blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
264
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
85
| license_type
stringclasses 2
values | repo_name
stringlengths 5
140
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 905
values | visit_date
timestamp[us]date 2015-08-09 11:21:18
2023-09-06 10:45:07
| revision_date
timestamp[us]date 1997-09-14 05:04:47
2023-09-17 19:19:19
| committer_date
timestamp[us]date 1997-09-14 05:04:47
2023-09-06 06:22:19
| github_id
int64 3.89k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-07 00:51:45
2023-09-14 21:58:39
⌀ | gha_created_at
timestamp[us]date 2008-03-27 23:40:48
2023-08-21 23:17:38
⌀ | gha_language
stringclasses 141
values | src_encoding
stringclasses 34
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 2
classes | length_bytes
int64 3
10.4M
| extension
stringclasses 115
values | content
stringlengths 3
10.4M
| authors
sequencelengths 1
1
| author_id
stringlengths 0
158
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fcfae6f96b83a76e992429847beffe65c46da050 | 6047b3b605e47692af45f5c49869fa0cc409d46a | /chrome/browser/ui/views/overlay/overlay_window_views.h | f0a4fec9b51edffab1031e418a0b6df3be9e5385 | [
"BSD-3-Clause"
] | permissive | liglee/chromium | 87d9dfd6c513cf456edb600080354b77fe56bd62 | 1b6d8638caf9c57f132175426f795a10eb4c769c | refs/heads/master | 2023-03-03T13:15:38.361656 | 2018-04-24T08:27:31 | 2018-04-24T08:27:31 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,525 | h | // Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CHROME_BROWSER_UI_VIEWS_OVERLAY_OVERLAY_WINDOW_VIEWS_H_
#define CHROME_BROWSER_UI_VIEWS_OVERLAY_OVERLAY_WINDOW_VIEWS_H_
#include "content/public/browser/overlay_window.h"
#include "ui/gfx/geometry/size.h"
#include "ui/views/widget/widget.h"
// The Chrome desktop implementation of OverlayWindow. This will only be
// implemented in views, which will support all desktop platforms.
class OverlayWindowViews : public content::OverlayWindow, public views::Widget {
public:
explicit OverlayWindowViews(
content::PictureInPictureWindowController* controller);
~OverlayWindowViews() override;
// OverlayWindow:
bool IsActive() const override;
void Show() override;
void Close() override;
bool IsVisible() const override;
bool IsAlwaysOnTop() const override;
ui::Layer* GetLayer() override;
gfx::Rect GetBounds() const override;
void UpdateVideoSize(const gfx::Size& natural_size) override;
// views::Widget:
gfx::Size GetMinimumSize() const override;
gfx::Size GetMaximumSize() const override;
void OnNativeWidgetWorkspaceChanged() override;
void OnMouseEvent(ui::MouseEvent* event) override;
// views::internal::NativeWidgetDelegate:
void OnNativeWidgetSizeChanged(const gfx::Size& new_size) override;
private:
// Determine the intended bounds of |this|. This should be called when there
// is reason for the bounds to change, such as switching primary displays or
// playing a new video (i.e. different aspect ratio). This also updates
// |min_size_| and |max_size_|.
gfx::Rect CalculateAndUpdateBounds();
// Not owned; |controller_| owns |this|.
content::PictureInPictureWindowController* controller_;
// The upper and lower bounds of |current_size_|. These are determined by the
// size of the primary display work area when Picture-in-Picture is initiated.
// TODO(apacible): Update these bounds when the display the window is on
// changes. http://crbug.com/819673
gfx::Size min_size_;
gfx::Size max_size_;
// Current size of the Picture-in-Picture window.
gfx::Size current_size_;
// The natural size of the video to show. This is used to compute sizing and
// ensuring factors such as aspect ratio is maintained.
gfx::Size natural_size_;
DISALLOW_COPY_AND_ASSIGN(OverlayWindowViews);
};
#endif // CHROME_BROWSER_UI_VIEWS_OVERLAY_OVERLAY_WINDOW_VIEWS_H_
| [
"[email protected]"
] | |
35b4df56d927df86e0ac27fcf8ed79d7551a6134 | d114891078cb1954594daeaa4c0be5716859918a | /LabWork4/Cylinder.cpp | 48b99fa48f71c1c391441b58d524e33fc071e5ff | [] | no_license | LevKostychenko/4LabWork | 9896b249ea24df178f24b4a9d2787f972ca29bac | 5387b16ed067eb1c598197001ff7e38367274b37 | refs/heads/master | 2020-08-05T17:34:10.172894 | 2019-10-03T17:15:42 | 2019-10-03T17:15:42 | 212,635,398 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 826 | cpp | #include "pch.h"
#include "Cylinder.h"
Cylinder::Cylinder(double xa, double ya, double za,
double xb, double yb, double zb,
double xc, double yc, double zc)
{
this->Radius = sqrt(pow((xa - xb), 2) + pow((ya - yb), 2) + pow((za - zb), 2));
this->Height = sqrt(pow((xa - xc), 2) + pow((ya - yc), 2) + pow((za - zc), 2));
}
Cylinder::Cylinder(Point a, Point b, Point c)
{
this->Radius = sqrt(pow((a.X - b.X), 2) + pow((a.Y - b.Y), 2) + pow((a.Z - b.Z), 2));
this->Height = sqrt(pow((a.X - c.X), 2) + pow((a.Y - c.Y), 2) + pow((a.Z - c.Z), 2));
}
double Cylinder::GetArea()
{
return 2 * M_PI * this->Height * this->Radius;
}
double Cylinder::GetVolume()
{
return M_PI * pow(this->Radius, 2) * this->Height;
}
void Cylinder::PrintName()
{
std::cout << "This is Cylinder!" << std::endl;
}
Cylinder::~Cylinder()
{
}
| [
"[email protected]"
] | |
40fe2b944f793c7af7e56b5f38e4d7986d8f80b1 | b3ab2120518a1b2d211d40324985374bae8458fa | /ReverseCuthillMcKee.cpp | bc29a38b0d7801b19d241bde6d3051e068b68992 | [] | no_license | evalen43/ReverseCuthillMcKee | 2b82e2f2d12a72214b98e542c85334ee94fb2c0b | decade3789af136a8180dde7b15ffe6f8f4f1b11 | refs/heads/master | 2023-05-30T03:05:14.369235 | 2021-06-15T02:28:29 | 2021-06-15T02:28:29 | 375,798,865 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 5,794 | cpp | // ReverseCuthillMcKee.cpp : This file contains the 'main' function. Program execution begins and
// ends there. C++ program for Implementation of Reverse Cuthill Mckee Algorithm
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <vector>
#include <queue>
#include <string>
using namespace std;
vector<int> globalDegree;
int ne = 0;
vector<vector<int>> edges;
int findIndex(vector<pair<int, int> > a, int x)
{
for (int i = 0; i < a.size(); i++)
if (a[i].first == x)
return i;
return -1;
}
int findIndex2(vector<pair<int, int> > a, int x)
{
for (int i = 0; i < a.size(); i++)
if (a[i].second == x)
return i;
return -1;
}
bool compareDegree(int i, int j)
{
return ::globalDegree[i] < ::globalDegree[j];
}
template <typename T>
ostream& operator<<(ostream& out, vector<T> const& v)
{
for (int i = 0; i < v.size(); i++)
out << v[i] << ' ';
return out;
}
template <typename T>
ostream& operator<<(ostream& out, vector<vector<T>> const& v)
{
for (int i = 0; i < v.size(); i++)
{
for(int j=0;j<v[0].size();j++)
out << v[i][j] << ' ';
out << endl;
}
return out;
}
class ReorderingSSM
{
private:
vector<vector<int> > _matrix;
int index1=-1,index2=-1;
public:
// Constructor and Destructor
ReorderingSSM(vector<vector<int>> edges,vector<pair<int,int>> nodes,int nn)
{
//_matrix = m;
int j1, j2;
//int ne1 = edges.size();
for (int i = 0; i < nn; i++) {
vector<int> datai;
for (int j = 0; j < nn; j++)
datai.push_back(0.0);
_matrix.push_back(datai);
}
for (int i = 0; i < edges.size(); i++) {
j1 = edges[i][0];
j2 = edges[i][1];
index1 = findIndex2(nodes, j1);
index2 = findIndex2(nodes, j2);
_matrix[index1][index2] = 1;
_matrix[index2][index1] = 1;
}
cout << _matrix<<endl;
}
ReorderingSSM() {}
~ReorderingSSM() {}
// class methods
// Function to generate degree for all nodes
vector<int> degreeGenerator()
{
vector<int> degrees;
for (int i = 0; i < _matrix.size(); i++) {
int count = 0;
for (int j = 0; j < _matrix[0].size(); j++) {
count += _matrix[i][j];
}
degrees.push_back(count);
}
cout << "Degress" << endl;
cout << degrees << endl;
return degrees;
}
// Implementation of Cuthill-Mckee algorithm
vector<int> CuthillMckee()
{
vector<int> degrees = degreeGenerator();
::globalDegree = degrees;
queue<int> Q;
vector<int> R;
vector<pair<int, int> > notVisited;
for (int i = 0; i < degrees.size(); i++)
notVisited.push_back(make_pair(i, degrees[i]));
// Vector notVisited helps in running BFS even when there are disjoind graphs
while (notVisited.size()) {
int minNodeIndex = 0;
for (int i = 0; i < notVisited.size(); i++)
if (notVisited[i].second < notVisited[minNodeIndex].second)
minNodeIndex = i;
Q.push(notVisited[minNodeIndex].first); 0,
notVisited.erase(notVisited.begin()
+ findIndex(notVisited,
notVisited[Q.front()].first));
// Simple BFS
while (!Q.empty()) {
vector<int> toSort;
for (int i = 0; i < _matrix[0].size(); i++) {
if (i != Q.front() && _matrix[Q.front()][i] == 1
&& findIndex(notVisited, i) != -1) {
toSort.push_back(i);
notVisited.erase(notVisited.begin()
+ findIndex(notVisited, i));
}
}
sort(toSort.begin(), toSort.end(), compareDegree);
for (int i = 0; i < toSort.size(); i++)
Q.push(toSort[i]);
R.push_back(Q.front());
Q.pop();
}
}
return R;
}
// Implementation of reverse Cuthill-Mckee algorithm
vector<int> ReverseCuthillMckee()
{
vector<int> cuthill = CuthillMckee();
int n = cuthill.size();
if (n % 2 == 0)
n -= 1;
n = n / 2;
for (int i = 0; i <= n; i++) {
int j = cuthill[cuthill.size() - 1 - i];
cuthill[cuthill.size() - 1 - i] = cuthill[i];
cuthill[i] = j;
}
return cuthill;
}
};
int main()
{
vector<pair<int, int>> nodes;
int diff = 0;
int band = 0;
string filein;
int ne = 0,nn=0;
int j1 = 0, j2 = 0, index1=0,index2=0;
std::cout << "Enter File Name!\n";
cin >> filein ;
ifstream myfile;
myfile.open(filein);
if (myfile.is_open())
{
diff = 0;
myfile >> nn >> ne;
for (int i = 0; i < nn; i++) {
myfile >> j1;
nodes.push_back(make_pair(i,j1));
}
for(int i=0;i<ne;i++)
{
myfile >> j1 >> j2;
band = abs(j1 - j2);
if (band > diff) diff = band;
vector<int> inc;
inc.push_back(j1);
inc.push_back(j2);
edges.push_back(inc);
}
myfile.close();
cout << "Number of edges: "<<ne<<' ' <<"Number of Node: " <<' ' << nn<<" Bandwidth: " << diff << endl;
}
else
{
cout << "File not Found" << endl;
return -1;
}
// This is the test graph,
// check out the above graph photo
//matrix[0] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0 };
//matrix[1] = { 1, 0, 0, 0, 1, 0, 1, 0, 0, 1 };
//matrix[2] = { 0, 0, 0, 0, 1, 0, 1, 0, 0, 0 };
//matrix[3] = { 0, 0, 0, 0, 1, 1, 0, 0, 1, 0 };
//matrix[4] = { 0, 0, 0, 0, 1, 1, 0, 0, 1, 0 };
//matrix[5] = { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 };
//matrix[6] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
//matrix[7] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 };
//matrix[8] = { 1, 0, 0, 1, 0, 0, 0, 1, 0, 0 };
//matrix[9] = { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 };
ReorderingSSM m(edges,nodes,nn);
vector<int> r = m.ReverseCuthillMckee();
int r0; int r1;
cout << "Permutation order of objects: " << r << endl;
cout << "Original Edges" << endl;
cout << edges;
cout << "New Edges" << endl;
diff = 0;
for (int i = 0; i < edges.size(); i++) {
j1 = edges[i][0];
j2 = edges[i][1];
index1 = findIndex2(nodes, j1);
index2 = findIndex2(nodes, j2);
r0 = r[index1]; r1 = r[index2];
band = abs(r0 - r1);
if (band>diff) diff = band;
cout << nodes[r0].second << ' ' << nodes[r1].second << endl;
}
cout << "New bandwidth: " << diff << endl;
return 0;
}
| [
"[email protected]"
] | |
f6790595031dd8bc715a27ea191136cea2a45dc3 | 9c308bab9621c8a2a9e5b43016f0b5c14722a0f5 | /Syncer.cpp | 40d1f36e32d9c411a1fdb6c3a4c98ee31c28c2a4 | [] | no_license | Maniulo/FFmpeg-SDL-tutorial | c01d3fc5035898d148e0ab288d90f45565acfcaa | dd7586c6c6985bf094d9dcd4521d08dcdcd74cc7 | refs/heads/master | 2021-01-22T22:21:21.452219 | 2013-10-09T19:17:47 | 2013-10-09T19:17:47 | 12,451,820 | 5 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 1,244 | cpp | extern "C"
{
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>
#include <libavutil/mem.h>
#include <libavutil/time.h>
}
#include "Video.cpp"
#include "Audio.cpp"
/* no AV sync correction is done if below the AV sync threshold */
#define AV_SYNC_THRESHOLD 0.01
/* no AV correction is done if too big error */
#define AV_NOSYNC_THRESHOLD 10.0
#include <SDL.h>
class Syncer
{
private:
Audio *A;
Video *V;
double previousClock;
double previousDelay;
public:
Syncer(Video *v, Audio *a)
{
V = v;
A = a;
previousClock = 0;
previousDelay = 0;
}
double computeFrameDelay()
{
// fprintf(stdout, "%f", V->VideoClock());
double delay = V->VideoClock() - previousClock;
if (delay <= 0.0 || delay >= 1.0) {
// Incorrect delay - use previous one
delay = previousDelay;
}
// Save for next time
previousClock = V->VideoClock();
previousDelay = delay;
// Update delay to sync to audio
double diff = V->VideoClock() - A->AudioClock();
if (diff <= -delay) delay = 0; // Audio is ahead of video; display video ASAP
if (diff >= delay) delay = 2 * delay; // Video is ahead of audio; delay video
return delay;
}
}; | [
"[email protected]"
] | |
055519c22765e7c9c479d38ea79d8178633116aa | a6a2227aabdc178696aaf47d6f0beda4f659b0c8 | /jul17&18/509_A.cpp | 2fa7da8a5503fb96ffa2c9a1266ac3e5ebbe512b | [] | no_license | girach/codeforces | 2f49c674d0daa39ca389be901a08344be834cc2f | 8808180d8ba9ebc739db235cc17b7e91c2f71975 | refs/heads/master | 2020-03-21T08:52:03.358029 | 2018-06-23T19:08:58 | 2018-06-23T19:08:58 | 138,370,109 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 264 | cpp | #include<iostream>
using namespace std;
int main() {
int n;
cin >> n;
int a[n][n] = {0};
for (int i=0;i<n;i++) {
a[i][0]= a[0][i] = 1;
}
for (int i=1;i<n;i++) {
for (int j=1;j<n;j++) {
a[i][j] = a[i-1][j]+a[i][j-1];
}
}
cout << a[n-1][n-1];
} | [
"[email protected]"
] | |
fc77e6af2d3e9861820a216456a8fd973d190e83 | 57cd5d90e13bedf4f66c2dd3d5b73f298c55f024 | /GraphicEQ/Source/FilterComponent.h | 2bba17ce48db85cead81bbeac25c99185c9e5267 | [] | no_license | YanlanCai/GraphicEQ-1 | 2a9fa4a2deeeebfb418efed933e6a10aea0e3e18 | 308d34b5e09e7c3f71c2752c42699c1d6ff2f7da | refs/heads/master | 2023-03-01T22:03:48.052673 | 2021-02-10T21:34:43 | 2021-02-10T21:34:43 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 3,612 | h | /*
==============================================================================
FilterComponent.h
Created: 22 Dec 2020 1:15:04pm
Author: Arron Shah
==============================================================================
*/
#pragma once
#include <JuceHeader.h>
#include "Filter.h"
#include "UIElementProperties.h"
#include <memory>
#include "FilterResponseCurveComponent.h"
#include "AverageFilterResponseCurveComponent.h"
#include "Filter.h"
/** A component class for controlling a Filter object through UI elements.*/
/** Allows for the control of the filter frequency, resonance and gain through rotary sliders. Can also pass filter magnitude data to a FilterResponseCurveComponent.
@param vt a reference to a ValueTree object where the filter parameters will be stored.
@param type a filterType enum specifying the type of IIR filter (low shelf, high shelf or peak).
@see filterType
@see Filter
@see FilterResponseCurveComponent*/
class FilterComponent : public Component,
public Button::Listener,
public ValueTree::Listener
{
public:
/** Constructor
@param vt specifies the value tree to attach to UI elements
@param type speifies the type of the filter*/
FilterComponent(ValueTree& vt, enum filterType type);
/** Destructor */
~FilterComponent();
//Component
void paint (juce::Graphics& g) override;
void resized() override;
/** Sets the filter that this component controls
@param filterRef a pointer to a Filter object
@see Filter*/
void setFilter(Filter* filterRef);
/** Sets the filter response curve component that this component controls
@param frcc a pointer to a FilterResponseCurveComponent object
@see FilterResponseCurveComponent*/
void setFilterResponseComponent(FilterResponseCurveComponent* frcc);
/** Sets the AverageFilterResponseCurveComponent that this component sends data to
@param afrcc a pointer to an AverageFilterResponseCurveComponent object
@see AverageFilterResponseCurveComponent*/
void setAverageFilterResponseComponent(AverageFilterResponseCurveComponent* afrcc);
/** Passes a new parameter value to the filter that this component controls
@param parameterName specifies the name of the parameter (frequency/resonance/gain)
@param parameterValue specifies the value of the parameter*/
void updateFilterParameter(String parameterName, float parameterValue);
//Button listener
void buttonClicked(Button* button) override;
//ValueTree listener
void valueTreePropertyChanged (ValueTree& treeWhosePropertyHasChanged, const Identifier& property) override;
/** Updates all response curves affected by the filter that this component controls*/
void updateResponseCurves();
private:
Slider frequencySlider;
Slider gainSlider;
Slider resonanceSlider;
TextButton filterOn;
std::unique_ptr<ValueTreeSliderAttachment> frequencySliderAttachment;
std::unique_ptr<ValueTreeSliderAttachment> resonanceSliderAttachment;
std::unique_ptr<ValueTreeSliderAttachment> gainSliderAttachment;
FilterResponseCurveComponent* filterResponseComponent {nullptr};
Filter* filter {nullptr};
ValueTree filterSubTree;
ValueTree& valueTree;
float filterType = 0;;
AverageFilterResponseCurveComponent* averageFilterResponseCurveComponent {nullptr};
};
| [
"[email protected]"
] | |
a780b5814a82e3450d15381db8f45d12581f674b | 27ccf4415efbbe538a2667a6b857c100656782ed | /01_baekjoon/01_BOJ_Step/Steps/Steps/Step14(Sorting)/Step14_08_1181.cpp | 1273bf99a1d5004fdb771a10e0617b59be1c19a9 | [] | no_license | WONILLISM/Algorithm | 315cc71646ee036ad3324b2a12ca51a7ea3c4ff3 | 82b323c0dc1187090a85659ed09a6ef975ce3419 | refs/heads/master | 2020-06-15T02:54:39.995963 | 2020-04-28T12:07:58 | 2020-04-28T12:07:58 | 194,092,117 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,218 | cpp | #include<cstdio>
#include<iostream>
#include<vector>
#include<string>
#include<queue>
#include<deque>
#include<algorithm>
#define endl '\n';
#define ll long long
#define PII pair<int,int>
using namespace std;
const int MAX = 51;
char board[MAX][MAX];
int visit[MAX][MAX];
int N, M, sx, sy, ans = 32;
int dx[] = { 1,0 }, dy[] = { 0,1 };
string white[8] = {
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" }
};
string black[8] = {
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" },
{ "BWBWBWBW" },
{ "WBWBWBWB" }
};
void process(int y, int x) {
int cntW = 0, cntB = 0;
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
if (white[i][j] != board[y + i][x + j])cntW++;
if (black[i][j] != board[y + i][x + j])cntB++;
}
}
ans = min(ans, min(cntW,cntB));
}
void solution() {
for (int i = 0; i < N - 7; i++) {
for (int j = 0; j < M - 7; j++) {
process(i, j);
}
}
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cin >> N >> M;
for (int i = 0; i < N; i++)
cin >> board[i];
solution();
return 0;
} | [
"[email protected]"
] | |
249a50317f879cce702d47aa1b91278364fd16dc | 3b1d3e85f0ef77f5dafdd3b6e3414f2defdbbc48 | /crypto_break/crypto.cpp | 180547571bfb0172e421532aea4d582b5bf57cb1 | [] | no_license | ilovepi/crypto_break | 32d5c73339dc3f89a3fd68db090255a49bc0fff0 | 001d72c8d74fdccf92fc026adf338e325d21b7cb | refs/heads/master | 2016-09-02T05:17:45.915183 | 2015-10-22T06:25:03 | 2015-10-22T06:25:03 | 26,564,651 | 0 | 0 | null | 2014-11-22T01:09:07 | 2014-11-13T01:27:33 | C++ | UTF-8 | C++ | false | false | 6,851 | cpp | #include "crypto.hpp"
crypto::crypto()
{
top_alpha = "etaoinshr";
std::ifstream infile("dictionary.txt");
std::string word;
while (getline(infile, word))
dict.insert(std::make_pair(word, word.size()*word.size()));
infile.close();
}
crypto::~crypto(){}
char crypto::incr(char c)
{ return (char)('a' + ((c-'a'+1) % 26)); }
std::string crypto::str_inc(const std::string& input)
{
std::string str;
std::transform(input.begin(), input.end(), std::back_inserter(str), incr);
return str;
}
std::vector<std::string> crypto::shift(const std::string& str)
{
std::vector<std::string> str_vec;
auto temp = str;
for (int i = 0; i < 26; ++i)
{
temp = str_inc(temp);
str_vec.push_back(temp);
}
return str_vec;
}
bool crypto::comp_map_key(map_key x, map_key y)
{ return x.second < y.second; }
void crypto::merge(scores &ret, std::vector<map_key> &other)
{
assert(std::is_heap(other.begin(), other.end()));
auto it = ret.find(other.front().first);// look for the top item from other in ret
if (it == ret.end())
ret.insert(other.front());// if its not there, add it to ret
else//otherwise look for it in ret, and only choose the larger of the 2( shouldn't be necessary, but ...)
ret[other.front().first] = std::max(other.front().second, ret[other.front().first]);
std::pop_heap(other.begin(), other.end(), comp_map_key);// reduce the size of the heap
other.pop_back();// remove the item from the vector
}
crypto::scores crypto::top(scores &sub, scores &whole, size_t n)
{
scores ret;
//make 2 heaps out of whole and sub
std::vector<std::pair<std::string, int>> whole_que, sub_que;
for (auto it = whole.begin(); it != whole.end(); it++)
whole_que.push_back(*it);
std::make_heap(whole_que.begin(), whole_que.end(), comp_map_key);
for (auto it = sub.begin(); it != sub.end(); it++)
sub_que.push_back(*it);
std::make_heap(sub_que.begin(), sub_que.end(), comp_map_key);
// while they're both not empty and ret isn't full take the top items from each heap
while (ret.size() < n && !whole_que.empty() && !sub_que.empty())
{
if (comp_map_key(whole_que.front(), sub_que.front()))
merge(ret, whole_que);
else
merge(ret, sub_que);
}
// if sub runs out first, take the rest of the items from whole
while (ret.size() < n && !whole_que.empty())
merge(ret, whole_que);
//if whole ran out, take the rest of the items from sub
while (ret.size() < n && !sub_que.empty())
merge(ret, sub_que);
return ret;//return the new master list
}
std::vector<int> crypto::get_freq(const std::string& str)
{
std::vector<int> freq(26, 0);
for (int i = 0; i < str.size(); ++i)
++freq[str[i] - 'a'];
return freq;
}
crypto::scores crypto::freq_list(const std::string &s)
{
scores freq;
std::string str = "a";
for (int i = 0; i < 26; ++i, ++str[0])
freq.insert(std::make_pair(str,0));
for (int i = 0; i < s.size(); ++i)
++freq[s.substr(i,1)];
return freq;
}
int crypto::get_scores(const std::string& str)
{
std::map<std::string, size_t> memo;
return get_scores(str, memo, 0);
}
/* This needs multi threading !!!!!*/
int crypto::get_scores(const std::string& str, std::map<std::string, size_t> &memo, size_t pos)
{
//recursive base case check
if (pos >= str.size())
return 0;
int ret= 0; // return value
int temp = 0; // temp value for calc
int m = 1; // window size
std::string window = str.substr(pos, m);
// look for the current string in the memo, if its there just use its value, if not calculate it
//lock hash
auto it = memo.find(str.substr(pos, str.size())); //<-- not thread safe
bool in_hash = (it != memo.end()); //<-- not thread safe
if (!in_hash) //<-- not thread safe
{
//unlock memo
while (m <= (str.size() - pos))
{
//look up the substring in the dictionary
if (dict.find(window) != dict.end())
{
//if we find them, give them a score and look at the rest of the string for more words
temp = (m*m + get_scores(str, memo, pos + m));
if (ret < temp)
ret = temp;
}
++m;//increase the window size
window = str.substr(pos, m);//update window to be the proper substring
}
//insert the new score and substring pair into the memo if its not there or update it with the high score
//lock memo
it = memo.find(str.substr(pos, str.size())); //<-- not thread safe
if (it == memo.end() || (it->second < ret))
memo.insert(std::make_pair(str.substr(pos, str.size()), ret)); //<-- not thread safe. need a mutex
//unlock memo
}
else
{
ret = it->second;
//unlock memo
}
return std::max(ret, get_scores(str, memo, pos+1));
}
void crypto::columnar_decryption(std::string cipher)
{
static int count = 0; //static count for printing, not really useful in general
std::ofstream file("perms.txt", std::ofstream::app); //open the file to append to
scores ord, writer; // 2 vectors of scores writer is the master list, ord is the temp list
// attack all key lengths up to 10 (should probably avoid a magic number and make max_key_len a parameter)
for (int columns = 1; columns <= 10; columns++)
{
//create a vector of the indexes based on the key length
std::vector<size_t> indexes;
for (int i = 0; i < columns; ++i)
indexes.push_back(i);
//number of columns for all rows(integer division is ok here)
int rows = cipher.size() / columns;
//number of columns that will be in the final row (if it exists)
int extra = cipher.size() % columns;
// the columns of the message
std::vector<std::string> pqr(indexes.size());
//decrypt the columnar transposition for each permutation of column orderings
while (std::next_permutation(indexes.begin(), indexes.end()))
{
int start = 0;
int end;
for (int i = 0; i < columns; ++i)
{
end = rows + (extra > indexes[i]);
pqr[indexes[i]] = cipher.substr(start, end);
start += end;
}
std::string word;
for (int i = 0; i < rows + (extra > 0); ++i)
{
auto offset = i*columns;
for (int j = 0; j < columns; ++j)
{
auto index = j + offset;
if (index < cipher.size())
word += pqr[j][i];
}
}
auto score = get_scores(word);// get the score for the decrypted message
if (ord.find(word) != ord.end())
ord[word] = std::max(ord[word], score);//only keep the max scores
else
ord[word] = score;//add a new score if we don't have it yet
} // end while
writer = top(ord, writer, 1000);//only keep the top 1000 scores for the future
}
// order the list by score instead of string so we need to use a multimap
auto ret = flip_map(writer);
//write the scores to a file
for (auto it = ret.begin(); it != ret.end(); ++it)
file << it->first << " " << it->second << std::endl;
file.close();
++count;
printf("Finished %d \n", count);
}
| [
"[email protected]"
] | |
4c6f7c2c77b1a6b657b03e98084a5dbbb24e25ba | f1deaf930b567e4aa607d5701268a7e376ca2c88 | /MotorDriver.h | feab2f2b641adfea4b414a665ddeff51d4a8bcac | [] | no_license | chriswood/MotorDriver | 86fffb5dd263e30f8def7c0f0780f5674fb6576f | dc9535ec9801de780b225a443ea8a13242edb543 | refs/heads/master | 2016-09-11T05:06:54.014811 | 2015-04-18T03:48:26 | 2015-04-18T03:48:26 | 34,117,003 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 939 | h | #ifndef __MOTORDRIVER_H__
#define __MOTORDRIVER_H__
#include <Arduino.h>
/******Pins definitions*************/
#define MOTORSHIELD_IN1 8
#define MOTORSHIELD_IN2 11
#define MOTORSHIELD_IN3 12
#define MOTORSHIELD_IN4 13
#define SPEEDPIN_A 9
#define SPEEDPIN_B 10
/**************Motor ID**********************/
#define MOTORA 0
#define MOTORB 1
#define MOTOR_POSITION_LEFT 0
#define MOTOR_POSITION_RIGHT 1
#define CLOCKWISE 0
#define COUNTER_CLOCKWISE 1
#define USE_DC_MOTOR 0
struct MotorStruct
{
int8_t speed;
uint8_t direction;
};
/**Class for Motor Shield**/
class MotorDriver
{
MotorStruct motorA;
MotorStruct motorB;
public:
void init();
void forward();
void backward();
void rotateLeft();
void rotateRight();
void setSpeed(int8_t speed, uint8_t motorID);
void rotate(uint8_t direction, uint8_t motorID);
void stop();
};
extern MotorDriver motordriver;
#endif
| [
"[email protected]"
] | |
f7d8a76678ad68320f9f6816694765046190c0aa | b269392cc4727b226e15b3f08e9efb41a7f4b048 | /POJ/POJ 1127.cpp | b29db4c8235fb0922ff55a0cd0b0ae5e8f973158 | [] | no_license | ThoseBygones/ACM_Code | edbc31b95077e75d3b17277d843cc24b6223cc0c | 2e8afd599b8065ae52b925653f6ea79c51a1818f | refs/heads/master | 2022-11-12T08:23:55.232349 | 2022-10-30T14:17:23 | 2022-10-30T14:17:23 | 91,112,483 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 3,047 | cpp | #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define EPS 1e-10
typedef double Type;
int sign(Type x)
{
return x<-EPS?-1:(x>EPS?1:0);
}
struct Point
{
Type x,y;
Point(Type x,Type y):x(x),y(y) {}
Point() {}
void read()
{
scanf("%lf %lf",&x,&y);
}
bool operator==(const Point& p) const
{
return sign(x-p.x)==0&&sign(y-p.y)==0;
}
Point operator-(const Point& p) const
{
return Point(x-p.x,y-p.y);
}
Point operator*(const Type t) const
{
return Point(t*x,t*y);
}
Point operator+(const Point & p) const
{
return Point(x+p.x,y+p.y);
}
bool operator<(const Point& p) const
{
return sign(x-p.x)==0?sign(y-p.y)<0:sign(x-p.x)<0;
}
};
ostream& operator<<(ostream& out,Point p)
{
out<<p.x<<" "<<p.y;
return out;
}
typedef Point Vector;
struct Line
{
Point a,b;
Line() {}
Line(Point a,Point b):a(a),b(b) {}
};
typedef Line SegMent;
//叉积
Type Cross(Vector a,Vector b)
{
return a.x*b.y-a.y*b.x;
}
Type Cross(Point &a,Point &b,Point &c)
{
return Cross(a-c,b-c);
}
//点积
Type Dot(Vector a,Vector b)
{
return a.x*b.x+a.y*b.y;
}
//线段规范相交
bool SegMentProperIntersect(SegMent &s1,SegMent& s2){
Type c1 = Cross(s1.b-s1.a,s2.a-s1.a),c2 = Cross(s1.b-s1.a,s2.b-s1.a),
c3 = Cross(s2.b-s2.a,s1.a-s2.a),c4 = Cross(s2.b-s2.a,s1.b-s2.a);
return sign(c1)*sign(c2)<0&&sign(c3)*sign(c4)<0;
}
//判断点在线段上
bool OnSegMent(Point &p,SegMent& s)
{
//小于0不包含端点,小于等于包含端点
return sign(Cross(s.a-p,s.b-p))==0&&sign(Dot(s.a-p,s.b-p))<=0;
}
//线段不规范相交
bool SegMentNotProperIntersect(SegMent& s1,SegMent& s2)
{
return OnSegMent(s1.a,s2)||OnSegMent(s1.b,s2)||OnSegMent(s2.a,s1)||OnSegMent(s2.b,s1);
}
SegMent s[15];
int fa[15];
int dep[15];
int findset(int x)
{
if(x!=fa[x])
return fa[x]=findset(fa[x]);
return fa[x];
}
void unionset(int x,int y)
{
int xx=findset(x);
int yy=findset(y);
if(xx!=yy)
{
if(dep[xx]>dep[yy]) //比较两个集合的深度
fa[yy]=xx;
else
{
fa[xx]=yy;
if(dep[xx]==dep[yy])
dep[yy]++;
}
}
}
int main()
{
int n;
while(~scanf("%d",&n),n)
{
for(int i=1; i<=n; i++)
{
s[i].a.read();
s[i].b.read();
fa[i]=i;
dep[i]=0;
}
for(int i=1; i<=n; i++)
{
for(int j=i+1; j<=n; j++)
{
if(SegMentProperIntersect(s[i],s[j])||SegMentNotProperIntersect(s[i],s[j]))
unionset(i,j);
}
}
int a,b;
while(~scanf("%d%d",&a,&b))
{
if(a==0 && b==0)
break;
if(findset(a)==findset(b))
puts("CONNECTED");
else
puts("NOT CONNECTED");
}
}
return 0;
}
| [
"[email protected]"
] | |
bdf079fa8366f70ab65937df0f948ba9c6ff5f6c | bd6547aa8d6a4bf6c251a75fd04bf1ff413655d2 | /Robot/TCD/FrameTaskDman/DialogTask/TaskSpecification/TSNonOnlineBusiness.h | a34f9a0dd7f217c790fe0c071d92bd76926ee95e | [] | no_license | semanticparsing/navigation_code | 8c324f9ef6bb96d0fce013c08e44481d2019214e | 1a7388f24dfe3f194643be316de5d92bfc213c71 | refs/heads/master | 2020-03-25T08:12:45.956783 | 2018-07-13T10:03:38 | 2018-07-13T10:03:38 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 372 | h | // Author : zhangxuanfeng
// Email : [email protected]
// Date : 2018-05-08 14:30
// Description: 未上线业务
#ifndef _TS_NON_ONLINE_BUSINESS_H__
#define _TS_NON_ONLINE_BUSINESS_H__
#include "Robot/TCD/FrameTaskDman/DMCore/Core.h"
#include "Robot/TCD/FrameTaskDman/DMCore/Agents/AllAgents.h"
namespace TrioTDM {
void RegisterNonOnlineBusiness();
}
#endif
| [
"[email protected]"
] | |
ef3f3b8aeaf2e291b6ac5ee5ec37668631c8bf17 | 44be718d2e94b50a343b40b86a902bccd0975086 | /include/Missile.hpp | 7e9ade990af36c0fc1c058ace3dccb6cfec913cd | [] | no_license | hackora/vr-space-shooter | 0974abb81d246ec30d7e6734f2c587b306ffca15 | a6d846188f16791c1234245c3265aa45f77976f2 | refs/heads/master | 2020-03-20T11:57:52.745952 | 2017-06-05T14:08:37 | 2017-06-05T14:08:37 | 137,416,990 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 584 | hpp | #pragma once
//#include <windows.h>
//#include <GL/gl.h>
#include <GL/glew.h>
//#include <GL/glu.h>
#include "Weapon.hpp"
#include <iostream>
class Missile : public Weapon
{
public:
Missile();
~Missile();
void fire();
float getSurroundingSphere();
void setSurroundingSphere();
void collided(bool withTerrain){alive_ = false;}
protected:
void privateInit();
void privateRender();
void privateUpdate(double dt);
private:
float cooldown = 0;
float speed_= 50.0f;
float life_;
float radius_;
std::vector< glm::vec3 > vertexArray_;
}; | [
"[email protected]"
] | |
078eac60c1c8f183509f66a2742193768f521fca | bd1fea86d862456a2ec9f56d57f8948456d55ee6 | /000/074/793/CWE124_Buffer_Underwrite__new_char_loop_44.cpp | b660e46499b349900c27b745f3c91d916dd02539 | [] | no_license | CU-0xff/juliet-cpp | d62b8485104d8a9160f29213368324c946f38274 | d8586a217bc94cbcfeeec5d39b12d02e9c6045a2 | refs/heads/master | 2021-03-07T15:44:19.446957 | 2020-03-10T12:45:40 | 2020-03-10T12:45:40 | 246,275,244 | 0 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 3,726 | cpp | /* TEMPLATE GENERATED TESTCASE FILE
Filename: CWE124_Buffer_Underwrite__new_char_loop_44.cpp
Label Definition File: CWE124_Buffer_Underwrite__new.label.xml
Template File: sources-sink-44.tmpl.cpp
*/
/*
* @description
* CWE: 124 Buffer Underwrite
* BadSource: Set data pointer to before the allocated memory buffer
* GoodSource: Set data pointer to the allocated memory buffer
* Sinks: loop
* BadSink : Copy string to data using a loop
* Flow Variant: 44 Data/control flow: data passed as an argument from one function to a function in the same source file called via a function pointer
*
* */
#include "std_testcase.h"
#include <wchar.h>
namespace CWE124_Buffer_Underwrite__new_char_loop_44
{
#ifndef OMITBAD
static void badSink(char * data)
{
{
size_t i;
char source[100];
memset(source, 'C', 100-1); /* fill with 'C's */
source[100-1] = '\0'; /* null terminate */
/* POTENTIAL FLAW: Possibly copying data to memory before the destination buffer */
for (i = 0; i < 100; i++)
{
data[i] = source[i];
}
/* Ensure the destination buffer is null terminated */
data[100-1] = '\0';
printLine(data);
/* INCIDENTAL CWE-401: Memory Leak - data may not point to location
* returned by new [] so can't safely call delete [] on it */
}
}
void bad()
{
char * data;
/* define a function pointer */
void (*funcPtr) (char *) = badSink;
data = NULL;
{
char * dataBuffer = new char[100];
memset(dataBuffer, 'A', 100-1);
dataBuffer[100-1] = '\0';
/* FLAW: Set data pointer to before the allocated memory buffer */
data = dataBuffer - 8;
}
/* use the function pointer */
funcPtr(data);
}
#endif /* OMITBAD */
#ifndef OMITGOOD
/* goodG2B() uses the GoodSource with the BadSink */
static void goodG2BSink(char * data)
{
{
size_t i;
char source[100];
memset(source, 'C', 100-1); /* fill with 'C's */
source[100-1] = '\0'; /* null terminate */
/* POTENTIAL FLAW: Possibly copying data to memory before the destination buffer */
for (i = 0; i < 100; i++)
{
data[i] = source[i];
}
/* Ensure the destination buffer is null terminated */
data[100-1] = '\0';
printLine(data);
/* INCIDENTAL CWE-401: Memory Leak - data may not point to location
* returned by new [] so can't safely call delete [] on it */
}
}
static void goodG2B()
{
char * data;
void (*funcPtr) (char *) = goodG2BSink;
data = NULL;
{
char * dataBuffer = new char[100];
memset(dataBuffer, 'A', 100-1);
dataBuffer[100-1] = '\0';
/* FIX: Set data pointer to the allocated memory buffer */
data = dataBuffer;
}
funcPtr(data);
}
void good()
{
goodG2B();
}
#endif /* OMITGOOD */
} /* close namespace */
/* Below is the main(). It is only used when building this testcase on
its own for testing or for building a binary to use in testing binary
analysis tools. It is not used when compiling all the testcases as one
application, which is how source code analysis tools are tested. */
#ifdef INCLUDEMAIN
using namespace CWE124_Buffer_Underwrite__new_char_loop_44; /* so that we can use good and bad easily */
int main(int argc, char * argv[])
{
/* seed randomness */
srand( (unsigned)time(NULL) );
#ifndef OMITGOOD
printLine("Calling good()...");
good();
printLine("Finished good()");
#endif /* OMITGOOD */
#ifndef OMITBAD
printLine("Calling bad()...");
bad();
printLine("Finished bad()");
#endif /* OMITBAD */
return 0;
}
#endif
| [
"[email protected]"
] | |
bba06fbced82a88a012fa3d88b2eb84e4ce8aac3 | deda3a27a6e055509ea30befd74238d9d1b0b078 | /compiler/scripts/outputs/nlohmann/json.hpp | 65300460caca46baad8e7fa9af7ef0c35b8e656d | [] | no_license | YanjieHe/TypedCygni | 132cae9f73cbf35525321b9090bd526ea00ede06 | a884ca440a900bb77c39f6e67a1ac1e39316cb30 | refs/heads/master | 2023-01-22T14:54:27.725568 | 2020-11-10T18:29:39 | 2020-11-10T18:29:39 | 113,035,092 | 6 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 825,097 | hpp | /*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
| | |__ | | | | | | version 3.7.0
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
SPDX-License-Identifier: MIT
Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef INCLUDE_NLOHMANN_JSON_HPP_
#define INCLUDE_NLOHMANN_JSON_HPP_
#define NLOHMANN_JSON_VERSION_MAJOR 3
#define NLOHMANN_JSON_VERSION_MINOR 7
#define NLOHMANN_JSON_VERSION_PATCH 0
#include <algorithm> // all_of, find, for_each
#include <cassert> // assert
#include <ciso646> // and, not, or
#include <cstddef> // nullptr_t, ptrdiff_t, size_t
#include <functional> // hash, less
#include <initializer_list> // initializer_list
#include <iosfwd> // istream, ostream
#include <iterator> // random_access_iterator_tag
#include <memory> // unique_ptr
#include <numeric> // accumulate
#include <string> // string, stoi, to_string
#include <utility> // declval, forward, move, pair, swap
#include <vector> // vector
// #include <nlohmann/adl_serializer.hpp>
#include <utility>
// #include <nlohmann/detail/conversions/from_json.hpp>
#include <algorithm> // transform
#include <array> // array
#include <ciso646> // and, not
#include <forward_list> // forward_list
#include <iterator> // inserter, front_inserter, end
#include <map> // map
#include <string> // string
#include <tuple> // tuple, make_tuple
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
#include <unordered_map> // unordered_map
#include <utility> // pair, declval
#include <valarray> // valarray
// #include <nlohmann/detail/exceptions.hpp>
#include <exception> // exception
#include <stdexcept> // runtime_error
#include <string> // to_string
// #include <nlohmann/detail/input/position_t.hpp>
#include <cstddef> // size_t
namespace nlohmann
{
namespace detail
{
/// struct to capture the start position of the current token
struct position_t
{
/// the total number of characters read
std::size_t chars_read_total = 0;
/// the number of characters read in the current line
std::size_t chars_read_current_line = 0;
/// the number of lines read
std::size_t lines_read = 0;
/// conversion to size_t to preserve SAX interface
constexpr operator size_t() const
{
return chars_read_total;
}
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
#include <utility> // pair
// #include <nlohmann/thirdparty/hedley/hedley.hpp>
/* Hedley - https://nemequ.github.io/hedley
* Created by Evan Nemerson <[email protected]>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to
* the public domain worldwide. This software is distributed without
* any warranty.
*
* For details, see <http://creativecommons.org/publicdomain/zero/1.0/>.
* SPDX-License-Identifier: CC0-1.0
*/
#if !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < 9)
#if defined(JSON_HEDLEY_VERSION)
#undef JSON_HEDLEY_VERSION
#endif
#define JSON_HEDLEY_VERSION 9
#if defined(JSON_HEDLEY_STRINGIFY_EX)
#undef JSON_HEDLEY_STRINGIFY_EX
#endif
#define JSON_HEDLEY_STRINGIFY_EX(x) #x
#if defined(JSON_HEDLEY_STRINGIFY)
#undef JSON_HEDLEY_STRINGIFY
#endif
#define JSON_HEDLEY_STRINGIFY(x) JSON_HEDLEY_STRINGIFY_EX(x)
#if defined(JSON_HEDLEY_CONCAT_EX)
#undef JSON_HEDLEY_CONCAT_EX
#endif
#define JSON_HEDLEY_CONCAT_EX(a,b) a##b
#if defined(JSON_HEDLEY_CONCAT)
#undef JSON_HEDLEY_CONCAT
#endif
#define JSON_HEDLEY_CONCAT(a,b) JSON_HEDLEY_CONCAT_EX(a,b)
#if defined(JSON_HEDLEY_VERSION_ENCODE)
#undef JSON_HEDLEY_VERSION_ENCODE
#endif
#define JSON_HEDLEY_VERSION_ENCODE(major,minor,revision) (((major) * 1000000) + ((minor) * 1000) + (revision))
#if defined(JSON_HEDLEY_VERSION_DECODE_MAJOR)
#undef JSON_HEDLEY_VERSION_DECODE_MAJOR
#endif
#define JSON_HEDLEY_VERSION_DECODE_MAJOR(version) ((version) / 1000000)
#if defined(JSON_HEDLEY_VERSION_DECODE_MINOR)
#undef JSON_HEDLEY_VERSION_DECODE_MINOR
#endif
#define JSON_HEDLEY_VERSION_DECODE_MINOR(version) (((version) % 1000000) / 1000)
#if defined(JSON_HEDLEY_VERSION_DECODE_REVISION)
#undef JSON_HEDLEY_VERSION_DECODE_REVISION
#endif
#define JSON_HEDLEY_VERSION_DECODE_REVISION(version) ((version) % 1000)
#if defined(JSON_HEDLEY_GNUC_VERSION)
#undef JSON_HEDLEY_GNUC_VERSION
#endif
#if defined(__GNUC__) && defined(__GNUC_PATCHLEVEL__)
#define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__)
#elif defined(__GNUC__)
#define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, 0)
#endif
#if defined(JSON_HEDLEY_GNUC_VERSION_CHECK)
#undef JSON_HEDLEY_GNUC_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_GNUC_VERSION)
#define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GNUC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_MSVC_VERSION)
#undef JSON_HEDLEY_MSVC_VERSION
#endif
#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 140000000)
#define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 10000000, (_MSC_FULL_VER % 10000000) / 100000, (_MSC_FULL_VER % 100000) / 100)
#elif defined(_MSC_FULL_VER)
#define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 1000000, (_MSC_FULL_VER % 1000000) / 10000, (_MSC_FULL_VER % 10000) / 10)
#elif defined(_MSC_VER)
#define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_VER / 100, _MSC_VER % 100, 0)
#endif
#if defined(JSON_HEDLEY_MSVC_VERSION_CHECK)
#undef JSON_HEDLEY_MSVC_VERSION_CHECK
#endif
#if !defined(_MSC_VER)
#define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (0)
#elif defined(_MSC_VER) && (_MSC_VER >= 1400)
#define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 10000000) + (minor * 100000) + (patch)))
#elif defined(_MSC_VER) && (_MSC_VER >= 1200)
#define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 1000000) + (minor * 10000) + (patch)))
#else
#define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_VER >= ((major * 100) + (minor)))
#endif
#if defined(JSON_HEDLEY_INTEL_VERSION)
#undef JSON_HEDLEY_INTEL_VERSION
#endif
#if defined(__INTEL_COMPILER) && defined(__INTEL_COMPILER_UPDATE)
#define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, __INTEL_COMPILER_UPDATE)
#elif defined(__INTEL_COMPILER)
#define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, 0)
#endif
#if defined(JSON_HEDLEY_INTEL_VERSION_CHECK)
#undef JSON_HEDLEY_INTEL_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_INTEL_VERSION)
#define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_INTEL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_PGI_VERSION)
#undef JSON_HEDLEY_PGI_VERSION
#endif
#if defined(__PGI) && defined(__PGIC__) && defined(__PGIC_MINOR__) && defined(__PGIC_PATCHLEVEL__)
#define JSON_HEDLEY_PGI_VERSION JSON_HEDLEY_VERSION_ENCODE(__PGIC__, __PGIC_MINOR__, __PGIC_PATCHLEVEL__)
#endif
#if defined(JSON_HEDLEY_PGI_VERSION_CHECK)
#undef JSON_HEDLEY_PGI_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_PGI_VERSION)
#define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PGI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_SUNPRO_VERSION)
#undef JSON_HEDLEY_SUNPRO_VERSION
#endif
#if defined(__SUNPRO_C) && (__SUNPRO_C > 0x1000)
#define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_C >> 16) & 0xf) * 10) + ((__SUNPRO_C >> 12) & 0xf), (((__SUNPRO_C >> 8) & 0xf) * 10) + ((__SUNPRO_C >> 4) & 0xf), (__SUNPRO_C & 0xf) * 10)
#elif defined(__SUNPRO_C)
#define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_C >> 8) & 0xf, (__SUNPRO_C >> 4) & 0xf, (__SUNPRO_C) & 0xf)
#elif defined(__SUNPRO_CC) && (__SUNPRO_CC > 0x1000)
#define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_CC >> 16) & 0xf) * 10) + ((__SUNPRO_CC >> 12) & 0xf), (((__SUNPRO_CC >> 8) & 0xf) * 10) + ((__SUNPRO_CC >> 4) & 0xf), (__SUNPRO_CC & 0xf) * 10)
#elif defined(__SUNPRO_CC)
#define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_CC >> 8) & 0xf, (__SUNPRO_CC >> 4) & 0xf, (__SUNPRO_CC) & 0xf)
#endif
#if defined(JSON_HEDLEY_SUNPRO_VERSION_CHECK)
#undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_SUNPRO_VERSION)
#define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_SUNPRO_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
#undef JSON_HEDLEY_EMSCRIPTEN_VERSION
#endif
#if defined(__EMSCRIPTEN__)
#define JSON_HEDLEY_EMSCRIPTEN_VERSION JSON_HEDLEY_VERSION_ENCODE(__EMSCRIPTEN_major__, __EMSCRIPTEN_minor__, __EMSCRIPTEN_tiny__)
#endif
#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK)
#undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
#define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_EMSCRIPTEN_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_ARM_VERSION)
#undef JSON_HEDLEY_ARM_VERSION
#endif
#if defined(__CC_ARM) && defined(__ARMCOMPILER_VERSION)
#define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCOMPILER_VERSION / 1000000, (__ARMCOMPILER_VERSION % 1000000) / 10000, (__ARMCOMPILER_VERSION % 10000) / 100)
#elif defined(__CC_ARM) && defined(__ARMCC_VERSION)
#define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCC_VERSION / 1000000, (__ARMCC_VERSION % 1000000) / 10000, (__ARMCC_VERSION % 10000) / 100)
#endif
#if defined(JSON_HEDLEY_ARM_VERSION_CHECK)
#undef JSON_HEDLEY_ARM_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_ARM_VERSION)
#define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_ARM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_IBM_VERSION)
#undef JSON_HEDLEY_IBM_VERSION
#endif
#if defined(__ibmxl__)
#define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ibmxl_version__, __ibmxl_release__, __ibmxl_modification__)
#elif defined(__xlC__) && defined(__xlC_ver__)
#define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, (__xlC_ver__ >> 8) & 0xff)
#elif defined(__xlC__)
#define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, 0)
#endif
#if defined(JSON_HEDLEY_IBM_VERSION_CHECK)
#undef JSON_HEDLEY_IBM_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_IBM_VERSION)
#define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IBM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_TI_VERSION)
#undef JSON_HEDLEY_TI_VERSION
#endif
#if defined(__TI_COMPILER_VERSION__)
#define JSON_HEDLEY_TI_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
#endif
#if defined(JSON_HEDLEY_TI_VERSION_CHECK)
#undef JSON_HEDLEY_TI_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_TI_VERSION)
#define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_CRAY_VERSION)
#undef JSON_HEDLEY_CRAY_VERSION
#endif
#if defined(_CRAYC)
#if defined(_RELEASE_PATCHLEVEL)
#define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, _RELEASE_PATCHLEVEL)
#else
#define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, 0)
#endif
#endif
#if defined(JSON_HEDLEY_CRAY_VERSION_CHECK)
#undef JSON_HEDLEY_CRAY_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_CRAY_VERSION)
#define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_CRAY_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_IAR_VERSION)
#undef JSON_HEDLEY_IAR_VERSION
#endif
#if defined(__IAR_SYSTEMS_ICC__)
#if __VER__ > 1000
#define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE((__VER__ / 1000000), ((__VER__ / 1000) % 1000), (__VER__ % 1000))
#else
#define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE(VER / 100, __VER__ % 100, 0)
#endif
#endif
#if defined(JSON_HEDLEY_IAR_VERSION_CHECK)
#undef JSON_HEDLEY_IAR_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_IAR_VERSION)
#define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IAR_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_TINYC_VERSION)
#undef JSON_HEDLEY_TINYC_VERSION
#endif
#if defined(__TINYC__)
#define JSON_HEDLEY_TINYC_VERSION JSON_HEDLEY_VERSION_ENCODE(__TINYC__ / 1000, (__TINYC__ / 100) % 10, __TINYC__ % 100)
#endif
#if defined(JSON_HEDLEY_TINYC_VERSION_CHECK)
#undef JSON_HEDLEY_TINYC_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_TINYC_VERSION)
#define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TINYC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_DMC_VERSION)
#undef JSON_HEDLEY_DMC_VERSION
#endif
#if defined(__DMC__)
#define JSON_HEDLEY_DMC_VERSION JSON_HEDLEY_VERSION_ENCODE(__DMC__ >> 8, (__DMC__ >> 4) & 0xf, __DMC__ & 0xf)
#endif
#if defined(JSON_HEDLEY_DMC_VERSION_CHECK)
#undef JSON_HEDLEY_DMC_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_DMC_VERSION)
#define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_DMC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_COMPCERT_VERSION)
#undef JSON_HEDLEY_COMPCERT_VERSION
#endif
#if defined(__COMPCERT_VERSION__)
#define JSON_HEDLEY_COMPCERT_VERSION JSON_HEDLEY_VERSION_ENCODE(__COMPCERT_VERSION__ / 10000, (__COMPCERT_VERSION__ / 100) % 100, __COMPCERT_VERSION__ % 100)
#endif
#if defined(JSON_HEDLEY_COMPCERT_VERSION_CHECK)
#undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_COMPCERT_VERSION)
#define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_COMPCERT_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_PELLES_VERSION)
#undef JSON_HEDLEY_PELLES_VERSION
#endif
#if defined(__POCC__)
#define JSON_HEDLEY_PELLES_VERSION JSON_HEDLEY_VERSION_ENCODE(__POCC__ / 100, __POCC__ % 100, 0)
#endif
#if defined(JSON_HEDLEY_PELLES_VERSION_CHECK)
#undef JSON_HEDLEY_PELLES_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_PELLES_VERSION)
#define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PELLES_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_GCC_VERSION)
#undef JSON_HEDLEY_GCC_VERSION
#endif
#if \
defined(JSON_HEDLEY_GNUC_VERSION) && \
!defined(__clang__) && \
!defined(JSON_HEDLEY_INTEL_VERSION) && \
!defined(JSON_HEDLEY_PGI_VERSION) && \
!defined(JSON_HEDLEY_ARM_VERSION) && \
!defined(JSON_HEDLEY_TI_VERSION) && \
!defined(__COMPCERT__)
#define JSON_HEDLEY_GCC_VERSION JSON_HEDLEY_GNUC_VERSION
#endif
#if defined(JSON_HEDLEY_GCC_VERSION_CHECK)
#undef JSON_HEDLEY_GCC_VERSION_CHECK
#endif
#if defined(JSON_HEDLEY_GCC_VERSION)
#define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GCC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
#else
#define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (0)
#endif
#if defined(JSON_HEDLEY_HAS_ATTRIBUTE)
#undef JSON_HEDLEY_HAS_ATTRIBUTE
#endif
#if defined(__has_attribute)
#define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) __has_attribute(attribute)
#else
#define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_ATTRIBUTE)
#undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
#endif
#if defined(__has_attribute)
#define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
#else
#define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_ATTRIBUTE)
#undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
#endif
#if defined(__has_attribute)
#define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
#else
#define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE)
#undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
#endif
#if defined(__has_cpp_attribute) && defined(__cplusplus)
#define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) __has_cpp_attribute(attribute)
#else
#define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE)
#undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
#endif
#if defined(__has_cpp_attribute) && defined(__cplusplus)
#define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
#else
#define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE)
#undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
#endif
#if defined(__has_cpp_attribute) && defined(__cplusplus)
#define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
#else
#define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_BUILTIN)
#undef JSON_HEDLEY_HAS_BUILTIN
#endif
#if defined(__has_builtin)
#define JSON_HEDLEY_HAS_BUILTIN(builtin) __has_builtin(builtin)
#else
#define JSON_HEDLEY_HAS_BUILTIN(builtin) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_BUILTIN)
#undef JSON_HEDLEY_GNUC_HAS_BUILTIN
#endif
#if defined(__has_builtin)
#define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
#else
#define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_BUILTIN)
#undef JSON_HEDLEY_GCC_HAS_BUILTIN
#endif
#if defined(__has_builtin)
#define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
#else
#define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_FEATURE)
#undef JSON_HEDLEY_HAS_FEATURE
#endif
#if defined(__has_feature)
#define JSON_HEDLEY_HAS_FEATURE(feature) __has_feature(feature)
#else
#define JSON_HEDLEY_HAS_FEATURE(feature) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_FEATURE)
#undef JSON_HEDLEY_GNUC_HAS_FEATURE
#endif
#if defined(__has_feature)
#define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
#else
#define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_FEATURE)
#undef JSON_HEDLEY_GCC_HAS_FEATURE
#endif
#if defined(__has_feature)
#define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
#else
#define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_EXTENSION)
#undef JSON_HEDLEY_HAS_EXTENSION
#endif
#if defined(__has_extension)
#define JSON_HEDLEY_HAS_EXTENSION(extension) __has_extension(extension)
#else
#define JSON_HEDLEY_HAS_EXTENSION(extension) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_EXTENSION)
#undef JSON_HEDLEY_GNUC_HAS_EXTENSION
#endif
#if defined(__has_extension)
#define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
#else
#define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_EXTENSION)
#undef JSON_HEDLEY_GCC_HAS_EXTENSION
#endif
#if defined(__has_extension)
#define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
#else
#define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE)
#undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
#endif
#if defined(__has_declspec_attribute)
#define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) __has_declspec_attribute(attribute)
#else
#define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE)
#undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
#endif
#if defined(__has_declspec_attribute)
#define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
#else
#define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE)
#undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
#endif
#if defined(__has_declspec_attribute)
#define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
#else
#define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_HAS_WARNING)
#undef JSON_HEDLEY_HAS_WARNING
#endif
#if defined(__has_warning)
#define JSON_HEDLEY_HAS_WARNING(warning) __has_warning(warning)
#else
#define JSON_HEDLEY_HAS_WARNING(warning) (0)
#endif
#if defined(JSON_HEDLEY_GNUC_HAS_WARNING)
#undef JSON_HEDLEY_GNUC_HAS_WARNING
#endif
#if defined(__has_warning)
#define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
#else
#define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_GCC_HAS_WARNING)
#undef JSON_HEDLEY_GCC_HAS_WARNING
#endif
#if defined(__has_warning)
#define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
#else
#define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if \
(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
defined(__clang__) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) || \
JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0) || \
JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,17) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) && defined(__C99_PRAGMA_OPERATOR))
#define JSON_HEDLEY_PRAGMA(value) _Pragma(#value)
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
#define JSON_HEDLEY_PRAGMA(value) __pragma(value)
#else
#define JSON_HEDLEY_PRAGMA(value)
#endif
#if defined(JSON_HEDLEY_DIAGNOSTIC_PUSH)
#undef JSON_HEDLEY_DIAGNOSTIC_PUSH
#endif
#if defined(JSON_HEDLEY_DIAGNOSTIC_POP)
#undef JSON_HEDLEY_DIAGNOSTIC_POP
#endif
#if defined(__clang__)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("clang diagnostic push")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("clang diagnostic pop")
#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop")
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH __pragma(warning(push))
#define JSON_HEDLEY_DIAGNOSTIC_POP __pragma(warning(pop))
#elif JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("push")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("pop")
#elif JSON_HEDLEY_TI_VERSION_CHECK(8,1,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("diag_push")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("diag_pop")
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
#define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
#define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
#else
#define JSON_HEDLEY_DIAGNOSTIC_PUSH
#define JSON_HEDLEY_DIAGNOSTIC_POP
#endif
#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED)
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
#endif
#if JSON_HEDLEY_HAS_WARNING("-Wdeprecated-declarations")
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("clang diagnostic ignored \"-Wdeprecated-declarations\"")
#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warning(disable:1478 1786)")
#elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1444")
#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED __pragma(warning(disable:4996))
#elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1291,1718")
#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && !defined(__cplusplus)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,E_DEPRECATED_ATT,E_DEPRECATED_ATT_MESS)")
#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && defined(__cplusplus)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,symdeprecated,symdeprecated2)")
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress=Pe1444,Pe1215")
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warn(disable:2241)")
#else
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
#endif
#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS)
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
#endif
#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("clang diagnostic ignored \"-Wunknown-pragmas\"")
#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("warning(disable:161)")
#elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 1675")
#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("GCC diagnostic ignored \"-Wunknown-pragmas\"")
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS __pragma(warning(disable:4068))
#elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 163")
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress=Pe161")
#else
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
#endif
#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL)
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
#endif
#if JSON_HEDLEY_HAS_WARNING("-Wcast-qual")
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("clang diagnostic ignored \"-Wcast-qual\"")
#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("warning(disable:2203 2331)")
#elif JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0)
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
#else
#define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
#endif
#if defined(JSON_HEDLEY_DEPRECATED)
#undef JSON_HEDLEY_DEPRECATED
#endif
#if defined(JSON_HEDLEY_DEPRECATED_FOR)
#undef JSON_HEDLEY_DEPRECATED_FOR
#endif
#if defined(__cplusplus) && (__cplusplus >= 201402L)
#define JSON_HEDLEY_DEPRECATED(since) [[deprecated("Since " #since)]]
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) [[deprecated("Since " #since "; use " #replacement)]]
#elif \
JSON_HEDLEY_HAS_EXTENSION(attribute_deprecated_with_message) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) || \
JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,3,0)
#define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__("Since " #since)))
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__("Since " #since "; use " #replacement)))
#elif \
JSON_HEDLEY_HAS_ATTRIBUTE(deprecated) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__))
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__))
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0)
#define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated("Since " # since))
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated("Since " #since "; use " #replacement))
#elif \
JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
JSON_HEDLEY_PELLES_VERSION_CHECK(6,50,0)
#define JSON_HEDLEY_DEPRECATED(since) _declspec(deprecated)
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated)
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_DEPRECATED(since) _Pragma("deprecated")
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) _Pragma("deprecated")
#else
#define JSON_HEDLEY_DEPRECATED(since)
#define JSON_HEDLEY_DEPRECATED_FOR(since, replacement)
#endif
#if defined(JSON_HEDLEY_UNAVAILABLE)
#undef JSON_HEDLEY_UNAVAILABLE
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(warning) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_UNAVAILABLE(available_since) __attribute__((__warning__("Not available until " #available_since)))
#else
#define JSON_HEDLEY_UNAVAILABLE(available_since)
#endif
#if defined(JSON_HEDLEY_WARN_UNUSED_RESULT)
#undef JSON_HEDLEY_WARN_UNUSED_RESULT
#endif
#if defined(__cplusplus) && (__cplusplus >= 201703L)
#define JSON_HEDLEY_WARN_UNUSED_RESULT [[nodiscard]]
#elif \
JSON_HEDLEY_HAS_ATTRIBUTE(warn_unused_result) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
(JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
#define JSON_HEDLEY_WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
#elif defined(_Check_return_) /* SAL */
#define JSON_HEDLEY_WARN_UNUSED_RESULT _Check_return_
#else
#define JSON_HEDLEY_WARN_UNUSED_RESULT
#endif
#if defined(JSON_HEDLEY_SENTINEL)
#undef JSON_HEDLEY_SENTINEL
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(sentinel) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0)
#define JSON_HEDLEY_SENTINEL(position) __attribute__((__sentinel__(position)))
#else
#define JSON_HEDLEY_SENTINEL(position)
#endif
#if defined(JSON_HEDLEY_NO_RETURN)
#undef JSON_HEDLEY_NO_RETURN
#endif
#if JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_NO_RETURN __noreturn
#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#define JSON_HEDLEY_NO_RETURN _Noreturn
#elif defined(__cplusplus) && (__cplusplus >= 201103L)
#define JSON_HEDLEY_NO_RETURN [[noreturn]]
#elif \
JSON_HEDLEY_HAS_ATTRIBUTE(noreturn) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,2,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(18,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(17,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
#define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
#define JSON_HEDLEY_NO_RETURN _Pragma("FUNC_NEVER_RETURNS;")
#elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
#define JSON_HEDLEY_NO_RETURN __attribute((noreturn))
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
#define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
#else
#define JSON_HEDLEY_NO_RETURN
#endif
#if defined(JSON_HEDLEY_UNREACHABLE)
#undef JSON_HEDLEY_UNREACHABLE
#endif
#if defined(JSON_HEDLEY_UNREACHABLE_RETURN)
#undef JSON_HEDLEY_UNREACHABLE_RETURN
#endif
#if \
(JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && (!defined(JSON_HEDLEY_ARM_VERSION))) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
#define JSON_HEDLEY_UNREACHABLE() __builtin_unreachable()
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
#define JSON_HEDLEY_UNREACHABLE() __assume(0)
#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
#if defined(__cplusplus)
#define JSON_HEDLEY_UNREACHABLE() std::_nassert(0)
#else
#define JSON_HEDLEY_UNREACHABLE() _nassert(0)
#endif
#define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
#elif defined(EXIT_FAILURE)
#define JSON_HEDLEY_UNREACHABLE() abort()
#else
#define JSON_HEDLEY_UNREACHABLE()
#define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
#endif
#if !defined(JSON_HEDLEY_UNREACHABLE_RETURN)
#define JSON_HEDLEY_UNREACHABLE_RETURN(value) JSON_HEDLEY_UNREACHABLE()
#endif
#if defined(JSON_HEDLEY_ASSUME)
#undef JSON_HEDLEY_ASSUME
#endif
#if \
JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_ASSUME(expr) __assume(expr)
#elif JSON_HEDLEY_HAS_BUILTIN(__builtin_assume)
#define JSON_HEDLEY_ASSUME(expr) __builtin_assume(expr)
#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
#if defined(__cplusplus)
#define JSON_HEDLEY_ASSUME(expr) std::_nassert(expr)
#else
#define JSON_HEDLEY_ASSUME(expr) _nassert(expr)
#endif
#elif \
(JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && !defined(JSON_HEDLEY_ARM_VERSION)) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
#define JSON_HEDLEY_ASSUME(expr) ((void) ((expr) ? 1 : (__builtin_unreachable(), 1)))
#else
#define JSON_HEDLEY_ASSUME(expr) ((void) (expr))
#endif
JSON_HEDLEY_DIAGNOSTIC_PUSH
#if \
JSON_HEDLEY_HAS_WARNING("-Wvariadic-macros") || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0)
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wvariadic-macros"
#elif defined(JSON_HEDLEY_GCC_VERSION)
#pragma GCC diagnostic ignored "-Wvariadic-macros"
#endif
#endif
#if defined(JSON_HEDLEY_NON_NULL)
#undef JSON_HEDLEY_NON_NULL
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(nonnull) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
#define JSON_HEDLEY_NON_NULL(...) __attribute__((__nonnull__(__VA_ARGS__)))
#else
#define JSON_HEDLEY_NON_NULL(...)
#endif
JSON_HEDLEY_DIAGNOSTIC_POP
#if defined(JSON_HEDLEY_PRINTF_FORMAT)
#undef JSON_HEDLEY_PRINTF_FORMAT
#endif
#if defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && !defined(__USE_MINGW_ANSI_STDIO)
#define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(ms_printf, string_idx, first_to_check)))
#elif defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && defined(__USE_MINGW_ANSI_STDIO)
#define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(gnu_printf, string_idx, first_to_check)))
#elif \
JSON_HEDLEY_HAS_ATTRIBUTE(format) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(__printf__, string_idx, first_to_check)))
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(6,0,0)
#define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __declspec(vaformat(printf,string_idx,first_to_check))
#else
#define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check)
#endif
#if defined(JSON_HEDLEY_CONSTEXPR)
#undef JSON_HEDLEY_CONSTEXPR
#endif
#if defined(__cplusplus)
#if __cplusplus >= 201103L
#define JSON_HEDLEY_CONSTEXPR constexpr
#endif
#endif
#if !defined(JSON_HEDLEY_CONSTEXPR)
#define JSON_HEDLEY_CONSTEXPR
#endif
#if defined(JSON_HEDLEY_PREDICT)
#undef JSON_HEDLEY_PREDICT
#endif
#if defined(JSON_HEDLEY_LIKELY)
#undef JSON_HEDLEY_LIKELY
#endif
#if defined(JSON_HEDLEY_UNLIKELY)
#undef JSON_HEDLEY_UNLIKELY
#endif
#if defined(JSON_HEDLEY_UNPREDICTABLE)
#undef JSON_HEDLEY_UNPREDICTABLE
#endif
#if JSON_HEDLEY_HAS_BUILTIN(__builtin_unpredictable)
#define JSON_HEDLEY_UNPREDICTABLE(expr) __builtin_unpredictable(!!(expr))
#endif
#if \
JSON_HEDLEY_HAS_BUILTIN(__builtin_expect_with_probability) || \
JSON_HEDLEY_GCC_VERSION_CHECK(9,0,0)
# define JSON_HEDLEY_PREDICT(expr, value, probability) __builtin_expect_with_probability(expr, value, probability)
# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) __builtin_expect_with_probability(!!(expr), 1, probability)
# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) __builtin_expect_with_probability(!!(expr), 0, probability)
# define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
# define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
#if !defined(JSON_HEDLEY_BUILTIN_UNPREDICTABLE)
#define JSON_HEDLEY_BUILTIN_UNPREDICTABLE(expr) __builtin_expect_with_probability(!!(expr), 1, 0.5)
#endif
#elif \
JSON_HEDLEY_HAS_BUILTIN(__builtin_expect) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
(JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,27)
# define JSON_HEDLEY_PREDICT(expr, expected, probability) \
(((probability) >= 0.9) ? __builtin_expect(!!(expr), (expected)) : (((void) (expected)), !!(expr)))
# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) \
(__extension__ ({ \
JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 1) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 0) : !!(expr))); \
}))
# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) \
(__extension__ ({ \
JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 0) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 1) : !!(expr))); \
}))
# define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
# define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
#else
# define JSON_HEDLEY_PREDICT(expr, expected, probability) (((void) (expected)), !!(expr))
# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) (!!(expr))
# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) (!!(expr))
# define JSON_HEDLEY_LIKELY(expr) (!!(expr))
# define JSON_HEDLEY_UNLIKELY(expr) (!!(expr))
#endif
#if !defined(JSON_HEDLEY_UNPREDICTABLE)
#define JSON_HEDLEY_UNPREDICTABLE(expr) JSON_HEDLEY_PREDICT(expr, 1, 0.5)
#endif
#if defined(JSON_HEDLEY_MALLOC)
#undef JSON_HEDLEY_MALLOC
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(malloc) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_MALLOC __attribute__((__malloc__))
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(14, 0, 0)
#define JSON_HEDLEY_MALLOC __declspec(restrict)
#else
#define JSON_HEDLEY_MALLOC
#endif
#if defined(JSON_HEDLEY_PURE)
#undef JSON_HEDLEY_PURE
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(pure) || \
JSON_HEDLEY_GCC_VERSION_CHECK(2,96,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
#define JSON_HEDLEY_PURE __attribute__((__pure__))
#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
#define JSON_HEDLEY_PURE _Pragma("FUNC_IS_PURE;")
#else
#define JSON_HEDLEY_PURE
#endif
#if defined(JSON_HEDLEY_CONST)
#undef JSON_HEDLEY_CONST
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(const) || \
JSON_HEDLEY_GCC_VERSION_CHECK(2,5,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
#define JSON_HEDLEY_CONST __attribute__((__const__))
#else
#define JSON_HEDLEY_CONST JSON_HEDLEY_PURE
#endif
#if defined(JSON_HEDLEY_RESTRICT)
#undef JSON_HEDLEY_RESTRICT
#endif
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && !defined(__cplusplus)
#define JSON_HEDLEY_RESTRICT restrict
#elif \
JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)) || \
JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
defined(__clang__)
#define JSON_HEDLEY_RESTRICT __restrict
#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,3,0) && !defined(__cplusplus)
#define JSON_HEDLEY_RESTRICT _Restrict
#else
#define JSON_HEDLEY_RESTRICT
#endif
#if defined(JSON_HEDLEY_INLINE)
#undef JSON_HEDLEY_INLINE
#endif
#if \
(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
(defined(__cplusplus) && (__cplusplus >= 199711L))
#define JSON_HEDLEY_INLINE inline
#elif \
defined(JSON_HEDLEY_GCC_VERSION) || \
JSON_HEDLEY_ARM_VERSION_CHECK(6,2,0)
#define JSON_HEDLEY_INLINE __inline__
#elif \
JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_INLINE __inline
#else
#define JSON_HEDLEY_INLINE
#endif
#if defined(JSON_HEDLEY_ALWAYS_INLINE)
#undef JSON_HEDLEY_ALWAYS_INLINE
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(always_inline) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_ALWAYS_INLINE __attribute__((__always_inline__)) JSON_HEDLEY_INLINE
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0)
#define JSON_HEDLEY_ALWAYS_INLINE __forceinline
#elif JSON_HEDLEY_TI_VERSION_CHECK(7,0,0) && defined(__cplusplus)
#define JSON_HEDLEY_ALWAYS_INLINE _Pragma("FUNC_ALWAYS_INLINE;")
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_ALWAYS_INLINE _Pragma("inline=forced")
#else
#define JSON_HEDLEY_ALWAYS_INLINE JSON_HEDLEY_INLINE
#endif
#if defined(JSON_HEDLEY_NEVER_INLINE)
#undef JSON_HEDLEY_NEVER_INLINE
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(noinline) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_NEVER_INLINE __attribute__((__noinline__))
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
#define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
#elif JSON_HEDLEY_PGI_VERSION_CHECK(10,2,0)
#define JSON_HEDLEY_NEVER_INLINE _Pragma("noinline")
#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
#define JSON_HEDLEY_NEVER_INLINE _Pragma("FUNC_CANNOT_INLINE;")
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
#define JSON_HEDLEY_NEVER_INLINE _Pragma("inline=never")
#elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
#define JSON_HEDLEY_NEVER_INLINE __attribute((noinline))
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
#define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
#else
#define JSON_HEDLEY_NEVER_INLINE
#endif
#if defined(JSON_HEDLEY_PRIVATE)
#undef JSON_HEDLEY_PRIVATE
#endif
#if defined(JSON_HEDLEY_PUBLIC)
#undef JSON_HEDLEY_PUBLIC
#endif
#if defined(JSON_HEDLEY_IMPORT)
#undef JSON_HEDLEY_IMPORT
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
#define JSON_HEDLEY_PRIVATE
#define JSON_HEDLEY_PUBLIC __declspec(dllexport)
#define JSON_HEDLEY_IMPORT __declspec(dllimport)
#else
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(visibility) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
(JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_EABI__) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
#define JSON_HEDLEY_PRIVATE __attribute__((__visibility__("hidden")))
#define JSON_HEDLEY_PUBLIC __attribute__((__visibility__("default")))
#else
#define JSON_HEDLEY_PRIVATE
#define JSON_HEDLEY_PUBLIC
#endif
#define JSON_HEDLEY_IMPORT extern
#endif
#if defined(JSON_HEDLEY_NO_THROW)
#undef JSON_HEDLEY_NO_THROW
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(nothrow) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
#define JSON_HEDLEY_NO_THROW __attribute__((__nothrow__))
#elif \
JSON_HEDLEY_MSVC_VERSION_CHECK(13,1,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
#define JSON_HEDLEY_NO_THROW __declspec(nothrow)
#else
#define JSON_HEDLEY_NO_THROW
#endif
#if defined(JSON_HEDLEY_FALL_THROUGH)
#undef JSON_HEDLEY_FALL_THROUGH
#endif
#if \
defined(__cplusplus) && \
(!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0)) && \
!defined(JSON_HEDLEY_PGI_VERSION)
#if \
(__cplusplus >= 201703L) || \
((__cplusplus >= 201103L) && JSON_HEDLEY_HAS_CPP_ATTRIBUTE(fallthrough))
#define JSON_HEDLEY_FALL_THROUGH [[fallthrough]]
#elif (__cplusplus >= 201103L) && JSON_HEDLEY_HAS_CPP_ATTRIBUTE(clang::fallthrough)
#define JSON_HEDLEY_FALL_THROUGH [[clang::fallthrough]]
#elif (__cplusplus >= 201103L) && JSON_HEDLEY_GCC_VERSION_CHECK(7,0,0)
#define JSON_HEDLEY_FALL_THROUGH [[gnu::fallthrough]]
#endif
#endif
#if !defined(JSON_HEDLEY_FALL_THROUGH)
#if JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(fallthrough,7,0,0) && !defined(JSON_HEDLEY_PGI_VERSION)
#define JSON_HEDLEY_FALL_THROUGH __attribute__((__fallthrough__))
#elif defined(__fallthrough) /* SAL */
#define JSON_HEDLEY_FALL_THROUGH __fallthrough
#else
#define JSON_HEDLEY_FALL_THROUGH
#endif
#endif
#if defined(JSON_HEDLEY_RETURNS_NON_NULL)
#undef JSON_HEDLEY_RETURNS_NON_NULL
#endif
#if \
JSON_HEDLEY_HAS_ATTRIBUTE(returns_nonnull) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
#define JSON_HEDLEY_RETURNS_NON_NULL __attribute__((__returns_nonnull__))
#elif defined(_Ret_notnull_) /* SAL */
#define JSON_HEDLEY_RETURNS_NON_NULL _Ret_notnull_
#else
#define JSON_HEDLEY_RETURNS_NON_NULL
#endif
#if defined(JSON_HEDLEY_ARRAY_PARAM)
#undef JSON_HEDLEY_ARRAY_PARAM
#endif
#if \
defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
!defined(__STDC_NO_VLA__) && \
!defined(__cplusplus) && \
!defined(JSON_HEDLEY_PGI_VERSION) && \
!defined(JSON_HEDLEY_TINYC_VERSION)
#define JSON_HEDLEY_ARRAY_PARAM(name) (name)
#else
#define JSON_HEDLEY_ARRAY_PARAM(name)
#endif
#if defined(JSON_HEDLEY_IS_CONSTANT)
#undef JSON_HEDLEY_IS_CONSTANT
#endif
#if defined(JSON_HEDLEY_REQUIRE_CONSTEXPR)
#undef JSON_HEDLEY_REQUIRE_CONSTEXPR
#endif
/* Note the double-underscore. For internal use only; no API
* guarantees! */
#if defined(JSON_HEDLEY__IS_CONSTEXPR)
#undef JSON_HEDLEY__IS_CONSTEXPR
#endif
#if \
JSON_HEDLEY_HAS_BUILTIN(__builtin_constant_p) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,19) || \
JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0) || \
JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0)
#define JSON_HEDLEY_IS_CONSTANT(expr) __builtin_constant_p(expr)
#endif
#if !defined(__cplusplus)
# if \
JSON_HEDLEY_HAS_BUILTIN(__builtin_types_compatible_p) || \
JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0) || \
JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,24)
#if defined(__INTPTR_TYPE__)
#define JSON_HEDLEY__IS_CONSTEXPR(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0)), int*)
#else
#include <stdint.h>
#define JSON_HEDLEY__IS_CONSTEXPR(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((intptr_t) ((expr) * 0)) : (int*) 0)), int*)
#endif
# elif \
(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && !defined(JSON_HEDLEY_SUNPRO_VERSION) && !defined(JSON_HEDLEY_PGI_VERSION)) || \
JSON_HEDLEY_HAS_EXTENSION(c_generic_selections) || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0) || \
JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
JSON_HEDLEY_ARM_VERSION_CHECK(5,3,0)
#if defined(__INTPTR_TYPE__)
#define JSON_HEDLEY__IS_CONSTEXPR(expr) _Generic((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0), int*: 1, void*: 0)
#else
#include <stdint.h>
#define JSON_HEDLEY__IS_CONSTEXPR(expr) _Generic((1 ? (void*) ((intptr_t) * 0) : (int*) 0), int*: 1, void*: 0)
#endif
# elif \
defined(JSON_HEDLEY_GCC_VERSION) || \
defined(JSON_HEDLEY_INTEL_VERSION) || \
defined(JSON_HEDLEY_TINYC_VERSION) || \
defined(JSON_HEDLEY_TI_VERSION) || \
defined(__clang__)
# define JSON_HEDLEY__IS_CONSTEXPR(expr) ( \
sizeof(void) != \
sizeof(*( \
1 ? \
((void*) ((expr) * 0L) ) : \
((struct { char v[sizeof(void) * 2]; } *) 1) \
) \
) \
)
# endif
#endif
#if defined(JSON_HEDLEY__IS_CONSTEXPR)
#if !defined(JSON_HEDLEY_IS_CONSTANT)
#define JSON_HEDLEY_IS_CONSTANT(expr) JSON_HEDLEY__IS_CONSTEXPR(expr)
#endif
#define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (JSON_HEDLEY__IS_CONSTEXPR(expr) ? (expr) : (-1))
#else
#if !defined(JSON_HEDLEY_IS_CONSTANT)
#define JSON_HEDLEY_IS_CONSTANT(expr) (0)
#endif
#define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (expr)
#endif
#if defined(JSON_HEDLEY_BEGIN_C_DECLS)
#undef JSON_HEDLEY_BEGIN_C_DECLS
#endif
#if defined(JSON_HEDLEY_END_C_DECLS)
#undef JSON_HEDLEY_END_C_DECLS
#endif
#if defined(JSON_HEDLEY_C_DECL)
#undef JSON_HEDLEY_C_DECL
#endif
#if defined(__cplusplus)
#define JSON_HEDLEY_BEGIN_C_DECLS extern "C" {
#define JSON_HEDLEY_END_C_DECLS }
#define JSON_HEDLEY_C_DECL extern "C"
#else
#define JSON_HEDLEY_BEGIN_C_DECLS
#define JSON_HEDLEY_END_C_DECLS
#define JSON_HEDLEY_C_DECL
#endif
#if defined(JSON_HEDLEY_STATIC_ASSERT)
#undef JSON_HEDLEY_STATIC_ASSERT
#endif
#if \
!defined(__cplusplus) && ( \
(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) || \
JSON_HEDLEY_HAS_FEATURE(c_static_assert) || \
JSON_HEDLEY_GCC_VERSION_CHECK(6,0,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
defined(_Static_assert) \
)
# define JSON_HEDLEY_STATIC_ASSERT(expr, message) _Static_assert(expr, message)
#elif \
(defined(__cplusplus) && (__cplusplus >= 201703L)) || \
JSON_HEDLEY_MSVC_VERSION_CHECK(16,0,0) || \
(defined(__cplusplus) && JSON_HEDLEY_TI_VERSION_CHECK(8,3,0))
# define JSON_HEDLEY_STATIC_ASSERT(expr, message) static_assert(expr, message)
#elif defined(__cplusplus) && (__cplusplus >= 201103L)
# define JSON_HEDLEY_STATIC_ASSERT(expr, message) static_assert(expr)
#else
# define JSON_HEDLEY_STATIC_ASSERT(expr, message)
#endif
#if defined(JSON_HEDLEY_CONST_CAST)
#undef JSON_HEDLEY_CONST_CAST
#endif
#if defined(__cplusplus)
# define JSON_HEDLEY_CONST_CAST(T, expr) (const_cast<T>(expr))
#elif \
JSON_HEDLEY_HAS_WARNING("-Wcast-qual") || \
JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
# define JSON_HEDLEY_CONST_CAST(T, expr) (__extension__ ({ \
JSON_HEDLEY_DIAGNOSTIC_PUSH \
JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL \
((T) (expr)); \
JSON_HEDLEY_DIAGNOSTIC_POP \
}))
#else
# define JSON_HEDLEY_CONST_CAST(T, expr) ((T) (expr))
#endif
#if defined(JSON_HEDLEY_REINTERPRET_CAST)
#undef JSON_HEDLEY_REINTERPRET_CAST
#endif
#if defined(__cplusplus)
#define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (reinterpret_cast<T>(expr))
#else
#define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (*((T*) &(expr)))
#endif
#if defined(JSON_HEDLEY_STATIC_CAST)
#undef JSON_HEDLEY_STATIC_CAST
#endif
#if defined(__cplusplus)
#define JSON_HEDLEY_STATIC_CAST(T, expr) (static_cast<T>(expr))
#else
#define JSON_HEDLEY_STATIC_CAST(T, expr) ((T) (expr))
#endif
#if defined(JSON_HEDLEY_CPP_CAST)
#undef JSON_HEDLEY_CPP_CAST
#endif
#if defined(__cplusplus)
#define JSON_HEDLEY_CPP_CAST(T, expr) static_cast<T>(expr)
#else
#define JSON_HEDLEY_CPP_CAST(T, expr) (expr)
#endif
#if defined(JSON_HEDLEY_MESSAGE)
#undef JSON_HEDLEY_MESSAGE
#endif
#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
# define JSON_HEDLEY_MESSAGE(msg) \
JSON_HEDLEY_DIAGNOSTIC_PUSH \
JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
JSON_HEDLEY_PRAGMA(message msg) \
JSON_HEDLEY_DIAGNOSTIC_POP
#elif \
JSON_HEDLEY_GCC_VERSION_CHECK(4,4,0) || \
JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message msg)
#elif JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0)
# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(_CRI message msg)
#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,0,0)
# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
#else
# define JSON_HEDLEY_MESSAGE(msg)
#endif
#if defined(JSON_HEDLEY_WARNING)
#undef JSON_HEDLEY_WARNING
#endif
#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
# define JSON_HEDLEY_WARNING(msg) \
JSON_HEDLEY_DIAGNOSTIC_PUSH \
JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
JSON_HEDLEY_PRAGMA(clang warning msg) \
JSON_HEDLEY_DIAGNOSTIC_POP
#elif \
JSON_HEDLEY_GCC_VERSION_CHECK(4,8,0) || \
JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0)
# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(GCC warning msg)
#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(message(msg))
#else
# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_MESSAGE(msg)
#endif
#if defined(JSON_HEDLEY_REQUIRE_MSG)
#undef JSON_HEDLEY_REQUIRE_MSG
#endif
#if JSON_HEDLEY_HAS_ATTRIBUTE(diagnose_if)
# if JSON_HEDLEY_HAS_WARNING("-Wgcc-compat")
# define JSON_HEDLEY_REQUIRE_MSG(expr, msg) \
JSON_HEDLEY_DIAGNOSTIC_PUSH \
_Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
__attribute__((__diagnose_if__(!(expr), msg, "error"))) \
JSON_HEDLEY_DIAGNOSTIC_POP
# else
# define JSON_HEDLEY_REQUIRE_MSG(expr, msg) __attribute__((__diagnose_if__(!(expr), msg, "error")))
# endif
#else
# define JSON_HEDLEY_REQUIRE_MSG(expr, msg)
#endif
#if defined(JSON_HEDLEY_REQUIRE)
#undef JSON_HEDLEY_REQUIRE
#endif
#define JSON_HEDLEY_REQUIRE(expr) JSON_HEDLEY_REQUIRE_MSG(expr, #expr)
#if defined(JSON_HEDLEY_FLAGS)
#undef JSON_HEDLEY_FLAGS
#endif
#if JSON_HEDLEY_HAS_ATTRIBUTE(flag_enum)
#define JSON_HEDLEY_FLAGS __attribute__((__flag_enum__))
#endif
#if defined(JSON_HEDLEY_FLAGS_CAST)
#undef JSON_HEDLEY_FLAGS_CAST
#endif
#if JSON_HEDLEY_INTEL_VERSION_CHECK(19,0,0)
# define JSON_HEDLEY_FLAGS_CAST(T, expr) (__extension__ ({ \
JSON_HEDLEY_DIAGNOSTIC_PUSH \
_Pragma("warning(disable:188)") \
((T) (expr)); \
JSON_HEDLEY_DIAGNOSTIC_POP \
}))
#else
# define JSON_HEDLEY_FLAGS_CAST(T, expr) JSON_HEDLEY_STATIC_CAST(T, expr)
#endif
/* Remaining macros are deprecated. */
#if defined(JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK)
#undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
#endif
#if defined(__clang__)
#define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) (0)
#else
#define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
#endif
#if defined(JSON_HEDLEY_CLANG_HAS_ATTRIBUTE)
#undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
#endif
#define JSON_HEDLEY_CLANG_HAS_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
#if defined(JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE)
#undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
#endif
#define JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute)
#if defined(JSON_HEDLEY_CLANG_HAS_BUILTIN)
#undef JSON_HEDLEY_CLANG_HAS_BUILTIN
#endif
#define JSON_HEDLEY_CLANG_HAS_BUILTIN(builtin) JSON_HEDLEY_HAS_BUILTIN(builtin)
#if defined(JSON_HEDLEY_CLANG_HAS_FEATURE)
#undef JSON_HEDLEY_CLANG_HAS_FEATURE
#endif
#define JSON_HEDLEY_CLANG_HAS_FEATURE(feature) JSON_HEDLEY_HAS_FEATURE(feature)
#if defined(JSON_HEDLEY_CLANG_HAS_EXTENSION)
#undef JSON_HEDLEY_CLANG_HAS_EXTENSION
#endif
#define JSON_HEDLEY_CLANG_HAS_EXTENSION(extension) JSON_HEDLEY_HAS_EXTENSION(extension)
#if defined(JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE)
#undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
#endif
#define JSON_HEDLEY_CLANG_HAS_DECLSPEC_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute)
#if defined(JSON_HEDLEY_CLANG_HAS_WARNING)
#undef JSON_HEDLEY_CLANG_HAS_WARNING
#endif
#define JSON_HEDLEY_CLANG_HAS_WARNING(warning) JSON_HEDLEY_HAS_WARNING(warning)
#endif /* !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < X) */
// This file contains all internal macro definitions
// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
// exclude unsupported compilers
#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
#if defined(__clang__)
#if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#endif
#endif
// C++ language standard detection
#if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
#define JSON_HAS_CPP_17
#define JSON_HAS_CPP_14
#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
#define JSON_HAS_CPP_14
#endif
// disable float-equal warnings on GCC/clang
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
// disable documentation warnings on clang
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdocumentation"
#endif
// allow to disable exceptions
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
#define JSON_THROW(exception) throw exception
#define JSON_TRY try
#define JSON_CATCH(exception) catch(exception)
#define JSON_INTERNAL_CATCH(exception) catch(exception)
#else
#include <cstdlib>
#define JSON_THROW(exception) std::abort()
#define JSON_TRY if(true)
#define JSON_CATCH(exception) if(false)
#define JSON_INTERNAL_CATCH(exception) if(false)
#endif
// override exception macros
#if defined(JSON_THROW_USER)
#undef JSON_THROW
#define JSON_THROW JSON_THROW_USER
#endif
#if defined(JSON_TRY_USER)
#undef JSON_TRY
#define JSON_TRY JSON_TRY_USER
#endif
#if defined(JSON_CATCH_USER)
#undef JSON_CATCH
#define JSON_CATCH JSON_CATCH_USER
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_CATCH_USER
#endif
#if defined(JSON_INTERNAL_CATCH_USER)
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
#endif
/*!
@brief macro to briefly define a mapping between an enum and JSON
@def NLOHMANN_JSON_SERIALIZE_ENUM
@since version 3.4.0
*/
#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
template<typename BasicJsonType> \
inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.first == e; \
}); \
j = ((it != std::end(m)) ? it : std::begin(m))->second; \
} \
template<typename BasicJsonType> \
inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.second == j; \
}); \
e = ((it != std::end(m)) ? it : std::begin(m))->first; \
}
// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
// may be removed in the future once the class is split.
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
template<template<typename, typename, typename...> class ObjectType, \
template<typename, typename...> class ArrayType, \
class StringType, class BooleanType, class NumberIntegerType, \
class NumberUnsignedType, class NumberFloatType, \
template<typename> class AllocatorType, \
template<typename, typename = void> class JSONSerializer>
#define NLOHMANN_BASIC_JSON_TPL \
basic_json<ObjectType, ArrayType, StringType, BooleanType, \
NumberIntegerType, NumberUnsignedType, NumberFloatType, \
AllocatorType, JSONSerializer>
namespace nlohmann
{
namespace detail
{
////////////////
// exceptions //
////////////////
/*!
@brief general exception of the @ref basic_json class
This class is an extension of `std::exception` objects with a member @a id for
exception ids. It is used as the base class for all exceptions thrown by the
@ref basic_json class. This class can hence be used as "wildcard" to catch
exceptions.
Subclasses:
- @ref parse_error for exceptions indicating a parse error
- @ref invalid_iterator for exceptions indicating errors with iterators
- @ref type_error for exceptions indicating executing a member function with
a wrong type
- @ref out_of_range for exceptions indicating access out of the defined range
- @ref other_error for exceptions indicating other library errors
@internal
@note To have nothrow-copy-constructible exceptions, we internally use
`std::runtime_error` which can cope with arbitrary-length error messages.
Intermediate strings are built with static functions and then passed to
the actual constructor.
@endinternal
@liveexample{The following code shows how arbitrary library exceptions can be
caught.,exception}
@since version 3.0.0
*/
class exception : public std::exception
{
public:
/// returns the explanatory string
JSON_HEDLEY_RETURNS_NON_NULL
const char* what() const noexcept override
{
return m.what();
}
/// the id of the exception
const int id;
protected:
JSON_HEDLEY_NON_NULL(3)
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
static std::string name(const std::string& ename, int id_)
{
return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
}
private:
/// an exception object as storage for error messages
std::runtime_error m;
};
/*!
@brief exception indicating a parse error
This exception is thrown by the library when a parse error occurs. Parse errors
can occur during the deserialization of JSON text, CBOR, MessagePack, as well
as when using JSON Patch.
Member @a byte holds the byte index of the last read character in the input
file.
Exceptions have ids 1xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`.
json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet).
@note For an input with n bytes, 1 is the index of the first character and n+1
is the index of the terminating null byte or the end of file. This also
holds true when reading a byte vector (CBOR or MessagePack).
@liveexample{The following code shows how a `parse_error` exception can be
caught.,parse_error}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class parse_error : public exception
{
public:
/*!
@brief create a parse error exception
@param[in] id_ the id of the exception
@param[in] pos the position where the error occurred (or with
chars_read_total=0 if the position cannot be
determined)
@param[in] what_arg the explanatory string
@return parse_error object
*/
static parse_error create(int id_, const position_t& pos, const std::string& what_arg)
{
std::string w = exception::name("parse_error", id_) + "parse error" +
position_string(pos) + ": " + what_arg;
return parse_error(id_, pos.chars_read_total, w.c_str());
}
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
{
std::string w = exception::name("parse_error", id_) + "parse error" +
(byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") +
": " + what_arg;
return parse_error(id_, byte_, w.c_str());
}
/*!
@brief byte index of the parse error
The byte index of the last read character in the input file.
@note For an input with n bytes, 1 is the index of the first character and
n+1 is the index of the terminating null byte or the end of file.
This also holds true when reading a byte vector (CBOR or MessagePack).
*/
const std::size_t byte;
private:
parse_error(int id_, std::size_t byte_, const char* what_arg)
: exception(id_, what_arg), byte(byte_) {}
static std::string position_string(const position_t& pos)
{
return " at line " + std::to_string(pos.lines_read + 1) +
", column " + std::to_string(pos.chars_read_current_line);
}
};
/*!
@brief exception indicating errors with iterators
This exception is thrown if iterators passed to a library function do not match
the expected semantics.
Exceptions have ids 2xx.
name / id | example message | description
----------------------------------- | --------------- | -------------------------
json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
@liveexample{The following code shows how an `invalid_iterator` exception can be
caught.,invalid_iterator}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class invalid_iterator : public exception
{
public:
static invalid_iterator create(int id_, const std::string& what_arg)
{
std::string w = exception::name("invalid_iterator", id_) + what_arg;
return invalid_iterator(id_, w.c_str());
}
private:
JSON_HEDLEY_NON_NULL(3)
invalid_iterator(int id_, const char* what_arg)
: exception(id_, what_arg) {}
};
/*!
@brief exception indicating executing a member function with a wrong type
This exception is thrown in case of a type error; that is, a library function is
executed on a JSON value whose type does not match the expected semantics.
Exceptions have ids 3xx.
name / id | example message | description
----------------------------- | --------------- | -------------------------
json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t &.
json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. |
json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) |
@liveexample{The following code shows how a `type_error` exception can be
caught.,type_error}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class type_error : public exception
{
public:
static type_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("type_error", id_) + what_arg;
return type_error(id_, w.c_str());
}
private:
JSON_HEDLEY_NON_NULL(3)
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating access out of the defined range
This exception is thrown in case a library function is called on an input
parameter that exceeds the expected range, for instance in case of array
indices or nonexisting object keys.
Exceptions have ids 4xx.
name / id | example message | description
------------------------------- | --------------- | -------------------------
json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. |
json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. |
json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string |
@liveexample{The following code shows how an `out_of_range` exception can be
caught.,out_of_range}
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class out_of_range : public exception
{
public:
static out_of_range create(int id_, const std::string& what_arg)
{
std::string w = exception::name("out_of_range", id_) + what_arg;
return out_of_range(id_, w.c_str());
}
private:
JSON_HEDLEY_NON_NULL(3)
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating other library errors
This exception is thrown in case of errors that cannot be classified with the
other exception types.
Exceptions have ids 5xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
@sa - @ref exception for the base class of the library exceptions
@sa - @ref parse_error for exceptions indicating a parse error
@sa - @ref invalid_iterator for exceptions indicating errors with iterators
@sa - @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa - @ref out_of_range for exceptions indicating access out of the defined range
@liveexample{The following code shows how an `other_error` exception can be
caught.,other_error}
@since version 3.0.0
*/
class other_error : public exception
{
public:
static other_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("other_error", id_) + what_arg;
return other_error(id_, w.c_str());
}
private:
JSON_HEDLEY_NON_NULL(3)
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
#include <ciso646> // not
#include <cstddef> // size_t
#include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
namespace nlohmann
{
namespace detail
{
// alias templates to reduce boilerplate
template<bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T>
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// implementation of C++14 index_sequence and affiliates
// source: https://stackoverflow.com/a/32223343
template<std::size_t... Ints>
struct index_sequence
{
using type = index_sequence;
using value_type = std::size_t;
static constexpr std::size_t size() noexcept
{
return sizeof...(Ints);
}
};
template<class Sequence1, class Sequence2>
struct merge_and_renumber;
template<std::size_t... I1, std::size_t... I2>
struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence < I1..., (sizeof...(I1) + I2)... > {};
template<std::size_t N>
struct make_index_sequence
: merge_and_renumber < typename make_index_sequence < N / 2 >::type,
typename make_index_sequence < N - N / 2 >::type > {};
template<> struct make_index_sequence<0> : index_sequence<> {};
template<> struct make_index_sequence<1> : index_sequence<0> {};
template<typename... Ts>
using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
// dispatch utility (taken from ranges-v3)
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
template<> struct priority_tag<0> {};
// taken from ranges-v3
template<typename T>
struct static_const
{
static constexpr T value{};
};
template<typename T>
constexpr T static_const<T>::value;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/meta/type_traits.hpp>
#include <ciso646> // not
#include <limits> // numeric_limits
#include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
#include <utility> // declval
// #include <nlohmann/detail/iterators/iterator_traits.hpp>
#include <iterator> // random_access_iterator_tag
// #include <nlohmann/detail/meta/void_t.hpp>
namespace nlohmann
{
namespace detail
{
template <typename ...Ts> struct make_void
{
using type = void;
};
template <typename ...Ts> using void_t = typename make_void<Ts...>::type;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/meta/cpp_future.hpp>
namespace nlohmann
{
namespace detail
{
template <typename It, typename = void>
struct iterator_types {};
template <typename It>
struct iterator_types <
It,
void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
typename It::reference, typename It::iterator_category >>
{
using difference_type = typename It::difference_type;
using value_type = typename It::value_type;
using pointer = typename It::pointer;
using reference = typename It::reference;
using iterator_category = typename It::iterator_category;
};
// This is required as some compilers implement std::iterator_traits in a way that
// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
template <typename T, typename = void>
struct iterator_traits
{
};
template <typename T>
struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
: iterator_types<T>
{
};
template <typename T>
struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
{
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/detected.hpp>
#include <type_traits>
// #include <nlohmann/detail/meta/void_t.hpp>
// http://en.cppreference.com/w/cpp/experimental/is_detected
namespace nlohmann
{
namespace detail
{
struct nonesuch
{
nonesuch() = delete;
~nonesuch() = delete;
nonesuch(nonesuch const&) = delete;
nonesuch(nonesuch const&&) = delete;
void operator=(nonesuch const&) = delete;
void operator=(nonesuch&&) = delete;
};
template <class Default,
class AlwaysVoid,
template <class...> class Op,
class... Args>
struct detector
{
using value_t = std::false_type;
using type = Default;
};
template <class Default, template <class...> class Op, class... Args>
struct detector<Default, void_t<Op<Args...>>, Op, Args...>
{
using value_t = std::true_type;
using type = Op<Args...>;
};
template <template <class...> class Op, class... Args>
using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
template <template <class...> class Op, class... Args>
using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
template <class Default, template <class...> class Op, class... Args>
using detected_or = detector<Default, void, Op, Args...>;
template <class Default, template <class...> class Op, class... Args>
using detected_or_t = typename detected_or<Default, Op, Args...>::type;
template <class Expected, template <class...> class Op, class... Args>
using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
template <class To, template <class...> class Op, class... Args>
using is_detected_convertible =
std::is_convertible<detected_t<Op, Args...>, To>;
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/json_fwd.hpp>
#ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
#define INCLUDE_NLOHMANN_JSON_FWD_HPP_
#include <cstdint> // int64_t, uint64_t
#include <map> // map
#include <memory> // allocator
#include <string> // string
#include <vector> // vector
/*!
@brief namespace for Niels Lohmann
@see https://github.com/nlohmann
@since version 1.0.0
*/
namespace nlohmann
{
/*!
@brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
for serialization.
*/
template<typename T = void, typename SFINAE = void>
struct adl_serializer;
template<template<typename U, typename V, typename... Args> class ObjectType =
std::map,
template<typename U, typename... Args> class ArrayType = std::vector,
class StringType = std::string, class BooleanType = bool,
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator,
template<typename T, typename SFINAE = void> class JSONSerializer =
adl_serializer>
class basic_json;
/*!
@brief JSON Pointer
A JSON pointer defines a string syntax for identifying a specific value
within a JSON document. It can be used with functions `at` and
`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
template<typename BasicJsonType>
class json_pointer;
/*!
@brief default JSON class
This type is the default specialization of the @ref basic_json class which
uses the standard template types.
@since version 1.0.0
*/
using json = basic_json<>;
} // namespace nlohmann
#endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
namespace nlohmann
{
/*!
@brief detail namespace with internal helper functions
This namespace collects functions that should not be exposed,
implementations of some @ref basic_json methods, and meta-programming helpers.
@since version 2.1.0
*/
namespace detail
{
/////////////
// helpers //
/////////////
// Note to maintainers:
//
// Every trait in this file expects a non CV-qualified type.
// The only exceptions are in the 'aliases for detected' section
// (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
//
// In this case, T has to be properly CV-qualified to constraint the function arguments
// (e.g. to_json(BasicJsonType&, const T&))
template<typename> struct is_basic_json : std::false_type {};
NLOHMANN_BASIC_JSON_TPL_DECLARATION
struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
//////////////////////////
// aliases for detected //
//////////////////////////
template <typename T>
using mapped_type_t = typename T::mapped_type;
template <typename T>
using key_type_t = typename T::key_type;
template <typename T>
using value_type_t = typename T::value_type;
template <typename T>
using difference_type_t = typename T::difference_type;
template <typename T>
using pointer_t = typename T::pointer;
template <typename T>
using reference_t = typename T::reference;
template <typename T>
using iterator_category_t = typename T::iterator_category;
template <typename T>
using iterator_t = typename T::iterator;
template <typename T, typename... Args>
using to_json_function = decltype(T::to_json(std::declval<Args>()...));
template <typename T, typename... Args>
using from_json_function = decltype(T::from_json(std::declval<Args>()...));
template <typename T, typename U>
using get_template_function = decltype(std::declval<T>().template get<U>());
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template <typename BasicJsonType, typename T, typename = void>
struct has_from_json : std::false_type {};
template <typename BasicJsonType, typename T>
struct has_from_json<BasicJsonType, T,
enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<void, from_json_function, serializer,
const BasicJsonType&, T&>::value;
};
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template <typename BasicJsonType, typename T, typename = void>
struct has_non_default_from_json : std::false_type {};
template<typename BasicJsonType, typename T>
struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<T, from_json_function, serializer,
const BasicJsonType&>::value;
};
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
// Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
template <typename BasicJsonType, typename T, typename = void>
struct has_to_json : std::false_type {};
template <typename BasicJsonType, typename T>
struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
{
using serializer = typename BasicJsonType::template json_serializer<T, void>;
static constexpr bool value =
is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
T>::value;
};
///////////////////
// is_ functions //
///////////////////
template <typename T, typename = void>
struct is_iterator_traits : std::false_type {};
template <typename T>
struct is_iterator_traits<iterator_traits<T>>
{
private:
using traits = iterator_traits<T>;
public:
static constexpr auto value =
is_detected<value_type_t, traits>::value &&
is_detected<difference_type_t, traits>::value &&
is_detected<pointer_t, traits>::value &&
is_detected<iterator_category_t, traits>::value &&
is_detected<reference_t, traits>::value;
};
// source: https://stackoverflow.com/a/37193089/4116453
template <typename T, typename = void>
struct is_complete_type : std::false_type {};
template <typename T>
struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
template <typename BasicJsonType, typename CompatibleObjectType,
typename = void>
struct is_compatible_object_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleObjectType>
struct is_compatible_object_type_impl <
BasicJsonType, CompatibleObjectType,
enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and
is_detected<key_type_t, CompatibleObjectType>::value >>
{
using object_t = typename BasicJsonType::object_t;
// macOS's is_constructible does not play well with nonesuch...
static constexpr bool value =
std::is_constructible<typename object_t::key_type,
typename CompatibleObjectType::key_type>::value and
std::is_constructible<typename object_t::mapped_type,
typename CompatibleObjectType::mapped_type>::value;
};
template <typename BasicJsonType, typename CompatibleObjectType>
struct is_compatible_object_type
: is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
template <typename BasicJsonType, typename ConstructibleObjectType,
typename = void>
struct is_constructible_object_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleObjectType>
struct is_constructible_object_type_impl <
BasicJsonType, ConstructibleObjectType,
enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and
is_detected<key_type_t, ConstructibleObjectType>::value >>
{
using object_t = typename BasicJsonType::object_t;
static constexpr bool value =
(std::is_default_constructible<ConstructibleObjectType>::value and
(std::is_move_assignable<ConstructibleObjectType>::value or
std::is_copy_assignable<ConstructibleObjectType>::value) and
(std::is_constructible<typename ConstructibleObjectType::key_type,
typename object_t::key_type>::value and
std::is_same <
typename object_t::mapped_type,
typename ConstructibleObjectType::mapped_type >::value)) or
(has_from_json<BasicJsonType,
typename ConstructibleObjectType::mapped_type>::value or
has_non_default_from_json <
BasicJsonType,
typename ConstructibleObjectType::mapped_type >::value);
};
template <typename BasicJsonType, typename ConstructibleObjectType>
struct is_constructible_object_type
: is_constructible_object_type_impl<BasicJsonType,
ConstructibleObjectType> {};
template <typename BasicJsonType, typename CompatibleStringType,
typename = void>
struct is_compatible_string_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleStringType>
struct is_compatible_string_type_impl <
BasicJsonType, CompatibleStringType,
enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
value_type_t, CompatibleStringType>::value >>
{
static constexpr auto value =
std::is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_compatible_string_type
: is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
template <typename BasicJsonType, typename ConstructibleStringType,
typename = void>
struct is_constructible_string_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_constructible_string_type_impl <
BasicJsonType, ConstructibleStringType,
enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
value_type_t, ConstructibleStringType>::value >>
{
static constexpr auto value =
std::is_constructible<ConstructibleStringType,
typename BasicJsonType::string_t>::value;
};
template <typename BasicJsonType, typename ConstructibleStringType>
struct is_constructible_string_type
: is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
template <typename BasicJsonType, typename CompatibleArrayType, typename = void>
struct is_compatible_array_type_impl : std::false_type {};
template <typename BasicJsonType, typename CompatibleArrayType>
struct is_compatible_array_type_impl <
BasicJsonType, CompatibleArrayType,
enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and
is_detected<iterator_t, CompatibleArrayType>::value and
// This is needed because json_reverse_iterator has a ::iterator type...
// Therefore it is detected as a CompatibleArrayType.
// The real fix would be to have an Iterable concept.
not is_iterator_traits<
iterator_traits<CompatibleArrayType>>::value >>
{
static constexpr bool value =
std::is_constructible<BasicJsonType,
typename CompatibleArrayType::value_type>::value;
};
template <typename BasicJsonType, typename CompatibleArrayType>
struct is_compatible_array_type
: is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
template <typename BasicJsonType, typename ConstructibleArrayType, typename = void>
struct is_constructible_array_type_impl : std::false_type {};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type_impl <
BasicJsonType, ConstructibleArrayType,
enable_if_t<std::is_same<ConstructibleArrayType,
typename BasicJsonType::value_type>::value >>
: std::true_type {};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type_impl <
BasicJsonType, ConstructibleArrayType,
enable_if_t<not std::is_same<ConstructibleArrayType,
typename BasicJsonType::value_type>::value and
std::is_default_constructible<ConstructibleArrayType>::value and
(std::is_move_assignable<ConstructibleArrayType>::value or
std::is_copy_assignable<ConstructibleArrayType>::value) and
is_detected<value_type_t, ConstructibleArrayType>::value and
is_detected<iterator_t, ConstructibleArrayType>::value and
is_complete_type<
detected_t<value_type_t, ConstructibleArrayType>>::value >>
{
static constexpr bool value =
// This is needed because json_reverse_iterator has a ::iterator type,
// furthermore, std::back_insert_iterator (and other iterators) have a
// base class `iterator`... Therefore it is detected as a
// ConstructibleArrayType. The real fix would be to have an Iterable
// concept.
not is_iterator_traits<iterator_traits<ConstructibleArrayType>>::value and
(std::is_same<typename ConstructibleArrayType::value_type,
typename BasicJsonType::array_t::value_type>::value or
has_from_json<BasicJsonType,
typename ConstructibleArrayType::value_type>::value or
has_non_default_from_json <
BasicJsonType, typename ConstructibleArrayType::value_type >::value);
};
template <typename BasicJsonType, typename ConstructibleArrayType>
struct is_constructible_array_type
: is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
template <typename RealIntegerType, typename CompatibleNumberIntegerType,
typename = void>
struct is_compatible_integer_type_impl : std::false_type {};
template <typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type_impl <
RealIntegerType, CompatibleNumberIntegerType,
enable_if_t<std::is_integral<RealIntegerType>::value and
std::is_integral<CompatibleNumberIntegerType>::value and
not std::is_same<bool, CompatibleNumberIntegerType>::value >>
{
// is there an assert somewhere on overflows?
using RealLimits = std::numeric_limits<RealIntegerType>;
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
static constexpr auto value =
std::is_constructible<RealIntegerType,
CompatibleNumberIntegerType>::value and
CompatibleLimits::is_integer and
RealLimits::is_signed == CompatibleLimits::is_signed;
};
template <typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type
: is_compatible_integer_type_impl<RealIntegerType,
CompatibleNumberIntegerType> {};
template <typename BasicJsonType, typename CompatibleType, typename = void>
struct is_compatible_type_impl: std::false_type {};
template <typename BasicJsonType, typename CompatibleType>
struct is_compatible_type_impl <
BasicJsonType, CompatibleType,
enable_if_t<is_complete_type<CompatibleType>::value >>
{
static constexpr bool value =
has_to_json<BasicJsonType, CompatibleType>::value;
};
template <typename BasicJsonType, typename CompatibleType>
struct is_compatible_type
: is_compatible_type_impl<BasicJsonType, CompatibleType> {};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/value_t.hpp>
#include <array> // array
#include <ciso646> // and
#include <cstddef> // size_t
#include <cstdint> // uint8_t
#include <string> // string
namespace nlohmann
{
namespace detail
{
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used to
distinguish the stored values, and the functions @ref basic_json::is_null(),
@ref basic_json::is_object(), @ref basic_json::is_array(),
@ref basic_json::is_string(), @ref basic_json::is_boolean(),
@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
@ref basic_json::is_structured() rely on it.
@note There are three enumeration entries (number_integer, number_unsigned, and
number_float), because the library distinguishes these three types for numbers:
@ref basic_json::number_unsigned_t is used for unsigned integers,
@ref basic_json::number_integer_t is used for signed integers, and
@ref basic_json::number_float_t is used for floating-point numbers or to
approximate integers which do not fit in the limits of their respective type.
@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
value with the default value for a given type
@since version 1.0.0
*/
enum class value_t : std::uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
- discarded values are not comparable
@since version 1.0.0
*/
inline bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<std::uint8_t, 8> order = {{
0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */
}
};
const auto l_index = static_cast<std::size_t>(lhs);
const auto r_index = static_cast<std::size_t>(rhs);
return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index];
}
} // namespace detail
} // namespace nlohmann
namespace nlohmann
{
namespace detail
{
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_null()))
{
JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name())));
}
n = nullptr;
}
// overloads for basic_json template parameters
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t<std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_boolean()))
{
JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
{
JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template <
typename BasicJsonType, typename ConstructibleStringType,
enable_if_t <
is_constructible_string_type<BasicJsonType, ConstructibleStringType>::value and
not std::is_same<typename BasicJsonType::string_t,
ConstructibleStringType>::value,
int > = 0 >
void from_json(const BasicJsonType& j, ConstructibleStringType& s)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
{
JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void from_json(const BasicJsonType& j, EnumType& e)
{
typename std::underlying_type<EnumType>::type val;
get_arithmetic_value(j, val);
e = static_cast<EnumType>(val);
}
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
l.clear();
std::transform(j.rbegin(), j.rend(),
std::front_inserter(l), [](const BasicJsonType & i)
{
return i.template get<T>();
});
}
// valarray doesn't have an insert method
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::valarray<T>& l)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
l.resize(j.size());
std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l));
}
template <typename BasicJsonType, typename T, std::size_t N>
auto from_json(const BasicJsonType& j, T (&arr)[N])
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType>
void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
{
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
template <typename BasicJsonType, typename T, std::size_t N>
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
priority_tag<2> /*unused*/)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType, typename ConstructibleArrayType>
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
-> decltype(
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
using std::end;
ConstructibleArrayType ret;
ret.reserve(j.size());
std::transform(j.begin(), j.end(),
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template <typename BasicJsonType, typename ConstructibleArrayType>
void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
priority_tag<0> /*unused*/)
{
using std::end;
ConstructibleArrayType ret;
std::transform(
j.begin(), j.end(), std::inserter(ret, end(ret)),
[](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template <typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t <
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value and
not is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value and
not is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value and
not is_basic_json<ConstructibleArrayType>::value,
int > = 0 >
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " +
std::string(j.type_name())));
}
from_json_array_impl(j, arr, priority_tag<3> {});
}
template<typename BasicJsonType, typename ConstructibleObjectType,
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
{
JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
}
ConstructibleObjectType ret;
auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using value_type = typename ConstructibleObjectType::value_type;
std::transform(
inner_object->begin(), inner_object->end(),
std::inserter(ret, ret.begin()),
[](typename BasicJsonType::object_t::value_type const & p)
{
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
});
obj = std::move(ret);
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType, typename A1, typename A2>
void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
{
p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/)
{
t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
}
template<typename BasicJsonType, typename... Args>
void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
{
from_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
typename = enable_if_t<not std::is_constructible<
typename BasicJsonType::string_t, Key>::value>>
void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
typename = enable_if_t<not std::is_constructible<
typename BasicJsonType::string_t, Key>::value>>
void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
struct from_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(const BasicJsonType& j, T& val) const
noexcept(noexcept(from_json(j, val)))
-> decltype(from_json(j, val), void())
{
return from_json(j, val);
}
};
} // namespace detail
/// namespace to hold default `from_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace
{
constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
} // namespace
} // namespace nlohmann
// #include <nlohmann/detail/conversions/to_json.hpp>
#include <algorithm> // copy
#include <ciso646> // or, and, not
#include <iterator> // begin, end
#include <string> // string
#include <tuple> // tuple, get
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
#include <utility> // move, forward, declval, pair
#include <valarray> // valarray
#include <vector> // vector
// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
#include <cstddef> // size_t
#include <iterator> // input_iterator_tag
#include <string> // string, to_string
#include <tuple> // tuple_size, get, tuple_element
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
template<typename string_type>
void int_to_string( string_type& target, int value )
{
target = std::to_string(value);
}
template <typename IteratorType> class iteration_proxy_value
{
public:
using difference_type = std::ptrdiff_t;
using value_type = iteration_proxy_value;
using pointer = value_type * ;
using reference = value_type & ;
using iterator_category = std::input_iterator_tag;
using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
private:
/// the iterator
IteratorType anchor;
/// an index for arrays (used to create key names)
std::size_t array_index = 0;
/// last stringified array index
mutable std::size_t array_index_last = 0;
/// a string representation of the array index
mutable string_type array_index_str = "0";
/// an empty string (to return a reference for primitive values)
const string_type empty_str = "";
public:
explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {}
/// dereference operator (needed for range-based for)
iteration_proxy_value& operator*()
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_value& operator++()
{
++anchor;
++array_index;
return *this;
}
/// equality operator (needed for InputIterator)
bool operator==(const iteration_proxy_value& o) const
{
return anchor == o.anchor;
}
/// inequality operator (needed for range-based for)
bool operator!=(const iteration_proxy_value& o) const
{
return anchor != o.anchor;
}
/// return key of the iterator
const string_type& key() const
{
assert(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
{
if (array_index != array_index_last)
{
int_to_string( array_index_str, array_index );
array_index_last = array_index;
}
return array_index_str;
}
// use key from the object
case value_t::object:
return anchor.key();
// use an empty key for all primitive types
default:
return empty_str;
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// proxy class for the items() function
template<typename IteratorType> class iteration_proxy
{
private:
/// the container to iterate
typename IteratorType::reference container;
public:
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont) noexcept
: container(cont) {}
/// return iterator begin (needed for range-based for)
iteration_proxy_value<IteratorType> begin() noexcept
{
return iteration_proxy_value<IteratorType>(container.begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_value<IteratorType> end() noexcept
{
return iteration_proxy_value<IteratorType>(container.end());
}
};
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
{
return i.key();
}
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
{
return i.value();
}
} // namespace detail
} // namespace nlohmann
// The Addition to the STD Namespace is required to add
// Structured Bindings Support to the iteration_proxy_value class
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
namespace std
{
#if defined(__clang__)
// Fix: https://github.com/nlohmann/json/issues/1401
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
template <typename IteratorType>
class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>>
: public std::integral_constant<std::size_t, 2> {};
template <std::size_t N, typename IteratorType>
class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >>
{
public:
using type = decltype(
get<N>(std::declval <
::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} // namespace std
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
//////////////////
// constructors //
//////////////////
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_type = value_t::boolean;
j.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_type = value_t::string;
j.m_value = s;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
j.m_type = value_t::string;
j.m_value = std::move(s);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleStringType,
enable_if_t<not std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleStringType& str)
{
j.m_type = value_t::string;
j.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
j.m_type = value_t::number_float;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_type = value_t::number_unsigned;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_type = value_t::number_integer;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_type = value_t::array;
j.m_value = arr;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
j.m_type = value_t::array;
j.m_value = std::move(arr);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_type = value_t::array;
j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->reserve(arr.size());
for (const bool x : arr)
{
j.m_value.array->push_back(x);
}
j.assert_invariant();
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->resize(arr.size());
if (arr.size() > 0)
{
std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
}
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_type = value_t::object;
j.m_value = obj;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
j.m_type = value_t::object;
j.m_value = std::move(obj);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0>
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_type = value_t::object;
j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.assert_invariant();
}
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
void to_json(BasicJsonType& j, T b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
external_constructor<value_t::string>::construct(j, std::move(s));
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void to_json(BasicJsonType& j, EnumType e) noexcept
{
using underlying_type = typename std::underlying_type<EnumType>::type;
external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, const std::vector<bool>& e)
{
external_constructor<value_t::array>::construct(j, e);
}
template <typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<is_compatible_array_type<BasicJsonType,
CompatibleArrayType>::value and
not is_compatible_object_type<
BasicJsonType, CompatibleArrayType>::value and
not is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value and
not is_basic_json<CompatibleArrayType>::value,
int> = 0>
void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
void to_json(BasicJsonType& j, const std::valarray<T>& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value and not is_basic_json<CompatibleObjectType>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
{
external_constructor<value_t::object>::construct(j, obj);
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
external_constructor<value_t::object>::construct(j, std::move(obj));
}
template <
typename BasicJsonType, typename T, std::size_t N,
enable_if_t<not std::is_constructible<typename BasicJsonType::string_t,
const T(&)[N]>::value,
int> = 0 >
void to_json(BasicJsonType& j, const T(&arr)[N])
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::pair<Args...>& p)
{
j = { p.first, p.second };
}
// for https://github.com/nlohmann/json/pull/1134
template < typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
void to_json(BasicJsonType& j, const T& b)
{
j = { {b.key(), b.value()} };
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
{
j = { std::get<Idx>(t)... };
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::tuple<Args...>& t)
{
to_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
struct to_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
};
} // namespace detail
/// namespace to hold default `to_json` function
namespace
{
constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
} // namespace
} // namespace nlohmann
namespace nlohmann
{
template<typename, typename>
struct adl_serializer
{
/*!
@brief convert a JSON value to any value type
This function is usually called by the `get()` function of the
@ref basic_json class (either explicit or via conversion operators).
@param[in] j JSON value to read from
@param[in,out] val value to write to
*/
template<typename BasicJsonType, typename ValueType>
static auto from_json(BasicJsonType&& j, ValueType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/*!
@brief convert any value type to a JSON value
This function is usually called by the constructors of the @ref basic_json
class.
@param[in,out] j JSON value to write to
@param[in] val value to read from
*/
template <typename BasicJsonType, typename ValueType>
static auto to_json(BasicJsonType& j, ValueType&& val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
-> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void())
{
::nlohmann::to_json(j, std::forward<ValueType>(val));
}
};
} // namespace nlohmann
// #include <nlohmann/detail/conversions/from_json.hpp>
// #include <nlohmann/detail/conversions/to_json.hpp>
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/input/binary_reader.hpp>
#include <algorithm> // generate_n
#include <array> // array
#include <cassert> // assert
#include <cmath> // ldexp
#include <cstddef> // size_t
#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
#include <cstdio> // snprintf
#include <cstring> // memcpy
#include <iterator> // back_inserter
#include <limits> // numeric_limits
#include <string> // char_traits, string
#include <utility> // make_pair, move
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/input/input_adapters.hpp>
#include <array> // array
#include <cassert> // assert
#include <cstddef> // size_t
#include <cstdio> //FILE *
#include <cstring> // strlen
#include <istream> // istream
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
#include <memory> // shared_ptr, make_shared, addressof
#include <numeric> // accumulate
#include <string> // string, char_traits
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
#include <utility> // pair, declval
// #include <nlohmann/detail/iterators/iterator_traits.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
namespace detail
{
/// the supported input formats
enum class input_format_t { json, cbor, msgpack, ubjson, bson };
////////////////////
// input adapters //
////////////////////
/*!
@brief abstract input adapter interface
Produces a stream of std::char_traits<char>::int_type characters from a
std::istream, a buffer, or some other input type. Accepts the return of
exactly one non-EOF character for future input. The int_type characters
returned consist of all valid char values as positive values (typically
unsigned char), plus an EOF value outside that range, specified by the value
of the function std::char_traits<char>::eof(). This value is typically -1, but
could be any arbitrary value which is not a valid char value.
*/
struct input_adapter_protocol
{
/// get a character [0,255] or std::char_traits<char>::eof().
virtual std::char_traits<char>::int_type get_character() = 0;
virtual ~input_adapter_protocol() = default;
};
/// a type to simplify interfaces
using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
/*!
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
buffer. This adapter is a very low level adapter.
*/
class file_input_adapter : public input_adapter_protocol
{
public:
JSON_HEDLEY_NON_NULL(2)
explicit file_input_adapter(std::FILE* f) noexcept
: m_file(f)
{}
// make class move-only
file_input_adapter(const file_input_adapter&) = delete;
file_input_adapter(file_input_adapter&&) = default;
file_input_adapter& operator=(const file_input_adapter&) = delete;
file_input_adapter& operator=(file_input_adapter&&) = default;
~file_input_adapter() override = default;
std::char_traits<char>::int_type get_character() noexcept override
{
return std::fgetc(m_file);
}
private:
/// the file pointer to read from
std::FILE* m_file;
};
/*!
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
beginning of input. Does not support changing the underlying std::streambuf
in mid-input. Maintains underlying std::istream and std::streambuf to support
subsequent use of standard std::istream operations to process any input
characters following those used in parsing the JSON input. Clears the
std::istream flags; any input errors (e.g., EOF) will be detected by the first
subsequent call for input from the std::istream.
*/
class input_stream_adapter : public input_adapter_protocol
{
public:
~input_stream_adapter() override
{
// clear stream flags; we use underlying streambuf I/O, do not
// maintain ifstream flags, except eof
is.clear(is.rdstate() & std::ios::eofbit);
}
explicit input_stream_adapter(std::istream& i)
: is(i), sb(*i.rdbuf())
{}
// delete because of pointer members
input_stream_adapter(const input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&) = delete;
input_stream_adapter(input_stream_adapter&&) = delete;
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
// end up as the same value, eg. 0xFFFFFFFF.
std::char_traits<char>::int_type get_character() override
{
auto res = sb.sbumpc();
// set eof manually, as we don't use the istream interface.
if (res == EOF)
{
is.clear(is.rdstate() | std::ios::eofbit);
}
return res;
}
private:
/// the associated input stream
std::istream& is;
std::streambuf& sb;
};
/// input adapter for buffer input
class input_buffer_adapter : public input_adapter_protocol
{
public:
input_buffer_adapter(const char* b, const std::size_t l) noexcept
: cursor(b), limit(b == nullptr ? nullptr : (b + l))
{}
// delete because of pointer members
input_buffer_adapter(const input_buffer_adapter&) = delete;
input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
input_buffer_adapter(input_buffer_adapter&&) = delete;
input_buffer_adapter& operator=(input_buffer_adapter&&) = delete;
~input_buffer_adapter() override = default;
std::char_traits<char>::int_type get_character() noexcept override
{
if (JSON_HEDLEY_LIKELY(cursor < limit))
{
assert(cursor != nullptr and limit != nullptr);
return std::char_traits<char>::to_int_type(*(cursor++));
}
return std::char_traits<char>::eof();
}
private:
/// pointer to the current character
const char* cursor;
/// pointer past the last character
const char* const limit;
};
template<typename WideStringType, size_t T>
struct wide_string_input_helper
{
// UTF-32
static void fill_buffer(const WideStringType& str,
size_t& current_wchar,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (current_wchar == str.size())
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = static_cast<unsigned int>(str[current_wchar++]);
// UTF-32 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u) & 0x1Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (wc <= 0xFFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u) & 0x0Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 3;
}
else if (wc <= 0x10FFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((wc >> 18u) & 0x07u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
};
template<typename WideStringType>
struct wide_string_input_helper<WideStringType, 2>
{
// UTF-16
static void fill_buffer(const WideStringType& str,
size_t& current_wchar,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (current_wchar == str.size())
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = static_cast<unsigned int>(str[current_wchar++]);
// UTF-16 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (0xD800 > wc or wc >= 0xE000)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
utf8_bytes_filled = 3;
}
else
{
if (current_wchar < str.size())
{
const auto wc2 = static_cast<unsigned int>(str[current_wchar++]);
const auto charcode = 0x10000u + (((wc & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
++current_wchar;
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
}
};
template<typename WideStringType>
class wide_string_input_adapter : public input_adapter_protocol
{
public:
explicit wide_string_input_adapter(const WideStringType& w) noexcept
: str(w)
{}
std::char_traits<char>::int_type get_character() noexcept override
{
// check if buffer needs to be filled
if (utf8_bytes_index == utf8_bytes_filled)
{
fill_buffer<sizeof(typename WideStringType::value_type)>();
assert(utf8_bytes_filled > 0);
assert(utf8_bytes_index == 0);
}
// use buffer
assert(utf8_bytes_filled > 0);
assert(utf8_bytes_index < utf8_bytes_filled);
return utf8_bytes[utf8_bytes_index++];
}
private:
template<size_t T>
void fill_buffer()
{
wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
}
/// the wstring to process
const WideStringType& str;
/// index of the current wchar in str
std::size_t current_wchar = 0;
/// a buffer for UTF-8 bytes
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
/// index to the utf8_codes array for the next valid byte
std::size_t utf8_bytes_index = 0;
/// number of valid bytes in the utf8_codes array
std::size_t utf8_bytes_filled = 0;
};
class input_adapter
{
public:
// native support
JSON_HEDLEY_NON_NULL(2)
input_adapter(std::FILE* file)
: ia(std::make_shared<file_input_adapter>(file)) {}
/// input adapter for input stream
input_adapter(std::istream& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
/// input adapter for input stream
input_adapter(std::istream&& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
input_adapter(const std::wstring& ws)
: ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
input_adapter(const std::u16string& ws)
: ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
input_adapter(const std::u32string& ws)
: ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
/// input adapter for buffer
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b, std::size_t l)
: ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
// derived support
/// input adapter for string literal
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b)
: input_adapter(reinterpret_cast<const char*>(b),
std::strlen(reinterpret_cast<const char*>(b))) {}
/// input adapter for iterator range with contiguous storage
template<class IteratorType,
typename std::enable_if<
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
int>::type = 0>
input_adapter(IteratorType first, IteratorType last)
{
#ifndef NDEBUG
// assertion to check that the iterator range is indeed contiguous,
// see http://stackoverflow.com/a/35008842/266378 for more discussion
const auto is_contiguous = std::accumulate(
first, last, std::pair<bool, int>(true, 0),
[&first](std::pair<bool, int> res, decltype(*first) val)
{
res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
return res;
}).first;
assert(is_contiguous);
#endif
// assertion to check that each element is 1 byte long
static_assert(
sizeof(typename iterator_traits<IteratorType>::value_type) == 1,
"each element in the iterator range must have the size of 1 byte");
const auto len = static_cast<size_t>(std::distance(first, last));
if (JSON_HEDLEY_LIKELY(len > 0))
{
// there is at least one element: use the address of first
ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
}
else
{
// the address of first cannot be used: use nullptr
ia = std::make_shared<input_buffer_adapter>(nullptr, len);
}
}
/// input adapter for array
template<class T, std::size_t N>
input_adapter(T (&array)[N])
: input_adapter(std::begin(array), std::end(array)) {}
/// input adapter for contiguous container
template<class ContiguousContainer, typename
std::enable_if<not std::is_pointer<ContiguousContainer>::value and
std::is_base_of<std::random_access_iterator_tag, typename iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
int>::type = 0>
input_adapter(const ContiguousContainer& c)
: input_adapter(std::begin(c), std::end(c)) {}
operator input_adapter_t()
{
return ia;
}
private:
/// the actual adapter
input_adapter_t ia = nullptr;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/input/json_sax.hpp>
#include <cassert> // assert
#include <cstddef>
#include <string> // string
#include <utility> // move
#include <vector> // vector
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
/*!
@brief SAX interface
This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
Each function is called in different situations while the input is parsed. The
boolean return value informs the parser whether to continue processing the
input.
*/
template<typename BasicJsonType>
struct json_sax
{
/// type for (signed) integers
using number_integer_t = typename BasicJsonType::number_integer_t;
/// type for unsigned integers
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
/// type for floating-point numbers
using number_float_t = typename BasicJsonType::number_float_t;
/// type for strings
using string_t = typename BasicJsonType::string_t;
/*!
@brief a null value was read
@return whether parsing should proceed
*/
virtual bool null() = 0;
/*!
@brief a boolean value was read
@param[in] val boolean value
@return whether parsing should proceed
*/
virtual bool boolean(bool val) = 0;
/*!
@brief an integer number was read
@param[in] val integer value
@return whether parsing should proceed
*/
virtual bool number_integer(number_integer_t val) = 0;
/*!
@brief an unsigned integer number was read
@param[in] val unsigned integer value
@return whether parsing should proceed
*/
virtual bool number_unsigned(number_unsigned_t val) = 0;
/*!
@brief an floating-point number was read
@param[in] val floating-point value
@param[in] s raw token value
@return whether parsing should proceed
*/
virtual bool number_float(number_float_t val, const string_t& s) = 0;
/*!
@brief a string was read
@param[in] val string value
@return whether parsing should proceed
@note It is safe to move the passed string.
*/
virtual bool string(string_t& val) = 0;
/*!
@brief the beginning of an object was read
@param[in] elements number of object elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_object(std::size_t elements) = 0;
/*!
@brief an object key was read
@param[in] val object key
@return whether parsing should proceed
@note It is safe to move the passed string.
*/
virtual bool key(string_t& val) = 0;
/*!
@brief the end of an object was read
@return whether parsing should proceed
*/
virtual bool end_object() = 0;
/*!
@brief the beginning of an array was read
@param[in] elements number of array elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_array(std::size_t elements) = 0;
/*!
@brief the end of an array was read
@return whether parsing should proceed
*/
virtual bool end_array() = 0;
/*!
@brief a parse error occurred
@param[in] position the position in the input where the error occurs
@param[in] last_token the last read token
@param[in] ex an exception object describing the error
@return whether parsing should proceed (must return false)
*/
virtual bool parse_error(std::size_t position,
const std::string& last_token,
const detail::exception& ex) = 0;
virtual ~json_sax() = default;
};
namespace detail
{
/*!
@brief SAX implementation to create a JSON value from SAX events
This class implements the @ref json_sax interface and processes the SAX events
to create a JSON value which makes it basically a DOM parser. The structure or
hierarchy of the JSON value is managed by the stack `ref_stack` which contains
a pointer to the respective array or object for each recursion depth.
After successful parsing, the value that is passed by reference to the
constructor contains the parsed value.
@tparam BasicJsonType the JSON type
*/
template<typename BasicJsonType>
class json_sax_dom_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
/*!
@param[in, out] r reference to a JSON value that is manipulated while
parsing
@param[in] allow_exceptions_ whether parse errors yield exceptions
*/
explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
: root(r), allow_exceptions(allow_exceptions_)
{}
// make class move-only
json_sax_dom_parser(const json_sax_dom_parser&) = delete;
json_sax_dom_parser(json_sax_dom_parser&&) = default;
json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default;
~json_sax_dom_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool start_object(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408,
"excessive object size: " + std::to_string(len)));
}
return true;
}
bool key(string_t& val)
{
// add null at given key and store the reference for later
object_element = &(ref_stack.back()->m_value.object->operator[](val));
return true;
}
bool end_object()
{
ref_stack.pop_back();
return true;
}
bool start_array(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408,
"excessive array size: " + std::to_string(len)));
}
return true;
}
bool end_array()
{
ref_stack.pop_back();
return true;
}
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const detail::exception& ex)
{
errored = true;
if (allow_exceptions)
{
// determine the proper exception type from the id
switch ((ex.id / 100) % 100)
{
case 1:
JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
case 4:
JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
// LCOV_EXCL_START
case 2:
JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
case 3:
JSON_THROW(*static_cast<const detail::type_error*>(&ex));
case 5:
JSON_THROW(*static_cast<const detail::other_error*>(&ex));
default:
assert(false);
// LCOV_EXCL_STOP
}
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
*/
template<typename Value>
JSON_HEDLEY_RETURNS_NON_NULL
BasicJsonType* handle_value(Value&& v)
{
if (ref_stack.empty())
{
root = BasicJsonType(std::forward<Value>(v));
return &root;
}
assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_value.array->emplace_back(std::forward<Value>(v));
return &(ref_stack.back()->m_value.array->back());
}
assert(ref_stack.back()->is_object());
assert(object_element);
*object_element = BasicJsonType(std::forward<Value>(v));
return object_element;
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
template<typename BasicJsonType>
class json_sax_dom_callback_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using parser_callback_t = typename BasicJsonType::parser_callback_t;
using parse_event_t = typename BasicJsonType::parse_event_t;
json_sax_dom_callback_parser(BasicJsonType& r,
const parser_callback_t cb,
const bool allow_exceptions_ = true)
: root(r), callback(cb), allow_exceptions(allow_exceptions_)
{
keep_stack.push_back(true);
}
// make class move-only
json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default;
json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default;
~json_sax_dom_callback_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool start_object(std::size_t len)
{
// check callback for object start
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::object, true);
ref_stack.push_back(val.second);
// check object limit
if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, "excessive object size: " + std::to_string(len)));
}
return true;
}
bool key(string_t& val)
{
BasicJsonType k = BasicJsonType(val);
// check callback for key
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
key_keep_stack.push_back(keep);
// add discarded value at given key and store the reference for later
if (keep and ref_stack.back())
{
object_element = &(ref_stack.back()->m_value.object->operator[](val) = discarded);
}
return true;
}
bool end_object()
{
if (ref_stack.back() and not callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
{
// discard object
*ref_stack.back() = discarded;
}
assert(not ref_stack.empty());
assert(not keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
if (not ref_stack.empty() and ref_stack.back() and ref_stack.back()->is_object())
{
// remove discarded value
for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
{
if (it->is_discarded())
{
ref_stack.back()->erase(it);
break;
}
}
}
return true;
}
bool start_array(std::size_t len)
{
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::array, true);
ref_stack.push_back(val.second);
// check array limit
if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, "excessive array size: " + std::to_string(len)));
}
return true;
}
bool end_array()
{
bool keep = true;
if (ref_stack.back())
{
keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
if (not keep)
{
// discard array
*ref_stack.back() = discarded;
}
}
assert(not ref_stack.empty());
assert(not keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
// remove discarded value
if (not keep and not ref_stack.empty() and ref_stack.back()->is_array())
{
ref_stack.back()->m_value.array->pop_back();
}
return true;
}
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const detail::exception& ex)
{
errored = true;
if (allow_exceptions)
{
// determine the proper exception type from the id
switch ((ex.id / 100) % 100)
{
case 1:
JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
case 4:
JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
// LCOV_EXCL_START
case 2:
JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
case 3:
JSON_THROW(*static_cast<const detail::type_error*>(&ex));
case 5:
JSON_THROW(*static_cast<const detail::other_error*>(&ex));
default:
assert(false);
// LCOV_EXCL_STOP
}
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@param[in] v value to add to the JSON value we build during parsing
@param[in] skip_callback whether we should skip calling the callback
function; this is required after start_array() and
start_object() SAX events, because otherwise we would call the
callback function with an empty array or object, respectively.
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
@return pair of boolean (whether value should be kept) and pointer (to the
passed value in the ref_stack hierarchy; nullptr if not kept)
*/
template<typename Value>
std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
{
assert(not keep_stack.empty());
// do not handle this value if we know it would be added to a discarded
// container
if (not keep_stack.back())
{
return {false, nullptr};
}
// create value
auto value = BasicJsonType(std::forward<Value>(v));
// check callback
const bool keep = skip_callback or callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
// do not handle this value if we just learnt it shall be discarded
if (not keep)
{
return {false, nullptr};
}
if (ref_stack.empty())
{
root = std::move(value);
return {true, &root};
}
// skip this value if we already decided to skip the parent
// (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
if (not ref_stack.back())
{
return {false, nullptr};
}
// we now only expect arrays and objects
assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
// array
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_value.array->push_back(std::move(value));
return {true, &(ref_stack.back()->m_value.array->back())};
}
// object
assert(ref_stack.back()->is_object());
// check if we should store an element for the current key
assert(not key_keep_stack.empty());
const bool store_element = key_keep_stack.back();
key_keep_stack.pop_back();
if (not store_element)
{
return {false, nullptr};
}
assert(object_element);
*object_element = std::move(value);
return {true, object_element};
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// stack to manage which values to keep
std::vector<bool> keep_stack {};
/// stack to manage which object keys to keep
std::vector<bool> key_keep_stack {};
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// callback function
const parser_callback_t callback = nullptr;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
/// a discarded value for the callback
BasicJsonType discarded = BasicJsonType::value_t::discarded;
};
template<typename BasicJsonType>
class json_sax_acceptor
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
bool null()
{
return true;
}
bool boolean(bool /*unused*/)
{
return true;
}
bool number_integer(number_integer_t /*unused*/)
{
return true;
}
bool number_unsigned(number_unsigned_t /*unused*/)
{
return true;
}
bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
{
return true;
}
bool string(string_t& /*unused*/)
{
return true;
}
bool start_object(std::size_t /*unused*/ = std::size_t(-1))
{
return true;
}
bool key(string_t& /*unused*/)
{
return true;
}
bool end_object()
{
return true;
}
bool start_array(std::size_t /*unused*/ = std::size_t(-1))
{
return true;
}
bool end_array()
{
return true;
}
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
{
return false;
}
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/is_sax.hpp>
#include <cstdint> // size_t
#include <utility> // declval
#include <string> // string
// #include <nlohmann/detail/meta/detected.hpp>
// #include <nlohmann/detail/meta/type_traits.hpp>
namespace nlohmann
{
namespace detail
{
template <typename T>
using null_function_t = decltype(std::declval<T&>().null());
template <typename T>
using boolean_function_t =
decltype(std::declval<T&>().boolean(std::declval<bool>()));
template <typename T, typename Integer>
using number_integer_function_t =
decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
template <typename T, typename Unsigned>
using number_unsigned_function_t =
decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
template <typename T, typename Float, typename String>
using number_float_function_t = decltype(std::declval<T&>().number_float(
std::declval<Float>(), std::declval<const String&>()));
template <typename T, typename String>
using string_function_t =
decltype(std::declval<T&>().string(std::declval<String&>()));
template <typename T>
using start_object_function_t =
decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
template <typename T, typename String>
using key_function_t =
decltype(std::declval<T&>().key(std::declval<String&>()));
template <typename T>
using end_object_function_t = decltype(std::declval<T&>().end_object());
template <typename T>
using start_array_function_t =
decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
template <typename T>
using end_array_function_t = decltype(std::declval<T&>().end_array());
template <typename T, typename Exception>
using parse_error_function_t = decltype(std::declval<T&>().parse_error(
std::declval<std::size_t>(), std::declval<const std::string&>(),
std::declval<const Exception&>()));
template <typename SAX, typename BasicJsonType>
struct is_sax
{
private:
static_assert(is_basic_json<BasicJsonType>::value,
"BasicJsonType must be of type basic_json<...>");
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using exception_t = typename BasicJsonType::exception;
public:
static constexpr bool value =
is_detected_exact<bool, null_function_t, SAX>::value &&
is_detected_exact<bool, boolean_function_t, SAX>::value &&
is_detected_exact<bool, number_integer_function_t, SAX,
number_integer_t>::value &&
is_detected_exact<bool, number_unsigned_function_t, SAX,
number_unsigned_t>::value &&
is_detected_exact<bool, number_float_function_t, SAX, number_float_t,
string_t>::value &&
is_detected_exact<bool, string_function_t, SAX, string_t>::value &&
is_detected_exact<bool, start_object_function_t, SAX>::value &&
is_detected_exact<bool, key_function_t, SAX, string_t>::value &&
is_detected_exact<bool, end_object_function_t, SAX>::value &&
is_detected_exact<bool, start_array_function_t, SAX>::value &&
is_detected_exact<bool, end_array_function_t, SAX>::value &&
is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value;
};
template <typename SAX, typename BasicJsonType>
struct is_sax_static_asserts
{
private:
static_assert(is_basic_json<BasicJsonType>::value,
"BasicJsonType must be of type basic_json<...>");
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using exception_t = typename BasicJsonType::exception;
public:
static_assert(is_detected_exact<bool, null_function_t, SAX>::value,
"Missing/invalid function: bool null()");
static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
"Missing/invalid function: bool boolean(bool)");
static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
"Missing/invalid function: bool boolean(bool)");
static_assert(
is_detected_exact<bool, number_integer_function_t, SAX,
number_integer_t>::value,
"Missing/invalid function: bool number_integer(number_integer_t)");
static_assert(
is_detected_exact<bool, number_unsigned_function_t, SAX,
number_unsigned_t>::value,
"Missing/invalid function: bool number_unsigned(number_unsigned_t)");
static_assert(is_detected_exact<bool, number_float_function_t, SAX,
number_float_t, string_t>::value,
"Missing/invalid function: bool number_float(number_float_t, const string_t&)");
static_assert(
is_detected_exact<bool, string_function_t, SAX, string_t>::value,
"Missing/invalid function: bool string(string_t&)");
static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value,
"Missing/invalid function: bool start_object(std::size_t)");
static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value,
"Missing/invalid function: bool key(string_t&)");
static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value,
"Missing/invalid function: bool end_object()");
static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value,
"Missing/invalid function: bool start_array(std::size_t)");
static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value,
"Missing/invalid function: bool end_array()");
static_assert(
is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value,
"Missing/invalid function: bool parse_error(std::size_t, const "
"std::string&, const exception&)");
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
///////////////////
// binary reader //
///////////////////
/*!
@brief deserialization of CBOR, MessagePack, and UBJSON values
*/
template<typename BasicJsonType, typename SAX = json_sax_dom_parser<BasicJsonType>>
class binary_reader
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using json_sax_t = SAX;
public:
/*!
@brief create a binary reader
@param[in] adapter input adapter to read from
*/
explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter))
{
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
assert(ia);
}
// make class move-only
binary_reader(const binary_reader&) = delete;
binary_reader(binary_reader&&) = default;
binary_reader& operator=(const binary_reader&) = delete;
binary_reader& operator=(binary_reader&&) = default;
~binary_reader() = default;
/*!
@param[in] format the binary format to parse
@param[in] sax_ a SAX event processor
@param[in] strict whether to expect the input to be consumed completed
@return
*/
JSON_HEDLEY_NON_NULL(3)
bool sax_parse(const input_format_t format,
json_sax_t* sax_,
const bool strict = true)
{
sax = sax_;
bool result = false;
switch (format)
{
case input_format_t::bson:
result = parse_bson_internal();
break;
case input_format_t::cbor:
result = parse_cbor_internal();
break;
case input_format_t::msgpack:
result = parse_msgpack_internal();
break;
case input_format_t::ubjson:
result = parse_ubjson_internal();
break;
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
// strict mode: next byte must be EOF
if (result and strict)
{
if (format == input_format_t::ubjson)
{
get_ignore_noop();
}
else
{
get();
}
if (JSON_HEDLEY_UNLIKELY(current != std::char_traits<char>::eof()))
{
return sax->parse_error(chars_read, get_token_string(),
parse_error::create(110, chars_read, exception_message(format, "expected end of input; last byte: 0x" + get_token_string(), "value")));
}
}
return result;
}
/*!
@brief determine system byte order
@return true if and only if system's byte order is little endian
@note from http://stackoverflow.com/a/1001328/266378
*/
static constexpr bool little_endianess(int num = 1) noexcept
{
return *reinterpret_cast<char*>(&num) == 1;
}
private:
//////////
// BSON //
//////////
/*!
@brief Reads in a BSON-object and passes it to the SAX-parser.
@return whether a valid BSON-value was passed to the SAX parser
*/
bool parse_bson_internal()
{
std::int32_t document_size;
get_number<std::int32_t, true>(input_format_t::bson, document_size);
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/false)))
{
return false;
}
return sax->end_object();
}
/*!
@brief Parses a C-style string from the BSON input.
@param[in, out] result A reference to the string variable where the read
string is to be stored.
@return `true` if the \x00-byte indicating the end of the string was
encountered before the EOF; false` indicates an unexpected EOF.
*/
bool get_bson_cstr(string_t& result)
{
auto out = std::back_inserter(result);
while (true)
{
get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "cstring")))
{
return false;
}
if (current == 0x00)
{
return true;
}
*out++ = static_cast<char>(current);
}
return true;
}
/*!
@brief Parses a zero-terminated string of length @a len from the BSON
input.
@param[in] len The length (including the zero-byte at the end) of the
string to be read.
@param[in, out] result A reference to the string variable where the read
string is to be stored.
@tparam NumberType The type of the length @a len
@pre len >= 1
@return `true` if the string was successfully parsed
*/
template<typename NumberType>
bool get_bson_string(const NumberType len, string_t& result)
{
if (JSON_HEDLEY_UNLIKELY(len < 1))
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::bson, "string length must be at least 1, is " + std::to_string(len), "string")));
}
return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) and get() != std::char_traits<char>::eof();
}
/*!
@brief Read a BSON document element of the given @a element_type.
@param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html
@param[in] element_type_parse_position The position in the input stream,
where the `element_type` was read.
@warning Not all BSON element types are supported yet. An unsupported
@a element_type will give rise to a parse_error.114:
Unsupported BSON record type 0x...
@return whether a valid BSON-object/array was passed to the SAX parser
*/
bool parse_bson_element_internal(const int element_type,
const std::size_t element_type_parse_position)
{
switch (element_type)
{
case 0x01: // double
{
double number;
return get_number<double, true>(input_format_t::bson, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 0x02: // string
{
std::int32_t len;
string_t value;
return get_number<std::int32_t, true>(input_format_t::bson, len) and get_bson_string(len, value) and sax->string(value);
}
case 0x03: // object
{
return parse_bson_internal();
}
case 0x04: // array
{
return parse_bson_array();
}
case 0x08: // boolean
{
return sax->boolean(get() != 0);
}
case 0x0A: // null
{
return sax->null();
}
case 0x10: // int32
{
std::int32_t value;
return get_number<std::int32_t, true>(input_format_t::bson, value) and sax->number_integer(value);
}
case 0x12: // int64
{
std::int64_t value;
return get_number<std::int64_t, true>(input_format_t::bson, value) and sax->number_integer(value);
}
default: // anything else not supported (yet)
{
std::array<char, 3> cr{{}};
(std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(element_type));
return sax->parse_error(element_type_parse_position, std::string(cr.data()), parse_error::create(114, element_type_parse_position, "Unsupported BSON record type 0x" + std::string(cr.data())));
}
}
}
/*!
@brief Read a BSON element list (as specified in the BSON-spec)
The same binary layout is used for objects and arrays, hence it must be
indicated with the argument @a is_array which one is expected
(true --> array, false --> object).
@param[in] is_array Determines if the element list being read is to be
treated as an object (@a is_array == false), or as an
array (@a is_array == true).
@return whether a valid BSON-object/array was passed to the SAX parser
*/
bool parse_bson_element_list(const bool is_array)
{
string_t key;
while (int element_type = get())
{
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "element list")))
{
return false;
}
const std::size_t element_type_parse_position = chars_read;
if (JSON_HEDLEY_UNLIKELY(not get_bson_cstr(key)))
{
return false;
}
if (not is_array and not sax->key(key))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_internal(element_type, element_type_parse_position)))
{
return false;
}
// get_bson_cstr only appends
key.clear();
}
return true;
}
/*!
@brief Reads an array from the BSON input and passes it to the SAX-parser.
@return whether a valid BSON-array was passed to the SAX parser
*/
bool parse_bson_array()
{
std::int32_t document_size;
get_number<std::int32_t, true>(input_format_t::bson, document_size);
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/true)))
{
return false;
}
return sax->end_array();
}
//////////
// CBOR //
//////////
/*!
@param[in] get_char whether a new character should be retrieved from the
input (true, default) or whether the last read
character should be considered instead
@return whether a valid CBOR value was passed to the SAX parser
*/
bool parse_cbor_internal(const bool get_char = true)
{
switch (get_char ? get() : current)
{
// EOF
case std::char_traits<char>::eof():
return unexpect_eof(input_format_t::cbor, "value");
// Integer 0x00..0x17 (0..23)
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x0D:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
return sax->number_unsigned(static_cast<number_unsigned_t>(current));
case 0x18: // Unsigned integer (one-byte uint8_t follows)
{
std::uint8_t number;
return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
}
case 0x19: // Unsigned integer (two-byte uint16_t follows)
{
std::uint16_t number;
return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
}
case 0x1A: // Unsigned integer (four-byte uint32_t follows)
{
std::uint32_t number;
return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
}
case 0x1B: // Unsigned integer (eight-byte uint64_t follows)
{
std::uint64_t number;
return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
}
// Negative integer -1-0x00..-1-0x17 (-1..-24)
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2A:
case 0x2B:
case 0x2C:
case 0x2D:
case 0x2E:
case 0x2F:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
return sax->number_integer(static_cast<std::int8_t>(0x20 - 1 - current));
case 0x38: // Negative integer (one-byte uint8_t follows)
{
std::uint8_t number;
return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
}
case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
{
std::uint16_t number;
return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
}
case 0x3A: // Negative integer -1-n (four-byte uint32_t follows)
{
std::uint32_t number;
return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
}
case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows)
{
std::uint64_t number;
return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1)
- static_cast<number_integer_t>(number));
}
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6A:
case 0x6B:
case 0x6C:
case 0x6D:
case 0x6E:
case 0x6F:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
case 0x7F: // UTF-8 string (indefinite length)
{
string_t s;
return get_cbor_string(s) and sax->string(s);
}
// array (0x00..0x17 data items follow)
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8A:
case 0x8B:
case 0x8C:
case 0x8D:
case 0x8E:
case 0x8F:
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
return get_cbor_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
case 0x98: // array (one-byte uint8_t for n follows)
{
std::uint8_t len;
return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
}
case 0x99: // array (two-byte uint16_t for n follow)
{
std::uint16_t len;
return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
}
case 0x9A: // array (four-byte uint32_t for n follow)
{
std::uint32_t len;
return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
}
case 0x9B: // array (eight-byte uint64_t for n follow)
{
std::uint64_t len;
return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
}
case 0x9F: // array (indefinite length)
return get_cbor_array(std::size_t(-1));
// map (0x00..0x17 pairs of data items follow)
case 0xA0:
case 0xA1:
case 0xA2:
case 0xA3:
case 0xA4:
case 0xA5:
case 0xA6:
case 0xA7:
case 0xA8:
case 0xA9:
case 0xAA:
case 0xAB:
case 0xAC:
case 0xAD:
case 0xAE:
case 0xAF:
case 0xB0:
case 0xB1:
case 0xB2:
case 0xB3:
case 0xB4:
case 0xB5:
case 0xB6:
case 0xB7:
return get_cbor_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
case 0xB8: // map (one-byte uint8_t for n follows)
{
std::uint8_t len;
return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
}
case 0xB9: // map (two-byte uint16_t for n follow)
{
std::uint16_t len;
return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
}
case 0xBA: // map (four-byte uint32_t for n follow)
{
std::uint32_t len;
return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
}
case 0xBB: // map (eight-byte uint64_t for n follow)
{
std::uint64_t len;
return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
}
case 0xBF: // map (indefinite length)
return get_cbor_object(std::size_t(-1));
case 0xF4: // false
return sax->boolean(false);
case 0xF5: // true
return sax->boolean(true);
case 0xF6: // null
return sax->null();
case 0xF9: // Half-Precision Float (two-byte IEEE 754)
{
const int byte1_raw = get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
{
return false;
}
const int byte2_raw = get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
{
return false;
}
const auto byte1 = static_cast<unsigned char>(byte1_raw);
const auto byte2 = static_cast<unsigned char>(byte2_raw);
// code from RFC 7049, Appendix D, Figure 3:
// As half-precision floating-point numbers were only added
// to IEEE 754 in 2008, today's programming platforms often
// still only have limited support for them. It is very
// easy to include at least decoding support for them even
// without such support. An example of a small decoder for
// half-precision floating-point numbers in the C language
// is shown in Fig. 3.
const auto half = static_cast<unsigned int>((byte1 << 8u) + byte2);
const double val = [&half]
{
const int exp = (half >> 10u) & 0x1Fu;
const unsigned int mant = half & 0x3FFu;
assert(0 <= exp and exp <= 32);
assert(mant <= 1024);
switch (exp)
{
case 0:
return std::ldexp(mant, -24);
case 31:
return (mant == 0)
? std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::quiet_NaN();
default:
return std::ldexp(mant + 1024, exp - 25);
}
}();
return sax->number_float((half & 0x8000u) != 0
? static_cast<number_float_t>(-val)
: static_cast<number_float_t>(val), "");
}
case 0xFA: // Single-Precision Float (four-byte IEEE 754)
{
float number;
return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 0xFB: // Double-Precision Float (eight-byte IEEE 754)
{
double number;
return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
default: // anything else (0xFF is handled inside the other types)
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::cbor, "invalid byte: 0x" + last_token, "value")));
}
}
}
/*!
@brief reads a CBOR string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string.
Additionally, CBOR's strings with indefinite lengths are supported.
@param[out] result created string
@return whether string creation completed
*/
bool get_cbor_string(string_t& result)
{
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "string")))
{
return false;
}
switch (current)
{
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6A:
case 0x6B:
case 0x6C:
case 0x6D:
case 0x6E:
case 0x6F:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
{
return get_string(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result);
}
case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
{
std::uint8_t len;
return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
}
case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
{
std::uint16_t len;
return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
}
case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
{
std::uint32_t len;
return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
}
case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
{
std::uint64_t len;
return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
}
case 0x7F: // UTF-8 string (indefinite length)
{
while (get() != 0xFF)
{
string_t chunk;
if (not get_cbor_string(chunk))
{
return false;
}
result.append(chunk);
}
return true;
}
default:
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::cbor, "expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x" + last_token, "string")));
}
}
}
/*!
@param[in] len the length of the array or std::size_t(-1) for an
array of indefinite size
@return whether array creation completed
*/
bool get_cbor_array(const std::size_t len)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
{
return false;
}
if (len != std::size_t(-1))
{
for (std::size_t i = 0; i < len; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
{
return false;
}
}
}
else
{
while (get() != 0xFF)
{
if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal(false)))
{
return false;
}
}
}
return sax->end_array();
}
/*!
@param[in] len the length of the object or std::size_t(-1) for an
object of indefinite size
@return whether object creation completed
*/
bool get_cbor_object(const std::size_t len)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
{
return false;
}
string_t key;
if (len != std::size_t(-1))
{
for (std::size_t i = 0; i < len; ++i)
{
get();
if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
{
return false;
}
key.clear();
}
}
else
{
while (get() != 0xFF)
{
if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
{
return false;
}
key.clear();
}
}
return sax->end_object();
}
/////////////
// MsgPack //
/////////////
/*!
@return whether a valid MessagePack value was passed to the SAX parser
*/
bool parse_msgpack_internal()
{
switch (get())
{
// EOF
case std::char_traits<char>::eof():
return unexpect_eof(input_format_t::msgpack, "value");
// positive fixint
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x0D:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1A:
case 0x1B:
case 0x1C:
case 0x1D:
case 0x1E:
case 0x1F:
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2A:
case 0x2B:
case 0x2C:
case 0x2D:
case 0x2E:
case 0x2F:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3A:
case 0x3B:
case 0x3C:
case 0x3D:
case 0x3E:
case 0x3F:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4A:
case 0x4B:
case 0x4C:
case 0x4D:
case 0x4E:
case 0x4F:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x58:
case 0x59:
case 0x5A:
case 0x5B:
case 0x5C:
case 0x5D:
case 0x5E:
case 0x5F:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6A:
case 0x6B:
case 0x6C:
case 0x6D:
case 0x6E:
case 0x6F:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7A:
case 0x7B:
case 0x7C:
case 0x7D:
case 0x7E:
case 0x7F:
return sax->number_unsigned(static_cast<number_unsigned_t>(current));
// fixmap
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8A:
case 0x8B:
case 0x8C:
case 0x8D:
case 0x8E:
case 0x8F:
return get_msgpack_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
// fixarray
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9A:
case 0x9B:
case 0x9C:
case 0x9D:
case 0x9E:
case 0x9F:
return get_msgpack_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
// fixstr
case 0xA0:
case 0xA1:
case 0xA2:
case 0xA3:
case 0xA4:
case 0xA5:
case 0xA6:
case 0xA7:
case 0xA8:
case 0xA9:
case 0xAA:
case 0xAB:
case 0xAC:
case 0xAD:
case 0xAE:
case 0xAF:
case 0xB0:
case 0xB1:
case 0xB2:
case 0xB3:
case 0xB4:
case 0xB5:
case 0xB6:
case 0xB7:
case 0xB8:
case 0xB9:
case 0xBA:
case 0xBB:
case 0xBC:
case 0xBD:
case 0xBE:
case 0xBF:
case 0xD9: // str 8
case 0xDA: // str 16
case 0xDB: // str 32
{
string_t s;
return get_msgpack_string(s) and sax->string(s);
}
case 0xC0: // nil
return sax->null();
case 0xC2: // false
return sax->boolean(false);
case 0xC3: // true
return sax->boolean(true);
case 0xCA: // float 32
{
float number;
return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 0xCB: // float 64
{
double number;
return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 0xCC: // uint 8
{
std::uint8_t number;
return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
}
case 0xCD: // uint 16
{
std::uint16_t number;
return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
}
case 0xCE: // uint 32
{
std::uint32_t number;
return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
}
case 0xCF: // uint 64
{
std::uint64_t number;
return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
}
case 0xD0: // int 8
{
std::int8_t number;
return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
}
case 0xD1: // int 16
{
std::int16_t number;
return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
}
case 0xD2: // int 32
{
std::int32_t number;
return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
}
case 0xD3: // int 64
{
std::int64_t number;
return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
}
case 0xDC: // array 16
{
std::uint16_t len;
return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
}
case 0xDD: // array 32
{
std::uint32_t len;
return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
}
case 0xDE: // map 16
{
std::uint16_t len;
return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
}
case 0xDF: // map 32
{
std::uint32_t len;
return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
}
// negative fixint
case 0xE0:
case 0xE1:
case 0xE2:
case 0xE3:
case 0xE4:
case 0xE5:
case 0xE6:
case 0xE7:
case 0xE8:
case 0xE9:
case 0xEA:
case 0xEB:
case 0xEC:
case 0xED:
case 0xEE:
case 0xEF:
case 0xF0:
case 0xF1:
case 0xF2:
case 0xF3:
case 0xF4:
case 0xF5:
case 0xF6:
case 0xF7:
case 0xF8:
case 0xF9:
case 0xFA:
case 0xFB:
case 0xFC:
case 0xFD:
case 0xFE:
case 0xFF:
return sax->number_integer(static_cast<std::int8_t>(current));
default: // anything else
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::msgpack, "invalid byte: 0x" + last_token, "value")));
}
}
}
/*!
@brief reads a MessagePack string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string.
@param[out] result created string
@return whether string creation completed
*/
bool get_msgpack_string(string_t& result)
{
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::msgpack, "string")))
{
return false;
}
switch (current)
{
// fixstr
case 0xA0:
case 0xA1:
case 0xA2:
case 0xA3:
case 0xA4:
case 0xA5:
case 0xA6:
case 0xA7:
case 0xA8:
case 0xA9:
case 0xAA:
case 0xAB:
case 0xAC:
case 0xAD:
case 0xAE:
case 0xAF:
case 0xB0:
case 0xB1:
case 0xB2:
case 0xB3:
case 0xB4:
case 0xB5:
case 0xB6:
case 0xB7:
case 0xB8:
case 0xB9:
case 0xBA:
case 0xBB:
case 0xBC:
case 0xBD:
case 0xBE:
case 0xBF:
{
return get_string(input_format_t::msgpack, static_cast<unsigned int>(current) & 0x1Fu, result);
}
case 0xD9: // str 8
{
std::uint8_t len;
return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
}
case 0xDA: // str 16
{
std::uint16_t len;
return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
}
case 0xDB: // str 32
{
std::uint32_t len;
return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
}
default:
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::msgpack, "expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x" + last_token, "string")));
}
}
}
/*!
@param[in] len the length of the array
@return whether array creation completed
*/
bool get_msgpack_array(const std::size_t len)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
{
return false;
}
for (std::size_t i = 0; i < len; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
{
return false;
}
}
return sax->end_array();
}
/*!
@param[in] len the length of the object
@return whether object creation completed
*/
bool get_msgpack_object(const std::size_t len)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
{
return false;
}
string_t key;
for (std::size_t i = 0; i < len; ++i)
{
get();
if (JSON_HEDLEY_UNLIKELY(not get_msgpack_string(key) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
{
return false;
}
key.clear();
}
return sax->end_object();
}
////////////
// UBJSON //
////////////
/*!
@param[in] get_char whether a new character should be retrieved from the
input (true, default) or whether the last read
character should be considered instead
@return whether a valid UBJSON value was passed to the SAX parser
*/
bool parse_ubjson_internal(const bool get_char = true)
{
return get_ubjson_value(get_char ? get_ignore_noop() : current);
}
/*!
@brief reads a UBJSON string
This function is either called after reading the 'S' byte explicitly
indicating a string, or in case of an object key where the 'S' byte can be
left out.
@param[out] result created string
@param[in] get_char whether a new character should be retrieved from the
input (true, default) or whether the last read
character should be considered instead
@return whether string creation completed
*/
bool get_ubjson_string(string_t& result, const bool get_char = true)
{
if (get_char)
{
get(); // TODO(niels): may we ignore N here?
}
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
{
return false;
}
switch (current)
{
case 'U':
{
std::uint8_t len;
return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
}
case 'i':
{
std::int8_t len;
return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
}
case 'I':
{
std::int16_t len;
return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
}
case 'l':
{
std::int32_t len;
return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
}
case 'L':
{
std::int64_t len;
return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
}
default:
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token, "string")));
}
}
/*!
@param[out] result determined size
@return whether size determination completed
*/
bool get_ubjson_size_value(std::size_t& result)
{
switch (get_ignore_noop())
{
case 'U':
{
std::uint8_t number;
if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
{
return false;
}
result = static_cast<std::size_t>(number);
return true;
}
case 'i':
{
std::int8_t number;
if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
{
return false;
}
result = static_cast<std::size_t>(number);
return true;
}
case 'I':
{
std::int16_t number;
if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
{
return false;
}
result = static_cast<std::size_t>(number);
return true;
}
case 'l':
{
std::int32_t number;
if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
{
return false;
}
result = static_cast<std::size_t>(number);
return true;
}
case 'L':
{
std::int64_t number;
if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
{
return false;
}
result = static_cast<std::size_t>(number);
return true;
}
default:
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token, "size")));
}
}
}
/*!
@brief determine the type and size for a container
In the optimized UBJSON format, a type and a size can be provided to allow
for a more compact representation.
@param[out] result pair of the size and the type
@return whether pair creation completed
*/
bool get_ubjson_size_type(std::pair<std::size_t, int>& result)
{
result.first = string_t::npos; // size
result.second = 0; // type
get_ignore_noop();
if (current == '$')
{
result.second = get(); // must not ignore 'N', because 'N' maybe the type
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "type")))
{
return false;
}
get_ignore_noop();
if (JSON_HEDLEY_UNLIKELY(current != '#'))
{
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
{
return false;
}
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "expected '#' after type information; last byte: 0x" + last_token, "size")));
}
return get_ubjson_size_value(result.first);
}
if (current == '#')
{
return get_ubjson_size_value(result.first);
}
return true;
}
/*!
@param prefix the previously read or set type prefix
@return whether value creation completed
*/
bool get_ubjson_value(const int prefix)
{
switch (prefix)
{
case std::char_traits<char>::eof(): // EOF
return unexpect_eof(input_format_t::ubjson, "value");
case 'T': // true
return sax->boolean(true);
case 'F': // false
return sax->boolean(false);
case 'Z': // null
return sax->null();
case 'U':
{
std::uint8_t number;
return get_number(input_format_t::ubjson, number) and sax->number_unsigned(number);
}
case 'i':
{
std::int8_t number;
return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
}
case 'I':
{
std::int16_t number;
return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
}
case 'l':
{
std::int32_t number;
return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
}
case 'L':
{
std::int64_t number;
return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
}
case 'd':
{
float number;
return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 'D':
{
double number;
return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
}
case 'C': // char
{
get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "char")))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(current > 127))
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "byte after 'C' must be in range 0x00..0x7F; last byte: 0x" + last_token, "char")));
}
string_t s(1, static_cast<char>(current));
return sax->string(s);
}
case 'S': // string
{
string_t s;
return get_ubjson_string(s) and sax->string(s);
}
case '[': // array
return get_ubjson_array();
case '{': // object
return get_ubjson_object();
default: // anything else
{
auto last_token = get_token_string();
return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "invalid byte: 0x" + last_token, "value")));
}
}
}
/*!
@return whether array creation completed
*/
bool get_ubjson_array()
{
std::pair<std::size_t, int> size_and_type;
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
{
return false;
}
if (size_and_type.first != string_t::npos)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(size_and_type.first)))
{
return false;
}
if (size_and_type.second != 0)
{
if (size_and_type.second != 'N')
{
for (std::size_t i = 0; i < size_and_type.first; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
{
return false;
}
}
}
}
else
{
for (std::size_t i = 0; i < size_and_type.first; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
{
return false;
}
}
}
}
else
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
{
return false;
}
while (current != ']')
{
if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal(false)))
{
return false;
}
get_ignore_noop();
}
}
return sax->end_array();
}
/*!
@return whether object creation completed
*/
bool get_ubjson_object()
{
std::pair<std::size_t, int> size_and_type;
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
{
return false;
}
string_t key;
if (size_and_type.first != string_t::npos)
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(size_and_type.first)))
{
return false;
}
if (size_and_type.second != 0)
{
for (std::size_t i = 0; i < size_and_type.first; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
{
return false;
}
key.clear();
}
}
else
{
for (std::size_t i = 0; i < size_and_type.first; ++i)
{
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
{
return false;
}
key.clear();
}
}
}
else
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
{
return false;
}
while (current != '}')
{
if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key, false) or not sax->key(key)))
{
return false;
}
if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
{
return false;
}
get_ignore_noop();
key.clear();
}
}
return sax->end_object();
}
///////////////////////
// Utility functions //
///////////////////////
/*!
@brief get next character from the input
This function provides the interface to the used input adapter. It does
not throw in case the input reached EOF, but returns a -'ve valued
`std::char_traits<char>::eof()` in that case.
@return character read from the input
*/
int get()
{
++chars_read;
return current = ia->get_character();
}
/*!
@return character read from the input after ignoring all 'N' entries
*/
int get_ignore_noop()
{
do
{
get();
}
while (current == 'N');
return current;
}
/*
@brief read a number from the input
@tparam NumberType the type of the number
@param[in] format the current format (for diagnostics)
@param[out] result number of type @a NumberType
@return whether conversion completed
@note This function needs to respect the system's endianess, because
bytes in CBOR, MessagePack, and UBJSON are stored in network order
(big endian) and therefore need reordering on little endian systems.
*/
template<typename NumberType, bool InputIsLittleEndian = false>
bool get_number(const input_format_t format, NumberType& result)
{
// step 1: read input into array with system's byte order
std::array<std::uint8_t, sizeof(NumberType)> vec;
for (std::size_t i = 0; i < sizeof(NumberType); ++i)
{
get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "number")))
{
return false;
}
// reverse byte order prior to conversion if necessary
if (is_little_endian != InputIsLittleEndian)
{
vec[sizeof(NumberType) - i - 1] = static_cast<std::uint8_t>(current);
}
else
{
vec[i] = static_cast<std::uint8_t>(current); // LCOV_EXCL_LINE
}
}
// step 2: convert array into number of type T and return
std::memcpy(&result, vec.data(), sizeof(NumberType));
return true;
}
/*!
@brief create a string by reading characters from the input
@tparam NumberType the type of the number
@param[in] format the current format (for diagnostics)
@param[in] len number of characters to read
@param[out] result string created by reading @a len bytes
@return whether string creation completed
@note We can not reserve @a len bytes for the result, because @a len
may be too large. Usually, @ref unexpect_eof() detects the end of
the input before we run out of string memory.
*/
template<typename NumberType>
bool get_string(const input_format_t format,
const NumberType len,
string_t& result)
{
bool success = true;
std::generate_n(std::back_inserter(result), len, [this, &success, &format]()
{
get();
if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "string")))
{
success = false;
}
return static_cast<char>(current);
});
return success;
}
/*!
@param[in] format the current format (for diagnostics)
@param[in] context further context information (for diagnostics)
@return whether the last read character is not EOF
*/
JSON_HEDLEY_NON_NULL(3)
bool unexpect_eof(const input_format_t format, const char* context) const
{
if (JSON_HEDLEY_UNLIKELY(current == std::char_traits<char>::eof()))
{
return sax->parse_error(chars_read, "<end of file>",
parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context)));
}
return true;
}
/*!
@return a string representation of the last read byte
*/
std::string get_token_string() const
{
std::array<char, 3> cr{{}};
(std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(current));
return std::string{cr.data()};
}
/*!
@param[in] format the current format
@param[in] detail a detailed error message
@param[in] context further contect information
@return a message string to use in the parse_error exceptions
*/
std::string exception_message(const input_format_t format,
const std::string& detail,
const std::string& context) const
{
std::string error_msg = "syntax error while parsing ";
switch (format)
{
case input_format_t::cbor:
error_msg += "CBOR";
break;
case input_format_t::msgpack:
error_msg += "MessagePack";
break;
case input_format_t::ubjson:
error_msg += "UBJSON";
break;
case input_format_t::bson:
error_msg += "BSON";
break;
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
return error_msg + " " + context + ": " + detail;
}
private:
/// input adapter
input_adapter_t ia = nullptr;
/// the current character
int current = std::char_traits<char>::eof();
/// the number of characters read
std::size_t chars_read = 0;
/// whether we can assume little endianess
const bool is_little_endian = little_endianess();
/// the SAX parser
json_sax_t* sax = nullptr;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/input/input_adapters.hpp>
// #include <nlohmann/detail/input/lexer.hpp>
#include <array> // array
#include <clocale> // localeconv
#include <cstddef> // size_t
#include <cstdio> // snprintf
#include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
#include <initializer_list> // initializer_list
#include <string> // char_traits, string
#include <utility> // move
#include <vector> // vector
// #include <nlohmann/detail/input/input_adapters.hpp>
// #include <nlohmann/detail/input/position_t.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
namespace detail
{
///////////
// lexer //
///////////
/*!
@brief lexical analysis
This class organizes the lexical analysis during JSON deserialization.
*/
template<typename BasicJsonType>
class lexer
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
public:
/// token types for the parser
enum class token_type
{
uninitialized, ///< indicating the scanner is uninitialized
literal_true, ///< the `true` literal
literal_false, ///< the `false` literal
literal_null, ///< the `null` literal
value_string, ///< a string -- use get_string() for actual value
value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
value_integer, ///< a signed integer -- use get_number_integer() for actual value
value_float, ///< an floating point number -- use get_number_float() for actual value
begin_array, ///< the character for array begin `[`
begin_object, ///< the character for object begin `{`
end_array, ///< the character for array end `]`
end_object, ///< the character for object end `}`
name_separator, ///< the name separator `:`
value_separator, ///< the value separator `,`
parse_error, ///< indicating a parse error
end_of_input, ///< indicating the end of the input buffer
literal_or_value ///< a literal or the begin of a value (only for diagnostics)
};
/// return name of values of type token_type (only used for errors)
JSON_HEDLEY_RETURNS_NON_NULL
JSON_HEDLEY_CONST
static const char* token_type_name(const token_type t) noexcept
{
switch (t)
{
case token_type::uninitialized:
return "<uninitialized>";
case token_type::literal_true:
return "true literal";
case token_type::literal_false:
return "false literal";
case token_type::literal_null:
return "null literal";
case token_type::value_string:
return "string literal";
case lexer::token_type::value_unsigned:
case lexer::token_type::value_integer:
case lexer::token_type::value_float:
return "number literal";
case token_type::begin_array:
return "'['";
case token_type::begin_object:
return "'{'";
case token_type::end_array:
return "']'";
case token_type::end_object:
return "'}'";
case token_type::name_separator:
return "':'";
case token_type::value_separator:
return "','";
case token_type::parse_error:
return "<parse error>";
case token_type::end_of_input:
return "end of input";
case token_type::literal_or_value:
return "'[', '{', or a literal";
// LCOV_EXCL_START
default: // catch non-enum values
return "unknown token";
// LCOV_EXCL_STOP
}
}
explicit lexer(detail::input_adapter_t&& adapter)
: ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
// delete because of pointer members
lexer(const lexer&) = delete;
lexer(lexer&&) = delete;
lexer& operator=(lexer&) = delete;
lexer& operator=(lexer&&) = delete;
~lexer() = default;
private:
/////////////////////
// locales
/////////////////////
/// return the locale-dependent decimal point
JSON_HEDLEY_PURE
static char get_decimal_point() noexcept
{
const auto loc = localeconv();
assert(loc != nullptr);
return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
}
/////////////////////
// scan functions
/////////////////////
/*!
@brief get codepoint from 4 hex characters following `\u`
For input "\u c1 c2 c3 c4" the codepoint is:
(c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
= (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
between the ASCII value of the character and the desired integer value.
@return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
non-hex character)
*/
int get_codepoint()
{
// this function only makes sense after reading `\u`
assert(current == 'u');
int codepoint = 0;
const auto factors = { 12u, 8u, 4u, 0u };
for (const auto factor : factors)
{
get();
if (current >= '0' and current <= '9')
{
codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor);
}
else if (current >= 'A' and current <= 'F')
{
codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor);
}
else if (current >= 'a' and current <= 'f')
{
codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor);
}
else
{
return -1;
}
}
assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
return codepoint;
}
/*!
@brief check if the next byte(s) are inside a given range
Adds the current byte and, for each passed range, reads a new byte and
checks if it is inside the range. If a violation was detected, set up an
error message and return false. Otherwise, return true.
@param[in] ranges list of integers; interpreted as list of pairs of
inclusive lower and upper bound, respectively
@pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
1, 2, or 3 pairs. This precondition is enforced by an assertion.
@return true if and only if no range violation was detected
*/
bool next_byte_in_range(std::initializer_list<int> ranges)
{
assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
add(current);
for (auto range = ranges.begin(); range != ranges.end(); ++range)
{
get();
if (JSON_HEDLEY_LIKELY(*range <= current and current <= *(++range)))
{
add(current);
}
else
{
error_message = "invalid string: ill-formed UTF-8 byte";
return false;
}
}
return true;
}
/*!
@brief scan a string literal
This function scans a string according to Sect. 7 of RFC 7159. While
scanning, bytes are escaped and copied into buffer token_buffer. Then the
function returns successfully, token_buffer is *not* null-terminated (as it
may contain \0 bytes), and token_buffer.size() is the number of bytes in the
string.
@return token_type::value_string if string could be successfully scanned,
token_type::parse_error otherwise
@note In case of errors, variable error_message contains a textual
description.
*/
token_type scan_string()
{
// reset token_buffer (ignore opening quote)
reset();
// we entered the function by reading an open quote
assert(current == '\"');
while (true)
{
// get next character
switch (get())
{
// end of file while parsing string
case std::char_traits<char>::eof():
{
error_message = "invalid string: missing closing quote";
return token_type::parse_error;
}
// closing quote
case '\"':
{
return token_type::value_string;
}
// escapes
case '\\':
{
switch (get())
{
// quotation mark
case '\"':
add('\"');
break;
// reverse solidus
case '\\':
add('\\');
break;
// solidus
case '/':
add('/');
break;
// backspace
case 'b':
add('\b');
break;
// form feed
case 'f':
add('\f');
break;
// line feed
case 'n':
add('\n');
break;
// carriage return
case 'r':
add('\r');
break;
// tab
case 't':
add('\t');
break;
// unicode escapes
case 'u':
{
const int codepoint1 = get_codepoint();
int codepoint = codepoint1; // start with codepoint1
if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1))
{
error_message = "invalid string: '\\u' must be followed by 4 hex digits";
return token_type::parse_error;
}
// check if code point is a high surrogate
if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
{
// expect next \uxxxx entry
if (JSON_HEDLEY_LIKELY(get() == '\\' and get() == 'u'))
{
const int codepoint2 = get_codepoint();
if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1))
{
error_message = "invalid string: '\\u' must be followed by 4 hex digits";
return token_type::parse_error;
}
// check if codepoint2 is a low surrogate
if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
{
// overwrite codepoint
codepoint = static_cast<int>(
// high surrogate occupies the most significant 22 bits
(static_cast<unsigned int>(codepoint1) << 10u)
// low surrogate occupies the least significant 15 bits
+ static_cast<unsigned int>(codepoint2)
// there is still the 0xD800, 0xDC00 and 0x10000 noise
// in the result so we have to subtract with:
// (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
- 0x35FDC00u);
}
else
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
return token_type::parse_error;
}
}
else
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
return token_type::parse_error;
}
}
else
{
if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
return token_type::parse_error;
}
}
// result of the above calculation yields a proper codepoint
assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
// translate codepoint into bytes
if (codepoint < 0x80)
{
// 1-byte characters: 0xxxxxxx (ASCII)
add(codepoint);
}
else if (codepoint <= 0x7FF)
{
// 2-byte characters: 110xxxxx 10xxxxxx
add(static_cast<int>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u)));
add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
}
else if (codepoint <= 0xFFFF)
{
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
add(static_cast<int>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u)));
add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
}
else
{
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
add(static_cast<int>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u)));
add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu)));
add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
}
break;
}
// other characters after escape
default:
error_message = "invalid string: forbidden character after backslash";
return token_type::parse_error;
}
break;
}
// invalid control characters
case 0x00:
{
error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
return token_type::parse_error;
}
case 0x01:
{
error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
return token_type::parse_error;
}
case 0x02:
{
error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
return token_type::parse_error;
}
case 0x03:
{
error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
return token_type::parse_error;
}
case 0x04:
{
error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
return token_type::parse_error;
}
case 0x05:
{
error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
return token_type::parse_error;
}
case 0x06:
{
error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
return token_type::parse_error;
}
case 0x07:
{
error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
return token_type::parse_error;
}
case 0x08:
{
error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
return token_type::parse_error;
}
case 0x09:
{
error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
return token_type::parse_error;
}
case 0x0A:
{
error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
return token_type::parse_error;
}
case 0x0B:
{
error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
return token_type::parse_error;
}
case 0x0C:
{
error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
return token_type::parse_error;
}
case 0x0D:
{
error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
return token_type::parse_error;
}
case 0x0E:
{
error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
return token_type::parse_error;
}
case 0x0F:
{
error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
return token_type::parse_error;
}
case 0x10:
{
error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
return token_type::parse_error;
}
case 0x11:
{
error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
return token_type::parse_error;
}
case 0x12:
{
error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
return token_type::parse_error;
}
case 0x13:
{
error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
return token_type::parse_error;
}
case 0x14:
{
error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
return token_type::parse_error;
}
case 0x15:
{
error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
return token_type::parse_error;
}
case 0x16:
{
error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
return token_type::parse_error;
}
case 0x17:
{
error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
return token_type::parse_error;
}
case 0x18:
{
error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
return token_type::parse_error;
}
case 0x19:
{
error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
return token_type::parse_error;
}
case 0x1A:
{
error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
return token_type::parse_error;
}
case 0x1B:
{
error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
return token_type::parse_error;
}
case 0x1C:
{
error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
return token_type::parse_error;
}
case 0x1D:
{
error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
return token_type::parse_error;
}
case 0x1E:
{
error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
return token_type::parse_error;
}
case 0x1F:
{
error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
return token_type::parse_error;
}
// U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
case 0x20:
case 0x21:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2A:
case 0x2B:
case 0x2C:
case 0x2D:
case 0x2E:
case 0x2F:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3A:
case 0x3B:
case 0x3C:
case 0x3D:
case 0x3E:
case 0x3F:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4A:
case 0x4B:
case 0x4C:
case 0x4D:
case 0x4E:
case 0x4F:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x58:
case 0x59:
case 0x5A:
case 0x5B:
case 0x5D:
case 0x5E:
case 0x5F:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6A:
case 0x6B:
case 0x6C:
case 0x6D:
case 0x6E:
case 0x6F:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7A:
case 0x7B:
case 0x7C:
case 0x7D:
case 0x7E:
case 0x7F:
{
add(current);
break;
}
// U+0080..U+07FF: bytes C2..DF 80..BF
case 0xC2:
case 0xC3:
case 0xC4:
case 0xC5:
case 0xC6:
case 0xC7:
case 0xC8:
case 0xC9:
case 0xCA:
case 0xCB:
case 0xCC:
case 0xCD:
case 0xCE:
case 0xCF:
case 0xD0:
case 0xD1:
case 0xD2:
case 0xD3:
case 0xD4:
case 0xD5:
case 0xD6:
case 0xD7:
case 0xD8:
case 0xD9:
case 0xDA:
case 0xDB:
case 0xDC:
case 0xDD:
case 0xDE:
case 0xDF:
{
if (JSON_HEDLEY_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
{
return token_type::parse_error;
}
break;
}
// U+0800..U+0FFF: bytes E0 A0..BF 80..BF
case 0xE0:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
// U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
case 0xE1:
case 0xE2:
case 0xE3:
case 0xE4:
case 0xE5:
case 0xE6:
case 0xE7:
case 0xE8:
case 0xE9:
case 0xEA:
case 0xEB:
case 0xEC:
case 0xEE:
case 0xEF:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+D000..U+D7FF: bytes ED 80..9F 80..BF
case 0xED:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
case 0xF0:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
case 0xF1:
case 0xF2:
case 0xF3:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
case 0xF4:
{
if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// remaining bytes (80..C1 and F5..FF) are ill-formed
default:
{
error_message = "invalid string: ill-formed UTF-8 byte";
return token_type::parse_error;
}
}
}
}
JSON_HEDLEY_NON_NULL(2)
static void strtof(float& f, const char* str, char** endptr) noexcept
{
f = std::strtof(str, endptr);
}
JSON_HEDLEY_NON_NULL(2)
static void strtof(double& f, const char* str, char** endptr) noexcept
{
f = std::strtod(str, endptr);
}
JSON_HEDLEY_NON_NULL(2)
static void strtof(long double& f, const char* str, char** endptr) noexcept
{
f = std::strtold(str, endptr);
}
/*!
@brief scan a number literal
This function scans a string according to Sect. 6 of RFC 7159.
The function is realized with a deterministic finite state machine derived
from the grammar described in RFC 7159. Starting in state "init", the
input is read and used to determined the next state. Only state "done"
accepts the number. State "error" is a trap state to model errors. In the
table below, "anything" means any character but the ones listed before.
state | 0 | 1-9 | e E | + | - | . | anything
---------|----------|----------|----------|---------|---------|----------|-----------
init | zero | any1 | [error] | [error] | minus | [error] | [error]
minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
zero | done | done | exponent | done | done | decimal1 | done
any1 | any1 | any1 | exponent | done | done | decimal1 | done
decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error]
decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
any2 | any2 | any2 | done | done | done | done | done
The state machine is realized with one label per state (prefixed with
"scan_number_") and `goto` statements between them. The state machine
contains cycles, but any cycle can be left when EOF is read. Therefore,
the function is guaranteed to terminate.
During scanning, the read bytes are stored in token_buffer. This string is
then converted to a signed integer, an unsigned integer, or a
floating-point number.
@return token_type::value_unsigned, token_type::value_integer, or
token_type::value_float if number could be successfully scanned,
token_type::parse_error otherwise
@note The scanner is independent of the current locale. Internally, the
locale's decimal point is used instead of `.` to work with the
locale-dependent converters.
*/
token_type scan_number() // lgtm [cpp/use-of-goto]
{
// reset token_buffer to store the number's bytes
reset();
// the type of the parsed number; initially set to unsigned; will be
// changed if minus sign, decimal point or exponent is read
token_type number_type = token_type::value_unsigned;
// state (init): we just found out we need to scan a number
switch (current)
{
case '-':
{
add(current);
goto scan_number_minus;
}
case '0':
{
add(current);
goto scan_number_zero;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
// all other characters are rejected outside scan_number()
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
scan_number_minus:
// state: we just parsed a leading minus sign
number_type = token_type::value_integer;
switch (get())
{
case '0':
{
add(current);
goto scan_number_zero;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
default:
{
error_message = "invalid number; expected digit after '-'";
return token_type::parse_error;
}
}
scan_number_zero:
// state: we just parse a zero (maybe with a leading minus sign)
switch (get())
{
case '.':
{
add(decimal_point_char);
goto scan_number_decimal1;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_any1:
// state: we just parsed a number 0-9 (maybe with a leading minus sign)
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
case '.':
{
add(decimal_point_char);
goto scan_number_decimal1;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_decimal1:
// state: we just parsed a decimal point
number_type = token_type::value_float;
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_decimal2;
}
default:
{
error_message = "invalid number; expected digit after '.'";
return token_type::parse_error;
}
}
scan_number_decimal2:
// we just parsed at least one number after a decimal point
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_decimal2;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_exponent:
// we just parsed an exponent
number_type = token_type::value_float;
switch (get())
{
case '+':
case '-':
{
add(current);
goto scan_number_sign;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
{
error_message =
"invalid number; expected '+', '-', or digit after exponent";
return token_type::parse_error;
}
}
scan_number_sign:
// we just parsed an exponent sign
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
{
error_message = "invalid number; expected digit after exponent sign";
return token_type::parse_error;
}
}
scan_number_any2:
// we just parsed a number after the exponent or exponent sign
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
goto scan_number_done;
}
scan_number_done:
// unget the character after the number (we only read it to know that
// we are done scanning a number)
unget();
char* endptr = nullptr;
errno = 0;
// try to parse integers first and fall back to floats
if (number_type == token_type::value_unsigned)
{
const auto x = std::strtoull(token_buffer.data(), &endptr, 10);
// we checked the number format before
assert(endptr == token_buffer.data() + token_buffer.size());
if (errno == 0)
{
value_unsigned = static_cast<number_unsigned_t>(x);
if (value_unsigned == x)
{
return token_type::value_unsigned;
}
}
}
else if (number_type == token_type::value_integer)
{
const auto x = std::strtoll(token_buffer.data(), &endptr, 10);
// we checked the number format before
assert(endptr == token_buffer.data() + token_buffer.size());
if (errno == 0)
{
value_integer = static_cast<number_integer_t>(x);
if (value_integer == x)
{
return token_type::value_integer;
}
}
}
// this code is reached if we parse a floating-point number or if an
// integer conversion above failed
strtof(value_float, token_buffer.data(), &endptr);
// we checked the number format before
assert(endptr == token_buffer.data() + token_buffer.size());
return token_type::value_float;
}
/*!
@param[in] literal_text the literal text to expect
@param[in] length the length of the passed literal text
@param[in] return_type the token type to return on success
*/
JSON_HEDLEY_NON_NULL(2)
token_type scan_literal(const char* literal_text, const std::size_t length,
token_type return_type)
{
assert(current == literal_text[0]);
for (std::size_t i = 1; i < length; ++i)
{
if (JSON_HEDLEY_UNLIKELY(get() != literal_text[i]))
{
error_message = "invalid literal";
return token_type::parse_error;
}
}
return return_type;
}
/////////////////////
// input management
/////////////////////
/// reset token_buffer; current character is beginning of token
void reset() noexcept
{
token_buffer.clear();
token_string.clear();
token_string.push_back(std::char_traits<char>::to_char_type(current));
}
/*
@brief get next character from the input
This function provides the interface to the used input adapter. It does
not throw in case the input reached EOF, but returns a
`std::char_traits<char>::eof()` in that case. Stores the scanned characters
for use in error messages.
@return character read from the input
*/
std::char_traits<char>::int_type get()
{
++position.chars_read_total;
++position.chars_read_current_line;
if (next_unget)
{
// just reset the next_unget variable and work with current
next_unget = false;
}
else
{
current = ia->get_character();
}
if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
{
token_string.push_back(std::char_traits<char>::to_char_type(current));
}
if (current == '\n')
{
++position.lines_read;
position.chars_read_current_line = 0;
}
return current;
}
/*!
@brief unget current character (read it again on next get)
We implement unget by setting variable next_unget to true. The input is not
changed - we just simulate ungetting by modifying chars_read_total,
chars_read_current_line, and token_string. The next call to get() will
behave as if the unget character is read again.
*/
void unget()
{
next_unget = true;
--position.chars_read_total;
// in case we "unget" a newline, we have to also decrement the lines_read
if (position.chars_read_current_line == 0)
{
if (position.lines_read > 0)
{
--position.lines_read;
}
}
else
{
--position.chars_read_current_line;
}
if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
{
assert(not token_string.empty());
token_string.pop_back();
}
}
/// add a character to token_buffer
void add(int c)
{
token_buffer.push_back(std::char_traits<char>::to_char_type(c));
}
public:
/////////////////////
// value getters
/////////////////////
/// return integer value
constexpr number_integer_t get_number_integer() const noexcept
{
return value_integer;
}
/// return unsigned integer value
constexpr number_unsigned_t get_number_unsigned() const noexcept
{
return value_unsigned;
}
/// return floating-point value
constexpr number_float_t get_number_float() const noexcept
{
return value_float;
}
/// return current string value (implicitly resets the token; useful only once)
string_t& get_string()
{
return token_buffer;
}
/////////////////////
// diagnostics
/////////////////////
/// return position of last read token
constexpr position_t get_position() const noexcept
{
return position;
}
/// return the last read token (for errors only). Will never contain EOF
/// (an arbitrary value that is not a valid char value, often -1), because
/// 255 may legitimately occur. May contain NUL, which should be escaped.
std::string get_token_string() const
{
// escape control characters
std::string result;
for (const auto c : token_string)
{
if ('\x00' <= c and c <= '\x1F')
{
// escape control characters
std::array<char, 9> cs{{}};
(std::snprintf)(cs.data(), cs.size(), "<U+%.4X>", static_cast<unsigned char>(c));
result += cs.data();
}
else
{
// add character as is
result.push_back(c);
}
}
return result;
}
/// return syntax error message
JSON_HEDLEY_RETURNS_NON_NULL
constexpr const char* get_error_message() const noexcept
{
return error_message;
}
/////////////////////
// actual scanner
/////////////////////
/*!
@brief skip the UTF-8 byte order mark
@return true iff there is no BOM or the correct BOM has been skipped
*/
bool skip_bom()
{
if (get() == 0xEF)
{
// check if we completely parse the BOM
return get() == 0xBB and get() == 0xBF;
}
// the first character is not the beginning of the BOM; unget it to
// process is later
unget();
return true;
}
token_type scan()
{
// initially, skip the BOM
if (position.chars_read_total == 0 and not skip_bom())
{
error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
return token_type::parse_error;
}
// read next character and ignore whitespace
do
{
get();
}
while (current == ' ' or current == '\t' or current == '\n' or current == '\r');
switch (current)
{
// structural characters
case '[':
return token_type::begin_array;
case ']':
return token_type::end_array;
case '{':
return token_type::begin_object;
case '}':
return token_type::end_object;
case ':':
return token_type::name_separator;
case ',':
return token_type::value_separator;
// literals
case 't':
return scan_literal("true", 4, token_type::literal_true);
case 'f':
return scan_literal("false", 5, token_type::literal_false);
case 'n':
return scan_literal("null", 4, token_type::literal_null);
// string
case '\"':
return scan_string();
// number
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return scan_number();
// end of input (the null byte is needed when parsing from
// string literals)
case '\0':
case std::char_traits<char>::eof():
return token_type::end_of_input;
// error
default:
error_message = "invalid literal";
return token_type::parse_error;
}
}
private:
/// input adapter
detail::input_adapter_t ia = nullptr;
/// the current character
std::char_traits<char>::int_type current = std::char_traits<char>::eof();
/// whether the next get() call should just return current
bool next_unget = false;
/// the start position of the current token
position_t position {};
/// raw input token string (for error messages)
std::vector<char> token_string {};
/// buffer for variable-length tokens (numbers, strings)
string_t token_buffer {};
/// a description of occurred lexer errors
const char* error_message = "";
// number values
number_integer_t value_integer = 0;
number_unsigned_t value_unsigned = 0;
number_float_t value_float = 0;
/// the decimal point
const char decimal_point_char = '.';
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/input/parser.hpp>
#include <cassert> // assert
#include <cmath> // isfinite
#include <cstdint> // uint8_t
#include <functional> // function
#include <string> // string
#include <utility> // move
#include <vector> // vector
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/input/input_adapters.hpp>
// #include <nlohmann/detail/input/json_sax.hpp>
// #include <nlohmann/detail/input/lexer.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/is_sax.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
////////////
// parser //
////////////
/*!
@brief syntax analysis
This class implements a recursive decent parser.
*/
template<typename BasicJsonType>
class parser
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using lexer_t = lexer<BasicJsonType>;
using token_type = typename lexer_t::token_type;
public:
enum class parse_event_t : uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start,
/// the parser read `}` and finished processing a JSON object
object_end,
/// the parser read `[` and started to process a JSON array
array_start,
/// the parser read `]` and finished processing a JSON array
array_end,
/// the parser read a key of a value in an object
key,
/// the parser finished reading a JSON value
value
};
using parser_callback_t =
std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>;
/// a parser reading from an input adapter
explicit parser(detail::input_adapter_t&& adapter,
const parser_callback_t cb = nullptr,
const bool allow_exceptions_ = true)
: callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_)
{
// read first token
get_token();
}
/*!
@brief public parser interface
@param[in] strict whether to expect the last token to be EOF
@param[in,out] result parsed JSON value
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
*/
void parse(const bool strict, BasicJsonType& result)
{
if (callback)
{
json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
sax_parse_internal(&sdp);
result.assert_invariant();
// in strict mode, input must be completely read
if (strict and (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_of_input, "value")));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
// set top-level value to null if it was discarded by the callback
// function
if (result.is_discarded())
{
result = nullptr;
}
}
else
{
json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
sax_parse_internal(&sdp);
result.assert_invariant();
// in strict mode, input must be completely read
if (strict and (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_of_input, "value")));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
}
}
/*!
@brief public accept interface
@param[in] strict whether to expect the last token to be EOF
@return whether the input is a proper JSON text
*/
bool accept(const bool strict = true)
{
json_sax_acceptor<BasicJsonType> sax_acceptor;
return sax_parse(&sax_acceptor, strict);
}
template <typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse(SAX* sax, const bool strict = true)
{
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
const bool result = sax_parse_internal(sax);
// strict mode: next byte must be EOF
if (result and strict and (get_token() != token_type::end_of_input))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_of_input, "value")));
}
return result;
}
private:
template <typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse_internal(SAX* sax)
{
// stack to remember the hierarchy of structured values we are parsing
// true = array; false = object
std::vector<bool> states;
// value to avoid a goto (see comment where set to true)
bool skip_to_state_evaluation = false;
while (true)
{
if (not skip_to_state_evaluation)
{
// invariant: get_token() was called before each iteration
switch (last_token)
{
case token_type::begin_object:
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
{
return false;
}
// closing } -> we are done
if (get_token() == token_type::end_object)
{
if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
{
return false;
}
break;
}
// parse key
if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::value_string, "object key")));
}
if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::name_separator, "object separator")));
}
// remember we are now inside an object
states.push_back(false);
// parse values
get_token();
continue;
}
case token_type::begin_array:
{
if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
{
return false;
}
// closing ] -> we are done
if (get_token() == token_type::end_array)
{
if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
{
return false;
}
break;
}
// remember we are now inside an array
states.push_back(true);
// parse values (no need to call get_token)
continue;
}
case token_type::value_float:
{
const auto res = m_lexer.get_number_float();
if (JSON_HEDLEY_UNLIKELY(not std::isfinite(res)))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'"));
}
if (JSON_HEDLEY_UNLIKELY(not sax->number_float(res, m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::literal_false:
{
if (JSON_HEDLEY_UNLIKELY(not sax->boolean(false)))
{
return false;
}
break;
}
case token_type::literal_null:
{
if (JSON_HEDLEY_UNLIKELY(not sax->null()))
{
return false;
}
break;
}
case token_type::literal_true:
{
if (JSON_HEDLEY_UNLIKELY(not sax->boolean(true)))
{
return false;
}
break;
}
case token_type::value_integer:
{
if (JSON_HEDLEY_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer())))
{
return false;
}
break;
}
case token_type::value_string:
{
if (JSON_HEDLEY_UNLIKELY(not sax->string(m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::value_unsigned:
{
if (JSON_HEDLEY_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned())))
{
return false;
}
break;
}
case token_type::parse_error:
{
// using "uninitialized" to avoid "expected" message
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::uninitialized, "value")));
}
default: // the last token was unexpected
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::literal_or_value, "value")));
}
}
}
else
{
skip_to_state_evaluation = false;
}
// we reached this line after we successfully parsed a value
if (states.empty())
{
// empty stack: we reached the end of the hierarchy: done
return true;
}
if (states.back()) // array
{
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse a new value
get_token();
continue;
}
// closing ]
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
{
if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
{
return false;
}
// We are done with this array. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
assert(not states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_array, "array")));
}
else // object
{
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse key
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::value_string, "object key")));
}
if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::name_separator, "object separator")));
}
// parse values
get_token();
continue;
}
// closing }
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
{
if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
{
return false;
}
// We are done with this object. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
assert(not states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_object, "object")));
}
}
}
/// get next token from lexer
token_type get_token()
{
return last_token = m_lexer.scan();
}
std::string exception_message(const token_type expected, const std::string& context)
{
std::string error_msg = "syntax error ";
if (not context.empty())
{
error_msg += "while parsing " + context + " ";
}
error_msg += "- ";
if (last_token == token_type::parse_error)
{
error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" +
m_lexer.get_token_string() + "'";
}
else
{
error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token));
}
if (expected != token_type::uninitialized)
{
error_msg += "; expected " + std::string(lexer_t::token_type_name(expected));
}
return error_msg;
}
private:
/// callback function
const parser_callback_t callback = nullptr;
/// the type of the last read token
token_type last_token = token_type::uninitialized;
/// the lexer
lexer_t m_lexer;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/iterators/internal_iterator.hpp>
// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
#include <cstddef> // ptrdiff_t
#include <limits> // numeric_limits
namespace nlohmann
{
namespace detail
{
/*
@brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types (boolean, number,
string). It's only purpose is to allow the iterator/const_iterator classes
to "iterate" over primitive values. Internally, the iterator is modeled by
a `difference_type` variable. Value begin_value (`0`) models the begin,
end_value (`1`) models past the end.
*/
class primitive_iterator_t
{
private:
using difference_type = std::ptrdiff_t;
static constexpr difference_type begin_value = 0;
static constexpr difference_type end_value = begin_value + 1;
/// iterator as signed integer type
difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
public:
constexpr difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
m_it = begin_value;
}
/// set iterator to a defined past the end
void set_end() noexcept
{
m_it = end_value;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin() const noexcept
{
return m_it == begin_value;
}
/// return whether the iterator is at end
constexpr bool is_end() const noexcept
{
return m_it == end_value;
}
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it == rhs.m_it;
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
primitive_iterator_t operator+(difference_type n) noexcept
{
auto result = *this;
result += n;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
primitive_iterator_t& operator++() noexcept
{
++m_it;
return *this;
}
primitive_iterator_t const operator++(int) noexcept
{
auto result = *this;
++m_it;
return result;
}
primitive_iterator_t& operator--() noexcept
{
--m_it;
return *this;
}
primitive_iterator_t const operator--(int) noexcept
{
auto result = *this;
--m_it;
return result;
}
primitive_iterator_t& operator+=(difference_type n) noexcept
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n) noexcept
{
m_it -= n;
return *this;
}
};
} // namespace detail
} // namespace nlohmann
namespace nlohmann
{
namespace detail
{
/*!
@brief an iterator value
@note This structure could easily be a union, but MSVC currently does not allow
unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
*/
template<typename BasicJsonType> struct internal_iterator
{
/// iterator for JSON objects
typename BasicJsonType::object_t::iterator object_iterator {};
/// iterator for JSON arrays
typename BasicJsonType::array_t::iterator array_iterator {};
/// generic iterator for all other types
primitive_iterator_t primitive_iterator {};
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/iterators/iter_impl.hpp>
#include <ciso646> // not
#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
#include <type_traits> // conditional, is_const, remove_const
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/iterators/internal_iterator.hpp>
// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
// forward declare, to be able to friend it later on
template<typename IteratorType> class iteration_proxy;
template<typename IteratorType> class iteration_proxy_value;
/*!
@brief a template for a bidirectional iterator for the @ref basic_json class
This class implements a both iterators (iterator and const_iterator) for the
@ref basic_json class.
@note An iterator is called *initialized* when a pointer to a JSON value has
been set (e.g., by a constructor or a copy assignment). If the iterator is
default-constructed, it is *uninitialized* and most methods are undefined.
**The library uses assertions to detect calls on uninitialized iterators.**
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
*/
template<typename BasicJsonType>
class iter_impl
{
/// allow basic_json to access private members
friend iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
friend BasicJsonType;
friend iteration_proxy<iter_impl>;
friend iteration_proxy_value<iter_impl>;
using object_t = typename BasicJsonType::object_t;
using array_t = typename BasicJsonType::array_t;
// make sure BasicJsonType is basic_json or const basic_json
static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
"iter_impl only accepts (const) basic_json");
public:
/// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
/// The C++ Standard has never required user-defined iterators to derive from std::iterator.
/// A user-defined iterator should provide publicly accessible typedefs named
/// iterator_category, value_type, difference_type, pointer, and reference.
/// Note that value_type is required to be non-const, even for constant iterators.
using iterator_category = std::bidirectional_iterator_tag;
/// the type of the values when the iterator is dereferenced
using value_type = typename BasicJsonType::value_type;
/// a type to represent differences between iterators
using difference_type = typename BasicJsonType::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_pointer,
typename BasicJsonType::pointer>::type;
/// defines a reference to the type iterated over (value_type)
using reference =
typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_reference,
typename BasicJsonType::reference>::type;
/// default constructor
iter_impl() = default;
/*!
@brief constructor for a given JSON instance
@param[in] object pointer to a JSON object for this iterator
@pre object != nullptr
@post The iterator is initialized; i.e. `m_object != nullptr`.
*/
explicit iter_impl(pointer object) noexcept : m_object(object)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case value_t::array:
{
m_it.array_iterator = typename array_t::iterator();
break;
}
default:
{
m_it.primitive_iterator = primitive_iterator_t();
break;
}
}
}
/*!
@note The conventional copy constructor and copy assignment are implicitly
defined. Combined with the following converting constructor and
assignment, they support: (1) copy from iterator to iterator, (2)
copy from const iterator to const iterator, and (3) conversion from
iterator to const iterator. However conversion from const iterator
to iterator is not defined.
*/
/*!
@brief const copy constructor
@param[in] other const iterator to copy from
@note This copy constuctor had to be defined explicitely to circumvent a bug
occuring on msvc v19.0 compiler (VS 2015) debug build. For more
information refer to: https://github.com/nlohmann/json/issues/1608
*/
iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
/*!
@brief converting constructor
@param[in] other non-const iterator to copy from
@note It is not checked whether @a other is initialized.
*/
iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other non-const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
private:
/*!
@brief set the iterator to the first value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_begin() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_value.object->begin();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_value.array->begin();
break;
}
case value_t::null:
{
// set to end so begin()==end() is true: null is empty
m_it.primitive_iterator.set_end();
break;
}
default:
{
m_it.primitive_iterator.set_begin();
break;
}
}
}
/*!
@brief set the iterator past the last value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_end() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_value.object->end();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_value.array->end();
break;
}
default:
{
m_it.primitive_iterator.set_end();
break;
}
}
}
public:
/*!
@brief return a reference to the value pointed to by the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator*() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return m_it.object_iterator->second;
}
case value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return *m_it.array_iterator;
}
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief dereference the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
pointer operator->() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return &(m_it.object_iterator->second);
}
case value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return &*m_it.array_iterator;
}
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief post-increment (it++)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl const operator++(int)
{
auto result = *this;
++(*this);
return result;
}
/*!
@brief pre-increment (++it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator++()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, 1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, 1);
break;
}
default:
{
++m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief post-decrement (it--)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl const operator--(int)
{
auto result = *this;
--(*this);
return result;
}
/*!
@brief pre-decrement (--it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator--()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, -1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, -1);
break;
}
default:
{
--m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief comparison: equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator==(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
return (m_it.object_iterator == other.m_it.object_iterator);
case value_t::array:
return (m_it.array_iterator == other.m_it.array_iterator);
default:
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: not equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator!=(const iter_impl& other) const
{
return not operator==(other);
}
/*!
@brief comparison: smaller
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators"));
case value_t::array:
return (m_it.array_iterator < other.m_it.array_iterator);
default:
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: less than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<=(const iter_impl& other) const
{
return not other.operator < (*this);
}
/*!
@brief comparison: greater than
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>(const iter_impl& other) const
{
return not operator<=(other);
}
/*!
@brief comparison: greater than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>=(const iter_impl& other) const
{
return not operator<(other);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator+=(difference_type i)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
case value_t::array:
{
std::advance(m_it.array_iterator, i);
break;
}
default:
{
m_it.primitive_iterator += i;
break;
}
}
return *this;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator-=(difference_type i)
{
return operator+=(-i);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator+(difference_type i) const
{
auto result = *this;
result += i;
return result;
}
/*!
@brief addition of distance and iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
friend iter_impl operator+(difference_type i, const iter_impl& it)
{
auto result = it;
result += i;
return result;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator-(difference_type i) const
{
auto result = *this;
result -= i;
return result;
}
/*!
@brief return difference
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
difference_type operator-(const iter_impl& other) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
case value_t::array:
return m_it.array_iterator - other.m_it.array_iterator;
default:
return m_it.primitive_iterator - other.m_it.primitive_iterator;
}
}
/*!
@brief access to successor
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator[](difference_type n) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators"));
case value_t::array:
return *std::next(m_it.array_iterator, n);
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief return the key of an object iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const typename object_t::key_type& key() const
{
assert(m_object != nullptr);
if (JSON_HEDLEY_LIKELY(m_object->is_object()))
{
return m_it.object_iterator->first;
}
JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators"));
}
/*!
@brief return the value of an iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference value() const
{
return operator*();
}
private:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
// #include <nlohmann/detail/iterators/json_reverse_iterator.hpp>
#include <cstddef> // ptrdiff_t
#include <iterator> // reverse_iterator
#include <utility> // declval
namespace nlohmann
{
namespace detail
{
//////////////////////
// reverse_iterator //
//////////////////////
/*!
@brief a template for a reverse iterator class
@tparam Base the base iterator type to reverse. Valid types are @ref
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
create @ref const_reverse_iterator).
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
It is possible to write to the pointed-to element (only if @a Base is
@ref iterator).
@since version 1.0.0
*/
template<typename Base>
class json_reverse_iterator : public std::reverse_iterator<Base>
{
public:
using difference_type = std::ptrdiff_t;
/// shortcut to the reverse iterator adapter
using base_iterator = std::reverse_iterator<Base>;
/// the reference type for the pointed-to element
using reference = typename Base::reference;
/// create reverse iterator from iterator
explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
: base_iterator(it) {}
/// create reverse iterator from base class
explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
/// post-increment (it++)
json_reverse_iterator const operator++(int)
{
return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
}
/// pre-increment (++it)
json_reverse_iterator& operator++()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator++());
}
/// post-decrement (it--)
json_reverse_iterator const operator--(int)
{
return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
}
/// pre-decrement (--it)
json_reverse_iterator& operator--()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator--());
}
/// add to iterator
json_reverse_iterator& operator+=(difference_type i)
{
return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
}
/// add to iterator
json_reverse_iterator operator+(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
}
/// subtract from iterator
json_reverse_iterator operator-(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
}
/// return difference
difference_type operator-(const json_reverse_iterator& other) const
{
return base_iterator(*this) - base_iterator(other);
}
/// access to successor
reference operator[](difference_type n) const
{
return *(this->operator+(n));
}
/// return the key of an object iterator
auto key() const -> decltype(std::declval<Base>().key())
{
auto it = --this->base();
return it.key();
}
/// return the value of an iterator
reference value() const
{
auto it = --this->base();
return it.operator * ();
}
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
// #include <nlohmann/detail/json_pointer.hpp>
#include <algorithm> // all_of
#include <cassert> // assert
#include <cctype> // isdigit
#include <numeric> // accumulate
#include <string> // string
#include <utility> // move
#include <vector> // vector
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
template<typename BasicJsonType>
class json_pointer
{
// allow basic_json to access private members
NLOHMANN_BASIC_JSON_TPL_DECLARATION
friend class basic_json;
public:
/*!
@brief create JSON pointer
Create a JSON pointer according to the syntax described in
[Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
@param[in] s string representing the JSON pointer; if omitted, the empty
string is assumed which references the whole JSON value
@throw parse_error.107 if the given JSON pointer @a s is nonempty and does
not begin with a slash (`/`); see example below
@throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s is
not followed by `0` (representing `~`) or `1` (representing `/`); see
example below
@liveexample{The example shows the construction several valid JSON pointers
as well as the exceptional behavior.,json_pointer}
@since version 2.0.0
*/
explicit json_pointer(const std::string& s = "")
: reference_tokens(split(s))
{}
/*!
@brief return a string representation of the JSON pointer
@invariant For each JSON pointer `ptr`, it holds:
@code {.cpp}
ptr == json_pointer(ptr.to_string());
@endcode
@return a string representation of the JSON pointer
@liveexample{The example shows the result of `to_string`.,json_pointer__to_string}
@since version 2.0.0
*/
std::string to_string() const
{
return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
std::string{},
[](const std::string & a, const std::string & b)
{
return a + "/" + escape(b);
});
}
/// @copydoc to_string()
operator std::string() const
{
return to_string();
}
/*!
@brief append another JSON pointer at the end of this JSON pointer
@param[in] ptr JSON pointer to append
@return JSON pointer with @a ptr appended
@liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
@complexity Linear in the length of @a ptr.
@sa @ref operator/=(std::string) to append a reference token
@sa @ref operator/=(std::size_t) to append an array index
@sa @ref operator/(const json_pointer&, const json_pointer&) for a binary operator
@since version 3.6.0
*/
json_pointer& operator/=(const json_pointer& ptr)
{
reference_tokens.insert(reference_tokens.end(),
ptr.reference_tokens.begin(),
ptr.reference_tokens.end());
return *this;
}
/*!
@brief append an unescaped reference token at the end of this JSON pointer
@param[in] token reference token to append
@return JSON pointer with @a token appended without escaping @a token
@liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
@complexity Amortized constant.
@sa @ref operator/=(const json_pointer&) to append a JSON pointer
@sa @ref operator/=(std::size_t) to append an array index
@sa @ref operator/(const json_pointer&, std::size_t) for a binary operator
@since version 3.6.0
*/
json_pointer& operator/=(std::string token)
{
push_back(std::move(token));
return *this;
}
/*!
@brief append an array index at the end of this JSON pointer
@param[in] array_index array index ot append
@return JSON pointer with @a array_index appended
@liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
@complexity Amortized constant.
@sa @ref operator/=(const json_pointer&) to append a JSON pointer
@sa @ref operator/=(std::string) to append a reference token
@sa @ref operator/(const json_pointer&, std::string) for a binary operator
@since version 3.6.0
*/
json_pointer& operator/=(std::size_t array_index)
{
return *this /= std::to_string(array_index);
}
/*!
@brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
@param[in] lhs JSON pointer
@param[in] rhs JSON pointer
@return a new JSON pointer with @a rhs appended to @a lhs
@liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
@complexity Linear in the length of @a lhs and @a rhs.
@sa @ref operator/=(const json_pointer&) to append a JSON pointer
@since version 3.6.0
*/
friend json_pointer operator/(const json_pointer& lhs,
const json_pointer& rhs)
{
return json_pointer(lhs) /= rhs;
}
/*!
@brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
@param[in] ptr JSON pointer
@param[in] token reference token
@return a new JSON pointer with unescaped @a token appended to @a ptr
@liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
@complexity Linear in the length of @a ptr.
@sa @ref operator/=(std::string) to append a reference token
@since version 3.6.0
*/
friend json_pointer operator/(const json_pointer& ptr, std::string token)
{
return json_pointer(ptr) /= std::move(token);
}
/*!
@brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
@param[in] ptr JSON pointer
@param[in] array_index array index
@return a new JSON pointer with @a array_index appended to @a ptr
@liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
@complexity Linear in the length of @a ptr.
@sa @ref operator/=(std::size_t) to append an array index
@since version 3.6.0
*/
friend json_pointer operator/(const json_pointer& ptr, std::size_t array_index)
{
return json_pointer(ptr) /= array_index;
}
/*!
@brief returns the parent of this JSON pointer
@return parent of this JSON pointer; in case this JSON pointer is the root,
the root itself is returned
@complexity Linear in the length of the JSON pointer.
@liveexample{The example shows the result of `parent_pointer` for different
JSON Pointers.,json_pointer__parent_pointer}
@since version 3.6.0
*/
json_pointer parent_pointer() const
{
if (empty())
{
return *this;
}
json_pointer res = *this;
res.pop_back();
return res;
}
/*!
@brief remove last reference token
@pre not `empty()`
@liveexample{The example shows the usage of `pop_back`.,json_pointer__pop_back}
@complexity Constant.
@throw out_of_range.405 if JSON pointer has no parent
@since version 3.6.0
*/
void pop_back()
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
}
reference_tokens.pop_back();
}
/*!
@brief return last reference token
@pre not `empty()`
@return last reference token
@liveexample{The example shows the usage of `back`.,json_pointer__back}
@complexity Constant.
@throw out_of_range.405 if JSON pointer has no parent
@since version 3.6.0
*/
const std::string& back() const
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
}
return reference_tokens.back();
}
/*!
@brief append an unescaped token at the end of the reference pointer
@param[in] token token to add
@complexity Amortized constant.
@liveexample{The example shows the result of `push_back` for different
JSON Pointers.,json_pointer__push_back}
@since version 3.6.0
*/
void push_back(const std::string& token)
{
reference_tokens.push_back(token);
}
/// @copydoc push_back(const std::string&)
void push_back(std::string&& token)
{
reference_tokens.push_back(std::move(token));
}
/*!
@brief return whether pointer points to the root document
@return true iff the JSON pointer points to the root document
@complexity Constant.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example shows the result of `empty` for different JSON
Pointers.,json_pointer__empty}
@since version 3.6.0
*/
bool empty() const noexcept
{
return reference_tokens.empty();
}
private:
/*!
@param[in] s reference token to be converted into an array index
@return integer representation of @a s
@throw out_of_range.404 if string @a s could not be converted to an integer
*/
static int array_index(const std::string& s)
{
std::size_t processed_chars = 0;
const int res = std::stoi(s, &processed_chars);
// check if the string was completely read
if (JSON_HEDLEY_UNLIKELY(processed_chars != s.size()))
{
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + s + "'"));
}
return res;
}
json_pointer top() const
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
}
json_pointer result = *this;
result.reference_tokens = {reference_tokens[0]};
return result;
}
/*!
@brief create and return a reference to the pointed to value
@complexity Linear in the number of reference tokens.
@throw parse_error.109 if array index is not a number
@throw type_error.313 if value cannot be unflattened
*/
BasicJsonType& get_and_create(BasicJsonType& j) const
{
using size_type = typename BasicJsonType::size_type;
auto result = &j;
// in case no reference tokens exist, return a reference to the JSON value
// j which will be overwritten by a primitive value
for (const auto& reference_token : reference_tokens)
{
switch (result->type())
{
case detail::value_t::null:
{
if (reference_token == "0")
{
// start a new array if reference token is 0
result = &result->operator[](0);
}
else
{
// start a new object otherwise
result = &result->operator[](reference_token);
}
break;
}
case detail::value_t::object:
{
// create an entry in the object
result = &result->operator[](reference_token);
break;
}
case detail::value_t::array:
{
// create an entry in the array
JSON_TRY
{
result = &result->operator[](static_cast<size_type>(array_index(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
/*
The following code is only reached if there exists a reference
token _and_ the current value is primitive. In this case, we have
an error situation, because primitive values may only occur as
single value; that is, with an empty list of reference tokens.
*/
default:
JSON_THROW(detail::type_error::create(313, "invalid value to unflatten"));
}
}
return *result;
}
/*!
@brief return a reference to the pointed to value
@note This version does not throw if a value is not present, but tries to
create nested values instead. For instance, calling this function
with pointer `"/this/that"` on a null value is equivalent to calling
`operator[]("this").operator[]("that")` on that value, effectively
changing the null value to an object.
@param[in] ptr a JSON value
@return reference to the JSON value pointed to by the JSON pointer
@complexity Linear in the length of the JSON pointer.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
BasicJsonType& get_unchecked(BasicJsonType* ptr) const
{
using size_type = typename BasicJsonType::size_type;
for (const auto& reference_token : reference_tokens)
{
// convert null values to arrays or objects before continuing
if (ptr->is_null())
{
// check if reference token is a number
const bool nums =
std::all_of(reference_token.begin(), reference_token.end(),
[](const unsigned char x)
{
return std::isdigit(x);
});
// change value to array for numbers or "-" or to object otherwise
*ptr = (nums or reference_token == "-")
? detail::value_t::array
: detail::value_t::object;
}
switch (ptr->type())
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
if (reference_token == "-")
{
// explicitly treat "-" as index beyond the end
ptr = &ptr->operator[](ptr->m_value.array->size());
}
else
{
// convert array index to number; unchecked access
JSON_TRY
{
ptr = &ptr->operator[](
static_cast<size_type>(array_index(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
BasicJsonType& get_checked(BasicJsonType* ptr) const
{
using size_type = typename BasicJsonType::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// note: at performs range check
JSON_TRY
{
ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
/*!
@brief return a const reference to the pointed to value
@param[in] ptr a JSON value
@return const reference to the JSON value pointed to by the JSON
pointer
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
{
using size_type = typename BasicJsonType::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" cannot be used for const access
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// use unchecked array access
JSON_TRY
{
ptr = &ptr->operator[](
static_cast<size_type>(array_index(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
const BasicJsonType& get_checked(const BasicJsonType* ptr) const
{
using size_type = typename BasicJsonType::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// note: at performs range check
JSON_TRY
{
ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
*/
bool contains(const BasicJsonType* ptr) const
{
using size_type = typename BasicJsonType::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
if (not ptr->contains(reference_token))
{
// we did not find the key in the object
return false;
}
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
return false;
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
JSON_TRY
{
const auto idx = static_cast<size_type>(array_index(reference_token));
if (idx >= ptr->size())
{
// index out of range
return false;
}
ptr = &ptr->operator[](idx);
break;
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
{
// we do not expect primitive values if there is still a
// reference token to process
return false;
}
}
}
// no reference token left means we found a primitive value
return true;
}
/*!
@brief split the string input to reference tokens
@note This function is only called by the json_pointer constructor.
All exceptions below are documented there.
@throw parse_error.107 if the pointer is not empty or begins with '/'
@throw parse_error.108 if character '~' is not followed by '0' or '1'
*/
static std::vector<std::string> split(const std::string& reference_string)
{
std::vector<std::string> result;
// special case: empty reference string -> no reference tokens
if (reference_string.empty())
{
return result;
}
// check if nonempty reference string begins with slash
if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
{
JSON_THROW(detail::parse_error::create(107, 1,
"JSON pointer must be empty or begin with '/' - was: '" +
reference_string + "'"));
}
// extract the reference tokens:
// - slash: position of the last read slash (or end of string)
// - start: position after the previous slash
for (
// search for the first slash after the first character
std::size_t slash = reference_string.find_first_of('/', 1),
// set the beginning of the first reference token
start = 1;
// we can stop if start == 0 (if slash == std::string::npos)
start != 0;
// set the beginning of the next reference token
// (will eventually be 0 if slash == std::string::npos)
start = (slash == std::string::npos) ? 0 : slash + 1,
// find next slash
slash = reference_string.find_first_of('/', start))
{
// use the text between the beginning of the reference token
// (start) and the last slash (slash).
auto reference_token = reference_string.substr(start, slash - start);
// check reference tokens are properly escaped
for (std::size_t pos = reference_token.find_first_of('~');
pos != std::string::npos;
pos = reference_token.find_first_of('~', pos + 1))
{
assert(reference_token[pos] == '~');
// ~ must be followed by 0 or 1
if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 or
(reference_token[pos + 1] != '0' and
reference_token[pos + 1] != '1')))
{
JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'"));
}
}
// finally, store the reference token
unescape(reference_token);
result.push_back(reference_token);
}
return result;
}
/*!
@brief replace all occurrences of a substring by another string
@param[in,out] s the string to manipulate; changed so that all
occurrences of @a f are replaced with @a t
@param[in] f the substring to replace with @a t
@param[in] t the string to replace @a f
@pre The search string @a f must not be empty. **This precondition is
enforced with an assertion.**
@since version 2.0.0
*/
static void replace_substring(std::string& s, const std::string& f,
const std::string& t)
{
assert(not f.empty());
for (auto pos = s.find(f); // find first occurrence of f
pos != std::string::npos; // make sure f was found
s.replace(pos, f.size(), t), // replace with t, and
pos = s.find(f, pos + t.size())) // find next occurrence of f
{}
}
/// escape "~" to "~0" and "/" to "~1"
static std::string escape(std::string s)
{
replace_substring(s, "~", "~0");
replace_substring(s, "/", "~1");
return s;
}
/// unescape "~1" to tilde and "~0" to slash (order is important!)
static void unescape(std::string& s)
{
replace_substring(s, "~1", "/");
replace_substring(s, "~0", "~");
}
/*!
@param[in] reference_string the reference string to the current value
@param[in] value the value to consider
@param[in,out] result the result object to insert values to
@note Empty objects or arrays are flattened to `null`.
*/
static void flatten(const std::string& reference_string,
const BasicJsonType& value,
BasicJsonType& result)
{
switch (value.type())
{
case detail::value_t::array:
{
if (value.m_value.array->empty())
{
// flatten empty array as null
result[reference_string] = nullptr;
}
else
{
// iterate array and use index as reference string
for (std::size_t i = 0; i < value.m_value.array->size(); ++i)
{
flatten(reference_string + "/" + std::to_string(i),
value.m_value.array->operator[](i), result);
}
}
break;
}
case detail::value_t::object:
{
if (value.m_value.object->empty())
{
// flatten empty object as null
result[reference_string] = nullptr;
}
else
{
// iterate object and use keys as reference string
for (const auto& element : *value.m_value.object)
{
flatten(reference_string + "/" + escape(element.first), element.second, result);
}
}
break;
}
default:
{
// add primitive value with its reference string
result[reference_string] = value;
break;
}
}
}
/*!
@param[in] value flattened JSON
@return unflattened JSON
@throw parse_error.109 if array index is not a number
@throw type_error.314 if value is not an object
@throw type_error.315 if object values are not primitive
@throw type_error.313 if value cannot be unflattened
*/
static BasicJsonType
unflatten(const BasicJsonType& value)
{
if (JSON_HEDLEY_UNLIKELY(not value.is_object()))
{
JSON_THROW(detail::type_error::create(314, "only objects can be unflattened"));
}
BasicJsonType result;
// iterate the JSON object values
for (const auto& element : *value.m_value.object)
{
if (JSON_HEDLEY_UNLIKELY(not element.second.is_primitive()))
{
JSON_THROW(detail::type_error::create(315, "values in object must be primitive"));
}
// assign value to reference pointed to by JSON pointer; Note that if
// the JSON pointer is "" (i.e., points to the whole value), function
// get_and_create returns a reference to result itself. An assignment
// will then create a primitive value.
json_pointer(element.first).get_and_create(result) = element.second;
}
return result;
}
/*!
@brief compares two JSON pointers for equality
@param[in] lhs JSON pointer to compare
@param[in] rhs JSON pointer to compare
@return whether @a lhs is equal to @a rhs
@complexity Linear in the length of the JSON pointer
@exceptionsafety No-throw guarantee: this function never throws exceptions.
*/
friend bool operator==(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return lhs.reference_tokens == rhs.reference_tokens;
}
/*!
@brief compares two JSON pointers for inequality
@param[in] lhs JSON pointer to compare
@param[in] rhs JSON pointer to compare
@return whether @a lhs is not equal @a rhs
@complexity Linear in the length of the JSON pointer
@exceptionsafety No-throw guarantee: this function never throws exceptions.
*/
friend bool operator!=(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return not (lhs == rhs);
}
/// the reference tokens
std::vector<std::string> reference_tokens;
};
} // namespace nlohmann
// #include <nlohmann/detail/json_ref.hpp>
#include <initializer_list>
#include <utility>
// #include <nlohmann/detail/meta/type_traits.hpp>
namespace nlohmann
{
namespace detail
{
template<typename BasicJsonType>
class json_ref
{
public:
using value_type = BasicJsonType;
json_ref(value_type&& value)
: owned_value(std::move(value)), value_ref(&owned_value), is_rvalue(true)
{}
json_ref(const value_type& value)
: value_ref(const_cast<value_type*>(&value)), is_rvalue(false)
{}
json_ref(std::initializer_list<json_ref> init)
: owned_value(init), value_ref(&owned_value), is_rvalue(true)
{}
template <
class... Args,
enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
json_ref(Args && ... args)
: owned_value(std::forward<Args>(args)...), value_ref(&owned_value),
is_rvalue(true) {}
// class should be movable only
json_ref(json_ref&&) = default;
json_ref(const json_ref&) = delete;
json_ref& operator=(const json_ref&) = delete;
json_ref& operator=(json_ref&&) = delete;
~json_ref() = default;
value_type moved_or_copied() const
{
if (is_rvalue)
{
return std::move(*value_ref);
}
return *value_ref;
}
value_type const& operator*() const
{
return *static_cast<value_type const*>(value_ref);
}
value_type const* operator->() const
{
return static_cast<value_type const*>(value_ref);
}
private:
mutable value_type owned_value = nullptr;
value_type* value_ref = nullptr;
const bool is_rvalue;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/meta/type_traits.hpp>
// #include <nlohmann/detail/output/binary_writer.hpp>
#include <algorithm> // reverse
#include <array> // array
#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
#include <cstring> // memcpy
#include <limits> // numeric_limits
#include <string> // string
// #include <nlohmann/detail/input/binary_reader.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/output/output_adapters.hpp>
#include <algorithm> // copy
#include <cstddef> // size_t
#include <ios> // streamsize
#include <iterator> // back_inserter
#include <memory> // shared_ptr, make_shared
#include <ostream> // basic_ostream
#include <string> // basic_string
#include <vector> // vector
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
namespace detail
{
/// abstract output adapter interface
template<typename CharType> struct output_adapter_protocol
{
virtual void write_character(CharType c) = 0;
virtual void write_characters(const CharType* s, std::size_t length) = 0;
virtual ~output_adapter_protocol() = default;
};
/// a type to simplify interfaces
template<typename CharType>
using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
/// output adapter for byte vectors
template<typename CharType>
class output_vector_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_vector_adapter(std::vector<CharType>& vec) noexcept
: v(vec)
{}
void write_character(CharType c) override
{
v.push_back(c);
}
JSON_HEDLEY_NON_NULL(2)
void write_characters(const CharType* s, std::size_t length) override
{
std::copy(s, s + length, std::back_inserter(v));
}
private:
std::vector<CharType>& v;
};
/// output adapter for output streams
template<typename CharType>
class output_stream_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept
: stream(s)
{}
void write_character(CharType c) override
{
stream.put(c);
}
JSON_HEDLEY_NON_NULL(2)
void write_characters(const CharType* s, std::size_t length) override
{
stream.write(s, static_cast<std::streamsize>(length));
}
private:
std::basic_ostream<CharType>& stream;
};
/// output adapter for basic_string
template<typename CharType, typename StringType = std::basic_string<CharType>>
class output_string_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_string_adapter(StringType& s) noexcept
: str(s)
{}
void write_character(CharType c) override
{
str.push_back(c);
}
JSON_HEDLEY_NON_NULL(2)
void write_characters(const CharType* s, std::size_t length) override
{
str.append(s, length);
}
private:
StringType& str;
};
template<typename CharType, typename StringType = std::basic_string<CharType>>
class output_adapter
{
public:
output_adapter(std::vector<CharType>& vec)
: oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {}
output_adapter(std::basic_ostream<CharType>& s)
: oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
output_adapter(StringType& s)
: oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {}
operator output_adapter_t<CharType>()
{
return oa;
}
private:
output_adapter_t<CharType> oa = nullptr;
};
} // namespace detail
} // namespace nlohmann
namespace nlohmann
{
namespace detail
{
///////////////////
// binary writer //
///////////////////
/*!
@brief serialization to CBOR and MessagePack values
*/
template<typename BasicJsonType, typename CharType>
class binary_writer
{
using string_t = typename BasicJsonType::string_t;
public:
/*!
@brief create a binary writer
@param[in] adapter output adapter to write to
*/
explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter)
{
assert(oa);
}
/*!
@param[in] j JSON value to serialize
@pre j.type() == value_t::object
*/
void write_bson(const BasicJsonType& j)
{
switch (j.type())
{
case value_t::object:
{
write_bson_object(*j.m_value.object);
break;
}
default:
{
JSON_THROW(type_error::create(317, "to serialize to BSON, top-level type must be object, but is " + std::string(j.type_name())));
}
}
}
/*!
@param[in] j JSON value to serialize
*/
void write_cbor(const BasicJsonType& j)
{
switch (j.type())
{
case value_t::null:
{
oa->write_character(to_char_type(0xF6));
break;
}
case value_t::boolean:
{
oa->write_character(j.m_value.boolean
? to_char_type(0xF5)
: to_char_type(0xF4));
break;
}
case value_t::number_integer:
{
if (j.m_value.number_integer >= 0)
{
// CBOR does not differentiate between positive signed
// integers and unsigned integers. Therefore, we used the
// code from the value_t::number_unsigned case here.
if (j.m_value.number_integer <= 0x17)
{
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0x18));
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0x19));
write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0x1A));
write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
}
else
{
oa->write_character(to_char_type(0x1B));
write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
}
}
else
{
// The conversions below encode the sign in the first
// byte, and the value is converted to a positive number.
const auto positive_number = -1 - j.m_value.number_integer;
if (j.m_value.number_integer >= -24)
{
write_number(static_cast<std::uint8_t>(0x20 + positive_number));
}
else if (positive_number <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0x38));
write_number(static_cast<std::uint8_t>(positive_number));
}
else if (positive_number <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0x39));
write_number(static_cast<std::uint16_t>(positive_number));
}
else if (positive_number <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0x3A));
write_number(static_cast<std::uint32_t>(positive_number));
}
else
{
oa->write_character(to_char_type(0x3B));
write_number(static_cast<std::uint64_t>(positive_number));
}
}
break;
}
case value_t::number_unsigned:
{
if (j.m_value.number_unsigned <= 0x17)
{
write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0x18));
write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0x19));
write_number(static_cast<std::uint16_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0x1A));
write_number(static_cast<std::uint32_t>(j.m_value.number_unsigned));
}
else
{
oa->write_character(to_char_type(0x1B));
write_number(static_cast<std::uint64_t>(j.m_value.number_unsigned));
}
break;
}
case value_t::number_float:
{
oa->write_character(get_cbor_float_prefix(j.m_value.number_float));
write_number(j.m_value.number_float);
break;
}
case value_t::string:
{
// step 1: write control byte and the string length
const auto N = j.m_value.string->size();
if (N <= 0x17)
{
write_number(static_cast<std::uint8_t>(0x60 + N));
}
else if (N <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0x78));
write_number(static_cast<std::uint8_t>(N));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0x79));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0x7A));
write_number(static_cast<std::uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= (std::numeric_limits<std::uint64_t>::max)())
{
oa->write_character(to_char_type(0x7B));
write_number(static_cast<std::uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write the string
oa->write_characters(
reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
j.m_value.string->size());
break;
}
case value_t::array:
{
// step 1: write control byte and the array size
const auto N = j.m_value.array->size();
if (N <= 0x17)
{
write_number(static_cast<std::uint8_t>(0x80 + N));
}
else if (N <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0x98));
write_number(static_cast<std::uint8_t>(N));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0x99));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0x9A));
write_number(static_cast<std::uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= (std::numeric_limits<std::uint64_t>::max)())
{
oa->write_character(to_char_type(0x9B));
write_number(static_cast<std::uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write each element
for (const auto& el : *j.m_value.array)
{
write_cbor(el);
}
break;
}
case value_t::object:
{
// step 1: write control byte and the object size
const auto N = j.m_value.object->size();
if (N <= 0x17)
{
write_number(static_cast<std::uint8_t>(0xA0 + N));
}
else if (N <= (std::numeric_limits<std::uint8_t>::max)())
{
oa->write_character(to_char_type(0xB8));
write_number(static_cast<std::uint8_t>(N));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
oa->write_character(to_char_type(0xB9));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
oa->write_character(to_char_type(0xBA));
write_number(static_cast<std::uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= (std::numeric_limits<std::uint64_t>::max)())
{
oa->write_character(to_char_type(0xBB));
write_number(static_cast<std::uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write each element
for (const auto& el : *j.m_value.object)
{
write_cbor(el.first);
write_cbor(el.second);
}
break;
}
default:
break;
}
}
/*!
@param[in] j JSON value to serialize
*/
void write_msgpack(const BasicJsonType& j)
{
switch (j.type())
{
case value_t::null: // nil
{
oa->write_character(to_char_type(0xC0));
break;
}
case value_t::boolean: // true and false
{
oa->write_character(j.m_value.boolean
? to_char_type(0xC3)
: to_char_type(0xC2));
break;
}
case value_t::number_integer:
{
if (j.m_value.number_integer >= 0)
{
// MessagePack does not differentiate between positive
// signed integers and unsigned integers. Therefore, we used
// the code from the value_t::number_unsigned case here.
if (j.m_value.number_unsigned < 128)
{
// positive fixnum
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
{
// uint 8
oa->write_character(to_char_type(0xCC));
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
{
// uint 16
oa->write_character(to_char_type(0xCD));
write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
{
// uint 32
oa->write_character(to_char_type(0xCE));
write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
{
// uint 64
oa->write_character(to_char_type(0xCF));
write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
}
}
else
{
if (j.m_value.number_integer >= -32)
{
// negative fixnum
write_number(static_cast<std::int8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<std::int8_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
{
// int 8
oa->write_character(to_char_type(0xD0));
write_number(static_cast<std::int8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<std::int16_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
{
// int 16
oa->write_character(to_char_type(0xD1));
write_number(static_cast<std::int16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<std::int32_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
{
// int 32
oa->write_character(to_char_type(0xD2));
write_number(static_cast<std::int32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<std::int64_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)())
{
// int 64
oa->write_character(to_char_type(0xD3));
write_number(static_cast<std::int64_t>(j.m_value.number_integer));
}
}
break;
}
case value_t::number_unsigned:
{
if (j.m_value.number_unsigned < 128)
{
// positive fixnum
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
{
// uint 8
oa->write_character(to_char_type(0xCC));
write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
{
// uint 16
oa->write_character(to_char_type(0xCD));
write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
{
// uint 32
oa->write_character(to_char_type(0xCE));
write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
{
// uint 64
oa->write_character(to_char_type(0xCF));
write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
}
break;
}
case value_t::number_float:
{
oa->write_character(get_msgpack_float_prefix(j.m_value.number_float));
write_number(j.m_value.number_float);
break;
}
case value_t::string:
{
// step 1: write control byte and the string length
const auto N = j.m_value.string->size();
if (N <= 31)
{
// fixstr
write_number(static_cast<std::uint8_t>(0xA0 | N));
}
else if (N <= (std::numeric_limits<std::uint8_t>::max)())
{
// str 8
oa->write_character(to_char_type(0xD9));
write_number(static_cast<std::uint8_t>(N));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
// str 16
oa->write_character(to_char_type(0xDA));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
// str 32
oa->write_character(to_char_type(0xDB));
write_number(static_cast<std::uint32_t>(N));
}
// step 2: write the string
oa->write_characters(
reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
j.m_value.string->size());
break;
}
case value_t::array:
{
// step 1: write control byte and the array size
const auto N = j.m_value.array->size();
if (N <= 15)
{
// fixarray
write_number(static_cast<std::uint8_t>(0x90 | N));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
// array 16
oa->write_character(to_char_type(0xDC));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
// array 32
oa->write_character(to_char_type(0xDD));
write_number(static_cast<std::uint32_t>(N));
}
// step 2: write each element
for (const auto& el : *j.m_value.array)
{
write_msgpack(el);
}
break;
}
case value_t::object:
{
// step 1: write control byte and the object size
const auto N = j.m_value.object->size();
if (N <= 15)
{
// fixmap
write_number(static_cast<std::uint8_t>(0x80 | (N & 0xF)));
}
else if (N <= (std::numeric_limits<std::uint16_t>::max)())
{
// map 16
oa->write_character(to_char_type(0xDE));
write_number(static_cast<std::uint16_t>(N));
}
else if (N <= (std::numeric_limits<std::uint32_t>::max)())
{
// map 32
oa->write_character(to_char_type(0xDF));
write_number(static_cast<std::uint32_t>(N));
}
// step 2: write each element
for (const auto& el : *j.m_value.object)
{
write_msgpack(el.first);
write_msgpack(el.second);
}
break;
}
default:
break;
}
}
/*!
@param[in] j JSON value to serialize
@param[in] use_count whether to use '#' prefixes (optimized format)
@param[in] use_type whether to use '$' prefixes (optimized format)
@param[in] add_prefix whether prefixes need to be used for this value
*/
void write_ubjson(const BasicJsonType& j, const bool use_count,
const bool use_type, const bool add_prefix = true)
{
switch (j.type())
{
case value_t::null:
{
if (add_prefix)
{
oa->write_character(to_char_type('Z'));
}
break;
}
case value_t::boolean:
{
if (add_prefix)
{
oa->write_character(j.m_value.boolean
? to_char_type('T')
: to_char_type('F'));
}
break;
}
case value_t::number_integer:
{
write_number_with_ubjson_prefix(j.m_value.number_integer, add_prefix);
break;
}
case value_t::number_unsigned:
{
write_number_with_ubjson_prefix(j.m_value.number_unsigned, add_prefix);
break;
}
case value_t::number_float:
{
write_number_with_ubjson_prefix(j.m_value.number_float, add_prefix);
break;
}
case value_t::string:
{
if (add_prefix)
{
oa->write_character(to_char_type('S'));
}
write_number_with_ubjson_prefix(j.m_value.string->size(), true);
oa->write_characters(
reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
j.m_value.string->size());
break;
}
case value_t::array:
{
if (add_prefix)
{
oa->write_character(to_char_type('['));
}
bool prefix_required = true;
if (use_type and not j.m_value.array->empty())
{
assert(use_count);
const CharType first_prefix = ubjson_prefix(j.front());
const bool same_prefix = std::all_of(j.begin() + 1, j.end(),
[this, first_prefix](const BasicJsonType & v)
{
return ubjson_prefix(v) == first_prefix;
});
if (same_prefix)
{
prefix_required = false;
oa->write_character(to_char_type('$'));
oa->write_character(first_prefix);
}
}
if (use_count)
{
oa->write_character(to_char_type('#'));
write_number_with_ubjson_prefix(j.m_value.array->size(), true);
}
for (const auto& el : *j.m_value.array)
{
write_ubjson(el, use_count, use_type, prefix_required);
}
if (not use_count)
{
oa->write_character(to_char_type(']'));
}
break;
}
case value_t::object:
{
if (add_prefix)
{
oa->write_character(to_char_type('{'));
}
bool prefix_required = true;
if (use_type and not j.m_value.object->empty())
{
assert(use_count);
const CharType first_prefix = ubjson_prefix(j.front());
const bool same_prefix = std::all_of(j.begin(), j.end(),
[this, first_prefix](const BasicJsonType & v)
{
return ubjson_prefix(v) == first_prefix;
});
if (same_prefix)
{
prefix_required = false;
oa->write_character(to_char_type('$'));
oa->write_character(first_prefix);
}
}
if (use_count)
{
oa->write_character(to_char_type('#'));
write_number_with_ubjson_prefix(j.m_value.object->size(), true);
}
for (const auto& el : *j.m_value.object)
{
write_number_with_ubjson_prefix(el.first.size(), true);
oa->write_characters(
reinterpret_cast<const CharType*>(el.first.c_str()),
el.first.size());
write_ubjson(el.second, use_count, use_type, prefix_required);
}
if (not use_count)
{
oa->write_character(to_char_type('}'));
}
break;
}
default:
break;
}
}
private:
//////////
// BSON //
//////////
/*!
@return The size of a BSON document entry header, including the id marker
and the entry name size (and its null-terminator).
*/
static std::size_t calc_bson_entry_header_size(const string_t& name)
{
const auto it = name.find(static_cast<typename string_t::value_type>(0));
if (JSON_HEDLEY_UNLIKELY(it != BasicJsonType::string_t::npos))
{
JSON_THROW(out_of_range::create(409,
"BSON key cannot contain code point U+0000 (at byte " + std::to_string(it) + ")"));
}
return /*id*/ 1ul + name.size() + /*zero-terminator*/1u;
}
/*!
@brief Writes the given @a element_type and @a name to the output adapter
*/
void write_bson_entry_header(const string_t& name,
const std::uint8_t element_type)
{
oa->write_character(to_char_type(element_type)); // boolean
oa->write_characters(
reinterpret_cast<const CharType*>(name.c_str()),
name.size() + 1u);
}
/*!
@brief Writes a BSON element with key @a name and boolean value @a value
*/
void write_bson_boolean(const string_t& name,
const bool value)
{
write_bson_entry_header(name, 0x08);
oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00));
}
/*!
@brief Writes a BSON element with key @a name and double value @a value
*/
void write_bson_double(const string_t& name,
const double value)
{
write_bson_entry_header(name, 0x01);
write_number<double, true>(value);
}
/*!
@return The size of the BSON-encoded string in @a value
*/
static std::size_t calc_bson_string_size(const string_t& value)
{
return sizeof(std::int32_t) + value.size() + 1ul;
}
/*!
@brief Writes a BSON element with key @a name and string value @a value
*/
void write_bson_string(const string_t& name,
const string_t& value)
{
write_bson_entry_header(name, 0x02);
write_number<std::int32_t, true>(static_cast<std::int32_t>(value.size() + 1ul));
oa->write_characters(
reinterpret_cast<const CharType*>(value.c_str()),
value.size() + 1);
}
/*!
@brief Writes a BSON element with key @a name and null value
*/
void write_bson_null(const string_t& name)
{
write_bson_entry_header(name, 0x0A);
}
/*!
@return The size of the BSON-encoded integer @a value
*/
static std::size_t calc_bson_integer_size(const std::int64_t value)
{
return (std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)()
? sizeof(std::int32_t)
: sizeof(std::int64_t);
}
/*!
@brief Writes a BSON element with key @a name and integer @a value
*/
void write_bson_integer(const string_t& name,
const std::int64_t value)
{
if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)())
{
write_bson_entry_header(name, 0x10); // int32
write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
}
else
{
write_bson_entry_header(name, 0x12); // int64
write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
}
}
/*!
@return The size of the BSON-encoded unsigned integer in @a j
*/
static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
{
return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
? sizeof(std::int32_t)
: sizeof(std::int64_t);
}
/*!
@brief Writes a BSON element with key @a name and unsigned @a value
*/
void write_bson_unsigned(const string_t& name,
const std::uint64_t value)
{
if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
{
write_bson_entry_header(name, 0x10 /* int32 */);
write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
}
else if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
{
write_bson_entry_header(name, 0x12 /* int64 */);
write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
}
else
{
JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(value) + " cannot be represented by BSON as it does not fit int64"));
}
}
/*!
@brief Writes a BSON element with key @a name and object @a value
*/
void write_bson_object_entry(const string_t& name,
const typename BasicJsonType::object_t& value)
{
write_bson_entry_header(name, 0x03); // object
write_bson_object(value);
}
/*!
@return The size of the BSON-encoded array @a value
*/
static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value)
{
std::size_t array_index = 0ul;
const std::size_t embedded_document_size = std::accumulate(std::begin(value), std::end(value), 0ul, [&array_index](std::size_t result, const typename BasicJsonType::array_t::value_type & el)
{
return result + calc_bson_element_size(std::to_string(array_index++), el);
});
return sizeof(std::int32_t) + embedded_document_size + 1ul;
}
/*!
@brief Writes a BSON element with key @a name and array @a value
*/
void write_bson_array(const string_t& name,
const typename BasicJsonType::array_t& value)
{
write_bson_entry_header(name, 0x04); // array
write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_array_size(value)));
std::size_t array_index = 0ul;
for (const auto& el : value)
{
write_bson_element(std::to_string(array_index++), el);
}
oa->write_character(to_char_type(0x00));
}
/*!
@brief Calculates the size necessary to serialize the JSON value @a j with its @a name
@return The calculated size for the BSON document entry for @a j with the given @a name.
*/
static std::size_t calc_bson_element_size(const string_t& name,
const BasicJsonType& j)
{
const auto header_size = calc_bson_entry_header_size(name);
switch (j.type())
{
case value_t::object:
return header_size + calc_bson_object_size(*j.m_value.object);
case value_t::array:
return header_size + calc_bson_array_size(*j.m_value.array);
case value_t::boolean:
return header_size + 1ul;
case value_t::number_float:
return header_size + 8ul;
case value_t::number_integer:
return header_size + calc_bson_integer_size(j.m_value.number_integer);
case value_t::number_unsigned:
return header_size + calc_bson_unsigned_size(j.m_value.number_unsigned);
case value_t::string:
return header_size + calc_bson_string_size(*j.m_value.string);
case value_t::null:
return header_size + 0ul;
// LCOV_EXCL_START
default:
assert(false);
return 0ul;
// LCOV_EXCL_STOP
}
}
/*!
@brief Serializes the JSON value @a j to BSON and associates it with the
key @a name.
@param name The name to associate with the JSON entity @a j within the
current BSON document
@return The size of the BSON entry
*/
void write_bson_element(const string_t& name,
const BasicJsonType& j)
{
switch (j.type())
{
case value_t::object:
return write_bson_object_entry(name, *j.m_value.object);
case value_t::array:
return write_bson_array(name, *j.m_value.array);
case value_t::boolean:
return write_bson_boolean(name, j.m_value.boolean);
case value_t::number_float:
return write_bson_double(name, j.m_value.number_float);
case value_t::number_integer:
return write_bson_integer(name, j.m_value.number_integer);
case value_t::number_unsigned:
return write_bson_unsigned(name, j.m_value.number_unsigned);
case value_t::string:
return write_bson_string(name, *j.m_value.string);
case value_t::null:
return write_bson_null(name);
// LCOV_EXCL_START
default:
assert(false);
return;
// LCOV_EXCL_STOP
}
}
/*!
@brief Calculates the size of the BSON serialization of the given
JSON-object @a j.
@param[in] j JSON value to serialize
@pre j.type() == value_t::object
*/
static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value)
{
std::size_t document_size = std::accumulate(value.begin(), value.end(), 0ul,
[](size_t result, const typename BasicJsonType::object_t::value_type & el)
{
return result += calc_bson_element_size(el.first, el.second);
});
return sizeof(std::int32_t) + document_size + 1ul;
}
/*!
@param[in] j JSON value to serialize
@pre j.type() == value_t::object
*/
void write_bson_object(const typename BasicJsonType::object_t& value)
{
write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_object_size(value)));
for (const auto& el : value)
{
write_bson_element(el.first, el.second);
}
oa->write_character(to_char_type(0x00));
}
//////////
// CBOR //
//////////
static constexpr CharType get_cbor_float_prefix(float /*unused*/)
{
return to_char_type(0xFA); // Single-Precision Float
}
static constexpr CharType get_cbor_float_prefix(double /*unused*/)
{
return to_char_type(0xFB); // Double-Precision Float
}
/////////////
// MsgPack //
/////////////
static constexpr CharType get_msgpack_float_prefix(float /*unused*/)
{
return to_char_type(0xCA); // float 32
}
static constexpr CharType get_msgpack_float_prefix(double /*unused*/)
{
return to_char_type(0xCB); // float 64
}
////////////
// UBJSON //
////////////
// UBJSON: write number (floating point)
template<typename NumberType, typename std::enable_if<
std::is_floating_point<NumberType>::value, int>::type = 0>
void write_number_with_ubjson_prefix(const NumberType n,
const bool add_prefix)
{
if (add_prefix)
{
oa->write_character(get_ubjson_float_prefix(n));
}
write_number(n);
}
// UBJSON: write number (unsigned integer)
template<typename NumberType, typename std::enable_if<
std::is_unsigned<NumberType>::value, int>::type = 0>
void write_number_with_ubjson_prefix(const NumberType n,
const bool add_prefix)
{
if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
{
if (add_prefix)
{
oa->write_character(to_char_type('i')); // int8
}
write_number(static_cast<std::uint8_t>(n));
}
else if (n <= (std::numeric_limits<std::uint8_t>::max)())
{
if (add_prefix)
{
oa->write_character(to_char_type('U')); // uint8
}
write_number(static_cast<std::uint8_t>(n));
}
else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
{
if (add_prefix)
{
oa->write_character(to_char_type('I')); // int16
}
write_number(static_cast<std::int16_t>(n));
}
else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
{
if (add_prefix)
{
oa->write_character(to_char_type('l')); // int32
}
write_number(static_cast<std::int32_t>(n));
}
else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
{
if (add_prefix)
{
oa->write_character(to_char_type('L')); // int64
}
write_number(static_cast<std::int64_t>(n));
}
else
{
JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
}
}
// UBJSON: write number (signed integer)
template<typename NumberType, typename std::enable_if<
std::is_signed<NumberType>::value and
not std::is_floating_point<NumberType>::value, int>::type = 0>
void write_number_with_ubjson_prefix(const NumberType n,
const bool add_prefix)
{
if ((std::numeric_limits<std::int8_t>::min)() <= n and n <= (std::numeric_limits<std::int8_t>::max)())
{
if (add_prefix)
{
oa->write_character(to_char_type('i')); // int8
}
write_number(static_cast<std::int8_t>(n));
}
else if (static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::min)()) <= n and n <= static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::max)()))
{
if (add_prefix)
{
oa->write_character(to_char_type('U')); // uint8
}
write_number(static_cast<std::uint8_t>(n));
}
else if ((std::numeric_limits<std::int16_t>::min)() <= n and n <= (std::numeric_limits<std::int16_t>::max)())
{
if (add_prefix)
{
oa->write_character(to_char_type('I')); // int16
}
write_number(static_cast<std::int16_t>(n));
}
else if ((std::numeric_limits<std::int32_t>::min)() <= n and n <= (std::numeric_limits<std::int32_t>::max)())
{
if (add_prefix)
{
oa->write_character(to_char_type('l')); // int32
}
write_number(static_cast<std::int32_t>(n));
}
else if ((std::numeric_limits<std::int64_t>::min)() <= n and n <= (std::numeric_limits<std::int64_t>::max)())
{
if (add_prefix)
{
oa->write_character(to_char_type('L')); // int64
}
write_number(static_cast<std::int64_t>(n));
}
// LCOV_EXCL_START
else
{
JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
}
// LCOV_EXCL_STOP
}
/*!
@brief determine the type prefix of container values
@note This function does not need to be 100% accurate when it comes to
integer limits. In case a number exceeds the limits of int64_t,
this will be detected by a later call to function
write_number_with_ubjson_prefix. Therefore, we return 'L' for any
value that does not fit the previous limits.
*/
CharType ubjson_prefix(const BasicJsonType& j) const noexcept
{
switch (j.type())
{
case value_t::null:
return 'Z';
case value_t::boolean:
return j.m_value.boolean ? 'T' : 'F';
case value_t::number_integer:
{
if ((std::numeric_limits<std::int8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
{
return 'i';
}
if ((std::numeric_limits<std::uint8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
{
return 'U';
}
if ((std::numeric_limits<std::int16_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
{
return 'I';
}
if ((std::numeric_limits<std::int32_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
{
return 'l';
}
// no check and assume int64_t (see note above)
return 'L';
}
case value_t::number_unsigned:
{
if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
{
return 'i';
}
if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint8_t>::max)()))
{
return 'U';
}
if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
{
return 'I';
}
if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
{
return 'l';
}
// no check and assume int64_t (see note above)
return 'L';
}
case value_t::number_float:
return get_ubjson_float_prefix(j.m_value.number_float);
case value_t::string:
return 'S';
case value_t::array:
return '[';
case value_t::object:
return '{';
default: // discarded values
return 'N';
}
}
static constexpr CharType get_ubjson_float_prefix(float /*unused*/)
{
return 'd'; // float 32
}
static constexpr CharType get_ubjson_float_prefix(double /*unused*/)
{
return 'D'; // float 64
}
///////////////////////
// Utility functions //
///////////////////////
/*
@brief write a number to output input
@param[in] n number of type @a NumberType
@tparam NumberType the type of the number
@tparam OutputIsLittleEndian Set to true if output data is
required to be little endian
@note This function needs to respect the system's endianess, because bytes
in CBOR, MessagePack, and UBJSON are stored in network order (big
endian) and therefore need reordering on little endian systems.
*/
template<typename NumberType, bool OutputIsLittleEndian = false>
void write_number(const NumberType n)
{
// step 1: write number to array of length NumberType
std::array<CharType, sizeof(NumberType)> vec;
std::memcpy(vec.data(), &n, sizeof(NumberType));
// step 2: write array to output (with possible reordering)
if (is_little_endian != OutputIsLittleEndian)
{
// reverse byte order prior to conversion if necessary
std::reverse(vec.begin(), vec.end());
}
oa->write_characters(vec.data(), sizeof(NumberType));
}
public:
// The following to_char_type functions are implement the conversion
// between uint8_t and CharType. In case CharType is not unsigned,
// such a conversion is required to allow values greater than 128.
// See <https://github.com/nlohmann/json/issues/1286> for a discussion.
template < typename C = CharType,
enable_if_t < std::is_signed<C>::value and std::is_signed<char>::value > * = nullptr >
static constexpr CharType to_char_type(std::uint8_t x) noexcept
{
return *reinterpret_cast<char*>(&x);
}
template < typename C = CharType,
enable_if_t < std::is_signed<C>::value and std::is_unsigned<char>::value > * = nullptr >
static CharType to_char_type(std::uint8_t x) noexcept
{
static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t");
static_assert(std::is_pod<CharType>::value, "CharType must be POD");
CharType result;
std::memcpy(&result, &x, sizeof(x));
return result;
}
template<typename C = CharType,
enable_if_t<std::is_unsigned<C>::value>* = nullptr>
static constexpr CharType to_char_type(std::uint8_t x) noexcept
{
return x;
}
template < typename InputCharType, typename C = CharType,
enable_if_t <
std::is_signed<C>::value and
std::is_signed<char>::value and
std::is_same<char, typename std::remove_cv<InputCharType>::type>::value
> * = nullptr >
static constexpr CharType to_char_type(InputCharType x) noexcept
{
return x;
}
private:
/// whether we can assume little endianess
const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess();
/// the output
output_adapter_t<CharType> oa = nullptr;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/output/output_adapters.hpp>
// #include <nlohmann/detail/output/serializer.hpp>
#include <algorithm> // reverse, remove, fill, find, none_of
#include <array> // array
#include <cassert> // assert
#include <ciso646> // and, or
#include <clocale> // localeconv, lconv
#include <cmath> // labs, isfinite, isnan, signbit
#include <cstddef> // size_t, ptrdiff_t
#include <cstdint> // uint8_t
#include <cstdio> // snprintf
#include <limits> // numeric_limits
#include <string> // string
#include <type_traits> // is_same
#include <utility> // move
// #include <nlohmann/detail/conversions/to_chars.hpp>
#include <array> // array
#include <cassert> // assert
#include <ciso646> // or, and, not
#include <cmath> // signbit, isfinite
#include <cstdint> // intN_t, uintN_t
#include <cstring> // memcpy, memmove
#include <limits> // numeric_limits
#include <type_traits> // conditional
// #include <nlohmann/detail/macro_scope.hpp>
namespace nlohmann
{
namespace detail
{
/*!
@brief implements the Grisu2 algorithm for binary to decimal floating-point
conversion.
This implementation is a slightly modified version of the reference
implementation which may be obtained from
http://florian.loitsch.com/publications (bench.tar.gz).
The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
For a detailed description of the algorithm see:
[1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
Language Design and Implementation, PLDI 2010
[2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation, PLDI 1996
*/
namespace dtoa_impl
{
template <typename Target, typename Source>
Target reinterpret_bits(const Source source)
{
static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
Target target;
std::memcpy(&target, &source, sizeof(Source));
return target;
}
struct diyfp // f * 2^e
{
static constexpr int kPrecision = 64; // = q
std::uint64_t f = 0;
int e = 0;
constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
/*!
@brief returns x - y
@pre x.e == y.e and x.f >= y.f
*/
static diyfp sub(const diyfp& x, const diyfp& y) noexcept
{
assert(x.e == y.e);
assert(x.f >= y.f);
return {x.f - y.f, x.e};
}
/*!
@brief returns x * y
@note The result is rounded. (Only the upper q bits are returned.)
*/
static diyfp mul(const diyfp& x, const diyfp& y) noexcept
{
static_assert(kPrecision == 64, "internal error");
// Computes:
// f = round((x.f * y.f) / 2^q)
// e = x.e + y.e + q
// Emulate the 64-bit * 64-bit multiplication:
//
// p = u * v
// = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
// = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi )
// = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 )
// = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 )
// = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3)
// = (p0_lo ) + 2^32 (Q ) + 2^64 (H )
// = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
//
// (Since Q might be larger than 2^32 - 1)
//
// = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
//
// (Q_hi + H does not overflow a 64-bit int)
//
// = p_lo + 2^64 p_hi
const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
const std::uint64_t u_hi = x.f >> 32u;
const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
const std::uint64_t v_hi = y.f >> 32u;
const std::uint64_t p0 = u_lo * v_lo;
const std::uint64_t p1 = u_lo * v_hi;
const std::uint64_t p2 = u_hi * v_lo;
const std::uint64_t p3 = u_hi * v_hi;
const std::uint64_t p0_hi = p0 >> 32u;
const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
const std::uint64_t p1_hi = p1 >> 32u;
const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
const std::uint64_t p2_hi = p2 >> 32u;
std::uint64_t Q = p0_hi + p1_lo + p2_lo;
// The full product might now be computed as
//
// p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
// p_lo = p0_lo + (Q << 32)
//
// But in this particular case here, the full p_lo is not required.
// Effectively we only need to add the highest bit in p_lo to p_hi (and
// Q_hi + 1 does not overflow).
Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
return {h, x.e + y.e + 64};
}
/*!
@brief normalize x such that the significand is >= 2^(q-1)
@pre x.f != 0
*/
static diyfp normalize(diyfp x) noexcept
{
assert(x.f != 0);
while ((x.f >> 63u) == 0)
{
x.f <<= 1u;
x.e--;
}
return x;
}
/*!
@brief normalize x such that the result has the exponent E
@pre e >= x.e and the upper e - x.e bits of x.f must be zero.
*/
static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
{
const int delta = x.e - target_exponent;
assert(delta >= 0);
assert(((x.f << delta) >> delta) == x.f);
return {x.f << delta, target_exponent};
}
};
struct boundaries
{
diyfp w;
diyfp minus;
diyfp plus;
};
/*!
Compute the (normalized) diyfp representing the input number 'value' and its
boundaries.
@pre value must be finite and positive
*/
template <typename FloatType>
boundaries compute_boundaries(FloatType value)
{
assert(std::isfinite(value));
assert(value > 0);
// Convert the IEEE representation into a diyfp.
//
// If v is denormal:
// value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
// If v is normalized:
// value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
static_assert(std::numeric_limits<FloatType>::is_iec559,
"internal error: dtoa_short requires an IEEE-754 floating-point implementation");
constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
constexpr int kMinExp = 1 - kBias;
constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
const std::uint64_t bits = reinterpret_bits<bits_type>(value);
const std::uint64_t E = bits >> (kPrecision - 1);
const std::uint64_t F = bits & (kHiddenBit - 1);
const bool is_denormal = E == 0;
const diyfp v = is_denormal
? diyfp(F, kMinExp)
: diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
// Compute the boundaries m- and m+ of the floating-point value
// v = f * 2^e.
//
// Determine v- and v+, the floating-point predecessor and successor if v,
// respectively.
//
// v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
// = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
//
// v+ = v + 2^e
//
// Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
// between m- and m+ round to v, regardless of how the input rounding
// algorithm breaks ties.
//
// ---+-------------+-------------+-------------+-------------+--- (A)
// v- m- v m+ v+
//
// -----------------+------+------+-------------+-------------+--- (B)
// v- m- v m+ v+
const bool lower_boundary_is_closer = F == 0 and E > 1;
const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
const diyfp m_minus = lower_boundary_is_closer
? diyfp(4 * v.f - 1, v.e - 2) // (B)
: diyfp(2 * v.f - 1, v.e - 1); // (A)
// Determine the normalized w+ = m+.
const diyfp w_plus = diyfp::normalize(m_plus);
// Determine w- = m- such that e_(w-) = e_(w+).
const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
return {diyfp::normalize(v), w_minus, w_plus};
}
// Given normalized diyfp w, Grisu needs to find a (normalized) cached
// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
// within a certain range [alpha, gamma] (Definition 3.2 from [1])
//
// alpha <= e = e_c + e_w + q <= gamma
//
// or
//
// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
// <= f_c * f_w * 2^gamma
//
// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
//
// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
//
// or
//
// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
//
// The choice of (alpha,gamma) determines the size of the table and the form of
// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
// in practice:
//
// The idea is to cut the number c * w = f * 2^e into two parts, which can be
// processed independently: An integral part p1, and a fractional part p2:
//
// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
// = (f div 2^-e) + (f mod 2^-e) * 2^e
// = p1 + p2 * 2^e
//
// The conversion of p1 into decimal form requires a series of divisions and
// modulos by (a power of) 10. These operations are faster for 32-bit than for
// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
// achieved by choosing
//
// -e >= 32 or e <= -32 := gamma
//
// In order to convert the fractional part
//
// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
//
// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
// d[-i] are extracted in order:
//
// (10 * p2) div 2^-e = d[-1]
// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
//
// The multiplication by 10 must not overflow. It is sufficient to choose
//
// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
//
// Since p2 = f mod 2^-e < 2^-e,
//
// -e <= 60 or e >= -60 := alpha
constexpr int kAlpha = -60;
constexpr int kGamma = -32;
struct cached_power // c = f * 2^e ~= 10^k
{
std::uint64_t f;
int e;
int k;
};
/*!
For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
satisfies (Definition 3.2 from [1])
alpha <= e_c + e + q <= gamma.
*/
inline cached_power get_cached_power_for_binary_exponent(int e)
{
// Now
//
// alpha <= e_c + e + q <= gamma (1)
// ==> f_c * 2^alpha <= c * 2^e * 2^q
//
// and since the c's are normalized, 2^(q-1) <= f_c,
//
// ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
// ==> 2^(alpha - e - 1) <= c
//
// If c were an exakt power of ten, i.e. c = 10^k, one may determine k as
//
// k = ceil( log_10( 2^(alpha - e - 1) ) )
// = ceil( (alpha - e - 1) * log_10(2) )
//
// From the paper:
// "In theory the result of the procedure could be wrong since c is rounded,
// and the computation itself is approximated [...]. In practice, however,
// this simple function is sufficient."
//
// For IEEE double precision floating-point numbers converted into
// normalized diyfp's w = f * 2^e, with q = 64,
//
// e >= -1022 (min IEEE exponent)
// -52 (p - 1)
// -52 (p - 1, possibly normalize denormal IEEE numbers)
// -11 (normalize the diyfp)
// = -1137
//
// and
//
// e <= +1023 (max IEEE exponent)
// -52 (p - 1)
// -11 (normalize the diyfp)
// = 960
//
// This binary exponent range [-1137,960] results in a decimal exponent
// range [-307,324]. One does not need to store a cached power for each
// k in this range. For each such k it suffices to find a cached power
// such that the exponent of the product lies in [alpha,gamma].
// This implies that the difference of the decimal exponents of adjacent
// table entries must be less than or equal to
//
// floor( (gamma - alpha) * log_10(2) ) = 8.
//
// (A smaller distance gamma-alpha would require a larger table.)
// NB:
// Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
constexpr int kCachedPowersMinDecExp = -300;
constexpr int kCachedPowersDecStep = 8;
static constexpr std::array<cached_power, 79> kCachedPowers =
{
{
{ 0xAB70FE17C79AC6CA, -1060, -300 },
{ 0xFF77B1FCBEBCDC4F, -1034, -292 },
{ 0xBE5691EF416BD60C, -1007, -284 },
{ 0x8DD01FAD907FFC3C, -980, -276 },
{ 0xD3515C2831559A83, -954, -268 },
{ 0x9D71AC8FADA6C9B5, -927, -260 },
{ 0xEA9C227723EE8BCB, -901, -252 },
{ 0xAECC49914078536D, -874, -244 },
{ 0x823C12795DB6CE57, -847, -236 },
{ 0xC21094364DFB5637, -821, -228 },
{ 0x9096EA6F3848984F, -794, -220 },
{ 0xD77485CB25823AC7, -768, -212 },
{ 0xA086CFCD97BF97F4, -741, -204 },
{ 0xEF340A98172AACE5, -715, -196 },
{ 0xB23867FB2A35B28E, -688, -188 },
{ 0x84C8D4DFD2C63F3B, -661, -180 },
{ 0xC5DD44271AD3CDBA, -635, -172 },
{ 0x936B9FCEBB25C996, -608, -164 },
{ 0xDBAC6C247D62A584, -582, -156 },
{ 0xA3AB66580D5FDAF6, -555, -148 },
{ 0xF3E2F893DEC3F126, -529, -140 },
{ 0xB5B5ADA8AAFF80B8, -502, -132 },
{ 0x87625F056C7C4A8B, -475, -124 },
{ 0xC9BCFF6034C13053, -449, -116 },
{ 0x964E858C91BA2655, -422, -108 },
{ 0xDFF9772470297EBD, -396, -100 },
{ 0xA6DFBD9FB8E5B88F, -369, -92 },
{ 0xF8A95FCF88747D94, -343, -84 },
{ 0xB94470938FA89BCF, -316, -76 },
{ 0x8A08F0F8BF0F156B, -289, -68 },
{ 0xCDB02555653131B6, -263, -60 },
{ 0x993FE2C6D07B7FAC, -236, -52 },
{ 0xE45C10C42A2B3B06, -210, -44 },
{ 0xAA242499697392D3, -183, -36 },
{ 0xFD87B5F28300CA0E, -157, -28 },
{ 0xBCE5086492111AEB, -130, -20 },
{ 0x8CBCCC096F5088CC, -103, -12 },
{ 0xD1B71758E219652C, -77, -4 },
{ 0x9C40000000000000, -50, 4 },
{ 0xE8D4A51000000000, -24, 12 },
{ 0xAD78EBC5AC620000, 3, 20 },
{ 0x813F3978F8940984, 30, 28 },
{ 0xC097CE7BC90715B3, 56, 36 },
{ 0x8F7E32CE7BEA5C70, 83, 44 },
{ 0xD5D238A4ABE98068, 109, 52 },
{ 0x9F4F2726179A2245, 136, 60 },
{ 0xED63A231D4C4FB27, 162, 68 },
{ 0xB0DE65388CC8ADA8, 189, 76 },
{ 0x83C7088E1AAB65DB, 216, 84 },
{ 0xC45D1DF942711D9A, 242, 92 },
{ 0x924D692CA61BE758, 269, 100 },
{ 0xDA01EE641A708DEA, 295, 108 },
{ 0xA26DA3999AEF774A, 322, 116 },
{ 0xF209787BB47D6B85, 348, 124 },
{ 0xB454E4A179DD1877, 375, 132 },
{ 0x865B86925B9BC5C2, 402, 140 },
{ 0xC83553C5C8965D3D, 428, 148 },
{ 0x952AB45CFA97A0B3, 455, 156 },
{ 0xDE469FBD99A05FE3, 481, 164 },
{ 0xA59BC234DB398C25, 508, 172 },
{ 0xF6C69A72A3989F5C, 534, 180 },
{ 0xB7DCBF5354E9BECE, 561, 188 },
{ 0x88FCF317F22241E2, 588, 196 },
{ 0xCC20CE9BD35C78A5, 614, 204 },
{ 0x98165AF37B2153DF, 641, 212 },
{ 0xE2A0B5DC971F303A, 667, 220 },
{ 0xA8D9D1535CE3B396, 694, 228 },
{ 0xFB9B7CD9A4A7443C, 720, 236 },
{ 0xBB764C4CA7A44410, 747, 244 },
{ 0x8BAB8EEFB6409C1A, 774, 252 },
{ 0xD01FEF10A657842C, 800, 260 },
{ 0x9B10A4E5E9913129, 827, 268 },
{ 0xE7109BFBA19C0C9D, 853, 276 },
{ 0xAC2820D9623BF429, 880, 284 },
{ 0x80444B5E7AA7CF85, 907, 292 },
{ 0xBF21E44003ACDD2D, 933, 300 },
{ 0x8E679C2F5E44FF8F, 960, 308 },
{ 0xD433179D9C8CB841, 986, 316 },
{ 0x9E19DB92B4E31BA9, 1013, 324 },
}
};
// This computation gives exactly the same results for k as
// k = ceil((kAlpha - e - 1) * 0.30102999566398114)
// for |e| <= 1500, but doesn't require floating-point operations.
// NB: log_10(2) ~= 78913 / 2^18
assert(e >= -1500);
assert(e <= 1500);
const int f = kAlpha - e - 1;
const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
assert(index >= 0);
assert(static_cast<std::size_t>(index) < kCachedPowers.size());
const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
assert(kAlpha <= cached.e + e + 64);
assert(kGamma >= cached.e + e + 64);
return cached;
}
/*!
For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
For n == 0, returns 1 and sets pow10 := 1.
*/
inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
{
// LCOV_EXCL_START
if (n >= 1000000000)
{
pow10 = 1000000000;
return 10;
}
// LCOV_EXCL_STOP
else if (n >= 100000000)
{
pow10 = 100000000;
return 9;
}
else if (n >= 10000000)
{
pow10 = 10000000;
return 8;
}
else if (n >= 1000000)
{
pow10 = 1000000;
return 7;
}
else if (n >= 100000)
{
pow10 = 100000;
return 6;
}
else if (n >= 10000)
{
pow10 = 10000;
return 5;
}
else if (n >= 1000)
{
pow10 = 1000;
return 4;
}
else if (n >= 100)
{
pow10 = 100;
return 3;
}
else if (n >= 10)
{
pow10 = 10;
return 2;
}
else
{
pow10 = 1;
return 1;
}
}
inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
std::uint64_t rest, std::uint64_t ten_k)
{
assert(len >= 1);
assert(dist <= delta);
assert(rest <= delta);
assert(ten_k > 0);
// <--------------------------- delta ---->
// <---- dist --------->
// --------------[------------------+-------------------]--------------
// M- w M+
//
// ten_k
// <------>
// <---- rest ---->
// --------------[------------------+----+--------------]--------------
// w V
// = buf * 10^k
//
// ten_k represents a unit-in-the-last-place in the decimal representation
// stored in buf.
// Decrement buf by ten_k while this takes buf closer to w.
// The tests are written in this order to avoid overflow in unsigned
// integer arithmetic.
while (rest < dist
and delta - rest >= ten_k
and (rest + ten_k < dist or dist - rest > rest + ten_k - dist))
{
assert(buf[len - 1] != '0');
buf[len - 1]--;
rest += ten_k;
}
}
/*!
Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
*/
inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
diyfp M_minus, diyfp w, diyfp M_plus)
{
static_assert(kAlpha >= -60, "internal error");
static_assert(kGamma <= -32, "internal error");
// Generates the digits (and the exponent) of a decimal floating-point
// number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
// w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
//
// <--------------------------- delta ---->
// <---- dist --------->
// --------------[------------------+-------------------]--------------
// M- w M+
//
// Grisu2 generates the digits of M+ from left to right and stops as soon as
// V is in [M-,M+].
assert(M_plus.e >= kAlpha);
assert(M_plus.e <= kGamma);
std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e)
// Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
//
// M+ = f * 2^e
// = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
// = ((p1 ) * 2^-e + (p2 )) * 2^e
// = p1 + p2 * 2^e
const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
// 1)
//
// Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
assert(p1 > 0);
std::uint32_t pow10;
const int k = find_largest_pow10(p1, pow10);
// 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
//
// p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
// = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
//
// M+ = p1 + p2 * 2^e
// = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
// = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
// = d[k-1] * 10^(k-1) + ( rest) * 2^e
//
// Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
//
// p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
//
// but stop as soon as
//
// rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
int n = k;
while (n > 0)
{
// Invariants:
// M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
// pow10 = 10^(n-1) <= p1 < 10^n
//
const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
//
// M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
// = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
//
assert(d <= 9);
buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
//
// M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
//
p1 = r;
n--;
//
// M+ = buffer * 10^n + (p1 + p2 * 2^e)
// pow10 = 10^n
//
// Now check if enough digits have been generated.
// Compute
//
// p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
//
// Note:
// Since rest and delta share the same exponent e, it suffices to
// compare the significands.
const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
if (rest <= delta)
{
// V = buffer * 10^n, with M- <= V <= M+.
decimal_exponent += n;
// We may now just stop. But instead look if the buffer could be
// decremented to bring V closer to w.
//
// pow10 = 10^n is now 1 ulp in the decimal representation V.
// The rounding procedure works with diyfp's with an implicit
// exponent of e.
//
// 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
//
const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
grisu2_round(buffer, length, dist, delta, rest, ten_n);
return;
}
pow10 /= 10;
//
// pow10 = 10^(n-1) <= p1 < 10^n
// Invariants restored.
}
// 2)
//
// The digits of the integral part have been generated:
//
// M+ = d[k-1]...d[1]d[0] + p2 * 2^e
// = buffer + p2 * 2^e
//
// Now generate the digits of the fractional part p2 * 2^e.
//
// Note:
// No decimal point is generated: the exponent is adjusted instead.
//
// p2 actually represents the fraction
//
// p2 * 2^e
// = p2 / 2^-e
// = d[-1] / 10^1 + d[-2] / 10^2 + ...
//
// Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
//
// p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
// + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
//
// using
//
// 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
// = ( d) * 2^-e + ( r)
//
// or
// 10^m * p2 * 2^e = d + r * 2^e
//
// i.e.
//
// M+ = buffer + p2 * 2^e
// = buffer + 10^-m * (d + r * 2^e)
// = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
//
// and stop as soon as 10^-m * r * 2^e <= delta * 2^e
assert(p2 > delta);
int m = 0;
for (;;)
{
// Invariant:
// M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
// = buffer * 10^-m + 10^-m * (p2 ) * 2^e
// = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e
// = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
//
assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
p2 *= 10;
const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
//
// M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
// = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
// = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
//
assert(d <= 9);
buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
//
// M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
//
p2 = r;
m++;
//
// M+ = buffer * 10^-m + 10^-m * p2 * 2^e
// Invariant restored.
// Check if enough digits have been generated.
//
// 10^-m * p2 * 2^e <= delta * 2^e
// p2 * 2^e <= 10^m * delta * 2^e
// p2 <= 10^m * delta
delta *= 10;
dist *= 10;
if (p2 <= delta)
{
break;
}
}
// V = buffer * 10^-m, with M- <= V <= M+.
decimal_exponent -= m;
// 1 ulp in the decimal representation is now 10^-m.
// Since delta and dist are now scaled by 10^m, we need to do the
// same with ulp in order to keep the units in sync.
//
// 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
//
const std::uint64_t ten_m = one.f;
grisu2_round(buffer, length, dist, delta, p2, ten_m);
// By construction this algorithm generates the shortest possible decimal
// number (Loitsch, Theorem 6.2) which rounds back to w.
// For an input number of precision p, at least
//
// N = 1 + ceil(p * log_10(2))
//
// decimal digits are sufficient to identify all binary floating-point
// numbers (Matula, "In-and-Out conversions").
// This implies that the algorithm does not produce more than N decimal
// digits.
//
// N = 17 for p = 53 (IEEE double precision)
// N = 9 for p = 24 (IEEE single precision)
}
/*!
v = buf * 10^decimal_exponent
len is the length of the buffer (number of decimal digits)
The buffer must be large enough, i.e. >= max_digits10.
*/
JSON_HEDLEY_NON_NULL(1)
inline void grisu2(char* buf, int& len, int& decimal_exponent,
diyfp m_minus, diyfp v, diyfp m_plus)
{
assert(m_plus.e == m_minus.e);
assert(m_plus.e == v.e);
// --------(-----------------------+-----------------------)-------- (A)
// m- v m+
//
// --------------------(-----------+-----------------------)-------- (B)
// m- v m+
//
// First scale v (and m- and m+) such that the exponent is in the range
// [alpha, gamma].
const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
// The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
const diyfp w = diyfp::mul(v, c_minus_k);
const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
// ----(---+---)---------------(---+---)---------------(---+---)----
// w- w w+
// = c*m- = c*v = c*m+
//
// diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
// w+ are now off by a small amount.
// In fact:
//
// w - v * 10^k < 1 ulp
//
// To account for this inaccuracy, add resp. subtract 1 ulp.
//
// --------+---[---------------(---+---)---------------]---+--------
// w- M- w M+ w+
//
// Now any number in [M-, M+] (bounds included) will round to w when input,
// regardless of how the input rounding algorithm breaks ties.
//
// And digit_gen generates the shortest possible such number in [M-, M+].
// Note that this does not mean that Grisu2 always generates the shortest
// possible number in the interval (m-, m+).
const diyfp M_minus(w_minus.f + 1, w_minus.e);
const diyfp M_plus (w_plus.f - 1, w_plus.e );
decimal_exponent = -cached.k; // = -(-k) = k
grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
}
/*!
v = buf * 10^decimal_exponent
len is the length of the buffer (number of decimal digits)
The buffer must be large enough, i.e. >= max_digits10.
*/
template <typename FloatType>
JSON_HEDLEY_NON_NULL(1)
void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
{
static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
"internal error: not enough precision");
assert(std::isfinite(value));
assert(value > 0);
// If the neighbors (and boundaries) of 'value' are always computed for double-precision
// numbers, all float's can be recovered using strtod (and strtof). However, the resulting
// decimal representations are not exactly "short".
//
// The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
// says "value is converted to a string as if by std::sprintf in the default ("C") locale"
// and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
// does.
// On the other hand, the documentation for 'std::to_chars' requires that "parsing the
// representation using the corresponding std::from_chars function recovers value exactly". That
// indicates that single precision floating-point numbers should be recovered using
// 'std::strtof'.
//
// NB: If the neighbors are computed for single-precision numbers, there is a single float
// (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
// value is off by 1 ulp.
#if 0
const boundaries w = compute_boundaries(static_cast<double>(value));
#else
const boundaries w = compute_boundaries(value);
#endif
grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
}
/*!
@brief appends a decimal representation of e to buf
@return a pointer to the element following the exponent.
@pre -1000 < e < 1000
*/
JSON_HEDLEY_NON_NULL(1)
JSON_HEDLEY_RETURNS_NON_NULL
inline char* append_exponent(char* buf, int e)
{
assert(e > -1000);
assert(e < 1000);
if (e < 0)
{
e = -e;
*buf++ = '-';
}
else
{
*buf++ = '+';
}
auto k = static_cast<std::uint32_t>(e);
if (k < 10)
{
// Always print at least two digits in the exponent.
// This is for compatibility with printf("%g").
*buf++ = '0';
*buf++ = static_cast<char>('0' + k);
}
else if (k < 100)
{
*buf++ = static_cast<char>('0' + k / 10);
k %= 10;
*buf++ = static_cast<char>('0' + k);
}
else
{
*buf++ = static_cast<char>('0' + k / 100);
k %= 100;
*buf++ = static_cast<char>('0' + k / 10);
k %= 10;
*buf++ = static_cast<char>('0' + k);
}
return buf;
}
/*!
@brief prettify v = buf * 10^decimal_exponent
If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
notation. Otherwise it will be printed in exponential notation.
@pre min_exp < 0
@pre max_exp > 0
*/
JSON_HEDLEY_NON_NULL(1)
JSON_HEDLEY_RETURNS_NON_NULL
inline char* format_buffer(char* buf, int len, int decimal_exponent,
int min_exp, int max_exp)
{
assert(min_exp < 0);
assert(max_exp > 0);
const int k = len;
const int n = len + decimal_exponent;
// v = buf * 10^(n-k)
// k is the length of the buffer (number of decimal digits)
// n is the position of the decimal point relative to the start of the buffer.
if (k <= n and n <= max_exp)
{
// digits[000]
// len <= max_exp + 2
std::memset(buf + k, '0', static_cast<size_t>(n - k));
// Make it look like a floating-point number (#362, #378)
buf[n + 0] = '.';
buf[n + 1] = '0';
return buf + (n + 2);
}
if (0 < n and n <= max_exp)
{
// dig.its
// len <= max_digits10 + 1
assert(k > n);
std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n));
buf[n] = '.';
return buf + (k + 1);
}
if (min_exp < n and n <= 0)
{
// 0.[000]digits
// len <= 2 + (-min_exp - 1) + max_digits10
std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k));
buf[0] = '0';
buf[1] = '.';
std::memset(buf + 2, '0', static_cast<size_t>(-n));
return buf + (2 + (-n) + k);
}
if (k == 1)
{
// dE+123
// len <= 1 + 5
buf += 1;
}
else
{
// d.igitsE+123
// len <= max_digits10 + 1 + 5
std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1));
buf[1] = '.';
buf += 1 + k;
}
*buf++ = 'e';
return append_exponent(buf, n - 1);
}
} // namespace dtoa_impl
/*!
@brief generates a decimal representation of the floating-point number value in [first, last).
The format of the resulting decimal representation is similar to printf's %g
format. Returns an iterator pointing past-the-end of the decimal representation.
@note The input number must be finite, i.e. NaN's and Inf's are not supported.
@note The buffer must be large enough.
@note The result is NOT null-terminated.
*/
template <typename FloatType>
JSON_HEDLEY_NON_NULL(1, 2)
JSON_HEDLEY_RETURNS_NON_NULL
char* to_chars(char* first, const char* last, FloatType value)
{
static_cast<void>(last); // maybe unused - fix warning
assert(std::isfinite(value));
// Use signbit(value) instead of (value < 0) since signbit works for -0.
if (std::signbit(value))
{
value = -value;
*first++ = '-';
}
if (value == 0) // +-0
{
*first++ = '0';
// Make it look like a floating-point number (#362, #378)
*first++ = '.';
*first++ = '0';
return first;
}
assert(last - first >= std::numeric_limits<FloatType>::max_digits10);
// Compute v = buffer * 10^decimal_exponent.
// The decimal digits are stored in the buffer, which needs to be interpreted
// as an unsigned decimal integer.
// len is the length of the buffer, i.e. the number of decimal digits.
int len = 0;
int decimal_exponent = 0;
dtoa_impl::grisu2(first, len, decimal_exponent, value);
assert(len <= std::numeric_limits<FloatType>::max_digits10);
// Format the buffer like printf("%.*g", prec, value)
constexpr int kMinExp = -4;
// Use digits10 here to increase compatibility with version 2.
constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
assert(last - first >= kMaxExp + 2);
assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
}
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/exceptions.hpp>
// #include <nlohmann/detail/macro_scope.hpp>
// #include <nlohmann/detail/meta/cpp_future.hpp>
// #include <nlohmann/detail/output/binary_writer.hpp>
// #include <nlohmann/detail/output/output_adapters.hpp>
// #include <nlohmann/detail/value_t.hpp>
namespace nlohmann
{
namespace detail
{
///////////////////
// serialization //
///////////////////
/// how to treat decoding errors
enum class error_handler_t
{
strict, ///< throw a type_error exception in case of invalid UTF-8
replace, ///< replace invalid UTF-8 sequences with U+FFFD
ignore ///< ignore invalid UTF-8 sequences
};
template<typename BasicJsonType>
class serializer
{
using string_t = typename BasicJsonType::string_t;
using number_float_t = typename BasicJsonType::number_float_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
static constexpr std::uint8_t UTF8_ACCEPT = 0;
static constexpr std::uint8_t UTF8_REJECT = 1;
public:
/*!
@param[in] s output stream to serialize to
@param[in] ichar indentation character to use
@param[in] error_handler_ how to react on decoding errors
*/
serializer(output_adapter_t<char> s, const char ichar,
error_handler_t error_handler_ = error_handler_t::strict)
: o(std::move(s))
, loc(std::localeconv())
, thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep))
, decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point))
, indent_char(ichar)
, indent_string(512, indent_char)
, error_handler(error_handler_)
{}
// delete because of pointer members
serializer(const serializer&) = delete;
serializer& operator=(const serializer&) = delete;
serializer(serializer&&) = delete;
serializer& operator=(serializer&&) = delete;
~serializer() = default;
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serialization internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is
called recursively.
- strings and object keys are escaped using `escape_string()`
- integer numbers are converted implicitly via `operator<<`
- floating-point numbers are converted to a string using `"%g"` format
@param[in] val value to serialize
@param[in] pretty_print whether the output shall be pretty-printed
@param[in] indent_step the indent level
@param[in] current_indent the current indent level (only used internally)
*/
void dump(const BasicJsonType& val, const bool pretty_print,
const bool ensure_ascii,
const unsigned int indent_step,
const unsigned int current_indent = 0)
{
switch (val.m_type)
{
case value_t::object:
{
if (val.m_value.object->empty())
{
o->write_characters("{}", 2);
return;
}
if (pretty_print)
{
o->write_characters("{\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character('}');
}
else
{
o->write_character('{');
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character('}');
}
return;
}
case value_t::array:
{
if (val.m_value.array->empty())
{
o->write_characters("[]", 2);
return;
}
if (pretty_print)
{
o->write_characters("[\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
dump(*i, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(not val.m_value.array->empty());
o->write_characters(indent_string.c_str(), new_indent);
dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character(']');
}
else
{
o->write_character('[');
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
dump(*i, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(not val.m_value.array->empty());
dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
o->write_character(']');
}
return;
}
case value_t::string:
{
o->write_character('\"');
dump_escaped(*val.m_value.string, ensure_ascii);
o->write_character('\"');
return;
}
case value_t::boolean:
{
if (val.m_value.boolean)
{
o->write_characters("true", 4);
}
else
{
o->write_characters("false", 5);
}
return;
}
case value_t::number_integer:
{
dump_integer(val.m_value.number_integer);
return;
}
case value_t::number_unsigned:
{
dump_integer(val.m_value.number_unsigned);
return;
}
case value_t::number_float:
{
dump_float(val.m_value.number_float);
return;
}
case value_t::discarded:
{
o->write_characters("<discarded>", 11);
return;
}
case value_t::null:
{
o->write_characters("null", 4);
return;
}
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
}
private:
/*!
@brief dump escaped string
Escape a string by replacing certain special characters by a sequence of an
escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation. The escaped string is written to output stream @a o.
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@complexity Linear in the length of string @a s.
*/
void dump_escaped(const string_t& s, const bool ensure_ascii)
{
std::uint32_t codepoint;
std::uint8_t state = UTF8_ACCEPT;
std::size_t bytes = 0; // number of bytes written to string_buffer
// number of bytes written at the point of the last valid byte
std::size_t bytes_after_last_accept = 0;
std::size_t undumped_chars = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
const auto byte = static_cast<uint8_t>(s[i]);
switch (decode(state, codepoint, byte))
{
case UTF8_ACCEPT: // decode found a new code point
{
switch (codepoint)
{
case 0x08: // backspace
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 'b';
break;
}
case 0x09: // horizontal tab
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 't';
break;
}
case 0x0A: // newline
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 'n';
break;
}
case 0x0C: // formfeed
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 'f';
break;
}
case 0x0D: // carriage return
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 'r';
break;
}
case 0x22: // quotation mark
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = '\"';
break;
}
case 0x5C: // reverse solidus
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = '\\';
break;
}
default:
{
// escape control characters (0x00..0x1F) or, if
// ensure_ascii parameter is used, non-ASCII characters
if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F)))
{
if (codepoint <= 0xFFFF)
{
(std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x",
static_cast<std::uint16_t>(codepoint));
bytes += 6;
}
else
{
(std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x",
static_cast<std::uint16_t>(0xD7C0u + (codepoint >> 10u)),
static_cast<std::uint16_t>(0xDC00u + (codepoint & 0x3FFu)));
bytes += 12;
}
}
else
{
// copy byte to buffer (all previous bytes
// been copied have in default case above)
string_buffer[bytes++] = s[i];
}
break;
}
}
// write buffer and reset index; there must be 13 bytes
// left, as this is the maximal number of bytes to be
// written ("\uxxxx\uxxxx\0") for one code point
if (string_buffer.size() - bytes < 13)
{
o->write_characters(string_buffer.data(), bytes);
bytes = 0;
}
// remember the byte position of this accept
bytes_after_last_accept = bytes;
undumped_chars = 0;
break;
}
case UTF8_REJECT: // decode found invalid UTF-8 byte
{
switch (error_handler)
{
case error_handler_t::strict:
{
std::string sn(3, '\0');
(std::snprintf)(&sn[0], sn.size(), "%.2X", byte);
JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn));
}
case error_handler_t::ignore:
case error_handler_t::replace:
{
// in case we saw this character the first time, we
// would like to read it again, because the byte
// may be OK for itself, but just not OK for the
// previous sequence
if (undumped_chars > 0)
{
--i;
}
// reset length buffer to the last accepted index;
// thus removing/ignoring the invalid characters
bytes = bytes_after_last_accept;
if (error_handler == error_handler_t::replace)
{
// add a replacement character
if (ensure_ascii)
{
string_buffer[bytes++] = '\\';
string_buffer[bytes++] = 'u';
string_buffer[bytes++] = 'f';
string_buffer[bytes++] = 'f';
string_buffer[bytes++] = 'f';
string_buffer[bytes++] = 'd';
}
else
{
string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF');
string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF');
string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD');
}
// write buffer and reset index; there must be 13 bytes
// left, as this is the maximal number of bytes to be
// written ("\uxxxx\uxxxx\0") for one code point
if (string_buffer.size() - bytes < 13)
{
o->write_characters(string_buffer.data(), bytes);
bytes = 0;
}
bytes_after_last_accept = bytes;
}
undumped_chars = 0;
// continue processing the string
state = UTF8_ACCEPT;
break;
}
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
break;
}
default: // decode found yet incomplete multi-byte code point
{
if (not ensure_ascii)
{
// code point will not be escaped - copy byte to buffer
string_buffer[bytes++] = s[i];
}
++undumped_chars;
break;
}
}
}
// we finished processing the string
if (JSON_HEDLEY_LIKELY(state == UTF8_ACCEPT))
{
// write buffer
if (bytes > 0)
{
o->write_characters(string_buffer.data(), bytes);
}
}
else
{
// we finish reading, but do not accept: string was incomplete
switch (error_handler)
{
case error_handler_t::strict:
{
std::string sn(3, '\0');
(std::snprintf)(&sn[0], sn.size(), "%.2X", static_cast<std::uint8_t>(s.back()));
JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn));
}
case error_handler_t::ignore:
{
// write all accepted bytes
o->write_characters(string_buffer.data(), bytes_after_last_accept);
break;
}
case error_handler_t::replace:
{
// write all accepted bytes
o->write_characters(string_buffer.data(), bytes_after_last_accept);
// add a replacement character
if (ensure_ascii)
{
o->write_characters("\\ufffd", 6);
}
else
{
o->write_characters("\xEF\xBF\xBD", 3);
}
break;
}
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
}
}
/*!
@brief count digits
Count the number of decimal (base 10) digits for an input unsigned integer.
@param[in] x unsigned integer number to count its digits
@return number of decimal digits
*/
inline unsigned int count_digits(number_unsigned_t x) noexcept
{
unsigned int n_digits = 1;
for (;;)
{
if (x < 10)
{
return n_digits;
}
if (x < 100)
{
return n_digits + 1;
}
if (x < 1000)
{
return n_digits + 2;
}
if (x < 10000)
{
return n_digits + 3;
}
x = x / 10000u;
n_digits += 4;
}
}
/*!
@brief dump an integer
Dump a given integer to output stream @a o. Works internally with
@a number_buffer.
@param[in] x integer number (signed or unsigned) to dump
@tparam NumberType either @a number_integer_t or @a number_unsigned_t
*/
template<typename NumberType, detail::enable_if_t<
std::is_same<NumberType, number_unsigned_t>::value or
std::is_same<NumberType, number_integer_t>::value,
int> = 0>
void dump_integer(NumberType x)
{
static constexpr std::array<std::array<char, 2>, 100> digits_to_99
{
{
{{'0', '0'}}, {{'0', '1'}}, {{'0', '2'}}, {{'0', '3'}}, {{'0', '4'}}, {{'0', '5'}}, {{'0', '6'}}, {{'0', '7'}}, {{'0', '8'}}, {{'0', '9'}},
{{'1', '0'}}, {{'1', '1'}}, {{'1', '2'}}, {{'1', '3'}}, {{'1', '4'}}, {{'1', '5'}}, {{'1', '6'}}, {{'1', '7'}}, {{'1', '8'}}, {{'1', '9'}},
{{'2', '0'}}, {{'2', '1'}}, {{'2', '2'}}, {{'2', '3'}}, {{'2', '4'}}, {{'2', '5'}}, {{'2', '6'}}, {{'2', '7'}}, {{'2', '8'}}, {{'2', '9'}},
{{'3', '0'}}, {{'3', '1'}}, {{'3', '2'}}, {{'3', '3'}}, {{'3', '4'}}, {{'3', '5'}}, {{'3', '6'}}, {{'3', '7'}}, {{'3', '8'}}, {{'3', '9'}},
{{'4', '0'}}, {{'4', '1'}}, {{'4', '2'}}, {{'4', '3'}}, {{'4', '4'}}, {{'4', '5'}}, {{'4', '6'}}, {{'4', '7'}}, {{'4', '8'}}, {{'4', '9'}},
{{'5', '0'}}, {{'5', '1'}}, {{'5', '2'}}, {{'5', '3'}}, {{'5', '4'}}, {{'5', '5'}}, {{'5', '6'}}, {{'5', '7'}}, {{'5', '8'}}, {{'5', '9'}},
{{'6', '0'}}, {{'6', '1'}}, {{'6', '2'}}, {{'6', '3'}}, {{'6', '4'}}, {{'6', '5'}}, {{'6', '6'}}, {{'6', '7'}}, {{'6', '8'}}, {{'6', '9'}},
{{'7', '0'}}, {{'7', '1'}}, {{'7', '2'}}, {{'7', '3'}}, {{'7', '4'}}, {{'7', '5'}}, {{'7', '6'}}, {{'7', '7'}}, {{'7', '8'}}, {{'7', '9'}},
{{'8', '0'}}, {{'8', '1'}}, {{'8', '2'}}, {{'8', '3'}}, {{'8', '4'}}, {{'8', '5'}}, {{'8', '6'}}, {{'8', '7'}}, {{'8', '8'}}, {{'8', '9'}},
{{'9', '0'}}, {{'9', '1'}}, {{'9', '2'}}, {{'9', '3'}}, {{'9', '4'}}, {{'9', '5'}}, {{'9', '6'}}, {{'9', '7'}}, {{'9', '8'}}, {{'9', '9'}},
}
};
// special case for "0"
if (x == 0)
{
o->write_character('0');
return;
}
// use a pointer to fill the buffer
auto buffer_ptr = number_buffer.begin();
const bool is_negative = std::is_same<NumberType, number_integer_t>::value and not(x >= 0); // see issue #755
number_unsigned_t abs_value;
unsigned int n_chars;
if (is_negative)
{
*buffer_ptr = '-';
abs_value = remove_sign(x);
// account one more byte for the minus sign
n_chars = 1 + count_digits(abs_value);
}
else
{
abs_value = static_cast<number_unsigned_t>(x);
n_chars = count_digits(abs_value);
}
// spare 1 byte for '\0'
assert(n_chars < number_buffer.size() - 1);
// jump to the end to generate the string from backward
// so we later avoid reversing the result
buffer_ptr += n_chars;
// Fast int2ascii implementation inspired by "Fastware" talk by Andrei Alexandrescu
// See: https://www.youtube.com/watch?v=o4-CwDo2zpg
while (abs_value >= 100)
{
const auto digits_index = static_cast<unsigned>((abs_value % 100));
abs_value /= 100;
*(--buffer_ptr) = digits_to_99[digits_index][1];
*(--buffer_ptr) = digits_to_99[digits_index][0];
}
if (abs_value >= 10)
{
const auto digits_index = static_cast<unsigned>(abs_value);
*(--buffer_ptr) = digits_to_99[digits_index][1];
*(--buffer_ptr) = digits_to_99[digits_index][0];
}
else
{
*(--buffer_ptr) = static_cast<char>('0' + abs_value);
}
o->write_characters(number_buffer.data(), n_chars);
}
/*!
@brief dump a floating-point number
Dump a given floating-point number to output stream @a o. Works internally
with @a number_buffer.
@param[in] x floating-point number to dump
*/
void dump_float(number_float_t x)
{
// NaN / inf
if (not std::isfinite(x))
{
o->write_characters("null", 4);
return;
}
// If number_float_t is an IEEE-754 single or double precision number,
// use the Grisu2 algorithm to produce short numbers which are
// guaranteed to round-trip, using strtof and strtod, resp.
//
// NB: The test below works if <long double> == <double>.
static constexpr bool is_ieee_single_or_double
= (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 24 and std::numeric_limits<number_float_t>::max_exponent == 128) or
(std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 53 and std::numeric_limits<number_float_t>::max_exponent == 1024);
dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>());
}
void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/)
{
char* begin = number_buffer.data();
char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x);
o->write_characters(begin, static_cast<size_t>(end - begin));
}
void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/)
{
// get number of digits for a float -> text -> float round-trip
static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10;
// the actual conversion
std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
// negative value indicates an error
assert(len > 0);
// check if buffer was large enough
assert(static_cast<std::size_t>(len) < number_buffer.size());
// erase thousands separator
if (thousands_sep != '\0')
{
const auto end = std::remove(number_buffer.begin(),
number_buffer.begin() + len, thousands_sep);
std::fill(end, number_buffer.end(), '\0');
assert((end - number_buffer.begin()) <= len);
len = (end - number_buffer.begin());
}
// convert decimal point to '.'
if (decimal_point != '\0' and decimal_point != '.')
{
const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
if (dec_pos != number_buffer.end())
{
*dec_pos = '.';
}
}
o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
// determine if need to append ".0"
const bool value_is_int_like =
std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
[](char c)
{
return c == '.' or c == 'e';
});
if (value_is_int_like)
{
o->write_characters(".0", 2);
}
}
/*!
@brief check whether a string is UTF-8 encoded
The function checks each byte of a string whether it is UTF-8 encoded. The
result of the check is stored in the @a state parameter. The function must
be called initially with state 0 (accept). State 1 means the string must
be rejected, because the current byte is not allowed. If the string is
completely processed, but the state is non-zero, the string ended
prematurely; that is, the last byte indicated more bytes should have
followed.
@param[in,out] state the state of the decoding
@param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT)
@param[in] byte next byte to decode
@return new state
@note The function has been edited: a std::array is used.
@copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <[email protected]>
@sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
*/
static std::uint8_t decode(std::uint8_t& state, std::uint32_t& codep, const std::uint8_t byte) noexcept
{
static const std::array<std::uint8_t, 400> utf8d =
{
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
}
};
const std::uint8_t type = utf8d[byte];
codep = (state != UTF8_ACCEPT)
? (byte & 0x3fu) | (codep << 6u)
: (0xFFu >> type) & (byte);
state = utf8d[256u + state * 16u + type];
return state;
}
/*
* Overload to make the compiler happy while it is instantiating
* dump_integer for number_unsigned_t.
* Must never be called.
*/
number_unsigned_t remove_sign(number_unsigned_t x)
{
assert(false); // LCOV_EXCL_LINE
return x; // LCOV_EXCL_LINE
}
/*
* Helper function for dump_integer
*
* This function takes a negative signed integer and returns its absolute
* value as unsigned integer. The plus/minus shuffling is necessary as we can
* not directly remove the sign of an arbitrary signed integer as the
* absolute values of INT_MIN and INT_MAX are usually not the same. See
* #1708 for details.
*/
inline number_unsigned_t remove_sign(number_integer_t x) noexcept
{
assert(x < 0 and x < (std::numeric_limits<number_integer_t>::max)());
return static_cast<number_unsigned_t>(-(x + 1)) + 1;
}
private:
/// the output of the serializer
output_adapter_t<char> o = nullptr;
/// a (hopefully) large enough character buffer
std::array<char, 64> number_buffer{{}};
/// the locale
const std::lconv* loc = nullptr;
/// the locale's thousand separator character
const char thousands_sep = '\0';
/// the locale's decimal point character
const char decimal_point = '\0';
/// string buffer
std::array<char, 512> string_buffer{{}};
/// the indentation character
const char indent_char;
/// the indentation string
string_t indent_string;
/// error_handler how to react on decoding errors
const error_handler_t error_handler;
};
} // namespace detail
} // namespace nlohmann
// #include <nlohmann/detail/value_t.hpp>
// #include <nlohmann/json_fwd.hpp>
/*!
@brief namespace for Niels Lohmann
@see https://github.com/nlohmann
@since version 1.0.0
*/
namespace nlohmann
{
/*!
@brief a class to store JSON values
@tparam ObjectType type for JSON objects (`std::map` by default; will be used
in @ref object_t)
@tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
in @ref array_t)
@tparam StringType type for JSON strings and object keys (`std::string` by
default; will be used in @ref string_t)
@tparam BooleanType type for JSON booleans (`bool` by default; will be used
in @ref boolean_t)
@tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
default; will be used in @ref number_integer_t)
@tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
`uint64_t` by default; will be used in @ref number_unsigned_t)
@tparam NumberFloatType type for JSON floating-point numbers (`double` by
default; will be used in @ref number_float_t)
@tparam AllocatorType type of the allocator to use (`std::allocator` by
default)
@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
and `from_json()` (@ref adl_serializer by default)
@requirement The class satisfies the following concept requirements:
- Basic
- [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible):
JSON values can be default constructed. The result will be a JSON null
value.
- [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible):
A JSON value can be constructed from an rvalue argument.
- [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible):
A JSON value can be copy-constructed from an lvalue expression.
- [MoveAssignable](https://en.cppreference.com/w/cpp/named_req/MoveAssignable):
A JSON value van be assigned from an rvalue argument.
- [CopyAssignable](https://en.cppreference.com/w/cpp/named_req/CopyAssignable):
A JSON value can be copy-assigned from an lvalue expression.
- [Destructible](https://en.cppreference.com/w/cpp/named_req/Destructible):
JSON values can be destructed.
- Layout
- [StandardLayoutType](https://en.cppreference.com/w/cpp/named_req/StandardLayoutType):
JSON values have
[standard layout](https://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
All non-static data members are private and standard layout types, the
class has no virtual functions or (virtual) base classes.
- Library-wide
- [EqualityComparable](https://en.cppreference.com/w/cpp/named_req/EqualityComparable):
JSON values can be compared with `==`, see @ref
operator==(const_reference,const_reference).
- [LessThanComparable](https://en.cppreference.com/w/cpp/named_req/LessThanComparable):
JSON values can be compared with `<`, see @ref
operator<(const_reference,const_reference).
- [Swappable](https://en.cppreference.com/w/cpp/named_req/Swappable):
Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
other compatible types, using unqualified function call @ref swap().
- [NullablePointer](https://en.cppreference.com/w/cpp/named_req/NullablePointer):
JSON values can be compared against `std::nullptr_t` objects which are used
to model the `null` value.
- Container
- [Container](https://en.cppreference.com/w/cpp/named_req/Container):
JSON values can be used like STL containers and provide iterator access.
- [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer);
JSON values can be used like STL containers and provide reverse iterator
access.
@invariant The member variables @a m_value and @a m_type have the following
relationship:
- If `m_type == value_t::object`, then `m_value.object != nullptr`.
- If `m_type == value_t::array`, then `m_value.array != nullptr`.
- If `m_type == value_t::string`, then `m_value.string != nullptr`.
The invariants are checked by member function assert_invariant().
@internal
@note ObjectType trick from http://stackoverflow.com/a/9860911
@endinternal
@see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
Format](http://rfc7159.net/rfc7159)
@since version 1.0.0
@nosubgrouping
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
class basic_json
{
private:
template<detail::value_t> friend struct detail::external_constructor;
friend ::nlohmann::json_pointer<basic_json>;
friend ::nlohmann::detail::parser<basic_json>;
friend ::nlohmann::detail::serializer<basic_json>;
template<typename BasicJsonType>
friend class ::nlohmann::detail::iter_impl;
template<typename BasicJsonType, typename CharType>
friend class ::nlohmann::detail::binary_writer;
template<typename BasicJsonType, typename SAX>
friend class ::nlohmann::detail::binary_reader;
template<typename BasicJsonType>
friend class ::nlohmann::detail::json_sax_dom_parser;
template<typename BasicJsonType>
friend class ::nlohmann::detail::json_sax_dom_callback_parser;
/// workaround type for MSVC
using basic_json_t = NLOHMANN_BASIC_JSON_TPL;
// convenience aliases for types residing in namespace detail;
using lexer = ::nlohmann::detail::lexer<basic_json>;
using parser = ::nlohmann::detail::parser<basic_json>;
using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t;
template<typename BasicJsonType>
using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>;
template<typename BasicJsonType>
using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>;
template<typename Iterator>
using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>;
template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>;
template<typename CharType>
using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>;
using binary_reader = ::nlohmann::detail::binary_reader<basic_json>;
template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>;
using serializer = ::nlohmann::detail::serializer<basic_json>;
public:
using value_t = detail::value_t;
/// JSON Pointer, see @ref nlohmann::json_pointer
using json_pointer = ::nlohmann::json_pointer<basic_json>;
template<typename T, typename SFINAE>
using json_serializer = JSONSerializer<T, SFINAE>;
/// how to treat decoding errors
using error_handler_t = detail::error_handler_t;
/// helper type for initializer lists of basic_json values
using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
using input_format_t = detail::input_format_t;
/// SAX interface type, see @ref nlohmann::json_sax
using json_sax_t = json_sax<basic_json>;
////////////////
// exceptions //
////////////////
/// @name exceptions
/// Classes to implement user-defined exceptions.
/// @{
/// @copydoc detail::exception
using exception = detail::exception;
/// @copydoc detail::parse_error
using parse_error = detail::parse_error;
/// @copydoc detail::invalid_iterator
using invalid_iterator = detail::invalid_iterator;
/// @copydoc detail::type_error
using type_error = detail::type_error;
/// @copydoc detail::out_of_range
using out_of_range = detail::out_of_range;
/// @copydoc detail::other_error
using other_error = detail::other_error;
/// @}
/////////////////////
// container types //
/////////////////////
/// @name container types
/// The canonic container types to use @ref basic_json like any other STL
/// container.
/// @{
/// the type of elements in a basic_json container
using value_type = basic_json;
/// the type of an element reference
using reference = value_type&;
/// the type of an element const reference
using const_reference = const value_type&;
/// a type to represent differences between iterators
using difference_type = std::ptrdiff_t;
/// a type to represent container sizes
using size_type = std::size_t;
/// the allocator type
using allocator_type = AllocatorType<basic_json>;
/// the type of an element pointer
using pointer = typename std::allocator_traits<allocator_type>::pointer;
/// the type of an element const pointer
using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
/// an iterator for a basic_json container
using iterator = iter_impl<basic_json>;
/// a const iterator for a basic_json container
using const_iterator = iter_impl<const basic_json>;
/// a reverse iterator for a basic_json container
using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
/// a const reverse iterator for a basic_json container
using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
/// @}
/*!
@brief returns the allocator associated with the container
*/
static allocator_type get_allocator()
{
return allocator_type();
}
/*!
@brief returns version information on the library
This function returns a JSON object with information about the library,
including the version number and information on the platform and compiler.
@return JSON object holding version information
key | description
----------- | ---------------
`compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version).
`copyright` | The copyright line for the library as string.
`name` | The name of the library as string.
`platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`.
`url` | The URL of the project as string.
`version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string).
@liveexample{The following code shows an example output of the `meta()`
function.,meta}
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@complexity Constant.
@since 2.1.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json meta()
{
basic_json result;
result["copyright"] = "(C) 2013-2017 Niels Lohmann";
result["name"] = "JSON for Modern C++";
result["url"] = "https://github.com/nlohmann/json";
result["version"]["string"] =
std::to_string(NLOHMANN_JSON_VERSION_MAJOR) + "." +
std::to_string(NLOHMANN_JSON_VERSION_MINOR) + "." +
std::to_string(NLOHMANN_JSON_VERSION_PATCH);
result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR;
result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR;
result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH;
#ifdef _WIN32
result["platform"] = "win32";
#elif defined __linux__
result["platform"] = "linux";
#elif defined __APPLE__
result["platform"] = "apple";
#elif defined __unix__
result["platform"] = "unix";
#else
result["platform"] = "unknown";
#endif
#if defined(__ICC) || defined(__INTEL_COMPILER)
result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
#elif defined(__clang__)
result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
#elif defined(__GNUC__) || defined(__GNUG__)
result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
#elif defined(__HP_cc) || defined(__HP_aCC)
result["compiler"] = "hp"
#elif defined(__IBMCPP__)
result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
#elif defined(_MSC_VER)
result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
#elif defined(__PGI)
result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
#elif defined(__SUNPRO_CC)
result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
#else
result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
#endif
#ifdef __cplusplus
result["compiler"]["c++"] = std::to_string(__cplusplus);
#else
result["compiler"]["c++"] = "unknown";
#endif
return result;
}
///////////////////////////
// JSON value data types //
///////////////////////////
/// @name JSON value data types
/// The data types to store a JSON value. These types are derived from
/// the template arguments passed to class @ref basic_json.
/// @{
#if defined(JSON_HAS_CPP_14)
// Use transparent comparator if possible, combined with perfect forwarding
// on find() and count() calls prevents unnecessary string construction.
using object_comparator_t = std::less<>;
#else
using object_comparator_t = std::less<StringType>;
#endif
/*!
@brief a type for an object
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
> An object is an unordered collection of zero or more name/value pairs,
> where a name is a string and a value is a string, number, boolean, null,
> object, or array.
To store objects in C++, a type is defined by the template parameters
described below.
@tparam ObjectType the container to store objects (e.g., `std::map` or
`std::unordered_map`)
@tparam StringType the type of the keys or names (e.g., `std::string`).
The comparison function `std::less<StringType>` is used to order elements
inside the container.
@tparam AllocatorType the allocator to use for objects (e.g.,
`std::allocator`)
#### Default type
With the default values for @a ObjectType (`std::map`), @a StringType
(`std::string`), and @a AllocatorType (`std::allocator`), the default
value for @a object_t is:
@code {.cpp}
std::map<
std::string, // key_type
basic_json, // value_type
std::less<std::string>, // key_compare
std::allocator<std::pair<const std::string, basic_json>> // allocator_type
>
@endcode
#### Behavior
The choice of @a object_t influences the behavior of the JSON class. With
the default type, objects have the following behavior:
- When all names are unique, objects will be interoperable in the sense
that all software implementations receiving that object will agree on
the name-value mappings.
- When the names within an object are not unique, it is unspecified which
one of the values for a given key will be chosen. For instance,
`{"key": 2, "key": 1}` could be equal to either `{"key": 1}` or
`{"key": 2}`.
- Internally, name/value pairs are stored in lexicographical order of the
names. Objects will also be serialized (see @ref dump) in this order.
For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
and serialized as `{"a": 2, "b": 1}`.
- When comparing objects, the order of the name/value pairs is irrelevant.
This makes objects interoperable in the sense that they will not be
affected by these differences. For instance, `{"b": 1, "a": 2}` and
`{"a": 2, "b": 1}` will be treated as equal.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the object's limit of nesting is not explicitly constrained.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON object.
#### Storage
Objects are stored as pointers in a @ref basic_json type. That is, for any
access to object values, a pointer of type `object_t*` must be
dereferenced.
@sa @ref array_t -- type for an array value
@since version 1.0.0
@note The order name/value pairs are added to the object is *not*
preserved by the library. Therefore, iterating an object may return
name/value pairs in a different order than they were originally stored. In
fact, keys will be traversed in alphabetical order as `std::map` with
`std::less` is used by default. Please note this behavior conforms to [RFC
7159](http://rfc7159.net/rfc7159), because any order implements the
specified "unordered" nature of JSON objects.
*/
using object_t = ObjectType<StringType,
basic_json,
object_comparator_t,
AllocatorType<std::pair<const StringType,
basic_json>>>;
/*!
@brief a type for an array
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
> An array is an ordered sequence of zero or more values.
To store objects in C++, a type is defined by the template parameters
explained below.
@tparam ArrayType container type to store arrays (e.g., `std::vector` or
`std::list`)
@tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
#### Default type
With the default values for @a ArrayType (`std::vector`) and @a
AllocatorType (`std::allocator`), the default value for @a array_t is:
@code {.cpp}
std::vector<
basic_json, // value_type
std::allocator<basic_json> // allocator_type
>
@endcode
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the array's limit of nesting is not explicitly constrained.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON array.
#### Storage
Arrays are stored as pointers in a @ref basic_json type. That is, for any
access to array values, a pointer of type `array_t*` must be dereferenced.
@sa @ref object_t -- type for an object value
@since version 1.0.0
*/
using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
/*!
@brief a type for a string
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
> A string is a sequence of zero or more Unicode characters.
To store objects in C++, a type is defined by the template parameter
described below. Unicode values are split by the JSON class into
byte-sized characters during deserialization.
@tparam StringType the container to store strings (e.g., `std::string`).
Note this container is used for keys/names in objects, see @ref object_t.
#### Default type
With the default values for @a StringType (`std::string`), the default
value for @a string_t is:
@code {.cpp}
std::string
@endcode
#### Encoding
Strings are stored in UTF-8 encoding. Therefore, functions like
`std::string::size()` or `std::string::length()` return the number of
bytes in the string rather than the number of characters or glyphs.
#### String comparison
[RFC 7159](http://rfc7159.net/rfc7159) states:
> Software implementations are typically required to test names of object
> members for equality. Implementations that transform the textual
> representation into sequences of Unicode code units and then perform the
> comparison numerically, code unit by code unit, are interoperable in the
> sense that implementations will agree in all cases on equality or
> inequality of two strings. For example, implementations that compare
> strings with escaped characters unconverted may incorrectly find that
> `"a\\b"` and `"a\u005Cb"` are not equal.
This implementation is interoperable as it does compare strings code unit
by code unit.
#### Storage
String values are stored as pointers in a @ref basic_json type. That is,
for any access to string values, a pointer of type `string_t*` must be
dereferenced.
@since version 1.0.0
*/
using string_t = StringType;
/*!
@brief a type for a boolean
[RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
type which differentiates the two literals `true` and `false`.
To store objects in C++, a type is defined by the template parameter @a
BooleanType which chooses the type to use.
#### Default type
With the default values for @a BooleanType (`bool`), the default value for
@a boolean_t is:
@code {.cpp}
bool
@endcode
#### Storage
Boolean values are stored directly inside a @ref basic_json type.
@since version 1.0.0
*/
using boolean_t = BooleanType;
/*!
@brief a type for a number (integer)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store integer numbers in C++, a type is defined by the template
parameter @a NumberIntegerType which chooses the type to use.
#### Default type
With the default values for @a NumberIntegerType (`int64_t`), the default
value for @a number_integer_t is:
@code {.cpp}
int64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
that are out of range will yield over/underflow when used in a
constructor. During deserialization, too large or small integer numbers
will be automatically be stored as @ref number_unsigned_t or @ref
number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange of the exactly supported range [INT64_MIN,
INT64_MAX], this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_integer_t = NumberIntegerType;
/*!
@brief a type for a number (unsigned)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store unsigned integer numbers in C++, a type is defined by the
template parameter @a NumberUnsignedType which chooses the type to use.
#### Default type
With the default values for @a NumberUnsignedType (`uint64_t`), the
default value for @a number_unsigned_t is:
@code {.cpp}
uint64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
number that can be stored is `0`. Integer numbers that are out of range
will yield over/underflow when used in a constructor. During
deserialization, too large or small integer numbers will be automatically
be stored as @ref number_integer_t or @ref number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange (when considered in conjunction with the
number_integer_t type) of the exactly supported range [0, UINT64_MAX],
this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_integer_t -- type for number values (integer)
@since version 2.0.0
*/
using number_unsigned_t = NumberUnsignedType;
/*!
@brief a type for a number (floating-point)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store floating-point numbers in C++, a type is defined by the template
parameter @a NumberFloatType which chooses the type to use.
#### Default type
With the default values for @a NumberFloatType (`double`), the default
value for @a number_float_t is:
@code {.cpp}
double
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in floating-point literals will be ignored. Internally,
the value will be stored as decimal number. For instance, the C++
floating-point literal `01.2` will be serialized to `1.2`. During
deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) states:
> This specification allows implementations to set limits on the range and
> precision of numbers accepted. Since software that implements IEEE
> 754-2008 binary64 (double precision) numbers is generally available and
> widely used, good interoperability can be achieved by implementations
> that expect no more precision or range than these provide, in the sense
> that implementations will approximate JSON numbers within the expected
> precision.
This implementation does exactly follow this approach, as it uses double
precision floating-point numbers. Note values smaller than
`-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
will be stored as NaN internally and be serialized to `null`.
#### Storage
Floating-point number values are stored directly inside a @ref basic_json
type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_float_t = NumberFloatType;
/// @}
private:
/// helper for exception-safe object creation
template<typename T, typename... Args>
JSON_HEDLEY_RETURNS_NON_NULL
static T* create(Args&& ... args)
{
AllocatorType<T> alloc;
using AllocatorTraits = std::allocator_traits<AllocatorType<T>>;
auto deleter = [&](T * object)
{
AllocatorTraits::deallocate(alloc, object, 1);
};
std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter);
AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...);
assert(object != nullptr);
return object.release();
}
////////////////////////
// JSON value storage //
////////////////////////
/*!
@brief a JSON value
The actual storage for a JSON value of the @ref basic_json class. This
union combines the different storage types for the JSON value types
defined in @ref value_t.
JSON type | value_t type | used type
--------- | --------------- | ------------------------
object | object | pointer to @ref object_t
array | array | pointer to @ref array_t
string | string | pointer to @ref string_t
boolean | boolean | @ref boolean_t
number | number_integer | @ref number_integer_t
number | number_unsigned | @ref number_unsigned_t
number | number_float | @ref number_float_t
null | null | *no value is stored*
@note Variable-length types (objects, arrays, and strings) are stored as
pointers. The size of the union should not exceed 64 bits if the default
value types are used.
@since version 1.0.0
*/
union json_value
{
/// object (stored with pointer to save storage)
object_t* object;
/// array (stored with pointer to save storage)
array_t* array;
/// string (stored with pointer to save storage)
string_t* string;
/// boolean
boolean_t boolean;
/// number (integer)
number_integer_t number_integer;
/// number (unsigned integer)
number_unsigned_t number_unsigned;
/// number (floating-point)
number_float_t number_float;
/// default constructor (for null values)
json_value() = default;
/// constructor for booleans
json_value(boolean_t v) noexcept : boolean(v) {}
/// constructor for numbers (integer)
json_value(number_integer_t v) noexcept : number_integer(v) {}
/// constructor for numbers (unsigned)
json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
/// constructor for numbers (floating-point)
json_value(number_float_t v) noexcept : number_float(v) {}
/// constructor for empty values of a given type
json_value(value_t t)
{
switch (t)
{
case value_t::object:
{
object = create<object_t>();
break;
}
case value_t::array:
{
array = create<array_t>();
break;
}
case value_t::string:
{
string = create<string_t>("");
break;
}
case value_t::boolean:
{
boolean = boolean_t(false);
break;
}
case value_t::number_integer:
{
number_integer = number_integer_t(0);
break;
}
case value_t::number_unsigned:
{
number_unsigned = number_unsigned_t(0);
break;
}
case value_t::number_float:
{
number_float = number_float_t(0.0);
break;
}
case value_t::null:
{
object = nullptr; // silence warning, see #821
break;
}
default:
{
object = nullptr; // silence warning, see #821
if (JSON_HEDLEY_UNLIKELY(t == value_t::null))
{
JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.7.0")); // LCOV_EXCL_LINE
}
break;
}
}
}
/// constructor for strings
json_value(const string_t& value)
{
string = create<string_t>(value);
}
/// constructor for rvalue strings
json_value(string_t&& value)
{
string = create<string_t>(std::move(value));
}
/// constructor for objects
json_value(const object_t& value)
{
object = create<object_t>(value);
}
/// constructor for rvalue objects
json_value(object_t&& value)
{
object = create<object_t>(std::move(value));
}
/// constructor for arrays
json_value(const array_t& value)
{
array = create<array_t>(value);
}
/// constructor for rvalue arrays
json_value(array_t&& value)
{
array = create<array_t>(std::move(value));
}
void destroy(value_t t) noexcept
{
switch (t)
{
case value_t::object:
{
AllocatorType<object_t> alloc;
std::allocator_traits<decltype(alloc)>::destroy(alloc, object);
std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1);
break;
}
case value_t::array:
{
AllocatorType<array_t> alloc;
std::allocator_traits<decltype(alloc)>::destroy(alloc, array);
std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1);
break;
}
case value_t::string:
{
AllocatorType<string_t> alloc;
std::allocator_traits<decltype(alloc)>::destroy(alloc, string);
std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1);
break;
}
default:
{
break;
}
}
}
};
/*!
@brief checks the class invariants
This function asserts the class invariants. It needs to be called at the
end of every constructor to make sure that created objects respect the
invariant. Furthermore, it has to be called each time the type of a JSON
value is changed, because the invariant expresses a relationship between
@a m_type and @a m_value.
*/
void assert_invariant() const noexcept
{
assert(m_type != value_t::object or m_value.object != nullptr);
assert(m_type != value_t::array or m_value.array != nullptr);
assert(m_type != value_t::string or m_value.string != nullptr);
}
public:
//////////////////////////
// JSON parser callback //
//////////////////////////
/*!
@brief parser event types
The parser callback distinguishes the following events:
- `object_start`: the parser read `{` and started to process a JSON object
- `key`: the parser read a key of a value in an object
- `object_end`: the parser read `}` and finished processing a JSON object
- `array_start`: the parser read `[` and started to process a JSON array
- `array_end`: the parser read `]` and finished processing a JSON array
- `value`: the parser finished reading a JSON value
@image html callback_events.png "Example when certain parse events are triggered"
@sa @ref parser_callback_t for more information and examples
*/
using parse_event_t = typename parser::parse_event_t;
/*!
@brief per-element parser callback type
With a parser callback function, the result of parsing a JSON text can be
influenced. When passed to @ref parse, it is called on certain events
(passed as @ref parse_event_t via parameter @a event) with a set recursion
depth @a depth and context JSON value @a parsed. The return value of the
callback function is a boolean indicating whether the element that emitted
the callback shall be kept or not.
We distinguish six scenarios (determined by the event type) in which the
callback function can be called. The following table describes the values
of the parameters @a depth, @a event, and @a parsed.
parameter @a event | description | parameter @a depth | parameter @a parsed
------------------ | ----------- | ------------------ | -------------------
parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
@image html callback_events.png "Example when certain parse events are triggered"
Discarding a value (i.e., returning `false`) has different effects
depending on the context in which function was called:
- Discarded values in structured types are skipped. That is, the parser
will behave as if the discarded value was never read.
- In case a value outside a structured type is skipped, it is replaced
with `null`. This case happens if the top-level element is skipped.
@param[in] depth the depth of the recursion during parsing
@param[in] event an event of type parse_event_t indicating the context in
the callback function has been called
@param[in,out] parsed the current intermediate parse result; note that
writing to this value has no effect for parse_event_t::key events
@return Whether the JSON value which called the function during parsing
should be kept (`true`) or not (`false`). In the latter case, it is either
skipped completely or replaced by an empty discarded object.
@sa @ref parse for examples
@since version 1.0.0
*/
using parser_callback_t = typename parser::parser_callback_t;
//////////////////
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an empty value with a given type
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] v the type of the value to create
@complexity Constant.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@sa @ref clear() -- restores the postcondition of this constructor
@since version 1.0.0
*/
basic_json(const value_t v)
: m_type(v), m_value(v)
{
assert_invariant();
}
/*!
@brief create a null object
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
assert_invariant();
}
/*!
@brief create a JSON value
This is a "catch all" constructor for all compatible JSON types; that is,
types for which a `to_json()` method exists. The constructor forwards the
parameter @a val to that method (to `json_serializer<U>::to_json` method
with `U = uncvref_t<CompatibleType>`, to be exact).
Template type @a CompatibleType includes, but is not limited to, the
following types:
- **arrays**: @ref array_t and all kinds of compatible containers such as
`std::vector`, `std::deque`, `std::list`, `std::forward_list`,
`std::array`, `std::valarray`, `std::set`, `std::unordered_set`,
`std::multiset`, and `std::unordered_multiset` with a `value_type` from
which a @ref basic_json value can be constructed.
- **objects**: @ref object_t and all kinds of compatible associative
containers such as `std::map`, `std::unordered_map`, `std::multimap`,
and `std::unordered_multimap` with a `key_type` compatible to
@ref string_t and a `value_type` from which a @ref basic_json value can
be constructed.
- **strings**: @ref string_t, string literals, and all compatible string
containers can be used.
- **numbers**: @ref number_integer_t, @ref number_unsigned_t,
@ref number_float_t, and all convertible number types such as `int`,
`size_t`, `int64_t`, `float` or `double` can be used.
- **boolean**: @ref boolean_t / `bool` can be used.
See the examples below.
@tparam CompatibleType a type such that:
- @a CompatibleType is not derived from `std::istream`,
- @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
constructors),
- @a CompatibleType is not a different @ref basic_json type (i.e. with different template arguments)
- @a CompatibleType is not a @ref basic_json nested type (e.g.,
@ref json_pointer, @ref iterator, etc ...)
- @ref @ref json_serializer<U> has a
`to_json(basic_json_t&, CompatibleType&&)` method
@tparam U = `uncvref_t<CompatibleType>`
@param[in] val the value to be forwarded to the respective constructor
@complexity Usually linear in the size of the passed @a val, also
depending on the implementation of the called `to_json()`
method->
@exceptionsafety Depends on the called constructor. For types directly
supported by the library (i.e., all types for which no `to_json()` function
was provided), strong guarantee holds: if an exception is thrown, there are
no changes to any JSON value.
@liveexample{The following code shows the constructor with several
compatible types.,basic_json__CompatibleType}
@since version 2.1.0
*/
template <typename CompatibleType,
typename U = detail::uncvref_t<CompatibleType>,
detail::enable_if_t<
not detail::is_basic_json<U>::value and detail::is_compatible_type<basic_json_t, U>::value, int> = 0>
basic_json(CompatibleType && val) noexcept(noexcept(
JSONSerializer<U>::to_json(std::declval<basic_json_t&>(),
std::forward<CompatibleType>(val))))
{
JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
assert_invariant();
}
/*!
@brief create a JSON value from an existing one
This is a constructor for existing @ref basic_json types.
It does not hijack copy/move constructors, since the parameter has different
template arguments than the current ones.
The constructor tries to convert the internal @ref m_value of the parameter.
@tparam BasicJsonType a type such that:
- @a BasicJsonType is a @ref basic_json type.
- @a BasicJsonType has different template arguments than @ref basic_json_t.
@param[in] val the @ref basic_json value to be converted.
@complexity Usually linear in the size of the passed @a val, also
depending on the implementation of the called `to_json()`
method->
@exceptionsafety Depends on the called constructor. For types directly
supported by the library (i.e., all types for which no `to_json()` function
was provided), strong guarantee holds: if an exception is thrown, there are
no changes to any JSON value.
@since version 3.2.0
*/
template <typename BasicJsonType,
detail::enable_if_t<
detail::is_basic_json<BasicJsonType>::value and not std::is_same<basic_json, BasicJsonType>::value, int> = 0>
basic_json(const BasicJsonType& val)
{
using other_boolean_t = typename BasicJsonType::boolean_t;
using other_number_float_t = typename BasicJsonType::number_float_t;
using other_number_integer_t = typename BasicJsonType::number_integer_t;
using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using other_string_t = typename BasicJsonType::string_t;
using other_object_t = typename BasicJsonType::object_t;
using other_array_t = typename BasicJsonType::array_t;
switch (val.type())
{
case value_t::boolean:
JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>());
break;
case value_t::number_float:
JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>());
break;
case value_t::number_integer:
JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>());
break;
case value_t::number_unsigned:
JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>());
break;
case value_t::string:
JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>());
break;
case value_t::object:
JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>());
break;
case value_t::array:
JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>());
break;
case value_t::null:
*this = nullptr;
break;
case value_t::discarded:
m_type = value_t::discarded;
break;
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
assert_invariant();
}
/*!
@brief create a container (array or object) from an initializer list
Creates a JSON value of type array or object from the passed initializer
list @a init. In case @a type_deduction is `true` (default), the type of
the JSON value to be created is deducted from the initializer list @a init
according to the following rules:
1. If the list is empty, an empty JSON object value `{}` is created.
2. If the list consists of pairs whose first element is a string, a JSON
object value is created where the first elements of the pairs are
treated as keys and the second elements are as values.
3. In all other cases, an array is created.
The rules aim to create the best fit between a C++ initializer list and
JSON values. The rationale is as follows:
1. The empty initializer list is written as `{}` which is exactly an empty
JSON object.
2. C++ has no way of describing mapped types other than to list a list of
pairs. As JSON requires that keys must be of type string, rule 2 is the
weakest constraint one can pose on initializer lists to interpret them
as an object.
3. In all other cases, the initializer list could not be interpreted as
JSON object type, so interpreting it as JSON array type is safe.
With the rules described above, the following JSON values cannot be
expressed by an initializer list:
- the empty array (`[]`): use @ref array(initializer_list_t)
with an empty initializer list in this case
- arrays whose elements satisfy rule 2: use @ref
array(initializer_list_t) with the same initializer list
in this case
@note When used without parentheses around an empty initializer list, @ref
basic_json() is called instead of this function, yielding the JSON null
value.
@param[in] init initializer list with JSON values
@param[in] type_deduction internal parameter; when set to `true`, the type
of the JSON value is deducted from the initializer list @a init; when set
to `false`, the type provided via @a manual_type is forced. This mode is
used by the functions @ref array(initializer_list_t) and
@ref object(initializer_list_t).
@param[in] manual_type internal parameter; when @a type_deduction is set
to `false`, the created JSON value will use the provided type (only @ref
value_t::array and @ref value_t::object are valid); when @a type_deduction
is set to `true`, this parameter has no effect
@throw type_error.301 if @a type_deduction is `false`, @a manual_type is
`value_t::object`, but @a init contains an element which is not a pair
whose first element is a string. In this case, the constructor could not
create an object. If @a type_deduction would have be `true`, an array
would have been created. See @ref object(initializer_list_t)
for an example.
@complexity Linear in the size of the initializer list @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The example below shows how JSON values are created from
initializer lists.,basic_json__list_init_t}
@sa @ref array(initializer_list_t) -- create a JSON array
value from an initializer list
@sa @ref object(initializer_list_t) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
basic_json(initializer_list_t init,
bool type_deduction = true,
value_t manual_type = value_t::array)
{
// check if each element is an array with two elements whose first
// element is a string
bool is_an_object = std::all_of(init.begin(), init.end(),
[](const detail::json_ref<basic_json>& element_ref)
{
return element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string();
});
// adjust type if type deduction is not wanted
if (not type_deduction)
{
// if array is wanted, do not create an object though possible
if (manual_type == value_t::array)
{
is_an_object = false;
}
// if object is wanted but impossible, throw an exception
if (JSON_HEDLEY_UNLIKELY(manual_type == value_t::object and not is_an_object))
{
JSON_THROW(type_error::create(301, "cannot create object from initializer list"));
}
}
if (is_an_object)
{
// the initializer list is a list of pairs -> create object
m_type = value_t::object;
m_value = value_t::object;
std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref)
{
auto element = element_ref.moved_or_copied();
m_value.object->emplace(
std::move(*((*element.m_value.array)[0].m_value.string)),
std::move((*element.m_value.array)[1]));
});
}
else
{
// the initializer list describes an array -> create array
m_type = value_t::array;
m_value.array = create<array_t>(init.begin(), init.end());
}
assert_invariant();
}
/*!
@brief explicitly create an array from an initializer list
Creates a JSON array value from a given initializer list. That is, given a
list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
initializer list is empty, the empty array `[]` is created.
@note This function is only needed to express two edge cases that cannot
be realized with the initializer list constructor (@ref
basic_json(initializer_list_t, bool, value_t)). These cases
are:
1. creating an array whose elements are all pairs whose first element is a
string -- in this case, the initializer list constructor would create an
object, taking the first elements as keys
2. creating an empty array -- passing the empty initializer list to the
initializer list constructor yields an empty object
@param[in] init initializer list with JSON values to create an array from
(optional)
@return JSON array value
@complexity Linear in the size of @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows an example for the `array`
function.,array}
@sa @ref basic_json(initializer_list_t, bool, value_t) --
create a JSON value from an initializer list
@sa @ref object(initializer_list_t) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json array(initializer_list_t init = {})
{
return basic_json(init, false, value_t::array);
}
/*!
@brief explicitly create an object from an initializer list
Creates a JSON object value from a given initializer list. The initializer
lists elements must be pairs, and their first elements must be strings. If
the initializer list is empty, the empty object `{}` is created.
@note This function is only added for symmetry reasons. In contrast to the
related function @ref array(initializer_list_t), there are
no cases which can only be expressed by this function. That is, any
initializer list @a init can also be passed to the initializer list
constructor @ref basic_json(initializer_list_t, bool, value_t).
@param[in] init initializer list to create an object from (optional)
@return JSON object value
@throw type_error.301 if @a init is not a list of pairs whose first
elements are strings. In this case, no object can be created. When such a
value is passed to @ref basic_json(initializer_list_t, bool, value_t),
an array would have been created from the passed initializer list @a init.
See example below.
@complexity Linear in the size of @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows an example for the `object`
function.,object}
@sa @ref basic_json(initializer_list_t, bool, value_t) --
create a JSON value from an initializer list
@sa @ref array(initializer_list_t) -- create a JSON array
value from an initializer list
@since version 1.0.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json object(initializer_list_t init = {})
{
return basic_json(init, false, value_t::object);
}
/*!
@brief construct an array with count copies of given value
Constructs a JSON array value by creating @a cnt copies of a passed value.
In case @a cnt is `0`, an empty array is created.
@param[in] cnt the number of JSON copies of @a val to create
@param[in] val the JSON value to copy
@post `std::distance(begin(),end()) == cnt` holds.
@complexity Linear in @a cnt.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows examples for the @ref
basic_json(size_type\, const basic_json&)
constructor.,basic_json__size_type_basic_json}
@since version 1.0.0
*/
basic_json(size_type cnt, const basic_json& val)
: m_type(value_t::array)
{
m_value.array = create<array_t>(cnt, val);
assert_invariant();
}
/*!
@brief construct a JSON container given an iterator range
Constructs the JSON value with the contents of the range `[first, last)`.
The semantics depends on the different types a JSON value can have:
- In case of a null type, invalid_iterator.206 is thrown.
- In case of other primitive types (number, boolean, or string), @a first
must be `begin()` and @a last must be `end()`. In this case, the value is
copied. Otherwise, invalid_iterator.204 is thrown.
- In case of structured types (array, object), the constructor behaves as
similar versions for `std::vector` or `std::map`; that is, a JSON array
or object is constructed from the values in the range.
@tparam InputIT an input iterator type (@ref iterator or @ref
const_iterator)
@param[in] first begin of the range to copy from (included)
@param[in] last end of the range to copy from (excluded)
@pre Iterators @a first and @a last must be initialized. **This
precondition is enforced with an assertion (see warning).** If
assertions are switched off, a violation of this precondition yields
undefined behavior.
@pre Range `[first, last)` is valid. Usually, this precondition cannot be
checked efficiently. Only certain edge cases are detected; see the
description of the exceptions below. A violation of this precondition
yields undefined behavior.
@warning A precondition is enforced with a runtime assertion that will
result in calling `std::abort` if this precondition is not met.
Assertions can be disabled by defining `NDEBUG` at compile time.
See https://en.cppreference.com/w/cpp/error/assert for more
information.
@throw invalid_iterator.201 if iterators @a first and @a last are not
compatible (i.e., do not belong to the same JSON value). In this case,
the range `[first, last)` is undefined.
@throw invalid_iterator.204 if iterators @a first and @a last belong to a
primitive type (number, boolean, or string), but @a first does not point
to the first element any more. In this case, the range `[first, last)` is
undefined. See example code below.
@throw invalid_iterator.206 if iterators @a first and @a last belong to a
null value. In this case, the range `[first, last)` is undefined.
@complexity Linear in distance between @a first and @a last.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The example below shows several ways to create JSON values by
specifying a subrange with iterators.,basic_json__InputIt_InputIt}
@since version 1.0.0
*/
template<class InputIT, typename std::enable_if<
std::is_same<InputIT, typename basic_json_t::iterator>::value or
std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
basic_json(InputIT first, InputIT last)
{
assert(first.m_object != nullptr);
assert(last.m_object != nullptr);
// make sure iterator fits the current value
if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(201, "iterators are not compatible"));
}
// copy type from first iterator
m_type = first.m_object->m_type;
// check if iterator range is complete for primitive values
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_HEDLEY_UNLIKELY(not first.m_it.primitive_iterator.is_begin()
or not last.m_it.primitive_iterator.is_end()))
{
JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
}
break;
}
default:
break;
}
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = first.m_object->m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = first.m_object->m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value.number_float = first.m_object->m_value.number_float;
break;
}
case value_t::boolean:
{
m_value.boolean = first.m_object->m_value.boolean;
break;
}
case value_t::string:
{
m_value = *first.m_object->m_value.string;
break;
}
case value_t::object:
{
m_value.object = create<object_t>(first.m_it.object_iterator,
last.m_it.object_iterator);
break;
}
case value_t::array:
{
m_value.array = create<array_t>(first.m_it.array_iterator,
last.m_it.array_iterator);
break;
}
default:
JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " +
std::string(first.m_object->type_name())));
}
assert_invariant();
}
///////////////////////////////////////
// other constructors and destructor //
///////////////////////////////////////
/// @private
basic_json(const detail::json_ref<basic_json>& ref)
: basic_json(ref.moved_or_copied())
{}
/*!
@brief copy constructor
Creates a copy of a given JSON value.
@param[in] other the JSON value to copy
@post `*this == other`
@complexity Linear in the size of @a other.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is linear.
- As postcondition, it holds: `other == basic_json(other)`.
@liveexample{The following code shows an example for the copy
constructor.,basic_json__basic_json}
@since version 1.0.0
*/
basic_json(const basic_json& other)
: m_type(other.m_type)
{
// check of passed value is valid
other.assert_invariant();
switch (m_type)
{
case value_t::object:
{
m_value = *other.m_value.object;
break;
}
case value_t::array:
{
m_value = *other.m_value.array;
break;
}
case value_t::string:
{
m_value = *other.m_value.string;
break;
}
case value_t::boolean:
{
m_value = other.m_value.boolean;
break;
}
case value_t::number_integer:
{
m_value = other.m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value = other.m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value = other.m_value.number_float;
break;
}
default:
break;
}
assert_invariant();
}
/*!
@brief move constructor
Move constructor. Constructs a JSON value with the contents of the given
value @a other using move semantics. It "steals" the resources from @a
other and leaves it as JSON null value.
@param[in,out] other value to move to this object
@post `*this` has the same value as @a other before the call.
@post @a other is a JSON null value.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@requirement This function helps `basic_json` satisfying the
[MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible)
requirements.
@liveexample{The code below shows the move constructor explicitly called
via std::move.,basic_json__moveconstructor}
@since version 1.0.0
*/
basic_json(basic_json&& other) noexcept
: m_type(std::move(other.m_type)),
m_value(std::move(other.m_value))
{
// check that passed value is valid
other.assert_invariant();
// invalidate payload
other.m_type = value_t::null;
other.m_value = {};
assert_invariant();
}
/*!
@brief copy assignment
Copy assignment operator. Copies a JSON value via the "copy and swap"
strategy: It is expressed in terms of the copy constructor, destructor,
and the `swap()` member function.
@param[in] other value to copy from
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is linear.
@liveexample{The code below shows and example for the copy assignment. It
creates a copy of value `a` which is then swapped with `b`. Finally\, the
copy of `a` (which is the null value after the swap) is
destroyed.,basic_json__copyassignment}
@since version 1.0.0
*/
basic_json& operator=(basic_json other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
// check that passed value is valid
other.assert_invariant();
using std::swap;
swap(m_type, other.m_type);
swap(m_value, other.m_value);
assert_invariant();
return *this;
}
/*!
@brief destructor
Destroys the JSON value and frees all allocated memory.
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is linear.
- All stored elements are destroyed and all memory is freed.
@since version 1.0.0
*/
~basic_json() noexcept
{
assert_invariant();
m_value.destroy(m_type);
}
/// @}
public:
///////////////////////
// object inspection //
///////////////////////
/// @name object inspection
/// Functions to inspect the type of a JSON value.
/// @{
/*!
@brief serialization
Serialization function for JSON values. The function tries to mimic
Python's `json.dumps()` function, and currently supports its @a indent
and @a ensure_ascii parameters.
@param[in] indent If indent is nonnegative, then array elements and object
members will be pretty-printed with that indent level. An indent level of
`0` will only insert newlines. `-1` (the default) selects the most compact
representation.
@param[in] indent_char The character to use for indentation if @a indent is
greater than `0`. The default is ` ` (space).
@param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
in the output are escaped with `\uXXXX` sequences, and the result consists
of ASCII characters only.
@param[in] error_handler how to react on decoding errors; there are three
possible values: `strict` (throws and exception in case a decoding error
occurs; default), `replace` (replace invalid UTF-8 sequences with U+FFFD),
and `ignore` (ignore invalid UTF-8 sequences during serialization).
@return string containing the serialization of the JSON value
@throw type_error.316 if a string stored inside the JSON value is not
UTF-8 encoded
@complexity Linear.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@liveexample{The following example shows the effect of different @a indent\,
@a indent_char\, and @a ensure_ascii parameters to the result of the
serialization.,dump}
@see https://docs.python.org/2/library/json.html#json.dump
@since version 1.0.0; indentation character @a indent_char, option
@a ensure_ascii and exceptions added in version 3.0.0; error
handlers added in version 3.4.0.
*/
string_t dump(const int indent = -1,
const char indent_char = ' ',
const bool ensure_ascii = false,
const error_handler_t error_handler = error_handler_t::strict) const
{
string_t result;
serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler);
if (indent >= 0)
{
s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
}
else
{
s.dump(*this, false, ensure_ascii, 0);
}
return result;
}
/*!
@brief return the type of the JSON value (explicit)
Return the type of the JSON value as a value from the @ref value_t
enumeration.
@return the type of the JSON value
Value type | return value
------------------------- | -------------------------
null | value_t::null
boolean | value_t::boolean
string | value_t::string
number (integer) | value_t::number_integer
number (unsigned integer) | value_t::number_unsigned
number (floating-point) | value_t::number_float
object | value_t::object
array | value_t::array
discarded | value_t::discarded
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `type()` for all JSON
types.,type}
@sa @ref operator value_t() -- return the type of the JSON value (implicit)
@sa @ref type_name() -- return the type as string
@since version 1.0.0
*/
constexpr value_t type() const noexcept
{
return m_type;
}
/*!
@brief return whether type is primitive
This function returns true if and only if the JSON type is primitive
(string, number, boolean, or null).
@return `true` if type is primitive (string, number, boolean, or null),
`false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_primitive()` for all JSON
types.,is_primitive}
@sa @ref is_structured() -- returns whether JSON value is structured
@sa @ref is_null() -- returns whether JSON value is `null`
@sa @ref is_string() -- returns whether JSON value is a string
@sa @ref is_boolean() -- returns whether JSON value is a boolean
@sa @ref is_number() -- returns whether JSON value is a number
@since version 1.0.0
*/
constexpr bool is_primitive() const noexcept
{
return is_null() or is_string() or is_boolean() or is_number();
}
/*!
@brief return whether type is structured
This function returns true if and only if the JSON type is structured
(array or object).
@return `true` if type is structured (array or object), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_structured()` for all JSON
types.,is_structured}
@sa @ref is_primitive() -- returns whether value is primitive
@sa @ref is_array() -- returns whether value is an array
@sa @ref is_object() -- returns whether value is an object
@since version 1.0.0
*/
constexpr bool is_structured() const noexcept
{
return is_array() or is_object();
}
/*!
@brief return whether value is null
This function returns true if and only if the JSON value is null.
@return `true` if type is null, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_null()` for all JSON
types.,is_null}
@since version 1.0.0
*/
constexpr bool is_null() const noexcept
{
return m_type == value_t::null;
}
/*!
@brief return whether value is a boolean
This function returns true if and only if the JSON value is a boolean.
@return `true` if type is boolean, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_boolean()` for all JSON
types.,is_boolean}
@since version 1.0.0
*/
constexpr bool is_boolean() const noexcept
{
return m_type == value_t::boolean;
}
/*!
@brief return whether value is a number
This function returns true if and only if the JSON value is a number. This
includes both integer (signed and unsigned) and floating-point values.
@return `true` if type is number (regardless whether integer, unsigned
integer or floating-type), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number()` for all JSON
types.,is_number}
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number() const noexcept
{
return is_number_integer() or is_number_float();
}
/*!
@brief return whether value is an integer number
This function returns true if and only if the JSON value is a signed or
unsigned integer number. This excludes floating-point values.
@return `true` if type is an integer or unsigned integer number, `false`
otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_integer()` for all
JSON types.,is_number_integer}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number_integer() const noexcept
{
return m_type == value_t::number_integer or m_type == value_t::number_unsigned;
}
/*!
@brief return whether value is an unsigned integer number
This function returns true if and only if the JSON value is an unsigned
integer number. This excludes floating-point and signed integer values.
@return `true` if type is an unsigned integer number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_unsigned()` for all
JSON types.,is_number_unsigned}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 2.0.0
*/
constexpr bool is_number_unsigned() const noexcept
{
return m_type == value_t::number_unsigned;
}
/*!
@brief return whether value is a floating-point number
This function returns true if and only if the JSON value is a
floating-point number. This excludes signed and unsigned integer values.
@return `true` if type is a floating-point number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_float()` for all
JSON types.,is_number_float}
@sa @ref is_number() -- check if value is number
@sa @ref is_number_integer() -- check if value is an integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@since version 1.0.0
*/
constexpr bool is_number_float() const noexcept
{
return m_type == value_t::number_float;
}
/*!
@brief return whether value is an object
This function returns true if and only if the JSON value is an object.
@return `true` if type is object, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_object()` for all JSON
types.,is_object}
@since version 1.0.0
*/
constexpr bool is_object() const noexcept
{
return m_type == value_t::object;
}
/*!
@brief return whether value is an array
This function returns true if and only if the JSON value is an array.
@return `true` if type is array, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_array()` for all JSON
types.,is_array}
@since version 1.0.0
*/
constexpr bool is_array() const noexcept
{
return m_type == value_t::array;
}
/*!
@brief return whether value is a string
This function returns true if and only if the JSON value is a string.
@return `true` if type is string, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_string()` for all JSON
types.,is_string}
@since version 1.0.0
*/
constexpr bool is_string() const noexcept
{
return m_type == value_t::string;
}
/*!
@brief return whether value is discarded
This function returns true if and only if the JSON value was discarded
during parsing with a callback function (see @ref parser_callback_t).
@note This function will always be `false` for JSON values after parsing.
That is, discarded values can only occur during parsing, but will be
removed when inside a structured value or replaced by null in other cases.
@return `true` if type is discarded, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_discarded()` for all JSON
types.,is_discarded}
@since version 1.0.0
*/
constexpr bool is_discarded() const noexcept
{
return m_type == value_t::discarded;
}
/*!
@brief return the type of the JSON value (implicit)
Implicitly return the type of the JSON value as a value from the @ref
value_t enumeration.
@return the type of the JSON value
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies the @ref value_t operator for
all JSON types.,operator__value_t}
@sa @ref type() -- return the type of the JSON value (explicit)
@sa @ref type_name() -- return the type as string
@since version 1.0.0
*/
constexpr operator value_t() const noexcept
{
return m_type;
}
/// @}
private:
//////////////////
// value access //
//////////////////
/// get a boolean (explicit)
boolean_t get_impl(boolean_t* /*unused*/) const
{
if (JSON_HEDLEY_LIKELY(is_boolean()))
{
return m_value.boolean;
}
JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name())));
}
/// get a pointer to the value (object)
object_t* get_impl_ptr(object_t* /*unused*/) noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (object)
constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (array)
array_t* get_impl_ptr(array_t* /*unused*/) noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (array)
constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (string)
string_t* get_impl_ptr(string_t* /*unused*/) noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (string)
constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (boolean)
boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (boolean)
constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (integer number)
number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (integer number)
constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (unsigned number)
number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (unsigned number)
constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (floating-point number)
number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/// get a pointer to the value (floating-point number)
constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/*!
@brief helper function to implement get_ref()
This function helps to implement get_ref() without code duplication for
const and non-const overloads
@tparam ThisType will be deduced as `basic_json` or `const basic_json`
@throw type_error.303 if ReferenceType does not match underlying value
type of the current JSON
*/
template<typename ReferenceType, typename ThisType>
static ReferenceType get_ref_impl(ThisType& obj)
{
// delegate the call to get_ptr<>()
auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
if (JSON_HEDLEY_LIKELY(ptr != nullptr))
{
return *ptr;
}
JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name())));
}
public:
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@brief get special-case overload
This overloads avoids a lot of template boilerplate, it can be seen as the
identity method
@tparam BasicJsonType == @ref basic_json
@return a copy of *this
@complexity Constant.
@since version 2.1.0
*/
template<typename BasicJsonType, detail::enable_if_t<
std::is_same<typename std::remove_const<BasicJsonType>::type, basic_json_t>::value,
int> = 0>
basic_json get() const
{
return *this;
}
/*!
@brief get special-case overload
This overloads converts the current @ref basic_json in a different
@ref basic_json type
@tparam BasicJsonType == @ref basic_json
@return a copy of *this, converted into @tparam BasicJsonType
@complexity Depending on the implementation of the called `from_json()`
method->
@since version 3.2.0
*/
template<typename BasicJsonType, detail::enable_if_t<
not std::is_same<BasicJsonType, basic_json>::value and
detail::is_basic_json<BasicJsonType>::value, int> = 0>
BasicJsonType get() const
{
return *this;
}
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value
which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method->
The function is equivalent to executing
@code {.cpp}
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json,
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`void from_json(const basic_json&, ValueType&)`, and
- @ref json_serializer<ValueType> does not have a `from_json()` method of
the form `ValueType from_json(const basic_json&)`
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,get__ValueType_const}
@since version 2.1.0
*/
template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t <
not detail::is_basic_json<ValueType>::value and
detail::has_from_json<basic_json_t, ValueType>::value and
not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
int> = 0>
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
{
// we cannot static_assert on ValueTypeCV being non-const, because
// there is support for get<const basic_json_t>(), which is why we
// still need the uncvref
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
static_assert(std::is_default_constructible<ValueType>::value,
"types must be DefaultConstructible when used with get()");
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
}
/*!
@brief get a value (explicit); special case
Explicit type conversion between the JSON value and a compatible value
which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method->
The function is equivalent to executing
@code {.cpp}
return JSONSerializer<ValueTypeCV>::from_json(*this);
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json and
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`ValueType from_json(const basic_json&)`
@note If @ref json_serializer<ValueType> has both overloads of
`from_json()`, this one is chosen.
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@since version 2.1.0
*/
template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
detail::has_non_default_from_json<basic_json_t, ValueType>::value,
int> = 0>
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
{
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
return JSONSerializer<ValueTypeCV>::from_json(*this);
}
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value.
The value is filled into the input parameter by calling the @ref json_serializer<ValueType>
`from_json()` method->
The function is equivalent to executing
@code {.cpp}
ValueType v;
JSONSerializer<ValueType>::from_json(*this, v);
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json,
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`void from_json(const basic_json&, ValueType&)`, and
@tparam ValueType the input parameter type.
@return the input parameter, allowing chaining calls.
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,get_to}
@since version 3.3.0
*/
template<typename ValueType,
detail::enable_if_t <
not detail::is_basic_json<ValueType>::value and
detail::has_from_json<basic_json_t, ValueType>::value,
int> = 0>
ValueType & get_to(ValueType& v) const noexcept(noexcept(
JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v)))
{
JSONSerializer<ValueType>::from_json(*this, v);
return v;
}
template <
typename T, std::size_t N,
typename Array = T (&)[N],
detail::enable_if_t <
detail::has_from_json<basic_json_t, Array>::value, int > = 0 >
Array get_to(T (&v)[N]) const
noexcept(noexcept(JSONSerializer<Array>::from_json(
std::declval<const basic_json_t&>(), v)))
{
JSONSerializer<Array>::from_json(*this, v);
return v;
}
/*!
@brief get a pointer value (implicit)
Implicit pointer access to the internally stored JSON value. No copies are
made.
@warning Writing data to the pointee of the result yields an undefined
state.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t. Enforced by a static
assertion.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get_ptr}
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
{
// delegate the call to get_impl_ptr<>()
return get_impl_ptr(static_cast<PointerType>(nullptr));
}
/*!
@brief get a pointer value (implicit)
@copydoc get_ptr()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value and
std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
{
// delegate the call to get_impl_ptr<>() const
return get_impl_ptr(static_cast<PointerType>(nullptr));
}
/*!
@brief get a pointer value (explicit)
Explicit pointer access to the internally stored JSON value. No copies are
made.
@warning The pointer becomes invalid if the underlying JSON object
changes.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get__PointerType}
@sa @ref get_ptr() for explicit pointer-member access
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>())
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a pointer value (explicit)
@copydoc get()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
constexpr auto get() const noexcept -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>())
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a reference value (implicit)
Implicit reference access to the internally stored JSON value. No copies
are made.
@warning Writing data to the referee of the result yields an undefined
state.
@tparam ReferenceType reference type; must be a reference to @ref array_t,
@ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
@ref number_float_t. Enforced by static assertion.
@return reference to the internally stored JSON value if the requested
reference type @a ReferenceType fits to the JSON value; throws
type_error.303 otherwise
@throw type_error.303 in case passed type @a ReferenceType is incompatible
with the stored JSON value; see example below
@complexity Constant.
@liveexample{The example shows several calls to `get_ref()`.,get_ref}
@since version 1.1.0
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value, int>::type = 0>
ReferenceType get_ref()
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a reference value (implicit)
@copydoc get_ref()
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value and
std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
ReferenceType get_ref() const
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a value (implicit)
Implicit type conversion between the JSON value and a compatible value.
The call is realized by calling @ref get() const.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays. The character type of @ref string_t
as well as an initializer list of this type is excluded to avoid
ambiguities as these types implicitly convert to `std::string`.
@return copy of the JSON value, converted to type @a ValueType
@throw type_error.302 in case passed type @a ValueType is incompatible
to the JSON value type (e.g., the JSON value is of type boolean, but a
string is requested); see example below
@complexity Linear in the size of the JSON value.
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,operator__ValueType}
@since version 1.0.0
*/
template < typename ValueType, typename std::enable_if <
not std::is_pointer<ValueType>::value and
not std::is_same<ValueType, detail::json_ref<basic_json>>::value and
not std::is_same<ValueType, typename string_t::value_type>::value and
not detail::is_basic_json<ValueType>::value
#ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
#if defined(JSON_HAS_CPP_17) && (defined(__GNUC__) || (defined(_MSC_VER) and _MSC_VER <= 1914))
and not std::is_same<ValueType, typename std::string_view>::value
#endif
#endif
and detail::is_detected<detail::get_template_function, const basic_json_t&, ValueType>::value
, int >::type = 0 >
operator ValueType() const
{
// delegate the call to get<>() const
return get<ValueType>();
}
/// @}
////////////////////
// element access //
////////////////////
/// @name element access
/// Access to the JSON value.
/// @{
/*!
@brief access specified array element with bounds checking
Returns a reference to the element at specified location @a idx, with
bounds checking.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw type_error.304 if the JSON value is not an array; in this case,
calling `at` with an index makes no sense. See example below.
@throw out_of_range.401 if the index @a idx is out of range of the array;
that is, `idx >= size()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 1.0.0
@liveexample{The example below shows how array elements can be read and
written using `at()`. It also demonstrates the different exceptions that
can be thrown.,at__size_type}
*/
reference at(size_type idx)
{
// at only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
JSON_TRY
{
return m_value.array->at(idx);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified array element with bounds checking
Returns a const reference to the element at specified location @a idx,
with bounds checking.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw type_error.304 if the JSON value is not an array; in this case,
calling `at` with an index makes no sense. See example below.
@throw out_of_range.401 if the index @a idx is out of range of the array;
that is, `idx >= size()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 1.0.0
@liveexample{The example below shows how array elements can be read using
`at()`. It also demonstrates the different exceptions that can be thrown.,
at__size_type_const}
*/
const_reference at(size_type idx) const
{
// at only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
JSON_TRY
{
return m_value.array->at(idx);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified object element with bounds checking
Returns a reference to the element at with specified key @a key, with
bounds checking.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.304 if the JSON value is not an object; in this case,
calling `at` with a key makes no sense. See example below.
@throw out_of_range.403 if the key @a key is is not stored in the object;
that is, `find(key) == end()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Logarithmic in the size of the container.
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
@liveexample{The example below shows how object elements can be read and
written using `at()`. It also demonstrates the different exceptions that
can be thrown.,at__object_t_key_type}
*/
reference at(const typename object_t::key_type& key)
{
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
JSON_TRY
{
return m_value.object->at(key);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified object element with bounds checking
Returns a const reference to the element at with specified key @a key,
with bounds checking.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@throw type_error.304 if the JSON value is not an object; in this case,
calling `at` with a key makes no sense. See example below.
@throw out_of_range.403 if the key @a key is is not stored in the object;
that is, `find(key) == end()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Logarithmic in the size of the container.
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
@liveexample{The example below shows how object elements can be read using
`at()`. It also demonstrates the different exceptions that can be thrown.,
at__object_t_key_type_const}
*/
const_reference at(const typename object_t::key_type& key) const
{
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
JSON_TRY
{
return m_value.object->at(key);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified array element
Returns a reference to the element at specified location @a idx.
@note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
then the array is silently filled up with `null` values to make `idx` a
valid reference to the last stored element.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw type_error.305 if the JSON value is not an array or null; in that
cases, using the [] operator with an index makes no sense.
@complexity Constant if @a idx is in the range of the array. Otherwise
linear in `idx - size()`.
@liveexample{The example below shows how array elements can be read and
written using `[]` operator. Note the addition of `null`
values.,operatorarray__size_type}
@since version 1.0.0
*/
reference operator[](size_type idx)
{
// implicitly convert null value to an empty array
if (is_null())
{
m_type = value_t::array;
m_value.array = create<array_t>();
assert_invariant();
}
// operator[] only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
// fill up array with null values if given idx is outside range
if (idx >= m_value.array->size())
{
m_value.array->insert(m_value.array->end(),
idx - m_value.array->size() + 1,
basic_json());
}
return m_value.array->operator[](idx);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
}
/*!
@brief access specified array element
Returns a const reference to the element at specified location @a idx.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw type_error.305 if the JSON value is not an array; in that case,
using the [] operator with an index makes no sense.
@complexity Constant.
@liveexample{The example below shows how array elements can be read using
the `[]` operator.,operatorarray__size_type_const}
@since version 1.0.0
*/
const_reference operator[](size_type idx) const
{
// const operator[] only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
return m_value.array->operator[](idx);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.305 if the JSON value is not an object or null; in that
cases, using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
reference operator[](const typename object_t::key_type& key)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
// operator[] only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
return m_value.object->operator[](key);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw type_error.305 if the JSON value is not an object; in that case,
using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
const_reference operator[](const typename object_t::key_type& key) const
{
// const operator[] only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.305 if the JSON value is not an object or null; in that
cases, using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
JSON_HEDLEY_NON_NULL(2)
reference operator[](T* key)
{
// implicitly convert null to object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
return m_value.object->operator[](key);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw type_error.305 if the JSON value is not an object; in that case,
using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
JSON_HEDLEY_NON_NULL(2)
const_reference operator[](T* key) const
{
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
}
/*!
@brief access specified object element with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(key);
} catch(out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const typename object_t::key_type&), this function
does not throw if the given key @a key was not found.
@note Unlike @ref operator[](const typename object_t::key_type& key), this
function does not implicitly add an element to the position defined by @a
key. This function is furthermore also applicable to const objects.
@param[in] key key of the element to access
@param[in] default_value the value to return if @a key is not found
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw type_error.302 if @a default_value does not match the type of the
value at @a key
@throw type_error.306 if the JSON value is not an object; in that case,
using `value()` with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@since version 1.0.0
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
{
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
// if key is found, return value and given default value otherwise
const auto it = find(key);
if (it != end())
{
return *it;
}
return default_value;
}
JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const typename object_t::key_type&, const ValueType&) const
*/
string_t value(const typename object_t::key_type& key, const char* default_value) const
{
return value(key, string_t(default_value));
}
/*!
@brief access specified object element via JSON Pointer with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(ptr);
} catch(out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const json_pointer&), this function does not throw
if the given key @a key was not found.
@param[in] ptr a JSON pointer to the element to access
@param[in] default_value the value to return if @a ptr found no value
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw type_error.302 if @a default_value does not match the type of the
value at @a ptr
@throw type_error.306 if the JSON value is not an object; in that case,
using `value()` with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value_ptr}
@sa @ref operator[](const json_pointer&) for unchecked access by reference
@since version 2.0.2
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const json_pointer& ptr, const ValueType& default_value) const
{
// at only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
// if pointer resolves a value, return it or use default value
JSON_TRY
{
return ptr.get_checked(this);
}
JSON_INTERNAL_CATCH (out_of_range&)
{
return default_value;
}
}
JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const json_pointer&, ValueType) const
*/
JSON_HEDLEY_NON_NULL(3)
string_t value(const json_pointer& ptr, const char* default_value) const
{
return value(ptr, string_t(default_value));
}
/*!
@brief access the first element
Returns a reference to the first element in the container. For a JSON
container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
@return In case of a structured type (array or object), a reference to the
first element is returned. In case of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw invalid_iterator.214 when called on `null` value
@liveexample{The following code shows an example for `front()`.,front}
@sa @ref back() -- access the last element
@since version 1.0.0
*/
reference front()
{
return *begin();
}
/*!
@copydoc basic_json::front()
*/
const_reference front() const
{
return *cbegin();
}
/*!
@brief access the last element
Returns a reference to the last element in the container. For a JSON
container `c`, the expression `c.back()` is equivalent to
@code {.cpp}
auto tmp = c.end();
--tmp;
return *tmp;
@endcode
@return In case of a structured type (array or object), a reference to the
last element is returned. In case of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw invalid_iterator.214 when called on a `null` value. See example
below.
@liveexample{The following code shows an example for `back()`.,back}
@sa @ref front() -- access the first element
@since version 1.0.0
*/
reference back()
{
auto tmp = end();
--tmp;
return *tmp;
}
/*!
@copydoc basic_json::back()
*/
const_reference back() const
{
auto tmp = cend();
--tmp;
return *tmp;
}
/*!
@brief remove element given an iterator
Removes the element specified by iterator @a pos. The iterator @a pos must
be valid and dereferenceable. Thus the `end()` iterator (which is valid,
but is not dereferenceable) cannot be used as a value for @a pos.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] pos iterator to the element to remove
@return Iterator following the last removed element. If the iterator @a
pos refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw type_error.307 if called on a `null` value; example: `"cannot use
erase() with null"`
@throw invalid_iterator.202 if called on an iterator which does not belong
to the current JSON value; example: `"iterator does not fit current
value"`
@throw invalid_iterator.205 if called on a primitive type with invalid
iterator (i.e., any iterator which is not `begin()`); example: `"iterator
out of range"`
@complexity The complexity depends on the type:
- objects: amortized constant
- arrays: linear in distance between @a pos and the end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType}
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType pos)
{
// make sure iterator fits the current value
if (JSON_HEDLEY_UNLIKELY(this != pos.m_object))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_HEDLEY_UNLIKELY(not pos.m_it.primitive_iterator.is_begin()))
{
JSON_THROW(invalid_iterator::create(205, "iterator out of range"));
}
if (is_string())
{
AllocatorType<string_t> alloc;
std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
break;
}
default:
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
return result;
}
/*!
@brief remove elements given an iterator range
Removes the element specified by the range `[first; last)`. The iterator
@a first does not need to be dereferenceable if `first == last`: erasing
an empty range is a no-op.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] first iterator to the beginning of the range to remove
@param[in] last iterator past the end of the range to remove
@return Iterator following the last removed element. If the iterator @a
second refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw type_error.307 if called on a `null` value; example: `"cannot use
erase() with null"`
@throw invalid_iterator.203 if called on iterators which does not belong
to the current JSON value; example: `"iterators do not fit current value"`
@throw invalid_iterator.204 if called on a primitive type with invalid
iterators (i.e., if `first != begin()` and `last != end()`); example:
`"iterators out of range"`
@complexity The complexity depends on the type:
- objects: `log(size()) + std::distance(first, last)`
- arrays: linear in the distance between @a first and @a last, plus linear
in the distance between @a last and end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType_IteratorType}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType first, IteratorType last)
{
// make sure iterator fits the current value
if (JSON_HEDLEY_UNLIKELY(this != first.m_object or this != last.m_object))
{
JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value"));
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_HEDLEY_LIKELY(not first.m_it.primitive_iterator.is_begin()
or not last.m_it.primitive_iterator.is_end()))
{
JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
}
if (is_string())
{
AllocatorType<string_t> alloc;
std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
last.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
last.m_it.array_iterator);
break;
}
default:
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
return result;
}
/*!
@brief remove element from a JSON object given a key
Removes elements from a JSON object with the key value @a key.
@param[in] key value of the elements to remove
@return Number of elements removed. If @a ObjectType is the default
`std::map` type, the return value will always be `0` (@a key was not
found) or `1` (@a key was found).
@post References and iterators to the erased elements are invalidated.
Other references and iterators are not affected.
@throw type_error.307 when called on a type other than JSON object;
example: `"cannot use erase() with null"`
@complexity `log(size()) + count(key)`
@liveexample{The example shows the effect of `erase()`.,erase__key_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
size_type erase(const typename object_t::key_type& key)
{
// this erase only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
return m_value.object->erase(key);
}
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
/*!
@brief remove element from a JSON array given an index
Removes element from a JSON array at the index @a idx.
@param[in] idx index of the element to remove
@throw type_error.307 when called on a type other than JSON object;
example: `"cannot use erase() with null"`
@throw out_of_range.401 when `idx >= size()`; example: `"array index 17
is out of range"`
@complexity Linear in distance between @a idx and the end of the container.
@liveexample{The example shows the effect of `erase()`.,erase__size_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@since version 1.0.0
*/
void erase(const size_type idx)
{
// this erase only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
if (JSON_HEDLEY_UNLIKELY(idx >= size()))
{
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
}
else
{
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
}
/// @}
////////////
// lookup //
////////////
/// @name lookup
/// @{
/*!
@brief find an element in a JSON object
Finds an element in a JSON object with key equivalent to @a key. If the
element is not found or the JSON value is not an object, end() is
returned.
@note This method always returns @ref end() when executed on a JSON type
that is not an object.
@param[in] key key value of the element to search for.
@return Iterator to an element with key equivalent to @a key. If no such
element is found or the JSON value is not an object, past-the-end (see
@ref end()) iterator is returned.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `find()` is used.,find__key_type}
@sa @ref contains(KeyT&&) const -- checks whether a key exists
@since version 1.0.0
*/
template<typename KeyT>
iterator find(KeyT&& key)
{
auto result = end();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
}
return result;
}
/*!
@brief find an element in a JSON object
@copydoc find(KeyT&&)
*/
template<typename KeyT>
const_iterator find(KeyT&& key) const
{
auto result = cend();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
}
return result;
}
/*!
@brief returns the number of occurrences of a key in a JSON object
Returns the number of elements with key @a key. If ObjectType is the
default `std::map` type, the return value will always be `0` (@a key was
not found) or `1` (@a key was found).
@note This method always returns `0` when executed on a JSON type that is
not an object.
@param[in] key key value of the element to count
@return Number of elements with key @a key. If the JSON value is not an
object, the return value will be `0`.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `count()` is used.,count}
@since version 1.0.0
*/
template<typename KeyT>
size_type count(KeyT&& key) const
{
// return 0 for all nonobject types
return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0;
}
/*!
@brief check the existence of an element in a JSON object
Check whether an element exists in a JSON object with key equivalent to
@a key. If the element is not found or the JSON value is not an object,
false is returned.
@note This method always returns false when executed on a JSON type
that is not an object.
@param[in] key key value to check its existence.
@return true if an element with specified @a key exists. If no such
element with such key is found or the JSON value is not an object,
false is returned.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The following code shows an example for `contains()`.,contains}
@sa @ref find(KeyT&&) -- returns an iterator to an object element
@sa @ref contains(const json_pointer&) const -- checks the existence for a JSON pointer
@since version 3.6.0
*/
template<typename KeyT, typename std::enable_if<
not std::is_same<typename std::decay<KeyT>::type, json_pointer>::value, int>::type = 0>
bool contains(KeyT && key) const
{
return is_object() and m_value.object->find(std::forward<KeyT>(key)) != m_value.object->end();
}
/*!
@brief check the existence of an element in a JSON object given a JSON pointer
Check wehther the given JSON pointer @a ptr can be resolved in the current
JSON value.
@note This method can be executed on any JSON value type.
@param[in] ptr JSON pointer to check its existence.
@return true if the JSON pointer can be resolved to a stored value, false
otherwise.
@post If `j.contains(ptr)` returns true, it is safe to call `j[ptr]`.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@complexity Logarithmic in the size of the JSON object.
@liveexample{The following code shows an example for `contains()`.,contains_json_pointer}
@sa @ref contains(KeyT &&) const -- checks the existence of a key
@since version 3.7.0
*/
bool contains(const json_pointer& ptr) const
{
return ptr.contains(this);
}
/// @}
///////////////
// iterators //
///////////////
/// @name iterators
/// @{
/*!
@brief returns an iterator to the first element
Returns an iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `begin()`.,begin}
@sa @ref cbegin() -- returns a const iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
iterator begin() noexcept
{
iterator result(this);
result.set_begin();
return result;
}
/*!
@copydoc basic_json::cbegin()
*/
const_iterator begin() const noexcept
{
return cbegin();
}
/*!
@brief returns a const iterator to the first element
Returns a const iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
@liveexample{The following code shows an example for `cbegin()`.,cbegin}
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
const_iterator cbegin() const noexcept
{
const_iterator result(this);
result.set_begin();
return result;
}
/*!
@brief returns an iterator to one past the last element
Returns an iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `end()`.,end}
@sa @ref cend() -- returns a const iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
iterator end() noexcept
{
iterator result(this);
result.set_end();
return result;
}
/*!
@copydoc basic_json::cend()
*/
const_iterator end() const noexcept
{
return cend();
}
/*!
@brief returns a const iterator to one past the last element
Returns a const iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).end()`.
@liveexample{The following code shows an example for `cend()`.,cend}
@sa @ref end() -- returns an iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
const_iterator cend() const noexcept
{
const_iterator result(this);
result.set_end();
return result;
}
/*!
@brief returns an iterator to the reverse-beginning
Returns an iterator to the reverse-beginning; that is, the last element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(end())`.
@liveexample{The following code shows an example for `rbegin()`.,rbegin}
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
reverse_iterator rbegin() noexcept
{
return reverse_iterator(end());
}
/*!
@copydoc basic_json::crbegin()
*/
const_reverse_iterator rbegin() const noexcept
{
return crbegin();
}
/*!
@brief returns an iterator to the reverse-end
Returns an iterator to the reverse-end; that is, one before the first
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(begin())`.
@liveexample{The following code shows an example for `rend()`.,rend}
@sa @ref crend() -- returns a const reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
reverse_iterator rend() noexcept
{
return reverse_iterator(begin());
}
/*!
@copydoc basic_json::crend()
*/
const_reverse_iterator rend() const noexcept
{
return crend();
}
/*!
@brief returns a const reverse iterator to the last element
Returns a const iterator to the reverse-beginning; that is, the last
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
@liveexample{The following code shows an example for `crbegin()`.,crbegin}
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
/*!
@brief returns a const reverse iterator to one before the first
Returns a const reverse iterator to the reverse-end; that is, one before
the first element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
@liveexample{The following code shows an example for `crend()`.,crend}
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
public:
/*!
@brief wrapper to access iterator member functions in range-based for
This function allows to access @ref iterator::key() and @ref
iterator::value() during range-based for loops. In these loops, a
reference to the JSON values is returned, so there is no access to the
underlying iterator.
For loop without iterator_wrapper:
@code{cpp}
for (auto it = j_object.begin(); it != j_object.end(); ++it)
{
std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
}
@endcode
Range-based for loop without iterator proxy:
@code{cpp}
for (auto it : j_object)
{
// "it" is of type json::reference and has no key() member
std::cout << "value: " << it << '\n';
}
@endcode
Range-based for loop with iterator proxy:
@code{cpp}
for (auto it : json::iterator_wrapper(j_object))
{
std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
}
@endcode
@note When iterating over an array, `key()` will return the index of the
element as string (see example).
@param[in] ref reference to a JSON value
@return iteration proxy object wrapping @a ref with an interface to use in
range-based for loops
@liveexample{The following code shows how the wrapper is used,iterator_wrapper}
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@note The name of this function is not yet final and may change in the
future.
@deprecated This stream operator is deprecated and will be removed in
future 4.0.0 of the library. Please use @ref items() instead;
that is, replace `json::iterator_wrapper(j)` with `j.items()`.
*/
JSON_HEDLEY_DEPRECATED(3.1.0)
static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept
{
return ref.items();
}
/*!
@copydoc iterator_wrapper(reference)
*/
JSON_HEDLEY_DEPRECATED(3.1.0)
static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept
{
return ref.items();
}
/*!
@brief helper to access iterator member functions in range-based for
This function allows to access @ref iterator::key() and @ref
iterator::value() during range-based for loops. In these loops, a
reference to the JSON values is returned, so there is no access to the
underlying iterator.
For loop without `items()` function:
@code{cpp}
for (auto it = j_object.begin(); it != j_object.end(); ++it)
{
std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
}
@endcode
Range-based for loop without `items()` function:
@code{cpp}
for (auto it : j_object)
{
// "it" is of type json::reference and has no key() member
std::cout << "value: " << it << '\n';
}
@endcode
Range-based for loop with `items()` function:
@code{cpp}
for (auto& el : j_object.items())
{
std::cout << "key: " << el.key() << ", value:" << el.value() << '\n';
}
@endcode
The `items()` function also allows to use
[structured bindings](https://en.cppreference.com/w/cpp/language/structured_binding)
(C++17):
@code{cpp}
for (auto& [key, val] : j_object.items())
{
std::cout << "key: " << key << ", value:" << val << '\n';
}
@endcode
@note When iterating over an array, `key()` will return the index of the
element as string (see example). For primitive types (e.g., numbers),
`key()` returns an empty string.
@return iteration proxy object wrapping @a ref with an interface to use in
range-based for loops
@liveexample{The following code shows how the function is used.,items}
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 3.1.0, structured bindings support since 3.5.0.
*/
iteration_proxy<iterator> items() noexcept
{
return iteration_proxy<iterator>(*this);
}
/*!
@copydoc items()
*/
iteration_proxy<const_iterator> items() const noexcept
{
return iteration_proxy<const_iterator>(*this);
}
/// @}
//////////////
// capacity //
//////////////
/// @name capacity
/// @{
/*!
@brief checks whether the container is empty.
Checks if a JSON value has no elements (i.e. whether its @ref size is `0`).
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `true`
boolean | `false`
string | `false`
number | `false`
object | result of function `object_t::empty()`
array | result of function `array_t::empty()`
@liveexample{The following code uses `empty()` to check if a JSON
object contains any elements.,empty}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `empty()` functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@note This function does not return whether a string stored as JSON value
is empty - it returns whether the JSON container itself is empty which is
false in the case of a string.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
- Has the semantics of `begin() == end()`.
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
bool empty() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return true;
}
case value_t::array:
{
// delegate call to array_t::empty()
return m_value.array->empty();
}
case value_t::object:
{
// delegate call to object_t::empty()
return m_value.object->empty();
}
default:
{
// all other types are nonempty
return false;
}
}
}
/*!
@brief returns the number of elements
Returns the number of elements in a JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0`
boolean | `1`
string | `1`
number | `1`
object | result of function object_t::size()
array | result of function array_t::size()
@liveexample{The following code calls `size()` on the different value
types.,size}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their size() functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@note This function does not return the length of a string stored as JSON
value - it returns the number of elements in the JSON value which is 1 in
the case of a string.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
- Has the semantics of `std::distance(begin(), end())`.
@sa @ref empty() -- checks whether the container is empty
@sa @ref max_size() -- returns the maximal number of elements
@since version 1.0.0
*/
size_type size() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return 0;
}
case value_t::array:
{
// delegate call to array_t::size()
return m_value.array->size();
}
case value_t::object:
{
// delegate call to object_t::size()
return m_value.object->size();
}
default:
{
// all other types have size 1
return 1;
}
}
}
/*!
@brief returns the maximum possible number of elements
Returns the maximum number of elements a JSON value is able to hold due to
system or library implementation limitations, i.e. `std::distance(begin(),
end())` for the JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0` (same as `size()`)
boolean | `1` (same as `size()`)
string | `1` (same as `size()`)
number | `1` (same as `size()`)
object | result of function `object_t::max_size()`
array | result of function `array_t::max_size()`
@liveexample{The following code calls `max_size()` on the different value
types. Note the output is implementation specific.,max_size}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `max_size()` functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@requirement This function helps `basic_json` satisfying the
[Container](https://en.cppreference.com/w/cpp/named_req/Container)
requirements:
- The complexity is constant.
- Has the semantics of returning `b.size()` where `b` is the largest
possible JSON value.
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
size_type max_size() const noexcept
{
switch (m_type)
{
case value_t::array:
{
// delegate call to array_t::max_size()
return m_value.array->max_size();
}
case value_t::object:
{
// delegate call to object_t::max_size()
return m_value.object->max_size();
}
default:
{
// all other types have max_size() == size()
return size();
}
}
}
/// @}
///////////////
// modifiers //
///////////////
/// @name modifiers
/// @{
/*!
@brief clears the contents
Clears the content of a JSON value and resets it to the default value as
if @ref basic_json(value_t) would have been called with the current value
type from @ref type():
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@post Has the same effect as calling
@code {.cpp}
*this = basic_json(type());
@endcode
@liveexample{The example below shows the effect of `clear()` to different
JSON types.,clear}
@complexity Linear in the size of the JSON value.
@iterators All iterators, pointers and references related to this container
are invalidated.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@sa @ref basic_json(value_t) -- constructor that creates an object with the
same value than calling `clear()`
@since version 1.0.0
*/
void clear() noexcept
{
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = 0;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = 0;
break;
}
case value_t::number_float:
{
m_value.number_float = 0.0;
break;
}
case value_t::boolean:
{
m_value.boolean = false;
break;
}
case value_t::string:
{
m_value.string->clear();
break;
}
case value_t::array:
{
m_value.array->clear();
break;
}
case value_t::object:
{
m_value.object->clear();
break;
}
default:
break;
}
}
/*!
@brief add an object to an array
Appends the given element @a val to the end of the JSON value. If the
function is called on a JSON null value, an empty array is created before
appending @a val.
@param[in] val the value to add to the JSON array
@throw type_error.308 when called on a type other than JSON array or
null; example: `"cannot use push_back() with number"`
@complexity Amortized constant.
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON array. Note how the `null` value was silently
converted to a JSON array.,push_back}
@since version 1.0.0
*/
void push_back(basic_json&& val)
{
// push_back only works for null objects or arrays
if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array (move semantics)
m_value.array->push_back(std::move(val));
// invalidate object: mark it null so we do not call the destructor
// cppcheck-suppress accessMoved
val.m_type = value_t::null;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(basic_json&& val)
{
push_back(std::move(val));
return *this;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
void push_back(const basic_json& val)
{
// push_back only works for null objects or arrays
if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array
m_value.array->push_back(val);
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(const basic_json& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
Inserts the given element @a val to the JSON object. If the function is
called on a JSON null value, an empty object is created before inserting
@a val.
@param[in] val the value to add to the JSON object
@throw type_error.308 when called on a type other than JSON object or
null; example: `"cannot use push_back() with number"`
@complexity Logarithmic in the size of the container, O(log(`size()`)).
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON object. Note how the `null` value was silently
converted to a JSON object.,push_back__object_t__value}
@since version 1.0.0
*/
void push_back(const typename object_t::value_type& val)
{
// push_back only works for null objects or objects
if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// add element to array
m_value.object->insert(val);
}
/*!
@brief add an object to an object
@copydoc push_back(const typename object_t::value_type&)
*/
reference operator+=(const typename object_t::value_type& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
This function allows to use `push_back` with an initializer list. In case
1. the current value is an object,
2. the initializer list @a init contains only two elements, and
3. the first element of @a init is a string,
@a init is converted into an object element and added using
@ref push_back(const typename object_t::value_type&). Otherwise, @a init
is converted to a JSON value and added using @ref push_back(basic_json&&).
@param[in] init an initializer list
@complexity Linear in the size of the initializer list @a init.
@note This function is required to resolve an ambiguous overload error,
because pairs like `{"key", "value"}` can be both interpreted as
`object_t::value_type` or `std::initializer_list<basic_json>`, see
https://github.com/nlohmann/json/issues/235 for more information.
@liveexample{The example shows how initializer lists are treated as
objects when possible.,push_back__initializer_list}
*/
void push_back(initializer_list_t init)
{
if (is_object() and init.size() == 2 and (*init.begin())->is_string())
{
basic_json&& key = init.begin()->moved_or_copied();
push_back(typename object_t::value_type(
std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
}
else
{
push_back(basic_json(init));
}
}
/*!
@brief add an object to an object
@copydoc push_back(initializer_list_t)
*/
reference operator+=(initializer_list_t init)
{
push_back(init);
return *this;
}
/*!
@brief add an object to an array
Creates a JSON value from the passed parameters @a args to the end of the
JSON value. If the function is called on a JSON null value, an empty array
is created before appending the value created from @a args.
@param[in] args arguments to forward to a constructor of @ref basic_json
@tparam Args compatible types to create a @ref basic_json object
@return reference to the inserted element
@throw type_error.311 when called on a type other than JSON array or
null; example: `"cannot use emplace_back() with number"`
@complexity Amortized constant.
@liveexample{The example shows how `push_back()` can be used to add
elements to a JSON array. Note how the `null` value was silently converted
to a JSON array.,emplace_back}
@since version 2.0.8, returns reference since 3.7.0
*/
template<class... Args>
reference emplace_back(Args&& ... args)
{
// emplace_back only works for null objects or arrays
if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array (perfect forwarding)
#ifdef JSON_HAS_CPP_17
return m_value.array->emplace_back(std::forward<Args>(args)...);
#else
m_value.array->emplace_back(std::forward<Args>(args)...);
return m_value.array->back();
#endif
}
/*!
@brief add an object to an object if key does not exist
Inserts a new element into a JSON object constructed in-place with the
given @a args if there is no element with the key in the container. If the
function is called on a JSON null value, an empty object is created before
appending the value created from @a args.
@param[in] args arguments to forward to a constructor of @ref basic_json
@tparam Args compatible types to create a @ref basic_json object
@return a pair consisting of an iterator to the inserted element, or the
already-existing element if no insertion happened, and a bool
denoting whether the insertion took place.
@throw type_error.311 when called on a type other than JSON object or
null; example: `"cannot use emplace() with number"`
@complexity Logarithmic in the size of the container, O(log(`size()`)).
@liveexample{The example shows how `emplace()` can be used to add elements
to a JSON object. Note how the `null` value was silently converted to a
JSON object. Further note how no value is added if there was already one
value stored with the same key.,emplace}
@since version 2.0.8
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&& ... args)
{
// emplace only works for null objects or arrays
if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
{
JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name())));
}
// transform null object into an object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// add element to array (perfect forwarding)
auto res = m_value.object->emplace(std::forward<Args>(args)...);
// create result iterator and set iterator to the result of emplace
auto it = begin();
it.m_it.object_iterator = res.first;
// return pair of iterator and boolean
return {it, res.second};
}
/// Helper for insertion of an iterator
/// @note: This uses std::distance to support GCC 4.8,
/// see https://github.com/nlohmann/json/pull/1257
template<typename... Args>
iterator insert_iterator(const_iterator pos, Args&& ... args)
{
iterator result(this);
assert(m_value.array != nullptr);
auto insert_pos = std::distance(m_value.array->begin(), pos.m_it.array_iterator);
m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...);
result.m_it.array_iterator = m_value.array->begin() + insert_pos;
// This could have been written as:
// result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
// but the return value of insert is missing in GCC 4.8, so it is written this way instead.
return result;
}
/*!
@brief inserts element
Inserts element @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] val element to insert
@return iterator pointing to the inserted @a val.
@throw type_error.309 if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@complexity Constant plus linear in the distance between @a pos and end of
the container.
@liveexample{The example shows how `insert()` is used.,insert}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const basic_json& val)
{
// insert only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
// check if iterator pos fits to this JSON value
if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
return insert_iterator(pos, val);
}
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
/*!
@brief inserts element
@copydoc insert(const_iterator, const basic_json&)
*/
iterator insert(const_iterator pos, basic_json&& val)
{
return insert(pos, val);
}
/*!
@brief inserts elements
Inserts @a cnt copies of @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] cnt number of copies of @a val to insert
@param[in] val element to insert
@return iterator pointing to the first element inserted, or @a pos if
`cnt==0`
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@complexity Linear in @a cnt plus linear in the distance between @a pos
and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__count}
@since version 1.0.0
*/
iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
{
// insert only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
// check if iterator pos fits to this JSON value
if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
return insert_iterator(pos, cnt, val);
}
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
/*!
@brief inserts elements
Inserts elements from range `[first, last)` before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@throw invalid_iterator.211 if @a first or @a last are iterators into
container for which insert is called; example: `"passed iterators may not
belong to container"`
@return iterator pointing to the first element inserted, or @a pos if
`first==last`
@complexity Linear in `std::distance(first, last)` plus linear in the
distance between @a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__range}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const_iterator first, const_iterator last)
{
// insert only works for arrays
if (JSON_HEDLEY_UNLIKELY(not is_array()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if iterator pos fits to this JSON value
if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// check if range iterators belong to the same JSON object
if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
if (JSON_HEDLEY_UNLIKELY(first.m_object == this))
{
JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container"));
}
// insert to array and return iterator
return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator);
}
/*!
@brief inserts elements
Inserts elements from initializer list @a ilist before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] ilist initializer list to insert the values from
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@return iterator pointing to the first element inserted, or @a pos if
`ilist` is empty
@complexity Linear in `ilist.size()` plus linear in the distance between
@a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__ilist}
@since version 1.0.0
*/
iterator insert(const_iterator pos, initializer_list_t ilist)
{
// insert only works for arrays
if (JSON_HEDLEY_UNLIKELY(not is_array()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if iterator pos fits to this JSON value
if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
return insert_iterator(pos, ilist.begin(), ilist.end());
}
/*!
@brief inserts elements
Inserts elements from range `[first, last)`.
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.309 if called on JSON values other than objects; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if iterator @a first or @a last does does not
point to an object; example: `"iterators first and last must point to
objects"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number
of elements to insert.
@liveexample{The example shows how `insert()` is used.,insert__range_object}
@since version 3.0.0
*/
void insert(const_iterator first, const_iterator last)
{
// insert only works for objects
if (JSON_HEDLEY_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if range iterators belong to the same JSON object
if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
// passed iterators must belong to objects
if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()))
{
JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
}
m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
}
/*!
@brief updates a JSON object from another object, overwriting existing keys
Inserts all values from JSON object @a j and overwrites existing keys.
@param[in] j JSON object to read values from
@throw type_error.312 if called on JSON values other than objects; example:
`"cannot use update() with string"`
@complexity O(N*log(size() + N)), where N is the number of elements to
insert.
@liveexample{The example shows how `update()` is used.,update}
@sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
@since version 3.0.0
*/
void update(const_reference j)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
if (JSON_HEDLEY_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
}
if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name())));
}
for (auto it = j.cbegin(); it != j.cend(); ++it)
{
m_value.object->operator[](it.key()) = it.value();
}
}
/*!
@brief updates a JSON object from another object, overwriting existing keys
Inserts all values from from range `[first, last)` and overwrites existing
keys.
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.312 if called on JSON values other than objects; example:
`"cannot use update() with string"`
@throw invalid_iterator.202 if iterator @a first or @a last does does not
point to an object; example: `"iterators first and last must point to
objects"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@complexity O(N*log(size() + N)), where N is the number of elements to
insert.
@liveexample{The example shows how `update()` is used__range.,update}
@sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
@since version 3.0.0
*/
void update(const_iterator first, const_iterator last)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
if (JSON_HEDLEY_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
}
// check if range iterators belong to the same JSON object
if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
// passed iterators must belong to objects
if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()
or not last.m_object->is_object()))
{
JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
}
for (auto it = first; it != last; ++it)
{
m_value.object->operator[](it.key()) = it.value();
}
}
/*!
@brief exchanges the values
Exchanges the contents of the JSON value with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other JSON value to exchange the contents with
@complexity Constant.
@liveexample{The example below shows how JSON values can be swapped with
`swap()`.,swap__reference}
@since version 1.0.0
*/
void swap(reference other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
std::swap(m_type, other.m_type);
std::swap(m_value, other.m_value);
assert_invariant();
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON array with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other array to exchange the contents with
@throw type_error.310 when JSON value is not an array; example: `"cannot
use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how arrays can be swapped with
`swap()`.,swap__array_t}
@since version 1.0.0
*/
void swap(array_t& other)
{
// swap only works for arrays
if (JSON_HEDLEY_LIKELY(is_array()))
{
std::swap(*(m_value.array), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON object with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other object to exchange the contents with
@throw type_error.310 when JSON value is not an object; example:
`"cannot use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how objects can be swapped with
`swap()`.,swap__object_t}
@since version 1.0.0
*/
void swap(object_t& other)
{
// swap only works for objects
if (JSON_HEDLEY_LIKELY(is_object()))
{
std::swap(*(m_value.object), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON string with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other string to exchange the contents with
@throw type_error.310 when JSON value is not a string; example: `"cannot
use swap() with boolean"`
@complexity Constant.
@liveexample{The example below shows how strings can be swapped with
`swap()`.,swap__string_t}
@since version 1.0.0
*/
void swap(string_t& other)
{
// swap only works for strings
if (JSON_HEDLEY_LIKELY(is_string()))
{
std::swap(*(m_value.string), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/// @}
public:
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
/// @name lexicographical comparison operators
/// @{
/*!
@brief comparison: equal
Compares two JSON values for equality according to the following rules:
- Two JSON values are equal if (1) they are from the same type and (2)
their stored values are the same according to their respective
`operator==`.
- Integer and floating-point numbers are automatically converted before
comparison. Note than two NaN values are always treated as unequal.
- Two JSON null values are equal.
@note Floating-point inside JSON values numbers are compared with
`json::number_float_t::operator==` which is `double::operator==` by
default. To compare floating-point while respecting an epsilon, an alternative
[comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39)
could be used, for instance
@code {.cpp}
template<typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type>
inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept
{
return std::abs(a - b) <= epsilon;
}
@endcode
@note NaN values never compare equal to themselves or to other NaN values.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are equal
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__equal}
@since version 1.0.0
*/
friend bool operator==(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
return *lhs.m_value.array == *rhs.m_value.array;
case value_t::object:
return *lhs.m_value.object == *rhs.m_value.object;
case value_t::null:
return true;
case value_t::string:
return *lhs.m_value.string == *rhs.m_value.string;
case value_t::boolean:
return lhs.m_value.boolean == rhs.m_value.boolean;
case value_t::number_integer:
return lhs.m_value.number_integer == rhs.m_value.number_integer;
case value_t::number_unsigned:
return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned;
case value_t::number_float:
return lhs.m_value.number_float == rhs.m_value.number_float;
default:
return false;
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer;
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned);
}
return false;
}
/*!
@brief comparison: equal
@copydoc operator==(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs == basic_json(rhs);
}
/*!
@brief comparison: equal
@copydoc operator==(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) == rhs;
}
/*!
@brief comparison: not equal
Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are not equal
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__notequal}
@since version 1.0.0
*/
friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs == rhs);
}
/*!
@brief comparison: not equal
@copydoc operator!=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs != basic_json(rhs);
}
/*!
@brief comparison: not equal
@copydoc operator!=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) != rhs;
}
/*!
@brief comparison: less than
Compares whether one JSON value @a lhs is less than another JSON value @a
rhs according to the following rules:
- If @a lhs and @a rhs have the same type, the values are compared using
the default `<` operator.
- Integer and floating-point numbers are automatically converted before
comparison
- In case @a lhs and @a rhs have different types, the values are ignored
and the order of the types is considered, see
@ref operator<(const value_t, const value_t).
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__less}
@since version 1.0.0
*/
friend bool operator<(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
// note parentheses are necessary, see
// https://github.com/nlohmann/json/issues/1530
return (*lhs.m_value.array) < (*rhs.m_value.array);
case value_t::object:
return (*lhs.m_value.object) < (*rhs.m_value.object);
case value_t::null:
return false;
case value_t::string:
return (*lhs.m_value.string) < (*rhs.m_value.string);
case value_t::boolean:
return (lhs.m_value.boolean) < (rhs.m_value.boolean);
case value_t::number_integer:
return (lhs.m_value.number_integer) < (rhs.m_value.number_integer);
case value_t::number_unsigned:
return (lhs.m_value.number_unsigned) < (rhs.m_value.number_unsigned);
case value_t::number_float:
return (lhs.m_value.number_float) < (rhs.m_value.number_float);
default:
return false;
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
}
// We only reach this line if we cannot compare values. In that case,
// we compare types. Note we have to call the operator explicitly,
// because MSVC has problems otherwise.
return operator<(lhs_type, rhs_type);
}
/*!
@brief comparison: less than
@copydoc operator<(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs < basic_json(rhs);
}
/*!
@brief comparison: less than
@copydoc operator<(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) < rhs;
}
/*!
@brief comparison: less than or equal
Compares whether one JSON value @a lhs is less than or equal to another
JSON value by calculating `not (rhs < lhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than or equal to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greater}
@since version 1.0.0
*/
friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
{
return not (rhs < lhs);
}
/*!
@brief comparison: less than or equal
@copydoc operator<=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs <= basic_json(rhs);
}
/*!
@brief comparison: less than or equal
@copydoc operator<=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) <= rhs;
}
/*!
@brief comparison: greater than
Compares whether one JSON value @a lhs is greater than another
JSON value by calculating `not (lhs <= rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__lessequal}
@since version 1.0.0
*/
friend bool operator>(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs <= rhs);
}
/*!
@brief comparison: greater than
@copydoc operator>(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs > basic_json(rhs);
}
/*!
@brief comparison: greater than
@copydoc operator>(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) > rhs;
}
/*!
@brief comparison: greater than or equal
Compares whether one JSON value @a lhs is greater than or equal to another
JSON value by calculating `not (lhs < rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than or equal to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greaterequal}
@since version 1.0.0
*/
friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs < rhs);
}
/*!
@brief comparison: greater than or equal
@copydoc operator>=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
{
return lhs >= basic_json(rhs);
}
/*!
@brief comparison: greater than or equal
@copydoc operator>=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
{
return basic_json(lhs) >= rhs;
}
/// @}
///////////////////
// serialization //
///////////////////
/// @name serialization
/// @{
/*!
@brief serialize to stream
Serialize the given JSON value @a j to the output stream @a o. The JSON
value will be serialized using the @ref dump member function.
- The indentation of the output can be controlled with the member variable
`width` of the output stream @a o. For instance, using the manipulator
`std::setw(4)` on @a o sets the indentation level to `4` and the
serialization result is the same as calling `dump(4)`.
- The indentation character can be controlled with the member variable
`fill` of the output stream @a o. For instance, the manipulator
`std::setfill('\\t')` sets indentation to use a tab character rather than
the default space character.
@param[in,out] o stream to serialize to
@param[in] j JSON value to serialize
@return the stream @a o
@throw type_error.316 if a string stored inside the JSON value is not
UTF-8 encoded
@complexity Linear.
@liveexample{The example below shows the serialization with different
parameters to `width` to adjust the indentation level.,operator_serialize}
@since version 1.0.0; indentation character added in version 3.0.0
*/
friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
{
// read width member and use it as indentation parameter if nonzero
const bool pretty_print = o.width() > 0;
const auto indentation = pretty_print ? o.width() : 0;
// reset width to 0 for subsequent calls to this stream
o.width(0);
// do the actual serialization
serializer s(detail::output_adapter<char>(o), o.fill());
s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
return o;
}
/*!
@brief serialize to stream
@deprecated This stream operator is deprecated and will be removed in
future 4.0.0 of the library. Please use
@ref operator<<(std::ostream&, const basic_json&)
instead; that is, replace calls like `j >> o;` with `o << j;`.
@since version 1.0.0; deprecated since version 3.0.0
*/
JSON_HEDLEY_DEPRECATED(3.0.0)
friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
{
return o << j;
}
/// @}
/////////////////////
// deserialization //
/////////////////////
/// @name deserialization
/// @{
/*!
@brief deserialize from a compatible input
This function reads from a compatible input. Examples are:
- an array of 1-byte values
- strings with character/literal type with size of 1 byte
- input streams
- container with contiguous storage of 1-byte values. Compatible container
types include `std::vector`, `std::string`, `std::array`,
`std::valarray`, and `std::initializer_list`. Furthermore, C-style
arrays can be used with `std::begin()`/`std::end()`. User-defined
containers can be used as long as they implement random-access iterators
and a contiguous storage.
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@pre The container storage is contiguous. Violating this precondition
yields undefined behavior. **This precondition is enforced with an
assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with a noncompliant container and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@param[in] i input to read from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.101 if a parse error occurs; example: `""unexpected end
of input; expected string literal""`
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an array.,parse__array__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__string__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__istream__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function reading
from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
@since version 2.0.3 (contiguous containers)
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json parse(detail::input_adapter&& i,
const parser_callback_t cb = nullptr,
const bool allow_exceptions = true)
{
basic_json result;
parser(i, cb, allow_exceptions).parse(true, result);
return result;
}
static bool accept(detail::input_adapter&& i)
{
return parser(i).accept(true);
}
/*!
@brief generate SAX events
The SAX event lister must follow the interface of @ref json_sax.
This function reads from a compatible input. Examples are:
- an array of 1-byte values
- strings with character/literal type with size of 1 byte
- input streams
- container with contiguous storage of 1-byte values. Compatible container
types include `std::vector`, `std::string`, `std::array`,
`std::valarray`, and `std::initializer_list`. Furthermore, C-style
arrays can be used with `std::begin()`/`std::end()`. User-defined
containers can be used as long as they implement random-access iterators
and a contiguous storage.
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@pre The container storage is contiguous. Violating this precondition
yields undefined behavior. **This precondition is enforced with an
assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with a noncompliant container and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@param[in] i input to read from
@param[in,out] sax SAX event listener
@param[in] format the format to parse (JSON, CBOR, MessagePack, or UBJSON)
@param[in] strict whether the input has to be consumed completely
@return return value of the last processed SAX event
@throw parse_error.101 if a parse error occurs; example: `""unexpected end
of input; expected string literal""`
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the SAX consumer @a sax has
a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `sax_parse()` function
reading from string and processing the events with a user-defined SAX
event consumer.,sax_parse}
@since version 3.2.0
*/
template <typename SAX>
JSON_HEDLEY_NON_NULL(2)
static bool sax_parse(detail::input_adapter&& i, SAX* sax,
input_format_t format = input_format_t::json,
const bool strict = true)
{
assert(sax);
return format == input_format_t::json
? parser(std::move(i)).sax_parse(sax, strict)
: detail::binary_reader<basic_json, SAX>(std::move(i)).sax_parse(format, sax, strict);
}
/*!
@brief deserialize from an iterator range with contiguous storage
This function reads from an iterator range of a container with contiguous
storage of 1-byte values. Compatible container types include
`std::vector`, `std::string`, `std::array`, `std::valarray`, and
`std::initializer_list`. Furthermore, C-style arrays can be used with
`std::begin()`/`std::end()`. User-defined containers can be used as long
as they implement random-access iterators and a contiguous storage.
@pre The iterator range is contiguous. Violating this precondition yields
undefined behavior. **This precondition is enforced with an assertion.**
@pre Each element in the range has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with noncompliant iterators and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@tparam IteratorType iterator of container with contiguous storage
@param[in] first begin of the range to parse (included)
@param[in] last end of the range to parse (excluded)
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an iterator range.,parse__iteratortype__parser_callback_t}
@since version 2.0.3
*/
template<class IteratorType, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
static basic_json parse(IteratorType first, IteratorType last,
const parser_callback_t cb = nullptr,
const bool allow_exceptions = true)
{
basic_json result;
parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result);
return result;
}
template<class IteratorType, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
static bool accept(IteratorType first, IteratorType last)
{
return parser(detail::input_adapter(first, last)).accept(true);
}
template<class IteratorType, class SAX, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
JSON_HEDLEY_NON_NULL(3)
static bool sax_parse(IteratorType first, IteratorType last, SAX* sax)
{
return parser(detail::input_adapter(first, last)).sax_parse(sax);
}
/*!
@brief deserialize from stream
@deprecated This stream operator is deprecated and will be removed in
version 4.0.0 of the library. Please use
@ref operator>>(std::istream&, basic_json&)
instead; that is, replace calls like `j << i;` with `i >> j;`.
@since version 1.0.0; deprecated since version 3.0.0
*/
JSON_HEDLEY_DEPRECATED(3.0.0)
friend std::istream& operator<<(basic_json& j, std::istream& i)
{
return operator>>(i, j);
}
/*!
@brief deserialize from stream
Deserializes an input stream to a JSON value.
@param[in,out] i input stream to read a serialized JSON value from
@param[in,out] j JSON value to write the deserialized input to
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below shows how a JSON value is constructed by
reading a serialization from a stream.,operator_deserialize}
@sa parse(std::istream&, const parser_callback_t) for a variant with a
parser callback function to filter values while parsing
@since version 1.0.0
*/
friend std::istream& operator>>(std::istream& i, basic_json& j)
{
parser(detail::input_adapter(i)).parse(false, j);
return i;
}
/// @}
///////////////////////////
// convenience functions //
///////////////////////////
/*!
@brief return the type as string
Returns the type name as string to be used in error messages - usually to
indicate that a function was called on a wrong JSON type.
@return a string representation of a the @a m_type member:
Value type | return value
----------- | -------------
null | `"null"`
boolean | `"boolean"`
string | `"string"`
number | `"number"` (for all number types)
object | `"object"`
array | `"array"`
discarded | `"discarded"`
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@complexity Constant.
@liveexample{The following code exemplifies `type_name()` for all JSON
types.,type_name}
@sa @ref type() -- return the type of the JSON value
@sa @ref operator value_t() -- return the type of the JSON value (implicit)
@since version 1.0.0, public since 2.1.0, `const char*` and `noexcept`
since 3.0.0
*/
JSON_HEDLEY_RETURNS_NON_NULL
const char* type_name() const noexcept
{
{
switch (m_type)
{
case value_t::null:
return "null";
case value_t::object:
return "object";
case value_t::array:
return "array";
case value_t::string:
return "string";
case value_t::boolean:
return "boolean";
case value_t::discarded:
return "discarded";
default:
return "number";
}
}
}
private:
//////////////////////
// member variables //
//////////////////////
/// the type of the current element
value_t m_type = value_t::null;
/// the value of the current element
json_value m_value = {};
//////////////////////////////////////////
// binary serialization/deserialization //
//////////////////////////////////////////
/// @name binary serialization/deserialization support
/// @{
public:
/*!
@brief create a CBOR serialization of a given JSON value
Serializes a given JSON value @a j to a byte vector using the CBOR (Concise
Binary Object Representation) serialization format. CBOR is a binary
serialization format which aims to be more compact than JSON itself, yet
more efficient to parse.
The library uses the following mapping from JSON values types to
CBOR types according to the CBOR specification (RFC 7049):
JSON value type | value/range | CBOR type | first byte
--------------- | ------------------------------------------ | ---------------------------------- | ---------------
null | `null` | Null | 0xF6
boolean | `true` | True | 0xF5
boolean | `false` | False | 0xF4
number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3B
number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3A
number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39
number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38
number_integer | -24..-1 | Negative integer | 0x20..0x37
number_integer | 0..23 | Integer | 0x00..0x17
number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18
number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
number_unsigned | 0..23 | Integer | 0x00..0x17
number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18
number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
number_float | *any value* | Double-Precision Float | 0xFB
string | *length*: 0..23 | UTF-8 string | 0x60..0x77
string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78
string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79
string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7A
string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7B
array | *size*: 0..23 | array | 0x80..0x97
array | *size*: 23..255 | array (1 byte follow) | 0x98
array | *size*: 256..65535 | array (2 bytes follow) | 0x99
array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9A
array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9B
object | *size*: 0..23 | map | 0xA0..0xB7
object | *size*: 23..255 | map (1 byte follow) | 0xB8
object | *size*: 256..65535 | map (2 bytes follow) | 0xB9
object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xBA
object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xBB
@note The mapping is **complete** in the sense that any JSON value type
can be converted to a CBOR value.
@note If NaN or Infinity are stored inside a JSON number, they are
serialized properly. This behavior differs from the @ref dump()
function which serializes NaN or Infinity to `null`.
@note The following CBOR types are not used in the conversion:
- byte strings (0x40..0x5F)
- UTF-8 strings terminated by "break" (0x7F)
- arrays terminated by "break" (0x9F)
- maps terminated by "break" (0xBF)
- date/time (0xC0..0xC1)
- bignum (0xC2..0xC3)
- decimal fraction (0xC4)
- bigfloat (0xC5)
- tagged items (0xC6..0xD4, 0xD8..0xDB)
- expected conversions (0xD5..0xD7)
- simple values (0xE0..0xF3, 0xF8)
- undefined (0xF7)
- half and single-precision floats (0xF9-0xFA)
- break (0xFF)
@param[in] j JSON value to serialize
@return MessagePack serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in CBOR format.,to_cbor}
@sa http://cbor.io
@sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
analogous deserialization
@sa @ref to_msgpack(const basic_json&) for the related MessagePack format
@sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
related UBJSON format
@since version 2.0.9
*/
static std::vector<uint8_t> to_cbor(const basic_json& j)
{
std::vector<uint8_t> result;
to_cbor(j, result);
return result;
}
static void to_cbor(const basic_json& j, detail::output_adapter<uint8_t> o)
{
binary_writer<uint8_t>(o).write_cbor(j);
}
static void to_cbor(const basic_json& j, detail::output_adapter<char> o)
{
binary_writer<char>(o).write_cbor(j);
}
/*!
@brief create a MessagePack serialization of a given JSON value
Serializes a given JSON value @a j to a byte vector using the MessagePack
serialization format. MessagePack is a binary serialization format which
aims to be more compact than JSON itself, yet more efficient to parse.
The library uses the following mapping from JSON values types to
MessagePack types according to the MessagePack specification:
JSON value type | value/range | MessagePack type | first byte
--------------- | --------------------------------- | ---------------- | ----------
null | `null` | nil | 0xC0
boolean | `true` | true | 0xC3
boolean | `false` | false | 0xC2
number_integer | -9223372036854775808..-2147483649 | int64 | 0xD3
number_integer | -2147483648..-32769 | int32 | 0xD2
number_integer | -32768..-129 | int16 | 0xD1
number_integer | -128..-33 | int8 | 0xD0
number_integer | -32..-1 | negative fixint | 0xE0..0xFF
number_integer | 0..127 | positive fixint | 0x00..0x7F
number_integer | 128..255 | uint 8 | 0xCC
number_integer | 256..65535 | uint 16 | 0xCD
number_integer | 65536..4294967295 | uint 32 | 0xCE
number_integer | 4294967296..18446744073709551615 | uint 64 | 0xCF
number_unsigned | 0..127 | positive fixint | 0x00..0x7F
number_unsigned | 128..255 | uint 8 | 0xCC
number_unsigned | 256..65535 | uint 16 | 0xCD
number_unsigned | 65536..4294967295 | uint 32 | 0xCE
number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xCF
number_float | *any value* | float 64 | 0xCB
string | *length*: 0..31 | fixstr | 0xA0..0xBF
string | *length*: 32..255 | str 8 | 0xD9
string | *length*: 256..65535 | str 16 | 0xDA
string | *length*: 65536..4294967295 | str 32 | 0xDB
array | *size*: 0..15 | fixarray | 0x90..0x9F
array | *size*: 16..65535 | array 16 | 0xDC
array | *size*: 65536..4294967295 | array 32 | 0xDD
object | *size*: 0..15 | fix map | 0x80..0x8F
object | *size*: 16..65535 | map 16 | 0xDE
object | *size*: 65536..4294967295 | map 32 | 0xDF
@note The mapping is **complete** in the sense that any JSON value type
can be converted to a MessagePack value.
@note The following values can **not** be converted to a MessagePack value:
- strings with more than 4294967295 bytes
- arrays with more than 4294967295 elements
- objects with more than 4294967295 elements
@note The following MessagePack types are not used in the conversion:
- bin 8 - bin 32 (0xC4..0xC6)
- ext 8 - ext 32 (0xC7..0xC9)
- float 32 (0xCA)
- fixext 1 - fixext 16 (0xD4..0xD8)
@note Any MessagePack output created @ref to_msgpack can be successfully
parsed by @ref from_msgpack.
@note If NaN or Infinity are stored inside a JSON number, they are
serialized properly. This behavior differs from the @ref dump()
function which serializes NaN or Infinity to `null`.
@param[in] j JSON value to serialize
@return MessagePack serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in MessagePack format.,to_msgpack}
@sa http://msgpack.org
@sa @ref from_msgpack for the analogous deserialization
@sa @ref to_cbor(const basic_json& for the related CBOR format
@sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
related UBJSON format
@since version 2.0.9
*/
static std::vector<uint8_t> to_msgpack(const basic_json& j)
{
std::vector<uint8_t> result;
to_msgpack(j, result);
return result;
}
static void to_msgpack(const basic_json& j, detail::output_adapter<uint8_t> o)
{
binary_writer<uint8_t>(o).write_msgpack(j);
}
static void to_msgpack(const basic_json& j, detail::output_adapter<char> o)
{
binary_writer<char>(o).write_msgpack(j);
}
/*!
@brief create a UBJSON serialization of a given JSON value
Serializes a given JSON value @a j to a byte vector using the UBJSON
(Universal Binary JSON) serialization format. UBJSON aims to be more compact
than JSON itself, yet more efficient to parse.
The library uses the following mapping from JSON values types to
UBJSON types according to the UBJSON specification:
JSON value type | value/range | UBJSON type | marker
--------------- | --------------------------------- | ----------- | ------
null | `null` | null | `Z`
boolean | `true` | true | `T`
boolean | `false` | false | `F`
number_integer | -9223372036854775808..-2147483649 | int64 | `L`
number_integer | -2147483648..-32769 | int32 | `l`
number_integer | -32768..-129 | int16 | `I`
number_integer | -128..127 | int8 | `i`
number_integer | 128..255 | uint8 | `U`
number_integer | 256..32767 | int16 | `I`
number_integer | 32768..2147483647 | int32 | `l`
number_integer | 2147483648..9223372036854775807 | int64 | `L`
number_unsigned | 0..127 | int8 | `i`
number_unsigned | 128..255 | uint8 | `U`
number_unsigned | 256..32767 | int16 | `I`
number_unsigned | 32768..2147483647 | int32 | `l`
number_unsigned | 2147483648..9223372036854775807 | int64 | `L`
number_float | *any value* | float64 | `D`
string | *with shortest length indicator* | string | `S`
array | *see notes on optimized format* | array | `[`
object | *see notes on optimized format* | map | `{`
@note The mapping is **complete** in the sense that any JSON value type
can be converted to a UBJSON value.
@note The following values can **not** be converted to a UBJSON value:
- strings with more than 9223372036854775807 bytes (theoretical)
- unsigned integer numbers above 9223372036854775807
@note The following markers are not used in the conversion:
- `Z`: no-op values are not created.
- `C`: single-byte strings are serialized with `S` markers.
@note Any UBJSON output created @ref to_ubjson can be successfully parsed
by @ref from_ubjson.
@note If NaN or Infinity are stored inside a JSON number, they are
serialized properly. This behavior differs from the @ref dump()
function which serializes NaN or Infinity to `null`.
@note The optimized formats for containers are supported: Parameter
@a use_size adds size information to the beginning of a container and
removes the closing marker. Parameter @a use_type further checks
whether all elements of a container have the same type and adds the
type marker to the beginning of the container. The @a use_type
parameter must only be used together with @a use_size = true. Note
that @a use_size = true alone may result in larger representations -
the benefit of this parameter is that the receiving side is
immediately informed on the number of elements of the container.
@param[in] j JSON value to serialize
@param[in] use_size whether to add size annotations to container types
@param[in] use_type whether to add type annotations to container types
(must be combined with @a use_size = true)
@return UBJSON serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in UBJSON format.,to_ubjson}
@sa http://ubjson.org
@sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
analogous deserialization
@sa @ref to_cbor(const basic_json& for the related CBOR format
@sa @ref to_msgpack(const basic_json&) for the related MessagePack format
@since version 3.1.0
*/
static std::vector<uint8_t> to_ubjson(const basic_json& j,
const bool use_size = false,
const bool use_type = false)
{
std::vector<uint8_t> result;
to_ubjson(j, result, use_size, use_type);
return result;
}
static void to_ubjson(const basic_json& j, detail::output_adapter<uint8_t> o,
const bool use_size = false, const bool use_type = false)
{
binary_writer<uint8_t>(o).write_ubjson(j, use_size, use_type);
}
static void to_ubjson(const basic_json& j, detail::output_adapter<char> o,
const bool use_size = false, const bool use_type = false)
{
binary_writer<char>(o).write_ubjson(j, use_size, use_type);
}
/*!
@brief Serializes the given JSON object `j` to BSON and returns a vector
containing the corresponding BSON-representation.
BSON (Binary JSON) is a binary format in which zero or more ordered key/value pairs are
stored as a single entity (a so-called document).
The library uses the following mapping from JSON values types to BSON types:
JSON value type | value/range | BSON type | marker
--------------- | --------------------------------- | ----------- | ------
null | `null` | null | 0x0A
boolean | `true`, `false` | boolean | 0x08
number_integer | -9223372036854775808..-2147483649 | int64 | 0x12
number_integer | -2147483648..2147483647 | int32 | 0x10
number_integer | 2147483648..9223372036854775807 | int64 | 0x12
number_unsigned | 0..2147483647 | int32 | 0x10
number_unsigned | 2147483648..9223372036854775807 | int64 | 0x12
number_unsigned | 9223372036854775808..18446744073709551615| -- | --
number_float | *any value* | double | 0x01
string | *any value* | string | 0x02
array | *any value* | document | 0x04
object | *any value* | document | 0x03
@warning The mapping is **incomplete**, since only JSON-objects (and things
contained therein) can be serialized to BSON.
Also, integers larger than 9223372036854775807 cannot be serialized to BSON,
and the keys may not contain U+0000, since they are serialized a
zero-terminated c-strings.
@throw out_of_range.407 if `j.is_number_unsigned() && j.get<std::uint64_t>() > 9223372036854775807`
@throw out_of_range.409 if a key in `j` contains a NULL (U+0000)
@throw type_error.317 if `!j.is_object()`
@pre The input `j` is required to be an object: `j.is_object() == true`.
@note Any BSON output created via @ref to_bson can be successfully parsed
by @ref from_bson.
@param[in] j JSON value to serialize
@return BSON serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in BSON format.,to_bson}
@sa http://bsonspec.org/spec.html
@sa @ref from_bson(detail::input_adapter&&, const bool strict) for the
analogous deserialization
@sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
related UBJSON format
@sa @ref to_cbor(const basic_json&) for the related CBOR format
@sa @ref to_msgpack(const basic_json&) for the related MessagePack format
*/
static std::vector<uint8_t> to_bson(const basic_json& j)
{
std::vector<uint8_t> result;
to_bson(j, result);
return result;
}
/*!
@brief Serializes the given JSON object `j` to BSON and forwards the
corresponding BSON-representation to the given output_adapter `o`.
@param j The JSON object to convert to BSON.
@param o The output adapter that receives the binary BSON representation.
@pre The input `j` shall be an object: `j.is_object() == true`
@sa @ref to_bson(const basic_json&)
*/
static void to_bson(const basic_json& j, detail::output_adapter<uint8_t> o)
{
binary_writer<uint8_t>(o).write_bson(j);
}
/*!
@copydoc to_bson(const basic_json&, detail::output_adapter<uint8_t>)
*/
static void to_bson(const basic_json& j, detail::output_adapter<char> o)
{
binary_writer<char>(o).write_bson(j);
}
/*!
@brief create a JSON value from an input in CBOR format
Deserializes a given input @a i to a JSON value using the CBOR (Concise
Binary Object Representation) serialization format.
The library maps CBOR types to JSON value types as follows:
CBOR type | JSON value type | first byte
---------------------- | --------------- | ----------
Integer | number_unsigned | 0x00..0x17
Unsigned integer | number_unsigned | 0x18
Unsigned integer | number_unsigned | 0x19
Unsigned integer | number_unsigned | 0x1A
Unsigned integer | number_unsigned | 0x1B
Negative integer | number_integer | 0x20..0x37
Negative integer | number_integer | 0x38
Negative integer | number_integer | 0x39
Negative integer | number_integer | 0x3A
Negative integer | number_integer | 0x3B
Negative integer | number_integer | 0x40..0x57
UTF-8 string | string | 0x60..0x77
UTF-8 string | string | 0x78
UTF-8 string | string | 0x79
UTF-8 string | string | 0x7A
UTF-8 string | string | 0x7B
UTF-8 string | string | 0x7F
array | array | 0x80..0x97
array | array | 0x98
array | array | 0x99
array | array | 0x9A
array | array | 0x9B
array | array | 0x9F
map | object | 0xA0..0xB7
map | object | 0xB8
map | object | 0xB9
map | object | 0xBA
map | object | 0xBB
map | object | 0xBF
False | `false` | 0xF4
True | `true` | 0xF5
Null | `null` | 0xF6
Half-Precision Float | number_float | 0xF9
Single-Precision Float | number_float | 0xFA
Double-Precision Float | number_float | 0xFB
@warning The mapping is **incomplete** in the sense that not all CBOR
types can be converted to a JSON value. The following CBOR types
are not supported and will yield parse errors (parse_error.112):
- byte strings (0x40..0x5F)
- date/time (0xC0..0xC1)
- bignum (0xC2..0xC3)
- decimal fraction (0xC4)
- bigfloat (0xC5)
- tagged items (0xC6..0xD4, 0xD8..0xDB)
- expected conversions (0xD5..0xD7)
- simple values (0xE0..0xF3, 0xF8)
- undefined (0xF7)
@warning CBOR allows map keys of any type, whereas JSON only allows
strings as keys in object values. Therefore, CBOR maps with keys
other than UTF-8 strings are rejected (parse_error.113).
@note Any CBOR output created @ref to_cbor can be successfully parsed by
@ref from_cbor.
@param[in] i an input in CBOR format convertible to an input adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.110 if the given input ends prematurely or the end of
file was not reached when @a strict was set to true
@throw parse_error.112 if unsupported features from CBOR were
used in the given input @a v or if the input is not valid CBOR
@throw parse_error.113 if a string was expected as map key, but not found
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in CBOR
format to a JSON value.,from_cbor}
@sa http://cbor.io
@sa @ref to_cbor(const basic_json&) for the analogous serialization
@sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the
related MessagePack format
@sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
related UBJSON format
@since version 2.0.9; parameter @a start_index since 2.1.1; changed to
consume input adapters, removed start_index parameter, and added
@a strict parameter since 3.0.0; added @a allow_exceptions parameter
since 3.2.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_cbor(detail::input_adapter&& i,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::cbor, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@copydoc from_cbor(detail::input_adapter&&, const bool, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_cbor(A1 && a1, A2 && a2,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::cbor, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@brief create a JSON value from an input in MessagePack format
Deserializes a given input @a i to a JSON value using the MessagePack
serialization format.
The library maps MessagePack types to JSON value types as follows:
MessagePack type | JSON value type | first byte
---------------- | --------------- | ----------
positive fixint | number_unsigned | 0x00..0x7F
fixmap | object | 0x80..0x8F
fixarray | array | 0x90..0x9F
fixstr | string | 0xA0..0xBF
nil | `null` | 0xC0
false | `false` | 0xC2
true | `true` | 0xC3
float 32 | number_float | 0xCA
float 64 | number_float | 0xCB
uint 8 | number_unsigned | 0xCC
uint 16 | number_unsigned | 0xCD
uint 32 | number_unsigned | 0xCE
uint 64 | number_unsigned | 0xCF
int 8 | number_integer | 0xD0
int 16 | number_integer | 0xD1
int 32 | number_integer | 0xD2
int 64 | number_integer | 0xD3
str 8 | string | 0xD9
str 16 | string | 0xDA
str 32 | string | 0xDB
array 16 | array | 0xDC
array 32 | array | 0xDD
map 16 | object | 0xDE
map 32 | object | 0xDF
negative fixint | number_integer | 0xE0-0xFF
@warning The mapping is **incomplete** in the sense that not all
MessagePack types can be converted to a JSON value. The following
MessagePack types are not supported and will yield parse errors:
- bin 8 - bin 32 (0xC4..0xC6)
- ext 8 - ext 32 (0xC7..0xC9)
- fixext 1 - fixext 16 (0xD4..0xD8)
@note Any MessagePack output created @ref to_msgpack can be successfully
parsed by @ref from_msgpack.
@param[in] i an input in MessagePack format convertible to an input
adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.110 if the given input ends prematurely or the end of
file was not reached when @a strict was set to true
@throw parse_error.112 if unsupported features from MessagePack were
used in the given input @a i or if the input is not valid MessagePack
@throw parse_error.113 if a string was expected as map key, but not found
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in
MessagePack format to a JSON value.,from_msgpack}
@sa http://msgpack.org
@sa @ref to_msgpack(const basic_json&) for the analogous serialization
@sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
related CBOR format
@sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for
the related UBJSON format
@sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
the related BSON format
@since version 2.0.9; parameter @a start_index since 2.1.1; changed to
consume input adapters, removed start_index parameter, and added
@a strict parameter since 3.0.0; added @a allow_exceptions parameter
since 3.2.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_msgpack(detail::input_adapter&& i,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::msgpack, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@copydoc from_msgpack(detail::input_adapter&&, const bool, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_msgpack(A1 && a1, A2 && a2,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::msgpack, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@brief create a JSON value from an input in UBJSON format
Deserializes a given input @a i to a JSON value using the UBJSON (Universal
Binary JSON) serialization format.
The library maps UBJSON types to JSON value types as follows:
UBJSON type | JSON value type | marker
----------- | --------------------------------------- | ------
no-op | *no value, next value is read* | `N`
null | `null` | `Z`
false | `false` | `F`
true | `true` | `T`
float32 | number_float | `d`
float64 | number_float | `D`
uint8 | number_unsigned | `U`
int8 | number_integer | `i`
int16 | number_integer | `I`
int32 | number_integer | `l`
int64 | number_integer | `L`
string | string | `S`
char | string | `C`
array | array (optimized values are supported) | `[`
object | object (optimized values are supported) | `{`
@note The mapping is **complete** in the sense that any UBJSON value can
be converted to a JSON value.
@param[in] i an input in UBJSON format convertible to an input adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.110 if the given input ends prematurely or the end of
file was not reached when @a strict was set to true
@throw parse_error.112 if a parse error occurs
@throw parse_error.113 if a string could not be parsed successfully
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in
UBJSON format to a JSON value.,from_ubjson}
@sa http://ubjson.org
@sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
analogous serialization
@sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
related CBOR format
@sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
the related MessagePack format
@sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
the related BSON format
@since version 3.1.0; added @a allow_exceptions parameter since 3.2.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_ubjson(detail::input_adapter&& i,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::ubjson, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@copydoc from_ubjson(detail::input_adapter&&, const bool, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_ubjson(A1 && a1, A2 && a2,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::ubjson, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@brief Create a JSON value from an input in BSON format
Deserializes a given input @a i to a JSON value using the BSON (Binary JSON)
serialization format.
The library maps BSON record types to JSON value types as follows:
BSON type | BSON marker byte | JSON value type
--------------- | ---------------- | ---------------------------
double | 0x01 | number_float
string | 0x02 | string
document | 0x03 | object
array | 0x04 | array
binary | 0x05 | still unsupported
undefined | 0x06 | still unsupported
ObjectId | 0x07 | still unsupported
boolean | 0x08 | boolean
UTC Date-Time | 0x09 | still unsupported
null | 0x0A | null
Regular Expr. | 0x0B | still unsupported
DB Pointer | 0x0C | still unsupported
JavaScript Code | 0x0D | still unsupported
Symbol | 0x0E | still unsupported
JavaScript Code | 0x0F | still unsupported
int32 | 0x10 | number_integer
Timestamp | 0x11 | still unsupported
128-bit decimal float | 0x13 | still unsupported
Max Key | 0x7F | still unsupported
Min Key | 0xFF | still unsupported
@warning The mapping is **incomplete**. The unsupported mappings
are indicated in the table above.
@param[in] i an input in BSON format convertible to an input adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return deserialized JSON value; in case of a parse error and
@a allow_exceptions set to `false`, the return value will be
value_t::discarded.
@throw parse_error.114 if an unsupported BSON record type is encountered
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in
BSON format to a JSON value.,from_bson}
@sa http://bsonspec.org/spec.html
@sa @ref to_bson(const basic_json&) for the analogous serialization
@sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
related CBOR format
@sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
the related MessagePack format
@sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
related UBJSON format
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_bson(detail::input_adapter&& i,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::bson, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/*!
@copydoc from_bson(detail::input_adapter&&, const bool, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json from_bson(A1 && a1, A2 && a2,
const bool strict = true,
const bool allow_exceptions = true)
{
basic_json result;
detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::bson, &sdp, strict);
return res ? result : basic_json(value_t::discarded);
}
/// @}
//////////////////////////
// JSON Pointer support //
//////////////////////////
/// @name JSON Pointer functions
/// @{
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. Similar to @ref operator[](const typename
object_t::key_type&), `null` values are created in arrays and objects if
necessary.
In particular:
- If the JSON pointer points to an object key that does not exist, it
is created an filled with a `null` value before a reference to it
is returned.
- If the JSON pointer points to an array index that does not exist, it
is created an filled with a `null` value before a reference to it
is returned. All indices between the current maximum and the given
index are also filled with `null`.
- The special value `-` is treated as a synonym for the index past the
end.
@param[in] ptr a JSON pointer
@return reference to the element pointed to by @a ptr
@complexity Constant.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.404 if the JSON pointer can not be resolved
@liveexample{The behavior is shown in the example.,operatorjson_pointer}
@since version 2.0.0
*/
reference operator[](const json_pointer& ptr)
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. The function does not change the JSON
value; no `null` values are created. In particular, the the special value
`-` yields an exception.
@param[in] ptr JSON pointer to the desired element
@return const reference to the element pointed to by @a ptr
@complexity Constant.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
@liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
@since version 2.0.0
*/
const_reference operator[](const json_pointer& ptr) const
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a reference to the element at with specified JSON pointer @a ptr,
with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@throw parse_error.106 if an array index in the passed JSON pointer @a ptr
begins with '0'. See example below.
@throw parse_error.109 if an array index in the passed JSON pointer @a ptr
is not a number. See example below.
@throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
is out of range. See example below.
@throw out_of_range.402 if the array index '-' is used in the passed JSON
pointer @a ptr. As `at` provides checked access (and no elements are
implicitly inserted), the index '-' is always invalid. See example below.
@throw out_of_range.403 if the JSON pointer describes a key of an object
which cannot be found. See example below.
@throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 2.0.0
@liveexample{The behavior is shown in the example.,at_json_pointer}
*/
reference at(const json_pointer& ptr)
{
return ptr.get_checked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a const reference to the element at with specified JSON pointer @a
ptr, with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@throw parse_error.106 if an array index in the passed JSON pointer @a ptr
begins with '0'. See example below.
@throw parse_error.109 if an array index in the passed JSON pointer @a ptr
is not a number. See example below.
@throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
is out of range. See example below.
@throw out_of_range.402 if the array index '-' is used in the passed JSON
pointer @a ptr. As `at` provides checked access (and no elements are
implicitly inserted), the index '-' is always invalid. See example below.
@throw out_of_range.403 if the JSON pointer describes a key of an object
which cannot be found. See example below.
@throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 2.0.0
@liveexample{The behavior is shown in the example.,at_json_pointer_const}
*/
const_reference at(const json_pointer& ptr) const
{
return ptr.get_checked(this);
}
/*!
@brief return flattened JSON value
The function creates a JSON object whose keys are JSON pointers (see [RFC
6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
primitive. The original JSON value can be restored using the @ref
unflatten() function.
@return an object that maps JSON pointers to primitive values
@note Empty objects and arrays are flattened to `null` and will not be
reconstructed correctly by the @ref unflatten() function.
@complexity Linear in the size the JSON value.
@liveexample{The following code shows how a JSON object is flattened to an
object whose keys consist of JSON pointers.,flatten}
@sa @ref unflatten() for the reverse function
@since version 2.0.0
*/
basic_json flatten() const
{
basic_json result(value_t::object);
json_pointer::flatten("", *this, result);
return result;
}
/*!
@brief unflatten a previously flattened JSON value
The function restores the arbitrary nesting of a JSON value that has been
flattened before using the @ref flatten() function. The JSON value must
meet certain constraints:
1. The value must be an object.
2. The keys must be JSON pointers (see
[RFC 6901](https://tools.ietf.org/html/rfc6901))
3. The mapped values must be primitive JSON types.
@return the original JSON from a flattened version
@note Empty objects and arrays are flattened by @ref flatten() to `null`
values and can not unflattened to their original type. Apart from
this example, for a JSON value `j`, the following is always true:
`j == j.flatten().unflatten()`.
@complexity Linear in the size the JSON value.
@throw type_error.314 if value is not an object
@throw type_error.315 if object values are not primitive
@liveexample{The following code shows how a flattened JSON object is
unflattened into the original nested JSON object.,unflatten}
@sa @ref flatten() for the reverse function
@since version 2.0.0
*/
basic_json unflatten() const
{
return json_pointer::unflatten(*this);
}
/// @}
//////////////////////////
// JSON Patch functions //
//////////////////////////
/// @name JSON Patch functions
/// @{
/*!
@brief applies a JSON patch
[JSON Patch](http://jsonpatch.com) defines a JSON document structure for
expressing a sequence of operations to apply to a JSON) document. With
this function, a JSON Patch is applied to the current JSON value by
executing all operations from the patch.
@param[in] json_patch JSON patch document
@return patched document
@note The application of a patch is atomic: Either all operations succeed
and the patched document is returned or an exception is thrown. In
any case, the original value is not changed: the patch is applied
to a copy of the value.
@throw parse_error.104 if the JSON patch does not consist of an array of
objects
@throw parse_error.105 if the JSON patch is malformed (e.g., mandatory
attributes are missing); example: `"operation add must have member path"`
@throw out_of_range.401 if an array index is out of range.
@throw out_of_range.403 if a JSON pointer inside the patch could not be
resolved successfully in the current JSON value; example: `"key baz not
found"`
@throw out_of_range.405 if JSON pointer has no parent ("add", "remove",
"move")
@throw other_error.501 if "test" operation was unsuccessful
@complexity Linear in the size of the JSON value and the length of the
JSON patch. As usually only a fraction of the JSON value is affected by
the patch, the complexity can usually be neglected.
@liveexample{The following code shows how a JSON patch is applied to a
value.,patch}
@sa @ref diff -- create a JSON patch by comparing two JSON values
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
basic_json patch(const basic_json& json_patch) const
{
// make a working copy to apply the patch to
basic_json result = *this;
// the valid JSON Patch operations
enum class patch_operations {add, remove, replace, move, copy, test, invalid};
const auto get_op = [](const std::string & op)
{
if (op == "add")
{
return patch_operations::add;
}
if (op == "remove")
{
return patch_operations::remove;
}
if (op == "replace")
{
return patch_operations::replace;
}
if (op == "move")
{
return patch_operations::move;
}
if (op == "copy")
{
return patch_operations::copy;
}
if (op == "test")
{
return patch_operations::test;
}
return patch_operations::invalid;
};
// wrapper for "add" operation; add value at ptr
const auto operation_add = [&result](json_pointer & ptr, basic_json val)
{
// adding to the root of the target document means replacing it
if (ptr.empty())
{
result = val;
return;
}
// make sure the top element of the pointer exists
json_pointer top_pointer = ptr.top();
if (top_pointer != ptr)
{
result.at(top_pointer);
}
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.back();
ptr.pop_back();
basic_json& parent = result[ptr];
switch (parent.m_type)
{
case value_t::null:
case value_t::object:
{
// use operator[] to add value
parent[last_path] = val;
break;
}
case value_t::array:
{
if (last_path == "-")
{
// special case: append to back
parent.push_back(val);
}
else
{
const auto idx = json_pointer::array_index(last_path);
if (JSON_HEDLEY_UNLIKELY(static_cast<size_type>(idx) > parent.size()))
{
// avoid undefined behavior
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
// default case: insert add offset
parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
}
break;
}
// if there exists a parent it cannot be primitive
default: // LCOV_EXCL_LINE
assert(false); // LCOV_EXCL_LINE
}
};
// wrapper for "remove" operation; remove value at ptr
const auto operation_remove = [&result](json_pointer & ptr)
{
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.back();
ptr.pop_back();
basic_json& parent = result.at(ptr);
// remove child
if (parent.is_object())
{
// perform range check
auto it = parent.find(last_path);
if (JSON_HEDLEY_LIKELY(it != parent.end()))
{
parent.erase(it);
}
else
{
JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found"));
}
}
else if (parent.is_array())
{
// note erase performs range check
parent.erase(static_cast<size_type>(json_pointer::array_index(last_path)));
}
};
// type check: top level value must be an array
if (JSON_HEDLEY_UNLIKELY(not json_patch.is_array()))
{
JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
}
// iterate and apply the operations
for (const auto& val : json_patch)
{
// wrapper to get a value for an operation
const auto get_value = [&val](const std::string & op,
const std::string & member,
bool string_type) -> basic_json &
{
// find value
auto it = val.m_value.object->find(member);
// context-sensitive error message
const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
// check if desired value is present
if (JSON_HEDLEY_UNLIKELY(it == val.m_value.object->end()))
{
JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'"));
}
// check if result is of type string
if (JSON_HEDLEY_UNLIKELY(string_type and not it->second.is_string()))
{
JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'"));
}
// no error: return value
return it->second;
};
// type check: every element of the array must be an object
if (JSON_HEDLEY_UNLIKELY(not val.is_object()))
{
JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
}
// collect mandatory members
const std::string op = get_value("op", "op", true);
const std::string path = get_value(op, "path", true);
json_pointer ptr(path);
switch (get_op(op))
{
case patch_operations::add:
{
operation_add(ptr, get_value("add", "value", false));
break;
}
case patch_operations::remove:
{
operation_remove(ptr);
break;
}
case patch_operations::replace:
{
// the "path" location must exist - use at()
result.at(ptr) = get_value("replace", "value", false);
break;
}
case patch_operations::move:
{
const std::string from_path = get_value("move", "from", true);
json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
basic_json v = result.at(from_ptr);
// The move operation is functionally identical to a
// "remove" operation on the "from" location, followed
// immediately by an "add" operation at the target
// location with the value that was just removed.
operation_remove(from_ptr);
operation_add(ptr, v);
break;
}
case patch_operations::copy:
{
const std::string from_path = get_value("copy", "from", true);
const json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
basic_json v = result.at(from_ptr);
// The copy is functionally identical to an "add"
// operation at the target location using the value
// specified in the "from" member.
operation_add(ptr, v);
break;
}
case patch_operations::test:
{
bool success = false;
JSON_TRY
{
// check if "value" matches the one at "path"
// the "path" location must exist - use at()
success = (result.at(ptr) == get_value("test", "value", false));
}
JSON_INTERNAL_CATCH (out_of_range&)
{
// ignore out of range errors: success remains false
}
// throw an exception if test fails
if (JSON_HEDLEY_UNLIKELY(not success))
{
JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump()));
}
break;
}
default:
{
// op must be "add", "remove", "replace", "move", "copy", or
// "test"
JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid"));
}
}
}
return result;
}
/*!
@brief creates a diff as a JSON patch
Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
be changed into the value @a target by calling @ref patch function.
@invariant For two JSON values @a source and @a target, the following code
yields always `true`:
@code {.cpp}
source.patch(diff(source, target)) == target;
@endcode
@note Currently, only `remove`, `add`, and `replace` operations are
generated.
@param[in] source JSON value to compare from
@param[in] target JSON value to compare against
@param[in] path helper value to create JSON pointers
@return a JSON patch to convert the @a source to @a target
@complexity Linear in the lengths of @a source and @a target.
@liveexample{The following code shows how a JSON patch is created as a
diff for two JSON values.,diff}
@sa @ref patch -- apply a JSON patch
@sa @ref merge_patch -- apply a JSON Merge Patch
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@since version 2.0.0
*/
JSON_HEDLEY_WARN_UNUSED_RESULT
static basic_json diff(const basic_json& source, const basic_json& target,
const std::string& path = "")
{
// the patch
basic_json result(value_t::array);
// if the values are the same, return empty patch
if (source == target)
{
return result;
}
if (source.type() != target.type())
{
// different types: replace value
result.push_back(
{
{"op", "replace"}, {"path", path}, {"value", target}
});
return result;
}
switch (source.type())
{
case value_t::array:
{
// first pass: traverse common elements
std::size_t i = 0;
while (i < source.size() and i < target.size())
{
// recursive call to compare array values at index i
auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
++i;
}
// i now reached the end of at least one array
// in a second pass, traverse the remaining elements
// remove my remaining elements
const auto end_index = static_cast<difference_type>(result.size());
while (i < source.size())
{
// add operations in reverse order to avoid invalid
// indices
result.insert(result.begin() + end_index, object(
{
{"op", "remove"},
{"path", path + "/" + std::to_string(i)}
}));
++i;
}
// add other remaining elements
while (i < target.size())
{
result.push_back(
{
{"op", "add"},
{"path", path + "/" + std::to_string(i)},
{"value", target[i]}
});
++i;
}
break;
}
case value_t::object:
{
// first pass: traverse this object's elements
for (auto it = source.cbegin(); it != source.cend(); ++it)
{
// escape the key name to be used in a JSON patch
const auto key = json_pointer::escape(it.key());
if (target.find(it.key()) != target.end())
{
// recursive call to compare object values at key it
auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
}
else
{
// found a key that is not in o -> remove it
result.push_back(object(
{
{"op", "remove"}, {"path", path + "/" + key}
}));
}
}
// second pass: traverse other object's elements
for (auto it = target.cbegin(); it != target.cend(); ++it)
{
if (source.find(it.key()) == source.end())
{
// found a key that is not in this -> add it
const auto key = json_pointer::escape(it.key());
result.push_back(
{
{"op", "add"}, {"path", path + "/" + key},
{"value", it.value()}
});
}
}
break;
}
default:
{
// both primitive type: replace value
result.push_back(
{
{"op", "replace"}, {"path", path}, {"value", target}
});
break;
}
}
return result;
}
/// @}
////////////////////////////////
// JSON Merge Patch functions //
////////////////////////////////
/// @name JSON Merge Patch functions
/// @{
/*!
@brief applies a JSON Merge Patch
The merge patch format is primarily intended for use with the HTTP PATCH
method as a means of describing a set of modifications to a target
resource's content. This function applies a merge patch to the current
JSON value.
The function implements the following algorithm from Section 2 of
[RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396):
```
define MergePatch(Target, Patch):
if Patch is an Object:
if Target is not an Object:
Target = {} // Ignore the contents and set it to an empty Object
for each Name/Value pair in Patch:
if Value is null:
if Name exists in Target:
remove the Name/Value pair from Target
else:
Target[Name] = MergePatch(Target[Name], Value)
return Target
else:
return Patch
```
Thereby, `Target` is the current object; that is, the patch is applied to
the current value.
@param[in] apply_patch the patch to apply
@complexity Linear in the lengths of @a patch.
@liveexample{The following code shows how a JSON Merge Patch is applied to
a JSON document.,merge_patch}
@sa @ref patch -- apply a JSON patch
@sa [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396)
@since version 3.0.0
*/
void merge_patch(const basic_json& apply_patch)
{
if (apply_patch.is_object())
{
if (not is_object())
{
*this = object();
}
for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it)
{
if (it.value().is_null())
{
erase(it.key());
}
else
{
operator[](it.key()).merge_patch(it.value());
}
}
}
else
{
*this = apply_patch;
}
}
/// @}
};
/*!
@brief user-defined to_string function for JSON values
This function implements a user-defined to_string for JSON objects.
@param[in] j a JSON object
@return a std::string object
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
std::string to_string(const NLOHMANN_BASIC_JSON_TPL& j)
{
return j.dump();
}
} // namespace nlohmann
///////////////////////
// nonmember support //
///////////////////////
// specialization of std::swap, and std::hash
namespace std
{
/// hash value for JSON objects
template<>
struct hash<nlohmann::json>
{
/*!
@brief return a hash value for a JSON object
@since version 1.0.0
*/
std::size_t operator()(const nlohmann::json& j) const
{
// a naive hashing via the string representation
const auto& h = hash<nlohmann::json::string_t>();
return h(j.dump());
}
};
/// specialization for std::less<value_t>
/// @note: do not remove the space after '<',
/// see https://github.com/nlohmann/json/pull/679
template<>
struct less< ::nlohmann::detail::value_t>
{
/*!
@brief compare two value_t enum values
@since version 3.0.0
*/
bool operator()(nlohmann::detail::value_t lhs,
nlohmann::detail::value_t rhs) const noexcept
{
return nlohmann::detail::operator<(lhs, rhs);
}
};
/*!
@brief exchanges the values of two JSON objects
@since version 1.0.0
*/
template<>
inline void swap<nlohmann::json>(nlohmann::json& j1, nlohmann::json& j2) noexcept(
is_nothrow_move_constructible<nlohmann::json>::value and
is_nothrow_move_assignable<nlohmann::json>::value
)
{
j1.swap(j2);
}
} // namespace std
/*!
@brief user-defined string literal for JSON values
This operator implements a user-defined string literal for JSON objects. It
can be used by adding `"_json"` to a string literal and returns a JSON object
if no parse error occurred.
@param[in] s a string representation of a JSON object
@param[in] n the length of string @a s
@return a JSON object
@since version 1.0.0
*/
JSON_HEDLEY_NON_NULL(1)
inline nlohmann::json operator "" _json(const char* s, std::size_t n)
{
return nlohmann::json::parse(s, s + n);
}
/*!
@brief user-defined string literal for JSON pointer
This operator implements a user-defined string literal for JSON Pointers. It
can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
object if no parse error occurred.
@param[in] s a string representation of a JSON Pointer
@param[in] n the length of string @a s
@return a JSON pointer object
@since version 2.0.0
*/
JSON_HEDLEY_NON_NULL(1)
inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
{
return nlohmann::json::json_pointer(std::string(s, n));
}
// #include <nlohmann/detail/macro_unscope.hpp>
// restore GCC/clang diagnostic settings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic pop
#endif
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
// clean up
#undef JSON_INTERNAL_CATCH
#undef JSON_CATCH
#undef JSON_THROW
#undef JSON_TRY
#undef JSON_HAS_CPP_14
#undef JSON_HAS_CPP_17
#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
#undef NLOHMANN_BASIC_JSON_TPL
// #include <nlohmann/thirdparty/hedley/hedley_undef.hpp>
#undef JSON_HEDLEY_ALWAYS_INLINE
#undef JSON_HEDLEY_ARM_VERSION
#undef JSON_HEDLEY_ARM_VERSION_CHECK
#undef JSON_HEDLEY_ARRAY_PARAM
#undef JSON_HEDLEY_ASSUME
#undef JSON_HEDLEY_BEGIN_C_DECLS
#undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
#undef JSON_HEDLEY_CLANG_HAS_BUILTIN
#undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
#undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
#undef JSON_HEDLEY_CLANG_HAS_EXTENSION
#undef JSON_HEDLEY_CLANG_HAS_FEATURE
#undef JSON_HEDLEY_CLANG_HAS_WARNING
#undef JSON_HEDLEY_COMPCERT_VERSION
#undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
#undef JSON_HEDLEY_CONCAT
#undef JSON_HEDLEY_CONCAT_EX
#undef JSON_HEDLEY_CONST
#undef JSON_HEDLEY_CONSTEXPR
#undef JSON_HEDLEY_CONST_CAST
#undef JSON_HEDLEY_CPP_CAST
#undef JSON_HEDLEY_CRAY_VERSION
#undef JSON_HEDLEY_CRAY_VERSION_CHECK
#undef JSON_HEDLEY_C_DECL
#undef JSON_HEDLEY_DEPRECATED
#undef JSON_HEDLEY_DEPRECATED_FOR
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
#undef JSON_HEDLEY_DIAGNOSTIC_POP
#undef JSON_HEDLEY_DIAGNOSTIC_PUSH
#undef JSON_HEDLEY_DMC_VERSION
#undef JSON_HEDLEY_DMC_VERSION_CHECK
#undef JSON_HEDLEY_EMSCRIPTEN_VERSION
#undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
#undef JSON_HEDLEY_END_C_DECLS
#undef JSON_HEDLEY_FALL_THROUGH
#undef JSON_HEDLEY_FLAGS
#undef JSON_HEDLEY_FLAGS_CAST
#undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
#undef JSON_HEDLEY_GCC_HAS_BUILTIN
#undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
#undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
#undef JSON_HEDLEY_GCC_HAS_EXTENSION
#undef JSON_HEDLEY_GCC_HAS_FEATURE
#undef JSON_HEDLEY_GCC_HAS_WARNING
#undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
#undef JSON_HEDLEY_GCC_VERSION
#undef JSON_HEDLEY_GCC_VERSION_CHECK
#undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
#undef JSON_HEDLEY_GNUC_HAS_BUILTIN
#undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
#undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
#undef JSON_HEDLEY_GNUC_HAS_EXTENSION
#undef JSON_HEDLEY_GNUC_HAS_FEATURE
#undef JSON_HEDLEY_GNUC_HAS_WARNING
#undef JSON_HEDLEY_GNUC_VERSION
#undef JSON_HEDLEY_GNUC_VERSION_CHECK
#undef JSON_HEDLEY_HAS_ATTRIBUTE
#undef JSON_HEDLEY_HAS_BUILTIN
#undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
#undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
#undef JSON_HEDLEY_HAS_EXTENSION
#undef JSON_HEDLEY_HAS_FEATURE
#undef JSON_HEDLEY_HAS_WARNING
#undef JSON_HEDLEY_IAR_VERSION
#undef JSON_HEDLEY_IAR_VERSION_CHECK
#undef JSON_HEDLEY_IBM_VERSION
#undef JSON_HEDLEY_IBM_VERSION_CHECK
#undef JSON_HEDLEY_IMPORT
#undef JSON_HEDLEY_INLINE
#undef JSON_HEDLEY_INTEL_VERSION
#undef JSON_HEDLEY_INTEL_VERSION_CHECK
#undef JSON_HEDLEY_IS_CONSTANT
#undef JSON_HEDLEY_LIKELY
#undef JSON_HEDLEY_MALLOC
#undef JSON_HEDLEY_MESSAGE
#undef JSON_HEDLEY_MSVC_VERSION
#undef JSON_HEDLEY_MSVC_VERSION_CHECK
#undef JSON_HEDLEY_NEVER_INLINE
#undef JSON_HEDLEY_NON_NULL
#undef JSON_HEDLEY_NO_RETURN
#undef JSON_HEDLEY_NO_THROW
#undef JSON_HEDLEY_PELLES_VERSION
#undef JSON_HEDLEY_PELLES_VERSION_CHECK
#undef JSON_HEDLEY_PGI_VERSION
#undef JSON_HEDLEY_PGI_VERSION_CHECK
#undef JSON_HEDLEY_PREDICT
#undef JSON_HEDLEY_PRINTF_FORMAT
#undef JSON_HEDLEY_PRIVATE
#undef JSON_HEDLEY_PUBLIC
#undef JSON_HEDLEY_PURE
#undef JSON_HEDLEY_REINTERPRET_CAST
#undef JSON_HEDLEY_REQUIRE
#undef JSON_HEDLEY_REQUIRE_CONSTEXPR
#undef JSON_HEDLEY_REQUIRE_MSG
#undef JSON_HEDLEY_RESTRICT
#undef JSON_HEDLEY_RETURNS_NON_NULL
#undef JSON_HEDLEY_SENTINEL
#undef JSON_HEDLEY_STATIC_ASSERT
#undef JSON_HEDLEY_STATIC_CAST
#undef JSON_HEDLEY_STRINGIFY
#undef JSON_HEDLEY_STRINGIFY_EX
#undef JSON_HEDLEY_SUNPRO_VERSION
#undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
#undef JSON_HEDLEY_TINYC_VERSION
#undef JSON_HEDLEY_TINYC_VERSION_CHECK
#undef JSON_HEDLEY_TI_VERSION
#undef JSON_HEDLEY_TI_VERSION_CHECK
#undef JSON_HEDLEY_UNAVAILABLE
#undef JSON_HEDLEY_UNLIKELY
#undef JSON_HEDLEY_UNPREDICTABLE
#undef JSON_HEDLEY_UNREACHABLE
#undef JSON_HEDLEY_UNREACHABLE_RETURN
#undef JSON_HEDLEY_VERSION
#undef JSON_HEDLEY_VERSION_DECODE_MAJOR
#undef JSON_HEDLEY_VERSION_DECODE_MINOR
#undef JSON_HEDLEY_VERSION_DECODE_REVISION
#undef JSON_HEDLEY_VERSION_ENCODE
#undef JSON_HEDLEY_WARNING
#undef JSON_HEDLEY_WARN_UNUSED_RESULT
#endif // INCLUDE_NLOHMANN_JSON_HPP_
| [
"[email protected]"
] | |
c1d7999866ad7e014095ebb58f6ae9437876de8c | 6cacd8000af1f4d477d242dbf57743f54bec3706 | /Semestr_1/Kyrsova/SpaceBattleConsole/Menu.h | a17cd031e4f928c59fd7b57bea0d7721e0fee880 | [] | no_license | MaZeSA/CPP-OOP | 21f2d4ab8489ecb2739aa9c3afacddc1f51d1e14 | 1090eaa709aa86c0d2c69f7aab80c3e905d34c34 | refs/heads/master | 2023-06-25T09:57:12.349864 | 2021-07-23T18:01:18 | 2021-07-23T18:01:18 | 315,003,580 | 0 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 2,727 | h | #pragma once
#include "Fild.h"
#include <iostream>
#include <thread>
class Menu : public Fild
{
public:
class ListMenu
{
public:
ListMenu(int y_, int x_)
{
this->x = x_;
this->y = y_;
}
void PrintMenu(Menu* menu_)
{
for (int i = 0; i < 3; i++)
{
setCursorPosition(this->x, this->y + i);
std::cout << menu[i];
}
++(*this);
--(*this);
WaitUser(menu_);
}
void WaitUser(Menu* menu_)
{
while (true)
{
this_thread::sleep_for(std::chrono::milliseconds(40));
if (GetAsyncKeyState(38) == -32767)
--(*this);
if (GetAsyncKeyState(40) == -32767)
++(*this);
if (GetAsyncKeyState(VK_RETURN) == -32767)
{
if (this->GetSelect() == 0)
menu_->StartGame();
else if (this->GetSelect() == 1)
menu_->Settings();
else if (this->GetSelect() == 2)
exit(0);
}
}
}
void SelectMenu(FG_COLORS color, char c_)
{
setCursorPosition(this->x - 1, this->y + this->selectItem);
setTextColour(color);
cout << c_ << menu[this->selectItem];
}
int GetSelect()
{
return this->selectItem;
}
int* operator++()
{
if (this->selectItem == 2) return &selectItem;
SelectMenu(defColor, ' ');
this->selectItem++;
SelectMenu(selColor, '*');
return &selectItem;
}
int* operator--()
{
if (this->selectItem == 0) return &selectItem;
SelectMenu(defColor, ' ');
this->selectItem--;
SelectMenu(selColor, '*');
return &selectItem;
}
private:
string menu[3] = {" Start Game"," Controls"," Exit" };
FG_COLORS defColor = FG_COLORS::FG_LIGHTGRAY;
FG_COLORS selColor = FG_COLORS::FG_YELLOW;
int selectItem = 0;
int x = 0, y = 0;
};
Menu(int x_, int y_, int retreat_) : Fild(x_, y_, retreat_) {};
void PrintLogo();
void MazesaPrint();
void Present();
void SpaseBatlePrint(int y_);
void RunBullet();
void StartGame();
void Settings();
void PrintFinal(int);
private:
std::string MaZeSa[5] =
{
" ii ii i iiiiii iiiiii iiii i ",
" iii iii i i ii i i i i ",
" ii i i ii i i ii iiiiii iiii i i ",
" ii i ii iiiiiii ii i i iiiiiii ",
" ii ii ii ii iiiiii iiiiii iiiii ii ii"
};
std::string SpaseBatle[10] =
{
" IIIII IIIII I IIIII IIIIII IIIII I IIIIIIII II IIIIII ",
" II II I I I II II II I I I II II II ",
" IIII IIIII I I IIII IIIIII IIIII I I II II IIIIII ",
" II II IIIIIII II II II I IIIIIII II II II ",
" IIIII II II II IIIII IIIIII IIIII II II II IIIIII IIIIII "
};
};
| [
"[email protected]"
] | |
36c2a46fc2b2bef9f81fb131612f04cb38380510 | addedb059a79bca6128e5afbb954f45736c9cd53 | /MossbauerLab.Sm2201.ExtSaveUtility/src/configs/schedulerConfig.h | 6b3dc66bf159a796582addda4cb4b4528db0e3df | [
"Apache-2.0"
] | permissive | MossbauerLab/Sm2201Autosave | 962922b01b84cd88997020ec54cc36aa1536deff | 8d5e2f8438887fa5636bde48678209ae43a4720d | refs/heads/master | 2022-12-24T18:39:00.125882 | 2022-12-19T08:51:30 | 2022-12-19T08:51:30 | 211,931,958 | 3 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,604 | h | #ifndef SM2201_SPECTRUM_SAVER_SRC_CONFIG_SCHEDULER_CONFIG_H
#define SM2201_SPECTRUM_SAVER_SRC_CONFIG_SCHEDULER_CONFIG_H
#pragma warning(disable:4786)
#pragma comment(linker, "/IGNORE:4786")
#include <string>
#include "propertyReader.h"
namespace MossbauerLab
{
namespace Sm2201
{
namespace Config
{
class SchedulerConfig
{
public:
SchedulerConfig(const std::string& schedulerConfigFile);
~SchedulerConfig();
void reload();
inline bool getState() const {return _state;}
inline bool isChannelOneUsing() const {return _useChannelOne;}
inline bool isChannelTwoUsing() const {return _useChannelTwo;}
inline long getChannelOnePeriod() const {return _channelOnePeriod;}
inline long getChannelTwoPeriod() const {return _channelTwoPeriod;}
inline const std::string& getOutputDir() const {return _outputDir;}
inline const std::string& getArchiveDir() const {return _archiveDir;}
inline long getKeySendTimeout() const {return _keySendTimeout;}
private:
MossbauerLab::Utils::Config::PropertyReader* reader;
bool _state;
bool _useChannelOne;
bool _useChannelTwo;
long _channelOnePeriod;
long _channelTwoPeriod;
std::string _outputDir;
std::string _archiveDir;
long _keySendTimeout;
};
}
}
}
#endif | [
"[email protected]"
] | |
3c4d7957afcd49d4e62a021cbfdc8d26f14d7f49 | 0225a1fb4e8bfd022a992a751c9ae60722f9ca0d | /base/base_tests/assert_test.cpp | 0df32cc5df82616abeb395e7e60ad90a86d0b263 | [
"Apache-2.0"
] | permissive | organicmaps/organicmaps | fb2d86ea12abf5aab09cd8b7c55d5d5b98f264a1 | 76016d6ce0be42bfb6ed967868b9bd7d16b79882 | refs/heads/master | 2023-08-16T13:58:16.223655 | 2023-08-15T20:16:15 | 2023-08-15T20:16:15 | 324,829,379 | 6,981 | 782 | Apache-2.0 | 2023-09-14T21:30:12 | 2020-12-27T19:02:26 | C++ | UTF-8 | C++ | false | false | 722 | cpp | #include "testing/testing.hpp"
#include "base/base.hpp"
#include "base/exception.hpp"
#include "base/logging.hpp"
UNIT_TEST(Assert_Smoke)
{
int x = 5;
// to avoid warning in release
#ifdef RELEASE
UNUSED_VALUE(x);
#endif
ASSERT_EQUAL ( x, 5, () );
ASSERT_NOT_EQUAL ( x, 6, () );
//ASSERT_EQUAL ( x, 666, ("Skip this to continue test") );
}
UNIT_TEST(Check_Smoke)
{
int x = 5;
CHECK_EQUAL ( x, 5, () );
CHECK_NOT_EQUAL ( x, 6, () );
//CHECK_EQUAL ( x, 666, ("Skip this to continue test") );
}
UNIT_TEST(Exception_Formatting)
{
try
{
MYTHROW(RootException, ("String1", "String2", "String3"));
}
catch (RootException const & e)
{
LOG(LINFO, ("Exception string: ", e.what()));
}
}
| [
"[email protected]"
] | |
8ed6797c7b264948f0ff960e075206c3fd13f8fb | f9bad3ca093095da33b16ba3166cea0f837a0451 | /src/app/generator/semanticmodel/robotbinding.h | 8e8e47592c860966b930751c19ee69155de2b483 | [] | no_license | alexreinking/CodeGenerator | 1c4532eaa4f652d2e55a8f808bd54e5a68fb2d4a | 8c6b89bbf4ac0eef7a635b03d24cae4286edf7ca | refs/heads/master | 2021-03-12T23:56:31.003900 | 2013-02-23T00:56:50 | 2013-02-23T00:56:50 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 916 | h | #ifndef ROBOTBINDING_H
#define ROBOTBINDING_H
#include "robotobject.h"
class RobotBinding : public RobotObject
{
public:
RobotBinding(const QString &sender, const QString &receiver, bool foreignCode = false)
: sender(sender), receiver(receiver), foreignCode(foreignCode) {}
int getType() const { return BindingObject; }
bool isDefault() const { return false; }
QString getName() const { return ""; }
QString getSender() const { return sender; }
QString getReceiver() const { return receiver; }
bool getForeignCode() const { return foreignCode; }
void setSender(const QString &sender) { this->sender = sender; }
void setReceiver(const QString &receiver) { this->receiver = receiver; }
void setForeignCode(bool foreignCode) { this->foreignCode = foreignCode; }
private:
QString sender;
QString receiver;
bool foreignCode;
};
#endif // ROBOTBINDING_H
| [
"[email protected]"
] | |
cc727549b3dad8a8296b09359f9c8643f556f519 | 5bcdfa3c4a561b36150656a9adf398fb5def70a9 | /distributive/android-arm64-v8a/tensorflow/core/framework/tensor_slice.pb.cc | 9e59d3a0beb87cfc51d18cbde3b2ba3028807373 | [
"Apache-2.0"
] | permissive | avlbanuba/tensorflow_pack | 30bf5b7ef0a0db68ea3828569f1cba4cf5571ef4 | 4612b6817c21f576a16acb6a986e3a6cb95c269a | refs/heads/master | 2021-08-08T00:10:15.361471 | 2017-11-09T07:15:09 | 2017-11-09T07:15:09 | 109,989,169 | 1 | 0 | null | 2017-11-08T14:51:37 | 2017-11-08T14:51:37 | null | UTF-8 | C++ | false | true | 31,812 | cc | // Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/core/framework/tensor_slice.proto
#define INTERNAL_SUPPRESS_PROTOBUF_FIELD_DEPRECATION
#include "tensorflow/core/framework/tensor_slice.pb.h"
#include <algorithm>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/port.h>
#include <google/protobuf/stubs/once.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/wire_format_lite_inl.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/reflection_ops.h>
#include <google/protobuf/wire_format.h>
// @@protoc_insertion_point(includes)
namespace tensorflow {
class TensorSliceProto_ExtentDefaultTypeInternal {
public:
::google::protobuf::internal::ExplicitlyConstructed<TensorSliceProto_Extent>
_instance;
::google::protobuf::int64 length_;
} _TensorSliceProto_Extent_default_instance_;
class TensorSliceProtoDefaultTypeInternal {
public:
::google::protobuf::internal::ExplicitlyConstructed<TensorSliceProto>
_instance;
} _TensorSliceProto_default_instance_;
namespace protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto {
namespace {
::google::protobuf::Metadata file_level_metadata[2];
} // namespace
PROTOBUF_CONSTEXPR_VAR ::google::protobuf::internal::ParseTableField
const TableStruct::entries[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
{0, 0, 0, ::google::protobuf::internal::kInvalidMask, 0, 0},
};
PROTOBUF_CONSTEXPR_VAR ::google::protobuf::internal::AuxillaryParseTableField
const TableStruct::aux[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
::google::protobuf::internal::AuxillaryParseTableField(),
};
PROTOBUF_CONSTEXPR_VAR ::google::protobuf::internal::ParseTable const
TableStruct::schema[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
{ NULL, NULL, 0, -1, -1, -1, -1, NULL, false },
{ NULL, NULL, 0, -1, -1, -1, -1, NULL, false },
};
const ::google::protobuf::uint32 TableStruct::offsets[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
~0u, // no _has_bits_
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto_Extent, _internal_metadata_),
~0u, // no _extensions_
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto_Extent, _oneof_case_[0]),
~0u, // no _weak_field_map_
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto_Extent, start_),
offsetof(TensorSliceProto_ExtentDefaultTypeInternal, length_),
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto_Extent, has_length_),
~0u, // no _has_bits_
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto, _internal_metadata_),
~0u, // no _extensions_
~0u, // no _oneof_case_
~0u, // no _weak_field_map_
GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TensorSliceProto, extent_),
};
static const ::google::protobuf::internal::MigrationSchema schemas[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
{ 0, -1, sizeof(TensorSliceProto_Extent)},
{ 8, -1, sizeof(TensorSliceProto)},
};
static ::google::protobuf::Message const * const file_default_instances[] = {
reinterpret_cast<const ::google::protobuf::Message*>(&_TensorSliceProto_Extent_default_instance_),
reinterpret_cast<const ::google::protobuf::Message*>(&_TensorSliceProto_default_instance_),
};
namespace {
void protobuf_AssignDescriptors() {
AddDescriptors();
::google::protobuf::MessageFactory* factory = NULL;
AssignDescriptors(
"tensorflow/core/framework/tensor_slice.proto", schemas, file_default_instances, TableStruct::offsets, factory,
file_level_metadata, NULL, NULL);
}
void protobuf_AssignDescriptorsOnce() {
static GOOGLE_PROTOBUF_DECLARE_ONCE(once);
::google::protobuf::GoogleOnceInit(&once, &protobuf_AssignDescriptors);
}
void protobuf_RegisterTypes(const ::std::string&) GOOGLE_ATTRIBUTE_COLD;
void protobuf_RegisterTypes(const ::std::string&) {
protobuf_AssignDescriptorsOnce();
::google::protobuf::internal::RegisterAllTypes(file_level_metadata, 2);
}
} // namespace
void TableStruct::InitDefaultsImpl() {
GOOGLE_PROTOBUF_VERIFY_VERSION;
::google::protobuf::internal::InitProtobufDefaults();
_TensorSliceProto_Extent_default_instance_._instance.DefaultConstruct();
::google::protobuf::internal::OnShutdownDestroyMessage(
&_TensorSliceProto_Extent_default_instance_);_TensorSliceProto_default_instance_._instance.DefaultConstruct();
::google::protobuf::internal::OnShutdownDestroyMessage(
&_TensorSliceProto_default_instance_);_TensorSliceProto_Extent_default_instance_.length_ = GOOGLE_LONGLONG(0);
}
void InitDefaults() {
static GOOGLE_PROTOBUF_DECLARE_ONCE(once);
::google::protobuf::GoogleOnceInit(&once, &TableStruct::InitDefaultsImpl);
}
namespace {
void AddDescriptorsImpl() {
InitDefaults();
static const char descriptor[] GOOGLE_ATTRIBUTE_SECTION_VARIABLE(protodesc_cold) = {
"\n,tensorflow/core/framework/tensor_slice"
".proto\022\ntensorflow\"\200\001\n\020TensorSliceProto\022"
"3\n\006extent\030\001 \003(\0132#.tensorflow.TensorSlice"
"Proto.Extent\0327\n\006Extent\022\r\n\005start\030\001 \001(\003\022\020\n"
"\006length\030\002 \001(\003H\000B\014\n\nhas_lengthB2\n\030org.ten"
"sorflow.frameworkB\021TensorSliceProtosP\001\370\001"
"\001b\006proto3"
};
::google::protobuf::DescriptorPool::InternalAddGeneratedFile(
descriptor, 249);
::google::protobuf::MessageFactory::InternalRegisterGeneratedFile(
"tensorflow/core/framework/tensor_slice.proto", &protobuf_RegisterTypes);
}
} // anonymous namespace
void AddDescriptors() {
static GOOGLE_PROTOBUF_DECLARE_ONCE(once);
::google::protobuf::GoogleOnceInit(&once, &AddDescriptorsImpl);
}
// Force AddDescriptors() to be called at dynamic initialization time.
struct StaticDescriptorInitializer {
StaticDescriptorInitializer() {
AddDescriptors();
}
} static_descriptor_initializer;
} // namespace protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto
// ===================================================================
#if !defined(_MSC_VER) || _MSC_VER >= 1900
const int TensorSliceProto_Extent::kStartFieldNumber;
const int TensorSliceProto_Extent::kLengthFieldNumber;
#endif // !defined(_MSC_VER) || _MSC_VER >= 1900
TensorSliceProto_Extent::TensorSliceProto_Extent()
: ::google::protobuf::Message(), _internal_metadata_(NULL) {
if (GOOGLE_PREDICT_TRUE(this != internal_default_instance())) {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
}
SharedCtor();
// @@protoc_insertion_point(constructor:tensorflow.TensorSliceProto.Extent)
}
TensorSliceProto_Extent::TensorSliceProto_Extent(::google::protobuf::Arena* arena)
: ::google::protobuf::Message(),
_internal_metadata_(arena) {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
SharedCtor();
RegisterArenaDtor(arena);
// @@protoc_insertion_point(arena_constructor:tensorflow.TensorSliceProto.Extent)
}
TensorSliceProto_Extent::TensorSliceProto_Extent(const TensorSliceProto_Extent& from)
: ::google::protobuf::Message(),
_internal_metadata_(NULL),
_cached_size_(0) {
_internal_metadata_.MergeFrom(from._internal_metadata_);
start_ = from.start_;
clear_has_has_length();
switch (from.has_length_case()) {
case kLength: {
set_length(from.length());
break;
}
case HAS_LENGTH_NOT_SET: {
break;
}
}
// @@protoc_insertion_point(copy_constructor:tensorflow.TensorSliceProto.Extent)
}
void TensorSliceProto_Extent::SharedCtor() {
start_ = GOOGLE_LONGLONG(0);
clear_has_has_length();
_cached_size_ = 0;
}
TensorSliceProto_Extent::~TensorSliceProto_Extent() {
// @@protoc_insertion_point(destructor:tensorflow.TensorSliceProto.Extent)
SharedDtor();
}
void TensorSliceProto_Extent::SharedDtor() {
::google::protobuf::Arena* arena = GetArenaNoVirtual();
GOOGLE_DCHECK(arena == NULL);
if (arena != NULL) {
return;
}
if (has_has_length()) {
clear_has_length();
}
}
void TensorSliceProto_Extent::ArenaDtor(void* object) {
TensorSliceProto_Extent* _this = reinterpret_cast< TensorSliceProto_Extent* >(object);
(void)_this;
}
void TensorSliceProto_Extent::RegisterArenaDtor(::google::protobuf::Arena* arena) {
}
void TensorSliceProto_Extent::SetCachedSize(int size) const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
}
const ::google::protobuf::Descriptor* TensorSliceProto_Extent::descriptor() {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::protobuf_AssignDescriptorsOnce();
return protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::file_level_metadata[kIndexInFileMessages].descriptor;
}
const TensorSliceProto_Extent& TensorSliceProto_Extent::default_instance() {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
return *internal_default_instance();
}
TensorSliceProto_Extent* TensorSliceProto_Extent::New(::google::protobuf::Arena* arena) const {
return ::google::protobuf::Arena::CreateMessage<TensorSliceProto_Extent>(arena);
}
void TensorSliceProto_Extent::clear_has_length() {
// @@protoc_insertion_point(one_of_clear_start:tensorflow.TensorSliceProto.Extent)
switch (has_length_case()) {
case kLength: {
// No need to clear
break;
}
case HAS_LENGTH_NOT_SET: {
break;
}
}
_oneof_case_[0] = HAS_LENGTH_NOT_SET;
}
void TensorSliceProto_Extent::Clear() {
// @@protoc_insertion_point(message_clear_start:tensorflow.TensorSliceProto.Extent)
::google::protobuf::uint32 cached_has_bits = 0;
// Prevent compiler warnings about cached_has_bits being unused
(void) cached_has_bits;
start_ = GOOGLE_LONGLONG(0);
clear_has_length();
_internal_metadata_.Clear();
}
bool TensorSliceProto_Extent::MergePartialFromCodedStream(
::google::protobuf::io::CodedInputStream* input) {
#define DO_(EXPRESSION) if (!GOOGLE_PREDICT_TRUE(EXPRESSION)) goto failure
::google::protobuf::uint32 tag;
// @@protoc_insertion_point(parse_start:tensorflow.TensorSliceProto.Extent)
for (;;) {
::std::pair< ::google::protobuf::uint32, bool> p = input->ReadTagWithCutoffNoLastTag(127u);
tag = p.first;
if (!p.second) goto handle_unusual;
switch (::google::protobuf::internal::WireFormatLite::GetTagFieldNumber(tag)) {
// int64 start = 1;
case 1: {
if (static_cast< ::google::protobuf::uint8>(tag) ==
static_cast< ::google::protobuf::uint8>(8u /* 8 & 0xFF */)) {
DO_((::google::protobuf::internal::WireFormatLite::ReadPrimitive<
::google::protobuf::int64, ::google::protobuf::internal::WireFormatLite::TYPE_INT64>(
input, &start_)));
} else {
goto handle_unusual;
}
break;
}
// int64 length = 2;
case 2: {
if (static_cast< ::google::protobuf::uint8>(tag) ==
static_cast< ::google::protobuf::uint8>(16u /* 16 & 0xFF */)) {
clear_has_length();
DO_((::google::protobuf::internal::WireFormatLite::ReadPrimitive<
::google::protobuf::int64, ::google::protobuf::internal::WireFormatLite::TYPE_INT64>(
input, &has_length_.length_)));
set_has_length();
} else {
goto handle_unusual;
}
break;
}
default: {
handle_unusual:
if (tag == 0) {
goto success;
}
DO_(::google::protobuf::internal::WireFormat::SkipField(
input, tag, _internal_metadata_.mutable_unknown_fields()));
break;
}
}
}
success:
// @@protoc_insertion_point(parse_success:tensorflow.TensorSliceProto.Extent)
return true;
failure:
// @@protoc_insertion_point(parse_failure:tensorflow.TensorSliceProto.Extent)
return false;
#undef DO_
}
void TensorSliceProto_Extent::SerializeWithCachedSizes(
::google::protobuf::io::CodedOutputStream* output) const {
// @@protoc_insertion_point(serialize_start:tensorflow.TensorSliceProto.Extent)
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
// int64 start = 1;
if (this->start() != 0) {
::google::protobuf::internal::WireFormatLite::WriteInt64(1, this->start(), output);
}
// int64 length = 2;
if (has_length()) {
::google::protobuf::internal::WireFormatLite::WriteInt64(2, this->length(), output);
}
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
::google::protobuf::internal::WireFormat::SerializeUnknownFields(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()), output);
}
// @@protoc_insertion_point(serialize_end:tensorflow.TensorSliceProto.Extent)
}
::google::protobuf::uint8* TensorSliceProto_Extent::InternalSerializeWithCachedSizesToArray(
bool deterministic, ::google::protobuf::uint8* target) const {
(void)deterministic; // Unused
// @@protoc_insertion_point(serialize_to_array_start:tensorflow.TensorSliceProto.Extent)
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
// int64 start = 1;
if (this->start() != 0) {
target = ::google::protobuf::internal::WireFormatLite::WriteInt64ToArray(1, this->start(), target);
}
// int64 length = 2;
if (has_length()) {
target = ::google::protobuf::internal::WireFormatLite::WriteInt64ToArray(2, this->length(), target);
}
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
target = ::google::protobuf::internal::WireFormat::SerializeUnknownFieldsToArray(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()), target);
}
// @@protoc_insertion_point(serialize_to_array_end:tensorflow.TensorSliceProto.Extent)
return target;
}
size_t TensorSliceProto_Extent::ByteSizeLong() const {
// @@protoc_insertion_point(message_byte_size_start:tensorflow.TensorSliceProto.Extent)
size_t total_size = 0;
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
total_size +=
::google::protobuf::internal::WireFormat::ComputeUnknownFieldsSize(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()));
}
// int64 start = 1;
if (this->start() != 0) {
total_size += 1 +
::google::protobuf::internal::WireFormatLite::Int64Size(
this->start());
}
switch (has_length_case()) {
// int64 length = 2;
case kLength: {
total_size += 1 +
::google::protobuf::internal::WireFormatLite::Int64Size(
this->length());
break;
}
case HAS_LENGTH_NOT_SET: {
break;
}
}
int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = cached_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
return total_size;
}
void TensorSliceProto_Extent::MergeFrom(const ::google::protobuf::Message& from) {
// @@protoc_insertion_point(generalized_merge_from_start:tensorflow.TensorSliceProto.Extent)
GOOGLE_DCHECK_NE(&from, this);
const TensorSliceProto_Extent* source =
::google::protobuf::internal::DynamicCastToGenerated<const TensorSliceProto_Extent>(
&from);
if (source == NULL) {
// @@protoc_insertion_point(generalized_merge_from_cast_fail:tensorflow.TensorSliceProto.Extent)
::google::protobuf::internal::ReflectionOps::Merge(from, this);
} else {
// @@protoc_insertion_point(generalized_merge_from_cast_success:tensorflow.TensorSliceProto.Extent)
MergeFrom(*source);
}
}
void TensorSliceProto_Extent::MergeFrom(const TensorSliceProto_Extent& from) {
// @@protoc_insertion_point(class_specific_merge_from_start:tensorflow.TensorSliceProto.Extent)
GOOGLE_DCHECK_NE(&from, this);
_internal_metadata_.MergeFrom(from._internal_metadata_);
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
if (from.start() != 0) {
set_start(from.start());
}
switch (from.has_length_case()) {
case kLength: {
set_length(from.length());
break;
}
case HAS_LENGTH_NOT_SET: {
break;
}
}
}
void TensorSliceProto_Extent::CopyFrom(const ::google::protobuf::Message& from) {
// @@protoc_insertion_point(generalized_copy_from_start:tensorflow.TensorSliceProto.Extent)
if (&from == this) return;
Clear();
MergeFrom(from);
}
void TensorSliceProto_Extent::CopyFrom(const TensorSliceProto_Extent& from) {
// @@protoc_insertion_point(class_specific_copy_from_start:tensorflow.TensorSliceProto.Extent)
if (&from == this) return;
Clear();
MergeFrom(from);
}
bool TensorSliceProto_Extent::IsInitialized() const {
return true;
}
void TensorSliceProto_Extent::Swap(TensorSliceProto_Extent* other) {
if (other == this) return;
if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {
InternalSwap(other);
} else {
TensorSliceProto_Extent* temp = New(GetArenaNoVirtual());
temp->MergeFrom(*other);
other->CopyFrom(*this);
InternalSwap(temp);
if (GetArenaNoVirtual() == NULL) {
delete temp;
}
}
}
void TensorSliceProto_Extent::UnsafeArenaSwap(TensorSliceProto_Extent* other) {
if (other == this) return;
GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());
InternalSwap(other);
}
void TensorSliceProto_Extent::InternalSwap(TensorSliceProto_Extent* other) {
using std::swap;
swap(start_, other->start_);
swap(has_length_, other->has_length_);
swap(_oneof_case_[0], other->_oneof_case_[0]);
_internal_metadata_.Swap(&other->_internal_metadata_);
swap(_cached_size_, other->_cached_size_);
}
::google::protobuf::Metadata TensorSliceProto_Extent::GetMetadata() const {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::protobuf_AssignDescriptorsOnce();
return protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::file_level_metadata[kIndexInFileMessages];
}
#if PROTOBUF_INLINE_NOT_IN_HEADERS
// TensorSliceProto_Extent
// int64 start = 1;
void TensorSliceProto_Extent::clear_start() {
start_ = GOOGLE_LONGLONG(0);
}
::google::protobuf::int64 TensorSliceProto_Extent::start() const {
// @@protoc_insertion_point(field_get:tensorflow.TensorSliceProto.Extent.start)
return start_;
}
void TensorSliceProto_Extent::set_start(::google::protobuf::int64 value) {
start_ = value;
// @@protoc_insertion_point(field_set:tensorflow.TensorSliceProto.Extent.start)
}
// int64 length = 2;
bool TensorSliceProto_Extent::has_length() const {
return has_length_case() == kLength;
}
void TensorSliceProto_Extent::set_has_length() {
_oneof_case_[0] = kLength;
}
void TensorSliceProto_Extent::clear_length() {
if (has_length()) {
has_length_.length_ = GOOGLE_LONGLONG(0);
clear_has_has_length();
}
}
::google::protobuf::int64 TensorSliceProto_Extent::length() const {
// @@protoc_insertion_point(field_get:tensorflow.TensorSliceProto.Extent.length)
if (has_length()) {
return has_length_.length_;
}
return GOOGLE_LONGLONG(0);
}
void TensorSliceProto_Extent::set_length(::google::protobuf::int64 value) {
if (!has_length()) {
clear_has_length();
set_has_length();
}
has_length_.length_ = value;
// @@protoc_insertion_point(field_set:tensorflow.TensorSliceProto.Extent.length)
}
bool TensorSliceProto_Extent::has_has_length() const {
return has_length_case() != HAS_LENGTH_NOT_SET;
}
void TensorSliceProto_Extent::clear_has_has_length() {
_oneof_case_[0] = HAS_LENGTH_NOT_SET;
}
TensorSliceProto_Extent::HasLengthCase TensorSliceProto_Extent::has_length_case() const {
return TensorSliceProto_Extent::HasLengthCase(_oneof_case_[0]);
}
#endif // PROTOBUF_INLINE_NOT_IN_HEADERS
// ===================================================================
#if !defined(_MSC_VER) || _MSC_VER >= 1900
const int TensorSliceProto::kExtentFieldNumber;
#endif // !defined(_MSC_VER) || _MSC_VER >= 1900
TensorSliceProto::TensorSliceProto()
: ::google::protobuf::Message(), _internal_metadata_(NULL) {
if (GOOGLE_PREDICT_TRUE(this != internal_default_instance())) {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
}
SharedCtor();
// @@protoc_insertion_point(constructor:tensorflow.TensorSliceProto)
}
TensorSliceProto::TensorSliceProto(::google::protobuf::Arena* arena)
: ::google::protobuf::Message(),
_internal_metadata_(arena),
extent_(arena) {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
SharedCtor();
RegisterArenaDtor(arena);
// @@protoc_insertion_point(arena_constructor:tensorflow.TensorSliceProto)
}
TensorSliceProto::TensorSliceProto(const TensorSliceProto& from)
: ::google::protobuf::Message(),
_internal_metadata_(NULL),
extent_(from.extent_),
_cached_size_(0) {
_internal_metadata_.MergeFrom(from._internal_metadata_);
// @@protoc_insertion_point(copy_constructor:tensorflow.TensorSliceProto)
}
void TensorSliceProto::SharedCtor() {
_cached_size_ = 0;
}
TensorSliceProto::~TensorSliceProto() {
// @@protoc_insertion_point(destructor:tensorflow.TensorSliceProto)
SharedDtor();
}
void TensorSliceProto::SharedDtor() {
::google::protobuf::Arena* arena = GetArenaNoVirtual();
GOOGLE_DCHECK(arena == NULL);
if (arena != NULL) {
return;
}
}
void TensorSliceProto::ArenaDtor(void* object) {
TensorSliceProto* _this = reinterpret_cast< TensorSliceProto* >(object);
(void)_this;
}
void TensorSliceProto::RegisterArenaDtor(::google::protobuf::Arena* arena) {
}
void TensorSliceProto::SetCachedSize(int size) const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
}
const ::google::protobuf::Descriptor* TensorSliceProto::descriptor() {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::protobuf_AssignDescriptorsOnce();
return protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::file_level_metadata[kIndexInFileMessages].descriptor;
}
const TensorSliceProto& TensorSliceProto::default_instance() {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::InitDefaults();
return *internal_default_instance();
}
TensorSliceProto* TensorSliceProto::New(::google::protobuf::Arena* arena) const {
return ::google::protobuf::Arena::CreateMessage<TensorSliceProto>(arena);
}
void TensorSliceProto::Clear() {
// @@protoc_insertion_point(message_clear_start:tensorflow.TensorSliceProto)
::google::protobuf::uint32 cached_has_bits = 0;
// Prevent compiler warnings about cached_has_bits being unused
(void) cached_has_bits;
extent_.Clear();
_internal_metadata_.Clear();
}
bool TensorSliceProto::MergePartialFromCodedStream(
::google::protobuf::io::CodedInputStream* input) {
#define DO_(EXPRESSION) if (!GOOGLE_PREDICT_TRUE(EXPRESSION)) goto failure
::google::protobuf::uint32 tag;
// @@protoc_insertion_point(parse_start:tensorflow.TensorSliceProto)
for (;;) {
::std::pair< ::google::protobuf::uint32, bool> p = input->ReadTagWithCutoffNoLastTag(127u);
tag = p.first;
if (!p.second) goto handle_unusual;
switch (::google::protobuf::internal::WireFormatLite::GetTagFieldNumber(tag)) {
// repeated .tensorflow.TensorSliceProto.Extent extent = 1;
case 1: {
if (static_cast< ::google::protobuf::uint8>(tag) ==
static_cast< ::google::protobuf::uint8>(10u /* 10 & 0xFF */)) {
DO_(::google::protobuf::internal::WireFormatLite::ReadMessageNoVirtual(
input, add_extent()));
} else {
goto handle_unusual;
}
break;
}
default: {
handle_unusual:
if (tag == 0) {
goto success;
}
DO_(::google::protobuf::internal::WireFormat::SkipField(
input, tag, _internal_metadata_.mutable_unknown_fields()));
break;
}
}
}
success:
// @@protoc_insertion_point(parse_success:tensorflow.TensorSliceProto)
return true;
failure:
// @@protoc_insertion_point(parse_failure:tensorflow.TensorSliceProto)
return false;
#undef DO_
}
void TensorSliceProto::SerializeWithCachedSizes(
::google::protobuf::io::CodedOutputStream* output) const {
// @@protoc_insertion_point(serialize_start:tensorflow.TensorSliceProto)
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
// repeated .tensorflow.TensorSliceProto.Extent extent = 1;
for (unsigned int i = 0,
n = static_cast<unsigned int>(this->extent_size()); i < n; i++) {
::google::protobuf::internal::WireFormatLite::WriteMessageMaybeToArray(
1, this->extent(static_cast<int>(i)), output);
}
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
::google::protobuf::internal::WireFormat::SerializeUnknownFields(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()), output);
}
// @@protoc_insertion_point(serialize_end:tensorflow.TensorSliceProto)
}
::google::protobuf::uint8* TensorSliceProto::InternalSerializeWithCachedSizesToArray(
bool deterministic, ::google::protobuf::uint8* target) const {
(void)deterministic; // Unused
// @@protoc_insertion_point(serialize_to_array_start:tensorflow.TensorSliceProto)
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
// repeated .tensorflow.TensorSliceProto.Extent extent = 1;
for (unsigned int i = 0,
n = static_cast<unsigned int>(this->extent_size()); i < n; i++) {
target = ::google::protobuf::internal::WireFormatLite::
InternalWriteMessageNoVirtualToArray(
1, this->extent(static_cast<int>(i)), deterministic, target);
}
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
target = ::google::protobuf::internal::WireFormat::SerializeUnknownFieldsToArray(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()), target);
}
// @@protoc_insertion_point(serialize_to_array_end:tensorflow.TensorSliceProto)
return target;
}
size_t TensorSliceProto::ByteSizeLong() const {
// @@protoc_insertion_point(message_byte_size_start:tensorflow.TensorSliceProto)
size_t total_size = 0;
if ((_internal_metadata_.have_unknown_fields() && ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())) {
total_size +=
::google::protobuf::internal::WireFormat::ComputeUnknownFieldsSize(
(::google::protobuf::internal::GetProto3PreserveUnknownsDefault() ? _internal_metadata_.unknown_fields() : _internal_metadata_.default_instance()));
}
// repeated .tensorflow.TensorSliceProto.Extent extent = 1;
{
unsigned int count = static_cast<unsigned int>(this->extent_size());
total_size += 1UL * count;
for (unsigned int i = 0; i < count; i++) {
total_size +=
::google::protobuf::internal::WireFormatLite::MessageSizeNoVirtual(
this->extent(static_cast<int>(i)));
}
}
int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = cached_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();
return total_size;
}
void TensorSliceProto::MergeFrom(const ::google::protobuf::Message& from) {
// @@protoc_insertion_point(generalized_merge_from_start:tensorflow.TensorSliceProto)
GOOGLE_DCHECK_NE(&from, this);
const TensorSliceProto* source =
::google::protobuf::internal::DynamicCastToGenerated<const TensorSliceProto>(
&from);
if (source == NULL) {
// @@protoc_insertion_point(generalized_merge_from_cast_fail:tensorflow.TensorSliceProto)
::google::protobuf::internal::ReflectionOps::Merge(from, this);
} else {
// @@protoc_insertion_point(generalized_merge_from_cast_success:tensorflow.TensorSliceProto)
MergeFrom(*source);
}
}
void TensorSliceProto::MergeFrom(const TensorSliceProto& from) {
// @@protoc_insertion_point(class_specific_merge_from_start:tensorflow.TensorSliceProto)
GOOGLE_DCHECK_NE(&from, this);
_internal_metadata_.MergeFrom(from._internal_metadata_);
::google::protobuf::uint32 cached_has_bits = 0;
(void) cached_has_bits;
extent_.MergeFrom(from.extent_);
}
void TensorSliceProto::CopyFrom(const ::google::protobuf::Message& from) {
// @@protoc_insertion_point(generalized_copy_from_start:tensorflow.TensorSliceProto)
if (&from == this) return;
Clear();
MergeFrom(from);
}
void TensorSliceProto::CopyFrom(const TensorSliceProto& from) {
// @@protoc_insertion_point(class_specific_copy_from_start:tensorflow.TensorSliceProto)
if (&from == this) return;
Clear();
MergeFrom(from);
}
bool TensorSliceProto::IsInitialized() const {
return true;
}
void TensorSliceProto::Swap(TensorSliceProto* other) {
if (other == this) return;
if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {
InternalSwap(other);
} else {
TensorSliceProto* temp = New(GetArenaNoVirtual());
temp->MergeFrom(*other);
other->CopyFrom(*this);
InternalSwap(temp);
if (GetArenaNoVirtual() == NULL) {
delete temp;
}
}
}
void TensorSliceProto::UnsafeArenaSwap(TensorSliceProto* other) {
if (other == this) return;
GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());
InternalSwap(other);
}
void TensorSliceProto::InternalSwap(TensorSliceProto* other) {
using std::swap;
extent_.InternalSwap(&other->extent_);
_internal_metadata_.Swap(&other->_internal_metadata_);
swap(_cached_size_, other->_cached_size_);
}
::google::protobuf::Metadata TensorSliceProto::GetMetadata() const {
protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::protobuf_AssignDescriptorsOnce();
return protobuf_tensorflow_2fcore_2fframework_2ftensor_5fslice_2eproto::file_level_metadata[kIndexInFileMessages];
}
#if PROTOBUF_INLINE_NOT_IN_HEADERS
// TensorSliceProto
// repeated .tensorflow.TensorSliceProto.Extent extent = 1;
int TensorSliceProto::extent_size() const {
return extent_.size();
}
void TensorSliceProto::clear_extent() {
extent_.Clear();
}
const ::tensorflow::TensorSliceProto_Extent& TensorSliceProto::extent(int index) const {
// @@protoc_insertion_point(field_get:tensorflow.TensorSliceProto.extent)
return extent_.Get(index);
}
::tensorflow::TensorSliceProto_Extent* TensorSliceProto::mutable_extent(int index) {
// @@protoc_insertion_point(field_mutable:tensorflow.TensorSliceProto.extent)
return extent_.Mutable(index);
}
::tensorflow::TensorSliceProto_Extent* TensorSliceProto::add_extent() {
// @@protoc_insertion_point(field_add:tensorflow.TensorSliceProto.extent)
return extent_.Add();
}
::google::protobuf::RepeatedPtrField< ::tensorflow::TensorSliceProto_Extent >*
TensorSliceProto::mutable_extent() {
// @@protoc_insertion_point(field_mutable_list:tensorflow.TensorSliceProto.extent)
return &extent_;
}
const ::google::protobuf::RepeatedPtrField< ::tensorflow::TensorSliceProto_Extent >&
TensorSliceProto::extent() const {
// @@protoc_insertion_point(field_list:tensorflow.TensorSliceProto.extent)
return extent_;
}
#endif // PROTOBUF_INLINE_NOT_IN_HEADERS
// @@protoc_insertion_point(namespace_scope)
} // namespace tensorflow
// @@protoc_insertion_point(global_scope)
| [
"[email protected]"
] | |
f528d2119d78bdf87c50e730d6d1ad5b88bf3eeb | c35c231a05f24f22c5aae7ef94e1ded6dcfd848c | /codeforces/739/C.cpp | 9b5948c247d2357ac7ee2ae60619bab3db91c77a | [] | no_license | irvifa/online-judges | 081bed8db248c4c0d5a096fb2a196a119778788c | c128a03b711f256f8888ed3d2e526889dce90ca2 | refs/heads/master | 2021-03-12T02:39:44.868187 | 2020-03-11T13:46:07 | 2020-03-11T13:46:07 | 246,582,524 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 899 | cpp | #include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
const int MAX = 1000000;
int a[MAX], b[MAX], c[MAX], d[MAX];
int completed(int available_money, int k) {
int l, r, m;
l = 0, r = k;
while (l < r) {
m = (l + r + 1) / 2;
if (d[m] <= available_money) l = m;
else r = m-1;
}
return c[l];
}
int n, m, k;
int x, s;
int i, available_money;
ll ans;
int main() {
scanf("%d %d %d",&n,&m,&k);
scanf("%d %d",&x,&s);
a[0] = x;
b[0] = 0;
c[0] = 0;
d[0] = 0;
for (i = 1; i <= m; i++) scanf("%d",&a[i]);
for (i = 1; i <= m; i++) scanf("%d",&b[i]);
for (i = 1; i <= k; i++) scanf("%d",&c[i]);
for (i = 1; i <= k; i++) scanf("%d",&d[i]);
ans = 1LL * n * x;
for (i = 0; i <= m; i++) {
available_money = s - b[i];
if (available_money < 0) continue;
ans = min(ans, 1LL * (n - completed(available_money, k)) * a[i]);
}
cout << ans << endl;
return 0;
}
| [
"[email protected]"
] | |
c6d1b51d55dba099ecb2ecba5ed52cdb099e7614 | 357e944448290ddeb6c23e5d1354edb8943cd087 | /area/area.cpp | b5a8366f35808be02391b0ae3f885fccc9ab533d | [] | no_license | aruj900/C- | a6b43fa478f064fd06e47a9e56aa600ff071c824 | 445003beee6d7a19cdc8bee0bd20d6f2ccc3c1ca | refs/heads/main | 2023-03-08T22:17:07.933040 | 2021-02-27T12:40:47 | 2021-02-27T12:40:47 | 315,115,379 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 324 | cpp | #include <iostream>
#include <cmath>
using namespace std;
/* const double PI = 3.14; */
int main(){
double radius, area;
cout<<"Please enter the radius of the circle"<<endl;
cin>>radius;
area = M_PI * (radius*radius);
cout<<"Area of circle with radius "<<radius<<" is equal to "<<area;
return 0;
}
| [
"[email protected]"
] | |
bfcdf435d7f0e42e5eef45e2341b71d2206205f6 | 3ff1fe3888e34cd3576d91319bf0f08ca955940f | /cpdp/include/tencentcloud/cpdp/v20190820/model/ContractPayListResult.h | 56afb3413a5c8688cdec025b21dddbf14667a851 | [
"Apache-2.0"
] | permissive | TencentCloud/tencentcloud-sdk-cpp | 9f5df8220eaaf72f7eaee07b2ede94f89313651f | 42a76b812b81d1b52ec6a217fafc8faa135e06ca | refs/heads/master | 2023-08-30T03:22:45.269556 | 2023-08-30T00:45:39 | 2023-08-30T00:45:39 | 188,991,963 | 55 | 37 | Apache-2.0 | 2023-08-17T03:13:20 | 2019-05-28T08:56:08 | C++ | UTF-8 | C++ | false | false | 23,029 | h | /*
* Copyright (c) 2017-2019 THL A29 Limited, a Tencent company. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TENCENTCLOUD_CPDP_V20190820_MODEL_CONTRACTPAYLISTRESULT_H_
#define TENCENTCLOUD_CPDP_V20190820_MODEL_CONTRACTPAYLISTRESULT_H_
#include <string>
#include <vector>
#include <map>
#include <tencentcloud/core/utils/rapidjson/document.h>
#include <tencentcloud/core/utils/rapidjson/writer.h>
#include <tencentcloud/core/utils/rapidjson/stringbuffer.h>
#include <tencentcloud/core/AbstractModel.h>
namespace TencentCloud
{
namespace Cpdp
{
namespace V20190820
{
namespace Model
{
/**
* 合同-支付方式列表响应对象
*/
class ContractPayListResult : public AbstractModel
{
public:
ContractPayListResult();
~ContractPayListResult() = default;
void ToJsonObject(rapidjson::Value &value, rapidjson::Document::AllocatorType& allocator) const;
CoreInternalOutcome Deserialize(const rapidjson::Value &value);
/**
* 获取支付方式编号
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentId 支付方式编号
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentId() const;
/**
* 设置支付方式编号
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentId 支付方式编号
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentId(const std::string& _paymentId);
/**
* 判断参数 PaymentId 是否已赋值
* @return PaymentId 是否已赋值
*
*/
bool PaymentIdHasBeenSet() const;
/**
* 获取支持的交易类型(多个以小写逗号分开,0现金,1刷卡,2主扫,3被扫,4JSPAY,5预授权)
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentType 支持的交易类型(多个以小写逗号分开,0现金,1刷卡,2主扫,3被扫,4JSPAY,5预授权)
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentType() const;
/**
* 设置支持的交易类型(多个以小写逗号分开,0现金,1刷卡,2主扫,3被扫,4JSPAY,5预授权)
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentType 支持的交易类型(多个以小写逗号分开,0现金,1刷卡,2主扫,3被扫,4JSPAY,5预授权)
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentType(const std::string& _paymentType);
/**
* 判断参数 PaymentType 是否已赋值
* @return PaymentType 是否已赋值
*
*/
bool PaymentTypeHasBeenSet() const;
/**
* 获取支付标签
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentTag 支付标签
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentTag() const;
/**
* 设置支付标签
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentTag 支付标签
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentTag(const std::string& _paymentTag);
/**
* 判断参数 PaymentTag 是否已赋值
* @return PaymentTag 是否已赋值
*
*/
bool PaymentTagHasBeenSet() const;
/**
* 获取支付方式图片url路径
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentIcon 支付方式图片url路径
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentIcon() const;
/**
* 设置支付方式图片url路径
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentIcon 支付方式图片url路径
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentIcon(const std::string& _paymentIcon);
/**
* 判断参数 PaymentIcon 是否已赋值
* @return PaymentIcon 是否已赋值
*
*/
bool PaymentIconHasBeenSet() const;
/**
* 获取付款方式名称
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentName 付款方式名称
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentName() const;
/**
* 设置付款方式名称
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentName 付款方式名称
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentName(const std::string& _paymentName);
/**
* 判断参数 PaymentName 是否已赋值
* @return PaymentName 是否已赋值
*
*/
bool PaymentNameHasBeenSet() const;
/**
* 获取付款方式名称(内部名称)
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentInternalName 付款方式名称(内部名称)
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentInternalName() const;
/**
* 设置付款方式名称(内部名称)
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentInternalName 付款方式名称(内部名称)
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentInternalName(const std::string& _paymentInternalName);
/**
* 判断参数 PaymentInternalName 是否已赋值
* @return PaymentInternalName 是否已赋值
*
*/
bool PaymentInternalNameHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionOne 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionOne() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionOne 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionOne(const std::string& _paymentOptionOne);
/**
* 判断参数 PaymentOptionOne 是否已赋值
* @return PaymentOptionOne 是否已赋值
*
*/
bool PaymentOptionOneHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionTwo 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionTwo() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionTwo 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionTwo(const std::string& _paymentOptionTwo);
/**
* 判断参数 PaymentOptionTwo 是否已赋值
* @return PaymentOptionTwo 是否已赋值
*
*/
bool PaymentOptionTwoHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionThree 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionThree() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionThree 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionThree(const std::string& _paymentOptionThree);
/**
* 判断参数 PaymentOptionThree 是否已赋值
* @return PaymentOptionThree 是否已赋值
*
*/
bool PaymentOptionThreeHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionFour 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionFour() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionFour 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionFour(const std::string& _paymentOptionFour);
/**
* 判断参数 PaymentOptionFour 是否已赋值
* @return PaymentOptionFour 是否已赋值
*
*/
bool PaymentOptionFourHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionFive 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionFive() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionFive 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionFive(const std::string& _paymentOptionFive);
/**
* 判断参数 PaymentOptionFive 是否已赋值
* @return PaymentOptionFive 是否已赋值
*
*/
bool PaymentOptionFiveHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionSix 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionSix() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionSix 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionSix(const std::string& _paymentOptionSix);
/**
* 判断参数 PaymentOptionSix 是否已赋值
* @return PaymentOptionSix 是否已赋值
*
*/
bool PaymentOptionSixHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionSeven 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionSeven() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionSeven 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionSeven(const std::string& _paymentOptionSeven);
/**
* 判断参数 PaymentOptionSeven 是否已赋值
* @return PaymentOptionSeven 是否已赋值
*
*/
bool PaymentOptionSevenHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionOther 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionOther() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionOther 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionOther(const std::string& _paymentOptionOther);
/**
* 判断参数 PaymentOptionOther 是否已赋值
* @return PaymentOptionOther 是否已赋值
*
*/
bool PaymentOptionOtherHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionNine 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionNine() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionNine 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionNine(const std::string& _paymentOptionNine);
/**
* 判断参数 PaymentOptionNine 是否已赋值
* @return PaymentOptionNine 是否已赋值
*
*/
bool PaymentOptionNineHasBeenSet() const;
/**
* 获取支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @return PaymentOptionTen 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
std::string GetPaymentOptionTen() const;
/**
* 设置支付方式
注意:此字段可能返回 null,表示取不到有效值。
* @param _paymentOptionTen 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*
*/
void SetPaymentOptionTen(const std::string& _paymentOptionTen);
/**
* 判断参数 PaymentOptionTen 是否已赋值
* @return PaymentOptionTen 是否已赋值
*
*/
bool PaymentOptionTenHasBeenSet() const;
private:
/**
* 支付方式编号
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentId;
bool m_paymentIdHasBeenSet;
/**
* 支持的交易类型(多个以小写逗号分开,0现金,1刷卡,2主扫,3被扫,4JSPAY,5预授权)
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentType;
bool m_paymentTypeHasBeenSet;
/**
* 支付标签
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentTag;
bool m_paymentTagHasBeenSet;
/**
* 支付方式图片url路径
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentIcon;
bool m_paymentIconHasBeenSet;
/**
* 付款方式名称
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentName;
bool m_paymentNameHasBeenSet;
/**
* 付款方式名称(内部名称)
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentInternalName;
bool m_paymentInternalNameHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionOne;
bool m_paymentOptionOneHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionTwo;
bool m_paymentOptionTwoHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionThree;
bool m_paymentOptionThreeHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionFour;
bool m_paymentOptionFourHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionFive;
bool m_paymentOptionFiveHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionSix;
bool m_paymentOptionSixHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionSeven;
bool m_paymentOptionSevenHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionOther;
bool m_paymentOptionOtherHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionNine;
bool m_paymentOptionNineHasBeenSet;
/**
* 支付方式
注意:此字段可能返回 null,表示取不到有效值。
*/
std::string m_paymentOptionTen;
bool m_paymentOptionTenHasBeenSet;
};
}
}
}
}
#endif // !TENCENTCLOUD_CPDP_V20190820_MODEL_CONTRACTPAYLISTRESULT_H_
| [
"[email protected]"
] | |
7c0a47c58557bf835656e847d7cdd1675d6af798 | 08bfc8a1f8e44adc624d1f1c6250a3d9635f99de | /SDKs/Alembic/lib/Alembic/AbcGeom/IPoints.cpp | c3e19e7dc108d0189d95cdcd9d99e32be1ba36d9 | [] | no_license | Personwithhat/CE_SDKs | cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02 | 7afbd2f7767c9c5e95912a1af42b37c24d57f0d4 | refs/heads/master | 2020-04-09T22:14:56.917176 | 2019-07-04T00:19:11 | 2019-07-04T00:19:11 | 160,623,495 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 129 | cpp | version https://git-lfs.github.com/spec/v1
oid sha256:b52dcf21a1c903d8567d41a3d6df4fc3f33b550c68db3bc6180a23d35764b86f
size 3207
| [
"[email protected]"
] | |
78d569688c308c3406677a7fd13ec4f4db0f9dbb | fabe2d9262ed0404f796d1b2cba4ffc5a83c7ff1 | /chapter9/9-2.cpp | 935227f316ff4748c38790c539efd99e2e7f8753 | [
"MIT"
] | permissive | GSNICE/ZK_04743 | 20ceece3ea8e7e9a979ea16690a8b913e7a391f5 | 7e49fc5045cc127c72a14d1717c34c939871f1d0 | refs/heads/master | 2023-04-06T17:03:50.816210 | 2020-09-06T03:09:49 | 2020-09-06T03:09:49 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 904 | cpp | #include <iostream>
using namespace std;
template<class T> //类类型T
void Swap(T &x, T &y) //可以交换类对象
{
T tmp = x;
x = y;
y = tmp;
}
class myDate
{
public:
myDate();
myDate(int, int, int);
void printDate()const;
private:
int year, month, day;
};
myDate::myDate()
{
year = 1970;
month = 1;
day = 1;
}
myDate::myDate(int y, int m, int d)
{
year = y;
month = m;
day = d;
}
void myDate::printDate()const
{
cout << year << "/" << month << "/" << day;
return;
}
int main()
{
int n = 1, m = 2;
Swap(n, m); //编译器自动生成void Swap(int &, int &)函数
double f = 1.2, g = 2.3;
Swap(f, g); //编译器自动生成void Swap(double &, double &)函数
myDate d1, d2(2000,1,1);
Swap(d1, d2); //编译器自动生成void Swap(myDate &, myDate &)函数
return 0;
}
| [
"[email protected]"
] | |
03191aa8199bbb505860b9ab744b25e96ee4902a | fb3dcc33e7eb9b22d77bc69d56b9e186da931709 | /source/GameState.h | 599ce55cb2222dd54d52a4f12c55aca06662cfca | [] | no_license | xiaoqian19940510/sparcraft | 796460aca14a36307daceaf6fe78f24e215dbeb4 | 00b98d30ac7b213c72b443aa6c8b9515e21ac9a4 | refs/heads/master | 2020-03-20T03:50:33.947882 | 2014-05-11T00:49:08 | 2014-05-11T00:49:08 | 137,161,451 | 4 | 0 | null | 2018-06-13T04:12:09 | 2018-06-13T04:12:08 | null | UTF-8 | C++ | false | false | 8,721 | h | #pragma once
#include "Common.h"
#include <algorithm>
#include "MoveArray.h"
#include "Hash.h"
#include "Map.h"
#include "Unit.h"
#include "GraphViz.hpp"
#include "Array.hpp"
typedef boost::shared_ptr<SparCraft::Map> MapPtr;
namespace SparCraft
{
class GameState
{
Map _map;
Array2D<Unit, Constants::Num_Players, Constants::Max_Units> _units;
Array2D<int, Constants::Num_Players, Constants::Max_Units> _unitIndex;
Array<Unit, 1> _neutralUnits;
Array<UnitCountType, Constants::Num_Players> _numUnits;
Array<UnitCountType, Constants::Num_Players> _prevNumUnits;
Array<float, Constants::Num_Players> _totalLTD;
Array<float, Constants::Num_Players> _totalSumSQRT;
Array<int, Constants::Num_Players> _numMovements;
Array<int, Constants::Num_Players> _prevHPSum;
TimeType _currentTime;
size_t _maxUnits;
TimeType _sameHPFrames;
// checks to see if the unit array is full before adding a unit to the state
bool checkFull(const IDType & player) const;
bool checkUniqueUnitIDs() const;
void performUnitAction(const UnitAction & theMove);
public:
bool checkCollisions;
GameState();
GameState(const std::string & filename);
// misc functions
void finishedMoving();
void beforeMoving();
void updateGameTime();
bool playerDead(const IDType & player) const;
bool isTerminal() const;
// unit data functions
size_t numUnits(const IDType & player) const;
size_t prevNumUnits(const IDType & player) const;
size_t numNeutralUnits() const;
size_t closestEnemyUnitDistance(const Unit & unit) const;
// Unit functions
void sortUnits();
void addUnit(const Unit & u);
void addUnitClosestLegalPos(const Unit & u);
void addUnit(const BWAPI::UnitType unitType, const IDType playerID, const Position & pos);
void addUnitWithID(const Unit & u);
void addNeutralUnit(const Unit & unit);
const Unit & getUnit(const IDType & player, const UnitCountType & unitIndex) const;
const Unit & getUnitByID(const IDType & unitID) const;
Unit & getUnit(const IDType & player, const UnitCountType & unitIndex);
const Unit & getUnitByID(const IDType & player, const IDType & unitID) const;
Unit & getUnitByID(const IDType & player, const IDType & unitID);
boost::optional<const Unit&> getUnitByIDOpt(const IDType & player, const IDType & unitID) const;
boost::optional<const Unit&> getUnitByIDOpt(const IDType & unitID) const;
const Unit& getClosestEnemyUnit(const IDType & player, const IDType & unitIndex) const;
const Unit& getClosestOurUnit(const IDType & player, const IDType & unitIndex) const;
bool isPowered(const SparCraft::Position &pos, const IDType & player) const;
const boost::optional<const Unit&> getClosestEnemyUnitOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestEnemyThreatOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestEnemyBuildingOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurUnitOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurBuildingOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurDamagedBuildingOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurWoundedUnitOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurPylonOpt(const IDType & player, const IDType & unitIndex) const;
const boost::optional<const Unit&> getClosestOurPylonOpt(const IDType & player, const SparCraft::Position &pos) const;
std::vector<IDType> getUnitIDs(const IDType & player) const;
std::vector<IDType> getBuildingIDs(const IDType & player) const;
std::vector<IDType> getAliveUnitIDs(const IDType & player) const;
std::vector<IDType> getAliveBuildingIDs(const IDType & player) const;
bool hasMobileAttackUnits(IDType player) const;
bool hasDamageDealingUnits(IDType player) const;
std::vector<IDType> getAliveUnitsInCircleIDs(IDType player, const Position &pos, int radius) const;
const Unit & getUnitDirect(const IDType & player, const IDType & unit) const;
const Unit & getNeutralUnit(const size_t & u) const;
// game time functions
void setTime(const TimeType & time);
TimeType getTime() const;
// evaluation functions
StateEvalScore eval( const IDType & player, const IDType & evalMethod,
const IDType p1Script = PlayerModels::NOKDPS,
const IDType p2Script = PlayerModels::NOKDPS) const;
ScoreType evalLTD(const IDType & player) const;
ScoreType evalLTD2(const IDType & player) const;
ScoreType LTD(const IDType & player) const;
ScoreType LTD2(const IDType & player) const;
StateEvalScore evalSim(const IDType & player, const IDType & p1, const IDType & p2) const;
IDType getEnemy(const IDType & player) const;
// unit hitpoint calculations, needed for LTD2 evaluation
void calculateStartingHealth();
void setTotalLTD(const float & p1, const float & p2);
void setTotalLTD2(const float & p1, const float & p2);
const float & getTotalLTD(const IDType & player) const;
const float & getTotalLTD2(const IDType & player) const;
// move related functions
void generateMoves(MoveArray & moves, const IDType & playerIndex) const;
void makeMoves(const std::vector<UnitAction> & moves);
const int & getNumMovements(const IDType & player) const;
IDType whoCanMove() const;
bool bothCanMove() const;
// map-related functions
void setMap(const Map & map);
const Map & getMap() const;
bool isWalkable(const Position & pos) const;
bool isFlyable(const Position & pos) const;
// hashing functions
HashType calculateHash(const size_t & hashNum) const;
// state i/o functions
void print(int indent = 0) const;
void write(const std::string & filename) const;
void read(const std::string & filename);
};
}
| [
"[email protected]"
] | |
2115d4d1d5dff5afd0a6975d6562a4652eff50c5 | 4ab228f82d57e24c15dff1d6363e386ab7827cc4 | /src/c++/main/scmp.cpp | 90d31f8a932e76bf54a21cee07f0e13fc5a0f561 | [
"BSD-3-Clause",
"Python-2.0",
"MIT",
"BSL-1.0",
"BSD-2-Clause"
] | permissive | LuisFdF/hap.py | 24101431ba0e69e6fd075c46992df0bae09a5c32 | d51d111e494b561b37c66299daf5a6c65a8d2ca9 | refs/heads/master | 2021-01-23T04:39:06.652035 | 2017-03-03T15:12:24 | 2017-03-03T15:12:24 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 17,005 | cpp | // -*- mode: c++; indent-tabs-mode: nil; -*-
//
// Copyright (c) 2010-2015 Illumina, Inc.
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/**
* Somatic / by allele comparison -- checks if we see the same alleles (ignoring genotypes).
*
* \file scmp.cpp
* \author Peter Krusche
* \email [email protected]
*
*/
#include <boost/program_options.hpp>
#include <boost/filesystem.hpp>
#include <boost/iostreams/filtering_streambuf.hpp>
#include <boost/iostreams/copy.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#include "Version.hh"
#include "Variant.hh"
#include "helpers/StringUtil.hh"
#include <string>
#include <vector>
#include <fstream>
#include <map>
#include <memory>
#include <queue>
#include <mutex>
#include <future>
#include <htslib/synced_bcf_reader.h>
#include <helpers/BCFHelpers.hh>
#include <htslib/vcf.h>
#include "Error.hh"
#include "helpers/Timing.hh"
#include "BlockAlleleCompare.hh"
using namespace variant;
/* #define DEBUG_SCMP_THREADING */
int main(int argc, char* argv[]) {
namespace po = boost::program_options;
namespace bf = boost::filesystem;
try
{
std::string input_vcf;
std::string output_vcf;
std::string ref;
std::string only_regions;
std::string qq_field = "QUAL";
// limits
std::string chr;
int64_t start = -1;
int64_t end = -1;
int64_t rlimit = -1;
int64_t message = -1;
bool apply_filters = false;
int threads = 1;
int blocksize = 20000;
int min_var_distance = 100000;
try
{
// Declare the supported options.
po::options_description desc("Allowed options");
desc.add_options()
("help,h", "produce help message")
("version", "Show version")
("input-file", po::value<std::string>(), "Input VCF file. Must have exactly two samples, the first "
"sample will be used as truth, the second one as query. This can be obtained using bcftools: "
"bcftools merge truth.vcf.gz query.vcf.gz --force-samples")
("output-file,o", po::value<std::string>(), "The output file name (VCF / BCF / VCF.gz).")
("reference,r", po::value<std::string>(), "The reference fasta file (needed only for VCF output).")
("location,l", po::value<std::string>(), "Start location.")
("qq-field,qq", po::value<std::string>(), "QQ field name -- this can be QUAL, an INFO or FORMAT field name")
("only,O", po::value< std::string >(), "Bed file of locations (equivalent to -R in bcftools)")
("limit-records", po::value<int64_t>(), "Maximum umber of records to process")
("message-every", po::value<int64_t>(), "Print a message every N records.")
("apply-filters,f", po::value<bool>(), "Apply filtering in VCF.")
("threads", po::value<int>(), "Number of threads to use.")
("blocksize", po::value<int>(), "Number of variants per block.")
("min-var-distance", po::value<int>(), "Minimum distance between variants allowed to end up "
"in separate blocks")
;
po::positional_options_description popts;
popts.add("input-file", 1);
po::options_description cmdline_options;
cmdline_options
.add(desc)
;
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).
options(cmdline_options).positional(popts).run(), vm);
po::notify(vm);
if (vm.count("version"))
{
std::cout << "scmp version " << HAPLOTYPES_VERSION << "\n";
return 0;
}
if (vm.count("help"))
{
std::cout << desc << "\n";
return 1;
}
if (vm.count("input-file"))
{
input_vcf = vm["input-file"].as< std::string >();
}
else
{
error("Input file is required.");
}
if (vm.count("output-file"))
{
output_vcf = vm["output-file"].as< std::string >();
}
else
{
error("Output file name is required.");
}
if (vm.count("reference"))
{
ref = vm["reference"].as< std::string >();
}
else
{
error("To write an output VCF, you need to specify a reference file, too.");
}
if (vm.count("location"))
{
stringutil::parsePos(vm["location"].as< std::string >(), chr, start, end);
}
if (vm.count("qq-field"))
{
qq_field = vm["qq-field"].as< std::string >();
}
if (vm.count("only"))
{
only_regions = vm["only"].as< std::string >();
}
if (vm.count("limit-records"))
{
rlimit = vm["limit-records"].as< int64_t >();
}
if (vm.count("message-every"))
{
message = vm["message-every"].as< int64_t >();
}
if (vm.count("apply-filters"))
{
apply_filters = vm["apply-filters"].as< bool >();
}
if (vm.count("threads"))
{
threads = vm["threads"].as< int >();
}
if (vm.count("blocksize"))
{
blocksize = vm["blocksize"].as< int >();
}
if (vm.count("min-var-distance"))
{
min_var_distance = vm["min-var-distance"].as< int >();
}
}
catch (po::error & e)
{
std::cerr << e.what() << "\n";
return 1;
}
FastaFile ref_fasta(ref.c_str());
bcf_srs_t * reader = bcf_sr_init();
reader->collapse = COLLAPSE_NONE;
if(!chr.empty() || !only_regions.empty())
{
reader->require_index = 1;
reader->streaming = 0;
}
else
{
reader->require_index = 0;
reader->streaming = 1;
}
if(!only_regions.empty()) {
int result = bcf_sr_set_regions(reader, only_regions.c_str(), 1);
if(result < 0)
{
error("Failed to set regions string %s.", only_regions.c_str());
}
}
if (!bcf_sr_add_reader(reader, input_vcf.c_str()))
{
error("Failed to open or file not indexed: %s\n", input_vcf.c_str());
}
if(!chr.empty())
{
int success = 0;
if(start < 0)
{
success = bcf_sr_seek(reader, chr.c_str(), 0);
}
else
{
success = bcf_sr_seek(reader, chr.c_str(), start);
#ifdef DEBUG_SCMP
std::cerr << "starting at " << chr << ":" << start << "\n";
#endif
}
if(success <= -2)
{
error("Cannot seek to %s:%i", chr.c_str(), start);
}
}
auto hdr = bcfhelpers::ph(bcf_hdr_dup(reader->readers[0].header));
BlockAlleleCompare::updateHeader(hdr.get());
// rename the samples in the output header
bcfhelpers::p_bcf_hdr output_header(bcfhelpers::ph(bcf_hdr_init("w")));
{
int len = 0;
char * hdr_text = bcf_hdr_fmt_text(hdr.get(), 0, &len);
if(!hdr_text)
{
error("Failed to process input VCF header.");
}
std::vector<std::string> split_header;
stringutil::split(std::string(hdr_text, (unsigned long) len), split_header, "\n");
free(hdr_text);
for(std::string hl : split_header)
{
bcf_hdr_append(output_header.get(), hl.c_str());
}
bcf_hdr_add_sample(output_header.get(), "TRUTH");
bcf_hdr_add_sample(output_header.get(), "QUERY");
bcf_hdr_sync(output_header.get());
}
htsFile * writer = nullptr;
const char * mode = "wu";
if(stringutil::endsWith(output_vcf, ".vcf.gz"))
{
mode = "wz";
}
else if(stringutil::endsWith(output_vcf, ".bcf"))
{
mode = "wb";
}
if(!output_vcf.empty() && output_vcf[0] == '-')
{
writer = hts_open("-", mode);
}
else
{
writer = hts_open(output_vcf.c_str(), mode);
}
bcf_hdr_write(writer, output_header.get());
/** local function to count variants in all samples */
int64_t rcount = 0;
std::string current_chr = "";
int vars_in_block = 0;
/*
* we keep a list of jobs as futures which get processed by a pool of
* workers
*/
std::queue<std::unique_ptr<BlockAlleleCompare> > blocks;
std::mutex blocks_mutex;
/*
* once a worker completes a comparison, the result goes into the list of
* processed blocks.
*/
std::list<std::unique_ptr<BlockAlleleCompare>> processed_blocks;
std::mutex processed_blocks_mutex;
/**
* gets set to true by main thread
*/
bool all_blocks_added = false;
std::vector<std::thread> workers;
auto worker = [&blocks,
&blocks_mutex,
&processed_blocks,
&processed_blocks_mutex,
&all_blocks_added]
{
bool work_left = true;
while(work_left)
{
std::unique_ptr<BlockAlleleCompare> current_block;
#ifdef DEBUG_SCMP_THREADING
std::cerr << "Worker " << std::thread::id() << " waiting." << std::endl;
#endif
{
std::lock_guard<std::mutex> lk(blocks_mutex);
/* std::unique_lock<std::mutex> lk(blocks_mutex); */
/* lk.wait([&blocks]() { !blocks.empty(); }); */
if (!blocks.empty())
{
current_block = std::move(blocks.front());
blocks.pop();
}
}
if(current_block)
{
#ifdef DEBUG_SCMP_THREADING
std::cerr << "Worker " << std::thread::id() << " has a job." << std::endl;
#endif
current_block->run();
#ifdef DEBUG_SCMP_THREADING
std::cerr << "Worker " << std::thread::id() << " finished a job." << std::endl;
#endif
{
std::lock_guard<std::mutex> lock(processed_blocks_mutex);
processed_blocks.emplace_back(std::move(current_block));
#ifdef DEBUG_SCMP_THREADING
std::cerr << "Worker " << std::thread::id() << " done." << std::endl;
#endif
}
}
work_left = !all_blocks_added || !blocks.empty();
}
};
for(int j = 0; j < std::max(1, threads); ++j)
{
workers.emplace_back(worker);
}
std::unique_ptr<BlockAlleleCompare> p_bac(new BlockAlleleCompare(hdr, ref_fasta, qq_field));
int nl = 1;
int previous_pos = -1;
auto t0 = CPUClock::now();
while(nl)
{
nl = bcf_sr_next_line(reader);
if (nl <= 0)
{
break;
}
if(!bcf_sr_has_line(reader, 0))
{
continue;
}
bcf1_t *line = reader->readers[0].buffer[0];
if(rlimit != -1)
{
if(rcount >= rlimit)
{
break;
}
}
const std::string vchr = bcfhelpers::getChrom(hdr.get(), line);
if(end != -1 && ((!current_chr.empty() && vchr != current_chr) || line->pos > end))
{
break;
}
if(!current_chr.empty() && vchr != current_chr)
{
// reset bs on chr switch
previous_pos = -1;
if(vars_in_block > 0)
{
// make sure we create a new block
vars_in_block = blocksize + 1;
}
}
current_chr = vchr;
if(apply_filters)
{
bcf_unpack(line, BCF_UN_FLT);
bool fail = false;
for(int j = 0; j < line->d.n_flt; ++j)
{
std::string filter = "PASS";
int k = line->d.flt[j];
if(k >= 0)
{
filter = bcf_hdr_int2id(hdr.get(), BCF_DT_ID, line->d.flt[j]);
}
if(filter != "PASS")
{
fail = true;
break;
}
}
// skip failing
if(fail)
{
continue;
}
}
const int dist_to_previous = (previous_pos < 0) ? std::numeric_limits<int>::max() : line->pos - previous_pos;
previous_pos = line->pos;
if(vars_in_block > blocksize || dist_to_previous > min_var_distance)
{
{
std::lock_guard<std::mutex> lock(blocks_mutex);
blocks.emplace(std::move(p_bac));
}
p_bac = std::move(std::unique_ptr<BlockAlleleCompare>(new BlockAlleleCompare(hdr, ref_fasta, qq_field)));
vars_in_block = 0;
previous_pos = -1;
}
p_bac->add(line);
++vars_in_block;
if (message > 0 && (rcount % message) == 0)
{
auto t1 = CPUClock::now();
typedef std::chrono::duration<double, typename CPUClock::period> Cycle;
std::cout << stringutil::formatPos(vchr.c_str(), line->pos) << " cycles/record: " <<
(Cycle(t1 - t0).count() / rcount) << "\n";
}
// count variants here
++rcount;
}
{
std::lock_guard<std::mutex> lock(blocks_mutex);
blocks.emplace(std::move(p_bac));
all_blocks_added = true;
}
if(message > 0)
{
std::cout << "All records read. Waiting for workers to complete" << std::endl;
}
for(auto & t : workers)
{
t.join();
}
// make sure we write in the correct order
processed_blocks.sort([](std::unique_ptr<BlockAlleleCompare> const & b1,
std::unique_ptr<BlockAlleleCompare> const & b2) {
return *b1 < *b2;
});
for(auto & result : processed_blocks)
{
result->output(writer);
}
hts_close(writer);
bcf_sr_destroy(reader);
}
catch(std::runtime_error & e)
{
std::cerr << e.what() << std::endl;
return 1;
}
catch(std::logic_error & e)
{
std::cerr << e.what() << std::endl;
return 1;
}
return 0;
}
| [
"[email protected]"
] | |
a048712926a4a775041cb6345df08789901a40f1 | cec3c68ce1620f61671bedc1643bdb041b511e56 | /source/System/Input.h | 12f0d61a1b43872753c8d0a189d6885d7005f79f | [] | no_license | 2dev2fun/SimpleEngine | e9a0d88946b83ec9ecacf2c51171ee7c452cc73a | 91db7b72b8c38d559994e4b91c9d4003bbdf8a31 | refs/heads/master | 2022-06-11T16:44:56.498386 | 2020-05-09T15:54:10 | 2020-05-09T15:54:10 | 256,160,965 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 464 | h | // Copyright (C) 2020 Maxim, [email protected]. All rights reserved.
#pragma once
#include "Engine.h"
#include "Window.h"
#include <memory>
#include <vector>
namespace engine {
class InputSystem {
public:
InputSystem(Game* game);
void update();
void attachCommand(std::shared_ptr<Command> command);
void detachCommand(std::shared_ptr<Command> command);
private:
Game* mGame;
std::vector<std::shared_ptr<Command>> mCommands;
};
} // namespace engine
| [
"[email protected]"
] | |
395aff8a444d82a5f67aff59b6893eb0833973b9 | 46c1208ac02448288f907a264eff5d82c92009e3 | /src/src/CARTDecisionTree.cpp | 8ddf5515d13c2c8696a8d99959932525b273de2e | [] | no_license | chensh236/AdaboostHandWrittenDightDetectAndRecognition | 3296d256360b07f021cdce6806a51b4bd47594d4 | 6cb5aaf027384486b0b17b4ca9d13632378d6395 | refs/heads/master | 2020-04-11T07:42:16.147560 | 2015-07-03T03:00:03 | 2015-07-03T03:00:03 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 3,848 | cpp | //
// DesionTree.cpp
// RandomForest
//
// Created by wc on 15/6/10.
// Copyright (c) 2015年 wc. All rights reserved.
//
#include "CARTDecisionTree.h"
CARTDecisionTree* CARTDecisionTree::instance = nullptr;
CARTDecisionTree* CARTDecisionTree::getInstance() {
if (instance == nullptr)
instance = new CARTDecisionTree();
return instance;
}
CARTDecisionTree::CARTDecisionTree() {
inequalList.clear();
inequalList.push_back(true);
inequalList.push_back(false);
}
CARTDecisionTree::~CARTDecisionTree() {}
Row CARTDecisionTree::getClassifyLabel(TreeMat &mat, int featureIndex,
ElementType &threshold, bool inequal) {
Row returnLabel(mat.size(), 1);
for (int i = 0; i < mat.size(); ++i) {
if (inequal) {
if (mat[i][featureIndex] <= threshold) {
returnLabel[i] = -1;
}
} else {
if (mat[i][featureIndex] > threshold) {
returnLabel[i] = -1;
}
}
}
return returnLabel;
}
TreeNode CARTDecisionTree::getBestTree(TreeMat &mat, ErrorWeight &D,
Row &bestPredictLabel, double &minErrorRate) {
assert(mat.size() > 0);
TreeNode treeReturn = nullptr;
minErrorRate = HUGE_VAL;
int featureSize = (int)mat[0].size() - 1;
for (int i = 0; i < featureSize; ++i) {
double errorRateTemp = HUGE_VAL;
Row predictLabel;
TreeNode TreeTemp = getMinErrorTreeOfOneFeature(mat, D, i, errorRateTemp, predictLabel);
if (minErrorRate > errorRateTemp) {
minErrorRate = errorRateTemp;
bestPredictLabel = predictLabel;
if (treeReturn != nullptr) {
delete treeReturn;
}
treeReturn = TreeTemp;
} else {
delete TreeTemp;
}
}
return treeReturn;
}
TreeNode CARTDecisionTree::getMinErrorTreeOfOneFeature(TreeMat &mat,
ErrorWeight &D, int featureIndex,
double &errorRate, Row &predictLabel) {
assert(mat.size() > 0);
predictLabel.clear();
ElementType min;
ElementType max;
TreeNode newTree = new Node();
getMinFeatureValue(mat, featureIndex, min, max);
ElementType stepSize = (max - min) / NUMSTEP;
for (int i = -1; i < NUMSTEP + 1; ++i) {
for (auto inequal : inequalList) {
ElementType threshod = min + (double)i * stepSize;
Row predictResult = getClassifyLabel(mat, featureIndex, threshod, inequal);
double errorRatetemp = getWeightErrorrate(mat, predictResult, D);
if (errorRate > errorRatetemp) {
errorRate = errorRatetemp;
predictLabel = predictResult;
newTree->_threshod = i;
newTree->_inequal = inequal;
newTree->_featureIndex = featureIndex;
}
}
}
return newTree;
}
double CARTDecisionTree::getWeightErrorrate(TreeMat &mat, Row &predictLabel, ErrorWeight &D) {
assert(mat.size() > 0);
double weightErrorRate = 0.0;
int labelIndex = (int)mat[0].size() - 1;
for(int i = 0; i < mat.size(); ++i) {
if (mat[i][labelIndex] != predictLabel[i]) {
weightErrorRate += D[i];
}
}
return weightErrorRate;
}
void CARTDecisionTree::getMinFeatureValue(TreeMat &mat, int featureIndex,
ElementType &min, ElementType &max) {
min = HUGE_VAL;
max = -HUGE_VAL;
for (auto row : mat) {
if (row[featureIndex] < min)
min = row[featureIndex];
if (row[featureIndex] > max)
max = row[featureIndex];
}
}
| [
"[email protected]"
] | |
b1b2c603a5939180ff1859ba4cf4035c47df017f | 6c0e8a23af93c38dc9d62b43fb3b96d952a85c21 | /hello/prome.cpp | 170b7554c5f5a22eb06ba9e934845427d8ceb2c8 | [] | no_license | Bernini0/Codes | 9072be1f3a1213d1dc582c233ebcedf991b62f2b | 377ec182232d8cfe23baffa4ea4c43ebef5f10bf | refs/heads/main | 2023-07-06T13:10:49.072244 | 2021-08-11T17:30:03 | 2021-08-11T17:30:03 | 393,320,827 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,725 | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int arr[168]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997};
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
int n = a*b*c;
n = sqrt(n);
int arr1[1000000];
memset(arr1,0,sizeof(arr1));
int l = 0;
int ans =0, cnt =1,d=1;
for (int i = 1; i <= a; i++)
{
for (int j = 1; j <= b; j++)
{
for (int k = 1; k <= c; k++)
{
arr1[l] = a*b*c;
l++;
}
}
}
for (int j = 0; j < 1000000; j++)
{
if(arr1[j]==0){
break;
}
else
{
d=1,cnt =1;
for (int i = 0; i < 168 && arr1[j]>=1;i++)
{
cnt =1;
if(arr1[j]==1)break;
while(arr1[j]%arr[i]==0){
arr1[j] = arr1[j]/arr[i];
cnt++;
}
printf("%d\n");
d *=cnt;
}
ans +=d;
}
}
printf("%d",ans);
} | [
"[email protected]"
] | |
b90614f9cdfb67709b7c24f848f8afca8f250ec0 | 3503ca10b545f4a758e7f50e6170909a45cbb544 | /2829.cpp | e58894c19332dd15a55da54471430d6a5f4d996a | [] | no_license | YongHoonJJo/BOJ | 531f660e841b7e9dce2afcf1f16a4acf0b408f32 | 575caa436abdb69eae48ac4d482365e4801c8a08 | refs/heads/master | 2021-05-02T18:32:33.936520 | 2019-06-22T17:16:13 | 2019-06-22T17:16:13 | 63,855,378 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 846 | cpp | #include <stdio.h>
int n, m[402][402];
int sumA[402][402], sumB[402][402];
int ans = -987654321;
int max(int a, int b)
{
return a > b ? a : b;
}
int go(int i, int j, int k)
{
int A=-100000000, B=0;
if(i+k <=n && j+k <=n) {
A = sumA[i+k][j+k]-sumA[i-1][j-1];
}
j += k;
if(j-k > 0 && i+k <= n) {
B = sumB[i+k][j-k]-sumB[i-1][j+1];
}
return A-B;
}
int main()
{
int i, j, k;
scanf("%d", &n);
for(i=1; i<=n; i++) {
for(j=1; j<=n; j++) {
scanf("%d", &m[i][j]);
sumA[i][j] = sumB[i][j] = m[i][j];
}
}
for(i=2; i<=n; i++) {
for(j=2; j<=n; j++)
sumA[i][j] += sumA[i-1][j-1];
}
for(i=2; i<=n; i++) {
for(j=1; j<n; j++)
sumB[i][j] += sumB[i-1][j+1];
}
for(i=1; i<=n; i++) {
for(j=1; j<=n; j++) {
for(k=0; k<n; k++) {
ans = max(ans, go(i, j, k));
}
}
}
printf("%d\n", ans);
return 0;
}
| [
"[email protected]"
] | |
c864e0a86439e279e74e959f6eaf28bd2d680c3f | 20a59a738c1d8521dc95c380190b48d7bc3bb0bb | /layouts/aknlayout2/generated/Vga4_touch_akn_app/aknlayoutscalable_abrw_pvp4_apps_vga4_prt_tch_normal.h | b69552b09b22941eaf6d1bff52ce2df810bd369a | [] | no_license | SymbianSource/oss.FCL.sf.mw.uiresources | 376c0cf0bccf470008ae066aeae1e3538f9701c6 | b78660bec78835802edd6575b96897d4aba58376 | refs/heads/master | 2021-01-13T13:17:08.423030 | 2010-10-19T08:42:43 | 2010-10-19T08:42:43 | 72,681,263 | 2 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,311 | h | /*
* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
// This header file contains the customisation implementation identity for AknLayoutScalable_Abrw_pvp4_apps_vga4_prt_tch_Normal
// This file may be manually modified.
#ifndef AKNLAYOUTSCALABLE_ABRW_PVP4_APPS_VGA4_PRT_TCH_NORMAL_H
#define AKNLAYOUTSCALABLE_ABRW_PVP4_APPS_VGA4_PRT_TCH_NORMAL_H
#include "aknlayoutscalable_apps.cdl.custom.h"
#include "aknlayoutscalable_abrw_pvp4_apps_vga4_prt_tch_normal.hrh"
namespace AknLayoutScalable_Abrw_pvp4_apps_vga4_prt_tch_Normal
{
const TInt KCdlInstanceId = _CDL_AknLayoutScalable_Abrw_pvp4_apps_vga4_prt_tch_Normal_KCdlInstanceId;
using AknLayoutScalable_Apps::KCdlInterface;
using AknLayoutScalable_Apps::KCdlInterfaceUidValue;
GLREF_D const AknLayoutScalable_Apps::SCdlImpl KCdlImpl;
} // end of namespace AknLayoutScalable_Abrw_pvp4_apps_vga4_prt_tch_Normal
#endif // AKNLAYOUTSCALABLE_ABRW_PVP4_APPS_VGA4_PRT_TCH_NORMAL_H
| [
"[email protected]"
] | |
926525921d3b4b340f46c849124a9b34a2ee58e9 | e9a9b956b21c35eed56fc032345b3e7416c78475 | /Segment Tree/Xenia and Bit Operations.cpp | d7c0b2576b9fd7dfc4dfae74500a83f1c57990c1 | [] | no_license | VinayKatare/Algorithms-Implementation | 7323b182e0c88452f6e5bfcbfb8f997970f02cdd | ea3129d571fc34dfd9c5f3236dde20b382fc8309 | refs/heads/master | 2020-04-17T14:18:07.537146 | 2019-10-25T08:42:03 | 2019-10-25T08:42:03 | 166,580,223 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,413 | cpp | //https://codeforces.com/contest/339/problem/D
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
using namespace std;
#define all(a) a.begin(), a.end()
#define pb push_back
#define ll long long
#define index(a) order_of_key(a)
#define value(a) find_by_order(a)
#define count_1 __builtin_popcount
#define mod(x, m) ((((x) % (m)) + (m)) % (m))
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> indexed_set;
int a[1000000], tr[1000000], n, pos;
void build(int d, int id = 1, int l = 1, int r = n) {
// cout<<pos<<" ";
if (pos < l || pos>r)return;
if (l == r) {
tr[id] = a[l];
return;
}
int mid = (l + r) / 2;
build(d ^ 1, 2 * id, l, mid);
build(d ^ 1, 2 * id + 1, mid + 1, r);
if (!(d & 1))
tr[id] = tr[2 * id] ^ tr[2 * id + 1];
else
tr[id] = tr[2 * id] | tr[2 * id + 1];
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0); cout << setprecision(12);
int m, needl, needr, x;
cin >> n >> m;
int sign = n % 2;
n = 1 << n;
for (int i = 1; i <= n; i++) { cin >> a[i]; pos = i; build(sign); }
//cout<<endl; for(int i=1;i<2*n;i++)cout<<tr[i]<<" ";cout<<endl;
int idx;
while (m--) {
cin >> pos >> x;
a[pos] = x;
build(sign);
// for(int i=1;i<2*n;i++)cout<<tr[i]<<" ";cout<<endl;
cout << tr[1] << endl;
}
return 0;
} | [
"[email protected]"
] | |
af26fdb3593fc002ca9f5f7db44d3762cfcdaace | c301c81f7560125e130a9eb67f5231b3d08a9d67 | /lc/lc/2021_target/companies/amazon/lc_127_word_ladder.cpp | 4d205814c518649a4eb2652532f7b213cf6edd09 | [] | no_license | vikashkumarjha/missionpeace | f55f593b52754c9681e6c32d46337e5e4b2d5f8b | 7d5db52486c55b48fe761e0616d550439584f199 | refs/heads/master | 2021-07-11T07:34:08.789819 | 2021-07-06T04:25:18 | 2021-07-06T04:25:18 | 241,745,271 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,148 | cpp | /*
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time.
Each transformed word must exist in the word list.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
You may assume no duplicates in the word list.
You may assume beginWord and endWord are non-empty and are not the same.
Example 1:
Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
*/
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> dict(begin(wordList), end(wordList));
queue<string> q;
q.push(beginWord);
vector<string> path;
int dist = 0;
while ( !q.empty()) {
int qsize = q.size();
++dist;
while ( qsize--) {
auto w = q.front(); q.pop();
if ( w == endWord) return dist;
dict.erase(w);
for ( int i = 0; i < w.size(); i++) {
auto ch = w[i];
for ( int k = 0; k < 26; k++) {
w[i] = 'a' + k;
if ( dict.count(w)) {
q.push(w);
}
}
w[i] = ch;
}
}
}
return 0;
}
};
int main()
{
Solution sol;
vector<string> wordList = {"hot", "dot", "dog", "lot", "log", "cog"};
int res = sol.ladderLength("hit", "cog", wordList);
cout << "\n The value of the result:" << res;
return 0;
} | [
"[email protected]"
] | |
be894af3bce25074a31f4c551e2c07ea51fecdec | 93f328e10b5b02ac0cdb4afdf1a84db83bcadfa5 | /viking/sort/trees.cpp | 10cadf110656106a43cda76729a08ce3c3fbdc35 | [] | no_license | missingjs/mustard | 184eba4e9abe698716a3f540b7518c5da73055e9 | ad4cf820a6bdfa8535c07dbdfdaf57f0e3caed96 | refs/heads/master | 2022-02-27T12:34:32.393355 | 2016-08-21T16:00:21 | 2016-08-21T16:00:21 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 363 | cpp | // @mission: 实现树形选择排序
#include "trees.def.h"
#include "common/array.h"
using namespace mustard;
int main()
{
int n = 0;
int * arr = array::read<int>(n);
int len = 0;
_ts * t = build_complete_tree(arr, n, len);
tree_select_output(t, len, arr, n);
array::print(arr, n);
delete[] arr;
delete[] t;
return 0;
}
| [
"[email protected]"
] | |
e25a58d07d3339d5be0128dbf558b90e40c5eb74 | 297952a5412cf123a642c3fc6814039800129f0b | /BunnySimulation.h | 4d86ef69909b059ab41ae1b46a5737457481c8b7 | [] | no_license | NotAMorningSpartan/BunnySimulation | 89891c2c5498af044339219ea318364a88ec2106 | 54df6bd7212b9b86fbd817797bb5c80b11a1a356 | refs/heads/main | 2023-03-27T00:38:28.651953 | 2021-03-18T09:18:49 | 2021-03-18T09:18:49 | 346,923,836 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 12,498 | h | //Tyler Kness-Miller
//BunnySimulation.h
#include "Bunny.h"
#include <vector>
#include <fstream>
class Simulation{
private:
int getRandomNumber(int lower, int upper){
//return 1 + ( rand() % ( 100 - 1 + 1 ) );
//return rand() % 100;
random_device generator;
mt19937 mt(generator());
uniform_int_distribution<int> dist(lower, upper);
return dist(mt);
}
public:
vector<Bunny> males;
vector<Bunny> females;
vector<Bunny> genderXs;
vector<Bunny> mutants;
vector<Bunny*> bunnies;
ofstream outfile;
/// Creates a bunny and adds to vector. Bunny is created with all random attributes.
void bunnyBorn(){
Bunny bunny = Bunny();
if(bunny.getMutant()){
cout << "Mutant Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Mutant Bunny " << bunny.getName() << " was born!" << endl;
mutants.push_back(bunny);
}
else if(bunny.getGender() == "male"){
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
males.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
else if(bunny.getGender() == "female"){
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
females.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
else{
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
genderXs.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
}
/// Creates a bunny and adds to vector. Bunny is created using color of mother and father.
/// \param colorM The color of the mother.
/// \param colorF The color of the father.
void bunnyBorn(string colorM, string colorF){
Bunny bunny = Bunny(colorM, colorF);
if(bunny.getMutant()){
cout << "Mutant Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Mutant Bunny " << bunny.getName() << " was born!" << endl;
mutants.push_back(bunny);
}
else if(bunny.getGender() == "male"){
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
males.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
else if(bunny.getGender() == "female"){
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
females.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
else{
cout << "Bunny " << bunny.getName() << " was born!" << endl;
outfile << "Bunny " << bunny.getName() << " was born!" << endl;
genderXs.push_back(bunny);
Bunny *bunny_pointer = &bunny;
bunnies.push_back(bunny_pointer);
}
}
/// Starts the vector of bunnies by filling it with 10 new ones.
void startVector(){
for(int i = 0; i < 10; i++){
bunnyBorn();
}
}
/// Adds a year of age to all bunny vectors and handles deletion when necessary.
void addAge(){
bunnies = vector<Bunny*>();
for(int i = 0; i < males.size(); i++){
//cout << "Bunny Age: " << males[i].getAge() << endl;
bool notDead = males[i].addAgeCheck();
if(!notDead){
cout << "Bunny " << males[i].getName() << " has died!" << endl;
outfile << "Bunny " << males[i].getName() << " has died!" << endl;
males.erase(males.begin() + i);
i = -1;
}
else{
bunnies.push_back(&males[i]);
}
}
for(int i = 0; i < females.size(); i++){
//cout << "Bunny Age: " << females[i].getAge() << endl;
bool notDead = females[i].addAgeCheck();
if(!notDead){
cout << "Bunny " << females[i].getName() << " has died!" << endl;
outfile << "Bunny " << females[i].getName() << " has died!" << endl;
females.erase(females.begin() + i);
i = -1;
}
else{
bunnies.push_back(&females[i]);
}
}
for(int i = 0; i < genderXs.size(); i++){
//cout << "Bunny Age: " << genderXs[i].getAge() << endl;
bool notDead = genderXs[i].addAgeCheck();
if(!notDead){
cout << "Bunny " << genderXs[i].getName() << " has died!" << endl;
outfile << "Bunny " << genderXs[i].getName() << " has died!" << endl;
genderXs.erase(genderXs.begin() + i);
i = -1;
}
else{
bunnies.push_back(&genderXs[i]);
}
}
for(int i = 0; i < mutants.size(); i++){
//cout << "Bunny Age: " << mutants[i].getAge() << endl;
bool notDead = mutants[i].addAgeCheck();
if(!notDead){
cout << "Mutant Bunny " << mutants[i].getName() << " has died!" << endl;
outfile << "Mutant Bunny " << mutants[i].getName() << " has died!" << endl;
mutants.erase(mutants.begin() + i);
i = -1;
}
}
}
void breeding(){
vector<Bunny> breedingMales;
vector<Bunny> breedingFemales;
vector<Bunny> breedingGenderX;
for(int i = 0; i < males.size(); i++){
//Get all bunnies that are at the appropriate age.
if(males[i].getAge() > 1 && males[i].getAge() < 9 && !males[i].getMutant()){
breedingMales.push_back(males[i]);
}
}
for(int i = 0; i < females.size(); i++){
if(females[i].getAge() > 1 && females[i].getAge() < 9 && !females[i].getMutant()){
breedingFemales.push_back(females[i]);
}
}
for(int i = 0; i < genderXs.size(); i++){
if(genderXs[i].getAge() > 1 && genderXs[i].getAge() < 9 && !genderXs[i].getMutant()){
breedingGenderX.push_back(genderXs[i]);
}
}
//Find max amount of bunnies in one list, to facilitate pairs.
int pairs = max(max(breedingMales.size(), breedingFemales.size()), breedingGenderX.size());
//facilitate breeding. After each one has breeded, remove them.
for(int i = 0; i < pairs; i++){
//breeding between males and females/genderXs
if(!breedingMales.empty()){
if(!breedingFemales.empty()){
bunnyBorn(breedingMales[0].getColor(), breedingFemales[0].getColor());
breedingMales.erase(breedingMales.begin());
breedingFemales.erase(breedingFemales.begin());
}
else if(!breedingGenderX.empty()){
if(getRandomNumber(1,100) > 50){
bunnyBorn(breedingMales[0].getColor(), breedingGenderX[0].getColor());
breedingMales.erase(breedingMales.begin());
breedingGenderX.erase(breedingGenderX.begin());
}
else{
breedingMales.erase(breedingMales.begin());
breedingGenderX.erase(breedingGenderX.begin());
}
}
}
//Breeding between females and males/genderXs
if(!breedingFemales.empty()){
if(!breedingMales.empty()){
bunnyBorn(breedingMales[0].getColor(), breedingFemales[0].getColor());
breedingMales.erase(breedingMales.begin());
breedingFemales.erase(breedingFemales.begin());
}
else if(!breedingGenderX.empty()){
if(getRandomNumber(1,100) > 50){
bunnyBorn(breedingGenderX[0].getColor(), breedingFemales[0].getColor());
breedingGenderX.erase(breedingGenderX.begin());
breedingFemales.erase(breedingFemales.begin());
}
else{
breedingFemales.erase(breedingFemales.begin());
breedingGenderX.erase(breedingGenderX.begin());
}
}
}
//edge case. no need to keep looking if no females and males are left to breed.
if(breedingMales.empty() && breedingFemales.empty()){
i = pairs;
}
}
//cout << "Bunnies breeding: " << to_string(breedingMales.size()) << " " << to_string(breedingFemales.size()) << " " << to_string(breedingGenderX.size()) << endl;
}
/// Take all bunnies that are mutants and move them out of standard vectors and into the mutant vectors.
void moveMutants(){
bunnies.clear();
for(int i = 0; i < males.size(); i++){
if(males[i].getMutant()){
Bunny bunny = males[i];
mutants.push_back(bunny);
males.erase(males.begin() + i);
i = 0;
}
else{
bunnies.push_back(&males[i]);
}
}
for(int i = 0; i < females.size(); i++){
if(females[i].getMutant()){
Bunny bunny = females[i];
mutants.push_back(bunny);
females.erase(females.begin() + i);
i = 0;
}
else{
bunnies.push_back(&females[i]);
}
}
for(int i = 0; i < genderXs.size(); i++){
if(genderXs[i].getMutant()){
Bunny bunny = genderXs[i];
mutants.push_back(bunny);
genderXs.erase(genderXs.begin() + i);
i = 0;
}
else{
bunnies.push_back(&genderXs[i]);
}
}
}
/// Using the count of current mutants, transform bunnies into new mutants.
void createMutants(){
for(int i = 0; i < mutants.size(); i++){
if(i == bunnies.size()){
//If it reaches this point, it means there is no more mutants left to convert.
return;
}
bunnies[i]->transformMutant();
}
moveMutants();
}
void runSimulation(){
outfile = ofstream("output.txt");
cout << "Initial Setup: " << endl;
outfile << "Initial Setup: " << endl;
startVector();
int turncount = 0;
bool endCondition = true;
while(endCondition){
cout << "Start of Turn " << to_string(turncount) << endl;
outfile << "Start of Turn " << to_string(turncount) << endl;
addAge();
if(males.size() == 0 && females.size() == 0 && genderXs.size() == 0 && mutants.size() == 0){
endCondition = false;
}
//breeding logic
breeding();
//mutant logic
createMutants();
//End of turn, display results.
cout << "Turn " << to_string(turncount) << ": Males: " << to_string(males.size()) << ", Females: "
<< to_string(females.size()) << ", GenderX's: " + to_string(genderXs.size()) + ", Mutants: "
<< to_string(mutants.size()) << ", Total Bunnies: " << to_string(bunnies.size() + mutants.size()) << endl;
turncount++;
outfile << "Turn " << to_string(turncount) << ": Males: " << to_string(males.size()) << ", Females: "
<< to_string(females.size()) << ", GenderX's: " + to_string(genderXs.size()) + ", Mutants: "
<< to_string(mutants.size()) << ", Total Bunnies: " << to_string(bunnies.size() + mutants.size()) << endl;
turncount++;
}
outfile.close();
}
Simulation()= default;
}; | [
"[email protected]"
] | |
a121ca47bfcc0f87b9e9955934d46e736774a4a1 | 2bc227439d76c91bf421eeb3e4277b50d45f3439 | /oclErrorCodes.cpp | b174ac2ee2e810344de985f7ebf3f9351186e21f | [] | no_license | alare/sdaccel | d0d744efc972df64cb28b15cf3f5f0b31351dd37 | 089c43dd46fb68bf11c181bf61c12d1cd62b0c3a | refs/heads/master | 2020-12-03T11:23:59.856840 | 2016-09-17T14:45:54 | 2016-09-17T14:45:54 | 66,237,040 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 4,600 | cpp | #include <map>
#include <string>
#include <CL/cl.h>
#define TO_STRING(x) #x
static const std::pair<cl_int, std::string> map_pairs[] = {
std::make_pair(CL_SUCCESS, TO_STRING(CL_SUCCESS)),
std::make_pair(CL_DEVICE_NOT_FOUND, TO_STRING(CL_DEVICE_NOT_FOUND)),
std::make_pair(CL_DEVICE_NOT_AVAILABLE, TO_STRING(CL_DEVICE_NOT_AVAILABLE)),
std::make_pair(CL_COMPILER_NOT_AVAILABLE, TO_STRING(CL_COMPILER_NOT_AVAILABLE)),
std::make_pair(CL_MEM_OBJECT_ALLOCATION_FAILURE, TO_STRING(CL_MEM_OBJECT_ALLOCATION_FAILURE)),
std::make_pair(CL_OUT_OF_RESOURCES, TO_STRING(CL_OUT_OF_RESOURCES)),
std::make_pair(CL_OUT_OF_HOST_MEMORY, TO_STRING(CL_OUT_OF_HOST_MEMORY)),
std::make_pair(CL_PROFILING_INFO_NOT_AVAILABLE, TO_STRING(CL_PROFILING_INFO_NOT_AVAILABLE)),
std::make_pair(CL_MEM_COPY_OVERLAP, TO_STRING(CL_MEM_COPY_OVERLAP)),
std::make_pair(CL_IMAGE_FORMAT_MISMATCH, TO_STRING(CL_IMAGE_FORMAT_MISMATCH)),
std::make_pair(CL_IMAGE_FORMAT_NOT_SUPPORTED, TO_STRING(CL_IMAGE_FORMAT_NOT_SUPPORTED)),
std::make_pair(CL_BUILD_PROGRAM_FAILURE, TO_STRING(CL_BUILD_PROGRAM_FAILURE)),
std::make_pair(CL_MAP_FAILURE, TO_STRING(CL_MAP_FAILURE)),
std::make_pair(CL_MISALIGNED_SUB_BUFFER_OFFSET, TO_STRING(CL_MISALIGNED_SUB_BUFFER_OFFSET)),
std::make_pair(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST, TO_STRING(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_W)),
std::make_pair(CL_INVALID_VALUE, TO_STRING(CL_INVALID_VALUE)),
std::make_pair(CL_INVALID_DEVICE_TYPE, TO_STRING(CL_INVALID_DEVICE_TYPE)),
std::make_pair(CL_INVALID_PLATFORM, TO_STRING(CL_INVALID_PLATFORM)),
std::make_pair(CL_INVALID_DEVICE, TO_STRING(CL_INVALID_DEVICE)),
std::make_pair(CL_INVALID_CONTEXT, TO_STRING(CL_INVALID_CONTEXT)),
std::make_pair(CL_INVALID_QUEUE_PROPERTIES, TO_STRING(CL_INVALID_QUEUE_PROPERTIES)),
std::make_pair(CL_INVALID_COMMAND_QUEUE, TO_STRING(CL_INVALID_COMMAND_QUEUE)),
std::make_pair(CL_INVALID_HOST_PTR, TO_STRING(CL_INVALID_HOST_PTR)),
std::make_pair(CL_INVALID_MEM_OBJECT, TO_STRING(CL_INVALID_MEM_OBJECT)),
std::make_pair(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, TO_STRING(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR)),
std::make_pair(CL_INVALID_IMAGE_SIZE, TO_STRING(CL_INVALID_IMAGE_SIZE)),
std::make_pair(CL_INVALID_SAMPLER, TO_STRING(CL_INVALID_SAMPLER)),
std::make_pair(CL_INVALID_BINARY, TO_STRING(CL_INVALID_BINARY)),
std::make_pair(CL_INVALID_BUILD_OPTIONS, TO_STRING(CL_INVALID_BUILD_OPTIONS)),
std::make_pair(CL_INVALID_PROGRAM, TO_STRING(CL_INVALID_PROGRAM)),
std::make_pair(CL_INVALID_PROGRAM_EXECUTABLE, TO_STRING(CL_INVALID_PROGRAM_EXECUTABLE)),
std::make_pair(CL_INVALID_KERNEL_NAME, TO_STRING(CL_INVALID_KERNEL_NAME)),
std::make_pair(CL_INVALID_KERNEL_DEFINITION, TO_STRING(CL_INVALID_KERNEL_DEFINITION)),
std::make_pair(CL_INVALID_KERNEL, TO_STRING(CL_INVALID_KERNEL)),
std::make_pair(CL_INVALID_ARG_INDEX, TO_STRING(CL_INVALID_ARG_INDEX)),
std::make_pair(CL_INVALID_ARG_VALUE, TO_STRING(CL_INVALID_ARG_VALUE)),
std::make_pair(CL_INVALID_ARG_SIZE, TO_STRING(CL_INVALID_ARG_SIZE)),
std::make_pair(CL_INVALID_KERNEL_ARGS, TO_STRING(CL_INVALID_KERNEL_ARGS)),
std::make_pair(CL_INVALID_WORK_DIMENSION, TO_STRING(CL_INVALID_WORK_DIMENSION)),
std::make_pair(CL_INVALID_WORK_GROUP_SIZE, TO_STRING(CL_INVALID_WORK_GROUP_SIZE)),
std::make_pair(CL_INVALID_WORK_ITEM_SIZE, TO_STRING(CL_INVALID_WORK_ITEM_SIZE)),
std::make_pair(CL_INVALID_GLOBAL_OFFSET, TO_STRING(CL_INVALID_GLOBAL_OFFSET)),
std::make_pair(CL_INVALID_EVENT_WAIT_LIST, TO_STRING(CL_INVALID_EVENT_WAIT_LIST)),
std::make_pair(CL_INVALID_EVENT, TO_STRING(CL_INVALID_EVENT)),
std::make_pair(CL_INVALID_OPERATION, TO_STRING(CL_INVALID_OPERATION)),
std::make_pair(CL_INVALID_GL_OBJECT, TO_STRING(CL_INVALID_GL_OBJECT)),
std::make_pair(CL_INVALID_BUFFER_SIZE, TO_STRING(CL_INVALID_BUFFER_SIZE)),
std::make_pair(CL_INVALID_MIP_LEVEL, TO_STRING(CL_INVALID_MIP_LEVEL)),
std::make_pair(CL_INVALID_GLOBAL_WORK_SIZE, TO_STRING(CL_INVALID_GLOBAL_WORK_SIZE)),
std::make_pair(CL_INVALID_PROPERTY, TO_STRING(CL_INVALID_PROPERTY))};
static const std::map<cl_int, std::string> oclErrorCodes(map_pairs, map_pairs + sizeof(map_pairs) / sizeof(map_pairs[0]));
const char *oclErrorCode(cl_int code)
{
std::map<cl_int, std::string>::const_iterator iter = oclErrorCodes.find(code);
if (iter == oclErrorCodes.end())
return "UNKNOWN ERROR";
else
return iter->second.c_str();
}
// XSIP watermark, do not delete 67d7842dbbe25473c3c32b93c0da8047785f30d78e8a024de1b57352245f9689
| [
"[email protected]"
] | |
6fa28d9c9e83cdd2042a5ba1d42079be8e67b57e | 209571af270257a5b8338622f3a1db75124b0315 | /test usb/old_stuff/devicefinder1.cpp | cb84c0170934b198ceb2142288837acd5a4b1ed5 | [] | no_license | DarioSardi/ProgettoRobotica2018 | 2907d88bbfa2f3e01b80e3bf640f2d6ccab13174 | 703f7a001024c3f2db94ac0211fb73cc26ea3208 | refs/heads/master | 2020-03-31T21:15:51.577388 | 2019-01-13T18:40:44 | 2019-01-13T18:40:44 | 152,573,751 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 711 | cpp | #include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <malloc.h>
#include <iostream>
#include <string.h>
#define BUF_SIZE 1024
char addr[30]="";
int search(void)
{
FILE *f;
char* buf;
f=popen("./finder.o | grep Arduino | awk '{print $1;}' ", "r");
if (f==NULL) {
perror("1 - Error");
return errno;
}
buf=(char*)malloc(BUF_SIZE);
if (buf==NULL) {
perror("2 - Error");
pclose(f);
return errno;
}
while(fgets(buf,BUF_SIZE,f)!=NULL) {
//printf("arduino found at: %s",buf);
strcpy(addr,buf); //copia l'ultimo risultato
}
pclose(f);
free(buf);
return 0;
}
char* getArduino(){
search();
return addr;
}
| [
"[email protected]"
] | |
f5229cc337170ef422e04d5a38b311e0d9f8064b | a3d72d39f72cf11fe2ff124901cb319cb2f0c34a | /Source/Device/GfxGraphicsCommandList.inl | a4ac86f00c41f42c4a97ce7853b69d92f3e86ccb | [] | no_license | takasuke-ando/GfxLib_D3D12 | c8018d17fa752b6f7a5279804a506a9d279d1ba1 | c6fd400ed8634c80736b3d53e0a15d4745ebefef | refs/heads/master | 2021-05-24T04:49:39.981780 | 2020-09-01T00:16:37 | 2020-09-01T00:16:37 | 54,645,405 | 2 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,270 | inl | #ifndef __INLUCDE_GFXGRAPHICSCOMMANDLIST_INL__
#define __INLUCDE_GFXGRAPHICSCOMMANDLIST_INL__
namespace GfxLib
{
inline void GraphicsCommandList::SetPrimitiveTopologyType(D3D12_PRIMITIVE_TOPOLOGY_TYPE topology) {
if (m_PipelineState.PrimitiveTopologyType != topology) {
m_bPipelineDirty = true;
m_PipelineState.PrimitiveTopologyType = topology;
}
}
inline void GraphicsCommandList::IASetIndexBuffer(
const D3D12_INDEX_BUFFER_VIEW *pView)
{
GetD3DCommandList()->IASetIndexBuffer(pView);
}
inline void GraphicsCommandList::IASetVertexBuffers(
UINT StartSlot,
UINT NumViews,
const D3D12_VERTEX_BUFFER_VIEW *pViews)
{
GetD3DCommandList()->IASetVertexBuffers(StartSlot, NumViews, pViews);
}
inline void GraphicsCommandList::IASetPrimitiveTopology(
D3D12_PRIMITIVE_TOPOLOGY PrimitiveTopology)
{
GetD3DCommandList()->IASetPrimitiveTopology(PrimitiveTopology);
}
inline void GraphicsCommandList::SetGraphicsRootDescriptorTable(
uint32_t RootParameterIndex,
const DescriptorBuffer &descBuffer)
{
m_pCmdList->SetGraphicsRootDescriptorTable(RootParameterIndex, descBuffer.GetGPUDescriptorHandle());
}
}
#endif // !__INLUCDE_GFXGRAPHICSCOMMANDLIST_INL__
| [
"[email protected]"
] | |
859413bfeb9f18ff3b7e264189cec1da8f129a0e | a57dc909766d9486abbc76d8c7f41e592950511d | /ServerSocket_demo/ServerSocket/ServerSocketDlg.cpp | b2e9cb53af777be3929a626642d3e326d9ac8bc1 | [] | no_license | gigihpc/Socket-and-Serial-C | ade688f7a876f32791448caaf7b3d569a82b16ba | f599a07dcbbf142be62f1a700b692afb01fd1648 | refs/heads/master | 2021-07-14T19:23:20.865481 | 2017-10-17T02:57:09 | 2017-10-17T02:57:09 | 107,209,557 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 9,754 | cpp | // ServerSocketDlg.cpp : implementation file
//
#include "stdafx.h"
#include <atlconv.h>
#include "ServerSocket.h"
#include "ServerSocketDlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
const int SOCK_TCP = 0;
const int SOCK_UDP = 1;
/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About
class CAboutDlg : public CDialog
{
public:
CAboutDlg();
// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//}}AFX_DATA
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL
// Implementation
protected:
//{{AFX_MSG(CAboutDlg)
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
//{{AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT
}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
/////////////////////////////////////////////////////////////////////////////
// CServerSocketDlg dialog
CServerSocketDlg::CServerSocketDlg(CWnd* pParent /*=NULL*/)
: CDialog(CServerSocketDlg::IDD, pParent)
{
//{{AFX_DATA_INIT(CServerSocketDlg)
m_strPort = _T("2000");
m_nSockType = SOCK_TCP; // default TCP
//}}AFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}
void CServerSocketDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CServerSocketDlg)
DDX_Control(pDX, IDC_TXT_MESSAGE, m_ctlMessage);
DDX_Control(pDX, IDC_MESSAGE_LIST, m_ctlMsgList);
DDX_Control(pDX, IDC_SVR_PORTINC, m_ctlPortInc);
DDX_Text(pDX, IDC_SVR_PORT, m_strPort);
DDX_Radio(pDX, IDC_TCP, m_nSockType);
//}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CServerSocketDlg, CDialog)
//{{AFX_MSG_MAP(CServerSocketDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_BTN_START, OnBtnStart)
ON_BN_CLICKED(IDC_BTN_STOP, OnBtnStop)
ON_WM_DESTROY()
ON_BN_CLICKED(IDC_BTN_SEND, OnBtnSend)
//}}AFX_MSG_MAP
ON_MESSAGE(WM_UPDATE_CONNECTION, OnUpdateConnection)
END_MESSAGE_MAP()
/////////////////////////////////////////////////////////////////////////////
// CServerSocketDlg message handlers
BOOL CServerSocketDlg::PreTranslateMessage(MSG* pMsg)
{
if (pMsg->message == WM_KEYDOWN)
{
int nVirtKey = (int) pMsg->wParam;
if (nVirtKey == VK_ESCAPE)
return TRUE;
if (nVirtKey == VK_RETURN && (GetFocus()->m_hWnd == m_ctlMessage.m_hWnd))
{
if (m_pCurServer->IsOpen())
OnBtnSend();
return TRUE;
}
}
return CDialog::PreTranslateMessage(pMsg);
}
///////////////////////////////////////////////////////////////////////////////
// PickNextAvailable : this is useful only for TCP socket
void CServerSocketDlg::PickNextAvailable()
{
m_pCurServer = NULL;
for(int i=0; i<MAX_CONNECTION; i++)
{
if (!m_SocketManager[i].IsOpen())
{
m_pCurServer = &m_SocketManager[i];
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// StartServer : Start the server
bool CServerSocketDlg::StartServer()
{
bool bSuccess = false;
if (m_pCurServer != NULL)
{
if (m_nSockType == SOCK_TCP)
{
// no smart addressing - we use connection oriented
m_pCurServer->SetSmartAddressing( false );
bSuccess = m_pCurServer->CreateSocket( m_strPort, AF_INET, SOCK_STREAM, 0); // TCP
}
else
{
m_pCurServer->SetSmartAddressing( true );
bSuccess = m_pCurServer->CreateSocket( m_strPort, AF_INET, SOCK_DGRAM, SO_BROADCAST); // UDP
}
if (bSuccess && m_pCurServer->WatchComm())
{
GetDlgItem(IDC_BTN_SEND)->EnableWindow( TRUE );
GetDlgItem(IDC_BTN_STOP)->EnableWindow( TRUE );
NextDlgCtrl();
GetDlgItem(IDC_BTN_START)->EnableWindow( FALSE );
GetDlgItem(IDC_TCP)->EnableWindow( FALSE );
GetDlgItem(IDC_UDP)->EnableWindow( FALSE );
CString strServer, strAddr;
m_pCurServer->GetLocalName( strServer.GetBuffer(256), 256);
strServer.ReleaseBuffer();
m_pCurServer->GetLocalAddress( strAddr.GetBuffer(256), 256);
strAddr.ReleaseBuffer();
CString strMsg = _T("Server: ") + strServer;
strMsg += _T(", @Address: ") + strAddr;
strMsg += _T(" is running on port ") + m_strPort + CString("\r\n");
m_pCurServer->AppendMessage( strMsg );
}
}
return bSuccess;
}
BOOL CServerSocketDlg::OnInitDialog()
{
ASSERT( GetDlgItem(IDC_BTN_SEND) != NULL );
ASSERT( GetDlgItem(IDC_BTN_START) != NULL );
ASSERT( GetDlgItem(IDC_BTN_STOP) != NULL );
CDialog::OnInitDialog();
// Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);
CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty())
{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
}
}
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon
// TODO: Add extra initialization here
m_ctlPortInc.SetRange32( 2000, 4500);
GetDlgItem(IDC_BTN_SEND)->EnableWindow( FALSE );
GetDlgItem(IDC_BTN_STOP)->EnableWindow( FALSE );
for(int i=0; i<MAX_CONNECTION; i++)
{
m_SocketManager[i].SetMessageWindow( &m_ctlMsgList );
m_SocketManager[i].SetServerState( true ); // run as server
}
PickNextAvailable();
return TRUE; // return TRUE unless you set the focus to a control
}
void CServerSocketDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
if ((nID & 0xFFF0) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModal();
}
else
{
CDialog::OnSysCommand(nID, lParam);
}
}
// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.
void CServerSocketDlg::OnPaint()
{
if (IsIconic())
{
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);
// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;
// Draw the icon
dc.DrawIcon(x, y, m_hIcon);
}
else
{
CDialog::OnPaint();
}
}
///////////////////////////////////////////////////////////////////////////////
// OnUpdateConnection
// This message is sent by server manager to indicate connection status
LRESULT CServerSocketDlg::OnUpdateConnection(WPARAM wParam, LPARAM lParam)
{
UINT uEvent = (UINT) wParam;
CSocketManager* pManager = reinterpret_cast<CSocketManager*>( lParam );
// We need to do this only for TCP socket
if (m_nSockType != SOCK_TCP)
return 0L;
if ( pManager != NULL)
{
// Server socket is now connected, we need to pick a new one
if (uEvent == EVT_CONSUCCESS)
{
PickNextAvailable();
StartServer();
}
else if (uEvent == EVT_CONFAILURE || uEvent == EVT_CONDROP)
{
pManager->StopComm();
if (m_pCurServer == NULL)
{
PickNextAvailable();
StartServer();
}
}
}
return 1L;
}
// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CServerSocketDlg::OnQueryDragIcon()
{
return (HCURSOR) m_hIcon;
}
void CServerSocketDlg::OnBtnStart()
{
UpdateData();
StartServer();
}
void CServerSocketDlg::OnBtnStop()
{
// Disconnect all clients
for(int i=0; i<MAX_CONNECTION; i++)
m_SocketManager[i].StopComm();
if (!m_pCurServer->IsOpen())
{
GetDlgItem(IDC_BTN_START)->EnableWindow( TRUE );
PrevDlgCtrl();
GetDlgItem(IDC_BTN_STOP)->EnableWindow( FALSE );
GetDlgItem(IDC_TCP)->EnableWindow( TRUE );
GetDlgItem(IDC_UDP)->EnableWindow( TRUE );
}
}
void CServerSocketDlg::OnBtnSend()
{
CString strText;
m_ctlMessage.GetWindowText( strText );
int nLen = strText.GetLength();
stMessageProxy msgProxy;
if (nLen > 0)
{
USES_CONVERSION;
strText += _T("\r\n");
nLen = strText.GetLength();
if (m_nSockType == SOCK_UDP)
{
// send broadcast...
msgProxy.address.CreateFrom(_T("255.255.255.255"), m_strPort);
memcpy(msgProxy.byData, T2CA(strText), nLen);
nLen += msgProxy.address.Size();
}
else
{
nLen = __min(sizeof(msgProxy.byData)-1, nLen+1);
memcpy(msgProxy.byData, T2CA(strText), nLen);
}
// Send data to peer...
if (m_nSockType == SOCK_UDP)
m_pCurServer->WriteComm((const LPBYTE)&msgProxy, nLen, INFINITE);
else
{
// Send to all clients
for(int i=0; i<MAX_CONNECTION; i++)
{
if (m_SocketManager[i].IsOpen() && m_pCurServer != &m_SocketManager[i])
m_SocketManager[i].WriteComm(msgProxy.byData, nLen, INFINITE);
}
}
}
}
void CServerSocketDlg::OnDestroy()
{
for(int i=0; i<MAX_CONNECTION; i++)
m_SocketManager[i].StopComm();
CDialog::OnDestroy();
}
| [
"[email protected]"
] | |
18a66f90a91b1c3bd0275c369b687e1613fd047a | bc802b219fc1934098b8e854f36b9cb687b24428 | /codewars/rotate-for-a-max/rotate-for-a-max_jihed.cpp | 4399e36603be41e2e03b4b78ac64cafeb77c4ab6 | [] | no_license | coding-katas/all-solutions | cee7a6f40e292b2619e2b8cf09b69c1f5541f35b | 28bbe3023222dacd0856563a3b7098e7a9cea593 | refs/heads/master | 2020-04-21T03:09:18.788656 | 2019-02-05T16:45:17 | 2019-02-05T16:45:17 | 169,275,872 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 648 | cpp | #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
class MaxRotate
{
public:
static long long maxRot(long long n)
{
string str = to_string(n);
vector<long long> vct;
vct.push_back(n);
for (int j = 0; j < str.size() ; j++)
{
for (int i = j; i < str.size() - 1; i++)
{
auto f = [](char &x, char &y) {
char aux = x;
x = y;
y = aux;
};
f(str[i], str[i + 1]);
}
vct.push_back(stoll(str));
}
return *max_element(vct.begin(), vct.end());
}
};
int main()
{
}
| [
"[email protected]"
] | |
c7e328817f9751f494b30353f47f4ccc663ea4de | c3b5f7b284326fe016661c497eb92b89f31c63ec | /src/FizzBuzz.h | 30fcf3925e003a7f5b42012c8a66ccd4dcd04307 | [] | no_license | haru01/cppunit-sample | 5750053ead993d70f271ed29c6cc4b2205a9e289 | e8585555a41968019ef80d5753b81a83ba3fd606 | refs/heads/master | 2020-05-18T00:22:38.991413 | 2012-07-30T01:02:22 | 2012-07-30T01:02:22 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 175 | h | #ifndef FIZZBUZZ_H
#define FIZZBUZZ_H
#include <string>
class FizzBuzz {
private:
int num;
public:
FizzBuzz(int num);
~FizzBuzz();
std::string value();
};
#endif
| [
"[email protected]"
] | |
ec4d14ae9e79c77e4cf37b9de3e7c0fc4765150a | ebcbea283a4a430b818e2386b95b577c3f582dfb | /libcef_dll/ctocpp/v8array_buffer_release_callback_ctocpp.h | c4a9bc6c157eff88d183d70096901dea2ba7b7cd | [
"BSD-3-Clause"
] | permissive | avaer/cef | 18b5188abb9fd4db8a90553e8215fe5003a5d169 | 1057523680062f0f1f5f6df7c16dde151f9a2770 | refs/heads/master | 2020-04-03T13:37:54.041882 | 2018-11-17T21:58:26 | 2018-11-17T21:58:26 | 155,291,081 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,522 | h | // Copyright (c) 2018 The Chromium Embedded Framework Authors. All rights
// reserved. Use of this source code is governed by a BSD-style license that
// can be found in the LICENSE file.
//
// ---------------------------------------------------------------------------
//
// This file was generated by the CEF translator tool. If making changes by
// hand only do so within the body of existing method and function
// implementations. See the translator.README.txt file in the tools directory
// for more information.
//
// $hash=6c5b7fe181699426e51ca11b6216a1ec56e36032$
//
#ifndef CEF_LIBCEF_DLL_CTOCPP_V8ARRAY_BUFFER_RELEASE_CALLBACK_CTOCPP_H_
#define CEF_LIBCEF_DLL_CTOCPP_V8ARRAY_BUFFER_RELEASE_CALLBACK_CTOCPP_H_
#pragma once
#if !defined(BUILDING_CEF_SHARED)
#error This file can be included DLL-side only
#endif
#include "include/capi/cef_v8_capi.h"
#include "include/cef_v8.h"
#include "libcef_dll/ctocpp/ctocpp_ref_counted.h"
// Wrap a C structure with a C++ class.
// This class may be instantiated and accessed DLL-side only.
class CefV8ArrayBufferReleaseCallbackCToCpp
: public CefCToCppRefCounted<CefV8ArrayBufferReleaseCallbackCToCpp,
CefV8ArrayBufferReleaseCallback,
cef_v8array_buffer_release_callback_t> {
public:
CefV8ArrayBufferReleaseCallbackCToCpp();
// CefV8ArrayBufferReleaseCallback methods.
void ReleaseBuffer(void* buffer) override;
};
#endif // CEF_LIBCEF_DLL_CTOCPP_V8ARRAY_BUFFER_RELEASE_CALLBACK_CTOCPP_H_
| [
"[email protected]"
] | |
dc74af23a5f1acb82ff19d214a7e1a0e7dbd1570 | 9494ac09c78d7b6cb17e1b30bad80d7b60da7d96 | /p1074ReversingLinkedList.cpp | 6074be1c758221d5b6be5a39d2fcd68ec1209c67 | [
"MIT"
] | permissive | yangyueren/PAT | 24547ea71c2a1e05326e99d9813dbd972c1aea1d | 950d820ec9174c5e2d74adafeb2abde4acdc635f | refs/heads/master | 2020-09-12T07:42:19.826678 | 2019-11-18T03:45:44 | 2019-11-18T03:45:44 | 222,358,172 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,110 | cpp | //
// Created by yryang on 2019/9/18.
//
#include "stdio.h"
#include "stdlib.h"
#include "vector"
#include "set"
#include "string"
#include "string.h"
#include "map"
#include "algorithm"
#include "iostream"
using namespace std;
struct node{
int add;
int val;
int next;
}nodes[100005];
int inihead;
int N;
int K;
vector<node> result;
int main(){
cin >> inihead >> N >> K;
for (int i = 0; i < N; ++i) {
int add;
int key;
int next;
cin >> add >> key >> next;
nodes[add].val = key;
nodes[add].next = next;
nodes[add].add = add;
}
int head = inihead;
while (head != -1){
result.push_back(nodes[head]);
head = nodes[head].next;
}
N = result.size();
for (int i = 0; i < N/K; ++i) {
reverse(result.begin()+i*K, result.begin()+i*K+K);
}
for (int i = 0; i < result.size() - 1; ++i) {
node a = result[i];
node b = result[i+1];
printf("%05d %d %05d\n", a.add, a.val, b.add);
}
printf("%05d %d -1\n", result[N-1].add, result[N-1].val);
return 0;
} | [
"[email protected]"
] | |
4089224199ad8e190ccc80202d330b7acc27714e | 5a5bde743ddbcfa28dbd71dbd8fe1835010763df | /include/lm/parallelcontext.h | 27b57604674e19284128f9b121a0d7d846641c90 | [
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] | permissive | lightmetrica/lightmetrica-v3 | fb85230c92dac12e754ca570cd54d45b5b6e457c | 70601dbef13a513df032911d47f790791671a8e0 | refs/heads/master | 2021-10-29T08:13:40.140577 | 2021-10-22T10:50:39 | 2021-10-22T10:50:39 | 189,633,321 | 105 | 14 | NOASSERTION | 2021-10-20T14:34:34 | 2019-05-31T17:27:55 | C++ | UTF-8 | C++ | false | false | 884 | h | /*
Lightmetrica - Copyright (c) 2019 Hisanari Otsu
Distributed under MIT license. See LICENSE file for details.
*/
#pragma once
#include "parallel.h"
#include "component.h"
LM_NAMESPACE_BEGIN(LM_NAMESPACE)
LM_NAMESPACE_BEGIN(parallel)
/*!
\addtogroup parallel
@{
*/
/*!
\brief Parallel context.
\rst
You may implement this interface to implement user-specific parallel subsystem.
Each virtual function corresponds to API call with a free function
inside ``parallel`` namespace.
\endrst
*/
class ParallelContext : public Component {
public:
virtual int num_threads() const = 0;
virtual bool main_thread() const = 0;
virtual void foreach(long long numSamples, const ParallelProcessFunc& processFunc, const ProgressUpdateFunc& progressFunc) const = 0;
};
/*!
@}
*/
LM_NAMESPACE_END(parallel)
LM_NAMESPACE_END(LM_NAMESPACE)
| [
"[email protected]"
] | |
b93e120b255075662e98d981b3b725e93f024ec1 | 2dd206685636ce3428e9d3b63ad6d82af2c85612 | /Server/Server.hpp | ea3b0e43c0cd3db0f62063ee89f013982bf1c6c7 | [] | no_license | BurnBirdX7/Messenger | e4b3f809447cb87a807445c00af78643e1aa480a | c8351b2611301a496e52a569d616779dde9157eb | refs/heads/master | 2023-01-29T12:59:10.669354 | 2020-12-16T15:49:02 | 2020-12-16T15:49:02 | 314,810,547 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,544 | hpp | #ifndef ASIOAPPLICATION_SERVER_HPP
#define ASIOAPPLICATION_SERVER_HPP
#include <memory>
#include <map>
#include <set>
#include <functional>
#include <boost/asio.hpp>
#include <boost/asio/ssl.hpp>
#include <Network.hpp>
#include "Context.hpp"
class Connection;
class Server
: public std::enable_shared_from_this<Server>
{
public:
explicit Server(Context& context);
void start();
// TODO: Connection authorization
private:
using tcp = boost::asio::ip::tcp;
using Socket = tcp::socket;
using Acceptor = tcp::acceptor;
using Message = Commons::Network::Message;
using ConnectionPtr = std::shared_ptr<Connection>;
using userid_t = int;
using sessionid_t = int;
using sessionhash_t = std::string;
private:
void onAccept(const boost::system::error_code& ec, Socket s); // meet requirements of MoveAcceptHandler
friend Connection;
sessionid_t authorizeConnection(const ConnectionPtr& connection,
const std::string& login,
const std::string& password);
sessionid_t authorizeConnection(const ConnectionPtr& connection,
sessionid_t sessionId,
sessionhash_t sessionHash);
private:
sessionid_t makeSessionId();
private:
Context& mContext;
Acceptor mAcceptor;
std::map<sessionid_t, ConnectionPtr> mConnections;
std::map<sessionid_t, ConnectionPtr> mAuthorizedConnections;
};
#endif //ASIOAPPLICATION_SERVER_HPP
| [
"[email protected]"
] | |
72a3f264a788bfa9378ff1ce555cc612976f7aea | 5cfc497450d2054b7041559db5acddbd1e4d67e4 | /src/adapter_gb28181.cpp | fb713fd7a45bd0be8c5df133569768cd7299cfd5 | [
"MIT"
] | permissive | charygao/mdfactory | 2e0f97fb1ca3cc1498bce64238ae61c73a7e1888 | 3dbfa2e6acd5390d2ea60a95b04bc63f0b98837e | refs/heads/master | 2022-02-28T04:20:25.250330 | 2019-09-11T06:19:17 | 2019-09-11T06:19:17 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 20,331 | cpp | #include "adapter_gb28181.h"
#include "utility_tool.h"
#include "error_code.h"
#include <boost/format.hpp>
#define LINE_END "\r\n"
#define STATUS_REGISTER_1 "REGISTER@1"
#define STATUS_REGISTER_3 "REGISTER@3"
#define ALGORITHM_MD5 "MD5"
#define ACTION_REGISTER "REGISTER"
#define ACTION_OK "OK"
#define ACTION_UNAUTHORIZED "Unauthorized"
#define PARAM_TAG "tag"
#define PARAM_VIA "Via"
#define PARAM_VIA_POINT "Via@point"
#define PARAM_VIA_VERSION "Via@version"
#define PARAM_VIA_ADDRESS "Via@address"
#define PARAM_FROM "From"
#define PARAM_FROM_SIP "From@sip"
#define PARAM_FROM_TAG "From@tag"
#define PARAM_TO "To"
#define PARAM_TO_SIP "To@sip"
#define PARAM_TO_TAG "To@tag"
#define PARAM_VIA_ADDRESS "Via@address"
#define PARAM_WWW_AUTHENTICATE "WWW-Authenticate"
#define PARAM_CSEQ "CSeq"
#define PARAM_CSEQ_INDEX "CSeq@index"
#define PARAM_CSEQ_ACTION "CSeq@action"
#define PARAM_AUTHENTICATE "Authorization"
#define PARAM_AUTHENTICATE_USERNAME "Authorization@username"
#define PARAM_AUTHENTICATE_REALM "Authorization@realm"
#define PARAM_AUTHENTICATE_NONCE "Authorization@nonce"
#define PARAM_AUTHENTICATE_URI "Authorization@uri"
#define PARAM_AUTHENTICATE_RESPONSE "Authorization@response"
#define PARAM_AUTHENTICATE_ALGORITHM "Authorization@algorithm"
#define PARAM_DATE "Date"
#define PARAM_CALL_ID "Call-ID"
#define PARAM_CONTACT "Contact"
#define PARAM_MAX_FORWARDS "Max-Forwards"
#define PARAM_EXPIRES "Expires"
#define PARAM_CONTENT_LENGTH "Content-Length"
adapter_gb28181::~adapter_gb28181(){
}
void adapter_gb28181::on_read(frame_ptr& p_frame, std::size_t& count, point_type& point, socket_ptr& p_socket, context_ptr& p_context){
info_param_ptr p_param = std::make_shared<info_param>();
p_param->p_frame = std::make_shared<frame_ptr::element_type>(p_frame->begin(), p_frame->begin() + static_cast<int64_t>(count));
if(ES_SUCCESS != decode(p_param, p_param->p_frame)){
return;
}
info_net_proxy_ptr p_proxy;
auto iter = m_proxys.find(p_param->address);
if(m_proxys.end() == iter){
p_proxy = std::make_shared<info_net_proxy>();
p_proxy->p_context = p_context;
p_proxy->p_socket = p_socket;
p_proxy->point = point;
m_proxys.insert(std::make_pair(p_param->address, p_proxy));
}else{
p_proxy = iter->second;
if(p_proxy->point != point){
LOG_WARN("源端端点改变; SIP地址"<<p_param->address<<"; 旧端点:"<<p_proxy->point.address().to_string()<<"; 新端点:"<<point.address().to_string());
p_proxy->point = point;
}
}
p_proxy->params.push_back(p_param);
do_work(p_proxy);
}
int adapter_gb28181::do_work(info_net_proxy_ptr p_info){
while(!p_info->params.empty()){
auto p_param = *p_info->params.begin();
p_info->params.erase(p_info->params.begin());
if(ACTION_REGISTER == p_param->action && "1" == p_param->params[PARAM_CSEQ_INDEX]){
p_info->status = STATUS_REGISTER_1;
std::stringstream tmp_stream;
tmp_stream<<p_param->version<<" "<<401<<" "<<ACTION_UNAUTHORIZED<<LINE_END;
// 回应的To@sip优先Contact,然后From@sip
auto iter = p_param->params.find(PARAM_CONTACT);
if (p_param->params.end() == iter) {
tmp_stream<<"To: <"<< iter->second<<">"<<LINE_END;
}else{
tmp_stream<<"To: <"<< p_param->params[PARAM_FROM_SIP]<<">"<<LINE_END;
}
// 回应的From@sip为请求的To@sip; From@tag为请求的From@tag
tmp_stream<<"From: <"<< p_param->params[PARAM_TO_SIP]<<">";
iter = p_param->params.find(PARAM_FROM_TAG);
if (p_param->params.end() != iter) {
tmp_stream<<";tag="<<iter->second<<LINE_END;
}else{
tmp_stream<<LINE_END;
}
tmp_stream<<"Via: "<<p_param->params[PARAM_VIA_VERSION];
// Via@address需要设置成本地IP和端口
// 直接取socket的本地地址,可能会取到0.0.0.0,所以这里还是取请求的Via中的地址
auto address = p_info->p_socket->local_endpoint().address().to_string();
if("0.0.0.0" == address || "127.0.0.1" == address){
tmp_stream<<" "<<p_param->params[PARAM_VIA_POINT];
}else{
tmp_stream<<" "<<(boost::format("%s:%d") % p_info->p_socket->local_endpoint().address().to_string() % p_info->p_socket->local_endpoint().port()).str();
}
// rport增加端口
if(p_param->params.end() != p_param->params.find("Via@rport")){
tmp_stream<<";rport="<<p_info->p_socket->local_endpoint().port();
}
// branch
iter = p_param->params.find("Via@branch");
if(p_param->params.end() != iter){
tmp_stream<<";branch="<<iter->second;
}
// 增加received,取远端端点
tmp_stream<<";received="<<(boost::format("%s:%d") % p_info->p_socket->local_endpoint().address().to_string() % p_info->p_socket->local_endpoint().port()).str()<<LINE_END;
// WWW-Authenticate realm取项目编号,nonce取随机数
tmp_stream<<"WWW-Authenticate: "<< (boost::format("Digest realm=\"%s\", nonce=\"%s\"")
% m_realm % random_str()).str()<<LINE_END;
tmp_stream<<"CSeq: "<<p_param->params[PARAM_CSEQ_INDEX]<<" "<<p_param->params[PARAM_CSEQ_ACTION]<<LINE_END;
tmp_stream<<"Call-ID: "<<p_param->params[PARAM_CALL_ID]<<LINE_END;
tmp_stream<<"Max-Forwards: 70"<<LINE_END;
tmp_stream<<"Expires: 3600"<<LINE_END;
tmp_stream<<LINE_END;
send_frame(tmp_stream.str(), p_info);
}else if(ACTION_REGISTER == p_param->action && "2" == p_param->params[PARAM_CSEQ_INDEX] && STATUS_REGISTER_1 == p_info->status){
p_info->status = STATUS_REGISTER_3;
auto p_response = std::make_shared<info_param>();
std::stringstream tmp_stream;
tmp_stream<<p_param->version<<" "<<200<<" "<<ACTION_OK<<LINE_END;
// 回应的To@sip优先Contact,然后From@sip
auto iter = p_param->params.find(PARAM_CONTACT);
if (p_param->params.end() == iter) {
tmp_stream<<"To: <"<< iter->second<<">"<<LINE_END;
}else{
tmp_stream<<"To: <"<< p_param->params[PARAM_FROM_SIP]<<">"<<LINE_END;
}
// 回应的From@sip为请求的To@sip; From@tag为请求的From@tag
tmp_stream<<"From: <"<< p_param->params[PARAM_TO_SIP]<<">";
iter = p_param->params.find(PARAM_FROM_TAG);
if (p_param->params.end() != iter) {
tmp_stream<<";tag="<<iter->second<<LINE_END;
}else{
tmp_stream<<LINE_END;
}
tmp_stream<<"Via: "<<p_param->params[PARAM_VIA_VERSION];
// Via@address需要设置成本地IP和端口
// 直接取socket的本地地址,可能会取到0.0.0.0,所以这里还是取请求的Via中的地址
auto address = p_info->p_socket->local_endpoint().address().to_string();
if("0.0.0.0" == address || "127.0.0.1" == address){
tmp_stream<<" "<<p_param->params[PARAM_VIA_POINT];
}else{
tmp_stream<<" "<<(boost::format("%s:%d") % p_info->p_socket->local_endpoint().address().to_string() % p_info->p_socket->local_endpoint().port()).str();
}
// rport增加端口
if(p_param->params.end() != p_param->params.find("Via@rport")){
tmp_stream<<";rport="<<p_info->p_socket->local_endpoint().port();
}
// branch
iter = p_param->params.find("Via@branch");
if(p_param->params.end() != iter){
tmp_stream<<";branch="<<iter->second;
}
// 增加received,取远端端点
tmp_stream<<";received="<<(boost::format("%s:%d") % p_info->p_socket->local_endpoint().address().to_string() % p_info->p_socket->local_endpoint().port()).str()<<LINE_END;
// WWW-Authenticate realm取项目编号,nonce取随机数
tmp_stream<<"WWW-Authenticate: "<< (boost::format("Digest realm=\"%s\", nonce=\"%s\"")
% m_realm % random_str()).str()<<LINE_END;
p_response->params[PARAM_DATE] = ptime_to_param_date(boost::posix_time::second_clock::local_time());
tmp_stream<<"CSeq: "<<p_param->params[PARAM_CSEQ_INDEX]<<" "<<p_param->params[PARAM_CSEQ_ACTION]<<LINE_END;
tmp_stream<<"Call-ID: "<<p_param->params[PARAM_CALL_ID]<<LINE_END;
tmp_stream<<"Max-Forwards: 70"<<LINE_END;
tmp_stream<<"Expires: 3600"<<LINE_END;
tmp_stream<<LINE_END;
send_frame(tmp_stream.str(), p_info);
}
}
return 0;
}
int adapter_gb28181::send_frame(frame_ptr p_frame, info_net_proxy_ptr p_info){
LOG_INFO("发送数据:"<<frame_to_str(p_frame));
p_info->p_socket->async_send_to(boost::asio::buffer(*p_frame, p_frame->size()), p_info->point, [p_frame](const boost::system::error_code& e, const std::size_t& ){
if(e){
LOG_ERROR("发送数据时发生错误:"<<e.message());
}
});
return ES_SUCCESS;
}
int adapter_gb28181::send_frame(const std::string& data, info_net_proxy_ptr p_info){
LOG_INFO("发送数据:"<<data);
auto p_data = std::make_shared<std::string>(data);
p_info->p_socket->async_send_to(boost::asio::buffer(p_data->c_str(), p_data->size()), p_info->point, [p_data](const boost::system::error_code& e, const std::size_t& ){
if(e){
LOG_ERROR("发送数据时发生错误:"<<e.message());
}
});
return ES_SUCCESS;
}
std::string adapter_gb28181::ptime_to_param_date(const boost::posix_time::ptime& time){
if(time.is_not_a_date_time()){
return "";
}
try
{
return boost::posix_time::to_simple_string(time);
}
catch(const std::exception&)
{
}
return "";
}
int adapter_gb28181::decode(info_param_ptr &p_param, frame_ptr &p_frame)
{
if (!p_param)
{
p_param = std::make_shared<info_param>();
}
const char *p_data = reinterpret_cast<const char *>(p_frame->data());
auto p_start = p_data;
auto p_end = p_start + p_frame->size();
bool flag_cmd_init = false;
auto p_line_start = p_start, p_line_end = p_end, p_param_start = p_start, p_param_end = p_end;
while (true)
{
if (!find_line(&p_line_start, &p_line_end, &p_start, p_end))
{
break;
}
if (p_line_start == p_line_end)
{
continue;
}
if (!flag_cmd_init)
{
flag_cmd_init = true;
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到SIP协议动作:" << frame_to_str(p_frame));
return false;
}
p_param->action = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到SIP协议地址:" << frame_to_str(p_frame));
return false;
}
p_param->address = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到SIP协议版本:" << frame_to_str(p_frame));
return false;
}
p_param->version = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
}
else
{
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ':'))
{
LOG_ERROR("找不到键值对分隔符:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
remove_char(&p_line_start, &p_line_end, ' ');
std::string name(p_param_start, p_param_end);
if (PARAM_VIA == name)
{
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到参数[Via@version]:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
p_param->params[PARAM_VIA_VERSION] = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
p_param->params[PARAM_VIA_ADDRESS] = std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start));
// 尝试解析出端点
if(find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ';')){
p_param->params[PARAM_VIA_POINT] = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
}
decode_kv(p_param->params, "Via@", &p_line_start, p_line_end, ';');
}else if (PARAM_FROM == name)
{
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ';'))
{
LOG_ERROR("找不到参数[From@sip]:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
remove_char(&p_param_start, &p_param_end, '<');
remove_char(&p_param_start, &p_param_end, '>');
p_param->params.insert(std::make_pair(PARAM_FROM_SIP, std::string(p_param_start, p_param_end)));
decode_kv(p_param->params, "From@", &p_line_start, p_line_end, ';');
}
else if (PARAM_TO == name)
{
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ';'))
{
LOG_ERROR("找不到参数[To@sip]:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
remove_char(&p_param_start, &p_param_end, '<');
remove_char(&p_param_start, &p_param_end, '>');
p_param->params.insert(std::make_pair(PARAM_TO_SIP, std::string(p_param_start, p_param_end)));
decode_kv(p_param->params, "To@", &p_line_start, p_line_end, ';');
}else if (PARAM_CSEQ == name)
{
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到参数[CSeq@index]:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
remove_char(&p_param_start, &p_param_end, ' ');
p_param->params[PARAM_CSEQ_INDEX] = std::string(p_param_start, p_param_end);
remove_char(&p_line_start, &p_line_end, ' ');
p_param->params[PARAM_CSEQ_ACTION] = std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start));
}else if (PARAM_AUTHENTICATE == name)
{
// 先去掉 Diges
if (!find_param(&p_param_start, &p_param_end, &p_line_start, p_line_end, ' '))
{
LOG_ERROR("找不到参数[Authorization@Diges]:" << std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start)));
return false;
}
decode_kv(p_param->params, "Authorization@", &p_line_start, p_line_end, ' ');
}else if (PARAM_CONTACT == name)
{
remove_char(&p_line_start, &p_line_end, '<');
remove_char(&p_line_start, &p_line_end, '>');
p_param->params[name] = std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start));
}else{
p_param->params[name] = std::string(p_line_start, static_cast<std::size_t>(p_line_end - p_line_start));
}
}
}
return ES_SUCCESS;
}
bool adapter_gb28181::find_line(const char **pp_line_start, const char **pp_line_end, const char **pp_start, const char *p_end)
{
if (nullptr == pp_line_start || nullptr == pp_line_end || nullptr == pp_start || nullptr == p_end)
{
return false;
}
*pp_line_start = *pp_start;
for (auto p = *pp_line_start; p < p_end; ++p)
{
if ('\n' == *p)
{
if (p > *pp_line_start && '\r' == *(p - 1))
{
*pp_line_end = p - 1;
}
else
{
*pp_line_end = p;
}
*pp_start = p + 1;
return true;
}
}
if (*pp_start < p_end)
{
*pp_line_start = *pp_start;
*pp_line_end = p_end;
if ('\n' == *(*pp_line_end - 1))
{
--(*pp_line_end);
}
if (*pp_line_start < *pp_line_end && '\r' == *(*pp_line_end - 1))
{
--(*pp_line_end);
}
return true;
}
return false;
}
bool adapter_gb28181::find_param(const char **pp_param_start, const char **pp_param_end, const char **pp_start, const char *p_end, const char s)
{
if (nullptr == pp_param_start || nullptr == pp_param_end || nullptr == pp_start || nullptr == p_end)
{
return false;
}
*pp_param_start = *pp_start;
for (auto p = *pp_param_start; p < p_end; ++p)
{
if (*p == s)
{
*pp_param_end = p;
*pp_start = p + 1;
return true;
}
}
if (*pp_start < p_end)
{
*pp_param_start = *pp_start;
*pp_param_end = p_end;
*pp_start = p_end;
return true;
}
return false;
}
bool adapter_gb28181::remove_char(const char **pp_start, const char **pp_end, const char s)
{
if (nullptr == pp_start || nullptr == pp_end)
{
return false;
}
if (*pp_start == *pp_end)
{
return true;
}
for (auto p = *pp_start; p < *pp_end; ++p)
{
if (s != *p)
{
*pp_start = p;
break;
}
}
for (auto p = *pp_end - 1; p >= *pp_start; --p)
{
if (s != *p)
{
*pp_end = p + 1;
break;
}
}
return true;
}
bool adapter_gb28181::remove_rn(const char **pp_start, const char **pp_end)
{
if (nullptr == pp_start || nullptr == pp_end)
{
return false;
}
if (*pp_start == *pp_end)
{
return true;
}
for (auto p = *(pp_end - 1); p >= *pp_start; --p)
{
if ('\n' != *p && '\r' != *p)
{
*pp_end = p + 1;
break;
}
}
return true;
}
bool adapter_gb28181::decode_kv(std::map<std::string, std::string> &kv, const std::string &tag, const char **pp_line_start, const char *p_line_end, const char s)
{
const char* p_param_start = nullptr, *p_param_end = nullptr, *p_kv_start = nullptr, *p_kv_end = nullptr;
while (true)
{
if (!find_param(&p_param_start, &p_param_end, pp_line_start, p_line_end, s))
{
break;
}
if (!find_param(&p_kv_start, &p_kv_end, &p_param_start, p_param_end, '='))
{
remove_char(&p_kv_start, &p_kv_end, ' ');
kv[tag + std::string(p_kv_start, static_cast<std::size_t>(p_kv_end - p_kv_start))] = std::string();
}else{
remove_char(&p_kv_start, &p_kv_end, ' ');
remove_char(&p_param_start, &p_param_end, ' ');
remove_char(&p_param_start, &p_param_end, '\"');
kv[tag + std::string(p_kv_start, static_cast<std::size_t>(p_kv_end - p_kv_start))] = std::string(p_param_start, static_cast<std::size_t>(p_param_end - p_param_start));
}
}
return true;
}
std::string adapter_gb28181::random_str(){
return "654321";
}
| [
"[email protected]"
] | |
45d5ad4cc246164da02b85cc51a8acc7fd8e4a91 | 267a3c3b43bf8e0042391c322c7930cb83a5903c | /dziedziczenie3_kontenery_Bold/Containers.cpp | ddb1656fae2beebffa50e95d1a71f8a039d520f5 | [] | no_license | pierwiastekzminusjeden/cpp_lab_4sem | 096d2b2b9a0624d7e762260ad83925b531594d7f | ad0d388f7cb6463ded4c63e5a3ceca782577e307 | refs/heads/master | 2021-03-30T17:50:13.479514 | 2018-07-11T18:40:45 | 2018-07-11T18:40:45 | 122,998,380 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 45 | cpp | #include <iostream>
#include "Containers.h"
| [
"[email protected]"
] | |
62b8c33e780d838e918ccb63dfc1053f4f578b4e | e4b1522920cc6deea23e3c5a0cde8fe2ad2c8531 | /2020-09-14/06-maxim3.cc | 20a4778411e248ea3d251f8192c0289a843e7f68 | [] | no_license | jordi-petit/ap1-codis-2020-2021 | 95ba1775d11c18fc3a2b18b7fd1e17a5eff31f89 | 014e1d7bc4fe34b7dd8702ef91f557387e22ee24 | refs/heads/master | 2023-08-14T04:19:05.287684 | 2021-09-20T07:39:49 | 2021-09-20T07:39:49 | 294,364,301 | 2 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 406 | cc | // Programa que llegeix tres nombres i escriu el seu màxim
#include <iostream>
using namespace std;
int main()
{
int a, b, c;
cin >> a >> b >> c;
int m;
if (a >= b) {
if (a >= c) {
m = a;
} else {
m = c;
}
} else {
if (b >= c) {
m = b;
} else {
m = c;
}
}
cout << m << endl;
}
| [
"[email protected]"
] | |
eb530d427d247cbed236550b6102a69be41dab8f | a45e034d557f3c7ec631a693b1141fe02a07d0dc | /cpp/margin_metric.hpp | 278f0c0578989ddb74711d5a514928a264d2bc5e | [
"MIT"
] | permissive | GaoSida/Neural-SampleRank | 7ef785de60835cfb324873ce9aef37f5c960ec38 | 8b4a7a40cc34bff608f19d3f7eb64bda76669c5b | refs/heads/main | 2023-01-13T03:42:20.263862 | 2020-11-16T07:48:51 | 2020-11-16T07:48:51 | 301,271,776 | 3 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,070 | hpp | // Mirror nsr.graph.margin_metric
#include "factor_graph.hpp"
#include <vector>
#include <unordered_set>
class MarginMetric {
public:
std::vector<int> ground_truth;
MarginMetric(std::vector<int>& ground_truth) {
this->ground_truth = ground_truth;
}
virtual float compute_metric(std::vector<int>& label_sample,
std::unordered_set<int>& ground_truth_diff_set) = 0;
virtual float incremental_compute_metric(std::vector<LabelNode*>& sample,
float prev_metric, std::vector<int>& prev_sample,
std::vector<int>& diff_indicies,
std::unordered_set<int>& ground_truth_diff_set) = 0;
};
class NegHammingDistance : public MarginMetric {
public:
NegHammingDistance(std::vector<int>& ground_truth) :
MarginMetric(ground_truth) {}
float compute_metric(std::vector<int>& label_sample,
std::unordered_set<int>& ground_truth_diff_set) {
float metric = 0;
ground_truth_diff_set.clear();
for (int i = 0; i < label_sample.size(); i++) {
// Padded ground truth has label value 1 (PyTorch convention)
if (ground_truth[i] != label_sample[i] && ground_truth[i] != 1) {
metric -= 1.0;
ground_truth_diff_set.insert(i);
}
}
return metric;
}
/* In addition to the Python interface, maintain each sample's diff compared
with ground truth.
*/
float incremental_compute_metric(std::vector<LabelNode*>& sample,
float prev_metric, std::vector<int>& prev_sample,
std::vector<int>& diff_indicies,
std::unordered_set<int>& ground_truth_diff_set) {
float current_metric = prev_metric;
for (int i : diff_indicies) {
bool prev_correct = (prev_sample[i] == ground_truth[i]);
bool current_correct = (sample[i]->current_value == ground_truth[i]);
if (prev_correct != current_correct) {
if (prev_correct) {
current_metric -= 1;
ground_truth_diff_set.insert(i);
}
else {
current_metric += 1;
ground_truth_diff_set.erase(i);
}
}
}
return current_metric;
}
};
| [
"[email protected]"
] | |
67629d1816aef02660d2b4c88f1797c813b0a1ce | 82f153568b4752c3c1a29c9aa1a650e3e2a39d3a | /Trace/ImGuiRendering.h | 508f9e669d7d584efa37aebc0839a722055ad3d3 | [] | no_license | lujiawen/LOL-Trace | 5aad96d105289bd75783203eceb38f4f1ee7950c | 02283b38e3b387c3f611fab6ed5681da3564467d | refs/heads/master | 2023-01-09T10:04:54.981759 | 2020-11-16T09:11:42 | 2020-11-16T09:11:42 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,437 | h | #pragma once
#include "Trace.h"
#include "ImGui/imgui.h"
#include "ImGui/imgui_impl_dx9.h"
#include "ImGui/imgui_impl_win32.h"
#include <string>
#include <map>
class ImGuiRendering
{
private:
DWORD _D3DRS_COLORWRITEENABLE;
ImDrawList* _DrawList;
bool _IsSetup = false;
IDirect3DDevice9* _Device;
ImGuiRendering() {};
public:
map<string, LPDIRECT3DTEXTURE9> Texture;
ImFont* Font14F;
ImFont* Font16F;
static auto GetIns()
{
static auto _Draw = new ImGuiRendering();
return _Draw;
}
void Setup(HWND hWnd, LPDIRECT3DDEVICE9 device);
void Create();
void Clear();
void PreRender();
void EndRender();
void DrawString(ImFont* font, float x, float y, ImU32 color, const char* message, ...);
void DrawString(float x, float y, ImU32 color, const char* message, ...);
void DrawBox(float x, float y, float w, float h, ImU32 clr, float width);
void DrawBox(ImVec4 scr, ImU32 clr, float width);
void DrawBox(Vector leftUpCorn, Vector rightDownCorn, ImU32 clr, float width);
void DrawLine(float x1, float y1, float x2, float y2, ImU32 clr, float thickness);
void DrawCircle(float x, float y, float rad, ImU32 clr, float thickness);
void DrawBlod(float x, float y, float w, float Blod, ImU32 clr);
void DrawCircle3D(Vector vPos, float flPoints, float flRadius, ImColor clrColor, float flThickness = 2.f);
LPDIRECT3DTEXTURE9 CreateTexture(vector<BYTE> &p);
LPDIRECT3DTEXTURE9 GetTexture(string name);
};
| [
"[email protected]"
] | |
bcff5f4fbb7cdcd2880382bfb9584cc276a5f07e | dddc171e9cb1bf0b1bb36cb8c099b1033e0d68cf | /Combat.cpp | 00a8786d200960c897d4e6ee4f1cf04089adb85f | [] | no_license | IVIara/PokeSim | efbd47abe85699b43bf886b1ac2ca3f13b167b10 | e36245d26edad25ccca02eec3d939c8ca1e82292 | refs/heads/master | 2020-04-02T12:54:47.403835 | 2018-10-27T16:25:06 | 2018-10-27T16:25:06 | 154,457,950 | 0 | 0 | null | null | null | null | ISO-8859-1 | C++ | false | false | 6,323 | cpp | #include "Combat.h"
#include "Pokemon.h"
#include <iostream>
#include <string>
using namespace std;
double elements[18][18] =
{
/*NORMAL*/ {1,1,1,1,1,0.5,1,0,0.5,1,1,1,1,1,1,1,1,1},
/*COMBAT*/ {2,1,0.5,0.5,1,2,0.5,0,2,1,1,1,1,0.5,2,1,2,0.5},
/*VOL*/ {1,2,1,1,1,0.5,2,1,0.5,1,1,2,0.5,1,1,1,1,1},
/*POISON*/ {1,1,1,0.5,0.5,0.5,1,0.5,0,1,1,2,1,1,1,1,1,2},
/*SOL*/ {1,1,0,2,1,2,0.5,1,2,2,1,0.5,2,1,1,1,1,1},
/*ROCHE*/ {1,0.5,2,1,0.5,1,2,1,0.5,2,1,1,1,1,2,1,1,1},
/*INSECT*/ {1,0.5,0.5,0.5,1,1,1,0.5,0.5,0.5,1,2,1,2,1,1,2,0.5},
/*SPECTRE*/ {0,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,0.5,1},
/*ACIER*/ {1,1,1,1,1,2,1,1,0.5,0.5,0.5,1,0.5,1,2,1,1,2},
/*FEU*/ {1,1,1,1,1,0.5,2,1,2,0.5,0.5,2,1,1,2,0.5,1,1},
/*EAU*/ {1,1,1,1,2,2,1,1,1,2,0.5,0.5,1,1,1,0.5,1,1},
/*PLANTE*/ {1,1,0.5,0.5,2,2,0.5,1,0.5,0.5,2,0.5,1,1,1,0.5,1,1},
/*ELECTR*/ {1,1,2,1,0,1,1,1,1,1,2,0.5,0.5,1,1,0.5,1,1},
/*PSY*/ {1,2,1,2,1,1,1,1,0.5,1,1,1,1,0.5,1,1,0,1},
/*GLACE*/ {1,1,2,1,2,1,1,1,0.5,0.5,0.5,2,1,1,0.5,2,1,1},
/*DRAGON*/ {1,1,1,1,1,1,1,1,0.5,1,1,1,1,1,1,2,1,0},
/*TENEBRE*/ {1,0.5,1,1,1,1,1,2,1,1,1,1,1,2,1,1,0.5,0.5},
/*FEE*/ {1,2,1,0.5,1,1,1,1,0.5,0.5,1,1,1,1,1,2,2,1}
};
Combat::Combat(Dresseur a,Dresseur b) : m_att(a), m_def(b)
{
}
void Combat::affiche()
{
int vieATT(0);
int vieDEF(0);
//int Jexp(0);
while(m_att.getPokemon(0).getPV()>0 && m_def.getPokemon(0).getPV()>0)
{
for(int i=0; i<((120-(int)m_def.getPokemon(0).getName().size())/9)+1; i++)
{
cout << '\t';
}
cout << m_def.getPokemon(0).getName() << endl;
for(int i=0; i<13; i++)
{
cout << '\t';
}
vieDEF= ((m_def.getPokemon(0).getPV()/m_def.getPokemon(0).getMaxPV())*10);
cout << "pv : ";
for(int i=0; i<vieDEF; i++)
{
cout << "=";
}
for(int i=0; i<-(vieDEF-10); i++)
{
cout << "-";
}
cout << endl;
cout << m_att.getPokemon(0).getName() << endl;
vieATT= ((m_att.getPokemon(0).getPV()/m_att.getPokemon(0).getMaxPV())*10);
for(int i=0; i<vieATT; i++)
{
cout << "=";
}
for(int i=0; i<-(vieATT-10); i++)
{
cout << "-";
}
cout << endl;
cout << "pv :" << m_att.getPokemon(0).getPV() << "/" << m_att.getPokemon(0).getMaxPV() << endl;
// Jexp = m_att.getPokemon(0).getExp()*10/m_att.getPokemon(0).getNextLevelExpReq();
// for(int i=0;i<Jexp; i++)
// {
// cout << "=";
// }
// for(int i=0;i<-Jexp+10;i++)
// {
// cout << "-";
// }
// cout << endl;
int choix(0);
cout << "Attaque | Objets" << endl;
do
{
cin >> choix;
}
while(choix>2 || choix<1);
if(choix==2)
{
if (!m_att.objets())
{
attaque();
}
}
else
{
attaque();
}
turn();
cout << endl << "------------------------------------------------------------------------------------------------------------------" << endl << endl;
}
fin();
}
void Combat::attaque()
{
int choix(0);
do
{
for(int i=0; i<4; i++)
{
if(i<m_att.getPokemon(0).getNbCT())
{
cout << m_att.getPokemon(0).getCT(i).getNom() << "(" << m_att.getPokemon(0).getCT(i).getPP() << ")" <<'\t' ;
}
else
{
cout << "vide" << '\t';
}
}
cout << endl;
cin >> choix;
}
while(choix<1 || choix > m_att.getPokemon(0).getNbCT());
if (m_att.getPokemon(0).getCT(choix-1).getPP()>0)
{
m_att.getPokemon(0).usePP(choix-1);
int dmg(1);
double stab(1);
double ele = elements[m_att.getPokemon(0).getCT(choix-1).getType().Getm_nbtype()][m_def.getPokemon(0).getType().Getm_nbtype()];
int pow = m_att.getPokemon(0).getCT(choix-1).getPower();
if(m_att.getPokemon(0).getType().Getm_nbtype() == m_att.getPokemon(0).getCT(choix-1).getType().Getm_nbtype())
{
stab = 1.5;
}
dmg = (((((2*m_att.getPokemon(0).getNiveau())/5)*pow*m_att.getPokemon(0).getAtt()/m_def.getPokemon(0).getDef())/50)+2)*stab*ele;
m_def.getPokemon(0).recevoirDegat(dmg);
cout << m_att.getPokemon(0).getName() << " utilise " << m_att.getPokemon(0).getCT(choix-1).getNom() << "!" << endl;
if(ele>1)
{
cout << "C'est super efficace !" << endl;
}
else if (ele==0)
{
cout << m_def.getPokemon(0).getName() << " n'est pas affecté !" << endl;
}
else if (ele<1)
{
cout << "Ce n'est pas tres efficace..." << endl;
}
}
else
{
cout << "Pas assez de PP" << endl;
}
}
void Combat::turn()
{
Dresseur c;
c = m_att;
m_att = m_def;
m_def = c;
}
void Combat::fin()
{
if(m_att.getPokemon(0).estVivant())
{
cout << endl<< endl<<endl;
cout << m_def.getPokemon(0).getName() << " est K.O !" << endl;
cout << m_att.getName() << " a vaincu " << m_def.getName() << endl;
cout << m_att.getPokemon(0).getName() << " gagne " << m_def.getPokemon(0).getExpOnKill()*m_def.getPokemon(0).getNiveau()/7 << "exp !" << endl;
m_att.getPokemon(0).gainExp(m_def.getPokemon(0).getExpOnKill()*m_def.getPokemon(0).getNiveau()/7);
}
else
{
cout << endl<< endl<<endl;
cout << m_att.getPokemon(0).getName() << " est K.O !" << endl;
cout << m_def.getName() << " a vaincu " << m_att.getName() << endl;
cout << m_def.getPokemon(0).getName() << " gagne " << m_att.getPokemon(0).getExpOnKill()*m_att.getPokemon(0).getNiveau()/7 << "exp !" << endl;
m_def.getPokemon(0).gainExp(m_att.getPokemon(0).getExpOnKill()*m_att.getPokemon(0).getNiveau()/7);
}
//m_att.savePokemon();
}
| [
"[email protected]"
] | |
ca00aea57ea0a09d867726733ce180ac98f48adb | 613648e67a71f02bc0806b9a27ae99fced735f7f | /Laporan 8 String/uji coba gets.cpp | d04fe34eb58be048dc8e3b59246bf608591ce2b7 | [] | no_license | Dwirinas/Pemrograman-Terstruktur | c85c5379032b4f5fa39af985c551ef15eba11189 | 401f83aba45884c14105d9144687549dd3b2fdf8 | refs/heads/master | 2020-09-10T05:45:34.837773 | 2019-11-14T10:09:04 | 2019-11-14T10:09:04 | 221,663,527 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 240 | cpp | #include <stdio.h>
#define MAKS 5
main(){
char kar = 'A';
char nama[MAKS];
printf("Karakternya = %c\n", kar);
printf("Masukkan nama Anda : ");
gets(nama);
printf("\nNama Anda = %s\n", nama);
printf("Karakternya = %c\n", kar);
}
| [
"[email protected]"
] | |
ca65df884094c57f0f3a218cb32606557b54f7ef | 5376fcdff458e85c49299274185b724ae2438b69 | /src/agora_edu_sdk/base/facilities/tools/audio_utils.h | 5d1b4692ac706c91384ab910a9d3c1701d4b0002 | [] | no_license | pengdu/AgoraDualTeacher | aabf9aae7a1a42a1f64ecfeae56fbcf61bed8319 | 4da68749f638a843053a57d199450c798dd3f286 | refs/heads/master | 2023-07-31T14:25:52.797376 | 2021-09-22T09:51:49 | 2021-09-22T09:51:49 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 642 | h | // Agora RTC/MEDIA SDK
//
// Created by Qingyou Pan in 2020-03.
// Copyright (c) 2020 Agora.io. All rights reserved.
//
#pragma once
namespace webrtc {
class AudioFrame;
}
namespace agora {
namespace rtc {
enum class AudioFormatErrorCode {
ERR_OK,
ERR_CHANNEL,
ERR_BYTES_PER_SAMPLE,
ERR_SAMPLES_PER_CHANNEL,
ERR_SAMPLE_RATE
};
AudioFormatErrorCode audio_format_checker(const int samples_per_channel, const int bytes_per_sample,
const int number_of_channels, const int sample_rate);
void reset_audio_frame(webrtc::AudioFrame* audio_frame);
} // namespace rtc
} // namespace agora
| [
"[email protected]"
] | |
2d127d42c775bfbe89d6fde25098652da12938f8 | 02b715831737eb94df84910677f6917aa04fa312 | /EIN-SOF/P R O E K T I/PROEKTI C++/Proekt 3/piramida.h | d676633b677ffb5c2a388bb46819e6ff4f426b39 | [] | no_license | DoozyX/EIN-SOF | 05b433e178fbda6fb63e0d61387684158913de1d | 5de0bd42906f9878557d489b617824fe80c4b23b | refs/heads/master | 2021-01-01T18:25:14.240394 | 2017-11-18T12:54:16 | 2017-11-18T12:54:16 | 98,330,930 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 313 | h | //programa piramida.h so osnova kvadrat
//class piramida
#ifndef PIRAMIDA_H
#define PIRAMIDA_H
#include "troDimenzionalni.h"
class Piramida:public TroDimenzionalni{
public:
Piramida(double=1,double=1);
virtual double presmetajPlostina();
virtual double presmetajVolumen();
virtual void print();
};
#endif | [
"[email protected]"
] | |
92932d185778651e235498b73c8422eeee65efe7 | 5ec06dab1409d790496ce082dacb321392b32fe9 | /clients/cpp-qt5-qhttpengine-server/generated/server/src/models/OAIComDayCqDamCoreImplServletHealthCheckServletProperties.cpp | 060b8788874b23f6f6ca610abd3d2d091c3045b0 | [
"MIT",
"Apache-2.0"
] | permissive | shinesolutions/swagger-aem-osgi | e9d2385f44bee70e5bbdc0d577e99a9f2525266f | c2f6e076971d2592c1cbd3f70695c679e807396b | refs/heads/master | 2022-10-29T13:07:40.422092 | 2021-04-09T07:46:03 | 2021-04-09T07:46:03 | 190,217,155 | 3 | 3 | Apache-2.0 | 2022-10-05T03:26:20 | 2019-06-04T14:23:28 | null | UTF-8 | C++ | false | false | 3,661 | cpp | /**
* Adobe Experience Manager OSGI config (AEM) API
* Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API
*
* OpenAPI spec version: 1.0.0-pre.0
* Contact: [email protected]
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).
* https://openapi-generator.tech
* Do not edit the class manually.
*/
#include "OAIComDayCqDamCoreImplServletHealthCheckServletProperties.h"
#include "OAIHelpers.h"
#include <QJsonDocument>
#include <QJsonArray>
#include <QObject>
#include <QDebug>
namespace OpenAPI {
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::OAIComDayCqDamCoreImplServletHealthCheckServletProperties(QString json) {
this->fromJson(json);
}
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::OAIComDayCqDamCoreImplServletHealthCheckServletProperties() {
this->init();
}
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::~OAIComDayCqDamCoreImplServletHealthCheckServletProperties() {
}
void
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::init() {
m_cq_dam_sync_workflow_id_isSet = false;
m_cq_dam_sync_folder_types_isSet = false;
}
void
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::fromJson(QString jsonString) {
QByteArray array (jsonString.toStdString().c_str());
QJsonDocument doc = QJsonDocument::fromJson(array);
QJsonObject jsonObject = doc.object();
this->fromJsonObject(jsonObject);
}
void
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::fromJsonObject(QJsonObject json) {
::OpenAPI::fromJsonValue(cq_dam_sync_workflow_id, json[QString("cq.dam.sync.workflow.id")]);
::OpenAPI::fromJsonValue(cq_dam_sync_folder_types, json[QString("cq.dam.sync.folder.types")]);
}
QString
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::asJson () const {
QJsonObject obj = this->asJsonObject();
QJsonDocument doc(obj);
QByteArray bytes = doc.toJson();
return QString(bytes);
}
QJsonObject
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::asJsonObject() const {
QJsonObject obj;
if(cq_dam_sync_workflow_id.isSet()){
obj.insert(QString("cq.dam.sync.workflow.id"), ::OpenAPI::toJsonValue(cq_dam_sync_workflow_id));
}
if(cq_dam_sync_folder_types.isSet()){
obj.insert(QString("cq.dam.sync.folder.types"), ::OpenAPI::toJsonValue(cq_dam_sync_folder_types));
}
return obj;
}
OAIConfigNodePropertyString
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::getCqDamSyncWorkflowId() const {
return cq_dam_sync_workflow_id;
}
void
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::setCqDamSyncWorkflowId(const OAIConfigNodePropertyString &cq_dam_sync_workflow_id) {
this->cq_dam_sync_workflow_id = cq_dam_sync_workflow_id;
this->m_cq_dam_sync_workflow_id_isSet = true;
}
OAIConfigNodePropertyArray
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::getCqDamSyncFolderTypes() const {
return cq_dam_sync_folder_types;
}
void
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::setCqDamSyncFolderTypes(const OAIConfigNodePropertyArray &cq_dam_sync_folder_types) {
this->cq_dam_sync_folder_types = cq_dam_sync_folder_types;
this->m_cq_dam_sync_folder_types_isSet = true;
}
bool
OAIComDayCqDamCoreImplServletHealthCheckServletProperties::isSet() const {
bool isObjectUpdated = false;
do{
if(cq_dam_sync_workflow_id.isSet()){ isObjectUpdated = true; break;}
if(cq_dam_sync_folder_types.isSet()){ isObjectUpdated = true; break;}
}while(false);
return isObjectUpdated;
}
}
| [
"[email protected]"
] | |
f9287ceffdd4f3e7b9b08775c732f2fb8ad43f22 | 47ecf4d055ae867105d8b63c5ddaf7b5a31fe2a4 | /src/Dice.hpp | 39b3b1e9d075c0a28e3b8b9ac8ac8f7db88c2dc4 | [] | no_license | Mokon/simulator | 1566c724ced701d73e31e86dbfc055961281b46e | 504c7602cddc154793e01bbc863affdb154873db | refs/heads/master | 2021-01-23T06:54:26.645081 | 2017-04-01T12:25:51 | 2017-04-01T12:25:51 | 86,407,553 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 693 | hpp | /* Copyright (C) 2017 David 'Mokon' Bond, All Rights Reserved */
#pragma once
#include <random>
#include <queue>
class Dice final
{
public:
Dice(unsigned int sides = 6, unsigned int start = 1);
~Dice() = default;
Dice(const Dice&) = delete;
Dice& operator=(const Dice&) = delete;
Dice(Dice&&) = delete;
Dice& operator=(Dice&&) = delete;
unsigned int roll() const;
std::priority_queue<unsigned int> roll(unsigned long times) const;
private:
std::random_device randomDevice;
mutable std::mt19937 generator;
mutable std::uniform_int_distribution<unsigned int> distribution;
};
| [
"[email protected]"
] | |
a4ae3532e9165bf6a28ad0963a1a8d9380a24030 | b39d3a37f92ba59160e1be9894eea5ce3dad5b6a | /Sum of squares of first 'n' numbers.cpp | d7556dd8aa8d0228537568982e50b61ee1112252 | [] | no_license | AryanshMahato/cpp-Important-Projects | e8ee7a51f740f010ad0860f3b7932c5f98647386 | 0ea6e53b47043e363e54bb36db84be9eeabc81d4 | refs/heads/master | 2020-05-07T14:47:38.738320 | 2019-06-01T14:01:31 | 2019-06-01T14:01:31 | 180,609,353 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 240 | cpp | #include<iostream>
#include<cmath>
using namespace std;
int main()
{
int n, sum, a;
cout<<"Enter the number of power: ";
cin>>n;
a=0;
while(a<=n)
{
sum=pow(2,a)+sum;
a++;
}
cout<<sum;
return 0;
}
| [
"[email protected]"
] | |
eaf4af38475be8ea4de671e46e289f8eb6ed0104 | 1434a4b11d60368b67d3e7341cb052e6d96ce3fc | /assign3/src/SceneObject.cpp | bb25888b964913ccc299bc86cd5c5461440c89b3 | [] | no_license | iainnash/yetanother-raytracer | 3d94da0d72a86fa1cca02f1850559955cc095379 | 068c13c9e60d1c6dedb26e1b1145405d7ccf02df | refs/heads/master | 2021-01-18T13:18:56.563694 | 2018-03-07T06:57:22 | 2018-03-07T06:57:22 | 47,189,451 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 162 | cpp | //
// SceneObject.cpp
// assign3
//
// Created by Iain Nash on 11/28/15.
// Copyright © 2015 Iain Nash. All rights reserved.
//
#include "SceneObject.hpp"
| [
"[email protected]"
] | |
a8d3e9c36ae09338439046f1f722c30b6e6d0603 | 5c6d9585b7620ef39cf9a203e7b709125f1aea3d | /ACPC10A.cpp | b8fd055138603e080fba08d5ad8c4014157d6f1e | [] | no_license | samyhaff/SPOJ | 3c138dfbdb9a8ecb11de04ff476a2118c5fdbd3c | e5304bfaf78f3d4431998da4b31137f3dca18556 | refs/heads/master | 2023-06-30T08:15:05.431715 | 2021-08-03T08:49:38 | 2021-08-03T08:49:38 | 387,133,945 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 352 | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int a, b, c;
cin >> a >> b >> c;
while (!(!a && !b && !c))
{
if (b - a == c - b) {
cout << "AP " << 2 * c - b << endl;
}
else {
cout << "GP " << c * c / b << endl;
}
cin >> a >> b >> c;
}
return 0;
}
| [
"[email protected]"
] | |
f95e75adbd011541bc594acb2037bbcf26621435 | 94303aaf3384184608723be26121f1ea76fa75cf | /IcrXXXX/IcrXXXXDlg.h | 6803e8849ea14ff3c4565fe7a7ad895fcf225fc3 | [] | no_license | insys-projects/ICR | d8cb40e36764f10346b862c24188aab5757d07e1 | ef2357a8b41aba3ecf41a3b0d4afed5ece5ad3f4 | refs/heads/master | 2021-08-15T21:49:55.375551 | 2020-08-24T15:35:19 | 2020-08-24T15:35:19 | 215,523,343 | 0 | 0 | null | null | null | null | WINDOWS-1251 | C++ | false | false | 911 | h | #ifndef ICRXXXXDLG_H
#define ICRXXXXDLG_H
#include <QtGui/QMainWindow>
#include "ui_IcrXXXXDlg.h"
class IcrXXXXDlg : public QDialog, public Ui::IcrXXXXDlgClass
{
Q_OBJECT
QList<TIcrParam *> m_lpIcrParams;
QList<TGroup *> m_lpGroup;
QMultiMap<QString, ParamTreeItem *> m_mpGroupItems;
public:
IcrXXXXDlg(const IcrParamList &lIcrParams, QList<TGroup *> &lpGroup, QWidget *parent = 0, Qt::WFlags flags = 0);
~IcrXXXXDlg();
IcrParamList GetIcrParams();
QList<TGroup *> GetGroups();
private:
void FillTree();
void SetIcrParams(const IcrParamList &lIcrParams);
protected:
virtual void showEvent(QShowEvent * pEvent);
private slots:
// Щелчок правой кнопкой
void slotItemRightClicked();
// Изменить цвет группы
void slotColorGroup();
// Изменить шрифт
void slotFontChange();
};
#endif // ICRXXXXDLG_H
| [
"Kozlov@a8a5cdc4-a91d-e646-800f-a4054892b1cc"
] | Kozlov@a8a5cdc4-a91d-e646-800f-a4054892b1cc |
e2e1c20864c1bfd941ef3f9b403f2f5aabfecb00 | 44383fb0ac6070f67386cd105da373ee8a6d4cea | /src/video/ffmpeg/threaded_decoder.cc | 11588373d8472b884c773f175d6a33d62da31515 | [
"Apache-2.0"
] | permissive | bityangke/decord | 1b657c8d55b398d5a644629b5b056b342c428da1 | e02180c844b6c29fd3fb99ad118307c419e86bcd | refs/heads/master | 2020-05-18T23:23:59.390292 | 2019-05-01T18:34:03 | 2019-05-01T18:34:03 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 4,859 | cc | /*!
* Copyright (c) 2019 by Contributors if not otherwise specified
* \file threaded_decoder.cc
* \brief FFmpeg threaded decoder Impl
*/
#include "threaded_decoder.h"
#include <dmlc/logging.h>
namespace decord {
namespace ffmpeg {
FFMPEGThreadedDecoder::FFMPEGThreadedDecoder() : frame_count_(0), draining_(false), run_(false){
// LOG(INFO) << "ThreadedDecoder ctor: " << run_.load();
// Start();
}
void FFMPEGThreadedDecoder::SetCodecContext(AVCodecContext *dec_ctx, int width, int height) {
// LOG(INFO) << "Enter setcontext";
bool running = run_.load();
Clear();
dec_ctx_.reset(dec_ctx);
// LOG(INFO) << dec_ctx->width << " x " << dec_ctx->height << " : " << dec_ctx->time_base.num << " , " << dec_ctx->time_base.den;
// std::string descr = "scale=320:240";
char descr[128];
std::snprintf(descr, sizeof(descr),
"scale=%d:%d", width, height);
filter_graph_ = FFMPEGFilterGraphPtr(new FFMPEGFilterGraph(descr, dec_ctx_.get()));
if (running) {
Start();
}
}
void FFMPEGThreadedDecoder::Start() {
if (!run_.load()) {
pkt_queue_.reset(new PacketQueue());
frame_queue_.reset(new FrameQueue());
avcodec_flush_buffers(dec_ctx_.get());
run_.store(true);
auto t = std::thread(&FFMPEGThreadedDecoder::WorkerThread, this);
std::swap(t_, t);
}
}
void FFMPEGThreadedDecoder::Stop() {
if (run_.load()) {
pkt_queue_->SignalForKill();
run_.store(false);
frame_queue_->SignalForKill();
}
if (t_.joinable()) {
// LOG(INFO) << "joining";
t_.join();
}
}
void FFMPEGThreadedDecoder::Clear() {
Stop();
frame_count_.store(0);
draining_.store(false);
}
void FFMPEGThreadedDecoder::Push(AVPacketPtr pkt) {
CHECK(run_.load());
if (!pkt) {
CHECK(!draining_.load()) << "Start draining twice...";
draining_.store(true);
}
pkt_queue_->Push(pkt);
++frame_count_;
// LOG(INFO)<< "frame push: " << frame_count_;
// LOG(INFO) << "Pushed pkt to pkt_queue";
}
bool FFMPEGThreadedDecoder::Pop(AVFramePtr *frame) {
// Pop is blocking operation
// unblock and return false if queue has been destroyed.
if (!frame_count_.load() && !draining_.load()) {
return false;
}
bool ret = frame_queue_->Pop(frame);
if (ret){
--frame_count_;
}
return (ret && (*frame));
}
FFMPEGThreadedDecoder::~FFMPEGThreadedDecoder() {
Stop();
}
void FFMPEGThreadedDecoder::WorkerThread() {
while (run_.load()) {
// CHECK(filter_graph_) << "FilterGraph not initialized.";
if (!filter_graph_) return;
AVPacketPtr pkt;
int got_picture;
bool ret = pkt_queue_->Pop(&pkt);
if (!ret) {
return;
}
AVFramePtr frame = AVFramePool::Get()->Acquire();
AVFramePtr out_frame = AVFramePool::Get()->Acquire();
AVFrame *out_frame_p = out_frame.get();
if (!pkt) {
// LOG(INFO) << "Draining mode start...";
// draining mode, pulling buffered frames out
CHECK_GE(avcodec_send_packet(dec_ctx_.get(), NULL), 0) << "Thread worker: Error entering draining mode.";
while (true) {
got_picture = avcodec_receive_frame(dec_ctx_.get(), frame.get());
if (got_picture == AVERROR_EOF) break;
// filter image frame (format conversion, scaling...)
filter_graph_->Push(frame.get());
CHECK(filter_graph_->Pop(&out_frame_p)) << "Error fetch filtered frame.";
frame_queue_->Push(out_frame);
}
draining_.store(false);
frame_queue_->Push(AVFramePtr(nullptr, [](AVFrame *p){}));
} else {
// normal mode, push in valid packets and retrieve frames
CHECK_GE(avcodec_send_packet(dec_ctx_.get(), pkt.get()), 0) << "Thread worker: Error sending packet.";
got_picture = avcodec_receive_frame(dec_ctx_.get(), frame.get());
if (got_picture == 0) {
// filter image frame (format conversion, scaling...)
filter_graph_->Push(frame.get());
CHECK(filter_graph_->Pop(&out_frame_p)) << "Error fetch filtered frame.";
frame_queue_->Push(out_frame);
// LOG(INFO) << "pts: " << out_frame->pts;
} else if (AVERROR(EAGAIN) == got_picture || AVERROR_EOF == got_picture) {
frame_queue_->Push(AVFramePtr(nullptr, [](AVFrame *p){}));
} else {
LOG(FATAL) << "Thread worker: Error decoding frame: " << got_picture;
}
}
// free raw memories allocated with ffmpeg
// av_packet_unref(pkt);
}
}
} // namespace ffmpeg
} // namespace decord | [
"[email protected]"
] | |
5ba0ab492f95a5ec0de0683a93d51e61319e5c7c | 0db79524979d11c3bf0a4856c124295b6acce314 | /COM/fancySerial.ino | 006b1514bf730114f0ad7a7d6d96a308f6edcd89 | [] | no_license | muh005/Micromouse | cfb3dbb96e3c3a5b903fe569a675b6d4fd596db8 | c9fa440cb33f2837395a7da7fb815e852b16bf1c | refs/heads/master | 2021-05-07T04:16:22.502834 | 2018-03-28T23:45:44 | 2018-03-28T23:45:44 | 111,260,495 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,977 | ino | void setup() {
// put your setup code here, to run once:
//pin 19 rx
//pin 18 tx
Serial.begin(9600);
//Serial1.begin(9600);
}
const int sendSize = 100;
char tosend[sendSize];
int Status = 0;
void clearAll(char * arg, int sz){
// Setting all chars in the string to null
for(int i = 0; i < sz; i++) {
arg[i] = char(0);
}
}
void fillCharWithDouble(double val, char * arg, int sz) {
clearAll(arg, sz);
//char tmp[100];
dtostrf(val, 40, 20, arg);
// snprintf(arg, sz, "Yo: %s", tmp);
arg[sz-1] = char(0);
}
void sendData(char * arg, int sz) {
// while(!Serial.available()) {
// Looping over chars
for(int i = 0; i < sz; i++) {
// If see null, then stop printing
if(arg[i] == char(0)) {
break;
}
// Print one char at a time
Serial.print(arg[i]);
}
// Leave a line at end
Serial.println();
// Delay
delay(100);
// }
}
void clearData(char * arg) {
// Clearing all data in arg
arg[0] = char(0);
/*for(int i = 0; i < sz; i++) {
arg[i] = char(0);
}*/
}
void readAndSerial() {
// put your main code here, to run repeatedly:
if(Status == 0){
int i = 0;
Status = 1;
while(Serial.available()) {
tosend[i++] = char(Serial.read());
}
tosend[i] = char(0);
}
if(Status == 1) {
sendData(tosend, strlen(tosend));
clearData(tosend);
Status = 0;
}
}
void sendDoubles() {
double startTime = millis();
double ar[] = {42, 13, 9, 0, 7, 1, 99, 53, 43, 250};
for(int i = 0 ; i < 10 ; i++){
// Order - time, data
// Sending time from start
fillCharWithDouble(millis()-startTime, tosend, sendSize);
sendData(tosend, sendSize);
// Sending data
fillCharWithDouble(ar[i], tosend, sendSize);
sendData(tosend, sendSize);
}
}
void loop() {
// while(!Serial.available()) {
sendDoubles();
// }
// Stopping after 1 iteration
while(1){}
}
| [
"[email protected]"
] | |
ebcb3afa4c7c12ef3c872d3237f841e373582f69 | 85d821577aeb6bde7602f69e2f3fe93b53687bdd | /DTiles/osgb23dtile.cpp | eed5284d3af0573d880291fc157048af9aa24774 | [
"Apache-2.0"
] | permissive | sjtuerx/3dtiles | 00251c6eb107731b63a661b41d3a367a1751af29 | ac11fa3481028c58f23f7aa86227736e13428e12 | refs/heads/master | 2023-03-20T07:27:05.608000 | 2021-03-02T06:46:56 | 2021-03-02T06:46:56 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 45,267 | cpp | #include <osg/Material>
#include <osg/PagedLOD>
#include <osgDB/ReadFile>
#include <osgDB/ConvertUTF>
#include <osgUtil/Optimizer>
#include <osgUtil/SmoothingVisitor>
#include <set>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <algorithm>
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define TINYGLTF_IMPLEMENTATION
#include "tiny_gltf.h"
#include "stb_image_write.h"
#include "dxt_img.h"
#include "extern.h"
using namespace std;
template<class T>
void put_val(std::vector<unsigned char>& buf, T val) {
buf.insert(buf.end(), (unsigned char*)&val, (unsigned char*)&val + sizeof(T));
}
template<class T>
void put_val(std::string& buf, T val) {
buf.append((unsigned char*)&val, (unsigned char*)&val + sizeof(T));
}
void write_buf(void* context, void* data, int len) {
std::vector<char> *buf = (std::vector<char>*)context;
buf->insert(buf->end(), (char*)data, (char*)data + len);
}
struct TileBox
{
std::vector<double> max;
std::vector<double> min;
void extend(double ratio) {
ratio /= 2;
double x = max[0] - min[0];
double y = max[1] - min[1];
double z = max[2] - min[2];
max[0] += x * ratio;
max[1] += y * ratio;
max[2] += z * ratio;
min[0] -= x * ratio;
min[1] -= y * ratio;
min[2] -= z * ratio;
}
};
struct osg_tree {
TileBox bbox;
double geometricError;
std::string file_name;
std::vector<osg_tree> sub_nodes;
};
class InfoVisitor : public osg::NodeVisitor
{
std::string path;
public:
InfoVisitor(std::string _path)
:osg::NodeVisitor(TRAVERSE_ALL_CHILDREN)
,path(_path)
{}
~InfoVisitor() {
}
void apply(osg::Geometry& geometry){
geometry_array.push_back(&geometry);
if (auto ss = geometry.getStateSet() ) {
osg::Texture* tex = dynamic_cast<osg::Texture*>(ss->getTextureAttribute(0, osg::StateAttribute::TEXTURE));
if (tex) {
texture_array.insert(tex);
texture_map[&geometry] = tex;
}
}
}
void apply(osg::PagedLOD& node) {
//std::string path = node.getDatabasePath();
int n = node.getNumFileNames();
for (size_t i = 1; i < n; i++)
{
std::string file_name = path + "/" + node.getFileName(i);
sub_node_names.push_back(file_name);
}
traverse(node);
}
public:
std::vector<osg::Geometry*> geometry_array;
std::set<osg::Texture*> texture_array;
// 记录 mesh 和 texture 的关系,暂时认为一个模型最多只有一个 texture
std::map<osg::Geometry*, osg::Texture*> texture_map;
std::vector<std::string> sub_node_names;
};
double get_geometric_error(TileBox& bbox){
#ifdef max
#undef max
#endif // max is vector
//修复了在get_geometric_error期间bbox为空时可能导致崩溃的错误
if (bbox.max.empty() || bbox.min.empty()) {
LOG_E("bbox is empty!");
return 0;
}
double max_err = std::max((bbox.max[0] - bbox.min[0]),(bbox.max[1] - bbox.min[1]));
max_err = std::max(max_err, (bbox.max[2] - bbox.min[2]));
return max_err / 20.0;
// const double pi = std::acos(-1);
// double round = 2 * pi * 6378137.0 / 128.0;
// return round / std::pow(2.0, lvl );
}
std::string get_file_name(std::string path) {
auto p0 = path.find_last_of("/\\");
return path.substr(p0 + 1);
}
std::string replace(std::string str, std::string s0, std::string s1) {
auto p0 = str.find(s0);
return str.replace(p0, p0 + s0.length() - 1, s1);
}
std::string get_parent(std::string str) {
auto p0 = str.find_last_of("/\\");
if (p0 != std::string::npos)
return str.substr(0, p0);
else
return "";
}
std::string osg_string ( const char* path ) {
#ifdef WIN32
std::string root_path =
osgDB::convertStringFromUTF8toCurrentCodePage(path);
#else
std::string root_path = (path);
#endif // WIN32
return root_path;
}
std::string utf8_string (const char* path) {
#ifdef WIN32
std::string utf8 =
osgDB::convertStringFromCurrentCodePageToUTF8(path);
#else
std::string utf8 = (path);
#endif // WIN32
return utf8;
}
int get_lvl_num(std::string file_name){
std::string stem = get_file_name(file_name);
auto p0 = stem.find("_L");
auto p1 = stem.find("_", p0 + 2);
if (p0 != std::string::npos && p1 != std::string::npos) {
std::string substr = stem.substr(p0 + 2, p1 - p0 - 2);
try { return std::stol(substr); }
catch (...) {
return -1;
}
}
else if(p0 != std::string::npos){
int end = p0 + 2;
while (true) {
if (isdigit(stem[end]))
end++;
else
break;
}
std::string substr = stem.substr(p0 + 2, end - p0 - 2);
try { return std::stol(substr); }
catch (...) {
return -1;
}
}
return -1;
}
osg_tree get_all_tree(std::string& file_name) {
osg_tree root_tile;
vector<string> fileNames = { file_name };
InfoVisitor infoVisitor(get_parent(file_name));
{ // add block to release Node
osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(fileNames);
if (!root) {
std::string name = utf8_string(file_name.c_str());
LOG_E("read node files [%s] fail!", name.c_str());
return root_tile;
}
root_tile.file_name = file_name;
root->accept(infoVisitor);
}
for (auto& i : infoVisitor.sub_node_names) {
osg_tree tree = get_all_tree(i);
if (!tree.file_name.empty()) {
root_tile.sub_nodes.push_back(tree);
}
}
return root_tile;
}
struct mesh_info
{
string name;
std::vector<double> min;
std::vector<double> max;
};
template<class T>
void alignment_buffer(std::vector<T>& buf) {
while (buf.size() % 4 != 0) {
buf.push_back(0x00);
}
}
std::string vs_str() {
return
R"(
precision highp float;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
attribute vec3 a_position;
attribute vec2 a_texcoord0;
attribute float a_batchid;
varying vec2 v_texcoord0;
void main(void)
{
v_texcoord0 = a_texcoord0;
gl_Position = u_projectionMatrix * u_modelViewMatrix * vec4(a_position, 1.0);
}
)";
}
std::string fs_str() {
return
R"(
precision highp float;
varying vec2 v_texcoord0;
uniform sampler2D u_diffuse;
void main(void)
{
gl_FragColor = texture2D(u_diffuse, v_texcoord0);
}
)";
}
std::string program(int vs, int fs) {
char buf[512];
std::string fmt = R"(
{
"attributes": [
"a_position",
"a_texcoord0"
],
"vertexShader": %d,
"fragmentShader": %d
}
)";
sprintf(buf, fmt.data(), vs, fs);
return buf;
}
std::string tech_string() {
return
R"(
{
"attributes": {
"a_batchid": {
"semantic": "_BATCHID",
"type": 5123
},
"a_position": {
"semantic": "POSITION",
"type": 35665
},
"a_texcoord0": {
"semantic": "TEXCOORD_0",
"type": 35664
}
},
"program": 0,
"states": {
"enable": [
2884,
2929
]
},
"uniforms": {
"u_diffuse": {
"type": 35678
},
"u_modelViewMatrix": {
"semantic": "MODELVIEW",
"type": 35676
},
"u_projectionMatrix": {
"semantic": "PROJECTION",
"type": 35676
}
}
})";
}
void make_gltf2_shader(tinygltf::Model& model, int mat_size, tinygltf::Buffer& buffer, uint32_t &buf_offset) {
model.extensionsRequired = { "KHR_techniques_webgl" };
model.extensionsUsed = { "KHR_techniques_webgl" };
// add vs shader
{
tinygltf::BufferView bfv_vs;
bfv_vs.buffer = 0;
bfv_vs.byteOffset = buf_offset;
bfv_vs.target = TINYGLTF_TARGET_ARRAY_BUFFER;
std::string vs_shader = vs_str();
buffer.data.insert(buffer.data.end(), vs_shader.begin(), vs_shader.end());
bfv_vs.byteLength = vs_shader.size();
alignment_buffer(buffer.data);
buf_offset = buffer.data.size();
model.bufferViews.push_back(bfv_vs);
tinygltf::Shader shader;
shader.bufferView = model.bufferViews.size() - 1;
shader.type = TINYGLTF_SHADER_TYPE_VERTEX_SHADER;
model.extensions.KHR_techniques_webgl.shaders.push_back(shader);
}
// add fs shader
{
tinygltf::BufferView bfv_fs;
bfv_fs.buffer = 0;
bfv_fs.byteOffset = buf_offset;
bfv_fs.target = TINYGLTF_TARGET_ARRAY_BUFFER;
std::string fs_shader = fs_str();
buffer.data.insert(buffer.data.end(), fs_shader.begin(), fs_shader.end());
bfv_fs.byteLength = fs_shader.size();
alignment_buffer(buffer.data);
buf_offset = buffer.data.size();
model.bufferViews.push_back(bfv_fs);
tinygltf::Shader shader;
shader.bufferView = model.bufferViews.size() - 1;
shader.type = TINYGLTF_SHADER_TYPE_FRAGMENT_SHADER;
model.extensions.KHR_techniques_webgl.shaders.push_back(shader);
}
// tech
{
tinygltf::Technique tech;
tech.tech_string = tech_string();
model.extensions.KHR_techniques_webgl.techniques = { tech };
}
// program
{
tinygltf::Program prog;
prog.prog_string = program(0, 1);
model.extensions.KHR_techniques_webgl.programs = { prog };
}
for (int i = 0; i < mat_size; i++)
{
tinygltf::Material material;
material.name = "osgb";
char shaderBuffer[512];
sprintf(shaderBuffer, R"(
{
"extensions": {
"KHR_techniques_webgl": {
"technique": 0,
"values": {
"u_diffuse": {
"index": %d,
"texCoord": 0
}
}
}
}
}
)", i);
material.shaderMaterial = shaderBuffer;
model.materials.push_back(material);
}
}
tinygltf::Material make_color_material_osgb(double r, double g, double b) {
tinygltf::Material material;
material.name = "default";
tinygltf::Parameter baseColorFactor;
baseColorFactor.number_array = { r, g, b, 1.0 };
material.values["baseColorFactor"] = baseColorFactor;
tinygltf::Parameter metallicFactor;
metallicFactor.number_value = new double(0);
material.values["metallicFactor"] = metallicFactor;
tinygltf::Parameter roughnessFactor;
roughnessFactor.number_value = new double(1);
material.values["roughnessFactor"] = roughnessFactor;
//
return material;
}
//handle multi - children caseand multi - primitive case
bool osgb2glb_buf(std::string path, std::string& glb_buff, std::vector<mesh_info>& v_info) {
vector<string> fileNames = { path };
std::string parent_path = get_parent(path);
osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(fileNames);
if (!root.valid()) {
return false;
}
InfoVisitor infoVisitor(parent_path);
root->accept(infoVisitor);
if (infoVisitor.geometry_array.empty())
return false;
osgUtil::SmoothingVisitor sv;
root->accept(sv);
{
tinygltf::TinyGLTF gltf;
tinygltf::Model model;
tinygltf::Buffer buffer;
// buffer_view {index,vertex,normal(texcoord,image)}
uint32_t buf_offset = 0;
uint32_t acc_offset[4] = { 0,0,0,0 };
for (int j = 0; j < 4; j++)
{
for (auto g : infoVisitor.geometry_array) {
if (g->getNumPrimitiveSets() == 0) {
continue;
}
osg::Array* va = g->getVertexArray();
if (j == 0) {
// indc
{
int max_index = 0, min_index = 1 << 30;
int idx_size = 0;
osg::PrimitiveSet::Type t = g->getPrimitiveSet(0)->getType();
for (int k = 0; k < g->getNumPrimitiveSets(); k++)
{
osg::PrimitiveSet* ps = g->getPrimitiveSet(k);
if (t != ps->getType())
{
LOG_E("PrimitiveSets type are NOT same in osgb");
}
idx_size += ps->getNumIndices();
}
for (int k = 0; k < g->getNumPrimitiveSets(); k++)
{
osg::PrimitiveSet* ps = g->getPrimitiveSet(k);
switch (t)
{
case(osg::PrimitiveSet::DrawElementsUBytePrimitiveType):
{
const osg::DrawElementsUByte* drawElements = static_cast<const osg::DrawElementsUByte*>(ps);
int IndNum = drawElements->getNumIndices();
for (size_t m = 0; m < IndNum; m++)
{
if (idx_size <= 256)
put_val(buffer.data, drawElements->at(m));
else if (idx_size <= 65536)
put_val(buffer.data, (unsigned short)drawElements->at(m));
else
put_val(buffer.data, (unsigned int)drawElements->at(m));
if (drawElements->at(m) > max_index) max_index = drawElements->at(m);
if (drawElements->at(m) < min_index) min_index = drawElements->at(m);
}
break;
}
case(osg::PrimitiveSet::DrawElementsUShortPrimitiveType):
{
const osg::DrawElementsUShort* drawElements = static_cast<const osg::DrawElementsUShort*>(ps);
int IndNum = drawElements->getNumIndices();
for (size_t m = 0; m < IndNum; m++)
{
if (idx_size <= 65536)
put_val(buffer.data, drawElements->at(m));
else
put_val(buffer.data, (unsigned int)drawElements->at(m));
if (drawElements->at(m) > max_index) max_index = drawElements->at(m);
if (drawElements->at(m) < min_index) min_index = drawElements->at(m);
}
break;
}
case(osg::PrimitiveSet::DrawElementsUIntPrimitiveType):
{
const osg::DrawElementsUInt* drawElements = static_cast<const osg::DrawElementsUInt*>(ps);
unsigned int IndNum = drawElements->getNumIndices();
for (size_t m = 0; m < IndNum; m++)
{
put_val(buffer.data, drawElements->at(m));
if (drawElements->at(m) > (unsigned)max_index) max_index = drawElements->at(m);
if (drawElements->at(m) < (unsigned)min_index) min_index = drawElements->at(m);
}
break;
}
case osg::PrimitiveSet::DrawArraysPrimitiveType: {
osg::DrawArrays* da = dynamic_cast<osg::DrawArrays*>(ps);
auto mode = da->getMode();
if (mode != GL_TRIANGLES) {
LOG_E("GLenum is not GL_TRIANGLES in osgb");
}
if (k == 0) {
int first = da->getFirst();
int count = da->getCount();
int max_num = first + count;
if (max_num >= 65535) {
max_num = 65535; idx_size = 65535;
}
min_index = first;
max_index = max_num - 1;
for (int i = first; i < max_num; i++) {
if (max_num < 256)
put_val(buffer.data, (unsigned char)i);
else if (max_num < 65536)
put_val(buffer.data, (unsigned short)i);
else
put_val(buffer.data, i);
}
}
break;
}
default:
{
LOG_E("missing osg::PrimitiveSet::Type [%d]", t);
break;
}
}
}
tinygltf::Accessor acc;
acc.bufferView = 0;
acc.byteOffset = acc_offset[j];
alignment_buffer(buffer.data);
acc_offset[j] = buffer.data.size();
switch (t)
{
case osg::PrimitiveSet::DrawElementsUBytePrimitiveType:
if (idx_size <= 256)
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
else if (idx_size <= 65536)
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
else
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
break;
case osg::PrimitiveSet::DrawElementsUShortPrimitiveType:
if (idx_size <= 65536)
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
else
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
break;
case osg::PrimitiveSet::DrawElementsUIntPrimitiveType:
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
break;
case osg::PrimitiveSet::DrawArraysPrimitiveType: {
osg::PrimitiveSet* ps = g->getPrimitiveSet(0);
osg::DrawArrays* da = dynamic_cast<osg::DrawArrays*>(ps);
int first = da->getFirst();
int count = da->getCount();
int max_num = first + count;
if (max_num >= 65535) max_num = 65535;
if (max_num < 256) {
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
}
else if (max_num < 65536) {
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
}
else {
acc.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
}
break;
}
default:
//LOG_E("missing osg::PrimitiveSet::Type [%d]", t);
break;
}
acc.count = idx_size;
acc.type = TINYGLTF_TYPE_SCALAR;
osg::Vec3Array* v3f = (osg::Vec3Array*)va;
int vec_size = v3f->size();
acc.maxValues = { (double)max_index };
acc.minValues = { (double)min_index };
model.accessors.push_back(acc);
}
}
else if (j == 1) {
osg::Vec3Array* v3f = (osg::Vec3Array*)va;
int vec_size = v3f->size();
vector<double> box_max = { -1e38, -1e38 ,-1e38 };
vector<double> box_min = { 1e38, 1e38 ,1e38 };
for (int vidx = 0; vidx < vec_size; vidx++)
{
osg::Vec3f point = v3f->at(vidx);
put_val(buffer.data, point.x());
put_val(buffer.data, point.y());
put_val(buffer.data, point.z());
if (point.x() > box_max[0]) box_max[0] = point.x();
if (point.x() < box_min[0]) box_min[0] = point.x();
if (point.y() > box_max[1]) box_max[1] = point.y();
if (point.y() < box_min[1]) box_min[1] = point.y();
if (point.z() > box_max[2]) box_max[2] = point.z();
if (point.z() < box_min[2]) box_min[2] = point.z();
}
tinygltf::Accessor acc;
acc.bufferView = 1;
acc.byteOffset = acc_offset[j];
alignment_buffer(buffer.data);
acc_offset[j] = buffer.data.size() - buf_offset;
acc.count = vec_size;
acc.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
acc.type = TINYGLTF_TYPE_VEC3;
acc.maxValues = box_max;
acc.minValues = box_min;
model.accessors.push_back(acc);
// calc the box
mesh_info osgb_info;
osgb_info.name = g->getName();
osgb_info.min = box_min;
osgb_info.max = box_max;
v_info.push_back(osgb_info);
}
else if (j == 2) {
// normal
vector<double> box_max = { -1e38, -1e38, -1e38 };
vector<double> box_min = { 1e38, 1e38, 1e38 };
int normal_size = 0;
osg::Array* na = g->getNormalArray();
if (na)
{
osg::Vec3Array* v3f = (osg::Vec3Array*)na;
normal_size = v3f->size();
for (int vidx = 0; vidx < normal_size; vidx++)
{
osg::Vec3f point = v3f->at(vidx);
put_val(buffer.data, point.x());
put_val(buffer.data, point.y());
put_val(buffer.data, point.z());
if (point.x() > box_max[0]) box_max[0] = point.x();
if (point.x() < box_min[0]) box_min[0] = point.x();
if (point.y() > box_max[1]) box_max[1] = point.y();
if (point.y() < box_min[1]) box_min[1] = point.y();
if (point.z() > box_max[2]) box_max[2] = point.z();
if (point.z() < box_min[2]) box_min[2] = point.z();
}
}
else { // mesh 没有法线坐标
osg::Vec3Array* v3f = (osg::Vec3Array*)va;
int vec_size = v3f->size();
normal_size = vec_size;
box_max = { 0,0 };
box_min = { 0,0 };
for (int vidx = 0; vidx < vec_size; vidx++)
{
float x = 0;
put_val(buffer.data, x);
put_val(buffer.data, x);
put_val(buffer.data, x);
}
}
tinygltf::Accessor acc;
acc.bufferView = 2;
acc.byteOffset = acc_offset[j];
alignment_buffer(buffer.data);
acc_offset[j] = buffer.data.size() - buf_offset;
acc.count = normal_size;
acc.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
acc.type = TINYGLTF_TYPE_VEC3;
acc.maxValues = box_max;
acc.minValues = box_min;
model.accessors.push_back(acc);
}
else if (j == 3) {
// text
vector<double> box_max = { -1e38, -1e38 };
vector<double> box_min = { 1e38, 1e38 };
int texture_size = 0;
osg::Array* na = g->getTexCoordArray(0);
if (na) {
osg::Vec2Array* v2f = (osg::Vec2Array*)na;
texture_size = v2f->size();
for (int vidx = 0; vidx < texture_size; vidx++)
{
osg::Vec2f point = v2f->at(vidx);
put_val(buffer.data, point.x());
put_val(buffer.data, point.y());
if (point.x() > box_max[0]) box_max[0] = point.x();
if (point.x() < box_min[0]) box_min[0] = point.x();
if (point.y() > box_max[1]) box_max[1] = point.y();
if (point.y() < box_min[1]) box_min[1] = point.y();
}
}
else { // mesh 没有纹理坐标
osg::Vec3Array* v3f = (osg::Vec3Array*)va;
int vec_size = v3f->size();
texture_size = vec_size;
box_max = { 0,0 };
box_min = { 0,0 };
for (int vidx = 0; vidx < vec_size; vidx++)
{
float x = 0;
put_val(buffer.data, x);
put_val(buffer.data, x);
}
}
tinygltf::Accessor acc;
acc.bufferView = 3;
acc.byteOffset = acc_offset[j];
alignment_buffer(buffer.data);
acc_offset[j] = buffer.data.size() - buf_offset;
acc.count = texture_size;
acc.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
acc.type = TINYGLTF_TYPE_VEC2;
acc.maxValues = box_max;
acc.minValues = box_min;
model.accessors.push_back(acc);
}
}
tinygltf::BufferView bfv;
bfv.buffer = 0;
if (j == 0) {
bfv.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER;
}
else {
bfv.target = TINYGLTF_TARGET_ARRAY_BUFFER;
}
bfv.byteOffset = buf_offset;
alignment_buffer(buffer.data);
bfv.byteLength = buffer.data.size() - buf_offset;
buf_offset = buffer.data.size();
if (infoVisitor.geometry_array.size() > 1) {
if (j == 1) { bfv.byteStride = 4 * 3; }
if (j == 2) { bfv.byteStride = 4 * 3; }
if (j == 3) { bfv.byteStride = 4 * 2; }
}
model.bufferViews.push_back(bfv);
}
// image
{
int buf_view = 4;
for (auto tex : infoVisitor.texture_array) {
std::vector<unsigned char> jpeg_buf;
jpeg_buf.reserve(512 * 512 * 3);
int width, height, comp;
{
if (tex) {
if (tex->getNumImages() > 0) {
osg::Image* img = tex->getImage(0);
if (img) {
width = img->s();
height = img->t();
comp = img->getPixelSizeInBits();
if (comp == 8) comp = 1;
if (comp == 24) comp = 3;
if (comp == 4) {
comp = 3;
fill_4BitImage(jpeg_buf, img, width, height);
}
else
{
unsigned row_step = img->getRowStepInBytes();
unsigned row_size = img->getRowSizeInBytes();
for (size_t i = 0; i < height; i++)
{
jpeg_buf.insert(jpeg_buf.end(),
img->data() + row_step * i,
img->data() + row_step * i + row_size);
}
}
}
}
}
}
if (!jpeg_buf.empty()) {
int buf_size = buffer.data.size();
buffer.data.reserve(buffer.data.size() + width * height * comp);
stbi_write_jpg_to_func(write_buf, &buffer.data, width, height, comp, jpeg_buf.data(), 80);
}
else {
std::vector<char> v_data;
width = height = 256;
v_data.resize(width * height * 3);
stbi_write_jpg_to_func(write_buf, &buffer.data, width, height, 3, v_data.data(), 80);
}
tinygltf::Image image;
image.mimeType = "image/jpeg";
image.bufferView = buf_view++;
model.images.push_back(image);
tinygltf::BufferView bfv;
bfv.buffer = 0;
bfv.byteOffset = buf_offset;
bfv.byteLength = buffer.data.size() - buf_offset;
alignment_buffer(buffer.data);
buf_offset = buffer.data.size();
model.bufferViews.push_back(bfv);
}
}
// mesh
{
int MeshNum = infoVisitor.geometry_array.size();
for (int i = 0; i < MeshNum; i++) {
tinygltf::Mesh mesh;
//mesh.name = meshes[i].mesh_name;
tinygltf::Primitive primits;
primits.attributes = {
//std::pair<std::string,int>("_BATCHID", 2 * i + 1),
std::pair<std::string,int>("POSITION", 1 * MeshNum + i),
std::pair<std::string,int>("NORMAL", 2 * MeshNum + i),
std::pair<std::string,int>("TEXCOORD_0", 3 * MeshNum + i),
};
primits.indices = i;
primits.material = 0;
if (infoVisitor.texture_array.size() > 1) {
auto geomtry = infoVisitor.geometry_array[i];
auto tex = infoVisitor.texture_map[geomtry];
for (auto texture : infoVisitor.texture_array) {
if (tex != texture) {
primits.material++;
}
else {
break;
}
}
}
primits.mode = TINYGLTF_MODE_TRIANGLES;
mesh.primitives = {
primits
};
model.meshes.push_back(mesh);
}
// 加载所有的模型
for (int i = 0; i < MeshNum; i++) {
tinygltf::Node node;
node.mesh = i;
model.nodes.push_back(node);
}
}
// scene
{
// 一个场景
tinygltf::Scene sence;
for (int i = 0; i < infoVisitor.geometry_array.size(); i++) {
sence.nodes.push_back(i);
}
// 所有场景
model.scenes = { sence };
model.defaultScene = 0;
}
// sample
{
tinygltf::Sampler sample;
sample.magFilter = TINYGLTF_TEXTURE_FILTER_LINEAR;
sample.minFilter = TINYGLTF_TEXTURE_FILTER_NEAREST_MIPMAP_LINEAR;
sample.wrapS = TINYGLTF_TEXTURE_WRAP_REPEAT;
sample.wrapT = TINYGLTF_TEXTURE_WRAP_REPEAT;
model.samplers = { sample };
}
/// --------------
if (0)
{
for (int i = 0; i < infoVisitor.texture_array.size(); i++)
{
tinygltf::Material mat = make_color_material_osgb(1.0, 1.0, 1.0);
// 可能会出现多材质的情况
tinygltf::Parameter baseColorTexture;
baseColorTexture.json_int_value = { std::pair<string,int>("index",i) };
mat.values["baseColorTexture"] = baseColorTexture;
model.materials.push_back(mat);
}
}
// use shader material
else {
make_gltf2_shader(model, infoVisitor.texture_array.size(), buffer, buf_offset);
}
// finish buffer
model.buffers.push_back(std::move(buffer));
// texture
{
int texture_index = 0;
for (auto tex : infoVisitor.texture_array)
{
tinygltf::Texture texture;
texture.source = texture_index++;
texture.sampler = 0;
model.textures.push_back(texture);
}
}
model.asset.version = "2.0";
model.asset.generator = "fanfan";
glb_buff = gltf.Serialize(&model);
}
return true;
}
bool osgb23dtile_buf(std::string path, std::string& b3dm_buf, TileBox& tile_box) {
using nlohmann::json;
std::string glb_buf;
std::vector<mesh_info> v_info;
bool ret = osgb2glb_buf(path, glb_buf,v_info);
if (!ret) return false;
tile_box.max = {-1e38,-1e38,-1e38};
tile_box.min = {1e38,1e38,1e38};
for ( auto &mesh: v_info) {
for(int i = 0; i < 3; i++) {
if (mesh.min[i] < tile_box.min[i])
tile_box.min[i] = mesh.min[i];
if (mesh.max[i] > tile_box.max[i])
tile_box.max[i] = mesh.max[i];
}
}
int mesh_count = v_info.size();
std::string feature_json_string;
feature_json_string += "{\"BATCH_LENGTH\":";
feature_json_string += std::to_string(mesh_count);
feature_json_string += "}";
while (feature_json_string.size() % 4 != 0 ) {
feature_json_string.push_back(' ');
}
json batch_json;
std::vector<int> ids;
for (int i = 0; i < mesh_count; ++i) {
ids.push_back(i);
}
std::vector<std::string> names;
for (int i = 0; i < mesh_count; ++i) {
std::string mesh_name = "mesh_";
mesh_name += std::to_string(i);
names.push_back(mesh_name);
}
batch_json["batchId"] = ids;
batch_json["name"] = names;
std::string batch_json_string = batch_json.dump();
while (batch_json_string.size() % 4 != 0 ) {
batch_json_string.push_back(' ');
}
// how length total ?
//test
//feature_json_string.clear();
//batch_json_string.clear();
//end-test
int feature_json_len = feature_json_string.size();
int feature_bin_len = 0;
int batch_json_len = batch_json_string.size();
int batch_bin_len = 0;
int total_len = 28 /*header size*/ + feature_json_len + batch_json_len + glb_buf.size();
b3dm_buf += "b3dm";
int version = 1;
put_val(b3dm_buf, version);
put_val(b3dm_buf, total_len);
put_val(b3dm_buf, feature_json_len);
put_val(b3dm_buf, feature_bin_len);
put_val(b3dm_buf, batch_json_len);
put_val(b3dm_buf, batch_bin_len);
//put_val(b3dm_buf, total_len);
b3dm_buf.append(feature_json_string.begin(),feature_json_string.end());
b3dm_buf.append(batch_json_string.begin(),batch_json_string.end());
b3dm_buf.append(glb_buf);
return true;
}
std::vector<double> convert_bbox(TileBox tile) {
double center_mx = (tile.max[0] + tile.min[0]) / 2;
double center_my = (tile.max[1] + tile.min[1]) / 2;
double center_mz = (tile.max[2] + tile.min[2]) / 2;
double x_meter = (tile.max[0] - tile.min[0]) * 1;
double y_meter = (tile.max[1] - tile.min[1]) * 1;
double z_meter = (tile.max[2] - tile.min[2]) * 1;
if (x_meter < 0.01) { x_meter = 0.01; }
if (y_meter < 0.01) { y_meter = 0.01; }
if (z_meter < 0.01) { z_meter = 0.01; }
std::vector<double> v = {
center_mx,center_my,center_mz,
x_meter/2, 0, 0,
0, y_meter/2, 0,
0, 0, z_meter/2
};
return v;
}
// 生成 b3dm , 再统一外扩模型的 bbox
void do_tile_job(osg_tree& tree, std::string out_path, int max_lvl) {
// 转瓦片、写json
std::string json_str;
if (tree.file_name.empty()) return;
int lvl = get_lvl_num(tree.file_name);
if (lvl > max_lvl) return;
// 转 tile
std::string b3dm_buf;
osgb23dtile_buf(tree.file_name, b3dm_buf, tree.bbox);
// false 可能当前为空, 但存在子节点
std::string out_file = out_path;
out_file += "/";
out_file += replace(get_file_name(tree.file_name),".osgb",".b3dm");
if (!b3dm_buf.empty()) {
write_file(out_file.c_str(), b3dm_buf.data(), b3dm_buf.size());
}
// test
// std::string glb_buf;
// std::vector<mesh_info> v_info;
// osgb2glb_buf(tree.file_name, glb_buf, v_info);
// out_file = replace(out_file, ".b3dm", ".glb");
// write_file(out_file.c_str(), glb_buf.data(), glb_buf.size());
// end test
for (auto& i : tree.sub_nodes) {
do_tile_job(i,out_path,max_lvl);
}
}
void expend_box(TileBox& box, TileBox& box_new) {
if (box_new.max.empty() || box_new.min.empty()) {
return;
}
if (box.max.empty()) {
box.max = box_new.max;
}
if (box.min.empty()) {
box.min = box_new.min;
}
for (int i = 0; i < 3; i++) {
if (box.min[i] > box_new.min[i])
box.min[i] = box_new.min[i];
if (box.max[i] < box_new.max[i])
box.max[i] = box_new.max[i];
}
}
TileBox extend_tile_box(osg_tree& tree) {
TileBox box = tree.bbox;
for (auto& i : tree.sub_nodes) {
TileBox sub_tile = extend_tile_box(i);
expend_box(box, sub_tile);
}
tree.bbox = box;
return box;
}
std::string get_boundingBox(TileBox bbox) {
std::string box_str = "\"boundingVolume\":{";
box_str += "\"box\":[";
std::vector<double> v_box = convert_bbox(bbox);
for (auto v: v_box) {
box_str += std::to_string(v);
box_str += ",";
}
box_str.pop_back();
box_str += "]}";
return box_str;
}
std::string get_boundingRegion(TileBox bbox, double x, double y) {
std::string box_str = "\"boundingVolume\":{";
box_str += "\"region\":[";
std::vector<double> v_box(6);
v_box[0] = meter_to_longti(bbox.min[0],y) + x;
v_box[1] = meter_to_lati(bbox.min[1]) + y;
v_box[2] = meter_to_longti(bbox.max[0], y) + x;
v_box[3] = meter_to_lati(bbox.max[1]) + y;
v_box[4] = bbox.min[2];
v_box[5] = bbox.max[2];
for (auto v : v_box) {
box_str += std::to_string(v);
box_str += ",";
}
box_str.pop_back();
box_str += "]}";
return box_str;
}
void calc_geometric_error(osg_tree& tree) {
const double EPS = 1e-12;
// depth first
for (auto& i : tree.sub_nodes) {
calc_geometric_error(i);
}
if (tree.sub_nodes.empty()) {
tree.geometricError = 0.0;
}
else {
bool has = false;
osg_tree leaf;
//支持多multi-children的方案
for (auto& i : tree.sub_nodes) {
if (abs(i.geometricError) > EPS)
{
has = true;
leaf = i;
}
}
if (has == false)
tree.geometricError = get_geometric_error(tree.bbox);
else
tree.geometricError = leaf.geometricError * 2.0;
}
}
std::string encode_tile_json(osg_tree& tree, double x, double y) {
if (tree.bbox.max.empty() || tree.bbox.min.empty()) {
return "";
}
std::string file_name = get_file_name(tree.file_name);
std::string parent_str = get_parent(tree.file_name);
std::string file_path = get_file_name(parent_str);
char buf[512];
sprintf(buf, "{ \"geometricError\":%.2f,", tree.geometricError);
std::string tile = buf;
TileBox cBox = tree.bbox;
//cBox.extend(0.1);
std::string content_box = get_boundingBox(cBox);
TileBox bbox = tree.bbox;
//bbox.extend(0.1);
std::string tile_box = get_boundingBox(bbox);
tile += tile_box;
tile += ",";
tile += "\"content\":{ \"uri\":";
// Data/Tile_0/Tile_0.b3dm
std::string uri_path = "./";
uri_path += file_name;
std::string uri = replace(uri_path,".osgb",".b3dm");
tile += "\"";
tile += uri;
tile += "\",";
tile += content_box;
tile += "},\"children\":[";
for ( auto& i : tree.sub_nodes ){
std::string node_json = encode_tile_json(i,x,y);
if (!node_json.empty()) {
tile += node_json;
tile += ",";
}
}
if (tile.back() == ',')
tile.pop_back();
tile += "]}";
return tile;
}
/**
外部创建好目录
外面分配好 box[6][double]
外面分配好 string [1024*1024]
*/
extern "C" void* osgb23dtile_path(
const char* in_path, const char* out_path,
double *box, int* len, double x, double y,int max_lvl) {
std::string path = osg_string(in_path);
osg_tree root = get_all_tree(path);
if (root.file_name.empty()) {
LOG_E( "open file [%s] fail!", in_path);
return NULL;
}
do_tile_job(root, out_path, max_lvl);
// 返回 json 和 最大bbox
extend_tile_box(root);
if (root.bbox.max.empty() || root.bbox.min.empty()) {
LOG_E( "[%s] bbox is empty!", in_path);
return NULL;
}
// prevent for root node disappear
calc_geometric_error(root);
root.geometricError = 1000.0;
std::string json = encode_tile_json(root,x,y);
root.bbox.extend(0.2);
memcpy(box, root.bbox.max.data(), 3 * sizeof(double));
memcpy(box + 3, root.bbox.min.data(), 3 * sizeof(double));
void* str = malloc(json.length());
memcpy(str, json.c_str(), json.length());
*len = json.length();
return str;
}
extern "C" bool osgb23dtile(
const char* in, const char* out ) {
std::string b3dm_buf;
TileBox tile_box;
std::string path = osg_string(in);
bool ret = osgb23dtile_buf(path.c_str(),b3dm_buf,tile_box);
if (!ret) return false;
ret = write_file(out, b3dm_buf.data(), b3dm_buf.size());
if (!ret) return false;
// write tileset.json
std::string b3dm_fullpath = out;
auto p0 = b3dm_fullpath.find_last_of('/');
auto p1 = b3dm_fullpath.find_last_of('\\');
std::string b3dm_file_name = b3dm_fullpath.substr(
std::max<int>(p0,p1) + 1);
std::string tileset = out;
tileset = tileset.replace(
b3dm_fullpath.find_last_of('.'),
tileset.length() - 1, ".json");
double center_mx = (tile_box.max[0] + tile_box.min[0]) / 2;
double center_my = (tile_box.max[2] + tile_box.min[2]) / 2;
double center_mz = (tile_box.max[1] + tile_box.min[1]) / 2;
double width_meter = tile_box.max[0] - tile_box.min[0];
double height_meter = tile_box.max[2] - tile_box.min[2];
double z_meter = tile_box.max[1] - tile_box.min[1];
if (width_meter < 0.01) { width_meter = 0.01; }
if (height_meter < 0.01) { height_meter = 0.01; }
if (z_meter < 0.01) { z_meter = 0.01; }
Box box;
std::vector<double> v = {
center_mx,center_my,center_mz,
width_meter / 2, 0, 0,
0, height_meter / 2, 0,
0, 0, z_meter / 2
};
std::memcpy(box.matrix, v.data(), 12 * sizeof(double));
write_tileset_box(
NULL, box, 100,
b3dm_file_name.c_str(),
tileset.c_str());
return true;
}
// 所有接口都是 utf8 字符串
extern "C" bool osgb2glb(const char* in, const char* out) {
std::string b3dm_buf;
std::vector<mesh_info> v_info;
std::string path = osg_string(in);
bool ret = osgb2glb_buf(path,b3dm_buf,v_info);
if (!ret) return false;
ret = write_file(out, b3dm_buf.data(), b3dm_buf.size());
if (!ret) return false;
return true;
} | [
"[email protected]"
] | |
b4a2064657b3ade632cff70ed8c387cd2a4ddfe2 | bca6236c6950504749735db6bf0652876a5afde4 | /external/tesseract/classify/mfoutline.cpp | 623d1174f145e5e62de4f681837f0158612c7542 | [
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-unknown-license-reference",
"Apache-2.0"
] | permissive | XiangGen/galaxy | 3ef02dc84aeb38243284770023d6c7e17bcac3d2 | ffb382e6f7f7786df7ff2324eb3f7f0f870b8048 | refs/heads/master | 2022-10-05T05:52:51.942323 | 2020-06-07T12:48:18 | 2020-06-07T12:48:18 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 34,218 | cpp | /******************************************************************************
** Filename: mfoutline.c
** Purpose: Interface to outline struct used for extracting features
** Author: Dan Johnson
** History: Thu May 17 08:14:18 1990, DSJ, Created.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
#include "clusttool.h" //If remove you get cought in a loop somewhere
#include "emalloc.h"
#include "mfoutline.h"
#include "hideedge.h"
#include "blobs.h"
#include "const.h"
#include "mfx.h"
#include "varable.h"
#include <math.h>
#include <stdio.h>
#define MIN_INERTIA (0.00001)
/**----------------------------------------------------------------------------
Global Data Definitions and Declarations
----------------------------------------------------------------------------**/
/* center of current blob being processed - used when "unexpanding"
expanded blobs */
static TPOINT BlobCenter;
/**----------------------------------------------------------------------------
Variables
----------------------------------------------------------------------------**/
/* control knobs used to control normalization of outlines */
INT_VAR(classify_norm_method, character, "Normalization Method ...");
/* PREV DEFAULT "baseline" */
double_VAR(classify_char_norm_range, 0.2, "Character Normalization Range ...");
double_VAR(classify_min_norm_scale_x, 0.0, "Min char x-norm scale ...");
/* PREV DEFAULT 0.1 */
double_VAR(classify_max_norm_scale_x, 0.325, "Max char x-norm scale ...");
/* PREV DEFAULT 0.3 */
double_VAR(classify_min_norm_scale_y, 0.0, "Min char y-norm scale ...");
/* PREV DEFAULT 0.1 */
double_VAR(classify_max_norm_scale_y, 0.325, "Max char y-norm scale ...");
/* PREV DEFAULT 0.3 */
/**----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void ComputeBlobCenter(TBLOB *Blob, TPOINT *BlobCenter) {
/*
** Parameters:
** Blob blob to compute centerpoint of
** BlobCenter data struct to place results in
** Globals: none
** Operation:
** This routine computes the center point of the specified
** blob using the bounding box of all top level outlines in the
** blob. The center point is computed in a coordinate system
** which is scaled up by VECSCALE from the page coordinate
** system.
** Return: none
** Exceptions: none
** History: Fri Sep 8 10:45:39 1989, DSJ, Created.
*/
TPOINT TopLeft;
TPOINT BottomRight;
blob_bounding_box(Blob, &TopLeft, &BottomRight);
BlobCenter->x = ((TopLeft.x << VECSCALE) + (BottomRight.x << VECSCALE)) / 2;
BlobCenter->y = ((TopLeft.y << VECSCALE) + (BottomRight.y << VECSCALE)) / 2;
} /* ComputeBlobCenter */
/*---------------------------------------------------------------------------*/
LIST ConvertBlob(TBLOB *Blob) {
/*
** Parameters:
** Blob blob to be converted
** Globals: none
** Operation: Convert Blob into a list of outlines.
** Return: List of outlines representing blob.
** Exceptions: none
** History: Thu Dec 13 15:40:17 1990, DSJ, Created.
*/
LIST ConvertedOutlines = NIL;
if (Blob != NULL) {
SettupBlobConversion(Blob); //ComputeBlobCenter (Blob, &BlobCenter);
ConvertedOutlines = ConvertOutlines (Blob->outlines,
ConvertedOutlines, outer);
}
return (ConvertedOutlines);
} /* ConvertBlob */
/*---------------------------------------------------------------------------*/
MFOUTLINE ConvertOutline(TESSLINE *Outline) {
/*
** Parameters:
** Outline outline to be converted
** Globals:
** BlobCenter pre-computed center of current blob
** Operation:
** This routine converts the specified outline into a special
** data structure which is used for extracting micro-features.
** If the outline has been pre-normalized by the splitter,
** then it is assumed to be in expanded form and all we must
** do is copy the points. Otherwise,
** if the outline is expanded, then the expanded form is used
** and the coordinates of the points are returned to page
** coordinates using the global variable BlobCenter and the
** scaling factor REALSCALE. If the outline is not expanded,
** then the compressed form is used.
** Return: Outline converted into special micro-features format.
** Exceptions: none
** History: 8/2/89, DSJ, Created.
** 9/8/89, DSJ, Added ability to convert expanded blobs.
** 1/11/90, DSJ, Changed to use REALSCALE instead of VECSCALE
** to eliminate round-off problems.
** 2/21/91, DSJ, Added ability to work with pre-normalized
** blobs.
** 4/30/91, DSJ, Added concept of "hidden" segments.
*/
register BYTEVEC *Vector;
TPOINT Position;
TPOINT StartPosition;
MFEDGEPT *NewPoint;
MFOUTLINE MFOutline = NIL;
EDGEPT *EdgePoint;
EDGEPT *StartPoint;
EDGEPT *NextPoint;
if (Outline == NULL ||
(Outline->compactloop == NULL && Outline->loop == NULL))
return (MFOutline);
/* have outlines been prenormalized */
if (classify_baseline_normalized) {
StartPoint = Outline->loop;
EdgePoint = StartPoint;
do {
NextPoint = EdgePoint->next;
/* filter out duplicate points */
if (EdgePoint->pos.x != NextPoint->pos.x ||
EdgePoint->pos.y != NextPoint->pos.y) {
NewPoint = NewEdgePoint ();
ClearMark(NewPoint);
NewPoint->Hidden = is_hidden_edge (EdgePoint) ? TRUE : FALSE;
NewPoint->Point.x = EdgePoint->pos.x;
NewPoint->Point.y = EdgePoint->pos.y;
MFOutline = push (MFOutline, NewPoint);
}
EdgePoint = NextPoint;
}
while (EdgePoint != StartPoint);
}
/* use compressed version of outline */
else if (Outline->loop == NULL) {
Position.x = StartPosition.x = Outline->start.x;
Position.y = StartPosition.y = Outline->start.y;
Vector = Outline->compactloop;
do {
if (Vector->dx != 0 || Vector->dy != 0) {
NewPoint = NewEdgePoint ();
ClearMark(NewPoint);
/* all edges are visible */
NewPoint->Hidden = FALSE;
NewPoint->Point.x = Position.x;
NewPoint->Point.y = Position.y;
MFOutline = push (MFOutline, NewPoint);
}
Position.x += Vector->dx;
Position.y += Vector->dy;
Vector++;
}
while (Position.x != StartPosition.x ||
(Position.y != StartPosition.y));
}
else { /* use expanded version of outline */
StartPoint = Outline->loop;
EdgePoint = StartPoint;
do {
NextPoint = EdgePoint->next;
/* filter out duplicate points */
if (EdgePoint->pos.x != NextPoint->pos.x ||
EdgePoint->pos.y != NextPoint->pos.y) {
NewPoint = NewEdgePoint ();
ClearMark(NewPoint);
NewPoint->Hidden = is_hidden_edge (EdgePoint) ? TRUE : FALSE;
NewPoint->Point.x =
(EdgePoint->pos.x + BlobCenter.x) / REALSCALE;
NewPoint->Point.y =
(EdgePoint->pos.y + BlobCenter.y) / REALSCALE;
MFOutline = push (MFOutline, NewPoint);
}
EdgePoint = NextPoint;
}
while (EdgePoint != StartPoint);
}
MakeOutlineCircular(MFOutline);
return (MFOutline);
} /* ConvertOutline */
/*---------------------------------------------------------------------------*/
LIST ConvertOutlines(TESSLINE *Outline,
LIST ConvertedOutlines,
OUTLINETYPE OutlineType) {
/*
** Parameters:
** Outline first outline to be converted
** ConvertedOutlines list to add converted outlines to
** OutlineType are the outlines outer or holes?
** Globals: none
** Operation:
** This routine converts all given outlines into a new format.
** of outlines. Outline points to a list of the top level
** outlines to be converted. The children of these outlines
** are also recursively converted. All converted outlines
** are added to ConvertedOutlines. This is a list of outlines,
** one for each outline that was converted.
** Return: Updated list of converted outlines.
** Exceptions: none
** History: Thu Dec 13 15:57:38 1990, DSJ, Created.
*/
MFOUTLINE MFOutline;
while (Outline != NULL) {
if (Outline->child != NULL) {
if (OutlineType == outer)
ConvertedOutlines = ConvertOutlines (Outline->child,
ConvertedOutlines, hole);
else
ConvertedOutlines = ConvertOutlines (Outline->child,
ConvertedOutlines, outer);
}
MFOutline = ConvertOutline (Outline);
ConvertedOutlines = push (ConvertedOutlines, MFOutline);
Outline = Outline->next;
}
return (ConvertedOutlines);
} /* ConvertOutlines */
/*---------------------------------------------------------------------------*/
void ComputeOutlineStats(LIST Outlines, OUTLINE_STATS *OutlineStats) {
/*
** Parameters:
** Outlines list of outlines to compute stats for
** OutlineStats place to put results
** Globals: none
** Operation: This routine computes several statistics about the outlines
** in Outlines. These statistics are usually used to perform
** anistropic normalization of all of the outlines. The
** statistics generated are:
** first moments about x and y axes
** total length of all outlines
** center of mass of all outlines
** second moments about center of mass axes
** radius of gyration about center of mass axes
** Return: none (results are returned in OutlineStats)
** Exceptions: none
** History: Fri Dec 14 08:32:03 1990, DSJ, Created.
*/
MFOUTLINE Outline;
MFOUTLINE EdgePoint;
MFEDGEPT *Current;
MFEDGEPT *Last;
InitOutlineStats(OutlineStats);
iterate(Outlines) {
Outline = (MFOUTLINE) first_node (Outlines);
Last = PointAt (Outline);
Outline = NextPointAfter (Outline);
EdgePoint = Outline;
do {
Current = PointAt (EdgePoint);
UpdateOutlineStats (OutlineStats,
Last->Point.x, Last->Point.y,
Current->Point.x, Current->Point.y);
Last = Current;
EdgePoint = NextPointAfter (EdgePoint);
}
while (EdgePoint != Outline);
}
FinishOutlineStats(OutlineStats);
} /* ComputeOutlineStats */
/*---------------------------------------------------------------------------*/
void FilterEdgeNoise(MFOUTLINE Outline, FLOAT32 NoiseSegmentLength) {
/*
** Parameters:
** Outline outline to be filtered
** NoiseSegmentLength maximum length of a "noise" segment
** Globals: none
** Operation: Filter out noise from the specified outline. This is
** done by changing the direction of short segments of the
** outline to the same direction as the preceding outline
** segment.
** Return: none
** Exceptions: none
** History: Fri May 4 10:23:45 1990, DSJ, Created.
*/
MFOUTLINE Current;
MFOUTLINE Last;
MFOUTLINE First;
FLOAT32 Length;
int NumFound = 0;
DIRECTION DirectionOfFirst = north;
if (DegenerateOutline (Outline))
return;
/* find 2 segments of different orientation which are long enough to
not be filtered. If two cannot be found, leave the outline unchanged. */
First = NextDirectionChange (Outline);
Last = First;
do {
Current = NextDirectionChange (Last);
Length = DistanceBetween ((PointAt (Current)->Point),
PointAt (Last)->Point);
if (Length >= NoiseSegmentLength) {
if (NumFound == 0) {
NumFound = 1;
DirectionOfFirst = PointAt (Last)->Direction;
}
else if (DirectionOfFirst != PointAt (Last)->Direction)
break;
}
Last = Current;
}
while (Last != First);
if (Current == Last)
return;
/* find each segment and filter it out if it is too short. Note that
the above code guarantees that the initial direction change will
not be removed, therefore the loop will terminate. */
First = Last;
do {
Current = NextDirectionChange (Last);
Length = DistanceBetween (PointAt (Current)->Point,
PointAt (Last)->Point);
if (Length < NoiseSegmentLength)
ChangeDirection (Last, Current, PointAt (Last)->PreviousDirection);
Last = Current;
}
while (Last != First);
} /* FilterEdgeNoise */
/*---------------------------------------------------------------------------*/
void FindDirectionChanges(MFOUTLINE Outline,
FLOAT32 MinSlope,
FLOAT32 MaxSlope) {
/*
** Parameters:
** Outline micro-feature outline to analyze
** MinSlope controls "snapping" of segments to horizontal
** MaxSlope controls "snapping" of segments to vertical
** Globals: none
** Operation:
** This routine searches thru the specified outline, computes
** a slope for each vector in the outline, and marks each
** vector as having one of the following directions:
** N, S, E, W, NE, NW, SE, SW
** This information is then stored in the outline and the
** outline is returned.
** Return: none
** Exceptions: none
** History: 7/21/89, DSJ, Created.
*/
MFEDGEPT *Current;
MFEDGEPT *Last;
MFOUTLINE EdgePoint;
if (DegenerateOutline (Outline))
return;
Last = PointAt (Outline);
Outline = NextPointAfter (Outline);
EdgePoint = Outline;
do {
Current = PointAt (EdgePoint);
ComputeDirection(Last, Current, MinSlope, MaxSlope);
Last = Current;
EdgePoint = NextPointAfter (EdgePoint);
}
while (EdgePoint != Outline);
} /* FindDirectionChanges */
/*---------------------------------------------------------------------------*/
void FreeMFOutline(void *arg) { //MFOUTLINE Outline)
/*
** Parameters:
** Outline micro-feature outline to be freed
** Globals: none
** Operation:
** This routine deallocates all of the memory consumed by
** a micro-feature outline.
** Return: none
** Exceptions: none
** History: 7/27/89, DSJ, Created.
*/
MFOUTLINE Start;
MFOUTLINE Outline = (MFOUTLINE) arg;
/* break the circular outline so we can use std. techniques to deallocate */
Start = rest (Outline);
set_rest(Outline, NIL);
while (Start != NULL) {
free_struct (first_node (Start), sizeof (MFEDGEPT), "MFEDGEPT");
Start = pop (Start);
}
} /* FreeMFOutline */
/*---------------------------------------------------------------------------*/
void FreeOutlines(LIST Outlines) {
/*
** Parameters:
** Outlines list of mf-outlines to be freed
** Globals: none
** Operation: Release all memory consumed by the specified list
** of outlines.
** Return: none
** Exceptions: none
** History: Thu Dec 13 16:14:50 1990, DSJ, Created.
*/
destroy_nodes(Outlines, FreeMFOutline);
} /* FreeOutlines */
/*---------------------------------------------------------------------------*/
void MarkDirectionChanges(MFOUTLINE Outline) {
/*
** Parameters:
** Outline micro-feature outline to analyze
** Globals: none
** Operation:
** This routine searches thru the specified outline and finds
** the points at which the outline changes direction. These
** points are then marked as "extremities". This routine is
** used as an alternative to FindExtremities(). It forces the
** endpoints of the microfeatures to be at the direction
** changes rather than at the midpoint between direction
** changes.
** Return: none
** Exceptions: none
** History: 6/29/90, DSJ, Created.
*/
MFOUTLINE Current;
MFOUTLINE Last;
MFOUTLINE First;
if (DegenerateOutline (Outline))
return;
First = NextDirectionChange (Outline);
Last = First;
do {
Current = NextDirectionChange (Last);
MarkPoint (PointAt (Current));
Last = Current;
}
while (Last != First);
} /* MarkDirectionChanges */
/*---------------------------------------------------------------------------*/
MFEDGEPT *NewEdgePoint() {
/*
** Parameters: none
** Globals: none
** Operation:
** This routine allocates and returns a new edge point for
** a micro-feature outline.
** Return: New edge point.
** Exceptions: none
** History: 7/21/89, DSJ, Created.
*/
return ((MFEDGEPT *) alloc_struct (sizeof (MFEDGEPT), "MFEDGEPT"));
} /* NewEdgePoint */
/*---------------------------------------------------------------------------*/
MFOUTLINE NextExtremity(MFOUTLINE EdgePoint) {
/*
** Parameters:
** EdgePoint start search from this point
** Globals: none
** Operation:
** This routine returns the next point in the micro-feature
** outline that is an extremity. The search starts after
** EdgePoint. The routine assumes that the outline being
** searched is not a degenerate outline (i.e. it must have
** 2 or more edge points).
** Return: Next extremity in the outline after EdgePoint.
** Exceptions: none
** History: 7/26/89, DSJ, Created.
*/
EdgePoint = NextPointAfter (EdgePoint);
while (!PointAt (EdgePoint)->ExtremityMark)
EdgePoint = NextPointAfter (EdgePoint);
return (EdgePoint);
} /* NextExtremity */
/*---------------------------------------------------------------------------*/
void NormalizeOutline(MFOUTLINE Outline,
LINE_STATS *LineStats,
FLOAT32 XOrigin) {
/*
** Parameters:
** Outline outline to be normalized
** LineStats statistics for text line normalization
** XOrigin x-origin of text
** Globals: none
** Operation:
** This routine normalizes the coordinates of the specified
** outline so that the outline is deskewed down to the
** baseline, translated so that x=0 is at XOrigin, and scaled
** so that the height of a character cell from descender to
** ascender is 1. Of this height, 0.25 is for the descender,
** 0.25 for the ascender, and 0.5 for the x-height. The
** y coordinate of the baseline is 0.
** Return: none
** Exceptions: none
** History: 8/2/89, DSJ, Created.
** 10/23/89, DSJ, Added ascender/descender stretching.
** 11/89, DSJ, Removed ascender/descender stretching.
*/
MFEDGEPT *Current;
MFOUTLINE EdgePoint;
FLOAT32 ScaleFactor;
FLOAT32 AscStretch;
FLOAT32 DescStretch;
if (Outline != NIL) {
ScaleFactor = ComputeScaleFactor (LineStats);
AscStretch = 1.0;
DescStretch = 1.0;
EdgePoint = Outline;
do {
Current = PointAt (EdgePoint);
Current->Point.y = ScaleFactor *
(Current->Point.y -
BaselineAt (LineStats, XPositionOf (Current)));
if (Current->Point.y > NORMAL_X_HEIGHT)
Current->Point.y = NORMAL_X_HEIGHT +
(Current->Point.y - NORMAL_X_HEIGHT) / AscStretch;
else if (Current->Point.y < NORMAL_BASELINE)
Current->Point.y = NORMAL_BASELINE +
(Current->Point.y - NORMAL_BASELINE) / DescStretch;
Current->Point.x = ScaleFactor *
(Current->Point.x - XOrigin);
EdgePoint = NextPointAfter (EdgePoint);
}
while (EdgePoint != Outline);
}
} /* NormalizeOutline */
/*---------------------------------------------------------------------------*/
void NormalizeOutlines(LIST Outlines,
LINE_STATS *LineStats,
FLOAT32 *XScale,
FLOAT32 *YScale) {
/*
** Parameters:
** Outlines list of outlines to be normalized
** LineStats statistics for text line normalization
** XScale x-direction scale factor used by routine
** YScale y-direction scale factor used by routine
** Globals:
** classify_norm_method method being used for normalization
** classify_char_norm_range map radius of gyration to this value
** Operation: This routine normalizes every outline in Outlines
** according to the currently selected normalization method.
** It also returns the scale factors that it used to do this
** scaling. The scale factors returned represent the x and
** y sizes in the normalized coordinate system that correspond
** to 1 pixel in the original coordinate system.
** Return: none (Outlines are changed and XScale and YScale are updated)
** Exceptions: none
** History: Fri Dec 14 08:14:55 1990, DSJ, Created.
*/
MFOUTLINE Outline;
OUTLINE_STATS OutlineStats;
FLOAT32 BaselineScale;
switch (classify_norm_method) {
case character:
ComputeOutlineStats(Outlines, &OutlineStats);
/* limit scale factor to avoid overscaling small blobs (.,`'),
thin blobs (l1ift), and merged blobs */
*XScale = *YScale = BaselineScale = ComputeScaleFactor (LineStats);
*XScale *= OutlineStats.Ry;
*YScale *= OutlineStats.Rx;
if (*XScale < classify_min_norm_scale_x)
*XScale = classify_min_norm_scale_x;
if (*YScale < classify_min_norm_scale_y)
*YScale = classify_min_norm_scale_y;
if (*XScale > classify_max_norm_scale_x &&
*YScale <= classify_max_norm_scale_y)
*XScale = classify_max_norm_scale_x;
*XScale = classify_char_norm_range * BaselineScale / *XScale;
*YScale = classify_char_norm_range * BaselineScale / *YScale;
iterate(Outlines) {
Outline = (MFOUTLINE) first_node (Outlines);
CharNormalizeOutline (Outline,
OutlineStats.x, OutlineStats.y,
*XScale, *YScale);
}
break;
case baseline:
iterate(Outlines) {
Outline = (MFOUTLINE) first_node (Outlines);
NormalizeOutline (Outline, LineStats, 0.0);
}
*XScale = *YScale = ComputeScaleFactor (LineStats);
break;
}
} /* NormalizeOutlines */
/*---------------------------------------------------------------------------*/
void SettupBlobConversion(TBLOB *Blob) {
/*
** Parameters:
** Blob blob that is to be converted
** Globals:
** BlobCenter center of blob to be converted
** Operation: Compute the center of the blob's bounding box and save
** it in a global variable. This routine must be called before
** any calls to ConvertOutline. It must be called once per
** blob.
** Return: none
** Exceptions: none
** History: Thu May 17 11:06:17 1990, DSJ, Created.
*/
ComputeBlobCenter(Blob, &BlobCenter);
} /* SettupBlobConversion */
/*---------------------------------------------------------------------------*/
void SmearExtremities(MFOUTLINE Outline, FLOAT32 XScale, FLOAT32 YScale) {
/*
** Parameters:
** Outline outline whose extremities are to be smeared
** XScale factor used to normalize outline in x dir
** YScale factor used to normalize outline in y dir
** Globals: none
** Operation:
** This routine smears the extremities of the specified outline.
** It does this by adding a random number between
** -0.5 and 0.5 pixels (that is why X/YScale are needed) to
** the x and y position of the point. This is done so that
** the discrete nature of the original scanned image does not
** affect the statistical clustering used during training.
** Return: none
** Exceptions: none
** History: 1/11/90, DSJ, Created.
*/
MFEDGEPT *Current;
MFOUTLINE EdgePoint;
FLOAT32 MinXSmear;
FLOAT32 MaxXSmear;
FLOAT32 MinYSmear;
FLOAT32 MaxYSmear;
if (Outline != NIL) {
MinXSmear = -0.5 * XScale;
MaxXSmear = 0.5 * XScale;
MinYSmear = -0.5 * YScale;
MaxYSmear = 0.5 * YScale;
EdgePoint = Outline;
do {
Current = PointAt (EdgePoint);
if (Current->ExtremityMark) {
Current->Point.x +=
UniformRandomNumber(MinXSmear, MaxXSmear);
Current->Point.y +=
UniformRandomNumber(MinYSmear, MaxYSmear);
}
EdgePoint = NextPointAfter (EdgePoint);
}
while (EdgePoint != Outline);
}
} /* SmearExtremities */
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void ChangeDirection(MFOUTLINE Start, MFOUTLINE End, DIRECTION Direction) {
/*
** Parameters:
** Start, End defines segment of outline to be modified
** Direction new direction to assign to segment
** Globals: none
** Operation: Change the direction of every vector in the specified
** outline segment to Direction. The segment to be changed
** starts at Start and ends at End. Note that the previous
** direction of End must also be changed to reflect the
** change in direction of the point before it.
** Return: none
** Exceptions: none
** History: Fri May 4 10:42:04 1990, DSJ, Created.
*/
MFOUTLINE Current;
for (Current = Start; Current != End; Current = NextPointAfter (Current))
PointAt (Current)->Direction = Direction;
PointAt (End)->PreviousDirection = Direction;
} /* ChangeDirection */
/*---------------------------------------------------------------------------*/
void CharNormalizeOutline(MFOUTLINE Outline,
FLOAT32 XCenter,
FLOAT32 YCenter,
FLOAT32 XScale,
FLOAT32 YScale) {
/*
** Parameters:
** Outline outline to be character normalized
** XCenter, YCenter center point for normalization
** XScale, YScale scale factors for normalization
** Globals: none
** Operation: This routine normalizes each point in Outline by
** translating it to the specified center and scaling it
** anisotropically according to the given scale factors.
** Return: none
** Exceptions: none
** History: Fri Dec 14 10:27:11 1990, DSJ, Created.
*/
MFOUTLINE First, Current;
MFEDGEPT *CurrentPoint;
if (Outline == NIL)
return;
First = Outline;
Current = First;
do {
CurrentPoint = PointAt (Current);
CurrentPoint->Point.x =
(CurrentPoint->Point.x - XCenter) * XScale;
CurrentPoint->Point.y =
(CurrentPoint->Point.y - YCenter) * YScale;
Current = NextPointAfter (Current);
}
while (Current != First);
} /* CharNormalizeOutline */
/*---------------------------------------------------------------------------*/
void ComputeDirection(MFEDGEPT *Start,
MFEDGEPT *Finish,
FLOAT32 MinSlope,
FLOAT32 MaxSlope) {
/*
** Parameters:
** Start starting point to compute direction from
** Finish finishing point to compute direction to
** MinSlope slope below which lines are horizontal
** MaxSlope slope above which lines are vertical
** Globals: none
** Operation:
** This routine computes the slope from Start to Finish and
** and then computes the approximate direction of the line
** segment from Start to Finish. The direction is quantized
** into 8 buckets:
** N, S, E, W, NE, NW, SE, SW
** Both the slope and the direction are then stored into
** the appropriate fields of the Start edge point. The
** direction is also stored into the PreviousDirection field
** of the Finish edge point.
** Return: none
** Exceptions: none
** History: 7/25/89, DSJ, Created.
*/
FVECTOR Delta;
Delta.x = Finish->Point.x - Start->Point.x;
Delta.y = Finish->Point.y - Start->Point.y;
if (Delta.x == 0)
if (Delta.y < 0) {
Start->Slope = -MAX_FLOAT32;
Start->Direction = south;
}
else {
Start->Slope = MAX_FLOAT32;
Start->Direction = north;
}
else {
Start->Slope = Delta.y / Delta.x;
if (Delta.x > 0)
if (Delta.y > 0)
if (Start->Slope > MinSlope)
if (Start->Slope < MaxSlope)
Start->Direction = northeast;
else
Start->Direction = north;
else
Start->Direction = east;
else if (Start->Slope < -MinSlope)
if (Start->Slope > -MaxSlope)
Start->Direction = southeast;
else
Start->Direction = south;
else
Start->Direction = east;
else if (Delta.y > 0)
if (Start->Slope < -MinSlope)
if (Start->Slope > -MaxSlope)
Start->Direction = northwest;
else
Start->Direction = north;
else
Start->Direction = west;
else if (Start->Slope > MinSlope)
if (Start->Slope < MaxSlope)
Start->Direction = southwest;
else
Start->Direction = south;
else
Start->Direction = west;
}
Finish->PreviousDirection = Start->Direction;
} /* ComputeDirection */
/*---------------------------------------------------------------------------*/
void FinishOutlineStats(register OUTLINE_STATS *OutlineStats) {
/*
** Parameters:
** OutlineStats statistics about a set of outlines
** Globals: none
** Operation: Use the preliminary statistics accumulated in OutlineStats
** to compute the final statistics.
** (see Dan Johnson's Tesseract lab
** notebook #2, pgs. 74-78).
** Return: none
** Exceptions: none
** History: Fri Dec 14 10:13:36 1990, DSJ, Created.
*/
OutlineStats->x = 0.5 * OutlineStats->My / OutlineStats->L;
OutlineStats->y = 0.5 * OutlineStats->Mx / OutlineStats->L;
OutlineStats->Ix = (OutlineStats->Ix / 3.0 -
OutlineStats->y * OutlineStats->Mx +
OutlineStats->y * OutlineStats->y * OutlineStats->L);
OutlineStats->Iy = (OutlineStats->Iy / 3.0 -
OutlineStats->x * OutlineStats->My +
OutlineStats->x * OutlineStats->x * OutlineStats->L);
/* Ix and/or Iy could possibly be negative due to roundoff error */
if (OutlineStats->Ix < 0.0)
OutlineStats->Ix = MIN_INERTIA;
if (OutlineStats->Iy < 0.0)
OutlineStats->Iy = MIN_INERTIA;
OutlineStats->Rx = sqrt (OutlineStats->Ix / OutlineStats->L);
OutlineStats->Ry = sqrt (OutlineStats->Iy / OutlineStats->L);
OutlineStats->Mx *= 0.5;
OutlineStats->My *= 0.5;
} /* FinishOutlineStats */
/*---------------------------------------------------------------------------*/
void InitOutlineStats(OUTLINE_STATS *OutlineStats) {
/*
** Parameters:
** OutlineStats stats data structure to be initialized
** Globals: none
** Operation: Initialize the outline statistics data structure so
** that it is ready to start accumulating statistics.
** Return: none
** Exceptions: none
** History: Fri Dec 14 08:55:22 1990, DSJ, Created.
*/
OutlineStats->Mx = 0.0;
OutlineStats->My = 0.0;
OutlineStats->L = 0.0;
OutlineStats->x = 0.0;
OutlineStats->y = 0.0;
OutlineStats->Ix = 0.0;
OutlineStats->Iy = 0.0;
OutlineStats->Rx = 0.0;
OutlineStats->Ry = 0.0;
} /* InitOutlineStats */
/*---------------------------------------------------------------------------*/
MFOUTLINE NextDirectionChange(MFOUTLINE EdgePoint) {
/*
** Parameters:
** EdgePoint start search from this point
** Globals: none
** Operation:
** This routine returns the next point in the micro-feature
** outline that has a direction different than EdgePoint. The
** routine assumes that the outline being searched is not a
** degenerate outline (i.e. it must have 2 or more edge points).
** Return: Point of next direction change in micro-feature outline.
** Exceptions: none
** History: 7/25/89, DSJ, Created.
*/
DIRECTION InitialDirection;
InitialDirection = PointAt (EdgePoint)->Direction;
do
EdgePoint = NextPointAfter (EdgePoint);
while (PointAt (EdgePoint)->Direction == InitialDirection);
return (EdgePoint);
} /* NextDirectionChange */
/*---------------------------------------------------------------------------*/
void UpdateOutlineStats(register OUTLINE_STATS *OutlineStats,
register FLOAT32 x1,
register FLOAT32 x2,
register FLOAT32 y1,
register FLOAT32 y2) {
/*
** Parameters:
** OutlineStats statistics to add this segment to
** x1, y1, x2, y2 segment to be added to statistics
** Globals: none
** Operation: This routine adds the statistics for the specified
** line segment to OutlineStats. The statistics that are
** kept are:
** sum of length of all segments
** sum of 2*Mx for all segments
** sum of 2*My for all segments
** sum of 2*Mx*(y1+y2) - L*y1*y2 for all segments
** sum of 2*My*(x1+x2) - L*x1*x2 for all segments
** These numbers, once collected can later be used to easily
** compute the center of mass, first and second moments,
** and radii of gyration. (see Dan Johnson's Tesseract lab
** notebook #2, pgs. 74-78).
** Return: none
** Exceptions: none
** History: Fri Dec 14 08:59:17 1990, DSJ, Created.
*/
register FLOAT64 L;
register FLOAT64 Mx2;
register FLOAT64 My2;
/* compute length of segment */
L = sqrt ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
OutlineStats->L += L;
/* compute 2Mx and 2My components */
Mx2 = L * (y1 + y2);
My2 = L * (x1 + x2);
OutlineStats->Mx += Mx2;
OutlineStats->My += My2;
/* compute second moment component */
OutlineStats->Ix += Mx2 * (y1 + y2) - L * y1 * y2;
OutlineStats->Iy += My2 * (x1 + x2) - L * x1 * x2;
} /* UpdateOutlineStats */
| [
"[email protected]"
] | |
120a96463402db47995dc66f75fb4f1003b6575e | 41ad38f6a5686339877f47b88273469c1cf1b04a | /GraphicsDisplay.hpp | 5eee2ce5fb7d0022514c920c05feb6ee564c14b3 | [] | no_license | sayakura/42__System_Monitor | 8ff94d8a72ff413fabaa25904b34dd5e83666d32 | 2d716d4a359ce98128ac262dcb6f80dc7c7f3c96 | refs/heads/master | 2020-05-22T12:46:58.250450 | 2019-05-13T05:01:34 | 2019-05-13T05:01:34 | 186,348,202 | 0 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 2,695 | hpp | /* ************************************************************************** */
/* */
/* ::: :::::::: */
/* GraphicsDisplay.hpp :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: dpeck <[email protected]> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2019/05/11 14:09:43 by dpeck #+# #+# */
/* Updated: 2019/05/12 20:08:58 by dpeck ### ########.fr */
/* */
/* ************************************************************************** */
#ifndef GRAPHICSDISPLAY_HPP
#define GRAPHICSDISPLAY_HPP
#define WINWIDTH 600
#include "SDL.h"
#include "SDL_ttf.h"
#include "IMonitorModule.hpp"
#include "IMonitorDisplay.hpp"
#include <deque>
#include <vector>
#include <string>
#include <unistd.h>
class IMonitorModule;
class GraphicsDisplay : public IMonitorDisplay {
private:
SDL_Window *_window;
SDL_Renderer *_renderer;
static TTF_Font *_font;
std::vector<IMonitorModule *> _modules;
std::vector<int> _heightSlots;
bool _quit;
GraphicsDisplay();
public:
GraphicsDisplay(std::vector<IMonitorModule *>);
~GraphicsDisplay();
GraphicsDisplay(GraphicsDisplay const &);
GraphicsDisplay const & operator=(GraphicsDisplay const &);
void render();
static void drawRect(SDL_Rect r, SDL_Renderer* renderer, SDL_Color color);
static void drawBorderedRect(SDL_Rect r, SDL_Renderer* renderer, SDL_Color border, SDL_Color inner);
static void drawBlockText(const char *message, SDL_Rect r, int mWidth, SDL_Renderer* renderer, SDL_Color border, SDL_Color inner, SDL_Color text);
static void drawText(const char *message, SDL_Rect r, int mWidth, SDL_Renderer* renderer, SDL_Color text);
static void drawLine(int x1, int y1, int x2, int y2, SDL_Renderer* renderer, SDL_Color lineColor);
//graphs are drawn with rectangle of cur module, a deque of values, and an offset madeup of current Y position plus header Y
static void drawHistogram(SDL_Rect module, SDL_Renderer * renderer, std::deque<double> randNums, int offset, SDL_Color barColor);
static void drawLineGraph(SDL_Rect module, SDL_Renderer * renderer, std::deque<double> randNums, int offset);
void getHeightSlots(std::vector<IMonitorModule *>);
void pollEvents();
SDL_Renderer * getRenderer();
};
#endif | [
"[email protected]"
] | |
0b129b2d869eccaf30b3c41d050e274f6904081c | 97ca456c57dd3e5e4e05c8ec23f61efb744431c7 | /.bak/SbrXXX05.h | a0dbe21562d9f8a9cfc1c49b4da3b7bc18315478 | [] | no_license | kwokhung/testESP32 | 870b807749b7ff3b77dbb91d6e4bb61f675b9953 | 0005d5b8e131b86cda8d29c1be6325d58b86d3ab | refs/heads/master | 2020-12-30T11:02:32.516155 | 2019-03-18T04:56:37 | 2019-03-18T04:56:37 | 98,839,362 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,185 | h | #ifndef SbrXXX05_h
#define SbrXXX05_h
#include <Kalman.h>
#include "SbrBase.h"
#define RESTRICT_PITCH // Comment out to restrict roll to ±90deg instead - please read: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf
#define IMUAddress 0x68
#define I2C_TIMEOUT 1000
class SbrXXX05 : public SbrBase<SbrXXX05>
{
public:
friend class SbrBase;
uint8_t mpuWrite(uint8_t registerAddress, uint8_t data, bool sendStop);
uint8_t mpuWrite(uint8_t registerAddress, uint8_t *data, uint8_t length, bool sendStop);
uint8_t mpuRead(uint8_t registerAddress, uint8_t *data, uint8_t nbytes);
private:
SbrXXX05(std::string name)
: SbrBase(name)
{
}
void setup() override;
void loop() override;
Kalman kalmanX; // Create the Kalman instances
Kalman kalmanY;
/* IMU Data */
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;
double gyroXangle, gyroYangle; // Angle calculate using the gyro only
double compAngleX, compAngleY; // Calculated angle using a complementary filter
double kalAngleX, kalAngleY; // Calculated angle using a Kalman filter
uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data
};
#endif | [
"[email protected]"
] | |
c8111236d062930b5e61856f0a3747a673c9cf63 | 4c25432a6d82aaebd82fd48e927317b15a6bf6ab | /data/dataset_2017/dataset_2017_8_formatted/Thanabhat/3264486_5633382285312000_Thanabhat.cpp | 5095464bfeffa3cc6d7421623d9f84183213d56d | [] | no_license | wzj1988tv/code-imitator | dca9fb7c2e7559007e5dbadbbc0d0f2deeb52933 | 07a461d43e5c440931b6519c8a3f62e771da2fc2 | refs/heads/master | 2020-12-09T05:33:21.473300 | 2020-01-09T15:29:24 | 2020-01-09T15:29:24 | 231,937,335 | 1 | 0 | null | 2020-01-05T15:28:38 | 2020-01-05T15:28:37 | null | UTF-8 | C++ | false | false | 708 | cpp | #include <iostream>
using namespace std;
int solve(int cc) {
string str;
cin >> str;
int p = 0;
while (p < str.length() - 1) {
if (str[p] > str[p + 1]) {
break;
}
p++;
}
if (p == str.length() - 1) {
cout << "Case #" << cc << ": " << str << endl;
return 1;
}
while (p > 0 && str[p - 1] == str[p]) {
p--;
}
str[p] = str[p] - 1;
for (int i = p + 1; i < str.length(); i++) {
str[i] = '9';
}
if (str[0] == '0') {
str.erase(str.begin());
}
cout << "Case #" << cc << ": " << str << endl;
return 1;
}
int main() {
int t;
cin >> t;
for (int i = 0; i < t; i++) {
solve(i + 1);
}
return 0;
}
| [
"[email protected]"
] | |
934fd98cbc4049b477ddb436ee6c44ca5c543c28 | 44db3381986906baa858e4012a21f20cb6dfe9a6 | /src/intersim2/outputset.cpp | 8a9d2cf10155e25071d7cf26eb532ca888bf1c94 | [
"BSD-3-Clause"
] | permissive | lakshmankollipara/gpu_current | 457da2e5c4e9e1d08d6d1eb520c0d4f45442e1eb | 10889439f3fbbe9f8576f8e8bbb0be2602a6d687 | refs/heads/master | 2021-01-13T08:58:08.992168 | 2016-09-29T19:45:57 | 2016-09-29T19:45:57 | 69,601,629 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 3,869 | cpp | // $Id: outputset.cpp 5188 2012-08-30 00:31:31Z dub $
/*
Copyright (c) 2007-2012, Trustees of The Leland Stanford Junior University
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*outputset.cpp
*
*output set assigns a flit which output to go to in a router
*used by the VC class
*the output assignment is done by the routing algorithms..
*
*/
#include <cassert>
#include "booksim.hpp"
#include "outputset.hpp"
void OutputSet::Clear( )
{
_outputs.clear( );
}
void OutputSet::Add( int output_port, int vc, int pri )
{
AddRange( output_port, vc, vc, pri );
}
void OutputSet::AddRange( int output_port, int vc_start, int vc_end, int pri )
{
sSetElement s;
s.vc_start = vc_start;
s.vc_end = vc_end;
s.pri = pri;
s.output_port = output_port;
_outputs.insert( s );
}
//legacy support, for performance, just use GetSet()
int OutputSet::NumVCs( int output_port ) const
{
int total = 0;
set<sSetElement>::const_iterator i = _outputs.begin( );
while (i != _outputs.end( )) {
if (i->output_port == output_port) {
total += (i->vc_end - i->vc_start + 1);
}
i++;
}
return total;
}
bool OutputSet::OutputEmpty( int output_port ) const
{
set<sSetElement>::const_iterator i = _outputs.begin( );
while (i != _outputs.end( )) {
if (i->output_port == output_port) {
return false;
}
i++;
}
return true;
}
const set<OutputSet::sSetElement> & OutputSet::GetSet() const {
return _outputs;
}
//legacy support, for performance, just use GetSet()
int OutputSet::GetVC( int output_port, int vc_index, int *pri ) const
{
int range;
int remaining = vc_index;
int vc = -1;
if ( pri ) { *pri = -1; }
set<sSetElement>::const_iterator i = _outputs.begin( );
while (i != _outputs.end( )) {
if (i->output_port == output_port) {
range = i->vc_end - i->vc_start + 1;
if ( remaining >= range ) {
remaining -= range;
} else {
vc = i->vc_start + remaining;
if ( pri ) {
*pri = i->pri;
}
break;
}
}
i++;
}
return vc;
}
//legacy support, for performance, just use GetSet()
bool OutputSet::GetPortVC( int *out_port, int *out_vc ) const
{
bool single_output = false;
int used_outputs = 0;
set<sSetElement>::const_iterator i = _outputs.begin( );
if (i != _outputs.end( )) {
used_outputs = i->output_port;
}
while (i != _outputs.end( )) {
if ( i->vc_start == i->vc_end ) {
*out_vc = i->vc_start;
*out_port = i->output_port;
single_output = true;
} else {
// multiple vc's selected
break;
}
if (used_outputs != i->output_port) {
// multiple outputs selected
single_output = false;
break;
}
i++;
}
return single_output;
}
| [
"[email protected]"
] | |
3928eb77c278b8d8ecd694d8572f0fac20abe7b8 | 606d9876af16153b24a79714b9a8b078633c991b | /3rdparty/mylib/TextureUtil.h | 9aecbb9448b3604ab504fb9a090cd095913dcb03 | [] | no_license | cntlb/Opengl-linux | 7c4355f10d33271019c263477a022c8c4c6e2369 | 2743388939846d2b4c9a082a55ef6f5c466ff280 | refs/heads/master | 2021-01-25T13:25:23.840707 | 2018-03-14T11:01:18 | 2018-03-14T11:01:18 | 123,571,974 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,534 | h | //
// Created by jmu on 18-3-9.
//
#ifndef INC_2_4_TEXTURE_TEXTURE_H
#define INC_2_4_TEXTURE_TEXTURE_H
#include "common.h"
#define LOG_TAG "TextureUtil.h"
class TextureUtil{
public:
static GLuint load(const char* path, void (*texParamFunc)()=TextureUtil::texFunc){
GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
int w,h,channels;
std::string pathName = std::string("../res/")+std::string(path);
stbi_uc* image = stbi_load(pathName.c_str(), &w, &h, &channels, 0);
GLint format;
if(channels == 1){
format = GL_RED;
}else if(channels == 3){
format = GL_RGB;
}else if(channels == 4){
format = GL_RGBA;
}
if(image){
glTexImage2D(GL_TEXTURE_2D, 0, format, w, h, 0, format, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
texParamFunc();
stbi_image_free(image);
}else{
LOGE("load texture error! file: %s", pathName.c_str());
stbi_image_free(image);
}
return texture;
}
private:
static void texFunc(){
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
};
#endif //INC_2_4_TEXTURE_TEXTURE_H
| [
"[email protected]"
] | |
c2cffe098429e136aba0db297196bda85f5b0b46 | 4bcc9806152542ab43fc2cf47c499424f200896c | /tensorflow/core/kernels/mlir_generated/gpu_op_complex_abs.cc | 69f45d58b18eac44f019aa12060ae83a812a3a57 | [
"Apache-2.0",
"LicenseRef-scancode-generic-cla",
"BSD-2-Clause"
] | permissive | tensorflow/tensorflow | 906276dbafcc70a941026aa5dc50425ef71ee282 | a7f3934a67900720af3d3b15389551483bee50b8 | refs/heads/master | 2023-08-25T04:24:41.611870 | 2023-08-25T04:06:24 | 2023-08-25T04:14:08 | 45,717,250 | 208,740 | 109,943 | Apache-2.0 | 2023-09-14T20:55:50 | 2015-11-07T01:19:20 | C++ | UTF-8 | C++ | false | false | 1,130 | cc | /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <complex>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/kernels/mlir_generated/base_gpu_op.h"
namespace tensorflow {
GENERATE_UNARY_GPU_KERNEL2(ComplexAbs, DT_COMPLEX64, DT_FLOAT);
REGISTER_COMPLEX_GPU_KERNEL(ComplexAbs, DT_COMPLEX64, DT_FLOAT);
GENERATE_UNARY_GPU_KERNEL2(ComplexAbs, DT_COMPLEX128, DT_DOUBLE);
REGISTER_COMPLEX_GPU_KERNEL(ComplexAbs, DT_COMPLEX128, DT_DOUBLE);
} // namespace tensorflow
| [
"[email protected]"
] | |
5589aa01f6692df2f5b10f4067a38b3d39a9dbaf | ace28e29eaa4ff031fdf7aa4d29bb5d85b46eaa3 | /Visual Mercutio/zSOAP/PSS_SoapPublisher_MessengerInfo.h | 5480f478fc31fe31eaea76f9ff47d6bcea3d83cb | [
"MIT"
] | permissive | emtee40/Visual-Mercutio | 675ff3d130783247b97d4b0c8760f931fbba68b3 | f079730005b6ce93d5e184bb7c0893ccced3e3ab | refs/heads/master | 2023-07-16T20:30:29.954088 | 2021-08-16T19:19:57 | 2021-08-16T19:19:57 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,843 | h | /****************************************************************************
* ==> PSS_SoapPublisher_MessengerInfo -------------------------------------*
****************************************************************************
* Description : SOAP protocol to publish the Messenger info *
* Developer : Processsoft *
****************************************************************************/
#ifndef PSS_SoapPublisher_MessengerInfoH
#define PSS_SoapPublisher_MessengerInfoH
// change the definition of AFX_EXT... to make it import
#undef AFX_EXT_CLASS
#undef AFX_EXT_API
#undef AFX_EXT_DATA
#define AFX_EXT_CLASS AFX_CLASS_IMPORT
#define AFX_EXT_API AFX_API_IMPORT
#define AFX_EXT_DATA AFX_DATA_IMPORT
#ifdef _ZSOAPEXPORT
// put the values back to make AFX_EXT_CLASS export again
#undef AFX_EXT_CLASS
#undef AFX_EXT_API
#undef AFX_EXT_DATA
#define AFX_EXT_CLASS AFX_CLASS_EXPORT
#define AFX_EXT_API AFX_API_EXPORT
#define AFX_EXT_DATA AFX_DATA_EXPORT
#endif
/**
* SOAP protocol to publish the Messenger info
*@author Dominique Aigroz, Jean-Milost Reymond
*/
class AFX_EXT_CLASS PSS_SoapPublisher_MessengerInfo
{
public:
PSS_SoapPublisher_MessengerInfo();
virtual ~PSS_SoapPublisher_MessengerInfo();
/**
* Gets the server version
*@return server version
*/
virtual int GetVersion();
/**
* Gets the language
*@return the language
*/
virtual std::string GetLanguage();
/**
* Authenticate on server (administrator only)
*@param login - login name
*@param password - password
*@return
*/
virtual int Authenticate(const std::string& login, const std::string& password);
};
#endif
| [
"[email protected]"
] | |
495f71e6f10034311d75e3a925a58a18e5c67a24 | c2d270aff0a4d939f43b6359ac2c564b2565be76 | /src/gin/v8_initializer.cc | 292f4cb2a4d6a1f03c0a0f34c5188037204ce3fd | [
"BSD-3-Clause"
] | permissive | bopopescu/QuicDep | dfa5c2b6aa29eb6f52b12486ff7f3757c808808d | bc86b705a6cf02d2eade4f3ea8cf5fe73ef52aa0 | refs/heads/master | 2022-04-26T04:36:55.675836 | 2020-04-29T21:29:26 | 2020-04-29T21:29:26 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 14,224 | cc | // Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gin/v8_initializer.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/feature_list.h"
#include "base/files/file.h"
#include "base/files/file_path.h"
#include "base/files/memory_mapped_file.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/path_service.h"
#include "base/rand_util.h"
#include "base/strings/sys_string_conversions.h"
#include "base/sys_info.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "gin/gin_features.h"
#if defined(V8_USE_EXTERNAL_STARTUP_DATA)
#if defined(OS_ANDROID)
#include "base/android/apk_assets.h"
#elif defined(OS_MACOSX)
#include "base/mac/foundation_util.h"
#endif
#endif // V8_USE_EXTERNAL_STARTUP_DATA
namespace gin {
namespace {
// None of these globals are ever freed nor closed.
base::MemoryMappedFile* g_mapped_natives = nullptr;
base::MemoryMappedFile* g_mapped_snapshot = nullptr;
base::MemoryMappedFile* g_mapped_v8_context_snapshot = nullptr;
bool GenerateEntropy(unsigned char* buffer, size_t amount) {
base::RandBytes(buffer, amount);
return true;
}
void GetMappedFileData(base::MemoryMappedFile* mapped_file,
v8::StartupData* data) {
if (mapped_file) {
data->data = reinterpret_cast<const char*>(mapped_file->data());
data->raw_size = static_cast<int>(mapped_file->length());
} else {
data->data = nullptr;
data->raw_size = 0;
}
}
#if defined(V8_USE_EXTERNAL_STARTUP_DATA)
// File handles intentionally never closed. Not using File here because its
// Windows implementation guards against two instances owning the same
// PlatformFile (which we allow since we know it is never freed).
using OpenedFileMap =
std::map<const char*,
std::pair<base::PlatformFile, base::MemoryMappedFile::Region>>;
base::LazyInstance<OpenedFileMap>::Leaky g_opened_files =
LAZY_INSTANCE_INITIALIZER;
const char kNativesFileName[] = "natives_blob.bin";
const char kV8ContextSnapshotFileName[] = "v8_context_snapshot.bin";
#if defined(OS_ANDROID)
const char kSnapshotFileName64[] = "snapshot_blob_64.bin";
const char kSnapshotFileName32[] = "snapshot_blob_32.bin";
#if defined(__LP64__)
#define kSnapshotFileName kSnapshotFileName64
#else
#define kSnapshotFileName kSnapshotFileName32
#endif
#else // defined(OS_ANDROID)
const char kSnapshotFileName[] = "snapshot_blob.bin";
#endif // defined(OS_ANDROID)
void GetV8FilePath(const char* file_name, base::FilePath* path_out) {
#if !defined(OS_MACOSX)
base::FilePath data_path;
#if defined(OS_ANDROID)
// This is the path within the .apk.
data_path = base::FilePath(FILE_PATH_LITERAL("assets"));
#elif defined(OS_POSIX)
PathService::Get(base::DIR_EXE, &data_path);
#elif defined(OS_WIN)
PathService::Get(base::DIR_MODULE, &data_path);
#endif
DCHECK(!data_path.empty());
*path_out = data_path.AppendASCII(file_name);
#else // !defined(OS_MACOSX)
base::ScopedCFTypeRef<CFStringRef> natives_file_name(
base::SysUTF8ToCFStringRef(file_name));
*path_out = base::mac::PathForFrameworkBundleResource(natives_file_name);
#endif // !defined(OS_MACOSX)
}
bool MapV8File(base::PlatformFile platform_file,
base::MemoryMappedFile::Region region,
base::MemoryMappedFile** mmapped_file_out) {
DCHECK(*mmapped_file_out == NULL);
std::unique_ptr<base::MemoryMappedFile> mmapped_file(
new base::MemoryMappedFile());
if (mmapped_file->Initialize(base::File(platform_file), region)) {
*mmapped_file_out = mmapped_file.release();
return true;
}
return false;
}
base::PlatformFile OpenV8File(const char* file_name,
base::MemoryMappedFile::Region* region_out) {
// Re-try logic here is motivated by http://crbug.com/479537
// for A/V on Windows (https://support.microsoft.com/en-us/kb/316609).
// These match tools/metrics/histograms.xml
enum OpenV8FileResult {
OPENED = 0,
OPENED_RETRY,
FAILED_IN_USE,
FAILED_OTHER,
MAX_VALUE
};
base::FilePath path;
GetV8FilePath(file_name, &path);
#if defined(OS_ANDROID)
base::File file(base::android::OpenApkAsset(path.value(), region_out));
OpenV8FileResult result = file.IsValid() ? OpenV8FileResult::OPENED
: OpenV8FileResult::FAILED_OTHER;
#else
// Re-try logic here is motivated by http://crbug.com/479537
// for A/V on Windows (https://support.microsoft.com/en-us/kb/316609).
const int kMaxOpenAttempts = 5;
const int kOpenRetryDelayMillis = 250;
OpenV8FileResult result = OpenV8FileResult::FAILED_IN_USE;
int flags = base::File::FLAG_OPEN | base::File::FLAG_READ;
base::File file;
for (int attempt = 0; attempt < kMaxOpenAttempts; attempt++) {
file.Initialize(path, flags);
if (file.IsValid()) {
*region_out = base::MemoryMappedFile::Region::kWholeFile;
if (attempt == 0) {
result = OpenV8FileResult::OPENED;
break;
} else {
result = OpenV8FileResult::OPENED_RETRY;
break;
}
} else if (file.error_details() != base::File::FILE_ERROR_IN_USE) {
result = OpenV8FileResult::FAILED_OTHER;
#ifdef OS_WIN
// TODO(oth): temporary diagnostics for http://crbug.com/479537
std::string narrow(kNativesFileName);
base::FilePath::StringType nativesBlob(narrow.begin(), narrow.end());
if (path.BaseName().value() == nativesBlob) {
base::File::Error file_error = file.error_details();
base::debug::Alias(&file_error);
LOG(FATAL) << "Failed to open V8 file '" << path.value()
<< "' (reason: " << file.error_details() << ")";
}
#endif // OS_WIN
break;
} else if (kMaxOpenAttempts - 1 != attempt) {
base::PlatformThread::Sleep(
base::TimeDelta::FromMilliseconds(kOpenRetryDelayMillis));
}
}
#endif // defined(OS_ANDROID)
UMA_HISTOGRAM_ENUMERATION("V8.Initializer.OpenV8File.Result",
result,
OpenV8FileResult::MAX_VALUE);
return file.TakePlatformFile();
}
OpenedFileMap::mapped_type& GetOpenedFile(const char* filename) {
OpenedFileMap& opened_files(g_opened_files.Get());
auto result = opened_files.emplace(filename, OpenedFileMap::mapped_type());
OpenedFileMap::mapped_type& opened_file = result.first->second;
bool is_new_file = result.second;
// If we have no cache, try to open it and cache the result.
if (is_new_file)
opened_file.first = OpenV8File(filename, &opened_file.second);
return opened_file;
}
enum LoadV8FileResult {
V8_LOAD_SUCCESS = 0,
V8_LOAD_FAILED_OPEN,
V8_LOAD_FAILED_MAP,
V8_LOAD_FAILED_VERIFY, // Deprecated.
V8_LOAD_MAX_VALUE
};
LoadV8FileResult MapOpenedFile(const OpenedFileMap::mapped_type& file_region,
base::MemoryMappedFile** mmapped_file_out) {
if (file_region.first == base::kInvalidPlatformFile)
return V8_LOAD_FAILED_OPEN;
if (!MapV8File(file_region.first, file_region.second, mmapped_file_out))
return V8_LOAD_FAILED_MAP;
return V8_LOAD_SUCCESS;
}
#endif // defined(V8_USE_EXTERNAL_STATUP_DATA)
} // namespace
// static
void V8Initializer::Initialize(IsolateHolder::ScriptMode mode,
IsolateHolder::V8ExtrasMode v8_extras_mode) {
static bool v8_is_initialized = false;
if (v8_is_initialized)
return;
v8::V8::InitializePlatform(V8Platform::Get());
if (base::FeatureList::IsEnabled(features::kV8ExtraMasking)) {
static const char extra_masking[] = "--extra-masking";
v8::V8::SetFlagsFromString(extra_masking, sizeof(extra_masking) - 1);
} else {
static const char no_extra_masking[] = "--no-extra-masking";
v8::V8::SetFlagsFromString(no_extra_masking, sizeof(no_extra_masking) - 1);
}
if (IsolateHolder::kStrictMode == mode) {
static const char use_strict[] = "--use_strict";
v8::V8::SetFlagsFromString(use_strict, sizeof(use_strict) - 1);
}
if (IsolateHolder::kStableAndExperimentalV8Extras == v8_extras_mode) {
static const char flag[] = "--experimental_extras";
v8::V8::SetFlagsFromString(flag, sizeof(flag) - 1);
}
#if defined(V8_USE_EXTERNAL_STARTUP_DATA)
v8::StartupData natives;
natives.data = reinterpret_cast<const char*>(g_mapped_natives->data());
natives.raw_size = static_cast<int>(g_mapped_natives->length());
v8::V8::SetNativesDataBlob(&natives);
if (g_mapped_snapshot) {
v8::StartupData snapshot;
snapshot.data = reinterpret_cast<const char*>(g_mapped_snapshot->data());
snapshot.raw_size = static_cast<int>(g_mapped_snapshot->length());
v8::V8::SetSnapshotDataBlob(&snapshot);
}
#endif // V8_USE_EXTERNAL_STARTUP_DATA
v8::V8::SetEntropySource(&GenerateEntropy);
v8::V8::Initialize();
v8_is_initialized = true;
}
// static
void V8Initializer::GetV8ExternalSnapshotData(v8::StartupData* natives,
v8::StartupData* snapshot) {
GetMappedFileData(g_mapped_natives, natives);
GetMappedFileData(g_mapped_snapshot, snapshot);
}
// static
void V8Initializer::GetV8ExternalSnapshotData(const char** natives_data_out,
int* natives_size_out,
const char** snapshot_data_out,
int* snapshot_size_out) {
v8::StartupData natives;
v8::StartupData snapshot;
GetV8ExternalSnapshotData(&natives, &snapshot);
*natives_data_out = natives.data;
*natives_size_out = natives.raw_size;
*snapshot_data_out = snapshot.data;
*snapshot_size_out = snapshot.raw_size;
}
// static
void V8Initializer::GetV8ContextSnapshotData(v8::StartupData* snapshot) {
GetMappedFileData(g_mapped_v8_context_snapshot, snapshot);
}
#if defined(V8_USE_EXTERNAL_STARTUP_DATA)
// static
void V8Initializer::LoadV8Snapshot() {
if (g_mapped_snapshot)
return;
LoadV8FileResult result = MapOpenedFile(GetOpenedFile(kSnapshotFileName),
&g_mapped_snapshot);
// V8 can't start up without the source of the natives, but it can
// start up (slower) without the snapshot.
UMA_HISTOGRAM_ENUMERATION("V8.Initializer.LoadV8Snapshot.Result", result,
V8_LOAD_MAX_VALUE);
}
void V8Initializer::LoadV8Natives() {
if (g_mapped_natives)
return;
LoadV8FileResult result = MapOpenedFile(GetOpenedFile(kNativesFileName),
&g_mapped_natives);
if (result != V8_LOAD_SUCCESS) {
LOG(FATAL) << "Couldn't mmap v8 natives data file, status code is "
<< static_cast<int>(result);
}
}
// static
void V8Initializer::LoadV8ContextSnapshot() {
if (g_mapped_v8_context_snapshot)
return;
MapOpenedFile(GetOpenedFile(kV8ContextSnapshotFileName),
&g_mapped_v8_context_snapshot);
// TODO(peria): Check if the snapshot file is loaded successfully.
}
// static
void V8Initializer::LoadV8SnapshotFromFD(base::PlatformFile snapshot_pf,
int64_t snapshot_offset,
int64_t snapshot_size) {
if (g_mapped_snapshot)
return;
if (snapshot_pf == base::kInvalidPlatformFile)
return;
base::MemoryMappedFile::Region snapshot_region =
base::MemoryMappedFile::Region::kWholeFile;
if (snapshot_size != 0 || snapshot_offset != 0) {
snapshot_region.offset = snapshot_offset;
snapshot_region.size = snapshot_size;
}
LoadV8FileResult result = V8_LOAD_SUCCESS;
if (!MapV8File(snapshot_pf, snapshot_region, &g_mapped_snapshot))
result = V8_LOAD_FAILED_MAP;
if (result == V8_LOAD_SUCCESS) {
g_opened_files.Get()[kSnapshotFileName] =
std::make_pair(snapshot_pf, snapshot_region);
}
UMA_HISTOGRAM_ENUMERATION("V8.Initializer.LoadV8Snapshot.Result", result,
V8_LOAD_MAX_VALUE);
}
// static
void V8Initializer::LoadV8NativesFromFD(base::PlatformFile natives_pf,
int64_t natives_offset,
int64_t natives_size) {
if (g_mapped_natives)
return;
CHECK_NE(natives_pf, base::kInvalidPlatformFile);
base::MemoryMappedFile::Region natives_region =
base::MemoryMappedFile::Region::kWholeFile;
if (natives_size != 0 || natives_offset != 0) {
natives_region.offset = natives_offset;
natives_region.size = natives_size;
}
if (!MapV8File(natives_pf, natives_region, &g_mapped_natives)) {
LOG(FATAL) << "Couldn't mmap v8 natives data file";
}
g_opened_files.Get()[kNativesFileName] =
std::make_pair(natives_pf, natives_region);
}
// static
void V8Initializer::LoadV8ContextSnapshotFromFD(base::PlatformFile snapshot_pf,
int64_t snapshot_offset,
int64_t snapshot_size) {
if (g_mapped_v8_context_snapshot)
return;
CHECK_NE(base::kInvalidPlatformFile, snapshot_pf);
base::MemoryMappedFile::Region snapshot_region =
base::MemoryMappedFile::Region::kWholeFile;
if (snapshot_size != 0 || snapshot_offset != 0) {
snapshot_region.offset = snapshot_offset;
snapshot_region.size = snapshot_size;
}
if (MapV8File(snapshot_pf, snapshot_region, &g_mapped_v8_context_snapshot)) {
g_opened_files.Get()[kV8ContextSnapshotFileName] =
std::make_pair(snapshot_pf, snapshot_region);
}
}
#if defined(OS_ANDROID)
// static
base::FilePath V8Initializer::GetNativesFilePath() {
base::FilePath path;
GetV8FilePath(kNativesFileName, &path);
return path;
}
// static
base::FilePath V8Initializer::GetSnapshotFilePath(bool abi_32_bit) {
base::FilePath path;
GetV8FilePath(abi_32_bit ? kSnapshotFileName32 : kSnapshotFileName64, &path);
return path;
}
#endif // defined(OS_ANDROID)
#endif // defined(V8_USE_EXTERNAL_STARTUP_DATA)
} // namespace gin
| [
"[email protected]"
] | |
ce18e24fa44b888a0de50bc95a7a727a0d107d0e | 32cb04fde0f2c857b6fdbad9ff601b967c588727 | /DS-Foundation/timespacecomplex/012.cpp | ae35671d5312257e4fb88704bccf638d083760cb | [] | no_license | ashutoshsidhar/pepcoding | 9839ff41c866034c07a741014f4804b59af7b21c | 246062e2f6911ae0f0a6cc3d475391627c3cdaa3 | refs/heads/master | 2023-05-27T23:19:30.049337 | 2021-06-20T14:21:23 | 2021-06-20T14:21:23 | 326,162,829 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 973 | cpp | #include <iostream>
#include <vector>
using namespace std;
void input(vector<int> &arr)
{
for (int i = 0; i < arr.size(); i++)
{
cin >> arr[i];
}
}
void print(vector<int> &arr)
{
for (int i = 0; i < arr.size(); i++)
{
cout << arr[i] << endl;
}
cout << endl;
}
// used for swapping ith and jth elements of array
void swap(vector<int> &arr, int i, int j)
{
cout << ("Swapping index " + to_string(i) + " and index " + to_string(j)) << endl;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
void sort012(vector<int> &arr)
{
int n = arr.size();
int pt1 = 0 , itr = 0 , pt2 = n - 1 ;
while(itr <= pt2){
if(arr[itr] == 0)
swap(arr,itr++,pt1++);
else if(arr[itr] == 2)
swap(arr, itr , pt2--);
else
itr++;
}
}
int main()
{
int n, m;
cin >> n;
vector<int> A(n, 0);
input(A);
sort012(A);
print(A);
return 0;
} | [
"[email protected]"
] | |
393172f3df8ccfb8630ffa3220d37dae81d2c57c | 77ff0d5fe2ec8057f465a3dd874d36c31e20b889 | /problems/POJ/POJ3273.cpp | 6d6f177b5e614849f9a99784553332f13f4de290 | [] | no_license | kei1107/algorithm | cc4ff5fe6bc52ccb037966fae5af00c789b217cc | ddf5911d6678d8b110d42957f15852bcd8fef30c | refs/heads/master | 2021-11-23T08:34:48.672024 | 2021-11-06T13:33:29 | 2021-11-06T13:33:29 | 105,986,370 | 2 | 1 | null | null | null | null | UTF-8 | C++ | false | false | 1,825 | cpp | #include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <map>
#include <utility>
#include <set>
#include <bitset>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <list>
#include <numeric>
#include <algorithm>
#include <functional>
#include <sstream>
#include <complex>
#include <stack>
#include <queue>
#include <deque>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define INF 1<<30
#define LINF 1LL<<60
/*
<url:http://poj.org/problem?id=3273>
問題文============================================================
要素数Nの数列{a_i}が与えられる.
この数列をM個の連続した部分に分け,各部分の要素の合計の最大値を最小化したい.
=================================================================
解説=============================================================
合計の最大値についてにぶたんすれば良い
最大値をmと定めた時、合計がm以下となるような部分列の個数がM以下かどうかで判定
================================================================
*/
ll N,M;
vector<ll> S;
bool ok(ll m){
ll Sum = 0;
ll cnt = 1;
for(int i = 0; i < N;i++){
if(Sum + S[i] <= m){
Sum += S[i];
}else{
cnt++;
Sum = S[i];
}
}
return cnt <= M;
}
int main(void) {
cin.tie(0); ios::sync_with_stdio(false);
cin >> N >> M;
S.resize(N);
ll l = 0, r = LINF;
for(int i = 0; i < N;i++){
cin >> S[i];
l = max(l,S[i]);
}
l--;
while(r - l > 1){
ll m = (l+r)/2;
if(ok(m)){
r = m;
}else{
l = m ;
}
}
cout << r << endl;
return 0;
}
| [
"[email protected]"
] | |
14c8acdad973ce34a520e6f44147334b20531bf9 | 4b8fde910bf00294ea21ce4d1aade7dff921498a | /dev/src/builtins.cpp | 071faeb21589f52444ce65a38fd45276dfad4bfe | [
"Apache-2.0"
] | permissive | DawidvC/lobster | f4db968a78e9969ab8c57dc1ed511e8cf4d8abfb | ca6fae4b308664e61ce5d745aec1f610429b297d | refs/heads/master | 2020-04-06T05:32:27.947474 | 2014-09-06T22:15:31 | 2014-09-06T22:15:31 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 31,135 | cpp | // Copyright 2014 Wouter van Oortmerssen. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "stdafx.h"
#include "vmdata.h"
#include "natreg.h"
#include "unicode.h"
static MersenneTwister rnd;
int KeyCompare(const Value &a, const Value &b, bool rec = false)
{
if (a.type != b.type)
g_vm->BuiltinError("binary search: key type doesn't match type of vector elements");
switch (a.type)
{
case V_INT: return a.ival < b.ival ? -1 : a.ival > b.ival;
case V_FLOAT: return a.fval < b.fval ? -1 : a.fval > b.fval;
case V_STRING: return strcmp(a.sval->str(), b.sval->str());
case V_VECTOR:
if (a.vval->len && b.vval->len && !rec) return KeyCompare(a.vval->at(0), b.vval->at(0), true);
// fall thru:
default:
g_vm->BuiltinError("binary search: illegal key type");
return 0;
}
}
void AddBuiltins()
{
STARTDECL(print) (Value &a)
{
ProgramOutput(a.ToString(g_vm->programprintprefs).c_str());
return a;
}
ENDDECL1(print, "x", "A", "A",
"output any value to the console (with linefeed). returns its argument.");
STARTDECL(printnl) (Value &a)
{
ProgramOutput(a.ToString(g_vm->programprintprefs).c_str());
return a;
}
ENDDECL1(printnl, "x", "A", "A",
"output any value to the console (no linefeed). returns its argument.");
STARTDECL(set_print_depth) (Value &a) { g_vm->programprintprefs.depth = a.ival; return a; }
ENDDECL1(set_print_depth, "a", "I", "",
"for printing / string conversion: sets max vectors/objects recursion depth (default 10)");
STARTDECL(set_print_length) (Value &a) { g_vm->programprintprefs.budget = a.ival; return a; }
ENDDECL1(set_print_length, "a", "I", "",
"for printing / string conversion: sets max string length (default 10000)");
STARTDECL(set_print_quoted) (Value &a) { g_vm->programprintprefs.quoted = a.ival != 0; return a; }
ENDDECL1(set_print_quoted, "a", "I", "",
"for printing / string conversion: if the top level value is a string, whether to convert it with escape codes"
" and quotes (default false)");
STARTDECL(set_print_decimals) (Value &a) { g_vm->programprintprefs.decimals = a.ival; return a; }
ENDDECL1(set_print_decimals, "a", "I", "",
"for printing / string conversion: number of decimals for any floating point output (default -1, meaning all)");
STARTDECL(getline) ()
{
const int MAXSIZE = 1000;
char buf[MAXSIZE];
fgets(buf, MAXSIZE, stdin);
buf[MAXSIZE - 1] = 0;
for (int i = 0; i < MAXSIZE; i++) if (buf[i] == '\n') { buf[i] = 0; break; }
return Value(g_vm->NewString(buf, strlen(buf)));
}
ENDDECL0(getline, "", "", "S",
"reads a string from the console if possible (followed by enter)");
STARTDECL(if) (Value &c, Value &t, Value &e)
{
return c.DEC().True() ? t : e; // e may be nil
}
ENDDECL3CONT(if, "cond,then,else", "ACc", "A",
"evaluates then or else depending on cond, else is optional");
#define BWHILE(INIT, BRET) \
Value accum = g_vm->Pop(); \
Value lv = g_vm->LoopVal(0); \
if (accum.type == V_UNKNOWN) \
{ \
accum = INIT; \
} \
else \
{ \
auto lv2 = g_vm->LoopVal(1); \
BRET; \
} \
if (lv.True()) \
{ \
g_vm->Push(accum); \
g_vm->Push(c); \
g_vm->Push(b); \
} \
else \
{ \
g_vm->Push(accum); \
} \
return lv;
STARTDECL(while) (Value &c, Value &b)
{
BWHILE(Value(0, V_NIL), { accum.DEC(); accum = lv2; });
// FIXME: if the condition contains another while loop (thru a function call),
// then lv1 will have already been overwritten
}
ENDDECL2WHILE(while, "cond,body", "EC", "A",
"evaluates body while cond (converted to a function) holds true, returns last body value");
STARTDECL(collectwhile) (Value &c, Value &b)
{
BWHILE(Value(g_vm->NewVector(4, V_VECTOR)), { assert(accum.type == V_VECTOR); accum.vval->push(lv2); });
}
ENDDECL2WHILE(collectwhile, "cond,body", "EC", "V",
"evaluates body while cond holds true, returns a vector of all return values of body");
#define BLOOP(INIT, BRET) \
int nargs = body.Nargs(); \
int len = IterLen(iter); \
auto i = g_vm->Pop(); \
assert(i.type == V_INT); \
i.ival++; \
Value accum; \
if (i.ival) \
{ \
auto lv = g_vm->LoopVal(0); \
accum = g_vm->Pop(); \
BRET; \
} \
else \
{ \
accum = INIT; \
} \
if (i.ival < len) \
{ \
g_vm->Push(accum); \
g_vm->Push(i); \
g_vm->Push(iter); \
g_vm->Push(body); \
if (nargs) { g_vm->Push(GetIter(iter, i.ival)); if (nargs > 1) g_vm->Push(i); } \
g_vm->Push(body); \
return Value(true); \
} \
else \
{ \
iter.DEC(); \
g_vm->Push(accum); \
return Value(false); \
}
STARTDECL(for) (Value &iter, Value &body)
{
BLOOP(Value(0), { assert(accum.type == V_INT); if (lv.DEC().True()) accum.ival++; });
}
ENDDECL2LOOP(for, "iter,body", "AC", "I",
"iterates over int/vector/string, body may take [ element [ , index ] ] arguments,"
" returns number of evaluations that returned true");
STARTDECL(filter) (Value &iter, Value &body)
{
// TODO: assumes the filtered vector is close to the original, can we do better?
BLOOP(Value(g_vm->NewVector(len, V_VECTOR)), {
assert(accum.type == V_VECTOR);
if (lv.DEC().True()) accum.vval->push(GetIter(iter, i.ival - 1));
});
}
ENDDECL2LOOP(filter, "iter,body", "AC", "V",
"iterates over int/vector/string, body may take [ element [ , index ] ] arguments,"
" returns vector of elements for which body returned true");
STARTDECL(exists) (Value &iter, Value &body)
{
BLOOP(Value(false), {
assert(accum.type == V_INT);
if (lv.True()) { iter.DEC(); g_vm->Push(lv); return Value(false); };
lv.DEC();
});
}
ENDDECL2LOOP(exists, "iter,body", "AC", "I",
"iterates over int/vector/string, body may take [ element [ , index ] ] arguments,"
" returns true upon first element where body returns true, else false");
STARTDECL(map) (Value &iter, Value &body)
{
BLOOP(Value(g_vm->NewVector(len, V_VECTOR)), {
assert(accum.type == V_VECTOR);
accum.vval->push(lv);
});
}
ENDDECL2LOOP(map, "iter,body", "AC", "V",
"iterates over int/vector/string, body may take [ element [ , index ] ] arguments,"
" returns vector of return values of body");
STARTDECL(append) (Value &v1, Value &v2)
{
auto nv = g_vm->NewVector(v1.vval->len + v2.vval->len, V_VECTOR);
nv->append(v1.vval, 0, v1.vval->len); v1.DEC();
nv->append(v2.vval, 0, v2.vval->len); v2.DEC();
return Value(nv);
}
ENDDECL2(append, "xs,ys", "VV", "V", "creates new vector by appending all elements of 2 input vectors");
STARTDECL(length) (Value &a)
{
int len;
switch (a.type)
{
case V_VECTOR:
case V_STRING: len = a.lobj->len; break;
default: return g_vm->BuiltinError("illegal type passed to length");
}
a.DECRT();
return Value(len);
}
ENDDECL1(length, "xs", "A", "I",
"length of vector/string");
STARTDECL(equal) (Value &a, Value &b)
{
bool eq = a.Equal(b, true);
a.DEC();
b.DEC();
return Value(eq);
}
ENDDECL2(equal, "a,b", "AA", "I",
"structural equality between any two values (recurses into vectors/objects,"
" unlike == which is only true for vectors/objects if they are the same object)");
STARTDECL(push) (Value &l, Value &x)
{
l.vval->push(x);
return l;
}
ENDDECL2(push, "xs,x", "VA", "V",
"appends one element to a vector, returns existing vector");
STARTDECL(pop) (Value &l)
{
if (!l.vval->len) { l.DEC(); g_vm->BuiltinError("pop: empty vector"); }
auto v = l.vval->pop();
l.DEC();
return v;
}
ENDDECL1(pop, "xs", "V", "A",
"removes last element from vector and returns it");
STARTDECL(top) (Value &l)
{
if (!l.vval->len) { l.DEC(); g_vm->BuiltinError("top: empty vector"); }
auto v = l.vval->top();
l.DEC();
return v.INC();
}
ENDDECL1(top, "xs", "V", "A",
"returns last element from vector");
STARTDECL(replace) (Value &l, Value &i, Value &a)
{
if (i.ival < 0 || i.ival >= l.vval->len) g_vm->BuiltinError("replace: index out of range");
auto nv = g_vm->NewVector(l.vval->len, l.vval->type);
nv->append(l.vval, 0, l.vval->len);
l.DECRT();
Value &dest = nv->at(i.ival);
dest.DEC();
dest = a;
return Value(nv);
}
ENDDECL3(replace, "xs,i,x", "VIA", "V",
"returns a copy of a vector with the element at i replaced by x");
STARTDECL(insert) (Value &l, Value &i, Value &a, Value &n)
{
int amount = n.type == V_INT ? n.ival : 1;
if (amount <= 0 || i.ival < 0 || i.ival > l.vval->len)
g_vm->BuiltinError("insert: index or n out of range"); // note: i==len is legal
l.vval->insert(a, i.ival, amount);
return l;
}
ENDDECL4(insert, "xs,i,x,n", "VIAi", "V",
"inserts n copies (default 1) of x into a vector at index i, existing elements shift upward,"
" returns original vector");
STARTDECL(remove) (Value &l, Value &i, Value &n)
{
int amount = n.type == V_INT ? n.ival : 1;
if (amount <= 0 || amount > l.vval->len || i.ival < 0 || i.ival > l.vval->len - amount)
g_vm->BuiltinError("remove: index or n out of range");
auto v = l.vval->remove(i.ival, amount);
l.DEC();
return v;
}
ENDDECL3(remove, "xs,i,n", "VIi", "A",
"remove element(s) at index i, following elements shift down. pass the number of elements to remove"
" as an optional argument, default 1. returns the first element removed.");
STARTDECL(removeobj) (Value &l, Value &o)
{
int removed = 0;
for (int i = 0; i < l.vval->len; i++) if (l.vval->at(i).Equal(o, false))
{
l.vval->remove(i--, 1).DEC();
removed++;
}
o.DEC();
l.DEC();
return Value(removed);
}
ENDDECL2(removeobj, "xs,obj", "VA", "I",
"remove all elements equal to obj (==), returns amount of elements removed.");
STARTDECL(binarysearch) (Value &l, Value &key)
{
ValueRef lref(l), kref(key);
int size = l.vval->len;
int i = 0;
for (;;)
{
if (!size) break;
int mid = size / 2;
int comp = KeyCompare(key, l.vval->at(i + mid));
if (comp)
{
if (comp < 0) size = mid;
else { mid++; i += mid; size -= mid; }
}
else
{
i += mid;
size = 1;
while (i && !KeyCompare(key, l.vval->at(i - 1 ))) { i--; size++; }
while (i + size < l.vval->len && !KeyCompare(key, l.vval->at(i + size))) { size++; }
break;
}
}
g_vm->Push(Value(size));
return Value(i);
}
ENDDECL2(binarysearch, "xs,key", "VA", "II",
"does a binary search for key in a sorted vector, returns as first return value how many matches were found,"
" and as second the index in the array where the matches start (so you can read them, overwrite them,"
" or remove them), or if none found, where the key could be inserted such that the vector stays sorted."
" As key you can use a int/float/string value, or if you use a vector, the first element of it will be used"
" as the search key (allowing you to model a set/map/multiset/multimap using this one function). ");
STARTDECL(copy) (Value &v)
{
auto nv = g_vm->NewVector(v.vval->len, v.vval->type);
nv->append(v.vval, 0, v.vval->len);
v.DECRT();
return Value(nv);
}
ENDDECL1(copy, "xs", "V", "V",
"makes a shallow copy of vector/object.");
STARTDECL(slice) (Value &l, Value &s, Value &e)
{
int size = e.ival;
if (size < 0) size = l.vval->len + size;
int start = s.ival;
if (start < 0) start = l.vval->len + start;
if (start < 0 || start + size > (int)l.vval->len)
g_vm->BuiltinError("slice: values out of range");
auto nv = g_vm->NewVector(size, V_VECTOR);
nv->append(l.vval, start, size);
l.DECRT();
return Value(nv);
}
ENDDECL3(slice,
"xs,start,size", "VII", "V", "returns a sub-vector of size elements from index start."
" start & size can be negative to indicate an offset from the vector length.");
STARTDECL(any) (Value &v)
{
Value r(0, V_NIL);
for (int i = 0; i < v.vval->len; i++)
{
if (v.vval->at(i).True())
{
r = v.vval->at(i);
r.INC();
break;
}
}
v.DECRT();
return r;
}
ENDDECL1(any, "xs", "V", "A",
"returns the first true element of the vector, or nil");
STARTDECL(all) (Value &v)
{
Value r(true);
for (int i = 0; i < v.vval->len; i++)
{
if (!v.vval->at(i).True())
{
r = Value(false);
break;
}
}
v.DECRT();
return r;
}
ENDDECL1(all, "xs", "V", "I",
"returns wether all elements of the vector are true values");
STARTDECL(substring) (Value &l, Value &s, Value &e)
{
int size = e.ival;
if (size < 0) size = l.vval->len + size;
int start = s.ival;
if (start < 0) start = l.vval->len + start;
if (start < 0 || start + size > (int)l.vval->len)
g_vm->BuiltinError("substring: values out of range");
auto ns = g_vm->NewString(l.sval->str() + start, size);
l.DECRT();
return Value(ns);
}
ENDDECL3(substring, "s,start,size", "SII", "S",
"returns a substring of size characters from index start."
" start & size can be negative to indicate an offset from the string length.");
STARTDECL(tokenize) (Value &s, Value &delims, Value &whitespace)
{
auto v = g_vm->NewVector(0, V_VECTOR);
auto ws = whitespace.sval->str();
auto dl = delims.sval->str();
auto p = s.sval->str();
p += strspn(p, ws);
auto strspn1 = [](char c, const char *set) { while (*set) if (*set == c) return 1; return 0; };
while (*p)
{
auto delim = p + strcspn(p, dl);
auto end = delim;
while (end > p && strspn1(end[-1], ws)) end--;
v->push(g_vm->NewString(p, end - p));
p = delim + strspn(delim, dl);
p += strspn(p, ws);
}
s.DECRT();
delims.DECRT();
whitespace.DECRT();
return Value(v);
}
ENDDECL3(tokenize, "s,delimiters,whitespace", "SSS", "V",
"splits a string into a vector of strings, by splitting into segments upon each dividing or terminating"
" delimiter. Segments are stripped of leading and trailing whitespace."
" Example: \"; A ; B C; \" becomes [ \"\", \"A\", \"B C\" ] with \";\" as delimiter and \" \" as whitespace." );
STARTDECL(unicode2string) (Value &v)
{
ValueRef vref(v);
char buf[7];
string s;
for (int i = 0; i < v.vval->len; i++)
{
auto &c = v.vval->at(i);
if (c.type != V_INT) g_vm->BuiltinError("unicode2string: vector contains non-int values.");
ToUTF8(c.ival, buf);
s += buf;
}
return Value(g_vm->NewString(s));
}
ENDDECL1(unicode2string, "us", "V", "S",
"converts a vector of ints representing unicode values to a UTF-8 string.");
STARTDECL(string2unicode) (Value &s)
{
ValueRef sref(s);
auto v = g_vm->NewVector(s.sval->len, V_VECTOR);
ValueRef vref((Value(v)));
const char *p = s.sval->str();
while (*p)
{
int u = FromUTF8(p);
if (u < 0) return Value(0, V_NIL);
v->push(u);
}
return Value(v).INC();
}
ENDDECL1(string2unicode, "s", "S", "V",
"converts a UTF-8 string into a vector of unicode values, or nil upon a decoding error");
STARTDECL(number2string) (Value &n, Value &b, Value &mc)
{
if (b.ival < 2 || b.ival > 36 || mc.ival > 32)
g_vm->BuiltinError("number2string: values out of range");
uint i = (uint)n.ival;
string s;
const char *from = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
while (i || (int)s.length() < mc.ival)
{
s.insert(0, 1, from[i % b.ival]);
i /= b.ival;
}
return Value(g_vm->NewString(s));
}
ENDDECL3(number2string, "number,base,minchars", "III", "S",
"converts the (unsigned version) of the input integer number to a string given the base (2..36, e.g. 16 for"
" hex) and outputting a minimum of characters (padding with 0).");
#define VECTOROP(name, op, otype, typen) \
if (a.type == otype) { auto f = a; return Value(op); } \
if (otype == V_FLOAT && a.type == V_INT) { Value f(float(a.ival)); return Value(op); } \
if (a.type == V_VECTOR) { \
auto v = g_vm->NewVector(a.vval->len, a.vval->type); \
for (int i = 0; i < a.vval->len; i++) { \
auto f = a.vval->at(i); \
if (otype == V_FLOAT && f.type == V_INT) f = Value(float(f.ival)); \
if (f.type != otype) { a.DECRT(); v->deleteself(); goto err; } \
v->push(Value(op)); \
} \
a.DECRT(); \
return Value(v); \
} \
err: g_vm->BuiltinError(#name " requires " typen " or vector argument"); \
return Value();
#define VECTOROPF(name, op) VECTOROP(name, op, V_FLOAT, "numeric")
#define VECTOROPI(name, op) VECTOROP(name, op, V_INT, "integer")
STARTDECL(pow) (Value &a, Value &b) { return Value(powf(a.fval, b.fval)); } ENDDECL2(pow, "a,b", "FF", "F",
"a raised to the power of b");
STARTDECL(log) (Value &a) { return Value(logf(a.fval)); } ENDDECL1(log, "a", "F", "F",
"natural logaritm of a");
STARTDECL(sqrt) (Value &a) { return Value(sqrtf(a.fval)); } ENDDECL1(sqrt, "f", "F", "F",
"square root");
STARTDECL(and) (Value &a, Value &b) { return Value(a.ival & b.ival); } ENDDECL2(and, "a,b", "II", "I",
"bitwise and");
STARTDECL(or) (Value &a, Value &b) { return Value(a.ival | b.ival); } ENDDECL2(or, "a,b", "II", "I",
"bitwise or");
STARTDECL(xor) (Value &a, Value &b) { return Value(a.ival ^ b.ival); } ENDDECL2(xor, "a,b", "II", "I",
"bitwise exclusive or");
STARTDECL(not) (Value &a) { return Value(~a.ival); } ENDDECL1(not, "a", "I", "I",
"bitwise negation");
STARTDECL(shl) (Value &a, Value &b) { return Value(a.ival << b.ival); } ENDDECL2(shl, "a,b", "II", "I",
"bitwise shift left");
STARTDECL(shr) (Value &a, Value &b) { return Value(a.ival >> b.ival); } ENDDECL2(shr, "a,b", "II", "I",
"bitwise shift right");
STARTDECL(ceiling) (Value &a) { VECTOROPF(ceiling, int(ceilf(f.fval))); } ENDDECL1(ceiling, "f", "A", "A",
"the nearest int >= f (or vector of numbers)");
STARTDECL(floor) (Value &a) { VECTOROPF(floor, int(floorf(f.fval))); } ENDDECL1(floor, "f", "A", "A",
"the nearest int <= f (or vector of numbers)");
STARTDECL(truncate)(Value &a) { VECTOROPF(truncate, int(f.fval)); } ENDDECL1(truncate, "f", "A", "A",
"converts a number (or vector of numbers) to an integer by dropping the fraction");
STARTDECL(round) (Value &a) { VECTOROPF(round, int(f.fval + 0.5f)); } ENDDECL1(round, "f", "A", "A",
"converts a number (or vector of numbers) to the closest integer");
STARTDECL(fraction)(Value &a) { VECTOROPF(fraction, f.fval - floorf(f.fval)); } ENDDECL1(fraction, "f", "A", "A",
"returns the fractional part of a number (or vector of numbers): short for f - floor(f)");
STARTDECL(sin) (Value &a) { return Value(sinf(a.fval * RAD)); } ENDDECL1(sin, "angle", "F", "F",
"the y coordinate of the normalized vector indicated by angle (in degrees)");
STARTDECL(cos) (Value &a) { return Value(cosf(a.fval * RAD)); } ENDDECL1(cos, "angle", "F", "F",
"the x coordinate of the normalized vector indicated by angle (in degrees)");
STARTDECL(sincos) (Value &a) { return ToValue(float3(cosf(a.fval * RAD), sinf(a.fval * RAD), 0.0f)); }
ENDDECL1(sincos, "angle", "F", "V",
"the normalized vector indicated by angle (in degrees), same as [ cos(angle), sin(angle), 0 ]");
STARTDECL(arcsin) (Value &y) { return Value(asinf(y.fval) / RAD); } ENDDECL1(arcsin, "y", "F", "F",
"the angle (in degrees) indicated by the y coordinate projected to the unit circle");
STARTDECL(arccos) (Value &x) { return Value(acosf(x.fval) / RAD); } ENDDECL1(arccos, "x", "F", "F",
"the angle (in degrees) indicated by the x coordinate projected to the unit circle");
STARTDECL(atan2) (Value &vec) { auto v = ValueDecTo<float3>(vec); return Value(atan2f(v.y(), v.x()) / RAD); }
ENDDECL1(atan2, "vec", "V" , "F",
"the angle (in degrees) corresponding to a normalized 2D vector");
STARTDECL(normalize) (Value &vec)
{
auto v = ValueDecTo<float3>(vec);
return ToValue(v == float3_0 ? v : normalize(v));
}
ENDDECL1(normalize, "vec", "V" , "V",
"returns a vector of unit length");
STARTDECL(dot) (Value &a, Value &b) { return Value(dot(ValueDecTo<float4>(a), ValueDecTo<float4>(b))); }
ENDDECL2(dot, "a,b", "VV", "F",
"the length of vector a when projected onto b (or vice versa)");
STARTDECL(magnitude) (Value &a) { return Value(length(ValueDecTo<float4>(a))); } ENDDECL1(magnitude, "a", "V", "F",
"the geometric length of a vector");
STARTDECL(cross) (Value &a, Value &b) { return ToValue(cross(ValueDecTo<float3>(a), ValueDecTo<float3>(b))); }
ENDDECL2(cross, "a,b", "VV", "V",
"a perpendicular vector to the 2D plane defined by a and b (swap a and b for its inverse)");
STARTDECL(rnd) (Value &a) { VECTOROPI(rnd, rnd(max(1, f.ival))); } ENDDECL1(rnd, "max", "A", "A",
"a random value [0..max) or a random vector from an input vector. Uses the Mersenne Twister algorithm.");
STARTDECL(rndseed) (Value &seed) { rnd.ReSeed(seed.ival); return Value(); } ENDDECL1(rndseed, "seed", "I", "",
"explicitly set a random seed for reproducable randomness");
STARTDECL(rndfloat)() { return Value((float)rnd.rnddouble()); } ENDDECL0(rndfloat, "", "", "F",
"a random float [0..1)");
STARTDECL(div) (Value &a, Value &b) { return Value(float(a.ival) / float(b.ival)); } ENDDECL2(div, "a,b", "II", "F",
"forces two ints to be divided as floats");
STARTDECL(clamp) (Value &a, Value &b, Value &c)
{
if (a.type == V_INT && b.type == V_INT && c.type == V_INT)
{
return Value(max(min(a.ival, c.ival), b.ival));
}
else
{
g_vm->BuiltinCheck(a, V_FLOAT, "clamp");
g_vm->BuiltinCheck(b, V_FLOAT, "clamp");
g_vm->BuiltinCheck(c, V_FLOAT, "clamp");
return Value(max(min(a.fval, c.fval), b.fval));
}
}
ENDDECL3(clamp, "x,min,max", "AAA", "A",
"forces a number to be in the range between min and max (inclusive)");
STARTDECL(abs) (Value &a)
{
switch (a.type)
{
case V_INT: return Value(a.ival >= 0 ? a.ival : -a.ival);
case V_FLOAT: return Value(a.fval >= 0 ? a.fval : -a.fval);
case V_VECTOR: {
auto v = g_vm->NewVector(a.vval->len, a.vval->type);
for (int i = 0; i < a.vval->len; i++)
{
auto f = a.vval->at(i);
switch (f.type)
{
case V_INT: v->push(Value(abs(f.ival))); break;
case V_FLOAT: v->push(Value(fabsf(f.fval))); break;
default: v->deleteself(); goto err;
}
}
a.DECRT();
return Value(v);
}
default: break;
}
err:
a.DECRT();
return g_vm->BuiltinError("abs() needs a numerical value or numerical vector");
}
ENDDECL1(abs, "x", "A", "A",
"absolute value of int/float/vector");
#define MINMAX(op) \
switch (x.type) \
{ \
case V_INT: \
if (y.type == V_INT) return Value(x.ival op y.ival ? x.ival : y.ival); \
else if (y.type == V_FLOAT) return Value(x.ival op y.fval ? x.ival : y.fval); \
break; \
case V_FLOAT: \
if (y.type == V_INT) return Value(x.fval op y.ival ? x.fval : y.ival); \
else if (y.type == V_FLOAT) return Value(x.fval op y.fval ? x.fval : y.fval); \
break; \
default: ; \
} \
return g_vm->BuiltinError("illegal arguments to min/max");
STARTDECL(min) (Value &x, Value &y) { MINMAX(<) } ENDDECL2(min, "x,y", "AA", "A",
"smallest of 2 values");
STARTDECL(max) (Value &x, Value &y) { MINMAX(>) } ENDDECL2(max, "x,y", "AA", "A",
"largest of 2 values");
#undef MINMAX
STARTDECL(cardinalspline) (Value &z, Value &a, Value &b, Value &c, Value &f, Value &t)
{
return ToValue(cardinalspline(ValueDecTo<float3>(z),
ValueDecTo<float3>(a),
ValueDecTo<float3>(b),
ValueDecTo<float3>(c), f.fval, t.fval));
}
ENDDECL6(cardinalspline, "z,a,b,c,f,tension", "VVVVFF", "V",
"computes the position between a and b with factor f [0..1], using z (before a) and c (after b) to form a"
" cardinal spline (tension at 0.5 is a good default)");
STARTDECL(lerp) (Value &x, Value &y, Value &f)
{
if (x.type == y.type)
{
switch (x.type)
{
case V_FLOAT: return Value(mix(x.fval, y.fval, f.fval));
case V_INT: return Value(mix((float)x.ival, (float)y.ival, f.fval));
// should this do any size vecs?
case V_VECTOR: return ToValue(mix(ValueDecTo<float4>(x), ValueDecTo<float4>(y), f.fval));
default: ;
}
}
g_vm->BuiltinError("illegal arguments passed to lerp()");
return Value();
}
ENDDECL3(lerp, "x,y,f", "AAF", "A",
"linearly interpolates between x and y (float/int/vector) with factor f [0..1]");
STARTDECL(resume) (Value &co, Value &ret)
{
g_vm->CoResume(co.cval);
return ret;
}
ENDDECL2(resume, "coroutine,returnvalue", "Ra", "A",
"resumes execution of a coroutine, passing a value back or nil");
STARTDECL(returnvalue) (Value &co)
{
Value &rv = co.cval->Current().INC();
co.DECRT();
return rv;
}
ENDDECL1(returnvalue, "coroutine", "R", "A",
"gets the last return value of a coroutine");
STARTDECL(active) (Value &co)
{
bool active = co.cval->active;
co.DECRT();
return Value(active);
}
ENDDECL1(active, "coroutine", "R", "I",
"wether the given coroutine is still active");
STARTDECL(program_name) ()
{
return Value(g_vm->NewString(g_vm->GetProgramName()));
}
ENDDECL0(program_name, "", "", "S",
"returns the name of the main program (e.g. \"foo.lobster\".");
STARTDECL(caller_id) ()
{
return Value(g_vm->CallerId());
}
ENDDECL0(caller_id, "", "", "I",
"returns an int that uniquely identifies the caller to the current function.");
STARTDECL(seconds_elapsed) ()
{
return Value(g_vm->Time());
}
ENDDECL0(seconds_elapsed, "", "", "F",
"seconds since program start as a float, unlike gl_time() it is calculated every time it is called");
STARTDECL(assert) (Value &c)
{
if (!c.True()) g_vm->BuiltinError("assertion failed");
c.DEC();
return Value();
}
ENDDECL1(assert, "condition", "A", "",
"halts the program with an assertion failure if passed false");
STARTDECL(trace_bytecode) (Value &i)
{
g_vm->Trace(i.ival != 0);
return Value();
}
ENDDECL1(trace_bytecode, "on", "I", "",
"tracing shows each bytecode instruction as it is being executed, not very useful unless you are trying to"
" isolate a compiler bug");
STARTDECL(collect_garbage) ()
{
return Value(g_vm->GC());
}
ENDDECL0(collect_garbage, "", "", "I",
"forces a garbage collection to re-claim cycles. slow and not recommended to be used. instead, write code"
" to clear any back pointers before abandoning data structures. Watch for a \"LEAKS FOUND\" message in the"
" console upon program exit to know when you've created a cycle. returns amount of objects collected.");
STARTDECL(set_max_stack_size) (Value &max)
{
g_vm->SetMaxStack(max.ival * 1024 * 1024 / sizeof(Value));
return max;
}
ENDDECL1(set_max_stack_size, "max", "I", "",
"size in megabytes the stack can grow to before an overflow error occurs. defaults to 1");
}
AutoRegister __abi("builtins", AddBuiltins);
| [
"[email protected]"
] | |
0f99530316907bba4194a9922d48fabdd747e7ee | db19ea383c96b1a8605bb719efeeae688e2acdb1 | /FirstClass/main.cpp | fd8145b751a0ecc091a6f7ff4ec7da094959191e | [] | no_license | Ryzempt/FirstClass | dcd7c577dbe31bf2fac86f9126a00bd67ad851f1 | f00d0cb02046c30c25ee96def17dd6786af7b859 | refs/heads/master | 2020-04-18T08:16:30.599615 | 2019-01-24T15:31:04 | 2019-01-24T15:31:04 | 167,390,530 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 272 | cpp | //
// main.cpp
// FirstClass
//
// Created by Kaufman, Robert on 1/24/19.
// Copyright © 2019 CTEC. All rights reserved.
//
#include <iostream>
int main(int argc, const char * argv[]) {
// insert code here...
std::cout << "Hello, World!\n";
return 0;
}
| [
"[email protected]"
] | |
427030fa8994144e2db76c609e19052443f368ab | 634f95f90230b0f7e11158dc271cba5a3bc703c7 | /tkEngine/Input/tkKeyInput.h | 968b58afea87d65993e5c2afdfe40c0485c52f15 | [] | no_license | TakayukiKiyohara/Sandbox | 55c7e2051bcb55b7765a9f367c3ee47d33f473de | 99c354eb91c501d8a10d09806aa4acdcf5d26dcb | refs/heads/master | 2021-01-18T01:06:30.462238 | 2016-11-11T13:43:58 | 2016-11-11T13:43:58 | 68,387,195 | 4 | 0 | null | null | null | null | SHIFT_JIS | C++ | false | false | 2,275 | h | /*!
* @brief キー入力。
*/
#ifndef _TKKEYINPUT_H_
#define _TKKEYINPUT_H_
#include "tkEngine/Input/tkPad.h"
namespace tkEngine{
class CKeyInput{
public:
static const int NUM_PAD = 4; //パッドの数。
enum EnKey {
enKeyUp,
enKeyDown,
enKeyRight,
enKeyLeft,
enKeyA,
enKeyB,
enKeyNum,
};
/*!
* @brief コンストラクタ。
*/
CKeyInput();
/*!
* @brief デストラクタ。
*/
~CKeyInput();
/*!
* @brief キー情報の更新。
*/
void Update();
/*!
* @brief 上キーが押されている。
*/
bool IsUpPress() const
{
return m_keyPressFlag[enKeyUp];
}
/*!
* @brief 右キーが押されている。
*/
bool IsRightPress() const
{
return m_keyPressFlag[enKeyRight];
}
/*!
* @brief 左キーが押されている。
*/
bool IsLeftPress() const
{
return m_keyPressFlag[enKeyLeft];
}
/*!
* @brief 下キーが押されている。
*/
bool IsDownPress() const
{
return m_keyPressFlag[enKeyDown];
}
/*!
* @brief キーのプレス判定。
*/
bool IsPress(EnKey key) const
{
return m_keyPressFlag[key];
}
/*!
* @brief キーのトリガー判定。
*/
bool IsTrgger(EnKey key) const
{
return m_keyTrigerFlag[key];
}
/*!
* @brief マウスの左ボタンが離されたときの処理。
*/
void OnMouseLButtonUp(int x, int y)
{
m_mousePositionX = x;
m_mousePositionY = y;
m_isMouseUp[1] = true;
}
/*!
* @brief マウスの左ボタンが離されたときか判定。
*/
bool IsMouseLButtonUp() const
{
return m_isMouseUp[0];
}
/*!
* @brief マウスのX座標を取得。
*/
int GetMousePositionX() const
{
return m_mousePositionX;
}
/*!
* @brief マウスのY座標を取得。
*/
int GetMousePositionY() const
{
return m_mousePositionY;
}
/*!
* @brief ゲームパッドを取得。
*/
const CPad& GetPad(int padNo) const
{
TK_ASSERT(padNo < NUM_PAD, "padNo is invalid");
return m_pad[padNo];
}
private:
bool m_keyPressFlag[enKeyNum];
bool m_keyTrigerFlag[enKeyNum];
bool m_isMouseUp[2];
int m_mousePositionX;
int m_mousePositionY;
CPad m_pad[NUM_PAD]; //!<パッド。
};
}
#endif //_TKKEYINPUT_H_ | [
"[email protected]"
] | |
4c7e07e9ac5824873d6d278a22c30a51c94db70f | 6a11d2e56eda699ff63e56ac87d69934cd48740c | /mstl_eat.hpp | c78b0b9cf87264acd6ddb5363b825e4298722807 | [] | no_license | halsten/my-toolkit | 727152c9aa480a3d989ac97cc29849555d9db54d | 4d37e920ed66f045f2866c98549617de4d9817d3 | refs/heads/master | 2023-03-26T01:33:45.513547 | 2017-07-16T14:40:46 | 2017-07-16T14:40:46 | 351,218,795 | 2 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,615 | hpp | #pragma once
#include "mstl_image_dir.hpp"
/*
@Address - pointer to function pointer
@hash_t - djb2 hash of name
*/
using export_t = std::pair<Address, hash_t>;
using exports_t = std::vector<export_t>;
class EAT : public IMAGE_DIR<IMAGE_DIRECTORY_ENTRY_EXPORT> {
private:
exports_t m_exports;
public:
__forceinline EAT() : IMAGE_DIR{}, m_exports{} {}
__forceinline ~EAT() {}
EAT(Address image_base):
IMAGE_DIR<IMAGE_DIRECTORY_ENTRY_EXPORT>(image_base) {
// sometimes there are no imports or exports for a module..
if(m_ptr)
init(image_base);
}
__forceinline void init(uintptr_t image_base) {
IMAGE_EXPORT_DIRECTORY *ed;
uint32_t *names, *fn_ptrs;
uint16_t *name_ordinals;
// get export directory
ed = as<IMAGE_EXPORT_DIRECTORY*>();
// first see if there are any exports
if (ed->NumberOfFunctions == 0 || ed->NumberOfNames == 0)
return;
// get arrays from rva
names = RVA<uint32_t*>(image_base, ed->AddressOfNames);
fn_ptrs = RVA<uint32_t*>(image_base, ed->AddressOfFunctions);
name_ordinals = RVA<uint16_t*>(image_base, ed->AddressOfNameOrdinals);
// check
if ( names == nullptr
|| fn_ptrs == nullptr
|| name_ordinals == nullptr)
return;
// stuff
for (size_t i{}; i < ed->NumberOfNames; ++i) {
m_exports.push_back(
export_t{
RVA(image_base, fn_ptrs[name_ordinals[i]]),
hash::djb2(RVA<const char*>(image_base, names[i]))
});
}
}
__forceinline exports_t& get_exports() {
return m_exports;
}
__forceinline bool get_export(hash_t export_hash, export_t& out) {
auto needle = std::find_if(
m_exports.begin(),
m_exports.end(),
[ & ](const export_t& it) {
return it.second == export_hash;
});
if (needle >= m_exports.end())
return false;
out = *needle;
return true;
}
__forceinline void hook_method(hash_t method_hash, Address hook) {
export_t ret;
if (!get_export(method_hash, ret))
return;
return ret.first.set(hook);
}
template<typename _T = Address>
__forceinline _T get_method(hash_t method_hash) {
export_t ret;
if (!get_export(method_hash, ret))
return _T{};
return ret.first.as<_T>();
}
}; | [
"[email protected]"
] | |
04ee77bd12b2b7e85595cc5bc4c9862a6a2e1eaf | 212380b8070b2f4b9a2ee9db88d8ef71301f500b | /Number.cpp | e5378c72dec1a0e8fd3e011ad9ebbba87e746b17 | [] | no_license | SeanTo/My3D | 379976f02434100dcb5e7cf37b06eca1fc20e60c | b2e13e7582d072b70574b5630ae6f1abbda6423d | refs/heads/master | 2020-04-16T11:33:00.343386 | 2019-01-14T17:36:22 | 2019-01-14T17:36:22 | 165,540,600 | 0 | 0 | null | null | null | null | GB18030 | C++ | false | false | 7,265 | cpp | #include "stdafx.h"
#include "Number.h"
////////////////////////////////////////////////////////////////////////////////
// static member
// 奇偶、大小、质合形态
const CString C3D::strModality[3][8] = {
{ _T("偶偶偶"), _T("偶偶奇"), _T("偶奇偶"), _T("偶奇奇"),
_T("奇偶偶"), _T("奇偶奇"), _T("奇奇偶"), _T("奇奇奇") },
{ _T("小小小"), _T("小小大"), _T("小大小"), _T("小大大"),
_T("大小小"), _T("大小大"), _T("大大小"), _T("大大大") },
{ _T("合合合"), _T("合合质"), _T("合质合"), _T("合质质"),
_T("质合合"), _T("质合质"), _T("质质合"), _T("质质质") }
};
// 012 路
const CString C3D::str012[27] = {
_T("000"), _T("001"), _T("002"), _T("010"),
_T("011"), _T("012"), _T("020"), _T("021"), _T("022"),
_T("100"), _T("101"), _T("102"), _T("110"),
_T("111"), _T("112"), _T("120"), _T("121"), _T("122"),
_T("200"), _T("201"), _T("202"), _T("210"),
_T("211"), _T("212"), _T("220"), _T("221"), _T("222")
};
////////////////////////////////////////////////////////////////////////////////
// implementation
/*
* 返回数字 n 在号码中出现的位置,未找到返回 -1
*/
int C3D::Find(int n, int st/* =0 */) const
{
IS_ONE(n);
IS_INDEX(st);
for(int i = st; i < 3; ++i)
{
if( GetAt(i) == n )
return i;
}
return -1;
}
/*
* 两码差:百位、十位、个位
*/
void C3D::Swing(const C3D &obj, int *pSwing) const
{
pSwing[0] = Hun() - obj.Hun(); // 百位
pSwing[1] = Ten() - obj.Ten(); // 十位
pSwing[2] = Ent() - obj.Ent(); // 个位
}
/*
* 邻码判断
*/
BOOL C3D::IsNeighbor(int n) const
{
ASSERT(0 <= n && n <= 9);
if( IsMember(n) )
return FALSE;
for(int i = 0; i < 3; ++i)
{
if( 1 == abs(n - GetAt(i)) || 9 == abs(n - GetAt(i)))
return TRUE;
}
return FALSE;
}
/*
* 给定两码是否在当前号码中
*/
BOOL C3D::IsMember2(int iTwo, BOOL bOrder/* = TRUE*/) const
{
ASSERT( 0 <= iTwo && iTwo <= 99);
int n1 = iTwo / 10 % 10;
int n2 = iTwo % 10;
if( Hun()==n1 && (Ten()==n2 || Ent()==n2) || Ten()==n1 && Ent()==n2 )
return TRUE;
if( bOrder )
return FALSE;
else
n1 ^= n2 ^= n1 ^= n2;
return Hun()==n1 && (Ten()==n2 || Ent()==n2) || Ten()==n1 && Ent()==n2;
}
/*
* 号码在 str 中出现的次数
*/
int C3D::CountInStr(const CString &str, BOOL bOnce /* = FALSE */) const
{
if( IsG1() )
return !EMFC::IsInArray(Hun(), str) ? 0 : (bOnce ? 1 : 3);
int cnt = 0;
for(int i = 0; i < 3; ++i)
cnt += EMFC::IsInArray(GetAt(i), str);
if( bOnce && IsG3() )
{
if(3 == cnt)
cnt = 2;
else
cnt -= EMFC::IsInArray(Same(), str);
}
return cnt;
}
////////////////////////////////////////////////////////////////////////////////
// static method
/*
* 排除两码
*/
int C3D::ExcludeTwo(CUIntArray &arr, BOOL bOrder /* = TRUE */)
{
EMFC::ExcludeSame(arr);
if( !bOrder )
{
UINT n;
int i = arr.GetSize() - 1;
while( i > 0 )
{
n = (arr[i] % 10) * 10 + arr[i] / 10 % 10;
if( EMFC::IsInArray(n, arr, i) )
arr.RemoveAt(i);
--i;
}
}
return arr.GetSize();
}
/*
* 字符串转和值(两码)数组
*/
int C3D::Str2Sum(const CString &str, CUIntArray &arrSum, BOOL bConti /* = TRUE */, int iMax /* = 27 */)
{
arrSum.RemoveAll();
if(str.IsEmpty())
return 0;
CString st(str);
st.TrimLeft();
st.TrimRight();
// 删除尾部非数字字符
while( !st.IsEmpty() && !_istdigit(st.GetAt(st.GetLength() - 1)) )
st.Delete(st.GetLength() - 1);
CString sDigit = _T("0123456789");
if(0 == st.GetLength() || -1 == st.FindOneOf(sDigit))
return 0;
int iDigit = 0, iSepar = 0;
int i = 0;
int n = 0;
int num = iMax + 1;
BOOL bContinue = FALSE;
CString ss;
while( 0 < st.GetLength() )
{
// 查找下一个数字
iDigit = st.FindOneOf(sDigit);
if(-1 != iDigit)
{
st = st.Mid(iDigit); // 从第一个数字截取到尾部
ss = st.SpanIncluding(sDigit); // 截取头部数字串
st = st.Mid(ss.GetLength());
ss = ss.Left(2);
num = _ttoi(ss);
if(iMax >= num && ! EMFC::IsInArray((UINT)num, arrSum))
{
n = arrSum.GetSize();
if(!bContinue || 0 == n)
{
arrSum.Add(num);
}
else
{
if((UINT)num > arrSum[n - 1])
{
for(int i = arrSum[n - 1] + 1; i <= num; ++i)
arrSum.Add(i);
}
else
arrSum.Add(num);
bContinue = FALSE;
}
}
st.TrimLeft();
if(bConti)
{
if(0 < st.GetLength() && st.GetAt(0) == _T('-'))
{
bContinue = TRUE;
}
}
}
}
if(n > 0)
EMFC::SortArray(arrSum);
return arrSum.GetSize();
}
/*
* 和值(两码)数组转字符串
*/
CString C3D::Sum2Str(const CUIntArray &arrSum, BOOL bTwo /* = FALSE */, BOOL bConti /* = TRUE */)
{
CString str = _T("");
const int len = arrSum.GetSize();
if(0 == len)
return str;
CString sFmt = bTwo ? _T("%02d") : _T("%d");
CString ss;
ss.Format(sFmt, arrSum[0]);
str += ss;
for(int i = 1, k = 0; i < len; ++i)
{
k = 0;
if(bConti)
{
while(i + k < len)
{
if( arrSum[i + k] == arrSum[i + k -1] + 1 )
++k;
else
break;
}
}
else
k = 0;
if(0 == k)
{
sFmt = bTwo ? _T(",%02d") : _T(",%d");
ss.Format(sFmt, arrSum[i]);
str += ss;
}
else
{
sFmt = bTwo ? _T(",%02d") : _T("-%d");
ss.Format(sFmt, arrSum[i + k - 1]);
str += ss;
i += k - 1;
k = 0;
}
}
return str;
}
/*
* 字符串转数组
*/
int C3D::Str2Array(const CString &str, CUIntArray &arr, BOOL bSort/* = TRUE*/)
{
arr.RemoveAll();
int len = str.GetLength();
if(0 == len)
return 0;
int B[3], j = 0, num;
for(int i = 0; i < len && arr.GetSize() < 1000; ++i)
{
if(_istdigit(str.GetAt(i)))
B[j++] = str.GetAt(i) - _T('0');
if(3 == j)
{
j = 0;
num = B[0] * 100 + B[1] * 10 + B[2];
if( !EMFC::IsInArray((UINT)num, arr) )
arr.Add(num);
}
}
j = arr.GetSize();
if(j > 1 && bSort)
EMFC::SortArray(arr);
return j;
}
/*
* 数组转字符串
*/
CString& C3D::Array2Str(const CUIntArray &arr, CString &str, const CString &sFmt /* = _T("%03d ") */)
{
str.Empty();
CString ss = _T("");
int cnt = arr.GetSize();
for(int i = 0; i < cnt; ++i)
{
ss.Format(sFmt, arr[i]);
str += ss;
}
return str;
}
/*
* 单转组
*/
int C3D::S2G(CUIntArray &arr)
{
C3D CNum;
int i = 0;
while(i < arr.GetSize() )
{
CNum = arr[i];
arr[i] = CNum.Min() * 100 + CNum.Mid() * 10 + CNum.Max();
if( EMFC::IsInArray(arr[i], arr, i) )
arr.RemoveAt(i);
else
++i;
}
EMFC::SortArray(arr);
return arr.GetSize();
}
/*
* 组转单
*/
int C3D::G2S(CUIntArray &arr)
{
C3D CNum;
int A[3], B[6];
int i = 0;
while(i < arr.GetSize() )
{
CNum = arr[i];
A[0] = CNum.Min();
A[1] = CNum.Mid();
A[2] = CNum.Max();
B[0] = A[0] * 100 + A[1] * 10 + A[2];
B[1] = A[0] * 100 + A[2] * 10 + A[1];
B[2] = A[1] * 100 + A[0] * 10 + A[2];
B[3] = A[1] * 100 + A[2] * 10 + A[0];
B[4] = A[2] * 100 + A[0] * 10 + A[1];
B[5] = A[2] * 100 + A[1] * 10 + A[0];
for(int j = 0; j < 6; ++j)
{
if( !EMFC::IsInArray((UINT)B[j], arr, i) )
{
arr.InsertAt(0, B[j]);
++i;
}
}
arr.RemoveAt(i);
}
EMFC::SortArray(arr);
return arr.GetSize();
}
////////////////////////////////////////////////////////////////////////////////
| [
"[email protected]"
] | |
bd9d7f247a7d597761f1ebafce2893606c1142e5 | 4c4135fcb4d33344b5904642e26ebe9393253c64 | /charactersheetwriter.cpp | a0149aa75666c00dc3a5e0da356854b83c19e243 | [] | no_license | mzawislak94/DnDCharacterCreator | 131e64d50dac785817a974cf9fa2a68d09d12ef1 | d25a3df2735ac007721e511b932e07adba6c10d7 | refs/heads/master | 2020-04-13T02:50:52.641551 | 2018-12-23T18:12:33 | 2018-12-23T18:12:33 | 162,913,416 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 379 | cpp | #include "charactersheetwriter.h"
charactersheetwriter::charactersheetwriter()
{
}
void charactersheetwriter::writeToFile(QFile *file, QStringList options)
{
if (NULL != file->open(QIODevice::Append))
{
QTextStream out(file);
for (int i = 0; i < options.length(); i++)
{
out << options[i];
}
file->close();
}
}
| [
"[email protected]"
] | |
c165744a256746d0b13e866584d781e16bc4796d | 55fc0e953ddd07963d290ed56ab25ff3646fe111 | /StiGame/events/TableClickEventArgs.h | 6d1ec525f85e79d47c97e5c2dfa0e904cf0c67cc | [
"MIT"
] | permissive | jordsti/stigame | 71588674640a01fd37336238126fb4500f104f42 | 6ac0ae737667b1c77da3ef5007f5c4a3a080045a | refs/heads/master | 2020-05-20T12:54:58.985367 | 2015-06-10T20:55:41 | 2015-06-10T20:55:41 | 22,086,407 | 12 | 3 | null | null | null | null | UTF-8 | C++ | false | false | 715 | h | #ifndef TABLECLICKEVENTARGS_H
#define TABLECLICKEVENTARGS_H
namespace StiGame
{
namespace Gui
{
class Table;
class TableRow;
class TableCell;
class TableClickEventArgs
{
public:
TableClickEventArgs(int m_rowIndex, int m_columnIndex);
TableClickEventArgs(Table *m_table, TableRow *m_row, TableCell *m_cell, int m_rowIndex, int m_columnIndex);
virtual ~TableClickEventArgs();
TableRow* getRow(void);
Table* getTable(void);
TableCell* getCell(void);
int getRowIndex(void);
int getColumnIndex(void);
bool isHeaderClicked(void);
private:
TableRow *row;
TableCell *cell;
Table *table;
int rowIndex;
int columnIndex;
};
}
}
#endif // TABLECLICKEVENTARGS_H
| [
"[email protected]"
] | |
b59ea7f21ff0f4578505079040dc8e2587012d33 | 5d83739af703fb400857cecc69aadaf02e07f8d1 | /Archive/5662f313779a1b2aa3f4cf81f184d232-f674c1a6d04c632b71a62362c0ccfc51/main.cpp | 303372ad92ad06c047a22bb3209ad4dd03976053 | [] | no_license | WhiZTiM/coliru | 3a6c4c0bdac566d1aa1c21818118ba70479b0f40 | 2c72c048846c082f943e6c7f9fa8d94aee76979f | refs/heads/master | 2021-01-01T05:10:33.812560 | 2015-08-24T19:09:22 | 2015-08-24T19:09:22 | 56,789,706 | 3 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 378 | cpp | #include <iostream>
#include <string>
#include <vector>
template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& vec)
{
for (auto& el : vec)
{
os << el << ' ';
}
return os;
}
int main()
{
std::vector<std::string> words = {
"Hello", "from", "GCC", __VERSION__, "!"
};
std::cout << words << std::endl;
| [
"francis.rammeloo@36614edc-3e3a-acb8-9062-c8ae0e4185df"
] | francis.rammeloo@36614edc-3e3a-acb8-9062-c8ae0e4185df |
5b573fdcfe5cbdfffcb07574c1225c2ed774ee35 | 92640ec261e7875a5e65e95d6408be2df3cdd9a3 | /temp/1148.cpp | b9991a863a1a255ad37592b1d7cdfcf02401bf7d | [] | no_license | gaolichen/contest | c20c79d1a05ea6c015329bc2068a3bbb946de775 | 4ac5112f150210c6345312922dc96494327cbf55 | refs/heads/master | 2021-01-19T04:45:59.100014 | 2017-04-06T06:46:09 | 2017-04-06T06:46:09 | 87,392,728 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,047 | cpp | #include<stdio.h>
#include<string.h>
char map[80][80];
int mark[80][80],dis[80][80],w,h;
int sx,sy,ex,ey;
void run()
{
int i,j,find,k;
for(i=0;i<=w+1;i++)
for(j=0;j<=h+1;j++)
mark[i][j]=0;
mark[sx][sy]=1;dis[sx][sy]=0;
do
{
find=0;
for(i=0;i<=w+1;i++)
for(j=0;j<=h+1;j++)
if(mark[i][j])
{
for(k=i+1;k<=w+1;k++)
{
if(map[k][j]!=' '&&(k!=ex||j!=ey))
break;
if(!mark[k][j])
{
dis[k][j]=dis[i][j]+1;
if(!find)find=1;
if(k==ex&&j==ey)
{
printf("%d segments.\n",dis[k][j]);
return;
}
mark[k][j]=1;
}
}
for(k=j+1;k<=h+1;k++)
{
if(map[i][k]!=' '&&(i!=ex||k!=ey))
break;
if(!mark[i][k])
{
dis[i][k]=dis[i][j]+1;
if(!find)find=1;
if(i==ex&&k==ey)
{
printf("%d segments.\n",dis[i][k]);
return;
}
mark[i][k]=1;
}
}
for(k=i-1;k>=0;k--)
{
if(map[k][j]!=' '&&(k!=ex||j!=ey))
break;
if(!mark[k][j])
{
dis[k][j]=dis[i][j]+1;
if(!find)find=1;
if(k==ex&&j==ey)
{
printf("%d segments.\n",dis[k][j]);
return;
}
mark[k][j]=1;
}
}
for(k=j-1;k>=0;k--)
{
if(map[i][k]!=' '&&(i!=ex||k!=ey))
break;
if(!mark[i][k])
{
dis[i][k]=dis[i][j]+1;
if(!find)find=1;
if(i==ex&&k==ey)
{
printf("%d segments.\n",dis[i][k]);
return;
}
mark[i][k]=1;
}
}
}
}while(find);
printf("impossible.\n");
}
void main()
{
int i,j,count=0,tot=0;
char ch;
scanf("%d%d",&w,&h);
while(w&&h)
{
ch=getchar();
memset(map,' ',sizeof(map));
for(i=1;i<=h;i++)
{
while(ch=='\n')ch=getchar();
for(j=1;j<=w;j++)
{
map[j][i]=ch;
ch=getchar();
}
}
count=0;
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
while(sx||sy||ex||ey)
{
if(!count)
printf("Board #%d:\n",++tot);
printf("Pair %d: ",++count);
run();
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
}
putchar('\n');
scanf("%d%d",&w,&h);
}
} | [
"[email protected]"
] | |
0f75945ecc44ba757c0b02fde9a256fd522858d5 | a8822501e1a017273abb4638328d7b2be1088baf | /WapMap/states/imageDetails.h | f2896560368f86a25f8376fa3c6e2552c64470ca | [] | no_license | pejti/WapMap | b05748cda08d0c76603bbe28dc2f4f2f3d3e5209 | 19a5d56ff24cae1279e414568bd564ae661b3a44 | refs/heads/master | 2020-12-23T09:50:09.173873 | 2020-01-31T21:15:34 | 2020-01-31T21:15:34 | 237,115,263 | 0 | 0 | null | 2020-01-30T01:12:31 | 2020-01-30T01:12:31 | null | UTF-8 | C++ | false | false | 1,329 | h | #ifndef H_STATE_IMGDETAILS
#define H_STATE_IMGDETAILS
#include "../../shared/cStateMgr.h"
#include "../../shared/gcnWidgets/wWin.h"
#include "../../shared/gcnWidgets/wButton.h"
#include "../../shared/gcnWidgets/wLabel.h"
#include "../../shared/gcnWidgets/wScrollArea.h"
#include "../../shared/gcnWidgets/wSlider.h"
#include "guichan.hpp"
#include "../wViewport.h"
class cImage;
namespace State {
class ImageDetails
: public SHR::cState, public gcn::ActionListener, public WIDG::VpCallback/*, public gcn::ListModel*/ {
public:
ImageDetails(cImage *phImage);
~ImageDetails();
virtual bool Opaque();
virtual void Init();
virtual void Destroy();
virtual bool Think();
virtual bool Render();
virtual void GainFocus(int iReturnCode, bool bFlipped);
void action(const gcn::ActionEvent &actionEvent);
virtual void Draw(int piCode);
private:
gcn::Gui *gui;
SHR::Win *myWin;
SHR::ScrollArea *saPreview;
SHR::Contener *conPreview;
SHR::But *butReturn;
SHR::Slider *sliZoom;
float fZoomMod;
WIDG::Viewport *vpOverlay;
cImage *hImage;
//virtual std::string getElementAt(int i);
//virtual int getNumberOfElements();
};
};
#endif
| [
"[email protected]"
] | |
f01eeb55ff44d8aef19ea697fa75fc8f5cec10ea | 3ded37602d6d303e61bff401b2682f5c2b52928c | /ml/030/Classes/scenes/FavScene.h | 4749b0ce50b538a9405ae51578d131bf057caece | [] | no_license | CristinaBaby/Demo_CC | 8ce532dcf016f21b442d8b05173a7d20c03d337e | 6f6a7ff132e93271b8952b8da6884c3634f5cb59 | refs/heads/master | 2021-05-02T14:58:52.900119 | 2018-02-09T11:48:02 | 2018-02-09T11:48:02 | 120,727,659 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 432 | h | //
// FavScene.h
// OreoMaker
//
// Created by wusonglin1 on 14-10-24.
//
//
#ifndef __OreoMaker__FavScene__
#define __OreoMaker__FavScene__
#include <iostream>
#include "cocos2d.h"
#include "../Depends/base/BaseScene.h"
USING_NS_CC;
class FavScene: public BaseScene{
private:
FavScene();
virtual ~FavScene();
public:
virtual bool init();
CREATE_FUNC(FavScene);
};
#endif /* defined(__OreoMaker__FavScene__) */
| [
"[email protected]"
] | |
bd77b26109c819eef2b8d0a74087297c1f092ddc | ab7a412d64cc2bf2b2446c0c770f31c50ceb6819 | /BGE/SoundSystem.cpp | 76d945d2d734495f6f64407144a1d1d038d61d61 | [
"MIT"
] | permissive | PocketRocketRoche/GamesEngines1Assignment | 856790e9f171cfa03b21e9f52cc16210de60a75f | 2b402cb45387eb64f34c8a648fd68c3cd1df0118 | refs/heads/master | 2021-01-10T21:46:04.364814 | 2013-12-13T15:26:55 | 2013-12-13T15:26:55 | 13,859,413 | 0 | 0 | MIT | 2020-09-12T11:53:35 | 2013-10-25T12:02:33 | C | UTF-8 | C++ | false | false | 2,958 | cpp | #include "SoundSystem.h"
#include <fmod.hpp>
#include <fmod_errors.h>
#include "Exception.h"
#include "Content.h"
#include "Utils.h"
using namespace BGE;
void CheckFMODResult( FMOD_RESULT res )
{
if (res != FMOD_OK)
{
const char * error = FMOD_ErrorString(res);
throw BGE::Exception(error);
}
}
// Doesnt work... so dont call it
void SoundSystem::Vibrate(int millis, float power)
{
SDL_Haptic *haptic;
// Open the device
SDL_Joystick * joy;
joy = SDL_JoystickOpen(0);
haptic = SDL_HapticOpenFromJoystick( joy );
if (haptic == NULL)
{
return;
}
if (SDL_HapticRumbleInit( haptic ) != 0)
{
return;
}
if (SDL_HapticRumblePlay( haptic, power, millis ) != 0)
{
return;
}
// Clean up
SDL_JoystickClose(joy);
SDL_HapticClose( haptic );
}
SoundSystem::SoundSystem(void)
{
enabled = true;
}
SoundSystem::~SoundSystem(void)
{
}
void SoundSystem::Initialise()
{
FMOD_SPEAKERMODE speakerMode;
FMOD_CAPS caps;
CheckFMODResult(FMOD::System_Create(& fmodSystem));
CheckFMODResult(fmodSystem->getDriverCaps(0, &caps, 0, &speakerMode));
CheckFMODResult(fmodSystem->setSpeakerMode(speakerMode));
CheckFMODResult(fmodSystem->init(1000, FMOD_INIT_NORMAL, 0));
}
void SoundSystem::PlayHitSoundIfReady(GameComponent * object, int interval)
{
if (! enabled)
{
return;
}
long now = SDL_GetTicks();
// Has this object already played a sound?
map<GameComponent *, SoundEvent>::iterator it = soundEvents.find(object);
SoundEvent soundEvent;
bool isPlaying = false;
if (it != soundEvents.end())
{
if (now - it->second.last > interval)
{
// Is the sound already playing?
soundEvent = it->second;
soundEvent.channel->isPlaying(& isPlaying);
if (isPlaying)
{
return;
}
}
else
{
// Its too soon to play this object's sound
return;
}
}
else
{
int which = rand() % NUM_HIT_SOUNDS;
stringstream ss;
ss << "Hit" << which;
soundEvent.sound = Content::LoadSound(ss.str());
}
fmodSystem->playSound(FMOD_CHANNEL_FREE, soundEvent.sound, false, & soundEvent.channel);
if (soundEvent.channel != NULL)
{
if (isPlaying)
{
soundEvent.channel->set3DAttributes(& GLToFMODVector(object->position), & GLToFMODVector(glm::vec3(0)));
}
}
soundEvent.last = now;
soundEvents[object] = soundEvent;
}
void BGE::SoundSystem::Update()
{
if (! enabled)
{
return;
}
shared_ptr<Camera> camera = Game::Instance()->camera;
fmodSystem->set3DListenerAttributes(0,
& GLToFMODVector(camera->position)
, & GLToFMODVector(glm::vec3(0))
, & GLToFMODVector(camera->look)
, & GLToFMODVector(camera->up)
);
fmodSystem->update();
}
void SoundSystem::PlaySound(string name, glm::vec3 pos)
{
if (! enabled)
{
return;
}
FMOD::Sound * sound = Content::LoadSound(name);
FMOD::Channel * channel;
fmodSystem->playSound(FMOD_CHANNEL_FREE, sound, false, & channel);
if (channel != NULL)
{
channel->set3DAttributes(& GLToFMODVector(pos), & GLToFMODVector(glm::vec3(0)));
}
}
| [
"[email protected]"
] | |
d7dfffb495fa5c317267506351d08a8f8a1cb8ff | 41336673d4112c3025546b927cfb279d40ede2f2 | /compilerProject/ST/object.h | f0de2cfa282417250929f581b24ca28a7056f453 | [] | no_license | BlueBrains/compiler-project | 6f5e05f0d908defa941910d165e8592c93dcbec0 | 6d3045621fa21c9b4220bccf98e91d9ba23fd5b4 | refs/heads/master | 2021-01-20T18:54:56.494693 | 2015-01-13T10:11:09 | 2015-01-13T10:11:09 | 65,128,243 | 1 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 70 | h | using namespace std;
class object
{
public:
object();
~object();
}; | [
"[email protected]"
] | |
14a55e7680b9ea8f28a7d925049089d87171111a | e07e3f41c9774c9684c4700a9772712bf6ac3533 | /app/Temp/StagingArea/Data/il2cppOutput/mscorlib_System_Collections_Generic_Dictionary_2_T2874325086.h | ada49fe52b40246ad6a1db2105b77f055e8f04f4 | [] | no_license | gdesmarais-gsn/inprocess-mobile-skill-client | 0171a0d4aaed13dbbc9cca248aec646ec5020025 | 2499d8ab5149a306001995064852353c33208fc3 | refs/heads/master | 2020-12-03T09:22:52.530033 | 2017-06-27T22:08:38 | 2017-06-27T22:08:38 | 95,603,544 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 974 | h | #pragma once
#include "il2cpp-config.h"
#ifndef _MSC_VER
# include <alloca.h>
#else
# include <malloc.h>
#endif
#include <stdint.h>
// System.Object
struct Il2CppObject;
// System.IAsyncResult
struct IAsyncResult_t1999651008;
// System.AsyncCallback
struct AsyncCallback_t163412349;
#include "mscorlib_System_MulticastDelegate3201952435.h"
#include "mscorlib_System_Collections_DictionaryEntry3048875398.h"
#include "Json_NET_Newtonsoft_Json_Serialization_DefaultSeri3055062677.h"
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
#pragma clang diagnostic ignored "-Wunused-variable"
#endif
// System.Collections.Generic.Dictionary`2/Transform`1<Newtonsoft.Json.Serialization.DefaultSerializationBinder/TypeNameKey,System.Object,System.Collections.DictionaryEntry>
struct Transform_1_t2874325086 : public MulticastDelegate_t3201952435
{
public:
public:
};
#ifdef __clang__
#pragma clang diagnostic pop
#endif
| [
"[email protected]"
] | |
7920fcbbc6b4d2ed2817de8454b6d5836d4efd17 | d603ec4bbca216691a886f382d43997f2277b5f5 | /src/iccf.cc | 03c6e2e88eacaa8b1aae8ee61ec66e24d83a4884 | [
"MIT"
] | permissive | argv-minus-one/iconv-corefoundation | 6d843e68472343b066beccb5af5cb037659729b8 | 05394f04940a83431749c1672747eebcc8fae8ac | refs/heads/master | 2023-05-10T17:05:37.184906 | 2021-11-28T22:56:11 | 2021-11-28T22:56:11 | 190,135,783 | 0 | 1 | MIT | 2023-05-01T06:54:15 | 2019-06-04T05:33:32 | C++ | UTF-8 | C++ | false | false | 2,232 | cc | #include "iccf.hh"
#include "StringEncoding.hh"
#include "transcode.hh"
#include "napi.hh"
#include <sstream>
static Napi::Value encodingExists(const Napi::CallbackInfo &info) {
auto jsEncodingName = info[0].As<Napi::String>();
auto encodingName = NapiStringToCFString(jsEncodingName);
auto encoding = CFStringConvertIANACharSetNameToEncoding(encodingName);
return Napi::Boolean::New(info.Env(), encoding != kCFStringEncodingInvalidId);
}
static Napi::Object init(Napi::Env env, Napi::Object exports) {
return Napi::Function::New(env, [] (const Napi::CallbackInfo &info) {
const auto env = info.Env();
const auto exports = Napi::Object::New(env);
const auto iccf = new Iccf(info[0].ToObject(), exports);
napi_add_env_cleanup_hook(env, [] (void *arg) {
delete reinterpret_cast<Iccf *>(arg);
}, iccf);
return exports;
}, "");
}
NODE_API_MODULE(NODE_GYP_MODULE_NAME, init)
static Napi::FunctionReference funcRef(Napi::Object imports, const char *name) {
Napi::Value value = imports[name];
if (value.IsUndefined()) {
std::stringstream ss;
ss << "Property \"" << name << "\" is missing from imports object.";
throw Napi::TypeError::New(imports.Env(), ss.str());
}
else if (value.IsFunction()) {
auto ref = Napi::Persistent(value.As<Napi::Function>());
ref.SuppressDestruct();
return ref;
}
else {
std::stringstream ss;
ss << "Property \"" << name << "\" of imports object is not a function. Instead, it is: " << value.ToString().Utf8Value();
throw Napi::TypeError::New(imports.Env(), ss.str());
}
}
Iccf::Iccf(Napi::Object imports, Napi::Object exports)
: InvalidEncodedTextError(funcRef(imports, "InvalidEncodedTextError"))
, NotRepresentableError(funcRef(imports, "NotRepresentableError"))
, UnrecognizedEncodingError(funcRef(imports, "UnrecognizedEncodingError"))
, _newFormattedTypeError(funcRef(imports, "newFormattedTypeError"))
, StringEncoding(imports.Env(), this)
{
const auto env = imports.Env();
exports.DefineProperties({
Napi::PropertyDescriptor::Value("StringEncoding", StringEncoding.constructor(), napi_enumerable),
Napi::PropertyDescriptor::Function(env, exports, "encodingExists", encodingExists, napi_enumerable)
});
TranscodeInit(env, exports, this);
}
| [
"[email protected]"
] | |
7285b0929c8d4ee5545cc690ab65d2fb0cd30ad5 | dc2f794ce06dce6eb1d69a42fd8861b2edaffa97 | /apriluiparticle/src/ParticleBase.cpp | 0dab3c81f09b518ccb4357f5a1a07ac615bf5062 | [] | no_license | Ryex/libaprilparticle | d6500f0d927845d267d53db7776fe42fb1c7b7ae | 7a8556fb0e843ef2f61c8313071f2094a08c2dfd | refs/heads/master | 2021-01-01T05:30:43.116293 | 2014-04-04T07:35:59 | 2014-04-04T07:35:59 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 3,678 | cpp | /// @file
/// @author Boris Mikic
/// @version 2.0
///
/// @section LICENSE
///
/// This program is free software; you can redistribute it and/or modify it under
/// the terms of the BSD license: http://www.opensource.org/licenses/bsd-license.php
#include <april/Color.h>
#include <aprilparticle/aprilparticle.h>
#include <aprilparticle/Emitter.h>
#include <aprilparticle/Space.h>
#include <aprilparticle/System.h>
#include <aprilui/aprilui.h>
#include <aprilui/Dataset.h>
#include <gtypes/Rectangle.h>
#include <gtypes/Vector2.h>
#include <gtypes/Vector3.h>
#include <hltypes/hdir.h>
#include <hltypes/hstring.h>
#include "apriluiparticle.h"
#include "apriluiparticleUtil.h"
#include "ParticleSpace.h"
#include "ParticleBase.h"
namespace apriluiparticle
{
ParticleBase::ParticleBase(chstr name, grect rect) : aprilui::Object(name, rect)
{
this->system = NULL;
}
ParticleBase::~ParticleBase()
{
this->stopSystem();
}
aprilui::Object* ParticleBase::createInstance(chstr name, grect rect)
{
return new ParticleBase(name, rect);
}
bool ParticleBase::isRunning()
{
return (this->system != NULL && this->system->isRunning());
}
bool ParticleBase::isExpired()
{
return (this->system != NULL && this->system->isExpired());
}
void ParticleBase::load(chstr filename)
{
this->filename = filename;
this->stopSystem();
if ((this->filename != "" || this->filepath != "") && apriluiparticle::isEnabled())
{
this->_load();
}
}
void ParticleBase::notifyEvent(chstr name, void* params)
{
if (name == "SettingsChanged")
{
if ((this->filename != "" || this->filepath != "") && apriluiparticle::isEnabled())
{
this->_load();
}
else
{
this->stopSystem();
}
}
else if (name == "Resized")
{
this->_resize();
}
aprilui::Object::notifyEvent(name, params);
}
void ParticleBase::_load()
{
if (this->system != NULL)
{
return;
}
hstr filepath = this->filepath;
if (filepath == "") // if no forced file path exists
{
filepath = this->filename;
hstr defaultPath = apriluiparticle::getDefaultPath();
if (defaultPath != "")
{
filepath = hdir::join_path(defaultPath, filepath, false);
}
}
hstr datasetPath = this->getDataset()->getFilePath();
if (datasetPath != "")
{
filepath = hdir::join_path(datasetPath, filepath, false);
}
filepath = hdir::normalize(filepath);
this->system = aprilparticle::loadSystem(filepath);
this->_resize();
}
void ParticleBase::_resize()
{
if (this->system != NULL)
{
apriluiparticle::resizeEmitters(this->getSize(), this->system->getEmitters());
}
}
void ParticleBase::finishSystem()
{
if (this->system != NULL)
{
this->system->finish();
}
}
void ParticleBase::stopSystem()
{
if (this->system != NULL)
{
delete this->system;
this->system = NULL;
}
}
void ParticleBase::resetSystem()
{
if (this->system != NULL)
{
this->system->reset();
}
}
hstr ParticleBase::getProperty(chstr name, bool* property_exists)
{
if (property_exists != NULL)
{
*property_exists = true;
}
if (name == "filename") return this->getFilename();
if (name == "filepath") return this->getFilepath();
return aprilui::Object::getProperty(name, property_exists);
}
bool ParticleBase::setProperty(chstr name, chstr value)
{
if (name == "filename")
{
this->setFilename(value);
this->setFilepath("");
this->notifyEvent("SettingsChanged", NULL);
}
else if (name == "filepath")
{
this->setFilepath(value);
this->setFilename("");
this->notifyEvent("SettingsChanged", NULL);
}
else return aprilui::Object::setProperty(name, value);
return true;
}
}
| [
"kspes@f2b9c05d-7056-4c2f-abec-aec71e0497c1"
] | kspes@f2b9c05d-7056-4c2f-abec-aec71e0497c1 |
fbfec0150f387079e4c6bfabf1215be241417d56 | 438089df0a020dc8205a4b0df2a08e510f40fd3c | /extern/renderdoc/util/test/demos/gl/gl_test.h | b7900315cd2b3e4ca12d9376f844a0465014b7b3 | [
"LicenseRef-scancode-unknown-license-reference",
"MIT",
"BSD-3-Clause",
"Apache-2.0",
"CC-BY-3.0"
] | permissive | minh0722/basic-directx11 | 59b5bbcc5de6ccf5f26fa68493d11512b20e5971 | 9e0b24d42497688fd5193327110432ab262234cf | refs/heads/master | 2021-08-16T03:11:48.626639 | 2021-01-20T23:45:33 | 2021-01-20T23:45:33 | 72,579,642 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 2,543 | h | /******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Baldur Karlsson
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
******************************************************************************/
#pragma once
#include "../test_common.h"
#include "3rdparty/glad/glad.h"
#include <vector>
struct OpenGLGraphicsTest : public GraphicsTest
{
static const TestAPI API = TestAPI::OpenGL;
void Prepare(int argc, char **argv);
bool Init();
void Shutdown();
GraphicsWindow *MakeWindow(int width, int height, const char *title);
void *MakeContext(GraphicsWindow *win, void *share);
void DestroyContext(void *ctx);
void ActivateContext(GraphicsWindow *win, void *ctx);
void PostInit();
GLuint MakeProgram(std::string vertSrc, std::string fragSrc, std::string geomSrc = "");
GLuint MakeProgram(std::string compSrc);
GLuint MakeProgram();
GLuint MakePipeline();
GLuint MakeBuffer();
GLuint MakeTexture();
GLuint MakeVAO();
GLuint MakeFBO();
void pushMarker(const std::string &name);
void setMarker(const std::string &name);
void popMarker();
bool Running();
void Present(GraphicsWindow *window);
void Present() { Present(mainWindow); }
int glMajor = 4;
int glMinor = 3;
bool coreProfile = true;
bool gles = false;
GraphicsWindow *mainWindow = NULL;
void *mainContext = NULL;
bool inited = false;
struct
{
std::vector<GLuint> bufs, texs, progs, pipes, vaos, fbos;
} managedResources;
};
| [
"[email protected]"
] | |
df1b7be62418a1774597d738a17742f639cb8434 | 7bb1cd3b6ab160eef592e7d7d14120d299b61ee4 | /codeforces/A/501A.cpp | 6b289b94b6d9eb2c891a4531d1332635cd664d6a | [] | no_license | naveenchopra9/cp | d986a3e8c650903b8bec8c4b0665c3ef664e251a | 0f271204b2675a366f0b92081ec67a97efc5883a | refs/heads/master | 2020-05-16T12:38:25.063272 | 2019-04-23T16:12:46 | 2019-04-23T16:12:46 | 183,051,510 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 737 | cpp | #include "/Users/naveen/stdc++.h"
//#include <bits/stdc++.h>
using namespace std;
#define MAXV 2147483647
#define MINV -2147483647
#define SYC ios_base::sync_with_stdio(0); cin.tie(0)
#define ll unsigned long long int
#define For(i,n) for(int i =0 ; i< n ; i++)
#define M 1000000007
#define FR freopen("/Users/naveen/Documents/online_code/input.txt","r",stdin)
#define FW freopen("/Users/naveen/Documents/online_code/output.txt","w",stdout)
int a[100000+5];
int main(){
int a,b,c,d;
cin>>a>>b>>c>>d;
int aa=max((3*a)/10,a-((a/250)*c));
int bb=max((3*b)/10,b-((b/250)*d));
if(aa==bb)cout<<"Tie"<<endl;
else if(aa<bb){
cout<<"Vasya"<<endl;
}
else{
cout<<"Misha"<<endl;
}
return 0;
}
| [
"[email protected]"
] | |
6d3c81346d026c98c1674c5cdb92017e83c381af | 5b07de510fd36829ccec2704340d6aa4e2d88bb7 | /src/wallet.cpp | 6793b587ecf98502fd90289521860ba958356be5 | [] | no_license | wyh136/DECENT | b12f8222b4d803b526ebcdf6076891cfd06b4fa1 | 9785af7faab5e834463999959ce85e5287b96ca4 | refs/heads/master | 2021-01-20T11:34:53.214816 | 2016-09-06T17:11:42 | 2016-09-06T17:11:42 | null | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 94,419 | cpp | // Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Copyright (c) 2011-2013 The Peercoin developers
// Copyright (c) 2015-2015 The Decent developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "wallet.h"
#include "walletdb.h"
#include "crypter.h"
#include "ui_interface.h"
#include "kernel.h"
#include "bitcoinrpc.h"
#include "encryptionutils.h"
using namespace std;
//////////////////////////////////////////////////////////////////////////////
//
// mapWallet
//
std::vector<unsigned char> CWallet::GenerateNewKey()
{
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
RandAddSeedPerfmon();
CKey key;
key.MakeNewKey(fCompressed);
// Compressed public keys were introduced in version 0.6.0
if (fCompressed)
SetMinVersion(FEATURE_COMPRPUBKEY);
if (!AddKey(key))
throw std::runtime_error("CWallet::GenerateNewKey() : AddKey failed");
return key.GetPubKey();
}
bool CWallet::AddKey(const CKey& key)
{
if (!CCryptoKeyStore::AddKey(key))
return false;
if (!fFileBacked)
return true;
if (!IsCrypted())
return CWalletDB(strWalletFile).WriteKey(key.GetPubKey(), key.GetPrivKey());
return true;
}
bool CWallet::AddCryptedKey(const vector<unsigned char> &vchPubKey, const vector<unsigned char> &vchCryptedSecret)
{
if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
if (!fFileBacked)
return true;
{
LOCK(cs_wallet);
if (pwalletdbEncryption)
return pwalletdbEncryption->WriteCryptedKey(vchPubKey, vchCryptedSecret);
else
return CWalletDB(strWalletFile).WriteCryptedKey(vchPubKey, vchCryptedSecret);
}
return false;
}
bool CWallet::AddCScript(const CScript& redeemScript)
{
if (!CCryptoKeyStore::AddCScript(redeemScript))
return false;
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).WriteCScript(Hash160(redeemScript), redeemScript);
}
// peercoin: optional setting to unlock wallet for block minting only;
// serves to disable the trivial sendmoney when OS account compromised
bool fWalletUnlockMintOnly = false;
bool CWallet::Unlock(const SecureString& strWalletPassphrase)
{
if (!IsLocked())
return false;
CCrypter crypter;
CKeyingMaterial vMasterKey;
{
LOCK(cs_wallet);
BOOST_FOREACH(const MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(vMasterKey))
return true;
}
}
return false;
}
bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase)
{
bool fWasLocked = IsLocked();
{
LOCK(cs_wallet);
Lock();
CCrypter crypter;
CKeyingMaterial vMasterKey;
BOOST_FOREACH(MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(vMasterKey))
{
int64 nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (pMasterKey.second.nDeriveIterations < 25000)
pMasterKey.second.nDeriveIterations = 25000;
printf("Portfolio passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, pMasterKey.second.vchCryptedKey))
return false;
CWalletDB(strWalletFile).WriteMasterKey(pMasterKey.first, pMasterKey.second);
if (fWasLocked)
Lock();
return true;
}
}
}
return false;
}
void CWallet::SetBestChain(const CBlockLocator& loc)
{
CWalletDB walletdb(strWalletFile);
walletdb.WriteBestBlock(loc);
}
// This class implements an addrIncoming entry that causes pre-0.4
// clients to crash on startup if reading a private-key-encrypted wallet.
class CCorruptAddress
{
public:
IMPLEMENT_SERIALIZE
(
if (nType & SER_DISK)
READWRITE(nVersion);
)
};
bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit)
{
if (nWalletVersion >= nVersion)
return true;
// when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way
if (fExplicit && nVersion > nWalletMaxVersion)
nVersion = FEATURE_LATEST;
nWalletVersion = nVersion;
if (nVersion > nWalletMaxVersion)
nWalletMaxVersion = nVersion;
if (fFileBacked)
{
CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(strWalletFile);
if (nWalletVersion >= 40000)
{
// Versions prior to 0.4.0 did not support the "minversion" record.
// Use a CCorruptAddress to make them crash instead.
CCorruptAddress corruptAddress;
pwalletdb->WriteSetting("addrIncoming", corruptAddress);
}
if (nWalletVersion > 40000)
pwalletdb->WriteMinVersion(nWalletVersion);
if (!pwalletdbIn)
delete pwalletdb;
}
return true;
}
bool CWallet::SetMaxVersion(int nVersion)
{
// cannot downgrade below current version
if (nWalletVersion > nVersion)
return false;
nWalletMaxVersion = nVersion;
return true;
}
bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase)
{
if (IsCrypted())
return false;
CKeyingMaterial vMasterKey;
RandAddSeedPerfmon();
vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE);
RAND_bytes(&vMasterKey[0], WALLET_CRYPTO_KEY_SIZE);
CMasterKey kMasterKey;
RandAddSeedPerfmon();
kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE);
RAND_bytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE);
CCrypter crypter;
int64 nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (kMasterKey.nDeriveIterations < 25000)
kMasterKey.nDeriveIterations = 25000;
printf("Encrypting portfolio with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, kMasterKey.vchCryptedKey))
return false;
{
LOCK(cs_wallet);
mapMasterKeys[++nMasterKeyMaxID] = kMasterKey;
if (fFileBacked)
{
pwalletdbEncryption = new CWalletDB(strWalletFile);
if (!pwalletdbEncryption->TxnBegin())
return false;
pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey);
}
if (!EncryptKeys(vMasterKey))
{
if (fFileBacked)
pwalletdbEncryption->TxnAbort();
exit(1); //We now probably have half of our keys encrypted in memory, and half not...die and let the user reload their unencrypted wallet.
}
// Encryption was introduced in version 0.4.0
SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true);
if (fFileBacked)
{
if (!pwalletdbEncryption->TxnCommit())
exit(1); //We now have keys encrypted in memory, but no on disk...die to avoid confusion and let the user reload their unencrypted wallet.
delete pwalletdbEncryption;
pwalletdbEncryption = NULL;
}
Lock();
Unlock(strWalletPassphrase);
NewKeyPool();
Lock();
// Need to completely rewrite the wallet file; if we don't, bdb might keep
// bits of the unencrypted private key in slack space in the database file.
CDB::Rewrite(strWalletFile);
}
return true;
}
void CWallet::WalletUpdateSpent(const CTransaction &tx)
{
// Anytime a signature is successfully verified, it's proof the outpoint is spent.
// Update the wallet spent flag if it doesn't know due to wallet.dat being
// restored from backup or the user making copies of wallet.dat.
{
LOCK(cs_wallet);
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
map<uint256, CWalletTx>::iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
CWalletTx& wtx = (*mi).second;
// Decent: skip empty TX
if (wtx.vout.empty())
continue;
if (!wtx.IsSpent(txin.prevout.n) && IsMine(wtx.vout[txin.prevout.n]))
{
printf("WalletUpdateSpent found spent unit %sDCT %s\n", FormatMoney(wtx.GetCredit()).c_str(), wtx.GetHash().ToString().c_str());
wtx.MarkSpent(txin.prevout.n);
wtx.WriteToDisk();
vWalletUpdated.push_back(txin.prevout.hash);
}
}
}
}
}
void CWallet::MarkDirty()
{
{
LOCK(cs_wallet);
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
item.second.MarkDirty();
}
}
bool CWallet::AddToWallet(const CWalletTx& wtxIn)
{
uint256 hash = wtxIn.GetHash();
{
LOCK(cs_wallet);
// Inserts only if not already there, returns tx inserted or tx found
pair<map<uint256, CWalletTx>::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn));
CWalletTx& wtx = (*ret.first).second;
wtx.BindWallet(this);
bool fInsertedNew = ret.second;
if (fInsertedNew)
wtx.nTimeReceived = GetAdjustedTime();
bool fUpdated = false;
if (!fInsertedNew)
{
// Merge
if (wtxIn.hashBlock != 0 && wtxIn.hashBlock != wtx.hashBlock)
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
if (wtxIn.nIndex != -1 && (wtxIn.vMerkleBranch != wtx.vMerkleBranch || wtxIn.nIndex != wtx.nIndex))
{
wtx.vMerkleBranch = wtxIn.vMerkleBranch;
wtx.nIndex = wtxIn.nIndex;
fUpdated = true;
}
if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe)
{
wtx.fFromMe = wtxIn.fFromMe;
fUpdated = true;
}
fUpdated |= wtx.UpdateSpent(wtxIn.vfSpent);
}
//// debug print
printf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString().substr(0,10).c_str(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : ""));
// Write to disk
if (fInsertedNew || fUpdated)
if (!wtx.WriteToDisk())
return false;
#ifndef QT_GUI
// If default receiving address gets used, replace it with a new one
CScript scriptDefaultKey;
scriptDefaultKey.SetBitcoinAddress(vchDefaultKey);
BOOST_FOREACH(const CTxOut& txout, wtx.vout)
{
if (txout.scriptPubKey == scriptDefaultKey)
{
std::vector<unsigned char> newDefaultKey;
if (GetKeyFromPool(newDefaultKey, false))
{
SetDefaultKey(newDefaultKey);
SetAddressBookName(CBitcoinAddress(vchDefaultKey), "");
}
}
}
#endif
// Notify UI
vWalletUpdated.push_back(hash);
// since AddToWallet is called directly for self-originating transactions, check for consumption of own coins
WalletUpdateSpent(wtx);
}
// Refresh UI
MainFrameRepaint();
return true;
}
// Add a transaction to the wallet, or update it.
// pblock is optional, but should be provided if the transaction is known to be in a block.
// If fUpdate is true, existing transactions will be updated.
bool CWallet::AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate, bool fFindBlock)
{
uint256 hash = tx.GetHash();
{
LOCK(cs_wallet);
bool fExisted = mapWallet.count(hash);
if (fExisted && !fUpdate) return false;
if (fExisted || IsMine(tx) || IsFromMe(tx))
{
CWalletTx wtx(this,tx);
// Get merkle branch if transaction was found in a block
if (pblock)
wtx.SetMerkleBranch(pblock);
return AddToWallet(wtx);
}
else
WalletUpdateSpent(tx);
}
return false;
}
bool CWallet::EraseFromWallet(uint256 hash)
{
if (!fFileBacked)
return false;
{
LOCK(cs_wallet);
if (mapWallet.erase(hash))
CWalletDB(strWalletFile).EraseTx(hash);
}
return true;
}
bool CWallet::IsMine(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return true;
}
}
return false;
}
int64 CWallet::GetDebit(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return prev.vout[txin.prevout.n].nValue;
}
}
return 0;
}
bool CWallet::IsChange(const CTxOut& txout) const
{
CBitcoinAddress address;
// TODO: fix handling of 'change' outputs. The assumption is that any
// payment to a TX_PUBKEYHASH that is mine but isn't in the address book
// is change. That assumption is likely to break when we implement multisignature
// wallets that return change back into a multi-signature-protected address;
// a better way of identifying which outputs are 'the send' and which are
// 'the change' will need to be implemented (maybe extend CWalletTx to remember
// which output, if any, was change).
if (ExtractAddress(txout.scriptPubKey, address) && HaveKey(address))
{
LOCK(cs_wallet);
if (!mapAddressBook.count(address))
return true;
}
return false;
}
int64 CWalletTx::GetTxTime() const
{
return nTimeReceived;
}
int CWalletTx::GetRequestCount() const
{
// Returns -1 if it wasn't being tracked
int nRequests = -1;
{
LOCK(pwallet->cs_wallet);
if (IsCoinBase() || IsCoinStake())
{
// Generated block
if (hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
}
}
else
{
// Did anyone request this transaction?
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(GetHash());
if (mi != pwallet->mapRequestCount.end())
{
nRequests = (*mi).second;
// How about the block it's in?
if (nRequests == 0 && hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
else
nRequests = 1; // If it's in someone else's block it must have got out
}
}
}
}
return nRequests;
}
void CWalletTx::GetAmounts(int64& nGeneratedImmature, int64& nGeneratedMature, list<pair<CBitcoinAddress, int64> >& listReceived,
list<pair<CBitcoinAddress, int64> >& listSent, int64& nFee, string& strSentAccount) const
{
nGeneratedImmature = nGeneratedMature = nFee = 0;
listReceived.clear();
listSent.clear();
strSentAccount = strFromAccount;
if (IsCoinBase() || IsCoinStake())
{
if (GetBlocksToMaturity() > 0)
nGeneratedImmature = pwallet->GetCredit(*this) - pwallet->GetDebit(*this);
else
nGeneratedMature = GetCredit() - GetDebit();
return;
}
// Compute fee:
int64 nDebit = GetDebit();
if (nDebit > 0) // debit>0 means we signed/sent this transaction
{
int64 nValueOut = GetValueOut();
nFee = nDebit - nValueOut;
}
// Sent/received.
BOOST_FOREACH(const CTxOut& txout, vout)
{
CBitcoinAddress address;
vector<unsigned char> vchPubKey;
if (!ExtractAddress(txout.scriptPubKey, address))
{
printf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n",
this->GetHash().ToString().c_str());
address = " unknown ";
}
// Don't report 'change' txouts
if (nDebit > 0 && pwallet->IsChange(txout))
continue;
if (nDebit > 0)
listSent.push_back(make_pair(address, txout.nValue));
if (pwallet->IsMine(txout))
listReceived.push_back(make_pair(address, txout.nValue));
}
}
void CWalletTx::GetAccountAmounts(const string& strAccount, int64& nGenerated, int64& nReceived,
int64& nSent, int64& nFee) const
{
nGenerated = nReceived = nSent = nFee = 0;
int64 allGeneratedImmature, allGeneratedMature, allFee;
allGeneratedImmature = allGeneratedMature = allFee = 0;
string strSentAccount;
list<pair<CBitcoinAddress, int64> > listReceived;
list<pair<CBitcoinAddress, int64> > listSent;
GetAmounts(allGeneratedImmature, allGeneratedMature, listReceived, listSent, allFee, strSentAccount);
if (strAccount == "")
nGenerated = allGeneratedMature;
if (strAccount == strSentAccount)
{
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress,int64)& s, listSent)
nSent += s.second;
nFee = allFee;
}
{
LOCK(pwallet->cs_wallet);
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress,int64)& r, listReceived)
{
if (pwallet->mapAddressBook.count(r.first))
{
map<CBitcoinAddress, string>::const_iterator mi = pwallet->mapAddressBook.find(r.first);
if (mi != pwallet->mapAddressBook.end() && ((*mi).second == strAccount || (*mi).first.ToString() == strAccount))
nReceived += r.second;
}
else if (strAccount.empty())
{
nReceived += r.second;
}
}
}
}
void CWalletTx::AddSupportingTransactions(CTxDB& txdb)
{
vtxPrev.clear();
const int COPY_DEPTH = 3;
if (SetMerkleBranch() < COPY_DEPTH)
{
vector<uint256> vWorkQueue;
BOOST_FOREACH(const CTxIn& txin, vin)
vWorkQueue.push_back(txin.prevout.hash);
// This critsect is OK because txdb is already open
{
LOCK(pwallet->cs_wallet);
map<uint256, const CMerkleTx*> mapWalletPrev;
set<uint256> setAlreadyDone;
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hash = vWorkQueue[i];
if (setAlreadyDone.count(hash))
continue;
setAlreadyDone.insert(hash);
CMerkleTx tx;
map<uint256, CWalletTx>::const_iterator mi = pwallet->mapWallet.find(hash);
if (mi != pwallet->mapWallet.end())
{
tx = (*mi).second;
BOOST_FOREACH(const CMerkleTx& txWalletPrev, (*mi).second.vtxPrev)
mapWalletPrev[txWalletPrev.GetHash()] = &txWalletPrev;
}
else if (mapWalletPrev.count(hash))
{
tx = *mapWalletPrev[hash];
}
else if (!fClient && txdb.ReadDiskTx(hash, tx))
{
;
}
else
{
printf("ERROR: AddSupportingTransactions() : unsupported transaction\n");
continue;
}
int nDepth = tx.SetMerkleBranch();
vtxPrev.push_back(tx);
if (nDepth < COPY_DEPTH)
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
vWorkQueue.push_back(txin.prevout.hash);
}
}
}
}
reverse(vtxPrev.begin(), vtxPrev.end());
}
bool CWalletTx::WriteToDisk()
{
return CWalletDB(pwallet->strWalletFile).WriteTx(GetHash(), *this);
}
// Scan the block chain (starting in pindexStart) for transactions
// from or to us. If fUpdate is true, found transactions that already
// exist in the wallet will be updated.
int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate)
{
int ret = 0;
CBlockIndex* pindex = pindexStart;
{
LOCK(cs_wallet);
while (pindex)
{
CBlock block;
block.ReadFromDisk(pindex, true);
BOOST_FOREACH(CTransaction& tx, block.vtx)
{
if (AddToWalletIfInvolvingMe(tx, &block, fUpdate))
ret++;
}
pindex = pindex->pnext;
}
}
return ret;
}
int CWallet::ScanForWalletTransaction(const uint256& hashTx)
{
CTransaction tx;
tx.ReadFromDisk(COutPoint(hashTx, 0));
if (AddToWalletIfInvolvingMe(tx, NULL, true, true))
return 1;
return 0;
}
void CWallet::ReacceptWalletTransactions()
{
CTxDB txdb("r");
bool fRepeat = true;
while (fRepeat)
{
LOCK(cs_wallet);
fRepeat = false;
vector<CDiskTxPos> vMissingTx;
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
CWalletTx& wtx = item.second;
if ((wtx.IsCoinBase() && wtx.IsSpent(0)) || (wtx.IsCoinStake() && wtx.IsSpent(1)))
continue;
CTxIndex txindex;
bool fUpdated = false;
if (txdb.ReadTxIndex(wtx.GetHash(), txindex))
{
// Update fSpent if a tx got spent somewhere else by a copy of wallet.dat
if (txindex.vSpent.size() != wtx.vout.size())
{
printf("ERROR: ReacceptWalletTransactions() : txindex.vSpent.size() %d != wtx.vout.size() %d\n", txindex.vSpent.size(), wtx.vout.size());
continue;
}
for (unsigned int i = 0; i < txindex.vSpent.size(); i++)
{
if (wtx.IsSpent(i))
continue;
if (!txindex.vSpent[i].IsNull() && IsMine(wtx.vout[i]))
{
wtx.MarkSpent(i);
fUpdated = true;
vMissingTx.push_back(txindex.vSpent[i]);
}
}
if (fUpdated)
{
printf("ReacceptWalletTransactions found spent coin %sppc %s\n", FormatMoney(wtx.GetCredit()).c_str(), wtx.GetHash().ToString().c_str());
wtx.MarkDirty();
wtx.WriteToDisk();
}
}
else
{
// Reaccept any txes of ours that aren't already in a block
if (!(wtx.IsCoinBase() || wtx.IsCoinStake()))
wtx.AcceptWalletTransaction(txdb, false);
}
}
if (!vMissingTx.empty())
{
// TODO: optimize this to scan just part of the block chain?
if (ScanForWalletTransactions(pindexGenesisBlock))
fRepeat = true; // Found missing transactions: re-do Reaccept.
}
}
}
void CWalletTx::RelayWalletTransaction(CTxDB& txdb)
{
BOOST_FOREACH(const CMerkleTx& tx, vtxPrev)
{
if (!(tx.IsCoinBase() || tx.IsCoinStake()))
{
uint256 hash = tx.GetHash();
if (!txdb.ContainsTx(hash))
RelayMessage(CInv(MSG_TX, hash), (CTransaction)tx);
}
}
if (!(IsCoinBase() || IsCoinStake()))
{
uint256 hash = GetHash();
if (!txdb.ContainsTx(hash))
{
printf("Relaying wtx %s\n", hash.ToString().substr(0,10).c_str());
RelayMessage(CInv(MSG_TX, hash), (CTransaction)*this);
}
}
}
void CWalletTx::RelayWalletTransaction()
{
CTxDB txdb("r");
RelayWalletTransaction(txdb);
}
void CWallet::ResendWalletTransactions()
{
// Do this infrequently and randomly to avoid giving away
// that these are our transactions.
static int64 nNextTime;
if (GetTime() < nNextTime)
return;
bool fFirst = (nNextTime == 0);
nNextTime = GetTime() + GetRand(30 * 60);
if (fFirst)
return;
// Only do it if there's been a new block since last time
static int64 nLastTime;
if (nTimeBestReceived < nLastTime)
return;
nLastTime = GetTime();
// Rebroadcast any of our txes that aren't in a block yet
printf("ResendWalletTransactions()\n");
CTxDB txdb("r");
{
LOCK(cs_wallet);
// Sort them in chronological order
multimap<unsigned int, CWalletTx*> mapSorted;
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
CWalletTx& wtx = item.second;
// Don't rebroadcast until it's had plenty of time that
// it should have gotten in already by now.
if (nTimeBestReceived - (int64)wtx.nTimeReceived > 5 * 60)
mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx));
}
BOOST_FOREACH(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted)
{
CWalletTx& wtx = *item.second;
if (wtx.CheckTransaction())
wtx.RelayWalletTransaction(txdb);
else
printf("ResendWalletTransactions() : CheckTransaction failed for transaction %s\n", wtx.GetHash().ToString().c_str());
}
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Actions
//
int64 CWallet::GetBalance() const
{
int64 nTotal = 0;
{
LOCK(cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!pcoin->IsFinal() || !pcoin->IsConfirmed())
continue;
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
int64 CWallet::GetUnconfirmedBalance() const
{
int64 nTotal = 0;
{
LOCK(cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsFinal() && pcoin->IsConfirmed())
continue;
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
// peercoin: total coins staked (non-spendable until maturity)
int64 CWallet::GetStake() const
{
int64 nTotal = 0;
LOCK(cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsCoinStake() && pcoin->GetBlocksToMaturity() > 0 && pcoin->GetDepthInMainChain() > 0)
nTotal += CWallet::GetCredit(*pcoin);
}
return nTotal;
}
int64 CWallet::GetNewMint() const
{
int64 nTotal = 0;
LOCK(cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0 && pcoin->GetDepthInMainChain() > 0)
nTotal += CWallet::GetCredit(*pcoin);
}
return nTotal;
}
bool CWallet::SelectCoinsMinConf(int64 nTargetValue, unsigned int nSpendTime, int nConfMine, int nConfTheirs, list<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64& nValueRet) const
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
pair<int64, pair<const CWalletTx*,unsigned int> > coinLowestLarger;
coinLowestLarger.first = std::numeric_limits<int64>::max();
coinLowestLarger.second.first = NULL;
vector<pair<int64, pair<const CWalletTx*,unsigned int> > > vValue;
int64 nTotalLower = 0;
{
LOCK(cs_wallet);
vector<const CWalletTx*> vCoins;
vCoins.reserve(mapWallet.size());
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
vCoins.push_back(&(*it).second);
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
BOOST_FOREACH(const CWalletTx* pcoin, vCoins)
{
if (!pcoin->IsFinal() || !pcoin->IsConfirmed())
continue;
if ((pcoin->IsCoinBase() || pcoin->IsCoinStake()) && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < (pcoin->IsFromMe() ? nConfMine : nConfTheirs))
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++)
{
if (pcoin->IsSpent(i) || !IsMine(pcoin->vout[i]))
continue;
if (pcoin->nTime > nSpendTime)
continue; // peercoin: timestamp must not exceed spend time
int64 n = pcoin->vout[i].nValue;
if (n <= 0)
continue;
pair<int64,pair<const CWalletTx*,unsigned int> > coin = make_pair(n,make_pair(pcoin,i));
if (n == nTargetValue)
{
setCoinsRet.push_back(coin.second);
nValueRet += coin.first;
return true;
}
else if (n < nTargetValue + CENT)
{
vValue.push_back(coin);
nTotalLower += n;
}
else if (n < coinLowestLarger.first)
{
coinLowestLarger = coin;
}
}
}
}
if (nTotalLower == nTargetValue || nTotalLower == nTargetValue + CENT)
{
for (unsigned int i = 0; i < vValue.size(); ++i)
{
setCoinsRet.push_back(vValue[i].second);
nValueRet += vValue[i].first;
}
return true;
}
if (nTotalLower < nTargetValue + (coinLowestLarger.second.first ? CENT : 0))
{
if (coinLowestLarger.second.first == NULL)
return false;
setCoinsRet.push_back(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
return true;
}
if (nTotalLower >= nTargetValue + CENT)
nTargetValue += CENT;
// Solve subset sum by stochastic approximation
sort(vValue.rbegin(), vValue.rend());
vector<char> vfIncluded;
vector<char> vfBest(vValue.size(), true);
int64 nBest = nTotalLower;
for (int nRep = 0; nRep < 1000 && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
int64 nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
if (nPass == 0 ? rand() % 2 : !vfIncluded[i])
{
nTotal += vValue[i].first;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].first;
vfIncluded[i] = false;
}
}
}
}
}
// If the next larger is still closer, return it
if (coinLowestLarger.second.first && coinLowestLarger.first - nTargetValue <= nBest - nTargetValue)
{
setCoinsRet.push_back(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.push_back(vValue[i].second);
nValueRet += vValue[i].first;
}
//// debug print
if (fDebug && GetBoolArg("-printselectcoin"))
{
printf("SelectCoins() best subset: ");
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
printf("%s ", FormatMoney(vValue[i].first).c_str());
printf("total %s\n", FormatMoney(nBest).c_str());
}
}
return true;
}
bool CWallet::SelectCoins(int64 nTargetValue, unsigned int nSpendTime, list<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64& nValueRet) const
{
return (SelectCoinsMinConf(nTargetValue, nSpendTime, 1, 6, setCoinsRet, nValueRet) ||
SelectCoinsMinConf(nTargetValue, nSpendTime, 1, 1, setCoinsRet, nValueRet) ||
SelectCoinsMinConf(nTargetValue, nSpendTime, 0, 1, setCoinsRet, nValueRet));
}
// Decent: populate vCoins with vector of available CTxOut
void CWallet::AvailableCoins(vector<CTxOut>& vCoins) const
{
bool fIncludeZeroValue = true;
vCoins.clear();
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!(*pcoin).IsFinal())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < 0)
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++) {
bool mine = IsMine(pcoin->vout[i]);
if (!pcoin->IsSpent(i) && mine && (pcoin->vout[i].nValue > 0 || fIncludeZeroValue))
vCoins.push_back(pcoin->vout[i]);
}
}
}
}
bool CWallet::CreateTransaction(const vector<pair<CScript, int64> >& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, int64& nFeeRet)
{
int64 nValue = 0;
BOOST_FOREACH (const PAIRTYPE(CScript, int64)& s, vecSend)
{
if (nValue < 0)
return error("create tx : nValue < 0");
nValue += s.second;
}
if (vecSend.empty() || nValue < 0)
return error("create tx : vecSend.empty()");
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
// txdb must be opened before the mapWallet lock
CTxDB txdb("r");
{
nFeeRet = MIN_TX_FEE;
loop
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64 nTotalValue = nValue + nFeeRet;
double dPriority = 0;
// vouts to the payees
BOOST_FOREACH (const PAIRTYPE(CScript, int64)& s, vecSend)
wtxNew.vout.push_back(CTxOut(s.second, s.first));
// Choose coins to use
list<pair<const CWalletTx*,unsigned int> > setCoins;
int64 nValueIn = 0;
if (!SelectCoins(nTotalValue, wtxNew.nTime, setCoins, nValueIn))
return error("create tx : SelectCoins() failed");
CScript scriptChange;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64 nCredit = pcoin.first->vout[pcoin.second].nValue;
dPriority += (double)nCredit * pcoin.first->GetDepthInMainChain();
scriptChange = pcoin.first->vout[pcoin.second].scriptPubKey;
}
int64 nChange = nValueIn - nValue - nFeeRet;
// if sub-cent change is required, the fee must be raised to at least MIN_TX_FEE
// or until nChange becomes zero
// NOTE: this depends on the exact behaviour of GetMinFee
if (nFeeRet < MIN_TX_FEE && nChange > 0 && nChange < CENT)
{
int64 nMoveToFee = min(nChange, MIN_TX_FEE - nFeeRet);
nChange -= nMoveToFee;
nFeeRet += nMoveToFee;
}
// peercoin: sub-cent change is moved to fee
if (nChange > 0 && nChange < MIN_TXOUT_AMOUNT)
{
nFeeRet += nChange;
nChange = 0;
}
if (nChange > 0)
{
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
if (!GetBoolArg("-avatar", true)) // peercoin: not avatar mode; peershares: avatar mode enabled by default to avoid change being sent to hidden address
{
// Reserve a new key pair from key pool
vector<unsigned char> vchPubKey = reservekey.GetReservedKey();
// assert(mapKeys.count(vchPubKey));
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
scriptChange.SetBitcoinAddress(vchPubKey);
}
else
reservekey.ReturnKey(); // return key in avatar mode
// Insert change txn at random position:
vector<CTxOut>::iterator position = wtxNew.vout.begin()+GetRandInt(wtxNew.vout.size());
wtxNew.vout.insert(position, CTxOut(nChange, scriptChange));
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
return error("create tx : SignSignature() failed");
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE/4)
return error("create tx : nBytes >= MAX_BLOCK_SIZE/4");
dPriority /= nBytes;
// Check that enough fee is included
int64 nPayFee = MIN_TX_FEE * (1 + (int64)nBytes / 1000);
int64 nMinFee = wtxNew.GetMinFee(1, false, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
// Fill vtxPrev by copying from previous transactions vtxPrev
wtxNew.AddSupportingTransactions(txdb);
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
// Decent: create content_submit TX
bool CWallet::CreateContentSubmitTX(const vector<pair<CScript, int64> >& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, int64 custodyPayment, int64& nFeeRet)
{
int64 nValue = custodyPayment;
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
// txdb must be opened before the mapWallet lock
CTxDB txdb("r");
{
nFeeRet = MIN_TX_FEE;
loop
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64 nTotalValue = nValue + nFeeRet;
double dPriority = 0;
// vouts to the payees
BOOST_FOREACH (const PAIRTYPE(CScript, int64)& s, vecSend)
wtxNew.vout.push_back(CTxOut(s.second, s.first));
// Choose coins to use
list<pair<const CWalletTx*,unsigned int> > setCoins;
int64 nValueIn = 0;
if (!SelectCoins(nTotalValue, wtxNew.nTime, setCoins, nValueIn))
return false;
CScript scriptChange;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64 nCredit = pcoin.first->vout[pcoin.second].nValue;
dPriority += (double)nCredit * pcoin.first->GetDepthInMainChain();
scriptChange = pcoin.first->vout[pcoin.second].scriptPubKey;
}
int64 nChange = nValueIn - nValue - nFeeRet;
// if sub-cent change is required, the fee must be raised to at least MIN_TX_FEE
// or until nChange becomes zero
// NOTE: this depends on the exact behaviour of GetMinFee
if (nFeeRet < MIN_TX_FEE && nChange > 0 && nChange < CENT)
{
int64 nMoveToFee = min(nChange, MIN_TX_FEE - nFeeRet);
nChange -= nMoveToFee;
nFeeRet += nMoveToFee;
}
// peercoin: sub-cent change is moved to fee
if (nChange > 0 && nChange < MIN_TXOUT_AMOUNT)
{
nFeeRet += nChange;
nChange = 0;
}
if (nChange > 0)
{
if (!GetBoolArg("-avatar", true)) // peercoin: not avatar mode; peershares: avatar mode enabled by default to avoid change being sent to hidden address
{
// Reserve a new key pair from key pool
vector<unsigned char> vchPubKey = reservekey.GetReservedKey();
// assert(mapKeys.count(vchPubKey));
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
scriptChange.SetBitcoinAddress(vchPubKey);
}
else
reservekey.ReturnKey(); // return key in avatar mode
// Insert change txn at random position: Decent: TODO
// vector<CTxOut>::iterator position = wtxNew.vout.begin()+GetRandInt(wtxNew.vout.size());
wtxNew.vout.insert(wtxNew.vout.begin(), CTxOut(nChange, scriptChange));
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
return false;
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE/4)
return false;
dPriority /= nBytes;
// Check that enough fee is included
int64 nPayFee = MIN_TX_FEE * (1 + (int64)nBytes / 1000);
int64 nMinFee = wtxNew.GetMinFee(1, false, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
// Fill vtxPrev by copying from previous transactions vtxPrev
wtxNew.AddSupportingTransactions(txdb);
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
//Decent: build TX to "spend" from OP_PROMISE_TO_PAY output
bool CWallet::CreateRequestToBuyTX(const vector<pair<CScript, int64> >& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, int64& nFeeRet, COutPoint& content)
{
int64 nValue = 0;
BOOST_FOREACH (const PAIRTYPE(CScript, int64)& s, vecSend)
{
if (nValue < 0)
return false;
nValue += s.second;
}
if (vecSend.empty() || nValue < 0)
return false;
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
// txdb must be opened before the mapWallet lock
CTxDB txdb("r");
{
nFeeRet = MIN_TX_FEE;
loop
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64 nTotalValue = nValue + nFeeRet;
double dPriority = 0;
// vouts to the payees
BOOST_FOREACH (const PAIRTYPE(CScript, int64)& s, vecSend)
if (!s.first.empty()) // Decent: skip price out, payment shall be destroyed
wtxNew.vout.push_back(CTxOut(s.second, s.first));
// Choose coins to use
list<pair<const CWalletTx*,unsigned int> > setCoins;
int64 nValueIn = 0;
if (!SelectCoins(nTotalValue, wtxNew.nTime, setCoins, nValueIn))
return false;
CScript scriptChange;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64 nCredit = pcoin.first->vout[pcoin.second].nValue;
dPriority += (double)nCredit * pcoin.first->GetDepthInMainChain();
scriptChange = pcoin.first->vout[pcoin.second].scriptPubKey;
}
// Decent: just for count
pair<const CWalletTx*,unsigned int> emptyCoin;
setCoins.push_front(emptyCoin);
int64 nChange = nValueIn - nValue - nFeeRet;
// if sub-cent change is required, the fee must be raised to at least MIN_TX_FEE
// or until nChange becomes zero
// NOTE: this depends on the exact behaviour of GetMinFee
if (nFeeRet < MIN_TX_FEE && nChange > 0 && nChange < CENT)
{
int64 nMoveToFee = min(nChange, MIN_TX_FEE - nFeeRet);
nChange -= nMoveToFee;
nFeeRet += nMoveToFee;
}
// peercoin: sub-cent change is moved to fee
if (nChange > 0 && nChange < MIN_TXOUT_AMOUNT)
{
nFeeRet += nChange;
nChange = 0;
}
if (nChange > 0)
{
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
if (!GetBoolArg("-avatar", true)) // peercoin: not avatar mode; peershares: avatar mode enabled by default to avoid change being sent to hidden address
{
// Reserve a new key pair from key pool
vector<unsigned char> vchPubKey = reservekey.GetReservedKey();
// assert(mapKeys.count(vchPubKey));
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
scriptChange.SetBitcoinAddress(vchPubKey);
}
else
reservekey.ReturnKey(); // return key in avatar mode
// Insert change txn at random position:
vector<CTxOut>::iterator position = wtxNew.vout.begin();
wtxNew.vout.insert(position, CTxOut(nChange, scriptChange));
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
{
if(!coin.first)
{
// Decent: here is "spend" from OP_PROMISETOPAY output
wtxNew.vin.push_back(CTxIn(content.hash,content.n));
}
else
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
}
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if(coin.first)
{
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
return false;
}
else
nIn++;
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE/4)
return false;
dPriority /= nBytes;
// Check that enough fee is included
int64 nPayFee = MIN_TX_FEE * (1 + (int64)nBytes / 1000);
int64 nMinFee = wtxNew.GetMinFee(1, false, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
// Fill vtxPrev by copying from previous transactions vtxPrev
wtxNew.AddSupportingTransactions(txdb);
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
//Decent: proof_of_custody TX
bool CWallet::CreateTxWithProof(CWalletTx& wtxNew, CReserveKey& reservekey, int64& nFeeRet, COutPoint& prevPoint, valtype& proof)
{
int64 nValue = 0;
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
// txdb must be opened before the mapWallet lock
CTxDB txdb("r");
{
nFeeRet = MIN_TX_FEE;
loop
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64 nTotalValue = nValue + nFeeRet;
// Decent: it will returned as change, to avoid empty vout
nTotalValue += 1;
double dPriority = 0;
// Choose coins to use
list<pair<const CWalletTx*,unsigned int> > setCoins;
int64 nValueIn = 0;
if (!SelectCoins(nTotalValue, wtxNew.nTime, setCoins, nValueIn))
return false;
CScript scriptChange;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64 nCredit = pcoin.first->vout[pcoin.second].nValue;
dPriority += (double)nCredit * pcoin.first->GetDepthInMainChain();
scriptChange = pcoin.first->vout[pcoin.second].scriptPubKey;
}
// Decent:
CWalletTx prevTx;
if (!prevTx.SetByHash(prevPoint.hash))
return error("Create tx : read prevPoint failed");
setCoins.push_front(make_pair(&prevTx, prevPoint.n));
int64 nChange = nValueIn - nValue - nFeeRet;
// if sub-cent change is required, the fee must be raised to at least MIN_TX_FEE
// or until nChange becomes zero
// NOTE: this depends on the exact behaviour of GetMinFee
if (nFeeRet < MIN_TX_FEE && nChange > 0 && nChange < CENT)
{
int64 nMoveToFee = min(nChange, MIN_TX_FEE - nFeeRet);
nChange -= nMoveToFee;
nFeeRet += nMoveToFee;
}
// peercoin: sub-cent change is moved to fee
if (nChange > 0 && nChange < MIN_TXOUT_AMOUNT)
{
nFeeRet += nChange;
nChange = 0;
}
if (nChange > 0)
{
if (!GetBoolArg("-avatar", true)) // peercoin: not avatar mode; peershares: avatar mode enabled by default to avoid change being sent to hidden address
{
// Reserve a new key pair from key pool
vector<unsigned char> vchPubKey = reservekey.GetReservedKey();
// assert(mapKeys.count(vchPubKey));
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
scriptChange.SetBitcoinAddress(vchPubKey);
}
else
reservekey.ReturnKey(); // return key in avatar mode
// Insert change txout, must be before special_decent outs
wtxNew.vout.insert(wtxNew.vout.begin(), CTxOut(nChange, scriptChange));
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
{
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
}
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if(wtxNew.vin[nIn].prevout == prevPoint)
{
wtxNew.vin[nIn].scriptSig << proof;
if (!SignSignature(*this, *coin.first, wtxNew, nIn++, SIGHASH_WITHPROOF))
return false;
}
else
{
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
return false;
}
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE/4)
return false;
dPriority /= nBytes;
// Check that enough fee is included
int64 nPayFee = MIN_TX_FEE * (1 + (int64)nBytes / 1000);
int64 nMinFee = wtxNew.GetMinFee(1, false, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
if (!(wtxNew.IsProofOfCustody() || wtxNew.IsLeaveRating()))
return error("Create tx: invalid type");
// Fill vtxPrev by copying from previous transactions vtxPrev
wtxNew.AddSupportingTransactions(txdb);
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
//Decent: delivery_keys TX
bool CWallet::CreateDeliveryTX(CWalletTx& wtxNew, CReserveKey& reservekey, COutPoint& prevPoint, valtype &encryptedKey, valtype& proof)
{
int64 nFee = 0;
int64 nValue = 0;
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
// txdb must be opened before the mapWallet lock
CTxDB txdb("r");
{
nFee = MIN_TX_FEE;
loop
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64 nTotalValue = nValue + nFee;
// Decent: it will returned as change, to avoid empty vout
nTotalValue += 1;
double dPriority = 0;
// Choose coins to use
list<pair<const CWalletTx*,unsigned int> > setCoins;
int64 nValueIn = 0;
if (!SelectCoins(nTotalValue, wtxNew.nTime, setCoins, nValueIn))
return false;
CScript scriptChange;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64 nCredit = pcoin.first->vout[pcoin.second].nValue;
dPriority += (double)nCredit * pcoin.first->GetDepthInMainChain();
scriptChange = pcoin.first->vout[pcoin.second].scriptPubKey;
}
// Decent:
CWalletTx prevTx;
if (!prevTx.SetByHash(prevPoint.hash))
return error("Create tx : read prevPoint failed");
setCoins.push_front(make_pair(&prevTx, prevPoint.n));
int64 nChange = nValueIn - nValue - nFee;
// if sub-cent change is required, the fee must be raised to at least MIN_TX_FEE
// or until nChange becomes zero
// NOTE: this depends on the exact behaviour of GetMinFee
if (nFee < MIN_TX_FEE && nChange > 0 && nChange < CENT)
{
int64 nMoveToFee = min(nChange, MIN_TX_FEE - nFee);
nChange -= nMoveToFee;
nFee += nMoveToFee;
}
// peercoin: sub-cent change is moved to fee
if (nChange > 0 && nChange < MIN_TXOUT_AMOUNT)
{
nFee += nChange;
nChange = 0;
}
if (nChange > 0)
{
if (!GetBoolArg("-avatar", true)) // peercoin: not avatar mode; peershares: avatar mode enabled by default to avoid change being sent to hidden address
{
// Reserve a new key pair from key pool
vector<unsigned char> vchPubKey = reservekey.GetReservedKey();
// assert(mapKeys.count(vchPubKey));
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
scriptChange.SetBitcoinAddress(vchPubKey);
}
else
reservekey.ReturnKey(); // return key in avatar mode
// Insert change txout, must be before special_decent outs
wtxNew.vout.insert(wtxNew.vout.begin(), CTxOut(nChange, scriptChange));
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
{
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
}
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if(wtxNew.vin[nIn].prevout == prevPoint)
{
wtxNew.vin[nIn].scriptSig << encryptedKey << proof;
if (!SignSignature(*this, *coin.first, wtxNew, nIn++, SIGHASH_WITHPROOF))
return false;
}
else
{
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
return false;
}
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE/4)
return false;
dPriority /= nBytes;
// Check that enough fee is included
int64 nPayFee = MIN_TX_FEE * (1 + (int64)nBytes / 1000);
int64 nMinFee = wtxNew.GetMinFee(1, false, GMF_SEND);
if (nFee < max(nPayFee, nMinFee))
{
nFee = max(nPayFee, nMinFee);
continue;
}
if (!wtxNew.CheckDeliverKeys())
return error("Create tx: invalid type");
// Fill vtxPrev by copying from previous transactions vtxPrev
wtxNew.AddSupportingTransactions(txdb);
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
bool CWallet::CreateTransaction(CScript scriptPubKey, int64 nValue, CWalletTx& wtxNew, CReserveKey& reservekey, int64& nFeeRet)
{
vector< pair<CScript, int64> > vecSend;
vecSend.push_back(make_pair(scriptPubKey, nValue));
return CreateTransaction(vecSend, wtxNew, reservekey, nFeeRet);
}
// peercoin: create coin stake transaction
bool CWallet::CreateCoinStake(unsigned int nBits, int64 nSearchInterval, CTransaction& txNew, int64 rewardForBlockCreator)
{
// The following split & combine thresholds are important to security
// Should not be adjusted if you don't understand the consequences
static unsigned int nStakeSplitAge = (60 * 60 * 24 * 90);
int64 nCombineThreshold = GetProofOfWorkReward(GetLastBlockIndex(pindexBest, false)->nBits) / 3;
CBigNum bnTargetPerCoinDay;
bnTargetPerCoinDay.SetCompact(nBits);
LOCK2(cs_main, cs_wallet);
txNew.vin.clear();
txNew.vout.clear();
// Mark coin stake transaction
CScript scriptEmpty;
scriptEmpty.clear();
txNew.vout.push_back(CTxOut(0, scriptEmpty));
// Choose coins to use
int64 nBalance = GetBalance();
int64 nReserveBalance = 0;
if (mapArgs.count("-reservebalance") && !ParseMoney(mapArgs["-reservebalance"], nReserveBalance))
return error("CreateCoinStake : invalid reserve balance amount");
if (nBalance <= nReserveBalance)
return false;
list<pair<const CWalletTx*,unsigned int> > setCoins;
vector<const CWalletTx*> vwtxPrev;
int64 nValueIn = 0;
if (!SelectCoins(nBalance - nReserveBalance, txNew.nTime, setCoins, nValueIn))
return false;
if (setCoins.empty())
return false;
int64 nCredit = 0;
CScript scriptPubKeyKernel;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
CTxDB txdb("r");
CTxIndex txindex;
if (!txdb.ReadTxIndex(pcoin.first->GetHash(), txindex))
continue;
// Read block header
CBlock block;
if (!block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
continue;
static int nMaxStakeSearchInterval = 60;
if (block.GetBlockTime() + nStakeMinAge > txNew.nTime - nMaxStakeSearchInterval)
continue; // only count coins meeting min age requirement
bool fKernelFound = false;
for (unsigned int n=0; n<min(nSearchInterval,(int64)nMaxStakeSearchInterval) && !fKernelFound && !fShutdown; n++)
{
// Search backward in time from the given txNew timestamp
// Search nSearchInterval seconds back up to nMaxStakeSearchInterval
uint256 hashProofOfStake = 0;
COutPoint prevoutStake = COutPoint(pcoin.first->GetHash(), pcoin.second);
if (CheckStakeKernelHash(nBits, block, txindex.pos.nTxPos - txindex.pos.nBlockPos, *pcoin.first, prevoutStake, txNew.nTime - n, hashProofOfStake))
{
// Found a kernel
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : kernel found\n");
vector<valtype> vSolutions;
txnouttype whichType;
CScript scriptPubKeyOut;
scriptPubKeyKernel = pcoin.first->vout[pcoin.second].scriptPubKey;
if (!Solver(scriptPubKeyKernel, whichType, vSolutions))
{
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : failed to parse kernel\n", whichType);
break;
}
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : parsed kernel type=%d\n", whichType);
if (whichType != TX_PUBKEY && whichType != TX_PUBKEYHASH)
{
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : no support for kernel type=%d\n", whichType);
break; // only support pay to public key and pay to address
}
if (whichType == TX_PUBKEYHASH) // pay to address type
{
// convert to pay to public key type
CKey key;
if (!this->GetKey(uint160(vSolutions[0]), key))
{
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : failed to get key for kernel type=%d\n", whichType);
break; // unable to find corresponding public key
}
scriptPubKeyOut << key.GetPubKey() << OP_CHECKSIG;
}
else
scriptPubKeyOut = scriptPubKeyKernel;
txNew.nTime -= n;
txNew.vin.push_back(CTxIn(pcoin.first->GetHash(), pcoin.second));
nCredit += pcoin.first->vout[pcoin.second].nValue;
vwtxPrev.push_back(pcoin.first);
txNew.vout.push_back(CTxOut(0, scriptPubKeyOut)); // Decent: for reward
txNew.vout.push_back(CTxOut(0, scriptPubKeyOut));
if (block.GetBlockTime() + nStakeSplitAge > txNew.nTime)
txNew.vout.push_back(CTxOut(0, scriptPubKeyOut)); //split stake
if (fDebug && GetBoolArg("-printcoinstake"))
printf("CreateCoinStake : added kernel type=%d\n", whichType);
fKernelFound = true;
break;
}
}
if (fKernelFound || fShutdown)
break; // if kernel is found stop searching
}
if (nCredit == 0 || nCredit > nBalance - nReserveBalance)
return false;
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
// Attempt to add more inputs
// Only add coins of the same key/address as kernel
if (txNew.vout.size() == 2 && ((pcoin.first->vout[pcoin.second].scriptPubKey == scriptPubKeyKernel || pcoin.first->vout[pcoin.second].scriptPubKey == txNew.vout[1].scriptPubKey))
&& pcoin.first->GetHash() != txNew.vin[0].prevout.hash)
{
// Stop adding more inputs if already too many inputs
if (txNew.vin.size() >= 100)
break;
// Stop adding more inputs if value is already pretty significant
if (nCredit > nCombineThreshold)
break;
// Stop adding inputs if reached reserve limit
if (nCredit + pcoin.first->vout[pcoin.second].nValue > nBalance - nReserveBalance)
break;
// Do not add additional significant input
if (pcoin.first->vout[pcoin.second].nValue > nCombineThreshold)
continue;
// Do not add input that is still too young
if (pcoin.first->nTime + STAKE_MAX_AGE > txNew.nTime)
continue;
txNew.vin.push_back(CTxIn(pcoin.first->GetHash(), pcoin.second));
nCredit += pcoin.first->vout[pcoin.second].nValue;
vwtxPrev.push_back(pcoin.first);
}
}
// Calculate coin age reward
// {
// uint64 nCoinAge;
// CTxDB txdb("r");
// if (!txNew.GetCoinAge(txdb, nCoinAge))
// return error("CreateCoinStake : failed to calculate coin age");
// nCredit += GetProofOfStakeReward(nCoinAge);
// }
int64 nMinFee = 0;
loop
{
// Set output amount
if (txNew.vout.size() == 4)
{
txNew.vout[1].nValue = rewardForBlockCreator; // Decent: set reward for block creator
txNew.vout[2].nValue = ((nCredit - nMinFee) / 2 / CENT) * CENT;
txNew.vout[3].nValue = nCredit - nMinFee - txNew.vout[2].nValue;
}
else
txNew.vout[2].nValue = nCredit - nMinFee;
//You can put your own extra vouts inside Stake transaction in such way, but it will have
//consequences.First, you shouldn't hardcode any determined address here, because we have
//seen strange thing.All stake money, used for coinstake transaction, will be returned to
//this determined address regardless of person, who minted it.But money, which we sent
//to this address, were delivered to address of person, who minted it.We don't know, why it
//was happend, but it looked like this outputs exchanged their delivery addresses.
//In conclusion, you should find out with coinstake transaction building process or you
//should never ever touch this process.
// CScript Script;
// CBitcoinAddress address = CBitcoinAddress("SU6AncdVHCpDAiG9yj9BdNscb83XeLTpcj");
// Script.SetBitcoinAddress(address);
// txNew.vout.push_back(CTxOut(100000000, Script));
// Sign
int nIn = 0;
BOOST_FOREACH(const CWalletTx* pcoin, vwtxPrev)
{
if (!SignSignature(*this, *pcoin, txNew, nIn++))
return error("CreateCoinStake : failed to sign coinstake");
}
// Limit size
unsigned int nBytes = ::GetSerializeSize(txNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_BLOCK_SIZE_GEN/5)
return error("CreateCoinStake : exceeded coinstake size limit");
// Check enough fee is paid
if (nMinFee < txNew.GetMinFee() - MIN_TX_FEE)
{
nMinFee = txNew.GetMinFee() - MIN_TX_FEE;
continue; // try signing again
}
else
{
if (fDebug && GetBoolArg("-printfee"))
printf("CreateCoinStake : fee for coinstake %s\n", FormatMoney(nMinFee).c_str());
break;
}
}
// Successfully generated coinstake
return true;
}
// Call after CreateTransaction unless you want to abort
bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey)
{
{
LOCK2(cs_main, cs_wallet);
printf("CommitTransaction:\n%s", wtxNew.ToString().c_str());
{
// This is only to keep the database open to defeat the auto-flush for the
// duration of this scope. This is the only place where this optimization
// maybe makes sense; please don't do it anywhere else.
CWalletDB* pwalletdb = fFileBacked ? new CWalletDB(strWalletFile,"r") : NULL;
// Take key pair from key pool so it won't be used again
reservekey.KeepKey();
// Add tx to wallet, because if it has change it's also ours,
// otherwise just for transaction history.
AddToWallet(wtxNew);
// Mark old coins as spent
set<CWalletTx*> setCoins;
BOOST_FOREACH(const CTxIn& txin, wtxNew.vin)
{
CWalletTx &coin = mapWallet[txin.prevout.hash];
coin.BindWallet(this);
coin.MarkSpent(txin.prevout.n);
coin.WriteToDisk();
vWalletUpdated.push_back(coin.GetHash());
}
if (fFileBacked)
delete pwalletdb;
}
// Track how many getdata requests our transaction gets
mapRequestCount[wtxNew.GetHash()] = 0;
// Broadcast
if (!wtxNew.AcceptToMemoryPool())
{
// This must not fail. The transaction has already been signed and recorded.
printf("CommitTransaction() : Error: Transaction not valid");
return false;
}
wtxNew.RelayWalletTransaction();
}
MainFrameRepaint();
return true;
}
bool CWallet::CommitDecentTX(CWalletTx& wtxNew, CReserveKey& reservekey)
{
printf("Commit Decent tx:\n%s", wtxNew.ToString().c_str());
mapRequestCount[wtxNew.GetHash()] = 0;
if (!wtxNew.AcceptToMemoryPool())
{
if (wtxNew.IsRedundant())
return true;
printf("CommitTransaction() : Error: Transaction not valid");
return error("Decent tx is not valid");
}
AddToWalletIfInvolvingMe(wtxNew, NULL, true, true);
wtxNew.RelayWalletTransaction();
MainFrameRepaint();
return true;
}
string CWallet::SendMoney(CScript scriptPubKey, int64 nValue, CWalletTx& wtxNew, bool fAskFee)
{
CReserveKey reservekey(this);
int64 nFeeRequired;
if (IsLocked())
{
string strError = _("Error: Portfolio locked, unable to create transaction ");
printf("SendMoney() : %s", strError.c_str());
return strError;
}
if (fWalletUnlockMintOnly)
{
string strError = _("Error: Portfolio unlocked for block minting only, unable to create transaction.");
printf("SendMoney() : %s", strError.c_str());
return strError;
}
if (!CreateTransaction(scriptPubKey, nValue, wtxNew, reservekey, nFeeRequired))
{
string strError;
if (nValue + nFeeRequired > GetBalance())
strError = strprintf(_("Error: This transaction requires a transaction fee of at least %s because of its amount, complexity, or use of recently received funds "), FormatMoney(nFeeRequired).c_str());
else
strError = _("Error: Transaction creation failed ");
printf("SendMoney() : %s", strError.c_str());
return strError;
}
if (fAskFee && !ThreadSafeAskFee(nFeeRequired, _("Sending...")))
return "ABORTED";
if (!CommitTransaction(wtxNew, reservekey))
return _("Error: The transaction was rejected. This might happen if some of the shares in your portfolio were already spent, such as if you used a copy of wallet.dat and shares were spent in the copy but not marked as spent here.");
MainFrameRepaint();
return "";
}
string CWallet::SendMoneyToBitcoinAddress(const CBitcoinAddress& address, int64 nValue, CWalletTx& wtxNew, bool fAskFee)
{
// Check amount
if (nValue < 0)
return _("Invalid amount");
if (nValue + MIN_TX_FEE > GetBalance())
return _("Insufficient funds");
// Parse bitcoin address
CScript scriptPubKey;
scriptPubKey.SetBitcoinAddress(address);
return SendMoney(scriptPubKey, nValue, wtxNew, fAskFee);
}
int CWallet::LoadWallet(bool& fFirstRunRet)
{
if (!fFileBacked)
return false;
fFirstRunRet = false;
int nLoadWalletRet = CWalletDB(strWalletFile,"cr+").LoadWallet(this);
if (nLoadWalletRet == DB_NEED_REWRITE)
{
if (CDB::Rewrite(strWalletFile, "\x04pool"))
{
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// the requires a new key.
}
nLoadWalletRet = DB_NEED_REWRITE;
}
if (nLoadWalletRet != DB_LOAD_OK)
return nLoadWalletRet;
fFirstRunRet = vchDefaultKey.empty();
CreateThread(ThreadFlushWalletDB, &strWalletFile);
return DB_LOAD_OK;
}
bool CWallet::SetAddressBookName(const CBitcoinAddress& address, const string& strName)
{
mapAddressBook[address] = strName;
AddressBookRepaint();
if (!fFileBacked)
return false;
return CWalletDB(strWalletFile).WriteName(address.ToString(), strName);
}
bool CWallet::DelAddressBookName(const CBitcoinAddress& address)
{
mapAddressBook.erase(address);
AddressBookRepaint();
if (!fFileBacked)
return false;
return CWalletDB(strWalletFile).EraseName(address.ToString());
}
bool CWallet::AddPassword(const uint256 &hash, const uint256 &password)
{
mapPassword[hash] = password;
if (!fFileBacked)
return false;
return CWalletDB(strWalletFile).WritePass(hash, password);
}
bool CWallet::DelPassword(const uint256 &hash)
{
mapPassword.erase(hash);
if (!fFileBacked)
return false;
return CWalletDB(strWalletFile).ErasePass(hash);
}
bool CWallet::GetPassword(const uint256 &hash, uint256 &password)
{
if (mapPassword.count(hash))
{
password = mapPassword[hash];
return true;
}
return false;
}
valtype CWallet::GetElGamalPublicKey()
{
return EncryptionUtils::GetPublicElGamalKey(GetElGamalPrivateKey());
}
valtype CWallet::GetElGamalPrivateKey()
{
valtype retKey;
if (!privateElGamalKey.size())
{
// Generate new key
retKey = EncryptionUtils::GeneratePrivateElGamalKey();
{
LOCK(cs_wallet);
privateElGamalKey = retKey;
if (!fFileBacked)
assert(false);
if (!CWalletDB(strWalletFile).WriteElGamalKey(retKey))
assert(false);
}
}
else
{
// Use already generated key
LOCK(cs_wallet);
retKey = privateElGamalKey;
}
return retKey;
}
void CWallet::PrintWallet(const CBlock& block)
{
{
LOCK(cs_wallet);
if (block.IsProofOfWork() && mapWallet.count(block.vtx[0].GetHash()))
{
CWalletTx& wtx = mapWallet[block.vtx[0].GetHash()];
printf(" mine: %d %d %s", wtx.GetDepthInMainChain(), wtx.GetBlocksToMaturity(), FormatMoney(wtx.GetCredit()).c_str());
}
if (block.IsProofOfStake() && mapWallet.count(block.vtx[1].GetHash()))
{
CWalletTx& wtx = mapWallet[block.vtx[1].GetHash()];
printf(" stake: %d %d %s", wtx.GetDepthInMainChain(), wtx.GetBlocksToMaturity(), FormatMoney(wtx.GetCredit()).c_str());
}
}
printf("\n");
}
bool CWallet::GetTransaction(const uint256 &hashTx, CWalletTx& wtx)
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::iterator mi = mapWallet.find(hashTx);
if (mi != mapWallet.end())
{
wtx = (*mi).second;
return true;
}
}
return false;
}
bool CWallet::SetDefaultKey(const std::vector<unsigned char> &vchPubKey)
{
if (fFileBacked)
{
if (!CWalletDB(strWalletFile).WriteDefaultKey(vchPubKey))
return false;
}
vchDefaultKey = vchPubKey;
return true;
}
bool GetWalletFile(CWallet* pwallet, string &strWalletFileOut)
{
if (!pwallet->fFileBacked)
return false;
strWalletFileOut = pwallet->strWalletFile;
return true;
}
//
// Mark old keypool keys as used,
// and generate all new keys
//
bool CWallet::NewKeyPool()
{
{
LOCK(cs_wallet);
CWalletDB walletdb(strWalletFile);
BOOST_FOREACH(int64 nIndex, setKeyPool)
walletdb.ErasePool(nIndex);
setKeyPool.clear();
if (IsLocked())
return false;
int64 nKeys = max(GetArg("-keypool", 100), (int64)0);
for (int i = 0; i < nKeys; i++)
{
int64 nIndex = i+1;
walletdb.WritePool(nIndex, CKeyPool(GenerateNewKey()));
setKeyPool.insert(nIndex);
}
printf("CWallet::NewKeyPool wrote %"PRI64d" new keys\n", nKeys);
}
return true;
}
bool CWallet::TopUpKeyPool()
{
{
LOCK(cs_wallet);
if (IsLocked())
return false;
CWalletDB walletdb(strWalletFile);
// Top up key pool
unsigned int nTargetSize = max(GetArg("-keypool", 100), 0LL);
while (setKeyPool.size() < (nTargetSize + 1))
{
int64 nEnd = 1;
if (!setKeyPool.empty())
nEnd = *(--setKeyPool.end()) + 1;
if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey())))
throw runtime_error("TopUpKeyPool() : writing generated key failed");
setKeyPool.insert(nEnd);
printf("keypool added key %"PRI64d", size=%d\n", nEnd, setKeyPool.size());
}
}
return true;
}
void CWallet::ReserveKeyFromKeyPool(int64& nIndex, CKeyPool& keypool)
{
nIndex = -1;
keypool.vchPubKey.clear();
{
LOCK(cs_wallet);
if (!IsLocked())
TopUpKeyPool();
// Get the oldest key
if(setKeyPool.empty())
return;
CWalletDB walletdb(strWalletFile);
nIndex = *(setKeyPool.begin());
setKeyPool.erase(setKeyPool.begin());
if (!walletdb.ReadPool(nIndex, keypool))
throw runtime_error("ReserveKeyFromKeyPool() : read failed");
if (!HaveKey(Hash160(keypool.vchPubKey)))
throw runtime_error("ReserveKeyFromKeyPool() : unknown key in key pool");
assert(!keypool.vchPubKey.empty());
if (fDebug && GetBoolArg("-printkeypool"))
printf("keypool reserve %"PRI64d"\n", nIndex);
}
}
int64 CWallet::AddReserveKey(const CKeyPool& keypool)
{
{
LOCK2(cs_main, cs_wallet);
CWalletDB walletdb(strWalletFile);
int64 nIndex = 1 + *(--setKeyPool.end());
if (!walletdb.WritePool(nIndex, keypool))
throw runtime_error("AddReserveKey() : writing added key failed");
setKeyPool.insert(nIndex);
return nIndex;
}
return -1;
}
void CWallet::KeepKey(int64 nIndex)
{
// Remove from key pool
if (fFileBacked)
{
CWalletDB walletdb(strWalletFile);
walletdb.ErasePool(nIndex);
}
printf("keypool keep %"PRI64d"\n", nIndex);
}
void CWallet::ReturnKey(int64 nIndex)
{
// Return to key pool
{
LOCK(cs_wallet);
setKeyPool.insert(nIndex);
}
if (fDebug && GetBoolArg("-printkeypool"))
printf("keypool return %"PRI64d"\n", nIndex);
}
bool CWallet::GetKeyFromPool(vector<unsigned char>& result, bool fAllowReuse)
{
int64 nIndex = 0;
CKeyPool keypool;
{
LOCK(cs_wallet);
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
{
if (fAllowReuse && !vchDefaultKey.empty())
{
result = vchDefaultKey;
return true;
}
if (IsLocked()) return false;
result = GenerateNewKey();
return true;
}
KeepKey(nIndex);
result = keypool.vchPubKey;
}
return true;
}
int64 CWallet::GetOldestKeyPoolTime()
{
int64 nIndex = 0;
CKeyPool keypool;
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
return GetTime();
ReturnKey(nIndex);
return keypool.nTime;
}
// peercoin: check 'spent' consistency between wallet and txindex
// peercoin: fix wallet spent state according to txindex
void CWallet::FixSpentCoins(int& nMismatchFound, int64& nBalanceInQuestion, bool fCheckOnly)
{
nMismatchFound = 0;
nBalanceInQuestion = 0;
LOCK(cs_wallet);
vector<CWalletTx*> vCoins;
vCoins.reserve(mapWallet.size());
for (map<uint256, CWalletTx>::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
vCoins.push_back(&(*it).second);
CTxDB txdb("r");
BOOST_FOREACH(CWalletTx* pcoin, vCoins)
{
// Find the corresponding transaction index
CTxIndex txindex;
if (!txdb.ReadTxIndex(pcoin->GetHash(), txindex))
continue;
for (int n=0; n < pcoin->vout.size(); n++)
{
if (IsMine(pcoin->vout[n]) && pcoin->IsSpent(n) && (txindex.vSpent.size() <= n || txindex.vSpent[n].IsNull()))
{
printf("FixSpentCoins found lost unit %sDCT %s[%d], %s\n",
FormatMoney(pcoin->vout[n].nValue).c_str(), pcoin->GetHash().ToString().c_str(), n, fCheckOnly? "repair not attempted" : "repairing");
nMismatchFound++;
nBalanceInQuestion += pcoin->vout[n].nValue;
if (!fCheckOnly)
{
pcoin->MarkUnspent(n);
pcoin->WriteToDisk();
}
}
else if (IsMine(pcoin->vout[n]) && !pcoin->IsSpent(n) && (txindex.vSpent.size() > n && !txindex.vSpent[n].IsNull()))
{
printf("FixSpentCoins found spent unit %sDCT %s[%d], %s\n",
FormatMoney(pcoin->vout[n].nValue).c_str(), pcoin->GetHash().ToString().c_str(), n, fCheckOnly? "repair not attempted" : "repairing");
nMismatchFound++;
nBalanceInQuestion += pcoin->vout[n].nValue;
if (!fCheckOnly)
{
pcoin->MarkSpent(n);
pcoin->WriteToDisk();
}
}
}
}
}
// peercoin: disable transaction (only for coinstake)
void CWallet::DisableTransaction(const CTransaction &tx)
{
if (!tx.IsCoinStake() || !IsFromMe(tx))
return; // only disconnecting coinstake requires marking input unspent
LOCK(cs_wallet);
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
map<uint256, CWalletTx>::iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size() && IsMine(prev.vout[txin.prevout.n]))
{
prev.MarkUnspent(txin.prevout.n);
prev.WriteToDisk();
}
}
}
}
vector<unsigned char> CReserveKey::GetReservedKey()
{
if (nIndex == -1)
{
CKeyPool keypool;
pwallet->ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex != -1)
vchPubKey = keypool.vchPubKey;
else
{
printf("CReserveKey::GetReservedKey(): Warning: using default key instead of a new key, top up your keypool.");
vchPubKey = pwallet->vchDefaultKey;
}
}
assert(!vchPubKey.empty());
return vchPubKey;
}
void CReserveKey::KeepKey()
{
if (nIndex != -1)
pwallet->KeepKey(nIndex);
nIndex = -1;
vchPubKey.clear();
}
void CReserveKey::ReturnKey()
{
if (nIndex != -1)
pwallet->ReturnKey(nIndex);
nIndex = -1;
vchPubKey.clear();
}
void CWallet::GetAllReserveAddresses(set<CBitcoinAddress>& setAddress)
{
setAddress.clear();
CWalletDB walletdb(strWalletFile);
LOCK2(cs_main, cs_wallet);
BOOST_FOREACH(const int64& id, setKeyPool)
{
CKeyPool keypool;
if (!walletdb.ReadPool(id, keypool))
throw runtime_error("GetAllReserveKeyHashes() : read failed");
CBitcoinAddress address(keypool.vchPubKey);
assert(!keypool.vchPubKey.empty());
if (!HaveKey(address))
throw runtime_error("GetAllReserveKeyHashes() : unknown key in key pool");
setAddress.insert(address);
}
}
void CWallet::ExportPeercoinKeys(int &nExportedCount, int &nErrorCount)
{
nExportedCount = 0;
nErrorCount = 0;
if (IsLocked())
throw runtime_error("The portfolio is locked. Please unlock it first.");
if (fWalletUnlockMintOnly)
throw runtime_error("Portfolio is unlocked for minting only.");
LOCK(cs_wallet);
BOOST_FOREACH(const PAIRTYPE(CBitcoinAddress, string)& item, mapAddressBook)
{
const CBitcoinAddress& address = item.first;
CSecret vchSecret;
bool fCompressed;
if (address.IsScript())
{
const uint160 hash = address.GetHash160();
CScript script;
if (!GetCScript(hash, script))
{
printf("Failed get script of address %s\n", address.ToString().c_str());
nErrorCount++;
continue;
}
txnouttype type;
std::vector<CBitcoinAddress> vAddresses;
int nRequired;
if (!ExtractAddresses(script, type, vAddresses, nRequired))
{
printf("Failed extract addresses from address %s\n", address.ToString().c_str());
nErrorCount++;
continue;
}
if (type != TX_MULTISIG)
{
printf("Address %s is not a multisig address\n", address.ToString().c_str());
nErrorCount++;
continue;
}
json_spirit::Array vPeercoinAddressStrings;
BOOST_FOREACH(const CBitcoinAddress &address, vAddresses)
vPeercoinAddressStrings.push_back(CPeercoinAddress(address).ToString());
json_spirit::Array params;
params.push_back(json_spirit::Value(nRequired));
params.push_back(vPeercoinAddressStrings);
params.push_back("Peershares");
try
{
string result = CallPeercoinRPC("addmultisigaddress", params);
printf("Exported multisig address %s: %s\n", address.ToString().c_str(), result.c_str());
nExportedCount++;
}
catch (peercoin_rpc_error &error)
{
printf("Failed to add multisig address of address %s: %s\n", address.ToString().c_str(), error.what());
nErrorCount++;
}
}
else
{
if (!GetSecret(address, vchSecret, fCompressed))
{
printf("Private key for address %s is not known\n", address.ToString().c_str());
nErrorCount++;
continue;
}
json_spirit::Array params;
params.push_back(CPeercoinSecret(vchSecret, fCompressed).ToString());
params.push_back("Peershares");
try
{
string result = CallPeercoinRPC("importprivkey", params);
printf("Exported private key of address %s: %s\n", address.ToString().c_str(), result.c_str());
nExportedCount++;
}
catch (peercoin_rpc_error &error)
{
printf("Failed to export private key of address %s: %s\n", address.ToString().c_str(), error.what());
nErrorCount++;
}
}
}
}
| [
"[email protected]"
] | |
3ea9a95f12d06f3b4caf94c03ac048c9b8ba8db0 | 8dedc2459417ca9be0f47d14d517c76e62f008ed | /Volume 002/231 - Testing the CATCHER/231 - Testing the CATCHER.cpp | 6045471fb8051565ceea28a213ad8a307ea2ff0c | [] | no_license | MrGolden1/UVA | 015375ee9e4004097544370cd0a51b04ffb43699 | 6f5cbb1fa68e123251c8943a53919c7e514b0135 | refs/heads/master | 2020-05-22T15:42:41.669232 | 2019-08-16T21:04:15 | 2019-08-16T21:04:15 | 186,413,776 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,144 | cpp | #include <iostream>
#include <string>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <iomanip>
using namespace std;
#define ull unsigned long long
#define infinite 2147483647
#define md 1000000007
int main()
{
ios::sync_with_stdio(false);
int t = 1;
int a;
while (true)
{
vector < int > v;
cin >> a;
if (a == -1)
return 0;
v.push_back(a);
while (true)
{
cin >> a;
if (a == -1)
break;
v.push_back(a);
}
int n = v.size();
vector <int> dp(n, 1);
int maxi = 1;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < i; j++)
{
if (v[i] <= v[j])
dp[i] = max(dp[j] + 1, dp[i]);
}
maxi = max(dp[i], maxi);
}
if (t != 1)
cout << "" + '\n';
printf("Test #%d:\n", t);
printf(" maximum possible interceptions: %d\n", maxi);
t++;
}
return 0;
} | [
"[email protected]"
] | |
5798c4360a486eb29efa7cbd512695432d3f7a2a | 0d2eab2c7aaf0b78c32c30e7ab484b91e115e8a5 | /nicolas/ch4/trajectoryError/include/trajectoryError.h | b62f89e9b75b043dc1ea439f4f8e88eb924654f4 | [
"MIT"
] | permissive | nicolasrosa-forks/slambook2 | 08275c8680e24f3c473667ca8ee595b425ef0d3d | 9cae572378fc5da758b6404e45d443b0bde71853 | refs/heads/master | 2023-05-15T17:52:06.421885 | 2021-05-12T00:56:31 | 2021-05-12T00:56:31 | 312,411,541 | 0 | 1 | MIT | 2021-04-15T14:55:56 | 2020-11-12T22:31:16 | C++ | UTF-8 | C++ | false | false | 909 | h | /* =========== */
/* Libraries */
/* =========== */
/* System Libraries */
#include <iostream>
#include <fstream>
#include <unistd.h>
#include <iomanip> // std::fixed, std::setprecision
/* Eigen3 Libraries */
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Geometry>
/* Sophus Libraries */
#include <sophus/se3.hpp>
#include <sophus/so3.hpp>
/* Pangolin Library */
#include <pangolin/pangolin.h>
/* Custom Libraries */
#include "../../../common/libUtils_basic.h"
#include "../../../common/libUtils_eigen.h"
/* ===================== */
/* Function Prototypes */
/* ===================== */
typedef vector<Sophus::SE3d, Eigen::aligned_allocator<Sophus::SE3d>> TrajectoryType;
typedef vector<double, Eigen::aligned_allocator<double>> TimeStamp;
TrajectoryType ReadTrajectory(TimeStamp ×tamps, const string &path);
void DrawTrajectory(const TrajectoryType &est, const TrajectoryType >);
| [
"[email protected]"
] | |
dce9419b614563cc4580646630ae00e8f993a7f6 | 6abfbf8d3c934bfb77ce989c46f7ee5c3e3c19a7 | /066. Plus One/Solution.cpp | 98c5fff3337a25f8c3f64eeeb7e3e07b101c1f37 | [] | no_license | AristoChen/LeetCode-AC-Solution | 7be7d09d99f131e06529e4e34e12129729a12efa | d2f988257b1631e79cf13763bf87e826ee834c3b | refs/heads/master | 2020-03-17T20:30:29.879961 | 2018-06-07T13:26:20 | 2018-06-07T13:26:20 | 133,913,472 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 665 | cpp | /*
Submission Detail:{
Difficulty : Easy
Acceptance Rate : 39.84 %
Runtime : 4 ms
Testcase : 108 / 108 passed
Ranking : Your runtime beats 99.68 % of cpp submissions.
}
*/
class Solution {
public:
vector<int> plusOne(vector<int>& digits) {
int carry = 1;
for(int i = digits.size() - 1; i >= 0; i --)
{
digits[i] = digits[i] + carry;
carry = 0;
if(digits[i] > 9)
{
digits[i] = 0;
carry = 1;
}
}
if(carry == 1)
digits.insert(digits.begin(), 1);
return digits;
}
}; | [
"[email protected]"
] | |
b47bcba10189080e95bd734c29e23b2298c136bb | 5fcc718e15e951bb0ef3fae7816ee2f33cfced82 | /bankrobbery.cpp | 3aafc5019b444f8ee9738747701cc21fae8fa579 | [] | no_license | Shubhamsingh147/Codechef-Hackerrank-Hackerearth-etc | 27ec108b05350222829450d9da8f66bfe1ebd085 | 8974aa238d3609a61f0003bee5fb56c3e2b31b01 | refs/heads/master | 2021-01-19T04:24:32.494028 | 2016-06-01T09:21:58 | 2016-06-01T09:21:58 | 60,162,140 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 359 | cpp | #include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main(){
int t,m;
double p;
cin>>t;
while(t--){
cin>>m>>p;
if(m%2 == 1)
cout<<"1000000000.0 0.0"<<endl;
else{
double two = 1000000000.0 * p;
cout << setprecision(1) << fixed << 1000000000.0 - two<<" ";
cout << setprecision(1) << fixed << two<<endl;
}
}
} | [
"[email protected]"
] | |
fbd2ffb2db49534893a6794e685c676acf2656a1 | dfd05e8222d71e14db0e121c5ff736b1b834b064 | /Inventory.cpp | 9cea730d8f34fc005334f02ba980351b3294ff9a | [] | no_license | 02bwilson/Car_Headers | 814630d81e8da17e7608b8ac6a83733d6d806ea1 | 40ddf147bc40817117bb79db7c16aed5d591d460 | refs/heads/master | 2023-08-24T03:18:21.128196 | 2021-09-23T23:18:28 | 2021-09-23T23:18:28 | 406,549,428 | 0 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 1,483 | cpp | #include "Inventory.h"
#include <iostream>
using namespace std;
// Initilizes the inventory
Inventory::Inventory() {
cars = new Car*[MAX_CARS];
carCount = 0;
}
// Inventory return operations to get private attributes
int Inventory::getCount() const {
return carCount;
}
// Determines if car vin is already in inventory
bool Inventory::hasCar(string vin) const {
for (int i = 0; i < carCount; i++) {
if (vin == cars[i]->getVIN()) {
return true;
}
}
return false;
}
// Add a car to the inventory
void Inventory::add(Car* car) {
if (carCount >= MAX_CARS) {
cout << "The car inventory is full! \n";
}
else if (hasCar(car->getVIN())) {
cout << "This car is already in the inventory. It will be ignored. \n";
}
else {
cars[carCount] = car;
carCount++;
}
}
// Removes a car from the inventory when the VIN is passed.
void Inventory::remove(string vin) {
if (hasCar(vin)) {
Car** tempCars;
tempCars = new Car * [carCount];
bool vinFound = false;
for (int i = 0; i < carCount; i++) {
if (cars[i]->getVIN() == vin) {
vinFound = true;
}
if (!vinFound) {
tempCars[i] = cars[i];
}
else {
tempCars[i] = cars[i + 1];
}
}
// Sets cars to new cars with vin removed. Deincrments carcount
cars = tempCars;
carCount--;
}
else {
cout << "This car VIN does not exist in the inventory. \n";
}
}
// Deletes the car inventory (destructor)
Inventory::~Inventory() {
delete[] cars;
}
| [
"[email protected]"
] | |
e0b6bf91d745ad8690b3f01b99c67e80d180ec11 | 3c997c1f6e46c9b9a809e299a54b58956228d9e6 | /S2Sim/SystemManager.h | 9257a78681b1d991c2fa74efd69e4f1bfdbfa249 | [] | no_license | asakyurek/S2Sim | 8897805034e4202d8d6650dc36d2533d1c36ee64 | 7d8fae8d89d327423847deb40ec7164716e53f66 | refs/heads/master | 2020-05-17T03:33:37.659916 | 2014-07-08T03:55:36 | 2014-07-08T03:55:36 | 17,011,994 | 2 | 0 | null | null | null | null | UTF-8 | C++ | false | false | 10,711 | h | /**
* @file SystemManager.h
* Defines the SystemManager class.
* @date Oct 25, 2013
* @author: Alper Sinan Akyurek
*/
#ifndef SYSTEMMANAGER_H_
#define SYSTEMMANAGER_H_
#include <map>
#include <mutex>
#include <memory>
#include "ClientManager.h"
#include "MatlabManager.h"
#include "ControlManager.h"
#include "LogPrint.h"
using namespace TerraSwarm;
class ClientManager;
class ControlManager;
class SystemManager;
class MatlabManager;
/**
* Singleton function that returns the only instance of SystemManager.
*
* @return The only instance of SystemManager.
*/
SystemManager&
GetSystemManager( void );
/**
* @brief Manages the various components of the system and timing.
This class coordinates the other components within S2Sim and manages the timing of consumption information from both async and synchronous clients.
*/
class SystemManager
{
/**
* Friend function to implement the singleton.
*
* @return Returns the only instance of SystemManager.
*/
friend SystemManager& GetSystemManager( void );
public:
/**
* Defines the type for System Time in epoch format.
*/
typedef unsigned int TSystemTime;
/**
* Defines the working mode of the system.
*/
typedef unsigned short TSystemMode;
/**
* Defines the system time step size in seconds.
*/
typedef unsigned int TSystemTimeStep;
/**
* Defines the values for the TSystemMode type.
*/
enum SystemModeValues
{
SimulationMode = ( TSystemMode )0x0001, /**< Indicates that the system expects an external signal to start. */
RealTimeMode = ( TSystemMode )0x0002 /**< Indicates that the system is working in real-time, even without external signaling. Not implemented. */
};
/**
* Redefines the unique client id type for rapid development.
*/
typedef MessageHeader::TId TClientId;
/**
* Redefines the object name for rapid development.
*/
typedef Asynchronous::ClientConnectionRequest::TClientName TClientName;
/**
* Redefines the data point type for rapid development.
*/
typedef Asynchronous::ClientData::TDataPoint TDataPoint;
/**
* Redefines the number of data points type for rapid development.
*/
typedef Asynchronous::ClientData::TNumberOfDataPoints TNumberOfDataPoints;
/**
* Defines the voltage information type.
*/
typedef TDataPoint TVoltage;
/**
* Defines the wattage consumption type.
*/
typedef TDataPoint TWattage;
private:
/**
* Structure holding the client information for each interval and client.
*/
struct ClientInformation
{
/**
* Real consumption of the client within the interval.
*/
TWattage realConsumption;
/**
* Predicted consumption for the client for the next intervals.
*/
TWattage predictedConsumption;
/**
* Number of data intervals including and after this interval.
*/
TNumberOfDataPoints numberOfDataPoints;
/**
* Default constructor for std::map compatibility.
*/
ClientInformation( void ){}
/**
* Copy constructor for std::map compatibility.
*
* @param copy Copied instance.
*/
ClientInformation( const ClientInformation & copy ) : realConsumption( copy.realConsumption ),
predictedConsumption( copy.predictedConsumption ),
numberOfDataPoints( copy.numberOfDataPoints )
{}
};
/**
* Defines the mapping from ClientId->Consumption.
*/
typedef std::map<TClientId, ClientInformation> TDataMap;
/**
* Defines the mappting from Time->(ClientId->Consumption).
*/
typedef std::map<TSystemTime, TDataMap> TSystemMap;
private:
/**
* The current system time, incremented at each time step.
*/
TSystemTime m_systemTime;
/**
* The current working mode of the system.
*/
TSystemMode m_systemMode;
/**
* The current system time step size.
*/
TSystemTimeStep m_systemTimeStep;
/**
* This variable contains the consumption information for all clients for the future. It is a mapping from time->Client/Data. This allows us to get the consumption of any client at any time. This simplifies the asynchronous client consumption drastically.
*/
TSystemMap m_systemMap;
/**
* Mutex protecting the data map.
*/
std::mutex m_systemDataLock;
/**
* Timed mutex waiting for the consumption information of all clients.
*/
std::timed_mutex m_clientTimedMutex;
/**
* Defines the time to wait for the data of clients.
*/
TSystemTime m_clientTimeout;
private:
/**
* Private constructor for singleton implementation.
*/
SystemManager( void );
/**
* Checks the client keep alive situations and disconnects if necessary.
*/
void
CheckSystemKeepAlive( void );
public:
/**
* Returns the current system time.
*
* @return Current system time.
*/
TSystemTime
GetSystemTime( void ) const
{
return ( this->m_systemTime );
}
/**
* Returns the current system working mode.
*
* @return Current system working mode.
*/
TSystemMode
GetSystemMode( void ) const
{
return ( this->m_systemMode );
}
/**
* Returns the current system time step size.
*
* @return Current system time step size.
*/
TSystemTimeStep
GetSystemTimeStep( void ) const
{
return ( this->m_systemTimeStep );
}
/**
* @brief Used to register multiple consumption information.
This method is mostly used for asynchronous consumption registration. Multiple consumption data points are fed into the SystemManager::m_systemMap.
*
* @param clientId Unique client id for the consumer.
* @param startTime Starting time of the consumption map.
* @param resolution Time resolution between consecutive consumptions.
* @param numberOfDataPoints Number of consumption data points.
* @param dataPoints Buffer containing consumption data points.
*/
void
RegisterData( const TClientId clientId,
const TSystemTime startTime,
const TSystemTime resolution,
const TNumberOfDataPoints numberOfDataPoints,
std::shared_ptr<TDataPoint> dataPoints );
/**
* @brief Used to register a single consumption information for the next time step.
The method is mostly used for synchronous consumption registration. The consumption for the next time interval is registered.
*
* @param clientId Unique client id of the consumer.
* @param dataPoint Consumption for the next time interval.
*/
void
RegisterData( const TClientId clientId,
TDataPoint dataPoint );
/**
* @brief Used to register a single consumption information for the next time step.
The method is mostly used for synchronous consumption registration. The consumption for the next time interval is registered.
*
* @param clientId Unique client id of the consumer.
* @param numberOfDataPoints Number of consumption points.
* @param dataPoints Consumption for the next time interval and the predicted consumptions.
*/
void
RegisterData( const TClientId clientId,
const TNumberOfDataPoints numberOfDataPoints,
std::shared_ptr<TDataPoint> dataPoints );
/**
* @brief Main time iteration of the system.
This method is the main time iteration of the whole system. The workflow is as follows:
- Delete the previous time step information.
- Get the current time consumption information.
- Set the consumption information in OpenDSS.
- Advance the time in OpenDSS.
- Invoke the External Controller for a decision.
- Wait for the External Controller to finish its decision.
*/
void
AdvanceTimeStep( void );
/**
* @brief Sets the system mode and changes the client timeout value.
*
* @param systemMode New value of the system mode.
*/
void
SetSystemMode( const TSystemMode systemMode );
/**
* @brief Returns the consumption of the client in the current interval.
*
* @param clientId Id of the requested client.
* @return Consumption in the current interval.
*/
TDataPoint
GetCurrentConsumption( const TClientId clientId );
/**
* @brief Returns the predicted consumption of the client in the desired interval.
*
* @param clientId Id of the requested client.
* @param interval Time in reference to the current time.
* @return Consumption in the current interval.
*/
TDataPoint
GetPredictionConsumption( const TClientId clientId, const TSystemTime interval );
/**
* @brief Returns the prediction horizon of the client.
*
* @param clientId Id of the requested client.
* @return Number of data points including the current interval.
*/
TNumberOfDataPoints
GetNumberOfConsumptions( const TClientId clientId );
/**
* @brief Sets the consumption to the prediction values on Matlab Manager to get the deviations.
*
* @param predictionTime System time to be predicted.
*/
void
SetConsumptionsToPredictionTime( const TSystemTime predictionTime );
};
#endif /* SYSTEMMANAGER_H_ */
| [
"[email protected]"
] | |
f83e7fd37d65fa6d967187628152db3797841798 | 663e4aeb088b93a5dfeef7def71154c5b55afa41 | /node_modules/hummus/src/PDFStreamDriver.cpp | 3577a73f9c727629a4360668c6d1a4767fa6a209 | [
"Apache-2.0"
] | permissive | nnradovic/press-cliping-nodejs | 37d44025572eca274e5080cd76500404b1cc9953 | 3db5043ed8d77bcbf3a41d65f359d26492239a80 | refs/heads/master | 2020-04-07T10:26:59.590015 | 2018-11-27T13:13:13 | 2018-11-27T13:13:13 | 158,287,199 | 0 | 0 | null | 2018-11-20T16:15:49 | 2018-11-19T20:40:37 | JavaScript | UTF-8 | C++ | false | false | 2,686 | cpp | /*
Source File : PDFStreamDriver.h
Copyright 2013 Gal Kahana HummusJS
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "PDFStreamDriver.h"
#include "PDFStream.h"
#include "ByteWriterDriver.h"
using namespace v8;
Persistent<Function> PDFStreamDriver::constructor;
Persistent<FunctionTemplate> PDFStreamDriver::constructor_template;
PDFStreamDriver::PDFStreamDriver()
{
PDFStreamInstance = NULL;
}
void PDFStreamDriver::Init()
{
CREATE_ISOLATE_CONTEXT;
Local<FunctionTemplate> t = NEW_FUNCTION_TEMPLATE(New);
t->SetClassName(NEW_STRING("PDFStream"));
t->InstanceTemplate()->SetInternalFieldCount(1);
SET_PROTOTYPE_METHOD(t, "getWriteStream", GetWriteStream);
SET_CONSTRUCTOR(constructor,t);
SET_CONSTRUCTOR_TEMPLATE(constructor_template,t);
}
METHOD_RETURN_TYPE PDFStreamDriver::NewInstance(const ARGS_TYPE& args)
{
CREATE_ISOLATE_CONTEXT;
CREATE_ESCAPABLE_SCOPE;
Local<Object> instance = NEW_INSTANCE(constructor);
SET_FUNCTION_RETURN_VALUE(instance)
}
v8::Handle<v8::Value> PDFStreamDriver::GetNewInstance(const ARGS_TYPE& args)
{
CREATE_ISOLATE_CONTEXT;
CREATE_ESCAPABLE_SCOPE;
Local<Object> instance = NEW_INSTANCE(constructor);
return CLOSE_SCOPE(instance);
}
bool PDFStreamDriver::HasInstance(Handle<Value> inObject)
{
CREATE_ISOLATE_CONTEXT;
return inObject->IsObject() && HAS_INSTANCE(constructor_template, inObject);
}
METHOD_RETURN_TYPE PDFStreamDriver::New(const ARGS_TYPE& args)
{
CREATE_ISOLATE_CONTEXT;
CREATE_ESCAPABLE_SCOPE;
PDFStreamDriver* driver = new PDFStreamDriver();
driver->Wrap(args.This());
SET_FUNCTION_RETURN_VALUE(args.This())
}
METHOD_RETURN_TYPE PDFStreamDriver::GetWriteStream(const ARGS_TYPE& args)
{
CREATE_ISOLATE_CONTEXT;
CREATE_ESCAPABLE_SCOPE;
Handle<Value> result = ByteWriterDriver::GetNewInstance(args);
ObjectWrap::Unwrap<ByteWriterDriver>(result->ToObject())->SetStream(
ObjectWrap::Unwrap<PDFStreamDriver>(args.This())->PDFStreamInstance->GetWriteStream(), false);
SET_FUNCTION_RETURN_VALUE(result)
}
| [
"[email protected]"
] |
Subsets and Splits