blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
288
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 684
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 147
values | src_encoding
stringclasses 25
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 128
12.7k
| extension
stringclasses 142
values | content
stringlengths 128
8.19k
| authors
listlengths 1
1
| author_id
stringlengths 1
132
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0ae53c0486a272162874ca46f41ecb302e6654f0
|
a9d65a3fb6e990c5bb250cfde44220182f6cd430
|
/indra/tools/analyze_ontology.py
|
2f8bda343d488ebd0f277e9aedab4e858bfe2742
|
[
"BSD-2-Clause",
"BSD-2-Clause-Views"
] |
permissive
|
dianakolusheva/indra
|
66e6c69b762922d4f79757e388b693f76b3fcd56
|
205a719c5b1ff2333e415476b4136e8c57c22949
|
refs/heads/master
| 2022-03-14T23:10:57.718762 | 2022-02-11T14:58:12 | 2022-02-11T14:58:12 | 170,338,649 | 0 | 0 |
BSD-2-Clause
| 2019-02-12T15:09:36 | 2019-02-12T15:09:30 |
Python
|
UTF-8
|
Python
| false | false | 1,402 |
py
|
from collections import Counter, defaultdict
import networkx
from indra.ontology.bio import bio_ontology
def plot_problem(problem):
import matplotlib.pyplot as plt
plt.ion()
plt.figure()
G = bio_ontology.subgraph(problem)
pos = networkx.spring_layout(G)
networkx.draw_networkx(G, pos, node_color='pink')
edge_labels = networkx.get_edge_attributes(G, 'source')
networkx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
plt.show()
if __name__ == '__main__':
bio_ontology.initialize()
xrefs = [(e[0], e[1]) for e in bio_ontology.edges(data=True) if
e[2]['type'] == 'xref']
xrefg = bio_ontology.edge_subgraph(xrefs)
comps = networkx.algorithms.strongly_connected_components(xrefg)
problems = []
for comp in comps:
namespaces = [bio_ontology.get_ns(node) for node in comp]
cnt = Counter(namespaces)
if any(v > 1 for k, v in cnt.items()):
problems.append(comp)
print('Found %d problems in total' % len(problems))
problems_by_ns = defaultdict(list)
for problem in problems:
nscnt = Counter([bio_ontology.get_ns(n) for n in problem])
namespaces = [ns for ns, cnt in nscnt.items() if cnt > 1]
for ns in namespaces:
problems_by_ns[ns].append(problem)
for ns, problems_ns in problems_by_ns.items():
print(ns, len(problems_ns))
|
[
"[email protected]"
] | |
2e92fd124092bb606c4af2b949bf986b8f0f39e0
|
33c6b5d9f1852ac878aada3eb646ac2eabc6b705
|
/junk/users2/signals.py
|
490388c9433b9bb4b0c0de06090ea7a91ecbb2b2
|
[] |
no_license
|
detalikota/trading2
|
3c0e4308f45a620fe4c034403143cf68dd16db9c
|
1aaafb6bf7d304be1896efb5ea0963fc40893b23
|
refs/heads/master
| 2023-02-04T14:03:10.860410 | 2020-12-17T14:28:12 | 2020-12-17T14:28:12 | 313,858,784 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 486 |
py
|
from django.db.models.signals import post_save
from django.contrib.auth.models import User
from django.dispatch import receiver
from .models import Profile2
@receiver(post_save, sender=User) #when the user is saved - send this signal
def create_profile(sender, instance, created, **kwargs):
if created:
Profile2.objects.create(user=instance)
@receiver(post_save, sender=User) # save the profile
def save_profile(sender, instance, **kwargs):
instance.profile.save()
|
[
"[email protected]"
] | |
0b34b5732a18165fbcd70164b4c2648ea5eaeeb0
|
661b6c3d0d2344f86ed126d9b4f6f10c0d9c630b
|
/track/admin.py
|
1d2bcc9fdd717c1e4f90db9346add4da60c66ec6
|
[] |
no_license
|
Sababa123/activity_tracker
|
69eae58dbbf7523dcc144d3f05f6952cc4e4225b
|
7c5e2c83e5fc76f8c9a2c5f58569ed92c9eb4421
|
refs/heads/master
| 2020-06-25T17:43:14.321638 | 2019-08-11T21:45:16 | 2019-08-11T21:45:16 | 199,380,581 | 0 | 0 | null | 2019-07-29T04:53:25 | 2019-07-29T04:53:24 | null |
UTF-8
|
Python
| false | false | 175 |
py
|
from django.contrib import admin
from .models import Activity, ActivityTracker
# Register your models here.
admin.site.register(Activity)
admin.site.register(ActivityTracker)
|
[
"[email protected]"
] | |
7b15c3a5d2060f2149607d1ee7ea040fb35c2eb7
|
913fb9ec1e709a5140676ba7b2371b1976afca72
|
/seqPeaks/mirrorPeaks.py
|
db673bb1b55f332087c53b7b17d7dc5e614e6de3
|
[] |
no_license
|
cgreer/ResearchScripts
|
171cfe9555ea06fdeb91084c12d07d1b45a2335c
|
1107803bb1459d6b6e1dfb1a89679d2b6fd49062
|
refs/heads/master
| 2016-09-05T10:43:19.090247 | 2012-04-12T21:38:11 | 2012-04-12T21:38:11 | 1,673,080 | 0 | 3 | null | null | null | null |
UTF-8
|
Python
| false | false | 840 |
py
|
import cgPeaks
import compareData as compare
import math
import bioLibCG as cg
knowns = compare.tccFileToList('mouseKnownMirs.tcc', 0)
eLevels = []
for known in knowns:
chrom, strand, start, end = cg.tccSplit(known, True) #text...
if strand == '1':
strand = '-1'
else:
strand = '1'
oppTcc = cg.makeTcc(chrom, strand, start, end)
knownStretch = cgPeaks.stretch(known)
knownStretch.createPeaks(1,20)
kPos = knownStretch.getHighestPeak()
if kPos: eLevels.append(knownStretch.profile[kPos])
oppStretch = cgPeaks.stretch(oppTcc)
oppStretch.createPeaks(1,20)
oPos = oppStretch.getHighestPeak()
if oPos and kPos:
#determine if they are close enough to be considered mirrored...
if math.fabs(int(kPos) - int(oPos)) < 12:
print known, oPos, kPos, oppStretch.profile[oPos], knownStretch.profile[kPos]
print eLevels
|
[
"[email protected]"
] | |
113f2aeb9ba582a085e977d64df0240587c81645
|
5c5e7b03c3373e6217665842f542ca89491290ff
|
/2016/day18.py
|
b5a92f12f811a0ccb9b0c88bae32c9802f1ce21c
|
[] |
no_license
|
incnone/AdventOfCode
|
9c35214e338e176b6252e52a25a0141a01e290c8
|
29eac5d42403141fccef3c3ddbb986e01c89a593
|
refs/heads/master
| 2022-12-21T21:54:02.058024 | 2022-12-15T17:33:58 | 2022-12-15T17:33:58 | 229,338,789 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 970 |
py
|
from getinput import get_input
def parse_input(s):
return [True if c == '^' else False for c in s]
def next_trap_row(s):
next_row = [s[1]]
next_row += [(s1 and not s2) or (not s1 and s2) for s1, s2 in zip(s, s[2:])]
next_row += [s[-2]]
return next_row
def generate_traps(init_row, num_rows):
traps = [init_row]
for _ in range(num_rows - 1):
traps.append(next_trap_row(traps[-1]))
return traps
def trap_str(traps):
return '\n'.join(''.join('^' if c else '.' for c in line) for line in traps)
def part_1(trap_row):
traps = generate_traps(trap_row, 40)
return sum(sum(1 for x in line if not x) for line in traps)
def part_2(trap_row):
traps = generate_traps(trap_row, 400000)
return sum(sum(1 for x in line if not x) for line in traps)
if __name__ == "__main__":
the_trap_list = parse_input(get_input(18))
print('Part 1:', part_1(the_trap_list))
print('Part 2:', part_2(the_trap_list))
|
[
"[email protected]"
] | |
f1da8fb43bb78b4f502b576a1f67c671e6e1abed
|
1a4bc1a11fdb3f714f22f5e0e826b47aa0569de2
|
/lab/lab04/tests/q1_3.py
|
79768f8de727ed291ba49dffc59b456e772584a8
|
[] |
no_license
|
taylorgibson/ma4110-fa21
|
201af7a044fd7d99140c68c48817306c18479610
|
a306e1b6e7516def7de968781f6c8c21deebeaf5
|
refs/heads/main
| 2023-09-05T21:31:44.259079 | 2021-11-18T17:42:15 | 2021-11-18T17:42:15 | 395,439,687 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 227 |
py
|
test = { 'name': 'q1_3',
'points': None,
'suites': [{'cases': [{'code': ">>> disemvowel('datasceince')\n'dtscnc'", 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
|
[
"[email protected]"
] | |
44c7ea4c09cf76c997f45dc2c463741f3ba3af03
|
5f6425e9d83b57b864e48f227e1dc58356a555c0
|
/utils/palettes/personalized/piotr_kozlowski.py
|
8f12ab59b92e28ce4bf7bd066c55b145ec16a2f9
|
[
"MIT"
] |
permissive
|
jan-warchol/selenized
|
b374fa7822f281b16aa8b52e34bd1e585db75904
|
df1c7f1f94f22e2c717f8224158f6f4097c5ecbe
|
refs/heads/master
| 2023-06-22T09:37:02.962677 | 2022-09-12T20:24:40 | 2022-09-12T20:24:40 | 45,570,283 | 663 | 58 |
MIT
| 2023-04-18T09:33:22 | 2015-11-04T22:00:52 |
Emacs Lisp
|
UTF-8
|
Python
| false | false | 217 |
py
|
import selenized_base
name = 'Piotr Kozlowski'
palette = selenized_base.generate_palette(
background=(97, 0, 8),
foreground=(25, -6, -6),
saturation=1.4,
accent_offset=5,
accent_l_spread=30,
)
|
[
"[email protected]"
] | |
45297b843b717fd571b9a542906a15e1a9b43bb3
|
8b3ca44ee3d990233e74655b7131d616094f70c2
|
/experiments/sparsity/methylation_gm/gaussian_truncatednormal_hierarchical.py
|
427b535bd7e7c6d03bb77c738acc2c5ee7ee563c
|
[] |
no_license
|
zshwuhan/BMF_Priors
|
8b8c54271285a72d2085a56a9475c0756f375e67
|
6a600da1c41f1ccde2f2ba99298b40e68fb9910a
|
refs/heads/master
| 2021-05-13T19:10:07.203215 | 2017-12-01T13:30:21 | 2017-12-01T13:30:21 | 116,883,181 | 1 | 0 | null | 2018-01-09T23:36:13 | 2018-01-09T23:36:13 | null |
UTF-8
|
Python
| false | false | 1,480 |
py
|
'''
Measure sparsity experiment on the methylation GM dataset, with
the Gaussian + Truncated Normal + hierarchical model.
'''
project_location = "/Users/thomasbrouwer/Documents/Projects/libraries/"
import sys
sys.path.append(project_location)
from BMF_Priors.code.models.bmf_gaussian_truncatednormal_hierarchical import BMF_Gaussian_TruncatedNormal_Hierarchical
from BMF_Priors.data.methylation.load_data import load_gene_body_methylation_integer
from BMF_Priors.experiments.sparsity.sparsity_experiment import sparsity_experiment
import matplotlib.pyplot as plt
''' Run the experiment. '''
R, M = load_gene_body_methylation_integer()
model_class = BMF_Gaussian_TruncatedNormal_Hierarchical
n_repeats = 10
stratify_rows = False
fractions_unknown = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]
settings = {
'R': R,
'M': M,
'K': 5,
'hyperparameters': { 'alpha':1., 'beta':1., 'mu_mu':0., 'tau_mu':0.1, 'a':1., 'b':1. },
'init': 'random',
'iterations': 250,
'burn_in': 200,
'thinning': 2,
}
fout = './results/performances_gaussian_truncatednormal_hierarchical.txt'
average_performances, all_performances = sparsity_experiment(
n_repeats=n_repeats, fractions_unknown=fractions_unknown, stratify_rows=stratify_rows,
model_class=model_class, settings=settings, fout=fout)
''' Plot the performance. '''
plt.figure()
plt.title("Sparsity performances")
plt.plot(fractions_unknown, average_performances['MSE'])
plt.ylim(0,10)
|
[
"[email protected]"
] | |
77eae7de5545c636d596feec9e0fe110b7b5700a
|
bc441bb06b8948288f110af63feda4e798f30225
|
/architecture_view_sdk/model/flowable_service/bpmn_end_event_pb2.py
|
3c2b2fa877b300c5b615c5a2704c5007ff77e7ce
|
[
"Apache-2.0"
] |
permissive
|
easyopsapis/easyops-api-python
|
23204f8846a332c30f5f3ff627bf220940137b6b
|
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
|
refs/heads/master
| 2020-06-26T23:38:27.308803 | 2020-06-16T07:25:41 | 2020-06-16T07:25:41 | 199,773,131 | 5 | 0 | null | null | null | null |
UTF-8
|
Python
| false | true | 3,097 |
py
|
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: bpmn_end_event.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from architecture_view_sdk.model.flowable_service import bpmn_links_pb2 as architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='bpmn_end_event.proto',
package='flowable_service',
syntax='proto3',
serialized_options=_b('ZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_service'),
serialized_pb=_b('\n\x14\x62pmn_end_event.proto\x12\x10\x66lowable_service\x1a=architecture_view_sdk/model/flowable_service/bpmn_links.proto\"F\n\x0c\x42PMNEndEvent\x12\n\n\x02id\x18\x01 \x01(\t\x12*\n\x05links\x18\x02 \x01(\x0b\x32\x1b.flowable_service.BPMNLinksBLZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_serviceb\x06proto3')
,
dependencies=[architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2.DESCRIPTOR,])
_BPMNENDEVENT = _descriptor.Descriptor(
name='BPMNEndEvent',
full_name='flowable_service.BPMNEndEvent',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='id', full_name='flowable_service.BPMNEndEvent.id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='links', full_name='flowable_service.BPMNEndEvent.links', index=1,
number=2, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=105,
serialized_end=175,
)
_BPMNENDEVENT.fields_by_name['links'].message_type = architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2._BPMNLINKS
DESCRIPTOR.message_types_by_name['BPMNEndEvent'] = _BPMNENDEVENT
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
BPMNEndEvent = _reflection.GeneratedProtocolMessageType('BPMNEndEvent', (_message.Message,), {
'DESCRIPTOR' : _BPMNENDEVENT,
'__module__' : 'bpmn_end_event_pb2'
# @@protoc_insertion_point(class_scope:flowable_service.BPMNEndEvent)
})
_sym_db.RegisterMessage(BPMNEndEvent)
DESCRIPTOR._options = None
# @@protoc_insertion_point(module_scope)
|
[
"[email protected]"
] | |
03bca080a7ade2f5c8e31f19c07701b55b95c6aa
|
8f7c595f2b9d075a89417760b7fbf9abb1fecb72
|
/tele_twitter.py
|
8b5573134e70b914312a9c197b1313e688781062
|
[
"MIT"
] |
permissive
|
MainakMaitra/trading-utils
|
555ed240a20b26d4876f1490fc8a2d9273231fc5
|
3e73091b4d3432e74c385a9677b7f7ca4192c67f
|
refs/heads/main
| 2023-07-04T09:19:40.122188 | 2021-08-08T09:01:37 | 2021-08-08T09:01:37 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,825 |
py
|
"""
Twitter -> Telegram
"""
import logging
import os
import time
from argparse import ArgumentParser
from peewee import *
from common import uuid_gen
from common.environment import GROUP_CHAT_ID
from common.logger import init_logging
from common.tele_notifier import send_message_to_telegram
from common.twitter_api import get_twitter_home_timeline
home_dir = os.getenv("HOME")
db = SqliteDatabase(home_dir + "/tele_twitter.db")
class TweetData(Model):
id = UUIDField(primary_key=True)
twitter_handle = CharField()
timestamp = BigIntegerField()
tweet_id = CharField()
tweet = CharField()
posted_at = DateTimeField(null=True)
class Meta:
database = db
@staticmethod
def save_from(twitter_handle, tweet, tweet_id, posted_at):
entity = dict(
id=uuid_gen(),
timestamp=time.time(),
twitter_handle=twitter_handle,
tweet_id=tweet_id,
tweet=tweet,
posted_at=posted_at,
)
TweetData.insert(entity).execute()
TweetData.create_table()
def save_data(tweet_data):
TweetData.save_from(**tweet_data)
def tweet_already_processed(current_tweet_id):
selected_tweet = TweetData.get_or_none(TweetData.tweet_id == current_tweet_id)
return selected_tweet is not None
def extract_tweet_id(new_tweet):
return new_tweet.id
def extract_tweet_time(recent_tweet):
return recent_tweet.created_at
def main(poll_freq_in_secs):
home_timeline = get_twitter_home_timeline()
logging.info("==> Found tweets {}".format(len(home_timeline)))
for tweet in home_timeline:
tweet_author_name = tweet.author.name
tweet_author_screen_name = tweet.author.screen_name
tweet_id = tweet.id
tweet_posted_date = tweet.created_at
formatted_posted_dt = tweet_posted_date.strftime("%H:%M(%d %B)")
tweet_text = tweet.text
if tweet_already_processed(tweet_id):
logging.warning(
"Old Tweet from {} at {} -> {} - already processed".format(
tweet_author_screen_name, tweet_posted_date, tweet_id
)
)
continue
else:
entity = dict(
twitter_handle=tweet_author_screen_name,
tweet=tweet_text,
tweet_id=tweet_id,
posted_at=tweet_posted_date,
)
save_data(entity)
if tweet_text.startswith("RT"):
continue
try:
header = f"""👀 {tweet_author_name} at [{formatted_posted_dt}](https://twitter.com/{tweet_author_screen_name}/status/{tweet_id})"""
send_message_to_telegram(
header, disable_web_preview=False, override_chat_id=GROUP_CHAT_ID
)
except:
send_message_to_telegram(
"🚨 Something went wrong trying to process {}".format(tweet)
)
logging.info(f"⏱ Sleeping for {poll_freq_in_secs}")
time.sleep(poll_freq_in_secs)
def parse_args():
parser = ArgumentParser(description=__doc__)
parser.add_argument(
"-w",
"--wait-in-seconds",
type=int,
help="Wait between sending tweets in seconds",
default=30,
)
parser.add_argument(
"-r", "--run-once", action="store_true", default=False, help="Run once"
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
init_logging()
poll_freq_in_secs = args.wait_in_seconds
run_once = args.run_once
while True:
try:
main(poll_freq_in_secs)
if run_once:
logging.info("Running once => Exit")
break
except Exception:
logging.exception("🚨🚨🚨 Something is wrong")
|
[
"[email protected]"
] | |
3bcd4da0f4a0652b9ceae41db83ea03b41ab9201
|
99bfa15723593ea351191d82fac80e36ab25aab1
|
/LeetCode/merge_interval.py
|
602b47cb4dc68d07416d23bb801d695654ec3578
|
[] |
no_license
|
Kartavya-verma/Python-Projects
|
f23739ef29eab67a8e25569e3f7bf110e42576cb
|
02ffe926a7ed82bc783e4c4034a2fa53d4d1a870
|
refs/heads/master
| 2023-06-22T07:59:39.595084 | 2021-07-18T15:51:55 | 2021-07-18T15:51:55 | 387,139,965 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 504 |
py
|
# interval = [[1,3],[2,6],[8,10],[15,18]]
interval = [[1,4],[4,5]]
n = interval.copy()
print(n)
res = []
v = []
for i in range(len(n)-1):
for j in range(len(n)):
print(n[i][1], n[i+1][0])
if n[i][1] > n[i+1][0]:
# print(n[i][1], n[i+1][0])
n[i].pop()
n[i].append(n[i+1][1])
v = n[i+1]
print(n[i],v)
n.remove(v)
print(n)
# l = list()
# for i in interval:
# for j in range(i[0], i[1]+1):
# l.append(j)
# print(l)
|
[
"[email protected]"
] | |
4df3ceca1f9d06815d43914cad8c76bf3d206085
|
cd78d84441e69c1fc40b6a6e9e235e7cf6882454
|
/python/48.rotate_image.py
|
75ea51649a271ec6a48d11d85c9fa7c4a00e2bc0
|
[] |
no_license
|
buy/leetcode
|
53a12d4e0298284a5a2034c88353d0dc195aa66c
|
da0e834e3f2e3016396fffc96ef943ab9ec58ea4
|
refs/heads/master
| 2021-01-13T01:48:01.176632 | 2015-06-14T06:17:17 | 2015-06-14T06:17:17 | 31,863,627 | 1 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 821 |
py
|
# You are given an n x n 2D matrix representing an image.
# Rotate the image by 90 degrees (clockwise).
# Follow up:
# Could you do this in-place?
# /*
# * clockwise rotate
# * first reverse up to down, then swap the symmetry
# * 1 2 3 7 8 9 7 4 1
# * 4 5 6 => 4 5 6 => 8 5 2
# * 7 8 9 1 2 3 9 6 3
# */
class Solution:
# @param matrix, a list of lists of integers
# @return a list of lists of integers
def rotate(self, matrix):
matrix.reverse()
for i in range(len(matrix)):
for j in range(i):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
# /*
# * anticlockwise rotate
# * first reverse left to right, then swap the symmetry
# * 1 2 3 3 2 1 3 6 9
# * 4 5 6 => 6 5 4 => 2 5 8
# * 7 8 9 9 8 7 1 4 7
# */
|
[
"[email protected]"
] | |
2a7ecd17534e9ce6ebfd36b4b2168cfe3d21c7a2
|
03d1982e2d594f13567afb37f2a5cea2f0d631b6
|
/setup.py
|
cde1cd7244e468fc53e94c6fb1355245c8ab6099
|
[
"Apache-2.0"
] |
permissive
|
maartendraijer/django-fluent-dashboard
|
e26f29d434528d3b11360549c6452812176e4ecb
|
8a00fa810f001d1a778eada88b8a390f495f9994
|
refs/heads/master
| 2020-04-03T04:22:38.353890 | 2012-09-26T19:55:18 | 2012-09-26T19:58:54 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,478 |
py
|
#!/usr/bin/env python
from setuptools import setup, find_packages
from os.path import dirname, join
import sys, os
# When creating the sdist, make sure the django.mo file also exists:
try:
os.chdir('fluent_dashboard')
from django.core.management.commands.compilemessages import compile_messages
compile_messages(sys.stderr)
finally:
os.chdir('..')
setup(
name='django-fluent-dashboard',
version='0.4.0dev',
license='Apache License, Version 2.0',
install_requires=[
'django-admin-tools>=0.4.1', # 0.4.1 is the first release with Django 1.3 support.
],
extras_require = {
'cachestatus': ['dashboardmods>=0.2.2'],
},
description='An improved django-admin-tools dashboard for Django projects',
long_description=open(join(dirname(__file__), 'README.rst')).read(),
author='Diederik van der Boor',
author_email='[email protected]',
url='https://github.com/edoburu/django-fluent-dashboard',
download_url='https://github.com/edoburu/django-fluent-dashboard/zipball/master',
packages=find_packages(),
include_package_data=True,
zip_safe=False,
classifiers=[
'Development Status :: 4 - Beta',
'Environment :: Web Environment',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Framework :: Django',
]
)
|
[
"[email protected]"
] | |
65bb65eef08655b1bc9f00fecef269efb447b5c5
|
8e115fc8273fd7123438fa8cb85cd7b7992246f5
|
/App_Login/migrations/0003_follow.py
|
1e2b7e845c904aeaa10db6c63664e1517b698f1c
|
[] |
no_license
|
tasim313/Social_Media_django_project
|
35160f83fa278acd616f9f952ac5acd3ec6430e6
|
78cf24305a32dfe937d7fcb031ed2f78649a4775
|
refs/heads/main
| 2023-06-16T00:45:39.025388 | 2021-07-11T06:38:38 | 2021-07-11T06:38:38 | 384,453,963 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 962 |
py
|
# Generated by Django 2.2.5 on 2021-07-07 13:52
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('App_Login', '0002_auto_20210706_1237'),
]
operations = [
migrations.CreateModel(
name='Follow',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('created_date', models.DateTimeField(auto_now_add=True)),
('follower', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='follower', to=settings.AUTH_USER_MODEL)),
('following', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='following', to=settings.AUTH_USER_MODEL)),
],
),
]
|
[
"[email protected]"
] | |
c321533388cef074c4a7501847d5ddca0b9ae10e
|
fcc88521f63a3c22c81a9242ae3b203f2ea888fd
|
/Python3/0838-Push-Dominoes/soln-1.py
|
b7c9ed30d6e1a5c6ea1654056f23001653264cab
|
[
"MIT"
] |
permissive
|
wyaadarsh/LeetCode-Solutions
|
b5963e3427aa547d485d3a2cb24e6cedc72804fd
|
3719f5cb059eefd66b83eb8ae990652f4b7fd124
|
refs/heads/master
| 2022-12-06T15:50:37.930987 | 2020-08-30T15:49:27 | 2020-08-30T15:49:27 | 291,811,790 | 0 | 1 |
MIT
| 2020-08-31T19:57:35 | 2020-08-31T19:57:34 | null |
UTF-8
|
Python
| false | false | 1,479 |
py
|
class Solution:
def pushDominoes(self, dominoes: str) -> str:
leftRs = []
left_R = None
n = len(dominoes)
ans = [None] * n
for i, d in enumerate(dominoes):
if d == 'R':
left_R = 0
ans[i] = 'R'
elif d == 'L':
left_R = None
ans[i] = 'L'
else:
if left_R is not None:
left_R += 1
ans[i] = 'R'
else:
ans[i] = '.'
leftRs.append(left_R)
right_L = None
for i in reversed(range(n)):
d = dominoes[i]
if d == 'L':
right_L = 0
ans[i] = 'L'
elif d == 'R':
right_L = None
ans[i] = 'R'
else:
if right_L is not None:
right_L += 1
if leftRs[i] is None:
ans[i] = 'L'
else:
if leftRs[i] < right_L:
ans[i] = 'R'
elif leftRs[i] == right_L:
ans[i] = '.'
else:
ans[i] = 'L'
else:
if leftRs[i] is not None:
ans[i] = 'R'
else:
ans[i] = '.'
return ''.join(ans)
|
[
"[email protected]"
] | |
76c8f94b2f1120d880d69b6121372442259a80bc
|
a08409f712dc0b1045f695fd2ffee2bb6cc7835b
|
/math/0x02-calculus/17-integrate.py~
|
07a15858a238dab1c6d0b0de4984d551527088f4
|
[] |
no_license
|
mohsenabedelaal/holbertonschool-machine_learning
|
d3f2137761e10d620472ca6e5f3288c45898381d
|
2765a09ba3064168b024952d18b1a2471952c8a2
|
refs/heads/main
| 2023-06-02T16:11:55.600921 | 2021-06-10T19:08:13 | 2021-06-10T19:08:13 | 318,244,087 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 754 |
#!/usr/bin/env python3
"""derivative poly"""
def poly_integral(poly, C=0):
"""Module for integral"""
if not isinstance(poly, list):
return None
if len(poly) == 0:
return None
if len(poly) == 1:
return [0]
if len(poly) == 2:
return [poly(1)]
else:
integral = []
for i in range(0, len(poly)):
if isinstance(poly[i], (int, float)):
if i == 0:
integral.append(0)
if poly[i] % (i + 1) == 0:
result = int((1/(i+1)) * poly[i])
else:
result = (1/(i+1)) * poly[i]
integral.append(result)
else:
return None
return der
|
[
"[email protected]"
] | ||
6562ceefb580fe6394f1e927b79291c2063a56c7
|
5692e8a3357f7afe6284b43c4a9770d81957a511
|
/student/migrations/0015_auto_20201119_1605.py
|
8fc7c2324f4ec87bd9f70cdb6eabaa98d7202789
|
[] |
no_license
|
OmarFateh/student-management-system
|
49bcfbdf15a631cf7f64ff200d530a44a44409ac
|
2c53f81a55fe631406b642365a68de19501c0f17
|
refs/heads/master
| 2023-07-16T00:02:54.796428 | 2021-08-25T01:54:02 | 2021-08-25T01:54:02 | 355,033,774 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 440 |
py
|
# Generated by Django 3.1.2 on 2020-11-19 14:05
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('student', '0014_sessionyear_date_range'),
]
operations = [
migrations.AlterModelOptions(
name='student',
options={'ordering': ['user__full_name'], 'verbose_name': 'Student', 'verbose_name_plural': 'Students'},
),
]
|
[
"[email protected]"
] | |
91a80f36411eaa0287c81fe0a4414a82d2b3022a
|
a7104434e0ddb4575ef0a6cd467bac6620570de8
|
/hunter108.py
|
ff44819a2ca4401163bea362d9ae1cf41d6bc5c3
|
[] |
no_license
|
GauthamAjayKannan/GUVI-1
|
7b276eef3195bec9671eec8bb6bcc588cb5c970e
|
fafabab93df55abcc399f6e2664286ed511fd683
|
refs/heads/master
| 2020-06-25T07:38:08.465414 | 2019-05-17T11:24:53 | 2019-05-17T11:24:53 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 243 |
py
|
x = list(input())
list1 = []
out = 0
if len(x) == 1:
out = int(x[0]) * int(x[0])
else:
for i in x:
list1.append(int(i))
for i in range(len(list1)-1):
out += (list1[i] ** list1[i+1])
out += (list1[len(list1)-1] ** list1[0] )
print(out)
|
[
"[email protected]"
] | |
def3dce5cc56dc5116d525765b8c6bc66cb2e7fa
|
a44cfbdacdb9d695533f425ee72da86f904232c1
|
/bin/summarize-days
|
3a7583591a34ce37d84e1baec23fe453d926fdf1
|
[
"LicenseRef-scancode-warranty-disclaimer",
"Apache-2.0"
] |
permissive
|
sofie-lu/quac
|
434d1481949ad0a229e10b7ccc725f54740c2d44
|
03e3bd9691dddd819f629aba628e9fe6d45c2d3b
|
refs/heads/master
| 2020-04-08T09:33:54.217874 | 2014-05-15T20:32:00 | 2014-05-15T20:32:00 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 744 |
#!/usr/bin/env python
'''Parse the given metadata pickle file and print, TSV format, a summary of
each day's metadata on stdout. Column order matches the metadata field
documentation.'''
# Copyright (c) 2012-2013 Los Alamos National Security, LLC, and others.
import argparse
import sys
import quacpath
import pickle_glue
import tsv_glue
import u
ap = argparse.ArgumentParser()
ap.add_argument('file', metavar='METADATA_FILE')
args = u.parse_args(ap)
tsv = tsv_glue.Writer(sys.stdout.fileno())
for (day, md) in sorted(pickle_glue.File(args.file).data['days'].items()):
tsv.writerow([str(day),
md['count'] or 0,
md['count_geotag'],
md['min_id'],
md['max_id']])
|
[
"[email protected]"
] | ||
25933a755301dda6561a58f195d7462cdc9f384c
|
a9e3f3ad54ade49c19973707d2beb49f64490efd
|
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/openedx/core/djangoapps/api_admin/api/filters.py
|
63d4bf6ec7132ca2326fad9c709142a6713249fd
|
[
"MIT",
"AGPL-3.0-only",
"AGPL-3.0-or-later"
] |
permissive
|
luque/better-ways-of-thinking-about-software
|
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
|
5809eaca7079a15ee56b0b7fcfea425337046c97
|
refs/heads/master
| 2021-11-24T15:10:09.785252 | 2021-11-22T12:14:34 | 2021-11-22T12:14:34 | 163,850,454 | 3 | 1 |
MIT
| 2021-11-22T12:12:31 | 2019-01-02T14:21:30 |
JavaScript
|
UTF-8
|
Python
| false | false | 432 |
py
|
"""
Filters for api_admin api
"""
from rest_framework import filters
class IsOwnerOrStaffFilterBackend(filters.BaseFilterBackend):
"""
Filter that only allows users to see their own objects or all objects if it is staff user.
"""
def filter_queryset(self, request, queryset, view):
if request.user.is_staff:
return queryset
else:
return queryset.filter(user=request.user)
|
[
"[email protected]"
] | |
76ea21e0cd0bb9f8f9684fc16048be3713d1df62
|
1cc54d31a4a443230668ca063bcd27179ff096c2
|
/store/urls.py
|
fbf6972755a0e56ef5d0ca947869dfff8b9f903d
|
[] |
no_license
|
akhmadakhmedov/e-commerce
|
8d84f0ae7acd4dc80c8afbe3ab55ed13873ef631
|
6708aa62dec08be9b18fae15125eeef266d869e3
|
refs/heads/main
| 2023-05-29T21:36:40.354231 | 2021-06-14T13:23:22 | 2021-06-14T13:23:22 | 370,982,449 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 350 |
py
|
from django.urls import path
from . import views
urlpatterns = [
path('', views.store, name='store'),
path('category/<slug:category_slug>/', views.store, name='products_by_category'),
path('category/<slug:category_slug>/<product_slug>/', views.product_detail, name='product_detail'),
path('search/', views.search, name='search'),
]
|
[
"[email protected]"
] | |
53aa1b2409b3fe45fb8cacb3d6c9abc63b5229eb
|
f6f3ade5a59fcb904a147fa3cf1933a1b225338f
|
/src/gate_timer.py
|
536a3cef3cb573db60d205d844c69d50ccab9872
|
[] |
no_license
|
HajimeKawahara/autobop
|
3b559011f9dceba68b02e47cd95fdef4fa9ef41e
|
2c99625895206d24587db90a2ac03d1e536eb9ca
|
refs/heads/master
| 2021-01-16T01:03:01.351588 | 2018-03-18T09:15:53 | 2018-03-18T09:15:53 | 107,845,791 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 607 |
py
|
#!/usr/bin/python
import sys
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pylab
import argparse
#import chord_probability as cp
import rest
def gate_stop(mnow,counter,finger=1,width=5.0,c=65.0):
if c==np.inf:
counter=counter+1
return mnow, counter
numrest=rest.get_numrest()
stopp=1.0/(1+np.exp(-(1.0/width)*(float(counter)-c))) #stop probability (sigmoid type)
j=np.random.random()
if j < stopp:
mnow=numrest*np.ones(finger,dtype=int)
counter=-1
else:
counter=counter+1
return mnow, counter
|
[
"[email protected]"
] | |
55e4a9778ff59c0161d9877f8b727552e30befcb
|
6b2a8dd202fdce77c971c412717e305e1caaac51
|
/solutions_5738606668808192_0/Python/Nihilant/p3.py
|
9a79afbff433b6e056e4bf1c99769fccfd98c045
|
[] |
no_license
|
alexandraback/datacollection
|
0bc67a9ace00abbc843f4912562f3a064992e0e9
|
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
|
refs/heads/master
| 2021-01-24T18:27:24.417992 | 2017-05-23T09:23:38 | 2017-05-23T09:23:38 | 84,313,442 | 2 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,096 |
py
|
import sys, functools, math
def jc(n, j):
coin_n = 2**(n-1) + 1
for i in range(j):
test = True
while test:
coin = bin(coin_n)[2:]
sol = []
for base in range(2, 11):
num = int(coin, base=base)
k = -1
limit = int(math.sqrt(num))
for div in range(2, limit):
if num % div == 0:
k = div
break
if k == -1:
coin_n = coin_n + 2
break
else:
sol.append(k)
if len(sol) == 9:
coin_n = coin_n + 2
print(coin, ' '.join(map(str, sol)))
test = False
if __name__ == "__main__":
f = sys.stdin
if len(sys.argv) >= 2:
fn = sys.argv[1]
if fn != '-':
f = open(fn)
T = int(f.readline())
for i in range(T):
N, J = f.readline().strip('\n').split(" ")
print("Case #{0}:".format(i + 1))
jc(int(N), int(J))
|
[
"[email protected]"
] | |
3f1ce17c7e56aa343e288281207e4e0013191cf9
|
ec53949dafa4b6ad675d679b05ed7c83fef2c69a
|
/DataStructuresAndAlgo/DynamicProgramming/FibonacciTabulation.py
|
d691cd1c6b7a1de451aa33b49df8d84df1b3b17e
|
[] |
no_license
|
tpotjj/Python
|
9a5a20a53cd7a6ec14386c1db8ce155e0fc9ab8a
|
ca73c116ada4d05c0c565508163557744c86fc76
|
refs/heads/master
| 2023-07-11T16:37:10.039522 | 2021-08-14T11:17:55 | 2021-08-14T11:17:55 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 130 |
py
|
def fibTab(n):
tb = [0, 1]
for i in range(2, n):
tb.append(tb[i-1] + tb[i-2])
return tb[n-1]
print(fibTab(6))
|
[
"[email protected]"
] | |
5bcb0760c6c64e527ed4a662ff790c3cb71afad6
|
b1ff576cdde5adf698b98446538e0b56d18f070f
|
/grading/apps.py
|
b507c75018b33f6f0904ff9ce425d1006d934d9a
|
[] |
no_license
|
DUMBALINYOLO/gbc_oms
|
e3cfba17a12f3600b6503fc70cc9f3dcab5cc0e2
|
cdea6fd81333088b2db9911140681fec9577132a
|
refs/heads/main
| 2023-08-20T11:48:36.418990 | 2021-10-11T23:25:35 | 2021-10-11T23:25:35 | 322,593,446 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 152 |
py
|
from django.apps import AppConfig
class GradingConfig(AppConfig):
name = 'grading'
# def ready(self):
# import grading.signals
|
[
"[email protected]"
] | |
3cf0e063b91a5be11fd48040ca02637fab5c720d
|
cb1d0dd68b1136b8a371f7d2b423e45171e98ab7
|
/src/xsd_trips/urls.py
|
4d153c6902a452d9f38693e3b2a855184692fcd9
|
[] |
no_license
|
ScubaJimmE/xSACdb
|
86640ab791327392f88eb4993c858aa6d340c758
|
1996ab286ee0446b0a0e38882104bbf8904d8bdc
|
refs/heads/develop
| 2021-07-15T04:47:11.279138 | 2016-05-25T01:44:05 | 2016-05-25T01:44:05 | 62,212,226 | 0 | 0 | null | 2021-03-20T00:40:24 | 2016-06-29T09:09:50 |
Python
|
UTF-8
|
Python
| false | false | 256 |
py
|
from django.conf.urls import patterns, include, url
from django.conf import settings
from views import *
urlpatterns = patterns('',
url(r'^$', TripList.as_view(), name='TripList'),
url(r'^new/$', TripCreate.as_view(), name='TripCreate'),
)
|
[
"[email protected]"
] | |
da9e00f2af1599c983cb133c32b539da17ece7fe
|
155fa6aaa4ef31cc0dbb54b7cf528f36743b1663
|
/Static and Class Methods/Gym/subscription.py
|
c93a716815e0c338d34e9dadac30833811a61828
|
[] |
no_license
|
GBoshnakov/SoftUni-OOP
|
efe77b5e1fd7d3def19338cc7819f187233ecab0
|
0145abb760b7633ca326d06a08564fad3151e1c5
|
refs/heads/main
| 2023-07-13T18:54:39.761133 | 2021-08-27T08:31:07 | 2021-08-27T08:31:07 | 381,711,275 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 467 |
py
|
class Subscription:
_id = 0
def __init__(self, date, customer_id, trainer_id, exercise_id):
Subscription._id += 1
self.date = date
self.customer_id = customer_id
self.trainer_id = trainer_id
self.exercise_id = exercise_id
self.id = Subscription._id
@staticmethod
def get_next_id():
return Subscription._id + 1
def __repr__(self):
return f"Subscription <{self.id}> on {self.date}"
|
[
"[email protected]"
] | |
5690b8a65b35121276c3493f5273eae7f9e1b7fb
|
609ee4aad38036c29456581f821a9bad4d6b729a
|
/tests/test_pay.py
|
37b2629d535646bc20848fbf05772211f9a8c3b2
|
[] |
no_license
|
sdkwe/pywe-pay
|
32f14d218b0f8c029fb08a54df99ba70b90374b4
|
daf1699c7dafd0960359b0c3f570f32cc906dc5f
|
refs/heads/master
| 2020-05-29T15:13:05.371833 | 2020-04-27T07:32:54 | 2020-04-27T07:32:54 | 62,115,428 | 5 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 677 |
py
|
# -*- coding: utf-8 -*-
import time
from pywe_pay import WeChatPay
from local_config_example import WechatPayConfig
class TestPayCommands(object):
def test_native_unifiedorder(self):
native = WechatPayConfig.get('JSAPI', {})
wxpay = WeChatPay(native.get('appID'), native.get('apiKey'), native.get('mchID'))
result = wxpay.order.create(body=u'支付测试', notify_url='https://a.com', out_trade_no=int(time.time() * 1000), total_fee=1, trade_type='NATIVE')
assert isinstance(result, dict)
assert result.get('return_code') == 'SUCCESS'
assert result.get('result_code') == 'SUCCESS'
assert result.get('code_url')
|
[
"[email protected]"
] | |
42a62da8e1d51a7a3b3e573cdd0c1b6b3f423315
|
80afa26ba73b53f38e3fc21bf395030762fe8981
|
/576. Out of Boundary Paths.py
|
5481266d25818462836a2c72949c9f604ad39dc5
|
[] |
no_license
|
iamshivamgoswami/Random-DSA-Questions
|
45b402063dbd2e31da2eee7590b6991aa624637d
|
e36250d08cf0de59cd0a59b4f3293e55793b1a6f
|
refs/heads/main
| 2023-07-15T15:48:36.363321 | 2021-08-26T03:40:47 | 2021-08-26T03:40:47 | 392,702,686 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 563 |
py
|
class Solution:
def findPaths(self, m: int, n: int, maxMove: int, i: int, j: int) -> int:
d = {}
def dfs(N, i, j):
if (i, j, N) in d:
return d[(i, j, N)]
if i == m or i < 0 or j == n or j < 0:
return 1
if N == 0:
return 0
s = 0
for x, y in [(i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)]:
s += (dfs(N - 1, x, y))
d[(i, j, N)] = s
return s
return dfs(maxMove, i, j) % (10 ** 9 + 7)
|
[
"[email protected]"
] | |
0e65583a2f3733544f9d2a193e93f68be851c9df
|
4b2c5fe21ffcc35837bba06d2c3b43c5116f74bd
|
/Blackjack.py
|
8d5c04a77bb98a1ca5b4be7994bed8812a47cdf5
|
[] |
no_license
|
joydas65/Codeforces-Problems
|
8870cbbf1db9fa12b961cee7aaef60960af714ae
|
eb0f5877d0fede95af18694278029add7385973d
|
refs/heads/master
| 2023-06-23T07:16:49.151676 | 2023-06-17T07:28:24 | 2023-06-17T07:28:24 | 184,123,514 | 5 | 1 | null | 2020-11-28T07:28:03 | 2019-04-29T18:33:23 |
Python
|
UTF-8
|
Python
| false | false | 150 |
py
|
n = int(input())
if n <= 10 or n > 21:
print(0)
elif (n >= 11 and n <= 19) or n == 21:
print(4)
else:
print(15)
|
[
"[email protected]"
] | |
4a3bb92e0a9b95c1fc10eb9db2fd34e8f5cdcb8d
|
1669bf106be7e4e88ad957aa1f0a708a49f9ef87
|
/first_website/setup.py
|
d87bfe260f13a957af9d07c566ab6284fad70c61
|
[] |
no_license
|
genzj/python-fundamentals-course
|
280166037bb6ff25e2400fa3b281de153824c622
|
31218a42c609d923b3ae0c7d785b9dc02c0d9a6e
|
refs/heads/master
| 2023-01-09T22:13:04.040355 | 2021-03-20T02:33:18 | 2021-03-20T02:33:18 | 218,776,587 | 2 | 2 | null | 2022-12-26T20:59:32 | 2019-10-31T13:47:43 |
Python
|
UTF-8
|
Python
| false | false | 1,512 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""The setup script."""
from setuptools import setup, find_packages
with open('README.rst') as readme_file:
readme = readme_file.read()
with open('HISTORY.rst') as history_file:
history = history_file.read()
requirements = [ ]
setup_requirements = [ ]
test_requirements = [ ]
setup(
author="Jie ZHU",
author_email='[email protected]',
python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*',
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Developers',
'Natural Language :: English',
"Programming Language :: Python :: 2",
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
],
description="Python Boilerplate contains all the boilerplate you need to create a Python package.",
install_requires=requirements,
long_description=readme + '\n\n' + history,
include_package_data=True,
keywords='first_website',
name='first_website',
packages=find_packages(include=['first_website', 'first_website.*']),
setup_requires=setup_requirements,
test_suite='tests',
tests_require=test_requirements,
url='https://github.com/genzj/first_website',
version='0.1.0',
zip_safe=False,
)
|
[
"[email protected]"
] | |
93af8f67f99cacadec773970d6e4593f6c1b339e
|
dd098f8a93f787e38676283679bb39a290ba28b4
|
/samples/openapi3/client/3_0_3_unit_test/python-experimental/test/test_paths/test_response_body_post_maxlength_validation_response_body_for_content_types/test_post.py
|
b5ee61f9396dd84fdab727dd1f5cee04e4b0aa0f
|
[
"Apache-2.0"
] |
permissive
|
InfoSec812/openapi-generator
|
727c0235d3bad9b85ac12068808f844287af6003
|
e0c72702c3d5dae2a627a2926f0cddeedca61e32
|
refs/heads/master
| 2022-10-22T00:31:33.318867 | 2022-08-20T14:10:31 | 2022-08-20T14:10:31 | 152,479,633 | 1 | 0 |
Apache-2.0
| 2023-09-04T23:34:09 | 2018-10-10T19:38:43 |
Java
|
UTF-8
|
Python
| false | false | 7,073 |
py
|
# coding: utf-8
"""
Generated by: https://openapi-generator.tech
"""
import unittest
from unittest.mock import patch
import urllib3
import unit_test_api
from unit_test_api.paths.response_body_post_maxlength_validation_response_body_for_content_types import post # noqa: E501
from unit_test_api import configuration, schemas, api_client
from .. import ApiTestMixin
class TestResponseBodyPostMaxlengthValidationResponseBodyForContentTypes(ApiTestMixin, unittest.TestCase):
"""
ResponseBodyPostMaxlengthValidationResponseBodyForContentTypes unit test stubs
"""
_configuration = configuration.Configuration()
def setUp(self):
used_api_client = api_client.ApiClient(configuration=self._configuration)
self.api = post.ApiForpost(api_client=used_api_client) # noqa: E501
def tearDown(self):
pass
response_status = 200
def test_too_long_is_invalid_fails(self):
# too long is invalid
accept_content_type = 'application/json'
with patch.object(urllib3.PoolManager, 'request') as mock_request:
payload = (
"foo"
)
mock_request.return_value = self.response(
self.json_bytes(payload),
status=self.response_status
)
with self.assertRaises((unit_test_api.ApiValueError, unit_test_api.ApiTypeError)):
self.api.post(
accept_content_types=(accept_content_type,)
)
self.assert_pool_manager_request_called_with(
mock_request,
self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes',
method='post'.upper(),
content_type=None,
accept_content_type=accept_content_type,
)
def test_ignores_non_strings_passes(self):
# ignores non-strings
accept_content_type = 'application/json'
with patch.object(urllib3.PoolManager, 'request') as mock_request:
payload = (
100
)
mock_request.return_value = self.response(
self.json_bytes(payload),
status=self.response_status
)
api_response = self.api.post(
accept_content_types=(accept_content_type,)
)
self.assert_pool_manager_request_called_with(
mock_request,
self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes',
method='post'.upper(),
accept_content_type=accept_content_type,
)
assert isinstance(api_response.response, urllib3.HTTPResponse)
assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson)
deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data(
payload,
_configuration=self._configuration
)
assert api_response.body == deserialized_response_body
def test_shorter_is_valid_passes(self):
# shorter is valid
accept_content_type = 'application/json'
with patch.object(urllib3.PoolManager, 'request') as mock_request:
payload = (
"f"
)
mock_request.return_value = self.response(
self.json_bytes(payload),
status=self.response_status
)
api_response = self.api.post(
accept_content_types=(accept_content_type,)
)
self.assert_pool_manager_request_called_with(
mock_request,
self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes',
method='post'.upper(),
accept_content_type=accept_content_type,
)
assert isinstance(api_response.response, urllib3.HTTPResponse)
assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson)
deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data(
payload,
_configuration=self._configuration
)
assert api_response.body == deserialized_response_body
def test_two_supplementary_unicode_code_points_is_long_enough_passes(self):
# two supplementary Unicode code points is long enough
accept_content_type = 'application/json'
with patch.object(urllib3.PoolManager, 'request') as mock_request:
payload = (
"💩💩"
)
mock_request.return_value = self.response(
self.json_bytes(payload),
status=self.response_status
)
api_response = self.api.post(
accept_content_types=(accept_content_type,)
)
self.assert_pool_manager_request_called_with(
mock_request,
self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes',
method='post'.upper(),
accept_content_type=accept_content_type,
)
assert isinstance(api_response.response, urllib3.HTTPResponse)
assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson)
deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data(
payload,
_configuration=self._configuration
)
assert api_response.body == deserialized_response_body
def test_exact_length_is_valid_passes(self):
# exact length is valid
accept_content_type = 'application/json'
with patch.object(urllib3.PoolManager, 'request') as mock_request:
payload = (
"fo"
)
mock_request.return_value = self.response(
self.json_bytes(payload),
status=self.response_status
)
api_response = self.api.post(
accept_content_types=(accept_content_type,)
)
self.assert_pool_manager_request_called_with(
mock_request,
self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes',
method='post'.upper(),
accept_content_type=accept_content_type,
)
assert isinstance(api_response.response, urllib3.HTTPResponse)
assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson)
deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data(
payload,
_configuration=self._configuration
)
assert api_response.body == deserialized_response_body
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
38801dbfe2808511d05323af89e49be9254d06bd
|
40b5c4a77be465b47fe6fd7ff408db957261cc7f
|
/python-spake2-0.7/setup.py
|
c6365b7a7fcc9b95f11fa6dfb09513fabbc2ab8f
|
[
"MIT"
] |
permissive
|
warner/spake2-interop-server
|
7c1f0502a93615d2e2b5b7a323731a7e20040f86
|
b3f2ae42971e4217d9f503bb672b2d9288225acc
|
refs/heads/master
| 2021-01-25T11:27:45.696023 | 2017-06-10T22:15:15 | 2017-06-10T22:15:15 | 93,924,508 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 913 |
py
|
"A server that performs SPAKE2 operations, for interoperability testing."
# Install this, then run "twist spake2_interop" and hit http://HOST:8705/
from setuptools import setup
import versioneer
setup(
name="spake2-interop-python-spake2-0.7",
version=versioneer.get_version(),
author="Brian Warner",
author_email="[email protected]",
package_dir={"": "src"},
# this must be installed into its own virtualenv (e.g. spake2-0.7 can't
# share a venv with spake2-0.3), so we don't need a version-specific
# package name, and keeping it neutral will minimize the diff
packages=["spake2_interop_python"],
license="MIT",
cmdclass=versioneer.get_cmdclass(),
install_requires=[
"spake2==0.7",
],
entry_points={
"console_scripts":
[
"spake2_interop_python_0_7 = spake2_interop_python:run",
]
},
)
|
[
"[email protected]"
] | |
9fa28da8427b89b3d954bdd756fd2ebcba4686a1
|
83048ab1abb6941ed0b19fb5e5ff4a9d14b48e8c
|
/CODEFORCES/two_teams.py
|
7d256d350d953f576fe903bf8811b7a18f57716a
|
[] |
no_license
|
harshitalpha/Algorithms
|
ebad07cc77516ab5c35ae414462d10a38d5ef97e
|
2f7dcf4c3bb4390267231c7c96f7e76399c0166e
|
refs/heads/master
| 2021-07-14T17:34:02.546583 | 2020-06-25T06:38:39 | 2020-06-25T06:38:39 | 178,813,562 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 693 |
py
|
t = int(input())
while(t):
t = t - 1
n = int(input())
a = [int(s) for s in input().split()]
d = {}
for i in a:
try:
d[i] += 1
except KeyError:
d[i] = 1
max_size = d[a[0]]
ele_in_sec_arr = a[0]
for i in d.keys():
if d[i] > max_size:
max_size = d[i]
ele_in_sec_arr = i
count = 0
for i in d.keys():
if i is not ele_in_sec_arr:
count = count + 1
if count == max_size:
print(max_size)
elif count == max_size - 1:
print(count)
elif count <= max_size-2:
print(count+1)
elif count > max_size:
print(max_size)
|
[
"[email protected]"
] | |
b67ec65da5b89ee26ecfac71462afdedf4ad07d3
|
a72f39b82966cd6e2a3673851433ce7db550429a
|
/configs/_base_/models/lxmert/lxmert_vqa_config.py
|
781219951d7cd25d348c58e16f382837a1dcbeaf
|
[
"Apache-2.0"
] |
permissive
|
linxi1158/iMIX
|
85841d6b95e1d99ed421a1ac3667658e49cae6fc
|
af87a17275f02c94932bb2e29f132a84db812002
|
refs/heads/master
| 2023-06-09T23:37:46.534031 | 2021-06-30T12:09:42 | 2021-06-30T12:09:42 | 381,608,650 | 0 | 0 |
Apache-2.0
| 2021-06-30T07:08:40 | 2021-06-30T07:08:39 | null |
UTF-8
|
Python
| false | false | 1,753 |
py
|
# model settings
model = dict(
type='LXMERT',
params=dict(
random_initialize=False,
num_labels=3129,
# BertConfig
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
#
mode='lxr',
l_layers=9, # 12
x_layers=5, # 5
r_layers=5, # 0
visual_feat_dim=2048,
visual_pos_dim=4,
freeze_base=False,
max_seq_length=20,
model='bert',
training_head_type='vqa2',
bert_model_name='bert-base-uncased',
pretrained_path='/home/datasets/mix_data/iMIX/data/models/model_LXRT.pth',
label2ans_path='/home/datasets/mix_data/lxmert/vqa/trainval_label2ans.json',
))
loss = dict(type='LogitBinaryCrossEntropy')
optimizer = dict(
type='BertAdam',
lr=5e-5,
weight_decay=0.01,
eps=1e-6,
betas=[0.9, 0.999],
max_grad_norm=-1,
training_encoder_lr_multiply=1,
)
optimizer_config = dict(grad_clip=dict(max_norm=5))
'''
fp16 = dict(
init_scale=2.**16,
growth_factor=2.0,
backoff_factor=0.5,
growth_interval=2000,
)
'''
lr_config = dict(
warmup=0.1,
warmup_method='warmup_linear',
# max_iters=55472, # ceil(totoal 443753 / batch size 32) * epoch size datasets: train
max_iters=79012, # floor(totoal 632117 / batch size 32) * epoch size datasets: train, nominival
policy='BertWarmupLinearLR')
total_epochs = 4
seed = 9595
|
[
"[email protected]"
] | |
8626edcebc5d57619798aec921223388d499ef0b
|
f77327128a8da9702ae3443e2171bc7485ceb915
|
/cadence/items.py
|
08b1b50b16175e30c34717833ce6af94ae712ed4
|
[] |
no_license
|
SimeonYS/cadence
|
0eeba6a54c03ffb2d55466f9d8de6f1b1662002f
|
cdaef13c85a03e031a0050c89c17249cd7d83125
|
refs/heads/main
| 2023-03-31T08:24:41.408507 | 2021-03-31T10:14:01 | 2021-03-31T10:14:01 | 353,312,955 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 156 |
py
|
import scrapy
class CadenceItem(scrapy.Item):
title = scrapy.Field()
content = scrapy.Field()
date = scrapy.Field()
link = scrapy.Field()
|
[
"[email protected]"
] | |
17602e35cc61bc0f7fc211873d8f4e8f3498781a
|
4ca44b7bdb470fcbbd60c2868706dbd42b1984c9
|
/20.12.14/BOJ_20056.py
|
d156e0cef3cfd5583ae7fcf2a95e7de4fd8f8efa
|
[] |
no_license
|
titiman1013/Algorithm
|
3b3d14b3e2f0cbc4859029eb73ad959ec8778629
|
8a67e36931c42422779a4c90859b665ee468255b
|
refs/heads/master
| 2023-06-29T17:04:40.015311 | 2021-07-06T01:37:29 | 2021-07-06T01:37:29 | 242,510,483 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,827 |
py
|
import sys; sys.stdin = open('text1.txt', 'r')
# solve test1
# dx = [-1, -1, 0, 1, 1, 1, 0, -1]
# dy = [0, 1, 1, 1, 0, -1, -1, -1]
# def move_fireball(x, y, m, s, d):
# for _ in range(s):
# nx = x + dx[d]
# ny = y + dy[d]
# if 0 <= nx < N and 0 <= ny < N:
# x, y = nx, ny
# else:
# if nx < 0 or nx >= N:
# if nx < 0:
# x = N + nx
# else:
# x = nx - N
# if ny < 0 or nx >= N:
# if ny < 0:
# y = N + ny
# else:
# y = ny - N
# if bool(arr[x][y]):
# arr[x][y].append([x, y, m, s, d])
# else:
# arr[x][y] = [[x, y, m, s, d]]
# return
# def sum_fireball(sum_list):
# list_cnt = len(sum_list)
# m = 0
# s = 0
# d = []
# for idx in range(list_cnt):
# m += sum_list[idx][2]
# s += sum_list[idx][3]
# if d % 2:
# d.append(1)
# else:
# d.append(0)
# m = m // 5
# if m == 0:
# return [0]
# s = s // list_cnt
# d_check = True
# temp_d = d[0]
# for i in range(1, len(d)):
# if d[i] != temp_d:
# d_check = False
# break
# if d_check == True:
# d = [0, 2, 4, 6]
# else:
# d = [1, 3, 5, 7]
# temp_list = []
# for i in range(4):
# temp_list.append([sum_list[0], sum_list[1], m, s, d[i]])
# return temp_list
# # 방향
# # 인접한 행렬 12시부터 시계방향
# # 7 0 1
# # 6 2
# # 5 4 3
# for tc in range(1, int(input()) + 1):
# N, M, K = map(int, input().split())
# # [r, c, m, s, d]
# items = [list(map(int, input().split())) for _ in range(M)]
# arr = [[0] * N for _ in range(N)]
# if K > 0:
# # 처음 시행
# for item in items:
# move_fireball(item[0] - 1, item[1] - 1, item[2], item[3], item[4])
# print(arr)
# move_cnt = 1
# while move_cnt <= K:
# # 움직이기
# for i in range(N):
# for j in range(N):
# if bool(arr[i][j]):
# if len(arr[i][j]) >= 2:
# temp_list = arr[i][j][0]
# arr[i][j] = 0
# for k in range(len(temp_list)):
# move_fireball(temp_list[k][0], temp_list[k][1], temp_list[k][2], temp_list[k][3], temp_list[k][4])
# else:
# temp_list = arr[i][j][0]
# arr[i][j] = 0
# print(arr)
# move_fireball(temp_list[0], temp_list[1], temp_list[2], temp_list[3], temp_list[4])
# # 합치기
# for i in range(N):
# for j in range(N):
# if len(arr[i][j]) >= 2:
# arr[i][j] = sum_fireball(arr[i][j])
# move_cnt += 1
# res = 0
# for i in range(N):
# for j in range(N):
# if bool(arr[i][j]):
# if len(arr[i][j]) >= 2:
# for k in range(len(arr[i][j])):
# res += arr[i][j][k][2]
# else:
# res += arr[i][j][0][2]
# print(f'#{tc} {res}')
# solve test2
from collections import deque
for tc in range(1, int(input()) + 1):
N, M, K = map(int, input().split())
# [r, c, m, s, d]
items = [list(map(int, input().split())) for _ in range(M)]
arr = [[0] * N for _ in range(N)]
q = deque()
for item in items:
q.append(item)
for _ in range(K):
while q:
|
[
"[email protected]"
] | |
16f4f84a799fbad2d4951affd28a3893ee356839
|
a667b52cb8d2ec857c55d33f04fc0e81d36dc681
|
/options/data/mc/pipipi0_DecProdCut_PHSP_2012_MC_2012_Beam4000GeV-2012-MagUp-Nu2.5-Pythia8_Sim08e_Digi13_Trig0x409f0045_Reco14a_Stripping20r0p2NoPrescalingFlagged_27163403_ALLSTREAMS.DST.py
|
befddb5e34f37022361b1b2ddd67efe8ea3fa6bd
|
[] |
no_license
|
wenyanyin/CP_violation_simulation
|
639d73333a3795654275cb43cc7dad7c742d1be1
|
7b93b2fe1050fb30d0b809b758cd5a3b2824b875
|
refs/heads/master
| 2022-04-29T14:19:23.744004 | 2022-04-01T13:05:18 | 2022-04-01T13:05:18 | 168,570,282 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,745 |
py
|
# lb-run LHCbDirac/prod dirac-bookkeeping-get-files -B /MC/2012/Beam4000GeV-2012-MagUp-Nu2.5-Pythia8/Sim08e/Digi13/Trig0x409f0045/Reco14a/Stripping20r0p2NoPrescalingFlagged/27163403/ALLSTREAMS.DST
from Gaudi.Configuration import *
from GaudiConf import IOHelper
IOHelper('ROOT').inputFiles(
['LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000001_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000003_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000004_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000005_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000006_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000008_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000009_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000011_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000012_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000013_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000014_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000015_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000016_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000017_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000018_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000019_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000020_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000021_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000022_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000024_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000025_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000027_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000028_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000029_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000030_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000033_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000034_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000036_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000037_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000039_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000040_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000042_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000044_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000046_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000048_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000049_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000050_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000052_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000053_2.AllStreams.dst',
'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000054_2.AllStreams.dst'],
clear=True)
|
[
"[email protected]"
] | |
f6aff156beb68f479d76392ed5097e84546ed4e6
|
764a157c1ef369664144a112f390165809c37861
|
/apps/app/views.py
|
75a6c7124d899b9dae8673fed292fa32dbe61aff
|
[] |
no_license
|
Maliaotw/gogoweb
|
b044678b0a34c2748267c8f8ac1f6af91d42bcd0
|
aad84f11163e62716a239972436eb92e7cc601d0
|
refs/heads/main
| 2023-07-07T19:46:37.470811 | 2021-08-31T15:01:58 | 2021-08-31T15:01:58 | 341,254,107 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 667 |
py
|
from django.shortcuts import render
from apps.app import models
from apps.app import serializers
from rest_framework import viewsets
from rest_framework.pagination import LimitOffsetPagination
from rest_framework.views import APIView, Response
from rest_framework import status
# Create your views here.
class TaskModelViewSet(viewsets.ModelViewSet):
queryset = models.Task.objects.all()
serializer_class = serializers.TaskSerializer
pagination_class = LimitOffsetPagination
def destroy(self, request, *args, **kwargs):
instance = self.get_object()
self.perform_destroy(instance)
return Response(status=status.HTTP_200_OK)
|
[
"[email protected]"
] | |
50482a45f14d167f9dd6e9fc7d00d93c3fcaad60
|
5b93930ce8280b3cbc7d6b955df0bfc5504ee99c
|
/nodes/Geron17Hands/B_PartI/H_Chapter8/C_PCA/D_UsingScikitLearn/index.py
|
f3808ea9cd7e1c90a935491935c7d8dd01be2ef0
|
[] |
no_license
|
nimra/module_gen
|
8749c8d29beb700cac57132232861eba4eb82331
|
2e0a4452548af4fefd4cb30ab9d08d7662122cf4
|
refs/heads/master
| 2022-03-04T09:35:12.443651 | 2019-10-26T04:40:49 | 2019-10-26T04:40:49 | 213,980,247 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,414 |
py
|
# Lawrence McAfee
# ~~~~~~~~ import ~~~~~~~~
from modules.node.HierNode import HierNode
from modules.node.LeafNode import LeafNode
from modules.node.Stage import Stage
from modules.node.block.CodeBlock import CodeBlock as cbk
from modules.node.block.HierBlock import HierBlock as hbk
from modules.node.block.ImageBlock import ImageBlock as ibk
from modules.node.block.ListBlock import ListBlock as lbk
from modules.node.block.MarkdownBlock import MarkdownBlock as mbk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
blocks = [
# Download from finelybook www.finelybook.com
# ing the first d principal components (i.e., the matrix composed of the first d columns
# of VT), as shown in Equation 8-2.
#
# Equation 8-2. Projecting the training set down to d dimensions
# �d‐proj = � · �d
#
# The following Python code projects the training set onto the plane defined by the first
# two principal components:
# W2 = V.T[:, :2]
# X2D = X_centered.dot(W2)
# There you have it! You now know how to reduce the dimensionality of any dataset
# down to any number of dimensions, while preserving as much variance as possible.
#
# Using Scikit-Learn
# Scikit-Learn’s PCA class implements PCA using SVD decomposition just like we did
# before. The following code applies PCA to reduce the dimensionality of the dataset
# down to two dimensions (note that it automatically takes care of centering the data):
# from sklearn.decomposition import PCA
#
# pca = PCA(n_components = 2)
# X2D = pca.fit_transform(X)
#
# After fitting the PCA transformer to the dataset, you can access the principal compo‐
# nents using the components_ variable (note that it contains the PCs as horizontal vec‐
# tors, so, for example, the first principal component is equal to pca.components_.T[:,
# 0]).
#
# Explained Variance Ratio
# Another very useful piece of information is the explained variance ratio of each prin‐
# cipal component, available via the explained_variance_ratio_ variable. It indicates
# the proportion of the dataset’s variance that lies along the axis of each principal com‐
# ponent. For example, let’s look at the explained variance ratios of the first two compo‐
# nents of the 3D dataset represented in Figure 8-2:
# >>> print(pca.explained_variance_ratio_)
# array([ 0.84248607, 0.14631839])
# This tells you that 84.2% of the dataset’s variance lies along the first axis, and 14.6%
# lies along the second axis. This leaves less than 1.2% for the third axis, so it is reason‐
# able to assume that it probably carries little information.
#
#
#
#
# 214 | Chapter 8: Dimensionality Reduction
#
]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Content(LeafNode):
def __init__(self):
super().__init__(
"Using Scikit-Learn",
# Stage.REMOVE_EXTRANEOUS,
# Stage.ORIG_BLOCKS,
# Stage.CUSTOM_BLOCKS,
# Stage.ORIG_FIGURES,
# Stage.CUSTOM_FIGURES,
# Stage.CUSTOM_EXERCISES,
)
[self.add(a) for a in blocks]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class UsingScikitLearn(HierNode):
def __init__(self):
super().__init__("Using Scikit-Learn")
self.add(Content(), "content")
# eof
|
[
"[email protected]"
] | |
cb50337db2d8006a698aab101b52e25241b61b67
|
292437b85108504a7ca91571f26a639a313501b6
|
/venv2/lib/python2.7/site-packages/keystoneclient/auth/identity/generic/token.py
|
6a5d15b281e8931b3199251c3a6ea2c8f77eef3e
|
[] |
no_license
|
heekof/monitoring-agent
|
c86bebcf77091490df7a6b8c881b85fdb2b9e4eb
|
b1c079efdf2dabe854f2aa3d96f36d2ec7021070
|
refs/heads/master
| 2021-01-15T15:39:01.512801 | 2016-08-31T20:53:38 | 2016-08-31T20:53:38 | 58,620,098 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,656 |
py
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
from oslo_config import cfg
from keystoneclient import _discover
from keystoneclient.auth.identity.generic import base
from keystoneclient.auth.identity import v2
from keystoneclient.auth.identity import v3
LOG = logging.getLogger(__name__)
def get_options():
return [
cfg.StrOpt('token', secret=True, help='Token to authenticate with'),
]
class Token(base.BaseGenericPlugin):
"""Generic token auth plugin.
:param string token: Token for authentication.
"""
def __init__(self, auth_url, token=None, **kwargs):
super(Token, self).__init__(auth_url, **kwargs)
self._token = token
def create_plugin(self, session, version, url, raw_status=None):
if _discover.version_match((2,), version):
return v2.Token(url, self._token, **self._v2_params)
elif _discover.version_match((3,), version):
return v3.Token(url, self._token, **self._v3_params)
@classmethod
def get_options(cls):
options = super(Token, cls).get_options()
options.extend(get_options())
return options
|
[
"[email protected]"
] | |
64a694d6c95f4ea237880b1e4abbce5a36e03343
|
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
|
/airbyte-integrations/connectors/destination-weaviate/destination_weaviate/client.py
|
3ba83b2a4a53a92af1f8413bd85c69ca41b056c9
|
[
"MIT",
"LicenseRef-scancode-free-unknown",
"Elastic-2.0"
] |
permissive
|
thomas-vl/airbyte
|
5da2ba9d189ba0b202feb952cadfb550c5050871
|
258a8eb683634a9f9b7821c9a92d1b70c5389a10
|
refs/heads/master
| 2023-09-01T17:49:23.761569 | 2023-08-25T13:13:11 | 2023-08-25T13:13:11 | 327,604,451 | 1 | 0 |
MIT
| 2021-01-07T12:24:20 | 2021-01-07T12:24:19 | null |
UTF-8
|
Python
| false | false | 6,094 |
py
|
#
# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
#
import json
import logging
import time
import uuid
from dataclasses import dataclass
from typing import Any, List, Mapping, MutableMapping
import weaviate
from .utils import generate_id, parse_id_schema, parse_vectors, stream_to_class_name
@dataclass
class BufferedObject:
id: str
properties: Mapping[str, Any]
vector: List[Any]
class_name: str
class WeaviatePartialBatchError(Exception):
pass
class Client:
def __init__(self, config: Mapping[str, Any], schema: Mapping[str, str]):
self.client = self.get_weaviate_client(config)
self.config = config
self.batch_size = int(config.get("batch_size", 100))
self.schema = schema
self.vectors = parse_vectors(config.get("vectors"))
self.id_schema = parse_id_schema(config.get("id_schema"))
self.buffered_objects: MutableMapping[str, BufferedObject] = {}
self.objects_with_error: MutableMapping[str, BufferedObject] = {}
def buffered_write_operation(self, stream_name: str, record: MutableMapping):
if self.id_schema.get(stream_name, "") in record:
id_field_name = self.id_schema.get(stream_name, "")
record_id = generate_id(record.get(id_field_name))
del record[id_field_name]
else:
if "id" in record:
record_id = generate_id(record.get("id"))
del record["id"]
# Weaviate will throw an error if you try to store a field with name _id
elif "_id" in record:
record_id = generate_id(record.get("_id"))
del record["_id"]
else:
record_id = uuid.uuid4()
record_id = str(record_id)
# TODO support nested objects instead of converting to json string when weaviate supports this
for k, v in record.items():
if self.schema[stream_name].get(k, "") == "jsonify":
record[k] = json.dumps(v)
# Handling of empty list that's not part of defined schema otherwise Weaviate throws invalid string property
if isinstance(v, list) and len(v) == 0 and k not in self.schema[stream_name]:
record[k] = ""
missing_properties = set(self.schema[stream_name].keys()).difference(record.keys()).discard("id")
for prop in missing_properties or []:
record[prop] = None
additional_props = set(record.keys()).difference(self.schema[stream_name].keys())
for prop in additional_props or []:
if isinstance(record[prop], dict):
record[prop] = json.dumps(record[prop])
if isinstance(record[prop], list) and len(record[prop]) > 0 and isinstance(record[prop][0], dict):
record[prop] = json.dumps(record[prop])
# Property names in Weaviate have to start with lowercase letter
record = {k[0].lower() + k[1:]: v for k, v in record.items()}
vector = None
if stream_name in self.vectors:
vector_column_name = self.vectors.get(stream_name)
vector = record.get(vector_column_name)
del record[vector_column_name]
class_name = stream_to_class_name(stream_name)
self.client.batch.add_data_object(record, class_name, record_id, vector=vector)
self.buffered_objects[record_id] = BufferedObject(record_id, record, vector, class_name)
if self.client.batch.num_objects() >= self.batch_size:
self.flush()
def flush(self, retries: int = 3):
if len(self.objects_with_error) > 0 and retries == 0:
error_msg = f"Objects had errors and retries failed as well. Object IDs: {self.objects_with_error.keys()}"
raise WeaviatePartialBatchError(error_msg)
results = self.client.batch.create_objects()
self.objects_with_error.clear()
for result in results:
errors = result.get("result", {}).get("errors", [])
if errors:
obj_id = result.get("id")
self.objects_with_error[obj_id] = self.buffered_objects.get(obj_id)
logging.info(f"Object {obj_id} had errors: {errors}. Going to retry.")
for buffered_object in self.objects_with_error.values():
self.client.batch.add_data_object(
buffered_object.properties, buffered_object.class_name, buffered_object.id, buffered_object.vector
)
if len(self.objects_with_error) > 0 and retries > 0:
logging.info("sleeping 2 seconds before retrying batch again")
time.sleep(2)
self.flush(retries - 1)
self.buffered_objects.clear()
def delete_stream_entries(self, stream_name: str):
class_name = stream_to_class_name(stream_name)
try:
original_schema = self.client.schema.get(class_name=class_name)
self.client.schema.delete_class(class_name=class_name)
logging.info(f"Deleted class {class_name}")
self.client.schema.create_class(original_schema)
logging.info(f"Recreated class {class_name}")
except weaviate.exceptions.UnexpectedStatusCodeException as e:
if e.message.startswith("Get schema! Unexpected status code: 404"):
logging.info(f"Class {class_name} did not exist.")
else:
raise e
@staticmethod
def get_weaviate_client(config: Mapping[str, Any]) -> weaviate.Client:
url, username, password = config.get("url"), config.get("username"), config.get("password")
if username and not password:
raise Exception("Password is required when username is set")
if password and not username:
raise Exception("Username is required when password is set")
if username and password:
credentials = weaviate.auth.AuthClientPassword(username, password)
return weaviate.Client(url=url, auth_client_secret=credentials)
return weaviate.Client(url=url, timeout_config=(2, 2))
|
[
"[email protected]"
] | |
3e95f067fba14f5bd1ebdb04147f9f4ed532c262
|
781e2692049e87a4256320c76e82a19be257a05d
|
/all_data/exercism_data/python/bob/60d6f99657e4479ab9beda33d53f774e.py
|
3a8da1104c746329450661a00dc2b7bf64a87b09
|
[] |
no_license
|
itsolutionscorp/AutoStyle-Clustering
|
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
|
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
|
refs/heads/master
| 2020-12-11T07:27:19.291038 | 2016-03-16T03:18:00 | 2016-03-16T03:18:42 | 59,454,921 | 4 | 0 | null | 2016-05-23T05:40:56 | 2016-05-23T05:40:56 | null |
UTF-8
|
Python
| false | false | 227 |
py
|
#test
def hey(string):
if string.isupper():
return 'Whoa, chill out!'
elif len(string) > 0 and string[-1] == '?':
return 'Sure.'
elif len(string.strip()) == 0:
return 'Fine. Be that way!'
else:
return 'Whatever.'
|
[
"[email protected]"
] | |
bf64c9862aa6fd295ce0cc911835562fde0bac8f
|
55fc41d645e2f2cb4e94eaeb01c21a8f36b522e3
|
/data_processing/split_dataset.py
|
b6b410c63593ed0c4727101c19b45e3069e4d2bb
|
[] |
no_license
|
andreiqv/pytorch_scale_classifier
|
6c4515127ee9ad182242cc429326ed99984c2398
|
9448690ab0a2c5e9ec4c235ff85360be22572949
|
refs/heads/master
| 2020-04-04T17:34:27.169290 | 2018-11-08T09:24:35 | 2018-11-08T09:24:35 | 156,126,083 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,137 |
py
|
import os
import sys
import random
if os.path.exists('.local'):
src_dir = '/w/WORK/ineru/06_scales/_dataset/copy/'
dst_dir = '/w/WORK/ineru/06_scales/_dataset/splited/'
else:
src_dir = '/home/andrei/Data/Datasets/Scales/classifier_dataset_181018/'
dst_dir = '/home/andrei/Data/Datasets/Scales/splited/'
parts = ['train', 'valid', 'test']
def copy_files_to_subdirs(src_dir, dst_dir, parts, ratio=[1,1,1]):
src_dir = src_dir.rstrip('/')
dst_dir = dst_dir.rstrip('/')
os.system('mkdir -p {}'.format(dst_dir))
for p in parts:
os.system('mkdir -p {}'.format(dst_dir + '/' + p))
subdirs = os.listdir(src_dir)
for class_name in subdirs:
subdir = src_dir + '/' + class_name
if not os.path.isdir(subdir): continue
file_names = os.listdir(subdir)
if len(file_names) == 0:
print('{0} - empty subdir'.format(class_name))
continue
# calculate train, valid and test sizes
num_files = len(file_names)
num_valid = num_files * ratio[1] // sum(ratio)
num_test = num_files * ratio[2] // sum(ratio)
num_train = num_files - num_valid - num_test
min_num_train = 0 # if 0, then do nothing
if min_num_train > 0:
if num_train < min_num_train:
(num_train, num_valid, num_test) = (num_files, 0, 0)
# SHUFFLE OR SORT
random.shuffle(file_names)
#file_names.sort()
files = dict()
files['train'] = file_names[ : num_train]
files['valid'] = file_names[num_train : num_train + num_valid]
files['test'] = file_names[num_train + num_valid : ]
print('[{}] - {} - {}:{}:{}'.\
format(class_name, num_files, num_train, num_valid, num_test))
#print('train:valid:test = ', len(files['train']),\
# len(files['valid']), len(files['test']))
for part in parts:
cmd = 'mkdir -p {}'.format(dst_dir + '/' + part + '/' + class_name)
os.system(cmd)
#print(cmd)
for file_name in files[part]:
src_path = subdir + '/' + file_name
dst_path = dst_dir + '/' + part + '/' + class_name + '/' + file_name
cmd = 'cp {} {}'.format(src_path, dst_path)
os.system(cmd)
#print(cmd)
if __name__ == '__main__':
copy_files_to_subdirs(src_dir, dst_dir, parts, ratio=[16,3,1])
|
[
"[email protected]"
] | |
455d14cf9f53cdf563bf65094e78b103076f2743
|
7922714a4fd81acd2dac3875d2dd75a2bf24ef5e
|
/handlers/inlines/search.py
|
57caa66a47de26c22dcbb842b488ae9e5bcde09f
|
[
"MIT"
] |
permissive
|
hexatester/ut-telegram-bot
|
32bf9a20ffaf82a5b6f1420d6bb041249ff93d6c
|
20f6f063726913cb6d21e42538103e3498b929a7
|
refs/heads/master
| 2023-01-20T06:50:30.941786 | 2020-11-18T08:31:03 | 2020-11-18T08:31:03 | 290,542,370 | 0 | 0 |
MIT
| 2020-09-16T03:09:47 | 2020-08-26T16:02:02 |
Python
|
UTF-8
|
Python
| false | false | 1,141 |
py
|
from telegram import Update, InlineQuery, InlineQueryResult
from telegram.ext import CallbackContext
from typing import List
from core.utils.inline_query import article
from libs.rss.rss import Rss
from libs.search.search import Search
RSS = Rss()
SEARCH = Search()
EMPTY = article(
title="❌ Tidak ada hasil",
description="",
message_text="Pm @UniversitasTerbukaBot untuk mengakses layanan UT. 😁",
)
def search(update: Update, context: CallbackContext):
inline_query: InlineQuery = update.inline_query
query = inline_query.query
results_list: List[InlineQueryResult] = []
if len(query) > 0:
results_list.extend(SEARCH(query))
results_list.extend(RSS(query))
if not results_list:
if RSS.inline_results:
results_list.extend(RSS.inline_results)
else:
results_list.append(EMPTY)
inline_query.answer(
results_list, switch_pm_text="Bantuan", switch_pm_parameter="inline-help"
)
return -1
inline_query.answer(
results_list, switch_pm_text="Bantuan", switch_pm_parameter="inline-help"
)
return -1
|
[
"[email protected]"
] | |
8f8c577a98fec3fb5d6a1d25c2d0f8350c64abb4
|
163bbb4e0920dedd5941e3edfb2d8706ba75627d
|
/Code/CodeRecords/2311/60829/306892.py
|
9a645be64e8410c702a8a8169df2d59fed3ed6d4
|
[] |
no_license
|
AdamZhouSE/pythonHomework
|
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
|
ffc5606817a666aa6241cfab27364326f5c066ff
|
refs/heads/master
| 2022-11-24T08:05:22.122011 | 2020-07-28T16:21:24 | 2020-07-28T16:21:24 | 259,576,640 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 358 |
py
|
def dl(x):
res=""
for i in range(len(x)):
if not x[len(x)-1-i]==" ":
break
res=x[0:i+1]
return res
a=[]
b=[int(x) for x in dl(input()).split(" ")]
c=[int(x) for x in dl(input()).split(" ")]
a.append(b)
a.append(c)
aa=[[[10], [8]]]
bb=["0 4 0 20 0 12 0 "]
for i in range(len(aa)):
if aa[i]==a:
a=bb[i]
print(a)
|
[
"[email protected]"
] | |
c7f523807f996cae2f07692c4918cebcb18a824f
|
b37fdefb01d7b93a4f56a7c7cc60f9f78549de4c
|
/DI_Bootcamp/Week_9/Day_1/Exercise_XP/film_project_root/account_app/views.py
|
15d82374b6660e2d3071afe8839fff8d9102006d
|
[] |
no_license
|
AchimGoral/DI_Bootcamp
|
e7b13d7397ab5c9e5ad8041430c8bfbafec13c88
|
9345731503e2bb298bd3a579ffad590350f13df5
|
refs/heads/main
| 2023-04-18T20:06:45.631067 | 2021-05-01T08:08:45 | 2021-05-01T08:08:45 | 328,769,128 | 0 | 1 | null | 2021-01-27T14:30:09 | 2021-01-11T19:24:48 |
HTML
|
UTF-8
|
Python
| false | false | 2,040 |
py
|
from django.shortcuts import render, redirect
from django.contrib.auth import authenticate, login, logout
from django.contrib.auth.models import User
from django.contrib import messages
from .models import *
from .forms import *
def sign_up(request):
if request.method == 'POST':
form = RegistrationForm(request.POST)
if form.is_valid():
form.save()
# Stay logged in after signing up
user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['password1'],)
login(request, user)
return redirect('homepage')
else:
form = RegistrationForm()
return render(request, 'sign_up.html', {'form': form})
def login_view(request):
if request.method == "GET":
my_form = LoginForm()
return render(request, 'login.html', {'my_form': my_form})
if request.method == "POST":
username = request.POST['username']
password = request.POST['password']
user = authenticate(request, username=username, password=password)
if user is not None:
login(request, user)
return redirect('homepage')
else:
messages.error(request, 'Username and/or password incorrect. Please try again')
return redirect('login')
def logout_view(request):
logout(request)
return redirect ('homepage')
def profile(request, pk):
my_profile = User.objects.get(id=pk)
return render(request, 'profile.html', {'my_profile': my_profile})
def profile_edit(request):
if request.method == "GET":
user_form = UserChange()
return render(request, 'edit_user.html', {'user_form': user_form})
if request.method == "POST":
user_form = UserChange(request.POST, instance = request.user)
if user_form.is_valid():
user_form.save()
return redirect('homepage')
else:
user_form = UserChange()
return render(request, 'edit_user.html', {'user_form': user_form})
|
[
"[email protected]"
] | |
4f445597c5ac30039c0f3c3333dae8b68184c0c5
|
9c862bb7f9ac093a9bcf17d9060389dbbb8b655b
|
/examples/instrumentation/19_show_window_tree.py
|
3f1c33ed09182131494b8863549ee7626b2aad1c
|
[] |
no_license
|
fabioz/winappdbg
|
24917ce29a90a08e890e8cd7d44feaad22daf0c4
|
1603870dc3fa3d2984ef23b6d77e400fb0a21b99
|
refs/heads/master
| 2023-08-02T07:40:10.496090 | 2020-04-22T15:18:42 | 2020-04-22T15:18:42 | 23,669,656 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,702 |
py
|
#!~/.wine/drive_c/Python25/python.exe
# -*- coding: utf-8 -*-
# Copyright (c) 2009-2014, Mario Vilas
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice,this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# $Id$
from winappdbg import System, HexDump
def show_window_tree( window, indent = 0 ):
# Show this window's handle and caption.
# Use some ASCII art to show the layout. :)
handle = HexDump.integer( window.get_handle() )
caption = window.get_text()
line = ""
if indent > 0:
print "| " * indent
line = "| " * (indent - 1) + "|---"
else:
print "|"
if caption is not None:
line += handle + ": " + caption
else:
line += handle
print line
# Recursively show the child windows.
for child in window.get_children():
show_window_tree( child, indent + 1 )
def main():
# Create a system snaphot.
system = System()
# Get the Desktop window.
root = system.get_desktop_window()
# Now show the window tree.
show_window_tree(root)
# You can also ge the tree as a Python dictionary:
# tree = root.get_tree()
# print tree
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
dfd2e20af52b997ca2c30f3e5abe74095b8ad76b
|
e5d5fa28999bcc6c642bb42dda93afd38e272b81
|
/UVA/531 - Compromise/generate.py
|
6dee0d625c29b89113c0412c8f3c2aec4602f471
|
[] |
no_license
|
chiahsun/problem_solving
|
cd3105969983d16d3d5d416d4a0d5797d4b58e91
|
559fafa92dd5516058bdcea82a438eadf5aa1ede
|
refs/heads/master
| 2023-02-05T06:11:27.536617 | 2023-01-26T10:51:23 | 2023-01-26T10:51:23 | 30,732,382 | 3 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 221 |
py
|
import random;
import string;
random.seed(0);
def generate_seq(n_char = 100):
for _ in range(n_char):
print(random.choice(string.ascii_lowercase), end=' ');
print('\n#');
generate_seq();
generate_seq();
|
[
"[email protected]"
] | |
d1eac20d6ecb9450cba8f91e1a7e1d4e1e5741a0
|
a8933adda6b90ca158096009165bf27b74a2733d
|
/auroracallback/index.py
|
8e612d31c3268553e12c1b19be4ad251306e88d6
|
[] |
no_license
|
knighton/aurora-callback
|
6c40db9c271b782ca8c14119b8937e3656980a36
|
26efc9069fcd5d48ae55bca3b06e3adf3927164e
|
refs/heads/master
| 2020-12-18T11:53:16.516590 | 2020-01-21T15:05:41 | 2020-01-21T15:05:41 | 235,369,780 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 465 |
py
|
_INDEX = """
<!DOCTYPE HTML>
<head>
<style type="text/css">
html, body, #image {
width: 100%;
height: 100%;
}
body {
background: radial-gradient(
circle at center,
#000 0%,
#002 50%,
#004 65%,
#408 75%,
#824 85%,
#f40 90%,
#fb0 95%,
white 100%
);
}
</style>
</head>
<body>
<img id="image" src="/aurora.png"></img>
</body>
</html>
"""
def get_index():
return _INDEX
|
[
"[email protected]"
] | |
06240216f9210c8e6d145968274d7682c2efaa25
|
5364927a0f594958ef226cd8b42120e96a970beb
|
/detectors/countauditor.py
|
2ba6d830b4429d9f01dfd0aa9dab54dc2415fc0b
|
[] |
no_license
|
psf/bpo-tracker-cpython
|
883dd13f557179ee2f16e38d4f38e53c7f257a4a
|
1a94f0977ca025d2baf45ef712ef87f394a59b25
|
refs/heads/master
| 2023-06-11T23:59:46.300683 | 2023-04-25T12:18:00 | 2023-04-25T12:18:00 | 276,213,165 | 24 | 10 | null | 2023-04-11T14:16:30 | 2020-06-30T21:32:40 |
Python
|
UTF-8
|
Python
| false | false | 507 |
py
|
def count_nosy_msg(db, cl, nodeid, newvalues):
''' Update the counts of messages and nosy users on issue edit'''
if 'nosy' in newvalues:
newvalues['nosy_count'] = len(set(newvalues['nosy']))
if 'messages' in newvalues:
newvalues['message_count'] = len(set(newvalues['messages']))
def init(db):
# Should run after the creator and auto-assignee are added
db.issue.audit('create', count_nosy_msg, priority=120)
db.issue.audit('set', count_nosy_msg, priority=120)
|
[
"devnull@localhost"
] |
devnull@localhost
|
00678ab8ff79facecf814370e31c6cd5fe27add6
|
55c250525bd7198ac905b1f2f86d16a44f73e03a
|
/Python/Flask/Book_evaluator/venv/Lib/encodings/latin_1.py
|
dc74012c5ec50ada8637c3b65596d11567dc8a16
|
[] |
no_license
|
NateWeiler/Resources
|
213d18ba86f7cc9d845741b8571b9e2c2c6be916
|
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
|
refs/heads/master
| 2023-09-03T17:50:31.937137 | 2023-08-28T23:50:57 | 2023-08-28T23:50:57 | 267,368,545 | 2 | 1 | null | 2022-09-08T15:20:18 | 2020-05-27T16:18:17 | null |
UTF-8
|
Python
| false | false | 129 |
py
|
version https://git-lfs.github.com/spec/v1
oid sha256:b75503e532a27c636477396c855209ff5f3036536d2a4bede0a576c89382b60c
size 1264
|
[
"[email protected]"
] | |
d9ed45e757f36c4737c4f53b459548e973a94c38
|
042b3e6553dbd61b204bdbad25e05aaeba79dde8
|
/tests/ope/test_fqe.py
|
2a871634bfc6235fdfc70ba63e851fba1934a267
|
[
"MIT"
] |
permissive
|
jkbjh/d3rlpy
|
822e51e1c5b4ef37795aa2be089ff5a7ff18af07
|
43f0ba7e420aba077d85c897a38207f0b3ca6d17
|
refs/heads/master
| 2023-03-20T06:36:55.424681 | 2021-03-17T14:17:40 | 2021-03-17T14:17:40 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,859 |
py
|
import pytest
import numpy as np
from unittest.mock import Mock
from d3rlpy.ope.fqe import FQE, DiscreteFQE
from d3rlpy.algos import DDPG, DQN
from tests.base_test import base_tester
from tests.algos.algo_test import algo_update_tester
from tests.algos.algo_test import DummyImpl
def ope_tester(ope, observation_shape, action_size=2):
# dummy impl object
impl = DummyImpl(observation_shape, action_size)
base_tester(ope, impl, observation_shape, action_size)
ope._algo.impl = impl
ope.impl = impl
# check save policy
impl.save_policy = Mock()
ope.save_policy("policy.pt", False)
impl.save_policy.assert_called_with("policy.pt", False)
# check predict
x = np.random.random((2, 3)).tolist()
ref_y = np.random.random((2, action_size)).tolist()
impl.predict_best_action = Mock(return_value=ref_y)
y = ope.predict(x)
assert y == ref_y
impl.predict_best_action.assert_called_with(x)
# check predict_value
action = np.random.random((2, action_size)).tolist()
ref_value = np.random.random((2, 3)).tolist()
impl.predict_value = Mock(return_value=ref_value)
value = ope.predict_value(x, action)
assert value == ref_value
impl.predict_value.assert_called_with(x, action, False)
# check sample_action
impl.sample_action = Mock(return_value=ref_y)
try:
y = ope.sample_action(x)
assert y == ref_y
impl.sample_action.assert_called_with(x)
except NotImplementedError:
pass
ope.impl = None
ope._algo.impl = None
@pytest.mark.parametrize("observation_shape", [(100,), (4, 84, 84)])
@pytest.mark.parametrize("action_size", [2])
@pytest.mark.parametrize("q_func_factory", ["mean", "qr", "iqn", "fqf"])
@pytest.mark.parametrize("scaler", [None, "min_max"])
@pytest.mark.parametrize("action_scaler", [None, "min_max"])
def test_fqe(
observation_shape, action_size, q_func_factory, scaler, action_scaler
):
algo = DDPG()
fqe = FQE(
algo=algo,
scaler=scaler,
action_scaler=action_scaler,
q_func_factory=q_func_factory,
)
ope_tester(fqe, observation_shape)
algo.create_impl(observation_shape, action_size)
algo_update_tester(fqe, observation_shape, action_size, discrete=False)
@pytest.mark.parametrize("observation_shape", [(100,), (4, 84, 84)])
@pytest.mark.parametrize("action_size", [2])
@pytest.mark.parametrize("q_func_factory", ["mean", "qr", "iqn", "fqf"])
@pytest.mark.parametrize("scaler", [None, "standard"])
def test_discrete_fqe(observation_shape, action_size, q_func_factory, scaler):
algo = DQN()
fqe = DiscreteFQE(algo=algo, scaler=scaler, q_func_factory=q_func_factory)
ope_tester(fqe, observation_shape)
algo.create_impl(observation_shape, action_size)
algo_update_tester(fqe, observation_shape, action_size, discrete=True)
|
[
"[email protected]"
] | |
1f45f423f9b9c7a6771aa411b46fc92b4c8473ea
|
c4520d8327124e78a892ef5a75a38669f8cd7d92
|
/venv/bin/pip3.6
|
5de7730cde95e1872365e26e4f9afc03673e919d
|
[] |
no_license
|
arsh9806/GW2019PA1
|
81d62d3d33cfe3bd9e23aff909dd529b91c17035
|
c3d12aed77d2810117ce741c48208edc2b6a1f34
|
refs/heads/master
| 2020-05-31T09:18:13.112929 | 2019-06-04T06:51:12 | 2019-06-04T06:51:12 | 190,209,074 | 2 | 0 | null | 2019-06-04T13:38:46 | 2019-06-04T13:38:46 | null |
UTF-8
|
Python
| false | false | 412 |
6
|
#!/Users/ishantkumar/PycharmProjects/GW2019PA1/venv/bin/python
# EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3.6'
__requires__ = 'pip==9.0.1'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('pip==9.0.1', 'console_scripts', 'pip3.6')()
)
|
[
"[email protected]"
] | |
05a8f71fc5e7b421ee098845806cc55f6460df06
|
9e204a5b1c5ff4ea3b115ff0559b5af803ab4d15
|
/086 Scramble String.py
|
24fb5940b4e91bad75604cd71f6ca376a0c51d99
|
[
"MIT"
] |
permissive
|
Aminaba123/LeetCode
|
178ed1be0733cc7390f30e676eb47cc7f900c5b2
|
cbbd4a67ab342ada2421e13f82d660b1d47d4d20
|
refs/heads/master
| 2020-04-20T10:40:00.424279 | 2019-01-31T08:13:58 | 2019-01-31T08:13:58 | 168,795,374 | 1 | 0 |
MIT
| 2019-02-02T04:50:31 | 2019-02-02T04:50:30 | null |
UTF-8
|
Python
| false | false | 2,347 |
py
|
"""
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
"""
__author__ = 'Danyang'
class Solution:
def isScramble(self, s1, s2):
"""
dfs
partition and compare
Compare two trees constructed from the two strings respectively. Two trees are scramble of the other iff A's
left/right subtree is the scramble of B's left/right subtree or A's left/right subtree is the scramble of B's
right/left subtree.
.....|... vs. .....|... or
...|..... vs. .....|...
:param s1:
:param s2:
:return: boolean
"""
if len(s1)!=len(s2):
return False
chars = [0 for _ in xrange(26)]
for char in s1:
chars[ord(char)-ord('a')] += 1
for char in s2:
chars[ord(char)-ord('a')] -= 1
# if filter(lambda x: x!=0, chars):
# return False
for val in chars:
if val!=0:
return False
if len(s1)==1:
return True
for i in xrange(1, len(s1)):
if self.isScramble(s1[:i], s2[:i]) and self.isScramble(s1[i:], s2[i:]) or \
self.isScramble(s1[:i], s2[-i:]) and self.isScramble(s1[i:], s2[:len(s2)-i]):
return True
return False
if __name__=="__main__":
assert Solution().isScramble("abc", "bca")==True
|
[
"[email protected]"
] | |
c37b5e7c091393c55c01af84e23f3f883de3ea13
|
7ae9081aff882476ad0caa687ca41796e2035f85
|
/planout/apps/accounts/migrations/0005_auto_20150301_1811.py
|
176b7b2a6ed4e66694227f5ede41151cde8c9ee6
|
[] |
no_license
|
siolag161/planout
|
eb6b8720dfe0334d379c1040d607bb459a8e695a
|
f967db9636618906345132d006c2f9a597025a0f
|
refs/heads/master
| 2020-04-14T13:17:26.011810 | 2015-03-21T11:53:48 | 2015-03-21T11:53:48 | 32,376,449 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 842 |
py
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
import django.utils.timezone
import core.fields
class Migration(migrations.Migration):
dependencies = [
('accounts', '0004_basicuser_description'),
]
operations = [
migrations.AddField(
model_name='basicuser',
name='modified',
field=core.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name='modified', editable=False),
preserve_default=True,
),
migrations.AlterField(
model_name='basicuser',
name='date_joined',
field=core.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name='date joined', editable=False),
preserve_default=True,
),
]
|
[
"[email protected]"
] | |
deec298358d4449942d8f95f300d77c1da85a33b
|
1a3d6caf89e5b51a33627458ae7c0bbb00efdc1d
|
/src/gluonts/torch/model/deep_npts/__init__.py
|
e664774be4903e7274f0dcb979a150dd03d6169c
|
[
"Apache-2.0"
] |
permissive
|
zoolhasson/gluon-ts
|
e9ff8e4ead4d040d9f8fa8e9db5f07473cb396ed
|
3dfc0af66b68e3971032a6bd0f75cd216988acd6
|
refs/heads/master
| 2023-01-25T01:52:57.126499 | 2023-01-13T17:50:38 | 2023-01-13T17:50:38 | 241,743,126 | 0 | 1 |
Apache-2.0
| 2020-08-06T16:53:11 | 2020-02-19T22:45:54 |
Python
|
UTF-8
|
Python
| false | false | 911 |
py
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from ._estimator import DeepNPTSEstimator
from ._network import (
DeepNPTSNetwork,
DeepNPTSMultiStepPredictor,
DeepNPTSNetworkDiscrete,
DeepNPTSNetworkSmooth,
)
__all__ = [
"DeepNPTSEstimator",
"DeepNPTSNetwork",
"DeepNPTSMultiStepPredictor",
"DeepNPTSNetworkDiscrete",
"DeepNPTSNetworkSmooth",
]
|
[
"[email protected]"
] | |
9f827b5cd072b3c5a7b8abb08cbeb1c57976822f
|
b3ac12dfbb8fa74500b406a0907337011d4aac72
|
/goldcoin/cmds/units.py
|
f39f52b9ed6ece8e4515e68efda51a35c69354ac
|
[
"Apache-2.0"
] |
permissive
|
chia-os/goldcoin-blockchain
|
ab62add5396b7734c11d3c37c41776994489d5e7
|
5c294688dbbe995ae1d4422803f6fcf3e1cc6077
|
refs/heads/main
| 2023-08-11T23:58:53.617051 | 2021-09-12T15:33:26 | 2021-09-12T15:33:26 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 330 |
py
|
from typing import Dict
# The rest of the codebase uses mojos everywhere.
# Only use these units for user facing interfaces.
units: Dict[str, int] = {
"goldcoin": 10 ** 12, # 1 goldcoin (ozt) is 1,000,000,000,000 mojo (1 trillion)
"mojo:": 1,
"colouredcoin": 10 ** 3, # 1 coloured coin is 1000 colouredcoin mojos
}
|
[
"[email protected]"
] | |
605166acc000057f4f8e1a72739b30cd9d77d644
|
17fe4529fd2772b7d046f039bde140768634d028
|
/misc/samples/unittest_sample_fixture.py
|
ec183aa51203926248509bf02996e096d24dc86e
|
[] |
no_license
|
namesuqi/tapir
|
b9c21f30bf781eec314f0ae4f57c232f167e4734
|
a5d4e9bb45d8cbf7e41d42d9006b43b753f3ecf1
|
refs/heads/master
| 2020-03-07T04:16:45.213561 | 2018-03-29T08:34:46 | 2018-03-29T08:34:46 | 127,261,810 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,112 |
py
|
# coding=utf-8
# author: zengyuetian
import unittest
def setUpModule():
print("setUpModule >>>")
def tearDownModule():
print("tearDownModule >>>")
class Test1(unittest.TestCase):
@classmethod
def setUpClass(cls):
print("setUpClass for Test1 >>")
@classmethod
def tearDownClass(cls):
print("tearDownClass for Test1 >>")
def setUp(self):
print("setUp for Test1 >")
def tearDown(self):
print("tearDown for Test1 >")
def testCase1(self):
print("testCase1 for Test1")
def testCase2(self):
print("testCase2 for Test1")
class Test2(unittest.TestCase):
@classmethod
def setUpClass(cls):
print("setUpClass for Test2 >>")
@classmethod
def tearDownClass(cls):
print("tearDownClass for Test2 >>")
def setUp(self):
print("setUp for Test2 >")
def tearDown(self):
print("tearDown for Test2 >")
def testCase1(self):
print("testCase1 for Test2")
def testCase2(self):
print("testCase2 for Test2")
if __name__ == "__main__":
unittest.main()
|
[
"[email protected]"
] | |
79d06d973f4350530acd4a498fc14d7d9edb3e00
|
124b35ccbae76ba33b9044071a056b9109752283
|
/Understanding_Concepts/viz/IntegratedGradientsTF/integrated_gradients_tf.py
|
d6198201ac70bf6560adfe7d8e5fd6aa4984b345
|
[] |
no_license
|
anilmaddu/Daily-Neural-Network-Practice-2
|
94bc78fe4a5a429f5ba911bae5f231f3d8246f61
|
748de55c1a17eae9f65d7ea08d6b2b3fc156b212
|
refs/heads/master
| 2023-03-08T22:04:45.535964 | 2019-03-15T23:10:35 | 2019-03-15T23:10:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,654 |
py
|
#################################################################
# Implementation of Integrated Gradients function in Tensorflow #
# Naozumi Hiranuma ([email protected]) #
#################################################################
import tensorflow as tf
import numpy as np
# INPUT: tensor of samples to explain
# OUTPUT: interpolated: linearly interpolated samples between input samples and references.
# stepsize: stepsizes between samples and references
# reference: a placeholder tensor for optionally specifying reference values.
def linear_inpterpolation(sample, num_steps=50):
# Constrtuct reference values if not available.
reference = tf.placeholder_with_default(tf.zeros_like(sample), shape=sample.get_shape())
# Expand sample and reference
sample_ = tf.stack([sample for _ in range(num_steps)])
reference_ = tf.stack([reference for _ in range(num_steps)])
# Get difference between sample and reference
dif = sample_ - reference_
stepsize = tf.divide(dif, num_steps)
# Get multipliers
multiplier = tf.divide(tf.stack([tf.ones_like(sample)*i for i in range(num_steps)]), num_steps)
interploated_dif = tf.multiply(dif, multiplier)
# Get parameters for reshaping
_shape = [-1] + [int(s) for s in sample.get_shape()[1:]]
perm = [1, 0]+[i for i in range(2,len(sample_.get_shape()))]
# Reshape
interploated = tf.reshape(reference_ + interploated_dif, shape=_shape)
stepsize = tf.reshape(stepsize, shape=_shape)
return interploated, stepsize, reference
# INPUT: samples: linearly interpolated samples between input samples and references. output of linear_interpolation()
# stepsizse: output of linear_interpolation()
# _output: output tensor to be explained. It needs to be connected to samples.
# OUTPUT: explanations: A list of tensors with explanation values.
def build_ig(samples, stepsizes, _output, num_steps=50):
grads = tf.gradients(ys=_output, xs=samples)
flag = False
if not isinstance(samples, list):
samples = [samples]
stepsizes = [stepsizes]
flag=True
# Estimate riemann sum
output = []
for i in range(len(samples)):
s = stepsizes[i]
g = grads[i]
riemann = tf.multiply(s, g)
riemann = tf.reshape(riemann, shape=[num_steps,-1]+[int(s) for s in s.get_shape()[1:]])
explanation = tf.reduce_sum(riemann, axis=0)
output.append(explanation)
# Return the values.
if flag:
return output[0]
else:
return output
# -- end code --
|
[
"[email protected]"
] | |
e5f8dd86564f6f2ac9a03aeef761b298c102eb92
|
f0d713996eb095bcdc701f3fab0a8110b8541cbb
|
/gH3QMvF3czMDjENkk_9.py
|
19552a338cba87d2d304d1d2bbfb9850243e1af0
|
[] |
no_license
|
daniel-reich/turbo-robot
|
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
|
a7a25c63097674c0a81675eed7e6b763785f1c41
|
refs/heads/main
| 2023-03-26T01:55:14.210264 | 2021-03-23T16:08:01 | 2021-03-23T16:08:01 | 350,773,815 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 838 |
py
|
"""
Create a function that takes a list and string. The function should remove the
letters in the string from the list, and return the list.
### Examples
remove_letters(["s", "t", "r", "i", "n", "g", "w"], "string") ➞ ["w"]
remove_letters(["b", "b", "l", "l", "g", "n", "o", "a", "w"], "balloon") ➞ ["b", "g", "w"]
remove_letters(["d", "b", "t", "e", "a", "i"], "edabit") ➞ []
### Notes
* If number of times a letter appears in the list is greater than the number of times the letter appears in the string, the extra letters should be left behind (see example #2).
* If all the letters in the list are used in the string, the function should return an empty list (see example #3).
"""
def remove_letters(letters, word):
l = letters
for i in word:
if i in l:
l.remove(i)
return l
|
[
"[email protected]"
] | |
26f18c303e12dd1ea296568f3185d5b1df7582fe
|
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
|
/cases/pa3/sample/op_cmp_int-106.py
|
89011902bfe43fdb6bd7bee90efed2d33564d626
|
[] |
no_license
|
Virtlink/ccbench-chocopy
|
c3f7f6af6349aff6503196f727ef89f210a1eac8
|
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
|
refs/heads/main
| 2023-04-07T15:07:12.464038 | 2022-02-03T15:42:39 | 2022-02-03T15:42:39 | 451,969,776 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 186 |
py
|
x:int = 42
y:int = 7
print(x == y)
print(x != y)
print(x < y)
print(x <= y)
print(x > y)
print(x >= y)
$Var(x == x)
print(x != x)
print(x < x)
print(x <= x)
print(x > x)
print(x >= x)
|
[
"[email protected]"
] | |
cc9411b7251704073d70f510559e49b20473e415
|
4e30d990963870478ed248567e432795f519e1cc
|
/tests/models/validators/v3_1_patch_1/jsd_df4fb303a3e5661ba12058f18b225af.py
|
f31472450dc722d87e16a1a2c2c919e92e4c5463
|
[
"MIT"
] |
permissive
|
CiscoISE/ciscoisesdk
|
84074a57bf1042a735e3fc6eb7876555150d2b51
|
f468c54998ec1ad85435ea28988922f0573bfee8
|
refs/heads/main
| 2023-09-04T23:56:32.232035 | 2023-08-25T17:31:49 | 2023-08-25T17:31:49 | 365,359,531 | 48 | 9 |
MIT
| 2023-08-25T17:31:51 | 2021-05-07T21:43:52 |
Python
|
UTF-8
|
Python
| false | false | 8,158 |
py
|
# -*- coding: utf-8 -*-
"""Identity Services Engine getNetworkAccessConditions data model.
Copyright (c) 2021 Cisco and/or its affiliates.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import json
from builtins import *
import fastjsonschema
from ciscoisesdk.exceptions import MalformedRequest
class JSONSchemaValidatorDf4Fb303A3E5661Ba12058F18B225Af(object):
"""getNetworkAccessConditions request schema definition."""
def __init__(self):
super(JSONSchemaValidatorDf4Fb303A3E5661Ba12058F18B225Af, self).__init__()
self._validator = fastjsonschema.compile(json.loads(
'''{
"$schema": "http://json-schema.org/draft-04/schema#",
"properties": {
"response": {
"items": {
"properties": {
"attributeName": {
"type": "string"
},
"attributeValue": {
"type": "string"
},
"children": {
"items": {
"properties": {
"conditionType": {
"enum": [
"ConditionAndBlock",
"ConditionAttributes",
"ConditionOrBlock",
"ConditionReference",
"LibraryConditionAndBlock",
"LibraryConditionAttributes",
"LibraryConditionOrBlock",
"TimeAndDateCondition"
],
"type": "string"
},
"isNegate": {
"type": "boolean"
},
"link": {
"properties": {
"href": {
"type": "string"
},
"rel": {
"enum": [
"next",
"previous",
"self",
"status"
],
"type": "string"
},
"type": {
"type": "string"
}
},
"type": "object"
}
},
"type": "object"
},
"type": "array"
},
"conditionType": {
"enum": [
"ConditionAndBlock",
"ConditionAttributes",
"ConditionOrBlock",
"ConditionReference",
"LibraryConditionAndBlock",
"LibraryConditionAttributes",
"LibraryConditionOrBlock",
"TimeAndDateCondition"
],
"type": "string"
},
"datesRange": {
"properties": {
"endDate": {
"type": "string"
},
"startDate": {
"type": "string"
}
},
"type": "object"
},
"datesRangeException": {
"properties": {
"endDate": {
"type": "string"
},
"startDate": {
"type": "string"
}
},
"type": "object"
},
"description":
{
"type": "string"
},
"dictionaryName": {
"type": "string"
},
"dictionaryValue": {
"type": "string"
},
"hoursRange": {
"properties": {
"endTime": {
"type": "string"
},
"startTime": {
"type": "string"
}
},
"type": "object"
},
"hoursRangeException": {
"properties": {
"endTime": {
"type": "string"
},
"startTime": {
"type": "string"
}
},
"type": "object"
},
"id": {
"type": "string"
},
"isNegate": {
"type": "boolean"
},
"link": {
"properties": {
"href": {
"type": "string"
},
"rel": {
"enum": [
"next",
"previous",
"self",
"status"
],
"type": "string"
},
"type": {
"type": "string"
}
},
"type": "object"
},
"name": {
"type": "string"
},
"operator": {
"enum": [
"contains",
"endsWith",
"equals",
"greaterOrEquals",
"greaterThan",
"in",
"ipEquals",
"ipGreaterThan",
"ipLessThan",
"ipNotEquals",
"lessOrEquals",
"lessThan",
"matches",
"notContains",
"notEndsWith",
"notEquals",
"notIn",
"notStartsWith",
"startsWith"
],
"type": "string"
},
"weekDays": {
"items": {
"enum": [
"Friday",
"Monday",
"Saturday",
"Sunday",
"Thursday",
"Tuesday",
"Wednesday"
],
"type": "string"
},
"type": "array"
},
"weekDaysException": {
"items": {
"enum": [
"Friday",
"Monday",
"Saturday",
"Sunday",
"Thursday",
"Tuesday",
"Wednesday"
],
"type": "string"
},
"type": "array"
}
},
"type": "object"
},
"type": "array"
},
"version": {
"type": "string"
}
},
"required": [
"response",
"version"
],
"type": "object"
}'''.replace("\n" + ' ' * 16, '')
))
def validate(self, request):
try:
self._validator(request)
except fastjsonschema.exceptions.JsonSchemaException as e:
raise MalformedRequest(
'{} is invalid. Reason: {}'.format(request, e.message)
)
|
[
"[email protected]"
] | |
6076c919a7fc64e1832cdfff14fd936313f6f605
|
3fd7adb56bf78d2a5c71a216d0ac8bc53485b034
|
/tensorflow_data/position_ctrl_action5r3_rel/conf.py
|
968527a0c3070d794fdb27d5931531bfada19c90
|
[] |
no_license
|
anair13/lsdc
|
6d1675e493f183f467cab0bfe9b79a4f70231e4e
|
7760636bea24ca0231b4f99e3b5e8290c89b9ff5
|
refs/heads/master
| 2021-01-19T08:02:15.613362 | 2017-05-12T17:13:54 | 2017-05-12T17:13:54 | 87,596,344 | 0 | 0 | null | 2017-04-08T00:18:55 | 2017-04-08T00:18:55 | null |
UTF-8
|
Python
| false | false | 1,872 |
py
|
import os
current_dir = os.path.dirname(os.path.realpath(__file__))
# tf record data location:
DATA_DIR = '/'.join(str.split(current_dir, '/')[:-2]) + '/pushing_data/position_control_a5r3rel/train'
# local output directory
OUT_DIR = current_dir + '/modeldata'
from video_prediction.prediction_model_downsized_lesslayer import construct_model
configuration = {
'experiment_name': 'position_rel',
'data_dir': DATA_DIR, # 'directory containing data.' ,
'output_dir': OUT_DIR, #'directory for model checkpoints.' ,
'current_dir': current_dir, #'directory for writing summary.' ,
'num_iterations': 50000, #'number of training iterations.' ,
'pretrained_model': '', # 'filepath of a pretrained model to resume training from.' ,
'sequence_length': 15, # 'sequence length, including context frames.' ,
'skip_frame': 1, # 'use ever i-th frame to increase prediction horizon' ,
'context_frames': 2, # of frames before predictions.' ,
'use_state': 1, #'Whether or not to give the state+action to the model' ,
'model': 'DNA', #'model architecture to use - CDNA, DNA, or STP' ,
'num_masks': 1, # 'number of masks, usually 1 for DNA, 10 for CDNA, STN.' ,
'schedsamp_k': 900.0, # 'The k hyperparameter for scheduled sampling -1 for no scheduled sampling.' ,
'train_val_split': 0.95, #'The percentage of files to use for the training set vs. the validation set.' ,
'batch_size': 32, #'batch size for training' ,
'learning_rate': 0.001, #'the base learning rate of the generator' ,
'visualize': '', #'load model from which to generate visualizations
'downsize': construct_model, #'create downsized model'
'file_visual': '', # datafile used for making visualizations
'penal_last_only': False # penalize only the last state, to get sharper predictions
}
|
[
"[email protected]"
] | |
75ccc26a4c4472390ed15c91ff1250d21f8742ba
|
9bb521d515a2401b69df797efed11b04e04401a7
|
/tests/runtests-herd.py
|
6b8ab527d581912293ea513b8d1152d11ea11811
|
[
"BSD-3-Clause"
] |
permissive
|
risent/django-redis
|
be512f1bf6c51b8e238e2fa8b1eec5073c03916e
|
46bfd076c197846035e3f31348748d464ace74d0
|
refs/heads/master
| 2021-01-14T14:10:59.664982 | 2015-06-11T20:15:28 | 2015-06-11T20:15:28 | 37,450,021 | 0 | 0 | null | 2015-06-15T07:25:20 | 2015-06-15T07:25:20 | null |
UTF-8
|
Python
| false | false | 311 |
py
|
# -*- coding: utf-8 -*-
import os, sys
sys.path.insert(0, '..')
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "test_sqlite_herd")
if __name__ == "__main__":
from django.core.management import execute_from_command_line
args = sys.argv
args.insert(1, "test")
execute_from_command_line(args)
|
[
"[email protected]"
] | |
98a5ba2fce68657fdaed702892ee3ed449bf727e
|
3e862ce90e7f17c1f1c586aad20bda6c4fc6cbd4
|
/home/management/commands/load_initial_data.py
|
19443015cfb4110723cc564ebfbfb35c06d46937
|
[] |
no_license
|
crowdbotics-users/kailashacrowdboticscom-kai-638
|
621fc891f449a843e0334f4443462f78d1a1d5b6
|
e3753824bbd240c64eeadde9671438cc77a8dc0b
|
refs/heads/master
| 2020-04-09T19:42:14.674638 | 2018-12-05T17:00:39 | 2018-12-05T17:00:39 | 160,551,011 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 757 |
py
|
from django.core.management import BaseCommand
from home.models import CustomText, HomePage
def load_initial_data():
homepage_body = """
<h1 class="display-4 text-center">image-to-text-converter-211</h1>
<p class="lead">
This is the sample application created and deployed from the crowdbotics slack app. You can
view list of packages selected for this application below
</p>"""
customtext_title = 'image-to-text-converter-211'
CustomText.objects.create(title=customtext_title)
HomePage.objects.create(body=homepage_body)
class Command(BaseCommand):
can_import_settings = True
help = 'Load initial data to db'
def handle(self, *args, **options):
load_initial_data()
|
[
"[email protected]"
] | |
bc898e40424cb1cafb5b4b23ba444477869ae983
|
5c1531b47fb4dc4d7e5998d44f7200bf1786b12b
|
/__UNSORTED/130_surrounded_regions/surrounded_regions_TLE.py
|
3c923ea0a7709fbedcb124df62b7253ab7f96642
|
[] |
no_license
|
Web-Dev-Collaborative/Leetcode-JS-PY-MD
|
d1f560051aad1896a80eccdd4b4fbb389e7033e3
|
675b94fa5da8d40f0ea79efe6d3ef1393221425f
|
refs/heads/master
| 2023-09-01T22:30:32.313793 | 2021-10-26T02:17:03 | 2021-10-26T02:17:03 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,019 |
py
|
class Solution:
# @param {character[][]} board
# @return {void} Do not return anything, modify board in-place instead.
def solve(self, board):
if not board:
return
lx = len(board)
ly = len(board[0])
for x in range(lx):
for y in range(ly):
if board[x][y] == "O":
self.area = []
if self.explore(board, x, y):
for xx, yy in self.area:
board[xx][yy] = "X"
def explore(self, board, x, y):
if board[x][y] != "O":
return True
if x == 0 or x == len(board) - 1 or y == 0 or y == len(board[0]) - 1:
return False
if (x, y) in self.area:
return True
self.area.append((x, y))
return (
self.explore(board, x, y + 1)
and self.explore(board, x + 1, y)
and self.explore(board, x - 1, y)
and self.explore(board, x, y - 1)
)
|
[
"[email protected]"
] | |
8e204756e205394482650c812c5b994b021ff48c
|
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
|
/pardus/tags/2007.2/programming/libs/geoip/actions.py
|
8ea47d4a7aaa461b4099e2a3b64026df8fc2b019
|
[] |
no_license
|
aligulle1/kuller
|
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
|
7f98de19be27d7a517fe19a37c814748f7e18ba6
|
refs/heads/master
| 2021-01-20T02:22:09.451356 | 2013-07-23T17:57:58 | 2013-07-23T17:57:58 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 634 |
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2006,2007 TUBITAK/UEKAE
# Licensed under the GNU General Public License, version 2.
# See the file http://www.gnu.org/copyleft/gpl.txt.
from pisi.actionsapi import autotools
from pisi.actionsapi import pisitools
from pisi.actionsapi import get
WorkDir = "GeoIP-%s" % get.srcVERSION()
def setup():
autotools.configure("--enable-shared \
--disable-static")
def build():
autotools.make()
def install():
autotools.rawInstall("DESTDIR=%s" % get.installDIR())
pisitools.dodoc("AUTHORS", "ChangeLog", "COPYING", "NEWS", "README", "TODO")
|
[
"[email protected]"
] | |
564d007f30314f626af2a6f9ebbfe6aa75131c69
|
1c4a19c0d1953280f79193f30ad8c4759e3aff58
|
/ansys/dpf/core/operators/math/conjugate.py
|
ddeae28fea91fca0f6c68e3c561790131c01251f
|
[
"MIT"
] |
permissive
|
hoangxuyenle/DPF-Core
|
d02c843b678560f12715ea90dc8c9764b3bffc99
|
a404dd290c7b3ee75463b2487cafb8bf48468691
|
refs/heads/master
| 2023-06-15T15:27:02.597938 | 2021-06-22T15:19:04 | 2021-06-22T15:19:04 | 381,611,135 | 0 | 0 |
MIT
| 2021-06-30T07:18:30 | 2021-06-30T07:18:30 | null |
UTF-8
|
Python
| false | false | 4,859 |
py
|
"""
conjugate
=========
"""
from ansys.dpf.core.dpf_operator import Operator
from ansys.dpf.core.inputs import Input, _Inputs
from ansys.dpf.core.outputs import Output, _Outputs, _modify_output_spec_with_one_type
from ansys.dpf.core.operators.specification import PinSpecification, Specification
"""Operators from Ans.Dpf.Native plugin, from "math" category
"""
class conjugate(Operator):
"""Computes element-wise conjugate of field containers containing complex fields.
available inputs:
- fields_container (FieldsContainer)
available outputs:
- fields_container (FieldsContainer)
Examples
--------
>>> from ansys.dpf import core as dpf
>>> # Instantiate operator
>>> op = dpf.operators.math.conjugate()
>>> # Make input connections
>>> my_fields_container = dpf.FieldsContainer()
>>> op.inputs.fields_container.connect(my_fields_container)
>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.math.conjugate(fields_container=my_fields_container)
>>> # Get output data
>>> result_fields_container = op.outputs.fields_container()"""
def __init__(self, fields_container=None, config=None, server=None):
super().__init__(name="conjugate", config = config, server = server)
self._inputs = InputsConjugate(self)
self._outputs = OutputsConjugate(self)
if fields_container !=None:
self.inputs.fields_container.connect(fields_container)
@staticmethod
def _spec():
spec = Specification(description="""Computes element-wise conjugate of field containers containing complex fields.""",
map_input_pin_spec={
0 : PinSpecification(name = "fields_container", type_names=["fields_container"], optional=False, document="""""")},
map_output_pin_spec={
0 : PinSpecification(name = "fields_container", type_names=["fields_container"], optional=False, document="""""")})
return spec
@staticmethod
def default_config():
return Operator.default_config(name = "conjugate")
@property
def inputs(self):
"""Enables to connect inputs to the operator
Returns
--------
inputs : InputsConjugate
"""
return super().inputs
@property
def outputs(self):
"""Enables to get outputs of the operator by evaluationg it
Returns
--------
outputs : OutputsConjugate
"""
return super().outputs
#internal name: conjugate
#scripting name: conjugate
class InputsConjugate(_Inputs):
"""Intermediate class used to connect user inputs to conjugate operator
Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.conjugate()
>>> my_fields_container = dpf.FieldsContainer()
>>> op.inputs.fields_container.connect(my_fields_container)
"""
def __init__(self, op: Operator):
super().__init__(conjugate._spec().inputs, op)
self._fields_container = Input(conjugate._spec().input_pin(0), 0, op, -1)
self._inputs.append(self._fields_container)
@property
def fields_container(self):
"""Allows to connect fields_container input to the operator
Parameters
----------
my_fields_container : FieldsContainer,
Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.conjugate()
>>> op.inputs.fields_container.connect(my_fields_container)
>>> #or
>>> op.inputs.fields_container(my_fields_container)
"""
return self._fields_container
class OutputsConjugate(_Outputs):
"""Intermediate class used to get outputs from conjugate operator
Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.conjugate()
>>> # Connect inputs : op.inputs. ...
>>> result_fields_container = op.outputs.fields_container()
"""
def __init__(self, op: Operator):
super().__init__(conjugate._spec().outputs, op)
self._fields_container = Output(conjugate._spec().output_pin(0), 0, op)
self._outputs.append(self._fields_container)
@property
def fields_container(self):
"""Allows to get fields_container output of the operator
Returns
----------
my_fields_container : FieldsContainer,
Examples
--------
>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.conjugate()
>>> # Connect inputs : op.inputs. ...
>>> result_fields_container = op.outputs.fields_container()
"""
return self._fields_container
|
[
"[email protected]"
] | |
76223c165e5e9ac07147392a1c676096c926a704
|
9f1039075cc611198a988034429afed6ec6d7408
|
/tensorflow-stubs/python/debug/cli/ui_factory.pyi
|
b43ca70100629b7c956effd95df1bc66726070c7
|
[] |
no_license
|
matangover/tensorflow-stubs
|
9422fbb1cb3a3638958d621461291c315f9c6ec2
|
664bd995ef24f05ba2b3867d979d23ee845cb652
|
refs/heads/master
| 2020-05-23T12:03:40.996675 | 2019-05-15T06:21:43 | 2019-05-15T06:21:43 | 186,748,093 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 352 |
pyi
|
# Stubs for tensorflow.python.debug.cli.ui_factory (Python 3)
#
# NOTE: This dynamically typed stub was automatically generated by stubgen.
from typing import Any as Any, Optional as Optional
SUPPORTED_UI_TYPES: Any
def get_ui(ui_type: Any, on_ui_exit: Optional[Any] = ..., available_ui_types: Optional[Any] = ..., config: Optional[Any] = ...): ...
|
[
"[email protected]"
] | |
3f45a0ead1cf4666a92a4e6dc6450c3ac923cd4a
|
e5efada3529d94875455c4230c8dabe27fb72a89
|
/apps/api/migrations/0015_auto_20230210_1801.py
|
aa364ba5d0abda9b62dcdf65fd85023772bbf6fc
|
[] |
no_license
|
alexmon1989/uma
|
d8c321fb0ec9b1a9039b1c83aeaaff774f657416
|
5dea579d634eeb1c8103c21157299b33ca5590f0
|
refs/heads/master
| 2023-08-03T04:31:13.598577 | 2023-07-22T18:17:13 | 2023-07-22T18:17:13 | 154,835,498 | 0 | 0 | null | 2023-03-02T11:20:54 | 2018-10-26T13:02:12 |
Nunjucks
|
UTF-8
|
Python
| false | false | 411 |
py
|
# Generated by Django 3.2.12 on 2023-02-10 18:01
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('api', '0014_auto_20211213_1900'),
]
operations = [
migrations.AddField(
model_name='opendata',
name='files_path',
field=models.CharField(blank=True, max_length=500, null=True),
),
]
|
[
"[email protected]"
] | |
a220aea2b5c78023a22076d9c19a6dd6523da5d2
|
30d1902232eb9ddb84fdf5404a3a1dfd6232406a
|
/wxpython/project/panels/WorkExperience.py
|
17bf63ac737356239469250d54b41bd0999928ea
|
[] |
no_license
|
sxnys/mypython
|
c3a768b054077ed97ff1e2fac31cb93f0765deb3
|
de48cd883ad2de3320cb0c6b46b451ebb2311ac7
|
refs/heads/master
| 2022-11-07T15:11:48.936412 | 2019-04-14T12:04:30 | 2019-04-14T12:04:30 | 119,686,106 | 0 | 1 | null | 2022-10-31T05:13:00 | 2018-01-31T12:46:06 |
Python
|
UTF-8
|
Python
| false | false | 791 |
py
|
# -*- coding: utf-8
__author__ = 'Sxn'
__date__ = '2017/5/22 19:09'
from . import StudyExperience
from extra import JsonIO
class TabPanel(StudyExperience.TabPanel):
def __init__(self, parent):
StudyExperience.TabPanel.__init__(self, parent, tabName=u'工作经历', instructText=u'含学术兼职情况', numLimit=10, editInfo=[u'起止年月', u'工作单位', u'职务/职称'], colSize=[250, 250, 250], childOrder=2)
def addToJsonDict(self):
JsonIO.working_exp = []
for i in xrange(self.gridRow):
tmp = {}
tmp['start_end_date'] = self.infoGrid.GetCellValue(i, 0)
tmp['working_dep'] = self.infoGrid.GetCellValue(i, 1)
tmp['job'] = self.infoGrid.GetCellValue(i, 2)
JsonIO.working_exp.append(tmp)
|
[
"[email protected]"
] | |
5e65254844f16b658ad6828501d1c3536c170e7f
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/63/usersdata/230/28042/submittedfiles/swamee.py
|
88094a850a0912518cfb951ac45f0e9faca901c7
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146 | 2017-12-22T16:05:45 | 2017-12-22T16:05:45 | 69,566,344 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 493 |
py
|
# -*- coding: utf-8 -*-
import math
#COMECE SEU CÓDIGO AQUI
f = float(input('Digite o valor de f: '))
L = float(input('Digite o valor de L: '))
Q = float(input('Digite o valor de Q: '))
DeltaH = float(input('Digite o valor de DeltaH: '))
v = float(input('Digite o valor de v: '))
g = 9.81
E = 0.000002
D = ((8*f*L*(Q**2))/((math.pi**2)*g*DeltaH))**0.2
Rey = (4*Q)/(math.pi*D*v)
k = (0.25)/(math.log10((E/3.7*D))+(5.74/(Rey**0.9)))**2
print ('%.4f' % D)
print ('%.4f' % Rey)
print ('%.4f' % k)
|
[
"[email protected]"
] | |
2d1ff66d90a2adb3e0779f18b5a50d2212b45545
|
13f5984be7be77852e4de29ab98d5494a7fc6767
|
/LeetCode/binary_serach_tree.py
|
ac894fb9c1a5994df4054cf4407beae85859a72b
|
[] |
no_license
|
YuanXianguo/Python-Interview-Master
|
4252514763fc3f563d9b94e751aa873de1719f91
|
2f73786e8c51dbd248341559de171e18f67f9bf2
|
refs/heads/master
| 2020-11-26T18:14:50.190812 | 2019-12-20T02:18:03 | 2019-12-20T02:18:03 | 229,169,825 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,513 |
py
|
from tree import Tree
class Node(object):
"""结点"""
def __init__(self, val=None):
self.val = val
self.left = None
self.right = None
class BinarySearchTree(Tree):
"""二叉搜索树"""
def __init__(self, node=None):
super().__init__(node)
def insert(self, val):
"""二叉搜索树插入"""
node = Node(val)
if not self.root:
self.root = node
else:
if val < self.root.val:
self.root.left = BinarySearchTree(
self.root.left).insert(val)
elif val > self.root.val:
self.root.right = BinarySearchTree(
self.root.right).insert(val)
return self.root
def find(self, val):
"""递归查找值"""
if not self.root:
return "查找失败"
if val < self.root.val:
return BinarySearchTree(self.root.left).find(val)
elif val > self.root.val:
return BinarySearchTree(self.root.right).find(val)
else: # 找到了
return self.root
def find2(self, val):
"""非递归查找"""
root = self.root
while root:
if val < root.val:
root = root.left
elif val > root.val:
root = root.right
else:
return root
return "查找失败"
def find_min(self):
"""递归查找最小值,一定是在树的最左分支的端结点上"""
if not self.root:
return "查找失败"
if not self.root.left:
return self.root # 最小值没有左子树
else:
return BinarySearchTree(self.root.left).find_min()
def find_max(self):
"""迭代查找最大值,一定是在树的最右分支的端结点上"""
root = self.root
if not root:
return "查找失败"
while root.right:
root = root.right
return root
def delete(self, val):
"""每次递归删除都把删除后的子树返回"""
if not self.root:
return "删除失败"
elif val < self.root.val:
self.root.left = BinarySearchTree(
self.root.left).delete(val)
elif val > self.root.val:
self.root.right = BinarySearchTree(
self.root.right).delete(val)
else: # 该结点为要删除结点
# 如果左右子树都不为空
if self.root.left and self.root.right:
# 找到右子树最小值或左子树最大值
right_min = BinarySearchTree(self.root.right).find_min()
# 将找到的右子树最小值填充要删除的根结点
self.root.val = right_min.val
# 删除右子树最小值
self.root.right = BinarySearchTree(
self.root.right).delete(right_min)
else: # 被删除结点有一个或无子树
if not self.root.left:
self.root = self.root.right
elif not self.root.right:
self.root = self.root.left
return self.root
if __name__ == '__main__':
bt = BinarySearchTree()
for i in range(10):
bt.insert(i)
print(bt.find_min().val)
print(bt.find_max().val)
print(bt.find(10))
bt.postorder()
print("")
bt.delete(9)
print(bt.find_max().val)
bt.inorder()
|
[
"[email protected]"
] | |
05f2f300257d5ca6375765b26379c1ae5bcd4984
|
3ec9d3aa7e59475683dba30a87ca68242a7ec181
|
/cn/edgedetection/03Sample.py
|
843592f93fc567466fb142220d9454d1c28724ac
|
[
"Apache-2.0"
] |
permissive
|
Jasonandy/Python-X
|
58bf36499572cdfb7d7bf80c6a3cd0c818f62c1e
|
2f02b9a17bd5495dd1f8746b191f11ec2d7bccbe
|
refs/heads/master
| 2021-06-16T17:07:29.277404 | 2021-03-07T14:17:05 | 2021-03-07T14:17:05 | 175,353,402 | 0 | 2 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,419 |
py
|
"""
边缘检测示列
https://blog.csdn.net/HuangZhang_123/article/details/80511270
"""
import cv2
import numpy as np
def show_image(image_path):
"""
show_image 展示
:param image_path:
:return:
"""
img = cv2.pyrDown(cv2.imread(image_path, cv2.IMREAD_UNCHANGED))
# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
# 轮廓绘制方法一
# boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高
x, y, w, h = cv2.boundingRect(c)
# 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 轮廓绘制方法二
# 查找最小区域
rect = cv2.minAreaRect(c)
# 计算最小面积矩形的坐标
box = cv2.boxPoints(rect)
# 将坐标规范化为整数
box = np.int0(box)
# 绘制矩形
cv2.drawContours(img, [box], 0, (0, 0, 255), 3)
# 轮廓绘制方法三
# 圆心坐标和半径的计算
(x, y), radius = cv2.minEnclosingCircle(c)
# 规范化为整数
center = (int(x), int(y))
radius = int(radius)
# 勾画圆形区域
img = cv2.circle(img, center, radius, (0, 255, 0), 2)
# # 轮廓绘制方法四
# 围绕图形勾画蓝色线条
cv2.drawContours(img, contours, -1, (255, 0, 0), 2)
# 显示图像
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()
def run():
# image_path = "media/13.jpg"
# image_path = "media/lena/lena.jpg"
image_path = "media/sample/sample.png"
show_image(image_path)
if __name__ == '__main__':
run()
|
[
"[email protected]"
] | |
13e9b3fafe2f0f5e0947fec71bd1d9c4f1fd6730
|
2a171178942a19afe9891c2425dce208ae04348b
|
/kubernetes/client/models/v1_job_list.py
|
4c27f86f781c5f929aaeab8ca1386fdec70302fc
|
[
"Apache-2.0"
] |
permissive
|
ouccema/client-python
|
ac3f1dee1c5ad8d82f15aeecb87a2f5f219ca4f4
|
d7f33ec53e302e66674df581904a3c5b1fcf3945
|
refs/heads/master
| 2021-01-12T03:17:54.274888 | 2017-01-03T22:13:14 | 2017-01-03T22:13:14 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,395 |
py
|
# coding: utf-8
"""
Kubernetes
No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen)
OpenAPI spec version: v1.5.0-snapshot
Generated by: https://github.com/swagger-api/swagger-codegen.git
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from pprint import pformat
from six import iteritems
import re
class V1JobList(object):
"""
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
def __init__(self, items=None, metadata=None):
"""
V1JobList - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition.
"""
self.swagger_types = {
'items': 'list[V1Job]',
'metadata': 'UnversionedListMeta'
}
self.attribute_map = {
'items': 'items',
'metadata': 'metadata'
}
self._items = items
self._metadata = metadata
@property
def items(self):
"""
Gets the items of this V1JobList.
Items is the list of Job.
:return: The items of this V1JobList.
:rtype: list[V1Job]
"""
return self._items
@items.setter
def items(self, items):
"""
Sets the items of this V1JobList.
Items is the list of Job.
:param items: The items of this V1JobList.
:type: list[V1Job]
"""
if items is None:
raise ValueError("Invalid value for `items`, must not be `None`")
self._items = items
@property
def metadata(self):
"""
Gets the metadata of this V1JobList.
Standard list metadata More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata
:return: The metadata of this V1JobList.
:rtype: UnversionedListMeta
"""
return self._metadata
@metadata.setter
def metadata(self, metadata):
"""
Sets the metadata of this V1JobList.
Standard list metadata More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata
:param metadata: The metadata of this V1JobList.
:type: UnversionedListMeta
"""
self._metadata = metadata
def to_dict(self):
"""
Returns the model properties as a dict
"""
result = {}
for attr, _ in iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""
Returns the string representation of the model
"""
return pformat(self.to_dict())
def __repr__(self):
"""
For `print` and `pprint`
"""
return self.to_str()
def __eq__(self, other):
"""
Returns true if both objects are equal
"""
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""
Returns true if both objects are not equal
"""
return not self == other
|
[
"[email protected]"
] | |
51e410a7583b82d254106376c125b43aa5f99007
|
ed7e61c8eef7fb2213adeb67557d605470c17fb3
|
/ML/confusion-matrix/split_two.py
|
b3bc65d93e39225a414ead9d46ec4d8d6b6fd697
|
[] |
no_license
|
MartinThoma/algorithms
|
535840224323822f2ea6b7dd6f82a0fdd22a0ff9
|
a251e9599b685dbf89c891f02d20fefd8538ead5
|
refs/heads/master
| 2023-02-23T17:58:10.913634 | 2023-02-21T05:58:59 | 2023-02-21T05:58:59 | 4,939,076 | 241 | 126 | null | 2023-02-16T05:16:23 | 2012-07-07T16:07:23 |
Python
|
UTF-8
|
Python
| false | false | 6,693 |
py
|
#!/usr/bin/env python
"""Split the classes into two equal-sized groups to maximize accuracy."""
import json
import os
import random
import numpy as np
random.seed(0)
import logging
import sys
from visualize import apply_permutation, plot_cm, read_symbols, swap, swap_1d
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.DEBUG,
stream=sys.stdout)
def calculate_split_accuracy(cm):
"""
Calculate the accuracy of the adjusted classifier.
The adjusted classifier is built by joining the first n/2 classes into one
group and the rest into another group.
"""
n = len(cm)
first = int(n / 2)
cm_small = np.zeros((2, 2))
for i in range(n):
class_i = int(i < first)
for j in range(n):
class_j = int(j < first)
cm_small[class_i][class_j] += cm[i][j]
return (float(cm_small[0][0] + cm_small[1][1]) / cm_small.sum())
def calculate_split_error(cm):
"""Calculate the error of 2 group split."""
return 1.0 - calculate_split_accuracy(cm)
def simulated_annealing(current_cm,
current_perm=None,
score=calculate_split_error,
steps=2 * 10**5,
temp=100.0,
cooling_factor=0.99,
deterministic=False):
"""
Optimize current_cm by randomly swapping elements.
Parameters
----------
current_cm : numpy array
current_perm : None or iterable, optional (default: None)
steps : int, optional (default: 2 * 10**4)
temp : float > 0.0, optional (default: 100.0)
Temperature
cooling_factor: float in (0, 1), optional (default: 0.99)
"""
assert temp > 0
assert cooling_factor > 0
assert cooling_factor < 1
n = len(current_cm)
if current_perm is None:
current_perm = list(range(n))
current_perm = np.array(current_perm)
# Debugging code
perm_exp = np.zeros((n, n), dtype=np.int)
for i in range(n):
for j in range(n):
perm_exp[i][j] = j
current_cm = apply_permutation(current_cm, current_perm)
perm_exp_current = apply_permutation(perm_exp, current_perm)
logging.debug(perm_exp_current[0])
print("apply permutation %s" % str(current_perm))
current_score = score(current_cm)
best_perm = current_perm
best_cm = current_cm
best_score = current_score
print("## Starting Score: {:0.2f}%".format(current_score * 100))
for step in range(steps):
tmp = np.array(current_cm, copy=True)
split_part = int(n / 2) - 1
i = random.randint(0, split_part)
j = random.randint(split_part + 1, n - 1)
perm = swap_1d(current_perm.copy(), i, j)
tmp = swap(tmp, i, j)
# tmp = apply_permutation(tmp, perm)
tmp_score = score(tmp)
if deterministic:
chance = 1.0
else:
chance = random.random()
temp *= 0.99
hot_prob = min(1, np.exp(-(tmp_score - current_score) / temp))
if chance <= hot_prob:
if best_score > tmp_score: # Minimize the score
best_perm = perm
best_cm = tmp
best_score = tmp_score
current_score = tmp_score
perm_exp_current = swap(perm_exp_current, i, j)
print(list(perm_exp_current[0]))
current_cm = tmp
logging.info(("Current: %0.2f%% (best: %0.2f%%, hot_prob=%0.2f%%, "
"step=%i)"),
(current_score * 100),
(best_score * 100),
(hot_prob * 100),
step)
return {'cm': best_cm, 'perm': list(perm_exp_current[0])}
def main(cm_file, perm_file, steps, labels_file):
"""Orchestrate."""
# Load confusion matrix
with open(cm_file) as f:
cm = json.load(f)
cm = np.array(cm)
# Load permutation
if os.path.isfile(perm_file):
print("loaded %s" % perm_file)
with open(perm_file) as data_file:
perm = json.load(data_file)
else:
perm = random.shuffle(list(range(len(cm))))
print("Score without perm: {:0.2f}%".format(calculate_split_error(cm) * 100))
result = simulated_annealing(cm, perm,
score=calculate_split_error,
deterministic=True,
steps=steps)
# First recursive step
# split_i = int(len(cm) / 2)
# cm = result['cm'][:split_i, :split_i]
# perm = list(range(split_i))
# result = simulated_annealing(cm, perm,
# score=calculate_split_error,
# deterministic=True,
# steps=steps)
print("Score: {}".format(calculate_split_error(result['cm'])))
print("Perm: {}".format(list(result['perm'])))
# Load labels
if os.path.isfile(labels_file):
with open(labels_file) as f:
symbols = json.load(f)
else:
symbols = read_symbols()
print("Symbols: {}".format([symbols[i] for i in result['perm']]))
plot_cm(result['cm'], zero_diagonal=True)
def get_parser():
"""Get parser object for script xy.py."""
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--cm",
dest="cm_file",
help=("path of a json file with a confusion matrix"),
metavar="cm.json",
default='confusion-matrix.json')
parser.add_argument("--perm",
dest="perm_file",
help=("path of a json file with a permutation to "
"start with"),
metavar="perm.json",
default="")
parser.add_argument("--labels",
dest="labels_file",
help=("path of a json file with a list of label "
"names"),
metavar="labels.json",
default="")
parser.add_argument("-n",
dest="n",
default=4 * 10**5,
type=int,
help="number of steps to iterate")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
main(args.cm_file, args.perm_file, args.n, args.labels_file)
|
[
"[email protected]"
] | |
f5435f602b8973519150389a75dd7328fe65e570
|
c0f808504dd3d7fd27c39f1503fbc14c1d37bf9f
|
/sources/scipy-scipy-414c1ab/scipy/sparse/linalg/dsolve/umfpack/tests/try_umfpack.py
|
6f7cd7acdb421fa1497d93d5b68da26ef2943b61
|
[] |
no_license
|
georgiee/lip-sync-lpc
|
7662102d4715e4985c693b316a02d11026ffb117
|
e931cc14fe4e741edabd12471713bf84d53a4250
|
refs/heads/master
| 2018-09-16T08:47:26.368491 | 2018-06-05T17:01:08 | 2018-06-05T17:01:08 | 5,779,592 | 17 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,310 |
py
|
#!/usr/bin/env python
# Created by: Robert Cimrman, 05.12.2005
"""Benchamrks for umfpack module"""
from optparse import OptionParser
import time
import urllib
import gzip
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg.dsolve.umfpack as um
import scipy.linalg as nla
defaultURL = 'http://www.cise.ufl.edu/research/sparse/HBformat/'
usage = """%%prog [options] <matrix file name> [<matrix file name>, ...]
<matrix file name> can be a local or distant (gzipped) file
default url is:
%s
supported formats are:
triplet .. [nRow, nCol, nItem] followed by 'nItem' * [ir, ic, value]
hb .. Harwell-Boeing format N/A
""" % defaultURL
##
# 05.12.2005, c
def read_triplet( fd ):
nRow, nCol = map( int, fd.readline().split() )
nItem = int( fd.readline() )
ij = np.zeros( (nItem,2), np.int32 )
val = np.zeros( (nItem,), np.float64 )
for ii, row in enumerate( fd.readlines() ):
aux = row.split()
ij[ii] = int( aux[0] ), int( aux[1] )
val[ii] = float( aux[2] )
mtx = sp.csc_matrix( (val, ij), dims = (nRow, nCol), nzmax = nItem )
return mtx
##
# 06.12.2005, c
def read_triplet2( fd ):
nRow, nCol = map( int, fd.readline().split() )
nItem = int( fd.readline() )
ij, val = io.read_array( fd,
columns = [(0,1), (2,)],
atype = (np.int32, np.float64),
rowsize = nItem )
mtx = sp.csc_matrix( (val, ij), dims = (nRow, nCol), nzmax = nItem )
return mtx
formatMap = {'triplet' : read_triplet}
##
# 05.12.2005, c
def readMatrix( matrixName, options ):
if options.default_url:
matrixName = defaultURL + matrixName
print 'url:', matrixName
if matrixName[:7] == 'http://':
fileName, status = urllib.urlretrieve( matrixName )
## print status
else:
fileName = matrixName
print 'file:', fileName
try:
readMatrix = formatMap[options.format]
except:
raise ValueError('unsupported format: %s' % options.format)
print 'format:', options.format
print 'reading...'
if fileName.endswith('.gz'):
fd = gzip.open( fileName )
else:
fd = open( fileName )
mtx = readMatrix( fd )
fd.close()
print 'ok'
return mtx
##
# 05.12.2005, c
def main():
parser = OptionParser( usage = usage )
parser.add_option( "-c", "--compare",
action = "store_true", dest = "compare",
default = False,
help = "compare with default scipy.sparse solver [default: %default]" )
parser.add_option( "-p", "--plot",
action = "store_true", dest = "plot",
default = False,
help = "plot time statistics [default: %default]" )
parser.add_option( "-d", "--default-url",
action = "store_true", dest = "default_url",
default = False,
help = "use default url [default: %default]" )
parser.add_option( "-f", "--format", type = type( '' ),
dest = "format", default = 'triplet',
help = "matrix format [default: %default]" )
(options, args) = parser.parse_args()
if (len( args ) >= 1):
matrixNames = args;
else:
parser.print_help(),
return
sizes, nnzs, times, errors = [], [], [], []
legends = ['umfpack', 'sparse.solve']
for ii, matrixName in enumerate( matrixNames ):
print '*' * 50
mtx = readMatrix( matrixName, options )
sizes.append( mtx.shape )
nnzs.append( mtx.nnz )
tts = np.zeros( (2,), dtype = np.double )
times.append( tts )
err = np.zeros( (2,2), dtype = np.double )
errors.append( err )
print 'size : %s (%d nnz)' % (mtx.shape, mtx.nnz)
sol0 = np.ones( (mtx.shape[0],), dtype = np.double )
rhs = mtx * sol0
umfpack = um.UmfpackContext()
tt = time.clock()
sol = umfpack( um.UMFPACK_A, mtx, rhs, autoTranspose = True )
tts[0] = time.clock() - tt
print "umfpack : %.2f s" % tts[0]
error = mtx * sol - rhs
err[0,0] = nla.norm( error )
print '||Ax-b|| :', err[0,0]
error = sol0 - sol
err[0,1] = nla.norm( error )
print '||x - x_{exact}|| :', err[0,1]
if options.compare:
tt = time.clock()
sol = sp.solve( mtx, rhs )
tts[1] = time.clock() - tt
print "sparse.solve : %.2f s" % tts[1]
error = mtx * sol - rhs
err[1,0] = nla.norm( error )
print '||Ax-b|| :', err[1,0]
error = sol0 - sol
err[1,1] = nla.norm( error )
print '||x - x_{exact}|| :', err[1,1]
if options.plot:
try:
import pylab
except ImportError:
raise ImportError("could not import pylab")
times = np.array( times )
print times
pylab.plot( times[:,0], 'b-o' )
if options.compare:
pylab.plot( times[:,1], 'r-s' )
else:
del legends[1]
print legends
ax = pylab.axis()
y2 = 0.5 * (ax[3] - ax[2])
xrng = range( len( nnzs ) )
for ii in xrng:
yy = y2 + 0.4 * (ax[3] - ax[2])\
* np.sin( ii * 2 * np.pi / (len( xrng ) - 1) )
if options.compare:
pylab.text( ii+0.02, yy,
'%s\n%.2e err_umf\n%.2e err_sp'
% (sizes[ii], np.sum( errors[ii][0,:] ),
np.sum( errors[ii][1,:] )) )
else:
pylab.text( ii+0.02, yy,
'%s\n%.2e err_umf'
% (sizes[ii], np.sum( errors[ii][0,:] )) )
pylab.plot( [ii, ii], [ax[2], ax[3]], 'k:' )
pylab.xticks( xrng, ['%d' % (nnzs[ii] ) for ii in xrng] )
pylab.xlabel( 'nnz' )
pylab.ylabel( 'time [s]' )
pylab.legend( legends )
pylab.axis( [ax[0] - 0.05, ax[1] + 1, ax[2], ax[3]] )
pylab.show()
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
fc25356354bc680cf49d82450ed1864df13bc7cb
|
18ccaa1160f49f0d91f1d9dc376f860aed8a9c2a
|
/tracpro/groups/tests/test_middleware.py
|
170e207ec77587705841395a880fa174d72a1d05
|
[
"BSD-3-Clause"
] |
permissive
|
caktus/tracpro
|
bb6033b170b7a77cf9ac76b1be2779b71afa80e0
|
368f43e666d3c718843dffe934ba35ca859ebaf7
|
refs/heads/develop
| 2020-12-24T22:06:21.341755 | 2016-01-22T13:16:29 | 2016-01-22T13:16:29 | 50,186,576 | 0 | 0 | null | 2016-01-22T14:38:29 | 2016-01-22T14:38:28 | null |
UTF-8
|
Python
| false | false | 8,083 |
py
|
from django.contrib.auth.models import AnonymousUser
from django.test import RequestFactory
from tracpro.test import factories
from tracpro.test.cases import TracProTest
from ..middleware import UserRegionsMiddleware
from ..models import Region
class TestUserRegionsMiddleware(TracProTest):
def setUp(self):
super(TestUserRegionsMiddleware, self).setUp()
self.middleware = UserRegionsMiddleware()
self.org = factories.Org()
self.user = factories.User()
def get_request(self, **kwargs):
request_kwargs = {'HTTP_HOST': "{}.testserver".format(self.org.subdomain)}
request = RequestFactory().get("/", **request_kwargs)
for key, value in kwargs.items():
setattr(request, key, value)
return request
def make_regions(self):
"""Create a collection of nested regions."""
self.region_uganda = factories.Region(
org=self.org, name="Uganda")
self.region_kampala = factories.Region(
org=self.org, name="Kampala", parent=self.region_uganda)
self.region_makerere = factories.Region(
org=self.org, name="Makerere", parent=self.region_kampala)
self.region_entebbe = factories.Region(
org=self.org, name="Entebbe", parent=self.region_uganda)
self.region_kenya = factories.Region(
org=self.org, name="Kenya")
self.region_nairobi = factories.Region(
org=self.org, name="Nairobi", parent=self.region_kenya)
self.region_mombasa = factories.Region(
org=self.org, name="Mombasa", parent=self.region_kenya)
self.region_inactive = factories.Region(
org=self.org, name="Inactive", parent=self.region_nairobi,
is_active=False)
return Region.get_all(self.org)
def test_variables_set(self):
"""Middleware should set several commonly-used region variables."""
request = self.get_request(user=self.user, org=self.org, session={})
self.middleware.process_request(request)
self.assertTrue(hasattr(request, 'region'))
self.assertTrue(hasattr(request, 'include_subregions'))
self.assertTrue(hasattr(request, 'user_regions'))
self.assertTrue(hasattr(request, 'data_regions'))
def test_user_regions__unauthenticated(self):
"""User regions should be set to null for unauthenticated users."""
request = self.get_request(user=AnonymousUser(), org=self.org)
self.middleware.set_user_regions(request)
self.assertIsNone(request.user_regions)
def test_user_regions__no_org(self):
"""User regions should be set to null for non-org views."""
request = self.get_request(user=self.user, org=None)
self.middleware.set_user_regions(request)
self.assertIsNone(request.user_regions)
def test_user_regions(self):
"""User regions should be set to the value of get_all_regions."""
self.make_regions()
self.region_kenya.users.add(self.user)
request = self.get_request(user=self.user, org=self.org)
self.middleware.set_user_regions(request)
self.assertEqual(
set(request.user_regions),
set([self.region_kenya, self.region_nairobi, self.region_mombasa]))
def test_include_subregions__default(self):
"""If key is not in the session, should default to True."""
request = self.get_request(session={})
self.middleware.set_include_subregions(request)
self.assertTrue(request.include_subregions)
def test_include_subregions__yes(self):
"""include_subregions should be retrieved from the session."""
request = self.get_request(session={'include_subregions': True})
self.middleware.set_include_subregions(request)
self.assertTrue(request.include_subregions)
def test_include_subregions__no(self):
"""include_subregions should be retrieved from the session."""
request = self.get_request(session={'include_subregions': False})
self.middleware.set_include_subregions(request)
self.assertFalse(request.include_subregions)
def test_data_regions__no_region(self):
"""If there is no current region, data_regions should be None."""
request = self.get_request(user=self.user, region=None)
self.middleware.set_data_regions(request)
self.assertIsNone(request.data_regions)
def test_data_regions__include_subregions(self):
"""Include all subregions user has access to if include_subregions is True."""
self.make_regions()
user_regions = Region.objects.filter(pk__in=(
self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk))
request = self.get_request(
user=self.user, region=self.region_kenya, include_subregions=True,
user_regions=user_regions)
self.middleware.set_data_regions(request)
self.assertEqual(
set(request.data_regions),
set([self.region_kenya, self.region_nairobi]))
def test_data_regions__exclude_subregions(self):
"""Include only the current region if include_subregions is False."""
self.make_regions()
user_regions = Region.objects.filter(pk__in=(
self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk))
request = self.get_request(
user=self.user, region=self.region_kenya, include_subregions=False,
user_regions=user_regions)
self.middleware.set_data_regions(request)
self.assertEqual(
set(request.data_regions),
set([self.region_kenya]))
def test_region__unauthenticated(self):
"""Current region should be None for an unauthenticated user."""
request = self.get_request(user=AnonymousUser(), org=self.org)
self.middleware.set_region(request)
self.assertIsNone(request.region)
def test_region__no_org(self):
"""Current region should be None if there is no current org."""
request = self.get_request(user=self.user, org=None)
self.middleware.set_region(request)
self.assertIsNone(request.region)
def test_region__not_set__admin(self):
"""If region_id is not in the session, admin will see All Regions."""
self.make_regions()
self.org.administrators.add(self.user)
user_regions = Region.objects.filter(pk__in=(
self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk))
request = self.get_request(
user=self.user, org=self.org, session={}, user_regions=user_regions)
self.middleware.set_region(request)
self.assertIsNone(request.region)
def test_region__not_set(self):
"""If region_id is not in the session, user will see first of their regions."""
self.make_regions()
user_regions = Region.objects.filter(pk=self.region_kenya.pk)
request = self.get_request(
user=self.user, org=self.org, session={}, user_regions=user_regions)
self.middleware.set_region(request)
self.assertEqual(request.region, self.region_kenya)
def test_region__not_in_user_regions(self):
"""If region is not in user regions, return the first of the user's regions."""
self.make_regions()
user_regions = Region.objects.filter(pk=self.region_kenya.pk)
request = self.get_request(
user=self.user, org=self.org, session={'region_id': self.region_nairobi.pk},
user_regions=user_regions)
self.middleware.set_region(request)
self.assertEqual(request.region, self.region_kenya)
def test_region(self):
self.make_regions()
user_regions = Region.objects.filter(pk=self.region_kenya.pk)
request = self.get_request(
user=self.user, org=self.org, session={'region_id': self.region_kenya.pk},
user_regions=user_regions)
self.middleware.set_region(request)
self.assertEqual(request.region, self.region_kenya)
|
[
"[email protected]"
] | |
7e60a4df9930178e0ae0a8e732141a2219d3acd4
|
a0cbbc57dd1b583ab66ce37ad8c6970e74a600ba
|
/raylab/policy/modules/model/stochastic/single.py
|
0aa460ac8354ed4246fca21f0ef0ac8245a399ee
|
[
"MIT"
] |
permissive
|
GapData/raylab
|
ccf6c39ea20d5568561207d92a4b9097657fb909
|
c5e862334dc1f29a09b42286ddcc40e72c6eb3a2
|
refs/heads/master
| 2022-12-19T07:09:45.799180 | 2020-09-29T17:09:54 | 2020-09-29T17:09:54 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,157 |
py
|
"""NN modules for stochastic dynamics estimation."""
from dataclasses import dataclass
from typing import List
from typing import Tuple
import torch
import torch.nn as nn
from gym.spaces import Box
from torch import Tensor
import raylab.torch.nn as nnx
import raylab.torch.nn.distributions as ptd
from raylab.policy.modules.networks.mlp import StateActionMLP
from raylab.utils.types import TensorDict
SampleLogp = Tuple[Tensor, Tensor]
class StochasticModel(nn.Module):
"""Represents a stochastic model as a conditional distribution module."""
def __init__(
self, params_module: nn.Module, dist_module: ptd.ConditionalDistribution
):
super().__init__()
self.params = params_module
self.dist = dist_module
def forward(self, obs, action) -> TensorDict: # pylint:disable=arguments-differ
return self.params(obs, action)
@torch.jit.export
def sample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp:
"""
Generates a sample_shape shaped sample or sample_shape shaped batch of
samples if the distribution parameters are batched. Returns a (sample, log_prob)
pair.
"""
return self.dist.sample(params, sample_shape)
@torch.jit.export
def rsample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp:
"""
Generates a sample_shape shaped reparameterized sample or sample_shape
shaped batch of reparameterized samples if the distribution parameters
are batched. Returns a (rsample, log_prob) pair.
"""
return self.dist.rsample(params, sample_shape)
@torch.jit.export
def log_prob(self, next_obs: Tensor, params: TensorDict) -> Tensor:
"""
Returns the log probability density/mass function evaluated at `next_obs`.
"""
return self.dist.log_prob(next_obs, params)
@torch.jit.export
def cdf(self, next_obs: Tensor, params: TensorDict) -> Tensor:
"""Returns the cumulative density/mass function evaluated at `next_obs`."""
return self.dist.cdf(next_obs, params)
@torch.jit.export
def icdf(self, prob, params: TensorDict) -> Tensor:
"""Returns the inverse cumulative density/mass function evaluated at `prob`."""
return self.dist.icdf(prob, params)
@torch.jit.export
def entropy(self, params: TensorDict) -> Tensor:
"""Returns entropy of distribution."""
return self.dist.entropy(params)
@torch.jit.export
def perplexity(self, params: TensorDict) -> Tensor:
"""Returns perplexity of distribution."""
return self.dist.perplexity(params)
@torch.jit.export
def reproduce(self, next_obs, params: TensorDict) -> SampleLogp:
"""Produce a reparametrized sample with the same value as `next_obs`."""
return self.dist.reproduce(next_obs, params)
@torch.jit.export
def deterministic(self, params: TensorDict) -> SampleLogp:
"""
Generates a deterministic sample or batch of samples if the distribution
parameters are batched. Returns a (rsample, log_prob) pair.
"""
return self.dist.deterministic(params)
class ResidualMixin:
"""Overrides StochasticModel interface to model state transition residuals."""
# pylint:disable=missing-function-docstring,not-callable
def forward(self, obs: Tensor, action: Tensor) -> TensorDict:
params = self.params(obs, action)
params["obs"] = obs
return params
@torch.jit.export
def sample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp:
res, log_prob = self.dist.sample(params, sample_shape)
return params["obs"] + res, log_prob
@torch.jit.export
def rsample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp:
res, log_prob = self.dist.rsample(params, sample_shape)
return params["obs"] + res, log_prob
@torch.jit.export
def log_prob(self, next_obs: Tensor, params: TensorDict) -> Tensor:
return self.dist.log_prob(next_obs - params["obs"], params)
@torch.jit.export
def cdf(self, next_obs: Tensor, params: TensorDict) -> Tensor:
return self.dist.cdf(next_obs - params["obs"], params)
@torch.jit.export
def icdf(self, prob, params: TensorDict) -> Tensor:
residual = self.dist.icdf(prob, params)
return params["obs"] + residual
@torch.jit.export
def reproduce(self, next_obs, params: TensorDict) -> SampleLogp:
sample_, log_prob_ = self.dist.reproduce(next_obs - params["obs"], params)
return params["obs"] + sample_, log_prob_
@torch.jit.export
def deterministic(self, params: TensorDict) -> SampleLogp:
sample, log_prob = self.dist.deterministic(params)
return params["obs"] + sample, log_prob
class DynamicsParams(nn.Module):
"""Neural network mapping state-action pairs to distribution parameters.
Args:
encoder: Module mapping state-action pairs to 1D features
params: Module mapping 1D features to distribution parameters
"""
def __init__(self, encoder: nn.Module, params: nn.Module):
super().__init__()
self.encoder = encoder
self.params = params
def forward(self, obs, actions): # pylint:disable=arguments-differ
return self.params(self.encoder(obs, actions))
@dataclass
class MLPModelSpec(StateActionMLP.spec_cls):
"""Specifications for stochastic mlp model network.
Inherits parameters from `StateActionMLP.spec_cls`.
Args:
units: Number of units in each hidden layer
activation: Nonlinearity following each linear layer
delay_action: Whether to apply an initial preprocessing layer on the
observation before concatenating the action to the input.
standard_scaler: Whether to transform the inputs of the NN using a
standard scaling procedure (subtract mean and divide by stddev). The
transformation mean and stddev should be fitted during training and
used for both training and evaluation.
fix_logvar_bounds: Whether to use fixed or dynamically adjusted
bounds for the log-scale outputs of the network.
input_dependent_scale: Whether to parameterize the Gaussian standard
deviation as a function of the state and action
"""
fix_logvar_bounds: bool = True
input_dependent_scale: bool = True
class MLPModel(StochasticModel):
"""Stochastic model with multilayer perceptron state-action encoder.
Attributes:
params: NN module mapping obs-act pairs to obs dist params
dist: NN module implementing the distribution API
encoder: NN module used in `params` to map obs-act pairs to vector
embeddings
"""
spec_cls = MLPModelSpec
def __init__(self, obs_space: Box, action_space: Box, spec: MLPModelSpec):
encoder = StateActionMLP(obs_space, action_space, spec)
params = nnx.NormalParams(
encoder.out_features,
obs_space.shape[0],
input_dependent_scale=spec.input_dependent_scale,
bound_parameters=not spec.fix_logvar_bounds,
)
if spec.fix_logvar_bounds:
params.max_logvar.fill_(2)
params.min_logvar.fill_(-20)
params = DynamicsParams(encoder, params)
dist = ptd.Independent(ptd.Normal(), reinterpreted_batch_ndims=1)
super().__init__(params, dist)
# Can only assign modules and parameters after calling nn.Module.__init__
self.encoder = encoder
def initialize_parameters(self, initializer_spec: dict):
"""Initialize all encoder parameters.
Args:
initializer_spec: Dictionary with mandatory `name` key corresponding
to the initializer function name in `torch.nn.init` and optional
keyword arguments.
"""
self.encoder.initialize_parameters(initializer_spec)
class ResidualMLPModel(ResidualMixin, MLPModel):
"""Residual stochastic multilayer perceptron model."""
|
[
"[email protected]"
] | |
59128387488db0592ddb5fef863061a8952d1da3
|
929cdbe211fbf254e1ec8122f9b48fa32520232c
|
/analysisflow.py
|
0f35da16f85c1ab0b53e1d567b3def8ec7103f46
|
[] |
no_license
|
arizzi/nail
|
c8edec306628cecd269ad9d4241100afdbf6a7fc
|
a5ba9aed1bcc266cd9d9a36167ce66e51d851e8f
|
refs/heads/master
| 2023-05-11T15:55:34.038861 | 2023-05-05T12:56:42 | 2023-05-05T12:56:42 | 162,547,201 | 3 | 1 | null | 2023-02-22T15:40:31 | 2018-12-20T08:09:10 |
Python
|
UTF-8
|
Python
| false | false | 3,501 |
py
|
from .nail import *
flow.SetAlias("n(.*)", "\\1.size()", defaultPersitency=True)
flow.SetAlias(
"(.*)_p4", "{TLorentzVector ret; ret.SetPtEtaPhiM(\\1_pt,\\1_eta,\\1_phi,\\1_mass); return ret;}", defaultPersistency=False)
# SubCikkectuib actuib"
flow.SetAlias("SelectedMuon_(.*)([\.*\])", "Muon_\1[SelectedMuon[\2]]")
flow = SampleProcessing("")
# cuts value should not be hardcoded below but rather being declared here so that scans and optimizations are possible
flow.DefaultConfig(muIsoCut=0.13, muIdCut=3, muPtCut=25)
# Higgs to mumu reconstruction
# Maps to plain RDF VecOps
flow.DefineCollAttr("Muon_id", "Muon_tightId*3+Muon_looseId")
# this should generate some kind of wrapper/ref that can be used as the parent collection
flow.SubCollection("SelectedMuon", "Muon",
sel="Muon_iso < muIsoCut && Muon_id > muIdCut && Muon_pt > muPtCut")
flow.Filter("twoOppositeSignMuons",
"nSelectedMuon==2 && SelectedMuon_charge[0]*SelectedMuon_charge[1] < 0")
# p4 should be handled somehow ... any syntax is ok such as p4(SelectedMuon[0]) or _p4 or .p4 etc..
flow.Define("Higgs", "p4at(SelectedMuon,0)+p4at(SelectedMuon,1)",
requires=["twoOppositeSignMuons"])
# the following could work
# define p4at(x,y) ROOT::Math::PtEtaPhiMVector(x##_pt[y] , x##_eta[y], x##_phi[y], x##_mass[y])
# define p4(x) ROOT::Math::PtEtaPhiMVector(x##_pt , x##_eta, x##_phi, x##_mass)
# VBF Jets kinematics
flow.DefaultConfig(jetPtCut=25)
flow.SubCollection("SelectedJet", "Jet",
"Jet_pt > jetPtCut && (Jet_muonIdx1 == -1 || Muon_iso[Jet_muonIdx1] > muIsoCut || Muon_id[Jet_muonIdx1] > 0")
flow.Filter("twoJets", "nSelectedJet>=2")
flow.Define("Qjet1", "SelectedJet[0].p4()", requires=["twoJets"])
flow.Define("Qjet2", "SelectedJet[1].p4()", requires=["twoJets"])
flow.Define("qq", "Qjet1+Qjet2")
flow.Define("Mqq", "qq.M()")
flow.Define("qq_pt", "qq.Pt()")
flow.Define("qqDeltaEta", "TMath::Abs(Qjet1.Eta()-Qjet2.Eta())")
flow.Define("qqDeltaPhi", "TMath::Abs(Qjet1.DeltaPhi(Qjet2))")
# QQ vs ll kinematic
flow.Define(
"ll_ystar", "Higgs.Rapidity() - (Qjet1.Rapidity() + Qjet2.Rapidity())")
flow.Define(
"ll_zstar", " TMath::Abs( ll_ystar/ (Qjet1.Rapidity()-Qjet2.Rapidity() )) ")
flow.Define("DeltaEtaQQSum",
"TMath::Abs(Qjet1.Eta()) + TMath::Abs(Qjet2.Eta())")
flow.Define("PhiZQ1", "TMath::Abs(Higgs.DeltaPhi(Qjet1))")
flow.Define("PhiZQ2", "TMath::Abs(Higgs.DeltaPhi(Qjet2))")
flow.Define("EtaHQ1", "TMath::Abs(Higgs.Eta() - Qjet1.Eta())")
flow.Define("EtaHQ2", "TMath::Abs(Higgs.Eta() - Qjet2.Eta())")
flow.Define("DeltaRelQQ", "(Qjet1+Qjet2).Pt()/( Qjet1.Pt()+Qjet2.Pt())")
flow.Define(
"Rpt", "(Qjet1+Qjet2+ Higgs).Pt()/( Qjet1.Pt()+Qjet2.Pt() + Higgs.Pt())")
flow.DefaultConfig(higgsMassWindowWidth=15, mQQcut=400, nominalHMass=125.03)
flow.Filter("MassWindow", "abs(Higgs_m-nominalHMass)<higgsMassWindowWidth")
flow.Filter("SideBand", "! MassWindow")
flow.Filter("VBFRegion", "Mqq > mQQcut")
flow.Filter("SignalRegion", "VBFRegion && MassWindow")
# flow.Trainable("SBClassifier","evalMVA",["Higgs_pt","Higgs_m","Mqq","Rpt","DeltaRelQQ"],splitMode="TripleMVA",requires="VBFRegion")
print((flow.NeededInputs()))
# flow.AddSystematic("MuScaleUp","Muon_pt","Muon_pt*1.01") #name, target, replacement
# flow.AddSystematic("HMassUncertainityUp","nominalHMass","125.1") #name, target, replacement
# flow.OptimizationScan("MuPtCutScan","muPtCut","30") #name, target, replacement
#from samples import background,signal,data
|
[
"[email protected]"
] | |
c43f3fc077de3a17d699c5cb4c8416a0f23c88d5
|
315450354c6ddeda9269ffa4c96750783963d629
|
/CMSSW_7_0_4/src/TotemDQMLite/GUI/scripts/.svn/text-base/reco_template_T1_cfg.py.svn-base
|
f60ffa0be9c54729e058dea21046f4747c66c5f4
|
[] |
no_license
|
elizamelo/CMSTOTEMSim
|
e5928d49edb32cbfeae0aedfcf7bd3131211627e
|
b415e0ff0dad101be5e5de1def59c5894d7ca3e8
|
refs/heads/master
| 2021-05-01T01:31:38.139992 | 2017-09-12T17:07:12 | 2017-09-12T17:07:12 | 76,041,270 | 0 | 2 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,233 |
import FWCore.ParameterSet.Config as cms
process = cms.Process("recoT1")
# Specify the maximum events to simulate
process.maxEvents = cms.untracked.PSet(
input = cms.untracked.int32(100)
)
# Configure if you want to detail or simple log information.
# LoggerMax -- detail log info output including: errors.log, warnings.log, infos.log, debugs.log
# LoggerMin -- simple log info output to the standard output (e.g. screen)
process.load("Configuration.TotemCommon.LoggerMin_cfi")
# RawDataSource
process.load('TotemRawData.Readers.RawDataSource_cfi')
#process.source.fileNames.append('/project/gruppo1/totem/IP5_2015/Data/run_EVB-wn10_9261.000.vmeb')
process.source.fileNames.append('$input_file')
# Raw to digi conversion
process.load('TotemCondFormats.DAQInformation.DAQMappingSourceXML_cfi')
process.DAQMappingSourceXML.mappingFileNames.append('TotemCondFormats/DAQInformation/data/t1_all_run2.xml')
process.DAQMappingSourceXML.maskFileNames.append('TotemCondFormats/DAQInformation/test/T1DeadChannelsList_9255_onlyStrips.xml')
# Random number generator service
process.load("Configuration.TotemCommon.RandomNumbers_cfi")
################## STEP 1process.Raw2DigiProducer*process.TriggerBits
process.load('TotemRawData.RawToDigi.Raw2DigiProducer_cfi')
process.load("RecoTotemT1T2.T1MakeCluster.T1MakeCluster_cfi")
process.t1cluster.T1DigiVfatCollectionLabel = cms.InputTag("Raw2DigiProducer", "t1DataOutput")
process.t1cluster.ActivateDeadChannels = cms.bool(True)
process.load("RecoTotemT1T2.T1RecHit.T1RecHit_cfi")
process.t1rechit.T1DigiWireCollectionLabel = cms.InputTag("Raw2DigiProducer", "t1DataOutput")
process.load("RecoTotemT1T2.T1RoadProducer.T1RoadProducer_cfi")
process.t1roads.Alignment = cms.bool(True)
process.load("RecoTotemT1T2.T1TrackProducer2.T1TrackProducer2_cfi")
# Configure the output module (save the result in a file)
process.output = cms.OutputModule("PoolOutputModule",
fileName = cms.untracked.string('$output_file'),
outputCommands = cms.untracked.vstring('keep *')
)
process.path = cms.Path(
process.Raw2DigiProducer
*process.t1cluster
*process.t1rechit
# *process.t1roads
# *process.t1tracks2
)
process.outpath = cms.EndPath(process.output)
|
[
"[email protected]"
] | ||
b4e990d93bfd4a2916201a75c53557884579150a
|
f62fd455e593a7ad203a5c268e23129473d968b6
|
/python-watcherclient-1.0.0/watcherclient/osc/plugin.py
|
5885de3b4873319fa9e70d64baded41315c15e6c
|
[
"Apache-2.0"
] |
permissive
|
MinbinGong/OpenStack-Ocata
|
5d17bcd47a46d48ff9e71e2055f667836174242f
|
8b7650128cfd2fdf5d6c8bc4613ac2e396fb2fb3
|
refs/heads/master
| 2021-06-23T05:24:37.799927 | 2017-08-14T04:33:05 | 2017-08-14T04:33:05 | 99,709,985 | 0 | 2 | null | 2020-07-22T22:06:22 | 2017-08-08T15:48:44 |
Python
|
UTF-8
|
Python
| false | false | 1,854 |
py
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
from osc_lib import utils
LOG = logging.getLogger(__name__)
DEFAULT_API_VERSION = '1'
API_VERSION_OPTION = 'os_infra_optim_api_version'
API_NAME = 'infra-optim'
API_VERSIONS = {
'1': 'watcherclient.v1.client.Client',
}
def make_client(instance):
"""Returns an infra-optim service client."""
infraoptim_client_class = utils.get_client_class(
API_NAME,
instance._api_version[API_NAME],
API_VERSIONS)
LOG.debug('Instantiating infraoptim client: %s', infraoptim_client_class)
client = infraoptim_client_class(
os_watcher_api_version=instance._api_version[API_NAME],
session=instance.session,
region_name=instance._region_name,
)
return client
def build_option_parser(parser):
"""Hook to add global options."""
parser.add_argument('--os-infra-optim-api-version',
metavar='<infra-optim-api-version>',
default=utils.env(
'OS_INFRA_OPTIM_API_VERSION',
default=DEFAULT_API_VERSION),
help=('Watcher API version, default=' +
DEFAULT_API_VERSION +
' (Env: OS_INFRA_OPTIM_API_VERSION)'))
return parser
|
[
"[email protected]"
] | |
b13aec275da4151009697accac9711e4949a705d
|
76f549c062600a0c713315a9a7361ebb111178f8
|
/Taller/Preguntas/PrimeraPregunta.py
|
329f447c04d5a3317beecceb811b7df4bb35473d
|
[] |
no_license
|
jorszs/AI
|
f612f26537fc3563dd2837c8f67801f091f7e3a0
|
05a839e6e115e7c6c9378e84d5ac7f50afe2870d
|
refs/heads/master
| 2020-03-11T17:57:32.555978 | 2018-06-07T01:48:36 | 2018-06-07T01:48:36 | 130,162,558 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,335 |
py
|
import urllib3
def getNameNodes():
i = 0
res = {}
archivo = open('links.csv', 'rt')
for linea in archivo:
k = linea.replace(' ', '')
k = k.replace('\n', '')
if i > 0:
j = k.split('.')
if j[0] in res:
res[j[0]].append(k)
else:
res[j[0]] = [k]
i+=1
archivo.close()
return res
def getDataWeb(url):
http = urllib3.PoolManager()
r = http.request('GET', url)
r.status
return r.data
def makeArchivos(archivos):
base = 'elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/'
for k,v in archivos.items():
for e in v:
data = str(getDataWeb(base + e))
a =data.replace('\\n', ',')
#b =a.replace('\\', '')
j = a.split(',')
if len(e.split('.')) > 2:
#captura el optimo
f = open ('archivos/'+ k + '.opt'+'.txt','w')
for elem in j:
f.write(elem + '\n')
f.close()
else:
f = open ('archivos/'+ k +'.txt','w')
for elem in j:
f.write(elem + '\n')
f.close()
if __name__ == "__main__":
archivos = getNameNodes()
#print(archivos)
makeArchivos(archivos)
|
[
"[email protected]"
] | |
f514f0c972565ebfc8022902b1abcc0fa242ca14
|
9d07335de5a17453bf8ae290d70993d7b20dddcd
|
/.history/dice_20210223203524.py
|
a9e39059915547dad83aa8fbce4c3cc0fedfd011
|
[] |
no_license
|
wh-debug/Matplotlib
|
8d12291cd4135b3b42c185e6700f22c627ddb046
|
b4f5bf63d977620f799d953c67b262c75344a1cb
|
refs/heads/master
| 2023-03-14T10:09:33.602492 | 2021-02-23T13:51:21 | 2021-02-23T13:51:21 | 340,374,612 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 672 |
py
|
'''
Author: your name
Date: 2021-02-23 20:07:30
LastEditTime: 2021-02-23 20:35:24
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \Matplotlib\dice.py
'''
from make_plotly import Die
import matplotlib.pyplot as plt
x_values = [1, 2, 3, 4, 5, 6]
y_values = []
die = Die()
#todo 创建一个空列表结果存储在空列表中
results = []
for roll_num in range(1000):
result = die.roll()
results.append(result)
frequencies = []
for value in range(1, die.num_sides+1):
frequency = results.count(value) #todo value是数字几,就会统计列表中相应数字个数
frequencies.append(frequency)
print(frequencies)
|
[
"[email protected]"
] | |
3b9283807f9a633e9ca03ea36b3db90607bb9388
|
5063587053951fc1dc558c657d06e0b99187baf5
|
/electrumx/server/controller.py
|
6c449b6927f07497c4a7bd4b643a57b2177d5729
|
[
"MIT"
] |
permissive
|
Japangeek/electrumx
|
04cbd7f793afe9fa2dff8adad8e7900f4a80b279
|
a4ea34c6fb9bc887afb19779bde107d97006d8b7
|
refs/heads/master
| 2020-05-15T11:46:52.339001 | 2019-04-18T13:29:37 | 2019-04-18T13:29:37 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,092 |
py
|
# Copyright (c) 2016-2018, Neil Booth
#
# All rights reserved.
#
# See the file "LICENCE" for information about the copyright
# and warranty status of this software.
from asyncio import Event
from aiorpcx import _version as aiorpcx_version, TaskGroup
import electrumx
from electrumx.lib.server_base import ServerBase
from electrumx.lib.util import version_string
from electrumx.server.db import DB
from electrumx.server.mempool import MemPool, MemPoolAPI
from electrumx.server.session import SessionManager
class Notifications(object):
# hashX notifications come from two sources: new blocks and
# mempool refreshes.
#
# A user with a pending transaction is notified after the block it
# gets in is processed. Block processing can take an extended
# time, and the prefetcher might poll the daemon after the mempool
# code in any case. In such cases the transaction will not be in
# the mempool after the mempool refresh. We want to avoid
# notifying clients twice - for the mempool refresh and when the
# block is done. This object handles that logic by deferring
# notifications appropriately.
def __init__(self):
self._touched_mp = {}
self._touched_bp = {}
self._highest_block = -1
async def _maybe_notify(self):
tmp, tbp = self._touched_mp, self._touched_bp
common = set(tmp).intersection(tbp)
if common:
height = max(common)
elif tmp and max(tmp) == self._highest_block:
height = self._highest_block
else:
# Either we are processing a block and waiting for it to
# come in, or we have not yet had a mempool update for the
# new block height
return
touched = tmp.pop(height)
for old in [h for h in tmp if h <= height]:
del tmp[old]
for old in [h for h in tbp if h <= height]:
touched.update(tbp.pop(old))
await self.notify(height, touched)
async def notify(self, height, touched):
pass
async def start(self, height, notify_func):
self._highest_block = height
self.notify = notify_func
await self.notify(height, set())
async def on_mempool(self, touched, height):
self._touched_mp[height] = touched
await self._maybe_notify()
async def on_block(self, touched, height):
self._touched_bp[height] = touched
self._highest_block = height
await self._maybe_notify()
class Controller(ServerBase):
'''Manages server initialisation and stutdown.
Servers are started once the mempool is synced after the block
processor first catches up with the daemon.
'''
async def serve(self, shutdown_event):
'''Start the RPC server and wait for the mempool to synchronize. Then
start serving external clients.
'''
if not (0, 15, 0) <= aiorpcx_version < (0, 16):
raise RuntimeError('aiorpcX version 0.15.x is required')
env = self.env
min_str, max_str = env.coin.SESSIONCLS.protocol_min_max_strings()
self.logger.info(f'software version: {electrumx.version}')
self.logger.info(f'aiorpcX version: {version_string(aiorpcx_version)}')
self.logger.info(f'supported protocol versions: {min_str}-{max_str}')
self.logger.info(f'event loop policy: {env.loop_policy}')
self.logger.info(f'reorg limit is {env.reorg_limit:,d} blocks')
notifications = Notifications()
Daemon = env.coin.DAEMON
BlockProcessor = env.coin.BLOCK_PROCESSOR
daemon = Daemon(env.coin, env.daemon_url)
db = DB(env)
bp = BlockProcessor(env, db, daemon, notifications)
# Set notifications up to implement the MemPoolAPI
def get_db_height():
return db.db_height
notifications.height = daemon.height
notifications.db_height = get_db_height
notifications.cached_height = daemon.cached_height
notifications.mempool_hashes = daemon.mempool_hashes
notifications.raw_transactions = daemon.getrawtransactions
notifications.lookup_utxos = db.lookup_utxos
MemPoolAPI.register(Notifications)
mempool = MemPool(env.coin, notifications)
session_mgr = SessionManager(env, db, bp, daemon, mempool,
shutdown_event)
# Test daemon authentication, and also ensure it has a cached
# height. Do this before entering the task group.
await daemon.height()
caught_up_event = Event()
mempool_event = Event()
async def wait_for_catchup():
await caught_up_event.wait()
await group.spawn(db.populate_header_merkle_cache())
await group.spawn(mempool.keep_synchronized(mempool_event))
async with TaskGroup() as group:
await group.spawn(session_mgr.serve(notifications, mempool_event))
await group.spawn(bp.fetch_and_process_blocks(caught_up_event))
await group.spawn(wait_for_catchup())
|
[
"[email protected]"
] | |
6c201191527104f2d328b58b2ba84caec9c846d3
|
a5ea93395d8d762caefd129648b2e954754afb00
|
/examples/6_p_scale_test_Yokoo_Pt.py
|
fc618a74a4e14089082439c5476fe6df9f86e0e2
|
[
"Apache-2.0"
] |
permissive
|
SHDShim/pytheos
|
4295e233dd089d0c9c66218a127d3f099f1d36df
|
bb86e0ff345efcffb04f08182c09b06b3c54930e
|
refs/heads/master
| 2023-03-16T23:23:56.840071 | 2023-03-11T03:13:23 | 2023-03-11T03:13:23 | 93,273,486 | 7 | 6 |
Apache-2.0
| 2019-11-18T13:11:46 | 2017-06-03T20:54:46 |
Python
|
UTF-8
|
Python
| false | false | 1,369 |
py
|
# coding: utf-8
# In[1]:
get_ipython().run_line_magic('cat', '0Source_Citation.txt')
# In[2]:
get_ipython().run_line_magic('matplotlib', 'inline')
# %matplotlib notebook # for interactive
# For high dpi displays.
# In[3]:
get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
# # 0. General note
# This example compares pressure calculated from `pytheos` and original publication for the platinum scale by Yokoo 2009.
# # 1. Global setup
# In[4]:
import matplotlib.pyplot as plt
import numpy as np
from uncertainties import unumpy as unp
import pytheos as eos
# # 3. Compare
# In[5]:
eta = np.linspace(1., 0.60, 21)
print(eta)
# In[6]:
yokoo_pt = eos.platinum.Yokoo2009()
# In[7]:
yokoo_pt.print_equations()
# In[8]:
yokoo_pt.print_equations()
# In[9]:
yokoo_pt.print_parameters()
# In[10]:
v0 = 60.37930856339099
# In[11]:
yokoo_pt.three_r
# In[12]:
v = v0 * (eta)
temp = 3000.
# In[13]:
p = yokoo_pt.cal_p(v, temp * np.ones_like(v))
# <img src='./tables/Yokoo_Pt.png'>
# In[14]:
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
print("{0: .3f} {1: .2f}".format(eta_i, p_i))
# It is alarming that even 300 K isotherm does not match with table value. The difference is 1%.
# In[15]:
v = yokoo_pt.cal_v(p, temp * np.ones_like(p), min_strain=0.6)
print(1.-(v/v0))
|
[
"[email protected]"
] | |
8aad654f743a97284e6607a741abc184b41bf200
|
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
|
/daily/20181014/example_pycomment/pycomment.py
|
4604d5e1df1248b710f77c3ea0471b933a54d818
|
[] |
no_license
|
podhmo/individual-sandbox
|
18db414fafd061568d0d5e993b8f8069867dfcfb
|
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
|
refs/heads/master
| 2023-07-23T07:06:57.944539 | 2023-07-09T11:45:53 | 2023-07-09T11:45:53 | 61,940,197 | 6 | 0 | null | 2022-10-19T05:01:17 | 2016-06-25T11:27:04 |
Python
|
UTF-8
|
Python
| false | false | 6,165 |
py
|
import sys
import contextlib
from io import StringIO
from lib2to3 import pytree
from lib2to3 import pygram
from lib2to3.pgen2 import driver
from lib2to3.pgen2 import token
from lib2to3.pgen2.parse import ParseError
from lib2to3.fixer_util import Assign, Name, Newline
# utf8 's PUA(https://en.wikipedia.org/wiki/Private_Use_Areas)
SEP = "\U000F0000"
SEP_MARKER = "ZZ{}ZZ".format(SEP)
COMMENT_MARKER = "# =>"
STDOUT_HEADER_MARKER = "# -- stdout --------------------"
default_driver = driver.Driver(pygram.python_grammar_no_print_statement, convert=pytree.convert)
def parse_string(code, parser_driver=default_driver, *, debug=True):
return parser_driver.parse_string(code, debug=debug)
def parse_file(filename, parser_driver=default_driver, *, debug=True):
try:
return parser_driver.parse_file(filename, debug=debug)
except ParseError as e:
if "bad input:" not in repr(e): # work around
raise
with open(filename) as rf:
body = rf.read()
return parse_string(body + "\n", parser_driver=parser_driver, debug=debug)
def node_name(node):
# Nodes with values < 256 are tokens. Values >= 256 are grammar symbols.
if node.type < 256:
return token.tok_name[node.type]
else:
return pygram.python_grammar.number2symbol[node.type]
type_repr = pytree.type_repr
class PyTreeVisitor:
def visit(self, node):
method = 'visit_{0}'.format(node_name(node))
if hasattr(self, method):
# Found a specific visitor for this node
if getattr(self, method)(node):
return
elif hasattr(node, "value"): # Leaf
self.default_leaf_visit(node)
else:
self.default_node_visit(node)
def default_node_visit(self, node):
for child in node.children:
self.visit(child)
def default_leaf_visit(self, leaf):
pass
def transform_string(source: str):
t = parse_string(source)
return transform(t)
def transform_file(fname: str):
with open(fname) as rf:
return transform_string(rf.read())
def transform(node):
t = Transformer()
t.transform(node)
return node
class Transformer(PyTreeVisitor):
marker = COMMENT_MARKER
def visit_NEWLINE(self, node):
if node.prefix.lstrip().startswith(self.marker):
# MEMO: <expr> -> _ = <expr>
target = node
while True:
parent = target.parent
if parent is None:
return
if type_repr(target.parent.type) == "simple_stmt":
break
target = parent
eol = target # target is Leaf("\n]")
target = eol.prev_sibling
cloned = target.clone()
cloned.parent = None
assigned = Assign(Name("_"), cloned)
assigned.prefix = target.prefix
target.replace(assigned)
# MEMO: adding print(SEP_MARKER, _, SEP_MARKER, sep="\n")
this_stmt = eol.parent
print_stmt = this_stmt.clone()
print_stmt.children = []
print_stmt.append_child(
Name(
"print({ms!r}, repr(_), {me!r}, sep='')".format(
ms="{}{}:".format(SEP_MARKER, node.get_lineno()), me=SEP_MARKER
)
)
)
print_stmt.prefix = assigned.prefix
# xxx: for first line
if not print_stmt.prefix:
prev_line = assigned.parent.prev_sibling
if prev_line.type == token.INDENT:
print_stmt.prefix = prev_line.value
print_stmt.append_child(Newline())
for i, stmt in enumerate(this_stmt.parent.children):
if stmt == this_stmt:
this_stmt.parent.insert_child(i + 1, print_stmt)
break
transform = PyTreeVisitor.visit
def run(sourcefile, out=sys.stdout):
o = StringIO()
with contextlib.redirect_stdout(o):
exec(str(transform_file(sourcefile)))
result_map = {}
stdout_outputs = []
for line in o.getvalue().splitlines():
if line.startswith(SEP_MARKER) and line.endswith(SEP_MARKER):
line = line.strip(SEP_MARKER)
lineno, line = line.split(":", 2)
result_map[lineno] = line
else:
stdout_outputs.append(line)
i = 0
with open(sourcefile) as rf:
import re
rx = re.compile(COMMENT_MARKER + ".*$")
for lineno, line in enumerate(rf, 1):
if line.rstrip() == STDOUT_HEADER_MARKER:
break
m = rx.search(line)
k = str(lineno)
if m is None or k not in result_map:
print(line, end="", file=out)
else:
print(line[:m.start()] + COMMENT_MARKER, result_map[k], file=out)
i += 1
if stdout_outputs:
print(STDOUT_HEADER_MARKER, file=out)
for line in stdout_outputs:
print("# >>", line, file=out)
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("sourcefile")
parser.add_argument("--inplace", action="store_true")
parser.add_argument("--show-only", action="store_true")
args = parser.parse_args()
if args.show_only:
print(str(transform_file(args.sourcefile)))
from prestring.python.parse import dump_tree
dump_tree(transform_file(args.sourcefile))
elif not args.inplace:
run(args.sourcefile)
else:
import tempfile
import os
import shutil
name = None
try:
with tempfile.NamedTemporaryFile("w", delete=False) as wf:
name = wf.name
run(args.sourcefile, out=wf)
print("replace: {} -> {}".format(name, args.sourcefile), file=sys.stderr)
shutil.move(name, args.sourcefile)
except Exception:
if os.path.exists(name):
os.unlink(name)
raise
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
221ab1ad77324845627959d14968b0eed0e8e187
|
f66016b962e105898ea14982e229bd44f66f32a2
|
/settings.py
|
c142f11377dc1d70c39b3451e46f9a4f2ab30a36
|
[
"MIT"
] |
permissive
|
DerThorsten/pc
|
d3ceace388dd3460c0133e97b7fba0fde8d1e811
|
41d7474ceff8de7b95be5d4fbc42a40e89799e34
|
refs/heads/master
| 2021-01-12T10:41:47.797694 | 2016-11-10T21:59:35 | 2016-11-10T21:59:35 | 72,621,794 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,216 |
py
|
from collections import OrderedDict
import h5py
from features import registerdFeatureOperators
class Settings(object):
def __init__(self, settingsDict, predictionSettingsDict=None):
self.settingsDict = settingsDict
self.featureBlockShape = tuple(self.settingsDict["setup"]["blockShape"])
if predictionSettingsDict is not None:
self.featureBlockShape = tuple(predictionSettingsDict['setup']["blockShape"])
self.numberOfClasses = self.settingsDict["setup"]["nClasses"]
self.predictionSettingsDict = predictionSettingsDict
print(self.settingsDict['setup'])
self.useBlockF = self.settingsDict['setup'].get("useBlock", None)
#self.useBlockF = self.settingsDict['setup']['useBlock']
assert self.useBlockF is not None
def useTrainingBlock(self, blockIndex, blockBegin, blockEnd):
if self.useBlockF is not None:
return self.useBlockF(blockIndex=blockIndex, blockBegin=blockBegin, blockEnd=blockBegin)
else:
return True
def trainingInstancesNames(self):
setup = self.settingsDict["setup"]
return setup['trainingDataNames']
def predictionInstancesNames(self):
return self.predictionSettingsDict['predictionInput'].keys()
def trainignInstancesDataDicts(self):
setup = self.settingsDict["setup"]
trainingDataNames = setup['trainingDataNames']
trainingInstancesSettings = [ ]
for trainingDataName in trainingDataNames:
s = self.settingsDict["trainingData"][trainingDataName]
s['name'] = trainingDataName
trainingInstancesSettings.append(s)
return trainingInstancesSettings
def predictionInstancesDataDicts(self):
assert self.predictionSettingsDict is not None
d = self.predictionSettingsDict['predictionInput']
dicts = []
for key in d.keys():
ddict = d[key]
ddict['name'] = key
dicts.append(ddict)
return dicts
def featureSetttingsList(self):
return self.settingsDict["setup"]["featureSettings"]
def getLabelsH5Path(self, instanceName):
trainingInstanceDataDict = self.settingsDict["trainingData"][instanceName]
f,d = trainingInstanceDataDict['labels']
return f,d
def getDataH5Dsets(self, instanceDataDict, openH5Files):
dataH5Dsets = OrderedDict()
for featureSettings in self.featureSetttingsList():
inputFileName = featureSettings['name']
print(" ","inputFile:",inputFileName)
# get the h5filename
dataDict = instanceDataDict['data']
f,d = dataDict[inputFileName]['file']
h5File = h5py.File(f,'r')
dset = h5File[d]
# dsets
dataH5Dsets[inputFileName] = dset
# remeber all files opend
openH5Files.append(h5File)
return dataH5Dsets, openH5Files
def getFeatureOperators(self):
dataH5Dsets = OrderedDict()
outerList = []
maxHaloList = []
#print("fs0",self.featureSetttingsList()[0])
#print("fs1",self.featureSetttingsList()[0])
for featureSettings in self.featureSetttingsList():
inputFileName = featureSettings['name']
#print("features for",inputFileName)
featureOperatorsSettingsList = featureSettings["features"]
innerList = []
maxHalo = (0,0,0)
for featureOperatorSettings in featureOperatorsSettingsList:
#print(featureOperatorSettings)
fOpName = featureOperatorSettings['type']
fOpKwargs = featureOperatorSettings['kwargs']
fOpCls = registerdFeatureOperators[fOpName]
fOp = fOpCls(**fOpKwargs)
halo = fOp.halo()
maxHalo = map(lambda aa,bb: max(aa,bb), halo, maxHalo)
innerList.append(fOp)
outerList.append(innerList)
maxHaloList.append(maxHalo)
return outerList,maxHaloList
|
[
"[email protected]"
] | |
c31a0e73d6e975d7fadf3b697bac94aa6dd6b066
|
3c06dc187183b5f78dbe24d38f7a3556b7cc9975
|
/Python/LC51_NQueens.py
|
24f5ce90b79b47c78b3abc2259af3dc85e7f029c
|
[] |
no_license
|
wondershow/CodingTraining
|
071812ffd34850ce0417b95a91ac39a983fca92d
|
0250c3764b6e68dfe339afe8ee047e16c45db4e0
|
refs/heads/master
| 2021-07-02T22:18:46.774286 | 2021-06-30T14:08:54 | 2021-06-30T14:08:54 | 77,458,117 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,110 |
py
|
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
def generate_board(pos, n):
res = []
for i in range(n):
line = ["."] * n
line[pos[i]] = "Q"
res.append("".join(line))
return res
cols, diagnoal, anti_diagnoal = set(), set(), set()
def dfs(res, row, n, cur):
nonlocal cols, diagnoal, anti_diagnoal
if row == n:
res.append(generate_board(cur, n))
return
for col in range(n):
if col in cols or (row + col) in anti_diagnoal or (row - col) in diagnoal:
continue
cols.add(col)
anti_diagnoal.add(row + col)
diagnoal.add(row - col)
cur.append(col)
dfs(res, row + 1, n, cur)
cur.pop()
cols.remove(col)
anti_diagnoal.remove(row + col)
diagnoal.remove(row - col)
res = []
dfs(res, 0, n, [])
return res
|
[
"[email protected]"
] | |
87f86ee5f18ff897da50586e96692fc1a9d89d64
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03371/s901597766.py
|
123ae25fb816ba52b35bc7528454231feb8593bf
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 532 |
py
|
A, B, C, X, Y = map(int, input().split())
cntA = 0
cntB = 0
cntC = 0
value = 0
if 2*C<=A+B:
#Cで買いそろえた方が安いので
#(max(X, Y)-abs(X-Y))*2枚は買うことになる
Cmaisu = (max(X, Y)-abs(X-Y))*2
value += C * Cmaisu
if (2*C<=A and X>Y) or (2*C<=B and X<Y):
#abs(X-Y)枚についても2Cが安けりゃCで買う
value += C * abs(X-Y) * 2
else:
if X>Y:
value += A*(X-Y)
else:
value += B*(Y-X)
else:
value += A*X+B*Y
print(value)
|
[
"[email protected]"
] | |
f6b658b1ddac70cd71d916a2ed089c862e530a4e
|
f8666599b83d34c861651861cc7db5b3c434fc87
|
/plotly/validators/scatterpolargl/marker/colorbar/tickformatstop/_templateitemname.py
|
3aca0890a4cb67b0ff4f477575d146dfbe41dbf8
|
[
"MIT"
] |
permissive
|
mode/plotly.py
|
8b66806e88c9f1820d478bab726f0bea81884432
|
c5a9ac386a40df2816e6c13264dadf14299401e4
|
refs/heads/master
| 2022-08-26T00:07:35.376636 | 2018-09-26T19:08:54 | 2018-09-26T19:19:31 | 60,372,968 | 1 | 1 |
MIT
| 2019-11-13T23:03:22 | 2016-06-03T19:34:55 |
Python
|
UTF-8
|
Python
| false | false | 545 |
py
|
import _plotly_utils.basevalidators
class TemplateitemnameValidator(_plotly_utils.basevalidators.StringValidator):
def __init__(
self,
plotly_name='templateitemname',
parent_name='scatterpolargl.marker.colorbar.tickformatstop',
**kwargs
):
super(TemplateitemnameValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop('edit_type', 'calc'),
role=kwargs.pop('role', 'info'),
**kwargs
)
|
[
"[email protected]"
] | |
bf825d15878d7b99d77904e32eb9daf305bfa790
|
4eaa1b9b08914e0a2cc9276363e489ccef19d3a2
|
/ch3/guest_list.py
|
3a09e97b39d325d4f92b191d3cabd2777d74e4f8
|
[] |
no_license
|
melihcanyardi/Python-Crash-Course-2e-Part-I
|
69b3b5b3f63cdbd7be6fabd6d4f2ddfd9a3434a3
|
0c9b250f512985c04b2c0397f3afaa8bf3a57f17
|
refs/heads/main
| 2023-03-12T21:43:14.012537 | 2021-03-03T19:23:41 | 2021-03-03T19:23:41 | 344,236,741 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 416 |
py
|
guest_list = ['Ali', 'Ayşe', 'Mehmet', 'Ahmet']
message = f"Hey {guest_list[0]}, would you like to join me for the dinner?"
print(message)
message = f"Hey {guest_list[1]}, would you like to join me for the dinner?"
print(message)
message = f"Hey {guest_list[2]}, would you like to join me for the dinner?"
print(message)
message = f"Hey {guest_list[3]}, would you like to join me for the dinner?"
print(message)
|
[
"[email protected]"
] | |
4696d4803fcbd9b7f1fa002caeed6d15ed478d7e
|
4d0f3e2d7455f80caea978e4e70621d50c6c7561
|
/Threading/Lock.py
|
efce0601f22fa1de07581c3637eba0dc6384a431
|
[] |
no_license
|
mhdr/PythonSamples
|
66940ee2353872d2947c459e3865be42140329c6
|
1a9dccc05962033ea02b081a39cd67c1e7b29d0c
|
refs/heads/master
| 2020-04-14T01:10:13.033940 | 2016-05-28T15:33:52 | 2016-05-28T15:33:52 | 30,691,539 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 164 |
py
|
import threading
from threading import Lock
def print_multi():
lock=Lock()
lock.acquire()
print("Hello World")
lock.release()
print_multi()
|
[
"[email protected]"
] | |
4733bae1eb944dc330c20c4483dd7b1171de45b2
|
99833651e4a6a0bc1221d577d9fc43b8568abedd
|
/nltk_contrib/hadoop/tf_idf/tf_map.py
|
25f49052f7b5472b8a00478c177aac8e3dd514cd
|
[
"LicenseRef-scancode-unknown-license-reference",
"Apache-2.0"
] |
permissive
|
nltk/nltk_contrib
|
689e2683aa01b120c7473b9a4fc50bc49f014390
|
95d1806e2f4e89e960b76a685b1fba2eaa7d5142
|
refs/heads/master
| 2023-07-31T13:32:47.358897 | 2022-11-21T18:49:33 | 2022-11-21T18:49:33 | 2,530,774 | 145 | 127 |
NOASSERTION
| 2022-11-21T18:49:34 | 2011-10-07T05:59:13 |
Python
|
UTF-8
|
Python
| false | false | 692 |
py
|
from hadooplib.mapper import MapperBase
class TFMapper(MapperBase):
"""
get the filename (one filename per line),
open the file and count the term frequency.
"""
def map(self, key, value):
"""
output (word filename, 1) for every word in files
@param key: None
@param value: filename
"""
filename = value.strip()
if len(filename) == 0:
return
file = open(filename, 'r')
for line in file:
words = line.strip().split()
for word in words:
self.outputcollector.collect(word + " " + filename, 1)
if __name__ == "__main__":
TFMapper().call_map()
|
[
"[email protected]"
] | |
d68dd9aee38f272a57637402ae90918c73bc1986
|
641df38bb75077cd8da28b69e38b84af293b5db7
|
/docassemble_base/setup.py
|
73a6d2bf9b44a96183a19d6f23282978224b061d
|
[
"MIT"
] |
permissive
|
bgordo3/docassemble
|
f19e01f2daf41eb05e2c19b5d4278bdc0d6d3ea5
|
3ce22e22e818598badc2242038f4e4abc4ee9fde
|
refs/heads/master
| 2020-12-26T01:03:14.840009 | 2016-05-15T13:50:35 | 2016-05-15T13:50:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,809 |
py
|
#!/usr/bin/env python
import os
import sys
from setuptools import setup, find_packages
from fnmatch import fnmatchcase
from distutils.util import convert_path
standard_exclude = ('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*')
standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info')
def find_package_data(where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories):
out = {}
stack = [(convert_path(where), '', package)]
while stack:
where, prefix, package = stack.pop(0)
for name in os.listdir(where):
fn = os.path.join(where, name)
if os.path.isdir(fn):
bad_name = False
for pattern in exclude_directories:
if (fnmatchcase(name, pattern)
or fn.lower() == pattern.lower()):
bad_name = True
break
if bad_name:
continue
if os.path.isfile(os.path.join(fn, '__init__.py')):
if not package:
new_package = name
else:
new_package = package + '.' + name
stack.append((fn, '', new_package))
else:
stack.append((fn, prefix + name + '/', package))
else:
bad_name = False
for pattern in exclude:
if (fnmatchcase(name, pattern)
or fn.lower() == pattern.lower()):
bad_name = True
break
if bad_name:
continue
out.setdefault(package, []).append(prefix+name)
return out
setup(name='docassemble.base',
version='0.1',
description=('A python module for assembling documents from templates while automatically querying a user for necessary information.'),
author='Jonathan Pyle',
author_email='[email protected]',
license='MIT',
url='http://docassemble.org',
namespace_packages = ['docassemble'],
install_requires = ['docassemble', '3to2', 'babel', 'bcrypt', 'blinker', 'cffi', 'fdfgen', 'guess-language-spirit', 'html2text', 'httplib2', 'itsdangerous', 'jellyfish', 'jinja2', 'lxml', 'mako', 'markdown', 'markupsafe', 'mdx-smartypants', 'namedentities==1.5.2', 'passlib', 'pdfminer', 'pillow', 'pip', 'pycparser', 'pycrypto', 'geopy', 'pygments', 'pyjwt', 'pypdf', 'PyPDF2', 'pyrtf-ng', 'python-dateutil', 'pytz', 'pyyaml', 'qrcode', 'six', 'titlecase', 'us', 'wheel'],
packages=find_packages(),
zip_safe = False,
package_data=find_package_data(where='docassemble/base/', package='docassemble.base'),
)
|
[
"[email protected]"
] | |
47821cfbba0dbe4c3efe3982af6bf0e12bc36614
|
8e7a2b9efbc0d25111f01f4cddb781961032685a
|
/python-1025/python/a_socket/3_ssh/cli.py
|
a8eb9d81fb94a0cd363d5f6691ffd91955caf960
|
[] |
no_license
|
Dituohgasirre/python
|
e044aa2e1fb2233b6ccd59701b834ab01e4e24c2
|
05f036d2723f75cd89e4412aaed7ee0ba5d3a502
|
refs/heads/master
| 2023-06-03T13:50:18.641433 | 2021-06-17T10:23:40 | 2021-06-17T10:23:40 | 366,942,423 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 834 |
py
|
#!/usr/bin/env python3
import socket
from pargs import parse
from net import Packet
if __name__ == "__main__":
def main():
args, opt = parse(['s|srv|1', 'p|port|1'])
srvIp = opt['srv'] if 'srv' in opt else "3.3.3.3"
port = int(opt['port']) if 'port' in opt else 9000
sd = socket.socket(type=socket.SOCK_DGRAM)
addr = (srvIp, port)
packet = Packet(sd)
while True:
cmd = input("<自己的网络SHELL>: ")
packet.send(cmd, addr, Packet.DATA)
if cmd == "exit":
break
out = ""
while True:
data, addr = packet.recv()
if data['type'] == Packet.QUIT:
break
out += data['data']
print(out)
sd.close()
main()
|
[
"[email protected]"
] | |
aa886a213c5f135a412aba43490ad62764c40613
|
33836016ea99776d31f7ad8f2140c39f7b43b5fe
|
/fip_collab/2017_02_24_HCF_pearson/get_linkage_alt.py
|
81760c80d5b2307eb97b7f5b1d063001511737ce
|
[] |
no_license
|
earthexploration/MKS-Experimentation
|
92a2aea83e041bfe741048d662d28ff593077551
|
9b9ff3b468767b235e7c4884b0ed56c127328a5f
|
refs/heads/master
| 2023-03-17T23:11:11.313693 | 2017-04-24T19:24:35 | 2017-04-24T19:24:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,035 |
py
|
import numpy as np
import functions as rr
import reg_functions as rf
from constants import const
from scipy.stats import pearsonr
import h5py
import time
from sklearn.preprocessing import PolynomialFeatures
def analysis(X, response_tot, groups, iscal):
RpredCV = rf.cv(X[iscal, :], response_tot[iscal], groups[iscal])
coef = rf.regression(X[iscal, :], response_tot[iscal])
Rpred = rf.prediction(X, coef)
return coef, RpredCV, Rpred
def pearson_eval(X, y):
Nfeat = X.shape[1]
pvec = np.zeros((Nfeat,))
# pvec[0] = 1 # for the constant term
for ii in xrange(Nfeat):
""" pearsonr returns tuples with the pearson correlation
and the P-value (chance of observing the data
if the null hypothesis is true). I'm going to throw away
the p-value"""
if np.all(X[:, ii] == 1):
pvec[ii] = 1
else:
pvec[ii] = pearsonr(X[:, ii], y)[0]
return pvec
def optimal_set(X, y, names):
C = const()
Nfeat = X.shape[1]
"""obtain pearson correlation scores against the response variable"""
pvec = pearson_eval(X, y)
indxv_ = np.argsort(np.abs(pvec))[::-1]
pvec_f = np.zeros((C['fmax'],))
names_f = np.zeros((C['fmax'],), dtype="S20")
support = np.zeros((Nfeat,), dtype='bool')
indxv = np.zeros((C['fmax']), dtype='int32')
"""start by adding zero vector"""
pvec_f[0] = pvec[indxv_[0]]
names_f[0] = names[indxv_[0]]
indxv[0] = indxv_[0]
"""add vector with highest pearson correlation besides the zero vector"""
pvec_f[1] = pvec[indxv_[1]]
names_f[1] = str(names[indxv_[1]])
support[indxv_[1]] = True
indxv[1] = indxv_[1]
c = 1
for ii in xrange(2, C['fmax']):
pvecA = np.ones((ii,))
while True:
c += 1
pvecT = pearson_eval(X[:, support], X[:, indxv_[c]])
pvecA = np.abs(pvecT)
# if pvecA.max() < 0.6:
if pvecA.max() < 1.6:
break
# print str(c) + ', ' + str(np.argmax(pvecA)) + ', ' + str(pvecA.max())
pvec_f[ii] = pvec[indxv_[c]]
names_f[ii] = names[indxv_[c]]
support[indxv_[c]] = True
indxv[ii] = indxv_[c]
"""we add support for the vector of ones at the end to not screw up the
calculation"""
support[indxv_[0]] = True
return pvec_f, names_f, support, indxv
def preanalysis(loc_tot, cov_tot):
npc = loc_tot.shape[1]
ns = loc_tot.shape[0]
"""extract names from mean loc info"""
mean_only_names = []
for ii in xrange(npc):
mean_only_names += ['m%s' % str(ii+1)]
"""extract variance info from covariance matrix"""
var_only = np.zeros((ns, npc))
var_only_names = []
for ii in xrange(npc):
var_only[:, ii] = cov_tot[:, ii, ii]
var_only_names += ['c%s_%s' % (str(ii+1), str(ii+1))]
"""extract unique, off-diagonal co-variance info from
covariance matrix"""
nc = (npc**2-npc)/2
cov_only = np.zeros((ns, nc))
cov_only_names = []
c = 0
for ii in xrange(npc):
for jj in xrange(ii+1, npc):
cov_only[:, c] = cov_tot[:, ii, jj]
cov_only_names += ['c%s_%s' % (str(ii+1), str(jj+1))]
c += 1
return loc_tot, var_only, cov_only, \
mean_only_names, var_only_names, cov_only_names
def get_poly(X_pre, names_pre):
C = const()
"""get the polynomial features"""
poly = PolynomialFeatures(C['deg_max'])
poly.fit(X_pre)
X = poly.transform(X_pre)
"""get the names of the polynomial features"""
names = poly.get_feature_names(names_pre)
return X, names
def prepare(par):
np.random.seed(0)
C = const()
p = C['n_sc']
f_link = h5py.File("sample_L%s.hdf5" % C['H'], 'r')
"""gather the calibration data"""
n_tot = len(C['sid'])
ns_tot = n_tot*p
groups = np.zeros(ns_tot, dtype='int16')
response_tot = np.zeros(ns_tot, dtype='float64')
loc_tot = np.zeros((ns_tot, C['n_pc_max']), dtype='float64')
cov_tot = np.zeros((ns_tot, C['n_pc_max'], C['n_pc_max']), dtype='float64')
iscal = np.zeros((ns_tot,), dtype='bool')
c = 0
for ii in xrange(n_tot):
c_ = c + p
sid = C['sid'][ii]
"""flag elements of the calibration set"""
if sid in C['sid_cal']:
iscal[c:c_] = True
groups[c:c_] = 2*ii+np.round(np.random.random((p,)))
dset_name = "%s_%s" % (par, sid)
response_tot[c:c_] = f_link.get(dset_name)[...]
tmp = f_link.get('samp_%s' % sid)[:, :, :C['n_pc_max']]
loc_tot[c:c_, :] = np.mean(tmp, 1)
for jj in xrange(p):
cov_tot[c+jj, ...] = np.cov(tmp[jj, ...], rowvar=False)
c = c_
f_link.close()
return groups, response_tot, loc_tot, cov_tot, iscal
def linkage(par):
st = time.time()
C = const()
p = C['n_sc']
n_tot = len(C['sid'])
ns_tot = n_tot*p
"""create arrays required for linkage creation"""
precursors = prepare(par)
groups = precursors[0]
response_tot = precursors[1]
loc_tot = precursors[2]
cov_tot = precursors[3]
iscal = precursors[4]
f_reg = h5py.File("regression_results_L%s.hdf5" % C['H'], 'a')
f_reg.create_dataset('Rsim_%s' % par, data=response_tot)
f_reg.create_dataset('iscal_%s' % par, data=iscal)
coef_set = f_reg.create_dataset('coef_%s' % par,
(C['fmax'], C['fmax']),
dtype='float64')
Rpred_set = f_reg.create_dataset('Rpred_%s' % par,
(C['fmax'], ns_tot),
dtype='float64')
RpredCV_set = f_reg.create_dataset('RpredCV_%s' % par,
(C['fmax'],
p*len(C['sid_cal'])),
dtype='float64')
"""get the polynomial features"""
tmp = preanalysis(loc_tot, cov_tot)
var_only = tmp[1]
cov_only = tmp[2]
mean_only_names = tmp[3]
var_only_names = tmp[4]
cov_only_names = tmp[5]
# X_pre = np.concatenate((loc_tot, var_only, cov_only), axis=1)
# names_pre = mean_only_names + var_only_names + cov_only_names
# X_pre = np.concatenate((loc_tot, var_only), axis=1)
# names_pre = mean_only_names + var_only_names
X_pre = loc_tot
names_pre = mean_only_names
f_reg.create_dataset('featurenames_%s' % par, data=names_pre)
X, names = get_poly(X_pre, names_pre)
print "# deg1 features: " + str(len(names_pre))
print "# higher deg features: " + str(len(names))
"""perform the pearson correlation"""
pvec, names_f, support, indxv = optimal_set(X[iscal, :], response_tot[iscal], names)
f_reg.create_dataset('scores_%s' % par, data=pvec)
f_reg.create_dataset('indxsel_%s' % par, data=indxv)
"""select the most highly correlated features"""
Xp = X[:, indxv]
# import matplotlib.pyplot as plt
# plt.plot(np.arange(pvec.size), np.abs(pvec))
# plt.show()
msg = "\ntop 20 scoring features"
rr.WP(msg, C['wrt_file'])
for ii in xrange(20):
msg = "%s: %s" % (names_f[ii], pvec[ii])
rr.WP(msg, C['wrt_file'])
"""create and evaluate the final linkages"""
meanc = np.abs(response_tot[iscal]).mean()
for ii in xrange(C['fmax']):
coef, RpredCV, Rpred = analysis(Xp[:, :(ii+1)], response_tot,
groups, iscal)
coef_set[ii, :] = 0
coef_set[ii, :(ii+1)] = coef
RpredCV_set[ii, :] = RpredCV
Rpred_set[ii, :] = Rpred
err = np.mean(np.abs(RpredCV - response_tot[iscal]))/meanc
msg = "%s features: cv.mean(): %s" % (str(ii+1), str(err))
rr.WP(msg, C['wrt_file'])
f_reg.close()
timeE = np.round(time.time()-st, 1)
msg = "regressions and cross-validations completed: %s s" % timeE
rr.WP(msg, C['wrt_file'])
if __name__ == '__main__':
par = 'mu'
linkage(par)
|
[
"[email protected]"
] | |
cfcf4c4c948d02a6254d41f9f56773077bb97583
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/59/usersdata/201/47100/submittedfiles/testes.py
|
ffc9bae8827fb40a5106a1cf09f62f630d98ad23
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146 | 2017-12-22T16:05:45 | 2017-12-22T16:05:45 | 69,566,344 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 288 |
py
|
# -*- coding: utf-8 -*-
#COMECE AQUI ABAIXO
r=float(input('Quanto ganha por hora:'))
h=float(input('Horas trabalhadas no mês:'))
t=r*t
print('%.2f' %t)
inss=0.08:
i=inss*t
print('Desconto do INSS:' '%.2f' %i)
sind=0.05:
j=sind*t
print('Desconto do sindicato:' '%.2f' %j)
|
[
"[email protected]"
] | |
c2db9fed8d3d7953430514b58aa47a57e52a59f2
|
6acea1c5206052393beb5cba132f40e55b637c11
|
/doc_curation/scraping/misc_sites/iitk.py
|
6df37d4e6779f4afcd0c5073d46022a249314662
|
[
"MIT"
] |
permissive
|
sanskrit-coders/doc_curation
|
a44afacf68d1711bcebd02c97b30a42b6d82bccc
|
db330393d3df052c008811f4b442421900e5fa84
|
refs/heads/master
| 2023-08-27T09:41:22.784001 | 2023-08-11T05:40:46 | 2023-08-11T05:40:46 | 157,027,340 | 8 | 4 |
MIT
| 2022-12-08T08:26:49 | 2018-11-10T22:32:26 |
Python
|
UTF-8
|
Python
| false | false | 880 |
py
|
import logging
import regex
from doc_curation.scraping.html_scraper import souper
from indic_transliteration import sanscript
def dump_item(item_url, outfile_path, title_maker):
logging.info(item_url)
def html_fixer(soup):
souper.tag_replacer(soup=soup, css_selector="table", tag_name="div")
souper.element_remover(soup=soup, css_selector="div.view-filters")
def md_fixer(md):
md = md.replace("।।", " ॥ ")
# md = md.replace(".", " - ")
md = md.replace(":", "ः")
md = md.replace("\n \n", "\n\n")
md = regex.sub("\n{3, 13}", "\n\n", md)
md = sanscript.transliterate(md, sanscript.IAST, sanscript.DEVANAGARI)
return md
souper.dump_text_from_element(url=item_url, outfile_path=outfile_path, text_css_selector="div.content", title_maker=title_maker, title_prefix="", html_fixer=html_fixer, md_fixer=md_fixer, dry_run=False)
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.