blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
db520c55803ce3ffeb97f5b339bc73d74fb711f0
cb40aad84a35856ce5a8285ea7260f4183b1dd7a
/tests/model/test_properties.py
686bc3f6503e24b4cfda6093606dd26cd1f7e118
[ "Apache-2.0", "MIT" ]
permissive
vyahello/trump-bullet-game
f71f2fe86a92ba89ea82af5cfecab504b13576d0
7648f9722471323ddec1aa6b6d7db38166bebc91
refs/heads/master
2021-09-08T09:31:49.459350
2021-08-29T08:26:14
2021-08-29T08:40:40
167,864,306
0
0
null
null
null
null
UTF-8
Python
false
false
1,974
py
from typing import Tuple import pytest from app.model.properties import GameProperty, Color, Resolution, Border from app import PropertyError _rdba_color: Tuple[int, ...] = (1, 2, 3) _resolution: Tuple[int, ...] = (10, 20) _bottom: int = 5 def test_property_coordinates() -> None: assert len(GameProperty.coordinates()) == 4 def test_calculate_jumper() -> None: assert GameProperty.calculate_jumper() == 50 def test_color_as_rgba(color: Color) -> None: assert color.as_rgba() == _rdba_color def test_resolution_as_sequence(resolution: Resolution) -> None: assert resolution.as_sequence() == _resolution def test_resolution_top_height(resolution: Resolution) -> None: assert resolution.top_height == _resolution[0] def test_resolution_top_width(resolution: Resolution) -> None: assert resolution.top_width == _resolution[1] def test_resolution_bottom(resolution: Resolution) -> None: assert resolution.bottom == _bottom def test_border_is_top_left(screen_border: Border) -> None: assert screen_border.is_top_left(10) def test_border_is_top_right(screen_border: Border) -> None: assert screen_border.is_top_right(10, 2) def test_border_is_top_upper(screen_border: Border) -> None: assert screen_border.is_top_upper(15) def test_border_is_top_lower(screen_border: Border) -> None: assert screen_border.is_top_lower(3, -10) def test_border_is_not_top_left(screen_border: Border) -> None: assert not screen_border.is_top_left(1) def test_border_is_not_top_right(screen_border: Border) -> None: assert not screen_border.is_top_right(30, 3) def test_border_is_not_top_upper(screen_border: Border) -> None: assert not screen_border.is_top_upper(1) def test_border_is_not_top_lower(screen_border: Border) -> None: assert not screen_border.is_top_lower(15, 2) def test_resolution_error() -> None: with pytest.raises(PropertyError): Resolution(resolution=(0, 0, 0)).as_sequence()
ba55aa07f86bf85d7f55d854a6d3e64096f4000b
d80ef8c716bcc5ea54e87540dbf0463f15bf44ce
/libmproxy/contrib/wbxml/InvalidDataException.py
67f8ea93014bc2aaf814f9995cc5861007b63caf
[ "MIT", "BSD-3-Clause" ]
permissive
YagiGo/YPTN
5043d22eb131c7164d3fa575f0c4e3d8a963dbf4
d7692a68ee1bf578536b4c09c566272210fc8b69
refs/heads/master
2018-10-16T03:44:18.024169
2018-07-24T08:53:57
2018-07-24T08:53:57
107,633,669
4
1
MIT
2018-06-08T09:04:29
2017-10-20T04:55:22
JavaScript
UTF-8
Python
false
false
1,333
py
#!/usr/bin/env python ''' @author: David Shaw, [email protected] Inspired by EAS Inspector for Fiddler https://easinspectorforfiddler.codeplex.com ----- The MIT License (MIT) ----- Filename: InvalidDataException.py Copyright (c) 2014, David P. Shaw Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' class InvalidDataException(Exception): pass
243b30d8a04317b70aab7c0bbadabf27a895a4a2
480a175ab2b3c012af2d1cddb79674fad1490fe5
/0x08-python-more_classes/tests/main.2.py
2cb60d1c599573c08cc695829729fe51c64ab27d
[]
no_license
ianliu-johnston/holbertonschool-higher_level_programming
a8a6476fc6a7ac0bd8ae300f2196f17c13e1b36f
f6a7c9cddb2482991c2aadacb99aa66e64eb50eb
refs/heads/master
2021-04-29T11:12:56.820851
2017-05-10T00:48:17
2017-05-10T00:48:17
77,854,226
3
3
null
null
null
null
UTF-8
Python
false
false
944
py
#!/usr/bin/python3 Rectangle = __import__('2-rectangle').Rectangle new_rect = Rectangle(3, 4) print("Dimensions of your new rectangle: {} x {}".format(new_rect.width, new_rect.height)) print("Area: {}".format(new_rect.area())) print("Perimeter: {}".format(new_rect.perimeter())) new_rect.width = 5 print("Width just changed. New Dimensions: {} x {}".format(new_rect.width, new_rect.height)) print("Area: {}".format(new_rect.area())) print("Perimeter: {}".format(new_rect.perimeter())) new_rect.height = 15 print("height just changed. New Dimensions: {} x {}".format(new_rect.width, new_rect.height)) print("Area: {}".format(new_rect.area())) print("Perimeter: {}".format(new_rect.perimeter())) print("Making another one.") next_rect = Rectangle() print("Dimensions of your new rectangle: {} x {}".format(next_rect.width, next_rect.height)) print("Area: {}".format(next_rect.area())) print("Perimeter: {}".format(next_rect.perimeter()))
702e93ec385bbb5567fec0ac4ca70cf08f9f04db
7dbcf66e47684c652f9d90a47b2381cf846e003d
/pkg/Conf.py
d8e12155528eb0090ab0006f88fcc253282e3ede
[]
no_license
hlanSmart/simple
531b9a8be524d29c43016c865f64132aa4bf3069
c8536edd4cec1f39e23a5ff35ae16f0efa15f323
refs/heads/master
2020-12-27T08:24:04.383170
2016-09-22T04:29:44
2016-09-22T04:29:44
68,556,669
0
1
null
null
null
null
UTF-8
Python
false
false
1,020
py
#!/usr/bin/python #coding:utf-8 import os,yaml BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def readServer(sg,sl=False): #sg ServerGroup 服务器组 sl ServerList 组列表 with open(os.path.join(BASE_PATH,'etc/server.yml'),'r') as f: server=yaml.load(f) if sl: #当ServerList为真时返回组,而不是组信息 li=[] for i in server: li.append(i) return li if sg in server: gp=server[sg] #gp group 服务器组信息 for i in gp: #默认22端口在配置文件不存在,所以手动添加到返回结果 if len(gp[i])<3: gp[i].append(22) return gp return False #Server Group 不存在时返回False def readYaml(P): try: with open(P) as f: return yaml.load(f) except Exception as e: print(e) return False
[ "root@localhost" ]
root@localhost
e4d3b1c290b0ee2787f51f3bb625a45c1c113234
6daa3815511b1eb1f4ff3a40b7e9332fab38b8ef
/tastesavant/taste/apps/profiles/migrations/0010_auto__add_field_profile_preferred_site__chg_field_profile_user.py
f631b68b525621e7885479041e53e8ea8b703f7e
[]
no_license
kaizensoze/archived-projects
76db01309453606e6b7dd9d2ff926cfee42bcb05
d39ac099cb40131bac5de66bde7d0e2db5f74189
refs/heads/master
2021-05-31T12:16:17.800730
2016-02-23T00:27:56
2016-02-23T00:27:56
14,407,212
1
0
null
null
null
null
UTF-8
Python
false
false
7,513
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Profile.preferred_site' # The default value, 3, should refer to the NYC site. db.add_column('profiles_profile', 'preferred_site', self.gf('django.db.models.fields.related.ForeignKey')(default=3, to=orm['sites.Site']), keep_default=False) # Changing field 'Profile.user' db.alter_column('profiles_profile', 'user_id', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['auth.User'], unique=True)) def backwards(self, orm): # Deleting field 'Profile.preferred_site' db.delete_column('profiles_profile', 'preferred_site_id') # Changing field 'Profile.user' db.alter_column('profiles_profile', 'user_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], unique=True)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'profiles.friendship': { 'Meta': {'object_name': 'Friendship'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notice_sent_to_user_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'profile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Profile']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'profiles.profile': { 'Meta': {'object_name': 'Profile'}, 'birthday': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'blogger': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'digest_notifications': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '255'}), 'favorite_food': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'favorite_restaurant': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'friends': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'friends'", 'to': "orm['auth.User']", 'through': "orm['profiles.Friendship']", 'blank': 'True', 'symmetrical': 'False', 'null': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'last_sync_facebook': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_sync_foursquare': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'notification_level': ('django.db.models.fields.CharField', [], {'default': "'instant'", 'max_length': '16'}), 'preferred_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'type_expert': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'type_reviewer': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}), 'view_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'zipcode': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['profiles']
ad784210df07d410b4d9d0b3795e111aa61b9193
b7453e5a2700f2017a6f783eaf3990ee2486cd65
/test/utils/test_clean_identity.py
54c6c0a2df4ef8f53c92989877f93ce940c57635
[ "Apache-2.0" ]
permissive
LaRiffle/cleaning-scripts
8525164cca8336b67a2362d6907414e27ca088fa
08f360721056d30befe8d58ded583a4a5d126184
refs/heads/master
2020-07-28T06:52:47.673033
2019-11-19T15:26:19
2019-11-19T15:26:19
209,343,798
0
0
Apache-2.0
2019-09-20T13:13:25
2019-09-18T15:33:16
Python
UTF-8
Python
false
false
233
py
from scripts import utils def test_clean_identity(): assert utils.clean_identity(None) == "" assert utils.clean_identity("NaN") == "" row_input = "Holà chicanos" assert utils.clean_identity(row_input) == row_input
1b5cd48ff39ee1da8dbaf2f526d75d0746e5c1e6
f1d9df04036fc43c9e5cc7998b83261f4daa94b8
/management_commands/insert_base_data.py
cf87a7c11fd7db6f4e396e72c0e9d41bce402ce1
[]
no_license
Eaterator/web
019eb6547995be30b3468e5c44ecc52f05858fb4
9c598607f76ad770c66d85c47ffcec05f92f4d66
refs/heads/master
2021-01-09T20:30:13.417308
2017-04-25T02:44:35
2017-04-25T02:44:35
81,286,177
2
0
null
null
null
null
UTF-8
Python
false
false
2,324
py
from application.auth.models import Role from application.recipe.models import Source from application.base_models import db def insert_role_data(): roles = [ { 'name': 'regular', 'type_': 'consumer', 'is_admin': False }, { 'name': 'corporate', 'type_': 'business', 'is_admin': False }, { 'name': 'admin', 'type_': 'admin', 'is_admin': True } ] if len(Role.query.all()) > 0: return for role in roles: new_role = Role(**role) db.session.add(new_role) db.session.commit() def insert_source_data(): sources = [ { 'base_url': 'foodnetwork.com', 'name': 'Food Network' }, { 'base_url': 'epicurious.com', 'name': 'Epicurious' }, { 'base_url': 'therecipedepository.com', 'name': 'The Recipe Depository', }, { 'base_url': 'allrecipes.com', 'name': 'All Recipes', }, { 'base_url': 'bonappetit.com', 'name': 'Bon Appetit' }, { 'base_url': 'food.com', 'name': 'Food' }, { 'base_url': 'simplyrecipes.com', 'name': 'Simply Recipes' }, { 'base_url': 'bbcgoodfood.com', 'name': 'BBC Good Food' }, { 'base_url': 'williams-sonoma.com', 'name': 'Williams Sonoma' }, { 'base_url': 'finedininglovers.com', 'name': 'Fine Dining Lovers' }, { 'base_url': 'thekitchn.com', 'name': 'The Kitchn' }, { 'base_url': 'chowhound.com', 'name': 'Chow' }, { 'base_url': 'myrecipes.com', 'name': 'My Recipes' }, { 'base_url': '', 'name': 'Other' } ] for source in sources: exists = Source.query.filter(Source.name == source['name']).all() if len(exists) <= 0: new_source = Source(**source) db.session.add(new_source) db.session.commit()
d74da5f980c51f8a87e1f3491b38cb906651ba91
995c52ad5a0a3039ad37a4d2f07b06dcbbcf3961
/tantalus/migrations/0059_auto_20180810_1837.py
f4ba3f19bfd13e80fa47e558107374b522b8b533
[]
no_license
nafabrar/tantalus
d02cce3923205191f00b30e80152a0be7c091d6a
d8552d40472c29bc617b45a1edaf87c6624b824d
refs/heads/master
2022-12-24T15:53:52.034999
2020-10-07T22:26:35
2020-10-07T22:26:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
945
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.14 on 2018-08-10 18:37 from __future__ import unicode_literals from django.db import migrations def populate_sequence_file_info(apps, schema_editor): FileResource = apps.get_model('tantalus', 'FileResource') SequenceFileInfo = apps.get_model('tantalus', 'SequenceFileInfo') for file_resource in FileResource.objects.all(): sequence_file_info = SequenceFileInfo( file_resource=file_resource, owner=file_resource.owner, read_end=file_resource.read_end, genome_region=file_resource.genome_region, index_sequence=file_resource.index_sequence, ) sequence_file_info.save() class Migration(migrations.Migration): dependencies = [ ('tantalus', '0058_historicalsequencefileinfo_sequencefileinfo'), ] operations = [ migrations.RunPython(populate_sequence_file_info) ]
9b9a14f2985d9dd1d7bc6ef666b5d40a2a9a5256
a7e0784b697b6c57920e16e2f54ea0ed2225c0e0
/data/clingen_raw_to_training.py
47d0357cb8921e5915cdc80d02e9879fcf3e88c3
[]
no_license
rumeysa77/ClinGenML
17e1a3786b8711387a61707252307aab13e682c5
c3bf6fbf7d0fe6c1311ce0fcfb4e26d8331bbc7d
refs/heads/master
2023-03-22T04:41:40.669592
2021-02-24T09:04:29
2021-02-24T09:04:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,815
py
""" This file processes the raw excel sheet and extract data """ import time import csv from collections import defaultdict from Bio import Entrez from pathlib import Path import unicodedata def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False # clean text does not tokenize anything! def clean_text(text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) def reduce_whitespace(text): return ' '.join(text.split()) major_5_panels = {'experimental-studies', 'allele-data', 'segregation-data', 'specificity-of-phenotype', 'case-control'} label_vocab = ['experimental-studies', 'allele-data', 'segregation-data', 'specificity-of-phenotype', 'case-control'] class DatasetExtractor(object): def __init__(self, path=None): self.major_5_pmid_to_panel = defaultdict(set) header = None if path is not None: with open(path, encoding='utf-8', errors='ignore') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: header = line[:-2] elif line[4] != '': # ClinVar ID cannot be null if line[1] in major_5_panels: self.major_5_pmid_to_panel[line[2]].add(line[1]) def fetch_title_abstract_keywords(self, one_id): ids = one_id Entrez.email = '[email protected]' handle = Entrez.efetch(db='pubmed', retmode='xml', id=ids) results = Entrez.read(handle) # retrieving for only 1 result for i, paper in enumerate(results['PubmedArticle']): abstract = [] if 'Abstract' in paper['MedlineCitation']['Article']: for section in paper['MedlineCitation']['Article']['Abstract']['AbstractText']: abstract.append(section) else: continue abstract = " ".join(abstract) title = paper['MedlineCitation']['Article']['ArticleTitle'] keywords = [] for elem in paper['MedlineCitation']['KeywordList']: for e in elem: keywords.append(e) keywords = ' '.join(keywords) return title, abstract, keywords return None def merge_text(self, title, abstract, keywords, entrez=False): # a standard function to map text = '' if not entrez: text = title + " || " + " ".join(keywords.split('/')) + " || " + reduce_whitespace(clean_text(abstract)) else: text = title + " || " + keywords + " || " + reduce_whitespace(clean_text(abstract)) return text def generate_pmid_panel_set(self, log=False, tqdm=False, notebook=False): # will call Entrez BioPython to grab abstracts data = [] pmid_to_data = {} start = time.time() cnt = 0 for k, v in self.major_5_pmid_to_panel.items(): cnt += 1 res = self.fetch_title_abstract_keywords(k) if res is None: continue # 24940364 is not found... text = self.merge_text(*res) # label = ['0'] * len(label_vocab) label = [] for v_i in v: label.append(str(label_vocab.index(v_i))) data.append('\t'.join([text, ' '.join(label)])) pmid_to_data[k] = '\t'.join([text, ' '.join(label)]) if log: if cnt % 100 == 0: print(cnt, time.time() - start, 'secs') return data, pmid_to_data def write_data_to_csv(self, data, csv_file_path): # expect `data` directly from `generate_pmid_panel_set` with open(csv_file_path, encoding='utf-8', errors='ignore', mode='w') as f: for line in data: f.write(line + '\n') def write_pmid_to_list(self, path): # it will directly save as "pmids.txt", which is what PubMunch expects # call this function to generate a list of pmid # so you can use PubMunch to download p = Path(path) p.mkdir(exist_ok=True) with open('{}/pmids.txt'.format(path), 'w') as f: for pmid in self.major_5_pmid_to_panel.keys(): f.write(pmid + '\n') def __sub__(self, other): assert type(other) == type(self) new_pmids = set(list(self.major_5_pmid_to_panel.keys())) - set(list(other.major_5_pmid_to_panel)) de = DatasetExtractor() for pmid in new_pmids: panel = self.major_5_pmid_to_panel[pmid] de.major_5_pmid_to_panel[pmid] = panel return de if __name__ == '__main__': # testing de = DatasetExtractor("../corpus/ML Data (as of 3_17_19).csv") print(de.merge_text(*de.fetch_title_abstract_keywords("10206684")))
ab0d95439f8363b720d81aa80ae3aa74a0432e28
104005986bccea0a4213cbd55d833c95baf2f4fa
/drivers/phot_drivers/LCOGT_template_single_request.py
c6603728c1e635419c96b9c4a2e6edda588ecfe7
[]
no_license
lgbouma/cdips_followup
8a92ec9a31b405d316c668a6d42ce10ad47f0501
99ac6c6c709f96a58083a5ff7c4cf2d4f0b554a8
refs/heads/master
2023-08-14T02:33:17.841926
2023-08-01T00:46:19
2023-08-01T00:46:19
206,371,538
0
0
null
null
null
null
UTF-8
Python
false
false
6,229
py
""" Given a source_id, make LCOGT photometry followup requests, and optionally submit them to the LCOGT API. """ import numpy as np from astropy.time import Time from cdips_followup.manage_ephemerides import ( query_ephemeris, get_ephemeris_uncertainty ) from cdips_followup.LCOGT_dedicated_requests import ( get_dedicated_request, given_dedicated_requests_validate_submit ) from astrobase.services.identifiers import tic_to_gaiadr2 TRANSITTYPEDICT = { 'all': ['OIBEO', 'IBEO', 'OIBE', 'OIB', 'BEO'], 'partials': ['OIB', 'BEO'], 'totals': ['OIBEO', 'IBEO', 'OIBE'], 'fulltotals': ['OIBEO'] } def main(): ########################################## # CHANGE BELOW savstr = '20230419_tic402980664_23B' # eg, 20191207_TOI1098_request_2m_tc_secondary. "ephemupdate" if it is one. (this cancels pending observations) overwrite = 1 validate = 0 submit = 0 tic_id = '402980664' # '120105470' source_id = None # '6113920619134019456' # can use instead of TIC filtermode = 'ip'# 'zs', 'gp', 'ip' #telescope_class = '1m0' # '1m0', '2m0', 'special' telescope_class = 'special' # '1m0', '2m0', 'special' ipp_value = 1 # usually 1 #max_search_time = Time('2022-12-31 23:59:00') max_search_time = Time('2024-01-31 23:59:00') verify_ephemeris_uncertainty = 1 # require t_tra uncertainty < 2 hours inflate_duration = 0 # if t_tra uncertainty > 1 hour, inflate tdur by +/- 45 minutes per side transit_type = 'totals' # see above max_n_events = 99 # else None. n_events is per eventclass. raise_error = False # raise an error if max_duration_error flag raised. max_duration_error = 30 # the submitted LCOGT request must match requested durn to within this difference [minutes] sites = ['Palomar'] # Default None for LCOGT. Could do e.g., 'special' and ['Keck Observatory'] #sites = ['Keck Observatory'] # Default None for LCOGT. Could do e.g., 'special' and ['Keck Observatory'] #sites = ['Cerro Paranal'] # Default None for LCOGT. Could do e.g., 'special' and ['Keck Observatory'] force_acceptability = 50 # None or int. # CHANGE ABOVE ########################################## max_airmass_sched = 2.5 manual_ephemeris = False manual_ephemeris = True # FIXME create_eventclasses = TRANSITTYPEDICT[transit_type] submit_eventclasses = TRANSITTYPEDICT[transit_type] if source_id is None: assert isinstance(tic_id, str) source_id = tic_to_gaiadr2(tic_id) if manual_ephemeris: period = 18.559/24 period_unc = 0.001/24 epoch = 2457000 + 1791.2972827806442 epoch_unc = 1e-5 duration = 1.04 else: # get ephemeris from ephemerides.csv d = query_ephemeris(source_id=source_id) period, epoch, duration = ( d['period'], d['epoch'], d['duration'] ) period_unc, epoch_unc, duration_unc = ( d['period_unc'], d['epoch_unc'], d['duration_unc'] ) if verify_ephemeris_uncertainty: delta_t_tra_today = ( get_ephemeris_uncertainty(epoch, epoch_unc, period, period_unc, epoch_obs='today') ) if delta_t_tra_today*24 < 0: msg = f'ERR! Got negative ephem unc of {delta_t_tra_today*24:.1f} hr. Need to give a believable ephem unc..' raise ValueError(msg) if delta_t_tra_today*24 > 2: msg = f'ERR! Got ephem unc of {delta_t_tra_today*24:.1f} hr. This is too high.' raise ValueError(msg) if delta_t_tra_today*24 > 1: msg = f'WRN! Got ephem unc of {delta_t_tra_today*24:.1f} hr. This is risky.' print(msg) else: msg = f'INFO! Got ephem unc of {delta_t_tra_today*24:.1f} hr. This is fine.' print(msg) if inflate_duration: assert verify_ephemeris_uncertainty if delta_t_tra_today*24 > 1: msg = f'... inflating transit duration for scheduling pursposes by 1.5 hours.' print(msg) duration += 1.5 # add # "requests" is a list of lists. Higher level is each eventclass. Level # below is each event, in that eventclass. requests = get_dedicated_request( savstr, source_id, period, epoch, duration, create_eventclasses, overwrite=overwrite, max_search_time=max_search_time, filtermode=filtermode, telescope_class=telescope_class, ipp_value=ipp_value, sites=sites, force_acceptability=force_acceptability, max_airmass_sched=max_airmass_sched ) # if a maximum number of events is set, impose it! if isinstance(max_n_events, int): _requests = [] for ix in range(len(create_eventclasses)): print('starting with {} {} events.'. format(len(requests[ix]), create_eventclasses[ix]) ) for eventclass in requests: _eventclass = [] starttimes = [] for req in eventclass: starttimes.append(req['requests'][0]['windows'][0]['start']) # sort by start time, cut to get the closest ones. sort_times = np.sort(starttimes) sel_times = sort_times[ : max_n_events] for req in eventclass: starttime = req['requests'][0]['windows'][0]['start'] if starttime in sel_times: _eventclass.append(req) if len(_eventclass) > 0: _requests.append(_eventclass) if len(_requests) == 0: print('WRN!: got no times') return assert len(_requests[0]) <= max_n_events requests = _requests print('WRN!: trimmed to {} events.'.format(len(requests[0]))) if len(sel_times)>0: print('WRN!: max time: \n{}'.format(repr(sel_times[-1]))) print('\nWRN!: selected times: \n{}'.format(repr(sel_times))) else: print('WRN!: got no times') given_dedicated_requests_validate_submit( requests, submit_eventclasses, validate=validate, submit=submit, max_duration_error=max_duration_error, raise_error=raise_error ) if __name__ == "__main__": main()
10c75430230872f750e9ed2c0a241436c9120a7f
b509ef07d752e987f4cb84d1abd4c3a98488a6c7
/resources/lib/streamlink/plugins/nownews.py
02bd76def1234a8b05929f26bb670853a147f7ba
[ "BSD-2-Clause" ]
permissive
Twilight0/script.module.streamlink.base
d91245d1a43d6b3191b62a6eb4b1cf70598ed23e
c1e4628715a81806586b10323b8cb01424bbb6fc
refs/heads/master
2021-01-21T04:32:41.658823
2020-09-07T20:56:29
2020-09-07T20:56:29
101,915,967
6
4
BSD-2-Clause
2018-01-14T15:20:47
2017-08-30T18:31:47
Python
UTF-8
Python
false
false
2,149
py
import logging import re import json from streamlink.plugin import Plugin from streamlink.stream import HLSStream log = logging.getLogger(__name__) class NowNews(Plugin): _url_re = re.compile(r"https?://news.now.com/home/live") epg_re = re.compile(r'''epg.getEPG\("(\d+)"\);''') api_url = "https://hkt-mobile-api.nowtv.now.com/09/1/getLiveURL" backup_332_api = "https://d7lz7jwg8uwgn.cloudfront.net/apps_resource/news/live.json" backup_332_stream = "https://d3i3yn6xwv1jpw.cloudfront.net/live/now332/playlist.m3u8" @classmethod def can_handle_url(cls, url): return cls._url_re.match(url) is not None def _get_streams(self): res = self.session.http.get(self.url) m = self.epg_re.search(res.text) channel_id = m and m.group(1) if channel_id: log.debug("Channel ID: {0}".format(channel_id)) if channel_id == "332": # there is a special backup stream for channel 332 bk_res = self.session.http.get(self.backup_332_api) bk_data = self.session.http.json(bk_res) if bk_data and bk_data["backup"]: log.info("Using backup stream for channel 332") return HLSStream.parse_variant_playlist(self.session, self.backup_332_stream) api_res = self.session.http.post(self.api_url, headers={"Content-Type": 'application/json'}, data=json.dumps(dict(channelno=channel_id, mode="prod", audioCode="", format="HLS", callerReferenceNo="20140702122500"))) data = self.session.http.json(api_res) for stream_url in data.get("asset", {}).get("hls", {}).get("adaptive", []): return HLSStream.parse_variant_playlist(self.session, stream_url) __plugin__ = NowNews
a5a17178600de20cbfc8a242569037482fae9caf
fccb5a43179906ddc3dd37849ac2a89cacf44981
/sphinx/source/exercises/solution/03_os_sub_req/ex5.py
653a604a993839e3b042cfc9ccaf6cd8eba8ff1f
[]
no_license
YasmineOweda/spring2021
a48c1c4eaa525053a0e2188cf088124b004a35d8
072aadba20bfbc659427265fa228518fe4b09ff3
refs/heads/master
2023-04-29T10:20:14.132211
2021-05-11T09:07:40
2021-05-11T09:07:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
import os #1 os.mkdir('os_exercises.') #2 os.chdir('os_exercises') open('exercise.py', 'w') #3 x = input('Please write something to the file: ') with open('exercise.py', 'w') as f: f.write(x) #4 x = input('Please write something More to anoter file: ') with open('exercise2.py', 'w') as f: f.write(x) #5 with open('exercise.py', 'r') as f1: with open('exercise2.py', 'r' ) as f2: print(f1.read() + f2.read())
db3b4d13adbd04eba6106f6e0d8559771deadcd5
61699048dc567cd3a814e5b987599dae175bed19
/Python/month01/day15/exercise02.py
ba4af22e18080c30f44bdc184166efdfe0b8e96a
[]
no_license
Courage-GL/FileCode
1d4769556a0fe0b9ed0bd02485bb4b5a89c9830b
2d0caf3a422472604f073325c5c716ddd5945845
refs/heads/main
2022-12-31T17:20:59.245753
2020-10-27T01:42:50
2020-10-27T01:42:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
611
py
""" 练习2:定义函数,根据生日(年月日),计算活了多天. 输入:2010 1 1 输出:从2010年1月1日到现在总共活了3910天 """ import time def life_days(year, month, day): # 当前 - 出生时间 # time_tuple = time.strptime("%d-%d-%d" % (year, month, day), "%Y-%m-%d") time_tuple = (year, month, day, 0, 0, 0, 0, 0, 0) life_second = time.time() - \ time.mktime(time_tuple) return life_second / 60 / 60 / 24 y = 1990 m = 9 d = 18 result = life_days(y, m, d) print(f"从{y}年{m}月{d}日到现在总共活了{result:.0f}天")
ebce17fb0dd02ef5af320607dbcfad78bb6aec8c
dcd0fb6bdcb488dd2046778eb02edce8f4623b58
/object_follow_edgetpu/detect_standalone.py
7e196dbb4d1727616b1a5ec9f56384351df24223
[]
no_license
openbsod/Adeept_AWR
12f2df24bfcf85d7965a425bb0078b2c858e807a
92ca5e7147a9cb44ad55f55a467371648dc76b3c
refs/heads/master
2023-04-09T07:06:35.772918
2021-04-15T21:20:40
2021-04-15T21:20:40
284,012,618
1
0
null
2020-07-31T10:46:50
2020-07-31T10:46:49
null
UTF-8
Python
false
false
4,801
py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Object detection demo. This demo script requires Raspberry Pi Camera, and pre-compiled mode. Get pre-compiled model from Coral website [1] [1]: https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite """ from edgetpu.detection.engine import DetectionEngine from PIL import Image from PIL import ImageDraw from PIL import ImageFont import numpy as np import time import io import picamera # https://github.com/waveform80/picamera/issues/383 def _monkey_patch_picamera(): original_send_buffer = picamera.mmalobj.MMALPortPool.send_buffer def silent_send_buffer(zelf, *args, **kwargs): try: original_send_buffer(zelf, *args, **kwargs) except picamera.exc.PiCameraMMALError as error: if error.status != 14: raise error picamera.mmalobj.MMALPortPool.send_buffer = silent_send_buffer # Read labels.txt file provided by Coral website def _read_label_file(file_path): with open(file_path, 'r', encoding="utf-8") as f: lines = f.readlines() ret = {} for line in lines: pair = line.strip().split(maxsplit=1) ret[int(pair[0])] = pair[1].strip() return ret # Main loop def main(): model_filename = "mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite" label_filename = "coco_labels.txt" engine = DetectionEngine(model_filename) labels = _read_label_file(label_filename) CAMERA_WIDTH = 640 CAMERA_HEIGHT = 480 fnt = ImageFont.load_default() # To view preview on VNC, # https://raspberrypi.stackexchange.com/a/74390 with picamera.PiCamera() as camera: _monkey_patch_picamera() camera.resolution = (CAMERA_WIDTH, CAMERA_HEIGHT) camera.framerate = 15 camera.rotation = 180 _, width, height, channels = engine.get_input_tensor_shape() print("{}, {}".format(width, height)) overlay_renderer = None camera.start_preview() try: stream = io.BytesIO() for foo in camera.capture_continuous(stream, format='rgb', use_video_port=True): # Make Image object from camera stream stream.truncate() stream.seek(0) input = np.frombuffer(stream.getvalue(), dtype=np.uint8) input = input.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) image = Image.fromarray(input) # image.save("out.jpg") # Make overlay image plane img = Image.new('RGBA', (CAMERA_WIDTH, CAMERA_HEIGHT), (255, 0, 0, 0)) draw = ImageDraw.Draw(img) # Run detection start_ms = time.time() results = engine.DetectWithImage(image, threshold=0.2, top_k=10) elapsed_ms = (time.time() - start_ms)*1000.0 if results: for obj in results: box = obj.bounding_box.flatten().tolist() box[0] *= CAMERA_WIDTH box[1] *= CAMERA_HEIGHT box[2] *= CAMERA_WIDTH box[3] *= CAMERA_HEIGHT # print(box) # print(labels[obj.label_id]) draw.rectangle(box, outline='red') draw.text((box[0], box[1]-10), labels[obj.label_id], font=fnt, fill="red") camera.annotate_text = "{0:.2f}ms".format(elapsed_ms) if not overlay_renderer: overlay_renderer = camera.add_overlay( img.tobytes(), size=(CAMERA_WIDTH, CAMERA_HEIGHT), layer=4, alpha=255) else: overlay_renderer.update(img.tobytes()) finally: if overlay_renderer: camera.remove_overlay(overlay_renderer) camera.stop_preview() if __name__ == "__main__": main()
a76bbe862fc2f943b5866b00388228264612f33d
6d4af63e07a137d382ef61afe8276f7470b7af59
/wsgistate/__init__.py
742cd2a8b2a8e916a3427188ed7f1c260ff1b2b1
[]
no_license
Cromlech/wsgistate
142c7016c74fc28e6c56368f018bf113c379118c
d730ee47a4a43efbd20bcb9623e76bedeeb8c62b
refs/heads/master
2023-04-11T14:10:20.522520
2023-04-11T10:06:10
2023-04-11T10:06:10
15,806,829
0
0
null
null
null
null
UTF-8
Python
false
false
4,085
py
# Copyright (c) 2005 Allan Saddi <[email protected]> # Copyright (c) 2005, the Lawrence Journal-World # Copyright (c) 2006 L. C. Rees # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of Django nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. '''Base Cache class''' __all__ = ['BaseCache', 'db', 'file', 'memory', 'memcached', 'session', 'simple', 'cache'] def synchronized(func): '''Decorator to lock and unlock a method (Phillip J. Eby). @param func Method to decorate ''' def wrapper(self, *__args, **__kw): self._lock.acquire() try: return func(self, *__args, **__kw) finally: self._lock.release() wrapper.__name__ = func.__name__ wrapper.__dict__ = func.__dict__ wrapper.__doc__ = func.__doc__ return wrapper class BaseCache(object): '''Base Cache class.''' def __init__(self, *a, **kw): super(BaseCache, self).__init__() timeout = kw.get('timeout', 300) try: timeout = int(timeout) except (ValueError, TypeError): timeout = 300 self.timeout = timeout def __getitem__(self, key): '''Fetch a given key from the cache.''' return self.get(key) def __setitem__(self, key, value): '''Set a value in the cache. ''' self.set(key, value) def __delitem__(self, key): '''Delete a key from the cache.''' self.delete(key) def __contains__(self, key): '''Tell if a given key is in the cache.''' return self.get(key) is not None def get(self, key, default=None): '''Fetch a given key from the cache. If the key does not exist, return default, which itself defaults to None. @param key Keyword of item in cache. @param default Default value (default: None) ''' raise NotImplementedError() def set(self, key, value): '''Set a value in the cache. @param key Keyword of item in cache. @param value Value to be inserted in cache. ''' raise NotImplementedError() def delete(self, key): '''Delete a key from the cache, failing silently. @param key Keyword of item in cache. ''' raise NotImplementedError() def get_many(self, keys): '''Fetch a bunch of keys from the cache. Returns a dict mapping each key in keys to its value. If the given key is missing, it will be missing from the response dict. @param keys Keywords of items in cache. ''' d = dict() for k in keys: val = self.get(k) if val is not None: d[k] = val return d
a658a0212b71fb6327314f0662b6143017559bc1
df2cbe914f463ad050d7ed26194424afbe3a0a52
/addons/snailmail/models/mail_notification.py
a368c0a778338b68f037181c93c3d78bffc3f691
[ "Apache-2.0" ]
permissive
SHIVJITH/Odoo_Machine_Test
019ed339e995be980606a2d87a63312ddc18e706
310497a9872db7844b521e6dab5f7a9f61d365a4
refs/heads/main
2023-07-16T16:23:14.300656
2021-08-29T11:48:36
2021-08-29T11:48:36
401,010,175
0
0
Apache-2.0
2021-08-29T10:13:58
2021-08-29T10:13:58
null
UTF-8
Python
false
false
719
py
# -*- coding: utf-8 -*- from odoo import fields, models class Notification(models.Model): _inherit = 'mail.notification' notification_type = fields.Selection(selection_add=[('snail', 'Snailmail')], ondelete={'snail': 'cascade'}) letter_id = fields.Many2one('snailmail.letter', string="Snailmail Letter", index=True, ondelete='cascade') failure_type = fields.Selection(selection_add=[ ('sn_credit', "Snailmail Credit Error"), ('sn_trial', "Snailmail Trial Error"), ('sn_price', "Snailmail No Price Available"), ('sn_fields', "Snailmail Missing Required Fields"), ('sn_format', "Snailmail Format Error"), ('sn_error', "Snailmail Unknown Error"), ])
de8b449316abbe86696e3641635d94af6d290c5d
8acffb8c4ddca5bfef910e58d3faa0e4de83fce8
/ml-flask/Lib/site-packages/caffe2/python/operator_test/stats_put_ops_test.py
2ce56248c5dd0116931f91de9b4b556dd881e73b
[ "MIT" ]
permissive
YaminiHP/SimilitudeApp
8cbde52caec3c19d5fa73508fc005f38f79b8418
005c59894d8788c97be16ec420c0a43aaec99b80
refs/heads/master
2023-06-27T00:03:00.404080
2021-07-25T17:51:27
2021-07-25T17:51:27
389,390,951
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:86a74bb87f96bd8ebf2fa9ae72729c5cbe121a32edc1fb034496e084703631b3 size 6596
a35e6a756f615aca80c4b91a8b264a5aa0cd6d0e
9cd00edd008ce38ea3127f090b6867a91fe7193d
/src/plot_Qle_at_all_events_above_Tthreh.py
382993ac07bd63823ff8cd12124f714a8056199b
[]
no_license
shaoxiuma/heatwave_coupling
c5a2a2bba53351597f4cb60ecb446bfb9629812f
459f6bc72402b5dd3edf49bc3b9be380b5f54705
refs/heads/master
2021-09-13T06:50:48.733659
2018-04-26T06:09:54
2018-04-26T06:09:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,338
py
#!/usr/bin/env python """ For each of the OzFlux/FLUXNET2015 sites, plot the TXx and T-4 days Qle and bowen ratio That's all folks. """ __author__ = "Martin De Kauwe" __version__ = "1.0 (20.04.2018)" __email__ = "[email protected]" import os import sys import glob import netCDF4 as nc import numpy as np import xarray as xr import matplotlib.pyplot as plt import pandas as pd import re import constants as c def main(fname): plot_dir = "plots" if not os.path.exists(plot_dir): os.makedirs(plot_dir) df = pd.read_csv(fname) df = df[df.pft == "EBF"] df = df[~np.isnan(df.temp)] #width = 12.0 #height = width / 1.618 #print(width, height) #sys.exit() width = 14 height = 10 fig = plt.figure(figsize=(width, height)) fig.subplots_adjust(hspace=0.05) fig.subplots_adjust(wspace=0.05) plt.rcParams['text.usetex'] = False plt.rcParams['font.family'] = "sans-serif" plt.rcParams['font.sans-serif'] = "Helvetica" plt.rcParams['axes.labelsize'] = 14 plt.rcParams['font.size'] = 14 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 count = 0 sites = np.unique(df.site) for site in sites: site_name = re.sub(r"(\w)([A-Z])", r"\1 \2", site) ax = fig.add_subplot(3,3,1+count) df_site = df[df.site == site] events = int(len(df_site)/4) cnt = 0 for e in range(0, events): from scipy import stats x = df_site["temp"][cnt:cnt+4] y = df_site["Qle"][cnt:cnt+4] slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) if slope > 0.0 and p_value <= 0.05: ax.plot(df_site["temp"][cnt:cnt+4], df_site["Qle"][cnt:cnt+4], label=site, ls="-", marker="o", zorder=100) elif slope > 0.0 and p_value > 0.05: ax.plot(df_site["temp"][cnt:cnt+4], df_site["Qle"][cnt:cnt+4], label=site, ls="-", marker="o", color="lightgrey", zorder=1) cnt += 4 if count == 0: ax.set_ylabel("Qle (W m$^{-2}$)", position=(0.5, 0.0)) if count == 4: #ax.set_xlabel('Temperature ($^\circ$C)', position=(1.0, 0.5)) ax.set_xlabel('Temperature ($^\circ$C)') if count < 3: plt.setp(ax.get_xticklabels(), visible=False) if count != 0 and count != 3: plt.setp(ax.get_yticklabels(), visible=False) props = dict(boxstyle='round', facecolor='white', alpha=1.0, ec="white") ax.text(0.04, 0.95, site_name, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props) from matplotlib.ticker import MaxNLocator ax.yaxis.set_major_locator(MaxNLocator(4)) ax.set_ylim(0, 280) ax.set_xlim(15, 50) count += 1 ofdir = "/Users/mdekauwe/Dropbox/fluxnet_heatwaves_paper/figures/figs" fig.savefig(os.path.join(ofdir, "all_events.pdf"), bbox_inches='tight', pad_inches=0.1) #plt.show() if __name__ == "__main__": data_dir = "outputs/" fname = "ozflux_all_events.csv" fname = os.path.join(data_dir, fname) main(fname)
298bdb7986c7ce282903098e71efc3e61ebde167
4b0c57dddf8bd98c021e0967b5d94563d15372e1
/run_MatrixElement/test/emptyPSets/emptyPSet_qqH125_cfg.py
1925d9eb5134f84222300788d85f42237860a66f
[]
no_license
aperloff/TAMUWW
fea6ed0066f3f2cef4d44c525ee843c6234460ba
c18e4b7822076bf74ee919509a6bd1f3cf780e11
refs/heads/master
2021-01-21T14:12:34.813887
2018-07-23T04:59:40
2018-07-23T04:59:40
10,922,954
0
1
null
null
null
null
UTF-8
Python
false
false
896
py
import FWCore.ParameterSet.Config as cms import os #! #! PROCESS #! process = cms.Process("MatrixElementProcess") #! #! SERVICES #! #process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageLogger.MessageLogger_cfi') process.MessageLogger.cerr.FwkReport.reportEvery = 5000 process.load('CommonTools.UtilAlgos.TFileService_cfi') process.TFileService.fileName=cms.string('qqH125.root') #! #! INPUT #! inputFiles = cms.untracked.vstring( 'root://cmsxrootd.fnal.gov//store/user/aperloff/MatrixElement/Summer12ME8TeV/MEInput/qqH125.root' ) process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(10)) process.source = cms.Source("PoolSource", skipEvents = cms.untracked.uint32(0), fileNames = inputFiles ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) )
afbde151e2e1473b1d6aa573579299dc0eb3ce8d
18c03a43ce50ee0129f9f45ada1bdaa2ff4f5774
/epistasis/__init__.py
4f9536d756aca5c653b3e69bbff59937aa2ff678
[ "Unlicense" ]
permissive
harmsm/epistasis
acf7b5678b328527b2c0063f81d512fcbcd78ce1
f098700c15dbd93977d797a1a1708b4cfb6037b3
refs/heads/master
2022-04-30T13:09:49.106984
2022-03-19T05:29:37
2022-03-19T05:29:37
150,969,948
0
2
null
null
null
null
UTF-8
Python
false
false
1,105
py
"""\ A Python API for modeling statistical, high-order epistasis in genotype-phenotype maps. This library provides methods for: 1. Decomposing genotype-phenotype maps into high-order epistatic interactions 2. Finding nonlinear scales in the genotype-phenotype map 3. Calculating the contributions of different epistatic orders 4. Estimating the uncertainty of epistatic coefficients amd 5. Interpreting the evolutionary importance of high-order interactions. For more information about the epistasis models in this library, see our Genetics paper: `Sailer, Z. R., & Harms, M. J. (2017). "Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps." Genetics, 205(3), 1079-1088.`_ .. _`Sailer, Z. R., & Harms, M. J. (2017). "Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps." Genetics, 205(3), 1079-1088.`: http://www.genetics.org/content/205/3/1079 Currently, this package works only as an API and there is no command-line interface. Instead, we encourage you use this package inside `Jupyter notebooks`_ . """ from .__version__ import __version__
d8e42f2ce2432b336adb63018b3a51e93aacef6d
1c0542cef2ac6a5fb691602887236bf70f9bf71f
/speed_test_sar/sfsi_speed/mmcls/models/backbones/utils/gumbel_sigmoid.py
6610270f02c80a91e8e61cd013f8b7dff68c6ba3
[ "Apache-2.0" ]
permissive
yizenghan/sarNet
683f45620013f906cb8a550713e786787074a8ae
d47a6e243677811b259a753233fbbaf86d2c9c97
refs/heads/master
2023-07-16T02:09:11.913765
2021-08-30T02:04:02
2021-08-30T02:04:02
299,276,627
11
1
null
null
null
null
UTF-8
Python
false
false
1,723
py
import torch from torch import nn class GumbelSigmoid(nn.Module): def __init__(self, max_T, decay_alpha, decay_method='exp', start_iter=0): super(GumbelSigmoid, self).__init__() self.max_T = max_T self.cur_T = max_T self.step = 0 self.decay_alpha = decay_alpha self.decay_method = decay_method self.softmax = nn.Softmax(dim=1) self.p_value = 1e-8 # self.cur_T = (self.decay_alpha ** start_iter) * self.cur_T assert self.decay_method in ['exp', 'step', 'cosine'] def forward(self, x): # Shape <x> : [N, C, H, W] # Shape <r> : [N, C, H, W] r = 1 - x x = (x + self.p_value).log() r = (r + self.p_value).log() # Generate Noise x_N = torch.rand_like(x) r_N = torch.rand_like(r) x_N = -1 * (x_N + self.p_value).log() r_N = -1 * (r_N + self.p_value).log() x_N = -1 * (x_N + self.p_value).log() r_N = -1 * (r_N + self.p_value).log() # Get Final Distribution x = x + x_N x = x / (self.cur_T + self.p_value) r = r + r_N r = r / (self.cur_T + self.p_value) x = torch.cat((x, r), dim=1) x = self.softmax(x) x = x[:, [0], :, :] if self.training: self.cur_T = self.cur_T * self.decay_alpha # if self.cur_T < 0.5 or not self.training: # print('cur_T:{0}'.format(self.cur_T)) # self.step += 1 # if self.step % 50 == 0: # print('cur_T:{0}'.format(self.cur_T)) # return x if __name__ == '__main__': pass # ToDo: Test Code Here. # _test_T = 0.6 # Block = GumbelSigmoid(_test_T, 1.0)
d8e6d6bc745881e200737675ec2cd28b084d364d
68c003a526414fef3c23ad591982f1113ca8a72c
/api/urls.py
6287d8ae58d870352565ce7f626f9a3aa7037130
[]
no_license
pawanpaudel93/NepAmbulance
9d99ef3a3592b3a17091889d9db32aa952974400
b07dba43926c3f5a350b0acd75ac90b4842e3e32
refs/heads/master
2020-06-14T08:59:03.523102
2020-01-07T09:05:03
2020-01-07T09:05:03
194,965,063
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
from django.contrib import admin from django.urls import path from .views import ListCreateAmbulance, RetrieveUpdateDeleteAmbulance, ListDistrict, ListProvince urlpatterns = [ path('ambulance/<int:province>/<slug:district>/<slug:city>/<int:ward>/', ListCreateAmbulance.as_view(), name="list-create-api"), path('ambulance/<int:province>/<slug:district>/<slug:city>/<int:ward>/<int:pk>/', RetrieveUpdateDeleteAmbulance.as_view()), # path('get/wards/<slug:city>/', ListWard.as_view(), name="get-wards"), # path('get/cities/<slug:district>/', ListCity.as_view(), name='get-cities'), path('get/districts/<slug:province>/', ListDistrict.as_view(), name='get-districts'), path('get/provinces/', ListProvince.as_view(), name='get-provinces'), ]
e9a1e970d4704ef0445f93aed0cd5162806488f7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03273/s702731643.py
a626a36c61e3c295dfc6c90d75e2a4adb265c98f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
from collections import defaultdict import itertools import copy def readInt(): return int(input()) def readInts(): return list(map(int, input().split())) def readChar(): return input() def readChars(): return input().split() def p(arr,b="\n",e="\n"): print(b,end="") for i in arr: for j in i: print(j,end="") print() print(e,end="") h,w = readInts() a = [list(input()) for i in range(h)] for i in range(h-1,-1,-1): boo = 1 for j in range(w-1,-1,-1): if a[i][j]=="#": boo = 0 if boo==1: del a[i] for i in range(len(a[0])-1,-1,-1): boo = 1 for j in range(len(a)-1,-1,-1): if a[j][i]=="#": boo = 0 if boo==1: for j in range(len(a)-1,-1,-1): del a[j][i] p(a,b="",e="")
98f76ec619a2e488aa99de17c4447d474c1cb2e1
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1046095393/atexit.py
3b4fb40c097ce9444aa1ae283f0da5efbfc50ffd
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
4,738
py
# encoding: utf-8 # module atexit # from (built-in) # by generator 1.147 """ allow programmer to define multiple exit functions to be executedupon normal program termination. Two public functions, register and unregister, are defined. """ # no imports # functions def register(func, *args, **kwargs): # real signature unknown; restored from __doc__ """ register(func, *args, **kwargs) -> func Register a function to be executed upon normal program termination func - function to be called at exit args - optional arguments to pass to func kwargs - optional keyword arguments to pass to func func is returned to facilitate usage as a decorator. """ pass def unregister(func): # real signature unknown; restored from __doc__ """ unregister(func) -> None Unregister an exit function which was previously registered using atexit.register func - function to be unregistered """ pass def _clear(): # real signature unknown; restored from __doc__ """ _clear() -> None Clear the list of previously registered exit functions. """ pass def _ncallbacks(): # real signature unknown; restored from __doc__ """ _ncallbacks() -> int Return the number of registered exit functions. """ return 0 def _run_exitfuncs(): # real signature unknown; restored from __doc__ """ _run_exitfuncs() -> None Run all registered exit functions. """ pass # classes class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f1f2a7150f0>, 'find_spec': <classmethod object at 0x7f1f2a715128>, 'find_module': <classmethod object at 0x7f1f2a715160>, 'create_module': <classmethod object at 0x7f1f2a715198>, 'exec_module': <classmethod object at 0x7f1f2a7151d0>, 'get_code': <classmethod object at 0x7f1f2a715240>, 'get_source': <classmethod object at 0x7f1f2a7152b0>, 'is_package': <classmethod object at 0x7f1f2a715320>, 'load_module': <classmethod object at 0x7f1f2a715358>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='atexit', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
17a0b25b7520802c0316a50b66f74a804df1a76e
caaf56727714f8c03be38710bc7d0434c3ec5b11
/tests/components/abode/test_light.py
6506746783c2c8bc154c57ee3317833d02c7ff28
[ "Apache-2.0" ]
permissive
tchellomello/home-assistant
c8db86880619d7467901fd145f27e0f2f1a79acc
ed4ab403deaed9e8c95e0db728477fcb012bf4fa
refs/heads/dev
2023-01-27T23:48:17.550374
2020-09-18T01:18:55
2020-09-18T01:18:55
62,690,461
8
1
Apache-2.0
2023-01-13T06:02:03
2016-07-06T04:13:49
Python
UTF-8
Python
false
false
4,040
py
"""Tests for the Abode light device.""" from homeassistant.components.abode import ATTR_DEVICE_ID from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_RGB_COLOR, DOMAIN as LIGHT_DOMAIN, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, ATTR_SUPPORTED_FEATURES, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, ) from .common import setup_platform from tests.async_mock import patch DEVICE_ID = "light.living_room_lamp" async def test_entity_registry(hass): """Tests that the devices are registered in the entity registry.""" await setup_platform(hass, LIGHT_DOMAIN) entity_registry = await hass.helpers.entity_registry.async_get_registry() entry = entity_registry.async_get(DEVICE_ID) assert entry.unique_id == "741385f4388b2637df4c6b398fe50581" async def test_attributes(hass): """Test the light attributes are correct.""" await setup_platform(hass, LIGHT_DOMAIN) state = hass.states.get(DEVICE_ID) assert state.state == STATE_ON assert state.attributes.get(ATTR_BRIGHTNESS) == 204 assert state.attributes.get(ATTR_RGB_COLOR) == (0, 63, 255) assert state.attributes.get(ATTR_COLOR_TEMP) == 280 assert state.attributes.get(ATTR_DEVICE_ID) == "ZB:db5b1a" assert not state.attributes.get("battery_low") assert not state.attributes.get("no_response") assert state.attributes.get("device_type") == "RGB Dimmer" assert state.attributes.get(ATTR_FRIENDLY_NAME) == "Living Room Lamp" assert state.attributes.get(ATTR_SUPPORTED_FEATURES) == 19 async def test_switch_off(hass): """Test the light can be turned off.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_off") as mock_switch_off: assert await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_off.assert_called_once() async def test_switch_on(hass): """Test the light can be turned on.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_on") as mock_switch_on: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_on.assert_called_once() async def test_set_brightness(hass): """Test the brightness can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_level") as mock_set_level: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "brightness": 100}, blocking=True, ) await hass.async_block_till_done() # Brightness is converted in abode.light.AbodeLight.turn_on mock_set_level.assert_called_once_with(39) async def test_set_color(hass): """Test the color can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color") as mock_set_color: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "hs_color": [240, 100]}, blocking=True, ) await hass.async_block_till_done() mock_set_color.assert_called_once_with((240.0, 100.0)) async def test_set_color_temp(hass): """Test the color temp can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color_temp") as mock_set_color_temp: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "color_temp": 309}, blocking=True, ) await hass.async_block_till_done() # Color temp is converted in abode.light.AbodeLight.turn_on mock_set_color_temp.assert_called_once_with(3236)
5efc101cdbf8e412920f0ccebaf0c2a572e6f7ba
af6e7f0927517375cb4af833f4c52e301bad0af5
/corpus_processor/topic_aware/filter_qa_corpus_by_topic_list.py
90d3fa8fa6d532a86b504d45378701a28a47ca24
[]
no_license
wolfhu/DialogPretraining
470334fd815e1299981b827fdc933d237a489efd
eeeada92146d652d81ca6e961d1298924ac8435d
refs/heads/main
2023-06-25T15:22:54.728187
2021-07-21T01:40:23
2021-07-21T01:40:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,834
py
# encoding: utf-8 import sys from util.trie import Trie tag_file_path = '/home/t-yuniu/xiaoice/yuniu/dataset/processed/domain/sport/keywords' # Tag 黑名单 tag_black_dict = {} # tag_black_dict.setdefault('游戏', True) tag_trie = Trie() def detect_tag(sentence): """ Judge if sentence contain as least a tag. :param sentence: query or answer :return: boolean, True if contain, False otherwise. """ length = len(sentence) detected_tags = [] for idx in range(length): node = tag_trie.lookup idx_tmp = idx while True: if idx_tmp >= length: break if sentence[idx_tmp] in node: node = node[sentence[idx_tmp]] idx_tmp += 1 if Trie.END in node: detected_tags.append(sentence[idx:idx_tmp]) else: break return detected_tags if __name__ == '__main__': # build trie from tag file with open(tag_file_path) as douban_tag_file: for line in douban_tag_file.readlines(): tag = line.strip() if len(tag) == 1 or tag in tag_black_dict: continue tag_trie.insert(tag) # filter corpus contain tags while True: line = sys.stdin.readline().strip() if line: try: line = line.replace('#', '') query, answer = line.split('\t')[:2] # detected_tags = detect_tag(query) detected_tags = [] detected_tags.extend(detect_tag(answer)) if len(detected_tags) > 0: print('\t'.join([' '.join(set(detected_tags)), query, answer])) except ValueError: sys.stdout.write('Illegal line.\n') else: break
94e3d38dd3a5674a0272aeb4ea010d9f7a9abfd2
7dcdd5de0640f07b01b1707c134ec0bd168f641d
/fedora_college/modules/content/views.py
b1019c221326d657588aa1b01f790aaa7115edba
[ "BSD-3-Clause" ]
permissive
MSheezan/fedora-college
8e3e741f6ddac481c2bb7bbcde1e70e2b4b56774
07dbce3652c6c1796fb0f7b208a706c9e9d90dc1
refs/heads/master
2021-01-15T22:38:16.831830
2014-06-26T07:04:33
2014-06-26T07:04:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,439
py
# -*- coding: utf-8 -*- import re #import time from unicodedata import normalize from flask import Blueprint, render_template from flask import redirect, url_for, g from sqlalchemy import desc from fedora_college.core.database import db from fedora_college.modules.content.forms import * # noqa from fedora_college.core.models import * # noqa from flask_fas_openid import fas_login_required bundle = Blueprint('content', __name__, template_folder='templates') from fedora_college.modules.content.media import * # noqa _punct_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') def slugify(text, delim=u'-'): """Generates an slightly worse ASCII-only slug.""" #stri = (time.strftime("%d/%m/%Y")) #text = stri + "-" + text result = [] for word in _punct_re.split(text.lower()): word = normalize('NFKD', word).encode('ascii', 'ignore') if word: result.append(word) return unicode(delim.join(result)) def attach_tags(tags, content): rem = TagsMap.query.filter_by(content_id=content.content_id).all() for r in rem: db.session.delete(r) db.session.commit() for tag in tags: tag_db = Tags.query.filter_by(tag_text=tag).first() if tag_db is None: tag_db = Tags(tag) db.session.add(tag_db) db.session.commit() Map = TagsMap(tag_db.tag_id, content.content_id) db.session.add(Map) db.session.commit() @bundle.route('/content/add/', methods=['GET', 'POST']) @bundle.route('/content/add', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>/', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>', methods=['GET', 'POST']) @fas_login_required def addcontent(posturl=None): form = CreateContent() form_action = url_for('content.addcontent') media = Media.query.order_by(desc(Media.timestamp)).limit(10).all() if posturl is not None: content = Content.query.filter_by(slug=posturl).first_or_404() form = CreateContent(obj=content) if form.validate_on_submit(): form.populate_obj(content) tags = str(form.tags.data).split(',') attach_tags(tags, content) content.rehtml() db.session.commit() return redirect(url_for('content.addcontent', posturl=posturl, updated="Successfully updated") ) else: if form.validate_on_submit(): url_name = slugify(form.title.data) query = Content(form.title.data, url_name, form.description.data, form.active.data, form.tags.data, g.fas_user['username'], form.type_content.data ) tags = str(form.tags.data).split(',') try: db.session.add(query) db.session.commit() attach_tags(tags, query) return redirect(url_for('content.addcontent', posturl=url_name, updated="Successfully updated", media=media) ) # Duplicate entry except Exception as e: db.session.rollback() print e pass return render_template('content/edit_content.html', form=form, form_action=form_action, title="Create Content", media=media) @bundle.route('/blog', methods=['GET', 'POST']) @bundle.route('/blog/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>', methods=['GET', 'POST']) def blog(slug=None): if slug is not None: try: posts = Content.query. \ filter_by(slug=slug).all() except: posts = "No such posts in database." else: try: posts = Content.query. \ filter_by(type_content="blog").all() except: posts = "Databse is empty" return render_template('blog/index.html', title='Blog', content=posts)
c2eab84e232f590469f2bb0cea19a803ec121d0f
2fabc9255adbe1cc055eb4b2402f8526f389f257
/model/modules.py
86464633b715d37b344f74882941fce2b5d70ab8
[ "MIT" ]
permissive
asr2021/WaveGrad2
657323be12d16667fc0a3b7f2a168101e6e913cb
ba7715d760999093dd99283f48971c5115210b51
refs/heads/main
2023-06-02T18:48:56.830462
2021-06-23T07:22:10
2021-06-23T08:10:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,959
py
import os import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from .blocks import ( ZoneOutBiLSTM, LinearNorm, ConvBlock, ) from text.symbols import symbols device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class TextEncoder(nn.Module): """ Text Encoder """ def __init__(self, config): super(TextEncoder, self).__init__() n_src_vocab = len(symbols) + 1 d_word_vec = config["transformer"]["encoder_hidden"] n_layers = config["transformer"]["encoder_layer"] d_model = config["transformer"]["encoder_hidden"] kernel_size = config["transformer"]["encoder_kernel_size"] dropout = config["transformer"]["encoder_dropout"] zoneout = config["transformer"]["encoder_zoneout"] self.d_model = d_model self.src_word_emb = nn.Embedding( n_src_vocab, d_word_vec, padding_idx=0 ) self.conv_stack = nn.ModuleList( [ ConvBlock( d_model, d_model, kernel_size=kernel_size, dropout=dropout ) for _ in range(n_layers) ] ) self.lstm = ZoneOutBiLSTM( d_model, zoneout_rate=zoneout ) def forward(self, src_seq, mask=None): enc_output = self.src_word_emb(src_seq) for conv in self.conv_stack: enc_output = conv(enc_output, mask=mask) enc_output = self.lstm(enc_output) if mask is not None: enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0.) return enc_output class VarianceAdaptor(nn.Module): """ Variance Adaptor """ def __init__(self, preprocess_config, model_config): super(VarianceAdaptor, self).__init__() self.duration_predictor = DurationPredictor(model_config) self.gaussian_upsampling = GaussianUpsampling(model_config) def forward( self, x, src_mask, duration_target=None, d_control=1.0, ): log_duration_prediction = self.duration_predictor(x, src_mask) if duration_target is not None: x, attn = self.gaussian_upsampling(x, duration_target, src_mask) duration_rounded = duration_target else: duration_rounded = torch.clamp( (torch.round(torch.exp(log_duration_prediction) - 1) * d_control), min=0, ) x, attn = self.gaussian_upsampling(x, duration_rounded, src_mask) return ( x, log_duration_prediction, duration_rounded, attn, ) class GaussianUpsampling(nn.Module): """ Gaussian Upsampling """ def __init__(self, model_config): super(GaussianUpsampling, self).__init__() # self.range_param_predictor = RangeParameterPredictor(model_config) def forward(self, encoder_outputs, duration, mask): device = encoder_outputs.device # range_param = self.range_param_predictor(encoder_outputs, duration, mask) t = torch.sum(duration, dim=-1, keepdim=True) #[B, 1] e = torch.cumsum(duration, dim=-1).float() #[B, L] c = e - 0.5 * duration #[B, L] t = torch.arange(1, torch.max(t).item()+1, device=device) # (1, ..., T) t = t.unsqueeze(0).unsqueeze(1) #[1, 1, T] c = c.unsqueeze(2) # print(range_param, 0.1*(range_param ** 2)) # w_1 = torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2) # [B, L, T] # w_2 = torch.sum(torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_1 = torch.exp(-0.1 * (t - c) ** 2) # [B, L, T] w_2 = torch.sum(torch.exp(-0.1 * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_2[w_2==0.] = 1. # w_1 = self.normpdf(t, c, range_param.unsqueeze(-1)) # [B, L, T] # w_1 = torch.distributions.normal.Normal(c, 0.1).log_prob(t) # [B, L, T] # w_2 = torch.sum(w_1, dim=1, keepdim=True) # [B, 1, T] # w_2[w_2==0.] = 1. w = w_1 / w_2 out = torch.matmul(w.transpose(1, 2), encoder_outputs) return out, w class DurationPredictor(nn.Module): """ Duration Parameter Predictor """ def __init__(self, model_config): super(DurationPredictor, self).__init__() encoder_hidden = model_config["transformer"]["encoder_hidden"] variance_hidden = model_config["variance_predictor"]["variance_hidden"] self.duration_lstm = nn.LSTM( encoder_hidden, int(variance_hidden / 2), 2, batch_first=True, bidirectional=True ) self.duration_proj = nn.Sequential( LinearNorm(variance_hidden, 1), nn.ReLU(), ) def forward(self, encoder_output, mask): duration_prediction, _ = self.duration_lstm(encoder_output) duration_prediction = self.duration_proj(duration_prediction) duration_prediction = duration_prediction.squeeze(-1) # [B, L] if mask is not None: duration_prediction = duration_prediction.masked_fill(mask, 0.0) return duration_prediction # class RangeParameterPredictor(nn.Module): # """ Range Parameter Predictor """ # def __init__(self, model_config): # super(RangeParameterPredictor, self).__init__() # encoder_hidden = model_config["transformer"]["encoder_hidden"] # variance_hidden = model_config["variance_predictor"]["variance_hidden"] # self.range_param_lstm = nn.LSTM( # encoder_hidden + 1, # int(variance_hidden / 2), 2, # batch_first=True, bidirectional=True # ) # self.range_param_proj = nn.Sequential( # LinearNorm(variance_hidden, 1), # nn.Softplus(), # ) # def forward(self, encoder_output, duration, mask): # range_param_input = torch.cat([encoder_output, duration.unsqueeze(-1)], dim=-1) # range_param_prediction, _ = self.range_param_lstm(range_param_input) # range_param_prediction = self.range_param_proj(range_param_prediction) # range_param_prediction = range_param_prediction.squeeze(-1) # [B, L] # if mask is not None: # range_param_prediction = range_param_prediction.masked_fill(mask, 0.0) # return range_param_prediction class SamplingWindow(nn.Module): """ Sampling Window """ def __init__(self, model_config, train_config): super(SamplingWindow, self).__init__() self.upsampling_rate = model_config["wavegrad"]["upsampling_rate"] self.segment_length_up = train_config["window"]["segment_length"] self.segment_length = train_config["window"]["segment_length"] // self.upsampling_rate def pad_seq(self, seq, segment_length): if len(seq.shape) > 2: return torch.nn.functional.pad( seq.transpose(-2, -1), (0, segment_length - seq.shape[1]), 'constant' ).data.transpose(-2, -1) return torch.nn.functional.pad( seq, (0, segment_length - seq.shape[1]), 'constant' ).data def get_hidden_segment(self, hiddens, seq_starts): batch = list() for i, (hidden, seq_start) in enumerate(zip(hiddens, seq_starts)): batch.append(hidden[seq_start:seq_start+self.segment_length]) return torch.stack(batch) def forward(self, encoder_output, audio, seq_starts=None, full_len=False): if full_len: return encoder_output, audio if encoder_output.shape[1] > self.segment_length: encoder_segment = self.get_hidden_segment(encoder_output, seq_starts) encoder_segment = self.pad_seq(encoder_output, self.segment_length) audio_segment = self.pad_seq(audio, self.segment_length_up) return encoder_segment, audio_segment
166670300dc3fb39d4e1883bb546d056fe08ce1f
dd09f3ad02785935043b56ea3ef85ed603f4065d
/Sorting_Function/Selection_Sorting.py
6f03147ffab2db72cf7d3f242eb1efd76270e240
[]
no_license
RishavMishraRM/Data_Structure
ed70f5a04c2fa8153433e830ef54deb7b9c8bf21
0d31d16b48989359d5fef79b00aac1b9ca112a22
refs/heads/main
2023-06-27T02:40:18.031146
2021-07-25T19:01:51
2021-07-25T19:01:51
330,320,897
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
def selection_sort(A): n = len(A) for i in range(n-1): position = i for j in range(i+1, n): if A[j] < A[position]: position = j temp = A[i] A[i] = A[position] A[position] = temp A = [3, 5, 8, 9, 6, 2] print('Original Array:',A) selection_sort(A) print('Sorted Array:',A)
2fb93afe829de7491a458ced6b6568ea178817ff
488e0934b8cd97e202ae05368c855a57b299bfd1
/Django/advanced/change_admin/change_admin/settings.py
52ac0975d8daac947ffc100a34d19c9282aa57ff
[]
no_license
didemertens/udemy_webdev
4d96a5e7abeec1848ecedb97f0c440cd50eb27ac
306215571be8e4dcb939e79b18ff6b302b75c952
refs/heads/master
2020-04-25T00:24:45.654136
2019-04-13T16:00:47
2019-04-13T16:00:47
172,377,429
0
0
null
null
null
null
UTF-8
Python
false
false
3,184
py
""" Django settings for change_admin project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(w#6#!6oi75z@e2d&((yalznx95yk7exe5fbbx#f1l#0uc=(3w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app_videos' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'change_admin.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'change_admin.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
94469e411f69931b1aa7dec9d60e62e9d87a7eff
3e917645a0e1375189c8ee8c1e93ed15348111ef
/projects/usxp/archive/parrallel/parallel_nibble_v2.py
792bbb8be009b4feb157af5c7e2bf1c7bf54ad07
[]
no_license
mbougie/gibbs
d4544e688ce2b63530535e1f5102328aece30e0d
39d5dc0866fc0dd149d0cf1f22bfd20911a9d29e
refs/heads/master
2021-01-12T06:59:27.214123
2020-01-07T15:48:12
2020-01-07T15:48:12
83,906,717
1
0
null
null
null
null
UTF-8
Python
false
false
6,710
py
import arcpy from arcpy import env from arcpy.sa import * import multiprocessing import os import glob import sys import time import logging from multiprocessing import Process, Queue, Pool, cpu_count, current_process, Manager import general as gen # arcpy.env.overwriteOutput = True arcpy.env.scratchWorkspace = "in_memory" case=['Bougie','Gibbs'] #import extension arcpy.CheckOutExtension("Spatial") #establish root path for this the main project (i.e. usxp) rootpath = 'C:/Users/Bougie/Desktop/Gibbs/data/usxp/' # rootpath = 'D:/projects/ksu/v2/' ### establish gdb path #### def defineGDBpath(arg_list): gdb_path = '{}{}/{}/{}.gdb/'.format(rootpath,arg_list[0],arg_list[1],arg_list[2]) # print 'gdb path: ', gdb_path return gdb_path ####### define raster and mask #################### class ProcessingObject(object): def __init__(self, series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): self.series = series self.res = str(res) self.mmu =str(mmu) self.years = years self.name = name self.subname = subname self.parent_seq = parent_seq self.mask_seq = mask_seq self.outraster_seq = outraster_seq self.datarange = str(self.years[0])+'to'+str(self.years[1]) print 'self.datarange:', self.datarange self.dir_tiles = 'C:/Users/Bougie/Desktop/Gibbs/tiles/' # s9_ytc30_2008to2016_mmu5_nbl_bfc if self.name == 'mtr': self.traj = self.series+'_traj_cdl'+self.res+'_b_'+self.datarange+'_rfnd' self.gdb_parent = defineGDBpath(gdb_parent) self.raster_parent = self.traj+self.parent_seq self.path_parent = self.gdb_parent + self.raster_parent print 'self.path_parent', self.path_parent self.gdb_child = defineGDBpath(gdb_child) self.raster_mask = self.raster_parent + self.mask_seq self.path_mask = self.gdb_child + self.raster_mask self.raster_nbl = self.raster_parent + self.outraster_seq self.path_nbl = self.gdb_child + self.raster_nbl print 'self.path_nbl', self.path_nbl self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_mtr' print self.out_fishnet self.pixel_type = "16_BIT_UNSIGNED" else: self.gdb_parent = defineGDBpath(['s14', 'post', self.name]) self.yxc_foundation = self.series+'_'+self.name+self.res+'_'+self.datarange+'_mmu'+self.mmu print 'self.yxc_foundation', self.yxc_foundation self.path_parent = self.gdb_parent + self.yxc_foundation print 'self.path_parent', self.path_parent self.raster_mask = self.yxc_foundation + '_msk' self.path_mask = self.gdb_parent + self.raster_mask print 'self.path_mask', self.path_mask self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_ytc' self.pixel_type = "16_BIT_UNSIGNED" self.raster_nbl = self.yxc_foundation + '_nbl' print 'self.raster_nbl:', self.raster_nbl self.path_nbl = self.gdb_parent + self.raster_nbl print 'self.path_nbl', self.path_nbl # def existsDataset(self): # dataset = self.gdb_parent + self.raster_parent + '_nbl' # if arcpy.Exists(dataset): # print 'dataset already exists' # return # else: # print 'dataset: ', dataset # return self.raster_parent + '_nbl' def create_fishnet(): #delete previous fishnet feature class arcpy.Delete_management(nibble.out_fishnet) #acquire parameters for creatfisnet function XMin = nibble.path_parent.extent.XMin YMin = nibble.path_parent.extent.YMin XMax = nibble.path_parent.extent.XMax YMax = nibble.path_parent.extent.YMax origCord = "{} {}".format(XMin, YMin) YAxisCord = "{} {}".format(XMin, YMax) cornerCord = "{} {}".format(XMax, YMax) cellSizeW = "0" cellSizeH = "0" numRows = 7 numCols = 7 geotype = "POLYGON" arcpy.env.outputCoordinateSystem = nibble.path_parent.spatialReference print nibble.path_parent.spatialReference.name #call CreateFishnet_management function arcpy.CreateFishnet_management(nibble.out_fishnet, origCord, YAxisCord, cellSizeW, cellSizeH, numRows, numCols, cornerCord, "NO_LABELS", "", geotype) def execute_task(args): in_extentDict, nibble = args fc_count = in_extentDict[0] # print fc_count procExt = in_extentDict[1] # print procExt XMin = procExt[0] YMin = procExt[1] XMax = procExt[2] YMax = procExt[3] #set environments #The brilliant thing here is that using the extents with the full dataset!!!!!! DONT EVEN NEED TO CLIP THE FULL RASTER TO THE FISHNET BECASUE arcpy.env.snapRaster = nibble.path_parent arcpy.env.cellsize = nibble.path_parent arcpy.env.extent = arcpy.Extent(XMin, YMin, XMax, YMax) ### Execute Nibble ##################### ras_out = arcpy.sa.Nibble(nibble.path_parent, nibble.path_mask, "DATA_ONLY") #clear out the extent for next time arcpy.ClearEnvironment("extent") # print fc_count outname = "tile_" + str(fc_count) +'.tif' #create Directory outpath = os.path.join("C:/Users/Bougie/Desktop/Gibbs/", r"tiles", outname) ras_out.save(outpath) def mosiacRasters(nibble): tilelist = glob.glob(nibble.dir_tiles+'*.tif') print tilelist ######mosiac tiles together into a new raster arcpy.MosaicToNewRaster_management(tilelist, nibble.gdb_parent, nibble.raster_nbl, Raster(nibble.path_parent).spatialReference, nibble.pixel_type, nibble.res, "1", "LAST","FIRST") ##Overwrite the existing attribute table file arcpy.BuildRasterAttributeTable_management(nibble.path_nbl, "Overwrite") ## Overwrite pyramids gen.buildPyramids(nibble.path_nbl) def run(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): #instantiate the class inside run() function nibble = ProcessingObject(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq) print nibble.res # need to create a unique fishnet for each dataset #create_fishnet() #remove a files in tiles directory tiles = glob.glob(nibble.dir_tiles+"*") for tile in tiles: os.remove(tile) #get extents of individual features and add it to a dictionary extDict = {} count = 1 for row in arcpy.da.SearchCursor(nibble.out_fishnet, ["SHAPE@"]): extent_curr = row[0].extent ls = [] ls.append(extent_curr.XMin) ls.append(extent_curr.YMin) ls.append(extent_curr.XMax) ls.append(extent_curr.YMax) extDict[count] = ls count+=1 # print 'extDict', extDict # print'extDict.items()', extDict.items() ######create a process and pass dictionary of extent to execute task pool = Pool(processes=cpu_count()) # pool = Pool(processes=1) pool.map(execute_task, [(ed, nibble) for ed in extDict.items()]) pool.close() pool.join mosiacRasters(nibble)
82d8e508bea9d27e596ec5fd5f94d4d16fc0ca40
085406a6754c33957ca694878db9bbe37f84b970
/网络编程/08-ssh_socket_client.py
b91da548705606b59b6c0eb6b8d70cdbb3050767
[]
no_license
dewlytg/Python-example
82157958da198ce42014e678dfe507c72ed67ef0
1e179e4037eccd9fefabefd252b060564a2eafce
refs/heads/master
2021-01-01T18:36:08.868861
2019-01-18T10:39:08
2019-01-18T10:39:08
98,375,528
3
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
#!/usr/bin/env python """ socket client for ssh """ import socket client = socket.socket() client.connect(("localhost",9999)) while True: #支持客户端循环发送数据到服务端 cmd = input(">>:").strip() if len(cmd) == 0:continue client.send(cmd.encode()) #python3中必须把字符串转换为bytes类型,这里可以理解字符串类型是utf-8 cmd_res_size = client.recv(1024) print("命令结果大小:",cmd_res_size) client.send("please input somthing in order to packet splicing".encode()) #把代码放到Linux执行会发生粘包错误,这个可以避免错误发生 received_size = 0 received_data = b'' while received_size != int(cmd_res_size.decode()): #cmd_res_size是bytes类型的数据,需要使用decode转换为字符串 data = client.recv(1024) received_size += len(data) received_data += data else: print("cmd res receive done...",received_size) print(received_data.decode()) client.close()
5c2482df35a2b3e2793446e744596a4eff53075d
920ab19b73a7cba21d340a49d9d24e2d1eeabf3d
/idpsreact/bin/automat-visualize
518eafa6739f15f864b7d8624057a1b909d8f1e5
[ "MIT" ]
permissive
DTrafford/IDPS
5fa2b73f2c47cbf50b90a1a786c10f7d69c995b4
1eaccfc218adcb7231e64271731c765f8362b891
refs/heads/master
2022-12-16T16:28:34.801962
2020-03-30T18:08:09
2020-03-30T18:08:09
234,163,829
0
0
MIT
2020-09-10T06:26:02
2020-01-15T20:10:09
Python
UTF-8
Python
false
false
281
#!/Users/sangit/Downloads/django-react-boilerplate-master/idpsreact/bin/python3 # -*- coding: utf-8 -*- import re import sys from automat._visualize import tool if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(tool())
6684ca9dd67bacb41767bd65a1c0c1f2dd8193ce
e07f6ac5559d09eb6f5393650af135c7474f5003
/recent_news.py
e27c23ffb42fa9cdf553ea3b1d714c6870d9ef68
[]
no_license
Money-fin/backend
21e188f3f59ccaa216d1ea4bb7b78f670831cb6f
909961dc33df84ba3663e622bfdf6ab98f915f5f
refs/heads/master
2022-12-04T08:32:10.094335
2020-08-29T09:57:28
2020-08-29T09:57:28
291,008,543
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import requests import sys sys.path.append("/home/jylee/backend") import urllib import os from bs4 import BeautifulSoup import numpy as np import pandas as pd from helper import KafkaHelper def new_crawl(link, kafka=False): url = link item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') title = soup.select('div.content03 header.title-article01 h1')[0].get_text() time = soup.select('div.content03 header.title-article01 p')[0].get_text()[4:] img_url = f"https:{soup.select('div.img-con span img')[0]['src']}" raw_content = soup.select('div.story-news.article') # print(raw_content) content_p = [item.select("p") for item in raw_content] content_text = [item.get_text().strip() for item in content_p[0]] content = "\n".join(content_text[1:]) data_dict = { "title": title, "content": content, "link": link } if kafka: KafkaHelper.pub_ninput(data_dict) else: data_dict["time"] = time data_dict["img_url"] = img_url return data_dict def recent_new_check(): past_list = "" while True: url = f'https://www.yna.co.kr/news?site=navi_latest_depth01' item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') new_a_tag = soup.select('div.list-type038 ul')[0].select("li")[0].select("div div a.tit-wrap") current_link = f"https:{new_a_tag[0]['href']}" if past_list == current_link: continue else: new_crawl(current_link, True) past_list = current_link recent_new_check()
d309ba906885b2264436cea4fe7c0b1cb6487058
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/travelport/models/special_equipment_1.py
d0b34a9eefba484eaeb14ea03e11c478e502ee89
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
1,577
py
from __future__ import annotations from dataclasses import dataclass, field from travelport.models.type_element_status_1 import TypeElementStatus1 __NAMESPACE__ = "http://www.travelport.com/schema/common_v52_0" @dataclass class SpecialEquipment1: """ Parameters ---------- key type_value Special equipment associated with a specific vehicle el_stat This attribute is used to show the action results of an element. Possible values are "A" (when elements have been added to the UR) and "M" (when existing elements have been modified). Response only. key_override If a duplicate key is found where we are adding elements in some cases like URAdd, then instead of erroring out set this attribute to true. """ class Meta: name = "SpecialEquipment" namespace = "http://www.travelport.com/schema/common_v52_0" key: None | str = field( default=None, metadata={ "name": "Key", "type": "Attribute", } ) type_value: None | str = field( default=None, metadata={ "name": "Type", "type": "Attribute", "required": True, } ) el_stat: None | TypeElementStatus1 = field( default=None, metadata={ "name": "ElStat", "type": "Attribute", } ) key_override: None | bool = field( default=None, metadata={ "name": "KeyOverride", "type": "Attribute", } )
e8611029177ec93e595d82b86b795cbc307b7108
d4ab63e2ff846ff509ab3b8a191381bdf8197325
/project/test_main.py
8544ed907817ff34f90b366519a3db4337d52c5e
[]
no_license
ibrobabs/task
c2c95d8c83340a38be0ff8a1d7d3da55de33a097
82adc4fa54ab9c3606b2770325454916c7f75693
refs/heads/master
2021-01-18T17:45:31.392805
2017-04-01T05:22:24
2017-04-01T05:22:24
86,812,161
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import os import unittest from project import app, db from project.config import basedir from project.models import User TEST_DB = 'test.db' class MainTests(unittest.TestCase): #Setup and Teardown def setUp(self): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False # app.config['DEBUG'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + \ os.path.join(basedir, TEST_DB) self.app = app.test_client() db.create_all() def tearDown(self): db.session.remove() db.drop_all() # helper methods def login(self, name, password): return self.app.post('/', data=dict( name=name, password=password), follow_redirects=True) # tests def test_404_error(self): response = self.app.get('/this-route-does-not-exist/') self.assertEquals(response.status_code, 404) self.assertIn(b"Sorry. There's nothing here.", response.data) def test_500_error(self): bad_user = User( name='Jeremy', email='[email protected]', password='django' ) db.session.add(bad_user) db.session.commit() self.assertRaises(ValueError, self.login, 'Jeremy', 'django') try: response = self.login('Jeremy', 'django') self.assertEquals(response.status_code, 500) except ValueError: pass if __name__ == '__main__': unittest.main()
37e7b65b2eb87e028e91d5e800045af24ea8b6c0
b0a217700c563c4f057f2aebbde8faba4b1b26d2
/software/glasgow/arch/jtag.py
7c4fe835ca1a2bd2417ce6ed37892e998c03caf9
[ "0BSD", "Apache-2.0" ]
permissive
kbeckmann/Glasgow
5d183865da4fb499099d4c17e878a76192b691e7
cd31e293cb99ee10a3e4a03ff26f6f124e512c64
refs/heads/master
2021-09-15T15:59:38.211633
2018-11-15T22:36:04
2018-11-22T21:13:59
157,077,707
3
0
NOASSERTION
2018-11-11T12:33:49
2018-11-11T12:33:48
null
UTF-8
Python
false
false
250
py
# Ref: IEEE 1149.1 from bitarray import bitarray from ..support.bits import * __all__ = [ # DR "DR_IDCODE", ] DR_IDCODE = Bitfield("DR_IDCODE", 4, [ ("present", 1), ("mfg_id", 11), ("part_id", 16), ("version", 4), ])
97450e3407268358d4f64aefe3120b8487b3401e
425db5a849281d333e68c26a26678e7c8ce11b66
/maths/fast_pow_and_matrix_multi.py
987f29bb269b191cf1b8759d9bc80770e1b3e800
[ "MIT" ]
permissive
lih627/python-algorithm-templates
e8092b327a02506086414df41bbfb2af5d6b06dc
a61fd583e33a769b44ab758990625d3381793768
refs/heads/master
2021-07-23T17:10:43.814639
2021-01-21T17:14:55
2021-01-21T17:14:55
238,456,498
29
8
null
null
null
null
UTF-8
Python
false
false
2,500
py
import random def fpowx(x, n): """ quick pow: x ** n """ res = 1 while n: if n & 1: res = res * x # compute x^2 x^4 x^8 x *= x n >>= 1 return res def fmulti(m, n, mod=10 ** 9 + 7): """ 并没有提速的效果 只是对于其他语言 如c 防止溢出 对 python 没有任何帮助 """ res = 0 while n: if n & 1: res += m m = (m + m) % mod res %= mod n >>= 1 return res def matrix_multiply(matrix_a, matrix_b): # 模 MOD 乘法/加法 MOD = 10 ** 9 + 7 n_row = len(matrix_a) n_col = len(matrix_b[0]) n_tmp = len(matrix_a[0]) matrix_c = [[0 for _ in range(n_col)] for _ in range(n_row)] for i in range(n_row): for j in range(n_col): for k in range(n_tmp): matrix_c[i][j] += matrix_a[i][k] * matrix_b[k][j] % MOD matrix_c[i][j] %= MOD return matrix_c def get_unit_matrix(n): # matrix I unit_matrix = [[0 for _ in range(n)] for _ in range(n)] for _ in range(n): unit_matrix[_][_] = 1 return unit_matrix def quick_matrix_pow(matrix_a, n): # A ^ n l = len(matrix_a) res = get_unit_matrix(l) while n: if n & 1: res = matrix_multiply(res, matrix_a) a = matrix_multiply(a, a) n >>= 1 return res def test_fmulti(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = fmulti(m, n) return res def multi(m, n, mod=10 ** 9 + 7): return m * n % mod def test_multi(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = multi(m, n) return res if __name__ == '__main__': print('fast pow: 2 ** 11: {}'.format(fpowx(2, 11))) print(fmulti(987654, 987654321)) print(987654 * 987654321 % (10 ** 9 + 7)) # test the speed of fast(?)-multi import timeit T_fmulti = timeit.Timer('test_fmulti()', 'from __main__ import test_fmulti') print('f_multi: {:.6f}s'.format(T_fmulti.timeit(number=1000))) T_multi = timeit.Timer('test_multi()', 'from __main__ import test_multi') print('s_multi: {:.6f}s'.format(T_multi.timeit(number=1000))) # test matrix multiply a = [[1, 2, 3], [4, 5, 6]] b = [[1, 2], [3, 4], [5, 6]] c = matrix_multiply(a, b) print("a = {}\nb = {}\nc = {}".format(a, b, c))
f4506a41f21652bd250f6896810cd6fbdec72bfb
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03042/s013075072.py
044f87c3be49952ef7be8bf867e28108c9b4cd05
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
s=int(input()) a=s//100 b=s%100 if a>0 and a<=12: if b>0 and b<=12: print("AMBIGUOUS") else: print("MMYY") else: if b>0 and b<=12: print("YYMM") else: print("NA")
62b6273166486acf1ece5437a98e41a0350b1124
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_celebrating.py
305a78d8f0d008577d0f029e5a82a8910f663133
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
from xai.brain.wordbase.verbs._celebrate import _CELEBRATE #calss header class _CELEBRATING(_CELEBRATE, ): def __init__(self,): _CELEBRATE.__init__(self) self.name = "CELEBRATING" self.specie = 'verbs' self.basic = "celebrate" self.jsondata = {}
2f0cb96aaa337f7309712bd930d65de11673c433
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Pytest/pytest-django/pytest_django/plugin.py
cbfe15f79cb04f0e152ebe02bc8b4d3886108f5f
[ "BSD-3-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:4b9c174912c01ae59fb496601d8c4ecf26765ee33134d079295304c25873875a size 26008
1731a6bc44fffbafb6437d4bb39a9bb76acfeb29
45c170fb0673deece06f3055979ece25c3210380
/toontown/coghq/BossbotCountryClubMazeRoom_Battle00.py
218b80966c9553066709cc1c2f781554cc97b785
[]
no_license
MTTPAM/PublicRelease
5a479f5f696cfe9f2d9dcd96f378b5ce160ec93f
825f562d5021c65d40115d64523bb850feff6a98
refs/heads/master
2021-07-24T09:48:32.607518
2018-11-13T03:17:53
2018-11-13T03:17:53
119,129,731
2
6
null
2018-11-07T22:10:10
2018-01-27T03:43:39
Python
UTF-8
Python
false
false
2,389
py
#Embedded file name: toontown.coghq.BossbotCountryClubMazeRoom_Battle00 from toontown.coghq.SpecImports import * GlobalEntities = {1000: {'type': 'levelMgr', 'name': 'LevelMgr', 'comment': '', 'parentEntId': 0, 'cogLevel': 0, 'farPlaneDistance': 1500, 'modelFilename': 'phase_12/models/bossbotHQ/BossbotMazex1_C', 'wantDoors': 1}, 1001: {'type': 'editMgr', 'name': 'EditMgr', 'parentEntId': 0, 'insertEntity': None, 'removeEntity': None, 'requestNewEntity': None, 'requestSave': None}, 0: {'type': 'zone', 'name': 'UberZone', 'comment': '', 'parentEntId': 0, 'scale': 1, 'description': '', 'visibility': []}, 110000: {'type': 'battleBlocker', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-131.21, 84.92, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1), 'cellId': 0, 'radius': 10}, 110202: {'type': 'door', 'name': '<unnamed>', 'comment': '', 'parentEntId': 110001, 'pos': Point3(0, 0, 0), 'hpr': Vec3(0, 0, 0), 'scale': 1, 'color': Vec4(1, 1, 1, 1), 'isLock0Unlocked': 1, 'isLock1Unlocked': 0, 'isLock2Unlocked': 1, 'isLock3Unlocked': 1, 'isOpen': 0, 'isOpenEvent': 0, 'isVisBlocker': 0, 'secondsOpen': 1, 'unlock0Event': 0, 'unlock1Event': 110000, 'unlock2Event': 0, 'unlock3Event': 0}, 110002: {'type': 'maze', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-141.563, -78.8353, 0), 'hpr': Vec3(0, 0, 0), 'scale': Vec3(1, 1, 1), 'numSections': 1}, 10002: {'type': 'nodepath', 'name': 'props', 'comment': '', 'parentEntId': 0, 'pos': Point3(0, 0, 0), 'hpr': Vec3(0, 0, 0), 'scale': 1}, 110001: {'type': 'nodepath', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-106.91, 82.6953, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1)}} Scenario0 = {} levelSpec = {'globalEntities': GlobalEntities, 'scenarios': [Scenario0]}
c5020aa411c33ba9eb808cd247fe814f9c0ece17
8f5f92beeaefcd9effc93da87b26acb5ea159274
/xtorch/modules/seq2seq_encoders/seq2seq_encoder.py
edcdada140696dba36c224bbb20440c20a1c8b5f
[ "MIT" ]
permissive
altescy/xtorch
15f984bf08654dc00fc1be603cca696676428cc1
bcbbbe645f4d62c211af5b3555c526cc60792c32
refs/heads/main
2023-04-12T15:45:52.192602
2021-04-25T11:35:45
2021-04-25T11:35:45
361,373,990
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
from typing import Optional import torch class Seq2seqEncoder(torch.nn.Module): def forward( self, inputs: torch.Tensor, mask: Optional[torch.BoolTensor] = None, ) -> torch.Tensor: """ Parameters ========== inputs: `torch.Tensor` Tensor of shape (batch_size, sequence_length, embedding_size). mask: `torch.BoolTensor`, optional (default = None) BoolTensor of shape (batch_size, sequence_length). Return ====== output: Tensor of shape (batch_size, sequence_length, encoding_size). """ raise NotImplementedError def get_input_dim(self) -> int: raise NotImplementedError def get_output_dim(self) -> int: raise NotImplementedError
e32d9ecd5addc70ef1833cfb869c834a230a4f2c
7f97814acd76ca96aee877fd70d401380f848fae
/7_training/re_start_end.py
e5842c00b391813441ccd2346854697e29805bbb
[]
no_license
tberhanu/all_trainings
80cc4948868928af3da16cc3c5b8a9ab18377d08
e4e83d7c71a72e64c6e55096a609cec9091b78fa
refs/heads/master
2020-04-13T12:12:21.272316
2019-03-16T04:22:20
2019-03-16T04:22:20
163,195,802
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
""" https://www.hackerrank.com/challenges/re-start-re-end/problem?h_r=next-challenge&h_v=zen """ # Enter your code here. Read input from STDIN. Print output to STDOUT import re s, k = input(), input() i = 0 found = False while i < len(s): string = s[i:] match = re.match(r'{}'.format(k), string) if match == None: i = i + 1 else: found = True print((match.start() + i, match.end() + i - 1)) i = i + 1 if not found: print('(-1, -1')
edcbbc430b0d1a558d19be8a4a2625b7c762eb20
5add80be09ee754fced03e512a9acc214971cddf
/python-code/openvx-learning/helloworld.py
61352b55542a81f5e56cc66c6767ea1beb6c1d65
[ "Apache-2.0" ]
permissive
juxiangwu/image-processing
f774a9164de9c57e88742e6185ac3b28320eae69
c644ef3386973b2b983c6b6b08f15dc8d52cd39f
refs/heads/master
2021-06-24T15:13:08.900960
2019-04-03T10:28:44
2019-04-03T10:28:44
134,564,878
15
5
null
null
null
null
UTF-8
Python
false
false
935
py
from pyvx import vx context = vx.CreateContext() images = [ vx.CreateImage(context, 640, 480, vx.DF_IMAGE_UYVY), vx.CreateImage(context, 640, 480, vx.DF_IMAGE_S16), vx.CreateImage(context, 640, 480, vx.DF_IMAGE_U8), ] graph = vx.CreateGraph(context) virts = [ vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), ] vx.ChannelExtractNode(graph, images[0], vx.CHANNEL_Y, virts[0]) vx.Gaussian3x3Node(graph, virts[0], virts[1]) vx.Sobel3x3Node(graph, virts[1], virts[2], virts[3]) vx.MagnitudeNode(graph, virts[2], virts[3], images[1]) vx.PhaseNode(graph, virts[2], virts[3], images[2]) status = vx.VerifyGraph(graph) if status == vx.SUCCESS: status = vx.ProcessGraph(graph) else: print("Verification failed.") vx.ReleaseContext(context)
d92df5cd630581d42b06e50bdc1070c5d414a17c
9647524c0f4d93fb1c8a992c20fe9f9d2710cde3
/2-content/Python/intro_programming-master/scripts/remove_input_references.py
2ab8878b1a362f079adf49a971ef71aa7677a4ea
[ "MIT" ]
permissive
bgoonz/web-dev-notes-resource-site
16161aa68e8eecafeaba4dc7abeb957aaee864c5
e7dc9c30393597cb39830c49c3f51c1486b97584
refs/heads/master
2023-09-01T14:04:20.867818
2021-06-17T07:56:20
2021-06-17T07:56:20
329,194,347
7
5
MIT
2021-07-05T06:36:49
2021-01-13T04:34:20
JavaScript
UTF-8
Python
false
false
1,306
py
# This script removes the input reference numbers from html pages. # They play a useful role in scientific notebooks, but they are really # just visual clutter in this project. # Could be an nbconvert setting, but it's an easy enough scripting job. import os import sys print("\nStripping input reference numbers from code cells...") # Find all files to work with. path_to_notebooks = '/srv/projects/intro_programming/intro_programming/notebooks/' filenames = [] for filename in os.listdir(path_to_notebooks): if '.html' in filename and filename != 'index.html': filenames.append(filename) # one file for testing: #filenames = ['hello_world.html'] for filename in filenames: f = open(path_to_notebooks + filename, 'r') lines = f.readlines() f.close() f = open(path_to_notebooks + filename, 'wb') for line in lines: # Unwanted lines have opening and closing div on same line, # with input reference number between them. if ('<div class="prompt input_prompt">' in line and '</div>' in line): # Don't write this line. continue else: # Regular line, write it. f.write(line.encode('utf-8')) f.close() print(" Stripped input reference numbers.\n")
dd55eae4011f0cb80d47c940385e7a3ff85cd7a3
602fa0e4ce194d3073d78230c61f7053281f9f9b
/code/python/src/categories/catutil.py
df03a0027b66f8d76d4265de7c7074d56b487bab
[]
no_license
ziqizhang/wop
111cfdda1686a874ff1fc11a453a23fb52d43af1
ea0c37f444de9f2d5303f74b989f6d1a09feb61d
refs/heads/master
2022-09-14T20:14:11.575021
2021-12-10T21:23:24
2021-12-10T21:23:24
166,239,995
2
1
null
2022-09-01T23:11:13
2019-01-17T14:33:51
Python
UTF-8
Python
false
false
2,128
py
import pandas as pd from nltk import PorterStemmer, WordNetLemmatizer import numpy from categories import cleanCategories as cc stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() #0=stem; 1=lem; else=nothing def normalise_categories(in_file_name, col, stem_or_lem): df = pd.read_csv(in_file_name, header=0, delimiter=";", quoting=0, encoding="utf-8", ).as_matrix() norm_cats=set() max_toks=0 for r in df: c = r[col] if type(c) is not str and numpy.isnan(c): c="NONE" toks = len(c.split(" ")) if toks>max_toks: max_toks=toks if stem_or_lem==0: c=stemmer.stem(c).strip() if len(c)>2: norm_cats.add(c) elif stem_or_lem==1: c=lemmatizer.lemmatize(c).strip() if len(c)>2: norm_cats.add(c) else: norm_cats.add(c) norm_cats_list=list(norm_cats) norm_cats_list=sorted(norm_cats_list) print(len(norm_cats_list)) print(max_toks) for nc in norm_cats_list: print(nc) def get_parent_category_level(in_file_name, col): df = pd.read_csv(in_file_name, header=0, delimiter=";", quoting=0, encoding="utf-8", ).as_matrix() norm_cats = set() norm_cats_list=[] for r in df: c = r[col] if type(c) is not str and numpy.isnan(c): continue c= cc.normaliseCategories(c) try: trim = c.index(">") except ValueError: continue c=c[0:trim].strip() norm_cats.add(c) norm_cats_list.append(c) norm_cats_unique_list=sorted(list(norm_cats)) norm_cats=sorted(norm_cats) for nc in norm_cats: print(nc) print("\n\n>>>>>>>>>\n\n") for nc in norm_cats_unique_list: print(nc) if __name__ == "__main__": # normalise_categories("/home/zz/Work/data/wop_data/goldstandard_eng_v1_cleanedCategories.csv", # 13,0) get_parent_category_level("/home/zz/Work/data/wop_data/goldstandard_eng_v1_utf8.csv", 8)
d384f24b5c0b0b257f66b1db1a63854c59b95395
3e4c69317323bca865b025503b60bf83d3ae65f8
/tests/server/blueprints/variants/test_variant_views_variant.py
c1fd7fe078f8967099df90b24cb215c5a79a60ac
[ "BSD-3-Clause" ]
permissive
tapaswenipathak/scout
f59beaa997a45487ac96c3b3e560b5e5aa9b30ae
c9b3ec14f5105abe6066337110145a263320b4c5
refs/heads/master
2020-05-30T11:13:25.662300
2019-05-28T09:26:25
2019-05-28T09:26:25
189,694,812
1
0
BSD-3-Clause
2019-06-01T05:36:35
2019-06-01T05:36:34
null
UTF-8
Python
false
false
1,207
py
# -*- coding: utf-8 -*- import logging from flask import url_for log = logging.getLogger(__name__) def test_server_variant(app, real_adapter): # GIVEN an initialized app # GIVEN a valid user, institute, case and variant adapter = real_adapter variant_obj = adapter.variant_collection.find_one() assert variant_obj with app.test_client() as client: # GIVEN that the user could be logged in resp = client.get(url_for('auto_login')) assert resp.status_code == 200 internal_case_id = variant_obj['case_id'] case = adapter.case(internal_case_id) case_name = case['display_name'] owner = case['owner'] # NOTE needs the actual document_id, not the variant_id variant_id = variant_obj['_id'] log.debug('Inst {} case {} variant {}'.format(owner,case_name, variant_id)) # WHEN accessing the variant page resp = client.get(url_for('variants.variant', institute_id=owner, case_name=case_name, variant_id=variant_id)) log.debug("{}",resp.data) # THEN it should return a page assert resp.status_code == 200
d0a3f8fea955cd6b7239c30eb4bde72572683e27
f2f88a578165a764d2ebb4a022d19e2ea4cc9946
/pyvisdk/do/guest_authentication.py
f16ac39d82372db0665b605fca27476d5d281d82
[ "MIT" ]
permissive
pombredanne/pyvisdk
1ecc68a1bf264095f72f274c776e5868fb302673
de24eb4426eb76233dc2e57640d3274ffd304eb3
refs/heads/master
2021-01-21T16:18:39.233611
2014-07-28T19:50:38
2014-07-28T19:50:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def GuestAuthentication(vim, *args, **kwargs): '''GuestAuthentication is an abstract base class for authentication in the guest.''' obj = vim.client.factory.create('ns0:GuestAuthentication') # do some validation checking... if (len(args) + len(kwargs)) < 1: raise IndexError('Expected at least 2 arguments got: %d' % len(args)) required = [ 'interactiveSession' ] optional = [ 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
dd42b52d712e69767f647a33a975f897d68b913f
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/OssDirectoryDetail.py
7b7aed746981c86b4885e7159246c6f7d6a7017c
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
2,270
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class OssDirectoryDetail(object): def __init__(self): self._acl = None self._file_id = None self._file_name = None self._last_modified = None @property def acl(self): return self._acl @acl.setter def acl(self, value): self._acl = value @property def file_id(self): return self._file_id @file_id.setter def file_id(self, value): self._file_id = value @property def file_name(self): return self._file_name @file_name.setter def file_name(self, value): self._file_name = value @property def last_modified(self): return self._last_modified @last_modified.setter def last_modified(self, value): self._last_modified = value def to_alipay_dict(self): params = dict() if self.acl: if hasattr(self.acl, 'to_alipay_dict'): params['acl'] = self.acl.to_alipay_dict() else: params['acl'] = self.acl if self.file_id: if hasattr(self.file_id, 'to_alipay_dict'): params['file_id'] = self.file_id.to_alipay_dict() else: params['file_id'] = self.file_id if self.file_name: if hasattr(self.file_name, 'to_alipay_dict'): params['file_name'] = self.file_name.to_alipay_dict() else: params['file_name'] = self.file_name if self.last_modified: if hasattr(self.last_modified, 'to_alipay_dict'): params['last_modified'] = self.last_modified.to_alipay_dict() else: params['last_modified'] = self.last_modified return params @staticmethod def from_alipay_dict(d): if not d: return None o = OssDirectoryDetail() if 'acl' in d: o.acl = d['acl'] if 'file_id' in d: o.file_id = d['file_id'] if 'file_name' in d: o.file_name = d['file_name'] if 'last_modified' in d: o.last_modified = d['last_modified'] return o
dfc0cc855a774de8fa89bf5d0af2e7761c1399da
cf0ab8503d4d704045070deea1e2125375711e86
/apps/apikeys/v1/urls.py
1a8b15c264dc105260d2432da2775b98a3fb3a99
[]
no_license
faierbol/syncano-platform
c3c6468600115752fd9fa5e46a0ad59f75f6bc9c
879111874d1ef70418b4890cf970720b0a2be4d8
refs/heads/master
2023-07-20T10:13:40.066127
2021-02-08T15:01:13
2021-02-08T15:01:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
# coding=UTF8 from rest_framework.routers import SimpleRouter from apps.apikeys.v1 import views router = SimpleRouter() router.register('api_keys', views.ApiKeyViewSet) urlpatterns = router.urls
42bdb6a885ac58d51bad36beea8877307f7902a5
eda9187adfd53c03f55207ad05d09d2d118baa4f
/algo/Transfer_Learning/Transfer_learning.py
725a6e82bceb8aa1d09e9cb263fc2fdf9da6aea1
[]
no_license
HuiZhaozh/python_tutorials
168761c9d21ad127a604512d7c6c6b38b4faa3c7
bde4245741081656875bcba2e4e4fcb6b711a3d9
refs/heads/master
2023-07-07T20:36:20.137647
2020-04-24T07:18:25
2020-04-24T07:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,586
py
# -*- coding:utf-8 -*- # /usr/bin/python ''' ------------------------------------------------- File Name : Transfer_learning Description : 迁移学习 Envs : pytorch Author : yanerrol Date : 2020/2/17 09:58 ------------------------------------------------- Change Activity: 2020/2/17 : new ------------------------------------------------- ''' __author__ = 'yanerrol' import torch import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets from torchvision import transforms from torch.utils.data import DataLoader ####################################### ### PRE-TRAINED MODELS AVAILABLE HERE ## https://pytorch.org/docs/stable/torchvision/models.html from torchvision import models ####################################### if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True ########################## ### SETTINGS ########################## # Device DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', DEVICE) NUM_CLASSES = 10 # Hyperparameters random_seed = 1 learning_rate = 0.0001 num_epochs = 10 batch_size = 128 ########################## ### MNIST DATASET ########################## custom_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ## Note that this particular normalization scheme is ## necessary since it was used for pre-training ## the network on ImageNet. ## These are the channel-means and standard deviations ## for z-score normalization. train_dataset = datasets.CIFAR10(root='data', train=True, transform=custom_transform, download=True) test_dataset = datasets.CIFAR10(root='data', train=False, transform=custom_transform) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=8, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=8, shuffle=False) # Checking the dataset for images, labels in train_loader: print('Image batch dimensions:', images.shape) print('Image label dimensions:', labels.shape) break ########################## ### Loading Pre-Trained Model ########################## model = models.vgg16(pretrained=True) ########################## ### Freezing Model ########################## for param in model.parameters(): param.requires_grad = False model.classifier[3].requires_grad = True model.classifier[6] = nn.Sequential( nn.Linear(4096, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512, NUM_CLASSES)) ########################## ### Training as usual ########################## model = model.to(DEVICE) optimizer = torch.optim.Adam(model.parameters()) def compute_accuracy(model, data_loader): model.eval() correct_pred, num_examples = 0, 0 for i, (features, targets) in enumerate(data_loader): features = features.to(DEVICE) targets = targets.to(DEVICE) logits = model(features) _, predicted_labels = torch.max(logits, 1) num_examples += targets.size(0) correct_pred += (predicted_labels == targets).sum() return correct_pred.float() / num_examples * 100 def compute_epoch_loss(model, data_loader): model.eval() curr_loss, num_examples = 0., 0 with torch.no_grad(): for features, targets in data_loader: features = features.to(DEVICE) targets = targets.to(DEVICE) logits = model(features) loss = F.cross_entropy(logits, targets, reduction='sum') num_examples += targets.size(0) curr_loss += loss curr_loss = curr_loss / num_examples return curr_loss start_time = time.time() for epoch in range(num_epochs): model.train() for batch_idx, (features, targets) in enumerate(train_loader): features = features.to(DEVICE) targets = targets.to(DEVICE) ### FORWARD AND BACK PROP logits = model(features) cost = F.cross_entropy(logits, targets) optimizer.zero_grad() cost.backward() ### UPDATE MODEL PARAMETERS optimizer.step() ### LOGGING if not batch_idx % 50: print('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f' % (epoch + 1, num_epochs, batch_idx, len(train_loader), cost)) model.eval() with torch.set_grad_enabled(False): # save memory during inference print('Epoch: %03d/%03d | Train: %.3f%% | Loss: %.3f' % ( epoch + 1, num_epochs, compute_accuracy(model, train_loader), compute_epoch_loss(model, train_loader))) print('Time elapsed: %.2f min' % ((time.time() - start_time) / 60)) print('Total Training Time: %.2f min' % ((time.time() - start_time) / 60)) with torch.set_grad_enabled(False): # save memory during inference print('Test accuracy: %.2f%%' % (compute_accuracy(model, test_loader)) ########################## ### Training as usual ########################## import matplotlib.pyplot as plt classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') for batch_idx, (features, targets) in enumerate(test_loader): features = features targets = targets break logits = model(features.to(DEVICE)) _, predicted_labels = torch.max(logits, 1) def unnormalize(tensor, mean, std): for t, m, s in zip(tensor, mean, std): t.mul_(s).add_(m) return tensor n_images = 10 fig, axes = plt.subplots(nrows=1, ncols=n_images, sharex=True, sharey=True, figsize=(20, 2.5)) orig_images = features[:n_images] for i in range(n_images): curr_img = orig_images[i].detach().to(torch.device('cpu')) curr_img = unnormalize(curr_img, torch.tensor([0.485, 0.456, 0.406]), torch.tensor([0.229, 0.224, 0.225])) curr_img = curr_img.permute((1, 2, 0)) axes[i].imshow(curr_img) axes[i].set_title(classes[predicted_labels[i]])
57bfefceefd25252047dcd608dff497f0c347b82
988dd821269be12c2f56f62b0c35546fd3050537
/python/quaternions/rotations.py
852c8839c1435519fcbc0675bd055c4d8af732b7
[]
no_license
gdiazh/adcs_models
fb19f541eeb9b01ae49ec98719c508d084e4fd7a
51d0829cc777d2e345e4fabe406ec7f54e661117
refs/heads/master
2020-03-28T13:04:56.174852
2018-09-28T22:08:25
2018-09-28T22:08:25
148,364,081
0
0
null
null
null
null
UTF-8
Python
false
false
3,050
py
#!/usr/bin/python __author__ = 'gdiaz' import matplotlib as mpl from plotVectors import PlotVectors import numpy as np class Rotation(object): def __init__(self): self.vectors = PlotVectors() self.a = [0, 0, 0] def rotate_z(self, a, yaw): Az = np.matrix([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) a_ = np.matrix([[a[0]], [a[1]], [a[2]]]) u = Az*a_ return [u.item(0), u.item(1), u.item(2)] def rotate_frame_z(self, I, J, K, yaw): Az = np.matrix([[np.cos(yaw), np.sin(yaw), 0], [-np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) I_ = np.matrix([I[0], I[1], I[2]]) J_ = np.matrix([J[0], J[1], J[2]]) K_ = np.matrix([K[0], K[1], K[2]]) i_ = I_*Az j_ = J_*Az k_ = K_*Az i = [i_.item(0), i_.item(1), i_.item(2)] j = [j_.item(0), j_.item(1), j_.item(2)] k = [k_.item(0), k_.item(1), k_.item(2)] return [i, j, k] def vectorRotationTest(self): # Calcs p1 = [2, 0, 0] yaw = 90*np.pi/180 p1_rot = self.rotate_z(p1, yaw) print p1_rot # Plot self.vectors.plotAxes() self.vectors.config() self.vectors.plot(p1) self.vectors.plot(p1_rot) self.vectors.show() def frameRotationTest(self): # Calcs I = [1, 0, 0] J = [0, 1, 0] K = [0, 0, 1] yaw = 45*np.pi/180 ijk = self.rotate_frame_z(I, J, K, yaw) print ijk # Plot self.vectors.plotAxes() self.vectors.config() self.vectors.plot(ijk[0]) self.vectors.plot(ijk[1]) self.vectors.plot(ijk[2]) self.vectors.show() def get_qT(self, yawT): #Return quaternion target given yaw target AT = np.matrix([[np.cos(yawT), np.sin(yawT), 0], [-np.sin(yawT), np.cos(yawT), 0], [0, 0, 1]]) q4 = 0.5*np.sqrt(1+AT[0,0]+AT[1,1]+AT[2,2]) q1 = 0.25*(AT[1,2]-AT[2,1])/q4 q2 = 0.25*(AT[2,0]-AT[0,2])/q4 q3 = 0.25*(AT[0,1]-AT[1,0])/q4 return [q4, q1, q2, q3] def get_qE_(self, qT, qS): qT_ = np.matrix([[qT[0], qT[3], -qT[2], qT[1]], [-qT[3], qT[0], qT[1], qT[2]], [qT[2], -qT[1], qT[0], qT[3]], [-qT[1], -qT[2], -qT[3], qT[0]]]) qS_ = np.matrix([[-qS[1]], [-qS[2]], [-qS[3]], [qS[0]]]) qE = qT_*qS_ return [qE.item(0), qE.item(1), qE.item(2), qE.item(3)] def get_qE(self, yawT, qS): qT = self.get_qT(yawT) qE = self.get_qE_(qT, qS) return qE if __name__ == '__main__': rotation = Rotation() # Test Example # rotation.vectorRotationTest() rotation.frameRotationTest()
f281fed287dbd357fea0ab3bb3bd35efc0794cf4
51d65cbed3df1e9e3a0d51f79590ee12f88291d1
/object_detection/inference_over_image.py
0bbbdb9954ca69ffd0cf92de7a7cbb7577cf8043
[ "MIT" ]
permissive
apacha/Mensural-Detector
f9332c23854263c6a3f89e8b92f3f666f8377ed8
05c91204cf268feaae84cd079dbe7a1852fba216
refs/heads/master
2022-09-23T21:20:53.376367
2022-08-31T08:36:35
2022-08-31T08:36:35
137,372,669
12
6
null
null
null
null
UTF-8
Python
false
false
6,444
py
import numpy as np import tensorflow as tf import argparse from PIL import Image from object_detection.utils import ops as utils_ops, label_map_util, visualization_utils as vis_util if tf.__version__ < '1.4.0': raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) def run_inference_for_single_image(image, graph): with graph.as_default(): with tf.Session() as sess: # Get handles to input and output tensors ops = tf.get_default_graph().get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0) image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict def load_detection_graph(path_to_checkpoint): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(path_to_checkpoint, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph def load_category_index(path_to_labels, number_of_classes): # Load label map label_map = label_map_util.load_labelmap(path_to_labels) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=number_of_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) return category_index if __name__ == "__main__": parser = argparse.ArgumentParser(description='Performs detection over input image given a trained detector.') parser.add_argument('--inference_graph', dest='inference_graph', type=str, required=True, help='Path to the frozen inference graph.') parser.add_argument('--label_map', dest='label_map', type=str, required=True, help='Path to the label map, which is json-file that maps each category name to a unique number.', default="mapping.txt") parser.add_argument('--number_of_classes', dest='number_of_classes', type=int, default=32, help='Number of classes.') parser.add_argument('--input_image', dest='input_image', type=str, required=True, help='Path to the input image.') parser.add_argument('--output_image', dest='output_image', type=str, default='detection.jpg', help='Path to the output image.') args = parser.parse_args() # Path to frozen detection graph. This is the actual model that is used for the object detection. # PATH_TO_CKPT = '/home/jcalvo/Escritorio/Current/Mensural Detector/mensural-detector/output_inference_graph.pb/frozen_inference_graph.pb' path_to_frozen_inference_graph = args.inference_graph path_to_labels = args.label_map number_of_classes = args.number_of_classes input_image = args.input_image output_image = args.output_image # Read frozen graph detection_graph = load_detection_graph(path_to_frozen_inference_graph) category_index = load_category_index(path_to_labels, number_of_classes) image = Image.open(input_image) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Actual detection. output_dict = run_inference_for_single_image(image_np, detection_graph) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=2) Image.fromarray(image_np).save(output_image)
524db47926d6c1b18a65735cec61aad5f9e91b97
d2c163f246d28b8519f8c89de23556e43be91684
/www/ad_board/urls.py
9309b9dfb201f43c13a2ec3d393148de00aea612
[]
no_license
boogiiieee/Iskcon
d7a2b8bdc3002ef3306fc5e7ddc577504d8533c9
b672dbafee06af3ee6d646c75f442d97133f5ec9
refs/heads/master
2021-09-04T03:11:06.770094
2018-01-15T04:21:36
2018-01-15T04:21:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# -*- coding: utf-8 -*- from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('ad_board.views', url(r'^$', 'full', name='ad_board_url'), url(r'^category/(?P<id>[0-9]+)/$', 'category', name='category_ad_board_url'), url(r'^(?P<id>[0-9]+)/$', 'item', name='ad_board_item_url'), url(r'^category/(?P<id>[0-9]+)/add/$', 'add', name='add_ad_board_url'), )
198442838c9414d3f62f9b0af071a325589a66ae
8840b69e4341f4ed030c8b33151db205b8db3640
/flask_minijax.py
a5036e1c916ae910ed2af7e28ecdc01b86534110
[ "MIT" ]
permissive
FidgetYou/proj3-anagrams
b5fe7ccc333bca0895c12590142b9f0e30f10b83
86923a696794b7098940023d57aaef679a52b3ac
refs/heads/master
2021-01-11T01:03:32.507679
2016-10-18T01:58:25
2016-10-18T01:58:25
70,846,302
0
0
null
2016-10-13T20:39:51
2016-10-13T20:39:50
null
UTF-8
Python
false
false
1,317
py
""" Tiny demo of Ajax interaction """ import flask from flask import request # Data from a submitted form from flask import url_for from flask import jsonify # For AJAX transactions import json import logging import argparse # For the vocabulary list import sys ### # Globals ### app = flask.Flask(__name__) import CONFIG app.secret_key = CONFIG.secret_key # Should allow using session variables ### # Pages ### @app.route("/") def index(): return flask.render_template('minijax.html') ############### # AJAX request handlers # These return JSON to the JavaScript function on # an existing page, rather than rendering a new page. ############### @app.route("/_countem") def countem(): text = request.args.get("text", type=str) length = len(text) rslt = { "long_enough": length >= 5 } return jsonify(result=rslt) ############# # Run locally if __name__ == "__main__": # Standalone. app.debug = True app.logger.setLevel(logging.DEBUG) print("Opening for global access on port {}".format(CONFIG.PORT)) app.run(port=CONFIG.PORT, host="0.0.0.0") # If we run 'python3 flask_minijax.py, we get the above 'main'. # If we run 'gunicorn flask_minijax:app', we instead get a # 'main' inside gunicorn, which loads this file as a module # and accesses the Flask 'app' object. #
6d346848a2eed9d5be67fdb017a17285227f874a
bd5a3b59a5ca9f0c0394c8bf90e818c3967778d9
/vre/apps/xauth/urls.py
2ba5dfc62bf27aafa163e3cf36365c4b0ea01be0
[]
no_license
BlickLabs/vre
85f377c04406c163464f7ddade7eafb579f1dfb1
6f3644fb9295f6355057cfa64a1156a329b4b4b8
refs/heads/develop
2020-05-22T04:28:31.913667
2018-07-06T21:12:14
2018-07-06T21:12:14
62,763,239
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import url from . import views urlpatterns = [ url(regex=r'^login/$', view=views.LoginView.as_view(), name='login'), url(regex=r'^logout/$', view=views.logout_view, name='logout'), ]
de57cedbc86dec255b93ebc77daf153a873f5256
1422a57e98aba02321b772d72f8f0ada6d8b8cba
/friday/friday-vendor/vendor-scripts/test-resources/scripts/pylib/hue_turn_on_light.py
152b15f1a6ee7c7306946bab089ea4f1578d9421
[ "MIT" ]
permissive
JonasRSV/Friday
e1908a411aa133bc5bd2f383b0a995f7e028092d
f959eff95ba7b11525f97099c8f5ea0e325face7
refs/heads/main
2023-05-15T03:33:21.542621
2021-06-12T10:34:50
2021-06-12T10:34:50
315,309,991
7
2
null
null
null
null
UTF-8
Python
false
false
196
py
import phue import sys if __name__ == "__main__": b = phue.Bridge(config_file_path="credentials.json") b.set_light(int(sys.argv[1]), parameter={"on": True, "bri": 200}, transitiontime=5)
c43501f1134f44d9e0c3c38a8ce719ea17e5bbcb
3253da5603971958d69df0ed442e3341a8d3bff4
/1-Iniciante/1914.py
67fa34c039b20ad33bd528808a4ce2d4016000af
[]
no_license
CleitonSilvaT/URI_Python
1c73ec0852ae87c6138baa148ad8c2cb56bb723e
a8510bab2fa8f680b54058fafebff3a2727617d9
refs/heads/master
2021-06-20T08:18:50.104839
2021-05-20T08:59:19
2021-05-20T08:59:19
213,665,657
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
# -*- coding: utf-8 -*- if __name__ == '__main__': # Entrada casos_teste = int(input()) while(casos_teste > 0): # Entrada dados = input() escolha = dados.split(' ') # nomepessoa1 - escolha[0] # escolhapessoa1 - escolha[1] # nomepessoa2 - escolha[2] # escolhapessoa2 - escolha[3] # Entrada valores = input() numeros = valores.split(' ') # Calculando soma dos valores total = int(numeros[0]) + int(numeros[1]) # Identificando se a soma eh PAR ou IMPAR if((total % 2) == 0): # Imprimindo o vencedor if(escolha[1] == 'PAR'): print(escolha[0]) else: print(escolha[2]) else: # Imprimindo o vencedor if(escolha[1] == 'IMPAR'): print(escolha[0]) else: print(escolha[2]) casos_teste -= 1
b672c87e3458490ceb0e8b3852355a8c15a2c399
d1fadc514274711a7986a6b3caaaee7e8d48b4a6
/plot_scripts/scratch29.py
9b454212d7485e7e1237f495490e6b1a3e2c0169
[ "MIT" ]
permissive
lbaiao/sys-simulator-2
24d940db6423070818c23b6ffefbc5da4a1030a0
94f00d43309fe7b56dac5099bd4024695ba317b6
refs/heads/master
2021-08-20T08:30:06.864473
2021-06-30T10:37:26
2021-06-30T10:37:26
230,333,523
1
0
null
2021-06-30T10:37:27
2019-12-26T22:02:59
Jupyter Notebook
UTF-8
Python
false
false
1,688
py
import pickle import matplotlib.pyplot as plt import numpy as np filepath = 'D:/Dev/sys-simulator-2/data/scratch29.pickle' file = open(filepath, 'rb') data = pickle.load(file) aux_range = [10,15,20] action_counts_total = data['action_counts_total'] d2d_spectral_effs = data['d2d_speffs_avg_total'] mue_success_rate = data['mue_success_rate'] equals_counts_total = data['equals_counts_total'] d2d_speffs_avg = list() for i, d in enumerate(d2d_spectral_effs): d2d_speffs_avg.append(np.average(d)) fig2, ax1 = plt.subplots() ax1.set_xlabel('Number of D2D pairs in the RB') ax1.set_ylabel('D2D Average Spectral Efficiency [bps/Hz]', color='tab:blue') ax1.plot(d2d_speffs_avg, '.', color='tab:blue') ax2 = ax1.twinx() ax2.set_ylabel('MUE Success Rate', color='tab:red') ax2.plot(mue_success_rate, '.', color='tab:red') fig2.tight_layout() xi = list(range(len(aux_range))) ax = [0,1,2,3,4] axi = list(range(len(ax))) for i, c in enumerate(action_counts_total): if i in aux_range: plt.figure() plt.plot(np.mean(c, axis=0)/i*100, '*',label='mean') plt.plot(np.std(c, axis=0)/i*100, 'x', label='std') plt.legend() plt.title(f'N={i}') plt.xlabel('Action Index') plt.ylabel('Average Action Ocurrency [%]') plt.xticks(axi, ax) mean_equals = np.array([np.mean(c) for c in equals_counts_total]) std_equals = np.array([np.std(c) for c in equals_counts_total]) plt.figure() plt.plot(mean_equals[aux_range]*100, '*',label='mean') plt.plot(std_equals[aux_range]*100, 'x', label='std') plt.legend() plt.xlabel('Amount of D2D Devices') plt.ylabel('Average Equal Actions Ocurrency [%]') plt.xticks(xi, aux_range) plt.show()
6e412c2830f0c0210c5542502eff73dfa2776a76
1b78ca7f3250ebed418717c6ea28b5a77367f1b8
/411.minimum-unique-word-abbreviation/minimum-unique-word-abbreviation.py
70887cecba089f780017d17a96ca6739c187979c
[]
no_license
JaniceLC/lc-all-solutions
ced854f31b94f44c0b03a0677988805e3b9ee718
3f2a4ee8c09a8890423c6a22c73f470eccf979a2
refs/heads/master
2020-04-05T19:53:31.307528
2018-11-12T04:18:45
2018-11-12T04:18:45
157,155,285
0
2
null
2018-11-12T04:13:22
2018-11-12T04:13:22
null
UTF-8
Python
false
false
1,290
py
class Solution(object): def minAbbreviation(self, target, dictionary): """ :type target: str :type dictionary: List[str] :rtype: str """ def dfs(w, start, res): res.append(w) for i in xrange(start, len(w)): for l in reversed(xrange(1, len(w) - i + 1)): dfs(w[:i] + [str(l)] + w[i+l:], i + 2, res) def match(src, dest): i = 0 for c in src: if c.isdigit(): jump = int(c) i += jump else: if c != dest[i]: return False i += 1 return True if not dictionary: return str(len(target)) wordLen = len(target) res = [] dfs(list(target), 0, res) res.sort(key=lambda x:len(x)) dictionary = filter(lambda s: len(s) == wordLen, dictionary) for w in res: allMiss = True for d in dictionary: if match(w, d): allMiss = False break if allMiss: return "".join(w) return None
8cf1337f8036de2054ba11a4c1ef5921ff9e2863
641f76328bfeb7e54f0793a18c5b7c00595b98fd
/apps/goods/migrations/0015_auto_20181019_1007.py
a9bf43d5073534905d8a89c4b1ee68ce1ac10451
[ "Apache-2.0" ]
permissive
lianxiaopang/camel-store-api
1d16060af92eb01607757c0423377a8c94c3a726
b8021250bf3d8cf7adc566deebdba55225148316
refs/heads/master
2020-12-29T13:23:18.118617
2020-02-09T08:38:53
2020-02-09T08:38:53
238,621,246
0
0
Apache-2.0
2020-02-07T14:28:35
2020-02-06T06:17:47
Python
UTF-8
Python
false
false
1,439
py
# Generated by Django 2.1.2 on 2018-10-19 02:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('goods', '0014_auto_20181011_1646'), ] operations = [ migrations.AlterModelOptions( name='goodscategory', options={'ordering': ('index', '-is_active'), 'verbose_name': '商品类别', 'verbose_name_plural': '商品类别'}, ), migrations.AlterModelOptions( name='goodtype', options={'ordering': ('index',), 'verbose_name': '商品规格', 'verbose_name_plural': '商品规格'}, ), migrations.AddField( model_name='goodscategory', name='index', field=models.PositiveSmallIntegerField(default=0, verbose_name='优先级'), ), migrations.AddField( model_name='goodscategory', name='is_active', field=models.BooleanField(default=True, verbose_name='是否启用'), ), migrations.AddField( model_name='goodtype', name='asset_ratio', field=models.PositiveSmallIntegerField(default=0, help_text='单位:%', verbose_name='返利比例'), ), migrations.AddField( model_name='goodtype', name='index', field=models.PositiveSmallIntegerField(default=0, verbose_name='优先级'), ), ]
d01b1468d7aaf781d587e8b861611e92d26f28dd
e8f99a162207cba82d4e0f969d7bcdb2b9d8b522
/imooc/python3_shizhan/ten/c1.py
6a78a3e875eb35796ea35e07c606f9f44d0ef637
[]
no_license
TesterCC/Python3Scripts
edb5446278ebf13edb64336001081941ca27d67d
58be67e1ffc74ef50289a885aa4ad05f58e2c383
refs/heads/master
2023-08-30T21:16:38.328045
2023-08-17T11:23:08
2023-08-17T11:23:08
93,401,996
6
3
null
null
null
null
UTF-8
Python
false
false
721
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'MFC' __time__ = '18/5/2 21:48' """ 第10章 正则表达式与JSON 正则表达式 JSON XML 正则表达式是一个特殊的字符序列,一个字符串是否与我们所设定的这样的字符序列相匹配。 快速检索文本、实现一些替换文本的操作 1.检查一串数字是否是电话号码 2.检测一个字符串是否符合email 3.把一个文本里指定的单词替换为另外一个单词 如果正则用的6,可以不用很多内置方法 """ a = 'C|C++|Java|C#|Python|Javascript' # Python内置函数,用来判断字符串是否包含Python print(a.index('Python')) print(a.index('Python') > -1) print('Python' in a)
197926393868d21e6ae154a9dd519b9c67bbad9c
cd014fae6791f51a9a382f34dbdcee6d61d84e30
/64_eqf_fveqf_fvf_fvegf/64.py
64fae91ef51cb384faf818ac502876f63733d358
[ "Apache-2.0" ]
permissive
ckclark/Hackquest
1505f50fc2c735db059205d1c9bbba1832cc5059
65ed5fd32e79906c0e36175bbd280d976c6134bd
refs/heads/master
2021-01-16T19:32:29.434790
2015-09-29T13:39:04
2015-09-29T13:39:04
42,388,846
13
5
null
null
null
null
UTF-8
Python
false
false
460
py
lines = [x.strip() for x in open('64.txt').readlines()] for shift in [16]: #range(len(lines[0])): out_graph = [] for line in lines: out_line = [] for i in range(len(line) - shift): if line[i] == line[i + shift]: out_line.append(' ') else: out_line.append('*') out_line = ''.join(out_line) out_graph.append(out_line) print shift print '\n'.join(out_graph)
5920ba78e09eb4f5be44b465dda4879c3b817140
1bfebc7e1c95cd3c25024b6b1adbf518e55513bf
/src/pykit/strutil/test/test_hex.py
111d8a160a9a91f0c53b0653ae2f85d8536d8489
[ "MIT" ]
permissive
bsc-s2/ops
a9a217a47dad558285ca8064fa29fdff10ab4ad7
6fb8ad758b328a445005627ac1e5736f17088cee
refs/heads/master
2021-06-24T09:32:49.057026
2020-11-02T06:50:01
2020-11-02T06:50:01
123,527,739
8
0
MIT
2020-09-03T04:58:26
2018-03-02T03:54:20
Python
UTF-8
Python
false
false
5,256
py
#!/usr/bin/env python2 # coding: utf-8 import os import unittest from pykit import strutil from pykit.strutil import Hex from pykit import ututil from pykit import utfjson dd = ututil.dd class TestHex(unittest.TestCase): def test_init(self): byte_length = 3 cases = ( (0, 0), ('000000', 0), ('\0\0\0', 0), (256**2 + 2*256 + 3, 0x010203), ('010203', 0x010203), ('\1\2\3', 0x010203), ) for inp, expected in cases: dd(inp, expected) c = Hex(inp, byte_length) self.assertEqual(expected, c.int) self.assertEqual('%06x' % expected, c) def test_attr(self): c = Hex('010203', 3) self.assertEqual('010203', c.hex) self.assertEqual('\1\2\3', c.bytes) self.assertEqual(256**2 + 2*256 + 3, c.int) self.assertIs('010203', c.hex) self.assertIsNot('010203', c) def test_init_invalid(self): byte_length = 3 cases = ( (256**3-1, None), (256**3, ValueError), (-1, ValueError), ('\1\2', ValueError), ('\1\2\3\4', ValueError), ('0102', ValueError), ('01020', ValueError), ('0102030', ValueError), ('01020304', ValueError), ({}, TypeError), ) for inp, err in cases: dd(inp, err) if err is None: c = Hex(inp, byte_length) else: self.assertRaises(err, Hex, inp, byte_length) def test_named_length(self): val = 0x010203 cases = ( ('crc32', '00010203'), ('Crc32', '00010203'), ('CRC32', '00010203'), ('md5', '00000000000000000000000000010203'), ('Md5', '00000000000000000000000000010203'), ('MD5', '00000000000000000000000000010203'), ('sha1', '0000000000000000000000000000000000010203'), ('Sha1', '0000000000000000000000000000000000010203'), ('SHA1', '0000000000000000000000000000000000010203'), ('sha256', '0000000000000000000000000000000000000000000000000000000000010203'), ('Sha256', '0000000000000000000000000000000000000000000000000000000000010203'), ('SHA256', '0000000000000000000000000000000000000000000000000000000000010203'), ) for typ, expected in cases: c = Hex(val, typ) self.assertEqual(expected, c) def test_checksum_shortcut(self): val = 0x010203 self.assertEqual(Hex(val, 'crc32'), Hex.crc32(val)) self.assertEqual(Hex(val, 'md5'), Hex.md5(val)) self.assertEqual(Hex(val, 'sha1'), Hex.sha1(val)) self.assertEqual(Hex(val, 'sha256'), Hex.sha256(val)) def test_prefix(self): pref = '1234' cases = ( ('crc32', '12340000'), ('md5', '12340000000000000000000000000000'), ('sha1', '1234000000000000000000000000000000000000'), ('sha256', '1234000000000000000000000000000000000000000000000000000000000000'), ) for typ, expected in cases: dd('typ:', typ) c = Hex((pref, 0), typ) self.assertEqual(expected, c) self.assertEqual('12340101', Hex((pref, 1), 'crc32')) def test_str_repr(self): c = Hex.crc32(1) self.assertEqual('00000001', str(c)) self.assertEqual("'00000001'", repr(c)) def test_json(self): c = Hex.crc32(('0002', 0)) rst = utfjson.dump(c) self.assertEqual('"00020000"', rst) self.assertEqual(c, utfjson.load(rst)) def test_arithmetic(self): c = Hex.crc32(5) self.assertEqual(6, (c+1).int) self.assertEqual(10, (c*2).int) self.assertEqual(2, (c/2).int) self.assertEqual(0, (c/6).int) self.assertEqual(1, (c % 2).int) self.assertEqual(25, (c**2).int) self.assertEqual('00000006', (c+1)) self.assertEqual('0000000a', (c*2)) self.assertEqual('00000002', (c/2)) self.assertEqual('00000000', (c/6)) self.assertEqual('00000001', (c % 2)) self.assertEqual('00000019', (c**2)) self.assertEqual(6, (c + Hex.crc32(1)).int) # overflow protection self.assertEqual(0, (c-5).int) self.assertEqual(0, (c-6).int) d = Hex.crc32(('', 0xff)) self.assertEqual(d, d+1) def test_arithmetic_error(self): c = Hex.crc32(5) cases = ( [], (), {}, 'x', u'我', ) for inp in cases: with self.assertRaises(TypeError): c + inp with self.assertRaises(TypeError): c - inp with self.assertRaises(TypeError): c * inp with self.assertRaises(TypeError): c / inp with self.assertRaises(TypeError): c % inp with self.assertRaises(TypeError): c ** inp
50b28d0ed7daa7be97decf477b846c80cd2df47e
4f0385a90230c0fe808e8672bb5b8abcceb43783
/框架/crawler/scrapy/scrapy_demo/scrapy_demo/spiders/quotes.py
8c9928611b92d882b2c0eebf7d5163ee20e145da
[]
no_license
lincappu/pycharmlearningproject
4084dab7adde01db9fa82a12769a67e8b26b3382
b501523e417b61373688ba12f11b384166baf489
refs/heads/master
2023-07-10T05:21:15.163393
2023-06-29T14:02:35
2023-06-29T14:02:35
113,925,289
0
0
null
null
null
null
UTF-8
Python
false
false
7,268
py
# -*- coding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import scrapy from scrapy_demo import items from scrapy_demo import settings import scrapy.settings from scrapy.mail import MailSender # 这是最普通的爬虫形式, # class QuotesSpider(scrapy.Spider): # name = "quotes" # start_urls = [ # 'http://quotes.toscrape.com/page/1/', # ] # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'text': quote.css('span.text::text').get(), # 'author': quote.css('small.author::text').get(), # 'tags': quote.css('div.tags a.tag::text').getall(), # } # # next_page = response.css('li.next a::attr(href)').get() # if next_page is not None: # next_page = response.urljoin(next_page) # 这个urljoin 会用start_url中的域名。 # yield scrapy.Request(next_page, callback=self.parse) # scrapy.follow 的形式,和Request的区别:不需要在urljoin一次,直接就是拼接好的url # class QuotesSpider(scrapy.Spider): # name = 'quotes' # start_urls = [ # 'http://quotes.toscrape.com/tag/humor/', # ] # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'author': quote.xpath('span/small/text()').get(), # 'text': quote.css('span.text::text').get(), # } # # next_page = response.css('li.next a::attr("href")').get() # if next_page is not None: # yield response.follow(next_page, self.parse) # follow_all 的形式,然后加上另一个回调函数。 # class AuthorSpider(scrapy.Spider): # name = 'author' # # start_urls = ['http://quotes.toscrape.com/'] # # def parse(self, response): # author_page_links = response.css('.author + a') # yield from response.follow_all(author_page_links, self.parse_author) # # pagination_links = response.css('li.next a') # yield from response.follow_all(pagination_links, self.parse) # # def parse_author(self, response): # def extract_with_css(query): # return response.css(query).get(default='').strip() # # yield { # 'name': extract_with_css('h3.author-title::text'), # 'birthdate': extract_with_css('.author-born-date::text'), # 'bio': extract_with_css('.author-description::text'), # } # # # 在命令行中传入参数,然后重写start_request 这样就不用start_url # class QuotesSpider(scrapy.Spider): # name = "quotes" # # def start_requests(self): # url = 'http://quotes.toscrape.com/' # tag = getattr(self, 'tag', None) # if tag is not None: # url = url + 'tag/' + tag # yield scrapy.Request(url, self.parse) # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'text': quote.css('span.text::text').extract_first(), # 'author': quote.css('small.author::text').extract_first(), # } # # next_page = response.css('li.next a::attr(href)').extract_first() # if next_page is not None: # next_page = response.urljoin(next_page) # yield scrapy.Request(next_page, self.parse) # class DianyingSpider(scrapy.Spider): # MAIL_HOST = 'smtp.exmail.qq.com' # MAIL_PORT = 25 # MAIL_USER = "[email protected]" # MAIL_PASS = "6bH9KPQoKD" # MAIL_TLS = False # MAIL_SSL = False # # name = "dianying" # start_urls = [ # "https://www.dy2018.com/html/gndy/dyzz/" ] # 这是使用FEED exporter的默认配置选项。这里没有用到itemexporter的配置 # custom_settings = { # 'FEED_URI': "file:///tmp/zzz.marshal", # 'FEED_FORMAT': 'marshal', # 'FEED_EXPORT_ENCODING':'utf8', # 'FEED_EXPORT_FIELDS': ["url", "title"] # } # 程序入口 # def parse(self, response): # mailer = MailSender( # smtphost=settings.py.MAIL_HOST, # smtpuser=settings.py.MAIL_USER, # mailfrom=settings.py.MAIL_USER, # smtppass=settings.py.MAIL_PASS, # smtpport=settings.py.MAIL_PORT, # smtptls=settings.py.MAIL_TLS, # smtpssl=settings.py.MAIL_SSL, # ) # mailer = MailSender.from_settings(self.settings.py) # # mailer.send(to=["[email protected]"], subject="北京新橙科技有限公司", body="Some body") # # # 遍历 最新电影 的所有页面 # for page in response.xpath("//select/option/@value").extract(): # url = "https://www.dy2018.com" + page # self.logger.info('aaaaa %s' % url) # yield scrapy.Request(url, callback=self.parsePage) # # # 处理单个页面 # def parsePage(self, response): # # 获取到该页面的所有电影的详情页链接 # for link in response.xpath('//a[@class="ulink"]/@href').extract(): # url = "https://www.dy2018.com" + link # self.logger.info('bbbbbb %s' % url) # yield scrapy.Request(url, callback=self.parseChild) # # # 处理单个电影详情页 # def parseChild(self, response): # # 获取电影信息,并提取数据 # item = items.DianyingItem() # item['url'] = response.url # item['title'] = response.xpath('//div[@class="title_all"]/h1/text()').extract() # item['magnet'] = response.xpath('//div[@id="Zoom"]//a[starts-with(@href, "magnet:")]/@href').extract() # self.logger.info('ccccc %s' % item) # yield item # itemloader 的形式 # class DianyingSpider(scrapy.Spider): # name = "dianying" # start_urls = [ # "https://www.dy2018.com/html/gndy/dyzz/" # ] # # # 程序入口 # def parse(self, response): # # 遍历 最新电影 的所有页面 # for page in response.xpath("//select/option/@value").extract(): # url = "https://www.dy2018.com" + page # yield scrapy.Request(url, callback=self.parsePage) # # # 处理单个页面 # def parsePage(self, response): # # 获取到该页面的所有电影的详情页链接 # for link in response.xpath('//a[@class="ulink"]/@href').extract(): # url = "https://www.dy2018.com" + link # yield scrapy.Request(url, callback=self.parseChild) # # # def parseChild(self, response): # l = items.ArticleItemLoader(item=items.DianyingItem(), response=response) # l.add_value('url', response.url) # l.add_xpath('title', '//div[@class="title_all"]/h1/text()') # l.add_xpath('magnet', '//div[@id="Zoom"]//img/@src') # l.add_value('date', '20200611') # l.add_value('name','fls') # l.add_value('create_time','test') # yield l.load_item() # # class DianyingSpider(scrapy.Spider): # # name = "dianying" # start_urls = [ # "https://www.thepaper.cn/allGovUsers.jsp", # ] # # def parse(self, response):
ec31acbdb0cf41622d1a325d3f894382ad8fd78f
d4fa331d7d8a00865f99ee2c05ec8efc0468fb63
/alg/remove_k_digits.py
f25427c08b7db78277402c25b6aa25fed1054238
[]
no_license
nyannko/leetcode-python
5342620c789a02c7ae3478d7ecf149b640779932
f234bd7b62cb7bc2150faa764bf05a9095e19192
refs/heads/master
2021-08-11T04:11:00.715244
2019-02-05T15:26:43
2019-02-05T15:26:43
145,757,563
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
class Solution(object): def removeKdigits(self, num, k): """ :type num: str :type k: int :rtype: str """ if len(num) <= k: return '0' stack = [] for i in num: while stack and k > 0 and stack[-1] > i: stack.pop() k -= 1 stack.append(i) # while k > 0: # stack.pop() # k -= 1 if k: stack = stack[:-k] return ''.join(stack).lstrip('0') or '0'
1f97596a4534396f4848c29caeee8100eb7f788e
de1abd0ebbb817aa5f23d369e7dda360fd6f1c32
/chapter3/scrapy/wikiSpider/wikiSpider/settings.py
9bf879252847b3f89efa7323e1c40f4f86ae3b30
[]
no_license
CodedQuen/Web-Scraping-with-Python-
33aaa2e3733aa1f2b8c7a533d74f5d08ac868197
67f2d5f57726d5a943f5f044480e68c36076965b
refs/heads/master
2022-06-13T01:34:39.764531
2020-05-05T11:07:01
2020-05-05T11:07:01
261,435,932
0
0
null
null
null
null
UTF-8
Python
false
false
3,258
py
# -*- coding: utf-8 -*- # Scrapy settings for wikiSpider project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'wikiSpider' SPIDER_MODULES = ['wikiSpider.spiders'] NEWSPIDER_MODULE = 'wikiSpider.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'wikiSpider (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'wikiSpider.middlewares.WikispiderSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'wikiSpider.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'wikiSpider.pipelines.WikispiderPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
ba1cba5c8a2a1b7898a46fb6a4abeebd84541336
51885da54b320351bfea42c7dd629f41985454cd
/abc075/c.py
18f98c98169acb0c09d089c7c2b89ef4b8bc0bd0
[]
no_license
mskt4440/AtCoder
dd266247205faeda468f911bff279a792eef5113
f22702e3932e129a13f0683e91e5cc1a0a99c8d5
refs/heads/master
2021-12-15T10:21:31.036601
2021-12-14T08:19:11
2021-12-14T08:19:11
185,161,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,777
py
# # abc075 c # import sys from io import StringIO import unittest from collections import deque class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_入力例_1(self): input = """7 7 1 3 2 7 3 4 4 5 4 6 5 6 6 7""" output = """4""" self.assertIO(input, output) def test_入力例_2(self): input = """3 3 1 2 1 3 2 3""" output = """0""" self.assertIO(input, output) def test_入力例_3(self): input = """6 5 1 2 2 3 3 4 4 5 5 6""" output = """5""" self.assertIO(input, output) def resolve(): N, M = map(int, input().split()) AB = [list(map(int, input().split())) for _ in range(M)] ans = 0 for i in range(M): Target = AB[:] Target.pop(i) G = [[i+1, 0] for i in range(N)] for ab in Target: a, b = ab G[a-1][1] += 1 G[b-1][1] += 1 G[a-1].append(b) G[b-1].append(a) F = [False] * N Q = deque() Q.append(1) F[0] = True while Q: p = Q.pop() if G[p-1][1] == 0: continue for np in G[p-1][2:]: if F[np-1]: continue Q.append(np) F[np-1] = True for f in F: if f == False: ans += 1 break print(ans) if __name__ == "__main__": # unittest.main() resolve()
70e19baa27259958c38615665bee3f6c8ac77d48
b8cc6d34ad44bf5c28fcca9e0df01d9ebe0ee339
/入门学习/threading_dead_lock-eg.py
277a2b79b337003460067bedae3cb0eeca00cd29
[]
no_license
python-yc/pycharm_script
ae0e72898ef44a9de47e7548170a030c0a752eb5
c8947849090c71e131df5dc32173ebe9754df951
refs/heads/master
2023-01-05T06:16:33.857668
2020-10-31T08:09:53
2020-10-31T08:09:53
296,778,670
0
0
null
null
null
null
UTF-8
Python
false
false
2,591
py
""" import threading import time lock_1 = threading.Lock() lock_2 = threading.Lock() def func_1(): print("func_1 starting......") lock_1.acquire() print("func_1 申请了 lock 1 ......") time.sleep(2) print("func_1 等待 lock_2 .......") lock_2.acquire() print("func_1 申请了 lock 2 ......") lock_2.release() print("func_1 释放了lock_2") lock_1.release() print("func_1 释放了lock_1") print("func_1 done......") def func_2(): time.sleep(3) print("func_2 starting......") lock_2.acquire() print("func_2 申请了 lock 2 ......") #将这个函数内的第一个sleep注释,然后将下面这个取消注释,就会出现死锁现象 #time.sleep(3) print("func_2 等待 lock_1 .......") lock_1.acquire() print("func_2 申请了 lock 1 ......") lock_1.release() print("func_2 释放了lock_1") lock_2.release() print("func_2 释放了lock_2") print("func_2 done......") if __name__ == '__main__': print("主程序启动............") t1 = threading.Thread(target=func_1,args=()) t2 = threading.Thread(target=func_2,args=()) t1.start() t2.start() t1.join() t2.join() print("主程序结束。。。。。。。。。。") """ import threading import time lock_1 = threading.Lock() lock_2 = threading.Lock() def func_1(): print("func_1 starting......") #给一个申请时间,如果超时就放弃 lock_1.acquire(timeout=4) print("func_1 申请了 lock 1 ......") time.sleep(2) print("func_1 等待 lock_2 .......") rst = lock_2.acquire(timeout=2) if rst: print("func_1已经得到锁lock_2") lock_2.release() print("func_1 释放了lock_2") else: print("func_1注定没申请到lock_2....") lock_1.release() print("func_1 释放了lock_1") print("func_1 done......") def func_2(): print("func_2 starting......") lock_2.acquire() print("func_2 申请了 lock 2 ......") time.sleep(3) print("func_2 等待 lock_1 .......") lock_1.acquire() print("func_2 申请了 lock 1 ......") lock_1.release() print("func_2 释放了lock_1") lock_2.release() print("func_2 释放了lock_2") print("func_2 done......") if __name__ == '__main__': print("主程序启动............") t1 = threading.Thread(target=func_1,args=()) t2 = threading.Thread(target=func_2,args=()) t1.start() t2.start() t1.join() t2.join() print("主程序结束。。。。。。。。。。")
[ "15655982512.com" ]
15655982512.com
90d662d9b82ee1a8490bdc09aa96fc25d2c0ce6e
832852c679816673f708860929a36a20ca8d3e32
/Configurations/HighMass/Full2017/configuration_mm.py
1ee0bb7d5dbf9cfab8779a7973ed2065f8bd52d3
[]
no_license
UniMiBAnalyses/PlotsConfigurations
c4ec7376e2757b838930dfb2615e1dc99a64e542
578fe518cfc608169d3418bcb63a8342d3a24390
refs/heads/master
2023-08-31T17:57:45.396325
2022-09-01T10:13:14
2022-09-01T10:13:14
172,092,793
0
13
null
2023-04-27T10:26:52
2019-02-22T15:52:44
Python
UTF-8
Python
false
false
905
py
# example of configuration file treeName= 'Events' tag = 'Full2017_mm' # used by mkShape to define output directory for root files outputDir = 'rootFile_'+tag # file with TTree aliases aliasesFile = 'aliases.py' # file with list of variables variablesFile = 'variables.py' # file with list of cuts cutsFile = 'cuts_ee_mm.py' # file with list of samples samplesFile = 'samples.py' # file with list of samples plotFile = 'plot.py' # luminosity to normalize to (in 1/fb) lumi = 41.5 # used by mkPlot to define output directory for plots # different from "outputDir" to do things more tidy outputDirPlots = 'plot_'+tag # used by mkDatacards to define output directory for datacards outputDirDatacard = 'datacards' # structure file for datacard #structureFile = 'structure.py' # Is this even needed still? # nuisances file for mkDatacards and for mkShape nuisancesFile = 'nuisances.py'
e1c8772a70ff0b7a5ead0b6c73d8adda9807dd1a
28c598bf75f3ab287697c7f0ff1fb13bebb7cf75
/testgame.mmo/genesis/spawn/spawnmain.py
d1a6e96ee033931ad1e1cf4df3507ff6d4965fc9
[]
no_license
keaysma/solinia_depreciated
4cb8811df4427261960af375cf749903d0ca6bd1
4c265449a5e9ca91f7acf7ac05cd9ff2949214ac
refs/heads/master
2020-03-25T13:08:33.913231
2014-09-12T08:23:26
2014-09-12T08:23:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
import races import animal import npc """ #Critter Pack #http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import critters """ #Monster Pack Examples #http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import monsters """ Mythical Creature Pack Examples http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import mythical
0ce5054c29d7414e6c56e074af1b1ef1b32afe58
f95e73867e4383784d6fdd6a1c9fe06cffbfd019
/CheckIO/HOME/pawn_brotherhood.py
4b0929a05d3c3562eadcb0a6374c8a5fdf00444c
[]
no_license
linxiaohui/CodeLibrary
da03a9ed631d1d44b098ae393b4bd9e378ab38d3
96a5d22a8c442c4aec8a064ce383aba8a7559b2c
refs/heads/master
2021-01-18T03:42:39.536939
2018-12-11T06:47:15
2018-12-11T06:47:15
85,795,767
3
0
null
null
null
null
UTF-8
Python
false
false
554
py
#!/usr/bin/env python # *-* coding:UTF-8 *-* def safe_pawns(pawns): cnt=0 for l in pawns: col,row=l.lower() if int(row)==1: continue if col>='b' and chr(ord(col)-1)+str(int(row)-1) in pawns or col<='g' and chr(ord(col)+1)+str(int(row)-1) in pawns: cnt+=1 return cnt if __name__ == '__main__': #These "asserts" using only for self-checking and not necessary for auto-testing assert safe_pawns({"b4", "d4", "f4", "c3", "e3", "g5", "d2"}) == 6 assert safe_pawns({"b4", "c4", "d4", "e4", "f4", "g4", "e5"}) == 1
6fef01c2498c9a9b7a52d8a294080b7fe61d6627
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/CJ/16_2_1_Dom_ju.py
c726b4de6450f76ad915989d09c20461a1c9a8cd
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
538
py
DOWNLOAD_DIR = "/Users/Dom/Downloads/" def jopen( filename ): return open( DOWNLOAD_DIR+filename+".in", "r") def jout( filename, results, linebreaks=False ): f = open(DOWNLOAD_DIR+filename+".out","w") for n in range(len(results)): f.write( "Case #" + str(n+1) + ": " ) if isinstance(n, list): if linebreaks: f.write( "\n" ) f.write( " ".join(n) ) else: if linebreaks: f.write( "\n" ) f.write( str(results[n]) + "\n" )
1e4f57cb7ae54552f4520fc68b828043c2167752
e41c10e0b17265509fd460f860306784522eedc3
/basic_config.py
8e0791dbf7f899d792c04ef3414e39b0ef1d7b41
[ "CC0-1.0" ]
permissive
hyyc116/research_paradigm_changing
c77ecf2533a6b2e2cd3f74fc3d3073454bffc55c
eac69c45a7a17eb70ace185fa22831ac785e504e
refs/heads/master
2020-11-24T05:48:07.973347
2019-12-18T12:17:02
2019-12-18T12:17:02
227,992,284
0
0
null
null
null
null
UTF-8
Python
false
false
5,102
py
#coding:utf-8 import os import sys import json from collections import defaultdict from collections import Counter import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.metrics import r2_score import math import numpy as np import random import logging import networkx as nx from itertools import combinations import pylab import itertools from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import spline from multiprocessing.dummy import Pool as ThreadPool from networkx.algorithms import isomorphism from matplotlib import cm as CM from collections import Counter from scipy.signal import wiener import matplotlib as mpl from matplotlib.patches import Circle from matplotlib.patheffects import withStroke import matplotlib.colors as colors from matplotlib.colors import LogNorm from matplotlib.colors import LinearSegmentedColormap from networkx.algorithms.core import core_number from networkx.algorithms.core import k_core import psycopg2 from cycler import cycler import six # from gini import gini logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO) mpl.rcParams['agg.path.chunksize'] = 10000 color_sequence = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5'] mpl.rcParams['axes.prop_cycle'] = cycler('color', color_sequence) # color = plt.cm.viridis(np.linspace(0.01,0.99,6)) # This returns RGBA; convert: # hexcolor = map(lambda rgb:'#%02x%02x%02x' % (rgb[0]*255,rgb[1]*255,rgb[2]*255), # tuple(color[:,0:-1])) # mpl.rcParams['axes.prop_cycle'] = cycler('color', hexcolor) params = {'legend.fontsize': 8, 'axes.labelsize': 8, 'axes.titlesize':10, 'xtick.labelsize':8, 'ytick.labelsize':8} pylab.rcParams.update(params) # from paths import * def circle(ax,x,y,radius=0.15): circle = Circle((x, y), radius, clip_on=False, zorder=10, linewidth=1, edgecolor='black', facecolor=(0, 0, 0, .0125), path_effects=[withStroke(linewidth=5, foreground='w')]) ax.add_artist(circle) def autolabel(rects,ax,total_count=None,step=1,): """ Attach a text label above each bar displaying its height """ for index in np.arange(len(rects),step=step): rect = rects[index] height = rect.get_height() # print height if not total_count is None: ax.text(rect.get_x() + rect.get_width()/2., 1.005*height, '{:}\n({:.6f})'.format(int(height),height/float(total_count)), ha='center', va='bottom') else: ax.text(rect.get_x() + rect.get_width()/2., 1.005*height, '{:}'.format(int(height)), ha='center', va='bottom') class dbop: def __init__(self,insert_index=0): self._insert_index=insert_index self._insert_values=[] logging.debug("connect database with normal cursor.") self._db = psycopg2.connect(database='core_data',user="buyi",password = "ruth_hardtop_isthmus_bubbly") self._cursor = self._db.cursor() def query_database(self,sql): self._cursor.close() self._cursor = self._db.cursor() self._cursor.execute(sql) logging.debug("query database with sql {:}".format(sql)) return self._cursor def insert_database(self,sql,values): self._cursor.close() self._cursor = self._db.cursor() self._cursor.executemany(sql,values) logging.debug("insert data to database with sql {:}".format(sql)) self._db.commit() def batch_insert(self,sql,row,step,is_auto=True,end=False): if end: if len(self._insert_values)!=0: logging.info("insert {:}th data into database,final insert.".format(self._insert_index)) self.insert_database(sql,self._insert_values) else: self._insert_index+=1 if is_auto: row[0] = self._insert_index self._insert_values.append(tuple(row)) if self._insert_index%step==0: logging.info("insert {:}th data into database".format(self._insert_index)) self.insert_database(sql,self._insert_values) self._insert_values=[] def get_insert_count(self): return self._insert_index def execute_del_update(self,sql): self._cursor.execute(sql) self._db.commit() logging.debug("execute delete or update sql {:}.".format(sql)) def execute_sql(self,sql): self._cursor.execute(sql) self._db.commit() logging.debug("execute sql {:}.".format(sql)) def close_db(self): self._db.close() def hist_2_bar(data,bins=50): n,bins,patches = plt.hist(data,bins=bins) return [x for x in bins[:-1]],[x for x in n]
fc9e559deb7f5bddce6f8748ac93e3cc190dfb31
0130533e0f40a0f1cf476f519a3673b10ceabff3
/teste/maximo.py
b0fd9c6f4d4edd354a14ef1c57bb97f12fe9654e
[]
no_license
danielcanuto/revisao_python
d79c8fbf475e1cea12ca9719d02868666e0591db
3dbd2af74c7cc94f8e1962acb4069f40d0e71772
refs/heads/main
2023-03-02T04:37:30.777336
2021-02-11T11:16:54
2021-02-11T11:16:54
337,031,753
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
def maior(x, y): if x > y: return x else: return y def maximo(x, y, z): a = maior(x, y) return maior(a, z)
abcfc7f85883e49ffa5113a31431886ddf533f5c
5b1b478b0e7b8069762855baa8a2a4f6ff48ebf4
/src/reviews/forms.py
bf83b29d371abc3b2b2686430c5fe69d7b383f5e
[ "MIT" ]
permissive
junaidq1/greendot
9e4a0402fcee7182ca7531a0dd4a48edb43f79c5
cd9e7791523317d759e0f5f9cf544deff34a8c79
refs/heads/master
2020-04-06T06:54:07.994376
2016-09-11T18:33:15
2016-09-11T18:33:15
61,906,579
0
0
null
null
null
null
UTF-8
Python
false
false
4,047
py
from django import forms from .models import Review, Employee from registration.forms import RegistrationFormUniqueEmail #this is to edit the registration redux form # class ReviewForm(forms.ModelForm): # class Meta: # model = Review # fields = [ # "content", # "employee", # "work_again", # ] #actual review post form class ReviewForm2(forms.ModelForm): class Meta: model = Review fields = ["length_working", "ques1", "ques2", "ques3","work_again", "content"] # def content_clean(self): # content = self.cleaned_data.get('content') # print "jimmy" # print len(content) # if len(content) < 70: # raise forms.ValidationError("Please provide a more impactful review") # return content #this form edits the registration redux form class UserLevelRegistrationForm(RegistrationFormUniqueEmail): LEVEL_CHOICES = ( ('PPD', 'PPD'), ('BA', 'BA'), ('C', 'C'), ('SC', 'SC'), ('M', 'M'), ('SM', 'SM'), ('Other', 'other'), ) OFFICE_CHOICES = ( ('Kansas City', 'Kansas City'), ('Atlanta', 'Atlanta'), ('Austin', 'Austin'), ('Bengaluru', 'Bengaluru'), ('Boston', 'Boston'), ('Charlotte', 'Charlotte'), ('Chicago', 'Chicago'), ('Cincinnati', 'Cincinnati'), ('Cleveland', 'Cleveland'), ('Dallas', 'Dallas'), ('Denver', 'Denver'), ('Detroit', 'Detroit'), ('Gurgaon', 'Gurgaon'), ('Houston', 'Houston'), ('Los Angeles', 'Los Angeles'), ('McLean', 'McLean'), ('Miami', 'Miami'), ('Minneapolis', 'Minneapolis'), ('Mumbai', 'Mumbai'), ('New York City', 'New York City'), ('Orange County', 'Orange County'), ('Parsippany', 'Parsippany'), ('Philadelphia', 'Philadelphia'), ('Pittsburgh', 'Pittsburgh'), ('San Francisco', 'San Francisco'), ('Seattle', 'Seattle'), ('Other', 'other'), ) ServiceArea_CHOICES = ( ('S&O', 'S&O'), ('Tech', 'Tech'), ('Human Capital', 'Human Capital'), ) level = forms.ChoiceField(choices=LEVEL_CHOICES, label="What is your level at the firm?") office = forms.ChoiceField(choices=OFFICE_CHOICES, label="What office are you based out of?") service_area = forms.ChoiceField(choices=ServiceArea_CHOICES, label="What Service Area are you a part of?") # form to validate that person signing up knows the answer to the impact day question class ValidationForm(forms.Form): answer = forms.CharField() class ContactForm(forms.Form): username = forms.CharField(label="Please enter your username (if applicable)", required=False) contact_email = forms.EmailField(label="Please provide a contact email") message = forms.CharField(widget=forms.Textarea) class AccessIssuesForm(forms.Form): username = forms.CharField(label="Please enter your username", required=False) contact_email = forms.EmailField(label="Please provide a contact email") message = forms.CharField(label="Please describe the access issues you are having", widget=forms.Textarea) class ReportDataForm(forms.Form): DataReportChoices = ( ('Incorrect', 'Incorrect practitioner data'), ('Missing', 'Missing practitioner data'), ) data_issue = forms.ChoiceField(choices=DataReportChoices, label="What kind of data issue would you like to report?") practitioner_first_name = forms.CharField(label="First name of practitoner", max_length=120) practitioner_last_name = forms.CharField(label="Last name of practitoner", max_length=120) service_area = forms.CharField(label="Service Area of practitoner", max_length=120) level = forms.CharField(label="Level of practitoner", max_length=120) office = forms.CharField(label="Office of practitoner", max_length=120) message = forms.CharField(label="Describe data issue", max_length=1500) class PartnerForm(forms.Form): service_area_options = ( ('S&O', 'S&O'), ('Tech', 'Tech'), ('HCap', 'HCap'), ) service_ar = forms.ChoiceField(choices=service_area_options, label="What Service Area are you aligned with?") message = forms.CharField(label="What makes you a good fit for the team?", widget=forms.Textarea) contact_email = forms.EmailField(label="Email address")
e1c50ce55b94d0b8974045c6d12124d2db102332
21b39d50e4df56ea01453001845d1580729af1df
/jdcloud_sdk/services/redis/apis/DescribeClientListRequest.py
450146bb94baa2db571d11a497779f82c80cb4ac
[ "Apache-2.0" ]
permissive
Tanc009/jdcloud-sdk-python
ef46eac7731aa8a1839b1fc1efd93249b7a977f0
8b045c99bc5b73ca7348e950b6f01e03a27982f5
refs/heads/master
2021-08-09T14:49:16.177709
2021-06-25T02:38:41
2021-06-25T02:38:41
141,714,695
0
0
Apache-2.0
2018-07-20T13:21:17
2018-07-20T13:21:16
null
UTF-8
Python
false
false
1,572
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeClientListRequest(JDCloudRequest): """ 查询当前客户端IP列表 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeClientListRequest, self).__init__( '/regions/{regionId}/cacheInstance/{cacheInstanceId}/clientList', 'GET', header, version) self.parameters = parameters class DescribeClientListParameters(object): def __init__(self, regionId, cacheInstanceId, ): """ :param regionId: 缓存Redis实例所在区域的Region ID。目前有华北-北京、华南-广州、华东-上海三个区域,Region ID分别为cn-north-1、cn-south-1、cn-east-2 :param cacheInstanceId: 缓存Redis实例ID,是访问实例的唯一标识 """ self.regionId = regionId self.cacheInstanceId = cacheInstanceId
7c6e2ad300adefc46b95d659f9cefe698aeb499b
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/modules/events/contributions/models/subcontributions.py
9ff806fba366acfa3d3ecfa78f127ae91c426fa9
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
4,998
py
from __future__ import unicode_literals from fossir.core.db import db from fossir.core.db.sqlalchemy.attachments import AttachedItemsMixin from fossir.core.db.sqlalchemy.descriptions import DescriptionMixin, RenderMode from fossir.core.db.sqlalchemy.notes import AttachedNotesMixin from fossir.core.db.sqlalchemy.util.queries import increment_and_get from fossir.util.locators import locator_property from fossir.util.string import format_repr, return_ascii def _get_next_friendly_id(context): """Get the next friendly id for a sub-contribution.""" from fossir.modules.events.contributions.models.contributions import Contribution contribution_id = context.current_parameters['contribution_id'] assert contribution_id is not None return increment_and_get(Contribution._last_friendly_subcontribution_id, Contribution.id == contribution_id) def _get_next_position(context): """Get the next menu entry position for the event.""" contribution_id = context.current_parameters['contribution_id'] res = db.session.query(db.func.max(SubContribution.position)).filter_by(contribution_id=contribution_id).one() return (res[0] or 0) + 1 class SubContribution(DescriptionMixin, AttachedItemsMixin, AttachedNotesMixin, db.Model): __tablename__ = 'subcontributions' __table_args__ = (db.Index(None, 'friendly_id', 'contribution_id', unique=True), {'schema': 'events'}) PRELOAD_EVENT_ATTACHED_ITEMS = True PRELOAD_EVENT_NOTES = True ATTACHMENT_FOLDER_ID_COLUMN = 'subcontribution_id' possible_render_modes = {RenderMode.html, RenderMode.markdown} default_render_mode = RenderMode.markdown id = db.Column( db.Integer, primary_key=True ) #: The human-friendly ID for the sub-contribution friendly_id = db.Column( db.Integer, nullable=False, default=_get_next_friendly_id ) contribution_id = db.Column( db.Integer, db.ForeignKey('events.contributions.id'), index=True, nullable=False ) position = db.Column( db.Integer, nullable=False, default=_get_next_position ) title = db.Column( db.String, nullable=False ) duration = db.Column( db.Interval, nullable=False ) is_deleted = db.Column( db.Boolean, nullable=False, default=False ) #: External references associated with this contribution references = db.relationship( 'SubContributionReference', lazy=True, cascade='all, delete-orphan', backref=db.backref( 'subcontribution', lazy=True ) ) #: Persons associated with this contribution person_links = db.relationship( 'SubContributionPersonLink', lazy=True, cascade='all, delete-orphan', backref=db.backref( 'subcontribution', lazy=True ) ) # relationship backrefs: # - attachment_folders (AttachmentFolder.subcontribution) # - contribution (Contribution.subcontributions) # - legacy_mapping (LegacySubContributionMapping.subcontribution) # - note (EventNote.subcontribution) def __init__(self, **kwargs): # explicitly initialize this relationship with None to avoid # an extra query to check whether there is an object associated # when assigning a new one (e.g. during cloning) kwargs.setdefault('note', None) super(SubContribution, self).__init__(**kwargs) @property def event(self): return self.contribution.event @locator_property def locator(self): return dict(self.contribution.locator, subcontrib_id=self.id) @property def is_protected(self): return self.contribution.is_protected @property def session(self): """Convenience property so all event entities have it""" return self.contribution.session if self.contribution.session_id is not None else None @property def timetable_entry(self): """Convenience property so all event entities have it""" return self.contribution.timetable_entry @property def speakers(self): return self.person_links @speakers.setter def speakers(self, value): self.person_links = value.keys() @property def location_parent(self): return self.contribution def get_access_list(self): return self.contribution.get_access_list() def get_manager_list(self, recursive=False): return self.contribution.get_manager_list(recursive=recursive) @return_ascii def __repr__(self): return format_repr(self, 'id', is_deleted=False, _text=self.title) def can_access(self, user, **kwargs): return self.contribution.can_access(user, **kwargs) def can_manage(self, user, role=None, **kwargs): return self.contribution.can_manage(user, role, **kwargs)
6305acaf43a088e91df5df323d21cd70ced14c36
a062669a7f37412f016534ae30bd41e9efe6afa5
/product/migrations/0013_auto_20201127_0026.py
8b034f4bd8a91d3a1e265777d20c4ce041f762fb
[]
no_license
techappg/meat_fun_backend
7c05045ae0ca6a442eb6e24693a800ca98447e9b
e16da0ec1ccfb583a43f534ad9fd6cb79fe1e6c1
refs/heads/main
2023-04-16T22:42:38.183722
2021-04-22T07:37:07
2021-04-22T07:37:07
360,430,038
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Generated by Django 3.1 on 2020-11-27 08:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0012_auto_20201127_0024'), ] operations = [ migrations.AlterField( model_name='contact_us', name='mobile', field=models.IntegerField(), ), ]
ed6a4ab01226c402541becc7afe28423eff22758
036a41c913b3a4e7ae265e22a672dd89302d3200
/0201-0300/0248/0248_Python_1.py
760cb2e6b8f7b3dda42f9d212933b86444a78d20
[]
no_license
ChangxingJiang/LeetCode
e76f96ebda68d7ade53575354479cfc33ad4f627
a2209206cdd7229dd33e416f611e71a984a8dd9e
refs/heads/master
2023-04-13T15:23:35.174390
2021-04-24T05:54:14
2021-04-24T05:54:14
272,088,506
0
0
null
null
null
null
UTF-8
Python
false
false
5,018
py
class Solution: # 已知开始范围,计算两个数之间的数量 @staticmethod def num1(low, high, middle=False): if middle: return len([str(i) for i in [0, 1, 8] if int(low) <= i <= int(high)]) else: return len([str(i) for i in [0, 1, 6, 8, 9] if int(low) < i < int(high)]) # 计算各个位的数量 @staticmethod def count(n, first): if n == 0: return 1 if n == 1: return 3 if n == 2: return 4 if first else 5 if first: return 4 * Solution.count(n - 2, first=False) else: return 5 * Solution.count(n - 2, first=False) def strobogrammaticInRange(self, low: str, high: str) -> int: # 字符串交换列表 reverse_lst = { "0": "0", "1": "1", "6": "9", "8": "8", "9": "6" } # print("当前计算:", low, high) # 如果顺序相反则返回0 if int(low) > int(high): return 0 # 处理两个数完全相同的情况 if low == high: return 1 if low == low[::-1] else 0 a, b = len(low), len(high) # 处理两数位数不同的情况 # 例:(150-525) -> (150-199) + (200-499) + (500-525) if a == b: # 寻找两个数第一个不同的位数 i = 0 while i < a and low[i] == high[i]: i += 1 s = a // 2 # 处理只有一位的情况 # 处理奇数长度的中间位的情况 if a == 1 or (a % 2 == 1 and i == s): return self.num1(low[i], high[i], middle=True) # 处理在中间位之前的情况 if (a % 2 == 0 and i < s) or (a % 2 == 1 and i < s): ans = self.num1(low[i], high[i]) * self.count(a - (i + 1) * 2, first=False) # print(low, high, "(", i, ")", "=", # self.num1(low[i], high[i]), "*", self.count(a - (i + 1) * 2, first=False), "=", ans, # "->", # (low, low[:i + 1] + "9" * (a - i - 1)) if low[i] in reverse_lst else (), # (high[:i + 1] + "0" * (a - i - 1), high) if high[i] in reverse_lst else ()) if low[i] in reverse_lst: high2 = low[:i + 1] + "9" * (a - i - 1) ans += self.strobogrammaticInRange(low, high2) if high[i] in reverse_lst: low2 = high[:i + 1] + "0" * (a - i - 1) ans += self.strobogrammaticInRange(low2, high) return ans # 处理中心位之后的情况 ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 # 计算是否超出情况 if int(low[i]) < int(ch) < int(high[i]): return 1 elif int(low[i]) == int(ch): while i < a: ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 if int(ch) > int(low[i]): return 1 elif int(ch) == int(low[i]): i += 1 else: return 0 return 1 elif int(ch) == int(high[i]): while i < a: ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 if int(ch) < int(high[i]): return 1 elif int(ch) == int(high[i]): i += 1 else: return 0 return 1 else: return 0 # 处理两个数位数不同的情况 # 例:(50-4050) -> (50-99) + 3位数的情况数 + (1000-4050) else: ans = 0 for i in range(a + 1, b): ans += self.count(i, first=True) # print(low, high, "=", ans, "->", (low, "9" * a), ("1" + "0" * (b - 1), high)) return (ans + self.strobogrammaticInRange(low, "9" * a) + self.strobogrammaticInRange("1" + "0" * (b - 1), high)) if __name__ == "__main__": print(Solution().strobogrammaticInRange(low="50", high="100")) # 3 print(Solution().strobogrammaticInRange(low="0", high="9")) # 3 print(Solution().strobogrammaticInRange(low="100", high="50")) # 0 print(Solution().strobogrammaticInRange(low="1", high="0")) # 0 print(Solution().strobogrammaticInRange(low="0", high="100")) # 7 print(Solution().strobogrammaticInRange(low="100", high="1000")) # 12 print(Solution().strobogrammaticInRange(low="0", high="1680")) # 21 print(Solution().strobogrammaticInRange(low="0", high="2147483647")) # 3124
9277ddc026afe786dbfa6c7fce9b98dc97c38959
19cec240505e27546cb9b10104ecb16cc2454702
/linux/app/web/python/wikicode/dc/__init__.py
92f91ec3adc810b7ed3614687a82c4219108541c
[]
no_license
imosts/flume
1a9b746c5f080c826c1f316a8008d8ea1b145a89
a17b987c5adaa13befb0fd74ac400c8edbe62ef5
refs/heads/master
2021-01-10T09:43:03.931167
2016-03-09T12:09:53
2016-03-09T12:09:53
53,101,798
0
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
import sys, socket, os, wikicode import flume.flmos as flmo from wikicode import to_rpc_proxy class Declassifier (object): def config (self): """ This is a CGI program used to configure the declassifier """ import wikicode class Config (wikicode.extension): def run (self): self.send_page ("Generic DC Setup") wikicode.run_extension (Config) def declassify_ok (self, *args): """ This is a method that returns True or False depending on whether the user with uid <owner_uid> is willing to declassify to user <recipient_uid> """ raise NotImplementedError, 'subclass must implement this method' def run (self): if len (sys.argv) > 1: tagval = int (sys.argv[1]) instance_tagval = int (sys.argv[2]) owner_name = sys.argv[3] owner_uid = int (sys.argv[4]) devel_homedir = sys.argv[5] recipient_uid = int (sys.argv[6]) rpc_fd, rpc_proxy = to_rpc_proxy (os.environ[wikicode.RPC_TAG_ENV]) if self.declassify_ok (tagval, instance_tagval, owner_name, owner_uid, devel_homedir, recipient_uid, rpc_fd, rpc_proxy): rpc_proxy.set_dc_ok (True) sys.exit (0) else: sys.exit (-1) else: self.config () if __name__ == '__main__': obj = Declassifier () obj.run ()
[ "imosts" ]
imosts
3e200464fcd0c7743e17cb6998f1810928aa115a
a2b6bc9bdd2bdbe5871edb613065dd2397175cb3
/Cookbook/Array/岛屿数量.py
571395c6c2f6f2f328b0dda10d09b4a6f34e41e6
[]
no_license
Asunqingwen/LeetCode
ed8d2043a31f86e9e256123439388d7d223269be
b7c59c826bcd17cb1333571eb9f13f5c2b89b4ee
refs/heads/master
2022-09-26T01:46:59.790316
2022-09-01T08:20:37
2022-09-01T08:20:37
95,668,066
0
0
null
null
null
null
UTF-8
Python
false
false
2,635
py
''' 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此外,你可以假设该网格的四条边均被水包围。   示例 1: 输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1 示例 2: 输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3   提示: m == grid.length n == grid[i].length 1 <= m, n <= 300 grid[i][j] 的值为 '0' 或 '1' ''' from typing import List class UnionFind: def __init__(self,grid): row, col = len(grid), len(grid[0]) self.count = 0 self.parent = [-1] * (row * col) self.rank = [0] * (row * col) for i in range(row): for j in range(col): if grid[i][j] == "1": self.parent[i * col + j] = i * col + j self.count += 1 def find(self, i): if self.parent[i] == i: return i self.parent[i] = self.find(self.parent[i]) #路径压缩 return self.parent[i] def union(self, x, y): rootx = self.find(x) rooty = self.find(y) if rootx != rooty: if self.rank[rootx] < self.rank[rooty]: #将秩,即树的深度小的父节点设为深度大的节点 rootx, rooty = rooty, rootx self.parent[rooty] = rootx if self.rank[rootx] == self.rank[rooty]: self.rank[rootx] += 1 self.count -= 1 #合并一个节点,就少一个岛 def getCount(self): return self.count class Solution: def numIslands(self, grid: List[List[str]]) -> int: row = len(grid) if row == 0: return 0 col = len(grid[0]) uf = UnionFind(grid) for r in range(row): for c in range(col): if grid[r][c] == "1": grid[r][c] = "0" for x, y in ((r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)): if 0 <= x < row and 0 <= y < col and grid[x][y] == "1": uf.union(r * col + c, x * col + y) return uf.getCount() if __name__ == '__main__': grid = [ ["1", "1", "1", "1", "0"], ["1", "1", "0", "1", "0"], ["1", "1", "0", "0", "0"], ["0", "0", "0", "0", "0"] ] sol = Solution() print(sol.numIslands(grid))
8b822886de793fad5cc78d1bdeeab56f9dfb7197
85f1488f3d0996b83292f74b3672793f2778503f
/notebooks/Model Diagnostics.py
96d24d2bbf464d6e372c397f7b713a044f8955dd
[]
no_license
ceshine/jigsaw-toxic-2019
33f66d6643aeeeb20599ab95368ce2c1f6500543
34d5df28e1b820725f964fbbdfe039daea31c0d7
refs/heads/master
2022-02-22T10:50:51.444794
2019-08-04T04:13:00
2019-08-04T04:13:00
198,053,856
7
2
null
null
null
null
UTF-8
Python
false
false
5,796
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import sys sys.path.append("..") # In[2]: from pathlib import Path from functools import partial import numpy as np import pandas as pd import torch import joblib from torch.utils.data import DataLoader from toxic.inference_bert import get_token_ids from toxic.dataset import AUX_COLUMNS, ToxicDataset, collate_examples, SortSampler from toxic.common import ToxicBot from toxic.metric import ToxicMetric # In[3]: MODEL_PATH = Path("../data/cache/") DEVICE = "cuda:0" # In[4]: tokenizer = joblib.load(str(MODEL_PATH / "bert-base-uncased_tokenizer.jbl")) model = torch.load(str(MODEL_PATH / "bert-base-uncased_-1_yuval_220_f0.pth")).to(DEVICE) # In[5]: collate_fn = partial( collate_examples, truncate_len=220, pad=0, closing_id=tokenizer.vocab["[SEP]"], mode="both" ) # ![](https://pbs.twimg.com/media/DICFy_jWsAE6s6V?format=jpg&name=small) # [source](https://twitter.com/jessamyn/status/900867154412699649) # In[6]: test_text = [ "I am a man", "I am a woman", "I am a lesbian", "I am gay man", "I am dyke", "I am a white man", "I am a gay woman", "I am a white woman", "I am a gay white man", "I am a black man", "I am a gay white man", "I am a gay black man", "I am a black woman", "I am a gay black woman" ] df = pd.DataFrame(dict(comment_text=test_text)) # In[7]: tokens = get_token_ids( df, tokenizer, is_bert=True) test_ds = ToxicDataset(df, tokens, labeled=False) test_loader = DataLoader( test_ds, collate_fn=collate_fn, batch_size=32, num_workers=0, pin_memory=True ) # In[8]: with torch.no_grad(): results = [] for batch, _ in test_loader: results.append(model(batch.cuda())) results = torch.sigmoid(torch.cat(results)) * 100 results.size() # In[9]: predictions = pd.DataFrame(results.cpu().numpy(), columns=AUX_COLUMNS) predictions["text"] = df["comment_text"].values predictions.shape # In[10]: pd.set_option('display.float_format', lambda x: '%.2f' % x) # In[11]: predictions.columns # In[12]: predictions[["text", "target", "identity_attack", "female", "homosexual_gay_or_lesbian", "black", "white"]].rename( columns={"target": "toxic", "homosexual_gay_or_lesbian":"homosexual"}) # ## Other random examples # In[23]: test_text = [ "Pretty sad really. Thousands come out to protest Trump who's in another country......and all those NDP and Green members - who were the driving force behind Proportional Representation - couldn't find the time to get out to support their own cause. That said, you can bet that Trudeau has alredy lost a good portion of that NDP/Green vote. The guy's a liar. Period.", "Idiots.", "Then put them in jail until they decide to cooperate. This is ridiculous....", "\"He’s a proven liar. Why would you believe anything he has to say?\"\n\nExactly.\nThat\'s why I do not listen to a word Donnie says.", "Fascinating young woman, impressive work. It reminds me of one of the reasons I love Alaska so much —\xa0the people Alaska attracts are often just as extraordinary as the landscape itself. Great article, thank you.", "Well, at least the Russians are white, for heaven's sakes. I'd rather have to live next to a nice white drunk Russian than a black Muslim Kenyan whose children's names are Satanic anagrams.", "Was I posted yesterday, it is interesting to note that under Session's watch only three black people have been appointed in Alabama for the federal courts. This despite the fact that black people make up over 39% of the population of that state. What underlines this reality must be Session's unconscious, if not conscious, attitude towards blacks in general." ] df = pd.DataFrame(dict(comment_text=test_text)) # In[24]: tokens = get_token_ids( df, tokenizer, is_bert=True) print([len(x) for x in tokens]) test_ds = ToxicDataset(df, tokens, labeled=False) test_loader = DataLoader( test_ds, collate_fn=collate_fn, batch_size=32, num_workers=0, pin_memory=True ) with torch.no_grad(): results = [] for batch, _ in test_loader: results.append(model(batch.cuda())) results = torch.sigmoid(torch.cat(results)) * 100 results.size() predictions = pd.DataFrame(results.cpu().numpy(), columns=AUX_COLUMNS) predictions["text"] = df["comment_text"].values predictions[["text", "target", "identity_attack", "female", "homosexual_gay_or_lesbian", "black", "white"]].rename( columns={"target": "toxic", "homosexual_gay_or_lesbian":"homosexual"}) # ## Validate # Make sure the mode is set up correctly. # In[80]: df_valid, tokens_valid = joblib.load(str(MODEL_PATH / "valid_bert-base-uncased_-1_yuval_f0.jbl")) idx = np.random.choice(np.arange(df_valid.shape[0]), 32 * 1000) df_valid, tokens_valid = df_valid.iloc[idx].reset_index(drop=True), tokens_valid[idx] valid_ds = ToxicDataset(df_valid, tokens_valid, labeled=True) val_sampler = SortSampler(valid_ds, key=lambda x: len(valid_ds.tokens[x])) df_valid = df_valid.iloc[list(iter(val_sampler))] print(df_valid.target.describe()) # In[81]: valid_loader = DataLoader( valid_ds, collate_fn=collate_fn, batch_size=64, num_workers=0, pin_memory=True, sampler=val_sampler ) # In[82]: bot = ToxicBot( checkpoint_dir=Path("/tmp/"), log_dir=Path("/tmp/"), model=model, train_loader=None, val_loader=None, optimizer=None, echo=False, criterion=None, avg_window=100, callbacks=[], pbar=False, use_tensorboard=False, device=DEVICE ) valid_pred, valid_y = bot.predict(valid_loader, return_y=True) # In[84]: pd.set_option('precision', 4) metric = ToxicMetric(df_valid) metric(valid_y, valid_pred) # In[ ]:
fa091d4a5b67cc3425553a4c3c7993b379d5a42c
2a2505108cd429d39746050d0100f4963dcd9c69
/src/compas/geometry/bbox/__init__.py
b19dd1d59cd854d5d9397b2cf4ef284c580ed6d6
[ "MIT" ]
permissive
adacko/compas
677095bea007c22a98b44af3281131b445cb1ae1
47c443ad3825897ec7ed932ec20734c2f08ef120
refs/heads/master
2020-07-23T00:55:51.348907
2019-09-09T16:44:18
2019-09-09T16:44:18
207,390,442
0
1
MIT
2019-09-09T19:40:41
2019-09-09T19:40:41
null
UTF-8
Python
false
false
260
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import compas from .bbox import * if not compas.IPY: from .bbox_numpy import * __all__ = [name for name in dir() if not name.startswith('_')]
c26747d4798c12a9061590246550915c3f49b876
f7c7063e1a22b773a271a953c013a3c5303b70b3
/src/litter_trap.py
f5802491a1ff00f278838b9b59f2b0dfe66141a0
[]
no_license
Ewan82/ah_data
e0cce8fffafd91eb6fca8ce6af602d3230535f87
d5961f284187acda8d1317bb4fd50f32c85bb591
refs/heads/master
2021-01-19T01:55:47.530127
2016-11-04T11:07:09
2016-11-04T11:07:09
40,532,005
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
import numpy as np import matplotlib.mlab as mlab def convert_csv2rec(file_no): return mlab.csv2rec('../litter_traps/litterscans/file0'+str(file_no)+'.csv') def remove_false_data(area_arr, tol=2.0): idx = np.where(area_arr < tol) return np.delete(area_arr, idx)
13c31e9d950cf3be9f2b388eecebe51ef72bd351
b1c7a768f38e2e987a112da6170f49503b9db05f
/stockkeeping/migrations/0010_auto_20181101_1545.py
34ef7c9e3a98255c3676811073ad0d7d44aad3d4
[]
no_license
Niladrykar/bracketerp
8b7491aa319f60ec3dcb5077258d75b0394db374
ca4ee60c2254c6c132a38ce52410059cc6b19cae
refs/heads/master
2022-12-11T04:23:07.504966
2019-03-18T06:58:13
2019-03-18T06:58:13
176,218,029
1
0
null
2022-12-08T03:01:46
2019-03-18T06:27:37
JavaScript
UTF-8
Python
false
false
417
py
# Generated by Django 2.0.6 on 2018-11-01 10:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('stockkeeping', '0009_auto_20181101_1544'), ] operations = [ migrations.AlterField( model_name='purchase_total', name='Total', field=models.PositiveIntegerField(blank=True, null=True), ), ]
78dc4511525e97dd533b1940967724911ec49d65
e71fa62123b2b8f7c1a22acb1babeb6631a4549b
/xlsxwriter/test/table/test_table07.py
121beef77b97ead58a919c1640b8c21d77b0c360
[ "BSD-2-Clause" ]
permissive
timgates42/XlsxWriter
40480b6b834f28c4a7b6fc490657e558b0a466e5
7ad2541c5f12b70be471b447ab709c451618ab59
refs/heads/main
2023-03-16T14:31:08.915121
2022-07-13T23:43:45
2022-07-13T23:43:45
242,121,381
0
0
NOASSERTION
2020-02-21T11:14:55
2020-02-21T11:14:55
null
UTF-8
Python
false
false
2,017
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, [email protected] # import unittest from io import StringIO from ..helperfunctions import _xml_to_list from ...table import Table from ...worksheet import Worksheet from ...workbook import WorksheetMeta from ...sharedstrings import SharedStringTable class TestAssembleTable(unittest.TestCase): """ Test assembling a complete Table file. """ def test_assemble_xml_file(self): """Test writing a table""" self.maxDiff = None worksheet = Worksheet() worksheet.worksheet_meta = WorksheetMeta() worksheet.str_table = SharedStringTable() # Set the table properties. worksheet.add_table('C3:F14', {'total_row': 1}) worksheet._prepare_tables(1, {}) fh = StringIO() table = Table() table._set_filehandle(fh) table._set_properties(worksheet.tables[0]) table._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" id="1" name="Table1" displayName="Table1" ref="C3:F14" totalsRowCount="1"> <autoFilter ref="C3:F13"/> <tableColumns count="4"> <tableColumn id="1" name="Column1"/> <tableColumn id="2" name="Column2"/> <tableColumn id="3" name="Column3"/> <tableColumn id="4" name="Column4"/> </tableColumns> <tableStyleInfo name="TableStyleMedium9" showFirstColumn="0" showLastColumn="0" showRowStripes="1" showColumnStripes="0"/> </table> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
eadf86477e07dc6fcb83e07e480e090199897cee
e43e8bd052a613f158e29339aaa7e3bdec40b6fb
/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor_test.py
a3c33c28e62db57565d0119cf742f97bb5d8df3d
[]
no_license
sakshijain032/Harmful-Object-Detection
249f586ffbc7de99f6647689bae230f3b79694b3
8e1711fc1596b451f97b5ff2f7690453a888c848
refs/heads/master
2022-12-24T18:40:41.795010
2020-10-01T17:34:42
2020-10-01T17:34:42
293,727,797
2
0
null
null
null
null
UTF-8
Python
false
false
4,612
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.faster_rcnn_inception_resnet_v2_keras_feature_extractor.""" import tensorflow as tf from models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return frcnn_inc_res.FasterRCNNInceptionResnetV2KerasFeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 299, 299, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 19, 19, 1088]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [1, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 28, 28, 1088]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 1088]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [2, 17, 17, 1088], maxval=255, dtype=tf.float32) model = feature_extractor.get_box_classifier_feature_extractor_model( name='TestScope') proposal_classifier_features = ( model(proposal_feature_maps)) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [2, 8, 8, 1536]) if __name__ == '__main__': tf.test.main()
d0a334ca6c19f583a7c9f4aa5a63c23ce53c9460
077a17b286bdd6c427c325f196eb6e16b30c257e
/00_BofVar-unit-tests/07_64/remenissions-work/exploit-BofVar-1.py
3e5efa3d0d010a0028daecc2f04b08bca5fc6cab
[]
no_license
KurSh/remenissions_test
626daf6e923459b44b82521aa4cb944aad0dbced
9dec8085b62a446f7562adfeccf70f8bfcdbb738
refs/heads/master
2023-07-08T20:25:04.823318
2020-10-05T06:45:16
2020-10-05T06:45:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
776
py
from pwn import * import time import sys import signal import sf target = process("./chall-test_BofVar-07-x64") gdb.attach(target, execute="verify_exploit") bof_payload = sf.BufferOverflow(arch=64) bof_payload.set_input_start(0x48) bof_payload.add_int32(0x14, 0xdead) bof_payload.add_int32(0x10, 0xdeae) bof_payload.add_int32(0xc, 0xdeae) payload = bof_payload.generate_payload() target.sendline(payload) # Exploit Verification starts here 15935728 def handler(signum, frame): raise Exception("Timed out") def check_verification_done(): while True: if os.path.exists("pwned") or os.path.exists("rip"): sys.exit(0) signal.signal(signal.SIGALRM, handler) signal.alarm(2) try: while True: check_verification_done() except Exception: print("Exploit timed out")
3b3394be7b0f7c6c13b2006438556a5f0c7303ff
7848e1b778ca0f3921aeeb0aeee44b398711b1f0
/funtesting/mock/__init__.py
495f052105769c8dfec9019cc49217d5fe565c55
[]
no_license
fatelei/funtesting
a3a292ddfa30d9fbad47ee293768558b9e45fe8d
748f4b5767cc16929408b19a5b62a812b48a0dd5
refs/heads/master
2021-01-10T12:09:38.809451
2016-02-21T03:59:15
2016-02-21T03:59:15
51,986,949
1
0
null
null
null
null
UTF-8
Python
false
false
158
py
# -*- coding: utf8 -*- """ funtesting.mock ~~~~~~~~~~~~~~~ Mock modules. """ from .mock_redis import mock_redis __all__ = [ "mock_redis" ]
22c9b2072eee710b0af8c948145defea4346aa03
4aa7a4d0525095725eb99843c83827ba4806ceb1
/keras/keras110_5_LeakyReLU.py
213ecbe46b4073d61f4b984af0b9f92698fdaafd
[]
no_license
seonukim/Study
65a70f5bdfad68f643abc3086d5c7484bb2439d4
a5f2538f9ae8b5fc93b5149dd51704e8881f0a80
refs/heads/master
2022-12-04T17:04:31.489771
2020-08-21T00:35:15
2020-08-21T00:35:15
260,144,755
2
0
null
null
null
null
UTF-8
Python
false
false
283
py
# activation - LeakyReLU import numpy as np import matplotlib.pyplot as plt x = np.arange(-6, 6, 0.01) def leakyrelu(x): # Leaky ReLU(Rectified Linear Unit) return np.maximum(0.1 * x, x) #same plt.plot(x, leakyrelu(x), linestyle = '--', label = 'Leaky ReLU') plt.show()
8e0ed00e073de8a5bccb6b2d7fe1eef2ede522de
9e4df2b26e899f2d3e044e71bc4193958b02314b
/app/migrations/0027_auto_20200930_0118.py
bb05747fde99e2ecc6d9acb7db6fe524b26b1a36
[ "MIT" ]
permissive
hosseinmoghimi/phoenix
afea0a73cdf257fcf89c75d85c5ab1890d957a83
43fc49421a50563acc1884981d391b0d6a5d5d72
refs/heads/master
2023-01-11T11:12:30.308822
2020-11-15T13:52:21
2020-11-15T13:52:21
295,109,751
1
5
MIT
2020-11-15T13:50:12
2020-09-13T08:31:01
HTML
UTF-8
Python
false
false
701
py
# Generated by Django 3.1 on 2020-09-29 21:48 from django.db import migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ('app', '0026_auto_20200930_0117'), ] operations = [ migrations.AlterField( model_name='jumbotron', name='description', field=tinymce.models.HTMLField(blank=True, max_length=2000, null=True, verbose_name='شرح کامل'), ), migrations.AlterField( model_name='jumbotron', name='short_description', field=tinymce.models.HTMLField(blank=True, max_length=1000, null=True, verbose_name='شرح کوتاه'), ), ]
0180991f5de6838806543f0af00e4bb397839b33
ef42fa903820055b9b0a8b4ebb1863a16d386171
/contact/forms.py
ee057df7c2a82d279ab2da12b60a6da4f9beac72
[]
no_license
sinjorjob/django-simple-capture-inquery-form
2537c8e03bc2c0118f772b69a59866ffb34d7cac
8bd2900a6bdf97b97ddca7b7240b42f478e14884
refs/heads/master
2023-07-02T14:40:43.840669
2021-08-10T21:24:24
2021-08-10T21:24:24
394,784,208
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
from django import forms from captcha.fields import CaptchaField, CaptchaTextInput from django.core.mail import send_mail #追加 from config import settings #追加 from django.urls import reverse #追加 import smtplib #追加 class ContactForm(forms.Form): name = forms.CharField(label="氏名") email = forms.EmailField(label="連絡先アドレス") subject = forms.CharField(label="タイトル") message = forms.CharField(label="お問い合わせ内容", widget=forms.Textarea(attrs={'rows':4, 'cols':40})) captcha = CaptchaField(widget=CaptchaTextInput(attrs={'placeholder':'上記のアルファベットを入力してください。'})) #ここから下を追加 def send_email(self): subject = '[Inquiry Form] from %s' % settings.SITE_URL + reverse('contact_form') name = self.cleaned_data['name'] email = self.cleaned_data['email'] message = self.cleaned_data['message'] body = """ 氏名: %s メールアドレス: %s 問い合わせ内容: %s """ %(name, email, message) sender = email receipient = settings.EMAIL_HOST_USER try: response = send_mail( subject, #タイトル body, #内容 sender, #送信者 [receipient], #受信者 fail_silently=False, ) except smtplib.SMTPException: pass return response
626ccb2e51e4602bed82ff9ee6f72b36dc9f0add
0e647273cffc1fb6cbd589fa3c7c277b221ba247
/configs/hpt-pretrain/bdd/byol_r50_bs2048_accmulate2_ep200/500-iters.py
215d809fb24ebc2a34d497fc2f4750a359313eda
[ "Apache-2.0" ]
permissive
Berkeley-Data/OpenSelfSup
e9976bf011b69ebf918506ba184f464b1073ec13
221191b88d891de57725b149caf237ffef72e529
refs/heads/master
2023-05-12T07:34:52.268476
2021-04-08T00:58:37
2021-04-08T00:58:37
343,654,823
0
1
Apache-2.0
2021-04-08T00:58:37
2021-03-02T05:20:27
Python
UTF-8
Python
false
false
237
py
_base_="../byol-base-bdd-config.py" # this will merge with the parent model=dict(pretrained='data/basetrain_chkpts/byol_r50_bs2048_accmulate2_ep200.pth') # epoch related total_iters=500*2 checkpoint_config = dict(interval=total_iters)
5898c1034a4038ecddbfd07e7567ec2b0facdbee
03c9bb7e3cc687afecd57c6c6e3d5c1d54ed7ab0
/smilejakdu/3week/3day/MaximumSubarray.py
745fb6d684c6125416fb3fa0eafd62e8a9348e99
[]
no_license
smilejakdu/python_algorithm_study
541aa3de77e9f432d41b5627790a6f3e10f5a07d
5119b31b6ae781e12bf97134ca6f10fec662abd8
refs/heads/master
2023-04-06T15:41:41.156021
2020-08-10T08:58:34
2020-08-10T08:58:34
282,879,639
0
0
null
2020-08-01T07:04:38
2020-07-27T11:36:31
Python
UTF-8
Python
false
false
897
py
''':arg Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. ''' nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] ''':arg maxcurr = nums[0] maxglobal = nums[0] 우선적으로 index 0 에 대한 값을 넣는다 . 반복문을 1부터 돌린다. max 함수를 이용해서 , nums[i] 와 , maxcurr + nums[i] 의 값을 비교한다 . 큰 값을 다시 maxcurr 변수에 넣는다. maxcurr 변수와 maxglobal 변수를 비교한다. ''' def maxSubArray(nums): maxcurr = nums[0] maxglobal = nums[0] for i in range(1, len(nums)): maxcurr = max(nums[i], maxcurr + nums[i]) maxglobal = max(maxcurr, maxglobal) return maxglobal print(maxSubArray(nums))
62be29a83225382074ef88884da70792ec0067e6
00ce0f4d0c380d60cb336484200153636b249120
/tests/agents/trade/test_case_mixin.py
271f41ecbbe4a1c7723057a2e8fabc60c2e0e0c9
[ "MIT" ]
permissive
tezheng/hearthbreaker
21784aeba11f557703e22a23af54886c496d3fec
169ad0d00e62300054e7cbaf5562d750f28730a8
refs/heads/master
2021-01-15T14:30:05.542012
2014-09-24T20:03:12
2014-09-24T20:03:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,925
py
import random from tests.agents.trade.test_helpers import TestHelpers from hearthbreaker.agents.trade.trade import Trades class TestCaseMixin: def setUp(self): TestHelpers.fix_create_minion() random.seed(1857) def add_minions(self, game, player_index, *minions): player = game.players[player_index] for minion in minions: minion.use(player, game) def make_all_active(self, game): for player in game.players: for minion in player.minions: minion.active = True minion.exhausted = False def assert_minions(self, player, *names): actual = self.card_names(player.minions) self.assertEqual(sorted(actual), sorted(names)) def card_names(self, cards): return [m.try_name() for m in cards] def player_str(self, player): res = [] res.append("\nPlayer\n") res.append("Hand: ") res.append(self.card_names(player.hand)) res.append("\nDeck: ") res.append(self.card_names(player.deck.cards[0:5])) res.append("\n") res = [str(x) for x in res] return str.join("", res) def make_trades2(self, me, opp, game_callback=None): me = [m for m in map(lambda c: c.create_minion(None), me)] opp = [m for m in map(lambda c: c.create_minion(None), opp)] game = self.make_game() if game_callback: game_callback(game) trades = Trades(game.players[0], me, opp, game.players[1].hero) return [game, trades] def make_trades(self, me, opp): return self.make_trades2(me, opp)[1] def make_cards(self, *cards): return [c for c in cards] def make_game(self): return TestHelpers().make_game() def set_hand(self, game, player_index, *cards): cards = self.make_cards(*cards) game.players[player_index].hand = cards
87d413d7af90828f2782af0f4e847016caecc553
b403c7fe56209472855dff451f0b6283d5471008
/Supplemental_Material/PythonProjects/myFunctions/isItOdd.py
14037a63dbb500f808f9316903acca319e7bc678
[]
no_license
Sandbox4KidsTM/Python_Basics
842bde52796896e913fdb5cc349034c52092555f
68c95547ec1567958fc8069e6a4bb119e436211a
refs/heads/master
2020-03-23T01:06:29.363196
2018-08-10T04:32:58
2018-08-10T04:32:58
140,901,128
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
#checks if a user-entered number if odd a = int(input("enter a num: ")) if a % 2 == 0: #% modulus rep print("number is EVEN") else: print("number is ODDDDD")
89e353022fef9fffa9f5835f74ae7501b8c1d990
3960fa9721ff97c8da99d010e27118ab0bc1201d
/tests/storage/fake_storage.py
c1437e781c494d82c715effbb93b4b9fafedaf40
[ "Apache-2.0" ]
permissive
iamjoshbinder/plaso
d3ebbc216b4d89c8f8f6ab50f059b6db7bcca599
762aa1d1eb17760ef5e2708a48dff2acad7001ea
refs/heads/master
2021-08-08T13:23:10.146862
2017-11-09T10:44:09
2017-11-09T10:44:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,362
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the fake storage.""" import unittest from plaso.containers import errors from plaso.containers import event_sources from plaso.containers import reports from plaso.containers import sessions from plaso.containers import tasks from plaso.lib import definitions from plaso.storage import fake_storage from tests.storage import test_lib class FakeStorageWriterTest(test_lib.StorageTestCase): """Tests for the fake storage writer object.""" def testAddAnalysisReport(self): """Tests the AddAnalysisReport function.""" session = sessions.Session() analysis_report = reports.AnalysisReport( plugin_name=u'test', text=u'test report') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddAnalysisReport(analysis_report) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddAnalysisReport(analysis_report) def testAddError(self): """Tests the AddError function.""" session = sessions.Session() extraction_error = errors.ExtractionError( message=u'Test extraction error') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddError(extraction_error) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddError(extraction_error) def testAddEvent(self): """Tests the AddEvent function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEvent(event) def testAddEventSource(self): """Tests the AddEventSource function.""" session = sessions.Session() event_source = event_sources.EventSource() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddEventSource(event_source) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventSource(event_source) def testAddEventTag(self): """Tests the AddEventTag function.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() test_events = self._CreateTestEvents() for event in test_events: storage_writer.AddEvent(event) event_tag = None test_event_tags = self._CreateTestEventTags(test_events) for event_tag in test_event_tags: storage_writer.AddEventTag(event_tag) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventTag(event_tag) def testOpenClose(self): """Tests the Open and Close functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.Close() storage_writer.Open() storage_writer.Close() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() storage_writer.Close() storage_writer.Open() with self.assertRaises(IOError): storage_writer.Open() storage_writer.Close() with self.assertRaises(IOError): storage_writer.Close() def testGetEvents(self): """Tests the GetEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add tests for GetEventSources. # TODO: add tests for GetEventTags. # TODO: add tests for GetFirstWrittenEventSource and # GetNextWrittenEventSource. def testGetSortedEvents(self): """Tests the GetSortedEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetSortedEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add test with time range. def testWriteSessionStartAndCompletion(self): """Tests the WriteSessionStart and WriteSessionCompletion functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.WriteSessionStart() storage_writer.WriteSessionCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer.Close() def testWriteTaskStartAndCompletion(self): """Tests the WriteTaskStart and WriteTaskCompletion functions.""" session = sessions.Session() task = tasks.Task(session_identifier=session.identifier) storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK, task=task) storage_writer.Open() storage_writer.WriteTaskStart() storage_writer.WriteTaskCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer.Close() if __name__ == '__main__': unittest.main()
f18208cbe2c56461d40b39d71cffbfaf1b0fee2b
6af6a6fb7d0759be524f2592a470d91947e0e2bc
/RandomForest/src/dataset/sp_010_1e2.py
699dc20994db4aa94c5f33202f7ef75e147f7653
[]
no_license
wasit7/ImageSearch
5094e56db46af0d05cf76e5b5110c5b92d5198fd
3cd7ab3fa3c89873c0b49b1311ed5e7c5f4b8939
refs/heads/master
2020-05-17T01:12:24.616821
2015-08-10T07:26:44
2015-08-10T07:26:44
22,672,379
0
0
null
null
null
null
UTF-8
Python
false
false
2,887
py
""" Contain class that provide spiral dataset to random forest. @author: Krerkkiat updated by Wasit """ import numpy as np class SpiralDataset: ''' Provide Spiral Dataset to Random Forest ''' def __init__(self, clmax, spc): ''' Initial routine. Parameter(s): clmax: int - Maximum number of class. spc: int - Size of data per class per client. ''' self.clmax = clmax # class max of dataset self.spc = spc # q size per class per client self.dimension = 2 # it is axis x and y self.I = np.zeros([self.dimension, 0], dtype=np.float) # np.ndarray row vetor, hold features self.L = np.array([], dtype=np.int) # np.array, hold label # create I for x in range(self.clmax): theta = np.linspace(0, 2*np.pi, self.spc)+np.random.randn(self.spc)*0.4*np.pi/clmax + 2*np.pi*x/clmax r = np.linspace(0.1, 1, self.spc) self.I = np.append(self.I, [r*np.cos(theta), r*np.sin(theta)], axis=1) self.L = np.append(self.L, np.ones(self.spc, dtype=np.int)*x, axis=1) def getL(self, x): ''' Lookup database for a lebel of data at x. Parameter(s): x: int or numpy.array - Index or indexes of data that you need to get label. Return(s): label: int - Label of data at x. ''' return self.L[x] def getI(self, theta, x): ''' Lookup table by theta for tau (splitting parameter or threshold) at index x. Parameter(s): theta: int - theta that will use for lookup. x: int - Index of data. Return(s): tau: float - tau or raw data of data at index x with dimension theta. ''' return self.I[theta, x] def getX(self): ''' Make a list of index that will use when initial root node at Client side Return(s): idx_list: list - List of index of data. ''' return np.arange(0, self.clmax * self.spc) def getParam(self, X): ''' Random theta and then get tau from that randomed theta at index x. Parameter(s): x: list - List of index that will use to get tau. Return(s): theta: list - List of randomed theta. tau: list - List of tau with lookup by theta and x. ''' theta = np.random.randint(self.dimension, size=len(X)) tau = self.getI(theta, X) return theta, tau def __str__(self): ''' Nothing spacial, use when debug. Return: txt: str - String that represent this class. ''' return 'clmax: {cm}, spc: {ql}'.format(cm=self.clmax, ql=self.spc) if __name__ == '__main__': clmax = 10 spc = int(1e2) dataset = SpiralDataset(clmax, spc)