blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
1c8dcc3f1ad262de6fac4180e5c8b6618dde5d9f
5ebe164e1cf64e03b13298d16d6e865720ec0b45
/supervised_learning/0x0A-object_detection/7-main.py
81c7712ed0de7d821e8164f8ee59fdae3152d908
[]
no_license
rodrigocruz13/holbertonschool-machine_learning
c17a0df1f692eeaa6c3195d00908a0c95cfc8bc3
eb47cd4d12e2f0627bb5e5af28cc0802ff13d0d9
refs/heads/master
2020-12-22T13:56:18.216499
2020-11-14T08:21:05
2020-11-14T08:21:05
236,808,432
4
2
null
null
null
null
UTF-8
Python
false
false
618
py
#!/usr/bin/env python3 if __name__ == '__main__': import numpy as np Yolo = __import__('7-yolo').Yolo np.random.seed(0) anchors = np.array([[[116, 90], [156, 198], [373, 326]], [[30, 61], [62, 45], [59, 119]], [[10, 13], [16, 30], [33, 23]]]) yolo = Yolo('../data/yolo.h5', '../data/coco_classes.txt', 0.6, 0.5, anchors) predictions, image_paths = yolo.predict('../data/yolo') for i, name in enumerate(image_paths): if "dog.jpg" in name: ind = i break print(image_paths[ind]) print(predictions[ind])
[ "rodrigocruz13" ]
rodrigocruz13
8c225e4d22f42a09cb512b35d97f30b69e592e2c
389d64906ac8371878b0a020618dae9dfe47e691
/mysite/blog/migrations/0005_auto_20190403_1214.py
de0b4b03724b29762e81112e8382d959ff3f5620
[]
no_license
czhang86/blog
507e5a45ef5c19c6c5c78e3214f4822c132255f1
324e49c03806499a982566317ee68d99f787e646
refs/heads/master
2020-05-04T19:57:40.926193
2019-04-04T04:20:36
2019-04-04T04:20:36
179,414,965
0
0
null
null
null
null
UTF-8
Python
false
false
721
py
# Generated by Django 2.1.2 on 2019-04-03 16:14 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('blog', '0004_auto_20190403_1153'), ] operations = [ migrations.AlterField( model_name='comment', name='created_date', field=models.DateTimeField(default=datetime.datetime(2019, 4, 3, 16, 14, 29, 723774, tzinfo=utc)), ), migrations.AlterField( model_name='post', name='created_date', field=models.DateTimeField(default=datetime.datetime(2019, 4, 3, 16, 14, 29, 723774, tzinfo=utc)), ), ]
3780b8a8f5c3e1035a2fb5be411f5088ff20ded0
e303169e4fedbd9d69d76361333ee40d556a247d
/hyperboost/opt.py
13302eb665b0c0a1de54e07ef1ee0854ce67663e
[]
no_license
rpietrusinski/hyperboost
23dce3a986fd54b2e972cc8d5263d79ee6be819d
580ad28f8bd8f0825361875c8a849280a31adaf7
refs/heads/master
2020-03-30T20:54:27.028159
2018-10-08T19:12:19
2018-10-08T19:12:19
151,609,371
0
0
null
null
null
null
UTF-8
Python
false
false
2,786
py
import numpy as np import xgboost as xgb import pickle import os from sklearn.metrics import roc_auc_score from hyperopt import tpe, Trials, space_eval, fmin from sklearn.model_selection import KFold class HyperparametersOptimizer(object): def __init__(self, x: np.ndarray, y: np.ndarray, path: str): """Object of class HyperparametersOptimizer performs XGBoost's hyperparameters optimization using the Hyperopt's Tree Parzen Estimators. During each iteration the 5-fold cross-validation is performed and the algorithm optimizes test AUC. :param x: X data of type numpy ndarray :param y: y data of type numpy ndarray :param path: Experiment path which is where the Trials object is saved/loaded """ self.x: np.ndarray = x self.y: np.ndarray = y self.trials: Trials = None self.best: dict = None self.path: str = os.path.join(path, 'trials.p') self.max_evals: int = None def cross_validation(self, params: dict): """Performs a single run of 5-fold cross-validation and returns the average auc. :param params: Dictionary of parameters :return: Average auc """ auc = [] for train_index, test_index in KFold(n_splits=5, shuffle=True).split(self.x): train = xgb.DMatrix(self.x[train_index], self.y[train_index]) test = xgb.DMatrix(self.x[test_index], self.y[test_index]) model = xgb.train(params, train) preds = model.predict(test) auc.append(roc_auc_score(test.get_label(), preds)) return 1 - np.mean(auc) def run_experiment(self, space: dict, evals: int): """Function either loads the Trials object and continues previous experiments or starts form the beginning. :param space: Parameters space :param evals: Number of evals in the experiment :return: Function saves the trials.p pickle object in the experiment path. """ try: self.trials = pickle.load(open(self.path, "rb")) except FileNotFoundError: self.trials = Trials() self.max_evals = len(self.trials.trials) + evals self.best = fmin(fn=self.cross_validation, space=space, algo=tpe.suggest, max_evals=self.max_evals, trials=self.trials) pickle.dump(self.trials, open(self.path, "wb")) def opt_params(self, space: dict): """Function returns best parameters set based on previous experiments. :param space: parameters space :return: dictionary of parameter values """ if self.trials is None: print("No experiment has been conducted!") else: return space_eval(space, self.trials.argmin)
5760b13b612b0a305cedcee911b325427d81504d
2807aa56f6bae8923d78c10ee4f22fe1970b12f3
/build/pymongo/test/test_threads.py
ec22ffc3476a4f5d74b1d4f8bb95b02e35a7bea3
[ "Apache-2.0" ]
permissive
rutanmedellin/swmanager
7b965b75d419e9be1e25b815b58021ec8e80f9d0
27349c9d85e8de089f29eed1b0413b234a4c1f37
refs/heads/master
2020-06-04T02:27:51.466087
2012-08-21T03:57:13
2012-08-21T03:57:13
3,830,545
1
0
null
null
null
null
UTF-8
Python
false
false
14,420
py
# Copyright 2009-2012 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test that pymongo is thread safe.""" import unittest import threading import traceback from nose.plugins.skip import SkipTest from test.utils import server_started_with_auth, joinall from test.test_connection import get_connection from pymongo.connection import Connection from pymongo.replica_set_connection import ReplicaSetConnection from pymongo.pool import SocketInfo, _closed from pymongo.errors import (AutoReconnect, OperationFailure, DuplicateKeyError) def get_pool(connection): if isinstance(connection, Connection): return connection._Connection__pool elif isinstance(connection, ReplicaSetConnection): writer = connection._ReplicaSetConnection__writer pools = connection._ReplicaSetConnection__pools return pools[writer]['pool'] else: raise TypeError(str(connection)) class AutoAuthenticateThreads(threading.Thread): def __init__(self, collection, num): threading.Thread.__init__(self) self.coll = collection self.num = num self.success = True self.setDaemon(True) def run(self): try: for i in xrange(self.num): self.coll.insert({'num':i}, safe=True) self.coll.find_one({'num':i}) except Exception: traceback.print_exc() self.success = False class SaveAndFind(threading.Thread): def __init__(self, collection): threading.Thread.__init__(self) self.collection = collection self.setDaemon(True) def run(self): sum = 0 for document in self.collection.find(): sum += document["x"] assert sum == 499500, "sum was %d not 499500" % sum class Insert(threading.Thread): def __init__(self, collection, n, expect_exception): threading.Thread.__init__(self) self.collection = collection self.n = n self.expect_exception = expect_exception self.setDaemon(True) def run(self): for _ in xrange(self.n): error = True try: self.collection.insert({"test": "insert"}, safe=True) error = False except: if not self.expect_exception: raise if self.expect_exception: assert error class Update(threading.Thread): def __init__(self, collection, n, expect_exception): threading.Thread.__init__(self) self.collection = collection self.n = n self.expect_exception = expect_exception self.setDaemon(True) def run(self): for _ in xrange(self.n): error = True try: self.collection.update({"test": "unique"}, {"$set": {"test": "update"}}, safe=True) error = False except: if not self.expect_exception: raise if self.expect_exception: assert error class IgnoreAutoReconnect(threading.Thread): def __init__(self, collection, n): threading.Thread.__init__(self) self.c = collection self.n = n self.setDaemon(True) def run(self): for _ in range(self.n): try: self.c.find_one() except AutoReconnect: pass class FindPauseFind(threading.Thread): """See test_server_disconnect() for details""" @classmethod def shared_state(cls, nthreads): class SharedState(object): pass state = SharedState() # Number of threads total state.nthreads = nthreads # Number of threads that have arrived at rendezvous point state.arrived_threads = 0 state.arrived_threads_lock = threading.Lock() # set when all threads reach rendezvous state.ev_arrived = threading.Event() # set from outside FindPauseFind to let threads resume after # rendezvous state.ev_resume = threading.Event() return state def __init__(self, collection, state): """Params: A collection, an event to signal when all threads have done the first find(), an event to signal when threads should resume, and the total number of threads """ super(FindPauseFind, self).__init__() self.collection = collection self.state = state self.passed = False # If this thread fails to terminate, don't hang the whole program self.setDaemon(True) def rendezvous(self): # pause until all threads arrive here s = self.state s.arrived_threads_lock.acquire() s.arrived_threads += 1 if s.arrived_threads == s.nthreads: s.arrived_threads_lock.release() s.ev_arrived.set() else: s.arrived_threads_lock.release() s.ev_arrived.wait() def run(self): try: # acquire a socket list(self.collection.find()) pool = get_pool(self.collection.database.connection) socket_info = pool._get_request_state() assert isinstance(socket_info, SocketInfo) self.request_sock = socket_info.sock assert not _closed(self.request_sock) # Dereference socket_info so it can potentially return to the pool del socket_info finally: self.rendezvous() # all threads have passed the rendezvous, wait for # test_server_disconnect() to disconnect the connection self.state.ev_resume.wait() # test_server_disconnect() has closed this socket, but that's ok # because it's not our request socket anymore assert _closed(self.request_sock) # if disconnect() properly closed all threads' request sockets, then # this won't raise AutoReconnect because it will acquire a new socket assert self.request_sock == pool._get_request_state().sock list(self.collection.find()) assert self.collection.database.connection.in_request() assert self.request_sock != pool._get_request_state().sock self.passed = True class BaseTestThreads(object): """ Base test class for TestThreads and TestThreadsReplicaSet. (This is not itself a unittest.TestCase, otherwise it'd be run twice -- once when nose imports this module, and once when nose imports test_threads_replica_set_connection.py, which imports this module.) """ def setUp(self): self.db = self._get_connection().pymongo_test def tearDown(self): pass def _get_connection(self): """ Intended for overriding in TestThreadsReplicaSet. This method returns a Connection here, and a ReplicaSetConnection in test_threads_replica_set_connection.py. """ # Regular test connection return get_connection() def test_threading(self): self.db.drop_collection("test") for i in xrange(1000): self.db.test.save({"x": i}, safe=True) threads = [] for i in range(10): t = SaveAndFind(self.db.test) t.start() threads.append(t) joinall(threads) def test_safe_insert(self): self.db.drop_collection("test1") self.db.test1.insert({"test": "insert"}) self.db.drop_collection("test2") self.db.test2.insert({"test": "insert"}) self.db.test2.create_index("test", unique=True) self.db.test2.find_one() okay = Insert(self.db.test1, 2000, False) error = Insert(self.db.test2, 2000, True) error.start() okay.start() error.join() okay.join() def test_safe_update(self): self.db.drop_collection("test1") self.db.test1.insert({"test": "update"}) self.db.test1.insert({"test": "unique"}) self.db.drop_collection("test2") self.db.test2.insert({"test": "update"}) self.db.test2.insert({"test": "unique"}) self.db.test2.create_index("test", unique=True) self.db.test2.find_one() okay = Update(self.db.test1, 2000, False) error = Update(self.db.test2, 2000, True) error.start() okay.start() error.join() okay.join() def test_low_network_timeout(self): db = None i = 0 n = 10 while db is None and i < n: try: db = get_connection(network_timeout=0.0001).pymongo_test except AutoReconnect: i += 1 if i == n: raise SkipTest() threads = [] for _ in range(4): t = IgnoreAutoReconnect(db.test, 100) t.start() threads.append(t) joinall(threads) def test_server_disconnect(self): # PYTHON-345, we need to make sure that threads' request sockets are # closed by disconnect(). # # 1. Create a connection with auto_start_request=True # 2. Start N threads and do a find() in each to get a request socket # 3. Pause all threads # 4. In the main thread close all sockets, including threads' request # sockets # 5. In main thread, do a find(), which raises AutoReconnect and resets # pool # 6. Resume all threads, do a find() in them # # If we've fixed PYTHON-345, then only one AutoReconnect is raised, # and all the threads get new request sockets. cx = self.db.connection self.assertTrue(cx.auto_start_request) collection = self.db.pymongo_test # acquire a request socket for the main thread collection.find_one() pool = get_pool(collection.database.connection) socket_info = pool._get_request_state() assert isinstance(socket_info, SocketInfo) request_sock = socket_info.sock state = FindPauseFind.shared_state(nthreads=40) threads = [ FindPauseFind(collection, state) for _ in range(state.nthreads) ] # Each thread does a find(), thus acquiring a request socket for t in threads: t.start() # Wait for the threads to reach the rendezvous state.ev_arrived.wait(10) self.assertTrue(state.ev_arrived.isSet(), "Thread timeout") try: self.assertEqual(state.nthreads, state.arrived_threads) # Simulate an event that closes all sockets, e.g. primary stepdown for t in threads: t.request_sock.close() # Finally, ensure the main thread's socket's last_checkout is # updated: collection.find_one() # ... and close it: request_sock.close() # Doing an operation on the connection raises an AutoReconnect and # resets the pool behind the scenes self.assertRaises(AutoReconnect, collection.find_one) finally: # Let threads do a second find() state.ev_resume.set() joinall(threads) for t in threads: self.assertTrue(t.passed, "%s threw exception" % t) class BaseTestThreadsAuth(object): """ Base test class for TestThreadsAuth and TestThreadsAuthReplicaSet. (This is not itself a unittest.TestCase, otherwise it'd be run twice -- once when nose imports this module, and once when nose imports test_threads_replica_set_connection.py, which imports this module.) """ def _get_connection(self): """ Intended for overriding in TestThreadsAuthReplicaSet. This method returns a Connection here, and a ReplicaSetConnection in test_threads_replica_set_connection.py. """ # Regular test connection return get_connection() def setUp(self): self.conn = self._get_connection() if not server_started_with_auth(self.conn): raise SkipTest("Authentication is not enabled on server") self.conn.admin.system.users.remove({}) self.conn.admin.add_user('admin-user', 'password') self.conn.admin.authenticate("admin-user", "password") self.conn.auth_test.system.users.remove({}) self.conn.auth_test.add_user("test-user", "password") def tearDown(self): # Remove auth users from databases self.conn.admin.authenticate("admin-user", "password") self.conn.admin.system.users.remove({}) self.conn.auth_test.system.users.remove({}) def test_auto_auth_login(self): conn = self._get_connection() self.assertRaises(OperationFailure, conn.auth_test.test.find_one) # Admin auth conn = self._get_connection() conn.admin.authenticate("admin-user", "password") nthreads = 10 threads = [] for _ in xrange(nthreads): t = AutoAuthenticateThreads(conn.auth_test.test, 100) t.start() threads.append(t) joinall(threads) for t in threads: self.assertTrue(t.success) # Database-specific auth conn = self._get_connection() conn.auth_test.authenticate("test-user", "password") threads = [] for _ in xrange(nthreads): t = AutoAuthenticateThreads(conn.auth_test.test, 100) t.start() threads.append(t) joinall(threads) for t in threads: self.assertTrue(t.success) class TestThreads(BaseTestThreads, unittest.TestCase): pass class TestThreadsAuth(BaseTestThreadsAuth, unittest.TestCase): pass if __name__ == "__main__": unittest.main()
d944222d39aa2c0f4eb6c53856e08e6f051fae7a
df541a802b2dfa89d3aab14af627358dc7c76e6e
/接口自动化/Frame5/httpUnittest.py
21a2012f8446211b06c3e9b5b336e248861a73a5
[]
no_license
gupan2018/PyAutomation
de966aff91f750c7207c9d3f3dfb488698492342
230aebe3eca5799c621673afb647d35a175c74f1
refs/heads/master
2021-09-07T19:44:20.710574
2017-12-22T15:58:23
2017-12-22T15:58:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,024
py
__author__ = 'Administrator' import unittest import mysql.connector class Http_Unittest(unittest.TestCase): def __init__(self, test_case_id, test_method, http_method, http, test_url, test_data, cousor): super(Http_Unittest,self).__init__(test_method) self.test_case_id = test_case_id self.test_method = test_method self.http = http self.test_url = test_url self.test_data = test_data self.http_method = http_method self.mobilephone = test_data["mobilephone"] self.regname = test_data["regname"] self.cursor = cousor def test_register(self): if self.http_method == "GET": response = self.http.get_req(self.test_url, self.test_data) elif self.http_method == "POST": response = self.http.post_req(self.test_url, self.test_data) else: print("error in class Http_Unittest") try: #将执行结果存到数据库中 sql_insert = 'INSERT INTO test_result ' \ '(case_id, http_method, request_name, request_url, mobilephone, regname, test_method, test_desc, status, code, msg) ' \ 'VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)' insert_data = (self.test_case_id, self.http_method ,'register',self.test_url, self.mobilephone, self.regname, self.test_method, "测试注册接口",response["status"], response["code"], response["msg"]) self.cursor.execute(sql_insert, insert_data) self.cursor.execute("commit") except mysql.connector.Error as e: print(e) self.cursor.execute("rollback") try: self.assertEqual(response["code"], "10001", "register请求失败") except AssertionError as e: print(str(e)) #pass #下面是测试代码 ''' path_http = "http.conf" http = HttpRequest(path_http) test_Demo = Http_Unittest("test_register", "GET", http) test_Demo.test_register()'''
435ce25fccf4bd20dbf5ae423dd02ada727c70e2
b07ea8c5a075e3c7e7a0f9aca6bec73a22cdb7df
/PART 1/ch03/10_is_anagram_using_ord.py
469076cacf26d0facbbfc5e8a9ede66cabd8f11c
[]
no_license
jaeehooon/data_structure_and_algorithm_python
bb721bdbcff1804c04b944b4a01ed6be93124462
6d07438bfaaa1ec5283cb350ef4904eb94826c48
refs/heads/master
2023-02-21T10:08:20.765399
2021-01-22T13:37:11
2021-01-22T13:37:11
323,367,191
1
0
null
null
null
null
UTF-8
Python
false
false
972
py
# 3.4.2 애너그램 (2) """ ord() 함수는 인수가 유니코드 객체일 때, 문자의 유니코드를 나타내는 정수를 반환 인수가 8바이트 문자열인 경우 바이트 값을 반환함 문자열에서 모든 문자의 ord() 함수 결과를 더했을 때 그 결과가 같으면 두 문자열은 애너그램 """ import string def hash_func(astring): """ :param astring: :return: """ s = 0 for one in astring: if one in string.whitespace: continue s += ord(one) return s def find_anagram_hash_function(word1, word2): return hash_func(word1) == hash_func(word2) def test_find_anagram_hash_function(): word1 = "buffy" word2 = "bffyu" word3 = "bffya" assert(find_anagram_hash_function(word1, word2) is True) assert(find_anagram_hash_function(word1, word3) is False) print("테스트 통과!") if __name__ == '__main__': test_find_anagram_hash_function()
ed9bb04561e90339701c63eaba88122fa21c0fd6
be5deac90813d7e9c600f6d01f57bc10ade6a158
/tests/demos/demo_number_and_quantifier_recognition.py
6a8eee91e653fc39cb145be92718227cc60617c4
[ "Apache-2.0" ]
permissive
hankcs/pyhanlp
a49ed4ae3e32b30ed8d9c8010c0a3e87a4e413d0
cda01245d68b3e94d16f37d979427433b20d7c3e
refs/heads/master
2023-08-19T07:04:14.413190
2023-04-04T17:59:25
2023-04-04T17:59:25
125,806,243
3,169
888
Apache-2.0
2022-01-11T16:33:55
2018-03-19T05:34:36
Python
UTF-8
Python
false
false
1,203
py
# # -*- coding:utf-8 -*- # Author:wancong # Date: 2018-04-30 from pyhanlp import * def demo_number_and_quantifier_recognition(sentences): """ 演示数词和数量词识别 >>> sentences = [ ... "十九元套餐包括什么", ... "九千九百九十九朵玫瑰", ... "壹佰块都不给我", ... "9012345678只蚂蚁", ... "牛奶三〇〇克*2", ... "ChinaJoy“扫黄”细则露胸超2厘米罚款", ... ] >>> demo_number_and_quantifier_recognition(sentences) [十九元/mq, 套餐/n, 包括/v, 什么/ry] [九千九百九十九朵/mq, 玫瑰/n] [壹佰块/mq, 都/d, 不/d, 给/p, 我/rr] [9012345678只/mq, 蚂蚁/n] [牛奶/nf, 三〇〇克/mq, */w, 2/m] [ChinaJoy/nx, “/w, 扫黄/vi, ”/w, 细则/n, 露/v, 胸/ng, 超/v, 2厘米/mq, 罚款/vi] """ StandardTokenizer = JClass("com.hankcs.hanlp.tokenizer.StandardTokenizer") StandardTokenizer.SEGMENT.enableNumberQuantifierRecognize(True) for sentence in sentences: print(StandardTokenizer.segment(sentence)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
1352914267c4014c90ed3edb12bed5ff3dcde7ef
f237ca25c78fd1c89a08cce60f70fe1dc7206d89
/Py/src/ueb/stub_aufg15_brackets_test.py
79e64d715d7d8ad0816009e4b162cc49c1032ffa
[]
no_license
KonstantinTwardzik/Theoretical-Computer-Science
2d08632ad26cd572a853e64b9826e254fd7150ea
b33a60ad7a34c090e05e03cf35333ab25aab6238
refs/heads/master
2021-08-22T23:45:31.724166
2017-12-01T18:33:30
2017-12-01T18:33:30
105,768,326
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
# Ihre Loesung fuer Aufgabe 15 import unittest import ueb.aufg10_valid_brackets as candidate # Testfaelle fuer candidate class Test_valid_brackets(unittest.TestCase): # def test_1(self):
d81d21379e5af810c27b2b1d3e4c8f32d8faec6d
9d454ae0d5dd1d7e96e904ced80ca502019bb659
/198_rob.py
9c17186c04b2ad05f74577de361aeef0ece28d64
[]
no_license
zzz686970/leetcode-2018
dad2c3db3b6360662a90ea709e58d7facec5c797
16e4343922041929bc3021e152093425066620bb
refs/heads/master
2021-08-18T08:11:10.153394
2021-07-22T15:58:52
2021-07-22T15:58:52
135,581,395
3
0
null
null
null
null
UTF-8
Python
false
false
196
py
def rob(nums): ## too naive # return max(sum(nums[0::2]), sum(nums[1::2]), sum(nums[0::3], sum(nums[1::3]))) l =r=0 for n in nums: l, r = r, max(n+l, r) return r assert 4 == rob([2,1,1,2])
9ff318e046b87d76579e6d5b06d8f22e909203d4
1b596568ef6ced06173e60c71f01141682329ac4
/version-example
0c6ba046e0d538c2d3d1a402526ebec6ad7fb3c5
[]
no_license
pfuntner/gists
4eb1847ef22d3d9cb1e17e870a8434c376c4dbfc
3322c922bd43480b4cc2759b1c31e5c76668c7ef
refs/heads/master
2020-04-17T08:40:29.444378
2019-01-18T16:23:49
2019-01-18T16:23:49
166,421,209
0
0
null
null
null
null
UTF-8
Python
false
false
2,957
#! /usr/bin/env python import os import re import sys import logging import argparse import datetime import subprocess def run(cmd): (rc, stdout, stderr) = (None, '', '') if isinstance(cmd, basestring): cmd = cmd.split() try: p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except Exception as e: log.debug('Ignoring `{e!s}` from {cmd}'.format(**locals())) else: (stdout, stderr) = p.communicate() rc = p.wait() log.debug('{cmd}: {rc}, {stdout!r}, {stderr!r}'.format(**locals())) if (rc == 0) and (not stdout): rc = None return (rc, stdout, stderr) def get_version(): git_used = False ret = '?' dir = os.path.dirname(sys.argv[0]) base = os.path.basename(sys.argv[0]) cwd = os.getcwd() try: os.chdir(dir) except: pass else: (rc, stdout, stderr) = run(['git', 'log', '-1', base]) """ commit {SHA1} Author: {FIRST_NAME} {LAST_NAME} <{EMAIL_ADDRESS}> Date: Wed Jan 16 09:32:03 2019 -0500 . . . """ match = re.search(r'^commit\s+(\S+).*\nDate:\s+(([A-Z][a-z]{2} ){2}[ 0123]\d (\d{2}:){2}\d{2} \d{4})', stdout, re.DOTALL) log.debug('`git log -1` search groups: {groups}'.format(groups=match.groups() if match else None)) if match: commit = match.group(1)[:6] timestamp = datetime.datetime.strptime(match.group(2), '%a %b %d %H:%M:%S %Y') log.debug('timestamp: {timestamp!s}'.format(**locals())) (rc, stdout, stderr) = run('git branch') match = re.search(r'\*\s(\S+)', stdout, re.DOTALL) log.debug('`git branch` search groups: {groups}'.format(groups=match.groups() if match else None)) if match: branch = match.group(1) (rc, stdout, stderr) = run('git remote -v') """ origin https://github.com/pfuntner/gists.git (fetch) """ hits = list(re.finditer(r'(\S+)\s(https?://\S+)\s\(fetch\)', stdout)) log.debug('`git remote -v` hits: {hits}'.format(hits=[hit.groups() for hit in hits])) if hits: hits = ['{name}:{url}'.format(name=hit.group(1), url=hit.group(2)) for hit in hits] ret = '{commit}, {branch}, {timestamp!s}, {hits}'.format(**locals()) git_used = True os.chdir(cwd) if not git_used: ret = str(datetime.datetime.fromtimestamp(os.path.getmtime(sys.argv[0]))) return ret logging.basicConfig(format='%(asctime)s %(levelname)s %(pathname)s:%(lineno)d %(msg)s') log = logging.getLogger() log.setLevel(logging.WARNING) parser = argparse.ArgumentParser(description='Example of doing a nifty --version') parser.add_argument('-v', '--verbose', dest='verbose', action='count', help='Print more messages') parser.add_argument('--version', action='version', version=get_version(), help='See wonderful version information') args = parser.parse_args() log.setLevel(logging.WARNING - (args.verbose or 0) * 10) # print repr(get_version())
909120dd6bc0e5a9a8652a04195635298bb7c5b1
08c25b97c357d4422ae4e7fc893211d46523b82b
/scripts/make_table.py
240f81de22750522e8f3633acac713d8196221ce
[ "MIT" ]
permissive
trulfos/spatial-benchmarker
ecad2e8d89d7e01681df45bddc12df9c7ebced09
44ff7f9a60b9a2d5cd98def48ddff43dd0d64220
refs/heads/master
2021-09-02T04:39:42.450867
2017-12-30T11:32:42
2017-12-30T11:34:30
115,791,961
5
1
null
null
null
null
UTF-8
Python
false
false
3,384
py
#!/usr/bin/python3 from database import Database import argparse def parse_arguments(): parser = argparse.ArgumentParser( description='Make a table similar to the one from the RR* article' ) parser.add_argument( 'index', metavar='<index name>', help='Index for which to generate the table' ) parser.add_argument( 'suite', metavar='<suite_id>', help='Suite to collect numbers from' ) parser.add_argument( '--database', '-d', metavar='filename', default='results', help='Path to sqlite database file' ) return parser.parse_args() def to_dict(results): return dict((r['name'], r['value']) for r in results) def main(): args = parse_arguments() db = Database(args.database) # Identify relevant runs benchmark_runs = db.connection.execute( """ select * from `latest_run` inner join `suite_member` using (`benchmark_id`, `config_id`) where `index` = ? and `suite_id` = ? and exists ( select * from reporter where `benchmark_id` = `latest_run`.`benchmark_id` and `name` in ('struct', 'stats', 'correctness') ) """, [args.index, args.suite] ).fetchall() benchmark_runs.sort(key=lambda x: x['dataset']) values = ['benchmark'] \ + 3 * ['results', 'leafAcc'] \ + ['Leafs'] + ( ['Perimspls'] if args.index == 'rtree-rstar' else [] ) + ['commit', 'id'] # TODO: Guarantee sort order? for run in benchmark_runs: values.append(run['dataset'].split('/')[-1]) reporters = db.connection.execute( """ select * from reporter where `benchmark_id` = ? and `name` in ('struct', 'stats', 'correctness') """, (run['benchmark_id'],) ) for reporter in reporters: results = to_dict(db.get_where( 'result', run_id=run['run_id'], reporter_id=reporter['reporter_id'] )) if reporter['name'] == 'stats': values += [ '%.2e' % results['results'], '%.2e' % results['leaf_accesses'] ] elif reporter['name'] == 'struct': h = results['height'] values.append('%.2e' % (results['level_2'] / 1000)) if args.index == 'rtree-rstar': values.append( '%.2e' % ( 100*results['perimeter_splits'] / (results['nodes'] - h) ) ) elif reporter['name'] == 'correctness' and len(results): print('Incorrect results detected! Go hunt more bugs.') exit(1) values += [ run['commit'].decode('utf-8')[:6], '%d' % run['benchmark_id'] ] width = len(benchmark_runs) + 1 height = len(values) // width for i in range(0, len(values) // width): print('\t'.join(v for v in values[i::height])) main()
065afde0ad990602c145f176bbbaf950115db7e7
4d03e487b60afc85d1f3372fe43f2a7b081f0e41
/file_list/thumbnail_cache.py
88b1134b24f906a6286c8193055960e31d5d945b
[]
no_license
hal1932/Explorer
d051bd0bb09b0952bad35deeeec0d4ad00947666
869ce3323aee499048f98f33910fc05126947942
refs/heads/master
2021-01-19T13:27:22.485124
2017-04-18T14:03:17
2017-04-18T14:03:17
82,392,096
4
0
null
null
null
null
UTF-8
Python
false
false
3,203
py
# encoding: utf-8 from lib import * import cv2 import os import threading import Queue class ThumbnailCache(QObject): load_item_async = Signal() def __init__(self, enable_load_async=False): super(ThumbnailCache, self).__init__() self.__items_dic = {} if enable_load_async: self.__load_queue = Queue.Queue() self.__items_lock = threading.Lock() self.__load_thread = threading.Thread(target=self.__load_async_impl) self.__load_thread.daemon = True self.__load_thread.start() self.__enable_async = enable_load_async def get_cached_pixmap(self, path): if self.__enable_async: with self.__items_lock: if path not in self.__items_dic: return None image = self.__items_dic[path] if isinstance(image, QPixmap): return image height, width, dim = image.shape image = QImage( image.data, width, height, dim * width, QImage.Format_RGB888) pixmap = QPixmap.fromImage(image) with self.__items_lock: self.__items_dic[path] = pixmap return pixmap else: if path not in self.__items_dic: return None return self.__items_dic[path] def load(self, path, size): if self.__enable_async: raise ValueError('load_sync is not enabled') if os.path.splitext(path)[1].lower() in ThumbnailCache.__image_exts: pixmap = QPixmap(path) pixmap_size = qt.fitting_scale_down(size, pixmap.size()) pixmap = pixmap.scaled(pixmap_size) else: icon = qt.get_file_icon(path) size = icon.actualSize(size) pixmap = icon.pixmap(size) self.__items_dic[path] = pixmap return pixmap def load_async(self, path, size): if not self.__enable_async: raise ValueError('load_async is not enabled') if os.path.splitext(path)[1].lower() in ThumbnailCache.__image_exts: self.__load_queue.put((path, size)) else: icon = qt.get_file_icon(path) size = icon.actualSize(size) pixmap = icon.pixmap(size) with self.__items_lock: self.__items_dic[path] = pixmap def __load_async_impl(self): while True: path, size = self.__load_queue.get() image = cv2.imread(path) height, width = image.shape[:2] if width != size.width() or height != size.height(): size = qt.fitting_scale_down(size, QSize(width, height)) image = cv2.resize(image, (size.width(), size.height())) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) with self.__items_lock: self.__items_dic[path] = image self.__load_queue.task_done() self.load_item_async.emit() print(path) __initialized = False __directory_thumbnail = None __image_exts = (u'.png', u'.jpg', u'.jpeg', u'.gif', u'.bmp')
4f659d9fc0303fc1ebfcc69527ae63585c957b79
e397e996e6ecbda3742980352f8642dfb058fbdb
/src/nodescripts/corenodes/blend/__init__.py
e7c9684c39899c9ddf33aec8b393b96d49b08834
[ "Apache-2.0" ]
permissive
dephora/GimelStudio
bdcac2155b0021af0a60df4ed4df045a86353ab7
0cdaed3ffa93fd735ca8d65a0d99f1be64c2c522
refs/heads/master
2023-08-13T02:53:46.269443
2021-10-08T15:35:39
2021-10-08T15:35:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
from .mix_node import MixNode from .alpha_over_node import AlphaOverNode
0b697bf8ee814996d74fb061231aeabb70a184c9
70fa6468c768d4ec9b4b14fc94fa785da557f1b5
/lib/surface/compute/ssl_policies/describe.py
0546d3f6604bd3a747040e4520dae448783faf92
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kylewuolle/google-cloud-sdk
d43286ef646aec053ecd7eb58566ab2075e04e76
75f09ebe779e99fdc3fd13b48621fe12bfaa11aa
refs/heads/master
2020-04-20T22:10:41.774132
2019-01-26T09:29:26
2019-01-26T09:29:26
169,131,028
0
0
NOASSERTION
2019-02-04T19:04:40
2019-02-04T18:58:36
Python
UTF-8
Python
false
false
2,150
py
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to describe SSL policies.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute.ssl_policies import ssl_policies_utils from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.compute import flags as compute_flags from googlecloudsdk.command_lib.compute.ssl_policies import flags _SSL_POLICY_ARG = flags.GetSslPolicyArgument() class Describe(base.DescribeCommand): """Describe a Google Compute Engine ssl policy. *{command}* is used to display all data associated with a Google Compute Engine SSL policy in a project. An SSL policy specifies the server-side support for SSL features. An SSL policy can be attached to a TargetHttpsProxy or a TargetSslProxy. This affects connections between clients and the HTTPS or SSL proxy load balancer. SSL policies do not affect the connection between the load balancers and the backends. """ @staticmethod def Args(parser): _SSL_POLICY_ARG.AddArgument(parser, operation_type='describe') def Run(self, args): """Issues the request to describe a SSL policy.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) helper = ssl_policies_utils.SslPolicyHelper(holder) ref = _SSL_POLICY_ARG.ResolveAsResource( args, holder.resources, scope_lister=compute_flags.GetDefaultScopeLister(holder.client)) return helper.Describe(ref)
0666f46140d410d989a463d0a2545a97377dfda1
dc349cfb2b18f7abdae47b892c03e2d6bb77fe11
/cube_reinforcement_learning/cube2X2/env_cube.py
4d0b6bd1651f3f31a94f275f25581acfac0e0a7a
[]
no_license
vanviet93/ML
6e88cb4db728af000437042b59155c5efaa7de46
13336226e91dcb3751caa9fb19fbfb6b916124c5
refs/heads/master
2023-01-03T23:36:22.109552
2020-10-25T14:50:41
2020-10-25T14:50:41
307,107,860
0
1
null
null
null
null
UTF-8
Python
false
false
7,545
py
# This environment can be apply for cube 2X2 or 3X3 import numpy as np CUBE_SIZE = 2 REWARD_NOT_SOLVED = -0.10 REWARD_SOLVED = 1.00 class Environment: # action ROTATE_FRONT = 0 ROTATE_RIGHT = 1 ROTATE_UP = 2 ROTATE_LEFT = 3 ROTATE_BACK = 4 ROTATE_DOWN = 5 ROTATE_REVERSE_FRONT = 6 ROTATE_REVERSE_RIGHT = 7 ROTATE_REVERSE_UP = 8 ROTATE_REVERSE_LEFT = 9 ROTATE_REVERSE_BACK = 10 ROTATE_REVERSE_DOWN = 11 def __init__(self): self._up = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 1 self._left = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 2 self._back = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 3 self._right = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 4 self._front = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 5 self._down = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 6 self.n_action = 12 # only rotate side clockwise, when display, display inside faces-> rotate anti_clockwise self.action_space = list(range(self.n_action)) self.state_size = [CUBE_SIZE * CUBE_SIZE * 6, 6] self._lookup_table = self._make_lookup_table() # convert numbers to binary format def reset(self): self._up = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 1 self._left = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 2 self._back = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 3 self._right = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 4 self._front = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 5 self._down = np.ones([CUBE_SIZE,CUBE_SIZE], dtype=np.int8) * 6 def _to_string(self): sides = [self._up, self._left, self._back, self._right, self._front, self._down] s = '' space = ' ' * CUBE_SIZE for i in range(CUBE_SIZE): s += space for j in range(CUBE_SIZE): s+='[' + str(sides[0][i,j]) + ']' s+='\n' for m in range(CUBE_SIZE): for i in range(1,5): for n in range(CUBE_SIZE): s+='[' + str(sides[i][m,n]) + ']' s+='\n' for i in range(CUBE_SIZE): s += space for j in range(CUBE_SIZE): s+='[' + str(sides[5][i,j]) + ']' if i!=CUBE_SIZE-1: s+='\n' return s def _make_lookup_table(self): return np.float32(np.eye(6)) def render(self): print(self._to_string()) def sample_action(self): return np.random.choice(self.n_action) def get_result(self): for i in range(CUBE_SIZE): for j in range(CUBE_SIZE): if self._up[i,j]!=1 or self._left[i,j]!=2 or self._back[i,j]!=3 or self._right[i,j]!=4 or self._front[i,j]!=5 or self._down[i,j]!=6: return REWARD_NOT_SOLVED return REWARD_SOLVED def get_state(self): flattened_sides = np.concatenate([ self._up.flatten(), self._left.flatten(), self._back.flatten(), self._right.flatten(), self._front.flatten(), self._down.flatten()]) return np.take(self._lookup_table, flattened_sides-1, axis=0) # return 1 -> end # return 0 -> not end def step(self, action): if action==Environment.ROTATE_FRONT: self._front = np.rot90(self._front, 1) temp = self._left[:, 0].copy() self._left[:, 0] = self._down[CUBE_SIZE-1] self._down[CUBE_SIZE-1] = self._right[:, CUBE_SIZE-1][::-1] self._right[:, CUBE_SIZE-1] = self._up[0] self._up[0] = temp[::-1] elif action==Environment.ROTATE_REVERSE_FRONT: self._front = np.rot90(self._front, 3) temp = self._left[:, 0].copy() self._left[:, 0] = self._up[0][::-1] self._up[0] = self._right[:,CUBE_SIZE-1] self._right[:,CUBE_SIZE-1] = self._down[CUBE_SIZE-1][::-1] self._down[CUBE_SIZE-1] = temp elif action==Environment.ROTATE_RIGHT: self._right = np.rot90(self._right, 1) temp = self._front[:, 0].copy() self._front[:, 0] = self._down[:,CUBE_SIZE-1][::-1] self._down[:,CUBE_SIZE-1] = self._back[:,CUBE_SIZE-1] self._back[:,CUBE_SIZE-1] = self._up[:,CUBE_SIZE-1] self._up[:,CUBE_SIZE-1] = temp[::-1] elif action==Environment.ROTATE_REVERSE_RIGHT: self._right = np.rot90(self._right, 3) temp = self._front[:, 0].copy() self._front[:,0] = self._up[:,CUBE_SIZE-1][::-1] self._up[:,CUBE_SIZE-1] = self._back[:,CUBE_SIZE-1] self._back[:,CUBE_SIZE-1] = self._down[:,CUBE_SIZE-1] self._down[:,CUBE_SIZE-1] = temp[::-1] elif action==Environment.ROTATE_UP: self._up = np.rot90(self._up, 1) temp = self._front[0].copy() self._front[0] = self._right[0] self._right[0] = self._back[0] self._back[0] = self._left[0] self._left[0] = temp elif action==Environment.ROTATE_REVERSE_UP: self._up = np.rot90(self._up, 3) temp = self._front[0].copy() self._front[0] = self._left[0] self._left[0] = self._back[0] self._back[0] = self._right[0] self._right[0] = temp elif action==Environment.ROTATE_LEFT: self._left = np.rot90(self._left, 1) temp = self._front[:,CUBE_SIZE-1].copy() self._front[:,CUBE_SIZE-1] = self._up[:,0][::-1] self._up[:,0] = self._back[:,0] self._back[:,0] = self._down[:,0] self._down[:,0] = temp[::-1] elif action==Environment.ROTATE_REVERSE_LEFT: self._left = np.rot90(self._left, 3) temp = self._front[:,CUBE_SIZE-1].copy() self._front[:,CUBE_SIZE-1] = self._down[:,0][::-1] self._down[:,0] = self._back[:,0] self._back[:,0] = self._up[:,0] self._up[:,0] = temp[::-1] elif action==Environment.ROTATE_BACK: self._back = np.rot90(self._back, 1) temp = self._left[:,CUBE_SIZE-1].copy() self._left[:,CUBE_SIZE-1] = self._up[CUBE_SIZE-1][::-1] self._up[CUBE_SIZE-1] = self._right[:,0] self._right[:,0] = self._down[0][::-1] self._down[0] = temp elif action==Environment.ROTATE_REVERSE_BACK: self._back = np.rot90(self._back, 3) temp = self._left[:,CUBE_SIZE-1].copy() self._left[:,CUBE_SIZE-1] = self._down[0] self._down[0] = self._right[:,0][::-1] self._right[:,0] = self._up[CUBE_SIZE-1] self._up[CUBE_SIZE-1] = temp[::-1] elif action==Environment.ROTATE_DOWN: self._down = np.rot90(self._down, 1) temp = self._front[CUBE_SIZE-1].copy() self._front[CUBE_SIZE-1] = self._left[CUBE_SIZE-1] self._left[CUBE_SIZE-1] = self._back[CUBE_SIZE-1] self._back[CUBE_SIZE-1] = self._right[CUBE_SIZE-1] self._right[CUBE_SIZE-1] = temp elif action==Environment.ROTATE_REVERSE_DOWN: self._down = np.rot90(self._down, 3) temp = self._front[CUBE_SIZE-1].copy() self._front[CUBE_SIZE-1] = self._right[CUBE_SIZE-1] self._right[CUBE_SIZE-1] = self._back[CUBE_SIZE-1] self._back[CUBE_SIZE-1] = self._left[CUBE_SIZE-1] self._left[CUBE_SIZE-1] = temp return self.get_result() def undo(self, action): if action>=6: action-=6 else: action+=6 return self.step(action) def get_sides(self): return [ self._up.copy(), self._left.copy(), self._back.copy(), self._right.copy(), self._front.copy(), self._down.copy()] def init_from_sides(self, sides): self._up = sides[0] self._left = sides[1] self._back = sides[2] self._right = sides[3] self._front = sides[4] self._down = sides[5] ''' env = Environment() env.reset() actions = [] for i in range(10): action = env.sample_action() env.step(action) if action>=6: action-=6 else: action+=6 actions.insert(0, action) sides = env.get_sides() env.reset() env.render() env.init_from_sides(sides) env.render() for action in actions: env.step(action) env.render() '''
046c39ef298843d7d823a4400810349921c3ac4a
a20e3fbd68ef3a788509bf09f072ad1ff3412735
/app/app.py
515c21ad88f912246877df8c4046ea39278ae514
[]
no_license
datasorcery/genre_classification
4b2f4e11a34dd04eeb59a128a2180689c26ecac0
5026d76f932a9ea7035945330845f53debf28d1a
refs/heads/master
2021-01-11T13:53:33.457105
2017-06-20T23:01:32
2017-06-20T23:01:32
94,877,420
0
0
null
null
null
null
UTF-8
Python
false
false
2,050
py
from flask import Flask from flask import render_template from flask import request import os import string from sklearn.externals import joblib from collections import Counter app = Flask(__name__) MODEL = os.path.join('.','model') vec = joblib.load(os.path.join(MODEL,'vetorizador.pkl.bz2')) mdl = joblib.load(os.path.join(MODEL,'modelo.pkl.bz2')) stopwords = joblib.load(os.path.join(MODEL,'stopwords.pkl.bz2')) # TODO: pickel stopwords def prepara_estrofes(frase, translator = str.maketrans('', '', string.punctuation)): # Remove pontuação frase = frase.translate(translator) # Garante que todas as palavras estão em caixa baixa palavras = frase.lower().split() # Lista de stopwords que usaremos stop_w = set(stopwords) # Retorna apenas as palavras que não são stopwords palavras_filtradas = [palavra for palavra in palavras if palavra not in stop_w] # Retorna a estrofe preparada return(" ".join(palavras_filtradas)) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': letra_post = request.form['letra'] else: letra_post = 'Digite a letra aqui' return render_template('index.html', letra=letra_post) @app.route('/predict', methods=['POST']) def predict(): if request.method == 'POST': letra_post = request.form['letra'] # Gera lista de versos versos = letra_post.split('\n') # Prepara versos removendo pontuacao e stopwords versos = [prepara_estrofes(v) for v in versos] new_pred = vec.transform(versos).toarray() # Realiza predição por verso prediction = mdl.predict(new_pred) # Encontra classe mais comum count = Counter(prediction) pred_result = count.most_common(1)[0][0] return render_template('predict.html', letra=letra_post, pred=pred_result) #@app.route('/hello/') #@app.route('/hello/<name>') #def hello(name=None): # return render_template('hello.html', name=name)
35fa6737055a0ebc29fc0f78d895ee7d05208758
c138f28eb1bb3be2227911b80af67bc5b3c29685
/example/server
6f0b9d6eb220a312664a104f7068b3be1d9005f9
[]
no_license
sheepslinky/python-websocketd
39d892c0ee46fa08a19adeda2ff98e2954911b1d
8b6b0edc8a0e9d80d48b78099ce3a78775fa783c
refs/heads/master
2021-04-15T10:12:12.693499
2018-03-17T09:41:37
2018-03-17T09:41:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,109
#!/usr/bin/python3 # vim: set fileencoding=utf-8 foldmethod=marker : # {{{ Copyright 2013-2016 Bas Wijnen <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # }}} import websocketd from gi.repository import GLib class Rpc: 'An object of this class is instanced for every accepted WebSocket.' def __init__(self, remote): 'remote is an object like this one, to call remote functions on.' self.remote = remote def test1(self, argument): 'This function is called from the client.' print('test1 called with %s' % argument) # Return a value. return 'a value' def test2(self): 'This function is called from the client and makes a call to the client.' print('test2 called; sending quit in two seconds.') GLib.timeout_add_seconds(2, self.remote.quit) # Run the server on port 1234, serving html pages from the current directory. # The Rpc class is used for handling WebSockets. # Note that the server defaults to https connections; for this example, # encryptions is not used. This is done by adding 'ths = False' as an # argument. # In normal use, encryption should almost always be used. The network module # automatically generates an encryption key for you and puts it in # ~/.local/share/network/. If you need a certificate for your encryption key, # see http://letsencrypt.org. server = websocketd.RPChttpd(1234, Rpc, httpdirs = ('.',), tls = False) # Tell the user that things are set up. websocketd.log('running') # Run the main loop. websocketd.fgloop()
b7aed369d0aa8d680c47f718ba7ec76754ae21c9
6ee33870daa76b5188cb41851b0d73a8fc08e583
/Case 2 -- Muddy River/Other Code/simu.py
a397c186f9e532c622c33dbb31aecd665624d087
[]
no_license
kid3night/FinancialEngineerCaseStudies
423f0e598905f432f6c7fac4f69c1b4940a864e8
73b3b30b0db91b2f44bb63b81713e39b93ad8219
refs/heads/master
2020-08-23T23:17:07.278735
2019-10-22T04:19:07
2019-10-22T04:19:07
216,722,062
2
0
null
null
null
null
UTF-8
Python
false
false
4,266
py
def new_path(eval_para_pos, n = 5000): # N_month = 97 N = 24 N *= 4 dt = 1/48 thetap1 = [39.28, 40.65, 40.48, 42.75, 46.62, 71.88, 86.92, 103.63, 60.78, 35.55, 39.67, 44.47] thetag1 = [2.51, 2.49, 2.66, 2.59, 5.28, 6.33, 6.39, 5.93, 3.12, 2.73, 2.02, 3.07] p_theta_std = np.array([1.45, 1.92, 2.36, 2.65, 5.01, 8.66, 12.21, 13.79, 12.78, 14.01, 12.77, 10.9]) g_theta_std = np.array([0.17, 0.2, 0.28, 0.4, 0.43, 0.67, 0.48, 0.53, 0.45, 0.78, 0.84, 0.71]) variable_list = [7, 20, 3, 75, 0.083, 35, 0, 3, 75, 7.22, 0.3, 28.87, 10.83, np.array(thetap1), np.array(thetag1)] variables_names = ['alphaCC', 'alphaJC', 'alphaG', 'm', 'p', 'CC0', 'JC0', 'G0', 'spike_thres', 'sigmaG', 'rho', 'v_summer', 'v_winter', 'PowerTheta', 'GasTheta'] vec_res_p = list() vec_res_g = list() month_list = [i for i in range(1, 98)] num_ses = np.arange(-3, 3.2, 0.2) len_muls = len(num_ses) result_ = list() for num_se in num_ses: if eval_para_pos == 0: new_variable = 7 - num_se * 0.5 if eval_para_pos == 1: new_variable = 20 - num_se * 1.3 if eval_para_pos == 2: new_variable = 3 - num_se * 0.2 if eval_para_pos == 3: new_variable = 75 - num_se * 5 elif eval_para_pos == 4: new_variable = 0.083 - num_se * 0.005 elif eval_para_pos == 9: new_variable = 7.22 - num_se * 0.05 elif eval_para_pos == 10: new_variable = 0.3 - num_se * 0.05 elif eval_para_pos == 11: new_variable = 28.87 - num_se * 2 elif eval_para_pos == 12: new_variable = 10.83 - num_se * 2 elif eval_para_pos == 13: new_variable = variable_list[13] - num_se * p_theta_std elif eval_para_pos == 14: new_variable = variable_list[14] - num_se * g_theta_std else: new_variable = variable_list[eval_para_pos] variable_list[eval_para_pos] = new_variable alphaCC = variable_list[0] alphaJC = variable_list[1] alphaG = variable_list[2] m = variable_list[3] p = variable_list[4] CC0 = variable_list[5] JC0 = variable_list[6] G0 = variable_list[7] spike_thres = variable_list[8] sigmaG = variable_list[9]/np.sqrt(dt)/100 rho = variable_list[10] v_summer = variable_list[11]/np.sqrt(dt)/100 v_winter = variable_list[12]/np.sqrt(dt)/100 PowerTheta = variable_list[13] GasTheta = variable_list[14] V = np.zeros((N+1,n)) W = norm.rvs(size = (N+1,n))*np.sqrt(dt) Wtilde = norm.rvs(size = (N+1,n))*np.sqrt(dt) B = rho*W + np.sqrt(1-rho**2)*Wtilde CC = np.zeros((N+1,n)) CC[0,:] = CC0 JC = np.zeros((N+1,n)) JC[0,:] = JC0 G = np.zeros((N+1,n)) G[0,:] = G0 PC = np.zeros((N+1,n)) PC[0,:] = CC[0,:] Power_MSE,Gas_MSE = 0, 0 Power_Price_Fit, Gas_Price_Fit, CC_Price_Fit, JC_Price_Fit = list(), list(), list(), list() for i in range(1, N + 1): month1 = month_list[i] % 12 monthIndicator = (month1 > 3)&(month1 < 8) V[i,:] = monthIndicator*v_summer + (1 - monthIndicator)*v_winter CC[i,:] = alphaCC*(thetap1[month1-1] - CC[i-1,:])*dt + V[i,:]*CC[i-1,:]*W[i,:] + CC[i-1,:] JC[i,:] = alphaJC*( 0 - JC[i-1,:])*dt + m*(uniform.rvs() < p)+JC[i-1,:] #Power Price PC[i,:] = CC[i,:] + JC[i,:]*(PC[i-1,:] > spike_thres) #Gas Price G[i,:] = alphaG*(thetag1[month1-1] - G[i-1,:])*dt + sigmaG * G[i-1,:] * B[i,:] + G[i-1,:] result_.append(valuation(PC.T, G.T, upper_, lower_)) results = np.array(result_) / result_[int(len_muls / 2)] return (variables_names[eval_para_pos], np.mean(np.abs(results - 1)), result_[int(len_muls / 2)]) # plt.plot(num_ses, results, 'o') # plt.title('Final Profit Sensitivity Analysis - {}'.format(variables_names[eval_para_pos])) # plt.xlabel('multiplier of SE') # plt.ylabel('Profit') # return PC, G
518bc4aa64f4e5aac711a4ed163b4a5f8f2a09f8
0cf269af0e6f8266c26b3bc68e57368e8c3d9edb
/src/outpost/django/thesis/migrations/0002_discipline_doctoralschool_thesis.py
4dd83c63267a93ce7139bdb7ee8f8290691ea608
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
medunigraz/outpost.django.thesis
c1518aa516d2177b0cacf381432bcdde41f2b5e1
1f0dbaa6edb6d91216d9bd97c79ee8b3bbc153cc
refs/heads/master
2021-09-25T16:47:59.469921
2020-08-04T19:16:07
2020-08-04T19:16:07
184,580,281
0
0
null
null
null
null
UTF-8
Python
false
false
2,819
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-08 09:47 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [("thesis", "0001_initial")] operations = [ migrations.CreateModel( name="Discipline", fields=[ ("id", models.IntegerField(primary_key=True, serialize=False)), ("name", models.CharField(blank=True, max_length=256, null=True)), ("number", models.CharField(blank=True, max_length=256, null=True)), ("thesistype", models.CharField(blank=True, max_length=256, null=True)), ], options={"db_table": "thesis_discipline", "managed": False}, ), migrations.CreateModel( name="DoctoralSchool", fields=[ ("id", models.IntegerField(primary_key=True, serialize=False)), ("name", models.CharField(blank=True, max_length=256, null=True)), ( "emails", django.contrib.postgres.fields.ArrayField( base_field=models.EmailField( blank=True, max_length=254, null=True ), size=None, ), ), ], options={"db_table": "thesis_doctoralschool", "managed": False}, ), migrations.CreateModel( name="Thesis", fields=[ ("id", models.IntegerField(primary_key=True, serialize=False)), ("topic", models.CharField(blank=True, max_length=256, null=True)), ("created", models.DateTimeField(blank=True, null=True)), ("description", models.TextField(blank=True, null=True)), ("prerequisites", models.TextField(blank=True, null=True)), ("processstart", models.DateTimeField(blank=True, null=True)), ("goals", models.TextField(blank=True, null=True)), ("hypothesis", models.TextField(blank=True, null=True)), ("methods", models.TextField(blank=True, null=True)), ("schedule", models.TextField(blank=True, null=True)), ( "milestones", django.contrib.postgres.fields.ArrayField( base_field=models.TextField(blank=True, null=True), size=None ), ), ], options={ "db_table": "thesis_thesis", "permissions": (("view_thesis", "View thesis"),), "managed": False, }, ), ]
1f3d51045015821dd085d687dab26a5d6b6a1d8c
ac7c7f114f9ae9086c29f13fe81e9294d0fbb9cc
/py/collections_deque.py
f91a65c21cf7002d2255ffc1b0a22da080be87b0
[]
no_license
yyltwin/backupFile
fa5fe5dd519ea17b1a83cceacf8f052e5405d7e5
0f13a1fbab09d42955b80b424186da213074fc6a
refs/heads/master
2020-04-27T16:45:44.008040
2019-03-08T07:51:36
2019-03-08T07:51:36
174,492,502
0
0
null
null
null
null
UTF-8
Python
false
false
2,133
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # deque , 使用c语言实现 # 可以从队列前和后操作队列 # queue.Queue 内部使用 deque 实现 from collections import deque # ----------- # deque 是线程安全的 # ----------- # 双端队列 deque 已经在字节码级别上达到 线程安全 from collections import deque import time nums = deque(maxlen=30) # 设置最大长度 def get(nums_p): while 1: try: n = nums_p.pop() if n is None: break time.sleep(0.5) print("get func :", n) except IndexError: pass def put(nums_p): for i in range(10): time.sleep(0.3) nums_p.append(i) nums_p.append(None) print(nums_p) if __name__ == '__main__': # t1 = threading.Thread(target=put, args=(nums,)) # t1.start() # # t2 = threading.Thread(target=get, args=(nums,)) # t2.start() # # t2.join() # t1.join() pass # 取文件 最后 maxLen 行, # maxLen 固定长度时, 后入的数据会把先入的挤出去, def tail(file, n=10): with open(file) as f: return deque(f, maxlen=10) # print(tail("read_file")) user_list1 = deque(["wp1", "wp2"]) # 传入字典时默认取key值存入 user_list2 = deque(["wp3", "wp4"]) user_list2.reverse() # 反转 user_list2.count("wp3") # 统计个数 user_list2.rotate(3) # 旋转移动元素 正数向右, 负数向左 user_list2.rotate(-3) # extend ; extendleft 对当前元素进行修改 user_list1.extend(user_list2) user_list1.extendleft(user_list2) ''' from collections import deque def search(lines, pattern, history=5): previous_lines = deque(maxlen=history) for li in lines: if pattern in li: yield li, previous_lines previous_lines.append(li) # Example use on a file if __name__ == '__main__': with open(r'read_file') as f: for line, prevlines in search(f, 'python', 5): for pline in prevlines: print(pline, end='') print(line, end='') print('-' * 20) '''
6dd2391b1a566786d194913b72e160c7c445f124
79f6873839b54a21dff11ceeef5160e7b9330864
/Project Euler/009.py
4ebd2beb7a9bb309da5bd351727beba8a2474343
[]
no_license
paperwraith/Project_Euler
45c0890a8e42d0277712da8289972c4d2542c663
07d27231f0137bee0b419e5474173ef086ae529e
refs/heads/main
2023-08-11T14:10:39.373972
2021-09-25T23:11:42
2021-09-25T23:11:42
410,400,150
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, # a^2 + b^2 = c^2 # For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. # There exists exactly one Pythagorean triplet for which a + b + c = 1000. # Find the product abc. # TODO: # Generate Triples # Check if sum of triples equals 1000 def triple_gen(): m = 2 n = 1
0caab767fb4e0d37798b0ac6117ce887812f3619
1cf63e84bf8c87414baed3983b2fa4a07ac7c338
/app1/ml_load_graph.py
16d7518062d969f49e728392bf98560d1668fba4
[]
no_license
mahesh-dilhan/deep-learning
d941349bf09765b3b14b7542268eeaf5d03329d6
427446a7c9d151d33629980c496cdaaae990ab5c
refs/heads/master
2023-06-07T06:46:51.609322
2021-07-04T07:43:21
2021-07-04T07:43:21
382,750,175
0
0
null
null
null
null
UTF-8
Python
false
false
1,157
py
# Load libraries from pandas import read_csv from pandas.plotting import scatter_matrix from matplotlib import pyplot from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC # visualize the data # Load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = read_csv(url, names=names) # box and whisker plots dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) pyplot.show() # histograms dataset.hist() pyplot.show() # scatter plot matrix scatter_matrix(dataset) pyplot.show()
a8687da378ff2d8a5dc8dd39449c21aaa0e7210e
7c6e8857b42615a8517f5660d15bd7d0e41afdd5
/proxy/proxyauth.cgi
284c6689d84517de615da4760419969d53d17f18
[]
no_license
geobretagne/cacheadmin
12c32a3c1cb74048fc7fe962dec7665fd9ca8afa
4589c2be8320d5461149533b35a63796aaff2d72
refs/heads/master
2020-06-01T12:38:57.229588
2014-04-30T14:44:27
2014-04-30T14:44:27
17,907,193
0
0
null
null
null
null
UTF-8
Python
false
false
3,596
cgi
#!/usr/bin/env python """This is a blind proxy that we use to get around browser restrictions that prevent the Javascript from loading pages not on the same server as the Javascript. This has several problems: it's less efficient, it might break some sites, and it's a security risk because people can use this proxy to browse the web and possibly do bad stuff with it. It only loads pages via http and https, but it can load any content type. It supports GET and POST requests.""" import urllib2 import cgi import sys, os user ="" pwd="" # Designed to prevent Open Proxy type stuff. allowedHosts = ['www.openlayers.org', 'openlayers.org', 'labs.metacarta.com', 'world.freemap.in', 'prototype.openmnnd.org', 'geo.openplans.org', 'sigma.openplans.org', 'demo.opengeo.org', 'www.openstreetmap.org', 'sample.azavea.com', 'v2.suite.opengeo.org', 'v-swe.uni-muenster.de:8080', 'vmap0.tiles.osgeo.org', 'www.openrouteservice.org', 'geobretagne.fr', 'test.geobretagne.fr', 'tile.geobretagne.fr', 'osm.geobretagne.fr'] method = os.environ["REQUEST_METHOD"] password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() top_level_url = "" password_mgr.add_password(None, top_level_url, user, pwd) opener = urllib2.build_opener( urllib2.HTTPHandler(), urllib2.HTTPSHandler(), urllib2.HTTPBasicAuthHandler(password_mgr)) urllib2.install_opener(opener) if method == "POST": qs = os.environ["QUERY_STRING"] d = cgi.parse_qs(qs) if d.has_key("url"): params = d["url"][0].split("@") url = params[0] if len(params)>1: user = params[1] pwd = params[2] else: url = "http://www.openlayers.org" else: fs = cgi.FieldStorage() tmp = fs.getvalue('url', "http://www.openlayers.org") params = tmp.split("@") url = params[0] if len(params)>1: user = params[1] pwd = params[2] try: tmp = url.split("/") password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() top_level_url = "http://" + tmp[2] + "/" password_mgr.add_password(None, top_level_url, user, pwd) opener = urllib2.build_opener( urllib2.HTTPHandler(), urllib2.HTTPSHandler(), urllib2.HTTPBasicAuthHandler(password_mgr)) urllib2.install_opener(opener) host = url.split("/")[2] if allowedHosts and not host in allowedHosts: print "Status: 502 Bad Gateway" print "Content-Type: text/plain" print print "This proxy does not allow you to access that location (%s)." % (host,) print print os.environ elif url.startswith("http://") or url.startswith("https://"): if method == "POST": length = int(os.environ["CONTENT_LENGTH"]) headers = {"Content-Type": os.environ["CONTENT_TYPE"]} body = sys.stdin.read(length) r = urllib2.Request(url, body, headers) y = urllib2.urlopen(r) else: y = urllib2.urlopen(url) # print content type header i = y.info() if i.has_key("Content-Type"): print "Content-Type: %s" % (i["Content-Type"]) else: print "Content-Type: text/plain" print print y.read() y.close() else: print "Content-Type: text/plain" print print "Illegal request." except Exception, E: print "Status: 500 Unexpected Error" print "Content-Type: text/plain" print print "Erreur:", E
1433ed9a66cf8f030d0107507d432670a7d51f0f
58baf0dd6a9aa51ef5a7cf4b0ee74c9cb0d2030f
/tools/testrunner/standard_runner.py
a59fe0839665fe1699fff41e3e9e4b837c952af2
[ "bzip2-1.0.6", "BSD-3-Clause", "SunPro" ]
permissive
eachLee/v8
cce8d6e620625c97a2e969ee8a52cc5eb77444ce
1abeb0caa21301f5ace7177711c4f09f2d6447d9
refs/heads/master
2021-08-14T08:21:44.549890
2017-11-14T20:35:38
2017-11-14T23:06:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,667
py
#!/usr/bin/env python # # Copyright 2017 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from collections import OrderedDict from os.path import join import multiprocessing import os import random import shlex import subprocess import sys import time # Adds testrunner to the path hence it has to be imported at the beggining. import base_runner from testrunner.local import execution from testrunner.local import progress from testrunner.local import testsuite from testrunner.local import utils from testrunner.local import verbose from testrunner.local.variants import ALL_VARIANTS from testrunner.objects import context TIMEOUT_DEFAULT = 60 # Variants ordered by expected runtime (slowest first). VARIANTS = ["default"] MORE_VARIANTS = [ "stress", "stress_incremental_marking", "nooptimization", "stress_asm_wasm", "wasm_traps", ] EXHAUSTIVE_VARIANTS = MORE_VARIANTS + VARIANTS VARIANT_ALIASES = { # The default for developer workstations. "dev": VARIANTS, # Additional variants, run on all bots. "more": MORE_VARIANTS, # TODO(machenbach): Deprecate this after the step is removed on infra side. # Additional variants, run on a subset of bots. "extra": [], } GC_STRESS_FLAGS = ["--gc-interval=500", "--stress-compaction", "--concurrent-recompilation-queue-length=64", "--concurrent-recompilation-delay=500", "--concurrent-recompilation"] # Double the timeout for these: SLOW_ARCHS = ["arm", "mips", "mipsel", "mips64", "mips64el", "s390", "s390x", "arm64"] class StandardTestRunner(base_runner.BaseTestRunner): def __init__(self): super(StandardTestRunner, self).__init__() self.sancov_dir = None def _do_execute(self, options, args): if options.swarming: # Swarming doesn't print how isolated commands are called. Lets make # this less cryptic by printing it ourselves. print ' '.join(sys.argv) if utils.GuessOS() == "macos": # TODO(machenbach): Temporary output for investigating hanging test # driver on mac. print "V8 related processes running on this host:" try: print subprocess.check_output( "ps -e | egrep 'd8|cctest|unittests'", shell=True) except Exception: pass suite_paths = utils.GetSuitePaths(join(base_runner.BASE_DIR, "test")) # Use default tests if no test configuration was provided at the cmd line. if len(args) == 0: args = ["default"] # Expand arguments with grouped tests. The args should reflect the list # of suites as otherwise filters would break. def ExpandTestGroups(name): if name in base_runner.TEST_MAP: return [suite for suite in base_runner.TEST_MAP[name]] else: return [name] args = reduce(lambda x, y: x + y, [ExpandTestGroups(arg) for arg in args], []) args_suites = OrderedDict() # Used as set for arg in args: args_suites[arg.split('/')[0]] = True suite_paths = [ s for s in args_suites if s in suite_paths ] suites = [] for root in suite_paths: suite = testsuite.TestSuite.LoadTestSuite( os.path.join(base_runner.BASE_DIR, "test", root)) if suite: suites.append(suite) for s in suites: s.PrepareSources() try: return self._execute(args, options, suites) except KeyboardInterrupt: return 2 def _add_parser_options(self, parser): parser.add_option("--sancov-dir", help="Directory where to collect coverage data") parser.add_option("--cfi-vptr", help="Run tests with UBSAN cfi_vptr option.", default=False, action="store_true") parser.add_option("--novfp3", help="Indicates that V8 was compiled without VFP3" " support", default=False, action="store_true") parser.add_option("--cat", help="Print the source of the tests", default=False, action="store_true") parser.add_option("--slow-tests", help="Regard slow tests (run|skip|dontcare)", default="dontcare") parser.add_option("--pass-fail-tests", help="Regard pass|fail tests (run|skip|dontcare)", default="dontcare") parser.add_option("--gc-stress", help="Switch on GC stress mode", default=False, action="store_true") parser.add_option("--command-prefix", help="Prepended to each shell command used to run a" " test", default="") parser.add_option("--extra-flags", help="Additional flags to pass to each test command", action="append", default=[]) parser.add_option("--isolates", help="Whether to test isolates", default=False, action="store_true") parser.add_option("-j", help="The number of parallel tasks to run", default=0, type="int") parser.add_option("--no-harness", "--noharness", help="Run without test harness of a given suite", default=False, action="store_true") parser.add_option("--no-presubmit", "--nopresubmit", help='Skip presubmit checks (deprecated)', default=False, dest="no_presubmit", action="store_true") parser.add_option("--no-sorting", "--nosorting", help="Don't sort tests according to duration of last" " run.", default=False, dest="no_sorting", action="store_true") parser.add_option("--no-variants", "--novariants", help="Don't run any testing variants", default=False, dest="no_variants", action="store_true") parser.add_option("--variants", help="Comma-separated list of testing variants;" " default: \"%s\"" % ",".join(VARIANTS)) parser.add_option("--exhaustive-variants", default=False, action="store_true", help="Use exhaustive set of default variants:" " \"%s\"" % ",".join(EXHAUSTIVE_VARIANTS)) parser.add_option("-p", "--progress", help=("The style of progress indicator" " (verbose, dots, color, mono)"), choices=progress.PROGRESS_INDICATORS.keys(), default="mono") parser.add_option("--quickcheck", default=False, action="store_true", help=("Quick check mode (skip slow tests)")) parser.add_option("--report", help="Print a summary of the tests to be" " run", default=False, action="store_true") parser.add_option("--json-test-results", help="Path to a file for storing json results.") parser.add_option("--flakiness-results", help="Path to a file for storing flakiness json.") parser.add_option("--rerun-failures-count", help=("Number of times to rerun each failing test case." " Very slow tests will be rerun only once."), default=0, type="int") parser.add_option("--rerun-failures-max", help="Maximum number of failing test cases to rerun.", default=100, type="int") parser.add_option("--shard-count", help="Split testsuites into this number of shards", default=1, type="int") parser.add_option("--shard-run", help="Run this shard from the split up tests.", default=1, type="int") parser.add_option("--dont-skip-slow-simulator-tests", help="Don't skip more slow tests when using a" " simulator.", default=False, action="store_true", dest="dont_skip_simulator_slow_tests") parser.add_option("--swarming", help="Indicates running test driver on swarming.", default=False, action="store_true") parser.add_option("--time", help="Print timing information after running", default=False, action="store_true") parser.add_option("-t", "--timeout", help="Timeout in seconds", default=TIMEOUT_DEFAULT, type="int") parser.add_option("--warn-unused", help="Report unused rules", default=False, action="store_true") parser.add_option("--junitout", help="File name of the JUnit output") parser.add_option("--junittestsuite", help="The testsuite name in the JUnit output file", default="v8tests") parser.add_option("--random-seed", default=0, dest="random_seed", help="Default seed for initializing random generator", type=int) parser.add_option("--random-seed-stress-count", default=1, type="int", dest="random_seed_stress_count", help="Number of runs with different random seeds") def _process_options(self, options): global VARIANTS if options.sancov_dir: self.sancov_dir = options.sancov_dir if not os.path.exists(self.sancov_dir): print("sancov-dir %s doesn't exist" % self.sancov_dir) raise base_runner.TestRunnerError() options.command_prefix = shlex.split(options.command_prefix) options.extra_flags = sum(map(shlex.split, options.extra_flags), []) if options.gc_stress: options.extra_flags += GC_STRESS_FLAGS if self.build_config.asan: options.extra_flags.append("--invoke-weak-callbacks") options.extra_flags.append("--omit-quit") if options.novfp3: options.extra_flags.append("--noenable-vfp3") if options.exhaustive_variants: # This is used on many bots. It includes a larger set of default # variants. # Other options for manipulating variants still apply afterwards. VARIANTS = EXHAUSTIVE_VARIANTS # TODO(machenbach): Figure out how to test a bigger subset of variants on # msan. if self.build_config.msan: VARIANTS = ["default"] if options.j == 0: options.j = multiprocessing.cpu_count() if options.random_seed_stress_count <= 1 and options.random_seed == 0: options.random_seed = self._random_seed() def excl(*args): """Returns true if zero or one of multiple arguments are true.""" return reduce(lambda x, y: x + y, args) <= 1 if not excl(options.no_variants, bool(options.variants)): print("Use only one of --no-variants or --variants.") raise base_runner.TestRunnerError() if options.quickcheck: VARIANTS = ["default", "stress"] options.slow_tests = "skip" options.pass_fail_tests = "skip" if options.no_variants: VARIANTS = ["default"] if options.variants: VARIANTS = options.variants.split(",") # Resolve variant aliases. VARIANTS = reduce( list.__add__, (VARIANT_ALIASES.get(v, [v]) for v in VARIANTS), [], ) if not set(VARIANTS).issubset(ALL_VARIANTS): print "All variants must be in %s" % str(ALL_VARIANTS) raise base_runner.TestRunnerError() if self.build_config.predictable: VARIANTS = ["default"] options.extra_flags.append("--predictable") options.extra_flags.append("--verify_predictable") options.extra_flags.append("--no-inline-new") # Dedupe. VARIANTS = list(set(VARIANTS)) def CheckTestMode(name, option): if not option in ["run", "skip", "dontcare"]: print "Unknown %s mode %s" % (name, option) raise base_runner.TestRunnerError() CheckTestMode("slow test", options.slow_tests) CheckTestMode("pass|fail test", options.pass_fail_tests) if self.build_config.no_i18n: base_runner.TEST_MAP["bot_default"].remove("intl") base_runner.TEST_MAP["default"].remove("intl") def _setup_env(self): super(StandardTestRunner, self)._setup_env() symbolizer_option = self._get_external_symbolizer_option() if self.sancov_dir: os.environ['ASAN_OPTIONS'] = ":".join([ 'coverage=1', 'coverage_dir=%s' % self.sancov_dir, symbolizer_option, "allow_user_segv_handler=1", ]) def _random_seed(self): seed = 0 while not seed: seed = random.SystemRandom().randint(-2147483648, 2147483647) return seed def _execute(self, args, options, suites): print(">>> Running tests for %s.%s" % (self.build_config.arch, self.mode_name)) # Populate context object. # Simulators are slow, therefore allow a longer timeout. if self.build_config.arch in SLOW_ARCHS: options.timeout *= 2 options.timeout *= self.mode_options.timeout_scalefactor if self.build_config.predictable: # Predictable mode is slower. options.timeout *= 2 ctx = context.Context(self.build_config.arch, self.mode_options.execution_mode, self.outdir, self.mode_options.flags, options.verbose, options.timeout, options.isolates, options.command_prefix, options.extra_flags, self.build_config.no_i18n, options.random_seed, options.no_sorting, options.rerun_failures_count, options.rerun_failures_max, self.build_config.predictable, options.no_harness, use_perf_data=not options.swarming, sancov_dir=self.sancov_dir) # TODO(all): Combine "simulator" and "simulator_run". # TODO(machenbach): In GN we can derive simulator run from # target_arch != v8_target_arch in the dumped build config. simulator_run = ( not options.dont_skip_simulator_slow_tests and self.build_config.arch in [ 'arm64', 'arm', 'mipsel', 'mips', 'mips64', 'mips64el', 'ppc', 'ppc64', 's390', 's390x'] and bool(base_runner.ARCH_GUESS) and self.build_config.arch != base_runner.ARCH_GUESS) # Find available test suites and read test cases from them. variables = { "arch": self.build_config.arch, "asan": self.build_config.asan, "byteorder": sys.byteorder, "dcheck_always_on": self.build_config.dcheck_always_on, "deopt_fuzzer": False, "gc_fuzzer": False, "gc_stress": options.gc_stress, "gcov_coverage": self.build_config.gcov_coverage, "isolates": options.isolates, "mode": self.mode_options.status_mode, "msan": self.build_config.msan, "no_harness": options.no_harness, "no_i18n": self.build_config.no_i18n, "no_snap": self.build_config.no_snap, "novfp3": options.novfp3, "predictable": self.build_config.predictable, "simulator": utils.UseSimulator(self.build_config.arch), "simulator_run": simulator_run, "system": utils.GuessOS(), "tsan": self.build_config.tsan, "ubsan_vptr": self.build_config.ubsan_vptr, } all_tests = [] num_tests = 0 for s in suites: s.ReadStatusFile(variables) s.ReadTestCases(ctx) if len(args) > 0: s.FilterTestCasesByArgs(args) all_tests += s.tests # First filtering by status applying the generic rules (independent of # variants). s.FilterTestCasesByStatus(options.warn_unused, options.slow_tests, options.pass_fail_tests) if options.cat: verbose.PrintTestSource(s.tests) continue variant_gen = s.CreateVariantGenerator(VARIANTS) variant_tests = [ t.CopyAddingFlags(v, flags) for t in s.tests for v in variant_gen.FilterVariantsByTest(t) for flags in variant_gen.GetFlagSets(t, v) ] if options.random_seed_stress_count > 1: # Duplicate test for random seed stress mode. def iter_seed_flags(): for _ in range(0, options.random_seed_stress_count): # Use given random seed for all runs (set by default in # execution.py) or a new random seed if none is specified. if options.random_seed: yield [] else: yield ["--random-seed=%d" % self._random_seed()] s.tests = [ t.CopyAddingFlags(t.variant, flags) for t in variant_tests for flags in iter_seed_flags() ] else: s.tests = variant_tests # Second filtering by status applying the variant-dependent rules. s.FilterTestCasesByStatus(options.warn_unused, options.slow_tests, options.pass_fail_tests, variants=True) s.tests = self._shard_tests(s.tests, options) num_tests += len(s.tests) if options.cat: return 0 # We're done here. if options.report: verbose.PrintReport(all_tests) # Run the tests. start_time = time.time() progress_indicator = progress.IndicatorNotifier() progress_indicator.Register( progress.PROGRESS_INDICATORS[options.progress]()) if options.junitout: progress_indicator.Register(progress.JUnitTestProgressIndicator( options.junitout, options.junittestsuite)) if options.json_test_results: progress_indicator.Register(progress.JsonTestProgressIndicator( options.json_test_results, self.build_config.arch, self.mode_options.execution_mode, ctx.random_seed)) if options.flakiness_results: progress_indicator.Register(progress.FlakinessTestProgressIndicator( options.flakiness_results)) runner = execution.Runner(suites, progress_indicator, ctx) exit_code = runner.Run(options.j) overall_duration = time.time() - start_time if options.time: verbose.PrintTestDurations(suites, overall_duration) if num_tests == 0: print("Warning: no tests were run!") if exit_code == 1 and options.json_test_results: print("Force exit code 0 after failures. Json test results file " "generated with failure information.") exit_code = 0 if self.sancov_dir: # If tests ran with sanitizer coverage, merge coverage files in the end. try: print "Merging sancov files." subprocess.check_call([ sys.executable, join( base_runner.BASE_DIR, "tools", "sanitizers", "sancov_merger.py"), "--coverage-dir=%s" % self.sancov_dir]) except: print >> sys.stderr, "Error: Merging sancov files failed." exit_code = 1 return exit_code def _shard_tests(self, tests, options): # Read gtest shard configuration from environment (e.g. set by swarming). # If none is present, use values passed on the command line. shard_count = int( os.environ.get('GTEST_TOTAL_SHARDS', options.shard_count)) shard_run = os.environ.get('GTEST_SHARD_INDEX') if shard_run is not None: # The v8 shard_run starts at 1, while GTEST_SHARD_INDEX starts at 0. shard_run = int(shard_run) + 1 else: shard_run = options.shard_run if options.shard_count > 1: # Log if a value was passed on the cmd line and it differs from the # environment variables. if options.shard_count != shard_count: print("shard_count from cmd line differs from environment variable " "GTEST_TOTAL_SHARDS") if options.shard_run > 1 and options.shard_run != shard_run: print("shard_run from cmd line differs from environment variable " "GTEST_SHARD_INDEX") if shard_count < 2: return tests if shard_run < 1 or shard_run > shard_count: print "shard-run not a valid number, should be in [1:shard-count]" print "defaulting back to running all tests" return tests count = 0 shard = [] for test in tests: if count % shard_count == shard_run - 1: shard.append(test) count += 1 return shard if __name__ == '__main__': sys.exit(StandardTestRunner().execute())
26088ff7733bb15d42a931600351936eaacec3cc
6f401aed6b736b07224c5da774fef5124536e4c3
/python bible/health.py
ec10fb386d8e0e6610e608e3b0a5f7eb0320a013
[]
no_license
Fumitus/First_Python_lessons
871a417cdfe828c68da1003e24d5e93de5a466dd
07a161c886a00ddb86eca3ede32e82df00b938a8
refs/heads/master
2020-04-10T06:49:20.666396
2018-12-07T19:23:41
2018-12-07T19:23:41
160,865,229
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
import random health = 50 difficulty = 1 potion_health = int(random.randint(25, 50) / difficulty) health = health + potion_health print(health)
a666762fd34411a901f443d2ec06dd10658e150c
e787a46d354e3bf9666cb0d8b0c7d5f8ed0a8169
/ccdproc/tests/make_mef.py
a871eaab6869b53192f486e57ffb6a99680fc3eb
[]
permissive
astropy/ccdproc
25270fec41e64e635f7f22bcf340b2dee9ef88ac
5af6ee5eee16a99591dd9fcbe81735e70c1cc681
refs/heads/main
2023-09-01T11:48:06.969582
2023-06-08T18:01:43
2023-06-08T18:01:43
13,384,007
81
88
BSD-3-Clause
2023-06-08T18:01:45
2013-10-07T13:05:51
Python
UTF-8
Python
false
false
2,156
py
import numpy as np from astropy.utils.misc import NumpyRNGContext from astropy.io import fits from astropy.nddata import CCDData from ccdproc import flat_correct def make_sample_mef(science_name, flat_name, size=10, dtype='float32'): """ Make a multi-extension FITS image with random data and a MEF flat. Parameters ---------- science_name : str Name of the science image created by this function. flat_name : str Name of the flat image created by this function. size : int, optional Size of each dimension of the image; images created are square. dtype : str or numpy dtype, optional dtype of the generated images. """ with NumpyRNGContext(1234): number_of_image_extensions = 3 science_image = [fits.PrimaryHDU()] flat_image = [fits.PrimaryHDU()] for _ in range(number_of_image_extensions): # Simulate a cloudy night, average pixel # value of 100 with a read_noise of 1 electron. data = np.random.normal(100., 1.0, [size, size]).astype(dtype) hdu = fits.ImageHDU(data=data) # Make a header that is at least somewhat realistic hdu.header['unit'] = 'electron' hdu.header['object'] = 'clouds' hdu.header['exptime'] = 30.0 hdu.header['date-obs'] = '1928-07-23T21:03:27' hdu.header['filter'] = 'B' hdu.header['imagetyp'] = 'LIGHT' science_image.append(hdu) # Make a perfect flat flat = np.ones_like(data, dtype=dtype) flat_hdu = fits.ImageHDU(data=flat) flat_hdu.header['unit'] = 'electron' flat_hdu.header['filter'] = 'B' flat_hdu.header['imagetyp'] = 'FLAT' flat_hdu.header['date-obs'] = '1928-07-23T21:03:27' flat_image.append(flat_hdu) science_image = fits.HDUList(science_image) science_image.writeto(science_name) flat_image = fits.HDUList(flat_image) flat_image.writeto(flat_name) if __name__ == '__main__': make_sample_mef('data/science-mef.fits', 'data/flat-mef.fits')
1dc48a51f14dfb066f1271301f6c7b6f8c4048ff
16f34a866a0fba5352dc9d7c83de741fdbc13df9
/lecture_1/exercise_1.py
7b4f719055861ca0fd3133587ff7c37b0847ebc2
[]
no_license
ethanbar11/haskal_28_6_21
02fd6ae22b83d4e4678a9bba0dd0b90af147a05e
2c6a2a5fc1db2cafdfde88593b3d55048ed86bc3
refs/heads/main
2023-07-10T17:33:20.513451
2021-08-23T16:57:15
2021-08-23T16:57:15
383,196,071
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
num1=5 num2=10 result=num1+num2 print('The result is:',result)
5215a084044fb39cce1d96120767a0cf0684d3fe
72fd9d49d89a9fc23ca896154fa54cba836c41ca
/tasks.py
0ea3f55768a7233a886cb6707e616c923561b8c6
[ "MIT" ]
permissive
envobe/pydash
15066046fbc07458c29b6b33b1489aaadda5d074
6c0f778f6a2535397706aab68636485702ff3565
refs/heads/master
2023-01-05T18:14:09.923169
2020-10-29T02:16:34
2020-10-29T02:16:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,593
py
""" This module provides the CLI interface for invoke tasks. All tasks can be executed from this file's directory using: $ inv <task> Where <task> is a function defined below with the @task decorator. """ from __future__ import print_function from functools import partial from invoke import Exit, UnexpectedExit, run as _run, task PACKAGE_SOURCE = "src/pydash" TEST_TARGETS = "{} tests".format(PACKAGE_SOURCE) LINT_TARGETS = "{} tasks.py".format(PACKAGE_SOURCE) EXIT_EXCEPTIONS = (Exit, UnexpectedExit, SystemExit) # Set pyt=True to enable colored output when available. run = partial(_run, pty=True) @task def black(ctx, quiet=False): """Autoformat code using black.""" run("black {}".format(LINT_TARGETS), hide=quiet) @task def isort(ctx, quiet=False): """Autoformat Python imports.""" run("isort {}".format(LINT_TARGETS), hide=quiet) @task def docformatter(ctx): """Autoformat docstrings using docformatter.""" run( "docformatter -r {} " "--in-place --pre-summary-newline --wrap-descriptions 100 --wrap-summaries 100".format( LINT_TARGETS ) ) @task def fmt(ctx): """Autoformat code and docstrings.""" print("Running docformatter") docformatter(ctx) print("Running isort") isort(ctx, quiet=True) print("Running black") black(ctx, quiet=True) @task def flake8(ctx): """Check code for PEP8 violations using flake8.""" run("flake8 --format=pylint {}".format(LINT_TARGETS)) @task def pylint(ctx): """Check code for static errors using pylint.""" run("pylint {}".format(LINT_TARGETS)) @task def lint(ctx): """Run linters.""" linters = {"flake8": flake8, "pylint": pylint} failures = [] for name, linter in linters.items(): print("Running {}".format(name)) try: linter(ctx) except EXIT_EXCEPTIONS: failures.append(name) result = "FAILED" else: result = "PASSED" print("{}\n".format(result)) if failures: failed = ", ".join(failures) raise Exit("ERROR: Linters that failed: {}".format(failed)) @task(help={"args": "Override default pytest arguments"}) def unit(ctx, args="--cov={} {}".format(PACKAGE_SOURCE, TEST_TARGETS)): """Run unit tests using pytest.""" run("pytest {}".format(args)) @task def test(ctx): """Run linters and tests.""" print("Building package") build(ctx) print("Building docs") docs(ctx) print("Running unit tests") unit(ctx) @task def docs(ctx, serve=False, bind="127.0.0.1", port=8000): """Build docs.""" run("rm -rf docs/_build") run("sphinx-build -q -W -b html docs docs/_build/html") if serve: print( "Serving docs on {bind} port {port} (http://{bind}:{port}/) ...".format( bind=bind, port=port ) ) run( "python -m http.server -b {bind} --directory docs/_build/html {port}".format( bind=bind, port=port ), hide=True, ) @task def build(ctx): """Build Python package.""" run("rm -rf dist build docs/_build") run("python setup.py -q sdist bdist_wheel") @task def clean(ctx): """Remove temporary files related to development.""" run("find . -type f -name '*.py[cod]' -delete -o -type d -name __pycache__ -delete") run("rm -rf .tox .coverage .cache .pytest_cache **/.egg* **/*.egg* dist build") @task(pre=[build]) def release(ctx): """Release Python package.""" run("twine upload dist/*")
c9768e8e9428435fc33c6fdc6fdb30504230dd3f
d5f4d4dcad6217a2736cbefb5d091b7b4e822aee
/dk-crypto.py
69a215778e15e4454d6251936df3677c93da6d44
[]
no_license
dknific/dk-crypto
288761e820e60046759247713b0d64c07f189a63
295fb0ff2a683adf942d9514268fa9372f43c546
refs/heads/main
2023-03-15T17:57:29.773739
2021-03-08T23:15:17
2021-03-08T23:15:17
345,809,118
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
import helpers running = True helpers.printIntro() helpers.printOptions() while running: userIn = input('\nType the currency symbol you want a rate for: \n> ') if (helpers.validateUserIn(userIn)): response = helpers.getCurrencies(userIn.upper()) print('\n' + response[0]["name"] + ' (' + response[0]["symbol"] + ') is currently evaluated at USD $' + helpers.roundValue(response[0]["price"]) + '.') check = input('Convert another coin? (Y/N):\n> ') if check.upper() == 'N' or check.upper() == 'NO': running = False else: print('\nWhoops! \'' + userIn + '\' wasn\'t valid input.') helpers.printOptions(); print('\n---------') print('Quitting...') print('Have a great day!') print('-dk')
6d45bf858d903c9299f1bee1a02048ff896e95e0
f6cc91efee7fdb865923586152ecdee5f73e3214
/image_loader/wsgi.py
2e6383d87daf5e5390fad9ecec1a086b4902efbe
[ "MIT" ]
permissive
PiochU19/image-loader
5e9186cbdd12eae46bcb66b49f604e7dd652e906
7abec95f5d41e859fe65607ab7bd442a855bc2a0
refs/heads/master
2023-05-04T05:41:41.362774
2021-05-18T20:26:44
2021-05-18T20:26:44
368,221,416
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for image_loader project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'image_loader.settings') application = get_wsgi_application()
e9db39b888b252aed531dfd86ac972d05320c65e
980a0013679dd53bc4385087f22b2eb42e84be29
/3-BE_Firefighter_Robot_game/PyPOMDP/pypomdp/replay.py
74a15aea9824cf4affa40dddaf2d586c9d16acaa
[]
no_license
LudovicSterlin/nia-ai-tools
9cb084c74dea3ed1f10e66b63e9814b81a89a8f5
8ceebc77709a8fe9a0e2ed63db175c39729ff4ea
refs/heads/master
2023-04-13T12:44:28.421150
2021-04-09T09:23:21
2021-04-09T09:23:21
320,511,319
0
0
null
null
null
null
UTF-8
Python
false
false
2,800
py
import argparse import os import json import multiprocessing from pomdp_runreplay import PomdpRunReplay from util import ReplayParams if __name__ == '__main__': """ Parse generic params for the POMDP runner, and configurations for the chosen algorithm. Algorithm configurations the JSON files in ./configs Example usage: > python main.py pomcp --env Tiger-2D.POMDP > python main.py pbvi --env Tiger-2D.POMDP """ parser = argparse.ArgumentParser(description='Solve pomdp') parser.add_argument('config', type=str, help='The file name of algorithm configuration (without JSON extension)') parser.add_argument('--env', type=str, default='GridWorld.POMDP', help='The name of environment\'s config file') parser.add_argument('--budget', type=float, default=float('inf'), help='The total action budget (defeault to inf)') parser.add_argument('--snapshot', type=bool, default=False, help='Whether to snapshot the belief tree after each episode') parser.add_argument('--logfile', type=str, default=None, help='Logfile path') parser.add_argument('--random_prior', type=bool, default=False, help='Whether or not to use a randomly generated distribution as prior belief, default to False') parser.add_argument('--max_play', type=int, default=100, help='Maximum number of play steps') parser.add_argument('--sim', type=int, default=100, help='Maximum number of simulations') parser.add_argument('--policyfile', type=str, default='alphavecfile.policy', help='alphaVec policy file') parser.add_argument('--option', type=str, default='onsolve', help='please choose between : onsolve - for online solving; offsolve - for offline solving; simulate - for simulating a policyfile; replay - for a experience replay') parser.add_argument('--expfile', type=str, default='data/dfsub_19alldataproc.csv', help='experimental data processed file') parser.add_argument('--classif', type=str, default='data/classifier.joblib', help='classifier model') parser.add_argument('--fnames', type=str, default='HRV,HRnorm,mode,nav,tank,nbAOI1,nbAOI2,nbAOI3,nbAOI4,nbAOI5', help='a string with a list of features names separated by comma ex. HRV,HRnorm') args = vars(parser.parse_args()) params = ReplayParams(**args) with open(params.algo_config) as algo_config: algo_params = json.load(algo_config) runner = PomdpRunReplay(params) if params.option == 'onsolve': runner.run(**algo_params) if params.option == 'offsolve': runner.offsolving(**algo_params) if params.option == 'simulate': runner.policy_eval(**algo_params) if params.option == 'replay' : runner.replay(**algo_params)
872575137733eefdd93c6b8133bae73913127c46
819897ab3c1aefd1cc966312e722d6e18226697b
/samples/baxter/baxter_mugs.py
e6a78678f666c70fa8310be4131172a83b0fdc8f
[ "MIT" ]
permissive
msieb1/mask-rcnn
29bda1d79add2d83af9412e701bdf30cb085a751
535e6d02b22edc5624516a4eb139ddd480f75a34
refs/heads/master
2020-04-02T23:20:46.047757
2019-05-23T16:26:34
2019-05-23T16:26:34
154,864,394
0
0
null
null
null
null
UTF-8
Python
false
false
9,558
py
""" Mask R-CNN Configurations and data loading code for the synthetic Shapes dataset. This is a duplicate of the code in the noteobook train_shapes.ipynb for easy import into other notebooks, such as inspect_model.ipynb. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import os import sys import math import random import numpy as np import cv2 import matplotlib.pyplot as plt # Root directory of the project ROOT_DIR = os.path.abspath("/home/msieb/projects/Mask_RCNN/") DATASET_DIR = '/home/msieb/projects/Mask_RCNN/datasets/baxter_mugs' MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils from ipdb import set_trace class BaxterConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy baxter dataset. """ # Give the configuration a recognizable name NAME = "baxter" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + 3 objects # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. # IMAGE_MIN_DIM = 128 # IMAGE_MAX_DIM = 128 # Use smaller anchors because our image and objects are small # RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. # TRAIN_ROIS_PER_IMAGE = 32 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 200 BACKBONE = "resnet101" # use small validation steps since the epoch is small VALIDATION_STEPS = 5 config = BaxterConfig() config.display() class InferenceConfig(BaxterConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 CLASS_NAMES = ['BG', 'mug', 'robot'] TARGET_IDS = [1] class BaxterDataset(utils.Dataset): """Generates the baxter synthetic dataset. The dataset consists of simple baxter (triangles, squares, circles) placed randomly on a blank surface. The images are generated on the fly. No file access required. """ def load_baxter(self, dataset_dir, subset): """Generate the requested number of synthetic images. count: number of images to generate. height, width: the size of the generated images. """ # Add classes self.add_class("baxter", 1, "mug") # self.add_class("baxter", 2, "mug") # self.add_class("baxter", 3, "brown_mug") # self.add_class("baxter", 4, "black_mug") # self.add_class("baxter", 5, "hand") # self.add_class("baxter", 2 , "robot") # self.idx2class = {1: 'green_ring', 2: 'blue_ring'} # ,3: 'hand', 4: 'robot'} # self.class2idx = {val: key for key, val in self.idx2class.items()} # Train or validation dataset? assert subset in ["train", "val", "test"] dataset_dir = os.path.join(dataset_dir, subset) filenames = os.listdir(dataset_dir) filenames = [file for file in filenames if '.jpg' in file] # Add images for i, filename in enumerate(filenames): # Get the x, y coordinaets of points of the polygons that make up # the outline of each object instance. There are stores in the # shape_attributes (see json format above) # load_mask() needs the image size to convert polygons to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, filename) height = 480 width = 640 if len(filename.split('_')) == 3: try: label_path = os.path.join(dataset_dir, '_' + filename.split('_')[0] + '.txt') with open(label_path, 'r') as fp: line = fp.readline().strip('\n') if line != 'robot': line = 'mug' classes = [line] except: classes =[-1] self.add_image( "baxter", image_id=filename, # use file name as a unique image id path=image_path, width=width, height=height, classes=classes) else: # # Synthetic image # label_path_1 = os.path.join(dataset_dir, '_' + filename[0] + '.txt') # label_path_2 = os.path.join(dataset_dir, '_' + filename.split('_')[3] + '.txt') # try: # with open(label_path_1, 'r') as fp: # line = fp.readline().strip('\n') # classes = [line] # with open(label_path_2, 'r') as fp: # line = fp.readline().strip('\n') # classes.append(line) # except: # classes = [-1] # self.add_image( # "baxter", # image_id=filename, # use file name as a unique image id # path=image_path, # width=width, height=height, classes=classes) # Synthetic image _split = filename.split('_') n_added_objects = int((len(_split) - 2) / 3) label_path = os.path.join(dataset_dir, '_' + filename.split('_')[0] + '.txt') with open(label_path, 'r') as fp: line = fp.readline().strip('\n') if line != 'robot': line = 'mug' classes = [line] for i in range(n_added_objects): label_path = os.path.join(dataset_dir, '_' + filename.split('_')[3 + i*3] + '.txt') with open(label_path, 'r') as fp: line = fp.readline().strip('\n') if line != 'robot': line = 'mug' classes.append(line) self.add_image( "baxter", image_id=filename, # use file name as a unique image id path=image_path, width=width, height=height, classes=classes) def load_image(self, image_id): """Generate an image from the specs of the given image ID. Typically this function loads the image from a file, but in this case it generates the image on the fly from the specs in image_info. """ image_info = self.image_info[image_id] if image_info["source"] != "baxter": return super(self.__class__, self).load_mask(image_id) # print("image info: {}".format(image_info)) # Convert polygons to a bitmap mask of shape # [height, width, instance_count] info = self.image_info[image_id] # mask = np.zeros([info["height"], info["width"], len(info["polygons"])], # dtype=np.uint8) image_path = info['path'] image = plt.imread(image_path) return image def image_reference(self, image_id): """Return the baxter data of the image.""" info = self.image_info[image_id] if info["source"] == "baxter": return info["path"] else: super(self.__class__, self).image_reference(image_id) def load_mask(self, image_id): """Generate instance masks for baxter of the given image ID. """ image_info = self.image_info[image_id] if image_info["source"] != "baxter": return super(self.__class__, self).load_mask(image_id) # print("image info: {}".format(image_info)) # Convert polygons to a bitmap mask of shape # [height, width, instance_count] info = self.image_info[image_id] # mask = np.zeros([info["height"], info["width"], len(info["polygons"])], # dtype=np.uint8) image_path = info['path'] image_ = plt.imread(image_path) mask_path = image_path.split('.')[0] + '.npy' mask = np.load(mask_path) if len(mask.shape) == 2: mask = mask[:, :, np.newaxis] mask_ids = np.ones((1,1), dtype=np.int32) * self.class_names.index(info["classes"][0]) else: # Synthetic image mask_ids = np.ones([mask.shape[-1]], dtype=np.int32) for i in range(mask.shape[-1]): mask_ids[i] = self.class_names.index(info["classes"][i]) # print(info["classes"]) # mask_ids = np.ones([mask.shape[-1]], dtype=np.int32) # print("class id: ", self.class2idx[info["classes"]]) # print(type(self.class2idx[info["classes"]])) # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s # print ("mask: {}".format(np.where(mask.astype(np.bool) == True))) # print("class ids: {}".format(mask_ids)) return mask.astype(np.bool), mask_ids
842240a63093b1ea755d9ef1824ad3d6792f4177
9e658976a6fdfbe031fc3452c69243dc66359f6a
/pythonExercise/four.py
b4fadd64058df0da705a77f23dd57f2e54e2cff1
[]
no_license
zyyxydwl/Python-Learning
b2ed0f80121b284e5fb65cc212ccb84a0eb14cb6
6a5d36aa8805da647229fa747fa96452638d830e
refs/heads/master
2018-10-04T23:42:21.076668
2018-06-08T03:19:33
2018-06-08T03:19:33
107,348,411
0
0
null
null
null
null
UTF-8
Python
false
false
1,088
py
#!/usr/bin/env python # -*- coding:utf-8 -*- #@Time :2017/12/2 9:57 #@Author :zhouyuyao #@File :four.py # 题目:输入某年某月某日,判断这一天是这一年的第几天? # 程序分析:以3月5日为例,应该先把前两个月的加起来,然后再加上5天即本年的第几天,特殊情况,闰年且输入月份大于2时需考虑多加一天: # 程序源代码: # 实例(题目:输入某年某月某日,判断这一天是这一年的第几天? # 程序分析:以3月5日为例,应该先把前两个月的加起来,然后再加上5天即本年的第几天,特殊情况,闰年且输入月份大于2时需考虑多加一天: year = int(input('year:\n')) month = int(input('month:\n')) day = int(input('day:\n')) months = (0,31,59,90,120,151,181,212,243,273,304,334) if 0 < month <= 12: sum = months[month - 1] else: print('data error') sum += day leap = 0 if (year % 400 == 0) or ((year % 4 == 0) and (year % 100 != 0)): leap = 1 if (leap == 1) and (month > 2): sum += 1 print('it is the %dth day.' % sum)
ad8ace3d9d368e692a32a964c2ad9c4e137f94dd
474b53e2dfbecab16d92fc44e8246b44fa2d840b
/NaiveBayes_Titanic/NaiveBayesTitanic.py
af1366cf7a34b0eeda5db147f20bb21ac4da3be2
[]
no_license
YYJIANG/classPatternRecognition
db98493b53f28149ad3b828a8e0cd95e6c0e0920
093dfd9d0a80abb126e73a8c3de8ff74d3e49699
refs/heads/main
2023-08-27T10:40:06.280524
2021-10-28T01:23:36
2021-10-28T01:23:36
413,449,657
0
0
null
null
null
null
UTF-8
Python
false
false
3,097
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 4 16:15:26 2021 @author: JYY """ import csv import numpy as np def dataProcess(filename='train.csv',a=0,b=1,c=4,d=5): '''读取csv文件''' train_data = [] with open(filename,'r',newline='') as f: csvreader = csv.reader(f) for line in csvreader: train_data.append(line) '''将所需的特征重组成矩阵。每行为一个乘客,每列为乘客信息(编号,存活,性别,年龄)''' train = [] male_age = female_age = 0 male_num = female_num = 0 for i in range(len(train_data)-1): train_row= [] train_row.append(eval(train_data[i+1][a])) train_row.append(eval(train_data[i+1][b])) train_row.append(1 if train_data[i+1][c]=='male' else 0) age = train_data[i+1][d] if age.isdigit(): train_row.append(eval(age)) if train_row[2] == 1: male_num += 1 male_age += eval(age) else: female_num += 1 female_age += eval(age) else: train_row.append(-1) train.append(train_row) male_age = male_age/male_num female_age = female_age/female_num '''年龄————0(0~5)——1(6-15)——2(16-25)——3(26-35)——4(35-45)——5(45-...),默认3''' for i in range(len(train)): if train[i][3] == -1: train[i][3] = 3 elif train[i][3] <=5: train[i][3] = 0 elif train[i][3] <=15: train[i][3] =1 elif train[i][3] <= 25: train[i][3] = 2 elif train[i][3] <=35: train[i][3] =3 elif train[i][3] <=45: train[i][3] = 4 else: train[i][3] = 5 return train '''导入训练数据''' train = dataProcess('train.csv',0,1,4,5) '''计算先验概率和条件概率''' sur = np.zeros(2) sur_sex = np.zeros([2,2]) sur_age = np.zeros([2,6]) '''死——活''''''死——活————性别0~1''''''死——活————年龄0~6''' for i in range(len(train)): sur[train[i][1]] += 1 sur_sex[train[i][1]][train[i][2]] += 1 sur_age[train[i][1]][train[i][3]] += 1 sur = sur/sur.sum() for i in range(2): sur_sex[i] = sur_sex[i]/sur_sex[i].sum() sur_age[i] = sur_age[i]/sur_age[i].sum() print(sur) print(sur_sex) print(sur_age) '''导入测试数据''' test = dataProcess('test.csv',0,0,3,4) ''' ''' pre = [] for i in range(len(test)): precision_row = [str(test[i][0])] p_sur_0 = sur[0]*sur_sex[0][test[i][2]]*sur_age[0][test[i][3]] p_sur_1 = sur[1]*sur_sex[1][test[i][2]]*sur_age[1][test[i][3]] precision_row.append('0' if p_sur_0 > p_sur_1 else '1') pre.append(precision_row) print(pre) with open('precision.csv','w',newline='') as f: csvwriter=csv.writer(f) csvwriter.writerow(['PassengerId','Survived']) csvwriter.writerows(pre) # print(train)
8a62ea9c003ba8f15a6395525cc0affc3dd20b47
2b0f76f83969d5403e169909e95ec122bc6ac97f
/junk/vector2D.py
768387c6d9e87bf70a2403370b0e8b3499f2f15f
[]
no_license
Ankitdulani/Face-Potriat
64a65131876e3ddae4a0f5bea9e7fd84c1bb290a
322234ae350ab672a2aafcdbb536af23b5d2ca7c
refs/heads/master
2020-04-27T21:04:23.265249
2020-01-18T14:10:24
2020-01-18T14:10:24
174,683,235
0
0
null
2020-01-18T14:10:25
2019-03-09T11:03:29
Python
UTF-8
Python
false
false
545
py
import math class vector: def __init__(self, x = 0, y =0 ): self.x = (x) self.y = (y) def unitVector(self): mag = self.getModulus() if mag == float(0): return (vector2D()) return vector2D(self.x/mag, self.y/mag) def getModulus(self): return math.sqrt( self.x **2 + self.y **2) ## return vector2D def addVector( self, A): return ( vector2D(self.x+A.x,self.y+A.y)) def scaledVector(self ,mag): n = self.unitVector() return (vector2D( mag * n.x , mag * n.y )) def printVector(self): print ( self.x , self.y)
a458806ec8505b651615e5e6abd60a4ff5f646ed
89f8181a659ecaf3af77740eb60e4031b654f728
/onestage/步骤2/utils/trans/__init__.py
c96e724b71b1a5dfd10448b3616e3d224f1afc96
[]
no_license
sealandsigh/python4stage
c6a3eb40ffdb54f7b77a9ae1b2406232b705d0e6
f2e08e7207e796cbb874f8a15f8fedbb24e7c7b0
refs/heads/master
2020-12-01T20:31:52.754076
2020-04-23T09:08:16
2020-04-23T09:08:16
230,760,233
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
# -*- coding: utf-8 -*- # __author__="jiajun.zhu" # DATE:2020/1/15
c81f32fd9551171eca3f5765147895606e3573ff
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2759/60610/245707.py
0d1aca295915e41bef3bdf5a5262c94f0f29f52f
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
278
py
num=input(); for i in range(num): string=raw_input(); numList=string.split(); count=0 for j in range(int(numList[0]),int(numList[1])+1): a=int(numList[2]); b=int(numList[3]); if (j%a==0) | (j%b==0): count+=1; print(count);
2c041d0cdb86f298fb695188dd4cdb2a03070fe3
fa8016fd0f971a94bd1206b70ff19b9e709d8fa3
/First_site/First_site_2.py
c27f6e399ff29a669577ac0cf2346343611ec28e
[]
no_license
hannahphp/Web-Project-1
fea4276531ed484d45282e7c5bcd947b2ffd31f5
814c998dfb1f09127b44e0dd67012130fe529d31
refs/heads/master
2020-03-23T18:07:35.980453
2018-07-19T18:09:06
2018-07-19T18:09:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
12
py
First_site_2
3d5664d5e503269e5557e6b98623f3cb0c80edbc
e211000d0d843fd944266892f49a7649c7e8918d
/abc/065/python/code_c.py
fc52911095e41bda42258728f4b59ac2a5a9d1b0
[]
no_license
habroptilus/atcoder-src
63dfa16c6d4b80d1e36618377d3201888183281f
4cd54202037996b3f4a4442b1bd19d42d8a46db1
refs/heads/master
2020-04-26T07:14:38.322156
2019-06-08T14:44:26
2019-06-08T14:44:26
173,388,602
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
import math N, M = map(int, input().split()) if abs(N - M) == 1: print(math.factorial(N) * math.factorial(M) % (10**9 + 7)) elif N == M: print(math.factorial(N) * math.factorial(M) * 2 % (10**9 + 7)) else: print(0)
2af082e346df1acaa0004afb1d856e2c49d3ee69
6ac0b1f627976e7fcf69d41b723e155a01d689ce
/m.py
e14330dc53678e40d61224761ef1ec6a03c6b378
[]
no_license
MrFaxel/Sec
954ad750284fe6e33e820e6fb8f2a51941c14d3e
bf7746ab6199f8d746a1c6197b44f982aad01224
refs/heads/master
2022-12-04T12:32:57.340518
2020-09-02T22:41:40
2020-09-02T22:41:40
292,390,782
0
0
null
null
null
null
UTF-8
Python
false
false
2,268
py
#Compiler par Faxel #Twitter https://twitter.com/Faxel2020 import zlib , marshal , base64 from base64 import * exec(zlib.decompress(base64.b16decode('789CCD574B6FE33610BE1BF07F983A073B8B95B3B637ED26410EC576736A4F057A4916022D535E1614A925A9D42E7A29F6984B0BD82850A0A71E8B6C5CF4987FE35FD2A19E9622BF80855B82B0257238CF6F469CA3CF4E22AD4E864C9C8453F34E8A41B371E4C91113E3CBC8F8CE2B7CDD36E0B5A22366346CA55C3B500A7C4DC18B19412823051EBECA11855B0204BE51704526945BBA6F19DCCA48DB1F4E7F845051315274DDF1EFE41489AE883654C197C8A2BB83459F60341B5C8EA5EB5BADE1B2D36AB56E5E0C06D7835717A717FD975F04CBF9FD72F6F372FE71E5E16F9C2B54BD971955323392BA798FBB37A22262F6C1CEF962397FC89E6B44D8E54C0A12AE131133A81311CB4E7F677F268AD688586486FC533CA4D6E72B7FAD11519956D6C3062B904FAECEFCCECE98F33E22625F3D1591B9B0B0BB568475F9D3702481C87F678F89BBAB115FAC44A1421B3FA4363E26F142601DA758D3D44B9136E90DAF7B1783FEEEF82901A9B2585610F6C564A14C1E23EBB70F3B689278EBE32665F6446F59993A4CD682D38638C1F85DA6CFFD1398C3BE385F09D3A2F0670AC00CC619FD0AF6EFCA2B99751B3CB34346D478262F1B39AA0B783F9473655110C45B35CAEC993B35CEC961BFEEA194238F457DAD560BD837CBCAFA6C4DA23578CE9DF309B8E5807948EB4CEFE2CCD698D972FECBFF63FE5656ECD7ECA5175C678F83E0D9B362F96D11A4B3D300E2F115BDA55C8621C54F7AC1EDBC12CEE47200C5D85156AE5A49D3DFFF6BCFE5F38FA4BA1FE6BE7204CE1BDF271EDE9338053DC51B5340810A781F516D98140E12B12094CA80D4CF434E8C2F55D06C8CA80FAEC775E7F8BCD9B0DE673E127405C1E39797D016A69D6EC403B712E69D361E6A1F275B946BBA968A12D53E981F8C9A6676E4C61A16D0E7A84FB21E2A264CA79561A61FC09B091B53E1510D23A64329D89053DD4A4D4B7CD36CD0894743735E5EACE1F77900AFA5F0D93852C4FA1D147D1F314D938B2D6F33A10DE13CDEEBE228B07B23329985FB5A2434CE981A488F818A86533092715C4321F85773684C83FC0097DC23A66ACD618281504295BAB75469B4F6FAC55BD40ADAFDF65A2F16B7EE0C5813667D2B6E4C7D51A8AD09D8366087216297DFDA268368880CE31805955161894A5AA6FECAB938447442BDC8F61BD884684FB1D01414DDBD35A111E3B6D1E1ED9C2F26A521211106CA57CCB4854B607098001D42CA4A614FAA4D40BECF8BCD2A0456009C02DC41FC048114F2CCF6908EE3336E1D3826D3564DF2A58E3C0DEA32C2769611A683546C8C200CE296725F2E855A56A95E1F9C2B184A35A269830B3F55D22D659CBDDA42D4D59CD2B033386412BAAE2DE7AE6B0B7ACB7503C284EBB6D210C4E13818E02A31F1E2521987A6ABE890609D342AA271066C27F5097E77B6D1FAF83D137CBA81CC71C65C0E09DF48A2DFC91F9C043D87CBCF7F0100EAFB80')))
4c32d982753b0e4db0881f6e9c9fa2a743f9a9eb
a26b60ba7be3251b0cf95542b5b2bb539ca8cc7b
/donatingthings/migrations/0001_initial.py
3cdec032487be9d97bdf7f3f6fb213ee09d7d068
[]
no_license
rokesh27/wadd
3e663def9cf1c5bfa583fc7c99feb4130f6c68a9
ed50633af4d5b89b80d467a9330d3f0588332bb6
refs/heads/main
2023-07-07T00:54:10.970420
2021-08-11T21:19:16
2021-08-11T21:19:16
395,082,237
0
1
null
null
null
null
UTF-8
Python
false
false
2,044
py
# Generated by Django 3.2.1 on 2021-05-09 11:13 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='contactform', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('phone', models.BigIntegerField()), ('email', models.EmailField(max_length=254)), ('subject', models.CharField(max_length=50)), ('message', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='regformdthings', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fname', models.CharField(max_length=50)), ('lname', models.CharField(max_length=50)), ('email', models.EmailField(max_length=254)), ('gender', models.CharField(choices=[('m', 'male'), ('f', 'female'), ('u', 'other')], max_length=1, null=True)), ('age', models.IntegerField()), ('pnumber', models.BigIntegerField()), ('ntoys', models.CharField(max_length=50)), ('nbooks', models.CharField(max_length=50)), ('nblankets', models.CharField(max_length=50)), ('dress', models.CharField(max_length=50)), ('cgender', models.CharField(choices=[('M', 'boy'), ('F', 'girl')], max_length=1, null=True)), ('others', models.CharField(max_length=50)), ('adress', models.CharField(max_length=5000)), ('landmark', models.CharField(max_length=50)), ('city', models.CharField(max_length=50)), ('district', models.CharField(max_length=50)), ], ), ]
fd6858277f5f415ab9122b3ca391257c09bda9a1
acaeef460a66ac90e01c28bdec80aa82828f2df6
/src/sort/__init__.py
45f40284a8c3f0e8badc2e9dfa812ce70e060458
[ "Apache-2.0" ]
permissive
dmvieira/algs
e1acd58c2f744dc4e7495ee2ab255eb4ceb7586f
bf88d026ecf7210f0a1d601b36d7fc82364bd46f
refs/heads/master
2020-05-02T01:58:14.427951
2019-04-13T16:55:53
2019-04-13T16:55:53
177,695,293
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
MAX_NUMBER_SIZE=100 class Sort(object): def __init__(self, sample): self.sample = sample
6eb9b2055a467de99b0a35b99f5c540e841ed140
7c135c7d34b1dd6dbad71e2ffa8d5b132a5e3fef
/Chat-dupe.py
bb4e67fd39066f6faf0168ce4a1a4d7adb804877
[]
no_license
theminshew/simplechat
02ef7a9c1683faaaea9e15f4204189fec4b19c4e
a8304782963a54d2ed9bd8c088bb2164e988ce70
refs/heads/Master-Primary
2021-01-20T06:54:32.800617
2018-02-07T21:08:41
2018-02-07T21:08:41
89,943,944
1
0
null
2017-05-18T19:58:58
2017-05-01T17:05:12
Python
UTF-8
Python
false
false
1,787
py
#initial prompting, basic raw_input to variable mapping age = raw_input (" How old are you? ") weight = raw_input (" How much do you weigh? ") real_weight = raw_input (" No really, how much do you really weigh? ") print " Hmm, ok lets see what I can do with that?" # timing inserts pause for simulated thinking effect import time time.sleep(3) print "Gimme a moment, I'm still crunching numbers" time.sleep(3) # variables for adjusting weight for us in function fudged_answer = int (real_weight) - 10 alternate_answer = int (real_weight) - 25 # this prompts user with basic menu and gives resultss print "ok how does this look? %s is that number better?" % fudged_answer def menu(): menu = raw_input("1.) Yes \n2.) No\n") if raw_input == 1: print "Excellent, Glad I could find a number that works" elif raw_input == 2: recalculate() else: print "That is not an option, Please choose 1 or 2." def recalculate(): print "Finally, ok let's try again, is %s lbs better?" % alternate_answer def menu(): menu = raw_input("1.) Yes \n2.) No\n") if menu == 1: abouttime() elif menu == 2: letsmoveonagain() else: print "That is not an option, Please choose 1 or 2." def abouttime(): print "Geez, about time" def letsmoveonagain(): print "Excellent, Glad I could find a number that works" time.sleep(3) print " Alright, so you're %s old and weigh about '%r' " % ( age, fudged_answer) def menu(): print ("are those numbers about right?") menu = raw_input("1.) Yes \n2.) No\n") if menu == 1: good() if menu == 2: bad() def good(): print ("Ok, based on those calculations I think you're a 10 ") time.sleep(1) print print "hope this made you smile" def bad(): print ("I am sorry if I offended you, I am going to leave now") menu()
070d2ffacad8dbdcc16c98b9921ba3c9c2b5c0ca
3a21eac318260972a0f50aa6517bebd62d9634f3
/minimarket/settings.py
a6e40467c5437d3caa279c03850dc038c10d6db9
[]
no_license
alviandk/ahp
adaf735c2ad14cfffee41eca37df5ff2452e8812
60764c12bb30cd134bbce53d62cda835503191d2
refs/heads/master
2016-09-05T19:16:02.907235
2015-03-27T09:42:43
2015-03-27T09:42:43
32,963,488
0
0
null
null
null
null
UTF-8
Python
false
false
2,267
py
""" Django settings for minimarket project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '4z+05z^%!e=1p&*2uyz^_tel^5($l##z8f80t^@=60%*4z$#4m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'ahp_aps', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'minimarket.urls' WSGI_APPLICATION = 'minimarket.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'ahp', 'USER': 'root', 'PASSWORD':'', 'HOST':'localhost' } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_PATH = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = ( STATIC_PATH, ) STATIC_URL = '/static/' TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), )
9ef217d20fb794abbb33d9876fd5f7161ca24886
5323eac10ecfbbd415c84333e2758c4b05e99aa0
/Practice_Class1.py
5d09060d922d8b41dd7f523003e915a6f228b862
[]
no_license
StanleyCY/Practice
f49b6cf8c501cf91a2ad69fa57c5025e53b786b4
ee05c3e1bde97fefe8bb45e6fae3eafb0df45b34
refs/heads/master
2020-03-30T09:48:57.780739
2018-10-03T00:58:23
2018-10-03T00:58:23
151,093,625
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
class personal(): __number = 18 #__兩個下底線的動作,將calss內的某個元素封閉起來,因此外界無法調用 def __init__(self,name,grade,age): self.name = name self.grade = grade self.age = age def walk(self): print('I always with',self.name) def talk(self): print('I always talk with other I\'m',self.grade,'now') def care(self): print('when I\'m',self.age,',I can take myself') PersonA = personal('Stanley',6,25) PersonA.walk() PersonA.talk() PersonA.care() print (PersonA._personal__number)#想要調用class內封閉條件時,需使用_class__條件才能調用出來)
10e5d0ab383ecab54b9aadc82335bbeb4294a2c2
90a81de919ad18a2cd88c7f488a8b88136832be2
/data_ub_tasks/__init__.py
dfbaba9df0cd43e290583cabe5521a22ae2d6406
[]
no_license
scriptotek/data_ub_tasks
0305557ed8cebfc28e5cecbd83c3b4f83c708e58
66e4cfc3ffa94bdd2903d04e71aec5491fd43ffc
refs/heads/master
2023-01-10T10:49:00.809131
2023-01-01T20:53:06
2023-01-01T20:53:06
51,712,304
1
0
null
null
null
null
UTF-8
Python
false
false
28
py
from .data_ub_tasks import *
c5c561e0a70c1027a7c149cd7ffb4e4f5bb38d0f
9a9f31265c65bec0060271cd337580e7b4f3a7e9
/project/pokupka.py
81819a11dce3c4e08f65498d21c98238d72d5f98
[]
no_license
AnatolyDomrachev/1kurs
efaabde4852172b61d3584237611fe19b9faa462
84ed0dceb670ec64c958bf1901636a02baf8f533
refs/heads/master
2023-02-19T21:42:53.286190
2021-01-19T07:41:15
2021-01-19T07:41:15
292,637,199
0
1
null
2020-09-16T02:29:14
2020-09-03T17:32:29
Python
UTF-8
Python
false
false
586
py
import magazin import etc magazin = magazin.Magazin('magazin.conf') korzina = [] net_v_magazine = [] def pokupka(spisok): for slovar in spisok: est_v_mag = 'No' for tovar in magazin.tovary: if slovar['name'] == tovar['name']: kupil = etc.beru(slovar, tovar) korzina.append(kupil) est_v_mag = 'Yes' if est_v_mag == 'No': print(slovar," нет в магазине") print("Купили: ",korzina) print() print("Осталось: ",magazin.tovary)
84e8e2a34adc392dbabc3541f6defc2c829bdb23
a40f749cb8e876f49890ab8fbbbbf2c07a0dd210
/examples/ad_manager/v201902/adjustment_service/update_traffic_adjustments.py
60a54bd299660da60a8ece16a64cfb2643030b0a
[ "Apache-2.0" ]
permissive
ale180192/googleads-python-lib
77afff4c352ac3f342fc8b3922ec08873d6da5be
783a2d40a49956fb16ed73280708f6f9e322aa09
refs/heads/master
2020-08-10T15:20:06.051974
2019-10-11T07:06:58
2019-10-11T07:06:58
214,367,074
0
0
Apache-2.0
2019-10-11T07:04:21
2019-10-11T07:04:20
null
UTF-8
Python
false
false
3,009
py
#!/usr/bin/env python # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds a historical adjustment of 110% for New Years Day traffic. """ from __future__ import print_function import datetime # Import appropriate modules from the client library. from googleads import ad_manager ADJUSTMENT_ID = 'INSERT_ADJUSTMENT_ID_HERE' def main(client, adjustment_id): # Initialize the adjustment service. adjustment_service = client.GetService('AdjustmentService', version='v201902') # Create a statement to select a single traffic forecast adjustment by id. statement = ( ad_manager.StatementBuilder( version='v201902').Where('id = :id').WithBindVariable( 'id', adjustment_id)) # Get the forecast traffic adjustment. response = adjustment_service.getTrafficAdjustmentsByStatement( statement.ToStatement()) # Create a new historical adjustment segment for New Year's Day. this_new_years = datetime.date(datetime.date.today().year, 12, 31) next_new_years = datetime.date(datetime.date.today().year + 1, 12, 31) new_years_segment = { 'basisType': 'HISTORICAL', 'historicalAdjustment': { 'targetDateRange': { 'startDate': next_new_years, 'endDate': next_new_years }, 'referenceDateRange': { 'startDate': this_new_years, 'endDate': this_new_years }, 'milliPercentMultiplier': 110000 } } if 'results' in response and len(response['results']): # Update each local traffic adjustment. updated_adjustments = [] for adjustment in response['results']: adjustment['forecastAdjustmentSegments'].append(new_years_segment) updated_adjustments.append(adjustment) # Update traffic adjustments remotely. adjustments = adjustment_service.updateTrafficAdjustments( updated_adjustments) # Display the results. if adjustments: for adjustment in adjustments: print('Traffic forecast adjustment with id %d and %d segments was ' 'created.' % (adjustment['id'], len(adjustment['forecastAdjustmentSegments']))) else: print('No traffic adjustments were updated.') else: print('No traffic adjustments found to update.') if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client, ADJUSTMENT_ID)
068e2f98b0b9c31dd0661f4df08b136ee519f3a0
2978e1838c010007972e18e015ef7ae364d7ad1f
/jump7.py
83e200bf486a0e808abbc8c21d39617d57bb4afa
[]
no_license
GodLikesJ/shiyanlou-code
251f9441f11f371aa299ea2f991d60de27776024
d2e0c82d3a34599d7ebe5cecf07fb2fc1ecac2bc
refs/heads/master
2020-07-30T06:56:57.403696
2019-09-22T10:07:10
2019-09-22T10:07:10
210,125,592
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
for i in range(1, 101): if i%7!=0 and i%10!=7 and i//10!=7: print(i)
979286ffb46a102ab49df74f8383e498329ab818
e5eec1428da1d24d3e9b86f5723c51cd2ca636cd
/dynamic_programming/백준/가장큰정사각형_백준.py
4db92f7d4eee1a5199ea97cc10a52e85fa483fca
[]
no_license
jamwomsoo/Algorithm_prac
3c36c381f59277721517d331a8f1640399d80c1d
8393f3cc2f950214c47f3cf0b2c1271791f115d0
refs/heads/master
2023-06-09T06:49:14.739255
2021-06-18T06:41:01
2021-06-18T06:41:01
325,227,295
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
# 백준 DP 난이도 골드 5 # 전형적인 dp문제 # dp[i][j]는 위, 왼쪽, 대각선 위 중 작은 것중에 하나를 자신과 더한 값 # -> 정사각형이라면 변의 길이가 모두 같아야하므로 # 1 1 1 1 1 1 # 1 1 1 -> 1 2 2 # 1 1 1 1 2 3 n, m = map(int, input().split()) arr = [] dp = [[0]*(m+1) for _ in range(n+1)] for i in range(n): arr.append(list(map(int, input()))) for j in range(m): dp[i+1][j+1] = arr[i][j] for i in range(n+1): for j in range(m+1): if dp[i][j] != 0: dp[i][j] += min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) res = 0 for row in dp: res = max(res, max(row)) print(res**2)
320c673db21bce86bbbec9d35d068e467d904230
ce79f454483beef0007337219d9415e5feabb0cc
/6/scripts/py_bash.py
93089bb40f79bad8f789d185757f81b179562cdd
[ "MIT" ]
permissive
mohisen/zdotfiles
5be5417dca38f93f44443566737effc0cd0d3514
8c127d0e9ffdc43f9bc12a9d79a1690df063c2b4
refs/heads/master
2021-01-01T17:02:58.296952
2017-01-30T02:08:44
2017-01-30T02:08:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
import commands result = commands.getoutput("ls")
41b484284addb15b16578a1ec7343aec2a1fc131
24f85f41cc42f6829d9e711b8cf5355a1b944284
/rest/schema.py
791cedf334f2df5d8319fd7ac50282173d7fe81d
[]
no_license
djm158/rest
4a03d87b3625917cd591b055cde2c64403a08b3c
d52631781adbec7a2a0a848c7f62e8797d1ae3d3
refs/heads/master
2020-12-18T14:55:31.471706
2017-07-14T15:28:04
2017-07-14T15:28:04
235,427,617
0
0
null
2020-01-21T19:45:23
2020-01-21T19:45:22
null
UTF-8
Python
false
false
2,413
py
class Schema(object): @classmethod def combined_errors(self, *args): errors = [] for schema in args: errors.extend(schema._errors.items()) return dict(errors) def __init__(self, **kwargs): self._fields = self._get_fields() self._errors = {} for name, field in self._fields.items(): if name in kwargs: field.set(kwargs.pop(name)) else: field.reset() def get_namespace(self): if hasattr(self, '__namespace__'): return self.__namespace__ return self.__class__.__name__.replace('Schema', '') def __call__(self, data=None): if data is None: data = {} errors = {} def add_errors(name, errs): if errs: field_errors = errors.get(name, []) field_errors += errs errors[name] = field_errors # First, set the values on the field. If anything goes wrong, it'll return # a list of errors for name, value in data.items(): if name not in self._fields: continue try: errs = self._fields[name].set(value) except ValueError as err: errs = [err.message] add_errors(name, errs) # Check to see if we need to default to defalut values for name, field in self._fields.items(): if not field.serialize: continue field.default() # Then, now the everything's been set, run all the field validators. for name, field in self._fields.items(): if not field.serialize: continue errs = field.validate() add_errors(name, errs) validator = 'validate_%s' % name if hasattr(self, validator): try: getattr(self, validator)(field.get()) except ValueError as v: add_errors(name, v.args) self._errors = errors return not bool(errors) def __repr__(self): return str(self._get()) def _get(self): rep = {} for name, field in self._fields.items(): if field.serialize: name = getattr(field, 'name', name) rep[name] = field.get_simplified() rep['__namespace__'] = self.get_namespace() return rep def dict(self): return self._get() def _get_fields(self): fields = {} for field_name in dir(self): if not field_name.startswith('_'): field = getattr(self, field_name) if not hasattr(field, '__call__'): fields[field_name] = field return fields
1449e09c9233293ca4022000600e95acfe938497
f24b229ac4ee0c0a94e48c400be4b52a7a585871
/home/apps.py
0a6d0b19dce6f1c25e2ae31d407f6fa52c5004ec
[]
no_license
RudreshVeerkhare/GroupChat
462c0f9c98949d418fa10cb2aaf173c8352419ba
39ddaaee0e5d0f36d4e44ae2b16f3a6440171259
refs/heads/master
2021-06-19T11:29:34.372870
2021-03-26T14:40:55
2021-03-26T14:40:55
193,379,367
28
6
null
2021-03-26T14:40:56
2019-06-23T17:57:19
CSS
UTF-8
Python
false
false
134
py
from django.apps import AppConfig class HomeConfig(AppConfig): name = "home" def ready(self): import home.signals
09e856c62ec6b5f6165f16429120e91e6ae6aea2
019c733ea5c77d04003cd7d828b1e016d7b838b5
/contrib/wallettools/walletunlock.py
a1390d55baac73b4b10acfaa83266f406eb8ce4b
[]
no_license
rsjudge17/Appcoins
ee986ddb60096d7516f84999aa9f67badf0ab9d7
f1311cd289d8c5f55a6efed5922e88c286c90f6e
refs/heads/master
2021-01-15T20:18:52.857056
2014-03-20T11:05:36
2014-03-20T11:05:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
from jsonrpc import ServiceProxy access = ServiceProxy("http://127.0.0.1:16556") pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60)
132158a21c498725862cc23ae626f36d7f28db28
0c41f2fd4c1ad9b954097b0662e556b3eb288987
/cellbender/remove_background/data/priors.py
3989769165ab538647ccca8e672a97fca80bd06d
[]
permissive
broadinstitute/CellBender
e884a5520fc3e0fc2f422f8cd6dcdc6c594b5094
4990df713f296256577c92cab3314daeeca0f3d7
refs/heads/master
2023-08-21T14:55:33.619290
2023-08-08T18:40:14
2023-08-08T18:40:14
171,951,233
207
40
BSD-3-Clause
2023-08-30T05:27:18
2019-02-21T21:53:57
Python
UTF-8
Python
false
false
15,821
py
"""Functionality for estimating various priors from the data""" import numpy as np import torch from scipy.stats import gaussian_kde from cellbender.remove_background import consts from typing import Dict, Tuple, Union import logging logger = logging.getLogger('cellbender') def _threshold_otsu(umi_counts: np.ndarray, n_bins: int = 256) -> float: """Return threshold value based on fast implementation of Otsu's method. From skimage, with slight modifications: https://github.com/scikit-image/scikit-image/blob/ a4e533ea2a1947f13b88219e5f2c5931ab092413/skimage/filters/thresholding.py#L312 Args: umi_counts: Array of UMI counts n_bins: Number of bins used to calculate histogram Returns: threshold: Upper threshold value. All droplets with UMI counts greater than this value are assumed to contain cells. References ---------- .. [1] Wikipedia, https://en.wikipedia.org/wiki/Otsu's_Method .. [2] https://scikit-image.org/docs/stable/auto_examples/applications/plot_thresholding.html Notes ----- The input image must be grayscale. """ # create a UMI count histogram counts, bin_centers = _create_histogram(umi_counts=umi_counts, n_bins=n_bins) # class probabilities for all possible thresholds weight1 = np.cumsum(counts) weight2 = np.cumsum(counts[::-1])[::-1] # class means for all possible thresholds mean1 = np.cumsum(counts * bin_centers) / weight1 mean2 = (np.cumsum((counts * bin_centers)[::-1]) / weight2[::-1])[::-1] # Clip ends to align class 1 and class 2 variables: # The last value of ``weight1``/``mean1`` should pair with zero values in # ``weight2``/``mean2``, which do not exist. variance12 = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:]) ** 2 idx = np.argmax(variance12) threshold = bin_centers[idx] return threshold def _create_histogram(umi_counts: np.ndarray, n_bins: int) -> Tuple[np.ndarray, np.ndarray]: """Return a histogram. Args: umi_counts: Array of UMI counts n_bins: Number of bins used to calculate histogram Returns: counts: Each element is the number of droplets falling in each UMI count bin bin_centers: Each element is the value corresponding to the center of each UMI count bin """ counts, bin_edges = np.histogram(umi_counts.reshape(-1), n_bins) bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2 return counts.astype('float32', copy=False), bin_centers def _peak_density_given_cutoff(umi_counts: np.ndarray, cutoff: float, cell_count_low_limit: float) -> Tuple[float, float]: """Run scipy.stats gaussian_kde on part of the UMI curve""" # get the UMI count values we are including noncell_counts = umi_counts[umi_counts <= cutoff] # resample them: the magic of looking at a log log plot n_putative_cells = (umi_counts > cell_count_low_limit).sum() n_putative_empties = len(noncell_counts) inds = np.logspace(np.log10(n_putative_cells), np.log10(n_putative_cells + n_putative_empties), num=1000, base=10) inds = [max(0, min(int(ind - n_putative_cells), len(noncell_counts) - 1)) for ind in inds] noncell_counts = np.sort(noncell_counts)[::-1][inds] # find the peak density: that is the empty count prior # calculate range of data, rounding out to make sure we cover everything log_noncell_counts = np.log(noncell_counts) x = np.arange( np.floor(log_noncell_counts.min()) - 0.01, np.ceil(log_noncell_counts.max()) + 0.01, 0.1 ) # fit a KDE to estimate density k = gaussian_kde(log_noncell_counts) density = k.evaluate(x) # the density peak is almost surely the empty droplets log_peak_ind = np.argmax(density) log_peak = x[log_peak_ind] empty_count_prior = np.exp(log_peak) # try to go about 1 stdev up from the peak peak_density = np.max(density) one_std_density = 0.6 * peak_density one_std_inds = np.where(density[log_peak_ind:] < one_std_density)[0] if len(one_std_inds) > 0: one_std_ind = one_std_inds[0] else: one_std_ind = len(density[log_peak_ind:]) - 1 empty_count_upper_limit = np.exp(x[log_peak_ind:][one_std_ind]) return empty_count_prior, empty_count_upper_limit def get_cell_count_given_expected_cells(umi_counts: np.ndarray, expected_cells: int) -> Dict[str, float]: """In the case where a prior is passed in as input, use it Args: umi_counts: Array of UMI counts per droplet, in no particular order expected_cells: Input by user Returns: Dict with keys ['cell_counts'] """ order = np.argsort(umi_counts)[::-1] cell_counts = np.exp(np.mean(np.log(umi_counts[order][:expected_cells]))).item() return {'cell_counts': cell_counts} def get_empty_count_given_expected_cells_and_total_droplets( umi_counts: np.ndarray, expected_cells: int, total_droplets: int, ) -> Dict[str, float]: """In the case where a prior is passed in as input, use it Args: umi_counts: Array of UMI counts per droplet, in no particular order expected_cells: Input by user, or prior estimate total_droplets: Input by user Returns: Dict with keys ['empty_counts', 'empty_count_upper_limit'] """ order = np.argsort(umi_counts)[::-1] starting_point = max(expected_cells, total_droplets - 500) empty_counts = np.median(umi_counts[order] [int(starting_point):int(total_droplets)]).item() # need to estimate here cell_counts = np.exp(np.mean(np.log(umi_counts[order][:expected_cells]))).item() middle = np.sqrt(cell_counts * empty_counts) empty_count_upper_limit = min(middle, 1.5 * empty_counts) return {'empty_counts': empty_counts, 'empty_count_upper_limit': empty_count_upper_limit} def get_cell_count_empty_count(umi_counts: np.ndarray, low_count_threshold: float = 15) -> Dict[str, float]: """Obtain priors on cell counts and empty droplet counts from a UMI curve using heuristics, and without applying any other prior information. Heuristics: 0. Ignore droplets with counts below low_count_threshold 1. Use Otsu's method to threshold the log UMI count data (ignoring droplets past 1/4 of the total droplets above low_count_threshold, as we go down the UMI curve). This is used as a lower limit on cell counts. It seems quite robust. 2. Use the following iterative approach, until converged: a. Establish an upper cutoff on possible empty droplets, using the current estimate of empty counts and our cell count prior (the estimate is 3/4 of the geometric mean of the two). b. Use gaussian_kde from scipy.stats to create a smooth histogram of the log UMI counts, for droplets with counts below the cutoff. - A trick is used to resample the droplets before creating the histogram, so that it looks more like a log-log plot c. Identify the peak density of the histogram as the empty count estimate. - Convergence happens when our estimate of empty counts stops changing. Args: umi_counts: Array of UMI counts per droplet, in no particular order low_count_threshold: Ignore droplets with counts below this value Returns: Dict with keys ['cell_counts', 'empty_counts'] """ logger.debug('Beginning priors.get_cell_count_empty_count()') reverse_sorted_umi_counts = np.sort(umi_counts)[::-1] umi_counts_for_otsu = reverse_sorted_umi_counts[:(umi_counts > low_count_threshold).sum() // 4] log_cell_count_low_limit = _threshold_otsu(np.log(umi_counts_for_otsu)) cell_count_low_limit = np.exp(log_cell_count_low_limit) logger.debug(f'cell_count_low_limit is {cell_count_low_limit}') cell_count_prior = np.mean(umi_counts[umi_counts > cell_count_low_limit]) umi_counts_for_kde = reverse_sorted_umi_counts[reverse_sorted_umi_counts > low_count_threshold] # initial conditions for the loop # start low, but have a failsafe (especially for simulated data) cutoff = max(0.1 * cell_count_low_limit, umi_counts_for_kde[-100]) empty_count_prior = -100 empty_count_upper_limit = None delta = np.inf a = 0 # iterate to convergence, at most 5 times while delta > 10: logger.debug(f'cutoff = {cutoff}') # use gaussian_kde to find the peak in the histogram new_empty_count_prior, empty_count_upper_limit = _peak_density_given_cutoff( umi_counts=umi_counts_for_kde, cutoff=cutoff, cell_count_low_limit=cell_count_low_limit, ) logger.debug(f'new_empty_count_prior = {new_empty_count_prior}') # 3/4 of the geometric mean is our new upper cutoff cutoff = 0.75 * np.sqrt(cell_count_prior * new_empty_count_prior) delta = np.abs(new_empty_count_prior - empty_count_prior) logger.debug(f'delta = {delta}') empty_count_prior = new_empty_count_prior a += 1 if a >= 5: logger.debug('Heuristics for determining empty counts exceeded 5 ' 'iterations without converging') break # do a final estimation of cell counts: # go to the halfway point and then take the median of the droplets above count_crossover = np.sqrt(cell_count_prior * empty_count_prior) cell_count_prior = np.median(umi_counts[umi_counts > count_crossover]) logger.debug(f'cell_count_prior is {cell_count_prior}') logger.debug(f'empty_count_prior is {empty_count_prior}') logger.debug('End of priors.get_cell_count_empty_count()') return {'cell_counts': cell_count_prior, 'empty_counts': empty_count_prior, 'empty_count_upper_limit': empty_count_upper_limit} def get_expected_cells_and_total_droplets(umi_counts: np.ndarray, cell_counts: float, empty_counts: float, empty_count_upper_limit: float, max_empties: int = consts.MAX_EMPTIES_TO_INCLUDE) \ -> Dict[str, int]: """Obtain priors on cell counts and empty droplet counts from a UMI curve using heuristics, and without applying any other prior information. NOTE: to be run using inputs from get_cell_count_empty_count() Args: umi_counts: Array of UMI counts per droplet, in no particular order cell_counts: Prior from get_cell_count_empty_count() empty_counts: Prior from get_cell_count_empty_count() empty_count_upper_limit: Prior from get_cell_count_empty_count() max_empties: Do not include more putative empty droplets than this Returns: Dict with keys ['expected_cells', 'total_droplets', 'transition_point'] Example: >>> priors = get_cell_count_empty_count(umi_counts) >>> priors.update(get_expected_cells_and_total_droplets(umi_counts, **priors)) """ # expected cells does well when you give it a very conservative estimate expected_cells = (umi_counts >= cell_counts).sum() # total droplets will be between empty_count_prior and its upper limit total_droplets_count_value = np.sqrt(empty_counts * empty_count_upper_limit) total_droplets = (umi_counts >= total_droplets_count_value).sum() # find the transition point count_crossover = np.sqrt(cell_counts * empty_counts) transition_point = (umi_counts >= count_crossover).sum() logger.debug(f'In get_expected_cells_and_total_droplets(), found transition ' f'point at droplet {transition_point}') # ensure out heuristics don't go too far out datasets with many cells total_droplets = min(total_droplets, transition_point + max_empties) return {'expected_cells': expected_cells, 'total_droplets': total_droplets, 'transition_point': transition_point} def get_priors(umi_counts: np.ndarray, low_count_threshold: float, max_total_droplets: int = consts.MAX_TOTAL_DROPLETS_GUESSED) \ -> Dict[str, Union[int, float]]: """Get all priors using get_cell_count_empty_count() and get_expected_cells_and_total_droplets(), employing a failsafe if total_droplets is improbably large. Args: umi_counts: Array of UMI counts per droplet, in no particular order low_count_threshold: Ignore droplets with counts below this value max_total_droplets: If the initial heuristics come up with a total_droplets value greater than this, we re-run the heuristics with higher low_count_threshold Returns: Dict with keys ['cell_counts', 'empty_counts', 'empty_count_upper_limit', 'surely_empty_counts', 'expected_cells', 'total_droplets', 'log_counts_crossover'] """ logger.debug("Computing priors from the UMI curve") priors = get_cell_count_empty_count( umi_counts=umi_counts, low_count_threshold=low_count_threshold, ) priors.update(get_expected_cells_and_total_droplets(umi_counts=umi_counts, **priors)) logger.debug(f'Automatically computed priors: {priors}') a = 0 while priors['total_droplets'] > max_total_droplets: logger.debug(f'Heuristics for estimating priors resulted in ' f'{priors["total_droplets"]} total_droplets, which is ' f'typically too large. Recomputing with ' f'low_count_threshold = {priors["empty_count_upper_limit"]:.0f}') priors = get_cell_count_empty_count( umi_counts=umi_counts, low_count_threshold=priors['empty_count_upper_limit'], ) priors.update(get_expected_cells_and_total_droplets(umi_counts=umi_counts, **priors)) logger.debug(f'Automatically computed priors: {priors}') a += 1 if a > 5: break # compute a few last things compute_crossover_surely_empty_and_stds(umi_counts=umi_counts, priors=priors) return priors def compute_crossover_surely_empty_and_stds(umi_counts, priors): """Given cell_counts and total_droplets, compute a few more quantities Args: umi_counts: Array of UMI counts per droplet, in no particular order priors: Dict of priors Returns: None. Modifies priors dict in place. """ assert 'total_droplets' in priors.keys(), \ 'Need total_droplets in priors to run compute_crossover_surely_empty_and_stds()' assert 'cell_counts' in priors.keys(), \ 'Need cell_counts in priors to run compute_crossover_surely_empty_and_stds()' # Compute a crossover point in log count space. reverse_sorted_counts = np.sort(umi_counts)[::-1] surely_empty_counts = reverse_sorted_counts[priors['total_droplets']] log_counts_crossover = (np.log(surely_empty_counts) + np.log(priors['cell_counts'])) / 2 priors.update({'log_counts_crossover': log_counts_crossover, 'surely_empty_counts': surely_empty_counts}) # Compute several other priors. log_nonzero_umi_counts = np.log(umi_counts[umi_counts > 0]) d_std = np.std(log_nonzero_umi_counts[log_nonzero_umi_counts > log_counts_crossover]).item() / 5. d_empty_std = 0.01 # this is basically turned off in favor of epsilon priors.update({'d_std': d_std, 'd_empty_std': d_empty_std})
e6f76f3ae72d3982282bf5277e7aba4a0ec5c316
218ad2898e2851f97eb2fb166d2811c80da11a34
/e17-01.py
1eb5fbf035bf21f213d2dec84766b24c80d5963e
[]
no_license
mariane-sm/python_scripts
650b862ab797fa5bfa05fe1052814597ccdf352c
d8ba8c998cb635b155519cd18b7be7cc034395a0
refs/heads/master
2021-01-02T22:30:40.089088
2015-06-06T21:50:41
2015-06-06T21:50:41
35,857,281
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
import copy def calc(n, out, solutions): if sum(out) == n: out.sort() solutions.add(tuple(out)) else: for number in [2,3,7]: x = copy.deepcopy(out) x.append(number) if is_valid(x, n): calc(n, x, solutions) def is_valid(out, n): return sum(out) <= n z = set() calc(12, [], z) print z;
47186bd9b8e23ac196e3ad4e78bae3502606a8d1
ed72519cec8f7ca796cd7871c3e4875d852381f7
/layers.py
34addd78fd1d4c842197f01bf208d0683709133f
[ "MIT" ]
permissive
kivicode/keras_layers
140b23228caab68a8eee05dbbed8d65c5bae3f45
e37f70bee1ff39b574895eebc4eee1f2acb4993e
refs/heads/master
2023-07-09T23:54:00.669055
2021-08-10T15:51:44
2021-08-10T15:51:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
55,154
py
import numpy as np import tensorflow as tf from tensorflow.python.keras import backend as K from tensorflow.python.keras.layers import Layer, Lambda from tensorflow.python.keras.layers import InputSpec from tensorflow.python.ops import nn_ops from tensorflow.python.keras import initializers, regularizers, constraints, activations from tensorflow.python.keras.utils import conv_utils def gaussian_init(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) return K.constant(v, dtype=dtype) def conv_init_linear(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) fan_in = np.prod(shape[:3]) v = v / (fan_in**0.5) return K.constant(v, dtype=dtype) def conv_init_relu(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) fan_in = np.prod(shape[:3]) v = v / (fan_in**0.5) * 2**0.5 return K.constant(v, dtype=dtype) def conv_init_relu2(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) fan_in = np.prod(shape[:3]) v = v / (fan_in**0.5) * 2 return K.constant(v, dtype=dtype) def depthwiseconv_init_linear(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) fan_in = np.prod(shape[:2]) v = v / (fan_in**0.5) return K.constant(v, dtype=dtype) def depthwiseconv_init_relu(shape, dtype=None, partition_info=None): v = np.random.randn(*shape) v = np.clip(v, -3, +3) fan_in = np.prod(shape[:2]) v = v / (fan_in**0.5) * 2**0.5 return K.constant(v, dtype=dtype) class Covn2DBaseLayer(Layer): """Basic Conv2D class from which other layers inherit. """ def __init__(self, kernel_size, strides=(1, 1), padding='valid', #data_format=None, dilation_rate=(1, 1), activation=None, use_bias=False, kernel_initializer='glorot_uniform', kernel_regularizer=None, kernel_constraint=None, bias_initializer='zeros', bias_regularizer=None, bias_constraint=None, activity_regularizer=None, **kwargs): super(Covn2DBaseLayer, self).__init__( activity_regularizer=regularizers.get(activity_regularizer), **kwargs) self.rank = rank = 2 self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_initializer = initializers.get(bias_initializer) self.bias_regularizer = regularizers.get(bias_regularizer) self.bias_constraint = constraints.get(bias_constraint) def get_config(self): config = super(Covn2DBaseLayer, self).get_config() config.update({ 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_initializer': initializers.serialize(self.bias_initializer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'bias_constraint': constraints.serialize(self.bias_constraint), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), }) return config class Conv2D(Covn2DBaseLayer): """Conv2D Layer with Weight Normalization. # Arguments They are the same as for the normal Conv2D layer. weightnorm: Boolean flag, whether Weight Normalization is used or not. # References [Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks](http://arxiv.org/abs/1602.07868) """ def __init__(self, filters, kernel_size, weightnorm=False, eps=1e-6, **kwargs): super(Conv2D, self).__init__(kernel_size, **kwargs) self.filters = filters self.weightnorm = weightnorm self.eps = eps def build(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape self.kernel_shape = (*self.kernel_size, feature_shape[-1], self.filters) self.kernel = self.add_weight(name='kernel', shape=self.kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.weightnorm: self.wn_g = self.add_weight(name='wn_g', shape=(self.filters,), initializer=initializers.Ones(), trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None super(Conv2D, self).build(input_shape) def call(self, inputs, **kwargs): if type(inputs) is list: features = inputs[0] else: features = inputs if self.weightnorm: norm = tf.sqrt(tf.reduce_sum(tf.square(self.kernel), (0,1,2)) + self.eps) kernel = self.kernel / norm * self.wn_g else: kernel = self.kernel features = K.conv2d(features, kernel, strides=self.strides, padding=self.padding, dilation_rate=self.dilation_rate) if self.use_bias: features = tf.add(features, self.bias) if self.activation is not None: features = self.activation(features) return features def get_config(self): config = super(Conv2D, self).get_config() config.update({ 'filters': self.filters, 'weightnorm': self.weightnorm, 'eps': self.eps, }) return config class SparseConv2D(Covn2DBaseLayer): """2D Sparse Convolution layer for sparse input data. # Arguments They are the same as for the normal Conv2D layer. binary: Boolean flag, whether the sparsity is propagated as binary mask or as float values. # Input shape features: 4D tensor with shape (batch_size, rows, cols, channels) mask: 4D tensor with shape (batch_size, rows, cols, 1) If no mask is provided, all input pixels with features unequal to zero are considered as valid. # Example x, m = SparseConv2D(32, 3, padding='same')(x) x = Activation('relu')(x) x, m = SparseConv2D(32, 3, padding='same')([x,m]) x = Activation('relu')(x) # Notes Sparse Convolution propagates the sparsity of the input data through the network using a 2D mask. # References [Sparsity Invariant CNNs](https://arxiv.org/abs/1708.06500) """ def __init__(self, filters, kernel_size, kernel_initializer=conv_init_relu, binary=True, **kwargs): super(SparseConv2D, self).__init__(kernel_size, kernel_initializer=kernel_initializer, **kwargs) self.filters = filters self.binary = binary def build(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape self.kernel_shape = (*self.kernel_size, feature_shape[-1], self.filters) self.kernel = self.add_weight(name='kernel', shape=self.kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) self.mask_kernel_shape = (*self.kernel_size, 1, 1) self.mask_kernel = tf.ones(self.mask_kernel_shape) self.mask_fan_in = tf.reduce_prod(self.mask_kernel_shape[:3]) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None super(SparseConv2D, self).build(input_shape) def call(self, inputs, **kwargs): if type(inputs) is list: features = inputs[0] mask = inputs[1] else: # if no mask is provided, get it from the features features = inputs mask = tf.where(tf.equal(tf.reduce_sum(features, axis=-1, keepdims=True), 0), 0.0, 1.0) features = tf.multiply(features, mask) features = nn_ops.convolution(features, self.kernel, self.padding.upper(), self.strides, self.dilation_rate) norm = nn_ops.convolution(mask, self.mask_kernel, self.padding.upper(), self.strides, self.dilation_rate) mask_fan_in = tf.cast(self.mask_fan_in, 'float32') if self.binary: mask = tf.where(tf.greater(norm,0), 1.0, 0.0) else: mask = norm / mask_fan_in #ratio = tf.where(tf.equal(norm,0), 0.0, 1/norm) # Note: The authors use this in the paper, but it would require special initialization... ratio = tf.where(tf.equal(norm,0), 0.0, mask_fan_in/norm) features = tf.multiply(features, ratio) if self.use_bias: features = tf.add(features, self.bias) if self.activation is not None: features = self.activation(features) return [features, mask] def compute_output_shape(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape space = feature_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) feature_shape = [feature_shape[0], *new_space, self.filters] mask_shape = [*feature_shape[:-1], 1] return [feature_shape, mask_shape] def get_config(self): config = super(SparseConv2D, self).get_config() config.update({ 'filters': self.filters, 'binary': self.binary, }) return config class PartialConv2D(Covn2DBaseLayer): """2D Partial Convolution layer for sparse input data. # Arguments They are the same as for the normal Conv2D layer. binary: Boolean flag, whether the sparsity is propagated as binary mask or as float values. # Input shape features: 4D tensor with shape (batch_size, rows, cols, channels) mask: 4D tensor with shape (batch_size, rows, cols, channels) If the shape is (batch_size, rows, cols, 1), the mask is repeated for each channel. If no mask is provided, all input elements unequal to zero are considered as valid. # Example x, m = PartialConv2D(32, 3, padding='same')(x) x = Activation('relu')(x) x, m = PartialConv2D(32, 3, padding='same')([x,m]) x = Activation('relu')(x) # Notes In contrast to Sparse Convolution, Partial Convolution propagates the sparsity for each channel separately. This makes it possible to concatenate the features and the masks from different branches in architecture. # References [Image Inpainting for Irregular Holes Using Partial Convolutions](https://arxiv.org/abs/1804.07723) [Sparsity Invariant CNNs](https://arxiv.org/abs/1708.06500) """ def __init__(self, filters, kernel_size, kernel_initializer=conv_init_relu, binary=True, weightnorm=False, eps=1e-6, **kwargs): super(PartialConv2D, self).__init__(kernel_size, kernel_initializer=kernel_initializer, **kwargs) self.filters = filters self.binary = binary self.weightnorm = weightnorm self.eps = eps def build(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] mask_shape = input_shape[1] self.mask_shape = mask_shape else: feature_shape = input_shape self.mask_shape = feature_shape self.kernel_shape = (*self.kernel_size, feature_shape[-1], self.filters) self.kernel = self.add_weight(name='kernel', shape=self.kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) self.mask_kernel_shape = (*self.kernel_size, feature_shape[-1], self.filters) self.mask_kernel = tf.ones(self.mask_kernel_shape) self.mask_fan_in = tf.reduce_prod(self.mask_kernel_shape[:3]) if self.weightnorm: self.wn_g = self.add_weight(name='wn_g', shape=(self.filters,), initializer=initializers.Ones(), trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None super(PartialConv2D, self).build(input_shape) def call(self, inputs, **kwargs): if type(inputs) is list: features = inputs[0] mask = inputs[1] # if mask has only one channel, repeat if self.mask_shape[-1] == 1: mask = tf.repeat(mask, tf.shape(features)[-1], axis=-1) else: # if no mask is provided, get it from the features features = inputs mask = tf.where(tf.equal(features, 0), 0.0, 1.0) if self.weightnorm: norm = tf.sqrt(tf.reduce_sum(tf.square(self.kernel), (0,1,2)) + self.eps) kernel = self.kernel / norm * self.wn_g else: kernel = self.kernel mask_kernel = self.mask_kernel features = tf.multiply(features, mask) features = nn_ops.convolution(features, kernel, self.padding.upper(), self.strides, self.dilation_rate) norm = nn_ops.convolution(mask, mask_kernel, self.padding.upper(), self.strides, self.dilation_rate) mask_fan_in = tf.cast(self.mask_fan_in, 'float32') if self.binary: mask = tf.where(tf.greater(norm,0), 1.0, 0.0) else: mask = norm / mask_fan_in ratio = tf.where(tf.equal(norm,0), 0.0, mask_fan_in/norm) features = tf.multiply(features, ratio) if self.use_bias: features = tf.add(features, self.bias) if self.activation is not None: features = self.activation(features) return [features, mask] def compute_output_shape(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape space = feature_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) feature_shape = [feature_shape[0], *new_space, self.filters] mask_shape = [feature_shape[0], *new_space, self.filters] return [feature_shape, mask_shape] def get_config(self): config = super(PartialConv2D, self).get_config() config.update({ 'filters': self.filters, 'binary': self.binary, 'weightnorm': self.weightnorm, 'eps': self.eps, }) return config class GroupConv2D(Covn2DBaseLayer): """2D Group Convolution layer that shares weights over symmetries. Group Convolution provides discrete rotation equivariance. It reduces the number of parameters and typically lead to better results. The following two finite groups are supported: Cyclic Group C4 (p4, 4 rotational symmetries) Dihedral Group D4 (p4m, 4 rotational and 4 reflection symmetries) # Arguments They are the same as for the normal Conv2D layer. filters: int, The effective number of filters is this value multiplied by the number of transformations in the group (4 for C4 and 8 for D4) kernel_size: int, Only odd values are supported group: 'C4' or 'D4', Stay with one group when stacking layers # Input shape featurs: 4D tensor with shape (batch_size, rows, cols, in_channels) or 5D tensor with shape (batch_size, rows, cols, num_transformations, in_channels) # Output shape featurs: 5D tensor with shape (batch_size, rows, cols, num_transformations, out_channels) # Notes - BatchNormalization works as expected and shares the statistict over symmetries. - Spatial Pooling can be done via AvgPool3D. - Pooling along the group dimension can be done via MaxPool3D. - Concatenation along the group dimension can be done via Reshape. - To get a model with the inference time of a normal CNN, you can load the expanded kernel into a normal Conv2D layer. The kernel expansion is done in the 'call' method and the expanded kernel is stored in the 'transformed_kernel' attribute. # Example x = Input((16,16,3)) x = GroupConv2D(12, 3, group='D4', padding='same', activation='relu')(x) x = BatchNormalization()(x) x = GroupConv2D(12, 3, group='D4', padding='same', activation='relu')(x) x = AvgPool3D(pool_size=(2,2,1), strides=(2,2,1), padding='same')(x) x = GroupConv2D(12, 3, group='D4', padding='same', activation='relu')(x) x = MaxPool3D(pool_size=(1,1,x.shape[-2]))(x) s = x.shape x = Reshape((s[1],s[2],s[3]*s[4]))(x) # References [Group Equivariant Convolutional Networks](https://arxiv.org/abs/1602.07576) [Rotation Equivariant CNNs for Digital Pathology](https://arxiv.org/abs/1806.03962) https://github.com/tscohen/GrouPy https://github.com/basveeling/keras-gcnn """ def __init__(self, filters, kernel_size, group='D4', **kwargs): super(GroupConv2D, self).__init__(kernel_size, **kwargs) if not self.kernel_size[0] == self.kernel_size[1]: raise ValueError('Requires square kernel') if self.kernel_size[0] % 2 != 1: raise ValueError('Requires odd kernel size') group = group.upper() if group == 'C4': self.num_transformations = 4 elif group == 'D4': self.num_transformations = 8 else: raise ValueError('Unknown group') self.filters = filters self.group = group self.input_spec = InputSpec(min_ndim=4, max_ndim=5) def compute_output_shape(self, input_shape): space = input_shape[1:3] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0], *new_space, self.num_transformations, self.filters) def build(self, input_shape): if len(input_shape) == 4: self.first = True num_in_channels = input_shape[-1] else: self.first = False num_in_channels = input_shape[-2] * input_shape[-1] self.kernel = self.add_weight(name='kernel', shape=(*self.kernel_size, num_in_channels, self.filters), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True def call(self, features): ni = features.shape[-1] no = self.filters if self.group == 'C4': nt = 4 elif self.group == 'D4': nt = 8 nti = 1 if self.first else nt nto = nt k = self.kernel_size[0] t = np.reshape(np.arange(nti*k*k), (nti,k,k)) trafos = [np.rot90(t,k,axes=(1, 2)) for k in range(4)] if nt == 8: trafos = trafos + [np.flip(t,1) for t in trafos] self.trafos = trafos = np.array(trafos) # index magic happens here if nti == 1: indices = trafos elif nti == 4: indices = [[trafos[l, (m-l)%4 ,:,:] for m in range(4)] for l in range(4)] elif nti == 8: indices = [[trafos[l, (m-l)%4 if ((m < 4) == (l < 4)) else (m+l)%4+4 ,:,:] for m in range(8)] for l in range(8)] self.indices = indices = np.reshape(indices, (nto,nti,k,k)) # transform the kernel kernel = self.kernel kernel = tf.reshape(kernel, (nti*k*k, ni, no)) kernel = tf.gather(kernel, indices, axis=0) kernel = tf.reshape(kernel, (nto, nti, k,k, ni, no)) kernel = tf.transpose(kernel, (2,3,1,4,0,5)) kernel = tf.reshape(kernel, (k,k, nti*ni, nto*no)) self.transformed_kernel = kernel if self.first: x = features else: s = features.shape x = tf.reshape(features, (-1,s[1],s[2],s[3]*s[4])) x = K.conv2d(x, kernel, strides=self.strides, padding=self.padding, dilation_rate=self.dilation_rate) s = x.shape x = tf.reshape(x, (-1,s[1],s[2],nto,no)) features = x if self.use_bias: features = tf.add(features, self.bias) if self.activation is not None: features = self.activation(features) return features def get_config(self): config = super(GroupConv2D, self).get_config() config.update({ 'filters': self.filters, 'group': self.group, }) return config class DeformableConv2D(Covn2DBaseLayer): """2D Deformable Convolution layer that learns the spatial offsets where the input elements of the convolution are sampled. The layer is basically a updated version of An Jiaoyang's code. # Notes - A layer does not use a native CUDA kernel which would have better performance https://github.com/tensorflow/addons/issues/179 # References [Deformable Convolutional Networks](https://arxiv.org/abs/1703.06211) # related code https://github.com/DHZS/tf-deformable-conv-layer (An Jiaoyang, 2018-10-11) """ def __init__(self, filters, kernel_size, num_deformable_group=None, **kwargs): """`kernel_size`, `strides` and `dilation_rate` must have the same value in both axis. :param num_deformable_group: split output channels into groups, offset shared in each group. If this parameter is None, then set num_deformable_group=filters. """ super(DeformableConv2D, self).__init__(kernel_size, **kwargs) if not self.kernel_size[0] == self.kernel_size[1]: raise ValueError('Requires square kernel') if not self.strides[0] == self.strides[1]: raise ValueError('Requires equal stride') if not self.dilation_rate[0] == self.dilation_rate[1]: raise ValueError('Requires equal dilation') self.filters = filters if num_deformable_group is None: num_deformable_group = filters if filters % num_deformable_group != 0: raise ValueError('"filters" mod "num_deformable_group" must be zero') self.num_deformable_group = num_deformable_group self.kernel = None self.bias = None self.offset_layer_kernel = None self.offset_layer_bias = None def build(self, input_shape): input_dim = input_shape[-1] # kernel_shape = self.kernel_size + (input_dim, self.filters) # we want to use depth-wise conv kernel_shape = self.kernel_size + (self.filters * input_dim, 1) self.kernel = self.add_weight(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) # create offset conv layer offset_num = self.kernel_size[0] * self.kernel_size[1] * self.num_deformable_group self.offset_layer_kernel = self.add_weight(name='offset_layer_kernel', shape=self.kernel_size + (input_dim, offset_num * 2), # 2 means x and y axis initializer=tf.zeros_initializer(), regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) self.offset_layer_bias = self.add_weight(name='offset_layer_bias', shape=(offset_num * 2,), initializer=tf.zeros_initializer(), # initializer=tf.random_uniform_initializer(-5, 5), regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) self.built = True def call(self, inputs, training=None, **kwargs): # get offset, shape [batch_size, out_h, out_w, filter_h, * filter_w * channel_out * 2] offset = tf.nn.conv2d(inputs, filters=self.offset_layer_kernel, strides=[1, *self.strides, 1], padding=self.padding.upper(), dilations=[1, *self.dilation_rate, 1]) offset += self.offset_layer_bias # add padding if needed inputs = self._pad_input(inputs) # some length batch_size = tf.shape(inputs)[0] channel_in = int(inputs.shape[-1]) in_h, in_w = [int(i) for i in inputs.shape[1: 3]] # input feature map size out_h, out_w = [int(i) for i in offset.shape[1: 3]] # output feature map size filter_h, filter_w = self.kernel_size # get x, y axis offset offset = tf.reshape(offset, [batch_size, out_h, out_w, -1, 2]) y_off, x_off = offset[:, :, :, :, 0], offset[:, :, :, :, 1] # input feature map gird coordinates y, x = self._get_conv_indices([in_h, in_w]) y, x = [tf.expand_dims(i, axis=-1) for i in [y, x]] y, x = [tf.tile(i, [batch_size, 1, 1, 1, self.num_deformable_group]) for i in [y, x]] y, x = [tf.reshape(i, [batch_size, *i.shape[1: 3], -1]) for i in [y, x]] y, x = [tf.cast(i, 'float32') for i in [y, x]] # add offset y, x = y + y_off, x + x_off y = tf.clip_by_value(y, 0, in_h - 1) x = tf.clip_by_value(x, 0, in_w - 1) # get four coordinates of points around (x, y) y0, x0 = [tf.cast(tf.floor(i), 'int32') for i in [y, x]] y1, x1 = y0 + 1, x0 + 1 # clip y0, y1 = [tf.clip_by_value(i, 0, in_h - 1) for i in [y0, y1]] x0, x1 = [tf.clip_by_value(i, 0, in_w - 1) for i in [x0, x1]] # get pixel values indices = [[y0, x0], [y0, x1], [y1, x0], [y1, x1]] p0, p1, p2, p3 = [DeformableConv2D._get_pixel_values_at_point(inputs, i) for i in indices] # cast to float x0, x1, y0, y1 = [tf.cast(i, 'float32') for i in [x0, x1, y0, y1]] # weights w0 = (y1 - y) * (x1 - x) w1 = (y1 - y) * (x - x0) w2 = (y - y0) * (x1 - x) w3 = (y - y0) * (x - x0) # expand dim for broadcast w0, w1, w2, w3 = [tf.expand_dims(i, axis=-1) for i in [w0, w1, w2, w3]] # bilinear interpolation pixels = tf.add_n([w0 * p0, w1 * p1, w2 * p2, w3 * p3]) # reshape the "big" feature map pixels = tf.reshape(pixels, [batch_size, out_h, out_w, filter_h, filter_w, self.num_deformable_group, channel_in]) pixels = tf.transpose(pixels, [0, 1, 3, 2, 4, 5, 6]) pixels = tf.reshape(pixels, [batch_size, out_h * filter_h, out_w * filter_w, self.num_deformable_group, channel_in]) # copy channels to same group feat_in_group = self.filters // self.num_deformable_group pixels = tf.tile(pixels, [1, 1, 1, 1, feat_in_group]) pixels = tf.reshape(pixels, [batch_size, out_h * filter_h, out_w * filter_w, -1]) # depth-wise conv out = tf.nn.depthwise_conv2d(pixels, self.kernel, [1, filter_h, filter_w, 1], 'VALID') # add the output feature maps in the same group out = tf.reshape(out, [batch_size, out_h, out_w, self.filters, channel_in]) out = tf.reduce_sum(out, axis=-1) if self.use_bias: out += self.bias return self.activation(out) def _pad_input(self, inputs): """Check if input feature map needs padding, because we don't use the standard Conv() function. :param inputs: :return: padded input feature map """ # When padding is 'same', we should pad the feature map. # if padding == 'same', output size should be `ceil(input / stride)` if self.padding == 'same': in_shape = inputs.shape.as_list()[1:3] padding_list = [] for i in range(2): filter_size = self.kernel_size[i] dilation = self.dilation_rate[i] dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) same_output = (in_shape[i] + self.strides[i] - 1) // self.strides[i] valid_output = (in_shape[i] - dilated_filter_size + self.strides[i]) // self.strides[i] if same_output == valid_output: padding_list += [0, 0] else: p = dilated_filter_size - 1 p_0 = p // 2 padding_list += [p_0, p - p_0] if sum(padding_list) != 0: padding = [[0, 0], [padding_list[0], padding_list[1]], # top, bottom padding [padding_list[2], padding_list[3]], # left, right padding [0, 0]] inputs = tf.pad(inputs, padding) return inputs def _get_conv_indices(self, feature_map_size): """the x, y coordinates in the window when a filter sliding on the feature map :param feature_map_size: :return: y, x with shape [1, out_h, out_w, filter_h * filter_w] """ feat_h, feat_w = [int(i) for i in feature_map_size[0: 2]] x, y = tf.meshgrid(tf.range(feat_w), tf.range(feat_h)) x, y = [tf.reshape(i, [1, *i.get_shape(), 1]) for i in [x, y]] # shape [1, h, w, 1] x, y = [tf.image.extract_patches(i, [1, *self.kernel_size, 1], [1, *self.strides, 1], [1, *self.dilation_rate, 1], 'VALID') for i in [x, y]] # shape [1, out_h, out_w, filter_h * filter_w] return y, x @staticmethod def _get_pixel_values_at_point(inputs, indices): """get pixel values :param inputs: :param indices: shape [batch_size, H, W, I], I = filter_h * filter_w * channel_out :return: """ y, x = indices batch, h, w, n = y.shape.as_list()[0: 4] y_shape = tf.shape(y) batch, n = y_shape[0], y_shape[3] batch_idx = tf.reshape(tf.range(0, batch), (batch, 1, 1, 1)) b = tf.tile(batch_idx, (1, h, w, n)) pixel_idx = tf.stack([b, y, x], axis=-1) return tf.gather_nd(inputs, pixel_idx) class DepthwiseConv2D(Covn2DBaseLayer): """2D depthwise convolution layer. # Notes A DepthwiseConv2D layer followed by an 1x1 Conv2D layer is equivalent to the SeparableConv2D layer provided by Keras. # References [Xception: Deep Learning with Depthwise Separable Convolutions](http://arxiv.org/abs/1610.02357) """ def __init__(self, depth_multiplier, kernel_size, kernel_initializer=depthwiseconv_init_relu, **kwargs): super(DepthwiseConv2D, self).__init__(kernel_size, kernel_initializer=kernel_initializer, **kwargs) self.depth_multiplier = depth_multiplier def build(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape kernel_shape = (*self.kernel_size, feature_shape[-1], self.depth_multiplier) self.kernel = self.add_weight(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(feature_shape[-1]*self.depth_multiplier,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None super(DepthwiseConv2D, self).build(input_shape) def call(self, inputs, **kwargs): if type(inputs) is list: features = inputs[0] else: features = inputs features = K.depthwise_conv2d(features, self.kernel, strides=self.strides, padding=self.padding, dilation_rate=self.dilation_rate) if self.use_bias: features = tf.add(features, self.bias) if self.activation is not None: features = self.activation(features) return features def compute_output_shape(self, input_shape): if type(input_shape) is list: feature_shape = input_shape[0] else: feature_shape = input_shape space = feature_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) feature_shape = [feature_shape[0], *new_space, feature_shape[-1]*self.depth_multiplier] return feature_shape def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.update({ 'depth_multiplier': self.depth_multiplier, }) return config class MaxPoolingWithArgmax2D(Layer): '''MaxPooling for unpooling with indices. # References [SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation](http://arxiv.org/abs/1511.00561) # related code: https://github.com/PavlosMelissinos/enet-keras https://github.com/ykamikawa/SegNet ''' def __init__(self, pool_size=(2, 2), strides=(2, 2), padding='same', **kwargs): super(MaxPoolingWithArgmax2D, self).__init__(**kwargs) self.pool_size = conv_utils.normalize_tuple(pool_size, 2, 'pool_size') self.strides = conv_utils.normalize_tuple(strides, 2, 'strides') self.padding = conv_utils.normalize_padding(padding) def call(self, inputs, **kwargs): ksize = [1, self.pool_size[0], self.pool_size[1], 1] strides = [1, self.strides[0], self.strides[1], 1] padding = self.padding.upper() output, argmax = nn_ops.max_pool_with_argmax(inputs, ksize, strides, padding) argmax = tf.cast(argmax, K.floatx()) return [output, argmax] def compute_output_shape(self, input_shape): ratio = (1, 2, 2, 1) output_shape = [dim // ratio[idx] if dim is not None else None for idx, dim in enumerate(input_shape)] output_shape = tuple(output_shape) return [output_shape, output_shape] def compute_mask(self, inputs, mask=None): return 2 * [None] def get_config(self): config = super(MaxPoolingWithArgmax2D, self).get_config() config.update({ 'pool_size': self.pool_size, 'strides': self.strides, 'padding': self.padding, }) return config class MaxUnpooling2D(Layer): '''Inversion of MaxPooling with indices. # References [SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation](http://arxiv.org/abs/1511.00561) # related code: https://github.com/PavlosMelissinos/enet-keras https://github.com/ykamikawa/SegNet ''' def __init__(self, size=(2, 2), **kwargs): super(MaxUnpooling2D, self).__init__(**kwargs) self.size = conv_utils.normalize_tuple(size, 2, 'size') def call(self, inputs, output_shape=None): updates, mask = inputs[0], inputs[1] mask = tf.cast(mask, 'int32') input_shape = tf.shape(updates, out_type='int32') # calculation new shape if output_shape is None: output_shape = (input_shape[0], input_shape[1] * self.size[0], input_shape[2] * self.size[1], input_shape[3]) # calculation indices for batch, height, width and feature maps one_like_mask = K.ones_like(mask, dtype='int32') batch_shape = K.concatenate([[input_shape[0]], [1], [1], [1]], axis=0) batch_range = K.reshape(tf.range(output_shape[0], dtype='int32'), shape=batch_shape) b = one_like_mask * batch_range y = mask // (output_shape[2] * output_shape[3]) x = (mask // output_shape[3]) % output_shape[2] feature_range = tf.range(output_shape[3], dtype='int32') f = one_like_mask * feature_range # transpose indices & reshape update values to one dimension updates_size = tf.size(updates) indices = K.transpose(K.reshape(K.stack([b, y, x, f]), [4, updates_size])) values = K.reshape(updates, [updates_size]) ret = tf.scatter_nd(indices, values, output_shape) return ret def compute_output_shape(self, input_shape): mask_shape = input_shape[1] output_shape = [mask_shape[0], mask_shape[1] * self.size[0], mask_shape[2] * self.size[1], mask_shape[3]] return tuple(output_shape) def get_config(self): config = super(MaxUnpooling2D, self).get_config() config.update({ 'size': self.size, }) return config class AddCoords2D(Layer): """Add coords to a tensor as described in CoordConv paper. # Arguments with_r: Boolean flag, whether the r coordinate is added or not. See paper for more details. # Input shape featurs: 4D tensor with shape (batch_size, rows, cols, channels) # Output shape featurs: same as input except channels + 2, channels + 3 if with_r is True # Example x = Conv2D(32, 3, padding='same', activation='relu')(x) x = AddCoords2D()(x) x = Conv2D(32, 3, padding='same', activation='relu')(x) # Notes Semi-convolutional Operators is an approach that is closely related to CoordConv. # References [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](http://arxiv.org/abs/1807.03247) [Semi-convolutional Operators for Instance Segmentation](https://arxiv.org/abs/1807.10712) """ def __init__(self, with_r=False, **kwargs): super(AddCoords2D, self).__init__(**kwargs) self.with_r = with_r def call(self, features): y_dim = features.shape[1] x_dim = features.shape[2] ones = tf.ones_like(features[:,:,:,:1]) y_range = tf.range(y_dim, dtype='float32') / tf.cast(y_dim-1, 'float32') * 2 - 1 x_range = tf.range(x_dim, dtype='float32') / tf.cast(x_dim-1, 'float32') * 2 - 1 yy = ones * y_range[None, :, None, None] xx = ones * x_range[None, None, :, None] if self.with_r: rr = tf.sqrt(tf.square(yy-0.5) + tf.square(xx-0.5)) features = tf.concat([features, yy, xx, rr], axis=-1) else: features = tf.concat([features, yy, xx], axis=-1) return features def compute_output_shape(self, input_shape): output_shape = list(input_shape) output_shape[3] = output_shape[3] + 2 if self.with_r: output_shape[3] = output_shape[3] + 1 return tuple(output_shape) def get_config(self): config = super(AddCoords2D, self).get_config() config.update({ 'with_r': self.with_r, }) return config class LayerNormalization(Layer): """Layer Normalization Layer. # References [Layer Normalization](http://arxiv.org/abs/1607.06450) """ def __init__(self, eps=1e-6, **kwargs): super(LayerNormalization, self).__init__(**kwargs) self.eps = eps def build(self, input_shape): self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:], initializer=initializers.Ones(), trainable=True) self.beta = self.add_weight(name='beta', shape=input_shape[-1:], initializer=initializers.Zeros(), trainable=True) super(LayerNormalization, self).build(input_shape) def call(self, x): mean = K.mean(x, axis=-1, keepdims=True) std = K.std(x, axis=-1, keepdims=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super(LayerNormalization, self).get_config() config.update({ 'eps': self.eps, }) return config class InstanceNormalization(Layer): """Instance Normalization Layer. # References [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022) """ def __init__(self, eps=1e-6, **kwargs): super(InstanceNormalization, self).__init__(**kwargs) self.eps = eps def build(self, input_shape): self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:], initializer=initializers.Ones(), trainable=True) self.beta = self.add_weight(name='beta', shape=input_shape[-1:], initializer=initializers.Zeros(), trainable=True) super(InstanceNormalization, self).build(input_shape) def call(self, x): mean = K.mean(x, axis=list(range(len(x.shape))[1:-1]), keepdims=True) std = K.std(x, axis=list(range(len(x.shape))[1:-1]), keepdims=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super(InstanceNormalization, self).get_config() config.update({ 'eps': self.eps, }) return config def Resize2D(size, method='bilinear'): """Spatial resizing layer. # Arguments size: spatial output size (rows, cols) method: 'bilinear', 'bicubic', 'nearest', ... """ return Lambda(lambda x: tf.image.resize(x, size, method=method)) class Blur2D(Layer): """2D Blur Layer as used in Antialiased CNNs for Subsampling. # Notes The layer handles boundary effects similar to AvgPool2D. # References [Making Convolutional Networks Shift-Invariant Again](https://arxiv.org/abs/1904.11486) # related code https://github.com/adobe/antialiased-cnns https://github.com/adobe/antialiased-cnns/issues/10 """ def __init__(self, filter_size=3, strides=2, padding='valid', **kwargs): rank = 2 self.filter_size = filter_size self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) if self.filter_size == 1: self.a = np.array([1.,]) elif self.filter_size == 2: self.a = np.array([1., 1.]) elif self.filter_size == 3: self.a = np.array([1., 2., 1.]) elif self.filter_size == 4: self.a = np.array([1., 3., 3., 1.]) elif self.filter_size == 5: self.a = np.array([1., 4., 6., 4., 1.]) elif self.filter_size == 6: self.a = np.array([1., 5., 10., 10., 5., 1.]) elif self.filter_size == 7: self.a = np.array([1., 6., 15., 20., 15., 6., 1.]) super(Blur2D, self).__init__(**kwargs) def compute_output_shape(self, input_shape): feature_shape = input_shape space = feature_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) feature_shape = [feature_shape[0], *new_space, feature_shape[3]] return feature_shape def build(self, input_shape): k = self.a[:,None] * self.a[None,:] k = np.tile(k[:,:,None,None], (1,1,input_shape[-1],1)) self.kernel = K.constant(k, dtype=K.floatx()) def call(self, x): features = K.depthwise_conv2d(x, self.kernel, strides=self.strides, padding=self.padding) # normalize the features mask = tf.ones_like(x) norm = K.depthwise_conv2d(mask, self.kernel, strides=self.strides, padding=self.padding) features = tf.multiply(features, 1./norm) return features def get_config(self): config = super(Blur2D, self).get_config() config.update({ 'filter_size': self.filter_size, 'strides': self.strides, 'padding': self.padding, }) return config class Scale(Layer): """Layer to learn a linear feature scaling. """ def __init__(self, use_shift=True, use_scale=True, shift_initializer='zeros', shift_regularizer=None, shift_constraint=None, scale_initializer='ones', scale_regularizer=None, scale_constraint=None, **kwargs): super(Scale, self).__init__(**kwargs) self.use_shift = use_shift self.use_scale = use_scale self.shift_initializer = initializers.get(shift_initializer) self.shift_regularizer = regularizers.get(shift_regularizer) self.shift_constraint = constraints.get(shift_constraint) self.scale_initializer = initializers.get(scale_initializer) self.scale_regularizer = regularizers.get(scale_regularizer) self.scale_constraint = constraints.get(scale_constraint) def compute_output_shape(self, input_shape): return input_shape def build(self, input_shape): if self.use_shift: self.shift = self.add_variable(name='shift', shape=(input_shape[-1],), initializer=self.shift_initializer, regularizer=self.shift_regularizer, constraint=self.shift_constraint, trainable=True, dtype=self.dtype) else: self.shfit = None if self.use_scale: self.scale = self.add_variable(name='scale', shape=(input_shape[-1],), initializer=self.scale_initializer, regularizer=self.scale_regularizer, constraint=self.scale_constraint, trainable=True, dtype=self.dtype) else: self.scale = None super(Scale, self).build(input_shape) def call(self, inputs, **kwargs): x = inputs if self.use_scale: x = tf.multiply(x, self.scale) if self.use_shift: x = tf.add(x, self.shift) return x def get_config(self): config = super(Scale, self).get_config() config.update({ 'use_shift': self.use_shift, 'use_scale': self.use_scale, 'shift_initializer': initializers.serialize(self.shift_initializer), 'shift_regularizer': regularizers.serialize(self.shift_regularizer), 'shift_constraint': constraints.serialize(self.shift_constraint), 'scale_initializer': initializers.serialize(self.scale_initializer), 'scale_regularizer': regularizers.serialize(self.scale_regularizer), 'scale_constraint': constraints.serialize(self.scale_constraint), }) return config
71240c639014721fc67dd2c7ff9f05d6c32de443
095a1c126ffaf703d923431ce5279a0dac384740
/timecard/views/auth_views.py
f01ca3273a967bcb926fb3d487993405f8ebdcb9
[]
no_license
patpio/timecard
8bc5c6dbfc3877157dc8bfca7f9f5debd1e7b486
f4a2f2db69410a2b98d9815fbac5048ba8c47126
refs/heads/master
2023-03-22T15:51:06.658738
2021-01-12T22:42:44
2021-01-12T22:42:44
321,773,318
0
0
null
null
null
null
UTF-8
Python
false
false
1,926
py
from flask import Blueprint, render_template, url_for, flash, request, abort from flask_login import login_user, logout_user, login_required, current_user from werkzeug.utils import redirect from timecard import db from ..models import User from ..forms import SignUpForm, LoginForm bp_auth = Blueprint('auth', __name__, url_prefix='/auth') @bp_auth.route('/signup', methods=['GET', 'POST']) @login_required def signup(): if current_user != User.query.filter_by(username='admin').first(): abort(403) form = SignUpForm() if form.validate_on_submit(): user = User(username=form.username.data, email=form.email.data, password=form.password.data) db.session.add(user) db.session.commit() return redirect(url_for('main.home')) return render_template('signup.html', form=form) @bp_auth.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.get_by_username(form.username.data) if user is not None and user.check_password(form.password.data): login_user(user, form.remember_me.data) flash(f'Logged in successfully as {user.username}', 'success') return redirect(request.args.get('next') or url_for('main.home')) return render_template('login.html', form=form) @bp_auth.route('/logout', methods=['GET']) def logout(): logout_user() flash('Logged out successfully.', 'success') return redirect(url_for('main.home')) @bp_auth.route('/admin', methods=['GET', 'POST']) def admin(): if User.query.all(): abort(403) form = SignUpForm() if form.validate_on_submit(): user = User(username='admin', email=form.email.data, password=form.password.data) db.session.add(user) db.session.commit() return redirect(url_for('auth.login')) return render_template('signup.html', form=form)
3b08d5e5012c6be97d95a34bfaa3fb73f3314425
de9272f47f10a4dd35a10be5c3e0cab31b66feb4
/udpClient-message.py
4b3f72f94452f8abe65373e64c56cbc0646628d2
[]
no_license
ipwave-hackathon-ietf/ipwave-hackathon-ietf-106
1dafcb7de3f3f60a89fa056dea6a44ba9eea12b9
f2015c07bba4e15f4c42012bc3a8dcff9a8840e2
refs/heads/master
2021-06-27T12:18:48.770298
2021-03-03T06:55:04
2021-03-03T06:55:04
220,438,550
5
0
null
null
null
null
UTF-8
Python
false
false
524
py
#!/usr/bin/python2 # by Yiwen Shen (SKKU) # Email: [email protected] import socket import time # IPv4 # server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # IPv6 server = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) # server.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) server.settimeout(0.2) # server.bind(("", 44444)) message = b"OCB Test Message in a DSRC channel." while True: server.sendto(message, ('2001:db8:100:15a::3', 37020)) # 2001:db8:100:15a::3 print("message sent!") time.sleep(1)
dafd10119274e9bc8f0ee8f596204f2095fbc05a
f823db6961fd815b10a8828188d7b2ab58a1f699
/testchild.py
e8b0c714f9ca3ceb6f4cb88343760c6f8f210842
[]
no_license
mariosebastian-bit/testrepo
26f9262c52b96ac93f2fd41cee3f137353b45b84
22eea3f0b58e5e9ceb44d1d0729ab3ae39ef9d1e
refs/heads/main
2023-03-03T15:29:43.840495
2021-02-08T09:21:27
2021-02-08T09:21:27
336,845,049
0
0
null
2021-02-08T09:21:28
2021-02-07T17:22:07
null
UTF-8
Python
false
false
44
py
## TESTCHILD print ("inside the testchild")
5399e23352d99fa49189fb77253df88e8639566e
eb82022c0cfc7c8747661cff9624ad2099fa1c3f
/dev_accounting_report/report/sales_delivery_out_rekap_xls.py
195552276cf5b3294ff059aa939ef9c184ff83a4
[]
no_license
dadysuarsa/Odoo
8d026a066c390cc8f72805d2672212e61260c1cb
c9becd0c192fa239520ad3e1a11d81f70832eddf
refs/heads/master
2023-03-11T06:02:06.011575
2021-02-26T02:17:37
2021-02-26T02:17:37
276,346,540
0
0
null
null
null
null
UTF-8
Python
false
false
5,299
py
import time import xlwt, operator from odoo.report import report_sxw from report_engine_xls import report_xls from odoo.tools.translate import _ from datetime import datetime import pytz class ReportStatus(report_sxw.rml_parse): def __init__(self, cr, uid, name, context=None): super(ReportStatus, self).__init__(cr, uid, name, context=context) self.localcontext.update({ 'cr': cr, 'uid': uid, 'time': time, }) _xs = report_xls.xls_styles style_title = xlwt.easyxf(_xs['xls_title']) style_blue = xlwt.easyxf(_xs['wrap'] + _xs['bold'] + _xs['fill_blue'] + _xs['borders_all'], num_format_str=report_xls.decimal_format) style_blue_center = xlwt.easyxf(_xs['bold'] + _xs['fill_blue'] + _xs['center'] + _xs['borders_all']) style_blue_center.alignment.middle = 1 style_yellow = xlwt.easyxf(_xs['bold'] + _xs['fill'] + _xs['borders_all'], num_format_str=report_xls.decimal_format) style_yellow_right = xlwt.easyxf(_xs['bold'] + _xs['fill'] + _xs['borders_all'] + _xs['right'], num_format_str=report_xls.decimal_format) style_yellow_percent = xlwt.easyxf(_xs['bold'] + _xs['fill'] + _xs['borders_all'], num_format_str=report_xls.percentage_format) style_normal_bold = xlwt.easyxf(_xs['bold'] + _xs['borders_all'], num_format_str=report_xls.decimal_format) style_normal = xlwt.easyxf(_xs['borders_all'], num_format_str=report_xls.decimal_format) style_normal_date = xlwt.easyxf(_xs['borders_all'], num_format_str=report_xls.date_format) style_normal_center = xlwt.easyxf(_xs['wrap'] + _xs['top'] + _xs['center'] + _xs['borders_all']) style_normal_italic = xlwt.easyxf(_xs['italic'] + _xs['borders_all']) style_normal_percent = xlwt.easyxf(_xs['borders_all'], num_format_str=report_xls.percentage_format) columns = [ ['Tanggal Kirim', 13], ['No SJ/DO', 15], ['Satuan', 8], ['QTY Kirim', 17], ['Buyer', 45], ['No SC', 15], ['No Invoice', 15], ['Tgl Invoice', 12], ['Mata Uang', 10], ['Qty Invoice', 17], ['PPN VALAS', 17], ['PPN IDR', 17], ['DPP VALAS', 17], ['DPP IDR', 17], ['TOTAL VALAS', 17], ['TOTAL IDR', 17], ] class sales_delivery_out_rekap_xls(report_xls): def generate_xls_report(self, parser, _xs, data, obj, wb): # import ipdb;ipdb.set_trace() ws = wb.add_sheet(('Rekap Sales Detail Delivery')) ws.panes_frozen = True ws.remove_splits = True ws.portrait = 0 # Landscape ws.fit_width_to_pages = 1 ws.set_horz_split_pos(7) ws.write_merge(0, 0, 0, 5, 'REKAP SALES DELIVERY', style_title) ws.write_merge(1, 1, 0, 3, (('Downloaded Date : %s') %(datetime.strptime(str(datetime.now(pytz.timezone('Asia/Jakarta')))[:18], "%Y-%m-%d %H:%M:%S").strftime("%d-%m-%Y %H:%M:%S"))), style_normal_date) ws.write_merge(2, 2, 0, 3, 'Tanggal', style_blue_center) ws.write_merge(2, 2, 4, 4, 'Divisi', style_blue_center) ws.row(3).height_mismatch = True ws.row(3).height = 20 * 28 ws.write_merge(3, 3, 0, 3, data['date_from'] + ' - ' + data['date_to'], style_normal_center) ws.write_merge(3, 3, 4, 4, data['divisi'], style_normal_center) ws.write_merge(5, 5, 0, 4, 'Delivery', style_blue_center) ws.write_merge(5, 5, 5, 15, 'SO & Invoice', style_blue_center) c_hdr_cell_style = xlwt.easyxf(_xs['bold'] + _xs['fill'] + _xs['borders_all'], num_format_str=report_xls.decimal_format) c_hdr_cell_style_right = xlwt.easyxf(_xs['bold'] + _xs['fill'] + _xs['borders_all'] + _xs['right'], num_format_str=report_xls.decimal_format) c_cell_style = xlwt.easyxf(_xs['borders_all'], num_format_str=report_xls.decimal_format) c_hdr_cell_style_grey = xlwt.easyxf(_xs['bold'] + _xs['fill_grey'] + _xs['borders_all'], num_format_str=report_xls.decimal_format) row_count = 6 col_count = 0 for column in columns: ws.col(col_count).width = 256 * column[1] ws.write(row_count, col_count, column[0], c_hdr_cell_style) col_count += 1 row_count += 1 col_count = 0 row_start = row_count for lines in data['csv']: for line in lines: ws.write(row_count, col_count, line, c_cell_style) col_count += 1 row_count += 1 col_count = 0 row_count += 1 ws.write_merge(row_count, row_count, 6, 8, 'GRAND TOTAL', c_hdr_cell_style_grey) col_count = 9 while col_count <= 15: sum_cell_start = xlwt.Utils.rowcol_to_cell(row_start, col_count) sum_cell_end = xlwt.Utils.rowcol_to_cell(row_count - 2, col_count) ws.write(row_count, col_count, xlwt.Formula('sum(' + sum_cell_start + ':' + sum_cell_end + ')'), c_hdr_cell_style_grey) col_count += 1 pass sales_delivery_out_rekap_xls('report.sales.delivery.out.rekap.xls','stock.picking','addons/dev_accounting_report/report/report_excel.mako', parser=ReportStatus, header=False)
bc8a973ecdbf81c7111b5f9094c7a8318ec65860
5d1106528200b8c55e4147dbd7ba7a987dbfa368
/src/warzone/warzone.py
bc5187e00aa789289d9dc1c1d870399445b401f8
[ "WTFPL" ]
permissive
Tyewrwerree/warzone
d5d1683dbac559e6cf9689395905e987bc099140
f2d4e0944138ef82f63a2212e9804b3a1e920749
refs/heads/master
2023-05-03T14:35:43.615159
2014-05-26T06:34:45
2014-05-26T06:34:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
808
py
#!/usr/bin/env python import argparse import warmerise import interpreter as warzonecmd def main(): parser = create_parser() args = parser.parse_args() #if args.email and args.password: # session = warmerise.login(email=args.email, password=args.password) # pprint(vars(session)) interpreter = warzonecmd.WarzoneCmd() if args.email or args.password: interpreter.prompt_login(email=args.email, password=args.password) interpreter.start() def create_parser(): parser = argparse.ArgumentParser(add_help=True, description="tool to mess with Warmerise") parser.add_argument("-l", "--email", metavar="EMAIL", help="e-mail address to login with") parser.add_argument("-p", "--password", metavar="PASSWORD", help="password to login with") return parser if __name__ == "__main__": main()
866b56f8009fd7f8a034eff87f37008c86df78d1
c79bc3b25aac5f958da011119bf71fcca534bd1a
/hostedpi/cli.py
9b5ae581de90ba5a42336748f8ef5c6dfe1b4a90
[ "BSD-3-Clause" ]
permissive
gnuchu/hostedpi
c4ff4d398bcc8fde0d2d421f8a67b315c40fcc33
325e8035e0bf671daeabb4d696eb5b36a6daa12d
refs/heads/main
2023-03-31T04:07:17.604847
2021-03-28T00:10:22
2021-03-28T00:10:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,699
py
import os import sys import argparse from .picloud import PiCloud from .utils import read_ssh_key, ssh_import_id from .exc import HostedPiException from .__version__ import __version__ class CLI: def __init__(self): self._args = None self._commands = None self._config = None self._parser = None self._output = None self._store = None self._cloud = None self._pis = None def __call__(self, args=None): self._args = self.parser.parse_args(args) try: return self._args.func() except HostedPiException as e: sys.stderr.write("hostedpi error: {e}\n".format(e=e)) return 2 except KeyboardInterrupt: print("Operation cancelled during process") @property def cloud(self): if self._cloud is None: API_ID = os.environ.get('HOSTEDPI_ID') API_SECRET = os.environ.get('HOSTEDPI_SECRET') if API_ID is None or API_SECRET is None: print("HOSTEDPI_ID and HOSTEDPI_SECRET environment variables " "must be set") self._cloud = PiCloud(API_ID, API_SECRET) return self._cloud @property def pis(self): if self._pis is None: self._pis = self.cloud.pis return self._pis @property def parser(self): """ The parser for all the sub-commands that the script accepts. Returns the newly constructed argument parser. """ if self._parser is None: self._parser, self._commands = self._get_parser() return self._parser @property def commands(self): "A dictionary mapping command names to their sub-parser." if self._commands is None: self._parser, self._commands = self._get_parser() return self._commands def _get_parser(self): parser = argparse.ArgumentParser( description=( "hostedpi is a tool for provisioning and managing Raspberry Pis " "in the Mythic Beasts Pi Cloud")) parser.add_argument( '--version', action='version', version=__version__) parser.set_defaults(func=self.do_help, cmd=None) commands = parser.add_subparsers(title=("commands")) help_cmd = commands.add_parser( "help", aliases=["h"], description=( "With no arguments, displays the list of hostedpi " "commands. If a command name is given, displays the " "description and options for the named command. If a " "setting name is given, displays the description and " "default value for that setting."), help=("Displays help about the specified command or setting")) help_cmd.add_argument( "cmd", metavar="cmd", nargs='?', help=("The name of the command to output help for") ) help_cmd.set_defaults(func=self.do_help) test_cmd = commands.add_parser( "test", aliases=["connect"], description=( "Test a connection to the Mythic Beasts API using API ID and " "secret in environment variables."), help=("Test a connection to the Mythic Beasts API")) test_cmd.set_defaults(func=self.do_test) get_images_cmd = commands.add_parser( "images", description=("Retrieve the list of operating system images available for the given Pi model."), help=("Retrieve the list of operating system images available for the given Pi model")) get_images_cmd.add_argument( "model", metavar="model", type=int, help=("The Pi model number (3 or 4) to get operating systems for") ) get_images_cmd.set_defaults(func=self.do_get_images) list_cmd = commands.add_parser( "list", aliases=["ls"], description=("List all Pis in the account"), help=("List all Pis in the account")) list_cmd.set_defaults(func=self.do_list) show_cmd = commands.add_parser( "show", aliases=["cat"], description=("Show the information about one or more Pis in the account"), help=("Show the information about one or more Pis in the account")) show_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to show information for") ) show_cmd.set_defaults(func=self.do_show_pis) create_cmd = commands.add_parser( "create", description=("Provision a new Pi in the account"), help=("Provision a new Pi in the account")) create_cmd.add_argument( "name", metavar="name", help=("The name of the new Pi to provision") ) create_cmd.add_argument( "--model", metavar="model", type=int, nargs='?', help=("The model of the new Pi to provision (3 or 4)") ) create_cmd.add_argument( "--disk", metavar="disk", type=int, nargs='?', help=("The disk size in GB") ) create_cmd.add_argument( "--image", metavar="image", type=str, nargs='?', help=("The operating system image to use") ) create_cmd.add_argument( "--ssh-key-path", metavar="ssh_key_path", nargs='?', help=("The path to an SSH public key file to add to the Pi") ) create_cmd.set_defaults(func=self.do_create) provision_status_cmd = commands.add_parser( "status", description=("Get the provision status of one or more Pis"), help=("Get the provision status of one or more Pis")) provision_status_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to get the provision status for") ) provision_status_cmd.set_defaults(func=self.do_provision_status) power_status_cmd = commands.add_parser( "power", description=("Get the power status for one or more Pis"), help=("Get the power status (on/off) for one or more Pis")) power_status_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to get the power status for") ) power_status_cmd.set_defaults(func=self.do_power_status) reboot_cmd = commands.add_parser( "reboot", description=("Reboot one or more Pis in the account"), help=("Reboot one or more Pis in the account")) reboot_cmd.add_argument( "names", metavar="names", nargs='*', help=("The name of the Pi to reboot") ) reboot_cmd.set_defaults(func=self.do_reboot) power_on_cmd = commands.add_parser( "on", aliases=["poweron"], description=("Power on one or more Pis in the account"), help=("Power on one or more Pis in the account")) power_on_cmd.add_argument( "names", metavar="names", nargs='*', help=("The name of the Pi to power on") ) power_on_cmd.set_defaults(func=self.do_power_on) power_off_cmd = commands.add_parser( "off", aliases=["poweroff"], description=("Power off one or more Pis in the account"), help=("Power off one or more Pis in the account")) power_off_cmd.add_argument( "names", metavar="names", nargs='*', help=("The name of the Pi to power off") ) power_off_cmd.set_defaults(func=self.do_power_off) cancel_cmd = commands.add_parser( "cancel", description=("Cancel one or more Pis in the account"), help=("Cancel one or more Pis in the account")) cancel_cmd.add_argument( "names", metavar="names", nargs='+', help=("The names of the Pis to cancel") ) cancel_cmd.add_argument( "-y", "--yes", action="store_true", help=("Proceed without confirmation") ) cancel_cmd.set_defaults(func=self.do_cancel) count_keys_cmd = commands.add_parser( "count-keys", aliases=["num-keys"], description=("Show the number of SSH keys currently on one or more Pis"), help=("Show the number of SSH keys currently on one or more Pis")) count_keys_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to get keys for") ) count_keys_cmd.set_defaults(func=self.do_count_keys) show_keys_cmd = commands.add_parser( "keys", description=("Show the SSH keys currently on a Pi"), help=("Show the SSH keys currently on a Pi")) show_keys_cmd.add_argument( "name", metavar="name", help=("The name of the Pi to get keys for") ) show_keys_cmd.set_defaults(func=self.do_show_keys) add_key_cmd = commands.add_parser( "add-key", description=("Add an SSH key from a public key file to one or more Pis"), help=("Add an SSH key from a public key file to one or more Pis")) add_key_cmd.add_argument( "ssh_key_path", metavar="ssh_key_path", nargs='?', help=("The path to an SSH public key file to add to the Pi") ) add_key_cmd.add_argument( "names", metavar="names", nargs='*', help=("The name of the Pis to add keys to") ) add_key_cmd.set_defaults(func=self.do_add_key) copy_keys_cmd = commands.add_parser( "copy-keys", aliases=["cp"], description=("Copy all SSH keys from one Pi to one or more others"), help=("Copy all SSH keys from one Pi to one or more others")) copy_keys_cmd.add_argument( "name_src", metavar="name_src", help=("The name of the Pi to copy keys from") ) copy_keys_cmd.add_argument( "names_dest", metavar="names_dest", nargs='*', help=("The name of the Pis to copy keys to") ) copy_keys_cmd.set_defaults(func=self.do_copy_keys) remove_keys_cmd = commands.add_parser( "remove-keys", description=("Remove all SSH keys from one or more Pis"), help=("Remove all SSH keys from one or more Pis")) remove_keys_cmd.add_argument( "names", metavar="names", nargs='+', help=("The names of the Pis to remove keys from") ) remove_keys_cmd.set_defaults(func=self.do_remove_keys) ssh_import_id_cmd = commands.add_parser( "ssh-import-id", description=("Import SSH keys from GitHub or Launchpad and add them to one or more Pis"), help=("Import SSH keys from GitHub or Launchpad and add them to one or more Pis")) ssh_import_id_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to import keys onto") ) ssh_import_id_cmd.add_argument( "--gh", metavar="github username", nargs='?', help=("The GitHub username to import keys from") ) ssh_import_id_cmd.add_argument( "--lp", metavar="launchpad username", nargs='?', help=("The Launchpad username to import keys from") ) ssh_import_id_cmd.set_defaults(func=self.do_ssh_import_id) ssh_command_cmd = commands.add_parser( "ssh-command", description=("Output the SSH command for one or more Pis in the account"), help=("Output the (IPv4 or IPv6) SSH command for one or more Pis in the account")) ssh_command_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to get SSH commands for") ) ssh_command_cmd.add_argument( "--ipv6", action="store_true", help=("Show IPv6 command") ) ssh_command_cmd.set_defaults(func=self.do_ssh_command) ssh_config_cmd = commands.add_parser( "ssh-config", description=("Output the SSH config for one or more Pis in the account"), help=("Output the (IPv4 or IPv6) SSH config for one or more Pis in the account")) ssh_config_cmd.add_argument( "names", metavar="names", nargs='*', help=("The names of the Pis to get SSH config for") ) ssh_config_cmd.add_argument( "--ipv6", action="store_true", help=("Show IPv6 command") ) ssh_config_cmd.set_defaults(func=self.do_ssh_config) return parser, commands.choices def get_pi(self, name): pi = self.pis.get(name) if not pi: self.print_not_found(name) return return pi def get_pis(self, names): if not names: return self.pis.items() return {name: self.pis.get(name) for name in names}.items() def print_not_found(self, name): sys.stderr.write("{name} not found\n".format(name=name)) def do_help(self): if self._args.cmd: self.parser.parse_args([self._args.cmd, '-h']) else: self.parser.parse_args(['-h']) def do_test(self): if self.cloud: print("Connected to the Mythic Beasts API") return return 2 def do_get_images(self): images = self.cloud.get_operating_systems(model=self._args.model) col_width = max(len(name) for name in images.values()) + 1 for id, name in images.items(): print("{name:{col_width}}: {id}".format(name=name, id=id, col_width=col_width)) def do_list(self): for name in self.pis: print(name) def do_show_pis(self): for name, pi in self.get_pis(self._args.names): if pi: print(pi, end='\n\n') else: self.print_not_found(name) def do_create(self): name = self._args.name model = self._args.model disk_size = self._args.disk ssh_key_path = self._args.ssh_key_path os_image = self._args.os_image args = { 'model': model, 'disk_size': disk_size, 'ssh_key_path': ssh_key_path, 'os_image': os_image, } kwargs = {k: v for k, v in args.items() if v is not None} pi = self.cloud.create_pi(name, **kwargs) print("Pi {} provisioned successfully".format(name)) print() print(pi) def do_reboot(self): for name, pi in self.get_pis(self._args.names): if pi: pi.reboot() print("{name} rebooted".format(name=name)) else: self.print_not_found(name) def do_power_on(self): for name, pi in self.get_pis(self._args.names): if pi: pi.on() print("{name} powered on".format(name=name)) else: self.print_not_found(name) def do_power_off(self): for name, pi in self.get_pis(self._args.names): if pi: pi.off() print("{name} powered off".format(name=name)) else: self.print_not_found(name) def do_cancel(self): if not self._args.yes: num_pis = len(self._args.names) try: s = '' if num_pis == 1 else 's' y = input("Cancelling {n} Pi{s}. Proceed? [Y/n]".format(n=num_pis, s=s)) except KeyboardInterrupt: print() print("Not cancelled") return if y.lower() not in 'y': print("Not cancelled") return for name, pi in self.get_pis(self._args.names): if pi: pi.cancel() print("{name} cancelled".format(name=name)) else: self.print_not_found(name) def do_show_keys(self): pi = self.get_pi(self._args.name) if not pi: return 2 print(*pi.ssh_keys, sep='\n') def do_count_keys(self): for name, pi in self.get_pis(self._args.names): num_keys = len(pi.ssh_keys) s = '' if num_keys == 1 else 's' print("{name}: {n} key{s}".format(name=name, n=num_keys, s=s)) def do_add_key(self): ssh_key = read_ssh_key(self._args.ssh_key_path) for name, pi in self.get_pis(self._args.names): keys_before = len(pi.ssh_keys) pi.ssh_keys |= {ssh_key} keys_after = len(pi.ssh_keys) num_keys = keys_after - keys_before s = '' if num_keys == 1 else '' print("{n} key{s} added to {name}".format(n=num_keys, name=name, s=s)) def do_copy_keys(self): src_pi = self.get_pi(self._args.name_src) if not src_pi: return 2 ssh_keys = src_pi.ssh_keys for name, pi in self.get_pis(self._args.names_dest): if pi: keys_before = len(pi.ssh_keys) pi.ssh_keys |= ssh_keys keys_after = len(pi.ssh_keys) num_keys = keys_after - keys_before s = '' if num_keys == 1 else 's' print("{n} key{s} added to {name}".format(n=num_keys, name=name, s=s)) def do_remove_keys(self): for name, pi in self.get_pis(self._args.names): if pi: num_keys = len(pi.ssh_keys) pi.ssh_keys = set() s = '' if num_keys == 1 else 's' print("{n} key{s} removed from {name}".format(n=num_keys, name=name, s=s)) else: self.print_not_found(name) def do_ssh_import_id(self): github = self._args.gh launchpad = self._args.lp github_keys = set() launchpad_keys = set() if github: github_keys |= ssh_import_id(github=github) s = '' if len(github_keys) == 1 else 's' print("{n} key{s} retrieved from GitHub".format(n=len(github_keys), s=s)) if launchpad: launchpad_keys |= ssh_import_id(launchpad=launchpad) s = '' if len(launchpad_keys) == 1 else 's' print("{n} key{s} retrieved from Launchpad".format(n=len(launchpad_keys), s=s)) print() new_keys = github_keys | launchpad_keys if len(new_keys) < (len(github_keys) + len(launchpad_keys)): s = '' if len(new_keys) == 1 else 's' print("{n} key{s} to add".format(n=len(new_keys), s=s)) if new_keys: for name, pi in self.get_pis(self._args.names): if pi: keys_before = len(pi.ssh_keys) pi.ssh_keys |= new_keys keys_after = len(pi.ssh_keys) num_keys = keys_after - keys_before s = '' if num_keys == 1 else 's' print("{n} key{s} added to {name}".format(n=num_keys, name=name, s=s)) else: self.print_not_found(name) else: print("No keys to add") def do_ssh_command(self): for name, pi in self.get_pis(self._args.names): if pi: if self._args.ipv6: print(pi.ipv6_ssh_command) else: print(pi.ipv4_ssh_command) else: self.print_not_found(name) def do_ssh_config(self): for name, pi in self.get_pis(self._args.names): if pi: if self._args.ipv6: print(pi.ipv6_ssh_config) else: print(pi.ipv4_ssh_config) else: self.print_not_found(name) def do_provision_status(self): for name, pi in self.get_pis(self._args.names): if pi: print("{pi.name}: {pi.provision_status}".format(pi=pi)) else: self.print_not_found(name) def do_power_status(self): for name, pi in self.get_pis(self._args.names): if pi: on_off = "on" if pi.power else "off" print("{name}: powered {on_off}".format(name=name, on_off=on_off)) else: self.print_not_found(name) main = CLI()
84fbbae6519e6ef37d423e06fad72516f396cfc5
38902540746c70149ffdfe8e8dc11be0afa14e27
/Homework2/code/ui/pages/segments_page.py
66541a94e77ca1c249dfb03929ec816a1c5a928f
[]
no_license
bubenchikus/2021-1-MAILRU-SDET-Python-V-Tarasenko
a214835bf20c2b28a86450e3809d24350703d48d
9053f430010fcdc221b815028ad79c8a743117db
refs/heads/main
2023-05-12T06:54:09.209535
2021-06-01T00:25:52
2021-06-01T00:25:52
351,537,046
0
0
null
null
null
null
UTF-8
Python
false
false
1,157
py
from ui.pages.base_page import BasePage from ui.locators.page_locators import SegmentsPageLocators class SegmentsPage(BasePage): locators = SegmentsPageLocators() def go_to_create_new_segment(self): self.driver.get('https://target.my.com/segments/segments_list/new/') def create_segment(self, segment_name): self.go_to_create_new_segment() self.click(self.locators.SEGMENTS_CREATE_APPS_LOCATOR) self.click(self.locators.SEGMENTS_CREATE_GAMERS_LOCATOR) self.click(self.locators.SEGMENTS_CREATE_GAMERS_CHOOSE_LOCATOR) self.click(self.locators.SEGMENTS_CREATE_ADD_LOCATOR) self.fill_field(self.locators.SEGMENTS_CREATE_NAME_LOCATOR, segment_name) self.click(self.locators.SEGMENTS_CREATE_SUBMIT_LOCATOR) self.find(self.locators.SEGMENTS_SEARCH_LOCATOR) # wait segments list page content to load def delete_segments(self): self.find(self.locators.SEGMENTS_TABLE_FRAGMENT_LOCATOR) self.click(self.locators.SEGMENTS_CHOOSE_ALL_LOCATOR) self.click(self.locators.SEGMENTS_ACTION_LOCATOR) self.click(self.locators.SEGMENTS_DELETE_LOCATOR)
eea30e56bd7ad538bbff6138eacfdae145a7a558
72ca10a09bb5d760b2ad6aaed1fdf3b1d2a11421
/manage.py
7b5306d285cedc439c308386e1ed5f95a76ab651
[]
no_license
zhaluza/django-polls-app
fd4002a19dcae30b6ebb1293cbd6aae3b650eaf0
fa9504467541b25b363937b07fb4811c92221884
refs/heads/master
2021-04-14T20:44:19.919929
2020-03-30T02:02:44
2020-03-30T02:02:44
249,265,020
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'docs_tutorial.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
bab08e55bdf13a41319af498b14816e44e7fcf85
b6c4fdb823af6b3295b33949f37b8a008610db7a
/3jet/3jet_UFO/decays.py
953903333a52d441a4395a6b50645028ef995063
[]
no_license
tymorrison/gridpacks
d041f6390ea34a340ae0d7805de3c6ee26708c7e
3909df96fd87b290be5edab995a7e4f167c401c2
refs/heads/master
2021-07-03T18:38:52.863659
2017-09-24T19:49:14
2017-09-24T19:49:14
104,660,009
0
0
null
null
null
null
UTF-8
Python
false
false
12,760
py
# This file was automatically created by FeynRules 2.3.21 # Mathematica version: 10.3.1 for Mac OS X x86 (64-bit) (December 9, 2015) # Date: Thu 20 Oct 2016 00:50:38 from object_library import all_decays, Decay import particles as P Decay_b = Decay(name = 'Decay_b', particle = P.b, partial_widths = {(P.g,P.omega):'((MB**2 - Momega**2)*((coef**2*I2b3*MB**4*complexconjugate(I2b3))/(8.*cmath.pi**4*moct**2) - (coef**2*I2b3*MB**2*Momega**2*complexconjugate(I2b3))/(4.*cmath.pi**4*moct**2) + (coef**2*I2b3*Momega**4*complexconjugate(I2b3))/(8.*cmath.pi**4*moct**2)))/(96.*cmath.pi*abs(MB)**3)', (P.W__minus__,P.t):'(((3*ee**2*MB**2)/(2.*sw**2) + (3*ee**2*MT**2)/(2.*sw**2) + (3*ee**2*MB**4)/(2.*MW**2*sw**2) - (3*ee**2*MB**2*MT**2)/(MW**2*sw**2) + (3*ee**2*MT**4)/(2.*MW**2*sw**2) - (3*ee**2*MW**2)/sw**2)*cmath.sqrt(MB**4 - 2*MB**2*MT**2 + MT**4 - 2*MB**2*MW**2 - 2*MT**2*MW**2 + MW**4))/(96.*cmath.pi*abs(MB)**3)', (P.Zp,P.omega):'(((3*gz**2*I2b3*MB**2*zomega**2*complexconjugate(I2b3))/4. + (3*gz**2*I2b3*Momega**2*zomega**2*complexconjugate(I2b3))/4. + (3*gz**2*I2b3*MB**4*zomega**2*complexconjugate(I2b3))/(4.*MZp**2) - (3*gz**2*I2b3*MB**2*Momega**2*zomega**2*complexconjugate(I2b3))/(2.*MZp**2) + (3*gz**2*I2b3*Momega**4*zomega**2*complexconjugate(I2b3))/(4.*MZp**2) - (3*gz**2*I2b3*MZp**2*zomega**2*complexconjugate(I2b3))/2.)*cmath.sqrt(MB**4 - 2*MB**2*Momega**2 + Momega**4 - 2*MB**2*MZp**2 - 2*Momega**2*MZp**2 + MZp**4))/(96.*cmath.pi*abs(MB)**3)'}) Decay_H = Decay(name = 'Decay_H', particle = P.H, partial_widths = {(P.b,P.b__tilde__):'((-12*MB**2*yb**2 + 3*MH**2*yb**2)*cmath.sqrt(-4*MB**2*MH**2 + MH**4))/(16.*cmath.pi*abs(MH)**3)', (P.t,P.t__tilde__):'((3*MH**2*yt**2 - 12*MT**2*yt**2)*cmath.sqrt(MH**4 - 4*MH**2*MT**2))/(16.*cmath.pi*abs(MH)**3)', (P.ta__minus__,P.ta__plus__):'((MH**2*ytau**2 - 4*MTA**2*ytau**2)*cmath.sqrt(MH**4 - 4*MH**2*MTA**2))/(16.*cmath.pi*abs(MH)**3)', (P.W__minus__,P.W__plus__):'(((3*ee**4*vev**2)/(4.*sw**4) + (ee**4*MH**4*vev**2)/(16.*MW**4*sw**4) - (ee**4*MH**2*vev**2)/(4.*MW**2*sw**4))*cmath.sqrt(MH**4 - 4*MH**2*MW**2))/(16.*cmath.pi*abs(MH)**3)', (P.Z,P.Z):'(((9*ee**4*vev**2)/2. + (3*ee**4*MH**4*vev**2)/(8.*MZ**4) - (3*ee**4*MH**2*vev**2)/(2.*MZ**2) + (3*cw**4*ee**4*vev**2)/(4.*sw**4) + (cw**4*ee**4*MH**4*vev**2)/(16.*MZ**4*sw**4) - (cw**4*ee**4*MH**2*vev**2)/(4.*MZ**2*sw**4) + (3*cw**2*ee**4*vev**2)/sw**2 + (cw**2*ee**4*MH**4*vev**2)/(4.*MZ**4*sw**2) - (cw**2*ee**4*MH**2*vev**2)/(MZ**2*sw**2) + (3*ee**4*sw**2*vev**2)/cw**2 + (ee**4*MH**4*sw**2*vev**2)/(4.*cw**2*MZ**4) - (ee**4*MH**2*sw**2*vev**2)/(cw**2*MZ**2) + (3*ee**4*sw**4*vev**2)/(4.*cw**4) + (ee**4*MH**4*sw**4*vev**2)/(16.*cw**4*MZ**4) - (ee**4*MH**2*sw**4*vev**2)/(4.*cw**4*MZ**2))*cmath.sqrt(MH**4 - 4*MH**2*MZ**2))/(32.*cmath.pi*abs(MH)**3)'}) Decay_omega = Decay(name = 'Decay_omega', particle = P.omega, partial_widths = {(P.g,P.b):'((-MB**2 + Momega**2)*((coef**2*I1b3*MB**4*complexconjugate(I1b3))/(8.*cmath.pi**4*moct**2) - (coef**2*I1b3*MB**2*Momega**2*complexconjugate(I1b3))/(4.*cmath.pi**4*moct**2) + (coef**2*I1b3*Momega**4*complexconjugate(I1b3))/(8.*cmath.pi**4*moct**2)))/(96.*cmath.pi*abs(Momega)**3)', (P.g,P.d):'(coef**2*I1b1*Momega**6*complexconjugate(I1b1))/(768.*cmath.pi**5*moct**2*abs(Momega)**3)', (P.g,P.s):'(coef**2*I1b2*Momega**6*complexconjugate(I1b2))/(768.*cmath.pi**5*moct**2*abs(Momega)**3)', (P.Zp,P.b):'(((3*gz**2*I1b3*MB**2*zomega**2*complexconjugate(I1b3))/4. + (3*gz**2*I1b3*Momega**2*zomega**2*complexconjugate(I1b3))/4. + (3*gz**2*I1b3*MB**4*zomega**2*complexconjugate(I1b3))/(4.*MZp**2) - (3*gz**2*I1b3*MB**2*Momega**2*zomega**2*complexconjugate(I1b3))/(2.*MZp**2) + (3*gz**2*I1b3*Momega**4*zomega**2*complexconjugate(I1b3))/(4.*MZp**2) - (3*gz**2*I1b3*MZp**2*zomega**2*complexconjugate(I1b3))/2.)*cmath.sqrt(MB**4 - 2*MB**2*Momega**2 + Momega**4 - 2*MB**2*MZp**2 - 2*Momega**2*MZp**2 + MZp**4))/(96.*cmath.pi*abs(Momega)**3)', (P.Zp,P.d):'((Momega**2 - MZp**2)*((3*gz**2*I1b1*Momega**2*zomega**2*complexconjugate(I1b1))/4. + (3*gz**2*I1b1*Momega**4*zomega**2*complexconjugate(I1b1))/(4.*MZp**2) - (3*gz**2*I1b1*MZp**2*zomega**2*complexconjugate(I1b1))/2.))/(96.*cmath.pi*abs(Momega)**3)', (P.Zp,P.s):'((Momega**2 - MZp**2)*((3*gz**2*I1b2*Momega**2*zomega**2*complexconjugate(I1b2))/4. + (3*gz**2*I1b2*Momega**4*zomega**2*complexconjugate(I1b2))/(4.*MZp**2) - (3*gz**2*I1b2*MZp**2*zomega**2*complexconjugate(I1b2))/2.))/(96.*cmath.pi*abs(Momega)**3)'}) Decay_t = Decay(name = 'Decay_t', particle = P.t, partial_widths = {(P.W__plus__,P.b):'(((3*ee**2*MB**2)/(2.*sw**2) + (3*ee**2*MT**2)/(2.*sw**2) + (3*ee**2*MB**4)/(2.*MW**2*sw**2) - (3*ee**2*MB**2*MT**2)/(MW**2*sw**2) + (3*ee**2*MT**4)/(2.*MW**2*sw**2) - (3*ee**2*MW**2)/sw**2)*cmath.sqrt(MB**4 - 2*MB**2*MT**2 + MT**4 - 2*MB**2*MW**2 - 2*MT**2*MW**2 + MW**4))/(96.*cmath.pi*abs(MT)**3)'}) Decay_ta__minus__ = Decay(name = 'Decay_ta__minus__', particle = P.ta__minus__, partial_widths = {(P.W__minus__,P.vt):'((MTA**2 - MW**2)*((ee**2*MTA**2)/(2.*sw**2) + (ee**2*MTA**4)/(2.*MW**2*sw**2) - (ee**2*MW**2)/sw**2))/(32.*cmath.pi*abs(MTA)**3)'}) Decay_W__plus__ = Decay(name = 'Decay_W__plus__', particle = P.W__plus__, partial_widths = {(P.c,P.s__tilde__):'(ee**2*MW**4)/(16.*cmath.pi*sw**2*abs(MW)**3)', (P.t,P.b__tilde__):'(((-3*ee**2*MB**2)/(2.*sw**2) - (3*ee**2*MT**2)/(2.*sw**2) - (3*ee**2*MB**4)/(2.*MW**2*sw**2) + (3*ee**2*MB**2*MT**2)/(MW**2*sw**2) - (3*ee**2*MT**4)/(2.*MW**2*sw**2) + (3*ee**2*MW**2)/sw**2)*cmath.sqrt(MB**4 - 2*MB**2*MT**2 + MT**4 - 2*MB**2*MW**2 - 2*MT**2*MW**2 + MW**4))/(48.*cmath.pi*abs(MW)**3)', (P.u,P.d__tilde__):'(ee**2*MW**4)/(16.*cmath.pi*sw**2*abs(MW)**3)', (P.ve,P.e__plus__):'(ee**2*MW**4)/(48.*cmath.pi*sw**2*abs(MW)**3)', (P.vm,P.mu__plus__):'(ee**2*MW**4)/(48.*cmath.pi*sw**2*abs(MW)**3)', (P.vt,P.ta__plus__):'((-MTA**2 + MW**2)*(-(ee**2*MTA**2)/(2.*sw**2) - (ee**2*MTA**4)/(2.*MW**2*sw**2) + (ee**2*MW**2)/sw**2))/(48.*cmath.pi*abs(MW)**3)'}) Decay_Z = Decay(name = 'Decay_Z', particle = P.Z, partial_widths = {(P.b,P.b__tilde__):'((-7*ee**2*MB**2 + ee**2*MZ**2 - (3*cw**2*ee**2*MB**2)/(2.*sw**2) + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) - (17*ee**2*MB**2*sw**2)/(6.*cw**2) + (5*ee**2*MZ**2*sw**2)/(6.*cw**2))*cmath.sqrt(-4*MB**2*MZ**2 + MZ**4))/(48.*cmath.pi*abs(MZ)**3)', (P.c,P.c__tilde__):'(MZ**2*(-(ee**2*MZ**2) + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) + (17*ee**2*MZ**2*sw**2)/(6.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.d,P.d__tilde__):'(MZ**2*(ee**2*MZ**2 + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) + (5*ee**2*MZ**2*sw**2)/(6.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.e__minus__,P.e__plus__):'(MZ**2*(-(ee**2*MZ**2) + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (5*ee**2*MZ**2*sw**2)/(2.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.mu__minus__,P.mu__plus__):'(MZ**2*(-(ee**2*MZ**2) + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (5*ee**2*MZ**2*sw**2)/(2.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.s,P.s__tilde__):'(MZ**2*(ee**2*MZ**2 + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) + (5*ee**2*MZ**2*sw**2)/(6.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.t,P.t__tilde__):'((-11*ee**2*MT**2 - ee**2*MZ**2 - (3*cw**2*ee**2*MT**2)/(2.*sw**2) + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) + (7*ee**2*MT**2*sw**2)/(6.*cw**2) + (17*ee**2*MZ**2*sw**2)/(6.*cw**2))*cmath.sqrt(-4*MT**2*MZ**2 + MZ**4))/(48.*cmath.pi*abs(MZ)**3)', (P.ta__minus__,P.ta__plus__):'((-5*ee**2*MTA**2 - ee**2*MZ**2 - (cw**2*ee**2*MTA**2)/(2.*sw**2) + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (7*ee**2*MTA**2*sw**2)/(2.*cw**2) + (5*ee**2*MZ**2*sw**2)/(2.*cw**2))*cmath.sqrt(-4*MTA**2*MZ**2 + MZ**4))/(48.*cmath.pi*abs(MZ)**3)', (P.u,P.u__tilde__):'(MZ**2*(-(ee**2*MZ**2) + (3*cw**2*ee**2*MZ**2)/(2.*sw**2) + (17*ee**2*MZ**2*sw**2)/(6.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.ve,P.ve__tilde__):'(MZ**2*(ee**2*MZ**2 + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (ee**2*MZ**2*sw**2)/(2.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.vm,P.vm__tilde__):'(MZ**2*(ee**2*MZ**2 + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (ee**2*MZ**2*sw**2)/(2.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.vt,P.vt__tilde__):'(MZ**2*(ee**2*MZ**2 + (cw**2*ee**2*MZ**2)/(2.*sw**2) + (ee**2*MZ**2*sw**2)/(2.*cw**2)))/(48.*cmath.pi*abs(MZ)**3)', (P.W__minus__,P.W__plus__):'(((-12*cw**2*ee**2*MW**2)/sw**2 - (17*cw**2*ee**2*MZ**2)/sw**2 + (4*cw**2*ee**2*MZ**4)/(MW**2*sw**2) + (cw**2*ee**2*MZ**6)/(4.*MW**4*sw**2))*cmath.sqrt(-4*MW**2*MZ**2 + MZ**4))/(48.*cmath.pi*abs(MZ)**3)'}) Decay_Zp = Decay(name = 'Decay_Zp', particle = P.Zp, partial_widths = {(P.b,P.b__tilde__):'(((2*gz**2*MB**2)/3. + (gz**2*MZp**2)/3.)*cmath.sqrt(-4*MB**2*MZp**2 + MZp**4))/(48.*cmath.pi*abs(MZp)**3)', (P.b,P.omega__tilde__):'(((-3*gz**2*I1b3*MB**2*zomega**2*complexconjugate(I1b3))/4. - (3*gz**2*I1b3*Momega**2*zomega**2*complexconjugate(I1b3))/4. - (3*gz**2*I1b3*MB**4*zomega**2*complexconjugate(I1b3))/(4.*MZp**2) + (3*gz**2*I1b3*MB**2*Momega**2*zomega**2*complexconjugate(I1b3))/(2.*MZp**2) - (3*gz**2*I1b3*Momega**4*zomega**2*complexconjugate(I1b3))/(4.*MZp**2) + (3*gz**2*I1b3*MZp**2*zomega**2*complexconjugate(I1b3))/2.)*cmath.sqrt(MB**4 - 2*MB**2*Momega**2 + Momega**4 - 2*MB**2*MZp**2 - 2*Momega**2*MZp**2 + MZp**4))/(48.*cmath.pi*abs(MZp)**3)', (P.c,P.c__tilde__):'(gz**2*MZp**4)/(144.*cmath.pi*abs(MZp)**3)', (P.d,P.d__tilde__):'(gz**2*MZp**4)/(144.*cmath.pi*abs(MZp)**3)', (P.d,P.omega__tilde__):'((-Momega**2 + MZp**2)*((-3*gz**2*I1b1*Momega**2*zomega**2*complexconjugate(I1b1))/4. - (3*gz**2*I1b1*Momega**4*zomega**2*complexconjugate(I1b1))/(4.*MZp**2) + (3*gz**2*I1b1*MZp**2*zomega**2*complexconjugate(I1b1))/2.))/(48.*cmath.pi*abs(MZp)**3)', (P.omega,P.b__tilde__):'(((-3*gz**2*I2b3*MB**2*zomega**2*complexconjugate(I2b3))/4. - (3*gz**2*I2b3*Momega**2*zomega**2*complexconjugate(I2b3))/4. - (3*gz**2*I2b3*MB**4*zomega**2*complexconjugate(I2b3))/(4.*MZp**2) + (3*gz**2*I2b3*MB**2*Momega**2*zomega**2*complexconjugate(I2b3))/(2.*MZp**2) - (3*gz**2*I2b3*Momega**4*zomega**2*complexconjugate(I2b3))/(4.*MZp**2) + (3*gz**2*I2b3*MZp**2*zomega**2*complexconjugate(I2b3))/2.)*cmath.sqrt(MB**4 - 2*MB**2*Momega**2 + Momega**4 - 2*MB**2*MZp**2 - 2*Momega**2*MZp**2 + MZp**4))/(48.*cmath.pi*abs(MZp)**3)', (P.omega,P.d__tilde__):'((-Momega**2 + MZp**2)*((-3*gz**2*I2b1*Momega**2*zomega**2*complexconjugate(I2b1))/4. - (3*gz**2*I2b1*Momega**4*zomega**2*complexconjugate(I2b1))/(4.*MZp**2) + (3*gz**2*I2b1*MZp**2*zomega**2*complexconjugate(I2b1))/2.))/(48.*cmath.pi*abs(MZp)**3)', (P.omega,P.s__tilde__):'((-Momega**2 + MZp**2)*((-3*gz**2*I2b2*Momega**2*zomega**2*complexconjugate(I2b2))/4. - (3*gz**2*I2b2*Momega**4*zomega**2*complexconjugate(I2b2))/(4.*MZp**2) + (3*gz**2*I2b2*MZp**2*zomega**2*complexconjugate(I2b2))/2.))/(48.*cmath.pi*abs(MZp)**3)', (P.s,P.omega__tilde__):'((-Momega**2 + MZp**2)*((-3*gz**2*I1b2*Momega**2*zomega**2*complexconjugate(I1b2))/4. - (3*gz**2*I1b2*Momega**4*zomega**2*complexconjugate(I1b2))/(4.*MZp**2) + (3*gz**2*I1b2*MZp**2*zomega**2*complexconjugate(I1b2))/2.))/(48.*cmath.pi*abs(MZp)**3)', (P.s,P.s__tilde__):'(gz**2*MZp**4)/(144.*cmath.pi*abs(MZp)**3)', (P.t,P.t__tilde__):'(((2*gz**2*MT**2)/3. + (gz**2*MZp**2)/3.)*cmath.sqrt(-4*MT**2*MZp**2 + MZp**4))/(48.*cmath.pi*abs(MZp)**3)', (P.u,P.u__tilde__):'(gz**2*MZp**4)/(144.*cmath.pi*abs(MZp)**3)'})
08842649a48eb36c8cf0554d9be65a5eb137f4a6
006ff11fd8cfd5406c6f4318f1bafa1542095f2a
/CondTools/L1Trigger/test/L1ConfigWriteRSOnline_cfg.py
64fa0d8ce4623c21378f8483b5e825899465cb4e
[]
permissive
amkalsi/cmssw
8ac5f481c7d7263741b5015381473811c59ac3b1
ad0f69098dfbe449ca0570fbcf6fcebd6acc1154
refs/heads/CMSSW_7_4_X
2021-01-19T16:18:22.857382
2016-08-09T16:40:50
2016-08-09T16:40:50
262,608,661
0
0
Apache-2.0
2020-05-09T16:10:07
2020-05-09T16:10:07
null
UTF-8
Python
false
false
8,202
py
# This script doesn't work yet. PoolDBESSource does not see the IOV updates made earlier in the # same event. import FWCore.ParameterSet.Config as cms process = cms.Process("L1ConfigWriteRSOnline") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cout.placeholder = cms.untracked.bool(False) process.MessageLogger.cout.threshold = cms.untracked.string('DEBUG') process.MessageLogger.debugModules = cms.untracked.vstring('*') import FWCore.ParameterSet.VarParsing as VarParsing options = VarParsing.VarParsing() options.register('runNumber', 0, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "Run number") options.register('outputDBConnect', 'sqlite_file:l1config.db', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Connection string for output DB") options.register('outputDBAuth', '.', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Authentication path for outputDB") options.register('keysFromDB', 1, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "1 = read keys from OMDS, 0 = read keys from command line") options.register('overwriteKeys', 0, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "Overwrite existing keys") options.register('logTransactions', 1, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "Record transactions in log DB") # arguments for setting object keys by hand options.register('L1MuDTTFMasksRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1MuGMTChannelMaskRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1RCTChannelMaskRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GctChannelMaskRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GtPrescaleFactorsAlgoTrigRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GtPrescaleFactorsTechTrigRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GtTriggerMaskAlgoTrigRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GtTriggerMaskTechTrigRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.register('L1GtTriggerMaskVetoTechTrigRcdKey', '', #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Object key") options.parseArguments() # Define CondDB tags from CondTools.L1Trigger.L1CondEnum_cfi import L1CondEnum from CondTools.L1Trigger.L1O2OTags_cfi import initL1O2OTags initL1O2OTags() if options.keysFromDB == 1: process.load("CondTools.L1Trigger.L1ConfigRSKeys_cff") else: process.load("CondTools.L1Trigger.L1TriggerKeyDummy_cff") from CondTools.L1Trigger.L1RSSubsystemParams_cfi import initL1RSSubsystems initL1RSSubsystems( tagBaseVec = initL1O2OTags.tagBaseVec, L1MuDTTFMasksRcdKey = options.L1MuDTTFMasksRcdKey, L1MuGMTChannelMaskRcdKey = options.L1MuGMTChannelMaskRcdKey, L1RCTChannelMaskRcdKey = options.L1RCTChannelMaskRcdKey, L1GctChannelMaskRcdKey = options.L1GctChannelMaskRcdKey, L1GtPrescaleFactorsAlgoTrigRcdKey = options.L1GtPrescaleFactorsAlgoTrigRcdKey, L1GtPrescaleFactorsTechTrigRcdKey = options.L1GtPrescaleFactorsTechTrigRcdKey, L1GtTriggerMaskAlgoTrigRcdKey = options.L1GtTriggerMaskAlgoTrigRcdKey, L1GtTriggerMaskTechTrigRcdKey = options.L1GtTriggerMaskTechTrigRcdKey, L1GtTriggerMaskVetoTechTrigRcdKey = options.L1GtTriggerMaskVetoTechTrigRcdKey, includeL1RCTNoisyChannelMask = False ) process.L1TriggerKeyDummy.objectKeys = initL1RSSubsystems.params.recordInfo # Get L1TriggerKeyList from DB process.load("CondCore.DBCommon.CondDBCommon_cfi") process.outputDB = cms.ESSource("PoolDBESSource", process.CondDBCommon, toGet = cms.VPSet(cms.PSet( record = cms.string('L1TriggerKeyListRcd'), tag = cms.string('L1TriggerKeyList_' + initL1O2OTags.tagBaseVec[ L1CondEnum.L1TriggerKeyList ] ) )), RefreshEachRun=cms.untracked.bool(True) ) process.outputDB.connect = options.outputDBConnect process.outputDB.DBParameters.authenticationPath = options.outputDBAuth # Generate configuration data process.load("CondTools.L1Trigger.L1ConfigRSPayloads_cff") # writer modules from CondTools.L1Trigger.L1CondDBPayloadWriter_cff import initPayloadWriter initPayloadWriter( process, outputDBConnect = options.outputDBConnect, outputDBAuth = options.outputDBAuth, tagBaseVec = initL1O2OTags.tagBaseVec ) process.L1CondDBPayloadWriter.writeL1TriggerKey = cms.bool(False) if options.logTransactions == 1: # initPayloadWriter.outputDB.logconnect = cms.untracked.string('oracle://cms_orcon_prod/CMS_COND_31X_POPCONLOG') initPayloadWriter.outputDB.logconnect = cms.untracked.string('sqlite_file:l1o2o-log.db') process.L1CondDBPayloadWriter.logTransactions = True if options.overwriteKeys == 0: process.L1CondDBPayloadWriter.overwriteKeys = False else: process.L1CondDBPayloadWriter.overwriteKeys = True from CondTools.L1Trigger.L1CondDBIOVWriter_cff import initIOVWriter initIOVWriter( process, outputDBConnect = options.outputDBConnect, outputDBAuth = options.outputDBAuth, tagBaseVec = initL1O2OTags.tagBaseVec, tscKey = '' ) process.L1CondDBIOVWriter.logKeys = True if options.logTransactions == 1: # initIOVWriter.outputDB.logconnect = cms.untracked.string('oracle://cms_orcon_prod/CMS_COND_31X_POPCONLOG') initIOVWriter.outputDB.logconnect = cms.untracked.string('sqlite_file:l1o2o-log.db') process.L1CondDBIOVWriter.logTransactions = True process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptyIOVSource", timetype = cms.string('runnumber'), firstValue = cms.uint64(options.runNumber), lastValue = cms.uint64(options.runNumber), interval = cms.uint64(1) ) # CORAL debugging #process.outputDB.DBParameters.messageLevel = cms.untracked.int32(3) process.p = cms.Path(process.L1CondDBPayloadWriter*process.L1CondDBIOVWriter)
55303a17c04c8a0efbd951d112b3225f0d9cb8b7
48983b88ebd7a81bfeba7abd6f45d6462adc0385
/MOG/50.py
4f0d7d569452389c938806754ec6d5d1f0269de2
[]
no_license
lozdan/oj
c6366f450bb6fed5afbaa5573c7091adffb4fa4f
79007879c5a3976da1e4713947312508adef2e89
refs/heads/master
2018-09-24T01:29:49.447076
2018-06-19T14:33:37
2018-06-19T14:33:37
109,335,964
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
# author: Daniel Lozano # source: MatcomOnlineGrader (MOG) ( http://matcomgrader.com ) # problem name: El Numero Decodificado # problem url: http://matcomgrader.com/problem/50/el-numero-decodificado/ n = int(input()) count = 1 def digits_sum(num): add = 0 while num != 0: add += num % 10 num = num // 10 return add while count != digits_sum(n - count): count += 1 print(n - count)
e8ee91c193ae03c4cb6b080a67303d266cfd31f9
29fba8902c6af23622c675992cab8e3d85cf94de
/AIver3.py
91e3c28701f04826af0a3ba9b235ea1257cb77f1
[]
no_license
gulmohar96/Backup_holly
04b078885c97d439b2723f947db071f3b46935d5
66fd8bffce4a08061393e3966f09dd9f44834bed
refs/heads/master
2021-01-10T11:03:00.198410
2016-01-11T03:28:19
2016-01-11T03:28:19
47,603,289
0
0
null
null
null
null
UTF-8
Python
false
false
4,142
py
## _____________OOP Representation____________ ## class Resources(object): def __init__(self,food = 100,sleep = 100,water = 100): self.sleep = sleep self.water = water self.food = food def copy(self): return Resources(self.food, self.sleep, self.water) ## _____IGNORE THIS AS OF NOW______## class Locations(object): ## Problems with location recording: # dont know how sensors are set up # Especially where a single room satisfies multiple needs such as the kitchen supplies food and water # Also how to have a global empty data structure like location = [] be a global empty variable to store # different locations through different methods under a class # How to link to things that are kept in different rooms # 0 - bedroom , 1- bathroom, 2- Living Room , 3- Kitchen location = [] def __init__(self,bedroom,bathroom,livingRoom,kitchen,location): self.bedroom = bedroom self.bathroom = bathroom self.livingRoom = livingRoom self.kitchen = kitchen self.location = location def bedroom(self): if sleep #sensor activated location.append(0) def bathroom(self): if water #sensor activated location.append(1) def livingRoom(self): if sleep #later recreational stuff/entertainment etc activated location.append(2) def kitchen(self): if water #sensor activated location.append(3) elif food #sensor activated location.append(3) class Provider(object): # The provider provides different offers from all the possible resources in the house def __init__(self,name,time_consumed,resources): self.name = name self.time_consumed = time_consumed self.resources = resources # Gives the status of teh resources at after the usage of a particular object # that is making a offer def make_offer(self): return(self.name, self.time_consumed, self.resources) # SEE WHAAATTTT class Offer(object): # Intermediate...Just represents the offers from the provider for easy code usage def __init__(self, name, time_consumed, resources): self.name = name self.time_consumed = time_consumed self.resources = resources return(self.name, self.time_consumed, self.resources) ## _____Objects in the house______## # Put this in class provider factory later #FOOD microwave = Provider('Microwave', 10, Resources(5, -0.009 , -0.0.4) ) #confirm resource depletion design # 10 minutes consumed, 5 food point provided causing 0.1 and 0.12 depletion in water and food over a simulated time oven = Provider('Oven', 30, Resources(10, -0.003 , -0.012) ) toaster = Provider('toaster', 8, Resources(7, -0.001 , -0.08) ) #WATER kitchen_tap = Provider('Kitchen Tap', 2, Resources(6, -0.005,-0.02)) bathroom_tap = Provider('Kitchen Tap', 3, Resources(4, -0.003,-0.04)) #SLEEP bed = Provider('Bed', 2, Resources(6, -0.005,-0.02)) couch = Provider('Kitchen Tap', 2, Resources(6, -0.005,-0.02)) class Actor(object): def __init__(self): self.resources = Resources(100, 100, 100) # internal level self.interacting_provider = None @staticmethod def update(resources, delta): resources.food -= 1 * delta resources.water -= 1 * delta resources.sleep -= 1 * delta def update(self, delta): if self.interacting_provider != None: self.interacting_provider.time_left -= delta if self.interacting_provider.time_left == 0: self.interacting_provider = None def utility(self, offer): newResources = self.resources.copy() update(newResources, offer.time_consumed) offeredFood = newResources.food + offer.resources.food offeredWater = newResources.water + offer.resources.water offeredSleep = newResources.sleep + offer.resources.sleep return offeredFood * offeredWater * offeredSleep sort(providers, lambda provider: actor.utility(provider.make_offer()))
7e45cbd57f56b0f0355d5458456b103b18c6e5ce
aefba5494d3eb3a04ee7c3d11058023447710529
/api/models.py
5de18ecac8682d7653abe1898ab2a52416ad5d63
[]
no_license
752217726/jwt
511691bc9e6381b558bf3859b91186e70e12d161
4b80f60a2e6b811a3661c0d0749e1cc1182af390
refs/heads/master
2022-11-20T11:27:59.198913
2020-07-07T17:47:58
2020-07-07T17:47:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class User(AbstractUser): phone=models.CharField(max_length=11,unique=True) class Meta: db_table="api_user" verbose_name="用户" verbose_name_plural=verbose_name def __str__(self): return self.username class Computer(models.Model): name=models.CharField(max_length=80,unique=True) price=models.DecimalField(max_digits=8,decimal_places=2) brand=models.CharField(max_length=16,verbose_name="品牌") class Meta: db_table="computer" verbose_name="电脑" verbose_name_plural=verbose_name def __str__(self): return self.name
8edeeff5764b44cd45bbf5cb023c0d6da482a2ff
3f8cce815acefa97deb3d971415c6f869e106bee
/firmware/python/handlers.py
bc6bf6b6742fc75e5aeb8eb054c699a8b42aaeb3
[]
no_license
enricocirignaco/berry_case
ced80e2140d8b75b87c3952476d82f50152b0eef
8f60dcbe62bf01d76fa8928c66271d89aa8d7e08
refs/heads/master
2023-06-11T09:50:46.820588
2021-06-29T12:14:12
2021-06-29T12:14:12
271,569,305
1
3
null
2021-03-09T09:24:21
2020-06-11T14:34:48
Python
UTF-8
Python
false
false
8,620
py
# Project: berry_case # File: handlers # Autor: Enrico Cirignaco # Created: 29.11.2020 # Import modules ############################################################################# import time import oled_display import parameters import globals import subprocess import fan is_yes_state = False is_fan_mode_auto = False ############################################################################# # GPIO Callbacks # Callback right button def btn_right_callback(arg): globals.display_counter = 0 global is_yes_state global is_fan_mode_auto # Check if Display was off, then turn it on and to nothing else if(globals.is_display_on == False): oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) return # submenu depth 0 # if in main menu go inside submenu if globals.menu_depth == 0: globals.menu_depth+= 1 update_submenu() elif globals.menu_depth == 1 and globals.main_menu_entry > 1: is_yes_state = False is_fan_mode_auto = False update_submenu() elif globals.menu_depth == 2 and globals.main_menu_entry == 4: if(globals.fan_speed_man < 10): globals.fan_speed_man+= 1 fan.run_fan_man(globals.fan_speed_man) # Callback left button def btn_left_callback(arg): global is_yes_state global is_fan_mode_auto globals.display_counter = 0 #if depth=0 do nothing # Check if Display was off, then turn it on and to nothing else if(globals.is_display_on == False): oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) return if globals.menu_depth == 1: #if depth=0 and Main entry is network or system, go back. if globals.main_menu_entry == 0 or globals.main_menu_entry == 1: globals.menu_depth-= 1 globals.network_menu_entry = 0 globals.system_info_menu_entry = 0 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) else: is_yes_state = True is_fan_mode_auto = True update_submenu() elif globals.menu_depth == 2 and globals.main_menu_entry == 4: if(globals.fan_speed_man > 0): globals.fan_speed_man-= 1 fan.run_fan_man(globals.fan_speed_man) # Callback down button def btn_down_callback(arg): globals.display_counter = 0 # Check if Display was off, then turn it on and to nothing else if(globals.is_display_on == False): oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) return # if in main manu scroll to next entry if globals.menu_depth == 0: if globals.main_menu_entry < parameters.MAIN_MENU_ENTRY_CNT-1: globals.main_menu_entry+= 1 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) elif globals.menu_depth ==1: #network submenu if globals.main_menu_entry == 0: if globals.network_menu_entry < parameters.NETWORK_MENU_ENTRY_CNT-1: globals.network_menu_entry+= 1 oled_display.draw_entry(parameters.DEPTH_1_NETWORK_LABELS[globals.network_menu_entry], parameters.NETWORK_ENTRY_FONT_SIZE) # system info submenu elif globals.main_menu_entry == 1: if globals.system_info_menu_entry < parameters.SYSTEM_INFO_MENU_ENTRY_CNT-1: globals.system_info_menu_entry+= 1 oled_display.draw_entry(parameters.DEPTH_1_SYSTEM_INFO_LABELS[globals.system_info_menu_entry], parameters.NETWORK_ENTRY_FONT_SIZE) # Callback up button def btn_up_callback(arg): globals.display_counter = 0 # Check if Display was off, then turn it on and to nothing else if(globals.is_display_on == False): oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) return # if in main menu scroll to previous menu if globals.menu_depth == 0: if globals.main_menu_entry > 0: globals.main_menu_entry-= 1 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) elif globals.menu_depth == 1: #network submenu if globals.main_menu_entry == 0: if globals.network_menu_entry > 0: globals.network_menu_entry-= 1 oled_display.draw_entry(parameters.DEPTH_1_NETWORK_LABELS[globals.network_menu_entry], parameters.NETWORK_ENTRY_FONT_SIZE) # system info submenu elif globals.main_menu_entry == 1: if globals.system_info_menu_entry > 0: globals.system_info_menu_entry-= 1 oled_display.draw_entry(parameters.DEPTH_1_SYSTEM_INFO_LABELS[globals.system_info_menu_entry], parameters.NETWORK_ENTRY_FONT_SIZE) # Callback center button def btn_center_callback(arg): globals.display_counter = 0 global is_yes_state global is_fan_mode_auto # Check if Display was off, then turn it on and to nothing else if(globals.is_display_on == False): oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) return # submenu depth 0 # if in main menu go inside submenu if globals.menu_depth == 0: globals.menu_depth+= 1 update_submenu() # submenu depth 1 elif globals.menu_depth == 1: if globals.main_menu_entry == 0 or globals.main_menu_entry == 1: globals.menu_depth-= 1 globals.network_menu_entry = 0 globals.system_info_menu_entry = 0 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) else: if(is_yes_state == True and globals.main_menu_entry == 2): #reboot oled_display.draw_entry("Shutting Down...", parameters.SHUTDOWN_FONT_SIZE) time.sleep(2) oled_display.draw_turn_off() subprocess.run("reboot", shell=True) exit() elif(is_yes_state == True and globals.main_menu_entry == 3): #shutdown oled_display.draw_entry("Shutting Down...", parameters.SHUTDOWN_FONT_SIZE) time.sleep(2) oled_display.draw_turn_off() subprocess.run("systemctl poweroff -i", shell=True) exit() elif(globals.main_menu_entry == 4): if(is_fan_mode_auto == True): #set auto and escape submenu globals.is_fan_auto_enabled = True globals.menu_depth-= 1 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) else: #enter fan speed menu globals.is_fan_auto_enabled = False fan.run_fan_man(globals.fan_speed_man) globals.menu_depth+= 1 else: globals.menu_depth-= 1 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) # submenu depth 2 elif(globals.menu_depth == 2): if(globals.main_menu_entry == 4): globals.menu_depth = 0 oled_display.draw_entry(parameters.DEPTH_0_LABELS[globals.main_menu_entry], parameters.MAIN_ENTRY_FONT_SIZE) # other functions ############################################################################# def update_submenu(): global is_yes_state global is_fan_mode_auto if globals.main_menu_entry == 0: #net oled_display.draw_entry(parameters.DEPTH_1_NETWORK_LABELS[globals.network_menu_entry], parameters.NETWORK_ENTRY_FONT_SIZE) elif globals.main_menu_entry == 1: #system info oled_display.draw_entry(parameters.DEPTH_1_SYSTEM_INFO_LABELS[globals.system_info_menu_entry], parameters.SYSTEM_INFO_ENTRY_FONT_SIZE) # reboot submenu elif globals.main_menu_entry == 2 : oled_display.draw_selection("yes", "no", is_yes_state) elif globals.main_menu_entry == 3: oled_display.draw_selection("yes", "no", is_yes_state) elif globals.main_menu_entry == 4: oled_display.draw_selection("auto", "man", is_fan_mode_auto)
517bd5acebde99e8880d3c59fab298bdb6e1de60
6032d8dd4ce8e80c68f5a543fdd367c2f05b0681
/SConstruct
188cd329642b28f85b35351a7a6a754d3fc96322
[ "BSD-2-Clause" ]
permissive
drakedevel/nethatch
dc8b6f478884457345c7ee6d90954a4ee30c3378
0187871129d223f9905ac50367a0e30cac285ef7
refs/heads/master
2021-06-08T08:55:40.509717
2011-05-09T23:51:03
2011-05-09T23:51:03
2,227,979
0
0
null
null
null
null
UTF-8
Python
false
false
135
# -*- Mode: Python -*- Program('nethatch', ['Main.cc'], CC='clang', CXX='clang++', LIBS=['pcap', 'net'], CXXFLAGS=['-g'])
22b9583d4e86075bcd2f54a1ae3c118d1a1510ef
0bb49acb7bb13a09adafc2e43e339f4c956e17a6
/OpenAssembler/Gui/OAS_Window/oas_main04.py
92052edb6cc3e03aebcd64f5fd56a89706efd491
[]
no_license
all-in-one-of/openassembler-7
94f6cdc866bceb844246de7920b7cbff9fcc69bf
69704d1c4aa4b1b99f484c8c7884cf73d412fafe
refs/heads/master
2021-01-04T18:08:10.264830
2010-07-02T10:50:16
2010-07-02T10:50:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,262
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'oas_main04.ui' # # Created: Wed Jul 15 10:23:49 2009 # by: PyQt4 UI code generator 4.4.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui class Ui_oasWindow(object): def setupUi(self, oasWindow): oasWindow.setObjectName("oasWindow") oasWindow.resize(885, 533) self.oas_centralwidget = QtGui.QWidget(oasWindow) self.oas_centralwidget.setObjectName("oas_centralwidget") self.gridLayout_6 = QtGui.QGridLayout(self.oas_centralwidget) self.gridLayout_6.setMargin(2) self.gridLayout_6.setSpacing(2) self.gridLayout_6.setObjectName("gridLayout_6") self.oas_splitter = QtGui.QSplitter(self.oas_centralwidget) self.oas_splitter.setOrientation(QtCore.Qt.Horizontal) self.oas_splitter.setObjectName("oas_splitter") self.oas_splitter02 = QtGui.QSplitter(self.oas_splitter) self.oas_splitter02.setOrientation(QtCore.Qt.Vertical) self.oas_splitter02.setObjectName("oas_splitter02") self.oas_menuline_frame = QtGui.QFrame(self.oas_splitter02) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_menuline_frame.sizePolicy().hasHeightForWidth()) self.oas_menuline_frame.setSizePolicy(sizePolicy) self.oas_menuline_frame.setMinimumSize(QtCore.QSize(0, 30)) self.oas_menuline_frame.setMaximumSize(QtCore.QSize(16777215, 30)) self.oas_menuline_frame.setFrameShape(QtGui.QFrame.StyledPanel) self.oas_menuline_frame.setFrameShadow(QtGui.QFrame.Raised) self.oas_menuline_frame.setObjectName("oas_menuline_frame") self.gridLayout_3 = QtGui.QGridLayout(self.oas_menuline_frame) self.gridLayout_3.setMargin(2) self.gridLayout_3.setSpacing(2) self.gridLayout_3.setObjectName("gridLayout_3") self.oas_horizontalLayout_3 = QtGui.QHBoxLayout() self.oas_horizontalLayout_3.setSpacing(2) self.oas_horizontalLayout_3.setObjectName("oas_horizontalLayout_3") self.oas_new_bu = QtGui.QToolButton(self.oas_menuline_frame) self.oas_new_bu.setObjectName("oas_new_bu") self.oas_horizontalLayout_3.addWidget(self.oas_new_bu) spacerItem = QtGui.QSpacerItem(10, 20, QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_3.addItem(spacerItem) self.oas_open_bu = QtGui.QToolButton(self.oas_menuline_frame) self.oas_open_bu.setObjectName("oas_open_bu") self.oas_horizontalLayout_3.addWidget(self.oas_open_bu) self.oas_save_bu = QtGui.QToolButton(self.oas_menuline_frame) self.oas_save_bu.setObjectName("oas_save_bu") self.oas_horizontalLayout_3.addWidget(self.oas_save_bu) self.oas_saveas_bu = QtGui.QToolButton(self.oas_menuline_frame) self.oas_saveas_bu.setObjectName("oas_saveas_bu") self.oas_horizontalLayout_3.addWidget(self.oas_saveas_bu) spacerItem1 = QtGui.QSpacerItem(15, 20, QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_3.addItem(spacerItem1) self.oas_run_bu = QtGui.QToolButton(self.oas_menuline_frame) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(86, 255, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(56, 255, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(69, 255, 56)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(86, 255, 39)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(56, 255, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(69, 255, 56)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(28, 28, 28)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(56, 255, 26)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(28, 28, 28)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) self.oas_run_bu.setPalette(palette) self.oas_run_bu.setObjectName("oas_run_bu") self.oas_horizontalLayout_3.addWidget(self.oas_run_bu) spacerItem2 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_3.addItem(spacerItem2) self.oas_search_entry = QtGui.QLineEdit(self.oas_menuline_frame) self.oas_search_entry.setObjectName("oas_search_entry") self.oas_horizontalLayout_3.addWidget(self.oas_search_entry) self.oas_search_bu = QtGui.QToolButton(self.oas_menuline_frame) self.oas_search_bu.setObjectName("oas_search_bu") self.oas_horizontalLayout_3.addWidget(self.oas_search_bu) self.gridLayout_3.addLayout(self.oas_horizontalLayout_3, 0, 0, 1, 1) self.oas_graphicsView = QtGui.QGraphicsView(self.oas_splitter02) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(225, 225, 225)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(187, 187, 187)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(202, 202, 202)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(225, 225, 225)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(187, 187, 187)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(202, 202, 202)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(225, 225, 225)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(187, 187, 187)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(75, 75, 75)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(150, 150, 150)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.oas_graphicsView.setPalette(palette) self.oas_graphicsView.setFocusPolicy(QtCore.Qt.StrongFocus) self.oas_graphicsView.setObjectName("oas_graphicsView") self.oas_timeline_frame = QtGui.QFrame(self.oas_splitter02) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_timeline_frame.sizePolicy().hasHeightForWidth()) self.oas_timeline_frame.setSizePolicy(sizePolicy) self.oas_timeline_frame.setMinimumSize(QtCore.QSize(0, 70)) self.oas_timeline_frame.setMaximumSize(QtCore.QSize(16777215, 70)) self.oas_timeline_frame.setFrameShape(QtGui.QFrame.StyledPanel) self.oas_timeline_frame.setFrameShadow(QtGui.QFrame.Raised) self.oas_timeline_frame.setObjectName("oas_timeline_frame") self.gridLayout = QtGui.QGridLayout(self.oas_timeline_frame) self.gridLayout.setMargin(2) self.gridLayout.setSpacing(2) self.gridLayout.setObjectName("gridLayout") self.oas_verticalLayout = QtGui.QVBoxLayout() self.oas_verticalLayout.setObjectName("oas_verticalLayout") self.oas_horizontalLayout = QtGui.QHBoxLayout() self.oas_horizontalLayout.setObjectName("oas_horizontalLayout") self.oas_sframe_spin = QtGui.QSpinBox(self.oas_timeline_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_sframe_spin.sizePolicy().hasHeightForWidth()) self.oas_sframe_spin.setSizePolicy(sizePolicy) self.oas_sframe_spin.setMinimum(-100000) self.oas_sframe_spin.setMaximum(100000) self.oas_sframe_spin.setObjectName("oas_sframe_spin") self.oas_horizontalLayout.addWidget(self.oas_sframe_spin) self.oas_time_slider = QtGui.QSlider(self.oas_timeline_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_time_slider.sizePolicy().hasHeightForWidth()) self.oas_time_slider.setSizePolicy(sizePolicy) self.oas_time_slider.setSliderPosition(0) self.oas_time_slider.setOrientation(QtCore.Qt.Horizontal) self.oas_time_slider.setTickPosition(QtGui.QSlider.TicksBothSides) self.oas_time_slider.setTickInterval(0) self.oas_time_slider.setObjectName("oas_time_slider") self.oas_horizontalLayout.addWidget(self.oas_time_slider) self.oas_eframe_spin = QtGui.QSpinBox(self.oas_timeline_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_eframe_spin.sizePolicy().hasHeightForWidth()) self.oas_eframe_spin.setSizePolicy(sizePolicy) self.oas_eframe_spin.setMinimum(-100000) self.oas_eframe_spin.setMaximum(100000) self.oas_eframe_spin.setObjectName("oas_eframe_spin") self.oas_horizontalLayout.addWidget(self.oas_eframe_spin) self.oas_verticalLayout.addLayout(self.oas_horizontalLayout) self.oas_horizontalLayout_2 = QtGui.QHBoxLayout() self.oas_horizontalLayout_2.setObjectName("oas_horizontalLayout_2") spacerItem3 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_2.addItem(spacerItem3) self.oas_firstF = QtGui.QToolButton(self.oas_timeline_frame) self.oas_firstF.setMinimumSize(QtCore.QSize(20, 20)) self.oas_firstF.setMaximumSize(QtCore.QSize(20, 20)) self.oas_firstF.setObjectName("oas_firstF") self.oas_horizontalLayout_2.addWidget(self.oas_firstF) self.oas_prewF = QtGui.QToolButton(self.oas_timeline_frame) self.oas_prewF.setMinimumSize(QtCore.QSize(20, 20)) self.oas_prewF.setMaximumSize(QtCore.QSize(20, 20)) self.oas_prewF.setObjectName("oas_prewF") self.oas_horizontalLayout_2.addWidget(self.oas_prewF) self.oas_cframe_spin = QtGui.QSpinBox(self.oas_timeline_frame) self.oas_cframe_spin.setMinimumSize(QtCore.QSize(0, 20)) self.oas_cframe_spin.setMaximumSize(QtCore.QSize(16777215, 20)) self.oas_cframe_spin.setMinimum(-100000) self.oas_cframe_spin.setMaximum(100000) self.oas_cframe_spin.setObjectName("oas_cframe_spin") self.oas_horizontalLayout_2.addWidget(self.oas_cframe_spin) self.oas_nextF = QtGui.QToolButton(self.oas_timeline_frame) self.oas_nextF.setMinimumSize(QtCore.QSize(20, 20)) self.oas_nextF.setMaximumSize(QtCore.QSize(20, 20)) self.oas_nextF.setObjectName("oas_nextF") self.oas_horizontalLayout_2.addWidget(self.oas_nextF) self.oas_lastF = QtGui.QToolButton(self.oas_timeline_frame) self.oas_lastF.setMinimumSize(QtCore.QSize(20, 20)) self.oas_lastF.setMaximumSize(QtCore.QSize(20, 20)) self.oas_lastF.setObjectName("oas_lastF") self.oas_horizontalLayout_2.addWidget(self.oas_lastF) spacerItem4 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_2.addItem(spacerItem4) self.oas_verticalLayout.addLayout(self.oas_horizontalLayout_2) self.gridLayout.addLayout(self.oas_verticalLayout, 0, 0, 1, 1) self.oas_splitter03 = QtGui.QSplitter(self.oas_splitter) self.oas_splitter03.setOrientation(QtCore.Qt.Vertical) self.oas_splitter03.setObjectName("oas_splitter03") self.oas_attribute_frame = QtGui.QFrame(self.oas_splitter03) self.oas_attribute_frame.setFrameShape(QtGui.QFrame.StyledPanel) self.oas_attribute_frame.setFrameShadow(QtGui.QFrame.Raised) self.oas_attribute_frame.setObjectName("oas_attribute_frame") self.gridLayout_2 = QtGui.QGridLayout(self.oas_attribute_frame) self.gridLayout_2.setMargin(2) self.gridLayout_2.setSpacing(2) self.gridLayout_2.setObjectName("gridLayout_2") self.oas_verticalLayout_2 = QtGui.QVBoxLayout() self.oas_verticalLayout_2.setObjectName("oas_verticalLayout_2") self.oas_nodeName = QtGui.QLineEdit(self.oas_attribute_frame) self.oas_nodeName.setObjectName("oas_nodeName") self.oas_verticalLayout_2.addWidget(self.oas_nodeName) self.oas_horizontalLayout_4 = QtGui.QHBoxLayout() self.oas_horizontalLayout_4.setObjectName("oas_horizontalLayout_4") self.oas_label_2 = QtGui.QLabel(self.oas_attribute_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_label_2.sizePolicy().hasHeightForWidth()) self.oas_label_2.setSizePolicy(sizePolicy) self.oas_label_2.setObjectName("oas_label_2") self.oas_horizontalLayout_4.addWidget(self.oas_label_2) self.oas_attribute_nodetype = QtGui.QLabel(self.oas_attribute_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_attribute_nodetype.sizePolicy().hasHeightForWidth()) self.oas_attribute_nodetype.setSizePolicy(sizePolicy) self.oas_attribute_nodetype.setObjectName("oas_attribute_nodetype") self.oas_horizontalLayout_4.addWidget(self.oas_attribute_nodetype) spacerItem5 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.oas_horizontalLayout_4.addItem(spacerItem5) self.oas_attribute_cache = QtGui.QCheckBox(self.oas_attribute_frame) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.oas_attribute_cache.sizePolicy().hasHeightForWidth()) self.oas_attribute_cache.setSizePolicy(sizePolicy) self.oas_attribute_cache.setObjectName("oas_attribute_cache") self.oas_horizontalLayout_4.addWidget(self.oas_attribute_cache) self.oas_verticalLayout_2.addLayout(self.oas_horizontalLayout_4) self.oas_attribute_area = QtGui.QScrollArea(self.oas_attribute_frame) self.oas_attribute_area.setWidgetResizable(True) self.oas_attribute_area.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.oas_attribute_area.setObjectName("oas_attribute_area") self.oas_attribute_areaContents = QtGui.QWidget(self.oas_attribute_area) self.oas_attribute_areaContents.setGeometry(QtCore.QRect(0, 0, 267, 127)) self.oas_attribute_areaContents.setLayoutDirection(QtCore.Qt.LeftToRight) self.oas_attribute_areaContents.setObjectName("oas_attribute_areaContents") self.gridLayout_5 = QtGui.QGridLayout(self.oas_attribute_areaContents) self.gridLayout_5.setMargin(2) self.gridLayout_5.setSpacing(2) self.gridLayout_5.setObjectName("gridLayout_5") self.oas_attribute_layout = QtGui.QVBoxLayout() self.oas_attribute_layout.setObjectName("oas_attribute_layout") self.place_to_widgets = QtGui.QVBoxLayout() self.place_to_widgets.setObjectName("place_to_widgets") self.oas_attribute_layout.addLayout(self.place_to_widgets) spacerItem6 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.oas_attribute_layout.addItem(spacerItem6) self.gridLayout_5.addLayout(self.oas_attribute_layout, 0, 0, 1, 1) self.oas_attribute_area.setWidget(self.oas_attribute_areaContents) self.oas_verticalLayout_2.addWidget(self.oas_attribute_area) self.gridLayout_2.addLayout(self.oas_verticalLayout_2, 0, 0, 1, 1) self.frame = QtGui.QFrame(self.oas_splitter03) self.frame.setFrameShape(QtGui.QFrame.StyledPanel) self.frame.setFrameShadow(QtGui.QFrame.Raised) self.frame.setObjectName("frame") self.gridLayout_4 = QtGui.QGridLayout(self.frame) self.gridLayout_4.setMargin(2) self.gridLayout_4.setSpacing(2) self.gridLayout_4.setObjectName("gridLayout_4") self.verticalLayout = QtGui.QVBoxLayout() self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName("verticalLayout") self.consoleOutArea = QtGui.QTextEdit(self.frame) self.consoleOutArea.setReadOnly(True) self.consoleOutArea.setObjectName("consoleOutArea") self.verticalLayout.addWidget(self.consoleOutArea) self.consoleInArea = QtGui.QLineEdit(self.frame) self.consoleInArea.setObjectName("consoleInArea") self.verticalLayout.addWidget(self.consoleInArea) self.gridLayout_4.addLayout(self.verticalLayout, 0, 0, 1, 1) self.gridLayout_6.addWidget(self.oas_splitter, 0, 0, 1, 1) oasWindow.setCentralWidget(self.oas_centralwidget) self.oas_menubar = QtGui.QMenuBar(oasWindow) self.oas_menubar.setEnabled(False) self.oas_menubar.setGeometry(QtCore.QRect(0, 0, 885, 25)) self.oas_menubar.setObjectName("oas_menubar") oasWindow.setMenuBar(self.oas_menubar) self.retranslateUi(oasWindow) QtCore.QObject.connect(self.oas_nextF, QtCore.SIGNAL("clicked()"), self.oas_cframe_spin.stepUp) QtCore.QObject.connect(self.oas_prewF, QtCore.SIGNAL("clicked()"), self.oas_cframe_spin.stepDown) QtCore.QObject.connect(self.oas_time_slider, QtCore.SIGNAL("sliderMoved(int)"), self.oas_cframe_spin.setValue) QtCore.QObject.connect(self.oas_cframe_spin, QtCore.SIGNAL("valueChanged(int)"), self.oas_time_slider.setValue) QtCore.QMetaObject.connectSlotsByName(oasWindow) def retranslateUi(self, oasWindow): oasWindow.setWindowTitle(QtGui.QApplication.translate("oasWindow", "OpenAssembler", None, QtGui.QApplication.UnicodeUTF8)) self.oas_new_bu.setText(QtGui.QApplication.translate("oasWindow", "New", None, QtGui.QApplication.UnicodeUTF8)) self.oas_open_bu.setText(QtGui.QApplication.translate("oasWindow", "Open", None, QtGui.QApplication.UnicodeUTF8)) self.oas_save_bu.setText(QtGui.QApplication.translate("oasWindow", "Save", None, QtGui.QApplication.UnicodeUTF8)) self.oas_saveas_bu.setText(QtGui.QApplication.translate("oasWindow", "SaveAs", None, QtGui.QApplication.UnicodeUTF8)) self.oas_run_bu.setText(QtGui.QApplication.translate("oasWindow", " RUN ", None, QtGui.QApplication.UnicodeUTF8)) self.oas_search_bu.setText(QtGui.QApplication.translate("oasWindow", "Search", None, QtGui.QApplication.UnicodeUTF8)) self.oas_firstF.setText(QtGui.QApplication.translate("oasWindow", "<<", None, QtGui.QApplication.UnicodeUTF8)) self.oas_prewF.setText(QtGui.QApplication.translate("oasWindow", "<", None, QtGui.QApplication.UnicodeUTF8)) self.oas_nextF.setText(QtGui.QApplication.translate("oasWindow", ">", None, QtGui.QApplication.UnicodeUTF8)) self.oas_lastF.setText(QtGui.QApplication.translate("oasWindow", ">>", None, QtGui.QApplication.UnicodeUTF8)) self.oas_label_2.setText(QtGui.QApplication.translate("oasWindow", "Node Type:", None, QtGui.QApplication.UnicodeUTF8)) self.oas_attribute_nodetype.setText(QtGui.QApplication.translate("oasWindow", "empty", None, QtGui.QApplication.UnicodeUTF8)) self.oas_attribute_cache.setText(QtGui.QApplication.translate("oasWindow", "cache", None, QtGui.QApplication.UnicodeUTF8))
[ "laszlo.mates@732492aa-5b49-0410-a19c-07a6d82ec771" ]
laszlo.mates@732492aa-5b49-0410-a19c-07a6d82ec771
acc5140eed459a8d0031c36fe860025d7d8e74cc
a05107c0603a4e5bc4015da023ff8b3f3d3feb43
/scratch/zip_func.py
0196e0f033348c9e6488f92b90fc70364f97343a
[]
no_license
kokomyoheinhtet/justAScratch
408377bd521c398aee79b4b55517e1867e1009aa
f7aa385131c8083f1f18b6f1f94797a85c98c943
refs/heads/master
2023-05-05T19:44:56.519003
2021-05-28T02:50:37
2021-05-28T02:50:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
name = ["Max", "Mike", "Dustin"] roll_num = [10, 11, 12] house_num = [22, "2B", "GF"] z = list(zip(name, roll_num)) print(z) z = list(zip(name, roll_num, house_num)) print(z)
0cbdef8a37a86fe2d3b1635440bd6bb69bce25a1
c516970a5be83f1267876ae389ac724e91d324d1
/tests/sample.py
44499a6ce912a84202bba16d6bd25ff8db6b9e3d
[ "Apache-2.0" ]
permissive
thaichat04/conciliator-python
5938f6bec5da85057099501223930b0f2fb9e559
30063c658bd234a10674098711c3651ceca1c5ef
refs/heads/main
2023-04-29T07:51:02.543089
2021-05-18T14:27:28
2021-05-18T14:27:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
775
py
import conciliator as cc import json import datetime config_file = 'password.json' config = json.load(open(config_file, 'r')) #cc.connect(config['onetenant']['username'], config['onetenant']['password']) cc.connect(config['selecttenant']['username'], config['selecttenant']['password'], config['selecttenant']['selectedtenant']) cs = cc.Connector.list() for c in cs: if c.type == 'CSV': print(c.param('purchaseCode')) #c.config[name = 'purchasCode'] .value pass e = cc.Entity.load(query='DH') es = cc.Entity.list() e.set_current() #cc.current_entity = e #f = cc.File.load(name='in1HnhltCcKlYJxALVbRmifsM2.pdf') #i = cc.Invoice.list("1442", filter={'date': datetime.date(2020, 11, 19)}) invoices = cc.Invoice.search("intercom") print(invoices)
d7addf1ab910c3b3d0915f35ba5d16cbad4c059c
cbcb602f3ce73794b926323381dfc9ca65c6f8d4
/python_practise/strings.py
410cc9372f127bd079937dfe0be4e4dd6a0f2d76
[]
no_license
medesiv/ds_algo
820ab7eaab64e5f34b211daae58dce961ca0ef11
70cb1ee0cdc1ddec93861aef56610f7def1472e1
refs/heads/master
2023-07-16T21:41:04.682282
2021-08-31T17:12:32
2021-08-31T17:12:32
372,052,748
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
#Strings: ordered, immutable, text representation my_string = 'I\'m a programmer\n' who_rules = """"who """"rules" print(my_string+who_rules)
6d7a2f0794f08d46abf1e59b99592168d8106756
824fc4e1cd5369d8049f34d6913d605ef5440db3
/chap3_11_practice.py
a5a6da87503a4f3f7f35829373ce866885d3f55f
[]
no_license
rainbowchang/PythonProject
dcd57e77ec80c1afe423af5bf7df1f143dd7cd0a
4362786fc265926b1f8259a5e2bbf016b26fb518
refs/heads/master
2022-12-05T04:14:38.119357
2020-08-26T11:56:39
2020-08-26T11:56:39
284,892,367
0
0
null
null
null
null
UTF-8
Python
false
false
2,441
py
import requests import smtplib import schedule import time from bs4 import BeautifulSoup from email.mime.text import MIMEText from email.header import Header account = input('请输入你的邮箱:') password = input('请输入你的密码:') receiver = input('请输入收件人的邮箱:') index = 0 # index的目的是让程序只运行两次就结束 def movie_spider(): res_movies = requests.get('https://movie.douban.com/chart') bs_movies = BeautifulSoup(res_movies.text, 'html.parser') list_movies = bs_movies.find_all('div', class_='pl2') list_all = [] for movie in list_movies: tag_a = movie.find('a') name = tag_a.text.replace(' ', '').replace('\n', '') # 电影名,使用replace方法去掉多余的空格及换行符 url = tag_a['href'] # 电影详情页的链接 tag_p = movie.find('p', class_='pl') # 提取父级标签中的<p>标签 information = tag_p.text.replace(' ', '').replace('\n', '') # 电影基本信息,使用replace方法去掉多余的空格及换行符 tag_div = movie.find('div', class_='star clearfix') # 提取父级标签中的<div>标签 rating = tag_div.text.replace(' ', '').replace('\n', '') # 电影评分信息,使用replace方法去掉多余的空格及换行符 list_all.append(name + url + information + rating) # 将电影名、URL、电影基本信息和电影评分信息,封装为列表,用append方法添加进list_all return list_all def send_email(movie_list): global account, password, receiver mailhost = 'smtp.qq.com' qqmail = smtplib.SMTP_SSL() qqmail.connect(mailhost, 465) qqmail.login(account, password) content = '\n'.join(movie_list) print(content) message = MIMEText(content, 'plain', 'utf-8') subject = '本周豆瓣新片榜' message['Subject'] = Header(subject, 'utf-8') try: qqmail.sendmail(account, receiver, message.as_string()) print('邮件发送成功') except: print('邮件发送失败') qqmail.quit() def job(): global index print('开始任务') movie_list = movie_spider() send_email(movie_list) print(movie_list) print('任务完成') index += 1 schedule.every().second.do(job) while index != 2: # 这里会当index == 2的时候程序结束 schedule.run_pending() time.sleep(1)
454b50fa8f0f2c29380704440f1aae41aa362ceb
45fc9f8a678deb918e7e2c71116812e7e9793047
/cms_test/wsgi.py
e9d452fb71367d70dd646842b013ccd1cf962103
[]
no_license
SanjivVajra/Django-CMS-test
ce48852f0cdb7abdb225f26731bdec1e87588a30
a7d76242861f2b8cea854c976b868d25dbe91a1c
refs/heads/master
2021-06-14T14:23:54.624077
2018-05-07T09:03:52
2018-05-07T09:03:52
131,136,988
0
0
null
2021-06-10T20:16:14
2018-04-26T10:05:38
Python
UTF-8
Python
false
false
394
py
""" WSGI config for cms_test project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cms_test.settings") application = get_wsgi_application()
9f64b6fde8ce5918644f9e426104b18db422e7c5
f881c10e0d654da82218403dbd2adbdc606dc455
/apps/user_login/models.py
96fff17dd9d564cfa7fed5ca4f762658b6b74462
[]
no_license
alialwahish/restfull_users
1732dceeddf4367d678ff6cdf2668dbc95463182
24d00811b2b46b33e5cf5c311367bd153344dc70
refs/heads/master
2020-03-17T15:37:13.562082
2018-05-16T20:05:21
2018-05-16T20:05:21
133,717,438
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
from __future__ import unicode_literals from django.db import models class dojo(models.Model): name=models.CharField(max_length=255) city=models.CharField(max_length=255) state=models.CharField(max_length=2) class ninjas(models.Model): first_name=models.CharField(max_length=255) last_name=models.CharField(max_length=255) dojo = models.ForeignKey(dojo, on_delete=True, related_name="ninjas")
44097da54a0bb03ac14196712111a1489a956689
172d8623d20d374bee782c3eb08a5e2b5382f412
/python/s3_boto3.py
22a5c98b6f60bb3b7dd4c85ed335cfc1011560b7
[]
no_license
Abhishek24094/dev
8124702e3e7da04eb626bd88cbfcc1a0645a8cae
17d6bbc1bc371e60a69f646340e2d851a8a94899
refs/heads/master
2021-06-30T15:56:35.505092
2020-09-25T08:10:52
2020-09-25T08:10:52
162,133,457
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
#proper clarification for requirement is required import boto3 s3_resource = boto3.resource('s3') s3_resource.create_bucket(Bucket=YOUR_BUCKET_NAME, CreateBucketConfiguration={'LocationConstraint': 'eu-west-1'}) s3_resource.Bucket(first_bucket_name).upload_file(Filename=first_file_name, Key=first_file_name) s3_resource.Object(second_bucket_name, first_file_name).delete()
6e5bfeee02160589220079caf6d6e3e3b76ab585
629090051b975b5814b4b48e2cb2c784fa6705e4
/pgsmo/objects/sequence/sequence.py
58b4198fa17dee038f943fed6dd518f8db8054e6
[ "MIT" ]
permissive
microsoft/pgtoolsservice
3d3597821c7cae1d216436d4f8143929e2c8a82a
24a048226f7f30c775bbcbab462d499a465be5da
refs/heads/master
2023-08-28T12:55:47.817628
2023-08-25T22:47:53
2023-08-25T22:47:53
80,681,087
68
35
NOASSERTION
2023-09-13T21:46:55
2017-02-02T01:00:33
Python
UTF-8
Python
false
false
6,637
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from typing import Optional, List, Dict from smo.common.node_object import NodeObject, NodeLazyPropertyCollection, NodeCollection from smo.common.scripting_mixins import ScriptableCreate, ScriptableDelete, ScriptableUpdate from pgsmo.objects.server import server as s # noqa import smo.utils.templating as templating class Sequence(NodeObject, ScriptableCreate, ScriptableDelete, ScriptableUpdate): TEMPLATE_ROOT = templating.get_template_root(__file__, 'templates') MACRO_ROOT = templating.get_template_root(__file__, 'macros') GLOBAL_MACRO_ROOT = templating.get_template_root(__file__, '../global_macros') @classmethod def _from_node_query(cls, server: 's.Server', parent: NodeObject, **kwargs) -> 'Sequence': """ Creates a Sequence object from the result of a sequence node query :param server: Server that owns the sequence :param parent: Parent object of the sequence :param kwargs: Row from a sequence node query Kwargs: oid int: Object ID of the sequence name str: Name of the sequence :return: A Sequence instance """ seq = cls(server, parent, kwargs['name']) seq._oid = kwargs['oid'] seq._schema = kwargs['schema'] seq._scid = kwargs['schemaoid'] seq._is_system = kwargs['is_system'] return seq def __init__(self, server: 's.Server', parent: NodeObject, name: str): self._server = server self._parent: Optional['NodeObject'] = parent self._name: str = name self._oid: Optional[int] = None self._is_system: bool = False self._child_collections: Dict[str, NodeCollection] = {} self._property_collections: List[NodeLazyPropertyCollection] = [] # Use _column_property_generator instead of _property_generator self._full_properties: NodeLazyPropertyCollection = self._register_property_collection(self._sequence_property_generator) ScriptableCreate.__init__(self, self._template_root(server), self._macro_root(), server.version) ScriptableDelete.__init__(self, self._template_root(server), self._macro_root(), server.version) ScriptableUpdate.__init__(self, self._template_root(server), self._macro_root(), server.version) self._schema: str = None self._scid: int = None self._def: dict = None def _sequence_property_generator(self): template_root = self._template_root(self._server) # Setup the parameters for the query template_vars = self.template_vars # Render and execute the template sql = templating.render_template( templating.get_template_path(template_root, 'properties.sql', self._server.version), self._macro_root(), **template_vars ) cols, rows = self._server.connection.execute_dict(sql) if len(rows) > 0: return rows[0] # PROPERTIES ########################################################### @property def schema(self): return self._schema @property def scid(self): return self._scid # -FULL OBJECT PROPERTIES ############################################## @property def cycled(self): return self._full_properties.get("cycled", "") @property def increment(self): return self._full_properties.get("increment", "") @property def start(self): return self._full_properties.get("start", "") @property def current_value(self): return self._full_properties.get("current_value", "") @property def minimum(self): return self._full_properties.get("minimum", "") @property def maximum(self): return self._full_properties.get("maximum", "") @property def cache(self): return self._full_properties.get("cache", "") @property def cascade(self): return self._full_properties.get("cascade", "") @property def seqowner(self): return self._full_properties.get("seqowner", "") @property def comment(self): return self._full_properties.get("comment", "") # IMPLEMENTATION DETAILS ############################################### @classmethod def _macro_root(cls) -> List[str]: return [cls.MACRO_ROOT, cls.GLOBAL_MACRO_ROOT] @classmethod def _template_root(cls, server: 's.Server') -> str: return cls.TEMPLATE_ROOT # HELPER METHODS ################################################################## def _create_query_data(self): """ Gives the data object for create query """ return {"data": { "schema": self.schema, "name": self.name, "cycled": self.cycled, "increment": self.increment, "start": self.start, "current_value": self.current_value, "minimum": self.minimum, "maximum": self.maximum, "cache": self.cache }} def _update_query_data(self): """ Gives the data object for update query """ return { "data": { "schema": self.schema, "name": self.name, "cycled": self.cycled, "increment": self.increment, "start": self.start, "current_value": self.current_value, "minimum": self.minimum, "maximum": self.maximum, "cache": self.cache }, "o_data": { "schema": self.schema, "name": self.name, "seqowner": self.seqowner, "comment": self.comment } } def _delete_query_data(self): """ Gives the data object for update query """ return { "data": { "schema": self.schema, "name": self.name, "cycled": self.cycled, "increment": self.increment, "start": self.start, "current_value": self.current_value, "minimum": self.minimum, "maximum": self.maximum, "cache": self.cache }, "cascade": self.cascade }
ce9b8310408ce87449d91271d25e7ac0f517de18
ec2028b4aa5c75559bb5aced9bc3edfcd4b3ad10
/lists/urls.py
ebf149f51b5fd1777abc83ac451abf4722d959b5
[]
no_license
macvatsal/Superlists
04a59b9c62673904df52f8e6828d8b582b58e82f
d0d14b9f1d6628bf19b1383027598772e3ace927
refs/heads/master
2022-12-20T14:53:58.964981
2020-10-01T07:01:44
2020-10-01T07:01:44
300,179,608
0
0
null
2020-10-01T07:00:34
2020-10-01T07:00:33
null
UTF-8
Python
false
false
845
py
"""superlists URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, patterns urlpatterns = patterns('', url(r'^(\d+)/$', 'lists.views.view_list', name='view_list'), url(r'^new$', 'lists.views.new_list', name='new_list'), )
5133ca2f594fe1d6dbb95d3a5eabeedc56a82b41
114b9483d72bb6027d6f88a00fab43972177f2e9
/setup.py
942ef5db97bc494cc7d2110177e34d3a0916a319
[]
no_license
dmose/Selenium-Proxy
f1326b054dbe7e24631f76c419d04d927364e856
e959332a08f4d9d56957ff8ae6370aabc4daec8d
refs/heads/master
2021-01-18T07:48:55.882296
2012-08-10T14:53:51
2012-08-10T14:53:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,217
py
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from setuptools import setup setup(name='SeleniumProxy', version='0.1.0', description='A shim that allows the use of Selenium Bindings with Marionette', author='David Burns', author_email='dburns at mozilladotcom', url='https://github.com/AutomatedTester/Selenium-Proxy', classifiers=['Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Topic :: Software Development :: Testing', 'Topic :: Software Development :: Libraries', 'Programming Language :: Python'], py_modules=['selenium_proxy'], # TODO(David) add Marionette when that is up on Pypi install_requires=["mozrunner==5.2","mozprofile==0.2", "selenium"] )
826d4da8cc659583c4853fb4e2bd9de5bafa1d8d
3d12ddf42d8bf8503792506ff52e7f2e45ecbc76
/prep/evaluate.py
cdfe6218d7ec5552c36ac475e40ec33cf01889f6
[]
no_license
Jinhojeong/Thermal_Display
5f4849410864dc2ddfa43e7d76ae8b51dd31abf8
16f64f373899db381b68c95e274363b9c1aec5fd
refs/heads/main
2023-06-13T03:15:44.526154
2021-07-08T01:29:04
2021-07-08T01:29:04
371,365,383
0
0
null
null
null
null
UTF-8
Python
false
false
2,239
py
import tensorflow as tf import numpy as np from sklearn.model_selection import KFold import matplotlib.pyplot as plt import datetime import os from tqdm import tqdm from config import config #'LSTM40_2hidden_tanhtanh_6432_201109' date = 201130 model_name = '10_2LSTM4020_4hidden_tanhs_641286432_sgfon_201116' model = tf.keras.models.load_model( './models/' + model_name ) benchmark_name = 'rawdata_Al_400_2.npy' benchmark_data = np.load(config.npy_dest_dir+benchmark_name) if config.eval_windowing: init_data = benchmark_data[0,1:].reshape(1,1,config.num_features) benchmark_traj = np.repeat(init_data, config.n_steps, axis=1) extp_size = 1 outputs_ = benchmark_data[0,1:3].reshape(-1,2) else: benchmark_traj = benchmark_data[:config.n_steps,1:].reshape(1,config.n_steps,config.num_features) extp_size = config.n_steps outputs_ = benchmark_data[:config.n_steps,1:3].reshape(-1,2) timesteps = np.shape(benchmark_data)[0] for idx, item in enumerate(config.scaler): benchmark_traj[:,:,idx] = benchmark_traj[:,:,idx]/item for t in tqdm(range(timesteps-extp_size)): predictions = model.predict( benchmark_traj )[0] pre_part = benchmark_traj[:,1:,:] post_part = np.array([predictions[0], predictions[1], benchmark_data[t+extp_size,3]/config.scaler[2], benchmark_data[t+extp_size,4]/config.scaler[3], benchmark_data[t+extp_size,5]/config.scaler[4]]).reshape(1,1,np.shape(benchmark_traj)[2]) benchmark_traj = np.concatenate((pre_part, post_part), axis=1) outputs_ = np.vstack((outputs_, predictions)) x_axis = benchmark_data[:,0][:timesteps] true_hf = benchmark_data[:,1][:timesteps] true_temp = benchmark_data[:,2][:timesteps] est_hf = outputs_[:,0]*config.scaler[0] est_temp = outputs_[:,1]*config.scaler[1] plt.figure() plt.subplot(211) plt.plot(x_axis, true_hf, 'b-', label='True heat flux') plt.plot(x_axis, est_hf, 'g--', label='Estimated heat flux') plt.legend() plt.subplot(212) plt.plot(x_axis, true_temp, 'r-', label='True temperature') plt.plot(x_axis, est_temp, 'k--', label='Estimated temperature') plt.legend() plt.savefig('../figure/{0}/{1}_{2}_extp{3}.png'.format(date, benchmark_name[:-4], model_name, extp_size), dpi=300) plt.show()
cf524498c3c354af1507470178228b9d04709912
9ab59fd67ef2ab343cc3036d2f9d0ad68ab887c5
/Python/word order.py
16a8fbd52ea859f51078c0bf030ace2c343c62d0
[]
no_license
Arifuzzaman-Munaf/HackerRank
ff094dfc6d8a618ab9c54db4460c5190c81583bf
5fd9b6ffa3caf3afddba5d6f35978becf989d3b8
refs/heads/main
2023-06-16T01:09:11.371654
2021-07-14T15:28:53
2021-07-14T15:28:53
385,230,007
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
n = int(input()) distinct = {} for i in range(n): word = input() if word not in distinct : distinct[word] = 1 else : distinct[word] = distinct[word] + 1 print(len(distinct)) for i in distinct.values(): print(i , end=' ')
048383c825e457044d8a854820e5a6f4faa3051e
76b49bab52dc088828816bf00605471af4536dbc
/cliente/tags/releases/es/rel-1.0.0/password/formulario.py
b9161472b2b974dd775f15370ce37cd505855af9
[]
no_license
mboscovich/Kerberus-Control-Parental
a5352d53c588854805f124febf578345f3033ed2
5025078af9ebdcf7b3feb4b0d5efa6cbde6e6a37
refs/heads/master
2020-12-24T16:58:51.288519
2015-05-25T15:18:25
2015-05-25T15:18:25
23,494,363
1
2
null
null
null
null
UTF-8
Python
false
false
6,546
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'formulario.ui' # # Created: Sat Dec 24 18:02:56 2011 # by: PyQt4 UI code generator 4.8.5 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.setWindowModality(QtCore.Qt.ApplicationModal) Form.resize(607, 343) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(Form.sizePolicy().hasHeightForWidth()) Form.setSizePolicy(sizePolicy) Form.setWindowTitle(QtGui.QApplication.translate("Form", "Password de administrador", None, QtGui.QApplication.UnicodeUTF8)) self.verticalLayoutWidget = QtGui.QWidget(Form) self.verticalLayoutWidget.setGeometry(QtCore.QRect(10, 20, 581, 311)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setMargin(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.label = QtGui.QLabel(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(11) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setText(QtGui.QApplication.translate("Form", "Configure la password de Administrador.", None, QtGui.QApplication.UnicodeUTF8)) self.label.setObjectName(_fromUtf8("label")) self.verticalLayout.addWidget(self.label) self.label_2 = QtGui.QLabel(self.verticalLayoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_2.sizePolicy().hasHeightForWidth()) self.label_2.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) self.label_2.setFont(font) self.label_2.setText(QtGui.QApplication.translate("Form", "Esta password le permitirá deshabilitar temporalmente el filtrado de\n" "kerberus y a su vez, le será requerida para desinstalarlo.\n" "Es muy recomendable que la recuerde.", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setScaledContents(False) self.label_2.setWordWrap(False) self.label_2.setObjectName(_fromUtf8("label_2")) self.verticalLayout.addWidget(self.label_2) self.label_passwordActual = QtGui.QLabel(self.verticalLayoutWidget) self.label_passwordActual.setEnabled(True) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) font.setBold(True) font.setWeight(75) self.label_passwordActual.setFont(font) self.label_passwordActual.setText(QtGui.QApplication.translate("Form", "Password actual", None, QtGui.QApplication.UnicodeUTF8)) self.label_passwordActual.setObjectName(_fromUtf8("label_passwordActual")) self.verticalLayout.addWidget(self.label_passwordActual) self.password_actual = QtGui.QLineEdit(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) self.password_actual.setFont(font) self.password_actual.setObjectName(_fromUtf8("password_actual")) self.verticalLayout.addWidget(self.password_actual) self.label_3 = QtGui.QLabel(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) font.setBold(True) font.setWeight(75) self.label_3.setFont(font) self.label_3.setText(QtGui.QApplication.translate("Form", "Password", None, QtGui.QApplication.UnicodeUTF8)) self.label_3.setObjectName(_fromUtf8("label_3")) self.verticalLayout.addWidget(self.label_3) self.password1 = QtGui.QLineEdit(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) self.password1.setFont(font) self.password1.setEchoMode(QtGui.QLineEdit.Password) self.password1.setObjectName(_fromUtf8("password1")) self.verticalLayout.addWidget(self.password1) self.label_4 = QtGui.QLabel(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) font.setBold(True) font.setWeight(75) self.label_4.setFont(font) self.label_4.setText(QtGui.QApplication.translate("Form", "Vuelva a ingresar la password", None, QtGui.QApplication.UnicodeUTF8)) self.label_4.setObjectName(_fromUtf8("label_4")) self.verticalLayout.addWidget(self.label_4) self.password2 = QtGui.QLineEdit(self.verticalLayoutWidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) self.password2.setFont(font) self.password2.setEchoMode(QtGui.QLineEdit.Password) self.password2.setObjectName(_fromUtf8("password2")) self.verticalLayout.addWidget(self.password2) self.boton = QtGui.QPushButton(self.verticalLayoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.boton.sizePolicy().hasHeightForWidth()) self.boton.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setFamily(_fromUtf8("Verdana")) font.setPointSize(10) self.boton.setFont(font) self.boton.setText(QtGui.QApplication.translate("Form", "Aceptar", None, QtGui.QApplication.UnicodeUTF8)) self.boton.setObjectName(_fromUtf8("boton")) self.verticalLayout.addWidget(self.boton) self.label_3.setBuddy(self.password1) self.label_4.setBuddy(self.password2) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): pass
b010903e25916100bf14853c50f2dc3195a2f161
c773ff87e9b0f5e444332b48850f63beee033066
/tests/test_pipeline.py
25b00e475021eacce1654c771166a594e14fc529
[ "Apache-2.0" ]
permissive
DavydovDmitry/absa
f3a3ecd2fbb520c004d98251d22411301ec9aa45
d9da45c2070c00de9ec379dd59f43ff4b5116267
refs/heads/master
2022-12-08T12:27:47.921273
2020-09-05T23:28:39
2020-09-05T23:28:39
293,034,019
2
0
null
null
null
null
UTF-8
Python
false
false
1,686
py
import os from absa.utils.embedding import Embeddings from absa.utils.nlp import NLPPipeline from absa.utils.dump import make_dump, load_dump from absa.io.input.semeval2016 import from_xml from absa.preprocess.dependency import dep_parse_reviews from . import SemEval2016_filename, test_dumps_path, RAW_POSTFIX, DEP_POSTFIX, SemEval2016_pathway def test_xml_parsing_basic(): vocabulary = Embeddings.vocabulary reviews = from_xml(vocabulary=vocabulary, pathway=SemEval2016_pathway) make_dump(obj=reviews, pathway=os.path.join(test_dumps_path, SemEval2016_filename + RAW_POSTFIX)) def test_dep_parsing_basic(): nlp = NLPPipeline.nlp reviews = load_dump(pathway=os.path.join(test_dumps_path, SemEval2016_filename + RAW_POSTFIX)) parsed_reviews = dep_parse_reviews(texts=reviews, nlp=nlp) make_dump(obj=parsed_reviews, pathway=os.path.join(test_dumps_path, SemEval2016_filename + DEP_POSTFIX)) def test_dep_parsing(): reviews = load_dump(pathway=os.path.join(test_dumps_path, SemEval2016_filename + RAW_POSTFIX)) parsed_reviews = load_dump(pathway=os.path.join(test_dumps_path, SemEval2016_filename + DEP_POSTFIX)) for raw_review, parsed_review in zip(reviews, parsed_reviews): for raw_sentence, parsed_sentence in zip(raw_review, parsed_review): if not parsed_sentence.is_opinions_contain_unknown(): parsed_sentence = parsed_sentence.to_specified_sentence(text=raw_sentence.text) assert raw_sentence == parsed_sentence
b36eebd7908fc5bfc69460c3026340ba9b970673
79bd286af3547115f59944f6aee24d0a8d45db04
/ex/sml231n/W1516_A3/cs231n/classifiers/rnn.py
c65d423806ea6927f22c6dd18575e2bd71f1bb18
[]
no_license
rxl194/cpcv102
aa003c15cbc25d86582b7804af55a28322403f4f
be200650701d34087afabf3cbe97e1f1ea5c383f
refs/heads/master
2023-02-25T15:01:54.214787
2022-09-24T23:16:23
2022-09-24T23:16:23
82,126,640
0
0
null
2023-02-10T20:22:41
2017-02-16T01:47:21
Jupyter Notebook
UTF-8
Python
false
false
12,694
py
import numpy as np from cs231n.layers import * from cs231n.rnn_layers import * class CaptioningRNN(object): """ A CaptioningRNN produces captions from image features using a recurrent neural network. The RNN receives input vectors of size D, has a vocab size of V, works on sequences of length T, has an RNN hidden dimension of H, uses word vectors of dimension W, and operates on minibatches of size N. Note that we don't use any regularization for the CaptioningRNN. """ def __init__(self, word_to_idx, input_dim=512, wordvec_dim=128, hidden_dim=128, cell_type='rnn', dtype=np.float32): """ Construct a new CaptioningRNN instance. Inputs: - word_to_idx: A dictionary giving the vocabulary. It contains V entries, and maps each string to a unique integer in the range [0, V). - input_dim: Dimension D of input image feature vectors. - wordvec_dim: Dimension W of word vectors. - hidden_dim: Dimension H for the hidden state of the RNN. - cell_type: What type of RNN to use; either 'rnn' or 'lstm'. - dtype: numpy datatype to use; use float32 for training and float64 for numeric gradient checking. """ if cell_type not in {'rnn', 'lstm'}: raise ValueError('Invalid cell_type "%s"' % cell_type) self.cell_type = cell_type self.dtype = dtype self.word_to_idx = word_to_idx self.idx_to_word = {i: w for w, i in word_to_idx.iteritems()} self.params = {} vocab_size = len(word_to_idx) self._null = word_to_idx['<NULL>'] self._start = word_to_idx.get('<START>', None) self._end = word_to_idx.get('<END>', None) # Initialize word vectors self.params['W_embed'] = np.random.randn(vocab_size, wordvec_dim) self.params['W_embed'] /= 100 # Initialize CNN -> hidden state projection parameters self.params['W_proj'] = np.random.randn(input_dim, hidden_dim) self.params['W_proj'] /= np.sqrt(input_dim) self.params['b_proj'] = np.zeros(hidden_dim) # Initialize parameters for the RNN dim_mul = {'lstm': 4, 'rnn': 1}[cell_type] self.params['Wx'] = np.random.randn(wordvec_dim, dim_mul * hidden_dim) self.params['Wx'] /= np.sqrt(wordvec_dim) self.params['Wh'] = np.random.randn(hidden_dim, dim_mul * hidden_dim) self.params['Wh'] /= np.sqrt(hidden_dim) self.params['b'] = np.zeros(dim_mul * hidden_dim) # Initialize output to vocab weights self.params['W_vocab'] = np.random.randn(hidden_dim, vocab_size) self.params['W_vocab'] /= np.sqrt(hidden_dim) self.params['b_vocab'] = np.zeros(vocab_size) # Cast parameters to correct dtype for k, v in self.params.iteritems(): self.params[k] = v.astype(self.dtype) def loss(self, features, captions): """ Compute training-time loss for the RNN. We input image features and ground-truth captions for those images, and use an RNN (or LSTM) to compute loss and gradients on all parameters. Inputs: - features: Input image features, of shape (N, D) - captions: Ground-truth captions; an integer array of shape (N, T) where each element is in the range 0 <= y[i, t] < V Returns a tuple of: - loss: Scalar loss - grads: Dictionary of gradients parallel to self.params """ # Cut captions into two pieces: captions_in has everything but the last word # and will be input to the RNN; captions_out has everything but the first # word and this is what we will expect the RNN to generate. These are offset # by one relative to each other because the RNN should produce word (t+1) # after receiving word t. The first element of captions_in will be the START # token, and the first element of captions_out will be the first word. captions_in = captions[:, :-1] captions_out = captions[:, 1:] # You'll need this mask = (captions_out != self._null) # Weight and bias for the affine transform from image features to initial # hidden state W_proj, b_proj = self.params['W_proj'], self.params['b_proj'] # Word embedding matrix W_embed = self.params['W_embed'] # Input-to-hidden, hidden-to-hidden, and biases for the RNN Wx, Wh, b = self.params['Wx'], self.params['Wh'], self.params['b'] # Weight and bias for the hidden-to-vocab transformation. W_vocab, b_vocab = self.params['W_vocab'], self.params['b_vocab'] loss, grads = 0.0, {} ############################################################################ # TODO: Implement the forward and backward passes for the CaptioningRNN. # # In the forward pass you will need to do the following: # # (1) Use an affine transformation to compute the initial hidden state # # from the image features. This should produce an array of shape (N, H)# # (2) Use a word embedding layer to transform the words in captions_in # # from indices to vectors, giving an array of shape (N, T, W). # # (3) Use either a vanilla RNN or LSTM (depending on self.cell_type) to # # process the sequence of input word vectors and produce hidden state # # vectors for all timesteps, producing an array of shape (N, T, H). # # (4) Use a (temporal) affine transformation to compute scores over the # # vocabulary at every timestep using the hidden states, giving an # # array of shape (N, T, V). # # (5) Use (temporal) softmax to compute loss using captions_out, ignoring # # the points where the output word is <NULL> using the mask above. # # # # In the backward pass you will need to compute the gradient of the loss # # with respect to all model parameters. Use the loss and grads variables # # defined above to store loss and gradients; grads[k] should give the # # gradients for self.params[k]. # ############################################################################ # Forward pass # Step 1 h0 = np.dot(features, W_proj) + b_proj # Step 2 x, cache_embedding = word_embedding_forward(captions_in, W_embed) # Step 3 if self.cell_type == 'rnn': h, cache_rnn = rnn_forward(x, h0, Wx, Wh, b) elif self.cell_type == 'lstm': h, cache_rnn = lstm_forward(x, h0, Wx, Wh, b) else: raise ValueError('%s not implemented' % (self.cell_type)) # Step 4 scores, cache_scores = temporal_affine_forward(h, W_vocab, b_vocab) # Step 5 loss, dscores = temporal_softmax_loss( scores, captions_out, mask, verbose=False) # Backward pass grads = dict.fromkeys(self.params) # Backaward into step 4 dh, dW_vocab, db_vocab = temporal_affine_backward( dscores, cache_scores) # Backward into step 3 if self.cell_type == 'rnn': dx, dh0, dWx, dWh, db = rnn_backward(dh, cache_rnn) elif self.cell_type == 'lstm': dx, dh0, dWx, dWh, db = lstm_backward(dh, cache_rnn) else: raise ValueError('%s not implemented' % (self.cell_type)) # Backward into step 2 dW_embed = word_embedding_backward(dx, cache_embedding) # Backward into step 1 dW_proj = np.dot(features.T, dh0) db_proj = np.sum(dh0, axis=0) # Gather everythhing in the dict grads['W_proj'] = dW_proj grads['b_proj'] = db_proj grads['W_embed'] = dW_embed grads['Wx'] = dWx grads['Wh'] = dWh grads['b'] = db grads['W_vocab'] = dW_vocab grads['b_vocab'] = db_vocab ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads def sample(self, features, max_length=30): """ Run a test-time forward pass for the model, sampling captions for input feature vectors. At each timestep, we embed the current word, pass it and the previous hidden state to the RNN to get the next hidden state, use the hidden state to get scores for all vocab words, and choose the word with the highest score as the next word. The initial hidden state is computed by applying an affine transform to the input image features, and the initial word is the <START> token. For LSTMs you will also have to keep track of the cell state; in that case the initial cell state should be zero. Inputs: - features: Array of input image features of shape (N, D). - max_length: Maximum length T of generated captions. Returns: - captions: Array of shape (N, max_length) giving sampled captions, where each element is an integer in the range [0, V). The first element of captions should be the first sampled word, not the <START> token. """ N = features.shape[0] captions = self._null * np.ones((N, max_length), dtype=np.int32) # Unpack parameters W_proj, b_proj = self.params['W_proj'], self.params['b_proj'] W_embed = self.params['W_embed'] Wx, Wh, b = self.params['Wx'], self.params['Wh'], self.params['b'] W_vocab, b_vocab = self.params['W_vocab'], self.params['b_vocab'] ########################################################################### # TODO: Implement test-time sampling for the model. You will need to # # initialize the hidden state of the RNN by applying the learned affine # # transform to the input image features. The first word that you feed to # # the RNN should be the <START> token; its value is stored in the # # variable self._start. At each timestep you will need to do to: # # (1) Embed the previous word using the learned word embeddings # # (2) Make an RNN step using the previous hidden state and the embedded # # current word to get the next hidden state. # # (3) Apply the learned affine transformation to the next hidden state to # # get scores for all words in the vocabulary # # (4) Select the word with the highest score as the next word, writing it # # to the appropriate slot in the captions variable # # # # For simplicity, you do not need to stop generating after an <END> token # # is sampled, but you can if you want to. # # # # HINT: You will not be able to use the rnn_forward or lstm_forward # # functions; you'll need to call rnn_step_forward or lstm_step_forward in # # a loop. # ########################################################################### # Get first hidden state h0 = np.dot(features, W_proj) + b_proj captions[:, 0] = self._start prev_h = h0 # Previous hidden state prev_c = np.zeros_like(h0) # Previous cell state # Current word (start word) capt = self._start * np.ones((N, 1), dtype=np.int32) for t in xrange(max_length): # Let's go over the sequence word_embed, _ = word_embedding_forward( capt, W_embed) # Embedded current word if self.cell_type == 'rnn': # Run a step of rnn h, _ = rnn_step_forward(np.squeeze( word_embed), prev_h, Wx, Wh, b) elif self.cell_type == 'lstm': # Run a step of lstm h, c, _ = lstm_step_forward(np.squeeze( word_embed), prev_h, prev_c, Wx, Wh, b) else: raise ValueError('%s not implemented' % (self.cell_type)) # Compute the score distrib over the dictionary scores, _ = temporal_affine_forward( h[:, np.newaxis, :], W_vocab, b_vocab) # Squeeze unecessari dimension and get the best word idx idx_best = np.squeeze(np.argmax(scores, axis=2)) # Put it in the captions captions[:, t] = idx_best # Update the hidden state, the cell state (if lstm) and the current # word prev_h = h if self.cell_type == 'lstm': prev_c = c capt = captions[:, t] ############################################################################ # END OF YOUR CODE # ############################################################################ return captions
00a381aeb7167105dd238935079539892169d20b
903cbb9e85a4a236086b07a9a76413431955359e
/2015/Day22/day22.py
667f344c9a0fe9346b8699e997820d53f6705f4a
[]
no_license
mjmeli/AdventOfCode
80a07cd18404bf315a6dd19f384f178ec47cf8b1
5f7baedbb6bec4e53bc7e94a5c268b79d70cd159
refs/heads/master
2021-01-10T06:46:08.010431
2016-12-02T16:56:32
2016-12-02T16:56:32
47,277,975
0
0
null
2015-12-07T00:08:10
2015-12-02T17:48:20
C
UTF-8
Python
false
false
3,618
py
import sys, random, time, copy from spells import * from players import * from enum import Enum """ Possible results from each turn """ class TurnResult(Enum): none = 0 player_cant_cast = 1 player_dead = 2 boss_dead = 3 """ Execute a Player's turn """ def playerTurn(player, boss, spell, hardMode): # If in hard mode (part 2), reduce HP by 1 at beginning if hardMode: player.health = player.health - 1 if player.isDead(): return TurnResult.player_dead # Cast all effects at the beginning of the turn player.applyEffects(boss) # Ensure the player can cast; if so, cast the spell if player.canCast(spell): player.cast(spell, boss) else: return TurnResult.player_cant_cast # Check if this cast has killed the boss if boss.isDead(): return TurnResult.boss_dead # Remove any effects that expire in this turn player.removeEffects() return TurnResult.none """ Execute a Boss' turn """ def bossTurn(player, boss): # Cast all effects at the beginning of the turn and see if they kill the boss player.applyEffects(boss) if boss.isDead(): return TurnResult.boss_dead # Have the boss attack the player and see if the player is dead boss.attack(player) if player.isDead(): return TurnResult.player_dead """ Driving code for solving the problem. First, read command line input for the starting conditions. Then, simulate parts 1 and 2 by randomly carrying out a battle. In each player's turn, a random spell is chosen and cast. When the boss is killed, the amount of mana spent is tallied and compared to the running minimum. """ # Read command line input for starting conditions playerHP = int(sys.argv[1]) playerMana = int(sys.argv[2]) bossHP = int(sys.argv[3]) bossDamage = int(sys.argv[4]) # Randomly simulate the battle many times to converge on the solution numIterations = 1000000 spells = [MagicMissile(), Drain(), Shield(), Poison(), Recharge()] for j in range(1,3): minMana = 9999 hardMode = (j == 2) for i in range(numIterations): completion = i / numIterations print("Progress: {:2.2%}".format(completion), end="\r") # Reset players to starting conditions player = Player(playerHP, playerMana) boss = Boss(bossHP, bossDamage) # Play until a result ends the game while True: # Choose a random spell to cast choice = copy.deepcopy(random.choice(spells)) # Player goes first. Check if the boss is dead or mana runs out. playerRes = playerTurn(player, boss, choice, hardMode) if playerRes == TurnResult.boss_dead and player.manaSpent < minMana: minMana = player.manaSpent # update minMana if boss dies break elif playerRes == TurnResult.player_cant_cast or playerRes == TurnResult.player_dead: break # player loses if can't cast or dead # Boss goes next. Check if the boss or player dies. bossRes = bossTurn(player, boss) if playerRes == TurnResult.boss_dead and player.manaSpent < minMana: minMana = player.manaSpent # update minMana if boss dies break elif bossRes == TurnResult.player_dead: break # player loses if dies # Stop early if current mana spent is larger than minimum if (player.manaSpent > minMana): break # Print results print("Part %d: Minimum mana is %d." % (j, minMana))
32a9080820f79c628edcd8a11fb345d860e9800a
28b1ed1359bd9539f9a15b64663652ec4eb3f284
/Week_12/matplotlib_example.py
301f43223dac2683ae8891d160b23ec806636397
[]
no_license
achapkowski/Python_for_GIS_and_RS
5fb68cbe1d46f28487e2a41099cf42b942587afa
9b5d8da6b7bdbbfaa2f45b20d8704c317a86e785
refs/heads/master
2021-01-20T02:12:01.785780
2017-04-24T22:44:08
2017-04-24T22:44:08
89,385,947
1
0
null
2017-04-25T17:02:35
2017-04-25T17:02:35
null
UTF-8
Python
false
false
1,115
py
import xlrd file_and_path = r"C:\Users\greg6750\Documents\IPython Notebooks\Python_for_GIS_and_RS\Week_12\SENZA_0_SUNAA_0_CORN.xlsx" print("Reading Workbook") workbook = xlrd.open_workbook(file_and_path) worksheet = workbook.sheet_by_index(0) freq = [] g = [] t = [] print("Creating Arrays") for row in range(worksheet.nrows): if row>0: #Frequency freq_cell = worksheet.cell(row,0) freq.append(freq_cell.value) GRR_cell = worksheet.cell(row,8) g.append(GRR_cell.value) TOA_cell = worksheet.cell(row,14) t.append(TOA_cell.value) #For plotting, import matplotlib from matplotlib import pyplot as plt #import matplotlib.pyplot as plt ##Basic single plot #plt.plot(freq, g) #plt.show() ####Multiple plots ##plt.subplot(211) ###plt.figure(1) ##plt.plot(freq, g, 'b-o') ##plt.subplot(2, 1, 2) ##plt.plot(freq, t, 'r-o') ##plt.show() ##Typing numpy and matplotlib together import numpy as np gaussian = np.random.normal(0, 1, 100000) plt.hist(gaussian, bins=100) #print "Mean: %f Standard Deviation: %f" % (gaussian.mean(), gaussian.std()) plt.show()
d86627e50f23f2b9e75214dbd1da6239295523e1
4e7faaa81c7d46e3a3f98fe8ae3686809485a5f5
/main.spec
a2b2a2f4ecdca508da6f590f7771e7bc466aa96c
[]
no_license
sayntan4u/phoenix
7122f32f9ba8c6e8dbe6507ef3ad0f7806898f2d
438903301cc057dc425f04cd120ae3f373e58e30
refs/heads/main
2023-07-11T07:40:30.676620
2021-08-22T16:43:52
2021-08-22T16:43:52
398,310,782
0
0
null
null
null
null
UTF-8
Python
false
false
1,213
spec
# -*- mode: python ; coding: utf-8 -*- block_cipher = None a = Analysis(['main.py'], pathex=['C:\\Users\\Sayantan\\Desktop\\test\\generated_code'], binaries=[], datas=[], hiddenimports=[], hookspath=[], hooksconfig={}, runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) exe = EXE(pyz, a.scripts, [], exclude_binaries=True, name='main', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, console=True, disable_windowed_traceback=False, target_arch=None, codesign_identity=None, entitlements_file=None ) coll = COLLECT(exe, a.binaries, a.zipfiles, a.datas, strip=False, upx=True, upx_exclude=[], name='main')
cc2c2fe551e045dfe76ee595c5264c0e7f1b2859
1fc4a82d425568b983faaf15dd45caff43d557e5
/src/pythongraph/pygraph/algorithms/heuristics/Euclidean.py
e4f32f024ab19f0dfdbf620fb78b56d5c7e43179
[ "MIT" ]
permissive
rajeshhcu/TemporalPlanning
72464adb39fba88c7ed7827c5d1e659892477857
caa87d40e5d427c48b2a3442d1d0235f4864ba9c
refs/heads/master
2020-12-31T07:33:53.185920
2017-03-29T02:42:08
2017-03-29T02:42:08
86,528,906
0
0
null
null
null
null
UTF-8
Python
false
false
3,469
py
# Copyright (c) 2008-2009 Pedro Matiello <[email protected]> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """ A* heuristic for euclidean graphs. """ # Imports import warnings class euclidean(object): """ A* heuristic for Euclidean graphs. This heuristic has three requirements: 1. All nodes should have the attribute 'position'; 2. The weight of all edges should be the euclidean distance between the nodes it links; 3. The C{optimize()} method should be called before the heuristic search. A small example for clarification: >>> g = graph.graph() >>> g.add_nodes(['A','B','C']) >>> g.add_node_attribute('A', ('position',(0,0))) >>> g.add_node_attribute('B', ('position',(1,1))) >>> g.add_node_attribute('C', ('position',(0,2))) >>> g.add_edge('A','B', wt=2) >>> g.add_edge('B','C', wt=2) >>> g.add_edge('A','C', wt=4) >>> h = graph.heuristics.euclidean() >>> h.optimize(g) >>> g.heuristic_search('A', 'C', h) """ def __init__(self): """ Initialize the heuristic object. """ self.distances = {} def optimize(self, graph): """ Build a dictionary mapping each pair of nodes to a number (the distance between them). @type graph: graph @param graph: Graph. """ for start in graph.nodes(): for end in graph.nodes(): for each in graph.node_attributes(start): if (each[0] == 'position'): start_attr = each[1] break for each in graph.node_attributes(end): if (each[0] == 'position'): end_attr = each[1] break dist = 0 for i in xrange(len(start_attr)): dist = dist + (float(start_attr[i]) - float(end_attr[i]))**2 self.distances[(start,end)] = dist def __call__(self, start, end): """ Estimate how far start is from end. @type start: node @param start: Start node. @type end: node @param end: End node. """ assert len(self.distances.keys()) > 0, "You need to optimize this heuristic for your graph before it can be used to estimate." return self.distances[(start,end)]
1d2727bcd9c1d0f2832ab7c4d16b0e3365b13eaa
5a28841b8598ad3bfc9aac824a2d556278f006aa
/rgbd_seg/models/encoders/enhance_modules/registry.py
771c2051c5d35fef2e2cab50b2a5a6a802d6120a
[ "Apache-2.0" ]
permissive
thanyu-hub/ShapeConv
ac60b332c89ea7c51f6d1e3fd310ea200123e9a2
25bee65af4952c10ed4e24f6556765654e56575f
refs/heads/master
2023-07-15T02:02:49.077406
2021-08-30T11:13:21
2021-08-30T11:13:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
from rgbd_seg.utils import Registry ENHANCE_MODULES = Registry('enhance_module')
c674b0a58e029302461e9515a02b8d8294b99a98
e0045eec29aab56212c00f9293a21eb3b4b9fe53
/website_sale/models/product.py
a5439d9d8d7175fb044e2fceb1e9f39ddba127a7
[]
no_license
tamam001/ALWAFI_P1
a3a9268081b9befc668a5f51c29ce5119434cc21
402ea8687c607fbcb5ba762c2020ebc4ee98e705
refs/heads/master
2020-05-18T08:16:50.583264
2019-04-30T14:43:46
2019-04-30T14:43:46
184,268,686
0
0
null
null
null
null
UTF-8
Python
false
false
20,408
py
# -*- coding: utf-8 -*- # Part of ALWAFI. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, tools, _ from odoo.addons import decimal_precision as dp from odoo.addons.website.models import ir_http from odoo.tools.translate import html_translate class ProductStyle(models.Model): _name = "product.style" _description = 'Product Style' name = fields.Char(string='Style Name', required=True) html_class = fields.Char(string='HTML Classes') class ProductPricelist(models.Model): _inherit = "product.pricelist" def _default_website(self): """ Find the first company's website, if there is one. """ company_id = self.env.user.company_id.id domain = [('company_id', '=', company_id)] return self.env['website'].search(domain, limit=1) website_id = fields.Many2one('website', string="Website", default=_default_website) code = fields.Char(string='E-commerce Promotional Code', groups="base.group_user") selectable = fields.Boolean(help="Allow the end user to choose this price list") def clear_cache(self): # website._get_pl_partner_order() is cached to avoid to recompute at each request the # list of available pricelists. So, we need to invalidate the cache when # we change the config of website price list to force to recompute. website = self.env['website'] website._get_pl_partner_order.clear_cache(website) @api.model def create(self, data): res = super(ProductPricelist, self).create(data) self.clear_cache() return res @api.multi def write(self, data): res = super(ProductPricelist, self).write(data) self.clear_cache() return res @api.multi def unlink(self): res = super(ProductPricelist, self).unlink() self.clear_cache() return res def _get_partner_pricelist_multi_search_domain_hook(self): domain = super(ProductPricelist, self)._get_partner_pricelist_multi_search_domain_hook() website = ir_http.get_request_website() if website: domain += self._get_website_pricelists_domain(website.id) return domain def _get_partner_pricelist_multi_filter_hook(self): res = super(ProductPricelist, self)._get_partner_pricelist_multi_filter_hook() website = ir_http.get_request_website() if website: res = res.filtered(lambda pl: pl._is_available_on_website(website.id)) return res @api.multi def _is_available_on_website(self, website_id): """ To be able to be used on a website, a pricelist should either: - Have its `website_id` set to current website (specific pricelist). - Have no `website_id` set and should be `selectable` (generic pricelist) or should have a `code` (generic promotion). Note: A pricelist without a website_id, not selectable and without a code is a backend pricelist. Change in this method should be reflected in `_get_website_pricelists_domain`. """ self.ensure_one() return self.website_id.id == website_id or (not self.website_id and (self.selectable or self.sudo().code)) def _get_website_pricelists_domain(self, website_id): ''' Check above `_is_available_on_website` for explanation. Change in this method should be reflected in `_is_available_on_website`. ''' return [ '|', ('website_id', '=', website_id), '&', ('website_id', '=', False), '|', ('selectable', '=', True), ('code', '!=', False), ] def _get_partner_pricelist_multi(self, partner_ids, company_id=None): ''' If `property_product_pricelist` is read from website, we should use the website's company and not the user's one. Passing a `company_id` to super will avoid using the current user's company. ''' website = ir_http.get_request_website() if not company_id and website: company_id = website.company_id.id return super(ProductPricelist, self)._get_partner_pricelist_multi(partner_ids, company_id) class ProductPublicCategory(models.Model): _name = "product.public.category" _inherit = ["website.seo.metadata", "website.multi.mixin"] _description = "Website Product Category" _order = "sequence, name" name = fields.Char(required=True, translate=True) parent_id = fields.Many2one('product.public.category', string='Parent Category', index=True) child_id = fields.One2many('product.public.category', 'parent_id', string='Children Categories') sequence = fields.Integer(help="Gives the sequence order when displaying a list of product categories.") # NOTE: there is no 'default image', because by default we don't show # thumbnails for categories. However if we have a thumbnail for at least one # category, then we display a default image on the other, so that the # buttons have consistent styling. # In this case, the default image is set by the js code. image = fields.Binary(attachment=True, help="This field holds the image used as image for the category, limited to 1024x1024px.") image_medium = fields.Binary(string='Medium-sized image', attachment=True, help="Medium-sized image of the category. It is automatically " "resized as a 128x128px image, with aspect ratio preserved. " "Use this field in form views or some kanban views.") image_small = fields.Binary(string='Small-sized image', attachment=True, help="Small-sized image of the category. It is automatically " "resized as a 64x64px image, with aspect ratio preserved. " "Use this field anywhere a small image is required.") @api.model def create(self, vals): tools.image_resize_images(vals) return super(ProductPublicCategory, self).create(vals) @api.multi def write(self, vals): tools.image_resize_images(vals) return super(ProductPublicCategory, self).write(vals) @api.constrains('parent_id') def check_parent_id(self): if not self._check_recursion(): raise ValueError(_('Error ! You cannot create recursive categories.')) @api.multi def name_get(self): res = [] for category in self: names = [category.name] parent_category = category.parent_id while parent_category: names.append(parent_category.name) parent_category = parent_category.parent_id res.append((category.id, ' / '.join(reversed(names)))) return res class ProductTemplate(models.Model): _inherit = ["product.template", "website.seo.metadata", 'website.published.multi.mixin', 'rating.mixin'] _name = 'product.template' _mail_post_access = 'read' website_description = fields.Html('Description for the website', sanitize_attributes=False, translate=html_translate) alternative_product_ids = fields.Many2many('product.template', 'product_alternative_rel', 'src_id', 'dest_id', string='Alternative Products', help='Suggest alternatives to your customer' '(upsell strategy).Those product show up on the product page.') accessory_product_ids = fields.Many2many('product.product', 'product_accessory_rel', 'src_id', 'dest_id', string='Accessory Products', help='Accessories show up when the customer' 'reviews the cart before payment (cross-sell strategy).') website_size_x = fields.Integer('Size X', default=1) website_size_y = fields.Integer('Size Y', default=1) website_style_ids = fields.Many2many('product.style', string='Styles') website_sequence = fields.Integer('Website Sequence', help="Determine the display order in the Website E-commerce", default=lambda self: self._default_website_sequence()) public_categ_ids = fields.Many2many('product.public.category', string='Website Product Category', help="The product will be available in each mentioned e-commerce category. Go to" "Shop > Customize and enable 'E-commerce categories' to view all e-commerce categories.") product_image_ids = fields.One2many('product.image', 'product_tmpl_id', string='Images') # website_price deprecated, directly use _get_combination_info instead website_price = fields.Float('Website price', compute='_website_price', digits=dp.get_precision('Product Price')) # website_public_price deprecated, directly use _get_combination_info instead website_public_price = fields.Float('Website public price', compute='_website_price', digits=dp.get_precision('Product Price')) # website_price_difference deprecated, directly use _get_combination_info instead website_price_difference = fields.Boolean('Website price difference', compute='_website_price') def _website_price(self): current_website = self.env['website'].get_current_website() for template in self.with_context(website_id=current_website.id): res = template._get_combination_info() template.website_price = res.get('price') template.website_public_price = res.get('list_price') template.website_price_difference = res.get('has_discounted_price') @api.multi def _has_no_variant_attributes(self): """Return whether this `product.template` has at least one no_variant attribute. :return: True if at least one no_variant attribute, False otherwise :rtype: bool """ self.ensure_one() return any(a.create_variant == 'no_variant' for a in self._get_valid_product_attributes()) @api.multi def _has_is_custom_values(self): self.ensure_one() """Return whether this `product.template` has at least one is_custom attribute value. :return: True if at least one is_custom attribute value, False otherwise :rtype: bool """ return any(v.is_custom for v in self._get_valid_product_attribute_values()) @api.multi def _is_quick_add_to_cart_possible(self, parent_combination=None): """ It's possible to quickly add to cart if there's no optional product, there's only one possible combination and no value is set to is_custom. Attributes set to dynamic or no_variant don't have to be tested specifically because they will be taken into account when checking for the possible combinations. :param parent_combination: combination from which `self` is an optional or accessory product :type parent_combination: recordset `product.template.attribute.value` :return: True if it's possible to quickly add to cart, else False :rtype: bool """ self.ensure_one() if not self._is_add_to_cart_possible(parent_combination): return False gen = self._get_possible_combinations(parent_combination) first_possible_combination = next(gen) if next(gen, False) is not False: # there are at least 2 possible combinations. return False if self._has_is_custom_values(): return False if self.optional_product_ids.filtered(lambda p: p._is_add_to_cart_possible(first_possible_combination)): return False return True @api.multi def _get_possible_variants_sorted(self, parent_combination=None): """Return the sorted recordset of variants that are possible. The order is based on the order of the attributes and their values. See `_get_possible_variants` for the limitations of this method with dynamic or no_variant attributes, and also for a warning about performances. :param parent_combination: combination from which `self` is an optional or accessory product :type parent_combination: recordset `product.template.attribute.value` :return: the sorted variants that are possible :rtype: recordset of `product.product` """ self.ensure_one() def _sort_key_attribute_value(value): # if you change this order, keep it in sync with _order from `product.attribute` return (value.attribute_id.sequence, value.attribute_id.id) def _sort_key_variant(variant): """ We assume all variants will have the same attributes, with only one value for each. - first level sort: same as "product.attribute"._order - second level sort: same as "product.attribute.value"._order """ keys = [] for attribute in variant.attribute_value_ids.sorted(_sort_key_attribute_value): # if you change this order, keep it in sync with _order from `product.attribute.value` keys.append(attribute.sequence) keys.append(attribute.id) return keys return self._get_possible_variants(parent_combination).sorted(_sort_key_variant) @api.multi def _get_combination_info(self, combination=False, product_id=False, add_qty=1, pricelist=False, parent_combination=False, only_template=False): """Override for website, where we want to: - take the website pricelist if no pricelist is set - apply the b2b/b2c setting to the result This will work when adding website_id to the context, which is done automatically when called from routes with website=True. """ self.ensure_one() current_website = False if self.env.context.get('website_id'): current_website = self.env['website'].get_current_website() if not pricelist: pricelist = current_website.get_current_pricelist() combination_info = super(ProductTemplate, self)._get_combination_info( combination=combination, product_id=product_id, add_qty=add_qty, pricelist=pricelist, parent_combination=parent_combination, only_template=only_template) if self.env.context.get('website_id'): partner = self.env.user.partner_id company_id = current_website.company_id product = self.env['product.product'].browse(combination_info['product_id']) or self tax_display = self.env.user.has_group('account.group_show_line_subtotals_tax_excluded') and 'total_excluded' or 'total_included' taxes = partner.property_account_position_id.map_tax(product.sudo().taxes_id.filtered(lambda x: x.company_id == company_id), product, partner) # The list_price is always the price of one. quantity_1 = 1 price = taxes.compute_all(combination_info['price'], pricelist.currency_id, quantity_1, product, partner)[tax_display] if pricelist.discount_policy == 'without_discount': list_price = taxes.compute_all(combination_info['list_price'], pricelist.currency_id, quantity_1, product, partner)[tax_display] else: list_price = price has_discounted_price = pricelist.currency_id.compare_amounts(list_price, price) == 1 combination_info.update( price=price, list_price=list_price, has_discounted_price=has_discounted_price, ) return combination_info @api.multi def _create_first_product_variant(self, log_warning=False): """Create if necessary and possible and return the first product variant for this template. :param log_warning: whether a warning should be logged on fail :type log_warning: bool :return: the first product variant or none :rtype: recordset of `product.product` """ return self._create_product_variant(self._get_first_possible_combination(), log_warning) @api.multi def _get_current_company_fallback(self, **kwargs): """Override: if a website is set on the product or given, fallback to the company of the website. Otherwise use the one from parent method.""" res = super(ProductTemplate, self)._get_current_company_fallback(**kwargs) website = self.website_id or kwargs.get('website') return website and website.company_id or res def _default_website_sequence(self): self._cr.execute("SELECT MIN(website_sequence) FROM %s" % self._table) min_sequence = self._cr.fetchone()[0] return min_sequence and min_sequence - 1 or 10 def set_sequence_top(self): self.website_sequence = self.sudo().search([], order='website_sequence desc', limit=1).website_sequence + 1 def set_sequence_bottom(self): self.website_sequence = self.sudo().search([], order='website_sequence', limit=1).website_sequence - 1 def set_sequence_up(self): previous_product_tmpl = self.sudo().search( [('website_sequence', '>', self.website_sequence), ('website_published', '=', self.website_published)], order='website_sequence', limit=1) if previous_product_tmpl: previous_product_tmpl.website_sequence, self.website_sequence = self.website_sequence, previous_product_tmpl.website_sequence else: self.set_sequence_top() def set_sequence_down(self): next_prodcut_tmpl = self.search([('website_sequence', '<', self.website_sequence), ('website_published', '=', self.website_published)], order='website_sequence desc', limit=1) if next_prodcut_tmpl: next_prodcut_tmpl.website_sequence, self.website_sequence = self.website_sequence, next_prodcut_tmpl.website_sequence else: return self.set_sequence_bottom() def _default_website_meta(self): res = super(ProductTemplate, self)._default_website_meta() res['default_opengraph']['og:description'] = res['default_twitter']['twitter:description'] = self.description_sale res['default_opengraph']['og:title'] = res['default_twitter']['twitter:title'] = self.name res['default_opengraph']['og:image'] = res['default_twitter']['twitter:image'] = "/web/image/product.template/%s/image" % (self.id) return res @api.multi def _compute_website_url(self): super(ProductTemplate, self)._compute_website_url() for product in self: product.website_url = "/shop/product/%s" % (product.id,) class Product(models.Model): _inherit = "product.product" website_id = fields.Many2one(related='product_tmpl_id.website_id', readonly=False) # website_price deprecated, directly use _get_combination_info instead website_price = fields.Float('Website price', compute='_website_price', digits=dp.get_precision('Product Price')) # website_public_price deprecated, directly use _get_combination_info instead website_public_price = fields.Float('Website public price', compute='_website_price', digits=dp.get_precision('Product Price')) # website_price_difference deprecated, directly use _get_combination_info instead website_price_difference = fields.Boolean('Website price difference', compute='_website_price') def _website_price(self): for product in self: res = product._get_combination_info_variant() product.website_price = res.get('price') product.website_public_price = res.get('list_price') product.website_price_difference = res.get('has_discounted_price') @api.multi def website_publish_button(self): self.ensure_one() return self.product_tmpl_id.website_publish_button() class ProductImage(models.Model): _name = 'product.image' _description = 'Product Image' name = fields.Char('Name') image = fields.Binary('Image', attachment=True) product_tmpl_id = fields.Many2one('product.template', 'Related Product', copy=True)
b9d1aac37da008912ab199a5366e09629d26f0ea
90d9af671b450db0c601b97a09a7b83d48093474
/base/urls.py
37891abf98597cde7635fb5896b1001857819e38
[]
no_license
Kailash-Sankar/agog
24a4ff95f607d2c43ce7fe4d435b8ff769ac04bb
2a94bdb471f38de693a98fd5b07c4c84dbada278
refs/heads/master
2020-12-24T12:32:56.995381
2018-11-11T09:32:12
2018-11-11T09:32:12
72,984,097
0
0
null
null
null
null
UTF-8
Python
false
false
1,352
py
from django.conf.urls import url from . import views urlpatterns = [ #Home url(r'^$', views.home, name='home'), url(r'^dashboard/$', views.dashboard, name='dashboard'), #Auth url(r'^login/$', views.user_login, name='login'), url(r'^logout/$', views.user_logout, name='logout'), #meta debug url(r'^meta/$', views.display_meta, name='meta'), #Views url(r'^ask/$', views.ask, name='ask'), url(r'^question/([0-9]+)$', views.view_question, name='view_question'), #Q&A url(r'^q/([0-9]+)$', views.question, name='question'), url(r'^question/([0-9]+)/answers/([0-9]*)$', views.answers, name='answers'), url(r'^tags/([a-zA-Z]+)$', views.tags, name='tags'), #Tending url(r'^trending/([a-zA-Z]+)$', views.trending, name='trending'), #like url(r'^question/([0-9]+)/like$', views.qlike, name='qlike'), url(r'^answer/([0-9]+)/like$', views.alike, name='alike'), #save url(r'^question/save$', views.saveQuestion, name='saveq'), url(r'^question/([0-9]+)/answer/save$', views.saveAnswer, name='savea'), #profile url(r'^profile/$', views.profile, name='profile'), url(r'^me/$', views.me, name='me'), url(r'^me/tags$', views.userTags, name='userTags'), url(r'^me/tags/save$', views.saveUserTags, name='saveUserTags'), ]
25081511c362930e4fc1566bff2d190c95181841
7fe74e56cd991cb5f4af96daf99193bfbf5af065
/GetData/GetSPECvsHS06data.py
0a239187ec2f8c2f4671e23ae7a36dc80158e82f
[]
no_license
TristanSullivan/CSBS_BMPaper_Analysis
a42f844fb53044f1b0679b8aa108039ece9bfa49
4d1e990d79dc721782190bb06987c3cfd458b443
refs/heads/main
2023-07-23T15:25:11.548398
2021-09-03T22:32:50
2021-09-03T22:32:50
402,901,176
0
0
null
null
null
null
UTF-8
Python
false
false
6,567
py
# Code to extract the data for Figure 1 of the 2021 CSBS Paper import datetime import pandas as pd import json # data file and fix "dashes" filename = 'es_bmk_2018-06-27.pickle' pdf0 = pd.read_pickle(filename) pdf0.columns = [i.replace('-', '_') for i in pdf0.columns] # Print keys #for x in pdf0.keys(): # print(x) # Cuts from SPEC-CPU2017-Analysis-Include-AMD.ipynb pdf1 = pdf0.query('cloud != "CERN-wig-project-011"') pdf2 = pdf1.query('tstart > datetime.date(2018,3,15)') # For next set of cuts pdf = pdf2 pdf['rstart'] = pdf.tstart.apply(lambda x: x.replace(microsecond=0,second=0,minute=0)) pdf['spec2017_bmks_541_leela_r'].head() pdf_threads_socket = pdf.groupby(['cpuname']).cpunum.quantile(.75).reset_index().rename(columns={'cpunum':'totThreads'}).copy() npdf = pdf.merge(pdf_threads_socket,how='left',on='cpuname') npdf.groupby(['cloud','pnode'])[['cpunum','totThreads']].describe() to_be_excluded = npdf[(npdf.cpunum<npdf.totThreads) & ~(npdf.cloud == 'GridKa')].groupby(['cloud','pnode','totThreads','rstart']).cpunum.agg(['mean','count']).reset_index().query('mean*count<totThreads') #print(to_be_excluded['pnode'].unique()) #print(to_be_excluded['cloud'].unique()) tmp_pdf = npdf.merge(to_be_excluded,how='left',on=['cloud','pnode','totThreads'],suffixes=('','_y')) #redefine npdf fpdf = tmp_pdf[tmp_pdf.rstart_y.isnull()] vm1 = 'bmk12-slc6-iuogw8ce6s_d7b47da5-b2d1-46e0-b0aa-f5b0adc25b9d' vm2 = 'bmk12-slc6-o5jvcmjxsm_8b179c55-7967-4979-a4db-470d891c1ba9' fpdf = fpdf[~(((fpdf.UID==vm1) | (fpdf.UID==vm2)) & (fpdf.hs06_32_avg_core_score>10.7))] vm1 = 'bmk8-slc6-pvdd93rtag_61dfe509-27cd-44b7-8022-33d804baf902' vm2 = 'bmk8-slc6-pdv4w02yj5_37c8109e-a34b-41de-939d-43020cebbcac' vm3 = 'bmk8-slc6-oxddsmf2pl_bc675907-0fd8-4891-bc40-1a67bf138333' #fpdf = fpdf[~(((fpdf.UID==vm1) | (fpdf.UID==vm2) | (fpdf.UID==vm3)) & (fpdf.hs06_32_avg_core_score>13))] fpdf = fpdf[~(((fpdf.UID==vm1) | (fpdf.UID==vm2) | (fpdf.UID==vm3)))] fpdf = fpdf.query('pnode!="p06253971a08885"') fpdf[fpdf.cpunum<fpdf.totThreads].groupby(['cloud','pnode','totThreads','rstart']).cpunum.agg(['mean','count']).reset_index().query('mean*count<totThreads') fpdf = fpdf[(fpdf.cloud != 'GridKa') | (fpdf.rstart > '2018-07-02')] pdf = fpdf # summarize input file # -------------------- """ print() print("**********************************************************************") print("\nInitial number of entries in file = ", len(pdf0)) print("------> remove bad cloud = ", len(pdf1)) print("------> Time cut = ", len(pdf2)) print("-------------------------------------------------") print("------> Final number for analysis = ", len(pdf)) print() print("Unique CPUs = ", len(pdf.cpuname)) print(pdf.groupby(['cpuname','cpunum']).size()) print(pdf.groupby(['cpuname','cloud']).size()) """ # make a dataframe for each cpuname # --------------------------------- cpu_collection = {} cpuname = pdf.cpuname.unique() # Loop to write out benchmark scores for cpu in cpuname: #print(cpu) cpu_collection[cpu] = pdf.query('cpuname == @cpu') cpunum = cpu_collection[cpu].cpunum.unique() # This if else block is here because the E5-2630 v4 was profiled in two different ways, and the data need to be separated if cpu == "Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz": clouds = cpu_collection[cpu].cloud.unique() print(cpu, end = '') for cloud in clouds: print(cloud) cpu_collection_cloud = cpu_collection[cpu].query('cloud == @cloud') num = 20 print(num) # Different options for error bars print(cpu_collection_cloud['hs06_32_score'].mean() / float(num)) print(cpu_collection_cloud['hs06_32_score'].std() / float(num)) #print(cpu_collection_cloud['hs06_32_score'].quantile(0.75) / float(num) - cpu_collection_cloud['hs06_32_score'].quantile(0.25) / float(num)) #print(cpu_collection_cloud['hs06_32_score'].quantile(0.95) / float(num) - cpu_collection_cloud['hs06_32_score'].quantile(0.05) / float(num)) print(cpu_collection_cloud['hs06_64_score'].mean() / float(num)) print(cpu_collection_cloud['hs06_64_score'].std() / float(num)) #print(cpu_collection_cloud['hs06_64_score'].quantile(0.75) / float(num) - cpu_collection_cloud['hs06_64_score'].quantile(0.25) / float(num)) #print(cpu_collection_cloud['hs06_64_score'].quantile(0.95) / float(num) - cpu_collection_cloud['hs06_64_score'].quantile(0.05) / float(num)) print(cpu_collection_cloud['spec2017_score'].mean() / float(num)) print(cpu_collection_cloud['spec2017_score'].std() / float(num)) #print(cpu_collection_cloud['spec2017_score'].quantile(0.75) / float(num) - cpu_collection_cloud['spec2017_score'].quantile(0.25) / float(num)) #print(cpu_collection_cloud['spec2017_score'].quantile(0.95) / float(num) - cpu_collection_cloud['spec2017_score'].quantile(0.05) / float(num)) else: print(cpu) for num in cpunum: print(num) cpu_collection_num = cpu_collection[cpu].query('cpunum == @num') # Different options for error bars print(cpu_collection_num['hs06_32_score'].mean() / float(num)) print(cpu_collection_num['hs06_32_score'].std() / float(num)) #print(cpu_collection_num['hs06_32_score'].quantile(0.75) / float(num) - cpu_collection_num['hs06_32_score'].quantile(0.25) / float(num)) #print(cpu_collection_num['hs06_32_score'].quantile(0.95) / float(num) - cpu_collection_num['hs06_32_score'].quantile(0.05) / float(num)) print(cpu_collection_num['hs06_64_score'].mean() / float(num)) print(cpu_collection_num['hs06_64_score'].std() / float(num)) #print(cpu_collection_num['hs06_64_score'].quantile(0.75) / float(num) - cpu_collection_num['hs06_64_score'].quantile(0.25) / float(num)) #print(cpu_collection_num['hs06_64_score'].quantile(0.95) / float(num) - cpu_collection_num['hs06_64_score'].quantile(0.05) / float(num)) print(cpu_collection_num['spec2017_score'].mean() / float(num)) print(cpu_collection_num['spec2017_score'].std() / float(num)) #print(cpu_collection_num['spec2017_score'].quantile(0.75) / float(num) - cpu_collection_num['spec2017_score'].quantile(0.25) / float(num)) #print(cpu_collection_num['spec2017_score'].quantile(0.95) / float(num) - cpu_collection_num['spec2017_score'].quantile(0.05) / float(num)) exit()
595b484f51cb641a44fd9d996752f386eb520b68
49f5d57221f9715a635669380da1facad93d29cf
/rest_api_calculator/calc/utils.py
064db2f2b216d24ef6f191166f6b241ddb04cd0c
[]
no_license
marimuthuei/django-rest
35aef6253b8b7c6d5cbd348accee304ad40a3e9c
8398ef89f7f728b9d6d7af0384ee54667b7466e1
refs/heads/master
2022-04-30T17:42:09.286819
2021-04-15T07:39:22
2021-04-15T07:39:22
209,269,881
1
0
null
2022-04-22T22:24:18
2019-09-18T09:27:21
Python
UTF-8
Python
false
false
897
py
import math from rest_framework.exceptions import APIException, ValidationError from core.settings import FACTORIAl_MAX def calculator(operator, a, b): result = None try: if operator == "add": result = a + b elif operator == "sub": result = a - b elif operator == "mul": result = a * b elif operator == "div": result = a / b elif operator == "sqrt": result = math.sqrt(a) elif operator == "pow": result = math.pow(a, b) elif operator == "fact": if 0 <= a <= FACTORIAl_MAX: result = math.factorial(a) else: raise ValidationError("Factorial number computation limited to 15.") except Exception as ex: raise APIException("calc error : " + str(ex)) return result
a20f2c17ed8c730672b800ca5e82bdf5b3c6fd1e
b377977d942a7af3052374af064fc17f30b1e76e
/_objective_function.py
a3697cfbd7454caf9905839ece971886ab23cdbd
[]
no_license
qhyseni/CB-CTT
4c510c3c74fa0849a01a23bf963d0cbb68988594
2ddd098987aefc2eebbec748b7945036ea0340a9
refs/heads/master
2021-06-15T17:40:19.238246
2021-02-27T21:13:36
2021-02-27T21:13:36
158,017,374
1
1
null
null
null
null
UTF-8
Python
false
false
12,169
py
import xml_to_od from Models.penalty import penalty from Experiments.statistics import statistics class objective_function: def __init__(self, type, instance_data): self.instance_data = instance_data self.type = type # Penalty scores self.penalties = penalty(type) # Objective function is sum of all penalties (which penalties is ) def cost(self, current_solution): # initialize a dictionary that will help to keep track of courses penalties course_penalties = dict() for i in range(self.instance_data.courses_count): course_penalties[i] = 0 # initialize a dictionary that will help to keep track of curricula penalties curriculum_penalties = dict() for curriculum in self.instance_data.curricula: curriculum_penalties[curriculum.id] = 0 if self.type == 'UD4': room_capacity_penalty, course_penalties = self.room_capacity_penalties(current_solution, course_penalties) min_wdays_penalty, course_penalties = self.min_wdays_penalties(current_solution, course_penalties) windows_penalty, curriculum_penalties = self.windows_penalties(current_solution, curriculum_penalties) minmax_load_penalty = self.minmax_load_penalties(current_solution) double_lectures_penalty = self.double_lectures_penalties(current_solution) cost = room_capacity_penalty + min_wdays_penalty + windows_penalty + minmax_load_penalty + double_lectures_penalty return cost, course_penalties, curriculum_penalties elif self.type == 'UD2': room_capacity_penalty, course_penalties = self.room_capacity_penalties(current_solution, course_penalties) min_wdays_penalty, course_penalties = self.min_wdays_penalties(current_solution, course_penalties) isolated_lectures_penalty, curriculum_penalties = self.isolated_lectures_penalties(current_solution, curriculum_penalties) room_stability_penalty, course_penalties = self.room_stability_penalties(current_solution, course_penalties) cost = room_capacity_penalty + min_wdays_penalty + isolated_lectures_penalty + room_stability_penalty return cost, course_penalties, curriculum_penalties # For each lecture, the number of students that attend the course must be less # than or equal the number of seats of all the rooms that host its lectures. # Each student above the capacity counts as 1 point of penalty. def room_capacity_penalties(self, current_solution, course_penalties): penalty = 0 for i in range(self.instance_data.days): for j in range(self.instance_data.periods_per_day): for k in range(self.instance_data.rooms_count): if current_solution[i][j][k] != -1: course_index = current_solution[i][j][k] students = self.instance_data.courses_students[course_index] room_size = int(self.instance_data.rooms[k].size) if students - room_size > 0: extra_students = students - room_size penalty += extra_students course_penalties[course_index] += extra_students return penalty, course_penalties # The lectures of each course must be spread into a given minimum number of days. # Each day below the minimum counts as 1 violation. def min_wdays_penalties(self, current_solution, course_penalties): penalty = 0 for course in range(self.instance_data.courses_count): min_days = self.instance_data.courses_wdays[course] course_days = 0 for i in range(self.instance_data.days): course_in_day = False for j in range(self.instance_data.periods_per_day): for k in range(self.instance_data.rooms_count): if course == current_solution[i][j][k]: course_in_day = True break if course_in_day: break if course_in_day: course_days += 1 if course_days < min_days: cost = (min_days - course_days) * self.penalties.P_DAYS penalty += cost course_penalties[course] += cost return penalty, course_penalties # Lectures belonging to a curriculum should not have time windows # (i.e., periods without teaching) between them. For a given curriculum we account for # a violation every time there is one windows between two lectures within the same day. # Each time window in a curriculum counts as many violation as its length (in periods). def windows_penalties(self, current_solution, curriculum_penalties): penalty = 0 for curriculum in self.instance_data.curricula: for i in range(self.instance_data.days): check_for_windows = False curriculum_windows = 0 for j in range(self.instance_data.periods_per_day): if check_for_windows: curriculum_windows += 1 for k in range(self.instance_data.rooms_count): course = current_solution[i][j][k] if course != -1: if check_for_windows and curriculum in self.instance_data.courses_curricula[course]: penalty += curriculum_windows - 1 curriculum_penalties[curriculum.id] += curriculum_windows - 1 curriculum_windows = 0 break else: check_for_windows = True break return penalty, curriculum_penalties # For each curriculum the number of daily lectures should be within a given range. # Each lecture below the minimum or above the maximum counts as 1 violation. def minmax_load_penalties(self, current_solution): penalty = 0 for curriculum in self.instance_data.curricula: for i in range(self.instance_data.days): daily_lectures = 0 for j in range(self.instance_data.periods_per_day): for k in range(self.instance_data.rooms_count): if current_solution[i][j][k] != -1 and curriculum in self.instance_data.courses_curricula[current_solution[i][j][k]]: daily_lectures += 1 break if daily_lectures > self.instance_data.daily_max_lectures: penalty += daily_lectures - self.instance_data.daily_max_lectures elif daily_lectures < self.instance_data.daily_min_lectures: penalty += self.instance_data.daily_min_lectures - daily_lectures return penalty # Some courses require that lectures in the same day are grouped together # (double lectures). For a course that requires grouped lectures, every time there is more than # one lecture in one day, a lecture non-grouped to another is not allowed. Two lectures are # grouped if they are adjacent and in the same room. Each non-grouped lecture counts as 1 # violation. def double_lectures_penalties(self, current_solution): penalty = 0 for course in range(self.instance_data.courses_count): if course.double_lectures == 'yes': for i in range(self.instance_data.days): course_periods = [] for j in range(self.instance_data.periods_per_day): course_in_day = False for k in range(self.instance_data.rooms_count): if course == current_solution[i][j][k]: course_in_day = True break if course_in_day: course_periods.append(1) else: course_periods.append(0) for l in range(self.instance_data.periods_per_day): if course_periods[l] == 1: if l == 0 and course_periods[l+1] == 0: penalty += 1 elif l == self.instance_data.periods_per_day - 1 and course_periods[l-1] == 0: penalty += 1 elif course_periods[l-1] == 0 and course_periods[l+1] == 0: penalty += 1 return penalty # Lectures belonging to a curriculum should be adjacent to each other # (i.e., in consecutive periods). For a given curriculum we account for a # violation every time there is one lecture not adjacent to any other lecture within the same day. # Each isolated lecture in a curriculum counts as 1 violation. def isolated_lectures_penalties(self, current_solution, curriculum_penalties): penalty = 0 for curriculum in self.instance_data.curricula: for i in range(self.instance_data.days): curriculum_periods = [] for j in range(self.instance_data.periods_per_day): curriculum_in_day = False for k in range(self.instance_data.rooms_count): course = current_solution[i][j][k] if course != -1 and curriculum.id in self.instance_data.courses_curricula[course]: curriculum_in_day = True break if curriculum_in_day: curriculum_periods.append(1) else: curriculum_periods.append(0) for l in range(self.instance_data.periods_per_day): if curriculum_periods[l] == 1: if l == 0 and curriculum_periods[l+1] == 0: penalty += self.penalties.P_COMP curriculum_penalties[curriculum.id] += self.penalties.P_COMP elif l == self.instance_data.periods_per_day - 1 and curriculum_periods[l-1] == 0: penalty += self.penalties.P_COMP curriculum_penalties[curriculum.id] += self.penalties.P_COMP elif curriculum_periods[l-1] == 0 and curriculum_periods[l+1] == 0: curriculum_penalties[curriculum.id] += self.penalties.P_COMP penalty += self.penalties.P_COMP return penalty, curriculum_penalties # All lectures of a course should be given in the same room. Each distinct # room used for the lectures of a course, but the first, counts as 1 violation. def room_stability_penalties(self, current_solution, course_penalties): penalty = 0 for course in range(self.instance_data.courses_count): course_room = None course_rooms = [] for i in range(self.instance_data.days): for j in range(self.instance_data.periods_per_day): for k in range(self.instance_data.rooms_count): if current_solution[i][j][k] == course: room = self.instance_data.rooms[k].id if course_room is None: course_room = room break elif course_room != room and room not in course_rooms: course_rooms.append(room) penalty += self.penalties.P_STAB course_penalties[course] += self.penalties.P_STAB return penalty, course_penalties
[ "Sw1086Xk2797" ]
Sw1086Xk2797
9c8e67cc920ea70707ebc82a24b5f442408fbdc6
07e6d38e8ad4f0b6c327e720f73f9cdf7567b1d0
/src/main/java/com/ipnet/bl/evaluationbl/python/SmartEvaluationDao.py
9e0988f65bdf96143cf4bbb31f981bf3d3a8e482
[]
no_license
YottaLee/IPNET
851bfde982b6ec9059ff468caf830cbb6fd38baa
80c9ce618c917dafe6083c34530d81e1408f2cc6
refs/heads/master
2020-03-22T19:06:03.944672
2018-11-17T06:54:52
2018-11-17T06:54:52
140,504,866
1
2
null
null
null
null
UTF-8
Python
false
false
840
py
from setup import mysql # 执行sql def saveEvaluation(patent,value): with mysql() as cursor: cursor.execute("select patent_id from patent where patent_name = \""+patent+"\"") patentId = cursor.fetchall()[0]['patent_id'] cursor.execute("select * from evaluation where patentid = \""+patentId+"\"") newId = cursor.fetchall() if len(newId) == 0: cursor.execute("select max(id) from evaluation") newId = cursor.fetchall()[0]['max(id)']+1 executeStr = "INSERT INTO evaluation(id,patentid,money,over,evaluation) values ("+str(newId)+",\""+patentId+"\",0,true,"+str(value)+")" else: print (newId) executeStr = "UPDATE evaluation SET evaluation = '"+str(value)+"' WHERE patentid = \""+patentId+"\" " cursor.execute(executeStr)
a7d182b1f7306bd17a60d4829a749ec58ebd4878
cce056258115ff589a658d5cb3187e4145471e3f
/2020 Spring:natural language process/EXP 4:CNN-based NMT/代码/model_embeddings.py
5df1c84c17500d1f365c21c18debea7b972341ff
[]
no_license
huochf/Course-Experiments
cd74c2de92a02bea9565d349fefefd8fa76997b4
a91fd21582b3ac5d8fcaf1f12c4f0814cc4675db
refs/heads/master
2023-06-08T08:43:49.962942
2020-09-24T01:53:24
2020-09-24T01:53:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,488
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2019-20: Homework 5 model_embeddings.py: Embeddings for the NMT model Pencheng Yin <[email protected]> Sahil Chopra <[email protected]> Anand Dhoot <[email protected]> Michael Hahn <[email protected]> """ import torch import torch.nn as nn # Do not change these imports; your module names should be # `CNN` in the file `cnn.py` # `Highway` in the file `highway.py` # Uncomment the following two imports once you're ready to run part 1(j) from cnn import CNN, WordCNN, WordLSTM from highway import Highway, SelectiveConnect # End "do not change" class ModelEmbeddings(nn.Module): """ Class that converts input words to their CNN-based embeddings. """ def __init__(self, word_embed_size, vocab): """ Init the Embedding layer for one language @param word_embed_size (int): Embedding size (dimensionality) for the output word @param vocab (VocabEntry): VocabEntry object. See vocab.py for documentation. Hints: - You may find len(self.vocab.char2id) useful when create the embedding """ super(ModelEmbeddings, self).__init__() ### YOUR CODE HERE for part 1h self.word_embed_size = word_embed_size self.vocab = vocab self.e_char = 50 padding_idx = self.vocab.char_pad self.char_embedding = nn.Embedding(len(self.vocab.char2id), self.e_char, padding_idx=padding_idx) self.cnn = CNN(embed_size=self.e_char, num_filter=self.word_embed_size) self.highway = Highway(embedd_size=self.word_embed_size) self.dropout = nn.Dropout(p=0.3) ### END YOUR CODE def forward(self, input): """ Looks up character-based CNN embeddings for the words in a batch of sentences. @param input: Tensor of integers of shape (sentence_length, batch_size, max_word_length) where each integer is an index into the character vocabulary @param output: Tensor of shape (sentence_length, batch_size, word_embed_size), containing the CNN-based embeddings for each word of the sentences in the batch """ ### YOUR CODE HERE for part 1h X_words_emb = [] for X_padded in input: X_emb = self.char_embedding(X_padded) # batch_size x max_word_length x char_embed_size X_reshaped = torch.transpose(X_emb, dim0=1, dim1=2) X_conv_out = self.cnn(X_reshaped) X_highway = self.highway(X_conv_out) X_word_emb = self.dropout(X_highway) X_words_emb.append(X_word_emb) X_words_emb = torch.stack(X_words_emb) return X_words_emb ### END YOUR CODE class ModelEmbeddings_2(nn.Module): def __init__(self, word_embed_size, vocab): super(ModelEmbeddings_2, self).__init__() self.word_embed_size = word_embed_size self.vocab = vocab self.e_char = 50 padding_idx = self.vocab.char_pad self.char_embedding = nn.Embedding(len(self.vocab.char2id), self.e_char, padding_idx=padding_idx) self.cnn = CNN(embed_size=self.e_char, num_filter=self.word_embed_size) self.highway = Highway(embedd_size=self.word_embed_size) def forward(self, input): X_words_emb = [] for X_padded in input: X_emb = self.char_embedding(X_padded) # batch_size x max_word_length x char_embed_size X_reshaped = torch.transpose(X_emb, dim0=1, dim1=2) X_conv_out = self.cnn(X_reshaped) X_highway = self.highway(X_conv_out) X_words_emb.append(X_highway) X_words_emb = torch.stack(X_words_emb) return X_words_emb class ContexAwareEmbeddings(nn.Module): def __init__(self, word_embed_size, vocab): super(ContexAwareEmbeddings, self).__init__() self.word_embed_size = word_embed_size self.word_embedding = ModelEmbeddings_2(word_embed_size, vocab) self.contex_cnn = WordCNN(word_embed_size=word_embed_size, num_filter=word_embed_size) self.connect = SelectiveConnect(word_embed_size) self.dropout = nn.Dropout(p=0.3) def forward(self, input): X_words_emb = self.word_embedding(input) # sentence_L x batch_size x word_embed_size X_words_emb_reshaped = X_words_emb.permute(1, 2, 0) # batch_size x word_embed_size x sentence_L X_contex = self.contex_cnn(X_words_emb_reshaped) # batch_size x word_embed_size x sentence_L X_contex = X_contex.permute(2, 0, 1) # sentence_L x batch_size x word_embed_size X_contex_embedding = self.connect(X_contex, X_words_emb) #X_contex_embedding = self.dropout(X_contex_embedding) return X_contex_embedding class ContexAwareEmbeddings_LSTM(nn.Module): def __init__(self, word_embed_size, vocab): super(ContexAwareEmbeddings_LSTM, self).__init__() self.word_embed_size = word_embed_size self.word_embedding = ModelEmbeddings_2(word_embed_size, vocab) self.contex_lstm = WordLSTM(word_embed_size=word_embed_size) self.connect = SelectiveConnect(word_embed_size) self.dropout = nn.Dropout(p=0.3) def forward(self, input): X_words_emb = self.word_embedding(input) X_contex_lstm = self.contex_lstm(X_words_emb) X_contex_embedding = self.connect(X_contex_lstm, X_words_emb) #X_contex_embedding = self.dropout(X_contex_embedding) return X_contex_embedding