blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
288
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 684
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 147
values | src_encoding
stringclasses 25
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 128
12.7k
| extension
stringclasses 142
values | content
stringlengths 128
8.19k
| authors
listlengths 1
1
| author_id
stringlengths 1
132
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
87990ee7c013adfed4d8152d526bab78f47feee2
|
9550ce4a80169d21b556b22679a9462f98438e32
|
/app/urls.py
|
32f3b1ab973c04cbcb9ce11ea3ea6d0850315945
|
[
"Apache-2.0"
] |
permissive
|
erics1996/questionnaire_django
|
87cc44bd745eb810861349effc126ed3dfbd6508
|
1006c61eba1e9efec0801299938eb13c16a0b292
|
refs/heads/master
| 2022-12-15T04:47:39.042594 | 2020-09-02T17:34:33 | 2020-09-02T17:34:33 | 284,580,189 | 0 | 0 |
Apache-2.0
| 2020-09-02T17:34:34 | 2020-08-03T02:02:20 |
Python
|
UTF-8
|
Python
| false | false | 300 |
py
|
from django.contrib import admin
from django.urls import path, re_path
from .views import backend
urlpatterns = [
path('', backend.IndexView.as_view()),
re_path('survey/(?P<pk>\d+)/', backend.SurveyDetailView.as_view()),
re_path('(?P<pk>\d+)/download/', backend.DownloadView.as_view())
]
|
[
"[email protected]"
] | |
a78acddf6eebc59cad1ebc0e8fdaf53ee0ce2702
|
44a7101ae18c84ffa0e3c674763ba7b500937773
|
/root/Desktop/Scripts/pyinstaller-1.5.1/bh_sshRcmd/bh_sshRcmd.spec
|
66707266787869a8fdd977ad9985b57711fe3880
|
[] |
no_license
|
Draft2007/Scripts
|
cbaa66ce0038f3370c42d93da9308cbd69fb701a
|
0dcc720a1edc882cfce7498ca9504cd9b12b8a44
|
refs/heads/master
| 2016-09-05T20:05:46.601503 | 2015-06-23T00:05:02 | 2015-06-23T00:05:02 | 37,945,893 | 7 | 2 | null | null | null | null |
UTF-8
|
Python
| false | false | 561 |
spec
|
# -*- mode: python -*-
a = Analysis([os.path.join(HOMEPATH,'support/_mountzlib.py'), os.path.join(HOMEPATH,'support/useUnicode.py'), '/usr/local/tools/bh_sshRcmd.py'],
pathex=['/usr/local/tools/pyinstaller-1.5.1'])
pyz = PYZ(a.pure)
exe = EXE( pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
name=os.path.join('dist', 'bh_sshRcmd'),
debug=False,
strip=False,
upx=True,
console=1 )
app = BUNDLE(exe,
name=os.path.join('dist', 'bh_sshRcmd.app'))
|
[
"[email protected]"
] | |
dc0f1debf616d07e130ae2adb13b8209fd2e2f74
|
99afa83eda09cf552466ddf90314cb01d07b166a
|
/testapp/models.py
|
c1fa45c2c96048893e614bf9142070231858f126
|
[] |
no_license
|
jithinvijayan007/Lithoera
|
358c9a6191d6510ac07229e7a92eadd89d70e14f
|
33e3639e882f79b12541f92070dad74483fdfa72
|
refs/heads/master
| 2023-01-05T18:29:37.388869 | 2020-11-02T11:58:27 | 2020-11-02T11:58:27 | 309,316,888 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,764 |
py
|
from django.db import models
from django.contrib.auth.models import AbstractBaseUser, BaseUserManager
# Create your models here.
class MyAccountManager(BaseUserManager):
def create_user(self, email, username, password=None):
if not email:
raise ValueError('Users must have an email address')
if not username:
raise ValueError('Users must have a username')
user = self.model(
email=self.normalize_email(email),
username=username,
)
user.set_password(password)
user.save(using=self._db)
return user
def create_superuser(self, email, username, password):
user = self.create_user(
email=self.normalize_email(email),
password=password,
username=username,
)
user.is_admin = True
user.is_staff = True
user.is_superuser = True
user.save(using=self._db)
return user
class Account(AbstractBaseUser):
email = models.EmailField(verbose_name="email", max_length=60, unique=True)
username = models.CharField(max_length=30, unique=True)
date_joined = models.DateTimeField(verbose_name='date joined', auto_now_add=True)
last_login = models.DateTimeField(verbose_name='last login', auto_now=True)
is_admin = models.BooleanField(default=False)
is_active = models.BooleanField(default=True)
is_staff = models.BooleanField(default=False)
is_superuser = models.BooleanField(default=False)
USERNAME_FIELD = 'email'
REQUIRED_FIELDS = ['username']
objects = MyAccountManager()
def __str__(self):
return self.email
# For checking permissions. to keep it simple all admin have ALL permissons
def has_perm(self, perm, obj=None):
return self.is_admin
# Does this user have permission to view this app? (ALWAYS YES FOR SIMPLICITY)
def has_module_perms(self, app_label):
return True
|
[
"[email protected]"
] | |
21064aaea82657175bb68471f1411164393e0210
|
657c80336bce1cc6158cd349ce208c5e680a4d0d
|
/contrib/projection/tests/projection/base_projection.py
|
de53d6895412de112d31a959926d9cdb47b6ef9c
|
[
"BSD-3-Clause"
] |
permissive
|
Xinmudotmoe/pyglet
|
b37628618647bf3b1e3d7db28202a5e14c60450c
|
144257c365ca85528c6a4c5bed8141e683d7a9b6
|
refs/heads/master
| 2021-05-29T22:05:40.676643 | 2015-10-24T05:55:49 | 2015-10-24T05:55:49 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 429 |
py
|
#!/usr/bin/python
# $Id:$
from pyglet.gl import *
def fillrect(x, y, width, height):
glBegin(GL_QUADS)
glVertex2f(x, y)
glVertex2f(x + width, y)
glVertex2f(x + width, y + height)
glVertex2f(x, y + height)
glEnd()
def rect(x, y, width, height):
glBegin(GL_LINE_LOOP)
glVertex2f(x, y)
glVertex2f(x + width, y)
glVertex2f(x + width, y + height)
glVertex2f(x, y + height)
glEnd()
|
[
"[email protected]"
] | |
d811f5d03ae12bdeb567632e2d82b3ecccc87751
|
a1e3e7cf1d27b85d9472c6353e7646d37528b241
|
/q11.py
|
3ea7528239387d3ae6df885be655e4e6ebe1b32f
|
[] |
no_license
|
osama1998H/standerdLearnd-string
|
421148f81c2c604f6c75dac568ff1faeb20922ce
|
0af39cd2fd43be45bb54aca2826bc8bf56e399ed
|
refs/heads/main
| 2023-09-01T04:21:52.499680 | 2021-05-15T19:54:50 | 2021-05-15T19:54:50 | 365,533,408 | 0 | 0 | null | 2023-08-29T08:31:40 | 2021-05-08T14:21:53 |
Python
|
UTF-8
|
Python
| false | false | 325 |
py
|
string = input("enter the string: ")
def del_odd(string: str)->str:
new_string = ""
string = [i for i in string]
for i in string:
if string.index(i) % 2 != 0:
string.remove(i)
for i in string:
new_string += i
return new_string
new_string = del_odd(string)
print(new_string)
|
[
"[email protected]"
] | |
da3f5d0d4b3c71ac3db45cece6411a3233f8b68a
|
f576f0ea3725d54bd2551883901b25b863fe6688
|
/sdk/webpubsub/azure-mgmt-webpubsub/generated_samples/web_pub_sub_replicas_create_or_update.py
|
81ff6144e4226d349866642540011deb03744386
|
[
"LicenseRef-scancode-generic-cla",
"MIT",
"LGPL-2.1-or-later"
] |
permissive
|
Azure/azure-sdk-for-python
|
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
|
c2ca191e736bb06bfbbbc9493e8325763ba990bb
|
refs/heads/main
| 2023-09-06T09:30:13.135012 | 2023-09-06T01:08:06 | 2023-09-06T01:08:06 | 4,127,088 | 4,046 | 2,755 |
MIT
| 2023-09-14T21:48:49 | 2012-04-24T16:46:12 |
Python
|
UTF-8
|
Python
| false | false | 1,920 |
py
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from azure.identity import DefaultAzureCredential
from azure.mgmt.webpubsub import WebPubSubManagementClient
"""
# PREREQUISITES
pip install azure-identity
pip install azure-mgmt-webpubsub
# USAGE
python web_pub_sub_replicas_create_or_update.py
Before run the sample, please set the values of the client ID, tenant ID and client secret
of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
"""
def main():
client = WebPubSubManagementClient(
credential=DefaultAzureCredential(),
subscription_id="00000000-0000-0000-0000-000000000000",
)
response = client.web_pub_sub_replicas.begin_create_or_update(
resource_group_name="myResourceGroup",
resource_name="myWebPubSubService",
replica_name="myWebPubSubService-eastus",
parameters={
"location": "eastus",
"properties": {},
"sku": {"capacity": 1, "name": "Premium_P1", "tier": "Premium"},
"tags": {"key1": "value1"},
},
).result()
print(response)
# x-ms-original-file: specification/webpubsub/resource-manager/Microsoft.SignalRService/preview/2023-06-01-preview/examples/WebPubSubReplicas_CreateOrUpdate.json
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
1dbfcc3d47f3a48af022c5b19fdcc27352f4d401
|
d2b54d3df1dc8f7e88c0d209b35949089facc73f
|
/treenode/memory.py
|
b5c7ddd2c1dd51260daf32b36666209d52ca2176
|
[
"MIT"
] |
permissive
|
domlysi/django-treenode
|
df8b08e756884bc8daffdfad7b5b3b102e92e309
|
86e7c76e2b2d60c071cfce6ad1493b2b51f2d304
|
refs/heads/master
| 2022-12-12T18:10:44.668904 | 2020-08-17T11:01:09 | 2020-08-17T11:01:09 | 287,275,877 | 0 | 0 |
MIT
| 2020-08-13T12:37:54 | 2020-08-13T12:37:54 | null |
UTF-8
|
Python
| false | false | 522 |
py
|
# -*- coding: utf-8 -*-
from collections import defaultdict
import weakref
__refs__ = defaultdict(weakref.WeakSet)
def clear_refs(cls):
__refs__[cls].clear()
def get_refs(cls):
return __refs__[cls]
def set_ref(cls, obj):
if obj.pk:
__refs__[cls].add(obj)
def update_refs(cls, data):
for obj in get_refs(cls):
obj_key = str(obj.pk)
obj_data = data.get(obj_key)
if obj_data:
for key, value in obj_data.items():
setattr(obj, key, value)
|
[
"[email protected]"
] | |
925028b08297779546c047873b5ba67c870ad692
|
15f321878face2af9317363c5f6de1e5ddd9b749
|
/solutions_python/Problem_55/59.py
|
09da2bcfaa4c411daa5449e6b502ef93033a8f6c
|
[] |
no_license
|
dr-dos-ok/Code_Jam_Webscraper
|
c06fd59870842664cd79c41eb460a09553e1c80a
|
26a35bf114a3aa30fc4c677ef069d95f41665cc0
|
refs/heads/master
| 2020-04-06T08:17:40.938460 | 2018-10-14T10:12:47 | 2018-10-14T10:12:47 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,319 |
py
|
#!/usr/bin/env python
import sys
filename=sys.argv[1]
inputfile=file(filename, 'r')
numcases=int(inputfile.readline().strip())
for case in range(1,numcases+1):
R, k, N = map(long, inputfile.readline().strip().split())
g = map(long, inputfile.readline().strip().split())
y = 0
first_ride = [None] * N
ride_groups = [None] * N
ride_seats = [None] * N
ride = 0
start = 0
while ride < R:
if first_ride[start] is not None:
break
ridestart = start
seats = 0
groups = 0
while seats + g[start] <= k and groups < N:
seats += g[start]
groups += 1
start += 1
if start >= N:
start = 0
if start == ridestart:
break
first_ride[ridestart] = ride
ride_groups[ridestart] = groups
ride_seats[ridestart] = seats
ride += 1
y += seats
if ride < R:
cyclelen = ride - first_ride[start]
if R - ride >= cyclelen:
cycles = (R - ride) / cyclelen
cycle_euros = 0
cycle_start = start
while True:
cycle_euros += ride_seats[start]
start = (start + ride_groups[start]) % N
ride += 1
if start == cycle_start:
break
y += cycle_euros * cycles
ride += (cycles - 1) * cyclelen
while ride < R:
y += ride_seats[start]
start = (start + ride_groups[start]) % N
ride += 1
print "Case #%d: %d" % (case, y)
|
[
"[email protected]"
] | |
eeb5073afecbaf0f35097a0d4970f139fc0282fd
|
014e9a6f3d48ffa7b9ee759904d2e33284a6f4d6
|
/api/caoloapi/model/auth.py
|
c73941f6992e52e8c9728cbae96791221e95e3a7
|
[
"MIT"
] |
permissive
|
kissmikijr/caolo-backend
|
33c0262239182b96d1215677c45065b4ef90455b
|
efec05bb793bd40951cb4e5ae4e930d972f63d36
|
refs/heads/master
| 2023-09-04T01:09:50.068148 | 2021-10-18T22:00:59 | 2021-10-18T22:06:01 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,079 |
py
|
from datetime import datetime as dt, timedelta
from passlib.context import CryptContext
from jose import jwt
SECRET_KEY = "fe9fb923daa2a5c34a57b6da5d807a1e9cb48d4afee5c10095bab37bcf860059"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
PEPPER_RANGE = (128, 139, 3)
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
def __concatpw(pw: str, salt: str, pepper):
return f"{pw}{salt}{pepper}"
def verifypw(plain, salt, pepper, hashed_pw):
pw = __concatpw(plain, salt, pepper)
return pwd_context.verify(pw, hashed_pw)
def hashpw(pw: str, salt: str, pepper):
return pwd_context.hash(__concatpw(pw, salt, pepper))
def create_access_token(data: dict):
payload = data.copy()
payload.update({"exp": dt.utcnow() + timedelta(minutes=15)})
return jwt.encode(payload, SECRET_KEY, algorithm=ALGORITHM)
def decode_access_token(token: str):
"""
raises jose.JWTError or AssertionError on invalid token
"""
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
assert "sub" in payload
return payload
|
[
"[email protected]"
] | |
3e1738529ae55e62ae6843901eca2eb0d436e07a
|
6189f34eff2831e3e727cd7c5e43bc5b591adffc
|
/WebMirror/management/rss_parser_funcs/feed_parse_extractIntheinkpotfictionWordpressCom.py
|
5a22827f09f4623da612321d5379b4873ab2b614
|
[
"BSD-3-Clause"
] |
permissive
|
fake-name/ReadableWebProxy
|
24603660b204a9e7965cfdd4a942ff62d7711e27
|
ca2e086818433abc08c014dd06bfd22d4985ea2a
|
refs/heads/master
| 2023-09-04T03:54:50.043051 | 2023-08-26T16:08:46 | 2023-08-26T16:08:46 | 39,611,770 | 207 | 20 |
BSD-3-Clause
| 2023-09-11T15:48:15 | 2015-07-24T04:30:43 |
Python
|
UTF-8
|
Python
| false | false | 576 |
py
|
def extractIntheinkpotfictionWordpressCom(item):
'''
Parser for 'intheinkpotfiction.wordpress.com'
'''
vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title'])
if not (chp or vol) or "preview" in item['title'].lower():
return None
tagmap = [
('PRC', 'PRC', 'translated'),
('Loiterous', 'Loiterous', 'oel'),
]
for tagname, name, tl_type in tagmap:
if tagname in item['tags']:
return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type)
return False
|
[
"[email protected]"
] | |
15487621d75896236eb3ebe106a4f8748a6a389b
|
e43b78db4ff598944e58e593610f537f3833d79c
|
/py-faster-rcnn/lib/roi_data_layer/roidb.py
|
93f713e1f127d432736a654ce6fa292eef3b6c67
|
[
"MIT",
"LicenseRef-scancode-generic-cla",
"BSD-2-Clause"
] |
permissive
|
ZJUZQ/Net_caffe
|
577e9b3e80a391d772a21c27639465d539fceb1f
|
bed3c7384a259339c5a0fb2ea34fa0cdd32ddd29
|
refs/heads/master
| 2021-09-08T12:19:37.039970 | 2018-03-09T14:44:24 | 2018-03-09T14:44:24 | 114,853,721 | 4 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,356 |
py
|
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Transform a roidb into a trainable roidb by adding a bunch of metadata."""
import numpy as np
from fast_rcnn.config import cfg
from fast_rcnn.bbox_transform import bbox_transform
from utils.cython_bbox import bbox_overlaps
import PIL
def prepare_roidb(imdb):
"""Enrich the imdb's roidb by adding some derived quantities that
are useful for training. This function precomputes the maximum
overlap, taken over ground-truth boxes, between each ROI and
each ground-truth box. The class with maximum overlap is also
recorded.
"""
sizes = [PIL.Image.open(imdb.image_path_at(i)).size
for i in xrange(imdb.num_images)]
roidb = imdb.roidb
# roidb is a list of dictionaries, each with the following keys:
# boxes
# gt_overlaps
# gt_classes
# flipped
for i in xrange(len(imdb.image_index)):
roidb[i]['image'] = imdb.image_path_at(i)
roidb[i]['width'] = sizes[i][0]
roidb[i]['height'] = sizes[i][1]
# need gt_overlaps as a dense array for argmax
gt_overlaps = roidb[i]['gt_overlaps'].toarray()
# max overlap with gt over classes (columns)
max_overlaps = gt_overlaps.max(axis=1)
# gt class that had the max overlap
max_classes = gt_overlaps.argmax(axis=1)
roidb[i]['max_classes'] = max_classes ## gt class that had the max overlap (columns)
roidb[i]['max_overlaps'] = max_overlaps ## max overlap with gt over classes (columns)
# sanity checks
# max overlap of 0 => class should be zero (background)
zero_inds = np.where(max_overlaps == 0)[0]
assert all(max_classes[zero_inds] == 0)
# max overlap > 0 => class should not be zero (must be a fg class)
nonzero_inds = np.where(max_overlaps > 0)[0]
assert all(max_classes[nonzero_inds] != 0)
def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'max_classes' in roidb[0], 'Did you call prepare_roidb first?'
num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
num_classes = roidb[0]['gt_overlaps'].shape[1]
for im_i in xrange(num_images):
rois = roidb[im_i]['boxes']
max_overlaps = roidb[im_i]['max_overlaps']
max_classes = roidb[im_i]['max_classes']
roidb[im_i]['bbox_targets'] = \
_compute_targets(rois, overlaps=max_overlaps, labels=max_classes) # Compute bounding-box regression targets for an image
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: ## RPN can only use precomputed normalization because there are no fixed statistics to compute a priori
# Use fixed / precomputed "means" and "stds" instead of empirical values
means = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS), (num_classes, 1)) # shape = (num_classes, 4)
stds = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS), (num_classes, 1)) # shape = (num_classes, 4)
else:
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
class_counts = np.zeros((num_classes, 1)) + cfg.EPS
sums = np.zeros((num_classes, 4))
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 1:].sum(axis=0)
squared_sums[cls, :] += \
(targets[cls_inds, 1:] ** 2).sum(axis=0)
means = sums / class_counts
stds = np.sqrt(squared_sums / class_counts - means ** 2)
print 'bbox target means:'
print means
print means[1:, :].mean(axis=0) # ignore bg class
print 'bbox target stdevs:'
print stds
print stds[1:, :].mean(axis=0) # ignore bg class
# Normalize targets
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS:
print "Normalizing targets"
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
roidb[im_i]['bbox_targets'][cls_inds, 1:] -= means[cls, :]
roidb[im_i]['bbox_targets'][cls_inds, 1:] /= stds[cls, :]
else:
print "NOT normalizing targets"
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel() ## Return a contiguous flattened array
def _compute_targets(rois, overlaps, labels):
"""Compute bounding-box regression targets for an image."""
"""
overlaps: max_overlaps of rois
labels: max_classes of rois
return:
[[cls, dx, dy, dw, dh]
...
]
"""
# Indices of ground-truth ROIs
gt_inds = np.where(overlaps == 1)[0]
if len(gt_inds) == 0:
# Fail if the image has no ground-truth ROIs
return np.zeros((rois.shape[0], 5), dtype=np.float32)
# Indices of examples for which we try to make predictions
ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] ## e.g., 0.5
# Get IoU overlap between each ex ROI and gt ROI
ex_gt_overlaps = bbox_overlaps(
np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))
# Find which gt ROI each ex ROI has max overlap with:
# this will be the ex ROI's gt target
gt_assignment = ex_gt_overlaps.argmax(axis=1)
gt_rois = rois[gt_inds[gt_assignment], :]
ex_rois = rois[ex_inds, :]
targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
targets[ex_inds, 0] = labels[ex_inds]
targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) # compute [dx, dy, dw, dh]
return targets
|
[
"[email protected]"
] | |
ad73927538d2a6b51e3e9da4eaa96818ced5e08a
|
f714db4463dd37fc33382364dc4b1963a9053e49
|
/tests/sentry/event_manager/interfaces/test_frame.py
|
22dd3b8b5756050429bafb0bd12c3db6daa422ae
|
[
"BUSL-1.1",
"Apache-2.0"
] |
permissive
|
macher91/sentry
|
92171c2ad23564bf52627fcd711855685b138cbd
|
dd94d574403c95eaea6d4ccf93526577f3d9261b
|
refs/heads/master
| 2021-07-07T08:23:53.339912 | 2020-07-21T08:03:55 | 2020-07-21T08:03:55 | 140,079,930 | 0 | 0 |
BSD-3-Clause
| 2020-05-13T11:28:35 | 2018-07-07T11:50:48 |
Python
|
UTF-8
|
Python
| false | false | 1,366 |
py
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import pytest
from sentry import eventstore
from sentry.event_manager import EventManager
@pytest.fixture
def make_frames_snapshot(insta_snapshot):
def inner(data):
mgr = EventManager(data={"stacktrace": {"frames": [data]}})
mgr.normalize()
evt = eventstore.create_event(data=mgr.get_data())
frame = evt.interfaces["stacktrace"].frames[0]
insta_snapshot({"errors": evt.data.get("errors"), "to_json": frame.to_json()})
return inner
@pytest.mark.parametrize(
"input",
[
{"filename": 1},
{"filename": "foo", "abs_path": 1},
{"function": 1},
{"module": 1},
{"function": "?"},
],
)
def test_bad_input(make_frames_snapshot, input):
make_frames_snapshot(input)
@pytest.mark.parametrize(
"x", [float("inf"), float("-inf"), float("nan")], ids=["inf", "neginf", "nan"]
)
def test_context_with_nan(make_frames_snapshot, x):
make_frames_snapshot({"filename": "x", "vars": {"x": x}})
def test_address_normalization(make_frames_snapshot):
make_frames_snapshot(
{
"lineno": 1,
"filename": "blah.c",
"function": "main",
"instruction_addr": 123456,
"symbol_addr": "123450",
"image_addr": "0x0",
}
)
|
[
"[email protected]"
] | |
e259df553081c2a0843857a31971fbeb29ab02d1
|
8c9df3465ec7cab68b10e67823c1f9b475dab68e
|
/square__transverse_longitudinal_field_af_ising__static/square_ising.py
|
12dad1d1699c6934cd3da33fb9d3ea8f37bdd5f5
|
[
"BSD-3-Clause"
] |
permissive
|
deyh2020/quspin_example
|
f86cf3cea2b8c04efc017e9618cb935494e94f82
|
931ca2ea5e6bbe02ebdd6d6a22d90db24d6c760c
|
refs/heads/master
| 2023-02-07T21:27:12.913763 | 2020-12-30T08:00:57 | 2020-12-30T08:00:57 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,427 |
py
|
## http://weinbe58.github.io/QuSpin/generated/quspin.basis.spin_basis_general.html#quspin.basis.spin_basis_general
## https://doi.org/10.1103/PhysRevX.8.021069
## https://doi.org/10.1103/PhysRevX.8.021070
## consider nearest neighbor Ising
from __future__ import print_function, division
from quspin.operators import hamiltonian # operators
from quspin.basis import spin_basis_general # spin basis constructor
import numpy as np # general math functions
def exact_diag(J,Hx,Hz,Lx,Ly):
N_2d = Lx*Ly # number of sites
###### setting up user-defined symmetry transformations for 2d lattice ######
s = np.arange(N_2d) # sites [0,1,2,....]
x = s%Lx # x positions for sites
y = s//Lx # y positions for sites
T_x = (x+1)%Lx + Lx*y # translation along x-direction
T_y = x +Lx*((y+1)%Ly) # translation along y-direction
P_x = x + Lx*(Ly-y-1) # reflection about x-axis
P_y = (Lx-x-1) + Lx*y # reflection about y-axis
Z = -(s+1) # spin inversion
###### setting up bases ######
# basis_2d = spin_basis_general(N=N_2d,S="1/2",pauli=0)
basis_2d = spin_basis_general(N=N_2d,S="1/2",pauli=0,kxblock=(T_x,0),kyblock=(T_y,0))
###### setting up hamiltonian ######
# setting up site-coupling lists
Jzzs = [[J,i,T_x[i]] for i in range(N_2d)]+[[J,i,T_y[i]] for i in range(N_2d)]
Hxs = [[-Hx,i] for i in range(N_2d)]
Hzs = [[-Hz,i] for i in range(N_2d)]
static = [["zz",Jzzs],["x",Hxs],["z",Hzs]]
# build hamiltonian
# H = hamiltonian(static,[],static_fmt="csr",basis=basis_2d,dtype=np.float64)
no_checks = dict(check_symm=False, check_pcon=False, check_herm=False)
H = hamiltonian(static,[],static_fmt="csr",basis=basis_2d,dtype=np.float64,**no_checks)
# diagonalise H
ene,vec = H.eigsh(time=0.0,which="SA",k=2)
# ene = H.eigsh(time=0.0,which="SA",k=2,return_eigenvectors=False); ene = np.sort(ene)
norm2 = np.linalg.norm(vec[:,0])**2
# calculate uniform magnetization
int_mx = [[1.0,i] for i in range(N_2d)]
int_mz = [[1.0,i] for i in range(N_2d)]
static_mx = [["x",int_mx]]
static_mz = [["z",int_mz]]
op_mx = hamiltonian(static_mx,[],static_fmt="csr",basis=basis_2d,dtype=np.float64,**no_checks).tocsr(time=0)
op_mz = hamiltonian(static_mz,[],static_fmt="csr",basis=basis_2d,dtype=np.float64,**no_checks).tocsr(time=0)
mx = (np.conjugate(vec[:,0]).dot(op_mx.dot(vec[:,0])) / norm2).real / N_2d
mz = (np.conjugate(vec[:,0]).dot(op_mz.dot(vec[:,0])) / norm2).real / N_2d
# calculate n.n. sz.sz correlation
int_mz0mz1 = [[1.0,i,T_x[i]] for i in range(N_2d)]+[[1.0,i,T_y[i]] for i in range(N_2d)]
static_mz0mz1 = [["zz",int_mz0mz1]]
op_mz0mz1 = hamiltonian(static_mz0mz1,[],static_fmt="csr",basis=basis_2d,dtype=np.float64,**no_checks).tocsr(time=0)
mz0mz1 = (np.conjugate(vec[:,0]).dot(op_mz0mz1.dot(vec[:,0])) / norm2).real / N_2d
return ene, mx, mz, mz0mz1
def main():
###### define model parameters ######
Lx, Ly = 4, 4 # linear dimension of 2d lattice
N_2d = Lx*Ly # number of sites
J = 1.0 # AF Ising
# Hz = 2.00 # longitudinal field
Hzs = np.linspace(0.0,4.0,401)
# Hzs = np.linspace(1.99,2.03,41)
Hx = 0.10 # transverse field
for Hz in Hzs:
ene, mx, mz, mz0mz1 = exact_diag(J,Hx,Hz,Lx,Ly)
# print(J,Hz,Hx,Lx,Ly,ene[0]/N_2d,ene[1]/N_2d)
print(J,Hz,Hx,Lx,Ly,ene[0]/N_2d,mx,mz,mz0mz1)
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
7534fdc5e9d0e271082d603c5c0a1ba2262d679e
|
873d858b79a51a6a14e74e1a6fe4cc97809a69bc
|
/rosserial_ws/devel/lib/rosserial_client/make_library.py
|
eed0f221f32c99f4c790655eeb0d5132d20cacf2
|
[] |
no_license
|
nichoteloo/ROS-Noetic-devel
|
cf3058014fc491f38a23426c136cb8fbdee7a397
|
81e7090c5dc0e548aed4aa57b9579e355e9bcd25
|
refs/heads/master
| 2023-05-07T19:21:03.804523 | 2021-06-02T21:13:48 | 2021-06-02T21:13:48 | 373,293,635 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 597 |
py
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# generated from catkin/cmake/template/script.py.in
# creates a relay to a python script source file, acting as that file.
# The purpose is that of a symlink
python_script = '/home/nichotelo/ros/rosserial_ws/src/rosserial/rosserial_client/src/rosserial_client/make_library.py'
with open(python_script, 'r') as fh:
context = {
'__builtins__': __builtins__,
'__doc__': None,
'__file__': python_script,
'__name__': __name__,
'__package__': None,
}
exec(compile(fh.read(), python_script, 'exec'), context)
|
[
"[email protected]"
] | |
dde7d82754424f14d0b28a6142c13333535560f6
|
e3adbec6cd8d0b50880b3b606352a1c751d4ac79
|
/functions/singly_linked_list.py
|
7cadf3954044adea1f9fcd0cccd0b5268d96d8b1
|
[] |
no_license
|
ZiyaoGeng/LeetCode
|
3cc5b553df5eac2e5bbb3ccd0f0ed4229574fa2f
|
c4c60b289c0bd9d9f228d04abe948d6287e70ea8
|
refs/heads/master
| 2022-04-07T08:19:58.647408 | 2020-03-12T08:56:13 | 2020-03-12T08:56:13 | 218,981,503 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 211 |
py
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
|
[
"[email protected]"
] | |
811e650b58eaf4337be5d070b3152062620dfaa4
|
1d1a21b37e1591c5b825299de338d18917715fec
|
/Mathematics/Data science/Mathmatics/02/inverse_matrix.py
|
5531c0cc7924c0fa9e1eb9313e95e425439086b8
|
[] |
no_license
|
brunoleej/study_git
|
46279c3521f090ebf63ee0e1852aa0b6bed11b01
|
0c5c9e490140144caf1149e2e1d9fe5f68cf6294
|
refs/heads/main
| 2023-08-19T01:07:42.236110 | 2021-08-29T16:20:59 | 2021-08-29T16:20:59 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 249 |
py
|
import numpy as np
A = np.array([[1,1,0],[0,1,1],[1,1,1]])
print(A)
'''
[[1 1 0]
[0 1 1]
[1 1 1]]
'''
# 역행렬(inverse_matrix 계산)
Ainv = np.linalg.inv(A)
print(Ainv)
'''
[[ 0. -1. 1.]
[ 1. 1. -1.]
[-1. 0. 1.]]
'''
|
[
"[email protected]"
] | |
f327af434bdb44b8db26624273fa576fedb584a9
|
371fe9a1fdeb62ad1142b34d732bde06f3ce21a0
|
/scripts/compute_path_pair_distances.py
|
32499ed5d2cd2871d18a77acc24343b70b16f798
|
[] |
no_license
|
maickrau/rdna_resolution
|
971f3b7e803565c9432be69b8e2a2852f55b8b79
|
aab42310c31e655cbbc318331082fa3436d69075
|
refs/heads/master
| 2023-03-03T05:14:33.966930 | 2021-02-17T20:45:20 | 2021-02-17T20:45:20 | 339,851,442 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,426 |
py
|
#!/usr/bin/python
import sys
graphfile = sys.argv[1]
max_diff = int(sys.argv[2])
modulo = int(sys.argv[3])
moduloindex = int(sys.argv[4])
# name \t path from stdin
def revcomp(s):
comp = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
return "".join(comp[c] for c in s[::-1])
def pathseq(p):
global nodeseqs
seq_no_hpc = "".join(nodeseqs[n[1:]] if n[0] == '>' else revcomp(nodeseqs[n[1:]]) for n in p)
# seq_hpc = seq_no_hpc[0]
# for i in range(1, len(seq_no_hpc)):
# if seq_no_hpc[i] != seq_no_hpc[i-1]: seq_hpc += seq_no_hpc[i]
# return seq_hpc
return seq_no_hpc
def edit_distance_simple(p1, p2):
global max_diff
if len(p1) - len(p2) <= -max_diff or len(p1) - len(p2) >= max_diff: return None
last_row = []
for i in range(0, len(p2)+1):
last_row.append(i)
for i in range(1, len(p1)):
next_row = [i]
min_this_row = i
for j in range(0, len(p2)):
index = len(next_row)
next_row.append(min(next_row[index-1]+1, last_row[index]+1))
if p1[i] == p2[j]:
next_row[index] = min(next_row[index], last_row[index-1])
else:
next_row[index] = min(next_row[index], last_row[index-1]+1)
min_this_row = min(min_this_row, next_row[index])
last_row = next_row
# if min_this_row >= max_diff: return None
return last_row[-1]
def edit_distance_wfa(p1, p2):
global max_diff
# use wfa because new and fancy
# https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa777/5904262?rss=1
if len(p1) - len(p2) < -max_diff or len(p1) - len(p2) > max_diff: return None
start_match = -1
while start_match+1 < len(p1) and start_match+1 < len(p2) and p1[start_match+1] == p2[start_match+1]:
start_match += 1
if start_match == len(p1) and start_match == len(p2): return 0
last_column = [start_match]
# sys.stderr.write("0" + "\n")
for i in range(1, max_diff):
offset = i-1
# sys.stderr.write(str(i) + "\n")
next_column = []
last_match =last_column[-i+offset+1]
while last_match+1-i < len(p1) and last_match+1 < len(p2) and p1[last_match+1-i] == p2[last_match+1]:
last_match += 1
if last_match+1-i >= len(p1) and last_match+1 >= len(p2):
return i
next_column.append(last_match)
for j in range(-i+1, +i):
last_match = last_column[j+offset]+1
if j > -i+1:
last_match = max(last_match, last_column[j+offset-1]-1)
if j < i-1:
last_match = max(last_match, last_column[j+offset+1])
while last_match+1+j < len(p1) and last_match+1 < len(p2) and p1[last_match+1+j] == p2[last_match+1]:
last_match += 1
if last_match+1+j >= len(p1) and last_match+1 >= len(p2):
return i
next_column.append(last_match)
last_match = last_column[i+offset-1]-1
while last_match+1+i < len(p1) and last_match+1 < len(p2) and p1[last_match+1+i] == p2[last_match+1]:
last_match += 1
if last_match+1+i >= len(p1) and last_match+1 >= len(p2):
return i
next_column.append(last_match)
last_column = next_column
return None
def edit_distance(p1, p2):
global max_diff
# use wfa because new and fancy
# https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa777/5904262?rss=1
if len(p1) - len(p2) < -max_diff or len(p1) - len(p2) > max_diff: return None
start_match = -1
while start_match+1 < len(p1) and start_match+1 < len(p2) and p1[start_match+1] == p2[start_match+1]:
start_match += 1
if start_match == len(p1) and start_match == len(p2): return 0
last_column = {0: start_match}
for i in range(1, max_diff):
offset = i-1
next_column = {}
for column in last_column:
if column not in next_column: next_column[column] = 0
next_column[column] = max(next_column[column], last_column[column]+1)
if column+1 not in next_column: next_column[column+1] = 0
next_column[column+1] = max(next_column[column+1], last_column[column])
if column-1 not in next_column: next_column[column-1] = 0
next_column[column-1] = max(next_column[column-1], last_column[column]-1)
p1_pos = last_column[column]
p2_pos = last_column[column] + column
if p1_pos >= 4 and p2_pos >= 4:
if p1[p1_pos-4:p1_pos] == p2[p2_pos-4:p2_pos] and p1[p1_pos-4:p1_pos-2] == p1[p1_pos-2:p1_pos]:
if p1_pos+2 <= len(p1) and p1[p1_pos:p1_pos+2] == p1[p1_pos-2:p1_pos]:
extend_until = 0
while True:
if column-extend_until not in next_column: next_column[column-extend_until] = 0
next_column[column-extend_until] = max(next_column[column-extend_until], last_column[column]+extend_until)
if p1_pos+extend_until+2 <= len(p1) and p1[p1_pos+extend_until:p1_pos+extend_until+2] == p1[p1_pos-2:p1_pos]:
extend_until += 2
else:
break
if p2_pos+2 <= len(p2) and p2[p2_pos:p2_pos+2] == p2[p2_pos-2:p2_pos]:
extend_until = 0
while True:
if column+extend_until+2 not in next_column: next_column[column+extend_until+2] = 0
next_column[column+extend_until+2] = max(next_column[column+extend_until+2], last_column[column])
if p2_pos+extend_until+2 <= len(p2) and p2[p2_pos+extend_until:p2_pos+extend_until+2] == p2[p2_pos-2:p2_pos]:
extend_until += 2
else:
break
for column in next_column:
p1_pos = next_column[column]
p2_pos = next_column[column] + column
while p1_pos+1 < len(p1) and p2_pos+1 < len(p2) and p1[p1_pos+1] == p2[p2_pos+1]:
next_column[column] += 1
p1_pos += 1
p2_pos += 1
if p1_pos+1 >= len(p1) and p2_pos+1 >= len(p2): return i
last_column = next_column
return None
nodeseqs = {}
with open(graphfile) as f:
for l in f:
parts = l.strip().split('\t')
if parts[0] == 'S':
nodeseqs[parts[1]] = parts[2]
num = 0
pathnum = {}
paths = {}
for l in sys.stdin:
parts = l.strip().split('\t')
name = parts[0]
last_break = 0
path = []
pathstr = parts[1] + '>'
for i in range(1, len(pathstr)):
if pathstr[i] == '<' or pathstr[i] == '>':
path.append(pathstr[last_break:i])
last_break = i
if name in paths: print(name)
assert name not in paths
paths[name] = pathseq(path)
pathnum[name] = num
num += 1
# print(name + "\t" + paths[name])
for path1 in paths:
if pathnum[path1] % modulo != moduloindex: continue
for path2 in paths:
if path1 <= path2: continue
value = max_diff + 1
edit_dist = edit_distance(paths[path1], paths[path2])
# edit_dist = edit_distance_simple(paths[path1], paths[path2])
if edit_dist is None: continue
if edit_dist is not None: value = edit_dist
print(path1 + "\t" + path2 + "\t" + str(value))
|
[
"[email protected]"
] | |
598aa5789fc89d20614a949df27117f073692147
|
b2c780661aec8076a0b6d00bf8ea0d443a117df6
|
/Popularity/DCAFPilot/test/utils_t.py
|
b5af29934995578af40c4def334385a5c2d302eb
|
[] |
no_license
|
maitdaoud/DMWMAnalytics
|
894fa2afb8d83a5275f0abd61b74f4f839150cb0
|
fec7ef3e5240973db96ba53179940950002adbd8
|
refs/heads/master
| 2020-04-11T03:33:43.164136 | 2017-04-01T14:07:42 | 2017-04-01T14:07:42 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 975 |
py
|
#!/usr/bin/env python
#pylint: disable-msg=C0301,C0103
"""
Unit test for StorageManager class
"""
import os
import re
import time
import unittest
from pymongo import MongoClient
from DCAF.utils.utils import popdb_date, ndays
class testStorageManager(unittest.TestCase):
"""
A test class for the StorageManager class
"""
def setUp(self):
"set up connection"
pass
def tearDown(self):
"Perform clean-up"
pass
def test_popdb_date(self):
"Test popdb_date method"
result = popdb_date('20140105')
expect = '2014-1-5'
self.assertEqual(expect, result)
result = popdb_date(expect)
self.assertEqual(expect, result)
def test_ndays(self):
"Test ndays function"
time1, time2 = '20141120', '20141124'
result = ndays(time1, time2)
expect = 4
self.assertEqual(expect, result)
#
# main
#
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
3c699961c03db0286e4b397de0a722d189504754
|
30e2a85fc560165a16813b0486a862317c7a486a
|
/datastruct_algorithm/jan.py
|
bb5cbcfb654440320b08cce91cc4251879eb8dfd
|
[] |
no_license
|
muryliang/python_prac
|
2f65b6fdb86c3b3a44f0c6452a154cd497eb2d01
|
0301e8f523a2e31e417fd99a968ad8414e9a1e08
|
refs/heads/master
| 2021-01-21T11:03:48.397178 | 2017-09-18T04:13:27 | 2017-09-18T04:13:27 | 68,801,688 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,328 |
py
|
import time
import sys
def perform(a, b, goal, failset, trueset):
"""a is limaL, b is limbL, failset is a list failseting action"""
# time.sleep(1)
# print(a, b)
global lima
global limb
res = False
if a == goal or b == goal or a + b == goal:
return True
if res is False and a > 0 and b < limb:
ares = max(a - (limb-b), 0)
bres = min(limb, b + a)
if (ares , bres) not in failset:
failset.append((ares, bres) )
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("rmove")
if res is False and b > 0 and a < lima:
ares = min(lima, a + b)
bres = max(b - (lima-a), 0)
if (ares , bres) not in failset:
failset.append((ares, bres))
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("lmove")
if res is False and b > 0:
ares = a
bres = 0
if (ares , bres) not in failset:
failset.append((ares, bres))
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("drop b")
if res is False and a > 0:
ares = 0
bres = b
if (ares , bres) not in failset:
failset.append((ares, bres))
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("drop a")
if res is False and a < lima:
ares = lima
bres = b
if (ares , bres) not in failset:
failset.append((ares, bres))
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("fill a")
if res is False and b < limb:
ares = a
bres = limb
if (ares , bres) not in failset:
failset.append((ares, bres))
res = perform(ares, bres, goal, failset, trueset)
if res:
trueset.append("fill b")
# if res is False:
# print ("nothing true, return")
return res
failset = [(0,0)]
trueset = list()
lima = int(sys.argv[1])
limb = int(sys.argv[2])
goal = int(sys.argv[3])
if perform(0, 0, goal, failset, trueset):
print ("success")
else:
print ("fail")
print (list(reversed(trueset)))
|
[
"[email protected]"
] | |
3724941a22eb118782c4c142d7dc6097e8d37e35
|
ad13583673551857615498b9605d9dcab63bb2c3
|
/output/instances/nistData/atomic/integer/Schema+Instance/NISTXML-SV-IV-atomic-integer-fractionDigits-1-3.py
|
32add0c922d5342c7b50eaabb85bc7ee39adc0d0
|
[
"MIT"
] |
permissive
|
tefra/xsdata-w3c-tests
|
397180205a735b06170aa188f1f39451d2089815
|
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
|
refs/heads/main
| 2023-08-03T04:25:37.841917 | 2023-07-29T17:10:13 | 2023-07-30T12:11:13 | 239,622,251 | 2 | 0 |
MIT
| 2023-07-25T14:19:04 | 2020-02-10T21:59:47 |
Python
|
UTF-8
|
Python
| false | false | 297 |
py
|
from output.models.nist_data.atomic.integer.schema_instance.nistschema_sv_iv_atomic_integer_fraction_digits_1_xsd.nistschema_sv_iv_atomic_integer_fraction_digits_1 import NistschemaSvIvAtomicIntegerFractionDigits1
obj = NistschemaSvIvAtomicIntegerFractionDigits1(
value=825606520242485152
)
|
[
"[email protected]"
] | |
cca9f2e5ed6c7cd9fe744913449f05e61d1ed854
|
8a47ab47a101d4b44dd056c92a1763d5fac94f75
|
/力扣/简单练习/300-最长上升子序列.py
|
edecfbee733ea3c1f051716235583aa67c1a5524
|
[] |
no_license
|
Clint-cc/Leecode
|
d5528aa7550a13a5bcf2f3913be2d5db2b5299f3
|
8befe73ab3eca636944800e0be27c179c45e1dbf
|
refs/heads/master
| 2020-09-14T07:35:41.382377 | 2020-07-01T01:27:18 | 2020-07-01T01:27:18 | 223,066,742 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,663 |
py
|
# !D:/Code/python
# -*- coding:utf-8 -*-
# @Author : Clint
# @Question : 给定一个无序的整数数组,找到其中最长上升子序列的长度。
def lengthOfLIS(nums):
'''
思路:遍历数组,当前的下一个元素大于当前,count+1,当不大于时比较count和max_count,
最后输出max_count
这题有坑: 输入[10,9,2,5,3,7,101,18],输出4,解释:最长的上升子序列是 [2,3,7,101],它的长度是 4
:param nums:
:return:
'''
count = 1
max_count = 1
for i in range(len(nums) - 1):
if nums[i + 1] >= nums[i]:
count += 1
else:
if count > max_count:
max_count = count
count = 1
else:
count = 1
if max_count < count:
max_count = count
return max_count
# 动态规划
def lengthOfLIS(nums):
if not nums:
return 0
dp = [1] * len(nums)
for i in range(len(nums)):
for j in range(i):
if nums[j] < nums[i]: # 如果要求非严格递增,将此行 '<' 改为 '<=' 即可。
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
# 二分查找
def lengthOfLIS(nums):
d = []
for n in nums:
if not d or n > d[-1]:
d.append(n)
else:
l, r = 0, len(d) - 1
loc = r
while l <= r:
mid = (l + r) // 2
if d[mid] >= n:
loc = mid
r = mid - 1
else:
l = mid + 1
d[loc] = n
return len(d)
print(lengthOfLIS([1, 2, 5, 3, 7, 11, 18]))
|
[
"[email protected]"
] | |
119da14a29035eb8a5b1c9ba0c64dc7cb316c170
|
fab39aa4d1317bb43bc11ce39a3bb53295ad92da
|
/nncf/tensorflow/graph/pattern_operations.py
|
23435d263c3de7adf57353e47709a005e220e0df
|
[
"Apache-2.0"
] |
permissive
|
dupeljan/nncf
|
8cdce27f25f01ce8e611f15e1dc3036fb8548d6e
|
0abfd7103ca212888a946ba4d0fbdb9d436fdaff
|
refs/heads/develop
| 2023-06-22T00:10:46.611884 | 2021-07-22T10:32:11 | 2021-07-22T10:32:11 | 388,719,455 | 0 | 0 |
Apache-2.0
| 2021-07-23T07:46:15 | 2021-07-23T07:43:43 | null |
UTF-8
|
Python
| false | false | 3,416 |
py
|
"""
Copyright (c) 2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from nncf.common.graph.patterns import merge_two_types_of_operations
from nncf.tensorflow.graph.metatypes.common import ELEMENTWISE_LAYER_METATYPES
from nncf.tensorflow.graph.metatypes.common import GENERAL_CONV_LAYER_METATYPES
from nncf.tensorflow.graph.metatypes.common import LAYER_METATYPES_AGNOSTIC_TO_DATA_PRECISION_WITH_ONE_INPUT
from nncf.tensorflow.graph.metatypes.common import LINEAR_LAYER_METATYPES
LINEAR_OPERATIONS = {'type': list(
{
*{layer_name for m in GENERAL_CONV_LAYER_METATYPES for layer_name in m.get_all_aliases()},
*{layer_name for m in LINEAR_LAYER_METATYPES for layer_name in m.get_all_aliases()},
}
),
'label': 'LINEAR'
}
ELEMENTWISE_OPERATIONS = {'type': list(set(
layer_name for m in ELEMENTWISE_LAYER_METATYPES for layer_name in m.get_all_aliases()
)),
'label': 'ELEMENTWISE'
}
QUANTIZATION_AGNOSTIC_OPERATIONS = {
'type': list(set(
layer_name for m in LAYER_METATYPES_AGNOSTIC_TO_DATA_PRECISION_WITH_ONE_INPUT for layer_name in m.get_all_aliases()
)),
'label': 'ELEMENTWISE'
}
BATCH_NORMALIZATION_OPERATIONS = {'type': ['BatchNormalization',
'SyncBatchNormalization',],
'label': 'BATCH_NORMALIZATION'
}
KERAS_ACTIVATIONS_OPERATIONS = {
'type': ['ReLU',
'ThresholdedReLU',
'ELU',
'PReLU',
'LeakyReLU',
'Activation'],
'label': 'KERAS_ACTIVATIONS'
}
TF_ACTIVATIONS_OPERATIONS = {
'type': ['Relu'],
'label': 'TF_ACTIVATIONS'
}
ATOMIC_ACTIVATIONS_OPERATIONS = merge_two_types_of_operations(KERAS_ACTIVATIONS_OPERATIONS,
TF_ACTIVATIONS_OPERATIONS,
'ATOMIC_ACTIVATIONS')
POOLING_OPERATIONS = {'type': ['AveragePooling2D',
'AveragePooling3D',
'GlobalAveragePooling2D',
'GlobalAveragePooling3D'],
'label': 'POOLING'}
SINGLE_OPS = merge_two_types_of_operations(POOLING_OPERATIONS,
{
'type': [
'Average',
'LayerNormalization',
'UpSampling2D'
]
}, label='SINGLE_OPS')
ARITHMETIC_OPERATIONS = {'type': ['__iadd__',
'__add__',
'__mul__',
'__rmul__'],
'label': 'ARITHMETIC'}
|
[
"[email protected]"
] | |
d4b3c37168303b568f64ff5fef401bc1cc1264b2
|
3400394303380c2510b17b95839dd4095abc55a4
|
/src/py310/lesson02/comments.py
|
a4dca2ef7c776bd871c81c1adcdd13adb12c2fce
|
[
"MIT"
] |
permissive
|
IBRAR21/py310_sp2021
|
daf53b76decf060d72201a3db66f0f7c697876a7
|
584e37b9d96654c1241fc787d157c292301d5bf7
|
refs/heads/master
| 2023-05-30T16:43:09.614565 | 2021-06-09T21:41:14 | 2021-06-09T21:41:14 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,828 |
py
|
# --------------------------------------------------------------------------------- #
# AQUABUTTON wxPython IMPLEMENTATION
#
# Andrea Gavana, @ 07 October 2008
# Latest Revision: 24 Nov 2011, 22.00 GMT
#
#
# TODO List
#
# 1) Anything to do?
#
#
# For all kind of problems, requests of enhancements and bug reports, please
# write to me at:
#
# [email protected]
# [email protected]
#
# Or, obviously, to the wxPython mailing list!!!
#
#
# End Of Comments
# --------------------------------------------------------------------------------- #
"""
:class:`AquaButton` is another custom-drawn button class which *approximatively* mimics
the behaviour of Aqua buttons on the Mac.
Description
===========
:class:`AquaButton` is another custom-drawn button class which *approximatively* mimics
the behaviour of Aqua buttons on the Mac. At the moment this class supports:
* Bubble and shadow effects;
* Customizable background, foreground and hover colours;
* Rounded-corners buttons;
* Text-only or image+text buttons;
* Pulse effect on gaining focus.
And a lot more. Check the demo for an almost complete review of the functionalities.
Usage
=====
Sample usage::
import wx
import wx.lib.agw.aquabutton as AB
app = wx.App(0)
frame = wx.Frame(None, -1, "AquaButton Test")
mainPanel = wx.Panel(frame)
mainPanel.SetBackgroundColour(wx.WHITE)
# Initialize AquaButton 1 (with image)
bitmap = wx.Bitmap("my_button_bitmap.png", wx.BITMAP_TYPE_PNG)
btn1 = AB.AquaButton(mainPanel, -1, bitmap, "AquaButton")
# Initialize AquaButton 2 (no image)
btn2 = AB.AquaButton(mainPanel, -1, None, "Hello World!")
frame.Show()
app.MainLoop()
Supported Platforms
===================
AquaButton has been tested on the following platforms:
* Windows (Windows XP);
* Linux Ubuntu (10.10).
Window Styles
=============
`No particular window styles are available for this class.`
Events Processing
=================
This class processes the following events:
================= ==================================================
Event Name Description
================= ==================================================
``wx.EVT_BUTTON`` Process a `wxEVT_COMMAND_BUTTON_CLICKED` event, when the button is clicked.
================= ==================================================
License And Version
===================
:class:`AquaButton` control is distributed under the wxPython license.
Latest Revision: Andrea Gavana @ 22 Nov 2011, 22.00 GMT
Version 0.4
"""
x = x + 1 # allow for border
BORDER = 1
x = x + BORDER
def allow_for_border(coordinate):
return coordinate + 1
y = allow_for_border(y)
def calc(num1, num2):
# calc product 2 numbers
return num1 + num2
def calculate_product(left, right):
return left * right
|
[
"[email protected]"
] | |
3b4b65765a6275e2b4fed60d9412aac3f7fb9665
|
d12b59b33df5c467abf081d48e043dac70cc5a9c
|
/ixnetwork_restpy/testplatform/sessions/ixnetwork/quicktest/passcriteria_985f11fda90dc3b8dac84a4a881b8740.py
|
6920d6cfe8478b76037b42d0c156e50d2daa5519
|
[
"MIT"
] |
permissive
|
ajbalogh/ixnetwork_restpy
|
59ce20b88c1f99f95a980ff01106bda8f4ad5a0f
|
60a107e84fd8c1a32e24500259738e11740069fd
|
refs/heads/master
| 2023-04-02T22:01:51.088515 | 2021-04-09T18:39:28 | 2021-04-09T18:39:28 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 7,492 |
py
|
# MIT LICENSE
#
# Copyright 1997 - 2020 by IXIA Keysight
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from ixnetwork_restpy.base import Base
from ixnetwork_restpy.files import Files
class PassCriteria(Base):
"""This applies the Pass Criteria to each trial in the test and determines whether the trial passed or failed.
The PassCriteria class encapsulates a required passCriteria resource which will be retrieved from the server every time the property is accessed.
"""
__slots__ = ()
_SDM_NAME = 'passCriteria'
_SDM_ATT_MAP = {
'EnablePassFail': 'enablePassFail',
}
def __init__(self, parent):
super(PassCriteria, self).__init__(parent)
@property
def EnablePassFail(self):
"""
Returns
-------
- bool: If true, the pass fail criteria is set.
"""
return self._get_attribute(self._SDM_ATT_MAP['EnablePassFail'])
@EnablePassFail.setter
def EnablePassFail(self, value):
self._set_attribute(self._SDM_ATT_MAP['EnablePassFail'], value)
def update(self, EnablePassFail=None):
"""Updates passCriteria resource on the server.
Args
----
- EnablePassFail (bool): If true, the pass fail criteria is set.
Raises
------
- ServerError: The server has encountered an uncategorized error condition
"""
return self._update(self._map_locals(self._SDM_ATT_MAP, locals()))
def Apply(self):
"""Executes the apply operation on the server.
Applies the specified Quick Test.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('apply', payload=payload, response_object=None)
def ApplyAsync(self):
"""Executes the applyAsync operation on the server.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('applyAsync', payload=payload, response_object=None)
def ApplyAsyncResult(self):
"""Executes the applyAsyncResult operation on the server.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('applyAsyncResult', payload=payload, response_object=None)
def ApplyITWizardConfiguration(self):
"""Executes the applyITWizardConfiguration operation on the server.
Applies the specified Quick Test.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('applyITWizardConfiguration', payload=payload, response_object=None)
def GenerateReport(self):
"""Executes the generateReport operation on the server.
Generate a PDF report for the last succesfull test run.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('generateReport', payload=payload, response_object=None)
def Run(self, *args, **kwargs):
"""Executes the run operation on the server.
Starts the specified Quick Test and waits for its execution to finish.
The IxNetwork model allows for multiple method Signatures with the same name while python does not.
run(InputParameters=string)list
-------------------------------
- InputParameters (str): The input arguments of the test.
- Returns list(str): This method is synchronous and returns the result of the test.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i]
for item in kwargs.items(): payload[item[0]] = item[1]
return self._execute('run', payload=payload, response_object=None)
def Start(self, *args, **kwargs):
"""Executes the start operation on the server.
Starts the specified Quick Test.
The IxNetwork model allows for multiple method Signatures with the same name while python does not.
start(InputParameters=string)
-----------------------------
- InputParameters (str): The input arguments of the test.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i]
for item in kwargs.items(): payload[item[0]] = item[1]
return self._execute('start', payload=payload, response_object=None)
def Stop(self):
"""Executes the stop operation on the server.
Stops the currently running Quick Test.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('stop', payload=payload, response_object=None)
def WaitForTest(self):
"""Executes the waitForTest operation on the server.
Waits for the execution of the specified Quick Test to be completed.
Raises
------
- NotFoundError: The requested resource does not exist on the server
- ServerError: The server has encountered an uncategorized error condition
"""
payload = { "Arg1": self.href }
return self._execute('waitForTest', payload=payload, response_object=None)
|
[
"[email protected]"
] | |
ec356e53c4d259f06b48074389ec9b57fb66f575
|
199522cb43b4e2c7e3bf034a0e604794258562b1
|
/0x03-python-data_structures/7-add_tuple.py
|
96d715528f3d23cdf3d725a9838247a97a8e4635
|
[] |
no_license
|
jormao/holbertonschool-higher_level_programming
|
a0fd92f2332f678e6fe496057c04f2995d24a4ac
|
360b3a7294e9e0eadcadb57d4c48c22369c05111
|
refs/heads/master
| 2020-09-29T01:36:20.094209 | 2020-05-15T03:27:06 | 2020-05-15T03:27:06 | 226,915,744 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 454 |
py
|
#!/usr/bin/python3
def add_tuple(tuple_a=(), tuple_b=()):
if len(tuple_a) != 2:
if len(tuple_a) == 1:
tuple_a = (tuple_a[0], 0)
if len(tuple_a) == 0:
tuple_a = (0, 0)
if len(tuple_b) != 2:
if len(tuple_b) == 1:
tuple_b = (tuple_b[0], 0)
if len(tuple_b) == 0:
tuple_b = (0, 0)
tuple_c = ((tuple_a[0] + tuple_b[0]), (tuple_a[1] + tuple_b[1]))
return (tuple_c)
|
[
"[email protected]"
] | |
796a852c4ccdd0bc598e0b373567c854094d0cfd
|
45fb509bf21ac003a40fd404d7c0cc995e741672
|
/perceptron_algorithm/perceptron_algo_2nd_method.py
|
59807adb1a2c854110b8644f2b103f49899851f4
|
[] |
no_license
|
FarahAgha/MachineLearning
|
0d17511f7495190dfd2368554428208c7d0eadf7
|
cf385135e016a63fb16bd326586fcd8ecb3c4355
|
refs/heads/master
| 2021-01-04T01:03:08.810401 | 2020-03-15T18:42:16 | 2020-03-15T18:42:16 | 240,314,331 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,011 |
py
|
# Perceptron Algorithm perceptron_algo_2nd_method.py
# See https://medium.com/@thomascountz/19-line-line-by-line-python-perceptron-b6f113b161f3 for details.
import numpy as np
class Perceptron(object):
def __init__(self, no_of_inputs, threshold=100, learning_rate=0.01):
self.threshold = threshold
self.learning_rate = learning_rate
self.weights = np.zeros(no_of_inputs + 1)
def predict(self, inputs):
summation = np.dot(inputs, self.weights[1:]) + self.weights[0]
if summation > 0:
activation = 1
else:
activation = 0
return activation
def train(self, training_inputs, labels):
for _ in range(self.threshold):
for inputs, label in zip(training_inputs, labels):
prediction = self.predict(inputs)
self.weights[1:] += self.learning_rate * (label - prediction) * inputs
self.weights[0] += self.learning_rate * (label - prediction)
|
[
"[email protected]"
] | |
f9dd6d91e8aaee9919ed20cb74c14fc6f2d22c8b
|
44c81d8cc9c148c93cf9a77faec345693059c973
|
/fetch.py
|
568adf1e9271c6ebe976f93a3b0c8306a2ea428a
|
[] |
no_license
|
neoatlantis/currency-data
|
26566a5131b814f324153db451ae9f879fda9b72
|
c19bc94d6d6ba6706f625e94e176b77bee455b04
|
refs/heads/master
| 2020-06-10T19:02:58.973856 | 2016-12-08T06:35:46 | 2016-12-08T06:35:46 | 75,902,576 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,231 |
py
|
#!/usr/bin/env python
import os
import time
import requests
import shelve
import sys
BASEPATH = os.path.realpath(os.path.dirname(sys.argv[0]))
filepath = lambda *i: os.path.join(BASEPATH, *i)
# check for api key
try:
apikeyFilepath = filepath('apikey')
apikey = open(apikeyFilepath).read().strip()
except:
print "Put your API key at `openexchangerates.org` into file `apikey`."
sys.exit(1)
# check for database
db = shelve.open(filepath('currencies.db'), flag='c')
latest = 0
for key in db:
timestamp = float(key)
if timestamp > latest:
latest = timestamp
if time.time() - latest < 3000 and 'force' not in sys.argv:
print "You are requesting too frequent. Abandoned to prevent API",
print "exhaustion. Use `force` in command line to force a request."
db.close()
sys.exit(2)
# fetch url
url = "https://openexchangerates.org/api/latest.json?app_id=%s" % apikey
try:
req = requests.get(url)
if req.status_code != 200: raise
json = req.json()
json = {
'rates': json['rates'],
'timestamp': json['timestamp']
}
except:
print "Failed fetching newest data. Abort."
sys.exit(3)
print json
db[str(time.time())] = json
db.close()
sys.exit(0)
|
[
"[email protected]"
] | |
179abd03f2ae118cfb2b85da6360707ead06748a
|
1b10b46afdf24b4ce4f2d57e315e09e17c0a9c2b
|
/winding_helix.py
|
51d16cff03b2651355fadbdb7bd2a560ed49af5b
|
[] |
no_license
|
tthtlc/sansagraphics
|
e6aad1541dabc85b3871e1890c9f79aa33055355
|
113e559fb128c93ed1f02155ec74e76878b86c37
|
refs/heads/master
| 2021-01-15T15:52:35.126301 | 2020-03-30T16:58:57 | 2020-03-30T16:58:57 | 15,507,431 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,415 |
py
|
# Pygame/PyopenGL example by Bastiaan Zapf, Apr 2009
### From http://python-opengl-examples.blogspot.sg/
#
# Draw an helix, wiggle it pleasantly
#
# Keywords: Alpha Blending, Textures, Animation, Double Buffer
from OpenGL.GL import *
from OpenGL.GLU import *
from math import * # trigonometry
import pygame # just to get a display
# get an OpenGL surface
pygame.init()
pygame.display.set_mode((800,600), pygame.OPENGL|pygame.DOUBLEBUF)
# How to catch errors here?
done = False
t=0
while not done:
t=t+1
# for fun comment out these two lines
glClearColor(0.0, 0.0, 0.0, 1.0)
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
# Get a perspective at the helix
glMatrixMode(GL_PROJECTION);
glLoadIdentity()
gluPerspective(90,1,0.01,1000)
gluLookAt(sin(t/200.0)*3,sin(t/500.0)*3,cos(t/200.0)*3,0,0,0,0,1,0)
# Draw the helix (this ought to be a display list call)
glMatrixMode(GL_MODELVIEW)
# get a texture (this ought not to be inside the inner loop)
texture=glGenTextures( 1 )
glBindTexture( GL_TEXTURE_2D, texture );
glTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
# set sane defaults for a plethora of potentially uninitialized
# variables
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_REPEAT );
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
# a texture
#pulse = sin(t/30)*0.5+0.5 # try this one
pulse = 0
texdata=[[[0.0,0,1,1],
[0.0,0,0,0],
[0.0,1,0,1],
[0.0,0,0,0]],
[[0.0,0,0,0],
[pulse,pulse,pulse,1],
[pulse,pulse,pulse,1],
[0.0,0,0,0]],
[[0.0,1,0,1],
[1,pulse,pulse,1],
[pulse,pulse,0,1],
[0.0,0,0,0]],
[[0.0,0,0,0],
[0.0,0,0,0],
[0.0,0,0,0],
[0.0,0,0,0]]];
glTexImage2Df(GL_TEXTURE_2D, 0,4,0,GL_RGBA,
texdata)
glEnable(GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE); # XXX Why GL_ONE?
# alternatively:
# glEnable(GL_DEPTH_TEST);
glEnable( GL_TEXTURE_2D );
# use the texture
glBindTexture( GL_TEXTURE_2D, texture );
# vertices & texture data
glBegin(GL_TRIANGLE_STRIP);
#pulse2 = 0.5
for i in range(0,100):
r=5.0 # try other values - integers as well
R=10.0
d=1 # try other values
j=i
#pulse2 += 0.5
if (i%3==0):
glTexCoord2f(0,i);
glVertex3f( cos(i/r)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r));
elif (i%3==1):
glTexCoord2f(1,i);
glVertex3f( cos(i/r + 3.14/2)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r + 3.14/1));
else:
glTexCoord2f(2,i);
glVertex3f( cos(i/r + 3.14/1)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r+3.14/1));
# glVertex3f( cos(i/r+3.14)*pulse2, -2.5+i*0.05+d+pulse2*1, sin(i/r+3.14)*pulse2);
glEnd();
glFlush()
glDeleteTextures(texture)
pygame.display.flip()
|
[
"[email protected]"
] | |
c4bbebeeaa1fede9542e856ca68e24409905d33f
|
c0f808504dd3d7fd27c39f1503fbc14c1d37bf9f
|
/sources/scipy-scipy-414c1ab/scipy/io/tests/test_wavfile.py
|
266775ecd99e28e8010c480d95ff5fce9e266339
|
[] |
no_license
|
georgiee/lip-sync-lpc
|
7662102d4715e4985c693b316a02d11026ffb117
|
e931cc14fe4e741edabd12471713bf84d53a4250
|
refs/heads/master
| 2018-09-16T08:47:26.368491 | 2018-06-05T17:01:08 | 2018-06-05T17:01:08 | 5,779,592 | 17 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,146 |
py
|
import os
import tempfile
import warnings
import numpy as np
from numpy.testing import assert_equal, assert_, assert_raises, assert_array_equal
from numpy.testing.utils import WarningManager
from scipy.io import wavfile
def datafile(fn):
return os.path.join(os.path.dirname(__file__), 'data', fn)
def test_read_1():
warn_ctx = WarningManager()
warn_ctx.__enter__()
try:
warnings.simplefilter('ignore', wavfile.WavFileWarning)
rate, data = wavfile.read(datafile('test-44100-le-1ch-4bytes.wav'))
finally:
warn_ctx.__exit__()
assert_equal(rate, 44100)
assert_(np.issubdtype(data.dtype, np.int32))
assert_equal(data.shape, (4410,))
def test_read_2():
rate, data = wavfile.read(datafile('test-8000-le-2ch-1byteu.wav'))
assert_equal(rate, 8000)
assert_(np.issubdtype(data.dtype, np.uint8))
assert_equal(data.shape, (800, 2))
def test_read_fail():
fp = open(datafile('example_1.nc'))
assert_raises(ValueError, wavfile.read, fp)
fp.close()
def _check_roundtrip(rate, dtype, channels):
fd, tmpfile = tempfile.mkstemp(suffix='.wav')
try:
os.close(fd)
data = np.random.rand(100, channels)
if channels == 1:
data = data[:,0]
data = (data*128).astype(dtype)
wavfile.write(tmpfile, rate, data)
rate2, data2 = wavfile.read(tmpfile)
assert_equal(rate, rate2)
assert_(data2.dtype.byteorder in ('<', '=', '|'), msg=data2.dtype)
assert_array_equal(data, data2)
finally:
os.unlink(tmpfile)
def test_write_roundtrip():
for signed in ('i', 'u'):
for size in (1, 2, 4, 8):
if size == 1 and signed == 'i':
# signed 8-bit integer PCM is not allowed
continue
for endianness in ('>', '<'):
if size == 1 and endianness == '<':
continue
for rate in (8000, 32000):
for channels in (1, 2, 5):
dt = np.dtype('%s%s%d' % (endianness, signed, size))
yield _check_roundtrip, rate, dt, channels
|
[
"[email protected]"
] | |
41cc8cb8ec10ccb8c7eb432e8f3cc4602df5f651
|
d043a51ff0ca2f9fb3943c3f0ea21c61055358e9
|
/python3网络爬虫开发实战/数据存储/MySQL实验/删除数据2.py
|
7af2d45b23cc102f658c4407ee7362981f7f0c80
|
[] |
no_license
|
lj1064201288/dell_python
|
2f7fd9dbcd91174d66a2107c7b7f7a47dff4a4d5
|
529985e0e04b9bde2c9e0873ea7593e338b0a295
|
refs/heads/master
| 2020-03-30T03:51:51.263975 | 2018-12-11T13:21:13 | 2018-12-11T13:21:13 | 150,707,725 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 382 |
py
|
import pymysql
db = pymysql.connect(host="localhost", user='root', password='123456', port=3306, db='django')
cursor = db.cursor()
table = "friends"
age = "age > 30"
sql = 'DELETE FROM {table} WHERE {age}'.format(table=table, age=age)
try:
cursor.execute(sql)
print("Successful...")
db.commit()
except:
print("Failed...")
db.rollback()
finally:
db.close()
|
[
"[email protected]"
] | |
92ed6a36ac6f7be76144f403a841125f2a79c943
|
633c18a9e1931f937f7f91f05ce9749a4ac169f6
|
/work_with_pythest/tests/test_math.py
|
05d5b8bf6daeef827b40a6d56148b1075e179af4
|
[] |
no_license
|
borko81/python_scripts
|
fb3ff79377f19233e18d20f4f150735cdbe52c29
|
4e8ed38550f3b90bc00c07605d7e92822b079206
|
refs/heads/master
| 2022-07-07T19:26:52.467714 | 2022-06-24T15:46:57 | 2022-06-24T15:46:57 | 224,904,971 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 280 |
py
|
import pytest
def test_one_plus_one():
assert 1 + 1 == 2
def test_one_plust_two():
a = 1
b = 2
c = 3
assert a + b == c
def test_division_by_zero():
with pytest.raises(ZeroDivisionError) as e:
num = 1 / 0
assert 'division' in str(e.value)
|
[
"[email protected]"
] | |
f2ebf591f742eb1433a9072d3c9826170e1cb8cd
|
2f73a3d4daac2aa2c38c3443b4f5555c49faa1c8
|
/Data.py
|
d8e917bf4fa96358299cdd241123799362a03919
|
[] |
no_license
|
18021009/project
|
656b6c8f9a0120c1185493d04405660895db93e9
|
0133f412e50e3dadd13bd0028832babf846070e5
|
refs/heads/main
| 2023-05-07T17:08:41.529766 | 2021-06-01T04:06:38 | 2021-06-01T04:06:38 | 372,696,937 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,718 |
py
|
from math import nan
from os import name
from Station import station
import numpy as np
import datetime
import pandas as pd
from Map import map
from Point import point
# standardline date data.csv to college.csv
# ds = pd.read_csv('data.csv')
def changeToDate(output_file):
ds = pd.read_csv('data.csv')
day_delta = datetime.timedelta(days=1)
start_date = datetime.date(2019, 1, 1)
end_date = datetime.date(2020, 1, 1)
for i in range((end_date - start_date).days):
day = start_date + i*day_delta
_day = day.strftime('X%m/X%d/%Y').replace('X0','X').replace('X','')
ds['time'] = ds['time'].replace({_day: day})
ds.to_csv(output_file, index=False)
def buffer_data(input_file, buffer):
dataStation = pd.read_csv(input_file)
dataStation['wind_speed'] = nan
dataStation['temperature'] = nan
dataStation['satellite_NO2'] = nan
dataStation["road_density"] = nan
dataStation["relative_humidity"] = nan
dataStation["pressure"] = nan
dataStation["population_density"] = nan
dataStation["pblh"] = nan
dataStation["NDVI"] = nan
dataStation["dpt"] = nan
dataStationArray = dataStation.values
dataStation = pd.DataFrame(dataStationArray, columns=['time', 'lat', 'long', 'NO2', 'name', 'wind_speed' + str(buffer), 'temperature' + str(buffer), 'satellite_NO2' + str(buffer), 'road_density' + str(buffer), 'relative_humidity' + str(buffer), 'pressure' + str(buffer), 'population_density' + str(buffer), 'pblh' + str(buffer), 'NDVI' + str(buffer), 'dpt' + str(buffer)])
dataStation.to_csv(input_file, float_format='{:f}'.format, index=False)
changeToDate('buffer_1_data.csv')
buffer_data('buffer_1_data.csv', 1)
changeToDate('buffer_2_data.csv')
buffer_data('buffer_2_data.csv', 2)
changeToDate('buffer_3_data.csv')
buffer_data('buffer_3_data.csv', 3)
# a = pd.read_csv("buffer_1_data.csv")
# b = pd.read_csv("buffer_2_data.csv")
# merged = a.merge(b, on=['time', 'lat', 'long', 'name'], how='inner')
# merged.to_csv('merge.csv', index=False)
# c = pd.read_csv("merge.csv")
# d = pd.read_csv("buffer_3_data.csv")
# merged = c.merge(d, on=['time', 'lat', 'long', 'name'], how='inner')
# merged.to_csv('merge.csv', index=False)
# buffer_radius
# _buffer_radius = 1
# dataStation = pd.read_csv('college.csv')
# dataStation['wind_speed'] = -999.0
# dataStation["road_dens"] = -999.0
# dataStation["pp_dens"] = -999.0
# dataStation["earth_no2"] = -999.0
# dataStationArray = dataStation.values
# # add wind speed to dataStationArray
# start_date = datetime.date(2019, 1, 1)
# end_date = datetime.date(2020, 1, 1)
# day_delta = datetime.timedelta(days=1)
# for i in range((end_date - start_date).days):
# fileName = "WSPDCombine_"
# day = start_date + i*day_delta
# file = "map/wind_speed/" + fileName + day.strftime('%Y%m%d') + ".tif"
# _map = map()
# _map.setMap(file)
# for data in dataStationArray:
# if((data[0] == day.strftime('%Y-%m-%d'))):
# _point = point(data[2], data[1])
# _point.set_position_on_matrix(_map)
# _station = station(_point, _buffer_radius)
# _station.setBufferValue(_map)
# data[5] = np.float64(_station.bufferValue)
# # add road to college.csv
# _map = map()
# _map.setMap('map/road_density/road_dens.tif')
# for data in dataStationArray:
# _point = point(data[2], data[1])
# _point.set_position_on_matrix(_map)
# _station = station(_point, _buffer_radius)
# _station.setBufferValue(_map)
# data[6] = _station.bufferValue
# # add population_density
# _map = map()
# _map.setMap('map/population_density/ppd.tif')
# for data in dataStationArray:
# _point = point(data[2], data[1])
# _point.set_position_on_matrix(_map)
# _station = station(_point, _buffer_radius)
# _station.setBufferValue(_map)
# data[7] = _station.bufferValue
# # add earth_no2
# for i in range((end_date - start_date).days):
# fileName = "NO2_"
# day = start_date + i*day_delta
# file = "map/NO2/" + fileName + day.strftime('%Y%m%d') + ".tif"
# _map = map()
# _map.setMap(file)
# for data in dataStationArray:
# if((data[0] == day.strftime('%Y-%m-%d'))):
# _point = point(data[2], data[1])
# _point.set_position_on_matrix(_map)
# _station = station(_point, _buffer_radius)
# _station.setBufferValue(_map)
# data[8] = _station.bufferValue
# newDataStation = pd.DataFrame(dataStationArray, columns=['time', 'lat', 'long', 'NO2', 'name', 'wind_speed', 'road_dens', 'pp_dens', 'earth_no2'])
# newDataStation.to_csv('college_2.csv', float_format='{:f}'.format, index=False)
|
[
"[email protected]"
] | |
c08ce6dd49ab813444d35c3c9349c72f052e228b
|
5e255ad1360c90478393744586663741a9569c21
|
/linebot/models/base.py
|
164fca9d9e9240236cfe90b9b6b2b37ba835814f
|
[
"Apache-2.0"
] |
permissive
|
line/line-bot-sdk-python
|
d76268e8b542060d6eccbacc5dbfab16960ecc35
|
cffd35948238ae24982173e30b1ea1e595bbefd9
|
refs/heads/master
| 2023-08-31T22:12:31.698183 | 2023-08-28T01:10:09 | 2023-08-28T01:10:09 | 70,553,423 | 1,898 | 1,181 |
Apache-2.0
| 2023-09-11T05:14:07 | 2016-10-11T03:42:26 |
Python
|
UTF-8
|
Python
| false | false | 4,121 |
py
|
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""linebot.models.base module."""
import json
from .. import utils
class Base(object):
"""Base class of model.
Suitable for JSON base data.
"""
def __init__(self, **kwargs):
"""__init__ method.
:param kwargs:
"""
pass
def __str__(self):
"""__str__ method."""
return self.as_json_string()
def __repr__(self):
"""__repr__ method."""
return str(self)
def __eq__(self, other):
"""__eq__ method.
:param other:
"""
return other and self.as_json_dict() == other.as_json_dict()
def __ne__(self, other):
"""__ne__ method.
:param other:
"""
return not self.__eq__(other)
def as_json_string(self):
"""Return JSON string from this object.
:rtype: str
"""
return json.dumps(self.as_json_dict(), sort_keys=True)
def as_json_dict(self):
"""Return dictionary from this object.
:return: dict
"""
data = {}
for key, value in self.__dict__.items():
camel_key = utils.to_camel_case(key)
if isinstance(value, (list, tuple, set)):
data[camel_key] = list()
for item in value:
if hasattr(item, 'as_json_dict'):
data[camel_key].append(item.as_json_dict())
else:
data[camel_key].append(item)
elif hasattr(value, 'as_json_dict'):
data[camel_key] = value.as_json_dict()
elif value is not None:
data[camel_key] = value
return data
@classmethod
def new_from_json_dict(cls, data, use_raw_message=False):
"""Create a new instance from a dict.
:param data: JSON dict
:param bool use_raw_message: Using original Message key as attribute
"""
if use_raw_message:
return cls(use_raw_message=use_raw_message, **data)
new_data = {utils.to_snake_case(key): value
for key, value in data.items()}
return cls(**new_data)
@staticmethod
def get_or_new_from_json_dict(data, cls):
"""Get `cls` object w/ deserialization from json if needed.
If data is instance of cls, return data.
Else if data is instance of dict, create instance from dict.
Else, return None.
:param data:
:param cls:
:rtype: object
"""
if isinstance(data, cls):
return data
elif isinstance(data, dict):
return cls.new_from_json_dict(data)
return None
@staticmethod
def get_or_new_from_json_dict_with_types(
data, cls_map, type_key='type', use_raw_message=False
):
"""Get `cls` object w/ deserialization from json by using type key hint if needed.
If data is instance of one of cls, return data.
Else if data is instance of dict, create instance from dict.
Else, return None.
:param data:
:param cls_map:
:param type_key:
:rtype: object
:param bool use_raw_message: Using original Message key as attribute
"""
if isinstance(data, tuple(cls_map.values())):
return data
elif isinstance(data, dict):
type_val = data[type_key]
if type_val in cls_map:
return cls_map[type_val].new_from_json_dict(data, use_raw_message=use_raw_message)
return None
|
[
"[email protected]"
] | |
241b062d29b2a2e895a396fb385dd2ffb44bab96
|
3ff9821b1984417a83a75c7d186da9228e13ead9
|
/No_1410_HTML Entity Parser/by_re_replacement.py
|
c017682935944a4f3a73df684c4c097a91d80e6d
|
[
"MIT"
] |
permissive
|
brianchiang-tw/leetcode
|
fd4df1917daef403c48cb5a3f5834579526ad0c2
|
6978acfb8cb767002cb953d02be68999845425f3
|
refs/heads/master
| 2023-06-11T00:44:01.423772 | 2023-06-01T03:52:00 | 2023-06-01T03:52:00 | 222,939,709 | 41 | 12 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,076 |
py
|
'''
Description:
HTML entity parser is the parser that takes HTML code as input and replace all the entities of the special characters by the characters itself.
The special characters and their entities for HTML are:
Quotation Mark: the entity is " and symbol character is ".
Single Quote Mark: the entity is ' and symbol character is '.
Ampersand: the entity is & and symbol character is &.
Greater Than Sign: the entity is > and symbol character is >.
Less Than Sign: the entity is < and symbol character is <.
Slash: the entity is ⁄ and symbol character is /.
Given the input text string to the HTML parser, you have to implement the entity parser.
Return the text after replacing the entities by the special characters.
Example 1:
Input: text = "& is an HTML entity but &ambassador; is not."
Output: "& is an HTML entity but &ambassador; is not."
Explanation: The parser will replace the & entity by &
Example 2:
Input: text = "and I quote: "...""
Output: "and I quote: \"...\""
Example 3:
Input: text = "Stay home! Practice on Leetcode :)"
Output: "Stay home! Practice on Leetcode :)"
Example 4:
Input: text = "x > y && x < y is always false"
Output: "x > y && x < y is always false"
Example 5:
Input: text = "leetcode.com⁄problemset⁄all"
Output: "leetcode.com/problemset/all"
Constraints:
1 <= text.length <= 10^5
The string may contain any possible characters out of all the 256 ASCII characters.
'''
import re
class Solution:
def entityParser(self, text: str) -> str:
html_symbol = [ '"', ''', '>', '<', '⁄', '&']
formal_symbol = [ '"', "'", '>', '<', '/', '&']
for html_sym, formal_sym in zip(html_symbol, formal_symbol):
text = re.sub( html_sym , formal_sym, text )
return text
# n : the character length of input, text.
## Time Complexity: O( n )
#
# The overhead in time is the cost of string replacement, which is of O( n ).
## Space Complexity: O( n )
#
# The overhead in space is the storage for output string, which is of O( n ).
from collections import namedtuple
TestEntry = namedtuple('TestEntry', 'text')
def test_bench():
test_data = [
TestEntry( text = "& is an HTML entity but &ambassador; is not." ),
TestEntry( text = "and I quote: "..."" ),
TestEntry( text = "Stay home! Practice on Leetcode :)" ),
TestEntry( text = "x > y && x < y is always false" ),
TestEntry( text = "leetcode.com⁄problemset⁄all" ),
]
# expected output:
'''
& is an HTML entity but &ambassador; is not.
and I quote: "..."
Stay home! Practice on Leetcode :)
x > y && x < y is always false
leetcode.com/problemset/all
'''
for t in test_data:
print( Solution().entityParser( text = t.text) )
return
if __name__ == '__main__':
test_bench()
|
[
"[email protected]"
] | |
f76d5f3aec244f5d33fcd7e2887d2eb61bb5658a
|
0b25b1c2ea3e3f05ea388e1105cd2fab50e7ba54
|
/mysite/blog/forms.py
|
68ba9afdb13950be95db2f366aa5aebf783e6d1c
|
[] |
no_license
|
webclinic017/Django-project
|
f8337aeb296d12760143951635d0297c13313a50
|
e757aef633c63aaf857afd1f274d42d16703ca0c
|
refs/heads/master
| 2022-12-25T17:30:14.503627 | 2020-10-12T08:47:08 | 2020-10-12T08:47:08 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 397 |
py
|
from django import forms
from .models import Comment
class EmailPostForm(forms.Form):
name = forms.CharField()
email = forms.EmailField()
to = forms.EmailField()
comments = forms.CharField(required=False,
widget=forms.Textarea)
class CommentForm(forms.ModelForm):
class Meta:
model = Comment
fields = ('name', 'email', 'body')
|
[
"[email protected]"
] | |
91c2e382f455de622a8bfb58b1df4f5bbe6b01ff
|
e13a79dec2668c1870b3fea05f071fe872d400f0
|
/pde/storage/tests/test_generic_storages.py
|
474649dd328980f34d7df91ecac637408b9e3bd6
|
[
"MIT"
] |
permissive
|
yiweizhang1025/py-pde
|
b27cc0b058b50d6af921e1ea84bf59a5bb0ff370
|
3862a35505b9ce4d62557bc65dfedd40638a90f3
|
refs/heads/master
| 2023-03-14T17:21:07.004742 | 2021-03-15T15:33:47 | 2021-03-15T15:33:47 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 7,739 |
py
|
"""
.. codeauthor:: David Zwicker <[email protected]>
"""
import functools
import numpy as np
import pytest
from pde import DiffusionPDE, FileStorage, MemoryStorage, UnitGrid
from pde.fields import FieldCollection, ScalarField, Tensor2Field, VectorField
from pde.tools.misc import module_available
def test_storage_write(tmp_path):
""" test simple memory storage """
dim = 5
grid = UnitGrid([dim])
field = ScalarField(grid)
storage_classes = {"MemoryStorage": MemoryStorage}
if module_available("h5py"):
file_path = tmp_path / "test_storage_write.hdf5"
storage_classes["FileStorage"] = functools.partial(FileStorage, file_path)
for name, storage_cls in storage_classes.items():
storage = storage_cls(info={"a": 1})
storage.start_writing(field, info={"b": 2})
storage.append(field.copy(data=np.arange(dim)), 0)
storage.append(field.copy(data=np.arange(dim)), 1)
storage.end_writing()
assert not storage.has_collection
np.testing.assert_allclose(storage.times, np.arange(2))
for f in storage:
np.testing.assert_array_equal(f.data, np.arange(dim))
for i in range(2):
np.testing.assert_array_equal(storage[i].data, np.arange(dim))
assert {"a": 1, "b": 2}.items() <= storage.info.items()
storage = storage_cls()
storage.clear()
for i in range(3):
storage.start_writing(field)
storage.append(field.copy(data=np.arange(dim) + i), i)
storage.end_writing()
np.testing.assert_allclose(
storage.times, np.arange(3), err_msg="storage class: " + name
)
def test_storage_truncation(tmp_path):
""" test whether simple trackers can be used """
file = tmp_path / "test_storage_truncation.hdf5"
for truncate in [True, False]:
storages = [MemoryStorage()]
if module_available("h5py"):
storages.append(FileStorage(file))
tracker_list = [s.tracker(interval=0.01) for s in storages]
grid = UnitGrid([8, 8])
state = ScalarField.random_uniform(grid, 0.2, 0.3)
pde = DiffusionPDE()
pde.solve(state, t_range=0.1, dt=0.001, tracker=tracker_list)
if truncate:
for storage in storages:
storage.clear()
pde.solve(state, t_range=[0.1, 0.2], dt=0.001, tracker=tracker_list)
times = np.arange(0.1, 0.201, 0.01)
if not truncate:
times = np.r_[np.arange(0, 0.101, 0.01), times]
for storage in storages:
msg = f"truncate={truncate}, storage={storage}"
np.testing.assert_allclose(storage.times, times, err_msg=msg)
assert not storage.has_collection
def test_storing_extract_range(tmp_path):
""" test methods specific to FieldCollections in memory storage """
sf = ScalarField(UnitGrid([1]))
storage_classes = {"MemoryStorage": MemoryStorage}
if module_available("h5py"):
file_path = tmp_path / "test_storage_write.hdf5"
storage_classes["FileStorage"] = functools.partial(FileStorage, file_path)
for storage_cls in storage_classes.values():
# store some data
s1 = storage_cls()
s1.start_writing(sf)
s1.append(sf.copy(data=np.array([0])), 0)
s1.append(sf.copy(data=np.array([2])), 1)
s1.end_writing()
np.testing.assert_equal(s1[0].data, 0)
np.testing.assert_equal(s1[1].data, 2)
np.testing.assert_equal(s1[-1].data, 2)
np.testing.assert_equal(s1[-2].data, 0)
with pytest.raises(IndexError):
s1[2]
with pytest.raises(IndexError):
s1[-3]
# test extraction
s2 = s1.extract_time_range()
assert s2.times == list(s1.times)
np.testing.assert_allclose(s2.data, s1.data)
s3 = s1.extract_time_range(0.5)
assert s3.times == s1.times[:1]
np.testing.assert_allclose(s3.data, s1.data[:1])
s4 = s1.extract_time_range((0.5, 1.5))
assert s4.times == s1.times[1:]
np.testing.assert_allclose(s4.data, s1.data[1:])
def test_storing_collection(tmp_path):
""" test methods specific to FieldCollections in memory storage """
grid = UnitGrid([2, 2])
f1 = ScalarField.random_uniform(grid, 0.1, 0.4, label="a")
f2 = VectorField.random_uniform(grid, 0.1, 0.4, label="b")
f3 = Tensor2Field.random_uniform(grid, 0.1, 0.4, label="c")
fc = FieldCollection([f1, f2, f3])
storage_classes = {"MemoryStorage": MemoryStorage}
if module_available("h5py"):
file_path = tmp_path / "test_storage_write.hdf5"
storage_classes["FileStorage"] = functools.partial(FileStorage, file_path)
for storage_cls in storage_classes.values():
# store some data
storage = storage_cls()
storage.start_writing(fc)
storage.append(fc, 0)
storage.append(fc, 1)
storage.end_writing()
assert storage.has_collection
assert storage.extract_field(0)[0] == f1
assert storage.extract_field(1)[0] == f2
assert storage.extract_field(2)[0] == f3
assert storage.extract_field(0)[0].label == "a"
assert storage.extract_field(0, label="new label")[0].label == "new label"
assert storage.extract_field(0)[0].label == "a" # do not alter label
assert storage.extract_field("a")[0] == f1
assert storage.extract_field("b")[0] == f2
assert storage.extract_field("c")[0] == f3
with pytest.raises(ValueError):
storage.extract_field("nonsense")
def test_storage_apply(tmp_path):
""" test the apply function of StorageBase """
grid = UnitGrid([2])
field = ScalarField(grid)
storage_classes = {"None": None, "MemoryStorage": MemoryStorage}
if module_available("h5py"):
file_path = tmp_path / "test_storage_apply.hdf5"
storage_classes["FileStorage"] = functools.partial(FileStorage, file_path)
s1 = MemoryStorage()
s1.start_writing(field, info={"b": 2})
s1.append(field.copy(data=np.array([0, 1])), 0)
s1.append(field.copy(data=np.array([1, 2])), 1)
s1.end_writing()
for name, storage_cls in storage_classes.items():
out = None if storage_cls is None else storage_cls()
s2 = s1.apply(lambda x: x + 1, out=out)
assert storage_cls is None or s2 is out
assert len(s2) == 2
np.testing.assert_allclose(s2.times, s1.times)
assert s2[0] == ScalarField(grid, [1, 2]), name
assert s2[1] == ScalarField(grid, [2, 3]), name
# test empty storage
s1 = MemoryStorage()
s2 = s1.apply(lambda x: x + 1)
assert len(s2) == 0
def test_storage_copy(tmp_path):
""" test the copy function of StorageBase """
grid = UnitGrid([2])
field = ScalarField(grid)
storage_classes = {"None": None, "MemoryStorage": MemoryStorage}
if module_available("h5py"):
file_path = tmp_path / "test_storage_apply.hdf5"
storage_classes["FileStorage"] = functools.partial(FileStorage, file_path)
s1 = MemoryStorage()
s1.start_writing(field, info={"b": 2})
s1.append(field.copy(data=np.array([0, 1])), 0)
s1.append(field.copy(data=np.array([1, 2])), 1)
s1.end_writing()
for name, storage_cls in storage_classes.items():
out = None if storage_cls is None else storage_cls()
s2 = s1.copy(out=out)
assert storage_cls is None or s2 is out
assert len(s2) == 2
np.testing.assert_allclose(s2.times, s1.times)
assert s2[0] == s1[0], name
assert s2[1] == s1[1], name
# test empty storage
s1 = MemoryStorage()
s2 = s1.copy()
assert len(s2) == 0
|
[
"[email protected]"
] | |
7b1bd474762dbf9fa0ad77e916a9a288222c806a
|
44494598f8edcee0319f3b4ef69b704fbf6d88f2
|
/code/twurtle/src/TestDCMotorRobot.py
|
aad26a3b8a287a62bb2e513d1e4b4b865f1e0879
|
[] |
no_license
|
whaleygeek/pyws
|
3cebd7e88b41e14d9c1e4dbb8148de63dadbdd57
|
e60724646e49287f1e12af609f325ac228b31512
|
refs/heads/master
| 2021-01-02T09:01:47.644851 | 2014-09-02T19:47:20 | 2014-09-02T19:47:20 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 168 |
py
|
# This is mainly to test that the packaging has worked for robot correctly
import robot
r = robot.MotorRobot(robot.DCMotorDrive(a1=11, a2=12, b1=13, b2=14))
r.test()
|
[
"[email protected]"
] | |
a5f5ad934ab6b4548d185c57b55e75a4fe701d2d
|
75dcb56e318688499bdab789262839e7f58bd4f6
|
/_algorithms_challenges/pybites/bitesofpy-master/!201-300/239/test_fizzbuzz.py
|
374796ea04fb39da68675115964e7be47e23b93c
|
[] |
no_license
|
syurskyi/Algorithms_and_Data_Structure
|
9a1f358577e51e89c862d0f93f373b7f20ddd261
|
929dde1723fb2f54870c8a9badc80fc23e8400d3
|
refs/heads/master
| 2023-02-22T17:55:55.453535 | 2022-12-23T03:15:00 | 2022-12-23T03:15:00 | 226,243,987 | 4 | 1 | null | 2023-02-07T21:01:45 | 2019-12-06T04:14:10 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 483 |
py
|
from fizzbuzz import fizzbuzz
# write one or more pytest functions below, they need to start with test_
def test_fizzbuzz_base():
assert fizzbuzz(1) == 1
assert fizzbuzz(2) == 2
def test_fizzbuzz_fizz():
assert fizzbuzz(3) == 'Fizz'
assert fizzbuzz(6) == 'Fizz'
def test_fizzbuzz_buzz():
assert fizzbuzz(5) == 'Buzz'
assert fizzbuzz(10) == 'Buzz'
def test_fizzbuzz_fizzbuzz():
assert fizzbuzz(15) == 'Fizz Buzz'
assert fizzbuzz(30) == 'Fizz Buzz'
|
[
"[email protected]"
] | |
ef9b5b666e8749d77a7b64d744affbcd8a64a543
|
963cac9e78c4b742f7e7800200de8d1582799955
|
/test/veetou/parserTests.py
|
797c7be4f0f217a2fd7bbe13910a3ec1cd8fde32
|
[] |
no_license
|
ptomulik/veetou
|
c79ceb3ca3d7ef7b261b2219489b6f0a7a83e1fa
|
b30be2a604f4426f832ec9805547ecd6cc9083fe
|
refs/heads/master
| 2021-01-22T17:28:57.271251 | 2019-01-05T01:46:43 | 2020-05-04T16:23:44 | 85,016,513 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,386 |
py
|
#!/usr/bin/env python3
# -*- coding: utf8 -*-
import unittest
import veetou.parser as parser
class Test__Parser(unittest.TestCase):
def test__funcions_symbols__1(self):
self.assertIs(parser.dictmatcher , parser.functions_.dictmatcher)
self.assertIs(parser.fullmatch , parser.functions_.fullmatch)
self.assertIs(parser.fullmatchdict , parser.functions_.fullmatchdict)
self.assertIs(parser.ifullmatch , parser.functions_.ifullmatch)
self.assertIs(parser.imatch , parser.functions_.imatch)
self.assertIs(parser.imatcher , parser.functions_.imatcher)
self.assertIs(parser.match , parser.functions_.match)
self.assertIs(parser.matchdict , parser.functions_.matchdict)
self.assertIs(parser.matcher , parser.functions_.matcher)
self.assertIs(parser.permutexpr , parser.functions_.permutexpr)
self.assertIs(parser.reentrant , parser.functions_.reentrant)
self.assertIs(parser.scatter , parser.functions_.scatter)
self.assertIs(parser.search , parser.functions_.search)
self.assertIs(parser.searchpd , parser.functions_.searchpd)
self.assertIs(parser.skipemptylines , parser.functions_.skipemptylines)
def test__parsererror_symbols__1(self):
self.assertIs(parser.ParserError, parser.parsererror_.ParserError)
def test__parser_symbols__1(self):
self.assertIs(parser.Parser, parser.parser_.Parser)
self.assertIs(parser.RootParser, parser.parser_.RootParser)
def test__addressparser__1(self):
self.assertIs(parser.AddressParser, parser.addressparser_.AddressParser)
def test__contactparser__1(self):
self.assertIs(parser.ContactParser, parser.contactparser_.ContactParser)
def test__footerparser__1(self):
self.assertIs(parser.FooterParser, parser.footerparser_.FooterParser)
def test__headerparser__1(self):
self.assertIs(parser.HeaderParser, parser.headerparser_.HeaderParser)
def test__keymapparser__1(self):
self.assertIs(parser.KeyMapParser, parser.keymapparser_.KeyMapParser)
def test__pageparser__1(self):
self.assertIs(parser.PageParser, parser.pageparser_.PageParser)
def test__preambleparser__1(self):
self.assertIs(parser.PreambleParser, parser.preambleparser_.PreambleParser)
def test__reportparser__1(self):
self.assertIs(parser.ReportParser, parser.reportparser_.ReportParser)
def test__sheetparser__1(self):
self.assertIs(parser.SheetParser, parser.sheetparser_.SheetParser)
def test__summaryparser__1(self):
self.assertIs(parser.SummaryParser, parser.summaryparser_.SummaryParser)
def test__tableparser__1(self):
self.assertIs(parser.TableParser, parser.tableparser_.TableParser)
def test__tbodyparser__1(self):
self.assertIs(parser.TbodyParser, parser.tbodyparser_.TbodyParser)
def test__thparser__1(self):
self.assertIs(parser.ThParser, parser.thparser_.ThParser)
def test__trparser__1(self):
self.assertIs(parser.TrParser, parser.trparser_.TrParser)
if __name__ == '__main__':
unittest.main()
# Local Variables:
# # tab-width:4
# # indent-tabs-mode:nil
# # End:
# vim: set syntax=python expandtab tabstop=4 shiftwidth=4:
|
[
"[email protected]"
] | |
832a298328bc29b34d0110a3029f906ad483a34d
|
37c3b81ad127c9e3cc26fa9168fda82460ca9bda
|
/Baekjoon/boj_20055_컨베이어 벨트 위의 로봇.py
|
dfdb3152402dc2cfac4c545e7cd087fba933dcf0
|
[] |
no_license
|
potomatoo/TIL
|
5d85b69fdaed68966db7cfe2a565b7c64ed3e816
|
395dc190fa13e5ed036e1e3c7d9e0bc2e1ee4d6c
|
refs/heads/master
| 2021-07-08T16:19:40.410097 | 2021-04-19T02:33:40 | 2021-04-19T02:33:40 | 238,872,774 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 751 |
py
|
def work():
global cnt
while True:
board.rotate(1)
robot.rotate(1)
robot[N-1] = 0
for i in range(N-2, -1, -1):
if robot[i] and not robot[i+1] and board[i+1] > 0:
board[i+1] -= 1
robot[i+1] = 1
robot[i] = 0
robot[N-1] = 0
if not robot[0] and board[0] > 0:
board[0] -= 1
robot[0] = 1
flag = 0
for i in range(len(board)):
if board[i] == 0:
flag += 1
if flag >= K:
break
cnt += 1
from collections import deque
N, K = map(int, input().split())
board = deque(map(int, input().split()))
cnt = 1
robot = deque([0] * len(board))
work()
print(cnt)
|
[
"[email protected]"
] | |
9305c3a78026026cae6e03d11b5982d9cee7f094
|
0617c812e9bf58a2dbc1c1fef35e497b054ed7e4
|
/venv/Lib/site-packages/pyrogram/raw/functions/stats/get_megagroup_stats.py
|
320398dd3f9fb86f271aeb14aaca77b3bc298f8c
|
[] |
no_license
|
howei5163/my_framework
|
32cf510e19a371b6a3a7c80eab53f10a6952f7b2
|
492c9af4ceaebfe6e87df8425cb21534fbbb0c61
|
refs/heads/main
| 2023-01-27T14:33:56.159867 | 2020-12-07T10:19:33 | 2020-12-07T10:19:33 | 306,561,184 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,553 |
py
|
# Pyrogram - Telegram MTProto API Client Library for Python
# Copyright (C) 2017-2020 Dan <https://github.com/delivrance>
#
# This file is part of Pyrogram.
#
# Pyrogram is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Pyrogram is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Pyrogram. If not, see <http://www.gnu.org/licenses/>.
from io import BytesIO
from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector
from pyrogram.raw.core import TLObject
from pyrogram import raw
from typing import List, Union, Any
# # # # # # # # # # # # # # # # # # # # # # # #
# !!! WARNING !!! #
# This is a generated file! #
# All changes made in this file will be lost! #
# # # # # # # # # # # # # # # # # # # # # # # #
class GetMegagroupStats(TLObject): # type: ignore
"""Telegram API method.
Details:
- Layer: ``117``
- ID: ``0xdcdf8607``
Parameters:
channel: :obj:`InputChannel <pyrogram.raw.base.InputChannel>`
dark (optional): ``bool``
Returns:
:obj:`stats.MegagroupStats <pyrogram.raw.base.stats.MegagroupStats>`
"""
__slots__: List[str] = ["channel", "dark"]
ID = 0xdcdf8607
QUALNAME = "pyrogram.raw.functions.stats.GetMegagroupStats"
def __init__(self, *, channel: "raw.base.InputChannel", dark: Union[None, bool] = None) -> None:
self.channel = channel # InputChannel
self.dark = dark # flags.0?true
@staticmethod
def read(data: BytesIO, *args: Any) -> "GetMegagroupStats":
flags = Int.read(data)
dark = True if flags & (1 << 0) else False
channel = TLObject.read(data)
return GetMegagroupStats(channel=channel, dark=dark)
def write(self) -> bytes:
data = BytesIO()
data.write(Int(self.ID, False))
flags = 0
flags |= (1 << 0) if self.dark is not None else 0
data.write(Int(flags))
data.write(self.channel.write())
return data.getvalue()
|
[
"houwei5163"
] |
houwei5163
|
b645ed1a0ad19262304bef16a69381cbb05cbc2c
|
4a211e279ec89239033c5fe2d6d8d3e49b48d369
|
/salvo/src/lib/job_control_loader.py
|
d179d460ec8b996e850b26e0c4f04fbb774d9d79
|
[
"Apache-2.0"
] |
permissive
|
envoyproxy/envoy-perf
|
cfb1e8f7af806600f11ebc235c1a72939420b087
|
d131bc2f1a7f8ae4f640da30fd30c027735d9788
|
refs/heads/main
| 2023-08-31T14:02:50.891888 | 2023-08-24T16:19:26 | 2023-08-24T16:19:26 | 94,845,161 | 109 | 29 |
Apache-2.0
| 2023-08-24T16:19:28 | 2017-06-20T03:20:02 |
Python
|
UTF-8
|
Python
| false | false | 3,111 |
py
|
"""This object abstracts the loading of json strings into protobuf objects."""
import json
import logging
import yaml
from google.protobuf import json_format
import api.control_pb2 as proto_control
log = logging.getLogger(__name__)
def _load_json_doc(filename: str) -> proto_control.JobControl:
"""Load a disk file as JSON.
This function reads the specified filename and parses the contents
as JSON.
Args:
filename: The file whose contents are to be read as JSON data
Returns:
A JobControl object populated with the contents from the
specified JSON file
"""
contents = None
log.debug(f"Opening JSON file {filename}")
try:
with open(filename, 'r') as json_doc:
contents = json_format.Parse(json_doc.read(), proto_control.JobControl())
except FileNotFoundError as file_not_found:
log.exception(f"Unable to load {filename}: {file_not_found}")
except json_format.Error as json_parse_error:
log.exception(f"Unable to parse JSON contents {filename}: {json_parse_error}")
return contents
def _load_yaml_doc(filename: str) -> proto_control.JobControl:
"""Load a disk file as YAML.
This function reads the specified filename and parses the contents
as YAML.
Args:
filename: The file whose contents are to be read as YAML data
Returns:
A JobControl object populated with the contents from the
specified YAML file
"""
log.debug(f"Opening YAML file {filename}")
contents = None
try:
with open(filename, 'r') as yaml_doc:
contents = yaml.safe_load(yaml_doc.read())
contents = json_format.Parse(json.dumps(contents), proto_control.JobControl())
except FileNotFoundError as file_not_found:
log.exception(f"Unable to load {filename}: {file_not_found}")
except json_format.Error as yaml_parse_error:
log.exception(f"Unable to parse YAML contents {filename}: {yaml_parse_error}")
return contents
def load_control_doc(filename: str) -> proto_control.JobControl:
"""Return a JobControl object from the identified filename.
This function uses the extension of the specified file to read its
contents as YAML or JSON
Args:
filename: The file whose contents are to be read and parsed as
a Job Control object.
Returns:
A JobControl object populated with the contents from the
specified filename
"""
contents = None
# Try loading the contents based on the file extension
if filename.endswith('.json'):
log.debug(f"Loading JSON file {filename}")
return _load_json_doc(filename)
elif filename.endswith('.yaml'):
log.debug(f"Loading YAML file {filename}")
return _load_yaml_doc(filename)
else:
log.debug(f"Auto-detecting contents of {filename}")
# Attempt to autodetect the contents
try:
contents = _load_json_doc(filename)
except json_format.Error:
log.info(f"Parsing {filename} as JSON failed. Trying YAML")
if not contents:
try:
contents = _load_yaml_doc(filename)
except json_format.Error:
log.info(f"Parsing {filename} as YAML failed.")
return contents
|
[
"[email protected]"
] | |
b14adaf5a89b66b23c4ea53b5a93cd242caca777
|
0f16edb46a48f9b5a125abb56fc0545ede1d65aa
|
/test_utilities/src/d1_test/mock_api/tests/test_get.py
|
d1eaef95d18355fd89576cc41c693343b6516ba0
|
[
"Apache-2.0"
] |
permissive
|
DataONEorg/d1_python
|
5e685f1af0c356190f2d6df45d1ac849e2f56972
|
d72a9461894d9be7d71178fb7310101b8ef9066a
|
refs/heads/master
| 2023-08-29T03:16:38.131760 | 2023-06-27T21:59:37 | 2023-06-27T21:59:37 | 60,103,877 | 15 | 12 |
Apache-2.0
| 2023-09-06T18:27:53 | 2016-05-31T16:01:00 |
Python
|
UTF-8
|
Python
| false | false | 2,721 |
py
|
# This work was created by participants in the DataONE project, and is
# jointly copyrighted by participating institutions in DataONE. For
# more information on DataONE, see our web site at http://dataone.org.
#
# Copyright 2009-2019 DataONE
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import responses
import d1_test.d1_test_case
import d1_test.mock_api.get
class TestMockGet(d1_test.d1_test_case.D1TestCase):
@responses.activate
def test_1000(self, mn_client_v1_v2):
"""mock_api.get() returns a Requests Response object."""
d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL)
assert isinstance(mn_client_v1_v2.get("test_pid_1"), requests.Response)
@responses.activate
def test_1010(self, mn_client_v1_v2):
"""mock_api.get() returns the same content each time for a given PID."""
d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL)
obj_1a_str = mn_client_v1_v2.get("test_pid_1").content
obj_2a_str = mn_client_v1_v2.get("test_pid_2").content
obj_1b_str = mn_client_v1_v2.get("test_pid_1").content
obj_2b_str = mn_client_v1_v2.get("test_pid_2").content
assert obj_1a_str == obj_1b_str
assert obj_2a_str == obj_2b_str
@responses.activate
def test_1020(self, mn_client_v1_v2):
"""mock_api.get(): Redirects."""
d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL)
direct_sciobj_bytes = mn_client_v1_v2.get("test_pid_1").content
redirect_sciobj_bytes = mn_client_v1_v2.get(
"<REDIRECT:303:3>test_pid_1"
).content
assert direct_sciobj_bytes == redirect_sciobj_bytes
# @responses.activate
# def test_0012(self):
# """mock_api.get() returns 1024 bytes"""
# obj_str = self.client.get('test_pid_1').content
# self.assertEqual(len(obj_str), 1024)
# @responses.activate
# def test_0013(self):
# """mock_api.get(): Passing a trigger header triggers a DataONEException"""
# self.assertRaises(
# d1_common.types.exceptions.NotAuthorized, self.client.get, 'test_pid',
# vendorSpecific={'trigger': '401'}
# )
|
[
"[email protected]"
] | |
fe69d824ce277807f6d3e0d5eaaff8a66490ae4b
|
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
|
/otp/src/level/ModelEntity.py
|
5850215d12244dd9e104ca4eebaf6cf5fd012828
|
[] |
no_license
|
satire6/Anesidora
|
da3a44e2a49b85252b87b612b435fb4970469583
|
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
|
refs/heads/master
| 2022-12-16T20:05:13.167119 | 2020-09-11T16:58:04 | 2020-09-11T17:02:06 | 294,751,966 | 89 | 32 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,052 |
py
|
from toontown.toonbase.ToontownGlobals import *
from direct.directnotify import DirectNotifyGlobal
import BasicEntities
class ModelEntity(BasicEntities.NodePathEntity):
LoadFuncs = {
'loadModelCopy': loader.loadModelCopy,
'loadModel': loader.loadModel,
'loadModelOnce': loader.loadModelOnce,
}
def __init__(self, level, entId):
# TODO: fill in default values automatically for missing attribs
self.collisionsOnly = False
self.loadType = 'loadModelCopy'
self.flattenType = 'light'
self.goonHatType = 'none'
self.entInitialized = False
BasicEntities.NodePathEntity.__init__(self, level, entId)
self.entInitialized = True
self.model = None
self.loadModel()
def destroy(self):
if self.model:
self.model.removeNode()
del self.model
BasicEntities.NodePathEntity.destroy(self)
def loadModel(self):
if self.model:
self.model.removeNode()
self.model = None
if self.modelPath is None:
return
self.model = ModelEntity.LoadFuncs[self.loadType](self.modelPath)
if self.model:
self.model.reparentTo(self)
# hide/show as appropriate
if self.collisionsOnly:
if __dev__:
self.model.setTransparency(1)
self.model.setColorScale(1,1,1,.1)
else:
self.model.hide()
else:
self.model.show()
# HACK SDN: special code for moving crate wall collisions down
if self.modelPath in ("phase_9/models/cogHQ/woodCrateB.bam",
"phase_9/models/cogHQ/metal_crateB.bam",
"phase_10/models/cashbotHQ/CBMetalCrate.bam",
"phase_10/models/cogHQ/CBMetalCrate2.bam",
"phase_10/models/cashbotHQ/CBWoodCrate.bam",
"phase_11/models/lawbotHQ/LB_metal_crate.bam",
"phase_11/models/lawbotHQ/LB_metal_crate2.bam",
):
# get rid of any scales
#self.model.flattenLight()
# move walls down
cNode = self.find("**/wall")
cNode.setZ(cNode, -.75)
# duplicate the floor and move it down to crate a
# catch effect for low-hopped toons
colNode = self.find("**/collision")
floor = colNode.find("**/floor")
floor2 = floor.copyTo(colNode)
floor2.setZ(floor2, -.75)
"""
# incorporate the entity's overall scale
self.model.setScale(self.getScale())
self.setScale(1)
self.model.flattenLight()
"""
if self.goonHatType is not 'none':
self.goonType = {'hardhat':'pg','security':'sg'}[self.goonHatType]
self.hat = self.model
### this was copied from Goon.createHead
if self.goonType == "pg":
self.hat.find("**/security_hat").hide()
elif self.goonType == "sg":
self.hat.find("**/hard_hat").hide()
###
del self.hat
del self.goonType
if self.flattenType == 'light':
self.model.flattenLight()
elif self.flattenType == 'medium':
self.model.flattenMedium()
elif self.flattenType == 'strong':
self.model.flattenStrong()
def setModelPath(self, path):
self.modelPath = path
self.loadModel()
def setCollisionsOnly(self, collisionsOnly):
self.collisionsOnly = collisionsOnly
self.loadModel()
def setGoonHatType(self, goonHatType):
self.goonHatType = goonHatType
self.loadModel()
|
[
"[email protected]"
] | |
bb35ccd3ccfc92a049807e3711182d740eb677b8
|
eab2dc435028b2548554d97b24eb7b7e3576b953
|
/iblrig/check_sync_pulses.py
|
b53097729443914a5879f7b454f1900b4316e049
|
[
"MIT"
] |
permissive
|
k1o0/iblrig
|
35edd8570215ca591b1f1e26e47439e633aa587a
|
9177b852b344a9bbc26e4a4aeb5f0182bd8a9b25
|
refs/heads/master
| 2021-05-24T12:58:47.552912 | 2020-02-25T20:19:59 | 2020-02-25T20:19:59 | 253,573,669 | 0 | 0 |
MIT
| 2020-04-06T17:48:28 | 2020-04-06T17:48:28 | null |
UTF-8
|
Python
| false | false | 2,875 |
py
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @Author: Niccolò Bonacchi
# @Date: Monday, February 25th 2019, 2:10:38 pm
import logging
import sys
from pathlib import Path
import ibllib.io.raw_data_loaders as raw
import matplotlib.pyplot as plt
import numpy as np
from iblrig.misc import get_port_events
log = logging.getLogger("iblrig")
def sync_check(tph):
events = tph.behavior_data["Events timestamps"]
ev_bnc1 = get_port_events(events, name="BNC1")
ev_bnc2 = get_port_events(events, name="BNC2")
ev_port1 = get_port_events(events, name="Port1")
NOT_FOUND = "COULD NOT FIND DATA ON {}"
bnc1_msg = NOT_FOUND.format("BNC1") if not ev_bnc1 else "OK"
bnc2_msg = NOT_FOUND.format("BNC2") if not ev_bnc2 else "OK"
port1_msg = NOT_FOUND.format("Port1") if not ev_port1 else "OK"
warn_msg = f"""
##########################################
NOT FOUND: SYNC PULSES
##########################################
VISUAL STIMULUS SYNC: {bnc1_msg}
SOUND SYNC: {bnc2_msg}
CAMERA SYNC: {port1_msg}
##########################################"""
if not ev_bnc1 or not ev_bnc2 or not ev_port1:
log.warning(warn_msg)
if __name__ == "__main__":
if len(sys.argv) == 1:
print("I need a file name...")
session_data_file = Path(sys.argv[1])
if not session_data_file.exists():
raise FileNotFoundError(f"{session_data_file}")
if session_data_file.name.endswith(".jsonable"):
data = raw.load_data(session_data_file.parent.parent)
else:
try:
data = raw.load_data(session_data_file)
except Exception:
print("Not a file or a valid session folder")
unsynced_trial_count = 0
frame2ttl = []
sound = []
camera = []
trial_end = []
for trial_data in data:
tevents = trial_data["behavior_data"]["Events timestamps"]
ev_bnc1 = get_port_events(tevents, name="BNC1")
ev_bnc2 = get_port_events(tevents, name="BNC2")
ev_port1 = get_port_events(tevents, name="Port1")
if not ev_bnc1 or not ev_bnc2 or not ev_port1:
unsynced_trial_count += 1
frame2ttl.extend(ev_bnc1)
sound.extend(ev_bnc2)
camera.extend(ev_port1)
trial_end.append(trial_data["behavior_data"]["Trial end timestamp"])
print(f"Found {unsynced_trial_count} trials with bad sync data")
f = plt.figure() # figsize=(19.2, 10.8), dpi=100)
ax = plt.subplot2grid((1, 1), (0, 0), rowspan=1, colspan=1)
ax.plot(camera, np.ones(len(camera)) * 1, "|")
ax.plot(sound, np.ones(len(sound)) * 2, "|")
ax.plot(frame2ttl, np.ones(len(frame2ttl)) * 3, "|")
[ax.axvline(t, alpha=0.5) for t in trial_end]
ax.set_ylim([0, 4])
ax.set_yticks(range(4))
ax.set_yticklabels(["", "camera", "sound", "frame2ttl"])
plt.show()
|
[
"[email protected]"
] | |
c43dee062a7499d04b64507171d861b11b09912e
|
df3c8c521a51f2b412118bd9d0e477da06a3b7cc
|
/build/view_environments/post_create_/create_post/create_post.py
|
2a6a13f8a1551a30e01dd4e643e8f14b345f9bfd
|
[] |
no_license
|
bharatmudragada/fb_post
|
c30b900731db5844df6b438e5d38a0dfb607412a
|
c5e7bb185a561bdcfcd7b2e30264554b07106044
|
refs/heads/master
| 2020-06-21T04:05:22.296755 | 2019-07-17T07:48:22 | 2019-07-17T07:48:22 | 197,339,717 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,835 |
py
|
from django_swagger_utils.drf_server.decorators.request_response import request_response
from django_swagger_utils.drf_server.default.parser_mapping import PARSER_MAPPING
from django_swagger_utils.drf_server.default.renderer_mapping import RENDERER_MAPPING
from fb_post.build.serializers.definitions.PostContent.PostContentSerializer import PostContentSerializer
from fb_post.build.serializers.definitions.PostId.PostIdSerializer import PostIdSerializer
options = {
'METHOD': 'POST',
'REQUEST_WRAPPING_REQUIRED': True,
'REQUEST_ENCRYPTION_REQUIRED': False,
'REQUEST_IS_PARTIAL': False,
'PARSER_CLASSES': [
PARSER_MAPPING["application/json"]
],
'RENDERER_CLASSES': [
RENDERER_MAPPING["application/json"]
],
'REQUEST_QUERY_PARAMS_SERIALIZER': None,
'REQUEST_HEADERS_SERIALIZER': None,
'REQUEST_SERIALIZER': PostContentSerializer,
'REQUEST_SERIALIZER_MANY_ITEMS': False,
'RESPONSE': {
'201' : {
'RESPONSE_SERIALIZER': PostIdSerializer,
'RESPONSE_SERIALIZER_MANY_ITEMS': False,
'HEADERS_SERIALIZER': None,
}
,
'400' : {
'RESPONSE_SERIALIZER': None,
'RESPONSE_SERIALIZER_MANY_ITEMS': False,
'HEADERS_SERIALIZER': None,
}
},
"SECURITY":{
"oauth" : [
"write"
]
}
}
app_name = "fb_post"
operation_id = "create_post"
group_name = ""
@request_response(options=options, app_name=app_name, operation_id=operation_id, group_name=group_name)
def create_post(request, *args, **kwargs):
args = (request,) + args
from django_swagger_utils.drf_server.wrappers.view_env_wrapper import view_env_wrapper
return view_env_wrapper(app_name, "create_post", group_name, *args, **kwargs)
|
[
"[email protected]"
] | |
8608678850cf6031586f8b1bce7e8531244232c5
|
7869035b72807394154285d307e0597ee16f11d8
|
/src/data_loader.py
|
2a23407ac8c03daa931088d7b07b81b5ff04a48b
|
[] |
no_license
|
tiffany70072/TokenPositioning
|
cb74edae92e19c16f8ca763935e56b0f2e698b85
|
a2ab63640a2aff1abfccaa1c1486d8a97026ef0b
|
refs/heads/master
| 2022-07-19T11:21:04.716882 | 2020-04-17T06:02:18 | 2020-04-17T06:02:18 | 254,995,440 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,225 |
py
|
import numpy as np
import os
from sklearn.model_selection import train_test_split
def load_data(task, data_name, data_type):
if task == "autoenc-last" or task == 'token-posi':
assert data_type == "train" or data_type == "valid", "no this data type."
data_path = os.path.join("../data", data_name)
encoder_data = np.load(os.path.join(data_path, "encoder_%s.npy" % data_type))
decoder_data = np.load(os.path.join(data_path, "decoder_%s.npy" % data_type))
assert encoder_data.shape[0] == decoder_data.shape[0], "data size not match."
decoder_output = set_decoder_output_data(decoder_data)
return encoder_data, decoder_data, decoder_output
else:
raise "No this task for load_data."
def set_decoder_output_data(decoder_input):
# Reshape 2d array into 3d array for Keras training.
# Shift one time step because decoder_input and decoder_output are different with one time step.
decoder_output = decoder_input.copy()
for i in range(len(decoder_output)):
decoder_output[i, :-1] = decoder_input[i, 1:] # Remove the first token in decoder output.
decoder_output[i, -1] *= 0
decoder_output = np.reshape(decoder_output, [decoder_output.shape[0], decoder_output.shape[1], 1])
return decoder_output
"""
def cut_validation(self):
# TODO: cut training, validation and testing
split_result = data_reader.data_split(self.encoder_in, self.decoder_in, self.decoder_out)
self.encoder_in = split_result[0]
self.decoder_in = split_result[1]
self.decoder_out = split_result[2]
self.encoder_in_valid = split_result[3][:50000] # TODO: Deal with too many data.
self.decoder_in_valid = split_result[4][:50000]
self.decoder_out_valid = split_result[5][:50000]
self.encoder_in_test = split_result[6]
self.decoder_in_test = split_result[7]
self.decoder_out_test = split_result[8]
self.encoder_in = split_result[0]#[:3000]
self.decoder_in = split_result[1]#[:3000]
self.decoder_out = split_result[2]#[:3000]
print("(Cut validation) training size:", self.encoder_in.shape)
print("(Cut validation) validation size:", self.encoder_in_valid.shape)
print("(Cut validation) testing size:", self.encoder_in_test.shape)
"""
|
[
"[email protected]"
] | |
84fdc9040b3bcc55c94270233da3cce4c9b669d5
|
babc56e88a3b5f5038be70ad676d5bd8f1bbf0d2
|
/wind_direction_byo.py
|
94bc6600dd5986d16cb2cf6d96ba20ac2a7f7738
|
[] |
no_license
|
VicenteYago/CustomWeatherStation
|
873405ca16aa0b6f4f291cbc0068a6ea10aef745
|
c655f947cca2cd0f8827c18f6f7a7c4c11ef4d43
|
refs/heads/master
| 2022-11-13T06:48:05.736830 | 2020-06-30T00:43:07 | 2020-06-30T00:43:07 | 269,812,727 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,408 |
py
|
from gpiozero import MCP3008
import time
import math
adc = MCP3008(channel=0)
count = 0
values = []
volts = [0.4, 1.4, 1.2, 2.8,
2.9, 2.2, 2.5, 1.8,
2.0, 0.7, 0.8, 0.1,
0.3, 0.2, 0.6, 2.7]
volts_dic = {
0.4: 0.0,
1.4: 22.5,
1.2: 45.0,
2.8: 67.5,
2.7: 90.5,
2.9: 112.5,
2.2: 135.0,
2.5: 157.5,
1.8: 180.0,
2.0: 202.5,
0.7: 225.0,
0.8: 247.5,
0.1: 270.0,
0.3: 292.5,
0.2: 315.0,
0.6: 337.5
}
def get_average(angles):
sin_sum = 0.0
cos_sum = 0.0
for angle in angles:
r = math.radians(angle)
sin_sum += math.sin(r)
cos_sum += math.cos(r)
flen = float(len(angles))
s = sin_sum / flen
c = cos_sum / flen
arc = math.degrees(math.atan(s / c))
average = 0.0
if s > 0 and c > 0:
average = arc
elif c < 0:
average = arc + 180
elif s < 0 and c > 0:
average = arc + 360
return 0.0 if average == 360 else average
def get_value(length = 5):
data = []
print("Measuring wind direction for %d seconds..." % length)
start_time = time.time()
while time.time() - start_time <= length:
wind = round(adc.value*3.3,1)
if not wind in volts_dic:
print("Unknown value :", str(wind))
else:
data.append(volts_dic[wind])
return get_average(data)
while True:
print(get_value())
|
[
"="
] |
=
|
b676c5cba48c2e1efd64286543f5f6aadfef51fd
|
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
|
/res/packages/scripts/scripts/common/wotdecorators.py
|
1554469a75cbd2eab8d57565f8457da484b5051a
|
[] |
no_license
|
webiumsk/WOT-0.9.20.0
|
de3d7441c5d442f085c47a89fa58a83f1cd783f2
|
811cb4e1bca271372a1d837a268b6e0e915368bc
|
refs/heads/master
| 2021-01-20T22:11:45.505844 | 2017-08-29T20:11:38 | 2017-08-29T20:11:38 | 101,803,045 | 0 | 1 | null | null | null | null |
WINDOWS-1250
|
Python
| false | false | 2,832 |
py
|
# 2017.08.29 21:52:48 Střední Evropa (letní čas)
# Embedded file name: scripts/common/wotdecorators.py
import inspect
from functools import update_wrapper
from debug_utils import LOG_WRAPPED_CURRENT_EXCEPTION, CRITICAL_ERROR
from time_tracking import LOG_TIME_WARNING
import time
import time_tracking
def noexcept(func):
def wrapper(*args, **kwArgs):
try:
return func(*args, **kwArgs)
except:
LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1)
return wrapper
def nofail(func):
def wrapper(*args, **kwArgs):
try:
return func(*args, **kwArgs)
except:
LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1)
CRITICAL_ERROR('Exception in no-fail code')
return wrapper
def exposedtoclient(func):
def wrapper(*args, **kwArgs):
try:
lastTick = time.time()
result = func(*args, **kwArgs)
timeSinceLastTick = time.time() - lastTick
if timeSinceLastTick > time_tracking.DEFAULT_TIME_LIMIT:
LOG_TIME_WARNING(timeSinceLastTick, context=(getattr(args[0], 'id', 0),
func.__name__,
args,
kwArgs))
return result
except:
LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1)
return wrapper
def singleton(cls):
return cls()
def decorate(func, dec):
argspec = inspect.getargspec(func)
name = func.__name__
signature = inspect.formatargspec(*argspec)
params = inspect.formatargspec(formatvalue=(lambda value: ''), *argspec)
source = 'def %s%s: return __dec%s\n' % (name, signature, params)
code = compile(source, '<decorator-gen>', 'single')
env = {'__dec': dec}
eval(code, env)
return update_wrapper(env[name], func)
def decorator(dec):
def wrapper(func):
return decorate(func, dec(func))
return wrapper
def condition(attributeName, logFunc = None, logStack = True):
def decorator(func):
def wrapper(*args, **kwargs):
attribute = getattr(args[0], attributeName)
if not bool(attribute):
if logFunc:
logFunc('Method condition failed', args, kwargs, stack=logStack)
return
return func(*args, **kwargs)
return decorate(func, wrapper)
return decorator
# okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\common\wotdecorators.pyc
# decompiled 1 files: 1 okay, 0 failed, 0 verify failed
# 2017.08.29 21:52:48 Střední Evropa (letní čas)
|
[
"[email protected]"
] | |
218046a18f59c8cc6a566f6a16807e74d5250298
|
a4e502e9487cf17c53f9f931ec0dbc12168fea52
|
/packages/pyre/platforms/PackageManager.py
|
0877270914d7a2f1326787f57abfbb1ac0125b31
|
[
"BSD-3-Clause"
] |
permissive
|
bryanvriel/pyre
|
bdc5dd59c46d53ff81f2ece532b9073ac3b65be1
|
179359634a7091979cced427b6133dd0ec4726ea
|
refs/heads/master
| 2021-09-28T00:10:26.454282 | 2018-11-11T16:42:07 | 2018-11-11T16:42:07 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,373 |
py
|
# -*- coding: utf-8 -*-
#
# michael a.g. aïvázis
# orthologue
# (c) 1998-2018 all rights reserved
#
# the framework
import pyre
# declaration
class PackageManager(pyre.protocol, family='pyre.platforms.packagers'):
"""
Encapsulation of host specific information
"""
# requirements
@pyre.provides
def prefix(self):
"""
The package manager install location
"""
@pyre.provides
def installed(self):
"""
Retrieve available information for all installed packages
"""
@pyre.provides
def packages(self, category):
"""
Provide a sequence of package names that provide compatible installations for the given
package {category}. If the package manager provides a way for the user to select a
specific installation as the default, care should be taken to rank the sequence
appropriately.
"""
@pyre.provides
def info(self, package):
"""
Return information about the given {package}
The type of information returned is determined by the package manager. This method
should return success if and only if {package} is actually fully installed.
"""
@pyre.provides
def contents(self, package):
"""
Generate a sequence of the contents of {package}
The type of information returned is determined by the package manager. Typically, it
contains the list of files that are installed by this package, but it may contain other
filesystem entities as well. This method should return a non-empty sequence if and only
if {pakage} is actually fully installed
"""
@pyre.provides
def configure(self, packageInstance):
"""
Dispatch to the {packageInstance} configuration procedure that is specific to the
particular implementation of this protocol
"""
# framework obligations
@classmethod
def pyre_default(cls, **kwds):
"""
Build the preferred host implementation
"""
# the host should specify a sensible default; if there is nothing there, this is an
# unmanaged system that relies on environment variables and standard locations
from .Bare import Bare
# return the support for unmanaged systems
return Bare
# end of file
|
[
"[email protected]"
] | |
68caed12611a8b789a1964a22fb49575eca70c7f
|
76d388b5d2e74ff0eda748c7868fadf0704cf700
|
/tensorpack/utils/develop.py
|
496de1dd245db766c3e4ba256ddb638d5e621b48
|
[
"Apache-2.0"
] |
permissive
|
jooyounghun/tensorpack
|
eebf0867e5a82ffd52660dccfbd34879b8d0f5af
|
90cdae380c40a1e91f627520c4a739bd6ee3f18b
|
refs/heads/master
| 2020-03-23T23:24:41.651089 | 2018-07-27T02:57:19 | 2018-07-27T02:57:19 | 142,232,523 | 1 | 0 |
Apache-2.0
| 2018-07-25T01:45:06 | 2018-07-25T01:45:05 | null |
UTF-8
|
Python
| false | false | 4,773 |
py
|
# -*- coding: utf-8 -*-
# File: develop.py
# Author: tensorpack contributors
""" Utilities for developers only.
These are not visible to users (not automatically imported). And should not
appeared in docs."""
import os
import functools
from datetime import datetime
import importlib
import types
import six
from . import logger
def create_dummy_class(klass, dependency):
"""
When a dependency of a class is not available, create a dummy class which throws ImportError when used.
Args:
klass (str): name of the class.
dependency (str): name of the dependency.
Returns:
class: a class object
"""
class _DummyMetaClass(type):
# throw error on class attribute access
def __getattr__(_, __):
raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, klass))
@six.add_metaclass(_DummyMetaClass)
class _Dummy(object):
# throw error on constructor
def __init__(self, *args, **kwargs):
raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, klass))
return _Dummy
def create_dummy_func(func, dependency):
"""
When a dependency of a function is not available, create a dummy function which throws ImportError when used.
Args:
func (str): name of the function.
dependency (str or list[str]): name(s) of the dependency.
Returns:
function: a function object
"""
if isinstance(dependency, (list, tuple)):
dependency = ','.join(dependency)
def _dummy(*args, **kwargs):
raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, func))
return _dummy
def building_rtfd():
"""
Returns:
bool: if tensorpack is being imported to generate docs now.
"""
return os.environ.get('READTHEDOCS') == 'True' \
or os.environ.get('DOC_BUILDING')
def log_deprecated(name="", text="", eos=""):
"""
Log deprecation warning.
Args:
name (str): name of the deprecated item.
text (str, optional): information about the deprecation.
eos (str, optional): end of service date such as "YYYY-MM-DD".
"""
assert name or text
if eos:
eos = "after " + datetime(*map(int, eos.split("-"))).strftime("%d %b")
if name:
if eos:
warn_msg = "%s will be deprecated %s. %s" % (name, eos, text)
else:
warn_msg = "%s was deprecated. %s" % (name, text)
else:
warn_msg = text
if eos:
warn_msg += " Legacy period ends %s" % eos
logger.warn("[Deprecated] " + warn_msg)
def deprecated(text="", eos=""):
"""
Args:
text, eos: same as :func:`log_deprecated`.
Returns:
a decorator which deprecates the function.
Example:
.. code-block:: python
@deprecated("Explanation of what to do instead.", "2017-11-4")
def foo(...):
pass
"""
def get_location():
import inspect
frame = inspect.currentframe()
if frame:
callstack = inspect.getouterframes(frame)[-1]
return '%s:%i' % (callstack[1], callstack[2])
else:
stack = inspect.stack(0)
entry = stack[2]
return '%s:%i' % (entry[1], entry[2])
def deprecated_inner(func):
@functools.wraps(func)
def new_func(*args, **kwargs):
name = "{} [{}]".format(func.__name__, get_location())
log_deprecated(name, text, eos)
return func(*args, **kwargs)
return new_func
return deprecated_inner
def HIDE_DOC(func):
func.__HIDE_SPHINX_DOC__ = True
return func
# Copied from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/util/lazy_loader.py
class LazyLoader(types.ModuleType):
def __init__(self, local_name, parent_module_globals, name):
self._local_name = local_name
self._parent_module_globals = parent_module_globals
super(LazyLoader, self).__init__(name)
def _load(self):
# Import the target module and insert it into the parent's namespace
module = importlib.import_module(self.__name__)
self._parent_module_globals[self._local_name] = module
# Update this object's dict so that if someone keeps a reference to the
# LazyLoader, lookups are efficient (__getattr__ is only called on lookups
# that fail).
self.__dict__.update(module.__dict__)
return module
def __getattr__(self, item):
module = self._load()
return getattr(module, item)
def __dir__(self):
module = self._load()
return dir(module)
|
[
"[email protected]"
] | |
bcded7ca3347b631cb06ccb49aa49c5ef2291909
|
6cb18c62758bfbf783d3fabe851d1c4d9f323483
|
/setup.py
|
9319f44e05f51de89cc40224949e07be98a9e018
|
[
"MIT"
] |
permissive
|
bruinxiong/performer-pytorch
|
68e505ff5e59d35e339b23661feef377795fd2df
|
c368b5e4efd46f72e2abaa655dc813021f911014
|
refs/heads/main
| 2023-01-04T02:25:42.898296 | 2020-10-26T22:41:09 | 2020-10-26T22:41:09 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 815 |
py
|
from setuptools import setup, find_packages
setup(
name = 'performer-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.1.4',
license='MIT',
description = 'Performer - Pytorch',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/performer-pytorch',
keywords = [
'artificial intelligence',
'attention mechanism',
'efficient attention',
'transformers'
],
install_requires=[
'pytorch-fast-transformers>=0.3.0',
'torch>=1.6',
'einops>=0.3'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
[
"[email protected]"
] | |
a4c71809c35378bb39dbbce97d55d2a122ab4dcd
|
f51c6d0cebb27c377ce9830deec4b727b9b2ee90
|
/AI/05_tictactoe/02grid_plot.py
|
b2fb6cbc7f65ddac4fc048c6664f6bdd82dfb227
|
[] |
no_license
|
dbbudd/Python-Experiments
|
1c3c1322583aaaf2016a2f2f3061e6d034c5d1c8
|
b6d294bf11a5c92b8578d16aa2f63cc27fc47b07
|
refs/heads/master
| 2020-04-17T02:21:36.693593 | 2019-01-17T00:18:34 | 2019-01-17T00:18:34 | 166,130,283 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,098 |
py
|
#!/usr/bin/env python
import numpy as np
import itertools
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
class gameboard(object):
def __init__(self):
#player 1 puts a "X", player 2 puts a "O"
self.g = [[1,0,1],[0,0,2],[0,2,0]]
self.grid = np.array(self.g)
print(self.grid)
def drawGrid(self):
fig = plt.figure()
ax = fig.add_subplot(111, xlim=(0,3), ylim = (0,3))
self.myCells = [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)]
for i in self.myCells:
if self.grid[i] == 1:
cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="red")
ax.add_patch(cell)
elif self.grid[i] == 2:
cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="blue")
ax.add_patch(cell)
else:
cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="none")
ax.add_patch(cell)
plt.show()
board = gameboard()
board.drawGrid()
|
[
"[email protected]"
] | |
1697ff12097d074fe9a08b7e8cfbf1ecd1348016
|
cca89a7bbe2da907a38eb00e9a083f57597273f0
|
/162. 寻找峰值/pythonCode.py
|
ecfc5d414241c3d0b4d2b4aac3531e9ced628696
|
[] |
no_license
|
xerprobe/LeetCodeAnswer
|
cc87941ef2a25c6aa1366e7a64480dbd72750670
|
ea1822870f15bdb1a828a63569368b7cd10c6ab8
|
refs/heads/master
| 2022-09-23T09:15:42.628793 | 2020-06-06T16:29:59 | 2020-06-06T16:29:59 | 270,215,362 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,154 |
py
|
from typing import List
class Solution:
def findPeakElement(self, nums: List[int]) -> int:
def binarySearch(l:int,r:int) -> int:
if(l == r): return l
mid = (l + r) // 2
if(nums[mid] > nums[mid + 1]):
return binarySearch(l,mid)
else:
return binarySearch(mid+1,r)
return binarySearch(0,len(nums)-1)
# 峰值元素是指其值大于左右相邻值的元素。
# 给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引。
# 数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。
# 你可以假设 nums[-1] = nums[n] = -∞。
# 示例 1:
# 输入: nums = [1,2,3,1]
# 输出: 2
# 解释: 3 是峰值元素,你的函数应该返回其索引 2。
# 示例 2:
# 输入: nums = [1,2,1,3,5,6,4]
# 输出: 1 或 5
# 解释: 你的函数可以返回索引 1,其峰值元素为 2;
# 或者返回索引 5, 其峰值元素为 6。
# 说明:
# 你的解法应该是 O(logN) 时间复杂度的。
# 链接:https://leetcode-cn.com/problems/find-peak-element/
|
[
"[email protected]"
] | |
96eb58da2807780f7f78eb49453cd03e2e4a57bb
|
33f30925224a7db3e3bf6948c6c569ad850e9c76
|
/Server/bin/rst2xml.py
|
6a7fab179644d60c2959331900cdea30a7350337
|
[] |
no_license
|
duelle/CTT
|
2bc64fffaf4b2eb3976fedd7aea231a51da8fbe9
|
e2da2ab9c599833cc8409728b456a9e37825986b
|
refs/heads/master
| 2022-04-06T15:25:06.747919 | 2020-02-19T14:04:37 | 2020-02-19T14:04:37 | 237,939,126 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 642 |
py
|
#!/home/duelle/Repositories/git/RadonCTT/Server/bin/python
# $Id: rst2xml.py 4564 2006-05-21 20:44:42Z wiemann $
# Author: David Goodger <[email protected]>
# Copyright: This module has been placed in the public domain.
"""
A minimal front end to the Docutils Publisher, producing Docutils XML.
"""
try:
import locale
locale.setlocale(locale.LC_ALL, '')
except:
pass
from docutils.core import publish_cmdline, default_description
description = ('Generates Docutils-native XML from standalone '
'reStructuredText sources. ' + default_description)
publish_cmdline(writer_name='xml', description=description)
|
[
"[email protected]"
] | |
eba5e24cb7ae539f05831d88b27d99b2346a8f0a
|
ec9129d3eb1880df9f0b54c76510352a7e004b0c
|
/tools/make_vps_tarball.py
|
b03537feaa59ec1a6a93c522cfd621963bf12eba
|
[] |
no_license
|
eugen-don/vps
|
4057e6ddb1db274dbd8d78fa926376cfc3a40aa7
|
6a16569868241b35d8137b7f2b2f8db0cf67ff55
|
refs/heads/master
| 2021-01-11T16:29:53.109075 | 2014-05-14T09:20:33 | 2014-05-14T09:20:33 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 771 |
py
|
#!/usr/bin/env python
import sys
import os
import _env
import ops.os_init as os_init
import conf
assert conf.OS_IMAGE_DIR and os.path.isdir(conf.OS_IMAGE_DIR)
def usage():
print """usage: \n%s [image_path/partion_path] [tarball_dir]
""" % (sys.argv[0])
def main():
if len(sys.argv) < 3:
usage()
os._exit(0)
img_path = sys.argv[1]
tarball_dir = sys.argv[2]
if not os.path.exists(img_path):
print "%s not exists" % (img_path)
os._exit(1)
if not os.path.isdir(tarball_dir):
print '%s is not a directory' % (tarball_dir)
os._exit(1)
tarball_path = os_init.pack_vps_fs_tarball(img_path, tarball_dir)
print "%s packed in %s" % (img_path, tarball_path)
if "__main__" == __name__:
main()
|
[
"[email protected]"
] | |
f716de44a80a10f01bfaa8b3a8d58b4ec092c945
|
dbe1f4110921a08cb13e22ea325d503bd5627195
|
/chuhuo_2.71/bluedon/monitor/sbin/checkproc.py
|
cd3521785adb14ce48baf65ec961b05655ab0e50
|
[] |
no_license
|
Hehouhua/waf_branches
|
92dc1b1cbecba20f24ef6c7372dde7caa43f9158
|
ca76f3a1ed8150b423474c9e37aee37841a5ee35
|
refs/heads/main
| 2023-01-07T11:33:31.667688 | 2020-11-03T06:58:33 | 2020-11-03T06:58:33 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,048 |
py
|
import os, re, sys
rexplogstart = re.compile(r'grep logstart.pl')
rexpwebvisit = re.compile(r'grep webvisit.pl')
def checklogstart():
if not os.path.exists("/usr/local/bdwaf/logs_bridge/data"):
os.popen("mkdir -p /usr/local/bdwaf/logs_bridge/data")
if not os.path.exists("/usr/local/bdwaf/logs_proxy/data"):
os.popen("mkdir -p /usr/local/bdwaf/logs_proxy/data")
flag = 0
pfp = os.popen('ps ax | grep logstart.pl')
lines = pfp.readlines()
for line in lines:
match = rexplogstart.search(line)
if match:
flag += 1
if flag >= len(lines):
os.system('/usr/local/bluedon/monitor/sbin/logstart.pl')
def checkwebvisit():
flag = 0
pfp = os.popen('ps ax | grep webvisit.pl')
lines = pfp.readlines()
for line in lines:
match = rexplogstart.search(line)
if match:
flag += 1
if flag >= len(lines):
os.system('/usr/local/bluedon/monitor/sbin/webvisit.pl')
if __name__ == '__main__':
checklogstart()
checkwebvisit()
|
[
"[email protected]"
] | |
dc95cfc1d53773ef74245ed5c8a5b6bbbf3ce933
|
65e076e4fcc00a67faa0932b3f3a3d3a3a11e2aa
|
/sdk/python/pulumi_google_native/datastore/v1/_enums.py
|
15df09472641b2ebbeb23bd87aeab08fb357fbf9
|
[
"Apache-2.0",
"BSD-3-Clause"
] |
permissive
|
TheJaySmith-Google/pulumi-google-native
|
816babe5c7316724e02d5b8b9d789df00262bb8e
|
566c295a39fe8c3dd16e4a7894ff6de72423e5da
|
refs/heads/master
| 2023-06-05T06:45:19.979837 | 2021-06-23T11:42:27 | 2021-06-23T11:42:27 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 801 |
py
|
# coding=utf-8
# *** WARNING: this file was generated by the Pulumi SDK Generator. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
from enum import Enum
__all__ = [
'GoogleDatastoreAdminV1IndexedPropertyDirection',
'IndexAncestor',
]
class GoogleDatastoreAdminV1IndexedPropertyDirection(str, Enum):
"""
Required. The indexed property's direction. Must not be DIRECTION_UNSPECIFIED.
"""
DIRECTION_UNSPECIFIED = "DIRECTION_UNSPECIFIED"
ASCENDING = "ASCENDING"
DESCENDING = "DESCENDING"
class IndexAncestor(str, Enum):
"""
Required. The index's ancestor mode. Must not be ANCESTOR_MODE_UNSPECIFIED.
"""
ANCESTOR_MODE_UNSPECIFIED = "ANCESTOR_MODE_UNSPECIFIED"
NONE = "NONE"
ALL_ANCESTORS = "ALL_ANCESTORS"
|
[
"[email protected]"
] | |
cef9a68afdddd61d9d2c7d5510d7a38174bc8f1c
|
4b68243d9db908945ee500174a8a12be27d150f9
|
/pogoprotos/networking/requests/messages/update_fitness_metrics_message_pb2.py
|
522382d168f4fe3adab53afbb40fe730c7070bd9
|
[] |
no_license
|
ykram/pogoprotos-py
|
7285c86498f57dcbbec8e6c947597e82b2518d80
|
a045b0140740625d9a19ded53ece385a16c4ad4a
|
refs/heads/master
| 2020-04-20T10:19:51.628964 | 2019-02-02T02:58:03 | 2019-02-02T02:58:03 | 168,787,721 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | true | 2,937 |
py
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: pogoprotos/networking/requests/messages/update_fitness_metrics_message.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from pogoprotos.data.fitness import fitness_sample_pb2 as pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='pogoprotos/networking/requests/messages/update_fitness_metrics_message.proto',
package='pogoprotos.networking.requests.messages',
syntax='proto3',
serialized_pb=_b('\nLpogoprotos/networking/requests/messages/update_fitness_metrics_message.proto\x12\'pogoprotos.networking.requests.messages\x1a,pogoprotos/data/fitness/fitness_sample.proto\"^\n\x1bUpdateFitnessMetricsMessage\x12?\n\x0f\x66itness_samples\x18\x01 \x03(\x0b\x32&.pogoprotos.data.fitness.FitnessSampleb\x06proto3')
,
dependencies=[pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2.DESCRIPTOR,])
_UPDATEFITNESSMETRICSMESSAGE = _descriptor.Descriptor(
name='UpdateFitnessMetricsMessage',
full_name='pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='fitness_samples', full_name='pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage.fitness_samples', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=167,
serialized_end=261,
)
_UPDATEFITNESSMETRICSMESSAGE.fields_by_name['fitness_samples'].message_type = pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2._FITNESSSAMPLE
DESCRIPTOR.message_types_by_name['UpdateFitnessMetricsMessage'] = _UPDATEFITNESSMETRICSMESSAGE
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
UpdateFitnessMetricsMessage = _reflection.GeneratedProtocolMessageType('UpdateFitnessMetricsMessage', (_message.Message,), dict(
DESCRIPTOR = _UPDATEFITNESSMETRICSMESSAGE,
__module__ = 'pogoprotos.networking.requests.messages.update_fitness_metrics_message_pb2'
# @@protoc_insertion_point(class_scope:pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage)
))
_sym_db.RegisterMessage(UpdateFitnessMetricsMessage)
# @@protoc_insertion_point(module_scope)
|
[
"[email protected]"
] | |
22ffc7c4ae1f6b16b2ece3c70722f0a2d0ec48c5
|
163bbb4e0920dedd5941e3edfb2d8706ba75627d
|
/Code/CodeRecords/2480/59018/262642.py
|
80da0919c460c290863470859367203af1d15933
|
[] |
no_license
|
AdamZhouSE/pythonHomework
|
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
|
ffc5606817a666aa6241cfab27364326f5c066ff
|
refs/heads/master
| 2022-11-24T08:05:22.122011 | 2020-07-28T16:21:24 | 2020-07-28T16:21:24 | 259,576,640 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 281 |
py
|
def even_odd(N,a):
b=[]
for j in a:
if j%2==0:
b.append(j)
a.pop(j)
c=b+a
return c
T=int(input())
for i in range(T):
N=int(input())
info=input().split(' ')
a=[int(y) for y in info]
print(even_odd(N,a))
|
[
"[email protected]"
] | |
66e5e2cd1dd250b00922b3b3211b1c0c1c510d35
|
53565e19de1d345552f5f469f4e4ea311a421bb8
|
/app/artist/models/artist.py
|
de30a6078bcfde1cf589a711184a2c568c8bfd52
|
[] |
no_license
|
standbyme227/fc-melon
|
18e17aa8b85906a62e1631e54a70ff85d72ea435
|
8f0f4d40021f75a025e91fa6aebea143bccb6ce3
|
refs/heads/master
| 2021-05-03T18:59:13.495171 | 2018-03-20T02:32:02 | 2018-03-20T02:32:02 | 120,418,135 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,632 |
py
|
from django.conf import settings
from django.db import models
from django.forms import model_to_dict
from django.http import JsonResponse, HttpResponse
from .artist_youtube import ArtistYouTube
from .managers import ArtistManager
__all__ = (
'Artist',
)
class Artist(models.Model):
BLOOD_TYPE_A = 'a'
BLOOD_TYPE_B = 'b'
BLOOD_TYPE_O = 'o'
BLOOD_TYPE_AB = 'c'
BLOOD_TYPE_OTHER = 'x'
CHOICES_BLOOD_TYPE = (
(BLOOD_TYPE_A, 'A형'),
(BLOOD_TYPE_B, 'B형'),
(BLOOD_TYPE_O, 'O형'),
(BLOOD_TYPE_AB, 'AB형'),
(BLOOD_TYPE_OTHER, '기타'),
)
melon_id = models.CharField('멜론 Artist ID', max_length=20, blank=True, null=True, unique=True)
image = models.ImageField('프로필 이미지', upload_to='artist', blank=True)
# upload_to는 media폴더를 기준으로 그안의 경로를 지정
name = models.CharField('이름', max_length=50, )
real_name = models.CharField('본명', max_length=30, blank=True, default='')
nationality = models.CharField('국적', max_length=50, blank=True, )
birth_date = models.DateField(max_length=50, blank=True, null=True, )
constellation = models.CharField('별자리', max_length=30, blank=True, null=True)
blood_type = models.CharField('혈액형', max_length=50, blank=True, choices=CHOICES_BLOOD_TYPE)
# choices를 넣어야지만 위의 선택을 이용할 수 있다.
intro = models.TextField('소개', blank=True)
# likes = models.IntegerField(default=0)
like_users = models.ManyToManyField(
settings.AUTH_USER_MODEL,
through='ArtistLike',
related_name='like_artists',
blank=True,
)
youtube_videos = models.ManyToManyField(
ArtistYouTube,
related_name='artists',
blank=True,
)
objects = ArtistManager()
def __str__(self):
return self.name
def toggle_like_user(self, user):
# 자신이 'artist이며 user가 주어진 user인 ArtistLike를 가져오거나 없으면 생성
like, like_created = self.like_user_info_list.get_or_create(user=user)
# 만약 이미 잇엇을 경우 (새로 생성 X)
if not like_created:
# Like를 지워줌
like.delete()
# 생성여부를 반환
return like_created
# if self.like_users.filter(user=user).exists():
# self.like_users.filter(user).delete()
# else:
# self.like_users.create(user=user)
# # 자신이 artist이며, 주어진 user와의 ArtistLike의 QuerySet
# query = ArtistLike.objects.filter(artist=self, user=user)
# # QuerySet이 존재할 졍우
# if query.exists():
# query.delete()
# return False
# # QuerySet이 존재하지 않을 경우
# else:
# ArtistLike.objects.create(artist=self, user=user)
# return True
def to_json(self):
from django.db.models.fields.files import FieldFile
from django.contrib.auth import get_user_model
user_class = get_user_model()
ret = model_to_dict(self)
# model_to_dict의 결과가 dict
# 해당 dict의 item을 순회하며
# JSON Serialize할때 에러나는 타입의 value를
# 적절히 변환해서 value에 다시 대입
def convert_value(value):
if isinstance(value, FieldFile):
return value.url if value else None
elif isinstance(value, user_class):
return value.pk
elif isinstance(value, ArtistYouTube):
return value.pk
return value
def convert_obj(obj):
"""
객체 또는 컨테이너 객체에 포함된 객체들 중
직렬화가 불가능한 객체를 가능하도록 형태를 변환해주는 함수
:param obj:
:return: convert_value()를 거친 객체
"""
if isinstance(obj, list):
# list타입일 경우 각 항목을 순회하며 index에 해당하는 값을 변환
for index, item in enumerate(obj):
obj[index] = convert_obj(item)
elif isinstance(obj, dict):
# dict타입일 경우 각 항목을 순회하며 key에 해당하는 값을 변환
for key, value in obj.items():
obj[key] = convert_obj(value)
# list나 dict가 아닐 경우, 객체 자체를 변환한 값을 리턴
return convert_value(obj)
convert_obj(ret)
return ret
|
[
"[email protected]"
] | |
ac071ec7c195c0c7838f31cdd9f41fe37a46ad9c
|
a44a9279258ace54be0ea6d410e6ddb5a2d72bcb
|
/project-addons/custom_reports/models/product.py
|
719faf154fd24aa8c981b08a03877ad3b5b456aa
|
[] |
no_license
|
athlontado/PXGO_00064_2014_PHA
|
346f33185a07c2e1766a7cc79cd300252d9b2480
|
3086baba490e47a5dcc7942c7c5fee9fc047ddcd
|
refs/heads/master
| 2020-04-06T03:56:15.828784 | 2016-04-18T12:24:53 | 2016-04-18T12:24:53 | 59,216,028 | 0 | 0 | null | 2016-05-19T14:50:54 | 2016-05-19T14:50:54 | null |
UTF-8
|
Python
| false | false | 1,240 |
py
|
# -*- coding: utf-8 -*-
##############################################################################
#
# Copyright (C) 2016 Pharmadus. All Rights Reserved
# $Óscar Salvador <[email protected]>$
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
from openerp import fields, models
class ProductCategory(models.Model):
_inherit = 'product.category'
commissions_parent_category = fields.Boolean('Commissions parent category',
default=False)
|
[
"[email protected]"
] | |
2b2a54641d5f56d801a5a0f1798713935087ef28
|
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
|
/modules/cctbx_project/simtbx/run_tests.py
|
5c3244e65192c78f2e1b57410133b5e40024a0a5
|
[
"BSD-3-Clause",
"BSD-3-Clause-LBNL"
] |
permissive
|
jorgediazjr/dials-dev20191018
|
b81b19653624cee39207b7cefb8dfcb2e99b79eb
|
77d66c719b5746f37af51ad593e2941ed6fbba17
|
refs/heads/master
| 2020-08-21T02:48:54.719532 | 2020-01-25T01:41:37 | 2020-01-25T01:41:37 | 216,089,955 | 0 | 1 |
BSD-3-Clause
| 2020-01-25T01:41:39 | 2019-10-18T19:03:17 |
Python
|
UTF-8
|
Python
| false | false | 468 |
py
|
from __future__ import absolute_import, division, print_function
from libtbx import test_utils
import libtbx.load_env
tst_list = (
"$D/nanoBragg/tst_nanoBragg_minimal.py",
"$D/nanoBragg/tst_nanoBragg_mosaic.py",
"$D/nanoBragg/tst_gaussian_mosaicity.py",
)
def run():
build_dir = libtbx.env.under_build("simtbx")
dist_dir = libtbx.env.dist_path("simtbx")
test_utils.run_tests(build_dir, dist_dir, tst_list)
if (__name__ == "__main__"):
run()
|
[
"[email protected]"
] | |
80d457fe0e0df539d494873fa3d8e41ce774ae0b
|
487ce91881032c1de16e35ed8bc187d6034205f7
|
/codes/CodeJamCrawler/16_0_1/palemale/a.py
|
f78d73ef5adea50522114802f390513ce3e2cfff
|
[] |
no_license
|
DaHuO/Supergraph
|
9cd26d8c5a081803015d93cf5f2674009e92ef7e
|
c88059dc66297af577ad2b8afa4e0ac0ad622915
|
refs/heads/master
| 2021-06-14T16:07:52.405091 | 2016-08-21T13:39:13 | 2016-08-21T13:39:13 | 49,829,508 | 2 | 0 | null | 2021-03-19T21:55:46 | 2016-01-17T18:23:00 |
Python
|
UTF-8
|
Python
| false | false | 810 |
py
|
import os, sys
with open(sys.argv[1], 'r') as infile:
N = int(infile.readline().strip())
for x in xrange(1, N+1):
T = infile.readline().strip()
cases = set(list(T))
intT = int(T)
current = intT
count = 2
stablecount = 0
while len(cases) < 10:
current = count*intT
count += 1
cur_num = len(cases)
cases.update(list(str(current)))
if cur_num == len(cases):
stablecount += 1
else:
stablecount = 0
if stablecount > 100:
current = 'INSOMNIA'
break
if isinstance(current, int):
current = str(current)
print "Case #%s: %s" % (x, current)
|
[
"[[email protected]]"
] | |
0bf9f14a7d8f3b313cb14ebe38a4ae36709d9164
|
92237641f61e9b35ff6af6294153a75074757bec
|
/Algorithm/programmers/lv2/lv2_짝지어 제거하기.py
|
dc49c17ce25e718214f85eb4831fb672b343a239
|
[] |
no_license
|
taepd/study
|
8ded115765c4f804813e255d9272b727bf41ec80
|
846d3f2a5a4100225b750f00f992a640e9287d9c
|
refs/heads/master
| 2023-03-08T13:56:57.366577 | 2022-05-08T15:24:35 | 2022-05-08T15:24:35 | 245,838,600 | 0 | 1 | null | 2023-03-05T23:54:41 | 2020-03-08T15:25:15 |
JavaScript
|
UTF-8
|
Python
| false | false | 278 |
py
|
def solution(s):
stack = []
for e in s:
if not stack:
stack.append(e)
else:
if stack[-1] == e:
stack.pop()
else:
stack.append(e)
if stack:
return 0
else:
return 1
|
[
"[email protected]"
] | |
69b384952afa18b41fb769869d637c21f4a61bbb
|
2075052d028ed31a30bdb9acb0a2022c2634f52b
|
/chat/consumers.py
|
761dd8369a35c0e33e7d8ef65e1ce163904ade18
|
[] |
no_license
|
igoo-Y/live_chat_app
|
b67704caa2e5944b131a4299716e501b555985b5
|
d65c87a35d3f3a120da35290addb798e412dad72
|
refs/heads/main
| 2023-06-30T13:21:49.860265 | 2021-08-03T09:11:29 | 2021-08-03T09:11:29 | 392,256,262 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,140 |
py
|
import json
from channels.generic.websocket import AsyncWebsocketConsumer
class ChatConsumer(AsyncWebsocketConsumer):
async def connect(self):
self.room_name = self.scope["url_route"]["kwargs"]["room_name"]
self.room_group_name = "chat_%s" % self.room_name
# Join room group
await self.channel_layer.group_add(self.room_group_name, self.channel_name)
await self.accept()
async def disconnect(self, close_code):
# Leave room group
await self.channel_layer.group_discard(self.room_group_name, self.channel_name)
# Receive message from WebSocket
async def receive(self, text_data):
text_data_json = json.loads(text_data)
message = text_data_json["message"]
# Send message to room group
await self.channel_layer.group_send(
self.room_group_name, {"type": "chat_message", "message": message}
)
# Receive message from room group
async def chat_message(self, event):
message = event["message"]
# Send message to WebSocket
await self.send(text_data=json.dumps({"message": message}))
|
[
"[email protected]"
] | |
aa41fbd83ac1923d6fda08de4cc8f3ebd55904e0
|
90390ddcc21d2f2c0dd5ee3c0e7a3d8d61be9638
|
/wsgi/app/forms.py
|
4141cbb7183fc430344eb1bf806ca44a244d8598
|
[
"MIT"
] |
permissive
|
pjamesjoyce/lcoptview_legacy
|
b27926e31c16f1fca07c6294e66d706fcb600682
|
e0ebeb155d6f62d8619d33cf48db98bab8b7a4cd
|
refs/heads/master
| 2021-07-16T11:38:58.451239 | 2017-09-26T10:43:50 | 2017-09-26T10:43:50 | 107,691,179 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 615 |
py
|
from flask_wtf import FlaskForm
from wtforms import TextField, PasswordField
from wtforms.validators import DataRequired
class LoginForm(FlaskForm):
login_data = TextField('username or email', validators=[DataRequired()])
password = PasswordField('password', validators=[DataRequired()])
class RegistrationForm(FlaskForm):
username = TextField('username', validators=[DataRequired()])
email = TextField('email', validators=[DataRequired()])
password = PasswordField('password', validators=[DataRequired()])
password_repeat = PasswordField('repeat password', validators=[DataRequired()])
|
[
"[email protected]"
] | |
3823340ea644b2feec0858721dad3a7c2d67d330
|
1b597dd7630f9a3023faf557e383b0fae703e72b
|
/test_autogalaxy/unit/aggregator/test_aggregator.py
|
40b7acd97191da8084e06012b80ef34395849c57
|
[
"MIT"
] |
permissive
|
knut0815/PyAutoGalaxy
|
96e9dfc558182169c41e19d3297cdf46b42d5f77
|
cc2bc0db5080a278ba7519f94d2a8b2468141e2d
|
refs/heads/master
| 2023-03-05T00:59:51.594715 | 2021-02-09T18:21:30 | 2021-02-09T18:21:30 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 7,428 |
py
|
from os import path
import pytest
import autofit as af
import autogalaxy as ag
from autogalaxy.mock import mock
directory = path.dirname(path.realpath(__file__))
@pytest.fixture(name="path")
def make_path():
return path.join("{}".format(path.dirname(path.realpath(__file__))), "files")
@pytest.fixture(name="samples")
def make_samples():
galaxy_0 = ag.Galaxy(redshift=0.5, light=ag.lp.EllipticalSersic(centre=(0.0, 1.0)))
galaxy_1 = ag.Galaxy(redshift=1.0, light=ag.lp.EllipticalSersic())
plane = ag.Plane(galaxies=[galaxy_0, galaxy_1])
return mock.MockSamples(max_log_likelihood_instance=plane)
def test__dataset_generator_from_aggregator(imaging_7x7, mask_7x7, samples):
phase_imaging_7x7 = ag.PhaseImaging(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
)
imaging_7x7.positions = ag.Grid2DIrregular([[1.0, 1.0], [2.0, 2.0]])
phase_imaging_7x7.run(
dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples)
)
agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path)
dataset = list(agg.values("dataset"))
print(dataset)
def test__plane_generator_from_aggregator(imaging_7x7, mask_7x7, samples):
phase_imaging_7x7 = ag.PhaseImaging(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
)
phase_imaging_7x7.run(
dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples)
)
agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path)
plane_gen = ag.agg.Plane(aggregator=agg)
for plane in plane_gen:
assert plane.galaxies[0].redshift == 0.5
assert plane.galaxies[0].light.centre == (0.0, 1.0)
assert plane.galaxies[1].redshift == 1.0
def test__masked_imaging_generator_from_aggregator(imaging_7x7, mask_7x7, samples):
phase_imaging_7x7 = ag.PhaseImaging(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
settings=ag.SettingsPhaseImaging(
settings_masked_imaging=ag.SettingsMaskedImaging(
grid_class=ag.Grid2DIterate,
grid_inversion_class=ag.Grid2DIterate,
fractional_accuracy=0.5,
sub_steps=[2],
)
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
)
phase_imaging_7x7.run(
dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples)
)
agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path)
masked_imaging_gen = ag.agg.MaskedImaging(aggregator=agg)
for masked_imaging in masked_imaging_gen:
assert (masked_imaging.imaging.image == imaging_7x7.image).all()
assert isinstance(masked_imaging.grid, ag.Grid2DIterate)
assert isinstance(masked_imaging.grid_inversion, ag.Grid2DIterate)
assert masked_imaging.grid.sub_steps == [2]
assert masked_imaging.grid.fractional_accuracy == 0.5
def test__fit_imaging_generator_from_aggregator(imaging_7x7, mask_7x7, samples):
phase_imaging_7x7 = ag.PhaseImaging(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
)
phase_imaging_7x7.run(
dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples)
)
agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path)
fit_imaging_gen = ag.agg.FitImaging(aggregator=agg)
for fit_imaging in fit_imaging_gen:
assert (fit_imaging.masked_imaging.imaging.image == imaging_7x7.image).all()
def test__masked_interferometer_generator_from_aggregator(
interferometer_7, visibilities_mask_7, mask_7x7, samples
):
phase_interferometer_7x7 = ag.PhaseInterferometer(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
settings=ag.SettingsPhaseInterferometer(
settings_masked_interferometer=ag.SettingsMaskedInterferometer(
grid_class=ag.Grid2DIterate,
grid_inversion_class=ag.Grid2DIterate,
fractional_accuracy=0.5,
sub_steps=[2],
transformer_class=ag.TransformerDFT,
)
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
real_space_mask=mask_7x7,
)
phase_interferometer_7x7.run(
dataset=interferometer_7,
mask=visibilities_mask_7,
results=mock.MockResults(samples=samples),
)
agg = af.Aggregator(directory=phase_interferometer_7x7.paths.output_path)
masked_interferometer_gen = ag.agg.MaskedInterferometer(aggregator=agg)
for masked_interferometer in masked_interferometer_gen:
assert (
masked_interferometer.interferometer.visibilities
== interferometer_7.visibilities
).all()
assert (masked_interferometer.real_space_mask == mask_7x7).all()
assert isinstance(masked_interferometer.grid, ag.Grid2DIterate)
assert isinstance(masked_interferometer.grid_inversion, ag.Grid2DIterate)
assert masked_interferometer.grid.sub_steps == [2]
assert masked_interferometer.grid.fractional_accuracy == 0.5
assert isinstance(masked_interferometer.transformer, ag.TransformerDFT)
def test__fit_interferometer_generator_from_aggregator(
interferometer_7, visibilities_mask_7, mask_7x7, samples
):
phase_interferometer_7x7 = ag.PhaseInterferometer(
galaxies=dict(
galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic),
source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic),
),
search=mock.MockSearch(samples=samples, name="test_phase_aggregator"),
real_space_mask=mask_7x7,
)
phase_interferometer_7x7.run(
dataset=interferometer_7,
mask=visibilities_mask_7,
results=mock.MockResults(samples=samples),
)
agg = af.Aggregator(directory=phase_interferometer_7x7.paths.output_path)
fit_interferometer_gen = ag.agg.FitInterferometer(aggregator=agg)
for fit_interferometer in fit_interferometer_gen:
assert (
fit_interferometer.masked_interferometer.interferometer.visibilities
== interferometer_7.visibilities
).all()
assert (
fit_interferometer.masked_interferometer.real_space_mask == mask_7x7
).all()
|
[
"[email protected]"
] | |
a11962ae95b28d1923e23d0a5c514d53c454524e
|
7889f7f0532db6a7f81e6f8630e399c90438b2b9
|
/3.7.1/_downloads/a54f19823bde998a456571636498aa98/auto_subplots_adjust.py
|
bd6326b8291f4b1a16db182e1f642d2279a8f0b0
|
[] |
no_license
|
matplotlib/matplotlib.github.com
|
ef5d23a5bf77cb5af675f1a8273d641e410b2560
|
2a60d39490941a524e5385670d488c86083a032c
|
refs/heads/main
| 2023-08-16T18:46:58.934777 | 2023-08-10T05:07:57 | 2023-08-10T05:08:30 | 1,385,150 | 25 | 59 | null | 2023-08-30T15:59:50 | 2011-02-19T03:27:35 | null |
UTF-8
|
Python
| false | false | 3,366 |
py
|
"""
===============================================
Programmatically controlling subplot adjustment
===============================================
.. note::
This example is primarily intended to show some advanced concepts in
Matplotlib.
If you are only looking for having enough space for your labels, it is
almost always simpler and good enough to either set the subplot parameters
manually using `.Figure.subplots_adjust`, or use one of the automatic
layout mechanisms
(:doc:`/tutorials/intermediate/constrainedlayout_guide` or
:doc:`/tutorials/intermediate/tight_layout_guide`).
This example describes a user-defined way to read out Artist sizes and
set the subplot parameters accordingly. Its main purpose is to illustrate
some advanced concepts like reading out text positions, working with
bounding boxes and transforms and using
:ref:`events <event-handling-tutorial>`. But it can also serve as a starting
point if you want to automate the layouting and need more flexibility than
tight layout and constrained layout.
Below, we collect the bounding boxes of all y-labels and move the left border
of the subplot to the right so that it leaves enough room for the union of all
the bounding boxes.
There's one catch with calculating text bounding boxes:
Querying the text bounding boxes (`.Text.get_window_extent`) needs a
renderer (`.RendererBase` instance), to calculate the text size. This renderer
is only available after the figure has been drawn (`.Figure.draw`).
A solution to this is putting the adjustment logic in a draw callback.
This function is executed after the figure has been drawn. It can now check
if the subplot leaves enough room for the text. If not, the subplot parameters
are updated and second draw is triggered.
.. redirect-from:: /gallery/pyplots/auto_subplots_adjust
"""
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig, ax = plt.subplots()
ax.plot(range(10))
ax.set_yticks([2, 5, 7], labels=['really, really, really', 'long', 'labels'])
def on_draw(event):
bboxes = []
for label in ax.get_yticklabels():
# Bounding box in pixels
bbox_px = label.get_window_extent()
# Transform to relative figure coordinates. This is the inverse of
# transFigure.
bbox_fig = bbox_px.transformed(fig.transFigure.inverted())
bboxes.append(bbox_fig)
# the bbox that bounds all the bboxes, again in relative figure coords
bbox = mtransforms.Bbox.union(bboxes)
if fig.subplotpars.left < bbox.width:
# Move the subplot left edge more to the right
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()
fig.canvas.mpl_connect('draw_event', on_draw)
plt.show()
#############################################################################
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.artist.Artist.get_window_extent`
# - `matplotlib.transforms.Bbox`
# - `matplotlib.transforms.BboxBase.transformed`
# - `matplotlib.transforms.BboxBase.union`
# - `matplotlib.transforms.Transform.inverted`
# - `matplotlib.figure.Figure.subplots_adjust`
# - `matplotlib.figure.SubplotParams`
# - `matplotlib.backend_bases.FigureCanvasBase.mpl_connect`
|
[
"[email protected]"
] | |
b28bbc203b60e128307f6f9d8d309793f3dc1e1a
|
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
|
/yXZhG7zq6dWhWhirt_24.py
|
1b4a59876a63f5dfdb4b9e7de1d41c308c735314
|
[] |
no_license
|
daniel-reich/ubiquitous-fiesta
|
26e80f0082f8589e51d359ce7953117a3da7d38c
|
9af2700dbe59284f5697e612491499841a6c126f
|
refs/heads/master
| 2023-04-05T06:40:37.328213 | 2021-04-06T20:17:44 | 2021-04-06T20:17:44 | 355,318,759 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 215 |
py
|
def is_prime(n):
if (n==1):
return False
for i in range(2,round(n**(0.5))+1):
if i!=n and (n%i)==0:
return False
return True
def filter_primes(num):
return [n for n in num if is_prime(n)]
|
[
"[email protected]"
] | |
bbda84923f2c455dc60051aa1e126bf4dd187233
|
4a88ec266b64521fcaef88d92cb2b57776d3192b
|
/powerUsageNotification/powerUsageNotification.py
|
132c11551e75d59adb52856ce265d156f20d6af7
|
[
"MIT"
] |
permissive
|
johntdyer/appdaemon-scripts
|
4e5ea345d27d54d8133be212e5f7af57b8dfd57f
|
ce7e32a919be5a835d0bdf95e6650ff34b699220
|
refs/heads/master
| 2020-03-31T18:01:49.517418 | 2018-10-07T14:06:38 | 2018-10-07T14:06:38 | 152,443,705 | 1 | 0 | null | 2018-10-10T15:10:00 | 2018-10-10T15:09:59 | null |
UTF-8
|
Python
| false | false | 4,100 |
py
|
import appdaemon.plugins.hass.hassapi as hass
import globals
#
# App which notifies you when a power usage sensor indicated a device is on/off
#
#
# Args:
#
# app_switch: on/off switch for this app. example: input_boolean.turn_fan_on_when_hot
# sensor: power sensor. example: sensor.dishwasher_power_usage
# notify_name: Who to notify. example: group_notifications
# delay: seconds to wait until a the device is considered "off". example: 60
# threshold: amount of "usage" which indicated the device is on. example: 2
# alternative_name: Name to use in notification. example: Waschmaschine
#
# Release Notes
#
# Version 1.3:
# use Notify App
#
# Version 1.2:
# message now directly in own yaml instead of message module
#
# Version 1.1:
# Added app_switch
#
# Version 1.0:
# Initial Version
class PowerUsageNotification(hass.Hass):
def initialize(self):
self.timer_handle_list = []
self.listen_event_handle_list = []
self.listen_state_handle_list = []
self.app_switch = globals.get_arg(self.args,"app_switch")
self.sensor = globals.get_arg(self.args,"sensor")
self.alternative_name = globals.get_arg(self.args,"alternative_name")
self.notify_name = globals.get_arg(self.args,"notify_name")
self.delay = globals.get_arg(self.args,"delay")
self.threshold = globals.get_arg(self.args,"threshold")
self.message = globals.get_arg(self.args,"message_DE")
self.message_off = globals.get_arg(self.args,"message_off_DE")
self.triggered = False
self.isWaitingHandle = None
self.notifier = self.get_app('Notifier')
# Subscribe to sensors
self.listen_state_handle_list.append(self.listen_state(self.state_change, self.sensor))
def state_change(self, entity, attribute, old, new, kwargs):
if self.get_state(self.app_switch) == "on":
# Initial: power usage goes up
if ( new != None and new != "" and not self.triggered and float(new) > self.threshold ):
self.triggered = True
self.log("Power Usage is: {}".format(float(new)))
self.log("Setting triggered to: {}".format(self.triggered))
self.notifier.notify(self.notify_name, self.message.format(self.alternative_name))
# Power usage goes down below threshold
elif ( new != None and new != "" and self.triggered and self.isWaitingHandle == None and float(new) <= self.threshold):
self.log("Waiting: {} seconds to notify.".format(self.delay))
self.isWaitingHandle = self.run_in(self.notify_device_off,self.delay)
self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle))
self.timer_handle_list.append(self.isWaitingHandle)
# Power usage goes up before delay
elif( new != None and new != "" and self.triggered and self.isWaitingHandle != None and float(new) > self.threshold):
self.log("Cancelling timer")
self.cancel_timer(self.isWaitingHandle)
self.isWaitingHandle = None
self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle))
def notify_device_off(self, kwargs):
"""Notify User that device is off. This may get cancelled if it turns on again in the meantime"""
self.triggered = False
self.log("Setting triggered to: {}".format(self.triggered))
self.isWaitingHandle = None
self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle))
self.log("Notifying user")
self.notifier.notify(self.notify_name, self.message_off.format(self.alternative_name))
def terminate(self):
for timer_handle in self.timer_handle_list:
self.cancel_timer(timer_handle)
for listen_event_handle in self.listen_event_handle_list:
self.cancel_listen_event(listen_event_handle)
for listen_state_handle in self.listen_state_handle_list:
self.cancel_listen_state(listen_state_handle)
|
[
"[email protected]"
] | |
c4281a41c161ba65c8915083ae81b981745630ca
|
9775ab319e5c1f2270a132b0244f0847db42589b
|
/nilai/migrations/0008_auto_20210117_1010.py
|
d2abe2075f8f24b61525b7b5c136dcc1bf54b97d
|
[] |
no_license
|
nabaman/SPK-SAW
|
9aa8dfaf1bf5162bae1dc5c97e2b3e033a08294b
|
5c0b8d491f23939615aa968cd52f081072fe2230
|
refs/heads/master
| 2023-02-18T17:38:21.028901 | 2021-01-22T15:37:06 | 2021-01-22T15:37:06 | 331,987,703 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 511 |
py
|
# Generated by Django 3.1.5 on 2021-01-17 10:10
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('nilai', '0007_auto_20210117_1004'),
]
operations = [
migrations.RemoveField(
model_name='data_krips',
name='kriteria',
),
migrations.AddField(
model_name='data_kriteria',
name='krips',
field=models.ManyToManyField(to='nilai.Data_Krips'),
),
]
|
[
"[email protected]"
] | |
a643d38e90646191463eca1bc229387c66c1a11f
|
65e0c11d690b32c832b943fb43a4206739ddf733
|
/bsdradius/trunk/bsdradius/configDefaults.py
|
244f2e4ef1d3488677ee5ad1c6d9c71ef18e43ac
|
[
"BSD-3-Clause"
] |
permissive
|
Cloudxtreme/bsdradius
|
b5100062ed75c3201d179e190fd89770d8934aee
|
69dba67e27215dce49875e94a7eedbbdf77bc784
|
refs/heads/master
| 2021-05-28T16:50:14.711056 | 2015-04-30T11:54:17 | 2015-04-30T11:54:17 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,442 |
py
|
## BSDRadius is released under BSD license.
## Copyright (c) 2006, DATA TECH LABS
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## * Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## * Redistributions in binary form must reproduce the above copyright notice,
## this list of conditions and the following disclaimer in the documentation
## and/or other materials provided with the distribution.
## * Neither the name of the DATA TECH LABS nor the names of its contributors
## may be used to endorse or promote products derived from this software without
## specific prior written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
## ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
## (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
## ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
## SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Define configuration defaults here
"""
# HeadURL $HeadURL: file:///Z:/backup/svn/bsdradius/trunk/bsdradius/configDefaults.py $
# Author: $Author: valts $
# File version: $Revision: 278 $
# Last changes: $Date: 2006-11-26 15:45:52 +0200 (Sv, 26 Nov 2006) $
prefix = '/usr/local'
# define default values
# format: {'section' : {'option' : value}}
defaultOptions = {
'PATHS' : {
'prefix' : prefix,
'conf_dir' : '%(prefix)s/etc/bsdradius',
'run_dir' : '%(prefix)s/var/run',
'log_dir' : '%(prefix)s/var/log/bsdradius',
'user_module_dir' : '%(conf_dir)s/user_modules',
'dictionary_dir' : '%(prefix)s/share/bsdradius/dictionaries',
'dictionary_file' : '%(dictionary_dir)s/dictionary',
'server_log_file' : '%(log_dir)s/bsdradiusd.log',
'pid_file' : '%(run_dir)s/bsdradiusd.pid',
'clients_file' : '%(conf_dir)s/clients.conf',
'modules_file' : '%(conf_dir)s/modules.conf',
'user_modules_file' : '%(conf_dir)s/user_modules.conf',
'config_file' : '%(conf_dir)s/bsdradiusd.conf'
},
'SERVER' : {
'home' : '',
'user' : '',
'group' : '',
'auth_port' : '1812',
'acct_port' : '1813',
'number_of_threads' : '10',
'foreground' : 'no',
'no_threads' : 'no',
'log_to_screen': 'no',
'log_to_file' : 'no',
'debug_mode' : 'no',
'log_client' : '',
'fast_accounting': 'no',
},
'DATABASE' : {
'enable' : 'no',
'type' : 'postgresql',
'host' : 'localhost',
'user' : 'bsdradius',
'pass' : '',
'name' : 'bsdradius',
'refresh_rate' : '60',
'clients_query' : 'select address, name, secret from radiusClients',
},
'AUTHORIZATION' : {
'packet_timeout' : '5',
'auth_queue_maxlength' : '300',
'modules' : '',
},
'ACCOUNTING' : {
'acct_queue_maxlength' : '300',
'modules' : '',
},
}
# Define option types.
# It is really neccessary to define only other types
# than string because Config parser converts everything
# to string by default.
# Format: {'section' : {'option' : 'type'}}
defaultTypes = {
'SERVER' : {
'auth_port' : 'int',
'acct_port' : 'int',
'number_of_threads' : 'int',
'foreground' : 'bool',
'no_threads' : 'bool',
'log_to_screen': 'bool',
'log_to_file': 'bool',
'debug_mode' : 'bool',
'fast_accounting': 'bool',
},
'DATABASE' : {
'enable' : 'bool',
'refresh_rate' : 'int',
},
'AUTHORIZATION' : {
'packet_timeout' : 'int',
'auth_queue_maxlength' : 'int',
},
'ACCOUNTING' : {
'acct_queue_maxlength' : 'int',
},
}
# configuration defaults for one BSD Radius module
moduleConfigDefaults = {
'enable': 'yes',
'configfile': '',
'startup_module': '',
'startup_function': '',
'authorization_module': '',
'authorization_function': '',
'authentication_module': '',
'authentication_function': '',
'accounting_module': '',
'accounting_function': '',
'shutdown_module': '',
'shutdown_function': '',
'pythonpath' : '',
}
|
[
"valdiic@72071c86-a5be-11dd-a5cd-697bfd0a0cef"
] |
valdiic@72071c86-a5be-11dd-a5cd-697bfd0a0cef
|
a842ae5ed2fa9404270a2b872f3c9f04a42ac434
|
2652fd6261631794535589427a384693365a585e
|
/trunk/workspace/Squish/src/TestScript/UI/suite_UI_51/tst_UI_51_Pref_BufferAutoView/test.py
|
e1a9d9fe2212331ae4697f3a3269cdded8842a9c
|
[] |
no_license
|
ptqatester1/ptqa
|
88c652380167f64a953bfd7a65041e7d8ac48c90
|
5b5997ea459e9aac17db8da2041e2af331927104
|
refs/heads/master
| 2021-01-21T19:06:49.275364 | 2017-06-19T03:15:00 | 2017-06-19T03:15:00 | 92,115,462 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,735 |
py
|
from API.Utility.Util import Util
from API.Utility import UtilConst
from API.MenuBar.Options.Options import Options
from API.MenuBar.Options.OptionsConst import OptionsConst
from API.MenuBar.Options.Preferences.Miscellaneous.MiscellaneousConst import MiscellaneousConst
from API.SimulationPanel.EventList.EventListConst import EventListConst
from API.SimulationPanel.EventListFilters.EventListFilters import EventListFilters
from API.SimulationPanel.PlayControls.PlayControlsConst import PlayControlsConst
from API.MenuBar.Options.Preferences.PreferencesConst import PreferencesConst
util = Util()
options = Options()
eventListFilters = EventListFilters()
def main():
util.init()
util.open("UI13.pkt", UtilConst.UI_TEST )
util.speedUpConvergence()
editOptionsSetting()
checkpoint1()
resetOptionsSetting()
def editOptionsSetting():
options.selectOptionsItem(OptionsConst.PREFERENCES)
util.clickTab(PreferencesConst.TAB_BAR, PreferencesConst.MISCELLANEOUS)
util.clickButton(MiscellaneousConst.AUTO_VIEW_PREVIOUS_EVENTS)
util.close(OptionsConst.OPTIONS_DIALOG)
def checkpoint1():
util.clickOnSimulation()
util.clickButton(EventListConst.RESET_SIMULATION)
for i in range(0, 8):
util.clickButton(PlayControlsConst.CAPTURE_FORWARD)
snooze(10)
if (object.exists(PlayControlsConst.BUFFER_FULL_DIALOG_LABEL)):
test.fail("Buffer window found")
else:
test.passes("Buffer window not found")
def resetOptionsSetting():
options.selectOptionsItem(OptionsConst.PREFERENCES)
util.clickTab(PreferencesConst.TAB_BAR, PreferencesConst.MISCELLANEOUS)
util.clickButton(MiscellaneousConst.PROMPT)
util.close(OptionsConst.OPTIONS_DIALOG)
|
[
"[email protected]"
] | |
509c23e3bf72658ffd093ae405cf9de4958fb78f
|
102d09ef1d6effe166ad703ba4472c45dfb03263
|
/py/Maximum_Depth_of_Binary_Tree.py
|
199982277744c0985b39cfc2326fc115a739fec4
|
[] |
no_license
|
bitcsdby/Codes-for-leetcode
|
5693100d4b66de65d7f135bbdd81b32650aed7d0
|
9e24e621cfb9e7fd46f9f02dfc40a18a702d4990
|
refs/heads/master
| 2016-09-05T08:43:31.656437 | 2014-08-02T15:14:53 | 2014-08-02T15:14:53 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 444 |
py
|
# Definition for a binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param root, a tree node
# @return an integer
def maxDepth(self, root):
if root == None:
return 0;
l = self.maxDepth(root.left) + 1;
r = self.maxDepth(root.right) + 1;
return l if l > r else r;
|
[
"[email protected]"
] | |
d0089bd15b2c1ffac1e167de02e3ee215da07c7b
|
74698be74d244ebbabcb0b3cf17ebed26adfa37c
|
/orbit/utils/epoch_helper.py
|
6eb110768887e95055c34f7fc3857f08a6b9c276
|
[
"Apache-2.0"
] |
permissive
|
lfads/models
|
aa75616fee2476641aa98ca1cbdce7e5d27a9aff
|
fd700f0cb2e104544c445d9fbf3991d8388ff18a
|
refs/heads/master
| 2021-01-25T13:50:55.423010 | 2021-01-05T18:27:01 | 2021-01-05T18:27:01 | 123,619,512 | 16 | 9 |
Apache-2.0
| 2021-01-05T18:27:02 | 2018-03-02T19:07:50 |
Python
|
UTF-8
|
Python
| false | false | 2,136 |
py
|
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides a utility class for training in epochs."""
import tensorflow as tf
class EpochHelper:
"""A helper class handle bookkeeping of epochs in custom training loops."""
def __init__(self, epoch_steps: int, global_step: tf.Variable):
"""Initializes the `EpochHelper` instance.
Args:
epoch_steps: An integer indicating how many steps are in an epoch.
global_step: A `tf.Variable` providing the current global step.
"""
self._epoch_steps = epoch_steps
self._global_step = global_step
self._current_epoch = None
self._epoch_start_step = None
self._in_epoch = False
def epoch_begin(self):
"""Returns whether a new epoch should begin."""
if self._in_epoch:
return False
current_step = self._global_step.numpy()
self._epoch_start_step = current_step
self._current_epoch = current_step // self._epoch_steps
self._in_epoch = True
return True
def epoch_end(self):
"""Returns whether the current epoch should end."""
if not self._in_epoch:
raise ValueError("`epoch_end` can only be called inside an epoch.")
current_step = self._global_step.numpy()
epoch = current_step // self._epoch_steps
if epoch > self._current_epoch:
self._in_epoch = False
return True
return False
@property
def batch_index(self):
"""Index of the next batch within the current epoch."""
return self._global_step.numpy() - self._epoch_start_step
@property
def current_epoch(self):
return self._current_epoch
|
[
"[email protected]"
] | |
ad9a3b50ae05c454484d9697933ee5e00f730b4a
|
5dd7c4ec44b76180040badc67849ad44f81690f9
|
/unittests/test_stockitem.py
|
751eb41a7c209613f1a6e803ac526f15a85a3c77
|
[] |
no_license
|
myluco/Phoenix
|
68f9abe15a673fe56da6ef4375849ba6a642622d
|
2de746beda35b8b5db547658cae1c65cfe164039
|
refs/heads/master
| 2021-01-18T15:59:05.001240 | 2016-12-04T00:08:36 | 2016-12-04T00:08:36 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 455 |
py
|
import unittest
from unittests import wtc
import wx
#---------------------------------------------------------------------------
class stockitem_Tests(wtc.WidgetTestCase):
# TODO: Remove this test and add real ones.
def test_stockitem1(self):
self.fail("Unit tests for stockitem not implemented yet.")
#---------------------------------------------------------------------------
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
6c10278bce7d441831f59503418233abcba5dee8
|
17c14b758959cdceec0dce8f783346fdeee8e111
|
/chap05_nlp/automl/train.py
|
bca8b1fd41ce03b243523430bdc8d09621f7daa4
|
[] |
no_license
|
yurimkoo/tensormsa_jupyter
|
b0a340119339936d347d12fbd88fb017599a0029
|
0e75784114ec6dc8ee7eff8094aef9cf37131a5c
|
refs/heads/master
| 2021-07-18T12:22:31.396433 | 2017-10-25T01:42:24 | 2017-10-25T01:42:24 | 109,469,220 | 1 | 0 | null | 2017-11-04T05:20:15 | 2017-11-04T05:20:15 | null |
UTF-8
|
Python
| false | false | 3,650 |
py
|
"""
Utility used by the Network class to actually train.
Based on:
https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py
"""
from keras.datasets import mnist, cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.utils.np_utils import to_categorical
from keras.callbacks import EarlyStopping
# Helper: Early stopping.
early_stopper = EarlyStopping(patience=5)
def get_cifar10():
"""Retrieve the CIFAR dataset and process the data."""
# Set defaults.
nb_classes = 10
batch_size = 64
input_shape = (3072,)
# Get the data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.reshape(50000, 3072)
x_test = x_test.reshape(10000, 3072)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, nb_classes)
y_test = to_categorical(y_test, nb_classes)
return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
def get_mnist():
"""Retrieve the MNIST dataset and process the data."""
# Set defaults.
nb_classes = 10
batch_size = 128
input_shape = (784,)
# Get the data.
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, nb_classes)
y_test = to_categorical(y_test, nb_classes)
return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
def compile_model(network, nb_classes, input_shape):
"""Compile a sequential model.
Args:
network (dict): the parameters of the network
Returns:
a compiled network.
"""
# Get our network parameters.
nb_layers = network['nb_layers']
nb_neurons = network['nb_neurons']
activation = network['activation']
optimizer = network['optimizer']
model = Sequential()
# Add each layer.
for i in range(nb_layers):
# Need input shape for first layer.
if i == 0:
model.add(Dense(nb_neurons, activation=activation, input_shape=input_shape))
else:
model.add(Dense(nb_neurons, activation=activation))
model.add(Dropout(0.2)) # hard-coded dropout
# Output layer.
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy'])
return model
def train_and_score(network, dataset):
"""Train the model, return test loss.
Args:
network (dict): the parameters of the network
dataset (str): Dataset to use for training/evaluating
"""
if dataset == 'cifar10':
nb_classes, batch_size, input_shape, x_train, \
x_test, y_train, y_test = get_cifar10()
elif dataset == 'mnist':
nb_classes, batch_size, input_shape, x_train, \
x_test, y_train, y_test = get_mnist()
model = compile_model(network, nb_classes, input_shape)
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=10000, # using early stopping, so no real limit
verbose=0,
validation_data=(x_test, y_test),
callbacks=[early_stopper])
score = model.evaluate(x_test, y_test, verbose=0)
return score[1] # 1 is accuracy. 0 is loss.
|
[
"[email protected]"
] | |
00c9949db590246f66d2bb3310ffbfe39a1fee79
|
9b24eb3a15e9acd4aaf7af00d88488f5a056438f
|
/backend/home/api/v1/viewsets.py
|
c7c28c17f806e899fca335a7c524c6cb75b776a2
|
[] |
no_license
|
crowdbotics-apps/dashboard-app-18025
|
b8fb28008d42371c7d74102b78ae380725b3221a
|
202f33b00e14f65adfc9dbf84f748ad5cc051652
|
refs/heads/master
| 2022-11-15T12:16:12.733390 | 2020-06-15T17:24:52 | 2020-06-15T17:24:52 | 271,619,959 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,485 |
py
|
from rest_framework import viewsets
from rest_framework import authentication
from .serializers import (
AddressSerializer,
CustomTextSerializer,
HomePageSerializer,
XYSerializer,
)
from rest_framework.authentication import SessionAuthentication, TokenAuthentication
from rest_framework.authtoken.serializers import AuthTokenSerializer
from rest_framework.permissions import IsAdminUser
from rest_framework.viewsets import ModelViewSet, ViewSet
from rest_framework.authtoken.models import Token
from rest_framework.response import Response
from home.api.v1.serializers import (
SignupSerializer,
CustomTextSerializer,
HomePageSerializer,
UserSerializer,
)
from home.models import Address, CustomText, HomePage, XY
class SignupViewSet(ModelViewSet):
serializer_class = SignupSerializer
http_method_names = ["post"]
class LoginViewSet(ViewSet):
"""Based on rest_framework.authtoken.views.ObtainAuthToken"""
serializer_class = AuthTokenSerializer
def create(self, request):
serializer = self.serializer_class(
data=request.data, context={"request": request}
)
serializer.is_valid(raise_exception=True)
user = serializer.validated_data["user"]
token, created = Token.objects.get_or_create(user=user)
user_serializer = UserSerializer(user)
return Response({"token": token.key, "user": user_serializer.data})
class CustomTextViewSet(ModelViewSet):
serializer_class = CustomTextSerializer
queryset = CustomText.objects.all()
authentication_classes = (SessionAuthentication, TokenAuthentication)
permission_classes = [IsAdminUser]
http_method_names = ["get", "put", "patch"]
class HomePageViewSet(ModelViewSet):
serializer_class = HomePageSerializer
queryset = HomePage.objects.all()
authentication_classes = (SessionAuthentication, TokenAuthentication)
permission_classes = [IsAdminUser]
http_method_names = ["get", "put", "patch"]
class XYViewSet(viewsets.ModelViewSet):
serializer_class = XYSerializer
authentication_classes = (
authentication.SessionAuthentication,
authentication.TokenAuthentication,
)
queryset = XY.objects.all()
class AddressViewSet(viewsets.ModelViewSet):
serializer_class = AddressSerializer
authentication_classes = (
authentication.SessionAuthentication,
authentication.TokenAuthentication,
)
queryset = Address.objects.all()
|
[
"[email protected]"
] | |
005b11fedd1241560633f3f19ce4ab82b6cf9068
|
43dabf77afd5c44d55b465c1b88bf9a5e7c4c9be
|
/resize.py
|
306400848b45f96d2ec9be96bbc1dbae1a9871f7
|
[] |
no_license
|
geegatomar/OpenCV-Computer-Vision-Adrian-Rosebrock
|
cc81a990a481b5e4347dd97369b38479b46e55bc
|
daa579309010e6e7fefb004b878ffb26374401d0
|
refs/heads/master
| 2022-11-18T13:07:08.040483 | 2020-07-20T01:55:39 | 2020-07-20T01:55:39 | 280,987,262 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 506 |
py
|
import cv2
import argparse
import numpy as np
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path of image")
ap.add_argument("-w", "--width", default=100, help="Width of resized img")
args = vars(ap.parse_args())
image = cv2.imread(args["image"])
width = int(args["width"])
ratio = width / image.shape[1]
dim = (int(ratio * image.shape[0]), width)
resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
cv2.imshow("Resized img", resized)
cv2.waitKey(0)
|
[
"[email protected]"
] | |
2534efd7cf1a472d4c24db7e37fb628ef53a3a0f
|
9adda6cef38c05c0d6bc4f5d0be25e75500f3406
|
/ques 2 sol.py
|
00f2329450eb86ff204e44c7f8653fbee1abdcff
|
[] |
no_license
|
GLAU-TND/python-programming-assignment4-upadhyay8844
|
09255dd1ef340f7af3ee57e4eee3c671c010d5c4
|
bc5c31d40f03cceebb2c842bdd933e0e73a998a1
|
refs/heads/master
| 2021-05-19T05:26:14.857261 | 2020-04-01T11:43:27 | 2020-04-01T11:43:27 | 251,547,215 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 414 |
py
|
def is_dict(var):
return str(type(var)) == "<class 'dict'>"
def flatten_helper(d, flat_d, path):
if not is_dict(d):
flat_d[path] = d
return
for key in d:
new_keypath = "{}.{}".format(path, key) if path else key
flatten_helper(d[key], flat_d, new_keypath)
def flatten(d):
flat_d = dict()
flatten_helper(d, flat_d, "")
return flat_d
|
[
"[email protected]"
] | |
4c61a7aae73fa64897e0df01720f5f1eed93b6dd
|
16de2efcba33961633c1e63e493986bad54c99bd
|
/test.py
|
73b7e8d90f6b8b0378a1486d70f70ac2af704483
|
[] |
no_license
|
thakur-nishant/Algorithms
|
a0cc45de5393d4cbb428cccdbf81b6937cdf97d7
|
1a0306ca9a9fc68f59e28ea26c24822c15350294
|
refs/heads/master
| 2022-01-07T22:22:09.764193 | 2019-05-17T20:10:24 | 2019-05-17T20:10:24 | 109,093,687 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 424 |
py
|
from math import log
from random import random
import matplotlib.pyplot as plt
import numpy as np
l = 2
T = 24
curr = -1/l * log(random())
arrival = [curr]
while curr < T:
curr = curr -1/l * log(random())
arrival.append(curr)
arrival = arrival[1:]
t = np.arange(0.0, T, 0.01)
N = len(t)
X = np.zeros(N)
for i in range(N):
X[i] = np.sum(arrival <= t[i])
plt.plot(t, X)
plt.xlabel('time(hrs)')
plt.show()
|
[
"[email protected]"
] | |
a3dc231f3dbd0e2e1ef4dbdd546e09d37e950ff2
|
f224fad50dbc182cda86291c83954607bbb60901
|
/inference.py
|
ce98cbf4d15f6bc1e05363be1db9afeb1e519de5
|
[] |
no_license
|
Hongpeng1992/pytorch-commands
|
7fd26202b7cf7d46a0ac8e1241336e8ca5dad30e
|
5853625d9852e948c1ac337547f8078d048699a0
|
refs/heads/master
| 2020-05-04T15:38:26.704013 | 2019-02-07T07:04:01 | 2019-02-07T07:04:01 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,644 |
py
|
import argparse
import io
import os
import csv
import time
import numpy as np
import pandas as pd
from collections import OrderedDict
from datetime import datetime
from dataset import CommandsDataset, get_labels
from models import model_factory
from utils import AverageMeter, get_outdir
import torch
import torch.autograd as autograd
import torch.nn
import torch.nn.functional as F
import torch.utils.data as data
import torchvision.utils
parser = argparse.ArgumentParser(description='Inference')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
help='Name of model to train (default: "countception"')
parser.add_argument('--gp', default='avg', type=str, metavar='POOL',
help='Type of global pool, "avg", "max", "avgmax", "avgmaxc" (default: "avg")')
parser.add_argument('--tta', type=int, default=0, metavar='N',
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('-b', '--batch-size', type=int, default=512, metavar='N',
help='input batch size for training (default: 512)')
parser.add_argument('-j', '--workers', type=int, default=2, metavar='N',
help='how many training processes to use (default: 1)')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to restore checkpoint (default: none)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--save-batches', action='store_true', default=False,
help='save images of batch inputs and targets every log interval for debugging/verification')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
def main():
args = parser.parse_args()
num_classes = len(get_labels())
test_time_pool = 0 #5 if 'dpn' in args.model else 0
model = model_factory.create_model(
args.model,
in_chs=1,
num_classes=num_classes,
global_pool=args.gp,
test_time_pool=test_time_pool)
#model.reset_classifier(num_classes=num_classes)
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
else:
model.cuda()
if not os.path.exists(args.checkpoint):
print("=> no checkpoint found at '{}'".format(args.checkpoint))
exit(1)
print("=> loading checkpoint '{}'".format(args.checkpoint))
checkpoint = torch.load(args.checkpoint)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(args.checkpoint, checkpoint['epoch']))
else:
model.load_state_dict(checkpoint)
csplit = os.path.normpath(args.checkpoint).split(sep=os.path.sep)
if len(csplit) > 1:
exp_name = csplit[-2] + '-' + csplit[-1].split('.')[0]
else:
exp_name = ''
if args.output:
output_base = args.output
else:
output_base = './output'
output_dir = get_outdir(output_base, 'predictions', exp_name)
dataset = CommandsDataset(
root=args.data,
mode='test',
format='spectrogram'
)
loader = data.DataLoader(
dataset,
batch_size=args.batch_size,
pin_memory=True,
shuffle=False,
num_workers=args.workers
)
model.eval()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
try:
# open CSV for writing predictions
cf = open(os.path.join(output_dir, 'results.csv'), mode='w')
res_writer = csv.writer(cf)
res_writer.writerow(['fname'] + dataset.id_to_label)
# open CSV for writing submission
cf = open(os.path.join(output_dir, 'submission.csv'), mode='w')
sub_writer = csv.writer(cf)
sub_writer.writerow(['fname', 'label', 'prob'])
end = time.time()
batch_sample_idx = 0
for batch_idx, (input, target) in enumerate(loader):
data_time_m.update(time.time() - end)
input = input.cuda()
output = model(input)
# augmentation reduction
#reduce_factor = loader.dataset.get_aug_factor()
#if reduce_factor > 1:
# output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2).squeeze(dim=2)
# index = index[0:index.size(0):reduce_factor]
# move data to CPU and collect)
output_logprob = F.log_softmax(output, dim=1).cpu().numpy()
output = F.softmax(output, dim=1)
output_prob, output_idx = output.max(1)
output_prob = output_prob.cpu().numpy()
output_idx = output_idx.cpu().numpy()
for i in range(output_logprob.shape[0]):
index = batch_sample_idx + i
pred_label = dataset.id_to_label[output_idx[i]]
pred_prob = output_prob[i]
filename = dataset.filename(index)
res_writer.writerow([filename] + list(output_logprob[i]))
sub_writer.writerow([filename] + [pred_label, pred_prob])
batch_sample_idx += input.size(0)
batch_time_m.update(time.time() - end)
if batch_idx % args.print_freq == 0:
print('Inference: [{}/{} ({:.0f}%)] '
'Time: {batch_time.val:.3f}s, {rate:.3f}/s '
'({batch_time.avg:.3f}s, {rate_avg:.3f}/s) '
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
batch_sample_idx, len(loader.sampler),
100. * batch_idx / len(loader),
batch_time=batch_time_m,
rate=input.size(0) / batch_time_m.val,
rate_avg=input.size(0) / batch_time_m.avg,
data_time=data_time_m))
end = time.time()
# end iterating through dataset
except KeyboardInterrupt:
pass
except Exception as e:
print(str(e))
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
14117448fe850d69ae5fcf1bd41049c19247b557
|
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
|
/appmesh_write_2/virtual-router_delete.py
|
db6df7702ffc69ca7d3bbf5c3eda2b1680913ce2
|
[] |
no_license
|
lxtxl/aws_cli
|
c31fc994c9a4296d6bac851e680d5adbf7e93481
|
aaf35df1b7509abf5601d3f09ff1fece482facda
|
refs/heads/master
| 2023-02-06T09:00:33.088379 | 2020-12-27T13:38:45 | 2020-12-27T13:38:45 | 318,686,394 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,343 |
py
|
#!/usr/bin/python
# -*- codding: utf-8 -*-
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
from common.execute_command import write_two_parameter
# url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/delete-virtual-router.html
if __name__ == '__main__':
"""
create-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/create-virtual-router.html
describe-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/describe-virtual-router.html
list-virtual-routers : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/list-virtual-routers.html
update-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/update-virtual-router.html
"""
parameter_display_string = """
# mesh-name : The name of the service mesh to delete the virtual router in.
# virtual-router-name : The name of the virtual router to delete.
"""
add_option_dict = {}
add_option_dict["parameter_display_string"] = parameter_display_string
# ex: add_option_dict["no_value_parameter_list"] = "--single-parameter"
write_two_parameter("appmesh", "delete-virtual-router", "mesh-name", "virtual-router-name", add_option_dict)
|
[
"[email protected]"
] | |
53fa6c563e9983afb729af1af3be08c9c03dd4a1
|
8792e3449fbc6c8dec99f6af1d9f1b4caddad1f7
|
/51player.py
|
470f81860462904d56f98294142a2c26cd476828
|
[] |
no_license
|
aarthisandhiya/aarthisandhiya1
|
c19c1951c9ba01cd97eeddd44614953088718357
|
e6f10247b6a84d6eaf371a23f2f9c3bebbc73e5b
|
refs/heads/master
| 2020-04-15T17:17:07.151242 | 2019-05-20T05:24:19 | 2019-05-20T05:24:19 | 164,868,494 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 202 |
py
|
a=int(input())
s=[int(a) for a in input().split()]
s=list(s)
z=[]
for i in range(0,len(s)):
val=s[i]
i=i-1
while i>=0:
if val<s[i]:
s[i+1]=s[i]
s[i]=val
i=i-1
else:
break
print(s[1])
|
[
"[email protected]"
] | |
98244b23e0ce113db9acb33b85781abda3504fab
|
82115f52db1783a2ce963e2621bf185c61ceb419
|
/Teoría/03 Widgets para formularios/3-1 Etiquetas/programa.py
|
f824e536fbaa1c1de04e3356c2ce610ec1b992ff
|
[] |
no_license
|
lesclaz/curso-qt-pyside-udemy
|
ce227df451a7cff40d90543ee6c892ea1a6b131c
|
8b9bbf5d45e916f1d7db9411728b2759b30d2fd9
|
refs/heads/master
| 2023-07-01T18:11:47.959668 | 2021-08-03T09:38:12 | 2021-08-03T09:38:12 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,020 |
py
|
from PySide6.QtWidgets import QApplication, QMainWindow, QLabel
from PySide6.QtCore import QSize, Qt
from PySide6.QtGui import QFont, QPixmap
from pathlib import Path
import sys
def absPath(file):
# Devuelve la ruta absoluta a un fichero desde el propio script
return str(Path(__file__).parent.absolute() / file)
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setMinimumSize(QSize(480, 320))
etiqueta = QLabel("Soy una etiqueta")
self.setCentralWidget(etiqueta)
# Creamos la imagen
imagen = QPixmap(absPath("naturaleza.jpg"))
# la asginamos a la etiqueta
etiqueta.setPixmap(imagen)
# hacemos que se escale con la ventana
etiqueta.setScaledContents(True)
# establecemos unas flags de alineamiento
etiqueta.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
if __name__ == "__main__":
app = QApplication()
window = MainWindow()
window.show()
sys.exit(app.exec_())
|
[
"[email protected]"
] | |
6576a596822baf4eb435a1fe47e11d479398497b
|
fd878bcdaa9489883894c942aae5e316a15c2085
|
/tests/dataset_readers/sst_test.py
|
477e1a51ec7a5efbd55ddd0006bc58ee474d6ddc
|
[] |
no_license
|
Shuailong/SPM
|
a12d18baa39a72a9243ad9cd4238168ab42b96d1
|
0105dae90a4acdebfc875001efab7439b3eb8259
|
refs/heads/master
| 2020-04-26T04:51:14.279859 | 2019-06-24T03:55:11 | 2019-06-24T03:55:11 | 173,315,858 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,551 |
py
|
# pylint: disable=no-self-use,invalid-name
import pytest
import pathlib
import random
import os
from allennlp.common import Params
from allennlp.common.util import ensure_list
from allennlp.common.testing import ModelTestCase
from allennlp.data.dataset import Batch
from allennlp.data.fields import TextField
from allennlp.data.instance import Instance
from allennlp.data.token_indexers.wordpiece_indexer import PretrainedBertIndexer
from allennlp.data.tokenizers import WordTokenizer, Token
from allennlp.data.tokenizers.word_splitter import BertBasicWordSplitter
from allennlp.data.vocabulary import Vocabulary
from allennlp.modules.token_embedders.bert_token_embedder import PretrainedBertEmbedder
from spm.data.dataset_readers import GLUESST2DatasetReader
from spm import DATA_DIR as DATA_ROOT
class TestSSTReader:
FIXTURES_ROOT = (pathlib.Path(__file__).parent /
".." / ".." / "tests" / "fixtures").resolve()
BERT_VOCAB_PATH = os.path.join(
DATA_ROOT, 'bert/bert-base-uncased-vocab.txt')
@pytest.mark.parametrize("lazy", (True, False))
def test_read(self, lazy):
reader = GLUESST2DatasetReader(
tokenizer=WordTokenizer(word_splitter=BertBasicWordSplitter()),
token_indexers={'bert': PretrainedBertIndexer(
pretrained_model=self.BERT_VOCAB_PATH)},
skip_label_indexing=False
)
instances = reader.read(
str(self.FIXTURES_ROOT / 'dev.tsv'))
instances = ensure_list(instances)
example = instances[0]
tokens = [t.text for t in example.fields['tokens']]
label = example.fields['label'].label
print(label)
print(tokens)
batch = Batch(instances)
vocab = Vocabulary.from_instances(instances)
batch.index_instances(vocab)
padding_lengths = batch.get_padding_lengths()
tensor_dict = batch.as_tensor_dict(padding_lengths)
tokens = tensor_dict["tokens"]
print(tokens['mask'].tolist()[0])
print(tokens["bert"].tolist()[0])
print([vocab.get_token_from_index(i, "bert")
for i in tokens["bert"].tolist()[0]])
print(len(tokens['bert'][0]))
print(tokens["bert-offsets"].tolist()[0])
print(tokens['bert-type-ids'].tolist()[0])
def test_can_build_from_params(self):
reader = GLUESST2DatasetReader.from_params(Params({}))
# pylint: disable=protected-access
assert reader._token_indexers['tokens'].__class__.__name__ == 'SingleIdTokenIndexer'
|
[
"[email protected]"
] | |
25eaf0a29411821417765885863acfd5166a02e3
|
7298d1692c6948f0880e550d6100c63a64ce3ea1
|
/deriva-annotations/catalog99/catalog-configs/Vocab/ihm_residues_not_modeled_reason.py
|
9a62ee7fbe832a6a342ee44c46b17d4607a9f500
|
[] |
no_license
|
informatics-isi-edu/protein-database
|
b7684b3d08dbf22c1e7c4a4b8460248c6f0d2c6d
|
ce4be1bf13e6b1c22f3fccbb513824782609991f
|
refs/heads/master
| 2023-08-16T10:24:10.206574 | 2023-07-25T23:10:42 | 2023-07-25T23:10:42 | 174,095,941 | 2 | 0 | null | 2023-06-16T19:44:43 | 2019-03-06T07:39:14 |
Python
|
UTF-8
|
Python
| false | false | 5,585 |
py
|
import argparse
from deriva.core import ErmrestCatalog, AttrDict, get_credential
import deriva.core.ermrest_model as em
from deriva.core.ermrest_config import tag as chaise_tags
from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args
groups = {
'pdb-reader': 'https://auth.globus.org/8875a770-3c40-11e9-a8c8-0ee7d80087ee',
'pdb-writer': 'https://auth.globus.org/c94a1e5c-3c40-11e9-a5d1-0aacc65bfe9a',
'pdb-admin': 'https://auth.globus.org/0b98092c-3c41-11e9-a8c8-0ee7d80087ee',
'pdb-curator': 'https://auth.globus.org/eef3e02a-3c40-11e9-9276-0edc9bdd56a6',
'isrd-staff': 'https://auth.globus.org/176baec4-ed26-11e5-8e88-22000ab4b42b',
'pdb-submitter': 'https://auth.globus.org/99da042e-64a6-11ea-ad5f-0ef992ed7ca1'
}
table_name = 'ihm_residues_not_modeled_reason'
schema_name = 'Vocab'
column_annotations = {
'ID': {},
'URI': {},
'Name': {},
'Description': {},
'Synonyms': {},
'Owner': {}
}
column_comment = {
'ID': 'The preferred Compact URI (CURIE) for this term.',
'URI': 'The preferred URI for this term.',
'Name': 'None',
'Description': 'None',
'Synonyms': 'Alternate human-readable names for this term.',
'Owner': 'Group that can update the record.'
}
column_acls = {}
column_acl_bindings = {}
column_defs = [
em.Column.define(
'ID',
em.builtin_types['ermrest_curie'],
nullok=False,
default='PDB:{RID}',
comment=column_comment['ID'],
),
em.Column.define(
'URI',
em.builtin_types['ermrest_uri'],
nullok=False,
default='/id/{RID}',
comment=column_comment['URI'],
),
em.Column.define(
'Name', em.builtin_types['text'], nullok=False, comment=column_comment['Name'],
),
em.Column.define(
'Description',
em.builtin_types['markdown'],
nullok=False,
comment=column_comment['Description'],
),
em.Column.define('Synonyms', em.builtin_types['text[]'], comment=column_comment['Synonyms'],
),
em.Column.define('Owner', em.builtin_types['text'], comment=column_comment['Owner'],
),
]
visible_columns = {
'*': [
'RID', 'Name', 'Description', 'ID', 'URI',
['Vocab', 'ihm_residues_not_modeled_reason_term_RCB_fkey'],
['Vocab', 'ihm_residues_not_modeled_reason_term_RMB_fkey'], 'RCT', 'RMT',
['Vocab', 'ihm_residues_not_modeled_reason_term_Owner_fkey']
]
}
table_display = {'row_name': {'row_markdown_pattern': '{{{Name}}}'}}
table_annotations = {
chaise_tags.table_display: table_display,
chaise_tags.visible_columns: visible_columns,
}
table_comment = 'A set of controlled vocabular terms.'
table_acls = {}
table_acl_bindings = {
'released_reader': {
'types': ['select'],
'scope_acl': [groups['pdb-submitter']],
'projection': ['RID'],
'projection_type': 'nonnull'
},
'self_service_group': {
'types': ['update', 'delete'],
'scope_acl': ['*'],
'projection': ['Owner'],
'projection_type': 'acl'
},
'self_service_creator': {
'types': ['update', 'delete'],
'scope_acl': ['*'],
'projection': ['RCB'],
'projection_type': 'acl'
}
}
key_defs = [
em.Key.define(
['Name'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_Namekey1']],
),
em.Key.define(
['RID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RIDkey1']],
),
em.Key.define(
['ID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_IDkey1']],
),
em.Key.define(
['URI'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_URIkey1']],
),
]
fkey_defs = [
em.ForeignKey.define(
['RCB'],
'public',
'ERMrest_Client', ['ID'],
constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RCB_fkey']],
),
em.ForeignKey.define(
['RMB'],
'public',
'ERMrest_Client', ['ID'],
constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RMB_fkey']],
),
em.ForeignKey.define(
['Owner'],
'public',
'Catalog_Group', ['ID'],
constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_Owner_fkey']],
acls={
'insert': [groups['pdb-curator']],
'update': [groups['pdb-curator']]
},
acl_bindings={
'set_owner': {
'types': ['update', 'insert'],
'scope_acl': ['*'],
'projection': ['ID'],
'projection_type': 'acl'
}
},
),
]
table_def = em.Table.define(
table_name,
column_defs=column_defs,
key_defs=key_defs,
fkey_defs=fkey_defs,
annotations=table_annotations,
acls=table_acls,
acl_bindings=table_acl_bindings,
comment=table_comment,
provide_system=True
)
def main(catalog, mode, replace=False, really=False):
updater = CatalogUpdater(catalog)
table_def['column_annotations'] = column_annotations
table_def['column_comment'] = column_comment
updater.update_table(mode, schema_name, table_def, replace=replace, really=really)
if __name__ == "__main__":
host = 'pdb.isrd.isi.edu'
catalog_id = 99
mode, replace, host, catalog_id = parse_args(host, catalog_id, is_table=True)
catalog = ErmrestCatalog('https', host, catalog_id=catalog_id, credentials=get_credential(host))
main(catalog, mode, replace)
|
[
"[email protected]"
] | |
26604b1e653b586dcc138356474bf5459ea54e2e
|
604fdb2c4fa24237d206e7c8835bb2c21b0a2fb7
|
/ari/v1/client.py
|
0f438dfd979c9fed793cc6fef8f04f0b37e2bc6d
|
[
"Apache-2.0"
] |
permissive
|
SibghatullahSheikh/python-ari
|
d8d87d213c1a52b0ed46a8ea50362b93c772325b
|
f4a6f870513bc74bf96606168e0d2173ed2f2ebb
|
refs/heads/master
| 2021-01-22T00:13:37.707863 | 2014-01-29T21:06:52 | 2014-01-29T21:06:52 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,344 |
py
|
# -*- coding: utf-8 -*-
# Copyright 2012 OpenStack LLC.
# Copyright (c) 2013 PolyBeacon, Inc.
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from ari.common import http
from ari.v1 import application
from ari.v1 import bridge
from ari.v1 import channel
from ari.v1 import devicestate
from ari.v1 import endpoint
from ari.v1 import sound
class Client(http.HTTPClient):
"""Client for the ARI v1 API.
"""
def __init__(self, *args, **kwargs):
super(Client, self).__init__(*args, **kwargs)
self.applications = application.ApplicationManager(self)
self.bridges = bridge.BridgeManager(self)
self.channels = channel.ChannelManager(self)
self.devicestates = devicestate.DeviceStateManager(self)
self.endpoints = endpoint.EndpointManager(self)
self.sounds = sound.SoundManager(self)
|
[
"[email protected]"
] | |
a74af5013611c1d1945d2e4250a4c532a725e0bd
|
6b2a8dd202fdce77c971c412717e305e1caaac51
|
/solutions_6404600001200128_0/Python/kawasaki/solve.py
|
13028d9808e7f822dbd94054186f11d1384f2212
|
[] |
no_license
|
alexandraback/datacollection
|
0bc67a9ace00abbc843f4912562f3a064992e0e9
|
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
|
refs/heads/master
| 2021-01-24T18:27:24.417992 | 2017-05-23T09:23:38 | 2017-05-23T09:23:38 | 84,313,442 | 2 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 371 |
py
|
T = int(raw_input())
for test_index in xrange(T):
N = int(raw_input())
m = map(int, raw_input().split())
y = 0
for i in xrange(N - 1):
y += max(m[i] - m[i + 1], 0)
d = max(max(m[i] - m[i + 1], 0) for i in xrange(N - 1))
z = 0
for i in xrange(N - 1):
z += min(d, m[i])
print 'Case #{}: {} {}'.format(test_index + 1, y, z)
|
[
"[email protected]"
] | |
5d64b3ec43f8f8706fbb5bc2f4c1dea3573739ee
|
d6d87140d929262b5228659f89a69571c8669ec1
|
/airbyte-connector-builder-server/connector_builder/generated/models/stream_slicer.py
|
56c37db2c82d4d65076de8f3b5e19e85d772378d
|
[
"MIT",
"Elastic-2.0"
] |
permissive
|
gasparakos/airbyte
|
b2bb2246ec6a10e1f86293da9d86c61fc4a4ac65
|
17c77fc819ef3732fb1b20fa4c1932be258f0ee9
|
refs/heads/master
| 2023-02-22T20:42:45.400851 | 2023-02-09T07:43:24 | 2023-02-09T07:43:24 | 303,604,219 | 0 | 0 |
MIT
| 2020-10-13T06:18:04 | 2020-10-13T06:06:17 | null |
UTF-8
|
Python
| false | false | 527 |
py
|
# coding: utf-8
from __future__ import annotations
from datetime import date, datetime # noqa: F401
import re # noqa: F401
from typing import Any, Dict, List, Optional # noqa: F401
from pydantic import AnyUrl, BaseModel, EmailStr, Field, validator # noqa: F401
class StreamSlicer(BaseModel):
"""NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).
Do not edit the class manually.
StreamSlicer - a model defined in OpenAPI
"""
StreamSlicer.update_forward_refs()
|
[
"[email protected]"
] | |
e5d021f764bf2a500658c2a962784f56ffc0f864
|
2b167e29ba07e9f577c20c54cb943861d0ccfa69
|
/numerical_analysis_backup/small-scale-multiobj/pod100_sa/pareto_arch2/pareto_ff/pareto8.py
|
c934f4633c223ab3a0093473ad66da38262a6453
|
[] |
no_license
|
LiYan1988/kthOld_OFC
|
17aeeed21e195d1a9a3262ec2e67d6b1d3f9ff0f
|
b1237577ea68ad735a65981bf29584ebd889132b
|
refs/heads/master
| 2021-01-11T17:27:25.574431 | 2017-01-23T05:32:35 | 2017-01-23T05:32:35 | 79,773,237 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,048 |
py
|
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 4 15:15:10 2016
@author: li
optimize both throughput and connections
"""
#import sys
#sys.path.insert(0, '/home/li/Dropbox/KTH/numerical_analysis/ILPs')
import csv
from gurobipy import *
import numpy as np
from arch2_decomposition_new import Arch2_decompose
np.random.seed(2010)
num_cores=3
num_slots=80
i = 8
time_limit_routing = 1200 # 1000
time_limit_sa = 108 # 10800
filename = 'traffic_matrix__matrix_'+str(i)+'.csv'
# print filename
tm = []
with open(filename) as f:
reader = csv.reader(f)
for idx, row in enumerate(reader):
if idx>11:
row.pop()
row = [int(u) for u in row]
tm.append(row)
tm = np.array(tm)*25
#%% arch2
betav1 = np.arange(0,0.105,0.005)
betav2 = np.arange(0.15,1.05,0.05)
betav3 = np.arange(10, 110, 10)
betav = np.concatenate((betav1, betav2, betav3))
connection_ub = []
throughput_ub = []
connection_lb = []
throughput_lb = []
obj_ub = []
obj_lb = []
for beta in betav:
m = Arch2_decompose(tm, num_slots=num_slots, num_cores=num_cores,alpha=1,beta=beta)
m.create_model_routing(mipfocus=1,timelimit=time_limit_routing,mipgap=0.01, method=2)
m.sa_heuristic(ascending1=False,ascending2=False)
connection_ub.append(m.connections_ub)
throughput_ub.append(m.throughput_ub)
obj_ub.append(m.alpha*m.connections_ub+m.beta*m.throughput_ub)
connection_lb.append(m.obj_sah_connection_)
throughput_lb.append(m.obj_sah_throughput_)
obj_lb.append(m.alpha*m.obj_sah_connection_+m.beta*m.obj_sah_throughput_)
# print m.obj_sah_/float(m.alpha*m.connections_ub+m.beta*m.throughput_ub)
result = np.array([betav,connection_ub,throughput_ub,obj_ub,
connection_lb,throughput_lb,obj_lb]).T
file_name = "result_pareto{}.csv".format(i)
with open(file_name, 'w') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(['beta', 'connection_ub', 'throughput_ub',
'obj_ub', 'connection_lb', 'throughput_lb', 'obj_lb'])
writer.writerows(result)
|
[
"[email protected]"
] | |
94f78ff7515cedf224519e07f552630acac3127a
|
a857d1911a118b8aa62ffeaa8f154c8325cdc939
|
/toontown/estate/DistributedFireworksCannon.py
|
d5691917f5a2a6d4d53e4cdd97782a58257a8ec5
|
[
"MIT"
] |
permissive
|
DioExtreme/TT-CL-Edition
|
761d3463c829ec51f6bd2818a28b667c670c44b6
|
6b85ca8352a57e11f89337e1c381754d45af02ea
|
refs/heads/main
| 2023-06-01T16:37:49.924935 | 2021-06-24T02:25:22 | 2021-06-24T02:25:22 | 379,310,849 | 0 | 0 |
MIT
| 2021-06-22T15:07:31 | 2021-06-22T15:07:30 | null |
UTF-8
|
Python
| false | false | 4,308 |
py
|
from toontown.toonbase.ToontownGlobals import *
from direct.interval.IntervalGlobal import *
from direct.distributed.ClockDelta import *
from HouseGlobals import *
from toontown.effects import DistributedFireworkShow
from toontown.toonbase import ToontownGlobals
from toontown.toonbase import TTLocalizer
from panda3d.core import CollisionSphere, CollisionNode
import FireworksGui
class DistributedFireworksCannon(DistributedFireworkShow.DistributedFireworkShow):
notify = directNotify.newCategory('DistributedFireworksCannon')
def __init__(self, cr):
DistributedFireworkShow.DistributedFireworkShow.__init__(self, cr)
self.fireworksGui = None
self.load()
return
def generateInit(self):
DistributedFireworkShow.DistributedFireworkShow.generateInit(self)
self.fireworksSphereEvent = self.uniqueName('fireworksSphere')
self.fireworksSphereEnterEvent = 'enter' + self.fireworksSphereEvent
self.fireworksGuiDoneEvent = 'fireworksGuiDone'
self.shootEvent = 'fireworkShootEvent'
self.collSphere = CollisionSphere(0, 0, 0, 2.5)
self.collSphere.setTangible(1)
self.collNode = CollisionNode(self.fireworksSphereEvent)
self.collNode.setIntoCollideMask(ToontownGlobals.WallBitmask)
self.collNode.addSolid(self.collSphere)
self.collNodePath = self.geom.attachNewNode(self.collNode)
def generate(self):
DistributedFireworkShow.DistributedFireworkShow.generate(self)
def announceGenerate(self):
self.notify.debug('announceGenerate')
self.accept(self.fireworksSphereEnterEvent, self.__handleEnterSphere)
def disable(self):
self.notify.debug('disable')
self.ignore(self.fireworksSphereEnterEvent)
self.ignore(self.shootEvent)
self.ignore(self.fireworksGuiDoneEvent)
if self.fireworksGui:
self.fireworksGui.destroy()
self.fireworksGui = None
DistributedFireworkShow.DistributedFireworkShow.disable(self)
return
def delete(self):
self.notify.debug('delete')
self.geom.removeNode()
DistributedFireworkShow.DistributedFireworkShow.delete(self)
def load(self):
self.geom = loader.loadModel('phase_5/models/props/trashcan_TT.bam')
self.geom.reparentTo(base.cr.playGame.hood.loader.geom)
self.geom.setScale(0.5)
def __handleEnterSphere(self, collEntry):
self.notify.debug('handleEnterSphere()')
self.ignore(self.fireworksSphereEnterEvent)
self.sendUpdate('avatarEnter', [])
def __handleFireworksDone(self):
self.ignore(self.fireworksGuiDoneEvent)
self.ignore(self.shootEvent)
self.sendUpdate('avatarExit')
self.fireworksGui.destroy()
self.fireworksGui = None
return
def freeAvatar(self):
base.localAvatar.posCamera(0, 0)
base.cr.playGame.getPlace().setState('walk')
self.accept(self.fireworksSphereEnterEvent, self.__handleEnterSphere)
def setMovie(self, mode, avId, timestamp):
timeStamp = globalClockDelta.localElapsedTime(timestamp)
isLocalToon = avId == base.localAvatar.doId
if mode == FIREWORKS_MOVIE_CLEAR:
self.notify.debug('setMovie: clear')
return
elif mode == FIREWORKS_MOVIE_GUI:
self.notify.debug('setMovie: gui')
if isLocalToon:
self.fireworksGui = FireworksGui.FireworksGui(self.fireworksGuiDoneEvent, self.shootEvent)
self.accept(self.fireworksGuiDoneEvent, self.__handleFireworksDone)
self.accept(self.shootEvent, self.localShootFirework)
return
else:
self.notify.warning('unknown mode in setMovie: %s' % mode)
def setPosition(self, x, y, z):
self.pos = [x, y, z]
self.geom.setPos(x, y, z)
def localShootFirework(self, index):
style = index
col1, col2 = self.fireworksGui.getCurColor()
amp = 30
dummy = base.localAvatar.attachNewNode('dummy')
dummy.setPos(0, 100, 60)
pos = dummy.getPos(render)
dummy.removeNode()
print 'lauFirework: %s, col=%s' % (index, col1)
self.d_requestFirework(pos[0], pos[1], pos[2], style, col1, col2)
|
[
"[email protected]"
] | |
d6d0d58f05ad22c9474ef9804ec088549a68f841
|
5b6b2018ab45cc4710cc5146040bb917fbce985f
|
/200_longest-palindromic-substring/longest-palindromic-substring.py
|
60710ba54ef2ad0d3d20d4f30fd1db4aec65a148
|
[] |
no_license
|
ultimate010/codes_and_notes
|
6d7c7d42dcfd84354e6fcb5a2c65c6029353a328
|
30aaa34cb1c840f7cf4e0f1345240ac88b8cb45c
|
refs/heads/master
| 2021-01-11T06:56:11.401869 | 2016-10-30T13:46:39 | 2016-10-30T13:46:39 | 72,351,982 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,016 |
py
|
# coding:utf-8
'''
@Copyright:LintCode
@Author: ultimate010
@Problem: http://www.lintcode.com/problem/longest-palindromic-substring
@Language: Python
@Datetime: 16-06-28 14:08
'''
class Solution:
# @param {string} s input string
# @return {string} the longest palindromic substring
def longestPalindrome(self, s):
# Write your code here
n = len(s)
if n <= 1:
return s
m = 1
ret = ''
for i in range(1, 2*n): # at least 2 char
if i & 1 == 1: # odd
t = i / 2
j = t
else: # even
t = i / 2 - 1
j = t + 1
while t >= 0 and j < n and s[t] == s[j]:
t -= 1
j += 1
# print t, j
if t == i:
pass # one char
else:
if j - t - 1 > m:
m = j - t - 1
ret = s[t + 1: j]
return ret
|
[
"[email protected]"
] | |
3fa5ddad1d1612a8b0d4168c59f4f0549f95f6ff
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p02937/s033330652.py
|
6b68eb0299616b86752097386250b1b8f9320039
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 473 |
py
|
import bisect
s = input()
t = input()
n = len(s)
m = len(t)
indices = [[] for _ in range(26)]
for i in range(n):
indices[ord(s[i]) - ord('a')].append(i)
for i in range(n):
indices[ord(s[i]) - ord('a')].append(i + n)
ans = 0
p = 0
for i in range(m):
c = ord(t[i]) - ord('a')
if len(indices[c]) == 0:
print(-1)
exit()
p = indices[c][bisect.bisect_left(indices[c], p)] + 1
if p >= n:
p -= n
ans += n
ans += p
print(ans)
|
[
"[email protected]"
] | |
171918eacf53dc68cdf837f4e9b33d81ba426350
|
a533010ba7e74422c5c7c0193ea2d880e427cb9d
|
/Python_auto_operation/bin/mlogvis
|
69b36f81947475e66d1dde10eb0cb5c3e1d112c6
|
[] |
no_license
|
gateray/learning_python
|
727b3effe4875f27c86c3e5e66655905f3d5d681
|
bc08a58f3a5c1f1db884398efa9d27834514199f
|
refs/heads/master
| 2021-01-19T06:31:01.616421 | 2016-06-30T07:39:23 | 2016-06-30T07:39:23 | 62,290,273 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 345 |
#!/home/gateray/PycharmProjects/Python_auto_operation/bin/python
# EASY-INSTALL-ENTRY-SCRIPT: 'mtools==1.1.9','console_scripts','mlogvis'
__requires__ = 'mtools==1.1.9'
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.exit(
load_entry_point('mtools==1.1.9', 'console_scripts', 'mlogvis')()
)
|
[
"gateray.example.com"
] |
gateray.example.com
|
|
32f6b9fff9acce58bdc331e9f0ec63770932d681
|
0a639bda0058ac76cca97d6123f6c39229f202f1
|
/companies/models.py
|
9092279495371d6cf60c4e5d5b187922621a9bb7
|
[] |
no_license
|
sanchitbareja/occuhunt-web
|
bb86e630c2caff5815b164435464424b5cf83375
|
fab152e2ebae3f4dd5c8357696893065bdd30504
|
refs/heads/master
| 2020-05-21T01:15:48.973953 | 2015-01-13T04:03:18 | 2015-01-13T04:03:18 | 12,552,735 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,089 |
py
|
from django.db import models
import datetime
# Create your models here.
class CompanyType(models.Model):
type = models.CharField(max_length = 256)
def __unicode__(self):
return self.type
ORGANIZATION_TYPES_LIST = (
('Accounting Services', 'Accounting Services'),
('Aerospace/Defense', 'Aerospace/Defense'),
('Agriculture', 'Agriculture'),
('Architecture/Planning', 'Architecture/Planning'),
('Arts and Entertainment', 'Arts and Entertainment'),
('Automotive/Transportation Manufacturing', 'Automotive/Transportation Manufacturing'),
('Biotech/Pharmaceuticals','Biotech/Pharmaceuticals'),
('Chemicals','Chemicals'),
('Computer Hardware','Computer Hardware'),
('Computer Software', 'Computer Software'),
('Consumer Products', 'Consumer Products'),
('Diversified Services', 'Diversified Services'),
('Education/Higher Education', 'Education/Higher Education'),
('Electronics and Misc. Tech', 'Electronics and Misc. Tech'),
('Energy', 'Energy'),
('Engineering', 'Engineering'),
('Financial Services', 'Financial Services'),
('Food, Beverage and Tobacco', 'Food, Beverage and Tobacco'),
('Government', 'Government'),
('Health Products and Services', 'Health Products and Services'),
('Hospital/Healthcare', 'Hospital/Healthcare'),
('Insurance', 'Insurance'),
('Law/Law Related', 'Law/Law Related'),
('Leisure and Travel', 'Leisure and Travel'),
('Materials and Construction', 'Materials and Construction'),
('Media', 'Media'),
('Metals and Mining', 'Metals and Mining'),
('Non-Profit and Social Services', 'Non-Profit and Social Services'),
('Other Manufacturing', 'Other Manufacturing'),
('Professional, Technical, and Administrative Services', 'Professional, Technical, and Administrative Services'),
('Real Estate', 'Real Estate'),
('Retail and Wholesale Trade', 'Retail and Wholesale Trade'),
('Telecommunications', 'Telecommunications'),
('Transportation Services', 'Transportation Services'),
('Utilities', 'Utilities'),
('Other', 'Other'),
)
class Company(models.Model):
name = models.CharField(max_length=512)
founded = models.CharField(max_length=64, null=True, blank=True)
funding = models.CharField(max_length=64, null=True, blank=True)
website = models.URLField(max_length=512, null=True, blank=True)
careers_website = models.URLField(max_length=512, null=True, blank=True)
logo = models.URLField(max_length=512, null=True, blank=True)
banner_image = models.URLField(max_length=512, null=True, blank=True)
number_employees = models.CharField(max_length=48, null=True, blank=True)
organization_type = models.CharField(max_length=512, null=True, blank=True, choices=ORGANIZATION_TYPES_LIST)
company_description = models.TextField(null=True, blank=True)
competitors = models.CharField(max_length=512, null=True, blank=True)
avg_salary = models.CharField(max_length=64, null=True, blank=True)
location = models.CharField(max_length=512, null=True, blank=True)
intro_video = models.TextField(null=True, blank=True)
timestamp = models.DateTimeField(auto_now=False, auto_now_add=True)
def __unicode__(self):
return self.name
|
[
"[email protected]"
] | |
1c165f1ccad36c215f56ef5613cea7ee2101c812
|
1facfd9d94b0f08ddde2834c717bda55359c2e35
|
/Python programming for the absolute beginner - Michael Dawson/Chapter 8 - OOP beginning/8.3.py
|
58bad4a7400168c26ceaa2894583a1b3bd76ba4e
|
[] |
no_license
|
echpochmak/ppftab
|
9160383c1d34a559b039af5cd1451a18f2584549
|
f5747d87051d837eca431f782491ec9ba3b44626
|
refs/heads/master
| 2021-09-15T07:23:06.581750 | 2018-05-28T14:33:13 | 2018-05-28T14:33:13 | 261,880,781 | 1 | 0 | null | 2020-05-06T21:18:13 | 2020-05-06T21:18:13 | null |
UTF-8
|
Python
| false | false | 3,000 |
py
|
# The material form the book in polish
# Opiekun zwierzaka
# Wirtualny pupil, którym należy się opiekować
class Critter(object):
"""Wirtualny pupil"""
def __init__(self, name, hunger = 0, boredom = 0):
self.name = name
self.hunger = hunger
self.boredom = boredom
def __str__(self):
rep = "The valuse of your pet:\n"
rep += "The hunger = " + str(self.hunger)
rep += "\nThe boredom = " + str(self.boredom)
return rep
def __pass_time(self):
self.hunger += 1
self.boredom += 1
@property
def mood(self):
unhappiness = self.hunger + self.boredom
if unhappiness < 5:
m = "szczęśliwy"
elif 5 <= unhappiness <= 10:
m = "zadowolony"
elif 11 <= unhappiness <= 15:
m = "podenerwowany"
else:
m = "wściekły"
return m
def talk(self):
print("Nazywam się", self.name, "i jestem", self.mood, "teraz.\n")
self.__pass_time()
def eat(self, food = 4):
print("""
How much food would you like to serve to you pet?
\n 1. Type 1 for one snack.
\n 2. Type 2 for 2 snacks.
\n 3. Type 3 for 3 snacks.
\n 4. Type 4 for 4 snacks.
\n 5. Type 5 for 5 snacks.
""", end = " ")
food = int(input("Wybierasz: "))
print("Mniam, mniam. Dziękuję.")
self.hunger -= food
if self.hunger < 0:
self.hunger = 0
self.__pass_time()
def play(self, fun = 4):
print("""
How log would you like to play with your pet?
\n 1. Type 1 for one minute.
\n 2. Type 2 for 2 minutes.
\n 3. Type 3 for 3 minutes.
\n 4. Type 4 for 4 minutes.
\n 5. Type 5 for 5 minutes.
""", end = " ")
fun = int(input("Wybierasz: "))
print("Hura!")
self.boredom -= fun
if self.boredom < 0:
self.boredom = 0
self.__pass_time()
def main():
crit_name = input("Jak chcesz nazwać swojego zwierzaka?: ")
crit = Critter(crit_name)
choice = None
while choice != "0":
print \
("""
Opiekun zwierzaka
0 - zakończ
1 - słuchaj swojego zwierzaka
2 - nakarm swojego zwierzaka
3 - pobaw się ze swoim zwierzakiem
4 - show the values of your pet
""")
choice = input("Wybierasz: ")
print()
# wyjdź z pętli
if choice == "0":
print("Do widzenia.")
# słuchaj swojego zwierzaka
elif choice == "1":
crit.talk()
# nakarm swojego zwierzaka
elif choice == "2":
crit.eat()
# pobaw się ze swoim zwierzakiem
elif choice == "3":
crit.play()
elif choice == "4":
print(crit)
# nieznany wybór
else:
print("\nNiestety,", choice, "nie jest prawidłowym wyborem.")
main()
input("\n\nAby zakończyć program, naciśnij klawisz Enter.")
|
[
"[email protected]"
] | |
26aa690ec62cb1867208234cd0c19ab8f7a9663a
|
3d19e1a316de4d6d96471c64332fff7acfaf1308
|
/Users/S/stefanw/kommunalverwaltung_nrw.py
|
aef5bdefc3a1b54035f7bc556bd8da592cd801c6
|
[] |
no_license
|
BerilBBJ/scraperwiki-scraper-vault
|
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
|
65ea6a943cc348a9caf3782b900b36446f7e137d
|
refs/heads/master
| 2021-12-02T23:55:58.481210 | 2013-09-30T17:02:59 | 2013-09-30T17:02:59 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,508 |
py
|
import scraperwiki
import lxml.html as lh
from lxml import etree
LIST_URL = 'http://www3.chamaeleon.de/komnav/kundensuchergebnis.php?Ort=&PLZ=%s&OBGM=&Bundesland=Nordrhein-Westfalen&anfrage=imnrw'
DETAIL_URL = 'http://www3.chamaeleon.de/komnav/kundensuchedetail.php?schluessel=%s&anfrage=imnrw&PLZ=%s&Ort=&Bundesland=Nordrhein-Westfalen&OBGM=&single_search='
def plz_generator():
for i in (3,4,5):
for j in range(10):
yield "%s%s" % (i, j)
kommune = []
for plz in plz_generator():
print plz
content = scraperwiki.scrape(LIST_URL % plz)
content = content.decode('latin1')
if 'Leider keinen Datensatz gefunden' in content:
continue
doc = lh.fromstring(content)
for row in doc.cssselect('tr'):
td = row.cssselect('td')
if not td:
continue
kommune.append({
'name': td[0].text_content().strip(),
'plz': td[1].text_content().strip(),
'head': td[3].text_content().strip(),
'key': td[4].cssselect('a')[0].attrib['href'].split('schluessel=')[1].split('&anfrage=')[0],
'source': td[4].cssselect('a')[0].attrib['href']
})
wanted = {
u'': None,
u'Stadt-/Gemeinde-/Kreisname': None,
u'PLZ': None,
u'Bundesland': None,
u'Bev\xf6lkerungsdichte Einwohner pro km\xb2': None,
u'(Ober-)b\xfcrgermeisterin/Landr\xe4tin/Oberkreisdirektorinbzw.(Ober-)b\xfcrgermeister/Landrat/Oberkreisdirektor': None,
u'EMail': 'email',
u'Postanschrift': 'address',
u'Regierungsbezirk': 'gov_area',
u'Fax': 'fax',
u'Telefonzentrale': 'phone',
u'Hausanschrift (Verwaltungssitz)': 'address2',
u'PLZ-Hausanschrift': 'plz2',
u'Ausl\xe4nderanteil (in %)': 'immigrant_percentage',
u'EinwohnerInnen': 'population',
u'davon weiblich/m\xe4nnlich (in %)': 'female_male_percentage',
u'Fl\xe4che (in km\xb2)': 'area',
u'Anzahl Besch\xe4ftigte': 'employees',
u'Homepage der Kommune': 'url'
}
print repr(wanted.keys())
for kom in kommune:
for v in wanted.values():
if v is not None:
kom[v] = None
content = scraperwiki.scrape(DETAIL_URL % (kom['key'], kom['plz']))
content = content.decode('latin1')
doc = lh.fromstring(content)
for row in doc.cssselect('tr'):
td = row.cssselect('td')
if not td:
continue
key = td[0].text_content().split(':')[0].strip()
if wanted.get(key, None) is not None:
kom[wanted[key]] = td[1].text_content().strip()
elif key not in wanted:
print repr(key)
print repr(kom)
scraperwiki.sqlite.save(['key'], kom, table_name='nrw_kommune')import scraperwiki
import lxml.html as lh
from lxml import etree
LIST_URL = 'http://www3.chamaeleon.de/komnav/kundensuchergebnis.php?Ort=&PLZ=%s&OBGM=&Bundesland=Nordrhein-Westfalen&anfrage=imnrw'
DETAIL_URL = 'http://www3.chamaeleon.de/komnav/kundensuchedetail.php?schluessel=%s&anfrage=imnrw&PLZ=%s&Ort=&Bundesland=Nordrhein-Westfalen&OBGM=&single_search='
def plz_generator():
for i in (3,4,5):
for j in range(10):
yield "%s%s" % (i, j)
kommune = []
for plz in plz_generator():
print plz
content = scraperwiki.scrape(LIST_URL % plz)
content = content.decode('latin1')
if 'Leider keinen Datensatz gefunden' in content:
continue
doc = lh.fromstring(content)
for row in doc.cssselect('tr'):
td = row.cssselect('td')
if not td:
continue
kommune.append({
'name': td[0].text_content().strip(),
'plz': td[1].text_content().strip(),
'head': td[3].text_content().strip(),
'key': td[4].cssselect('a')[0].attrib['href'].split('schluessel=')[1].split('&anfrage=')[0],
'source': td[4].cssselect('a')[0].attrib['href']
})
wanted = {
u'': None,
u'Stadt-/Gemeinde-/Kreisname': None,
u'PLZ': None,
u'Bundesland': None,
u'Bev\xf6lkerungsdichte Einwohner pro km\xb2': None,
u'(Ober-)b\xfcrgermeisterin/Landr\xe4tin/Oberkreisdirektorinbzw.(Ober-)b\xfcrgermeister/Landrat/Oberkreisdirektor': None,
u'EMail': 'email',
u'Postanschrift': 'address',
u'Regierungsbezirk': 'gov_area',
u'Fax': 'fax',
u'Telefonzentrale': 'phone',
u'Hausanschrift (Verwaltungssitz)': 'address2',
u'PLZ-Hausanschrift': 'plz2',
u'Ausl\xe4nderanteil (in %)': 'immigrant_percentage',
u'EinwohnerInnen': 'population',
u'davon weiblich/m\xe4nnlich (in %)': 'female_male_percentage',
u'Fl\xe4che (in km\xb2)': 'area',
u'Anzahl Besch\xe4ftigte': 'employees',
u'Homepage der Kommune': 'url'
}
print repr(wanted.keys())
for kom in kommune:
for v in wanted.values():
if v is not None:
kom[v] = None
content = scraperwiki.scrape(DETAIL_URL % (kom['key'], kom['plz']))
content = content.decode('latin1')
doc = lh.fromstring(content)
for row in doc.cssselect('tr'):
td = row.cssselect('td')
if not td:
continue
key = td[0].text_content().split(':')[0].strip()
if wanted.get(key, None) is not None:
kom[wanted[key]] = td[1].text_content().strip()
elif key not in wanted:
print repr(key)
print repr(kom)
scraperwiki.sqlite.save(['key'], kom, table_name='nrw_kommune')
|
[
"[email protected]"
] | |
323a4c7eddab68f041ff6fe4f9828b26f769b0ca
|
525c6a69bcf924f0309b69f1d3aff341b06feb8e
|
/sunyata/backend/chainer/core/map/power.py
|
f883795e8d4b0bb7d086f28a97f498406b350ed9
|
[] |
no_license
|
knighton/sunyata_2017
|
ba3af4f17184d92f6277d428a81802ac12ef50a4
|
4e9d8e7d5666d02f9bb0aa9dfbd16b7a8e97c1c8
|
refs/heads/master
| 2021-09-06T13:19:06.341771 | 2018-02-07T00:28:07 | 2018-02-07T00:28:07 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 406 |
py
|
from chainer import functions as F
from ....base.core.map.power import BasePowerAPI
class ChainerPowerAPI(BasePowerAPI):
def __init__(self):
BasePowerAPI.__init__(self)
def pow(self, x, a):
return F.math.basic_math.pow(x, a)
def rsqrt(self, x):
return F.rsqrt(x)
def sqrt(self, x):
return F.sqrt(x)
def square(self, x):
return F.square(x)
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.