.add(local) equipos.add(visita) equipos = list(equipos) equipos.sort() return equipos def obtener_fechas(partidos): fechas = set() for p in partidos: fecha, _ = partidos[p] fechas.add(fecha) fechas = list(fechas) fechas.sort() return fechas def calcular_puntos(partidos, equipo): puntos = 0 for p in partidos: _, resultado = partidos[p] if resultado == None: continue local, visita = p gl, gv = resultado if equipo == local: if gl > gv: puntos += 3 elif gl == gv: puntos += 1 elif equipo == visita: if gl < gv: puntos += 3 elif gl == gv: puntos += 1 return puntos def calcular_diferencia(partidos, equipo): diferencia = 0 for p in partidos: _, resultado = partidos[p] if resultado == None: continue gl, gv = resultado local, visita = p if equipo == local: diferencia += (gl - gv) elif equipo == visita: diferencia += (gv - gl) return diferencia def ordenar_equipos(partidos): equipos = obtener_equipos(partidos) estadisticas = [] for equipo in equipos: pts = calcular_puntos(partidos, equipo) dif = calcular_diferencia(partidos, equipo) estadisticas.append((pts, dif, equipo)) estadisticas.sort() estadisticas.reverse() equipos_ordenados = [] for _, _, equipo in estadisticas: equipos_ordenados.append(equipo) return equipos_ordenados
9813d2f1469dc08e215edac52165f3615023264d
3b2940c38412e5216527e35093396470060cca2f
/top/api/rest/AlibabaOpendspAdgroupsAddRequest.py
ecc347df1177f0300f8f99e6b18777f4d00cdb29
[]
no_license
akingthink/goods
842eb09daddc2611868b01ebd6e330e5dd7d50be
ffdb5868a8df5c2935fc6142edcdf4c661c84dca
refs/heads/master
2021-01-10T14:22:54.061570
2016-03-04T09:48:24
2016-03-04T09:48:24
45,093,302
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
''' Created by auto_sdk on 2015-01-20 12:44:32 ''' from top.api.base import RestApi class AlibabaOpendspAdgroupsAddRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) def getapiname(self): return 'alibaba.opendsp.adgroups.add'
cbd5604e182ecd8be6874afcae31daabbc07241b
decfc623e13ee43829b4150db8687847ca6b2fd0
/MazeAgents.py
92953ad28e28fd1baa2002743778d755a4fa30a5
[]
no_license
callaunchpad/MeTaL
da07d0bab5f70102d06d0c0f5407fe90cacc2fd1
a8f83d7db566fb205f47e2201956e35abae11c55
refs/heads/master
2020-03-28T18:03:19.364027
2018-12-06T19:10:59
2018-12-06T19:10:59
148,848,555
5
0
null
null
null
null
UTF-8
Python
false
false
3,725
py
import dijkstra import numpy as np class MazeAgent(): import collections def __init__(self, goal, walls, size): self.size = size self.goal = goal self.loc = np.array([0,0]) self.graph = self.make_graph(walls) self.ACTIONS = [0, 1, 2, 3, 4] def get_action_distr(self, loc): distr = np.array([0.0, 0.0, 0.0, 0.0, 0.0]) best_action = self.find_move_from_state(start=loc, state=self.find_optimal_first_move(loc)) distr[best_action] = 1.0 return distr # TODO: make states an enum def find_move_from_state(self, start, state): #make sure we only differ in one position by one move #NOTE! != is xor for booleans in python assert bool((start[0]-state[0])**2 == 1) != bool((start[1]-state[1])**2 == 1) if state[1] == start[1] - 1: return 0 # up elif state[1] == start[1] + 1: return 1 # down elif state[0] == start[0] + 1: return 2 # right elif state[0] == start[0] - 1: return 3 # left else: raise ValueError("bad states") def find_optimal_first_move(self, start): _, paths_back = self.graph.dijkstra(start) # starting with a dictionary of nodes to adjacent nodes closest to start, walk back to find best first move second_state = self.goal last_state = paths_back[self.goal] while last_state is not start: second_state = last_state last_state = paths_back[last_state] return second_state def make_graph(self, walls): x_coords = list(range(self.size)) y_coords = list(range(self.size)) states = [] for start_x in x_coords: for start_y in y_coords: states.append((start_x, start_y)) graph = dijkstra.Digraph(nodes=states) for start_x in x_coords: for start_y in y_coords: start = (start_x, start_y) left = (start_x-1, start_y) right = (start_x+1, start_y) up = (start_x, start_y+1) down = (start_x, start_y-1) if start_x - 1 >= 0 and left not in walls: graph.addEdge(start, left, 1) if start_x + 1 < self.size and right not in walls: graph.addEdge(start, right, 1) if start_y - 1 >= 0 and down not in walls: graph.addEdge(start, down, 1) if start_x + 1 < self.size and up not in walls: graph.addEdge(start, up, 1) return graph def move(self, distr): action = np.random.choice(self.ACTIONS, 1, p=distr)[0] if action == 0: self.loc[1] += 1 elif action == 1: self.loc[1] -= 1 elif action == 2: self.loc[0] += 1 else: self.loc[0] -= 1 class NoisyMazeAgent(MazeAgent): def __init__(self, goal, walls, size, opt_prob): self.opt_prob = opt_prob self.noise = (1-opt_prob)/4 MazeAgent.__init__(self, goal, walls, size) def get_action_distr(self, loc): no_noise = list(MazeAgent.get_action_distr(self, loc)) print(no_noise) noisy = no_noise for index, elem in enumerate(no_noise): if no_noise[index] == 1: noisy[index] = self.opt_prob else: noisy[index] = self.noise return noisy if __name__ == '__main__': agent = NoisyMazeAgent(goal=(2,0), walls=[], size=3, opt_prob=0.9) print(agent.get_action_distr(loc=(0,0)))
bc6e7bce01224906af14992bd0824e147133d29d
cdfbe1e28af6c9b3653b450360d3e22b6d509aa7
/3_1_joern_vahland.py
915b17fe4d3b4038ab9a632bb30704cd0a3af8af
[]
no_license
Ahemmetter/comp-physics
e58e731db72e5b3cc41f2d66b503e5c734830f96
f9a570a2c536c658e8150ee06454d2ea3ff4da6c
refs/heads/master
2020-03-12T11:08:57.377346
2018-04-22T17:41:57
2018-04-22T17:41:57
130,589,970
0
0
null
null
null
null
UTF-8
Python
false
false
5,732
py
#! /usr/bin/env python from __future__ import division import numpy as np from matplotlib import pyplot as plt def fkt(x): """Auszuwertende Funktion""" return np.sin(2*x) def int_middle(function, x0, x1, n=1000): """ Integration der uebergebenen Funktion 'function' von x0 bis x1 auf n Teileintervallen. Mittelpunktmethode. Rueckgabe: Integalwert, Diskretisierungsbreite dx """ # Array mit linken Intervallgrenzen. n Intervalle links = np.linspace(x0, x1, num=n, endpoint=False, retstep=True) dx = links[1] # Streifenbreite werte = function(links[0] + dx/2) # Fkt-Werte in Intervallmitte streifen = dx * werte # Streifenflaechen return (np.sum(streifen), dx) # Streifen aufsummiert def int_trapez(function, x0, x1, n=1000): """ Integration der uebergebenen Funktion 'function' von x0 bis x1 auf n Teilintervallen. Trapezmethode Rueckgabe: Integalwert, Diskretisierungsbreite dx """ # Array mit Intervallgrenzen. n Stuetzstellen. rechter Rand inklusive stuetz = np.linspace(x0, x1, num=n+1, endpoint=True, retstep=True) dx = stuetz[1] # Streifenbreite werte = function(stuetz[0]) # Fkt-Werte an Grenzen streifen = (werte[:-1] + werte[1:]) *dx/2 # Streifenflaechen return (np.sum(streifen), dx) # Streifen aufsummiert def int_simps(function, x0, x1, n=1000): """ Integration der uebergebenen Funktion 'function' von x0 bis x1 auf n Teilintervallen. Simpsonmethode Rueckgabe: Integalwert, Diskretisierungsbreite dx """ # Array mit Intervallgrenzen stuetz = np.linspace(x0, x1, num=n+1, endpoint=True, retstep=True) dx = stuetz [1] # Streifenbreite werte = function(stuetz[0]) # Fkt-Werte an Grenzen werte_mitte = function(stuetz[0][:-1] + dx/2) # Fkt-Werte in Mitte streifen = dx/6 * (werte[:-1] + (4 * werte_mitte) + werte[1:]) return (np.sum(streifen), dx) # Streifen aufsummiert def main(): """ Fuerht die numerische Integration der Funktion sin(2*x) mittels der Mittelpunkt-, Trapez- und der Simpson-Methode auf dem Intervall -pi/2 bis pi/3 durch """ # Integrationsparameter function = fkt x0 = -np.pi/2 x1 = np.pi/3 analytic = -1/4 # Integration ueber verschiedene Teilintervalle N [1, 10**5] N = np.unique(np.int32(np.logspace(0, 5, 1000, endpoint=True))) # Array fuer Integralwerte val_mid, val_trap, val_sim = np.zeros((3, len(N))) # Array fuer Diskretisierungsparameter dx (Teilintervallbreite) dx_mid, dx_trap, dx_sim = np.zeros((3, len(N))) # Berechnung der Integrale fuer versch. Teilintervalle [1, 10**5] for i in np.arange(0, len(N)): val_mid[i], dx_mid[i] = int_middle(function, x0, x1, N[i]) val_trap[i], dx_trap[i] = int_trapez(function, x0, x1, N[i]) val_sim[i], dx_sim[i] = int_simps(function, x0, x1, N[i]) # Plot anlegen und konfigurieren plt.subplot(111, xscale="log", yscale="log") plt.title("Numerische Integration") plt.xlabel("dx") plt.ylabel(r"$\frac{\Delta I}{I}$ ", fontsize=20) # Plot der numerischen Integrale plt.plot(dx_mid, np.abs((analytic - val_mid)/analytic), label="Mittelpunkt", ls="None", color="r", marker=".", markersize=3) plt.plot(dx_trap, np.abs((analytic - val_trap)/analytic), label="Trapez", ls="None", color="g", marker=".", markersize=3) plt.plot(dx_sim, np.abs((analytic - val_sim)/analytic), label="Simpson", ls="None", color="b", marker=".", markersize=3) # Plot des zu erwartenden Skalierungsverhalten plt.plot(dx_mid, dx_mid**2, label="Skalierung Mittelpunkt & Trapez", color="r") plt.plot(dx_sim, dx_sim**4, label="Skalierung Simpson", color="b") # Plot der Legende und Diagrammausgabe plt.legend(loc="upper left") plt.show() if __name__ == "__main__": main() # Analytische Wert der Integrale: # a) I = -1/4 # b) I = sqrt(pi)/10 = 0.1772453850905516 # c) I = pi/3 = 1.0471975511965976 # Auswertung der numerischen Werte: # a) Fuer alle Methoden ergeben sich in doppelt logarithmischer # Darstellung Geraden (~ dx**2 bzw. ~dx**4) # Fuer die Mittelpunkt und Trapezmethode treten kaum numerische # Streuung auf. Die Simpsonmethode verhaelt sich fuer dx in # [2*10**(-3), 5/6 * pi] nach der zu erwarteten Skalierung. # Fuer kleinere dx dominiert der numerische Fehler --> Rauschen # # b) Die relativen Fehler aller 3 Methoden haben eine aehnliche Form und # alle Methoden scheinen etwa gleich genaue Ergebnisse zu liefern: # Fuer dx < ~0.05 liegen die Fehler unter 10**-13. Fuer groessere dx # nehmen die Fehler drastisch zu, dies liegt dan der Form der Funktion. # Die einzigen Werte die einen signifikanten Wert zum Integral beitragen # liegen schmal um die y-Achse (x=0). Liegen in diesem interessanten # Intervall nur wenige Stuetzstellen wird das Integral entsprechend # ungenau. # # c) Fuer alle Methoden entstehen mehrere Geraden, die ungefaehr im Bereich # relativer Fehler von 10**-5 - 1 liegen. Die verschiedenen Geraden # haben ihre Uhrsache in der Unstetigkeit bei x=0 und wie die Stuetz- # stellen in diesen Bereich fallen. # Es faellt ausserdem auf, dass fuer einige wenige dx auch Werte des # relativen Fehlers von unter 10**-12 auftreten. Diese sind vermutlich # zufaellige Werte bei denen eine Stuetzstelle guenstig auf die # Unstetigkeit bei x=0 faellt
9ccf673fc7f75b6ef56bdf197618ec1911503eb7
ed14247e130e538612bf8108a5ae5d95fc1d4eb5
/algorithm/DE_FBG.py
ae830ac181dc6f841844ddc010d8a2cbbe7841b5
[]
no_license
chiuhans111/threeFBGpredict
b46f3df711ec0d5e37c19501d406c7331ca1ded9
109eb28393f66f8d596f686fbfa62ff29f12b930
refs/heads/main
2023-02-24T10:53:25.379452
2020-12-23T11:32:48
2020-12-23T11:32:48
323,494,418
0
0
null
2020-12-22T02:00:30
2020-12-22T02:00:30
null
UTF-8
Python
false
false
959
py
from algorithm.DE import DE import numpy as np from algorithm.FBG import simulate def optimize(data, center, width, height, d, iterations=20, F=.5, CR=0.1, NP=50): x = np.array([center, width, height]) down_lim = x - d[:, np.newaxis] up_lim = x + d[:, np.newaxis] de = DE(F, CR, NP) X = de.init(down_lim, up_lim) Perror = None PX = None for t in range(iterations): if PX is not None: X = de.mutate(PX) spectra = simulate(data[0], X) error = np.sum((spectra - data[1, np.newaxis, :])**2, 1) if Perror is not None: compare = error < Perror PX += (X-PX) * compare[:, np.newaxis, np.newaxis] Perror += (error-Perror) * compare else: Perror = error PX = X # plt.plot(spectra.T) # plt.show() # plt.plot(error) # plt.show() average = np.average(PX, 0) return average
e45404a58ceedb3cdcaa8689db61661f2f574385
6060a897acb9b47b52ce03b2400ada9474521a1a
/vecSubtract.py
0eb504c04d7fce55f665e0f41fb805f2e014f06b
[]
no_license
madisonstewart2018/quiz-3
64c6761dd64ed213927720b2312419d4efe1a1de
da0473848f9a496859cd79e08bb73747df3438e1
refs/heads/master
2020-03-21T13:34:52.435332
2018-06-25T15:36:24
2018-06-25T15:36:24
138,613,649
0
0
null
null
null
null
UTF-8
Python
false
false
876
py
# vecSubtract subtracts the second vector from the first. def vecSubtract(vector01, vector02): ''' This function takes two vectors as its arguments and subtracts the second vector from the first vector giving a new vector from the two. ''' if len(vector01) != len(vector02): #if the length of the two vectors don't equal each other the input is said to be invalid. print('invalid input') return None new = [] #since we want the answer to be in brackets instead of an integer. for i in range(len(vector01)): total = 0 #after the for i statement so it resets. total += vector01[i] - vector02[i] new.append(total) #adds the new total into the 'new' brackets return new #test elements vector01 = [5, 12] vector02 = [-3, 4] vector03 = [1, 1, 1] vector04 = [1, 2] print(vecSubtract(vector01, vector02)) #print(vecSubtract(vector03, vector04))
93ae19d8347402fc48316e47a19dfa72c32bdf88
11d6c4caca42d885587b36ab754809dd14d2a4c1
/apps/messaging/tests/test_urls.py
001a2a3c8dc84bed586bfef75fdb8b7e3ef54283
[]
no_license
illia-v/FortyTwoTestTask
b32b73832f40bf51ad74e6c1a8e91d1c425dfc22
c2dc855e0463e428d1d3876d8748ea90e42e0038
refs/heads/master
2021-01-10T23:52:47.517041
2016-11-13T23:27:43
2016-11-13T23:27:43
69,566,080
0
0
null
2016-09-29T12:37:56
2016-09-29T12:37:55
null
UTF-8
Python
false
false
4,392
py
from django.test import TestCase from django.core.urlresolvers import resolve, reverse class TestMessagingURLs(TestCase): def test_messages_index_view_url(self): """ Ensures that a URL pattern name `messaging` is valid and the pattern is resolved to `MessagingIndexView` """ messages = resolve('/messaging/') self.assertEqual(reverse('messaging:index'), '/messaging/', 'A view name `messaging:index` should be reversed to ' 'the URL `/messaging/`') self.assertEqual(messages.func.__name__, 'MessagingIndexView', 'Should be resolved to `MessagingIndexView`') def test_messages_detail_view_url(self): """ Ensures that a URL pattern name `messages_detail` is valid and the pattern is resolved to `MessagingDetailView` """ messages_detail = resolve('/messaging/somebody/') self.assertEqual(reverse('messaging:detail', args=['somebody']), '/messaging/somebody/', 'A view name `messaging:detail` should be reversed ' 'to the URL `/messaging/{username}/`') self.assertEqual(messages_detail.func.__name__, 'MessagingDetailView', 'Should be resolved to `MessagingDetailView`') def test_messaging_create_view_url(self): """ Ensures that a URL pattern name `messaging:create` is valid and the pattern is resolved to `MessagingCreateView` """ messaging_create = resolve('/messaging/somebody/new/') self.assertEqual(reverse('messaging:create', args=['somebody']), '/messaging/somebody/new/', 'A view name `messaging:create` should be reversed ' 'to the URL `/messaging/{username}/new/`') self.assertEqual(messaging_create.func.__name__, 'MessagingCreateView', 'Should be resolved to `MessagingCreateView`') def test_messaging_pull_view_url(self): """ Ensures that a URL pattern name `messaging:pull` is valid and the pattern is resolved to `MessagingPullView` """ messaging_pull = resolve('/messaging/somebody/pull/') self.assertEqual(reverse('messaging:pull', args=['somebody']), '/messaging/somebody/pull/', 'A view name `messaging:pull` should be reversed ' 'to the URL `/messaging/{username}/pull/`') self.assertEqual(messaging_pull.func.__name__, 'MessagingPullView', 'Should be resolved to `MessagingPullView`') def test_messaging_update_unread_count_view_url(self): """ Ensures that a URL pattern name `messaging:update_unread_count` is valid and the pattern is resolved to `MessagingUpdateUnreadCountView` """ update_unread_count = resolve( '/messaging/update_unread_count/' ) self.assertEqual( reverse('messaging:update_unread_count'), '/messaging/update_unread_count/', 'A view name `messaging:update_unread_count` should be reversed ' 'to the URL `/messaging/update_unread_count/`' ) self.assertEqual( update_unread_count.func.__name__, 'MessagingUpdateUnreadCountView', 'Should be resolved to `MessagingUpdateUnreadCountView`' ) def test_messaging_reset_unread_count_view_url(self): """ Ensures that a URL pattern name `messaging:reset_unread_count` is valid and the pattern is resolved to `MessagingResetUnreadCountView` """ reset_unread_count = resolve( '/messaging/somebody/reset_unread_count/' ) self.assertEqual( reverse('messaging:reset_unread_count', args=['somebody']), '/messaging/somebody/reset_unread_count/', 'A view name `messaging:update_unread_count` should be reversed ' 'to the URL `/messaging/{username}/reset_unread_count/`' ) self.assertEqual( reset_unread_count.func.__name__, 'MessagingResetUnreadCountView', 'Should be resolved to `MessagingResetUnreadCountView`' )
0981118c599df667436e798337a89c2f6dae448d
fd6f795e14a1f8d64860aa0dbac91cb4282d4675
/src/create_all_train_heading_matrices.py
1a390969f3441df2b9d75d6bd67f9cdce66d9155
[ "Apache-2.0" ]
permissive
mesax1/Eafit-UdeA-Amazon-Last-Mile-Routing-Challenge
495e0eb46e4921c3696501f8bc31b20c017e99d7
51c4f1cf14529eee558395c4cf90c4685f786fbe
refs/heads/main
2023-07-05T02:09:50.231281
2021-08-18T18:57:39
2021-08-18T18:57:39
397,702,616
2
0
null
null
null
null
UTF-8
Python
false
false
6,111
py
# -*- coding: utf-8 -*- """ Created on Mon Jun 14 14:04:34 2021 @author: mesar """ import numpy as np import pandas as pd from lib import utils from progressbar import progressbar as pbar from pathlib import Path import itertools from time import time import csv if __name__ == "__main__": Path("../data/model_build_outputs/all_prob_matrices_heading").mkdir(parents=True, exist_ok=True) Path("../data/model_build_outputs/prob_matrices_heading").mkdir(parents=True, exist_ok=True) Path("../data/model_build_outputs/prob_matrices_angle").mkdir(parents=True, exist_ok=True) print("Calculating train_routes") #train_routes = utils.get_train_routes() routes = utils.get_routes() hroutes = np.unique(routes.route_fid) all_zroutes = utils.get_routes_as_zones() zroutes = all_zroutes[all_zroutes.route_fid.isin(hroutes)] print("Done reading routes") t0 = time() max_distances = [50, 100, 150, 200, 250, 300] dwks = [0.01, 0.05, 0.1, 0.15] r = [] for max_distance, dwk in itertools.product(max_distances, dwks): tt = time() #print ("\n----------\n%3d"%max_distance, "%.2f"%dwk, end=" || ", flush=True) za = utils.ZrouteField(zroutes, max_distance=max_distance).compute_field(dwk=dwk, use_pbar=True) h = za.get_estimated_headings(use_pbar=True) rr = za.heading_estimations_cosdistance(h) rr['max_distance'] = max_distance rr['dwk'] = dwk rr['zones_estimated'] = np.mean(h.cos_distance!=0) rr['time'] = time()-t0 rr['nroutes'] = len(np.unique(za.zroutes.route_fid)) t0 = time() r.append(rr) print ("maxd %3d, "%max_distance, "dwk %.2f, "%dwk, f'time {time()-tt:.4f}, cos_sim {rr["cos_distance_mean"]:.4f}', flush=True) r = pd.DataFrame(r) r.to_hdf("../data/model_build_outputs/md_dkw_exploration.hdf", "data") dwks = np.sort(np.unique(r.dwk)) max_distances = np.sort(np.unique(r.max_distance)) csims = np.zeros((len(dwks), len(max_distances))) zcovered = np.zeros((len(dwks), len(max_distances))) for i,dwk in enumerate(dwks): for j,max_distance in enumerate(max_distances): k = r[(r.max_distance==max_distance)&(r.dwk==dwk)].iloc[0] csims[i,j] = k.cos_distance_mean zcovered[i,j] = k.zones_estimated for distance in max_distances: k = r[r.max_distance==distance] print(k) estimated_zones_value = 1.0 best_options = r[r.zones_estimated >= estimated_zones_value] if not best_options.empty: best_options = r[r.zones_estimated >= estimated_zones_value] best_combination = best_options[best_options.cos_distance_mean == best_options.cos_distance_mean.max()] selected_max_distance = best_combination.max_distance.values[0] selected_dwk = best_combination.dwk.values[0] while best_options.empty: print("Empty for value: " + str(estimated_zones_value)) estimated_zones_value = estimated_zones_value - 0.1 best_options = r[r.zones_estimated >= estimated_zones_value] best_combination = best_options[best_options.cos_distance_mean == best_options.cos_distance_mean.max()] selected_max_distance = best_combination.max_distance.values[0] selected_dwk = best_combination.dwk.values[0] print(selected_max_distance) print(selected_dwk) output_path = "../data/model_build_outputs/best_max_distance.csv" with open(output_path, "w") as file: writer = csv.writer(file, delimiter=',') writer.writerow([selected_max_distance]) output_path = "../data/model_build_outputs/best_dwk.csv" with open(output_path, "w") as file: writer = csv.writer(file, delimiter=',') writer.writerow([selected_dwk]) print("Max distance: " + str(selected_max_distance)) print("dwk: " + str(selected_dwk)) print("Calculating train_routes") train_routes = utils.get_routes() print("Calculating train_zroutes") train_zroutes = utils.get_routes_as_zones() print("Calculating z_route_fields") za = utils.ZrouteField(train_zroutes, max_distance=selected_max_distance).compute_field(dwk=selected_dwk) print("Calculating heading_matrices") h = za.get_estimated_headings(zroutes=train_zroutes) fname = f'../data/model_build_outputs/heading_estimations_md_{selected_max_distance}_dwk_{selected_dwk:.4f}.hdf' h.to_hdf(fname, "data") #h = pd.read_hdf("../data/model_apply_outputs/heading_estimations_md_200_dwk_0.1000.hdf") zroutes = train_zroutes.copy() print("Calculating prob_matrices") for route_fid in pbar(np.unique(h.route_fid)): probs = utils.get_heading_based_probmatrix(h, route_fid) probs = probs[~probs.index.str.contains("Station")] #probs.drop(probs.filter(regex='Station').columns, axis=1, inplace=True) probs.to_csv(f"../data/model_build_outputs/prob_matrices_heading/{route_fid}_probs.csv", sep=',', na_rep='nan') zones_id = zroutes.zone_id[zroutes.route_fid==route_fid] zones_id = zones_id[~zones_id.str.contains("Station")] zones_id.reset_index(inplace=True, drop=True) cities = zroutes.city[zroutes.route_fid==route_fid] cities.reset_index(inplace=True, drop=True) city = cities[0] city_size = len(city) + 2 zones_id = [zones_id[i][city_size:] for i in range(0,len(zones_id))] #Empieza desde 1 para saltarse del Depot zones_df = pd.Series(zones_id) zones_df = zones_df.append(pd.Series("nan")) zones_df.to_csv(f"../data/model_build_outputs/prob_matrices_heading/{route_fid}_zroutes.csv", index=False, header=False, na_rep='nan') prob_matrix = utils.get_angle_based_probmatrix(h, route_fid) prob_matrix.to_csv(f"../data/model_build_outputs/prob_matrices_angle/{route_fid}_probs.csv", sep=',', na_rep='nan') #probs.to_hdf(f"data/prob_matrices_based_on_heading/{route_fid}_probs.hdf", "data") print("Done")
72d63ebd6c645be46a359af210e35f898b44baa4
7fc1de164e179c51f3c114aa31cc81edc89b3f91
/dopamine/discrete_domains/train.py
672479f1e553583f1efecb2c0704d272aef2b5ba
[ "MIT" ]
permissive
SherlockShellingford/NotWorkingIQN
9b8609691ee43eaf65c81069e33a92ada386491a
99af0bdd25b67203f93e060d23f42fafce588ff7
refs/heads/master
2023-03-20T07:52:06.656742
2021-03-09T12:16:45
2021-03-09T12:16:45
339,854,241
0
0
null
null
null
null
UTF-8
Python
false
false
1,830
py
# coding=utf-8 # Copyright 2018 The Dopamine Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""The entry point for running a Dopamine agent. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys sys.path = ['../../'] + sys.path print (sys.path) #exit(0) from absl import app from absl import flags from dopamine.discrete_domains import run_experiment import tensorflow as tf flags.DEFINE_string('base_dir', None, 'Base directory to host all required sub-directories.') flags.DEFINE_multi_string( 'gin_files', [], 'List of paths to gin configuration files (e.g.' '"dopamine/agents/dqn/dqn.gin").') flags.DEFINE_multi_string( 'gin_bindings', [], 'Gin bindings to override the values set in the config files ' '(e.g. "DQNAgent.epsilon_train=0.1",' ' "create_environment.game_name="Pong"").') FLAGS = flags.FLAGS def main(unused_argv): """Main method. Args: unused_argv: Arguments (unused). """ tf.logging.set_verbosity(tf.logging.INFO) run_experiment.load_gin_configs(FLAGS.gin_files, FLAGS.gin_bindings) runner = run_experiment.create_runner(FLAGS.base_dir) runner.run_experiment() if __name__ == '__main__': flags.mark_flag_as_required('base_dir') app.run(main)
10b46b68c63bd7cd2f94b81bd419e6d1e2b27176
605e05d30e9df15307c7414ec7d4137bea5b2b53
/docs/core/models/professor.py
349786ff2cc2462926df15bdc4573bdb863b67f2
[]
no_license
tr0v40/Malakias
f4c4542373b038e833ce5d45848852d94ce05f3d
46d85758c515d858430b0174646ab3f8a37dc65b
refs/heads/master
2020-03-15T18:59:27.931071
2018-05-06T18:22:46
2018-05-06T18:22:46
132,297,500
0
0
null
null
null
null
UTF-8
Python
false
false
1,460
py
class Professor: def __init__(self, login, nome, email, celular, apelido): self.__login = login self.__nome = nome self.__email = email self.__celular = celular self.__apelido = apelido self.__disciplinas = [] def addDisciplina(self, disciplina): if disciplina.getprofessor().getra() == self.__ra: self.__disciplinas.append(disciplina) else: return "Professor nao associado a disciplina" def getLogin(self): return self.__login def setLogin(self, novoLogin): self.__login = novoLogin def getNome(self): return self.__nome def setNome(self, novoNome): self.__nome = novoNome def getEmail(self): return self.__email def setEmail(self, novoEmail): self.__email = novoEmail def getRa(self): return self.__ra def setRa(self, novoRa): self.__ra = novoRa def getCelular(self): return self.__celular def setCelular(self, novoCelular): self.__celular = novoCelular def getApelido(self): return self.__apelido def setApelido(self, novoApelido): self.__apelido = novoApelido def getDisciplinas(self): return self.__disciplinas def retornaCargaHoraria(self): soma_carga = 0 for d in self.__disciplinas: soma_carga += d.getcargahoraria()/20 return soma_carga
990dae602fb84ac655bda5f1afc15ff366bfbd32
dfee0c908ad021f229d6d802408790a10272132c
/tests/python/relay/test_dataflow_pattern.py
d99e55b7c33ff3dc3db2e470777793a514c8712c
[ "Apache-2.0", "Zlib", "MIT", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
cchung100m/tvm
788453bce13a659d991c599d7ee2979089538967
6258fae6d1e9ab77b8065d4ffb81a5033665e0cc
refs/heads/master
2023-07-09T20:36:14.055440
2021-01-02T00:07:41
2021-01-02T00:07:41
198,459,825
0
2
Apache-2.0
2019-07-23T15:37:37
2019-07-23T15:37:37
null
UTF-8
Python
false
false
47,618
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-wildcard-import import numpy as np import tvm from tvm import relay from tvm.relay.build_module import bind_params_by_name from tvm.relay.dataflow_pattern import * from tvm.relay.testing import run_opt_pass # NB: 1 corresponds to the C++ enum that specicfies this # we loose the type safety due to the Python/C++ calling # convention. K_ELEMWISE = 0 K_BROADCAST = 1 ## NODE TESTS def test_expr_pattern(): ep = is_expr(relay.var("x", shape=(4, 1))) assert isinstance(ep, ExprPattern) assert isinstance(ep.expr, relay.Var) def test_var_pattern(): v = is_var("x") assert isinstance(v, VarPattern) assert v.name == "x" def test_constant_pattern(): c = is_constant() assert isinstance(c, ConstantPattern) def test_wildcard_pattern(): wc = wildcard() assert isinstance(wc, WildcardPattern) def test_CallPattern(): wc1 = wildcard() wc2 = wildcard() c = is_op("add")(wc1, wc2) assert isinstance(c, CallPattern) assert isinstance(c.args[0], WildcardPattern) assert isinstance(c.args[1], WildcardPattern) def test_FunctionPattern(): wc1 = wildcard() wc2 = wildcard() c = is_op("add")(wc1, wc2) f = FunctionPattern([wc1, wc2], c) assert isinstance(f, FunctionPattern) assert isinstance(f.params[0], WildcardPattern) assert isinstance(f.params[1], WildcardPattern) assert isinstance(f.body, CallPattern) assert isinstance(f.body.args[0], WildcardPattern) assert isinstance(f.body.args[1], WildcardPattern) def test_TuplePattern(): wc1 = wildcard() wc2 = wildcard() t = is_tuple([wc1, wc2]) assert isinstance(t, TuplePattern) assert isinstance(t.fields[0], WildcardPattern) assert isinstance(t.fields[1], WildcardPattern) def test_TupleGetItemPattern(): wc1 = wildcard() wc2 = wildcard() t = is_tuple([wc1, wc2]) tgi = is_tuple_get_item(t, 1) assert isinstance(tgi, TupleGetItemPattern) assert isinstance(tgi.tuple, TuplePattern) assert isinstance(tgi.tuple.fields[0], WildcardPattern) assert isinstance(tgi.tuple.fields[1], WildcardPattern) def test_AltPattern(): is_add_or_sub = is_op("add") | is_op("subtract") assert isinstance(is_add_or_sub, AltPattern) def test_TypePattern(): ttype = relay.TensorType((10, 10), "float32") ty_pat = has_type(ttype) assert isinstance(ty_pat, TypePattern) assert ty_pat.type == ttype def test_DataTypePattern(): dtype = "float16" pattern = has_dtype(dtype) assert isinstance(pattern, DataTypePattern) assert pattern.dtype == dtype def test_ShapePattern(): shape = [10, 10] pattern = has_shape(shape) assert isinstance(pattern, ShapePattern) assert tvm.ir.structural_equal(pattern.shape, shape) def test_AttrPattern(): op = is_op("add").has_attr({"TOpPattern": K_ELEMWISE}) assert isinstance(op, AttrPattern) assert op.attrs["TOpPattern"] == K_ELEMWISE ## MATCHER TESTS def test_match_op(): assert is_op("add").match(relay.op.op.get("add")) def test_no_match_op(): assert not is_op("add").match(relay.op.op.get("subtract")) def test_match_op_or(): is_add_or_sub = is_op("add") | is_op("subtract") assert is_add_or_sub.match(relay.op.op.get("add")) assert is_add_or_sub.match(relay.op.op.get("subtract")) def test_match_call_commutive(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(is_var("x"), is_var("y")) assert add_pattern.match(x + y) assert add_pattern.match(y + x) mul_pattern = is_op("multiply")(is_var("x"), is_var("y")) assert mul_pattern.match(x * y) assert mul_pattern.match(y * x) def test_no_match_call_commutive(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("subtract")(is_var("x"), is_var("y")) assert add_pattern.match(x - y) assert not add_pattern.match(y - x) add_pattern = is_op("divide")(is_var("x"), is_var("y")) assert add_pattern.match(x / y) assert not add_pattern.match(y / x) def test_match_call(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) assert add_pattern.match(x + y) def test_no_match_call(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) assert not add_pattern.match(x - y) def test_match_func(): x = relay.var("x") y = relay.var("y") wc1 = wildcard() wc2 = wildcard() func_pattern = FunctionPattern([wc1, wc2], wc1 + wc2) assert func_pattern.match(relay.Function([x, y], x + y)) def test_no_match_func(): x = relay.var("x") y = relay.var("y") wc1 = wildcard() wc2 = wildcard() func_pattern = FunctionPattern([wc1, wc2], wc1 + wc2) assert not func_pattern.match(relay.Function([x, y], x - y)) def test_match_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") pattern = is_op("nn.relu")( is_op("nn.conv2d")(wildcard(), wildcard()).optional( lambda x: is_op("nn.bias_add")(x, wildcard()) ) ) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) assert pattern.match(relu) conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) assert pattern.match(relu) pattern = is_op("nn.conv2d")(wildcard(), wildcard()) pattern = pattern.optional(is_op("nn.relu")).optional(is_op("tanh")) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) tanh = relay.op.tanh(conv2d) tanh2 = relay.op.tanh(relu) relu2 = relay.op.nn.relu(tanh) assert pattern.match(conv2d) assert pattern.match(relu) assert pattern.match(tanh) assert pattern.match(tanh2) assert not pattern.match(relu2) def test_no_match_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") pattern = is_op("nn.relu")( is_op("nn.conv2d")(wildcard(), wildcard()).optional( lambda x: is_op("nn.bias_add")(x, wildcard()) ) ) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.tanh(conv2d) assert not pattern.match(relu) conv2d = relay.op.nn.dense(x, w) relu = relay.op.tanh(conv2d) assert not pattern.match(relu) conv2d = relay.op.nn.dense(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) assert not pattern.match(relu) conv2d = relay.op.nn.conv2d(x, w) bias_add = conv2d + w relu = relay.op.nn.relu(bias_add) assert not pattern.match(relu) def test_match_const(): conv2d = is_op("nn.conv2d")(wildcard(), is_constant()) pattern = is_op("nn.bias_add")(conv2d, wildcard()) x = relay.var("x", shape=(1, 3, 224, 224)) w = relay.var("w", shape=(3, 3, 3, 3)) b = relay.var("b", shape=(3,)) conv2d = relay.op.nn.conv2d(x, w) out = relay.op.nn.bias_add(conv2d, b) func = relay.Function([x, w, b], out) mod = tvm.IRModule.from_expr(func) assert not pattern.match(mod["main"].body) mod["main"] = bind_params_by_name(mod["main"], {"w": tvm.nd.array(np.ones(shape=(3, 3, 3, 3)))}) assert pattern.match(mod["main"].body) def test_match_tuple(): x = relay.var("x") y = relay.var("y") z = relay.op.op.get("add") tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) assert tuple_pattern.match(relay.expr.Tuple((x, y, z))) tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern, 1) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 1)) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern) # Match any index assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 0)) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 1)) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 2)) def test_no_match_tuple(): x = relay.var("x") y = relay.var("y") z = relay.op.op.get("add") tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"), wildcard())) assert not tuple_pattern.match(relay.expr.Tuple((x, y, z))) tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern, 1) assert not tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 2)) def test_match_type(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_type(relay.TensorType((10, 10), "float32")) assert ty_pat.match(x) def test_no_match_type(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_type(relay.TensorType((10, 10), "float32")) assert not ty_pat.match(x) def test_match_dtype(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_dtype("float32") assert ty_pat.match(x) def test_no_match_dtype(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_dtype("float32") assert not ty_pat.match(x) def test_match_shape(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_shape((10, 10)) assert ty_pat.match(x) def test_no_match_shape(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_shape((10, 5)) assert not ty_pat.match(x) def test_match_op_attr(): op = is_op("add").has_attr({"TOpPattern": K_BROADCAST}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert op_pat.match(x + y) def test_no_match_op_attr(): op = is_op("nn.dense").has_attr({"TOpPattern": K_ELEMWISE}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert not op_pat.match(relay.op.nn.dense(x, y)) op = is_op("add").has_attr({"TOpPattern": K_BROADCAST}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert not op_pat.match(x - y) def test_match_func_attr(): pattern = wildcard().has_attr({"Composite": "add"}) x = relay.var("x") y = relay.var("y") f = relay.Function([x, y], x + y).with_attr("Composite", "add") assert pattern.match(f) def test_no_match_func_attr(): pattern = wildcard().has_attr({"Composite": "add"}) x = relay.var("x") y = relay.var("y") f = relay.Function([x, y], x + y).with_attr("RandomTest", "add") assert not pattern.match(f) f = relay.Function([x, y], x + y).with_attr("Composite", "conv_bias") assert not pattern.match(f) def test_match_call_attr(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"data_layout": "NCHW"}) x = relay.var("x") y = relay.var("y") assert is_conv2d.match(relay.op.nn.conv2d(x, y)) def test_no_match_call_attr(): x = relay.var("x") y = relay.var("y") is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"data_layout": "NHWC"}) assert not is_conv2d.match(relay.op.nn.conv2d(x, y)) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"RandomAttr": "NCHW"}) assert not is_conv2d.match(relay.op.nn.conv2d(x, y)) def test_match_diamond(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) # Expr inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert diamond.match(out) def test_no_match_diamond(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) # Expr inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) # Check assert not diamond.match(leaky_relu) assert not diamond.match(relu) def test_match_fake_diamond(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) # Expr input1 = relay.var("input1") weight1 = relay.var("weight1") conv2d1 = relay.op.nn.conv2d(input1, weight1) inp2 = relay.var("input2") weight2 = relay.var("weight2") conv2d2 = relay.op.nn.conv2d(inp2, weight2) relu = relay.op.nn.relu(conv2d1) leaky_relu = relay.op.nn.leaky_relu(conv2d2, alpha=0) out = relu + leaky_relu # Check assert not diamond.match(out) def test_match_dominator(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Classic Diamond inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert diamond.match(out) # Deeper Branch inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert diamond.match(out) # Single Branch inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) out = relu + tanh # Check assert diamond.match(out) # Fuzzy path/nested Diamond is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) | is_op( "add" )(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = tanh + leaky_relu assert diamond.match(out) def test_not_match_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Fake Diamond input1 = relay.var("input1") weight1 = relay.var("weight1") conv2d1 = relay.op.nn.conv2d(input1, weight1) inp2 = relay.var("input2") weight2 = relay.var("weight2") conv2d2 = relay.op.nn.conv2d(inp2, weight2) relu = relay.op.nn.relu(conv2d1) leaky_relu = relay.op.nn.leaky_relu(conv2d2, alpha=0) out = relu + leaky_relu # Check assert not diamond.match(out) # Add op that doesn't match K_ELEMWISE inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert not diamond.match(out) # Relu on the input instead of the conv inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(inp) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert not diamond.match(out) # No conv inp = relay.var("input") relu = relay.op.nn.relu(inp) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) out = relu + tanh # Check assert not diamond.match(out) def test_match_typed_dominator(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float32" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 3, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Classic Diamond inp = relay.var("input", relay.TensorType((1, 3, 12, 12), "float32")) weight = relay.var("weight", relay.TensorType((3, 3, 3, 3), "float32")) conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Check assert diamond.match(out) def test_no_match_typed_dominator(): # Classic Diamond inp = relay.var("input", relay.TensorType((1, 3, 12, 12), "float32")) weight = relay.var("weight", relay.TensorType((3, 3, 3, 3), "float32")) conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float32" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 1, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Check assert not diamond.match(out) # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float16" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 3, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Check assert not diamond.match(out) def test_rewrite(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) sub_pattern = is_op("subtract")(wildcard(), wildcard()) class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] out = rewrite(TestRewrite(), x + y) assert sub_pattern.match(out) def test_rewrite_func(): x = relay.var("x") w = relay.var("w") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) sub_pattern = is_op("subtract")(wildcard(), wildcard()) class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] inpf = relay.var("input") weightf = relay.var("weight") func = relay.Function( [inpf, weightf], relay.op.nn.relu(relay.op.nn.conv2d(inpf, weightf)), attrs=None ) out = rewrite(TestRewrite(), func(x, w) + y) assert sub_pattern.match(out) def test_nested_rewrite(): class PatternCallback(DFPatternCallback): def __init__(self, pattern): super(PatternCallback, self).__init__() self.pattern = pattern def callback(self, pre, post, node_map): return post def gen(): x = relay.var("x") y = relay.var("y") y_add = relay.add(y, y) n0 = relay.add(x, y_add) n1 = relay.add(x, n0) return relay.add(n1, n0) def pattern(): a = wildcard() b = wildcard() n0 = is_op("add")(a, b) n1 = is_op("add")(n0, a) return is_op("add")(n0, n1) out = gen() pat = pattern() new_out = rewrite(PatternCallback(pat), out) assert tvm.ir.structural_equal(out, new_out) def test_not_fuse_multi_diamond(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) # Expr inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu out = out + conv2d # Check assert not diamond.match(out) class BatchnormCallback(DFPatternCallback): def __init__(self): super(BatchnormCallback, self).__init__() self.x = wildcard() self.var = wildcard() self.mean = wildcard() self.beta = wildcard() self.gamma = wildcard() self.eps = is_constant() self.pattern = ( self.gamma * (self.x - self.mean) / is_op("sqrt")(self.var + self.eps) + self.beta ) def callback(self, pre, post, node_map): x = node_map[self.x][0] var = node_map[self.var][0] mean = node_map[self.mean][0] beta = node_map[self.beta][0] gamma = node_map[self.gamma][0] eps = node_map[self.eps][0] return relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=eps.data.asnumpy().item())[ 0 ] def test_fuse_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) def test_no_fuse_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") fake_BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) - beta out = rewrite(BatchnormCallback(), fake_BN) assert tvm.ir.structural_equal(out, fake_BN) def test_fuse_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN2) bn = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] bn2 = relay.op.nn.batch_norm(bn, gamma, beta, mean, var, epsilon=1e-5)[0] assert tvm.ir.structural_equal(out, bn2) def test_partial_fuse_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) - beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN2) bn2 = relay.op.nn.batch_norm(BN, gamma, beta, mean, var, epsilon=1e-5)[0] assert tvm.ir.structural_equal(out, bn2) def test_fuse_batchnorm_commutation(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") # commute add BN = beta + gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) # associate divide/multiply BN = (gamma * (x - mean)) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) # associate multiply/divide BN = gamma * ((x - mean) / relay.op.sqrt(var + relay.const(1e-5))) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) def test_quadruple_rewrite_dominator(): class DominatorRemovalCallback(DFPatternCallback): def __init__(self): super(DominatorRemovalCallback, self).__init__() self.inp = wildcard() self.weight = wildcard() is_conv2d = is_op("nn.conv2d")(self.inp, self.weight) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))( wildcard() ) | is_op("add")(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) self.pattern = dominates(is_conv2d, is_unary_elemwise, reduction) def callback(self, pre, post, node_map): inp = node_map[self.inp][0] weight = node_map[self.weight][0] return relay.op.nn.conv2d(inp, weight) inp = relay.var("input") weight = relay.var("weight") # Classic Diamond conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Deeper Branch conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu # Single Branch conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) out = relu + tanh # Fuzzy path/nested Diamond conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = tanh + leaky_relu one = relay.op.nn.conv2d(inp, weight) two = relay.op.nn.conv2d(one, weight) three = relay.op.nn.conv2d(two, weight) four = relay.op.nn.conv2d(three, weight) assert tvm.ir.structural_equal(DominatorRemovalCallback().rewrite(out), four) def algebraic_simplify(expr): zero = is_expr(relay.const(0)) | is_expr(relay.const(0.0)) one = is_expr(relay.const(1)) | is_expr(relay.const(1.0)) class ElwiseNullCallback(DFPatternCallback): def callback(self, pre, post, node_map): return node_map[self.x][0] # pylint: disable=no-member class AddCallback(ElwiseNullCallback): def __init__(self): super(AddCallback, self).__init__() self.x = wildcard() self.pattern = self.x + zero class SubCallback(ElwiseNullCallback): def __init__(self): super(SubCallback, self).__init__() self.x = wildcard() self.pattern = self.x - zero class MulCallback(ElwiseNullCallback): def __init__(self): super(MulCallback, self).__init__() self.x = wildcard() self.pattern = self.x * one class DivCallback(ElwiseNullCallback): def __init__(self): super(DivCallback, self).__init__() self.x = wildcard() self.pattern = self.x / one class MulZeroCallback(ElwiseNullCallback): def __init__(self): super(MulZeroCallback, self).__init__() self.x = zero self.pattern = self.x * wildcard() class ZeroDivCallback(ElwiseNullCallback): def __init__(self): super(ZeroDivCallback, self).__init__() self.x = zero self.pattern = self.x / wildcard() return rewrite( [ AddCallback(), SubCallback(), MulCallback(), DivCallback(), MulZeroCallback(), ZeroDivCallback(), ], expr, ) def test_algebraic_simplify(): x = relay.Var("x") y = relay.Var("y") one = relay.const(1) zero = relay.const(0) onef = relay.const(1.0) zerof = relay.const(0.0) assert algebraic_simplify(x + zero) == x assert algebraic_simplify(x + zerof) == x assert algebraic_simplify(zero + x) == x assert algebraic_simplify(zerof + x) == x assert algebraic_simplify(x - zero) == x assert algebraic_simplify(x - zerof) == x assert algebraic_simplify(x * one) == x assert algebraic_simplify(x * onef) == x assert algebraic_simplify(one * x) == x assert algebraic_simplify(onef * x) == x assert algebraic_simplify(x * zero) == zero assert algebraic_simplify(x * zerof) == zerof assert algebraic_simplify(x / one) == x assert algebraic_simplify(x / onef) == x assert algebraic_simplify(zero / x) == zero assert algebraic_simplify(zerof / x) == zerof assert tvm.ir.structural_equal( algebraic_simplify((x + zero * y) / one + (y * one) - zero / x), x + y ) def test_double_partition(): # Pattern 1 conv2d_p = is_op("nn.conv2d")(wildcard(), wildcard()) bias_add_p = is_op("nn.bias_add")(conv2d_p, wildcard()) relu_p = is_op("nn.relu")(bias_add_p) # Graph x = relay.var("input") w = relay.var("weight") b = relay.var("bias") w2 = relay.var("weight") b2 = relay.var("bias") conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) conv2d2 = relay.op.nn.conv2d(relu, w2) bias_add2 = relay.op.nn.bias_add(conv2d2, b2) partitioned = bias_add2 for pat, label in [(relu_p, "conv_bias_relu"), (bias_add_p, "conv_bias")]: partitioned = pat.partition(partitioned, {"Composite": label}) inpf = relay.var("input") weightf = relay.var("weight") biasf = relay.var("bias") func0 = ( relay.Function( [inpf, weightf, biasf], relay.op.nn.relu(relay.op.nn.bias_add(relay.op.nn.conv2d(inpf, weightf), biasf)), ) .with_attr("Composite", "conv_bias_relu") .with_attr("PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_") ) inpf = relay.var("input") weightf = relay.var("weight") biasf = relay.var("bias") func1 = ( relay.Function( [inpf, weightf, biasf], relay.op.nn.bias_add(relay.op.nn.conv2d(inpf, weightf), biasf) ) .with_attr("Composite", "conv_bias") .with_attr("PartitionedFromPattern", "nn.conv2d_nn.bias_add_") ) expected = func1(func0(x, w, b), w2, b2) assert tvm.ir.structural_equal(partitioned, expected) def test_partition_dominator(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) # Classic Diamond inp = relay.var("input") weight = relay.var("weight") def generate_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu out = generate_diamond(inp * inp, weight * weight) # Check partitioned = diamond.partition(out) i = relay.Var("input") w = relay.Var("weight") f = relay.Function([i, w], generate_diamond(i, w)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.relu_nn.relu_nn.leaky_relu_add_" ) assert tvm.ir.structural_equal(partitioned, f(inp * inp, weight * weight)) def test_quadruple_partition_dominator(): # Pattern is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) | is_op( "add" )(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") # Classic Diamond def classic_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu # Deeper Branch def deeper_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu # Single Branch def single_branch(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) return relu + tanh # Fuzzy path/nested Diamond def nested_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return tanh + leaky_relu partitioned = diamond.partition( nested_diamond( single_branch(deeper_diamond(classic_diamond(inp, weight), weight), weight), weight ) ) functions = [] partition_names = [ "nn.conv2d_nn.relu_nn.relu_nn.leaky_relu_add_", "nn.conv2d_nn.relu_nn.relu_tanh_nn.leaky_relu_add_", "nn.conv2d_nn.relu_nn.relu_tanh_add_", "nn.conv2d_nn.relu_add_tanh_nn.leaky_relu_add_", ] for i, f in enumerate([classic_diamond, deeper_diamond, single_branch, nested_diamond]): inpf = relay.var("input") weightf = relay.var("weight") functions.append( relay.Function([inpf, weightf], f(inpf, weightf)).with_attr( "PartitionedFromPattern", partition_names[i] ) ) reference = functions[3]( functions[2](functions[1](functions[0](inp, weight), weight), weight), weight ) assert tvm.ir.structural_equal(partitioned, reference) def get_BN(x, var, mean, beta, gamma, eps): return gamma * (x - mean) / relay.op.sqrt(var + eps) + beta def test_partition_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") eps = relay.const(1e-5) BN = get_BN(x, var, mean, beta, gamma, eps) xf = relay.var("xf") varf = relay.var("varf") meanf = relay.var("meanf") betaf = relay.var("betaf") gammaf = relay.var("gammaf") # Put the arguments in toplogological order for the reference f = relay.Function( [gammaf, xf, meanf, varf, betaf], get_BN(xf, varf, meanf, betaf, gammaf, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") partitioned = BatchnormCallback().pattern.partition(BN) reference = f(gamma, x, mean, var, beta) assert tvm.ir.structural_equal(partitioned, reference) def test_partition_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") eps = relay.const(1e-5) BN = gamma * (x - mean) / relay.op.sqrt(var + eps) + beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + eps) + beta xf = relay.var("xf") varf = relay.var("varf") meanf = relay.var("meanf") betaf = relay.var("betaf") gammaf = relay.var("gammaf") f1 = relay.Function( [gammaf, xf, meanf, varf, betaf], get_BN(xf, varf, meanf, betaf, gammaf, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") # The partitioner doesn't replace duplicates, so we use two copies of the function xf2 = relay.var("xf2") varf2 = relay.var("varf2") meanf2 = relay.var("meanf2") betaf2 = relay.var("betaf2") gammaf2 = relay.var("gammaf2") f2 = relay.Function( [gammaf2, xf2, meanf2, varf2, betaf2], get_BN(xf2, varf2, meanf2, betaf2, gammaf2, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") partitioned = BatchnormCallback().pattern.partition(BN2) reference = f2(gamma, f1(gamma, x, mean, var, beta), mean, var, beta) assert tvm.ir.structural_equal(partitioned, reference) def test_overlappting_partitions(): x = wildcard() gamma = wildcard() beta = wildcard() moving_mean = wildcard() moving_var = wildcard() bn_node = is_op("nn.batch_norm")(x, gamma, beta, moving_mean, moving_var) tuple_get_item_node = TupleGetItemPattern(bn_node, 0) x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5) T1 = BN[0] T2 = BN[0] add = T1 + T2 assert tuple_get_item_node.partition(add) == add def test_partition_overused(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(wildcard(), wildcard())) x = relay.var("input") w = relay.var("weight") conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) out = relu + conv2d assert pattern.partition(out) == out def test_partition_check(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(is_var("input"), wildcard())) def check(pre): return pre.args[0].attrs.data_layout == "NCHW" x = relay.var("input") w = relay.var("weight") conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) xf = relay.var("input") wf = relay.var("weight") conv2df = relay.op.nn.conv2d(xf, wf) reluf = relay.op.nn.relu(conv2df) func = relay.Function([xf, wf], reluf).with_attr("PartitionedFromPattern", "nn.conv2d_nn.relu_") reference = func(x, w) partitioned = pattern.partition(relu, check=check) assert tvm.ir.structural_equal(partitioned, reference) conv2d = relay.op.nn.conv2d(x, w, data_layout="NHWC") relu = relay.op.nn.relu(conv2d) assert relu == pattern.partition(relu, check=check) def test_partition_check_types(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(wildcard(), wildcard())) def check(pre): conv = pre.args[0] return (conv.attrs.data_layout == "NCHW") and bool(conv.checked_type.shape[0] == 1) x = relay.var("input", shape=(1, 10, 10, 10)) w = relay.var("weight", shape=(10, 10, 3, 3)) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) partitioned = pattern.partition(relu, check=check) assert partitioned.op.attrs["PartitionedFromPattern"] == "nn.conv2d_nn.relu_" conv2d = relay.op.nn.conv2d(x, w, data_layout="NHWC") relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) assert relu == pattern.partition(relu, check=check) x = relay.var("input", shape=(2, 10, 10, 10)) w = relay.var("weight", shape=(10, 10, 3, 3)) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) assert relu == pattern.partition(relu, check=check) def conv_bias_relu(x, w, b): conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) return relu def test_partition_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) bias = conv2d.optional(lambda x: is_op("nn.bias_add")(x, wildcard())) pattern1 = is_op("nn.relu")(bias) conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) bias = is_op("nn.bias_add")(conv2d, wildcard()) pattern2 = bias.optional(lambda x: is_op("nn.relu")(x)) relu = conv_bias_relu(x, w, b) xf = relay.var("x") wf = relay.var("w") bf = relay.var("b") func = relay.Function([xf, wf, bf], conv_bias_relu(xf, wf, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) assert pattern1.match(relu) assert tvm.ir.structural_equal(func(x, w, b), pattern1.partition(relu)) assert pattern2.match(relu) assert tvm.ir.structural_equal(func(x, w, b), pattern2.partition(relu)) def test_partition_function(): x = relay.var("x") w = relay.var("w") b = relay.var("b") x1 = relay.var("x1") w1 = relay.var("w1") wc_x = wildcard() wc_w = wildcard() wc_b = wildcard() wc_x1 = wildcard() wc_w1 = wildcard() func_pattern = FunctionPattern([wc_x1, wc_w1], is_op("nn.conv2d")(wc_x1, wc_w1)) pattern = func_pattern(wc_x, wc_w) + wc_b func = relay.Function([x1, w1], relay.nn.conv2d(x1, w1)) expr = func(x, w) + b + b x2 = relay.var("x2") w2 = relay.var("w2") b2 = relay.var("b2") func2 = relay.Function([x2, w2, b2], func(x2, w2) + b2).with_attr( "PartitionedFromPattern", "nn.conv2d_FunctionCall_add_" ) expr2 = func2(x, w, b) + b assert tvm.ir.structural_equal(pattern.partition(expr), expr2) def test_match_match(): add_pattern = is_op("add")(wildcard(), wildcard()) class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] mod = tvm.IRModule({}) tvm.relay.prelude.Prelude(mod) # Apply rewrite on IR including relay.Match out = rewrite(TestRewrite(), mod["tensor_concatenate_int64"]) assert tvm.ir.structural_equal(mod["tensor_concatenate_int64"], out) def test_partition_constant_embedding(): x = relay.var("x") w = relay.var("w") wc = relay.const(1) b = relay.var("b") xf = relay.var("x") wf = relay.var("w") bf = relay.var("b") embeded_func = relay.Function([xf, bf], conv_bias_relu(xf, wc, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) xf = relay.var("x") wf = relay.var("w") bf = relay.var("b") lifted_func = relay.Function([xf, wf, bf], conv_bias_relu(xf, wf, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) relu = conv_bias_relu(x, w, b) reluc = conv_bias_relu(x, wc, b) # Check lifting of wildcard matches pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), wildcard()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(lifted_func(x, wc, b), pattern.partition(reluc)) # Check lifting of input matches pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_var()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(reluc, pattern.partition(reluc)) # Constants are not Inputs # Check embedding of constant matches pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_constant()), wildcard()) ) assert tvm.ir.structural_equal(relu, pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) # Check embedding of constant ExprPatterns pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_expr(wc)), wildcard()) ) assert tvm.ir.structural_equal(relu, pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) # Check lifting/embedding of Alt matches pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_var() | is_constant()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) # Check lifting/embedding of Alt matches with the other ordering pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_constant() | is_var()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) if __name__ == "__main__": test_expr_pattern() test_var_pattern() test_constant_pattern() test_wildcard_pattern() test_CallPattern() test_TuplePattern() test_TupleGetItemPattern() test_AltPattern() test_TypePattern() test_DataTypePattern() test_ShapePattern() test_AttrPattern() test_match_op() test_no_match_op() test_match_op_or() test_match_call_commutive() test_no_match_call_commutive() test_match_call() test_no_match_call() test_match_option() test_no_match_option() test_match_const() test_match_tuple() test_no_match_tuple() test_match_type() test_no_match_type() test_match_dtype() test_no_match_dtype() test_match_shape() test_no_match_shape() test_match_op_attr() test_no_match_op_attr() test_match_func_attr() test_no_match_func_attr() test_match_call_attr() test_no_match_call_attr() test_match_diamond() test_no_match_diamond() test_match_fake_diamond() test_match_dominator() test_not_match_dominator() test_rewrite() test_rewrite_func() test_nested_rewrite() test_not_fuse_multi_diamond() test_fuse_batchnorm() test_no_fuse_batchnorm() test_fuse_double_batchnorm() test_partial_fuse_double_batchnorm() test_fuse_batchnorm_commutation() test_quadruple_rewrite_dominator() test_algebraic_simplify() test_double_partition() test_partition_dominator() test_quadruple_partition_dominator() test_partition_batchnorm() test_partition_double_batchnorm() test_partition_check() test_partition_check_types() test_partition_option() test_match_match() test_partition_constant_embedding()
323a9f902674ad4556e5501d6aa72e33fa93729c
6e33b919b56ac94c61ba2df328b544a09a6ce2ad
/simple_mine_f.py
c4983ce2e68a7e974c6c2d7f95c5886ec5653fe8
[ "MIT" ]
permissive
ReyesDeJong/MINE
5cc51838fdc5a111c2dd07bb2354cd3d9def9b68
50f02110f8c2f4b5a11e1e37c31a4a9c271aa19c
refs/heads/master
2020-03-27T04:08:06.797991
2018-10-20T22:59:16
2018-10-20T22:59:16
145,914,435
0
0
null
null
null
null
UTF-8
Python
false
false
5,803
py
from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import time import datetime from grad_corrected_mine import GradMINE class MINEf(GradMINE): def __init__(self, params, name="mine_f"): tf.reset_default_graph() self.name = name self.p = self._fix_to_default(params) # Directories self.model_path, self.ckpt_path, self.tb_path = self._create_directories() # Input pipeline self.iterator, self.inputs_x_ph, self.inputs_z_ph = self._iterator_init(self.p["batch_size"]) self.loss, self.train_step = self._build_graph(self.iterator, self.p["learning_rate"]) # Init config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True self.sess = tf.Session(config=config) self.sess.run(tf.global_variables_initializer()) def train(self, inputs_x, inputs_z, max_it, stat_every): # Init iterator with trainning data self.sess.run(self.iterator.initializer, feed_dict={self.inputs_x_ph: inputs_x, self.inputs_z_ph: inputs_z}) # Initialization of log and saver saver = tf.train.Saver(keep_checkpoint_every_n_hours=1) summ_writer = tf.summary.FileWriter(self.tb_path, self.sess.graph) merged = tf.summary.merge_all() start_time = time.time() print("Beginning training of " + self.name) for it in range(1, max_it + 1): _, train_loss, summ = self.sess.run([self.train_step, self.loss, merged]) if it % stat_every == 0: elapsed_time = time.time() - start_time print("Iteration %i / %i: loss %f -- elapsed time %f [s]" % (it, max_it, train_loss, elapsed_time), flush=True) summ_writer.add_summary(summ, it) save_path = saver.save(self.sess, self.ckpt_path, global_step=max_it) print("Model saved to: %s" % save_path) def _fix_to_default(self, params): if "batch_size" not in params: params["batch_size"] = 256 if "learning_rate" not in params: params["input_dim"] = 1e-4 if "input_dim" not in params: raise AttributeError("Dimensions of input needed") if "ema_decay" not in params: params["ema_decay"] = 0.999 return params def _create_directories(self): date = datetime.datetime.now().strftime("%Y%m%d") self.model_path = "results/" + self.name + "_" + date + "/" self.ckpt_path = self.model_path + "ckpt/model" self.tb_path = self.model_path + "tb_summ/" # Delete previus content of tensorboard logs if tf.gfile.Exists(self.tb_path): tf.gfile.DeleteRecursively(self.tb_path) return self.model_path, self.ckpt_path, self.tb_path def _iterator_init(self, batch_size): with tf.device('/cpu:0'): with tf.name_scope("input"): inputs_x_ph = tf.placeholder(dtype=tf.float32, shape=[None, self.p["input_dim"]]) inputs_z_ph = tf.placeholder(dtype=tf.float32, shape=[None, self.p["input_dim"]]) # Dataset dataset = tf.data.Dataset.from_tensor_slices((inputs_x_ph, inputs_z_ph)) dataset = dataset.repeat() dataset = dataset.shuffle(buffer_size=5000) dataset = dataset.batch(batch_size=batch_size) dataset = dataset.prefetch(buffer_size=4) # Iterator iterator = dataset.make_initializable_iterator() return iterator, inputs_x_ph, inputs_z_ph def _build_graph(self, iterator, lr): x_it, z_it = iterator.get_next() _, z_hat_it = iterator.get_next() # Inputs self.x = tf.placeholder_with_default(x_it, shape=[None, self.p["input_dim"]], name="x") self.z = tf.placeholder_with_default(z_it, shape=[None, self.p["input_dim"]], name="z") self.z_hat = tf.placeholder_with_default(z_hat_it, shape=[None, self.p["input_dim"]], name="z_hat") # Model with tf.name_scope("stat_net_t"): out_t = self._stat_net(self.x, self.z) with tf.name_scope("stat_net_t_prime"): out_t_prime = self._stat_net(self.x, self.z_hat, reuse=True) tf.summary.histogram("out_t", out_t) tf.summary.histogram("out_t_prime", out_t_prime) loss, self.term_1, self.term_2 = self._loss_init(out_t, out_t_prime) train_step = self._optimizer_init(loss, lr) return loss, train_step def _loss_init(self, out_t, out_t_prime): with tf.name_scope("loss"): term_1 = tf.reduce_mean(out_t) term_2 = tf.reduce_mean(tf.exp(out_t_prime - 1)) loss = term_1 - term_2 tf.summary.scalar("term_1", term_1) tf.summary.scalar("term_2", term_2) tf.summary.scalar("mine_loss", loss) return loss, term_1, term_2 def _optimizer_init(self, loss, lr): with tf.name_scope("optimizer"): self.stat_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="stat_net") self.optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-6) train_step = self.optimizer.minimize(-loss, var_list=self.stat_vars) # Maximization <=> Neg minimization # corrected_gradients = self.gradient_bias_correction() # train_step = self.optimizer.apply_gradients(zip(corrected_gradients, self.stat_vars)) #train_step = optimizer.minimize(-loss, var_list=stat_vars) # Maximization <=> Neg minimization # train_step = self.optimizer.minimize(-loss, var_list=self.stat_vars) # Maximization <=> Neg minimization return train_step
838a4c8d30bc51f929d302ad820dcf88dccc9bdc
5fde25a6683cf1fc71cf351c70145b67de5c2890
/python/common.py
7ea09674fb82eca895c8a28631199a636b487949
[]
no_license
lymslive/expcode
e1a37a8aa7e2bf610088b2aa2665567ec97cb38e
43f06f1da3d71d6e8bed9f03b3e126c2ba2c0151
refs/heads/master
2021-06-21T04:23:58.633222
2019-07-30T10:04:01
2019-07-30T10:04:01
66,209,383
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
#! /bin/env python3 VERSION = '3.7' def hello(str): print('Hello ' + str) if __name__ == '__main__': hello('python')
705628d355732a3aba43be82e8cdeb9a979abf95
1282705c88423f06d9d8dfd946759149866a3ef5
/recommender.py
b545bc3c40cc0a12834fe6debf2e456b2c8364e8
[]
no_license
zlq54321/recommend_system
03f4b6bce5a47b4ada1f2ed42d884366e6bd2138
5f18fb162da4f250ecfc61c48001ba4c253ebfaa
refs/heads/master
2020-11-26T22:16:07.169278
2019-12-20T08:04:47
2019-12-20T08:04:47
229,215,834
1
1
null
null
null
null
UTF-8
Python
false
false
1,751
py
import pickle import tensorflow as tf import numpy as np load_dir = './save/model' title_count, title_set, genres2int, features, targets_values, ratings, users, \ movies, data, movies_orig, users_orig = pickle.load(open('preprocess.p', mode='rb')) title_col = movies['Title'] len_col = np.array([len(x) for x in title_col], dtype=np.int32) movies['Title_size'] = len_col # users_matrics = pickle.load(open('users_matrics.p', mode='rb')) movie_matrics = pickle.load(open('movie_matrics.p', mode='rb')) movieid2idx = {val[0]: i for i, val in enumerate(movies.values)} def recommend_same_type_movie(movie_id_val, top_k=20): loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # load model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) norm_movie_matrics = tf.sqrt(tf.reduce_sum(tf.square(movie_matrics), 1, keep_dims=True)) normalized_movie_matrics = movie_matrics / norm_movie_matrics # 推荐 probs_embeddings = (movie_matrics[movieid2idx[movie_id_val]]).reshape([1, 200]) probs_similarity = tf.matmul(probs_embeddings, tf.transpose(normalized_movie_matrics)) sim = probs_similarity.eval() print("您看的电影是:{}".format(movies_orig[movieid2idx[movie_id_val]])) print("以下是给您的推荐:") p = np.squeeze(sim) p[np.argsort(p)[:-top_k]] = 0 p = p / np.sum(p) results = set() while len(results) != 5: c = np.random.choice(3883, 1, p=p)[0] results.add(c) for val in results: print(val) print(movies_orig[val]) return results recommend_same_type_movie(1401, 20)
2f1c6182fa0804fc0d4d1db18e26043816332d5e
55c7a20dfd2b6aa03bdfc53890519d44a7e7d399
/tweet/models.py
03533b17c9292305ae7042a6535bc9f361057598
[]
no_license
shijuqb/cmtest
4ff78e1fb031fb45168d0109aee4e57426fab46f
bb1b15cb807476ca15013e58d947c6b44ba9bb23
refs/heads/master
2021-01-25T05:22:48.038160
2013-04-02T06:05:20
2013-04-02T06:05:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class TwitterProfile(models.Model): USER_TYPE = ( ('1', 'editor'), ('2', 'author') ) """holds additional fields of a user""" user = models.OneToOneField(User, unique=True, related_name='twitter_profile') level = models.CharField(max_length=20, choices=USER_TYPE, blank=False, null=False) def __unicode__(self): return self.user.username class Tweet(models.Model): tweet_id = models.IntegerField(blank=True, null=True) content = models.CharField(max_length=140) created_by = models.ForeignKey(User, related_name='tweets') created_at = models.DateTimeField('Created At', auto_now_add=True) is_dirty = models.BooleanField(default=False) def __unicode__(self): return self.content[:20]+"..."
[ "shiju@shiju-desktop" ]
shiju@shiju-desktop
18d41e510e6cab64ca3b008c8058c0880ca3ff05
da64994d73d250d19a30381de7462c5729372f81
/apps/trainingClass/models/tuitionmodel.py
68d65fed22d12da00ba68e01232acb2bcfb7699f
[]
no_license
Mid0Riii/psybackend
2f872c1dd21e97ba0a46efa10f2b3246ac8bb2b5
2cd477f01111a816b17725a00ffa77a156dec7b0
refs/heads/master
2023-03-26T07:55:17.580161
2021-03-14T01:45:19
2021-03-14T01:45:19
305,083,821
0
1
null
2021-03-14T01:45:20
2020-10-18T11:15:48
Python
UTF-8
Python
false
false
3,142
py
from django.db import models from .classmodel import TrainClass from .trainingclassmodel import TrainBasic from django.utils.html import format_html class TrainTuition(models.Model): class Meta: verbose_name = '训练班交费信息' verbose_name_plural = verbose_name relate_class = models.ForeignKey(TrainClass, on_delete=models.CASCADE, verbose_name='班级', null=True, blank=True) relate_trainingclass = models.OneToOneField(TrainBasic, on_delete=models.CASCADE, verbose_name='学号', primary_key=True) fee_train = models.CharField(max_length=128, verbose_name='培训费', blank=True, null=True, default='空') fee_material = models.CharField(max_length=128, verbose_name='资料费', blank=True, null=True, default='空') fee_date = models.CharField(max_length=128, verbose_name='缴费日期', blank=True, null=True, default='空') fee_method = models.CharField(max_length=128, verbose_name='缴费方式', blank=True, null=True, default='空') fee_id = models.CharField(max_length=128, verbose_name='收据号', blank=True, null=True, default='空') fee_tax = models.CharField(max_length=128, verbose_name='发票号', blank=True, null=True, default='空') fee_invoice_header = models.CharField(max_length=128, verbose_name='发票抬头', blank=True, null=True, default='空') fee_invoice_id = models.CharField(max_length=128, verbose_name='发票机构代码', blank=True, null=True, default='空') fee_invoice_date = models.CharField(max_length=128, verbose_name='发票开票日期', blank=True, null=True, default='空') fee_invoice_inc = models.CharField(max_length=128, verbose_name='出票单位', blank=True, null=True, default='空') fee_exam = models.CharField(max_length=128, verbose_name='考试费', blank=True, null=True, default='空') fee_total = models.CharField(max_length=128, verbose_name='总费用', blank=True, null=True, default='空') fee_exam_extra = models.CharField(max_length=128, verbose_name='补考费', blank=True, null=True, default='空') fee_info = models.TextField(max_length=128, verbose_name='备注', blank=True, null=True, default='空') # TODO CODEREVICEW:模型的三种继承方式和自定义方法 def get_tra_name(self): info = self.relate_trainingclass.tra_name if self.fee_date == '空': color_code = 'red' else: color_code = 'black' return format_html('<span style="color:{};">{}</span>', color_code, info) get_tra_name.short_description = u'姓名' get_tra_name.allow_tags = get_tra_name.is_column = True def get_tra_class(self): return self.relate_trainingclass.tra_class.class_name get_tra_class.short_description = u'班级' get_tra_class.allow_tags = get_tra_name.is_column = True def get_tra_num(self): return self.relate_trainingclass.tra_number get_tra_num.short_description = '学号' get_tra_num.allow_tags = get_tra_num.is_colume = True def __str__(self): return str(self.relate_trainingclass.tra_name)
53a945c90a5f13d985d4f692365b5b5705914dcd
94b727c9dd370738d3c7c6a45bef183e44330fb9
/dojo.py
ad0b114bb6cf9a2171c5190e3fe10e99f169304c
[]
no_license
kevinidias/Testes_Python
315c84106ce7649f74c2049167044a5eca4e57fe
6654d3827cb64706fd4a200423093334d58ecfef
refs/heads/master
2023-08-26T04:10:01.315708
2021-10-27T17:02:56
2021-10-27T17:02:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
""" Como saber se um número é feliz ou triste? 1- Dado um número inteiro positivo 2- Substitua o número pela soma dos quadrados dos seus dígitos. 3- Se o resultado for 1, o número é feliz 4- Caso contrário, repita o processo indefinidamente. """ def happy(number): next_ = sum(int(char) ** 2 for char in str(number)) return number in (1, 7) if number < 10 else happy(next_) assert all([happy(n) for n in (1, 10, 100, 130, 97)]) assert not all(happy(n) for n in (2,3,4,5,6,8,9))
958bffbcef5c0c35574ec6229d4eb3360c9cde5e
9d9fcf401bb47ccaaa6c3fd3fe7a8be255762855
/libs/numpy/sort/argsort.py
2725c26fb628d43f78413d5fa7ac417f25fcd07d
[]
no_license
hanhiver/PythonBasic
f05ef9fe713f69610860c63e5223317decee09ad
8e012855cce61fb53437758021416e5f6deb02ea
refs/heads/master
2022-10-11T22:57:47.931313
2020-12-30T12:32:44
2020-12-30T12:32:44
148,477,052
0
3
null
2022-10-01T05:35:03
2018-09-12T12:29:33
Python
UTF-8
Python
false
false
187
py
import numpy as np a = np.random.randint(0, 10, (4, 5)) print(a, '\n') index = np.argsort(a, axis=0) print(index, '\n') index_3 = index[..., 3] print(index_3, '\n') print(a[index_3])
43346fa0feeefd499bf34c8866c7fe30287cc8d3
d5fa9cd39f283642047f2657343e3db79b7726e8
/cya_server/models.py
187f71442df2ba244c3c5026a3443c958c718c6b
[]
no_license
doanac/cya
6004d7d90bcf790e1357ab36da7f43140e1fa2eb
a623060dbf29b024592a68d023e135a546a81c0f
refs/heads/master
2021-01-21T04:55:23.529810
2016-06-30T03:39:29
2016-06-30T03:39:29
41,894,462
1
0
null
null
null
null
UTF-8
Python
false
false
6,733
py
import datetime import os import random import time import string from cya_server.settings import ( MODELS_DIR, CONTAINER_TYPES, CLIENT_SCRIPT) from cya_server.simplemodels import ( Field, Model, ModelManager, ModelError, SecretField) def client_version(): return str(os.stat(CLIENT_SCRIPT).st_mtime) class ContainerMount(Model): FIELDS = [ Field('type', data_type=str), Field('source', data_type=str), Field('directory', data_type=str), ] class InitScript(Model): FIELDS = [ Field('content', data_type=str), ] class Container(Model): FIELDS = [ Field('template', data_type=str, required=False), Field('release', data_type=str, required=False), Field('init_script', data_type=str, required=False), Field('date_requested', int, required=False), Field('date_created', int, required=False), Field('max_memory', int, required=False), Field('re_create', data_type=bool, def_value=False, required=False), Field('state', data_type=str, def_value='UNKNOWN', required=False), Field('keep_running', data_type=bool, def_value=True, required=False), Field('ips', data_type=str, required=False), Field('one_shot', data_type=bool, def_value=False, required=False), Field('requested_by', data_type=str, required=False), ] CHILDREN = [ContainerMount, InitScript] @property def requested_str(self): v = self.date_requested if v: return datetime.datetime.fromtimestamp(v) return '?' @property def created_str(self): v = self.date_created if v: return datetime.datetime.fromtimestamp(v) return '?' def update(self, data): if self.date_created and \ data.get('date_created', 0) > self.date_created: data['re_create'] = False return super(Container, self).update(data) def _get_log_file(self, logname): logdir = os.path.join(self._modeldir, 'logs') if not os.path.exists(logdir): os.mkdir(logdir) return os.path.join(logdir, logname) def append_log(self, logname, content): with open(self._get_log_file(logname), 'a') as f: f.write(content) def get_log_names(self): logdir = os.path.join(self._modeldir, 'logs') if os.path.exists(logdir): return os.listdir(logdir) return [] def get_log(self, logname): with open(self._get_log_file(logname)) as f: return f.read() def __repr__(self): return self.name @staticmethod def validate_template_release(template, release): releases = CONTAINER_TYPES.get(template) if not releases: raise KeyError('Invalid template type: %s' % template) if release not in releases: raise KeyError('Invalid release for template: %s' % release) class Host(Model): FIELDS = [ Field('distro_id', data_type=str), Field('distro_release', data_type=str), Field('distro_codename', data_type=str), Field('mem_total', data_type=int), Field('cpu_total', data_type=int), Field('cpu_type', data_type=str), Field('enlisted', data_type=bool, def_value=False, required=False), Field('max_containers', data_type=int, def_value=0, required=False), SecretField('api_key'), ] CHILDREN = [ Container, ] def __repr__(self): return self.name def get_container(self, name): for c in self.containers: if c.name == name: return c raise ModelError('Container not found: %s' % name, 404) def _get_ping_file(self): return os.path.join(self._modeldir, 'pings.log') def ping(self): with open(self._get_ping_file(), mode='a') as f: f.write('%d\n' % time.time()) @property def online(self): """Online means we've been "pinged" in the last 3 minutes.""" ping_file = self._get_ping_file() if not os.path.exists(ping_file): return False now = time.time() mtime = os.path.getmtime(self._get_ping_file()) return now - mtime < 180 # pinged in last 3 minutes class User(Model): FIELDS = [ Field('nickname', data_type=str), Field('openid', data_type=str), Field('approved', data_type=bool, def_value=False), Field('admin', data_type=bool, def_value=False, required=False), Field('api_key', data_type=str, required=False) ] CHILDREN = [ InitScript, ] class SharedStorage(Model): FIELDS = [ Field('type', data_type=str), Field('source', data_type=str) ] class ContainerRequest(Container): pass hosts = ModelManager(MODELS_DIR, Host) users = ModelManager(MODELS_DIR, User) shared_storage = ModelManager(MODELS_DIR, SharedStorage) container_requests = ModelManager(MODELS_DIR, ContainerRequest) def _get_user_by_openid(openid): for x in users.list(): x = users.get(x) if x.openid == openid: return x return None users.get_user_by_openid = _get_user_by_openid def _generate_api_key(): chars = string.ascii_letters + string.digits + '!@#$%^&*~-+' return ''.join(random.choice(chars) for _ in range(32)) users.generate_api_key = _generate_api_key def _container_request_handle(host): '''Dumb logic but find host with least number of containers. It also honors allowing max_containers on a host. ''' if not host.enlisted or (host.max_containers and host.max_containers <= host.containers.count()): return # no point in checking requests = list(container_requests.list()) if not requests: return candidates = [] for h in hosts.list(): h = hosts.get(h) h.count_cache = h.containers.count() if h.enlisted and h.online and (h.max_containers == 0 or h.count_cache < h.max_containers): candidates.append(h) candidates = sorted(candidates, key=lambda x: -1 * x.mem_total) candidates = sorted(candidates, key=lambda x: x.count_cache) match = candidates and host.name == candidates[0].name if match: # use os.rename which is atomic src = os.path.join(container_requests._model_dir, requests[0]) dst = os.path.join(host.containers._model_dir, requests[0]) try: os.mkdir(host.containers._model_dir) except FileExistsError: pass os.rename(src, dst) container_requests.handle = _container_request_handle
385dc29e8a96a82daa9709d0c22d2c368662202c
be0d83dde6b499b60f36c14c961a125581f36a57
/preprocess_files/mv_img.py
592114d7036909b48ede59be9b6dcca5df06b54f
[]
no_license
zhengziqiang/gan_learning
4acaf18f452fed0e2eeb0ddb45d861e9d10af835
d9ffb1c18e592715b62df684e23a362f8d07ac41
refs/heads/master
2021-01-01T13:35:28.696378
2017-10-29T13:42:51
2017-10-29T13:42:51
97,583,619
7
1
null
null
null
null
UTF-8
Python
false
false
745
py
import os import glob # d={} # for files in glob.glob('/home/zzq/research/windows_file/IIIT-CFW1.0/tmp/*.jpg'): # filepath, filename = os.path.split(files) # # print filename # l=filename.split('.') # # print l[0] # my_namee=filter(str.isalpha, l[0]) # print my_namee # if d.has_key(my_namee): # d[my_namee]+=1 # else: # d[my_namee]=1 # print d dest='/home/zzq/research/windows_file/IIIT-CFW1.0/dest/' name={} for files in glob.glob('/home/zzq/research/windows_file/IIIT-CFW1.0/realFaces/*.jpg'): filepath, filename = os.path.split(files) l=filename.split('.') my_name=filter(str.isalpha,l[0]) if name.has_key(my_name): name[my_name]+=1 else: name[my_name]=1
c94f97bced0e065103a9eee317568b7acb7efafa
8294a144dc40e2da77cdbdb623301dc53b2697bb
/book_control/views.py
a0253bfe82d3487b8de25759c64e7d3697091bef
[]
no_license
md-asif-shahriar/slim
dd3cea3df33738c6fc146992fdc7b7ce5eaeed41
52401ea02de3de184164843ded36628335bca4c3
refs/heads/main
2023-07-23T23:07:45.536996
2021-04-12T14:55:36
2021-04-12T14:55:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
from django.shortcuts import render, redirect from .forms import * def post_book_view(request): user = PublisherProfileModel.objects.get(user=request.user) task = "Post New" form = PostBookForm() if request.method == 'POST': form = PostBookForm(request.POST, request.FILES) if form.is_valid(): new_ad = form.save(commit=False) new_ad.publisher = user form.save() return redirect('home') else: context = { 'task': task, 'form': form } return render(request, 'book_control/post-update-book.html', context) context = { 'task': task, 'form': form } return render(request, "publisher/post-update-book.html", context)
1be57f985a05ec18b7b9bbaa2505fdf735efee35
f55ed49e77f2983f9118a5228a0f6d777c4eac97
/apps/hbase/src/hbase/conf.py
e72da5dbabc2a8effb22142b59233d8ca77a8cf8
[ "Apache-2.0" ]
permissive
mravi/hue
feb8543e1490fdbfdaff069c021ae168f72b28c6
1190bc41c560edf239c5dfc9689d25f3b4b3ab95
refs/heads/master
2020-12-25T21:55:41.294305
2013-11-07T11:49:05
2013-11-08T01:36:42
14,227,040
1
1
null
null
null
null
UTF-8
Python
false
false
1,253
py
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Configuration options for the hbase application. """ import re from desktop.lib.conf import Config HBASE_CLUSTERS = Config( key="hbase_clusters", default="(Cluster|localhost:9090)", help="Comma-separated list of HBase Thrift servers for clusters in the format of '(name|host:port)'.", type=str) TRUNCATE_LIMIT = Config( key="truncate_limit", default="500", help="Hard limit of rows or columns per row fetched before truncating.", type=int)
138535dfe2fb66e2a63cac24f3a9230738a73b8e
6aef2d7d320e8ec35f304955b35295f6cde8b1c2
/r00tphish.py
c4b9779ecd88ac455c7b929ced519c94f73d8eeb
[]
no_license
r00tapple/wizardbible
3ba074eb56a313df07b29033ddf6ffb466f63fd7
ba8073567ec03caa12c63b5fa0e0c1aaa7baf7d9
refs/heads/master
2021-01-10T04:48:03.836427
2015-12-13T18:27:10
2015-12-13T18:27:10
46,774,367
1
0
null
null
null
null
UTF-8
Python
false
false
3,785
py
from lxml import html import subprocess import os,sys,time,re,shutil,urllib2 ###setting### html_parser = html.HTMLParser(encoding="utf-8") ############# def setdirectory(): if check_os() == "posix": return os.path.join(os.path.expanduser('~'), '/clone') if check_os() == "windows": return "src/program_junk/" def check_os(): if os.name == "nt": operating_system = "windows" if os.name == "posix": operating_system = "posix" return operating_system def makephp(RAW_URL): logpath = "/clone/" filewrite = file("%s/post.php" % (logpath), "w") filewrite.write("""<?php $file = 'log.txt';file_put_contents($file, print_r($_POST, true), FILE_APPEND);?><meta http-equiv="refresh" content="0; url=%s" />""" % (RAW_URL)) filewrite.close() filewrite = file("%s/log.txt" % (logpath), "w") filewrite.write("") filewrite.close() if sys.platform == "darwin": subprocess.Popen("chown _www:_www '%s/log.txt'" % (logpath), shell=True).wait() else: subprocess.Popen("chown www-data:www-data '%s/log.txt'" % (logpath), shell=True).wait() def relaive(clonesite,base): fullpath = "/clone/index.html" site = "index.html" with open(clonesite, "r") as rf: doc = html.parse(rf).getroot() html.make_links_absolute(doc, base) fileopen=file("/clone/index.html","r").readlines() filewrite=file(fullpath,"w") try: for line in fileopen: counter=0 match=re.search('post',line, flags=re.IGNORECASE) method_post=re.search("method=post", line, flags=re.IGNORECASE) if match or method_post: line = re.sub('action="*"', 'action="post.php"', line) filewrite.write(line) print "action attribute it was rewritten to post.php.." except: print "file write error.." finally: filewrite.close() def clone(url): user_agent = "Mozilla/5.0 (Windows; Intel Mac OS X) Chrome/45.0.2454.101 Safari/537.36" try: wget = 0 if os.path.isfile("/usr/local/bin/wget"): wget = 1 if os.path.isfile("/usr/bin/wget"): wget = 1 if os.path.isfile("/usr/local/wget"): wget = 1 if wget == 1: subprocess.Popen('cd %s;wget --no-check-certificate -O index.html -c -k -U "%s" "%s";' % (setdir,user_agent,url), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).wait() if wget == 0: headers = { 'User-Agent' : user_agent } req = urllib2.Request(url, None, headers) html = urllib2.urlopen(req).read() if len(html) > 1: try: filewrite = file(setdir + "/index.html", "w") filewrite.write(html) except: print "index.html write error" finally: ilewrite.close() except: print "Sorry error to be continue .." pass if __name__ == '__main__': print """ ############################################### #The python script that web site also was set # #to be the creation of the link relative path # #for r00tapple # ############################################### """ setdir = setdirectory() if not os.path.isdir(setdir): os.makedirs(setdir + "/web_clone") #input url URL = raw_input("URL of clone sites that you create: ") clone(URL) domain = raw_input("Enter the http://****.com/ of creating clones site :") makephp(domain) path = setdir + "/index.html" relaive(path,domain) print "END"
afe0ccc8e45fcfa053086a87b4a310df15eceab1
73ce13a41156bb4a3c076a1a3a29fa746d716a4b
/python-/pdfScrapper.py
a5513894876a5c0f7b142a47d3290bb5f8200b3e
[]
no_license
Wsaleh123/Python
b31da424dcf3e0a9d0978371e83f3aa7e17a0ff1
308014bfd632f61c7bb4cd1faae974c637db0179
refs/heads/master
2021-08-16T13:02:49.042530
2017-11-19T22:40:14
2017-11-19T22:40:14
111,337,836
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
import pdfquery file = open(name["ast_sci_data_tables_sample.pdf"], mode[w+]) print(file)
916eae5a842222453fbd7561d41098dcb8e049fa
80ebd1937d184206221ef34489f77a5f4f54d6d4
/venv/bin/pyhtmlizer
aaf0384c060c59066b63ee13038d5e7a41872a3f
[]
no_license
cv121189mav/chat
e259ec7b24f23db76f32d96e135d5fd30608e0ca
11832deeda4a31b12b045b6e53c55853043b2e6e
refs/heads/master
2020-06-03T21:43:58.777537
2019-06-13T10:36:13
2019-06-13T10:36:13
191,741,778
0
0
null
null
null
null
UTF-8
Python
false
false
423
#!/home/sanya/PycharmProjects/chat/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==19.2.1','console_scripts','pyhtmlizer' __requires__ = 'Twisted==19.2.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==19.2.1', 'console_scripts', 'pyhtmlizer')() )
6fdb87404571a689574fb5666416aa230b4b70f2
7c718926b1f4091190e5faefb34c34bacdc312a6
/modules.py
64f3f1ea9a56da0081a68e7a3f5e690bec8d7973
[]
no_license
mindis/Recsys
617d8d9196e6aa82d3a1194d2d2f14baa0cd7966
3eed212cfefc76417689e506825a4332524375e2
refs/heads/master
2020-04-07T00:08:29.945753
2018-06-11T11:29:11
2018-06-11T11:29:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,091
py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #embedding class Embed(nn.Module): def __init__(self, input_dim, embedding_dim, item = False): super(Embed, self).__init__() self.embedding_table = nn.Embedding(input_dim, embedding_dim) #ensure that the representation of paddings are tensors of zeros, thus, will #not contribute in potential average pooling session representations if(item): self.embedding_table.weight.data[0] = torch.zeros(embedding_dim) def forward(self, input): output = self.embedding_table(input) return output #inter session RNN module class Inter_RNN(nn.Module): def __init__(self, input_dim, hidden_dim, dropout_rate): super(Inter_RNN, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout_rate) self.gru = nn.GRU(self.input_dim, self.hidden_dim, batch_first=True) def forward(self, input, hidden, rep_indicies): input = self.dropout(input) gru_output, _ = self.gru(input, hidden) #find the last hidden state of each sequence in the batch which are not hidden_indices = rep_indicies.view(-1,1,1).expand(gru_output.size(0), 1, gru_output.size(2)) hidden_out = torch.gather(gru_output,1,hidden_indices) hidden_out = hidden_out.squeeze().unsqueeze(0) hidden_out = self.dropout(hidden_out) return hidden_out def init_hidden(self, batch_size): hidden = Variable(torch.cuda.FloatTensor(1, batch_size, self.hidden_dim).fill_(0)) return hidden #intra session RNN module class Intra_RNN(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, dropout_rate): super(Intra_RNN, self).__init__() self.hidden_dim = hidden_dim self.output_dim = output_dim self.dropout = nn.Dropout(dropout_rate) self.gru = nn.GRU(input_dim, hidden_dim, batch_first=True) self.linear = nn.Linear(hidden_dim, output_dim) def forward(self, input, hidden, lengths): input = self.dropout(input) gru_output, _ = self.gru(input, hidden) output = self.dropout(gru_output) output = self.linear(output) hidden_indices = lengths.view(-1,1,1).expand(gru_output.size(0), 1, gru_output.size(2)) hidden_out = torch.gather(gru_output,1,hidden_indices) hidden_out = hidden_out.squeeze().unsqueeze(0) return output, hidden_out #time loss module class Time_Loss(nn.Module): def __init__(self): super(Time_Loss, self).__init__() self.w = nn.Parameter(torch.FloatTensor([-0.1])) #self.w.data.uniform_(-0.1,0.1) def forward(self, time, target, epsilon): time_exp = torch.exp(time) w_target = self.w*torch.pow(target, epsilon) exps = (time_exp*(1-torch.exp(w_target)))/self.w output = time+w_target+exps return -output def get_w(self): return self.w
2ed62811591195923fcfee6e88f11490c620d28a
9c70ae1761d9d28f619e96f335a0807de5fad1b7
/Modules and Packages/MyMainPackages/some_main_script.py
139031511681c6ff4a0145195f21b10d7b11c471
[]
no_license
hareeshkavumkulath/CPB
eb35cf86c8d6bfa85388d82a742c4b09074bf8b2
6f606b4e09f09fbb8c3f9a521cc7f6f52f30e301
refs/heads/master
2020-09-25T13:59:24.372643
2019-12-31T07:30:45
2019-12-31T07:30:45
226,018,264
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
def report_main(): print("Hey I am in some main script and main package")
138bed068a1b35a2872be88c51cc61ea599cc5fc
c431e47c7231e9ba8c3f2709da5fae653595bfcd
/prodigy/player.py
93e76c2220c3e366b93395a93a4a277e5d0381bb
[ "MIT" ]
permissive
TheFinality/Prodigy
732a298d04e7bb00bd8aa7dd9a2ed1774465e4f9
59148734b9925d460a2d7139d4fe53e4dbf4c5bb
refs/heads/master
2023-07-03T03:00:00.676336
2021-08-02T11:25:40
2021-08-02T11:25:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,087
py
import json import requests from prodigy.get_userID import get_userID def player(token: str, userID: int = None, log: bool = False) -> dict: if userID: return requests.get(f"https://api.prodigygame.com/game-api/v2/characters/{userID}?fields=inventory%2Cdata%2CisMember%2Ctutorial%2Cpets%2Cencounters%2Cquests%2Cappearance%2Cequipment%2Chouse%2Cachievements%2Cstate&userID={get_userID(token)}", headers={'Authorization': f"Bearer {token}"}).json()[userID] if log: print("Fetching data from token...") userID = get_userID(token) return requests.get(f"https://api.prodigygame.com/game-api/v1/character/{userID}?isMember=0&userID={userID}", headers={'Authorization': f"Bearer {token}"}).json() def update_player(token: str, data: dict, log: bool = False) -> str: userID = get_userID(token) result = requests.post(f"https://api.prodigygame.com/game-api/v3/characters/{userID}", headers={"Authorization": f"Bearer {token}"}, data={"data": json.dumps(data), "userID": userID}).text() if log: print("Successfully updated.") return result
44d2f48c0e7d31ec05ea19b6bc744d08a1727187
e82361444469e95dbe19d5b1660ff1d74839bf22
/webapp/models.py
fed80bee131c2854beafa0b83639f0dd677ffd4c
[]
no_license
salimbencosme/movierentalapp-api
86271bac1ce9ecad7b8c912c4496db11b18b4d37
ea222a8bd9b4caa568866456a3575c8981641988
refs/heads/master
2021-08-30T12:01:40.912900
2017-12-17T20:59:43
2017-12-17T20:59:43
114,559,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,428
py
from django.db import models from datetime import datetime class Movie(models.Model): movieid=models.AutoField(primary_key=True) name=models.CharField(max_length=30) year=models.IntegerField() director=models.CharField(max_length=30) imgurl=models.TextField() rentalprice = models.DecimalField(default=0.00,decimal_places=2,max_digits=12) active=models.BooleanField(default=True) class User(models.Model): userid=models.AutoField(primary_key=True) fullname=models.CharField(max_length=40) username=models.CharField(max_length=30) password=models.CharField(max_length=30) type=models.IntegerField(default=2)# 1-Admin 2-Client active=models.BooleanField(default=True) class Rent(models.Model): rentid=models.AutoField(primary_key=True) user = models.ForeignKey(User,on_delete=models.CASCADE,) renteddate = models.DateTimeField(default=datetime.now) totalamount = models.DecimalField(default=0.00,decimal_places=2,max_digits=12) haspenalty=models.BooleanField(default=False) delivereddate = models.DateTimeField(null=True, blank=True) inprocess=models.BooleanField(default=True) active=models.BooleanField(default=True) class RentMovies(models.Model): rentmoviesid=models.AutoField(primary_key=True) rent = models.ForeignKey(Rent,on_delete=models.CASCADE,) movie = models.ForeignKey(Movie,on_delete=models.CASCADE,)
23b98df514699d790cd687bab8dee1a7e4fd757d
2a1802605a47bdcc9eeffda35082f8a73268df11
/rest-api/app.py
85edd4b3a3e52bb98c6fb2b2ce38893a90465f96
[]
no_license
RemusSino/reddit-consumer
1e05929860cd3f118d38a35c03b49000d42769f2
535a98f1a593e8fb462be9d8c86fac061efc2ebb
refs/heads/master
2020-05-27T07:49:22.337057
2019-06-02T08:21:03
2019-06-02T08:23:44
188,535,987
0
0
null
null
null
null
UTF-8
Python
false
false
783
py
import json from bson import json_util from flask import Flask, request from mongo import read_from_mongo app = Flask(__name__) @app.route('/items', methods=['GET']) def get_items(): subreddit = request.args.get('subreddit') from_timestamp = request.args.get('from') to_timestamp = request.args.get('to') keyword = request.args.get('keyword') if subreddit is None or from_timestamp is None or to_timestamp is None: return "ERROR" if int(from_timestamp) > int(to_timestamp): return "Error: from_timestamp > to_timestamp" docs = read_from_mongo(subreddit, from_timestamp, to_timestamp, keyword) return json.dumps(docs, default=json_util.default) return "ok" if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
6967008ed0deda0ace65515c54b28d2858ba4210
7f594817970f5c9c774e7d2e7640068f5c00787d
/src/logistic_regression_eda.py
de850bab89e033243d05a7ab9b3f92363b8761a0
[]
no_license
kellypeng/churn_prediction
3aa4b83cf8ed4d74a2c957b0f310fc5200d802c8
827bf6634b491e872e4a5d01b291cca4bdb60e61
refs/heads/master
2021-01-23T09:10:50.433224
2017-09-09T23:29:57
2017-09-09T23:29:57
102,563,838
0
0
null
null
null
null
UTF-8
Python
false
false
5,718
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from main import load_data, data_processing from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score, make_scorer, recall_score, confusion_matrix, precision_score from sklearn.model_selection import cross_val_score, train_test_split from sklearn.preprocessing import StandardScaler def cross_val(model,X,y,cv): f1 = make_scorer(f1_score) scores = cross_val_score(model,X,y,scoring=f1,cv=cv) return scores def base_design_matrix(df): y = df.pop('churn').values df['extreme_weekday_usage'] = ((df['weekday_pct'] == 0)|(df['weekday_pct'] == 100)).astype(int) df['I am rich'] = (df['surge_pct'] == 100).astype(int) df['unhappy_customer'] = ((df['avg_rating_of_driver'] > 0) & (df['avg_rating_of_driver'] < 4)).astype(int) df['unhappy_driber'] = ((df['avg_rating_of_driver'] > 0) & (df['avg_rating_of_driver'] < 4)).astype(int) # df['trips_per_day'] = df['trips_in_first_30_days'] / 30. # df,sc1 = standardize_col(df,'avg_rating_by_driver') # df,sc2 = standardize_col(df,'avg_rating_of_driver') X = df.values X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 0) print 'Data imbalance check: ',np.mean(y) return X_train,X_test,y_train,y_test, df.columns def standardize_col(df,col): sc = StandardScaler() df[col+'_std'] = sc.fit_transform(df[col]) return df,sc def design_matrix(df): y = df.pop('churn').values # df['avg_total_surge'] = df['avg_surge']*df['surge_pct'] df['extreme_weekday_usage'] = ((df['weekday_pct'] == 0)|(df['weekday_pct'] == 100)).astype(int) df['I am rich'] = (df['surge_pct'] == 100).astype(int) # df['unhappy_customer'] = ((df['avg_rating_of_driver'] > 0) & (df['avg_rating_of_driver'] < 4)).astype(int) cols = ['avg_rating_by_driver_isnull','avg_rating_of_driver_isnull',"King's Landing",\ 'luxury_car_user','avg_surge','Winterfell','iPhone','extreme_weekday_usage','I am rich'] X = df[cols].values # print 'Data imbalance check: ',np.mean(y) X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 0) return X_train,X_test,y_train,y_test, cols def lr_search(X_train,X_test,y_train,y_test,cols): lr = LogisticRegression() valid_scores = cross_val(lr,X_train,y_train,5) lr.fit(X_train,y_train) coef = lr.coef_ print '-'*50 print 'cross_valid_f1_scores: {}, avg_valid_score: {}'.format(valid_scores,np.mean(valid_scores)) print 'validation accuracy score:{}'.format(lr.score(X_test,y_test)) print 'validation f1 score:{}'.format(f1_score(y_test,lr.predict(X_test))) pred_y = lr.predict(X_test) print 'validation recall score:{}'.format(recall_score(y_test,pred_y)) # print cols print '-'*50 print 'confusion_matrix' print confusion_matrix(y_test,pred_y) print len(cols), len(coef[0]) abs_value = np.abs(coef[0]) for i,j,k in sorted(zip(abs_value,coef[0],cols))[::-1]: print k+': ', j return lr def test_processing(df): y = df.pop('churn').values df['extreme_weekday_usage'] = ((df['weekday_pct'] == 0)|(df['weekday_pct'] == 100)).astype(int) df['I am rich'] = (df['surge_pct'] == 100).astype(int) cols = ['avg_rating_by_driver_isnull','avg_rating_of_driver_isnull',"King's Landing",\ 'luxury_car_user','avg_surge','Winterfell','iPhone','extreme_weekday_usage','I am rich'] X = df[cols].values return X,y, cols def test_final_model(model): test_data = pd.read_csv('data/churn_test.csv',parse_dates=['last_trip_date','signup_date']) date_cutoff = datetime.date(2014, 6, 1) test_data['churn'] = (test_data.last_trip_date < date_cutoff).astype(int) test_data = data_processing(test_data) X,y,cols = test_processing(test_data) test_pred = model.predict(X) print '='*50 print 'confusion_matrix\n',confusion_matrix(y,test_pred) print 'test data f1 score: ',f1_score(y,test_pred) print 'test data precision score: ',precision_score(y,test_pred) print 'test data recall score: ',recall_score(y,test_pred) def plot_distribution_by_churn(df,col): # fig,axes = plt.subplots(1,2,figsize=(8,5)) # axes[0].hist(df[col][df['churn'] == 0],label='not churn') # axes[1].hist(df[col][df['churn'] == 1],label='churn') # axes[0].legend() # axes[1].legend() plt.hist(df[col][df['churn'] == 0],bins=20,alpha=.3,label='not churn') plt.hist(df[col][df['churn'] == 1],bins=20,alpha=.3,label='churn') plt.xlabel(col) plt.ylabel('# of users') plt.legend() plt.savefig('images/{}.png'.format(col)) plt.show() plt.clf() def plot_dists(df): plot_distribution_by_churn(df,'avg_surge') plot_distribution_by_churn(df,'surge_pct') plot_distribution_by_churn(df,'avg_dist') plot_distribution_by_churn(df,'avg_rating_by_driver') plot_distribution_by_churn(df,'avg_rating_of_driver') plot_distribution_by_churn(df,'trips_in_first_30_days') plot_distribution_by_churn(df,'weekday_pct') def plot_category(df,col): print pd.crosstab(df['churn'],df[col]) def plot_cats(df): print '-'*50 plot_category(df,'city') print '-'*50 plot_category(df,'phone') print '-'*50 plot_category(df,'luxury_car_user') print '-'*50 if __name__ == '__main__': df = load_data() # plot_cats(df) df = data_processing(df) # plot_category(df,'avg_rating_by_driver_isnull') # plot_category(df,'avg_rating_of_driver_isnull') # plot_dists(df) X_train,X_test,y_train,y_test,cols = design_matrix(df) model = lr_search(X_train,X_test,y_train,y_test,cols) test_final_model(model)
cf634701ce51fc3cb9c14499ec878f065f7baad4
427cb811a465677542172b59f5e5f102e3cafb1a
/python/classes/subClass.py
2244d735db508c992121644c9b9e179b8a63ef61
[]
no_license
IzaakWN/CodeSnippets
1ecc8cc97f18f77a2fbe980f322242c04dacfb89
07ad94d9126ea72c1a8ee5b7b2af176c064c8854
refs/heads/master
2023-07-26T21:57:10.660979
2023-07-20T20:35:59
2023-07-20T20:35:59
116,404,943
18
4
null
null
null
null
UTF-8
Python
false
false
1,236
py
# http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheritance-in-python/ # https://stackoverflow.com/questions/2843165/python-how-to-inherite-and-override # http://blog.thedigitalcatonline.com/blog/2014/05/19/method-overriding-in-python/ # https://docs.python.org/2.7/library/functions.html#super class Animal(object): def __init__(self,name,age): self.name = name self.age = age def makeNoise(self): print ">>> %s makes a noise"%(self.name) def printName(self): print ">>> Animal name = \"%s\""%(self.name) def printClassification(self): print ">>> Animal" class Dog(Animal): def __init__(self,name,age): Animal.__init__(self,name,age) # or super(Dog,self).__init__(name,age)] def makeNoise(self): print ">>> %s says \"%s\""%(self.name,"Woof!") def printName(self): print ">>> Dog name = \"%s\""%(self.name) def printClassification(self): super(Dog,self).printClassification() print ">>> Dog" animal1 = Animal("Carrol",2) animal2 = Dog("Yeller",4) print "\n>>> animal 1" animal1.makeNoise() animal1.printName() print ">>>\n>>> animal 2" animal2.makeNoise() animal2.printName() animal2.printClassification() print
2c11e8ac451f26810d32dc499dcaf475406a5e30
a5161d122e9ac7f733f5af1ca320ef19cf87154a
/extractors/host_feature.py
c7127ec92eea1d9f91da3a383ffa3d6690c1ff05
[]
no_license
zihnan/spider
f8c315e35e92ba7c7e0ff4d1e7b353ac98dea5ab
0823387171ec34a2945328f898f9a40535fe6c4f
refs/heads/master
2021-01-11T09:50:00.840323
2017-07-21T08:36:32
2017-07-21T08:36:32
78,271,428
1
1
null
2017-06-23T10:42:33
2017-01-07T09:57:36
Python
UTF-8
Python
false
false
711
py
import re from lxml import html from extractor import Extractor class HostExtract(Extractor): def __init__(self, host_str, **kwargs): self.ipv4_address_list = [] self.ipv6_address_list = [] for row in host_str.split('\n'): if row: cols = row.split(' ') if cols[2] == 'address': self.ipv4_address_list.append(cols[3]) elif cols[2] == 'IPv6': self.ipv6_address_list.append(cols[4]) self.features = [] def ipv4_numbers(self): return len(self.ipv4_address_list) def ipv6_numbers(self): return len(self.ipv6_address_list)
a8664286f8358d03bcf8e11702b53d8ee5865ef0
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/matplotlib/2018/8/axes3d.py
efbaedfef284ed36e1b8f3d87fbaaf0aa8ba1c71
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
103,008
py
""" axes3d.py, original mplot3d version by John Porter Created: 23 Sep 2005 Parts fixed by Reinier Heeres <[email protected]> Minor additions by Ben Axelrod <[email protected]> Significant updates and revisions by Ben Root <[email protected]> Module containing Axes3D, an object which can plot 3D objects on a 2D matplotlib figure. """ from functools import reduce from collections import defaultdict import math import warnings import numpy as np from matplotlib import artist import matplotlib.axes as maxes import matplotlib.cbook as cbook import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.docstring as docstring import matplotlib.scale as mscale import matplotlib.transforms as mtransforms from matplotlib.axes import Axes, rcParams from matplotlib.colors import Normalize, LightSource from matplotlib.transforms import Bbox from matplotlib.tri.triangulation import Triangulation from . import art3d from . import proj3d from . import axis3d def unit_bbox(): box = Bbox(np.array([[0, 0], [1, 1]])) return box class Axes3D(Axes): """ 3D axes object. """ name = '3d' _shared_z_axes = cbook.Grouper() def __init__( self, fig, rect=None, *args, azim=-60, elev=30, zscale=None, sharez=None, proj_type='persp', **kwargs): ''' Build an :class:`Axes3D` instance in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* in :class:`~matplotlib.figure.Figure` coordinates Optional keyword arguments: ================ ========================================= Keyword Description ================ ========================================= *azim* Azimuthal viewing angle (default -60) *elev* Elevation viewing angle (default 30) *zscale* [%(scale)s] *sharez* Other axes to share z-limits with *proj_type* 'persp' or 'ortho' (default 'persp') ================ ========================================= .. versionadded :: 1.2.1 *sharez* ''' % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} if rect is None: rect = [0.0, 0.0, 1.0, 1.0] self._cids = [] self.initial_azim = azim self.initial_elev = elev self.set_proj_type(proj_type) self.xy_viewLim = unit_bbox() self.zz_viewLim = unit_bbox() self.xy_dataLim = unit_bbox() self.zz_dataLim = unit_bbox() # inihibit autoscale_view until the axes are defined # they can't be defined until Axes.__init__ has been called self.view_init(self.initial_elev, self.initial_azim) self._ready = 0 self._sharez = sharez if sharez is not None: self._shared_z_axes.join(self, sharez) self._adjustable = 'datalim' super().__init__(fig, rect, frameon=True, *args, **kwargs) # Disable drawing of axes by base class super().set_axis_off() # Enable drawing of axes by Axes3D class self.set_axis_on() self.M = None # func used to format z -- fall back on major formatters self.fmt_zdata = None if zscale is not None: self.set_zscale(zscale) if self.zaxis is not None: self._zcid = self.zaxis.callbacks.connect( 'units finalize', lambda: self._on_units_changed(scalez=True)) else: self._zcid = None self._ready = 1 self.mouse_init() self.set_top_view() self.patch.set_linewidth(0) # Calculate the pseudo-data width and height pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)]) self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0] self.figure.add_axes(self) def set_axis_off(self): self._axis3don = False self.stale = True def set_axis_on(self): self._axis3don = True self.stale = True def have_units(self): """ Return *True* if units are set on the *x*, *y*, or *z* axes """ return (self.xaxis.have_units() or self.yaxis.have_units() or self.zaxis.have_units()) def convert_zunits(self, z): """ For artists in an axes, if the zaxis has units support, convert *z* using zaxis unit type .. versionadded :: 1.2.1 """ return self.zaxis.convert_units(z) def _process_unit_info(self, xdata=None, ydata=None, zdata=None, kwargs=None): """ Look for unit *kwargs* and update the axis instances as necessary """ super()._process_unit_info(xdata=xdata, ydata=ydata, kwargs=kwargs) if self.xaxis is None or self.yaxis is None or self.zaxis is None: return if zdata is not None: # we only need to update if there is nothing set yet. if not self.zaxis.have_units(): self.zaxis.update_units(xdata) # process kwargs 2nd since these will override default units if kwargs is not None: zunits = kwargs.pop('zunits', self.zaxis.units) if zunits != self.zaxis.units: self.zaxis.set_units(zunits) # If the units being set imply a different converter, # we need to update. if zdata is not None: self.zaxis.update_units(zdata) def set_top_view(self): # this happens to be the right view for the viewing coordinates # moved up and to the left slightly to fit labels and axes xdwl = (0.95/self.dist) xdw = (0.9/self.dist) ydwl = (0.95/self.dist) ydw = (0.9/self.dist) # This is purposely using the 2D Axes's set_xlim and set_ylim, # because we are trying to place our viewing pane. super().set_xlim(-xdwl, xdw, auto=None) super().set_ylim(-ydwl, ydw, auto=None) def _init_axis(self): '''Init 3D axes; overrides creation of regular X/Y axes''' self.w_xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx, self.xy_dataLim.intervalx, self) self.xaxis = self.w_xaxis self.w_yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly, self.xy_dataLim.intervaly, self) self.yaxis = self.w_yaxis self.w_zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx, self.zz_dataLim.intervalx, self) self.zaxis = self.w_zaxis for ax in self.xaxis, self.yaxis, self.zaxis: ax.init3d() def get_children(self): return [self.zaxis] + super().get_children() def _get_axis_list(self): return super()._get_axis_list() + (self.zaxis, ) def unit_cube(self, vals=None): minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims() return [(minx, miny, minz), (maxx, miny, minz), (maxx, maxy, minz), (minx, maxy, minz), (minx, miny, maxz), (maxx, miny, maxz), (maxx, maxy, maxz), (minx, maxy, maxz)] def tunit_cube(self, vals=None, M=None): if M is None: M = self.M xyzs = self.unit_cube(vals) tcube = proj3d.proj_points(xyzs, M) return tcube def tunit_edges(self, vals=None, M=None): tc = self.tunit_cube(vals, M) edges = [(tc[0], tc[1]), (tc[1], tc[2]), (tc[2], tc[3]), (tc[3], tc[0]), (tc[0], tc[4]), (tc[1], tc[5]), (tc[2], tc[6]), (tc[3], tc[7]), (tc[4], tc[5]), (tc[5], tc[6]), (tc[6], tc[7]), (tc[7], tc[4])] return edges @artist.allow_rasterization def draw(self, renderer): # draw the background patch self.patch.draw(renderer) self._frameon = False # first, set the aspect # this is duplicated from `axes._base._AxesBase.draw` # but must be called before any of the artist are drawn as # it adjusts the view limits and the size of the bounding box # of the axes locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() # add the projection matrix to the renderer self.M = self.get_proj() renderer.M = self.M renderer.vvec = self.vvec renderer.eye = self.eye renderer.get_axis_position = self.get_axis_position # Calculate projection of collections and patches and zorder them. # Make sure they are drawn above the grids. zorder_offset = max(axis.get_zorder() for axis in self._get_axis_list()) + 1 for i, col in enumerate( sorted(self.collections, key=lambda col: col.do_3d_projection(renderer), reverse=True)): col.zorder = zorder_offset + i for i, patch in enumerate( sorted(self.patches, key=lambda patch: patch.do_3d_projection(renderer), reverse=True)): patch.zorder = zorder_offset + i if self._axis3don: # Draw panes first for axis in self._get_axis_list(): axis.draw_pane(renderer) # Then axes for axis in self._get_axis_list(): axis.draw(renderer) # Then rest super().draw(renderer) def get_axis_position(self): vals = self.get_w_lims() tc = self.tunit_cube(vals, self.M) xhigh = tc[1][2] > tc[2][2] yhigh = tc[3][2] > tc[2][2] zhigh = tc[0][2] > tc[2][2] return xhigh, yhigh, zhigh def _on_units_changed(self, scalex=False, scaley=False, scalez=False): """ Callback for processing changes to axis units. Currently forces updates of data limits and view limits. """ self.relim() self.autoscale_view(scalex=scalex, scaley=scaley, scalez=scalez) def update_datalim(self, xys, **kwargs): pass def get_autoscale_on(self): """ Get whether autoscaling is applied for all axes on plot commands .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ return super().get_autoscale_on() and self.get_autoscalez_on() def get_autoscalez_on(self): """ Get whether autoscaling for the z-axis is applied on plot commands .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ return self._autoscaleZon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. Parameters ---------- b : bool """ super().set_autoscale_on(b) self.set_autoscalez_on(b) def set_autoscalez_on(self, b): """ Set whether autoscaling for the z-axis is applied on plot commands .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. Parameters ---------- b : bool """ self._autoscaleZon = b def set_zmargin(self, m): """ Set padding of Z data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ if m < 0 or m > 1 : raise ValueError("margin must be in range 0 to 1") self._zmargin = m self.stale = True def margins(self, *margins, x=None, y=None, z=None, tight=True): """ Convenience method to set or retrieve autoscaling margins. signatures:: margins() returns xmargin, ymargin, zmargin :: margins(margin) margins(xmargin, ymargin, zmargin) margins(x=xmargin, y=ymargin, z=zmargin) margins(..., tight=False) All forms above set the xmargin, ymargin and zmargin parameters. All keyword parameters are optional. A single positional argument specifies xmargin, ymargin and zmargin. Passing both positional and keyword arguments for xmargin, ymargin, and/or zmargin is invalid. The *tight* parameter is passed to :meth:`autoscale_view`, which is executed after a margin is changed; the default here is *True*, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Setting *tight* to *None* will preserve the previous setting. Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ if margins and x is not None and y is not None and z is not None: raise TypeError('Cannot pass both positional and keyword ' 'arguments for x, y, and/or z.') elif len(margins) == 1: x = y = z = margins[0] elif len(margins) == 3: x, y, z = margins elif margins: raise TypeError('Must pass a single positional argument for all ' 'margins, or one for each margin (x, y, z).') if x is None and y is None and z is None: if tight is not True: warnings.warn('ignoring tight=%r in get mode' % (tight,)) return self._xmargin, self._ymargin, self._zmargin if x is not None: self.set_xmargin(x) if y is not None: self.set_ymargin(y) if z is not None: self.set_zmargin(z) self.autoscale_view( tight=tight, scalex=(x is not None), scaley=(y is not None), scalez=(z is not None) ) def autoscale(self, enable=True, axis='both', tight=None): """ Convenience method for simple axis view autoscaling. See :meth:`matplotlib.axes.Axes.autoscale` for full explanation. Note that this function behaves the same, but for all three axes. Therefore, 'z' can be passed for *axis*, and 'both' applies to all three axes. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ if enable is None: scalex = True scaley = True scalez = True else: if axis in ['x', 'both']: self._autoscaleXon = scalex = bool(enable) else: scalex = False if axis in ['y', 'both']: self._autoscaleYon = scaley = bool(enable) else: scaley = False if axis in ['z', 'both']: self._autoscaleZon = scalez = bool(enable) else: scalez = False self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley, scalez=scalez) def auto_scale_xyz(self, X, Y, Z=None, had_data=None): x, y, z = map(np.asarray, (X, Y, Z)) try: x, y = x.flatten(), y.flatten() if Z is not None: z = z.flatten() except AttributeError: raise # This updates the bounding boxes as to keep a record as # to what the minimum sized rectangular volume holds the # data. self.xy_dataLim.update_from_data_xy(np.array([x, y]).T, not had_data) if z is not None: self.zz_dataLim.update_from_data_xy(np.array([z, z]).T, not had_data) # Let autoscale_view figure out how to use this data. self.autoscale_view() def autoscale_view(self, tight=None, scalex=True, scaley=True, scalez=True): """ Autoscale the view limits using the data limits. See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation. Note that this function applies to the 3D axes, and as such adds the *scalez* to the function arguments. .. versionchanged :: 1.1.0 Function signature was changed to better match the 2D version. *tight* is now explicitly a kwarg and placed first. .. versionchanged :: 1.2.1 This is now fully functional. """ if not self._ready: return # This method looks at the rectangular volume (see above) # of data and decides how to scale the view portal to fit it. if tight is None: # if image data only just use the datalim _tight = self._tight or ( len(self.images) > 0 and len(self.lines) == len(self.patches) == 0) else: _tight = self._tight = bool(tight) if scalex and self._autoscaleXon: self._shared_x_axes.clean() x0, x1 = self.xy_dataLim.intervalx xlocator = self.xaxis.get_major_locator() try: x0, x1 = xlocator.nonsingular(x0, x1) except AttributeError: x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False, expander=0.05) if self._xmargin > 0: delta = (x1 - x0) * self._xmargin x0 -= delta x1 += delta if not _tight: x0, x1 = xlocator.view_limits(x0, x1) self.set_xbound(x0, x1) if scaley and self._autoscaleYon: self._shared_y_axes.clean() y0, y1 = self.xy_dataLim.intervaly ylocator = self.yaxis.get_major_locator() try: y0, y1 = ylocator.nonsingular(y0, y1) except AttributeError: y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False, expander=0.05) if self._ymargin > 0: delta = (y1 - y0) * self._ymargin y0 -= delta y1 += delta if not _tight: y0, y1 = ylocator.view_limits(y0, y1) self.set_ybound(y0, y1) if scalez and self._autoscaleZon: self._shared_z_axes.clean() z0, z1 = self.zz_dataLim.intervalx zlocator = self.zaxis.get_major_locator() try: z0, z1 = zlocator.nonsingular(z0, z1) except AttributeError: z0, z1 = mtransforms.nonsingular(z0, z1, increasing=False, expander=0.05) if self._zmargin > 0: delta = (z1 - z0) * self._zmargin z0 -= delta z1 += delta if not _tight: z0, z1 = zlocator.view_limits(z0, z1) self.set_zbound(z0, z1) def get_w_lims(self): '''Get 3D world limits.''' minx, maxx = self.get_xlim3d() miny, maxy = self.get_ylim3d() minz, maxz = self.get_zlim3d() return minx, maxx, miny, maxy, minz, maxz def _determine_lims(self, xmin=None, xmax=None, *args, **kwargs): if xmax is None and np.iterable(xmin): xmin, xmax = xmin if xmin == xmax: xmin -= 0.05 xmax += 0.05 return (xmin, xmax) def set_xlim3d(self, left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None): """ Set 3D x limits. See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation. """ if right is None and np.iterable(left): left, right = left if xmin is not None: cbook.warn_deprecated('3.0', name='`xmin`', alternative='`left`', obj_type='argument') if left is not None: raise TypeError('Cannot pass both `xmin` and `left`') left = xmin if xmax is not None: cbook.warn_deprecated('3.0', name='`xmax`', alternative='`right`', obj_type='argument') if right is not None: raise TypeError('Cannot pass both `xmax` and `right`') right = xmax self._process_unit_info(xdata=(left, right)) left = self._validate_converted_limits(left, self.convert_xunits) right = self._validate_converted_limits(right, self.convert_xunits) old_left, old_right = self.get_xlim() if left is None: left = old_left if right is None: right = old_right if left == right: warnings.warn(('Attempting to set identical left==right results\n' 'in singular transformations; automatically expanding.\n' 'left=%s, right=%s') % (left, right)) left, right = mtransforms.nonsingular(left, right, increasing=False) left, right = self.xaxis.limit_range_for_scale(left, right) self.xy_viewLim.intervalx = (left, right) if auto is not None: self._autoscaleXon = bool(auto) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.xy_viewLim.intervalx, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() self.stale = True return left, right set_xlim = set_xlim3d def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None): """ Set 3D y limits. See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation. """ if top is None and np.iterable(bottom): bottom, top = bottom if ymin is not None: cbook.warn_deprecated('3.0', name='`ymin`', alternative='`bottom`', obj_type='argument') if bottom is not None: raise TypeError('Cannot pass both `ymin` and `bottom`') bottom = ymin if ymax is not None: cbook.warn_deprecated('3.0', name='`ymax`', alternative='`top`', obj_type='argument') if top is not None: raise TypeError('Cannot pass both `ymax` and `top`') top = ymax self._process_unit_info(ydata=(bottom, top)) bottom = self._validate_converted_limits(bottom, self.convert_yunits) top = self._validate_converted_limits(top, self.convert_yunits) old_bottom, old_top = self.get_ylim() if bottom is None: bottom = old_bottom if top is None: top = old_top if top == bottom: warnings.warn(('Attempting to set identical bottom==top results\n' 'in singular transformations; automatically expanding.\n' 'bottom=%s, top=%s') % (bottom, top)) bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) bottom, top = self.yaxis.limit_range_for_scale(bottom, top) self.xy_viewLim.intervaly = (bottom, top) if auto is not None: self._autoscaleYon = bool(auto) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.xy_viewLim.intervaly, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() self.stale = True return bottom, top set_ylim = set_ylim3d def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False, *, zmin=None, zmax=None): """ Set 3D z limits. See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation """ if top is None and np.iterable(bottom): bottom, top = bottom if zmin is not None: cbook.warn_deprecated('3.0', name='`zmin`', alternative='`bottom`', obj_type='argument') if bottom is not None: raise TypeError('Cannot pass both `zmin` and `bottom`') bottom = zmin if zmax is not None: cbook.warn_deprecated('3.0', name='`zmax`', alternative='`top`', obj_type='argument') if top is not None: raise TypeError('Cannot pass both `zmax` and `top`') top = zmax self._process_unit_info(zdata=(bottom, top)) bottom = self._validate_converted_limits(bottom, self.convert_zunits) top = self._validate_converted_limits(top, self.convert_zunits) old_bottom, old_top = self.get_zlim() if bottom is None: bottom = old_bottom if top is None: top = old_top if top == bottom: warnings.warn(('Attempting to set identical bottom==top results\n' 'in singular transformations; automatically expanding.\n' 'bottom=%s, top=%s') % (bottom, top)) bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) bottom, top = self.zaxis.limit_range_for_scale(bottom, top) self.zz_viewLim.intervalx = (bottom, top) if auto is not None: self._autoscaleZon = bool(auto) if emit: self.callbacks.process('zlim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_z_axes.get_siblings(self): if other is not self: other.set_zlim(self.zz_viewLim.intervalx, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() self.stale = True return bottom, top set_zlim = set_zlim3d def get_xlim3d(self): return tuple(self.xy_viewLim.intervalx) get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__ get_xlim = get_xlim3d if get_xlim.__doc__ is not None: get_xlim.__doc__ += """ .. versionchanged :: 1.1.0 This function now correctly refers to the 3D x-limits """ def get_ylim3d(self): return tuple(self.xy_viewLim.intervaly) get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__ get_ylim = get_ylim3d if get_ylim.__doc__ is not None: get_ylim.__doc__ += """ .. versionchanged :: 1.1.0 This function now correctly refers to the 3D y-limits. """ def get_zlim3d(self): '''Get 3D z limits.''' return tuple(self.zz_viewLim.intervalx) get_zlim = get_zlim3d def get_zscale(self): """ Return the zaxis scale string %s .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ % (", ".join(mscale.get_scale_names())) return self.zaxis.get_scale() # We need to slightly redefine these to pass scalez=False # to their calls of autoscale_view. def set_xscale(self, value, **kwargs): self.xaxis._set_scale(value, **kwargs) self.autoscale_view(scaley=False, scalez=False) self._update_transScale() if maxes.Axes.set_xscale.__doc__ is not None: set_xscale.__doc__ = maxes.Axes.set_xscale.__doc__ + """ .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ def set_yscale(self, value, **kwargs): self.yaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False, scalez=False) self._update_transScale() self.stale = True if maxes.Axes.set_yscale.__doc__ is not None: set_yscale.__doc__ = maxes.Axes.set_yscale.__doc__ + """ .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ @docstring.dedent_interpd def set_zscale(self, value, **kwargs): """ Set the scaling of the z-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s .. note :: Currently, Axes3D objects only supports linear scales. Other scales may or may not work, and support for these is improving with each release. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ self.zaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False, scaley=False) self._update_transScale() self.stale = True def set_zticks(self, *args, **kwargs): """ Set z-axis tick locations. See :meth:`matplotlib.axes.Axes.set_yticks` for more details. .. note:: Minor ticks are not supported. .. versionadded:: 1.1.0 """ return self.zaxis.set_ticks(*args, **kwargs) def get_zticks(self, minor=False): """ Return the z ticks as a list of locations See :meth:`matplotlib.axes.Axes.get_yticks` for more details. .. note:: Minor ticks are not supported. .. versionadded:: 1.1.0 """ return self.zaxis.get_ticklocs(minor=minor) def get_zmajorticklabels(self): """ Get the ztick labels as a list of Text instances .. versionadded :: 1.1.0 """ return cbook.silent_list('Text zticklabel', self.zaxis.get_majorticklabels()) def get_zminorticklabels(self): """ Get the ztick labels as a list of Text instances .. note:: Minor ticks are not supported. This function was added only for completeness. .. versionadded :: 1.1.0 """ return cbook.silent_list('Text zticklabel', self.zaxis.get_minorticklabels()) def set_zticklabels(self, *args, **kwargs): """ Set z-axis tick labels. See :meth:`matplotlib.axes.Axes.set_yticklabels` for more details. .. note:: Minor ticks are not supported by Axes3D objects. .. versionadded:: 1.1.0 """ return self.zaxis.set_ticklabels(*args, **kwargs) def get_zticklabels(self, minor=False): """ Get ztick labels as a list of Text instances. See :meth:`matplotlib.axes.Axes.get_yticklabels` for more details. .. note:: Minor ticks are not supported. .. versionadded:: 1.1.0 """ return cbook.silent_list('Text zticklabel', self.zaxis.get_ticklabels(minor=minor)) def zaxis_date(self, tz=None): """ Sets up z-axis ticks and labels that treat the z data as dates. *tz* is a timezone string or :class:`tzinfo` instance. Defaults to rc value. .. note:: This function is merely provided for completeness. Axes3D objects do not officially support dates for ticks, and so this may or may not work as expected. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ self.zaxis.axis_date(tz) def get_zticklines(self): """ Get ztick lines as a list of Line2D instances. Note that this function is provided merely for completeness. These lines are re-calculated as the display changes. .. versionadded:: 1.1.0 """ return self.zaxis.get_ticklines() def clabel(self, *args, **kwargs): """ This function is currently not implemented for 3D axes. Returns *None*. """ return None def view_init(self, elev=None, azim=None): """ Set the elevation and azimuth of the axes. This can be used to rotate the axes programmatically. 'elev' stores the elevation angle in the z plane. 'azim' stores the azimuth angle in the x,y plane. if elev or azim are None (default), then the initial value is used which was specified in the :class:`Axes3D` constructor. """ self.dist = 10 if elev is None: self.elev = self.initial_elev else: self.elev = elev if azim is None: self.azim = self.initial_azim else: self.azim = azim def set_proj_type(self, proj_type): """ Set the projection type. Parameters ---------- proj_type : str Type of projection, accepts 'persp' and 'ortho'. """ if proj_type == 'persp': self._projection = proj3d.persp_transformation elif proj_type == 'ortho': self._projection = proj3d.ortho_transformation else: raise ValueError("unrecognized projection: %s" % proj_type) def get_proj(self): """ Create the projection matrix from the current viewing position. elev stores the elevation angle in the z plane azim stores the azimuth angle in the x,y plane dist is the distance of the eye viewing point from the object point. """ relev, razim = np.pi * self.elev/180, np.pi * self.azim/180 xmin, xmax = self.get_xlim3d() ymin, ymax = self.get_ylim3d() zmin, zmax = self.get_zlim3d() # transform to uniform world coordinates 0-1.0,0-1.0,0-1.0 worldM = proj3d.world_transformation(xmin, xmax, ymin, ymax, zmin, zmax) # look into the middle of the new coordinates R = np.array([0.5, 0.5, 0.5]) xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist zp = R[2] + np.sin(relev) * self.dist E = np.array((xp, yp, zp)) self.eye = E self.vvec = R - E self.vvec = self.vvec / proj3d.mod(self.vvec) if abs(relev) > np.pi/2: # upside down V = np.array((0, 0, -1)) else: V = np.array((0, 0, 1)) zfront, zback = -self.dist, self.dist viewM = proj3d.view_transformation(E, R, V) projM = self._projection(zfront, zback) M0 = np.dot(viewM, worldM) M = np.dot(projM, M0) return M def mouse_init(self, rotate_btn=1, zoom_btn=3): """Initializes mouse button callbacks to enable 3D rotation of the axes. Also optionally sets the mouse buttons for 3D rotation and zooming. ============ ======================================================= Argument Description ============ ======================================================= *rotate_btn* The integer or list of integers specifying which mouse button or buttons to use for 3D rotation of the axes. Default = 1. *zoom_btn* The integer or list of integers specifying which mouse button or buttons to use to zoom the 3D axes. Default = 3. ============ ======================================================= """ self.button_pressed = None canv = self.figure.canvas if canv is not None: c1 = canv.mpl_connect('motion_notify_event', self._on_move) c2 = canv.mpl_connect('button_press_event', self._button_press) c3 = canv.mpl_connect('button_release_event', self._button_release) self._cids = [c1, c2, c3] else: warnings.warn( "Axes3D.figure.canvas is 'None', mouse rotation disabled. " "Set canvas then call Axes3D.mouse_init().") # coerce scalars into array-like, then convert into # a regular list to avoid comparisons against None # which breaks in recent versions of numpy. self._rotate_btn = np.atleast_1d(rotate_btn).tolist() self._zoom_btn = np.atleast_1d(zoom_btn).tolist() def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. 3D axes objects do not use the zoom box button. """ return False def can_pan(self): """ Return *True* if this axes supports the pan/zoom button functionality. 3D axes objects do not use the pan/zoom button. """ return False def cla(self): """ Clear axes """ # Disabling mouse interaction might have been needed a long # time ago, but I can't find a reason for it now - BVR (2012-03) #self.disable_mouse_rotation() super().cla() self.zaxis.cla() if self._sharez is not None: self.zaxis.major = self._sharez.zaxis.major self.zaxis.minor = self._sharez.zaxis.minor z0, z1 = self._sharez.get_zlim() self.set_zlim(z0, z1, emit=False, auto=None) self.zaxis._set_scale(self._sharez.zaxis.get_scale()) else: self.zaxis._set_scale('linear') try: self.set_zlim(0, 1) except TypeError: pass self._autoscaleZon = True self._zmargin = 0 self.grid(rcParams['axes3d.grid']) def disable_mouse_rotation(self): """Disable mouse button callbacks. """ # Disconnect the various events we set. for cid in self._cids: self.figure.canvas.mpl_disconnect(cid) self._cids = [] def _button_press(self, event): if event.inaxes == self: self.button_pressed = event.button self.sx, self.sy = event.xdata, event.ydata def _button_release(self, event): self.button_pressed = None def format_zdata(self, z): """ Return *z* string formatted. This function will use the :attr:`fmt_zdata` attribute if it is callable, else will fall back on the zaxis major formatter """ try: return self.fmt_zdata(z) except (AttributeError, TypeError): func = self.zaxis.get_major_formatter().format_data_short val = func(z) return val def format_coord(self, xd, yd): """ Given the 2D view coordinates attempt to guess a 3D coordinate. Looks for the nearest edge to the point and then assumes that the point is at the same z location as the nearest point on the edge. """ if self.M is None: return '' if self.button_pressed in self._rotate_btn: return 'azimuth=%d deg, elevation=%d deg ' % (self.azim, self.elev) # ignore xd and yd and display angles instead # nearest edge p0, p1 = min(self.tunit_edges(), key=lambda edge: proj3d.line2d_seg_dist( edge[0], edge[1], (xd, yd))) # scale the z value to match x0, y0, z0 = p0 x1, y1, z1 = p1 d0 = np.hypot(x0-xd, y0-yd) d1 = np.hypot(x1-xd, y1-yd) dt = d0+d1 z = d1/dt * z0 + d0/dt * z1 x, y, z = proj3d.inv_transform(xd, yd, z, self.M) xs = self.format_xdata(x) ys = self.format_ydata(y) zs = self.format_zdata(z) return 'x=%s, y=%s, z=%s' % (xs, ys, zs) def _on_move(self, event): """Mouse moving button-1 rotates by default. Can be set explicitly in mouse_init(). button-3 zooms by default. Can be set explicitly in mouse_init(). """ if not self.button_pressed: return if self.M is None: return x, y = event.xdata, event.ydata # In case the mouse is out of bounds. if x is None: return dx, dy = x - self.sx, y - self.sy w = self._pseudo_w h = self._pseudo_h self.sx, self.sy = x, y # Rotation if self.button_pressed in self._rotate_btn: # rotate viewing point # get the x and y pixel coords if dx == 0 and dy == 0: return self.elev = art3d.norm_angle(self.elev - (dy/h)*180) self.azim = art3d.norm_angle(self.azim - (dx/w)*180) self.get_proj() self.stale = True self.figure.canvas.draw_idle() # elif self.button_pressed == 2: # pan view # project xv,yv,zv -> xw,yw,zw # pan # pass # Zoom elif self.button_pressed in self._zoom_btn: # zoom view # hmmm..this needs some help from clipping.... minx, maxx, miny, maxy, minz, maxz = self.get_w_lims() df = 1-((h - dy)/h) dx = (maxx-minx)*df dy = (maxy-miny)*df dz = (maxz-minz)*df self.set_xlim3d(minx - dx, maxx + dx) self.set_ylim3d(miny - dy, maxy + dy) self.set_zlim3d(minz - dz, maxz + dz) self.get_proj() self.figure.canvas.draw_idle() def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs): ''' Set zlabel. See doc for :meth:`set_ylabel` for description. ''' if labelpad is not None : self.zaxis.labelpad = labelpad return self.zaxis.set_label_text(zlabel, fontdict, **kwargs) def get_zlabel(self): """ Get the z-label text string. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ label = self.zaxis.get_label() return label.get_text() #### Axes rectangle characteristics def get_frame_on(self): """ Get whether the 3D axes panels are drawn. .. versionadded :: 1.1.0 """ return self._frameon def set_frame_on(self, b): """ Set whether the 3D axes panels are drawn. .. versionadded :: 1.1.0 Parameters ---------- b : bool """ self._frameon = bool(b) self.stale = True def grid(self, b=True, **kwargs): ''' Set / unset 3D grid. .. note:: Currently, this function does not behave the same as :meth:`matplotlib.axes.Axes.grid`, but it is intended to eventually support that behavior. .. versionchanged :: 1.1.0 This function was changed, but not tested. Please report any bugs. ''' # TODO: Operate on each axes separately if len(kwargs): b = True self._draw_grid = cbook._string_to_bool(b) self.stale = True def ticklabel_format( self, *, style='', scilimits=None, useOffset=None, axis='both'): """ Convenience method for manipulating the ScalarFormatter used by default for linear axes in Axed3D objects. See :meth:`matplotlib.axes.Axes.ticklabel_format` for full documentation. Note that this version applies to all three axes of the Axes3D object. Therefore, the *axis* argument will also accept a value of 'z' and the value of 'both' will apply to all three axes. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ style = style.lower() axis = axis.lower() if scilimits is not None: try: m, n = scilimits m+n+1 # check that both are numbers except (ValueError, TypeError): raise ValueError("scilimits must be a sequence of 2 integers") if style[:3] == 'sci': sb = True elif style == 'plain': sb = False elif style == '': sb = None else: raise ValueError("%s is not a valid style value") try: if sb is not None: if axis in ['both', 'z']: self.xaxis.major.formatter.set_scientific(sb) if axis in ['both', 'y']: self.yaxis.major.formatter.set_scientific(sb) if axis in ['both', 'z'] : self.zaxis.major.formatter.set_scientific(sb) if scilimits is not None: if axis in ['both', 'x']: self.xaxis.major.formatter.set_powerlimits(scilimits) if axis in ['both', 'y']: self.yaxis.major.formatter.set_powerlimits(scilimits) if axis in ['both', 'z']: self.zaxis.major.formatter.set_powerlimits(scilimits) if useOffset is not None: if axis in ['both', 'x']: self.xaxis.major.formatter.set_useOffset(useOffset) if axis in ['both', 'y']: self.yaxis.major.formatter.set_useOffset(useOffset) if axis in ['both', 'z']: self.zaxis.major.formatter.set_useOffset(useOffset) except AttributeError: raise AttributeError( "This method only works with the ScalarFormatter.") def locator_params(self, axis='both', tight=None, **kwargs): """ Convenience method for controlling tick locators. See :meth:`matplotlib.axes.Axes.locator_params` for full documentation. Note that this is for Axes3D objects, therefore, setting *axis* to 'both' will result in the parameters being set for all three axes. Also, *axis* can also take a value of 'z' to apply parameters to the z axis. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ _x = axis in ['x', 'both'] _y = axis in ['y', 'both'] _z = axis in ['z', 'both'] if _x: self.xaxis.get_major_locator().set_params(**kwargs) if _y: self.yaxis.get_major_locator().set_params(**kwargs) if _z: self.zaxis.get_major_locator().set_params(**kwargs) self.autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z) def tick_params(self, axis='both', **kwargs): """ Convenience method for changing the appearance of ticks and tick labels. See :meth:`matplotlib.axes.Axes.tick_params` for more complete documentation. The only difference is that setting *axis* to 'both' will mean that the settings are applied to all three axes. Also, the *axis* parameter also accepts a value of 'z', which would mean to apply to only the z-axis. Also, because of how Axes3D objects are drawn very differently from regular 2D axes, some of these settings may have ambiguous meaning. For simplicity, the 'z' axis will accept settings as if it was like the 'y' axis. .. note:: While this function is currently implemented, the core part of the Axes3D object may ignore some of these settings. Future releases will fix this. Priority will be given to those who file bugs. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ super().tick_params(axis, **kwargs) if axis in ['z', 'both'] : zkw = dict(kwargs) zkw.pop('top', None) zkw.pop('bottom', None) zkw.pop('labeltop', None) zkw.pop('labelbottom', None) self.zaxis.set_tick_params(**zkw) ### data limits, ticks, tick labels, and formatting def invert_zaxis(self): """ Invert the z-axis. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ bottom, top = self.get_zlim() self.set_zlim(top, bottom, auto=None) def zaxis_inverted(self): ''' Returns True if the z-axis is inverted. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. ''' bottom, top = self.get_zlim() return top < bottom def get_zbound(self): """ Returns the z-axis numerical bounds where:: lowerBound < upperBound .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ bottom, top = self.get_zlim() if bottom < top: return bottom, top else: return top, bottom def set_zbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the z-axis. This method will honor axes inversion regardless of parameter order. It will not change the :attr:`_autoscaleZon` attribute. .. versionadded :: 1.1.0 This function was added, but not tested. Please report any bugs. """ if upper is None and np.iterable(lower): lower,upper = lower old_lower,old_upper = self.get_zbound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.zaxis_inverted(): if lower < upper: self.set_zlim(upper, lower, auto=None) else: self.set_zlim(lower, upper, auto=None) else : if lower < upper: self.set_zlim(lower, upper, auto=None) else : self.set_zlim(upper, lower, auto=None) def text(self, x, y, z, s, zdir=None, **kwargs): ''' Add text to the plot. kwargs will be passed on to Axes.text, except for the `zdir` keyword, which sets the direction to be used as the z direction. ''' text = super().text(x, y, s, **kwargs) art3d.text_2d_to_3d(text, z, zdir) return text text3D = text text2D = Axes.text def plot(self, xs, ys, *args, zdir='z', **kwargs): ''' Plot 2D or 3D data. ========== ================================================ Argument Description ========== ================================================ *xs*, *ys* x, y coordinates of vertices *zs* z value(s), either one for all points or one for each point. *zdir* Which direction to use as z ('x', 'y' or 'z') when plotting a 2D set. ========== ================================================ Other arguments are passed on to :func:`~matplotlib.axes.Axes.plot` ''' had_data = self.has_data() # `zs` can be passed positionally or as keyword; checking whether # args[0] is a string matches the behavior of 2D `plot` (via # `_process_plot_var_args`). if args and not isinstance(args[0], str): zs = args[0] args = args[1:] if 'zs' in kwargs: raise TypeError("plot() for multiple values for argument 'z'") else: zs = kwargs.pop('zs', 0) # Match length zs = np.broadcast_to(zs, len(xs)) lines = super().plot(xs, ys, *args, **kwargs) for line in lines: art3d.line_2d_to_3d(line, zs=zs, zdir=zdir) xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir) self.auto_scale_xyz(xs, ys, zs, had_data) return lines plot3D = plot def plot_surface(self, X, Y, Z, *args, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs): """ Create a surface plot. By default it will be colored in shades of a solid color, but it also supports color mapping by supplying the *cmap* argument. .. note:: The *rcount* and *ccount* kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Parameters ---------- X, Y, Z : 2d arrays Data values. rcount, ccount : int Maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Defaults to 50. .. versionadded:: 2.0 rstride, cstride : int Downsampling stride in each direction. These arguments are mutually exclusive with *rcount* and *ccount*. If only one of *rstride* or *cstride* is set, the other defaults to 10. 'classic' mode uses a default of ``rstride = cstride = 10`` instead of the new default of ``rcount = ccount = 50``. color : color-like Color of the surface patches. cmap : Colormap Colormap of the surface patches. facecolors : array-like of colors. Colors of each individual patch. norm : Normalize Normalization for the colormap. vmin, vmax : float Bounds for the normalization. shade : bool Whether to shade the face colors. **kwargs : Other arguments are forwarded to `.Poly3DCollection`. """ had_data = self.has_data() if Z.ndim != 2: raise ValueError("Argument Z must be 2-dimensional.") # TODO: Support masked arrays X, Y, Z = np.broadcast_arrays(X, Y, Z) rows, cols = Z.shape has_stride = 'rstride' in kwargs or 'cstride' in kwargs has_count = 'rcount' in kwargs or 'ccount' in kwargs if has_stride and has_count: raise ValueError("Cannot specify both stride and count arguments") rstride = kwargs.pop('rstride', 10) cstride = kwargs.pop('cstride', 10) rcount = kwargs.pop('rcount', 50) ccount = kwargs.pop('ccount', 50) if rcParams['_internal.classic_mode']: # Strides have priority over counts in classic mode. # So, only compute strides from counts # if counts were explicitly given compute_strides = has_count else: # If the strides are provided then it has priority. # Otherwise, compute the strides from the counts. compute_strides = not has_stride if compute_strides: rstride = int(max(np.ceil(rows / rcount), 1)) cstride = int(max(np.ceil(cols / ccount), 1)) if 'facecolors' in kwargs: fcolors = kwargs.pop('facecolors') else: color = kwargs.pop('color', None) if color is None: color = self._get_lines.get_next_color() color = np.array(mcolors.to_rgba(color)) fcolors = None cmap = kwargs.get('cmap', None) shade = kwargs.pop('shade', cmap is None) # Shade the data if shade and cmap is not None and fcolors is not None: fcolors = self._shade_colors_lightsource(Z, cmap, lightsource) # evenly spaced, and including both endpoints row_inds = list(range(0, rows-1, rstride)) + [rows-1] col_inds = list(range(0, cols-1, cstride)) + [cols-1] colset = [] # the sampled facecolor polys = [] for rs, rs_next in zip(row_inds[:-1], row_inds[1:]): for cs, cs_next in zip(col_inds[:-1], col_inds[1:]): ps = [ # +1 ensures we share edges between polygons cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1]) for a in (X, Y, Z) ] # ps = np.stack(ps, axis=-1) ps = np.array(ps).T polys.append(ps) if fcolors is not None: colset.append(fcolors[rs][cs]) def get_normals(polygons): """ Takes a list of polygons and return an array of their normals """ v1 = np.empty((len(polygons), 3)) v2 = np.empty((len(polygons), 3)) for poly_i, ps in enumerate(polygons): # pick three points around the polygon at which to find the normal # doesn't vectorize because polygons is jagged i1, i2, i3 = 0, len(ps)//3, 2*len(ps)//3 v1[poly_i, :] = ps[i1, :] - ps[i2, :] v2[poly_i, :] = ps[i2, :] - ps[i3, :] return np.cross(v1, v2) # note that the striding causes some polygons to have more coordinates # than others polyc = art3d.Poly3DCollection(polys, *args, **kwargs) if fcolors is not None: if shade: colset = self._shade_colors(colset, get_normals(polys)) polyc.set_facecolors(colset) polyc.set_edgecolors(colset) elif cmap: # doesn't vectorize because polys is jagged avg_z = np.array([ps[:,2].mean() for ps in polys]) polyc.set_array(avg_z) if vmin is not None or vmax is not None: polyc.set_clim(vmin, vmax) if norm is not None: polyc.set_norm(norm) else: if shade: colset = self._shade_colors(color, get_normals(polys)) else: colset = color polyc.set_facecolors(colset) self.add_collection(polyc) self.auto_scale_xyz(X, Y, Z, had_data) return polyc def _generate_normals(self, polygons): ''' Generate normals for polygons by using the first three points. This normal of course might not make sense for polygons with more than three points not lying in a plane. ''' normals = [] for verts in polygons: v1 = np.array(verts[0]) - np.array(verts[1]) v2 = np.array(verts[2]) - np.array(verts[0]) normals.append(np.cross(v1, v2)) return normals def _shade_colors(self, color, normals): ''' Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. ''' shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) if proj3d.mod(n) else np.nan for n in normals]) mask = ~np.isnan(shade) if len(shade[mask]) > 0: norm = Normalize(min(shade[mask]), max(shade[mask])) shade[~mask] = min(shade[mask]) color = mcolors.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors def _shade_colors_lightsource(self, data, cmap, lightsource): if lightsource is None: lightsource = LightSource(azdeg=135, altdeg=55) return lightsource.shade(data, cmap) def plot_wireframe(self, X, Y, Z, *args, **kwargs): """ Plot a 3D wireframe. .. note:: The *rcount* and *ccount* kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Parameters ---------- X, Y, Z : 2d arrays Data values. rcount, ccount : int Maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Setting a count to zero causes the data to be not sampled in the corresponding direction, producing a 3D line plot rather than a wireframe plot. Defaults to 50. .. versionadded:: 2.0 rstride, cstride : int Downsampling stride in each direction. These arguments are mutually exclusive with *rcount* and *ccount*. If only one of *rstride* or *cstride* is set, the other defaults to 1. Setting a stride to zero causes the data to be not sampled in the corresponding direction, producing a 3D line plot rather than a wireframe plot. 'classic' mode uses a default of ``rstride = cstride = 1`` instead of the new default of ``rcount = ccount = 50``. **kwargs : Other arguments are forwarded to `.Line3DCollection`. """ had_data = self.has_data() if Z.ndim != 2: raise ValueError("Argument Z must be 2-dimensional.") # FIXME: Support masked arrays X, Y, Z = np.broadcast_arrays(X, Y, Z) rows, cols = Z.shape has_stride = 'rstride' in kwargs or 'cstride' in kwargs has_count = 'rcount' in kwargs or 'ccount' in kwargs if has_stride and has_count: raise ValueError("Cannot specify both stride and count arguments") rstride = kwargs.pop('rstride', 1) cstride = kwargs.pop('cstride', 1) rcount = kwargs.pop('rcount', 50) ccount = kwargs.pop('ccount', 50) if rcParams['_internal.classic_mode']: # Strides have priority over counts in classic mode. # So, only compute strides from counts # if counts were explicitly given if has_count: rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 else: # If the strides are provided then it has priority. # Otherwise, compute the strides from the counts. if not has_stride: rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 # We want two sets of lines, one running along the "rows" of # Z and another set of lines running along the "columns" of Z. # This transpose will make it easy to obtain the columns. tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z) if rstride: rii = list(range(0, rows, rstride)) # Add the last index only if needed if rows > 0 and rii[-1] != (rows - 1): rii += [rows-1] else: rii = [] if cstride: cii = list(range(0, cols, cstride)) # Add the last index only if needed if cols > 0 and cii[-1] != (cols - 1): cii += [cols-1] else: cii = [] if rstride == 0 and cstride == 0: raise ValueError("Either rstride or cstride must be non zero") # If the inputs were empty, then just # reset everything. if Z.size == 0: rii = [] cii = [] xlines = [X[i] for i in rii] ylines = [Y[i] for i in rii] zlines = [Z[i] for i in rii] txlines = [tX[i] for i in cii] tylines = [tY[i] for i in cii] tzlines = [tZ[i] for i in cii] lines = ([list(zip(xl, yl, zl)) for xl, yl, zl in zip(xlines, ylines, zlines)] + [list(zip(xl, yl, zl)) for xl, yl, zl in zip(txlines, tylines, tzlines)]) linec = art3d.Line3DCollection(lines, *args, **kwargs) self.add_collection(linec) self.auto_scale_xyz(X, Y, Z, had_data) return linec def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs): """ ============= ================================================ Argument Description ============= ================================================ *X*, *Y*, *Z* Data values as 1D arrays *color* Color of the surface patches *cmap* A colormap for the surface patches. *norm* An instance of Normalize to map values to colors *vmin* Minimum value to map *vmax* Maximum value to map *shade* Whether to shade the facecolors ============= ================================================ The (optional) triangulation can be specified in one of two ways; either:: plot_trisurf(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or:: plot_trisurf(X, Y, ...) plot_trisurf(X, Y, triangles, ...) plot_trisurf(X, Y, triangles=triangles, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining arguments are:: plot_trisurf(..., Z) where *Z* is the array of values to contour, one per point in the triangulation. Other arguments are passed on to :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` **Examples:** .. plot:: gallery/mplot3d/trisurf3d.py .. plot:: gallery/mplot3d/trisurf3d_2.py .. versionadded:: 1.2.0 This plotting function was added for the v1.2.0 release. """ had_data = self.has_data() # TODO: Support custom face colours if color is None: color = self._get_lines.get_next_color() color = np.array(mcolors.to_rgba(color)) cmap = kwargs.get('cmap', None) shade = kwargs.pop('shade', cmap is None) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) if 'Z' in kwargs: z = np.asarray(kwargs.pop('Z')) else: z = np.asarray(args[0]) # We do this so Z doesn't get passed as an arg to PolyCollection args = args[1:] triangles = tri.get_masked_triangles() xt = tri.x[triangles] yt = tri.y[triangles] zt = z[triangles] verts = np.stack((xt, yt, zt), axis=-1) polyc = art3d.Poly3DCollection(verts, *args, **kwargs) if cmap: # average over the three points of each triangle avg_z = verts[:, :, 2].mean(axis=1) polyc.set_array(avg_z) if vmin is not None or vmax is not None: polyc.set_clim(vmin, vmax) if norm is not None: polyc.set_norm(norm) else: if shade: v1 = verts[:, 0, :] - verts[:, 1, :] v2 = verts[:, 1, :] - verts[:, 2, :] normals = np.cross(v1, v2) colset = self._shade_colors(color, normals) else: colset = color polyc.set_facecolors(colset) self.add_collection(polyc) self.auto_scale_xyz(tri.x, tri.y, z, had_data) return polyc def _3d_extend_contour(self, cset, stride=5): ''' Extend a contour in 3D by creating ''' levels = cset.levels colls = cset.collections dz = (levels[1] - levels[0]) / 2 for z, linec in zip(levels, colls): paths = linec.get_paths() if not paths: continue topverts = art3d.paths_to_3d_segments(paths, z - dz) botverts = art3d.paths_to_3d_segments(paths, z + dz) color = linec.get_color()[0] polyverts = [] normals = [] nsteps = np.round(len(topverts[0]) / stride) if nsteps <= 1: if len(topverts[0]) > 1: nsteps = 2 else: continue stepsize = (len(topverts[0]) - 1) / (nsteps - 1) for i in range(int(np.round(nsteps)) - 1): i1 = int(np.round(i * stepsize)) i2 = int(np.round((i + 1) * stepsize)) polyverts.append([topverts[0][i1], topverts[0][i2], botverts[0][i2], botverts[0][i1]]) v1 = np.array(topverts[0][i1]) - np.array(topverts[0][i2]) v2 = np.array(topverts[0][i1]) - np.array(botverts[0][i1]) normals.append(np.cross(v1, v2)) colors = self._shade_colors(color, normals) colors2 = self._shade_colors(color, normals) polycol = art3d.Poly3DCollection(polyverts, facecolors=colors, edgecolors=colors2) polycol.set_sort_zpos(z) self.add_collection3d(polycol) for col in colls: self.collections.remove(col) def add_contour_set(self, cset, extend3d=False, stride=5, zdir='z', offset=None): zdir = '-' + zdir if extend3d: self._3d_extend_contour(cset, stride) else: for z, linec in zip(cset.levels, cset.collections): if offset is not None: z = offset art3d.line_collection_2d_to_3d(linec, z, zdir=zdir) def add_contourf_set(self, cset, zdir='z', offset=None): zdir = '-' + zdir for z, linec in zip(cset.levels, cset.collections): if offset is not None : z = offset art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir) linec.set_sort_zpos(z) def contour(self, X, Y, Z, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs): ''' Create a 3D contour plot. ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *extend3d* Whether to extend contour in 3D (default: False) *stride* Stride (step size) for extending contour *zdir* The direction to use: x, y or z (default) *offset* If specified plot a projection of the contour lines on this position in plane normal to zdir ========== ================================================ The positional and other keyword arguments are passed on to :func:`~matplotlib.axes.Axes.contour` Returns a :class:`~matplotlib.axes.Axes.contour` ''' had_data = self.has_data() jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) cset = super().contour(jX, jY, jZ, *args, **kwargs) self.add_contour_set(cset, extend3d, stride, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset contour3D = contour def tricontour(self, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs): """ Create a 3D contour plot. ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *extend3d* Whether to extend contour in 3D (default: False) *stride* Stride (step size) for extending contour *zdir* The direction to use: x, y or z (default) *offset* If specified plot a projection of the contour lines on this position in plane normal to zdir ========== ================================================ Other keyword arguments are passed on to :func:`~matplotlib.axes.Axes.tricontour` Returns a :class:`~matplotlib.axes.Axes.contour` .. versionchanged:: 1.3.0 Added support for custom triangulations EXPERIMENTAL: This method currently produces incorrect output due to a longstanding bug in 3D PolyCollection rendering. """ had_data = self.has_data() tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) X = tri.x Y = tri.y if 'Z' in kwargs: Z = kwargs.pop('Z') else: Z = args[0] # We do this so Z doesn't get passed as an arg to Axes.tricontour args = args[1:] jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) tri = Triangulation(jX, jY, tri.triangles, tri.mask) cset = super().tricontour(tri, jZ, *args, **kwargs) self.add_contour_set(cset, extend3d, stride, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs): ''' Create a 3D contourf plot. ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *zdir* The direction to use: x, y or z (default) *offset* If specified plot a projection of the filled contour on this position in plane normal to zdir ========== ================================================ The positional and keyword arguments are passed on to :func:`~matplotlib.axes.Axes.contourf` Returns a :class:`~matplotlib.axes.Axes.contourf` .. versionchanged :: 1.1.0 The *zdir* and *offset* kwargs were added. ''' had_data = self.has_data() jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) cset = super().contourf(jX, jY, jZ, *args, **kwargs) self.add_contourf_set(cset, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset contourf3D = contourf def tricontourf(self, *args, zdir='z', offset=None, **kwargs): """ Create a 3D contourf plot. ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *zdir* The direction to use: x, y or z (default) *offset* If specified plot a projection of the contour lines on this position in plane normal to zdir ========== ================================================ Other keyword arguments are passed on to :func:`~matplotlib.axes.Axes.tricontour` Returns a :class:`~matplotlib.axes.Axes.contour` .. versionchanged :: 1.3.0 Added support for custom triangulations EXPERIMENTAL: This method currently produces incorrect output due to a longstanding bug in 3D PolyCollection rendering. """ had_data = self.has_data() tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) X = tri.x Y = tri.y if 'Z' in kwargs: Z = kwargs.pop('Z') else: Z = args[0] # We do this so Z doesn't get passed as an arg to Axes.tricontourf args = args[1:] jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) tri = Triangulation(jX, jY, tri.triangles, tri.mask) cset = super().tricontourf(tri, jZ, *args, **kwargs) self.add_contourf_set(cset, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset def add_collection3d(self, col, zs=0, zdir='z'): ''' Add a 3D collection object to the plot. 2D collection types are converted to a 3D version by modifying the object and adding z coordinate information. Supported are: - PolyCollection - LineCollection - PatchCollection ''' zvals = np.atleast_1d(zs) if len(zvals) > 0 : zsortval = min(zvals) else : zsortval = 0 # FIXME: Fairly arbitrary. Is there a better value? # FIXME: use issubclass() (although, then a 3D collection # object would also pass.) Maybe have a collection3d # abstract class to test for and exclude? if type(col) is mcoll.PolyCollection: art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) elif type(col) is mcoll.LineCollection: art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) elif type(col) is mcoll.PatchCollection: art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) super().add_collection(col) def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs): ''' Create a scatter plot. ============ ======================================================== Argument Description ============ ======================================================== *xs*, *ys* Positions of data points. *zs* Either an array of the same length as *xs* and *ys* or a single value to place all points in the same plane. Default is 0. *zdir* Which direction to use as z ('x', 'y' or 'z') when plotting a 2D set. *s* Size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c* A color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however, including the case of a single row to specify the same color for all points. *depthshade* Whether or not to shade the scatter markers to give the appearance of depth. Default is *True*. ============ ======================================================== Keyword arguments are passed on to :func:`~matplotlib.axes.Axes.scatter`. Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection` ''' had_data = self.has_data() xs, ys, zs = np.broadcast_arrays( *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]]) s = np.ma.ravel(s) # This doesn't have to match x, y in size. xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c) patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs) is_2d = not np.iterable(zs) zs = np.broadcast_to(zs, len(xs)) art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir, depthshade=depthshade) if self._zmargin < 0.05 and xs.size > 0: self.set_zmargin(0.05) #FIXME: why is this necessary? if not is_2d: self.auto_scale_xyz(xs, ys, zs, had_data) return patches scatter3D = scatter def bar(self, left, height, zs=0, zdir='z', *args, **kwargs): ''' Add 2D bar(s). ========== ================================================ Argument Description ========== ================================================ *left* The x coordinates of the left sides of the bars. *height* The height of the bars. *zs* Z coordinate of bars, if one value is specified they will all be placed at the same z. *zdir* Which direction to use as z ('x', 'y' or 'z') when plotting a 2D set. ========== ================================================ Keyword arguments are passed onto :func:`~matplotlib.axes.Axes.bar`. Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection` ''' had_data = self.has_data() patches = super().bar(left, height, *args, **kwargs) zs = np.broadcast_to(zs, len(left)) verts = [] verts_zs = [] for p, z in zip(patches, zs): vs = art3d.get_patch_verts(p) verts += vs.tolist() verts_zs += [z] * len(vs) art3d.patch_2d_to_3d(p, z, zdir) if 'alpha' in kwargs: p.set_alpha(kwargs['alpha']) if len(verts) > 0 : # the following has to be skipped if verts is empty # NOTE: Bugs could still occur if len(verts) > 0, # but the "2nd dimension" is empty. xs, ys = list(zip(*verts)) else : xs, ys = [], [] xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir) self.auto_scale_xyz(xs, ys, verts_zs, had_data) return patches def bar3d(self, x, y, z, dx, dy, dz, color=None, zsort='average', shade=True, *args, **kwargs): """Generate a 3D barplot. This method creates three dimensional barplot where the width, depth, height, and color of the bars can all be uniquely set. Parameters ---------- x, y, z : array-like The coordinates of the anchor point of the bars. dx, dy, dz : scalar or array-like The width, depth, and height of the bars, respectively. color : sequence of valid color specifications, optional The color of the bars can be specified globally or individually. This parameter can be: - A single color value, to color all bars the same color. - An array of colors of length N bars, to color each bar independently. - An array of colors of length 6, to color the faces of the bars similarly. - An array of colors of length 6 * N bars, to color each face independently. When coloring the faces of the boxes specifically, this is the order of the coloring: 1. -Z (bottom of box) 2. +Z (top of box) 3. -Y 4. +Y 5. -X 6. +X zsort : str, optional The z-axis sorting scheme passed onto :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` shade : bool, optional (default = True) When true, this shades the dark sides of the bars (relative to the plot's source of light). Any additional keyword arguments are passed onto :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` Returns ------- collection : Poly3DCollection A collection of three dimensional polygons representing the bars. """ had_data = self.has_data() x, y, z, dx, dy, dz = np.broadcast_arrays( np.atleast_1d(x), y, z, dx, dy, dz) minx = np.min(x) maxx = np.max(x + dx) miny = np.min(y) maxy = np.max(y + dy) minz = np.min(z) maxz = np.max(z + dz) polys = [] for xi, yi, zi, dxi, dyi, dzi in zip(x, y, z, dx, dy, dz): polys.extend([ ((xi, yi, zi), (xi + dxi, yi, zi), (xi + dxi, yi + dyi, zi), (xi, yi + dyi, zi)), ((xi, yi, zi + dzi), (xi + dxi, yi, zi + dzi), (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)), ((xi, yi, zi), (xi + dxi, yi, zi), (xi + dxi, yi, zi + dzi), (xi, yi, zi + dzi)), ((xi, yi + dyi, zi), (xi + dxi, yi + dyi, zi), (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)), ((xi, yi, zi), (xi, yi + dyi, zi), (xi, yi + dyi, zi + dzi), (xi, yi, zi + dzi)), ((xi + dxi, yi, zi), (xi + dxi, yi + dyi, zi), (xi + dxi, yi + dyi, zi + dzi), (xi + dxi, yi, zi + dzi)), ]) facecolors = [] if color is None: color = [self._get_patches_for_fill.get_next_color()] if len(color) == len(x): # bar colors specified, need to expand to number of faces for c in color: facecolors.extend([c] * 6) else: # a single color specified, or face colors specified explicitly facecolors = list(mcolors.to_rgba_array(color)) if len(facecolors) < len(x): facecolors *= (6 * len(x)) if shade: normals = self._generate_normals(polys) sfacecolors = self._shade_colors(facecolors, normals) else: sfacecolors = facecolors col = art3d.Poly3DCollection(polys, zsort=zsort, facecolor=sfacecolors, *args, **kwargs) self.add_collection(col) self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data) return col def set_title(self, label, fontdict=None, loc='center', **kwargs): ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs) (x, y) = self.title.get_position() self.title.set_y(0.92 * y) return ret set_title.__doc__ = maxes.Axes.set_title.__doc__ def quiver(self, *args, length=1, arrow_length_ratio=.3, pivot='tail', normalize=False, **kwargs): """ Plot a 3D field of arrows. call signatures:: quiver(X, Y, Z, U, V, W, **kwargs) Arguments: *X*, *Y*, *Z*: The x, y and z coordinates of the arrow locations (default is tail of arrow; see *pivot* kwarg) *U*, *V*, *W*: The x, y and z components of the arrow vectors The arguments could be array-like or scalars, so long as they they can be broadcast together. The arguments can also be masked arrays. If an element in any of argument is masked, then that corresponding quiver element will not be plotted. Keyword arguments: *length*: [1.0 | float] The length of each quiver, default to 1.0, the unit is the same with the axes *arrow_length_ratio*: [0.3 | float] The ratio of the arrow head with respect to the quiver, default to 0.3 *pivot*: [ 'tail' | 'middle' | 'tip' ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. Default is 'tail' *normalize*: bool When True, all of the arrows will be the same length. This defaults to False, where the arrows will be different lengths depending on the values of u,v,w. Any additional keyword arguments are delegated to :class:`~matplotlib.collections.LineCollection` """ def calc_arrow(uvw, angle=15): """ To calculate the arrow head. uvw should be a unit vector. We normalize it here: """ # get unit direction vector perpendicular to (u,v,w) norm = np.linalg.norm(uvw[:2]) if norm > 0: x = uvw[1] / norm y = -uvw[0] / norm else: x, y = 0, 1 # compute the two arrowhead direction unit vectors ra = math.radians(angle) c = math.cos(ra) s = math.sin(ra) # construct the rotation matrices Rpos = np.array([[c+(x**2)*(1-c), x*y*(1-c), y*s], [y*x*(1-c), c+(y**2)*(1-c), -x*s], [-y*s, x*s, c]]) # opposite rotation negates all the sin terms Rneg = Rpos.copy() Rneg[[0,1,2,2],[2,2,0,1]] = -Rneg[[0,1,2,2],[2,2,0,1]] # multiply them to get the rotated vector return Rpos.dot(uvw), Rneg.dot(uvw) had_data = self.has_data() # handle args argi = 6 if len(args) < argi: raise ValueError('Wrong number of arguments. Expected %d got %d' % (argi, len(args))) # first 6 arguments are X, Y, Z, U, V, W input_args = args[:argi] # if any of the args are scalar, convert into list input_args = [[k] if isinstance(k, (int, float)) else k for k in input_args] # extract the masks, if any masks = [k.mask for k in input_args if isinstance(k, np.ma.MaskedArray)] # broadcast to match the shape bcast = np.broadcast_arrays(*(input_args + masks)) input_args = bcast[:argi] masks = bcast[argi:] if masks: # combine the masks into one mask = reduce(np.logical_or, masks) # put mask on and compress input_args = [np.ma.array(k, mask=mask).compressed() for k in input_args] else: input_args = [k.flatten() for k in input_args] if any(len(v) == 0 for v in input_args): # No quivers, so just make an empty collection and return early linec = art3d.Line3DCollection([], *args[argi:], **kwargs) self.add_collection(linec) return linec # Following assertions must be true before proceeding # must all be ndarray assert all(isinstance(k, np.ndarray) for k in input_args) # must all in same shape assert len({k.shape for k in input_args}) == 1 shaft_dt = np.linspace(0, length, num=2) arrow_dt = shaft_dt * arrow_length_ratio if pivot == 'tail': shaft_dt -= length elif pivot == 'middle': shaft_dt -= length/2. elif pivot != 'tip': raise ValueError('Invalid pivot argument: ' + str(pivot)) XYZ = np.column_stack(input_args[:3]) UVW = np.column_stack(input_args[3:argi]).astype(float) # Normalize rows of UVW norm = np.linalg.norm(UVW, axis=1) # If any row of UVW is all zeros, don't make a quiver for it mask = norm > 0 XYZ = XYZ[mask] if normalize: UVW = UVW[mask] / norm[mask].reshape((-1, 1)) else: UVW = UVW[mask] if len(XYZ) > 0: # compute the shaft lines all at once with an outer product shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1) # compute head direction vectors, n heads by 2 sides by 3 dimensions head_dirs = np.array([calc_arrow(d) for d in UVW]) # compute all head lines at once, starting from where the shaft ends heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs) # stack left and right head lines together heads.shape = (len(arrow_dt), -1, 3) # transpose to get a list of lines heads = heads.swapaxes(0, 1) lines = [*shafts, *heads] else: lines = [] linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs) self.add_collection(linec) self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data) return linec quiver3D = quiver def voxels(self, *args, facecolors=None, edgecolors=None, **kwargs): """ ax.voxels([x, y, z,] /, filled, **kwargs) Plot a set of filled voxels All voxels are plotted as 1x1x1 cubes on the axis, with filled[0,0,0] placed with its lower corner at the origin. Occluded faces are not plotted. Call signatures:: voxels(filled, facecolors=fc, edgecolors=ec, **kwargs) voxels(x, y, z, filled, facecolors=fc, edgecolors=ec, **kwargs) .. versionadded:: 2.1 Parameters ---------- filled : 3D np.array of bool A 3d array of values, with truthy values indicating which voxels to fill x, y, z : 3D np.array, optional The coordinates of the corners of the voxels. This should broadcast to a shape one larger in every dimension than the shape of `filled`. These can be used to plot non-cubic voxels. If not specified, defaults to increasing integers along each axis, like those returned by :func:`~numpy.indices`. As indicated by the ``/`` in the function signature, these arguments can only be passed positionally. facecolors, edgecolors : array_like, optional The color to draw the faces and edges of the voxels. Can only be passed as keyword arguments. This parameter can be: - A single color value, to color all voxels the same color. This can be either a string, or a 1D rgb/rgba array - ``None``, the default, to use a single color for the faces, and the style default for the edges. - A 3D ndarray of color names, with each item the color for the corresponding voxel. The size must match the voxels. - A 4D ndarray of rgb/rgba data, with the components along the last axis. **kwargs Additional keyword arguments to pass onto :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` Returns ------- faces : dict A dictionary indexed by coordinate, where ``faces[i,j,k]`` is a `Poly3DCollection` of the faces drawn for the voxel ``filled[i,j,k]``. If no faces were drawn for a given voxel, either because it was not asked to be drawn, or it is fully occluded, then ``(i,j,k) not in faces``. Examples -------- .. plot:: gallery/mplot3d/voxels.py .. plot:: gallery/mplot3d/voxels_rgb.py .. plot:: gallery/mplot3d/voxels_torus.py .. plot:: gallery/mplot3d/voxels_numpy_logo.py """ # work out which signature we should be using, and use it to parse # the arguments. Name must be voxels for the correct error message if len(args) >= 3: # underscores indicate position only def voxels(__x, __y, __z, filled, **kwargs): return (__x, __y, __z), filled, kwargs else: def voxels(filled, **kwargs): return None, filled, kwargs xyz, filled, kwargs = voxels(*args, **kwargs) # check dimensions if filled.ndim != 3: raise ValueError("Argument filled must be 3-dimensional") size = np.array(filled.shape, dtype=np.intp) # check xyz coordinates, which are one larger than the filled shape coord_shape = tuple(size + 1) if xyz is None: x, y, z = np.indices(coord_shape) else: x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz) def _broadcast_color_arg(color, name): if np.ndim(color) in (0, 1): # single color, like "red" or [1, 0, 0] return np.broadcast_to(color, filled.shape + np.shape(color)) elif np.ndim(color) in (3, 4): # 3D array of strings, or 4D array with last axis rgb if np.shape(color)[:3] != filled.shape: raise ValueError( "When multidimensional, {} must match the shape of " "filled".format(name)) return color else: raise ValueError("Invalid {} argument".format(name)) # broadcast and default on facecolors if facecolors is None: facecolors = self._get_patches_for_fill.get_next_color() facecolors = _broadcast_color_arg(facecolors, 'facecolors') # broadcast but no default on edgecolors edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors') # always scale to the full array, even if the data is only in the center self.auto_scale_xyz(x, y, z) # points lying on corners of a square square = np.array([ [0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0] ], dtype=np.intp) voxel_faces = defaultdict(list) def permutation_matrices(n): """ Generator of cyclic permutation matices """ mat = np.eye(n, dtype=np.intp) for i in range(n): yield mat mat = np.roll(mat, 1, axis=0) # iterate over each of the YZ, ZX, and XY orientations, finding faces to # render for permute in permutation_matrices(3): # find the set of ranges to iterate over pc, qc, rc = permute.T.dot(size) pinds = np.arange(pc) qinds = np.arange(qc) rinds = np.arange(rc) square_rot = square.dot(permute.T) # iterate within the current plane for p in pinds: for q in qinds: # iterate perpendicularly to the current plane, handling # boundaries. We only draw faces between a voxel and an # empty space, to avoid drawing internal faces. # draw lower faces p0 = permute.dot([p, q, 0]) i0 = tuple(p0) if filled[i0]: voxel_faces[i0].append(p0 + square_rot) # draw middle faces for r1, r2 in zip(rinds[:-1], rinds[1:]): p1 = permute.dot([p, q, r1]) p2 = permute.dot([p, q, r2]) i1 = tuple(p1) i2 = tuple(p2) if filled[i1] and not filled[i2]: voxel_faces[i1].append(p2 + square_rot) elif not filled[i1] and filled[i2]: voxel_faces[i2].append(p2 + square_rot) # draw upper faces pk = permute.dot([p, q, rc-1]) pk2 = permute.dot([p, q, rc]) ik = tuple(pk) if filled[ik]: voxel_faces[ik].append(pk2 + square_rot) # iterate over the faces, and generate a Poly3DCollection for each voxel polygons = {} for coord, faces_inds in voxel_faces.items(): # convert indices into 3D positions if xyz is None: faces = faces_inds else: faces = [] for face_inds in faces_inds: ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2] face = np.empty(face_inds.shape) face[:, 0] = x[ind] face[:, 1] = y[ind] face[:, 2] = z[ind] faces.append(face) poly = art3d.Poly3DCollection(faces, facecolors=facecolors[coord], edgecolors=edgecolors[coord], **kwargs ) self.add_collection3d(poly) polygons[coord] = poly return polygons def get_test_data(delta=0.05): ''' Return a tuple X, Y, Z with a test data set. ''' x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / (2 * np.pi * 0.5 * 1.5)) Z = Z2 - Z1 X = X * 10 Y = Y * 10 Z = Z * 500 return X, Y, Z ######################################################## # Register Axes3D as a 'projection' object available # for use just like any other axes ######################################################## import matplotlib.projections as proj proj.projection_registry.register(Axes3D)
3b431dde97db8ea84f5bdc268f350d1f65c5b6bf
870a749904a488193b8bc52d3dc86335ebab812d
/example4.py
f6f06cc69bce0a50d2a7038c5b4341e475ac8c50
[]
no_license
Majd96/DebuggingPython
e8dcf23bc0fea9acc758a2fd85babb79c17f3185
da965b63f0c2e63e08353b3c4a188d7e1b5bb363
refs/heads/master
2020-03-23T14:54:57.219202
2018-07-20T12:12:30
2018-07-20T12:12:30
141,707,926
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
#print the first letters until reaching the half word = "Jerusamlem" pos=0 while(pos<len(word)/2): print(word[pos])
f69c16a19a338a4c13d918bc24780962c2d0cd5e
1c7e774fbf663771e404b086a61aa14468091e40
/myprofile/asgi.py
86c9ced93554a16e75fb33dbc5fb94858288c5fe
[]
no_license
aliasgartaksali/myprofile
3d37340bd460989750d6ced52c35fb245f48a44f
dc2a9704316f2e3fb7d6de3f0d52f4ae4651a3e7
refs/heads/main
2023-01-07T18:53:06.123253
2020-10-19T11:53:41
2020-10-19T11:53:41
305,365,005
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" ASGI config for myprofile project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myprofile.settings') application = get_asgi_application()
55226d6399a5558f11abc91e3f66bf5e0d190179
5c6a2b2ba00b28803f1172393d44ac65cd762a0d
/blog/urls.py
0ffc4b886fac8171d260afd8db284d43329e9f9e
[]
no_license
PankajBasera/My-first-blog
ac8b141a1bafd3febbcf34fde9c4a6c1a72623ba
8b8afb055c0581250f5610c77630c548d3173d94
refs/heads/master
2023-09-02T20:43:36.797082
2021-10-28T15:16:46
2021-10-28T15:16:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
from django.urls import path from django.urls.resolvers import URLPattern from . import views urlpatterns = [ path('', views.post_list, name='post_list'), ]
1025f53cec2feecc8996ae422282e42729e32047
52400f92d663d920cfaceeb48ab05c54b5065302
/npsemrel/npsemrel/ml/features/syntax/__init__.py
2c11642198c3dab3127537e58e50870f69e7457d
[]
no_license
Barkar19/wsd-nlp
22cd2f4414b217f8660e2b36b5eb07e86b4fa72f
01b4412246c877eb30c82cefa3f2ec0b05612f9c
refs/heads/master
2021-09-05T06:26:40.261572
2018-01-24T18:17:18
2018-01-24T18:17:18
111,022,523
0
0
null
null
null
null
UTF-8
Python
false
false
32
py
# import feature_i # import pos
b5f7b40cdab61e773d1bec1c144966fc8c019ad5
b9878c92b857f73ff0452fc51c822cfc9fa4dc1c
/watson_machine_learning_client/libs/repo/swagger_client/models/connection_object_target_experiments.py
f8548c105d870dc07cfbde41d0896b443cf3f175
[]
no_license
DavidCastilloAlvarado/WMLC_mod
35f5d84990c59b623bfdd27369fe7461c500e0a5
f2673b9c77bd93c0e017831ee4994f6d9789d9a1
refs/heads/master
2022-12-08T02:54:31.000267
2020-09-02T15:49:21
2020-09-02T15:49:21
292,322,284
0
0
null
null
null
null
UTF-8
Python
false
false
4,806
py
# coding: utf-8 """ No descripton provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class ConnectionObjectTargetExperiments(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, type=None, connection=None, target=None): """ ConnectionObjectTargetExperiments - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'type': 'str', 'connection': 'dict(str, str)', 'target': 'object' } self.attribute_map = { 'type': 'type', 'connection': 'connection', 'target': 'target' } self._type = type self._connection = connection self._target = target @property def type(self): """ Gets the type of this ConnectionObjectTargetExperiments. :return: The type of this ConnectionObjectTargetExperiments. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this ConnectionObjectTargetExperiments. :param type: The type of this ConnectionObjectTargetExperiments. :type: str """ self._type = type @property def connection(self): """ Gets the connection of this ConnectionObjectTargetExperiments. :return: The connection of this ConnectionObjectTargetExperiments. :rtype: dict(str, str) """ return self._connection @connection.setter def connection(self, connection): """ Sets the connection of this ConnectionObjectTargetExperiments. :param connection: The connection of this ConnectionObjectTargetExperiments. :type: dict(str, str) """ self._connection = connection @property def target(self): """ Gets the target of this ConnectionObjectTargetExperiments. :return: The target of this ConnectionObjectTargetExperiments. :rtype: object """ return self._target @target.setter def target(self, target): """ Sets the target of this ConnectionObjectTargetExperiments. :param target: The target of this ConnectionObjectTargetExperiments. :type: object """ self._target = target def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
b67e95b7e22f46ae001f3e019af40c357b893231
c3cf5e0dc112b9118eee75264d069c0267a8d810
/utils/no_segment_processer_add_validation.py
6ca87b9268e86daa93d65dd879a7cfc5af3d5c22
[]
no_license
chengtbf/ImageCaption
e8f724f594ef7122940a6dcb3f40c4def67092b1
76c2284d3f05a6c34c16744ac2e1ddc6d0cf83d5
refs/heads/master
2021-04-12T11:27:41.926871
2018-07-02T08:35:30
2018-07-02T08:35:30
126,583,051
0
0
null
null
null
null
UTF-8
Python
false
false
2,381
py
def copy_value(list): ret = [] for e in list: ret.append(e) return ret in_file = 'D:/train.txt' in2_file = 'D:/valid.txt' out_dic_file = 'D:/valid_dictionary.txt' out_vec_file = 'D:/valid_train_vector.txt' out_vec2_file = 'D:/valid_valid_vector.txt' sentences = [] valid_sentences = [] content = [] for line in open(in_file): line = line.split('\n')[0] if line.isdigit(): if len(content) > 0: sentences.append(copy_value(content)) content.clear() else: content.append(line) sentences.append(copy_value(content)) content.clear() for line in open(in2_file): line = line.split('\n')[0] if line.isdigit(): if len(content) > 0: valid_sentences.append(copy_value(content)) content.clear() else: content.append(line) valid_sentences.append(copy_value(content)) dic = {} dic["<S>"] = 1 dic["</S>"] = 2 dic_size = 3 for st in sentences: for sent in st: for i in range(len(sent)): if sent[i] in dic: continue else: dic[sent[i]] = dic_size dic_size += 1 for st in valid_sentences: for sent in st: for i in range(len(sent)): if sent[i] in dic: continue else: dic[sent[i]] = dic_size dic_size += 1 dic_size -= 1 #print(dic['大']) #output map with open(out_dic_file, 'w') as f: id2word = {} for k, v in dic.items(): id2word[v] = k for i in range(dic_size): f.write(id2word[i+1] + " " + repr(i+1) + '\n') #output vector with open(out_vec_file, 'w') as f: for index in range(len(sentences)): f.write(repr(index+1) + "\n") for sent in sentences[index]: f.write("1 ") for i in range(len(sent)): #print(sent[i]) #print(dic[sent[i]]) f.write(repr(dic[sent[i]]) + " ") f.write("2\n") with open(out_vec2_file, 'w') as f: for index in range(len(valid_sentences)): f.write(repr(index+8001) + "\n") for sent in valid_sentences[index]: f.write("1 ") for i in range(len(sent)): #print(sent[i]) #print(dic[sent[i]]) f.write(repr(dic[sent[i]]) + " ") f.write("2\n")
16632e1cfd929360e81b6b66540741a40107d618
113d9082d153adbccd637da76318b984f249baf5
/setup.py
b2cce85ef433c74f9b005df1a6e7c62d9261ca91
[ "BSD-3-Clause" ]
permissive
jorcast18462/django-applepodcast
bebb6f85d4c3ed98c96e6628443ece613898ca32
50732acfbe1ca258e5afb44c117a6ac5fa0c1219
refs/heads/master
2023-03-21T13:05:08.576831
2018-10-06T22:19:12
2018-10-06T22:19:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,675
py
from __future__ import unicode_literals import os from setuptools import find_packages, setup setup( name='django-applepodcast', version='0.3.7', description='A Django podcast app optimized for Apple Podcasts', long_description=open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'README.rst')).read(), author='Richard Cornish', author_email='[email protected]', url='https://github.com/richardcornish/django-applepodcast', license='BSD', zip_safe=False, include_package_data=True, packages=find_packages(exclude=('tests',)), install_requires=[ 'bleach', 'mutagen', 'pillow', ], test_suite='podcast.tests', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.8', 'Framework :: Django :: 1.9', 'Framework :: Django :: 1.10', 'Framework :: Django :: 1.11', 'Framework :: Django :: 2.0', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
369004a9e9a87da680156595de04557b95c67f10
5e966da612d69f8428d1d2216d75e0e63c3f6b02
/predict_test.py
ffff667db80f97fd3f91e1d594804806ddf02d7c
[]
no_license
ieiriyuki/titanic-survival
8f061afcf9d16308970cabc3fa3e605573cb8b6b
fd33b976cbf0184b1e2e3f9ebbe5545e6d5d218d
refs/heads/master
2020-03-21T01:46:45.159306
2018-06-22T07:10:22
2018-06-22T07:10:22
137,961,998
0
0
null
null
null
null
UTF-8
Python
false
false
1,108
py
#!/usr/bin/python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from time import time import pandas as pd train0 = pd.read_csv("./data/train.csv", sep=",", header=0) test0 = pd.read_csv("./data/test.csv", sep=",", header=0) train1 = train0[['Survived','Pclass','Sex', 'Parch']] train1 = train1.mask(train1 == 'female', 1) train1 = train1.mask(train1 == 'male', 0) test1 = test0[['Pclass','Sex', 'Parch']] test1 = test1.mask(test1 == 'female', 1) test1 = test1.mask(test1 == 'male', 0) mdl = LogisticRegression(C=0.2) x_train, x_test, y_train, y_test = train_test_split( train1[['Pclass','Sex','Parch']], train1[['Survived']], test_size=0.2 ) mdl.fit(x_train, y_train) print("score for train is: {0}".format(mdl.score(x_train, y_train))) print("score for test is: {0}".format(mdl.score(x_test, y_test))) pred = mdl.predict(test1[['Pclass','Sex', 'Parch']]) submit = pd.DataFrame({'PassengerId': test0['PassengerId'], 'Survived': pred}) submit.to_csv("./data/pc_sx_pr_submission.csv", index=False) #end of file
68740806ca9fdcb8c924b5a4b88a4c98f0efd8d7
3b831eedb7afede666088b6e018c829219938a93
/Grouping_Values.py
d73419177b17ac18330e2f7223561e75e54c044e
[]
no_license
joydas65/GeeksforGeeks
f03ed1aaea88d894f4d8ac0d70f574c4cd78a64b
e58c42cb3c9fe3a87e6683d8e3fda442dc83b45b
refs/heads/master
2023-01-12T02:19:54.967779
2023-01-10T17:28:41
2023-01-10T17:28:41
161,937,667
9
2
null
null
null
null
UTF-8
Python
false
false
432
py
class Solution: def isPossible(self, N, arr, K): # code here d = dict() for i in arr: if i in d: d[i] += 1 else: d[i] = 1 for i in d: if d[i] > K*2: return 0 return 1
695df45d3c45d2a3dddc563aa799797402a2e546
91ac436e321e37edc4c35a92ad8c190da31a2dca
/pickle/pickle_recursive.py
986e15fbd7d3038c2931c9c281b0ad65b759b444
[]
no_license
jagan/ze-learnpythehardway
64d1fce42c7bce851377d1a0b96f42c295805335
2304ff09904a14ee5fe87e204f2c3732ac934d50
refs/heads/master
2021-01-13T01:36:35.254041
2013-10-25T16:24:11
2013-10-25T16:24:11
13,439,561
0
1
null
null
null
null
UTF-8
Python
false
false
761
py
import cPickle as pik def dump_an_obj(obj, file): with open(file, "wb") as f: pik.dump(obj, f, 2) # Pickle protocol version 2 def read_the_obj(file): with open(file, "rb") as f: obj = pik.load(f) return obj if __name__ == "__main__": l = [1, 2, 3] l.append(l) print l print l[3] fname = 'recursive.pyobj' dump_an_obj(l, fname) m = read_the_obj(fname) print m print m[3] #### l1 = [1, 2, 3] print l1 l2 = l1 l2.append(4) print l1, l2 fname = 'tuple.pyobj' dump_an_obj((l1, l2), fname) m1, m2 = read_the_obj(fname) print m1, m2 m2.append(5) print 'm1, m2:', m1, m2 assert m1 is m2 print 'l1, l2:', l1, l2 assert not l1 is m1
09c1b393b0f9f6175dd19bafbe061ba24c38973d
2119abe2e865dabaac5f8df5bd5688df5c817ba8
/g13gui/g13/displaydevice_tests.py
afa1eba93a4340255898e6240ca604d6e52d7cbc
[ "MIT" ]
permissive
ddnut/g13gui
a4daba079367ff24f910a6614671b2cf8c7a9867
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
refs/heads/master
2023-06-17T23:40:09.841290
2021-07-13T19:05:16
2021-07-13T19:05:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,271
py
import unittest import time from dbus.mainloop.glib import DBusGMainLoop from g13gui.model.prefs import Preferences from g13gui.bitwidgets.display import Display from g13gui.bitwidgets.screen import Screen from g13gui.bitwidgets.label import Label from g13gui.bitwidgets.rectangle import Rectangle from g13gui.g13.displaydevice import G13DisplayDevice from g13gui.g13.manager import DeviceManager from g13gui.bitwidgets import DISPLAY_WIDTH from g13gui.bitwidgets import DISPLAY_HEIGHT class DisplayDeviceTests(unittest.TestCase): def setUp(self): self.prefs = Preferences() self.manager = DeviceManager(self.prefs) self.manager.start() time.sleep(1) self.dd = G13DisplayDevice(self.manager) self.d = Display(self.dd) self.s = Screen(self.d) def tearDown(self): time.sleep(1) self.manager.shutdown() def testDisplay(self): rect = Rectangle(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT) rect.show() self.s.addChild(rect) label = Label(0, 0, 'Hello, world!') label.show() self.s.addChild(label) self.s.buttonBar.hide() self.s.nextFrame() if __name__ == '__main__': DBusGMainLoop(set_as_default=True) unittest.main()
68da6883582383a3328f9aa8107fe126c7fa7346
554bac52953d73db04c686ebbef3eb9c1600c650
/novice/01-01/latihan/latihan5.py
614bbc7f90eacc63fd4649a1458badde6a56c640
[]
no_license
pradana1/praxis-academy
aad37c1326e638d666415c4e515262bd21a52e48
fbfef9659fa192b873aac551b8770ae6c774d717
refs/heads/master
2021-01-06T16:13:29.183400
2020-04-04T13:15:05
2020-04-04T13:15:05
241,390,845
0
1
null
2020-07-21T14:45:05
2020-02-18T15:04:04
Python
UTF-8
Python
false
false
114
py
list(range(3, 6)) def concat(*args, sep="/"): return sep.join(args) concat("earth", "mars", "venus", sep=".")
a2169a0f6f86b2f788d0140f3c55b55953c3e356
39446bc5f68d38f972d29de009178c9a910b6302
/TextAnalysis/util/miscellaneous.py
8811d16339072e888edffb4b9560cb381c3ec4c7
[]
no_license
pyceileen/master_thesis
a94030f1b4a96e869f814d4bfe909dbf7699dfcf
2aa6b4059b2750410d1d12e583106dc43e5d423b
refs/heads/master
2022-12-29T19:21:33.698948
2020-10-01T12:39:00
2020-10-01T12:39:00
250,233,930
0
0
null
null
null
null
UTF-8
Python
false
false
3,344
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 12 11:22:57 2020 @author: Pei-yuChen """ import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.utils.class_weight import compute_class_weight, compute_sample_weight from sklearn.metrics import classification_report, confusion_matrix from scipy import stats def get_class_weight(y_array): weights_list = compute_class_weight('balanced', np.unique(y_array), y_array) weights_list = dict(enumerate(weights_list)) return(weights_list) def get_sample_weight(y_array): count = np.unique(y_array, return_counts=True) weight = len(y_array) / (len(count[0]) * count[1]) class_dict = dict(zip(np.unique(y_array),weight)) sample_weight = list(map(class_dict.get, y_array)) return(np.array(sample_weight)) def m(x, w): """Weighted Mean""" return np.sum(x * w) / np.sum(w) def cov(x, y, w): """Weighted Covariance""" return np.sum(w * (x - m(x, w)) * (y - m(y, w))) / np.sum(w) def weighted_corr(x, y, w): """Weighted Correlation""" return cov(x, y, w) / np.sqrt(cov(x, x, w) * cov(y, y, w)) def y2string(raw_y): y_string = [] for i in raw_y: if i == 0: x = 'negative' elif i == 1: x = 'neutral' else: x = 'positive' y_string.append(x) return(y_string) def make_classfication_report(y_pred, y_true): y_pred_str = y2string(y_pred) y_true_str = y2string(y_true) return(print(classification_report(y_true_str, y_pred_str))) def draw_confusion_matrix(y_pred, y_true, title_name): y_pred_str = y2string(y_pred) y_true_str = y2string(y_true) label_list = ["negative", "neutral", "positive"] cfm = confusion_matrix(y_true_str, y_pred_str, labels=label_list) df_cm = pd.DataFrame(cfm, index=label_list, columns=label_list) cfm_norm = df_cm.astype('float') / df_cm.sum(axis=1)[:, np.newaxis] labels = (100. * cfm_norm).round(2).astype(str) + '%' plt.figure(figsize=(10,7)) sns.set(font_scale=1) # for label size sns.despine(offset=10, trim=True); ax = sns.heatmap(cfm_norm, annot=labels, annot_kws={"size": 12}, fmt='', vmin=0, vmax=0.70, cmap="Purples", linewidths=.5, cbar=False) # font size cbar = ax.figure.colorbar(ax.collections[0]) cbar.set_ticks([0, 0.30, 0.60]) cbar.set_ticklabels(["0%", "30%", "60%"]) plt.xlabel("Predicted", labelpad=10) plt.ylabel("True", labelpad=10) plt.title(title_name) plt.show() def draw_regression(y_true, y_pred, title): plt.figure() plt.axis('square') plt.xlim([1, 5.3]) plt.ylim([1, 5.3]) plt.yticks(np.arange(1, 5.3, 0.5)) plt.xticks(np.arange(1, 5.3, 0.5)) plt.xlabel("True") plt.ylabel("Predicted") plt.scatter(y_true, y_pred, s=25, alpha=0.8) slope, intercept, r_value, p_value, std_err = stats.linregress(y_true,y_pred) line = slope*y_true+intercept plt.plot(y_true, line, 'r', label='r = {:.3f}'.format(r_value), color='lime') plt.legend(fontsize=9) plt.title(title) plt.savefig("output\\figures\\"+title)
23d6a04e73cb64a8b99b1049956a491e698cfc84
86dc81e21f5b9e784dd087666d4d980c34781536
/udp_bro_send.py
596343dd578225cf7d1f4e55544f7bb7e2be5825
[]
no_license
sheltie03/udp_python
37b4e1f3377979c26e247a020efb958b3dfc28e5
cb0551fc4026a3baff968e81b758ea4d7d7e5fd6
refs/heads/master
2021-07-09T15:37:46.684924
2017-10-02T08:06:25
2017-10-02T08:06:25
105,496,943
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
# -*- coding: utf-8 -*- import socket import time def main(): host = '' port = 4000 # local_addr = '192.168.10.255' local_addr = '255.255.255.255' sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.bind((host, port)) while True: msg = 'Hello Server'.encode('utf-8') print(msg) sock.sendto(msg, (local_addr, port)) return if __name__ == '__main__': main()
74462d92064ecb85d151749d3d98de50ec838a75
f2e9eabc8ea32c4381525f8dfb7865aaa98af460
/TreeMaker/python/makeTreeFromPAT_cff.py
c7962a496e8076e09c87bbf7342ebdf7c2010217
[]
no_license
kheine/RA2Classic
a75977dc3ae1ce5a51bc5471111c69c00137bfdb
0f48e482da6859dad96002ad68fb78b9a56fac57
refs/heads/master
2020-04-13T18:49:31.530643
2013-08-02T13:28:46
2013-08-02T13:28:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,407
py
# $Id: makeTreeFromPAT_cff.py,v 1.18 2013/02/13 12:44:04 mschrode Exp $ # import FWCore.ParameterSet.Config as cms def makeTreeFromPAT(process, outFileName, NJetsMin=2, HTMin=350., MHTMin=0., globalTag="none", isData=True, hltPath=[], reportEveryEvt=10, testFileName="", numProcessedEvt=100): ## --- Log output ------------------------------------------------------ process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ) process.MessageLogger.cout = cms.untracked.PSet( INFO = cms.untracked.PSet(reportEvery = cms.untracked.int32(reportEveryEvt)) ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) ## --- Files to process ------------------------------------------------ process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(numProcessedEvt) ) process.source = cms.Source( "PoolSource", fileNames = cms.untracked.vstring(testFileName) ) ## --- Output file ----------------------------------------------------- process.TFileService = cms.Service( "TFileService", fileName = cms.string(outFileName+".root") ) ## --- Selection sequences --------------------------------------------- # HLT process.load('HLTrigger.HLTfilters.hltHighLevel_cfi') process.hltHighLevel.HLTPaths = cms.vstring(hltPath) process.hltHighLevel.andOr = cms.bool(True) process.hltHighLevel.throw = cms.bool(False) process.HLTSelection = cms.Sequence( process.hltHighLevel ) if not isData: print "Running over MC: removing HLT selection" process.HLTSelection.remove(process.hltHighLevel) elif not hltPath: print "Empty list of HLT paths: removing HLT selection" process.HLTSelection.remove(process.hltHighLevel) # Filter-related selection process.load('RA2Classic.TreeMaker.filterSelection_cff') from RecoMET.METFilters.jetIDFailureFilter_cfi import jetIDFailure process.PBNRFilter = jetIDFailure.clone( JetSource = cms.InputTag('patJetsPF'), MinJetPt = cms.double(30.0), taggingMode = cms.bool(True) ) process.filterSelection += process.PBNRFilter from RecoMET.METFilters.multiEventFilter_cfi import multiEventFilter process.HCALLaserEvtFilterList2012 = multiEventFilter.clone( file = cms.FileInPath('RA2Classic/AdditionalInputFiles/data/HCALLaserEventList_20Nov2012-v2_HT-HTMHT.txt'), taggingMode = cms.bool(True) ) process.filterSelection += process.HCALLaserEvtFilterList2012 from SandBox.Skims.hoNoiseFilter_cfi import hoNoiseFilter process.RA2HONoiseFilter = hoNoiseFilter.clone( patJetsInputTag = cms.InputTag('patJetsPF'), jetPtMin = cms.double(30), jetEtaMax = cms.double(5), maxHOEfrac = cms.double(0.4), taggingMode = cms.bool(True) ) process.filterSelection += process.RA2HONoiseFilter process.load('JetMETCorrections.Configuration.DefaultJEC_cff') process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.GlobalTag.globaltag = globalTag process.load('SandBox.Skims.RA2CaloVsPFMHTFilterSequence_cff') process.RA2CaloVsPFMHTFilter.TaggingMode = cms.bool(True) process.filterSelection += process.RA2CaloVsPFMHTFilterSequence process.load('SandBox.Skims.RA2Leptons_cff') process.LeptonVeto = cms.Sequence( process.ra2PFMuonVeto * process.ra2ElectronVeto ) # Produce RA2 jets (produces the collections HTJets and MHTJets) process.load('RA2Classic.Utils.produceRA2JetsPFCHS_cff') process.ProduceRA2Jets = cms.Sequence( process.produceRA2JetsPFCHS ) # Select events with at least 'NJetsMin' of the above jets from PhysicsTools.PatAlgos.selectionLayer1.jetCountFilter_cfi import countPatJets process.NumJetSelection = countPatJets.clone( src = cms.InputTag('HTJets'), minNumber = cms.uint32(NJetsMin) ) # HT selection htInputCol = 'htPFchs' from SandBox.Skims.RA2HT_cff import htPFFilter process.HTSelection = htPFFilter.clone( HTSource = cms.InputTag(htInputCol), MinHT = cms.double(HTMin) ) # MHT selection mhtInputCol = 'mhtPFchs' from SandBox.Skims.RA2MHT_cff import mhtPFFilter process.MHTSelection = mhtPFFilter.clone( MHTSource = cms.InputTag(mhtInputCol), MinMHT = cms.double(MHTMin) ) ## --- HLT decisions -------------------------------------------------- process.load('RA2Classic.TreeMaker.hltDecisions_cff') ## --- Setup WeightProducer ------------------------------------------- from RA2Classic.WeightProducer.getWeightProducer_cff import getWeightProducer process.WeightProducer = getWeightProducer(testFileName) process.WeightProducer.Lumi = cms.double(19466) process.WeightProducer.PU = cms.int32(3) # PU S10 process.WeightProducer.FileNamePUDataDistribution = cms.string("RA2Classic/WeightProducer/data/DataPileupHistogram_RA2Summer12_190456-208686_ABCD.root") ## --- Setup of TreeMaker ---------------------------------------------- FilterNames = cms.VInputTag() FilterNames.append(cms.InputTag("HBHENoiseFilterRA2","HBHENoiseFilterResult","PAT")) FilterNames.append(cms.InputTag("beamHaloFilter")) FilterNames.append(cms.InputTag("trackingFailureFilter")) FilterNames.append(cms.InputTag("inconsistentMuons")) FilterNames.append(cms.InputTag("greedyMuons")) FilterNames.append(cms.InputTag("ra2EcalTPFilter")) FilterNames.append(cms.InputTag("ra2EcalBEFilter")) FilterNames.append(cms.InputTag("hcalLaserEventFilter")) FilterNames.append(cms.InputTag("ecalLaserCorrFilter")) FilterNames.append(cms.InputTag("eeBadScFilter")) FilterNames.append(cms.InputTag("PBNRFilter")) FilterNames.append(cms.InputTag("HCALLaserEvtFilterList2012")) FilterNames.append(cms.InputTag("manystripclus53X")) FilterNames.append(cms.InputTag("toomanystripclus53X")) FilterNames.append(cms.InputTag("logErrorTooManyClusters")) FilterNames.append(cms.InputTag("RA2CaloVsPFMHTFilter")) FilterNames.append(cms.InputTag("RA2HONoiseFilter")) # for f in process.hltDecisions.moduleNames(): # FilterNames.append(cms.InputTag(f)) from RA2Classic.TreeMaker.treemaker_cfi import TreeMaker process.RA2TreeMaker = TreeMaker.clone( TreeName = cms.string("RA2PreSelection"), VertexCollection = cms.InputTag('goodVertices'), HT = cms.InputTag(htInputCol), HTJets = cms.InputTag('HTJets'), MHT = cms.InputTag(mhtInputCol), MHTJets = cms.InputTag('MHTJets'), VarsDouble = cms.VInputTag(cms.InputTag('WeightProducer:weight')), VarsDoubleNamesInTree = cms.vstring('Weight'), METs = cms.VInputTag(mhtInputCol,'mhtCalo'), METNamesInTree = cms.vstring('PFMHT','CaloMHT'), PatJetCollInputTag = cms.InputTag('patJetsPF'), PatJetsMinPt = cms.double(30.), PatJetsNameInTree = cms.string('Jets'), Filters = FilterNames ) ## --- Final paths ---------------------------------------------------- # process.dump = cms.EDAnalyzer("EventContentAnalyzer") process.WriteTree = cms.Path( process.HLTSelection * #process.hltDecisions * process.ProduceRA2Jets * #process.filterSelection * process.PBNRFilter * process.HCALLaserEvtFilterList2012 * process.RA2CaloVsPFMHTFilterSequence * process.RA2HONoiseFilter * process.LeptonVeto * process.NumJetSelection * process.HTSelection * process.MHTSelection * ## process.dump process.WeightProducer * process.RA2TreeMaker )
[ "" ]
3f845c49314e2570d97f59eb93593ac5247fdd9f
3d8ece9b0291d38064abbcde1da7078b07cc0323
/elevator/positioner.py
ea75186e5c49a7d04c29636037e5ad1fbc71abf0
[]
no_license
EMS-TU-Ilmenau/Elevator
b92ff5c078d5d644b3e556d95ced868ecda611c5
38d2cd1c9d6c5b708ea680efedd552de9894a19f
refs/heads/master
2020-07-17T18:11:17.599973
2020-07-02T16:32:52
2020-07-02T16:32:52
206,069,682
0
0
null
null
null
null
UTF-8
Python
false
false
5,642
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import nested_scopes, generators, with_statement, unicode_literals, absolute_import, division, print_function # for compatibility import serial # for RS232/UART/COM port import time # for sleeping import math # for calculations import logging # for warnings, debugging, etc. log = logging.getLogger(__name__) class Positioner: '''Class to lift the elevator platform up and down''' def __init__(self, port='COM10', axisID=1, diameter=0.0324, tarStartPos=0.): ''' :param port: serial port to communicate with the motor controller :param axisID: motor controller board identifier number :param tarStartPos: target start position in meters :param diameter: motor axis diameter which moves the belt''' self.id = axisID self.tarStartPos = tarStartPos self.diameter = diameter self.dev = None # connect to motor and turn on self.connect(port) self.turnOn() def __del__(self): # close connection properly when destructing the instance self.disconnect() def connect(self, port): '''Connect to serial port''' try: self.dev = serial.Serial(port, 9600, timeout=5) except: raise IOError('Cannot connect to elevator') log.info('Connection opened to elevator') def disconnect(self): '''Disconnect from serial port''' if self.dev: self.dev.close() def send(self, cmd): '''sends a command via the port to the motor controller(s) :param cmd: command (without line endings) to send :returns: when the command was a query, the response is returned''' self.dev.write(bytes(cmd+'\n', 'ascii')) if '?' in cmd: resp = self.dev.readline() return str(bytes(filter(lambda c: c > 32, resp)), 'ascii') # remove control chars return None def len2rot(self, l): '''returns: rotation angle for path-length l''' return 360.0*l/(math.pi*self.diameter) def rot2len(self, r): '''returns: path-length for rotation angle r''' return r*math.pi*self.diameter/360.0 @property def acceleration(self): ''':returns: acceleration value (no units)''' return int(self.send('AX{}:ACC?'.format(self.id))) @acceleration.setter def acceleration(self, val): self.send('AX{}:ACC {}'.format(self.id, int(val))) @property def deceleration(self): ''':returns: deceleration value (no units)''' return int(self.send('AX{}:DEC?'.format(self.id))) @deceleration.setter def deceleration(self, val): self.send('AX{}:DEC {}'.format(self.id, int(val))) def turnOn(self): '''Turns motor power on. Note: this will reset the motors internal position state!''' log.info('Turning motor power on') self.send('AX{}:POW ON'.format(self.id)) time.sleep(0.05) resp = self.send('AX{}:POW?'.format(self.id)) if 'ON' in resp: log.debug('Motor is ready') else: log.error('Motor is not powered') def turnOff(self): '''Turns motor power off''' log.info('Turning motor power off') self.send('AX{}:POW OFF'.format(self.id)) def home(self, vel=0.01): '''moves in negative position until the reference is found.''' if int(self.send('AX{}:HOME?'.format(self.id))): log.info('Already at home') return # set max rate, then search home self.send('AX{}:LIM:MAX {:.2f}'.format(self.id, self.len2rot(vel))) time.sleep(0.05) oldAcc = self.acceleration self.acceleration = 100 # to instantly drive to home position time.sleep(0.05) self.send('AX{}:HOME -1'.format(self.id)) log.info('Homing') # wait until home found while True: time.sleep(0.1) onHome = int(self.send('AX{}:HOME?'.format(self.id))) log.debug('Wait for homing done. Last reply: {}'.format(onHome)) if onHome == 1: break self.acceleration = oldAcc def moveToPos(self, pos, vel=0.01, block=True): '''moves the target to a new position :param pos: new target position in meters :param vel: speed in m/s to move to the position''' log.info('Moving target to {} m with {} mm/s'.format(pos, vel*1000)) # calculations tarRot = self.len2rot(pos-self.tarStartPos) rate = self.len2rot(vel) # move to position self.send('AX{}:LIM:MAX {:.2f}'.format(self.id, rate)) # set rate time.sleep(0.05) self.send('AX{}:POS {:.2f}'.format(self.id, tarRot)) # set position if not block: return # make sure that the motor reached their positions notThereCnt = 0 while True: notThereCnt += 1 curRot = self.getRot() delta = abs(tarRot-curRot) if delta < 1.: log.debug('Position reached') break log.debug('Motor still not on position ({} deg is, {} deg should)'.format(curRot, tarRot)) duration = delta/rate+0.05 log.debug('Waiting {:.2f} s for motors to reach position...'.format(duration)) time.sleep(duration) # check for serious problem if notThereCnt == 20: log.warning('Re-sending position') # re-send strings self.send('AX{}:LIM:MAX {:.2f}'.format(self.id, rate)) # set rate time.sleep(0.05) self.send('AX{}:POS {:.2f}'.format(self.id, tarRot)) # set position # something is kaputt if notThereCnt > 100: log.error('Position cannot not be reached ({} deg is, {} deg should)'.format(curRot, tarRot)) break def getRot(self): ''':returns: motor axis angle in degree''' resp = None while not resp: resp = self.send('AX{}:POS?'.format(self.id)) return float(resp) def getPos(self): ''':returns: current target on platform position in m''' rot = self.getRot() return self.rot2len(rot)+self.tarStartPos
c261a3aa2393582101930b0d509c572623981a2b
29eacf3b29753d65d8ec0ab4a60ea1f7ddecbd68
/lightly/openapi_generated/swagger_client/models/docker_run_scheduled_priority.py
8f59946a24631b8670f78eced6e272cd1b4e2588
[ "MIT" ]
permissive
lightly-ai/lightly
5b655fe283b7cc2ddf1d7f5bd098603fc1cce627
5650ee8d4057139acf8aa10c884d5d5cdc2ccb17
refs/heads/master
2023-08-17T11:08:00.135920
2023-08-16T12:43:02
2023-08-16T12:43:02
303,705,119
2,473
229
MIT
2023-09-14T14:47:16
2020-10-13T13:02:56
Python
UTF-8
Python
false
false
1,014
py
# coding: utf-8 """ Lightly API Lightly.ai enables you to do self-supervised learning in an easy and intuitive way. The lightly.ai OpenAPI spec defines how one can interact with our REST API to unleash the full potential of lightly.ai # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ import json import pprint import re # noqa: F401 from enum import Enum from aenum import no_arg # type: ignore class DockerRunScheduledPriority(str, Enum): """ DockerRunScheduledPriority """ """ allowed enum values """ LOW = 'LOW' MID = 'MID' HIGH = 'HIGH' CRITICAL = 'CRITICAL' @classmethod def from_json(cls, json_str: str) -> 'DockerRunScheduledPriority': """Create an instance of DockerRunScheduledPriority from a JSON string""" return DockerRunScheduledPriority(json.loads(json_str))
752c131107a11c4cca9973aa5a08f2fc22b37083
25a565679443dc00be245c00cd68dde43601df50
/workrobot/libs/region/class_regionmatcher.py
4dff7eae558942da43aac12cab870177c1aa13fc
[]
no_license
plutoese/workrobot
2d4e929a05be5aea1d6679769ac8c30aa42a1595
097571be9d61a120dd676464941cb9d0618963f6
refs/heads/master
2020-04-12T06:45:18.737553
2017-04-18T17:40:24
2017-04-18T17:40:24
63,757,855
2
1
null
null
null
null
UTF-8
Python
false
false
11,751
py
# coding=UTF-8 """ ========================================= 区域匹配类 ========================================= :Author: glen :Date: 2016.10.26 :Tags: region :abstract: 对区域进行匹配 **类** ================== RegionMatcher 区域匹配类 **使用方法** ================== **示范代码** ================== """ import re from libs.imexport.class_mongodb import MongoDB,MonDatabase,MonCollection from libs.imexport.class_Excel import Excel import regex import pandas as pd class RegionMatcher: def __init__(self, region_query=None): # 设置查询结果 if region_query is None: mongo = MongoDB() mdb = MonDatabase(mongodb=mongo, database_name='region') collection = MonCollection(database=mdb, collection_name='admincode') self.collection = collection.collection else: self.collection = region_query self.collection = None def match(self,regions=None,year=None): pass class RegionMatchingAlgorithm: def __init__(self,to_be_matched=None): self._to_be_matched = to_be_matched class RegionMatchingOrderAlgorithm(RegionMatchingAlgorithm): """ 顺序匹配算法类 :param pandas.DataFrame to_be_matched: 待匹配的区域数据框 :param pandas.DataFrame to_be_compared: 标准的区域数据框 :return: 无返回值 """ def __init__(self,to_be_matched=None,to_be_compared=None): RegionMatchingAlgorithm.__init__(self,to_be_matched=to_be_matched) self._to_be_compared = to_be_compared # 结果保存在_result变量中 self._result = None def correct(self,correction='auto'): if isinstance(collection,dict): pass else: if re.match('^auto$',correction): correction = self.auto_correction() else: correction = pd.read_excel(correction) is_index_rid = False if correction.index.name == 'rid': is_index_rid = True if 'rid' in correction.columns: correction = correction.set_index('rid') is_index_rid = True if is_index_rid: for ind in correction.index: self._result.loc[ind,'region'] = correction.loc[ind,'matched'] else: correction_dict = dict([(correction.loc[ind,'region'],correction.loc[ind,'matched']) for ind in correction.index]) for ind in RegionMatchingOrderAlgorithm.not_matched(self._result).index: if self._result.loc[ind,'region'] in correction_dict: self._result.loc[ind,'region'] = correction_dict[self._result.loc[ind,'region']] @property def simu_auto_corrected_region_list(self): correction = self.auto_correction() if correction.size > 0: corr_result = pd.merge(self._result,self._to_be_compared[['cid','region']],how='left',on='cid') corr_result = corr_result.rename(columns={'region_x':'region','region_y':'compared'}) corr_result['supplement'] = None for ind in correction.index: corr_result.loc[ind,'compared'] = correction.loc[ind,'matched'] corr_result.loc[ind,'acode'] = correction.loc[ind,'acode'] corr_result.loc[ind,'cid'] = correction.loc[ind,'cid'] corr_result.loc[ind,'supplement'] = self.output_of_region_set_mapping.loc[ind,'matching_regions'] del corr_result['_id'] return corr_result @property def simu_auto_corrected_region_list_short_version(self): select_index = set() for num in sorted(self.region_set_dict): select_index.update([max(0,num-1),num,min(algo._result.shape[0]-1,num+1)]) result = self.simu_auto_corrected_region_list.loc[sorted(list(select_index)),] return result def find_anchor(self,type='merge'): """ 寻找锚,即发现区域列表中确定匹配的区域(点) :param str type: 定锚算法类型:merge(用pandas.DataFrame的merge定锚) :return: 修改_result,无返回值 """ if re.match('^merge$',type) is not None: self._result = self._merge_matching() @property def region_set_mapping(self): """ 定锚之后,生成缺失区域的参考区域选择映射 :return: 返回映射 """ not_matched = RegionMatchingOrderAlgorithm.not_matched(self._result) all_matched = RegionMatchingOrderAlgorithm.all_matched(self._result) refer_regions_map = [] for i in not_matched.index: region = not_matched.loc[i]['region'] # 锚定上下文位置 for m in range(i,-1,-1): if m in all_matched.index: search_start = int(all_matched.loc[m]['cid']) break for m in range(i,self._result.shape[0]): if m in all_matched.index: search_end = int(all_matched.loc[m]['cid']) break # 可选择的区域 refer_regions = [self._to_be_compared.loc[n] for n in range(search_start+1,search_end)] # 构建映射:列表——每个元素为(区域名称,位置,可选择的匹配区域) refer_regions_map.append((region,i,refer_regions)) return refer_regions_map @property def output_of_region_set_mapping(self): """ 返回区域选择映射 :return: 返回区域选择映射 """ result = [] for record in self.region_set_mapping: result.append([record[0],record[1],','.join([item['region'] for item in record[2]])]) result = pd.DataFrame(result,columns=['region','rid','matching_regions']) result = result.set_index('rid') return result def auto_correction(self,error='auto'): """ 返回自动纠错匹配结果 :param error: 允许错误数量 :return: 返回自动纠错匹配结果 """ correction = [] map = self.region_set_mapping for record in map: region = record[0] index = record[1] refer_regions = record[2] for n in range(len(refer_regions)): if self.fuzzy_region_matching(region,refer_regions[n]['region'],error): correction.append([region,index,refer_regions[n]['region'],refer_regions[n]['acode'],refer_regions[n]['cid']]) correction = pd.DataFrame(correction,columns=['region','rid','matched','acode','cid']) correction = correction.set_index('rid') return correction def exactly_matching_from_region_set(self): """ 从备选区域集中选择区域,用精确匹配 :return: 无返回值 """ map = self.region_set_mapping for record in map: region = record[0] index = record[1] refer_regions = record[2] for n in range(len(refer_regions)): if re.match(region,refer_regions[n]['region']) is not None: self._result.loc[index,'acode'] = refer_regions[n]['acode'] self._result.loc[index,'cid'] = refer_regions[n]['cid'] self._result.loc[index,'_id'] = refer_regions[n]['_id'] break @staticmethod def fuzzy_region_matching(region,compared,error='auto'): if re.match('^auto$',error) is not None: error = max(1,int(len(region)*0.4)) return regex.fullmatch('(?:%s){e<=%s}' % (region, str(error)),compared) is not None def _merge_matching(self): """ 定锚,通过merge进行匹配 完成时self._result对象为pandas.DataFrame region mid acode cid 0 北京市 0 110000 0 1 市辖区 1 2 东城区 2 110101 2 3 西城区 3 110102 3 :return: 无返回值 """ # 返回初次定锚的对象:pandas.DataFrame merge_result = pd.merge(self._to_be_matched, self._to_be_compared, how='left', on='region') merge_result = merge_result.drop_duplicates(subset='rid',keep=False) #merge_result = pd.merge(self._to_be_matched,merge_result,how='left',on='rid') #del merge_result['region_y'] return merge_result.rename(columns={'region_x':'region'}) @property def accuracy(self): accuracy = 100*(RegionMatchingOrderAlgorithm.all_matched(self._result).shape[0]/(self._result.shape[0])) return accuracy @staticmethod def not_matched(pdata=None): return pdata[pdata.isnull().any(axis=1)] @staticmethod def all_matched(pdata=None): return pdata[pdata.notnull().all(axis=1)] @property def region_set_dict(self): ref_regions_dict = dict() for record in self.region_set_mapping: to_be_selected = [] for item in record[2]: to_be_selected.append(item['region']) ref_regions_dict[record[1]] = to_be_selected return ref_regions_dict @property def matched_region(self): return self._result if __name__ == '__main__': pop_year = '2010' pop_region_file_2010 = r'E:\data\popcensus\origin\var_temp.xls' raw_region_2010 = Excel(pop_region_file_2010).read() to_be_matched = [re.sub('\s+','',item[0]) for item in raw_region_2010 if re.match('^\s*$',item[0]) is None] pd_to_be_matched = pd.DataFrame(to_be_matched,columns=['region']) pd_to_be_matched['rid'] = range(pd_to_be_matched.shape[0]) collection = MonCollection(database=MonDatabase(mongodb=MongoDB(), database_name='region'), collection_name='admincode') found = collection.collection.find(filter={'year':'2010'}, projection={'acode':True,'region':True,'_id':True}, sort=[('acode',1)]) pd_to_be_compared = pd.DataFrame(list(found)) pd_to_be_compared['cid'] = range(pd_to_be_compared.shape[0]) #pd_to_be_compared['_id'] = pd_to_be_compared['_id'].apply(str) print(pd_to_be_matched,pd_to_be_compared) algo = RegionMatchingOrderAlgorithm(pd_to_be_matched,pd_to_be_compared) # 首先是寻找可靠的匹配作为锚点 algo.find_anchor() # 其次进行顺序的严格匹配 algo.exactly_matching_from_region_set() print(algo.matched_region) # 打印匹配率 print('Accuracy Rate: {:.2f}%.'.format(algo.accuracy)) ''' # 纠正错误 #algo.correct(correction=r'E:\data\popcensus\origin\correction.xlsx') algo.auto_correction().to_excel(r'E:\data\popcensus\origin\correction.xlsx') #algo.matched_region.to_excel(r'E:\data\popcensus\origin\pdoutput_before.xlsx') algo.correct() # 重新进行匹配 algo.exactly_matching_from_region_set() print('Accuracy Rate: {:.2f}%.'.format(algo.accuracy)) # 输出匹配完成的结果 algo.matched_region.to_excel(r'E:\data\popcensus\origin\pdoutput.xlsx') algo.output_of_region_set_mapping.to_excel(r'E:\data\popcensus\origin\reference_regions.xlsx') print(algo.auto_correction()) algo.auto_correction().to_excel(r'E:\data\popcensus\origin\correction.xlsx') print(algo.auto_correction().size) algo.simu_auto_corrected_region_list.to_excel(r'E:\data\popcensus\origin\sim_output.xlsx') algo.simu_auto_corrected_region_list_short_version.to_excel(r'E:\data\popcensus\origin\sim_output_short.xlsx') result.to_excel(r'E:\data\popcensus\origin\pdoutput.xlsx') cor_file = r'E:\data\popcensus\origin\correction.xlsx' pdata = pd.read_excel(cor_file) print(pdata) '''
f97850dc6668b6a0383ae0dade7bb9e5b0360eb3
2f46f893621f184ad7a37dea03001fa7c8704c0b
/team/urls.py
09142cd3d5718b65dd0291fad99f4654d8938a17
[]
no_license
DarkMagician0611/IITZL
b55c909cc94675af63e7ad5be0d5e959bc5cb437
b7e7ab304706ab00d9e9c747262387d6defe9865
refs/heads/master
2021-09-11T13:57:53.662298
2018-04-08T08:34:32
2018-04-08T08:34:32
125,329,743
0
0
null
null
null
null
UTF-8
Python
false
false
946
py
from django.urls import path from . import views app_name = 'team' urlpatterns = [ path('', views.selectMatch, name='selectMatch'), path('index/', views.index, name='index'), path('teamAddIndex/', views.teamAddIndex, name='teamAddIndex'), path('playerAdd/', views.playerAdd, name='playerAdd'), path('addPlayerLater/', views.addPlayerLater, name='addPlayerLater'), path('addBlackMamba/', views.addBlackMamba, name='addBlackMamba'), path('loadPlayer/', views.loadPlayer, name='loadPlayer'), path('updateMamba/', views.updateMamba, name='updateMamba'), path('update/<str:name>/', views.update, name='update'), path('deleteTeamPlayer/<str:name>/', views.deleteTeamPlayer, name='deleteTeamPlayer'), path('playerUpdate/', views.playerUpdate, name='playerUpdate'), path('resetTeam/', views.resetTeam, name='resetTeam'), path('listTeams/', views.listTeams, name='listTeams'), path('createTeams/', views.createTeams, name='createTeams'), ]
ccbe60417f748533bab61dc6d6cde0b17cca9c8b
a03131bb68abb94eafacdc56e803551e93aa2b94
/test/test_offline/test_defaults.py
382a6f8f0cc9486998a0249ed69ab4370083f2ea
[ "Apache-2.0" ]
permissive
gistart/prometheus-push-client
b1a50d7173e57817ca0011dbca213125e34577f7
fcaddb31e81d5c04d86c01d219f73b7d2e1736ed
refs/heads/master
2023-04-24T02:11:32.984284
2021-05-17T07:17:27
2021-05-17T07:17:27
363,989,153
14
3
Apache-2.0
2021-05-16T19:14:55
2021-05-03T16:16:29
Python
UTF-8
Python
false
false
1,107
py
import pytest import prometheus_push_client as ppc from testutils import make_metric_fixture, collect_metrics NS = "test_offline" SUB = "defaults" _cnt1 = ppc.Counter( name="c1", namespace=NS, subsystem=SUB, labelnames=["host", "l1", "l2"], default_labelvalues={ "host": "localhost", "l1": 0, } ) @pytest.fixture def counter1(request): return make_metric_fixture(request, _cnt1) @pytest.fixture def test_defaults_expected(): return \ """ test_offline_defaults_c1_total{host="localhost",l1="0",l2="2"} 2.0 test_offline_defaults_c1_total{host="localhost",l1="1",l2="2"} 2.0 test_offline_defaults_c1_total{host="H",l1="1",l2="2"} 2.0 """.strip() def test_default_labelvalues_usage(counter1, test_defaults_expected): # pairs of equivalent actions: counter1.labels(l2=2).inc() counter1.labels(2).inc() counter1.labels(l1=1, l2=2).inc() counter1.labels(1, 2).inc() counter1.labels(host="H", l1=1, l2=2).inc() counter1.labels("H", 1, 2).inc() res = collect_metrics(counter1._name) assert res == test_defaults_expected
ba99a49368036925459bfa5fcb8f14164b87077e
06d21b5ce670b719e1c68f890e48c61d55dd9c84
/exercises/three/bmicalculator.py
4a1b243c7cb4c990529571b944f705aebc692924
[]
no_license
kukuu/python
1613444d2c773a9d82e3f0df079cfbffea20fb65
5c6b8b9d7c3a187c90531bdd28347bbbec584ebe
refs/heads/master
2021-01-20T04:01:53.890753
2019-09-04T14:35:29
2019-09-04T14:35:29
33,211,288
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
def bmi_calculate(): weight, height = input("Enter weight and height seperated by a comma:") bmi_calculate = [(weight * 720) / (height * height)] for bmi_calculate in range (19,25): where = 'healthy' if bmi_calculate < 19: where = 'below' elif bmi_calculate > 25: where = 'high' print ("your body mass index is:" , bmi_calculate)
a0f8f7b8b1b8309bccf987e46c698b39e152970c
9c56151ff0c981f4d24aaaefd8896893225be8c2
/fotochest/apps/administrator/__init__.py
01dce1499601edfe311a5b67dd72fabd730a6561
[ "MIT" ]
permissive
ginking/fotochest
9da4c34abb7df758e29f5f3284c93e3cd6933bcc
0f9e6e72c7b587dec91cd5a0c3b081e28d056c62
refs/heads/master
2021-01-18T02:45:14.377309
2015-04-16T02:58:47
2015-04-16T02:58:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
default_app_config = 'fotochest.apps.administrator.apps.AdminConfig'
bfe6eb6e9734dbfe24074e1964400cdb06a23cc3
fce1b262820539e8574e5476692096f599ca2b27
/luffycity_s8/luffy/views/article.py
fecd0d8cf009734ca9798d3523d3afb6d261806e
[]
no_license
iyouyue/green_hand
9386082a0589ee6e1805aafe189ee38e823c8202
7b80e8cc0622e4d8e9d07dde37c72ac7d6e3261c
refs/heads/master
2020-03-26T14:39:02.224727
2018-08-16T14:27:57
2018-08-16T14:27:57
144,997,556
0
0
null
null
null
null
UTF-8
Python
false
false
1,851
py
from rest_framework.views import APIView from rest_framework.viewsets import GenericViewSet from rest_framework.response import Response from rest_framework.renderers import JSONRenderer, BrowsableAPIRenderer from django.core.exceptions import ObjectDoesNotExist from luffy import models from luffy.response.base import BaseResponse from luffy.serializers.article import ArticleSerializer, ArticleDetailSerializer from luffy.pagination.page import LuffyPageNumberPagination class MyException(Exception): def __init__(self, msg): self.msg = msg class ArticleView(GenericViewSet): renderer_classes = [JSONRenderer,] def list(self, request, *args, **kwargs): ret = BaseResponse() try: # 1. 获取数据 article_list = models.Article.objects.all().only('id', 'title','brief').order_by('-id') # 2. 对数据进行分页 page = LuffyPageNumberPagination() page_article_list = page.paginate_queryset(article_list, request, self) # 3. 对数据序列化 ser = ArticleSerializer(instance=page_article_list, many=True) ret.data = ser.data except Exception as e: ret.code = 1001 ret.error = '获取数据失败' return Response(ret.dict) def retrieve(self, request, pk, *args, **kwargs): ret = BaseResponse() try: obj = models.Article.objects.get(id=pk) ser = ArticleDetailSerializer(instance=obj, many=False) ret.data = ser.data except ObjectDoesNotExist as e: ret.code = 1001 ret.error = '查询数据不存在' except Exception as e: ret.code = 1002 ret.error = "查询失败" return Response(ret.dict)
773663c4df0ccd2fbf185f8bbedf2977848846c9
3c8b1a4d9e7d53fd643e02dabae50298a8122763
/tests/__init__.py
6ae0126758f6be63f55461a5786077a39670ba77
[ "MIT" ]
permissive
greyli/fanxiangce
f0866ed5dfd32a2cd795db92dec9e8785833d480
c6eb8410867c7a743d1ede920b0858158fec961c
refs/heads/master
2021-09-18T10:35:02.317823
2018-07-13T02:32:25
2018-07-13T02:32:25
67,604,143
79
40
null
null
null
null
UTF-8
Python
false
false
21
py
# -*-coding: utf-8-*-
556cfb872153af8a3f4f6cac55f0cb4b264c5155
995f655b116cd61e0d7e2e139d414c83764af142
/estudos/python/ObjectSensing/OpenCV/webcam_example_1/webcam_basic_1.py
7815f65f99022a3f84f5cd02673d8938f380132e
[]
no_license
LPAE/lpae.github.io
a7513ab383b232e997e6d19d865be207dc7e417c
05cffe4bb25da037d1af5ae110a5d0e2fe1af9b2
refs/heads/master
2022-11-22T23:07:00.128668
2022-11-11T12:09:05
2022-11-11T12:09:05
171,523,476
2
7
null
2019-06-12T23:19:54
2019-02-19T18:03:16
Jupyter Notebook
UTF-8
Python
false
false
518
py
import cv2 # capture = cv2.VideoCapture(0) capture = cv2.VideoCapture(1) while 1: ret, frame = capture.read() cv2.imshow("Video", frame) # ------------------------------------------------------------------------------------------------------------------ # Esc -> EXIT while k = cv2.waitKey(30) & 0xff if k == 27: break # ------------------------------------------------------------------------------------------------------------------ capture.release() cv2.destroyAllWindows()
777644e2f2338f3db883ddb2a888fb753aed70c2
ecfcd725b4df54b7bab9b5e05a4618d6615a1277
/currency_1.0.py
a074c4ea8fe51533837eea2efbbc9c721319640b
[]
no_license
lyb0596/RMB
7695f4d39cd2c2002123e791409a5ef324490959
1b14d125dc04bb91a8627cb9ad8d2dcff8442226
refs/heads/master
2020-04-05T11:18:20.668810
2018-11-09T08:37:31
2018-11-09T08:37:31
156,831,615
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
rmb_str_value = input('input: ') lenth = len(rmb_str_value) print(lenth) #value = rmb_str_value[lenth-3:lenth] value = rmb_str_value[-3:] print(value) # transe = 6.77 # rmb_value = eval(rmb_str_value) # usa = rmb_value/transe # print(rmb_value,' && ',usa)
f0fadc6c349ecd2154f74fb36092ac1ba6e56a02
66f867e6939dd641498d8ce3e9c9ec375ac65305
/python week3/spelletje.py
36faadbd84d5e6dcd1cb5580ebd3e5459470a79e
[]
no_license
Mischadehaan/PythonAchievements
dc45a211344a6d6c2af4f04fe2b9616f120b7839
08436115ae4618211aa656c433ddf2fbf2af0cf4
refs/heads/master
2023-01-10T16:00:59.700131
2020-10-30T12:15:44
2020-10-30T12:15:44
294,099,119
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
# Doel: # Hoger / Lager spelletje moet als volgt werken. # De speler wordt een random getal getoont van 1 tot en met 10 # De speler moet daarna raden of het volgende getal hoger of lager wordt # Aan het einde moet de speler weten of hij / zij gewonnen heeft. # Stappenplan: # 1. Een willekeurig nummer van 1 t/m 10 maken. # (Een random getal in een variabele opslaan.) # 2. De speler voert in of het hoger of lager wordt. # 3. Er moet een volgend getal gegenereerd worden. # 4. Er moet gekeken worden of de speler gelijk heeft. # 5. De speler moet weten of hij/zij gewonnen of verloren heeft. import random willekeur = random.randrange(1, 11) #print(willekeur)
2613f41ca4dc3a52d8a9eba8b22d5db1b4f73c1e
04d9ee05feb6dddf19b9f7653f4dd9e9ce3ee95c
/rbtools/commands/install.py
03724c98f41a1da2e2262344e0806a96951d6e81
[ "MIT" ]
permissive
pbwkoswara/rbtools
2fa44ade1c60b4f076198bb8206a5d624dd40cd2
8ea5ff8843d2a3d44056ad4358d75c81a066cf28
refs/heads/master
2021-07-17T22:22:20.906220
2017-10-20T22:11:03
2017-10-25T17:05:21
108,022,324
0
0
null
2017-10-23T18:26:30
2017-10-23T18:26:30
null
UTF-8
Python
false
false
7,398
py
from __future__ import division, print_function, unicode_literals import hashlib import logging import os import shutil import tempfile import zipfile import tqdm from six.moves.urllib.error import HTTPError, URLError from six.moves.urllib.request import urlopen from rbtools.commands import Command, CommandError from rbtools.utils.appdirs import user_data_dir from rbtools.utils.checks import check_install from rbtools.utils.process import execute class Install(Command): """Install a dependency. This allows RBTools to install external dependencies that may be needed for some features. """ name = 'install' author = 'The Review Board Project' description = 'Install an optional dependency.' args = '<package>' option_list = [] package_urls = { 'tfs': 'http://downloads.beanbaginc.com/rb-tfs/rb-tfs.zip' } def main(self, package): """Run the command. Args: package (unicode): The name of the package to install. Raises: rbtools.commands.CommandError: An error occurred during installation. """ try: url = self.package_urls[package] except KeyError: err = 'Package "%s" not found. Available packages are:\n' % package err += '\n'.join( ' %s' % package_name for package_name in self.package_urls.keys() ) raise CommandError(err) label = 'Downloading %s' % package zip_filename = self.download_file(url, label=label) try: self.check_download(url, zip_filename) self.unzip( zip_filename, os.path.join(user_data_dir('rbtools'), 'packages', package)) finally: os.unlink(zip_filename) def check_download(self, url, zip_filename): """Check to see if the file was successfully downloaded. If the user has :command:`gpg` installed on their system, use that to check that the package was signed. Otherwise, check the sha256sum. Args: url (unicode): The URL that the file came from. zip_filename (unicode): The filename of the downloaded copy. Raises: rbtools.commands.CommandError: The authenticity of the file could not be verified. """ if check_install('gpg'): execute(['gpg', '--recv-keys', '4ED1F993']) sig_filename = self.download_file('%s.asc' % url) try: retcode, output, errors = execute( ['gpg', '--verify', sig_filename, zip_filename], with_errors=False, ignore_errors=True, return_error_code=True, return_errors=True) if retcode == 0: logging.debug('Verified file signature') else: raise CommandError( 'Unable to verify authenticity of file downloaded ' 'from %s:\n%s' % (url, errors)) finally: os.unlink(sig_filename) else: logging.info('"gpg" not installed. Skipping signature validation.') try: sha_url = '%s.sha256sum' % url logging.debug('Downloading %s', sha_url) response = urlopen(sha_url) real_sha = response.read().split(' ')[0] except (HTTPError, URLError) as e: raise CommandError('Error when downloading file: %s' % e) with open(zip_filename, 'r') as f: our_sha = hashlib.sha256(f.read()).hexdigest() if real_sha == our_sha: logging.debug('Verified SHA256 hash') else: logging.debug('SHA256 hash does not match!') logging.debug(' Downloaded file hash was: %s', our_sha) logging.debug(' Expected hash was: %s', real_sha) raise CommandError( 'Unable to verify the checksum of the downloaded copy of ' '%s.\n' 'This could be due to an invasive proxy or an attempted ' 'man-in-the-middle attack.' % url) def unzip(self, zip_filename, package_dir): """Unzip a .zip file. This method will unpack the contents of a .zip file into a target directory. If that directory already exists, it will first be removed. Args: zip_filename (unicode): The absolute path to the .zip file to unpack. package_dir (unicode): The directory to unzip the files into. Raises: rbtools.commands.CommandError: The file could not be unzipped. """ logging.debug('Extracting %s to %s', zip_filename, package_dir) try: if os.path.exists(package_dir): if os.path.isdir(package_dir): shutil.rmtree(package_dir) else: os.remove(package_dir) os.makedirs(package_dir) except (IOError, OSError) as e: raise CommandError('Failed to set up package directory %s: %s' % (package_dir, e)) zip_file = zipfile.ZipFile(zip_filename, 'r') try: zip_file.extractall(package_dir) except Exception as e: raise CommandError('Failed to extract file: %s' % e) finally: zip_file.close() def download_file(self, url, label=None): """Download the given file. This is intended to be used as a context manager, and the bound value will be the filename of the downloaded file. Args: url (unicode): The URL of the file to download. label (unicode, optional): The label to use for the progress bar. If this is not specified, no progress bar will be shown. Yields: unicode: The filename of the downloaded file. Raises: rbtools.commands.CommandError: An error occurred while downloading the file. """ logging.debug('Downloading %s', url) try: response = urlopen(url) total_bytes = int( response.info().getheader('Content-Length').strip()) read_bytes = 0 bar_format = '{desc} {bar} {percentage:3.0f}% [{remaining}]' with tqdm.tqdm(total=total_bytes, desc=label or '', ncols=80, disable=label is None, bar_format=bar_format) as bar: try: f = tempfile.NamedTemporaryFile(delete=False) while read_bytes != total_bytes: chunk = response.read(8192) chunk_length = len(chunk) read_bytes += chunk_length f.write(chunk) bar.update(chunk_length) finally: f.close() return f.name except (HTTPError, URLError) as e: raise CommandError('Error when downloading file: %s' % e)
a9340662bebfa1cdd1adef79408712eb2e5883fd
7188e4eca6bb6ba03453e5c1d9e3134e9ef1b588
/apps/clndr/apps.py
29d6fb8f53be320b7e1c8a59f9267f426baf18ea
[]
no_license
mitshel/ghc_yapokaju
c85eb2c3cbfd9802f6fac16a6d6192ae85ad2511
d70b53235223dc935792aac3838678cb1b4d2b2e
refs/heads/master
2020-05-15T21:50:15.646729
2019-04-21T08:48:31
2019-04-21T08:48:31
182,509,831
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
from django.apps import AppConfig class ClndrConfig(AppConfig): name = 'apps.clndr' verbose_name = 'The calendar' def ready(self): from . import signals
40482d11844a15da5e63667740be2f0721b99c48
3f1873d63ccb215ec88105661f1cd44927e222b3
/dl4mir/chords/data.py
5144796b4d0b592a6db6d5ba99adf69daadbd0ec
[]
no_license
bmcfee/dl4mir
50dd467687991163a819fc7560b9d9f9c4c6e568
c9438a221d1e853c25e1867673c1c3efca2e1756
refs/heads/master
2023-07-11T10:35:54.041154
2016-01-20T03:57:58
2016-01-20T03:57:58
69,293,002
1
0
null
2016-09-26T21:09:15
2016-09-26T21:09:14
null
UTF-8
Python
false
false
25,686
py
import itertools import numpy as np import biggie import pescador import mir_eval from dl4mir.chords import labels as L import dl4mir.chords.pipefxs as FX from dl4mir.common import util import dl4mir.chords.lexicon as lex def intervals_to_durations(intervals): return np.abs(np.diff(np.asarray(intervals), axis=1)).flatten() def slice_cqt_entity(entity, length, idx=None): """Return a windowed slice of a chord Entity. Parameters ---------- entity : Entity, with at least {cqt, chord_labels} fields Observation to window. Note that entity.cqt is shaped (num_channels, num_frames, num_bins). length : int Length of the sliced array. idx : int, or None Centered frame index for the slice, or random if not provided. Returns ------- sample: biggie.Entity with fields {data, chord_label} The windowed chord observation. """ idx = np.random.randint(entity.cqt.shape[1]) if idx is None else idx cqt = np.array([util.slice_tile(x, idx, length) for x in entity.cqt]) return biggie.Entity(data=cqt, chord_label=entity.chord_labels[idx]) def slice_note_entity(entity, length, idx=None): """Return a windowed slice of a chord Entity. Parameters ---------- entity : Entity, with at least {cqt, chord_labels} fields Observation to window. Note that entity.cqt is shaped (num_channels, num_frames, num_bins). length : int Length of the sliced array. idx : int, or None Centered frame index for the slice, or random if not provided. Returns ------- sample: biggie.Entity with fields {data, chord_label} The windowed chord observation. """ idx = np.random.randint(entity.cqt.shape[1]) if idx is None else idx cqt = np.array([util.slice_tile(x, idx, length) for x in entity.cqt]) return biggie.Entity(data=cqt, note_numbers=entity.note_numbers[idx]) def slice_chroma_entity(entity, length, idx=None): """Return a windowed slice of a chord Entity. Parameters ---------- entity : Entity, with at least {cqt, chord_labels} fields Observation to window. Note that entity.cqt is shaped (num_channels, num_frames, num_bins). length : int Length of the sliced array. idx : int, or None Centered frame index for the slice, or random if not provided. Returns ------- sample: biggie.Entity with fields {data, chord_label} The windowed chord observation. """ idx = np.random.randint(entity.cqt.shape[1]) if idx is None else idx chroma = util.slice_tile(entity.chroma, idx, length) # chroma = np.array([util.slice_tile(x, idx, length) for x in entity.chroma]) return biggie.Entity(data=chroma, chord_label=entity.chord_labels[idx]) def chord_sampler(key, stash, win_length=20, index=None, max_samples=None, sample_func=slice_cqt_entity): """Generator for sampling windowed chord observations from an entity. Parameters ---------- key : str Key for the entity of interest; must be consistent across both `stash` and `index`, when the latter is provided. stash : dict_like Dict or biggie.Stash of chord entities. win_length: int Length of centered observation window for the CQT. index: dict of index arrays, default=None Indexing object for constrained sampling of the chord entity. If provided, must have a np.ndarray of integers under `key`; otherwise, this method will fail. max_samples: int, or None Maximum number of samples to return from this Generator; if None, runs indefinitely. Yields ------ sample: biggie.Entity with fields {cqt, chord_label} The windowed chord observation. """ entity = stash.get(key) has_labels = hasattr(entity, 'chord_labels') label_key = 'note_numbers' if not has_labels else 'chord_labels' num_samples = len(getattr(entity, label_key)) if index is None: index = {key: np.arange(num_samples)} valid_samples = index.get(key, []) idx = np.inf max_samples = np.inf if max_samples is None else max_samples count = 0 while count < max_samples and len(valid_samples): if idx >= len(valid_samples): np.random.shuffle(valid_samples) idx = 0 yield sample_func(entity, win_length, valid_samples[idx]) idx += 1 count += 1 def cqt_buffer(entity, win_length=20, valid_samples=None): """Generator for stepping windowed chord observations from an entity. Parameters ---------- entity : biggie.Entity CQT entity to step through win_length: int Length of centered observation window for the CQT. Yields ------ sample: biggie.Entity with fields {cqt, chord_label} The windowed chord observation. """ num_samples = len(entity.chord_labels) if valid_samples is None: valid_samples = np.arange(num_samples) idx = 0 count = 0 while count < len(valid_samples): yield slice_cqt_entity(entity, win_length, valid_samples[idx]) idx += 1 count += 1 def lazy_cqt_buffer(key, stash, win_length=20, index=None): """Generator for stepping windowed chord observations from an entity; note that the entity is not queried until the generator is called. Parameters ---------- key : str Key for the entity of interest; must be consistent across both `stash` and `index`, when the latter is provided. stash : dict_like Dict or biggie.Stash of chord entities. win_length: int Length of centered observation window for the CQT. Yields ------ sample: biggie.Entity with fields {cqt, chord_label} The windowed chord observation. """ entity = stash.get(key) num_samples = len(entity.chord_labels) if index is None: index = {key: np.arange(num_samples)} valid_samples = index.get(key, []) for x in cqt_buffer(entity, win_length, valid_samples): yield x def map_chord_labels(entity, lexicon): if hasattr(entity, 'chord_label'): labels = entity.chord_label else: labels = entity.chord_labels return lexicon.label_to_index(labels) def map_bigrams(entity, lexicon): return lexicon.label_to_index(entity.bigrams) def create_chord_index_stream(stash, win_length, lexicon, index_mapper=map_chord_labels, sample_func=slice_cqt_entity, pitch_shift_func=FX.pitch_shift_cqt, max_pitch_shift=0, working_size=50, partition_labels=None, valid_idx=None): """Return an unconstrained stream of chord samples with class indexes. Parameters ---------- stash : biggie.Stash A collection of chord entities. win_length : int Length of a given tile slice. lexicon : lexicon.Lexicon Instantiated chord lexicon for mapping labels to indices. working_size : int Number of open streams at a time. pitch_shift : int Maximum number of semitones (+/-) to rotate an observation. partition_labels : dict Returns ------- stream : generator Data stream of windowed chord entities. """ if partition_labels is None: partition_labels = util.partition(stash, index_mapper, lexicon) if valid_idx is None: valid_idx = range(lexicon.num_classes) chord_index = util.index_partition_arrays(partition_labels, valid_idx) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, chord_index, sample_func=sample_func) for key in stash.keys()] stream = pescador.mux(entity_pool, None, working_size, lam=25) if max_pitch_shift > 0: stream = pitch_shift_func(stream, max_pitch_shift=max_pitch_shift) return FX.map_to_class_index(stream, index_mapper, lexicon) def create_target_stream(stash, win_length, working_size=50, max_pitch_shift=0, bins_per_pitch=1, sample_func=slice_cqt_entity, mapper=FX.map_to_chroma): """Return an unconstrained stream of chord samples with class indexes. Parameters ---------- stash : biggie.Stash A collection of chord entities. win_length : int Length of a given tile slice. lexicon : lexicon.Lexicon Instantiated chord lexicon for mapping labels to indices. working_size : int Number of open streams at a time. max_pitch_shift : int Maximum number of semitones (+/-) to rotate an observation. partition_labels : dict Returns ------- stream : generator Data stream of windowed chord entities. """ entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, sample_func=sample_func) for key in stash.keys()] stream = pescador.mux(entity_pool, None, working_size, lam=25) if max_pitch_shift > 0: stream = FX.pitch_shift_cqt(stream, max_pitch_shift=max_pitch_shift) return mapper(stream, bins_per_pitch) def create_uniform_chord_index_stream(stash, win_length, lexicon, index_mapper=map_chord_labels, sample_func=slice_cqt_entity, pitch_shift_func=FX.pitch_shift_cqt, max_pitch_shift=0, working_size=4, partition_labels=None, valid_idx=None): """Return a stream of chord samples, with uniform quality presentation. Parameters ---------- stash : biggie.Stash A collection of chord entities. win_length : int Length of a given tile slice. lexicon : lexicon.Lexicon Instantiated chord lexicon for mapping labels to indices. working_size : int Number of open streams at a time. pitch_shift : int Maximum number of semitones (+/-) to rotate an observation. partition_labels : dict Returns ------- stream : generator Data stream of windowed chord entities. """ if partition_labels is None: partition_labels = util.partition(stash, index_mapper, lexicon) if valid_idx is None: valid_idx = range(lexicon.num_classes) chord_pool = [] for chord_idx in valid_idx: subindex = util.index_partition_arrays(partition_labels, [chord_idx]) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, subindex, sample_func=sample_func) for key in subindex.keys()] if len(entity_pool) == 0: continue stream = pescador.mux( entity_pool, n_samples=None, k=working_size, lam=20) chord_pool.append(pescador.Streamer(stream)) stream = pescador.mux(chord_pool, n_samples=None, k=lexicon.vocab_dim, lam=None, with_replacement=False) if max_pitch_shift > 0: stream = pitch_shift_func(stream, max_pitch_shift=max_pitch_shift) return FX.map_to_class_index(stream, index_mapper, lexicon) def create_uniform_chroma_stream(stash, win_length, lexicon, working_size=5, bins_per_pitch=1, max_pitch_shift=0, partition_labels=None, valid_idx=None): """Return an unconstrained stream of chord samples with class indexes. Parameters ---------- stash : biggie.Stash A collection of chord entities. win_length : int Length of a given tile slice. lexicon : lexicon.Lexicon Instantiated chord lexicon for mapping labels to indices. working_size : int Number of open streams at a time. pitch_shift : int Maximum number of semitones (+/-) to rotate an observation. partition_labels : dict Returns ------- stream : generator Data stream of windowed chord entities. """ if partition_labels is None: partition_labels = util.partition(stash, map_chord_labels, lexicon) if valid_idx is None: valid_idx = range(lexicon.num_classes) chord_pool = [] for chord_idx in valid_idx: subindex = util.index_partition_arrays(partition_labels, [chord_idx]) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, subindex, sample_func=slice_cqt_entity) for key in subindex.keys()] if len(entity_pool) == 0: continue stream = pescador.mux( entity_pool, n_samples=None, k=working_size, lam=20) chord_pool.append(pescador.Streamer(stream)) stream = pescador.mux(chord_pool, n_samples=None, k=lexicon.vocab_dim, lam=None, with_replacement=False) if max_pitch_shift > 0: stream = FX.pitch_shift_cqt(stream, max_pitch_shift=max_pitch_shift) return FX.map_to_chroma(stream, bins_per_pitch) def muxed_uniform_chord_stream(stash, synth_stash, win_length, vocab_dim=157, pitch_shift=0, working_size=4): """Return a stream of chord samples, merging two separate datasets.""" partition_labels = util.partition(stash, chord_map) synth_partition_labels = util.partition(synth_stash, chord_map) valid_idx = range(vocab_dim) valid_idx_synth = range(60, vocab_dim - 1) chord_pool = [] for chord_idx in valid_idx: subindex = util.index_partition_arrays(partition_labels, [chord_idx]) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, subindex) for key in subindex.keys()] if chord_idx in valid_idx_synth: subindex = util.index_partition_arrays( synth_partition_labels, [chord_idx]) synth_pool = [pescador.Streamer(chord_sampler, key, synth_stash, win_length, subindex) for key in subindex.keys()] entity_pool.extend(synth_pool) if len(entity_pool) == 0: continue stream = pescador.mux( entity_pool, n_samples=None, k=working_size, lam=20) chord_pool.append(pescador.Streamer(stream)) stream = pescador.mux(chord_pool, n_samples=None, k=vocab_dim, lam=None, with_replacement=False) if pitch_shift: stream = FX.pitch_shift_cqt(stream, max_pitch_shift=pitch_shift) return FX.map_to_chord_index(stream, vocab_dim) def create_uniform_factored_stream(stash, win_length, partition_labels=None, working_size=50, vocab_dim=157, pitch_shift=True): """Return a stream of chord samples, with uniform quality presentation.""" if partition_labels is None: partition_labels = util.partition(stash, quality_map) quality_pool = [] for qual_idx in range(13): quality_subindex = util.index_partition_arrays( partition_labels, [qual_idx]) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, quality_subindex) for key in quality_subindex.keys()] stream = pescador.mux(entity_pool, n_samples=None, k=25, lam=20) quality_pool.append(pescador.Streamer(stream)) stream = pescador.mux(quality_pool, n_samples=None, k=working_size, lam=None, with_replacement=False) if pitch_shift: stream = FX.pitch_shift_cqt(stream) return FX.map_to_joint_index(stream, vocab_dim) def create_contrastive_chord_stream(stash, win_length, valid_idx=None, partition_labels=None, working_size=2, vocab_dim=157, pitch_shift=0, neg_probs=None): """Return a stream of chord samples, with equal positive and negative examples.""" if partition_labels is None: partition_labels = util.partition(stash, chord_map) if valid_idx is None: valid_idx = range(vocab_dim) if neg_probs is None: neg_probs = np.ones([vocab_dim]*2) neg_probs[np.eye(vocab_dim, dtype=bool)] = 0.0 neg_probs = util.normalize(neg_probs, axis=1) chord_streams = [] has_data = np.ones(vocab_dim, dtype=bool) for chord_idx in valid_idx: subindex = util.index_partition_arrays(partition_labels, [chord_idx]) entity_pool = [pescador.Streamer(chord_sampler, key, stash, win_length, subindex) for key in subindex.keys()] if len(entity_pool) == 0: has_data[chord_idx] = False stream = None else: stream = pescador.mux( entity_pool, n_samples=None, k=working_size, lam=20) chord_streams.append(stream) chord_streams = np.array(chord_streams) binary_pool = [] for chord_idx in range(vocab_dim): if chord_streams[chord_idx] is None: continue # Skip contrast streams with (a) no data or (b) no probability. not_chord_probs = neg_probs[chord_idx] not_chord_probs[chord_idx] = 0.0 not_chord_probs *= has_data nidx = not_chord_probs > 0.0 assert not_chord_probs.sum() > 0.0 chord_pool = [pescador.Streamer(x) for x in chord_streams[nidx]] neg_stream = pescador.mux(chord_pool, n_samples=None, k=len(chord_pool), lam=None, with_replacement=False, pool_weights=not_chord_probs[nidx]) pair_stream = itertools.izip(chord_streams[chord_idx], neg_stream) binary_pool.append(pescador.Streamer(pair_stream)) cstream = pescador.mux(binary_pool, n_samples=None, k=len(binary_pool), lam=None, with_replacement=False) return FX.unpack_contrastive_pairs(cstream, vocab_dim) def chroma_stepper(key, stash, index=None): """writeme.""" entity = stash.get(key) num_samples = len(entity.chord_labels) if index is None: index = {key: np.arange(num_samples)} valid_samples = index.get(key, []) idx = 0 count = 0 while count < len(valid_samples): n = valid_samples[idx] if n >= entity.chroma.shape[0]: print "Out of range! %s" % key break yield biggie.Entity(chroma=entity.chroma[n], chord_label=entity.chord_labels[n]) idx += 1 count += 1 def count_transitions_v157(stash): """writeme.""" vocab = lex.Strict(157) transitions = np.zeros([14, 157]) for k in stash.keys(): chord_labels = stash.get(k).chord_labels chord_idx = vocab.label_to_index(chord_labels) for n in range(len(chord_idx) - 1): if chord_idx[n] is None or chord_idx[n + 1] is None: continue from_idx = int(chord_idx[n]) / 12 if 156 in chord_idx[n:n+2]: to_idx = chord_idx[n + 1] else: to_idx = L.subtract_mod(chord_idx[n], chord_idx[n + 1], 12) transitions[from_idx, to_idx] += 1 trans_mat = [] for row in transitions[:-1]: for _ in range(12): trans_mat.append(L.rotate(row, 0-_)) trans_mat.append(trans_mat[-1]) return np.array(trans_mat) def count_labels(reference_set, vocab_dim=157): labels = dict() for labeled_intervals in reference_set.values(): rootless = [L.join(*list([''] + list(L.split(l)[1:]))) for l in labeled_intervals['labels']] intervals = np.array(labeled_intervals['intervals']) durations = np.abs(np.diff(intervals, axis=1)).flatten() for y, w in zip(rootless, durations): if not y in labels: labels[y] = 0 labels[y] += w qlabels = labels.keys() counts = [labels[y] for y in qlabels] idx = np.argsort(counts)[::-1] return [qlabels[i] for i in idx], [counts[i] for i in idx] def count_states(reference_set, lexicon): states = dict() for labeled_intervals in reference_set.values(): chord_idx = lexicon.label_to_index(labeled_intervals['labels']) intervals = np.array(labeled_intervals['intervals']) durations = np.abs(np.diff(intervals, axis=1)).flatten() for y, w in zip(chord_idx, durations): s = L.relative_chord_index(y, y, 157) if not s in states: states[s] = 0 states[s] += w labels = states.keys() counts = [states[y] for y in labels] idx = np.argsort(counts)[::-1] return [labels[i] for i in idx], [counts[i] for i in idx] def count_bigrams(reference_set, vocab_dim=157): states = dict() for labeled_intervals in reference_set.values(): chord_idx = L.chord_label_to_class_index(labeled_intervals['labels'], vocab_dim) intervals = np.array(labeled_intervals['intervals']) durations = np.abs(np.diff(intervals, axis=1)).flatten() for n in range(1, len(chord_idx)): s = tuple([L.relative_chord_index(chord_idx[n], chord_idx[n + i], 157) for i in range(-1, 1)]) if not s in states: states[s] = 0 states[s] += durations[n] labels = states.keys() counts = [states[y] for y in labels] idx = np.argsort(counts)[::-1] return [labels[i] for i in idx], [counts[i] for i in idx] def count_trigrams(reference_set, vocab_dim=157): states = dict() for labeled_intervals in reference_set.values(): chord_idx = L.chord_label_to_class_index_soft( labeled_intervals['labels'], vocab_dim) intervals = np.array(labeled_intervals['intervals']) durations = np.abs(np.diff(intervals, axis=1)).flatten() for n in range(1, len(chord_idx) - 1): s = tuple([L.relative_chord_index(chord_idx[n], chord_idx[n + i], 157) for i in range(-1, 2)]) if not s in states: states[s] = 0 states[s] += durations[n] labels = states.keys() counts = [states[y] for y in labels] idx = np.argsort(counts)[::-1] return [labels[i] for i in idx], [counts[i] for i in idx] def chroma_trigrams(ref_set): states = dict() for v in ref_set.values(): labels = v['labels'] y = L.chord_label_to_class_index(labels, 157) intervals = np.array(v['intervals']) durations = np.abs(np.diff(intervals, axis=1)).flatten() for n in range(1, len(y) - 1): sidx = [L.relative_chord_index(y[n], y[n + i], 157) for i in range(-1, 2)] if None in sidx: continue rot_labels = [L.index_to_chord_label(s, 157) for s in sidx] c = tuple(["".join(["%d" % _ for _ in L.chord_label_to_chroma(l).flatten()]) for l in rot_labels]) if not c in states: states[c] = dict(labels=set(), duration=0.0) states[c]['duration'] += durations[n] states[c]['labels'].add(labels[n]) return states def ideal_chroma_fr(ref_set, stash, framerate=20.0): sample_size = 1./framerate for k, v in ref_set.iteritems(): chroma = L.chord_label_to_chroma(v['labels']) time_points, chroma = mir_eval.util.intervals_to_samples( np.asarray(v['intervals']), chroma.tolist(), sample_size=sample_size, fill_value=[0]*12) time_points, labels = mir_eval.util.intervals_to_samples( np.asarray(v['intervals']), v['labels'], sample_size=sample_size, fill_value='N') stash.add(str(k), biggie.Entity( chroma=chroma, chord_labels=[str(l) for l in labels], time_points=time_points), overwrite=True) print k def ideal_chroma_ss(ref_set, stash): for k, v in ref_set.iteritems(): intervals, labels = L.compress_labeled_intervals(**v) chord_labels = [str(l) for l in labels] chroma = L.chord_label_to_chroma(chord_labels) durations = intervals_to_durations(intervals) stash.add(str(k), biggie.Entity( chroma=chroma, chord_labels=chord_labels, time_points=intervals[:, 0], durations=durations), overwrite=True) print k def class_prior_v157(stash, lexicon): """writeme.""" assert lexicon.num_classes == 157 total_count = np.zeros(lexicon.num_classes, dtype=float) for k in stash.keys(): entity = stash.get(k) chord_idx = lexicon.label_to_index(entity.chord_labels) y_true = chord_idx[np.not_equal(chord_idx, None)].astype(int) counts = np.bincount(y_true) total_count[:len(counts)] += counts for q in range(13): total_count[12*q:(q+1)*12] = total_count[12*q:(q+1)*12].sum() return total_count / total_count.sum()
51577add3faa8b6ac3b28fcbd7f7c2b1f86e5db7
ed7917283ed68d706a232f78cd29eb53e25f47d5
/src/datafinder/persistence/adapters/ldap_/principal_search/__init__.py
66259ef380c242dc9192870a975711c23f473e62
[]
no_license
DLR-SC/DataFinder
b08ae7fe360d8f7424c6b629ab3bc7fb5c370384
958fda4f3064f9f6b2034da396a20ac9d9abd52f
refs/heads/master
2021-01-18T23:25:38.683720
2017-01-27T13:09:43
2017-01-30T11:37:14
52,777,594
9
7
null
2017-01-30T11:37:16
2016-02-29T08:58:04
Python
UTF-8
Python
false
false
1,805
py
# $Filename$ # $Authors$ # # Last Changed: $Date$ $Committer$ $Revision-Id$ # # Copyright (c) 2003-2011, German Aerospace Center (DLR) # All rights reserved. # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are #met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the German Aerospace Center nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Implements LDAP-specific adapters for the principal search. """ __version__ = "$Revision-Id:$"
[ "" ]
aa73b5feecaf9671d0248fac60f0816e78ff5f24
77462a326307065eda78f309e3c1a5e28114bc48
/bth7-4.py
fddcd2228937ba9a56407bff03e341a5e4e95e3d
[]
no_license
PhamHongQuyet/bai-TH7
e0b7f2ea7ca92430662c2d29a366d805fc75727f
ca233e02c7b6d4f88f0d68b3b06cb3a5e29fec9d
refs/heads/master
2020-05-24T20:17:05.355919
2019-05-19T08:32:22
2019-05-19T08:32:22
187,452,203
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
def file_read_from_head(fname, nlines): from itertools import islice with open(fname) as f: for line in islice(f, nlines): print(line) file_read_from_head('test.txt',2)
01d8a592e57f2900c2948ab287bc01ca07685ce4
6bf11db369218e0d7b2213b3781cef9e4bf67b6d
/YourSpace/post/migrations/0004_auto_20160727_0247.py
25989b6954004dff6bb8011ab84784f132964dfc
[]
no_license
georgesitoniv/Your-Space
4ebed257c43e36379540d7404f0d9737e0a7c1fa
c6db36cde99e36ea99fee0ae97ab73118700d4e0
refs/heads/master
2022-12-03T05:54:47.485939
2020-05-20T13:14:45
2020-05-20T13:14:45
64,178,791
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('post', '0003_auto_20160725_0857'), ] operations = [ migrations.AlterField( model_name='post', name='content', field=models.TextField(max_length=600, blank=True), ), ]
098128b5007241360b8b280b534fcda40d51d2dd
313e7752b94935d265e215a2f6095a7b9697f587
/reforcer.py
84634e1f5adcbd4b6eebafc6a8a07057eac4c388
[]
no_license
HeroOnline/autoReinforce
b1cbb9f7df79734dc32698b874f514425811e913
cd569b66b67a2f1fbe5800b877fa06ab5abaff20
refs/heads/master
2021-05-17T18:48:21.406220
2019-09-25T09:42:28
2019-09-25T09:42:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
import os import sys import signer import tools sid = "" skey = "" downloadDir = "./legu" bash = "java -Dfile.encoding=utf-8 -jar ms-shield.jar -sid {sid} -skey {skey} -uploadPath {uploadPath} -downloadPath {downloadPath}" def reforce(): print("============开始加固============") tar = tools.findFile("apk") if(not tar): raise Exception("didn't find apk, do you put it in root?") apk = tar if not os.path.exists(downloadDir): os.mkdir(downloadDir) if len(sid) > 0 and len(skey) > 0: cmd = bash.format(sid=sid, skey=skey, uploadPath=apk, downloadPath=downloadDir) os.system(cmd) print("============加固完成============") return True else: raise Exception("pls set sid & skey value in reforcer.py")
9de2abc269bc9cdcf02113bb509871159393a39e
fc8063db27ae5806c7bf2d2ebc10c3d3380e33a0
/2019_issue_counts_combined/combine_state_counts.py
44b665c7425cf4f9663e7595eadea350644243d3
[]
no_license
cjehr/chronam_api
270c794b643a201a22c0200a104868558e993afc
4afbf49493ceea503353b083d653e2060b5d3734
refs/heads/master
2020-05-17T10:55:17.031310
2019-05-08T15:45:10
2019-05-08T15:45:10
183,670,812
0
0
null
null
null
null
UTF-8
Python
false
false
502
py
import glob import shutil # Opens .csv files in a directory and appends them to a single file. # combined_state_count.csv is the combined file name. count = 0 with open('combined_state_count.csv', 'wb') as outfile: for filename in glob.glob('*.csv'): if filename == 'combined_state_count.csv': continue with open(filename, 'rb') as readfile: count += 1 shutil.copyfileobj(readfile, outfile) print(str(count) + ' files combined')
7efaf3614bfa50e9f908d810d6bfbf19d5941535
315fae59067002bc5d48f1f9998283d68026f406
/Pregunta7.py
64253ce89dbd88b0aab7a0afed87e604f354620b
[]
no_license
krozmok/InfotechSystemsTest
3eae738c6b8fa893bf8316d2c61563f84074aa5b
de0235e9696158bc4581821dd070cee7b8d91509
refs/heads/main
2023-02-20T18:09:29.013527
2021-01-28T17:21:22
2021-01-28T17:21:22
333,793,335
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
''' Desarrollar una funcion que me devuelva el n-esimo fibonacci Recordar que la serie fibonacci inicia en uno, es decir que fibonacci(1) = 1, ademas que el fibonacci(3) = fibonacci(2) + fibonacci(1) Nota: Implementarlo de modo iterativo. ''' def fibonacci(n): if n == 1 or n == 2: return 1 else: primero = 1 siguiente = 1 temporal = 0 for i in range(n-2): temporal = siguiente siguiente = primero + siguiente primero = temporal return siguiente def main(): n = int(input("Ingrese n: ")) print("Fibonacchi({0}) = {1}".format(n, fibonacci(n))) if __name__ == '__main__': main()
0399d3b723e13b3d7a6e31812104913ca82907df
3217bdfe91c65a6897b2cffedd6cf7a5ce154ce6
/bin/pip3
413059cf4d4139fb647f908d41dd4e5179163dd4
[]
no_license
merrillkoshy/dt
eaf6f5bda45169c90c634bdc59b5db9cfae206fa
04852a7abc426470fa00770627260096af4a7a73
refs/heads/master
2022-12-09T03:33:27.668964
2018-09-08T17:46:00
2018-09-08T17:46:00
145,230,821
0
1
null
2022-12-07T20:03:42
2018-08-18T15:24:16
Python
UTF-8
Python
false
false
227
#!/Users/Bdb/dt/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f2429859aaddc700ac346e102f30f493ad8da85f
cfb5782653073bdc15ee7df6e198fc2f73f83b4d
/sourcing/SEC-10K/SECAzure.py
ebfe18f7e1dcd5b4a7fae0bb032c3ed22869c6c5
[]
no_license
ravithejaburugu/ravitest
bde0bfd11709becc20935bd5b8bd97108e55fed4
ff0c13a76c875c32c7b380fe7a69e58aae8ddb9e
refs/heads/master
2021-08-14T20:19:43.406682
2017-11-16T18:04:16
2017-11-16T18:04:16
110,831,847
0
0
null
null
null
null
UTF-8
Python
false
false
6,012
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 31 12:56:40 2017 @author: ANSHUL """ import requests import io import re from bs4 import BeautifulSoup from urllib2 import urlopen from azure.storage.blob import BlockBlobService, ContainerPermissions from datetime import datetime, timedelta from os import path class SEC_Azure(): def __init__(self, azure_account_name, azure_account_key, azure_container): # initializing class variables self.azure_container = azure_container self.block_blob_service = BlockBlobService( account_name=azure_account_name, account_key=azure_account_key) # creating azure container, iff container doesn't exist. if not self.block_blob_service.exists(self.azure_container): self.block_blob_service.create_container(self.azure_container) def createDocumentList(self, cik, year): if (len(cik) != 10): while(len(cik) != 10): cik = '0' + cik # generate the url to crawl base_url = "http://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=" + str(cik) + "&type=10-K&dateb=&owner=exclude&output=xml&start=0&count=" r = requests.get(base_url) data = r.text # parse fetched data using beatifulsoup soup = BeautifulSoup(data) # store the link in the list link_list = list() year_link_list = soup.find_all(['datefiled', 'filinghref']) year_link_string = [str(e) for e in year_link_list] arg = year + '-' for year_str in year_link_string: if arg in year_str: i = year_link_string.index(year_str) if len(year_link_string) > i + 1: link = year_link_string[i + 1] url = re.split('[< >]', link)[2] # If the link is .htm, convert it to .html if url.split(".")[len(url.split(".")) - 1] == "htm": url += "l" link_list.append(url) azure_urls, file_types = self.downloadToAzure(cik, link_list) return azure_urls, file_types def downloadToAzure(self, cik, link_list): # Get all the doc azure_urls = set() file_types = set() for k in range(len(link_list)): original_url = '' try: soup1 = BeautifulSoup(urlopen(link_list[k])) except BaseException: continue tablecheck = soup1.findAll("table", {"class": "tableFile"}) table1 = soup1.findAll( "table", { "class": "tableFile", "summary": "Document Format Files"}) if(len(tablecheck) == 2): xbrl_zip_file_url = link_list[k].replace( '-index.html', '') + "-xbrl.zip" xbrl_zip_file_name = xbrl_zip_file_url.split("/")[-1] r = requests.get(xbrl_zip_file_url, stream=True) stream = io.BytesIO(r.content) self.block_blob_service.create_blob_from_stream(path.join( self.azure_container, cik), xbrl_zip_file_name, stream) sas_token = self.block_blob_service.generate_blob_shared_access_signature( self.azure_container, path.join(cik, xbrl_zip_file_name), expiry=datetime.utcnow() + timedelta(weeks=52), permission=ContainerPermissions.READ) download_url = self.block_blob_service.make_blob_url( self.azure_container, path.join( cik, xbrl_zip_file_name), sas_token=sas_token) azure_urls.add(download_url) file_types.add(xbrl_zip_file_url.split(".")[-1]) for tbl in table1: rows = tbl.findAll('tr') for tr in rows: cols = tr.findAll('td') for td in cols: url = tr.find('a', href=True) original_url = url['href'] arc = "https://www.sec.gov" + original_url file_name = original_url.split("/")[-1] file_type = original_url.split(".")[-1] if(file_name != ''): if(file_type == 'pdf' or file_type == 'gif' or file_type == 'jpg'): r = requests.get(arc, stream=True) stream = io.BytesIO(r.content) self.block_blob_service.create_blob_from_stream( path.join(self.azure_container, cik), file_name, stream) else: f = requests.get(arc) self.block_blob_service.create_blob_from_text( path.join(self.azure_container, cik), file_name, f.text) sas_token = self.block_blob_service.generate_blob_shared_access_signature( self.azure_container, path.join(cik, file_name), expiry=datetime.utcnow() + timedelta(weeks=52), permission=ContainerPermissions.READ) download_url = self.block_blob_service.make_blob_url( self.azure_container, path.join(cik, file_name), sas_token=sas_token) azure_urls.add(download_url) file_types.add(file_type) break return azure_urls, file_types
c462f2a96c5c7c43976b510cb1bc5edc5d2ab16d
bd0af18980fe7817f7abde7dd23fddaf10548c72
/sgvehiclepark/wsgi.py
176e0bc1b010290176471f2c555714d573afed6a
[]
no_license
suneelmurthy/sgvehiclepark
4f5ef5419db9219e5cbf1545ea60a7bbe8356849
1ee4c9aeef3fef85f520c060a919bd41a8caa64c
refs/heads/master
2020-04-14T18:48:44.687883
2015-12-14T09:35:53
2015-12-14T09:35:53
40,391,562
0
0
null
null
null
null
UTF-8
Python
false
false
1,435
py
""" WSGI config for myproject project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "sgvehiclepark.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sgvehiclepark.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
98a1ce18006a597696a1f8dc8530add0fd6103ab
72a0f1c73a6267d35b793dd8aab1aa65997278d2
/Posterior-Computation/compute-posteriors-factored-model.py
13eaac08f152792f2a4d5fcaa26d109df3df1024
[ "BSD-3-Clause" ]
permissive
CrowdDynamicsLab/CMAP
e3c74b48983c9e302b7f357a649e4701e44fee30
1db002cfcd5e9805dc93d27582381f1388f8fe9f
refs/heads/master
2020-04-06T13:12:31.399393
2018-11-22T23:35:41
2018-11-22T23:35:41
157,488,963
3
0
null
null
null
null
UTF-8
Python
false
false
13,447
py
import codecs import os import math import numpy as np import scipy.special import operator import datetime import argparse def load_phi_w(phi_w_path): PHI_W = [] file = codecs.open(phi_w_path, 'r', 'utf-8') for row in file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) PHI_W.append(curr_li) file.close() return PHI_W def load_phi_b(phi_b_path): PHI_B = [] file = codecs.open(phi_b_path, 'r', 'utf-8') for row in file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) PHI_B.append(curr_li) file.close() return PHI_B def load_time_map(mapping_path): TIME_MAP = {} mapping_file = codecs.open(mapping_path, 'r', 'utf-8') idx = 0 for row in mapping_file: # UserId, PostId, Behav, TimeStamp s = row.strip().split('\t') struct_time = datetime.datetime.strptime(s[3], "%Y-%m-%d %H:%M:%S") # Id = int(s[1]) # actual_ts = int(s[3].strip()) TIME_MAP[idx] = struct_time idx+=1 return TIME_MAP def load_link_probs(link_prob_path): LINK_PROB = [] link_prob_file = codecs.open(link_prob_path, 'r', 'utf-8') for row in link_prob_file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) LINK_PROB.append(curr_li) link_prob_file.close() return LINK_PROB def load_alpha_beta_k(): ALPHA_K = [] alpha_file = codecs.open(alpha_k_path, 'r', 'utf-8') for row in alpha_file: ALPHA_K.append(float(row.strip())) alpha_file.close() BETA_K = [] beta_file = codecs.open(beta_k_path, 'r', 'utf-8') for row in beta_file: BETA_K.append(float(row.strip())) beta_file.close() return ALPHA_K, BETA_K def load_alpha_beta_g(alpha_g_path, beta_g_path): ALPHA_G = [] alpha_file = codecs.open(alpha_g_path, 'r', 'utf-8') for row in alpha_file: curr_alpha = [] s = row.strip().split(' ') for elem in s: curr_alpha.append(float(elem)) ALPHA_G.append(curr_alpha) alpha_file.close() BETA_G = [] beta_file = codecs.open(beta_g_path, 'r', 'utf-8') for row in beta_file: curr_beta = [] s = row.strip().split(' ') for elem in s: curr_beta.append(float(elem)) BETA_G.append(curr_beta) beta_file.close() return ALPHA_G, BETA_G def load_group_user_distr(group_user_distr_path): GROUP_USER = [] group_user_distr_file = codecs.open(group_user_distr_path, 'r', 'utf-8') for row in group_user_distr_file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) GROUP_USER.append(curr_li) group_user_distr_file.close() return GROUP_USER def load_group_prior(group_prior_path): GROUP_PRIOR = [] group_prior_file = codecs.open(group_prior_path, 'r', 'utf-8') for row in group_prior_file: GROUP_PRIOR.append(float(row.strip())) group_prior_file.close() return GROUP_PRIOR def load_group_topic_distr(group_b_topic_distr_path, group_w_topic_distr_path): GROUP_B_TOPIC = [] GROUP_W_TOPIC = [] group_topic_distr_file = codecs.open(group_b_topic_distr_path, 'r', 'utf-8') for row in group_topic_distr_file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) GROUP_B_TOPIC.append(curr_li) group_topic_distr_file.close() group_topic_distr_file = codecs.open(group_w_topic_distr_path, 'r', 'utf-8') for row in group_topic_distr_file: s = row.strip().split(' ') curr_li = [] for elem in s: prob = float(elem) curr_li.append(prob) GROUP_W_TOPIC.append(curr_li) group_topic_distr_file.close() return GROUP_B_TOPIC, GROUP_W_TOPIC def load_word_idx(word_idx_path): WORD_IDX = {} file = codecs.open(word_idx_path, 'r', 'utf-8') idx = 0 for row in file: # idx+=1 # print(idx) try: s = row.strip().split('\t') WORD_IDX[s[1]] = int(s[0]) except: print("Error: ",row.strip()) file.close() return WORD_IDX def load_behav_idx(behav_idx_path): BEHAV_IDX = {} file = codecs.open(behav_idx_path, 'r', 'utf-8') for row in file: s = row.strip().split('\t') BEHAV_IDX[s[1]] = int(s[0]) file.close() return BEHAV_IDX def load_user_map(user_map_path): USER_MAP = {} file = codecs.open(user_map_path, 'r', 'utf-8') for row in file: s = row.strip().split('\t') USER_MAP[int(s[1])] = s[0] file.close() return USER_MAP def load_user_group_topic(table_assign_path, discount): USER_GROUP = {} USER_TOPIC = {} USER_TABLE = {} PY_TERM = [[0.0]*K_b]*G # N_g = [0]*G # N_k = [0]*K C = 0 table_idx = 0 table_assign_file = codecs.open(table_assign_path, 'r', 'utf-8') for row in table_assign_file: # Num_intr, Group, Topic, (Interactions separated by ,) s = row.strip().split('\t') if(int(s[0]) == 0): table_idx+=1 continue group = int(s[1]) topic = int(s[2]) intr_list = s[3].strip().split(",") for elem in intr_list: if elem.strip() == '': continue user = int(elem.strip()) USER_GROUP[user] = group USER_TOPIC[user] = topic USER_TABLE[user] = table_idx # N_g[group]+=1 # N_k[topic]+=1 C+=1 PY_TERM[group][topic] += (int(s[0]) - discount) table_idx+=1 table_assign_file.close() return USER_GROUP, USER_TOPIC, USER_TABLE, PY_TERM def load_post_ids(mapping_path): POST_IDs = {} mapping_file = codecs.open(mapping_path, 'r', 'utf-8') idx = 0 for row in mapping_file: # UserId, Postid, Behav, CreationDate s = row.strip().split('\t') Id = int(s[1]) POST_IDs[idx] = Id idx+=1 return POST_IDs def compute_time_prob(alpha, beta, t): prob = (1.0*(math.pow(t, alpha - 1))*(math.pow(1-t, beta - 1)))/(scipy.special.beta(alpha, beta)) return prob def compute_posteriors(INTR_GROUP, INTR_TOPIC, USER_MAP, WORD_IDX, BEHAV_IDX, PHI_W, PHI_B, GROUP_USER, ALPHA_G, BETA_G, ALPHA_K, BETA_K, GROUP_PRIOR, GROUP_B_TOPIC_PRIOR, GROUP_W_TOPIC_PRIOR, POST_IDs, LINKS_i_j, LINK_PROB, USER_TABLE, PY_TERM, TIME_MAP, model, dataset, discount, intr_path): DICT_USER_POSTERIORS = {} group_posteriors = [] intr_file = codecs.open(intr_path, 'r', 'utf-8') idx = 0 for row in intr_file: # Text, u, b, ts s = row.split('\t') # if s[1].startswith("TEMP_USER"): # continue text = s[0].strip() u = int(s[1].strip()) b = s[2].strip() ts = float(s[3].strip()) b = BEHAV_IDX[b] text_li = text.strip().split(' ') curr_posterior_g = [] curr_posterior_k = [] for g in range(G): prob_g = 0.0 for k_w in range(K_w): prob_k = 1.0 for word in text_li: if word == '': continue w = WORD_IDX[word] prob_k = prob_k * PHI_W[k_w][w] prob_k = prob_k * compute_time_prob(ALPHA_G[g][k_w], BETA_G[g][k_w], ts) prob_k *= GROUP_W_TOPIC_PRIOR[g][k_w] prob_g+=prob_k curr_posterior_g.append(prob_g) group_posteriors.append(curr_posterior_g) idx+=1 if idx%1000 == 0: print(model, dataset, discount, idx) intr_file.close() print("Without link prob loaded") intr_file = codecs.open(intr_path, 'r', 'utf-8') idx = 0 for row in intr_file: # Text, u, b, ts s = row.split('\t') # if s[1].startswith("TEMP_USER"): # continue text = s[0].strip() u = int(s[1].strip()) if u == -1: idx+=1 continue b = s[2].strip() ts = float(s[3].strip()) b = BEHAV_IDX[b] text_li = text.strip().split(' ') curr_posterior_g_k_b = [] for g in range(G): for k_b in range(K_b): prob = 1.0 prob *= GROUP_PRIOR[g] prob *= PY_TERM[g][k_b] prob *= PHI_B[k_b][b] prob_k_w = 0.0 for k_w in range(K_w): prob_k = 1.0 for word in text_li: if word == '': continue w = WORD_IDX[word] prob_k = prob_k * PHI_W[k_w][w] prob_k = prob_k * compute_time_prob(ALPHA_G[g][k_w], BETA_G[g][k_w], ts) prob_k *= GROUP_W_TOPIC_PRIOR[g][k_w] prob_k_w+=prob_k prob *= prob_k_w if idx in LINKS_i_j: curr_links = LINKS_i_j[idx] for j in curr_links: posterior_j = group_posteriors[j] max_index, max_value = max(enumerate(posterior_j), key=operator.itemgetter(1)) prob = prob * LINK_PROB[g][max_index] curr_posterior_g_k_b.append(prob) curr_posterior_g = [] li_idx = 0 for g in range(G): prob_g = 0.0 for k in range(K_b): prob_g += curr_posterior_g_k_b[li_idx] li_idx+=1 curr_posterior_g.append(prob_g) curr_posterior_k = [0.0]*K_b li_idx = 0 for g in range(G): for k in range(K_b): curr_posterior_k[k] += curr_posterior_g_k_b[li_idx] li_idx+=1 sum_li = np.sum(curr_posterior_g) if sum_li == 0.0: sum_li = np.sum([1.0]) curr_posterior_g = curr_posterior_g/sum_li curr_posterior_g = curr_posterior_g.tolist() sum_li = np.sum(curr_posterior_k) if sum_li == 0.0: sum_li = np.sum([1.0]) curr_posterior_k = curr_posterior_k/sum_li curr_posterior_k = curr_posterior_k.tolist() b = s[2].strip() # actual_ts = TIME_MAP[idx] # actual_user = USER_MAP[u] actual_user = u if actual_user not in DICT_USER_POSTERIORS: DICT_USER_POSTERIORS[actual_user] = [] # g = INTR_GROUP[idx] DICT_USER_POSTERIORS[actual_user].append(curr_posterior_g+curr_posterior_k) idx+=1 if idx%1000==0: print(model, dataset, discount, idx) intr_file.close() return DICT_USER_POSTERIORS def load_links(links_path): LINKS_i_j = {} links_file = codecs.open(links_path, 'r', 'utf-8') for row in links_file: # Interaction i -> Interaction j s = row.strip().split('\t') i = int(s[0]) j = int(s[1]) if i not in LINKS_i_j: LINKS_i_j[i] = [] LINKS_i_j[i].append(j) links_file.close() return LINKS_i_j def generate_posteriors(basepath, intr_path, links_path, discount): # INTR_GROUP, INTR_TOPIC, USER_MAP, WORD_IDX, BEHAV_IDX, PHI_W, PHI_B, GROUP_USER, ALPHA_G, BETA_G, ALPHA_K, BETA_K, GROUP_PRIOR, GROUP_TOPIC_PRIOR # basepath = "../Output/" +model+"_"+str(K_b)+"_"+str(G)+"_"+dataset+"_"+str(discount)+"00000/" phi_w_path = basepath+"topic-word-distribution.txt" phi_b_path = basepath+"topic-behavior-distribution.txt" alpha_k_path = basepath+"topic-time-alpha.txt" beta_k_path = basepath+"topic-time-beta.txt" alpha_g_path = basepath+"group-time-alpha.txt" beta_g_path = basepath+"group-time-beta.txt" group_user_distr_path = basepath+"group-user-distribution.txt" group_prior_path = basepath+"group-priors.txt" group_b_topic_distr_path = basepath+"group-b-topic-distribution.txt" group_w_topic_distr_path = basepath+"group-w-topic-distribution.txt" word_idx_path = basepath+"vocab-mapping.txt" behav_idx_path = basepath+"behavior-mapping.txt" table_assign_path = basepath+"table-assignment-status.txt" # user_map_path = "../Data/"+dataset+"-user-map.txt" # intr_path = "../Data/"+dataset+"_pre_processed.txt" # mapping_path = "../Data/"+dataset+"_map.txt" # links_path = "../Data/"+dataset+"_links.txt" posterior_path = basepath+"posteriors-user-interactions.txt" link_prob_path = basepath+"link-prob.txt" USER_MAP = load_user_map(user_map_path) WORD_IDX = load_word_idx(word_idx_path) BEHAV_IDX = load_behav_idx(behav_idx_path) PHI_W = load_phi_w(phi_w_path) PHI_B = load_phi_b(phi_b_path) GROUP_USER = load_group_user_distr(group_user_distr_path) ALPHA_G, BETA_G = load_alpha_beta_g(alpha_g_path, beta_g_path) # ALPHA_K, BETA_K = load_alpha_beta_k() ALPHA_K = [] BETA_K = [] GROUP_PRIOR = load_group_prior(group_prior_path) GROUP_B_TOPIC_PRIOR, GROUP_W_TOPIC_PRIOR = load_group_topic_distr(group_b_topic_distr_path, group_w_topic_distr_path) # INTR_GROUP, INTR_TOPIC = load_intr_group_topic() USER_GROUP, USER_TOPIC, USER_TABLE, PY_TERM = load_user_group_topic(table_assign_path, discount) # USER_GROUP = {} # USER_TOPIC = {} # POST_IDs = load_post_ids(mapping_path) POST_IDs = {} LINKS_i_j = load_links(links_path) LINK_PROB = load_link_probs(link_prob_path) # LINKS_i_j = {} # LINK_PROB = [] # TIME_MAP = load_time_map(mapping_path) TIME_MAP = {} print("Loading Done") DICT_USER_POSTERIORS = compute_posteriors(USER_GROUP, USER_TOPIC, USER_MAP, WORD_IDX, BEHAV_IDX, PHI_W, PHI_B, GROUP_USER, ALPHA_G, BETA_G, ALPHA_K, BETA_K, GROUP_PRIOR, GROUP_B_TOPIC_PRIOR, GROUP_W_TOPIC_PRIOR, POST_IDs, LINKS_i_j, LINK_PROB, USER_TABLE, PY_TERM, TIME_MAP, model, dataset, discount, intr_path) print("User Posterior Dict: ", len(DICT_USER_POSTERIORS)) posterior_file = codecs.open(posterior_path, 'w', 'utf-8') for user in DICT_USER_POSTERIORS: print(str(user)+'\t'+str(DICT_USER_POSTERIORS[user]), file = posterior_file) posterior_file.close() print('Posteriors Saved to '+ posterior_path) parser = argparse.ArgumentParser("Posterior_Factored") parser.add_argument("--output_path", help="Path to CMAP output files") parser.add_argument("--corpus_path", help="Path to pre_processed file") parser.add_argument("--links_path", help="Path to links file") parser.add_argument("--discount", help="Value of Discount Parameter", default = "0.5") parser.add_argument("--K_b", help="Number of Behavior Topics", default = "5") parser.add_argument("--K_w", help="Number of Text Topics", default = "20") parser.add_argument("--G", help="Number of Profiles", default = "20") args = parser.parse_args() K_b = int(args.K_b) K_w = int(args.K_w) G = int(args.G) discount = float(args.discount) basepath = args.output_path intr_path = args.corpus_path links_path = args.links_path generate_posteriors(basepath, intr_path, links_path, discount)
129be795f76f25fb388feb32df14d708ab666aea
d1b1c14d90ba2bf8752f3019e178d6042cc12c95
/intersog/chat/models.py
45bd41070236d9da4e60738f49c062771d7ba07b
[]
no_license
NatalyMac/intersog
923584cf9bc2cd803791744ab309098cf8706a0a
bc700dd812e10aa67adccaca9c363b8caf1f9573
refs/heads/master
2021-01-20T20:38:53.365299
2016-06-28T07:54:02
2016-06-28T07:54:02
60,775,698
0
0
null
null
null
null
UTF-8
Python
false
false
862
py
# coding: utf-8 from __future__ import unicode_literals from django.db import models from django.conf import settings from swampdragon.models import SelfPublishModel from .serializer import ChatSerializer class Chat(SelfPublishModel, models.Model): class Meta(object): verbose_name = u"Чат" verbose_name_plural = u"Чат" serializer_class = ChatSerializer user_sent = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True) user_receive_id = models.IntegerField( blank=True, verbose_name=u"Получатель") text = models.TextField( blank=True,) created = models.DateField( auto_now=False, auto_now_add=True, blank=True, verbose_name=u"Дата создания") def __unicode__(self): return '{}'.format(self.text)
9117f9f2cce95c3f9c960a40127f7cde6384a932
d21864a26233d32913c44fd87d6f6e67ca9aabd8
/prosodic/lib/Phoneme.py
876171217cb508068e7a472fe4fc487bf116ba6c
[ "MIT" ]
permissive
quadrismegistus/litlab-poetry
7721a8849667f2130bb6fa6b9f18a7f6beb9912e
28fff4c73344ed95d19d7e9a14e5a20697599605
refs/heads/master
2021-01-23T20:14:05.537155
2018-11-19T08:56:55
2018-11-19T08:56:55
27,054,260
16
1
null
null
null
null
UTF-8
Python
false
false
3,454
py
from ipa import ipa,ipakey,ipa2cmu,formantd from entity import entity class Phoneme(entity): def __init__(self,phons,ipalookup=True): self.feats = {} self.children = [] # should remain empty unless dipthong self.featpaths={} self.phon=None if type(phons)==type([]): for phon in phons: if type(phon)==type(""): self.children.append(Phoneme(phon)) else: self.children.append(phon) self.feat('dipthong',True) else: self.phon=phons.strip() if ipalookup and self.phon: if(self.phon in ipa): k=-1 for v in ipa[self.phon]: k+=1 self.feat(ipakey[k],v) self.finished = True if self.isLong() or self.isDipthong(): self.len=2 else: self.len=1 def str_cmu(self): strself=str(self) if strself in ipa2cmu: return ipa2cmu[strself].lower() else: print "<error> no cmu transcription for phoneme: ["+strself+"]" return strself def __str__(self): if self.children: return self.u2s(u"".join([x.phon for x in self.children])) else: return self.u2s(self.phon) def __repr__(self): #return "["+str(self)+"]" return str(self) def isConsonant(self): return self.feature('cons') def isVowel(self): return (self.isDipthong() or self.isPeak()) def isPeak(self): return self.feature('syll') def isDipthong(self): return self.feature('dipthong') def isLong(self): return self.feature('long') def isHigh(self): return self.feature('high') @property def phon_str(self): if self.phon: return self.phon return u''.join(phon.phon for phon in self.children) @property def featset(self): if self.children: featset=set() for child in self.children: featset|=child.featset return featset else: return {feat for feat in self.feats if self.feats[feat]} @property def featspace(self): fs={} if self.children: for child in self.children: #print "CHILD:",child,child.featset for f,v in child.feats.items(): fs[f]=int(v) if v!=None else 0 else: for f,v in self.feats.items(): fs[f]=int(v) if v!=None else 0 return fs def CorV(self): if self.isDipthong() or self.isLong(): return "VV" if self.isPeak(): return "V" else: return "C" def distance(self,other): lfs1=[self.featspace] if not self.children else [c.featspace for c in self.children] lfs2=[other.featspace] if not other.children else [c.featspace for c in other.children] dists=[] for fs1 in lfs1: for fs2 in lfs2: allkeys=set(fs1.keys() + fs2.keys()) f=sorted(list(allkeys)) v1=[float(fs1.get(fx,0)) for fx in f] v2=[float(fs2.get(fx,0)) for fx in f] from scipy.spatial import distance dists+=[distance.euclidean(v1,v2)] return sum(dists)/float(len(dists)) def distance0(self,other): import math feats1=self.featset feats2=other.featset jc=len(feats1&feats2) / float(len(feats1 | feats2)) vdists=[] if not 'cons' in feats1 and not 'cons' in feats2: ## ADD VOWEL F1,F2 DIST v1=[p for p in self.phon_str if p in formantd] v2=[p for p in other.phon_str if p in formantd] if not v1 or not v2: vdists+=[2] for v1x in v1: for v2x in v2: #print v1x,v2x vdist=math.sqrt( (formantd[v1x][0] - formantd[v2x][0])**2 + (formantd[v1x][1] - formantd[v2x][1])**2) #print "ADDING",vdist vdists+=[vdist] #print self,other,feats1,feats2 return jc + sum(vdists) def __eq__(self,other): return self.feats == other.feats
f532d35eec7418c8dbe4d20673d602c6a8a643a4
30b10e92cf7db28910f44602dbb75135c0655ec9
/CelebA/src/construct_celeba_dataset.py
043b07d050d856c8e48f8d2604ae601bce77b98b
[]
no_license
zjsong/CDNet
c267824ddb48a851764d702b9dc19d8c2dd4f324
914770230b9629db1d0aac97686c42b26956ee1c
refs/heads/master
2022-11-11T06:42:22.132804
2020-06-30T01:55:05
2020-06-30T01:55:05
266,239,399
1
1
null
null
null
null
UTF-8
Python
false
false
1,564
py
""" Construct the CelebA dataset class. """ import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import torch from torch.utils.data import Dataset class CelebADataset(Dataset): def __init__(self, csv_file, imgs_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. imgs_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.attributes_frame = pd.read_csv(csv_file) self.images_dir = imgs_dir self.transform = transform def __len__(self): return len(self.attributes_frame) def __getitem__(self, idx): img_name = os.path.join(self.images_dir, self.attributes_frame.iloc[idx, 0]) image = plt.imread(img_name) if self.transform: image = self.transform(image) attributes = self.attributes_frame.iloc[idx, 1:] # for 1 * 40 attribute label # convert the attribute values (1 and -1) into binary representations (1 and 0) attrs_binary = np.zeros(len(attributes)) for id_attr, value_attr in enumerate(attributes): if value_attr == 1: attrs_binary[id_attr] = 1 else: pass attrs_binary = torch.from_numpy(attrs_binary).type(torch.FloatTensor) sample = {'image': image, 'attributes': attrs_binary} return sample
e82d4bec70a3688bdd17fec5b4f3ac82eccb3528
d37493c5d109c1396881bbaf01fa4341789c2503
/src/symbol_table/partial_symbol_table.py
31c4fb7dce1a598d6da6ffe0bfe841741d3f3bff
[]
no_license
xkozar/VYP-compiler
338baed8e45e21846a734e225fe867d8182251a0
76b113ad066ddbef4ae9beea488321c14eb94ffa
refs/heads/master
2023-06-11T01:45:15.535879
2021-07-11T11:50:59
2021-07-11T11:50:59
302,682,862
0
1
null
null
null
null
UTF-8
Python
false
false
1,985
py
''' project: VYPlanguage compiler authros: Tomáš Kožár, xkozar02 ''' from compiler import SemanticGeneralError from symbol_table.class_partial_symbol_table import ClassPartialSymbolTable class PartialSymbolTable: def __init__(self, parentClosure): self.symbols = {} self.__parentClosure = parentClosure def getSymbol(self, key: str): return self.symbols.get(key) or self.__parentClosure.getSymbol(key) def isSymbolDefined(self, key): if self.symbols.get(key): return True else: return self.__parentClosure.isSymbolDefined(key) def addSymbol(self, key, symbol): if self.symbols.get(key): raise SemanticGeneralError(f'Symbol with id:\'{key}\' is already defined in this scope') self.symbols.update({key: symbol}) def getParentClosure(self): return self.__parentClosure.getClosure() def getClosure(self): return self def containsKey(self, key): return key in self.symbols def getAllCurrentSymbols(self): return list(self.symbols.values()) def getAllCurrentSymbolsAsDict(self): return self.symbols.copy() def getAllSymbols(self): return self.getAllCurrentSymbols() + self.__parentClosure.getAllSymbols() def __str__(self): return f'{{ \n {self.__parentClosure.__str__()} \n\t {self.symbols.keys()} \n }}' class PartialClassSymbolTable(PartialSymbolTable): def __init__(self): super().__init__(ClassPartialSymbolTable()) def addSymbol(self, key, symbol): if self.symbols.get(key): raise SemanticGeneralError(f'Symbol with id:\'{key}\' is already defined in this class') self.symbols.update({key: symbol}) def getLength(self): return len(list(self.symbols.keys())) def copy(self): returnValue = PartialClassSymbolTable() returnValue.symbols = self.symbols.copy() return returnValue
7112580637970329d57785ff0bc48507d4d081ea
08cfc4fb5f0d2f11e4e226f12520a17c5160f0a2
/kubernetes/client/apis/storage_v1_api.py
89b1839daafcce6aca004b352e8dd5927d723d95
[ "Apache-2.0" ]
permissive
ex3cv/client-python
5c6ee93dff2424828d064b5a2cdbed3f80b74868
2c0bed9c4f653472289324914a8f0ad4cbb3a1cb
refs/heads/master
2021-07-12T13:37:26.049372
2017-10-16T20:19:01
2017-10-16T20:19:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
52,194
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..api_client import ApiClient class StorageV1Api(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_storage_class(self, body, **kwargs): """ create a StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_storage_class(body, async=True) >>> result = thread.get() :param async bool :param V1StorageClass body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.create_storage_class_with_http_info(body, **kwargs) else: (data) = self.create_storage_class_with_http_info(body, **kwargs) return data def create_storage_class_with_http_info(self, body, **kwargs): """ create a StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_storage_class_with_http_info(body, async=True) >>> result = thread.get() :param async bool :param V1StorageClass body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'pretty'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_storage_class" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `create_storage_class`") collection_formats = {} path_params = {} query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1StorageClass', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_collection_storage_class(self, **kwargs): """ delete collection of StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_collection_storage_class(async=True) >>> result = thread.get() :param async bool :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server the server will respond with a 410 ResourceExpired error indicating the client must restart their list without the continue field. This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.delete_collection_storage_class_with_http_info(**kwargs) else: (data) = self.delete_collection_storage_class_with_http_info(**kwargs) return data def delete_collection_storage_class_with_http_info(self, **kwargs): """ delete collection of StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_collection_storage_class_with_http_info(async=True) >>> result = thread.get() :param async bool :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server the server will respond with a 410 ResourceExpired error indicating the client must restart their list without the continue field. This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread. """ all_params = ['pretty', '_continue', 'field_selector', 'include_uninitialized', 'label_selector', 'limit', 'resource_version', 'timeout_seconds', 'watch'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_collection_storage_class" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) if '_continue' in params: query_params.append(('continue', params['_continue'])) if 'field_selector' in params: query_params.append(('fieldSelector', params['field_selector'])) if 'include_uninitialized' in params: query_params.append(('includeUninitialized', params['include_uninitialized'])) if 'label_selector' in params: query_params.append(('labelSelector', params['label_selector'])) if 'limit' in params: query_params.append(('limit', params['limit'])) if 'resource_version' in params: query_params.append(('resourceVersion', params['resource_version'])) if 'timeout_seconds' in params: query_params.append(('timeoutSeconds', params['timeout_seconds'])) if 'watch' in params: query_params.append(('watch', params['watch'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1Status', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_storage_class(self, name, body, **kwargs): """ delete a StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_storage_class(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param V1DeleteOptions body: (required) :param str pretty: If 'true', then the output is pretty printed. :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.delete_storage_class_with_http_info(name, body, **kwargs) else: (data) = self.delete_storage_class_with_http_info(name, body, **kwargs) return data def delete_storage_class_with_http_info(self, name, body, **kwargs): """ delete a StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_storage_class_with_http_info(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param V1DeleteOptions body: (required) :param str pretty: If 'true', then the output is pretty printed. :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. :return: V1Status If the method is called asynchronously, returns the request thread. """ all_params = ['name', 'body', 'pretty', 'grace_period_seconds', 'orphan_dependents', 'propagation_policy'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_storage_class" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `delete_storage_class`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `delete_storage_class`") collection_formats = {} path_params = {} if 'name' in params: path_params['name'] = params['name'] query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) if 'grace_period_seconds' in params: query_params.append(('gracePeriodSeconds', params['grace_period_seconds'])) if 'orphan_dependents' in params: query_params.append(('orphanDependents', params['orphan_dependents'])) if 'propagation_policy' in params: query_params.append(('propagationPolicy', params['propagation_policy'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses/{name}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1Status', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_api_resources(self, **kwargs): """ get available resources This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_api_resources(async=True) >>> result = thread.get() :param async bool :return: V1APIResourceList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_api_resources_with_http_info(**kwargs) else: (data) = self.get_api_resources_with_http_info(**kwargs) return data def get_api_resources_with_http_info(self, **kwargs): """ get available resources This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_api_resources_with_http_info(async=True) >>> result = thread.get() :param async bool :return: V1APIResourceList If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_api_resources" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIResourceList', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_storage_class(self, **kwargs): """ list or watch objects of kind StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.list_storage_class(async=True) >>> result = thread.get() :param async bool :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server the server will respond with a 410 ResourceExpired error indicating the client must restart their list without the continue field. This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StorageClassList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.list_storage_class_with_http_info(**kwargs) else: (data) = self.list_storage_class_with_http_info(**kwargs) return data def list_storage_class_with_http_info(self, **kwargs): """ list or watch objects of kind StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.list_storage_class_with_http_info(async=True) >>> result = thread.get() :param async bool :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server the server will respond with a 410 ResourceExpired error indicating the client must restart their list without the continue field. This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StorageClassList If the method is called asynchronously, returns the request thread. """ all_params = ['pretty', '_continue', 'field_selector', 'include_uninitialized', 'label_selector', 'limit', 'resource_version', 'timeout_seconds', 'watch'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_storage_class" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) if '_continue' in params: query_params.append(('continue', params['_continue'])) if 'field_selector' in params: query_params.append(('fieldSelector', params['field_selector'])) if 'include_uninitialized' in params: query_params.append(('includeUninitialized', params['include_uninitialized'])) if 'label_selector' in params: query_params.append(('labelSelector', params['label_selector'])) if 'limit' in params: query_params.append(('limit', params['limit'])) if 'resource_version' in params: query_params.append(('resourceVersion', params['resource_version'])) if 'timeout_seconds' in params: query_params.append(('timeoutSeconds', params['timeout_seconds'])) if 'watch' in params: query_params.append(('watch', params['watch'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf', 'application/json;stream=watch', 'application/vnd.kubernetes.protobuf;stream=watch']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1StorageClassList', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def patch_storage_class(self, name, body, **kwargs): """ partially update the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.patch_storage_class(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.patch_storage_class_with_http_info(name, body, **kwargs) else: (data) = self.patch_storage_class_with_http_info(name, body, **kwargs) return data def patch_storage_class_with_http_info(self, name, body, **kwargs): """ partially update the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.patch_storage_class_with_http_info(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ all_params = ['name', 'body', 'pretty'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method patch_storage_class" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `patch_storage_class`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `patch_storage_class`") collection_formats = {} path_params = {} if 'name' in params: path_params['name'] = params['name'] query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json-patch+json', 'application/merge-patch+json', 'application/strategic-merge-patch+json']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses/{name}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1StorageClass', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def read_storage_class(self, name, **kwargs): """ read the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.read_storage_class(name, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. :param bool export: Should this value be exported. Export strips fields that a user can not specify. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.read_storage_class_with_http_info(name, **kwargs) else: (data) = self.read_storage_class_with_http_info(name, **kwargs) return data def read_storage_class_with_http_info(self, name, **kwargs): """ read the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.read_storage_class_with_http_info(name, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. :param bool export: Should this value be exported. Export strips fields that a user can not specify. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ all_params = ['name', 'pretty', 'exact', 'export'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method read_storage_class" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `read_storage_class`") collection_formats = {} path_params = {} if 'name' in params: path_params['name'] = params['name'] query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) if 'exact' in params: query_params.append(('exact', params['exact'])) if 'export' in params: query_params.append(('export', params['export'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses/{name}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1StorageClass', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def replace_storage_class(self, name, body, **kwargs): """ replace the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.replace_storage_class(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param V1StorageClass body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.replace_storage_class_with_http_info(name, body, **kwargs) else: (data) = self.replace_storage_class_with_http_info(name, body, **kwargs) return data def replace_storage_class_with_http_info(self, name, body, **kwargs): """ replace the specified StorageClass This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.replace_storage_class_with_http_info(name, body, async=True) >>> result = thread.get() :param async bool :param str name: name of the StorageClass (required) :param V1StorageClass body: (required) :param str pretty: If 'true', then the output is pretty printed. :return: V1StorageClass If the method is called asynchronously, returns the request thread. """ all_params = ['name', 'body', 'pretty'] all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method replace_storage_class" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `replace_storage_class`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `replace_storage_class`") collection_formats = {} path_params = {} if 'name' in params: path_params['name'] = params['name'] query_params = [] if 'pretty' in params: query_params.append(('pretty', params['pretty'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.api_client.call_api('/apis/storage.k8s.io/v1/storageclasses/{name}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1StorageClass', auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
66ba06ef2ef8a06a93dcc455b15df488909eda2c
8e71389d52ea845d37e99c5fa412ede317fc6b84
/simulation/PacketServer.py
f8e194acb7e49e410a2d2b5611d4535a80bcb417
[]
no_license
JackHarnett/core_ospf
098d993a367a1815fa52fd93e7e6d71433b2251c
54a31b36646820ebe7b5a7c0c5dc66688613ea3b
refs/heads/master
2023-03-29T20:46:45.456909
2021-04-06T10:36:05
2021-04-06T10:36:05
351,663,531
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
import random import socket server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_socket.bind(('', 12000)) while True: rand = random.randint(0, 10) (client_socket, address) = server_socket.accept() data = client_socket.recvfrom(1024)
2bd1992e4ff2693c9c485b27dd08954a36955f40
b01e55da3542cd3ec298ef4d5d3da4b01d002881
/common/__init__.py
667af8f340636855a7bfcec1f901a333abcfcfe6
[]
no_license
kongjingchun/gift
85a3a3ac3dc6a4e50bb81d7e86c582a5f0bda5f5
36c380d74d88fc4e6e5d14fb1bceb941446e139f
refs/heads/master
2023-04-09T20:57:09.474169
2021-04-19T11:06:42
2021-04-19T11:06:42
355,089,670
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
# coding:utf-8 # @Create time: 2021/3/29 4:39 下午 # @Author: KongJingchun # @remark:
0d84e04b93554f7da8d2ad5ffe00b4e1b02e5b4b
ec8af7eac3f600224c44026d6112a0fbc7f7ed14
/boa/wikidocs/05/wikidocs-05-2.2.py
e25aec6e8486919f717742e935b25f8ef26978f6
[]
no_license
YangBoaa/first-repository
eb2befdd6e17125106983e4a3284c8c343ae8efc
631a1afddc891a688805577f429fa10179900a19
refs/heads/master
2022-12-07T08:55:32.302685
2020-08-28T01:47:57
2020-08-28T01:47:57
279,538,060
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
# if __name__ == "__main__": 의 의미 def add(a, b): return a + b def sub(a, b): return a - b if __name__ == "__main__": print(add(1, 4)) print(sub(5, 2))