blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
83a7cf76438adbf0701b18c3ad90a86a5c6c7c4f
880a56c0eebcce3376d1969bb8b084d82b90f535
/xos/tosca/resources/vcpeservice.py
2a6a56db92968457ed9e7b053b4e159a17d86f92
[ "Apache-2.0" ]
permissive
digideskio/xos
9f590a3a2703198c4d5b9b2fa27a3b9a94c14b96
9c98f28793ce4b2e4be96665e7f06b9cf9b59315
refs/heads/master
2020-12-03T08:13:08.982841
2016-04-06T00:39:06
2016-04-06T00:39:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
import os import pdb import sys import tempfile sys.path.append("/opt/tosca") from translator.toscalib.tosca_template import ToscaTemplate from services.cord.models import VSGService from service import XOSService class XOSVsgService(XOSService): provides = "tosca.nodes.VSGService" xos_model = VSGService copyin_props = ["view_url", "icon_url", "enabled", "published", "public_key", "private_key_fn", "versionNumber", "backend_network_label", "wan_container_gateway_ip", "wan_container_gateway_mac", "wan_container_netbits", "dns_servers", "node_label"]
d2d18338371df02f19a8aa511ed62c3486298a71
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/437116_Wrapper_class_heapq/recipe-437116.py
0d8f07bdf229fd1e0efdc4a367c438cd088d4c8f
[ "MIT", "Python-2.0" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
3,197
py
import heapq class Heap(list): """This is a wrapper class for the heap functions provided by the heapq module. """ __slots__ = () def __init__(self, t=[]): self.extend(t) self.heapify() push = heapq.heappush popmin = heapq.heappop replace = heapq.heapreplace heapify = heapq.heapify def pushpop(self, item): "Push the item onto the heap and then pop the smallest value" if self and self[0] < item: return heapq.heapreplace(self, item) return item def __iter__(self): "Return a destructive iterator over the heap's elements" try: while True: yield self.popmin() except IndexError: pass def reduce(self, pos, newitem): "Replace self[pos] with a lower value item and then reheapify" while pos > 0: parentpos = (pos - 1) >> 1 parent = self[parentpos] if parent <= newitem: break self[pos] = parent pos = parentpos self[pos] = newitem def is_heap(self): "Return True if the heap has the heap property; False otherwise" n = len(self) # The largest index there's any point to looking at # is the largest with a child index in-range, so must have 2*i + 1 < n, # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1. try: for i in xrange(n//2): if self[i] > self[2*i+1]: return False if self[i] > self[2*i+2]: return False except IndexError: pass return True def heapsort(seq): return [x for x in Heap(seq)] if __name__ == '__main__': from random import randint, shuffle # generate a random test case n = 15 data = [randint(1,n) for i in xrange(n)] shuffle(data) print data # test the constructor heap = Heap(data) print heap, heap.is_heap() # test popmin sorted = [] while heap: sorted.append(heap.popmin()) data.sort() print heap, heap.is_heap() print data == sorted # test 2 shuffle(data) print data # test push for item in data: heap.push(item) print heap, heap.is_heap() # test __iter__ sorted = [x for x in heap] data.sort() print data == sorted # test 3 shuffle(data) print data heap = Heap(data) print heap, heap.is_heap() # test reduce for i in range(5): pos = randint(0,n-1) decr = randint(1,10) item = heap[pos] - decr heap.reduce(pos, item) # test is_heap heap = Heap(data) count = 0 while 1: shuffle(heap) if heap.is_heap(): print heap break else: count += 1 print 'It took', count, 'tries to find a heap by chance.' print heapsort(data) try: heap.x = 5 except AttributeError: print "Can't add attributes."
07429b6879f054b600fb5a4eef6ac5a978e6a3c6
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/Tools/RunTimeTester/share/RTTRegression.py
19c13f5f565c3c5ef12dd5971cc99fc2fc4f666e
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
4,958
py
###################################################### # # # Do NOT bind any objects (self.xxx) which contain # # file objects (such as self.logger in this class # # otherwise cannit shelve the objects # # Instead, unload the necessary variables in # # __init__ # # # ###################################################### import os.path, anydbm class RTTRegression: """An RTT test to run its own TestSuite under RTT control This test checks that classes can be instantitiated. It also creates the databass needed to run RTTRegression""" def __init__(self, argDict): self.success = 0 self.error = -1 # self.logger = argDict['logger'] self.logger = Logger() msg = 'Instantiating RTTRegression, args: %s' %str(argDict) self.logger.debug(msg) # fixtureDir is set in JobsXMLReader when reading in the config file. self.fixtureDir = argDict['fixtureDir'] # the current directory jDescriptor = argDict['JobDescriptor'] self.runPath = jDescriptor.runPath self.logDir = jDescriptor.runPath # directory of the source code under test self.rttSrcDir = os.path.join(self.runPath, 'Tools/RunTimeTester/src') self.runPath = jDescriptor.runPath fixture = os.path.basename(self.fixtureDir) self.dbName = os.path.join(self.runPath, fixture+'.db') self.refdbName = os.path.join(self.runPath, 'refFile_'+fixture+'.db') # do not open the dir does not exist yet self.ofName = os.path.join(self.runPath, fixture+'_regression.log') def run(self): outFile = open(self.ofName, 'w') if not os.path.exists(self.dbName): msg = 'None existant path: %s' % self.dbName self.logger.error(msg) outFile.write(msg+'\n') outFile.close() return self.error if not os.path.exists(self.refdbName): msg = 'None existant path: %s' % self.refdbName self.logger.error(msg) outFile.write(msg+'\n') outFile.close() return self.error newDB = anydbm.open(self.dbName, 'r') oldDB = anydbm.open(self.refdbName, 'r') result = self.success onlyInNew = [k for k in newDB.keys() if k not in oldDB.keys()] text = 'Number of keys in reference db %d\n' % len(oldDB.keys()) text = 'Number of keys in new db %d\n' % len(newDB.keys()) if onlyInNew: result = self.error text += '\n' text +='Reference - %s: date: %s\n' % (oldDB['fixtureDir'], oldDB['date']) text += 'New - %s: date: %s\n' % (newDB['fixtureDir'], newDB['date']) text += '\n' text += ' keys in new database, but not in old\n' text += str(onlyInNew)+'\n' text += '\n' onlyInOld = [k for k in oldDB.keys() if k not in newDB.keys()] if onlyInOld: result = self.error text += '\n' text += ' keys in old database, but not in new\n' text += str(onlyInOld)+'\n' text += '\n' keys = [k for k in oldDB.keys() if k in newDB.keys()] toRemove = ['fixtureDir', 'date'] [keys.remove(k) for k in toRemove if k in keys] if keys: text += 'differences:\n' text += '\n' for k in keys: if oldDB[k] != newDB[k]: result = self.error text += 'Key: %s\n' % k text += '\n' text += ' old:\n' text += ' ' +str(oldDB[k])+'\n' text += '\n' text += ' new:\n' text += ' '+str(newDB[k])+'\n' text += '\n' totTests = 0 text += 'Number of points examined:\n' for k in keys: line = '' line += k.ljust(30) ntestOld = len(oldDB[k].split(',')) ntestNew = len(newDB[k].split(',')) # assert(ntestOld == ntestNew) num = '%d' % ntestOld line += num.ljust(5) # print line totTests += ntestOld text += 'No of test classes which pass: %d\n' % len(keys) text += 'Total number of tests passed: %d\n ' %totTests outFile.write(text) outFile.close() return result
170b5974377c2010e0e6ae80d052cc8a08dec18a
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/4dab219f99ff457d92c76f4fa70ad98f.py
52042ea3de170bc5f8eedc4c2b7c186736a74912
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
308
py
# # Skeleton file for the Python "Bob" exercise. # def hey(what): if what.upper() == what and what.lower() != what: return 'Whoa, chill out!' elif what.endswith('?'): return 'Sure.' elif what.strip() == '': return 'Fine. Be that way!' else: return 'Whatever.'
45db6168ca6a0ad2f3120d8dba3898a85cf52fd8
8f1dbd7c032a57c74a36f07690b2ecc80fb3e665
/scratch/follow-ball.piborg.py
09741060a051a0ba26472b3e1a30bbafa4e92cae
[ "MIT" ]
permissive
westpark/piwars-2018
6b861ff46366a76cbf8bfbec11d255e31d471b3a
a2e1cb67e5fcc8f65ed17975d076088a9f92da2a
refs/heads/master
2021-04-28T10:57:42.294132
2018-04-19T10:35:24
2018-04-19T10:35:24
122,079,822
0
0
null
null
null
null
UTF-8
Python
false
false
7,143
py
#!/usr/bin/env python # coding: utf-8 # Load library functions we want import time import os import sys import ThunderBorg import io import threading import picamera import picamera.array import cv2 import numpy print 'Libraries loaded' # Global values global running global TB global camera global processor running = True # Setup the ThunderBorg TB = ThunderBorg.ThunderBorg() #TB.i2cAddress = 0x15 # Uncomment and change the value if you have changed the board address TB.Init() if not TB.foundChip: boards = ThunderBorg.ScanForThunderBorg() if len(boards) == 0: print 'No ThunderBorg found, check you are attached :)' else: print 'No ThunderBorg at address %02X, but we did find boards:' % (TB.i2cAddress) for board in boards: print ' %02X (%d)' % (board, board) print 'If you need to change the I²C address change the setup line so it is correct, e.g.' print 'TB.i2cAddress = 0x%02X' % (boards[0]) sys.exit() TB.SetCommsFailsafe(False) # Power settings voltageIn = 12.0 # Total battery voltage to the ThunderBorg voltageOut = 12.0 * 0.95 # Maximum motor voltage, we limit it to 95% to allow the RPi to get uninterrupted power # Camera settings imageWidth = 320 # Camera image width imageHeight = 240 # Camera image height frameRate = 3 # Camera image capture frame rate # Auto drive settings autoMaxPower = 1.0 # Maximum output in automatic mode autoMinPower = 0.2 # Minimum output in automatic mode autoMinArea = 10 # Smallest target to move towards autoMaxArea = 10000 # Largest target to move towards autoFullSpeedArea = 300 # Target size at which we use the maximum allowed output # Setup the power limits if voltageOut > voltageIn: maxPower = 1.0 else: maxPower = voltageOut / float(voltageIn) autoMaxPower *= maxPower # Image stream processing thread class StreamProcessor(threading.Thread): def __init__(self): super(StreamProcessor, self).__init__() self.stream = picamera.array.PiRGBArray(camera) self.event = threading.Event() self.terminated = False self.start() self.begin = 0 def run(self): # This method runs in a separate thread while not self.terminated: # Wait for an image to be written to the stream if self.event.wait(1): try: # Read the image and do some processing on it self.stream.seek(0) self.ProcessImage(self.stream.array) finally: # Reset the stream and event self.stream.seek(0) self.stream.truncate() self.event.clear() # Image processing function def ProcessImage(self, image): # Get the red section of the image image = cv2.medianBlur(image, 5) image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) # Swaps the red and blue channels! red = cv2.inRange(image, numpy.array((115, 127, 64)), numpy.array((125, 255, 255))) # Find the contours contours,hierarchy = cv2.findContours(red, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Go through each contour foundArea = -1 foundX = -1 foundY = -1 for contour in contours: x,y,w,h = cv2.boundingRect(contour) cx = x + (w / 2) cy = y + (h / 2) area = w * h if foundArea < area: foundArea = area foundX = cx foundY = cy if foundArea > 0: ball = [foundX, foundY, foundArea] else: ball = None # Set drives or report ball status self.SetSpeedFromBall(ball) # Set the motor speed from the ball position def SetSpeedFromBall(self, ball): global TB driveLeft = 0.0 driveRight = 0.0 if ball: x = ball[0] area = ball[2] if area < autoMinArea: print 'Too small / far' elif area > autoMaxArea: print 'Close enough' else: if area < autoFullSpeedArea: speed = 1.0 else: speed = 1.0 / (area / autoFullSpeedArea) speed *= autoMaxPower - autoMinPower speed += autoMinPower direction = (x - imageCentreX) / imageCentreX if direction < 0.0: # Turn right driveLeft = speed driveRight = speed * (1.0 + direction) else: # Turn left driveLeft = speed * (1.0 - direction) driveRight = speed print '%.2f, %.2f' % (driveLeft, driveRight) else: print 'No ball' TB.SetMotor1(driveLeft) TB.SetMotor2(driveRight) # Image capture thread class ImageCapture(threading.Thread): def __init__(self): super(ImageCapture, self).__init__() self.start() def run(self): global camera global processor print 'Start the stream using the video port' camera.capture_sequence(self.TriggerStream(), format='bgr', use_video_port=True) print 'Terminating camera processing...' processor.terminated = True processor.join() print 'Processing terminated.' # Stream delegation loop def TriggerStream(self): global running while running: if processor.event.is_set(): time.sleep(0.01) else: yield processor.stream processor.event.set() # Startup sequence print 'Setup camera' camera = picamera.PiCamera() camera.resolution = (imageWidth, imageHeight) camera.framerate = frameRate imageCentreX = imageWidth / 2.0 imageCentreY = imageHeight / 2.0 print 'Setup the stream processing thread' processor = StreamProcessor() print 'Wait ...' time.sleep(2) captureThread = ImageCapture() try: print 'Press CTRL+C to quit' TB.MotorsOff() TB.SetLedShowBattery(True) # Loop indefinitely until we are no longer running while running: # Wait for the interval period # You could have the code do other work in here :) time.sleep(1.0) # Disable all drives TB.MotorsOff() except KeyboardInterrupt: # CTRL+C exit, disable all drives print '\nUser shutdown' TB.MotorsOff() except: # Unexpected error, shut down! e = sys.exc_info()[0] print print e print '\nUnexpected error, shutting down!' TB.MotorsOff() # Tell each thread to stop, and wait for them to end running = False captureThread.join() processor.terminated = True processor.join() del camera TB.MotorsOff() TB.SetLedShowBattery(False) TB.SetLeds(0,0,0) print 'Program terminated.'
c6c9f8053ce7426d8e40844b29b1a9736d500e03
777a972966fa29a1b5a1a0c5d507a3137de007fc
/stock_pick_batch/__manifest__.py
cfbf3abdc520bc1242de59ad4d6ad1cd7d0cc3c3
[]
no_license
suningwz/ruvati
1d1ace30fb2929f686f368fb8d8c51ae76a71190
9b15373125139cab1d26294c218685c5b87b9709
refs/heads/master
2023-08-15T22:28:18.499733
2021-10-12T12:16:56
2021-10-12T12:16:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
# -*- coding: utf-8 -*- { "name": "Stock Picking Batch", "version": "1.1", "category": 'Inventory', 'complexity': "normal", 'author': 'Confianz Global,Inc.', 'description': """ Batch transfer in inventory """, 'website': 'http://www.confianzit.com', "depends": ['base', 'delivery_extension', 'stock_picking_batch','stock','delivery'], 'data': [ 'views/stock_view.xml', 'report/batch_picking_report.xml', 'report/batch_picking_report_views.xml', 'static/src/xml/batch_transfer_ruvati.xml' ], 'demo_xml': [], 'installable': True, 'application': True, 'auto_install': False, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
f58261daab0df0e28c03fbe345a6d2e337fdc477
45b159e64114d8759c0e2987bd0a6f02f60daf4d
/Python/APL/ch14/distanceThreeArrays.py
80483127107e3734d02efe667945abcd5ac19af1
[]
no_license
afcarl/Coding_Interview_Problems
45b24b849a90581db5327811c5ab78237f4d5ac0
1256d4394d506aec875e9e19300404a9b32a4eb1
refs/heads/master
2020-03-16T20:16:54.706152
2015-02-11T05:51:56
2015-02-11T05:51:56
132,953,286
1
0
null
2018-05-10T20:54:14
2018-05-10T20:54:14
null
UTF-8
Python
false
false
274
py
''' Created on Jan 24, 2015 @author: Ben Athiwaratkun (pa338) ''' #from __future__ import division #import numpy as np def findMin(A,B,C): pass def main(): A = [1,2,3] B = [4,1,8] C = [3,2,7] findMin(A,B,C) if __name__ == "__main__": main()
11689979f2e6aaa273058e3b89ba57a7a4d578c0
1fa265a01400c23f9ca494a1d9ef55b6cef85cdc
/inventory/migrations/0102_auto_20200131_1454.py
ac78634fc95dc9da549ec9a25ce03a0aaf6d0ca9
[]
no_license
dipesh779/posbackend
523660b40be4d5deaff6b6c267c65fa9caba00de
06effb004448dbb6d99077790ceb4738875e6505
refs/heads/master
2022-04-25T09:15:12.081266
2020-05-04T04:45:56
2020-05-04T04:45:56
261,082,375
0
0
null
null
null
null
UTF-8
Python
false
false
2,522
py
# Generated by Django 2.2.7 on 2020-01-31 09:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('inventory', '0101_auto_20200131_0911'), ] operations = [ migrations.AlterField( model_name='stockcomputation', name='complimentory_sale', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='discrepancy_stock', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='expired_quantity', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='final_closing_stock', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='inspected_stock', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='received_stock', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='sale', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='theoritical_QOH', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='threshold_quantity', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), migrations.AlterField( model_name='stockcomputation', name='weigh_price', field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=10, null=True), ), ]
836dc051ae842d3fb098afe67dd219518fdf722b
2aa47f47fb81798afdf41437844cbbea8e9de66c
/02pythonBase/day12/day11_exercise/factorial_sum.py
d9c669a1112be4d4c20c74aede6742f36eab15e2
[]
no_license
nykh2010/python_note
83f2eb8979f2fb25b4845faa313dbd6b90b36f40
5e7877c9f7bf29969072f05b98277ef3ba090969
refs/heads/master
2020-04-27T23:10:16.578094
2019-03-23T02:43:14
2019-03-23T02:43:14
174,765,151
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
# 3. 写程序算出 1 ~ 20 的阶乘的和 # 1! + 2! + 3! + 4! + ..... + 20! # 方法1 # def myfac(n): # if n == 1: # return 1 # return n * myfac(n - 1) # s = 0 # for x in range(1, 21): # s += myfac(x) # print(s) import math print(sum(map(math.factorial, range(1, 21))))
ef7cfcbb15eaf35f6cd7f8058281eb80959721bb
40fc1d38f2d4b643bc99df347c4ff3a763ba65e3
/arcade/infiniworld/src/infiniworld/__init__.py
77165064cf85d6cbd506c2db160a29d5cf41a5cf
[]
no_license
alecordev/pygaming
0be4b7a1c9e7922c63ce4cc369cd893bfef7b03c
35e479b703acf038f47c2151b3759ad852781e4c
refs/heads/master
2023-05-14T05:03:28.484678
2021-06-03T10:11:08
2021-06-03T10:11:08
372,768,733
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
"""The infiniworld package contains the entire game engine: Models Views and Controllers, but also physics, geometry, time management, etc. """ from . import controllers from . import events from . import evtman from . import geometry from . import log from . import models from . import physics from . import time_
b81680590f118a2d347e1fb05c0986f14e401d1d
5d0edf31b17c5375faf6126c1a7be8e79bfe2ab8
/buildout-cache/eggs/plone.formwidget.contenttree-1.0.14-py2.7.egg/plone/formwidget/contenttree/demo.py
57b8a81802b37b1a271061de3b3b447da24627fd
[]
no_license
renansfs/Plone_SP
27cba32ebd9fc03dae3941ec23cf1bf0a7b6667a
8a7bdbdb98c3f9fc1073c6061cd2d3a0ec80caf5
refs/heads/master
2021-01-15T15:32:43.138965
2016-08-24T15:30:19
2016-08-24T15:30:19
65,313,812
0
3
null
null
null
null
UTF-8
Python
false
false
1,759
py
from zope.component import adapts from zope.interface import Interface, implements from zope import schema from plone.z3cform import layout from z3c.form import form, button, field from plone.formwidget.contenttree import ContentTreeFieldWidget from plone.formwidget.contenttree import MultiContentTreeFieldWidget from plone.formwidget.contenttree import PathSourceBinder class ITestForm(Interface): buddy = schema.Choice(title=u"Buddy object", description=u"Select one, please", source=PathSourceBinder(portal_type='Document')) friends = schema.List( title=u"Friend objects", description=u"Select as many as you want", value_type=schema.Choice( title=u"Selection", source=PathSourceBinder(portal_type='Document'))) class TestAdapter(object): implements(ITestForm) adapts(Interface) def __init__(self, context): self.context = context def _get_buddy(self): return None def _set_buddy(self, value): print "setting", value buddy = property(_get_buddy, _set_buddy) def _get_friends(self): return [] def _set_friends(self, value): print "setting", value friends = property(_get_friends, _set_friends) class TestForm(form.Form): fields = field.Fields(ITestForm) fields['buddy'].widgetFactory = ContentTreeFieldWidget fields['friends'].widgetFactory = MultiContentTreeFieldWidget # To check display mode still works, uncomment this and hit refresh. #mode = 'display' @button.buttonAndHandler(u'Ok') def handle_ok(self, action): data, errors = self.extractData() print data, errors TestView = layout.wrap_form(TestForm)
2d3850df0c094eeb7f706d70aa509e5e2011f721
772b0df2635b95644ea3eb370103174804024167
/scripts/process_file.py
cfce2bb5b07aee825c3a76f0632392eb3a6e3579
[ "MIT" ]
permissive
4dn-dcic/clodius
ec909bda90a9df13fa1b85472951f6cf149213a5
aa31b3d90a5a9fec883c20cab31ad4d347cd52cd
refs/heads/develop
2020-04-17T23:31:32.114043
2019-04-02T14:01:46
2019-04-02T14:01:46
167,038,915
0
0
MIT
2019-03-28T20:10:46
2019-01-22T17:43:32
Python
UTF-8
Python
false
false
2,597
py
from __future__ import print_function import argparse import os.path as op import subprocess as sp import sys import tempfile as tf def main(): usage = """ python make_tiles.py input_file Create tiles for all of the entries in the JSON file. """ parser = argparse.ArgumentParser() parser.add_argument('filepath') parser.add_argument('-a', '--assembly', default='hg19') parser.add_argument('-t', '--type', default='bedgraph') parser.add_argument('--stdout', default=False, action='store_true', help="Dump output to stdout (not implemented yet)") args = parser.parse_args() filedir = op.dirname(args.filepath) outfile = open(args.filepath + '.genome.sorted.gz', 'w') tempfile = tf.TemporaryFile('w+b') if args.type == 'bigwig': tempfile1 = tf.TemporaryFile() p05 = sp.Popen(['bigWigToBedGraph', args.filepath, '/dev/fd/1'], stdout = tempfile1) p05.wait() tempfile1.seek(0) p0 = sp.Popen(['pv', '-f', '-'], stdin=tempfile1, stdout=sp.PIPE, stderr=sp.PIPE, universal_newlines=True) pn = p0 elif args.type == 'bedgraph': p0 = sp.Popen(['pv', '-f', args.filepath], stdout=sp.PIPE, stderr=sp.PIPE, universal_newlines=True) pn = p0 p1 = sp.Popen(["awk", "{print $1, $2, $1, $3, $4 }"], stdin = pn.stdout, stdout=sp.PIPE) p2 = sp.Popen(['chr_pos_to_genome_pos.py', '-e 5', '-a', '{}'.format(args.assembly)], stdin = p1.stdout, stdout=sp.PIPE) p3 = sp.Popen(['sort', '-k1,1n', '-k2,2n', '-'], stdin = p2.stdout, stdout=tempfile) for line in iter(p0.stderr.readline, ""): print("line:", line.strip()) p0.wait() p1.wait() p2.wait() p3.wait() tempfile.flush() print("tell:", tempfile.tell()) tempfile.seek(0) p35 = sp.Popen(['pv', '-f', '-'], stdin = tempfile, stdout = sp.PIPE, stderr = sp.PIPE, universal_newlines=True) p4 = sp.Popen(['gzip'], stdin = p35.stdout, stdout=outfile) for line in iter(p35.stderr.readline, ""): print("line:", line.strip()) p35.wait() p4.wait() print("filedir:", filedir) if __name__ == '__main__': main()
512c1fce60003522e98e0f5f3d8278c65001a88e
437428a48278b4e9bc04e1b8acbb33199f409376
/modules/exploit/unix/dvr/camera_credentials_disclosure.py
563adb10d9ee37945d96f06681ce86ece688b976
[ "MIT" ]
permissive
happylaodu/HatSploit
06d18ba2590456241ba61273d9f3d662a8bb26ec
9d53f3db85ce38483c6e7d16570ac233c5dd93cf
refs/heads/main
2023-04-30T20:18:37.090185
2021-06-02T20:23:08
2021-06-02T20:23:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,120
py
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020-2021 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import json from core.lib.module import Module from utils.http.http import HTTPClient class HatSploitModule(Module, HTTPClient): details = { 'Name': "DVR Camera Credentials Disclosure", 'Module': "exploit/unix/dvr/camera_credentials_disclosure", 'Authors': [ 'Ivan Nikolsky (enty8080)', 'ezelf' ], 'Description': "DVR Camera credentials disclosure.", 'Comments': [ '' ], 'Platform': "unix", 'Risk': "high" } options = { 'RHOST': { 'Description': "Remote host.", 'Value': None, 'Type': "ip", 'Required': True }, 'RPORT': { 'Description': "Remote port.", 'Value': 80, 'Type': "port", 'Required': True } } def exploit(self, remote_host, remote_port): self.output_process("Generating payload...") cookies = { "uid": "admin" } payload = '/device.rsp?opt=user&cmd=list' self.output_process("Sending payload...") response = self.http_request( method="GET", host=remote_host, port=remote_port, cookies=cookies ) if response is None or response.status_code != 200: self.output_error("Failed to send payload!") return try: json_data = json.loads(response.text) for data in json_data["list"]: credentials.append((data["uid"], data["pwd"], data["role"])) self.print_table("Credentials", ('Username', 'Password', 'Role'), *credentials) except Exception: self.output_error("Credentials could not be found!") def run(self): remote_host, remote_port = self.parse_options(self.options) self.output_process(f"Exploiting {remote_host}...") self.exploit(remote_host, remote_port)
84cb538f8850e3ffa7072e85d2b0228a7d713a47
356f3f1b7caf0ccb20cc830d40821dfb2cbda046
/sfit/workout/doctype/workout_day/test_workout_day.py
8696ffbb32d632dbc281ece67008a9e16deb779d
[ "MIT" ]
permissive
vignesharumainayagam/sfit
f4b75b9a8b2de08d0eaa4eadbcd3d5e432ffba56
a96afbf35b0e1635e44cb5f83d7f86c83abedb8f
refs/heads/master
2021-09-05T18:22:43.494208
2018-01-30T07:23:02
2018-01-30T07:23:02
104,332,803
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
# -*- coding: utf-8 -*- # Copyright (c) 2017, Valiant Systems and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestWorkoutDay(unittest.TestCase): pass
1f3e82b1570f82ea3bdfef2515882a87a08ed13e
8efe9a6c9489d798b5f5b610eb531d86924a1548
/src/products/migrations/0030_auto_20180305_0204.py
5a7d07b9df8306b0e3108784bcba1e778c6e7200
[]
no_license
MarekBiczysko/naklisze_public
e8e6f7e61cdb83b74ea68862b40c061c0253767b
e53c0e8fefffbcfc3a8859976eb7b81cf6270847
refs/heads/master
2022-12-12T02:27:09.824803
2019-07-23T10:54:47
2019-07-23T10:54:47
198,410,666
0
0
null
2022-12-08T01:03:08
2019-07-23T10:46:57
Python
UTF-8
Python
false
false
1,518
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-03-05 01:04 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0029_auto_20180305_0150'), ] operations = [ migrations.AlterField( model_name='camera', name='description', field=models.TextField(default='\nA camera is an optical instrument for recording or capturing images, which may be stored locally, transmitted to another location, or both. The images may be individual still photographs or sequences of images constituting videos or movies. The camera is a remote sensing device as it senses subjects without any contact . The word camera comes from camera obscura, which means "dark chamber" and is the Latin name of the original device for projecting an image of external reality onto a flat surface. The modern photographic camera evolved from the camera obscura. The functioning of the camera is very similar to the functioning of the human eye. The first permanent photograph of a camera image was made in 1826 by Joseph Nicéphore Niépce.\n'), ), migrations.AlterField( model_name='camera', name='spec_table', field=models.TextField(blank=True, default="\nogniskowa @ 58 mm &\nkąt widzenia @ 32' szerokości &\nparametr @ wartość &\nkolejny parametr @ następna wartość &\n", max_length=300, null=True), ), ]
edb41ced91b448c477e1ff798421c4a836d02c1c
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_None/trend_Lag1Trend/cycle_5/ar_/test_artificial_128_None_Lag1Trend_5__0.py
a2712b0471685b35c3361d00197c36c4f8dea080
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
258
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 5, transform = "None", sigma = 0.0, exog_count = 0, ar_order = 0);
d1774ad51874a5675a3520841566cae2f5f090ea
ad5d38fce4785037c108186f17eb1c64380355ef
/sddsd/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/billingbudgets/v1/billingbudgets_v1_messages.py
8a611f89deb6f766bb26aafda35e58789808ab8b
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
saranraju90/multik8s
75864b605a139ddb7947ed4de4ae8466bdd49acb
428576dedef7bb9cd6516e2c1ab2714581e1137c
refs/heads/master
2023-03-03T21:56:14.383571
2021-02-20T14:56:42
2021-02-20T14:56:42
339,665,231
0
0
null
null
null
null
UTF-8
Python
false
false
19,575
py
"""Generated message classes for billingbudgets version v1. The Cloud Billing Budget API stores Cloud Billing budgets, which define a budget plan and the rules to execute as spend is tracked against that plan. """ # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'billingbudgets' class BillingbudgetsBillingAccountsBudgetsCreateRequest(_messages.Message): r"""A BillingbudgetsBillingAccountsBudgetsCreateRequest object. Fields: googleCloudBillingBudgetsV1Budget: A GoogleCloudBillingBudgetsV1Budget resource to be passed as the request body. parent: Required. The name of the billing account to create the budget in. Values are of the form `billingAccounts/{billingAccountId}`. """ googleCloudBillingBudgetsV1Budget = _messages.MessageField('GoogleCloudBillingBudgetsV1Budget', 1) parent = _messages.StringField(2, required=True) class BillingbudgetsBillingAccountsBudgetsDeleteRequest(_messages.Message): r"""A BillingbudgetsBillingAccountsBudgetsDeleteRequest object. Fields: name: Required. Name of the budget to delete. Values are of the form `billingAccounts/{billingAccountId}/budgets/{budgetId}`. """ name = _messages.StringField(1, required=True) class BillingbudgetsBillingAccountsBudgetsGetRequest(_messages.Message): r"""A BillingbudgetsBillingAccountsBudgetsGetRequest object. Fields: name: Required. Name of budget to get. Values are of the form `billingAccounts/{billingAccountId}/budgets/{budgetId}`. """ name = _messages.StringField(1, required=True) class BillingbudgetsBillingAccountsBudgetsListRequest(_messages.Message): r"""A BillingbudgetsBillingAccountsBudgetsListRequest object. Fields: pageSize: Optional. The maximum number of budgets to return per page. The default and maximum value are 100. pageToken: Optional. The value returned by the last `ListBudgetsResponse` which indicates that this is a continuation of a prior `ListBudgets` call, and that the system should return the next page of data. parent: Required. Name of billing account to list budgets under. Values are of the form `billingAccounts/{billingAccountId}`. """ pageSize = _messages.IntegerField(1, variant=_messages.Variant.INT32) pageToken = _messages.StringField(2) parent = _messages.StringField(3, required=True) class BillingbudgetsBillingAccountsBudgetsPatchRequest(_messages.Message): r"""A BillingbudgetsBillingAccountsBudgetsPatchRequest object. Fields: googleCloudBillingBudgetsV1Budget: A GoogleCloudBillingBudgetsV1Budget resource to be passed as the request body. name: Output only. Resource name of the budget. The resource name implies the scope of a budget. Values are of the form `billingAccounts/{billingAccountId}/budgets/{budgetId}`. updateMask: Optional. Indicates which fields in the provided budget to update. Read-only fields (such as `name`) cannot be changed. If this is not provided, then only fields with non-default values from the request are updated. See https://developers.google.com/protocol- buffers/docs/proto3#default for more details about default values. """ googleCloudBillingBudgetsV1Budget = _messages.MessageField('GoogleCloudBillingBudgetsV1Budget', 1) name = _messages.StringField(2, required=True) updateMask = _messages.StringField(3) class GoogleCloudBillingBudgetsV1Budget(_messages.Message): r"""A budget is a plan that describes what you expect to spend on Cloud projects, plus the rules to execute as spend is tracked against that plan, (for example, send an alert when 90% of the target spend is met). Currently all plans are monthly budgets so the usage period(s) tracked are implied (calendar months of usage back-to-back). Fields: amount: Required. Budgeted amount. budgetFilter: Optional. Filters that define which resources are used to compute the actual spend against the budget. displayName: User data for display name in UI. The name must be less than or equal to 60 characters. etag: Optional. Etag to validate that the object is unchanged for a read- modify-write operation. An empty etag will cause an update to overwrite other changes. name: Output only. Resource name of the budget. The resource name implies the scope of a budget. Values are of the form `billingAccounts/{billingAccountId}/budgets/{budgetId}`. notificationsRule: Optional. Rules to apply to notifications sent based on budget spend and thresholds. thresholdRules: Optional. Rules that trigger alerts (notifications of thresholds being crossed) when spend exceeds the specified percentages of the budget. """ amount = _messages.MessageField('GoogleCloudBillingBudgetsV1BudgetAmount', 1) budgetFilter = _messages.MessageField('GoogleCloudBillingBudgetsV1Filter', 2) displayName = _messages.StringField(3) etag = _messages.StringField(4) name = _messages.StringField(5) notificationsRule = _messages.MessageField('GoogleCloudBillingBudgetsV1NotificationsRule', 6) thresholdRules = _messages.MessageField('GoogleCloudBillingBudgetsV1ThresholdRule', 7, repeated=True) class GoogleCloudBillingBudgetsV1BudgetAmount(_messages.Message): r"""The budgeted amount for each usage period. Fields: lastPeriodAmount: Use the last period's actual spend as the budget for the present period. specifiedAmount: A specified amount to use as the budget. `currency_code` is optional. If specified when creating a budget, it must match the currency of the billing account. If specified when updating a budget, it must match the currency_code of the existing budget. The `currency_code` is provided on output. """ lastPeriodAmount = _messages.MessageField('GoogleCloudBillingBudgetsV1LastPeriodAmount', 1) specifiedAmount = _messages.MessageField('GoogleTypeMoney', 2) class GoogleCloudBillingBudgetsV1Filter(_messages.Message): r"""A filter for a budget, limiting the scope of the cost to calculate. Enums: CreditTypesTreatmentValueValuesEnum: Optional. If not set, default behavior is `INCLUDE_ALL_CREDITS`. Messages: LabelsValue: Optional. A single label and value pair specifying that usage from only this set of labeled resources should be included in the budget. Currently, multiple entries or multiple values per entry are not allowed. If omitted, the report will include all labeled and unlabeled usage. Fields: creditTypes: Optional. If Filter.credit_types_treatment is INCLUDE_SPECIFIED_CREDITS, this is a list of credit types to be subtracted from gross cost to determine the spend for threshold calculations. If Filter.credit_types_treatment is **not** INCLUDE_SPECIFIED_CREDITS, this field must be empty. See [a list of acceptable credit type values](https://cloud.google.com/billing/docs/how-to/export-data- bigquery-tables#credits-type). creditTypesTreatment: Optional. If not set, default behavior is `INCLUDE_ALL_CREDITS`. labels: Optional. A single label and value pair specifying that usage from only this set of labeled resources should be included in the budget. Currently, multiple entries or multiple values per entry are not allowed. If omitted, the report will include all labeled and unlabeled usage. projects: Optional. A set of projects of the form `projects/{project}`, specifying that usage from only this set of projects should be included in the budget. If omitted, the report will include all usage for the billing account, regardless of which project the usage occurred on. Only zero or one project can be specified currently. services: Optional. A set of services of the form `services/{service_id}`, specifying that usage from only this set of services should be included in the budget. If omitted, the report will include usage for all the services. The service names are available through the Catalog API: https://cloud.google.com/billing/v1/how-tos/catalog-api. subaccounts: Optional. A set of subaccounts of the form `billingAccounts/{account_id}`, specifying that usage from only this set of subaccounts should be included in the budget. If a subaccount is set to the name of the parent account, usage from the parent account will be included. If the field is omitted, the report will include usage from the parent account and all subaccounts, if they exist. """ class CreditTypesTreatmentValueValuesEnum(_messages.Enum): r"""Optional. If not set, default behavior is `INCLUDE_ALL_CREDITS`. Values: CREDIT_TYPES_TREATMENT_UNSPECIFIED: This is an invalid value. INCLUDE_ALL_CREDITS: All types of credit are subtracted from the gross cost to determine the spend for threshold calculations. EXCLUDE_ALL_CREDITS: All types of credit are added to the net cost to determine the spend for threshold calculations. INCLUDE_SPECIFIED_CREDITS: Credit types specified in the credit_types field are subtracted from the gross cost to determine the spend for threshold calculations. """ CREDIT_TYPES_TREATMENT_UNSPECIFIED = 0 INCLUDE_ALL_CREDITS = 1 EXCLUDE_ALL_CREDITS = 2 INCLUDE_SPECIFIED_CREDITS = 3 @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""Optional. A single label and value pair specifying that usage from only this set of labeled resources should be included in the budget. Currently, multiple entries or multiple values per entry are not allowed. If omitted, the report will include all labeled and unlabeled usage. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2, repeated=True) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) creditTypes = _messages.StringField(1, repeated=True) creditTypesTreatment = _messages.EnumField('CreditTypesTreatmentValueValuesEnum', 2) labels = _messages.MessageField('LabelsValue', 3) projects = _messages.StringField(4, repeated=True) services = _messages.StringField(5, repeated=True) subaccounts = _messages.StringField(6, repeated=True) class GoogleCloudBillingBudgetsV1LastPeriodAmount(_messages.Message): r"""Describes a budget amount targeted to last period's spend. At this time, the amount is automatically 100% of last period's spend; that is, there are no other options yet. Future configuration will be described here (for example, configuring a percentage of last period's spend). """ class GoogleCloudBillingBudgetsV1ListBudgetsResponse(_messages.Message): r"""Response for ListBudgets Fields: budgets: List of the budgets owned by the requested billing account. nextPageToken: If not empty, indicates that there may be more budgets that match the request; this value should be passed in a new `ListBudgetsRequest`. """ budgets = _messages.MessageField('GoogleCloudBillingBudgetsV1Budget', 1, repeated=True) nextPageToken = _messages.StringField(2) class GoogleCloudBillingBudgetsV1NotificationsRule(_messages.Message): r"""NotificationsRule defines notifications that are sent based on budget spend and thresholds. Fields: disableDefaultIamRecipients: Optional. When set to true, disables default notifications sent when a threshold is exceeded. Default notifications are sent to those with Billing Account Administrator and Billing Account User IAM roles for the target account. monitoringNotificationChannels: Optional. Targets to send notifications to when a threshold is exceeded. This is in addition to default recipients who have billing account IAM roles. The value is the full REST resource name of a monitoring notification channel with the form `projects/{project_id}/notificationChannels/{channel_id}`. A maximum of 5 channels are allowed. See https://cloud.google.com/billing/docs/how- to/budgets-notification-recipients for more details. pubsubTopic: Optional. The name of the Pub/Sub topic where budget related messages will be published, in the form `projects/{project_id}/topics/{topic_id}`. Updates are sent at regular intervals to the topic. The topic needs to be created before the budget is created; see https://cloud.google.com/billing/docs/how- to/budgets#manage-notifications for more details. Caller is expected to have `pubsub.topics.setIamPolicy` permission on the topic when it's set for a budget, otherwise, the API call will fail with PERMISSION_DENIED. See https://cloud.google.com/billing/docs/how-to/budgets-programmatic- notifications for more details on Pub/Sub roles and permissions. schemaVersion: Optional. Required when NotificationsRule.pubsub_topic is set. The schema version of the notification sent to NotificationsRule.pubsub_topic. Only "1.0" is accepted. It represents the JSON schema as defined in https://cloud.google.com/billing/docs/how- to/budgets-programmatic-notifications#notification_format. """ disableDefaultIamRecipients = _messages.BooleanField(1) monitoringNotificationChannels = _messages.StringField(2, repeated=True) pubsubTopic = _messages.StringField(3) schemaVersion = _messages.StringField(4) class GoogleCloudBillingBudgetsV1ThresholdRule(_messages.Message): r"""ThresholdRule contains a definition of a threshold which triggers an alert (a notification of a threshold being crossed) to be sent when spend goes above the specified amount. Alerts are automatically e-mailed to users with the Billing Account Administrator role or the Billing Account User role. The thresholds here have no effect on notifications sent to anything configured under `Budget.all_updates_rule`. Enums: SpendBasisValueValuesEnum: Optional. The type of basis used to determine if spend has passed the threshold. Behavior defaults to CURRENT_SPEND if not set. Fields: spendBasis: Optional. The type of basis used to determine if spend has passed the threshold. Behavior defaults to CURRENT_SPEND if not set. thresholdPercent: Required. Send an alert when this threshold is exceeded. This is a 1.0-based percentage, so 0.5 = 50%. Validation: non-negative number. """ class SpendBasisValueValuesEnum(_messages.Enum): r"""Optional. The type of basis used to determine if spend has passed the threshold. Behavior defaults to CURRENT_SPEND if not set. Values: BASIS_UNSPECIFIED: Unspecified threshold basis. CURRENT_SPEND: Use current spend as the basis for comparison against the threshold. FORECASTED_SPEND: Use forecasted spend for the period as the basis for comparison against the threshold. """ BASIS_UNSPECIFIED = 0 CURRENT_SPEND = 1 FORECASTED_SPEND = 2 spendBasis = _messages.EnumField('SpendBasisValueValuesEnum', 1) thresholdPercent = _messages.FloatField(2) class GoogleProtobufEmpty(_messages.Message): r"""A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ class GoogleTypeMoney(_messages.Message): r"""Represents an amount of money with its currency type. Fields: currencyCode: The three-letter currency code defined in ISO 4217. nanos: Number of nano (10^-9) units of the amount. The value must be between -999,999,999 and +999,999,999 inclusive. If `units` is positive, `nanos` must be positive or zero. If `units` is zero, `nanos` can be positive, zero, or negative. If `units` is negative, `nanos` must be negative or zero. For example $-1.75 is represented as `units`=-1 and `nanos`=-750,000,000. units: The whole units of the amount. For example if `currencyCode` is `"USD"`, then 1 unit is one US dollar. """ currencyCode = _messages.StringField(1) nanos = _messages.IntegerField(2, variant=_messages.Variant.INT32) units = _messages.IntegerField(3) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default='json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
0482372da6150f93732ef9dbfe0fc9cd5bd63da0
0d49ae2184f2e88e4aefb423ae36578b8931e415
/intersight/apis/hyperflex_sys_config_policy_api.py
80f2f896c2898755c1e83ad7cac5bbd4a96f156e
[ "Apache-2.0" ]
permissive
sonogong777/intersight-python
0477c7e96cdd81e1e30a188d74948b5db4e41b04
af45333b23b0048029aeafcb0077f1d0a6ffe105
refs/heads/master
2021-04-30T03:29:46.680831
2018-02-12T20:22:10
2018-02-12T20:22:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
32,729
py
# coding: utf-8 """ UCS Starship API This is the UCS Starship REST API OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class HyperflexSysConfigPolicyApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def hyperflex_sys_config_policies_get(self, **kwargs): """ List of hyperflexSysConfigPolicies This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_get(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param bool count: The $count query option allows clients to request a count of the matching resources. :param bool inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response :param bool tags: The 'tags' query option allows clients to request a document with tag usage summary. :param int top: The max number of records to return :param int skip: The number of records to skip :param str filter: Filter criteria for records to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London') :param str select: Specifies a subset of properties to return :param str orderby: Determines what values are used to order a collection of records :param str expand: Specify additional attributes or related records to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames :return: HyperflexSysConfigPolicyList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_get_with_http_info(**kwargs) else: (data) = self.hyperflex_sys_config_policies_get_with_http_info(**kwargs) return data def hyperflex_sys_config_policies_get_with_http_info(self, **kwargs): """ List of hyperflexSysConfigPolicies This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_get_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param bool count: The $count query option allows clients to request a count of the matching resources. :param bool inlinecount: The $inlinecount query option allows clients to request an inline count of the matching resources included with the resources in the response :param bool tags: The 'tags' query option allows clients to request a document with tag usage summary. :param int top: The max number of records to return :param int skip: The number of records to skip :param str filter: Filter criteria for records to return. A URI with a $filter System Query Option identifies a subset of the Entries from the Collection of Entries identified by the Resource Path section of the URI. The subset is determined by selecting only the Entries that satisfy the predicate expression specified by the query option. The expression language that is used in $filter operators supports references to properties and literals. The literal values can be strings enclosed in single quotes, numbers and boolean values (true or false) or any of the additional literal representations shown in the Abstract Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: t/Key eq 'Site') $filter=Tags/any(t: t/Key eq 'Site' and t/Value eq 'London') :param str select: Specifies a subset of properties to return :param str orderby: Determines what values are used to order a collection of records :param str expand: Specify additional attributes or related records to return. Supports only 'DisplayNames' attribute now. Query examples: $expand=DisplayNames :return: HyperflexSysConfigPolicyList If the method is called asynchronously, returns the request thread. """ all_params = ['count', 'inlinecount', 'tags', 'top', 'skip', 'filter', 'select', 'orderby', 'expand'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_get" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'count' in params: query_params.append(('$count', params['count'])) if 'inlinecount' in params: query_params.append(('$inlinecount', params['inlinecount'])) if 'tags' in params: query_params.append(('tags', params['tags'])) if 'top' in params: query_params.append(('$top', params['top'])) if 'skip' in params: query_params.append(('$skip', params['skip'])) if 'filter' in params: query_params.append(('$filter', params['filter'])) if 'select' in params: query_params.append(('$select', params['select'])) if 'orderby' in params: query_params.append(('$orderby', params['orderby'])) if 'expand' in params: query_params.append(('$expand', params['expand'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HyperflexSysConfigPolicyList', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def hyperflex_sys_config_policies_moid_delete(self, moid, **kwargs): """ Delete an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_delete(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_moid_delete_with_http_info(moid, **kwargs) else: (data) = self.hyperflex_sys_config_policies_moid_delete_with_http_info(moid, **kwargs) return data def hyperflex_sys_config_policies_moid_delete_with_http_info(self, moid, **kwargs): """ Delete an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_delete_with_http_info(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['moid'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_moid_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `hyperflex_sys_config_policies_moid_delete`") collection_formats = {} path_params = {} if 'moid' in params: path_params['moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies/{moid}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def hyperflex_sys_config_policies_moid_get(self, moid, **kwargs): """ A instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_get(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :return: HyperflexSysConfigPolicy If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_moid_get_with_http_info(moid, **kwargs) else: (data) = self.hyperflex_sys_config_policies_moid_get_with_http_info(moid, **kwargs) return data def hyperflex_sys_config_policies_moid_get_with_http_info(self, moid, **kwargs): """ A instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_get_with_http_info(moid, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :return: HyperflexSysConfigPolicy If the method is called asynchronously, returns the request thread. """ all_params = ['moid'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_moid_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `hyperflex_sys_config_policies_moid_get`") collection_formats = {} path_params = {} if 'moid' in params: path_params['moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies/{moid}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HyperflexSysConfigPolicy', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def hyperflex_sys_config_policies_moid_patch(self, moid, body, **kwargs): """ Update an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_patch(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to update (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_moid_patch_with_http_info(moid, body, **kwargs) else: (data) = self.hyperflex_sys_config_policies_moid_patch_with_http_info(moid, body, **kwargs) return data def hyperflex_sys_config_policies_moid_patch_with_http_info(self, moid, body, **kwargs): """ Update an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_patch_with_http_info(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to update (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['moid', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_moid_patch" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `hyperflex_sys_config_policies_moid_patch`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `hyperflex_sys_config_policies_moid_patch`") collection_formats = {} path_params = {} if 'moid' in params: path_params['moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies/{moid}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def hyperflex_sys_config_policies_moid_post(self, moid, body, **kwargs): """ Update an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_post(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to update (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_moid_post_with_http_info(moid, body, **kwargs) else: (data) = self.hyperflex_sys_config_policies_moid_post_with_http_info(moid, body, **kwargs) return data def hyperflex_sys_config_policies_moid_post_with_http_info(self, moid, body, **kwargs): """ Update an instance of hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_moid_post_with_http_info(moid, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str moid: The moid of the hyperflexSysConfigPolicy instance. (required) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to update (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['moid', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_moid_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'moid' is set if ('moid' not in params) or (params['moid'] is None): raise ValueError("Missing the required parameter `moid` when calling `hyperflex_sys_config_policies_moid_post`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `hyperflex_sys_config_policies_moid_post`") collection_formats = {} path_params = {} if 'moid' in params: path_params['moid'] = params['moid'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies/{moid}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def hyperflex_sys_config_policies_post(self, body, **kwargs): """ Create a hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_post(body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to add (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.hyperflex_sys_config_policies_post_with_http_info(body, **kwargs) else: (data) = self.hyperflex_sys_config_policies_post_with_http_info(body, **kwargs) return data def hyperflex_sys_config_policies_post_with_http_info(self, body, **kwargs): """ Create a hyperflexSysConfigPolicy This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.hyperflex_sys_config_policies_post_with_http_info(body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param HyperflexSysConfigPolicy body: hyperflexSysConfigPolicy to add (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method hyperflex_sys_config_policies_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `hyperflex_sys_config_policies_post`") collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api('/hyperflex/SysConfigPolicies', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "“[email protected]”" ]
5afe09e31c7ddd461bd0ca9ead432738d103c647
148072ce210ca4754ea4a37d83057e2cf2fdc5a1
/src/core/w3af/w3af/plugins/attack/db/sqlmap/waf/netscaler.py
04b6d4eca5614726a9e6be0a151109dfc48cf07b
[]
no_license
ycc1746582381/webfuzzer
8d42fceb55c8682d6c18416b8e7b23f5e430c45f
0d9aa35c3218dc58f81c429cae0196e4c8b7d51b
refs/heads/master
2021-06-14T18:46:59.470232
2017-03-14T08:49:27
2017-03-14T08:49:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
#!/usr/bin/env python """ Copyright (c) 2006-2015 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import re from lib.core.enums import HTTP_HEADER from lib.core.settings import WAF_ATTACK_VECTORS __product__ = "NetScaler (Citrix Systems)" def detect(get_page): retval = False for vector in WAF_ATTACK_VECTORS: page, headers, code = get_page(get=vector) retval = re.search(r"\Aclose", headers.get("Cneonction", "") or headers.get("nnCoection", ""), re.I) is not None retval = re.search(r"\A(ns_af=|citrix_ns_id|NSC_)", headers.get(HTTP_HEADER.SET_COOKIE, ""), re.I) is not None retval |= re.search(r"\ANS-CACHE", headers.get(HTTP_HEADER.VIA, ""), re.I) is not None if retval: break return retval
c62bf5e407c19bc1d3059d7e8ee9abbaba6d7100
eb74806869a4340a6d8a2623bbe72bd4e64dcde8
/apps/rss_feeds/migrations/0006_feed_fs_size_bytes.py
cebc86363ae3a0e11564538d0d6f2f78ab934930
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
sictiru/NewsBlur
a0874a1044926d2268ba07a928e62fce5c9a8310
1ab88e4cc34775d00a1ac90ee08bc2498577e773
refs/heads/sictiru
2023-08-19T20:24:20.638019
2023-08-15T03:52:09
2023-08-15T03:52:09
250,445,213
1
0
MIT
2023-03-06T15:34:38
2020-03-27T05:05:44
Objective-C
UTF-8
Python
false
false
409
py
# Generated by Django 3.1.10 on 2022-05-11 17:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rss_feeds', '0005_feed_archive_subscribers'), ] operations = [ migrations.AddField( model_name='feed', name='fs_size_bytes', field=models.IntegerField(blank=True, null=True), ), ]
3b30a770bc9971f15e4f4a4cd43afbcdce5c6da2
cc9cf69b1534dc0d9530b4ff485084162a404e34
/leetcode/pass/leetcode_90.py
74fc6a05142615a6ecb6b64f80b6893234b2b510
[]
no_license
NASA2333/study
99a58b2c9979201e9a4fae0c797391a538de6f45
ba63bc18f3c788090e43406315497329b00ec0a5
refs/heads/master
2021-05-03T22:26:52.541760
2018-02-07T02:24:55
2018-02-07T02:24:55
104,988,265
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
''' Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set). Note: The solution set must not contain duplicate subsets. For example, If nums = [1,2,2], a solution is: [ [2], [1], [1,2,2], [2,2], [1,2], [] ] ''' from itertools import permutations l =[] def subsetsWithDup(s): for i in range(len(s)+1): l.append(list(permutations(s,i))) for i in l[1:]: l[0].extend(i) l2 = [sorted(list(i)) for i in l[0]] for i in range(len(l2)): if l2[i] in l2[i+1:]: l2[i] ="*" return [i for i in l2 if i !='*'] print(subsetsWithDup([1,2,2]))
8261febe86d08207fffb746dc4ea9b8bb4edf2f7
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/128/usersdata/195/33234/submittedfiles/al6.py
a43d19a9835509d9bcff514428b8a373c0912704
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
# -*- coding: utf-8 -*- n=int(input('digite n:')) contador=0 i=2 while i<=n: if n%i==0: contador=contador+1 print(i) i=i+1 if contador==0: print('PRIMO') else: print('NÃO PRIMO')
a07fae45caf888b5a1f8594235788961f53f595f
17f527d6936397270183a35d7097e0a99de16cb5
/AtCoder/ABC/yomikomi.py
d7eac4e0bf82827b1dc0460a58ae586376914767
[]
no_license
ryosuke071111/algorithms
e942f043d08c7c7e2c926ed332ee2b8c44bdf0c5
867764450cc0f2a709fa2f743d9a0d95001e9296
refs/heads/master
2020-05-14T17:14:39.314064
2019-04-17T12:58:12
2019-04-17T12:58:12
181,888,623
11
0
null
null
null
null
UTF-8
Python
false
false
108
py
with open('goi.txt') as f: a=f.readlines() count=0 for i in a: if "・" in i: count+=1 print(count)
a7331b3ee43605f606716e225b6f3a8427eb2df6
4ae7cdc9292009398a292bdf6bee61428559fdfd
/SourceCodeTools/mltools/torch/__init__.py
3cf41a14372e44768224cab38988ebb371ea39dc
[]
no_license
VitalyRomanov/method-embedding
52a4e6e7bf726b4db0872902a0eaf1d8cb82b4a8
1c8f0fc04eb1f495555272d9747fd2fea68525e1
refs/heads/master
2023-08-31T17:39:04.051912
2023-01-08T05:02:52
2023-01-08T05:02:52
219,153,628
5
7
null
2023-07-22T20:27:20
2019-11-02T12:54:12
Python
UTF-8
Python
false
false
308
py
import torch def compute_accuracy(pred_, true_): return torch.sum(pred_ == true_).item() / len(true_) def to_numpy(tensor): return tensor.cpu().detach().numpy() def get_length_mask(target, lens): mask = torch.arange(target.size(1)).to(target.device)[None, :] < lens[:, None] return mask
759b4b822b6a931f35052cc8ae753ec5e73d26ef
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/f3_wrong_hints/scaling_nonlinear_software/3-19_35.py
57bc6dce8fac1bc637a307a76bce16e0d73a5015
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,903
py
from typing import FrozenSet, Tuple import pysmt.typing as types from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode from utils import symb_to_next from hint import Hint, Location def transition_system(env: PysmtEnv) -> Tuple[FrozenSet[FNode], FNode, FNode, FNode]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) symbols = frozenset([pc, x, y, z]) n_locs = 5 int_bound = n_locs pcs = [] x_pcs = [] ints = [mgr.Int(i) for i in range(int_bound)] for l in range(n_locs): n = ints[l] pcs.append(mgr.Equals(pc, n)) x_pcs.append(mgr.Equals(x_pc, n)) m_1 = mgr.Int(-1) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) # initial location. init = pcs[0] # control flow graph. cfg = mgr.And( # pc = -1 : -1, mgr.Implies(pcend, x_pcend), # pc = 0 & !(y >= 1) : -1, mgr.Implies(mgr.And(pcs[0], mgr.Not(mgr.GE(y, ints[1]))), x_pcend), # pc = 0 & y >= 1 : 1, mgr.Implies(mgr.And(pcs[0], mgr.GE(y, ints[1])), x_pcs[1]), # pc = 1 & !(z >= 1) : -1, mgr.Implies(mgr.And(pcs[1], mgr.Not(mgr.GE(z, ints[1]))), x_pcend), # pc = 1 & z >= 1 : 2, mgr.Implies(mgr.And(pcs[1], mgr.GE(z, ints[1])), x_pcs[2]), # pc = 2 & !(x >= 0) : -1, mgr.Implies(mgr.And(pcs[2], mgr.Not(mgr.GE(x, ints[0]))), x_pcend), # pc = 2 & x >= 0 : 3, mgr.Implies(mgr.And(pcs[2], mgr.GE(x, ints[0])), x_pcs[3]), # pc = 3 : 4, mgr.Implies(pcs[3], x_pcs[4]), # pc = 4 : 2, mgr.Implies(pcs[4], x_pcs[2])) # transition labels. labels = mgr.And( # (pc = -1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcend, x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = 1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcs[1]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = 2) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = 3) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcs[3]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 3 & pc' = 4) -> (x' = y*z - 1 & y' = y & z' = z), mgr.Implies( mgr.And(pcs[3], x_pcs[4]), mgr.And(mgr.Equals(x_x, mgr.Minus(mgr.Times(y, z), ints[1])), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 4 & pc' = 2) -> (x' = x & y' = y+1 & z' = z), mgr.Implies( mgr.And(pcs[4], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, mgr.Plus(y, ints[1])), mgr.Equals(x_z, z)))) # transition relation. trans = mgr.And(cfg, labels) # fairness. fairness = mgr.Not(pcend) return symbols, init, trans, fairness def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) symbs = frozenset([pc, x, y, z]) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) res = [] i_0 = mgr.Int(0) i_1 = mgr.Int(1) i_2 = mgr.Int(2) i_3 = mgr.Int(3) loc0 = Location(env, mgr.GT(x, i_3), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1))) loc0.set_progress(1, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_1))) loc1 = Location(env, mgr.GT(x, i_0), mgr.GE(y, i_1)) loc1.set_progress(2, mgr.Equals(x_x, mgr.Plus(x, y))) loc2 = Location(env, mgr.GT(x, i_3)) loc2.set_progress(2, mgr.Equals(x_x, x)) h_x = Hint("h_x4", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1, loc2]) res.append(h_x) loc0 = Location(env, mgr.GE(z, i_0)) loc0.set_progress(1, mgr.Equals(x_z, z)) loc1 = Location(env, mgr.GE(z, i_0)) loc1.set_progress(0, mgr.Equals(x_z, mgr.Plus(z, i_3))) h_z = Hint("h_z4", env, frozenset([z]), symbs) h_z.set_locs([loc0, loc1]) res.append(h_z) loc0 = Location(env, mgr.Equals(pc, i_2)) loc0.set_progress(1, mgr.GT(x_pc, i_2)) loc1 = Location(env, mgr.GE(pc, i_3)) loc1.set_progress(2, mgr.GE(x_pc, i_3)) loc2 = Location(env, mgr.GE(pc, i_3)) loc2.set_progress(0, mgr.Equals(x_pc, i_2)) h_pc = Hint("h_pc4", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1, loc2]) res.append(h_pc) return frozenset(res)
0c430c6aecd9750cc42ba607375c8993c00e350c
0b420532815a3841b74335e1e6ab9f3d533225c3
/day_night.py
a9501b87541c63bc5ae6e47f5b599ce2137cbdd2
[]
no_license
akuhnregnier/npower
3d7ec12e2e21a6e23db96714391986d372e0e6e0
bf3d842cde9b2e311cd415a8da7786ed36909645
refs/heads/master
2021-06-11T21:23:55.221317
2016-11-17T16:32:06
2016-11-17T16:32:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,808
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 03 17:08:37 2016 @author: ahk114 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt #import seaborn as sns import cPickle as pickle import os from numpy.fft import fft from numpy.fft import fftfreq import scipy.optimize as opt import copy plt.close('all') pd.options.display.expand_frame_repr = False pd.options.display.max_columns = 15 source = 'round_1.xlsx' picklefile = 'round1.pickle' if not os.path.isfile(picklefile): df = pd.read_excel(source) with open(picklefile,'wb') as f: pickle.dump(df,f,protocol=2) else: with open(picklefile,'rb') as f: df = pickle.load(f) print "Rows, columns:", df.shape temps = df['Temperature'] days = [] nights = [] for i,temp in enumerate(temps): print "i",i if i%48<12 or i%48>=36: nights.append(temp) else: days.append(temp) day_avg = [] night_avg = [] for i in range(0,len(days),24): print "i2" day_avg.append(np.mean(days[i:i+24])) for i in range(0,len(nights),24): print "i3",i night_avg.append(np.mean(nights[i:i+24])) dnight = [] dday = [] for i,demand in enumerate(df['Demand'].loc[df['Demand'] != '?? FC1 ??']): print "i",i if i%48<12 or i%48>=36: dnight.append(demand) else: dday.append(demand) demand_day_avg = [] demand_night_avg = [] for i in range(0,len(dday),24): print "i2" demand_day_avg.append(np.mean(dday[i:i+24])) for i in range(0,len(dnight),24): print "i3",i demand_night_avg.append(np.mean(dnight[i:i+24])) plt.figure() plt.scatter(day_avg[:len(demand_day_avg)],demand_day_avg,c='g',label='day') plt.scatter(night_avg[:len(demand_night_avg)],demand_night_avg,c='b',label='night') plt.legend() plt.xlabel('temperature') plt.ylabel('demand')
fa9bb76e3d49340273e92d5342b1d42d76847abc
be0171a5e8d2d81c4b6872d180a7e376ca7ac6f7
/src/prepare_data/get_faces.py
e0e63248aab01ec17afb9f50b0bd9adff5a162cf
[]
no_license
fitrialif/emotion-and-gender-classification
09ba7b6bf1d81950970eaad3442485cd051fc661
0415b18313c079d9d6769d03179c6b47ac8e495a
refs/heads/master
2020-03-23T09:02:12.525932
2018-05-28T13:33:20
2018-05-28T13:33:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
53,008
py
import tensorflow as tf import numpy as np import os #from print_ckpt import print_ckpt from tensorflow.contrib import slim import sys from easydict import EasyDict as edict import argparse import cv2 import time config = edict() config.BATCH_SIZE = 256 config.CLS_OHEM = True config.CLS_OHEM_RATIO = 0.7 config.BBOX_OHEM = False config.BBOX_OHEM_RATIO = 0.7 config.EPS = 1e-14 config.LR_EPOCH = [640,1280,25600,51200] # 5:test relu, 100: generate for MVtensor config.train_face = 1 config.r_out = 0 config.P_Num = 3000 config.rnet_wide =0 config.o_out =0 config.Debug =0 def py_nms(dets, thresh, mode="Union"): """ greedily select boxes with high confidence keep boxes overlap <= thresh rule out overlap > thresh :param dets: [[x1, y1, x2, y2 score]] :param thresh: retain overlap <= thresh :return: indexes to keep """ x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] #order = scores.argsort() #print("order, ",order) keep = [] while order.size > 0: i = order[0] #print("i",i) keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h if mode == "Union": ovr = inter / (areas[i] + areas[order[1:]] - inter) elif mode == "Minimum": ovr = inter / np.minimum(areas[i], areas[order[1:]]) #keep #print("len over ",len(ovr)) #get the opsite of the condition inds = np.where(ovr <= thresh)[0] #print("inds ",inds+1) # inds inlcude the first one : 0, inds+1 is keeping the <thresh; # because areas[order[1:]], so the lenth of order[1:] is less one than orignal order. so inds should plus 1 order = order[inds+1] return keep num_keep_radio = 0.7 #define prelu test_fg = config.train_face def prelu(inputs): #alphas = tf.get_variable("alphas", shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(0.25)) alphas = 0.25 pos = tf.nn.relu(inputs) if test_fg == 100 or test_fg==5: return pos else: #neg = alphas * (inputs-abs(inputs))*0.5 neg = 0.25 * (inputs-abs(inputs))*0.5 return pos +neg def dense_to_one_hot(labels_dense,num_classes): num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels)*num_classes #num_sample*num_classes labels_one_hot = np.zeros((num_labels,num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot #cls_prob:batch*2 #label:batch def cls_ohem(cls_prob, label): zeros = tf.zeros_like(label) #label=-1 --> label=0 net_factory label_filter_invalid = tf.where(tf.less(label,0), zeros, label) num_cls_prob = tf.size(cls_prob) cls_prob_reshape = tf.reshape(cls_prob,[num_cls_prob,-1]) label_int = tf.cast(label_filter_invalid,tf.int32) num_row = tf.to_int32(cls_prob.get_shape()[0]) row = tf.range(num_row)*2 indices_ = row + label_int label_prob = tf.squeeze(tf.gather(cls_prob_reshape, indices_)) loss = -tf.log(label_prob+1e-10) zeros = tf.zeros_like(label_prob, dtype=tf.float32) ones = tf.ones_like(label_prob,dtype=tf.float32) valid_inds = tf.where(label < zeros,zeros,ones) num_valid = tf.reduce_sum(valid_inds) keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32) #set 0 to invalid sample loss = loss * valid_inds loss,_ = tf.nn.top_k(loss, k=keep_num) return tf.reduce_mean(loss) def bbox_ohem_smooth_L1_loss(bbox_pred,bbox_target,label): sigma = tf.constant(1.0) threshold = 1.0/(sigma**2) zeros_index = tf.zeros_like(label, dtype=tf.float32) valid_inds = tf.where(label!=zeros_index,tf.ones_like(label,dtype=tf.float32),zeros_index) abs_error = tf.abs(bbox_pred-bbox_target) loss_smaller = 0.5*((abs_error*sigma)**2) loss_larger = abs_error-0.5/(sigma**2) smooth_loss = tf.reduce_sum(tf.where(abs_error<threshold,loss_smaller,loss_larger),axis=1) keep_num = tf.cast(tf.reduce_sum(valid_inds)*num_keep_radio,dtype=tf.int32) smooth_loss = smooth_loss*valid_inds _, k_index = tf.nn.top_k(smooth_loss, k=keep_num) smooth_loss_picked = tf.gather(smooth_loss, k_index) return tf.reduce_mean(smooth_loss_picked) #label=1 or label=-1 then do regression def bbox_ohem(bbox_pred,bbox_target,label): zeros_index = tf.zeros_like(label, dtype=tf.float32) ones_index = tf.ones_like(label,dtype=tf.float32) valid_inds = tf.where(tf.equal(tf.abs(label), 1),ones_index,zeros_index) #(batch,) square_error = tf.square(bbox_pred-bbox_target) square_error = tf.reduce_sum(square_error,axis=1) #keep_num scalar num_valid = tf.reduce_sum(valid_inds) #keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32) keep_num = tf.cast(num_valid, dtype=tf.int32) #keep valid index square_error square_error = square_error*valid_inds _, k_index = tf.nn.top_k(square_error, k=keep_num) square_error = tf.gather(square_error, k_index) return tf.reduce_mean(square_error) def landmark_ohem(landmark_pred,landmark_target,label): #keep label =-2 then do landmark detection ones = tf.ones_like(label,dtype=tf.float32) zeros = tf.zeros_like(label,dtype=tf.float32) valid_inds = tf.where(tf.equal(label,-2),ones,zeros) square_error = tf.square(landmark_pred-landmark_target) square_error = tf.reduce_sum(square_error,axis=1) num_valid = tf.reduce_sum(valid_inds) #keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32) keep_num = tf.cast(num_valid, dtype=tf.int32) square_error = square_error*valid_inds _, k_index = tf.nn.top_k(square_error, k=keep_num) square_error = tf.gather(square_error, k_index) return tf.reduce_mean(square_error) def cal_accuracy(cls_prob,label): pred = tf.argmax(cls_prob,axis=1) label_int = tf.cast(label,tf.int64) cond = tf.where(tf.greater_equal(label_int,0)) picked = tf.squeeze(cond) label_picked = tf.gather(label_int,picked) pred_picked = tf.gather(pred,picked) accuracy_op = tf.reduce_mean(tf.cast(tf.equal(label_picked,pred_picked),tf.float32)) return accuracy_op #construct Pnet #label:batch def print_shape(net,name,conv_num): print("the net {} in {} shape is {} ".format(name,net,[conv_num.get_shape()])) def P_Net(inputs,label=None,bbox_target=None,landmark_target=None,training=True): #define common param with slim.arg_scope([slim.conv2d], activation_fn=prelu, weights_initializer=slim.xavier_initializer(), biases_initializer=tf.zeros_initializer(), weights_regularizer=slim.l2_regularizer(0.0005), padding='valid'): #print ("Pnet input shape",inputs.get_shape()) #net = slim.conv2d(inputs, 10, 3, stride=1,scope='conv1') net = slim.conv2d(inputs, 8, 3, stride=1,scope='conv1') #print ("conv1 shape ",net.get_shape()) net = slim.max_pool2d(net, kernel_size=[2,2], stride=2, scope='pool1', padding='SAME') #print ("pool1 shape ",net.get_shape()) net = slim.conv2d(net,num_outputs=16,kernel_size=[3,3],stride=1,scope='conv2') #print ("conv2 shape ",net.get_shape()) net = slim.conv2d(net,num_outputs=32,kernel_size=[3,3],stride=1,scope='conv3') #print ("conv3 shape ",net.get_shape()) #batch*H*W*2 conv4_1 = slim.conv2d(net,num_outputs=2,kernel_size=[1,1],stride=1,scope='conv4_1',activation_fn=tf.nn.softmax) #conv4_1 = slim.conv2d(net,num_outputs=1,kernel_size=[1,1],stride=1,scope='conv4_1',activation_fn=tf.nn.sigmoid) #print ("cls shape ",conv4_1.get_shape()) #batch*H*W*4 bbox_pred = slim.conv2d(net,num_outputs=4,kernel_size=[1,1],stride=1,scope='conv4_2',activation_fn=None) #print ("bbox shape ",bbox_pred.get_shape()) #batch*H*W*10 if test_fg: landmark_pred = slim.conv2d(net,num_outputs=10,kernel_size=[1,1],stride=1,scope='conv4_3',activation_fn=None) #print ("landmark shape ",landmark_pred.get_shape()) #cls_prob_original = conv4_1 #bbox_pred_original = bbox_pred if training: #batch*2 cls_prob = tf.squeeze(conv4_1,[1,2],name='cls_prob') cls_loss = cls_ohem(cls_prob,label) #batch bbox_pred = tf.squeeze(bbox_pred,[1,2],name='bbox_pred') bbox_loss = bbox_ohem(bbox_pred,bbox_target,label) #batch*10 if test_fg: landmark_pred = tf.squeeze(landmark_pred,[1,2],name="landmark_pred") landmark_loss = landmark_ohem(landmark_pred,landmark_target,label) else: landmark_loss = 0 accuracy = cal_accuracy(cls_prob,label) #L2_loss = tf.add_n(slim.losses.get_regularization_losses()) L2_loss = tf.add_n(tf.losses.get_regularization_losses()) return cls_loss,bbox_loss,landmark_loss,L2_loss,accuracy #test else: #when test,batch_size = 1 cls_pro_test = tf.squeeze(conv4_1, axis=0) bbox_pred_test = tf.squeeze(bbox_pred,axis=0) if test_fg: landmark_pred_test = tf.squeeze(landmark_pred,axis=0) return cls_pro_test,bbox_pred_test,landmark_pred_test else: return cls_pro_test,bbox_pred_test def R_Net(inputs,label=None,bbox_target=None,landmark_target=None,training=True): with slim.arg_scope([slim.conv2d], activation_fn = prelu, weights_initializer=slim.xavier_initializer(), biases_initializer=tf.zeros_initializer(), weights_regularizer=slim.l2_regularizer(0.0005), padding='valid'): #print_shape('RNet','input',inputs) #net = slim.conv2d(inputs, num_outputs=28, kernel_size=[3,3], stride=1, scope="conv1") net = slim.conv2d(inputs, num_outputs=16, kernel_size=[3,3], stride=1, scope="conv1") print_shape('RNet','conv1',net) net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, scope="pool1", padding='SAME') print_shape('RNet','pool1',net) #net = slim.conv2d(net,num_outputs=48,kernel_size=[3,3],stride=1,scope="conv2") net = slim.conv2d(net,num_outputs=32,kernel_size=[3,3],stride=1,scope="conv2") print_shape('RNet','conv2',net) if config.rnet_wide: net = slim.max_pool2d(net,kernel_size=[3,3],stride=2,scope="pool2",padding='SAME') else: net = slim.max_pool2d(net,kernel_size=[3,3],stride=2,scope="pool2") print_shape('RNet','pool2',net) if config.rnet_wide: net = slim.conv2d(net,num_outputs=64,kernel_size=[3,3],stride=1,scope="conv3") print_shape('RNet','conv3',net) net = slim.conv2d(net,num_outputs=128,kernel_size=[3,3],stride=1,scope="conv4") print_shape('RNet','conv4',net) else: net = slim.conv2d(net,num_outputs=64,kernel_size=[2,2],stride=1,scope="conv3") print_shape('RNet','conv3',net) fc_flatten = slim.flatten(net) print_shape('RNet','flatten',fc_flatten) if config.rnet_wide: fc1 = slim.fully_connected(fc_flatten, num_outputs=128,scope="fc1", activation_fn=prelu) else: fc1 = slim.fully_connected(fc_flatten, num_outputs=128,scope="fc1", activation_fn=prelu) print_shape('RNet','fc1',fc1) #batch*2 cls_prob = slim.fully_connected(fc1,num_outputs=2,scope="cls_fc",activation_fn=tf.nn.softmax) print_shape('RNet','cls_fc',cls_prob) #batch*4 bbox_pred = slim.fully_connected(fc1,num_outputs=4,scope="bbox_fc",activation_fn=None) print_shape('RNet','bbox_fc',bbox_pred) #batch*10 if test_fg : landmark_pred = slim.fully_connected(fc1,num_outputs=10,scope="landmark_fc",activation_fn=None) print_shape('RNet','landmark_fc',landmark_pred) #train if training: cls_loss = cls_ohem(cls_prob,label) bbox_loss = bbox_ohem(bbox_pred,bbox_target,label) accuracy = cal_accuracy(cls_prob,label) if test_fg : landmark_loss = landmark_ohem(landmark_pred,landmark_target,label) else: landmark_loss = 0 #landmark_loss = 0 #L2_loss = tf.add_n(slim.losses.get_regularization_losses()) L2_loss = tf.add_n(tf.losses.get_regularization_losses()) return cls_loss,bbox_loss,landmark_loss,L2_loss,accuracy else: if test_fg: return cls_prob,bbox_pred,landmark_pred else: return cls_prob,bbox_pred #return cls_prob,bbox_pred def O_Net(inputs,label=None,bbox_target=None,landmark_target=None,training=True): with slim.arg_scope([slim.conv2d], activation_fn = prelu, weights_initializer=slim.xavier_initializer(), biases_initializer=tf.zeros_initializer(), weights_regularizer=slim.l2_regularizer(0.0005), padding='valid'): #print_shape('ONet','input',inputs) net = slim.conv2d(inputs, num_outputs=32, kernel_size=[3,3], stride=1, scope="conv1") print_shape('ONet','conv1',net) net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, scope="pool1", padding='SAME') print_shape('ONet','pool1',net) net = slim.conv2d(net,num_outputs=64,kernel_size=[3,3],stride=1,scope="conv2") print_shape('ONet','conv2',net) net = slim.max_pool2d(net, kernel_size=[3, 3], stride=2, scope="pool2") print_shape('ONet','pool2',net) net = slim.conv2d(net,num_outputs=64,kernel_size=[3,3],stride=1,scope="conv3") print_shape('ONet','conv3',net) net = slim.max_pool2d(net, kernel_size=[2, 2], stride=2, scope="pool3", padding='SAME') print_shape('ONet','pool3',net) net = slim.conv2d(net,num_outputs=128,kernel_size=[2,2],stride=1,scope="conv4") print_shape('ONet','conv4',net) fc_flatten = slim.flatten(net) print_shape('ONet','flatten',fc_flatten) fc1 = slim.fully_connected(fc_flatten, num_outputs=256,scope="fc1", activation_fn=prelu) print_shape('RNet','fc1',fc1) #batch*2 cls_prob = slim.fully_connected(fc1,num_outputs=2,scope="cls_fc",activation_fn=tf.nn.softmax) print_shape('ONet','cls_fc',cls_prob) #batch*4 bbox_pred = slim.fully_connected(fc1,num_outputs=4,scope="bbox_fc",activation_fn=None) print_shape('ONet','bbox_fc',bbox_pred) #batch*10 if test_fg: landmark_pred = slim.fully_connected(fc1,num_outputs=10,scope="landmark_fc",activation_fn=None) print_shape('RNet','landmark_fc',landmark_pred) #train if training: cls_loss = cls_ohem(cls_prob,label) bbox_loss = bbox_ohem(bbox_pred,bbox_target,label) accuracy = cal_accuracy(cls_prob,label) if test_fg: landmark_loss = landmark_ohem(landmark_pred, landmark_target,label) else: landmark_loss = 0 #landmark_loss = 0 #L2_loss = tf.add_n(slim.losses.get_regularization_losses()) L2_loss = tf.add_n(tf.losses.get_regularization_losses()) return cls_loss,bbox_loss,landmark_loss,L2_loss,accuracy else: if test_fg: return cls_prob,bbox_pred,landmark_pred else: return cls_prob,bbox_pred class FcnDetector(object): #net_factory: which net #model_path: where the params'file is def __init__(self, net_factory, model_path): #create a graph graph = tf.Graph() self.train_face = config.train_face with graph.as_default(): #define tensor and op in graph(-1,1) self.image_op = tf.placeholder(tf.float32, name='input_image') self.width_op = tf.placeholder(tf.int32, name='image_width') self.height_op = tf.placeholder(tf.int32, name='image_height') image_reshape = tf.reshape(self.image_op, [1, self.height_op, self.width_op, 3]) #self.cls_prob batch*2 #self.bbox_pred batch*4 #construct model here #self.cls_prob, self.bbox_pred = net_factory(image_reshape, training=False) #contains landmark if self.train_face: self.cls_prob, self.bbox_pred, _ = net_factory(image_reshape, training=False) else: self.cls_prob, self.bbox_pred = net_factory(image_reshape, training=False) #allow self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #check whether the dictionary is valid net_name = model_path.split('/')[-1] print("net name is ",net_name) if self.train_face==100: logs_dir = "../logs/%s" %(net_name) summary_op = tf.summary.merge_all() if os.path.exists(logs_dir) == False: os.mkdir(logs_dir) writer = tf.summary.FileWriter(logs_dir,self.sess.graph) model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print("restore model path",model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print ("restore models' param") saver.restore(self.sess, model_path) if self.train_face==100: saver.save(self.sess,model_dict+'/resaved/'+net_name+'relu') ''' logs_dir = "../logs/%s" %(net_factory) summary_op = tf.summary.merge_all() if os.path.exists(logs_dir) == False: os.mkdir(logs_dir) writer = tf.summary.FileWriter(logs_dir,self.sess.graph) #summary = self.sess.run() #writer.add_summary(summary,global_step=step) ''' def predict(self, databatch): height, width, _ = databatch.shape # print(height, width) cls_prob, bbox_pred = self.sess.run([self.cls_prob, self.bbox_pred], feed_dict={self.image_op: databatch, self.width_op: width, self.height_op: height}) return cls_prob, bbox_pred class Detector(object): #net_factory:rnet or onet #datasize:24 or 48 def __init__(self, net_factory, data_size, batch_size, model_path): graph = tf.Graph() self.test_fg = 1 with graph.as_default(): self.image_op = tf.placeholder(tf.float32, shape=[batch_size, data_size, data_size, 3], name='input') #figure out landmark if self.test_fg: self.cls_prob, self.bbox_pred, self.landmark_pred = net_factory(self.image_op, training=False) #self.landmark_pred = tf.identity(self.landmark_pred,name='output') else: self.cls_prob, self.bbox_pred = net_factory(self.image_op, training=False) #self.cls_prob = tf.identity(self.cls_prob,name='cls_out') #self.bbox_pred = tf.identity(self.bbox_pred,name='bbox_out') #self.landmark_pred = tf.identity(self.landmark_pred,name='out') #self.output_op = tf.concat([self.cls_prob, self.bbox_pred], 1) #self.net_out = slim.flatten(self.output_op,scope='flatten_1') #self.out_put = tf.identity(self.net_out,name='output') self.sess = tf.Session( config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) net_name = model_path.split('/')[-1] print("net name is ",net_name) saver = tf.train.Saver() #check whether the dictionary is valid model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_dict) print ("model_dict is ",model_dict) readstate = ckpt and ckpt.model_checkpoint_path #assert readstate, "the params dictionary is not valid" print ("restore models' param") saver.restore(self.sess, model_path) if self.test_fg==100: saver.save(self.sess,model_dict+'/resaved/'+net_name+'relu') #print_ckpt('./checkpoint') self.data_size = data_size self.batch_size = batch_size #rnet and onet minibatch(test) def predict(self, databatch): # access data # databatch: N x 3 x data_size x data_size scores = [] batch_size = self.batch_size minibatch = [] cur = 0 #num of all_data n = databatch.shape[0] while cur < n: #split mini-batch minibatch.append(databatch[cur:min(cur + batch_size, n), :, :, :]) cur += batch_size #every batch prediction result cls_prob_list = [] bbox_pred_list = [] landmark_pred_list = [] for idx, data in enumerate(minibatch): m = data.shape[0] real_size = self.batch_size #the last batch if m < batch_size: keep_inds = np.arange(m) #gap (difference) gap = self.batch_size - m while gap >= len(keep_inds): gap -= len(keep_inds) keep_inds = np.concatenate((keep_inds, keep_inds)) if gap != 0: keep_inds = np.concatenate((keep_inds, keep_inds[:gap])) data = data[keep_inds] real_size = m #cls_prob batch*2 #bbox_pred batch*4 if self.test_fg: cls_prob, bbox_pred,landmark_pred = self.sess.run([self.cls_prob, self.bbox_pred,self.landmark_pred], feed_dict={self.image_op: data}) #num_batch * batch_size*10 landmark_pred_list.append(landmark_pred[:real_size]) else: cls_prob, bbox_pred = self.sess.run([self.cls_prob, self.bbox_pred], feed_dict={self.image_op: data}) #num_batch * batch_size *2 cls_prob_list.append(cls_prob[:real_size]) #num_batch * batch_size *4 bbox_pred_list.append(bbox_pred[:real_size]) #num_of_data*2,num_of_data*4,num_of_data*10 if config.Debug: print("detect shape cls box landmark : ",np.shape(cls_prob_list),np.shape(bbox_pred_list),np.shape(landmark_pred_list)) if self.test_fg: return np.concatenate(cls_prob_list, axis=0), np.concatenate(bbox_pred_list, axis=0), np.concatenate(landmark_pred_list, axis=0) else: return np.concatenate(cls_prob_list, axis=0), np.concatenate(bbox_pred_list, axis=0) class MtcnnDetector(object): def __init__(self, detectors, min_face_size=24, stride=2, threshold=[0.6, 0.6, 0.9], scale_factor=0.79 ): self.pnet_detector = detectors[0] self.rnet_detector = detectors[1] self.onet_detector = detectors[2] self.min_face_size = min_face_size self.stride = stride self.thresh = threshold self.train_face = config.train_face if self.train_face: self.nms_thresh = [0.4,0.4,0.4] else: self.nms_thresh = [0.5,0.6,0.6] self.scale_factor = scale_factor self.r_out = config.r_out def convert_to_square(self, bbox): """ convert bbox to square Parameters: ---------- bbox: numpy array , shape n x 5 input bbox Returns: ------- square bbox """ square_bbox = bbox.copy() h = bbox[:, 3] - bbox[:, 1] + 1 w = bbox[:, 2] - bbox[:, 0] + 1 max_side = np.maximum(h, w) square_bbox[:, 0] = bbox[:, 0] + w * 0.5 - max_side * 0.5 square_bbox[:, 1] = bbox[:, 1] + h * 0.5 - max_side * 0.5 square_bbox[:, 2] = square_bbox[:, 0] + max_side - 1 square_bbox[:, 3] = square_bbox[:, 1] + max_side - 1 return square_bbox def convert_to_rect(self, bbox): """ convert bbox to square Parameters: ---------- bbox: numpy array , shape n x 5 input bbox Returns: ------- square bbox """ rect_bbox = bbox.copy() h = bbox[:, 3] - bbox[:, 1] + 1 w = bbox[:, 2] - bbox[:, 0] + 1 h_n = np.maximum(np.maximum(h, w),2) w_n = h_n/2 rect_bbox[:, 0] = bbox[:, 0] + w * 0.5 - w_n * 0.5 rect_bbox[:, 1] = bbox[:, 1] + h * 0.5 - h_n * 0.5 rect_bbox[:, 2] = rect_bbox[:, 0] + w_n - 1 rect_bbox[:, 3] = rect_bbox[:, 1] + h_n - 1 return rect_bbox def calibrate_box(self, bbox, reg,height,width): """ calibrate bboxes Parameters: ---------- bbox: numpy array, shape n x 5 input bboxes reg: numpy array, shape n x 4 bboxes adjustment Returns: ------- bboxes after refinement """ if config.Debug: print("shape ",height,width) bbox_c = bbox.copy() w = bbox[:, 2] - bbox[:, 0] + 1 w = np.expand_dims(w, 1) h = bbox[:, 3] - bbox[:, 1] + 1 h = np.expand_dims(h, 1) reg_m = np.hstack([w, h, w, h]) aug = reg_m * reg bbox_c[:, 0:4] = bbox_c[:, 0:4] + aug if config.Debug: print("x1 ",bbox_c[:,0]) print("y1 ",bbox_c[:,1]) print("x2 ",bbox_c[:,2]) print("y2 ",bbox_c[:,3]) keep = np.where(bbox_c[:,0] >0) bbox_c = bbox_c[keep] keep = np.where(bbox_c[:,1] >0) bbox_c = bbox_c[keep] keep = np.where(bbox_c[:,2] <width) bbox_c = bbox_c[keep] keep = np.where(bbox_c[:,3] <height) bbox_c = bbox_c[keep] keep = np.where(bbox_c[:,2] > bbox_c[:,0]) bbox_c = bbox_c[keep] keep = np.where(bbox_c[:,3] > bbox_c[:,1]) bbox_c = bbox_c[keep] return bbox_c def generate_bbox(self, cls_map, reg, scale, threshold): """ generate bbox from feature cls_map Parameters: ---------- cls_map: numpy array , n x m detect score for each position reg: numpy array , n x m x 4 bbox scale: float number scale of this detection threshold: float number detect threshold Returns: ------- bbox array """ stride = 2 #stride = 4 cellsize = 12 #cellsize = 25 t_index = np.where(cls_map > threshold) # find nothing if t_index[0].size == 0: return np.array([]) #offset dx1, dy1, dx2, dy2 = [reg[t_index[0], t_index[1], i] for i in range(4)] reg = np.array([dx1, dy1, dx2, dy2]) score = cls_map[t_index[0], t_index[1]] boundingbox = np.vstack([np.round((stride * t_index[1]) / scale), np.round((stride * t_index[0]) / scale), np.round((stride * t_index[1] + cellsize) / scale), np.round((stride * t_index[0] + cellsize) / scale), score, reg]) return boundingbox.T #pre-process images def processed_image(self, img, scale): height, width, channels = img.shape new_height = int(height * scale) # resized new height new_width = int(width * scale) # resized new width new_dim = (new_width, new_height) img_resized = cv2.resize(img, new_dim, interpolation=cv2.INTER_LINEAR) # resized image img_resized = (img_resized - 127.5) / 128 return img_resized def pad(self, bboxes, w, h): """ pad the the bboxes, alse restrict the size of it Parameters: ---------- bboxes: numpy array, n x 5 input bboxes w: float number width of the input image h: float number height of the input image Returns : ------ dy, dx : numpy array, n x 1 start point of the bbox in target image edy, edx : numpy array, n x 1 end point of the bbox in target image y, x : numpy array, n x 1 start point of the bbox in original image ex, ex : numpy array, n x 1 end point of the bbox in original image tmph, tmpw: numpy array, n x 1 height and width of the bbox """ keep = np.where(bboxes[:,0]< w) bboxes = bboxes[keep] keep = np.where(bboxes[:,1]< h) bboxes = bboxes[keep] keep = np.where(bboxes[:,2] >0) bboxes = bboxes[keep] keep = np.where(bboxes[:,3] >0) bboxes = bboxes[keep] keep = np.where(bboxes[:,2] > bboxes[:,0]) bboxes = bboxes[keep] keep = np.where(bboxes[:,3] > bboxes[:,1]) bboxes = bboxes[keep] tmpw, tmph = bboxes[:, 2] - bboxes[:, 0] + 1, bboxes[:, 3] - bboxes[:, 1] + 1 num_box = bboxes.shape[0] dx, dy = np.zeros((num_box,)), np.zeros((num_box,)) edx, edy = tmpw.copy() - 1, tmph.copy() - 1 x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3] tmp_index = np.where(ex > w - 1) edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index] ex[tmp_index] = w - 1 tmp_index = np.where(ey > h - 1) edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index] ey[tmp_index] = h - 1 tmp_index = np.where(x < 0) dx[tmp_index] = 0 - x[tmp_index] x[tmp_index] = 0 tmp_index = np.where(y < 0) dy[tmp_index] = 0 - y[tmp_index] y[tmp_index] = 0 return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] return_list = [item.astype(np.int32) for item in return_list] return return_list def detect_pnet(self, im): """Get face candidates through pnet Parameters: ---------- im: numpy array input image array Returns: ------- boxes: numpy array detected boxes before calibration boxes_c: numpy array boxes after calibration """ h, w, c = im.shape net_size = 12 current_scale = float(net_size) / self.min_face_size # find initial scale # print("current_scale", net_size, self.min_face_size, current_scale) im_resized = self.processed_image(im, current_scale) current_height, current_width, _ = im_resized.shape # fcn all_boxes = list() while min(current_height, current_width) > net_size: #return the result predicted by pnet #cls_cls_map : H*w*2 #reg: H*w*4 cls_cls_map, reg = self.pnet_detector.predict(im_resized) #boxes: num*9(x1,y1,x2,y2,score,x1_offset,y1_offset,x2_offset,y2_offset) #print("in MtCnnDetector pnet out shape ",cls_cls_map.shape, reg.shape) #cls_map = cls_cls_map[:,:,1] #print("scale, threshold ",current_scale,self.thresh[0]) #boxes = self.generate_bbox(cls_map,reg,current_scale,self.thresh[0]) boxes = self.generate_bbox(cls_cls_map[:,:,1], reg, current_scale, self.thresh[0]) current_scale *= self.scale_factor im_resized = self.processed_image(im, current_scale) current_height, current_width, _ = im_resized.shape if boxes.size == 0: continue keep = py_nms(boxes[:, :5], self.nms_thresh[0]) boxes = boxes[keep] all_boxes.append(boxes) if len(all_boxes) == 0: return None, None all_boxes = np.vstack(all_boxes) # merge the detection from first stage keep = py_nms(all_boxes[:, 0:5], self.nms_thresh[0]) all_boxes = all_boxes[keep] bbw = all_boxes[:, 2] - all_boxes[:, 0] + 1 bbh = all_boxes[:, 3] - all_boxes[:, 1] + 1 # refine the boxes #print('pnet box ',np.shape(all_boxes)) boxes_c = np.vstack([all_boxes[:, 0] + all_boxes[:, 5] * bbw, all_boxes[:, 1] + all_boxes[:, 6] * bbh, all_boxes[:, 2] + all_boxes[:, 7] * bbw, all_boxes[:, 3] + all_boxes[:, 8] * bbh, all_boxes[:, 4]]) boxes_c = boxes_c.T return boxes_c,all_boxes def detect_rnet(self, im, dets): """Get face candidates using rnet Parameters: ---------- im: numpy array input image array dets: numpy array detection results of pnet Returns: ------- boxes: numpy array detected boxes before calibration boxes_c: numpy array boxes after calibration """ h, w, c = im.shape height,width = h,w if self.train_face: dets = self.convert_to_square(dets) else: #dets = self.convert_to_rect(dets) dets = dets dets[:, 0:4] = np.round(dets[:, 0:4]) [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h) #num_boxes = dets.shape[0] num_boxes = tmpw.shape[0] cropped_ims = np.zeros((num_boxes, 24, 24, 3), dtype=np.float32) if num_boxes <= 0: return None,None for i in range(num_boxes): tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8) tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1, x[i]:ex[i] + 1, :] cropped_ims[i, :, :, :] = (cv2.resize(tmp, (24, 24))-127.5) / 128 #cls_scores : num_data*2 #reg: num_data*4 #landmark: num_data*10 if self.train_face: #cls_scores, reg, _ = self.rnet_detector.predict(cropped_ims) cls_scores, reg, landmark = self.rnet_detector.predict(cropped_ims) else: cls_scores, reg = self.rnet_detector.predict(cropped_ims) cls_scores = cls_scores[:,1] keep_inds = np.where(cls_scores > self.thresh[1])[0] if len(keep_inds) > 0: boxes = dets[keep_inds] boxes[:, 4] = cls_scores[keep_inds] reg = reg[keep_inds] if self.train_face: landmark = landmark[keep_inds] else: return None, None if self.train_face: #width w = boxes[:,2] - boxes[:,0] + 1 #height h = boxes[:,3] - boxes[:,1] + 1 landmark[:,0::2] = (np.tile(w,(5,1)) * landmark[:,0::2].T + np.tile(boxes[:,0],(5,1)) - 1).T landmark[:,1::2] = (np.tile(h,(5,1)) * landmark[:,1::2].T + np.tile(boxes[:,1],(5,1)) - 1).T #"Minimum" if self.r_out: keep = py_nms(boxes, self.nms_thresh[1],"Minimum") else: keep = py_nms(boxes, self.nms_thresh[1],"Union") boxes = boxes[keep] boxes_c = self.calibrate_box(boxes, reg[keep],height,width) if self.train_face: landmark = landmark[keep] return boxes_c,landmark else: return boxes_c,None def detect_onet(self, im, dets): """Get face candidates using onet Parameters: ---------- im: numpy array input image array dets: numpy array detection results of rnet Returns: ------- boxes: numpy array detected boxes before calibration boxes_c: numpy array boxes after calibration """ h, w, c = im.shape height,width = h, w if self.train_face: dets = self.convert_to_square(dets) else: #dets = self.convert_to_rect(dets) dets = dets dets[:, 0:4] = np.round(dets[:, 0:4]) [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h) num_boxes = dets.shape[0] cropped_ims = np.zeros((num_boxes, 48, 48, 3), dtype=np.float32) real_box_num = 0 for i in range(num_boxes): if tmph[i]<=1 or tmpw[i]<=1: continue tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8) tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1, x[i]:ex[i] + 1, :] cropped_ims[i, :, :, :] = (cv2.resize(tmp, (48, 48))-127.5) / 128 real_box_num+=1 if real_box_num <=0: return None, None if self.train_face: cls_scores, reg,landmark = self.onet_detector.predict(cropped_ims) else: cls_scores, reg = self.onet_detector.predict(cropped_ims) #prob belongs to face cls_scores = cls_scores[:,1] keep_inds = np.where(cls_scores > self.thresh[2])[0] if len(keep_inds) > 0: #pickout filtered box boxes = dets[keep_inds] boxes[:, 4] = cls_scores[keep_inds] reg = reg[keep_inds] if self.train_face: landmark = landmark[keep_inds] else: return None, None #width w = boxes[:,2] - boxes[:,0] + 1 #height h = boxes[:,3] - boxes[:,1] + 1 if self.train_face: landmark[:,0::2] = (np.tile(w,(5,1)) * landmark[:,0::2].T + np.tile(boxes[:,0],(5,1)) - 1).T landmark[:,1::2] = (np.tile(h,(5,1)) * landmark[:,1::2].T + np.tile(boxes[:,1],(5,1)) - 1).T boxes_c = self.calibrate_box(boxes, reg,height,width) keep = py_nms(boxes_c,self.nms_thresh[2], "Minimum") boxes_c = boxes_c[keep] if self.train_face: landmark = landmark[keep] return boxes_c,landmark else: return boxes_c,None #use for video def detect(self, img): """Detect face over image """ boxes = None t = time.time() # pnet t1 = 0 if self.pnet_detector: boxes_c,all_box = self.detect_pnet(img) if boxes_c is None: return np.array([]),np.array([]) t1 = time.time() - t t = time.time() #print("Pnet out ",boxes_c.shape) order_idx = np.argsort(boxes_c[:,4])[:-1] sel_num = config.P_Num if len(boxes_c) > config.P_Num else len(boxes_c) boxes_c = boxes_c[order_idx[:sel_num]] #print("Pnet out ",boxes_c.shape) boxes_p = boxes_c # rnet ''' for i in range(10): print("box_c ",map(int,boxes_c[i])) print("box",map(int,all_box[i])) ''' t2 = 0 if self.rnet_detector: boxes_c,landmark_r = self.detect_rnet(img, boxes_c) if boxes_c is None: return np.array([]),np.array([]) t2 = time.time() - t t = time.time() bbox_r = boxes_c if self.r_out: print("time cost " + '{:.3f}'.format(t1 + t2) + ' pnet {:.3f} rnet {:.3f} '.format(t1, t2)) return bbox_r,landmark_r # onet t3 = 0 if self.onet_detector: #boxes, boxes_c,landmark = self.detect_onet(img, boxes_c) if config.o_out: boxes_c,landmark = self.detect_onet(img, boxes_p) else: boxes_c,landmark = self.detect_onet(img, boxes_c) if boxes_c is None: return np.array([]),np.array([]) t3 = time.time() - t t = time.time() #print( "time cost " + '{:.3f}'.format(t1 + t2 + t3) + ' pnet {:.3f} rnet {:.3f} onet {:.3f}'.format(t1, t2,t3)) return boxes_c,landmark def detect_face(self, test_data): all_boxes = []#save each image's bboxes landmarks = [] batch_idx = 0 sum_time = 0 #test_data is iter_ data_num = test_data.size print("MtcnnDetect image num ",data_num) #for databatch in test_data: for i in range(data_num): databatch = test_data.next() #databatch(image returned) if batch_idx % 100 == 0: print("%d images done" % batch_idx) im = databatch # pnet t1 = 0 if self.pnet_detector: t = time.time() #ignore landmark boxes_c, landmark = self.detect_pnet(im) t1 = time.time() - t sum_time += t1 if boxes_c is None: print("img path: ",test_data.img_path) print("boxes_c is None...") all_boxes.append(np.array([])) #pay attention landmarks.append(np.array([])) batch_idx += 1 continue order_idx = np.argsort(boxes_c[:,4])[:-1] sel_num = config.P_Num if len(boxes_c) < config.P_Num else len(boxes_c) boxes_c = boxes_c[order_idx[:sel_num]] # rnet t2 = 0 if self.rnet_detector: t = time.time() #ignore landmark boxes_c, landmark = self.detect_rnet(im, boxes_c) t2 = time.time() - t sum_time += t2 if boxes_c is None: all_boxes.append(np.array([])) landmarks.append(np.array([])) batch_idx += 1 continue # onet t3 = 0 if self.onet_detector: t = time.time() boxes_c, landmark = self.detect_onet(im, boxes_c) t3 = time.time() - t sum_time += t3 if boxes_c is None: all_boxes.append(np.array([])) landmarks.append(np.array([])) batch_idx += 1 continue #print("time cost " + '{:.3f}'.format(sum_time) + ' pnet {:.3f} rnet {:.3f} onet {:.3f}'.format(t1, t2,t3)) all_boxes.append(boxes_c) landmarks.append(landmark) batch_idx += 1 #num_of_data*9,num_of_data*10 return all_boxes,landmarks # test demo test_relu =config.train_face def parameter(): parser = argparse.ArgumentParser(description='Mtcnn camera test') parser.add_argument("--min_size",type=int,default=24,\ help='determin the image pyramid and the lest is 12') parser.add_argument("--threshold",type=float,default=[0.5,0.7,0.9],nargs="+",\ help='filter the proposals according to score') parser.add_argument("--slid_window",type=bool,default=False,\ help='if true Pnet will use slid_window to produce proposals') parser.add_argument('--batch_size',type=int,default=[1,256,32],nargs="+",\ help='determin the pnet rnet onet input batch_size') parser.add_argument('--epoch_load',type=int,default=[32,2700,25],nargs="+",\ help='load the saved paramters for pnet rnet onet') parser.add_argument('--file_in',type=str,default='None',\ help='input file') return parser.parse_args() def load_model(epoch_load): if test_relu==5 or test_relu==100: if config.rnet_wide: #5,500,60; 5,1700,60 prefix = ["../data/MTCNN_model/PNet_landmark/PNet", "../data/MTCNN_model/RNet_landmark/rnet_wide/RNet", "../data/MTCNN_model/ONet_landmark/ONet"] else: # 5,40,60 prefix = ["../data/MTCNN_model/PNet_landmark/PNet", "../data/MTCNN_model/RNet_landmark/RNet", "../data/MTCNN_model/ONet_landmark/ONet"] else: #epoch_load = [32,30,25],[32,4400,25] #prefix = ["../data/MTCNN_model/PNet_landmark/v1_trained/PNet", "../data/MTCNN_model/RNet_landmark/v1_trained/RNet", "../data/MTCNN_model/ONet_landmark/v1_trained/ONet"] #[205,500,200] prefix = ["../../trained_models/MTCNN_bright_model/PNet_landmark/PNet", "../../trained_models/MTCNN_bright_model/RNet_landmark/RNet", "../../trained_models/MTCNN_bright_model/ONet_landmark/ONet"] #pedestrain [80,360,200],[580,4900,600],[1600,4500,600],[1600,2900,4000] #prefix = ["../data/MTCNN_caltech_model/PNet_landmark/PNet", "../data/MTCNN_caltech_model/RNet_landmark/RNet", "../data/MTCNN_caltech_model/ONet_landmark/ONet"] #person voc[1600,2900,300] #prefix = ["../data/MTCNN_voc_model/PNet_landmark/PNet", "../data/MTCNN_voc_model/RNet_landmark/RNet", "../data/MTCNN_voc_model/ONet_landmark/ONet"] print("demo epoch load ",epoch_load) model_path = ["%s-%s" %(x,y ) for x, y in zip(prefix,epoch_load)] print("demo model path ",model_path) return model_path def process_img(): param = parameter() min_size = param.min_size score_threshold = param.threshold slid_window = param.slid_window if test_relu==100: batch_size = [1,1,1] else: batch_size = param.batch_size epoch_load = param.epoch_load multi_detector = [None,None,None] #load paramter path model_path = load_model(epoch_load) #load net result if slid_window: print("using slid window") Pnet_det = None return [None,None,None] else: Pnet_det = FcnDetector(P_Net,model_path[0]) Rnet_det = Detector(R_Net,data_size=24,batch_size=batch_size[1],model_path=model_path[1]) Onet_det = Detector(O_Net,data_size=48,batch_size=batch_size[2],model_path=model_path[2]) multi_detector = [Pnet_det,Rnet_det,Onet_det] #get bbox and landmark Mtcnn_detector = MtcnnDetector(multi_detector,min_size,threshold=score_threshold) #bboxs,bbox_clib,landmarks = Mtcnn_detector.detect(img) return Mtcnn_detector def add_label(img,bbox,landmark): #print("labe ",bbox.shape) num = bbox.shape[0] font = cv2.FONT_HERSHEY_COMPLEX_SMALL font_scale =1 thickness = 1 for i in range(num): x1,y1,x2,y2 = int(bbox[i,0]),int(bbox[i,1]),int(bbox[i,2]),int(bbox[i,3]) cv2.rectangle(img,(x1,y1),(x2,y2),(255,0,0),1) score_label = str('{:.2f}'.format(bbox[i,4])) size = cv2.getTextSize(score_label, font, font_scale, thickness)[0] if y1-int(size[1]) <= 0: cv2.rectangle(img, (x1, y2), (x1 + int(size[0]), y2+int(size[1])), (255, 0, 0)) cv2.putText(img, score_label, (x1,y2+size[1]), font, font_scale, (255, 255, 255), thickness) else: cv2.rectangle(img, (x1, y1-int(size[1])), (x1 + int(size[0]), y1), (255, 0, 0)) cv2.putText(img, score_label, (x1,y1), font, font_scale, (255, 255, 255), thickness) if landmark is not None: for i in range(landmark.shape[0]): for j in range(5): #print(int(landmark[i][2*j]),int(landmark[i][2*j+1])) cv2.circle(img, (int(landmark[i][2*j]),int(landmark[i][2*j+1])), 2, (0,0,255)) def camera(file_in): cv2.namedWindow("result") cv2.moveWindow("result",1400,10) #camera_cap = cv2.VideoCapture('/home/lxy/Develop/Center_Loss/face_detect/videos/profile_video.wmv') if file_in =='None': camera_cap = cv2.VideoCapture(0) else: camera_cap = cv2.VideoCapture(file_in) if not camera_cap.isOpened(): print("failded open camera") return -1 mtcnn_dec = process_img() while camera_cap.isOpened(): ret,frame = camera_cap.read() h,w,_ = frame.shape if ret: bbox_clib,landmarks = mtcnn_dec.detect(frame) print("landmark ",bbox_clib.shape) if len(bbox_clib): bbox_clib = board_img(bbox_clib,w,h) add_label(frame,bbox_clib,landmarks) if (cv2.waitKey(1)& (0xFF == ord('q'))): break cv2.imshow("result",frame) else: print("can not find device") break camera_cap.release() cv2.destroyAllWindows() def demo_img(file_in): cv2.namedWindow("result") cv2.moveWindow("result",1400,10) if file_in =='None': cv2.destroyAllWindows() print("please input right path") return -1 else: img = cv2.imread(file_in) mtcnn_dec = process_img() bbox_clib,landmarks = mtcnn_dec.detect(img) if len(bbox_clib): add_label(img,bbox_clib,landmarks) cv2.imshow("result",img) cv2.waitKey(0) def board_img(boxes,wid,height): #print ('box shape ',np.shape(boxes)) #print boxes x1,y1,x2,y2 = boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3], offset_w = (x2-x1)/5.0 offset_h = (y2-y1)/5.0 x1 -= offset_w #y1 -= 4*offset_h x2 += offset_w y2 += offset_h x1 = map(int,np.maximum(x1,0)) #y1 = map(int,np.maximum(y1,0)) y1 = int(0) x2 = map(int,np.minimum(x2,wid-1)) y2 = map(int,np.minimum(y2,height-1)) box = [x1,y1,x2,y2,boxes[:,4]] #box = [x1,y1,x2,y2] box = np.asarray(box) #print("box shape",np.shape(box)) box = np.vstack(box) return box.T def GetFaces(file_in): ''' param = parameter() min_size = param.min_size score_threshold = param.threshold slid_window = param.slid_window batch_size = param.batch_size epoch_load = param.epoch_load multi_detector = [None,None,None] ''' if file_in =='None': #cv2.destroyAllWindows() print("please input right path") return [] else: #img = cv2.imread(file_in) img = file_in h,w,_ = img.shape min_size = 24 score_threshold = [0.5,0.7,0.9] slid_window = False batch_size = [1,256,16] #epoch_load = [205,500,200] epoch_load = [32,2700,25] multi_detector = [None,None,None] prefix = ["../../trained_models/MTCNN_bright_model/PNet_landmark/PNet", "../../trained_models/MTCNN_bright_model/RNet_landmark/RNet", "../../trained_models/MTCNN_bright_model/ONet_landmark/ONet"] print("demo epoch load ",epoch_load) model_path = ["%s-%s" %(x,y ) for x, y in zip(prefix,epoch_load)] #load net result if slid_window: print("using slid window") Pnet_det = None return [None,None,None] else: Pnet_det = FcnDetector(P_Net,model_path[0]) Rnet_det = Detector(R_Net,data_size=24,batch_size=batch_size[1],model_path=model_path[1]) Onet_det = Detector(O_Net,data_size=48,batch_size=batch_size[2],model_path=model_path[2]) multi_detector = [Pnet_det,Rnet_det,Onet_det] #get bbox and landmark Mtcnn_detector = MtcnnDetector(multi_detector,min_size,threshold=score_threshold) #bboxs,bbox_clib,landmarks = Mtcnn_detector.detect(img) bbox_clib,landmarks = Mtcnn_detector.detect(img) if len(bbox_clib): bbox_clib =board_img(bbox_clib,w,h) #add_label(img,bbox_clib,landmarks) #cv2.imshow("result",img) #cv2.waitKey(0) #bbox_clib[:,2] = bbox_clib[:,2] - bbox_clib[:,0] #bbox_clib[:,3] = bbox_clib[:,3] - bbox_clib[:,1] #bbox_clib[:,0] = map(int,bbox_clib[:,0]) #bbox_clib[:,1] = map(int,bbox_clib[:,1]) #bbox_clib[:,2] = map(int,bbox_clib[:,2]) #bbox_clib[:,3] = map(int,bbox_clib[:,3]) #bbox_clib = bbox_clib[:,:4] else: bbox_clib= np.array([]) landmarks = np.array([]) return bbox_clib if __name__ == '__main__': #process_img() arg = parameter() file_in = arg.file_in camera(file_in) #demo_img(file_in) #a = get_faces(file_in) #print(a)
35bad535a079fa4d1c260581d0e8fc3ca1dd433a
59b72b8f662cd605b3ce31f54779c17e5ca066d0
/interview_q/leet_code/子集.py
d6aa3df0e62c43481165dd5041958cface2a3827
[]
no_license
dongyang2/hello-world
c1f5853ccafd6b8f23836192547ab36f898e0891
1f859b53e2b21ed5a648da09b84950f03ec1b370
refs/heads/master
2022-12-11T22:07:22.853912
2022-11-24T03:52:35
2022-11-24T03:52:35
119,025,960
0
0
null
2018-01-26T10:09:58
2018-01-26T08:28:10
null
UTF-8
Python
false
false
2,388
py
# https://leetcode-cn.com/problems/subsets/ # coding: utf-8 # Python 3 # 给定一组不含重复元素的整数数组,返回该数组所有可能的子集,包括空集。 # # 思路:直接使用“组合.py”文件的函数。 # 优化方法,观察输入n=10时的结果,发现后面的结果等于输入数组与前面的结果的差集。如,长度为9的子集,一定等于长度为10的子集减长度为1的子集的结果。 # 边界条件: def erg_new_new(li, k, tmp, com): n = len(tmp) if n == k: com.append(tmp) else: for i in range(len(li)): if n > 0 and li[i] < tmp[-1]: continue elif n <= k-1: # erg_new_new(li[i+1:], k, append_val(tmp, li[i]), com) erg_new_new(li[i + 1:], k, tmp+[li[i]], com) def combination(li, k): n = len(li) if k > n or k == 0: return [] if k == 1: return [[x] for x in li] if k == n: return [li] com = [] erg_new_new(li, k, [], com) return com def sub_set(li): ss = [[[]]] sorted_li = sorted(li) n = len(li) half = int(n/2) for i in range(1, half+1): ss.append(combination(sorted_li, i)) if n % 2 == 0: start_reverse = n-half+1 else: start_reverse = n-half for i in range(start_reverse, n+1): tmp = [] for j in ss[n-i]: tmp.append(difference(li, j)) ss.append(tmp) ans = [] for i in ss: ans += i return ans def difference(li, sub_li): return [x for x in li if x not in sub_li] def main(): tmp = [] tmp += [] print(tmp) tmp = [[]] tmp += [] # 原来Python默认把数组加空数组处理成了不连接(即不会多加一个空数组) print(tmp) tmp = [[]] tmp += [[]] # 想加空数组要这么操作。 print(tmp) tmp = [[]] tmp += [[1], [2]] print(tmp) li1 = [1, 3, 5, 6] li2 = [4, 6] print(difference(li1, li2)) li1 = [1, 3, 5, 6] li2 = [] print(difference(li1, li2)) n = 20 li = [x+1 for x in range(n)] # print(combination(li, 5)) print(sub_set(li)) if __name__ == '__main__': import time print('-' * 15, 'Start', time.ctime(), '-' * 15, '\n') main() print('%s%s %s %s %s' % ('\n', '-' * 16, 'End', time.ctime(), '-' * 16))
e25d5c6d44603dfc1ac7be40c0f5e63bce951fac
332ac6deaed8b8917cf874f04fc77246378bdb44
/setup.py
4db61d01cd37dbb3dd83d18bdb2eb0d4634cfe76
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
hestela/fauxmo
5a435399eca61c525502dc90333ee73cff0d3d15
f2246b952a0246bf0dcd74e770c9daea0dcaa763
refs/heads/master
2020-03-11T15:45:48.414168
2018-04-19T00:56:27
2018-04-19T01:08:35
130,095,227
0
0
null
2018-04-18T16:58:43
2018-04-18T16:58:43
null
UTF-8
Python
false
false
1,755
py
import re from setuptools import setup, find_packages try: import pypandoc readme = pypandoc.convert('README.md', 'rst') history = pypandoc.convert('CHANGELOG.md', 'rst') except ImportError: with open('README.md') as readme_file, \ open('CHANGELOG.md') as history_file: readme = readme_file.read() history = history_file.read() with open('requirements-dev.txt') as dev_requirements_file, \ open('requirements-test.txt') as tests_requirements_file: test_requirements = tests_requirements_file.read().splitlines() dev_requirements = dev_requirements_file.read().splitlines() dev_requirements.extend(test_requirements) version_regex = re.compile(r'__version__ = [\'\"]v((\d+\.?)+)[\'\"]') with open('src/fauxmo/__init__.py') as f: vlines = f.readlines() __version__ = next(re.match(version_regex, line).group(1) for line in vlines if re.match(version_regex, line)) setup( name="fauxmo", version=__version__, description="Emulated Belkin WeMo devices that work with the Amazon Echo", long_description=readme + "\n\n" + history, author="Nathan Henrie", author_email="[email protected]", url="https://github.com/n8henrie/fauxmo", packages=find_packages("src"), package_dir={"": "src"}, include_package_data=True, license="MIT", zip_safe=False, keywords=["fauxmo", "alexa", "amazon echo"], classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.6" ], extras_require={ "dev": dev_requirements }, test_suite="tests", tests_require=test_requirements, entry_points={'console_scripts': ['fauxmo=fauxmo.cli:cli']}, python_requires=">=3.6", )
5e9b31b9c658c18ee03c3afdab9042716a92b89b
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/vz/ctrctentitydef.py
cf877348cdffddd74f0ba1250b5de389e328ad62
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
15,939
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class CtrctEntityDef(Mo): """ The contract entity definition. """ meta = ClassMeta("cobra.model.vz.CtrctEntityDef") meta.moClassName = "vzCtrctEntityDef" meta.rnFormat = "entity-[%(epgDn)s]" meta.category = MoCategory.REGULAR meta.label = "Summary of EPg: Contains All Info to Create ProvDef/ConsDef" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.vz.ProvSubjLblDef") meta.childClasses.add("cobra.model.vz.ProvLblDef") meta.childClasses.add("cobra.model.vz.ConsCtrctLblDef") meta.childClasses.add("cobra.model.vz.ConsSubjLblDef") meta.childClasses.add("cobra.model.telemetry.MatchedSelector") meta.childClasses.add("cobra.model.l3ext.SubnetDef") meta.childClasses.add("cobra.model.vz.ProvCtrctLblDef") meta.childClasses.add("cobra.model.fv.RsEPgDefToL2Dom") meta.childClasses.add("cobra.model.fv.RsEPgDefToL3Dom") meta.childClasses.add("cobra.model.vz.ConsLblDef") meta.childClasses.add("cobra.model.fault.Delegate") meta.childNamesAndRnPrefix.append(("cobra.model.fv.RsEPgDefToL2Dom", "rsEPgDefToL2Dom")) meta.childNamesAndRnPrefix.append(("cobra.model.fv.RsEPgDefToL3Dom", "rsEPgDefToL3Dom")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ConsCtrctLblDef", "cCtrctLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.telemetry.MatchedSelector", "matchedSel-")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ProvCtrctLblDef", "pCtrctLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ProvSubjLblDef", "pSubjLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ConsSubjLblDef", "cSubjLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.l3ext.SubnetDef", "extsubnet-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ProvLblDef", "pLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.vz.ConsLblDef", "cLblD-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.parentClasses.add("cobra.model.vz.DirAssDef") meta.parentClasses.add("cobra.model.vz.IntDef") meta.parentClasses.add("cobra.model.fv.CtxDef") meta.parentClasses.add("cobra.model.vz.SubjDef") meta.parentClasses.add("cobra.model.vz.IntraEPgDef") meta.parentClasses.add("cobra.model.vz.InheritedDef") meta.parentClasses.add("cobra.model.vz.EpgAnyDef") meta.superClasses.add("cobra.model.fv.EPgDef") meta.superClasses.add("cobra.model.vz.ACtrctEpgDef") meta.superClasses.add("cobra.model.fv.AEPgDef") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.pol.Def") meta.superClasses.add("cobra.model.fv.EPgCont") meta.rnPrefixes = [ ('entity-', True), ] prop = PropMeta("str", "anyDn", "anyDn", 16600, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("anyDn", prop) prop = PropMeta("str", "bdDefDn", "bdDefDn", 1811, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("bdDefDn", prop) prop = PropMeta("str", "bdDefStQual", "bdDefStQual", 1812, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("default-target", "default-target", 2) prop._addConstant("mismatch-target", "mismatch-target", 1) prop._addConstant("none", "none", 0) meta.props.add("bdDefStQual", prop) prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "ctrctUpd", "ctrctUpd", 1078, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "ctrct" prop._addConstant("ctrct", "ctrct", 0) prop._addConstant("epg", "epg", 1) prop._addConstant("not_defined", "not_defined", 0) meta.props.add("ctrctUpd", prop) prop = PropMeta("str", "ctxDefDn", "ctxDefDn", 1813, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("ctxDefDn", prop) prop = PropMeta("str", "ctxDefStQual", "ctxDefStQual", 1814, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("default-target", "default-target", 2) prop._addConstant("mismatch-target", "mismatch-target", 1) prop._addConstant("none", "none", 0) meta.props.add("ctxDefStQual", prop) prop = PropMeta("str", "ctxPcTag", "ctxPcTag", 15850, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("any", "any", 0) meta.props.add("ctxPcTag", prop) prop = PropMeta("str", "ctxSeg", "ctxSeg", 1809, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("ctxSeg", prop) prop = PropMeta("str", "descr", "descr", 5579, PropCategory.REGULAR) prop.label = "Description" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "epgDn", "epgDn", 16150, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("epgDn", prop) prop = PropMeta("str", "exceptionTag", "exceptionTag", 37059, PropCategory.REGULAR) prop.label = "Contract Exception Tag" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("exceptionTag", prop) prop = PropMeta("str", "isAny", "isAny", 1077, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = False prop.defaultValueStr = "no" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("isAny", prop) prop = PropMeta("str", "l3CtxEncap", "l3CtxEncap", 1815, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("l3CtxEncap", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 16152, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 4991, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "ownerKey", "ownerKey", 15230, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerKey", prop) prop = PropMeta("str", "ownerTag", "ownerTag", 15231, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerTag", prop) prop = PropMeta("str", "pcEnfPref", "pcEnfPref", 16336, PropCategory.REGULAR) prop.label = "Policy Control Enforcement" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "enforced" prop._addConstant("enforced", "enforced", 1) prop._addConstant("unenforced", "unenforced", 2) meta.props.add("pcEnfPref", prop) prop = PropMeta("str", "pcTag", "pcTag", 1808, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("any", "any", 0) meta.props.add("pcTag", prop) prop = PropMeta("str", "prefGrMemb", "prefGrMemb", 27676, PropCategory.REGULAR) prop.label = "Preferred Group Member" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 2 prop.defaultValueStr = "exclude" prop._addConstant("exclude", "exclude", 2) prop._addConstant("include", "include", 1) meta.props.add("prefGrMemb", prop) prop = PropMeta("str", "prio", "prio", 1076, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 9)] prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("level1", "level1", 3) prop._addConstant("level2", "level2", 2) prop._addConstant("level3", "level3-(default)", 1) prop._addConstant("level4", "level4", 9) prop._addConstant("level5", "level5", 8) prop._addConstant("level6", "level6", 7) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("prio", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "scopeId", "scopeId", 1810, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.range = [(1, 16777215)] prop.defaultValue = 1 prop.defaultValueStr = "1" meta.props.add("scopeId", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "targetDscp", "targetDscp", 16092, PropCategory.REGULAR) prop.label = "Dscp Value" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.defaultValue = 64 prop.defaultValueStr = "unspecified" prop._addConstant("AF11", "af11-low-drop", 10) prop._addConstant("AF12", "af12-medium-drop", 12) prop._addConstant("AF13", "af13-high-drop", 14) prop._addConstant("AF21", "af21-low-drop", 18) prop._addConstant("AF22", "af22-medium-drop", 20) prop._addConstant("AF23", "af23-high-drop", 22) prop._addConstant("AF31", "af31-low-drop", 26) prop._addConstant("AF32", "af32-medium-drop", 28) prop._addConstant("AF33", "af33-high-drop", 30) prop._addConstant("AF41", "af41-low-drop", 34) prop._addConstant("AF42", "af42-medium-drop", 36) prop._addConstant("AF43", "af43-high-drop", 38) prop._addConstant("CS0", "cs0", 0) prop._addConstant("CS1", "cs1", 8) prop._addConstant("CS2", "cs2", 16) prop._addConstant("CS3", "cs3", 24) prop._addConstant("CS4", "cs4", 32) prop._addConstant("CS5", "cs5", 40) prop._addConstant("CS6", "cs6", 48) prop._addConstant("CS7", "cs7", 56) prop._addConstant("EF", "expedited-forwarding", 46) prop._addConstant("VA", "voice-admit", 44) prop._addConstant("unspecified", "unspecified", 64) meta.props.add("targetDscp", prop) prop = PropMeta("str", "txId", "txId", 21190, PropCategory.REGULAR) prop.label = "Transaction Id when EPg was created" prop.isImplicit = True prop.isAdmin = True meta.props.add("txId", prop) prop = PropMeta("str", "useAnyDef", "useAnyDef", 17558, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = False prop.defaultValueStr = "no" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("useAnyDef", prop) meta.namingProps.append(getattr(meta.props, "epgDn")) getattr(meta.props, "epgDn").needDelimiter = True # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("CtrctIfToEPgCons", "Contract Interface EPG Consumer", "cobra.model.fv.EPg")) meta.deploymentQueryPaths.append(DeploymentPathMeta("CtrctIfToEPgConsNwIf", "Contract Interface EPG Consumer Interface", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("ABrCPToAnyProv", "Any To Provider", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("ABrCPToAnyCons", "Any To Consumer", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("ABrCPToEPgProv", "EPG Provider", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("ABrCPToEPgCons", "EPG Consumer", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("GraphInstancesinacontract", "Graph Instances", "cobra.model.vns.GraphInst")) def __init__(self, parentMoOrDn, epgDn, markDirty=True, **creationProps): namingVals = [epgDn] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
8f2804428b63e25c8e704fb9def3a459ee42e87d
3b1053429de896731fe659b8ea09efe5f8bdc4cb
/src/db/DBStpHardware.py
902519e353ffa62e3425ec8e2b8cb150f10325d0
[]
no_license
rajgu/machine-master
57bb6f05fce5dfa512ecd10bc5e7bb31bbd76b8a
f1a6081c9bfde1937341a1a55478c08d48005f05
refs/heads/master
2020-03-26T22:09:14.058722
2018-08-20T15:42:00
2018-08-20T15:42:00
145,435,570
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
from src.db.Crud import Crud class DBStpHardware(Crud): _table_name = 'stp_hardware' _table_struct = { 'stp_id' : {'type' : 'integer', 'validate' : True}, 'type' : {'type' : 'text', 'validate' : True}, 'name' : {'type' : 'text', 'validate' : True}, 'serial_number': {'type' : 'text', 'validate' : True}, 'location' : {'type' : 'text', 'validate' : True} } _horizontal_key = False def __init__(self, db): return Crud.__init__(self, db) def create(self, data): return Crud.create(self, data, self._table_name, self._table_struct, self._horizontal_key) def read(self, data, oldata=False): return Crud.read(self, data, self._table_name, self._table_struct, self._horizontal_key, oldata) def update(self, data, where): return Crud.update(self, data, where, self._table_name, self._table_struct, self._horizontal_key) def delete(self, data): return Crud.delete(self, data, self._table_name, self._table_struct, self._horizontal_key)
[ "=" ]
=
d57266dab8d5af22860b6ec60667e9dc907af33f
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/MSSM_HiggsToMuMu/fragment_mhmodp_MA400_tb20_bbH.py
29e5b0fcac451a27f7c6bbc2d0d18d8dbe8f4c9b
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
18,020
py
COM_ENERGY = 13000.0 # GeV CROSS_SECTION = 1 # pb PROCESS = 'HiggsBSM:gg2H2bbbar = on' SLHA_TABLE = """BLOCK SPINFO 1 FeynHiggs 2 2.12.0 2 built on ott 13, 2016 BLOCK MODSEL 1 0 # Model 2 1 # GridPts 3 0 # Content 4 0 # RPV 5 0 # CPV 6 0 # FV BLOCK SMINPUTS 1 1.28952828E+02 # invAlfaMZ 2 1.16637000E-05 # GF 3 1.19000000E-01 # AlfasMZ 4 9.11876000E+01 # MZ 5 4.16000000E+00 # Mb 6 1.73200000E+02 # Mt 7 1.77703000E+00 # Mtau 11 5.10998902E-04 # Me 13 1.05658357E-01 # Mmu 21 6.00000000E-03 # Md 22 3.00000000E-03 # Mu 23 9.50000000E-02 # Ms 24 1.28600000E+00 # Mc BLOCK MINPAR 3 2.00000000E+01 # TB BLOCK EXTPAR 0 0.00000000E+00 # Q 1 9.54716519E+01 # M1 2 2.00000000E+02 # M2 3 1.50000000E+03 # M3 11 1.51000000E+03 # At 12 1.51000000E+03 # Ab 13 1.51000000E+03 # Atau 23 2.00000000E+02 # MUE 25 2.00000000E+01 # TB 26 4.00000000E+02 # MA0 27 4.07999802E+02 # MHp 31 5.00000000E+02 # MSL(1) 32 5.00000000E+02 # MSL(2) 33 1.00000000E+03 # MSL(3) 34 5.00000000E+02 # MSE(1) 35 5.00000000E+02 # MSE(2) 36 1.00000000E+03 # MSE(3) 41 1.50000000E+03 # MSQ(1) 42 1.50000000E+03 # MSQ(2) 43 1.00000000E+03 # MSQ(3) 44 1.50000000E+03 # MSU(1) 45 1.50000000E+03 # MSU(2) 46 1.00000000E+03 # MSU(3) 47 1.50000000E+03 # MSD(1) 48 1.50000000E+03 # MSD(2) 49 1.00000000E+03 # MSD(3) BLOCK MASS 1000012 4.95845890E+02 # MSf(1,1,1) 1000011 5.02289514E+02 # MSf(1,2,1) 2000011 5.01838716E+02 # MSf(2,2,1) 1000002 1.49903009E+03 # MSf(1,3,1) 2000002 1.49959059E+03 # MSf(2,3,1) 1000001 1.50117388E+03 # MSf(1,4,1) 2000001 1.50020460E+03 # MSf(2,4,1) 1000014 4.95845890E+02 # MSf(1,1,2) 1000013 5.02541395E+02 # MSf(1,2,2) 2000013 5.01586505E+02 # MSf(2,2,2) 1000004 1.49903061E+03 # MSf(1,3,2) 2000004 1.49959117E+03 # MSf(2,3,2) 1000003 1.50118944E+03 # MSf(1,4,2) 2000003 1.50018903E+03 # MSf(2,4,2) 1000016 9.97929430E+02 # MSf(1,1,3) 1000015 9.98819801E+02 # MSf(1,2,3) 2000015 1.00324582E+03 # MSf(2,2,3) 1000006 8.76429378E+02 # MSf(1,3,3) 2000006 1.13478243E+03 # MSf(2,3,3) 1000005 9.96111023E+02 # MSf(1,4,3) 2000005 1.00594745E+03 # MSf(2,4,3) 25 1.24781549E+02 # Mh0 35 3.99966626E+02 # MHH 36 4.00000000E+02 # MA0 37 4.08364422E+02 # MHp 1000022 8.78206612E+01 # MNeu(1) 1000023 1.51359250E+02 # MNeu(2) 1000025 -2.10117348E+02 # MNeu(3) 1000035 2.66409088E+02 # MNeu(4) 1000024 1.47528170E+02 # MCha(1) 1000037 2.66764158E+02 # MCha(2) 1000021 1.50000000E+03 # MGl BLOCK DMASS 0 1.73200000E+02 # Q 25 7.10837338E-01 # Delta Mh0 35 1.19120788E-03 # Delta MHH 36 0.00000000E+00 # Delta MA0 37 1.73007786E-02 # Delta MHp BLOCK NMIX 1 1 9.30213894E-01 # ZNeu(1,1) 1 2 -1.18546783E-01 # ZNeu(1,2) 1 3 3.13311260E-01 # ZNeu(1,3) 1 4 -1.49949409E-01 # ZNeu(1,4) 2 1 -3.23202104E-01 # ZNeu(2,1) 2 2 -6.93891430E-01 # ZNeu(2,2) 2 3 5.08023191E-01 # ZNeu(2,3) 2 4 -3.94927234E-01 # ZNeu(2,4) 3 1 9.59510181E-02 # ZNeu(3,1) 3 2 -1.33592266E-01 # ZNeu(3,2) 3 3 -6.78206777E-01 # ZNeu(3,3) 3 4 -7.16227671E-01 # ZNeu(3,4) 4 1 -1.45037624E-01 # ZNeu(4,1) 4 2 6.97577558E-01 # ZNeu(4,2) 4 3 4.28700431E-01 # ZNeu(4,3) 4 4 -5.55486794E-01 # ZNeu(4,4) BLOCK UMIX 1 1 -6.08113363E-01 # UCha(1,1) 1 2 7.93850198E-01 # UCha(1,2) 2 1 7.93850198E-01 # UCha(2,1) 2 2 6.08113363E-01 # UCha(2,2) BLOCK VMIX 1 1 -7.93850198E-01 # VCha(1,1) 1 2 6.08113363E-01 # VCha(1,2) 2 1 6.08113363E-01 # VCha(2,1) 2 2 7.93850198E-01 # VCha(2,2) BLOCK STAUMIX 1 1 6.88810103E-01 # USf(1,1) 1 2 7.24941820E-01 # USf(1,2) 2 1 7.24941820E-01 # USf(2,1) 2 2 -6.88810103E-01 # USf(2,2) BLOCK STOPMIX 1 1 7.08249465E-01 # USf(1,1) 1 2 -7.05962248E-01 # USf(1,2) 2 1 7.05962248E-01 # USf(2,1) 2 2 7.08249465E-01 # USf(2,2) BLOCK SBOTMIX 1 1 6.52799510E-01 # USf(1,1) 1 2 7.57530726E-01 # USf(1,2) 2 1 7.57530726E-01 # USf(2,1) 2 2 -6.52799510E-01 # USf(2,2) BLOCK ALPHA -5.91856359E-02 # Alpha BLOCK DALPHA 1.87535199E-04 # Delta Alpha BLOCK HMIX Q= -0.99900000E+03 1 2.00000000E+02 # MUE 2 2.00000000E+01 # TB BLOCK MSOFT Q= 0.00000000E+00 1 9.54716519E+01 # M1 2 2.00000000E+02 # M2 3 1.50000000E+03 # M3 31 5.00000000E+02 # MSL(1) 32 5.00000000E+02 # MSL(2) 33 1.00000000E+03 # MSL(3) 34 5.00000000E+02 # MSE(1) 35 5.00000000E+02 # MSE(2) 36 1.00000000E+03 # MSE(3) 41 1.50000000E+03 # MSQ(1) 42 1.50000000E+03 # MSQ(2) 43 1.00000000E+03 # MSQ(3) 44 1.50000000E+03 # MSU(1) 45 1.50000000E+03 # MSU(2) 46 1.00000000E+03 # MSU(3) 47 1.50000000E+03 # MSD(1) 48 1.50000000E+03 # MSD(2) 49 1.00000000E+03 # MSD(3) BLOCK AE Q= 0.00000000E+00 1 1 0.00000000E+00 # Af(1,1) 2 2 0.00000000E+00 # Af(2,2) 3 3 1.51000000E+03 # Af(3,3) BLOCK AU Q= 0.00000000E+00 1 1 0.00000000E+00 # Af(1,1) 2 2 0.00000000E+00 # Af(2,2) 3 3 1.51000000E+03 # Af(3,3) BLOCK AD Q= 0.00000000E+00 1 1 0.00000000E+00 # Af(1,1) 2 2 0.00000000E+00 # Af(2,2) 3 3 1.51000000E+03 # Af(3,3) BLOCK YE Q= 0.00000000E+00 1 1 5.87736714E-05 # Yf(1,1) 2 2 1.21525301E-02 # Yf(2,2) 3 3 2.04389044E-01 # Yf(3,3) BLOCK YU Q= 0.00000000E+00 1 1 1.72525825E-05 # Yf(1,1) 2 2 7.39560703E-03 # Yf(2,2) 3 3 9.96049095E-01 # Yf(3,3) BLOCK YD Q= 0.00000000E+00 1 1 6.76269414E-04 # Yf(1,1) 2 2 1.07071436E-02 # Yf(2,2) 3 3 4.49839737E-01 # Yf(3,3) BLOCK VCKMIN 1 2.25300000E-01 # lambda 2 8.08000000E-01 # A 3 1.32000000E-01 # rhobar 4 3.41000000E-01 # etabar BLOCK MSL2 Q= 0.00000000E+00 1 1 2.50000000E+05 # MSL2(1,1) 2 2 2.50000000E+05 # MSL2(2,2) 3 3 1.00000000E+06 # MSL2(3,3) BLOCK MSE2 Q= 0.00000000E+00 1 1 2.50000000E+05 # MSE2(1,1) 2 2 2.50000000E+05 # MSE2(2,2) 3 3 1.00000000E+06 # MSE2(3,3) BLOCK MSQ2 Q= 0.00000000E+00 1 1 2.25000000E+06 # MSQ2(1,1) 2 2 2.25000000E+06 # MSQ2(2,2) 3 3 1.00000000E+06 # MSQ2(3,3) BLOCK MSU2 Q= 0.00000000E+00 1 1 2.25000000E+06 # MSU2(1,1) 2 2 2.25000000E+06 # MSU2(2,2) 3 3 1.00000000E+06 # MSU2(3,3) BLOCK MSD2 Q= 0.00000000E+00 1 1 2.25000000E+06 # MSD2(1,1) 2 2 2.25000000E+06 # MSD2(2,2) 3 3 1.00000000E+06 # MSD2(3,3) BLOCK TE Q= 0.00000000E+00 1 1 0.00000000E+00 # Tf(1,1) 2 2 0.00000000E+00 # Tf(2,2) 3 3 3.08627457E+02 # Tf(3,3) BLOCK TU Q= 0.00000000E+00 1 1 0.00000000E+00 # Tf(1,1) 2 2 0.00000000E+00 # Tf(2,2) 3 3 1.50403413E+03 # Tf(3,3) BLOCK TD Q= 0.00000000E+00 1 1 0.00000000E+00 # Tf(1,1) 2 2 0.00000000E+00 # Tf(2,2) 3 3 6.79258003E+02 # Tf(3,3) BLOCK SELMIX 1 1 9.99989805E-01 # UASf(1,1) 1 4 -4.51557869E-03 # UASf(1,4) 2 2 8.57926156E-01 # UASf(2,2) 2 5 -5.13773015E-01 # UASf(2,5) 3 3 6.88810103E-01 # UASf(3,3) 3 6 7.24941820E-01 # UASf(3,6) 4 1 4.51557869E-03 # UASf(4,1) 4 4 9.99989805E-01 # UASf(4,4) 5 2 5.13773015E-01 # UASf(5,2) 5 5 8.57926156E-01 # UASf(5,5) 6 3 7.24941820E-01 # UASf(6,3) 6 6 -6.88810103E-01 # UASf(6,6) BLOCK USQMIX 1 1 1.00000000E+00 # UASf(1,1) 1 4 1.78495859E-05 # UASf(1,4) 2 2 9.99970732E-01 # UASf(2,2) 2 5 7.65085064E-03 # UASf(2,5) 3 3 7.08249465E-01 # UASf(3,3) 3 6 -7.05962248E-01 # UASf(3,6) 4 1 -1.78495859E-05 # UASf(4,1) 4 4 1.00000000E+00 # UASf(4,4) 5 2 -7.65085064E-03 # UASf(5,2) 5 5 9.99970732E-01 # UASf(5,5) 6 3 7.05962248E-01 # UASf(6,3) 6 6 7.08249465E-01 # UASf(6,6) BLOCK DSQMIX 1 1 9.99967318E-01 # UASf(1,1) 1 4 -8.08468495E-03 # UASf(1,4) 2 2 9.92157399E-01 # UASf(2,2) 2 5 -1.24994779E-01 # UASf(2,5) 3 3 6.52799510E-01 # UASf(3,3) 3 6 7.57530726E-01 # UASf(3,6) 4 1 8.08468495E-03 # UASf(4,1) 4 4 9.99967318E-01 # UASf(4,4) 5 2 1.24994779E-01 # UASf(5,2) 5 5 9.92157399E-01 # UASf(5,5) 6 3 7.57530726E-01 # UASf(6,3) 6 6 -6.52799510E-01 # UASf(6,6) BLOCK CVHMIX 1 1 9.99992809E-01 # UH(1,1) 1 2 3.79243860E-03 # UH(1,2) 1 3 0.00000000E+00 # UH(1,3) 2 1 -3.79243860E-03 # UH(2,1) 2 2 9.99992809E-01 # UH(2,2) 2 3 0.00000000E+00 # UH(2,3) 3 1 0.00000000E+00 # UH(3,1) 3 2 0.00000000E+00 # UH(3,2) 3 3 1.00000000E+00 # UH(3,3) DECAY 25 4.70802959E-03 # Gamma(h0) 1.95418610E-03 2 22 22 # BR(h0 -> photon photon) 1.23214280E-03 2 22 23 # BR(h0 -> photon Z) 2.21729624E-02 2 23 23 # BR(h0 -> Z Z) 1.83961619E-01 2 -24 24 # BR(h0 -> W W) 5.88903166E-02 2 21 21 # BR(h0 -> gluon gluon) 5.90818475E-09 2 -11 11 # BR(h0 -> Electron electron) 2.62806421E-04 2 -13 13 # BR(h0 -> Muon muon) 7.54101270E-02 2 -15 15 # BR(h0 -> Tau tau) 1.70825517E-07 2 -2 2 # BR(h0 -> Up up) 2.36610068E-02 2 -4 4 # BR(h0 -> Charm charm) 9.60581224E-07 2 -1 1 # BR(h0 -> Down down) 2.41233185E-04 2 -3 3 # BR(h0 -> Strange strange) 6.32212462E-01 2 -5 5 # BR(h0 -> Bottom bottom) DECAY 35 3.20412715E+00 # Gamma(HH) -2.77755084E-06 2 22 22 # BR(HH -> photon photon) -6.07158389E-06 2 22 23 # BR(HH -> photon Z) -2.06273466E-04 2 23 23 # BR(HH -> Z Z) -4.48600531E-04 2 -24 24 # BR(HH -> W W) -2.23155914E-04 2 21 21 # BR(HH -> gluon gluon) -7.92628201E-09 2 -11 11 # BR(HH -> Electron electron) 3.52698464E-04 2 -13 13 # BR(HH -> Muon muon) -9.95886348E-02 2 -15 15 # BR(HH -> Tau tau) -1.88056182E-12 2 -2 2 # BR(HH -> Up up) -2.60226149E-07 2 -4 4 # BR(HH -> Charm charm) -3.12544644E-03 2 -6 6 # BR(HH -> Top top) -9.99612224E-07 2 -1 1 # BR(HH -> Down down) -2.51030942E-04 2 -3 3 # BR(HH -> Strange strange) -6.17460245E-01 2 -5 5 # BR(HH -> Bottom bottom) -1.16051885E-01 2 -1000024 1000024 # BR(HH -> Chargino1 chargino1) -2.60240183E-02 2 1000022 1000022 # BR(HH -> neutralino1 neutralino1) -5.41742353E-02 2 1000022 1000023 # BR(HH -> neutralino1 neutralino2) -4.41526813E-02 2 1000022 1000025 # BR(HH -> neutralino1 neutralino3) -2.89447512E-06 2 1000022 1000035 # BR(HH -> neutralino1 neutralino4) -1.81352647E-02 2 1000023 1000023 # BR(HH -> neutralino2 neutralino2) -1.72404807E-02 2 1000023 1000025 # BR(HH -> neutralino2 neutralino3) -2.55233739E-03 2 25 25 # BR(HH -> h0 h0) DECAY 36 3.90369787E+00 # Gamma(A0) 5.57176736E-06 2 22 22 # BR(A0 -> photon photon) 1.29289276E-05 2 22 23 # BR(A0 -> photon Z) 1.69592894E-04 2 21 21 # BR(A0 -> gluon gluon) 6.51102145E-09 2 -11 11 # BR(A0 -> Electron electron) 2.89723220E-04 2 -13 13 # BR(A0 -> Muon muon) 8.18418538E-02 2 -15 15 # BR(A0 -> Tau tau) 1.08202483E-12 2 -2 2 # BR(A0 -> Up up) 1.50152746E-07 2 -4 4 # BR(A0 -> Charm charm) 7.24672723E-03 2 -6 6 # BR(A0 -> Top top) 8.21480267E-07 2 -1 1 # BR(A0 -> Down down) 2.06296952E-04 2 -3 3 # BR(A0 -> Strange strange) 5.07481614E-01 2 -5 5 # BR(A0 -> Bottom bottom) 2.37952527E-01 2 -1000024 1000024 # BR(A0 -> Chargino1 chargino1) 2.94212998E-02 2 1000022 1000022 # BR(A0 -> neutralino1 neutralino1) 7.83260369E-02 2 1000022 1000023 # BR(A0 -> neutralino1 neutralino2) 1.34210317E-02 2 1000022 1000025 # BR(A0 -> neutralino1 neutralino3) 1.48734679E-04 2 1000022 1000035 # BR(A0 -> neutralino1 neutralino4) 4.13778850E-02 2 1000023 1000023 # BR(A0 -> neutralino2 neutralino2) 1.82692714E-03 2 1000023 1000025 # BR(A0 -> neutralino2 neutralino3) 2.70271220E-04 2 23 25 # BR(A0 -> Z h0) 3.11250143E-35 2 25 25 # BR(A0 -> h0 h0) DECAY 37 2.36360435E+00 # Gamma(Hp) 1.14378215E-08 2 -11 12 # BR(Hp -> Electron nu_e) 4.89002442E-04 2 -13 14 # BR(Hp -> Muon nu_mu) 1.38317284E-01 2 -15 16 # BR(Hp -> Tau nu_tau) 1.30513154E-06 2 -1 2 # BR(Hp -> Down up) 1.48741764E-05 2 -3 2 # BR(Hp -> Strange up) 8.72688321E-06 2 -5 2 # BR(Hp -> Bottom up) 7.23912198E-08 2 -1 4 # BR(Hp -> Down charm) 3.26888781E-04 2 -3 4 # BR(Hp -> Strange charm) 1.22205242E-03 2 -5 4 # BR(Hp -> Bottom charm) 9.71601512E-07 2 -1 6 # BR(Hp -> Down top) 2.15008667E-05 2 -3 6 # BR(Hp -> Strange top) 5.87063081E-01 2 -5 6 # BR(Hp -> Bottom top) 1.55173525E-01 2 1000022 1000024 # BR(Hp -> neutralino1 chargino1) 2.26104275E-03 2 1000022 1000037 # BR(Hp -> neutralino1 chargino2) 2.25127136E-02 2 1000023 1000024 # BR(Hp -> neutralino2 chargino1) 9.20758052E-02 2 1000024 1000025 # BR(Hp -> chargino1 neutralino3) 5.11096070E-04 2 24 25 # BR(Hp -> W h0) 2.34647524E-08 2 24 35 # BR(Hp -> W HH) 2.30058550E-08 2 24 36 # BR(Hp -> W A0) DECAY 6 1.37127534E+00 # Gamma(top) 1.00000000E+00 2 5 24 # BR(top -> bottom W) """ import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1), pythiaHepMCVerbosity = cms.untracked.bool(False), SLHATableForPythia8 = cms.string('%s' % SLHA_TABLE), comEnergy = cms.double(COM_ENERGY), crossSection = cms.untracked.double(CROSS_SECTION), maxEventsToPrint = cms.untracked.int32(1), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'Higgs:useBSM = on', PROCESS, 'SLHA:allowUserOverride = off', 'SLHA:minMassSM = 100.', 'PhaseSpace:mHatMin = 56.0' ), parameterSets = cms.vstring( 'pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters' ) ) ) ProductionFilterSequence = cms.Sequence(generator)
aba2a884d4f2b0a73725dccefc5950fbfc7e745e
74afe97073a0693042d31567ba1a5741bcdebf72
/tests/utils.py
82762100c4b3ab85ace2b7d2ff312d3fe836d466
[ "Apache-2.0" ]
permissive
bruvio/tinyber
82aa34a5cdf842caa0f863540b249e37ae09fc78
d20d33341f9e74ba9b699553a8cf6448c167dec9
refs/heads/master
2021-05-29T23:07:58.841678
2015-07-23T23:24:52
2015-07-23T23:24:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
from asn1ate import parser from asn1ate.sema import * from tinyber.walker import Walker from tinyber.py_nodes import PythonBackend as Backend from tinyber import py_nodes as nodes def generate(infilename, outfilename): class FakeArgs(object): no_standalone = False import os with open(infilename) as f: asn1def = f.read() parse_tree = parser.parse_asn1(asn1def) modules = build_semantic_model(parse_tree) assert (len(modules) == 1) module_name = outfilename path = "tests" args = FakeArgs() # pull in the python-specific node implementations walker = Walker(modules[0], nodes) walker.walk() backend = Backend(args, walker, module_name, path) backend.generate_code() def test_reload(): import sys sys.path[:0] = '.' # reload tests since we just created a new module import tests reload(tests)
7aa513a018f1f1887b44be7689dd657b6c9f8ed5
fc20620a1fe41c83cb4c17ce36e5d3e6d5dd58fa
/src/python/dicomifier/__main__.py
b0fac30dd2023b3cfec7b87015b30eef36314d09
[ "LicenseRef-scancode-cecill-b-en" ]
permissive
lamyj/dicomifier
bdd3ad5756563365fe59a31166cbcaa14f98603f
8601760917f7ef47d87fbd61d2c647c3d9cbeb3e
refs/heads/master
2023-04-28T15:45:52.571809
2023-04-20T15:50:03
2023-04-20T15:50:03
32,533,252
33
11
NOASSERTION
2022-09-12T16:53:20
2015-03-19T16:28:40
Python
UTF-8
Python
false
false
1,955
py
######################################################################### # Dicomifier - Copyright (C) Universite de Strasbourg # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ######################################################################### import argparse import logging import sys from . import commands def main(): parser = argparse.ArgumentParser(description="Dicomifier") parser.add_argument( "--verbosity", "-v", dest="main_verbosity", choices=["warning", "info", "debug"], default="warning") subparsers = parser.add_subparsers(help="Available commands") command_parsers = {} for name in ["list", "search", "to_dicom", "to_nifti", "diffusion_scheme"]: command = getattr(commands, name) subparser = command.setup(subparsers) subparser.add_argument( "--verbosity", "-v", dest="child_verbosity", choices=["warning", "info", "debug"], default="warning") subparser.set_defaults(action=command.action) command_parsers[command.action] = subparser arguments = vars(parser.parse_args()) if "action" not in arguments: parser.print_help() return 1 main_verbosity = arguments.pop("main_verbosity").upper() child_verbosity = arguments.pop("child_verbosity").upper() verbosity = min( [getattr(logging, x) for x in [main_verbosity, child_verbosity]]) logging.basicConfig( level=verbosity, format="%(levelname)s - %(name)s: %(message)s") action = arguments.pop("action") try: action(**arguments) except Exception as e: if verbosity == logging.DEBUG: raise else: command_parsers[action].error(e) if __name__ == "__main__": sys.exit(main())
1b103e18ecb604e87e2f579cf645558421707b91
8690ca0028c54b62d68badf1753fc6151ae03525
/Part3 Levels of Aggregation/fse_data/AllROIs/tpot_mnist_pipeline_triangulateAggregationLevelParticipantSplitaggr_2_groups4.py
7d1fc2a6145b7665e8206ac0c752c83a15062340
[]
no_license
brains-on-code/conducting-and-analyzing-human-studies
fd74ee77fdc56cc61bdc1e0cf9bf423780f5dddc
548e7443f4d2bdb2db1f2858289b7d3518593c59
refs/heads/master
2021-06-26T21:30:56.386121
2020-12-22T13:49:16
2020-12-22T13:49:16
195,975,817
2
0
null
null
null
null
UTF-8
Python
false
false
830
py
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'].values, random_state=42) # Score on the training set was:1.0 exported_pipeline = RandomForestClassifier(bootstrap=False, criterion="gini", max_features=0.6500000000000001, min_samples_leaf=8, min_samples_split=6, n_estimators=100) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features)
5594d738155165df35681f20b39b82b9a8c92c1f
c9ab605cdd2dbf92c9de05768ade0ecf1718be02
/03_Django/04_django_crud_review/jobs/views.py
92e5f3400502a07e8cddaa907118983276b91bed
[]
no_license
PyeongGang-Kim/TIL
42d69308cf99d2e07644b51d7636e1b64551a697
8711501d131ee7d78fdaac544dda2008adf820a1
refs/heads/master
2023-01-12T21:10:38.027946
2021-10-23T07:19:48
2021-10-23T07:19:48
195,937,990
10
1
null
2023-01-07T11:25:30
2019-07-09T05:22:45
HTML
UTF-8
Python
false
false
2,489
py
from django.shortcuts import render from .models import Job from faker import Faker from decouple import config import requests from IPython import embed from pprint import pprint # Create your views here. def index(request): return render(request, 'jobs/index.html') def past_life(request): name = request.POST.get('name') person = Job.objects.filter(name=name).first() if person: past_job = person.past_job else: fake = Faker() past_job = fake.job() person = Job(name=name, past_job=past_job) person.save() # GIPHY #1. API키 가져오기 GIPHY_API_KEY = config('GIPHY_API_KEY') url = 'http://api.giphy.com/v1/gifs/search?api_key={}&q={}&limit=1&'.format(GIPHY_API_KEY, past_job) data = requests.get(url).json() image = data.get('data')[0].get('images').get('original').get('url') #네이버 이미지 #1 요청 헤더 정보 준비 headers = { 'X-Naver-Client-Id': config('NAVER_ID'), 'X-Naver-Client-Secret': config('NAVER_SECRET') } #2 요청 url 준비 url2 = 'https://openapi.naver.com/v1/search/image?query='+past_job+'&filter=medium&display=1' #3 요청 보내기 naver_image = requests.get(url2, headers=headers).json().get('items')[0].get('link') context = {'person': person, 'image': image, 'naver_image': naver_image} return render(request, 'jobs/past_life.html', context) # try: # name = request.POST.get('name') # job = Job.objects.get(name=name) # #요청 url 세팅 # try: # image = requets.get(url).json(). # except: # image = None # context = { # 'past_life': job.past_job, # 'name': name, # 'image': image, # } # embed() # return render(request, 'jobs/past_life.html', context) # except: # fake = Faker() # job = Job(name=name, past_job=fake.job()) # job.save() # url = 'http://api.giphy.com/v1/gifs/search?api_key=' + GIPHY_API_KEY + '&q='+job.past_job+'&limit=1' # try: # image = requets.get(url).json().get('data')[0].get('images').get('original').get('url') # except: # image = None # context = { # 'past_life': job.past_job, # 'name': name, # 'image': image, # } # return render(request, 'jobs/past_life.html', context)
51849e9e5ed14906063e583aaea90f63365bc874
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/nos/v6_0_2f/mac/access_list/extended/__init__.py
67d76ccc440658bdb11c3eea1c1eb7f28e382ffa
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,533
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import hide_mac_acl_ext class extended(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-mac-access-list - based on the path /mac/access-list/extended. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__name','__hide_mac_acl_ext',) _yang_name = 'extended' _rest_name = 'extended' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__name = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z0-9]{1}([-a-zA-Z0-9_]{0,62})', 'length': [u'1..63']}), is_leaf=True, yang_name="name", rest_name="name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'ACL_NAME;; Access List Name (Max 63)'}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='mac-acl-name', is_config=True) self.__hide_mac_acl_ext = YANGDynClass(base=hide_mac_acl_ext.hide_mac_acl_ext, is_container='container', presence=False, yang_name="hide-mac-acl-ext", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'hidden': u'wyser-write-hook'}}, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'mac', u'access-list', u'extended'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'mac', u'access-list', u'extended'] def _get_name(self): """ Getter method for name, mapped from YANG variable /mac/access_list/extended/name (mac-acl-name) """ return self.__name def _set_name(self, v, load=False): """ Setter method for name, mapped from YANG variable /mac/access_list/extended/name (mac-acl-name) If this variable is read-only (config: false) in the source YANG file, then _set_name is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_name() directly. """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z0-9]{1}([-a-zA-Z0-9_]{0,62})', 'length': [u'1..63']}), is_leaf=True, yang_name="name", rest_name="name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'ACL_NAME;; Access List Name (Max 63)'}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='mac-acl-name', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """name must be of a type compatible with mac-acl-name""", 'defined-type': "brocade-mac-access-list:mac-acl-name", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z0-9]{1}([-a-zA-Z0-9_]{0,62})', 'length': [u'1..63']}), is_leaf=True, yang_name="name", rest_name="name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'ACL_NAME;; Access List Name (Max 63)'}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='mac-acl-name', is_config=True)""", }) self.__name = t if hasattr(self, '_set'): self._set() def _unset_name(self): self.__name = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z0-9]{1}([-a-zA-Z0-9_]{0,62})', 'length': [u'1..63']}), is_leaf=True, yang_name="name", rest_name="name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'ACL_NAME;; Access List Name (Max 63)'}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='mac-acl-name', is_config=True) def _get_hide_mac_acl_ext(self): """ Getter method for hide_mac_acl_ext, mapped from YANG variable /mac/access_list/extended/hide_mac_acl_ext (container) """ return self.__hide_mac_acl_ext def _set_hide_mac_acl_ext(self, v, load=False): """ Setter method for hide_mac_acl_ext, mapped from YANG variable /mac/access_list/extended/hide_mac_acl_ext (container) If this variable is read-only (config: false) in the source YANG file, then _set_hide_mac_acl_ext is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hide_mac_acl_ext() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=hide_mac_acl_ext.hide_mac_acl_ext, is_container='container', presence=False, yang_name="hide-mac-acl-ext", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'hidden': u'wyser-write-hook'}}, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """hide_mac_acl_ext must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=hide_mac_acl_ext.hide_mac_acl_ext, is_container='container', presence=False, yang_name="hide-mac-acl-ext", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'hidden': u'wyser-write-hook'}}, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='container', is_config=True)""", }) self.__hide_mac_acl_ext = t if hasattr(self, '_set'): self._set() def _unset_hide_mac_acl_ext(self): self.__hide_mac_acl_ext = YANGDynClass(base=hide_mac_acl_ext.hide_mac_acl_ext, is_container='container', presence=False, yang_name="hide-mac-acl-ext", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'hidden': u'wyser-write-hook'}}, namespace='urn:brocade.com:mgmt:brocade-mac-access-list', defining_module='brocade-mac-access-list', yang_type='container', is_config=True) name = __builtin__.property(_get_name, _set_name) hide_mac_acl_ext = __builtin__.property(_get_hide_mac_acl_ext, _set_hide_mac_acl_ext) _pyangbind_elements = {'name': name, 'hide_mac_acl_ext': hide_mac_acl_ext, }
8d8bd2733afc957d19afad643b783047d417c231
b40fbe6d0012a299b0e771d2e5f0cfca3fe5be2b
/gen_bulk.py
f4fad52f721f76c134105cc0a87572a95af0cbb3
[]
no_license
olimpiadi-informatica/randomtex
e8555776daa3761b6014cdf006b9c903db7f0fb2
1da019715c44db6a51135cb02dbf5a4e52586a95
refs/heads/main
2023-04-14T15:15:25.641932
2021-04-26T13:57:47
2021-04-26T14:13:03
358,237,479
0
0
null
null
null
null
UTF-8
Python
false
false
3,612
py
#!/usr/bin/env python3 import argparse import csv import datetime import json import logging import multiprocessing.dummy as mp import os import random import shutil import tempfile import progressbar import compilation import utils progressbar.streams.wrap_stderr() logger = logging.getLogger("gen_bulk") def process_user(user, args, work_dir): contest_dir = args.contest_dir rnd = random.Random(int(user["seed"])) tex, sol, order = utils.render_contest(contest_dir, rnd, context=user) user["solutions"] = ":".join(sol) user["questions_order"] = ":".join(map(str, order)) filename = user["filename"] password = user["pdf_password"] target = os.path.join(args.output_pdf, filename) if os.path.exists(target): logger.warning("File %s already present, skipping...", target) return user with tempfile.NamedTemporaryFile(prefix=filename) as f: compilation.compile(tex, f.name, work_dir) if args.no_enc: shutil.move(f.name, target) else: logger.info("Encrypting PDF %s -> %s", f.name, target) utils.encrypt_pdf(f.name, target, password) return user def generate(args, work_dir, users): contest_dir = args.contest_dir compilation.setup(contest_dir, work_dir) os.makedirs(args.output_pdf, exist_ok=True) def process(user): return process_user(user, args, work_dir) result = [] widgets = [ "[", progressbar.SimpleProgress(), " / ", progressbar.Percentage(), "] ", progressbar.Bar(), " ", progressbar.Timer(), " | ", progressbar.AdaptiveETA(samples=datetime.timedelta(seconds=10)), ] with mp.Pool(args.num_cores) as pool: for res in progressbar.progressbar( pool.imap_unordered(process, users), max_value=len(users), redirect_stdout=True, widgets=widgets, ): if res: result.append(res) headers = list(result[0].keys()) with open(args.output_csv, "w") as f: writer = csv.DictWriter(f, headers) writer.writeheader() writer.writerows(result) def main(args): with open(args.users_csv) as f: reader = csv.DictReader(f) users = list(reader) if args.work_dir: generate(args, args.work_dir, users) else: with tempfile.TemporaryDirectory() as work_dir: generate(args, work_dir, users) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--work-dir", "-w", help="Working directory for the compilation", ) parser.add_argument( "--num-cores", "-j", help="Number of parallel compilations", type=int, ) parser.add_argument("--verbose", "-v", help="Verbose output", action="store_true") parser.add_argument("--no-enc", help="Do not encrypt the pdfs", action="store_true") parser.add_argument("contest_dir", help="Directory with the contest") parser.add_argument("users_csv", help="Path to the csv file with the students data") parser.add_argument( "output_pdf", help="Directory of where to save the compiled pdf files", ) parser.add_argument( "output_csv", help="Path where to save the CSV with the solutions", ) args = parser.parse_args() logging.basicConfig( level=logging.DEBUG if args.verbose else logging.INFO, format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", ) main(args)
658f73dbac10be5eab3b65886b7d63510a3112a7
37f3759ca34f20d065ed62c9f892004f3468d869
/first.py
9aac5b66135641c05b038a41b8fab12fcb597621
[]
no_license
cmc5953/cmc5953
faf0d4d17714ffae10c1d9017b88734bb0f171ba
76a33411ed305ffa2b5d312699f747591e4147ef
refs/heads/master
2022-04-05T20:51:10.914382
2020-03-02T00:30:18
2020-03-02T00:30:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
18
py
print("firstfile")
f8938e7c7df3a92df60e420a4429cb058096a7e6
4be5c172c84e04c35677f5a327ab0ba592849676
/python/data_structures/array/sll/sll.py
dbdb9af0a8277d797c590e960437f9b0ac88de97
[]
no_license
niranjan-nagaraju/Development
3a16b547b030182867b7a44ac96a878c14058016
d193ae12863971ac48a5ec9c0b35bfdf53b473b5
refs/heads/master
2023-04-06T20:42:57.882882
2023-03-31T18:38:40
2023-03-31T18:38:40
889,620
9
2
null
2019-05-27T17:00:29
2010-09-05T15:58:46
Python
UTF-8
Python
false
false
5,315
py
''' A SLL implemented using regular arrays SLL corresponding to 78 -> 10 -> 41 -> 36 -> 21 is represented below | Index | Node | Node | | | data | next | |-------+------+------| | 0 | 10 | 7 | | 1 | | | | 2 | 36 | 9 | | 3 | | | | 4 | | | head -> | 5 | 78 | 0 | | 6 | | | | 7 | 41 | 2 | | 8 | | | | 9 | 21 | -1 | | 10 | | | The underlying array for the SLL contains two disjoint lists 1. Available-list: contains a list of nodes that are available 2. Allocated-list: contains a list of nodes that are currently in use ''' class SLL(object): class Node(object): def __init__(self, data=None, next=-1): self.data = data # next index == -1 implies there's no next link self.next = next def __repr__(self): return str(self) def __str__(self): return str((self.data, self.next)) def __init__(self, capacity): self.capacity = capacity self._allocated = 0 # Initially all nodes are available # chain them one-after-another sequentially # into an available list self._array = [SLL.Node(None, i+1) for i in xrange(self.capacity)] self._array[-1].next = -1 # Tail of the available list self.available_list = 0 # Index 0 is head of the available list self.allocated_list = -1 # Allocated list is empty self.allocated_tail = -1 # Allocated list is empty => tail: None def __len__(self): return self._allocated def __str__(self): lStr = '[{}]: '.format(len(self)) head = self.allocated_list while head != -1: lStr += str(self._array[head].data) + " -> " head = self._array[head].next return lStr # Return a free node, initialized to 'data' from the available list. # if there are any # Raises MemoryError if the entire capacity of the array is currently allocated def getNode(self, data): if self.available_list == -1: raise MemoryError("Linked list is at capacity") node = self.available_list self.available_list = self._array[self.available_list].next self._array[node].next = -1 self._array[node].data = data self._allocated += 1 return node # Add a node back to the available list def freeNode(self, node): self._allocated -= 1 # blank data corresponding to the 'freed' node # so all the nodes in the available list # are blank signifying they are all re-usable containers self._array[node].data = None self._array[node].next = self.available_list self.available_list = node # Insert a node to the end of the SLL def push_back(self, data): # get a freenode from the available list node = self.getNode(data) if self.allocated_list == -1: self.allocated_list = self.allocated_tail = node return self._array[self.allocated_tail].next = node self.allocated_tail = node # Insert a node at the front to the SLL def push_front(self, data): # get a freenode from the available list node = self.getNode(data) self._array[node].next = self.allocated_list self.allocated_list = node if self.allocated_tail == -1: # First node being added to the SLL # update tail self.allocated_tail = node # Remove a node from the front of the SLL def pop_front(self): if self.allocated_list == -1: # Nothing to pop, list is empty return None node = self.allocated_list data = self._array[node].data self.allocated_list = self._array[self.allocated_list].next if self.allocated_list == -1: self.allocated_tail = -1 self.freeNode(node) return data # Remove a node from the end of the SLL def pop_back(self): if self.allocated_list == -1: # Nothing to pop, list is empty return None node = self.allocated_list while self._array[node].next != self.allocated_tail: node = self._array[node].next data = self._array[self.allocated_tail].data self.freeNode(self.allocated_tail) # There's only one node in the SLL if node == self.allocated_list: self.allocated_tail = self.allocated_list = -1 else: self._array[node].next = -1 self.allocated_tail = node return data # Place 'data' in the SLL in its rightful place # Uses cmp(data, x) {x: for each item in the SLL} # Inserting only using 'place()' into the SLL will leave the SLL sorted def place(self, data): # get a freenode from the available list node = self.getNode(data) if self.allocated_list == -1: self.allocated_list = self.allocated_tail = node return if data < self._array[self.allocated_list].data: # current data is < everything in the SLL self._array[node].next = self.allocated_list self.allocated_list = node return if data >= self._array[self.allocated_tail].data: # current data is > everything in the SLL self._array[self.allocated_tail].next = node self.allocated_tail = node return tmp = self.allocated_list prev = None while tmp != -1 and self._array[tmp].data <= data: prev = tmp tmp = self._array[tmp].next # At this point, We have found a rightful place to insert current node # prev is node after which 'data' needs to be inserted self._array[prev].next = node self._array[node].next = tmp
2553bc5ec831453cc73c3732fdbffe014c7cf7ce
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/mc-animation-blender/operator_anim_export.py
503e83160184e749fd854f38b8b1ff3864169f8f
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,913
py
import bpy import math import json # ExportHelper is a helper class, defines filename and # invoke() function which calls the file selector. from bpy_extras.io_utils import ExportHelper from bpy.props import StringProperty, BoolProperty, EnumProperty from bpy.types import Operator class operator_anim_export(Operator, ExportHelper): """This appears in the tooltip of the operator and in the generated docs""" bl_idname = "mcanim.export" # important since its how bpy.ops.import_test.some_data is constructed bl_label = "Export Minecraft Animation (.mcanim)" # ExportHelper mixin class uses this filename_ext = ".mcanim" filter_glob = StringProperty( default="*.mcanim", options={'HIDDEN'}, maxlen=255, # Max internal buffer length, longer would be clamped. ) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. looping = BoolProperty( name="Looping", description="Should this animation loop?", default=True, ) resetWhenDone = BoolProperty( name="Reset when done", description="Should this reset to starting position when done?", default=False, ) id = StringProperty( name="ID", description="Unique numerical ID that Minecraft will refer to this animation by", default='0', ) def execute(self, context): return export(context, self.id, self.looping, self.resetWhenDone, self.filepath) # specific export function for menu def export(context, id, looping, resetWhenDone, path): return write_mcanim(context, context.scene.objects.active, int(id), looping, resetWhenDone, path) # write animation to disk def write_mcanim(context, object, id, looping, resetWhenDone, path): frames = [] # output all frames into frames array for i in range(context.scene.frame_start, context.scene.frame_end): frames.append(write_frame(context,object,i)) # add additional metadata to file output = { "version": "0.2", "id": id, "looping": looping, "resetPos": resetWhenDone, "frames": frames } # create json string formatted = json.dumps(output, sort_keys=True, indent=4, separators=(',', ': ')) # output to file file = open(path, "w") file.write(formatted) file.close print("Outputted to: "+path) return {'FINISHED'} # returns a dictionary with a single frame of animation def write_frame(context, object, frame): # make sure we're on the right frame context.scene.frame_set(frame) # get all the bones in the armature bones = object.pose.bones # get values from said bones body = convert_array(get_rotation(bones['body']), False) left_arm = convert_array(get_rotation(bones['left_arm']), False) right_arm = convert_array(get_rotation(bones['right_arm']), False) left_leg = convert_array(get_rotation(bones['left_leg']), False) right_leg = convert_array(get_rotation(bones['right_leg']), False) head = convert_array(get_rotation(bones['head']), True) location = [round(bones['root'].location[0], 2), round(bones['root'].location[1], 2), round(bones['root'].location[2], 2)] rotation = round(math.degrees(get_rotation(bones['root'])[1]), 2) # output found values to dictionary output = { "body": body, "left_arm": left_arm, "right_arm": right_arm, "left_leg": left_leg, "right_leg": right_leg, "head": head, "location": location, "rotation": rotation } return output # returns the rotation in euler, no matter what it was initially in def get_rotation(input): if input.rotation_mode == 'QUATERNION': return input.rotation_quaternion.to_euler() else: return input.rotation_euler # takes an array attained by armature.pose.bones[bone].rotation_euler, converts it to degrees, and does correct formulas. def convert_array(array, isHead): if isHead: new_array = [array[0]*-1, array[1]*-1, array[2]] else: new_array = [array[2], array[1], array[0]*-1] new_array[0] = round(math.degrees(new_array[0]), 2) new_array[1] = round(math.degrees(new_array[1]), 2) new_array[2] = round(math.degrees(new_array[2]), 2) return new_array # Only needed if you want to add into a dynamic menu def menu_func_export(self, context): self.layout.operator(operator_anim_export.bl_idname, text="Minecraft Animation (.mcanim)") def register(): bpy.types.INFO_MT_file_export.append(menu_func_export) def unregister(): bpy.types.INFO_MT_file_export.remove(menu_func_export) if __name__ == "__main__": register()
5270fd8590b0db70b57d80c3f96aa6bf2f4b6bb5
1ece2cecace68fb1f8879fbe705f615256bba77d
/src/web_mirror/_constants.py
b785a9cd9ad8586bd46d47fcfd619ae9946bece2
[ "MIT" ]
permissive
nuuuwan/web_mirror
7ac07d5ed2f11f2dc57bb5c3641311f08d6ffca7
52330f9869a2fbb95a9f5309d58e5d5953e6a693
refs/heads/main
2023-07-16T17:17:39.219621
2021-09-04T06:36:15
2021-09-04T06:36:15
402,963,316
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
"""Constants.""" CACHE_NAME = 'web_mirror' CACHE_TIMEOUT = 3600
936b3abfafeee8de92355161e81f2cf35625caf2
2d8d7fef8f914f1b2337ee5d6a2e7c61dab9ec4e
/基础知识/1.语法基础/13.dict字典-增删改查.py
8ea74ff8b009cb80334f8c2c6f4eb2ba593b1051
[]
no_license
kuaikang/python3
bb5bb8d807c4a8818b18f0d4e598232cc73ab3af
60ca72662c7a6e718190ffa6139a129c1412a3fb
refs/heads/master
2021-04-28T10:32:25.416550
2018-07-06T01:59:47
2018-07-06T01:59:47
122,068,697
13
11
null
null
null
null
UTF-8
Python
false
false
658
py
print("字典是key-value的数据类型".center(50, "-")) print("字典是无序的,key不能重复") info = {"stu1": "tom", "stu2": "jack", "stu3": "lucy"} print(info) # 添加 info["stu4"] = "bob" # 修改 info["stu1"] = "zhang" # 删除 # info.pop("stu2") # 标准删除方法 # del info["stu3"] # 查找 print('-----',info.get("stu11")) # 不存在的时候返回 # print(info["stu0"]) # 不存在时会报错 print(info) print() import sys for key in info.keys(): sys.stdout.write(key + " ") print() for val in info.values(): sys.stdout.write(val + " ") print() for key, val in info.items(): sys.stdout.write(key + "-->" + val + " ")
9b1336a598319774d6c7b2b0860e876c933a8cbc
c1fe97208afe479b7ae1ee67d69866a6911564ca
/Login/profilecreate/forms.py
99f047fe4e0523e89dce7b7d71637698624e0c1c
[]
no_license
jaindhairyahere/Python_Django
a0a46c57b6ca60d0942ae181fe28ea56bb1ee948
f170a2e38b78df698a02821a454a3baea0c358a6
refs/heads/master
2020-06-18T09:17:56.364928
2019-11-02T18:34:12
2019-11-02T18:34:12
196,249,108
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
from django import forms from django.contrib.auth.admin import User from .models import Alumni from django.core import validators def check_PhoneNumber(value): if len(value) != 10: raise forms.ValidationError("Not a phone Number") class UserForm(forms.ModelForm): password = forms.CharField(widget = forms.PasswordInput()) class Meta(): model = User fields = ('username','email','password',) class AlumniForm(forms.ModelForm): class Meta(): model = Alumni exclude = ('user_model',) class LoginForm(forms.Form): username = forms.CharField(max_length=264) password = forms.CharField(widget = forms.PasswordInput())
e946bbe4ccbf8914231a25812913ff77829d1f28
545afb3cfe89f82b558faa5b5b28c28b8e3effce
/venv/Lib/site-packages/grpc/_plugin_wrapping.py
6c925826d6f4cb8b3a86acd5ac23cf15ebe0b1e0
[ "MIT" ]
permissive
parthpankajtiwary/keras-groundup
24ad45a4b872e6d77fff8a6f4a3a6d60124a0628
0df0844e7d9dca741fad0965761a12f72ee51f07
refs/heads/master
2022-11-09T22:34:35.716466
2019-10-01T11:01:59
2019-10-01T11:01:59
210,914,101
0
1
MIT
2022-10-25T06:47:55
2019-09-25T18:31:49
Python
UTF-8
Python
false
false
3,527
py
# Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import logging import threading import grpc from grpc import _common from grpc._cython import cygrpc _LOGGER = logging.getLogger(__name__) class _AuthMetadataContext( collections.namedtuple('AuthMetadataContext', ( 'service_url', 'method_name', )), grpc.AuthMetadataContext): pass class _CallbackState(object): def __init__(self): self.lock = threading.Lock() self.called = False self.exception = None class _AuthMetadataPluginCallback(grpc.AuthMetadataPluginCallback): def __init__(self, state, callback): self._state = state self._callback = callback def __call__(self, metadata, error): with self._state.lock: if self._state.exception is None: if self._state.called: raise RuntimeError( 'AuthMetadataPluginCallback invoked more than once!') else: self._state.called = True else: raise RuntimeError( 'AuthMetadataPluginCallback raised exception "{}"!'.format( self._state.exception)) if error is None: self._callback(metadata, cygrpc.StatusCode.ok, None) else: self._callback(None, cygrpc.StatusCode.internal, _common.encode(str(error))) class _Plugin(object): def __init__(self, metadata_plugin): self._metadata_plugin = metadata_plugin def __call__(self, service_url, method_name, callback): context = _AuthMetadataContext( _common.decode(service_url), _common.decode(method_name)) callback_state = _CallbackState() try: self._metadata_plugin(context, _AuthMetadataPluginCallback( callback_state, callback)) except Exception as exception: # pylint: disable=broad-except _LOGGER.exception( 'AuthMetadataPluginCallback "%s" raised exception!', self._metadata_plugin) with callback_state.lock: callback_state.exception = exception if callback_state.called: return callback(None, cygrpc.StatusCode.internal, _common.encode(str(exception))) def metadata_plugin_call_credentials(metadata_plugin, name): if name is None: try: effective_name = metadata_plugin.__name__ except AttributeError: effective_name = metadata_plugin.__class__.__name__ else: effective_name = name return grpc.CallCredentials( cygrpc.MetadataPluginCallCredentials( _Plugin(metadata_plugin), _common.encode(effective_name)))
7a4ccc2502dab8ff8f1958d5055642f4c92c18ce
bd9a09a3f1a8b2b5166c540ada93cc5b30591605
/scanner/plugins/cms/piaoyou/piaoyou_six2_sqli.py
eec921a1b177ff73dbc2f527350a99da77615bf5
[ "MIT" ]
permissive
iceyhexman/onlinetools
3cb6e349fc30c515f96429abeab5fbcc430ac0cc
61f2df7ff8e6ad97ca7901728c3ab749679a2bd0
refs/heads/master
2023-08-06T19:31:51.328657
2022-10-28T04:01:38
2022-10-28T04:01:38
119,565,769
1,662
358
MIT
2023-03-31T14:34:13
2018-01-30T16:51:46
Python
UTF-8
Python
false
false
1,390
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: 票友机票预订系统6处SQL注入2(绕过) referer: http://www.wooyun.org/bugs/wooyun-2015-0116851 author: Lucifer description: multi sqli。 ''' import sys import requests class piaoyou_six2_sqli_BaseVerify: def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50" } urls = ["/Parmset/sms_mb_edit.aspx?id=1", "/Sales/meb_edit.aspx?id=1", "/Sales/meb_his.aspx?id=1", "/Other/hotel_edit.aspx?id=1", "/Visa/visa_edit.aspx?id=1", "/Visa/gjqz_add.aspx?id=214"] try: for url in urls: vulnurl = self.url + url + "AnD/**/1=Sys.Fn_VarBinToHexStr(HashBytes(%27Md5%27,%271234%27))--" req = requests.get(vulnurl, headers=headers, timeout=10, verify=False) if r"81dc9bdb52d04dc20036dbd8313ed055" in req.text: return "[+]存在票友机票预订系统SQL注入漏洞(绕过)...(高危)\tpayload: "+vulnurl except: return "[-]connect timeout" if __name__ == "__main__": testVuln = piaoyou_six2_sqli_BaseVerify(sys.argv[1]) testVuln.run()
f0af40b807555df49c70d1410197dbfebf56faea
46d2bb5c6d2ea91ac8a3fda0168cc99501b1abe4
/middleware/client_test.py
23a21e179175a2942d8e6f0cd79747b4b0f65bdf
[ "Apache-2.0" ]
permissive
Time1ess/VES
2fe0a1c3371e243a377ad6a31df5d3b4651ddf4d
fe608b8ae469f81cc23b1ea30f02a1e68fac13ee
refs/heads/master
2021-01-18T21:36:21.864535
2016-06-15T12:21:42
2016-06-15T12:21:42
52,199,990
1
0
null
null
null
null
UTF-8
Python
false
false
1,793
py
#!/usr/bin/python # coding:utf-8 # Author: David # Email: [email protected] # Created: 2016-04-04 14:10 # Last modified: 2016-04-11 10:01 # Filename: client_test.py # Description: import socket import time import sys import select from random import randint def Check_Identity(data): if data == "VES": return True return False if not sys.argv[1]: name = raw_input("Enter type(v for video,d for display):") else: name = sys.argv[1] broad_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # broad_sock.bind(('', 8089)) data = None addr = None while True: data, addr = broad_sock.recvfrom(4096) if Check_Identity(data) is True: break broad_sock.close() host = addr[0] print 'Get broadcast message from host:', host port = 8090 if name == "v" else 8092 ss = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # send socket ss.connect((host, port)) client = None if name == "v": sr = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sr.bind(('', 8091)) sr.listen(1) client, addr = sr.accept() print 'Get connected from middleware' disconnected = False while True: if name == "v" and not disconnected: rs, ws, es = select.select([client], [], [], 0.1) for r in rs: try: msg = r.recv(4096) disconnected = not msg except: disconnected = True if r is client: if disconnected: print 'Middleware system disconnectd.' break else: print '[Middleware msg] ', msg try: msg = repr(tuple([randint(0, 360) for x in xrange(3)])) ss.send(msg) except: print 'Socket close.' break time.sleep(0.1)
5e9365cd8fcdc3c33017a4fb7808aa0e14bf48f8
2e3e256bcc0086a61cbb0e082dc61290196e35d2
/dragon/common/custom_backend_auth.py
c06f172b49bf3edcc9fa4ad9cf008c2682719502
[ "Apache-2.0" ]
permissive
miradam/openstack-workload-disaster-recovery
79dcdb15ebf95d89157751c750a5dbab1557b942
854a3952bb9278cc08017ada97ff150b12b1c687
refs/heads/master
2020-03-24T15:36:46.808591
2016-12-15T12:32:17
2016-12-15T12:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Middleware for authenticating against custom backends. """ import logging from dragon.openstack.common import local from dragon.rpc import client as rpc_client import webob.exc LOG = logging.getLogger(__name__) class AuthProtocol(object): def __init__(self, app, conf): self.conf = conf self.app = app def __call__(self, env, start_response): """ Handle incoming request. Authenticate send downstream on success. Reject request if we can't authenticate. """ LOG.debug('Authenticating user token') context = local.store.context engine = rpc_client.EngineClient() authenticated = engine.authenticated_to_backend(context) if authenticated: return self.app(env, start_response) else: return self._reject_request(env, start_response) def _reject_request(self, env, start_response): """ Redirect client to auth server. :param env: wsgi request environment :param start_response: wsgi response callback :returns HTTPUnauthorized http response """ resp = webob.exc.HTTPUnauthorized("Backend authentication failed", []) return resp(env, start_response) def filter_factory(global_conf, **local_conf): conf = global_conf.copy() conf.update(local_conf) def auth_filter(app): return AuthProtocol(app, conf) return auth_filter
a216e6e27226559c893a544e64f063b65a73dc33
e3bbbb5018baad3cd2a2daf10e315a2e12aec974
/ichnaea/async/schedule.py
129cd2fffdcfed4b50627ec2d05e94d081463a88
[ "Apache-2.0" ]
permissive
ingle/ichnaea
5980de0532b012af7e48fa89bad7516adb84d24e
ed467538b6e61cf7c7921cd4aacb32ee039d13aa
refs/heads/master
2021-01-17T14:23:32.369530
2016-01-12T20:29:38
2016-01-12T20:29:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,476
py
""" Contains the `Celery Beat schedule <http://celery.rtfd.org/en/latest/userguide/periodic-tasks.html>`_. """ from datetime import timedelta from celery.schedules import crontab from ichnaea.models import ( CellShard, DataMap, WifiShard, ) def celerybeat_schedule(app_config): """Return the celery beat schedule as a dictionary.""" sections = app_config.sections() schedule = { # Monitoring 'monitor-queue-size': { 'task': 'ichnaea.data.tasks.monitor_queue_size', 'schedule': timedelta(seconds=60), 'options': {'expires': 57}, }, 'monitor-api-users': { 'task': 'ichnaea.data.tasks.monitor_api_users', 'schedule': timedelta(seconds=600), 'options': {'expires': 570}, }, 'monitor-api-key-limits': { 'task': 'ichnaea.data.tasks.monitor_api_key_limits', 'schedule': timedelta(seconds=600), 'options': {'expires': 570}, }, # Statistics 'update-statcounter': { 'task': 'ichnaea.data.tasks.update_statcounter', 'args': (1, ), 'schedule': crontab(minute=3), 'options': {'expires': 2700}, }, 'update-statregion': { 'task': 'ichnaea.data.tasks.update_statregion', 'schedule': crontab(minute=5), 'options': {'expires': 2700}, }, # Data Pipeline 'schedule-export-reports': { 'task': 'ichnaea.data.tasks.schedule_export_reports', 'schedule': timedelta(seconds=8), 'options': {'expires': 15}, }, 'update-cellarea': { 'task': 'ichnaea.data.tasks.update_cellarea', 'schedule': timedelta(seconds=8), 'args': (100, ), 'options': {'expires': 15}, }, 'update-cellarea-ocid': { 'task': 'ichnaea.data.tasks.update_cellarea_ocid', 'schedule': timedelta(seconds=9), 'args': (100, ), 'options': {'expires': 15}, }, 'update-score': { 'task': 'ichnaea.data.tasks.update_score', 'args': (250, ), 'schedule': timedelta(seconds=9), 'options': {'expires': 10}, }, } for shard_id in CellShard.shards().keys(): schedule.update({ 'update-cell-' + shard_id: { 'task': 'ichnaea.data.tasks.update_cell', 'schedule': timedelta(seconds=7), 'args': (500, shard_id), 'options': {'expires': 10}, } }) for shard_id in DataMap.shards().keys(): schedule.update({ 'update-datamap-' + shard_id: { 'task': 'ichnaea.data.tasks.update_datamap', 'args': (500, shard_id), 'schedule': timedelta(seconds=14), 'options': {'expires': 20}, }, }) for shard_id in WifiShard.shards().keys(): schedule.update({ 'update-wifi-' + shard_id: { 'task': 'ichnaea.data.tasks.update_wifi', 'schedule': timedelta(seconds=6), 'args': (500, shard_id), 'options': {'expires': 10}, } }) if 'assets' in sections and app_config.get('assets', 'bucket', None): # only configure tasks if target bucket is configured schedule.update({ 'cell-export-full': { 'task': 'ichnaea.data.tasks.cell_export_full', 'schedule': crontab(hour=0, minute=13), 'options': {'expires': 39600}, }, 'cell-export-diff': { 'task': 'ichnaea.data.tasks.cell_export_diff', 'schedule': crontab(minute=3), 'options': {'expires': 2700}, }, }) if 'import:ocid' in sections: schedule.update({ 'monitor-ocid-import': { 'task': 'ichnaea.data.tasks.monitor_ocid_import', 'schedule': timedelta(seconds=600), 'options': {'expires': 570}, }, 'cell-import-external': { 'task': 'ichnaea.data.tasks.cell_import_external', 'args': (True, ), 'schedule': crontab(minute=52), 'options': {'expires': 2700}, }, }) return schedule
8dd2e0625d7cddc0360585244105d243400bfd8c
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/6010/504006010.py
f720a213c867cbaeb745d5d7e34ed4a67527b198
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
844
py
from bots.botsconfig import * from records006010 import recorddefs syntax = { 'version': '00601', 'functionalgroup': 'CC', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGN', MIN: 1, MAX: 1}, {ID: 'N1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 2}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'DTP', MIN: 0, MAX: 99999}, {ID: 'LM', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LQ', MIN: 1, MAX: 99999}, ]}, ]}, {ID: 'REF', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'DTP', MIN: 0, MAX: 99999}, {ID: 'MSG', MIN: 0, MAX: 99999}, {ID: 'LM', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LQ', MIN: 1, MAX: 99999}, ]}, ]}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
9c0840e858c444ea844208b24a2948f9ad7256f6
aad4481e8a54e311982d638c1b42a86180726970
/examples/event-loop-stuff/timeout-clock.py
b5a2076df4b5ee032662cafab72effec9061d0ae
[ "Unlicense", "Zlib" ]
permissive
jiangguoqing/tkinter-tutorial
5639b11cfc2f339df3776410dbd7078ee07fac54
c6fee61ee915cf0894125e5b5eeb7249237d3a6b
refs/heads/master
2021-05-05T12:02:13.912298
2017-06-18T10:51:33
2017-06-18T10:51:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
import tkinter as tk import time # this must return soon after starting this def change_text(): label['text'] = time.asctime() # now we need to run this again after one second, there's no better # way to do this than timeout here root.after(1000, change_text) root = tk.Tk() label = tk.Label(root, text='0') label.pack() change_text() # don't forget to actually start it :) root.geometry('200x200') root.mainloop()
cd515ac2fb82afb70c385e634c68f7f523290d90
1097ed333a4000634e68a590ee6ffc6129ae61e3
/287.寻找重复数.py
f7574fcf8c3ef85cc24ac1beab25979bd36b19d0
[ "MIT" ]
permissive
AutuanLiu/Code-Storm2019
1bbe890c7ca0d033c32348173bfebba612623a90
8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30
refs/heads/master
2020-04-23T07:03:08.975232
2019-10-24T08:56:26
2019-10-24T08:56:26
170,995,032
1
0
null
null
null
null
UTF-8
Python
false
false
1,679
py
# # @lc app=leetcode.cn id=287 lang=python3 # # [287] 寻找重复数 # # https://leetcode-cn.com/problems/find-the-duplicate-number/description/ # # algorithms # Medium (60.60%) # Likes: 246 # Dislikes: 0 # Total Accepted: 17.2K # Total Submissions: 28.4K # Testcase Example: '[1,3,4,2,2]' # # 给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 # n),可知至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。 # # 示例 1: # # 输入: [1,3,4,2,2] # 输出: 2 # # # 示例 2: # # 输入: [3,1,3,4,2] # 输出: 3 # # # 说明: # # # 不能更改原数组(假设数组是只读的)。 # 只能使用额外的 O(1) 的空间。 # 时间复杂度小于 O(n^2) 。 # 数组中只有一个重复的数字,但它可能不止重复出现一次。 # # # # 首先进行排序 # 遍历数组 如果下一个位置的数值和当前值相等 则重复 # class Solution: # def findDuplicate(self, nums: List[int]) -> int: # nums = sorted(nums) # 这里开辟了新的空间 存储副本 # n = len(nums) # for i in range(n-1): # if nums[i] == nums[i + 1]: # return nums[i] # return -1 class Solution(object): def findDuplicate(self, nums): slow = 0 fast = 0 while True: slow = nums[slow] fast = nums[nums[fast]] if slow == fast: break finder = 0 while True: slow = nums[slow] finder = nums[finder] if slow == finder: return slow
56bb1b8a3d238c6c89226c5276b91e8649ac0852
660e3a2bb5f127908549d52ebc62d0d67725f832
/Algorithm_python/최소반복.py
289ccfc40280f63b62c7f53a788273646c84b529
[]
no_license
dygksquf5/python_study
b56f8548bea7e31a484301bb97ddefe44d931c80
282126b0104dae9f9f8f63e613cc968a2f998ef1
refs/heads/master
2023-02-21T03:46:16.673962
2021-01-24T14:08:47
2021-01-24T14:08:47
294,593,923
0
0
null
null
null
null
UTF-8
Python
false
false
742
py
# 주어진 수가 커서, 나머지 테스트케이스는 전부 에러ㅓㅓㅓ def solution(arr): answer = 0 id = [0] * len(set(str(arr))) visited = [False] * len(id) for i in range(len(arr)): if not visited[arr[i] - 1]: id[arr[i] - 1] = i visited[arr[i] - 1] = True continue if visited[arr[i] - 1]: answer = min(i - id[arr[i] - 1], id[arr[i] - 1]) id[arr[i] - 1] = max(i - id[arr[i] - 1], id[arr[i] - 1]) if answer == 0: return -1 else: return answer # answer = [] # id = collections.defaultdict(list) # for i in sorted(set(arr)): # id[i] = [dup for dup in range(len(arr)) if arr[dup] == i]
eb884160b46e9b642bf272c7dd14832b474646d7
b5e4958bd1c4770297108947e7b7441020b2e9cc
/topi/tests/python_cpp/test_topi_relu.py
f214266351210bcd11b71be64cdebdfc98b25ba6
[ "Apache-2.0" ]
permissive
Markz2z/tvm
06a20dcdf76111b64242940323ba998432ffbffb
3921b938c2a14017c2624f149983e86a7f9a4e94
refs/heads/master
2021-09-07T22:13:37.234511
2018-02-27T23:14:58
2018-02-27T23:14:58
124,998,633
1
0
Apache-2.0
2018-03-13T05:45:19
2018-03-13T05:45:19
null
UTF-8
Python
false
false
2,070
py
"""Test code for relu activation""" import os import numpy as np import tvm import topi from topi.util import get_const_tuple def verify_relu(m, n, dtype): A = tvm.placeholder((m, n), name='A', dtype=dtype) B = topi.cpp.nn.relu(A) assert B.dtype == dtype a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) ctx = tvm.context(device, 0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) foo = tvm.build(s, [A, B], device, name="relu") foo(a, b) np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) for device in ['cuda', 'opencl', 'metal', 'rocm']: check_device(device) def verify_leaky_relu(m, alpha): A = tvm.placeholder((m,), name='A') B = topi.cpp.nn.leaky_relu(A, alpha) device = "llvm" target = topi.cpp.TEST_create_target(device) s = topi.cpp.generic.schedule_injective(target, [B]) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) + a_np * (a_np < 0) * alpha ctx = tvm.cpu(0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) foo = tvm.build(s, [A, B], device, name="leaky_relu") foo(a, b) np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) def test_relu(): for dtype in ['float32', 'float64', 'int32', 'int16', 'int8', 'int64']: verify_relu(10, 128, dtype) def test_leaky_relu(): verify_leaky_relu(100, 0.1) if __name__ == "__main__": test_relu() test_leaky_relu()
9855a9a453ba14cf06e3fe967deea374c8fe1a86
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-677.py
bb26289d2195905caac5c6473919fe4679455e63
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
22,911
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False $ClassBodyMember def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
ed3556874e717bbaf477fea4cadc0f06772d039c
5e324af46c554b88b97ee26886b05c88457ff0f5
/core/settings/production.py
0514fd109ac361f269a79a6f0a4dcb5a3202ba61
[]
no_license
doubleclickdetroit/dindintonight
1bda8851e49782d4dc16ca77d46e4b1f431c2b52
9769e1a96730b02511d25af8828b075dff5c35b5
refs/heads/master
2016-08-04T22:01:08.083566
2014-07-26T18:58:58
2014-07-26T18:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,383
py
"""Production settings and globals.""" from os import environ from base import * # Normally you should not import ANYTHING from Django directly # into your settings, but ImproperlyConfigured is an exception. from django.core.exceptions import ImproperlyConfigured def get_env_setting(setting): """ Get the environment setting or return exception """ try: return environ[setting] except KeyError: error_msg = "Set the %s env variable" % setting raise ImproperlyConfigured(error_msg) ########## HOST CONFIGURATION # See: https://docs.djangoproject.com/en/1.5/releases/1.5/#allowed-hosts-required-in-production ALLOWED_HOSTS = [] ########## END HOST CONFIGURATION ########## EMAIL CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = environ.get('EMAIL_HOST', 'smtp.gmail.com') # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-host-password EMAIL_HOST_PASSWORD = environ.get('EMAIL_HOST_PASSWORD', '') # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-host-user EMAIL_HOST_USER = environ.get('EMAIL_HOST_USER', '[email protected]') # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = environ.get('EMAIL_PORT', 587) # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-subject-prefix EMAIL_SUBJECT_PREFIX = '[%s] ' % SITE_NAME # See: https://docs.djangoproject.com/en/dev/ref/settings/#email-use-tls EMAIL_USE_TLS = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#server-email SERVER_EMAIL = EMAIL_HOST_USER ########## END EMAIL CONFIGURATION ########## DATABASE CONFIGURATION DATABASES = {} ########## END DATABASE CONFIGURATION ########## CACHE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = {} ########## END CACHE CONFIGURATION ########## SECRET CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = get_env_setting('SECRET_KEY') ########## END SECRET CONFIGURATION ########## STRIPE CREDIT CARD PROCESSING STRIPE_SECRET_KEY = 'sk_live_oTd6djTNRxCeURqgLUYgGLl3' STRIPE_PUBLISHABLE_KEY = 'pk_live_8zQjpc9a3HnrLCYVttDDKTMh' ########## END STRIPE CREDIT CARD PROCESSING
f1d0e4bc2bf2a727d168359cf8886cbca2f8e324
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20190406/example_tinyloop/06generator.py
d865c30ed0ec9c763671dcf57f05205d0cd393bb
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
240
py
def f(): x = yield 1 print("@", x) y = yield 2 print("@", y) return x, y itr = f() v = next(itr) print("!", v) v = itr.send([v]) print("!", v) try: print(itr.send([v])) except StopIteration as e: print(e.args)
43b6ce6cceabe1e527d08133bda8568d38084a2c
8156f7278a568531f808edfa3cb9cc64090eba17
/dmhy/getTracker.py
e56307b6feebcbc45cfbffcc4109d0bd8007886d
[]
no_license
DeSireFire/My_Spyder_Pool
8ef3cfad7911e9e66e0993fb3fa73d10d75e4a7d
ead5d90fd8d532c3f96fb02ac8a1aa15697d8196
refs/heads/master
2023-04-06T00:41:12.706009
2021-04-29T13:20:59
2021-04-29T13:20:59
109,140,291
3
0
null
null
null
null
UTF-8
Python
false
false
8,351
py
import requests URLS = { 'trackers_best':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_best.txt', 'trackers_all':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all.txt', 'trackers_all_udp':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all_udp.txt', 'trackers_all_http':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all_http.txt', 'trackers_all_https':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all_https.txt', 'trackers_all_ws':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all_ws.txt', 'trackers_best_ip':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_best_ip.txt', 'trackers_all_ip':'https://raw.githubusercontent.com/ngosang/trackerslist/master/trackers_all_ip.txt', } _header = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', } def getBest(URL,_header,_str = False): ''' 获取git上的Tracker,提高磁链的下载速度 :param URL: 字符串,请求的URL地址 :param _header: 字典,请求的网页头部 :param _str: 布尔值,是否将结果拼接成字符串。 :return: 根据变量_str,来决定试输出字符串还是列表 ''' _respone = requests.get(url=URL,headers=_header) if _str: print(''.join(list(map(lambda x: '&tr='+x,_respone.text.split())))) return ''.join(list(map(lambda x: '&tr='+x,_respone.text.split()))) else: print(list(map(lambda x: '&tr='+x,_respone.text.split()))) return list(map(lambda x: '&tr='+x,_respone.text.split())) if __name__ == '__main__': for k in URLS: getBest(URLS[k],_header,True) getBest(URLS[k],_header) # magnet:?xt=urn:btih:deade98152a7b4683204e02989b8c0aab5a05366&tr=udp://tracker.coppersurfer.tk:6969/announce&tr=udp://tracker.open-internet.nl:6969/announce&tr=udp://tracker.leechers-paradise.org:6969/announce&tr=udp://tracker.internetwarriors.net:1337/announce&tr=udp://tracker.opentrackr.org:1337/announce&tr=http://tracker.opentrackr.org:1337/announce&tr=udp://9.rarbg.to:2710/announce&tr=udp://9.rarbg.me:2710/announce&tr=udp://tracker.openbittorrent.com:80/announce&tr=udp://exodus.desync.com:6969/announce&tr=udp://tracker.torrent.eu.org:451/announce&tr=udp://tracker.tiny-vps.com:6969/announce&tr=udp://denis.stalker.upeer.me:6969/announce&tr=udp://tracker.cyberia.is:6969/announce&tr=udp://thetracker.org:80/announce&tr=udp://open.demonii.si:1337/announce&tr=udp://bt.xxx-tracker.com:2710/announce&tr=udp://explodie.org:6969/announce&tr=http://open.acgnxtracker.com:80/announce&tr=http://explodie.org:6969/announce&tr=udp://ipv4.tracker.harry.lu:80/announce&tr=udp://tracker.uw0.xyz:6969/announce&tr=http://tracker.bz:80/announce&tr=udp://tracker.moeking.me:6969/announce&tr=udp://tracker.iamhansen.xyz:2000/announce&tr=udp://tracker.filepit.to:6969/announce&tr=udp://tracker.filemail.com:6969/announce&tr=udp://torrentclub.tech:6969/announce&tr=udp://retracker.netbynet.ru:2710/announce&tr=http://vps02.net.orel.ru:80/announce&tr=http://tracker.tvunderground.org.ru:3218/announce&tr=http://torrentclub.tech:6969/announce&tr=http://t.nyaatracker.com:80/announce&tr=http://retracker.mgts.by:80/announce&tr=udp://tracker.supertracker.net:1337/announce&tr=udp://tracker.nyaa.uk:6969/announce&tr=https://tracker.fastdownload.xyz:443/announce&tr=https://t.quic.ws:443/announce&tr=http://torrent.nwps.ws:80/announce&tr=http://open.trackerlist.xyz:80/announce&tr=udp://zephir.monocul.us:6969/announce&tr=udp://tracker.trackton.ga:7070/announce&tr=udp://tracker-udp.gbitt.info:80/announce&tr=udp://retracker.sevstar.net:2710/announce&tr=udp://retracker.maxnet.ua:80/announce&tr=udp://retracker.baikal-telecom.net:2710/announce&tr=udp://retracker.akado-ural.ru:80/announce&tr=udp://pubt.in:2710/announce&tr=udp://home.penza.com.ru:6969/announce&tr=udp://carapax.net:6969/announce&tr=udp://bt.dy20188.com:80/announce&tr=https://tracker.vectahosting.eu:2053/announce&tr=https://tracker.parrotsec.org:443/announce&tr=https://tracker.gbitt.info:443/announce&tr=http://tracker.torrentyorg.pl:80/announce&tr=http://tracker.moxing.party:6969/announce&tr=http://tracker.gbitt.info:80/announce&tr=http://tracker.bt4g.com:2095/announce&tr=http://retracker.sevstar.net:2710/announce&tr=http://mail2.zelenaya.net:80/announce&tr=http://gwp2-v19.rinet.ru:80/announce&tr=http://carapax.net:6969/announce&tr=udp://tracker.msm8916.com:6969/announce&tr=udp://tracker.fixr.pro:6969/announce&tr=udp://packages.crunchbangplusplus.org:6969/announce&tr=udp://chihaya.toss.li:9696/announce&tr=https://1337.abcvg.info:443/announce&tr=http://t.acg.rip:6699/announce&tr=http://share.camoe.cn:8080/announce&tr=http://bt-tracker.gamexp.ru:2710/announce&tr=udp://tracker4.itzmx.com:2710/announce&tr=http://tracker4.itzmx.com:2710/announce&tr=http://tracker3.itzmx.com:6961/announce&tr=http://tracker2.itzmx.com:6961/announce&tr=http://tracker1.itzmx.com:8080/announce # magnet:?xt=urn:btih:547D64DEC379E0A5511C56065C75D7FE9E860BCB&tr=udp://tracker.coppersurfer.tk:6969/announce&tr=udp://tracker.open-internet.nl:6969/announce&tr=udp://tracker.leechers-paradise.org:6969/announce&tr=udp://tracker.internetwarriors.net:1337/announce&tr=udp://tracker.opentrackr.org:1337/announce&tr=http://tracker.opentrackr.org:1337/announce&tr=udp://9.rarbg.to:2710/announce&tr=udp://9.rarbg.me:2710/announce&tr=udp://tracker.openbittorrent.com:80/announce&tr=udp://exodus.desync.com:6969/announce&tr=udp://tracker.torrent.eu.org:451/announce&tr=udp://tracker.tiny-vps.com:6969/announce&tr=udp://denis.stalker.upeer.me:6969/announce&tr=udp://tracker.cyberia.is:6969/announce&tr=udp://thetracker.org:80/announce&tr=udp://open.demonii.si:1337/announce&tr=udp://bt.xxx-tracker.com:2710/announce&tr=udp://explodie.org:6969/announce&tr=http://open.acgnxtracker.com:80/announce&tr=http://explodie.org:6969/announce&tr=udp://ipv4.tracker.harry.lu:80/announce&tr=udp://tracker.uw0.xyz:6969/announce&tr=http://tracker.bz:80/announce&tr=udp://tracker.moeking.me:6969/announce&tr=udp://tracker.iamhansen.xyz:2000/announce&tr=udp://tracker.filepit.to:6969/announce&tr=udp://tracker.filemail.com:6969/announce&tr=udp://torrentclub.tech:6969/announce&tr=udp://retracker.netbynet.ru:2710/announce&tr=http://vps02.net.orel.ru:80/announce&tr=http://tracker.tvunderground.org.ru:3218/announce&tr=http://torrentclub.tech:6969/announce&tr=http://t.nyaatracker.com:80/announce&tr=http://retracker.mgts.by:80/announce&tr=udp://tracker.supertracker.net:1337/announce&tr=udp://tracker.nyaa.uk:6969/announce&tr=https://tracker.fastdownload.xyz:443/announce&tr=https://t.quic.ws:443/announce&tr=http://torrent.nwps.ws:80/announce&tr=http://open.trackerlist.xyz:80/announce&tr=udp://zephir.monocul.us:6969/announce&tr=udp://tracker.trackton.ga:7070/announce&tr=udp://tracker-udp.gbitt.info:80/announce&tr=udp://retracker.sevstar.net:2710/announce&tr=udp://retracker.maxnet.ua:80/announce&tr=udp://retracker.baikal-telecom.net:2710/announce&tr=udp://retracker.akado-ural.ru:80/announce&tr=udp://pubt.in:2710/announce&tr=udp://home.penza.com.ru:6969/announce&tr=udp://carapax.net:6969/announce&tr=udp://bt.dy20188.com:80/announce&tr=https://tracker.vectahosting.eu:2053/announce&tr=https://tracker.parrotsec.org:443/announce&tr=https://tracker.gbitt.info:443/announce&tr=http://tracker.torrentyorg.pl:80/announce&tr=http://tracker.moxing.party:6969/announce&tr=http://tracker.gbitt.info:80/announce&tr=http://tracker.bt4g.com:2095/announce&tr=http://retracker.sevstar.net:2710/announce&tr=http://mail2.zelenaya.net:80/announce&tr=http://gwp2-v19.rinet.ru:80/announce&tr=http://carapax.net:6969/announce&tr=udp://tracker.msm8916.com:6969/announce&tr=udp://tracker.fixr.pro:6969/announce&tr=udp://packages.crunchbangplusplus.org:6969/announce&tr=udp://chihaya.toss.li:9696/announce&tr=https://1337.abcvg.info:443/announce&tr=http://t.acg.rip:6699/announce&tr=http://share.camoe.cn:8080/announce&tr=http://bt-tracker.gamexp.ru:2710/announce&tr=udp://tracker4.itzmx.com:2710/announce&tr=http://tracker4.itzmx.com:2710/announce&tr=http://tracker3.itzmx.com:6961/announce&tr=http://tracker2.itzmx.com:6961/announce&tr=http://tracker1.itzmx.com:8080/announce
f0c660265b92498d1ba0c1172e8fe861bbba7312
4649cce3d8da661ddb204428e21f714a502d36f9
/src/ensae_teaching_cs/faq/faq_pandas.py
e7794b4e40526ab1f81f343648af19a2bd63b895
[ "MIT" ]
permissive
xugonglei/ensae_teaching_cs
10a7b97003e7d833dd0faaae939813bf1e134575
f06d4ce7ea24338b5b217f6c46ff7980eac7e653
refs/heads/master
2020-04-30T11:10:47.368520
2015-10-29T21:41:23
2015-10-29T21:41:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,936
py
# -*- coding: utf-8 -*- """ @file @brief Quelques problèmes récurrents avec `pandas <http://pandas.pydata.org/>`_. """ def read_csv(filepath_or_buffer, encoding="utf8", sep="\t", **args): """ Calls function `read_csv <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html?highlight=read_csv#pandas.read_csv>`_ with different defaults values. If the encoding is utf8 and the data is a file name, the function checks there is no BOM at the beginning. Otherwise, it uses the encoding ``utf-8-sig``. @param encoding encoding @param filepath_or_buffer filepath_or_buffer @param sep column separator @return DataFrame @FAQ(pandas___Caractères bizarres en utf8 et sous Windows (BOM) ?) .. index:: encoding, BOM, UTF8 Sous Windows, certains logiciels comme `Notepad <http://fr.wikipedia.org/wiki/Bloc-notes_%28Windows%29>`_ permettent d'enregister un fichier sous différents `encodings <http://en.wikipedia.org/wiki/Character_encoding>`_. Avec l'encoding `UTF8 <http://fr.wikipedia.org/wiki/UTF-8>`_, on a parfois un problème avec le premier caractère ``\\ufeff`` car Notepad ajoute ce qu'on appelle un `BOM <http://fr.wikipedia.org/wiki/Indicateur_d%27ordre_des_octets>`_. Par exemple :: import pandas df = pandas.read_csv("dataframe.txt",sep="\\t", encoding="utf8") print(df) Provoque une erreur des plus énervantes :: UnicodeEncodeError: 'charmap' codec can't encode character '\\ufeff' in position 0: character maps to <undefined> Pour contrecarrer ceci, il suffit de modifier l'encoding par `utf-8-sig <https://docs.python.org/3.4/library/codecs.html#encodings-and-unicode>`_ :: import pandas df = pandas.read_csv("dataframe.txt",sep="\\t", encoding="utf-8-sig") print(df) @endFAQ """ import pandas if isinstance(filepath_or_buffer, str): if encoding in ["utf8", "utf-8"]: try: df = pandas.read_csv( filepath_or_buffer, encoding=encoding, sep=sep, **args) if df.columns[0].startswith("\ufeff"): raise UnicodeError( "'charmap' codec can't encode characters in position 0-1325: character maps to <undefined>") return df except UnicodeError: df = pandas.read_csv( filepath_or_buffer, encoding="utf-8-sig", sep=sep, **args) return df except UnicodeDecodeError: df = pandas.read_csv( filepath_or_buffer, encoding="utf-8-sig", sep=sep, **args) return df else: return pandas.read_csv( filepath_or_buffer, encoding=encoding, sep=sep, **args) else: return pandas.read_csv( filepath_or_buffer, encoding=encoding, sep=sep, **args) def df_to_clipboard(df, **args): """ Copy a dataframe as csv text into the clipboard @param df dataframe @param sep by default the separator is ``\\t`` for this function until it is defined otherwise It relies on method `to_clipboard <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_clipboard.html>`_. @FAQ(pandas___Copier un dataframe dans le presse-papier - clipboard) Pour récupérer un dataframe dans Excel, on peut utiliser la méthode `to_excel <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_excel.html>`_ puis ouvrir le fichier dans Excel ou le copier dans le presse-papier et le coller dans une feuille ouverte dans Excel. C'est l'objet de la méthode `to_clipboard <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_clipboard.html>`_ :: df = pandas.DataFrame ( ... ) df.to_clipboard(sep="\\t") @endFAQ """ if "sep" in args: df.to_clipboard(**args) else: df.to_clipboard(sep="\t", **args) def df_equal(df1, df2): """ compares two dataframe and tells if they are equal @param df1 first dataframe @param df2 second dataframe @return boolean The function compare column one by one. It does not check the order of the columns is the same. It reorders the columns before doing the comparison. If you need more complex comparison, you can look into function `assert_frame_equal <https://github.com/pydata/pandas/blob/master/pandas/util/testing.py>`_. The function does not handle well NaN values because ``numpy.nan != numpy.nan`` is true. It also compares types: @FAQ(pandas___Comment comparer deux dataframe?) Ecrire ``df1 == df2`` ne compare pas deux dataframes entre deux car le sens n'est pas forcément le même pour tout le monde. Même si les valeurs sont les mêmes, est-ce l'ordre des colonnes est important ? Il faut donc le faire soi-même. Le code ci-dessus compare d'abord les dimensions, ensuite compare l'ordre des colonnes puis enfin les valeurs :: if df1.shape != df2.shape: return False l1 = list(df1.columns) l2 = list(df2.columns) l1.sort() l2.sort() if l1 != l2: return False df1 = df1[l1] df2 = df2[l2] t = (df1 == df2).all() s = set(t) return False not in s @endFAQ """ if df1.shape != df2.shape: return False l1 = list(df1.columns) l2 = list(df2.columns) l1.sort() l2.sort() if l1 != l2: return False df1 = df1[l1] df2 = df2[l2] s = set((df1.dtypes == df2.dtypes)) if False in s: return False s = set((df1 == df2).all()) return False not in s def groupby_topn(df, by_keys, sort_keys, ascending=True, n=1, as_index=True): """ takes the top n rows per group @param df dataframe @param by_keys rows will be grouped by these columns @param sort_keys rows will be sorted by these columns @param ascending parameter associated to sord function @param n n in top *n* @param as_index if False, remove the index after the group by @return result @FAQ(pandas___top n lignes avec pandas) Grouper puis garder les premières observations de ce groupe est un problème classique. Il n'existe pas de meilleure façon de le faire, cela dépend du nombre d'obervations par groupe. Le moyen le plus simple de le faire avec pandas est : * grouper les lignes * trier les lignes dans chaque groupe * garder les premières lignes dans chaque groupe Ceci donne :: df.groupby(by_keys) .apply(lambda x: x.sort(sort_keys, ascending=ascending).head(head)) .reset_index(drop=True) La dernière instruction supprimer l'index ce qui donne au dataframe final la même structure que le dataframe initial. .. runpython:: :showcode: import pandas l = [ dict(k1="a", k2="b", v=4, i=1), dict(k1="a", k2="b", v=5, i=1), dict(k1="a", k2="b", v=4, i=2), dict(k1="b", k2="b", v=1, i=2), dict(k1="b", k2="b", v=1, i=3)] df = pandas.DataFrame(l) df.groupby(["k1", "k2"]).apply(lambda x: x.sort(["v", "i"], ascending=True).head(1)) print(df) @endFAQ """ res = df.groupby(by_keys).apply(lambda x: x.sort( sort_keys, ascending=ascending).head(n)) if not as_index: res = res.reset_index(drop=True) return res
1a7add79983d9aaaa4ac9d383db387f438a20b30
3abe14e934f775aca6dba588a9da5c908808daec
/setuptools/tests/test_depends.py
e0cfa88049d7ab7e93b8af06cdac45ee96c0714d
[ "MIT" ]
permissive
IronLanguages/setuptools
e1d6d6aaf990a2691f79ce3a4ca21b87e2f10a1a
20aa9400b3d44df952c362217d3c5a1c3988467f
refs/heads/master
2020-03-19T04:21:15.955081
2018-06-02T13:26:55
2018-06-02T13:26:55
135,819,098
2
1
MIT
2018-06-02T13:17:01
2018-06-02T13:17:01
null
UTF-8
Python
false
false
374
py
import sys from setuptools import depends class TestGetModuleConstant: def test_basic(self): """ Invoke get_module_constant on a module in the test package. """ mod_name = 'setuptools.tests.mod_with_constant' val = depends.get_module_constant(mod_name, 'value') assert val == 'three, sir!' assert 'setuptools.tests.mod_with_constant' not in sys.modules
c03e87ec7816e07b685894a92fa3274d5414db6c
e80393d0e32358d68e60b5119406c654d2373e1f
/encoding/models/aca2.py
83cbbae9f07d7dbe332b8679537ef97e0f8d8c86
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
yougoforward/Fast_psaa
3e333fb31743bda7684cc0bdae378bf40d839f63
68e99cd5bcf3bf5ab45ea604c3898fabc458c020
refs/heads/master
2022-11-04T02:01:03.694010
2019-11-30T07:53:01
2019-11-30T07:53:01
224,800,023
1
1
NOASSERTION
2022-10-26T23:53:43
2019-11-29T07:27:43
Python
UTF-8
Python
false
false
7,162
py
from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from .mask_softmax import Mask_Softmax from .fcn import FCNHead from .base import BaseNet __all__ = ['ACA2Net', 'get_aca2net'] class ACA2Net(BaseNet): def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs): super(ACA2Net, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs) self.head = ACA2NetHead(2048, nclass, norm_layer, se_loss, jpu=kwargs['jpu'], up_kwargs=self._up_kwargs) if aux: self.auxlayer = FCNHead(1024, nclass, norm_layer) def forward(self, x): _, _, h, w = x.size() _, _, c3, c4 = self.base_forward(x) x = list(self.head(c4)) x[0] = F.interpolate(x[0], (h, w), **self._up_kwargs) if self.aux: auxout = self.auxlayer(c3) auxout = F.interpolate(auxout, (h, w), **self._up_kwargs) x.append(auxout) return tuple(x) class ACA2NetHead(nn.Module): def __init__(self, in_channels, out_channels, norm_layer, se_loss, jpu=False, up_kwargs=None, atrous_rates=(12, 24, 36)): super(ACA2NetHead, self).__init__() self.se_loss = se_loss inter_channels = in_channels // 4 # self.conv5c = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), # norm_layer(inter_channels), # nn.ReLU(inplace=True)) self.sec = guided_SE_CAM_Module(in_channels, inter_channels, norm_layer) self.conv5e = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 1, padding=0, bias=False), norm_layer(inter_channels), nn.ReLU(True)) # self.conv5c2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), # norm_layer(inter_channels), # nn.ReLU(inplace=True)) self.sec2 = guided_SE_CAM_Module(in_channels, inter_channels, norm_layer) self.conv5e2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 1, padding=0, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv8 = nn.Sequential(nn.Dropout2d(0.1), nn.Conv2d(512, out_channels, 1)) self.gap = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Conv2d(inter_channels, inter_channels, 1), nn.Sigmoid()) if self.se_loss: self.selayer = nn.Linear(inter_channels, out_channels) def forward(self, x): # sec # feat = self.conv5c(x) sec_feat = self.sec(x) sec_feat = self.conv5e(sec_feat) # feat2 = self.conv5c2(x) sec_feat2 = self.sec2(x) sec_feat2 = self.conv5e2(sec_feat2) feat_sum = sec_feat + sec_feat2 if self.se_loss: gap_feat = self.gap(feat_sum) gamma = self.fc(gap_feat) outputs = [self.conv8(F.relu_(feat_sum + feat_sum * gamma))] outputs.append(self.selayer(torch.squeeze(gap_feat))) else: outputs = [self.conv8(feat_sum)] return tuple(outputs) def get_aca2net(dataset='pascal_voc', backbone='resnet50', pretrained=False, root='~/.encoding/models', **kwargs): # infer number of classes from ..datasets import datasets model = ACA2Net(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs) if pretrained: raise NotImplementedError return model class guided_CAM_Module(nn.Module): """ Position attention module""" # Ref from SAGAN def __init__(self, in_dim, out_dim): super(guided_CAM_Module, self).__init__() self.chanel_in = in_dim self.chanel_out = out_dim self.query_conv = nn.Sequential( nn.Conv2d(in_channels=in_dim, out_channels=out_dim, kernel_size=1, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU()) self.key_conv = nn.Sequential( nn.Conv2d(in_channels=in_dim, out_channels=out_dim, kernel_size=1, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU()) self.value_conv = nn.Sequential( nn.Conv2d(in_channels=in_dim, out_channels=out_dim, kernel_size=1, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU()) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self,x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width = x.size() proj_query = self.query_conv(x).view(m_batchsize, self.chanel_out, -1) proj_key = self.key_conv(x).view(m_batchsize, self.chanel_out, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = self.value_conv(x) out = torch.bmm(attention, proj_value.view(m_batchsize, self.chanel_out, -1)) out = out.view(m_batchsize, self.chanel_out, height, width) out = self.gamma*out + proj_value return out class SE_Module(nn.Module): """ Channel attention module""" def __init__(self, in_dim, out_dim): super(SE_Module, self).__init__() self.se = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(in_dim, in_dim // 16, kernel_size=1, padding=0, dilation=1, bias=True), nn.ReLU(), nn.Conv2d(in_dim // 16, out_dim, kernel_size=1, padding=0, dilation=1, bias=True), nn.Sigmoid() ) def forward(self, x): out = self.se(x) return out class guided_SE_CAM_Module(nn.Module): """ Channel attention module""" def __init__(self, in_dim, out_dim, norm_layer): super(guided_SE_CAM_Module, self).__init__() self.guided_cam = guided_CAM_Module(in_dim, out_dim) self.project = nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=1, padding=0, dilation=1, bias=False), norm_layer(out_dim), nn.ReLU(True), ) self.se = SE_Module(in_dim, out_dim) self.relu = nn.ReLU() def forward(self, x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ gcam = self.guided_cam(x) bottle = self.project(x) se_x = self.se(x) se_bottle = se_x * bottle + bottle # out = torch.cat([gcam, se_bottle], dim=1) out = self.relu(se_bottle+gcam) return out
74181cfa74ae35c7c13033e73dd6978c8ffce412
07f837d8c5236fe5e75ef510cd296814452370ce
/py/h2o_jobs.py
311baeb46561a756eefb1ed044efe40f6157e30d
[ "Apache-2.0" ]
permissive
vkuznet/h2o
6f9006a5186b964bac266981d9082aec7bc1067c
e08f7014f228cbaecfb21f57379970e6a3ac0756
refs/heads/master
2021-08-28T11:37:52.099953
2021-08-10T22:43:34
2021-08-10T22:43:34
20,032,996
0
0
Apache-2.0
2021-08-10T22:43:35
2014-05-21T18:46:27
Java
UTF-8
Python
false
false
9,555
py
import time, sys import h2o, h2o_browse as h2b def pollStatsWhileBusy(timeoutSecs=300, pollTimeoutSecs=15, retryDelaySecs=5): busy = True trials = 0 start = time.time() polls = 0 statSum = {} # just init for worst case 64 nodes? lastUsedMemBytes = [1 for i in range(64)] while busy: polls += 1 # get utilization and print it # any busy jobs a = h2o.nodes[0].jobs_admin(timeoutSecs=60) busy = False for j in a['jobs']: if j['end_time']=='' and not (j['cancelled'] or (j['result'].get('val', None)=='CANCELLED')): busy = True h2o.verboseprint("Still busy") break cloudStatus = h2o.nodes[0].get_cloud(timeoutSecs=timeoutSecs) nodes = cloudStatus['nodes'] for i,n in enumerate(nodes): # check for drop in tot_mem_bytes, and report as "probably post GC" totMemBytes = n['tot_mem_bytes'] maxMemBytes = n['max_mem_bytes'] freeMemBytes = n['free_mem_bytes'] usedMemBytes = totMemBytes - freeMemBytes availMemBytes = maxMemBytes - usedMemBytes print 'Node %s:' % i, \ 'num_cpus:', n['num_cpus'],\ 'my_cpu_%:', n['my_cpu_%'],\ 'sys_cpu_%:', n['sys_cpu_%'],\ 'system_load:', n['system_load'],\ 'tot_mem_bytes: {:,}'.format(totMemBytes),\ 'max_mem_bytes: {:,}'.format(maxMemBytes),\ 'free_mem_bytes: {:,}'.format(freeMemBytes),\ 'usedMemBytes: {:,}'.format(usedMemBytes) decrease = round((0.0 + lastUsedMemBytes[i] - usedMemBytes) / lastUsedMemBytes[i], 3) if decrease > .05: print print "\nProbably GC at Node {:}: usedMemBytes decreased by {:f} pct.. {:,} {:,}".format(i, 100 * decrease, lastUsedMemBytes[i], usedMemBytes) lastUsedMemBytes[i] = usedMemBytes # don't update lastUsedMemBytes if we're decreasing if usedMemBytes > lastUsedMemBytes[i]: lastUsedMemBytes[i] = usedMemBytes # sum all individual stats for stat in n: if stat in statSum: try: statSum[stat] += n[stat] except TypeError: # raise Exception("statSum[stat] should be number %s %s" % (statSum[stat], stat, n[stat])) print "ERROR: statSum[stat] should be number %s %s %s" % (statSum[stat], stat, n[stat]) # do nothing else: try: statSum[stat] = n[stat] + 0.0 except TypeError: pass # ignore non-numbers trials += 1 if trials%5 == 0: h2o.check_sandbox_for_errors() time.sleep(retryDelaySecs) if ((time.time() - start) > timeoutSecs): raise Exception("Timeout while polling in pollStatsWhileBusy: %s seconds" % timeoutSecs) # now print man print "Did %s polls" % polls statMean = {} print "Values are summed across all nodes (cloud members), so divide by node count" for s in statSum: statMean[s] = round((statSum[s] + 0.0) / polls, 2) print "per poll mean", s + ':', statMean[s] return statMean # statMean['tot_mem_bytes'], # statMean['num_cpus'], # statMean['my_cpu_%'], # statMean['sys_cpu_%'], # statMean['system_load'] # poll the Jobs queue and wait if not all done. # Return matching keys to a pattern for 'destination_key" # for a job (model usually) # FIX! the pattern doesn't limit the jobs you wait for (sounds like it does) # I suppose it's rare that we'd want to wait for a subset of jobs, but lets # 'key' 'description' 'destination_key' could all be interesting things you want to pattern match agains? # what the heck, just look for a match in any of the 3 (no regex) # if pattern is not None, only stall on jobs that match the pattern (in any of those 3) def pollWaitJobs(pattern=None, errorIfCancelled=False, timeoutSecs=60, pollTimeoutSecs=60, retryDelaySecs=5, benchmarkLogging=None, stallForNJobs=None): wait = True waitTime = 0 ignoredJobs = set() while (wait): a = h2o.nodes[0].jobs_admin(timeoutSecs=pollTimeoutSecs) h2o.verboseprint("jobs_admin():", h2o.dump_json(a)) jobs = a['jobs'] busy = 0 for j in jobs: cancelled = j['cancelled'] or (j['result'].get('val', None)=='CANCELLED') description = j['description'] destination_key = j['destination_key'] end_time = j['end_time'] key = j['key'] progress = j['progress'] # has exception and val? result = j['result'] start_time = j['start_time'] # for now, don't ignore any exceptions if 'exception' in result and result['exception']: h2o.check_sandbox_for_errors() msg = "ERROR: pollWaitJobs found a job with a exception result when it shouldn't have:\n %s" % h2o.dump_json(j) raise Exception(msg) if result: # ignore if 'val' is 'OK' if 'val' in result and result['val'] == 'OK': pass else: print "non-empty result: %s for %s" % (result, key) if errorIfCancelled and cancelled: h2o.check_sandbox_for_errors() print ("ERROR: not stopping, but: pollWaitJobs found a cancelled job when it shouldn't have:\n %s" % h2o.dump_json(j)) print ("Continuing so maybe a json response will give more info") ### h2o.verboseprint(j) # don't include cancelled jobs here elif end_time=='' and not cancelled: if not pattern: # always print progress if busy job (no pattern used print "time:", time.strftime("%I:%M:%S"), "progress:", progress, destination_key h2o.verboseprint("description:", description, "end_time:", end_time) busy +=1 h2o.verboseprint("pollWaitJobs: found a busy job, now: %s" % busy) else: if (pattern in key) or (pattern in destination_key) or (pattern in description): ## print "description:", description, "end_time:", end_time busy += 1 h2o.verboseprint("pollWaitJobs: found a pattern-matched busy job, now %s" % busy) # always print progress if pattern is used and matches print "time:", time.strftime("%I:%M:%S"), "progress:", progress, destination_key # we only want to print the warning message once elif key not in ignoredJobs: jobMsg = "%s %s %s" % (key, description, destination_key) h2o.verboseprint(" %s job in progress but we're ignoring it. Doesn't match pattern." % jobMsg) # I guess "key" is supposed to be unique over all time for a job id? ignoredJobs.add(key) if stallForNJobs: waitFor = stallForNJobs else: waitFor = 0 print " %s jobs in progress." % busy, "Waiting until %s in progress." % waitFor wait = busy > waitFor if not wait: break ### h2b.browseJsonHistoryAsUrlLastMatch("Jobs") if (wait and waitTime > timeoutSecs): print h2o.dump_json(jobs) raise Exception("Some queued jobs haven't completed after", timeoutSecs, "seconds") sys.stdout.write('.') sys.stdout.flush() time.sleep(retryDelaySecs) waitTime += retryDelaySecs # any time we're sitting around polling we might want to save logging info (cpu/disk/jstack) # test would pass ['cpu','disk','jstack'] kind of list if benchmarkLogging: h2o.cloudPerfH2O.get_log_save(benchmarkLogging) # check the sandbox for stack traces! just like we do when polling normally h2o.check_sandbox_for_errors() patternKeys = [] for j in jobs: # save the destination keys in progress that match pattern (for returning) if pattern and pattern in j['destination_key']: patternKeys.append(j['destination_key']) return patternKeys def showAllJobs(): print "Showing all jobs" a = h2o.nodes[0].jobs_admin(timeoutSecs=10) print h2o.dump_json(a) #******************************************************************************************* def cancelAllJobs(timeoutSecs=10, **kwargs): # I guess you could pass pattern # what if jobs had just been dispatched? wait until they get in the queue state correctly time.sleep(2) a = h2o.nodes[0].jobs_admin(timeoutSecs=120) print "jobs_admin():", h2o.dump_json(a) jobsList = a['jobs'] for j in jobsList: if j['end_time'] == '': b = h2o.nodes[0].jobs_cancel(key=j['key']) print "jobs_cancel():", h2o.dump_json(b) # it's possible we could be in a bad state where jobs don't cancel cleanly pollWaitJobs(timeoutSecs=timeoutSecs, **kwargs) # wait for all the cancels to happen. If we missed one, we might timeout here.
3c145b8ef4e538afdc8b05b7dc35000c6cd14bde
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/429/usersdata/321/107581/submittedfiles/jogoDaVelha.py
b5f5699b08831f08b81685112bfe8cf9f27f5873
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
962
py
# -*- coding: utf-8 -*- from jogoDaVelha_BIB import * # COLOQUE SEU PROGRAMA A PARTIR DAQUI print('Bem vindo ao JogoDaVelha do grupo 8 [Iara, Ingrid, Luiz Otávio, Tatiane]\n') a=nome() b=solicitaSimboloDoHumano() sort=sorteioPrimeiraJogada(a) if sort==0: if b == 'X': c = ' O ' else: c = ' X ' JogadaComputador(c) mostrarTabuleiro() p=JogadaHumana(a,b) else: if b == 'X': c = ' O ' else: c = ' X ' p=JogadaHumana(a,b) JogadaComputador(c) mostrarTabuleiro() while not verificaVencedor(b,tabuleiro,a): if sort==0: if JogadaComputador(c): mostrarTabuleiro() JogadaHumana(a,b) mostrarTabuleiro() else: if JogadaHumana(a,b): if JogadaComputador(c): mostrarTabuleiro() #if not jogueNovamente(): #break
af8822c01c2eae258d213fcd4fb4dabd0f0f483b
9a9e0398f26cee9864d48c4618c0a482e5475e83
/Python/code/design_browser_history.py
21040767673ace8a3036f93a95df6462006bd225
[]
no_license
CNife/leetcode
92693c653bb41780ee431293286c3e909009e9b0
7cdd61692ecb52dd1613169e80b924dd39d35996
refs/heads/main
2021-06-22T21:22:12.997253
2021-03-18T07:07:15
2021-03-18T07:07:15
206,955,329
0
0
null
null
null
null
UTF-8
Python
false
false
1,124
py
from typing import List class BrowserHistory: def __init__(self, homepage: str): self.stack: List[str] = [homepage] self.pointer: int = 0 def visit(self, url: str) -> None: if self.pointer < len(self.stack) - 1: self.stack[self.pointer + 1] = url del self.stack[self.pointer + 2 :] else: self.stack.append(url) self.pointer += 1 def back(self, steps: int) -> str: back_pointer = max(self.pointer - steps, 0) self.pointer = back_pointer return self.stack[back_pointer] def forward(self, steps: int) -> str: forward_pointer = min(self.pointer + steps, len(self.stack) - 1) self.pointer = forward_pointer return self.stack[forward_pointer] b = BrowserHistory("leetcode.com") b.visit("google.com") b.visit("facebook.com") b.visit("youtube.com") assert b.back(1) == "facebook.com" assert b.back(1) == "google.com" assert b.forward(1) == "facebook.com" b.visit("linkedin.com") assert b.forward(2) == "linkedin.com" assert b.back(2) == "google.com" assert b.back(7) == "leetcode.com"
6e5c1b6b90f3961a988d8bfcdf41f2994f72480b
b6c4c71dd1544bfc6bc364b4242e9b76401e7372
/ebicochineal/yukicoder/g81.py
2e1d5cfc8ad06f1f4c36fda82b6ff2d262b58410
[]
no_license
ebi-cp/golf
b248f9a7b1a09e6d6c90e141ae5ce1cacbf7c665
4ea8f8456fd926051aadc1e88e4014585f483997
refs/heads/master
2020-03-17T20:53:06.910302
2019-06-20T01:47:59
2019-06-20T01:47:59
133,932,902
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
#! /usr/bin/env python3 from decimal import* print('{:.10f}'.format(eval("+Decimal(input())"*int(input()))))
8f531582e923fb0fb0831e88beb903ecdecbc8a3
b521802cca8e4ee4ff5a5ffe59175a34f2f6d763
/maya/maya-utils/Scripts/Animation/2019-2-15 Tim Cam_Route_Manager/.history/Cam_Main/Cam_Main/Cam_Item_Layout_20190119190257.py
89fe9b62ef2019192a357e1a4849c612a4a637d1
[]
no_license
all-in-one-of/I-Do-library
2edf68b29558728ce53fe17168694ad0353a076e
8972ebdcf1430ccc207028d8482210092acf02ce
refs/heads/master
2021-01-04T06:58:57.871216
2019-12-16T04:52:20
2019-12-16T04:52:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,985
py
# -*- coding:utf-8 -*- # Require Header import os import json from functools import partial # Sys Header import sys import traceback import subprocess import plugin.Qt as Qt from Qt.QtCore import * from Qt.QtGui import * from Qt.QtWidgets import * def loadUiType(uiFile): import plugin.Qt as Qt if Qt.__binding__.startswith('PyQt'): from Qt import _uic as uic return uic.loadUiType(uiFile) elif Qt.__binding__ == 'PySide': import pysideuic as uic else: import pyside2uic as uic import xml.etree.ElementTree as xml from cStringIO import StringIO parsed = xml.parse(uiFile) widget_class = parsed.find('widget').get('class') form_class = parsed.find('class').text with open(uiFile, 'r') as f: o = StringIO() frame = {} uic.compileUi(f, o, indent=0) pyc = compile(o.getvalue(), '<string>', 'exec') exec pyc in frame # Fetch the base_class and form class based on their type # in the xml from designer form_class = frame['Ui_%s'%form_class] base_class = eval('%s'%widget_class) return form_class, base_class from Qt.QtCompat import wrapInstance DIR = os.path.dirname(__file__) UI_PATH = os.path.join(DIR,"ui","Cam_Item_Layout.ui") GUI_STATE_PATH = os.path.join(DIR, "json" ,'GUI_STATE.json') form_class , base_class = loadUiType(UI_PATH) from maya import cmds class Cam_Item_Layout(form_class,base_class): def __init__(self,MainWindow): super(Cam_Item_Layout,self).__init__() self.setupUi(self) self.MainWindow = MainWindow self.Item_Add_BTN.clicked.connect(self.Item_Add_Fn) self.Item_Clear_BTN.clicked.connect(self.Item_Clear_Fn) self.Cam_Item_Num = 0 self.Cam_Item_Scroll.verticalScrollBar().valueChanged.connect(self.Scroll_Fn) self.Scroll_Offset = 0 self.Attr = {} self.Attr["Add_Crv_LE"] = "" self.Attr["Add_Motion_Path_LE"] = "" self.Attr["Add_CamGrp_LE"] = "" self.Attr["Add_Loc_LE"] = "" self.Attr["Name"] = "" # Note 功能按键 self.Batch_Keyframe_BTN.clicked.connect(self.Batch_Keyframe_Fn) self.Select_Path_BTN.clicked.connect(self.Select_Path_Fn) def Batch_Keyframe_Fn(self): ChildrenList = self.Item_Layout.children() for i,child in enumerate(ChildrenList): if i != 0: Path = child.Attr["Add_Motion_Path_LE"] if cmds.objExists(Path): offset = cmds.keyframe(Path,q=1)[0] cmds.keyframe("%s.uValue"% Path,e=1,iub=1,r=1,o="over",tc=-offset) def Select_Path_Fn(self): cmds.select(cl=1) ChildrenList = self.Item_Layout.children() for i,child in enumerate(ChildrenList): if i != 0: if cmds.objExists(child.Attr["Add_Motion_Path_LE"]): cmds.select(child.Attr["Add_Motion_Path_LE"],add=1) def Item_Add_Fn(self): self.Cam_Item_Num += 1 return Cam_Item(self,self.MainWindow) def Item_Clear_Fn(self): self.Attr["Add_Crv_LE"] = "" self.Attr["Add_Motion_Path_LE"] = "" self.Attr["Name"] = "" for i,child in enumerate(self.Item_Layout.children()): if i != 0: child.deleteLater() def Scroll_Fn(self): self.Scroll_Offset = self.Cam_Item_Scroll.verticalScrollBar().value() UI_PATH = os.path.join(DIR,"ui","Cam_Item.ui") form_class , base_class = loadUiType(UI_PATH) class Cam_Item(form_class,base_class): def __init__(self,parent,MainWindow): super(Cam_Item,self).__init__() self.setupUi(self) self.MainWindow = MainWindow self.Cam_Del_BTN.clicked.connect(self.Cam_Del_BTN_Fn) self.Cam_Con_CB.stateChanged.connect(self.Cam_Con_CB_Fn) # Note 初始化创建参数 TotalCount = len(parent.Item_Layout.children()) parent.Item_Layout.layout().insertWidget(TotalCount-1,self) self.Cam_LE.setText("Cam_Item_%s" % parent.Cam_Item_Num) self.Cam_Num_Label.setText(u"镜头%s" % TotalCount) self.setObjectName("Cam_Item_%s" % TotalCount) self.Num = TotalCount self.Attr = {} self.Attr["Add_CamGrp_LE"] = "" self.Attr["Add_Loc_LE"] = "" self.Attr["Add_Crv_LE"] = "" self.Attr["Add_Motion_Path_LE"] = "" self.Attr["Strat_Time_SB"] = 0 self.Attr["End_Time_SB"] = 0 self.MainWindow.Save_Json_Fun() def Cam_Del_BTN_Fn(self): self.deleteLater() ChildrenList = self.parent().children() for i,child in enumerate(ChildrenList): if i != 0: if i > self.Num: # Note 修正 child 的序号 child.Num -= 1 child.Cam_Num_Label.setText(u"镜头%s" % (i-1)) child.setObjectName("Cam_Item_%s" % (i-1)) else: child.Cam_Num_Label.setText(u"镜头%s" % i) child.setObjectName("Cam_Item_%s" % i) self.Attr["Add_CamGrp_LE"] = "" self.Attr["Add_Loc_LE"] = "" self.Attr["Add_Crv_LE"] = "" self.Attr["Add_Motion_Path_LE"] = "" self.Attr["Strat_Time_SB"] = "" self.Attr["End_Time_SB"] = "" self.MainWindow.Save_Json_Fun() def Cam_Con_CB_Fn(self,state): ChildrenList = self.parent().children() for i,child in enumerate(ChildrenList): if i != 0: if child != self: child.Cam_Con_CB.blockSignals(True) child.Cam_Con_CB.setChecked(False) if state == 0: self.Cam_Con_CB.setChecked(True) else for i,child in enumerate(ChildrenList): if i != 0: if child != self: child.Cam_Con_CB.blockSignals(False)
ab8798f43f4e62010d729812993d84aa181dc52b
14373275670c1f3065ce9ae195df142146e2c1a4
/stubs/python-jose/jose/jws.pyi
777770ae62ba7928c9ecd32abfe7fdcce15fb17d
[ "Apache-2.0", "MIT" ]
permissive
sobolevn/typeshed
eb7af17c06a9722f23c337e6b9a4726223155d58
d63a82640390a9c130e0fe7d409e8b0b836b7c31
refs/heads/master
2023-08-04T05:59:29.447015
2023-06-14T21:27:53
2023-06-14T21:27:53
216,265,622
2
0
Apache-2.0
2022-02-08T10:40:53
2019-10-19T20:21:25
Python
UTF-8
Python
false
false
939
pyi
from collections.abc import Container, Mapping from typing import Any from .backends.base import Key def sign( payload: bytes | Mapping[str, Any], # Internally it's passed down to jwk.construct(), which explicitly checks for # key as dict instance, instead of a Mapping key: str | bytes | dict[str, Any] | Key, headers: Mapping[str, Any] | None = None, algorithm: str = "HS256", ) -> str: ... def verify( token: str | bytes, key: str | bytes | Mapping[str, Any] | Key, # Callers of this function, like jwt.decode(), and functions called internally, # like jws._verify_signature(), use and accept algorithms=None algorithms: str | Container[str] | None, verify: bool = True, ) -> bytes: ... def get_unverified_header(token: str | bytes) -> dict[str, Any]: ... def get_unverified_headers(token: str | bytes) -> dict[str, Any]: ... def get_unverified_claims(token: str | bytes) -> bytes: ...
83dee180bba344ba4431b5eddabacca981be46a9
ea378480ba678eb123ef826e3ca0c3eb8f4e538f
/py ref/agg:PIL/05-snowflake.py
685698ad5cd2aee1ad26a0569fba738e94d596b8
[]
no_license
msarch/py
67235643666b1ed762d418263f7eed3966d3f522
dcd25e633a87cdb3710e90224e5387d3516c1cd3
refs/heads/master
2021-01-01T05:21:58.175043
2017-05-25T08:15:26
2017-05-25T08:15:26
87,453,820
1
0
null
null
null
null
UTF-8
Python
false
false
3,443
py
# Snowflake Simulation Using Reiter Cellular Automata # Source: "A Local Cellular Model for Snow Crystal Growth" by Cliff Reiter # FB36 - 20130107 import math import random from PIL import Image, ImageDraw imgx = 500; imgy = 500 # image size imgx1 = imgx - 1; imgy1 = imgy - 1 image = Image.new("RGB", (imgx, imgy)) draw = ImageDraw.Draw(image) pixels = image.load() maxIt = 10 # of growth steps # snowflake will differ depending on values of these parameters: alpha = random.random() * 1.5 + 0.5 beta = random.random() * 0.3 + 0.3 gamma = random.random() * 0.01 mx = 250; my = 250 # width and height of 2DCA ca = [[beta for x in range(mx)] for y in range(my)] caRep = [[beta for x in range(mx)] for y in range(my)] # receptive cells caNRep = [[beta for x in range(mx)] for y in range(my)] # non-receptive cells dx = [-1, 0, -1, 1, 0, 1]; dy = [-1, -1, 0, 0, 1, 1] # 6 directions to grow # these are for coloring the image while True: mr0 = 2 ** random.randint(3, 6); mr1 = 256 / mr0 mg0 = 2 ** random.randint(3, 6); mg1 = 256 / mg0 mb0 = 2 ** random.randint(3, 6); mb1 = 256 / mb0 if mr0 != mg0 and mr0 != mb0 and mg0 != mb0: break ca[(my - 1) / 2][(mx - 1) / 2] = 1.0 # ice seed for i in range(maxIt): # growth steps print "Growth Step: " + str(i + 1) + " of " + str(maxIt) # separate the array into receptive and non-receptive arrays for iy in range(my): for ix in range(mx): receptive = False if ca[iy][ix] >= 1.0: # ice receptive = True else: # check neighbors for j in range(6): jx = ix + dx[j]; jy = iy + dy[j] if jx >= 0 and jx < mx and jy >= 0 and jy < my: if ca[jy][jx] >= 1.0: # ice receptive = True break if receptive: caRep[iy][ix] = ca[iy][ix] + gamma caNRep[iy][ix] = 0.0 else: caRep[iy][ix] = 0.0 caNRep[iy][ix] = ca[iy][ix] # new array: weighed averages of the non-receptive array + receptive array for iy in range(my): for ix in range(mx): wsum = caNRep[iy][ix] * (1.0 - alpha * 6.0 / 12.0) for j in range(6): # neighbors jx = ix + dx[j]; jy = iy + dy[j] if jx >= 0 and jx < mx and jy >= 0 and jy < my: wsum += caNRep[jy][jx] * alpha / 12.0 ca[iy][ix] = caRep[iy][ix] + wsum # paint final state of the snowflake an45 = - math.pi / 4.0 sn45 = math.sin(an45); cs45 = math.cos(an45) scale = math.sqrt(3.0); ox = imgx1 / 2.0; oy = imgy1 / 2.0 for ky in range(imgy): for kx in range(imgx): # apply geometric transformation (scaling and rotation) print ky,kx tx = kx - ox; ty = (ky - oy) * scale tx0 = tx * cs45 - ty * sn45 + ox ty = tx * sn45 + ty * cs45 + oy; tx = tx0 if tx >= 0 and tx <= imgx1 and ty >= 0 and ty <= imgy1: c = ca[int((my - 1) * ty / imgy1)][int((mx - 1) * tx / imgx1)] if c >= 1.0: # ice c = int((c - 1.0) * 255) pixels[kx, ky] = (c % mr0 * mr1, c % mg0 * mg1, c % mb0 * mb1) label = "alpha = " + str(alpha) + " beta = " + str(beta) + " gamma = " + str(gamma) draw.text((0, 0), label, (0, 255, 0)) # write to top-left using green color image.save("Snowflake.png", "PNG") print "done"
c26ce4af3e3326663a505c3563633472e49af3ec
f87f51ec4d9353bc3836e22ac4a944951f9c45c0
/.history/HW06_20210715232125.py
82e83460b2b3572ef7ede77011ce58249bbfcda0
[]
no_license
sanjayMamidipaka/cs1301
deaffee3847519eb85030d1bd82ae11e734bc1b7
9ddb66596497382d807673eba96853a17884d67b
refs/heads/main
2023-06-25T04:52:28.153535
2021-07-26T16:42:44
2021-07-26T16:42:44
389,703,530
0
0
null
null
null
null
UTF-8
Python
false
false
5,842
py
""" Georgia Institute of Technology - CS1301 HW06 - Text Files & CSV Collaboration Statement: """ ######################################### """ Function Name: findCuisine() Parameters: filename (str), cuisine (str) Returns: list of restaurants (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def findCuisine(filename, cuisine): file = open(filename,'r') content = file.readlines() listOfRestaurants = [] for i in range(len(content)): if content[i].strip() == cuisine: listOfRestaurants.append(content[i-1].strip()) #add the name of the restaurant, which is the previous line file.close() return listOfRestaurants """ Function Name: restaurantFilter() Parameters: filename (str) Returns: dictionary that maps cuisine type (str) to a list of restaurants of the same cuisine type (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def restaurantFilter(filename): dict = {} file = open(filename,'r') content = file.readlines() cuisines = [] for i in range(1,len(content),4): line = content[i].strip() if line not in cuisines: cuisines.append(line) for i in range(len(cuisines)): dict[cuisines[i]] = [] for i in range(0,len(content),4): line = content[i].strip() lineBelow = content[i+1].strip() dict[lineBelow].append(line) return dict """ Function Name: createDirectory() Parameters: filename (str), output filename (str) Returns: None (NoneType) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def createDirectory(filename, outputFilename): readFile = open(filename, 'r') writeFile = open(outputFilename, 'w') content = readFile.readlines() fastfood = [] sitdown = [] fastfoodcounter = 1 sitdowncouter = 1 for i in range(2,len(content), 4): restaurant = content[i-2].strip() cuisine = content[i-1].strip() group = content[i].strip() if group == 'Fast Food': fastfood.append(str(fastfoodcounter) + '. ' + restaurant + ' - ' + cuisine + '\n') fastfoodcounter += 1 else: sitdown.append(str(sitdowncouter) + '. ' + restaurant + ' - ' + cuisine) sitdowncouter += 1 writeFile.write('Restaurant Directory' + '\n') writeFile.write('Fast Food' + '\n') writeFile.writelines(fastfood) writeFile.write('Sit-down' + '\n') for i in range(len(sitdown)): if i != len(sitdown)-1: writeFile.write(sitdown[i] + '\n') else: writeFile.write(sitdown[i]) """ Function Name: extraHours() Parameters: filename (str), hour (int) Returns: list of (person, extra money) tuples (tuple) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def extraHours(filename, hour): overtime = [] file = open(filename, 'r') header = file.readline() content = file.readlines() for i in content: line = i.strip().split(',') name = line[0] wage = int(line[2]) hoursWorked = int(line[4]) if hoursWorked > hour: compensation = (hoursWorked - hour) * wage overtime.append((name, compensation)) return overtime """ Function Name: seniorStaffAverage() Parameters: filename (str), year (int) Returns: average age of senior staff members (float) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def seniorStaffAverage(filename, year): averageAge = 0.0 employeeCount = 0 file = open(filename, 'r') header = file.readline() content = file.readlines() for i in content: line = i.strip().split(',') age = int(line[1]) yearHired = int(line[3]) if yearHired < year: averageAge += age employeeCount += 1 averageAge /= employeeCount return round(averageAge,2) """ Function Name: ageDict() Parameters: filename (str), list of age ranges represented by strings (list) Returns: dictionary (dict) that maps each age range (str) to a list of employees (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def ageDict(filename, ageRangeList): employeeAgeDictionary = {} newDict = {} ageRangesFormatted = [] for i in ageRangeList: employeeAgeDictionary[i] = [] # print(employeeAgeDictionary) for i in ageRangeList: ageRangesFormatted.append(i.split('-')) # print(ageRangesFormatted) file = open(filename, 'r') header = file.readline() content = file.readlines() for i in content: line = i.strip().split(',') age = int(line[1]) name = line[0] for j in ageRangesFormatted: if age >= int(j[0]) and age <= int(j[1]): employeeAgeDictionary[j[0] + '-' + j[1]].append(name) for i in employeeAgeDictionary: if employeeAgeDictionary[i] != []: newDict[i] = employeeAgeDictionary[i] return newDict # print(findCuisine('restaurants.txt', 'Mexican')) # print(restaurantFilter('restaurants.txt')) # print(createDirectory('restaurants.txt','output.txt')) # print(extraHours('employees.csv', 40)) # print(seniorStaffAverage('employees.csv', 2019)) # rangeList = ["20-29", "30-39"] # print(ageDict('employees.csv', rangeList)) # print(ageDict('employees.csv', ['0-18', '18-19']))
8498795049bcc029a2c71a310a2525dd63063293
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_commoners.py
ba7756247f776e21069b78a695be616e5b343ce5
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _COMMONERS(): def __init__(self,): self.name = "COMMONERS" self.definitions = commoner self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['commoner']
cc560822ef2d48813402158877c3e00ff38a8fb7
96dcea595e7c16cec07b3f649afd65f3660a0bad
/tests/components/dsmr/test_config_flow.py
8ad7c7214a3c8c39e9e6f051c5814db922a12dea
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
19,514
py
"""Test the DSMR config flow.""" import asyncio from itertools import chain, repeat import os from unittest.mock import DEFAULT, AsyncMock, MagicMock, patch, sentinel import serial import serial.tools.list_ports from homeassistant import config_entries, data_entry_flow from homeassistant.components.dsmr import DOMAIN, config_flow from homeassistant.core import HomeAssistant from tests.common import MockConfigEntry SERIAL_DATA = {"serial_id": "12345678", "serial_id_gas": "123456789"} SERIAL_DATA_SWEDEN = {"serial_id": None, "serial_id_gas": None} def com_port(): """Mock of a serial port.""" port = serial.tools.list_ports_common.ListPortInfo("/dev/ttyUSB1234") port.serial_number = "1234" port.manufacturer = "Virtual serial port" port.device = "/dev/ttyUSB1234" port.description = "Some serial port" return port async def test_setup_network( hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup network.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Network"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_network" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], { "host": "10.10.0.1", "port": 1234, "dsmr_version": "2.2", }, ) await hass.async_block_till_done() entry_data = { "host": "10.10.0.1", "port": 1234, "dsmr_version": "2.2", "protocol": "dsmr_protocol", } assert result["type"] == "create_entry" assert result["title"] == "10.10.0.1:1234" assert result["data"] == {**entry_data, **SERIAL_DATA} async def test_setup_network_rfxtrx( hass: HomeAssistant, dsmr_connection_send_validate_fixture, rfxtrx_dsmr_connection_send_validate_fixture, ) -> None: """Test we can setup network.""" (connection_factory, transport, protocol) = dsmr_connection_send_validate_fixture result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Network"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_network" assert result["errors"] == {} # set-up DSMRProtocol to yield no valid telegram, this will retry with RFXtrxDSMRProtocol protocol.telegram = {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], { "host": "10.10.0.1", "port": 1234, "dsmr_version": "2.2", }, ) await hass.async_block_till_done() entry_data = { "host": "10.10.0.1", "port": 1234, "dsmr_version": "2.2", "protocol": "rfxtrx_dsmr_protocol", } assert result["type"] == "create_entry" assert result["title"] == "10.10.0.1:1234" assert result["data"] == {**entry_data, **SERIAL_DATA} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup serial.""" port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "2.2"}, ) await hass.async_block_till_done() entry_data = { "port": port.device, "dsmr_version": "2.2", "protocol": "dsmr_protocol", } assert result["type"] == "create_entry" assert result["title"] == port.device assert result["data"] == {**entry_data, **SERIAL_DATA} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial_rfxtrx( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture, rfxtrx_dsmr_connection_send_validate_fixture, ) -> None: """Test we can setup serial.""" (connection_factory, transport, protocol) = dsmr_connection_send_validate_fixture port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} # set-up DSMRProtocol to yield no valid telegram, this will retry with RFXtrxDSMRProtocol protocol.telegram = {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "2.2"}, ) await hass.async_block_till_done() entry_data = { "port": port.device, "dsmr_version": "2.2", "protocol": "rfxtrx_dsmr_protocol", } assert result["type"] == "create_entry" assert result["title"] == port.device assert result["data"] == {**entry_data, **SERIAL_DATA} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_5L( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup serial.""" port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "5L"}, ) await hass.async_block_till_done() entry_data = { "port": port.device, "dsmr_version": "5L", "protocol": "dsmr_protocol", "serial_id": "12345678", "serial_id_gas": "123456789", } assert result["type"] == "create_entry" assert result["title"] == port.device assert result["data"] == entry_data @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_5S( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup serial.""" port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "5S"} ) await hass.async_block_till_done() entry_data = { "port": port.device, "dsmr_version": "5S", "protocol": "dsmr_protocol", "serial_id": None, "serial_id_gas": None, } assert result["type"] == "create_entry" assert result["title"] == port.device assert result["data"] == entry_data @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_Q3D( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup serial.""" port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "Q3D"}, ) await hass.async_block_till_done() entry_data = { "port": port.device, "dsmr_version": "Q3D", "protocol": "dsmr_protocol", "serial_id": "12345678", "serial_id_gas": None, } assert result["type"] == "create_entry" assert result["title"] == port.device assert result["data"] == entry_data @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial_manual( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test we can setup serial with manual entry.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": "Enter Manually", "dsmr_version": "2.2"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial_manual_path" assert result["errors"] is None with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": "/dev/ttyUSB0"} ) await hass.async_block_till_done() entry_data = { "port": "/dev/ttyUSB0", "dsmr_version": "2.2", "protocol": "dsmr_protocol", } assert result["type"] == "create_entry" assert result["title"] == "/dev/ttyUSB0" assert result["data"] == {**entry_data, **SERIAL_DATA} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial_fail( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture ) -> None: """Test failed serial connection.""" (connection_factory, transport, protocol) = dsmr_connection_send_validate_fixture port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) # override the mock to have it fail the first time and succeed after first_fail_connection_factory = AsyncMock( return_value=(transport, protocol), side_effect=chain([serial.serialutil.SerialException], repeat(DEFAULT)), ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch( "homeassistant.components.dsmr.config_flow.create_dsmr_reader", first_fail_connection_factory, ): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "2.2"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {"base": "cannot_connect"} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial_timeout( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture, rfxtrx_dsmr_connection_send_validate_fixture, ) -> None: """Test failed serial connection.""" (connection_factory, transport, protocol) = dsmr_connection_send_validate_fixture ( connection_factory, transport, rfxtrx_protocol, ) = rfxtrx_dsmr_connection_send_validate_fixture port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) first_timeout_wait_closed = AsyncMock( return_value=True, side_effect=chain([asyncio.TimeoutError], repeat(DEFAULT)), ) protocol.wait_closed = first_timeout_wait_closed first_timeout_wait_closed = AsyncMock( return_value=True, side_effect=chain([asyncio.TimeoutError], repeat(DEFAULT)), ) rfxtrx_protocol.wait_closed = first_timeout_wait_closed assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} with patch("homeassistant.components.dsmr.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "2.2"} ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {"base": "cannot_communicate"} @patch("serial.tools.list_ports.comports", return_value=[com_port()]) async def test_setup_serial_wrong_telegram( com_mock, hass: HomeAssistant, dsmr_connection_send_validate_fixture, rfxtrx_dsmr_connection_send_validate_fixture, ) -> None: """Test failed telegram data.""" (connection_factory, transport, protocol) = dsmr_connection_send_validate_fixture ( rfxtrx_connection_factory, transport, rfxtrx_protocol, ) = rfxtrx_dsmr_connection_send_validate_fixture port = com_port() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"type": "Serial"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {} protocol.telegram = {} rfxtrx_protocol.telegram = {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {"port": port.device, "dsmr_version": "2.2"}, ) assert result["type"] == "form" assert result["step_id"] == "setup_serial" assert result["errors"] == {"base": "cannot_communicate"} async def test_options_flow(hass: HomeAssistant) -> None: """Test options flow.""" entry_data = { "port": "/dev/ttyUSB0", "dsmr_version": "2.2", "precision": 4, "reconnect_interval": 30, } entry = MockConfigEntry( domain=DOMAIN, data=entry_data, unique_id="/dev/ttyUSB0", ) entry.add_to_hass(hass) result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "init" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ "time_between_update": 15, }, ) with patch( "homeassistant.components.dsmr.async_setup_entry", return_value=True ), patch("homeassistant.components.dsmr.async_unload_entry", return_value=True): assert result["type"] == data_entry_flow.FlowResultType.CREATE_ENTRY await hass.async_block_till_done() assert entry.options == {"time_between_update": 15} def test_get_serial_by_id_no_dir() -> None: """Test serial by id conversion if there's no /dev/serial/by-id.""" p1 = patch("os.path.isdir", MagicMock(return_value=False)) p2 = patch("os.scandir") with p1 as is_dir_mock, p2 as scan_mock: res = config_flow.get_serial_by_id(sentinel.path) assert res is sentinel.path assert is_dir_mock.call_count == 1 assert scan_mock.call_count == 0 def test_get_serial_by_id() -> None: """Test serial by id conversion.""" p1 = patch("os.path.isdir", MagicMock(return_value=True)) p2 = patch("os.scandir") def _realpath(path): if path is sentinel.matched_link: return sentinel.path return sentinel.serial_link_path p3 = patch("os.path.realpath", side_effect=_realpath) with p1 as is_dir_mock, p2 as scan_mock, p3: res = config_flow.get_serial_by_id(sentinel.path) assert res is sentinel.path assert is_dir_mock.call_count == 1 assert scan_mock.call_count == 1 entry1 = MagicMock(spec_set=os.DirEntry) entry1.is_symlink.return_value = True entry1.path = sentinel.some_path entry2 = MagicMock(spec_set=os.DirEntry) entry2.is_symlink.return_value = False entry2.path = sentinel.other_path entry3 = MagicMock(spec_set=os.DirEntry) entry3.is_symlink.return_value = True entry3.path = sentinel.matched_link scan_mock.return_value = [entry1, entry2, entry3] res = config_flow.get_serial_by_id(sentinel.path) assert res is sentinel.matched_link assert is_dir_mock.call_count == 2 assert scan_mock.call_count == 2
da3148eda0d51e3d5d6c53ed95cca7d8fd467839
75ce5b7fee397fe4e67ed15a58f4cd42e0f8de9f
/PythonMasterclass/OOP/oop.py
8f9a4c844627350a4a88b461ec85cf8bb780bbce
[]
no_license
lukbast/stuff
7fd03b7e035394802c307682a25621dfd667960b
160e1d77d1b592fac099b9c7139fb4e2f7f8dbbe
refs/heads/main
2023-08-06T21:39:55.334812
2021-09-23T17:37:47
2021-09-23T17:37:47
409,684,114
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
class Kettle(object): power_source = 'electricity' def __init__(self, make, price): self.make = make self.price = price self.on = False def turn_on(self): self.on = True philips = Kettle('Philips', 420) kenwood = Kettle('Kenwood', 9.99) kenwood.price = 666 print(kenwood.price) kenwood.turn_on() print(kenwood.on) print('Kettle: {0.make}, for {0.price}, isOn: {0.on}'.format(kenwood)) # In piton you can add new attributes to a object like this kenwood.color = 'magenta' print(kenwood.color) # DUN DUN DUN print(philips.power_source) print(kenwood.power_source) kenwood.power_source = 'hamsters' print(kenwood.power_source) print(philips.power_source) Kettle.power_source = 'Atomic' print(kenwood.power_source) print(philips.power_source)
3e64394d796a026c719123cf7ef89bcb82365121
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/sdssj_120408.22+153609.7/sdB_sdssj_120408.22+153609.7_lc.py
45c4a65ca1273ffe327210776740e7315636db7c
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[181.03425,15.602694], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_sdssj_120408.22+153609.7/sdB_sdssj_120408.22+153609.7_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
8d062e70c1250414eb462291082fec9b977fc54e
80199ed4dd0d072140160a785932c35952105b19
/miller/api/serializers/__init__.py
c25a1b7e375a9e4c48c04feabf33e4b2f2d6833d
[]
no_license
C2DH/miller
7d90bb6bdfec0ab37cea80480c783dc850e33d19
5263a9e392249f6515e74dd45b92957bd6e9e1a7
refs/heads/miller-v2
2023-06-01T20:51:37.167091
2023-05-15T13:48:03
2023-05-15T13:48:03
89,341,967
1
3
null
2023-05-15T13:46:16
2017-04-25T09:23:29
Python
UTF-8
Python
false
false
41
py
from .story import CreateStorySerializer
ce9e81e2b51bb97642a79f8b467a2770571ede66
eea1be5dbac7fa10167eae167eb6712e3937f53a
/voidcoin/settings/dev.py
70ec86d6e913a5df701dd36881e48c14a73f0cf7
[]
no_license
chidimo/Voidcoin
40962e46661b2a7106bd8e60d0830c3b9629b8fa
227c160dfa671818522781aab013f2d1fcb098a9
refs/heads/develop
2022-12-09T17:40:26.294425
2019-07-04T08:32:20
2019-07-04T08:32:20
135,197,447
5
2
null
2022-12-08T02:08:45
2018-05-28T18:45:19
Python
UTF-8
Python
false
false
1,964
py
from .base import * DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'voidcoin', 'USER': 'postgres', 'PASSWORD': config('DEV_DB_PASSWORD'), 'HOST': 'localhost', 'PORT': 5432 } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' INSTALLED_APPS += ['debug_toolbar'] DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', ] MIDDLEWARE += [ 'debug_toolbar.middleware.DebugToolbarMiddleware', ] # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'formatters': { # 'verbose': { # 'format' : "[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s", # 'datefmt' : "%d/%b/%Y %H:%M:%S" # }, # 'simple': { # 'format': '%(levelname)s %(message)s' # }, # }, # 'handlers': { # 'file': { # 'level': 'DEBUG', # 'class': 'logging.FileHandler', # 'filename': os.path.join(BASE_DIR, 'voidcoin_dev.log'), # 'formatter': 'verbose' # }, # }, # 'loggers': { # 'django': { # 'handlers':['file'], # 'propagate': True, # 'level':'DEBUG', # }, # 'MYAPP': { # 'handlers': ['file'], # 'level': 'DEBUG', # }, # } # }
3f4d4b142fe225bb204064c1dbfc8857e1c172fe
93a613f09d564a1d45ecc01b54b73745ce2850b7
/majora2/forms.py
6adcc2da009d17ffe9c9c4e06700d45aa3e7b5d8
[]
no_license
pythseq/majora
fa17c77fa8a916c688fd2b40744d768dd851b99b
40b918d32b4061cddee5f7279f97e70eb894623d
refs/heads/master
2022-12-23T20:09:41.233844
2020-09-28T18:18:42
2020-09-28T18:18:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,308
py
import datetime from django import forms from django.contrib.auth.models import User from django.db.models import Q from django.utils import timezone from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Fieldset, Submit, Row, Column from crispy_forms.bootstrap import FormActions from .account_views import generate_username from . import models from . import fixed_data import re from sshpubkeys import SSHKey def majora_clean_ssh_key(ssh_key): if ssh_key: ssh_key = "".join(ssh_key.splitlines()).strip() key = SSHKey(ssh_key) try: key.parse() except Exception as e: raise forms.ValidationError("Unable to decode your key. Please ensure this is your public key and has been entered correctly.") if key.key_type != b'ssh-ed25519': raise forms.ValidationError("This system accepts ed25519 keys only.") return ssh_key class CreditForm(forms.Form): #TODO samstudio8: There is a condition where the max_length can be overrun as we append the site name, reduce this field maxlen by 4+1 to account for the general case of a 4 letter side code and : credit_code = forms.CharField(max_length=19, required=True, help_text="A short string to refer to this credit list when uploading metadata. This need not match an existing site name, or barcode. Note that this will automatically be prefixed by your site identifier.") lab_name = forms.CharField(max_length=512, required=True, label="Originating lab name(s)", help_text="The name or names of originating labs you would like to credit") lab_addr = forms.CharField(max_length=512, required=True, label="Originating lab address(es)", help_text="Use the broadest address that encompasses all the originating labs") lab_list = forms.CharField(max_length=2048, required=False, widget=forms.Textarea(attrs={"rows": 5}), label="Author list") delete = forms.BooleanField(required=False, label="Delete", help_text="Tick this to remove this Credit from your Institute") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( Fieldset("Credit", Row( Column('credit_code', css_class="form-group col-md-4 mb-0"), css_class="form-row", ), Row( Column('lab_name', css_class="form-group col-md-6 mb-0"), Column('lab_addr', css_class="form-group col-md-6 mb-0"), css_class="form-row", ), Row( Column('lab_list', css_class="form-group col-md-12 mb-0"), css_class="form-row", ), Row( Column('delete', css_class="form-group col-md-6 mb-0"), css_class="form-row", ), ), FormActions( Submit('save', 'Save'), css_class="text-right", ) ) class InstituteForm(forms.Form): name = forms.CharField(max_length=100, disabled=True, required=False) code = forms.CharField(max_length=10, disabled=True, required=False) gisaid_opted = forms.BooleanField(required=False, label="GISAID Opt-in", help_text="Check this box to opt-in to COG-UK automated submissions to GISAID") gisaid_user = forms.CharField(max_length=100, required=False, label="GISAID username", help_text="Submissions will be sent on behalf of this user") gisaid_mail = forms.EmailField(required=False, label="E-mail address", help_text="E-mail address to share with GISAID curators") gisaid_lab_name = forms.CharField(max_length=512, required=False, label="Originating lab name(s)", help_text="The name or names of originating labs you would like to credit") gisaid_lab_addr = forms.CharField(max_length=512, required=False, label="Originating lab address(es)", help_text="Use the broadest address that encompasses all the originating labs") gisaid_list = forms.CharField(max_length=2048, required=False, widget=forms.Textarea(attrs={"rows": 5}), label="Author list") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( Fieldset("Institute", Row( Column('code', css_class="form-group col-md-2 mb-0"), Column('name', css_class="form-group col-md-10 mb-0"), css_class="form-row", ), Row( Column('gisaid_opted', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("GISAID: User", Row( Column('gisaid_user', css_class="form-group col-md-6 mb-0"), Column('gisaid_mail', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("GISAID: Originating Lab", Row( Column('gisaid_lab_name', css_class="form-group col-md-6 mb-0"), Column('gisaid_lab_addr', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("GISAID: Authors", 'gisaid_list' ), FormActions( Submit('save', 'Save'), css_class="text-right", ) ) def clean(self): cleaned_data = super().clean() if cleaned_data.get("gisaid_opted", False): for field in ["gisaid_user", "gisaid_mail", "gisaid_lab_name", "gisaid_lab_addr", "gisaid_list"]: if not cleaned_data.get(field): self.add_error(field, "Required if opting-in to GISAID submissions") if cleaned_data.get("gisaid_user"): if not cleaned_data.get("gisaid_opted"): self.add_error("gisaid_opted", "Check this box to opt-in to GISAID submissions") class AccountForm(forms.Form): username = forms.CharField(max_length=150, disabled=True, required=False, help_text="You cannot change your username") first_name = forms.CharField(max_length=30) last_name = forms.CharField(max_length=150) email = forms.EmailField() organisation = forms.ModelChoiceField(queryset=models.Institute.objects.exclude(code__startswith="?").order_by("code"), disabled=True, required=False, help_text="You cannot change your organisation", to_field_name="code") ssh_key = forms.CharField(widget=forms.Textarea(attrs={"rows": 5}), label="SSH Public Key.</br>This system accepts ed25519 keys only. To generate one, run this command: <code>ssh-keygen -o -a 100 -t ed25519</code>", help_text="If you do not need access to CLIMB servers over SSH to upload sequence data or access resources, you can leave this blank. You can add an SSH key later but will need to notify us.", required=False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( Fieldset("User", Row( Column('username', css_class="form-group col-md-6 mb-0"), Column('email', css_class="form-group col-md-6 mb-0"), css_class="form-row", ), ), Fieldset("Name", Row( Column('first_name', css_class="form-group col-md-6 mb-0"), Column('last_name', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("Organisation", Row( Column('organisation', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("SSH Key", 'ssh_key' ), FormActions( Submit('save', 'Update'), css_class="text-right", ) ) def clean(self): cleaned_data = super().clean() def clean_ssh_key(self): return majora_clean_ssh_key(self.cleaned_data.get("ssh_key")) class RegistrationForm(forms.Form): username = forms.CharField(max_length=150, disabled=True, required=False) first_name = forms.CharField(max_length=30) last_name = forms.CharField(max_length=150) email = forms.EmailField() password1 = forms.CharField(widget=forms.PasswordInput(), label="Password", min_length=8) password2 = forms.CharField(widget=forms.PasswordInput(), label="Confirm password", min_length=8) organisation = forms.ModelChoiceField(queryset=models.Institute.objects.exclude(code__startswith="?").order_by("code")) ssh_key = forms.CharField(widget=forms.Textarea(attrs={"rows": 5}), label="SSH Public Key.</br>This system accepts ed25519 keys only. To generate one, run this command: <code>ssh-keygen -o -a 100 -t ed25519</code>", help_text="If you do not need access to CLIMB servers over SSH to upload sequence data or access resources, you can leave this blank. You can add an SSH key later but will need to notify us.", required=False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( Fieldset("User", Row( Column('username', css_class="form-group col-md-6 mb-0"), Column('email', css_class="form-group col-md-6 mb-0"), css_class="form-row", ), Row( Column('password1', css_class="form-group col-md-6 mb-0"), Column('password2', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("Name", Row( Column('first_name', css_class="form-group col-md-6 mb-0"), Column('last_name', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("Organisation", Row( Column('organisation', css_class="form-group col-md-6 mb-0"), css_class="form-row", ) ), Fieldset("SSH Key", 'ssh_key' ), FormActions( Submit('save', 'Register'), css_class="text-right", ) ) def clean(self): cleaned_data = super().clean() if cleaned_data.get("password1") != cleaned_data.get("password2"): self.add_error("password1", "Passwords do not match.") self.add_error("password2", "Passwords do not match.") if User.objects.filter(username=generate_username(cleaned_data)).count() > 0: #raise forms.ValidationError('This username has already been registered. You may be in the approval queue.') self.add_error("username", 'This username has already been registered. You may be in the approval queue.') def clean_ssh_key(self): return majora_clean_ssh_key(self.cleaned_data.get("ssh_key")) class M2Metric_SequenceForm(forms.ModelForm): class Meta: model = models.TemporaryMajoraArtifactMetric_Sequence exclude = [] class M2Metric_MappingForm(forms.ModelForm): class Meta: model = models.TemporaryMajoraArtifactMetric_Mapping exclude = [] class M2Metric_MappingTileForm(forms.ModelForm): class Meta: model = models.TemporaryMajoraArtifactMetric_Mapping_Tiles exclude = [] class M2Metric_ThresholdCycleForm(forms.ModelForm): class Meta: model = models.TemporaryMajoraArtifactMetric_ThresholdCycle exclude = [] class M2MetricRecord_ThresholdCycleForm(forms.Form): # should probably be a modelform, but w/e artifact_metric = forms.ModelChoiceField(queryset=models.TemporaryMajoraArtifactMetric_ThresholdCycle.objects.all(), required=True) ct_value = forms.FloatField(required=True, min_value=0.0) test_kit = forms.ChoiceField( choices=[ (None, ""), ("ALTONA", "ALTONA"), ("ABBOTT", "ABBOTT"), ("ROCHE", "ROCHE"), ("AUSDIAGNOSTICS", "AUSDIAGNOSTICS"), ("BOSPHORE", "BOSPHORE"), ("INHOUSE", "INHOUSE"), ("SEEGENE", "SEEGENE"), ("VIASURE", "VIASURE"), ("BD", "BD"), ("XPERT", "XPERT"), ], required=False, ) test_platform = forms.ChoiceField( choices=[ (None, ""), ("ALTOSTAR_AM16", "ALTOSTAR_AM16"), ("ABBOTT_M2000", "ABBOTT_M2000"), ("APPLIED_BIO_7500", "APPLIED_BIO_7500"), ("ROCHE_FLOW", "ROCHE_FLOW"), ("ROCHE_COBAS", "ROCHE_COBAS"), ("ELITE_INGENIUS", "ELITE_INGENIUS"), ("CEPHEID_XPERT", "CEPHEID_XPERT"), ("QIASTAT_DX", "QIASTAT_DX"), ("AUSDIAGNOSTICS", "AUSDIAGNOSTICS"), ("ROCHE_LIGHTCYCLER", "ROCHE_LIGHTCYCLER"), ("INHOUSE", "INHOUSE"), ("ALTONA", "ALTONA"), ("PANTHER", "PANTHER"), ("SEEGENE_NIMBUS", "SEEGENE_NIMBUS"), ("QIAGEN_ROTORGENE", "QIAGEN_ROTORGENE"), ("BD_MAX", "BD_MAX"), ], required=False, ) test_target = forms.ChoiceField( choices=[ (None, ""), ("S", "S"), ("E", "E"), ("N", "N"), ("RDRP","RDRP"), ("ORF1AB", "ORF1AB"), ("ORF8", "ORF8"), ("RDRP+N", "RDRP+N"), ], required=False, ) class TestMetadataForm(forms.Form): artifact = forms.ModelChoiceField(queryset=models.MajoraArtifact.objects.all(), required=False, to_field_name="dice_name") group = forms.ModelChoiceField(queryset=models.MajoraArtifactGroup.objects.all(), required=False, to_field_name="dice_name") process = forms.ModelChoiceField(queryset=models.MajoraArtifactProcess.objects.all(), required=False) #pgroup tag = forms.CharField(max_length=64) name = forms.CharField(max_length=64) value = forms.CharField(max_length=128) timestamp = forms.DateTimeField() def clean(self): cleaned_data = super().clean() if not (cleaned_data.get("artifact") or cleaned_data.get("group") or cleaned_data.get("process")): msg = "You must provide one 'artifact', 'group' or 'process' to attach metadata to" self.add_error("artifact", msg) self.add_error("group", msg) self.add_error("process", msg) class TestLibraryForm(forms.Form): library_name = forms.CharField(max_length=48, min_length=5) library_layout_config = forms.ChoiceField( choices=[ (None, ""), ("SINGLE", "SINGLE"), ("PAIRED", "PAIRED"), ], ) library_layout_read_length = forms.IntegerField(min_value=0, required=False) library_layout_insert_length = forms.IntegerField(min_value=0, required=False) library_seq_kit = forms.CharField(max_length=48) library_seq_protocol = forms.CharField(max_length=48) class TestLibraryBiosampleForm(forms.Form): central_sample_id = forms.ModelChoiceField(queryset=models.BiosampleArtifact.objects.all(), required=True, to_field_name="dice_name") library_name = forms.ModelChoiceField(queryset=models.LibraryArtifact.objects.all(), required=True, to_field_name="dice_name") barcode = forms.CharField(max_length=24, required=False) library_strategy = forms.ChoiceField( choices=[ (None, ""), ("WGS", "WGS: Whole Genome Sequencing"), ("WGA", "WGA: Whole Genome Amplification"), ("AMPLICON", "AMPLICON: Sequencing of overlapping or distinct PCR or RT-PCR products"), ("TARGETED_CAPTURE", "TARGETED_CAPTURE: Enrichment of a targeted subset of loci"), ("OTHER", "?: Library strategy not listed"), ], ) library_source = forms.ChoiceField( choices=[ (None, ""), ("GENOMIC", "GENOMIC"), ("TRANSCRIPTOMIC", "TRANSCRIPTOMIC"), ("METAGENOMIC", "METAGENOMIC"), ("METATRANSCRIPTOMIC", "METATRANSCRIPTOMIC"), ("VIRAL_RNA", "VIRAL RNA"), ("OTHER", "?: Other, unspecified, or unknown library source material"), ], ) library_selection = forms.ChoiceField( choices=[ (None, ""), ("RANDOM", "RANDOM: No Selection or Random selection"), ("PCR", "PCR: Enrichment via PCR"), ("RANDOM_PCR", "RANDOM-PCR: Source material was selected by randomly generated primers"), ("OTHER", "?: Other library enrichment, screening, or selection process"), ], ) library_primers = forms.CharField(max_length=48, required=False) library_protocol = forms.CharField(max_length=48, required=False) class TestSequencingForm(forms.Form): library_name = forms.ModelChoiceField(queryset=models.LibraryArtifact.objects.all(), required=True, to_field_name="dice_name") sequencing_id = forms.UUIDField(required=False) run_name = forms.CharField(max_length=128, required=False, min_length=5) run_group = forms.CharField(max_length=128, required=False) instrument_make = forms.ChoiceField( label="Instrument Make", choices=[ (None, ""), ("ILLUMINA", "Illumina"), ("OXFORD_NANOPORE", "Oxford Nanopore"), ("PACIFIC_BIOSCIENCES", "Pacific Biosciences"), ], ) instrument_model = forms.CharField( label="Instrument Model", ) flowcell_type = forms.CharField(max_length=48, required=False) #flowcell_version = forms.CharField(max_length=48) flowcell_id = forms.CharField(max_length=48, required=False) start_time = forms.DateTimeField(input_formats=["%Y-%m-%d %H:%M"], required=False) end_time = forms.DateTimeField(input_formats=["%Y-%m-%d %H:%M"], required=False) @staticmethod def modify_preform(data): UPPERCASE_FIELDS = [ "instrument_make", ] for field in UPPERCASE_FIELDS: if data.get(field): data[field] = data[field].upper().strip().replace(' ', '_') return data def clean(self): run_name = self.cleaned_data.get("run_name") if not self.cleaned_data.get("sequencing_id"): if not run_name: self.add_error("run_name", "If you don't provide a sequencing_id, you must provide a run_name") reserved_ch = [".", "/", "\\"] for ch in reserved_ch: if ch in run_name: self.add_error("run_name", "run_name cannot contain a reserved character: %s" % str(reserved_ch)) break class TestSampleForm(forms.Form): biosample_source_id = forms.CharField( label="Pseudonymous patient identifier", max_length=56, help_text="Leave blank if not available. <b>DO NOT enter an NHS number here</b>", required=False) root_sample_id = forms.CharField( label="Health Agency sample identifier", max_length=56, required=False, help_text="Leave blank if not applicable or available. It will not be possible to collect private metadata for this sample without this" ) sender_sample_id = forms.CharField( label="Local sample identifier", max_length=56, required=False, help_text="Leave blank if not applicable or available. It will not be possible to collect private metadata for this sample without this" ) central_sample_id = forms.CharField( label="New sample identifier", max_length=56, min_length=5, help_text="Heron barcode assigned by WSI" ) collection_date = forms.DateField( label="Collection date", help_text="YYYY-MM-DD", required=False, ) received_date = forms.DateField( label="Received date", help_text="YYYY-MM-DD", required=False, ) country = forms.CharField(disabled=True) adm1 = forms.ChoiceField( label="Region", choices=[ (None, ""), ("UK-ENG", "England"), ("UK-SCT", "Scotland"), ("UK-WLS", "Wales"), ("UK-NIR", "Northern Ireland"), ], ) source_age = forms.IntegerField(min_value=0, required=False, help_text="Age in years") source_sex = forms.ChoiceField(choices=[ (None, ""), ("F", "F"), ("M", "M"), ("Other", "Other"), ], required=False, help_text="Reported sex") adm2 = forms.CharField( label="County", max_length=100, required=False, help_text="Enter the COUNTY from the patient's address. Leave blank if this was not available." ) #adm2 = forms.ModelChoiceField( # queryset=models.County.objects.all(), # to_field_name="name", # label="County", # required=False, # help_text="Enter the COUNTY from the patient's address. Leave blank if this was not available." #) adm2_private = forms.CharField( label="Outward postcode", max_length=10, required=False, help_text="Enter the <b>first part</b> of the patients home postcode. Leave blank if this was not available." ) submitting_user = forms.CharField(disabled=True, required=False) submitting_org = forms.ModelChoiceField(queryset=models.Institute.objects.exclude(code__startswith="?").order_by("name"), disabled=True, required=False) collecting_org = forms.CharField(max_length=100, required=False, help_text="The site that this sample was collected by. Use the first line of the 'sender' from the corresponding E28") source_type = forms.ChoiceField( choices = [ ("human", "human"), ], disabled = True, ) source_taxon = forms.CharField( max_length=24, disabled=True, ) sample_type_collected = forms.ChoiceField( choices= [ (None, "Unknown"), ("dry swab", "dry swab"), ("swab", "swab"), ("aspirate", "aspirate"), ("sputum", "sputum"), ("BAL", "BAL"), ], required=False, ) sample_type_received = forms.ChoiceField( choices= [ (None, "Unknown"), ("primary", "primary"), ("extract", "extract"), ("lysate", "lysate"), ("culture", "culture"), ], required=False, ) swab_site = forms.ChoiceField( choices= [ (None, None), ("nose", "nose"), ("throat", "throat"), ("nose-throat", "nose and throat"), ("endotracheal", "endotracheal"), ("rectal", "rectal"), ], help_text="Provide only if sample_type_collected is swab", required=False, ) #override_heron = forms.BooleanField( # label="Override Heron validator", # help_text="Enable this checkbox if your sample has not been assigned a Heron identifier. <i>e.g.</i> The sample has already been submitted to GISAID", # required=False) #secondary_identifier = forms.CharField( # max_length=256, # label="GISAID identifier string", # help_text="New COG-UK samples will have GISAID strings automatically composed. If this sample has already been submitted to GISAID, provide the identifier here.", # required=False) #secondary_accession = forms.CharField( # max_length=256, # label="GISAID accession", # help_text="If this sample has already been submitted to GISAID, provide the accession here.", # required=False) #tube_dice = forms.CharField() #box_dice = forms.CharField() #tube_x = forms.IntegerField() #tube_y = forms.IntegerField() #current_sample_type = forms.ChoiceField() #accepted = forms.BooleanField() #quarantine_reason = forms.ChoiceField() #received_date = #TODO Extra COGUK supplemental fields # In an ideal world where we have more time, we'd pin a bunch of supplemental modelforms but we need this asappppp is_surveillance = forms.NullBooleanField() is_hcw = forms.NullBooleanField() employing_hospital_name = forms.CharField(max_length=100, required=False) employing_hospital_trust_or_board = forms.CharField(max_length=100, required=False) is_hospital_patient = forms.NullBooleanField() is_icu_patient = forms.NullBooleanField() admission_date = forms.DateField( label="Received date", help_text="YYYY-MM-DD", required=False, ) admitted_hospital_name = forms.CharField(max_length=100, required=False) admitted_hospital_trust_or_board = forms.CharField(max_length=100, required=False) is_care_home_worker = forms.NullBooleanField() is_care_home_resident = forms.NullBooleanField() anonymised_care_home_code = forms.CharField(max_length=10, required=False) admitted_with_covid_diagnosis = forms.NullBooleanField() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( Fieldset("Identifiers", Row( Column('biosample_source_id', css_class="form-group col-md-3 mb-0"), Column('root_sample_id', css_class="form-group col-md-3 mb-0"), Column('sender_sample_id', css_class="form-group col-md-3 mb-0"), Column('central_sample_id', css_class="form-group col-md-3 mb-0"), css_class="form-row", ) ), Fieldset("Form", Row( Column('source_type', css_class="form-group col-md-3 mb-0"), Column('source_taxon', css_class="form-group col-md-3 mb-0"), Column('sample_type_collected', css_class="form-group col-md-2 mb-0"), Column('swab_site', css_class="form-group col-md-2 mb-0"), Column('sample_type_received', css_class="form-group col-md-2 mb-0"), css_class="form-row", ) ), Fieldset("Locality", Row( Column('country', css_class="form-group col-md-3 mb-0"), Column('adm1', css_class="form-group col-md-2 mb-0"), Column('adm2', css_class="form-group col-md-4 mb-0"), Column('adm2_private', css_class="form-group col-md-3 mb-0"), css_class="form-row", ) ), Fieldset("Key information", Row( Column('collection_date', css_class="form-group col-md-3 mb-0"), Column('received_date', css_class="form-group col-md-3 mb-0"), Column('age', css_class="form-group col-md-2 mb-0"), Column('sex', css_class="form-group col-md-2 mb-0"), css_class="form-row", ), ), Fieldset("Collecting and sequencing", Row( Column('collecting_org', css_class="form-group col-md-5 mb-0"), Column('submitting_user', css_class="form-group col-md-3 mb-0"), Column('submitting_org', css_class="form-group col-md-4 mb-0"), css_class="form-row", ) ), Fieldset("Advanced Options", Row( Column('secondary_identifier', css_class="form-group col-md-6 mb-0"), Column('secondary_accession', css_class="form-group col-md-6 mb-0"), css_class="form-row", ), #Row( # Column('override_heron', css_class="form-group col-md-6 mb-0"), # css_class="form-row", #) ), FormActions( Submit('save', 'Submit sample'), css_class="text-right", ) ) @staticmethod def modify_preform(data): LOWERCASE_FIELDS = [ "swab_site", "sample_type_collected", "sample_type_received", ] UPPERCASE_FIELDS = [ ] COERCE_BOOLEAN = [ "is_surveillance", "is_hcw", "is_hospital_patient", "is_care_home_worker", "is_care_home_resident", "admitted_with_covid_diagnosis", "is_icu_patient", ] for field in LOWERCASE_FIELDS: if data.get(field): data[field] = data[field].strip() if data[field] != "BAL": data[field] = data[field].strip().lower() for field in UPPERCASE_FIELDS: if data.get(field): data[field] = data[field].strip().upper() for field in COERCE_BOOLEAN: if data.get(field): b = data[field].strip().upper() if b == "Y" or b == "YES": data[field] = True elif b == "N" or b == "NO": data[field] = False else: data[field] = None #if data.get("swab_site", "").upper() == "NSTS" or data.get("swab_site", "").lower() == "nose and throat": # data["swab_site"] = "nose-throat" return data def clean(self): cleaned_data = super().clean() # Check barcode starts with a Heron prefix, unless this has been overridden #sample_id = cleaned_data.get("central_sample_id") #if sample_id: # if cleaned_data["override_heron"] is False: # valid_sites = [x.code for x in models.Institute.objects.exclude(code__startswith="?")] # if sum([sample_id.startswith(x) for x in valid_sites]) == 0: # self.add_error("central_sample_id", "Sample identifier does not match the WSI manifest.") # Check a received_date was provided for samples without a collection date if not cleaned_data.get("collection_date") and not cleaned_data.get("received_date"): self.add_error("received_date", "You must provide a received date for samples without a collection date") # Check sample date is not in the future if cleaned_data.get("collection_date"): if cleaned_data["collection_date"] > timezone.now().date(): self.add_error("collection_date", "Sample cannot be collected in the future") elif cleaned_data["collection_date"] < (timezone.now().date() - datetime.timedelta(days=365)): self.add_error("collection_date", "Sample cannot be collected more than a year ago...") if cleaned_data.get("received_date"): if cleaned_data["received_date"] > timezone.now().date(): self.add_error("received_date", "Sample cannot be received in the future") elif cleaned_data["received_date"] < (timezone.now().date() - datetime.timedelta(days=365)): self.add_error("received_date", "Sample cannot be received more than a year ago...") # Check if the adm2 looks like a postcode adm2 = cleaned_data.get("adm2", "") if len(adm2) > 0 and re.search('\d', adm2): self.add_error("adm2", "adm2 cannot contain numbers. Use adm2_private if you are trying to provide an outer postcode") # Check for full postcode mistake adm2_private = cleaned_data.get("adm2_private") if " " in adm2_private: self.add_error("adm2_private", "Enter the first part of the postcode only") # Validate swab site swab_site = cleaned_data.get("swab_site") sample_type = cleaned_data.get("sample_type_collected") if sample_type and ("swab" not in sample_type and sample_type != "aspirate") and swab_site: self.add_error("sample_type_collected", "Swab site specified but the sample type is not 'swab'") #if sample_type == "swab" and not swab_site: # self.add_error("sample_type_collected", "Sample was a swab but you did not specify the swab site") # Force is_surveillance if cleaned_data.get("is_surveillance") is None: self.add_error("is_surveillance", "You must set is_surveillance to Y or N") if cleaned_data.get("admission_date") and not cleaned_data.get("is_hospital_patient"): self.add_error("is_hospital_patient", "Admission date implies patient was admitted to hospital but you've not set is_hospital_patient to Y") class TestFileForm(forms.Form): bridge_artifact = forms.ModelChoiceField(queryset=models.MajoraArtifact.objects.all(), required=False, to_field_name="dice_name") source_artifact = forms.ModelMultipleChoiceField(queryset=models.MajoraArtifact.objects.all(), required=False, to_field_name="dice_name") source_group = forms.ModelMultipleChoiceField(queryset=models.MajoraArtifactGroup.objects.all(), required=False, to_field_name="dice_name") publish_group = forms.CharField(max_length=128, required=False) #pipe_id = forms.UUIDField() pipe_hook = forms.CharField(max_length=256) artifact_uuid = forms.UUIDField(required=False) pipe_kind = forms.CharField(max_length=64) pipe_name = forms.CharField(max_length=96) pipe_version = forms.CharField(max_length=48) #node_uuid = forms.ModelChoiceField(queryset=models.DigitalResourceNode.objects.all()) node_name = forms.ModelChoiceField(queryset=models.DigitalResourceNode.objects.all(), to_field_name="unique_name", required=False) path = forms.CharField(max_length=1024) sep = forms.CharField(max_length=2) current_name = forms.CharField(max_length=512) current_fext = forms.CharField(max_length=48) current_hash = forms.CharField(max_length=64) current_size = forms.IntegerField(min_value=0) resource_type = forms.ChoiceField( choices= [ ("file", "file"), ("reads", "reads"), ("alignment", "alignment"), ("consensus", "consensus"), ], )
6066c82429a06cfc912a197d31d676903f1d208e
cd50ed5464a5397b4e5bafc36efebf88f14b2d8b
/models/rnn_theano.py
cd97581f15b5bc82263db599c4e65f8f297ca657
[]
no_license
millatidy/hit400_lstm
cc6db62c68f18296e40a75395725a8112d4632e8
38bce32bd8bec5c20e373957526bfecf79a3a761
refs/heads/master
2021-06-18T01:20:17.006138
2017-05-09T01:44:24
2017-05-09T01:44:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,909
py
import numpy as np import theano as theano import theano.tensor as T from utils import * import operator class RNN_THEANO: ''' input_dim is the array size of the input data hidden_dim is the array size of the hidden input_dim output_dim is the array size of the output # input weights is array [input_dim,hidden_dim] # hidden weights is array [hidden_dim, hidden_dim] # output weights is array [hidden_dim, output_dim] ''' def __init__(self, input_dim, hidden_dim, output_dim, bptt_truncate=4): # assign instance variables self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.bptt_truncate = bptt_truncate # randomly initialize network weights as input_to_hidden_weights = np.random.uniform(-np.sqrt(1./input_dim), np.sqrt(1./input_dim), (hidden_dim, input_dim)) hidden_to_hidden_weights = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim)) hidden_to_output_weights = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (output_dim, hidden_dim)) # Theano: Create share variables self.IH = theano.shared(name='IH', value=input_to_hidden_weights.astype(theano.config.floatX)) self.HH = theano.shared(name='HH', value=hidden_to_hidden_weights.astype(theano.config.floatX)) self.HO = theano.shared(name='HO', value=hidden_to_output_weights.astype(theano.config.floatX)) # We store theano graph = {} self.theano = {} self.__theano_build__() def __theano_build__(self): IH, HH, HO = self.IH, self.HH, self.HO x = T.ivector('x') y = T.ivector('y') def forward_prop_step(x_t, h_t_prev, IH, HH, HO): h_t = T.tanh(IH[:,x_t] + HH.dot(h_t_prev)) o_t = T.nnet.softmax(HO.dot(h_t)) return [o_t[0], h_t] [o,h], updates = theano.scan( forward_prop_step, sequences=x, outputs_info=[None, dict(initial=T.zeros(self.hidden_dim))], non_sequences=[IH, HH, HO], truncate_gradient=self.bptt_truncate, strict=True) prediction = T.argmax(o, axis=1) o_error = T.sum(T.nnet.categorical_crossentropy(o,y)) # Gradients dIH = T.grad(o_error, IH) dHH = T.grad(o_error, HH) dHO = T.grad(o_error, HO) # Assign functions self.forward_propagation = theano.function([x], o) self.predict = theano.function([x], prediction) self.ce_error = theano.function([x,y], o_error) self.bptt = theano.function([x,y], [dIH, dHH, HO]) # SGD learning_rate = T.scalar('learning_rate') self.sdg_step = theano.function([x,y,learning_rate], [], updates=[(self.IH, self.IH - learning_rate * dIH), (self.HH, self.HH - learning_rate * dHH), (self.HO, self.HH - learning_rate * dHO)]) def calculate_total_loss(self, X, Y): return np.sum([self.ce_error(x,y) for x,y in zip(X,Y)]) def calculate_loss(self, X, Y): # Divide calculate_loss by the number of words num_words = np.sum([len(y) for y in Y]) return self.calculate_total_loss(X,Y)/float(num_words) def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01): # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient model.bptt_truncate = 1000 # Calculate the gradients using backprop bptt_gradients = model.bptt(x, y) # List of all parameters we want to chec. model_parameters = ['U', 'V', 'W'] # Gradient check for each parameter for pidx, pname in enumerate(model_parameters): # Get the actual parameter value from the mode, e.g. model.W parameter_T = operator.attrgetter(pname)(model) parameter = parameter_T.get_value() print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape)) # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ... it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # Save the original value so we can reset it later original_value = parameter[ix] # Estimate the gradient using (f(x+h) - f(x-h))/(2*h) parameter[ix] = original_value + h parameter_T.set_value(parameter) gradplus = model.calculate_total_loss([x],[y]) parameter[ix] = original_value - h parameter_T.set_value(parameter) gradminus = model.calculate_total_loss([x],[y]) estimated_gradient = (gradplus - gradminus)/(2*h) parameter[ix] = original_value parameter_T.set_value(parameter) # The gradient for this parameter calculated using backpropagation backprop_gradient = bptt_gradients[pidx][ix] # calculate The relative error: (|x - y|/(|x| + |y|)) relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) # If the error is to large fail the gradient check if relative_error > error_threshold: print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix) print "+h Loss: %f" % gradplus print "-h Loss: %f" % gradminus print "Estimated_gradient: %f" % estimated_gradient print "Backpropagation gradient: %f" % backprop_gradient print "Relative Error: %f" % relative_error return it.iternext() print "Gradient check for parameter %s passed." % (pname)
d119951e1a0327b0d9524d4b51562c44cbcf814c
b2c04e31a4eeb4b512512ef6731049fa65f4407c
/presidentspeech/lib/python3.6/site-packages/joblib/_parallel_backends.py
c78750667edb93004442e2a058d88459b9fda75d
[ "MIT" ]
permissive
aless80/Presidentspeech
805f4da59a9d3e150db752f64f5b9ca0d5b04223
39349a4e6fa5a51a181a418bdc85f00878b4c6e4
refs/heads/master
2022-11-29T08:52:02.405580
2018-10-07T19:45:21
2018-10-07T19:45:21
102,866,762
1
0
MIT
2022-11-22T03:03:33
2017-09-08T13:54:01
Python
UTF-8
Python
false
false
23,014
py
""" Backends for embarrassingly parallel code. """ import gc import os import sys import warnings import threading import functools import contextlib from abc import ABCMeta, abstractmethod from .format_stack import format_exc from .my_exceptions import WorkerInterrupt, TransportableException from ._multiprocessing_helpers import mp from ._compat import with_metaclass, PY27 if mp is not None: from .disk import delete_folder from .pool import MemmappingPool from multiprocessing.pool import ThreadPool from .executor import get_memmapping_executor # Compat between concurrent.futures and multiprocessing TimeoutError from multiprocessing import TimeoutError from .externals.loky._base import TimeoutError as LokyTimeoutError from .externals.loky import process_executor, cpu_count class ParallelBackendBase(with_metaclass(ABCMeta)): """Helper abc which defines all methods a ParallelBackend must implement""" supports_timeout = False nesting_level = 0 def __init__(self, nesting_level=0): self.nesting_level = nesting_level SUPPORTED_CLIB_VARS = [ 'OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS', 'VECLIB_MAXIMUM_THREADS', 'NUMEXPR_NUM_THREADS' ] @abstractmethod def effective_n_jobs(self, n_jobs): """Determine the number of jobs that can actually run in parallel n_jobs is the number of workers requested by the callers. Passing n_jobs=-1 means requesting all available workers for instance matching the number of CPU cores on the worker host(s). This method should return a guesstimate of the number of workers that can actually perform work concurrently. The primary use case is to make it possible for the caller to know in how many chunks to slice the work. In general working on larger data chunks is more efficient (less scheduling overhead and better use of CPU cache prefetching heuristics) as long as all the workers have enough work to do. """ @abstractmethod def apply_async(self, func, callback=None): """Schedule a func to be run""" def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, **backend_args): """Reconfigure the backend and return the number of workers. This makes it possible to reuse an existing backend instance for successive independent calls to Parallel with different parameters. """ self.parallel = parallel return self.effective_n_jobs(n_jobs) def start_call(self): """Call-back method called at the beginning of a Parallel call""" def stop_call(self): """Call-back method called at the end of a Parallel call""" def terminate(self): """Shutdown the workers and free the shared memory.""" def compute_batch_size(self): """Determine the optimal batch size""" return 1 def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" def get_exceptions(self): """List of exception types to be captured.""" return [] def abort_everything(self, ensure_ready=True): """Abort any running tasks This is called when an exception has been raised when executing a tasks and all the remaining tasks will be ignored and can therefore be aborted to spare computation resources. If ensure_ready is True, the backend should be left in an operating state as future tasks might be re-submitted via that same backend instance. If ensure_ready is False, the implementer of this method can decide to leave the backend in a closed / terminated state as no new task are expected to be submitted to this backend. Setting ensure_ready to False is an optimization that can be leveraged when aborting tasks via killing processes from a local process pool managed by the backend it-self: if we expect no new tasks, there is no point in re-creating new workers. """ # Does nothing by default: to be overridden in subclasses when # canceling tasks is possible. pass def get_nested_backend(self): """Backend instance to be used by nested Parallel calls. By default a thread-based backend is used for the first level of nesting. Beyond, switch to sequential backend to avoid spawning too many threads on the host. """ nesting_level = getattr(self, 'nesting_level', 0) + 1 if nesting_level > 1: return SequentialBackend(nesting_level=nesting_level) else: return ThreadingBackend(nesting_level=nesting_level) @contextlib.contextmanager def retrieval_context(self): """Context manager to manage an execution context. Calls to Parallel.retrieve will be made inside this context. By default, this does nothing. It may be useful for subclasses to handle nested parallelism. In particular, it may be required to avoid deadlocks if a backend manages a fixed number of workers, when those workers may be asked to do nested Parallel calls. Without 'retrieval_context' this could lead to deadlock, as all the workers managed by the backend may be "busy" waiting for the nested parallel calls to finish, but the backend has no free workers to execute those tasks. """ yield @classmethod def limit_clib_threads(cls, n_threads=1): """Initializer to limit the number of threads used by some C-libraries. This function set the number of threads to `n_threads` for OpenMP, MKL, Accelerated and OpenBLAS libraries, that can be used with scientific computing tools like numpy. """ for var in cls.SUPPORTED_CLIB_VARS: var_value = os.environ.get(var, None) if var_value is None: os.environ[var] = str(n_threads) class SequentialBackend(ParallelBackendBase): """A ParallelBackend which will execute all batches sequentially. Does not use/create any threading objects, and hence has minimal overhead. Used when n_jobs == 1. """ uses_threads = True supports_sharedmem = True def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') return 1 def apply_async(self, func, callback=None): """Schedule a func to be run""" result = ImmediateResult(func) if callback: callback(result) return result def get_nested_backend(self): nested_level = getattr(self, 'nesting_level', 0) + 1 return SequentialBackend(nesting_level=nested_level) class PoolManagerMixin(object): """A helper class for managing pool of workers.""" _pool = None def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) return n_jobs def terminate(self): """Shutdown the process or thread pool""" if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None def _get_pool(self): """Used by apply_async to make it possible to implement lazy init""" return self._pool def apply_async(self, func, callback=None): """Schedule a func to be run""" return self._get_pool().apply_async( SafeFunction(func), callback=callback) def abort_everything(self, ensure_ready=True): """Shutdown the pool and restart a new one with the same parameters""" self.terminate() if ensure_ready: self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel, **self.parallel._backend_args) class AutoBatchingMixin(object): """A helper class for automagically batching jobs.""" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Batching counters default values _DEFAULT_EFFECTIVE_BATCH_SIZE = 1 _DEFAULT_SMOOTHED_BATCH_DURATION = 0.0 def __init__(self): self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION def compute_batch_size(self): """Determine the optimal batch size""" old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < self.MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int(old_batch_size * self.MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( "Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", (batch_duration, batch_size)) elif (batch_duration > self.MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. batch_size = old_batch_size // 2 self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( "Batch computation too slow (%.4fs.) " "Setting batch_size=%d.", (batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = \ self._DEFAULT_SMOOTHED_BATCH_DURATION return batch_size def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" if batch_size == self._effective_batch_size: # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self._smoothed_batch_duration if old_duration == self._DEFAULT_SMOOTHED_BATCH_DURATION: # First record of duration for this batch size after the last # reset. new_duration = duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * duration self._smoothed_batch_duration = new_duration def reset_batch_stats(self): """Reset batch statistics to default values. This avoids interferences with future jobs. """ self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION class ThreadingBackend(PoolManagerMixin, ParallelBackendBase): """A ParallelBackend which will use a thread pool to execute batches in. This is a low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. Mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). The actual thread pool is lazily initialized: the actual thread pool construction is delayed to the first call to apply_async. ThreadingBackend is used as the default backend for nested calls. """ supports_timeout = True uses_threads = True supports_sharedmem = True def configure(self, n_jobs=1, parallel=None, **backend_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: # Avoid unnecessary overhead and use sequential backend instead. raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) self.parallel = parallel self._n_jobs = n_jobs return n_jobs def _get_pool(self): """Lazily initialize the thread pool The actual pool of worker threads is only initialized at the first call to apply_async. """ if self._pool is None: self._pool = ThreadPool(self._n_jobs) return self._pool class MultiprocessingBackend(PoolManagerMixin, AutoBatchingMixin, ParallelBackendBase): """A ParallelBackend which will use a multiprocessing.Pool. Will introduce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. However, does not suffer from the Python Global Interpreter Lock. """ # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" supports_timeout = True def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel. This also checks if we are attempting to create a nested parallel loop. """ if mp is None: return 1 if mp.current_process().daemon: # Daemonic processes cannot have children if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 if process_executor._CURRENT_DEPTH > 0: # Mixing loky and multiprocessing in nested loop is not supported if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' below loky, setting n_jobs=1', stacklevel=3) return 1 if not isinstance(threading.current_thread(), threading._MainThread): # Prevent posix fork inside in non-main posix threads if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 return super(MultiprocessingBackend, self).effective_n_jobs(n_jobs) def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, **memmappingpool_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) already_forked = int(os.environ.get(self.JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError( '[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information') # Set an environment variable to avoid infinite loops os.environ[self.JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() self._pool = MemmappingPool( n_jobs, initializer=self.limit_clib_threads, **memmappingpool_args) self.parallel = parallel return n_jobs def terminate(self): """Shutdown the process or thread pool""" super(MultiprocessingBackend, self).terminate() if self.JOBLIB_SPAWNED_PROCESS in os.environ: del os.environ[self.JOBLIB_SPAWNED_PROCESS] self.reset_batch_stats() class LokyBackend(AutoBatchingMixin, ParallelBackendBase): """Managing pool of workers with loky instead of multiprocessing.""" supports_timeout = True def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, idle_worker_timeout=300, **memmappingexecutor_args): """Build a process executor and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) self._workers = get_memmapping_executor( n_jobs, timeout=idle_worker_timeout, initializer=self.limit_clib_threads, **memmappingexecutor_args) self.parallel = parallel return n_jobs def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif mp.current_process().daemon: # Daemonic processes cannot have children if n_jobs != 1: warnings.warn( 'Loky-backed parallel loops cannot be called in a' ' multiprocessing, setting n_jobs=1', stacklevel=3) return 1 elif not isinstance(threading.current_thread(), threading._MainThread): # Prevent posix fork inside in non-main posix threads if n_jobs != 1: warnings.warn( 'Loky-backed parallel loops cannot be nested below ' 'threads, setting n_jobs=1', stacklevel=3) return 1 elif n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) return n_jobs def apply_async(self, func, callback=None): """Schedule a func to be run""" future = self._workers.submit(SafeFunction(func)) future.get = functools.partial(self.wrap_future_result, future) if callback is not None: future.add_done_callback(callback) return future @staticmethod def wrap_future_result(future, timeout=None): """Wrapper for Future.result to implement the same behaviour as AsyncResults.get from multiprocessing.""" try: return future.result(timeout=timeout) except LokyTimeoutError: raise TimeoutError() def terminate(self): if self._workers is not None: # Terminate does not shutdown the workers as we want to reuse them # in latter calls but we free as much memory as we can by deleting # the shared memory delete_folder(self._workers._temp_folder) self._workers = None self.reset_batch_stats() def abort_everything(self, ensure_ready=True): """Shutdown the workers and restart a new one with the same parameters """ self._workers.shutdown(kill_workers=True) delete_folder(self._workers._temp_folder) self._workers = None if ensure_ready: self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel) class ImmediateResult(object): def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results class SafeFunction(object): """Wrapper that handles the serialization of exception tracebacks. If an exception is triggered when calling the inner function, a copy of the full traceback is captured to make it possible to serialize it so that it can be rendered in a different Python process. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except BaseException: if PY27: # Capture the traceback of the worker to make it part of # the final exception message. e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) raise TransportableException(text, e_type) else: # Rely on Python 3 built-in Remote Traceback reporting raise class FallbackToBackend(Exception): """Raised when configuration should fallback to another backend""" def __init__(self, backend): self.backend = backend
f7563abdb8f484051174f08311f015a78de85abb
a01e7f87a0088965e2e0a02476d2df12a49a1a18
/package/vpntfi/build/lib/vpnmodule/lib/ipsec.py
ec9ef5f7c46a4f3932aa7db489e96b7baad3399c
[]
no_license
gsrr/IFT_jerry
0456a8a1fb98f84ad5c26dc36bdf32e2d85c750c
4c2f6900dfd7ae7f6b3cc2150b1c1be236b4c95c
refs/heads/master
2020-04-04T05:30:10.544252
2019-08-22T09:12:03
2019-08-22T09:12:03
48,145,836
0
0
null
null
null
null
UTF-8
Python
false
false
1,828
py
import sys import os import configLoader import mcommon def make_replace_func(src, dst): def wrap_func(items): with open(src, "r") as fr: with open(dst, "w") as fw: for line in fr.readlines(): line = line.strip() for key in items.keys(): if key in line: line = line.replace(key, items[key]) break fw.write(line + "\n") return wrap_func class IPSec: def __init__(self, conf = "/etc/strongswan/ipsec.conf"): self.conf = conf self.clobj = configLoader.ConfigIPSec(cfg=self.conf + ".default") self.clobj.load() def getcfg(self): print self.clobj.cfg def _add(self, *paras): key = paras[0] value = paras[1] self.clobj.add(key, value) def _remove(self, *paras): key = paras[0] self.clobj.remove(key) def status(self): cmd = "systemctl is-active strongswan" output = mcommon.call_cmdstr(cmd)[0] return output def replacePSK(self, *paras): src = "/etc/strongswan/ipsec.secrets.default" dst = "/etc/strongswan/ipsec.secrets" items = {'[PSK]' : paras[0]} func = make_replace_func(src, dst) func(items) def unload(self): self.clobj.unload(self.conf) def showconf(self): os.system("cat %s"%self.conf) def decor_test(func): def wrap_func(): obj = IPSec("/etc/strongswan/ipsec.conf") obj.getcfg() obj.unload() obj.showconf() return wrap_func @decor_test def test_ipsec(obj): pass def main(): func=getattr(sys.modules[__name__], sys.argv[1]) func() if __name__ == "__main__": main()
04a5ac227ff16d908d6ea9c43ed65181b56820de
46b432cd3557038c454601367b878f889c9b6a8f
/kiyuna/tutorial07/tutorial07.py
cd07ce259e448005ecafb1d76d2ccac03e4a9643
[]
no_license
tmu-nlp/NLPtutorial2019
84ceec06568fd9d899a686658fb8851466133375
d77d199c50cd37d70e462209a7bfcd4dee9140a1
refs/heads/master
2020-05-14T13:34:05.336594
2019-09-25T02:25:41
2019-09-25T02:25:41
181,814,723
1
0
null
2019-08-01T18:53:54
2019-04-17T04:04:06
Python
UTF-8
Python
false
false
478
py
from train_nn import * from test_nn import * import subprocess train_path = '../../data/titles-en-train.labeled' train_nn(train_path, layer_num=1, node_num=2, epoch_num=1, λ=0.1) test_path = '../../data/titles-en-test.word' out_path = './out.txt' test_nn(test_path, out_path) script_path = '../../script/grade-prediction.py' ans_path = '../../data/titles-en-test.labeled' subprocess.run(f'{script_path} {ans_path} {out_path}'.split()) ''' RESULT Accuracy = 92.915338% '''
54af5cd1a521f7e55d1fc43f8010b47de5507d7a
67325192c1e528a39d457f11e61b480d68826708
/mods/mcpython/Commands/paststructur.py
117c93e349a2e464fbdd360aea9102a06eae33c7
[ "MIT" ]
permissive
vashistaarav1611/mcpython-a-minecraft-clone-in-python
5851b377b54fd2b28c106112c7b18f397b71ab50
c16cd66f319efdeec4130e1a43f5a857caf1ea13
refs/heads/master
2023-02-01T22:48:51.787106
2020-12-21T15:02:25
2020-12-21T15:02:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# todo: remove from . import Command import structures import globals as G class paststructur(Command.Command): @staticmethod def getHelp(): return "/paststructur <name> <x> <y> <z>" @staticmethod def isCommand(line): return line.split(" ")[0] == "/paststructur" @staticmethod def getSyntaxError(line, entity, position, chat): # todo: add systax-system pass @staticmethod def parse(line, entity, position, chat): sc = line.split(" ") name = sc[1] x, y, z = int(sc[2]), int(sc[3]), int(sc[4]) structures.handler.structures[name].past(G.window.model, x, y, z) Command.handler.register(paststructur)
d86340a6767ed274ae880923b13b4c21609393f6
047fbc11cd389e56865034cf473807db8718d92e
/assignment_test.py
46933b2148fcdc536230cfb6950f6b105b7d6bba
[]
no_license
SDSS-Computing-Studies/002b-basic-math-Sebastianmaudee
5c07d14dd2f13a6de8674d08c36f614defd1d84a
ae9826096b03ba4cf0d45fa27ec4acf9449570b7
refs/heads/master
2023-08-28T23:20:37.346270
2021-10-21T21:16:41
2021-10-21T21:16:41
406,925,526
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
#! python3 import a1, a2, a3, a4, a5, a6 def test1(): assert a1.answer == 14 def test2(): assert a2.answer == 3 def test3(): assert a3.answer == 10 def test4(): assert a4.answer == 2.5 def test5(): assert a5.answer == 1 def test6(): assert a6.answer == 25
[ "66690702+github-classroom[bot]@users.noreply.github.com" ]
66690702+github-classroom[bot]@users.noreply.github.com
ee9703daa5cc3632e67a2217d830eed7463293cf
48fab33def7dfaed44dbf0a2c5c148798a10c4c8
/test/onnx_converter_test/hugectr2onnx_wdl_test.py
7577b6ee48494f469b7d97b2915f797fb76344de
[ "Apache-2.0" ]
permissive
js-ts/HugeCTR
787fa22e8643cbfe7c6b9dac4414a70eb37f322c
085b2e8ad2abaee5578e7bf43b8394d0b8473b58
refs/heads/master
2023-08-16T11:29:57.490236
2021-10-21T02:31:24
2021-10-21T02:31:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,851
py
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import hugectr from hugectr.inference import InferenceParams, CreateInferenceSession import hugectr2onnx import onnxruntime as ort from utils import read_samples_for_wdl, compare_array_approx import numpy as np def hugectr2onnx_wdl_test(batch_size, num_batches, data_source, data_file, graph_config, dense_model, sparse_models, onnx_model_path, model_name): hugectr2onnx.converter.convert(onnx_model_path, graph_config, dense_model, True, sparse_models) label, dense, wide_data, deep_data = read_samples_for_wdl(data_file, batch_size*num_batches, slot_num = 27) sess = ort.InferenceSession(onnx_model_path) res = sess.run(output_names=[sess.get_outputs()[0].name], input_feed={sess.get_inputs()[0].name: dense, sess.get_inputs()[1].name: wide_data, sess.get_inputs()[2].name: deep_data}) res = res[0].reshape(batch_size*num_batches,) inference_params = InferenceParams(model_name = model_name, max_batchsize = batch_size, hit_rate_threshold = 0.6, dense_model_file = dense_model, sparse_model_files = sparse_models, device_id = 0, use_gpu_embedding_cache = True, cache_size_percentage = 0.6, i64_input_key = False) inference_session = CreateInferenceSession(graph_config, inference_params) predictions = inference_session.predict(num_batches, data_source, hugectr.DataReaderType_t.Norm, hugectr.Check_t.Sum) compare_array_approx(res, predictions, model_name, 1e-3, 1e-2) if __name__ == "__main__": hugectr2onnx_wdl_test(64, 100, "./wdl_data/file_list_test.txt", "./wdl_data/val/sparse_embedding0.data", "/onnx_converter/graph_files/wdl.json", "/onnx_converter/hugectr_models/wdl_dense_2000.model", ["/onnx_converter/hugectr_models/wdl0_sparse_2000.model", "/onnx_converter/hugectr_models/wdl1_sparse_2000.model"], "/onnx_converter/onnx_models/wdl.onnx", "wdl")
41d3c3423049d66be5d5a676da6f65fc11ccee96
3117852233ea6c2644e723587a7b28d6d6518d95
/Calculator_Gamma.py
56834b8c0142138f9ff1356056dec9729eb49cbb
[]
no_license
harishravi121/Pythoncodes
d70059a3b7785d668a4b03f3ec85b0777b33706f
1d6d6ca0ed6348b6c5d07d27d24668fb567527ca
refs/heads/master
2023-07-07T11:58:03.741814
2023-07-01T08:01:56
2023-07-01T08:01:56
211,642,477
3
0
null
2020-01-13T06:45:25
2019-09-29T10:00:32
Python
UTF-8
Python
false
false
4,117
py
#The ALU has digital circuits for sum, subtraction, multiplication and comparision. #The challenge here would be to write the code for division, square root, trignometric and other fuctions #The following python code just needs python install of 30 MB x='25'; #2 digit number y='14'; #2 digit number #Doing representation of two digit product product=int(x[1])*int(y[1])+10*(int(x[0])*int(y[1])+int(x[1])*int(y[0]))+int(x[0])*int(y[0])*100 #Doing representation of digit sum and subtraction add=int(x[1])+int(y[1])+10*(int(x[0])+int(y[0])) sub=int(x[1])-int(y[1])+10*(int(x[0])-int(y[0])) #Showing output, print('Product of ',x,' and' ,y,' ', product) print('Sum of',x,' and' ,y,' ',add) print('Subtraction ',x,' and' ,y,' ',sub) #Dividing x a two digit number by z a single digit number z='3'# Single digit number ha=1;# While loop flag j=0; # Increasing the quotient in the loop until the product exceeds the divisor while ha: r=int(x[1])+10*int(x[0])-j*int(z[0]); if(r<int(z[0])): ha=0; #Setting the while loop flag to 0 to come out of the loop j=j+1; #incrementing the quotient until it divides j=j-1; # Reducing the quotient as we counted one past #Getting the decimal point of the quotient ha=1; h=0; while ha: r2=r*10-h*int(z[0]); if(r2<int(z[0])): ha=0; h=h+1; h=h-1; print('division of ',x,' and' ,z,' ',j,'.',h) #Finding square root by subtracting successively the contribution from most significant digit. sq='314'; ha=1; a=0; while ha: luv=int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a; a=a+1; if luv<0: ha=0; a=a-2; ha=1; b=0; while ha: luv2=int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a-(20*a+b)*b; b=b+1; if luv2<0: ha=0; b=b-2; ha=1; c=0; while ha: luv3=100*(int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a-(20*a+b)*b)-c*(200*a+20*b+c); c=c+1; if luv3<0: ha=0; c=c-2; print('Square root of ',sq , ' ',10*a+b,'.',c) #Maclaurin expansion of all trignometric and hyperbolic functions n=100 def hfactorial(n): s=1; for j in range(1,n+1): s=s*j return s def hsin(x): return x-x*x*x/6+x*x*x*x*x/120-x*x*x*x*x*x*x/5040; def hcos(x): return 1-x*x/2+1/24*x*x*x*x-x*x*x*x*x*x/720; def htan(x): return x+x*x*x/3+2/15*x*x*x*x*x+17/315*x*x*x*x*x*x*x+62/2035*x*x*x*x*x*x*x*x*x; def h2cos(x): s=0.0; for j in range(n): s=s+(-1)**j/hfactorial(2*j)*(x**(2*j)) return s def h2sin(x): s=0.0; for j in range(n): s=s+(-1)**j/hfactorial(2*j+1)*(x**(2*j+1)) return s def h2sinh(x): s=0.0; for j in range(n): s=s+1/hfactorial(2*j+1)*(x**(2*j+1)) return s def h2atanh(x): s=0.0; for j in range(1,n): s=s+1/(2*j-1)*(x**(2*j-1)) return s def h2atan(x): s=0.0; for j in range(1,n): s=s+(-1.0)**(j+1)/(2*j-1)*(x**(2*j-1)) return s def h2ln1px(x): s=0.0; for j in range(1,n): s=s+(-1)**(j+1)/j*(x**(j)) return s def h2erf(x): s=0.0; for j in range(1,n): s=s+2/np.sqrt(np.pi)*(-1)**j/(2*j+1)/hfactorial(j)*(x**(2*j+1)) return s def h2exp(x): s=0.0; for j in range(n): s=s+1.0/hfactorial(j)*(x**(j)) return s def h2acot(x): s=0.0; for j in range(1,n): s=s+(-1)**j/(2*j+1)*(x**(2*j+1)) return np.pi/2-s def h2cosh(x): s=0.0; for j in range(1,n): s=s+1/hfactorial(2*j)*(x**(2*j)) return s print('pi',h2atan(1)*4.0) print('e',h2exp(1)) """ import numpy as np import matplotlib.pyplot as plt def h2gamma(n): if n==1: return 1; if n==0.5: return 1; else: return (n-1)*h2gamma(n-1); x=np.arange(0,0.5,0.1) #plt.plot(x,h2sin(x),x,h2cos(x),x,h2exp(x),x,h2erf(x),x,h2cosh(x),x,h2acot(x),x,h2erf(x),x,h2ln1px(x),x,h2atan(x),x,h2atanh(x)) #plt.show() """
caf7ec1a93c4ba7f19938d29664e3db866008a9a
0add7953d3e3ce2df9e8265102be39b758579753
/built-in/TensorFlow/Official/cv/image_classification/ResnetVariant_for_TensorFlow/automl/vega/core/trainer/distributed_worker.py
5d9fc4bf51e66b007308d25784eede866bf0e020
[ "Apache-2.0", "MIT" ]
permissive
Huawei-Ascend/modelzoo
ae161c0b4e581f8b62c77251e9204d958c4cf6c4
df51ed9c1d6dbde1deef63f2a037a369f8554406
refs/heads/master
2023-04-08T08:17:40.058206
2020-12-07T08:04:57
2020-12-07T08:04:57
319,219,518
1
1
Apache-2.0
2023-03-24T22:22:00
2020-12-07T06:01:32
Python
UTF-8
Python
false
false
9,223
py
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Distributed worker for training and evaluating. Distributed worker is the basic class of TrainWorker and EvaluatorWork, it loads the pickle file into worker from master, and run the train_process function of each distributed worker on local node, it also has the function of timeout, killing the worker process which exceeds setting time. """ import os import copy import pickle import subprocess import logging import traceback import json from vega.core.common.task_ops import TaskOps from .utils import kill_proc_tree from vega.core.common import UserConfig from vega.core.common.class_factory import ClassFactory from vega.search_space.networks import NetworkFactory from vega.core.common.utils import switch_directory from vega.core.common.general import General from vega.core.common.config import obj2config class DistributedWorker(TaskOps): """Class of Distributed Worker. This is a distributed worker used to load worker's pickle file, and run the process of training and evaluating. :param args: arguments from user config file :type args: dict or Config, default to None """ # original params __worker_path__ = None __worker_module__ = None __worker_name__ = None # id params __worker_id__ = 0 __config__ = None __general__ = None def __init__(self, args=None): """Init DistributedWorker.""" super(DistributedWorker, self).__init__() # privates DistributedWorker.__worker_id__ = DistributedWorker.__worker_id__ + 1 self._worker_id = DistributedWorker.__worker_id__ # publics self.rank = 0 self.world_size = 1 self.worker_addr = "" self.worker_nccl_port = 16666 self.timeout = int(float(General.worker.timeout) * 60 * 60) self.__env_config__ = (copy.deepcopy(UserConfig().data), copy.deepcopy(ClassFactory.__configs__), copy.deepcopy(ClassFactory.__registry__)) self.__network_config__ = copy.deepcopy(NetworkFactory.__network_registry__) self.__general__ = obj2config(General) self.__worker_device_folder__ = os.path.join(self.temp_path, '.worker_device') if not os.path.exists(self.__worker_device_folder__): os.makedirs(self.__worker_device_folder__, exist_ok=True) return @property def worker_id(self): """Property: worker_id.""" return self._worker_id @worker_id.setter def worker_id(self, value): """Setter: set worker_id with value. :param value: worker id :type value: int """ self._worker_id = value def call_in_gpu(self): """Call function based on GPU devices.""" env = os.environ.copy() sub_pid_list = [] if 'CUDA_VISIBLE_DEVICES' in env: try: first_gpu_id = env['CUDA_VISIBLE_DEVICES'].split(",")[0] env['VEGA_WORKER_PORT'] = '{}'.format(self.worker_nccl_port + int(first_gpu_id)) except Exception: env['VEGA_WORKER_PORT'] = '{}'.format(self.worker_nccl_port) if 'PYTHONPATH' in env: env['PYTHONPATH'] = "{}:{}:{}".format( env['PYTHONPATH'], self.__worker_path__, os.path.abspath(os.curdir)) elif self.__worker_id__ is not None and self.__worker_path__ is not None: env['PYTHONPATH'] = "{}:{}".format( self.__worker_path__, os.path.abspath(os.curdir)) sub_pid = self._subprocess(rank=0, world_size=self.world_size, env=env, is_backend=False) sub_pid_list.append(sub_pid) return sub_pid_list def call_in_npu(self): """Call function based on NPU devices.""" env = os.environ.copy() sub_pid_list = [] npu_call_path = os.path.join(self.__worker_device_folder__, 'npu') if not os.path.exists(npu_call_path): os.makedirs(npu_call_path, exist_ok=True) if 'PYTHONPATH' in env: env['PYTHONPATH'] = "{}:{}:{}".format( env['PYTHONPATH'], self.__worker_path__, os.path.abspath(os.curdir)) elif self.__worker_id__ is not None and self.__worker_path__ is not None: env['PYTHONPATH'] = "{}:{}".format( self.__worker_path__, os.path.abspath(os.curdir)) rank_file = env.get('RANK_TABLE_FILE') with open(rank_file, 'r') as f: rank_table_json = json.loads(f.read()) if self.__general__.get('dft', False): env['RANK_SIZE'] = env['ORIGIN_RANK_SIZE'] env['RANK_TABLE_FILE'] = env['ORIGIN_RANK_TABLE_FILE'] else: env['RANK_SIZE'] = '1' env['DEVICE_ID'] = rank_table_json['server_list'][0]['device'][0]['device_id'] env['RANK_ID'] = env['DEVICE_ID'] # env['DEVICE_ID'] = rank_table_json['group_list'][0]['instance_list'][0]['devices'][0]['device_id'] env.pop('RANK_TABLE_FILE', None) with switch_directory(os.path.join(npu_call_path, 'device%s' % env['DEVICE_ID'])): sub_pid = self._subprocess(rank=0, world_size=1, env=env, is_backend=False) sub_pid_list.append(sub_pid) return sub_pid_list def __call__(self, *args, **kwargs): """Call function of distributed worker. To empty cuda memory, set environ, and do the subprocess function. :param *args: positional arguments :type *args: tuple :param ** kwargs: keyword argumnets :type ** kwargs: dict :return: 0 """ # empty the cuda memory first. # set Environment sub_pid_list = [] if os.environ['DEVICE_CATEGORY'] == 'GPU': sub_pid_list = self.call_in_gpu() elif os.environ['DEVICE_CATEGORY'] == 'NPU': sub_pid_list = self.call_in_npu() # next we need to deal with the subprocess return status!!! logging.info("DistributedWorker finished!") for sub_pid in sub_pid_list: kill_proc_tree(pid=sub_pid) logging.info("DistributedWorker subprocess cleaned!") return 0 def _subprocess(self, rank, world_size, env, is_backend=False): """Subprocess on each rank. Load pickle file into worker class, and use subprocess to run the train_process function. :param rank: node rank :type rank: int :param world_size: number of total nodes :type world_size: int :param env: environ :type env: dict :param is_backend: backend or not :type is_backend: bool """ worker_path = self.get_local_worker_path(self.__general__.step_name, self.worker_id) worker_file = os.path.join(worker_path, 'worker_file_{0}_{1}.pickle'.format(self.worker_id, rank)) with open(worker_file, "wb") as f: pickle.dump(self, f) env['RANK'] = "{}".format(rank) env['WORLD_SIZE'] = "{}".format(world_size) cmd = "import pickle;f=open('{0}', 'rb');augment = pickle.load(f);".format(worker_file) cmd = cmd + "from vega.core.common.user_config import UserConfig;" cmd = cmd + "from vega.core.common.class_factory import ClassFactory;" cmd = cmd + "from vega.search_space.networks import NetworkFactory;" cmd = cmd + "user_config_data,ClassFactory.__configs__,ClassFactory.__registry__=augment.__env_config__;" cmd = cmd + "NetworkFactory.__network_registry__=augment.__network_config__;" cmd = cmd + "UserConfig().load(user_config_data);" cmd = cmd + "from vega.core.common.loader import load_conf_from_desc;" cmd = cmd + "from vega.core.pipeline.conf import PipeStepConfig;" cmd = cmd + "load_conf_from_desc(PipeStepConfig, ClassFactory.__configs__);" cmd = cmd + "from vega.core.common.general import General;" cmd = cmd + "load_conf_from_desc(General, augment.__general__);" if 'VEGA_INIT_ENV' in os.environ: cmd = cmd + os.environ.copy()['VEGA_INIT_ENV'] cmd = cmd + "augment.train_process()" if is_backend: proc = subprocess.Popen(['python3', '-c', cmd], close_fds=True, env=env) pid = proc.pid else: try: proc = subprocess.Popen(['python3', '-c', cmd], env=env) pid = proc.pid proc.wait(timeout=self.timeout) except Exception: logging.warn("Timeout worker has been killed.") logging.warn(traceback.print_exc()) return pid def train_process(self): """Abstract base function for DistributedWorker to do the train process.""" raise NotImplementedError
4ba94ad8d63b1aded9da71576d77fa7a6caafdec
159d4ae61f4ca91d94e29e769697ff46d11ae4a4
/venv/lib/python3.9/site-packages/pandas/tests/groupby/test_min_max.py
25a57d24e04ef974fbd644249e8114cbe40588c9
[ "MIT" ]
permissive
davidycliao/bisCrawler
729db002afe10ae405306b9eed45b782e68eace8
f42281f35b866b52e5860b6a062790ae8147a4a4
refs/heads/main
2023-05-24T00:41:50.224279
2023-01-22T23:17:51
2023-01-22T23:17:51
411,470,732
8
0
MIT
2023-02-09T16:28:24
2021-09-28T23:48:13
Python
UTF-8
Python
false
false
5,733
py
import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas as pd from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_max_min_object_multiple_columns(using_array_manager): # GH#41111 case where the aggregation is valid for some columns but not # others; we split object blocks column-wise, consistent with # DataFrame._reduce df = DataFrame( { "A": [1, 1, 2, 2, 3], "B": [1, "foo", 2, "bar", False], "C": ["a", "b", "c", "d", "e"], } ) df._consolidate_inplace() # should already be consolidate, but double-check if not using_array_manager: assert len(df._mgr.blocks) == 2 gb = df.groupby("A") with tm.assert_produces_warning(FutureWarning, match="Dropping invalid"): result = gb.max(numeric_only=False) # "max" is valid for column "C" but not for "B" ei = Index([1, 2, 3], name="A") expected = DataFrame({"C": ["b", "d", "e"]}, index=ei) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match="Dropping invalid"): result = gb.min(numeric_only=False) # "min" is valid for column "C" but not for "B" ei = Index([1, 2, 3], name="A") expected = DataFrame({"C": ["a", "c", "e"]}, index=ei) tm.assert_frame_equal(result, expected) def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_max_inat(): # GH#40767 dont interpret iNaT as NaN ser = Series([1, iNaT]) gb = ser.groupby([1, 1]) result = gb.max(min_count=2) expected = Series({1: 1}, dtype=np.int64) tm.assert_series_equal(result, expected, check_exact=True) result = gb.min(min_count=2) expected = Series({1: iNaT}, dtype=np.int64) tm.assert_series_equal(result, expected, check_exact=True) # not enough entries -> gets masked to NaN result = gb.min(min_count=3) expected = Series({1: np.nan}) tm.assert_series_equal(result, expected, check_exact=True) def test_max_inat_not_all_na(): # GH#40767 dont interpret iNaT as NaN # make sure we dont round iNaT+1 to iNaT ser = Series([1, iNaT, 2, iNaT + 1]) gb = ser.groupby([1, 2, 3, 3]) result = gb.min(min_count=2) # Note: in converting to float64, the iNaT + 1 maps to iNaT, i.e. is lossy expected = Series({1: np.nan, 2: np.nan, 3: iNaT + 1}) tm.assert_series_equal(result, expected, check_exact=True) @pytest.mark.parametrize("func", ["min", "max"]) def test_groupby_aggregate_period_column(func): # GH 31471 groups = [1, 2] periods = pd.period_range("2020", periods=2, freq="Y") df = DataFrame({"a": groups, "b": periods}) result = getattr(df.groupby("a")["b"], func)() idx = pd.Int64Index([1, 2], name="a") expected = Series(periods, index=idx, name="b") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max"]) def test_groupby_aggregate_period_frame(func): # GH 31471 groups = [1, 2] periods = pd.period_range("2020", periods=2, freq="Y") df = DataFrame({"a": groups, "b": periods}) result = getattr(df.groupby("a"), func)() idx = pd.Int64Index([1, 2], name="a") expected = DataFrame({"b": periods}, index=idx) tm.assert_frame_equal(result, expected) def test_aggregate_numeric_object_dtype(): # https://github.com/pandas-dev/pandas/issues/39329 # simplified case: multiple object columns where one is all-NaN # -> gets split as the all-NaN is inferred as float df = DataFrame( {"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": [np.nan] * 4}, ).astype(object) result = df.groupby("key").min() expected = DataFrame( {"key": ["A", "B"], "col1": ["a", "c"], "col2": [np.nan, np.nan]} ).set_index("key") tm.assert_frame_equal(result, expected) # same but with numbers df = DataFrame( {"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": range(4)}, ).astype(object) result = df.groupby("key").min() expected = DataFrame( {"key": ["A", "B"], "col1": ["a", "c"], "col2": [0, 2]} ).set_index("key") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["min", "max"]) def test_aggregate_categorical_lost_index(func: str): # GH: 28641 groupby drops index, when grouping over categorical column with min/max ds = Series(["b"], dtype="category").cat.as_ordered() df = DataFrame({"A": [1997], "B": ds}) result = df.groupby("A").agg({"B": func}) expected = DataFrame({"B": ["b"]}, index=Index([1997], name="A")) # ordered categorical dtype should be preserved expected["B"] = expected["B"].astype(ds.dtype) tm.assert_frame_equal(result, expected)
fd14a8d1149199664afe6d1f9f84b157b93b7cfb
bc1b9455826f2e07976c04b20515ac4a45eaf6b6
/pyrax/resource.py
da570dcd342c43305fcae4a4a1f9c5ba3598bcd5
[]
no_license
gondoi/pyrax
b3df411d4c1ed8d8e1e0151e9378f7400ff782fc
4a917f55e706b650774a305a424ed456da773f02
refs/heads/master
2021-01-18T11:21:13.557056
2012-12-19T22:49:52
2012-12-19T22:49:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,352
py
# Copyright 2010 Jacob Kaplan-Moss # Copyright 2011 OpenStack LLC. # Copyright 2012 Rackspace # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base utilities to build API operation managers and objects on top of. """ import pyrax.utils as utils class BaseResource(object): """ A resource represents a particular instance of an object (server, flavor, etc). This is pretty much just a bag for attributes. """ HUMAN_ID = False NAME_ATTR = "name" def __init__(self, manager, info, loaded=False): self._loaded = loaded self.manager = manager self._info = info self._add_details(info) @property def human_id(self): """Subclasses may override this to provide a pretty ID which can be used for bash completion. """ if self.NAME_ATTR in self.__dict__ and self.HUMAN_ID: return utils.slugify(getattr(self, self.NAME_ATTR)) return None def _add_details(self, info): """ Takes the dict returned by the API call and sets the corresponding attributes on the object. """ for (key, val) in info.iteritems(): setattr(self, key, val) def __getattr__(self, key): """ Many objects are lazy-loaded: only their most basic details are initially returned. The first time any of the other attributes are referenced, a GET is made to get the full details for the object. """ if not self.loaded: self.get() # Attribute should be set; if not, it's not valid try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' object has no attribute '%s'." % (self.__class__, key)) def __repr__(self): reprkeys = sorted(key for key in self.__dict__.keys() if (key[0] != "_") and (key != "manager")) info = ", ".join("%s=%s" % (key, getattr(self, key)) for key in reprkeys) return "<%s %s>" % (self.__class__.__name__, info) def get(self): """Gets the details for the object.""" # set 'loaded' first ... so if we have to bail, we know we tried. self.loaded = True if not hasattr(self.manager, "get"): return new = self.manager.get(self) if new: self._add_details(new._info) def delete(self): """Deletes the object.""" # set 'loaded' first ... so if we have to bail, we know we tried. self.loaded = True if not hasattr(self.manager, "delete"): return self.manager.delete(self) def __eq__(self, other): """ Two resource objects that represent the same entity in the cloud should be considered equal if they have the same ID. If they don't have IDs, but their attribute info matches, they are equal. """ if not isinstance(other, self.__class__): return False if hasattr(self, "id") and hasattr(other, "id"): return self.id == other.id return self._info == other._info def reload(self): """ Since resource objects are essentially snapshots of the entity they represent at the time they are created, they do not update as the entity updates. For example, the 'status' attribute can change, but the instance's value for 'status' will not. This method will refresh the instance with the current state of the underlying entity. """ new_obj = self.manager.get(self.id) self._add_details(new_obj._info) def _get_loaded(self): return self._loaded def _set_loaded(self, val): self._loaded = val loaded = property(_get_loaded, _set_loaded)
705bb752a9258e3bc2c8ee9f16145cfd532bc894
60c0ca4ef3ad20bad04311473b2f4044f54739d2
/store/api/migrations/0005_order_sold_at.py
af648d3a29d3d09976b8254d48088c4f4700c7c2
[]
no_license
Jimiliani/rainforest
361915024cc2a93a9bb8621372627b2d84176271
b1bf65ee4441d1a4980a2e65ce2cfc629b9d6a7a
refs/heads/main
2023-06-19T18:10:38.879924
2021-07-21T14:54:05
2021-07-21T14:54:05
387,679,460
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
# Generated by Django 3.1.5 on 2021-07-20 19:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0004_auto_20210720_2159'), ] operations = [ migrations.AddField( model_name='order', name='sold_at', field=models.DateField(null=True), ), ]
c724c19fb17cb22589d49e60505ecf79ee04e7c5
d1742451b25705fc128acc245524659628ab3e7d
/Data Structure & Algorithm/Disjoint Set Union/10685 - Nature.py
b0b9ec8421bcfe7e9e623074eb4e6f6e4a873ba0
[]
no_license
Shovon588/Programming
ebab793a3c97aedddfcad5ea06e7e22f5c54a86e
e4922c9138998358eed09a1be7598f9b060c685f
refs/heads/master
2022-12-23T18:29:10.141117
2020-10-04T17:29:32
2020-10-04T17:29:32
256,915,133
1
0
null
null
null
null
UTF-8
Python
false
false
935
py
def makeset(n): par[n] = n def find(r): if par[r]==r: return r par[r] = find(par[r]) return find(par[r]) def joint(a,b): u = find(a) v = find(b) if u!=v: par[u] = v def generate_result(dic): res = -1 for i in range(1,n+1): temp = find(i) if temp in dic: dic[temp]+=1 res = max(res,dic[temp]) else: dic[temp]=1 res = max(res,dic[temp]) return res while(1): n,m = map(int,input().split()) if n==0 and m==0: break par = [None]*(n+1) animals = {} for i in range(n): animal = input() animals[animal]=i+1 makeset(i+1) for i in range(m): first, second = map(str,input().split()) a = animals[first] b = animals[second] joint(a,b) dic = {} result = generate_result(dic) print(result) s = input()
f386a2baff367c7b94051355314792f3ac231a3d
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R2/benchmark/startQiskit_QC200.py
254dea7ab62da21d4456472998e9b8a1d0c8d255
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
6,300
py
# qubit number=3 # total number=37 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.cx(input_qubit[0],input_qubit[2]) # number=11 prog.cx(input_qubit[0],input_qubit[2]) # number=31 prog.cx(input_qubit[0],input_qubit[2]) # number=34 prog.x(input_qubit[2]) # number=35 prog.cx(input_qubit[0],input_qubit[2]) # number=36 prog.cx(input_qubit[0],input_qubit[2]) # number=33 prog.h(input_qubit[2]) # number=25 prog.cz(input_qubit[0],input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=27 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[2],input_qubit[1]) # number=8 prog.rx(-0.3989822670059037,input_qubit[1]) # number=30 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=18 prog.cz(input_qubit[2],input_qubit[1]) # number=19 prog.h(input_qubit[1]) # number=20 prog.y(input_qubit[1]) # number=14 prog.h(input_qubit[1]) # number=22 prog.cz(input_qubit[2],input_qubit[1]) # number=23 prog.h(input_qubit[1]) # number=24 prog.z(input_qubit[2]) # number=3 prog.x(input_qubit[1]) # number=17 prog.y(input_qubit[2]) # number=5 prog.x(input_qubit[2]) # number=21 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_QC200.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
76eb0ff4bccebf9ef628e4a625ec26945dffb10d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02573/s607211232.py
a15ccc098a97d0f2076b85071f021635d77845ac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
735
py
class UnionFind: def __init__(self, n): self.r = [-1] * n def root(self, x): if self.r[x] < 0: return x self.r[x] = self.root(self.r[x]) return self.r[x] def merge(self, x, y): x, y = self.root(x), self.root(y) if x == y: return False if self.r[x] > self.r[y]: x, y = y, x self.r[x] += self.r[y] self.r[y] = x return True def size(self, x): return -self.r[self.root(x)] N, M = map(int, input().split()) f, uf = [set() for i in range(N)], UnionFind(N) for _ in range(M): A, B = map(lambda x: int(x)-1, input().split()) uf.merge(A, B) print(max([uf.size(i) for i in range(N)]))
762b1c64e435700c7347877040a1ae4aaaaabfe8
f51a03fee097195911c1577e8510908d02784853
/src/data/reg_ex/poker_888.py
9df00e106415573e9384ed7598704598977a71a5
[]
no_license
aaaaaa2493/poker-engine
fc04cc4b93ad73189adf99b2f864d12a99a34dce
52aebf8572f87378fa78c999c252d60fcc80f5ce
refs/heads/master
2020-08-31T17:38:28.477260
2019-10-31T12:16:40
2019-10-31T12:16:40
218,746,090
0
0
null
null
null
null
UTF-8
Python
false
false
3,701
py
from re import compile class Poker888: name = '[a-zA-Z0-9_\-@\'.,$*`áàåäãçéèêíîóöôõšüúžÄÁÃÅÉÍÖÔÓÜØø´<^>+&' \ '\\\/()Ѐ£¼ñ®™~#!%\[\]|°¿?:"=ß{}æ©«»¯²¡; ]+' identifier = compile('^\*\*\*\*\* 888poker Hand History') identifier_snap = compile('^Snap Poker Hand History') hand_border = compile('^$') hand_border_888 = compile(r'\*\*\*\*\* 888poker Hand History for ') hand_border_snap = compile(r'Snap Poker Hand History for ') find_hand_id = compile(r'^Game ([0-9]+) \*\*\*\*\*$') step_border = compile(r'\*\* [DSa-z ]+ \*\*') blinds_and_date = compile(r'^\$([0-9,]+)/\$([0-9,]+) Blinds No Limit Holdem - \*\*\* ' r'(.. .. ....) ([0-9:]+)$') blinds_and_ante_2 = compile(r'^([0-9 ]+) \$/([0-9 ]+) \$ Blinds No Limit Holdem - \*\*\* ' r'(.. .. ....) ([0-9:]+)$') game_info = compile(r'^Tournament #([0-9]+) (\$[0-9.]+ \+ \$[0-9.]+) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_2 = compile(r'^Tournament #([0-9]+) ([0-9,]+ \$ \+ [0-9,]+ \$) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_3 = compile(r'^Tournament #([0-9]+) (\$[0-9.]+) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_4 = compile(r'^Tournament #([0-9]+) ([0-9,]+ \$) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_5 = compile(r'^Tournament #([0-9]+) (Бесплатно) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') find_button_seat = compile(r'^Seat ([0-9]+) is the button$') player_init = compile(r'^Seat ([0-9]+): (' + name + r') \( \$([0-9,]+) \)$') player_init_2 = compile(r'^Seat ([0-9]+): (' + name + r') \( ([0-9 ]+) \$ \)$') empty_init = compile(r'^Seat ([0-9]+):[ ]{2}\( ([0-9,$ ]+) \)$') find_ante = compile(r'^(' + name + r') posts ante \[\$([0-9,]+)\]$') find_ante_2 = compile(r'^(' + name + r') posts ante \[([0-9 ]+) \$\]$') find_small_blind = compile(r'^(' + name + ') posts small blind \[\$([0-9,]+)\]$') find_small_blind_2 = compile(r'^(' + name + r') posts small blind \[([0-9 ]+) \$\]$') find_big_blind = compile(r'^(' + name + ') posts big blind \[\$([0-9,]+)\]$') find_big_blind_2 = compile(r'^(' + name + r') posts big blind \[([0-9 ]+) \$\]$') find_flop = compile(r'^\[ (..), (..), (..) \]$') find_turn = compile(r'^\[ (..) \]$') find_river = compile(r'^\[ (..) \]$') skip_total_number_of_players = compile(r'^Total number of players : [0-9]+$') # actions find_dealt_cards = compile(r'^Dealt to (' + name + ') \[ (..), (..) \]$') find_fold = compile(r'^(' + name + ') folds$') find_call = compile(r'^(' + name + ') calls \[\$([0-9,]+)\]$') find_call_2 = compile(r'^(' + name + r') calls \[([0-9 ]+) \$\]$') find_check = compile(r'^(' + name + ') checks$') find_bet = compile(r'^(' + name + ') bets \[\$([0-9,]+)\]$') find_bet_2 = compile(r'^(' + name + r') bets \[([0-9 ]+) \$\]$') find_raise = compile(r'^(' + name + ') raises \[\$([0-9,]+)\]$') find_raise_2 = compile(r'^(' + name + ') raises \[([0-9 ]+) \$\]$') find_did_not_show = compile(r'^(' + name + r') did not show his hand$') find_win_money = compile(r'^(' + name + ') collected \[ \$([0-9,]+) \]$') find_win_money_2 = compile(r'^(' + name + r') collected \[ ([0-9 ]+) \$ \]$') find_show_cards = compile(r'^(' + name + ') shows \[ (..), (..) \]$') find_muck_cards = compile(r'^(' + name + ') mucks \[ (..), (..) \]$')
992d9b74e952ecd7516429a0554f8e5e86d3a855
6f594cc963795c69d8da3c30ca580c0405ef2d6e
/other/57InsertInterval.py
d1fb32163788f8998b4a82b8be2a45e9a2d0316a
[]
no_license
lo-tp/leetcode
25933c5b25f64f881d43748d8b2763f69614a97f
4cc4d76c64e9d9aa3f53c5e9574e488c93e10a50
refs/heads/master
2022-09-07T20:32:58.487759
2022-09-05T03:39:50
2022-09-07T13:39:50
116,555,892
1
0
null
null
null
null
UTF-8
Python
false
false
789
py
class Solution(object): def insert(self, intervals, newInterval): res = [] if intervals: start, end = newInterval for s, e in intervals: if start != -1: # 1 if e < start: res.append([s, e]) # 2 elif end < s: res.append([start, end]) res.append([s, e]) start = -1 else: start, end = min(start, s), max(end, e) else: res.append([s, e]) if start != -1: res.append([start, end]) else: res.append(newInterval) return res
e31c2e26ec440d62747103a26caeb3e97c34bdc3
2da6b95fe4237cc00014f80c45d268ab62fc90cd
/OSR/DFP_end3/cifar100.py
ce07f74fad4fe9ce0e53a4f74e28977d3e9bb80e
[]
no_license
lvzongyao/Open-Set-Recognition-1
7e26cd1d97f67b6c075f4e64296ce7a82d479168
26a8a1cca199f4e23df98abca6893e3eef3307da
refs/heads/master
2023-08-19T09:15:16.119377
2021-09-13T04:21:18
2021-09-13T04:21:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,458
py
from __future__ import print_function import torch import torch.nn as nn import math import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import numpy as np import torchvision.transforms as transforms import os import argparse import sys # from models import * sys.path.append("../..") import backbones.cifar as models from datasets import CIFAR100 from Utils import adjust_learning_rate, progress_bar, Logger, mkdir_p, Evaluation from DFPLoss import DFPLoss, DFPLoss2 from DFPNet import DFPNet from MyPlotter import plot_feature, plot_distance,plot_gap from helper import get_gap_stat model_names = sorted(name for name in models.__dict__ if not name.startswith("__") and callable(models.__dict__[name])) os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" # os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') # Dataset preperation parser.add_argument('--train_class_num', default=50, type=int, help='Classes used in training') parser.add_argument('--test_class_num', default=100, type=int, help='Classes used in testing') parser.add_argument('--includes_all_train_class', default=True, action='store_true', help='If required all known classes included in testing') # Others parser.add_argument('--bs', default=256, type=int, help='batch size') parser.add_argument('--evaluate', action='store_true', help='Evaluate without training') # General MODEL parameters parser.add_argument('--arch', default='ResNet18', choices=model_names, type=str, help='choosing network') parser.add_argument('--embed_dim', default=512, type=int, help='embedding feature dimension') parser.add_argument('--distance', default='l2', choices=['l2', 'l1', 'cosine', 'dotproduct'], type=str, help='choosing distance metric') parser.add_argument('--similarity', default='dotproduct', choices=['l2', 'l1', 'cosine', 'dotproduct'], type=str, help='choosing distance metric') parser.add_argument('--alpha', default=1.0, type=float, help='weight of distance loss') parser.add_argument('--beta', default=1.0, type=float, help='weight of center between loss') parser.add_argument('--theta', default=10.0, type=float, help='slope for input data distance within/out thresholds,' 'default 10.') parser.add_argument('--sim_threshold', default=0.9, type=float, help='.') parser.add_argument('--amplier', default=0.9, type=float, help='.') parser.add_argument('--scaled', default='True', action='store_true', help='If scale distance by sqrt(embed_dim)') parser.add_argument('--norm_centroid', action='store_true', help='Normalize the centroid using L2-normailization') parser.add_argument('--decorrelation', action='store_true', help='Normalize the centroid using L2-normailization') # Parameters for stage 1 parser.add_argument('--stage1_resume', default='', type=str, metavar='PATH', help='path to latest checkpoint') parser.add_argument('--stage1_es', default=50, type=int, help='epoch size') parser.add_argument('--stage1_lr', default=0.1, type=float, help='learning rate') # works for MNIST # Parameters for stage 2 parser.add_argument('--stage2_resume',default='', type=str, metavar='PATH', help='path to latest checkpoint') parser.add_argument('--stage2_es', default=50, type=int, help='epoch size') parser.add_argument('--stage2_lr', default=0.01, type=float, help='learning rate') # works for MNIST # Parameters for stage plotting parser.add_argument('--plot', action='store_true', help='Plotting the training set.') parser.add_argument('--plot_max', default=0, type=int, help='max examples to plot in each class, 0 indicates all.') parser.add_argument('--plot_quality', default=200, type=int, help='DPI of plot figure') parser.add_argument('--bins', default=50, type=int, help='divided into n bins') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' args.checkpoint = './checkpoints/cifar/' + \ '/%s-%s_%s_%s-%s-%s_%s_%s' % (args.train_class_num, args.test_class_num, args.arch, args.alpha, args.beta, args.theta, args.embed_dim, str(args.decorrelation)) if not os.path.isdir(args.checkpoint): mkdir_p(args.checkpoint) # folder to save figures args.plotfolder1 = os.path.join(args.checkpoint, "plotter_Stage1") if not os.path.isdir(args.plotfolder1): mkdir_p(args.plotfolder1) # folder to save figures args.plotfolder2 = os.path.join(args.checkpoint, "plotter_Stage2") if not os.path.isdir(args.plotfolder2): mkdir_p(args.plotfolder2) print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = CIFAR100(root='../../data', train=True, download=True, transform=transform_train, train_class_num=args.train_class_num, test_class_num=args.test_class_num, includes_all_train_class=args.includes_all_train_class) testset = CIFAR100(root='../../data', train=False, download=True, transform=transform_test, train_class_num=args.train_class_num, test_class_num=args.test_class_num, includes_all_train_class=args.includes_all_train_class) # data loader trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=4) testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=False, num_workers=4) def main(): print(device) stage1_dict = { 'distance': {'thresholds': torch.ones(args.train_class_num)}, 'stat': None, 'net': None } if not args.evaluate and not os.path.isfile(args.stage2_resume): stage1_dict = main_stage1() main_stage2(stage1_dict) # centroids = cal_centroids(net1, device) # main_stage2(net1, centroids) def main_stage1(): print(f"\nStart Stage-1 training ...\n") # for initializing backbone, two branches, and centroids. start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Model print('==> Building model..') net = DFPNet(backbone=args.arch, num_classes=args.train_class_num, embed_dim=args.embed_dim, distance=args.distance, similarity=args.similarity, scaled=args.scaled, norm_centroid=args.norm_centroid, decorrelation=args.decorrelation) net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if args.stage1_resume: # Load checkpoint. if os.path.isfile(args.stage1_resume): print('==> Resuming from checkpoint..') checkpoint = torch.load(args.stage1_resume) net.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] logger = Logger(os.path.join(args.checkpoint, 'log_stage1.txt'), resume=True) else: print("=> no checkpoint found at '{}'".format(args.resume)) else: logger = Logger(os.path.join(args.checkpoint, 'log_stage1.txt')) logger.set_names(['Epoch', 'Train Loss', 'Similarity Loss', 'Distance Loss', 'Train Acc.']) # after resume criterion = DFPLoss(alpha=args.alpha) optimizer = optim.SGD(net.parameters(), lr=args.stage1_lr, momentum=0.9, weight_decay=5e-4) for epoch in range(start_epoch, args.stage1_es): adjust_learning_rate(optimizer, epoch, args.stage1_lr, step=20) print('\nStage_1 Epoch: %d | Learning rate: %f ' % (epoch + 1, optimizer.param_groups[0]['lr'])) train_out = stage1_train(net, trainloader, optimizer, criterion, device) save_model(net, epoch, os.path.join(args.checkpoint, 'stage_1_last_model.pth')) logger.append([epoch + 1, train_out["train_loss"], train_out["loss_similarity"], train_out["loss_distance"], train_out["accuracy"]]) # calculating distances for last epoch distance_results = plot_distance(net, trainloader, device, args) # print(f"the distance thresholds are\n {distance_results['thresholds']}\n") # gap_results = plot_gap(net, trainloader, device, args) # stat = get_gap_stat(net, trainloader, device, args) # estimator =CGD_estimator(gap_results) logger.close() print(f"\nFinish Stage-1 training...\n") print("===> Evaluating ...") stage1_test(net, testloader, device) return {"net": net, "distance": distance_results, # "stat": stat } # Training def stage1_train(net, trainloader, optimizer, criterion, device): net.train() train_loss = 0 loss_similarity = 0 loss_distance = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() out = net(inputs) loss_dict = criterion(out, targets) loss = loss_dict['total'] # loss = loss_dict['similarity'] # loss = loss_dict['distance'] loss.backward() optimizer.step() train_loss += loss.item() loss_similarity += (loss_dict['similarity']).item() loss_distance += (loss_dict['distance']).item() _, predicted = (out['sim_fea2cen']).max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) return { "train_loss": train_loss / (batch_idx + 1), "loss_similarity": loss_similarity / (batch_idx + 1), "loss_distance": loss_distance / (batch_idx + 1), "accuracy": correct / total } def stage1_test(net, testloader, device): correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) out = net(inputs) _, predicted = (out["sim_fea2cen"]).max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(testloader), '| Acc: %.3f%% (%d/%d)' % (100. * correct / total, correct, total)) print("\nTesting results is {:.2f}%".format(100. * correct / total)) def main_stage2(stage1_dict): print('==> Building stage2 model..') start_epoch = 0 # start from epoch 0 or last checkpoint epoch net = DFPNet(backbone=args.arch, num_classes=args.train_class_num, embed_dim=args.embed_dim, distance=args.distance, similarity=args.similarity, scaled=args.scaled, norm_centroid=args.norm_centroid, decorrelation=args.decorrelation) net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if not args.evaluate and not os.path.isfile(args.stage2_resume): net = stage1_dict['net'] net = net.to(device) thresholds = stage1_dict['distance']['thresholds'] # stat = stage1_dict["stat"] net.module.set_threshold(thresholds.to(device)) if args.stage2_resume: # Load checkpoint. if os.path.isfile(args.stage2_resume): print('==> Resuming from checkpoint..') checkpoint = torch.load(args.stage2_resume) net.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] try: thresholds = checkpoint['net']['thresholds'] except: thresholds = checkpoint['net']['module.thresholds'] net.module.set_threshold(thresholds.to(device)) logger = Logger(os.path.join(args.checkpoint, 'log_stage2.txt'), resume=True) else: print("=> no checkpoint found at '{}'".format(args.resume)) else: logger = Logger(os.path.join(args.checkpoint, 'log_stage2.txt')) logger.set_names(['Epoch', 'Train Loss', 'Similarity Loss', 'Distance in', 'Distance out', 'Distance Center', 'Train Acc.']) if args.evaluate: stage2_test(net, testloader, device) return net # after resume criterion = DFPLoss2(alpha=args.alpha,beta=args.beta, theta=args.theta) optimizer = optim.SGD(net.parameters(), lr=args.stage1_lr, momentum=0.9, weight_decay=5e-4) for epoch in range(start_epoch, args.stage2_es): print('\nStage_2 Epoch: %d Learning rate: %f' % (epoch + 1, optimizer.param_groups[0]['lr'])) # Here, I didn't set optimizers respectively, just for simplicity. Performance did not vary a lot. adjust_learning_rate(optimizer, epoch, args.stage2_lr, step=20) # if epoch %5 ==0: # distance_results = plot_distance(net, trainloader, device, args) # thresholds = distance_results['thresholds'] # net.module.set_threshold(thresholds.to(device)) train_out = stage2_train(net, trainloader, optimizer, criterion, device) save_model(net, epoch, os.path.join(args.checkpoint, 'stage_2_last_model.pth')) stage2_test(net, testloader, device) # stat = get_gap_stat(net2, trainloader, device, args) logger.append([epoch + 1, train_out["train_loss"], train_out["loss_similarity"], train_out["distance_in"], train_out["distance_out"], train_out["distance_center"], train_out["accuracy"]]) print(f"\nFinish Stage-2 training...\n") logger.close() stage2_test(net, testloader, device) return net def stage2_train(net2, trainloader, optimizer, criterion, device): net2.train() train_loss = 0 loss_similarity = 0 distance_in = 0 distance_out = 0 distance_center = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() out = net2(inputs) loss_dict = criterion(out, targets) loss = loss_dict['total'] # loss = loss_dict['similarity'] # loss = loss_dict['distance'] loss.backward() optimizer.step() train_loss += loss.item() loss_similarity += (loss_dict['similarity']).item() distance_in += (loss_dict['distance_in']).item() distance_out += (loss_dict['distance_out']).item() distance_center += (loss_dict['distance_center']).item() _, predicted = (out['sim_fea2cen']).max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) return { "train_loss": train_loss / (batch_idx + 1), "loss_similarity": loss_similarity / (batch_idx + 1), "distance_in": distance_in / (batch_idx + 1), "distance_out": distance_out / (batch_idx + 1), "distance_center": distance_center / (batch_idx + 1), "accuracy": correct / total } def save_model(net, epoch, path, **kwargs): state = { 'net': net.state_dict(), 'epoch': epoch, } for key, value in kwargs.items(): state[key] = value torch.save(state, path) def stage2_test(net, testloader, device): sim_list, dis_list, target_list = [], [], [] threshold = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) out = net(inputs) threshold = out["thresholds"] # [class] sim_fea2cen= out["sim_fea2cen"] # [batch,class] sim_fea2cen = torch.softmax(sim_fea2cen,dim=1) # [batch,class] dis_fea2cen= out["dis_fea2cen"] # [batch,class] sim_list.append(sim_fea2cen) dis_list.append(dis_fea2cen) target_list.append(targets) progress_bar(batch_idx, len(testloader)) sim_list = torch.cat(sim_list,dim=0) dis_list = torch.cat(dis_list,dim=0) target_list = torch.cat(target_list, dim=0) detail_evalate(sim_list, dis_list, target_list, threshold) def detail_evalate(sim_list,dis_list,target_list, threshold): predicts = [] labels = [] c = sim_list.shape[1] # print(c) for i in range(target_list.shape[0]): sim, dis, target = sim_list[i], dis_list[i], target_list[i] sim_value, sim_ind = sim.max(0) dis_value, dis_ind = dis.min(0) if sim_value < args.sim_threshold or dis_value >args.amplier*threshold[dis_ind]: # if sim_value < args.sim_threshold: predict = c else: predict = sim_ind.item() predicts.append(predict) labels.append(target.item()) # print(f"sim_value{sim_value}\t predict{predict}\t target{target}\t dis_value{dis_value}\t") eval_result = Evaluation(predicts, labels,sim_list.tolist()) print(f"accuracy is %.3f" % (eval_result.accuracy)) print(f"F1 is %.3f" % (eval_result.f1_measure)) print(f"f1_macro is %.3f" % (eval_result.f1_macro)) print(f"f1_macro_weighted is %.3f" % (eval_result.f1_macro_weighted)) print(f"area_under_roc is %.3f" % (eval_result.area_under_roc)) # eval_result = Evaluation(pred_list, target_list, score_list) # # torch.save(eval_result, os.path.join(args.checkpoint, 'eval.pkl')) # # print(f"accuracy is %.3f" % (eval_result.accuracy)) # print(f"F1 is %.3f" % (eval_result.f1_measure)) # print(f"f1_macro is %.3f" % (eval_result.f1_macro)) # print(f"f1_macro_weighted is %.3f" % (eval_result.f1_macro_weighted)) # print(f"area_under_roc is %.3f" % (eval_result.area_under_roc)) # print(f"confuse matrix unkown is {eval_result.confusion_matrix[:,-1]}") if __name__ == '__main__': main()
7e072a572581f6627fca07bcdcad06f5612d2500
44990e9f4630aa9efc8e0fa56f2c5dbd836cddc6
/nao_vacila/wsgi.py
b4a7dcfe74eda774e16c8596df6bc9f14e247473
[]
no_license
kallebefelipe/webserver-nao-vacila
33c61461d73b7f9e649a93406eb032014f3b983c
57e972a44a4eb68e5253d38d320051723d33a924
refs/heads/master
2022-12-14T19:18:22.670018
2017-09-06T13:00:02
2017-09-06T13:00:02
95,972,976
0
0
null
2022-12-07T23:58:58
2017-07-01T15:40:23
Python
UTF-8
Python
false
false
489
py
""" WSGI config for nao_vacila project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "nao_vacila.settings") application = get_wsgi_application() application = DjangoWhiteNoise(application)
c2ea2cc2352bfd9d8b9ad888ff3c0fb82997b816
22954a0c13d7bf1824320802e802aa8166f16d76
/web_scraping/rhiphopheads/items.py
ca9af6e29328930a755afe5a2a604dbaed917dd5
[]
no_license
luke-zhu/cs1951a-data
e0c7a96c7e100c278722419ba3bc845f6a5326c4
925c3263988db1de815589c5e47ddd918c345b25
refs/heads/master
2021-01-20T07:40:21.372377
2017-05-02T21:47:08
2017-05-02T21:47:08
90,025,042
0
1
null
null
null
null
UTF-8
Python
false
false
291
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class RhiphopheadsItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
dc8835c6dec0140fcb1852faa09d8e70a7cdeaaf
c397d4899fbb5e34b90a2650be2e6aa6f5725972
/blog/migrations/0037_reviewimage_thumbnail.py
805c17f73adb43f3b5a343a908788a464aa1d064
[]
no_license
CCCodes/ProConDuck
aa68e6e89c3c71ddf7832d35f51688fddc379b10
c4ce19e62d5b50b3da9d258fa4e40831e159f2f7
refs/heads/master
2023-02-16T18:55:27.766465
2021-01-17T16:49:37
2021-01-17T16:49:37
96,048,162
1
0
null
null
null
null
UTF-8
Python
false
false
457
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-23 00:31 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0036_auto_20170822_0803'), ] operations = [ migrations.AddField( model_name='reviewimage', name='thumbnail', field=models.BooleanField(default=False), ), ]
a91390c161f40656d0f323b1525d55125c72c02a
0b279c246179bc6a76ad17f055ad1dce3402b045
/private_production/eft/2018/crab_INT_MINIAODSIM.py
e9a3be5b74809d1efea5713aa88eb353e315e3d7
[]
no_license
UniMiBAnalyses/CMSSWGeneration
a55e6ad840e4f7f9fae6b46a4bb939a288492f10
a7acf1a780eeb30e14616fef90ccf389e4367668
refs/heads/master
2023-09-01T02:01:44.746469
2022-01-31T11:01:29
2022-01-31T11:01:29
212,852,677
0
2
null
2022-06-16T15:23:25
2019-10-04T15:57:27
Python
UTF-8
Python
false
false
838
py
from CRABClient.UserUtilities import config, getUsernameFromSiteDB config = config() config.General.requestName = 'VBS_SSWW_INT_MINIAODSIM' config.General.workArea = 'crab_projects' config.General.transferOutputs = True config.General.transferLogs = False config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'SMP-RunIIAutumn18MiniAOD-00048_1_cfg.py' config.JobType.numCores = 4 config.JobType.maxMemoryMB = 6000 config.Data.inputDataset = '/Bulk/jixiao-VBS_SSWW_INT_Premix_2-7c74ac161ee1f5c5534fed7a9685e204/USER' config.Data.inputDBS = 'phys03' config.Data.splitting = 'FileBased' config.Data.unitsPerJob = 1 config.Data.outLFNDirBase = '/store/user/%s/eft2018' % (getUsernameFromSiteDB()) config.Data.publication = True config.Data.outputDatasetTag = 'VBS_SSWW_INT_MINIAODSIM' config.Site.storageSite = 'T2_CN_Beijing'
8bc9ba267ab55211234f1b8531b5d213ec6c7238
2315afb8435de656afcc5789ec1ddde21135f658
/todo_project/todo_app/models.py
dbe2eb3e5521a50750030086908baa842542c537
[]
no_license
DeanDupalov/Front-End-Basics
9754315cce8417cb86fbe33c76886df70e9d8ea4
acac5b03f55aff03620bd2d527a96c0d453e07d9
refs/heads/master
2023-04-22T08:58:28.124375
2021-05-13T13:11:18
2021-05-13T13:11:18
357,648,531
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
from django.db import models # Create your models here. class Todo(models.Model): title = models.CharField(max_length=10) description = models.TextField(max_length=100) is_done = models.BooleanField(default=False) def __str__(self): return self.title
48887c30ff50b09604e6af7c99af845d18f9c3aa
8dca64dd11b23a7d59413ac8e28e92a0ab80c49c
/504. Base 7/solution.py
298b59aa9f66b91ba715bc108c1bf1b2171775ae
[]
no_license
huangruihaocst/leetcode-python
f854498c0a1d257698e10889531c526299d47e39
8f88cae7cc982ab8495e185914b1baeceb294060
refs/heads/master
2020-03-21T20:52:17.668477
2018-10-08T20:29:35
2018-10-08T20:29:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
class Solution(object): def convertToBase7(self, num): """ :type num: int :rtype: str """ if -6 <= num <= 6: return str(num) def helper(n): # n >= 7 li = list() while n >= 7: li.append(n % 7) n //= 7 li.append(n) return ''.join(map(str, li[::-1])) if num >= 0: return helper(num) else: return '-' + helper(-num) if __name__ == '__main__': s = Solution() print(s.convertToBase7(-7))