blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
56aceb4af73c59684df5c5acbffce3711e16c735
abcfd07772ce75f34e51592189c29cf84d1a3611
/flask/lib/python3.6/site-packages/sqlparse/utils.py
a620f2d3c17fbfba4d56e6a4d8608c27420f4868
[]
no_license
yuhaihui3435/p_mc
66d89bcccf214e53729b26a0f80ddee8797e9e3e
3039a5c691b649fc88e941a2553b1a7e0aac2a0a
refs/heads/master
2021-06-28T18:52:00.111385
2017-09-15T00:26:02
2017-09-15T00:26:58
103,524,396
0
0
null
null
null
null
UTF-8
Python
false
false
3,490
py
# -*- coding: utf-8 -*- # # Copyright (C) 2016 Andi Albrecht, [email protected] # # This module is part of python-sqlparse and is released under # the BSD License: https://opensource.org/licenses/BSD-3-Clause import itertools import re from collections import deque from contextlib import contextmanager from sqlparse.compat import text_type # This regular expression replaces the home-cooked parser that was here before. # It is much faster, but requires an extra post-processing step to get the # desired results (that are compatible with what you would expect from the # str.splitlines() method). # # It matches groups of characters: newlines, quoted strings, or unquoted text, # and splits on that basis. The post-processing step puts those back together # into the actual lines of SQL. SPLIT_REGEX = re.compile(r""" ( (?: # Start of non-capturing group (?:\r\n|\r|\n) | # Match any single newline, or [^\r\n'"]+ | # Match any character series without quotes or # newlines, or "(?:[^"\\]|\\.)*" | # Match double-quoted strings, or '(?:[^'\\]|\\.)*' # Match single quoted strings ) ) """, re.VERBOSE) LINE_MATCH = re.compile(r'(\r\n|\r|\n)') def split_unquoted_newlines(stmt): """Split a string on all unquoted newlines. Unlike str.splitlines(), this will ignore CR/LF/CR+LF if the requisite character is inside of a string.""" text = text_type(stmt) lines = SPLIT_REGEX.split(text) outputlines = [''] for line in lines: if not line: continue elif LINE_MATCH.match(line): outputlines.append('') else: outputlines[-1] += line return outputlines def remove_quotes(val): """Helper that removes surrounding quotes from strings.""" if val is None: return if val[0] in ('"', "'") and val[0] == val[-1]: val = val[1:-1] return val def recurse(*cls): """Function decorator to help with recursion :param cls: Classes to not recurse over :return: function """ def wrap(f): def wrapped_f(tlist): for sgroup in tlist.get_sublists(): if not isinstance(sgroup, cls): wrapped_f(sgroup) f(tlist) return wrapped_f return wrap def imt(token, i=None, m=None, t=None): """Helper function to simplify comparisons Instance, Match and TokenType :param token: :param i: Class or Tuple/List of Classes :param m: Tuple of TokenType & Value. Can be list of Tuple for multiple :param t: TokenType or Tuple/List of TokenTypes :return: bool """ clss = i types = [t, ] if t and not isinstance(t, list) else t mpatterns = [m, ] if m and not isinstance(m, list) else m if token is None: return False elif clss and isinstance(token, clss): return True elif mpatterns and any((token.match(*pattern) for pattern in mpatterns)): return True elif types and any([token.ttype in ttype for ttype in types]): return True else: return False def consume(iterator, n): """Advance the iterator n-steps ahead. If n is none, consume entirely.""" deque(itertools.islice(iterator, n), maxlen=0) @contextmanager def offset(filter_, n=0): filter_.offset += n yield filter_.offset -= n @contextmanager def indent(filter_, n=1): filter_.indent += n yield filter_.indent -= n
ca7fe2126b290de9c15044feaa402731564a284c
846506a6c9023a21ff831c637f71cffd3b0aab62
/Python/X_Archive/AddLabelSplits.py
585014bdeeaa59c66a2eac711aee31123872d4e2
[]
no_license
emonson/Weinfurt_DocFreq
b90378e57af7c17d32c72e5924a1b9af9f0f6584
1c9082d8ce4c0d002b6a65d446421840e24435fd
refs/heads/master
2020-05-29T21:05:01.397101
2015-01-22T13:53:53
2015-01-22T13:53:53
29,681,004
0
1
null
null
null
null
UTF-8
Python
false
false
1,753
py
# After changing data labels to new dataXXX scheme, automating # some of the sentence splits based on the Datamap...xls sheet import xlrd book = xlrd.open_workbook('Datamap with Sentence IDs.xls') sh = book.sheet_by_index(0) ids = sh.col_values(0,12) sentences = sh.col_values(1,12) f = open('LongVer_newLabelsPrelim_rev5.html','r') # File has some non-ascii characters in it whole = f.read().decode('latin_1') for ii, id in enumerate(ids): id = str(id) if id.endswith(('a', 'b', 'c', 'd')): oldStr = sentences[ii].strip() newStr = '</font>\n<font size=${s_%s} color=${c_%s}>%s' % (id, id, oldStr) whole = whole.replace(oldStr, newStr) # Have to manually fix 92a and 95a since the text is identical oldStr = 'We will keep health information and research data on secure computers. </font>\n<font size=${s_data092a} color=${c_data092a}></font>\n<font size=${s_data095a} color=${c_data095a}>' newStr = 'We will keep health information and research data on secure computers. </font>\n<font size=${s_data092a} color=${c_data092a}>' whole = whole.replace(oldStr, newStr) oldStr = 'We will store this list on secure computers. </font>\n<font size=${s_data092a} color=${c_data092a}></font>\n<font size=${s_data095a} color=${c_data095a}>' newStr = 'We will store this list on secure computers. </font>\n<font size=${s_data095a} color=${c_data095a}>' whole = whole.replace(oldStr, newStr) fout = open('LongVer_newLabelsPrelim2_rev5.html','w') # for some reason must re-encode before writing fout.write(whole.encode('latin_1')) fout.close() f.close() # data179a didn't split properly for some reason # data138b is a duplicate, so it overwrote data138 # split the 200s manually for now # manually changed (their) mistake of data138b -> 138b
75f33a50056f2286b145c44e8361185d4ff87561
16b4229a925a4e3b0e760f401d80c4d2adb793a9
/models/real_nvp/coupling_layer.py
d8b2581f2febe1eaab92fecde288e1f539fd103a
[ "MIT" ]
permissive
ahmadkhajehnejad/real-nvp
4fc5a6a5f23fe076304b5652277a8de70ab4f068
15f51eb91388fc232334123ac11467c4d3aa3d33
refs/heads/master
2022-08-11T09:37:32.353605
2020-05-18T12:24:39
2020-05-18T12:24:39
261,586,549
0
0
MIT
2020-05-05T21:25:51
2020-05-05T21:25:50
null
UTF-8
Python
false
false
3,919
py
import torch import torch.nn as nn from enum import IntEnum from models.resnet import ResNet from util import checkerboard_mask class MaskType(IntEnum): CHECKERBOARD = 0 CHANNEL_WISE = 1 class CouplingLayer(nn.Module): """Coupling layer in RealNVP. Args: in_channels (int): Number of channels in the input. mid_channels (int): Number of channels in the `s` and `t` network. num_blocks (int): Number of residual blocks in the `s` and `t` network. mask_type (MaskType): One of `MaskType.CHECKERBOARD` or `MaskType.CHANNEL_WISE`. reverse_mask (bool): Whether to reverse the mask. Useful for alternating masks. """ def __init__(self, in_channels, mid_channels, num_blocks, mask_type, reverse_mask): super(CouplingLayer, self).__init__() # Save mask info self.mask_type = mask_type self.reverse_mask = reverse_mask # Build scale and translate network if self.mask_type == MaskType.CHANNEL_WISE: in_channels //= 2 self.st_net = ResNet(in_channels, mid_channels, 2 * in_channels, num_blocks=num_blocks, kernel_size=3, padding=1, double_after_norm=(self.mask_type == MaskType.CHECKERBOARD)) # Learnable scale for s self.rescale = nn.utils.weight_norm(Rescale(in_channels)) def forward(self, x, sldj=None, reverse=True): if self.mask_type == MaskType.CHECKERBOARD: # Checkerboard mask b = checkerboard_mask(x.size(2), x.size(3), self.reverse_mask, device=x.device) x_b = x * b st = self.st_net(x_b) s, t = st.chunk(2, dim=1) s = self.rescale(torch.tanh(s)) s = s * (1 - b) t = t * (1 - b) # Scale and translate if reverse: inv_exp_s = s.mul(-1).exp() if torch.isnan(inv_exp_s).any(): raise RuntimeError('Scale factor has NaN entries') x = x * inv_exp_s - t else: exp_s = s.exp() if torch.isnan(exp_s).any(): raise RuntimeError('Scale factor has NaN entries') x = (x + t) * exp_s # Add log-determinant of the Jacobian sldj += s.view(s.size(0), -1).sum(-1) else: # Channel-wise mask if self.reverse_mask: x_id, x_change = x.chunk(2, dim=1) else: x_change, x_id = x.chunk(2, dim=1) st = self.st_net(x_id) s, t = st.chunk(2, dim=1) s = self.rescale(torch.tanh(s)) # Scale and translate if reverse: inv_exp_s = s.mul(-1).exp() if torch.isnan(inv_exp_s).any(): raise RuntimeError('Scale factor has NaN entries') x_change = x_change * inv_exp_s - t else: exp_s = s.exp() if torch.isnan(exp_s).any(): raise RuntimeError('Scale factor has NaN entries') x_change = (x_change + t) * exp_s # Add log-determinant of the Jacobian sldj += s.view(s.size(0), -1).sum(-1) if self.reverse_mask: x = torch.cat((x_id, x_change), dim=1) else: x = torch.cat((x_change, x_id), dim=1) return x, sldj class Rescale(nn.Module): """Per-channel rescaling. Need a proper `nn.Module` so we can wrap it with `torch.nn.utils.weight_norm`. Args: num_channels (int): Number of channels in the input. """ def __init__(self, num_channels): super(Rescale, self).__init__() self.weight = nn.Parameter(torch.ones(num_channels, 1, 1)) def forward(self, x): x = self.weight * x return x
7f77fb3562993641b617a5b8f28eb60e5b4690d8
615f83418985b80f2a2a47200acb08dfa9418fc7
/identities/widgets.py
f59c91e055afcef5e61baf70b159870a655016a6
[ "MIT" ]
permissive
alejo8591/maker
a42b89ddc426da326a397765dc091db45dd50d8e
001e85eaf489c93b565efe679eb159cfcfef4c67
refs/heads/master
2016-09-06T19:36:01.864526
2013-03-23T06:54:21
2013-03-23T06:54:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
# encoding: utf-8 # Copyright 2013 maker # License """ Identities module widgets """ WIDGETS = {'widget_contact_me': {'title': 'My Contact Card', 'size': "95%"}} def get_widgets(request): "Returns a set of all available widgets" return WIDGETS
9fa1eef441427dbc31a6b3821675d6bfcc0a7512
da8adef15efbdacda32b19196b391f63d5026e3a
/ITMO/ML/Lab5/main.py
5fbef8d876250cd8a74ae41ce03cc26e95b369ec
[]
no_license
rubcuadra/MachineLearning
05da95c1f800e6acbce97f6ca825bd7a41d806a6
aa13dd007a7954d50586cca6dd413a04db18ef77
refs/heads/master
2021-03-19T17:33:14.080691
2018-10-19T23:43:27
2018-10-19T23:43:27
100,544,903
8
1
null
null
null
null
UTF-8
Python
false
false
4,440
py
''' You should implement the feature selection algorithm based on the utility metric (the Filter method). Implement several utility metrics and compare their performance at classification tasks. https://en.wikipedia.org/wiki/Feature_selection https://machinelearningmastery.com/an-introduction-to-feature-selection/ ''' #http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2 #http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.feature_selection import mutual_info_classif, chi2, SelectKBest from sklearn.metrics import accuracy_score, f1_score from scipy.stats import chi2_contingency from glob import glob import pandas as pd import numpy as np def test_model(model,x_train,y_train,x_test,y_test): model.fit(x_train, y_train) pred = model.predict(x_test) print('\t',x_train.shape ) print('\tAccuracy: ', accuracy_score(y_test, pred)) print('\tF-score: ', f1_score(y_test, pred, average='macro')) #Folder with files/structure # *_train.data # *_train.labels # *_valid.data # *_valid.labels def loadData(path): X,Y,x,y = [],[],[],[] with open( glob(f"{path}/*_train.data")[0] ,"r" ) as td: X = [ [int(v) for v in line.split()] for line in td ] with open( glob(f"{path}/*_train.labels")[0] ,"r" ) as td: Y = [ [int(v) for v in line.split()] for line in td ] with open( glob(f"{path}/*_valid.data")[0] ,"r" ) as td: x = [ [int(v) for v in line.split()] for line in td ] with open( glob(f"{path}/*_valid.labels")[0] ,"r" ) as td: y = [ [int(v) for v in line.split()] for line in td ] return (np.matrix(X),np.matrix(Y).A1,np.matrix(x),np.matrix(y).A1) class VarianceThresh(): def __init__(self, threshold=0): self.th = threshold def fit(self,data): v = np.var(data,axis=0).A1 #Get variances as vector self.ixs = np.argwhere( v <= self.th )[:,0] #Get indexes to eliminate def transform(self,data): newData = [] ixs = list(self.ixs.copy()) + [-1] #to finish c = ixs.pop(0) for i,col in enumerate(data.T): if i == c: c = ixs.pop(0) #new index to remove else: newData.append( col.A1 ) #add return np.matrix(newData).T class ChiSquare: #Determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more categories. def __init__(self, alpha = 0.5): self.alpha = alpha def fit(self,data,Y): self.ixs = [] for i, X in enumerate(data.T): dfObserved = pd.crosstab(Y,X.A1) chi2, p, degrfree, expected = chi2_contingency(dfObserved.values) # self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index = self.dfObserved.index) if p<self.alpha: self.ixs.append(i) #SignLev def transform(self,data): newData = [] ixs = self.ixs + [-1] #to finish c = ixs.pop(0) for i,col in enumerate(data.T): if i == c: c = ixs.pop(0) #new index to remove else: newData.append( col.A1 ) #add return np.matrix(newData).T if __name__ == '__main__': Xtrain,Ytrain,Xtest,Ytest = loadData("arcene") #VT VT = VarianceThresh(threshold=5000) #5000 VT.fit(Xtrain) vtX_train = VT.transform(Xtrain) #Apply Selections vtX_test = VT.transform(Xtest) #Apply Selections #CHI2 CHI = SelectKBest(score_func=chi2, k=550) #SelectKBest(score_func=chi2, k=550) #ChiSquare(alpha=0.05) CHI.fit(Xtrain,Ytrain) CHIXtrain = CHI.transform(Xtrain) CHIXtest = CHI.transform(Xtest) #Different ML Techniques MLT = [LogisticRegression(),RandomForestClassifier(),DecisionTreeClassifier(),SVC(kernel='linear')] for model in MLT: print(model.__class__.__name__) print("\tFULL") test_model( model, Xtrain, Ytrain, Xtest, Ytest ) print("\tVarianceThreshold") test_model( model, vtX_train, Ytrain, vtX_test, Ytest ) print("\tCHI^2") test_model( model, CHIXtrain, Ytrain, CHIXtest, Ytest )
be1f53665e8022b4ede91764bb78e101e375c601
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv2/lib/python3.8/site-packages/ansible/inventory/manager.py
070e01170b61f1d5f188966caf37738bde4fb084
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
23,674
py
# (c) 2012-2014, Michael DeHaan <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ############################################# from __future__ import (absolute_import, division, print_function) __metaclass__ = type import fnmatch import os import re import itertools from ansible import constants as C from ansible.errors import AnsibleError, AnsibleOptionsError, AnsibleParserError from ansible.inventory.data import InventoryData from ansible.module_utils.six import string_types from ansible.module_utils._text import to_bytes, to_native, to_text from ansible.parsing.utils.addresses import parse_address from ansible.plugins.loader import inventory_loader from ansible.utils.path import unfrackpath try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() IGNORED_ALWAYS = [br"^\.", b"^host_vars$", b"^group_vars$", b"^vars_plugins$"] IGNORED_PATTERNS = [to_bytes(x) for x in C.INVENTORY_IGNORE_PATTERNS] IGNORED_EXTS = [b'%s$' % to_bytes(re.escape(x)) for x in C.INVENTORY_IGNORE_EXTS] IGNORED = re.compile(b'|'.join(IGNORED_ALWAYS + IGNORED_PATTERNS + IGNORED_EXTS)) def order_patterns(patterns): ''' takes a list of patterns and reorders them by modifier to apply them consistently ''' # FIXME: this goes away if we apply patterns incrementally or by groups pattern_regular = [] pattern_intersection = [] pattern_exclude = [] for p in patterns: if p.startswith("!"): pattern_exclude.append(p) elif p.startswith("&"): pattern_intersection.append(p) elif p: pattern_regular.append(p) # if no regular pattern was given, hence only exclude and/or intersection # make that magically work if pattern_regular == []: pattern_regular = ['all'] # when applying the host selectors, run those without the "&" or "!" # first, then the &s, then the !s. return pattern_regular + pattern_intersection + pattern_exclude def split_host_pattern(pattern): """ Takes a string containing host patterns separated by commas (or a list thereof) and returns a list of single patterns (which may not contain commas). Whitespace is ignored. Also accepts ':' as a separator for backwards compatibility, but it is not recommended due to the conflict with IPv6 addresses and host ranges. Example: 'a,b[1], c[2:3] , d' -> ['a', 'b[1]', 'c[2:3]', 'd'] """ if isinstance(pattern, list): return list(itertools.chain(*map(split_host_pattern, pattern))) elif not isinstance(pattern, string_types): pattern = to_native(pattern) # If it's got commas in it, we'll treat it as a straightforward # comma-separated list of patterns. if ',' in pattern: patterns = pattern.split(',') # If it doesn't, it could still be a single pattern. This accounts for # non-separator uses of colons: IPv6 addresses and [x:y] host ranges. else: try: (base, port) = parse_address(pattern, allow_ranges=True) patterns = [pattern] except Exception: # The only other case we accept is a ':'-separated list of patterns. # This mishandles IPv6 addresses, and is retained only for backwards # compatibility. patterns = re.findall( r'''(?: # We want to match something comprising: [^\s:\[\]] # (anything other than whitespace or ':[]' | # ...or... \[[^\]]*\] # a single complete bracketed expression) )+ # occurring once or more ''', pattern, re.X ) return [p.strip() for p in patterns] class InventoryManager(object): ''' Creates and manages inventory ''' def __init__(self, loader, sources=None): # base objects self._loader = loader self._inventory = InventoryData() # a list of host(names) to contain current inquiries to self._restriction = None self._subset = None # caches self._hosts_patterns_cache = {} # resolved full patterns self._pattern_cache = {} # resolved individual patterns self._inventory_plugins = [] # for generating inventory # the inventory dirs, files, script paths or lists of hosts if sources is None: self._sources = [] elif isinstance(sources, string_types): self._sources = [sources] else: self._sources = sources # get to work! self.parse_sources(cache=True) @property def localhost(self): return self._inventory.localhost @property def groups(self): return self._inventory.groups @property def hosts(self): return self._inventory.hosts def get_vars(self, *args, **kwargs): return self._inventory.get_vars(args, kwargs) def add_host(self, host, group=None, port=None): return self._inventory.add_host(host, group, port) def add_group(self, group): return self._inventory.add_group(group) def get_groups_dict(self): return self._inventory.get_groups_dict() def reconcile_inventory(self): self.clear_caches() return self._inventory.reconcile_inventory() def get_host(self, hostname): return self._inventory.get_host(hostname) def _setup_inventory_plugins(self): ''' sets up loaded inventory plugins for usage ''' display.vvvv('setting up inventory plugins') for name in C.INVENTORY_ENABLED: plugin = inventory_loader.get(name) if plugin: plugin.set_options() self._inventory_plugins.append(plugin) else: display.warning('Failed to load inventory plugin, skipping %s' % name) if not self._inventory_plugins: raise AnsibleError("No inventory plugins available to generate inventory, make sure you have at least one whitelisted.") def parse_sources(self, cache=False): ''' iterate over inventory sources and parse each one to populate it''' self._setup_inventory_plugins() parsed = False # allow for multiple inventory parsing for source in self._sources: if source: if ',' not in source: source = unfrackpath(source, follow=False) parse = self.parse_source(source, cache=cache) if parse and not parsed: parsed = True if parsed: # do post processing self._inventory.reconcile_inventory() else: if C.INVENTORY_UNPARSED_IS_FAILED: raise AnsibleError("No inventory was parsed, please check your configuration and options.") else: display.warning("No inventory was parsed, only implicit localhost is available") self._inventory_plugins = [] def parse_source(self, source, cache=False): ''' Generate or update inventory for the source provided ''' parsed = False display.debug(u'Examining possible inventory source: %s' % source) b_source = to_bytes(source) # process directories as a collection of inventories if os.path.isdir(b_source): display.debug(u'Searching for inventory files in directory: %s' % source) for i in sorted(os.listdir(b_source)): display.debug(u'Considering %s' % i) # Skip hidden files and stuff we explicitly ignore if IGNORED.search(i): continue # recursively deal with directory entries fullpath = os.path.join(b_source, i) parsed_this_one = self.parse_source(to_native(fullpath), cache=cache) display.debug(u'parsed %s as %s' % (fullpath, parsed_this_one)) if not parsed: parsed = parsed_this_one else: # left with strings or files, let plugins figure it out # set so new hosts can use for inventory_file/dir vasr self._inventory.current_source = source # get inventory plugins if needed, there should always be at least one generator if not self._inventory_plugins: self._setup_inventory_plugins() # try source with each plugin failures = [] for plugin in self._inventory_plugins: plugin_name = to_native(getattr(plugin, '_load_name', getattr(plugin, '_original_path', ''))) display.debug(u'Attempting to use plugin %s (%s)' % (plugin_name, plugin._original_path)) # initialize and figure out if plugin wants to attempt parsing this file try: plugin_wants = bool(plugin.verify_file(source)) except Exception: plugin_wants = False if plugin_wants: try: # in case plugin fails 1/2 way we dont want partial inventory plugin.parse(self._inventory, self._loader, source, cache=cache) parsed = True display.vvv('Parsed %s inventory source with %s plugin' % (to_text(source), plugin_name)) break except AnsibleParserError as e: display.debug('%s was not parsable by %s' % (to_text(source), plugin_name)) failures.append({'src': source, 'plugin': plugin_name, 'exc': e}) except Exception as e: display.debug('%s failed to parse %s' % (plugin_name, to_text(source))) failures.append({'src': source, 'plugin': plugin_name, 'exc': AnsibleError(e)}) else: display.debug('%s did not meet %s requirements' % (to_text(source), plugin_name)) else: if not parsed and failures: # only if no plugin processed files should we show errors. for fail in failures: display.warning(u'\n* Failed to parse %s with %s plugin: %s' % (to_text(fail['src']), fail['plugin'], to_text(fail['exc']))) if hasattr(fail['exc'], 'tb'): display.vvv(to_text(fail['exc'].tb)) if not parsed: display.warning("Unable to parse %s as an inventory source" % to_text(source)) # clear up, jic self._inventory.current_source = None return parsed def clear_caches(self): ''' clear all caches ''' self._hosts_patterns_cache = {} self._pattern_cache = {} # FIXME: flush inventory cache def refresh_inventory(self): ''' recalculate inventory ''' self.clear_caches() self._inventory = InventoryData() self.parse_sources(cache=False) def _match_list(self, items, pattern_str): # compile patterns try: if not pattern_str.startswith('~'): pattern = re.compile(fnmatch.translate(pattern_str)) else: pattern = re.compile(pattern_str[1:]) except Exception: raise AnsibleError('Invalid host list pattern: %s' % pattern_str) # apply patterns results = [] for item in items: if pattern.match(item): results.append(item) return results def get_hosts(self, pattern="all", ignore_limits=False, ignore_restrictions=False, order=None): """ Takes a pattern or list of patterns and returns a list of matching inventory host names, taking into account any active restrictions or applied subsets """ hosts = [] # Check if pattern already computed if isinstance(pattern, list): pattern_hash = u":".join(pattern) else: pattern_hash = pattern if pattern_hash: if not ignore_limits and self._subset: pattern_hash += u":%s" % to_text(self._subset, errors='surrogate_or_strict') if not ignore_restrictions and self._restriction: pattern_hash += u":%s" % to_text(self._restriction, errors='surrogate_or_strict') if pattern_hash not in self._hosts_patterns_cache: patterns = split_host_pattern(pattern) hosts = self._evaluate_patterns(patterns) # mainly useful for hostvars[host] access if not ignore_limits and self._subset: # exclude hosts not in a subset, if defined subset = self._evaluate_patterns(self._subset) hosts = [h for h in hosts if h in subset] if not ignore_restrictions and self._restriction: # exclude hosts mentioned in any restriction (ex: failed hosts) hosts = [h for h in hosts if h.name in self._restriction] seen = set() self._hosts_patterns_cache[pattern_hash] = [x for x in hosts if x not in seen and not seen.add(x)] # sort hosts list if needed (should only happen when called from strategy) if order in ['sorted', 'reverse_sorted']: from operator import attrgetter hosts = sorted(self._hosts_patterns_cache[pattern_hash][:], key=attrgetter('name'), reverse=(order == 'reverse_sorted')) elif order == 'reverse_inventory': hosts = sorted(self._hosts_patterns_cache[pattern_hash][:], reverse=True) else: hosts = self._hosts_patterns_cache[pattern_hash][:] if order == 'shuffle': from random import shuffle shuffle(hosts) elif order not in [None, 'inventory']: AnsibleOptionsError("Invalid 'order' specified for inventory hosts: %s" % order) return hosts def _evaluate_patterns(self, patterns): """ Takes a list of patterns and returns a list of matching host names, taking into account any negative and intersection patterns. """ patterns = order_patterns(patterns) hosts = [] for p in patterns: # avoid resolving a pattern that is a plain host if p in self._inventory.hosts: hosts.append(self._inventory.get_host(p)) else: that = self._match_one_pattern(p) if p.startswith("!"): hosts = [h for h in hosts if h not in frozenset(that)] elif p.startswith("&"): hosts = [h for h in hosts if h in frozenset(that)] else: hosts.extend([h for h in that if h.name not in frozenset([y.name for y in hosts])]) return hosts def _match_one_pattern(self, pattern): """ Takes a single pattern and returns a list of matching host names. Ignores intersection (&) and exclusion (!) specifiers. The pattern may be: 1. A regex starting with ~, e.g. '~[abc]*' 2. A shell glob pattern with ?/*/[chars]/[!chars], e.g. 'foo*' 3. An ordinary word that matches itself only, e.g. 'foo' The pattern is matched using the following rules: 1. If it's 'all', it matches all hosts in all groups. 2. Otherwise, for each known group name: (a) if it matches the group name, the results include all hosts in the group or any of its children. (b) otherwise, if it matches any hosts in the group, the results include the matching hosts. This means that 'foo*' may match one or more groups (thus including all hosts therein) but also hosts in other groups. The built-in groups 'all' and 'ungrouped' are special. No pattern can match these group names (though 'all' behaves as though it matches, as described above). The word 'ungrouped' can match a host of that name, and patterns like 'ungr*' and 'al*' can match either hosts or groups other than all and ungrouped. If the pattern matches one or more group names according to these rules, it may have an optional range suffix to select a subset of the results. This is allowed only if the pattern is not a regex, i.e. '~foo[1]' does not work (the [1] is interpreted as part of the regex), but 'foo*[1]' would work if 'foo*' matched the name of one or more groups. Duplicate matches are always eliminated from the results. """ if pattern.startswith("&") or pattern.startswith("!"): pattern = pattern[1:] if pattern not in self._pattern_cache: (expr, slice) = self._split_subscript(pattern) hosts = self._enumerate_matches(expr) try: hosts = self._apply_subscript(hosts, slice) except IndexError: raise AnsibleError("No hosts matched the subscripted pattern '%s'" % pattern) self._pattern_cache[pattern] = hosts return self._pattern_cache[pattern] def _split_subscript(self, pattern): """ Takes a pattern, checks if it has a subscript, and returns the pattern without the subscript and a (start,end) tuple representing the given subscript (or None if there is no subscript). Validates that the subscript is in the right syntax, but doesn't make sure the actual indices make sense in context. """ # Do not parse regexes for enumeration info if pattern.startswith('~'): return (pattern, None) # We want a pattern followed by an integer or range subscript. # (We can't be more restrictive about the expression because the # fnmatch semantics permit [\[:\]] to occur.) pattern_with_subscript = re.compile( r'''^ (.+) # A pattern expression ending with... \[(?: # A [subscript] expression comprising: (-?[0-9]+)| # A single positive or negative number ([0-9]+)([:-]) # Or an x:y or x: range. ([0-9]*) )\] $ ''', re.X ) subscript = None m = pattern_with_subscript.match(pattern) if m: (pattern, idx, start, sep, end) = m.groups() if idx: subscript = (int(idx), None) else: if not end: end = -1 subscript = (int(start), int(end)) if sep == '-': display.warning("Use [x:y] inclusive subscripts instead of [x-y] which has been removed") return (pattern, subscript) def _apply_subscript(self, hosts, subscript): """ Takes a list of hosts and a (start,end) tuple and returns the subset of hosts based on the subscript (which may be None to return all hosts). """ if not hosts or not subscript: return hosts (start, end) = subscript if end: if end == -1: end = len(hosts) - 1 return hosts[start:end + 1] else: return [hosts[start]] def _enumerate_matches(self, pattern): """ Returns a list of host names matching the given pattern according to the rules explained above in _match_one_pattern. """ results = [] # check if pattern matches group matching_groups = self._match_list(self._inventory.groups, pattern) if matching_groups: for groupname in matching_groups: results.extend(self._inventory.groups[groupname].get_hosts()) # check hosts if no groups matched or it is a regex/glob pattern if not matching_groups or pattern.startswith('~') or any(special in pattern for special in ('.', '?', '*', '[')): # pattern might match host matching_hosts = self._match_list(self._inventory.hosts, pattern) if matching_hosts: for hostname in matching_hosts: results.append(self._inventory.hosts[hostname]) if not results and pattern in C.LOCALHOST: # get_host autocreates implicit when needed implicit = self._inventory.get_host(pattern) if implicit: results.append(implicit) if not results and pattern != 'all': display.warning("Could not match supplied host pattern, ignoring: %s" % pattern) return results def list_hosts(self, pattern="all"): """ return a list of hostnames for a pattern """ # FIXME: cache? result = [h for h in self.get_hosts(pattern)] # allow implicit localhost if pattern matches and no other results if len(result) == 0 and pattern in C.LOCALHOST: result = [pattern] return result def list_groups(self): # FIXME: cache? return sorted(self._inventory.groups.keys(), key=lambda x: x) def restrict_to_hosts(self, restriction): """ Restrict list operations to the hosts given in restriction. This is used to batch serial operations in main playbook code, don't use this for other reasons. """ if restriction is None: return elif not isinstance(restriction, list): restriction = [restriction] self._restriction = [h.name for h in restriction] def subset(self, subset_pattern): """ Limits inventory results to a subset of inventory that matches a given pattern, such as to select a given geographic of numeric slice amongst a previous 'hosts' selection that only select roles, or vice versa. Corresponds to --limit parameter to ansible-playbook """ if subset_pattern is None: self._subset = None else: subset_patterns = split_host_pattern(subset_pattern) results = [] # allow Unix style @filename data for x in subset_patterns: if x.startswith("@"): fd = open(x[1:]) results.extend(fd.read().split("\n")) fd.close() else: results.append(x) self._subset = results def remove_restriction(self): """ Do not restrict list operations """ self._restriction = None def clear_pattern_cache(self): self._pattern_cache = {}
fc03483fd51af21d7011aefcdb15b9eaf9d4d645
349dadbf45b7c12a3fe41c5e0421c0488b679919
/transformers/tests/test_modeling_longformer.py
2d30bd3ba4bcd77d8802388c40bc455a2be55d2c
[ "Apache-2.0", "BSD-3-Clause", "CC0-1.0", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
salesforce/CodeRL
c772e408bac690527759f416ea22add4c97e5bec
51db4ff983d5376e62b9e7eba150316a651c80d9
refs/heads/main
2023-08-18T18:38:02.740995
2022-11-18T16:14:28
2022-11-18T16:14:28
508,912,853
412
52
BSD-3-Clause
2023-08-31T07:51:27
2022-06-30T02:54:36
Python
UTF-8
Python
false
false
30,157
py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import LongformerConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerSelfAttention, ) class LongformerModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.attention_window = 4 # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window + 1` locations # (assuming no token with global attention, otherwise the last dimension of attentions # is x + self.attention_window + 1, where x is the number of tokens with global attention) self.key_length = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests self.encoder_seq_length = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return LongformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, attention_window=self.attention_window, ) def create_and_check_attention_mask_determinism( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] output_without_mask = model(input_ids)["last_hidden_state"] self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4)) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_global_attention_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() global_attention_mask = input_mask.clone() global_attention_mask[:, input_mask.shape[-1] // 2] = 0 global_attention_mask = global_attention_mask.to(torch_device) result = model( input_ids, attention_mask=input_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, ) result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask) result = model(input_ids, global_attention_mask=global_attention_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, global_attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LongformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LongformerForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = LongformerForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, global_attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs global_attention_mask = torch.zeros_like(input_ids) global_attention_mask[:, -1] = 1 inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "global_attention_mask": global_attention_mask, } return config, inputs_dict def prepare_config_and_inputs_for_question_answering(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs # Replace sep_token_id by some random id input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item() # Make sure there are exactly three sep_token_id input_ids[:, -3:] = config.sep_token_id input_mask = torch.ones_like(input_ids) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels @require_torch class LongformerModelTest(ModelTesterMixin, unittest.TestCase): test_pruning = False # pruning is not supported test_torchscript = False all_model_classes = ( ( LongformerModel, LongformerForMaskedLM, LongformerForSequenceClassification, LongformerForQuestionAnswering, LongformerForTokenClassification, LongformerForMultipleChoice, ) if is_torch_available() else () ) def setUp(self): self.model_tester = LongformerModelTester(self) self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_attention_mask_determinism(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs) def test_model_global_attention_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # longformer cannot keep gradients in attentions or hidden states return @require_torch @require_sentencepiece @require_tokenizers class LongformerModelIntegrationTest(unittest.TestCase): def _get_hidden_states(self): return torch.tensor( [ [ [ 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=torch.float32, device=torch_device, ) def test_diagonalize(self): hidden_states = self._get_hidden_states() hidden_states = hidden_states.reshape((1, 8, 4)) # set seq length = 8, hidden dim = 4 chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) window_overlap_size = chunked_hidden_states.shape[2] self.assertTrue(window_overlap_size == 4) padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states) self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1) # first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000] self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3)) self.assertTrue( torch.allclose( padded_hidden_states[0, 0, 0, 4:], torch.zeros((3,), device=torch_device, dtype=torch.float32), atol=1e-3, ) ) # last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629] self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3)) self.assertTrue( torch.allclose( padded_hidden_states[0, 0, -1, :3], torch.zeros((3,), device=torch_device, dtype=torch.float32), atol=1e-3, ) ) def test_pad_and_transpose_last_two_dims(self): hidden_states = self._get_hidden_states() self.assertTrue(hidden_states.shape, (1, 8, 4)) padding = (0, 0, 0, 1) padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding) self.assertTrue(padded_hidden_states.shape, (1, 8, 5)) expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32) self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6)) self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6)) def test_chunk(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size)) chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) # expected slices across chunk and seq length dim expected_slice_along_seq_length = torch.tensor( [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32 ) expected_slice_along_chunk = torch.tensor( [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32 ) self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3)) self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3)) self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4)) def test_mask_invalid_locations(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size)) chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) hid_states_1 = chunked_hidden_states.clone() LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1) self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8) hid_states_2 = chunked_hidden_states.clone() LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2) self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24) hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3] LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2) self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24) hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :] LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2) self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12) def test_layer_local_attn(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = self._get_hidden_states() batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) attention_mask[:, -2:] = -10000 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, )[0] self.assertTrue(output_hidden_states.shape, (1, 4, 8)) self.assertTrue( torch.allclose( output_hidden_states[0, 1], torch.tensor( [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) def test_layer_global_attn(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0) batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) # create attn mask attention_mask[0, -2:] = 10000.0 attention_mask[0, -1:] = -10000.0 attention_mask[1, 1:] = 10000.0 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, )[0] self.assertTrue(output_hidden_states.shape, (2, 4, 8)) self.assertTrue( torch.allclose( output_hidden_states[0, 2], torch.tensor( [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( output_hidden_states[1, -2], torch.tensor( [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) def test_layer_attn_probs(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0) batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) # create attn mask attention_mask[0, -2:] = 10000.0 attention_mask[0, -1:] = -10000.0 attention_mask[1, 1:] = 10000.0 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states, local_attentions, global_attentions = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, output_attentions=True, ) self.assertEqual(local_attentions.shape, (2, 4, 2, 8)) self.assertEqual(global_attentions.shape, (2, 2, 3, 4)) # All tokens with global attention have weight 0 in local attentions. self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0)) self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0)) # The weight of all tokens with local attention must sum to 1. self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6)) self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6)) self.assertTrue( torch.allclose( local_attentions[0, 0, 0, :], torch.tensor( [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( local_attentions[1, 0, 0, :], torch.tensor( [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) # All the global attention weights must sum to 1. self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6)) self.assertTrue( torch.allclose( global_attentions[0, 0, 1, :], torch.tensor( [0.2500, 0.2500, 0.2500, 0.2500], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( global_attentions[1, 0, 0, :], torch.tensor( [0.2497, 0.2500, 0.2499, 0.2504], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) @slow def test_inference_no_head(self): model = LongformerModel.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world!' input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device) attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) output = model(input_ids, attention_mask=attention_mask)[0] output_without_mask = model(input_ids)[0] expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device) self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4)) self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4)) @slow def test_inference_no_head_long(self): model = LongformerModel.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world! ' repeated 1000 times input_ids = torch.tensor( [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device ) # long input attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) global_attention_mask[:, [1, 4, 21]] = 1 # Set global attention on a few random positions output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0] expected_output_sum = torch.tensor(74585.8594, device=torch_device) expected_output_mean = torch.tensor(0.0243, device=torch_device) self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) @slow def test_inference_masked_lm_long(self): model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world! ' repeated 1000 times input_ids = torch.tensor( [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device ) # long input input_ids = input_ids.to(torch_device) loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple() expected_loss = torch.tensor(0.0074, device=torch_device) expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device) expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device) self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4)) self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4)) self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))
09dc4b8c4826d5758b97747fe4b4d51aa543a01a
5053116ea6876add7903bf9433a9cf5da6aa5cbb
/CI_final project/rbfnet/RBF.py
37606ac2732850630bf4bcd555651a1ffac725a9
[]
no_license
Yasaman1997/Computatioanal-Intelligence
4c400643bc4eb8ab30e51fc1fe7e76cf2d2ca2e5
65607a5d3ff6e08269584f9055f4feba5358abe2
refs/heads/master
2020-12-27T07:41:18.100841
2020-02-02T19:29:28
2020-02-02T19:29:28
237,819,085
0
0
null
null
null
null
UTF-8
Python
false
false
6,066
py
import math import matplotlib.pyplot as plt import numpy as np import FCM import code class RBF: def __init__(self, path, clusters, fuzziness_parameter, gama, n_class): path = path self.dataset = code.prepare_data() self.n_cluster = clusters self.m = fuzziness_parameter self.n_class = n_class self.c_raduis = gama self.G_matrix = np.array([[0.0 for i in range(self.n_cluster)] for j in range(int(len(self.dataset) * 0.7))]) self.Y_matrix = np.array([[0 for i in range(self.n_class)] for j in range(int(len(self.dataset) * 0.7))]) self.W_matrix = None self.G_matrix_test = np.array( [[0.0 for i in range(self.n_cluster)] for j in range(int(len(self.dataset) - len(self.dataset) * 0.7))]) self.Y = [0.0 for i in range(int(len(self.dataset) - len(self.dataset) * 0.7))] self.Output_matrix = np.array([[0.0 for i in range(self.n_class)] for j in range(int(len(self.dataset) * 0.7))]) def distance(self, point1, point2): d = math.sqrt(sum((a - b) ** 2 for a, b in zip(point1, point2))) if d == 0: return 0.00000001 else: return d def get_uik(self, x, vi): T1 = 0 T2 = float((self.distance(x, vi))) for ck in self.C_matrix: T3 = float(self.distance(x, ck)) T1 += pow(float(T2 / T3), 2 / (self.m - 1)) uik = 1 / T1 return uik def compute_G(self, start, end, G): g1 = [] g2 = [] for i in range(len(self.C_matrix)): ci = np.array([[0.0, 0.0], [0.0, 0.0]]) uik = 0 u = 0 for j in range(start, end): if G == 0: u = self.U_matrix[j - start][i] else: u = self.get_uik(self.dataset[j][0], self.C_matrix[i]) g = np.array([u ** self.m * self.dataset[j][0][0], u ** self.m * self.dataset[j][0][1]]) - \ np.array([u ** self.m * float(self.C_matrix[i][0]), u ** self.m * float(self.C_matrix[i][1])]) ci += [[g[0] ** 2, g[0] * g[1]], [g[0] * g[1], g[1] ** 2]] uik += (u ** self.m) ci = ci / uik for j in range(start, end): x = np.array([self.dataset[j][0][0], self.dataset[j][0][1]]) if G == 0: self.G_matrix[j - start][i] = math.exp( -self.c_raduis * np.matmul(np.matmul(np.transpose(x - self.C_matrix[i]), np.linalg.inv(ci)), x - self.C_matrix[i])) # g1.append(self.G_matrix) # np.savetxt("G1.txt", g1) else: self.G_matrix_test[j - start][i] = math.exp( -self.c_raduis * np.matmul(np.matmul(np.transpose(x - self.C_matrix[i]), np.linalg.inv(ci)), x - self.C_matrix[i])) # g2.append(self.G_matrix_test) # np.savetxt("G2.txt", g2) def Run_Rbf(self): np.random.shuffle(self.dataset) for i in range(int(len(self.dataset) * 0.7)): self.Y_matrix[i][self.dataset[i][1] - 1] = 1 fcm = FCM.FCM(self.n_cluster, self.dataset[0:int(len(self.dataset) * 0.7)], self.m) # ue FCM self.U_matrix, self.C_matrix = fcm.clustering_algorithm() self.compute_G(0, int(len(self.dataset) * 0.7), 0) self.W_matrix = np.matmul(np.matmul(np.linalg.inv(np.matmul(np.transpose(self.G_matrix), self.G_matrix)), np.transpose(self.G_matrix)), self.Y_matrix) self.Output_matrix = np.matmul(self.G_matrix, self.W_matrix) print('W_matrix:') print(self.W_matrix) print('output:') print(self.Output_matrix) def rbf_test(self): self.compute_G(int(len(self.dataset) * 0.7) + 1, len(self.dataset), 1) self.Output_matrix = np.matmul(self.G_matrix_test, self.W_matrix) # print(self.dataset[int(len(self.dataset) * 0.7)+1:len(self.dataset)]) for i in range(len(self.Output_matrix)): self.Y[i] = np.argmax(self.Output_matrix[i]) + 1 print('y:') print(self.Y) print('predicted_output:') print(self.Output_matrix) def accuracy(self): sum = 0.0 acc = [] start = int(len(self.dataset) * 0.7) + 1 end = len(self.dataset) for i in range(start, end): dif = self.dataset[i][1] - self.Y[i - start] # plt.scatter(self.Y[i - start], c='green') # plt.scatter(self.dataset[i][1], c='red') plt.show() if dif > 0 or dif < 0: sum += 1 accuracy = 1 - sum / int(len(self.dataset) * 0.3) acc.append(accuracy) np.savetxt("acc.txt", acc) print('accuracy:') print(accuracy) def run(): for i in range(2, 32, 2): rbf = RBF("2clstrain1200.csv", 10, 2, 1, 2) rbf.Run_Rbf() rbf.rbf_test() plt.scatter([rbf.C_matrix[0][0], rbf.C_matrix[1][0], rbf.C_matrix[2][0], rbf.C_matrix[3][0], rbf.C_matrix[4][0], rbf.C_matrix[5][0], rbf.C_matrix[6][0], rbf.C_matrix[7][0]], [rbf.C_matrix[0][1], rbf.C_matrix[1][1], rbf.C_matrix[2][1], rbf.C_matrix[3][1], rbf.C_matrix[4][1], rbf.C_matrix[5][1], rbf.C_matrix[6][1], rbf.C_matrix[7][1]], color='black') plt.show() # print('accuracy:') print(rbf.accuracy()) run()
2a38b18643398080afdf4fbe89533401fdd3c67d
4c300a18ba13bed9e0fa933a9f6d01187e005468
/devrun/cmd/web.py
d2a193d5aa0a8dded14213a28127cad236a46f7a
[]
no_license
smurfix/devrun
08def56eda1090e9489b2f3c33d2a26d9a143277
d6098fafc79c81d65468a6cbdaaf0b8633ebde97
refs/heads/master
2021-01-25T01:22:05.091114
2017-06-22T10:54:40
2017-06-22T10:54:40
94,753,022
0
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division, unicode_literals ## ## This file is part of devrun, a comprehensive controller and monitor for ## various typed code. ## ## devrun is Copyright © 2016 by Matthias Urlichs <[email protected]>, ## it is licensed under the GPLv3. See the file `README.rst` for details, ## including optimistic statements by the author. ## ## This paragraph is auto-generated and may self-destruct at any time, ## courtesy of "make update". The original is in ‘utils/_boilerplate.py’. ## Thus, please do not remove the next line, or insert any blank lines. ##BP import sys import asyncio import inspect from collections.abc import Mapping from . import BaseCommand from devrun.web import App class Command(BaseCommand): "Run a web server" help = """\ web -- run a web server. Usage: web [[bind-to] port] Defaults: any 9980 """ app = None bindto = '0.0.0.0' port = 9980 async def run(self, *args): self.loop = self.opt.loop if len(args) > 2: print("Usage: run", file=sys.stderr) return 1 if args: self.port = atoi(args[-1]) if len(args) > 1: self.bindto = args[0] self.app = App(self) await self.app.start(self.bindto,self.port) while True: await asyncio.sleep(9999,loop=self.loop) async def stop(self): if self.app is not None: await self.app.stop() await super().stop()
485b464e4b94a31de2a1e612ab6f6c40411628a1
4de0c6d3a820d7669fcef5fd035416cf85b35f23
/ITcoach/xlrd_xlwt处理数据/第1章 python基础/1.7 学Python,不愁没对象!/1.7.2.py
41358a812e40297cbed3f5cf30e10307d8cf4862
[ "AFL-3.0" ]
permissive
ww35133634/chenxusheng
5e1b7391a94387b73bcd7c4d12f1247b79be8016
666e0eb3aedde46342faf0d4030f5c72b10c9732
refs/heads/master
2022-11-12T03:46:47.953680
2020-07-02T20:50:56
2020-07-02T20:50:56
275,168,080
0
0
AFL-3.0
2020-07-02T20:58:37
2020-06-26T13:54:48
HTML
UTF-8
Python
false
false
34
py
print(type(99)) print(type('abc'))
a32077954feaaf66d2e4a23b6ccbfb1d5d8009ef
bcc199a7e71b97af6fbfd916d5a0e537369c04d9
/leetcode/solved/53_Maximum_Subarray/solution.py
4b9dd9a6ff3ffd63395f61fdf9315a2b1fb9c7b9
[]
no_license
sungminoh/algorithms
9c647e82472905a2c4e505c810b622b734d9d20d
1389a009a02e90e8700a7a00e0b7f797c129cdf4
refs/heads/master
2023-05-01T23:12:53.372060
2023-04-24T06:34:12
2023-04-24T06:34:12
87,406,513
0
0
null
null
null
null
UTF-8
Python
false
false
1,423
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 sungminoh <[email protected]> # # Distributed under terms of the MIT license. """ Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. A subarray is a contiguous part of an array. Example 1: Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Example 2: Input: nums = [1] Output: 1 Example 3: Input: nums = [5,4,-1,7,8] Output: 23 Constraints: 1 <= nums.length <= 105 -104 <= nums[i] <= 104 Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. """ import sys from typing import List import pytest class Solution: def maxSubArray(self, nums: List[int]) -> int: """ Time complexity: O(n) Space complexity: O(1) """ ret = nums[0] prevsum = nums[0] for n in nums[1:]: prevsum = max(n, prevsum + n) ret = max(ret, prevsum) return ret @pytest.mark.parametrize('nums, expected', [ ([-2,1,-3,4,-1,2,1,-5,4], 6), ([1], 1), ([5,4,-1,7,8], 23), ]) def test(nums, expected): assert expected == Solution().maxSubArray(nums) if __name__ == '__main__': sys.exit(pytest.main(["-s", "-v"] + sys.argv))
eeed637ae329962457dea76e8a46dd6381f588f2
1832a909b2c564bc623bca36dd3eea8c5587e2db
/server/core/migrations/0007_auto_20170206_0100.py
30aa6f8b8b22f8af086a24dce4fe314c5837a1d1
[]
no_license
bravesoftdz/tramsdaol
ea4370b93ccba6ba569e948d552bab89042fb337
e726a00a0296454582f18d18956140c67be8cf8d
refs/heads/master
2020-03-20T02:57:25.088779
2017-04-01T01:31:49
2017-04-01T01:31:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-06 01:00 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0006_geographiccoordinate_search_address'), ] operations = [ migrations.AlterUniqueTogether( name='geographiccoordinate', unique_together=set([('lat', 'lng', 'address', 'search_address')]), ), ]
9aa63aac3e6bf6b02a6ac01ef808c52247f95e0c
649255f0d9b6d90be3d3f68263680081f893a089
/test/test_excluded_scan_targets.py
85f9366583d08f39747f863208b29caf424513f5
[]
no_license
khantext/r7ivm3
611e1bbc988d9eb8fbb53294d3ed488130e46818
bd9b25f511f9e7479ea7069d71929700bed09e87
refs/heads/master
2023-05-01T10:01:16.336656
2021-05-03T18:16:12
2021-05-03T18:16:12
237,514,737
0
0
null
null
null
null
UTF-8
Python
false
false
49,254
py
# coding: utf-8 """ InsightVM API # Overview This guide documents the InsightVM Application Programming Interface (API) Version 3. This API supports the Representation State Transfer (REST) design pattern. Unless noted otherwise this API accepts and produces the `application/json` media type. This API uses Hypermedia as the Engine of Application State (HATEOAS) and is hypermedia friendly. All API connections must be made to the security console using HTTPS. ## Versioning Versioning is specified in the URL and the base path of this API is: `https://<host>:<port>/api/3/`. ## Specification An <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md\">OpenAPI v2</a> specification (also known as Swagger 2) of this API is available. Tools such as <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/swagger-api/swagger-codegen\">swagger-codegen</a> can be used to generate an API client in the language of your choosing using this specification document. <p class=\"openapi\">Download the specification: <a class=\"openapi-button\" target=\"_blank\" rel=\"noopener noreferrer\" download=\"\" href=\"/api/3/json\"> Download </a></p> ## Authentication Authorization to the API uses HTTP Basic Authorization (see <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://www.ietf.org/rfc/rfc2617.txt\">RFC 2617</a> for more information). Requests must supply authorization credentials in the `Authorization` header using a Base64 encoded hash of `\"username:password\"`. <!-- ReDoc-Inject: <security-definitions> --> ### 2FA This API supports two-factor authentication (2FA) by supplying an authentication token in addition to the Basic Authorization. The token is specified using the `Token` request header. To leverage two-factor authentication, this must be enabled on the console and be configured for the account accessing the API. ## Resources ### Naming Resource names represent nouns and identify the entity being manipulated or accessed. All collection resources are pluralized to indicate to the client they are interacting with a collection of multiple resources of the same type. Singular resource names are used when there exists only one resource available to interact with. The following naming conventions are used by this API: | Type | Case | | --------------------------------------------- | ------------------------ | | Resource names | `lower_snake_case` | | Header, body, and query parameters parameters | `camelCase` | | JSON fields and property names | `camelCase` | #### Collections A collection resource is a parent resource for instance resources, but can itself be retrieved and operated on independently. Collection resources use a pluralized resource name. The resource path for collection resources follow the convention: ``` /api/3/{resource_name} ``` #### Instances An instance resource is a \"leaf\" level resource that may be retrieved, optionally nested within a collection resource. Instance resources are usually retrievable with opaque identifiers. The resource path for instance resources follows the convention: ``` /api/3/{resource_name}/{instance_id}... ``` ## Verbs The following HTTP operations are supported throughout this API. The general usage of the operation and both its failure and success status codes are outlined below. | Verb | Usage | Success | Failure | | --------- | ------------------------------------------------------------------------------------- | ----------- | -------------------------------------------------------------- | | `GET` | Used to retrieve a resource by identifier, or a collection of resources by type. | `200` | `400`, `401`, `402`, `404`, `405`, `408`, `410`, `415`, `500` | | `POST` | Creates a resource with an application-specified identifier. | `201` | `400`, `401`, `404`, `405`, `408`, `413`, `415`, `500` | | `POST` | Performs a request to queue an asynchronous job. | `202` | `400`, `401`, `405`, `408`, `410`, `413`, `415`, `500` | | `PUT` | Creates a resource with a client-specified identifier. | `200` | `400`, `401`, `403`, `405`, `408`, `410`, `413`, `415`, `500` | | `PUT` | Performs a full update of a resource with a specified identifier. | `201` | `400`, `401`, `403`, `405`, `408`, `410`, `413`, `415`, `500` | | `DELETE` | Deletes a resource by identifier or an entire collection of resources. | `204` | `400`, `401`, `405`, `408`, `410`, `413`, `415`, `500` | | `OPTIONS` | Requests what operations are available on a resource. | `200` | `401`, `404`, `405`, `408`, `500` | ### Common Operations #### OPTIONS All resources respond to the `OPTIONS` request, which allows discoverability of available operations that are supported. The `OPTIONS` response returns the acceptable HTTP operations on that resource within the `Allow` header. The response is always a `200 OK` status. ### Collection Resources Collection resources can support the `GET`, `POST`, `PUT`, and `DELETE` operations. #### GET The `GET` operation invoked on a collection resource indicates a request to retrieve all, or some, of the entities contained within the collection. This also includes the optional capability to filter or search resources during the request. The response from a collection listing is a paginated document. See [hypermedia links](#section/Overview/Paging) for more information. #### POST The `POST` is a non-idempotent operation that allows for the creation of a new resource when the resource identifier is not provided by the system during the creation operation (i.e. the Security Console generates the identifier). The content of the `POST` request is sent in the request body. The response to a successful `POST` request should be a `201 CREATED` with a valid `Location` header field set to the URI that can be used to access to the newly created resource. The `POST` to a collection resource can also be used to interact with asynchronous resources. In this situation, instead of a `201 CREATED` response, the `202 ACCEPTED` response indicates that processing of the request is not fully complete but has been accepted for future processing. This request will respond similarly with a `Location` header with link to the job-oriented asynchronous resource that was created and/or queued. #### PUT The `PUT` is an idempotent operation that either performs a create with user-supplied identity, or a full replace or update of a resource by a known identifier. The response to a `PUT` operation to create an entity is a `201 Created` with a valid `Location` header field set to the URI that can be used to access to the newly created resource. `PUT` on a collection resource replaces all values in the collection. The typical response to a `PUT` operation that updates an entity is hypermedia links, which may link to related resources caused by the side-effects of the changes performed. #### DELETE The `DELETE` is an idempotent operation that physically deletes a resource, or removes an association between resources. The typical response to a `DELETE` operation is hypermedia links, which may link to related resources caused by the side-effects of the changes performed. ### Instance Resources Instance resources can support the `GET`, `PUT`, `POST`, `PATCH` and `DELETE` operations. #### GET Retrieves the details of a specific resource by its identifier. The details retrieved can be controlled through property selection and property views. The content of the resource is returned within the body of the response in the acceptable media type. #### PUT Allows for and idempotent \"full update\" (complete replacement) on a specific resource. If the resource does not exist, it will be created; if it does exist, it is completely overwritten. Any omitted properties in the request are assumed to be undefined/null. For \"partial updates\" use `POST` or `PATCH` instead. The content of the `PUT` request is sent in the request body. The identifier of the resource is specified within the URL (not the request body). The response to a successful `PUT` request is a `201 CREATED` to represent the created status, with a valid `Location` header field set to the URI that can be used to access to the newly created (or fully replaced) resource. #### POST Performs a non-idempotent creation of a new resource. The `POST` of an instance resource most commonly occurs with the use of nested resources (e.g. searching on a parent collection resource). The response to a `POST` of an instance resource is typically a `200 OK` if the resource is non-persistent, and a `201 CREATED` if there is a resource created/persisted as a result of the operation. This varies by endpoint. #### PATCH The `PATCH` operation is used to perform a partial update of a resource. `PATCH` is a non-idempotent operation that enforces an atomic mutation of a resource. Only the properties specified in the request are to be overwritten on the resource it is applied to. If a property is missing, it is assumed to not have changed. #### DELETE Permanently removes the individual resource from the system. If the resource is an association between resources, only the association is removed, not the resources themselves. A successful deletion of the resource should return `204 NO CONTENT` with no response body. This operation is not fully idempotent, as follow-up requests to delete a non-existent resource should return a `404 NOT FOUND`. ## Requests Unless otherwise indicated, the default request body media type is `application/json`. ### Headers Commonly used request headers include: | Header | Example | Purpose | | ------------------ | --------------------------------------------- | ---------------------------------------------------------------------------------------------- | | `Accept` | `application/json` | Defines what acceptable content types are allowed by the client. For all types, use `*/*`. | | `Accept-Encoding` | `deflate, gzip` | Allows for the encoding to be specified (such as gzip). | | `Accept-Language` | `en-US` | Indicates to the server the client's locale (defaults `en-US`). | | `Authorization ` | `Basic Base64(\"username:password\")` | Basic authentication | | `Token ` | `123456` | Two-factor authentication token (if enabled) | ### Dates & Times Dates and/or times are specified as strings in the ISO 8601 format(s). The following formats are supported as input: | Value | Format | Notes | | --------------------------- | ------------------------------------------------------ | ----------------------------------------------------- | | Date | YYYY-MM-DD | Defaults to 12 am UTC (if used for a date & time | | Date & time only | YYYY-MM-DD'T'hh:mm:ss[.nnn] | Defaults to UTC | | Date & time in UTC | YYYY-MM-DD'T'hh:mm:ss[.nnn]Z | | | Date & time w/ offset | YYYY-MM-DD'T'hh:mm:ss[.nnn][+&#124;-]hh:mm | | | Date & time w/ zone-offset | YYYY-MM-DD'T'hh:mm:ss[.nnn][+&#124;-]hh:mm[<zone-id>] | | ### Timezones Timezones are specified in the regional zone format, such as `\"America/Los_Angeles\"`, `\"Asia/Tokyo\"`, or `\"GMT\"`. ### Paging Pagination is supported on certain collection resources using a combination of two query parameters, `page` and `size`. As these are control parameters, they are prefixed with the underscore character. The page parameter dictates the zero-based index of the page to retrieve, and the `size` indicates the size of the page. For example, `/resources?page=2&size=10` will return page 3, with 10 records per page, giving results 21-30. The maximum page size for a request is 500. ### Sorting Sorting is supported on paginated resources with the `sort` query parameter(s). The sort query parameter(s) supports identifying a single or multi-property sort with a single or multi-direction output. The format of the parameter is: ``` sort=property[,ASC|DESC]... ``` Therefore, the request `/resources?sort=name,title,DESC` would return the results sorted by the name and title descending, in that order. The sort directions are either ascending `ASC` or descending `DESC`. With single-order sorting, all properties are sorted in the same direction. To sort the results with varying orders by property, multiple sort parameters are passed. For example, the request `/resources?sort=name,ASC&sort=title,DESC` would sort by name ascending and title descending, in that order. ## Responses The following response statuses may be returned by this API. | Status | Meaning | Usage | | ------ | ------------------------ |------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `200` | OK | The operation performed without error according to the specification of the request, and no more specific 2xx code is suitable. | | `201` | Created | A create request has been fulfilled and a resource has been created. The resource is available as the URI specified in the response, including the `Location` header. | | `202` | Accepted | An asynchronous task has been accepted, but not guaranteed, to be processed in the future. | | `400` | Bad Request | The request was invalid or cannot be otherwise served. The request is not likely to succeed in the future without modifications. | | `401` | Unauthorized | The user is unauthorized to perform the operation requested, or does not maintain permissions to perform the operation on the resource specified. | | `403` | Forbidden | The resource exists to which the user has access, but the operating requested is not permitted. | | `404` | Not Found | The resource specified could not be located, does not exist, or an unauthenticated client does not have permissions to a resource. | | `405` | Method Not Allowed | The operations may not be performed on the specific resource. Allowed operations are returned and may be performed on the resource. | | `408` | Request Timeout | The client has failed to complete a request in a timely manner and the request has been discarded. | | `413` | Request Entity Too Large | The request being provided is too large for the server to accept processing. | | `415` | Unsupported Media Type | The media type is not supported for the requested resource. | | `500` | Internal Server Error | An internal and unexpected error has occurred on the server at no fault of the client. | ### Security The response statuses 401, 403 and 404 need special consideration for security purposes. As necessary, error statuses and messages may be obscured to strengthen security and prevent information exposure. The following is a guideline for privileged resource response statuses: | Use Case | Access | Resource | Permission | Status | | ------------------------------------------------------------------ | ------------------ |------------------- | ------------ | ------------ | | Unauthenticated access to an unauthenticated resource. | Unauthenticated | Unauthenticated | Yes | `20x` | | Unauthenticated access to an authenticated resource. | Unauthenticated | Authenticated | No | `401` | | Unauthenticated access to an authenticated resource. | Unauthenticated | Non-existent | No | `401` | | Authenticated access to a unauthenticated resource. | Authenticated | Unauthenticated | Yes | `20x` | | Authenticated access to an authenticated, unprivileged resource. | Authenticated | Authenticated | No | `404` | | Authenticated access to an authenticated, privileged resource. | Authenticated | Authenticated | Yes | `20x` | | Authenticated access to an authenticated, non-existent resource | Authenticated | Non-existent | Yes | `404` | ### Headers Commonly used response headers include: | Header | Example | Purpose | | -------------------------- | --------------------------------- | --------------------------------------------------------------- | | `Allow` | `OPTIONS, GET` | Defines the allowable HTTP operations on a resource. | | `Cache-Control` | `no-store, must-revalidate` | Disables caching of resources (as they are all dynamic). | | `Content-Encoding` | `gzip` | The encoding of the response body (if any). | | `Location` | | Refers to the URI of the resource created by a request. | | `Transfer-Encoding` | `chunked` | Specified the encoding used to transform response. | | `Retry-After` | 5000 | Indicates the time to wait before retrying a request. | | `X-Content-Type-Options` | `nosniff` | Disables MIME type sniffing. | | `X-XSS-Protection` | `1; mode=block` | Enables XSS filter protection. | | `X-Frame-Options` | `SAMEORIGIN` | Prevents rendering in a frame from a different origin. | | `X-UA-Compatible` | `IE=edge,chrome=1` | Specifies the browser mode to render in. | ### Format When `application/json` is returned in the response body it is always pretty-printed (indented, human readable output). Additionally, gzip compression/encoding is supported on all responses. #### Dates & Times Dates or times are returned as strings in the ISO 8601 'extended' format. When a date and time is returned (instant) the value is converted to UTC. For example: | Value | Format | Example | | --------------- | ------------------------------ | --------------------- | | Date | `YYYY-MM-DD` | 2017-12-03 | | Date & Time | `YYYY-MM-DD'T'hh:mm:ss[.nnn]Z` | 2017-12-03T10:15:30Z | #### Content In some resources a Content data type is used. This allows for multiple formats of representation to be returned within resource, specifically `\"html\"` and `\"text\"`. The `\"text\"` property returns a flattened representation suitable for output in textual displays. The `\"html\"` property returns an HTML fragment suitable for display within an HTML element. Note, the HTML returned is not a valid stand-alone HTML document. #### Paging The response to a paginated request follows the format: ```json { resources\": [ ... ], \"page\": { \"number\" : ..., \"size\" : ..., \"totalResources\" : ..., \"totalPages\" : ... }, \"links\": [ \"first\" : { \"href\" : \"...\" }, \"prev\" : { \"href\" : \"...\" }, \"self\" : { \"href\" : \"...\" }, \"next\" : { \"href\" : \"...\" }, \"last\" : { \"href\" : \"...\" } ] } ``` The `resources` property is an array of the resources being retrieved from the endpoint, each which should contain at minimum a \"self\" relation hypermedia link. The `page` property outlines the details of the current page and total possible pages. The object for the page includes the following properties: - number - The page number (zero-based) of the page returned. - size - The size of the pages, which is less than or equal to the maximum page size. - totalResources - The total amount of resources available across all pages. - totalPages - The total amount of pages. The last property of the paged response is the `links` array, which contains all available hypermedia links. For paginated responses, the \"self\", \"next\", \"previous\", \"first\", and \"last\" links are returned. The \"self\" link must always be returned and should contain a link to allow the client to replicate the original request against the collection resource in an identical manner to that in which it was invoked. The \"next\" and \"previous\" links are present if either or both there exists a previous or next page, respectively. The \"next\" and \"previous\" links have hrefs that allow \"natural movement\" to the next page, that is all parameters required to move the next page are provided in the link. The \"first\" and \"last\" links provide references to the first and last pages respectively. Requests outside the boundaries of the pageable will result in a `404 NOT FOUND`. Paginated requests do not provide a \"stateful cursor\" to the client, nor does it need to provide a read consistent view. Records in adjacent pages may change while pagination is being traversed, and the total number of pages and resources may change between requests within the same filtered/queries resource collection. #### Property Views The \"depth\" of the response of a resource can be configured using a \"view\". All endpoints supports two views that can tune the extent of the information returned in the resource. The supported views are `summary` and `details` (the default). View are specified using a query parameter, in this format: ```bash /<resource>?view={viewName} ``` #### Error Any error responses can provide a response body with a message to the client indicating more information (if applicable) to aid debugging of the error. All 40x and 50x responses will return an error response in the body. The format of the response is as follows: ```json { \"status\": <statusCode>, \"message\": <message>, \"links\" : [ { \"rel\" : \"...\", \"href\" : \"...\" } ] } ``` The `status` property is the same as the HTTP status returned in the response, to ease client parsing. The message property is a localized message in the request client's locale (if applicable) that articulates the nature of the error. The last property is the `links` property. This may contain additional [hypermedia links](#section/Overview/Authentication) to troubleshoot. #### Search Criteria <a section=\"section/Responses/SearchCriteria\"></a> Multiple resources make use of search criteria to match assets. Search criteria is an array of search filters. Each search filter has a generic format of: ```json { \"field\": \"<field-name>\", \"operator\": \"<operator>\", [\"value\": <value>,] [\"lower\": <value>,] [\"upper\": <value>] } ``` Every filter defines two required properties `field` and `operator`. The field is the name of an asset property that is being filtered on. The operator is a type and property-specific operating performed on the filtered property. The valid values for fields and operators are outlined in the table below. Depending on the data type of the operator the value may be a numeric or string format. Every filter also defines one or more values that are supplied to the operator. The valid values vary by operator and are outlined below. ##### Fields The following table outlines the search criteria fields and the available operators: | Field | Operators | | --------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ | | `alternate-address-type` | `in` | | `container-image` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` `is-like` `not-like` | | `container-status` | `is` `is-not` | | `containers` | `are` | | `criticality-tag` | `is` `is-not` `is-greater-than` `is-less-than` `is-applied` ` is-not-applied` | | `custom-tag` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` `is-applied` `is-not-applied` | | `cve` | `is` `is-not` `contains` `does-not-contain` | | `cvss-access-complexity` | `is` `is-not` | | `cvss-authentication-required` | `is` `is-not` | | `cvss-access-vector` | `is` `is-not` | | `cvss-availability-impact` | `is` `is-not` | | `cvss-confidentiality-impact` | `is` `is-not` | | `cvss-integrity-impact` | `is` `is-not` | | `cvss-v3-confidentiality-impact` | `is` `is-not` | | `cvss-v3-integrity-impact` | `is` `is-not` | | `cvss-v3-availability-impact` | `is` `is-not` | | `cvss-v3-attack-vector` | `is` `is-not` | | `cvss-v3-attack-complexity` | `is` `is-not` | | `cvss-v3-user-interaction` | `is` `is-not` | | `cvss-v3-privileges-required` | `is` `is-not` | | `host-name` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` `is-empty` `is-not-empty` `is-like` `not-like` | | `host-type` | `in` `not-in` | | `ip-address` | `is` `is-not` `in-range` `not-in-range` `is-like` `not-like` | | `ip-address-type` | `in` `not-in` | | `last-scan-date` | `is-on-or-before` `is-on-or-after` `is-between` `is-earlier-than` `is-within-the-last` | | `location-tag` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` `is-applied` `is-not-applied` | | `mobile-device-last-sync-time` | `is-within-the-last` `is-earlier-than` | | `open-ports` | `is` `is-not` ` in-range` | | `operating-system` | `contains` ` does-not-contain` ` is-empty` ` is-not-empty` | | `owner-tag` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` `is-applied` `is-not-applied` | | `pci-compliance` | `is` | | `risk-score` | `is` `is-not` `is-greater-than` `is-less-than` `in-range` | | `service-name` | `contains` `does-not-contain` | | `site-id` | `in` `not-in` | | `software` | `contains` `does-not-contain` | | `vAsset-cluster` | `is` `is-not` `contains` `does-not-contain` `starts-with` | | `vAsset-datacenter` | `is` `is-not` | | `vAsset-host-name` | `is` `is-not` `contains` `does-not-contain` `starts-with` | | `vAsset-power-state` | `in` `not-in` | | `vAsset-resource-pool-path` | `contains` `does-not-contain` | | `vulnerability-assessed` | `is-on-or-before` `is-on-or-after` `is-between` `is-earlier-than` `is-within-the-last` | | `vulnerability-category` | `is` `is-not` `starts-with` `ends-with` `contains` `does-not-contain` | | `vulnerability-cvss-v3-score` | `is` `is-not` | | `vulnerability-cvss-score` | `is` `is-not` `in-range` `is-greater-than` `is-less-than` | | `vulnerability-exposures` | `includes` `does-not-include` | | `vulnerability-title` | `contains` `does-not-contain` `is` `is-not` `starts-with` `ends-with` | | `vulnerability-validated-status` | `are` | ##### Enumerated Properties The following fields have enumerated values: | Field | Acceptable Values | | ----------------------------------------- | ------------------------------------------------------------------------------------------------------------- | | `alternate-address-type` | 0=IPv4, 1=IPv6 | | `containers` | 0=present, 1=not present | | `container-status` | `created` `running` `paused` `restarting` `exited` `dead` `unknown` | | `cvss-access-complexity` | <ul><li><code>L</code> = Low</li><li><code>M</code> = Medium</li><li><code>H</code> = High</li></ul> | | `cvss-integrity-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-confidentiality-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-availability-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-access-vector` | <ul><li><code>L</code> = Local</li><li><code>A</code> = Adjacent</li><li><code>N</code> = Network</li></ul> | | `cvss-authentication-required` | <ul><li><code>N</code> = None</li><li><code>S</code> = Single</li><li><code>M</code> = Multiple</li></ul> | | `cvss-v3-confidentiality-impact` | <ul><li><code>L</code> = Local</li><li><code>L</code> = Low</li><li><code>N</code> = None</li><li><code>H</code> = High</li></ul> | | `cvss-v3-integrity-impact` | <ul><li><code>L</code> = Local</li><li><code>L</code> = Low</li><li><code>N</code> = None</li><li><code>H</code> = High</li></ul> | | `cvss-v3-availability-impact` | <ul><li><code>N</code> = None</li><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `cvss-v3-attack-vector` | <ul><li><code>N</code> = Network</li><li><code>A</code> = Adjacent</li><li><code>L</code> = Local</li><li><code>P</code> = Physical</li></ul> | | `cvss-v3-attack-complexity` | <ul><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `cvss-v3-user-interaction` | <ul><li><code>N</code> = None</li><li><code>R</code> = Required</li></ul> | | `cvss-v3-privileges-required` | <ul><li><code>N</code> = None</li><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `host-type` | 0=Unknown, 1=Guest, 2=Hypervisor, 3=Physical, 4=Mobile | | `ip-address-type` | 0=IPv4, 1=IPv6 | | `pci-compliance` | 0=fail, 1=pass | | `vulnerability-validated-status` | 0=present, 1=not present | ##### Operator Properties <a section=\"section/Responses/SearchCriteria/OperatorProperties\"></a> The following table outlines which properties are required for each operator and the appropriate data type(s): | Operator | `value` | `lower` | `upper` | | ----------------------|-----------------------|-----------------------|------------------------| | `are` | `string` | | | | `contains` | `string` | | | | `does-not-contain` | `string` | | | | `ends with` | `string` | | | | `in` | `Array[ string ]` | | | | `in-range` | | `numeric` | `numeric` | | `includes` | `Array[ string ]` | | | | `is` | `string` | | | | `is-applied` | | | | | `is-between` | | `string` (yyyy-MM-dd) | `numeric` (yyyy-MM-dd) | | `is-earlier-than` | `numeric` (days) | | | | `is-empty` | | | | | `is-greater-than` | `numeric` | | | | `is-on-or-after` | `string` (yyyy-MM-dd) | | | | `is-on-or-before` | `string` (yyyy-MM-dd) | | | | `is-not` | `string` | | | | `is-not-applied` | | | | | `is-not-empty` | | | | | `is-within-the-last` | `numeric` (days) | | | | `less-than` | `string` | | | | `like` | `string` | | | | `not-contains` | `string` | | | | `not-in` | `Array[ string ]` | | | | `not-in-range` | | `numeric` | `numeric` | | `not-like` | `string` | | | | `starts-with` | `string` | | | #### Discovery Connection Search Criteria <a section=\"section/Responses/DiscoverySearchCriteria\"></a> Dynamic sites make use of search criteria to match assets from a discovery connection. Search criteria is an array of search filters. Each search filter has a generic format of: ```json { \"field\": \"<field-name>\", \"operator\": \"<operator>\", [\"value\": \"<value>\",] [\"lower\": \"<value>\",] [\"upper\": \"<value>\"] } ``` Every filter defines two required properties `field` and `operator`. The field is the name of an asset property that is being filtered on. The list of supported fields vary depending on the type of discovery connection configured for the dynamic site (e.g vSphere, ActiveSync, etc.). The operator is a type and property-specific operating performed on the filtered property. The valid values for fields outlined in the tables below and are grouped by the type of connection. Every filter also defines one or more values that are supplied to the operator. See <a href=\"#section/Responses/SearchCriteria/OperatorProperties\">Search Criteria Operator Properties</a> for more information on the valid values for each operator. ##### Fields (ActiveSync) This section documents search criteria information for ActiveSync discovery connections. The discovery connections must be one of the following types: `\"activesync-ldap\"`, `\"activesync-office365\"`, or `\"activesync-powershell\"`. The following table outlines the search criteria fields and the available operators for ActiveSync connections: | Field | Operators | | --------------------------------- | ------------------------------------------------------------- | | `last-sync-time` | `is-within-the-last` ` is-earlier-than` | | `operating-system` | `contains` ` does-not-contain` | | `user` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (AWS) This section documents search criteria information for AWS discovery connections. The discovery connections must be the type `\"aws\"`. The following table outlines the search criteria fields and the available operators for AWS connections: | Field | Operators | | ----------------------- | ------------------------------------------------------------- | | `availability-zone` | `contains` ` does-not-contain` | | `guest-os-family` | `contains` ` does-not-contain` | | `instance-id` | `contains` ` does-not-contain` | | `instance-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `instance-state` | `in` ` not-in` | | `instance-type` | `in` ` not-in` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `region` | `in` ` not-in` | | `vpc-id` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (DHCP) This section documents search criteria information for DHCP discovery connections. The discovery connections must be the type `\"dhcp\"`. The following table outlines the search criteria fields and the available operators for DHCP connections: | Field | Operators | | --------------- | ------------------------------------------------------------- | | `host-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `mac-address` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (Sonar) This section documents search criteria information for Sonar discovery connections. The discovery connections must be the type `\"sonar\"`. The following table outlines the search criteria fields and the available operators for Sonar connections: | Field | Operators | | ------------------- | -------------------- | | `search-domain` | `contains` ` is` | | `ip-address` | `in-range` ` is` | | `sonar-scan-date` | `is-within-the-last` | ##### Fields (vSphere) This section documents search criteria information for vSphere discovery connections. The discovery connections must be the type `\"vsphere\"`. The following table outlines the search criteria fields and the available operators for vSphere connections: | Field | Operators | | -------------------- | ------------------------------------------------------------------------------------------ | | `cluster` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `data-center` | `is` ` is-not` | | `discovered-time` | `is-on-or-before` ` is-on-or-after` ` is-between` ` is-earlier-than` ` is-within-the-last` | | `guest-os-family` | `contains` ` does-not-contain` | | `host-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `power-state` | `in` ` not-in` | | `resource-pool-path` | `contains` ` does-not-contain` | | `last-time-seen` | `is-on-or-before` ` is-on-or-after` ` is-between` ` is-earlier-than` ` is-within-the-last` | | `vm` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Enumerated Properties (vSphere) The following fields have enumerated values: | Field | Acceptable Values | | ------------- | ------------------------------------ | | `power-state` | `poweredOn` `poweredOff` `suspended` | ## HATEOAS This API follows Hypermedia as the Engine of Application State (HATEOAS) principals and is therefore hypermedia friendly. Hyperlinks are returned in the `links` property of any given resource and contain a fully-qualified hyperlink to the corresponding resource. The format of the hypermedia link adheres to both the <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"http://jsonapi.org\">{json:api} v1</a> <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"http://jsonapi.org/format/#document-links\">\"Link Object\"</a> and <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"http://json-schema.org/latest/json-schema-hypermedia.html\">JSON Hyper-Schema</a> <a target=\"_blank\" rel=\"noopener noreferrer\" href=\"http://json-schema.org/latest/json-schema-hypermedia.html#rfc.section.5.2\">\"Link Description Object\"</a> formats. For example: ```json \"links\": [{ \"rel\": \"<relation>\", \"href\": \"<href>\" ... }] ``` Where appropriate link objects may also contain additional properties than the `rel` and `href` properties, such as `id`, `type`, etc. See the [Root](#tag/Root) resources for the entry points into API discovery. # noqa: E501 OpenAPI spec version: 3 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.excluded_scan_targets import ExcludedScanTargets # noqa: E501 from swagger_client.rest import ApiException class TestExcludedScanTargets(unittest.TestCase): """ExcludedScanTargets unit test stubs""" def setUp(self): pass def tearDown(self): pass def testExcludedScanTargets(self): """Test ExcludedScanTargets""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.excluded_scan_targets.ExcludedScanTargets() # noqa: E501 pass if __name__ == '__main__': unittest.main()
fe74a07943cbbc198295913a72e0c97901d333e8
4bbb67ae8d51c29641b153371e1f404b9af404f0
/tetris/tetris.py
d54e00fbee9dd349be46d1875ea764db646c4d88
[]
no_license
timurbakibayev/python_advanced
e328dd3b26d4b94a05e9218be483e97b149fa8bf
da7beace64e2c17c447efec314d757f8181b6acf
refs/heads/master
2023-01-30T04:07:19.296989
2020-12-08T12:47:34
2020-12-08T12:47:34
291,979,925
1
4
null
null
null
null
UTF-8
Python
false
false
4,905
py
import pygame import random pygame.init() colors = [ (0, 0, 0), (120, 37, 179), (100, 179, 179), (80, 34, 22), (80, 134, 22), (180, 34, 22), (180, 34, 122), ] transparent = (255,255,255,40) figures = [ [[1, 5, 9, 13], [4, 5, 6, 7]], [[4, 5, 9, 10], [2, 6, 5, 9]], [[6, 7, 9, 10], [1, 5, 6, 10]], [[1, 2, 5, 9], [0, 4, 5, 6], [1, 5, 9, 8], [4, 5, 6, 10]], [[1, 2, 6, 10], [5, 6, 7, 9], [2, 6, 10, 11], [3, 5, 6, 7]], [[1, 4, 5, 6], [1, 4, 5, 9], [4, 5, 6, 9], [1, 5, 6, 9]], [[1, 2, 5, 6]], ] score = 0 class Figure: def __init__(self,x,y): self.x = x self.y = y self.type = random.randint(0, len(figures)-1) self.color = random.randint(1, len(colors)-1) self.rotation = 0 def image(self): return figures[self.type][self.rotation] def rotate(self): self.rotation = (self.rotation + 1) % len(figures[self.type]) if self.intersects(): self.rotation = (self.rotation - 1) % len(figures[self.type]) def intersects(self): for i in range(4): for j in range(4): p = i * 4 + j if p in self.image(): x = self.x + j y = self.y + i if x > width-1: return True if x < 0: return True if y > height-1: return True if field[y][x] > 0: return True return False def freeze(self): global score for i in range(4): for j in range(4): p = i * 4 + j if p in self.image(): x = self.x + j y = self.y + i field[y][x] = self.color lines = 0 for i in range(1, height): zeros = field[i].count(0) if zeros == 0: lines += 1 for i1 in range(i,1,-1): for j in range(width): field[i1][j] = field[i1-1][j] score += lines*2 size = (400, 500) screen = pygame.display.set_mode(size) pygame.display.set_caption("Tetris") done = False clock = pygame.time.Clock() fps = 25 BLACK = (0, 0, 0) WHITE = (255, 255, 255) GRAY = (128, 128, 128) RED = (200, 0, 0) font = pygame.font.SysFont('Calibri', 50, True, False) text = font.render("Game Over", True, RED) font_score = pygame.font.SysFont('Calibri', 25, True, False) text = font.render("Game Over", True, RED) height = 20 width = 10 field = [] zoom = 20 x,y = 100,40 counter = 0 game_over = False for i in range(height): new_line = [] for j in range(width): new_line.append(0) field.append(new_line) figure = Figure(3,0) while not done: # Game update if not game_over: counter += 1 if counter % 5 == 0: figure.y += 1 if figure.intersects(): figure.y -= 1 figure.freeze() figure = Figure(3,0) if figure.intersects(): game_over = True for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: if not game_over: if event.key == pygame.K_LEFT: figure.x -= 1 if figure.intersects(): figure.x += 1 if event.key == pygame.K_RIGHT: figure.x += 1 if figure.intersects(): figure.x -= 1 if event.key == pygame.K_UP: figure.rotate() if event.key == pygame.K_DOWN or event.key == pygame.K_SPACE: while not figure.intersects(): figure.y += 1 figure.y -= 1 screen.fill(WHITE) for i in range(height): for j in range(width): pygame.draw.rect(screen, GRAY, [x + zoom * j, y + zoom * i, zoom, zoom], 1) if field[i][j] > 0: pygame.draw.rect(screen, colors[field[i][j]], [x + zoom * j, y + zoom * i, zoom, zoom]) if figure is not None: for i in range(4): for j in range(4): p = i * 4 + j if p in figure.image(): pygame.draw.rect(screen, colors[figure.color], [ x + zoom * (j + figure.x), y + zoom * (i + figure.y), zoom, zoom]) score_pic = font.render(str(score), True, RED) screen.blit(score_pic, (25, 25)) if game_over: screen.blit(text, (100,(height*zoom+y)//2)) pygame.display.flip() clock.tick(fps) pygame.quit()
3a559961d460a100177dfb05a88dd44d35beacac
17993dcca87d490bc9841437309f309a5592ab38
/Codes/support_vector_machine/lib/svm_smo.py
0e73fa2184ef4d2fcb86116b01efa95cec3c0255
[]
no_license
dreamlikexin/machine_learning
bc86ea15ef8552ad1be78a5bc65fb74a2cdb274e
850e87025270847210b6ad188d2da181983a72c7
refs/heads/master
2022-01-16T09:51:20.538340
2019-06-19T16:27:26
2019-06-19T16:27:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,937
py
import numpy as np class SVM: def get_H(self, Lambda, i, j, y): if y[i]==y[j]: return Lambda[i] + Lambda[j] else: return float("inf") def get_L(self, Lambda, i, j, y): if y[i]==y[j]: return 0.0 else: return max(0, Lambda[j] - Lambda[i]) def smo(self, X, y, K, N): m, n = X.shape Lambda = np.zeros((m,1)) epsilon = 1e-6 for t in range(N): for i in range(m): for j in range(m): D_ij = 2 * K[i][j] - K[i][i] - K[j][j] if abs(D_ij) < epsilon: continue E_i = K[:, i].dot(Lambda * y) - y[i] E_j = K[:, j].dot(Lambda * y) - y[j] delta_j = 1.0 * y[j] * (E_j - E_i) / D_ij H_ij = self.get_H(Lambda, i, j, y) L_ij = self.get_L(Lambda, i, j, y) if Lambda[j] + delta_j > H_ij: delta_j = H_ij - Lambda[j] Lambda[j] = H_ij elif Lambda[j] + delta_j < L_ij: delta_j = L_ij - Lambda[j] Lambda[j] = L_ij else: Lambda[j] += delta_j delta_i = - y[i] * y[j] * delta_j Lambda[i] += delta_i if Lambda[i] > epsilon: b = y[i] - K[:, i].dot(Lambda * y) elif Lambda[j] > epsilon: b = y[j] - K[:, j].dot(Lambda * y) self.Lambda = Lambda self.b = b def fit(self, X, y, N = 10): K = X.dot(X.T) self.smo(X, y, K, N) self.w = X.T.dot(self.Lambda * y) def predict(self, X): return np.sign(X.dot(self.w) + self.b)
5dc3bef4afd928a08151a42b378ae0cc9051a420
a8062308fb3bf6c8952257504a50c3e97d801294
/problems/N539_Minimum_Time_Difference.py
606f46d1a86602b05472d086e54f47d8e7fe6dbb
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
533
py
class Solution(object): def findMinDifference(self, timePoints): """ :type timePoints: List[str] :rtype: int """ if not timePoints: return times = [] for point in timePoints: times.append(int(point[:2])*60 + int(point[3:])) times.sort() res = 24*60 length = len(times) for i in range(1, length): res = min(res, times[i] - times[i-1]) res = min(res, times[0] + 24*60 - times[-1]) return res
91e4afe9a69b64b1252d3f879b3ec018d529bbad
5dd190725aaaeb7287d935b3c99c20480b208816
/object_detection/utils/np_mask_ops_test.py
a0ee46eff01f165f5ae94346b8a1b7fe2636149c
[ "MIT" ]
permissive
DemonDamon/mask-detection-based-on-tf2odapi
32d947164fb54395b9e45368c0d4bcf3a6ea1c28
192ae544169c1230c21141c033800aa1bd94e9b6
refs/heads/main
2023-05-13T05:05:44.534885
2021-06-08T05:56:09
2021-06-08T05:56:09
369,463,131
2
1
null
null
null
null
UTF-8
Python
false
false
3,719
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.np_mask_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from object_detection.utils import np_mask_ops class MaskOpsTests(tf.test.TestCase): def setUp(self): masks1_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0]], dtype=np.uint8) masks1_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) masks1 = np.stack([masks1_0, masks1_1]) masks2_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0]], dtype=np.uint8) masks2_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) masks2_2 = np.array([[1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0]], dtype=np.uint8) masks2 = np.stack([masks2_0, masks2_1, masks2_2]) self.masks1 = masks1 self.masks2 = masks2 def testArea(self): areas = np_mask_ops.area(self.masks1) expected_areas = np.array([8.0, 10.0], dtype=np.float32) self.assertAllClose(expected_areas, areas) def testIntersection(self): intersection = np_mask_ops.intersection(self.masks1, self.masks2) expected_intersection = np.array( [[8.0, 0.0, 8.0], [0.0, 9.0, 7.0]], dtype=np.float32) self.assertAllClose(intersection, expected_intersection) def testIOU(self): iou = np_mask_ops.iou(self.masks1, self.masks2) expected_iou = np.array( [[1.0, 0.0, 8.0/25.0], [0.0, 9.0 / 16.0, 7.0 / 28.0]], dtype=np.float32) self.assertAllClose(iou, expected_iou) def testIOA(self): ioa21 = np_mask_ops.ioa(self.masks1, self.masks2) expected_ioa21 = np.array([[1.0, 0.0, 8.0/25.0], [0.0, 9.0/15.0, 7.0/25.0]], dtype=np.float32) self.assertAllClose(ioa21, expected_ioa21) if __name__ == '__main__': tf.test.main()
e831296b955c4901d82f0f076e71adc6e4910c97
43dec81f8466acb925a9c4830fe274de9cd1f51e
/backend/home/migrations/0004_auto_20201124_1916.py
31248f325cd782e66c1f5f5fd515ded3f3aaa5f0
[]
no_license
crowdbotics-apps/lizz-11-10-mob2-22484
6cd2af76c92fb2f2c9047b70017b9e0c5adfbcdb
61ab9254234534b8384ec2b64451cf5ba7d587de
refs/heads/master
2023-02-03T02:07:07.406375
2020-12-22T18:53:04
2020-12-22T18:53:04
311,748,272
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
# Generated by Django 2.2.17 on 2020-11-24 19:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0003_homepage_hello'), ] operations = [ migrations.RemoveField( model_name='homepage', name='body', ), migrations.AddField( model_name='homepage', name='body2', field=models.TextField(blank=True), ), ]
bf29aac5c207544133fb68b24af753d74d7b9796
a3746020cf091f433beb41bde1b62818b4de569b
/new_rule/ticket-rules/oracle/SQL_TO_CHANGE_TYPE.py
1109b2501f3b147a116f67fc69a8723297cb7134
[]
no_license
kk71/sqlaudit
59bab5765a67f56f1dd2f3103812051c5acbbc49
747aaa02573a9c2b46a9e14415d27c0ab8e6158c
refs/heads/master
2023-02-04T18:38:46.125746
2020-06-05T09:49:46
2020-06-05T09:49:46
323,559,338
1
0
null
null
null
null
UTF-8
Python
false
false
436
py
import re def code(rule, entries, **kwargs): sql_plan_qs = kwargs["sql_plan_qs"] plans = sql_plan_qs.filter( filter_predicates=re.compile(r"(SYS_OP|TO_NUMBER|INTERNAL_FUNCTION)", re.I) ) for x in plans: return -rule.weight, [ x.statement_id, x.plan_id, x.object_name, x.the_id, x.cost ] return None, [] code_hole.append(code)
d039f7c165307c3cab9557169d0d0820f5754329
cb4e07b2a5dd30804ce428ec84d9e9f77709fcd5
/swea/D3/10570. 제곱 팰린드롬 수.py
9345f0450146e6efeba20eb3d88dd2e9b24a99b9
[]
no_license
jbsam2/algo_problem
141c17003e88a69afdeea93a723e7f27c4626fdc
18f2cab5a9af2dec57b7fd6f8218badd7de822e4
refs/heads/master
2023-05-18T10:03:00.408300
2021-06-02T10:36:50
2021-06-02T10:36:50
282,104,637
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
def c(num):return 1 if num==int(num**(0.5))**2 else 0 for t in range(int(input())): a,b=map(int,input().split());ans=0 for i in range(a,b+1): p=int(i**(0.5)) if c(i) and str(i)==str(i)[::-1] and str(p)==str(p)[::-1]:ans+=1 print(f'#{t+1}',ans)
5634ebaa358971f4de28704f86ff95ab91d76915
22b93005b05aa4cbfa6287c42e07244b9bf83be9
/mlflow/ml_package_versions.py
b5be01dffc43abf48dbe7e9ab8fc1f6dee71ebf8
[ "Apache-2.0" ]
permissive
dbczumar/mlflow
63ede1f21966def17ded0da9c8e92a207b34b90d
e293a73b510c924cbca50b6337b6d6f9fd9f8f1b
refs/heads/master
2023-08-31T23:40:55.475707
2023-07-15T04:22:18
2023-07-15T04:22:18
138,797,518
1
3
Apache-2.0
2023-08-23T23:01:08
2018-06-26T21:51:19
Python
UTF-8
Python
false
false
5,987
py
# This file was auto-generated by update_ml_package_versions.py. # Please do not edit it manually. _ML_PACKAGE_VERSIONS = { "sklearn": { "package_info": { "pip_release": "scikit-learn" }, "models": { "minimum": "0.22.1", "maximum": "1.3.0" }, "autologging": { "minimum": "0.22.1", "maximum": "1.3.0" } }, "pytorch": { "package_info": { "pip_release": "torch" }, "models": { "minimum": "1.6.0", "maximum": "2.0.1" }, "autologging": { "minimum": "1.6.0", "maximum": "2.0.1" } }, "pytorch-lightning": { "package_info": { "pip_release": "pytorch-lightning" }, "autologging": { "minimum": "1.0.5", "maximum": "2.0.5" } }, "tensorflow": { "package_info": { "pip_release": "tensorflow" }, "models": { "minimum": "2.3.0", "maximum": "2.13.0" }, "autologging": { "minimum": "2.3.0", "maximum": "2.13.0" } }, "xgboost": { "package_info": { "pip_release": "xgboost" }, "models": { "minimum": "1.1.1", "maximum": "1.7.6" }, "autologging": { "minimum": "1.1.1", "maximum": "1.7.6" } }, "lightgbm": { "package_info": { "pip_release": "lightgbm" }, "models": { "minimum": "2.3.1", "maximum": "4.0.0" }, "autologging": { "minimum": "2.3.1", "maximum": "4.0.0" } }, "catboost": { "package_info": { "pip_release": "catboost" }, "models": { "minimum": "0.23.1", "maximum": "1.2" } }, "gluon": { "package_info": { "pip_release": "mxnet" }, "models": { "minimum": "1.5.1", "maximum": "1.9.1" }, "autologging": { "minimum": "1.5.1", "maximum": "1.9.1" } }, "fastai": { "package_info": { "pip_release": "fastai" }, "models": { "minimum": "2.4.1", "maximum": "2.7.12" }, "autologging": { "minimum": "2.4.1", "maximum": "2.7.12" } }, "onnx": { "package_info": { "pip_release": "onnx" }, "models": { "minimum": "1.7.0", "maximum": "1.14.0" } }, "spacy": { "package_info": { "pip_release": "spacy" }, "models": { "minimum": "2.2.4", "maximum": "3.6.0" } }, "statsmodels": { "package_info": { "pip_release": "statsmodels" }, "models": { "minimum": "0.11.1", "maximum": "0.14.0" }, "autologging": { "minimum": "0.11.1", "maximum": "0.14.0" } }, "spark": { "package_info": { "pip_release": "pyspark" }, "models": { "minimum": "3.0.0", "maximum": "3.4.1" }, "autologging": { "minimum": "3.0.0", "maximum": "3.4.1" } }, "mleap": { "package_info": { "pip_release": "mleap" }, "models": { "minimum": "0.18.0", "maximum": "0.23.0" } }, "prophet": { "package_info": { "pip_release": "prophet" }, "models": { "minimum": "1.0.1", "maximum": "1.1.4" } }, "pmdarima": { "package_info": { "pip_release": "pmdarima" }, "models": { "minimum": "1.8.0", "maximum": "2.0.3" } }, "diviner": { "package_info": { "pip_release": "diviner" }, "models": { "minimum": "0.1.0", "maximum": "0.1.1" } }, "h2o": { "package_info": { "pip_release": "h2o" }, "models": { "minimum": "3.40.0.1", "maximum": "3.42.0.1" } }, "shap": { "package_info": { "pip_release": "shap" }, "models": { "minimum": "0.41.0", "maximum": "0.42.0" } }, "paddle": { "package_info": { "pip_release": "paddlepaddle" }, "models": { "minimum": "2.4.1", "maximum": "2.5.0" } }, "transformers": { "package_info": { "pip_release": "transformers" }, "models": { "minimum": "4.25.1", "maximum": "4.30.2" }, "autologging": { "minimum": "4.25.1", "maximum": "4.30.2" } }, "openai": { "package_info": { "pip_release": "openai" }, "models": { "minimum": "0.27.2", "maximum": "0.27.8" } }, "langchain": { "package_info": { "pip_release": "langchain" }, "models": { "minimum": "0.0.169", "maximum": "0.0.232" } }, "sentence_transformers": { "package_info": { "pip_release": "sentence-transformers" }, "models": { "minimum": "2.2.2", "maximum": "2.2.2" } }, "johnsnowlabs": { "package_info": { "pip_release": "johnsnowlabs" }, "models": { "minimum": "4.4.6", "maximum": "5.0.0" } } }
615af758d32d2c1268ec81eea7298e8b8de7ef55
576cc83449e10fd3f98281970c46016ea7a5aea2
/demo01/demo04-resize.py
7fe6931b6b3219fd8402aa1089ff29d446980c6a
[]
no_license
HotView/PycharmProjects
215ab9edd341e3293daebcf86d97537f8cd28d75
61393fe5ba781a8c1216a5cbe7e0d06149a10190
refs/heads/master
2020-06-02T07:41:53.608742
2019-11-13T08:31:57
2019-11-13T08:31:57
191,085,178
3
2
null
null
null
null
UTF-8
Python
false
false
334
py
from matplotlib import pyplot as plt import numpy as np import cv2 img = cv2.imread("book01-.jpg") img_cut = img[1000:,:] img_resize = cv2.resize(img_cut,(600,600),interpolation=cv2.INTER_CUBIC) #cv2.imwrite("book01resize-.jpg",img_resize) cv2.imshow("origin",img) cv2.imshow("reszie",img_resize) cv2.waitKey() cv2.destroyAllWindows()
2df9bb0f75e0aa888664ef8141109604c4fb80ce
2f557f60fc609c03fbb42badf2c4f41ef2e60227
/DQMServices/Components/python/test/test_good_online_run_cfg.py
b7f1fc42e7ebfd7330bb6887869aa39da91b28bf
[ "Apache-2.0" ]
permissive
CMS-TMTT/cmssw
91d70fc40a7110832a2ceb2dc08c15b5a299bd3b
80cb3a25c0d63594fe6455b837f7c3cbe3cf42d7
refs/heads/TMTT_1060
2020-03-24T07:49:39.440996
2020-03-04T17:21:36
2020-03-04T17:21:36
142,576,342
3
5
Apache-2.0
2019-12-05T21:16:34
2018-07-27T12:48:13
C++
UTF-8
Python
false
false
470
py
import FWCore.ParameterSet.Config as cms process = cms.Process("TestDQMFileSaver") process.load("DQMServices.Components.test.test_good_online_basic_cfi") process.load("DQMServices.Components.test.MessageLogger_cfi") process.load("DQMServices.Components.DQMEnvironment_cfi") process.load("DQMServices.Core.DQM_cfg") process.dqmmodules = cms.Path(process.dqmEnv+process.dqmSaver) process.dqmSaver.convention = 'Online' process.dqmEnv.subSystemFolder = 'TestSystem'
9137f27ec4c8f050a41a19a14e938c78fb1cd0e9
3dd43ff0dab514a39f611487ab421256b3b5b13b
/scripts/client/gui/Scaleform/daapi/view/lobby/hangar/carousels/ranked/carousel_data_provider.py
048d8fce65aedbf46febbd1c5c6f3b312913163c
[]
no_license
kusaku/wotscripts
04ab289e3fec134e290355ecf81cf703af189f72
a89c2f825d3c7dade7bc5163a6c04e7f5bab587d
refs/heads/master
2023-08-20T00:17:36.852522
2018-02-26T14:53:44
2018-02-26T14:53:44
80,610,354
1
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
# Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/hangar/carousels/ranked/carousel_data_provider.py from gui.Scaleform.daapi.view.lobby.hangar.carousels.basic.carousel_data_provider import HangarCarouselDataProvider from gui.Scaleform.locale.RANKED_BATTLES import RANKED_BATTLES from gui.shared.formatters import text_styles from gui.shared.gui_items.Vehicle import Vehicle from gui.shared.utils.functions import makeTooltip class RankedCarouselDataProvider(HangarCarouselDataProvider): @classmethod def _vehicleComparisonKey(cls, vehicle): result = [vehicle.getCustomState() == Vehicle.VEHICLE_STATE.UNSUITABLE_TO_QUEUE] result.extend(super(RankedCarouselDataProvider, cls)._vehicleComparisonKey(vehicle)) return result def _buildVehicle(self, vehicle): result = super(RankedCarouselDataProvider, self)._buildVehicle(vehicle) state, _ = vehicle.getState() if state == Vehicle.VEHICLE_STATE.UNSUITABLE_TO_QUEUE: result['lockedTooltip'] = makeTooltip(RANKED_BATTLES.RANKEDBATTLESCAROUSEL_LOCKEDTOOLTIP_HEADER, RANKED_BATTLES.RANKEDBATTLESCAROUSEL_LOCKEDTOOLTIP_BODY) result['clickEnabled'] = True return result
a0adb96467c96dad6dd4c36cc41e36636bc0d50b
b2625b1a1ef4a3a255ae88b6d77c425727187eeb
/.dev_scripts/github/update_copyright.py
74320198598ed850edad4f2404605c54f1b4e17f
[ "Apache-2.0" ]
permissive
wojiazaiyugang/mmpose
acd4083d142c5c4c2dd87e6be94a5891a42d2797
8947b39294b037e8272c6cf2f53ae4aa7d22193b
refs/heads/master
2023-09-01T23:45:43.857657
2021-11-23T03:03:02
2021-11-23T03:03:02
356,105,054
0
0
Apache-2.0
2021-09-16T06:36:44
2021-04-09T02:08:50
Python
UTF-8
Python
false
false
2,928
py
#!/usr/bin/env python # Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import re import sys HEADER = 'Copyright (c) OpenMMLab. All rights reserved.\n' HEADER_KEYWORDS = {'Copyright', 'License'} def contains_header(lines, comment_symbol, max_header_lines): for line in lines[:max_header_lines]: if line.startswith('#!'): # skip shebang line continue elif re.match(f'{comment_symbol}.*({"|".join(HEADER_KEYWORDS)})', line): return True return False def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( 'files', type=str, nargs='*', help='Files to add copyright header. If an empty list is given, ' 'search target files according to "--src", "--exclude" and ' '"--suffixes"') parser.add_argument( '--src', type=str, default=None, help='Root path to search files.') parser.add_argument( '--exclude', type=str, default=None, help='Path to exclude in search.') parser.add_argument( '--suffixes', type=str, nargs='+', default=['.py', '.c', '.cpp', '.cu', '.sh'], help='Only files with one of the given suffixes will be searched.') parser.add_argument( '--max-header-lines', type=int, default=5, help='Only checkout copyright information in the first several lines ' 'of a file.') args = parser.parse_args() return args def main(): args = parse_args() file_list = [] if args.files: file_list = args.files else: assert args.src is not None for root, _, files in os.walk(args.src): if args.exclude and osp.realpath(root).startswith( osp.realpath(args.exclude)): continue for file in files: if osp.splitext(file)[1] in args.suffixes: file_list.append(osp.join(root, file)) modified = False for file in file_list: suffix = osp.splitext(file)[1] if suffix in {'.py', '.sh'}: comment_symbol = '# ' elif suffix in {'.c', '.cpp', '.cu'}: comment_symbol = '// ' else: raise ValueError(f'Comment symbol of files with suffix {suffix} ' 'is unspecified.') with open(file, 'r') as f: lines = f.readlines() if not contains_header(lines, comment_symbol, args.max_header_lines): if lines and lines[0].startswith('#!'): lines.insert(1, comment_symbol + HEADER) else: lines.insert(0, comment_symbol + HEADER) with open(file, 'w') as f: f.writelines(lines) modified = True return int(modified) if __name__ == '__main__': sys.exit(main())
3dc4fcb72c535bd5635233808c4b20178c15fe20
c2849586a8f376cf96fcbdc1c7e5bce6522398ca
/ch39/interfacetracer.py
033591fd7329b9bc42e2527b180411b9735c1e96
[]
no_license
freebz/Learning-Python
0559d7691517b4acb0228d1cc76de3e93915fb27
7f577edb6249f4bbcac4f590908b385192dbf308
refs/heads/master
2020-09-23T01:48:24.009383
2019-12-02T12:26:40
2019-12-02T12:26:40
225,371,155
0
0
null
null
null
null
UTF-8
Python
false
false
2,033
py
def Tracer(aClass): # @ 데코레이션할 때 class Wrapper: def __init__(self, *args, **kargs): # 인스턴스 생성할 때 self.fetches = 0 self.wrapped = aClass(*args, **kargs) # 유효 범위 이름 사용 def __getattr__(self, attrname): print('Trace: ' + attrname) # 자신의 속성을 제외한 모든 것을 잡아냄 self.fetches += 1 return getattr(self.wrapped, attrname) # 내장 객체에 위임 return Wrapper if __name__ == '__main__': @Tracer class Spam: # Spam = Tracer(Spam) def display(self): # Spam은 Wrapper에 재결합 print('Spam!' * 8) @Tracer class Person: # Person = Tracer(Person) def __init__(self, name, hours, rate): # Wrapper는 Person을 기억 self.name = name self.hours = hours self.rate = rate def pay(self): # 클래스 외부에서의 접근을 추적 return self.hours * self.rate # 메서드 내부 접근은 추적되지 않음 food = Spam() # Wrapper() 실행 food.display() # __getattr__ 실행 print([food.fetches]) bob = Person('Bob', 40, 50) # bob이 실제로 Wrapper임 print(bob.name) # Wrapper는 Person을 내장함 print(bob.pay()) print('') sue = Person('Sue', rate=100, hours=60) # sue는 다른 Wrapper임 print(sue.name) # sue는 다른 Person을 가짐 print(sue.pay()) print(bob.name) # bob은 다른 상태를 가짐 print(bob.pay()) print([bob.fetches, sue.fetches]) # Wrapper 속성은 추적되지 않음
2b5dca7db0f58ee69e6318f2c079d184c1943643
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/python2.7/UserList.py
873357b193bd393a87bea69e9ef416b43aad7303
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
68
py
/home/action/.parts/packages/python2/2.7.6/lib/python2.7/UserList.py
76884be84b73cffc74cbf5157ec534df610216e9
6a5ce7d885db1baa5a9d43b26f0ae623a5ef0f01
/azure-mgmt-web/azure/mgmt/web/models/web_site_management_client_enums.py
fcb642b79aa76c81394fb900d1b60c22ede03d1c
[ "Apache-2.0" ]
permissive
JammyBrand82/azure-sdk-for-python
333af194ff9143ec77f49203a5a71f15c399f278
c65e189cd41bd3464556b17bfcdee1303867996c
refs/heads/master
2021-01-17T18:31:10.661151
2016-03-17T21:03:08
2016-03-17T21:03:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,118
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class DomainStatus(Enum): active = "Active" awaiting = "Awaiting" cancelled = "Cancelled" confiscated = "Confiscated" disabled = "Disabled" excluded = "Excluded" expired = "Expired" failed = "Failed" held = "Held" locked = "Locked" parked = "Parked" pending = "Pending" reserved = "Reserved" reverted = "Reverted" suspended = "Suspended" transferred = "Transferred" unknown = "Unknown" unlocked = "Unlocked" unparked = "Unparked" updated = "Updated" json_converter_failed = "JsonConverterFailed" class ProvisioningState(Enum): succeeded = "Succeeded" failed = "Failed" canceled = "Canceled" in_progress = "InProgress" deleting = "Deleting" class AzureResourceType(Enum): website = "Website" traffic_manager = "TrafficManager" class CustomHostNameDnsRecordType(Enum): cname = "CName" a = "A" class HostNameType(Enum): verified = "Verified" managed = "Managed" class StatusOptions(Enum): ready = "Ready" pending = "Pending" class UsageState(Enum): normal = "Normal" exceeded = "Exceeded" class SiteAvailabilityState(Enum): normal = "Normal" limited = "Limited" disaster_recovery_mode = "DisasterRecoveryMode" class SslState(Enum): disabled = "Disabled" sni_enabled = "SniEnabled" ip_based_enabled = "IpBasedEnabled" class DatabaseServerType(Enum): my_sql = "MySql" sql_server = "SQLServer" sql_azure = "SQLAzure" custom = "Custom" class ManagedPipelineMode(Enum): integrated = "Integrated" classic = "Classic" class SiteLoadBalancing(Enum): weighted_round_robin = "WeightedRoundRobin" least_requests = "LeastRequests" least_response_time = "LeastResponseTime" weighted_total_traffic = "WeightedTotalTraffic" request_hash = "RequestHash" class AutoHealActionType(Enum): recycle = "Recycle" log_event = "LogEvent" custom_action = "CustomAction" class UnauthenticatedClientAction(Enum): redirect_to_login_page = "RedirectToLoginPage" allow_anonymous = "AllowAnonymous" class BuiltInAuthenticationProvider(Enum): azure_active_directory = "AzureActiveDirectory" facebook = "Facebook" google = "Google" microsoft_account = "MicrosoftAccount" twitter = "Twitter" class HostingEnvironmentStatus(Enum): preparing = "Preparing" ready = "Ready" scaling = "Scaling" deleting = "Deleting" class InternalLoadBalancingMode(Enum): none = "None" web = "Web" publishing = "Publishing" class ComputeModeOptions(Enum): shared = "Shared" dedicated = "Dedicated" class WorkerSizeOptions(Enum): default = "Default" small = "Small" medium = "Medium" large = "Large" class AccessControlEntryAction(Enum): permit = "Permit" deny = "Deny" class ManagedHostingEnvironmentStatus(Enum): preparing = "Preparing" ready = "Ready" deleting = "Deleting" class DomainType(Enum): regular = "Regular" soft_deleted = "SoftDeleted" class NotificationLevel(Enum): critical = "Critical" warning = "Warning" information = "Information" non_urgent_suggestion = "NonUrgentSuggestion" class Channels(Enum): notification = "Notification" api = "Api" email = "Email" all = "All" class CloneAbilityResult(Enum): cloneable = "Cloneable" partially_cloneable = "PartiallyCloneable" not_cloneable = "NotCloneable" class LogLevel(Enum): off = "Off" verbose = "Verbose" information = "Information" warning = "Warning" error = "Error" class FrequencyUnit(Enum): day = "Day" hour = "Hour" class BackupRestoreOperationType(Enum): default = "Default" clone = "Clone" relocation = "Relocation" class BackupItemStatus(Enum): in_progress = "InProgress" failed = "Failed" succeeded = "Succeeded" timed_out = "TimedOut" created = "Created" skipped = "Skipped" partially_succeeded = "PartiallySucceeded" delete_in_progress = "DeleteInProgress" delete_failed = "DeleteFailed" deleted = "Deleted"
8d0a0b0dec63a2130b9ada6f938cfbddbaeeb4a8
10920b11a22a20f9a7f63157818327f3c4e41888
/jibby_opencv/Object Recognition/two.py
10e258ca8fedf5c5342ee07ae449937c19975227
[]
no_license
dsall/computerv
e331b3d025c8cec0119b789107d1fef18d08f02a
40671d618c31ad9d9b20fc902a218a8e281098bc
refs/heads/master
2021-09-15T09:33:08.495580
2018-05-29T23:41:42
2018-05-29T23:41:42
135,363,332
0
0
null
null
null
null
UTF-8
Python
false
false
1,172
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 5 00:23:15 2018 @author: djibrilsall """ import numpy as np import cv2 # multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') cap = cv2.VideoCapture(1) while 1: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) cv2.imshow('img',img) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() cv2.destroyAllWindows()
f01c9f4cb6e578f40f952d27a77dbdab38e9b181
0b5ab7349485da4ea40ca343bc50f4cab74c917c
/week09/tutorial/snippets/urls.py
2dcc6decba1a0c26454d9a83c0f3e37011525c86
[]
no_license
workherd/Python006-006
9bf2782ccda037de9af98eb7daa87fd1edeb3caf
7aa176c3cf4effd015802b550edfb70f859e94d9
refs/heads/main
2023-04-29T14:37:43.545376
2021-05-16T04:13:08
2021-05-16T04:13:08
323,247,475
1
0
null
2020-12-21T06:13:42
2020-12-21T06:13:42
null
UTF-8
Python
false
false
2,227
py
from django.urls import path, include from rest_framework.routers import DefaultRouter from snippets import views # Create a router and register our viewsets with it. router = DefaultRouter() router.register(r'snippets', views.SnippetViewSet) router.register(r'users', views.UserViewSet) # The API URLs are now determined automatically by the router. urlpatterns = [ path('', include(router.urls)), path('aaa/', views.api_root01), ] # from rest_framework.urlpatterns import format_suffix_patterns # from snippets.views import SnippetViewSet, UserViewSet, api_root # from rest_framework import renderers # snippet_list = SnippetViewSet.as_view({ # 'get': 'list', # 'post': 'create' # }) # snippet_detail = SnippetViewSet.as_view({ # 'get': 'retrieve', # 'put': 'update', # 'patch': 'partial_update', # 'delete': 'destroy' # }) # snippet_highlight = SnippetViewSet.as_view({ # 'get': 'highlight' # }, renderer_classes=[renderers.StaticHTMLRenderer]) # user_list = UserViewSet.as_view({ # 'get': 'list' # }) # user_detail = UserViewSet.as_view({ # 'get': 'retrieve' # }) # urlpatterns = [ # path('', views.api_root), # path('snippets/', # views.SnippetList.as_view(), # name='snippet-list'), # path('snippets/<int:pk>/', # views.SnippetDetail.as_view(), # name='snippet-detail'), # path('snippets/<int:pk>/highlight/', # views.SnippetHighlight.as_view(), # name='snippet-highlight'), # path('users/', # views.UserList.as_view(), # name='user-list'), # path('users/<int:pk>/', # views.UserDetail.as_view(), # name='user-detail') # ] # # 能够处理诸如http://example.com/api/items/4.json之类的URL # urlpatterns = format_suffix_patterns(urlpatterns) # urlpatterns = format_suffix_patterns([ # path('', api_root), # path('snippets/', snippet_list, name='snippet-list'), # path('snippets/<int:pk>/', snippet_detail, name='snippet-detail'), # path('snippets/<int:pk>/highlight/', snippet_highlight, name='snippet-highlight'), # path('users/', user_list, name='user-list'), # path('users/<int:pk>/', user_detail, name='user-detail') # ])
27686a5573582bba05fe1c037ddb797cb55f040b
3af6960c805e9903eb27c09d8bc7ebc77f5928fe
/problems/0216_Combination_Sum_III/solution.py
e332183e542f99042b9b4fe0e2ddce1af912459b
[]
no_license
romain-li/leetcode
b3c8d9d4473eebd039af16ad2d4d99abc2768bdd
5e82b69bd041c2c168d75cb9179a8cbd7bf0173e
refs/heads/master
2020-06-04T20:05:03.592558
2015-06-08T18:05:03
2015-06-08T18:05:03
27,431,664
2
1
null
2015-06-08T18:05:04
2014-12-02T12:31:58
Python
UTF-8
Python
false
false
139
py
class Solution: # @param {integer} k # @param {integer} n # @return {integer[][]} def combinationSum3(self, k, n):
0ef3a3afbb0a5ad1f607d1f4fa56b8207a2c978d
857a9e588a04b40a66b6ca115063cb67ef0427ea
/timemachines/skaters/glu/glusimple.py
45f7a1894d2d9f43387ba47e6408b68c40771bb8
[ "MIT" ]
permissive
rambam613/timemachines
81b88357498871f77efed0faf9c25b4c408d822c
cd243d4606b4ad9c1d419988fc6c04b0964af2e6
refs/heads/main
2023-07-03T07:06:24.421114
2021-08-07T17:42:40
2021-08-07T17:42:40
393,793,785
1
0
MIT
2021-08-07T21:13:35
2021-08-07T21:13:34
null
UTF-8
Python
false
false
1,092
py
from timemachines.skatertools.utilities.conventions import Y_TYPE, A_TYPE, R_TYPE, E_TYPE, T_TYPE, wrap from typing import Any from timemachines.skatertools.components.parade import parade from timemachines.skatertools.utilities.nonemath import nonecast from timemachines.skatertools.ensembling.ensemblefactory import precision_weighted_ensemble_factory def glu_simple(y :Y_TYPE, s, k:int, a:A_TYPE =None, t:T_TYPE =None, e:E_TYPE =None, r:R_TYPE=None): """ Rolling gluon """ assert r is not None y0 = wrap(y)[0] if not s.get('p'): s = {'p':{}, 'x':y0, 'rho':r} assert 0 <= s['rho'] <= 1, 'Expecting rho=r to be between 0 and 1' else: assert abs(r-s['rho'])<1e-6,'rho=r is immutable' if y0 is None: return None, s, None else: s['x'] = s['rho']*s['x'] + (1-s['rho'])*y0 # Make me better ! x = [s['x']]*k _we_ignore_bias, x_std, s['p'] = parade(p=s['p'], x=x, y=y0) x_std_fallback = nonecast(x_std,fill_value=1.0) return [s['x']] * k, x_std_fallback, s
4d4fa4d95d6b0e2d819c40e250b7941f2d805da8
7ac506e9890ff3295541bdd00bc3c40a13b23826
/sr/imsitu_scorer.py
122bbe01b33b7def418dc9ba864a9d0f3ba9df79
[]
no_license
thilinicooray/CARN
dd64cde17e5c9f0e68e94b340c9271ae2a79f58a
7f5e85c98d3178a3fe9b9f1b5a93a39ace01ccc5
refs/heads/master
2020-07-25T05:42:38.988848
2020-04-07T03:43:01
2020-04-07T03:43:01
208,182,591
0
0
null
null
null
null
UTF-8
Python
false
false
18,433
py
import torch import json class imsitu_scorer(): def __init__(self, encoder,topk, nref, write_to_file=False): self.score_cards = [] self.topk = topk self.nref = nref self.encoder = encoder self.hico_pred = None self.hico_target = None self.write_to_file = write_to_file if self.write_to_file: self.role_dict = {} self.value_all_dict = {} self.role_pred = {} self.vall_all_correct = {} self.fail_verb_role = {} self.all_verb_role = {} self.fail_agent = {} self.pass_list = [] self.all_res = {} self.correct_roles = {} self.topk_issue = {} def clear(self): self.score_cards = {} def add_point_noun(self, gt_verbs, labels_predict, gt_labels): batch_size = gt_verbs.size()[0] for i in range(batch_size): gt_verb = gt_verbs[i] label_pred = labels_predict[i] gt_label = gt_labels[i] gt_v = gt_verb role_set = self.encoder.get_role_ids(gt_v) new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} score_card = new_card verb_found = False gt_role_count = self.encoder.get_role_count(gt_v) gt_role_list = self.encoder.verb2_role_dict[self.encoder.verb_list[gt_v]] score_card["n_value"] += gt_role_count all_found = True pred_list = [] for k in range(gt_role_count): label_id = torch.max(label_pred[k],0)[1] pred_list.append(label_id.item()) found = False for r in range(0,self.nref): gt_label_id = gt_label[r][k] if label_id == gt_label_id: found = True break if not found: all_found = False #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 #both verb and all values found score_card["value*"] /= gt_role_count score_card["value"] /= gt_role_count if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 self.score_cards.append(new_card) def add_point_noun_single_role(self, labels_predict, gt_labels): batch_size = gt_labels.size()[0] for i in range(batch_size): label_pred = labels_predict[i] gt_label = gt_labels[i] new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} score_card = new_card verb_found = False score_card["n_value"] += 1 all_found = True label_id = torch.max(label_pred,0)[1] found = False for r in range(0,self.nref): gt_label_id = gt_label[r] if label_id == gt_label_id: found = True break if not found: all_found = False #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 score_card["value*"] /= 1 score_card["value"] /= 1 if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 self.score_cards.append(new_card) def add_point_noun_log(self, img_id, gt_verbs, labels_predict, gt_labels): batch_size = gt_verbs.size()[0] for i in range(batch_size): imgid = img_id[i] gt_verb = gt_verbs[i] label_pred = labels_predict[i] gt_label = gt_labels[i] gt_v = gt_verb new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} score_card = new_card verb_found = False gt_role_count = self.encoder.get_role_count(gt_v) gt_role_list = self.encoder.verb2_role_dict[self.encoder.verb_list[gt_v]] score_card["n_value"] += gt_role_count if self.write_to_file: self.all_res[imgid] = {'gtv': self.encoder.verb_list[gt_v], 'role_pred':{}, 'all_correct': True} all_found = True pred_situ = [] for k in range(0, gt_role_count): if self.write_to_file: all_val = self.encoder.verb_list[gt_v] + '_' + gt_role_list[k] if all_val not in self.all_verb_role: self.all_verb_role[all_val] = 1 else: self.all_verb_role[all_val] += 1 label_id = torch.max(label_pred[k],0)[1] found = False pred_situ.append({gt_role_list[k] : self.encoder.all_words[self.encoder.labelid2nlword[self.encoder.label_list[label_id]]]}) if self.write_to_file: self.all_res[imgid]['role_pred'][gt_role_list[k]] = {'pred' : self.encoder.all_words[self.encoder.labelid2nlword[self.encoder.label_list[label_id]]],'is_correct':False} for r in range(0,self.nref): gt_label_id = gt_label[r][k] ################################# if self.write_to_file: # logginf predictions for analysis role = gt_role_list[k] gt_label_name = self.encoder.label_list[gt_label_id] pred_label_name = self.encoder.label_list[label_id] if role not in self.role_dict: self.role_dict[role] = {gt_label_name : [pred_label_name]} elif gt_label_name not in self.role_dict[role]: self.role_dict[role][gt_label_name] = [pred_label_name] else: self.role_dict[role][gt_label_name].append(pred_label_name) ####################################################################### if label_id == gt_label_id: if self.write_to_file: self.all_res[imgid]['role_pred'][gt_role_list[k]]['is_correct'] = True found = True break if not found: all_found = False if self.write_to_file: self.all_res[imgid]['all_correct'] = False fail_val = self.encoder.verb_list[gt_v] + '_' + gt_role_list[k] if fail_val not in self.fail_verb_role: self.fail_verb_role[fail_val] = 1 else: self.fail_verb_role[fail_val] += 1 #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 #both verb and all values found score_card["value*"] /= gt_role_count score_card["value"] /= gt_role_count if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 if self.write_to_file: self.vall_all_correct[imgid] = pred_situ else: if self.write_to_file: self.value_all_dict[imgid] = pred_situ self.score_cards.append(new_card) def add_point_noun_log_topk(self, img_id, gt_verbs, labels_predict, gt_labels): batch_size = gt_verbs.size()[0] for i in range(batch_size): imgid = img_id[i] gt_verb = gt_verbs[i] label_pred = labels_predict[i] gt_label = gt_labels[i] gt_v = gt_verb new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} score_card = new_card verb_found = False gt_role_count = self.encoder.get_role_count(gt_v) gt_role_list = self.encoder.verb2_role_dict[self.encoder.verb_list[gt_v]] score_card["n_value"] += gt_role_count if self.write_to_file: self.all_res[imgid] = {'gtv': self.encoder.verb_list[gt_v], 'role_pred':[], 'all_correct': True} all_found = True pred_situ = [] for k in range(0, gt_role_count): if self.write_to_file: all_val = self.encoder.verb_list[gt_v] + '_' + gt_role_list[k] if all_val not in self.all_verb_role: self.all_verb_role[all_val] = 1 else: self.all_verb_role[all_val] += 1 #label_id = torch.max(label_pred[k],0)[1] sorted_idx = torch.sort(label_pred[k], 0, True)[1] found = False for r in range(0,self.nref): gt_label_id = gt_label[r][k] role_found = (torch.sum(sorted_idx[0:5] == gt_label_id) == 1) if role_found: found = True break if not found: all_found = False #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 #both verb and all values found score_card["value*"] /= gt_role_count score_card["value"] /= gt_role_count if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 if self.write_to_file: self.vall_all_correct[imgid] = pred_situ else: if self.write_to_file: self.value_all_dict[imgid] = pred_situ self.score_cards.append(new_card) def add_point_verb_only_eval(self, img_id, verb_predict, gt_verbs): #encoded predictions should be batch x verbs x values #assumes the are the same order as the references #encoded reference should be batch x 1+ references*roles,values (sorted) batch_size = verb_predict.size()[0] for i in range(batch_size): verb_pred = verb_predict[i] gt_verb = gt_verbs[i] current_id = img_id[i] #print('check sizes:', verb_pred.size(), gt_verb.size(), label_pred.size(), gt_label.size()) sorted_idx = torch.sort(verb_pred, 0, True)[1] gt_v = gt_verb new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} if self.write_to_file: self.all_res[current_id] = {'gtv': self.encoder.verb_list[gt_verb.item()], 'predicted' : self.encoder.verb_list[sorted_idx[0]]} score_card = new_card verb_found = (torch.sum(sorted_idx[0:self.topk] == gt_v) == 1) if verb_found: score_card["verb"] += 1 if self.write_to_file: self.pass_list.append(current_id) self.all_res[current_id]['found'] = 0 self.score_cards.append(score_card) def add_point_both(self, verb_predict, gt_verbs, labels_predict, gt_labels): batch_size = gt_verbs.size()[0] for i in range(batch_size): verb_pred = verb_predict[i] gt_verb = gt_verbs[i] label_pred = labels_predict[i] gt_label = gt_labels[i] gt_v = gt_verb role_set = self.encoder.get_role_ids(gt_v) new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} score_card = new_card sorted_idx = torch.sort(verb_pred, 0, True)[1] verb_found = (torch.sum(sorted_idx[0:self.topk] == gt_v) == 1) if verb_found: score_card["verb"] += 1 #verb_found = False gt_role_count = self.encoder.get_role_count(gt_v) gt_role_list = self.encoder.verb2_role_dict[self.encoder.verb_list[gt_v]] score_card["n_value"] += gt_role_count all_found = True pred_list = [] for k in range(gt_role_count): label_id = torch.max(label_pred[k],0)[1] pred_list.append(label_id.item()) found = False for r in range(0,self.nref): gt_label_id = gt_label[r][k] if label_id == gt_label_id: found = True break if not found: all_found = False #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 #both verb and all values found score_card["value*"] /= gt_role_count score_card["value"] /= gt_role_count if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 self.score_cards.append(new_card) def add_point_eval5_log_sorted(self, img_id, verb_predict, gt_verbs, labels_predict, gt_labels): #encoded predictions should be batch x verbs x values #assumes the are the same order as the references #encoded reference should be batch x 1+ references*roles,values (sorted) batch_size = verb_predict.size()[0] for i in range(batch_size): current_id = img_id[i] verb_pred = verb_predict[i] gt_verb = gt_verbs[i] label_pred = labels_predict[i] gt_label = gt_labels[i] sorted_idx = verb_pred gt_v = gt_verb new_card = {"verb":0.0, "value":0.0, "value*":0.0, "n_value":0.0, "value-all":0.0, "value-all*":0.0} if self.write_to_file: self.all_res[current_id] = {'gtv': gt_verb.item(),'found':-1, 'verbs':sorted_idx[:5].tolist(), 'pred_role_labels':[]} score_card = new_card verb_found = (torch.sum(sorted_idx[0:self.topk] == gt_v) == 1) if verb_found: score_card["verb"] += 1 if self.write_to_file: self.all_res[current_id]['found'] = 0 if verb_found and self.topk == 5: gt_idx = 0 for cur_idx in range(0,self.topk): if sorted_idx[cur_idx] == gt_v: gt_idx = cur_idx break label_pred = label_pred[self.encoder.max_role_count*gt_idx : self.encoder.max_role_count*(gt_idx+1)] else: label_pred = label_pred[:self.encoder.max_role_count] gt_role_count = self.encoder.get_role_count(gt_v) gt_role_list = self.encoder.verb2_role_dict[self.encoder.verb_list[gt_v]] score_card["n_value"] += gt_role_count all_found = True for k in range(0, gt_role_count): label_id = label_pred[k] found = False for r in range(0,self.nref): gt_label_id = gt_label[r][k] if label_id == gt_label_id: found = True break if not found: all_found = False #both verb and at least one val found if found and verb_found: score_card["value"] += 1 #at least one val found if found: score_card["value*"] += 1 #both verb and all values found score_card["value*"] /= gt_role_count score_card["value"] /= gt_role_count if all_found and verb_found: score_card["value-all"] += 1 #all values found if all_found: score_card["value-all*"] += 1 self.score_cards.append(score_card) def get_average_results(self): #average across score cards for the entire frame. rv = {"verb":0, "value":0 , "value*":0 , "value-all":0, "value-all*":0} total_len = len(self.score_cards) for card in self.score_cards: rv["verb"] += card["verb"] rv["value-all"] += card["value-all"] rv["value"] += card["value"] rv["verb"] /= total_len rv["value-all"] /= total_len #rv["value-all*"] /= total_len rv["value"] /= total_len #rv["value*"] /= total_len return rv def get_average_results_both(self): #average across score cards for the entire frame. rv = {"verb":0, "value":0 , "value*":0 , "value-all":0, "value-all*":0} total_len = len(self.score_cards) for card in self.score_cards: rv["verb"] += card["verb"] rv["value-all*"] += card["value-all*"] rv["value*"] += card["value*"] rv["verb"] /= total_len rv["value-all*"] /= total_len rv["value*"] /= total_len return rv def get_average_results_nouns(self, groups = []): #average across score cards for nouns only. rv = {"verb":0, "value":0 , "value*":0 , "value-all":0, "value-all*":0} total_len = len(self.score_cards) for card in self.score_cards: rv["value-all*"] += card["value-all*"] rv["value*"] += card["value*"] rv["value-all*"] /= total_len rv["value*"] /= total_len return rv
4febe8ed7ba4ae0ec44e162ddac26a0a35201331
e73761fd861010f4dd2e2be09507d86bd905f4f5
/scud/main/migrations/0002_sessionstouser.py
78e5450bb8e12f64aa092230e4fccdbb5aac8446
[]
no_license
BakdauletBolatE/rfid-system
a57ca2fbb3518f9df6683bf899be1d9455e55c2a
24f023cc801dc0d24dedb4e7ecd27091c439c068
refs/heads/main
2023-03-13T05:14:37.043832
2021-02-22T06:12:31
2021-02-22T06:12:31
341,097,047
0
0
null
null
null
null
UTF-8
Python
false
false
825
py
# Generated by Django 3.1.6 on 2021-02-18 17:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.CreateModel( name='SessionsToUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Member_ID', models.CharField(max_length=255, verbose_name='Мембер ID')), ('allowed_members', models.BooleanField(default=False, verbose_name='Авторизован ли')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='main.users')), ], ), ]
de41905ee008a0a8004b2f583f9b16d0ab569823
95e9ec4b3b0d86063da53a0e62e138cf794cce3a
/python/Django/20190523/test01/test01/settings.py
199c6f60e7fba053de9340c0fb1a68759f7ad78a
[]
no_license
wjl626nice/1902
c3d350d91925a01628c9402cbceb32ebf812e43c
5a1a6dd59cdd903563389fa7c73a283e8657d731
refs/heads/master
2023-01-05T23:51:47.667675
2019-08-19T06:42:09
2019-08-19T06:42:09
180,686,044
4
1
null
2023-01-04T07:35:24
2019-04-11T00:46:43
Python
UTF-8
Python
false
false
4,057
py
""" Django settings for test01 project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) # 项目根目录 # __file__ 文件的路径 # os.path.abspath 获取文件的绝对路径 # os.path.dirname 获取文件所在的目录 BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # BASE_DIR = /Users/qingyun/1902/python/Django/20190523/test01 # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'wv+64-c5u)4iyx)v3jl*ix&3j=gu1+*&)djfido(7^nus$l21n' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # 路由 uri 和函数对应的模块 ROOT_URLCONF = 'test01.urls' # 设置模板配置 TEMPLATES = [ { # 模板引擎,jinja2 'BACKEND': 'django.template.backends.django.DjangoTemplates', # 配置模板的位置 os.path.join 可以让咱们写的程序跨平台,不同操作系统目录分隔符不一样。 'DIRS': [os.path.join(BASE_DIR, 'templates')] # window 目录:C:\\abc\\ab\\aa # linux 目录:/abc/ab/aa # os.path.join(BASE_DIR, 'templates') 结果:/Users/qingyun/1902/python/Django/20190523/test01/templates , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test01.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases # 数据库的配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' # 设置中国的时区 PRC 中华人民共和国 TIME_ZONE = 'PRC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ # css js image等静态文件保存的路径 别名。相当于STATICFILES_DIRS的别名 STATIC_URL = '/static/' # Django项目中所有的css js image 都会从该配置目录中查找对应文件 STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'statics') ]
a4f1eb5a73bb211daab14e6aac02273d7a07b9c7
093b9569be9d1c4e5daf92efbebc38f680917b2d
/.history/base/models_20210829142734.py
4c98bfd01c1d244a8078fbe1666e967e01960773
[]
no_license
Justin-Panagos/todoList
95b1e97ff71af1b0be58e7f8937d726a687cea4d
10539219b59fcea00f8b19a406db3d4c3f4d289e
refs/heads/master
2023-08-04T13:27:13.309769
2021-08-29T14:06:43
2021-08-29T14:06:43
400,827,602
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Task(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, null = True, blank=True) STATUS= [(,'P1'),(1,'P2'),(2,'P3'),] priority = models.CharField(max_length=5, choices=STATUS,default='',) title = models.Te(max_length=200) description = models.TextField(null=True, blank=True) duedate = models.DateField(null=True, blank=True) complete = models.BooleanField(default=False) create =models.DateTimeField(auto_now_add=True) def __str__(self): return self.title class Meta: ordering =['complete']
aca6239bb1902abcf69c2fa4ab44b62d104cc3ee
78f43f8bd07ae0fc91738a63cd7bbca08ae26066
/leetcode/interval/least_interval.py
b5418240bed39df4bf2a1b61baecf70e18b8cf95
[]
no_license
hanrick2000/LeetcodePy
2f3a841f696005e8f0bf4cd33fe586f97173731f
b24fb0e7403606127d26f91ff86ddf8d2b071318
refs/heads/master
2022-04-14T01:34:05.044542
2020-04-12T06:11:29
2020-04-12T06:11:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
class Solution(object): def leastInterval(self, tasks, n): """ :type tasks: List[str] :type n: int :rtype: int """ LETTER_NUM = 26 freqs = [0] * LETTER_NUM for c in tasks: freqs[ord(c) - ord('A')] += 1 freqs.sort() # in-place sort ret = 0 while freqs[-1] > 0: i = 0 while i <= n: if freqs[-1] == 0: break # use most frequently appeared letter by turn if i < LETTER_NUM and freqs[LETTER_NUM - i - 1] > 0: freqs[LETTER_NUM - i - 1] -= 1 ret += 1 i += 1 freqs.sort() return ret
434f2a4e5d4c626ba4768123e191fc6823872f15
c9f1cc3a6715917d658a6e525b7c2d35b0380f9f
/Non_canonical_introns/Analisys/Join_final_tables_seq.py
cf7f3dde6d7fa321b0e71a9c47f123d3081f1b1d
[]
no_license
geparada/my_src
4f84887130b985e84aad3d0d35e85911087d9b4f
8d64f7ef51e1f74303ca88beb0ee964f546d8301
refs/heads/master
2021-01-17T01:50:50.414690
2017-03-14T10:01:50
2017-03-14T10:01:50
20,638,727
0
0
null
null
null
null
UTF-8
Python
false
false
3,188
py
import sys import csv def main(hg19, SJ_hg19, hg19_reads_seq_tags, GM12878, SJ_GM12878_paternal, SJ_GM12878_maternal, GM12878_reads_seq_tags_paternal, GM12878_reads_seq_tags_maternal, TOTAL_final_table): csv.field_size_limit(1000000000) reader1 = csv.reader(open(hg19), delimiter = ' ') reader2 = csv.reader(open(SJ_hg19), delimiter = ' ') reader3 = csv.reader(open(hg19_reads_seq_tags), delimiter = ' ') reader4 = csv.reader(open(GM12878), delimiter = ' ') reader5 = csv.reader(open(SJ_GM12878_paternal), delimiter = ' ') reader6 = csv.reader(open(SJ_GM12878_maternal), delimiter = ' ') reader7 = csv.reader(open(GM12878_reads_seq_tags_paternal), delimiter = ' ') reader8 = csv.reader(open(GM12878_reads_seq_tags_maternal), delimiter = ' ') reader9 = csv.reader(open(TOTAL_final_table), delimiter = ' ') hg19_intron_reads = {} GM12878_intron_reads = {} reads_seq = {} for row in reader1: intron = row[0] read = row[10].split(",")[:5] hg19_intron_reads[intron] = read for row in reader2: read = row[0] dn = row[7] seq = row[14] if dn!="GTAG" and dn!="GCAG" and dn!="ATAC": reads_seq[read] = seq for row in reader3: read = row[0] seq = row[1] reads_seq[read] = seq for row in reader4: intron = row[0] read = row[10].split(",")[:5] GM12878_intron_reads[intron] = read for row in reader5: read = row[0] dn = row[7] seq = row[14] if dn!="GTAG" and dn!="GCAG" and dn!="ATAC": reads_seq[read] = seq for row in reader6: read = row[0] dn = row[7] seq = row[14] if dn!="GTAG" and dn!="GCAG" and dn!="ATAC": reads_seq[read] = seq for row in reader7: read = row[0] seq = row[1] reads_seq[read] = seq for row in reader8: read = row[0] seq = row[1] reads_seq[read] = seq for row in reader9: intron = row[0] dn = row[6] hg19 = int(row[9]) GM12878 = int(row[10]) if dn!="GTAG" and dn!="GCAG" and dn!="ATAC": seqs_hg19 = [] seqs_GM12878 = [] try: reads_hg19 = hg19_intron_reads[intron] for read in reads_hg19: seq = reads_seq[read] seqs_hg19.append(seq) except KeyError: pass try: reads_GM12878 = GM12878_intron_reads[intron] for read in reads_GM12878: seq = reads_seq[read] seqs_GM12878.append(seq) except KeyError: pass if seqs_hg19 == []: seqs_hg19 = "0" if seqs_GM12878 == []: seqs_GM12878 = "0" print " ".join(row), ",".join(seqs_hg19), ",".join(seqs_GM12878) #python ~/my_src/Analisys/Join_final_tables_seq.py ../hg19/ALL/introns.final_table.hg19.fixed.tags ../hg19/ALL/SJ.introns.blat1.TOTAL tags/hg19/TOTAL.tags.filter.final ../GM12878/NA12878_Joel_Rozowsky/STRANDED/TOTAL/introns.final_table.hg19.fixed.tags ../GM12878/NA12878_Joel_Rozowsky/STRANDED/TOTAL_paternal/ALL/SJ.introns.blat1.TOTAL ../GM12878/NA12878_Joel_Rozowsky/STRANDED/TOTAL_maternal/ALL/SJ.introns.blat1.TOTAL tags/GM12878/paternal/TOTAL.tags.filter.final tags/GM12878/maternal/TOTAL.tags.filter.final TOTAL_introns.final_table.tags if __name__ == '__main__': main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], sys.argv[6], sys.argv[7], sys.argv[8], sys.argv[9])
[ "geparada@omics.(none)" ]
geparada@omics.(none)
3fdea1ed28d82a773de42cb6859f5ce3fa0ceefd
aab2f6f5f673bf16424d592142ba3af414423adb
/kafkaconsumer.py
5b972353177ac3b7eef951403c753ffb888eaab2
[]
no_license
ashishjsharda/KafkaUsingPython
75f46ba4df25f264e853615c8fde73ed59aa620e
cbd9aff94b9d896736e14befcb42dfa64efc1562
refs/heads/master
2020-12-19T11:07:08.891269
2020-01-23T03:22:39
2020-01-23T03:22:39
235,715,462
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
''' Created on Jan 22, 2020 @author: ashish ''' from kafka import KafkaConsumer consumer=KafkaConsumer('sample') for message in consumer: print(message)
0d7c3cc6491bf482131fbbb00556b7368044d75d
391d648132c1a05e7da575205eef89a7208a892a
/compare.py
311165b27e102d591a5f36b47d2bd374e0a1c43b
[]
no_license
michaelbateman/DemographicInference
c3ceaf69f8b554f3973473607d6b5201cca423f9
b1e2529b1ce0710f82d2867d08588ae4a6c72bb2
refs/heads/master
2021-01-10T06:28:43.698581
2015-10-06T18:25:45
2015-10-06T18:25:45
43,770,029
0
0
null
null
null
null
UTF-8
Python
false
false
2,089
py
import sys import matplotlib.pyplot as plt import numpy as np import subprocess import time import pylab from scipy import stats num_haps = int(sys.argv[1]) num_times = int(sys.argv[2]) def readfire(s): # reads the output of a fire file and # returns the time vector and the population vector # input file should have two columns: first column is time in generations # second column is population time = [] pop = [] with open(s, 'r') as input_file: throwaway = input_file.readline() while throwaway.strip() != 'START HERE': throwaway = input_file.readline() for line in input_file: temp = line.strip() L = temp.split() if 'START' in temp: print 'START' time = [] pop = [] elif 'f' in temp: print temp elif len(L) >= 2: #print 'no' #print temp temp = line.strip() a,b = temp.split() time.append(float(a)) pop.append(float(b)) #with open(s, 'r') as input_file: #throwaway = input_file.readline() #while throwaway.strip() != 'START HERE': #throwaway = input_file.readline() #for line in input_file: #print 'hello' #temp = line.strip() #a,b = temp.split() #time.append(float(a)) #pop.append(float(b)) #print a, b print 'readfire is done' return [time, pop] pop_list = ['GBR', 'CEU','YRI', 'FIN', 'PEL', 'ESN'] IC_list = ['FIN'] for pop in pop_list: for start in IC_list: root = pop + '.' + str(num_haps/2) + '.composite.max.binned' t = root + '.fire' print pop, 'starting from flat 50000 ', [T, P] = readfire(t) #print t #t = pop + '.fire' ic_file = start + '.ic.txt' t = root +'.'+ ic_file + '.fire' print pop, 'starting from', start [T, P] = readfire(t) #plt.plot(np.multiply(28,T) ,P, '-o', label = pop ) #plt.yscale('log') #plt.xlabel('years') #plt.title('re-started from ' + start +' curve') #fig = plt.figure() #fig.set_yscale('log') #plt.legend(loc = 'lower right') #title = 'ic.' + start + '.' +str(num_haps/2) #for pop in pop_list: #title+= '.' + pop #pylab.savefig(title + '.png', bbox_inches='tight') #plt.show()
c8ef2e7798953aa2231f6ae172d6891809e33e43
c155d27bf74255b8315603518c5ab76d0638dfea
/uv/serpens/profiles/3sigma_cn_3.py
f6f8c1ebbcce36349089a536d0cded0167ff74b4
[]
no_license
amirocha/doktorat
406c2e4476a5a22c863c37eb5f581a369800e936
22c90228f6bca9d0b116c73457b7e86ae4462167
refs/heads/master
2021-07-05T14:18:26.324886
2020-08-03T19:28:50
2020-08-03T19:28:50
152,316,686
0
0
null
2020-04-03T20:22:37
2018-10-09T20:28:29
Python
UTF-8
Python
false
false
7,857
py
#-*-coding: utf-8-*- ''' DESCRIPTION: This script displays the averaged and resampled spectrum (0.5 km/s) DESCRIPTION: for a given region on map and plots 3*RMS and 1*RMS levels DESCRIPTION: and shows X ranges for flux calculation The averaged region is consistent with HCN 1-0 beam size after convolution (27.8"), because it's the biggest for this molecule. We used the same beam size for other molecules. ''' #!/usr/bin/python3.5 # name the output file psname = 'smm8_cn.eps' # import packages from numpy import * from pylab import * import matplotlib.pyplot as plt from matplotlib import * import pandas as pd # ------------------------------------------------ # ------------------------------------------------ # find the x ranges (in km/s), which are above 3RMS # level - for flux integration of line rms = 0.122 # rms taken from CLASS rms_3 = 3*rms rms_2 = 2*rms name = 'serpens_cn10_smm8.txt' # read the spectrum spec_df = pd.read_table(name, delim_whitespace=True, header=None) ### 3 SIGMA ### 3 SIGMA ### 3 SIGMA ### 3 SIGMA ### 3 SIGMA ### # left (x1) and right (x2) ranges in which we are looking for minima x1_ran_df = spec_df[(spec_df[0] > -20) & (spec_df[0] < -15)] #change ranges!! x2_ran_df = spec_df[(spec_df[0] > -15) & (spec_df[0] < -10)] #change ranges!! # SERPENS HCN10: -5.0 - -0.0 and 10. - 20. # for both X ranges take the column with flux and calculate abs(yi - 3rms) y1_i_rms_3 = (x1_ran_df[1]-rms_3).abs() y2_i_rms_3 = (x2_ran_df[1]-rms_3).abs() # join two dataframes, reset and drop old index # then change the names of column indexes from 011 to 123 final1_df = pd.concat([x1_ran_df, y1_i_rms_3], axis = 1).reset_index(drop=True) final1_df.columns = [1,2,3] final2_df = pd.concat([x2_ran_df, y2_i_rms_3], axis = 1).reset_index(drop=True) final2_df.columns = [1,2,3] # find the index of item which contains row with the minimum min1 = final1_df[3].idxmin(axis=1, skipna=True) min2 = final2_df[3].idxmin(axis=1, skipna=True) # print the x value of minimum (in km/s) print ('X1 (3s) =', final1_df[1].ix[min1].round(1)) print ('X2 (3s) =', final2_df[1].ix[min2].round(1)) # ------------------------------------------------ # ------------------------------------------------ ### 1 SIGMA ### 1 SIGMA ### 1 SIGMA ### 1 SIGMA ### 1 SIGMA ### # left (x3) and right (x4) ranges in which we are looking for minima x3_ran_df = spec_df[(spec_df[0] > 5.0) & (spec_df[0] < 8.0)] #change ranges!! x4_ran_df = spec_df[(spec_df[0] > 8.0) & (spec_df[0] < 12.1)] #change ranges!! # NGC1333 HCN10: -30.0 - -20.0 and -5. - -1. # for both X ranges take the column with flux and calculate abs(yi - 3rms) y3_i_rms = (x3_ran_df[1]-rms_2).abs() y4_i_rms = (x4_ran_df[1]-rms_2).abs() # join two dataframes, reset and drop old index # then change the names of column indexes from 011 to 123 final3_df = pd.concat([x3_ran_df, y3_i_rms], axis = 1).reset_index(drop=True) final3_df.columns = [1,2,3] final4_df = pd.concat([x4_ran_df, y4_i_rms], axis = 1).reset_index(drop=True) final4_df.columns = [1,2,3] # find the index of item which contains row with the minimum min3 = final3_df[3].idxmin(axis=1, skipna=True) min4 = final4_df[3].idxmin(axis=1, skipna=True) # print the x value of minimum (in km/s) print ('X3 (2s) =', final3_df[1].ix[min3].round(1)) print ('X4 (2s) =', final4_df[1].ix[min4].round(1)) # ------------------------------------------------ # ------------------------------------------------ # ------------------------------------------------ # NOW PLOT THE SPEC WITH 3*RMS LEVEL AND X RANGES # # ------------------------------------------------ fig = plt.figure(figsize = (9,7), dpi = 400) #plt.rcParams["font.family"] = "Times New Roman" rc('font', **{'family':'serif', 'serif':['Times New Roman']}) params = {'backend': 'pdf', #'axes.labelsize': 12, #'text.fontsize': 12, #'legend.fontsize': 12, #'xtick.labelsize': 7, #'ytick.labelsize': 7, # The comm. below determines whether you use LaTeX # for all text in matplotlib (you probably don't want # to turn this on, but may) 'text.usetex': False, # four comm. below (math) determines what is used for math rendering 'mathtext.rm': 'serif', 'mathtext.it': 'serif:italic', 'mathtext.bf': 'serif:bold', 'mathtext.fontset': 'custom', #'figure.figsize': fig_size, 'axes.unicode_minus': True} matplotlib.rcParams.update(params) """ READ INPUT DATA ########## SERPENS, HCN 1-0, center of ave.: 163.5 -142.7, range: 149.6 177.4 -156.6 -128.8 ########## """ v_hcn10, Tmb_hcn10 = loadtxt(name, usecols=(0, 1), unpack=True, skiprows=1) ax = fig.add_subplot(111) """ CREATE A PLOT """ ax.set_xlabel(r'$\mathrm{V_{LSR}\;[km/s]}$', fontsize = 9) ax.set_ylabel(r'$\mathrm{T_{MB}\;[K]}$', fontsize = 9) # major x ticks every 20, minor ticks every 10 # major y ticks every 1, minor ticks every 0.5 major_ticks_x = np.arange(-80, 50, 5) minor_ticks_x = np.arange(-80, 50, 1) major_ticks_y = np.arange(0.0, 1.2, 0.2) minor_ticks_y = np.arange(0.0, 1.2, 0.1) ax.set_xticks(major_ticks_x) ax.set_xticks(minor_ticks_x, minor=True) ax.set_yticks(major_ticks_y) ax.set_yticks(minor_ticks_y, minor=True) # Set the tick labels font for label in (ax.get_xticklabels() + ax.get_yticklabels()): # label.set_fontname('Arial') label.set_fontsize(7) """ ########## SERPENS, HCN 1-0, center of ave.: 163.5 -142.7, range: 149.6 177.4 -156.6 -128.8 ########## """ ax.plot(v_hcn10, Tmb_hcn10, color = 'black', linewidth=1.0, linestyle = '-') plt.axhline(y=rms_3, xmin = -60.0, xmax = 40.0, color = 'red', linewidth=1.5, linestyle = '-') plt.axhline(y=rms, xmin = -60.0, xmax = 40.0, color = 'green', linewidth=1.5, linestyle = '-') # THE ANNOTATIONS ON A GRAPH #--------------------------- # alpha - transparency, fc - a color of inner part of arrow, ec - a color of an edge of arrow # headwidth - the size of arrow, frac - a lenght of the head of arrow # shrink - fraction of total length to ‘shrink’ from both ends #ax.annotate(r'$\mathrm{RMS\;=%.5f\;K;3*RMS\;=%.3f\;K}$'%(rms,rms_3), fontsize=10, xy=(-38.0, 1.13), textcoords='data') #ax.annotate(r'$\mathrm{set\;window\;-30\;40}$', fontsize=10, xy=(-38.0, 1.1), textcoords='data') #ax.annotate(r'$\mathrm{X_{1}\;(3s)\;=%.1f \;km/s}$'%(final1_df[1].ix[min1].round(1)), fontsize=10, xy=(-38.0, 1.07), textcoords='data') #ax.annotate(r'$\mathrm{X_{2}\;(3s)\;=%.1f \;km/s}$'%(final2_df[1].ix[min2].round(1)), fontsize=10, xy=(-38.0, 1.04), textcoords='data') #ax.annotate(r'$\mathrm{X_{3}\;(1s)\;=%.1f \;km/s}$'%(final3_df[1].ix[min3].round(1)), fontsize=10, xy=(-38.0, 1.01), textcoords='data') #ax.annotate(r'$\mathrm{X_{4}\;(1s)\;=%.1f \;km/s}$'%(final4_df[1].ix[min4].round(1)), fontsize=10, xy=(-38.0, 0.98), textcoords='data') # plot the vertical lines for x = min1 and x = min2 plt.axvline(x=final1_df[1].ix[min1].round(1), color='red', linestyle='--') plt.axvline(x=final2_df[1].ix[min2].round(1), color='red', linestyle='--') # plot the vertical lines for x = min3 and x = min4 plt.axvline(x=final3_df[1].ix[min3].round(1), color='green', linestyle='--') plt.axvline(x=final4_df[1].ix[min4].round(1), color='green', linestyle='--') # the upper and lower axis limits on a LEFT GRAPH ax.set_xlim([-80.0, 30.0]) ax.set_ylim([-0.1, 1.2]) # close and save file savefig(psname, format = 'eps', bbox_inches = 'tight') clf()
31012c36efe1adf3e32c6e9600220d6f672511ec
027f52cbbd4e9ccd52b73dcf9ed523137ec78815
/python_language/Day_Base_Code/Day_07/lambda_function_2nd.py
b0b5df2ea3a317f5bc58267771c1524dd860305c
[]
no_license
Jade2290/bigdata_class
0c851440852857ee44496b7112db580cf9b60d57
380ad58d56ea4fbcea81f78f9648b1edf27e0554
refs/heads/master
2022-04-11T05:05:25.429853
2020-03-27T14:30:36
2020-03-27T14:30:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,789
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 14 11:48:50 2019 @author: sundooedu """ list1=list(range(0,10)) list2=list(filter(lambda x:x%2==0,list1)) list2 list3=list(filter(lambda x:x%2==0 and x%3==0,list1)) def factorial(s): factor=1 for i in list(range(1,s+1)): factor *= i return factor factorial(5) list4=list(filter(lambda x: x*3 if x%3==0, list1)) from functools import reduce factorial=reduce(lambda x,y:x*y,lst5) lst5=list(range(9,0,-1)) def factorial(x,y): return x*y reduce(factorial,lst5) #%% bool(0) # '0'만 False 나머지 숫자들은 전부 True (음수도 True) #%% bool([]) # list가 비어있으면 False #%% bool('') # 문자가 비어있으면 False #%% # Q.01 def is_odd(number): if number%2==0: answer="짝수" else: answer="홀수" print(answer) def is_odds(number): answer=(lambda x : "짝수" if (x%2==0) else "홀수")(number) print(answer) is_odds(5) #%% # Q.02 def input_avg(*number): a=(lambda x: x+=i for i in number) input_avg(input('숫자를 입력하세요 : ')) #%% # Q.03 input1 = int(input("첫번째 숫자를 입력하세요:")) input2 = int(input("두번째 숫자를 입력하세요:")) total = input1 + input2 print("두 수의 합은 %s 입니다" % total) #%% # Q.04 #print("you" "need" "python") #print("you"+"need"+"python") print("you", "need", "python") #print("".join(["you", "need", "python"])) #%% # Q.05 with open("test.txt", 'w') as f1: f1.write("Life is too short") with open("test.txt", 'r') as f2: line= f2.read() print(line) #%% # Q.06 from datetime import datetime def writeDiary(): fstr='%Y%m%d' today_str=datetime.strftime(datetime.now(),fstr) file_name= today_str +'.diary' lst=[] #total_line='' #입력된 모든줄 while True: line = input('내용을 입력하세요:') if(line == '!quit'):break #total_line += line + "\n" lst.append(line+'\n') with open(file_name,'w',encoding='utf-8') as f: #f.write(total_line) f.writelines(lst) #f.close() print('오늘자 파일'+'('+ file_name +')'+'생성완료') def readDiary(): filename = input('일기파일명 : ') with open(filename,'r',encoding='utf-8') as fp: #data=fp.read() data=fp.readlines() print("파일내용 : ",data) #fp.close() def errorDiary(): print('미존재 메뉴번호') menu='읽기 1 쓰기 2 : ' menu_bunho=input(menu) if menu_bunho == '1' : readDiary() elif menu_bunho == '2' : writeDiary() else: errorDiary()
fbc6323c971bfc05403d49f31975f0959e172e9e
ae8a1d8f23ed08fcc14ecc9a6651cd738790ac00
/tests/func/test_fetchdata.py
a4f6b1013135688f78c6a4ae54adee32aeb7ddcd
[]
no_license
murakami10/crawling-naist-lecture
438ef9a6311630178641d2534b553e6ba20a8b5b
7e4345983f452f20e9ba03495c42b2e922cb56f7
refs/heads/main
2023-05-19T10:45:34.863849
2021-06-08T09:17:47
2021-06-08T09:17:47
367,010,980
0
0
null
2021-06-08T09:17:48
2021-05-13T10:16:51
Python
UTF-8
Python
false
false
4,696
py
import threading import time from http.server import HTTPServer, SimpleHTTPRequestHandler import pytest import requests from src.crawling_naist_syllabus.fetch import FetchData from src.crawling_naist_syllabus.structure import Lecture @pytest.fixture(scope="session") def fetch_and_save_syllabus_html(tmpdir_factory): """ naistのシラバスを取得し、一時ディレクトリに保存する :return syllabus.htmlが存在するdirectoryを返す """ syllabus_directory = tmpdir_factory.mktemp("syllabus_directory") response = requests.get("https://syllabus.naist.jp/subjects/preview_list") syllabus_file = syllabus_directory.join("syllabus.html") syllabus_file.write(response.content) # 実際のサイトにスクレイピングするため、アクセスの間隔をあける time.sleep(1) response = requests.get("https://syllabus.naist.jp/subjects/preview_detail/666") detail_file = syllabus_directory.join("detail_1.html") detail_file.write(response.content) return syllabus_file.dirpath() @pytest.fixture(scope="session") def start_http_server(): """ 現在のdirectory配下を公開する """ host, port = ("127.0.0.1", 8888) url = f"http://{host}:{port}/tests/index.html" server = HTTPServer((host, port), SimpleHTTPRequestHandler) thred = threading.Thread(target=server.serve_forever) thred.start() yield url server.shutdown() thred.join() @pytest.fixture(scope="session") def start_http_server_with_specific_directory(fetch_and_save_syllabus_html): """ 指定したdirectoryをlocalhostで公開する :param fetch_and_save_syllabus_html 公開するdirectory """ class HandlerWithDirectory(SimpleHTTPRequestHandler): def __init__(self, *args, **kwargs): """ 指定したdirectoryを公開 """ super().__init__(*args, directory=fetch_and_save_syllabus_html, **kwargs) host, port = ("127.0.0.1", 8889) server = HTTPServer((host, port), HandlerWithDirectory) url = f"http://{host}:{port}/" # スレッドの起動 thred = threading.Thread(target=server.serve_forever) thred.start() yield url server.shutdown() thred.join() @pytest.fixture() def fetch_data(start_http_server_with_specific_directory): """ FetchDataのインスタンスを返す """ fd = FetchData(start_http_server_with_specific_directory + "syllabus.html") return fd @pytest.mark.parametrize( "invalid_url", [ "http://127.0.0.1:8888/not_existed_index.html", "httpaaaa", ], ) def test_init_with_invalid_url(start_http_server, invalid_url): with pytest.raises(Exception): FetchData(invalid_url) def test_init_with_valid_url(start_http_server): try: _ = FetchData(start_http_server) except Exception: pytest.fail("Exception raised") general_lecture = Lecture( name="技術と倫理", url="http://127.0.0.1:8889/subjects/preview_detail/644", ) introduction_lecture = Lecture( name="情報理工学序論", url="http://127.0.0.1:8889/subjects/preview_detail/662", ) basic_lecture = Lecture( name="情報科学基礎Ⅰ", url="http://127.0.0.1:8889/subjects/preview_detail/791", ) specialized_lecture = Lecture( name="ソフトウェア工学", url="http://127.0.0.1:8889/subjects/preview_detail/688", ) @pytest.mark.parametrize( "lecture_type, contained_data", [ (FetchData.LECTURE_TYPE_GENERAL, general_lecture), (FetchData.LECTURE_TYPE_INTRODUCTION, introduction_lecture), (FetchData.LECTURE_TYPE_BASIC, basic_lecture), (FetchData.LECTURE_TYPE_SPECIALIZED, specialized_lecture), ], ) def test_scrape_name_and_url(fetch_data, lecture_type, contained_data): name_and_url_list = fetch_data.scrape_name_and_url(lecture_type) assert contained_data in name_and_url_list def test_scrape_name_and_url_key_error(fetch_data): with pytest.raises(KeyError): fetch_data.scrape_name_and_url("key error") def dummy_init(self, url): pass def test_scrape_detail_of_lecture( start_http_server_with_specific_directory, monkeypatch ): monkeypatch.setattr(FetchData, "__init__", dummy_init) fetch_data = FetchData("url") detail_url = start_http_server_with_specific_directory + "/detail_1.html" lecture = Lecture(name="高性能計算基盤", url=detail_url) lecture = fetch_data.scrape_detail(lecture) assert 1 == lecture.details[0].number assert "4/22 [2]" == lecture.details[0].date assert "スーパスカラとVLIW (日本語教科書8章)" == lecture.details[0].theme
809258fbebe5a4d58326b515a82977274a9a9cba
0bcd128368e2de959ca648960ffd7944067fcf27
/infra/bots/assets/protoc/create.py
e363cc5068230dadf10809450d4bff5a04c530b9
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google/skia
ac6e39179cd33cf0c8a46d29c1a70bf78b4d74ee
bf6b239838d3eb56562fffd0856f4047867ae771
refs/heads/main
2023-08-31T21:03:04.620734
2023-08-31T18:24:15
2023-08-31T20:20:26
15,773,229
8,064
1,487
BSD-3-Clause
2023-09-11T13:42:07
2014-01-09T17:09:57
C++
UTF-8
Python
false
false
768
py
#!/usr/bin/env python # # Copyright 2017 Google Inc. # # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Create the asset.""" import argparse import subprocess ZIP_URL = ('https://github.com/google/protobuf/releases/download/v3.3.0/' 'protoc-3.3.0-linux-x86_64.zip') def create_asset(target_dir): """Create the asset.""" local_zip = '/tmp/protoc.zip' subprocess.check_call(['curl', '-L', ZIP_URL, '-o', local_zip]) subprocess.check_call(['unzip', local_zip, '-d', target_dir]) def main(): parser = argparse.ArgumentParser() parser.add_argument('--target_dir', '-t', required=True) args = parser.parse_args() create_asset(args.target_dir) if __name__ == '__main__': main()
154bb8fc3ec4ecff7d4664dd60a36d89d9e9c287
7bd5ca970fbbe4a3ed0c7dadcf43ba8681a737f3
/atcoder/abc/abc034/d.py
39cae32435a6c76186d919f097f04446d71aa1b3
[]
no_license
roiti46/Contest
c0c35478cd80f675965d10b1a371e44084f9b6ee
c4b850d76796c5388d2e0d2234f90dc8acfaadfa
refs/heads/master
2021-01-17T13:23:30.551754
2017-12-10T13:06:42
2017-12-10T13:06:42
27,001,893
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
# -*- coding: utf-8 -*- import sys,copy,math,heapq,itertools as it,fractions,re,bisect,collections as coll N, K = map(int, raw_input().split()) w, p = [], [] for i in xrange(N): wi, pi = map(int, raw_input().split()) w.append(wi) p.append(pi) wp = [[1.0*p[i]/w[i],i] for i in xrange(N)] wp = sorted(wp, key = lambda x: x[0], reverse = True) W, S = 0, 0 for i in xrange(K): W += w[i] S += p[i] * w[i] print 1.0*S/W
874a61ad25e6f5e3fb13dfdfa02f814cebfc737b
631847fafbcfa07bf33eee078d9b59b464ce4b50
/optimization/second_sdEta_mjj_optimization/lumi_and_kin_plots/four_cuts_lum3000/Output/Histos/MadAnalysis5job_0/selection_8.py
63a5075a9c405cdb0b8114324ea73fc498ae8bb1
[ "MIT" ]
permissive
sheride/axion_pheno
7b46aeb7cc562800d78edd9048504fdbc0f5fa42
7d3fc08f5ae5b17a3500eba19a2e43f87f076ce5
refs/heads/master
2021-07-01T08:47:59.981416
2021-02-03T23:03:50
2021-02-03T23:03:50
219,261,636
0
0
null
null
null
null
UTF-8
Python
false
false
18,794
py
def selection_8(): # Library import import numpy import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Library version matplotlib_version = matplotlib.__version__ numpy_version = numpy.__version__ # Histo binning xBinning = numpy.linspace(0.0,1000.0,101,endpoint=True) # Creating data sequence: middle of each bin xData = numpy.array([5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,105.0,115.0,125.0,135.0,145.0,155.0,165.0,175.0,185.0,195.0,205.0,215.0,225.0,235.0,245.0,255.0,265.0,275.0,285.0,295.0,305.0,315.0,325.0,335.0,345.0,355.0,365.0,375.0,385.0,395.0,405.0,415.0,425.0,435.0,445.0,455.0,465.0,475.0,485.0,495.0,505.0,515.0,525.0,535.0,545.0,555.0,565.0,575.0,585.0,595.0,605.0,615.0,625.0,635.0,645.0,655.0,665.0,675.0,685.0,695.0,705.0,715.0,725.0,735.0,745.0,755.0,765.0,775.0,785.0,795.0,805.0,815.0,825.0,835.0,845.0,855.0,865.0,875.0,885.0,895.0,905.0,915.0,925.0,935.0,945.0,955.0,965.0,975.0,985.0,995.0]) # Creating weights for histo: y9_MET_0 y9_MET_0_weights = numpy.array([57524.5413546,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_1 y9_MET_1_weights = numpy.array([3.6450972,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_2 y9_MET_2_weights = numpy.array([87.3487344433,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_3 y9_MET_3_weights = numpy.array([453.367357303,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_4 y9_MET_4_weights = numpy.array([332.76568512,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_5 y9_MET_5_weights = numpy.array([122.98208589,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_6 y9_MET_6_weights = numpy.array([46.7250859722,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_7 y9_MET_7_weights = numpy.array([4.11676537943,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_8 y9_MET_8_weights = numpy.array([0.435869195774,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_9 y9_MET_9_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_10 y9_MET_10_weights = numpy.array([236.977528846,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_11 y9_MET_11_weights = numpy.array([1433.83800865,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_12 y9_MET_12_weights = numpy.array([920.034752885,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_13 y9_MET_13_weights = numpy.array([269.944953921,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_14 y9_MET_14_weights = numpy.array([110.337675,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_15 y9_MET_15_weights = numpy.array([7.8827508417,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y9_MET_16 y9_MET_16_weights = numpy.array([0.731272517308,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating a new Canvas fig = plt.figure(figsize=(12,6),dpi=80) frame = gridspec.GridSpec(1,1,right=0.7) pad = fig.add_subplot(frame[0]) # Creating a new Stack pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights+y9_MET_14_weights+y9_MET_15_weights+y9_MET_16_weights,\ label="$bg\_dip\_1600\_inf$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#e5e5e5", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights+y9_MET_14_weights+y9_MET_15_weights,\ label="$bg\_dip\_1200\_1600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#f2f2f2", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights+y9_MET_14_weights,\ label="$bg\_dip\_800\_1200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ccc6aa", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights,\ label="$bg\_dip\_600\_800$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ccc6aa", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights,\ label="$bg\_dip\_400\_600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#c1bfa8", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights,\ label="$bg\_dip\_200\_400$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#bab5a3", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights,\ label="$bg\_dip\_100\_200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#b2a596", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights,\ label="$bg\_dip\_0\_100$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#b7a39b", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights,\ label="$bg\_vbf\_1600\_inf$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ad998c", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights,\ label="$bg\_vbf\_1200\_1600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#9b8e82", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights,\ label="$bg\_vbf\_800\_1200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#876656", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights,\ label="$bg\_vbf\_600\_800$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#afcec6", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights,\ label="$bg\_vbf\_400\_600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#84c1a3", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights,\ label="$bg\_vbf\_200\_400$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#89a8a0", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights,\ label="$bg\_vbf\_100\_200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#829e8c", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights+y9_MET_1_weights,\ label="$bg\_vbf\_0\_100$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#adbcc6", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y9_MET_0_weights,\ label="$signal$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#7a8e99", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") # Axis plt.rc('text',usetex=False) plt.xlabel(r"\slash{E}_{T} ( GeV ) ",\ fontsize=16,color="black") plt.ylabel(r"$\mathrm{Events}$ $(\mathcal{L}_{\mathrm{int}} = 3000.0\ \mathrm{fb}^{-1})$ ",\ fontsize=16,color="black") # Boundary of y-axis ymax=(y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights+y9_MET_14_weights+y9_MET_15_weights+y9_MET_16_weights).max()*1.1 #ymin=0 # linear scale ymin=min([x for x in (y9_MET_0_weights+y9_MET_1_weights+y9_MET_2_weights+y9_MET_3_weights+y9_MET_4_weights+y9_MET_5_weights+y9_MET_6_weights+y9_MET_7_weights+y9_MET_8_weights+y9_MET_9_weights+y9_MET_10_weights+y9_MET_11_weights+y9_MET_12_weights+y9_MET_13_weights+y9_MET_14_weights+y9_MET_15_weights+y9_MET_16_weights) if x])/100. # log scale plt.gca().set_ylim(ymin,ymax) # Log/Linear scale for X-axis plt.gca().set_xscale("linear") #plt.gca().set_xscale("log",nonposx="clip") # Log/Linear scale for Y-axis #plt.gca().set_yscale("linear") plt.gca().set_yscale("log",nonposy="clip") # Legend plt.legend(bbox_to_anchor=(1.05,1), loc=2, borderaxespad=0.) # Saving the image plt.savefig('../../HTML/MadAnalysis5job_0/selection_8.png') plt.savefig('../../PDF/MadAnalysis5job_0/selection_8.png') plt.savefig('../../DVI/MadAnalysis5job_0/selection_8.eps') # Running! if __name__ == '__main__': selection_8()
5293142db0238e500bc8e112bb402720c56a2c77
99c4d4a6592fded0e8e59652484ab226ac0bd38c
/code/batch-2/vse-naloge-brez-testov/DN5-Z-146.py
9e28868b4bb26ff8e9f3184e25bbf744f394f63e
[]
no_license
benquick123/code-profiling
23e9aa5aecb91753e2f1fecdc3f6d62049a990d5
0d496d649247776d121683d10019ec2a7cba574c
refs/heads/master
2021-10-08T02:53:50.107036
2018-12-06T22:56:38
2018-12-06T22:56:38
126,011,752
0
0
null
null
null
null
UTF-8
Python
false
false
2,661
py
def unikati(s): t = [] for i in s: if i not in t: t.append(i) return t def avtor(tvit): a = tvit.split(": ") return a[0] def vsi_avtorji(tviti): t = [] a = [i.split(': ')[0] for i in tviti] for name in a: if name not in t: t.append(name) return t def izloci_besedo(beseda): s = 0 z = 1 y = "" x = "" g = "" for b in beseda: if b.isalnum() == False: s += 1 elif b.isalnum() == True: break y += beseda[s:] for d in y[::-1]: if d.isalnum() == False: z += 1 elif d.isalnum() == True: break x += beseda[:-z] for i in y: if i in x: g += i return g def se_zacne_z(tvit, c): n = [] a = tvit.split(" ") while (True): for i in a: if i.isalnum() == False and i[0][:1] == c: n.append(i[1:]) for d in n: if d.isalnum() == False: n.append(d[:-1]) n.remove(d) n.sort() return n def zberi_se_zacne_z(tviti, c): n = [] s = [] a = [i.split(' ') for i in tviti] for e in a: for d in e: if d[0] == c: n.append(d[1:]) for k in n: if k.isalnum() == False: n.append(k[:-1]) n.remove(k) for i in n: if i not in s: s.append(i) return s def vse_afne(tviti): n = [] s = [] a = [i.split(" ") for i in tviti] while (True): for tvit in a: for e in tvit: if e[0] == "@": n.append(e[1:]) for d in n: if d.isalnum() == False: n.append(d[:-1]) n.remove(d) for i in n: if i not in s: s.append(i) break return s def vsi_hashtagi(tviti): a = [i.split(" ") for i in tviti] n = [] s = [] while (True): for tvit in a: for e in tvit: if e[0] == "#": n.append(e[1:]) for d in n: if d.isalnum() == False: n.append(d[:-1]) n.remove(d) for i in n: if i not in s: s.append(i) break return s def vse_osebe(tviti): a = vse_afne(tviti) b = vsi_avtorji(tviti) return sorted(unikati(a+b))
7c7c490a043db3015b8dbbef12cc43020cbffd1a
67dd5749b247915ce7a0d3d95964e30503c4aa0c
/dev/getting_indexing_right.py
2c5e5b0945cafd7cd5a79d587531fd4bb7a72c15
[]
no_license
yddream/timspy
d74d78825844b69ed9730373809e3f09ab52060c
034788db83d85dfca01fa31281a6de391ea2fe23
refs/heads/master
2022-11-11T13:10:48.880175
2020-06-23T07:38:21
2020-06-23T07:38:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,074
py
"""How to get the data.""" %load_ext autoreload %autoreload 2 import matplotlib.pyplot as plt import numpy as np import pandas as pd from pathlib import Path from timspy.timspy import TimsDIA from timspy.plot import plot_spectrum from timsdata import TimsData # plt.style.use('dark_background') pd.set_option('display.max_rows', 10) pd.set_option('display.max_columns', 500) # I have my data here p = Path('/home/matteo/Projects/bruker/BrukerMIDIA/MIDIA_CE10_precursor/20190912_HeLa_Bruker_TEN_MIDIA_200ng_CE10_100ms_Slot1-9_1_488.d') # TD = TimsData(p) # timsdata does not support : TD = TimsDIA(p) # timsdata does not support : update_wrapper(TD.iter, TD.iter_arrays) TD.iter.__getitem__ ?TD.iter_arrays TD[1:10,:] next(TD.iter[1:10, 100:500]) list(TD.iter[1:10, 100:500]) TD[1:10, 100:500] TD[1:100, 100] list(TD.iter[1:100, 100]) TD[1:10, 100:500].dtype TD[[10, 20, 30], 100:500] TD[[10, 20, 30], [40, 49]] TD[[10, 20, 30], [41, 60]] TD[:20, [41, 60]] TD[11552,10] TD[11552:,10] # exception will be raised automatically! TD[(i**2 for i in range(1,10)), 10:50]
153eaf590327a3928e4f39de1f87e5e3b6434798
cb0e7d6493b23e870aa625eb362384a10f5ee657
/solutions/python3/0200.py
bf259566a4c651f2576a82f375668f59e4e04686
[]
no_license
sweetpand/LeetCode-1
0acfa603af254a3350d457803449a91322f2d1a7
65f4ef26cb8b2db0b4bf8c42bfdc76421b479f94
refs/heads/master
2022-11-14T07:01:42.502172
2020-07-12T12:25:56
2020-07-12T12:25:56
279,088,171
1
0
null
2020-07-12T15:03:20
2020-07-12T15:03:19
null
UTF-8
Python
false
false
739
py
class Solution: def numIslands(self, grid: List[List[str]]) -> int: def dfs(i: int, j: int) -> None: if i < 0 or j < 0 or i >= len(grid) or j >= len(grid[0]) or visited[i][j] or grid[i][j] == '0': return visited[i][j] = True dfs(i + 1, j) dfs(i - 1, j) dfs(i, j + 1) dfs(i, j - 1) if not grid: return 0 m = len(grid) n = len(grid[0]) ans = 0 visited = [[False] * n for _ in range(m)] for i in range(m): for j in range(n): if not visited[i][j] and grid[i][j] == '1': ans += 1 dfs(i, j) return ans
493149b85cd8f8ac097c095a5d003bc8d8250e26
2f44cecd8fc447c9e2f2d9f55abdea36ebb40cc5
/84.py
ef3779fbdfec69cf469c9f29d365c5b3495f449a
[]
no_license
yuzumei/leetcode
751a234b429131169e3eaf4594ffeb3b94f6ab34
b6708b03c92ec92e89fc7ecf13f1995dee346657
refs/heads/master
2023-07-28T05:48:53.192948
2021-09-11T06:16:07
2021-09-11T06:16:07
365,780,916
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
heights=[6,7,5,2,4,5,9,3] def search(heights): leftstack=[] leftnum=[] for i,num in enumerate(heights): if not leftstack: leftstack.append([num,i]) leftnum.append(-1) else: while leftstack: if num<=leftstack[-1][0]: leftstack.pop() else: break if leftstack: leftnum.append(leftstack[-1][1]) else: leftnum.append(-1) leftstack.append([num,i]) return leftnum leftnum=search(heights) rightnum=search(heights[::-1])[::-1] print(leftnum,rightnum) ans=-1 for i in range(len(heights)): ans=max(ans,(len(heights)-2-rightnum[i]-leftnum[i])*heights[i]) print(ans) '''遍历两次''' def twoside(heights): n=len(heights) if n==0: return 0 leftnum=[0]*n rightnum=[n]*n stack=[] for i,num in enumerate(heights): while stack and num<=stack[-1][1]: temp=stack.pop() rightnum[temp[0]]=i leftnum[i]=stack[-1][0] if stack else -1 stack.append([i,num]) ans=max((rightnum[i]-leftnum[i]-1)*heights[i] for i in range(n)) return ans print(twoside(heights))
0b1ea520891319bd3ec29901ce458c89203a9974
15a992391375efd487b6442daf4e9dd963167379
/tests/runner.py
7356581365e84bd1ae22e702cf2f4a2df1dc1e59
[ "Apache-2.0" ]
permissive
Bala93/MONAI
b0e68e1b513adcd20eab5158d4a0e5c56347a2cd
e0a7eff5066da307a73df9145077f6f1fec7a514
refs/heads/master
2022-08-22T18:01:25.892982
2022-08-12T18:13:53
2022-08-12T18:13:53
259,398,958
2
0
null
2020-04-27T17:09:12
2020-04-27T17:09:11
null
UTF-8
Python
false
false
5,491
py
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import inspect import os import re import sys import time import unittest from monai.utils import PerfContext results: dict = {} class TimeLoggingTestResult(unittest.TextTestResult): """Overload the default results so that we can store the results.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.timed_tests = {} def startTest(self, test): # noqa: N802 """Start timer, print test name, do normal test.""" self.start_time = time.time() name = self.getDescription(test) self.stream.write(f"Starting test: {name}...\n") super().startTest(test) def stopTest(self, test): # noqa: N802 """On test end, get time, print, store and do normal behaviour.""" elapsed = time.time() - self.start_time name = self.getDescription(test) self.stream.write(f"Finished test: {name} ({elapsed:.03}s)\n") if name in results: raise AssertionError("expected all keys to be unique") results[name] = elapsed super().stopTest(test) def print_results(results, discovery_time, thresh, status): # only keep results >= threshold results = dict(filter(lambda x: x[1] > thresh, results.items())) if len(results) == 0: return print(f"\n\n{status}, printing completed times >{thresh}s in ascending order...\n") timings = dict(sorted(results.items(), key=lambda item: item[1])) for r in timings: if timings[r] >= thresh: print(f"{r} ({timings[r]:.03}s)") print(f"test discovery time: {discovery_time:.03}s") print(f"total testing time: {sum(results.values()):.03}s") print("Remember to check above times for any errors!") def parse_args(): parser = argparse.ArgumentParser(description="Runner for MONAI unittests with timing.") parser.add_argument( "-s", action="store", dest="path", default=".", help="Directory to start discovery (default: '%(default)s')" ) parser.add_argument( "-p", action="store", dest="pattern", default="test_*.py", help="Pattern to match tests (default: '%(default)s')", ) parser.add_argument( "-t", "--thresh", dest="thresh", default=10.0, type=float, help="Display tests longer than given threshold (default: %(default)d)", ) parser.add_argument( "-v", "--verbosity", action="store", dest="verbosity", type=int, default=1, help="Verbosity level (default: %(default)d)", ) parser.add_argument("-q", "--quick", action="store_true", dest="quick", default=False, help="Only do quick tests") parser.add_argument( "-f", "--failfast", action="store_true", dest="failfast", default=False, help="Stop testing on first failure" ) args = parser.parse_args() print(f"Running tests in folder: '{args.path}'") if args.pattern: print(f"With file pattern: '{args.pattern}'") return args def get_default_pattern(loader): signature = inspect.signature(loader.discover) params = {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} return params["pattern"] if __name__ == "__main__": # Parse input arguments args = parse_args() # If quick is desired, set environment variable if args.quick: os.environ["QUICKTEST"] = "True" # Get all test names (optionally from some path with some pattern) with PerfContext() as pc: # the files are searched from `tests/` folder, starting with `test_` files = glob.glob(os.path.join(os.path.dirname(__file__), "test_*.py")) cases = [] for test_module in {os.path.basename(f)[:-3] for f in files}: if re.match(args.pattern, test_module): cases.append(f"tests.{test_module}") else: print(f"monai test runner: excluding tests.{test_module}") tests = unittest.TestLoader().loadTestsFromNames(cases) discovery_time = pc.total_time print(f"time to discover tests: {discovery_time}s, total cases: {tests.countTestCases()}.") test_runner = unittest.runner.TextTestRunner( resultclass=TimeLoggingTestResult, verbosity=args.verbosity, failfast=args.failfast ) # Use try catches to print the current results if encountering exception or keyboard interruption try: test_result = test_runner.run(tests) print_results(results, discovery_time, args.thresh, "tests finished") sys.exit(not test_result.wasSuccessful()) except KeyboardInterrupt: print_results(results, discovery_time, args.thresh, "tests cancelled") sys.exit(1) except Exception: print_results(results, discovery_time, args.thresh, "exception reached") raise
1fc3b7b27452778c90b70cbaf2d0890cbc7c878c
2ea61e98627dd6b170590b69ead79a828614dec0
/youtrack_api/models/__init__.py
b32db78643832993e6d781eddcfd07e3509c2415
[]
no_license
alpduez/youtrack_api
55dc25465f027645525efe5296c5699f7d824f33
2450523d87e6bdbbd53ca4908042a701a1a867e6
refs/heads/master
2023-09-01T01:34:33.356354
2021-10-20T15:32:05
2021-10-20T15:32:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,174
py
# flake8: noqa # import all models into this package # if you have many models here with many references from one model to another this may # raise a RecursionError # to avoid this, import only the models that you directly need like: # from from youtrack_api.model.pet import Pet # or import this package, but before doing it, use: # import sys # sys.setrecursionlimit(n) from youtrack_api.model.activity_category import ActivityCategory from youtrack_api.model.activity_cursor_page import ActivityCursorPage from youtrack_api.model.activity_item import ActivityItem from youtrack_api.model.agile import Agile from youtrack_api.model.agile_column import AgileColumn from youtrack_api.model.agile_column_field_value import AgileColumnFieldValue from youtrack_api.model.agile_column_field_value_all_of import AgileColumnFieldValueAllOf from youtrack_api.model.agile_status import AgileStatus from youtrack_api.model.appearance_settings import AppearanceSettings from youtrack_api.model.attachment_activity_item import AttachmentActivityItem from youtrack_api.model.attachment_activity_item_all_of import AttachmentActivityItemAllOf from youtrack_api.model.attribute_based_swimlane_settings import AttributeBasedSwimlaneSettings from youtrack_api.model.attribute_based_swimlane_settings_all_of import AttributeBasedSwimlaneSettingsAllOf from youtrack_api.model.backup_error import BackupError from youtrack_api.model.backup_file import BackupFile from youtrack_api.model.backup_status import BackupStatus from youtrack_api.model.base_bundle import BaseBundle from youtrack_api.model.build_bundle import BuildBundle from youtrack_api.model.build_bundle_all_of import BuildBundleAllOf from youtrack_api.model.build_bundle_custom_field_defaults import BuildBundleCustomFieldDefaults from youtrack_api.model.build_bundle_custom_field_defaults_all_of import BuildBundleCustomFieldDefaultsAllOf from youtrack_api.model.build_bundle_element import BuildBundleElement from youtrack_api.model.build_bundle_element_all_of import BuildBundleElementAllOf from youtrack_api.model.build_project_custom_field import BuildProjectCustomField from youtrack_api.model.bundle import Bundle from youtrack_api.model.bundle_custom_field_defaults import BundleCustomFieldDefaults from youtrack_api.model.bundle_element import BundleElement from youtrack_api.model.bundle_project_custom_field import BundleProjectCustomField from youtrack_api.model.color_coding import ColorCoding from youtrack_api.model.column_settings import ColumnSettings from youtrack_api.model.command_limited_visibility import CommandLimitedVisibility from youtrack_api.model.command_limited_visibility_all_of import CommandLimitedVisibilityAllOf from youtrack_api.model.command_list import CommandList from youtrack_api.model.command_unlimited_visibility import CommandUnlimitedVisibility from youtrack_api.model.command_visibility import CommandVisibility from youtrack_api.model.comment_activity_item import CommentActivityItem from youtrack_api.model.comment_activity_item_all_of import CommentActivityItemAllOf from youtrack_api.model.comment_attachments_activity_item import CommentAttachmentsActivityItem from youtrack_api.model.comment_attachments_activity_item_all_of import CommentAttachmentsActivityItemAllOf from youtrack_api.model.created_deleted_activity_item import CreatedDeletedActivityItem from youtrack_api.model.custom_field import CustomField from youtrack_api.model.custom_field_activity_item import CustomFieldActivityItem from youtrack_api.model.custom_field_activity_item_all_of import CustomFieldActivityItemAllOf from youtrack_api.model.custom_field_defaults import CustomFieldDefaults from youtrack_api.model.custom_filter_field import CustomFilterField from youtrack_api.model.custom_filter_field_all_of import CustomFilterFieldAllOf from youtrack_api.model.database_attribute_value import DatabaseAttributeValue from youtrack_api.model.database_backup_settings import DatabaseBackupSettings from youtrack_api.model.database_multi_value_issue_custom_field import DatabaseMultiValueIssueCustomField from youtrack_api.model.database_multi_value_issue_custom_field_all_of import DatabaseMultiValueIssueCustomFieldAllOf from youtrack_api.model.database_single_value_issue_custom_field import DatabaseSingleValueIssueCustomField from youtrack_api.model.date_format_descriptor import DateFormatDescriptor from youtrack_api.model.date_issue_custom_field import DateIssueCustomField from youtrack_api.model.date_issue_custom_field_all_of import DateIssueCustomFieldAllOf from youtrack_api.model.duplicate_vote import DuplicateVote from youtrack_api.model.duration_value import DurationValue from youtrack_api.model.email_settings import EmailSettings from youtrack_api.model.enum_bundle import EnumBundle from youtrack_api.model.enum_bundle_all_of import EnumBundleAllOf from youtrack_api.model.enum_bundle_custom_field_defaults import EnumBundleCustomFieldDefaults from youtrack_api.model.enum_bundle_custom_field_defaults_all_of import EnumBundleCustomFieldDefaultsAllOf from youtrack_api.model.enum_bundle_element import EnumBundleElement from youtrack_api.model.enum_project_custom_field import EnumProjectCustomField from youtrack_api.model.external_issue import ExternalIssue from youtrack_api.model.field_based_color_coding import FieldBasedColorCoding from youtrack_api.model.field_based_color_coding_all_of import FieldBasedColorCodingAllOf from youtrack_api.model.field_style import FieldStyle from youtrack_api.model.field_type import FieldType from youtrack_api.model.filter_field import FilterField from youtrack_api.model.general_user_profile import GeneralUserProfile from youtrack_api.model.global_settings import GlobalSettings from youtrack_api.model.global_time_tracking_settings import GlobalTimeTrackingSettings from youtrack_api.model.group_project_custom_field import GroupProjectCustomField from youtrack_api.model.group_project_custom_field_all_of import GroupProjectCustomFieldAllOf from youtrack_api.model.issue import Issue from youtrack_api.model.issue_attachment import IssueAttachment from youtrack_api.model.issue_based_swimlane_settings import IssueBasedSwimlaneSettings from youtrack_api.model.issue_based_swimlane_settings_all_of import IssueBasedSwimlaneSettingsAllOf from youtrack_api.model.issue_comment import IssueComment from youtrack_api.model.issue_created_activity_item import IssueCreatedActivityItem from youtrack_api.model.issue_created_activity_item_all_of import IssueCreatedActivityItemAllOf from youtrack_api.model.issue_custom_field import IssueCustomField from youtrack_api.model.issue_folder import IssueFolder from youtrack_api.model.issue_link import IssueLink from youtrack_api.model.issue_link_type import IssueLinkType from youtrack_api.model.issue_resolved_activity_item import IssueResolvedActivityItem from youtrack_api.model.issue_resolved_activity_item_all_of import IssueResolvedActivityItemAllOf from youtrack_api.model.issue_tag import IssueTag from youtrack_api.model.issue_tag_all_of import IssueTagAllOf from youtrack_api.model.issue_time_tracker import IssueTimeTracker from youtrack_api.model.issue_voters import IssueVoters from youtrack_api.model.issue_watcher import IssueWatcher from youtrack_api.model.issue_watchers import IssueWatchers from youtrack_api.model.issue_work_item import IssueWorkItem from youtrack_api.model.jabber_settings import JabberSettings from youtrack_api.model.license import License from youtrack_api.model.limited_visibility import LimitedVisibility from youtrack_api.model.links_activity_item import LinksActivityItem from youtrack_api.model.locale_descriptor import LocaleDescriptor from youtrack_api.model.locale_settings import LocaleSettings from youtrack_api.model.localizable_bundle_element import LocalizableBundleElement from youtrack_api.model.localizable_bundle_element_all_of import LocalizableBundleElementAllOf from youtrack_api.model.logo import Logo from youtrack_api.model.me import Me from youtrack_api.model.multi_build_issue_custom_field import MultiBuildIssueCustomField from youtrack_api.model.multi_build_issue_custom_field_all_of import MultiBuildIssueCustomFieldAllOf from youtrack_api.model.multi_enum_issue_custom_field import MultiEnumIssueCustomField from youtrack_api.model.multi_enum_issue_custom_field_all_of import MultiEnumIssueCustomFieldAllOf from youtrack_api.model.multi_group_issue_custom_field import MultiGroupIssueCustomField from youtrack_api.model.multi_group_issue_custom_field_all_of import MultiGroupIssueCustomFieldAllOf from youtrack_api.model.multi_owned_issue_custom_field import MultiOwnedIssueCustomField from youtrack_api.model.multi_owned_issue_custom_field_all_of import MultiOwnedIssueCustomFieldAllOf from youtrack_api.model.multi_user_issue_custom_field import MultiUserIssueCustomField from youtrack_api.model.multi_user_issue_custom_field_all_of import MultiUserIssueCustomFieldAllOf from youtrack_api.model.multi_value_activity_item import MultiValueActivityItem from youtrack_api.model.multi_version_issue_custom_field import MultiVersionIssueCustomField from youtrack_api.model.multi_version_issue_custom_field_all_of import MultiVersionIssueCustomFieldAllOf from youtrack_api.model.notification_settings import NotificationSettings from youtrack_api.model.notifications_user_profile import NotificationsUserProfile from youtrack_api.model.online_users import OnlineUsers from youtrack_api.model.owned_bundle import OwnedBundle from youtrack_api.model.owned_bundle_all_of import OwnedBundleAllOf from youtrack_api.model.owned_bundle_custom_field_defaults import OwnedBundleCustomFieldDefaults from youtrack_api.model.owned_bundle_custom_field_defaults_all_of import OwnedBundleCustomFieldDefaultsAllOf from youtrack_api.model.owned_bundle_element import OwnedBundleElement from youtrack_api.model.owned_bundle_element_all_of import OwnedBundleElementAllOf from youtrack_api.model.owned_project_custom_field import OwnedProjectCustomField from youtrack_api.model.parsed_command import ParsedCommand from youtrack_api.model.period_field_format import PeriodFieldFormat from youtrack_api.model.period_issue_custom_field import PeriodIssueCustomField from youtrack_api.model.period_issue_custom_field_all_of import PeriodIssueCustomFieldAllOf from youtrack_api.model.period_project_custom_field import PeriodProjectCustomField from youtrack_api.model.period_value import PeriodValue from youtrack_api.model.predefined_filter_field import PredefinedFilterField from youtrack_api.model.project import Project from youtrack_api.model.project_activity_item import ProjectActivityItem from youtrack_api.model.project_all_of import ProjectAllOf from youtrack_api.model.project_based_color_coding import ProjectBasedColorCoding from youtrack_api.model.project_based_color_coding_all_of import ProjectBasedColorCodingAllOf from youtrack_api.model.project_color import ProjectColor from youtrack_api.model.project_custom_field import ProjectCustomField from youtrack_api.model.project_time_tracking_settings import ProjectTimeTrackingSettings from youtrack_api.model.rest_cors_settings import RestCorsSettings from youtrack_api.model.saved_query import SavedQuery from youtrack_api.model.saved_query_all_of import SavedQueryAllOf from youtrack_api.model.search_suggestions import SearchSuggestions from youtrack_api.model.simple_issue_custom_field import SimpleIssueCustomField from youtrack_api.model.simple_project_custom_field import SimpleProjectCustomField from youtrack_api.model.simple_value_activity_item import SimpleValueActivityItem from youtrack_api.model.simple_value_activity_item_all_of import SimpleValueActivityItemAllOf from youtrack_api.model.single_build_issue_custom_field import SingleBuildIssueCustomField from youtrack_api.model.single_enum_issue_custom_field import SingleEnumIssueCustomField from youtrack_api.model.single_group_issue_custom_field import SingleGroupIssueCustomField from youtrack_api.model.single_owned_issue_custom_field import SingleOwnedIssueCustomField from youtrack_api.model.single_user_issue_custom_field import SingleUserIssueCustomField from youtrack_api.model.single_value_activity_item import SingleValueActivityItem from youtrack_api.model.single_version_issue_custom_field import SingleVersionIssueCustomField from youtrack_api.model.sprint import Sprint from youtrack_api.model.sprint_activity_item import SprintActivityItem from youtrack_api.model.sprint_activity_item_all_of import SprintActivityItemAllOf from youtrack_api.model.sprints_settings import SprintsSettings from youtrack_api.model.state_bundle import StateBundle from youtrack_api.model.state_bundle_all_of import StateBundleAllOf from youtrack_api.model.state_bundle_custom_field_defaults import StateBundleCustomFieldDefaults from youtrack_api.model.state_bundle_custom_field_defaults_all_of import StateBundleCustomFieldDefaultsAllOf from youtrack_api.model.state_bundle_element import StateBundleElement from youtrack_api.model.state_bundle_element_all_of import StateBundleElementAllOf from youtrack_api.model.state_issue_custom_field import StateIssueCustomField from youtrack_api.model.state_issue_custom_field_all_of import StateIssueCustomFieldAllOf from youtrack_api.model.state_project_custom_field import StateProjectCustomField from youtrack_api.model.storage_entry import StorageEntry from youtrack_api.model.suggestion import Suggestion from youtrack_api.model.swimlane_entity_attribute_value import SwimlaneEntityAttributeValue from youtrack_api.model.swimlane_settings import SwimlaneSettings from youtrack_api.model.swimlane_value import SwimlaneValue from youtrack_api.model.system_settings import SystemSettings from youtrack_api.model.tags_activity_item import TagsActivityItem from youtrack_api.model.tags_activity_item_all_of import TagsActivityItemAllOf from youtrack_api.model.telemetry import Telemetry from youtrack_api.model.text_custom_field_activity_item import TextCustomFieldActivityItem from youtrack_api.model.text_custom_field_activity_item_all_of import TextCustomFieldActivityItemAllOf from youtrack_api.model.text_field_value import TextFieldValue from youtrack_api.model.text_issue_custom_field import TextIssueCustomField from youtrack_api.model.text_issue_custom_field_all_of import TextIssueCustomFieldAllOf from youtrack_api.model.text_markup_activity_item import TextMarkupActivityItem from youtrack_api.model.text_markup_activity_item_all_of import TextMarkupActivityItemAllOf from youtrack_api.model.text_project_custom_field import TextProjectCustomField from youtrack_api.model.time_tracking_user_profile import TimeTrackingUserProfile from youtrack_api.model.time_zone_descriptor import TimeZoneDescriptor from youtrack_api.model.unlimited_visibility import UnlimitedVisibility from youtrack_api.model.user import User from youtrack_api.model.user_bundle import UserBundle from youtrack_api.model.user_bundle_all_of import UserBundleAllOf from youtrack_api.model.user_custom_field_defaults import UserCustomFieldDefaults from youtrack_api.model.user_custom_field_defaults_all_of import UserCustomFieldDefaultsAllOf from youtrack_api.model.user_group import UserGroup from youtrack_api.model.user_profiles import UserProfiles from youtrack_api.model.user_project_custom_field import UserProjectCustomField from youtrack_api.model.uses_markup_activity_item import UsesMarkupActivityItem from youtrack_api.model.uses_markup_activity_item_all_of import UsesMarkupActivityItemAllOf from youtrack_api.model.vcs_change_activity_item import VcsChangeActivityItem from youtrack_api.model.vcs_change_activity_item_all_of import VcsChangeActivityItemAllOf from youtrack_api.model.vcs_unresolved_user import VcsUnresolvedUser from youtrack_api.model.vcs_unresolved_user_all_of import VcsUnresolvedUserAllOf from youtrack_api.model.version_bundle import VersionBundle from youtrack_api.model.version_bundle_all_of import VersionBundleAllOf from youtrack_api.model.version_bundle_custom_field_defaults import VersionBundleCustomFieldDefaults from youtrack_api.model.version_bundle_custom_field_defaults_all_of import VersionBundleCustomFieldDefaultsAllOf from youtrack_api.model.version_bundle_element import VersionBundleElement from youtrack_api.model.version_bundle_element_all_of import VersionBundleElementAllOf from youtrack_api.model.version_project_custom_field import VersionProjectCustomField from youtrack_api.model.visibility import Visibility from youtrack_api.model.visibility_activity_item import VisibilityActivityItem from youtrack_api.model.visibility_activity_item_all_of import VisibilityActivityItemAllOf from youtrack_api.model.visibility_group_activity_item import VisibilityGroupActivityItem from youtrack_api.model.visibility_group_activity_item_all_of import VisibilityGroupActivityItemAllOf from youtrack_api.model.visibility_user_activity_item import VisibilityUserActivityItem from youtrack_api.model.visibility_user_activity_item_all_of import VisibilityUserActivityItemAllOf from youtrack_api.model.voters_activity_item import VotersActivityItem from youtrack_api.model.voters_activity_item_all_of import VotersActivityItemAllOf from youtrack_api.model.wip_limit import WIPLimit from youtrack_api.model.watch_folder import WatchFolder from youtrack_api.model.watch_folder_all_of import WatchFolderAllOf from youtrack_api.model.work_item_activity_item import WorkItemActivityItem from youtrack_api.model.work_item_activity_item_all_of import WorkItemActivityItemAllOf from youtrack_api.model.work_item_author_activity_item import WorkItemAuthorActivityItem from youtrack_api.model.work_item_author_activity_item_all_of import WorkItemAuthorActivityItemAllOf from youtrack_api.model.work_item_duration_activity_item import WorkItemDurationActivityItem from youtrack_api.model.work_item_duration_activity_item_all_of import WorkItemDurationActivityItemAllOf from youtrack_api.model.work_item_type import WorkItemType from youtrack_api.model.work_item_type_activity_item import WorkItemTypeActivityItem from youtrack_api.model.work_item_type_activity_item_all_of import WorkItemTypeActivityItemAllOf from youtrack_api.model.work_time_settings import WorkTimeSettings
4c130f1d7ab50ea7707adef47c427ff415ec9ec4
78d35bb7876a3460d4398e1cb3554b06e36c720a
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_08_01/aio/operations/_vpn_sites_configuration_operations.py
528c2beb6e372606f8298a7459a2824db3f21598
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
catchsrinivas/azure-sdk-for-python
e35f59b60318a31b3c940a7a3a07b61b28118aa5
596227a7738a5342274486e30489239d539b11d1
refs/heads/main
2023-08-27T09:08:07.986249
2021-11-11T11:13:35
2021-11-11T11:13:35
427,045,896
0
0
MIT
2021-11-11T15:14:31
2021-11-11T15:14:31
null
UTF-8
Python
false
false
8,266
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VpnSitesConfigurationOperations: """VpnSitesConfigurationOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _download_initial( self, resource_group_name: str, virtual_wan_name: str, request: "_models.GetVpnSitesConfigurationRequest", **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._download_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(request, 'GetVpnSitesConfigurationRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _download_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/vpnConfiguration'} # type: ignore async def begin_download( self, resource_group_name: str, virtual_wan_name: str, request: "_models.GetVpnSitesConfigurationRequest", **kwargs: Any ) -> AsyncLROPoller[None]: """Gives the sas-url to download the configurations for vpn-sites in a resource group. :param resource_group_name: The resource group name. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN for which configuration of all vpn-sites is needed. :type virtual_wan_name: str :param request: Parameters supplied to download vpn-sites configuration. :type request: ~azure.mgmt.network.v2019_08_01.models.GetVpnSitesConfigurationRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._download_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, request=request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_download.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/vpnConfiguration'} # type: ignore
988fcc3bad6c71902716794d5af98b5ed49ce94a
1f936103af336af6bbd335f45d6baa55c426922b
/monatbx/test_cov.py
fed4bc94b6147527eeec78e5faf7cafd539bf891
[]
no_license
monarin/monatbx
2ec342d67f1fbccb82656218ffd136f2eb7d96ab
43f56974f811e5b2b0dcc428d4f9b36043ed9d04
refs/heads/master
2020-06-18T13:08:58.893701
2016-11-30T00:58:18
2016-11-30T00:58:18
75,136,381
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
import numpy as np from cctbx.array_family import flex G = [5, 6, 0.1, 20, 16, 12, 11, 10, 11.5, 15] B = [100, 80, 200, 60, 70, 80, 85, 90, 70, 40] rotx = [0.01, 0.002, 0.001, 0.05, 0.1, 0.025, 0.008, 0.01, 0.002, 0.001] X = np.array([G, B, rotx]) print X COV = np.cov(X) print COV CORR = np.correlate(X) print CORR
f4e9e05d8f49cab8f597e4920e0ebf279ac1185a
32274e14bce27331626f734aaf2e9074dec9bbf0
/great_expectations/data_asset/__init__.py
9de24563be3757e723d06cee5b996be4c8d615f5
[ "Apache-2.0" ]
permissive
dataguage/great_expectations
1036a3d20dc320ce2e9986ae18a84932bb1fad3b
dc94522ca9b6742c0c1844cf378b781f74dfc9b5
refs/heads/master
2022-07-04T18:38:21.332245
2020-05-04T17:56:02
2020-05-04T17:56:02
261,509,508
2
0
Apache-2.0
2020-05-05T15:24:58
2020-05-05T15:24:57
null
UTF-8
Python
false
false
76
py
from .data_asset import DataAsset from .file_data_asset import FileDataAsset
706658a5ad3c0ba6ba13b0b90069ae2c6aca8d3d
47deebe6fefedb01fdce5d4e82f58bb08f8e1e92
/python core/Lesson_2/io_4.py
b4c12d1fa85d38f06e385bcd672cb795c9629322
[]
no_license
developeryuldashev/python-core
5bb162603bdb5782acf05e3fb25ca5dd6347067a
08fca77c9cfde69d93a7875b3fb65b98f3dabd78
refs/heads/main
2023-08-21T03:33:12.160133
2021-10-19T04:56:53
2021-10-19T04:56:53
393,383,696
0
0
null
null
null
null
UTF-8
Python
false
false
28
py
d=10 pi=3.14 l=pi*d print(l)
dca8dd72172381372dcb94f00fbeecad81c8ddd6
e2e08d7c97398a42e6554f913ee27340226994d9
/pyautoTest-master(ICF-7.5.0)/test_case/scg_old/scg_Route/test_c37280.py
e1f0802b3947f00158ecb0ded8f58e68ea24a2c8
[]
no_license
lizhuoya1111/Automated_testing_practice
88e7be512e831d279324ad710946232377fb4c01
b3a532d33ddeb8d01fff315bcd59b451befdef23
refs/heads/master
2022-12-04T08:19:29.806445
2020-08-14T03:51:20
2020-08-14T03:51:20
287,426,498
0
0
null
null
null
null
UTF-8
Python
false
false
4,359
py
import pytest import time import sys from page_obj.common.rail import * from os.path import dirname, abspath from page_obj.common.ssh import * from page_obj.scg.scg_def_static_route import * from page_obj.scg.scg_def_interface import * sys.path.insert(0, dirname(dirname(abspath(__file__)))) test_id = 37280 # 验证批量删除条目、单条删除路由 def test_route_wxw(browser): try: # 验证批量删除路由 login_web(browser, url="10.2.2.83") add_static_route_single_wxw(browser, ip='20.1.1.0', mask='24', out_device='ge0/2', gateway='13.1.1.1', enable='yes') add_static_route_single_wxw(browser, ip='21.1.1.0', mask='24', out_device='ge0/2', gateway='13.1.1.1', enable='yes') login_web(browser, url="10.2.2.81") change_physical_interface_workmode_wxw(browser, interface='ge0/5', route="yes", ip='21.1.1.1', mask='24', trans='no') ssh = SSH("10.1.1.202", 'root', 'root', 22) ssh.connect() ssh.execute('route add -net 13.1.1.0/24 gw 20.1.1.1') result1 = ssh.execute('ping 13.1.1.3 -c 3') # print(result1) ssh.close() ssh = SSH("10.1.1.212", 'root', 'root', 22) ssh.connect() ssh.execute('route add -net 13.1.1.0/24 gw 21.1.1.1') result2 = ssh.execute('ping 13.1.1.3 -c 3') # print(result2) ssh.close() login_web(browser, url="10.2.2.83") # 删除两段路由 del_static_route_single_wxw(browser, destination1='20.1.1.0/255.255.255.0', destination2='21.1.1.0/255.255.255.0') ssh = SSH("10.1.1.202", 'root', 'root', 22) ssh.connect() result1_1 = ssh.execute('ping 13.1.1.3 -c 3') # print(result1_1) ssh.close() ssh = SSH("10.1.1.212", 'root', 'root', 22) ssh.connect() result2_1 = ssh.execute('ping 13.1.1.3 -c 3') # print(result2_1) ssh.execute('route del -net 13.1.1.0/24 gw 21.1.1.1') ssh.close() # 验证单条删除路由 login_web(browser, url="10.2.2.83") add_static_route_single_wxw(browser, ip='20.1.1.0', mask='24', out_device='ge0/2', gateway='13.1.1.1', enable='yes') ssh = SSH("10.1.1.202", 'root', 'root', 22) ssh.connect() ssh.execute('route add -net 13.1.1.0/24 gw 20.1.1.1') result3 = ssh.execute('ping 13.1.1.3 -c 3') # print(result3) ssh.close() del_ipv4_static_route_bydestination(browser, destination='20.1.1.0/255.255.255.0') ssh = SSH("10.1.1.202", 'root', 'root', 22) ssh.connect() ssh.execute('route add -net 13.1.1.0/24 gw 20.1.1.1') result3_1 = ssh.execute('ping 13.1.1.3 -c 3') # print(result3_1) ssh.execute('route del -net 13.1.1.0/24 gw 21.1.1.1') ssh.close() login_web(browser, url="10.2.2.81") change_physical_interface_workmode_wxw(browser, interface='ge0/5', route="no", ip='21.1.1.1', mask='24', trans='yes') try: assert "ttl" in result1 assert "ttl" in result2 assert "100% packet loss" in result1_1 assert "100% packet loss" in result2_1 assert "ttl"in result3 assert "100% packet loss" in result3_1 rail_pass(test_run_id, test_id) except: rail_fail(test_run_id, test_id) assert "ttl" in result1 assert "ttl" in result2 assert "100% packet loss" in result1_1 assert "100% packet loss" in result2_1 assert "ttl" in result3 assert "100% packet loss" in result3_1 except Exception as err: # 如果上面的步骤有报错,重新设备,恢复配置 print(err) rail_fail(test_run_id, test_id) reload() assert False if __name__ == '__main__': pytest.main(["-v", "-s", "test_c"+str(test_id)+".py"])
dc4851b40cb641b66fe8f67c685289776001336a
66fa0bcfe8fcd9e5087caf7e0b42e944ec636fc6
/catalog/models.py
bcfdd700c38e2be4f0d8b7dac61af1245336ebd9
[]
no_license
vintkor/for_prom
899a7eb70978c1d4d77bf3a958d11423fd1bcda5
4b692c192d931e2ffb97dcd36bb7f31b242f848b
refs/heads/master
2022-12-09T05:49:11.150879
2017-08-21T20:37:51
2017-08-21T20:37:51
99,605,489
0
0
null
2022-12-08T00:41:44
2017-08-07T18:02:53
Python
UTF-8
Python
false
false
9,434
py
from django.db import models from testsite.baseModel import BaseModel from ckeditor_uploader.fields import RichTextUploadingField from mptt.models import MPTTModel, TreeForeignKey from feature.models import Set, Feature, Unit, Value from django.utils.crypto import get_random_string from PIL import Image from resizeimage import resizeimage from testsite.settings import BASE_DIR from information.models import Condition, ProviderFile def set_image_name(instance, filename): name = get_random_string(40) ext = filename.split('.')[-1] path = 'images/{}.{}'.format(name, ext) return path class CatalogCategory(BaseModel, MPTTModel): title = models.CharField(verbose_name='Категория', max_length=255) slug = models.SlugField(verbose_name="Слаг", max_length=255, default='') parent = TreeForeignKey('self', null=True, blank=True, related_name='children', db_index=True) image = models.ImageField(blank=True, default="", upload_to=set_image_name) description = RichTextUploadingField(verbose_name="Описание категории", blank=True, default="") active = models.BooleanField(default=True, verbose_name="Вкл/Выкл") feature_set = models.ManyToManyField(Set, verbose_name="Набор характеристик") class Meta: verbose_name = "Категория" verbose_name_plural = "Категории" class MPTTMeta: order_insertion_by = ['title'] def __str__(self): return "{}".format(self.title) def show_image(self): """ Показывает превью изображения в админке """ if self.image: return '<img src="{}" width=40>'.format(self.image.url) else: return "--" def get_count_product(self): """ Получает количество постов """ count = CatalogProduct.objects.filter(category=self.id).count() return count show_image.allow_tags = True show_image.short_description = "Изображение" get_count_product.short_description = "Кол-во товаров" class CatalogCurrency(BaseModel): title = models.CharField(max_length=100, verbose_name="Название") short_title = models.CharField(max_length=5, verbose_name="Сокращение") code = models.CharField(max_length=3, verbose_name="Код валюты") course = models.DecimalField(verbose_name="Курс", max_digits=10, decimal_places=4) is_main = models.BooleanField(verbose_name="Главная") class Meta: verbose_name = "Валюта" verbose_name_plural = "Валюты" def __str__(self): return "{}".format(self.title) class CatalogProduct(BaseModel): title = models.CharField(max_length=255, verbose_name="Заголовок") slug = models.SlugField(verbose_name="Слаг", max_length=255, default='', blank=True, null=True) category = TreeForeignKey(CatalogCategory, blank=True, null=True) price = models.DecimalField(verbose_name="Цена", max_digits=8, decimal_places=2, blank=True, null=True) currency = models.ForeignKey(CatalogCurrency, verbose_name="Валюта", blank=True, null=True, on_delete=models.SET_NULL) unit = models.ForeignKey(Unit, verbose_name="Единица измерения", default=None, on_delete=models.SET_NULL, blank=True, null=True) step = models.DecimalField(verbose_name="Шаг", max_digits=8, decimal_places=3, default=1) description = models.CharField(max_length=170, blank=True, verbose_name="META DESC", default="") text = RichTextUploadingField(verbose_name="Текст поста", blank=True, default="") image = models.ImageField(verbose_name="Изображение", blank=True, default='', upload_to=set_image_name) active = models.BooleanField(default=True, verbose_name="Вкл/Выкл") condition = models.ManyToManyField(Condition, verbose_name='Условия поставщика', default=None, null=True, blank=True) provider_price = models.ManyToManyField(ProviderFile, verbose_name='Прайс поставщика', default=None, null=True, blank=True) def __str__(self): return "{}".format(self.title) def show_image(self): """ Показывает превью главного изображения в админке """ if self.image: return '<img src="{}" width=40>'.format(self.image.url) else: return "--" def get_files(self): files = ProviderFile.objects.filter(catalogproduct=self) return files def get_conditions(self): return Condition.objects.filter(catalogproduct=self) def get_thumb_image(self): if self.image: url = self.image.url.split('.') url = url[0] + '__100x160.' + url[1] else: url = '//placehold.it/300x360' return url def get_medium_image(self): if self.image: url = self.image.url.split('.') url = url[0] + '__400x400.' + url[1] else: url = '//placehold.it/400x400' return url def get_count_comments(self): """ Получает количество комментарив поста """ count = CatalogComment.objects.filter(parent=self.id).count() return count def get_all_images(self): return CatalogImage.objects.filter(active=True, parent=self) def get_price_in_main_currency(self): return self.currency.course * self.price def save(self, *args, **kwargs): super(CatalogProduct, self).save(*args, **kwargs) if self.category: for s in Set.objects.filter(catalogcategory=self.category): for f in Feature.objects.filter(set=s): try: ProductFeature.objects.get(product=self, feature=f) except ProductFeature.DoesNotExist: feature = ProductFeature(product=self, feature=f) feature.save() if self.image: old_name = self.image.url.split('/')[-1].split('.')[0] ext = self.image.url.split('/')[-1].split('.')[1] thumb_size = [100, 160] medium_size = [400, 400] with open('{}{}'.format(BASE_DIR, self.image.url), 'r+b') as f: with Image.open(f) as image: cover = resizeimage.resize_cover(image, thumb_size) cover.save('{}/media/images/{}__{}x{}.{}'.format(BASE_DIR, old_name, thumb_size[0], thumb_size[1], ext)) with Image.open(f) as image: cover = resizeimage.resize_cover(image, medium_size) cover.save('{}/media/images/{}__{}x{}.{}'.format(BASE_DIR, old_name, medium_size[0], medium_size[1], ext)) show_image.allow_tags = True show_image.short_description = "Главное изображение" get_count_comments.short_description = "Кол-во комментариев" class Meta: verbose_name = "Товар" verbose_name_plural = "Товары" class ProductFeature(BaseModel): feature = models.ForeignKey(Feature, default=None, null=True, verbose_name="арактеристака", on_delete=models.SET_NULL) value = models.CharField(default=None, null=True, blank=True, verbose_name="Значение", max_length=150) unit = models.ForeignKey(Unit, default=None, blank=True, null=True, verbose_name="Единица измерения", on_delete=models.SET_NULL) product = models.ForeignKey(CatalogProduct, default=None, null=True, verbose_name="Товар", on_delete=models.SET_NULL) class Meta: verbose_name = "Характеристика товара" verbose_name_plural = "Характеристики товара" class CatalogComment(BaseModel): parent = models.ForeignKey(CatalogProduct, related_name="parent", verbose_name="Товар коментария") text = models.TextField() def __str__(self): return "Комментарий записи - {}".format(self.parent.title) class Meta: verbose_name = "Комментарий" verbose_name_plural = "Комментарии" class CatalogImage(BaseModel): parent = models.ForeignKey(CatalogProduct, related_name="images", verbose_name="Изображение") image = models.ImageField(blank=True, default='', upload_to=set_image_name, verbose_name="Изображение") active = models.BooleanField(default=True, verbose_name="Вкл/Выкл") class Meta: verbose_name = "Изображение" verbose_name_plural = "Изображения" def __str__(self): return "Изображение товара - {}".format(self.parent.title) def show_image(self): """ Показывает превью изображения в админке """ if self.image: return '<img src="{}" width=30>'.format(self.image.url) else: return "--" # def get_thumb(self): # if self.image: # url = self.image.url.split('.') # url = url[0] + '__300x360.' + url[1] # else: # url = '//placehold.it/300x360' # return url show_image.allow_tags = True show_image.short_description = "Изображение"
4605daa21593dccfe9560412c3fb87185a00fb91
726754863696235c66c8ed9aa184fc13ade33afe
/basics/rotation_count.py
116e425096403014edc34a74e8a6695ac5528788
[]
no_license
harshalms/python
ef6a3eeb93c5051528cb0b76fd600a2943e10616
bfea8f00795c4308b09d80852cb995a8109c1568
refs/heads/master
2021-07-17T18:52:36.053780
2020-07-25T15:45:41
2020-07-25T15:45:41
189,624,661
0
0
null
2019-06-17T05:37:24
2019-05-31T16:20:52
Python
UTF-8
Python
false
false
461
py
'''GeeksForGeeks Find the Rotation Count in Rotated Sorted array Consider an array of distinct numbers sorted in increasing order. The array has been rotated (clockwise) k number of times. Given such an array, find the value of k. Approch : Just find the index of minimum element. ''' A = [15, 18, 2, 3, 6, 12] def indexOFmin(A): min = A[0] for i in range(len(A)): if min > A[i]: min, k = A[i], i return k print(indexOFmin(A))
f04cfa1c8e45c8afac3256b904185d5a59c54180
f8e6234ff0b3a4f2a30ad8c6e09f7b6d40ba9f0e
/mcscf/mc_ao2mo.py
40301c13da0721d768b95a01fdf64d76bc6ecf8e
[ "BSD-2-Clause" ]
permissive
armunoz/pyscf
b358b90cfea46e4527eed997eaf509a11a282551
258167cabf2101148feadd3bc0da2dd2eccd725a
refs/heads/master
2020-06-26T10:08:25.454426
2017-07-12T15:05:21
2017-07-12T15:05:21
97,016,486
0
0
null
2017-07-12T14:19:35
2017-07-12T14:19:34
null
UTF-8
Python
false
false
14,827
py
#!/usr/bin/env python import sys import ctypes import time import tempfile from functools import reduce import numpy import h5py from pyscf import lib from pyscf.lib import logger from pyscf import ao2mo from pyscf.ao2mo import _ao2mo from pyscf.ao2mo import outcore # least memory requirements: # nmo ncore ncas outcore incore # 200 40 16 0.8GB 3.7 GB (_eri 1.6GB intermediates 1.3G) # 250 50 16 1.7GB 8.2 GB (_eri 3.9GB intermediates 2.6G) # 300 60 16 3.1GB 16.8GB (_eri 8.1GB intermediates 5.6G) # 400 80 16 8.5GB 53 GB (_eri 25.6GB intermediates 19G) # 500 100 16 19 GB # 600 120 16 37 GB # 750 150 16 85 GB libmcscf = lib.load_library('libmcscf') def trans_e1_incore(eri_ao, mo, ncore, ncas): nmo = mo.shape[1] nocc = ncore + ncas eri1 = ao2mo.incore.half_e1(eri_ao, (mo,mo[:,:nocc]), compact=False) eri1 = eri1.reshape(nmo,nocc,-1) klppshape = (0, nmo, 0, nmo) klpashape = (0, nmo, ncore, nocc) aapp = numpy.empty((ncas,ncas,nmo,nmo)) for i in range(ncas): _ao2mo.nr_e2(eri1[ncore+i,ncore:nocc], mo, klppshape, aosym='s4', mosym='s1', out=aapp[i]) ppaa = lib.transpose(aapp.reshape(ncas*ncas,-1)).reshape(nmo,nmo,ncas,ncas) aapp = None papa = numpy.empty((nmo,ncas,nmo,ncas)) for i in range(nmo): _ao2mo.nr_e2(eri1[i,ncore:nocc], mo, klpashape, aosym='s4', mosym='s1', out=papa[i]) pp = numpy.empty((nmo,nmo)) j_cp = numpy.zeros((ncore,nmo)) k_pc = numpy.zeros((nmo,ncore)) for i in range(ncore): _ao2mo.nr_e2(eri1[i,i:i+1], mo, klppshape, aosym='s4', mosym='s1', out=pp) j_cp[i] = pp.diagonal() j_pc = j_cp.T.copy() pp = numpy.empty((ncore,ncore)) for i in range(nmo): klshape = (i, i+1, 0, ncore) _ao2mo.nr_e2(eri1[i,:ncore], mo, klshape, aosym='s4', mosym='s1', out=pp) k_pc[i] = pp.diagonal() return j_pc, k_pc, ppaa, papa # level = 1: ppaa, papa and jpc, kpc # level = 2 or 3: ppaa, papa def trans_e1_outcore(mol, mo, ncore, ncas, erifile, max_memory=None, level=1, verbose=logger.WARN): time0 = (time.clock(), time.time()) if isinstance(verbose, logger.Logger): log = verbose else: log = logger.Logger(mol.stdout, verbose) log.debug1('trans_e1_outcore level %d max_memory %d', level, max_memory) nao, nmo = mo.shape nao_pair = nao*(nao+1)//2 nocc = ncore + ncas _tmpfile1 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) faapp_buf = h5py.File(_tmpfile1.name) feri = h5py.File(erifile, 'w') mo_c = numpy.asarray(mo, order='C') mo = numpy.asarray(mo, order='F') pashape = (0, nmo, ncore, nocc) papa_buf = numpy.zeros((nao,ncas,nmo*ncas)) j_pc = numpy.zeros((nmo,ncore)) k_pc = numpy.zeros((nmo,ncore)) mem_words = int(max(2000,max_memory-papa_buf.nbytes/1e6)*1e6/8) aobuflen = mem_words//(nao_pair+nocc*nmo) + 1 ao_loc = numpy.array(mol.ao_loc_nr(), dtype=numpy.int32) shranges = outcore.guess_shell_ranges(mol, True, aobuflen, None, ao_loc) ao2mopt = _ao2mo.AO2MOpt(mol, 'cint2e_sph', 'CVHFnr_schwarz_cond', 'CVHFsetnr_direct_scf') nstep = len(shranges) paapp = 0 maxbuflen = max([x[2] for x in shranges]) log.debug('mem_words %.8g MB, maxbuflen = %d', mem_words*8/1e6, maxbuflen) bufs1 = numpy.empty((maxbuflen, nao_pair)) bufs2 = numpy.empty((maxbuflen, nmo*ncas)) if level == 1: bufs3 = numpy.empty((maxbuflen, nao*ncore)) log.debug('mem cache %.8g MB', (bufs1.nbytes+bufs2.nbytes+bufs3.nbytes)/1e6) else: log.debug('mem cache %.8g MB', (bufs1.nbytes+bufs2.nbytes)/1e6) ti0 = log.timer('Initializing trans_e1_outcore', *time0) # fmmm, ftrans, fdrv for level 1 fmmm = libmcscf.AO2MOmmm_ket_nr_s2 ftrans = libmcscf.AO2MOtranse1_nr_s4 fdrv = libmcscf.AO2MOnr_e2_drv for istep,sh_range in enumerate(shranges): log.debug('[%d/%d], AO [%d:%d], len(buf) = %d', istep+1, nstep, *sh_range) buf = bufs1[:sh_range[2]] _ao2mo.nr_e1fill('cint2e_sph', sh_range, mol._atm, mol._bas, mol._env, 's4', 1, ao2mopt, buf) if log.verbose >= logger.DEBUG1: ti1 = log.timer('AO integrals buffer', *ti0) bufpa = bufs2[:sh_range[2]] _ao2mo.nr_e1(buf, mo, pashape, 's4', 's1', out=bufpa) # jc_pp, kc_pp if level == 1: # ppaa, papa and vhf, jcp, kcp if log.verbose >= logger.DEBUG1: ti1 = log.timer('buffer-pa', *ti1) buf1 = bufs3[:sh_range[2]] fdrv(ftrans, fmmm, buf1.ctypes.data_as(ctypes.c_void_p), buf.ctypes.data_as(ctypes.c_void_p), mo.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(sh_range[2]), ctypes.c_int(nao), (ctypes.c_int*4)(0, nao, 0, ncore), ctypes.POINTER(ctypes.c_void_p)(), ctypes.c_int(0)) p0 = 0 for ij in range(sh_range[0], sh_range[1]): i,j = _ao2mo._extract_pair(ij) i0 = ao_loc[i] j0 = ao_loc[j] i1 = ao_loc[i+1] j1 = ao_loc[j+1] di = i1 - i0 dj = j1 - j0 if i == j: dij = di * (di+1) // 2 buf = numpy.empty((di,di,nao*ncore)) idx = numpy.tril_indices(di) buf[idx] = buf1[p0:p0+dij] buf[idx[1],idx[0]] = buf1[p0:p0+dij] buf = buf.reshape(di,di,nao,ncore) mo1 = mo_c[i0:i1] tmp = numpy.einsum('uvpc,pc->uvc', buf, mo[:,:ncore]) tmp = lib.dot(mo1.T, tmp.reshape(di,-1)) j_pc += numpy.einsum('vp,pvc->pc', mo1, tmp.reshape(nmo,di,ncore)) tmp = numpy.einsum('uvpc,uc->vcp', buf, mo1[:,:ncore]) tmp = lib.dot(tmp.reshape(-1,nmo), mo).reshape(di,ncore,nmo) k_pc += numpy.einsum('vp,vcp->pc', mo1, tmp) else: dij = di * dj buf = buf1[p0:p0+dij].reshape(di,dj,nao,ncore) mo1 = mo_c[i0:i1] mo2 = mo_c[j0:j1] tmp = numpy.einsum('uvpc,pc->uvc', buf, mo[:,:ncore]) tmp = lib.dot(mo1.T, tmp.reshape(di,-1)) j_pc += numpy.einsum('vp,pvc->pc', mo2, tmp.reshape(nmo,dj,ncore)) * 2 tmp = numpy.einsum('uvpc,uc->vcp', buf, mo1[:,:ncore]) tmp = lib.dot(tmp.reshape(-1,nmo), mo).reshape(dj,ncore,nmo) k_pc += numpy.einsum('vp,vcp->pc', mo2, tmp) tmp = numpy.einsum('uvpc,vc->ucp', buf, mo2[:,:ncore]) tmp = lib.dot(tmp.reshape(-1,nmo), mo).reshape(di,ncore,nmo) k_pc += numpy.einsum('up,ucp->pc', mo1, tmp) p0 += dij if log.verbose >= logger.DEBUG1: ti1 = log.timer('j_cp and k_cp', *ti1) if log.verbose >= logger.DEBUG1: ti1 = log.timer('half transformation of the buffer', *ti1) # ppaa, papa faapp_buf[str(istep)] = \ bufpa.reshape(sh_range[2],nmo,ncas)[:,ncore:nocc].reshape(-1,ncas**2).T p0 = 0 for ij in range(sh_range[0], sh_range[1]): i,j = _ao2mo._extract_pair(ij) i0 = ao_loc[i] j0 = ao_loc[j] i1 = ao_loc[i+1] j1 = ao_loc[j+1] di = i1 - i0 dj = j1 - j0 if i == j: dij = di * (di+1) // 2 buf1 = numpy.empty((di,di,nmo*ncas)) idx = numpy.tril_indices(di) buf1[idx] = bufpa[p0:p0+dij] buf1[idx[1],idx[0]] = bufpa[p0:p0+dij] else: dij = di * dj buf1 = bufpa[p0:p0+dij].reshape(di,dj,-1) mo1 = mo[j0:j1,ncore:nocc].copy() for i in range(di): lib.dot(mo1.T, buf1[i], 1, papa_buf[i0+i], 1) mo1 = mo[i0:i1,ncore:nocc].copy() buf1 = lib.dot(mo1.T, buf1.reshape(di,-1)) papa_buf[j0:j1] += buf1.reshape(ncas,dj,-1).transpose(1,0,2) p0 += dij if log.verbose >= logger.DEBUG1: ti1 = log.timer('ppaa and papa buffer', *ti1) ti0 = log.timer('gen AO/transform MO [%d/%d]'%(istep+1,nstep), *ti0) buf = buf1 = bufpa = None bufs1 = bufs2 = bufs3 = None time1 = log.timer('mc_ao2mo pass 1', *time0) log.debug1('Half transformation done. Current memory %d', lib.current_memory()[0]) nblk = int(max(8, min(nmo, (max_memory*1e6/8-papa_buf.size)/(ncas**2*nmo)))) log.debug1('nblk for papa = %d', nblk) dset = feri.create_dataset('papa', (nmo,ncas,nmo,ncas), 'f8') for i0, i1 in prange(0, nmo, nblk): tmp = lib.dot(mo[:,i0:i1].T, papa_buf.reshape(nao,-1)) dset[i0:i1] = tmp.reshape(i1-i0,ncas,nmo,ncas) papa_buf = tmp = None time1 = log.timer('papa pass 2', *time1) tmp = numpy.empty((ncas**2,nao_pair)) p0 = 0 for istep, sh_range in enumerate(shranges): tmp[:,p0:p0+sh_range[2]] = faapp_buf[str(istep)] p0 += sh_range[2] nblk = int(max(8, min(nmo, (max_memory*1e6/8-tmp.size)/(ncas**2*nmo)-1))) log.debug1('nblk for ppaa = %d', nblk) dset = feri.create_dataset('ppaa', (nmo,nmo,ncas,ncas), 'f8') for i0, i1 in prange(0, nmo, nblk): tmp1 = _ao2mo.nr_e2(tmp, mo, (i0,i1,0,nmo), 's4', 's1', ao_loc=ao_loc) tmp1 = tmp1.reshape(ncas,ncas,i1-i0,nmo) for j in range(i1-i0): dset[i0+j] = tmp1[:,:,j].transpose(2,0,1) tmp = tmp1 = None time1 = log.timer('ppaa pass 2', *time1) faapp_buf.close() feri.close() _tmpfile1 = None time0 = log.timer('mc_ao2mo', *time0) return j_pc, k_pc # level = 1: ppaa, papa and vhf, jpc, kpc # level = 2: ppaa, papa, vhf, jpc=0, kpc=0 class _ERIS(object): def __init__(self, casscf, mo, method='incore', level=1): mol = casscf.mol nao, nmo = mo.shape ncore = casscf.ncore ncas = casscf.ncas mem_incore, mem_outcore, mem_basic = _mem_usage(ncore, ncas, nmo) mem_now = lib.current_memory()[0] eri = casscf._scf._eri if (method == 'incore' and eri is not None and (mem_incore+mem_now < casscf.max_memory*.9) or mol.incore_anyway): if eri is None: from pyscf.scf import _vhf eri = _vhf.int2e_sph(mol._atm, mol._bas, mol._env) self.j_pc, self.k_pc, self.ppaa, self.papa = \ trans_e1_incore(eri, mo, casscf.ncore, casscf.ncas) else: import gc gc.collect() log = logger.Logger(casscf.stdout, casscf.verbose) self._tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) max_memory = max(3000, casscf.max_memory*.9-mem_now) if max_memory < mem_basic: log.warn('Calculation needs %d MB memory, over CASSCF.max_memory (%d MB) limit', (mem_basic+mem_now)/.9, casscf.max_memory) self.j_pc, self.k_pc = \ trans_e1_outcore(mol, mo, casscf.ncore, casscf.ncas, self._tmpfile.name, max_memory=max_memory, level=level, verbose=log) self.feri = lib.H5TmpFile(self._tmpfile.name, 'r') self.ppaa = self.feri['ppaa'] self.papa = self.feri['papa'] dm_core = numpy.dot(mo[:,:ncore], mo[:,:ncore].T) vj, vk = casscf._scf.get_jk(mol, dm_core) self.vhf_c = reduce(numpy.dot, (mo.T, vj*2-vk, mo)) def _mem_usage(ncore, ncas, nmo): nvir = nmo - ncore outcore = basic = ncas**2*nmo**2*2 * 8/1e6 incore = outcore + (ncore+ncas)*nmo**3*4/1e6 if outcore > 10000: sys.stderr.write('Be careful with the virtual memorty address space `ulimit -v`\n') return incore, outcore, basic def prange(start, end, step): for i in range(start, end, step): yield i, min(i+step, end) if __name__ == '__main__': from pyscf import scf from pyscf import gto from pyscf import ao2mo from pyscf.mcscf import mc1step mol = gto.Mole() mol.verbose = 0 mol.output = None#"out_h2o" mol.atom = [ ['O', ( 0., 0. , 0. )], ['H', ( 0., -0.757, 0.587)], ['H', ( 0., 0.757 , 0.587)],] mol.basis = {'H': 'cc-pvtz', 'O': 'cc-pvtz',} mol.build() m = scf.RHF(mol) ehf = m.scf() mc = mc1step.CASSCF(m, 6, 4) mc.verbose = 4 mo = m.mo_coeff.copy() eris0 = _ERIS(mc, mo, 'incore') eris1 = _ERIS(mc, mo, 'outcore') eris2 = _ERIS(mc, mo, 'outcore', level=1) eris3 = _ERIS(mc, mo, 'outcore', level=2) print('vhf_c', numpy.allclose(eris0.vhf_c, eris1.vhf_c)) print('j_pc ', numpy.allclose(eris0.j_pc , eris1.j_pc )) print('k_pc ', numpy.allclose(eris0.k_pc , eris1.k_pc )) print('ppaa ', numpy.allclose(eris0.ppaa , eris1.ppaa )) print('papa ', numpy.allclose(eris0.papa , eris1.papa )) print('vhf_c', numpy.allclose(eris0.vhf_c, eris2.vhf_c)) print('j_pc ', numpy.allclose(eris0.j_pc , eris2.j_pc )) print('k_pc ', numpy.allclose(eris0.k_pc , eris2.k_pc )) print('ppaa ', numpy.allclose(eris0.ppaa , eris2.ppaa )) print('papa ', numpy.allclose(eris0.papa , eris2.papa )) print('vhf_c', numpy.allclose(eris0.vhf_c, eris3.vhf_c)) print('ppaa ', numpy.allclose(eris0.ppaa , eris3.ppaa )) print('papa ', numpy.allclose(eris0.papa , eris3.papa )) ncore = mc.ncore ncas = mc.ncas nocc = ncore + ncas nmo = mo.shape[1] eri = ao2mo.incore.full(m._eri, mo, compact=False).reshape((nmo,)*4) aaap = numpy.array(eri[ncore:nocc,ncore:nocc,ncore:nocc,:]) ppaa = numpy.array(eri[:,:,ncore:nocc,ncore:nocc]) papa = numpy.array(eri[:,ncore:nocc,:,ncore:nocc]) jc_pp = numpy.einsum('iipq->ipq', eri[:ncore,:ncore,:,:]) kc_pp = numpy.einsum('ipqi->ipq', eri[:ncore,:,:,:ncore]) vhf_c = numpy.einsum('cij->ij', jc_pp)*2 - numpy.einsum('cij->ij', kc_pp) j_pc = numpy.einsum('ijj->ji', jc_pp) k_pc = numpy.einsum('ijj->ji', kc_pp) print('vhf_c', numpy.allclose(vhf_c, eris1.vhf_c)) print('j_pc ', numpy.allclose(j_pc, eris1.j_pc)) print('k_pc ', numpy.allclose(k_pc, eris1.k_pc)) print('ppaa ', numpy.allclose(ppaa , eris0.ppaa )) print('papa ', numpy.allclose(papa , eris0.papa ))
b7c6cb163f6f35915e4fd76d905f8bb4b2ff6646
23bdcb74f9c4d98ff790d140bea56fbb0fd7bbbd
/app/env/Lib/site-packages/sqlalchemy/dialects/mysql/base.py
2bba2f81a7249980748bccf376d1a90900ce35f0
[ "MIT" ]
permissive
OswaldoCaleone/transporte_uniescolar
85c680c062fa14d0bc90afa60f7434b059fdf245
1ef10869358457a6a9d0f04df891ce4eb0905887
refs/heads/main
2023-08-30T18:37:11.496451
2021-11-12T13:35:45
2021-11-12T13:35:45
429,673,776
1
0
MIT
2021-11-19T04:53:24
2021-11-19T04:53:24
null
UTF-8
Python
false
false
117,932
py
# mysql/base.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php r""" .. dialect:: mysql :name: MySQL / MariaDB :full_support: 5.6, 5.7, 8.0 / 10.4, 10.5 :normal_support: 5.6+ / 10+ :best_effort: 5.0.2+ / 5.0.2+ Supported Versions and Features ------------------------------- SQLAlchemy supports MySQL starting with version 5.0.2 through modern releases, as well as all modern versions of MariaDB. See the official MySQL documentation for detailed information about features supported in any given server release. .. versionchanged:: 1.4 minimum MySQL version supported is now 5.0.2. MariaDB Support ~~~~~~~~~~~~~~~ The MariaDB variant of MySQL retains fundamental compatibility with MySQL's protocols however the development of these two products continues to diverge. Within the realm of SQLAlchemy, the two databases have a small number of syntactical and behavioral differences that SQLAlchemy accommodates automatically. To connect to a MariaDB database, no changes to the database URL are required:: engine = create_engine("mysql+pymysql://user:pass@some_mariadb/dbname?charset=utf8mb4") Upon first connect, the SQLAlchemy dialect employs a server version detection scheme that determines if the backing database reports as MariaDB. Based on this flag, the dialect can make different choices in those of areas where its behavior must be different. .. _mysql_mariadb_only_mode: MariaDB-Only Mode ~~~~~~~~~~~~~~~~~ The dialect also supports an **optional** "MariaDB-only" mode of connection, which may be useful for the case where an application makes use of MariaDB-specific features and is not compatible with a MySQL database. To use this mode of operation, replace the "mysql" token in the above URL with "mariadb":: engine = create_engine("mariadb+pymysql://user:pass@some_mariadb/dbname?charset=utf8mb4") The above engine, upon first connect, will raise an error if the server version detection detects that the backing database is not MariaDB. When using an engine with ``"mariadb"`` as the dialect name, **all mysql-specific options that include the name "mysql" in them are now named with "mariadb"**. This means options like ``mysql_engine`` should be named ``mariadb_engine``, etc. Both "mysql" and "mariadb" options can be used simultaneously for applications that use URLs with both "mysql" and "mariadb" dialects:: my_table = Table( "mytable", metadata, Column("id", Integer, primary_key=True), Column("textdata", String(50)), mariadb_engine="InnoDB", mysql_engine="InnoDB", ) Index( "textdata_ix", my_table.c.textdata, mysql_prefix="FULLTEXT", mariadb_prefix="FULLTEXT", ) Similar behavior will occur when the above structures are reflected, i.e. the "mariadb" prefix will be present in the option names when the database URL is based on the "mariadb" name. .. versionadded:: 1.4 Added "mariadb" dialect name supporting "MariaDB-only mode" for the MySQL dialect. .. _mysql_connection_timeouts: Connection Timeouts and Disconnects ----------------------------------- MySQL / MariaDB feature an automatic connection close behavior, for connections that have been idle for a fixed period of time, defaulting to eight hours. To circumvent having this issue, use the :paramref:`_sa.create_engine.pool_recycle` option which ensures that a connection will be discarded and replaced with a new one if it has been present in the pool for a fixed number of seconds:: engine = create_engine('mysql+mysqldb://...', pool_recycle=3600) For more comprehensive disconnect detection of pooled connections, including accommodation of server restarts and network issues, a pre-ping approach may be employed. See :ref:`pool_disconnects` for current approaches. .. seealso:: :ref:`pool_disconnects` - Background on several techniques for dealing with timed out connections as well as database restarts. .. _mysql_storage_engines: CREATE TABLE arguments including Storage Engines ------------------------------------------------ Both MySQL's and MariaDB's CREATE TABLE syntax includes a wide array of special options, including ``ENGINE``, ``CHARSET``, ``MAX_ROWS``, ``ROW_FORMAT``, ``INSERT_METHOD``, and many more. To accommodate the rendering of these arguments, specify the form ``mysql_argument_name="value"``. For example, to specify a table with ``ENGINE`` of ``InnoDB``, ``CHARSET`` of ``utf8mb4``, and ``KEY_BLOCK_SIZE`` of ``1024``:: Table('mytable', metadata, Column('data', String(32)), mysql_engine='InnoDB', mysql_charset='utf8mb4', mysql_key_block_size="1024" ) When supporting :ref:`mysql_mariadb_only_mode` mode, similar keys against the "mariadb" prefix must be included as well. The values can of course vary independently so that different settings on MySQL vs. MariaDB may be maintained:: # support both "mysql" and "mariadb-only" engine URLs Table('mytable', metadata, Column('data', String(32)), mysql_engine='InnoDB', mariadb_engine='InnoDB', mysql_charset='utf8mb4', mariadb_charset='utf8', mysql_key_block_size="1024" mariadb_key_block_size="1024" ) The MySQL / MariaDB dialects will normally transfer any keyword specified as ``mysql_keyword_name`` to be rendered as ``KEYWORD_NAME`` in the ``CREATE TABLE`` statement. A handful of these names will render with a space instead of an underscore; to support this, the MySQL dialect has awareness of these particular names, which include ``DATA DIRECTORY`` (e.g. ``mysql_data_directory``), ``CHARACTER SET`` (e.g. ``mysql_character_set``) and ``INDEX DIRECTORY`` (e.g. ``mysql_index_directory``). The most common argument is ``mysql_engine``, which refers to the storage engine for the table. Historically, MySQL server installations would default to ``MyISAM`` for this value, although newer versions may be defaulting to ``InnoDB``. The ``InnoDB`` engine is typically preferred for its support of transactions and foreign keys. A :class:`_schema.Table` that is created in a MySQL / MariaDB database with a storage engine of ``MyISAM`` will be essentially non-transactional, meaning any INSERT/UPDATE/DELETE statement referring to this table will be invoked as autocommit. It also will have no support for foreign key constraints; while the ``CREATE TABLE`` statement accepts foreign key options, when using the ``MyISAM`` storage engine these arguments are discarded. Reflecting such a table will also produce no foreign key constraint information. For fully atomic transactions as well as support for foreign key constraints, all participating ``CREATE TABLE`` statements must specify a transactional engine, which in the vast majority of cases is ``InnoDB``. Case Sensitivity and Table Reflection ------------------------------------- Both MySQL and MariaDB have inconsistent support for case-sensitive identifier names, basing support on specific details of the underlying operating system. However, it has been observed that no matter what case sensitivity behavior is present, the names of tables in foreign key declarations are *always* received from the database as all-lower case, making it impossible to accurately reflect a schema where inter-related tables use mixed-case identifier names. Therefore it is strongly advised that table names be declared as all lower case both within SQLAlchemy as well as on the MySQL / MariaDB database itself, especially if database reflection features are to be used. .. _mysql_isolation_level: Transaction Isolation Level --------------------------- All MySQL / MariaDB dialects support setting of transaction isolation level both via a dialect-specific parameter :paramref:`_sa.create_engine.isolation_level` accepted by :func:`_sa.create_engine`, as well as the :paramref:`.Connection.execution_options.isolation_level` argument as passed to :meth:`_engine.Connection.execution_options`. This feature works by issuing the command ``SET SESSION TRANSACTION ISOLATION LEVEL <level>`` for each new connection. For the special AUTOCOMMIT isolation level, DBAPI-specific techniques are used. To set isolation level using :func:`_sa.create_engine`:: engine = create_engine( "mysql://scott:tiger@localhost/test", isolation_level="READ UNCOMMITTED" ) To set using per-connection execution options:: connection = engine.connect() connection = connection.execution_options( isolation_level="READ COMMITTED" ) Valid values for ``isolation_level`` include: * ``READ COMMITTED`` * ``READ UNCOMMITTED`` * ``REPEATABLE READ`` * ``SERIALIZABLE`` * ``AUTOCOMMIT`` The special ``AUTOCOMMIT`` value makes use of the various "autocommit" attributes provided by specific DBAPIs, and is currently supported by MySQLdb, MySQL-Client, MySQL-Connector Python, and PyMySQL. Using it, the database connection will return true for the value of ``SELECT @@autocommit;``. .. seealso:: :ref:`dbapi_autocommit` AUTO_INCREMENT Behavior ----------------------- When creating tables, SQLAlchemy will automatically set ``AUTO_INCREMENT`` on the first :class:`.Integer` primary key column which is not marked as a foreign key:: >>> t = Table('mytable', metadata, ... Column('mytable_id', Integer, primary_key=True) ... ) >>> t.create() CREATE TABLE mytable ( id INTEGER NOT NULL AUTO_INCREMENT, PRIMARY KEY (id) ) You can disable this behavior by passing ``False`` to the :paramref:`_schema.Column.autoincrement` argument of :class:`_schema.Column`. This flag can also be used to enable auto-increment on a secondary column in a multi-column key for some storage engines:: Table('mytable', metadata, Column('gid', Integer, primary_key=True, autoincrement=False), Column('id', Integer, primary_key=True) ) .. _mysql_ss_cursors: Server Side Cursors ------------------- Server-side cursor support is available for the mysqlclient, PyMySQL, mariadbconnector dialects and may also be available in others. This makes use of either the "buffered=True/False" flag if available or by using a class such as ``MySQLdb.cursors.SSCursor`` or ``pymysql.cursors.SSCursor`` internally. Server side cursors are enabled on a per-statement basis by using the :paramref:`.Connection.execution_options.stream_results` connection execution option:: with engine.connect() as conn: result = conn.execution_options(stream_results=True).execute(text("select * from table")) Note that some kinds of SQL statements may not be supported with server side cursors; generally, only SQL statements that return rows should be used with this option. .. deprecated:: 1.4 The dialect-level server_side_cursors flag is deprecated and will be removed in a future release. Please use the :paramref:`_engine.Connection.stream_results` execution option for unbuffered cursor support. .. seealso:: :ref:`engine_stream_results` .. _mysql_unicode: Unicode ------- Charset Selection ~~~~~~~~~~~~~~~~~ Most MySQL / MariaDB DBAPIs offer the option to set the client character set for a connection. This is typically delivered using the ``charset`` parameter in the URL, such as:: e = create_engine( "mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4") This charset is the **client character set** for the connection. Some MySQL DBAPIs will default this to a value such as ``latin1``, and some will make use of the ``default-character-set`` setting in the ``my.cnf`` file as well. Documentation for the DBAPI in use should be consulted for specific behavior. The encoding used for Unicode has traditionally been ``'utf8'``. However, for MySQL versions 5.5.3 and MariaDB 5.5 on forward, a new MySQL-specific encoding ``'utf8mb4'`` has been introduced, and as of MySQL 8.0 a warning is emitted by the server if plain ``utf8`` is specified within any server-side directives, replaced with ``utf8mb3``. The rationale for this new encoding is due to the fact that MySQL's legacy utf-8 encoding only supports codepoints up to three bytes instead of four. Therefore, when communicating with a MySQL or MariaDB database that includes codepoints more than three bytes in size, this new charset is preferred, if supported by both the database as well as the client DBAPI, as in:: e = create_engine( "mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4") All modern DBAPIs should support the ``utf8mb4`` charset. In order to use ``utf8mb4`` encoding for a schema that was created with legacy ``utf8``, changes to the MySQL/MariaDB schema and/or server configuration may be required. .. seealso:: `The utf8mb4 Character Set \ <https://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html>`_ - \ in the MySQL documentation .. _mysql_binary_introducer: Dealing with Binary Data Warnings and Unicode ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MySQL versions 5.6, 5.7 and later (not MariaDB at the time of this writing) now emit a warning when attempting to pass binary data to the database, while a character set encoding is also in place, when the binary data itself is not valid for that encoding:: default.py:509: Warning: (1300, "Invalid utf8mb4 character string: 'F9876A'") cursor.execute(statement, parameters) This warning is due to the fact that the MySQL client library is attempting to interpret the binary string as a unicode object even if a datatype such as :class:`.LargeBinary` is in use. To resolve this, the SQL statement requires a binary "character set introducer" be present before any non-NULL value that renders like this:: INSERT INTO table (data) VALUES (_binary %s) These character set introducers are provided by the DBAPI driver, assuming the use of mysqlclient or PyMySQL (both of which are recommended). Add the query string parameter ``binary_prefix=true`` to the URL to repair this warning:: # mysqlclient engine = create_engine( "mysql+mysqldb://scott:tiger@localhost/test?charset=utf8mb4&binary_prefix=true") # PyMySQL engine = create_engine( "mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4&binary_prefix=true") The ``binary_prefix`` flag may or may not be supported by other MySQL drivers. SQLAlchemy itself cannot render this ``_binary`` prefix reliably, as it does not work with the NULL value, which is valid to be sent as a bound parameter. As the MySQL driver renders parameters directly into the SQL string, it's the most efficient place for this additional keyword to be passed. .. seealso:: `Character set introducers <https://dev.mysql.com/doc/refman/5.7/en/charset-introducer.html>`_ - on the MySQL website ANSI Quoting Style ------------------ MySQL / MariaDB feature two varieties of identifier "quoting style", one using backticks and the other using quotes, e.g. ```some_identifier``` vs. ``"some_identifier"``. All MySQL dialects detect which version is in use by checking the value of ``sql_mode`` when a connection is first established with a particular :class:`_engine.Engine`. This quoting style comes into play when rendering table and column names as well as when reflecting existing database structures. The detection is entirely automatic and no special configuration is needed to use either quoting style. MySQL / MariaDB SQL Extensions ------------------------------ Many of the MySQL / MariaDB SQL extensions are handled through SQLAlchemy's generic function and operator support:: table.select(table.c.password==func.md5('plaintext')) table.select(table.c.username.op('regexp')('^[a-d]')) And of course any valid SQL statement can be executed as a string as well. Some limited direct support for MySQL / MariaDB extensions to SQL is currently available. * INSERT..ON DUPLICATE KEY UPDATE: See :ref:`mysql_insert_on_duplicate_key_update` * SELECT pragma, use :meth:`_expression.Select.prefix_with` and :meth:`_query.Query.prefix_with`:: select(...).prefix_with(['HIGH_PRIORITY', 'SQL_SMALL_RESULT']) * UPDATE with LIMIT:: update(..., mysql_limit=10, mariadb_limit=10) * optimizer hints, use :meth:`_expression.Select.prefix_with` and :meth:`_query.Query.prefix_with`:: select(...).prefix_with("/*+ NO_RANGE_OPTIMIZATION(t4 PRIMARY) */") * index hints, use :meth:`_expression.Select.with_hint` and :meth:`_query.Query.with_hint`:: select(...).with_hint(some_table, "USE INDEX xyz") * MATCH operator support:: from sqlalchemy.dialects.mysql import match select(...).where(match(col1, col2, against="some expr").in_boolean_mode()) .. seealso:: :class:`_mysql.match` .. _mysql_insert_on_duplicate_key_update: INSERT...ON DUPLICATE KEY UPDATE (Upsert) ------------------------------------------ MySQL / MariaDB allow "upserts" (update or insert) of rows into a table via the ``ON DUPLICATE KEY UPDATE`` clause of the ``INSERT`` statement. A candidate row will only be inserted if that row does not match an existing primary or unique key in the table; otherwise, an UPDATE will be performed. The statement allows for separate specification of the values to INSERT versus the values for UPDATE. SQLAlchemy provides ``ON DUPLICATE KEY UPDATE`` support via the MySQL-specific :func:`.mysql.insert()` function, which provides the generative method :meth:`~.mysql.Insert.on_duplicate_key_update`: .. sourcecode:: pycon+sql >>> from sqlalchemy.dialects.mysql import insert >>> insert_stmt = insert(my_table).values( ... id='some_existing_id', ... data='inserted value') >>> on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update( ... data=insert_stmt.inserted.data, ... status='U' ... ) >>> print(on_duplicate_key_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%s, %s) ON DUPLICATE KEY UPDATE data = VALUES(data), status = %s Unlike PostgreSQL's "ON CONFLICT" phrase, the "ON DUPLICATE KEY UPDATE" phrase will always match on any primary key or unique key, and will always perform an UPDATE if there's a match; there are no options for it to raise an error or to skip performing an UPDATE. ``ON DUPLICATE KEY UPDATE`` is used to perform an update of the already existing row, using any combination of new values as well as values from the proposed insertion. These values are normally specified using keyword arguments passed to the :meth:`_mysql.Insert.on_duplicate_key_update` given column key values (usually the name of the column, unless it specifies :paramref:`_schema.Column.key` ) as keys and literal or SQL expressions as values: .. sourcecode:: pycon+sql >>> insert_stmt = insert(my_table).values( ... id='some_existing_id', ... data='inserted value') >>> on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update( ... data="some data", ... updated_at=func.current_timestamp(), ... ) >>> print(on_duplicate_key_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%s, %s) ON DUPLICATE KEY UPDATE data = %s, updated_at = CURRENT_TIMESTAMP In a manner similar to that of :meth:`.UpdateBase.values`, other parameter forms are accepted, including a single dictionary: .. sourcecode:: pycon+sql >>> on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update( ... {"data": "some data", "updated_at": func.current_timestamp()}, ... ) as well as a list of 2-tuples, which will automatically provide a parameter-ordered UPDATE statement in a manner similar to that described at :ref:`updates_order_parameters`. Unlike the :class:`_expression.Update` object, no special flag is needed to specify the intent since the argument form is this context is unambiguous: .. sourcecode:: pycon+sql >>> on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update( ... [ ... ("data", "some data"), ... ("updated_at", func.current_timestamp()), ... ] ... ) >>> print(on_duplicate_key_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%s, %s) ON DUPLICATE KEY UPDATE data = %s, updated_at = CURRENT_TIMESTAMP .. versionchanged:: 1.3 support for parameter-ordered UPDATE clause within MySQL ON DUPLICATE KEY UPDATE .. warning:: The :meth:`_mysql.Insert.on_duplicate_key_update` method does **not** take into account Python-side default UPDATE values or generation functions, e.g. e.g. those specified using :paramref:`_schema.Column.onupdate`. These values will not be exercised for an ON DUPLICATE KEY style of UPDATE, unless they are manually specified explicitly in the parameters. In order to refer to the proposed insertion row, the special alias :attr:`_mysql.Insert.inserted` is available as an attribute on the :class:`_mysql.Insert` object; this object is a :class:`_expression.ColumnCollection` which contains all columns of the target table: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values( ... id='some_id', ... data='inserted value', ... author='jlh') >>> do_update_stmt = stmt.on_duplicate_key_update( ... data="updated value", ... author=stmt.inserted.author ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data, author) VALUES (%s, %s, %s) ON DUPLICATE KEY UPDATE data = %s, author = VALUES(author) When rendered, the "inserted" namespace will produce the expression ``VALUES(<columnname>)``. .. versionadded:: 1.2 Added support for MySQL ON DUPLICATE KEY UPDATE clause rowcount Support ---------------- SQLAlchemy standardizes the DBAPI ``cursor.rowcount`` attribute to be the usual definition of "number of rows matched by an UPDATE or DELETE" statement. This is in contradiction to the default setting on most MySQL DBAPI drivers, which is "number of rows actually modified/deleted". For this reason, the SQLAlchemy MySQL dialects always add the ``constants.CLIENT.FOUND_ROWS`` flag, or whatever is equivalent for the target dialect, upon connection. This setting is currently hardcoded. .. seealso:: :attr:`_engine.CursorResult.rowcount` .. _mysql_indexes: MySQL / MariaDB- Specific Index Options ----------------------------------------- MySQL and MariaDB-specific extensions to the :class:`.Index` construct are available. Index Length ~~~~~~~~~~~~~ MySQL and MariaDB both provide an option to create index entries with a certain length, where "length" refers to the number of characters or bytes in each value which will become part of the index. SQLAlchemy provides this feature via the ``mysql_length`` and/or ``mariadb_length`` parameters:: Index('my_index', my_table.c.data, mysql_length=10, mariadb_length=10) Index('a_b_idx', my_table.c.a, my_table.c.b, mysql_length={'a': 4, 'b': 9}) Index('a_b_idx', my_table.c.a, my_table.c.b, mariadb_length={'a': 4, 'b': 9}) Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. The value passed to the keyword argument *must* be either an integer (and, thus, specify the same prefix length value for all columns of the index) or a dict in which keys are column names and values are prefix length values for corresponding columns. MySQL and MariaDB only allow a length for a column of an index if it is for a CHAR, VARCHAR, TEXT, BINARY, VARBINARY and BLOB. Index Prefixes ~~~~~~~~~~~~~~ MySQL storage engines permit you to specify an index prefix when creating an index. SQLAlchemy provides this feature via the ``mysql_prefix`` parameter on :class:`.Index`:: Index('my_index', my_table.c.data, mysql_prefix='FULLTEXT') The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX, so it *must* be a valid index prefix for your MySQL storage engine. .. versionadded:: 1.1.5 .. seealso:: `CREATE INDEX <https://dev.mysql.com/doc/refman/5.0/en/create-index.html>`_ - MySQL documentation Index Types ~~~~~~~~~~~~~ Some MySQL storage engines permit you to specify an index type when creating an index or primary key constraint. SQLAlchemy provides this feature via the ``mysql_using`` parameter on :class:`.Index`:: Index('my_index', my_table.c.data, mysql_using='hash', mariadb_using='hash') As well as the ``mysql_using`` parameter on :class:`.PrimaryKeyConstraint`:: PrimaryKeyConstraint("data", mysql_using='hash', mariadb_using='hash') The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX or PRIMARY KEY clause, so it *must* be a valid index type for your MySQL storage engine. More information can be found at: https://dev.mysql.com/doc/refman/5.0/en/create-index.html https://dev.mysql.com/doc/refman/5.0/en/create-table.html Index Parsers ~~~~~~~~~~~~~ CREATE FULLTEXT INDEX in MySQL also supports a "WITH PARSER" option. This is available using the keyword argument ``mysql_with_parser``:: Index( 'my_index', my_table.c.data, mysql_prefix='FULLTEXT', mysql_with_parser="ngram", mariadb_prefix='FULLTEXT', mariadb_with_parser="ngram", ) .. versionadded:: 1.3 .. _mysql_foreign_keys: MySQL / MariaDB Foreign Keys ----------------------------- MySQL and MariaDB's behavior regarding foreign keys has some important caveats. Foreign Key Arguments to Avoid ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Neither MySQL nor MariaDB support the foreign key arguments "DEFERRABLE", "INITIALLY", or "MATCH". Using the ``deferrable`` or ``initially`` keyword argument with :class:`_schema.ForeignKeyConstraint` or :class:`_schema.ForeignKey` will have the effect of these keywords being rendered in a DDL expression, which will then raise an error on MySQL or MariaDB. In order to use these keywords on a foreign key while having them ignored on a MySQL / MariaDB backend, use a custom compile rule:: from sqlalchemy.ext.compiler import compiles from sqlalchemy.schema import ForeignKeyConstraint @compiles(ForeignKeyConstraint, "mysql", "mariadb") def process(element, compiler, **kw): element.deferrable = element.initially = None return compiler.visit_foreign_key_constraint(element, **kw) The "MATCH" keyword is in fact more insidious, and is explicitly disallowed by SQLAlchemy in conjunction with the MySQL or MariaDB backends. This argument is silently ignored by MySQL / MariaDB, but in addition has the effect of ON UPDATE and ON DELETE options also being ignored by the backend. Therefore MATCH should never be used with the MySQL / MariaDB backends; as is the case with DEFERRABLE and INITIALLY, custom compilation rules can be used to correct a ForeignKeyConstraint at DDL definition time. Reflection of Foreign Key Constraints ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Not all MySQL / MariaDB storage engines support foreign keys. When using the very common ``MyISAM`` MySQL storage engine, the information loaded by table reflection will not include foreign keys. For these tables, you may supply a :class:`~sqlalchemy.ForeignKeyConstraint` at reflection time:: Table('mytable', metadata, ForeignKeyConstraint(['other_id'], ['othertable.other_id']), autoload_with=engine ) .. seealso:: :ref:`mysql_storage_engines` .. _mysql_unique_constraints: MySQL / MariaDB Unique Constraints and Reflection ---------------------------------------------------- SQLAlchemy supports both the :class:`.Index` construct with the flag ``unique=True``, indicating a UNIQUE index, as well as the :class:`.UniqueConstraint` construct, representing a UNIQUE constraint. Both objects/syntaxes are supported by MySQL / MariaDB when emitting DDL to create these constraints. However, MySQL / MariaDB does not have a unique constraint construct that is separate from a unique index; that is, the "UNIQUE" constraint on MySQL / MariaDB is equivalent to creating a "UNIQUE INDEX". When reflecting these constructs, the :meth:`_reflection.Inspector.get_indexes` and the :meth:`_reflection.Inspector.get_unique_constraints` methods will **both** return an entry for a UNIQUE index in MySQL / MariaDB. However, when performing full table reflection using ``Table(..., autoload_with=engine)``, the :class:`.UniqueConstraint` construct is **not** part of the fully reflected :class:`_schema.Table` construct under any circumstances; this construct is always represented by a :class:`.Index` with the ``unique=True`` setting present in the :attr:`_schema.Table.indexes` collection. TIMESTAMP / DATETIME issues --------------------------- .. _mysql_timestamp_onupdate: Rendering ON UPDATE CURRENT TIMESTAMP for MySQL / MariaDB's explicit_defaults_for_timestamp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MySQL / MariaDB have historically expanded the DDL for the :class:`_types.TIMESTAMP` datatype into the phrase "TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP", which includes non-standard SQL that automatically updates the column with the current timestamp when an UPDATE occurs, eliminating the usual need to use a trigger in such a case where server-side update changes are desired. MySQL 5.6 introduced a new flag `explicit_defaults_for_timestamp <https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html #sysvar_explicit_defaults_for_timestamp>`_ which disables the above behavior, and in MySQL 8 this flag defaults to true, meaning in order to get a MySQL "on update timestamp" without changing this flag, the above DDL must be rendered explicitly. Additionally, the same DDL is valid for use of the ``DATETIME`` datatype as well. SQLAlchemy's MySQL dialect does not yet have an option to generate MySQL's "ON UPDATE CURRENT_TIMESTAMP" clause, noting that this is not a general purpose "ON UPDATE" as there is no such syntax in standard SQL. SQLAlchemy's :paramref:`_schema.Column.server_onupdate` parameter is currently not related to this special MySQL behavior. To generate this DDL, make use of the :paramref:`_schema.Column.server_default` parameter and pass a textual clause that also includes the ON UPDATE clause:: from sqlalchemy import Table, MetaData, Column, Integer, String, TIMESTAMP from sqlalchemy import text metadata = MetaData() mytable = Table( "mytable", metadata, Column('id', Integer, primary_key=True), Column('data', String(50)), Column( 'last_updated', TIMESTAMP, server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP") ) ) The same instructions apply to use of the :class:`_types.DateTime` and :class:`_types.DATETIME` datatypes:: from sqlalchemy import DateTime mytable = Table( "mytable", metadata, Column('id', Integer, primary_key=True), Column('data', String(50)), Column( 'last_updated', DateTime, server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP") ) ) Even though the :paramref:`_schema.Column.server_onupdate` feature does not generate this DDL, it still may be desirable to signal to the ORM that this updated value should be fetched. This syntax looks like the following:: from sqlalchemy.schema import FetchedValue class MyClass(Base): __tablename__ = 'mytable' id = Column(Integer, primary_key=True) data = Column(String(50)) last_updated = Column( TIMESTAMP, server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP"), server_onupdate=FetchedValue() ) .. _mysql_timestamp_null: TIMESTAMP Columns and NULL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MySQL historically enforces that a column which specifies the TIMESTAMP datatype implicitly includes a default value of CURRENT_TIMESTAMP, even though this is not stated, and additionally sets the column as NOT NULL, the opposite behavior vs. that of all other datatypes:: mysql> CREATE TABLE ts_test ( -> a INTEGER, -> b INTEGER NOT NULL, -> c TIMESTAMP, -> d TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -> e TIMESTAMP NULL); Query OK, 0 rows affected (0.03 sec) mysql> SHOW CREATE TABLE ts_test; +---------+----------------------------------------------------- | Table | Create Table +---------+----------------------------------------------------- | ts_test | CREATE TABLE `ts_test` ( `a` int(11) DEFAULT NULL, `b` int(11) NOT NULL, `c` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, `d` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP, `e` timestamp NULL DEFAULT NULL ) ENGINE=MyISAM DEFAULT CHARSET=latin1 Above, we see that an INTEGER column defaults to NULL, unless it is specified with NOT NULL. But when the column is of type TIMESTAMP, an implicit default of CURRENT_TIMESTAMP is generated which also coerces the column to be a NOT NULL, even though we did not specify it as such. This behavior of MySQL can be changed on the MySQL side using the `explicit_defaults_for_timestamp <https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html #sysvar_explicit_defaults_for_timestamp>`_ configuration flag introduced in MySQL 5.6. With this server setting enabled, TIMESTAMP columns behave like any other datatype on the MySQL side with regards to defaults and nullability. However, to accommodate the vast majority of MySQL databases that do not specify this new flag, SQLAlchemy emits the "NULL" specifier explicitly with any TIMESTAMP column that does not specify ``nullable=False``. In order to accommodate newer databases that specify ``explicit_defaults_for_timestamp``, SQLAlchemy also emits NOT NULL for TIMESTAMP columns that do specify ``nullable=False``. The following example illustrates:: from sqlalchemy import MetaData, Integer, Table, Column, text from sqlalchemy.dialects.mysql import TIMESTAMP m = MetaData() t = Table('ts_test', m, Column('a', Integer), Column('b', Integer, nullable=False), Column('c', TIMESTAMP), Column('d', TIMESTAMP, nullable=False) ) from sqlalchemy import create_engine e = create_engine("mysql://scott:tiger@localhost/test", echo=True) m.create_all(e) output:: CREATE TABLE ts_test ( a INTEGER, b INTEGER NOT NULL, c TIMESTAMP NULL, d TIMESTAMP NOT NULL ) .. versionchanged:: 1.0.0 - SQLAlchemy now renders NULL or NOT NULL in all cases for TIMESTAMP columns, to accommodate ``explicit_defaults_for_timestamp``. Prior to this version, it will not render "NOT NULL" for a TIMESTAMP column that is ``nullable=False``. """ # noqa from array import array as _array from collections import defaultdict from itertools import compress import re from sqlalchemy import literal_column from sqlalchemy import text from sqlalchemy.sql import visitors from . import reflection as _reflection from .enumerated import ENUM from .enumerated import SET from .json import JSON from .json import JSONIndexType from .json import JSONPathType from .types import _FloatType from .types import _IntegerType from .types import _MatchType from .types import _NumericType from .types import _StringType from .types import BIGINT from .types import BIT from .types import CHAR from .types import DATETIME from .types import DECIMAL from .types import DOUBLE from .types import FLOAT from .types import INTEGER from .types import LONGBLOB from .types import LONGTEXT from .types import MEDIUMBLOB from .types import MEDIUMINT from .types import MEDIUMTEXT from .types import NCHAR from .types import NUMERIC from .types import NVARCHAR from .types import REAL from .types import SMALLINT from .types import TEXT from .types import TIME from .types import TIMESTAMP from .types import TINYBLOB from .types import TINYINT from .types import TINYTEXT from .types import VARCHAR from .types import YEAR from ... import exc from ... import log from ... import schema as sa_schema from ... import sql from ... import types as sqltypes from ... import util from ...engine import default from ...engine import reflection from ...sql import coercions from ...sql import compiler from ...sql import elements from ...sql import functions from ...sql import operators from ...sql import roles from ...sql import util as sql_util from ...sql.sqltypes import Unicode from ...types import BINARY from ...types import BLOB from ...types import BOOLEAN from ...types import DATE from ...types import VARBINARY from ...util import topological RESERVED_WORDS = set( [ "accessible", "action", "add", "admin", "all", "alter", "analyze", "and", "array", # 8.0 "as", "asc", "asensitive", "before", "between", "bigint", "binary", "blob", "both", "by", "call", "cascade", "case", "change", "char", "character", "check", "collate", "column", "columns", "condition", "constraint", "continue", "convert", "create", "cross", "cube", "cume_dist", "current_date", "current_time", "current_timestamp", "current_user", "cursor", "database", "databases", "day_hour", "day_microsecond", "day_minute", "day_second", "dec", "decimal", "declare", "default", "delayed", "delete", "desc", "describe", "deterministic", "distinct", "distinctrow", "div", "double", "drop", "dual", "each", "else", "elseif", "empty", "enclosed", "escaped", "except", "exists", "exit", "explain", "false", "fetch", "fields", "first_value", "float", "float4", "float8", "for", "force", "foreign", "from", "fulltext", "function", "general", "generated", "get", "grant", "group", "grouping", "groups", "having", "high_priority", "hour_microsecond", "hour_minute", "hour_second", "if", "ignore", "ignore_server_ids", "in", "index", "infile", "inner", "inout", "insensitive", "insert", "int", "int1", "int2", "int3", "int4", "int8", "integer", "interval", "into", "io_after_gtids", "io_before_gtids", "is", "iterate", "join", "json_table", "key", "keys", "kill", "last_value", "lateral", "leading", "leave", "left", "level", "like", "limit", "linear", "linear", "lines", "load", "localtime", "localtimestamp", "lock", "long", "longblob", "longtext", "loop", "low_priority", "master_bind", "master_heartbeat_period", "master_ssl_verify_server_cert", "master_ssl_verify_server_cert", "match", "maxvalue", "mediumblob", "mediumint", "mediumtext", "member", # 8.0 "middleint", "minute_microsecond", "minute_second", "mod", "mode", "modifies", "natural", "no_write_to_binlog", "not", "nth_value", "ntile", "null", "numeric", "of", "on", "one_shot", "optimize", "optimizer_costs", "option", "optionally", "or", "order", "out", "outer", "outfile", "over", "partition", "percent_rank", "persist", "persist_only", "precision", "primary", "privileges", "procedure", "purge", "range", "range", "rank", "read", "read_only", "read_only", "read_write", "read_write", # 5.1 "reads", "real", "recursive", "references", "regexp", "release", "rename", "repeat", "replace", "require", "resignal", "restrict", "return", "revoke", "right", "rlike", "role", "row", "row_number", "rows", "schema", "schemas", "second_microsecond", "select", "sensitive", "separator", "set", "show", "signal", "slow", # 5.5 "smallint", "soname", "spatial", "specific", "sql", "sql_after_gtids", "sql_before_gtids", # 5.6 "sql_big_result", "sql_calc_found_rows", "sql_small_result", "sqlexception", "sqlstate", "sqlwarning", "ssl", "starting", "status", "stored", "straight_join", "system", "table", "tables", # 4.1 "terminated", "text", "then", "time", "tinyblob", "tinyint", "tinytext", "to", "trailing", "trigger", "true", "undo", "union", "unique", "unlock", "unsigned", "update", "usage", "use", "using", "utc_date", "utc_time", "utc_timestamp", "values", "varbinary", "varchar", "varcharacter", "varying", "virtual", # 5.7 "when", "where", "while", "window", # 8.0 "with", "write", "x509", "xor", "year_month", "zerofill", # 5.0 ] ) AUTOCOMMIT_RE = re.compile( r"\s*(?:UPDATE|INSERT|CREATE|DELETE|DROP|ALTER|LOAD +DATA|REPLACE)", re.I | re.UNICODE, ) SET_RE = re.compile( r"\s*SET\s+(?:(?:GLOBAL|SESSION)\s+)?\w", re.I | re.UNICODE ) # old names MSTime = TIME MSSet = SET MSEnum = ENUM MSLongBlob = LONGBLOB MSMediumBlob = MEDIUMBLOB MSTinyBlob = TINYBLOB MSBlob = BLOB MSBinary = BINARY MSVarBinary = VARBINARY MSNChar = NCHAR MSNVarChar = NVARCHAR MSChar = CHAR MSString = VARCHAR MSLongText = LONGTEXT MSMediumText = MEDIUMTEXT MSTinyText = TINYTEXT MSText = TEXT MSYear = YEAR MSTimeStamp = TIMESTAMP MSBit = BIT MSSmallInteger = SMALLINT MSTinyInteger = TINYINT MSMediumInteger = MEDIUMINT MSBigInteger = BIGINT MSNumeric = NUMERIC MSDecimal = DECIMAL MSDouble = DOUBLE MSReal = REAL MSFloat = FLOAT MSInteger = INTEGER colspecs = { _IntegerType: _IntegerType, _NumericType: _NumericType, _FloatType: _FloatType, sqltypes.Numeric: NUMERIC, sqltypes.Float: FLOAT, sqltypes.Time: TIME, sqltypes.Enum: ENUM, sqltypes.MatchType: _MatchType, sqltypes.JSON: JSON, sqltypes.JSON.JSONIndexType: JSONIndexType, sqltypes.JSON.JSONPathType: JSONPathType, } # Everything 3.23 through 5.1 excepting OpenGIS types. ischema_names = { "bigint": BIGINT, "binary": BINARY, "bit": BIT, "blob": BLOB, "boolean": BOOLEAN, "char": CHAR, "date": DATE, "datetime": DATETIME, "decimal": DECIMAL, "double": DOUBLE, "enum": ENUM, "fixed": DECIMAL, "float": FLOAT, "int": INTEGER, "integer": INTEGER, "json": JSON, "longblob": LONGBLOB, "longtext": LONGTEXT, "mediumblob": MEDIUMBLOB, "mediumint": MEDIUMINT, "mediumtext": MEDIUMTEXT, "nchar": NCHAR, "nvarchar": NVARCHAR, "numeric": NUMERIC, "set": SET, "smallint": SMALLINT, "text": TEXT, "time": TIME, "timestamp": TIMESTAMP, "tinyblob": TINYBLOB, "tinyint": TINYINT, "tinytext": TINYTEXT, "varbinary": VARBINARY, "varchar": VARCHAR, "year": YEAR, } class MySQLExecutionContext(default.DefaultExecutionContext): def should_autocommit_text(self, statement): return AUTOCOMMIT_RE.match(statement) def create_server_side_cursor(self): if self.dialect.supports_server_side_cursors: return self._dbapi_connection.cursor(self.dialect._sscursor) else: raise NotImplementedError() def fire_sequence(self, seq, type_): return self._execute_scalar( ( "select nextval(%s)" % self.identifier_preparer.format_sequence(seq) ), type_, ) class MySQLCompiler(compiler.SQLCompiler): render_table_with_column_in_update_from = True """Overridden from base SQLCompiler value""" extract_map = compiler.SQLCompiler.extract_map.copy() extract_map.update({"milliseconds": "millisecond"}) def default_from(self): """Called when a ``SELECT`` statement has no froms, and no ``FROM`` clause is to be appended. """ if self.stack: stmt = self.stack[-1]["selectable"] if stmt._where_criteria: return " FROM DUAL" return "" def visit_random_func(self, fn, **kw): return "rand%s" % self.function_argspec(fn) def visit_sequence(self, seq, **kw): return "nextval(%s)" % self.preparer.format_sequence(seq) def visit_sysdate_func(self, fn, **kw): return "SYSDATE()" def _render_json_extract_from_binary(self, binary, operator, **kw): # note we are intentionally calling upon the process() calls in the # order in which they appear in the SQL String as this is used # by positional parameter rendering if binary.type._type_affinity is sqltypes.JSON: return "JSON_EXTRACT(%s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) # for non-JSON, MySQL doesn't handle JSON null at all so it has to # be explicit case_expression = "CASE JSON_EXTRACT(%s, %s) WHEN 'null' THEN NULL" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) if binary.type._type_affinity is sqltypes.Integer: type_expression = ( "ELSE CAST(JSON_EXTRACT(%s, %s) AS SIGNED INTEGER)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) ) elif binary.type._type_affinity is sqltypes.Numeric: if ( binary.type.scale is not None and binary.type.precision is not None ): # using DECIMAL here because MySQL does not recognize NUMERIC type_expression = ( "ELSE CAST(JSON_EXTRACT(%s, %s) AS DECIMAL(%s, %s))" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), binary.type.precision, binary.type.scale, ) ) else: # FLOAT / REAL not added in MySQL til 8.0.17 type_expression = ( "ELSE JSON_EXTRACT(%s, %s)+0.0000000000000000000000" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) ) elif binary.type._type_affinity is sqltypes.Boolean: # the NULL handling is particularly weird with boolean, so # explicitly return true/false constants type_expression = "WHEN true THEN true ELSE false" elif binary.type._type_affinity is sqltypes.String: # (gord): this fails with a JSON value that's a four byte unicode # string. SQLite has the same problem at the moment # (zzzeek): I'm not really sure. let's take a look at a test case # that hits each backend and maybe make a requires rule for it? type_expression = "ELSE JSON_UNQUOTE(JSON_EXTRACT(%s, %s))" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) else: # other affinity....this is not expected right now type_expression = "ELSE JSON_EXTRACT(%s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) return case_expression + " " + type_expression + " END" def visit_json_getitem_op_binary(self, binary, operator, **kw): return self._render_json_extract_from_binary(binary, operator, **kw) def visit_json_path_getitem_op_binary(self, binary, operator, **kw): return self._render_json_extract_from_binary(binary, operator, **kw) def visit_on_duplicate_key_update(self, on_duplicate, **kw): statement = self.current_executable if on_duplicate._parameter_ordering: parameter_ordering = [ coercions.expect(roles.DMLColumnRole, key) for key in on_duplicate._parameter_ordering ] ordered_keys = set(parameter_ordering) cols = [ statement.table.c[key] for key in parameter_ordering if key in statement.table.c ] + [c for c in statement.table.c if c.key not in ordered_keys] else: cols = statement.table.c clauses = [] # traverses through all table columns to preserve table column order for column in (col for col in cols if col.key in on_duplicate.update): val = on_duplicate.update[column.key] if coercions._is_literal(val): val = elements.BindParameter(None, val, type_=column.type) value_text = self.process(val.self_group(), use_schema=False) else: def replace(obj): if ( isinstance(obj, elements.BindParameter) and obj.type._isnull ): obj = obj._clone() obj.type = column.type return obj elif ( isinstance(obj, elements.ColumnClause) and obj.table is on_duplicate.inserted_alias ): obj = literal_column( "VALUES(" + self.preparer.quote(column.name) + ")" ) return obj else: # element is not replaced return None val = visitors.replacement_traverse(val, {}, replace) value_text = self.process(val.self_group(), use_schema=False) name_text = self.preparer.quote(column.name) clauses.append("%s = %s" % (name_text, value_text)) non_matching = set(on_duplicate.update) - set(c.key for c in cols) if non_matching: util.warn( "Additional column names not matching " "any column keys in table '%s': %s" % ( self.statement.table.name, (", ".join("'%s'" % c for c in non_matching)), ) ) return "ON DUPLICATE KEY UPDATE " + ", ".join(clauses) def visit_concat_op_binary(self, binary, operator, **kw): return "concat(%s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) _match_valid_flag_combinations = frozenset( ( # (boolean_mode, natural_language, query_expansion) (False, False, False), (True, False, False), (False, True, False), (False, False, True), (False, True, True), ) ) _match_flag_expressions = ( "IN BOOLEAN MODE", "IN NATURAL LANGUAGE MODE", "WITH QUERY EXPANSION", ) def visit_mysql_match(self, element, **kw): return self.visit_match_op_binary(element, element.operator, **kw) def visit_match_op_binary(self, binary, operator, **kw): """ Note that `mysql_boolean_mode` is enabled by default because of backward compatibility """ modifiers = binary.modifiers boolean_mode = modifiers.get("mysql_boolean_mode", True) natural_language = modifiers.get("mysql_natural_language", False) query_expansion = modifiers.get("mysql_query_expansion", False) flag_combination = (boolean_mode, natural_language, query_expansion) if flag_combination not in self._match_valid_flag_combinations: flags = ( "in_boolean_mode=%s" % boolean_mode, "in_natural_language_mode=%s" % natural_language, "with_query_expansion=%s" % query_expansion, ) flags = ", ".join(flags) raise exc.CompileError("Invalid MySQL match flags: %s" % flags) match_clause = binary.left match_clause = self.process(match_clause, **kw) against_clause = self.process(binary.right, **kw) if any(flag_combination): flag_expressions = compress( self._match_flag_expressions, flag_combination, ) against_clause = [against_clause] against_clause.extend(flag_expressions) against_clause = " ".join(against_clause) return "MATCH (%s) AGAINST (%s)" % (match_clause, against_clause) def get_from_hint_text(self, table, text): return text def visit_typeclause(self, typeclause, type_=None, **kw): if type_ is None: type_ = typeclause.type.dialect_impl(self.dialect) if isinstance(type_, sqltypes.TypeDecorator): return self.visit_typeclause(typeclause, type_.impl, **kw) elif isinstance(type_, sqltypes.Integer): if getattr(type_, "unsigned", False): return "UNSIGNED INTEGER" else: return "SIGNED INTEGER" elif isinstance(type_, sqltypes.TIMESTAMP): return "DATETIME" elif isinstance( type_, ( sqltypes.DECIMAL, sqltypes.DateTime, sqltypes.Date, sqltypes.Time, ), ): return self.dialect.type_compiler.process(type_) elif isinstance(type_, sqltypes.String) and not isinstance( type_, (ENUM, SET) ): adapted = CHAR._adapt_string_for_cast(type_) return self.dialect.type_compiler.process(adapted) elif isinstance(type_, sqltypes._Binary): return "BINARY" elif isinstance(type_, sqltypes.JSON): return "JSON" elif isinstance(type_, sqltypes.NUMERIC): return self.dialect.type_compiler.process(type_).replace( "NUMERIC", "DECIMAL" ) elif ( isinstance(type_, sqltypes.Float) and self.dialect._support_float_cast ): return self.dialect.type_compiler.process(type_) else: return None def visit_cast(self, cast, **kw): type_ = self.process(cast.typeclause) if type_ is None: util.warn( "Datatype %s does not support CAST on MySQL/MariaDb; " "the CAST will be skipped." % self.dialect.type_compiler.process(cast.typeclause.type) ) return self.process(cast.clause.self_group(), **kw) return "CAST(%s AS %s)" % (self.process(cast.clause, **kw), type_) def render_literal_value(self, value, type_): value = super(MySQLCompiler, self).render_literal_value(value, type_) if self.dialect._backslash_escapes: value = value.replace("\\", "\\\\") return value # override native_boolean=False behavior here, as # MySQL still supports native boolean def visit_true(self, element, **kw): return "true" def visit_false(self, element, **kw): return "false" def get_select_precolumns(self, select, **kw): """Add special MySQL keywords in place of DISTINCT. .. deprecated 1.4:: this usage is deprecated. :meth:`_expression.Select.prefix_with` should be used for special keywords at the start of a SELECT. """ if isinstance(select._distinct, util.string_types): util.warn_deprecated( "Sending string values for 'distinct' is deprecated in the " "MySQL dialect and will be removed in a future release. " "Please use :meth:`.Select.prefix_with` for special keywords " "at the start of a SELECT statement", version="1.4", ) return select._distinct.upper() + " " return super(MySQLCompiler, self).get_select_precolumns(select, **kw) def visit_join(self, join, asfrom=False, from_linter=None, **kwargs): if from_linter: from_linter.edges.add((join.left, join.right)) if join.full: join_type = " FULL OUTER JOIN " elif join.isouter: join_type = " LEFT OUTER JOIN " else: join_type = " INNER JOIN " return "".join( ( self.process( join.left, asfrom=True, from_linter=from_linter, **kwargs ), join_type, self.process( join.right, asfrom=True, from_linter=from_linter, **kwargs ), " ON ", self.process(join.onclause, from_linter=from_linter, **kwargs), ) ) def for_update_clause(self, select, **kw): if select._for_update_arg.read: tmp = " LOCK IN SHARE MODE" else: tmp = " FOR UPDATE" if select._for_update_arg.of and self.dialect.supports_for_update_of: tables = util.OrderedSet() for c in select._for_update_arg.of: tables.update(sql_util.surface_selectables_only(c)) tmp += " OF " + ", ".join( self.process(table, ashint=True, use_schema=False, **kw) for table in tables ) if select._for_update_arg.nowait: tmp += " NOWAIT" if select._for_update_arg.skip_locked: tmp += " SKIP LOCKED" return tmp def limit_clause(self, select, **kw): # MySQL supports: # LIMIT <limit> # LIMIT <offset>, <limit> # and in server versions > 3.3: # LIMIT <limit> OFFSET <offset> # The latter is more readable for offsets but we're stuck with the # former until we can refine dialects by server revision. limit_clause, offset_clause = ( select._limit_clause, select._offset_clause, ) if limit_clause is None and offset_clause is None: return "" elif offset_clause is not None: # As suggested by the MySQL docs, need to apply an # artificial limit if one wasn't provided # https://dev.mysql.com/doc/refman/5.0/en/select.html if limit_clause is None: # hardwire the upper limit. Currently # needed by OurSQL with Python 3 # (https://bugs.launchpad.net/oursql/+bug/686232), # but also is consistent with the usage of the upper # bound as part of MySQL's "syntax" for OFFSET with # no LIMIT return " \n LIMIT %s, %s" % ( self.process(offset_clause, **kw), "18446744073709551615", ) else: return " \n LIMIT %s, %s" % ( self.process(offset_clause, **kw), self.process(limit_clause, **kw), ) else: # No offset provided, so just use the limit return " \n LIMIT %s" % (self.process(limit_clause, **kw),) def update_limit_clause(self, update_stmt): limit = update_stmt.kwargs.get("%s_limit" % self.dialect.name, None) if limit: return "LIMIT %s" % limit else: return None def update_tables_clause(self, update_stmt, from_table, extra_froms, **kw): kw["asfrom"] = True return ", ".join( t._compiler_dispatch(self, **kw) for t in [from_table] + list(extra_froms) ) def update_from_clause( self, update_stmt, from_table, extra_froms, from_hints, **kw ): return None def delete_table_clause(self, delete_stmt, from_table, extra_froms): """If we have extra froms make sure we render any alias as hint.""" ashint = False if extra_froms: ashint = True return from_table._compiler_dispatch( self, asfrom=True, iscrud=True, ashint=ashint ) def delete_extra_from_clause( self, delete_stmt, from_table, extra_froms, from_hints, **kw ): """Render the DELETE .. USING clause specific to MySQL.""" kw["asfrom"] = True return "USING " + ", ".join( t._compiler_dispatch(self, fromhints=from_hints, **kw) for t in [from_table] + extra_froms ) def visit_empty_set_expr(self, element_types): return ( "SELECT %(outer)s FROM (SELECT %(inner)s) " "as _empty_set WHERE 1!=1" % { "inner": ", ".join( "1 AS _in_%s" % idx for idx, type_ in enumerate(element_types) ), "outer": ", ".join( "_in_%s" % idx for idx, type_ in enumerate(element_types) ), } ) def visit_is_distinct_from_binary(self, binary, operator, **kw): return "NOT (%s <=> %s)" % ( self.process(binary.left), self.process(binary.right), ) def visit_is_not_distinct_from_binary(self, binary, operator, **kw): return "%s <=> %s" % ( self.process(binary.left), self.process(binary.right), ) def _mariadb_regexp_flags(self, flags, pattern, **kw): return "CONCAT('(?', %s, ')', %s)" % ( self.process(flags, **kw), self.process(pattern, **kw), ) def _regexp_match(self, op_string, binary, operator, **kw): flags = binary.modifiers["flags"] if flags is None: return self._generate_generic_binary(binary, op_string, **kw) elif self.dialect.is_mariadb: return "%s%s%s" % ( self.process(binary.left, **kw), op_string, self._mariadb_regexp_flags(flags, binary.right), ) else: text = "REGEXP_LIKE(%s, %s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), self.process(flags, **kw), ) if op_string == " NOT REGEXP ": return "NOT %s" % text else: return text def visit_regexp_match_op_binary(self, binary, operator, **kw): return self._regexp_match(" REGEXP ", binary, operator, **kw) def visit_not_regexp_match_op_binary(self, binary, operator, **kw): return self._regexp_match(" NOT REGEXP ", binary, operator, **kw) def visit_regexp_replace_op_binary(self, binary, operator, **kw): flags = binary.modifiers["flags"] replacement = binary.modifiers["replacement"] if flags is None: return "REGEXP_REPLACE(%s, %s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), self.process(replacement, **kw), ) elif self.dialect.is_mariadb: return "REGEXP_REPLACE(%s, %s, %s)" % ( self.process(binary.left, **kw), self._mariadb_regexp_flags(flags, binary.right), self.process(replacement, **kw), ) else: return "REGEXP_REPLACE(%s, %s, %s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), self.process(replacement, **kw), self.process(flags, **kw), ) class MySQLDDLCompiler(compiler.DDLCompiler): def get_column_specification(self, column, **kw): """Builds column DDL.""" colspec = [ self.preparer.format_column(column), self.dialect.type_compiler.process( column.type, type_expression=column ), ] if column.computed is not None: colspec.append(self.process(column.computed)) is_timestamp = isinstance( column.type._unwrapped_dialect_impl(self.dialect), sqltypes.TIMESTAMP, ) if not column.nullable: colspec.append("NOT NULL") # see: https://docs.sqlalchemy.org/en/latest/dialects/mysql.html#mysql_timestamp_null # noqa elif column.nullable and is_timestamp: colspec.append("NULL") comment = column.comment if comment is not None: literal = self.sql_compiler.render_literal_value( comment, sqltypes.String() ) colspec.append("COMMENT " + literal) if ( column.table is not None and column is column.table._autoincrement_column and ( column.server_default is None or isinstance(column.server_default, sa_schema.Identity) ) and not ( self.dialect.supports_sequences and isinstance(column.default, sa_schema.Sequence) and not column.default.optional ) ): colspec.append("AUTO_INCREMENT") else: default = self.get_column_default_string(column) if default is not None: colspec.append("DEFAULT " + default) return " ".join(colspec) def post_create_table(self, table): """Build table-level CREATE options like ENGINE and COLLATE.""" table_opts = [] opts = dict( (k[len(self.dialect.name) + 1 :].upper(), v) for k, v in table.kwargs.items() if k.startswith("%s_" % self.dialect.name) ) if table.comment is not None: opts["COMMENT"] = table.comment partition_options = [ "PARTITION_BY", "PARTITIONS", "SUBPARTITIONS", "SUBPARTITION_BY", ] nonpart_options = set(opts).difference(partition_options) part_options = set(opts).intersection(partition_options) for opt in topological.sort( [ ("DEFAULT_CHARSET", "COLLATE"), ("DEFAULT_CHARACTER_SET", "COLLATE"), ("CHARSET", "COLLATE"), ("CHARACTER_SET", "COLLATE"), ], nonpart_options, ): arg = opts[opt] if opt in _reflection._options_of_type_string: arg = self.sql_compiler.render_literal_value( arg, sqltypes.String() ) if opt in ( "DATA_DIRECTORY", "INDEX_DIRECTORY", "DEFAULT_CHARACTER_SET", "CHARACTER_SET", "DEFAULT_CHARSET", "DEFAULT_COLLATE", ): opt = opt.replace("_", " ") joiner = "=" if opt in ( "TABLESPACE", "DEFAULT CHARACTER SET", "CHARACTER SET", "COLLATE", ): joiner = " " table_opts.append(joiner.join((opt, arg))) for opt in topological.sort( [ ("PARTITION_BY", "PARTITIONS"), ("PARTITION_BY", "SUBPARTITION_BY"), ("PARTITION_BY", "SUBPARTITIONS"), ("PARTITIONS", "SUBPARTITIONS"), ("PARTITIONS", "SUBPARTITION_BY"), ("SUBPARTITION_BY", "SUBPARTITIONS"), ], part_options, ): arg = opts[opt] if opt in _reflection._options_of_type_string: arg = self.sql_compiler.render_literal_value( arg, sqltypes.String() ) opt = opt.replace("_", " ") joiner = " " table_opts.append(joiner.join((opt, arg))) return " ".join(table_opts) def visit_create_index(self, create, **kw): index = create.element self._verify_index_table(index) preparer = self.preparer table = preparer.format_table(index.table) columns = [ self.sql_compiler.process( elements.Grouping(expr) if ( isinstance(expr, elements.BinaryExpression) or ( isinstance(expr, elements.UnaryExpression) and expr.modifier not in (operators.desc_op, operators.asc_op) ) or isinstance(expr, functions.FunctionElement) ) else expr, include_table=False, literal_binds=True, ) for expr in index.expressions ] name = self._prepared_index_name(index) text = "CREATE " if index.unique: text += "UNIQUE " index_prefix = index.kwargs.get("%s_prefix" % self.dialect.name, None) if index_prefix: text += index_prefix + " " text += "INDEX " if create.if_not_exists: text += "IF NOT EXISTS " text += "%s ON %s " % (name, table) length = index.dialect_options[self.dialect.name]["length"] if length is not None: if isinstance(length, dict): # length value can be a (column_name --> integer value) # mapping specifying the prefix length for each column of the # index columns = ", ".join( "%s(%d)" % (expr, length[col.name]) if col.name in length else ( "%s(%d)" % (expr, length[expr]) if expr in length else "%s" % expr ) for col, expr in zip(index.expressions, columns) ) else: # or can be an integer value specifying the same # prefix length for all columns of the index columns = ", ".join( "%s(%d)" % (col, length) for col in columns ) else: columns = ", ".join(columns) text += "(%s)" % columns parser = index.dialect_options["mysql"]["with_parser"] if parser is not None: text += " WITH PARSER %s" % (parser,) using = index.dialect_options["mysql"]["using"] if using is not None: text += " USING %s" % (preparer.quote(using)) return text def visit_primary_key_constraint(self, constraint): text = super(MySQLDDLCompiler, self).visit_primary_key_constraint( constraint ) using = constraint.dialect_options["mysql"]["using"] if using: text += " USING %s" % (self.preparer.quote(using)) return text def visit_drop_index(self, drop): index = drop.element text = "\nDROP INDEX " if drop.if_exists: text += "IF EXISTS " return text + "%s ON %s" % ( self._prepared_index_name(index, include_schema=False), self.preparer.format_table(index.table), ) def visit_drop_constraint(self, drop): constraint = drop.element if isinstance(constraint, sa_schema.ForeignKeyConstraint): qual = "FOREIGN KEY " const = self.preparer.format_constraint(constraint) elif isinstance(constraint, sa_schema.PrimaryKeyConstraint): qual = "PRIMARY KEY " const = "" elif isinstance(constraint, sa_schema.UniqueConstraint): qual = "INDEX " const = self.preparer.format_constraint(constraint) elif isinstance(constraint, sa_schema.CheckConstraint): if self.dialect.is_mariadb: qual = "CONSTRAINT " else: qual = "CHECK " const = self.preparer.format_constraint(constraint) else: qual = "" const = self.preparer.format_constraint(constraint) return "ALTER TABLE %s DROP %s%s" % ( self.preparer.format_table(constraint.table), qual, const, ) def define_constraint_match(self, constraint): if constraint.match is not None: raise exc.CompileError( "MySQL ignores the 'MATCH' keyword while at the same time " "causes ON UPDATE/ON DELETE clauses to be ignored." ) return "" def visit_set_table_comment(self, create): return "ALTER TABLE %s COMMENT %s" % ( self.preparer.format_table(create.element), self.sql_compiler.render_literal_value( create.element.comment, sqltypes.String() ), ) def visit_drop_table_comment(self, create): return "ALTER TABLE %s COMMENT ''" % ( self.preparer.format_table(create.element) ) def visit_set_column_comment(self, create): return "ALTER TABLE %s CHANGE %s %s" % ( self.preparer.format_table(create.element.table), self.preparer.format_column(create.element), self.get_column_specification(create.element), ) class MySQLTypeCompiler(compiler.GenericTypeCompiler): def _extend_numeric(self, type_, spec): "Extend a numeric-type declaration with MySQL specific extensions." if not self._mysql_type(type_): return spec if type_.unsigned: spec += " UNSIGNED" if type_.zerofill: spec += " ZEROFILL" return spec def _extend_string(self, type_, defaults, spec): """Extend a string-type declaration with standard SQL CHARACTER SET / COLLATE annotations and MySQL specific extensions. """ def attr(name): return getattr(type_, name, defaults.get(name)) if attr("charset"): charset = "CHARACTER SET %s" % attr("charset") elif attr("ascii"): charset = "ASCII" elif attr("unicode"): charset = "UNICODE" else: charset = None if attr("collation"): collation = "COLLATE %s" % type_.collation elif attr("binary"): collation = "BINARY" else: collation = None if attr("national"): # NATIONAL (aka NCHAR/NVARCHAR) trumps charsets. return " ".join( [c for c in ("NATIONAL", spec, collation) if c is not None] ) return " ".join( [c for c in (spec, charset, collation) if c is not None] ) def _mysql_type(self, type_): return isinstance(type_, (_StringType, _NumericType)) def visit_NUMERIC(self, type_, **kw): if type_.precision is None: return self._extend_numeric(type_, "NUMERIC") elif type_.scale is None: return self._extend_numeric( type_, "NUMERIC(%(precision)s)" % {"precision": type_.precision}, ) else: return self._extend_numeric( type_, "NUMERIC(%(precision)s, %(scale)s)" % {"precision": type_.precision, "scale": type_.scale}, ) def visit_DECIMAL(self, type_, **kw): if type_.precision is None: return self._extend_numeric(type_, "DECIMAL") elif type_.scale is None: return self._extend_numeric( type_, "DECIMAL(%(precision)s)" % {"precision": type_.precision}, ) else: return self._extend_numeric( type_, "DECIMAL(%(precision)s, %(scale)s)" % {"precision": type_.precision, "scale": type_.scale}, ) def visit_DOUBLE(self, type_, **kw): if type_.precision is not None and type_.scale is not None: return self._extend_numeric( type_, "DOUBLE(%(precision)s, %(scale)s)" % {"precision": type_.precision, "scale": type_.scale}, ) else: return self._extend_numeric(type_, "DOUBLE") def visit_REAL(self, type_, **kw): if type_.precision is not None and type_.scale is not None: return self._extend_numeric( type_, "REAL(%(precision)s, %(scale)s)" % {"precision": type_.precision, "scale": type_.scale}, ) else: return self._extend_numeric(type_, "REAL") def visit_FLOAT(self, type_, **kw): if ( self._mysql_type(type_) and type_.scale is not None and type_.precision is not None ): return self._extend_numeric( type_, "FLOAT(%s, %s)" % (type_.precision, type_.scale) ) elif type_.precision is not None: return self._extend_numeric( type_, "FLOAT(%s)" % (type_.precision,) ) else: return self._extend_numeric(type_, "FLOAT") def visit_INTEGER(self, type_, **kw): if self._mysql_type(type_) and type_.display_width is not None: return self._extend_numeric( type_, "INTEGER(%(display_width)s)" % {"display_width": type_.display_width}, ) else: return self._extend_numeric(type_, "INTEGER") def visit_BIGINT(self, type_, **kw): if self._mysql_type(type_) and type_.display_width is not None: return self._extend_numeric( type_, "BIGINT(%(display_width)s)" % {"display_width": type_.display_width}, ) else: return self._extend_numeric(type_, "BIGINT") def visit_MEDIUMINT(self, type_, **kw): if self._mysql_type(type_) and type_.display_width is not None: return self._extend_numeric( type_, "MEDIUMINT(%(display_width)s)" % {"display_width": type_.display_width}, ) else: return self._extend_numeric(type_, "MEDIUMINT") def visit_TINYINT(self, type_, **kw): if self._mysql_type(type_) and type_.display_width is not None: return self._extend_numeric( type_, "TINYINT(%s)" % type_.display_width ) else: return self._extend_numeric(type_, "TINYINT") def visit_SMALLINT(self, type_, **kw): if self._mysql_type(type_) and type_.display_width is not None: return self._extend_numeric( type_, "SMALLINT(%(display_width)s)" % {"display_width": type_.display_width}, ) else: return self._extend_numeric(type_, "SMALLINT") def visit_BIT(self, type_, **kw): if type_.length is not None: return "BIT(%s)" % type_.length else: return "BIT" def visit_DATETIME(self, type_, **kw): if getattr(type_, "fsp", None): return "DATETIME(%d)" % type_.fsp else: return "DATETIME" def visit_DATE(self, type_, **kw): return "DATE" def visit_TIME(self, type_, **kw): if getattr(type_, "fsp", None): return "TIME(%d)" % type_.fsp else: return "TIME" def visit_TIMESTAMP(self, type_, **kw): if getattr(type_, "fsp", None): return "TIMESTAMP(%d)" % type_.fsp else: return "TIMESTAMP" def visit_YEAR(self, type_, **kw): if type_.display_width is None: return "YEAR" else: return "YEAR(%s)" % type_.display_width def visit_TEXT(self, type_, **kw): if type_.length: return self._extend_string(type_, {}, "TEXT(%d)" % type_.length) else: return self._extend_string(type_, {}, "TEXT") def visit_TINYTEXT(self, type_, **kw): return self._extend_string(type_, {}, "TINYTEXT") def visit_MEDIUMTEXT(self, type_, **kw): return self._extend_string(type_, {}, "MEDIUMTEXT") def visit_LONGTEXT(self, type_, **kw): return self._extend_string(type_, {}, "LONGTEXT") def visit_VARCHAR(self, type_, **kw): if type_.length: return self._extend_string(type_, {}, "VARCHAR(%d)" % type_.length) else: raise exc.CompileError( "VARCHAR requires a length on dialect %s" % self.dialect.name ) def visit_CHAR(self, type_, **kw): if type_.length: return self._extend_string( type_, {}, "CHAR(%(length)s)" % {"length": type_.length} ) else: return self._extend_string(type_, {}, "CHAR") def visit_NVARCHAR(self, type_, **kw): # We'll actually generate the equiv. "NATIONAL VARCHAR" instead # of "NVARCHAR". if type_.length: return self._extend_string( type_, {"national": True}, "VARCHAR(%(length)s)" % {"length": type_.length}, ) else: raise exc.CompileError( "NVARCHAR requires a length on dialect %s" % self.dialect.name ) def visit_NCHAR(self, type_, **kw): # We'll actually generate the equiv. # "NATIONAL CHAR" instead of "NCHAR". if type_.length: return self._extend_string( type_, {"national": True}, "CHAR(%(length)s)" % {"length": type_.length}, ) else: return self._extend_string(type_, {"national": True}, "CHAR") def visit_VARBINARY(self, type_, **kw): return "VARBINARY(%d)" % type_.length def visit_JSON(self, type_, **kw): return "JSON" def visit_large_binary(self, type_, **kw): return self.visit_BLOB(type_) def visit_enum(self, type_, **kw): if not type_.native_enum: return super(MySQLTypeCompiler, self).visit_enum(type_) else: return self._visit_enumerated_values("ENUM", type_, type_.enums) def visit_BLOB(self, type_, **kw): if type_.length: return "BLOB(%d)" % type_.length else: return "BLOB" def visit_TINYBLOB(self, type_, **kw): return "TINYBLOB" def visit_MEDIUMBLOB(self, type_, **kw): return "MEDIUMBLOB" def visit_LONGBLOB(self, type_, **kw): return "LONGBLOB" def _visit_enumerated_values(self, name, type_, enumerated_values): quoted_enums = [] for e in enumerated_values: quoted_enums.append("'%s'" % e.replace("'", "''")) return self._extend_string( type_, {}, "%s(%s)" % (name, ",".join(quoted_enums)) ) def visit_ENUM(self, type_, **kw): return self._visit_enumerated_values("ENUM", type_, type_.enums) def visit_SET(self, type_, **kw): return self._visit_enumerated_values("SET", type_, type_.values) def visit_BOOLEAN(self, type_, **kw): return "BOOL" class MySQLIdentifierPreparer(compiler.IdentifierPreparer): reserved_words = RESERVED_WORDS def __init__(self, dialect, server_ansiquotes=False, **kw): if not server_ansiquotes: quote = "`" else: quote = '"' super(MySQLIdentifierPreparer, self).__init__( dialect, initial_quote=quote, escape_quote=quote ) def _quote_free_identifiers(self, *ids): """Unilaterally identifier-quote any number of strings.""" return tuple([self.quote_identifier(i) for i in ids if i is not None]) @log.class_logger class MySQLDialect(default.DefaultDialect): """Details of the MySQL dialect. Not used directly in application code. """ name = "mysql" supports_statement_cache = True supports_alter = True # MySQL has no true "boolean" type; we # allow for the "true" and "false" keywords, however supports_native_boolean = False # identifiers are 64, however aliases can be 255... max_identifier_length = 255 max_index_name_length = 64 max_constraint_name_length = 64 supports_native_enum = True supports_sequences = False # default for MySQL ... # ... may be updated to True for MariaDB 10.3+ in initialize() sequences_optional = False supports_for_update_of = False # default for MySQL ... # ... may be updated to True for MySQL 8+ in initialize() # MySQL doesn't support "DEFAULT VALUES" but *does* support # "VALUES (DEFAULT)" supports_default_values = False supports_default_metavalue = True supports_sane_rowcount = True supports_sane_multi_rowcount = False supports_multivalues_insert = True supports_comments = True inline_comments = True default_paramstyle = "format" colspecs = colspecs cte_follows_insert = True statement_compiler = MySQLCompiler ddl_compiler = MySQLDDLCompiler type_compiler = MySQLTypeCompiler ischema_names = ischema_names preparer = MySQLIdentifierPreparer is_mariadb = False _mariadb_normalized_version_info = None # default SQL compilation settings - # these are modified upon initialize(), # i.e. first connect _backslash_escapes = True _server_ansiquotes = False construct_arguments = [ (sa_schema.Table, {"*": None}), (sql.Update, {"limit": None}), (sa_schema.PrimaryKeyConstraint, {"using": None}), ( sa_schema.Index, { "using": None, "length": None, "prefix": None, "with_parser": None, }, ), ] def __init__( self, isolation_level=None, json_serializer=None, json_deserializer=None, is_mariadb=None, **kwargs ): kwargs.pop("use_ansiquotes", None) # legacy default.DefaultDialect.__init__(self, **kwargs) self.isolation_level = isolation_level self._json_serializer = json_serializer self._json_deserializer = json_deserializer self._set_mariadb(is_mariadb, None) def on_connect(self): if self.isolation_level is not None: def connect(conn): self.set_isolation_level(conn, self.isolation_level) return connect else: return None _isolation_lookup = set( [ "SERIALIZABLE", "READ UNCOMMITTED", "READ COMMITTED", "REPEATABLE READ", ] ) def set_isolation_level(self, connection, level): level = level.replace("_", " ") # adjust for ConnectionFairy being present # allows attribute set e.g. "connection.autocommit = True" # to work properly if hasattr(connection, "dbapi_connection"): connection = connection.dbapi_connection self._set_isolation_level(connection, level) def _set_isolation_level(self, connection, level): if level not in self._isolation_lookup: raise exc.ArgumentError( "Invalid value '%s' for isolation_level. " "Valid isolation levels for %s are %s" % (level, self.name, ", ".join(self._isolation_lookup)) ) cursor = connection.cursor() cursor.execute("SET SESSION TRANSACTION ISOLATION LEVEL %s" % level) cursor.execute("COMMIT") cursor.close() def get_isolation_level(self, connection): cursor = connection.cursor() if self._is_mysql and self.server_version_info >= (5, 7, 20): cursor.execute("SELECT @@transaction_isolation") else: cursor.execute("SELECT @@tx_isolation") row = cursor.fetchone() if row is None: util.warn( "Could not retrieve transaction isolation level for MySQL " "connection." ) raise NotImplementedError() val = row[0] cursor.close() if util.py3k and isinstance(val, bytes): val = val.decode() return val.upper().replace("-", " ") @classmethod def _is_mariadb_from_url(cls, url): dbapi = cls.dbapi() dialect = cls(dbapi=dbapi) cargs, cparams = dialect.create_connect_args(url) conn = dialect.connect(*cargs, **cparams) try: cursor = conn.cursor() cursor.execute("SELECT VERSION() LIKE '%MariaDB%'") val = cursor.fetchone()[0] except: raise else: return bool(val) finally: conn.close() def _get_server_version_info(self, connection): # get database server version info explicitly over the wire # to avoid proxy servers like MaxScale getting in the # way with their own values, see #4205 dbapi_con = connection.connection cursor = dbapi_con.cursor() cursor.execute("SELECT VERSION()") val = cursor.fetchone()[0] cursor.close() if util.py3k and isinstance(val, bytes): val = val.decode() return self._parse_server_version(val) def _parse_server_version(self, val): version = [] is_mariadb = False r = re.compile(r"[.\-+]") tokens = r.split(val) for token in tokens: parsed_token = re.match( r"^(?:(\d+)(?:a|b|c)?|(MariaDB\w*))$", token ) if not parsed_token: continue elif parsed_token.group(2): self._mariadb_normalized_version_info = tuple(version[-3:]) is_mariadb = True else: digit = int(parsed_token.group(1)) version.append(digit) server_version_info = tuple(version) self._set_mariadb(server_version_info and is_mariadb, val) if not is_mariadb: self._mariadb_normalized_version_info = server_version_info if server_version_info < (5, 0, 2): raise NotImplementedError( "the MySQL/MariaDB dialect supports server " "version info 5.0.2 and above." ) # setting it here to help w the test suite self.server_version_info = server_version_info return server_version_info def _set_mariadb(self, is_mariadb, server_version_info): if is_mariadb is None: return if not is_mariadb and self.is_mariadb: raise exc.InvalidRequestError( "MySQL version %s is not a MariaDB variant." % (server_version_info,) ) self.is_mariadb = is_mariadb def do_begin_twophase(self, connection, xid): connection.execute(sql.text("XA BEGIN :xid"), dict(xid=xid)) def do_prepare_twophase(self, connection, xid): connection.execute(sql.text("XA END :xid"), dict(xid=xid)) connection.execute(sql.text("XA PREPARE :xid"), dict(xid=xid)) def do_rollback_twophase( self, connection, xid, is_prepared=True, recover=False ): if not is_prepared: connection.execute(sql.text("XA END :xid"), dict(xid=xid)) connection.execute(sql.text("XA ROLLBACK :xid"), dict(xid=xid)) def do_commit_twophase( self, connection, xid, is_prepared=True, recover=False ): if not is_prepared: self.do_prepare_twophase(connection, xid) connection.execute(sql.text("XA COMMIT :xid"), dict(xid=xid)) def do_recover_twophase(self, connection): resultset = connection.exec_driver_sql("XA RECOVER") return [row["data"][0 : row["gtrid_length"]] for row in resultset] def is_disconnect(self, e, connection, cursor): if isinstance( e, (self.dbapi.OperationalError, self.dbapi.ProgrammingError) ): return self._extract_error_code(e) in ( 1927, 2006, 2013, 2014, 2045, 2055, ) elif isinstance( e, (self.dbapi.InterfaceError, self.dbapi.InternalError) ): # if underlying connection is closed, # this is the error you get return "(0, '')" in str(e) else: return False def _compat_fetchall(self, rp, charset=None): """Proxy result rows to smooth over MySQL-Python driver inconsistencies.""" return [_DecodingRow(row, charset) for row in rp.fetchall()] def _compat_fetchone(self, rp, charset=None): """Proxy a result row to smooth over MySQL-Python driver inconsistencies.""" row = rp.fetchone() if row: return _DecodingRow(row, charset) else: return None def _compat_first(self, rp, charset=None): """Proxy a result row to smooth over MySQL-Python driver inconsistencies.""" row = rp.first() if row: return _DecodingRow(row, charset) else: return None def _extract_error_code(self, exception): raise NotImplementedError() def _get_default_schema_name(self, connection): return connection.exec_driver_sql("SELECT DATABASE()").scalar() def has_table(self, connection, table_name, schema=None): self._ensure_has_table_connection(connection) if schema is None: schema = self.default_schema_name rs = connection.execute( text( "SELECT COUNT(*) FROM information_schema.tables WHERE " "table_schema = :table_schema AND " "table_name = :table_name" ).bindparams( sql.bindparam("table_schema", type_=Unicode), sql.bindparam("table_name", type_=Unicode), ), { "table_schema": util.text_type(schema), "table_name": util.text_type(table_name), }, ) return bool(rs.scalar()) def has_sequence(self, connection, sequence_name, schema=None): if not self.supports_sequences: self._sequences_not_supported() if not schema: schema = self.default_schema_name # MariaDB implements sequences as a special type of table # cursor = connection.execute( sql.text( "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES " "WHERE TABLE_TYPE='SEQUENCE' and TABLE_NAME=:name AND " "TABLE_SCHEMA=:schema_name" ), dict( name=util.text_type(sequence_name), schema_name=util.text_type(schema), ), ) return cursor.first() is not None def _sequences_not_supported(self): raise NotImplementedError( "Sequences are supported only by the " "MariaDB series 10.3 or greater" ) @reflection.cache def get_sequence_names(self, connection, schema=None, **kw): if not self.supports_sequences: self._sequences_not_supported() if not schema: schema = self.default_schema_name # MariaDB implements sequences as a special type of table cursor = connection.execute( sql.text( "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES " "WHERE TABLE_TYPE='SEQUENCE' and TABLE_SCHEMA=:schema_name" ), dict(schema_name=schema), ) return [ row[0] for row in self._compat_fetchall( cursor, charset=self._connection_charset ) ] def initialize(self, connection): self._connection_charset = self._detect_charset(connection) self._detect_sql_mode(connection) self._detect_ansiquotes(connection) self._detect_casing(connection) if self._server_ansiquotes: # if ansiquotes == True, build a new IdentifierPreparer # with the new setting self.identifier_preparer = self.preparer( self, server_ansiquotes=self._server_ansiquotes ) default.DefaultDialect.initialize(self, connection) self.supports_sequences = ( self.is_mariadb and self.server_version_info >= (10, 3) ) self.supports_for_update_of = ( self._is_mysql and self.server_version_info >= (8,) ) self._needs_correct_for_88718_96365 = ( not self.is_mariadb and self.server_version_info >= (8,) ) self._warn_for_known_db_issues() def _warn_for_known_db_issues(self): if self.is_mariadb: mdb_version = self._mariadb_normalized_version_info if mdb_version > (10, 2) and mdb_version < (10, 2, 9): util.warn( "MariaDB %r before 10.2.9 has known issues regarding " "CHECK constraints, which impact handling of NULL values " "with SQLAlchemy's boolean datatype (MDEV-13596). An " "additional issue prevents proper migrations of columns " "with CHECK constraints (MDEV-11114). Please upgrade to " "MariaDB 10.2.9 or greater, or use the MariaDB 10.1 " "series, to avoid these issues." % (mdb_version,) ) @property def _support_float_cast(self): if not self.server_version_info: return False elif self.is_mariadb: # ref https://mariadb.com/kb/en/mariadb-1045-release-notes/ return self.server_version_info >= (10, 4, 5) else: # ref https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-17.html#mysqld-8-0-17-feature # noqa return self.server_version_info >= (8, 0, 17) @property def _is_mariadb(self): return self.is_mariadb @property def _is_mysql(self): return not self.is_mariadb @property def _is_mariadb_102(self): return self.is_mariadb and self._mariadb_normalized_version_info > ( 10, 2, ) @reflection.cache def get_schema_names(self, connection, **kw): rp = connection.exec_driver_sql("SHOW schemas") return [r[0] for r in rp] @reflection.cache def get_table_names(self, connection, schema=None, **kw): """Return a Unicode SHOW TABLES from a given schema.""" if schema is not None: current_schema = schema else: current_schema = self.default_schema_name charset = self._connection_charset rp = connection.exec_driver_sql( "SHOW FULL TABLES FROM %s" % self.identifier_preparer.quote_identifier(current_schema) ) return [ row[0] for row in self._compat_fetchall(rp, charset=charset) if row[1] == "BASE TABLE" ] @reflection.cache def get_view_names(self, connection, schema=None, **kw): if schema is None: schema = self.default_schema_name charset = self._connection_charset rp = connection.exec_driver_sql( "SHOW FULL TABLES FROM %s" % self.identifier_preparer.quote_identifier(schema) ) return [ row[0] for row in self._compat_fetchall(rp, charset=charset) if row[1] in ("VIEW", "SYSTEM VIEW") ] @reflection.cache def get_table_options(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) return parsed_state.table_options @reflection.cache def get_columns(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) return parsed_state.columns @reflection.cache def get_pk_constraint(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) for key in parsed_state.keys: if key["type"] == "PRIMARY": # There can be only one. cols = [s[0] for s in key["columns"]] return {"constrained_columns": cols, "name": None} return {"constrained_columns": [], "name": None} @reflection.cache def get_foreign_keys(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) default_schema = None fkeys = [] for spec in parsed_state.fk_constraints: ref_name = spec["table"][-1] ref_schema = len(spec["table"]) > 1 and spec["table"][-2] or schema if not ref_schema: if default_schema is None: default_schema = connection.dialect.default_schema_name if schema == default_schema: ref_schema = schema loc_names = spec["local"] ref_names = spec["foreign"] con_kw = {} for opt in ("onupdate", "ondelete"): if spec.get(opt, False) not in ("NO ACTION", None): con_kw[opt] = spec[opt] fkey_d = { "name": spec["name"], "constrained_columns": loc_names, "referred_schema": ref_schema, "referred_table": ref_name, "referred_columns": ref_names, "options": con_kw, } fkeys.append(fkey_d) if self._needs_correct_for_88718_96365: self._correct_for_mysql_bugs_88718_96365(fkeys, connection) return fkeys def _correct_for_mysql_bugs_88718_96365(self, fkeys, connection): # Foreign key is always in lower case (MySQL 8.0) # https://bugs.mysql.com/bug.php?id=88718 # issue #4344 for SQLAlchemy # table name also for MySQL 8.0 # https://bugs.mysql.com/bug.php?id=96365 # issue #4751 for SQLAlchemy # for lower_case_table_names=2, information_schema.columns # preserves the original table/schema casing, but SHOW CREATE # TABLE does not. this problem is not in lower_case_table_names=1, # but use case-insensitive matching for these two modes in any case. if self._casing in (1, 2): def lower(s): return s.lower() else: # if on case sensitive, there can be two tables referenced # with the same name different casing, so we need to use # case-sensitive matching. def lower(s): return s default_schema_name = connection.dialect.default_schema_name col_tuples = [ ( lower(rec["referred_schema"] or default_schema_name), lower(rec["referred_table"]), col_name, ) for rec in fkeys for col_name in rec["referred_columns"] ] if col_tuples: correct_for_wrong_fk_case = connection.execute( sql.text( """ select table_schema, table_name, column_name from information_schema.columns where (table_schema, table_name, lower(column_name)) in :table_data; """ ).bindparams(sql.bindparam("table_data", expanding=True)), dict(table_data=col_tuples), ) # in casing=0, table name and schema name come back in their # exact case. # in casing=1, table name and schema name come back in lower # case. # in casing=2, table name and schema name come back from the # information_schema.columns view in the case # that was used in CREATE DATABASE and CREATE TABLE, but # SHOW CREATE TABLE converts them to *lower case*, therefore # not matching. So for this case, case-insensitive lookup # is necessary d = defaultdict(dict) for schema, tname, cname in correct_for_wrong_fk_case: d[(lower(schema), lower(tname))]["SCHEMANAME"] = schema d[(lower(schema), lower(tname))]["TABLENAME"] = tname d[(lower(schema), lower(tname))][cname.lower()] = cname for fkey in fkeys: rec = d[ ( lower(fkey["referred_schema"] or default_schema_name), lower(fkey["referred_table"]), ) ] fkey["referred_table"] = rec["TABLENAME"] if fkey["referred_schema"] is not None: fkey["referred_schema"] = rec["SCHEMANAME"] fkey["referred_columns"] = [ rec[col.lower()] for col in fkey["referred_columns"] ] @reflection.cache def get_check_constraints(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) return [ {"name": spec["name"], "sqltext": spec["sqltext"]} for spec in parsed_state.ck_constraints ] @reflection.cache def get_table_comment(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) return { "text": parsed_state.table_options.get( "%s_comment" % self.name, None ) } @reflection.cache def get_indexes(self, connection, table_name, schema=None, **kw): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) indexes = [] for spec in parsed_state.keys: dialect_options = {} unique = False flavor = spec["type"] if flavor == "PRIMARY": continue if flavor == "UNIQUE": unique = True elif flavor in ("FULLTEXT", "SPATIAL"): dialect_options["%s_prefix" % self.name] = flavor elif flavor is None: pass else: self.logger.info( "Converting unknown KEY type %s to a plain KEY", flavor ) pass if spec["parser"]: dialect_options["%s_with_parser" % (self.name)] = spec[ "parser" ] index_d = {} if dialect_options: index_d["dialect_options"] = dialect_options index_d["name"] = spec["name"] index_d["column_names"] = [s[0] for s in spec["columns"]] index_d["unique"] = unique if flavor: index_d["type"] = flavor indexes.append(index_d) return indexes @reflection.cache def get_unique_constraints( self, connection, table_name, schema=None, **kw ): parsed_state = self._parsed_state_or_create( connection, table_name, schema, **kw ) return [ { "name": key["name"], "column_names": [col[0] for col in key["columns"]], "duplicates_index": key["name"], } for key in parsed_state.keys if key["type"] == "UNIQUE" ] @reflection.cache def get_view_definition(self, connection, view_name, schema=None, **kw): charset = self._connection_charset full_name = ".".join( self.identifier_preparer._quote_free_identifiers(schema, view_name) ) sql = self._show_create_table( connection, None, charset, full_name=full_name ) return sql def _parsed_state_or_create( self, connection, table_name, schema=None, **kw ): return self._setup_parser( connection, table_name, schema, info_cache=kw.get("info_cache", None), ) @util.memoized_property def _tabledef_parser(self): """return the MySQLTableDefinitionParser, generate if needed. The deferred creation ensures that the dialect has retrieved server version information first. """ preparer = self.identifier_preparer return _reflection.MySQLTableDefinitionParser(self, preparer) @reflection.cache def _setup_parser(self, connection, table_name, schema=None, **kw): charset = self._connection_charset parser = self._tabledef_parser full_name = ".".join( self.identifier_preparer._quote_free_identifiers( schema, table_name ) ) sql = self._show_create_table( connection, None, charset, full_name=full_name ) if re.match(r"^CREATE (?:ALGORITHM)?.* VIEW", sql): # Adapt views to something table-like. columns = self._describe_table( connection, None, charset, full_name=full_name ) sql = parser._describe_to_create(table_name, columns) return parser.parse(sql, charset) def _detect_charset(self, connection): raise NotImplementedError() def _detect_casing(self, connection): """Sniff out identifier case sensitivity. Cached per-connection. This value can not change without a server restart. """ # https://dev.mysql.com/doc/refman/en/identifier-case-sensitivity.html charset = self._connection_charset show_var = connection.execute( sql.text("SHOW VARIABLES LIKE 'lower_case_table_names'") ) row = self._compat_first( show_var, charset=charset, ) if not row: cs = 0 else: # 4.0.15 returns OFF or ON according to [ticket:489] # 3.23 doesn't, 4.0.27 doesn't.. if row[1] == "OFF": cs = 0 elif row[1] == "ON": cs = 1 else: cs = int(row[1]) self._casing = cs return cs def _detect_collations(self, connection): """Pull the active COLLATIONS list from the server. Cached per-connection. """ collations = {} charset = self._connection_charset rs = connection.exec_driver_sql("SHOW COLLATION") for row in self._compat_fetchall(rs, charset): collations[row[0]] = row[1] return collations def _detect_sql_mode(self, connection): row = self._compat_first( connection.exec_driver_sql("SHOW VARIABLES LIKE 'sql_mode'"), charset=self._connection_charset, ) if not row: util.warn( "Could not retrieve SQL_MODE; please ensure the " "MySQL user has permissions to SHOW VARIABLES" ) self._sql_mode = "" else: self._sql_mode = row[1] or "" def _detect_ansiquotes(self, connection): """Detect and adjust for the ANSI_QUOTES sql mode.""" mode = self._sql_mode if not mode: mode = "" elif mode.isdigit(): mode_no = int(mode) mode = (mode_no | 4 == mode_no) and "ANSI_QUOTES" or "" self._server_ansiquotes = "ANSI_QUOTES" in mode # as of MySQL 5.0.1 self._backslash_escapes = "NO_BACKSLASH_ESCAPES" not in mode def _show_create_table( self, connection, table, charset=None, full_name=None ): """Run SHOW CREATE TABLE for a ``Table``.""" if full_name is None: full_name = self.identifier_preparer.format_table(table) st = "SHOW CREATE TABLE %s" % full_name rp = None try: rp = connection.execution_options( skip_user_error_events=True ).exec_driver_sql(st) except exc.DBAPIError as e: if self._extract_error_code(e.orig) == 1146: util.raise_(exc.NoSuchTableError(full_name), replace_context=e) else: raise row = self._compat_first(rp, charset=charset) if not row: raise exc.NoSuchTableError(full_name) return row[1].strip() def _describe_table(self, connection, table, charset=None, full_name=None): """Run DESCRIBE for a ``Table`` and return processed rows.""" if full_name is None: full_name = self.identifier_preparer.format_table(table) st = "DESCRIBE %s" % full_name rp, rows = None, None try: try: rp = connection.execution_options( skip_user_error_events=True ).exec_driver_sql(st) except exc.DBAPIError as e: code = self._extract_error_code(e.orig) if code == 1146: util.raise_( exc.NoSuchTableError(full_name), replace_context=e ) elif code == 1356: util.raise_( exc.UnreflectableTableError( "Table or view named %s could not be " "reflected: %s" % (full_name, e) ), replace_context=e, ) else: raise rows = self._compat_fetchall(rp, charset=charset) finally: if rp: rp.close() return rows class _DecodingRow(object): """Return unicode-decoded values based on type inspection. Smooth over data type issues (esp. with alpha driver versions) and normalize strings as Unicode regardless of user-configured driver encoding settings. """ # Some MySQL-python versions can return some columns as # sets.Set(['value']) (seriously) but thankfully that doesn't # seem to come up in DDL queries. _encoding_compat = { "koi8r": "koi8_r", "koi8u": "koi8_u", "utf16": "utf-16-be", # MySQL's uft16 is always bigendian "utf8mb4": "utf8", # real utf8 "eucjpms": "ujis", } def __init__(self, rowproxy, charset): self.rowproxy = rowproxy self.charset = self._encoding_compat.get(charset, charset) def __getitem__(self, index): item = self.rowproxy[index] if isinstance(item, _array): item = item.tostring() if self.charset and isinstance(item, util.binary_type): return item.decode(self.charset) else: return item def __getattr__(self, attr): item = getattr(self.rowproxy, attr) if isinstance(item, _array): item = item.tostring() if self.charset and isinstance(item, util.binary_type): return item.decode(self.charset) else: return item
c4194b35b0c4d19fbf61ada823bfe4a80aa83e71
40f4908483b98fc4f370ff4f2d520e1284d045b3
/phase02/immortals_repo/harness/pymmortals/generated/com/securboration/immortals/ontology/resources/memory/physicalmemoryresource.py
9be4f40b65705d8717bea20004f42fc927ec8dd1
[]
no_license
TF-185/bbn-immortals
7f70610bdbbcbf649f3d9021f087baaa76f0d8ca
e298540f7b5f201779213850291337a8bded66c7
refs/heads/master
2023-05-31T00:16:42.522840
2019-10-24T21:45:07
2019-10-24T21:45:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
from pymmortals.generated.com.securboration.immortals.ontology.property.property import Property from pymmortals.generated.com.securboration.immortals.ontology.resources.memory.memoryresource import MemoryResource from pymmortals.generated.com.securboration.immortals.ontology.resources.memory.memorytype import MemoryType from typing import List # noinspection PyPep8Naming class PhysicalMemoryResource(MemoryResource): _validator_values = dict() _types = dict() def __init__(self, canRead: bool = None, canWrite: bool = None, humanReadableDescription: str = None, maxAvailableBytes: int = None, memoryType: MemoryType = None, resourceProperty: List[Property] = None): super().__init__(canRead=canRead, canWrite=canWrite, humanReadableDescription=humanReadableDescription, maxAvailableBytes=maxAvailableBytes, resourceProperty=resourceProperty) self.memoryType = memoryType
9229b2f555f79cbed6c76a6d4cd3c57907fe831f
4e92106302c784431115cea8e822f56234e2684b
/lib/plot.py
5c515658ec0f0625310cab69f0e794fed096ddaf
[]
no_license
CardiacModelling/cside-2018
950a7cd92c791fd1840e38ce1726d1c13f68b267
d91df2bc71a6e2fb18e1d009a3f5722b1e0fc271
refs/heads/master
2020-04-15T17:09:13.118292
2019-03-12T11:51:01
2019-03-12T11:51:01
164,862,967
0
0
null
null
null
null
UTF-8
Python
false
false
14,223
py
# # Quick diagnostic plots. # # This file is part of PINTS. # Copyright (c) 2017-2018, University of Oxford. # For licensing information, see the LICENSE file distributed with the PINTS # software package. # from __future__ import absolute_import, division from __future__ import print_function, unicode_literals import warnings import numpy as np import scipy.stats as stats import pints def function(f, x, lower=None, upper=None, evaluations=20): """ Creates 1d plots of a :class:`LogPDF` or a :class:`ErrorMeasure` around a point `x` (i.e. a 1-dimensional plot in each direction). Arguments: ``f`` A :class:`pints.LogPDF` or :class:`pints.ErrorMeasure` to plot. ``x`` A point in the function's input space. ``lower`` (Optional) Lower bounds for each parameter, used to specify the lower bounds of the plot. ``upper`` (Optional) Upper bounds for each parameter, used to specify the upper bounds of the plot. ``evaluations`` (Optional) The number of evaluations to use in each plot. Returns a ``matplotlib`` figure object and axes handle. """ import matplotlib.pyplot as plt # Check function get dimension if not (isinstance(f, pints.LogPDF) or isinstance(f, pints.ErrorMeasure)): raise ValueError( 'Given function must be pints.LogPDF or pints.ErrorMeasure.') dimension = f.n_parameters() # Check point x = pints.vector(x) if len(x) != dimension: raise ValueError( 'Given point `x` must have same dimension as function.') # Check boundaries if lower is None: # Guess boundaries based on point x lower = x * 0.95 lower[lower == 0] = -1 else: lower = pints.vector(lower) if len(lower) != dimension: raise ValueError( 'Lower bounds must have same dimension as function.') if upper is None: # Guess boundaries based on point x upper = x * 1.05 upper[upper == 0] = 1 else: upper = pints.vector(upper) if len(upper) != dimension: raise ValueError( 'Upper bounds must have same dimension as function.') # Check number of evaluations evaluations = int(evaluations) if evaluations < 1: raise ValueError('Number of evaluations must be greater than zero.') # Create points to plot xs = np.tile(x, (dimension * evaluations, 1)) for j in range(dimension): i1 = j * evaluations i2 = i1 + evaluations xs[i1:i2, j] = np.linspace(lower[j], upper[j], evaluations) # Evaluate points fs = pints.evaluate(f, xs, parallel=False) # Create figure fig, axes = plt.subplots(4, 3, figsize=(12, 7)) for j, p in enumerate(x): i1 = j * evaluations i2 = i1 + evaluations a1 = j % 4 a2 = j // 4 axes[a1, a2].plot(xs[i1:i2, j], fs[i1:i2], c='green', label='Function') axes[a1, a2].axvline(p, c='blue', label='Value') axes[a1, a2].set_xlabel('Parameter ' + str(1 + j)) if j == 0: axes[a1, a2].legend() plt.tight_layout() return fig, axes def pairwise(samples, kde=False, heatmap=False, opacity=None, ref_parameters=None, n_percentiles=None, fig_axes=None): """ Takes a markov chain or list of `samples` and creates a set of pairwise scatterplots for all parameters (p1 versus p2, p1 versus p3, p2 versus p3, etc.). The returned plot is in a 'matrix' form, with histograms of each individual parameter on the diagonal, and scatter plots of parameters ``i`` and ``j`` on each entry ``(i, j)`` below the diagonal. Arguments: ``samples`` A list of samples, with shape ``(n_samples, dimension)``, where ``n_samples`` is the number of samples in the list and ``dimension`` is the number of parameters. ``kde`` (Optional) Set to ``True`` to use kernel-density estimation for the histograms and scatter plots. ``opacity`` (Optional) When ``kde=False``, this value can be used to manually set the opacity of the points in the scatter plots. ``ref_parameters`` (Optional) A set of parameters for reference in the plot. For example, if true values of parameters are known, they can be passed in for plotting. ``n_percentiles`` (Optional) Shows only the middle n-th percentiles of the distribution. Default shows all samples in ``samples``. Returns a ``matplotlib`` figure object and axes handle. """ import matplotlib.pyplot as plt # Check samples size try: n_sample, n_param = samples.shape except ValueError: raise ValueError('`samples` must be of shape (n_sample, n_param).') # Check reference parameters if ref_parameters is not None: if len(ref_parameters) != n_param: raise ValueError( 'Length of `ref_parameters` must be same as number of' ' parameters.') # Create figure fig_size = (3 * n_param, 3 * n_param) if fig_axes is None: fig, axes = plt.subplots(n_param, n_param, figsize=fig_size) else: fig, axes = fig_axes bins = 25 for i in range(n_param): for j in range(n_param): if i == j: # Diagonal: Plot a histogram if n_percentiles is None: xmin, xmax = np.min(samples[:, i]), np.max(samples[:, i]) else: xmin = np.percentile(samples[:, i], 50 - n_percentiles / 2.) xmax = np.percentile(samples[:, i], 50 + n_percentiles / 2.) xbins = np.linspace(xmin, xmax, bins) axes[i, j].set_xlim(xmin, xmax) axes[i, j].hist(samples[:, i], bins=xbins, normed=True) # Add kde plot if kde: x = np.linspace(xmin, xmax, 100) axes[i, j].plot(x, stats.gaussian_kde(samples[:, i])(x)) # Add reference parameters if given if ref_parameters is not None: ymin_tv, ymax_tv = axes[i, j].get_ylim() axes[i, j].plot( [ref_parameters[i], ref_parameters[i]], [0.0, ymax_tv], '--', c='k', lw=2) elif i < j: # Top-right: no plot axes[i, j].axis('off') else: # Lower-left: Plot the samples as density map if n_percentiles is None: xmin, xmax = np.min(samples[:, j]), np.max(samples[:, j]) ymin, ymax = np.min(samples[:, i]), np.max(samples[:, i]) else: xmin = np.percentile(samples[:, j], 50 - n_percentiles / 2.) xmax = np.percentile(samples[:, j], 50 + n_percentiles / 2.) ymin = np.percentile(samples[:, i], 50 - n_percentiles / 2.) ymax = np.percentile(samples[:, i], 50 + n_percentiles / 2.) axes[i, j].set_xlim(xmin, xmax) axes[i, j].set_ylim(ymin, ymax) if not kde and not heatmap: # Create scatter plot # Determine point opacity num_points = len(samples[:, i]) if opacity is None: if num_points < 10: opacity = 1.0 else: opacity = 1.0 / np.log10(num_points) # Scatter points axes[i, j].scatter( samples[:, j], samples[:, i], alpha=opacity, s=0.1) elif kde: # Create a KDE-based plot # Plot values values = np.vstack([samples[:, j], samples[:, i]]) axes[i, j].imshow( np.rot90(values), cmap=plt.cm.Blues, extent=[xmin, xmax, ymin, ymax]) # Create grid xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] positions = np.vstack([xx.ravel(), yy.ravel()]) # Get kernel density estimate and plot contours kernel = stats.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) axes[i, j].contourf(xx, yy, f, cmap='Blues') axes[i, j].contour(xx, yy, f, colors='k') # Force equal aspect ratio # See: https://stackoverflow.com/questions/7965743 im = axes[i, j].get_images() ex = im[0].get_extent() # Matplotlib raises a warning here (on 2.7 at least) # We can't do anything about it, so no other option than # to suppress it at this stage... with warnings.catch_warnings(): warnings.simplefilter('ignore', UnicodeWarning) axes[i, j].set_aspect( abs((ex[1] - ex[0]) / (ex[3] - ex[2]))) elif heatmap: # Create a heatmap-like plot xbins = np.linspace(xmin, xmax, bins) ybins = np.linspace(ymin, ymax, bins) axes[i, j].hist2d(samples[:, j], samples[:, i], bins=[xbins, ybins], normed=True, cmap='Blues') # Add reference parameters if given if ref_parameters is not None: axes[i, j].plot( [ref_parameters[j], ref_parameters[j]], [ymin, ymax], '--', c='k', lw=2) axes[i, j].plot( [xmin, xmax], [ref_parameters[i], ref_parameters[i]], '--', c='k', lw=2) # Set tick labels if i < n_param - 1: # Only show x tick labels for the last row axes[i, j].set_xticklabels([]) else: # Rotate the x tick labels to fit in the plot for tl in axes[i, j].get_xticklabels(): tl.set_rotation(45) if j > 0: # Only show y tick labels for the first column axes[i, j].set_yticklabels([]) # Set axis labels axes[-1, i].set_xlabel('Parameter %d' % (i + 1)) if i == 0: # The first one is not a parameter axes[i, 0].set_ylabel('Frequency') else: axes[i, 0].set_ylabel('Parameter %d' % (i + 1)) return fig, axes def hist(samples, ref_parameters=None, n_percentiles=None): """ Takes one or more markov chains or lists of samples as input and creates and returns a plot showing histograms and traces for each chain or list of samples. Arguments: ``samples`` A list of lists of samples, with shape ``(n_lists, n_samples, dimension)``, where ``n_lists`` is the number of lists of samples, ``n_samples`` is the number of samples in one list and ``dimension`` is the number of parameters. ``ref_parameters`` (Optional) A set of parameters for reference in the plot. For example, if true values of parameters are known, they can be passed in for plotting. ``n_percentiles`` (Optional) Shows only the middle n-th percentiles of the distribution. Default shows all samples in ``samples``. Returns a ``matplotlib`` figure object and axes handle. """ import matplotlib.pyplot as plt # If we switch to Python3 exclusively, bins and alpha can be keyword-only # arguments bins = 40 alpha = 0.5 n_list = len(samples) _, n_param = samples[0].shape # Check number of parameters for samples_j in samples: if n_param != samples_j.shape[1]: raise ValueError( 'All samples must have the same number of parameters.' ) # Check reference parameters if ref_parameters is not None: if len(ref_parameters) != n_param: raise ValueError( 'Length of `ref_parameters` must be same as number of' ' parameters.') # Set up figure fig, axes = plt.subplots(4, 3, figsize=(12, 7)) # Plot first samples for i in range(n_param): a1 = i % 4 a2 = i // 4 for j_list, samples_j in enumerate(samples): # Add histogram subplot axes[a1, a2].set_xlabel('Parameter ' + str(i + 1)) if n_percentiles is None: xmin = np.min(samples_j[:, i]) xmax = np.max(samples_j[:, i]) else: xmin = np.percentile(samples_j[:, i], 50 - n_percentiles / 2.) xmax = np.percentile(samples_j[:, i], 50 + n_percentiles / 2.) xbins = np.linspace(xmin, xmax, bins) axes[a1, a2].hist(samples_j[:, i], bins=xbins, alpha=alpha) # label='Samples ' + str(1 + j_list)) # Add reference parameters if given if ref_parameters is not None: # For histogram subplot ymin_tv, ymax_tv = axes[i, 0].get_ylim() axes[a1, a2].plot( [ref_parameters[i], ref_parameters[i]], [0.0, ymax_tv], '--', c='k') if n_list > 1: axes[0, 0].legend() axes[1, 0].set_ylabel('Frequency', fontsize=12) plt.tight_layout() return fig, axes
9ebcfe440aadfcb8bf00181e22e0cfadd7c707ac
9b6a8923e783bd2641d7af3b118ff83f38c1de31
/review/list/list.py
db0572268d2cf805fbed1cf651fd1c590a2e4f44
[]
no_license
mbrsagor/PyLearn
1c625698802fc5325ea06b754dc9b80d716d9f31
94e68f10efd1f5b1a26d1fd965a29dbbe6c2253d
refs/heads/master
2023-02-25T05:50:23.530150
2021-01-31T19:09:01
2021-01-31T19:09:01
263,316,318
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
students = [ { "name": "Jacob Martin", "father name": "Ros Martin", "Address": "123 Hill Street", }, { "name": "Angela Stevens", "father name": "Robert Stevens", "Address": "3 Upper Street London", }, { "name": "Ricky Smart", "father name": "William Smart", "Address": "Unknown", } ] names_list = [student['name'] for student in students] print(names_list) f = ["Mango", "Apple", "Orange"] a, b, c = f print(a) print(b) print(c)
4971148ded922aab1c7bcceb73ea4136e79c4e7f
c7cb4e768cbb4110c1995234bae2967fb92b0bd3
/mySite/mySite/urls.py
52c38cceaf3621feb74b8355d96a957b9a943ae3
[]
no_license
backtobasic18/main_roni_site
d50f7418f8e6a48855746bb2229a840a2af7d7f8
06cabff9b960f762bb2ad64421cc8e2a3e5422a4
refs/heads/master
2020-07-06T13:44:34.805318
2016-09-10T17:34:16
2016-09-10T17:34:16
67,798,890
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
"""mySite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('mainApp.urls')), ]
544691d1ddac1a2ff9e0419bfc69e8b15f00a0b1
a8c0867109974ff7586597fe2c58521277ab9d4d
/LC648.py
e3823a187d57e17a47a6641bfc77b27bfb8ab450
[]
no_license
Qiao-Liang/LeetCode
1491b01d2ddf11495fbc23a65bb6ecb74ac1cee2
dbdb227e12f329e4ca064b338f1fbdca42f3a848
refs/heads/master
2023-05-06T15:00:58.939626
2021-04-21T06:30:33
2021-04-21T06:30:33
82,885,950
0
0
null
null
null
null
UTF-8
Python
false
false
810
py
class Solution(object): def replaceWords(self, dict, sentence): """ :type dict: List[str] :type sentence: str :rtype: str """ sen_list = sentence.split(' ') for idx, word in enumerate(sen_list): min_root = word len_word = len(word) for root in dict: len_root = len(root) if len_root < len(min_root) and len_root <= len_word and word[:len_root] == root: min_root = root sen_list[idx] = min_root return ' '.join(sen_list) sol = Solution() # dict = ["cat", "bat", "rat"] # sentence = "the cattle was rattled by the battery" dict = ["a", "b", "c"] sentence = "aadsfasf absbs bbab cadsfafs" print(sol.replaceWords(dict, sentence))
a8c5c7e3b1280c05481bf5cf00de1d61e37f5aa5
923d035a4762a19b30d5900db91143a83837ae70
/ichnaea/async/config.py
1fd35092f9eaed4de2aaf9188da99570999ed30d
[ "Apache-2.0" ]
permissive
voolitels/ichnaea
d5d5da34cb30b3e0c85675e32dab3972cc31d7b0
bd0350fcba9efb0bad3957309ed3a471ae07e41b
refs/heads/master
2021-01-17T14:21:16.056481
2015-11-10T16:38:22
2015-11-10T16:57:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,402
py
""" Contains celery specific one time configuration code. """ import os from kombu import Queue from kombu.serialization import register from ichnaea.async.schedule import CELERYBEAT_SCHEDULE from ichnaea.cache import configure_redis from ichnaea.config import read_config from ichnaea import internaljson from ichnaea.db import configure_db from ichnaea.geoip import configure_geoip from ichnaea.log import ( configure_raven, configure_stats, ) from ichnaea.queue import ( DataQueue, ExportQueue, ) CELERY_QUEUES = ( Queue('celery_cell', routing_key='celery_cell'), Queue('celery_default', routing_key='celery_default'), Queue('celery_export', routing_key='celery_export'), Queue('celery_incoming', routing_key='celery_incoming'), Queue('celery_monitor', routing_key='celery_monitor'), Queue('celery_ocid', routing_key='celery_ocid'), Queue('celery_reports', routing_key='celery_reports'), Queue('celery_upload', routing_key='celery_upload'), Queue('celery_wifi', routing_key='celery_wifi'), ) #: List of :class:`kombu.Queue` instances. register('internal_json', internaljson.internal_dumps, internaljson.internal_loads, content_type='application/x-internaljson', content_encoding='utf-8') def configure_celery(celery_app): """ Configure the celery app stored in :data:`ichnaea.async.app.celery_app`. This is executed both inside the master worker process and once in each forked worker process. This parses the application ini and reads in the :mod:`ichnaea.async.settings`. """ conf = read_config() if conf.has_section('celery'): section = conf.get_map('celery') else: # pragma: no cover # happens while building docs locally and on rtfd.org return # testing settings always_eager = bool(os.environ.get('CELERY_ALWAYS_EAGER', False)) redis_uri = os.environ.get('REDIS_URI', 'redis://localhost:6379/1') if always_eager and redis_uri: broker_url = redis_uri result_url = redis_uri else: # pragma: no cover broker_url = section['broker_url'] result_url = section['result_url'] celery_app.config_from_object('ichnaea.async.settings') celery_app.conf.update( BROKER_URL=broker_url, CELERY_RESULT_BACKEND=result_url, CELERY_QUEUES=CELERY_QUEUES, CELERYBEAT_SCHEDULE=CELERYBEAT_SCHEDULE, ) def configure_data(redis_client): """ Configure fixed set of data queues. """ data_queues = { 'update_cell': DataQueue('update_cell', redis_client, queue_key='update_cell'), 'update_cellarea': DataQueue('update_cellarea', redis_client, queue_key='update_cellarea'), 'update_cellarea_ocid': DataQueue('update_cellarea_ocid', redis_client, queue_key='update_cellarea_ocid'), 'update_score': DataQueue('update_score', redis_client, queue_key='update_score'), } for shard_id in ('ne', 'nw', 'se', 'sw'): name = 'update_datamap_' + shard_id data_queues[name] = DataQueue(name, redis_client, queue_key=name) for shard_id in ['%x' % i for i in range(16)]: name = 'update_wifi_' + shard_id data_queues[name] = DataQueue( name, redis_client, queue_key=name) return data_queues def configure_export(redis_client, app_config): """ Configure export queues, based on the `[export:*]` sections from the application ini file. """ export_queues = {} for section_name in app_config.sections(): if section_name.startswith('export:'): section = app_config.get_map(section_name) name = section_name.split(':')[1] export_queues[name] = ExportQueue(name, redis_client, section) return export_queues def init_worker(celery_app, app_config, _db_rw=None, _db_ro=None, _geoip_db=None, _raven_client=None, _redis_client=None, _stats_client=None): """ Configure the passed in celery app, usually stored in :data:`ichnaea.async.app.celery_app`. Does connection, settings and queue setup. Attaches some additional functionality to the :class:`celery.Celery` instance. This is executed inside each forked worker process. The parameters starting with an underscore are test-only hooks to provide pre-configured connection objects. :param _db_ro: Ignored, read-only database connection isn't used. """ # make config file settings available celery_app.settings = app_config.asdict() # configure outside connections celery_app.db_rw = configure_db( app_config.get('database', 'rw_url'), _db=_db_rw) celery_app.raven_client = raven_client = configure_raven( app_config.get('sentry', 'dsn'), transport='threaded', _client=_raven_client) celery_app.redis_client = redis_client = configure_redis( app_config.get('cache', 'cache_url'), _client=_redis_client) celery_app.stats_client = configure_stats( app_config, _client=_stats_client) celery_app.geoip_db = configure_geoip( app_config.get('geoip', 'db_path'), raven_client=raven_client, _client=_geoip_db) # configure data / export queues celery_app.all_queues = all_queues = set([q.name for q in CELERY_QUEUES]) celery_app.data_queues = data_queues = configure_data(redis_client) for queue in data_queues.values(): if queue.monitor_name: all_queues.add(queue.monitor_name) celery_app.export_queues = configure_export(redis_client, app_config) for queue in celery_app.export_queues.values(): if queue.monitor_name: all_queues.add(queue.monitor_name) def shutdown_worker(celery_app): """ Close outbound connections and remove custom celery_app state. This is executed inside each forked worker process. """ celery_app.db_rw.engine.pool.dispose() del celery_app.db_rw del celery_app.raven_client celery_app.redis_client.connection_pool.disconnect() del celery_app.redis_client del celery_app.stats_client del celery_app.all_queues del celery_app.data_queues del celery_app.export_queues del celery_app.settings
be4e9e3a42b8c97562deeecd8c3b871fa6fb01c7
f124cb2443577778d8708993c984eafbd1ae3ec3
/saleor/account/migrations/0054_alter_user_language_code.py
c4843696a427a6c0f24f171c7feab251cf7eca57
[ "BSD-3-Clause" ]
permissive
quangtynu/saleor
ac467193a7779fed93c80251828ac85d92d71d83
5b0e5206c5fd30d81438b6489d0441df51038a85
refs/heads/master
2023-03-07T19:41:20.361624
2022-10-20T13:19:25
2022-10-20T13:19:25
245,860,106
1
0
BSD-3-Clause
2023-03-06T05:46:25
2020-03-08T17:44:18
Python
UTF-8
Python
false
false
40,337
py
# Generated by Django 3.2.6 on 2021-08-17 11:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("account", "0053_auto_20210719_1048"), ] operations = [ migrations.AlterField( model_name="user", name="language_code", field=models.CharField( choices=[ ("af", "Afrikaans"), ("af-NA", "Afrikaans (Namibia)"), ("af-ZA", "Afrikaans (South Africa)"), ("agq", "Aghem"), ("agq-CM", "Aghem (Cameroon)"), ("ak", "Akan"), ("ak-GH", "Akan (Ghana)"), ("am", "Amharic"), ("am-ET", "Amharic (Ethiopia)"), ("ar", "Arabic"), ("ar-AE", "Arabic (United Arab Emirates)"), ("ar-BH", "Arabic (Bahrain)"), ("ar-DJ", "Arabic (Djibouti)"), ("ar-DZ", "Arabic (Algeria)"), ("ar-EG", "Arabic (Egypt)"), ("ar-EH", "Arabic (Western Sahara)"), ("ar-ER", "Arabic (Eritrea)"), ("ar-IL", "Arabic (Israel)"), ("ar-IQ", "Arabic (Iraq)"), ("ar-JO", "Arabic (Jordan)"), ("ar-KM", "Arabic (Comoros)"), ("ar-KW", "Arabic (Kuwait)"), ("ar-LB", "Arabic (Lebanon)"), ("ar-LY", "Arabic (Libya)"), ("ar-MA", "Arabic (Morocco)"), ("ar-MR", "Arabic (Mauritania)"), ("ar-OM", "Arabic (Oman)"), ("ar-PS", "Arabic (Palestinian Territories)"), ("ar-QA", "Arabic (Qatar)"), ("ar-SA", "Arabic (Saudi Arabia)"), ("ar-SD", "Arabic (Sudan)"), ("ar-SO", "Arabic (Somalia)"), ("ar-SS", "Arabic (South Sudan)"), ("ar-SY", "Arabic (Syria)"), ("ar-TD", "Arabic (Chad)"), ("ar-TN", "Arabic (Tunisia)"), ("ar-YE", "Arabic (Yemen)"), ("as", "Assamese"), ("as-IN", "Assamese (India)"), ("asa", "Asu"), ("asa-TZ", "Asu (Tanzania)"), ("ast", "Asturian"), ("ast-ES", "Asturian (Spain)"), ("az", "Azerbaijani"), ("az-Cyrl", "Azerbaijani (Cyrillic)"), ("az-Cyrl-AZ", "Azerbaijani (Cyrillic, Azerbaijan)"), ("az-Latn", "Azerbaijani (Latin)"), ("az-Latn-AZ", "Azerbaijani (Latin, Azerbaijan)"), ("bas", "Basaa"), ("bas-CM", "Basaa (Cameroon)"), ("be", "Belarusian"), ("be-BY", "Belarusian (Belarus)"), ("bem", "Bemba"), ("bem-ZM", "Bemba (Zambia)"), ("bez", "Bena"), ("bez-TZ", "Bena (Tanzania)"), ("bg", "Bulgarian"), ("bg-BG", "Bulgarian (Bulgaria)"), ("bm", "Bambara"), ("bm-ML", "Bambara (Mali)"), ("bn", "Bangla"), ("bn-BD", "Bangla (Bangladesh)"), ("bn-IN", "Bangla (India)"), ("bo", "Tibetan"), ("bo-CN", "Tibetan (China)"), ("bo-IN", "Tibetan (India)"), ("br", "Breton"), ("br-FR", "Breton (France)"), ("brx", "Bodo"), ("brx-IN", "Bodo (India)"), ("bs", "Bosnian"), ("bs-Cyrl", "Bosnian (Cyrillic)"), ("bs-Cyrl-BA", "Bosnian (Cyrillic, Bosnia & Herzegovina)"), ("bs-Latn", "Bosnian (Latin)"), ("bs-Latn-BA", "Bosnian (Latin, Bosnia & Herzegovina)"), ("ca", "Catalan"), ("ca-AD", "Catalan (Andorra)"), ("ca-ES", "Catalan (Spain)"), ("ca-ES-VALENCIA", "Catalan (Spain, Valencian)"), ("ca-FR", "Catalan (France)"), ("ca-IT", "Catalan (Italy)"), ("ccp", "Chakma"), ("ccp-BD", "Chakma (Bangladesh)"), ("ccp-IN", "Chakma (India)"), ("ce", "Chechen"), ("ce-RU", "Chechen (Russia)"), ("ceb", "Cebuano"), ("ceb-PH", "Cebuano (Philippines)"), ("cgg", "Chiga"), ("cgg-UG", "Chiga (Uganda)"), ("chr", "Cherokee"), ("chr-US", "Cherokee (United States)"), ("ckb", "Central Kurdish"), ("ckb-IQ", "Central Kurdish (Iraq)"), ("ckb-IR", "Central Kurdish (Iran)"), ("cs", "Czech"), ("cs-CZ", "Czech (Czechia)"), ("cu", "Church Slavic"), ("cu-RU", "Church Slavic (Russia)"), ("cy", "Welsh"), ("cy-GB", "Welsh (United Kingdom)"), ("da", "Danish"), ("da-DK", "Danish (Denmark)"), ("da-GL", "Danish (Greenland)"), ("dav", "Taita"), ("dav-KE", "Taita (Kenya)"), ("de", "German"), ("de-AT", "German (Austria)"), ("de-BE", "German (Belgium)"), ("de-CH", "German (Switzerland)"), ("de-DE", "German (Germany)"), ("de-IT", "German (Italy)"), ("de-LI", "German (Liechtenstein)"), ("de-LU", "German (Luxembourg)"), ("dje", "Zarma"), ("dje-NE", "Zarma (Niger)"), ("dsb", "Lower Sorbian"), ("dsb-DE", "Lower Sorbian (Germany)"), ("dua", "Duala"), ("dua-CM", "Duala (Cameroon)"), ("dyo", "Jola-Fonyi"), ("dyo-SN", "Jola-Fonyi (Senegal)"), ("dz", "Dzongkha"), ("dz-BT", "Dzongkha (Bhutan)"), ("ebu", "Embu"), ("ebu-KE", "Embu (Kenya)"), ("ee", "Ewe"), ("ee-GH", "Ewe (Ghana)"), ("ee-TG", "Ewe (Togo)"), ("el", "Greek"), ("el-CY", "Greek (Cyprus)"), ("el-GR", "Greek (Greece)"), ("en", "English"), ("en-AE", "English (United Arab Emirates)"), ("en-AG", "English (Antigua & Barbuda)"), ("en-AI", "English (Anguilla)"), ("en-AS", "English (American Samoa)"), ("en-AT", "English (Austria)"), ("en-AU", "English (Australia)"), ("en-BB", "English (Barbados)"), ("en-BE", "English (Belgium)"), ("en-BI", "English (Burundi)"), ("en-BM", "English (Bermuda)"), ("en-BS", "English (Bahamas)"), ("en-BW", "English (Botswana)"), ("en-BZ", "English (Belize)"), ("en-CA", "English (Canada)"), ("en-CC", "English (Cocos (Keeling) Islands)"), ("en-CH", "English (Switzerland)"), ("en-CK", "English (Cook Islands)"), ("en-CM", "English (Cameroon)"), ("en-CX", "English (Christmas Island)"), ("en-CY", "English (Cyprus)"), ("en-DE", "English (Germany)"), ("en-DG", "English (Diego Garcia)"), ("en-DK", "English (Denmark)"), ("en-DM", "English (Dominica)"), ("en-ER", "English (Eritrea)"), ("en-FI", "English (Finland)"), ("en-FJ", "English (Fiji)"), ("en-FK", "English (Falkland Islands)"), ("en-FM", "English (Micronesia)"), ("en-GB", "English (United Kingdom)"), ("en-GD", "English (Grenada)"), ("en-GG", "English (Guernsey)"), ("en-GH", "English (Ghana)"), ("en-GI", "English (Gibraltar)"), ("en-GM", "English (Gambia)"), ("en-GU", "English (Guam)"), ("en-GY", "English (Guyana)"), ("en-HK", "English (Hong Kong SAR China)"), ("en-IE", "English (Ireland)"), ("en-IL", "English (Israel)"), ("en-IM", "English (Isle of Man)"), ("en-IN", "English (India)"), ("en-IO", "English (British Indian Ocean Territory)"), ("en-JE", "English (Jersey)"), ("en-JM", "English (Jamaica)"), ("en-KE", "English (Kenya)"), ("en-KI", "English (Kiribati)"), ("en-KN", "English (St. Kitts & Nevis)"), ("en-KY", "English (Cayman Islands)"), ("en-LC", "English (St. Lucia)"), ("en-LR", "English (Liberia)"), ("en-LS", "English (Lesotho)"), ("en-MG", "English (Madagascar)"), ("en-MH", "English (Marshall Islands)"), ("en-MO", "English (Macao SAR China)"), ("en-MP", "English (Northern Mariana Islands)"), ("en-MS", "English (Montserrat)"), ("en-MT", "English (Malta)"), ("en-MU", "English (Mauritius)"), ("en-MW", "English (Malawi)"), ("en-MY", "English (Malaysia)"), ("en-NA", "English (Namibia)"), ("en-NF", "English (Norfolk Island)"), ("en-NG", "English (Nigeria)"), ("en-NL", "English (Netherlands)"), ("en-NR", "English (Nauru)"), ("en-NU", "English (Niue)"), ("en-NZ", "English (New Zealand)"), ("en-PG", "English (Papua New Guinea)"), ("en-PH", "English (Philippines)"), ("en-PK", "English (Pakistan)"), ("en-PN", "English (Pitcairn Islands)"), ("en-PR", "English (Puerto Rico)"), ("en-PW", "English (Palau)"), ("en-RW", "English (Rwanda)"), ("en-SB", "English (Solomon Islands)"), ("en-SC", "English (Seychelles)"), ("en-SD", "English (Sudan)"), ("en-SE", "English (Sweden)"), ("en-SG", "English (Singapore)"), ("en-SH", "English (St. Helena)"), ("en-SI", "English (Slovenia)"), ("en-SL", "English (Sierra Leone)"), ("en-SS", "English (South Sudan)"), ("en-SX", "English (Sint Maarten)"), ("en-SZ", "English (Eswatini)"), ("en-TC", "English (Turks & Caicos Islands)"), ("en-TK", "English (Tokelau)"), ("en-TO", "English (Tonga)"), ("en-TT", "English (Trinidad & Tobago)"), ("en-TV", "English (Tuvalu)"), ("en-TZ", "English (Tanzania)"), ("en-UG", "English (Uganda)"), ("en-UM", "English (U.S. Outlying Islands)"), ("en-US", "English (United States)"), ("en-VC", "English (St. Vincent & Grenadines)"), ("en-VG", "English (British Virgin Islands)"), ("en-VI", "English (U.S. Virgin Islands)"), ("en-VU", "English (Vanuatu)"), ("en-WS", "English (Samoa)"), ("en-ZA", "English (South Africa)"), ("en-ZM", "English (Zambia)"), ("en-ZW", "English (Zimbabwe)"), ("eo", "Esperanto"), ("es", "Spanish"), ("es-AR", "Spanish (Argentina)"), ("es-BO", "Spanish (Bolivia)"), ("es-BR", "Spanish (Brazil)"), ("es-BZ", "Spanish (Belize)"), ("es-CL", "Spanish (Chile)"), ("es-CO", "Spanish (Colombia)"), ("es-CR", "Spanish (Costa Rica)"), ("es-CU", "Spanish (Cuba)"), ("es-DO", "Spanish (Dominican Republic)"), ("es-EA", "Spanish (Ceuta & Melilla)"), ("es-EC", "Spanish (Ecuador)"), ("es-ES", "Spanish (Spain)"), ("es-GQ", "Spanish (Equatorial Guinea)"), ("es-GT", "Spanish (Guatemala)"), ("es-HN", "Spanish (Honduras)"), ("es-IC", "Spanish (Canary Islands)"), ("es-MX", "Spanish (Mexico)"), ("es-NI", "Spanish (Nicaragua)"), ("es-PA", "Spanish (Panama)"), ("es-PE", "Spanish (Peru)"), ("es-PH", "Spanish (Philippines)"), ("es-PR", "Spanish (Puerto Rico)"), ("es-PY", "Spanish (Paraguay)"), ("es-SV", "Spanish (El Salvador)"), ("es-US", "Spanish (United States)"), ("es-UY", "Spanish (Uruguay)"), ("es-VE", "Spanish (Venezuela)"), ("et", "Estonian"), ("et-EE", "Estonian (Estonia)"), ("eu", "Basque"), ("eu-ES", "Basque (Spain)"), ("ewo", "Ewondo"), ("ewo-CM", "Ewondo (Cameroon)"), ("fa", "Persian"), ("fa-AF", "Persian (Afghanistan)"), ("fa-IR", "Persian (Iran)"), ("ff", "Fulah"), ("ff-Adlm", "Fulah (Adlam)"), ("ff-Adlm-BF", "Fulah (Adlam, Burkina Faso)"), ("ff-Adlm-CM", "Fulah (Adlam, Cameroon)"), ("ff-Adlm-GH", "Fulah (Adlam, Ghana)"), ("ff-Adlm-GM", "Fulah (Adlam, Gambia)"), ("ff-Adlm-GN", "Fulah (Adlam, Guinea)"), ("ff-Adlm-GW", "Fulah (Adlam, Guinea-Bissau)"), ("ff-Adlm-LR", "Fulah (Adlam, Liberia)"), ("ff-Adlm-MR", "Fulah (Adlam, Mauritania)"), ("ff-Adlm-NE", "Fulah (Adlam, Niger)"), ("ff-Adlm-NG", "Fulah (Adlam, Nigeria)"), ("ff-Adlm-SL", "Fulah (Adlam, Sierra Leone)"), ("ff-Adlm-SN", "Fulah (Adlam, Senegal)"), ("ff-Latn", "Fulah (Latin)"), ("ff-Latn-BF", "Fulah (Latin, Burkina Faso)"), ("ff-Latn-CM", "Fulah (Latin, Cameroon)"), ("ff-Latn-GH", "Fulah (Latin, Ghana)"), ("ff-Latn-GM", "Fulah (Latin, Gambia)"), ("ff-Latn-GN", "Fulah (Latin, Guinea)"), ("ff-Latn-GW", "Fulah (Latin, Guinea-Bissau)"), ("ff-Latn-LR", "Fulah (Latin, Liberia)"), ("ff-Latn-MR", "Fulah (Latin, Mauritania)"), ("ff-Latn-NE", "Fulah (Latin, Niger)"), ("ff-Latn-NG", "Fulah (Latin, Nigeria)"), ("ff-Latn-SL", "Fulah (Latin, Sierra Leone)"), ("ff-Latn-SN", "Fulah (Latin, Senegal)"), ("fi", "Finnish"), ("fi-FI", "Finnish (Finland)"), ("fil", "Filipino"), ("fil-PH", "Filipino (Philippines)"), ("fo", "Faroese"), ("fo-DK", "Faroese (Denmark)"), ("fo-FO", "Faroese (Faroe Islands)"), ("fr", "French"), ("fr-BE", "French (Belgium)"), ("fr-BF", "French (Burkina Faso)"), ("fr-BI", "French (Burundi)"), ("fr-BJ", "French (Benin)"), ("fr-BL", "French (St. Barthélemy)"), ("fr-CA", "French (Canada)"), ("fr-CD", "French (Congo - Kinshasa)"), ("fr-CF", "French (Central African Republic)"), ("fr-CG", "French (Congo - Brazzaville)"), ("fr-CH", "French (Switzerland)"), ("fr-CI", "French (Côte d’Ivoire)"), ("fr-CM", "French (Cameroon)"), ("fr-DJ", "French (Djibouti)"), ("fr-DZ", "French (Algeria)"), ("fr-FR", "French (France)"), ("fr-GA", "French (Gabon)"), ("fr-GF", "French (French Guiana)"), ("fr-GN", "French (Guinea)"), ("fr-GP", "French (Guadeloupe)"), ("fr-GQ", "French (Equatorial Guinea)"), ("fr-HT", "French (Haiti)"), ("fr-KM", "French (Comoros)"), ("fr-LU", "French (Luxembourg)"), ("fr-MA", "French (Morocco)"), ("fr-MC", "French (Monaco)"), ("fr-MF", "French (St. Martin)"), ("fr-MG", "French (Madagascar)"), ("fr-ML", "French (Mali)"), ("fr-MQ", "French (Martinique)"), ("fr-MR", "French (Mauritania)"), ("fr-MU", "French (Mauritius)"), ("fr-NC", "French (New Caledonia)"), ("fr-NE", "French (Niger)"), ("fr-PF", "French (French Polynesia)"), ("fr-PM", "French (St. Pierre & Miquelon)"), ("fr-RE", "French (Réunion)"), ("fr-RW", "French (Rwanda)"), ("fr-SC", "French (Seychelles)"), ("fr-SN", "French (Senegal)"), ("fr-SY", "French (Syria)"), ("fr-TD", "French (Chad)"), ("fr-TG", "French (Togo)"), ("fr-TN", "French (Tunisia)"), ("fr-VU", "French (Vanuatu)"), ("fr-WF", "French (Wallis & Futuna)"), ("fr-YT", "French (Mayotte)"), ("fur", "Friulian"), ("fur-IT", "Friulian (Italy)"), ("fy", "Western Frisian"), ("fy-NL", "Western Frisian (Netherlands)"), ("ga", "Irish"), ("ga-GB", "Irish (United Kingdom)"), ("ga-IE", "Irish (Ireland)"), ("gd", "Scottish Gaelic"), ("gd-GB", "Scottish Gaelic (United Kingdom)"), ("gl", "Galician"), ("gl-ES", "Galician (Spain)"), ("gsw", "Swiss German"), ("gsw-CH", "Swiss German (Switzerland)"), ("gsw-FR", "Swiss German (France)"), ("gsw-LI", "Swiss German (Liechtenstein)"), ("gu", "Gujarati"), ("gu-IN", "Gujarati (India)"), ("guz", "Gusii"), ("guz-KE", "Gusii (Kenya)"), ("gv", "Manx"), ("gv-IM", "Manx (Isle of Man)"), ("ha", "Hausa"), ("ha-GH", "Hausa (Ghana)"), ("ha-NE", "Hausa (Niger)"), ("ha-NG", "Hausa (Nigeria)"), ("haw", "Hawaiian"), ("haw-US", "Hawaiian (United States)"), ("he", "Hebrew"), ("he-IL", "Hebrew (Israel)"), ("hi", "Hindi"), ("hi-IN", "Hindi (India)"), ("hr", "Croatian"), ("hr-BA", "Croatian (Bosnia & Herzegovina)"), ("hr-HR", "Croatian (Croatia)"), ("hsb", "Upper Sorbian"), ("hsb-DE", "Upper Sorbian (Germany)"), ("hu", "Hungarian"), ("hu-HU", "Hungarian (Hungary)"), ("hy", "Armenian"), ("hy-AM", "Armenian (Armenia)"), ("ia", "Interlingua"), ("id", "Indonesian"), ("id-ID", "Indonesian (Indonesia)"), ("ig", "Igbo"), ("ig-NG", "Igbo (Nigeria)"), ("ii", "Sichuan Yi"), ("ii-CN", "Sichuan Yi (China)"), ("is", "Icelandic"), ("is-IS", "Icelandic (Iceland)"), ("it", "Italian"), ("it-CH", "Italian (Switzerland)"), ("it-IT", "Italian (Italy)"), ("it-SM", "Italian (San Marino)"), ("it-VA", "Italian (Vatican City)"), ("ja", "Japanese"), ("ja-JP", "Japanese (Japan)"), ("jgo", "Ngomba"), ("jgo-CM", "Ngomba (Cameroon)"), ("jmc", "Machame"), ("jmc-TZ", "Machame (Tanzania)"), ("jv", "Javanese"), ("jv-ID", "Javanese (Indonesia)"), ("ka", "Georgian"), ("ka-GE", "Georgian (Georgia)"), ("kab", "Kabyle"), ("kab-DZ", "Kabyle (Algeria)"), ("kam", "Kamba"), ("kam-KE", "Kamba (Kenya)"), ("kde", "Makonde"), ("kde-TZ", "Makonde (Tanzania)"), ("kea", "Kabuverdianu"), ("kea-CV", "Kabuverdianu (Cape Verde)"), ("khq", "Koyra Chiini"), ("khq-ML", "Koyra Chiini (Mali)"), ("ki", "Kikuyu"), ("ki-KE", "Kikuyu (Kenya)"), ("kk", "Kazakh"), ("kk-KZ", "Kazakh (Kazakhstan)"), ("kkj", "Kako"), ("kkj-CM", "Kako (Cameroon)"), ("kl", "Kalaallisut"), ("kl-GL", "Kalaallisut (Greenland)"), ("kln", "Kalenjin"), ("kln-KE", "Kalenjin (Kenya)"), ("km", "Khmer"), ("km-KH", "Khmer (Cambodia)"), ("kn", "Kannada"), ("kn-IN", "Kannada (India)"), ("ko", "Korean"), ("ko-KP", "Korean (North Korea)"), ("ko-KR", "Korean (South Korea)"), ("kok", "Konkani"), ("kok-IN", "Konkani (India)"), ("ks", "Kashmiri"), ("ks-Arab", "Kashmiri (Arabic)"), ("ks-Arab-IN", "Kashmiri (Arabic, India)"), ("ksb", "Shambala"), ("ksb-TZ", "Shambala (Tanzania)"), ("ksf", "Bafia"), ("ksf-CM", "Bafia (Cameroon)"), ("ksh", "Colognian"), ("ksh-DE", "Colognian (Germany)"), ("ku", "Kurdish"), ("ku-TR", "Kurdish (Turkey)"), ("kw", "Cornish"), ("kw-GB", "Cornish (United Kingdom)"), ("ky", "Kyrgyz"), ("ky-KG", "Kyrgyz (Kyrgyzstan)"), ("lag", "Langi"), ("lag-TZ", "Langi (Tanzania)"), ("lb", "Luxembourgish"), ("lb-LU", "Luxembourgish (Luxembourg)"), ("lg", "Ganda"), ("lg-UG", "Ganda (Uganda)"), ("lkt", "Lakota"), ("lkt-US", "Lakota (United States)"), ("ln", "Lingala"), ("ln-AO", "Lingala (Angola)"), ("ln-CD", "Lingala (Congo - Kinshasa)"), ("ln-CF", "Lingala (Central African Republic)"), ("ln-CG", "Lingala (Congo - Brazzaville)"), ("lo", "Lao"), ("lo-LA", "Lao (Laos)"), ("lrc", "Northern Luri"), ("lrc-IQ", "Northern Luri (Iraq)"), ("lrc-IR", "Northern Luri (Iran)"), ("lt", "Lithuanian"), ("lt-LT", "Lithuanian (Lithuania)"), ("lu", "Luba-Katanga"), ("lu-CD", "Luba-Katanga (Congo - Kinshasa)"), ("luo", "Luo"), ("luo-KE", "Luo (Kenya)"), ("luy", "Luyia"), ("luy-KE", "Luyia (Kenya)"), ("lv", "Latvian"), ("lv-LV", "Latvian (Latvia)"), ("mai", "Maithili"), ("mai-IN", "Maithili (India)"), ("mas", "Masai"), ("mas-KE", "Masai (Kenya)"), ("mas-TZ", "Masai (Tanzania)"), ("mer", "Meru"), ("mer-KE", "Meru (Kenya)"), ("mfe", "Morisyen"), ("mfe-MU", "Morisyen (Mauritius)"), ("mg", "Malagasy"), ("mg-MG", "Malagasy (Madagascar)"), ("mgh", "Makhuwa-Meetto"), ("mgh-MZ", "Makhuwa-Meetto (Mozambique)"), ("mgo", "Metaʼ"), ("mgo-CM", "Metaʼ (Cameroon)"), ("mi", "Maori"), ("mi-NZ", "Maori (New Zealand)"), ("mk", "Macedonian"), ("mk-MK", "Macedonian (North Macedonia)"), ("ml", "Malayalam"), ("ml-IN", "Malayalam (India)"), ("mn", "Mongolian"), ("mn-MN", "Mongolian (Mongolia)"), ("mni", "Manipuri"), ("mni-Beng", "Manipuri (Bangla)"), ("mni-Beng-IN", "Manipuri (Bangla, India)"), ("mr", "Marathi"), ("mr-IN", "Marathi (India)"), ("ms", "Malay"), ("ms-BN", "Malay (Brunei)"), ("ms-ID", "Malay (Indonesia)"), ("ms-MY", "Malay (Malaysia)"), ("ms-SG", "Malay (Singapore)"), ("mt", "Maltese"), ("mt-MT", "Maltese (Malta)"), ("mua", "Mundang"), ("mua-CM", "Mundang (Cameroon)"), ("my", "Burmese"), ("my-MM", "Burmese (Myanmar (Burma))"), ("mzn", "Mazanderani"), ("mzn-IR", "Mazanderani (Iran)"), ("naq", "Nama"), ("naq-NA", "Nama (Namibia)"), ("nb", "Norwegian Bokmål"), ("nb-NO", "Norwegian Bokmål (Norway)"), ("nb-SJ", "Norwegian Bokmål (Svalbard & Jan Mayen)"), ("nd", "North Ndebele"), ("nd-ZW", "North Ndebele (Zimbabwe)"), ("nds", "Low German"), ("nds-DE", "Low German (Germany)"), ("nds-NL", "Low German (Netherlands)"), ("ne", "Nepali"), ("ne-IN", "Nepali (India)"), ("ne-NP", "Nepali (Nepal)"), ("nl", "Dutch"), ("nl-AW", "Dutch (Aruba)"), ("nl-BE", "Dutch (Belgium)"), ("nl-BQ", "Dutch (Caribbean Netherlands)"), ("nl-CW", "Dutch (Curaçao)"), ("nl-NL", "Dutch (Netherlands)"), ("nl-SR", "Dutch (Suriname)"), ("nl-SX", "Dutch (Sint Maarten)"), ("nmg", "Kwasio"), ("nmg-CM", "Kwasio (Cameroon)"), ("nn", "Norwegian Nynorsk"), ("nn-NO", "Norwegian Nynorsk (Norway)"), ("nnh", "Ngiemboon"), ("nnh-CM", "Ngiemboon (Cameroon)"), ("nus", "Nuer"), ("nus-SS", "Nuer (South Sudan)"), ("nyn", "Nyankole"), ("nyn-UG", "Nyankole (Uganda)"), ("om", "Oromo"), ("om-ET", "Oromo (Ethiopia)"), ("om-KE", "Oromo (Kenya)"), ("or", "Odia"), ("or-IN", "Odia (India)"), ("os", "Ossetic"), ("os-GE", "Ossetic (Georgia)"), ("os-RU", "Ossetic (Russia)"), ("pa", "Punjabi"), ("pa-Arab", "Punjabi (Arabic)"), ("pa-Arab-PK", "Punjabi (Arabic, Pakistan)"), ("pa-Guru", "Punjabi (Gurmukhi)"), ("pa-Guru-IN", "Punjabi (Gurmukhi, India)"), ("pcm", "Nigerian Pidgin"), ("pcm-NG", "Nigerian Pidgin (Nigeria)"), ("pl", "Polish"), ("pl-PL", "Polish (Poland)"), ("prg", "Prussian"), ("ps", "Pashto"), ("ps-AF", "Pashto (Afghanistan)"), ("ps-PK", "Pashto (Pakistan)"), ("pt", "Portuguese"), ("pt-AO", "Portuguese (Angola)"), ("pt-BR", "Portuguese (Brazil)"), ("pt-CH", "Portuguese (Switzerland)"), ("pt-CV", "Portuguese (Cape Verde)"), ("pt-GQ", "Portuguese (Equatorial Guinea)"), ("pt-GW", "Portuguese (Guinea-Bissau)"), ("pt-LU", "Portuguese (Luxembourg)"), ("pt-MO", "Portuguese (Macao SAR China)"), ("pt-MZ", "Portuguese (Mozambique)"), ("pt-PT", "Portuguese (Portugal)"), ("pt-ST", "Portuguese (São Tomé & Príncipe)"), ("pt-TL", "Portuguese (Timor-Leste)"), ("qu", "Quechua"), ("qu-BO", "Quechua (Bolivia)"), ("qu-EC", "Quechua (Ecuador)"), ("qu-PE", "Quechua (Peru)"), ("rm", "Romansh"), ("rm-CH", "Romansh (Switzerland)"), ("rn", "Rundi"), ("rn-BI", "Rundi (Burundi)"), ("ro", "Romanian"), ("ro-MD", "Romanian (Moldova)"), ("ro-RO", "Romanian (Romania)"), ("rof", "Rombo"), ("rof-TZ", "Rombo (Tanzania)"), ("ru", "Russian"), ("ru-BY", "Russian (Belarus)"), ("ru-KG", "Russian (Kyrgyzstan)"), ("ru-KZ", "Russian (Kazakhstan)"), ("ru-MD", "Russian (Moldova)"), ("ru-RU", "Russian (Russia)"), ("ru-UA", "Russian (Ukraine)"), ("rw", "Kinyarwanda"), ("rw-RW", "Kinyarwanda (Rwanda)"), ("rwk", "Rwa"), ("rwk-TZ", "Rwa (Tanzania)"), ("sah", "Sakha"), ("sah-RU", "Sakha (Russia)"), ("saq", "Samburu"), ("saq-KE", "Samburu (Kenya)"), ("sat", "Santali"), ("sat-Olck", "Santali (Ol Chiki)"), ("sat-Olck-IN", "Santali (Ol Chiki, India)"), ("sbp", "Sangu"), ("sbp-TZ", "Sangu (Tanzania)"), ("sd", "Sindhi"), ("sd-Arab", "Sindhi (Arabic)"), ("sd-Arab-PK", "Sindhi (Arabic, Pakistan)"), ("sd-Deva", "Sindhi (Devanagari)"), ("sd-Deva-IN", "Sindhi (Devanagari, India)"), ("se", "Northern Sami"), ("se-FI", "Northern Sami (Finland)"), ("se-NO", "Northern Sami (Norway)"), ("se-SE", "Northern Sami (Sweden)"), ("seh", "Sena"), ("seh-MZ", "Sena (Mozambique)"), ("ses", "Koyraboro Senni"), ("ses-ML", "Koyraboro Senni (Mali)"), ("sg", "Sango"), ("sg-CF", "Sango (Central African Republic)"), ("shi", "Tachelhit"), ("shi-Latn", "Tachelhit (Latin)"), ("shi-Latn-MA", "Tachelhit (Latin, Morocco)"), ("shi-Tfng", "Tachelhit (Tifinagh)"), ("shi-Tfng-MA", "Tachelhit (Tifinagh, Morocco)"), ("si", "Sinhala"), ("si-LK", "Sinhala (Sri Lanka)"), ("sk", "Slovak"), ("sk-SK", "Slovak (Slovakia)"), ("sl", "Slovenian"), ("sl-SI", "Slovenian (Slovenia)"), ("smn", "Inari Sami"), ("smn-FI", "Inari Sami (Finland)"), ("sn", "Shona"), ("sn-ZW", "Shona (Zimbabwe)"), ("so", "Somali"), ("so-DJ", "Somali (Djibouti)"), ("so-ET", "Somali (Ethiopia)"), ("so-KE", "Somali (Kenya)"), ("so-SO", "Somali (Somalia)"), ("sq", "Albanian"), ("sq-AL", "Albanian (Albania)"), ("sq-MK", "Albanian (North Macedonia)"), ("sq-XK", "Albanian (Kosovo)"), ("sr", "Serbian"), ("sr-Cyrl", "Serbian (Cyrillic)"), ("sr-Cyrl-BA", "Serbian (Cyrillic, Bosnia & Herzegovina)"), ("sr-Cyrl-ME", "Serbian (Cyrillic, Montenegro)"), ("sr-Cyrl-RS", "Serbian (Cyrillic, Serbia)"), ("sr-Cyrl-XK", "Serbian (Cyrillic, Kosovo)"), ("sr-Latn", "Serbian (Latin)"), ("sr-Latn-BA", "Serbian (Latin, Bosnia & Herzegovina)"), ("sr-Latn-ME", "Serbian (Latin, Montenegro)"), ("sr-Latn-RS", "Serbian (Latin, Serbia)"), ("sr-Latn-XK", "Serbian (Latin, Kosovo)"), ("su", "Sundanese"), ("su-Latn", "Sundanese (Latin)"), ("su-Latn-ID", "Sundanese (Latin, Indonesia)"), ("sv", "Swedish"), ("sv-AX", "Swedish (Åland Islands)"), ("sv-FI", "Swedish (Finland)"), ("sv-SE", "Swedish (Sweden)"), ("sw", "Swahili"), ("sw-CD", "Swahili (Congo - Kinshasa)"), ("sw-KE", "Swahili (Kenya)"), ("sw-TZ", "Swahili (Tanzania)"), ("sw-UG", "Swahili (Uganda)"), ("ta", "Tamil"), ("ta-IN", "Tamil (India)"), ("ta-LK", "Tamil (Sri Lanka)"), ("ta-MY", "Tamil (Malaysia)"), ("ta-SG", "Tamil (Singapore)"), ("te", "Telugu"), ("te-IN", "Telugu (India)"), ("teo", "Teso"), ("teo-KE", "Teso (Kenya)"), ("teo-UG", "Teso (Uganda)"), ("tg", "Tajik"), ("tg-TJ", "Tajik (Tajikistan)"), ("th", "Thai"), ("th-TH", "Thai (Thailand)"), ("ti", "Tigrinya"), ("ti-ER", "Tigrinya (Eritrea)"), ("ti-ET", "Tigrinya (Ethiopia)"), ("tk", "Turkmen"), ("tk-TM", "Turkmen (Turkmenistan)"), ("to", "Tongan"), ("to-TO", "Tongan (Tonga)"), ("tr", "Turkish"), ("tr-CY", "Turkish (Cyprus)"), ("tr-TR", "Turkish (Turkey)"), ("tt", "Tatar"), ("tt-RU", "Tatar (Russia)"), ("twq", "Tasawaq"), ("twq-NE", "Tasawaq (Niger)"), ("tzm", "Central Atlas Tamazight"), ("tzm-MA", "Central Atlas Tamazight (Morocco)"), ("ug", "Uyghur"), ("ug-CN", "Uyghur (China)"), ("uk", "Ukrainian"), ("uk-UA", "Ukrainian (Ukraine)"), ("ur", "Urdu"), ("ur-IN", "Urdu (India)"), ("ur-PK", "Urdu (Pakistan)"), ("uz", "Uzbek"), ("uz-Arab", "Uzbek (Arabic)"), ("uz-Arab-AF", "Uzbek (Arabic, Afghanistan)"), ("uz-Cyrl", "Uzbek (Cyrillic)"), ("uz-Cyrl-UZ", "Uzbek (Cyrillic, Uzbekistan)"), ("uz-Latn", "Uzbek (Latin)"), ("uz-Latn-UZ", "Uzbek (Latin, Uzbekistan)"), ("vai", "Vai"), ("vai-Latn", "Vai (Latin)"), ("vai-Latn-LR", "Vai (Latin, Liberia)"), ("vai-Vaii", "Vai (Vai)"), ("vai-Vaii-LR", "Vai (Vai, Liberia)"), ("vi", "Vietnamese"), ("vi-VN", "Vietnamese (Vietnam)"), ("vo", "Volapük"), ("vun", "Vunjo"), ("vun-TZ", "Vunjo (Tanzania)"), ("wae", "Walser"), ("wae-CH", "Walser (Switzerland)"), ("wo", "Wolof"), ("wo-SN", "Wolof (Senegal)"), ("xh", "Xhosa"), ("xh-ZA", "Xhosa (South Africa)"), ("xog", "Soga"), ("xog-UG", "Soga (Uganda)"), ("yav", "Yangben"), ("yav-CM", "Yangben (Cameroon)"), ("yi", "Yiddish"), ("yo", "Yoruba"), ("yo-BJ", "Yoruba (Benin)"), ("yo-NG", "Yoruba (Nigeria)"), ("yue", "Cantonese"), ("yue-Hans", "Cantonese (Simplified)"), ("yue-Hans-CN", "Cantonese (Simplified, China)"), ("yue-Hant", "Cantonese (Traditional)"), ("yue-Hant-HK", "Cantonese (Traditional, Hong Kong SAR China)"), ("zgh", "Standard Moroccan Tamazight"), ("zgh-MA", "Standard Moroccan Tamazight (Morocco)"), ("zh", "Chinese"), ("zh-Hans", "Chinese (Simplified)"), ("zh-Hans-CN", "Chinese (Simplified, China)"), ("zh-Hans-HK", "Chinese (Simplified, Hong Kong SAR China)"), ("zh-Hans-MO", "Chinese (Simplified, Macao SAR China)"), ("zh-Hans-SG", "Chinese (Simplified, Singapore)"), ("zh-Hant", "Chinese (Traditional)"), ("zh-Hant-HK", "Chinese (Traditional, Hong Kong SAR China)"), ("zh-Hant-MO", "Chinese (Traditional, Macao SAR China)"), ("zh-Hant-TW", "Chinese (Traditional, Taiwan)"), ("zu", "Zulu"), ("zu-ZA", "Zulu (South Africa)"), ], default="en", max_length=35, ), ), ]
39a78544f35be6ef9bef4d434c0609cc0f0f6d53
5eb29ce7104e10a399d9afd7e253f029bf8bc0ff
/workflows/images-incremental-update/image_dl.py
642aff4941ac111e9fcba03ef642bc5941dbcc25
[ "BSD-2-Clause" ]
permissive
svebk/DeepSentiBank_memex
69789dc09316e97aad711edeb251837a60184e7e
4e69ce66e3a177817ff360ddc263f55c6e0b63f7
refs/heads/master
2021-01-18T18:55:10.870052
2017-10-19T22:51:29
2017-10-19T22:51:29
36,091,024
22
1
null
2017-02-09T20:31:20
2015-05-22T19:20:54
Python
UTF-8
Python
false
false
11,040
py
import requests imagedltimeout=3 class UnknownImageFormat(Exception): pass def get_image_size_and_format(input): # adapted from https://github.com/scardine/image_size """ Return (width, height, format) for a given img file content stream. No external dependencies except the struct modules from core. """ import struct height = -1 width = -1 format = None data = input.read(25) if data[:6] in ('GIF87a', 'GIF89a'): # GIFs w, h = struct.unpack("<HH", data[6:10]) width = int(w) height = int(h) format = 'GIF' elif data.startswith('\211PNG\r\n\032\n') and (data[12:16] == 'IHDR'): # PNGs w, h = struct.unpack(">LL", data[16:24]) width = int(w) height = int(h) format = 'PNG' elif data.startswith('\211PNG\r\n\032\n'): # older PNGs? w, h = struct.unpack(">LL", data[8:16]) width = int(w) height = int(h) format = 'PNG' elif data.startswith('\377\330'): # JPEG format = 'JPEG' msg = " raised while trying to decode as JPEG." input.seek(0) input.read(2) b = input.read(1) try: while (b and ord(b) != 0xDA): while (ord(b) != 0xFF): b = input.read(1) while (ord(b) == 0xFF): b = input.read(1) if (ord(b) >= 0xC0 and ord(b) <= 0xC3): input.read(3) h, w = struct.unpack(">HH", input.read(4)) break else: input.read(int(struct.unpack(">H", input.read(2))[0])-2) b = input.read(1) width = int(w) height = int(h) except struct.error: raise UnknownImageFormat("StructError" + msg) except ValueError: raise UnknownImageFormat("ValueError" + msg) except Exception as e: raise UnknownImageFormat(e.__class__.__name__ + msg) else: raise UnknownImageFormat("Sorry, don't know how to get information from this file.") return width, height, format def mkpath(outpath): import os pos_slash=[pos for pos,c in enumerate(outpath) if c=="/"] for pos in pos_slash: try: os.mkdir(outpath[:pos]) except: pass def dlimage(url,verbose=False): import numpy as np import shutil import time import os pos_slash=[pos for pos,c in enumerate(url) if c=="/"] file_img=url[pos_slash[-1]+1:] # path with time and random to ensure unique names outpath=os.path.join('./'+str(time.time())+'_'+str(np.int32(np.random.random()*(10e6)))+'_'+file_img) mkpath(outpath) if verbose: print "Downloading image from {} to {}.".format(url,outpath) try: r = requests.get(url, stream=True, timeout=imagedltimeout) if r.status_code == 200: with open(outpath, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) return outpath except Exception as inst: if verbose: print "Download failed for img that should be saved at {} from url {}.".format(outpath,url) print inst return None def get_SHA1_from_data(data): import hashlib sha1hash = None try: sha1 = hashlib.sha1() sha1.update(data) sha1hash = sha1.hexdigest().upper() except: print "Could not read data to compute SHA1." return sha1hash def get_SHA1_from_URL_StringIO(url,verbose=0): from cStringIO import StringIO import sys if verbose>1: print "Downloading image from {}.".format(url) try: r = requests.get(url, timeout=imagedltimeout) if r.status_code == 200: r_sio = StringIO(r.content) if int(r.headers['content-length']) == 0: del r raise ValueError("Empty image.") else: data = r_sio.read() sha1hash = get_SHA1_from_data(data) del r,r_sio,data return sha1hash else: raise ValueError("Incorrect status_code: {}.".format(r.status_code)) except Exception as inst: print "Download failed from url {}. [{}]".format(url, inst) return None def get_SHA1_imginfo_from_URL_StringIO_PIL(url,verbose=0): from cStringIO import StringIO import requests if verbose>1: print "Downloading image from {}.".format(url) try: r = requests.get(url, timeout=imagedltimeout) if r.status_code == 200: r_sio = StringIO(r.content) if int(r.headers['content-length']) == 0: del r raise ValueError("Empty image.") else: # with PIL, takes 1 second... #start = time.time() from PIL import Image img = Image.open(r_sio) w,h = img.size format = img.format del img #print "PIL get image size and format:",time.time()-start r_sio.seek(0) data = r_sio.read() # use a dict for img info so we can store any other info we may need img_info = dict() img_info['size'] = dict() img_info['size']['width'] = w img_info['size']['height'] = h img_info['format'] = format sha1hash = get_SHA1_from_data(data) del r,r_sio,data return sha1hash,img_info else: raise ValueError("Incorrect status_code: {}.".format(r.status_code)) except Exception as inst: print "Download failed from url {}. [{}]".format(url, inst) return None def get_SHA1_imginfo_from_URL_StringIO(url,verbose=0): from cStringIO import StringIO import requests if verbose>1: print "Downloading image from {}.".format(url) try: r = requests.get(url, timeout=imagedltimeout) if r.status_code == 200: r_sio = StringIO(r.content) if int(r.headers['content-length']) == 0: del r raise ValueError("Empty image.") else: # No PIL dependency, 10-5s. #start = time.time() w,h,format = get_image_size_and_format(r_sio) #print "get_image_size_and_format:",time.time()-start # Seek back to compute SHA1 on the whole binary content! r_sio.seek(0) data = r_sio.read() # use a dict for img info so we can store any other info we may need img_info = dict() img_info['size'] = dict() img_info['size']['width'] = w img_info['size']['height'] = h img_info['format'] = format sha1hash = get_SHA1_from_data(data) del r,r_sio,data return sha1hash,img_info else: raise ValueError("Incorrect status_code: {}.".format(r.status_code)) except Exception as inst: print "Download failed from url {}. [{}]".format(url, inst) return None,None def get_SHA1_from_URL(url,verbose=False): if verbose: print "Downloading image from {}.".format(url) try: r = requests.get(url, stream=True, timeout=imagedltimeout) if r.status_code == 200: sha1hash = get_SHA1_from_data(r.raw.data) return sha1hash except Exception as inst: if verbose: print "Download failed from url {}.".format(url) print inst return None def get_b64_from_data(data): import base64 b64_from_data = None try: b64_from_data = base64.b64encode(data) except: print "Could not read data to compute base64 string." return b64_from_data def get_b64_from_URL(url,verbose=False): if verbose: print "Downloading image from {}.".format(url) try: r = requests.get(url, stream=True, timeout=imagedltimeout) if r.status_code == 200: b64_from_data = get_b64_from_data(r.raw.data) return b64_from_data except Exception as inst: if verbose: print "Download failed from url {}.".format(url) print inst return None def get_b64_from_URL_StringIO(url,verbose=False): from StringIO import StringIO if verbose: print "Downloading image from {}.".format(url) try: r = requests.get(url, timeout=imagedltimeout) if r.status_code == 200: r_sio = StringIO(r.content) data = r_sio.read() b64_from_data = get_b64_from_data(data) return b64_from_data else: print "Incorrect status_code {} for url {}".format(r.status_code,url) except Exception as inst: if verbose: print "Download failed from url {}.".format(url) print inst return None def get_SHA1_b64_from_URL(url,verbose=False): if verbose: print "Downloading image from {}.".format(url) try: r = requests.get(url, stream=True, timeout=imagedltimeout) if r.status_code == 200: sha1hash = get_SHA1_from_data(r.raw.data) b64_from_data = get_b64_from_data(r.raw.data) return sha1hash,b64_from_data except Exception as inst: if verbose: print "Download failed from url {}.".format(url) print inst return None,None if __name__ == "__main__": import profile import time #profile.run('sha1 = get_SHA1_from_URL("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg")') #profile.run('sha1_sio = get_SHA1_from_URL_StringIO("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg")') #profile.run('sha1_sio, img_info = get_SHA1_imginfo_from_URL_StringIO("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg")') start = time.time() sha1 = get_SHA1_from_URL("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg") print sha1,time.time()-start start = time.time() sha1_sio = get_SHA1_from_URL_StringIO("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg") print sha1_sio,time.time()-start start = time.time() sha1_sio, img_info = get_SHA1_imginfo_from_URL_StringIO("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg") print sha1_sio,img_info,time.time()-start start = time.time() sha1_sio, img_info = get_SHA1_imginfo_from_URL_StringIO_PIL("https://s3.amazonaws.com/memex-images/full/581ed33d3e12498f12c86b44010306b172f4ad6a.jpg") print sha1_sio,img_info,time.time()-start
c1763ba5175c207c332aa37cf46bb1aa24f588dd
a82aa8430e32eaf62df0f44b20afb0e7d50c3d7b
/ippon/group_phase/serializers.py
ed76683a6121808cf8e4196a5a8a7ebad298988f
[ "MIT" ]
permissive
morynicz/ippon_back
314daac99f79247b749dc46d59a645a6eb840263
dce901bfc649c6f8efbbf0907654e0860606b3e3
refs/heads/master
2022-12-20T23:33:10.898738
2021-10-17T09:25:39
2021-10-17T09:25:39
124,851,931
0
2
MIT
2022-12-08T12:37:26
2018-03-12T07:43:17
Python
UTF-8
Python
false
false
307
py
from rest_framework import serializers import ippon.models class GroupPhaseSerializer(serializers.ModelSerializer): class Meta: model = ippon.models.group_phase.GroupPhase fields = ( 'id', 'tournament', 'fight_length', 'name' )
d9e361b8b4602c4fc876a19fa99b58a00dd92860
d07432b9969c4bfa5b4e0d0d2ce7b74236d6a33d
/pygeodesy/gars.py
28c68e4904de16df15b071f6765348679771ba8a
[ "MIT" ]
permissive
cwilder23/PyGeodesy
aeb8301a7134bc5c19b35335ac1aff1fa0933e02
6e2f989fb9040c525040270b5834b259b0b4d0d9
refs/heads/master
2022-11-12T00:25:26.253946
2020-06-24T17:39:54
2020-06-24T17:39:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,312
py
# -*- coding: utf-8 -*- u'''Classes L{Garef} and L{GARSError} and several functions to encode, decode and inspect I{Global Area Reference System} (GARS) references. Transcribed from C++ class U{GARS <https://GeographicLib.SourceForge.io/html/classGeographicLib_1_1GARS.html>} by I{Charles Karney}. See also U{Global Area Reference System <https://WikiPedia.org/wiki/Global_Area_Reference_System>} and U{NGA (GARS) <https://Earth-Info.NGA.mil/GandG/coordsys/grids/gars.html>}. @newfield example: Example, Examples ''' from pygeodesy.basics import EPS1_2, isstr, NN, property_RO from pygeodesy.dms import parse3llh # parseDMS2 from pygeodesy.errors import _ValueError from pygeodesy.lazily import _ALL_LAZY from pygeodesy.named import LatLon2Tuple, LatLonPrec3Tuple, nameof, \ _xnamed from pygeodesy.units import Int, Lat, Lon, Precision_, Scalar_, \ Str, _xStrError from math import floor # all public contants, classes and functions __all__ = _ALL_LAZY.gars + ('decode3', # functions 'encode', 'precision', 'resolution') __version__ = '20.05.14' _Digits = '0123456789' _LatLen = 2 _LatOrig = -90 _Letters = 'ABCDEFGHJKLMNPQRSTUVWXYZ' _LonLen = 3 _LonOrig = -180 _MaxPrec = 2 _MinLen = _LonLen + _LatLen _MaxLen = _MinLen + _MaxPrec _M1 = 2 _M2 = 2 _M3 = 3 _M_ = _M1 * _M2 * _M3 _LatOrig_M_ = _LatOrig * _M_ _LonOrig_M_ = _LonOrig * _M_ _LatOrig_M1 = _LatOrig * _M1 _LonOrig_M1_1 = _LonOrig * _M1 - 1 _Resolutions = tuple(1.0 / _ for _ in (_M1, _M1 * _M2, _M_)) def _2divmod2(ll, Orig_M_): x = int(floor(ll * _M_)) - Orig_M_ i = (x * _M1) // _M_ x -= i * _M_ // _M1 return i, x def _2fll(lat, lon, *unused): '''(INTERNAL) Convert lat, lon. ''' # lat, lon = parseDMS2(lat, lon) return (Lat(lat, Error=GARSError), Lon(lon, Error=GARSError)) # def _2Garef(garef): # '''(INTERNAL) Check or create a L{Garef} instance. # ''' # if not isinstance(garef, Garef): # try: # garef = Garef(garef) # except (TypeError, ValueError): # raise _xStrError(Garef, Str, garef=garef) # return garef def _2garstr2(garef): '''(INTERNAL) Check a garef string. ''' try: n, garstr = len(garef), garef.upper() if n < _MinLen or n > _MaxLen \ or garstr[:3] == 'INV' \ or not garstr.isalnum(): raise ValueError return garstr, _2Precision(n - _MinLen) except (AttributeError, TypeError, ValueError) as x: raise GARSError(Garef.__name__, garef, txt=str(x)) def _2Precision(precision): '''(INTERNAL) Return a L{Precision_} instance. ''' return Precision_(precision, Error=GARSError, low=0, high=_MaxPrec) class GARSError(_ValueError): '''Global Area Reference System (GARS) encode, decode or other L{Garef} issue. ''' pass class Garef(Str): '''Garef class, a named C{str}. ''' _latlon = None # cached latlon property _precision = None # no str.__init__ in Python 3 def __new__(cls, cll, precision=1, name=NN): '''New L{Garef} from an other L{Garef} instance or garef C{str} or from a C{LatLon} instance or lat-/longitude C{str}. @arg cll: Cell or location (L{Garef} or C{str}, C{LatLon} or C{str}). @kwarg precision: Optional, the desired garef resolution and length (C{int} 0..2), see function L{gars.encode} for more details. @kwarg name: Optional name (C{str}). @return: New L{Garef}. @raise RangeError: Invalid B{C{cll}} lat- or longitude. @raise TypeError: Invalid B{C{cll}}. @raise GARSError: INValid or non-alphanumeric B{C{cll}}. ''' if isinstance(cll, Garef): g, p = _2garstr2(str(cll)) self = Str.__new__(cls, g) self._latlon = LatLon2Tuple(*cll._latlon) self._name = cll._name self._precision = p # cll._precision elif isstr(cll): if ',' in cll: lat, lon = _2fll(*parse3llh(cll)) cll = encode(lat, lon, precision=precision) # PYCHOK false self = Str.__new__(cls, cll) self._latlon = LatLon2Tuple(lat, lon) else: self = Str.__new__(cls, cll.upper()) self._decode() else: # assume LatLon try: lat, lon = _2fll(cll.lat, cll.lon) except AttributeError: raise _xStrError(Garef, cll=cll) # Error=GARSError cll = encode(lat, lon, precision=precision) # PYCHOK false self = Str.__new__(cls, cll) self._latlon = LatLon2Tuple(lat, lon) if self._precision is None: self._precision = _2Precision(precision) if name: self.name = name return self def _decode(self): # cache all decoded attrs lat, lon, p = decode3(self) if self._latlon is None: self._latlon = LatLon2Tuple(lat, lon) if self._precision is None: self._precision = p @property_RO def latlon(self): '''Get this garef's (center) lat- and longitude (L{LatLon2Tuple}). ''' if self._latlon is None: self._decode() return self._latlon @property_RO def precision(self): '''Get this garef's precision (C{int}). ''' if self._precision is None: self._decode() return self._precision def toLatLon(self, LatLon, **kwds): '''Return (the center of) this garef cell as an instance of the supplied C{LatLon} class. @arg LatLon: Class to use (C{LatLon}). @kwarg kwds: Optional keyword arguments for B{C{LatLon}}. @return: This garef location (B{C{LatLon}}). @raise GARSError: Invalid B{C{LatLon}}. ''' if LatLon is None: raise GARSError(LatLon=LatLon) return self._xnamed(LatLon(*self.latlon, **kwds)) def decode3(garef, center=True): '''Decode a C{garef} to lat-, longitude and precision. @arg garef: To be decoded (L{Garef} or C{str}). @kwarg center: If C{True} the center, otherwise the south-west, lower-left corner (C{bool}). @return: A L{LatLonPrec3Tuple}C{(lat, lon, precision)}. @raise GARSError: Invalid B{C{garef}}, INValid, non-alphanumeric or bad length B{C{garef}}. ''' def _Error(i): return GARSError(garef='%r[%s]' % (garef, i)) def _ll(chars, g, i, j, lo, hi): ll, b = 0, len(chars) for i in range(i, j): d = chars.find(g[i]) if d < 0: raise _Error(i) ll = ll * b + d if ll < lo or ll > hi: raise _Error(j) return ll def _ll2(lon, lat, g, i, m): d = _Digits.find(g[i]) if d < 1 or d > m * m: raise _Error(i) d, r = divmod(d - 1, m) lon = lon * m + r lat = lat * m + (m - 1 - d) return lon, lat g, precision = _2garstr2(garef) lon = _ll(_Digits, g, 0, _LonLen, 1, 720) + _LonOrig_M1_1 lat = _ll(_Letters, g, _LonLen, _MinLen, 0, 359) + _LatOrig_M1 if precision > 0: lon, lat = _ll2(lon, lat, g, _MinLen, _M2) if precision > 1: lon, lat = _ll2(lon, lat, g, _MinLen + 1, _M3) if center: # ll = (ll * 2 + 1) / 2 lon += 0.5 lat += 0.5 r = _Resolutions[precision] # == 1.0 / unit r = LatLonPrec3Tuple(Lat(lat * r, Error=GARSError), Lon(lon * r, Error=GARSError), precision) return _xnamed(r, nameof(garef)) def encode(lat, lon, precision=1): # MCCABE 14 '''Encode a lat-/longitude as a C{garef} of the given precision. @arg lat: Latitude (C{degrees}). @arg lon: Longitude (C{degrees}). @kwarg precision: Optional, the desired C{garef} resolution and length (C{int} 0..2). @return: The C{garef} (C{str}). @raise RangeError: Invalid B{C{lat}} or B{C{lon}}. @raise GARSError: Invalid B{C{precision}}. @note: The C{garef} length is M{precision + 5} and the C{garef} resolution is B{30′} for B{C{precision}} 0, B{15′} for 1 and B{5′} for 2, respectively. ''' def _digit(x, y, m): return _Digits[m * (m - y - 1) + x + 1], def _str(chars, x, n): s, b = [], len(chars) for i in range(n): x, i = divmod(x, b) s.append(chars[i]) return tuple(reversed(s)) p = _2Precision(precision) lat, lon = _2fll(lat, lon) if lat == 90: lat *= EPS1_2 ix, x = _2divmod2(lon, _LonOrig_M_) iy, y = _2divmod2(lat, _LatOrig_M_) g = _str(_Digits, ix + 1, _LonLen) + _str(_Letters, iy, _LatLen) if p > 0: ix, x = divmod(x, _M3) iy, y = divmod(y, _M3) g += _digit(ix, iy, _M2) if p > 1: g += _digit(x, y, _M3) return ''.join(g) def precision(res): '''Determine the L{Garef} precision to meet a required (geographic) resolution. @arg res: The required resolution (C{degrees}). @return: The L{Garef} precision (C{int} 0..2). @raise ValueError: Invalid B{C{res}}. @see: Function L{gars.encode} for more C{precision} details. ''' r = Scalar_(res, name='res') for p in range(_MaxPrec): if resolution(p) <= r: return p return _MaxPrec def resolution(prec): '''Determine the (geographic) resolution of a given L{Garef} precision. @arg prec: The given precision (C{int}). @return: The (geographic) resolution (C{degrees}). @raise ValueError: Invalid B{C{prec}}. @see: Function L{gars.encode} for more C{precision} details. ''' p = Int(prec, name='prec', Error=GARSError) return _Resolutions[max(0, min(p, _MaxPrec))] # **) MIT License # # Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE.
4f613303615c55d2729147ae5cb8c6cd97c4ca83
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02383/s686099688.py
8350ca148ab207ab25ea1b72f0d85043ae5cfc38
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
dice = input().split() direction = list(input()) dice2 = [] for i in range(len(direction)): dice2 = dice if direction[i] == 'E': dice = [dice2[3],dice2[1],dice2[0],dice2[5],dice2[4],dice2[2]] elif direction[i] == 'N': dice = [dice2[1],dice2[5],dice2[2],dice2[3],dice2[0],dice2[4]] elif direction[i] == 'S': dice = [dice2[4],dice2[0],dice2[2],dice2[3],dice2[5],dice2[1]] else: dice = [dice2[2],dice2[1],dice2[5],dice2[0],dice2[4],dice2[3]] print('{0}'.format(int(dice[0])))
a778be45a738c428c09f03ec65096a832a8df811
b66c83dbdb1181d3274cfb309637c0bdf590553f
/build/extrinsic_Industrial/intelligent_actuator/robo_cylinder/catkin_generated/pkg.develspace.context.pc.py
50404616a97e27fc816577449f0fc4dc7749b87a
[]
no_license
Sinchiguano/repo_project
9079c80f6544cbe39902c68f61f421bd7cfd55e6
666da1d6d91704302b69ec9e0b0d30db3a709f30
refs/heads/master
2020-04-30T18:06:16.162025
2019-04-25T18:47:58
2019-04-25T18:47:58
177,000,277
0
1
null
null
null
null
UTF-8
Python
false
false
499
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/casch/yumi_depends_ws/devel/include".split(';') if "/home/casch/yumi_depends_ws/devel/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;rospy;std_msgs;message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "robo_cylinder" PROJECT_SPACE_DIR = "/home/casch/yumi_depends_ws/devel" PROJECT_VERSION = "0.0.0"
330465e9c7046e35f6e9643ad0783b8b0f75b9e3
466912406272829982f75854cf0104c6ce8c9814
/data/nlp/task/tn.py
1f80c0f141aa16e10b8cdf4cd2f2570f501f9aef
[]
no_license
logonmy/Codes
9631fa103fc499663361fa7eeccd7cedb9bb08e4
92723efdeccfc193f9ee5d0ab77203c254f34bc2
refs/heads/master
2021-09-21T18:07:22.985184
2018-08-30T05:53:26
2018-08-30T05:53:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,710
py
# -*- coding: utf-8 -*- __author__ = 'victor' import os import sys reload(sys) sys.setdefaultencoding('utf-8') sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '..')) sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '../../util')) import db as dbcon from fundtag import FundingClassifier from common import dbutil, dicts from common.chunk import SentenceChunker from common.feed import NewsFeeder from common.dsutil import FrozenLenList from news.mentioned import CompanyLinker from task.news_postprocess import NewsTagger from score.similar_news import ScorerNews import re import time import codecs import logging import pymongo from copy import copy from itertools import chain from collections import Counter from datetime import datetime, timedelta import fasttext # logging logging.getLogger('task_news').handlers = [] logger_tn = logging.getLogger('task_news') logger_tn.setLevel(logging.INFO) formatter = logging.Formatter('%(name)-12s %(asctime)s %(levelname)-8s %(message)s', '%a, %d %b %Y %H:%M:%S',) stream_handler = logging.StreamHandler(sys.stderr) stream_handler.setFormatter(formatter) logger_tn.addHandler(stream_handler) viptag_model = os.path.join(os.path.split(os.path.realpath(__file__))[0], '../keywords/models/20180319.bin') class NoEventDetectError(Exception): def __init__(self): Exception.__init__(self) class NewsTask(object): def __init__(self): global logger_tn, viptag_model self.mongo = dbcon.connect_mongo() self.db = dbcon.connect_torndb() # self.fund_transformer, self.fund_classifier = get_fund_classifier() self.funding_clf = FundingClassifier() self.company_linker = CompanyLinker() self.sentence_chunker = SentenceChunker() self.snscorer = ScorerNews() self.news_feeder = NewsFeeder() self.news_tagger = NewsTagger() self.viptag_clf = fasttext.load_model(viptag_model) self.tags_l2 = dicts.get_vip_succession() self.trusted_fund_source = [13800] self.non_trusted_fund_source = [13848, 13866] self.important_sources = dicts.get_important_news_source() self.tags = self.load_tags() category_file = os.path.join(os.path.split(os.path.realpath(__file__))[0], 'files/category') self.categories = {int(line.split('#')[0]): line.strip().split('#')[1].split(',') for line in codecs.open(category_file, encoding='utf-8') if not line.startswith('#')} self.fund_tips = [u'融资', u'融资方', u'领投', u'跟投'] self.fund_keywords = [u'融资', u'融资方', u'领投', u'跟投', u'投资', u'收购'] self.round_tips = [u'A轮', u'B轮', u'C轮', u'D轮', u'Pre-A', u'A+轮', u'天使轮', u'天使融资', u'B+轮', u'种子轮', u'战略性融资', u'战略投资', u'IPO'] self.amount_tips = [u'数千万', u'数百万', u'数十万', u'上百万', u'上千万', u'上亿', u'几十万', u'几百万', u'几千万', u'百万级', u'千万级', u'亿级', u'\d+\.*\d*万', u'\d+\.*\d*百万', u'\d+\.*\d*千万', u'\d+\.*\d*亿'] self.currency_tips = [u'人民币', u'美元', u'美金'] self.company_size = 5 self.brief_size = 5 self.tags_l2_min_appearance = 3 self.life_circle = 25 self.max_life = 100 self.latest_funding_companies = FrozenLenList(200) self.date_3_days_ago = datetime.utcnow() - timedelta(days=3) logger_tn.info('Fund event extract model inited') def process_all(self): global logger_tn while True: for record in list(self.mongo.article.news.find({'type': {'$in': [60001, 60003, 60005, 60006, 60007, 60008, 60009]}, 'fund_extract': None}).sort('createTime', pymongo.DESCENDING)): if record.get('source', 0) == 13022: self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': -2}}) continue if record.get('date') and record.get('date') < datetime.now() - timedelta(days=7): self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': -3}}) continue if self.life_circle <= 0: self.reload_models() logger_tn.info('Model reloaded') try: logger_tn.info('Processing, %s' % record['_id']) self.process_piece(record['_id'], record) logger_tn.info('%s processed' % record['_id']) self.life_circle -= 1 except NoEventDetectError, nede: logger_tn.exception('%s not extracted, %s' % (record['_id'], nede)) self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': -1}}) except Exception, e: logger_tn.exception('%s failed, %s' % (record['_id'], e)) time.sleep(300) logger_tn.info('Nice sleep') def load_tags(self): global logger_tn try: tags = {dbutil.get_tag_info(self.db, tid, 'name'): tid for tid in dbutil.get_industry_tags(self.db) if tid} logger_tn.info('Tags: %s' % ','.join(tags.keys())) except Exception, e: tags = {} logger_tn.exception('Fail to load tags, due to %s' % e) return tags def reload_models(self): self.life_circle = self.max_life self.company_linker = CompanyLinker() self.tags = self.load_tags() self.date_3_days_ago = datetime.utcnow() - timedelta(days=3) for funding in dbutil.get_funding_by_date(self.db, (self.date_3_days_ago, datetime.now())): if funding and funding.companyId: self.latest_funding_companies.append(funding.companyId) def process_piece(self, nid, given_record=None): global logger_tn record = self.mongo.article.news.find({'_id': nid}).limit(1)[0] if not given_record else given_record # generate report task if record.get('type', 0) == 60006: task = { 'news_id': record['_id'], 'news_date': record['date'], 'type': 'report', 'createTime': datetime.utcnow(), 'processStatus': int(0) } self.mongo.task.news.update({'news_id': str(record['_id'])}, task, True) self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': 0}}) return # fund classify if record.get('category', 0) == 60101 and \ ((record.get('category_confidence') is None) or record.get('category_confidence', 0) == 1): is_fund, strict = True, False elif record.get('source', 0) in self.non_trusted_fund_source: is_fund, strict = False, True elif record.get('source', 0) in self.trusted_fund_source: is_fund, strict = True, False else: # label = self.fund_classifier.predict( # self.fund_transformer.transform([' '.join(self.news_feeder.feed(record))]))[0] label = self.funding_clf.predict(record) is_fund = True if label == 1 else False strict = True is_fund_before_review = copy(is_fund) is_fund = self.__review_fund(is_fund, record, strict) logger_tn.info('Processing %s, fund %s, before review %s' % (nid, is_fund, is_fund_before_review)) # task base if is_fund: task = self.__generate_fund_task(record) self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': 1}}) else: task = self.__generate_news_task(record) if not task: self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': -6, "processStatus": -7}}) logger_tn.info('Classify as buyao news, %s' % nid) return self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'fund_extract': 0}}) task['categories'] = self.classify_category(record, task.get('categories', [])) # tags tags = [] tags.extend(self.classify_tags(record)) # sectors try: tags.extend(self.classify_sector_tags(record, task.get('categories'))) except Exception, e: logger_tn.exception('Fail to classify sector for %s' % record['_id']) task['newsTags'] = tags # sentiment task['sentiment'] = 578361 # investorIds task['investorIds'] = [] # dups company ids task['companyIds_139'] = copy(task.get('companyIds')) self.mongo.task.news.update({'news_id': str(record['_id'])}, task, True) self.news_tagger.label_11800_record(record, record['_id']) # relevant news # relevant = self.snscorer.get_similar_news(nid) # relevant = [str(task['_id']) # for task in [self.mongo.task.news.find_one({'news_id': str(r)}) for r in relevant] if task] # if relevant: # self_id = str(self.mongo.task.news.find_one({'news_id': str(record['_id'])})['_id']) # relevant.append(self_id) # for tnid in set(relevant): # my_relevant = set(relevant) # my_relevant.remove(tnid) # self.mongo.task.news.update({'_id': ObjectId(tnid)}, {'$set': {'relevant': list(my_relevant)}}) def __review_fund(self, is_fund, record, strict): if not is_fund: return is_fund if not strict: return is_fund # other non fund source if record.get('source', 0) not in self.trusted_fund_source: try: task = self.extract_funding_from_contents(**record) if task and task.get('items'): return True return False except TypeError: return False return is_fund def __generate_fund_task(self, record): try: task = self.extract_funding_from_contents(**record) except TypeError: task = {} task['news_id'] = str(record['_id']) task['news_date'] = record['date'] task['createTime'] = datetime.utcnow() task['processStatus'] = int(0) task['type'] = 'fund' task['categories'] = [578349] task['section'] = 'step1' task['subtype'] = self.classify_fund_subtype(task) return task def __generate_news_task(self, record): # no need to have if record.get('type', 60008) == 60008: return False # from weixin, needed by topic if self.news_tagger.label_11800_record(record, record['_id']) \ or self.news_tagger.label_11810_record(record, record['_id']): return {'news_id': str(record['_id']), 'news_date': record['date'], 'type': 'important', 'createTime': datetime.utcnow(), 'processStatus': int(0), 'section': 'step1'} # check source if record.get('source') in self.important_sources: news_important = True else: news_important = False # extract companies from news companies = map(lambda y: y[0], sorted(dict(self.company_linker.find_from_record(record)).items(), key=lambda x: -x[1]))[:3] cids = map(lambda x: int(x), chain(*[dbutil.get_id_from_name(self.db, name) for name in companies])) trusted_cid = record.get('companyId', False) if trusted_cid and trusted_cid not in cids: cids.append(trusted_cid) if not (cids or news_important): return False task_type = 'important' if news_important else 'check' task = {'news_id': str(record['_id']), 'news_date': record['date'], 'type': task_type, 'companyIds': cids, 'createTime': datetime.utcnow(), 'processStatus': int(0), 'section': 'step1'} return task def classify_category(self, record, prejudgement): results = prejudgement # 汇总类新闻 if u'日报' in record['title'] or u'周报' in record['title']: return [578358] for cate_id, category in self.categories.items(): if len(category) == 1: if category[0] in (set(record.get('categoryNames', [])) | set(record.get('original_tags', []) or [])): results.append(int(cate_id)) else: if set(self.news_feeder.feed(record)) & set(category): results.append(int(cate_id)) if len(results) > 0: result = [results[0]] return list(set(int(result) for result in results)) if results else [578359] def classify_tags(self, record): news_content = ' '.join([c.get('content', '') for c in record.get('contents')]) for tag, tid in self.tags.items(): if news_content.count(tag) > 5 or (float(news_content.count(tag)) / len(news_content) > 0.005): yield tid def classify_sector_tags(self, record, categories): desc = ' '.join(self.news_feeder.feed(record)) if desc and len(desc) > 20: classifier_vips = {int(tag.replace(u'__label__', '')): weight for (tag, weight) in self.viptag_clf.predict_proba([desc], 2)[0]} if max(classifier_vips.values()) < 0.25: sectors = [(999, 0)] elif max(classifier_vips.values()) - min(classifier_vips.values()) < 0.15: sectors = [(dbutil.get_sector_from_tag(self.db, tid), confidence) for (tid, confidence) in sorted(classifier_vips.iteritems(), key=lambda x: -x[1])] else: sectors = [(dbutil.get_sector_from_tag(self.db, tid), confidence) for (tid, confidence) in sorted(classifier_vips.iteritems(), key=lambda x: -x[1])] sectors = [sectors[0]] else: sectors = [(999, 0)] sids = [sid for (sid, _) in sectors] if 7 in sids and u'区块链' in desc and 20006 not in sids: sids.remove(7) sids.append(20006) confidences = [] else: confidences = [confidence for (_, confidence) in sectors] tags = [dbutil.get_tag_from_sector(self.db, sid) for sid in sids] tags = [t for t in tags if t] if {128, 578353, 578349, 578351, 578356, 578351} & set(categories): self.mongo.article.news.update({'_id': record['_id']}, {'$set': {'sectors': sids, 'features': tags, 'sector_confidence': confidences}}) return tags def extract_funding_from_contents(self, **kwargs): results = {} # data with format of a mongodb news record data = dict(kwargs) # splits all sentences contents = [piece.get('content') for piece in data.get('contents') if piece.get('content', '').strip()] sentences = list(self.sentence_chunker.chunk(data.get('title'), *contents)) # find all company candidates company_candidates = self.company_linker.find_candidates(data) company_re = '|'.join(company_candidates.keys()).replace('.', '\.').replace('*', '\*')\ .replace('+', '\+').replace('?', '\?').replace('(', '\(').replace(')', '\)') # fund event sentences event_sentences = [i for i in xrange(len(sentences)) if self.__is_event_sentence(sentences[i])] # extract company candidates, fund round, fund amount, fund currency try: for event_index in event_sentences: results.setdefault('companyIds', []).extend( re.findall(company_re, sentences[event_index])) rounds = re.findall('|'.join(self.round_tips), sentences[event_index]) amounts = re.findall('|'.join(self.amount_tips), sentences[event_index]) supports = re.findall('|'.join(self.fund_tips), sentences[event_index]) currency = re.findall('|'.join(self.currency_tips), sentences[event_index]) support = sum([int(len(item) > 0) for item in [rounds, amounts, currency, supports]]) if sentences[event_index] in set(item.get('brief') for item in results.get('items', [])): continue results.setdefault('items', []).append({'brief': sentences[event_index], 'round': ' '.join(rounds), 'amount': ' '.join(amounts), 'currency': ' '.join(currency), 'sort': support + len(sentences[event_index])/1000.0}) except Exception, e: pass if self.__is_event_title(data.get('title', '')): results.setdefault('items', []).append({'brief': data.get('title'), 'sort': 1}) # organize if results: results['companyIds'] = [int(cid) for cid in set(chain(*[dbutil.get_id_from_name(self.db, name) for name in set(results.get('companyIds', [])) if name.strip()]))] results['items'] = sorted(results.get('items'), key=lambda x: x.get('sort', 0), reverse=True)[:self.brief_size] return results def classify_fund_subtype(self, task): company_candidates = task.get('companyIds', []) if set(company_candidates) & set(self.latest_funding_companies): subtype = 'duplicate' elif self.mongo.task.news.find({'companyIds': {'$in': company_candidates}, 'processStatus': 1, 'type': 'fund', 'news_date': {'$gt': self.date_3_days_ago}}).count() > 0: subtype = 'duplicate' else: subtype = 'major' return subtype def __is_event_sentence(self, sentence): for fund_tip in self.fund_tips: if fund_tip in sentence: return True for round_tip in self.round_tips: if round_tip in sentence: return True return False def __is_event_title(self, sentence): for fund_keyword in self.fund_keywords: if fund_keyword in sentence: return True return False if __name__ == '__main__': print __file__ logger_tn.info('News Task Model Initing') nt = NewsTask() logger_tn.info('News Task Model Inited') nt.process_all() # fe.process_piece(ObjectId('57ce684d4877af20e02b12a6'))
c4228442ea7bb005562f42293f54db22ffd4a496
85738a4cacd2a6d93c4487cf856c883c3d9d314a
/tests/web/settings.py
9a68dbff38a085e8bd59eb1e7053c05ef3ac066a
[ "Apache-2.0" ]
permissive
Kitware/tangelo
cc0cb1372bc5728e0585f739a9412a58a5069069
470034ee9b3d7a01becc1ce5fddc7adc1d5263ef
refs/heads/develop
2023-08-28T11:57:57.909917
2016-01-25T15:56:18
2016-01-25T15:56:18
6,885,877
40
21
Apache-2.0
2018-03-05T01:24:16
2012-11-27T15:38:26
JavaScript
UTF-8
Python
false
false
320
py
import cherrypy import tangelo # This service reports the value of cherrypy's thread pool setting def run(**kwargs): if kwargs.get('pool'): tangelo.util.set_server_setting('server.thread_pool', int(kwargs['pool'])) response = 'pool="%r"' % cherrypy.config.get('server.thread_pool') return response
718d0f430682a0b47ec3c0d95755ecd74fa8612a
7134e45563b2045837296cb5c4f1974a025e4f2b
/.history/MathmeticPracticeTimeLimit_20200411174234.py
16d18819de876f7987bf70910f5d9fe1a1e15342
[]
no_license
Nordenbox/Nordenbox_Python_Fundmental
dca175c471ac2c64453cc4bcf291dd0773be4add
9c79fd5d0dada580072b523d5aa1d72f996e3a22
refs/heads/master
2022-01-21T06:37:15.084437
2022-01-06T13:55:30
2022-01-06T13:55:30
240,154,945
0
0
null
null
null
null
UTF-8
Python
false
false
2,601
py
import random import time import os import subprocess def mode_choice(): print('请选用练习模式:\n1,选择练习题目数。\n') print('2, 选择练习时间') choice_num = int(input('您的选择: ')) if choice_num == 1: multipile_issues() else: multipile_time() def multipile_issues(): practicese_times = int(input('您要做几道题: ')) for i in range(practicese_times): practicese_issues() print("正确为%d,错误为%d。" % (practicese_issues.corrected, practicese_issues.wrong), "你的分数是%d分" % (practicese_issues.corrected / practicese_times * 100)) if practicese_issues.sum_wrong_list != [] and practicese_issues.minos_wrong_list != []: print("错误的题目是:\n", practicese_issues.sum_wrong_list, "\n", practicese_issues.minos_wrong_list) elif practicese_issues.sum_wrong_list == [] and practicese_issues.minos_wrong_list != []: print("错误的题目是:\n", practicese_issues.minos_wrong_list) elif practicese_issues.sum_wrong_list != [] and practicese_issues.minos_wrong_list == []: print("错误的题目是:\n", practicese_issues.sum_wrong_list) def multipile_time(): pass def practicese_issues(): orrected = 0 wrong = 0 #counting = howmuch sum_wrong_list = [] minos_wrong_list = [] sum = 0 minos = 0 while True: plused = random.randint(1, 20) plus = random.randint(1, 20) p = random.randint(0, 1) if p == 1: sum = int(input("%d+%d= " % (plused, plus))) if sum == plused + plus: corrected = corrected + 1 else: sum_wrong_list.append("%d+%d= %d" % (plused, plus, sum)) wrong = wrong + 1 else: if plused < plus: minos = int(input("%d-%d= " % (plus, plused))) if minos == plus - plused: corrected = corrected + 1 else: minos_wrong_list.append( "%d-%d=%d " % (plus, plused, minos)) wrong = wrong + 1 else: minos = int(input("%d-%d= " % (plused, plus))) if minos == plused - plus: corrected = corrected + 1 else: minos_wrong_list.append( "%d-%d=%d " % (plused, plus, minos)) wrong = wrong + 1 return corrected, wrong, sum_wrong_list, minos_wrong_list mode_choice()
6dcb30fec438ec2e9fff5f0b0626da1774055b61
653eaef652627b155569b5fe9ab9bb3607fc1e78
/alg/discriminative-jackknife/models/BNN.py
3a17799407f89d0061443791a187ff674aeeaeab
[ "BSD-3-Clause" ]
permissive
IlyaTrofimov/mlforhealthlabpub
11ab86a83bd2ffd2574364a956b322b0c62406ae
190cbad2faae9e559ffe7a68143df7f747d70adc
refs/heads/main
2023-04-16T03:58:38.423288
2021-04-21T10:22:43
2021-04-21T10:22:43
358,528,623
0
0
NOASSERTION
2021-04-16T08:25:26
2021-04-16T08:25:25
null
UTF-8
Python
false
false
1,534
py
import torch import torch.nn as nn class BNN(nn.Module): def __init__(self, *layers): super(BNN, self).__init__() self.layers, self.params = [], nn.ParameterList() for layer in layers: self.layers.append(layer) self.params.extend([*layer.parameters()]) # register module parameters def forward(self, x, mode): if mode == 'forward': net_kl = 0 for layer in self.layers: x, layer_kl = layer.forward(x, mode) net_kl += layer_kl return x, net_kl else: for layer in self.layers: x = layer.forward(x, mode) return x def Forward(self, x, y, n_samples, type): assert type in {'Gaussian', 'Softmax'}, 'Likelihood type not found' # Sample N samples and average total_kl, total_likelh = 0., 0. for _ in range(n_samples): out, kl = self.forward(x, mode='forward') # Gaussian output (with unit var) # lklh = torch.log(torch.exp(-(y - out) ** 2 / 2e-2) / math.sqrt(2e-2 * math.pi)).sum() if type == 'Gaussian': lklh = (-.5 * (y - out) ** 2).sum() else: # softmax lklh = torch.log(out.gather(1, y)).sum() total_kl += kl total_likelh += lklh return total_kl / n_samples, total_likelh / n_samples @staticmethod def loss_fn(kl, lklh, n_batch): return (kl / n_batch - lklh).mean()
59b111e7c48d6899e63795c608a24e3d51ca5fb3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02706/s901477236.py
e5cd388ef56bc4369f68551299e42a2e436c4640
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
#import numpy as np #import math #from decimal import * #from numba import njit #@njit def main(): N,M = map(int, input().split()) A = list(map(int, input().split())) s = sum(A) if s > N: print(-1) else: print(N-s) main()
010427a5856703a295156243fe70f85976250e8c
2f17bb840634eab6f08a7bb488781f6951ce6b47
/AOJ_courses/ITP1_4_D.py
42e76330f54037ab4673edbc5a65b21db34f3da8
[]
no_license
NHRD/Atcoderpractice
3d5c1175e147a0bdbacf46f51b23db1a1b2dea22
958835069c84791afa36d119298b742d53e86ae0
refs/heads/master
2022-12-15T17:30:10.310049
2020-09-19T13:39:07
2020-09-19T13:39:07
279,771,996
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
n = int(input()) nums = list(map(int, input().split())) nums = sorted(nums) sumnum = sum(nums) print("{} {} {}" .format(nums[0], nums[len(nums)-1], sumnum))
80e9eeda1efc064f19b56be3222ec30e6dd1564d
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5744014401732608_1/Python/feigao/main.py
9d1ebc3970ed5aa77f1c7df72eca82287fe1e3c1
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
3,015
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys from functools import wraps, lru_cache def io_wrapper(func): @wraps(func) def _func(in_file=None, out_file=None, lines_per_case=1): in_buffers = [] if in_file is None: while True: try: s = input() if s.strip(): in_buffers.append(s.strip()) except: break else: with open(in_file, 'r') as f: in_buffers.extend([line.strip() for line in f.read().strip().splitlines()]) total_case_nums = int(in_buffers[0]) in_buffers = in_buffers[1:] # print(in_buffers) assert len(in_buffers) == total_case_nums * lines_per_case out_buffers = [] for case_id in range(1, total_case_nums + 1): case_result_str = func('\n'.join(in_buffers[(case_id - 1) * lines_per_case: case_id * lines_per_case])) out_buffers.append('Case #{}: {}'.format(case_id, case_result_str)) if out_file is not None and os.path.exists(out_file): print('Out file {} already exists!'.format(out_file), file=sys.stderr) out_buffers = None if out_file is None: print('\n'.join(out_buffers)) else: with open(out_file, 'w') as f: f.write('\n'.join(out_buffers)) return _func @io_wrapper @lru_cache(maxsize=None) def solution(line_str): return "Answer Str" @io_wrapper def a(lines): n, *parties = map(int, lines.split()) # print(n, parties) resutls = [] total = sum(parties) import string names = string.ascii_uppercase[:n] numbers = dict(zip(names, parties)) while total > 0: m = max(numbers, key=lambda c: numbers[c]) resutls.append(m) total -= 1 v = numbers[m] if v == 1: del numbers[m] else: numbers[m] = v - 1 if len(resutls) % 2 == 1: resutls.insert(0, '') return ' '.join(a + b for a, b in zip(resutls[::2], resutls[1::2])) @io_wrapper def b(lines): # print(lines) b, m = map(int, lines.split()) if m > 2 ** (b - 2): return 'IMPOSSIBLE' resp = 'POSSIBLE' if m == 2 ** (b - 2): matrix = [[1 if r < c else 0 for c in range(b)] for r in range(b)] else: matrix = [[1 if r < c < b - 1 else 0 for c in range(b)] for r in range(b)] for r in range(b): if m & (2 ** r): matrix[r + 1][b - 1] = 1 return '\n'.join([resp] + [''.join(map(str, row)) for row in matrix]) def c(): pass if __name__ == '__main__': # solution() # a('A-sample.txt', lines_per_case=2) # a('A-small-attempt0.in', lines_per_case=2) # a('A-large.in.txt', 'A-large.out.txt', lines_per_case=2) # b('B-sample.txt') # b('B-small-attempt0.in.txt', 'B-small-attempt0.out.txt') b('B-large.in', 'B-large.out.txt') pass
e9880143e1cf66275f3cb00db8e80924fd0897d1
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-iam/huaweicloudsdkiam/v3/model/keystone_create_protocol_request.py
ad11aa561d4c11a287678808d35c64ee2c118655
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,463
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class KeystoneCreateProtocolRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'idp_id': 'str', 'protocol_id': 'str', 'body': 'KeystoneCreateProtocolRequestBody' } attribute_map = { 'idp_id': 'idp_id', 'protocol_id': 'protocol_id', 'body': 'body' } def __init__(self, idp_id=None, protocol_id=None, body=None): """KeystoneCreateProtocolRequest - a model defined in huaweicloud sdk""" self._idp_id = None self._protocol_id = None self._body = None self.discriminator = None self.idp_id = idp_id self.protocol_id = protocol_id if body is not None: self.body = body @property def idp_id(self): """Gets the idp_id of this KeystoneCreateProtocolRequest. 身份提供商ID。 :return: The idp_id of this KeystoneCreateProtocolRequest. :rtype: str """ return self._idp_id @idp_id.setter def idp_id(self, idp_id): """Sets the idp_id of this KeystoneCreateProtocolRequest. 身份提供商ID。 :param idp_id: The idp_id of this KeystoneCreateProtocolRequest. :type: str """ self._idp_id = idp_id @property def protocol_id(self): """Gets the protocol_id of this KeystoneCreateProtocolRequest. 待注册的协议ID。 :return: The protocol_id of this KeystoneCreateProtocolRequest. :rtype: str """ return self._protocol_id @protocol_id.setter def protocol_id(self, protocol_id): """Sets the protocol_id of this KeystoneCreateProtocolRequest. 待注册的协议ID。 :param protocol_id: The protocol_id of this KeystoneCreateProtocolRequest. :type: str """ self._protocol_id = protocol_id @property def body(self): """Gets the body of this KeystoneCreateProtocolRequest. :return: The body of this KeystoneCreateProtocolRequest. :rtype: KeystoneCreateProtocolRequestBody """ return self._body @body.setter def body(self, body): """Sets the body of this KeystoneCreateProtocolRequest. :param body: The body of this KeystoneCreateProtocolRequest. :type: KeystoneCreateProtocolRequestBody """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, KeystoneCreateProtocolRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1f17b1b6a2c0bd4d5957fdf6884f06dc99a93f8a
82c562bf2257c248fae968ad27876f840c98d5cc
/python_stack/django/django_orm/firstorm/firstorm/settings.py
f42135421e8b5e24068980b7988b67264548ecc7
[]
no_license
tbkrft567/CodingDojo
5175dbf5cae1e7b23ad1b91e6370bbf1467e2c31
142974abeffa0aef93f3761ffd3a9e2cc452e990
refs/heads/master
2023-02-19T09:03:26.644627
2021-02-21T22:06:54
2021-02-21T22:06:54
230,340,732
0
0
null
2023-01-19T16:39:50
2019-12-26T23:24:56
Python
UTF-8
Python
false
false
3,100
py
""" Django settings for firstorm project. Generated by 'django-admin startproject' using Django 1.10. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'bstws@=2bx0n1i5@-6uf+jrt9i%bj6m4!^zes)9s4io!jvm2w&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'firstorm.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'firstorm.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
18772b128b050a7ff3d1dabdbdd5d2091d72921c
2d94902e0367f364eabd038b4aa49ac34e1ebd47
/config.py
7e17e0f65019ab54b69a72e387746c5c258de67a
[ "Apache-2.0" ]
permissive
qitianchan/Patap
25f642759698391c77527ed3f676a84fcf918023
e71bd95300d94f7e26f9d87e5bdb9f4c73175383
refs/heads/master
2021-01-20T20:03:52.546735
2016-07-27T12:01:31
2016-07-27T12:01:31
64,106,084
0
0
null
null
null
null
UTF-8
Python
false
false
807
py
# Create dummy secrey key so we can use sessions SECRET_KEY = '123456790' # Create in-memory database DATABASE_FILE = 'patap.sqlite' SQLALCHEMY_DATABASE_URI = 'sqlite:///' + DATABASE_FILE SQLALCHEMY_ECHO = True # Flask-Security config # SECURITY_URL_PREFIX = "/admin" SECURITY_PASSWORD_HASH = "pbkdf2_sha512" SECURITY_PASSWORD_SALT = "ATGUOHAELKiubahiughaerGOJAEGj" # Flask-Security URLs, overridden because they don't put a / at the end SECURITY_LOGIN_URL = "/login/" SECURITY_LOGOUT_URL = "/logout/" SECURITY_REGISTER_URL = "/register/" SECURITY_POST_LOGIN_VIEW = "/facilitator/" SECURITY_POST_LOGOUT_VIEW = "/" SECURITY_POST_REGISTER_VIEW = "/admin/" # Flask-Security features SECURITY_REGISTERABLE = True SECURITY_SEND_REGISTER_EMAIL = False # Blueprint prefix FACILITATOR_PREFIX = '/facilitator'
e87ad93a3d3dcdf7cfea8ea52573b0f8fcc1a35a
54290d468f91a21f131458b136213354a3780a46
/fabfile.py
2f37bf95d517421a6878a2eb07b905c48515e92f
[ "WTFPL" ]
permissive
LaPosteSNA/addok
9435cccd37e936c89c538caed08f5db04e6bd0eb
22a4e407c5a94d412673d223a25a8a3651801a71
refs/heads/master
2021-01-22T13:13:37.465954
2016-01-26T17:02:01
2016-01-26T17:02:01
45,954,224
1
0
null
2015-11-11T02:15:32
2015-11-11T02:15:31
null
UTF-8
Python
true
false
3,886
py
from fabric.api import cd, env, execute, hide, puts, roles, sudo, task env.project_name = 'addok' env.repository = 'https://github.com/etalab/addok.git' env.local_branch = 'master' env.remote_ref = 'origin/master' env.requirements_file = 'requirements.txt' env.use_ssh_config = True env.shell = "/bin/bash -c" # Default uses -l option that we don't want. env.virtualenv_dir = '/home/addok/.virtualenvs/addok' env.project_dir = '/home/addok/src/' env.restart_command = 'sudo service addok restart' def run_as_addok(*args, **kwargs): """ Run command sudoing user `addok`. """ kwargs['user'] = "addok" return sudo(*args, **kwargs) # ============================================================================= # Tasks which set up deployment environments # ============================================================================= @task def dev(): """ Use the dev deployment environment on Etalab servers. You need the "banapidev" server to be referenced in your ~/.ssh/config file. """ server = 'banapidev' env.roledefs = { 'web': [server], } env.system_users = {server: 'addok'} @task def live(): """ Use the live deployment environment on Etalab servers. You need the "banapi" server to be referenced in your ~/.ssh/config file. """ server = 'banapi' env.roledefs = { 'web': [server], } env.system_users = {server: 'addok'} # Set the default environment. dev() # ============================================================================= # Actual tasks # ============================================================================= @task @roles('web') def setup(): """ Install the service (tested on Ubuntu 14.04). """ sudo('apt install redis-server python3.4-dev python-virtualenv python-pip ' 'virtualenvwrapper') # run_as_addok('source /usr/local/bin/virtualenvwrapper.sh') run_as_addok('mkvirtualenv addok --python=/usr/bin/python3.4') run_as_addok('git clone {repository} {project_dir}'.format(**env)) with cd(env.project_dir): run_as_addok('pip install -r {requirements_file}'.format(**env)) @task @roles('web') def restart(): """ Restart the web service. """ run_as_addok(env.restart_command) @task @roles('web') def update(action='check'): """ Update the repository (server-side). """ with cd(env.project_dir): remote, dest_branch = env.remote_ref.split('/', 1) run_as_addok('git fetch {remote}'.format( remote=remote, dest_branch=dest_branch, **env)) with hide('running', 'stdout'): cmd = 'git diff-index --cached --name-only {remote_ref}' changed_files = run_as_addok(cmd.format(**env)).splitlines() if not changed_files and action != 'force': # No changes, we can exit now. return run_as_addok('git merge {remote_ref}'.format(**env)) run_as_addok('find -name "*.pyc" -delete') if action == "clean": run_as_addok('git clean -df') execute(install) @task @roles('web') def install(): """ Update the requirements. """ puts('Installing...') cmd = '{virtualenv_dir}/bin/python setup.py develop' run_as_addok(cmd.format(**env)) @task @roles('web') def shell(): cmd = "{virtualenv_dir}/bin/python /home/addok/src/run.py shell" run_as_addok(cmd.format(virtualenv_dir=env.virtualenv_dir)) @task def deploy(verbosity='normal'): """ Full server deploy. Updates the repository (server-side) and restarts the web service. """ if verbosity == 'noisy': hide_args = [] else: hide_args = ['running', 'stdout'] with hide(*hide_args): puts('Updating repository...') execute(update) puts('Restarting web server...') execute(restart)
b3b1665fb21f6233aa62577bc888715c6c87326f
e5a044708032b853f1cdf8906da63502716fd410
/test/test_acs_response.py
50ae8c13ac7310108d49f9d76f8061799b9c37d7
[]
no_license
GBSEcom/Python
4b93bab80476051fc99f379f018ac9fa109a8a6a
5fa37dba8d0c3853686fdc726f863743376060c9
refs/heads/master
2021-12-04T12:55:29.605843
2021-11-19T22:01:03
2021-11-19T22:01:03
136,058,345
1
2
null
null
null
null
UTF-8
Python
false
false
1,064
py
# coding: utf-8 """ Payment Gateway API Specification. The documentation here is designed to provide all of the technical guidance required to consume and integrate with our APIs for payment processing. To learn more about our APIs please visit https://docs.firstdata.com/org/gateway. # noqa: E501 The version of the OpenAPI document: 21.5.0.20211029.001 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import openapi_client from openapi_client.models.acs_response import ACSResponse # noqa: E501 from openapi_client.rest import ApiException class TestACSResponse(unittest.TestCase): """ACSResponse unit test stubs""" def setUp(self): pass def tearDown(self): pass def testACSResponse(self): """Test ACSResponse""" # FIXME: construct object with mandatory attributes with example values # model = openapi_client.models.acs_response.ACSResponse() # noqa: E501 pass if __name__ == '__main__': unittest.main()
763b3c41f750dca1f47c7fdc416ee621be024e3c
90cdae33e672b23a3ccb84dec0f281e78d3934ce
/auto_test_leke/web_test/src/common/method.py
038feba19e8b7600635d53982ce2dd7eead0e753
[]
no_license
kuangtao94/TestHome
dffdb3737ab60f6db435c770c33f423d814b5594
46acedadd225b07fe73f43feebd5c66d19c7eeac
refs/heads/master
2020-06-29T07:38:37.316844
2019-11-24T02:14:25
2019-11-24T02:14:25
200,475,947
0
1
null
null
null
null
UTF-8
Python
false
false
1,918
py
# coding:utf-8 from selenium import webdriver import os from selenium.webdriver.common.by import By #导入by定位 from selenium.webdriver.support.ui import WebDriverWait #导入显示等待包 from selenium.webdriver.support import expected_conditions as EC #导入期望条件 from logging import log #导入日志文件中的日志 类 # driver=webdriver.Chrome() class public(): def __init__(self,driver): #创建对象时加入初始化参数,每次调用类时都会执行初始化参数 self.driver=driver self.log=log('execute.log') #创建日志类对象,并初始化文件 def login(self,username,password): self.input_text(By.NAME,"name",username) self.input_text(By.NAME,"password",password) self.click_element(By.NAME,"submit") def logout(self): self.click_element(By.XPATH,'') def locat_element(self,*loc): #定义元素的方法 try: element = WebDriverWait(self.driver,5,0.5).until( EC.presence_of_element_located(loc) ) return element except: self.log.error(u"元素找不到"+str(loc)) def input_text(self,a,b,text,clear=True): #输入框的方法 if clear: try: self.locat_element(a,b).clear() self.locat_element(a,b).send_keys(text) except: self.log.error(u'文本输入失败'+str(text)) else: try: self.locat_element(a,b).send_keys(text) except: self.log.error(u'文本输入失败'+str(text)) def click_element(self,a,b): #点击元素的方法 try: self.locat_element(a,b).click() except: self.log.error(u'点击失败'+str(b))
94be3ed0169b5b1a099858c6d26cca996a1e3f6c
ee7ca0fed1620c3426fdfd22e5a82bba2a515983
/dsn_qc_pbsa/models/qc.py
49236e76f3e03ea571e2b17105d32c21ef6826d9
[]
no_license
disna-sistemas/odoo
318d0e38d9b43bea56978fe85fc72850d597f033
0826091462cc10c9edc3cc29ea59c417f8e66c33
refs/heads/8.0
2022-03-08T19:01:21.162717
2022-02-15T13:06:26
2022-02-15T13:06:26
99,210,381
0
5
null
2019-07-24T08:49:58
2017-08-03T08:36:55
Python
UTF-8
Python
false
false
1,399
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2012 OpenERP SA (<http://openerp.com>) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import models, fields, api from datetime import datetime class dsnQcInspection(models.Model): _inherit = "qc.inspection" buf_date_analysis = fields.Date('Date of Analysis', readonly=True) @api.multi def action_confirm(self): for inspection in self: inspection.buf_date_analysis = datetime.now() result = super(dsnQcInspection, self).action_confirm() return result
f2c256c323ba1cec97493ee8de823784aeb287cc
ac8779998b00a35b2fced864b007334a32873bf1
/manage.py
cf1caf56512e01322d1767d71e4b7fce84a389b2
[]
no_license
openmaker-eu/dsp-explorer
5cb5ad4e7190dc8559b69a3154da9ae6383ef536
8a8b007ac6095ac6864e030641545724a6872f2e
refs/heads/master
2022-12-09T13:50:47.218076
2019-02-14T20:21:53
2019-02-14T20:21:53
90,641,109
5
8
null
2022-12-08T02:06:16
2017-05-08T15:02:38
Python
UTF-8
Python
false
false
809
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dspexplorer.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
46823e51aef1425db664261b1bf8807eda1cf97f
ff21dd1b906db472584aa92a32c22fb9351c9ffd
/NOTE/02_PythonBase/day20/exercise/mycopy.py
84c9355038bbc272ced2e384557d1676f5064f61
[]
no_license
Bertram-Liu/Note
0e176b2c9625f02e463b8f6be3587f1f0b873e9b
60a30b03ff5d41ab6233e6fd30074de396703b68
refs/heads/master
2020-07-18T18:14:24.920528
2019-09-04T11:55:59
2019-09-04T11:55:59
206,290,323
0
0
null
null
null
null
UTF-8
Python
false
false
702
py
# 1. 写程序,实现复制文件的功能 # 要求: # 1. 要考虑关闭文件的问题 # 2. 要考虑超大文件的问题 # 3. 要能复制二进制文件 def copy(src_file, dst_file): '''src_file 源文件 dst_file 目标文件''' # 以下实现复制 try: with open(src_file, 'rb') as fr, \ open(dst_file, 'wb') as fw: while True: b = fr.read(4096) if not b: # 到达文件尾 break fw.write(b) except OSError: print("复制失败!") src = input("请输入源文件名: ") dst = input('请输入目标文件名: ') copy(src, dst)
1125be93d6bf6ec5f578a754b518db5452606a9d
4d8f0c491943e0c688c11561c7f57d815b014b76
/experiments/tf_vae_pixel/resnet_16.py
a289791f5c82669c58bc4a02e9871acbdb7e5406
[]
no_license
kundan2510/nn
d5e434e9d6275a82a04c12df4d8e4be855c39ab5
39d247f3b64f9ac9400835dd72d3af7a84578449
refs/heads/master
2020-12-26T03:10:23.949984
2016-12-27T20:23:58
2016-12-27T20:23:58
64,513,518
0
1
null
2016-07-29T22:19:40
2016-07-29T22:19:39
null
UTF-8
Python
false
false
42,905
py
""" Multilayer VAE + Pixel CNN Ishaan Gulrajani """ import os, sys sys.path.append(os.getcwd()) N_GPUS = 1 try: # This only matters on Ishaan's computer import experiment_tools experiment_tools.wait_for_gpu(tf=True, n_gpus=N_GPUS) except ImportError: pass import tflib as lib import tflib.debug import tflib.train_loop import tflib.ops.kl_unit_gaussian import tflib.ops.kl_gaussian_gaussian import tflib.ops.conv2d import tflib.ops.deconv2d import tflib.ops.linear import tflib.ops.batchnorm import tflib.ops.embedding import tflib.lsun_bedrooms import tflib.mnist_256 # import tflib.small_imagenet import numpy as np import tensorflow as tf import scipy.misc from scipy.misc import imsave import time import functools import argparse parser = argparse.ArgumentParser(description='Generating images pixel by pixel') add_arg = parser.add_argument add_arg('--model_weights', default=None, help = 'Pretrained model weights to load') add_arg('--algo', default='1', help = '"1" or "RMB"') args = parser.parse_args() out_paths = ['/Tmp/kumarkun/pixel_vae', '/scratch/jvb-000-aa/kundan/pixel_vae'] for p in out_paths: if os.path.exists(p): OUT_DIR_PREFIX = p break DATASET = 'lsun_64' # mnist_256, lsun_32, lsun_64, imagenet_64 SETTINGS = '64px' # mnist_256, 32px_small, 32px_big, 64px OUT_DIR = '{}/{}/{}/samples'.format(OUT_DIR_PREFIX, DATASET, SETTINGS) PARAM_DIR = '{}/{}/{}/params'.format(OUT_DIR_PREFIX, DATASET, SETTINGS) if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) print "Created {}".format(OUT_DIR) if not os.path.exists(PARAM_DIR): os.makedirs(PARAM_DIR) print "Created {}".format(PARAM_DIR) if SETTINGS == 'mnist_256': # two_level uses Enc1/Dec1 for the bottom level, Enc2/Dec2 for the top level # one_level uses EncFull/DecFull for the bottom (and only) level MODE = 'one_level' EMBED_INPUTS = True # Turn on/off the bottom-level PixelCNN in Dec1/DecFull PIXEL_LEVEL_PIXCNN = True HIGHER_LEVEL_PIXCNN = True PIXCNN_ONLY = False # These settings are good for a 'smaller' model that trains (up to 200K iters) # in ~1 day on a GTX 1080 (probably equivalent to 2 K40s). DIM_PIX_1 = 32 PIX1_FILT_SIZE = 5 DIM_1 = 16 DIM_2 = 32 DIM_3 = 32 # LATENT_DIM_1 = 32 # DIM_PIX_2 = 32 DIM_4 = 64 DIM_5 = 128 LATENT_DIM_2 = 2 ALPHA1_ITERS = 10000 # ALPHA2_ITERS = 5000 KL_PENALTY = 1.05 BETA_ITERS = 1000 # In Dec2, we break each spatial location into N blocks (analogous to channels # in the original PixelCNN) and model each spatial location autoregressively # as P(x)=P(x0)*P(x1|x0)*P(x2|x0,x1)... In my experiments values of N > 1 # actually hurt performance. Unsure why; might be a bug. PIX_2_N_BLOCKS = 1 TIMES = { 'mode': 'iters', 'print_every': 2*500, 'test_every': 2*500, 'stop_after': 500*500, 'callback_every': 10*500 } VANILLA = False LR = 1e-3 LR_DECAY_AFTER = TIMES['stop_after'] LR_DECAY_FACTOR = 1. BATCH_SIZE = 100 N_CHANNELS = 1 HEIGHT = 28 WIDTH = 28 LATENTS1_HEIGHT = 7 LATENTS1_WIDTH = 7 elif SETTINGS == '32px_small': # two_level uses Enc1/Dec1 for the bottom level, Enc2/Dec2 for the top level # one_level uses EncFull/DecFull for the bottom (and only) level MODE = 'two_level' EMBED_INPUTS = False # Turn on/off the bottom-level PixelCNN in Dec1/DecFull PIXEL_LEVEL_PIXCNN = True HIGHER_LEVEL_PIXCNN = True PIXCNN_ONLY = False # These settings are good for a 'smaller' model that trains (up to 200K iters) # in ~1 day on a GTX 1080 (probably equivalent to 2 K40s). DIM_PIX_1 = 128 PIX1_FILT_SIZE = 3 DIM_1 = 64 DIM_2 = 128 DIM_3 = 256 LATENT_DIM_1 = 64 DIM_PIX_2 = 512 DIM_4 = 512 DIM_5 = 2048 LATENT_DIM_2 = 512 ALPHA1_ITERS = 5000 ALPHA2_ITERS = 5000 KL_PENALTY = 1.00 SQUARE_ALPHA = False BETA_ITERS = 1000 # In Dec2, we break each spatial location into N blocks (analogous to channels # in the original PixelCNN) and model each spatial location autoregressively # as P(x)=P(x0)*P(x1|x0)*P(x2|x0,x1)... In my experiments values of N > 1 # actually hurt performance. Unsure why; might be a bug. PIX_2_N_BLOCKS = 1 TIMES = { 'mode': 'iters', 'print_every': 1000, 'test_every': 1000, 'stop_after': 200000, 'callback_every': 20000 } VANILLA = False LR = 1e-3 LR_DECAY_AFTER = 180000 LR_DECAY_FACTOR = 1e-1 BATCH_SIZE = 64 N_CHANNELS = 3 HEIGHT = 32 WIDTH = 32 LATENTS1_HEIGHT = 8 LATENTS1_WIDTH = 8 elif SETTINGS == '32px_big': # two_level uses Enc1/Dec1 for the bottom level, Enc2/Dec2 for the top level # one_level uses EncFull/DecFull for the bottom (and only) level MODE = 'two_level' EMBED_INPUTS = False # Turn on/off the bottom-level PixelCNN in Dec1/DecFull PIXEL_LEVEL_PIXCNN = True HIGHER_LEVEL_PIXCNN = True PIXCNN_ONLY = False # These settings are good for a 'smaller' model that trains (up to 200K iters) # in ~1 day on a GTX 1080 (probably equivalent to 2 K40s). DIM_PIX_1 = 256 PIX1_FILT_SIZE = 3 DIM_1 = 128 DIM_2 = 256 DIM_3 = 512 LATENT_DIM_1 = 128 DIM_PIX_2 = 1024 DIM_4 = 1024 DIM_5 = 2048 LATENT_DIM_2 = 512 ALPHA1_ITERS = 5000 ALPHA2_ITERS = 5000 KL_PENALTY = 1.00 SQUARE_ALPHA = False BETA_ITERS = 1000 # In Dec2, we break each spatial location into N blocks (analogous to channels # in the original PixelCNN) and model each spatial location autoregressively # as P(x)=P(x0)*P(x1|x0)*P(x2|x0,x1)... In my experiments values of N > 1 # actually hurt performance. Unsure why; might be a bug. PIX_2_N_BLOCKS = 1 TIMES = { 'mode': 'iters', 'print_every': 1000, 'test_every': 1000, 'stop_after': 300000, 'callback_every': 20000 } VANILLA = False LR = 5e-4 LR_DECAY_AFTER = 250000 LR_DECAY_FACTOR = 2e-1 BATCH_SIZE = 64 N_CHANNELS = 3 HEIGHT = 32 WIDTH = 32 LATENTS1_HEIGHT = 8 LATENTS1_WIDTH = 8 elif SETTINGS == '64px': # WARNING! Some parts of the network architecture have hardcoded checks for # (SETTTINGS == '64px'), so if you just copy these settings under a new # label things will be different! TODO maybe fix this eventually. # two_level uses Enc1/Dec1 for the bottom level, Enc2/Dec2 for the top level # one_level uses EncFull/DecFull for the bottom (and only) level MODE = 'two_level' EMBED_INPUTS = False # Turn on/off the bottom-level PixelCNN in Dec1/DecFull PIXEL_LEVEL_PIXCNN = True HIGHER_LEVEL_PIXCNN = True DIM_PIX_1 = 128 PIX1_FILT_SIZE = 7 DIM_1 = 64 DIM_2 = 128 DIM_3 = 256 LATENT_DIM_1 = 64 DIM_PIX_2 = 512 DIM_4 = 512 DIM_5 = 2048 LATENT_DIM_2 = 512 PIXCNN_ONLY = False # Uncomment for PixelCNN only (NO VAE) # print "WARNING PIXCNN ONLY" # PIXCNN_ONLY = True # DIM_PIX_1 = 128 # PIX1_FILT_SIZE = 3 # In Dec2, we break each spatial location into N blocks (analogous to channels # in the original PixelCNN) and model each spatial location autoregressively # as P(x)=P(x0)*P(x1|x0)*P(x2|x0,x1)... In my experiments values of N > 1 # actually hurt performance. Unsure why; might be a bug. PIX_2_N_BLOCKS = 1 TIMES = { 'mode': 'iters', 'print_every': 1, 'test_every': 10000, 'stop_after': 200000, 'callback_every': 25000 } VANILLA = False LR = 5e-4 LR_DECAY_AFTER = 180000 LR_DECAY_FACTOR = 2e-1 ALPHA1_ITERS = 5000 ALPHA2_ITERS = 20000 KL_PENALTY = 1.01 BETA_ITERS = 1000 BATCH_SIZE = 64 N_CHANNELS = 3 HEIGHT = 64 WIDTH = 64 LATENTS1_WIDTH = 8 LATENTS1_HEIGHT = 8 if DATASET == 'mnist_256': train_data, dev_data, test_data = lib.mnist_256.load(BATCH_SIZE, BATCH_SIZE) elif DATASET == 'lsun_32': train_data, dev_data = lib.lsun_bedrooms.load(BATCH_SIZE, downsample=True) elif DATASET == 'lsun_64': train_data, dev_data = lib.lsun_bedrooms.load(BATCH_SIZE, downsample=False) elif DATASET == 'imagenet_64': train_data, dev_data = lib.small_imagenet.load(BATCH_SIZE) lib.print_model_settings(locals().copy()) DEVICES = ['/gpu:{}'.format(i) for i in xrange(N_GPUS)] DEVICES = ['/gpu:3'] lib.ops.conv2d.enable_default_weightnorm() lib.ops.deconv2d.enable_default_weightnorm() lib.ops.linear.enable_default_weightnorm() def nonlinearity(x): return tf.nn.elu(x) def pixcnn_gated_nonlinearity(a, b): return tf.sigmoid(a) * tf.tanh(b) def ResidualBlock(name, input_dim, output_dim, inputs, inputs_stdev, filter_size, mask_type=None, resample=None, he_init=True): """ resample: None, 'down', or 'up' """ if mask_type != None and resample != None: raise Exception('Unsupported configuration') if resample=='down': conv_shortcut = functools.partial(lib.ops.conv2d.Conv2D, stride=2) conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=input_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim, stride=2) elif resample=='up': def conv_shortcut(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) old_shape = tf.shape(output) output = tf.reshape(output, tf.pack([old_shape[0], 2*old_shape[1], 2*old_shape[2], old_shape[3]/4])) output = tf.transpose(output, [0,3,1,2]) return output conv_1 = functools.partial(lib.ops.deconv2d.Deconv2D, input_dim=input_dim, output_dim=output_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim) elif resample==None: conv_shortcut = lib.ops.conv2d.Conv2D conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim) else: raise Exception('invalid resample value') if output_dim==input_dim and resample==None: shortcut = inputs # Identity skip-connection else: shortcut = conv_shortcut(name+'.Shortcut', input_dim=input_dim, output_dim=output_dim, filter_size=1, mask_type=mask_type, he_init=False, biases=False, inputs=inputs) output = inputs if mask_type == None: output = nonlinearity(output) output = conv_1(name+'.Conv1', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output = nonlinearity(output) output = conv_2(name+'.Conv2', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) else: output = nonlinearity(output) output_a = conv_1(name+'.Conv1A', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output_b = conv_1(name+'.Conv1B', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output = pixcnn_gated_nonlinearity(output_a, output_b) output = conv_2(name+'.Conv2', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) return shortcut + (0.3 * output) def RMB(name, input_dim, output_dim, inputs, inputs_stdev, filter_size, mask_type=None, resample=None, he_init=True): """ resample: None, 'down', or 'up' """ if mask_type != None and resample != None: raise Exception('Unsupported configuration') if resample=='down': conv_shortcut = functools.partial(lib.ops.conv2d.Conv2D, stride=2) conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=input_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim, stride=2) elif resample=='up': def conv_shortcut(*args, **kwargs): kwargs['output_dim'] = 4*kwargs['output_dim'] output = lib.ops.conv2d.Conv2D(*args, **kwargs) output = tf.transpose(output, [0,2,3,1]) old_shape = tf.shape(output) output = tf.reshape(output, tf.pack([old_shape[0], 2*old_shape[1], 2*old_shape[2], old_shape[3]/4])) output = tf.transpose(output, [0,3,1,2]) return output conv_1 = functools.partial(lib.ops.deconv2d.Deconv2D, input_dim=input_dim, output_dim=output_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim) elif resample==None: conv_shortcut = lib.ops.conv2d.Conv2D conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim) conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim) else: raise Exception('invalid resample value') if output_dim==input_dim and resample==None: shortcut = inputs # Identity skip-connection else: shortcut = conv_shortcut(name+'.Shortcut', input_dim=input_dim, output_dim=output_dim, filter_size=1, mask_type=mask_type, he_init=False, biases=False, inputs=inputs) output = inputs if mask_type == None: output = nonlinearity(output) output = conv_1(name+'.Conv1', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output = nonlinearity(output) output = conv_2(name+'.Conv2', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) else: output = nonlinearity(output) output_a = conv_1(name+'.Conv1A', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output_b = conv_1(name+'.Conv1B', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output = pixcnn_gated_nonlinearity(output_a, output_b) output = conv_2(name+'.Conv2', filter_size=filter_size, mask_type=mask_type, inputs=output, he_init=he_init) output = nonlinearity(output) output = lib.ops.conv2d.Conv2D(name+'.Conv3_1x1', input_dim=output_dim, output_dim=output_dim, filter_size=1, mask_type=None, inputs=output, he_init=he_init) return shortcut + output def Enc1(images): if args.algo == "RMB": ResidualBlock = RMB if PIXCNN_ONLY: batch_size = tf.shape(images)[0] return tf.zeros(tf.pack([batch_size, 2*LATENT_DIM_1, LATENTS1_WIDTH, LATENTS1_HEIGHT]), tf.float16) output = images if SETTINGS == '64px': output = lib.ops.conv2d.Conv2D('Enc1.Input', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=5, inputs=output, he_init=False, stride=2) else: output = lib.ops.conv2d.Conv2D('Enc1.Input', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=1, inputs=output, he_init=False) output = ResidualBlock('Enc1.Res1', input_dim=DIM_1, output_dim=DIM_2, filter_size=3, resample='down', inputs_stdev=1, inputs=output) output = ResidualBlock('Enc1.Res2', input_dim=DIM_2, output_dim=DIM_3, filter_size=3, resample='down', inputs_stdev=np.sqrt(2), inputs=output) output = ResidualBlock('Enc1.Res3', input_dim=DIM_3, output_dim=DIM_3, filter_size=3, resample=None, inputs_stdev=np.sqrt(3), inputs=output) output = lib.ops.conv2d.Conv2D('Enc1.Out', input_dim=DIM_3, output_dim=2*LATENT_DIM_1, filter_size=1, inputs=output, he_init=False) return output def Dec1(latents, images): if args.algo == "RMB": ResidualBlock = RMB if PIXCNN_ONLY: batch_size = tf.shape(latents)[0] output = tf.zeros(tf.pack([batch_size, DIM_1, HEIGHT, WIDTH]), tf.float16) else: output = tf.clip_by_value(latents, -50., 50.) output = lib.ops.conv2d.Conv2D('Dec1.Input', input_dim=LATENT_DIM_1, output_dim=DIM_3, filter_size=1, inputs=output, he_init=False) output = ResidualBlock('Dec1.Res1', input_dim=DIM_3, output_dim=DIM_3, filter_size=3, resample=None, inputs_stdev=1, inputs=output) output = ResidualBlock('Dec1.Res2', input_dim=DIM_3, output_dim=DIM_2, filter_size=3, resample='up', inputs_stdev=np.sqrt(2), inputs=output) output = ResidualBlock('Dec1.Res3', input_dim=DIM_2, output_dim=DIM_1, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), inputs=output) if SETTINGS == '64px': output = ResidualBlock('Dec1.Res4', input_dim=DIM_1, output_dim=DIM_1, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), inputs=output) if PIXEL_LEVEL_PIXCNN: masked_images = lib.ops.conv2d.Conv2D('Dec1.Pix1', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=7, inputs=images, mask_type=('a', N_CHANNELS), he_init=False) # Make the stdev of output and masked_images match output /= np.sqrt(4) # Warning! Because of the masked convolutions it's very important that masked_images comes first in this concat output = tf.concat(1, [masked_images, output]) output = ResidualBlock('Dec1.Pix2Res', input_dim=2*DIM_1, output_dim=DIM_PIX_1, filter_size=PIX1_FILT_SIZE, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) if PIXCNN_ONLY: for i in xrange(9): output = ResidualBlock('Dec1.Pix2Res_'+str(i), input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=PIX1_FILT_SIZE, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) output = ResidualBlock('Dec1.Pix3Res', input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=1, mask_type=('b', N_CHANNELS), inputs_stdev=np.sqrt(2), inputs=output) output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_PIX_1, output_dim=256*N_CHANNELS, filter_size=1, mask_type=('b', N_CHANNELS), he_init=False, inputs=output) else: output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_1, output_dim=256*N_CHANNELS, filter_size=1, he_init=False, inputs=output) return tf.transpose( tf.reshape(output, [-1, 256, N_CHANNELS, HEIGHT, WIDTH]), [0,2,3,4,1] ) def DecRMB(latents, images): if args.algo == "RMB": ResidualBlock = RMB if PIXCNN_ONLY: batch_size = tf.shape(latents)[0] output = tf.zeros(tf.pack([batch_size, DIM_1, HEIGHT, WIDTH]), tf.float16) else: output = tf.clip_by_value(latents, -50., 50.) output = lib.ops.conv2d.Conv2D('Dec1.Input', input_dim=LATENT_DIM_1, output_dim=DIM_3, filter_size=1, inputs=output, he_init=False) output = ResidualBlock('Dec1.Res1', input_dim=DIM_3, output_dim=DIM_3, filter_size=3, resample=None, inputs_stdev=1, inputs=output) output = ResidualBlock('Dec1.Res2', input_dim=DIM_3, output_dim=DIM_2, filter_size=3, resample='up', inputs_stdev=np.sqrt(2), inputs=output) output = ResidualBlock('Dec1.Res3', input_dim=DIM_2, output_dim=DIM_1, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), inputs=output) if SETTINGS == '64px': output = ResidualBlock('Dec1.Res4', input_dim=DIM_1, output_dim=DIM_1, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), inputs=output) if PIXEL_LEVEL_PIXCNN: masked_images = lib.ops.conv2d.Conv2D('Dec1.Pix1', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=7, inputs=images, mask_type=('a', N_CHANNELS), he_init=False) # Make the stdev of output and masked_images match output /= np.sqrt(4) # Warning! Because of the masked convolutions it's very important that masked_images comes first in this concat output = tf.concat(1, [masked_images, output]) output = ResidualBlock('Dec1.Pix2Res', input_dim=2*DIM_1, output_dim=DIM_PIX_1, filter_size=PIX1_FILT_SIZE, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) if PIXCNN_ONLY: for i in xrange(9): output = ResidualBlock('Dec1.Pix2Res_'+str(i), input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=PIX1_FILT_SIZE, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) output = ResidualBlock('Dec1.Pix3Res', input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=1, mask_type=('b', N_CHANNELS), inputs_stdev=np.sqrt(2), inputs=output) output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_PIX_1, output_dim=256*N_CHANNELS, filter_size=1, mask_type=('b', N_CHANNELS), he_init=False, inputs=output) else: output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_1, output_dim=256*N_CHANNELS, filter_size=1, he_init=False, inputs=output) return tf.transpose( tf.reshape(output, [-1, 256, N_CHANNELS, HEIGHT, WIDTH]), [0,2,3,4,1] ) def Enc2(latents): if args.algo == "RMB": ResidualBlock = RMB if PIXCNN_ONLY: batch_size = tf.shape(latents)[0] return tf.zeros(tf.pack([batch_size, 2*LATENT_DIM_2]), tf.float16) output = tf.clip_by_value(latents, -50., 50.) output = lib.ops.conv2d.Conv2D('Enc2.Input', input_dim=LATENT_DIM_1, output_dim=DIM_3, filter_size=1, inputs=output, he_init=False) output = ResidualBlock('Enc2.Res1', input_dim=DIM_3, output_dim=DIM_4, filter_size=3, resample='down', inputs_stdev=1, he_init=True, inputs=output) # output = ResidualBlock('Enc2.Res2', input_dim=DIM_4, output_dim=DIM_4, filter_size=3, resample=None, inputs_stdev=np.sqrt(2), he_init=True, inputs=output) output = tf.reshape(output, [-1, 4*4*DIM_4]) output = tf.nn.elu(output) output = lib.ops.linear.Linear('Enc2.ConvToFC', input_dim=4*4*DIM_4, output_dim=DIM_5, inputs=output) output = tf.nn.elu(output) # We implement an FC residual block as a conv over a 1x1 featuremap # output = tf.reshape(output, [-1, DIM_5, 1, 1]) # output = ResidualBlock('Enc2.Res3', input_dim=DIM_5, output_dim=DIM_5, filter_size=1, inputs_stdev=np.sqrt(3), he_init=True, inputs=output) # output = tf.reshape(output, [-1, DIM_5]) output = lib.ops.linear.Linear('Enc2.Output', input_dim=DIM_5, output_dim=2*LATENT_DIM_2, inputs=output, initialization='glorot') return output def Dec2(latents, targets): if args.algo == "RMB": ResidualBlock = RMB if PIXCNN_ONLY: batch_size = tf.shape(latents)[0] return tf.zeros(tf.pack([batch_size, 2*LATENT_DIM_1, LATENTS1_HEIGHT, LATENTS1_WIDTH]), tf.float16) output = tf.clip_by_value(latents, -50., 50.) output = lib.ops.linear.Linear('Dec2.Input', input_dim=LATENT_DIM_2, output_dim=DIM_5, inputs=output) output = tf.nn.elu(output) # output = tf.reshape(output, [-1, DIM_5, 1, 1]) # output = ResidualBlock('Dec2.Res1', input_dim=DIM_5, output_dim=DIM_5, filter_size=1, inputs_stdev=1, he_init=True, inputs=output) # output = tf.reshape(output, [-1, DIM_5]) output = lib.ops.linear.Linear('Dec2.FCToConv', input_dim=DIM_5, output_dim=4*4*DIM_4, inputs=output) output = tf.reshape(output, [-1, DIM_4, 4, 4]) # output = ResidualBlock('Dec2.Res2', input_dim=DIM_4, output_dim=DIM_4, filter_size=3, resample=None, inputs_stdev=np.sqrt(2), he_init=True, inputs=output) output = ResidualBlock('Dec2.Res3', input_dim=DIM_4, output_dim=DIM_3, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), he_init=True, inputs=output) if WIDTH == 28: output = tf.slice(output, [0, 0, 0, 0], [-1, -1, 7, 7]) if HIGHER_LEVEL_PIXCNN: masked_targets = lib.ops.conv2d.Conv2D('Dec2.Pix1', input_dim=LATENT_DIM_1, output_dim=DIM_3, filter_size=7, mask_type=('a', PIX_2_N_BLOCKS), he_init=False, inputs=targets) # Make the stdev of output and masked_targets match output /= np.sqrt(4) output = tf.concat(1, [masked_targets, output]) output = ResidualBlock('Dec2.Pix2Res', input_dim=2*DIM_3, output_dim=DIM_PIX_2, filter_size=3, mask_type=('b', PIX_2_N_BLOCKS), inputs_stdev=1, he_init=True, inputs=output) output = ResidualBlock('Dec2.Pix3Res', input_dim=DIM_PIX_2, output_dim=DIM_PIX_2, filter_size=1, mask_type=('b', PIX_2_N_BLOCKS), inputs_stdev=np.sqrt(2), he_init=True, inputs=output) output = lib.ops.conv2d.Conv2D('Dec2.Out', input_dim=DIM_PIX_2, output_dim=2*LATENT_DIM_1, filter_size=1, mask_type=('b', PIX_2_N_BLOCKS), he_init=False, inputs=output) else: output = lib.ops.conv2d.Conv2D('Dec2.Out', input_dim=DIM_3, output_dim=2*LATENT_DIM_1, filter_size=1, mask_type=('b', PIX_2_N_BLOCKS), he_init=False, inputs=output) return output def EncFull(images): if args.algo == "RMB": ResidualBlock = RMB output = images if EMBED_INPUTS: output = lib.ops.conv2d.Conv2D('EncFull.Input', input_dim=N_CHANNELS*DIM_1, output_dim=DIM_1, filter_size=1, inputs=output, he_init=False) else: output = lib.ops.conv2d.Conv2D('EncFull.Input', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=1, inputs=output, he_init=False) output = ResidualBlock('EncFull.Res1', input_dim=DIM_1, output_dim=DIM_2, filter_size=3, resample='down', inputs_stdev=1, inputs=output) output = ResidualBlock('EncFull.Res2', input_dim=DIM_2, output_dim=DIM_3, filter_size=3, resample='down', inputs_stdev=np.sqrt(2), inputs=output) output = ResidualBlock('EncFull.Res3', input_dim=DIM_3, output_dim=DIM_4, filter_size=3, resample='down', inputs_stdev=np.sqrt(3), inputs=output) # output = ResidualBlock('EncFull.Res4', input_dim=DIM_4, output_dim=DIM_4, filter_size=3, resample=None, inputs_stdev=np.sqrt(4), inputs=output) output = tf.reshape(output, [-1, 4*4*DIM_4]) output = lib.ops.linear.Linear('EncFull.ConvToFC', input_dim=4*4*DIM_4, output_dim=DIM_5, initialization='glorot', inputs=output) # We implement an FC residual block as a conv over a 1x1 featuremap output = tf.reshape(output, [-1, DIM_5, 1, 1]) output = ResidualBlock('EncFull.Res5', input_dim=DIM_5, output_dim=DIM_5, filter_size=1, inputs_stdev=np.sqrt(5), he_init=True, inputs=output) output = tf.reshape(output, [-1, DIM_5]) output = lib.ops.linear.Linear('EncFull.Output', input_dim=DIM_5, output_dim=2*LATENT_DIM_2, inputs=output, initialization='glorot') return output def DecFull(latents, images): if args.algo == "RMB": ResidualBlock = RMB output = tf.clip_by_value(latents, -50., 50.) output = lib.ops.linear.Linear('DecFull.Input', input_dim=LATENT_DIM_2, output_dim=DIM_5, initialization='glorot', inputs=output) output = tf.reshape(output, [-1, DIM_5, 1, 1]) output = ResidualBlock('DecFull.Res1', input_dim=DIM_5, output_dim=DIM_5, filter_size=1, inputs_stdev=1, he_init=True, inputs=output) output = tf.reshape(output, [-1, DIM_5]) output = lib.ops.linear.Linear('DecFull.FCToConv', input_dim=DIM_5, output_dim=4*4*DIM_4, initialization='glorot', inputs=output) output = tf.reshape(output, [-1, DIM_4, 4, 4]) # output = ResidualBlock('DecFull.Res2', input_dim=DIM_4, output_dim=DIM_4, filter_size=3, resample=None, inputs_stdev=np.sqrt(2), he_init=True, inputs=output) output = ResidualBlock('DecFull.Res3', input_dim=DIM_4, output_dim=DIM_3, filter_size=3, resample='up', inputs_stdev=np.sqrt(3), he_init=True, inputs=output) if WIDTH == 28: output = tf.slice(output, [0, 0, 0, 0], [-1, -1, 7, 7]) output = ResidualBlock('DecFull.Res4', input_dim=DIM_3, output_dim=DIM_2, filter_size=3, resample='up', inputs_stdev=np.sqrt(4), he_init=True, inputs=output) output = ResidualBlock('DecFull.Res5', input_dim=DIM_2, output_dim=DIM_1, filter_size=3, resample='up', inputs_stdev=np.sqrt(5), he_init=True, inputs=output) # position-invariant latent projection # output = lib.ops.linear.Linear('DecFull.Input', input_dim=LATENT_DIM_2, output_dim=DIM_1, initialization='glorot', inputs=output) # output = tf.tile(output, [1, HEIGHT*WIDTH]) # output = tf.reshape(output, [-1, DIM_1, HEIGHT, WIDTH]) if PIXEL_LEVEL_PIXCNN: if EMBED_INPUTS: masked_images = lib.ops.conv2d.Conv2D('DecFull.Pix1', input_dim=N_CHANNELS*DIM_1, output_dim=DIM_1, filter_size=7, inputs=images, mask_type=('a', N_CHANNELS), he_init=False) else: masked_images = lib.ops.conv2d.Conv2D('DecFull.Pix1', input_dim=N_CHANNELS, output_dim=DIM_1, filter_size=7, inputs=images, mask_type=('a', N_CHANNELS), he_init=False) # Make the stdev of output and masked_images match # output /= np.sqrt(6) # Warning! Because of the masked convolutions it's very important that masked_images comes first in this concat output = tf.concat(1, [masked_images, output]) output = ResidualBlock('DecFull.Pix2Res', input_dim=2*DIM_1, output_dim=DIM_PIX_1, filter_size=5, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) # output = ResidualBlock('DecFull.Pix3Res', input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=5, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) # output = ResidualBlock('DecFull.Pix4Res', input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=5, mask_type=('b', N_CHANNELS), inputs_stdev=1, inputs=output) output = ResidualBlock('DecFull.Pix5Res', input_dim=DIM_PIX_1, output_dim=DIM_PIX_1, filter_size=1, mask_type=('b', N_CHANNELS), inputs_stdev=np.sqrt(2), inputs=output) output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_PIX_1, output_dim=256*N_CHANNELS, filter_size=1, mask_type=('b', N_CHANNELS), he_init=False, inputs=output) else: output = lib.ops.conv2d.Conv2D('Dec1.Out', input_dim=DIM_1, output_dim=256*N_CHANNELS, filter_size=1, he_init=False, inputs=output) return tf.transpose( tf.reshape(output, [-1, 256, N_CHANNELS, HEIGHT, WIDTH]), [0,2,3,4,1] ) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as session: total_iters = tf.placeholder(tf.int32, shape=None, name='total_iters') all_images = tf.placeholder(tf.int32, shape=[None, N_CHANNELS, HEIGHT, WIDTH], name='all_images') def split(mu_and_logsig): mu, logsig = tf.split(1, 2, mu_and_logsig) sig = tf.nn.softsign(logsig)+1 logsig = tf.log(sig) return mu, logsig, sig def clamp_logsig_and_sig(logsig, sig): floor = 1. - tf.minimum(1., tf.cast(total_iters, 'float16') / BETA_ITERS) log_floor = tf.log(floor) return tf.maximum(logsig, log_floor), tf.maximum(sig, floor) split_images = tf.split(0, len(DEVICES), all_images) tower_cost = [] for device, images in zip(DEVICES, split_images): with tf.device(device): scaled_images = (tf.cast(images, 'float16') - 128.) / 64. if EMBED_INPUTS: embedded_images = lib.ops.embedding.Embedding('Embedding', 256, DIM_1, images) embedded_images = tf.transpose(embedded_images, [0,4,1,2,3]) embedded_images = tf.reshape(embedded_images, [-1, N_CHANNELS*DIM_1, HEIGHT, WIDTH]) if MODE == 'one_level': # Layer 1 if EMBED_INPUTS: mu_and_logsig1 = EncFull(embedded_images) else: mu_and_logsig1 = EncFull(scaled_images) mu1, logsig1, sig1 = split(mu_and_logsig1) if VANILLA: latents1 = mu1 else: eps = tf.random_normal(tf.shape(mu1)) latents1 = mu1 + (eps * sig1) if EMBED_INPUTS: outputs1 = DecFull(latents1, embedded_images) else: outputs1 = DecFull(latents1, scaled_images) reconst_cost = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( tf.reshape(outputs1, [-1, 256]), tf.reshape(images, [-1]) ) ) # Assembly # An alpha of exactly 0 can sometimes cause inf/nan values, so we're # careful to avoid it. alpha = tf.minimum(1., tf.cast(total_iters+1, 'float16') / ALPHA1_ITERS) * KL_PENALTY kl_cost_1 = tf.reduce_mean( lib.ops.kl_unit_gaussian.kl_unit_gaussian( mu1, logsig1, sig1 ) ) kl_cost_1 *= float(LATENT_DIM_2) / (N_CHANNELS * WIDTH * HEIGHT) if VANILLA: cost = reconst_cost else: cost = reconst_cost + (alpha * kl_cost_1) elif MODE == 'two_level': # Layer 1 mu_and_logsig1 = Enc1(scaled_images) mu1, logsig1, sig1 = split(mu_and_logsig1) if VANILLA: latents1 = mu1 else: eps = tf.random_normal(tf.shape(mu1)) latents1 = mu1 + (eps * sig1) outputs1 = Dec1(latents1, scaled_images) reconst_cost = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( tf.reshape(outputs1, [-1, 256]), tf.reshape(images, [-1]) ) ) # Layer 2 # No need to inject noise into the encoder, so I pass mu1 # instead of latents1 to Enc2 mu_and_logsig2 = Enc2(mu1) mu2, logsig2, sig2 = split(mu_and_logsig2) if VANILLA: latents2 = mu2 else: eps = tf.random_normal(tf.shape(mu2)) latents2 = mu2 + (eps * sig2) outputs2 = Dec2(latents2, latents1) mu1_prior, logsig1_prior, sig1_prior = split(outputs2) logsig1_prior, sig1_prior = clamp_logsig_and_sig(logsig1_prior, sig1_prior) # Assembly # An alpha of exactly 0 can sometimes cause inf/nan values, so we're # careful to avoid it. alpha1 = tf.minimum(1., tf.cast(total_iters+1, 'float16') / ALPHA1_ITERS) * KL_PENALTY alpha2 = tf.minimum(1., tf.cast(total_iters+1, 'float16') / ALPHA2_ITERS) * alpha1# * KL_PENALTY kl_cost_1 = tf.reduce_mean( lib.ops.kl_gaussian_gaussian.kl_gaussian_gaussian( mu1, logsig1, sig1, mu1_prior, logsig1_prior, sig1_prior ) ) kl_cost_2 = tf.reduce_mean( lib.ops.kl_unit_gaussian.kl_unit_gaussian( mu2, logsig2, sig2 ) ) kl_cost_1 *= float(LATENT_DIM_1 * LATENTS1_WIDTH * LATENTS1_HEIGHT) / (N_CHANNELS * WIDTH * HEIGHT) kl_cost_2 *= float(LATENT_DIM_2) / (N_CHANNELS * WIDTH * HEIGHT) if VANILLA: cost = reconst_cost else: cost = reconst_cost + (alpha1 * kl_cost_1) + (alpha2 * kl_cost_2) tower_cost.append(cost) full_cost = tf.reduce_mean( tf.concat(0, [tf.expand_dims(x, 0) for x in tower_cost]), 0 ) # Sampling if MODE == 'one_level': ch_sym = tf.placeholder(tf.int32, shape=None) y_sym = tf.placeholder(tf.int32, shape=None) x_sym = tf.placeholder(tf.int32, shape=None) logits = tf.reshape(tf.slice(outputs1, tf.pack([0, ch_sym, y_sym, x_sym, 0]), tf.pack([-1, 1, 1, 1, -1])), [-1, 256]) dec1_fn_out = tf.multinomial(logits, 1)[:, 0] def dec1_fn(_latents, _targets, _ch, _y, _x): return session.run(dec1_fn_out, feed_dict={latents1: _latents, images: _targets, ch_sym: _ch, y_sym: _y, x_sym: _x, total_iters: 99999}) def enc_fn(_images): return session.run(latents1, feed_dict={images: _images, total_iters: 99999}) sample_fn_latents1 = np.random.normal(size=(8, LATENT_DIM_2)).astype('float16') def generate_and_save_samples(tag): def color_grid_vis(X, nh, nw, save_path): # from github.com/Newmu X = X.transpose(0,2,3,1) h, w = X[0].shape[:2] img = np.zeros((h*nh, w*nw, 3)) for n, x in enumerate(X): j = n/nw i = n%nw img[j*h:j*h+h, i*w:i*w+w, :] = x imsave(save_path, img) print "Generating latents1" latents1_copied = np.zeros((64, LATENT_DIM_2), dtype='float16') for i in xrange(8): latents1_copied[i::8] = sample_fn_latents1 samples = np.zeros( (64, N_CHANNELS, HEIGHT, WIDTH), dtype='int32' ) print "Generating samples" for y in xrange(HEIGHT): for x in xrange(WIDTH): for ch in xrange(N_CHANNELS): next_sample = dec1_fn(latents1_copied, samples, ch, y, x) samples[:,ch,y,x] = next_sample print "Saving samples" color_grid_vis( samples, 8, 8, '{}/samples_{}.png'.format(OUT_DIR, tag) ) elif MODE == 'two_level': def dec2_fn(_latents, _targets): return session.run([mu1_prior, logsig1_prior], feed_dict={latents2: _latents, latents1: _targets, total_iters: 99999}) ch_sym = tf.placeholder(tf.int32, shape=None) y_sym = tf.placeholder(tf.int32, shape=None) x_sym = tf.placeholder(tf.int32, shape=None) logits = tf.reshape(tf.slice(outputs1, tf.pack([0, ch_sym, y_sym, x_sym, 0]), tf.pack([-1, 1, 1, 1, -1])), [-1, 256]) dec1_fn_out = tf.multinomial(logits, 1)[:, 0] def dec1_fn(_latents, _targets, _ch, _y, _x): return session.run(dec1_fn_out, feed_dict={latents1: _latents, images: _targets, ch_sym: _ch, y_sym: _y, x_sym: _x, total_iters: 99999}) def enc_fn(_images): return session.run([latents1, latents2], feed_dict={images: _images, total_iters: 99999}) sample_fn_latents2 = np.random.normal(size=(32, LATENT_DIM_2)).astype('float16') sample_fn_latents2[1::2] = sample_fn_latents2[0::2] sample_fn_latent1_randn = np.random.normal(size=(LATENTS1_HEIGHT,LATENTS1_WIDTH,32,LATENT_DIM_1)) def generate_and_save_samples(tag): def color_grid_vis(X, nh, nw, save_path): # from github.com/Newmu X = X.transpose(0,2,3,1) h, w = X[0].shape[:2] img = np.zeros((h*nh, w*nw, 3)) for n, x in enumerate(X): j = n/nw i = n%nw img[j*h:j*h+h, i*w:i*w+w, :] = x imsave(save_path, img) print "Generating latents1" latents1 = np.zeros( (32, LATENT_DIM_1, LATENTS1_HEIGHT, LATENTS1_WIDTH), dtype='float16' ) for y in xrange(8): for x in xrange(8): for block in xrange(PIX_2_N_BLOCKS): mu, logsig = dec2_fn(sample_fn_latents2, latents1) mu = mu[:,:,y,x] logsig = logsig[:,:,y,x] z = mu + ( np.exp(logsig) * sample_fn_latent1_randn[y,x] ) latents1[:,block::PIX_2_N_BLOCKS,y,x] = z[:,block::PIX_2_N_BLOCKS] latents1_copied = np.zeros( (64, LATENT_DIM_1, LATENTS1_HEIGHT, LATENTS1_WIDTH), dtype='float16' ) latents1_copied[0::2] = latents1 latents1_copied[1::2] = latents1 samples = np.zeros( (64, N_CHANNELS, HEIGHT, WIDTH), dtype='int32' ) print "Generating samples" for y in xrange(HEIGHT): for x in xrange(WIDTH): for ch in xrange(N_CHANNELS): next_sample = dec1_fn(latents1_copied, samples, ch, y, x) samples[:,ch,y,x] = next_sample print "Saving samples" color_grid_vis( samples, 8, 8, 'samples_{}.png'.format(tag) ) # Train! if MODE == 'one_level': prints=[ ('alpha', alpha), ('reconst', reconst_cost), ('kl1', kl_cost_1) ] elif MODE == 'two_level': prints=[ ('alpha1', alpha1), ('alpha2', alpha2), ('reconst', reconst_cost), ('kl1', kl_cost_1), ('kl2', kl_cost_2), ] decayed_lr = tf.train.exponential_decay( LR, total_iters, LR_DECAY_AFTER, LR_DECAY_FACTOR, staircase=True ) if args.model_weights is not None: tf.train.Saver().restore(session, args.model_weights) print "Model restored with file {}".format(args.model_weights) lib.train_loop.train_loop( session=session, inputs=[total_iters, all_images], inject_total_iters=True, cost=full_cost, prints=prints, optimizer=tf.train.AdamOptimizer(decayed_lr), train_data=train_data, test_data=dev_data, callback=generate_and_save_samples, times=TIMES, save_params=True, param_dir = PARAM_DIR, # profile=True # debug_mode=True ) # all_zs = [] # targets = [] # for (_images,_targets) in test_data(): # _z = enc_fn(_images) # all_zs.append(_z) # targets.append(_targets) # _z = np.concatenate(all_zs, axis=0) # targets = np.concatenate(targets, axis=0) # import matplotlib # matplotlib.use('Agg') # import matplotlib.pyplot as plt # x, y = _z.T # # x = np.random.rand(N) # # y = np.random.rand(N) # colors = targets # print colors[:50] # area = 5 #np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radiuses # plt.scatter(x, y, s=area, c=colors, alpha=0.5) # plt.savefig('plot.png')
b529d4e2ef137a416b1a7794a47c6e9eebffab3b
01ac9e40052a468dd472a296df0003c4e629e2c9
/news_all/spiders_ydyl/cppcc_all.py
4081ec07efd2853fce653816d12c6835d575b706
[]
no_license
Pintrue/news_all
b5cee16584ed92e6574edd825b574214df65d917
eb8c32c79bdacd8e2f76b88f27871c3cd0118006
refs/heads/master
2022-03-23T13:34:10.354029
2019-11-22T07:40:50
2019-11-22T07:40:50
223,058,997
2
1
null
null
null
null
UTF-8
Python
false
false
1,433
py
# -*- coding: utf-8 -*- from scrapy.linkextractors import LinkExtractor from scrapy.spiders import Rule from news_all.spider_models import NewsRCSpider class Zgzxw_allSpider(NewsRCSpider): """中国政协网""" name = 'zgzxw' mystart_urls = { 'http://www.cppcc.gov.cn/zxww/newcppcc/zxyw/index.shtml': 7642, # 中国人民政治协商会议全国委员会 } rules = ( # http://www.cppcc.gov.cn/zxww/2019/06/25/ARTI1561421709036136.shtml Rule(LinkExtractor(allow=(r'cppcc.gov.cn.*?/\d{4}/\d{2}/\d{2}/\w+\d+.shtml'), ), callback='parse_item', follow=False), ) def parse_item(self, response): xp = response.xpath try: title = xp("//div[@class='cnt_box']/h3/text()").extract_first() content_div = xp("//div[@class='cnt_box']/div[@class='con']")[0] pubtime = xp("//span[@class='info']/i").re(r'\d{2,4}-\d{1,2}-\d{1,2}')[0] origin_name = xp("//span[@class='info']/em/text()[2]").extract_first() content, media, _, _ = self.content_clean(content_div) except: return self.produce_debugitem(response, "xpath error") return self.produce_item( response=response, title=title, pubtime=pubtime, origin_name=origin_name, content=content, media=media )
22fe6252c1d33a331415ffaf644c9dbdb687b865
99b062cb9f5f3ff10c9f1fa00e43f6e8151a43a6
/algorithm/IM/반나누기.py
0f16cc1db1f921f7c87b424d4ce293b0641550ca
[]
no_license
HSx3/TIL
92acc90758015c2e31660617bd927f7f100f5f64
981c9aaaf09c930d980205f68a28f2fc8006efcb
refs/heads/master
2020-04-11T21:13:36.239246
2019-05-08T08:18:03
2019-05-08T08:18:03
162,099,042
4
0
null
null
null
null
UTF-8
Python
false
false
783
py
import sys sys.stdin = open("반나누기.txt") T = int(input()) for tc in range(1, T+1): N, Kmin, Kmax = map(int, input().split()) score = list(map(int, input().split())) div_class = [] for T1 in range(1, 101): for T2 in range(T1+1, 101): A = [] B = [] C = [] for i in score: if i >= T2: A.append(i) elif i < T1: C.append(i) else: B.append(i) num = [len(A), len(B), len(C)] if max(num) <= Kmax and min(num) >= Kmin: ans = max(num)-min(num) div_class.append(ans) if div_class: print(min(div_class)) else: print(-1)
2294bcc3211c94ad16f0784191f9eb000b41fb76
23805cffc86ac4dfb5bcce672b8c7070b4616e41
/Apprendre-Python/sum-1-n/scripts/feedback.py
638e0fc434e034cca499389e17e3f7f853abd000
[]
no_license
ukonline/pythia-tasks
f90ff90299fe0eedd0e2787bcf666df07c709a00
81a3731eb0cdfe16b26a4e75a165a5071fb48ff5
refs/heads/master
2021-01-25T03:26:33.915795
2016-01-04T20:03:24
2016-01-04T20:03:24
40,974,655
0
2
null
2016-12-21T13:12:14
2015-08-18T13:49:39
Python
UTF-8
Python
false
false
1,247
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Course: Apprendre Python # Problem: Somme de 1 à n # Feedback script import ast import csv import json import os import sys sys.path.append('/task/static') from lib import pythia import math def computesum(n): result = 0 i = 1 while i <= n: result += i i += 1 return result class TaskFeedbackSuite(pythia.FeedbackSuite): def __init__(self, config): pythia.FeedbackSuite.__init__(self, '/tmp/work/output/stderr', None, '/tmp/work/input/data.csv', '/tmp/work/output/data.res', config) def teacherCode(self, data): return computesum(data) def parseTestData(self, data): return int(data[0]) # Retrieve task id with open('/tmp/work/tid', 'r', encoding='utf-8') as file: tid = file.read() output = {'tid': tid, 'status': 'failed', 'feedback': {'score': 0}} # Read test configuration config = [] with open('/task/config/test.json', 'r', encoding='utf-8') as file: content = file.read() config = json.loads(content) config = config['predefined'] (verdict, feedback) = TaskFeedbackSuite(config).generate() output['feedback'] = feedback output['status'] = 'success' if verdict else 'failed' print(json.dumps(output))
d7db13e9901dfdb2541b150c96b70055368e00ee
cf720b69d428b92186e84e52ff4f7eb39b8dd723
/Probablity and Statistics/3. WAP to find the probability of drawing an ace after drawing an ace on the first draw.py
d831885a30876fdd223cd5f274b1fb19dbec87e6
[]
no_license
bl-deepakchawla/ML-Followship-Program
b0fd2232f6dd2ea4356e4402be86cca84a5fbd60
41d88172ea226c42c1f56fd9e59769142575734c
refs/heads/master
2020-04-01T13:56:11.595143
2018-10-31T10:28:19
2018-10-31T10:28:19
153,273,456
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
def pr_ace_after_ace_draw(l_ace_cards, l_total_cards): l_pr_ace_card = (l_ace_cards/l_total_cards) * 100 return l_pr_ace_card g_total_cards = 52 g_ace_draw = 1 g_total_cards = g_total_cards - g_ace_draw g_ace_cards = 4 - g_ace_draw g_pr_ace_card = pr_ace_after_ace_draw(g_ace_cards, g_total_cards) print("Probability of the ace cards after drawing a ace from the packed card is", g_pr_ace_card, "%")
af54c2b60779c31d1d0d83a753f2c43b38f14d77
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/mDzheHpwtqyXePEBE_1.py
ab0f5df7676101d833a8e557fffe7d8f9cbc98e4
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
def sum_polygon(n): return (n - 2) * 180
ce2c39c3477019baaa00ce42f360612cc208f501
24d8cf871b092b2d60fc85d5320e1bc761a7cbe2
/eXe/rev2283-2409/base-trunk-2283/exe/engine/path.py
8c18ee779da2843b3377442bd070d39038cb31c2
[]
no_license
joliebig/featurehouse_fstmerge_examples
af1b963537839d13e834f829cf51f8ad5e6ffe76
1a99c1788f0eb9f1e5d8c2ced3892d00cd9449ad
refs/heads/master
2016-09-05T10:24:50.974902
2013-03-28T16:28:47
2013-03-28T16:28:47
9,080,611
3
2
null
null
null
null
UTF-8
Python
false
false
29,655
py
""" path.py - An object representing a path to a file or directory. Example: from path import Path d = Path('/home/guido/bin') for file_ in d.files('*.py'): file_.chmod(0755) This module requires Python 2.2 or later. Licensed under GPL. URL: http://www.jorendorff.com/articles/python/path Author: Jason Orendorff <[email protected]> (and others - see the url!) Date: 7 Mar 2004 """ from __future__ import generators import sys, os, fnmatch, glob, shutil, codecs, md5 from tempfile import mkdtemp __version__ = '2.0.4' __all__ = ['Path', 'TempDirPath'] _textmode = 'r' if hasattr(file, 'newlines'): _textmode = 'U' def getFileSystemEncoding(): """ Returns file system default encoding name, eg. Ascii, mbcs, utf-8, etc... """ encoding = sys.getfilesystemencoding() if encoding is None: return 'utf-8' else: return encoding class Path(unicode): """ Represents a filesystem Path. For documentation on individual methods, consult their counterparts in os.path. """ fileSystemEncoding = getFileSystemEncoding() def __new__(cls, filename=u'', encoding=None): """ Gently converts the filename to unicode """ if encoding is None: encoding = Path.fileSystemEncoding return unicode.__new__(cls, toUnicode(filename, encoding)) def __repr__(self): return 'Path(%s)' % unicode.__repr__(self) def __str__(self): return self.encode(Path.fileSystemEncoding) def __add__(self, more): return Path(toUnicode(self) + toUnicode(more)) def __radd__(self, other): return Path(toUnicode(other) + toUnicode(self)) def __div__(self, rel): """ fp.__div__(rel) == fp / rel == fp.joinpath(rel) Join two Path components, adding a separator character if needed. """ return Path(os.path.join(toUnicode(self), toUnicode(rel))) __truediv__ = __div__ @staticmethod def getcwd(): """ Return the current working directory as a path object. """ return Path(os.getcwd()) def abspath(self): """Wraps os.path.abspath""" return Path(os.path.abspath(self)) def normcase(self): """Wraps os.path.normcase""" return Path(os.path.normcase(self)) def normpath(self): """Wraps os.path.normpath""" return Path(os.path.normpath(self)) def realpath(self): """Wraps os.path.realpath""" return Path(os.path.realpath(self)) def expanduser(self): """Wraps os.path.expanduser""" return Path(os.path.expanduser(self)) def expandvars(self): """Wraps os.path.expandvars""" return Path(os.path.expandvars(self)) def dirname(self): """Wraps os.path.dirname""" return Path(os.path.dirname(self)) def basename(self): """Wraps os.path.basename""" return Path(os.path.basename(self)) def expand(self): """ Clean up a filename by calling expandvars(), expanduser(), and normpath() on it. This is commonly everything needed to clean up a filename read from a configuration file, for example. """ return self.expandvars().expanduser().normpath() def _get_namebase(self): """Returns everything before the . in the extension""" return Path(os.path.splitext(self.name)[0]) def _get_ext(self): """Returns the extension only (including the dot)""" return os.path.splitext(toUnicode(self))[1] def _get_drive(self): """Returns the drive letter (in dos & win)""" drive = os.path.splitdrive(self)[0] return Path(drive) parent = property( dirname, None, None, """ This path's parent directory, as a new path object. For example, Path('/usr/local/lib/libpython.so').parent == Path('/usr/local/lib') """) name = property( basename, None, None, """ The name of this file or directory without the full path. For example, Path('/usr/local/lib/libpython.so').name == 'libpython.so' """) namebase = property( _get_namebase, None, None, """ The same as path.name, but with one file extension stripped off. For example, Path('/home/guido/python.tar.gz').name == 'python.tar.gz', but Path('/home/guido/python.tar.gz').namebase == 'python.tar' """) ext = property( _get_ext, None, None, """ The file extension, for example '.py'. """) drive = property( _get_drive, None, None, """ The drive specifier, for example 'C:'. This is always empty on systems that don't use drive specifiers. """) def splitpath(self): """ p.splitpath() -> Return (p.parent, p.name). """ parent, child = os.path.split(self) return Path(parent), Path(child) def splitdrive(self): """ p.splitdrive() -> Return (p.drive, <the rest of p>). Split the drive specifier from this path. If there is no drive specifier, p.drive is empty, so the return value is simply (Path(''), p). This is always the case on Unix. """ drive, rel = os.path.splitdrive(self) return Path(drive), rel def splitext(self): """ p.splitext() -> Return (p.stripext(), p.ext). Split the filename extension from this path and return the two parts. Either part may be empty. The extension is everything from '.' to the end of the last path segment. This has the property that if (a, b) == p.splitext(), then a + b == p. """ filename, ext = os.path.splitext(self) return Path(filename), ext def stripext(self): """ p.stripext() -> Remove one file extension from the path. For example, Path('/home/guido/python.tar.gz').stripext() returns Path('/home/guido/python.tar'). """ return self.splitext()[0] if hasattr(os.path, 'splitunc'): def splitunc(self): """NT Only: Split a pathname into UNC mount point and relative path specifiers. eg. Path(r'\\dbserver\homes\matthew\work\stuff.py').splitunc() == \ (Path(r'\\dbserver\homes'), Path(r'\\matthew\work\stuff.py'))""" unc, rest = os.path.splitunc(self) return Path(unc), Path(rest) def _get_uncshare(self): """NT Only: Returns only the server and share name from a unc path name. eg. Path(r'\\dbserver\homes\matthew\work\stuff.py').uncshare() == \ Path(r'\\dbserver\homes')""" return Path(os.path.splitunc(self)[0]) uncshare = property( _get_uncshare, None, None, """ The UNC mount point for this path. This is empty for paths on local drives. """) def joinpath(self, *args): """ Join two or more path components, adding a separator character (os.sep) if needed. Returns a new path object. """ return Path(os.path.join(toUnicode(self), *args)) def splitall(self): """ Return a list of the path components in this path. The first item in the list will be a path. Its value will be either os.curdir, os.pardir, empty, or the root directory of this path (for example, '/' or 'C:\\'). The other items in the list will be strings. path.path.joinpath(*result) will yield the original path. """ parts = [] loc = self while loc != os.curdir and loc != os.pardir: prev = loc loc, child = prev.splitpath() if loc == prev: break parts.append(child) parts.append(loc) parts.reverse() return parts def relpath(self): """ Return this path as a relative path, based from the current working directory. """ cwd = Path(os.getcwd()) return cwd.relpathto(self) def relpathto(self, dest): """ Return a relative path from self to dest. If there is no relative path from self to dest, for example if they reside on different drives in Windows, then this returns dest.abspath(). """ origin = self.abspath() dest = Path(dest).abspath() orig_list = origin.normcase().splitall() dest_list = dest.splitall() if orig_list[0] != os.path.normcase(dest_list[0]): return dest i = 0 for start_seg, dest_seg in zip(orig_list, dest_list): if start_seg != os.path.normcase(dest_seg): break i += 1 segments = [os.pardir] * (len(orig_list) - i) segments += dest_list[i:] if len(segments) == 0: return Path(os.curdir) else: return Path(os.path.join(*segments)) def listdir(self, pattern=None): """ D.listdir() -> List of items in this directory. Use D.files() or D.dirs() instead if you want a listing of just files or just subdirectories. The elements of the list are path objects. With the optional 'pattern' argument, this only lists items whose names match the given pattern. """ names = os.listdir(self) if pattern is not None: names = fnmatch.filter(names, pattern) return [self / child for child in names] def dirs(self, pattern=None): """ D.dirs() -> List of this directory's subdirectories. The elements of the list are path objects. This does not walk recursively into subdirectories (but see path.walkdirs). With the optional 'pattern' argument, this only lists directories whose names match the given pattern. For example, d.dirs('build-*'). """ return [pth for pth in self.listdir(pattern) if pth.isdir()] def files(self, pattern=None): """ D.files() -> List of the files in this directory. The elements of the list are path objects. This does not walk into subdirectories (see path.walkfiles). With the optional 'pattern' argument, this only lists files whose names match the given pattern. For example, d.files('*.pyc'). """ return [pth for pth in self.listdir(pattern) if pth.isfile()] def walk(self, pattern=None): """ D.walk() -> iterator over files and subdirs, recursively. The iterator yields path objects naming each child item of this directory and its descendants. This requires that D.isdir(). This performs a depth-first traversal of the directory tree. Each directory is returned just before all its children. """ for child in self.listdir(): if pattern is None or child.fnmatch(pattern): yield child if child.isdir(): for item in child.walk(pattern): yield item def walkdirs(self, pattern=None): """ D.walkdirs() -> iterator over subdirs, recursively. With the optional 'pattern' argument, this yields only directories whose names match the given pattern. For example, mydir.walkdirs('*test') yields only directories with names ending in 'test'. """ for child in self.dirs(): if pattern is None or child.fnmatch(pattern): yield child for subsubdir in child.walkdirs(pattern): yield subsubdir def walkfiles(self, pattern=None): """ D.walkfiles() -> iterator over files in D, recursively. The optional argument, pattern, limits the results to files with names that match the pattern. For example, mydir.walkfiles('*.tmp') yields only files with the .tmp extension. """ for child in self.listdir(): if child.isfile(): if pattern is None or child.fnmatch(pattern): yield child elif child.isdir(): for pth in child.walkfiles(pattern): yield pth def fnmatch(self, pattern): """ Return True if self.name matches the given pattern. pattern - A filename pattern with wildcards, for example '*.py'. """ return fnmatch.fnmatch(self.name, pattern) def glob(self, pattern): """ Return a list of path objects that match the pattern. pattern - a path relative to this directory, with wildcards. For example, Path('/users').glob('*/bin/*') returns a list of all the files users have in their bin directories. """ return map(Path, glob.glob(toUnicode(self / pattern))) def open(self, mode='r'): """ Open this file. Return a file object. """ return file(self, mode) def bytes(self): """ Open this file, read all bytes, return them as a string. """ file_ = self.open('rb') try: return file_.read() finally: file_.close() def write_bytes(self, bytes, append=False): """ Open this file and write the given bytes to it. Default behavior is to overwrite any existing file. Call this with write_bytes(bytes, append=True) to append instead. """ if append: mode = 'ab' else: mode = 'wb' file_ = self.open(mode) try: file_.write(bytes) finally: file_.close() def text(self, encoding=None, errors='strict'): """ Open this file, read it in, return the content as a string. This uses 'U' mode in Python 2.3 and later, so '\r\n' and '\r' are automatically translated to '\n'. Optional arguments: encoding - The Unicode encoding (or character set) of the file. If present, the content of the file is decoded and returned as a unicode object; otherwise it is returned as an 8-bit str. errors - How to handle Unicode errors; see help(str.decode) for the options. Default is 'strict'. """ if encoding is None: file_ = self.open(_textmode) try: return file_.read() finally: file_.close() else: file_ = codecs.open(self, 'r', encoding, errors) try: data = file_.read() finally: file_.close() return (data.replace(u'\r\n', u'\n') .replace(u'\r\x85', u'\n') .replace(u'\r', u'\n') .replace(u'\x85', u'\n') .replace(u'\u2028', u'\n')) def write_text(self, text, encoding=None, errors='strict', linesep=os.linesep, append=False): """ Write the given text to this file. The default behavior is to overwrite any existing file; to append instead, use the 'append=True' keyword argument. There are two differences between path.write_text() and path.write_bytes(): newline handling and Unicode handling. See below. Parameters: - text - str/unicode - The text to be written. - encoding - str - The Unicode encoding that will be used. This is ignored if 'text' isn't a Unicode string. - errors - str - How to handle Unicode encoding errors. Default is 'strict'. See help(unicode.encode) for the options. This is ignored if 'text' isn't a Unicode string. - linesep - keyword argument - str/unicode - The sequence of characters to be used to mark end-of-line. The default is os.linesep. You can also specify None; this means to leave all newlines as they are in 'text'. - append - keyword argument - bool - Specifies what to do if the file already exists (True: append to the end of it; False: overwrite it.) The default is False. --- Newline handling. write_text() converts all standard end-of-line sequences ('\n', '\r', and '\r\n') to your platform's default end-of-line sequence (see os.linesep; on Windows, for example, the end-of-line marker is '\r\n'). If you don't like your platform's default, you can override it using the 'linesep=' keyword argument. If you specifically want write_text() to preserve the newlines as-is, use 'linesep=None'. This applies to Unicode text the same as to 8-bit text, except there are three additional standard Unicode end-of-line sequences: u'\x85', u'\r\x85', and u'\u2028'. (This is slightly different from when you open a file for writing with fopen(filename, "w") in C or file(filename, 'w') in Python.) --- Unicode If 'text' isn't Unicode, then apart from newline handling, the bytes are written verbatim to the file. The 'encoding' and 'errors' arguments are not used and must be omitted. If 'text' is Unicode, it is first converted to bytes using the specified 'encoding' (or the default encoding if 'encoding' isn't specified). The 'errors' argument applies only to this conversion. """ if isinstance(text, unicode): if linesep is not None: text = (text.replace(u'\r\n', u'\n') .replace(u'\r\x85', u'\n') .replace(u'\r', u'\n') .replace(u'\x85', u'\n') .replace(u'\u2028', u'\n')) text = text.replace(u'\n', linesep) if encoding is None: encoding = sys.getdefaultencoding() bytes = text.encode(encoding, errors) else: assert encoding is None if linesep is not None: text = (text.replace('\r\n', '\n') .replace('\r', '\n')) bytes = text.replace('\n', linesep) self.write_bytes(bytes, append) def lines(self, encoding=None, errors='strict', retain=True): """ Open this file, read all lines, return them in a list. Optional arguments: encoding - The Unicode encoding (or character set) of the file. The default is None, meaning the content of the file is read as 8-bit characters and returned as a list of (non-Unicode) str objects. errors - How to handle Unicode errors; see help(str.decode) for the options. Default is 'strict' retain - If true, retain newline characters; but all newline character combinations ('\r', '\n', '\r\n') are translated to '\n'. If false, newline characters are stripped off. Default is True. This uses 'U' mode in Python 2.3 and later. """ if encoding is None and retain: file_ = self.open(_textmode) try: return file_.readlines() finally: file_.close() else: return self.text(encoding, errors).splitlines(retain) def write_lines(self, lines, encoding=None, errors='strict', linesep=os.linesep, append=False): """ Write the given lines of text to this file. By default this overwrites any existing file at this path. This puts a platform-specific newline sequence on every line. See 'linesep' below. lines - A list of strings. encoding - A Unicode encoding to use. This applies only if 'lines' contains any Unicode strings. errors - How to handle errors in Unicode encoding. This also applies only to Unicode strings. linesep - The desired line-ending. This line-ending is applied to every line. If a line already has any standard line ending ('\r', '\n', '\r\n', u'\x85', u'\r\x85', u'\u2028'), that will be stripped off and this will be used instead. The default is os.linesep, which is platform-dependent ('\r\n' on Windows, '\n' on Unix, etc.) Specify None to write the lines as-is, like file.writelines(). Use the keyword argument append=True to append lines to the file. The default is to overwrite the file. Warning: When you use this with Unicode data, if the encoding of the existing data in the file is different from the encoding you specify with the encoding= parameter, the result is mixed-encoding data, which can really confuse someone trying to read the file later. """ if append: mode = 'ab' else: mode = 'wb' file_ = self.open(mode) try: for line in lines: isUnicode = isinstance(line, unicode) if linesep is not None: if isUnicode: if line[-2:] in (u'\r\n', u'\x0d\x85'): line = line[:-2] elif line[-1:] in (u'\r', u'\n', u'\x85', u'\u2028'): line = line[:-1] else: if line[-2:] == '\r\n': line = line[:-2] elif line[-1:] in ('\r', '\n'): line = line[:-1] line += linesep if isUnicode: if encoding is None: encoding = sys.getdefaultencoding() line = line.encode(encoding, errors) file_.write(line) finally: file_.close() exists = os.path.exists isabs = os.path.isabs isdir = os.path.isdir isfile = os.path.isfile islink = os.path.islink ismount = os.path.ismount if hasattr(os.path, 'samefile'): samefile = os.path.samefile getatime = os.path.getatime atime = property( getatime, None, None, """ Last access time of the file. """) getmtime = os.path.getmtime mtime = property( getmtime, None, None, """ Last-modified time of the file. """) if hasattr(os.path, 'getctime'): getctime = os.path.getctime ctime = property( getctime, None, None, """ Creation time of the file. """) getsize = os.path.getsize size = property( getsize, None, None, """ Size of the file, in bytes. """) if hasattr(os, 'access'): def access(self, mode): """ Return true if current user has access to this path. mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK """ return os.access(self, mode) def stat(self): """ Perform a stat() system call on this path. """ return os.stat(self) def lstat(self): """ Like path.stat(), but do not follow symbolic links. """ return os.lstat(self) if hasattr(os, 'statvfs'): def statvfs(self): """ Perform a statvfs() system call on this path. """ return os.statvfs(self) if hasattr(os, 'pathconf'): def pathconf(self, name): """Wraps os.pathconf""" return os.pathconf(self, name) def utime(self, times): """ Set the access and modified times of this file. """ os.utime(self, times) def chmod(self, mode): """Change the permissions of the file""" os.chmod(self, mode) def chdir(self): """Change the current working directory to self""" os.chdir(toUnicode(self)) if hasattr(os, 'chown'): def chown(self, uid, gid): """Change the owner (uid) and owning group (gid) of the file""" os.chown(self, uid, gid) def rename(self, new): """Rename the file. Returns a new path object with the new name""" os.rename(self, new) return Path(new) def renames(self, new): """Renames creating directories if necessary. Returns a new path object with the new name""" os.renames(self, new) return Path(new) def mkdir(self, mode=0777): """Make a new directory with this pathname""" os.mkdir(self, mode) def makedirs(self, mode=0777): """Make directories with this pathname will create multiple dirs as necessary""" os.makedirs(self, mode) def rmdir(self): """Remove the directory with this pathname""" os.rmdir(self) def removedirs(self): """Remove all the empty dirs mentioned in this pathname""" os.removedirs(self) def touch(self): """ Set the access/modified times of this file to the current time. Create the file if it does not exist. """ fd = os.open(self, os.O_WRONLY | os.O_CREAT, 0666) os.close(fd) os.utime(self, None) def remove(self): """Delete this file""" os.remove(self) def unlink(self): """Unlink this symlink""" os.unlink(self) if hasattr(os, 'link'): def link(self, newpath): """ Create a hard link at 'newpath', pointing to this file. """ os.link(self, newpath) if hasattr(os, 'symlink'): def symlink(self, newlink): """ Create a symbolic link at 'newlink', pointing here. """ os.symlink(self, newlink) if hasattr(os, 'readlink'): def readlink(self): """ Return the path to which this symbolic link points. The result may be an absolute or a relative path. """ return Path(os.readlink(self)) def readlinkabs(self): """ Return the path to which this symbolic link points. The result is always an absolute path. """ pth = self.readlink() if pth.isabs(): return pth else: return (self.parent / pth).abspath() def copyfile(self, dst): """Wraps shutil.copyfile""" return shutil.copyfile(toUnicode(self), toUnicode(dst)) def copymode(self, dst): """Wraps shutil.copymode""" return shutil.copymode(toUnicode(self), toUnicode(dst)) def copystat(self, dst): """Wraps shutil.copystat""" return shutil.copystat(toUnicode(self), toUnicode(dst)) def copy(self, dst): """Wraps shutil.copy""" return shutil.copy(toUnicode(self), toUnicode(dst)) def copy2(self, dst): """Wraps shutil.copy2""" return shutil.copy2(toUnicode(self), toUnicode(dst)) def copytree(self, dst): """Wraps shutil.copytree""" return shutil.copytree(toUnicode(self), toUnicode(dst)) if hasattr(shutil, 'move'): def move(self, dst): """Wraps shutil.move""" return shutil.move(toUnicode(self), toUnicode(dst)) def rmtree(self): """Wraps shutil.rmtree""" return shutil.rmtree(toUnicode(self)) if hasattr(os, 'chroot'): def chroot(self): """Change the root dir to this path name""" os.chroot(self) if hasattr(os, 'startfile'): def startfile(self): """Run this file with the appropriate program""" os.startfile(self) def copyglob(self, globStr, destination): """ >>> x = Path('~') >>> Path('~/tmp').mkdir() >>> x.copyglob('.*', '~/tmp') """ for fn in self.glob(globStr): fn.copy(destination) def copylist(self, fnlist, destination): """ Given a sequence of relative file names ('fnlist') copies them to 'destination' """ for fn in fnlist: (self / fn).copy(destination) def copyfiles(self, destination): """ Copies the content of files to 'destination' directory """ for fn in self.files(): fn.copy(destination) def getMd5(self): """Returns an md5 hash for an object with read() method.""" try: file_ = file(self, 'rb') except: raise Exception("Could not open %s" % self) hasher = md5.new() while True: block = file_.read(8096) if not block: break hasher.update(block) file_.close() return hasher.hexdigest() md5 = property(getMd5) class TempDirPath(Path): """ This object, when created gives you a Path object pointing to a newly created temporary directory. When this object goes out of scope, the directory is obliterated. You can call 'rmtree' yourself if you want before dropping the object to make sure. """ def __new__(cls): return Path.__new__(cls, mkdtemp()) def __del__(self): """Destroy the temporary directory""" if self.exists(): self.rmtree() def toUnicode(string, encoding='utf8'): """ Turns everything passed to it to unicode. """ if isinstance(string, str): return unicode(string, encoding) elif isinstance(string, unicode): return unicode(string) elif string is None: return u'' else: return unicode(str(string), encoding)
964f0f6d8e473b5059787827e5796aee63a0f3bf
5e6ee5d0f840bf031bab13df120987dc31491034
/restfulapicrud/restfulapicrud/urls.py
31852b1d2f0d2de7f58a9906e25779311f8ea86f
[]
no_license
cal1log/heroku_api_rest
9027d3b24c704ed8f15c6badd7dd8fca62894cfa
a800706ac5e24a26ef7c68dc039b6bba0448fce3
refs/heads/main
2023-06-28T00:11:14.578647
2021-07-26T21:03:12
2021-07-26T21:03:12
388,584,473
0
0
null
null
null
null
UTF-8
Python
false
false
832
py
"""restfulapicrud URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from .router import router urlpatterns = [ path('admin/', admin.site.urls), path('api/', include(router.urls)) ]
7d4e6bffda2aa0fba7162dcdddd61002522e4a74
5f408e5c43cf39a0ae6abf1c1309004f997cc7ee
/extras/benchmark/format_bench_results.py
45065d4b7c14abb9180393e80434e2d0bf098081
[ "Apache-2.0" ]
permissive
fran6co/fruit
408e24385ded3c8d49e23f0c572e4ce4d7569622
b34b703b4d50b49a658aeab227765bc3260d7d89
refs/heads/master
2021-01-19T10:34:32.890334
2017-05-09T08:42:15
2017-05-09T08:42:15
82,211,310
0
0
null
2017-02-16T18:14:59
2017-02-16T18:14:59
null
UTF-8
Python
false
false
13,384
py
#!/usr/bin/env python3 # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import yaml from collections import defaultdict def extract_results(bench_results, fixed_benchmark_params, column_dimension, row_dimension, result_dimension): table_data = defaultdict(lambda: dict()) remaining_dimensions_by_row_column = dict() for bench_result in bench_results: try: params = {dimension_name: make_immutable(dimension_value) for dimension_name, dimension_value in bench_result['benchmark'].items()} results = bench_result['results'] for param_name, param_value in fixed_benchmark_params.items(): if params.get(param_name) != param_value: # fixed_benchmark_params not satisfied by this result, skip break if result_dimension not in results: # result_dimension not found in this result, skip break params.pop(param_name) else: # fixed_benchmark_params were satisfied by these params (and were removed) assert row_dimension in params.keys(), '%s not in %s' % (row_dimension, params.keys()) assert column_dimension in params.keys(), '%s not in %s' % (column_dimension, params.keys()) assert result_dimension in results, '%s not in %s' % (result_dimension, results) row_value = params[row_dimension] column_value = params[column_dimension] remaining_dimensions = params.copy() remaining_dimensions.pop(row_dimension) remaining_dimensions.pop(column_dimension) if column_value in table_data[row_value]: previous_remaining_dimensions = remaining_dimensions_by_row_column[(row_value, column_value)] raise Exception( 'Found multiple benchmark results with the same fixed benchmark params, benchmark param for row and benchmark param for column, so a result can\'t be uniquely determined. ' + 'Consider adding additional values in fixed_benchmark_params. Remaining dimensions: %s vs %s' % ( remaining_dimensions, previous_remaining_dimensions)) table_data[row_value][column_value] = results[result_dimension] remaining_dimensions_by_row_column[(row_value, column_value)] = remaining_dimensions except Exception as e: raise Exception('While processing %s' % bench_result) from e return table_data def identity(x): return x # Takes a 2-dimensional array (list of lists) and prints a markdown table with that content. def print_markdown_table(table_data): max_content_length_by_column = [max([len(str(row[column_index])) for row in table_data]) for column_index in range(len(table_data[0]))] for row_index in range(len(table_data)): row = table_data[row_index] cell_strings = [] for column_index in range(len(row)): value = str(row[column_index]) # E.g. if max_content_length_by_column=20, table_cell_format='%20s' table_cell_format = '%%%ss' % max_content_length_by_column[column_index] cell_strings += [table_cell_format % value] print('| ' + ' | '.join(cell_strings) + ' |') if row_index == 0: # Print the separator line, e.g. |---|-----|---| print('|-' + '-|-'.join(['-' * max_content_length_by_column[column_index] for column_index in range(len(row))]) + '-|') # Takes a table as a dict of dicts (where each table_data[row_key][column_key] is a confidence interval) and prints it as a markdown table using # the specified pretty print functions for column keys, row keys and values respectively. # column_header_pretty_printer and row_header_pretty_printer must be functions taking a single value and returning the pretty-printed version. # value_pretty_printer must be a function taking (value_confidence_interval, min_in_table, max_in_table). def print_confidence_intervals_table(table_name, table_data, column_header_pretty_printer=identity, row_header_pretty_printer=identity, value_pretty_printer=identity): if table_data == {}: print('%s: (no data)' % table_name) return row_headers = sorted(list(table_data.keys())) # We need to compute the union of the headers of all rows; some rows might be missing values for certain columns. column_headers = sorted(set().union(*[list(row_values.keys()) for row_values in table_data.values()])) values_by_row = {row_header: [table_data[row_header][column_header] for column_header in column_headers if column_header in table_data[row_header]] for row_header in row_headers} # We compute min and max and pass it to the value pretty-printer, so that it can determine a unit that works well for all values in the table. min_in_table = min([min([interval[0] for interval in values_by_row[row_header]]) for row_header in row_headers]) max_in_table = max([max([interval[1] for interval in values_by_row[row_header]]) for row_header in row_headers]) table_content = [] table_content += [[table_name] + [column_header_pretty_printer(column_header) for column_header in column_headers]] for row_header in row_headers: table_content += [[row_header_pretty_printer(row_header)] + [value_pretty_printer(table_data[row_header][column_header], min_in_table, max_in_table) if column_header in table_data[ row_header] else 'N/A' for column_header in column_headers]] print_markdown_table(table_content) def format_string_pretty_printer(format_string): def pretty_print(s): return format_string % s return pretty_print def interval_pretty_printer(interval, unit, multiplier): interval = interval.copy() interval[0] *= multiplier interval[1] *= multiplier # This prevents the format strings below from printing '.0' for numbers that already have 2 digits: # 23.0 -> 23 # 2.0 -> 2.0 (here we don't remove the '.0' because printing just '2' might suggest a lower precision) if int(interval[0]) == interval[0] and interval[0] >= 10: interval[0] = int(interval[0]) else: interval[0] = '%.3g' % interval[0] if int(interval[1]) == interval[1] and interval[1] >= 10: interval[1] = int(interval[1]) else: interval[1] = '%.3g' % interval[1] if interval[0] == interval[1]: return '%s %s' % (interval[0], unit) else: return '%s-%s %s' % (interval[0], interval[1], unit) # Finds the best unit to represent values in the range [min_value, max_value]. # The units must be specified as an ordered list [multiplier1, ..., multiplierN] def find_best_unit(units, min_value, max_value): assert min_value <= max_value if max_value <= units[0]: return units[0] for i in range(len(units) - 1): if min_value > units[i] and max_value < units[i + 1]: return units[i] if min_value > units[-1]: return units[-1] # There is no unit that works very well for all values, first let's try relaxing the min constraint for i in range(len(units) - 1): if min_value > units[i] * 0.2 and max_value < units[i + 1]: return units[i] if min_value > units[-1] * 0.2: return units[-1] # That didn't work either, just use a unit that works well for the min values then for i in reversed(range(len(units))): if min_value > units[i]: return units[i] assert min_value <= min(units) # Pick the smallest unit return units[0] def time_interval_pretty_printer(time_interval, min_in_table, max_in_table): sec = 1 milli = 0.001 micro = milli * milli units = [micro, milli, sec] unit_name_by_unit = {micro: 'us', milli: 'ms', sec: 's'} unit = find_best_unit(units, min_in_table, max_in_table) unit_name = unit_name_by_unit[unit] return interval_pretty_printer(time_interval, unit=unit_name, multiplier=1 / unit) def file_size_interval_pretty_printer(file_size_interval, min_in_table, max_in_table): byte = 1 kb = 1024 mb = kb * kb units = [byte, kb, mb] unit_name_by_unit = {byte: 'bytes', kb: 'KB', mb: 'MB'} unit = find_best_unit(units, min_in_table, max_in_table) unit_name = unit_name_by_unit[unit] return interval_pretty_printer(file_size_interval, unit=unit_name, multiplier=1 / unit) def make_immutable(x): if isinstance(x, list): return tuple(make_immutable(elem) for elem in x) return x def dict_pretty_printer(dict_data): if isinstance(dict_data, list): dict_data = {make_immutable(mapping['from']): mapping['to'] for mapping in dict_data} def pretty_print(s): if s in dict_data: return dict_data[s] else: raise Exception('dict_pretty_printer(%s) can\'t handle the value %s' % (dict_data, s)) return pretty_print def determine_column_pretty_printer(pretty_printer_definition): if 'format_string' in pretty_printer_definition: return format_string_pretty_printer(pretty_printer_definition['format_string']) if 'fixed_map' in pretty_printer_definition: return dict_pretty_printer(pretty_printer_definition['fixed_map']) raise Exception("Unrecognized pretty printer description: %s" % pretty_printer_definition) def determine_row_pretty_printer(pretty_printer_definition): return determine_column_pretty_printer(pretty_printer_definition) def determine_value_pretty_printer(unit): if unit == "seconds": return time_interval_pretty_printer if unit == "bytes": return file_size_interval_pretty_printer raise Exception("Unrecognized unit: %s" % unit) def main(): parser = argparse.ArgumentParser(description='Runs all the benchmarks whose results are on the Fruit website.') parser.add_argument('--benchmark-results', help='The input file where benchmark results will be read from (1 per line, with each line in JSON format). You can use the run_benchmarks.py to run a benchmark and generate results in this format.') parser.add_argument('--benchmark-tables-definition', help='The YAML file that defines the benchmark tables (e.g. fruit_wiki_bench_tables.yaml).') args = parser.parse_args() if args.benchmark_results is None: raise Exception("You must specify a benchmark results file using --benchmark-results.") if args.benchmark_tables_definition is None: raise Exception("You must specify a benchmark tables definition file using --benchmark-tables-definition.") with open(args.benchmark_results, 'r') as f: bench_results = [json.loads(line) for line in f.readlines()] with open(args.benchmark_tables_definition, 'r') as f: for table_definition in yaml.load(f)["tables"]: fixed_benchmark_params = {dimension_name: make_immutable(dimension_value) for dimension_name, dimension_value in table_definition['benchmark_filter'].items()} table_data = extract_results( bench_results, fixed_benchmark_params=fixed_benchmark_params, column_dimension=table_definition['columns']['dimension'], row_dimension=table_definition['rows']['dimension'], result_dimension=table_definition['results']['dimension']) rows_pretty_printer_definition = table_definition['rows']['pretty_printer'] columns_pretty_printer_definition = table_definition['columns']['pretty_printer'] results_unit = table_definition['results']['unit'] print_confidence_intervals_table(table_definition['name'], table_data, column_header_pretty_printer=determine_column_pretty_printer(columns_pretty_printer_definition), row_header_pretty_printer=determine_row_pretty_printer(rows_pretty_printer_definition), value_pretty_printer=determine_value_pretty_printer(results_unit)) print() print() if __name__ == "__main__": main()
cc93233f0b52c7d0783f65cc3716005438cc0fd3
164ffe077dde59373ad9fadcfd727f279a1cfe93
/jni_build/jni/include/tensorflow/python/client/timeline.py
03e07a27ad5cafa21dfe51e752b2a4f8cbfac7b7
[]
no_license
Basofe/Community_Based_Repository_Traffic_Signs
524a4cfc77dc6ed3b279556e4201ba63ee8cf6bd
a20da440a21ed5160baae4d283c5880b8ba8e83c
refs/heads/master
2021-01-22T21:17:37.392145
2017-09-28T21:35:58
2017-09-28T21:35:58
85,407,197
0
2
null
null
null
null
UTF-8
Python
false
false
24,412
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Timeline visualization for TensorFlow using Chrome Trace Format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import six # pylint: disable=unused-import # The timeline target is usually imported as part of BUILD target # "platform_test", which includes also includes the "platform" # dependency. This is why the logging import here is okay. from tensorflow.python.platform import tf_logging as logging class AllocationMaximum(collections.namedtuple( 'AllocationMaximum', ('timestamp', 'num_bytes', 'tensors'))): """Stores the maximum allocation for a given allocator within the timelne. Parameters: timestamp: `tensorflow::Env::NowMicros()` when this maximum was reached. num_bytes: the total memory used at this time. tensors: the set of tensors allocated at this time. """ pass class StepStatsAnalysis(collections.namedtuple( 'StepStatsAnalysis', ('chrome_trace', 'allocator_maximums'))): """Stores the step stats analysis output. Parameters: chrome_trace: A dict containing the chrome trace analysis. allocator_maximums: A dict mapping allocator names to AllocationMaximum. """ pass class _ChromeTraceFormatter(object): """A helper class for generating traces in Chrome Trace Format.""" def __init__(self, show_memory=False): """Constructs a new Chrome Trace formatter.""" self._show_memory = show_memory self._events = [] self._metadata = [] def _create_event(self, ph, category, name, pid, tid, timestamp): """Creates a new Chrome Trace event. For details of the file format, see: https://github.com/catapult-project/catapult/blob/master/tracing/README.md Args: ph: The type of event - usually a single character. category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. timestamp: The timestamp of this event as a long integer. Returns: A JSON compatible event object. """ event = {} event['ph'] = ph event['cat'] = category event['name'] = name event['pid'] = pid event['tid'] = tid event['ts'] = timestamp return event def emit_pid(self, name, pid): """Adds a process metadata event to the trace. Args: name: The process name as a string. pid: Identifier of the process as an integer. """ event = {} event['name'] = 'process_name' event['ph'] = 'M' event['pid'] = pid event['args'] = {'name': name} self._metadata.append(event) def emit_tid(self, name, pid, tid): """Adds a thread metadata event to the trace. Args: name: The thread name as a string. pid: Identifier of the process as an integer. tid: Identifier of the thread as an integer. """ event = {} event['name'] = 'thread_name' event['ph'] = 'M' event['pid'] = pid event['tid'] = tid event['args'] = {'name': name} self._metadata.append(event) def emit_region(self, timestamp, duration, pid, tid, category, name, args): """Adds a region event to the trace. Args: timestamp: The start timestamp of this region as a long integer. duration: The duration of this region as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. category: The event category as a string. name: The event name as a string. args: A JSON-compatible dictionary of event arguments. """ event = self._create_event('X', category, name, pid, tid, timestamp) event['dur'] = duration event['args'] = args self._events.append(event) def emit_obj_create(self, category, name, timestamp, pid, tid, object_id): """Adds an object creation event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. """ event = self._create_event('N', category, name, pid, tid, timestamp) event['id'] = object_id self._events.append(event) def emit_obj_delete(self, category, name, timestamp, pid, tid, object_id): """Adds an object deletion event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. """ event = self._create_event('D', category, name, pid, tid, timestamp) event['id'] = object_id self._events.append(event) def emit_obj_snapshot(self, category, name, timestamp, pid, tid, object_id, snapshot): """Adds an object snapshot event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. snapshot: A JSON-compatible representation of the object. """ event = self._create_event('O', category, name, pid, tid, timestamp) event['id'] = object_id event['args'] = {'snapshot': snapshot} self._events.append(event) def emit_flow_start(self, name, timestamp, pid, tid, flow_id): """Adds a flow start event to the trace. When matched with a flow end event (with the same 'flow_id') this will cause the trace viewer to draw an arrow between the start and end events. Args: name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. flow_id: Identifier of the flow as an integer. """ event = self._create_event('s', 'DataFlow', name, pid, tid, timestamp) event['id'] = flow_id self._events.append(event) def emit_flow_end(self, name, timestamp, pid, tid, flow_id): """Adds a flow end event to the trace. When matched with a flow start event (with the same 'flow_id') this will cause the trace viewer to draw an arrow between the start and end events. Args: name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. flow_id: Identifier of the flow as an integer. """ event = self._create_event('t', 'DataFlow', name, pid, tid, timestamp) event['id'] = flow_id self._events.append(event) def emit_counter(self, category, name, pid, timestamp, counter, value): """Emits a record for a single counter. Args: category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. timestamp: The timestamp of this event as a long integer. counter: Name of the counter as a string. value: Value of the counter as an integer. """ event = self._create_event('C', category, name, pid, 0, timestamp) event['args'] = {counter: value} self._events.append(event) def emit_counters(self, category, name, pid, timestamp, counters): """Emits a counter record for the dictionary 'counters'. Args: category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. timestamp: The timestamp of this event as a long integer. counters: Dictionary of counter values. """ event = self._create_event('C', category, name, pid, 0, timestamp) event['args'] = counters.copy() self._events.append(event) def format_to_string(self, pretty=False): """Formats the chrome trace to a string. Args: pretty: (Optional.) If True, produce human-readable JSON output. Returns: A JSON-formatted string in Chrome Trace format. """ trace = {} trace['traceEvents'] = self._metadata + self._events if pretty: return json.dumps(trace, indent=4, separators=(',', ': ')) else: return json.dumps(trace, separators=(',', ':')) class _TensorTracker(object): """An internal class to track the lifetime of a Tensor.""" def __init__(self, name, object_id, timestamp, pid, allocator, num_bytes): """Creates an object to track tensor references. This class is not thread safe and is intended only for internal use by the 'Timeline' class in this file. Args: name: The name of the Tensor as a string. object_id: Chrome Trace object identifier assigned for this Tensor. timestamp: The creation timestamp of this event as a long integer. pid: Process identifier of the assicaiated device, as an integer. allocator: Name of the allocator used to create the Tensor. num_bytes: Number of bytes allocated (long integer). Returns: A 'TensorTracker' object. """ self._name = name self._pid = pid self._object_id = object_id self._create_time = timestamp self._allocator = allocator self._num_bytes = num_bytes self._ref_times = [] self._unref_times = [] @property def name(self): """Name of this tensor.""" return self._name @property def pid(self): """ID of the process which created this tensor (an integer).""" return self._pid @property def create_time(self): """Timestamp when this tensor was created (long integer).""" return self._create_time @property def object_id(self): """Returns the object identifier of this tensor (integer).""" return self._object_id @property def num_bytes(self): """Size of this tensor in bytes (long integer).""" return self._num_bytes @property def allocator(self): """Name of the allocator used to create this tensor (string).""" return self._allocator @property def last_unref(self): """Last unreference timestamp of this tensor (long integer).""" return max(self._unref_times) def add_ref(self, timestamp): """Adds a reference to this tensor with the specified timestamp. Args: timestamp: Timestamp of object reference as an integer. """ self._ref_times.append(timestamp) def add_unref(self, timestamp): """Adds an unref to this tensor with the specified timestamp. Args: timestamp: Timestamp of object unreference as an integer. """ self._unref_times.append(timestamp) class Timeline(object): """A class for visualizing execution timelines of TensorFlow steps.""" def __init__(self, step_stats, graph=None): """Constructs a new Timeline. A 'Timeline' is used for visualizing the execution of a TensorFlow computation. It shows the timings and concurrency of execution at the granularity of TensorFlow Ops. This class is not thread safe. Args: step_stats: The 'StepStats' proto recording execution times. graph: (Optional) The 'Graph' that was executed. """ self._step_stats = step_stats self._graph = graph self._chrome_trace = _ChromeTraceFormatter() self._next_pid = 0 self._device_pids = {} # device name -> pid for compute activity. self._tensor_pids = {} # device name -> pid for tensors. self._tensors = {} # tensor_name -> TensorTracker self._next_flow_id = 0 self._flow_starts = {} # tensor_name -> (timestamp, pid, tid) self._alloc_times = {} # tensor_name -> ( time, allocator, size ) self._allocator_maximums = {} # allocator name => maximum bytes long def _alloc_pid(self): """Allocate a process Id.""" pid = self._next_pid self._next_pid += 1 return pid def _alloc_flow_id(self): """Allocate a flow Id.""" flow_id = self._next_flow_id self._next_flow_id += 1 return flow_id def _parse_op_label(self, label): """Parses the fields in a node timeline label.""" nn, rest = label.split(' = ') op, rest = rest.split('(') if rest == ')': inputs = [] else: inputs = rest[:-1].split(', ') return nn, op, inputs def _assign_lanes(self): """Assigns non-overlapping lanes for the activities on each device.""" for device_stats in self._step_stats.dev_stats: # TODO(pbar): Genuine thread IDs in NodeExecStats might be helpful. lanes = [0] for ns in device_stats.node_stats: l = -1 for (i, lts) in enumerate(lanes): if ns.all_start_micros > lts: l = i lanes[l] = ns.all_start_micros + ns.all_end_rel_micros break if l < 0: l = len(lanes) lanes.append(ns.all_start_micros + ns.all_end_rel_micros) ns.thread_id = l def _emit_op(self, nodestats, pid, is_gputrace): """Generates a Chrome Trace event to show Op execution. Args: nodestats: The 'NodeExecStats' proto recording op execution. pid: The pid assigned for the device where this op ran. is_gputrace: If True then this op came from the GPUTracer. """ node_name = nodestats.node_name start = nodestats.all_start_micros duration = nodestats.all_end_rel_micros tid = nodestats.thread_id if is_gputrace: # Node names should always have the form 'name:op'. fields = node_name.split(':') + ['unknown'] node_name, op = fields[:2] inputs = [] else: _, op, inputs = self._parse_op_label(nodestats.timeline_label) args = {'name': node_name, 'op': op} for i, iname in enumerate(inputs): args['input%d' % i] = iname self._chrome_trace.emit_region(start, duration, pid, tid, 'Op', op, args) def _emit_tensor_snapshot(self, tensor, timestamp, pid, tid, value): """Generate Chrome Trace snapshot event for a computed Tensor. Args: tensor: A 'TensorTracker' object. timestamp: The timestamp of this snapshot as a long integer. pid: The pid assigned for showing the device where this op ran. tid: The tid of the thread computing the tensor snapshot. value: A JSON-compliant snapshot of the object. """ desc = str(value.tensor_description).replace('"', '') snapshot = {'tensor_description': desc} self._chrome_trace.emit_obj_snapshot('Tensor', tensor.name, timestamp, pid, tid, tensor.object_id, snapshot) def _produce_tensor(self, name, timestamp, tensors_pid, allocator, num_bytes): object_id = len(self._tensors) tensor = _TensorTracker(name, object_id, timestamp, tensors_pid, allocator, num_bytes) self._tensors[name] = tensor return tensor def _is_gputrace_device(self, device_name): """Returns true if this device is part of the GPUTracer logging.""" return '/stream:' in device_name or '/memcpy' in device_name def _allocate_pids(self): """Allocate fake process ids for each device in the StepStats.""" self._allocators_pid = self._alloc_pid() self._chrome_trace.emit_pid('Allocators', self._allocators_pid) # Add processes in the Chrome trace to show compute and data activity. for dev_stats in self._step_stats.dev_stats: device_pid = self._alloc_pid() self._device_pids[dev_stats.device] = device_pid tensors_pid = self._alloc_pid() self._tensor_pids[dev_stats.device] = tensors_pid self._chrome_trace.emit_pid(dev_stats.device + ' Compute', device_pid) self._chrome_trace.emit_pid(dev_stats.device + ' Tensors', tensors_pid) def _analyze_tensors(self, show_memory): """Analyze tensor references to track dataflow.""" for dev_stats in self._step_stats.dev_stats: device_pid = self._device_pids[dev_stats.device] tensors_pid = self._tensor_pids[dev_stats.device] for node_stats in dev_stats.node_stats: tid = node_stats.thread_id node_name = node_stats.node_name start_time = node_stats.all_start_micros end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros for index, output in enumerate(node_stats.output): if index: output_name = '%s:%d' % (node_name, index) else: output_name = node_name allocation = output.tensor_description.allocation_description num_bytes = allocation.requested_bytes allocator_name = allocation.allocator_name tensor = self._produce_tensor(output_name, start_time, tensors_pid, allocator_name, num_bytes) tensor.add_ref(start_time) tensor.add_unref(end_time) self._flow_starts[output_name] = (end_time, device_pid, tid) if show_memory: self._chrome_trace.emit_obj_create('Tensor', output_name, start_time, tensors_pid, tid, tensor.object_id) self._emit_tensor_snapshot(tensor, end_time - 1, tensors_pid, tid, output) def _show_compute(self, show_dataflow): """Visualize the computation activity.""" for dev_stats in self._step_stats.dev_stats: device_name = dev_stats.device device_pid = self._device_pids[device_name] is_gputrace = self._is_gputrace_device(device_name) for node_stats in dev_stats.node_stats: tid = node_stats.thread_id start_time = node_stats.all_start_micros end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros self._emit_op(node_stats, device_pid, is_gputrace) if is_gputrace: continue _, _, inputs = self._parse_op_label(node_stats.timeline_label) for input_name in inputs: if input_name not in self._tensors: # This can happen when partitioning has inserted a Send/Recv. # We remove the numeric suffix so that the dataflow appears to # come from the original node. Ideally, the StepStats would # contain logging for the Send and Recv nodes. index = input_name.rfind('/_') if index > 0: input_name = input_name[:index] if input_name in self._tensors: tensor = self._tensors[input_name] tensor.add_ref(start_time) tensor.add_unref(end_time - 1) if show_dataflow: # We use a different flow ID for every graph edge. create_time, create_pid, create_tid = self._flow_starts[ input_name] # Don't add flows when producer and consumer ops are on the same # pid/tid since the horizontal arrows clutter the visualization. if create_pid != device_pid or create_tid != tid: flow_id = self._alloc_flow_id() self._chrome_trace.emit_flow_start(input_name, create_time, create_pid, create_tid, flow_id) self._chrome_trace.emit_flow_end(input_name, start_time, device_pid, tid, flow_id) else: logging.vlog(1, 'Can\'t find tensor %s - removed by CSE?', input_name) def _show_memory_counters(self): """Produce a counter series for each memory allocator.""" # Iterate over all tensor trackers to build a list of allocations and # frees for each allocator. Then sort the lists and emit a cumulative # counter series for each allocator. allocations = {} for name in self._tensors: tensor = self._tensors[name] self._chrome_trace.emit_obj_delete('Tensor', name, tensor.last_unref, tensor.pid, 0, tensor.object_id) allocator = tensor.allocator if allocator not in allocations: allocations[allocator] = [] num_bytes = tensor.num_bytes allocations[allocator].append((tensor.create_time, num_bytes, name)) allocations[allocator].append((tensor.last_unref, -num_bytes, name)) alloc_maxes = {} # Generate a counter series showing total allocations for each allocator. for allocator in allocations: alloc_list = allocations[allocator] alloc_list.sort() total_bytes = 0 alloc_tensor_set = set() alloc_maxes[allocator] = AllocationMaximum( timestamp=0, num_bytes=0, tensors=set()) for time, num_bytes, name in alloc_list: total_bytes += num_bytes if num_bytes < 0: alloc_tensor_set.discard(name) else: alloc_tensor_set.add(name) if total_bytes > alloc_maxes[allocator].num_bytes: alloc_maxes[allocator] = AllocationMaximum( timestamp=time, num_bytes=total_bytes, tensors=copy.deepcopy(alloc_tensor_set)) self._chrome_trace.emit_counter('Memory', allocator, self._allocators_pid, time, allocator, total_bytes) self._allocator_maximums = alloc_maxes def analyze_step_stats(self, show_dataflow=True, show_memory=True): self._allocate_pids() self._assign_lanes() self._analyze_tensors(show_memory) self._show_compute(show_dataflow) if show_memory: self._show_memory_counters() return StepStatsAnalysis( chrome_trace=self._chrome_trace, allocator_maximums=self._allocator_maximums) def generate_chrome_trace_format(self, show_dataflow=True, show_memory=False): """Produces a trace in Chrome Trace Format. Args: show_dataflow: (Optional.) If True, add flow events to the trace connecting producers and consumers of tensors. show_memory: (Optional.) If True, add object snapshot events to the trace showing the sizes and lifetimes of tensors. Returns: A JSON formatted string in Chrome Trace format. """ step_stats_analysis = self.analyze_step_stats( show_dataflow=show_dataflow, show_memory=show_memory) return step_stats_analysis.chrome_trace.format_to_string(pretty=True)
8138e1872ba83e8b4e5232c1d3cc450e30f9a153
527cc44efaa5a2d738d638d76cf4737b37a0e27d
/fiepipe.py
3302504191367767067a54043f89092e1dc52f4e
[ "MIT" ]
permissive
leith-bartrich/fiepipe
c98a978d81a24013a98bbae97c65ca053e9af481
2f48054a349059ec5919ff9402a02c03b27b5915
refs/heads/master
2021-04-06T13:52:51.391039
2019-06-25T21:01:39
2019-06-25T21:01:39
125,394,369
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
#!/usr/local/bin/python import fiepipelib.localplatform.routines.localplatform import fiepipelib.localuser.routines.localuser import fiepipedesktoplib.shells.fiepipe def main(): # TODO register fie.us and populate the public key from somewhere authoritative. platform = fiepipelib.localplatform.routines.localplatform.get_local_platform_routines() localuser = fiepipelib.localuser.routines.localuser.LocalUserRoutines(platform) shell = fiepipedesktoplib.shells.fiepipe.Shell(localuser) shell.cmdloop() if __name__ == "__main__": main()