blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
6094e58198120626f12f5aa95fe32e016cc64ba5
20ed6e74d227e097a924e050bc82682381739fc7
/src/tx/functional/list.py
45c2627a517eeef89d294e0f38dfc335f6b719e2
[ "MIT" ]
permissive
RENCI/tx-functional
c341f38293a889e125824822c47b0d1f1f3f87fb
45427ab06b7d029940e250a5f189997a8111d3f0
refs/heads/master
2022-12-11T11:53:34.830442
2020-09-05T17:56:40
2020-09-05T17:56:40
264,998,389
1
1
null
2020-05-18T17:14:53
2020-05-18T16:32:09
Python
UTF-8
Python
false
false
717
py
from .traversable import Traversable from typing import Generic, TypeVar, Callable, Any, List from .functor import Functor from .applicative import Applicative from .utils import foldl, foldr, Arrow S = TypeVar("S") T = TypeVar("T") def rec(ma: List[S], b: T, f: Callable[[S, T], T]) -> T: return foldr(f, b, ma) def _map(f: Arrow[S, T], ma: List[S]) -> List[T]: return list(map(f, ma)) def append(l : List[T], a: T) -> List[T]: return l + [a] def sequenceA(m: Applicative, ma: List[Any]) -> Any: return foldl(m.liftA2(append), m.pure([]), ma) list_functor = Functor(_map) def list_traversable(m: Applicative) -> Traversable: return Traversable(_map, lambda ma: sequenceA(m, ma))
2a15671d6f800b0ed904eda1e0736d12f02e3e02
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/39/usersdata/120/13433/submittedfiles/dec2bin.py
9a40134fda961c27492e0c85f0f6f823e4b3bc9e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
# -*- coding: utf-8 -*- from __future__ import division d=input('digite um numero na base decimal:') cont=0 k=d while k>0: k=k//2 cont+=1 n=cont i=0 soma=0 r=d while i<=(n-1): r=d%2 d=d//d b=r*(10**i) i+=1 soma=soma+b print soma
1b8ca6d4285b1bf2ba6e8ef64cd2e7b25a83d932
2af6a5c2d33e2046a1d25ae9dd66d349d3833940
/res_bw/scripts/common/lib/idlelib/idle_test/test_pathbrowser.py
c74b4f69f1a9d7f33751f283cef5ff88fc8318bc
[]
no_license
webiumsk/WOT-0.9.12-CT
e6c8b5bb106fad71b5c3056ada59fb1aebc5f2b2
2506e34bd6634ad500b6501f4ed4f04af3f43fa0
refs/heads/master
2021-01-10T01:38:38.080814
2015-11-11T00:08:04
2015-11-11T00:08:04
45,803,240
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
652
py
# 2015.11.10 21:36:26 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/idlelib/idle_test/test_pathbrowser.py import unittest import idlelib.PathBrowser as PathBrowser class PathBrowserTest(unittest.TestCase): def test_DirBrowserTreeItem(self): d = PathBrowser.DirBrowserTreeItem('') d.GetSubList() if __name__ == '__main__': unittest.main(verbosity=2, exit=False) # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\idlelib\idle_test\test_pathbrowser.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.10 21:36:26 Střední Evropa (běžný čas)
ff60581243148821c05ad3c7d119f8f54162d2c1
fafb10ff1b5ec8dcd3c131649afa9baa80159770
/password.py
b873790aaf3464f365923513fb67ba9dd5799129
[ "MIT" ]
permissive
pombredanne/webkit-vuln-finder
94f182fb7a40e8f35cce6ed08598a97435d3bad7
5da9e457b5bfd3715d1d97811cf21750dc9b1082
refs/heads/master
2021-04-28T18:07:43.793971
2017-10-21T02:24:35
2017-10-21T02:24:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
username = "thatOneGuy" password = "correcthorsebatterystaple"
44d907b9a568613000577d7c233cfdfa14a4213a
032117bbf248a76abd25fcc2355bc8ade84fa76a
/django/theproject2/pro3/app3/views.py
be4a8ac1bbf617042c03024c19496ce33a98df2b
[]
no_license
shefaligoel136/python_summer_training
ba8f28f6af008584b4239c73d466e4e9d35b4b01
0b97fea050342fe4ed95b18c5f7ed885a6c8ca23
refs/heads/master
2022-11-13T07:22:32.855717
2020-07-06T08:33:19
2020-07-06T08:33:19
277,480,122
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
from django.shortcuts import render def home(request): return render(request,'temphtml.html') def solve1(request): val1 = float(request.POST['num1']) val2 = float(request.POST['num2']) op = request.POST['op'] if(op=='+'): ans = val1+val2 return render(request,'temphtml.html',{'res':ans}) elif(op=='-'): ans = val1-val2 return render(request,'temphtml.html',{'res':ans}) elif(op=='*'): ans = val1*val2 return render(request,'temphtml.html',{'res':ans}) elif(op=='/'): ans = val1/val2 return render(request,'temphtml.html',{'res':ans}) else: return render(request,'temphtml.html',{'res':'wrong expression'}) def solve2(request): val = (request.POST['num']) s = eval(val) return render(request,'temphtml.html',{'res1':s})
99aadc30ade96f7a2b39bb1935c8d592ccd03ed7
49a167d942f19fc084da2da68fc3881d44cacdd7
/kubernetes_asyncio/test/test_policy_v1beta1_id_range.py
6e5e62b8e765d805b6eb01144abad5213e8a04c2
[ "Apache-2.0" ]
permissive
olitheolix/kubernetes_asyncio
fdb61323dc7fc1bade5e26e907de0fe6e0e42396
344426793e4e4b653bcd8e4a29c6fa4766e1fff7
refs/heads/master
2020-03-19T12:52:27.025399
2018-06-24T23:34:03
2018-06-24T23:34:03
136,546,270
1
0
Apache-2.0
2018-06-24T23:52:47
2018-06-08T00:39:52
Python
UTF-8
Python
false
false
1,030
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.10.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import kubernetes_asyncio.client from kubernetes_asyncio.client.models.policy_v1beta1_id_range import PolicyV1beta1IDRange # noqa: E501 from kubernetes_asyncio.client.rest import ApiException class TestPolicyV1beta1IDRange(unittest.TestCase): """PolicyV1beta1IDRange unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPolicyV1beta1IDRange(self): """Test PolicyV1beta1IDRange""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes_asyncio.client.models.policy_v1beta1_id_range.PolicyV1beta1IDRange() # noqa: E501 pass if __name__ == '__main__': unittest.main()
17e41741acf2c53e5af3b84136bdd4fb2cea28cd
ed6b358cfaf9bc61dab608b117c2cf0abcf90854
/xichuangzhu/controllers/user.py
5cf56bb8f0920a95c7c74bd335ae0e05c71f22c6
[]
no_license
wallaceyuan/xichuangzhu
faa8fdec2a670661165d351ac3311126c8fc91e3
ec45aa8b3f4b1e6b9b70537e270be89e97034c99
refs/heads/master
2021-01-20T21:34:45.949361
2014-05-23T07:29:50
2014-05-23T07:29:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,729
py
# coding: utf-8 from __future__ import division from flask import render_template, Blueprint, g from ..models import User, CollectWork, CollectWorkImage, Work, WorkImage, WorkReview from ..utils import check_is_me from ..permissions import user_permission bp = Blueprint('user', __name__) @bp.route('/<user_abbr>') def view(user_abbr): """用户主页""" user = User.query.filter(User.abbr == user_abbr).first_or_404() query = user.work_reviews if not check_is_me(user.id): query = query.filter(WorkReview.is_publish == True) work_reviews = query.limit(3) work_reviews_num = query.count() topics = user.topics.limit(3) work_images = user.work_images.limit(16) return render_template('user/user.html', user=user, work_reviews=work_reviews, work_reviews_num=work_reviews_num, topics=topics, work_images=work_images) @bp.route('/<user_abbr>/work_reviews', defaults={'page': 1}) @bp.route('/<user_abbr>/work_reviews/page/<int:page>') def work_reviews(user_abbr, page): """用户的作品点评""" user = User.query.filter(User.abbr == user_abbr).first_or_404() work_reviews = user.work_reviews if not check_is_me(user.id): work_reviews = work_reviews.filter(WorkReview.is_publish == True) paginator = work_reviews.paginate(page, 10) return render_template('user/work_reviews.html', user=user, paginator=paginator) @bp.route('/<user_abbr>/topics', defaults={'page': 1}) @bp.route('/<user_abbr>/topics/page/<int:page>') def topics(user_abbr, page): """用户发表的话题""" user = User.query.filter(User.abbr == user_abbr).first_or_404() paginator = user.topics.paginate(page, 10) return render_template('user/topics.html', user=user, paginator=paginator) @bp.route('/<user_abbr>/work_images', defaults={'page': 1}) @bp.route('/<user_abbr>/work_images/page/<int:page>') def work_images(user_abbr, page): """用户上传的作品图片""" user = User.query.filter(User.abbr == user_abbr).first_or_404() paginator = user.work_images.paginate(page, 16) return render_template('user/work_images.html', user=user, paginator=paginator) @bp.route('/collects') @user_permission def collects(): """用户收藏页""" collect_works = Work.query.join(CollectWork).filter(CollectWork.user_id == g.user.id).order_by( CollectWork.create_time.desc()).limit(6) collect_work_images = WorkImage.query.join(CollectWorkImage).filter( CollectWorkImage.user_id == g.user.id).order_by( CollectWorkImage.create_time.desc()).limit(9) return render_template('user/collects.html', user=g.user, collect_works=collect_works, collect_work_images=collect_work_images) @bp.route('/collect_works', defaults={'page': 1}) @bp.route('/collect_works/page/<int:page>') @user_permission def collect_works(page): """用户收藏的文学作品""" paginator = Work.query.join(CollectWork).filter( CollectWork.user_id == g.user.id).order_by( CollectWork.create_time.desc()).paginate(page, 10) return render_template('user/collect_works.html', paginator=paginator) @bp.route('/collect_work_images', defaults={'page': 1}) @bp.route('/collect_work_images/page/<int:page>') @user_permission def collect_work_images(page): """用户收藏的图片""" paginator = WorkImage.query.join(CollectWorkImage).filter( CollectWorkImage.user_id == g.user.id).order_by( CollectWorkImage.create_time.desc()).paginate(page, 12) return render_template('user/collect_work_images.html', paginator=paginator)
31a4fa2f4e3d61e550041ea39e8c9d96f5eb0e47
860c16b6f4eb612f2f62a4ff073ad4b930eaa38a
/planscore/districts.py
3968cb6d5de2eba3e2111de19d64cc011017ffb9
[]
no_license
johndpope/PlanScore
d1f0c93e8e11e8ed7486a0932653c23b17c5eaaa
a0c62a4f75d577ee21c297199ce974cc8ec8167a
refs/heads/master
2021-01-25T04:15:17.529051
2017-06-03T03:06:56
2017-06-03T03:06:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,508
py
import collections, json, io, gzip, statistics, time, base64, posixpath, pickle from osgeo import ogr import boto3, botocore.exceptions from . import prepare_state, score, data ogr.UseExceptions() FUNCTION_NAME = 'PlanScore-RunDistrict' class Partial: ''' Partially-calculated district sums, used by consume_tiles(). ''' def __init__(self, index, totals, precincts, tiles, geometry, upload): self.index = index self.totals = totals self.precincts = precincts self.tiles = tiles self.geometry = geometry self.upload = upload def to_dict(self): return dict(index=self.index, totals=self.totals, precincts=len(self.precincts), tiles=self.tiles, upload=self.upload.to_dict()) def to_event(self): return dict(index=self.index, totals=self.totals, tiles=self.tiles, geometry=self.geometry.ExportToWkt(), upload=self.upload.to_dict(), precincts=Partial.scrunch(self.precincts)) @staticmethod def from_event(event): totals = event.get('totals') precincts = event.get('precincts') tiles = event.get('tiles') geometry = ogr.CreateGeometryFromWkt(event['geometry']) index = event['index'] upload = data.Upload.from_dict(event['upload']) if totals is None or precincts is None or tiles is None: totals, precincts, tiles = collections.defaultdict(int), [], get_geometry_tile_zxys(geometry) return Partial(index, totals, Partial.unscrunch(precincts), tiles, geometry, upload) @staticmethod def scrunch(thing): ''' Scrunch a thing into a compact (?) textual representation. ''' return base64.a85encode(gzip.compress(pickle.dumps(thing))).decode('ascii') @staticmethod def unscrunch(thing): ''' Accept a scrunched representation of a thing and return the thing. Lists and dictionaries are simply returned instead of unscrunched. ''' if type(thing) in (tuple, list, dict): return thing return pickle.loads(gzip.decompress(base64.a85decode(thing))) def lambda_handler(event, context): ''' ''' s3 = boto3.client('s3') partial = Partial.from_event(event) storage = data.Storage.from_event(event, s3) start_time, times = time.time(), [] print('Starting with', len(partial.precincts), 'precincts and', len(partial.tiles), 'tiles remaining') for (index, _) in enumerate(consume_tiles(storage, partial)): times.append(time.time() - start_time) start_time = time.time() stdev = statistics.stdev(times) if len(times) > 1 else times[0] cutoff_msec = 1000 * (statistics.mean(times) + 3 * stdev) remain_msec = context.get_remaining_time_in_millis() - 30000 # 30 seconds for Lambda if remain_msec > cutoff_msec: # There's time to do more continue print('Iteration:', json.dumps(partial.to_dict())) print('Stopping with', remain_msec, 'msec,', len(partial.precincts), 'precincts, and', len(partial.tiles), 'tiles remaining after', index + 1, 'iterations.') event = partial.to_event() event.update(storage.to_event()) payload = json.dumps(event).encode('utf8') print('Sending payload of', len(payload), 'bytes...') lam = boto3.client('lambda') lam.invoke(FunctionName=FUNCTION_NAME, InvocationType='Event', Payload=payload) return final = post_score_results(storage, partial) if not final: return print('All done, invoking', score.FUNCTION_NAME) event = partial.upload.to_dict() event.update(storage.to_event()) lam = boto3.client('lambda') lam.invoke(FunctionName=score.FUNCTION_NAME, InvocationType='Event', Payload=json.dumps(event).encode('utf8')) def post_score_results(storage, partial): ''' ''' key = partial.upload.district_key(partial.index) body = json.dumps(dict(totals=partial.totals)).encode('utf8') print('Uploading', len(body), 'bytes to', key) storage.s3.put_object(Bucket=storage.bucket, Key=key, Body=body, ContentType='text/json', ACL='private') # Look for the other expected districts. prefix = posixpath.dirname(key) listed_objects = storage.s3.list_objects(Bucket=storage.bucket, Prefix=prefix) existing_keys = [obj.get('Key') for obj in listed_objects.get('Contents', [])] for index in range(len(partial.upload.districts)): if partial.upload.district_key(index) not in existing_keys: return False # All of them were found return True def consume_tiles(storage, partial): ''' Generate a stream of steps, updating totals from precincts and tiles. Inputs are modified directly, and lists should be empty at completion. ''' # Start by draining the precincts list, which should be empty anyway. while partial.precincts: precinct = partial.precincts.pop(0) score_precinct(partial, precinct) # Yield once with an emptied precincts list. yield # Iterate over each tile, loading precincts and scoring them. while partial.tiles: tile_zxy = partial.tiles.pop(0) for precinct in load_tile_precincts(storage, tile_zxy): score_precinct(partial, precinct) # Yield after each complete tile is processed. yield def score_precinct(partial, precinct): ''' ''' precinct_geom = ogr.CreateGeometryFromJson(json.dumps(precinct['geometry'])) try: overlap_geom = precinct_geom.Intersection(partial.geometry) except RuntimeError as e: if 'TopologyException' in str(e) and not precinct_geom.IsValid(): # Sometimes, a precinct geometry can be invalid # so inflate it by a tiny amount to smooth out problems precinct_geom = precinct_geom.Buffer(0.0000001) overlap_geom = precinct_geom.Intersection(partial.geometry) else: raise if precinct_geom.Area() == 0: # If we're about to divide by zero, don't bother. return overlap_area = overlap_geom.Area() / precinct_geom.Area() precinct_fraction = overlap_area * precinct['properties'][prepare_state.FRACTION_FIELD] for name in score.FIELD_NAMES: precinct_value = precinct_fraction * (precinct['properties'][name] or 0) partial.totals[name] += precinct_value def load_tile_precincts(storage, tile_zxy): ''' Get GeoJSON features for a specific tile. ''' try: object = storage.s3.get_object(Bucket=storage.bucket, Key='{}/{}.geojson'.format(storage.prefix, tile_zxy)) except botocore.exceptions.ClientError as error: if error.response['Error']['Code'] == 'NoSuchKey': return [] raise if object.get('ContentEncoding') == 'gzip': object['Body'] = io.BytesIO(gzip.decompress(object['Body'].read())) geojson = json.load(object['Body']) return geojson['features'] def iterate_precincts(storage, precincts, tiles): ''' Generate a stream of precincts, getting new ones from tiles as needed. Input lists are modified directly, and should be empty at completion. ''' while precincts or tiles: if precincts: # There is a precinct to yield. precinct = precincts.pop(0) yield precinct if tiles and not precincts: # All out of precincts; fill up from the next tile. tile_zxy = tiles.pop(0) more_precincts = load_tile_precincts(storage, tile_zxy) precincts.extend(more_precincts) def get_geometry_tile_zxys(district_geom): ''' Return a list of expected tile Z/X/Y strings. ''' if district_geom.GetSpatialReference(): district_geom.TransformTo(prepare_state.EPSG4326) xxyy_extent = district_geom.GetEnvelope() iter = prepare_state.iter_extent_tiles(xxyy_extent, prepare_state.TILE_ZOOM) tiles = [] for (coord, tile_wkt) in iter: tile_zxy = '{zoom}/{column}/{row}'.format(**coord.__dict__) tile_geom = ogr.CreateGeometryFromWkt(tile_wkt) if tile_geom.Intersects(district_geom): tiles.append(tile_zxy) return tiles
2175a66e56fec5a6b38b8d8c9b58684e11ae83a5
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02721/s005838488.py
67b4f1efce6fc3f21eede2e8af273a37d4a09818
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
n , k , c = map(int,input().split()) s = input() L = [] R = [] i = 0 j = n-1 while i<n and len(L)<k : if s[i] == "o" : L.append(i) i += c i += 1 while j>-1 and len(R)<k : if s[j] == "o" : R.append(j) j -= c j -= 1 R.reverse() for x in range(k): if R[x] == L[x]: print(R[x]+1)
6528f2aef6ccb83cf7c93281d60781f7bd740da3
4912cbd47c19c58d142e6833911d70f5ea037357
/question_bank/length-of-last-word/length-of-last-word.py
802c71d7fdb456bf98226e268e3f524641dbadf5
[ "Apache-2.0" ]
permissive
yatengLG/leetcode-python
a09a17cd9e60cafd9ff8ca9c068f5b70719c436f
5d48aecb578c86d69835368fad3d9cc21961c226
refs/heads/master
2023-07-13T16:10:01.920716
2021-09-06T02:51:46
2021-09-06T02:51:46
286,969,109
13
6
null
2021-02-16T10:19:44
2020-08-12T09:13:02
Python
UTF-8
Python
false
false
470
py
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:32 ms, 在所有 Python3 提交中击败了96.39% 的用户 内存消耗:13.3 MB, 在所有 Python3 提交中击败了73.72% 的用户 解题思路: 见代码注释 """ class Solution: def lengthOfLastWord(self, s: str) -> int: s = s.rstrip(' ') # 去除右侧空格 words = s.split(' ') # 以空格划开单词 return len(words[-1]) # 取最后一个单词的长度
3e99bde13b9275c37392065bcce7d9a4fb67e948
3de2a746243ad1cb000994a06a0f9699db9a901f
/agc016a.py
049fcd1810826d416cc69758d1fa09b721e56213
[]
no_license
takumi152/atcoder
71d726ffdf2542d8abac0d9817afaff911db7c6c
ebac94f1227974aa2e6bf372e18605518de46441
refs/heads/master
2022-10-30T12:14:41.742596
2022-09-29T19:49:32
2022-09-29T19:49:32
181,502,518
1
0
null
null
null
null
UTF-8
Python
false
false
937
py
def main(): buf = input() s = buf characters = [] for i in s: if not i in characters: characters.append(i) min_iter_count = 999 for i in characters: iter_count = 0 t = s while True: flag = False new_t = "" for j in range(len(t) - 1): if t[j] == i: new_t += i elif t[j+1] == i: new_t += i flag = True else: new_t += t[j] flag = True if t[-1] != i: flag = True t = new_t if flag: iter_count += 1 else: break if iter_count < min_iter_count: min_iter_count = iter_count print(min_iter_count) if __name__ == '__main__': main()
171430aa6e72848779736e903cf664b836f0d045
9ab9d9a3883471763edbceea59a0e83170581b5f
/eggs/Parsley-1.1-py2.7.egg/terml/test/test_terml.py
efb9991a475a1bc684728f0d8bc302bd17366807
[ "CC-BY-2.5", "AFL-2.1", "AFL-3.0", "CC-BY-3.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
asmmhossain/phyG
24dc211dad5b3e89c87ff384e841f2e98bbd52db
023f505b705ab953f502cbc55e90612047867583
refs/heads/master
2022-11-21T12:43:46.172725
2014-02-14T12:33:08
2014-02-14T12:33:08
13,800,552
0
1
NOASSERTION
2020-07-25T21:05:41
2013-10-23T11:04:25
Python
UTF-8
Python
false
false
6,108
py
from twisted.trial import unittest from ometa.runtime import ParseError from terml.nodes import Tag, Term, coerceToTerm, TermMaker from terml.parser import TermLParser, character, parseTerm class TermMakerTests(unittest.TestCase): def test_make(self): m = TermMaker() t1 = m.Foo(1, 'a', m.Baz()) self.assertEqual(t1, parseTerm('Foo(1, "a", Baz)')) class ParserTest(unittest.TestCase): """ Test TermL parser rules. """ def getParser(self, rule): def parse(src): p = TermLParser(src) result, error = p.apply(rule) return result return parse def test_literal(self): """ Literals are parsed to literal terms. """ parse = self.getParser("literal") self.assertEqual(parse('"foo bar"'), Term(Tag('.String.'), "foo bar", None)) self.assertEqual(parse("'x'"), Term(Tag('.char.'), 'x', None)) self.assertEqual(parse("0xDECAFC0FFEEBAD"), Term(Tag('.int.'), 0xDECAFC0FFEEBAD, None)) self.assertEqual(parse("0755"), Term(Tag('.int.'), 0755, None)) self.assertEqual(parse("3.14159E17"), Term(Tag('.float64.'), 3.14159E17, None)) self.assertEqual(parse("1e9"), Term(Tag('.float64.'), 1e9, None)) self.assertEqual(parse("0"), Term(Tag(".int."), 0, None)) self.assertEqual(parse("7"), Term(Tag(".int."), 7, None)) self.assertEqual(parse("-1"), Term(Tag(".int."), -1, None)) self.assertEqual(parse("-3.14"), Term(Tag('.float64.'), -3.14, None)) self.assertEqual(parse("3_000"), Term(Tag('.int.'), 3000, None)) self.assertEqual(parse("0.91"), Term(Tag('.float64.'), 0.91, None)) self.assertEqual(parse("3e-2"), Term(Tag('.float64.'), 3e-2, None)) self.assertEqual(parse("'\\n'"), Term(Tag('.char.'), character("\n"), None)) self.assertEqual(parse('"foo\\nbar"'), Term(Tag('.String.'), "foo\nbar", None)) self.assertEqual(parse("'\\u0061'"), Term(Tag('.char.'), character("a"), None)) self.assertEqual(parse('"z\141p"'), Term(Tag('.String.'), "zap", None)) self.assertEqual(parse('"x\41"'), Term(Tag('.String.'), "x!", None)) self.assertEqual(parse('"foo\\\nbar"'), Term(Tag('.String.'), "foobar", None)) def test_simpleTag(self): """ Tags are parsed properly. """ parse = self.getParser("tag") self.assertEqual(parse("foo"), Tag("foo")) self.assertEqual(parse('::"foo"'), Tag('::"foo"')) self.assertEqual(parse("::foo"), Tag('::foo')) self.assertEqual(parse("foo::baz"), Tag('foo::baz')) self.assertEqual(parse('foo::"baz"'), Tag('foo::"baz"')) self.assertEqual(parse("biz::baz::foo"), Tag('biz::baz::foo')) self.assertEqual(parse("foo_yay"), Tag('foo_yay')) self.assertEqual(parse("foo$baz32"), Tag('foo$baz32')) self.assertEqual(parse("foo-baz.19"), Tag('foo-baz.19')) def test_simpleTerm(self): """ Kernel syntax for terms is parsed properly. """ parse = self.getParser("baseTerm") self.assertEqual(parse("x"), Term(Tag("x"), None, None)) self.assertEqual(parse("x()"), Term(Tag("x"), None, [])) self.assertEqual(parse("x(1)"), Term(Tag("x"), None, (Term(Tag(".int."), 1, None),))) self.assertEqual(parse("x(1, 2)"), Term(Tag("x"), None, (Term(Tag(".int."), 1, None), Term(Tag(".int."), 2, None)))) self.assertEqual(parse("1"), Term(Tag(".int."), 1, None)) self.assertEqual(parse('"1"'), Term(Tag(".String."), "1", None)) self.assertRaises(ValueError, parse, "'x'(x)") self.assertRaises(ValueError, parse, '3.14(1)') self.assertRaises(ValueError, parse, '"foo"(x)') self.assertRaises(ValueError, parse, "1(2)") def test_fullTerm(self): """ Shortcut syntax for terms is handled. """ self.assertEqual(parseTerm("[x, y, 1]"), parseTerm(".tuple.(x, y, 1)")) self.assertEqual(parseTerm("{x, y, 1}"), parseTerm(".bag.(x, y, 1)")) self.assertEqual(parseTerm("f {x, y, 1}"), parseTerm("f(.bag.(x, y, 1))")) self.assertEqual(parseTerm("a: b"), parseTerm(".attr.(a, b)")) self.assertEqual(parseTerm('"a": b'), parseTerm('.attr.("a", b)')) self.assertEqual(parseTerm('a: [b]'), parseTerm('.attr.(a, .tuple.(b))')) def test_multiline(self): """ Terms spread across multiple lines are parsed correctly. """ single = parseTerm('foo(baz({x: "y", boz: 42}))') multi = parseTerm( """foo( baz({ x: "y", boz: 42} ))""") self.assertEqual(multi, single) def test_leftovers(self): e = self.assertRaises(ParseError, parseTerm, "foo(x) and stuff") self.assertEqual(e.position, 7) def test_unparse(self): def assertRoundtrip(txt): self.assertEqual('term(%r)' % (txt,), repr(parseTerm(txt))) cases = ["1", "3.25", "f", "f(1)", "f(1, 2)", "f(a, b)", "{a, b}", "[a, b]", "f{1, 2}", '''{"name": "Robert", attrs: {'c': 3}}'''] for case in cases: assertRoundtrip(case) def test_coerce(self): self.assertEqual( coerceToTerm({3: 4, "a": character('x'), (2, 3): [4, 5]}), parseTerm('{"a": \'x\', 3: 4, [2, 3]: [4, 5]}'))
90fb3d0f41e8ef893dcba8eb07565e63eab33256
66c3ff83c3e3e63bf8642742356f6c1817a30eca
/.vim/tmp/neocomplete/include_cache/=+home=+abel=+proyectos=+django=+ventas=+ventas=+settings.py
8daa573333992dd219d46614e2d6841793e10cab
[]
no_license
pacifi/vim
0a708e8bc741b4510a8da37da0d0e1eabb05ec83
22e706704357b961acb584e74689c7080e86a800
refs/heads/master
2021-05-20T17:18:10.481921
2020-08-06T12:38:58
2020-08-06T12:38:58
30,074,530
0
0
null
null
null
null
UTF-8
Python
false
false
1,305
py
[{'word': 'ALLOWED_HOSTS', 'menu': '[I]', 'kind': 'v', 'abbr': 'ALLOWED_HOSTS = []'}, {'word': 'BASE_DIR', 'menu': '[I]', 'kind': 'v', 'abbr': 'BASE_DIR = os.path.dirname(os.path.dirname(__file__))'}, {'word': 'DATABASES', 'menu': '[I]', 'kind': 'v', 'abbr': 'DATABASES = {'}, {'word': 'DEBUG', 'menu': '[I]', 'kind': 'v', 'abbr': 'DEBUG = True'}, {'word': 'INSTALLED_APPS', 'menu': '[I]', 'kind': 'v', 'abbr': 'INSTALLED_APPS = ('}, {'word': 'LANGUAGE_CODE', 'menu': '[I]', 'kind': 'v', 'abbr': 'LANGUAGE_CODE = ''en-us'''}, {'word': 'MIDDLEWARE_CLASSES', 'menu': '[I]', 'kind': 'v', 'abbr': 'MIDDLEWARE_CLASSES = ('}, {'word': 'ROOT_URLCONF', 'menu': '[I]', 'kind': 'v', 'abbr': 'ROOT_URLCONF = ''ventas.urls'''}, {'word': 'STATIC_URL', 'menu': '[I]', 'kind': 'v', 'abbr': 'STATIC_URL = ''/static/'''}, {'word': 'TEMPLATE_DEBUG', 'menu': '[I]', 'kind': 'v', 'abbr': 'TEMPLATE_DEBUG = True'}, {'word': 'TIME_ZONE', 'menu': '[I]', 'kind': 'v', 'abbr': 'TIME_ZONE = ''UTC'''}, {'word': 'USE_I18N', 'menu': '[I]', 'kind': 'v', 'abbr': 'USE_I18N'}, {'word': 'USE_L10N', 'menu': '[I]', 'kind': 'v', 'abbr': 'USE_L10N'}, {'word': 'USE_TZ', 'menu': '[I]', 'kind': 'v', 'abbr': 'USE_TZ = True'}, {'word': 'WSGI_APPLICATION', 'menu': '[I]', 'kind': 'v', 'abbr': 'WSGI_APPLICATION = ''ventas.wsgi.application'''}]
e843c39e8e4989e30428e9ca261411b48af05bc5
c0450361aa707635f5bf70eff21c1235d7e60cfa
/Lessons by HoudyHo/lesson (32).py
c992dd1dcb5591096afb4678ee5bf2a1ecc56285
[]
no_license
zarkaltair/Learn-python
f48810b86e9832f4c364c345d1fa8624f9ced683
dd6114b5bd6cc30eff328002521041dd2be2c3c5
refs/heads/master
2020-04-10T05:48:51.052751
2019-01-23T18:48:34
2019-01-23T18:48:34
160,837,639
0
0
null
null
null
null
UTF-8
Python
false
false
911
py
# Class class Cat: def __init__(self, color, legs): self.color = color self.legs = legs felix = Cat('ginger', 4) print(felix.color) rover = Cat('dog-colored', 4) stumpy = Cat('brown', 3) class Student: def __init__(self, name): self.name = name test = Student('Bob') print(test.name) class Dog: def __init__(self, name, color): self.name = name self.color = color def bark(self): print('Woof!') fido = Dog('Fido', 'brown') print(fido.name) fido.bark() class Dog: legs = 4 def __init__(self, name, color): self.name = name self.color = color fido = Dog('fido', 'brown') print(fido.legs) print(Dog.legs) class Student: def __init__(self, name): self.name = name def sayHi(self): print('Hi from ' + self.name) s1 = Student('Amy') s1.sayHi() class Rectangle: def __init__(self, width, height): self.width = width self.height = height rect = Rectangle(7, 8) print(rect.color)
3e7b548f6b5cdbd48c47d9c85724e93cbb569120
2b25aae9266437b657e748f3d6fea4db9e9d7f15
/graphics/line/4/richard-zhan/main.py
543aa01f31e1d50c82c08b4e4ca0d48c0b406554
[]
no_license
Zilby/Stuy-Stuff
b1c3bc23abf40092a8a7a80e406e7c412bd22ae0
5c5e375304952f62667d3b34b36f0056c1a8e753
refs/heads/master
2020-05-18T03:03:48.210196
2018-11-15T04:50:03
2018-11-15T04:50:03
24,191,397
0
0
null
null
null
null
UTF-8
Python
false
false
871
py
from display import * from draw import * screen = new_screen() color = [ 0, 255, 0 ] matrix = [] #octant I # add_edge(matrix, 0, 0, 0, XRES - 1, YRES - 75, 0 ) # add_edge(matrix, 0, 0, 0, XRES - 75, YRES - 1, 0 ) # add_edge(matrix, 0, YRES - 1, 0, XRES - 1, 75, 0 ) # add_edge(matrix, 0, YRES - 1, 0, XRES - 75, 0, 0 ) # add_edge(matrix,0,400,0,250,300,0) # add_edge(matrix,0,300,0,250,200,0) # add_edge(matrix,0,150,0,450,325,0) add_edge(matrix,0,250,0,250,0,0) add_edge(matrix,250,0,0,499,250,0) add_edge(matrix,499,250,0,250,499,0) add_edge(matrix,250,499,0,0,250,0) draw_lines( matrix, screen, color ) matrix=[] add_edge(matrix,125,125,0,375,125,0) add_edge(matrix,375,125,0,375,375,0) add_edge(matrix,375,375,0,125,375,0) add_edge(matrix,125,375,0,125,125,0) # add_edge(matrix,0,250,0,250,0,0) color = [255,0,0] draw_lines(matrix,screen,color) display(screen)
08388f40f96262e48a825ed8578c70f7e147a701
66fe4dbcb81ceb688fa557c9a05a92779bd4e263
/config/config.py
97c447221012cfb133c0e71153480f5577f69a13
[]
no_license
AdamEECS/sc
5d3e98d697dd891dfdbae910d0167a0ce1082f19
387930acb7af4c04b39415e923639cad458fda09
refs/heads/master
2021-01-01T06:28:18.465633
2018-08-16T07:56:35
2018-08-16T07:56:35
97,430,842
2
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
from pymongo import * import os config_dict = dict( USER_AVATAR_DIR='static/user_avatar/', PRODUCT_PIC_DIR='static/product_pic/', UPLOAD_FILE_DIR='static/files/', PRODUCT_PIC_EXT='png', CDN_URL='http://opguqe876.bkt.clouddn.com/', CDN_USER_AVATAR_DIR='/user_avatar/', CDN_PRODUCT_PIC_DIR='/product_pic/', CDN_BUCKET='buy-suzumiya', QINIU_CALLBACK_URL='https://buy.suzumiya.cc/callback/all', PIC_UPLOAD_URL='https://up-z1.qbox.me/', SEND_EMAIL_URL='https://api.mailgun.net/v3/mg.suzumiya.cc/messages', SEND_EMAIL_FROM='Suzumiya <[email protected]>', BASE_URL='http://localhost:8001', MAX_CONTENT_LENGTH=2 * 1024 * 1024, ALLOWED_UPLOAD_TYPE=['jpg', 'jpeg', 'gif', 'png', 'ico'], PINGPP_PRIVATE_KEY_PATH=os.path.join(os.path.dirname(__file__), 'mtk_rsa.pem'), ALIPAY_PRIVATE_KEY_PATH=os.path.join(os.path.dirname(__file__), 'mtk_rsa.pem'), ALIPAY_PUBLIC_KEY_PATH=os.path.join(os.path.dirname(__file__), 'ali_pub.pem'), ALIPAY_CALLBACK_URL="http://yc.miteke.com/callback/ali", ALIPAY_RETURN_URL="http://yc.miteke.com/user/profile", ALIPAY_APPID="2017092008837195", ) # mongodb config db_name = 'mongo_sc' client = MongoClient("mongodb://localhost:27017") db = client[db_name]
beb5886b6bb03f8e0149d52f247c773ab8efa39e
0789766b3f242835f3c4e03e573f4d2fa3ebbc5a
/my_nas/dataset/imagenet_downsample.py
c2d73f91310cc798966575e69aef00dd70867fed
[]
no_license
Anonymous-1112/anonymous
05900a2a5feba3a48ad76847a22a8c3a3f35b2e1
d86ec6b35b681c9220150c68bb5eb10af26f5629
refs/heads/master
2023-07-01T19:49:57.400134
2021-08-08T15:29:12
2021-08-08T15:36:56
393,964,141
0
1
null
null
null
null
UTF-8
Python
false
false
4,872
py
# -*- coding: utf-8 -*- import os import pickle from PIL import Image import numpy as np from torchvision import transforms from torchvision.datasets import vision from my_nas.utils.torch_utils import Cutout from my_nas.dataset.base import BaseDataset class ImageNetDownsampleDataset(vision.VisionDataset): train_list = [ "train_data_batch_1", "train_data_batch_2", "train_data_batch_3", "train_data_batch_4", "train_data_batch_5", "train_data_batch_6", "train_data_batch_7", "train_data_batch_8", "train_data_batch_9", "train_data_batch_10" ] test_list = [ "val_data" ] def __init__(self, root, num_class=1000, size=16, train=True, transform=None, target_transform=None): super(ImageNetDownsampleDataset, self).__init__(root, transform=transform, target_transform=target_transform) self.train = train # training set or test set file_list = self.train_list if self.train else self.test_list self.num_class = num_class # the first `num_class` classes are kept len_ = 3 * size * size self.data = np.zeros((0, len_), dtype=np.uint8) self.targets = [] for file_name in file_list: file_path = os.path.join(self.root, file_name) with open(file_path, "rb") as f: entry = pickle.load(f) if num_class < 1000: mask = np.array(entry["labels"]) <= num_class self.data = np.concatenate((self.data, entry["data"][mask]), axis=0) self.targets.extend(list((np.array(entry["labels"]) - 1)[mask])) else: self.data = np.concatenate((self.data, entry["data"]), axis=0) self.targets.extend(list(np.array(entry["labels"]) - 1)) self.data = self.data.reshape(-1, 3, size, size).transpose((0, 2, 3, 1)) # HWC for PIL def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) class ImageNetDownsample(BaseDataset): NAME = "imagenet_downsample" def __init__(self, num_class=120, size=16, relative_dir=None, cutout=None): super(ImageNetDownsample, self).__init__(relative_dir=relative_dir) self.cutout = cutout self.num_class = num_class self.size = size # array([122.68245678, 116.65812896, 104.00708381]) imgnet_mean = [0.48110767, 0.45748286, 0.40787092] imgnet_std = [0.229, 0.224, 0.225] # use imgnet train_transform = transforms.Compose([ transforms.RandomCrop(16, padding=2), # follow NB201 transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(imgnet_mean, imgnet_std), ]) if self.cutout: train_transform.transforms.append(Cutout(self.cutout)) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(imgnet_mean, imgnet_std), ]) self.datasets = {} self.datasets["train"] = ImageNetDownsampleDataset( root=self.data_dir, num_class=self.num_class, size=self.size, train=True, transform=train_transform) self.datasets["train_testTransform"] = ImageNetDownsampleDataset( root=self.data_dir, num_class=self.num_class, size=self.size, train=True, transform=test_transform) self.datasets["test"] = ImageNetDownsampleDataset( root=self.data_dir, num_class=self.num_class, size=self.size, train=False, transform=test_transform) def same_data_split_mapping(self): return {"train_testTransform": "train"} def splits(self): return self.datasets @classmethod def data_type(cls): return "image" def __reduce__(self): """ Python 3 reduce for pickling (mainly for use with async search see trainer/async_trainer.py) """ return ImageNetDownsample, (self.cutout,) def __getinitargs__(self): """ Python 2 getinitargs for pickling (mainly for use with async search see trainer/async_trainer.py) """ return (self.cutout,)
54cdd7f5ce0fc2040583d0605b91c1bddb75daee
68e0a967f52fd86e82f80dc4fd9198449f8f1030
/doc/.src/book/scripts.py
09eacba33e843d93599017499cf00bfdf3b8d05a
[]
no_license
htphuc/fdm-book
4ac32a30506a83fd1ae35c2fe1934d194ea11686
07b15f987374b3e91d21ab14c06cfc0a79634936
refs/heads/master
2021-01-17T20:59:48.188917
2016-04-25T21:06:12
2016-04-25T21:06:12
57,400,233
1
0
null
2016-04-29T17:01:53
2016-04-29T17:01:52
null
UTF-8
Python
false
false
5,340
py
import sys, re, os, shutil, glob chapters = "vib wave diffu trunc staggered softeng2 formulas advec".split() chaptersdir = 'chapters' ignored_files = '*.o *.so *.a *.pyc *.bak *.swp *~ .*~ *.old tmp* temp* .#* \\#* *.log *.dvi *.aux *.blg *.idx *.nav *.out *.toc *.snm *.vrb *.cproject *.project .DS_Store Trash'.split() def chapter_visitor(action=None, chapters=chapters): """Visit dirs in chapters and call/perform action.""" if isinstance(action, str): action = re.split('r\s*;\s*', action) if isinstance(action, (tuple,list)): # Wrap Unix commands and run def action_function(): for command in action: print command failure = os.system(command) if failure: print 'failure in execution...'; sys.exit(1) elif callable(action): action_function = action prefix = os.path.join(os.pardir, chaptersdir) thisdir = os.getcwd() for chapter in chapters: destination = os.path.join(prefix, chapter) if os.path.isdir(destination): print 'visiting directory', destination os.chdir(destination) action_function() os.chdir(thisdir) else: print '\n*** error: directory %s does not exist!' % destination sys.exit(1) def clean(): """ Remove all files that can be regenerated. Method: run common ../clean.sh in all chapter dirs + doconce clean in this book dir. """ chapter_visitor('bash -x ../clean.sh') os.system('doconce clean') # Remove reduant files redundant = glob.glob('newcommands*.tex') for filename in redundant: os.remove(filename) def compile_chapters(): """ Compile all chapters as stand-alone PDF documents. Method: run make.sh in all chapter dirs. """ chapter_visitor('rm -rf tmp*; bash -x make.sh') def make_links(chapters=chapters): """Make links to all src-* and fig-* dirs for all chapters.""" prefix = os.path.join(os.pardir, chaptersdir) for chapter in chapters: destination = os.path.join(prefix, chapter) subdirs = [tp + '-' + chapter for tp in 'fig', 'src', 'mov', 'exer'] for subdir in subdirs: if not os.path.islink(subdir): dest_subdir = os.path.join(destination, subdir) if os.path.isdir(dest_subdir): os.symlink(dest_subdir, subdir) print 'created local link %s to %s' % (subdir, destination) # Sometimes manual additions are needed here, e.g., #os.symlink(os.path.join(prefix, 'tech', 'fig2'), 'fig2') def spellcheck(): """Visit each individual chapter and spellcheck all *.do.txt in it.""" chapter_visitor('rm -rf tmp*; doconce spellcheck -d .dict4spell.txt *.do.txt') def pack_src(root='src', tarfile='book-examples.tar.gz', chapters=chapters): """ Publish programs, libraries, data, etc. from the book. Method: make new directory tree root, copy all src-name dirs from all chapters to name. This root tree can be synced to an external repo or packed as a tar or zip file. """ shutil.rmtree(root) os.mkdir(root) os.chdir(root) prefix = os.path.join(os.pardir, os.pardir, chaptersdir) thisdir = os.getcwd() for chapter in chapters: src = 'src-' + chapter # Clean up redundant files that we will not publish destination = os.path.join(prefix, src) if os.path.isdir(destination): os.chdir(destination) for file_spec in ignored_files: for filename in glob.glob(file_spec): os.remove(filename) print 'removed', 'src-%s/%s' % (chapter, filename) os.chdir(thisdir) # Copy files shutil.copytree(destination, chapter) print '\ndirectory tree with source code files for the book:', root os.chdir(os.pardir) os.system('tar czf %s %s' % (tarfile, root)) print 'tarfile:', tarfile def externaldocuments(): # Find all candidate documents in ../chapters/* prefix = os.path.join(os.pardir, chaptersdir) #dirs = [name for name in os.listdir(prefix) # if os.path.isdir(os.path.join(prefix, name))] dirs = chapters[:] docs = [] for nickname in dirs: mainfiles = glob.glob(os.path.join(prefix, nickname, 'main_*.do.txt')) for mainfile in mainfiles: docs.append((nickname, mainfile[:-7])) # drop .do.txt mainfiles = [mainfile for nickname, mainfile in docs] # Need to visit all dirs, remove that dir from the list and subst for mainfile in mainfiles: other_mainfiles = mainfiles[:] # copy other_mainfiles.remove(mainfile) # Strip off ../chapters to ../ other_mainfiles = ['../' + mainfile[12:] for mainfile in mainfiles] f = open(mainfile + '.do.txt', 'r') text = f.read() f.close() text = re.sub('^# Externaldocuments:.*', '# Externaldocuments: ' + ', '.join(other_mainfiles), text, flags=re.MULTILINE) print 'subst in', mainfile f = open(mainfile + '.do.txt', 'w') f.write(text) f.close() print 'updated # Externaldocuments in', mainfile, 'with\n ', ', '.join(other_mainfiles)
9569e88a4594523c588bf67478cf3e69e5fa07d3
eae3d77ac72c168cee7701462f1fc45d7d4dcd91
/Tree/5176_이진탐색.py
1d5de72b6fe0d9ddc3f43d237019f001829c7471
[]
no_license
ByeongjunCho/Algorithm-TIL
ed2f018d50bd2483bd1175ff9bf7e91913c14766
ad79125a1498915fe97c1d57ee6860b06c410958
refs/heads/master
2022-07-19T15:12:23.689319
2020-05-18T08:37:09
2020-05-18T08:37:09
256,399,493
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
T = int(input()) for tc in range(1, T+1): N = int(input()) V = [0] * (N+1) L = [0] * (N+1) R = [0] * (N+1) # 이진트리 구현 i = 1 while (i << 1) < N+1: L[i] = i << 1 if (i << 1) + 1 < N+1: R[i] = (i << 1) + 1 i += 1
b92ace36f8eaa5fa5bd1a781ed1656742c2db3c5
a2c90d183ac66f39401cd8ece5207c492c811158
/Solving_Problem/daily_222/1111/17140.py
524cee2fdd156023f681b4bf34cde15944c9a1c3
[]
no_license
kwoneyng/TIL
0498cfc4dbebbb1f2c193cb7c9459aab7ebad02a
c6fbaa609b2e805f298b17b1f9504fd12cb63e8a
refs/heads/master
2020-06-17T11:53:38.685202
2020-03-18T01:29:36
2020-03-18T01:29:36
195,916,103
0
0
null
null
null
null
UTF-8
Python
false
false
1,924
py
from collections import deque from heapq import heappop, heappush def rcal(): global y ls = [] mx = 0 for i in range(x): su = len(bd[i]) cnt = 0 for j in range(1,101): if bd[i].count(j): heappush(ls,[bd[i].count(j),j]) cnt += bd[i].count(j) if cnt == su: break bd[i] = [] for _ in range(len(ls)): many, su = heappop(ls) bd[i].append(su) bd[i].append(many) mx = max(mx, len(bd[i]),y) for i in range(x): for _ in range(mx-len(bd[i])): bd[i].append(0) y = mx def ccal(): global x new = [[] for i in range(y)] ls = [] re_bd = [] mx = 0 for i in range(y): cnt = 0 bls =[] for j in range(x): bls.append(bd[j][i]) su = len(bls)-bls.count(0) for k in range(1,101): if bls.count(k): heappush(ls,[bls.count(k),k]) cnt += bls.count(k) if cnt == su: break for _ in range(len(ls)): many, su = heappop(ls) new[i].append(su) new[i].append(many) mx = max(mx, len(new[i]),x) for i in range(y): for _ in range(mx-len(new[i])): new[i].append(0) x = mx for i in range(x): ls = [] for j in range(y): ls.append(new[j][i]) re_bd.append(ls) return re_bd def debug(): for i in bd: print(i) print('-------------------------') r,c,k = map(int,input().split()) r -= 1 c -= 1 x,y = 3,3 bd = [list(map(int,input().split())) for i in range(x)] for i in range(101): if r < x and c < y: if bd[r][c] == k: print(i) break if x >= y: rcal() else: bd = ccal() # debug() else: print(-1)
efa5c09e00baf175a267323493146e4a079511df
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_5/sctjas002/question4.py
e4b18527ed1d0802f17d9b728e65f1ab2eec2bbd
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
import math (fx)=input('Enter a function f(x):\n') for y in range (10,-11,-1): for x in range (-10,11): if y==round((eval((fx)))): print('o',end='') elif y==0 and x==0: print('+',end='') elif y==0: print('-',end='') elif x==0: print('|' ,end='') else: print(' ',end='') print()
db99a7fae497a54bcf8582832888bcb9835fca74
30d1902232eb9ddb84fdf5404a3a1dfd6232406a
/wxpython/test/sxn.spec
9fb6f075ebf9e03cbe029bbde4b5335d0aaab5e1
[]
no_license
sxnys/mypython
c3a768b054077ed97ff1e2fac31cb93f0765deb3
de48cd883ad2de3320cb0c6b46b451ebb2311ac7
refs/heads/master
2022-11-07T15:11:48.936412
2019-04-14T12:04:30
2019-04-14T12:04:30
119,686,106
0
1
null
2022-10-31T05:13:00
2018-01-31T12:46:06
Python
UTF-8
Python
false
false
835
spec
# -*- mode: python -*- block_cipher = None a = Analysis(['sxn.py'], pathex=['F:\\Python\\wxpython\\test'], binaries=[], datas=[], hiddenimports=[], hookspath=[], runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) exe = EXE(pyz, a.scripts, exclude_binaries=True, name='sxn', debug=False, strip=False, upx=True, console=True ) coll = COLLECT(exe, a.binaries, a.zipfiles, a.datas, strip=False, upx=True, name='sxn')
80d512046627f21ec6e5b8db3615ee5f70869009
f3d40fcd992b38132ff9634d2b76988a99cefb3b
/pycoinnet/util/BlockChainStore.py
86653b8c71a73bfe27c1a3f2bfbd1b35acc4ec52
[ "MIT" ]
permissive
richardkiss/pycoinnet
b9b999dbf0401722e4550c5926197881e5b13102
57a7f439f0b4c9102cd25f95c0b7e4db00fe2f5b
refs/heads/master
2022-04-27T19:15:39.098602
2021-12-25T23:26:24
2021-12-25T23:26:24
16,194,216
117
56
MIT
2021-12-25T23:26:24
2014-01-24T03:43:42
Python
UTF-8
Python
false
false
2,040
py
import logging import os class FakeHeader: def __init__(self, h, previous_block_hash): self.h = h self.previous_block_hash = previous_block_hash self.difficulty = 1 def hash(self): return self.h def __repr__(self): return "%s (parent %s)" % (self.h, self.previous_block_hash) def __eq__(self, other): return self.h == other.h and self.previous_block_hash == other.previous_block_hash def __hash__(self): return self.h.__hash__() class BlockChainStore: BLOCK_HASHES_PATH = "locked_block_hashes.bin" def __init__(self, dir_path, parent_to_0=b'\0' * 32): self.dir_path = dir_path self.parent_to_0 = parent_to_0 def block_tuple_iterator(self): try: with open(os.path.join(self.dir_path, self.BLOCK_HASHES_PATH), "rb") as f: prev_hash = self.parent_to_0 while 1: d = f.read(16384) if len(d) == 0: return while len(d) >= 32: the_hash = d[:32] yield (the_hash, prev_hash, 1) prev_hash = the_hash d = d[32:] except Exception: pass def headers(self): for the_hash, prev_hash, weight in self.block_tuple_iterator(): yield FakeHeader(the_hash, prev_hash) def did_lock_to_index(self, block_tuple_list, start_index): with open(os.path.join(self.dir_path, self.BLOCK_HASHES_PATH), "a+b") as f: pass with open(os.path.join(self.dir_path, self.BLOCK_HASHES_PATH), "r+b") as f: f.seek(start_index*32) count = 0 # ## TODO: make sure the one we're writing is in the right place for the_hash, parent_hash, weight in block_tuple_list: f.write(the_hash) count += 1 logging.debug("wrote %d items to block chain store at %s", count, self.dir_path)
308b6b16a55851f143ffb7afe1ce0b0fa3f85bf3
e254c72d3fd11306c8625c5d8ad8ac394eabc6c6
/06.scrapy/AppleDailySearchMongo/AppleDailySearch/settings.py
68673e439c56176af474067092b73ea14f949c88
[]
no_license
Edward83528/crawlerToMachinLearningAndBot
87c7ea92779b949ad5015612a4e70275becab480
82818137b517f4c5a856535f83a8cb8b211da8aa
refs/heads/master
2022-11-06T19:41:20.473933
2020-07-04T14:01:07
2020-07-04T14:01:07
268,072,162
1
0
null
null
null
null
UTF-8
Python
false
false
3,426
py
# -*- coding: utf-8 -*- # Scrapy settings for AppleDailySearch project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'AppleDailySearch' SPIDER_MODULES = ['AppleDailySearch.spiders'] NEWSPIDER_MODULE = 'AppleDailySearch.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'AppleDailySearch (+http://www.yourdomain.com)' USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'AppleDailySearch.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'AppleDailySearch.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'AppleDailySearch.pipelines.SomePipeline': 300, #} ITEM_PIPELINES = { 'AppleDailySearch.pipelines.JsonWithEncodingPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
4b05388caf49263247f5a9216da4d2033fdccc11
c7f353cc14439fc47d351bd29258c9453cf16f32
/h2o-py/tests/testdir_munging/pyunit_ischaracter_isnumeric.py
aa42b41611f89e9681ba6234c5bba7e04441ba66
[ "Apache-2.0" ]
permissive
tamseo/h2o-3
a131f40a0cd7f0c52d359b06b300f87d627cfd83
cc59fa0d97325796c5a57085661cea7b34fa81e9
refs/heads/master
2020-12-11T09:27:54.589687
2015-10-19T21:56:12
2015-10-19T21:56:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
import sys sys.path.insert(1, "../../") import h2o, tests import random def pyunit_ischaracter_isnumeric(): iris = h2o.import_file(tests.locate("smalldata/iris/iris.csv")) assert iris[0].isnumeric(), "Expected the first column of iris to be numeric" assert not iris[0].ischaracter(), "Expected the first column of iris to be numeric" assert not iris[4].isnumeric(), "Expected the last column of iris to be character" iris[4] = iris[4].ascharacter() assert iris[4].isstring(), "Expected the last column of iris to be a string" if __name__ == "__main__": tests.run_test(sys.argv, pyunit_ischaracter_isnumeric)
8dfe9a9df3bccbd5d817c8705b15fc06fd4569ce
ae06af824e864fab8d33f695ddb612e7867ab92f
/dashboard/dashboard/pinpoint/models/quest/read_value.py
be0fda52522ba5143cfe3a50720310b2db79bc77
[ "BSD-3-Clause" ]
permissive
takingmynetback/catapult
49402759c34dd07e424b47f4c9ec824dd1744526
f718fb12b8cfd16b07509674747abf56cf330ac8
refs/heads/master
2020-03-10T18:46:57.367789
2018-04-13T14:20:21
2018-04-13T15:06:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,183
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json from dashboard.common import histogram_helpers from dashboard.pinpoint.models.quest import execution from dashboard.pinpoint.models.quest import quest from dashboard.services import isolate from tracing.value import histogram_set from tracing.value.diagnostics import diagnostic_ref from tracing.value.diagnostics import reserved_infos class ReadValueError(Exception): pass class ReadHistogramsJsonValue(quest.Quest): def __init__(self, hist_name, tir_label=None, story=None, statistic=None): self._hist_name = hist_name self._tir_label = tir_label self._story = story self._statistic = statistic def __eq__(self, other): return (isinstance(other, type(self)) and self._hist_name == other._hist_name and self._tir_label == other._tir_label and self._story == other._story and self._statistic == other._statistic) def __str__(self): return 'Values' def Start(self, change, isolate_hash): del change return _ReadHistogramsJsonValueExecution(self._hist_name, self._tir_label, self._story, self._statistic, isolate_hash) @classmethod def FromDict(cls, arguments): chart = arguments.get('chart') tir_label = arguments.get('tir_label') trace = arguments.get('trace') statistic = arguments.get('statistic') return cls(chart, tir_label, trace, statistic) class _ReadHistogramsJsonValueExecution(execution.Execution): def __init__(self, hist_name, tir_label, story, statistic, isolate_hash): super(_ReadHistogramsJsonValueExecution, self).__init__() self._hist_name = hist_name self._tir_label = tir_label self._story = story self._statistic = statistic self._isolate_hash = isolate_hash self._trace_urls = [] def _AsDict(self): if not self._trace_urls: return {} return {'traces': self._trace_urls} def _Poll(self): # TODO(simonhatch): Switch this to use the new perf-output flag instead # of the chartjson one. They're functionally equivalent, just new name. histogram_dicts = _RetrieveOutputJson( self._isolate_hash, 'chartjson-output.json') histograms = histogram_set.HistogramSet() histograms.ImportDicts(histogram_dicts) histograms.ResolveRelatedHistograms() matching_histograms = histograms.GetHistogramsNamed(self._hist_name) # Get and cache any trace URLs. unique_trace_urls = set() for hist in histograms: trace_urls = hist.diagnostics.get(reserved_infos.TRACE_URLS.name) # TODO(simonhatch): Remove this sometime after May 2018. We had a # brief period where the histograms generated by tests had invalid # trace_urls diagnostics. If the diagnostic we get back is just a ref, # then skip. # https://github.com/catapult-project/catapult/issues/4243 if trace_urls and not isinstance( trace_urls, diagnostic_ref.DiagnosticRef): unique_trace_urls.update(trace_urls) sorted_urls = sorted(unique_trace_urls) self._trace_urls = [ {'name': t.split('/')[-1], 'url': t} for t in sorted_urls] # Filter the histograms by tir_label and story. Getting either the # tir_label or the story from a histogram involves pulling out and # examining various diagnostics associated with the histogram. tir_label = self._tir_label or '' matching_histograms = [ h for h in matching_histograms if tir_label == histogram_helpers.GetTIRLabelFromHistogram(h)] # If no story is supplied, we're looking for a summary metric so just match # on name and tir_label. This is equivalent to the chartjson condition that # if no story is specified, look for "summary". if self._story: matching_histograms = [ h for h in matching_histograms if self._story == _GetStoryFromHistogram(h)] # Have to pull out either the raw sample values, or the statistic result_values = [] for h in matching_histograms: result_values.extend(self._GetValuesOrStatistic(h)) if not result_values and self._hist_name: name = 'histogram: %s' % self._hist_name if tir_label: name += ' tir_label: %s' % tir_label if self._story: name += ' story: %s' % self._story raise ReadValueError('Could not find values matching: %s' % name) self._Complete(result_values=tuple(result_values)) def _GetValuesOrStatistic(self, hist): if not self._statistic: return hist.sample_values if not hist.sample_values: return [] # TODO(simonhatch): Use Histogram.getStatisticScalar when it's ported from # js. if self._statistic == 'avg': return [hist.running.mean] elif self._statistic == 'min': return [hist.running.min] elif self._statistic == 'max': return [hist.running.max] elif self._statistic == 'sum': return [hist.running.sum] elif self._statistic == 'std': return [hist.running.stddev] elif self._statistic == 'count': return [hist.running.count] raise ReadValueError('Unknown statistic type: %s' % self._statistic) def _ResultValuesFromHistogram(buckets): total_count = sum(bucket['count'] for bucket in buckets) result_values = [] for bucket in buckets: # TODO: Assumes the bucket is evenly distributed. bucket_mean = (bucket['low'] + bucket.get('high', bucket['low'])) / 2 if total_count > 10000: bucket_count = 10000 * bucket['count'] / total_count else: bucket_count = bucket['count'] result_values += [bucket_mean] * bucket_count return tuple(result_values) class ReadGraphJsonValue(quest.Quest): def __init__(self, chart, trace): self._chart = chart self._trace = trace def __eq__(self, other): return (isinstance(other, type(self)) and self._chart == other._chart and self._trace == other._trace) def __str__(self): return 'Values' def Start(self, change, isolate_hash): del change return _ReadGraphJsonValueExecution(self._chart, self._trace, isolate_hash) @classmethod def FromDict(cls, arguments): chart = arguments.get('chart') trace = arguments.get('trace') if not (chart or trace): return None if chart and not trace: raise TypeError('"chart" specified but no "trace" given.') if trace and not chart: raise TypeError('"trace" specified but no "chart" given.') return cls(chart, trace) class _ReadGraphJsonValueExecution(execution.Execution): def __init__(self, chart, trace, isolate_hash): super(_ReadGraphJsonValueExecution, self).__init__() self._chart = chart self._trace = trace self._isolate_hash = isolate_hash def _AsDict(self): return {} def _Poll(self): graphjson = _RetrieveOutputJson(self._isolate_hash, 'chartjson-output.json') if self._chart not in graphjson: raise ReadValueError('The chart "%s" is not in the results.' % self._chart) if self._trace not in graphjson[self._chart]['traces']: raise ReadValueError('The trace "%s" is not in the results.' % self._trace) result_value = float(graphjson[self._chart]['traces'][self._trace][0]) self._Complete(result_values=(result_value,)) def _RetrieveOutputJson(isolate_hash, filename): # TODO: Plumb isolate_server through the parameters. crbug.com/822008 server = 'https://isolateserver.appspot.com' output_files = json.loads(isolate.Retrieve(server, isolate_hash))['files'] if filename not in output_files: raise ReadValueError("The test didn't produce %s." % filename) output_json_isolate_hash = output_files[filename]['h'] return json.loads(isolate.Retrieve(server, output_json_isolate_hash)) def _GetStoryFromHistogram(hist): stories = hist.diagnostics.get(reserved_infos.STORIES.name) if stories and len(stories) == 1: return list(stories)[0] return None
00ee6e8b2941d6e3cd3d1713cf36490b5754624e
28cab1ef484a5796fc9b0897043e918f9a28e650
/account/urls/user.py
caca4ac46ecc06a22eb78a92276ad522c397c750
[]
no_license
bxxfighting/dalangshen
12cb58d2078804327dbf7a01be0fc2a0d27f4495
e174147b8778c188941d5fd0f5e33de65afc8b00
refs/heads/main
2023-01-15T08:07:57.429342
2020-11-16T03:49:34
2020-11-16T03:49:34
313,184,879
1
0
null
null
null
null
UTF-8
Python
false
false
547
py
from django.urls import path from account.apis import user as user_api urlpatterns = [ path('user/login/', user_api.LoginApi.as_view()), path('user/logout/', user_api.LogoutApi.as_view()), path('user/', user_api.UserApi.as_view()), path('user/current/', user_api.CurrentUserApi.as_view()), path('user/list/', user_api.ListUserApi.as_view()), path('user/create/', user_api.CreateUserApi.as_view()), path('user/update/', user_api.UpdateUserApi.as_view()), path('user/delete/', user_api.DeleteUserApi.as_view()), ]
8b4246df4e9e8bb970c0809d972016ef7188b9f1
b8d7c4e3476aae5c3bba7ffa28311f84fda5af9e
/main/apps/cart/views.py
0c406e7f828ea18dc57dda560f00ccd7024a78e5
[]
no_license
zhongzhiqiang/hotel-api
1744b8ecb63c4626f7a90f6f04f073aab052b312
25703713d0e8ab2314e07e983b98506a3551e762
refs/heads/master
2020-03-26T08:53:06.776003
2019-01-20T09:23:39
2019-01-20T09:23:39
144,724,134
0
0
null
2018-10-12T13:29:20
2018-08-14T13:28:51
Python
UTF-8
Python
false
false
2,081
py
# coding:utf-8 # Time : 2018/10/15 下午10:47 # Author : Zhongzq # Site : # File : views.py # Software: PyCharm from __future__ import unicode_literals from rest_framework import mixins, viewsets, status from rest_framework.response import Response from rest_framework.decorators import list_route from main.apps.cart import serializers from main.models import Cart class CartViews(mixins.CreateModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): """ create: 在自己的购物车新增一件商品 如果购物车有一样的商品会合并.如果传递数字小于等于0 则会删除 list: 返回当前用户的购物车 update: 更新购物车商品某个商品 empty_cart: 清空购物车。什么都不用传递。直接post """ queryset = Cart.objects.all() serializer_class = serializers.CartSerializers def get_queryset(self): return self.queryset.filter(consumer=self.request.user.consumer) def perform_create(self, serializer): serializer.save(consumer=self.request.user.consumer) def create(self, request, *args, **kwargs): post_data = request.data if post_data.get("nums") <= 0: cart = self.queryset.filter(goods__id=post_data.get("goods")).first() if cart: cart.delete() return Response(status=status.HTTP_204_NO_CONTENT) else: return Response(status=status.HTTP_400_BAD_REQUEST, data={"non_field_errors": "传递错误"}) serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers) @list_route(methods=["POST"]) def empty_cart(self, request, *args, **kwargs): self.get_queryset().delete() return Response(status=status.HTTP_204_NO_CONTENT)
de499b1d1ee6eebeb74c84cbf98ec9a1e9bfa0ad
84bd24e7aba23c7775f52d51c754f14601e28b61
/cars/migrations/0015_auto_20201222_0911.py
53cd0970e12348b27aef4a29fb5a55ef15ccf7ed
[]
no_license
hamzaumar8/sandvet
c0ad473e8f2f97d1c5bf5104e034e731ac0a0add
7f02d24f1b50cd4f64beff618b6d9c508b7a42d4
refs/heads/master
2023-02-18T01:28:25.252360
2021-01-18T19:26:39
2021-01-18T19:26:39
310,844,181
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
# Generated by Django 3.0.6 on 2020-12-22 01:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cars', '0014_auto_20201222_0911'), ] operations = [ migrations.AlterField( model_name='schoolimage', name='school', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='schoolimage', to='cars.School'), ), ]
1cd7f7fe2262f547b545bce5583d232fd3056bcb
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/prepositions/_beside.py
412a30036868081724ff1297f7950ab0b9365210
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
425
py
#calss header class _BESIDE(): def __init__(self,): self.name = "BESIDE" self.definitions = [u'at the side of, next to: ', u'compared to another person or thing: ', u'to be in no way connected to the subject that is being discussed: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'prepositions' def run(self, obj1 = [], obj2 = []): return self.jsondata
a807a1a843bf88cf36512e099d3aaca3261e2f3e
de9b8b7192a0a81e9249823bb2b86f0b7e452863
/.history/main_20171106232335.py
96c596fc3fcc185c546af76e74da5916cad83166
[ "MIT" ]
permissive
reecebenson/uwe-dadsa-tennis-a
f5eaeb1b96d4e61f29279514e68eeea8ad6533db
d0763f819b300fcd0ce27041f5bc4ef0519c00bf
refs/heads/master
2023-07-08T16:13:23.963348
2017-11-30T12:07:01
2017-11-30T12:07:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,056
py
# DADSA - Assignment 1 # Reece Benson import random from classes import Menu as Menu from classes import Handler as Handler class App(): # Define the variables we will be using debug = True handler = None # Define all of the properties we will need to use def __init__(self): # Load our handler self.handler = Handler.Handler(self) self.handler.load() # Generate rounds self.generate_rounds() # Hold the program self.exit() # Generate our rounds from our player list from scratch def generate_rounds(self): # Write our new data to memory for seasonId in self.handler.get_seasons(): season = self.handler.get_season(seasonId) players = season.players() # Our Round Data should be completely empty round_data = { } # Generate our rounds for gender in players: # Generate 'x' amount of rounds for r in range(season.settings()['round_count']): # Default Round Cap round_cap = 3 # Create our gendered rounds if(not gender in round_data): # Do we have a Round Cap overrider for this gender? if(gender + "_cap" in season.settings()): roundCap = season.settings()[gender + "_cap"] # Update our round data round_data.update({ "round_"+str(r): { gender: [ { "_roundCap": round_cap } ] } }) # Create our match data from players rand_players = random.sample(players[gender], len(players[gender])) for i in range(int(len(rand_players) / 2 )): # Grab our versus players p_one = rand_players[i * 2] p_two = rand_players[(i * 2) + 1] # Generate some scores p_one_score = random.randint(0, round_cap - 1) p_two_score = random.randint(0, round_cap - 1) # Make a random player the winner who = random.randint(0, 1) if(who == 0): p_one_score = round_cap else: p_two_score = round_cap # Append our random data as a Match #round_data[gender].append({ p_one.name(): p_one_score, p_two.name(): p_two_score }) round_data[gender]["round_"+str(r)].append(Match.Match("round_"+str(r), p_one, p_two, p_one_score, p_two_score)) # Set our Round Data to our season season.set_rounds_raw(round_data) # End of generate_rounds() # A method which exits the program after the user has pressed the Return key def exit(self): input(">>> Press <Return> to terminate the program") exit() App()
9bac4c8027b6b8102d2288a4ae7b4d617d5fded3
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/EightTeV/LongLivedChi0ToMuQQ_MSquark_1500_MChi_494_TuneZ2Star_8TeV_pythia6_cff.py
969c146bfb5a013812585e4739862cc042491409
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
2,634
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.PythiaUEZ2starSettings_cfi import * source = cms.Source("EmptySource") generator = cms.EDFilter("Pythia6GeneratorFilter", pythiaHepMCVerbosity = cms.untracked.bool(False), maxEventsToPrint = cms.untracked.int32(0), pythiaPylistVerbosity = cms.untracked.int32(0), filterEfficiency = cms.untracked.double(1.0), crossSection = cms.untracked.double(0.0001388), comEnergy = cms.double(8000.0), UseExternalGenerators = cms.untracked.bool(False), PythiaParameters = cms.PSet( pythiaUESettingsBlock, pythiaParameters = cms.vstring( 'MSTJ(22)=1 ! Decay all unstable particles', 'MSTP(95)=0 ! Disable colour reconnection, since it can put colour strings between widely separated partons', 'MSEL=0', 'MSUB(271)=1 ! Squark pair production', 'MSUB(272)=1', 'MSUB(273)=1', 'MSUB(274)=1', 'MSUB(275)=1', 'MSUB(276)=1', 'MSUB(277)=1', 'MSUB(278)=1', 'MSUB(279)=1', 'MSUB(280)=1', 'IMSS(1)=1 ! General MSSM simultaion', 'RMSS(2)=5000. ! M2 mass', 'RMSS(3)=5000. ! M3 mass', 'RMSS(4)=800. ! mu parameter', 'RMSS(5)=2. ! tan Beta', 'RMSS(6)=5000. ! Left slepton mass', 'RMSS(7)=5000. ! Right slepton mass', 'RMSS(10)=5000. ! Left squark mass for third generation', 'RMSS(11)=5000. ! Right sbottom mass', 'RMSS(12)=5000. ! Right stop mass', 'RMSS(13)=5000. ! Left stau mass', 'RMSS(14)=5000. ! Right stau mass', 'IMSS(52)=3 ! Turn on Lepton number violating LQD decay channels with all couplings set to zero', 'RVLAMP(2,1,1)=0.00001 ! Set lambda Prime(2,1,1)', 'MDME(2241,1)=0 ! Turn off LQD decays to neutrinos', 'MDME(2242,1)=0 ! Turn off LQD decays to neutrinos', 'RMSS(1)=500 ! M1 mass', 'RMSS(8)=1500 ! Left squark mass', 'RMSS(9)=1500 ! Right squark mass' ), parameterSets = cms.vstring('pythiaUESettings', 'pythiaParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
e64c699df93ca5619fa36bd10f267b0786259b19
b6b28e1588050597366907223bfcb71464d76734
/lr/minibatch_sgd/data_process/read_data.py
8f8d526e7b6cb9a6d1cef6757b7a8cac94cc8fb5
[ "MIT" ]
permissive
DiracSea/project-sxl
ea8af63643a2547493c32c83dc297180c072bd01
f458bec818d55f80a5eda461316a22d843fef753
refs/heads/master
2020-03-10T04:08:42.466142
2018-05-20T05:03:13
2018-05-20T05:03:13
129,184,316
0
0
null
null
null
null
UTF-8
Python
false
false
1,868
py
import numpy as np import random from .db import * from .tool.combine import first_stack from .tool.sperate import split_num #all array def read_rand_data(batchsize,table,db):#yield batch rand = conn_rand(db,table,'112.74.45.185',3306,'root','opal123456!@#')### counter = 0 size = 0 train_num, valid_num = split_num(batchsize) for row in rand.export(): if size%batchsize == 0: T = [];V = [];flag = 1;flag1 = 1 if row: row = np.array(row) counter += 1 size += 1 if size%batchsize != 0: if counter%batchsize < train_num: T,flag = first_stack(T,row,flag) else: V,flag1 = first_stack(V,row,flag1) else: yield T,V else: yield T,V def del_label(table,db): block = conn_block(db,table,'112.74.45.185',3306,'root','opal123456!@#')### for b in block.export(): a = np.array(b) yield a[:,1:] def read_single_block(blank,table,db): for block in del_label(table,db): if block!= np.array([]): batchsize = len(block) train_num, valid_num = split_num(batchsize) T = [];V = [];flag = 1;flag1 = 1 np.random.shuffle(block) counter = 0 for row in block: counter += 1 if counter%batchsize < train_num: T,flag = first_stack(T,row,flag) else: V,flag1 = first_stack(V,row,flag1) yield T,V#batch def read_all_block(table,db): for block in del_label(table,db): if block!= np.array([]): seed = int(random.random()*10) if(seed < 7): yield block,"train" else: yield block,"valid"
61b7547ed5510ee1d2ee0d78be17f4572f61d01e
1d717c797e93b451f7da7c810a0fb4075b1050d5
/src/preprocessors/naive_preprocessor.py
246a888db14a6870701bf64b6726d191337ee985
[]
no_license
jessie0624/nlp-task
32338b08051a3ea192db2bf74c9c969bdff1f6ad
aaeeed86341356d9fd061664f6f7bccf2ac353d0
refs/heads/master
2023-01-24T12:06:13.323646
2020-12-10T08:38:23
2020-12-10T08:38:23
292,151,135
0
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
''' @description: 最简单的预处理 ''' import pandas as pd from tqdm import tqdm from src.base import BasePreprocessor, units from src.preprocessors import apply_on_df_columns from src.tools.build_unit import build_vocab_unit, chain_transform tqdm.pandas() class NaivePreprocessor(BasePreprocessor): """Define Naive preprocessors""" def fit(self, data: pd.DataFrame, columns: list, verbose: int=1): func = chain_transform(self._default_units()) # 应用所有的是转换 data = apply_on_df_columns(data, columns, func, verbose=verbose) vocab_unit = build_vocab_unit(data, columns=columns, verbose=verbose) self._context['vocab_unit'] = vocab_unit return self def transform(self, data: pd.DataFrame, columns: list, verbose: int=1) -> pd.DataFrame: """ Apply transformation on data, create truncated length, representation. """ units_ = self._default_units() units_.append(self._context['vocab_unit']) units_.append( units.TruncatedLength(text_length=30, truncate_mode='post') ) func = chain_transform(units_) data = apply_on_df_columns(data, columns, func, verbose=verbose) for col in columns: data[col+'_len'] = data[col].apply(len) empty_id = data[data[col+'_len'] == 0].index.tolist() data.drop(index=empty_id, axis=0, inplace=True) data.dropna(axis=0, inplace=True) data.reset_index(drop=True, inplace=True) return data
0f88316bf11c35e936d8f86e044b31b12973dbe9
43f0c93802ef62c03388006cdae18c62de4d3295
/setup.py
524d362968902bc8a4e648bf8419ebe2c4b0c37a
[ "MIT" ]
permissive
pombredanne/qtstyles
e05f67f4d0f58284ae5b5c50909f23090f5bf278
de962879e36be305572b0c5fb5c4ddcfeda5afe0
refs/heads/master
2020-04-27T00:58:55.044676
2018-10-20T05:19:33
2018-10-20T05:19:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
from setuptools import setup, find_packages setup(name="qtstyles", version="0.0.2", install_requires=[ "QtPy>=1.4.1" ], description="A collection of Qt style sheets and helpful classes for applying them.", long_description=open("README.md").read(), # https://setuptools.readthedocs.io/en/latest/setuptools.html#including-data-files package_data={"qtstyles": ["style_sheets/*.qss"]}, # include style sheets author="Simon Garisch", author_email="[email protected]", url="https://github.com/simongarisch/qtstyles", packages=find_packages() )
cb448cc57982cd1d11cc353decfa6f00bac6d2d2
35e6605da2d105158d4ce3aa8230f650ba965651
/v7/meta_template/meta_template.py
b1eb9b573778b911af44b802b56501e7968fc974
[ "MIT", "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause", "LGPL-2.0-or-later", "LicenseRef-scancode-free-unknown", "GPL-1.0-or-later" ]
permissive
getnikola/plugins
8a24d00d9ca17ef075c49925d9945b059eeed849
9de663884ba5f15153d37e527ade6f55e42661a3
refs/heads/master
2023-08-29T23:38:25.184763
2023-08-06T12:58:33
2023-08-06T12:58:33
13,049,233
62
104
MIT
2023-08-06T12:55:44
2013-09-23T22:50:59
Python
UTF-8
Python
false
false
2,442
py
# -*- coding: utf-8 -*- # Copyright © 2016 Manuel Kaufmann # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import unicode_literals from docutils import nodes from docutils.parsers.rst import Directive, directives from nikola.plugin_categories import RestExtension class Plugin(RestExtension): name = "meta_template" def set_site(self, site): self.site = site MetaTemplate.site = site return super(Plugin, self).set_site(site) class MetaTemplate(Directive): """ Restructured text extension for inserting custom templates.""" option_spec = { 'title': directives.unchanged, 'href': directives.unchanged, 'url': directives.unchanged, 'target': directives.unchanged, 'src': directives.unchanged, 'style': directives.unchanged, } has_content = True required_arguments = 1 optional_arguments = 0 def __init__(self, *args, **kwargs): super(MetaTemplate, self).__init__(*args, **kwargs) def run(self): template_name = self.arguments[0] + '.tmpl' self.options.update({ 'content': self.content, }) output = self.site.template_system.render_template( template_name, None, self.options, ) return [nodes.raw('', output, format='html')] directives.register_directive('template', MetaTemplate)
dff2c4c6b24ea68093845fe8c8cc96b6c0b00eb6
4f7962d02254ab6e5cf692648c933394ff41c79d
/component_sdk/python/tests/google/bigquery/test__query.py
06d91a42747f7c24d3454014f3d87a395c35ebae
[ "Apache-2.0" ]
permissive
yebrahim/pipelines
5414131f5ab176aa7607114e3a0d23db73f5c8c8
77df6c2438f4cf6b81c97ecf4dac9fdbac0e3132
refs/heads/master
2020-04-08T13:23:50.628537
2019-03-01T18:35:47
2019-03-01T18:35:47
159,389,183
1
0
Apache-2.0
2018-11-27T19:37:57
2018-11-27T19:37:56
null
UTF-8
Python
false
false
2,545
py
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import unittest from google.cloud import bigquery from google.api_core import exceptions from kfp_component.google.bigquery import query CREATE_JOB_MODULE = 'kfp_component.google.bigquery._query' @mock.patch(CREATE_JOB_MODULE + '.display.display') @mock.patch(CREATE_JOB_MODULE + '.gcp_common.dump_file') @mock.patch(CREATE_JOB_MODULE + '.KfpExecutionContext') @mock.patch(CREATE_JOB_MODULE + '.bigquery.Client') class TestQuery(unittest.TestCase): def test_create_job_succeed(self, mock_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' mock_client().get_job.side_effect = exceptions.NotFound('not found') mock_response = { 'configuration': { 'query': { 'query': 'SELECT * FROM table_1' } } } mock_client().query.return_value.to_api_repr.return_value = mock_response mock_dataset = bigquery.DatasetReference('project-1', 'dataset-1') mock_client().dataset.return_value = mock_dataset result = query('SELECT * FROM table_1', 'project-1', 'dataset-1', output_gcs_path='gs://output/path') self.assertEqual(mock_response, result) expected_job_config = bigquery.QueryJobConfig() expected_job_config.create_disposition = bigquery.job.CreateDisposition.CREATE_IF_NEEDED expected_job_config.write_disposition = bigquery.job.WriteDisposition.WRITE_TRUNCATE expected_job_config.destination = mock_dataset.table('table_ctx1') mock_client().query.assert_called_with('SELECT * FROM table_1',mock.ANY, job_id = 'query_ctx1') actual_job_config = mock_client().query.call_args_list[0][0][1] self.assertDictEqual( expected_job_config.to_api_repr(), actual_job_config.to_api_repr() ) mock_client().extract_table.assert_called_with( mock_dataset.table('table_ctx1'), 'gs://output/path')
7ca9ac0a216728a647c1da58e0b311e1690ce6e1
922a4f63f71e8833ecb240387d675ddfddf13845
/PythonProgrammingAssignmentsII/Q20.py
042c6100010d3493d297cb3fed73f20a55511bfb
[]
no_license
asmitbhantana/Insight-Workshop
0ed9e6de49dc15f0447166227f404f108ffaad2e
54f9ce92fe47a01b08440d20aa850dfc97fa0423
refs/heads/master
2022-11-19T19:14:56.557014
2020-07-24T07:32:12
2020-07-24T07:32:12
275,709,809
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
""" 20. Write a Python class to find the three elements that sum to zero from a list of n real numbers. Input array : [-25, -10, -7, -3, 2, 4, 8, 10] Output : [[-10, 2, 8], [-7, -3, 10]] """ if __name__ == '__main__': usr_list = [-25, -10, -7, -3, 2, 4, 8, 10] required_result = 0 usr_list.sort() required_result_num_list = [] for i in range(len(usr_list)): if usr_list[i] >= required_result: break for j in range(i + 1, len(usr_list)): if usr_list[i]+usr_list[j] >= required_result: break for k in range(j + 1, len(usr_list)): c_sum = usr_list[i] + usr_list[j] + usr_list[k] if c_sum > required_result: break elif c_sum == required_result: required_result_num_list.append([usr_list[i], usr_list[j], usr_list[k]]) break print(required_result_num_list)
99cd86f3d8ff4704dcb4b37bf6424a04ccda5c61
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/4c0889e8fcee6c8be9fef33887480747c227725d-<cmd_build>-bug.py
435761d91c7ec686f1c2a16c517b74393ddf97ed
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,173
py
def cmd_build(self): result = dict(changed=False, actions=[]) if (not self.check_mode): for service in self.project.get_services(self.services, include_deps=False): if service.can_be_built(): self.log(('Building image for service %s' % service.name)) old_image_id = '' try: image = service.image() if (image and image.get('Id')): old_image_id = image['Id'] except NoSuchImageError: pass except Exception as exc: self.client.fail(('Error: service image lookup failed - %s' % str(exc))) try: new_image_id = service.build(pull=True, no_cache=self.nocache) except Exception as exc: self.client.fail(('Error: build failed with %s' % str(exc))) if (new_image_id not in old_image_id): result['changed'] = True result['actions'].append(dict(service=service.name, built_image=dict(name=service.image_name, id=new_image_id))) return result
b38b46fd26f5a49bcaa3e1b5de0b4f3f25a2e70a
d272b041f84bbd18fd65a48b42e0158ef6cceb20
/catch/datasets/gyrovirus_gyv7-sf.py
5cf9a7265da81fb03c45e238b7ce53b151c9e6c3
[ "MIT" ]
permissive
jahanshah/catch
bbffeadd4113251cc2b2ec9893e3d014608896ce
2fedca15f921116f580de8b2ae7ac9972932e59e
refs/heads/master
2023-02-19T13:30:13.677960
2021-01-26T03:41:10
2021-01-26T03:41:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
"""Dataset with 'Gyrovirus GyV7-SF' sequences. A dataset with 1 'Gyrovirus GyV7-SF' genomes. THIS PYTHON FILE WAS GENERATED BY A COMPUTER PROGRAM! DO NOT EDIT! """ import sys from catch.datasets import GenomesDatasetSingleChrom ds = GenomesDatasetSingleChrom(__name__, __file__, __spec__) ds.add_fasta_path("data/gyrovirus_gyv7-sf.fasta.gz", relative=True) sys.modules[__name__] = ds
72c1be6bcfb8580304d1dc0d10de7f18699c9b28
ec19603130dddeb4b8298ee020965030d66edc81
/src/networkService/servicos/informacao/informacaoQt.py
19fd21829654effa14a3be1fdce01111d7712a16
[]
no_license
tassio/NetworkService
9a5f08c0e3b92cbe34fc99c36e80f57fcbd258f0
f800d48d8af94bf8d927fd440eab7a1c40296066
refs/heads/master
2016-09-09T23:33:14.584056
2012-12-13T15:06:24
2012-12-13T15:06:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,885
py
#-*- coding: utf-8 -*- from PyQt4.QtNetwork import QNetworkCacheMetaData, QHostAddress from PyQt4.QtGui import QColor, QBrush, QCursor, QFont, QIcon, QImage, QKeySequence, QListWidgetItem, QMatrix, \ QPainterPath, QPen, QPicture, QPixmap, QPolygon, QPolygonF, QQuaternion, QRegion, QSizePolicy, QStandardItem, \ QTableWidgetItem, QTextLength, QTextFormat, QTransform, QTreeWidgetItem, QVector2D, QVector3D, QVector4D from PyQt4.QtCore import QUuid, QUrl, QSize, QSizeF, QRegExp, QRectF, QRect, QPoint, QPointF, QLocale, QLine, \ QLineF, QDateTime, QTime, QDate, QByteArray, QBitArray from networkService.servicos.informacao.informacao import InformacaoAbstrata from networkService.servicos.informacao.dataManipulador import DataManipulador from networkService.servicos.informacao.registroInformacao import RegistroInformacao @RegistroInformacao.addInformacaoHandler( QColor, QNetworkCacheMetaData, QBrush, QHostAddress, QCursor, QFont, QIcon, QImage, QKeySequence, QListWidgetItem, QMatrix, QPainterPath, QPen, QPicture, QPixmap, QPolygonF, QPolygon, QQuaternion, QRegion, QSizePolicy, QStandardItem, QTableWidgetItem, QTextLength, QTextFormat, QTransform, QTreeWidgetItem, QVector2D, QVector3D, QVector4D, QUuid, QUrl, QSizeF, QSize, QRegExp, QRectF, QRect, QPointF, QPoint, QLocale, QLineF, QLine, QDateTime, QTime, QDate, QByteArray, QBitArray ) class QInformacao(InformacaoAbstrata): """Classe que guarda qualquer classe do Qt que possa ser serializada e tenha um construtor sem parametros""" def __lshift__(self, data): nomeClasse = DataManipulador(data).getNextInstance() self.valor = eval(nomeClasse)() data >> self.valor def __rshift__(self, data): DataManipulador(data).addInstance(self.valor.__class__.__name__) data << self.valor
129863d00cccb8a19b5adbe2d12eaf8deed86c74
bebe65ae5ea5d15eca9a388ddf86ca5b352762a6
/bin/bubbles
5b12642f3e732cd6140f54e107df357d82c1eebb
[ "MIT", "LicenseRef-scancode-saas-mit" ]
permissive
biswapanda/bubbles
f65aa11b129cf272be1205ef1fd8f885b215216d
6c6bd7b378e53bc0edcbbb35c2211922e1cb2100
refs/heads/master
2021-01-17T19:16:58.100977
2013-12-08T21:31:21
2013-12-08T21:31:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,839
#! /usr/bin/env python3 # """ Bubbles command line tool For more information run: bubbles --help Paths: * /etc/bubbles:~/.bubbles:.bubbles Config: * config.ini Author: Stefan Urbanek <[email protected]> """ import argparse import json import sys import configparser import os.path import argparse import re from bubbles import * class ToolError(Exception): """Just exception""" pass CONFIG_PATHS = ['/etc/bubbles', \ '~/.bubbles', \ './bubbles'] def load_config(args): paths = CONFIG_PATHS + (args.config if args.config else []) config = configparser.SafeConfigParser() for path in paths: config_file = os.path.join(path, "config.ini") if os.path.exists(config_file): config.read(config_file) if config.has_section("extensions"): extensions = config.options("extensions") for extension in extensions: mod_name = config.get("extensions", extension) import_extension(extension, mod_name) def import_extension(extension_name, module_name=None): """Imports a bubbles tool extension from module `module_name`. Note: extension name is not used yet module_name is specified. Might be used in the future to allow different modules replace extensions with same name. """ # FIXME: this is from brewery tool module = __import__(module_name or extension_name) def create_context(args): if args.empty: context = OperationContext() else: context = default_context # Dummy request for an operation - forces automatic loading context.operation_list("distinct") modules = args.module or [] for name in modules: module = __import__(name) context.add_operations_from(mod) return context def opcatalogue(context, args): """Print all operations in the context.""" keys = list(context.operations.keys()) keys.sort() reps = set(args.representation) selection = [] # Select only operations with signatures matching reps for opname in keys: ops = context.operations[opname] for op in ops: if not reps or reps and (reps & set(op.signature.signature)): selection.append(opname) for opname in selection: print("%s" % opname) if args.signatures: ops = context.operations[opname] for op in ops: if not reps or reps and (reps & set(op.signature.signature)): sig = ", ".join(op.signature.signature) print(" (%s)" % sig) def run_pipe(args): # Collect operations pattern = re.compile(r"^(\w+)=(.*)") templates = [] attribs = {} current = None # Cllect nodes and attributes # # node name pattern: node_name # attribute pattern: attribute=value # for arg in args.node: match = pattern.match(arg) if match: (attribute, value) = match.groups() attribs[attribute] = value else: if current: templates.append( (current, attribs) ) attribs = {} current = arg if current: templates.append( (current, attribs) ) pipe = Pipeline() nodes = [] for template, attribs in templates: try: node = brewery.nodes.create_node(template) except KeyError: sys.stderr.write("ERROR: unknown node %s\n" % template) exit(1) node.configure(attribs) stream.add(node) nodes.append(node) if last_node: stream.connect(last_node, node) last_node = node # If first node is not source node, then we add CSV node with standard # input if not isinstance(nodes[0], brewery.nodes.SourceNode): node = brewery.nodes.create_node("csv_source") node.resource = sys.stdin stream.add(node) stream.connect(node, nodes[0]) if not isinstance(nodes[-1], brewery.nodes.TargetNode): node = brewery.nodes.create_node("csv_target") node.resource = sys.stdout stream.add(node) stream.connect(nodes[-1], node) stream.run() ################################################################################ # Main code main_parser = argparse.ArgumentParser(description='Bubbles command lite tool') main_parser.add_argument('--config', action='append', help='bubbles configuration file') main_parser.add_argument('-m', '--module', action='append', help='list of python modules to be loaded and inspected ' 'for potential operations') main_parser.add_argument('--empty', action='store_true', help='start with empty context (requires -m)') subparsers = main_parser.add_subparsers(title='commands', help='additional help') ################################################################################ # Command: operation catalogue op_parser = subparsers.add_parser('op') op_subparsers = op_parser.add_subparsers(title='operation commands') subparser = op_subparsers.add_parser("list", help = "list available operations") subparser.add_argument('-r', '--representation', action='append', help="show operations having specified rep in signature") subparser.add_argument('--signatures', action='store_true', help="show also operation signatures") subparser.set_defaults(func=opcatalogue) ################################################################################ # Command: pipe subparser = subparsers.add_parser('pipe', help="create a simple Brewery node pipe", formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ There should be at least one operation specified. The arguments are either operations or operation arguments. Attributes follow node name and have format: attribute=value If there is no source node, then CSV source on standard input is assumed. If there is no target node, then CSV target on standard output is assumed. ''') ) subparser.add_argument('op', nargs="+", help='list of operations') subparser.set_defaults(func=run_pipe) # args = main_parser.parse_args(sys.argv[1:]) context = create_context(args) load_config(args) if "func" in args: try: args.func(context, args) except ToolError as e: sys.stderr.write("Error: %s" % str(e)) exit(1) else: main_parser.print_help()
bc370ab02f4412d3115dff750ed79fd6ada8e58e
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_w_M_to_W_focus_Zok_div/ch096/wiColorJ/Add2Loss/Sob_k25_s001_EroM_Mae_s001/pyr_Tcrop255_p20_j15/pyr_4s/L8/step10_a.py
6e74bc48fa90b826fdfd8e45ba9c7b2b91a824a4
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
270,666
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_4side_L8 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_I_gt_W_ch_norm_v2 use_loss_obj = [mae_s001_sobel_k25_s001_EroseM_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k25_s001_EroseM_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k25_s001_EroseM_loss_info_builder.set_loss_target("UNet_Wx").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_1__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_1__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# # "1" 3 6 10 15 21 28 36 45 55 # side1 OK 1 ch032_limit_1side_1__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_1__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_1__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # side2 OK 4 ch032_limit_1side_2__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_2__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_2__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_2__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_2__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_2__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_2__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_2__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_2__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_2__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_2__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_2__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 ch032_limit_1side_3__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_3__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_3__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 ch032_limit_1side_4__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_4__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_4__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 ch032_limit_1side_5__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_5__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_5__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 ch032_limit_1side_6__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_6__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_6__2side_6__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 ch032_limit_1side_7__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_6__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_7__2side_7__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_7__2side_7__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 21 28 "36" 45 55 # side8 OK 120 ch032_limit_1side_8__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_6__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_7__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_7__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_8__2side_8__3side_8_4side_8 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_8, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_8__2side_8__3side_8_4side_8.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 21 28 36 "45" 55 # side9 OK 165 ch032_limit_1side_9__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_1__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_2__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_2__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_2__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_2__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_2__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_2__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_3__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_4__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_5__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_6__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_7__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_7__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_8 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_8, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_8.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_1_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_2_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_2_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_2_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_2_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_3_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_4_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_5_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_6_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_7_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_8__3side_8_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_8__3side_8_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_8_4side_8 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_8, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_8_4side_8.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_8 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_8, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_8.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_limit_1side_9__2side_9__3side_9_4side_9 = Exp_builder().set_basic("train", use_db_obj, ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_9, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_limit_pyramid_1side_9__2side_9__3side_9_4side_9.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_limit_1side_1__2side_1__3side_1_4side_1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
5a1ad840edc1d0ca68d0087d4ec58a1799c74647
6843258fe430c67ffa01e909d1650df390369d93
/errata_tool/__init__.py
d0efa742971710c04b6bc0d10dfd7c1f99727682
[ "MIT" ]
permissive
ralphbean/errata-tool
86df0c5a5bdd65d62e01653f003ac2ecf3e2f092
d7f999a34ef2780e5218b071a4cd99b35b8702de
refs/heads/master
2021-05-15T05:34:04.761851
2017-11-18T03:59:38
2017-12-14T21:19:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
from .exception import ErrataException from .connector import ErrataConnector from .erratum import Erratum __all__ = ['ErrataException', 'ErrataConnector', 'Erratum'] __version__ = '1.9.0'
735cbb7dfb9b821b50fe2b7be81fe9770ca3d8d1
ef16d4d796588cbf0d5cb0f84727812e7866f92e
/myvenv/bin/symilar
e547e7e0d4da4224aa8441aff9d3b4c6c945a143
[]
no_license
shortnd/django_blog
5b24f4c40cd79181a946de6f7edecc9490279839
aaa8c92e3281924b2e2ece54338899c0879ee7b2
refs/heads/master
2020-05-03T17:19:54.363860
2019-03-31T21:04:23
2019-03-31T21:04:23
178,742,082
0
0
null
null
null
null
UTF-8
Python
false
false
261
#!/Users/kortr/code/python/djangogirls/myvenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pylint import run_symilar if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_symilar())
066a1c5df73dd3d29347781664c88fc58a2ca994
019c78e21f861b6a56800877082a9c155dd8fb5f
/niveau-02/chapitre-4-fonctions/02-deux-codes-secrets-obligatoire.py
f63d0032b5d7f7e7b581e0a0a96d1af4008a9cd2
[]
no_license
donnerc/oci-prog-exos
0c0bd50a93896826251e343baa9836e6d09fc9fd
de5da49fb8a3df56ef12c4f9ea284d476e999434
refs/heads/master
2021-01-23T13:16:59.304820
2015-01-13T15:57:22
2015-01-13T15:57:22
13,173,560
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
################################## # fichier 02-deux-codes-secrets-obligatoire.py # nom de l'exercice : Deux codes secrets # url : http://www.france-ioi.org/algo/task.php?idChapter=509&idTask=0&sTab=task&iOrder=3 # type : obligatoire # # Chapitre : chapitre-4-fonctions # # Compétence développée : # # auteur : ################################## # chargement des modules # mettre votre code ici
a538af6a464fa56591c72692d25ab74aa2ef4463
7857b4f02001c3e0ac0317fa501a4bacc8ea335b
/logic_tutorial.py
20c0ea7cc1dc5ceb8e4405692f0ade77a4859382
[ "MIT" ]
permissive
twtrubiks/leetcode-python
65a2035fe2c9e4a65b09f5d65df7b24be385d6fc
e46b32f6de4c0711ef44b7f2a482dc59657aa5e5
refs/heads/master
2022-01-12T01:34:50.628413
2022-01-10T06:30:21
2022-01-10T06:30:21
55,111,802
25
18
null
null
null
null
UTF-8
Python
false
false
759
py
def trunk_1(arr_1, size_1): result_1 = [] while arr: pop_data = [arr_1.pop(0) for _ in range(size_1)] result_1.append(pop_data) return result_1 def trunk_2(arr_2, size_2): arrs = [] while len(arr_2) > size_2: pice = arr_2[:size_2] arrs.append(pice) arr_2 = arr_2[size:] arrs.append(arr_2) return arrs def trunk_3(arr, size): result = [] count = 0 while count < len(arr): result.append(arr[count:count+size]) count += size return result if __name__ == "__main__": ''' arr = [1, 2, 3, 4, 5, 6] size = 2 result = [[1, 2], [3, 4], [5, 6]] ''' arr = [1, 2, 3, 4, 5, 6] size = 2 result = trunk_1(arr, size) print(result)
8a3de5ed32f6755687dc77858aa6898715c57094
4cca59f941adce8a2d71c00c0be5c06857f88dcc
/snisi_epidemiology/migrations/0002_auto_20141008_1439.py
4dd9a51d66cf927b3667f0698d7d55c83299de1f
[ "MIT" ]
permissive
brahimmade/snisi
7e4ce8e35150f601dd7b800bc422edec2d13063d
b4d0292b3314023ec9c984b776eaa63a0a0a266f
refs/heads/master
2023-05-07T19:04:04.895987
2017-12-29T18:58:22
2017-12-29T18:58:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,137
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('snisi_epidemiology', '0001_initial'), ] operations = [ migrations.AlterField( model_name='aggepidemiologyr', name='acute_flaccid_paralysis_case', field=models.IntegerField(verbose_name='Suspected AFP cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='acute_flaccid_paralysis_death', field=models.IntegerField(verbose_name='Suspected AFP death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='acute_measles_diarrhea_case', field=models.IntegerField(verbose_name='Suspected Acute Measles Diarrhea cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='acute_measles_diarrhea_death', field=models.IntegerField(verbose_name='Suspected Acute Measles Diarrhea death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='cholera_case', field=models.IntegerField(verbose_name='Suspected Cholera cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='cholera_death', field=models.IntegerField(verbose_name='Suspected Cholera death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='ebola_case', field=models.IntegerField(verbose_name='Suspected Ebola cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='ebola_death', field=models.IntegerField(verbose_name='Suspected Ebola death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='influenza_a_h1n1_case', field=models.IntegerField(verbose_name='Suspected Influenza A H1N1 cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='influenza_a_h1n1_death', field=models.IntegerField(verbose_name='Suspected Influenza A H1N1 death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='measles_case', field=models.IntegerField(verbose_name='Suspected Measles cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='measles_death', field=models.IntegerField(verbose_name='Suspected Measles death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='meningitis_case', field=models.IntegerField(verbose_name='Suspected Meningitis cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='meningitis_death', field=models.IntegerField(verbose_name='Suspected Meningitis death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='neonatal_tetanus_case', field=models.IntegerField(verbose_name='Suspected NNT cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='neonatal_tetanus_death', field=models.IntegerField(verbose_name='Suspected NNT death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='other_notifiable_disease_case', field=models.IntegerField(verbose_name='Suspected Other Notifiable Diseases cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='other_notifiable_disease_death', field=models.IntegerField(verbose_name='Suspected Other Notifiable Diseases death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='rabies_case', field=models.IntegerField(verbose_name='Suspected Rabies cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='rabies_death', field=models.IntegerField(verbose_name='Suspected Rabies death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='red_diarrhea_case', field=models.IntegerField(verbose_name='Suspected Red Diarrhea cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='red_diarrhea_death', field=models.IntegerField(verbose_name='Suspected Red Diarrhea death'), ), migrations.AlterField( model_name='aggepidemiologyr', name='yellow_fever_case', field=models.IntegerField(verbose_name='Suspected Yellow Fever cases'), ), migrations.AlterField( model_name='aggepidemiologyr', name='yellow_fever_death', field=models.IntegerField(verbose_name='Suspected Yellow Fever death'), ), migrations.AlterField( model_name='epidemiologyr', name='acute_flaccid_paralysis_case', field=models.IntegerField(verbose_name='Suspected AFP cases'), ), migrations.AlterField( model_name='epidemiologyr', name='acute_flaccid_paralysis_death', field=models.IntegerField(verbose_name='Suspected AFP death'), ), migrations.AlterField( model_name='epidemiologyr', name='acute_measles_diarrhea_case', field=models.IntegerField(verbose_name='Suspected Acute Measles Diarrhea cases'), ), migrations.AlterField( model_name='epidemiologyr', name='acute_measles_diarrhea_death', field=models.IntegerField(verbose_name='Suspected Acute Measles Diarrhea death'), ), migrations.AlterField( model_name='epidemiologyr', name='cholera_case', field=models.IntegerField(verbose_name='Suspected Cholera cases'), ), migrations.AlterField( model_name='epidemiologyr', name='cholera_death', field=models.IntegerField(verbose_name='Suspected Cholera death'), ), migrations.AlterField( model_name='epidemiologyr', name='ebola_case', field=models.IntegerField(verbose_name='Suspected Ebola cases'), ), migrations.AlterField( model_name='epidemiologyr', name='ebola_death', field=models.IntegerField(verbose_name='Suspected Ebola death'), ), migrations.AlterField( model_name='epidemiologyr', name='influenza_a_h1n1_case', field=models.IntegerField(verbose_name='Suspected Influenza A H1N1 cases'), ), migrations.AlterField( model_name='epidemiologyr', name='influenza_a_h1n1_death', field=models.IntegerField(verbose_name='Suspected Influenza A H1N1 death'), ), migrations.AlterField( model_name='epidemiologyr', name='measles_case', field=models.IntegerField(verbose_name='Suspected Measles cases'), ), migrations.AlterField( model_name='epidemiologyr', name='measles_death', field=models.IntegerField(verbose_name='Suspected Measles death'), ), migrations.AlterField( model_name='epidemiologyr', name='meningitis_case', field=models.IntegerField(verbose_name='Suspected Meningitis cases'), ), migrations.AlterField( model_name='epidemiologyr', name='meningitis_death', field=models.IntegerField(verbose_name='Suspected Meningitis death'), ), migrations.AlterField( model_name='epidemiologyr', name='neonatal_tetanus_case', field=models.IntegerField(verbose_name='Suspected NNT cases'), ), migrations.AlterField( model_name='epidemiologyr', name='neonatal_tetanus_death', field=models.IntegerField(verbose_name='Suspected NNT death'), ), migrations.AlterField( model_name='epidemiologyr', name='other_notifiable_disease_case', field=models.IntegerField(verbose_name='Suspected Other Notifiable Diseases cases'), ), migrations.AlterField( model_name='epidemiologyr', name='other_notifiable_disease_death', field=models.IntegerField(verbose_name='Suspected Other Notifiable Diseases death'), ), migrations.AlterField( model_name='epidemiologyr', name='rabies_case', field=models.IntegerField(verbose_name='Suspected Rabies cases'), ), migrations.AlterField( model_name='epidemiologyr', name='rabies_death', field=models.IntegerField(verbose_name='Suspected Rabies death'), ), migrations.AlterField( model_name='epidemiologyr', name='red_diarrhea_case', field=models.IntegerField(verbose_name='Suspected Red Diarrhea cases'), ), migrations.AlterField( model_name='epidemiologyr', name='red_diarrhea_death', field=models.IntegerField(verbose_name='Suspected Red Diarrhea death'), ), migrations.AlterField( model_name='epidemiologyr', name='yellow_fever_case', field=models.IntegerField(verbose_name='Suspected Yellow Fever cases'), ), migrations.AlterField( model_name='epidemiologyr', name='yellow_fever_death', field=models.IntegerField(verbose_name='Suspected Yellow Fever death'), ), ]
af30001153143516bb60447c5a6baee10e8ce452
8d3713030d02e34eb37b149d0bc2a8fd25fec7f7
/problem111.py
d028894946ae341863fed4e2ca6ad0ba8893cf7f
[]
no_license
GlenHaber/euler
cd3a34550a0c6189a17fbc26991393ee6a4ab8d6
cb3259f375c1f21af7daf79ab19532518765bbc8
refs/heads/master
2021-01-19T13:06:52.579227
2017-06-09T21:07:33
2017-06-09T21:07:33
100,825,188
0
0
null
null
null
null
UTF-8
Python
false
false
3,010
py
""" Primes with runs Considering 4-digit primes containing repeated digits it is clear that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by 22, and so on. But there are nine 4-digit primes containing three ones: 1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111 We shall say that M(n, d) represents the maximum number of repeated digits for an n-digit prime where d is the repeated digit, N(n, d) represents the number of such primes, and S(n, d) represents the sum of these primes. So M(4, 1) = 3 is the maximum number of repeated digits for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for d = 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4, 0) = 13 such cases. In the same way we obtain the following results for 4-digit primes. d M(4, d) N(4, d) S(4, d) 0 2 13 67061 1 3 9 22275 2 3 1 2221 3 3 12 46214 4 3 2 8888 5 3 1 5557 6 3 1 6661 7 3 9 57863 8 3 1 8887 9 3 7 48073 For d = 0 to 9, the sum of all S(4, d) is 273700. Find the sum of all S(10, d). """ from common import is_prime, miller_rabin_test # Brute force the case in the example to make sure I get it def n_digit_primes(n): for i in range(10 ** (n - 1), 10 ** n): if is_prime(i): yield i def M(n, d): return max(str(num).count(str(d)) for num in n_digit_primes(n)) def N(n, d): nums = list(n_digit_primes(n)) M = max(str(num).count(str(d)) for num in nums) return len([n for n in nums if str(n).count(str(d)) == M]) def S(n, d, nums=None): if nums is None: nums = list(n_digit_primes(n)) M = max(str(num).count(str(d)) for num in nums) return sum([n for n in nums if str(n).count(str(d)) == M]) assert sum(S(4, d) for d in range(10)) == 273700 number = [0] * 10 # Shamelessly taken from mathblog.dk def recurse(basedigit, startpos, level, fill=False): global number if level <= 0: if number[0] == 0: return 0 n = sum(10 ** i * x for i, x in enumerate(number[::-1])) return n if miller_rabin_test(n) else 0 res = 0 if fill: for pos in range(len(number)): number[pos] = basedigit for pos in range(startpos, len(number)): for val in range(10): number[pos] = val res += recurse(basedigit, pos + 1, level - 1) number[pos] = basedigit return res total = 0 for d in range(10): for i in range(1, len(number)): res = recurse(d, 0, i, True) if res: total += res break print('Answer:', total) # primes = list(n_digit_primes(10)) # print(len(primes), 'primes generated') # print('Answer:', sum(S(10, d, primes) for d in range(10)))
cbb1fc6301940401b020a676152a2dd636acf9ef
5dd47abf7061201d9378e73e51f08fbb314ba2fd
/envdsys/envcontacts/migrations/0074_auto_20210227_1830.py
129e1c19b1364390a394fc2a8aa7265a96484ea8
[ "Unlicense" ]
permissive
NOAA-PMEL/envDataSystem
4d264ae5209015e4faee648f37608d68a4461d0a
4db4a3569d2329658799a3eef06ce36dd5c0597d
refs/heads/master
2023-02-23T22:33:14.334737
2021-07-22T01:09:16
2021-07-22T01:09:16
191,809,007
1
0
Unlicense
2023-02-08T00:45:54
2019-06-13T17:50:03
Python
UTF-8
Python
false
false
1,175
py
# Generated by Django 3.1.7 on 2021-02-27 18:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('envcontacts', '0073_auto_20210227_1819'), ] operations = [ migrations.AlterField( model_name='person', name='email1_type', field=models.CharField(choices=[('W', 'Work'), ('H', 'Home'), ('O', 'Other')], default='W', max_length=1), ), migrations.AlterField( model_name='person', name='email2_type', field=models.CharField(choices=[('W', 'Work'), ('H', 'Home'), ('O', 'Other')], default='W', max_length=1), ), migrations.AlterField( model_name='person', name='phone1_type', field=models.CharField(choices=[('M', 'Mobile'), ('W', 'Work'), ('H', 'Home'), ('O', 'Other')], default='M', max_length=1), ), migrations.AlterField( model_name='person', name='phone2_type', field=models.CharField(choices=[('M', 'Mobile'), ('W', 'Work'), ('H', 'Home'), ('O', 'Other')], default='M', max_length=1), ), ]
f03af2a7915d3835033777ee323af7c7ddf60627
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03049/s862641058.py
d26e8c01dc0350e1428c4fbcbbbc4791d8acc382
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
n,*s=open(0).read().split() a=0;b=0;ba=0;ans=0 for s_i in s: b+=(s_i[0]=='B')*(not s_i[-1]=='A') a+=(not s_i[0]=='B')*(s_i[-1]=='A') ba+=(s_i[0]=='B')*(s_i[-1]=='A') ans+=s_i.count('AB') print(ans+ba+min(a,b)-(ba>0)*(a+b==0))
ccadf51ea06ea13387ab2c4085caaed98e426aaf
525f5ba86e1476d5f0dc396e225d544beb43cd3b
/nomenklatura/query/builder.py
65e44f59be0c769551f83140ad62fed9b1e909cb
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
he0x/nomenklatura
bb47cd9103b03893832b4bda4bd69cba80473976
b2e0a989de7aa4a08a63e22982c4904b255dc04a
refs/heads/master
2021-01-15T08:18:29.257815
2015-03-28T20:15:52
2015-03-28T20:15:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,177
py
from sqlalchemy.orm import aliased from nomenklatura.core import db, url_for from nomenklatura.schema import attributes from nomenklatura.model.statement import Statement from nomenklatura.model.context import Context # from nomenklatura.model.type import Type class QueryBuilder(object): def __init__(self, dataset, parent, node): self.dataset = dataset self.parent = parent self.node = node self.results = {} @property def children(self): if not hasattr(self, '_children'): self._children = [] for child_node in self.node.children: qb = QueryBuilder(self.dataset, self, child_node) self._children.append(qb) return self._children def _add_statement(self, q): """ Generate a linked statement that can be used in any part of the query. """ stmt = aliased(Statement) ctx = aliased(Context) q = q.filter(stmt.context_id == ctx.id) q = q.filter(stmt.dataset_id == self.dataset.id) q = q.filter(ctx.active == True) # noqa return stmt, q def filter_value(self, q, stmt): q = q.filter(stmt._value == self.node.value) return q def filter(self, q, stmt): """ Apply filters to the given query recursively. """ if not self.node.filtered: return q filter_stmt, q = self._add_statement(q) q = q.filter(stmt.subject == filter_stmt.subject) if self.node.attribute: q = q.filter(stmt._attribute == self.node.attribute.name) if self.node.leaf: return self.filter_value(q, filter_stmt) for child in self.children: q = child.filter(q, stmt) return q def filter_query(self, parents=None): """ An inner query that is used to apply any filters, limits and offset. """ q = db.session.query() stmt, q = self._add_statement(q) q = q.add_column(stmt.subject) if parents is not None and self.node.attribute: parent_stmt, q = self._add_statement(q) q = q.filter(stmt.subject == parent_stmt._value) q = q.filter(parent_stmt._attribute == self.node.attribute.name) q = q.filter(parent_stmt.subject.in_(parents)) q = self.filter(q, stmt) q = q.group_by(stmt.subject) q = q.order_by(stmt.subject.asc()) if self.node.root: q = q.limit(self.node.limit) q = q.offset(self.node.offset) return q def nested(self): """ A list of all sub-entities for which separate queries will be conducted. """ for child in self.children: if child.node.leaf or not child.node.attribute: continue if child.node.attribute.data_type == 'entity': yield child def project(self): """ Figure out which attributes should be returned for the current level of the query. """ attrs = set() for child in self.children: if child.node.blank and child.node.leaf: attrs.update(child.node.attributes) attrs = attrs if len(attrs) else attributes skip_nested = [n.node.attribute for n in self.nested()] return [a.name for a in attrs if a not in skip_nested] def base_object(self, data): """ Make sure to return all the existing filter fields for query results. """ obj = { 'id': data.get('id'), 'api_url': url_for('entities.view', dataset=self.dataset.slug, id=data.get('id')), 'parent_id': data.get('parent_id') } for child in self.children: if child.node.leaf and child.node.filtered: obj[child.node.name] = child.node.raw return obj return obj def get_node(self, name): """ Get the node for a given name. """ for child in self.children: if child.node.name == name: return child.node return None if name == '*' else self.get_node('*') def data_query(self, parents=None): """ Generate a query for any statement which matches the criteria specified through the filter query. """ filter_q = self.filter_query(parents=parents) q = db.session.query() stmt, q = self._add_statement(q) filter_sq = filter_q.subquery() q = q.filter(stmt.subject == filter_sq.c.subject) q = q.filter(stmt._attribute.in_(self.project())) q = q.add_column(stmt.subject.label('id')) q = q.add_column(stmt._attribute.label('attribute')) q = q.add_column(stmt._value.label('value')) if parents is not None and self.node.attribute: parent_stmt, q = self._add_statement(q) q = q.filter(stmt.subject == parent_stmt._value) q = q.filter(parent_stmt._attribute == self.node.attribute.name) q = q.add_column(parent_stmt.subject.label('parent_id')) q = q.order_by(filter_sq.c.subject.desc()) q = q.order_by(stmt.created_at.asc()) return q def execute(self, parents=None): """ Run the data query and construct entities from it's results. """ results = {} for row in self.data_query(parents=parents): data = row._asdict() id = data.get('id') if id not in results: results[id] = self.base_object(data) value = data.get('value') attr = attributes[data.get('attribute')] if attr.data_type not in ['type', 'entity']: conv = attr.converter(self.dataset, attr) value = conv.deserialize_safe(value) node = self.get_node(data.get('attribute')) if attr.many if node is None else node.many: if attr.name not in results[id]: results[id][attr.name] = [] results[id][attr.name].append(value) else: results[id][attr.name] = value return results def collect(self, parents=None): """ Given re-constructed entities, conduct queries for child entities and merge them into the current level's object graph. """ results = self.execute(parents=parents) ids = results.keys() for child in self.nested(): attr = child.node.attribute.name for child_data in child.collect(parents=ids).values(): parent_id = child_data.pop('parent_id') if child.node.many: if attr not in results[parent_id]: results[parent_id][attr] = [] results[parent_id][attr].append(child_data) else: results[parent_id][attr] = child_data return results def query(self): results = [] for result in self.collect().values(): result.pop('parent_id') if not self.node.many: return result results.append(result) return results
8358602e69b3372bacd7a45ddadd7849c1ccf792
650b3dd4cc74f32db78f7d99cef9907aec78a222
/dialogs/Report/fPettyCashReport_data.py
d224b848def8260b8a4ae4863468aef52b0886ab
[]
no_license
mech4/PKTrx
29b871ab587434e7c208175c248f48d9b6c80a17
cf01bc5be8837d632974786d2419c58b94a0381d
refs/heads/master
2020-03-29T19:55:07.331831
2012-09-18T20:22:52
2012-09-18T20:22:52
6,289,691
0
1
null
null
null
null
UTF-8
Python
false
false
228
py
import sys def CetakData(config,parameters,returns): ret = returns.CreateValues( ['IsErr', 0], ['ErrMessage',''] ) try: except: ret.IsErr = 1 ret.ErrMessage = str(sys.exc_info()[1])
e82dcd7e2c42de6224abe59e0b0800eb2ca85e3e
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-roma/huaweicloudsdkroma/v2/model/export_asset_response.py
105871097c009b0aa7c5f4c4354c87308f05e410
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,344
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ExportAssetResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'job_id': 'str' } attribute_map = { 'job_id': 'job_id' } def __init__(self, job_id=None): """ExportAssetResponse The model defined in huaweicloud sdk :param job_id: 资产导出作业的ID,可用于查询作业进度,获取导出作业进度 :type job_id: str """ super(ExportAssetResponse, self).__init__() self._job_id = None self.discriminator = None if job_id is not None: self.job_id = job_id @property def job_id(self): """Gets the job_id of this ExportAssetResponse. 资产导出作业的ID,可用于查询作业进度,获取导出作业进度 :return: The job_id of this ExportAssetResponse. :rtype: str """ return self._job_id @job_id.setter def job_id(self, job_id): """Sets the job_id of this ExportAssetResponse. 资产导出作业的ID,可用于查询作业进度,获取导出作业进度 :param job_id: The job_id of this ExportAssetResponse. :type job_id: str """ self._job_id = job_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExportAssetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
4ec02b40b4eaef9cd000b9f4fed6b0c691c3f47d
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_21454.py
45e7d2122ab9b2a6b0f3906d21dcb18297aff031
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
# Updating collections from collections db.Coll2.find().forEach(function(c2){ db.Coll1.update({isbn:c2.isbn},{$set: {category:c2.category}},{multi:true}) });
151f8401dd23cc073bf7bb3fbb5cbf94fb035bc6
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_greyhounds.py
b30dc2d9386d20b4a85bd14ebe73422e2417bc96
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
from xai.brain.wordbase.nouns._greyhound import _GREYHOUND #calss header class _GREYHOUNDS(_GREYHOUND, ): def __init__(self,): _GREYHOUND.__init__(self) self.name = "GREYHOUNDS" self.specie = 'nouns' self.basic = "greyhound" self.jsondata = {}
dfabfbb7eef76a04289682868648631a818c208c
198ac210d70c865367fb73fb3c8f99b06cdd91d0
/tests/integration/steam_simulator.py
82382ec24aaef6653b83a506c43439f19fc0d0c8
[ "BSD-3-Clause" ]
permissive
gutomaia/steamer-py
0f2bc6a81bfab6986470b03b370ccf53941432ff
7175fb1d79fe6ffc0c31b3e74f62805629e457b2
refs/heads/master
2021-01-10T19:30:50.429652
2013-04-29T13:38:30
2013-04-29T13:38:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
870
py
import threading from time import sleep import web import requests urls = ( '/id/(\w+)/stats/(\w+)', 'game_page' ) class game_page(object): def GET(self, user, game): f = open('fixtures/%s-%s.xml' % (user, game)) xml = f.read() f.close() web.header('Content-Length', len(xml)) return xml class SteamSimulator(threading.Thread): def __init__(self): super(SteamSimulator, self).__init__() self._stop = threading.Event() def run(self): self.app = web.application(urls, globals()) web.config.default_port = 8080 self.app.internalerror = web.debugerror self.app.run() def stop(self): self.app.stop() self._stop.set() def stopped(self): return self._stop.isSet() if __name__ == "__main__": sim = SteamSimulator() sim.run()
6d72629e2166ef7142a7423e4d47ebcc5b93f571
869b8c7a526ebfbe6b55832ce9f081cd0218a4f5
/onconet/models/spatial_transformers/factory.py
0ad65b9657f472eb0d7eaebe27c8ff71d8b3ee59
[ "MIT" ]
permissive
yala/Mirai
54d1ab1496d35c05553cfe1c255e7c3012462ce4
12bace8fd6ce9c5bb129fd0d30a46a00a2f7b054
refs/heads/master
2023-04-29T11:12:28.853712
2023-02-24T21:28:20
2023-02-24T21:28:20
315,745,008
66
23
MIT
2022-02-07T20:49:05
2020-11-24T20:29:22
Python
UTF-8
Python
false
false
688
py
SPATIAL_TRANSFORMER_REGISTRY = {} NO_SPATIAL_TRANSFORMER_ERR = 'Pool {} not in SPATIAL_TRANSFORMER! Available spatial transformers are {}' def RegisterSpatialTransformer(st_name): """Registers a pool.""" def decorator(f): SPATIAL_TRANSFORMER_REGISTRY[st_name] = f return f return decorator def get_spatial_transformer(st_name): """Get pool from POOL_REGISTRY based on pool_name.""" if not st_name in SPATIAL_TRANSFORMER_REGISTRY: raise Exception(NO_SPATIAL_TRANSFORMER_ERR.format( pool_name, SPATIAL_TRANSFORMER_REGISTRY.keys())) spatial_transformer = SPATIAL_TRANSFORMER_REGISTRY[st_name] return spatial_transformer
0331644aa9c6ce4d3b15eb5d286fa083f49458af
4723d9818d8b52bcfa2315a59ceb4acf1731b761
/pysgg/engine/inference.py
7b71c8bd65ef28cc62751bb7f02222daf39f8a96
[ "MIT", "Python-2.0" ]
permissive
rafa-cxg/PySGG
fe8b34157438d73e7a91a846a3428f411a9b2535
5b758cd811e81cd47781fb4028011a012d91fcff
refs/heads/main
2023-08-30T09:22:04.937170
2021-10-29T02:31:41
2021-10-29T02:31:41
425,873,560
0
0
null
null
null
null
UTF-8
Python
false
false
6,090
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import logging import os import torch from tqdm import tqdm from pysgg.config import cfg from pysgg.data.datasets.evaluation import evaluate from .bbox_aug import im_detect_bbox_aug from ..utils.comm import all_gather from ..utils.comm import is_main_process, get_world_size from ..utils.comm import synchronize from ..utils.timer import Timer, get_time_str def compute_on_dataset(model, data_loader, device, synchronize_gather=True, timer=None, logger=None): """ :param model: :param data_loader: :param device: :param synchronize_gather: gather the predictions during the training, rather than gathering all predictions after the training :param timer: :return: """ model.eval() results_dict = {} cpu_device = torch.device("cpu") for _, batch in enumerate(tqdm(data_loader)): with torch.no_grad(): images, targets, image_ids = batch targets = [target.to(device) for target in targets] if timer: timer.tic() if cfg.TEST.BBOX_AUG.ENABLED: output = im_detect_bbox_aug(model, images, device) else: # relation detection needs the targets output = model(images.to(device), targets, logger=logger) if timer: if not cfg.MODEL.DEVICE == 'cpu': torch.cuda.synchronize() timer.toc() output = [o.to(cpu_device) for o in output] if synchronize_gather: synchronize() multi_gpu_predictions = all_gather({img_id: result for img_id, result in zip(image_ids, output)}) if is_main_process(): for p in multi_gpu_predictions: results_dict.update(p) else: results_dict.update( {img_id: result for img_id, result in zip(image_ids, output)} ) return results_dict def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu, synchronize_gather=True): if not synchronize_gather: all_predictions = all_gather(predictions_per_gpu) if not is_main_process(): return if synchronize_gather: predictions = predictions_per_gpu else: # merge the list of dicts predictions = {} for p in all_predictions: predictions.update(p) # convert a dict where the key is the index in a list image_ids = list(sorted(predictions.keys())) if len(image_ids) != image_ids[-1] + 1: logger = logging.getLogger("pysgg.inference") logger.warning( "WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!" "Number of images that were gathered from multiple processes is not " "a contiguous set. Some images might be missing from the evaluation" ) logger.info(f"len(image_ids) {len(image_ids)}, image_ids[-1] + 1 {image_ids[-1] + 1}") # convert to a list predictions = [predictions[i] for i in image_ids] return predictions def inference( cfg, model, data_loader, dataset_name, iou_types=("bbox",), box_only=False, device="cuda", expected_results=(), expected_results_sigma_tol=4, output_folder=None, logger=None, ): load_prediction_from_cache = cfg.TEST.ALLOW_LOAD_FROM_CACHE and output_folder is not None and os.path.exists( os.path.join(output_folder, "eval_results.pytorch")) # convert to a torch.device for efficiency device = torch.device(device) num_devices = get_world_size() if logger is None: logger = logging.getLogger("pysgg.inference") dataset = data_loader.dataset logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset))) total_timer = Timer() inference_timer = Timer() total_timer.tic() if load_prediction_from_cache: logging.info("load_prediction_from_cache: " + os.path.join(output_folder, "eval_results.pytorch")) predictions = torch.load(os.path.join(output_folder, "eval_results.pytorch"), map_location=torch.device("cpu"))['predictions'] else: predictions = compute_on_dataset(model, data_loader, device, synchronize_gather=cfg.TEST.RELATION.SYNC_GATHER, timer=inference_timer, logger=logger) # wait for all processes to complete before measuring the time synchronize() total_time = total_timer.toc() total_time_str = get_time_str(total_time) logger.info( "Total run time: {} ({} s / img per device, on {} devices)".format( total_time_str, total_time * num_devices / len(dataset), num_devices ) ) total_infer_time = get_time_str(inference_timer.total_time) logger.info( "Model inference time: {} ({} s / img per device, on {} devices)".format( total_infer_time, inference_timer.total_time * num_devices / len(dataset), num_devices, ) ) if not load_prediction_from_cache: predictions = _accumulate_predictions_from_multiple_gpus(predictions, synchronize_gather=cfg.TEST.RELATION.SYNC_GATHER) if not is_main_process(): return -1.0 # if output_folder is not None and not load_prediction_from_cache: # torch.save(predictions, os.path.join(output_folder, "predictions.pth")) extra_args = dict( box_only=box_only, iou_types=iou_types, expected_results=expected_results, expected_results_sigma_tol=expected_results_sigma_tol, ) return evaluate(cfg=cfg, dataset=dataset, predictions=predictions, output_folder=output_folder, logger=logger, **extra_args)
c8db93ac8b84069eaa3db4066fd55c60f660c841
9249947c07f8addf64dd3d2a2f9f37d379f83921
/libs/gluon/contrib/generics.py
abaa95f64160cec56f5ab445a32e92a16a8ff4fd
[ "MIT" ]
permissive
operepo/ope
eb71aa763d157416009d7c3052ace11852660e0a
018c82af46845315795c67c36801e2a128f515d5
refs/heads/master
2023-08-08T15:05:28.592589
2023-07-25T00:22:24
2023-07-25T00:22:24
96,855,111
12
11
MIT
2023-03-03T15:10:34
2017-07-11T05:42:14
Perl
UTF-8
Python
false
false
2,528
py
# fix response import os from gluon import current, HTTP from gluon.html import markmin_serializer, TAG, HTML, BODY, UL, XML, H1 from gluon.contrib.fpdf import FPDF, HTMLMixin from gluon.sanitizer import sanitize from gluon.contrib.markmin.markmin2latex import markmin2latex from gluon.contrib.markmin.markmin2pdf import markmin2pdf def wrapper(f): def g(data): try: output = f(data) return XML(ouput) except (TypeError, ValueError), e: raise HTTP(405, '%s serialization error' % e) except ImportError, e: raise HTTP(405, '%s not available' % e) except Exception, e: raise HTTP(405, '%s error' % e) return g def latex_from_html(html): markmin = TAG(html).element('body').flatten(markmin_serializer) return XML(markmin2latex(markmin)) def pdflatex_from_html(html): if os.system('which pdflatex > /dev/null') == 0: markmin = TAG(html).element('body').flatten(markmin_serializer) out, warnings, errors = markmin2pdf(markmin) if errors: current.response.headers['Content-Type'] = 'text/html' raise HTTP(405, HTML(BODY(H1('errors'), UL(*errors), H1('warnings'), UL(*warnings))).xml()) else: return XML(out) def pyfpdf_from_html(html): request = current.request def image_map(path): if path.startswith('/%s/static/' % request.application): return os.path.join(request.folder, path.split('/', 2)[2]) return 'http%s://%s%s' % (request.is_https and 's' or '', request.env.http_host, path) class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() # pyfpdf needs some attributes to render the table correctly: html = sanitize( html, allowed_attributes={ 'a': ['href', 'title'], 'img': ['src', 'alt'], 'blockquote': ['type'], 'td': ['align', 'bgcolor', 'colspan', 'height', 'width'], 'tr': ['bgcolor', 'height', 'width'], 'table': ['border', 'bgcolor', 'height', 'width'], }, escape=False) pdf.write_html(html, image_map=image_map) return XML(pdf.output(dest='S')) def pdf_from_html(html): # try use latex and pdflatex if os.system('which pdflatex > /dev/null') == 0: return pdflatex_from_html(html) else: return pyfpdf_from_html(html)
b3b956cf8f2482a45cd555f202e06a02b98b7d41
5f61724fc5cad3f82094a681c853cc9f0337f050
/test/test_section.py
41d67a7de2c3641cf36ab6ae71a3a5eccb98bd42
[ "Apache-2.0" ]
permissive
barseghyanartur/odfdo
2cecbbbb33f23d5ed0ba80cb9208a8e7857b93a0
e628a9e9daa40319a777d216ec7ebca4057b3344
refs/heads/master
2022-11-17T15:43:15.662484
2020-06-27T00:41:38
2020-06-28T22:53:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,612
py
#!/usr/bin/env python # Copyright 2018 Jérôme Dumonteil # Copyright (c) 2009-2010 Ars Aperta, Itaapy, Pierlis, Talend. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Authors (odfdo project): [email protected] # The odfdo project is a derivative work of the lpod-python project: # https://github.com/lpod/lpod-python # Authors: Hervé Cauwelier <[email protected]> from unittest import TestCase, main from odfdo.document import Document from odfdo.section import Section class TestSection(TestCase): def setUp(self): self.document = document = Document('samples/base_text.odt') self.body = document.body def test_create_simple_section(self): """The idea is to test only with the mandatory arguments (none in this case), not to test odf_create_element which is done in test_xmlpart. """ element = Section() excepted = '<text:section/>' self.assertEqual(element.serialize(), excepted) def test_create_complex_section(self): """The idea is to test with all possible arguments. If some arguments are contradictory or trigger different behaviours, test all those combinations separately. """ element = Section(style='Standard') excepted = '<text:section text:style-name="Standard"/>' self.assertEqual(element.serialize(), excepted) def test_get_section_list(self): body = self.body sections = body.get_sections() self.assertEqual(len(sections), 2) second = sections[1] name = second.name self.assertEqual(name, "Section2") def test_get_section_list_style(self): body = self.body sections = body.get_sections(style='Sect1') self.assertEqual(len(sections), 2) section = sections[0] name = section.name self.assertEqual(name, "Section1") def test_get_section(self): body = self.body section = body.get_section(position=1) name = section.name self.assertEqual(name, "Section2") if __name__ == '__main__': main()
df94816cf1d341645c00813001ccbbdc695412c4
a363b1ad911b8c989e578b5a4a412c1dd615cc39
/toontown/building/ToonInteriorColors.py
56f103d58606c8a93f75fab6679a53c759bd7641
[ "Apache-2.0" ]
permissive
OSToontown/Project-Altis-Alpha
2999e944c44e0409cb19e277da61807bfa871e86
3a542b5d19784e9c4a5b893e88617e5280b213dd
refs/heads/master
2023-06-26T12:12:35.073103
2021-07-24T17:20:43
2021-07-24T17:20:43
248,406,248
0
0
null
null
null
null
UTF-8
Python
false
false
1,857
py
from toontown.toonbase.ToontownGlobals import * wainscottingBase = [Vec4(0.8, 0.5, 0.3, 1.0), Vec4(0.699, 0.586, 0.473, 1.0), Vec4(0.473, 0.699, 0.488, 1.0)] wallpaperBase = [Vec4(1.0, 1.0, 0.7, 1.0), Vec4(0.8, 1.0, 0.7, 1.0), Vec4(0.4, 0.5, 0.4, 1.0), Vec4(0.5, 0.7, 0.6, 1.0)] wallpaperBorderBase = [Vec4(1.0, 1.0, 0.7, 1.0), Vec4(0.8, 1.0, 0.7, 1.0), Vec4(0.4, 0.5, 0.4, 1.0), Vec4(0.5, 0.7, 0.6, 1.0)] doorBase = [Vec4(1.0, 1.0, 0.7, 1.0)] floorBase = [Vec4(0.746, 1.0, 0.477, 1.0), Vec4(1.0, 0.684, 0.477, 1.0)] baseScheme = {'TI_wainscotting': wainscottingBase, 'TI_wallpaper': wallpaperBase, 'TI_wallpaper_border': wallpaperBorderBase, 'TI_door': doorBase, 'TI_floor': floorBase} colors = {DonaldsDock: {'TI_wainscotting': wainscottingBase, 'TI_wallpaper': wallpaperBase, 'TI_wallpaper_border': wallpaperBorderBase, 'TI_door': doorBase, 'TI_floor': floorBase}, ToontownCentral: {'TI_wainscotting': wainscottingBase, 'TI_wallpaper': wallpaperBase, 'TI_wallpaper_border': wallpaperBorderBase, 'TI_door': doorBase + [Vec4(0.8, 0.5, 0.3, 1.0)], 'TI_floor': floorBase}, TheBrrrgh: baseScheme, MinniesMelodyland: baseScheme, DaisyGardens: baseScheme, GoofySpeedway: baseScheme, DonaldsDreamland: {'TI_wainscotting': wainscottingBase, 'TI_wallpaper': wallpaperBase, 'TI_wallpaper_border': wallpaperBorderBase, 'TI_door': doorBase, 'TI_floor': floorBase}, Tutorial: {'TI_wainscotting': wainscottingBase, 'TI_wallpaper': wallpaperBase, 'TI_wallpaper_border': wallpaperBorderBase, 'TI_door': doorBase + [Vec4(0.8, 0.5, 0.3, 1.0)], 'TI_floor': floorBase}, MyEstate: baseScheme}
13e109703253a9f3a1da4c8dd08d3e4292e6bbd9
cfb76fefdf3d991ca516d10ee04afda061fd9b7f
/tests/test_pcolormesh.py
5363db32fb91669dcb3d1c11edbb4d67b15e1858
[ "MIT" ]
permissive
chebee7i/prettyplotlib
77d7fd3941877d694b4237850cfa75605a2954d7
68841f0156e29eec4fc76c53407e67206287b861
refs/heads/master
2021-01-20T23:11:57.745272
2013-10-06T20:04:12
2013-10-06T20:04:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,589
py
__author__ = 'olga' from matplotlib.testing.decorators import image_comparison import prettyplotlib as ppl from prettyplotlib import plt import numpy as np import os import string from prettyplotlib import brewer2mpl from matplotlib.colors import LogNorm @image_comparison(baseline_images=['pcolormesh'], extensions=['png']) def test_pcolormesh(): fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, np.random.randn(10, 10)) # fig.savefig('%s/baseline_images/test_pcolormesh/pcolormesh.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_labels'], extensions=['png']) def test_pcolormesh_labels(): fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, np.random.randn(10, 10), xticklabels=string.uppercase[:10], yticklabels=string.lowercase[-10:]) # fig.savefig('%s/baseline_images/test_pcolormesh/pcolormesh_labels.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_positive'], extensions=['png']) def test_pcolormesh_positive(): fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, np.random.uniform(size=(10, 10)), xticklabels=string.uppercase[:10], yticklabels=string.lowercase[-10:]) # fig.savefig('%s/baseline_images/test_pcolormesh/pcolormesh_positive.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_negative'], extensions=['png']) def test_pcolormesh_negative(): fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, -np.random.uniform(size=(10, 10)), xticklabels=string.uppercase[:10], yticklabels=string.lowercase[-10:]) # fig.savefig('%s/baseline_images/test_pcolormesh/pcolormesh_negative.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_other_cmap'], extensions=['png']) def test_pcolormesh_other_cmap(): purple_green = brewer2mpl.get_map('PRGn', 'diverging', 11).mpl_colormap fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, np.random.randn(10, 10), cmap=purple_green) # fig.savefig('%s/baseline_images/test_pcolormesh/pcolormesh_other_cmap.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_positive_other_cmap'], extensions=['png']) def test_pcolormesh_positive_other_cmap(): red_purple = brewer2mpl.get_map('RdPu', 'sequential', 8).mpl_colormap fig, ax = plt.subplots(1) np.random.seed(10) ppl.pcolormesh(fig, ax, np.random.uniform(size=(10, 10)), xticklabels=string.uppercase[:10], yticklabels=string.lowercase[-10:], cmap=red_purple) # fig.savefig( # '%s/baseline_images/test_pcolormesh/pcolormesh_positive_other_cmap.png' % # os.path.dirname(__file__)) @image_comparison(baseline_images=['pcolormesh_lognorm'], extensions=['png']) def test_pcolormesh_lognorm(): fig, ax = plt.subplots(1) np.random.seed(10) x = np.abs(np.random.randn(10, 10)) ppl.pcolormesh(fig, ax, x, norm=LogNorm(vmin=x.min().min(), vmax=x.max().max())) # fig.savefig('%s/baseline_images/test_pcolormesh/test_pcolormesh_lognorm.png' % # os.path.dirname(__file__)) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'])
a32e00000f109f3f2e8079952c3278071e27cf0f
00c7bd96f1afab807746f1f7f013d4aadc5f6a6e
/sakura/common/types.py
32cb4d9e52fd22a39835c2c8c60f49825f3f0bb7
[]
no_license
sakura-team/sakura
350ae27bdf5c3e7c338c04ec33fb50f4cdc7bfb4
306bfe82ffd6b204b0b574bb7f75b35712a3202f
refs/heads/master
2021-06-02T01:30:14.294572
2021-03-04T10:16:44
2021-03-04T10:16:44
61,307,818
2
1
null
null
null
null
UTF-8
Python
false
false
2,271
py
import numpy as np from sakura.common.errors import APIRequestError # Strings whose length is known to be lower than NUMPY_EMBEDDED_STR_MAX_LEN # will be encoded directly in numpy arrays. # Others will be saved as an object pointer in numpy arrays. NUMPY_EMBEDDED_STR_MAX_LEN = 16 SAKURA_INTEGER_TYPES = ('int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64') SAKURA_FLOATING_TYPES = ('float32', 'float64') SAKURA_NUMERIC_TYPES = SAKURA_INTEGER_TYPES + SAKURA_FLOATING_TYPES SAKURA_NUMPY_TYPES = SAKURA_NUMERIC_TYPES + ('bool',) def sakura_type_to_np_dtype(col_type, **params): if col_type == 'date': return np.dtype('float64') if col_type == 'opaque': return np.dtype(object) if col_type in ('string', 'geometry'): max_len = params.get('max_length') if max_len is not None and max_len < NUMPY_EMBEDDED_STR_MAX_LEN: return np.dtype(('str', max_len)) else: return np.dtype(object) if col_type in SAKURA_NUMPY_TYPES: return np.dtype(col_type) raise NotImplementedError('Do not know how to translate sakura type %s to a numpy dtype.' % repr(col_type)) def np_dtype_to_sakura_type(dt): if dt.name in SAKURA_NUMPY_TYPES: return dt.name, {} if dt.name == 'object': return 'opaque', {} if dt.type == np.str_: length_chars = str(dt).strip('<>U') if length_chars == '': max_length = 0 else: max_length = int(length_chars) if (max_length == 0): return 'string', {} # unknown length else: return 'string', { 'max_length': max_length } raise NotImplementedError('Do not know how to translate %s to a sakura type.' % repr(dt)) def verify_sakura_type_conversion(old_type, new_type): if (old_type, new_type) not in ( ('opaque', 'string'), ('opaque', 'geometry'), ('string', 'geometry'), ('float64', 'date')): raise APIRequestError("Cannot convert sakura type '%s' to '%s'!", (old_type, new_type)) def is_numeric_type(sakura_type): return sakura_type in SAKURA_NUMERIC_TYPES def is_floating_type(sakura_type): return sakura_type in SAKURA_FLOATING_TYPES
614462b6940c9c08b08c24650c5683c4986c8d17
42d58b23f446a48907d965794a2ae1dc4ad751ab
/347. Top K Frequent Elements.py
4d70eebffd7020a5f6c65cb4f2b11935dad21ace
[]
no_license
AsadullahFarooqi/LeetCode
fabec1cad1781d0300cec2931545b92dd1390900
aecc4efe8e0561aa4dd8a8b7f755c19982c6c2ef
refs/heads/master
2022-11-03T08:01:47.656348
2022-10-11T06:19:56
2022-10-11T06:19:56
187,672,723
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
""" Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [1,1,1,2,2,3], k = 2 Output: [1,2] Example 2: Input: nums = [1], k = 1 Output: [1] Note: You may assume k is always valid, 1 ≤ k ≤ number of unique elements. Your algorithm's time complexity must be better than O(n log n), where n is the array's size. """ def topKFrequent(nums, k): """The algorithm works in the following steps 1 - It makes an hash table to store the # of appearence 2 - Sorting the hash table keys by their values in reverse order 3 - Returning the first k values Args: nums (TYPE): Description k (TYPE): Description Returns: TYPE: Description """ # step 1 count_hash = {} for i in nums: if i in count_hash: count_hash[i] += 1 continue count_hash[i] = 1 # step 2 count_hash = sorted(count_hash, reverse=True, key=lambda item: count_hash[item]) # steop 3 return count_hash[:k] if __name__ == '__main__': # n = [1,1,1,2,2,3]? # n = [1] n = [3,0,1,0] k = 1 print(topKFrequent(n, k))
5980dfe80dbe7976918aa72251a6196f00d24561
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/420/usersdata/329/88113/submittedfiles/exe11.py
fcae8958e71f64e9a6bacbbd05f96f381947b027
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
# -*- coding: utf-8 -*- n = int(input("digite um numero com 8 algarismos: ")) soma = 0 while n < 100000000: resto = n % 10 n = (n - resto)/10 soma = soma + resto print ('%d' % soma) while n > 999999999: resto = n % 10 n = (n - resto)/10 soma = soma + resto print ('%d' % soma) while n > 100000000: print('NAO SEI') while n < 99999999: print('NAO SEI')
38df09d7f8f9529aecc3adc8d1a17a4cdafadc24
25e7d840203e705c6a68aed079cc9844954b9536
/torch/_dynamo/variables/builtin.py
111d5415c77602d9e98273b3bb9af90d2ad46f9e
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
yf225/pytorch
874892cd9d0f7bb748e469cfca23a3f503ea4265
39590d06c563d830d02b9f94611ab01f07133c97
refs/heads/main
2023-07-24T06:17:16.324006
2023-04-24T18:22:54
2023-04-24T18:22:59
113,096,813
1
3
NOASSERTION
2023-08-29T18:46:16
2017-12-04T21:25:08
Python
UTF-8
Python
false
false
48,433
py
import functools import inspect import itertools import logging import math import operator import types from typing import Dict, List import torch from torch import sym_float, sym_int from .. import config, variables from ..allowed_functions import is_allowed from ..exc import unimplemented, Unsupported, UserError, UserErrorType from ..guards import GuardBuilder from ..replay_record import DummyModule from ..source import AttrSource, is_constant_source, SuperSource, TypeSource from ..utils import ( check_constant_args, check_unspec_python_args, istype, proxy_args_kwargs, specialize_args_kwargs, ) from .base import MutableLocal, typestr, VariableTracker from .constant import ConstantVariable, EnumVariable from .dicts import ConstDictVariable from .lists import ( BaseListVariable, ListIteratorVariable, ListVariable, TupleIteratorVariable, TupleVariable, ) from .tensor import FakeItemVariable, SymNodeVariable, UnspecializedPythonVariable from .user_defined import UserDefinedVariable log = logging.getLogger(__name__) class BuiltinVariable(VariableTracker): @staticmethod @functools.lru_cache(None) def _constant_fold_functions(): fns = { abs, all, any, bool, callable, chr, divmod, float, int, len, max, min, ord, pow, repr, round, set, str, str.format, sum, type, operator.pos, operator.neg, operator.not_, operator.invert, operator.pow, operator.mul, operator.matmul, operator.floordiv, operator.truediv, operator.mod, operator.add, operator.sub, operator.getitem, operator.lshift, operator.rshift, operator.and_, operator.or_, operator.xor, operator.ipow, operator.imul, operator.imatmul, operator.ifloordiv, operator.itruediv, operator.imod, operator.iadd, operator.isub, operator.ilshift, operator.irshift, operator.iand, operator.ixor, operator.ior, operator.index, } fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt))) return fns def can_constant_fold_through(self): return self.fn in self._constant_fold_functions() @staticmethod @functools.lru_cache(None) def _fx_graph_functions(): fns = { operator.pos, operator.neg, operator.not_, operator.invert, operator.pow, operator.mul, operator.matmul, operator.floordiv, operator.truediv, operator.mod, operator.add, operator.sub, operator.getitem, operator.lshift, operator.rshift, operator.and_, operator.or_, operator.xor, operator.ipow, operator.imul, operator.imatmul, operator.ifloordiv, operator.itruediv, operator.imod, operator.iadd, operator.isub, operator.ilshift, operator.irshift, operator.iand, operator.ixor, operator.ior, } return fns @staticmethod @functools.lru_cache(None) def _binops(): # function -> ([forward name, reverse name, in-place name], in-place op) fns = { operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd), operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub), operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul), operator.truediv: ( ["__truediv__", "__rtruediv__", "__itruediv__"], operator.itruediv, ), operator.floordiv: ( ["__floordiv__", "__rfloordiv__", "__ifloordiv__"], operator.ifloordiv, ), operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod), pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow), operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow), # NB: The follow binary operators are not supported for now, since the # corresponding magic methods aren't defined on SymInt / SymFloat: # operator.matmul # divmod # operator.lshift # operator.rshift # operator.and_ # operator.or_ # operator.xor } return fns @staticmethod @functools.lru_cache(None) def _binop_handlers(): # Multiple dispatch mechanism defining custom binop behavior for certain type # combinations. Handlers are attempted in order, and will be used if the type checks # match. They are expected to have the signature: # fn(tx, arg0: VariableTracker, arg1: VariableTracker, options) -> VariableTracker # Override table contains: op_fn -> [list of handlers] op_handlers = {} for ( op, (magic_method_names, in_place_op), ) in BuiltinVariable._binops().items(): op_handlers[op] = [] op_handlers[in_place_op] = [] forward_name, reverse_name, inplace_name = magic_method_names # User-defined args (highest precedence) def user_defined_handler( tx, a, b, options, forward_name=forward_name, reverse_name=reverse_name, ): # Manually handle reversing logic if needed (e.g. call __radd__) # TODO: If we expand this to handle tensor args, we need to manually # handle cases like this: # # class A(int): # def __radd__(self, other): # print("woof") # torch.randn(3) + A(3) # # In this example, A.__radd__() is not called -> nothing is printed, because # Tensor.__add__ only does a subtype test against int, ignoring the subclass. # To be fully correct, we should not call A.__radd__() here, and there may be # other cases to reason about and add exceptions for. if isinstance(a, UserDefinedVariable): return a.call_method(tx, forward_name, [b], {}) else: return b.call_method(tx, reverse_name, [a], {}) op_handlers[op].append( ((UserDefinedVariable, VariableTracker), user_defined_handler) ) op_handlers[op].append( ((VariableTracker, UserDefinedVariable), user_defined_handler) ) def user_defined_inplace_handler( tx, a, b, options, forward_name=inplace_name ): return a.call_method(tx, forward_name, [b], {}) op_handlers[in_place_op].append( ((UserDefinedVariable, VariableTracker), user_defined_inplace_handler) ) op_handlers[in_place_op].append( ((VariableTracker, UserDefinedVariable), user_defined_inplace_handler) ) # Dynamic shape args def dynamic_handler(tx, a, b, options, fn=op): from .builder import wrap_fx_proxy return wrap_fx_proxy( tx, tx.output.create_proxy( "call_function", fn, *proxy_args_kwargs([a, b], {}) ), **options, ) op_handlers[op].append( ((SymNodeVariable, VariableTracker), dynamic_handler) ) op_handlers[op].append( ((VariableTracker, SymNodeVariable), dynamic_handler) ) # NB: Prefer out-of-place op when calling in-place op to generate valid graph op_handlers[in_place_op].append( ((SymNodeVariable, VariableTracker), dynamic_handler) ) op_handlers[in_place_op].append( ((VariableTracker, SymNodeVariable), dynamic_handler) ) # Special cases - lower precedence but still prefer these over constant folding # List-like addition (e.g. [1, 2] + [3, 4]) def tuple_add_handler(tx, a, b, options): return TupleVariable(a.items + list(b.unpack_var_sequence(tx)), **options) list_like_addition_handlers = [ # NB: Prefer the tuple-specific logic over base logic because of # some SizeVariable weirdness. Specifically, the tuple-specific logic # drops the subclass type (e.g. SizeVariable) and returns TupleVariables. ( (TupleVariable, TupleVariable), tuple_add_handler, ), ( (TupleVariable, ConstantVariable), tuple_add_handler, ), ( (ConstantVariable, TupleVariable), lambda tx, a, b, options: TupleVariable( list(a.unpack_var_sequence(tx)) + b.items, **options ), ), ( (BaseListVariable, BaseListVariable), lambda tx, a, b, options: type(a)(a.items + b.items, **options), ), ] op_handlers[operator.add].extend(list_like_addition_handlers) def list_iadd_handler(tx, a, b, options): if not a.mutable_local or not b.has_unpack_var_sequence(tx): # Handler doesn't apply return None return tx.replace_all( a, ListVariable( list(a.items) + list(b.unpack_var_sequence(tx)), regen_guards=False, **options, ), ) list_like_iadd_handlers = [ ( (ListVariable, VariableTracker), list_iadd_handler, ), ( (TupleVariable, TupleVariable), tuple_add_handler, ), ( (TupleVariable, ConstantVariable), tuple_add_handler, ), ] op_handlers[operator.iadd].extend(list_like_iadd_handlers) # List-like expansion (e.g. [1, 2, 3] * 3) def expand_list_like(tx, lst, const, options): return lst.__class__( items=lst.items * const.as_python_constant(), mutable_local=MutableLocal(), **options, ) list_like_expansion_handlers = [ ((ListVariable, ConstantVariable), expand_list_like), ((TupleVariable, ConstantVariable), expand_list_like), ( (ConstantVariable, ListVariable), lambda tx, a, b, options: expand_list_like(tx, b, a, options), ), ( (ConstantVariable, TupleVariable), lambda tx, a, b, options: expand_list_like(tx, b, a, options), ), ] op_handlers[operator.mul].extend(list_like_expansion_handlers) return op_handlers @staticmethod def _find_binop_handler(op, a, b): handlers = BuiltinVariable._binop_handlers() if op not in handlers: return None # Return first handler that matches the type checks for (type1, type2), handler in handlers[op]: if isinstance(a, type1) and isinstance(b, type2): return handler return None def can_insert_in_graph(self): return self.fn in self._fx_graph_functions() def __init__(self, fn, **kwargs): super().__init__(**kwargs) self.fn = fn def __str__(self): if self.fn is None: name = "None" else: name = self.fn.__name__ return f"{self.__class__.__name__}({name})" def python_type(self): return type(self.fn) def as_python_constant(self): return self.fn def reconstruct(self, codegen): name = self.fn.__name__ assert self.fn.__module__ == "builtins" assert name not in codegen.tx.f_globals, "shadowed global" return [codegen.create_load_global(name, False, add=True)] def constant_args(self, *args, **kwargs): return check_constant_args(args, kwargs) def tensor_args(self, *args, **kwargs): return any( isinstance(i, variables.TensorVariable) for i in itertools.chain(args, kwargs.values()) ) and not any( isinstance(i, variables.GetAttrVariable) for i in itertools.chain(args, kwargs.values()) ) def unspec_python_args(self, *args, **kwargs): return check_unspec_python_args(args, kwargs) @staticmethod def unwrap_unspec_args_kwargs(args, kwargs): unwrapped_args = [] unwrapped_kwargs = {} for x in args: if isinstance( x, (variables.UnspecializedPythonVariable,), ): unwrapped_args.append(x.raw_value) else: unwrapped_args.append(x.as_python_constant()) for k, v in kwargs: if isinstance( x, (variables.UnspecializedPythonVariable,), ): unwrapped_kwargs.update({k: v.raw_value}) else: unwrapped_kwargs.update({k: v.as_python_constant()}) return unwrapped_args, unwrapped_kwargs def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": from .builder import wrap_fx_proxy, wrap_fx_proxy_cls constant_args = check_constant_args(args, kwargs) tensor_args = self.tensor_args(*args, **kwargs) unspec_python_args = self.unspec_python_args(*args, **kwargs) options = VariableTracker.propagate(self, args, kwargs.values()) has_constant_handler = self.can_constant_fold_through() and ( constant_args or unspec_python_args ) assert isinstance(args, (list, tuple)) assert isinstance(kwargs, dict) if ( self.fn is operator.getitem and len(args) == 2 and isinstance(args[1], variables.TensorVariable) and args[1].dtype == torch.bool and not config.dynamic_shapes ): unimplemented("dynamic Tensor.__getitem__(bool[])") # args[0] is list and args[1] is unspec if self.fn is operator.getitem and not isinstance( args[0], variables.TensorVariable ): tensor_args = False args, kwargs = specialize_args_kwargs(tx, args, kwargs) if ( self.can_insert_in_graph() and tensor_args and not ( self.fn is operator.getitem and isinstance(args[0], ConstDictVariable) and isinstance(args[1], variables.TensorVariable) ) ): try: fn = self.fn if self.fn is operator.iadd and isinstance( args[0], variables.ConstantVariable ): # Work around weird bug in hf_T5 fn, args = operator.add, [args[1], args[0]] if self.fn is operator.getitem and isinstance(args[1], SymNodeVariable): # Standard indexing will force specialization due to # __index__. Rewrite as a regular torch op which will # trace fine fn, args = torch.select, [ args[0], variables.ConstantVariable(0), args[1], ] proxy = tx.output.create_proxy( "call_function", fn, *proxy_args_kwargs(args, kwargs), ) if any([isinstance(arg, FakeItemVariable) for arg in args]): return wrap_fx_proxy_cls( FakeItemVariable, tx, proxy, **options, ) elif self.unspec_python_args(*args, **kwargs): _args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs) raw_value = self.fn(*_args, **_kwargs) need_unwrap = any( x.need_unwrap for x in itertools.chain(args, kwargs.values()) if isinstance(x, variables.UnspecializedPythonVariable) ) return wrap_fx_proxy_cls( UnspecializedPythonVariable, tx, proxy, raw_value=raw_value, need_unwrap=need_unwrap, **options, ) elif all(isinstance(x, SymNodeVariable) for x in args): return SymNodeVariable.create(tx, proxy, None, **options) else: # Work around for vision_maskrcnn due to precision difference # specialize the dividend when float divide by tensor if self.fn is operator.truediv and isinstance( args[0], variables.UnspecializedPythonVariable ): args[0] = args[0].convert_to_constant(tx) return wrap_fx_proxy(tx, proxy, **options) except NotImplementedError: unimplemented(f"partial tensor op: {self} {args} {kwargs}") # Handle cases like int(torch.seed()) # Also handle sym_float to sym_int cases if self.fn in (int, float) and isinstance(args[0], SymNodeVariable): fn_ = sym_int if self.fn is int else sym_float out = wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", fn_, (args[0].as_proxy(),), {}, ), **options, ) return out # Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.) # NB: Tensor args are handled above and not here if len(kwargs) == 0 and len(args) == 2: # Try to find a handler for the arg types; otherwise, fall through to constant handler binop_handler = BuiltinVariable._find_binop_handler( self.fn, args[0], args[1] ) if binop_handler: res = binop_handler(tx, args[0], args[1], options) if res is not None: return res handler = getattr(self, f"call_{self.fn.__name__}", None) if handler: try: inspect.signature(handler).bind(tx, *args, **kwargs) except TypeError as exc: if not has_constant_handler: log.warning( "incorrect arg count %s %s and no constant handler", handler, exc, ) handler = None if handler: try: result = handler(tx, *args, **kwargs) if result is not None: return result.add_options(options) except Unsupported as exc: if not has_constant_handler: raise # Actually, we will handle this just fine exc.remove_from_stats() if has_constant_handler: args, kwargs = specialize_args_kwargs(tx, args, kwargs) # constant fold return variables.ConstantVariable( self.as_python_constant()( *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ), **options, ) if self.fn is round: if len(args) > 0 and isinstance(args[0], SymNodeVariable): raise UserError( UserErrorType.STANDARD_LIBRARY, "Calling round() on symbolic value is not supported. " "You can use floor() to implement this functionality", ) return super().call_function(tx, args, kwargs) def _call_min_max(self, tx, *args): if len(args) == 1 and args[0].has_unpack_var_sequence(tx): # expand iterable items = args[0].unpack_var_sequence(tx) return self._call_min_max_seq(tx, items) elif len(args) == 2: return self._call_min_max_binary(tx, args[0], args[1]) elif len(args) > 2: return self._call_min_max_seq(tx, args) def _call_min_max_seq(self, tx, items): assert len(items) > 0 if len(items) == 1: return items[0] return functools.reduce(functools.partial(self._call_min_max_binary, tx), items) def _call_min_max_binary(self, tx, a, b): if self.tensor_args(a, b): if not isinstance(a, variables.TensorVariable): a, b = b, a assert isinstance(a, variables.TensorVariable) # result of an item call is a scalar convert to a tensor if isinstance(a, FakeItemVariable): a = variables.TorchVariable(torch.tensor).call_function(tx, [a], {}) # Dynamic input does not get resolved, rather, gets stored as call_function if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable): from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", self.fn, *proxy_args_kwargs([a, b], {}), ), **VariableTracker.propagate(self, [a, b]), ) # convert min/max to torch ops if b.is_python_constant(): kwargs = {"min": b} if (self.fn is max) else {"max": b} result = variables.TorchVariable(torch.clamp).call_function( tx, [a], kwargs ) else: fn = {max: torch.maximum, min: torch.minimum}[self.fn] result = variables.TorchVariable(fn).call_function(tx, [a, b], {}) # return unspec if both a, b are unspec or const if all( isinstance( i, ( variables.UnspecializedPythonVariable, variables.ConstantVariable, ), ) for i in [a, b] ): if any([isinstance(val, FakeItemVariable) for val in [a, b]]): return variables.FakeItemVariable.from_tensor_variable(result) if b.is_python_constant(): raw_b = b.as_python_constant() else: raw_b = b.raw_value if self.fn is max: raw_res = max(a.raw_value, raw_b) else: raw_res = min(a.raw_value, raw_b) need_unwrap = any( x.need_unwrap for x in [a, b] if isinstance(x, variables.UnspecializedPythonVariable) ) return variables.UnspecializedPythonVariable.from_tensor_variable( result, raw_res, need_unwrap ) # otherwise return tensor else: return result elif isinstance(a, variables.ConstantVariable) and isinstance( b, variables.ConstantVariable ): if self.fn is max: return variables.ConstantVariable(max(a.value, b.value)) else: return variables.ConstantVariable(min(a.value, b.value)) elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable): proxy = tx.output.create_proxy( "call_function", self.fn, *proxy_args_kwargs([a, b], {}) ) return SymNodeVariable.create(tx, proxy, None) else: unimplemented(f"unsupported min / max over args {str(a)}, {str(b)}") call_min = _call_min_max call_max = _call_min_max def call_range(self, tx, *args): if self.unspec_python_args(*args) or self.constant_args(*args): args, _ = specialize_args_kwargs(tx, args, {}) return variables.RangeVariable(args) elif self._dynamic_args(*args): def guard_if_dyn(arg): if isinstance(arg, SymNodeVariable): return arg.evaluate_expr(tx.output) elif isinstance(arg, ConstantVariable): return arg.as_python_constant() return arg args = [variables.ConstantVariable(guard_if_dyn(arg)) for arg in args] return variables.RangeVariable(args) # None no-ops this handler and lets the driving function proceed return None def _dynamic_args(self, *args, **kwargs): return any([isinstance(x, SymNodeVariable) for x in args]) or any( [isinstance(x, SymNodeVariable) for x in kwargs.values()] ) def call_slice(self, tx, *args): return variables.SliceVariable(args) def _dyn_proxy(self, tx, *args, **kwargs): from .builder import wrap_fx_proxy options = VariableTracker.propagate(self, args, kwargs.values()) return wrap_fx_proxy( tx, tx.output.create_proxy( "call_function", self.fn, *proxy_args_kwargs(args, kwargs) ), **options, ) def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs): if self._dynamic_args(*args, **kwargs): return self._dyn_proxy(tx, *args, **kwargs) cls = variables.BaseListVariable.cls_for(self.fn) if obj is None: return cls( [], mutable_local=MutableLocal(), ) elif obj.has_unpack_var_sequence(tx): guards = set() if obj.source and not is_constant_source(obj.source): if isinstance(obj, TupleIteratorVariable): guards.add(obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)) else: guards.add(obj.source.make_guard(GuardBuilder.LIST_LENGTH)) return cls( list(obj.unpack_var_sequence(tx)), mutable_local=MutableLocal(), guards=guards, ).add_options(self, obj) call_iter = _call_iter_tuple_list call_tuple = _call_iter_tuple_list call_list = _call_iter_tuple_list @staticmethod def is_supported_call_dict_arg(tx, arg): return ( arg is None or isinstance(arg, ConstDictVariable) or ( isinstance( arg, ( ListVariable, TupleVariable, ListIteratorVariable, ), ) and all( isinstance(x, (ListVariable, TupleVariable)) and isinstance( x.unpack_var_sequence(tx)[0], (ConstantVariable, EnumVariable) ) for x in arg.unpack_var_sequence(tx) ) ) ) def call_callable(self, tx, arg): from .functions import BaseUserFunctionVariable if isinstance( arg, (variables.UserDefinedClassVariable, BaseUserFunctionVariable) ): return variables.ConstantVariable(True).add_options(arg) @staticmethod def call_dict_helper(tx, user_cls, arg, **options): if arg is None: return ConstDictVariable( {}, user_cls, mutable_local=MutableLocal() ).add_options(options) elif isinstance(arg, variables.ConstDictVariable): return arg.clone( user_cls=user_cls, mutable_local=MutableLocal() ).add_options(options) elif isinstance( arg, ( ListVariable, TupleVariable, ListIteratorVariable, ), ): items = user_cls() for x in arg.unpack_var_sequence(tx): k = x.unpack_var_sequence(tx)[0].as_python_constant() v = x.unpack_var_sequence(tx)[1] items.update({k: v}) return ConstDictVariable( items, user_cls, mutable_local=MutableLocal() ).add_options(options) else: raise AssertionError("call_dict_helper with illegal arg") def call_dict(self, tx, *args, **kwargs): if not (args or kwargs): return self.call_dict_helper(tx, dict, None) elif ( not kwargs and len(args) == 1 and self.is_supported_call_dict_arg(tx, args[0]) ): return self.call_dict_helper(tx, dict, args[0]) elif not args and kwargs: return variables.ConstDictVariable( dict(kwargs), user_cls=dict, mutable_local=MutableLocal() ) else: unimplemented(f"dict(): {args} {kwargs}") def call_zip(self, tx, *args): options = VariableTracker.propagate(self, args) if all(x.has_unpack_var_sequence(tx) for x in args): items = [ variables.TupleVariable(list(item), **options) for item in zip(*[arg.unpack_var_sequence(tx) for arg in args]) ] return variables.TupleVariable(items, **options) def call_enumerate(self, tx, *args): options = VariableTracker.propagate(self, args) if len(args) == 1: start = 0 else: assert len(args) == 2 assert isinstance(args[1], variables.ConstantVariable) start = args[1].as_python_constant() if args[0].has_unpack_var_sequence(tx): items = [ variables.TupleVariable( [variables.ConstantVariable(idx, **options), var], **options, ) for idx, var in enumerate(args[0].unpack_var_sequence(tx), start) ] return variables.TupleVariable(items, **options) def call_len(self, tx, *args, **kwargs): return args[0].call_method(tx, "__len__", args[1:], kwargs) def call_getitem(self, tx, *args, **kwargs): if self.unspec_python_args(*args, **kwargs): args, kwargs = specialize_args_kwargs(tx, args, kwargs) return args[0].call_method(tx, "__getitem__", args[1:], kwargs) def call_isinstance(self, tx, arg, isinstance_type): arg_type = arg.python_type() isinstance_type = isinstance_type.as_python_constant() if isinstance(arg, variables.TensorVariable) and arg.dtype is not None: return variables.ConstantVariable(arg.call_isinstance(isinstance_type)) # UserDefinedObject with C extensions can have torch.Tensor attributes, # so break graph. if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance( arg.value, types.MemberDescriptorType ): unimplemented( f"isinstance called on UserDefinedClass {arg} {isinstance_type}" ) # handle __instancecheck__ defined in user class if ( isinstance(arg, variables.UserDefinedObjectVariable) and "__instancecheck__" in isinstance_type.__class__.__dict__ ): return variables.ConstantVariable( isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value) ) try: val = issubclass(arg_type, isinstance_type) except TypeError: val = arg_type is isinstance_type return variables.ConstantVariable(val) def call_super(self, tx, a, b): source = ( None if a.source is None or b.source is None else SuperSource(a.source, b.source) ) return variables.SuperVariable(a, b, source=source) def call_next(self, tx, arg): if isinstance(arg, variables.ListIteratorVariable): val, next_iter = arg.next_variables() tx.replace_all(arg, next_iter) return val elif isinstance(arg, variables.BaseListVariable): return arg.items[0].add_options(self, arg) def call_hasattr(self, tx, obj, attr): if attr.is_python_constant(): name = attr.as_python_constant() return obj.call_hasattr(tx, name).add_options(self, obj, attr) def call_map(self, tx, fn, seq): if seq.has_unpack_var_sequence(tx): items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)] return variables.TupleVariable(items).add_options(self, fn, seq) def call_sum(self, tx, seq, **kwargs): # Special case for sum on tuple of floats and ints if ( isinstance(seq, (variables.ListVariable, variables.TupleVariable)) and all( [ isinstance(x, variables.ConstantVariable) and isinstance(x.value, (int, float)) for x in seq.items ] ) and not kwargs ): new_list = [x.value for x in seq.items] return variables.ConstantVariable(sum(new_list)) if seq.has_unpack_var_sequence(tx): start = kwargs.pop( "start", variables.ConstantVariable(0) ).as_python_constant() assert not kwargs items = seq.unpack_var_sequence(tx)[start:] return BuiltinVariable(functools.reduce).call_function( tx, [ BuiltinVariable(operator.add), variables.TupleVariable(items), variables.ConstantVariable(0).add_options(self, seq), ], {}, ) def call_reduce(self, tx, function, iterable, initializer=None): if iterable.has_unpack_var_sequence(tx): items = iterable.unpack_var_sequence(tx) if initializer is None: value, items = items[0], items[1:] else: value = initializer for element in items: value = function.call_function(tx, [value, element], {}) return value def call_getattr( self, tx, obj: VariableTracker, name_var: VariableTracker, default=None ): from . import ( ConstantVariable, GetAttrVariable, PythonModuleVariable, TorchVariable, UserFunctionVariable, ) from .builder import VariableBuilder options = VariableTracker.propagate(self, obj, name_var) guards = options["guards"] name = name_var.as_python_constant() if not name_var.is_python_constant(): unimplemented("non-const getattr() name") if tx.output.side_effects.is_attribute_mutation(obj): try: # re-read a pending side effect? return tx.output.side_effects.load_attr(obj, name).add_options(options) except KeyError: pass if default is not None: hasattr_var = self.call_hasattr(tx, obj, name_var) guards.update(hasattr_var.guards) assert hasattr_var.as_python_constant() in (True, False) if not hasattr_var.as_python_constant(): return default.add_guards(guards) if obj.source: source = AttrSource(obj.source, name) options["source"] = source else: source = None if isinstance(obj, variables.NNModuleVariable): return obj.var_getattr(tx, name).add_options(options) elif isinstance(obj, variables.TensorVariable) and name == "grad": if source: # We are going to be raising this tensor as grapharg. So, ensure # that we have real grad value instead of fake tensor value. # Walk through the inputs of the subgraph and find if we already # have the original tensor stored in the graphargs. for grapharg in tx.output.graphargs: if grapharg.source == source.base: example_value = grapharg.example.grad return VariableBuilder(tx, source)(example_value).add_options( options ) unimplemented("tensor grad") else: unimplemented("tensor grad") elif isinstance( obj, ( variables.TensorVariable, variables.NamedTupleVariable, variables.ConstantVariable, variables.UserDefinedClassVariable, variables.UserDefinedObjectVariable, ), ): try: return ( obj.var_getattr(tx, name).clone(source=source).add_options(options) ) except NotImplementedError: return GetAttrVariable(obj, name, **options) elif isinstance(obj, TorchVariable): member = getattr(obj.value, name) if is_allowed(member): return TorchVariable(member, **options) elif ConstantVariable.is_literal(member): return ConstantVariable(member, **options) else: return VariableBuilder(tx, source)(member).add_guards(guards) elif isinstance(obj, (PythonModuleVariable, DummyModule)): member = obj.value.__dict__[name] if config.replay_record_enabled: tx.exec_recorder.record_module_access(obj.value, name, member) return VariableBuilder(tx, source)(member).add_guards(guards) elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"): return ConstantVariable( getattr(obj.fn, name), **VariableTracker.propagate(obj) ) else: try: return ( obj.var_getattr(tx, name).clone(source=source).add_options(options) ) except NotImplementedError: return GetAttrVariable(obj, name, **options) def call_setattr( self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker ): if isinstance(obj, variables.DataClassVariable): return obj.call_method(tx, "__setattr__", [name_var, val], {}) elif ( tx.output.side_effects.is_attribute_mutation(obj) and name_var.is_python_constant() ): tx.output.side_effects.store_attr(obj, name_var.as_python_constant(), val) return val.add_options(self, obj, name_var) elif isinstance(obj, variables.UserDefinedObjectVariable): unimplemented( f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}" ) elif isinstance(obj, variables.NNModuleVariable): obj.convert_to_unspecialized(tx) def call_delattr(self, tx, obj: VariableTracker, name_var: VariableTracker): return self.call_setattr(tx, obj, name_var, variables.DeletedVariable()) def call_type(self, tx, obj: VariableTracker): from .builder import VariableBuilder try: py_type = obj.python_type() except NotImplementedError: py_type = None if istype(obj, variables.TupleVariable): return BuiltinVariable(py_type).add_options(self, obj) if py_type is not None and obj.source: return VariableBuilder(tx, TypeSource(obj.source))(py_type).add_options( self, obj ) raise UserError( UserErrorType.ANTI_PATTERN, "Can't call type() on generated custom object. " "Please use __class__ instead", ) def call_reversed(self, tx, obj: VariableTracker): if obj.has_unpack_var_sequence(tx): items = list(reversed(obj.unpack_var_sequence(tx))) return variables.TupleVariable( items, **VariableTracker.propagate(self, obj) ) def call_sorted(self, tx, obj: VariableTracker, **kwargs): if ( obj.has_unpack_var_sequence(tx) and not isinstance(obj, variables.TensorVariable) and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx)) ): function = kwargs.pop("key", None) reverse = kwargs.pop( "reverse", ConstantVariable(False) ).as_python_constant() assert len(kwargs) == 0 if function: items = sorted( obj.unpack_var_sequence(tx), key=lambda x: function.call_function( tx, [x], {} ).as_python_constant(), reverse=reverse, ) else: items = sorted( obj.unpack_var_sequence(tx), key=lambda x: x.as_python_constant(), reverse=reverse, ) return variables.ListVariable(items, **VariableTracker.propagate(self, obj)) def call_chain(self, tx, *args): if all(obj.has_unpack_var_sequence(tx) for obj in args): items = [] for obj in args: items.extend(obj.unpack_var_sequence(tx)) return variables.TupleVariable( items, **VariableTracker.propagate(self, *args) ) def call_islice(self, tx, iterable, *args): if iterable.has_unpack_var_sequence(tx) and all( x.is_python_constant() for x in args ): const_args = [x.as_python_constant() for x in args] items = iterable.unpack_var_sequence(tx) items = list(itertools.islice(items, *const_args)) return variables.TupleVariable( items, **VariableTracker.propagate(self, iterable, *args) ) # neg is a constant fold function, so we only get here if constant fold is not valid def call_neg(self, tx, a): if isinstance(a, SymNodeVariable): return SymNodeVariable.create( tx, (operator.neg)(a.as_proxy()), sym_num=None, ) # None no-ops this handler and lets the driving function proceed return None def call_id(self, tx, *args): if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable): nn_mod_variable = args[0] mod = tx.output.get_submodule(nn_mod_variable.module_key) return variables.ConstantVariable(id(mod)) else: unimplemented(f"call_id with args {args}") def _comparison(self, tx, left, right): """ Used to implement comparison operators for different types. For example, list1 < list2 is implemented differently from tensor1 < tensor2 """ from . import ( BaseListVariable, ConstantVariable, TensorVariable, UserFunctionVariable, ) from .lists import SizeVariable from .tensor import ( supported_const_comparison_ops, supported_tensor_comparison_ops, ) op = self.fn def _unimplemented(): unimplemented(f"comparison {typestr(left)} {op} {typestr(right)}") if isinstance(left, UserFunctionVariable): if op not in supported_const_comparison_ops.values(): _unimplemented() if not isinstance(right, UserFunctionVariable): _unimplemented() return ConstantVariable(op(left.fn, right.fn)) # Note, we have a rare BaseListVariable subtype mismatch with valid comparison # x = torch.randn([3, 3]) # x.size() == (3, 3) # True # (3, 3) == x.size() # True if isinstance(left, (SizeVariable, TupleVariable)) and isinstance( right, (TupleVariable, SizeVariable) ): return BaseListVariable.list_compare(tx, op, left, right) if isinstance(left, BaseListVariable): if not type(left) == type(right): # Mismatch in BaseListVariable subclasses _unimplemented() return BaseListVariable.list_compare(tx, op, left, right) if isinstance(left, TensorVariable): from .builder import wrap_fx_proxy if op not in supported_tensor_comparison_ops.values(): _unimplemented() return wrap_fx_proxy( tx, op(left.as_proxy(), right.as_proxy()), ) if isinstance(left, SymNodeVariable) or isinstance(right, SymNodeVariable): if op not in supported_tensor_comparison_ops.values(): _unimplemented() return SymNodeVariable.create( tx, op(left.as_proxy(), right.as_proxy()), sym_num=None, ) _unimplemented() # and_ is a constant fold function, so we only get here if constant fold is not valid def call_and_(self, tx, a, b): if isinstance(a, SymNodeVariable) and isinstance(b, SymNodeVariable): return SymNodeVariable.create( tx, tx.output.create_proxy( "call_function", operator.and_, *proxy_args_kwargs([a, b], {}) ), sym_num=None, ) # None no-ops this handler and lets the driving function proceed return None # or_ is a constant fold function, so we only get here if constant fold is not valid def call_or_(self, tx, a, b): if isinstance(a, SymNodeVariable) and isinstance(b, SymNodeVariable): return SymNodeVariable.create( tx, tx.output.create_proxy( "call_function", operator.or_, *proxy_args_kwargs([a, b], {}) ), sym_num=None, ) # None no-ops this handler and lets the driving function proceed return None def call_not_(self, tx, a): if isinstance(a, SymNodeVariable): return SymNodeVariable.create( tx, tx.output.create_proxy( "call_function", operator.not_, *proxy_args_kwargs([a], {}) ), sym_num=None, ) return None call_eq = _comparison call_gt = _comparison call_lt = _comparison call_ge = _comparison call_le = _comparison call_ne = _comparison call_is_ = _comparison call_is_not = _comparison
5300271b0b676978f2319aff708095962e6f6c52
49cc32d5859e9002cb4b94ade25d72f5f4fe1612
/CLASE5_PYTHON_UMAKER/codigo5.py
52b8bdabb03966ebe2a3f86723ba2f2f85b85de5
[]
no_license
jorgepdsML/DIGITAL-IMAGE-PROCESSING-PYTHON
c8441215b4cf9e912dad1885a82058c1b0bbb872
781c8c6d583aebda6381a301cdc33ad4d09f20c5
refs/heads/master
2021-06-26T00:06:44.344201
2021-01-21T17:41:36
2021-01-21T17:41:36
194,336,928
6
1
null
null
null
null
UTF-8
Python
false
false
479
py
class point(): def __init__(self,a,b): self.x=a self.y=b def coordenada(self): print(self.x,self.y) def __add__(self, other): x=self.x+other.x y=self.y+other.y return (x,y) def __call__(self,*args): suma=0 for val in args: suma=suma+val return suma #instanciando un nuevo objeto a1=point(10,10) #llamando a la función call d=a1(100,200,1000,500,1000) print(d)
242923c5197a8ee760b120a5605b8afca943eab0
f99cca94f74c69bc518e298c14140534e18eabd3
/OrcLib/Test/TestNet.py
07cd62a60036cd81afff87edaf6b1fcf167c81cd
[]
no_license
pubselenium/OrcTestToolsKit
d6d838d9937d2c4d86941e317cb3ff096b58e52d
f3ccbbceaed4f4996f6907a2f4880c2fd3f82bbb
refs/heads/master
2021-04-29T05:15:53.240714
2016-12-30T09:42:53
2016-12-30T09:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,478
py
import unittest from OrcLib.LibTest import OrcTest from OrcLib import init_log from OrcLib.LibNet import OrcParameter class TestOrcParameter(unittest.TestCase): def test_send_para(self): """ Test get exist option """ OrcTest.test_print_begin() init_log() _para_01 = OrcParameter().send_para("abc") OrcTest.test_print_result("Parameter para_01 is: %s, type is %s" % (_para_01, type(_para_01))) _para_02 = OrcParameter().send_para(["abc", "def"]) OrcTest.test_print_result("Parameter para_02 is: %s, type is %s" % (_para_02, type(_para_02))) _para_03 = OrcParameter().send_para(None) OrcTest.test_print_result("Parameter para_03 is: %s, type is %s" % (_para_03, type(_para_03))) _para_04 = OrcParameter().send_para(120) OrcTest.test_print_result("Parameter para_04 is: %s, type is %s" % (_para_04, type(_para_04))) OrcTest.test_print_end() def test_save_pic(self): """ Test get exist option """ OrcTest.test_print_begin() from OrcLib.LibNet import OrcHttpService service = OrcHttpService("Driver") service.save_pic("abc.png") OrcTest.test_print_end() def test_source_list(self): """ Test get exist option """ OrcTest.test_print_begin() from OrcLib.LibNet import OrcResource from OrcLib.LibNet import OrcResult resource = OrcResource("BatchDef", "JSON") result = resource.get(parameter=dict()) if isinstance(result, OrcResult): OrcTest.test_print_result(result.status, "status") OrcTest.test_print_result(result.message, "message") OrcTest.test_print_result(result.data, "data") else: print result OrcTest.test_print_end() def test_source_sig(self): """ Test get exist option """ OrcTest.test_print_begin() from OrcLib.LibNet import OrcResource from OrcLib.LibNet import OrcResult resource = OrcResource("BatchDef", "JSON") result = resource.get(path=1000000024) if isinstance(result, OrcResult): OrcTest.test_print_result(result.status, "status") OrcTest.test_print_result(result.message, "message") OrcTest.test_print_result(result.data, "data") else: print result OrcTest.test_print_end()
396b07af836678cbf34f87d2c44a64e0513292ea
98cd5ddf45a73aea64bbfac0c0104829d7231b81
/T - Image + Hexagon/main.py
4a4ad6510a74b8e54b6218bb846ee6c486774044
[]
no_license
atheis4/ETC_Modes_Extra
42508d523cfe632a3335e29f6e1e40af91df231b
d0ce221562105382a7a73cc6d280f4ad0eabf6f3
refs/heads/master
2022-04-04T11:15:07.335910
2020-01-03T20:27:32
2020-01-03T20:27:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,426
py
import os import pygame import time import random import glob import pygame.gfxdraw images = [] image_index = 0 image_x=100 image_y=100 image_size_x=100 image_size_y=100 border_x = 1 border_y = 1 square_start_x = 1 square_start_y = 1 square_end_x = 1 square_end_y = 1 square_size = 50 trigger = False def setup(screen, etc): global images, image_index for filepath in sorted(glob.glob(etc.mode_root + '/Images/*.png')): filename = os.path.basename(filepath) print 'loading image file: ' + filename img = pygame.image.load(filepath) images.append(img) def draw(screen, etc): global trigger, image_x, image_y, image_size_x, image_size_y, images, image_index, square_size, border_x, border_y, square_start_x, square_start_y, square_end_x, square_end_y color = etc.color_picker() if etc.audio_trig or etc.midi_note_new : trigger = True if trigger == True : image_x=(random.randrange(-50,1080)) image_y=(random.randrange(-50,600)) image_index += 1 if image_index == len(images) : image_index = 0 image = images[image_index] image_size_x=int(image.get_width() * etc.knob1) image_size_y=int(image.get_height() * etc.knob1) image = pygame.transform.scale(image,(image_size_x, image_size_y)) border_x = int(etc.knob2 * image.get_width()) - (image.get_width() / 2) border_y = int(etc.knob2 * image.get_height()) - (image.get_height() / 2) square_start_x = image_x - border_x square_start_y = image_y - border_y square_end_x = image_size_x + (border_x*2) square_end_y = image_size_y + (border_y*2) pygame.draw.rect(screen, color, (square_start_x, square_start_y, square_end_x, square_end_y), 0) #TOP TRIANGLE pygame.gfxdraw.filled_trigon(screen, square_start_x, square_start_y, (square_end_x+image_x-border_x)-1, square_start_y, (image_x+image_size_x/2),square_start_y-((image_size_y+border_y*2)/2) , color) #BOTTOM TRIGON pygame.gfxdraw.filled_trigon(screen, square_start_x, image_y+square_end_y-border_y, (square_end_x+image_x-border_x)-1, image_y+square_end_y-border_y, (image_x+image_size_x/2),(image_y+square_end_y-border_y)+((image_size_y+border_y*2)/2) , color) image.fill((255, 255, 255, etc.knob3 * 255), None, pygame.BLEND_RGBA_MULT) screen.blit(image, (image_x,image_y)) trigger = False
968a736930a6730a0b2049734b9b83b6de0fac28
9a0e25591deef948bd5957ac79131bc01594b0bb
/users/urls/urls.py
5dcecf097a0cfcdd74dcdd19e0bb389c5cd3a355
[]
no_license
ursusma/HiCommunity
ad31342d6f5ee0bc28899dc1cb199fbe1085e554
81e2340264cce983b889dacdb01bbeeb2cb67f21
refs/heads/master
2021-07-25T10:58:04.239531
2017-10-26T14:17:05
2017-10-26T14:17:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
# coding=utf-8 from django.conf.urls import url from users import views urlpatterns = [ ]
a971057d036c9e02983eea09d044b3cc1531cccc
526bf18a8695862067c817f432ab197ceb645f39
/migrations/versions/9e01343b62ef_cars_added_fields.py
4721e5e3683b75236d82cd6644df0c3fd3d99c76
[]
no_license
sintimaski/bfs-be
a7fd623911a2220face49a0ef84574f3fd7a09a8
964a9c7e9cc876aaf8b0723d6b3f26bd378c3721
refs/heads/master
2023-08-02T09:00:44.855055
2021-09-22T13:07:01
2021-09-22T13:07:01
339,531,610
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
"""cars added fields Revision ID: 9e01343b62ef Revises: 172fb3a90b3b Create Date: 2020-10-19 07:41:26.893114 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '9e01343b62ef' down_revision = '172fb3a90b3b' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('car_product', sa.Column('trim', sa.Text(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('car_product', 'trim') # ### end Alembic commands ###
9d3fb5e9f0d13d0dac39ac54ebcd262cccdd485c
5219ea9d40a5e6187fc047d0e463ecca47654f72
/project_name/urls.py
baecf57ddd274ae81eaeab21df6fd7ecd4c440b1
[]
no_license
wo0dyn/django-project-template
b5bb7ffec3a0ecd90df34fc60b6c13422e7f9de1
68a0eec61a09486b662cbdf72b13cd5c7b476810
refs/heads/master
2021-01-17T07:24:24.012032
2013-06-07T08:22:49
2013-06-07T08:22:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
from django.conf import settings from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.http import HttpResponse, HttpResponsePermanentRedirect from ratelimitbackend import admin admin.autodiscover() robots = lambda _: HttpResponse('User-agent: *\nDisallow:\n', mimetype='text/plain') favicon = lambda _: HttpResponsePermanentRedirect( '{0}core/img/favicon.png'.format(settings.STATIC_URL) ) urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), ) urlpatterns += patterns('ratelimitbackend.views', url(r'^login/$', 'login', name='login'), url(r'^robots.txt$', robots), url(r'^favicon.ico$', favicon), ) urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
d308e86366cb8b7a3aace35c26d3ce733fd7b08a
3c8701e04900389adb40a46daedb5205d479016c
/oldboy-python18/day08-接口-网络/self/网络编程/06-模拟ssh-加上报头/服务端.py
c4da2e73dc660420a2babf440c3e5581b3ee967d
[]
no_license
huboa/xuexi
681300653b834eaf506f49987dcca83df48e8db7
91287721f188b5e24fbb4ccd63b60a80ed7b9426
refs/heads/master
2020-07-29T16:39:12.770272
2018-09-02T05:39:45
2018-09-02T05:39:45
73,660,825
1
0
null
null
null
null
UTF-8
Python
false
false
1,213
py
####建立连接 import socket import struct import subprocess phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)###tcp phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) ###复用 phone.bind(('127.0.0.1',8080)) phone.listen(5) print('server start...') while True: ###连接循环 conn,client_addr=phone.accept() print(conn,client_addr) ###基于建立的连接,收发消息 while True: try: cmd=conn.recv(1024) if not cmd:break ###针对对linux异常断开就跳出 print('cmd',cmd) res=subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout=res.stdout.read() stderr=res.stderr.read() ##先发报头(固定长度) header=struct.pack('i',len(stdout)+len(stderr)) conn.send(header) ##再发真实数据 conn.send(stdout) conn.send(stderr) except Exception: ##针对windows异常跳出 break ##挂电话 conn.close() ###关机 phone.close()
0de2e57e651606fa39a419b990f8d4e0e9f98820
afd74aa3e8c847d557828115f48f60f696fdfe95
/C38/validate_getattribute.py
9e557d5b18eea803ad61c04b81201237089827d8
[ "MIT" ]
permissive
BetTom/learningpython
f1b957607f92b4acf66aba1d22090f519824822a
47e78041e519ecd2e00de1b32f6416b56ce2616c
refs/heads/master
2021-10-11T09:45:40.608420
2019-01-24T09:44:05
2019-01-24T09:44:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
class CardHolder(object): acctlen = 8 retireage = 59.5 def __init__(self, acct, name, age, addr): self.acct = acct self.name = name self.age = age self.addr = addr def __getattribute__(self, name): superget = object.__getattribute__ if name == 'acct': return superget(self, 'acct')[:-3] + '***' elif name == 'remain': return superget(self, 'retireage') - superget(self, 'age') else: return superget(self, name) def __setattr__(self, name, value): if name == 'name': value = value.lower().replace(' ', '_') elif name == 'age': if value < 0 or value > 150: raise ValueError('invalid age') elif name == 'acct': value = value.replace('-', '') if len(value) != self.acctlen: raise TypeError('invalid acct number') elif name == 'remain': raise TypeError('cannot set remain') self.__dict__[name] = value # object.__setattr__(self, name, value)
9f2a946202864a07e3ec0b8b972e50a4b51e4222
1803b6d5b6cd28f6719c2584f28d581811526d26
/p57_longerthan_specified.py
81fde2b4965d7b30b5967916920792216a7137a5
[]
no_license
augustedupin123/python_practice
0ee2ebd30810f8df82d9e26b8d52328d052e1a5e
5ba1f9e4598d1eaa7f5f6f36efb5f96ca4be18a0
refs/heads/master
2022-12-08T06:15:48.808986
2020-08-31T19:16:15
2020-08-31T19:16:15
266,285,050
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
#Write a python program to find the list of words that are longer #than n from a given list of words. def list_of_words(l,n): listreq = [] l1 = l.split() for i in l1: if len(i)>n: listreq.append(i) return listreq a = input('enter the list') n1 = int(input('enter n')) print (list_of_words(a,n1))
82f465c11b316b7121d832c85659e050bd9a19b4
978c9a1dd27a30b32eceed7f1518a26292695891
/python/2021/codewars/calculateinversions.py
513e292b0b59d1a782154f9bfaeb3538c3fe3baa
[]
no_license
detcitty/100DaysOfCode
4da3407bdc4170f9d042f49e6c94a8469f8808f5
a3d989ea56491f89ece5191d5246166ca01d2602
refs/heads/master
2023-08-09T04:45:51.842305
2023-07-21T17:02:08
2023-07-21T17:02:08
178,976,277
0
0
null
null
null
null
UTF-8
Python
false
false
887
py
# https://www.codewars.com/kata/537529f42993de0e0b00181f/train/python from itertools import combinations def count_inversions(array): locations = [] for count, value in enumerate(array): idx = value - 1 diff = idx - count locations.append(diff) list_combos = list(combinations(array, 2)) # Find the adjacent # Try to sort the list and count the number of times it was sorted for i in range(len(list_combos)): pass return(list_combos) test1 = [1, 2, 3, 4] # => 0 inversions test2 = [1, 3, 2, 4] # => 1 inversion: 2 and 3 test3 = [4, 1, 2, 3] # => 3 inversions: 4 and 1, 4 and 2, 4 and 3 test4 = [4, 3, 2, 1] # => 6 inversions: 4 and 3, 4 and 2, 4 and 1, 3 and 2, 3 and 1, 2 and 1 test5 = [5, 4, 3, 2, 1] # => 6 inversions: 4 and 3, 4 and 2, 4 and 1, 3 and 2, 3 and 1, 2 and 1 print(count_inversions(test1))
eb96d7ba59e15da0b0f51e76d65639b8b35c5cc1
1d277498f96998cbbdc475db17191b7d6dc371ab
/rap/management/commands/play.py
24ebadfb8155bc29f96f1cdd8ee0b3cd3017fe27
[]
no_license
everythingability/rap
cfaccfbac75b7ff2522fc9bc7debb0fd3eec3559
44e550f1ca0ef68c1277d9904bd546c52d51a3e5
refs/heads/master
2022-12-09T07:52:27.961493
2020-03-18T19:11:23
2020-03-18T19:11:23
248,318,782
0
0
null
2022-12-08T03:50:01
2020-03-18T19:02:14
Python
UTF-8
Python
false
false
2,544
py
from django.core.management.base import BaseCommand, CommandError from rap.models import Project, GTRCategory, HECategory, HEResearchArea, Person, Organisation import os, sys import csv, json cats =["Archaeological Theory", "Archaeology Of Human Origins", "Archaeology of Literate Soc.", "Architecture HTP", "Environmental planning", "Heritage Management", "Landscape & Environ. Archaeol.", "Prehistoric Archaeology", "Science-Based Archaeology"] def fixDate(s): # 01/02/2020 to YYYY-MM-DD try: if s !=None: dItems = s.split("/") year = dItems[2] month = dItems[1] day = dItems[0] d = f"{year}-{month}-{day}" return d else: return None except: return None dir_path = os.path.dirname(os.path.realpath(__file__)) class Command(BaseCommand): # python manage.py import_tools file="tools.csv" help = 'meant to help me get started, importing a lot of initial data etc' def add_arguments(self, parser): ''#parser.add_argument('file', type=str) def handle(self, *args, **options): #filename = options['file'] try: #Project, GTRCategory, HECategory, HEResearchArea, Person, Organisation hecategories = HECategory.objects.all() gtrs = GTRCategory.objects.all() heresearchareas = HEResearchArea.objects.order_by('hecategory') previous_category = None for n,heresearcharea in enumerate(heresearchareas): category = heresearcharea.hecategory ######### MAKE THE HEADER if category != previous_category: total = 0 print("\n") print(category) print("'" * 80) c = 0 these_gtrs = heresearcharea.gtrs.all() these_ids = [] for t in these_gtrs: these_ids.append(t.id) #print (these_ids) for gtr in these_gtrs: c = c + Project.objects.filter( gtrs__in=these_ids ).count() #total = total + c print( heresearcharea.name, c) previous_category = category except Exception as err: print(str(err)) raise CommandError( print ('Error on line {}'.format(sys.exc_info()[-1].tb_lineno))) self.stdout.write(self.style.SUCCESS('Done!'))
[ "=" ]
=
958fc768494ec3c7056fc6c7e6555e4a4a2b2dd8
34a633e2d60c5adf0e9f420bcc9587ac66b6766b
/kats/tests/models/test_stlf_model.py
ffe21a735545d553826036ca2afecdb1086247f7
[ "MIT" ]
permissive
kpbMarques/Kats
5cdd7ac61e23218cb5588ef775ca194224abe739
259fdf8f80f628b44f9ee8881f112b1e9fd7a85f
refs/heads/master
2023-07-02T15:55:30.915358
2021-08-10T19:47:44
2021-08-10T19:49:02
394,783,804
1
0
MIT
2021-08-10T21:19:45
2021-08-10T21:19:45
null
UTF-8
Python
false
false
2,529
py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import unittest from unittest import TestCase import pkgutil import io import pandas as pd from kats.consts import TimeSeriesData from kats.models.stlf import STLFModel, STLFParams def load_data(file_name): ROOT = "kats" if "kats" in os.getcwd().lower(): path = "data/" else: path = "kats/data/" data_object = pkgutil.get_data(ROOT, path + file_name) return pd.read_csv(io.BytesIO(data_object), encoding="utf8") class testSTLFModel(TestCase): def setUp(self): DATA = load_data("air_passengers.csv") DATA.columns = ["time", "y"] self.TSData = TimeSeriesData(DATA) DATA_daily = load_data("peyton_manning.csv") DATA_daily.columns = ["time", "y"] self.TSData_daily = TimeSeriesData(DATA_daily) DATA_multi = load_data("multivariate_anomaly_simulated_data.csv") self.TSData_multi = TimeSeriesData(DATA_multi) def test_fit_forecast(self) -> None: for method in ["theta", "prophet", "linear", "quadratic"]: params = STLFParams(m=12, method=method) m = STLFModel(self.TSData, params) m.fit() m.predict(steps=30) m.predict(steps=30, include_history=True) params = STLFParams(m=7, method="theta") m_daily = STLFModel(self.TSData_daily, params) m_daily.fit() m_daily.predict(steps=30) m.plot() m_daily.predict(steps=30, include_history=True) m.plot() # test when m > the length of time series params = STLFParams(m=10000, method="theta") self.assertRaises( ValueError, STLFModel, self.TSData_daily, params, ) def test_others(self) -> None: # test param value error self.assertRaises( ValueError, STLFParams, method="random_model", m=12, ) params = STLFParams(m=12, method="theta") params.validate_params() # test model param self.assertRaises( ValueError, STLFModel, self.TSData_multi, params, ) # test __str__ method m = STLFModel(self.TSData, params) self.assertEqual(m.__str__(), "STLF") if __name__ == "__main__": unittest.main()
0ecab6beb8846f90119b772c94a608c39ed4b8ea
f0417264adb22d064b0b83b5a24ae33208c0a62b
/H2TauTau/scripts/harvest_old.py
e4891de4db0866345f1c6c3f5b38d618c20264e6
[]
no_license
cbernet/cmgtools-lite
6ae1a0bfc45ff03b14195ab0f05b353ffde9cd2e
359209cd4f982cd1b9d8e3cb366de32b7b46113d
refs/heads/htt_9_4_11_cand1_v1
2021-01-18T15:56:14.845371
2019-10-24T14:00:32
2019-10-24T14:00:32
86,693,438
1
0
null
2019-06-07T09:04:05
2017-03-30T11:09:21
Python
UTF-8
Python
false
false
382
py
#!/usr/bin/env python from CMGTools.H2TauTau.harvest.harvest_old import harvest, get_options if __name__ == '__main__': options, args = get_options() src = args[0] harvest(src, subdir_pattern=options.subdir_pattern, tgz_pattern=options.tgz_pattern, apply_ff=options.apply_ff, convert_ntuple=options.convert_ntuple)
489a78e8ffb4d1cf110c0af54cad92b01c4d83b7
f7550c4964dc8f3c59dbcebe39e947bd6a264dba
/9. Generic Trees/take input Tree .py
035d0395b6c16a2194ca74782181cd193b973a60
[]
no_license
Jashwanth-k/Data-Structures-and-Algorithms
db5e2e30932e0a35db578c19ae6cff9f147b7c3d
1ebf9986999a474cb094f3ab04616a46f2887043
refs/heads/main
2023-08-25T02:57:17.394322
2021-10-11T15:27:56
2021-10-11T15:27:56
402,448,718
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
class TreeNode: def __init__(self,data): self.data = data self.children = list() def printTreeDetailed(root): if root is None: return print(root.data,end=':') for child in root.children: if child != None: print(child.data,end=',') print() for child in root.children: printTreeDetailed(child) def takeinput(): print('enter root data') rootdata = int(input()) if rootdata == -1: return root = TreeNode(rootdata) print('enter no of children for:',rootdata) for i in range(int(input())): childNode = takeinput() root.children.append(childNode) return root root = takeinput() printTreeDetailed(root)
bbbb98922649b61e90795c6fd283613ad91677fd
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayTransferThirdpartyBillCreateResponse.py
5eec748f112c295bae2984605e0dddffe8587281
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,301
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayTransferThirdpartyBillCreateResponse(AlipayResponse): def __init__(self): super(AlipayTransferThirdpartyBillCreateResponse, self).__init__() self._order_id = None self._order_type = None self._payment_id = None @property def order_id(self): return self._order_id @order_id.setter def order_id(self, value): self._order_id = value @property def order_type(self): return self._order_type @order_type.setter def order_type(self, value): self._order_type = value @property def payment_id(self): return self._payment_id @payment_id.setter def payment_id(self, value): self._payment_id = value def parse_response_content(self, response_content): response = super(AlipayTransferThirdpartyBillCreateResponse, self).parse_response_content(response_content) if 'order_id' in response: self.order_id = response['order_id'] if 'order_type' in response: self.order_type = response['order_type'] if 'payment_id' in response: self.payment_id = response['payment_id']
db8858d3d0b03c9346f4b028be2f3a4fc6c900e7
37db56765276c0835a2c7e3955c412ce204836c1
/1732.py
a3221be6890f5768a8a8d1a01f9b713a2f3c54bd
[]
no_license
supperllx/LeetCode
9d0a3a7258d1cff6afa6e77f61a2e697834914ca
df3a589ea858218f689fe315d134adc957c3debd
refs/heads/master
2023-05-01T06:57:17.403568
2021-05-19T18:29:25
2021-05-19T18:34:03
288,351,041
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
class Solution: def largestAltitude(self, gain: List[int]) -> int: curHeight = 0 maxHeight = 0 for g in gain: curHeight += g maxHeight = max(maxHeight, curHeight) return maxHeight
4c2f052e47f331249f8d010f61215fab0048cba4
4f2f71beee2fb016550598996e100ce176100dcb
/python/etl/etl.py
9bbd5ca4f54b1b3e9ae65cbba66894797f2bf174
[]
no_license
charles-wangkai/exercism
d2723bd160573b2d3ee9051ff63972e5be900d87
c283a5078e3d0f05ff3d86b2c208ae086d3896a4
refs/heads/master
2023-05-11T13:11:23.776323
2023-04-30T17:40:56
2023-04-30T17:40:56
102,832,444
2
4
null
2020-03-14T15:49:13
2017-09-08T07:31:36
C++
UTF-8
Python
false
false
151
py
def transform(legacy_data): return {letter.lower(): score for score, letters in legacy_data.items() for letter in letters}
69c092950f4db463506ab6a6d11d94f52f9e0535
c5f7019c52cd91a3d9505943b9d866539f2fb0bc
/synapse/models/transport.py
189fc28633f8945726bba6d076022c1b92bc10b3
[ "Apache-2.0" ]
permissive
vertexproject/synapse
ce31699fcb10cb2c870d448915f4d4524247e2d0
1808dff78921b4bfdb451a12ee5d03427a5295b9
refs/heads/master
2023-09-03T23:48:26.584015
2023-08-31T20:34:35
2023-08-31T20:34:35
37,228,107
307
63
Apache-2.0
2023-09-14T21:53:32
2015-06-10T23:29:41
Python
UTF-8
Python
false
false
15,787
py
import synapse.lib.module as s_module class TransportModule(s_module.CoreModule): def getModelDefs(self): modl = { 'types': ( ('transport:direction', ('hugenum', {'modulo': 360}), { 'doc': 'A direction measured in degrees with 0.0 being true North.'}), ('transport:land:vehicle', ('guid', {}), { 'doc': 'An individual vehicle.'}), ('transport:land:registration', ('guid', {}), { 'doc': 'Registration issued to a contact for a land vehicle.'}), ('transport:land:license', ('guid', {}), { 'doc': 'A license to operate a land vehicle issued to a contact.'}), ('transport:air:craft', ('guid', {}), { 'doc': 'An individual aircraft.'}), ('transport:air:tailnum', ('str', {'lower': True, 'strip': True, 'regex': '^[a-z0-9-]{2,}$'}), { 'doc': 'An aircraft registration number or military aircraft serial number.', 'ex': 'ff023'}), ('transport:air:flightnum', ('str', {'lower': True, 'strip': True, 'replace': ((' ', ''),), 'regex': '^[a-z]{2}[0-9]{1,4}$'}), { 'doc': 'A commercial flight designator including airline and serial.', 'ex': 'ua2437'}), ('transport:air:telem', ('guid', {}), { 'doc': 'A telemetry sample from an aircraft in transit.'}), ('transport:air:flight', ('guid', {}), { 'doc': 'An individual instance of a flight.'}), ('transport:air:occupant', ('guid', {}), { 'doc': 'An occupant of a specific flight.'}), ('transport:air:port', ('str', {'lower': True}), { 'doc': 'An IATA assigned airport code.'}), ('transport:sea:vessel', ('guid', {}), { 'doc': 'An individual sea vessel.'}), ('transport:sea:mmsi', ('str', {'regex': '[0-9]{9}'}), { 'doc': 'A Maritime Mobile Service Identifier'}), ('transport:sea:imo', ('str', {'lower': True, 'strip': True, 'replace': ((' ', ''),), 'regex': '^imo[0-9]{7}$'}), { 'doc': 'An International Maritime Organization registration number.'}), ('transport:sea:telem', ('guid', {}), { 'doc': 'A telemetry sample from a vessel in transit.'}), # TODO a few more items to plumb eventually # ('transport:sea:hin', # ('transport:sea:port', ), 'forms': ( ('transport:land:license', {}, ( ('id', ('str', {'strip': True}), { 'doc': 'The license ID.'}), # TODO type ( drivers license, commercial trucking, etc? ) ('contact', ('ps:contact', {}), { 'doc': 'The contact info of the registrant.'}), ('issued', ('time', {}), { 'doc': 'The time the license was issued.'}), ('expires', ('time', {}), { 'doc': 'The time the license expires.'}), ('issuer', ('ou:org', {}), { 'doc': 'The org which issued the license.'}), ('issuer:name', ('ou:name', {}), { 'doc': 'The name of the org which issued the license.'}), )), ('transport:land:registration', {}, ( ('id', ('str', {'strip': True}), { 'doc': 'The vehicle registration ID or license plate.'}), ('contact', ('ps:contact', {}), { 'doc': 'The contact info of the registrant.'}), ('license', ('transport:land:license', {}), { 'doc': 'The license used to register the vehicle.'}), ('issued', ('time', {}), { 'doc': 'The time the vehicle registration was issued.'}), ('expires', ('time', {}), { 'doc': 'The time the vehicle registration expires.'}), ('vehicle', ('transport:land:vehicle', {}), { 'doc': 'The vehicle being registered.'}), ('issuer', ('ou:org', {}), { 'doc': 'The org which issued the registration.'}), ('issuer:name', ('ou:name', {}), { 'doc': 'The name of the org which issued the registration.'}), )), ('transport:land:vehicle', {}, ( ('serial', ('str', {'strip': True}), { 'doc': 'The serial number or VIN of the vehicle.'}), ('built', ('time', {}), { 'doc': 'The date the vehicle was constructed.'}), ('make', ('ou:name', {}), { 'doc': 'The make of the vehicle.'}), ('model', ('str', {'lower': True, 'onespace': True}), { 'doc': 'The model of the vehicle.'}), ('registration', ('transport:land:registration', {}), { 'doc': 'The current vehicle registration information.'}), ('owner', ('ps:contact', {}), { 'doc': 'The contact info of the owner of the vehicle.'}), )), ('transport:air:craft', {}, ( ('tailnum', ('transport:air:tailnum', {}), { 'doc': 'The aircraft tail number.'}), ('type', ('str', {'lower': True, 'strip': True}), { 'doc': 'The type of aircraft.'}), ('built', ('time', {}), { 'doc': 'The date the aircraft was constructed.'}), ('make', ('str', {'lower': True, 'strip': True}), { 'doc': 'The make of the aircraft.'}), ('model', ('str', {'lower': True, 'strip': True}), { 'doc': 'The model of the aircraft.'}), ('serial', ('str', {'strip': True}), { 'doc': 'The serial number of the aircraft.'}), ('operator', ('ps:contact', {}), { 'doc': 'Contact info representing the person or org that operates the aircraft.'}), )), ('transport:air:port', {}, ( ('name', ('str', {'lower': True, 'onespace': True}), { 'doc': 'The name of the airport'}), ('place', ('geo:place', {}), { 'doc': 'The place where the IATA airport code is assigned.'}), )), ('transport:air:tailnum', {}, ( ('loc', ('loc', {}), { 'doc': 'The geopolitical location that the tailnumber is allocated to.'}), ('type', ('str', {'lower': True, 'strip': True}), { 'doc': 'A type which may be specific to the country prefix.'}), )), ('transport:air:flightnum', {}, ( ('carrier', ('ou:org', {}), { 'doc': 'The org which operates the given flight number.'}), ('to:port', ('transport:air:port', {}), { 'doc': 'The most recently registered destination for the flight number.'}), ('from:port', ('transport:air:port', {}), { 'doc': 'The most recently registered origin for the flight number.'}), ('stops', ('array', {'type': 'transport:air:port'}), { 'doc': 'An ordered list of aiport codes for the flight segments.'}), )), ('transport:air:flight', {}, ( ('num', ('transport:air:flightnum', {}), { 'doc': 'The flight number of this flight.'}), ('scheduled:departure', ('time', {}), { 'doc': 'The time this flight was originally scheduled to depart'}), ('scheduled:arrival', ('time', {}), { 'doc': 'The time this flight was originally scheduled to arrive'}), ('departed', ('time', {}), { 'doc': 'The time this flight departed'}), ('arrived', ('time', {}), { 'doc': 'The time this flight arrived'}), ('carrier', ('ou:org', {}), { 'doc': 'The org which operates the given flight number.'}), ('craft', ('transport:air:craft', {}), { 'doc': 'The aircraft that flew this flight.'}), ('tailnum', ('transport:air:tailnum', {}), { 'doc': 'The tail/registration number at the time the aircraft flew this flight.'}), ('to:port', ('transport:air:port', {}), { 'doc': 'The destination airport of this flight.'}), ('from:port', ('transport:air:port', {}), { 'doc': 'The origin airport of this flight.'}), ('stops', ('array', {'type': 'transport:air:port'}), { 'doc': 'An ordered list of airport codes for stops which occurred during this flight.'}), ('cancelled', ('bool', {}), { 'doc': 'Set to true for cancelled flights.'}), )), ('transport:air:telem', {}, ( ('flight', ('transport:air:flight', {}), { 'doc': 'The flight being measured.'}), ('latlong', ('geo:latlong', {}), { 'doc': 'The lat/lon of the aircraft at the time.'}), ('loc', ('loc', {}), { 'doc': 'The location of the aircraft at the time.'}), ('place', ('geo:place', {}), { 'doc': 'The place that the lat/lon geocodes to.'}), ('accuracy', ('geo:dist', {}), { 'doc': 'The horizontal accuracy of the latlong sample.'}), ('course', ('transport:direction', {}), { 'doc': 'The direction, in degrees from true North, that the aircraft is traveling.'}), ('heading', ('transport:direction', {}), { 'doc': 'The direction, in degrees from true North, that the nose of the aircraft is pointed.'}), ('speed', ('velocity', {}), { 'doc': 'The ground speed of the aircraft at the time.'}), ('airspeed', ('velocity', {}), { 'doc': 'The air speed of the aircraft at the time.'}), ('verticalspeed', ('velocity', {'relative': True}), { 'doc': 'The relative vertical speed of the aircraft at the time.'}), ('altitude', ('geo:altitude', {}), { 'doc': 'The altitude of the aircraft at the time.'}), ('altitude:accuracy', ('geo:dist', {}), { 'doc': 'The vertical accuracy of the altitude measurement.'}), ('time', ('time', {}), { 'doc': 'The time the telemetry sample was taken.'}) )), ('transport:air:occupant', {}, ( ('type', ('str', {'lower': True}), { 'doc': 'The type of occupant such as pilot, crew or passenger.'}), ('flight', ('transport:air:flight', {}), { 'doc': 'The flight that the occupant was aboard.'}), ('seat', ('str', {'lower': True}), { 'doc': 'The seat assigned to the occupant'}), ('contact', ('ps:contact', {}), { 'doc': 'The contact information of the occupant.'}), )), # TODO ais numbers ('transport:sea:vessel', {}, ( ('imo', ('transport:sea:imo', {}), { 'doc': 'The International Maritime Organization number for the vessel.'}), ('name', ('str', {'lower': True, 'onespace': True}), { 'doc': 'The name of the vessel'}), ('length', ('geo:dist', {}), { 'doc': 'The official overall vessel length'}), ('beam', ('geo:dist', {}), { 'doc': 'The official overall vessel beam'}), ('flag', ('iso:3166:cc', {}), { 'doc': 'The country the vessel is flagged to.'}), ('mmsi', ('transport:sea:mmsi', {}), { 'doc': 'The Maritime Mobile Service Identifier assigned to the vessel.'}), ('built', ('time', {}), { 'doc': 'The year the vessel was constructed.'}), ('make', ('str', {'lower': True, 'strip': True}), { 'doc': 'The make of the vessel.'}), ('model', ('str', {'lower': True, 'strip': True}), { 'doc': 'The model of the vessel.'}), ('operator', ('ps:contact', {}), { 'doc': 'The contact information of the operator.'}), # TODO tonnage / gross tonnage? )), ('transport:sea:telem', {}, ( ('vessel', ('transport:sea:vessel', {}), { 'doc': 'The vessel being measured.'}), ('time', ('time', {}), { 'doc': 'The time the telemetry was sampled.'}), ('latlong', ('geo:latlong', {}), { 'doc': 'The lat/lon of the vessel at the time.'}), ('loc', ('loc', {}), { 'doc': 'The location of the vessel at the time.'}), ('place', ('geo:place', {}), { 'doc': 'The place that the lat/lon geocodes to.'}), ('accuracy', ('geo:dist', {}), { 'doc': 'The horizontal accuracy of the latlong sample.'}), ('course', ('transport:direction', {}), { 'doc': 'The direction, in degrees from true North, that the vessel is traveling.'}), ('heading', ('transport:direction', {}), { 'doc': 'The direction, in degrees from true North, that the bow of the vessel is pointed.'}), ('speed', ('velocity', {}), { 'doc': 'The speed of the vessel at the time.'}), ('draft', ('geo:dist', {}), { 'doc': 'The keel depth at the time.'}), ('airdraft', ('geo:dist', {}), { 'doc': 'The maximum height of the ship from the waterline.'}), ('destination', ('geo:place', {}), { 'doc': 'The fully resolved destination that the vessel has declared.'}), ('destination:name', ('geo:name', {}), { 'doc': 'The name of the destination that the vessel has declared.'}), ('destination:eta', ('time', {}), { 'doc': 'The estimated time of arrival that the vessel has declared.'}), )), ), } return (('transport', modl), )
cc5b182b31c15e0834f851a86264418069dace1b
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/mmtbx/refinement/tst_occupancy_selections.py
00e45d369bbd20f50d9ca7e271fc4920cf51cc44
[ "BSD-3-Clause-LBNL", "BSD-3-Clause" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
67,722
py
from __future__ import absolute_import, division, print_function from mmtbx.monomer_library import pdb_interpretation from mmtbx.refinement.occupancies import occupancy_selections from mmtbx.command_line import fmodel import mmtbx.model from iotbx import file_reader import iotbx.pdb import iotbx.phil from libtbx.test_utils import approx_equal, Exception_expected from libtbx.utils import format_cpu_times, null_out, Sorry import libtbx.load_env from six.moves import cStringIO as StringIO import os import sys from six.moves import zip def extract_serials(atoms, occ_groups): r = [] # for atom in atoms: # assert atom.serial == atom.i_seq, "%s %d" % (atom.serial, atom.i_seq) for i in occ_groups: ri = [] for j in i: ri.append([int(atoms[k].serial) for k in j]) r.append(ri) return r def make_up_other_constrained_groups_obj(selections): result = [] class foo: def __init__(self, selection): self.selection=selection for sel in selections: result.append( foo(selection = sel) ) return result def get_model(file_name, log): pdb_interpretation_params = iotbx.phil.parse( input_string=pdb_interpretation.grand_master_phil_str, process_includes=True).extract() pdb_interpretation_params.pdb_interpretation.sort_atoms=False pdb_inp = iotbx.pdb.input(file_name=file_name) return mmtbx.model.manager( model_input = pdb_inp, process_input = True, pdb_interpretation_params=pdb_interpretation_params, stop_for_unknowns = False, log=log) def get_model_str(strings, log): pdb_interpretation_params = iotbx.phil.parse( input_string=pdb_interpretation.grand_master_phil_str, process_includes=True).extract() pdb_interpretation_params.pdb_interpretation.sort_atoms=False pdb_inp = iotbx.pdb.input(lines=strings, source_info=None) return mmtbx.model.manager( model_input = pdb_inp, process_input = True, pdb_interpretation_params=pdb_interpretation_params, stop_for_unknowns = False, log=log) def exercise_00(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) base = [ [[2],[3]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[24,25,26,27],[28,29,30,31]] ] # default res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) target = base[:] target.insert(3, [[21]]) target.insert(4, [[23]]) assert approx_equal(res, target) # default + add water res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) base_21_23 = target[:] target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 1 res = occupancy_selections( model = model, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and not (altloc A or altloc B)']) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0]], [[1]], [[4]], [[5]]]) assert approx_equal(res, target) res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and not (altloc A or altloc B)']) res = extract_serials(model.pdb_atoms, res) target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 2 other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name S or name O1)'], ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, as_flex_arrays = False, other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0, 1]], [[4, 5]]]) assert approx_equal(res, target) other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name S or name O1)'], ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False, other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 3 other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and (name S or name O1)'], other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0]], [[1]], [[4, 5]]]) assert approx_equal(res, target) def exercise_01(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_h.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[0,1,2,3,4,10,12,14,16,18,20,22], [5,6,7,8,9,11,13,15,17,19,21,23]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_02(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/occ_mix1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[0,1,2,3,4,5,6,7,8,9,10,11,12], [14,15,16,17,18,19,20,21,22,23,24,25,26]], [[13],[27]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_03(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_hd.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[7]], [[8]], [[9],[12]], [[10],[13]], [[11],[14]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_05(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_lys_arg_ser_tyr_neutron_hd.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[9],[12]], [[10],[13]], [[11],[14]], [[33],[37]], [[34],[38]], [[35],[39]], [[36],[40]], [[59],[65]], [[60],[66]], [[61],[67]], [[62],[68]], [[63],[69]], [[64],[70]], [[80],[82]], [[81],[83]], [[103],[105]], [[104],[106]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_06(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/NAD_594_HD.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[62]], [[113]], [[65],[77]], [[66],[78]], [[67],[79]], [[68],[80]], [[69],[81]], [[70],[82]], [[71],[83]], [[72],[84]], [[73],[85]], [[74],[86]], [[75],[87]], [[76],[88]], [[124],[127]],[[125],[128]],[[126],[129]]] res = occupancy_selections( model = model, as_flex_arrays = False) assert approx_equal(res, base) def exercise_07(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[0, 1, 2, 3, 4]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_08(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answers = [ [ [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[0,1,2,3,4,5]] ], [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[6,7,8,9,10,11,12,13,14,15]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[16,17]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[18,19,20]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[23]], [[24,25,26,27],[28,29,30,31]], [[21]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[22]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23,24,25,26,27,28,29,30,31]] ], [ [[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]] ] ] group_selections = ['resseq 0', 'resseq 1', 'resseq 2', 'resseq 3', 'resseq 4', 'resseq 5', 'resseq 6', 'resseq 0:6'] for group_selection, answer in zip(group_selections, answers): other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ [group_selection] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_09(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answers = [ [ [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[0]], [[1]], [[2]], [[3]], [[4]], [[5]] ], [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[6]], [[7]], [[8]], [[9]], [[10]], [[11]], [[12]], [[13]], [[14]], [[15]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[16]], [[17]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[18]], [[19]], [[20]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[23]], [[24,25,26,27],[28,29,30,31]], [[21]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[22]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24]], [[25]], [[26]], [[27]], [[28]], [[29]], [[30]], [[31]] ] ] individual_selections = ['resseq 0', 'resseq 1', 'resseq 2', 'resseq 3', 'resseq 4', 'resseq 5', 'resseq 6', 'resseq 0:6'] for individual_selection, answer in zip(individual_selections, answers): result = occupancy_selections( model = model, other_individual_selection_strings = [individual_selection], as_flex_arrays = False) assert approx_equal(result, answer) def exercise_10(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) e = None try: other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, other_individual_selection_strings = ['resseq 0'], as_flex_arrays = False) except Exception as e: pass assert e.__str__() == "Duplicate selection: same atoms selected for individual and group occupancy refinement." def exercise_11(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) e = None try: result = occupancy_selections( model = model, remove_selection = ['resseq 0'], other_individual_selection_strings = ['resseq 0'], as_flex_arrays = False) except Exception as e: pass assert e.__str__() == "Duplicate selection: occupancies of same atoms selected to be fixed and to be refined." e = None try: other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, remove_selection = ['resseq 0'], as_flex_arrays = False) except Exception as e: pass assert e.__str__() == "Duplicate selection: occupancies of same atoms selected to be fixed and to be refined." def exercise_12(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[4],[5]], [[16],[17]], [[21]], [[23,24,25,26,27,28,29,30,31]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 6'] ]) result = occupancy_selections( model = model, remove_selection = ['resseq 1'], other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) # answer = [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24]], [[25]], [[26]], [[27]], [[28]], [[29]], [[30]], [[31]] ] result = occupancy_selections( model = model, remove_selection = ['resseq 1'], other_individual_selection_strings = ['resseq 6'], as_flex_arrays = False) assert approx_equal(result, answer) def exercise_13(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[10]], [[0],[1]], [[2],[3]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name N','chain A and resseq 1 and name CA'], ['chain A and resseq 1 and name C','chain A and resseq 1 and name O'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_14(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[10]], [[0,1,2],[3,4]], [[5],[6]], [[7]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and (name N or name CA or name C)', 'chain A and resseq 1 and (name O or name CB)'], ['chain A and resseq 1 and name CG','chain A and resseq 1 and name CD'], ['chain A and resseq 1 and name CE'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_15(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[0,1,2],[10]], [[5,7]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and (name N or name CA or name C)', 'chain S and resseq 1'], ['chain A and resseq 1 and name CG or chain A and resseq 1 and name CE'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_16(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A', 'chain A and resseq 1 and name NZ and altloc B', 'chain S and resseq 1'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_17(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8,9,10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A or chain A and resseq 1 and name NZ and altloc B or chain S and resseq 1'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_18(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A','chain A and resseq 1 and name NZ and altloc B','chain S and resseq 1 and altloc C']] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_19(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] tmp = "chain A and resseq 1 and name XX and altloc A" other_constrained_groups = make_up_other_constrained_groups_obj( selections = [[ tmp, 'chain A and resseq 1 and name NZ and altloc B', 'chain S and resseq 1']]) try: result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) except Exception as e: pass assert str(e) == \ 'Selection string results in empty selection (selects no atoms): "%s"' \ % tmp def exercise_20(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ile_2conf_h.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]] ] result = occupancy_selections( model = model, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_21(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_3.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[2], [3]], [[6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], [[16], [17]], [[21]], [[23]], [[24, 25, 26, 27], [28, 29, 30, 31]], [[36]], [[47]], [[48]], [[49]], [[50]], [[51]], [[53]], [[56, 57, 58, 59]], [[60, 61, 62, 63]], [[64, 65, 66, 67, 68]], [[37], [40]], [[38], [41]], [[39], [42]], [[43, 44, 45, 46]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_22(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_4.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[0, 1, 2, 3, 8, 9, 10, 11, 12], [4, 5, 6, 7, 13, 14, 15, 16, 17]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_23(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_5.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[1, 2, 3, 4, 5, 6]], [[7, 8, 9, 10, 11], [12, 13, 14, 15, 16]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_24(verbose): pdb_str1="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N AALA A 9 3.452 6.807 3.508 0.19 9.33 A N ATOM 1 CA AALA A 9 4.572 6.204 4.211 0.19 9.82 A C ATOM 2 C AALA A 9 4.165 5.990 5.664 0.19 10.34 A C ATOM 3 O AALA A 9 3.000 6.165 6.021 0.19 10.96 A O ATOM 4 CB AALA A 9 5.792 7.098 4.116 0.19 10.31 A C ATOM 5 H AALA A 9 3.466 7.667 3.487 0.19 8.78 A H ATOM 6 HA AALA A 9 4.802 5.351 3.810 0.19 9.23 A H ATOM 7 HB1AALA A 9 6.533 6.686 4.588 0.19 9.91 A H ATOM 8 HB2AALA A 9 6.031 7.221 3.184 0.19 9.91 A H ATOM 9 HB3AALA A 9 5.594 7.960 4.515 0.19 9.91 A H ATOM 10 N BALA A 9 3.348 6.697 3.518 0.28 8.28 A N ATOM 11 CA BALA A 9 4.461 6.052 4.195 0.28 9.14 A C ATOM 12 C BALA A 9 4.138 5.964 5.683 0.28 9.84 A C ATOM 13 O BALA A 9 3.003 6.215 6.089 0.28 10.68 A O ATOM 14 CB BALA A 9 5.726 6.829 3.952 0.28 9.20 A C ATOM 15 H BALA A 9 3.422 7.551 3.454 0.28 8.78 A H ATOM 16 HA BALA A 9 4.597 5.156 3.849 0.28 9.23 A H ATOM 17 HB1BALA A 9 6.465 6.395 4.406 0.28 9.91 A H ATOM 18 HB2BALA A 9 5.907 6.863 3.000 0.28 9.91 A H ATOM 19 HB3BALA A 9 5.623 7.731 4.294 0.28 9.91 A H ATOM 20 N CALA A 9 3.608 6.763 3.402 0.28 8.32 A N ATOM 21 CA CALA A 9 4.617 6.060 4.177 0.28 9.56 A C ATOM 22 C CALA A 9 4.219 6.081 5.651 0.28 10.15 A C ATOM 23 O CALA A 9 3.126 6.528 6.006 0.28 10.64 A O ATOM 24 CB CALA A 9 5.981 6.684 3.973 0.28 10.39 A C ATOM 25 H CALA A 9 3.801 7.579 3.210 0.28 8.78 A H ATOM 26 HA CALA A 9 4.671 5.139 3.876 0.28 9.23 A H ATOM 27 HB1CALA A 9 6.639 6.202 4.497 0.28 9.91 A H ATOM 28 HB2CALA A 9 6.220 6.639 3.034 0.28 9.91 A H ATOM 29 HB3CALA A 9 5.959 7.611 4.257 0.28 9.91 A H ATOM 30 N DALA A 9 3.518 6.930 3.530 0.25 8.78 A N ATOM 31 CA DALA A 9 4.639 6.333 4.232 0.25 9.23 A C ATOM 32 C DALA A 9 4.203 6.093 5.674 0.25 10.10 A C ATOM 33 O DALA A 9 3.051 6.346 6.031 0.25 10.72 A O ATOM 34 CB DALA A 9 5.837 7.255 4.177 0.25 9.91 A C ATOM 35 H DALA A 9 3.490 7.789 3.568 0.25 8.78 A H ATOM 36 HA DALA A 9 4.898 5.494 3.819 0.25 9.23 A H ATOM 37 HB1DALA A 9 6.581 6.848 4.648 0.25 9.91 A H ATOM 38 HB2DALA A 9 6.086 7.408 3.252 0.25 9.91 A H ATOM 39 HB3DALA A 9 5.614 8.101 4.595 0.25 9.91 A H ATOM 40 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 41 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 42 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 43 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 44 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A H ATOM 45 CB AVAL A 10 5.994 4.806 8.722 0.21 14.17 A C ATOM 46 CG1AVAL A 10 6.640 3.699 7.889 0.21 14.17 A C ATOM 47 CG2AVAL A 10 7.005 5.815 9.197 0.21 15.20 A C ATOM 48 H AVAL A 10 5.926 5.421 6.269 0.19 11.13 A H ATOM 49 HB AVAL A 10 5.616 4.404 9.520 0.21 14.91 A H ATOM 50 HG11AVAL A 10 7.358 3.289 8.396 0.21 16.29 A H ATOM 51 HG12AVAL A 10 5.975 3.028 7.671 0.21 16.29 A H ATOM 52 HG13AVAL A 10 6.998 4.077 7.070 0.21 16.29 A H ATOM 53 HG21AVAL A 10 7.707 5.363 9.691 0.21 15.63 A H ATOM 54 HG22AVAL A 10 7.391 6.271 8.433 0.21 15.63 A H ATOM 55 HG23AVAL A 10 6.570 6.462 9.774 0.21 15.63 A H ATOM 56 CB BVAL A 10 6.135 4.987 8.645 0.79 14.91 A C ATOM 57 CG1BVAL A 10 6.081 5.228 10.144 0.79 16.28 A C ATOM 58 CG2BVAL A 10 6.351 3.507 8.360 0.79 15.63 A C ATOM 59 H BVAL A 10 5.928 5.441 6.263 0.28 11.13 A H ATOM 60 HB BVAL A 10 6.879 5.504 8.299 0.79 14.91 A H ATOM 61 HG11BVAL A 10 6.902 4.913 10.552 0.79 16.29 A H ATOM 62 HG12BVAL A 10 5.978 6.177 10.316 0.79 16.29 A H ATOM 63 HG13BVAL A 10 5.328 4.748 10.522 0.79 16.29 A H ATOM 64 HG21BVAL A 10 7.156 3.205 8.809 0.79 15.63 A H ATOM 65 HG22BVAL A 10 5.590 3.000 8.685 0.79 15.63 A H ATOM 66 HG23BVAL A 10 6.445 3.372 7.404 0.79 15.63 A H ATOM 67 H CVAL A 10 5.907 5.353 6.270 0.28 11.13 A H ATOM 68 H DVAL A 10 5.903 5.349 6.260 0.25 11.13 A H TER END """ pdb_str2="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N AALA A 9 3.452 6.807 3.508 0.19 9.33 A N ATOM 1 CA AALA A 9 4.572 6.204 4.211 0.19 9.82 A C ATOM 2 C AALA A 9 4.165 5.990 5.664 0.19 10.34 A C ATOM 3 O AALA A 9 3.000 6.165 6.021 0.19 10.96 A O ATOM 4 CB AALA A 9 5.792 7.098 4.116 0.19 10.31 A C ATOM 5 D AALA A 9 3.466 7.667 3.487 0.19 8.78 A D ATOM 6 DA AALA A 9 4.802 5.351 3.810 0.19 9.23 A D ATOM 7 DB1AALA A 9 6.533 6.686 4.588 0.19 9.91 A D ATOM 8 DB2AALA A 9 6.031 7.221 3.184 0.19 9.91 A D ATOM 9 DB3AALA A 9 5.594 7.960 4.515 0.19 9.91 A D ATOM 10 N BALA A 9 3.348 6.697 3.518 0.28 8.28 A N ATOM 11 CA BALA A 9 4.461 6.052 4.195 0.28 9.14 A C ATOM 12 C BALA A 9 4.138 5.964 5.683 0.28 9.84 A C ATOM 13 O BALA A 9 3.003 6.215 6.089 0.28 10.68 A O ATOM 14 CB BALA A 9 5.726 6.829 3.952 0.28 9.20 A C ATOM 15 D BALA A 9 3.422 7.551 3.454 0.28 8.78 A D ATOM 16 DA BALA A 9 4.597 5.156 3.849 0.28 9.23 A D ATOM 17 DB1BALA A 9 6.465 6.395 4.406 0.28 9.91 A D ATOM 18 DB2BALA A 9 5.907 6.863 3.000 0.28 9.91 A D ATOM 19 DB3BALA A 9 5.623 7.731 4.294 0.28 9.91 A D ATOM 20 N CALA A 9 3.608 6.763 3.402 0.28 8.32 A N ATOM 21 CA CALA A 9 4.617 6.060 4.177 0.28 9.56 A C ATOM 22 C CALA A 9 4.219 6.081 5.651 0.28 10.15 A C ATOM 23 O CALA A 9 3.126 6.528 6.006 0.28 10.64 A O ATOM 24 CB CALA A 9 5.981 6.684 3.973 0.28 10.39 A C ATOM 25 D CALA A 9 3.801 7.579 3.210 0.28 8.78 A D ATOM 26 DA CALA A 9 4.671 5.139 3.876 0.28 9.23 A D ATOM 27 DB1CALA A 9 6.639 6.202 4.497 0.28 9.91 A D ATOM 28 DB2CALA A 9 6.220 6.639 3.034 0.28 9.91 A D ATOM 29 DB3CALA A 9 5.959 7.611 4.257 0.28 9.91 A D ATOM 30 N DALA A 9 3.518 6.930 3.530 0.25 8.78 A N ATOM 31 CA DALA A 9 4.639 6.333 4.232 0.25 9.23 A C ATOM 32 C DALA A 9 4.203 6.093 5.674 0.25 10.10 A C ATOM 33 O DALA A 9 3.051 6.346 6.031 0.25 10.72 A O ATOM 34 CB DALA A 9 5.837 7.255 4.177 0.25 9.91 A C ATOM 35 D DALA A 9 3.490 7.789 3.568 0.25 8.78 A D ATOM 36 DA DALA A 9 4.898 5.494 3.819 0.25 9.23 A D ATOM 37 DB1DALA A 9 6.581 6.848 4.648 0.25 9.91 A D ATOM 38 DB2DALA A 9 6.086 7.408 3.252 0.25 9.91 A D ATOM 39 DB3DALA A 9 5.614 8.101 4.595 0.25 9.91 A D ATOM 40 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 41 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 42 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 43 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 44 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A D ATOM 45 CB AVAL A 10 5.994 4.806 8.722 0.21 14.17 A C ATOM 46 CG1AVAL A 10 6.640 3.699 7.889 0.21 14.17 A C ATOM 47 CG2AVAL A 10 7.005 5.815 9.197 0.21 15.20 A C ATOM 48 D AVAL A 10 5.926 5.421 6.269 0.19 11.13 A D ATOM 49 DB AVAL A 10 5.616 4.404 9.520 0.21 14.91 A D ATOM 50 DG11AVAL A 10 7.358 3.289 8.396 0.21 16.29 A D ATOM 51 DG12AVAL A 10 5.975 3.028 7.671 0.21 16.29 A D ATOM 52 DG13AVAL A 10 6.998 4.077 7.070 0.21 16.29 A D ATOM 53 DG21AVAL A 10 7.707 5.363 9.691 0.21 15.63 A D ATOM 54 DG22AVAL A 10 7.391 6.271 8.433 0.21 15.63 A D ATOM 55 DG23AVAL A 10 6.570 6.462 9.774 0.21 15.63 A D ATOM 56 CB BVAL A 10 6.135 4.987 8.645 0.79 14.91 A C ATOM 57 CG1BVAL A 10 6.081 5.228 10.144 0.79 16.28 A C ATOM 58 CG2BVAL A 10 6.351 3.507 8.360 0.79 15.63 A C ATOM 59 D BVAL A 10 5.928 5.441 6.263 0.28 11.13 A D ATOM 60 DB BVAL A 10 6.879 5.504 8.299 0.79 14.91 A D ATOM 61 DG11BVAL A 10 6.902 4.913 10.552 0.79 16.29 A D ATOM 62 DG12BVAL A 10 5.978 6.177 10.316 0.79 16.29 A D ATOM 63 DG13BVAL A 10 5.328 4.748 10.522 0.79 16.29 A D ATOM 64 DG21BVAL A 10 7.156 3.205 8.809 0.79 15.63 A D ATOM 65 DG22BVAL A 10 5.590 3.000 8.685 0.79 15.63 A D ATOM 66 DG23BVAL A 10 6.445 3.372 7.404 0.79 15.63 A D ATOM 67 D CVAL A 10 5.907 5.353 6.270 0.28 11.13 A D ATOM 68 D DVAL A 10 5.903 5.349 6.260 0.25 11.13 A D TER END """ if (verbose): log = sys.stdout else: log = StringIO() for pdb_str in [pdb_str1, pdb_str2]: model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = \ [[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 48], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 59], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 67], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 68]], [[45, 46, 47, 49, 50, 51, 52, 53, 54, 55], [56, 57, 58, 60, 61, 62, 63, 64, 65, 66]]] assert approx_equal(res, answer) def exercise_25(verbose): pdb_str="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N ALA A 9 3.452 6.807 3.508 1.00 9.33 A N ATOM 1 CA ALA A 9 4.572 6.204 4.211 1.00 9.82 A C ATOM 2 C ALA A 9 4.165 5.990 5.664 1.00 10.34 A C ATOM 3 O ALA A 9 3.000 6.165 6.021 1.00 10.96 A O ATOM 4 CB ALA A 9 5.792 7.098 4.116 1.00 10.31 A C ATOM 5 HA ALA A 9 4.802 5.351 3.810 1.00 9.23 A H ATOM 6 HB1 ALA A 9 6.533 6.686 4.588 1.00 9.91 A H ATOM 7 HB2 ALA A 9 6.031 7.221 3.184 1.00 9.91 A H ATOM 8 HB3 ALA A 9 5.594 7.960 4.515 1.00 9.91 A H ATOM 9 H AALA A 9 3.466 7.667 3.487 0.40 8.78 A H ATOM 10 D BALA A 9 3.466 7.667 3.487 0.60 8.78 A D ATOM 11 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 12 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 13 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 14 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 15 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A H ATOM 16 CB VAL A 10 5.994 4.806 8.722 1.00 14.17 A C ATOM 17 CG1 VAL A 10 6.640 3.699 7.889 1.00 14.17 A C ATOM 18 CG2 VAL A 10 7.005 5.815 9.197 1.00 15.20 A C ATOM 19 HB VAL A 10 5.616 4.404 9.520 1.00 14.91 A H ATOM 20 HG11 VAL A 10 7.358 3.289 8.396 1.00 16.29 A H ATOM 21 HG12 VAL A 10 5.975 3.028 7.671 1.00 16.29 A H ATOM 22 HG13 VAL A 10 6.998 4.077 7.070 1.00 16.29 A H ATOM 23 HG21 VAL A 10 7.707 5.363 9.691 1.00 15.63 A H ATOM 24 HG22 VAL A 10 7.391 6.271 8.433 1.00 15.63 A H ATOM 25 HG23 VAL A 10 6.570 6.462 9.774 1.00 15.63 A H ATOM 26 H AVAL A 10 5.926 5.421 6.269 0.30 11.13 A H ATOM 27 D BVAL A 10 5.926 5.421 6.269 0.70 11.13 A D TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[9],[10]], [[26],[27]] ] assert approx_equal(res, answer) def exercise_26(verbose): pdb_str="""\ CRYST1 71.040 72.017 72.362 90.00 100.48 90.00 C 1 2 1 ATOM 96 N PRO L 5 2.689 13.877 15.387 1.00 13.65 N ATOM 97 CA PRO L 5 1.824 14.762 14.572 1.00 17.31 C ATOM 98 C PRO L 5 0.338 14.432 14.641 1.00 20.79 C ATOM 99 O PRO L 5 -0.466 15.376 14.642 1.00 20.37 O ATOM 100 CB PRO L 5 2.330 14.534 13.143 1.00 20.71 C ATOM 101 CG PRO L 5 3.772 14.184 13.326 1.00 20.25 C ATOM 102 CD PRO L 5 3.871 13.403 14.633 1.00 16.57 C ATOM 103 HA PRO L 5 1.981 15.805 14.846 1.00 17.31 H ATOM 104 HB2 PRO L 5 1.780 13.709 12.691 1.00 20.71 H ATOM 105 HB3 PRO L 5 2.220 15.447 12.558 1.00 20.71 H ATOM 106 HG2 PRO L 5 4.103 13.567 12.492 1.00 20.25 H ATOM 107 HG3 PRO L 5 4.363 15.098 13.382 1.00 20.25 H ATOM 108 HD2 PRO L 5 3.805 12.331 14.446 1.00 16.57 H ATOM 109 HD3 PRO L 5 4.791 13.666 15.154 1.00 16.57 H ATOM 110 N LEU L 6 -0.052 13.175 14.677 1.00 13.93 N ATOM 111 CA LEU L 6 -1.446 12.769 14.667 1.00 15.53 C ATOM 112 C LEU L 6 -2.079 12.634 16.029 1.00 17.57 C ATOM 113 O LEU L 6 -3.268 12.311 16.111 1.00 18.17 O ATOM 114 CB LEU L 6 -1.648 11.435 13.889 1.00 17.76 C ATOM 115 CG LEU L 6 -1.291 11.544 12.396 1.00 18.22 C ATOM 116 CD1 LEU L 6 -1.474 10.257 11.651 1.00 18.93 C ATOM 117 CD2 LEU L 6 -2.125 12.629 11.689 1.00 22.55 C ATOM 118 HA LEU L 6 -2.017 13.534 14.144 1.00 15.53 H ATOM 119 HB2 LEU L 6 -1.011 10.669 14.331 1.00 17.76 H ATOM 120 HB3 LEU L 6 -2.693 11.135 13.959 1.00 17.76 H ATOM 121 HG LEU L 6 -0.242 11.827 12.310 1.00 18.22 H ATOM 122 HD11 LEU L 6 -0.750 10.210 10.838 1.00 18.93 H ATOM 123 HD12 LEU L 6 -1.319 9.426 12.338 1.00 18.93 H ATOM 124 HD13 LEU L 6 -2.488 10.221 11.252 1.00 18.93 H ATOM 125 HD21 LEU L 6 -2.084 12.462 10.613 1.00 22.55 H ATOM 126 HD22 LEU L 6 -3.156 12.565 12.037 1.00 22.55 H ATOM 127 HD23 LEU L 6 -1.712 13.609 11.929 1.00 22.55 H ATOM 128 H ALEU L 6 0.595 12.387 14.715 0.50 13.93 H ATOM 129 D BLEU L 6 0.595 12.387 14.715 0.50 13.93 D """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[32], [33]] ] assert approx_equal(res, answer) def exercise_27(verbose): pdb_str="""\ CRYST1 64.714 39.225 38.645 90.00 117.38 90.00 C 1 2 1 ATOM 0 N SER A -1 20.605 9.913 24.660 1.00 32.98 N ATOM 1 CA SER A -1 21.415 10.057 23.431 1.00 25.22 C ATOM 2 C SER A -1 20.514 10.247 22.233 1.00 25.05 C ATOM 3 O SER A -1 19.332 9.926 22.266 1.00 28.08 O ATOM 4 CB SER A -1 22.253 8.810 23.194 1.00 28.97 C ATOM 5 OG SER A -1 21.417 7.708 22.900 1.00 37.21 O ATOM 6 H1 SER A -1 19.896 10.449 24.612 1.00 38.17 H ATOM 7 H2 SER A -1 20.335 9.069 24.737 1.00 27.38 H ATOM 8 H3 SER A -1 21.098 10.134 25.368 1.00 38.75 H ATOM 9 HA SER A -1 21.997 10.829 23.514 1.00 12.22 H ATOM 10 HB2 SER A -1 22.844 8.970 22.440 1.00 22.78 H ATOM 11 HB3 SER A -1 22.771 8.614 23.990 1.00 30.47 H ATOM 12 HG SER A -1 21.872 7.007 22.826 1.00 42.35 H ATOM 13 N AMET A 0 21.097 10.723 21.147 0.49 20.67 N ATOM 14 CA AMET A 0 20.340 10.870 19.929 0.49 21.49 C ATOM 15 C AMET A 0 21.236 10.795 18.720 0.49 18.70 C ATOM 16 O AMET A 0 22.394 11.216 18.750 0.49 19.47 O ATOM 17 CB AMET A 0 19.569 12.183 19.945 0.49 22.62 C ATOM 18 CG AMET A 0 20.423 13.414 20.138 0.49 24.87 C ATOM 19 SD AMET A 0 19.580 14.932 19.650 0.49 29.00 S ATOM 20 CE AMET A 0 17.946 14.760 20.377 0.49 36.23 C ATOM 21 H AMET A 0 21.920 10.964 21.095 0.49 28.25 H ATOM 22 HA AMET A 0 19.697 10.146 19.870 0.49 7.25 H ATOM 23 HB2AMET A 0 19.093 12.280 19.105 0.49 13.51 H ATOM 24 HB3AMET A 0 18.941 12.141 20.681 0.49 7.62 H ATOM 25 HG2AMET A 0 20.671 13.490 21.072 0.49 26.02 H ATOM 26 HG3AMET A 0 21.219 13.333 19.589 0.49 30.87 H ATOM 27 HE1AMET A 0 17.284 14.819 19.669 0.49 20.79 H ATOM 28 HE2AMET A 0 17.863 13.908 20.829 0.49 8.45 H ATOM 29 HE3AMET A 0 17.812 15.481 21.012 0.49 30.25 H ATOM 30 N BMET A 0 21.082 10.809 21.171 0.51 21.19 N ATOM 31 CA BMET A 0 20.368 11.023 19.923 0.51 23.13 C ATOM 32 C BMET A 0 21.273 10.654 18.766 0.51 21.10 C ATOM 33 O BMET A 0 22.496 10.703 18.893 0.51 19.93 O ATOM 34 CB BMET A 0 19.961 12.488 19.782 0.51 27.15 C ATOM 35 CG BMET A 0 19.070 12.993 20.889 0.51 29.67 C ATOM 36 SD BMET A 0 18.685 14.739 20.684 0.51 41.63 S ATOM 37 CE BMET A 0 17.734 15.043 22.171 0.51 35.23 C ATOM 38 HA BMET A 0 19.568 10.476 19.897 0.51 36.28 H ATOM 39 HB2BMET A 0 20.762 13.035 19.778 0.51 8.59 H ATOM 40 HB3BMET A 0 19.485 12.602 18.945 0.51 27.25 H ATOM 41 HG2BMET A 0 18.236 12.497 20.877 0.51 21.33 H ATOM 42 HG3BMET A 0 19.519 12.877 21.741 0.51 34.36 H ATOM 43 HE1BMET A 0 17.141 15.795 22.018 0.51 42.08 H ATOM 44 HE2BMET A 0 17.217 14.249 22.380 0.51 22.21 H ATOM 45 HE3BMET A 0 18.343 15.241 22.899 0.51 40.99 H """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [[[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]]] assert approx_equal(res, answer) def exercise_28(verbose): pdb_str="""\ CRYST1 64.360 64.360 46.038 90.00 90.00 120.00 P 63 ATOM 0 N ASP A 48 8.896 25.394 -7.791 1.00 8.05 N ATOM 1 CA ASP A 48 8.495 26.452 -6.936 1.00 8.42 C ATOM 2 C ASP A 48 8.287 26.047 -5.477 1.00 8.20 C ATOM 3 O ASP A 48 8.309 26.881 -4.579 1.00 10.68 O ATOM 4 CB ASP A 48 7.216 27.151 -7.426 1.00 9.40 C ATOM 5 CG ASP A 48 7.457 27.744 -8.791 1.00 10.91 C ATOM 6 OD1 ASP A 48 8.234 28.729 -8.836 1.00 16.64 O ATOM 7 OD2 ASP A 48 6.845 27.293 -9.764 1.00 12.53 O ATOM 8 HA ASP A 48 9.193 27.122 -6.935 1.00 8.42 H ATOM 9 HB2 ASP A 48 6.494 26.507 -7.490 1.00 9.40 H ATOM 10 HB3 ASP A 48 6.981 27.867 -6.815 1.00 9.40 H ATOM 11 H AASP A 48 8.303 25.156 -8.367 0.50 8.04 H ATOM 12 H BASP A 48 8.242 25.041 -8.223 0.50 8.04 H ATOM 13 N ALEU A 49 8.083 24.740 -5.245 0.79 7.34 N ATOM 14 CA ALEU A 49 7.817 24.239 -3.906 0.79 6.67 C ATOM 15 C ALEU A 49 8.124 22.738 -3.941 0.79 5.81 C ATOM 16 O ALEU A 49 7.880 22.074 -4.958 0.79 6.71 O ATOM 17 CB ALEU A 49 6.385 24.559 -3.494 0.79 7.19 C ATOM 18 CG ALEU A 49 5.914 24.092 -2.111 0.79 7.07 C ATOM 19 CD1ALEU A 49 4.885 25.059 -1.536 0.79 8.84 C ATOM 20 CD2ALEU A 49 5.323 22.713 -2.192 0.79 7.46 C ATOM 21 H ALEU A 49 8.095 24.131 -5.852 0.79 7.25 H ATOM 22 HA ALEU A 49 8.421 24.661 -3.275 0.79 7.14 H ATOM 23 HB2ALEU A 49 6.277 25.523 -3.518 0.79 9.16 H ATOM 24 HB3ALEU A 49 5.791 24.158 -4.147 0.79 9.16 H ATOM 25 HG ALEU A 49 6.673 24.062 -1.508 0.79 6.91 H ATOM 26 HD11ALEU A 49 4.592 24.730 -0.672 0.79 9.95 H ATOM 27 HD12ALEU A 49 5.294 25.933 -1.437 0.79 9.95 H ATOM 28 HD13ALEU A 49 4.130 25.113 -2.143 0.79 9.95 H ATOM 29 HD21ALEU A 49 4.960 22.476 -1.324 0.79 8.29 H ATOM 30 HD22ALEU A 49 4.616 22.710 -2.856 0.79 8.29 H ATOM 31 HD23ALEU A 49 6.015 22.082 -2.442 0.79 8.29 H ATOM 32 N BLEU A 49 7.975 24.768 -5.242 0.21 7.25 N ATOM 33 CA BLEU A 49 7.654 24.205 -3.941 0.21 7.15 C ATOM 34 C BLEU A 49 8.003 22.716 -3.887 0.21 7.83 C ATOM 35 O BLEU A 49 7.689 22.025 -4.858 0.21 5.06 O ATOM 36 CB BLEU A 49 6.162 24.365 -3.605 0.21 9.16 C ATOM 37 CG BLEU A 49 5.681 23.652 -2.331 0.21 6.91 C ATOM 38 CD1BLEU A 49 6.301 24.276 -1.095 0.21 9.95 C ATOM 39 CD2BLEU A 49 4.156 23.640 -2.248 0.21 8.29 C ATOM 40 H BLEU A 49 7.943 24.178 -5.867 0.21 7.25 H ATOM 41 HA BLEU A 49 8.173 24.662 -3.262 0.21 7.14 H ATOM 42 HB2BLEU A 49 5.975 25.310 -3.494 0.21 9.16 H ATOM 43 HB3BLEU A 49 5.645 24.021 -4.346 0.21 9.16 H ATOM 44 HG BLEU A 49 5.963 22.725 -2.358 0.21 6.91 H ATOM 45 HD11BLEU A 49 6.470 23.579 -0.443 0.21 9.95 H ATOM 46 HD12BLEU A 49 7.132 24.697 -1.346 0.21 9.95 H ATOM 47 HD13BLEU A 49 5.691 24.937 -0.731 0.21 9.95 H ATOM 48 HD21BLEU A 49 3.888 23.174 -1.441 0.21 8.29 H ATOM 49 HD22BLEU A 49 3.834 24.555 -2.225 0.21 8.29 H ATOM 50 HD23BLEU A 49 3.802 23.184 -3.027 0.21 8.29 H ATOM 51 N VAL A 50 8.616 22.239 -2.807 1.00 5.93 N ATOM 52 CA VAL A 50 8.845 20.793 -2.609 1.00 5.53 C ATOM 53 C VAL A 50 7.981 20.307 -1.457 1.00 5.75 C ATOM 54 O VAL A 50 7.971 20.912 -0.389 1.00 6.63 O ATOM 55 CB VAL A 50 10.325 20.527 -2.343 1.00 6.31 C ATOM 56 CG1 VAL A 50 10.556 19.043 -2.072 1.00 7.62 C ATOM 57 CG2 VAL A 50 11.170 20.998 -3.512 1.00 7.52 C ATOM 58 HA VAL A 50 8.593 20.305 -3.404 1.00 5.53 H ATOM 59 HB VAL A 50 10.599 21.022 -1.555 1.00 6.31 H ATOM 60 HG11 VAL A 50 11.507 18.860 -2.118 1.00 7.62 H ATOM 61 HG12 VAL A 50 10.221 18.824 -1.188 1.00 7.62 H ATOM 62 HG13 VAL A 50 10.087 18.523 -2.744 1.00 7.62 H ATOM 63 HG21 VAL A 50 12.097 20.765 -3.345 1.00 7.52 H ATOM 64 HG22 VAL A 50 10.860 20.562 -4.321 1.00 7.52 H ATOM 65 HG23 VAL A 50 11.081 21.960 -3.600 1.00 7.52 H ATOM 66 H AVAL A 50 8.830 22.718 -2.125 0.79 5.93 H ATOM 67 H BVAL A 50 8.914 22.729 -2.166 0.21 5.93 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[11],[12]], [[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,66], [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,67]]] assert approx_equal(res, answer) def exercise_29(verbose): pdb_str="""\ CRYST1 148.270 44.010 47.390 90.00 101.57 90.00 C 1 2 1 ATOM 0 N GLY A 285 -41.269 16.430 -4.458 1.00 18.77 N ATOM 1 CA GLY A 285 -41.021 16.772 -5.854 1.00 20.45 C ATOM 2 H GLY A 285 -42.080 16.182 -4.313 1.00 22.53 H ATOM 3 C AGLY A 285 -41.133 18.291 -6.119 0.85 20.52 C ATOM 4 O AGLY A 285 -41.030 18.770 -7.258 0.85 22.89 O ATOM 5 HA2AGLY A 285 -40.130 16.482 -6.104 0.85 24.54 H ATOM 6 HA3AGLY A 285 -41.663 16.314 -6.418 0.85 24.54 H ATOM 7 C BGLY A 285 -40.556 18.155 -6.113 0.15 20.45 C ATOM 8 O BGLY A 285 -39.925 18.445 -7.127 0.15 21.06 O ATOM 9 HA2BGLY A 285 -40.352 16.166 -6.208 0.15 24.54 H ATOM 10 HA3BGLY A 285 -41.839 16.638 -6.357 0.15 24.54 H ATOM 11 N AASN A 286 -41.375 19.070 -5.066 0.75 20.63 N ATOM 12 CA AASN A 286 -41.558 20.524 -5.179 0.75 21.34 C ATOM 13 C AASN A 286 -40.921 21.176 -3.941 0.75 19.76 C ATOM 14 O AASN A 286 -41.136 20.695 -2.825 0.75 18.94 O ATOM 15 CB AASN A 286 -43.061 20.822 -5.246 0.75 23.19 C ATOM 16 CG AASN A 286 -43.390 22.293 -5.087 0.75 24.76 C ATOM 17 OD1AASN A 286 -43.580 22.784 -3.975 0.75 25.15 O ATOM 18 ND2AASN A 286 -43.491 22.996 -6.206 0.75 26.38 N ATOM 19 H AASN A 286 -41.441 18.778 -4.260 0.75 24.76 H ATOM 20 HA AASN A 286 -41.121 20.863 -5.988 0.75 25.61 H ATOM 21 HB2AASN A 286 -43.400 20.532 -6.107 0.75 27.82 H ATOM 22 HB3AASN A 286 -43.509 20.338 -4.535 0.75 27.82 H ATOM 23 HD21AASN A 286 -43.371 22.614 -6.967 0.75 31.65 H ATOM 24 HD22AASN A 286 -43.677 23.835 -6.171 0.75 31.65 H ATOM 25 N BASN A 286 -40.878 19.026 -5.184 0.25 20.30 N ATOM 26 CA BASN A 286 -40.589 20.401 -5.396 0.25 20.20 C ATOM 27 C BASN A 286 -40.224 21.016 -4.085 0.25 18.88 C ATOM 28 O BASN A 286 -40.136 20.364 -3.047 0.25 18.65 O ATOM 29 CB BASN A 286 -41.798 21.088 -6.023 0.25 22.27 C ATOM 30 CG BASN A 286 -42.950 21.238 -5.058 0.25 23.28 C ATOM 31 OD1BASN A 286 -42.781 21.720 -3.938 0.25 23.18 O ATOM 32 ND2BASN A 286 -44.137 20.828 -5.491 0.25 24.35 N ATOM 33 H BASN A 286 -41.259 18.841 -4.435 0.25 24.36 H ATOM 34 HA BASN A 286 -39.828 20.488 -6.007 0.25 24.24 H ATOM 35 HB2BASN A 286 -41.538 21.974 -6.321 0.25 26.72 H ATOM 36 HB3BASN A 286 -42.105 20.561 -6.777 0.25 26.72 H ATOM 37 HD21BASN A 286 -44.216 20.499 -6.282 0.25 29.22 H ATOM 38 HD22BASN A 286 -44.826 20.891 -4.981 0.25 29.22 H ATOM 39 CA GLU A 287 -39.388 22.905 -3.000 1.00 16.67 C ATOM 40 C GLU A 287 -40.376 23.372 -1.952 1.00 15.65 C ATOM 41 O GLU A 287 -40.132 23.201 -0.755 1.00 14.31 O ATOM 42 CB GLU A 287 -38.514 24.074 -3.481 1.00 17.80 C ATOM 43 CG GLU A 287 -37.273 23.645 -4.302 1.00 19.41 C ATOM 44 CD GLU A 287 -36.290 24.789 -4.558 1.00 20.84 C ATOM 45 OE1 GLU A 287 -36.554 25.925 -4.128 1.00 21.26 O ATOM 46 OE2 GLU A 287 -35.220 24.552 -5.185 1.00 22.93 O ATOM 47 HB2 GLU A 287 -39.052 24.654 -4.041 1.00 21.36 H ATOM 48 HB3 GLU A 287 -38.200 24.566 -2.707 1.00 21.36 H ATOM 49 HG2 GLU A 287 -36.801 22.949 -3.818 1.00 23.29 H ATOM 50 HG3 GLU A 287 -37.568 23.308 -5.163 1.00 23.29 H ATOM 51 N AGLU A 287 -40.109 22.235 -4.122 0.02 18.26 N ATOM 52 H AGLU A 287 -39.954 22.592 -4.889 0.02 21.91 H ATOM 53 HA AGLU A 287 -38.796 22.250 -2.576 0.02 20.01 H ATOM 54 N BGLU A 287 -40.017 22.305 -4.119 0.98 18.44 N ATOM 55 H BGLU A 287 -40.228 22.836 -4.762 0.98 22.13 H ATOM 56 HA BGLU A 287 -38.799 22.245 -2.580 0.98 20.01 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[3,4,5,6,19], [7,8,9,10,33]], [[11,12,13,14,15,16,17,18,20,21,22,23,24,52], [25,26,27,28,29,30,31,32,34,35,36,37,38,55]], [[51,53], [54,56]]] assert approx_equal(res, answer) def exercise_30(verbose): pdb_str="""\ CRYST1 42.198 121.958 37.277 90.00 90.00 90.00 P 21 21 2 ATOM 0 CG GLU A 115 30.700 22.521 0.401 0.55 25.56 C ATOM 1 CD GLU A 115 31.809 23.320 -0.265 1.00 25.96 C ATOM 2 OE1 GLU A 115 32.842 22.797 -0.723 1.00 24.92 O ATOM 3 OE2 GLU A 115 31.621 24.544 -0.376 1.00 27.30 O ATOM 4 N AGLU A 115 27.819 20.841 -1.012 0.44 19.61 N ATOM 5 CA AGLU A 115 28.757 21.222 -0.004 0.44 20.79 C ATOM 6 C AGLU A 115 28.192 21.930 1.203 0.44 19.50 C ATOM 7 O AGLU A 115 27.475 22.922 1.098 0.44 20.38 O ATOM 8 CB AGLU A 115 29.799 22.079 -0.601 0.44 23.59 C ATOM 9 N BGLU A 115 27.018 20.969 -0.446 0.56 27.49 N ATOM 10 CA BGLU A 115 28.194 21.387 0.311 0.56 26.06 C ATOM 11 C BGLU A 115 27.541 21.859 1.611 0.56 25.00 C ATOM 12 O BGLU A 115 26.660 22.715 1.640 0.56 26.43 O ATOM 13 CB BGLU A 115 29.189 22.459 -0.356 0.56 26.03 C ATOM 14 N AVAL A 116 28.585 21.407 2.363 0.53 19.29 N ATOM 15 CA AVAL A 116 28.181 21.931 3.670 0.53 18.27 C ATOM 16 C AVAL A 116 29.427 21.990 4.589 0.53 17.81 C ATOM 17 O AVAL A 116 30.464 21.420 4.280 0.53 17.67 O ATOM 18 CB AVAL A 116 27.090 21.046 4.342 0.53 20.31 C ATOM 19 CG1AVAL A 116 25.743 21.168 3.633 0.53 22.78 C ATOM 20 CG2AVAL A 116 27.498 19.598 4.395 0.53 20.85 C ATOM 21 H AVAL A 116 29.104 20.724 2.421 0.53 23.15 H ATOM 22 HA AVAL A 116 27.827 22.838 3.564 0.53 21.92 H ATOM 23 HB AVAL A 116 26.967 21.353 5.264 0.53 24.37 H ATOM 24 N BVAL A 116 27.987 21.231 2.690 0.47 21.87 N ATOM 25 CA BVAL A 116 27.614 21.560 4.041 0.47 19.86 C ATOM 26 C BVAL A 116 28.915 21.857 4.746 0.47 19.34 C ATOM 27 O BVAL A 116 29.983 21.603 4.213 0.47 18.81 O ATOM 28 CB BVAL A 116 26.938 20.336 4.707 0.47 19.81 C ATOM 29 CG1BVAL A 116 25.591 20.061 4.058 0.47 21.33 C ATOM 30 CG2BVAL A 116 27.825 19.086 4.627 0.47 19.25 C ATOM 31 H BVAL A 116 28.539 20.573 2.651 0.47 26.24 H ATOM 32 HA BVAL A 116 27.021 22.340 4.070 0.47 23.83 H ATOM 33 HB BVAL A 116 26.782 20.535 5.654 0.47 23.76 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[0]], [[4, 5, 6, 7, 8, 21], [9, 10, 11, 12, 13, 31]], [[14, 15, 16, 17, 18, 19, 20, 22, 23], [24, 25, 26, 27, 28, 29, 30, 32, 33]] ] assert approx_equal(res, answer) def prepare_correlated_occupancy_inputs( prefix="tst_group_correlated_occupancy", create_mtz=False, d_min=1.0): pdb_raw = """\ CRYST1 21.937 4.866 23.477 90.00 107.08 90.00 P 1 21 1 SCALE1 0.045585 0.000000 0.014006 0.00000 SCALE2 0.000000 0.205508 0.000000 0.00000 SCALE3 0.000000 0.000000 0.044560 0.00000 ATOM 1 N GLY A 1 -9.056 4.638 6.050 1.00 16.77 N ATOM 2 CA GLY A 1 -9.058 4.194 4.668 1.00 16.57 C ATOM 3 C GLY A 1 -7.993 3.144 4.430 1.00 16.16 C ATOM 4 O GLY A 1 -7.521 2.511 5.374 1.00 16.78 O ATOM 5 N ASN A 2 -7.616 2.953 3.169 1.00 15.02 N ATOM 6 CA ASN A 2 -6.526 2.044 2.840 1.00 14.10 C ATOM 7 C ASN A 2 -5.216 2.527 3.434 1.00 13.13 C ATOM 8 O ASN A 2 -4.943 3.727 3.466 1.00 11.91 O ATOM 9 CB ASN A 2 -6.382 1.888 1.330 1.00 15.38 C ATOM 10 CG ASN A 2 -7.632 1.344 0.685 1.00 14.08 C ATOM 11 OD1 ASN A 2 -8.042 0.216 0.957 1.00 17.46 O ATOM 12 ND2 ASN A 2 -8.247 2.142 -0.178 1.00 11.72 N ATOM 13 N ASN A 3 -4.405 1.583 3.898 1.00 12.26 N ATOM 14 CA ASN A 3 -3.172 1.915 4.595 1.00 11.74 C ATOM 15 C ASN A 3 -1.922 1.362 3.915 1.00 11.10 C ATOM 16 O ASN A 3 -1.816 0.158 3.672 1.00 10.42 O ATOM 17 CB ASN A 3 -3.243 1.409 6.039 1.00 12.15 C ATOM 18 CG ASN A 3 -2.000 1.749 6.841 1.00 12.82 C ATOM 19 OD1 ASN A 3 -1.705 2.920 7.082 1.00 15.05 O ATOM 20 ND2 ASN A 3 -1.272 0.724 7.270 1.00 13.48 N ATOM 21 N GLN A 4 -0.987 2.256 3.598 1.00 10.29 N ATOM 22 CA GLN A 4 0.361 1.860 3.201 1.00 10.53 C ATOM 23 C GLN A 4 1.398 2.605 4.031 1.00 10.24 C ATOM 24 O GLN A 4 1.454 3.834 4.025 1.00 8.86 O ATOM 25 CB GLN A 4 0.626 2.117 1.712 1.00 9.80 C ATOM 26 CG GLN A 4 1.924 1.459 1.221 1.00 10.25 C ATOM 27 CD GLN A 4 2.465 2.050 -0.073 1.00 12.43 C ATOM 28 OE1 GLN A 4 2.674 3.260 -0.178 1.00 14.62 O ATOM 29 NE2 GLN A 4 2.708 1.192 -1.059 1.00 9.05 N ATOM 30 N AGLN A 5 2.202 1.848 4.775 0.62 10.38 N ATOM 31 CA AGLN A 5 3.288 2.419 5.569 0.62 11.39 C ATOM 32 C AGLN A 5 4.638 1.844 5.123 0.62 11.52 C ATOM 33 O AGLN A 5 4.824 0.625 5.095 0.62 12.05 O ATOM 34 CB AGLN A 5 3.046 2.170 7.063 0.62 11.96 C ATOM 35 CG AGLN A 5 1.854 2.946 7.622 0.62 10.81 C ATOM 36 CD AGLN A 5 1.361 2.406 8.951 0.62 13.10 C ATOM 37 OE1AGLN A 5 0.800 1.312 9.019 0.62 10.65 O ATOM 38 NE2AGLN A 5 1.562 3.175 10.016 0.62 12.30 N ATOM 39 N BGLN A 5 2.239 1.858 4.725 0.38 10.38 N ATOM 40 CA BGLN A 5 3.326 2.476 5.450 0.38 11.39 C ATOM 41 C BGLN A 5 4.639 1.850 5.057 0.38 11.52 C ATOM 42 O BGLN A 5 4.814 0.627 5.020 0.38 12.05 O ATOM 43 CB BGLN A 5 3.110 2.331 6.919 0.38 11.96 C ATOM 44 CG BGLN A 5 2.695 0.980 7.141 0.38 10.81 C ATOM 45 CD BGLN A 5 2.882 0.618 8.479 0.38 13.10 C ATOM 46 OE1BGLN A 5 2.538 1.369 9.406 0.38 10.65 O ATOM 47 NE2BGLN A 5 3.380 -0.597 8.664 0.38 12.30 N ATOM 48 N ASN A 6 5.565 2.732 4.753 1.00 11.99 N ATOM 49 CA ASN A 6 6.868 2.339 4.280 1.00 12.30 C ATOM 50 C ASN A 6 7.881 2.785 5.302 1.00 13.40 C ATOM 51 O ASN A 6 8.262 3.954 5.351 1.00 13.92 O ATOM 52 CB ASN A 6 7.133 2.954 2.915 1.00 12.13 C ATOM 53 CG ASN A 6 5.988 2.721 1.955 1.00 12.77 C ATOM 54 OD1 ASN A 6 5.795 1.608 1.466 1.00 14.27 O ATOM 55 ND2 ASN A 6 5.211 3.764 1.690 1.00 10.07 N ATOM 56 N ATYR A 7 8.304 1.849 6.146 0.59 14.70 N ATOM 57 CA ATYR A 7 9.167 2.166 7.280 0.59 15.18 C ATOM 58 C ATYR A 7 10.622 2.326 6.868 0.59 15.91 C ATOM 59 O ATYR A 7 11.054 1.799 5.844 0.59 15.76 O ATOM 60 CB ATYR A 7 9.044 1.086 8.356 0.59 15.35 C ATOM 61 CG ATYR A 7 7.640 0.946 8.887 0.59 14.45 C ATOM 62 CD1ATYR A 7 6.759 0.027 8.335 0.59 15.68 C ATOM 63 CD2ATYR A 7 7.187 1.750 9.924 0.59 14.80 C ATOM 64 CE1ATYR A 7 5.469 -0.098 8.810 0.59 13.46 C ATOM 65 CE2ATYR A 7 5.899 1.633 10.407 0.59 14.33 C ATOM 66 CZ ATYR A 7 5.044 0.707 9.845 0.59 15.09 C ATOM 67 OH ATYR A 7 3.759 0.583 10.319 0.59 14.39 O ATOM 68 OXTATYR A 7 11.394 2.990 7.558 0.59 17.49 O ATOM 70 N BTYR A 7 8.323 1.843 6.116 0.41 14.70 N ATOM 71 CA BTYR A 7 9.149 2.183 7.247 0.41 15.18 C ATOM 72 C BTYR A 7 10.629 2.316 6.861 0.41 15.91 C ATOM 73 O BTYR A 7 11.084 1.756 5.864 0.41 15.76 O ATOM 74 CB BTYR A 7 8.954 1.147 8.348 0.41 15.35 C ATOM 75 CG BTYR A 7 9.942 1.356 9.417 0.41 14.45 C ATOM 76 CD1BTYR A 7 9.807 2.381 10.320 0.41 15.68 C ATOM 77 CD2BTYR A 7 11.054 0.580 9.473 0.41 14.80 C ATOM 78 CE1BTYR A 7 10.746 2.569 11.248 0.41 13.46 C ATOM 79 CE2BTYR A 7 11.968 0.749 10.405 0.41 14.33 C ATOM 80 CZ BTYR A 7 11.858 1.724 11.252 0.41 15.09 C ATOM 81 OH BTYR A 7 12.921 1.747 12.113 0.41 14.39 O ATOM 82 OXTBTYR A 7 11.408 3.001 7.529 0.41 17.49 O TER HETATM 83 O HOH A 8 -6.471 5.227 7.124 1.00 22.62 O HETATM 84 O HOH A 9 10.431 1.858 3.216 1.00 19.71 O HETATM 85 O HOH A 10 -11.286 1.756 -1.468 1.00 17.08 O HETATM 86 O AHOH A 11 11.808 4.179 9.970 0.60 23.99 O HETATM 87 O HOH A 12 13.605 1.327 9.198 1.00 26.17 O HETATM 88 O HOH A 13 -2.749 3.429 10.024 1.00 39.15 O HETATM 89 O HOH A 14 -1.500 0.682 10.967 1.00 43.49 O TER """ pdb_in = "%s_in.pdb" % prefix open(pdb_in, "w").write(pdb_raw) if (create_mtz): args = [ pdb_in, "high_resolution=%g" % d_min, "type=real", "label=F", "add_sigmas=True", "r_free_flags_fraction=0.1", "random_seed=12345", "output.file_name=%s.mtz" % prefix, ] fmodel.run(args=args, log=null_out()) pdb_file = file_reader.any_file(pdb_in) hierarchy = pdb_file.file_object.hierarchy xrs = pdb_file.file_object.xray_structure_simple() for atom in hierarchy.atoms(): atom.b = 5 if (atom.occ < 1.0): atom.occ = 0.5 open("%s_start.pdb" % prefix, "w").write( hierarchy.as_pdb_string(crystal_symmetry=xrs)) def exercise_regroup_3d(verbose): if (verbose): log = sys.stdout else: log = StringIO() prepare_correlated_occupancy_inputs() # File #1 (with homogenized occupancies) should work # File #2 should fail due to inconsistent occupancies pdb_files = [ "tst_group_correlated_occupancy_start.pdb", "tst_group_correlated_occupancy_in.pdb", ] for i_file, pdb_file in enumerate(pdb_files): model = get_model(pdb_file, log) try : constraint_groups = occupancy_selections( model = model, constrain_correlated_3d_groups=True, log=null_out()) except Sorry as s : if (i_file == 0): raise else : assert ("Inconsistent occupancies" in str(s)), str(s) else : if (i_file == 1): raise Exception_expected else : assert (len(constraint_groups) == 1) def run(): verbose = "--verbose" in sys.argv[1:] exercise_00(verbose=verbose) exercise_01(verbose=verbose) exercise_02(verbose=verbose) exercise_03(verbose=verbose) exercise_05(verbose=verbose) exercise_06(verbose=verbose) exercise_07(verbose=verbose) exercise_08(verbose=verbose) exercise_09(verbose=verbose) exercise_10(verbose=verbose) exercise_11(verbose=verbose) exercise_12(verbose=verbose) exercise_13(verbose=verbose) exercise_14(verbose=verbose) exercise_15(verbose=verbose) exercise_16(verbose=verbose) exercise_17(verbose=verbose) exercise_18(verbose=verbose) exercise_19(verbose=verbose) exercise_20(verbose=verbose) exercise_21(verbose=verbose) exercise_22(verbose=verbose) exercise_23(verbose=verbose) exercise_24(verbose=verbose) exercise_25(verbose=verbose) exercise_26(verbose=verbose) exercise_27(verbose=verbose) exercise_28(verbose=verbose) exercise_29(verbose=verbose) exercise_30(verbose=verbose) exercise_regroup_3d(verbose=verbose) print(format_cpu_times()) if (__name__ == "__main__"): run()
35488866c24bd360ea370d1014afbe7e4ed4e555
b33d1d4b74d375a2050baf80cda5b8571aff7462
/s14/day01/homework2.py
1a595d08faafbc21bfeba3287a464e606179d299
[]
no_license
sunwang33/code
e979e1b11209200fba07a99d926d76f09c83b514
377f3e919555bf0f02ef56c9395d57992c84fcfd
refs/heads/master
2021-01-16T18:10:08.358744
2018-01-01T02:58:43
2018-01-01T02:58:43
100,045,002
1
0
null
null
null
null
UTF-8
Python
false
false
2,440
py
# Author:Sun Wang menu = { '北京':{ '海淀':{ '五道口':{ 'soho':{}, '网易':{}, 'google':{} }, '中关村':{ '爱奇艺':{}, '汽车之家':{}, 'youku':{}, }, '上地':{ '百度':{}, }, }, '昌平':{ '沙河':{ '老男孩':{}, '北航':{}, }, '天通苑':{}, '回龙观':{}, }, '朝阳':{}, '东城':{}, }, '上海':{ '闵行':{ "人民广场":{ '炸鸡店':{} } }, '闸北':{ '火车战':{ '携程':{} } }, '浦东':{}, }, '山东':{}, } exit_flag = False while not exit_flag : for item in menu: print (item) choise = input("Please input your choise: ") if choise in menu: while not exit_flag: for i in menu[choise]: print ("\t",i) choise1 = input("Please input your choise1: ") if choise1 in menu[choise]: while not exit_flag: for i1 in menu[choise][choise1]: print ("\t",i1) choise2 = input("Please input your choise2: ") if choise2 in menu[choise][choise1]: while not exit_flag: for i2 in menu[choise][choise1][choise2]: print ("\t\t",i2) choise3 = input("Please input your choise3: ") if choise3 in menu[choise][choise1][choise2]: while not exit_flag: for i3 in menu[choise][choise1][choise2][choise3]: print ("\t\t\t",i3) if choise3 == 'q': exit_flag = True elif choise3 == 'b': break if choise2 == 'b': break if choise1 == 'b': break if choise == 'b': break
783c3f96c270a8323efbe58ab9ad72e3ffc8e029
1c6a7125c8ea024050045fb18a685daadcfbcb0f
/codeforces/random/B_Equal_Candies.py
5666b59c9804f96384bfdd8bf152e6b93b45323e
[]
no_license
HurayraIIT/competitive-programming
0e2f40cf1cae76129eac0cd8402b62165a6c29e4
3b9bc3066c70284cddab0f3e39ffc3e9cd59225f
refs/heads/master
2022-12-10T18:33:10.405727
2022-12-06T13:15:15
2022-12-06T13:15:15
236,779,058
2
0
null
null
null
null
UTF-8
Python
false
false
760
py
# Abu Hurayra import sys from collections import defaultdict # import threading # threading.stack_size(2**27) # sys.setrecursionlimit(2**21) def rs(): return sys.stdin.readline().rstrip() def ri(): return int(sys.stdin.readline()) def ria(): return list(map(int, sys.stdin.readline().split())) def ws(s): sys.stdout.write(s + '\n') def wi(n): sys.stdout.write(str(n) + '\n') def wia(a): sys.stdout.write(' '.join([str(x) for x in a]) + '\n') # a = list(map(int, input().split())) def main(): t = ri() for _ in range(t): n = ri() a = ria() m = min(a) ans = 0 for i in a: ans += i - m print(ans) if __name__ == '__main__': # t = threading.Thread(target=main) # t.start() # t.join() main()
24eab0073b819cc196e8f7657f4052507436ad3f
007f7d8c93725457bc5692715587227d6c8acc0c
/blender/.blender/scripts/renameobjectbyblock.py
eeea815c650127d2b64e7c557b1b425a00e90a67
[ "GPL-2.0-only", "PSF-2.0", "GPL-1.0-or-later", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
Nicoeevee/sketchfab_download
cf1c72ab45a88bebb0e08d7fb984fa01a3be97fa
a81ad3a2053e715608e657fd62c9dc1194ffe290
refs/heads/master
2023-04-21T08:05:28.322657
2021-05-13T18:01:30
2021-05-13T18:01:30
354,547,290
0
0
Apache-2.0
2021-05-14T12:04:21
2021-04-04T13:13:28
Python
UTF-8
Python
false
false
4,863
py
#!BPY """ Registration info for Blender menus: <- these words are ignored Name: 'Object Name Editor' Blender: 232 Group: 'Object' Tip: 'GUI to select and rename objects.' """ __author__ = "Jean-Michel Soler (jms)" __url__ = ("blender", "blenderartists.org", "Script's homepage, http://jmsoler.free.fr/didacticiel/blender/tutor/cpl_renameobjectgui.htm", "Communicate problems and errors, http://www.zoo-logique.org/3D.Blender/newsportal/thread.php?group=3D.Blender") __version__ = "233" __bpydoc__ = """\ This script offers a GUI to rename selected objects according to a given rule. Usage: Open it from the 3d View's "Object->Scripts" menu and select the objects to rename and the rule from the buttons in its GUI. """ # ---------------------------------------------------------- # Name OBJECT changer # (c) 2004 jean-michel soler # ----------------------------------------------------------- #---------------------------------------------- # Page officielle/offcial page du blender python Name OBJECT changer: # http://jmsoler.free.fr/didacticiel/blender/tutor/cpl_renameobjectgui.htm # Communiquer les problemes et erreurs sur: # To Communicate problems and errors on: # http://www.zoo-logique.org/3D.Blender/newsportal/thread.php?group=3D.Blender #--------------------------------------------- # Blender Artistic License # http://download.blender.org/documentation/html/x21254.html #--------------------------------------------- CVS=0 import Blender from Blender import * from Blender.Draw import * from Blender.BGL import * O = list(Scene.GetCurrent().objects) stringlist=[[],[]] def renew(): global O #O = Object.Get() O = list(Scene.GetCurrent().objects) #param= [ [p.name, i, p.getType()] for i, p in enumerate(O) ] PARAM={} evt=9 stringlist=[[],[],[]] for i, ob in enumerate(O): obname= ob.name PARAM[obname] = [Create(ob.sel), evt, i, ob.getType(), Create(obname), evt+1, ob] stringlist[0].append(evt+1) stringlist[1].append(obname) stringlist[2].append(evt) evt+=2 return PARAM,stringlist NEWNAME=Create('Name') alignment={'BEGIN' : [Create(1),5], 'END' : [Create(0),6], 'POINT' : [Create(0),7], 'FULL' : [Create(0),8]} def rename(): global NEWNAME, alignment, O, PARAM, stringlist newname= NEWNAME.val for obname, value in PARAM.iteritems(): if value[0].val: # Selected if alignment['END'][0].val: value[6].setName(obname+newname) elif alignment['BEGIN'][0].val: value[6].setName(newname+obname) elif alignment['FULL'][0].val: value[6].setName(newname) PARAM, stringlist = renew() PARAM, stringlist = renew() def EVENT(evt,val): pass def BUTTON(evt): global PARAM , alignment, O, stringlist, CVS if (evt==1): Exit() elif (evt==2): rename() elif (evt==3): PARAM, stringlist = renew() elif (evt in [5,6,7,8]): for k in alignment.iterkeys(): if alignment[k][1]!=evt: alignment[k][0].val=0 elif (evt in stringlist[0]): O[PARAM[stringlist[1][(evt-9)/2]][2]].setName(PARAM[stringlist[1][(evt-9)/2]][4].val) PARAM, stringlist = renew() elif (evt in stringlist[2]): try: O[PARAM[stringlist[1][(evt-9)/2]][2]].select(PARAM[stringlist[1][(evt-9)/2]][0].val) except: pass Blender.Redraw() def DRAW(): global PARAM, O, NEWNAME, alignment #glColor3f(0.7, 0.7, 0.7) glClear(GL_COLOR_BUFFER_BIT) glColor3f(0.1, 0.1, 0.15) size=Buffer(GL_FLOAT, 4) glGetFloatv(GL_SCISSOR_BOX, size) size= size.list for s in [0,1,2,3]: size[s]=int(size[s]) ligne=20 Button ("Exit",1,20,1,80,ligne) Button ("Rename",2,102,1,80,ligne) Button ("Renew",3,184,1,80,ligne) glRasterPos2f(20, ligne*2-10) Text("Object Name Editor") NEWNAME=String('Add String: ', 4, 150, ligne*2-16, 150, 18, NEWNAME.val,120 ) key= alignment.keys() key.sort() n=150+150+4 for k in key: alignment[k][0]= Toggle(k,alignment[k][1],n,ligne*2-16, 40, 18, alignment[k][0].val) n+=40+4 max=size[3] / 22 -2 pos = 0 decal = 20 keys=[[PARAM[k][1],k] for k in PARAM.iterkeys()] keys.sort() for p_ in keys: p=p_[1] if pos==max: decal+=152 pos=1 else: pos+=1 PARAM[p][0]=Toggle('S',PARAM[p][1],decal,pos*22+22,20,20, PARAM[p][0].val,"Select this one for a group renaming") PARAM[p][4]=String('',PARAM[p][5],decal+20,pos*22+22,90,20, PARAM[p][4].val,200, "string button to rename immediately but only this object") glRasterPos2f(decal+115,pos*22+24) Text(PARAM[p][3][:4]) if __name__=='__main__': Register(DRAW,EVENT,BUTTON)
72cd4e6fde17b03b12738b441ec9e9f9e86204b8
8afb5afd38548c631f6f9536846039ef6cb297b9
/_REPO/MICROSOFT/computervision-recipes/utils_cv/detection/references/utils.py
b477c887d61384e3e724535c9061f46326984030
[ "BSD-3-Clause", "LGPL-2.1-or-later", "Apache-2.0", "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
10,311
py
from __future__ import print_function from collections import defaultdict, deque import datetime import pickle import time import torch import torch.distributed as dist import errno import os class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty( size=(max_size - local_size,), dtype=torch.uint8, device="cuda" ) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def collate_fn(batch): return tuple(zip(*batch)) def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor): def f(x): if x >= warmup_iters: return 1 alpha = float(x) / warmup_iters return warmup_factor * (1 - alpha) + alpha return torch.optim.lr_scheduler.LambdaLR(optimizer, f) def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print( "| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True ) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() setup_for_distributed(args.rank == 0)
960540a6f9a5e5fdc7c3bb222cfbfd59bf548e8d
bf2d010229aece071359662f4fef44e48ba57951
/dynamic_range_time_step_plot.py
ce67b22b30e65b9b6c4f46b93df1df6ec14a9916
[]
no_license
Osrip/CriticalEvolution
b97398f74e2fc5b54c9ab92765b08ce3bf97257e
f77cae8acc626cb4c6d64d5a44fdf00310309c2e
refs/heads/master
2021-06-24T03:44:03.283017
2021-04-03T13:09:42
2021-04-03T13:09:42
215,332,038
1
0
null
null
null
null
UTF-8
Python
false
false
5,728
py
import os import numpy as np from automatic_plot_helper import load_isings_specific_path from automatic_plot_helper import attribute_from_isings from automatic_plot_helper import all_folders_in_dir_with import copy import pandas as pd import glob import pickle from run_combi import RunCombi import matplotlib.pylab as plt from matplotlib.lines import Line2D import seaborn as sns import re from isolated_population_helper import seperate_isolated_populations def plot_dynamic_range(sim_name, plot_settings): attrs_list_each_food_num_all, attrs_list_each_food_num_critical, attrs_list_each_food_num_sub_critcal, food_num_list = load_data(plot_settings['attr'], sim_name) # plot_averages(attrs_list_each_food_num_all, food_num_list, sim_name, plot_settings) plot_seperated_averages(attrs_list_each_food_num_critical, attrs_list_each_food_num_sub_critcal, food_num_list, sim_name, plot_settings) def plot_averages(attrs_list_each_food_num, food_num_list, sim_name, plot_settings): avg_attr_list = [np.mean(attrs) for attrs in attrs_list_each_food_num] plt.scatter(food_num_list, avg_attr_list) # plt.savefig('moinsen.png') save_dir = 'save/{}/figs/dynamic_range_plots{}/'.format(sim_name, plot_settings['add_save_name']) save_name = 'plot_averages.png' if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig(save_dir+save_name, bbox_inches='tight') plt.show() def plot_seperated_averages(attrs_list_each_food_num_critical, attrs_list_each_food_num_sub_critical, food_num_list, sim_name, plot_settings): avg_attr_list_critical = [np.mean(attrs) for attrs in attrs_list_each_food_num_critical] avg_attr_list_sub_critical = [np.mean(attrs) for attrs in attrs_list_each_food_num_sub_critical] plt.figure(figsize=(12, 8)) # make list of list with similar food_num entries for plotting food_num_list_extended_critical = [[food_num for i in range(len(attrs))] for food_num, attrs in zip(food_num_list, attrs_list_each_food_num_critical)] food_num_list_extended_sub_critical = [[food_num for i in range(len(attrs))] for food_num, attrs in zip(food_num_list, attrs_list_each_food_num_sub_critical)] # food_num_list_extended = np.array(food_num_list_extended) # attrs_list_each_food_num_critical = np.array(attrs_list_each_food_num_critical) # attrs_list_each_food_num_sub_critical = np.array(attrs_list_each_food_num_sub_critical) # for food_num_critical, food_num_sub_critical, attr_critical, attr_sub_critical in # zip(food_num_list_extended_critical, food_num_list_extended_critical, # attrs_list_each_food_num_critical, attrs_list_each_food_num_sub_critical) plt.scatter(food_num_list_extended_critical, attrs_list_each_food_num_critical, c=plot_settings['color']['critical'], s=2, alpha=0.4) plt.scatter(food_num_list_extended_sub_critical, attrs_list_each_food_num_sub_critical, c=plot_settings['color']['sub_critical'], s=2, alpha=0.4) plt.scatter(food_num_list, avg_attr_list_critical, c=plot_settings['color']['critical'], label='critical') plt.scatter(food_num_list, avg_attr_list_sub_critical, c=plot_settings['color']['sub_critical'], label='sub-critical') plt.ylabel(plot_settings['attr']) plt.xlabel('number of time steps in simulation') plt.legend() save_dir = 'save/{}/figs/dynamic_range_plots_time_steps{}/'.format(sim_name, plot_settings['add_save_name']) save_name = 'plot_averages_seperated.png' if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig(save_dir+save_name, bbox_inches='tight') plt.show() # TODO: Debuggen und hier weitermachen!! def load_data(attr, sim_name): sim_dir = 'save/{}'.format(sim_name) attrs_list_each_food_num_all = [] attrs_list_each_food_num_critical = [] attrs_list_each_food_num_sub_critical = [] food_num_list = [] dir_list = all_folders_in_dir_with('{}/repeated_generations'.format(sim_dir), 'dynamic_range_run_time_step') for dir in dir_list: isings_list = load_isings_specific_path(dir) isings = make_2d_list_1d(isings_list) isings_populations_seperated = seperate_isolated_populations([isings]) isings_critical = isings_populations_seperated[0][0] isings_sub_critical = isings_populations_seperated[1][0] attrs_list_each_food_num_all.append(attribute_from_isings(isings, attr)) attrs_list_each_food_num_critical.append(attribute_from_isings(isings_critical, attr)) attrs_list_each_food_num_sub_critical.append(attribute_from_isings(isings_sub_critical, attr)) food_num_list.append(get_int_end_of_str(dir)) return attrs_list_each_food_num_all, attrs_list_each_food_num_critical, attrs_list_each_food_num_sub_critical, food_num_list def get_int_end_of_str(s): m = re.search(r'\d+$', s) return int(m.group()) if m else None def make_2d_list_1d(in_list): out_list = [] for sub_list in in_list: for en in sub_list: out_list.append(en) return out_list if __name__ == '__main__': plot_settings = {} plot_settings['add_save_name'] = '' plot_settings['attr'] = 'avg_energy' plot_settings['color'] = {'critical': 'darkorange', 'sub_critical': 'royalblue', 'super_critical': 'maroon'} sim_name = 'sim-20201007-230728-g_4000_-t_8000_-iso_-ref_500_-rec_c_1000_-a_200_500_1000_2000_3000_3999_-c_3_-n_different_betas_DO_LONG_TIME_STEPS_WEAKEN_SUB_CRITICAL_and_DYNAMIC_RANGE_FOOD' plot_dynamic_range(sim_name, plot_settings)
a69e06de247ad3631563edfd5c4b3257cf2749ed
7c8bff784568691c516833ac81afc967857d24e2
/jacc/migrations/0019_entrytype_identifier.py
effb3d0f203ab8c4e4ea27554b71aa4fcc456877
[ "MIT" ]
permissive
kajala/django-jacc
b71f2c3df1321b9bb31e1e648895931b735949a6
4acb8ca2d32b11fd5afa3b5316b13be223b20ec6
refs/heads/develop
2023-08-18T14:12:38.196880
2023-08-11T15:18:57
2023-08-11T15:18:57
121,229,896
11
5
MIT
2021-07-12T15:02:36
2018-02-12T10:02:20
Python
UTF-8
Python
false
false
746
py
# Generated by Django 2.1.2 on 2018-10-18 15:36 from django.db import migrations, models from django.db.models import F def migr_code_to_identifier_0019_entrytype_identifier(apps, schema): EntryType = apps.get_model("jacc", "EntryType") EntryType.objects.all().update(identifier=F("code")) class Migration(migrations.Migration): dependencies = [ ("jacc", "0018_auto_20181008_2322"), ] operations = [ migrations.AddField( model_name="entrytype", name="identifier", field=models.CharField(blank=True, db_index=True, default="", max_length=40, verbose_name="identifier"), ), migrations.RunPython(migr_code_to_identifier_0019_entrytype_identifier), ]
e01a13130ccc128e63bdb0486285772b63f84edf
a155780658a6d2c9b4e4adfaf822ba465f8f6be8
/controller/jellyfish-mods/jf_phoneme.py
9a4988ea5646229664603c154277d4e59983d701
[]
no_license
stcybrdgs/NLP-Matching
e77ab6c63281d6d859f9a68be31c8913be20d9e6
6b4725e68eb4233844273d3a96b0f36b14ce8e80
refs/heads/master
2020-05-25T18:21:55.009741
2019-06-13T07:15:47
2019-06-13T07:15:47
187,928,409
0
0
null
null
null
null
UTF-8
Python
false
false
1,168
py
# -*- coding: utf-8 -*- """ Created on Fri May 31 19:15:42 2019 @author: Stacy jellyfish modules for use with the controller program """ import jellyfish def soundex(): tokens = ['Ball Bearing', 'bll brng', 'Centrifugal', 'centrifigal', 'PUmp', 'pmp'] print('Running SOUNDEX...') # print tokens print('Tokens: ', end='') for i in tokens: print(i,' | ', end='') # printcodes print('\n', end="") print('Codes: ', end='') for i in tokens: print(jellyfish.soundex(i), ' | ', end='') # ---- end function ---- def nysiis(): tokens = ['Ball Bearing', 'bll brng', 'Centrifugal', 'centrifigal', 'PUmp', 'pmp'] print('Running NYSIIS...') # print tokens print('Tokens: ', end='') for i in tokens: print(i,' | ', end='') # printcodes print('\n', end="") print('Codes: ', end='') for i in tokens: print(jellyfish.nysiis(i), ' | ', end='') # ---- end function ----
632789f2b0dcf3c03c1d6fd2e945bda51a359db3
c071eb46184635818e8349ce9c2a78d6c6e460fc
/system/python_stubs/-745935208/cx_Oracle/MessageProperties.py
641ade26f658f4b7e5bbfa26034ba4823d3e2d0f
[]
no_license
sidbmw/PyCharm-Settings
a71bc594c83829a1522e215155686381b8ac5c6e
083f9fe945ee5358346e5d86b17130d521d1b954
refs/heads/master
2020-04-05T14:24:03.216082
2018-12-28T02:29:29
2018-12-28T02:29:29
156,927,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
# encoding: utf-8 # module cx_Oracle # from C:\Users\siddh\AppData\Local\Programs\Python\Python37\lib\site-packages\cx_Oracle.cp37-win_amd64.pyd # by generator 1.146 # no doc # imports import datetime as __datetime from .object import object class MessageProperties(object): # no doc def __init__(self, *args, **kwargs): # real signature unknown pass attempts = property(lambda self: object(), lambda self, v: None, lambda self: None) # default correlation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default delay = property(lambda self: object(), lambda self, v: None, lambda self: None) # default deliverymode = property(lambda self: object(), lambda self, v: None, lambda self: None) # default enqtime = property(lambda self: object(), lambda self, v: None, lambda self: None) # default exceptionq = property(lambda self: object(), lambda self, v: None, lambda self: None) # default expiration = property(lambda self: object(), lambda self, v: None, lambda self: None) # default msgid = property(lambda self: object(), lambda self, v: None, lambda self: None) # default priority = property(lambda self: object(), lambda self, v: None, lambda self: None) # default state = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
c8eaaea75b6e51740f05c80b5ee3c3dfc6fa2213
11ef4bbb8086ba3b9678a2037d0c28baaf8c010e
/Source Code/server/binaries/chromium/pyproto/components/data_reduction_proxy/proto/client_config_pb2.py
d1f0ee35068d28902cf5e4a9b884c2deee8f29be
[]
no_license
lineCode/wasmview.github.io
8f845ec6ba8a1ec85272d734efc80d2416a6e15b
eac4c69ea1cf0e9af9da5a500219236470541f9b
refs/heads/master
2020-09-22T21:05:53.766548
2019-08-24T05:34:04
2019-08-24T05:34:04
null
0
0
null
null
null
null
UTF-8
Python
false
true
23,912
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: client_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='client_config.proto', package='data_reduction_proxy', syntax='proto2', serialized_options=_b('H\003'), serialized_pb=_b('\n\x13\x63lient_config.proto\x12\x14\x64\x61ta_reduction_proxy\"\xd5\x02\n\x0c\x43lientConfig\x12\x13\n\x0bsession_key\x18\x01 \x01(\t\x12\x44\n\x17\x44\x45PRECATED_refresh_time\x18\x02 \x01(\x0b\x32\x1f.data_reduction_proxy.TimestampB\x02\x18\x01\x12\x37\n\x0cproxy_config\x18\x03 \x01(\x0b\x32!.data_reduction_proxy.ProxyConfig\x12\x38\n\x10refresh_duration\x18\x04 \x01(\x0b\x32\x1e.data_reduction_proxy.Duration\x12L\n\x17pageload_metrics_config\x18\x05 \x01(\x0b\x32+.data_reduction_proxy.PageloadMetricsConfig\x12)\n!ignore_long_term_black_list_rules\x18\x07 \x01(\x08\"3\n\x15PageloadMetricsConfig\x12\x1a\n\x12reporting_fraction\x18\x01 \x01(\x02\"+\n\tTimestamp\x12\x0f\n\x07seconds\x18\x01 \x01(\x03\x12\r\n\x05nanos\x18\x02 \x01(\x05\"*\n\x08\x44uration\x12\x0f\n\x07seconds\x18\x01 \x01(\x03\x12\r\n\x05nanos\x18\x02 \x01(\x05\"L\n\x0bProxyConfig\x12=\n\x12http_proxy_servers\x18\x01 \x03(\x0b\x32!.data_reduction_proxy.ProxyServer\"\xc1\x02\n\x0bProxyServer\x12=\n\x06scheme\x18\x01 \x01(\x0e\x32-.data_reduction_proxy.ProxyServer.ProxyScheme\x12\x0c\n\x04host\x18\x02 \x01(\t\x12\x0c\n\x04port\x18\x03 \x01(\x05\x12R\n\x0f\x64\x65precated_type\x18\x04 \x01(\x0e\x32\x35.data_reduction_proxy.ProxyServer.DeprecatedProxyTypeB\x02\x18\x01\"L\n\x0bProxyScheme\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x08\n\x04HTTP\x10\x01\x12\t\n\x05HTTPS\x10\x02\x12\x17\n\x0f\x44\x45PRECATED_QUIC\x10\x03\x1a\x02\x08\x01\"5\n\x13\x44\x65precatedProxyType\x12\x14\n\x10UNSPECIFIED_TYPE\x10\x00\x12\x08\n\x04\x43ORE\x10\x01\"2\n\x10\x43onfigDeviceInfo\x12\x1e\n\x16total_device_memory_kb\x18\x01 \x01(\x03\"\xdd\x02\n\x19\x43reateClientConfigRequest\x12\x13\n\x0bsession_key\x18\x01 \x01(\t\x12\x37\n\x0cversion_info\x18\x02 \x01(\x0b\x32!.data_reduction_proxy.VersionInfo\x12\"\n\x1atelephony_network_operator\x18\x03 \x01(\t\x12S\n\rdogfood_group\x18\x04 \x01(\x0e\x32<.data_reduction_proxy.CreateClientConfigRequest.DogfoodGroup\x12;\n\x0b\x64\x65vice_info\x18\x05 \x01(\x0b\x32&.data_reduction_proxy.ConfigDeviceInfo\"<\n\x0c\x44ogfoodGroup\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0e\n\nNONDOGFOOD\x10\x01\x12\x0b\n\x07\x44OGFOOD\x10\x02\"L\n\x0bVersionInfo\x12\x0e\n\x06\x63lient\x18\x01 \x01(\t\x12\r\n\x05\x62uild\x18\x02 \x01(\x05\x12\r\n\x05patch\x18\x03 \x01(\x05\x12\x0f\n\x07\x63hannel\x18\x04 \x01(\tB\x02H\x03') ) _PROXYSERVER_PROXYSCHEME = _descriptor.EnumDescriptor( name='ProxyScheme', full_name='data_reduction_proxy.ProxyServer.ProxyScheme', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HTTP', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HTTPS', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DEPRECATED_QUIC', index=3, number=3, serialized_options=_b('\010\001'), type=None), ], containing_type=None, serialized_options=None, serialized_start=800, serialized_end=876, ) _sym_db.RegisterEnumDescriptor(_PROXYSERVER_PROXYSCHEME) _PROXYSERVER_DEPRECATEDPROXYTYPE = _descriptor.EnumDescriptor( name='DeprecatedProxyType', full_name='data_reduction_proxy.ProxyServer.DeprecatedProxyType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED_TYPE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CORE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=878, serialized_end=931, ) _sym_db.RegisterEnumDescriptor(_PROXYSERVER_DEPRECATEDPROXYTYPE) _CREATECLIENTCONFIGREQUEST_DOGFOODGROUP = _descriptor.EnumDescriptor( name='DogfoodGroup', full_name='data_reduction_proxy.CreateClientConfigRequest.DogfoodGroup', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NONDOGFOOD', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DOGFOOD', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1275, serialized_end=1335, ) _sym_db.RegisterEnumDescriptor(_CREATECLIENTCONFIGREQUEST_DOGFOODGROUP) _CLIENTCONFIG = _descriptor.Descriptor( name='ClientConfig', full_name='data_reduction_proxy.ClientConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='session_key', full_name='data_reduction_proxy.ClientConfig.session_key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='DEPRECATED_refresh_time', full_name='data_reduction_proxy.ClientConfig.DEPRECATED_refresh_time', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\030\001'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxy_config', full_name='data_reduction_proxy.ClientConfig.proxy_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='refresh_duration', full_name='data_reduction_proxy.ClientConfig.refresh_duration', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pageload_metrics_config', full_name='data_reduction_proxy.ClientConfig.pageload_metrics_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ignore_long_term_black_list_rules', full_name='data_reduction_proxy.ClientConfig.ignore_long_term_black_list_rules', index=5, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=46, serialized_end=387, ) _PAGELOADMETRICSCONFIG = _descriptor.Descriptor( name='PageloadMetricsConfig', full_name='data_reduction_proxy.PageloadMetricsConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='reporting_fraction', full_name='data_reduction_proxy.PageloadMetricsConfig.reporting_fraction', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=389, serialized_end=440, ) _TIMESTAMP = _descriptor.Descriptor( name='Timestamp', full_name='data_reduction_proxy.Timestamp', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='seconds', full_name='data_reduction_proxy.Timestamp.seconds', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nanos', full_name='data_reduction_proxy.Timestamp.nanos', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=442, serialized_end=485, ) _DURATION = _descriptor.Descriptor( name='Duration', full_name='data_reduction_proxy.Duration', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='seconds', full_name='data_reduction_proxy.Duration.seconds', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nanos', full_name='data_reduction_proxy.Duration.nanos', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=487, serialized_end=529, ) _PROXYCONFIG = _descriptor.Descriptor( name='ProxyConfig', full_name='data_reduction_proxy.ProxyConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='http_proxy_servers', full_name='data_reduction_proxy.ProxyConfig.http_proxy_servers', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=531, serialized_end=607, ) _PROXYSERVER = _descriptor.Descriptor( name='ProxyServer', full_name='data_reduction_proxy.ProxyServer', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scheme', full_name='data_reduction_proxy.ProxyServer.scheme', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='host', full_name='data_reduction_proxy.ProxyServer.host', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='data_reduction_proxy.ProxyServer.port', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deprecated_type', full_name='data_reduction_proxy.ProxyServer.deprecated_type', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\030\001'), file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _PROXYSERVER_PROXYSCHEME, _PROXYSERVER_DEPRECATEDPROXYTYPE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=610, serialized_end=931, ) _CONFIGDEVICEINFO = _descriptor.Descriptor( name='ConfigDeviceInfo', full_name='data_reduction_proxy.ConfigDeviceInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='total_device_memory_kb', full_name='data_reduction_proxy.ConfigDeviceInfo.total_device_memory_kb', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=933, serialized_end=983, ) _CREATECLIENTCONFIGREQUEST = _descriptor.Descriptor( name='CreateClientConfigRequest', full_name='data_reduction_proxy.CreateClientConfigRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='session_key', full_name='data_reduction_proxy.CreateClientConfigRequest.session_key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version_info', full_name='data_reduction_proxy.CreateClientConfigRequest.version_info', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='telephony_network_operator', full_name='data_reduction_proxy.CreateClientConfigRequest.telephony_network_operator', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dogfood_group', full_name='data_reduction_proxy.CreateClientConfigRequest.dogfood_group', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='device_info', full_name='data_reduction_proxy.CreateClientConfigRequest.device_info', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _CREATECLIENTCONFIGREQUEST_DOGFOODGROUP, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=986, serialized_end=1335, ) _VERSIONINFO = _descriptor.Descriptor( name='VersionInfo', full_name='data_reduction_proxy.VersionInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='client', full_name='data_reduction_proxy.VersionInfo.client', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='build', full_name='data_reduction_proxy.VersionInfo.build', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='patch', full_name='data_reduction_proxy.VersionInfo.patch', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channel', full_name='data_reduction_proxy.VersionInfo.channel', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1337, serialized_end=1413, ) _CLIENTCONFIG.fields_by_name['DEPRECATED_refresh_time'].message_type = _TIMESTAMP _CLIENTCONFIG.fields_by_name['proxy_config'].message_type = _PROXYCONFIG _CLIENTCONFIG.fields_by_name['refresh_duration'].message_type = _DURATION _CLIENTCONFIG.fields_by_name['pageload_metrics_config'].message_type = _PAGELOADMETRICSCONFIG _PROXYCONFIG.fields_by_name['http_proxy_servers'].message_type = _PROXYSERVER _PROXYSERVER.fields_by_name['scheme'].enum_type = _PROXYSERVER_PROXYSCHEME _PROXYSERVER.fields_by_name['deprecated_type'].enum_type = _PROXYSERVER_DEPRECATEDPROXYTYPE _PROXYSERVER_PROXYSCHEME.containing_type = _PROXYSERVER _PROXYSERVER_DEPRECATEDPROXYTYPE.containing_type = _PROXYSERVER _CREATECLIENTCONFIGREQUEST.fields_by_name['version_info'].message_type = _VERSIONINFO _CREATECLIENTCONFIGREQUEST.fields_by_name['dogfood_group'].enum_type = _CREATECLIENTCONFIGREQUEST_DOGFOODGROUP _CREATECLIENTCONFIGREQUEST.fields_by_name['device_info'].message_type = _CONFIGDEVICEINFO _CREATECLIENTCONFIGREQUEST_DOGFOODGROUP.containing_type = _CREATECLIENTCONFIGREQUEST DESCRIPTOR.message_types_by_name['ClientConfig'] = _CLIENTCONFIG DESCRIPTOR.message_types_by_name['PageloadMetricsConfig'] = _PAGELOADMETRICSCONFIG DESCRIPTOR.message_types_by_name['Timestamp'] = _TIMESTAMP DESCRIPTOR.message_types_by_name['Duration'] = _DURATION DESCRIPTOR.message_types_by_name['ProxyConfig'] = _PROXYCONFIG DESCRIPTOR.message_types_by_name['ProxyServer'] = _PROXYSERVER DESCRIPTOR.message_types_by_name['ConfigDeviceInfo'] = _CONFIGDEVICEINFO DESCRIPTOR.message_types_by_name['CreateClientConfigRequest'] = _CREATECLIENTCONFIGREQUEST DESCRIPTOR.message_types_by_name['VersionInfo'] = _VERSIONINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) ClientConfig = _reflection.GeneratedProtocolMessageType('ClientConfig', (_message.Message,), dict( DESCRIPTOR = _CLIENTCONFIG, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.ClientConfig) )) _sym_db.RegisterMessage(ClientConfig) PageloadMetricsConfig = _reflection.GeneratedProtocolMessageType('PageloadMetricsConfig', (_message.Message,), dict( DESCRIPTOR = _PAGELOADMETRICSCONFIG, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.PageloadMetricsConfig) )) _sym_db.RegisterMessage(PageloadMetricsConfig) Timestamp = _reflection.GeneratedProtocolMessageType('Timestamp', (_message.Message,), dict( DESCRIPTOR = _TIMESTAMP, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.Timestamp) )) _sym_db.RegisterMessage(Timestamp) Duration = _reflection.GeneratedProtocolMessageType('Duration', (_message.Message,), dict( DESCRIPTOR = _DURATION, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.Duration) )) _sym_db.RegisterMessage(Duration) ProxyConfig = _reflection.GeneratedProtocolMessageType('ProxyConfig', (_message.Message,), dict( DESCRIPTOR = _PROXYCONFIG, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.ProxyConfig) )) _sym_db.RegisterMessage(ProxyConfig) ProxyServer = _reflection.GeneratedProtocolMessageType('ProxyServer', (_message.Message,), dict( DESCRIPTOR = _PROXYSERVER, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.ProxyServer) )) _sym_db.RegisterMessage(ProxyServer) ConfigDeviceInfo = _reflection.GeneratedProtocolMessageType('ConfigDeviceInfo', (_message.Message,), dict( DESCRIPTOR = _CONFIGDEVICEINFO, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.ConfigDeviceInfo) )) _sym_db.RegisterMessage(ConfigDeviceInfo) CreateClientConfigRequest = _reflection.GeneratedProtocolMessageType('CreateClientConfigRequest', (_message.Message,), dict( DESCRIPTOR = _CREATECLIENTCONFIGREQUEST, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.CreateClientConfigRequest) )) _sym_db.RegisterMessage(CreateClientConfigRequest) VersionInfo = _reflection.GeneratedProtocolMessageType('VersionInfo', (_message.Message,), dict( DESCRIPTOR = _VERSIONINFO, __module__ = 'client_config_pb2' # @@protoc_insertion_point(class_scope:data_reduction_proxy.VersionInfo) )) _sym_db.RegisterMessage(VersionInfo) DESCRIPTOR._options = None _CLIENTCONFIG.fields_by_name['DEPRECATED_refresh_time']._options = None _PROXYSERVER_PROXYSCHEME.values_by_name["DEPRECATED_QUIC"]._options = None _PROXYSERVER.fields_by_name['deprecated_type']._options = None # @@protoc_insertion_point(module_scope)
12358f25a48a53f1851f8ac5027fdd19a6973bab
59de7788673ade984b9c9fbc33664a7cbdba67d3
/res/scripts/client/gui/scaleform/daapi/view/lobby/crewoperations/__init__.py
bd54d7b315bf7025de933b9384553c691e7e1edd
[]
no_license
webiumsk/WOT-0.9.15-CT
3fa24ab37a6c91b7073034afb2f355efa5b7fe36
fbd194fbaa6bdece51c7a68fc35bbb5257948341
refs/heads/master
2020-12-24T21:27:23.175774
2016-05-01T13:47:44
2016-05-01T13:47:44
57,600,180
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,734
py
# 2016.05.01 15:21:39 Střední Evropa (letní čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/crewOperations/__init__.py from gui.app_loader.settings import APP_NAME_SPACE from gui.shared import EVENT_BUS_SCOPE from gui.Scaleform.daapi.settings.views import VIEW_ALIAS from gui.Scaleform.framework import GroupedViewSettings, ViewTypes, ScopeTemplates from gui.Scaleform.framework.package_layout import PackageBusinessHandler def getViewSettings(): from gui.Scaleform.daapi.view.lobby.crewOperations.CrewOperationsPopOver import CrewOperationsPopOver from gui.Scaleform.daapi.view.lobby.crewOperations.RetrainCrewWindow import RetrainCrewWindow return (GroupedViewSettings(VIEW_ALIAS.CREW_OPERATIONS_POPOVER, CrewOperationsPopOver, 'crewOperationsPopOver.swf', ViewTypes.WINDOW, 'crewOperationsPopOver', VIEW_ALIAS.CREW_OPERATIONS_POPOVER, ScopeTemplates.WINDOW_VIEWED_MULTISCOPE), GroupedViewSettings(VIEW_ALIAS.RETRAIN_CREW, RetrainCrewWindow, 'retrainCrewWindow.swf', ViewTypes.TOP_WINDOW, 'retrainCrewWindow', None, ScopeTemplates.DEFAULT_SCOPE)) def getBusinessHandlers(): return (CrewOpsBusinessHandler(),) class CrewOpsBusinessHandler(PackageBusinessHandler): def __init__(self): listeners = ((VIEW_ALIAS.CREW_OPERATIONS_POPOVER, self.loadViewByCtxEvent), (VIEW_ALIAS.RETRAIN_CREW, self.loadViewByCtxEvent)) super(CrewOpsBusinessHandler, self).__init__(listeners, APP_NAME_SPACE.SF_LOBBY, EVENT_BUS_SCOPE.LOBBY) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\daapi\view\lobby\crewoperations\__init__.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.05.01 15:21:39 Střední Evropa (letní čas)
0e536a419c8eaf8064d4388c6bd6fbf237af1039
ae7884af1ec3965b7c0eec22edad6b74f78b7ba6
/client/full/src/UDSWindow.py
86e5b3b9b59538fda5013a6802deb4d95ceee0e4
[]
no_license
glyptodon/openuds
f4eefa319a3ead827dad999d24e5ee3854d1345d
3908c875d30ec332490fc8c049bb537e10f10d08
refs/heads/master
2021-07-12T20:58:49.281242
2021-03-05T22:42:55
2021-03-05T22:42:55
62,921,174
0
1
null
2016-07-08T22:33:44
2016-07-08T22:33:44
null
UTF-8
Python
false
false
4,671
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'UDSWindow.ui' # # Created: Mon Apr 27 21:41:43 2015 # by: PyQt4 UI code generator 4.11.2 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.setWindowModality(QtCore.Qt.NonModal) MainWindow.resize(259, 185) MainWindow.setCursor(QtGui.QCursor(QtCore.Qt.BusyCursor)) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(":/images/logo-uds-small")), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) MainWindow.setWindowOpacity(1.0) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setAutoFillBackground(True) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.centralwidget) self.verticalLayout_2.setSpacing(4) self.verticalLayout_2.setMargin(4) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.frame = QtGui.QFrame(self.centralwidget) self.frame.setFrameShape(QtGui.QFrame.StyledPanel) self.frame.setFrameShadow(QtGui.QFrame.Raised) self.frame.setObjectName(_fromUtf8("frame")) self.verticalLayout_3 = QtGui.QVBoxLayout(self.frame) self.verticalLayout_3.setSpacing(4) self.verticalLayout_3.setMargin(4) self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.verticalLayout = QtGui.QVBoxLayout() self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.image = QtGui.QLabel(self.frame) self.image.setMinimumSize(QtCore.QSize(0, 24)) self.image.setAutoFillBackground(True) self.image.setText(_fromUtf8("")) self.image.setPixmap(QtGui.QPixmap(_fromUtf8(":/images/logo-uds-small"))) self.image.setScaledContents(False) self.image.setAlignment(QtCore.Qt.AlignCenter) self.image.setObjectName(_fromUtf8("image")) self.verticalLayout.addWidget(self.image) self.info = QtGui.QLabel(self.frame) self.info.setMaximumSize(QtCore.QSize(16777215, 16)) self.info.setObjectName(_fromUtf8("info")) self.verticalLayout.addWidget(self.info) self.progressBar = QtGui.QProgressBar(self.frame) self.progressBar.setProperty("value", 24) self.progressBar.setTextVisible(False) self.progressBar.setObjectName(_fromUtf8("progressBar")) self.verticalLayout.addWidget(self.progressBar) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.cancelButton = QtGui.QPushButton(self.frame) self.cancelButton.setDefault(True) self.cancelButton.setFlat(False) self.cancelButton.setObjectName(_fromUtf8("cancelButton")) self.horizontalLayout.addWidget(self.cancelButton) spacerItem1 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem1) self.verticalLayout.addLayout(self.horizontalLayout) self.verticalLayout_3.addLayout(self.verticalLayout) self.verticalLayout_2.addWidget(self.frame) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "UDS Connection", None)) self.info.setText(_translate("MainWindow", "TextLabel", None)) self.cancelButton.setText(_translate("MainWindow", "Cancel", None)) import UDSResources_rc if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) MainWindow = QtGui.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
7b9bd540581484c8680a1ae63384c40888b2f12c
7b4820948845f55274b211d676ab8a6253a6298b
/addons/plugin.video.icefilms/resources/lib/resolvers.py
36e1264a0b0330c1387add5a845b2d5bbb7ed891
[]
no_license
bopopescu/mw
524c57d4b859751e298b907a12e44e9711ef72a6
5ef2acea0fb4150578e53201463c6bc5da37be20
refs/heads/master
2021-05-30T19:33:11.750160
2016-01-11T05:28:46
2016-01-11T05:28:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
38,586
py
import xbmc,xbmcgui import os import urllib, urllib2 import cookielib import re import jsunpack ''' Use addon.common library for http calls ''' from addon.common.net import Net from addon.common.addon import Addon net = Net() addon = Addon('plugin.video.icefilms') datapath = addon.get_profile() cookie_path = os.path.join(datapath, 'cookies') USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.99 Safari/537.36' ACCEPT = 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' def handle_captchas(url, html, data, dialog): headers = {'Referer': url} puzzle_img = os.path.join(datapath, "solve_puzzle.png") #Check for type of captcha used solvemedia = re.search('<iframe src="(http://api.solvemedia.com.+?)"', html) recaptcha = re.search('<script type="text/javascript" src="(http://www.google.com.+?)">', html) numeric_captcha = re.compile("left:(\d+)px;padding-top:\d+px;'>&#(.+?);<").findall(html) #SolveMedia captcha if solvemedia: dialog.close() html = net.http_GET(solvemedia.group(1), headers=headers).content for match in re.finditer(r'type=hidden.*?name="([^"]+)".*?value="([^"]+)', html): name, value = match.groups() data[name] = value #Check for alternate puzzle type - stored in a div alt_frame = re.search('<div><iframe src="(/papi/media[^"]+)', html) if alt_frame: html = net.http_GET("http://api.solvemedia.com%s" % alt_frame.group(1)).content alt_puzzle = re.search('<div\s+id="typein">\s*<img\s+src="data:image/png;base64,([^"]+)', html, re.DOTALL) if alt_puzzle: open(puzzle_img, 'wb').write(alt_puzzle.group(1).decode('base64')) else: open(puzzle_img, 'wb').write(net.http_GET("http://api.solvemedia.com%s" % re.search('<img src="(/papi/media[^"]+)"', html).group(1)).content) img = xbmcgui.ControlImage(450,15,400,130, puzzle_img) wdlg = xbmcgui.WindowDialog() wdlg.addControl(img) wdlg.show() xbmc.sleep(3000) kb = xbmc.Keyboard('', 'Type the letters in the image', False) kb.doModal() capcode = kb.getText() if (kb.isConfirmed()): userInput = kb.getText() if userInput != '': solution = kb.getText() elif userInput == '': raise Exception ('You must enter text in the image to access video') wdlg.close() else: wdlg.close() raise Exception ('Captcha Error') wdlg.close() data['adcopy_response'] = solution html = net.http_POST('http://api.solvemedia.com/papi/verify.noscript', data) data.update({'adcopy_challenge': data['adcopy_challenge'],'adcopy_response': 'manual_challenge'}) #Google Recaptcha elif recaptcha: dialog.close() html = net.http_GET(recaptcha.group(1), headers=headers).content part = re.search("challenge \: \\'(.+?)\\'", html) captchaimg = 'http://www.google.com/recaptcha/api/image?c='+part.group(1) img = xbmcgui.ControlImage(450,15,400,130,captchaimg) wdlg = xbmcgui.WindowDialog() wdlg.addControl(img) wdlg.show() xbmc.sleep(3000) kb = xbmc.Keyboard('', 'Type the letters in the image', False) kb.doModal() capcode = kb.getText() if (kb.isConfirmed()): userInput = kb.getText() if userInput != '': solution = kb.getText() elif userInput == '': raise Exception ('You must enter text in the image to access video') wdlg.close() else: wdlg.close() raise Exception ('Captcha Error') wdlg.close() data.update({'recaptcha_challenge_field':part.group(1),'recaptcha_response_field':solution}) #Numeric captcha - we can programmatically figure this out elif numeric_captcha: result = sorted(numeric_captcha, key=lambda ltr: int(ltr[0])) solution = ''.join(str(int(num[1])-48) for num in result) data.update({'code':solution}) return data def resolve_180upload(url): try: dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving 180Upload Link...') dialog.update(0) headers = {'Referer': url} media_id = re.search('//.+?/([\w]+)', url).group(1) web_url = 'http://180upload.com/embed-%s.html' % media_id addon.log_debug( '180Upload - Requesting GET URL: %s' % web_url) html = net.http_GET(web_url).content dialog.update(50) wrong_captcha = True while wrong_captcha: data = {} r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)"', html) if r: for name, value in r: data[name] = value else: raise Exception('Unable to resolve 180Upload Link') # 1st attempt, probably no captcha addon.log('180Upload - Requesting POST URL: %s Data values: %s' % (web_url, data)) html = net.http_POST(web_url, data, headers=headers).content packed = re.search('id="player_code".*?(eval.*?\)\)\))', html,re.DOTALL) if packed: js = jsunpack.unpack(packed.group(1)) link = re.search('name="src"0="([^"]+)"/>', js.replace('\\','')) if link: addon.log('180Upload Link Found: %s' % link.group(1)) dialog.update(100) return link.group(1) + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) else: link = re.search("'file','(.+?)'", js.replace('\\','')) if link: addon.log('180Upload Link Found: %s' % link.group(1)) return link.group(1) + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) #Cannot get video without captcha, so try regular url html = net.http_GET(url).content data = {} r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) if r: for name, value in r: data[name] = value else: raise Exception('Unable to resolve 180Upload Link') #Check for captcha data = handle_captchas(url, html, data, dialog) dialog.create('Resolving', 'Resolving 180Uploads Link...') dialog.update(50) addon.log_debug( '180Upload - Requesting POST URL: %s Data: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content wrong_captcha = re.search('<div class="err">Wrong captcha</div>', html) if wrong_captcha: addon.show_ok_dialog(['Wrong captcha entered, try again'], title='Wrong Captcha', is_error=False) dialog.update(100) link = re.search('id="lnk_download[^"]*" href="([^"]+)', html) if link: addon.log_debug( '180Upload Link Found: %s' % link.group(1)) return link.group(1) + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) else: raise Exception('Unable to resolve 180Upload Link') except Exception, e: addon.log_error('**** 180Upload Error occured: %s' % e) raise finally: dialog.close() def resolve_24uploading(url): try: dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving 24Uploading Link...') dialog.update(0) addon.log_debug('24Uploading - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(33) wrong_captcha = True while wrong_captcha: data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value else: raise Exception('Unable to resolve 24Uploading Link') addon.log('24Uploading - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data).content dialog.update(66) data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value else: raise Exception('Unable to resolve 24Uploading Link') #Handle captcha data = handle_captchas(url, html, data, dialog) dialog.create('Resolving', 'Resolving 24Uploading Link...') dialog.update(66) addon.log('24Uploading - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data).content wrong_captcha = re.search('<div class="err">Wrong captcha</div>', html) if wrong_captcha: addon.show_ok_dialog(['Wrong captcha entered, try again'], title='Wrong Captcha', is_error=False) dialog.update(100) link = re.search('<div class="btn_down">.+<a href="(.+?)" style="display:block;">', html, re.DOTALL) if link: addon.log_debug('24Uploading Link Found: %s' % link.group(1)) return link.group(1) else: raise Exception('Unable to resolve 24Uploading Link') except Exception, e: addon.log_error('**** 24Uploading Error occured: %s' % e) raise finally: dialog.close() def resolve_clicknupload(url): try: media_id = re.search('//.+?/([\w]+)', url).group(1) url = 'http://clicknupload.me/%s' % media_id headers = {'Referer': url} #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving ClicknUpload Link...') dialog.update(0) addon.log('ClicknUpload - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(33) #Check page for any error msgs if re.search('<b>File Not Found</b>', html): addon.log_error('***** ClicknUpload - File is deleted') raise Exception('File has been deleted from the host') #Set POST data values data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value addon.log('ClicknUpload - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content dialog.update(66) data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value #Check for captcha data = handle_captchas(url, html, data, dialog) wait_string = re.search('<span id="countdown_str">Please wait <span id=".+?" style=".+?">([0-9]+)</span>', html) if wait_string: xbmc.sleep(int(wait_string.group(1)) * 1000) addon.log('ClicknUpload - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content #Get download link dialog.update(100) link = re.search("onClick\s*=\s*\"window\.open\('([^']+)", html) if link: return link.group(1) + '|User-Agent=%s' % USER_AGENT else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** ClicknUpload Error occured: %s' % e) raise finally: dialog.close() def resolve_upload_af(url): try: headers = {'Referer': url} #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving Upload.af Link...') dialog.update(0) addon.log('Upload.af - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(33) #Check page for any error msgs if re.search('<b>File Not Found</b>', html): addon.log_error('***** Upload.af - File is deleted') raise Exception('File has been deleted from the host') #Set POST data values data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value data['method_free'] = 'Free Download >>' addon.log('Upload.af - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content dialog.update(66) data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value #Check for captcha data = handle_captchas(url, html, data, dialog) wait_string = re.search('<div class="btn btn-danger" id="countdown">Wait <b class="seconds">([0-9]+)</b> seconds</div>', html) if wait_string: xbmc.sleep(int(wait_string.group(1)) * 1000) addon.log('Upload.af - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content #Get download link dialog.update(100) link = re.search('<a href="(.+?)".+?>Download</a>', html) if link: return link.group(1) + '|User-Agent=%s' % USER_AGENT else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** Upload.af Error occured: %s' % e) raise finally: dialog.close() def resolve_uploadx(url): try: headers = {'Referer': url} #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving Uploadx Link...') dialog.update(0) addon.log('Uploadx - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(33) #Check page for any error msgs if re.search('<b>File Not Found</b>', html): addon.log_error('***** Uploadx - File is deleted') raise Exception('File has been deleted from the host') #Set POST data values data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value data['method_free'] = 'Free Download >>' addon.log('Uploadx - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content dialog.update(66) data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value #Check for captcha data = handle_captchas(url, html, data, dialog) # wait_string = re.search('<div class="btn btn-danger" id="countdown">Wait <b class="seconds">([0-9]+)</b> seconds</div>', html) # if wait_string: # xbmc.sleep(int(wait_string.group(1)) * 1000) addon.log('Uploadx - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data, headers=headers).content #Get download link dialog.update(100) link = re.search('<a href="(.+?)".+?>Download</a>', html) if link: return link.group(1) + '|User-Agent=%s' % USER_AGENT else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** Uploadx Error occured: %s' % e) raise finally: dialog.close() def resolve_vidhog(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving VidHog Link...') dialog.update(0) addon.log_debug('VidHog - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('This server is in maintenance mode', html): raise Exception('File is currently unavailable on the host') if re.search('<b>File Not Found</b>', html): raise Exception('File has been deleted') filename = re.search('<strong>\(<font color="red">(.+?)</font>\)</strong><br><br>', html).group(1) extension = re.search('(\.[^\.]*$)', filename).group(1) guid = re.search('http://vidhog.com/(.+)$', url).group(1) vid_embed_url = 'http://vidhog.com/vidembed-%s%s' % (guid, extension) request = urllib2.Request(vid_embed_url) request.add_header('User-Agent', USER_AGENT) request.add_header('Accept', ACCEPT) request.add_header('Referer', url) response = urllib2.urlopen(request) redirect_url = re.search('(http://.+?)video', response.geturl()).group(1) download_link = redirect_url + filename dialog.update(100) return download_link except Exception, e: addon.log_error('**** VidHog Error occured: %s' % e) raise finally: dialog.close() def resolve_vidplay(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving VidPlay Link...') dialog.update(0) addon.log_debug('VidPlay - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('This server is in maintenance mode', html): raise Exception('File is currently unavailable on the host') if re.search('<b>File Not Found</b>', html): raise Exception('File has been deleted') filename = re.search('<h4>(.+?)</h4>', html).group(1) extension = re.search('(\.[^\.]*$)', filename).group(1) guid = re.search('http://vidplay.net/(.+)$', url).group(1) vid_embed_url = 'http://vidplay.net/vidembed-%s%s' % (guid, extension) request = urllib2.Request(vid_embed_url) request.add_header('User-Agent', USER_AGENT) request.add_header('Accept', ACCEPT) request.add_header('Referer', url) response = urllib2.urlopen(request) redirect_url = re.search('(http://.+?)video', response.geturl()).group(1) download_link = redirect_url + filename + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) dialog.update(100) return download_link except Exception, e: addon.log_error('**** VidPlay Error occured: %s' % e) raise finally: dialog.close() def resolve_epicshare(url): try: puzzle_img = os.path.join(datapath, "epicshare_puzzle.png") #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving EpicShare Link...') dialog.update(0) addon.log('EpicShare - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('This server is in maintenance mode', html): addon.log_error('***** EpicShare - Site reported maintenance mode') raise Exception('File is currently unavailable on the host') if re.search('<b>File Not Found</b>', html): addon.log_error('***** EpicShare - File not found') raise Exception('File has been deleted') wrong_captcha = True while wrong_captcha: data = {} r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) if r: for name, value in r: data[name] = value else: addon.log_error('***** EpicShare - Cannot find data values') raise Exception('Unable to resolve EpicShare Link') #Handle captcha data = handle_captchas(url, html, data, dialog) dialog.create('Resolving', 'Resolving EpicShare Link...') dialog.update(50) addon.log('EpicShare - Requesting POST URL: %s' % url) html = net.http_POST(url, data).content wrong_captcha = re.search('<div class="err">Wrong captcha</div>', html) if wrong_captcha: addon.show_ok_dialog(['Wrong captcha entered, try again'], title='Wrong Captcha', is_error=False) dialog.update(100) link = re.search('product_download_url=(.+?)"', html) if link: addon.log('EpicShare Link Found: %s' % link.group(1)) return link.group(1) else: addon.log_error('***** EpicShare - Cannot find final link') raise Exception('Unable to resolve EpicShare Link') except Exception, e: addon.log_error('**** EpicShare Error occured: %s' % e) raise finally: dialog.close() def resolve_hugefiles(url): try: headers = {'Referer': 'http://www.icefilms.info/', 'host': 'hugefiles.net'} puzzle_img = os.path.join(datapath, "hugefiles_puzzle.png") #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving HugeFiles Link...') dialog.update(0) media_id = re.search('//.+?/([\w]+)', url).group(1) web_url = 'http://hugefiles.net/embed-%s.html' % media_id addon.log_debug('HugeFiles - Requesting GET URL: %s' % web_url) html = net.http_GET(web_url, headers=headers).content dialog.update(50) #Check page for any error msgs if re.search('<h3>File Not found</h3>', html): addon.log_error('***** HugeFiles - File Not Found') raise Exception('File Not Found') wrong_captcha = True headers = {'Referer': web_url, 'host': 'hugefiles.net'} while wrong_captcha: #Set POST data values data = {} r = re.findall(r'type="hidden"\s+name="([^"]+)"\s+value="([^"]+)', html) if r: for name, value in r: data[name] = value else: addon.log_error('***** HugeFiles - Cannot find data values') raise Exception('Unable to resolve HugeFiles Link') data['method_free'] = 'Free Download' data['w'] = "" data['h'] = "" #Handle captcha data.update(handle_captchas(web_url, html, data, dialog)) dialog.create('Resolving', 'Resolving HugeFiles Link...') dialog.update(50) addon.log('HugeFiles - Requesting POST URL: %s DATA: %s' % (web_url, data)) html = net.http_POST(web_url, data, headers=headers).content solvemedia = re.search('<iframe src="((?:http:)?//api.solvemedia.com[^"]+)', html) recaptcha = re.search('<script type="text/javascript" src="(http://www.google.com[^"]+)', html) numeric_captcha = re.compile("left:(\d+)px;padding-top:\d+px;'>&#(.+?);<").findall(html) if solvemedia or recaptcha or numeric_captcha: addon.show_ok_dialog(['Wrong captcha entered, try again'], title='Wrong Captcha', is_error=False) else: wrong_captcha = False #Get download link dialog.update(100) packed = re.search('id="player_code".*?(eval.*?\)\)\))', html,re.DOTALL) if packed: js = jsunpack.unpack(packed.group(1)) link = re.search('name="src"0="([^"]+)"/>', js.replace('\\','')) if link: addon.log('HugeFiles Link Found: %s' % link.group(1)) return link.group(1) + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) else: link = re.search("'file','(.+?)'", js.replace('\\','')) if link: addon.log('HugeFiles Link Found: %s' % link.group(1)) return link.group(1) + '|Referer=%s&User-Agent=%s' % (url, USER_AGENT) #r = re.search('fileUrl\s*=\s*"([^"]+)', html) #if r: # return r.group(1) except Exception, e: addon.log_error('**** HugeFiles Error occured: %s' % e) raise finally: dialog.close() def resolve_entroupload(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving EntroUpload Link...') dialog.update(0) addon.log('EntroUpload - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('<b>File Not Found</b>', html): addon.log_error('***** EntroUpload - File Not Found') raise Exception('File Not Found') #Set POST data values data = {} r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) if r: for name, value in r: data[name] = value else: addon.log_error('***** EntroUpload - Cannot find data values') raise Exception('Unable to resolve EntroUpload Link') data['method_free'] = 'Free Download' file_name = data['fname'] addon.log('EntroUpload - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data).content #Get download link dialog.update(100) sPattern = '<script type=(?:"|\')text/javascript(?:"|\')>(eval\(' sPattern += 'function\(p,a,c,k,e,d\)(?!.+player_ads.+).+np_vid.+?)' sPattern += '\s+?</script>' r = re.search(sPattern, html, re.DOTALL + re.IGNORECASE) if r: sJavascript = r.group(1) sUnpacked = jsunpack.unpack(sJavascript) sPattern = '<embed id="np_vid"type="video/divx"src="(.+?)' sPattern += '"custommode=' r = re.search(sPattern, sUnpacked) if r: return r.group(1) else: addon.log_error('***** EntroUpload - Cannot find final link') raise Exception('Unable to resolve EntroUpload Link') else: addon.log_error('***** EntroUpload - Cannot find final link') raise Exception('Unable to resolve EntroUpload Link') except Exception, e: addon.log_error('**** EntroUpload Error occured: %s' % e) raise finally: dialog.close() def resolve_donevideo(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving DoneVideo Link...') dialog.update(0) addon.log('DoneVideo - Requesting GET URL: %s' % url) html = net.http_GET(url).content data = {} r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) if r: for name, value in r: data[name] = value else: addon.log_error('***** DoneVideo - Cannot find data values') raise Exception('Unable to resolve DoneVideo Link') data['method_free'] = 'Continue to Video' addon.log('DoneVideo - Requesting POST URL: %s' % url) html = net.http_POST(url, data).content dialog.update(50) r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) if r: for name, value in r: data[name] = value else: addon.log_error('Could not resolve link') data['method_free'] = 'Continue to Video' addon.log('DoneVideo - Requesting POST URL: %s' % url) html = net.http_POST(url, data).content #Get download link dialog.update(100) sPattern = '''<div id="player_code">.*?<script type='text/javascript'>(eval.+?)</script>''' r = re.search(sPattern, html, re.DOTALL + re.IGNORECASE) if r: sJavascript = r.group(1) sUnpacked = jsunpack.unpack(sJavascript) sUnpacked = sUnpacked.replace("\\","") r = re.search("addVariable.+?'file','(.+?)'", sUnpacked) if r: return r.group(1) else: sPattern = '<embed id="np_vid"type="video/divx"src="(.+?)' sPattern += '"custommode=' r = re.search(sPattern, sUnpacked) if r: return r.group(1) else: addon.log_error('***** DoneVideo - Cannot find final link') raise Exception('Unable to resolve DoneVideo Link') except Exception, e: addon.log_error('**** DoneVideo Error occured: %s' % e) raise finally: dialog.close() def SHARED2_HANDLER(url): html = net.http_GET(url).content #Check if a download limit msg is showing if re.search('Your free download limit is over.', html): wait_time = re.search('<span id="timeToWait">(.+?)</span>', html).group(1) Notify('big','2Shared Download Limit Exceeded','You have reached your download limit', '', '', 'You must wait ' + wait_time + ' to try again' ) return None #If no download limit msg lets grab link, must post to it first for download to activate else: d3fid = re.search('<input type="hidden" name="d3fid" value="(.+?)">', html).group(1) d3link = re.search('<input type="hidden" name="d3link" value="(.+?)">', html).group(1) data = {'d3fid': d3fid, 'd3link': d3link} html = net.http_POST(url, data).content return d3link def resolve_tusfiles(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving TusFiles Link...') dialog.update(0) addon.log('TusFiles - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('This server is in maintenance mode', html): addon.log_error('***** TusFiles - Site reported maintenance mode') raise Exception('File is currently unavailable on the host') if re.search('<b>File Not Found</b>', html): addon.log_error('***** TusFiles - File not found') raise Exception('File has been deleted') filename = re.search('Start download<h1><span class="label label-default"><FONT COLOR="#ffffff">(.+?)</FONT>', html).group(1) filename = filename.split('/')[-1] extension = re.search('(\.[^\.]*$)', filename).group(1) guid = re.search('http://tusfiles.net/(.+)$', url).group(1) vid_embed_url = 'http://tusfiles.net/vidembed-%s%s' % (guid, extension) request = urllib2.Request(vid_embed_url) request.add_header('User-Agent', USER_AGENT) request.add_header('Accept', ACCEPT) request.add_header('Referer', url) response = urllib2.urlopen(request) redirect_url = re.search('(http[s]*://.+?)video', response.geturl()).group(1) download_link = redirect_url + filename dialog.update(100) return download_link except Exception, e: addon.log_error('**** TusFiles Error occured: %s' % e) raise finally: dialog.close() def resolve_xfileload(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving XfileLoad Link...') dialog.update(0) addon.log('XfileLoad - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(50) #Check page for any error msgs if re.search('<li>The file was deleted by its owner', html): addon.log_error('***** XfileLoad - File is deleted') raise Exception('File has been deleted from the host') #Set POST data values data = {} r = re.findall('type="(hidden|submit)" name="(.+?)" value="(.*?)">', html) if r: for none, name, value in r: data[name] = value addon.log('XfileLoad - Requesting POST URL: %s DATA: %s' % (url, data)) html = net.http_POST(url, data).content #Get download link dialog.update(100) link = re.search('<a href="(.+?)" target=""><img src="http://xfileload.com/3ghdes/images/downdown.png" /></a>', html) if link: return link.group(1) else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** XfileLoad Error occured: %s' % e) raise finally: dialog.close() def resolve_mightyupload(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving MightyUpload Link...') dialog.update(0) url = url.replace('/embed-', '/') url = re.compile('//.+?/([\w]+)').findall(url)[0] url = 'http://www.mightyupload.com/embed-%s.html' % url addon.log('MightyUpload - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(100) link = re.compile("file *: *'(.+?)'").findall(html) if len(link) > 0: return link[0] + '|User-Agent=%s' % (USER_AGENT) result = re.compile('(eval.*?\)\)\))').findall(html)[-1] if result: sJavascript = result sUnpacked = jsunpack.unpack(sJavascript) r = re.search("'file','([^']+)'", sUnpacked.replace('\\', '')) if not r: r = re.search('"src"value="([^"]+)', sUnpacked.replace('\\', '')) if not r: r = re.search('"src"[0-9]="(.+?)"/>', sUnpacked.replace('\\', '')) if r: return r.group(1) + '|User-Agent=%s' % (USER_AGENT) else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** MightyUpload Error occured: %s' % e) raise finally: dialog.close() def resolve_xvidstage(url): try: #Show dialog box so user knows something is happening dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving XvidStage Link...') dialog.update(0) url = url.replace('/embed-', '/') url = re.compile('//.+?/([\w]+)').findall(url)[0] url = 'http://xvidstage.com/embed-%s.html' % url addon.log('XvidStage - Requesting GET URL: %s' % url) html = net.http_GET(url).content dialog.update(100) result = re.compile('(eval.*?\)\)\))').findall(html)[-1] if result: sJavascript = result sUnpacked = jsunpack.unpack(sJavascript) sPattern = "'file','(.+?)'" r = re.search(sPattern, sUnpacked) if r: return r.group(1) else: raise Exception("Unable to find final link") else: raise Exception("Unable to find final link") except Exception, e: addon.log_error('**** XvidStage Error occured: %s' % e) raise finally: dialog.close()
14c05659bfcf17e4fd5989ae12e8a8272b62a798
dfe0798a322dca6b90e10743936c500e618ff078
/Sample_Project/env/lib/python3.8/site-packages/sipconfig.py
1dd5c9bc7e2d6bcd641e27dea9ab88bf6031ba90
[ "Python-2.0" ]
permissive
SenthilKumar009/Udemy-MLandDS-CompleteMastery
7d0ff9d2ffa688ba35de5667441eafc443f9792a
ca5e867134ad2bbf03d158d78b34905390ab58b2
refs/heads/master
2022-11-21T16:01:51.416001
2020-06-16T03:15:48
2020-06-16T03:15:48
270,206,193
1
1
null
2022-11-16T05:57:51
2020-06-07T05:44:20
Jupyter Notebook
UTF-8
Python
false
false
97,321
py
# This module is intended to be used by the build/installation scripts of # extension modules created with SIP. It provides information about file # locations, version numbers etc., and provides some classes and functions. # # Copyright (c) 2018 Riverbank Computing Limited <[email protected]> # # This file is part of SIP. # # This copy of SIP is licensed for use under the terms of the SIP License # Agreement. See the file LICENSE for more details. # # This copy of SIP may also used under the terms of the GNU General Public # License v2 or v3 as published by the Free Software Foundation which can be # found in the files LICENSE-GPL2 and LICENSE-GPL3 included in this package. # # SIP is supplied WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. import sys import os import stat import string import re # These are installation specific values created when SIP was configured. _pkg_config = { 'arch': '', 'default_bin_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/bin', 'default_mod_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/lib/python3.8/site-packages', 'default_sip_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/share/sip', 'deployment_target': '', 'platform': 'linux-g++', 'py_conf_inc_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/include/python3.8', 'py_inc_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/include/python3.8', 'py_lib_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/lib/python3.8/config', 'py_version': 0x030800, 'qt_framework': 0, 'sip_bin': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/bin/sip', 'sip_config_args': '--sysroot=/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env', 'sip_inc_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/include/python3.8', 'sip_module_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/lib/python3.8/site-packages', 'sip_root_dir': '/home/skk_thenotorious/Documents/Udemy-MachineLearning/Sample_Project/env/lib/python3.8/site-packages', 'sip_version': 0x04130d, 'sip_version_str': '4.19.13', 'universal': '' } _default_macros = { 'AIX_SHLIB': '', 'AR': 'ar cqs', 'CC': 'gcc', 'CFLAGS': '-pipe', 'CFLAGS_APP': '', 'CFLAGS_CONSOLE': '', 'CFLAGS_DEBUG': '-g', 'CFLAGS_EXCEPTIONS_OFF': '', 'CFLAGS_EXCEPTIONS_ON': '', 'CFLAGS_MT': '', 'CFLAGS_MT_DBG': '', 'CFLAGS_MT_DLL': '', 'CFLAGS_MT_DLLDBG': '', 'CFLAGS_RELEASE': '-O2', 'CFLAGS_RTTI_OFF': '', 'CFLAGS_RTTI_ON': '', 'CFLAGS_SHLIB': '-fPIC', 'CFLAGS_STL_OFF': '', 'CFLAGS_STL_ON': '', 'CFLAGS_THREAD': '-D_REENTRANT', 'CFLAGS_WARN_OFF': '-w', 'CFLAGS_WARN_ON': '-Wall -W', 'CHK_DIR_EXISTS': 'test -d', 'CONFIG': 'qt warn_on release incremental link_prl', 'COPY': 'cp -f', 'CXX': 'g++', 'CXXFLAGS': '-pipe', 'CXXFLAGS_APP': '', 'CXXFLAGS_CONSOLE': '', 'CXXFLAGS_DEBUG': '-g', 'CXXFLAGS_EXCEPTIONS_OFF': '', 'CXXFLAGS_EXCEPTIONS_ON': '', 'CXXFLAGS_MT': '', 'CXXFLAGS_MT_DBG': '', 'CXXFLAGS_MT_DLL': '', 'CXXFLAGS_MT_DLLDBG': '', 'CXXFLAGS_RELEASE': '-O2', 'CXXFLAGS_RTTI_OFF': '', 'CXXFLAGS_RTTI_ON': '', 'CXXFLAGS_SHLIB': '-fPIC', 'CXXFLAGS_STL_OFF': '', 'CXXFLAGS_STL_ON': '', 'CXXFLAGS_THREAD': '-D_REENTRANT', 'CXXFLAGS_WARN_OFF': '-w', 'CXXFLAGS_WARN_ON': '-Wall -W', 'DEFINES': '', 'DEL_FILE': 'rm -f', 'EXTENSION_PLUGIN': '', 'EXTENSION_SHLIB': '', 'INCDIR': '', 'INCDIR_OPENGL': '/usr/X11R6/include', 'INCDIR_X11': '/usr/X11R6/include', 'LFLAGS': '', 'LFLAGS_CONSOLE': '', 'LFLAGS_CONSOLE_DLL': '', 'LFLAGS_DEBUG': '', 'LFLAGS_DLL': '', 'LFLAGS_OPENGL': '', 'LFLAGS_PLUGIN': '-shared', 'LFLAGS_RELEASE': '', 'LFLAGS_RPATH': '', 'LFLAGS_SHLIB': '-shared', 'LFLAGS_SONAME': '-Wl,-soname,', 'LFLAGS_THREAD': '', 'LFLAGS_WINDOWS': '', 'LFLAGS_WINDOWS_DLL': '', 'LIB': '', 'LIBDIR': '', 'LIBDIR_OPENGL': '/usr/X11R6/lib', 'LIBDIR_X11': '/usr/X11R6/lib', 'LIBS': '', 'LIBS_CONSOLE': '', 'LIBS_CORE': '', 'LIBS_GUI': '', 'LIBS_NETWORK': '', 'LIBS_OPENGL': '-lGLU -lGL', 'LIBS_RT': '', 'LIBS_RTMT': '', 'LIBS_THREAD': '-lpthread', 'LIBS_WEBKIT': '', 'LIBS_WINDOWS': '', 'LIBS_X11': '-lXext -lX11 -lm', 'LINK': 'g++', 'LINK_SHLIB': 'g++', 'LINK_SHLIB_CMD': '', 'MAKEFILE_GENERATOR': 'UNIX', 'MKDIR': 'mkdir -p', 'RANLIB': '', 'RPATH': '-Wl,-rpath,', 'STRIP': 'strip' } # The stack of configuration dictionaries. _config_stack = [] class Configuration(object): """The class that represents SIP configuration values. """ def __init__(self, sub_cfg=None): """Initialise an instance of the class. sub_cfg is the list of sub-class configurations. It should be None when called normally. """ # Find the build macros in the closest imported module from where this # was originally defined. self._macros = None for cls in self.__class__.__mro__: if cls is object: continue mod = sys.modules[cls.__module__] if hasattr(mod, "_default_macros"): self._macros = mod._default_macros break if sub_cfg: cfg = sub_cfg else: cfg = [] cfg.append(_pkg_config) global _config_stack _config_stack = cfg def __getattr__(self, name): """Allow configuration values and user options to be handled as instance variables. name is the name of the configuration value or user option. """ for cfg in _config_stack: try: return cfg[name] except KeyError: pass raise AttributeError("\"%s\" is not a valid configuration value or user option" % name) def build_macros(self): """Return the dictionary of platform specific build macros. """ return self._macros def set_build_macros(self, macros): """Set the dictionary of build macros to be use when generating Makefiles. macros is the dictionary of platform specific build macros. """ self._macros = macros class _UniqueList: """A limited list that ensures all its elements are unique. """ def __init__(self, value=None): """Initialise the instance. value is the initial value of the list. """ if value is None: self._list = [] else: self._list = value def append(self, value): """Append a value to the list if it isn't already present. value is the value to append. """ if value not in self._list: self._list.append(value) def lextend(self, value): """A normal list extend ignoring the uniqueness. value is the list of elements to append. """ self._list.extend(value) def extend(self, value): """Append each element of a value to a list if it isn't already present. value is the list of elements to append. """ for el in value: self.append(el) def as_list(self): """Return the list as a raw list. """ return self._list class _Macro: """A macro that can be manipulated as a list. """ def __init__(self, name, value): """Initialise the instance. name is the name of the macro. value is the initial value of the macro. """ self._name = name self.set(value) def set(self, value): """Explicitly set the value of the macro. value is the new value. It may be a string, a list of strings or a _UniqueList instance. """ self._macro = [] if isinstance(value, _UniqueList): value = value.as_list() if type(value) == list: self.extend(value) else: self.append(value) def append(self, value): """Append a value to the macro. value is the value to append. """ if value: self._macro.append(value) def extend(self, value): """Append each element of a value to the macro. value is the list of elements to append. """ for el in value: self.append(el) def remove(self, value): """Remove a value from the macro. It doesn't matter if the value wasn't present. value is the value to remove. """ try: self._macro.remove(value) except: pass def as_list(self): """Return the macro as a list. """ return self._macro class Makefile: """The base class for the different types of Makefiles. """ def __init__(self, configuration, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=1, debug=0, dir=None, makefile="Makefile", installs=None, universal=None, arch=None, deployment_target=None): """Initialise an instance of the target. All the macros are left unchanged allowing scripts to manipulate them at will. configuration is the current configuration. console is set if the target is a console (rather than windows) target. qt is set if the target uses Qt. For Qt v4 a list of Qt libraries may be specified and a simple non-zero value implies QtCore and QtGui. opengl is set if the target uses OpenGL. python is set if the target #includes Python.h. debug is set to generated a debugging version of the target. threaded is set if the target requires thread support. It is automatically set if the target uses Qt and Qt has thread support enabled. warnings is set if compiler warning messages are required. debug is set if debugging symbols should be generated. dir is the directory for build files and Makefiles. makefile is the name of the Makefile. installs is a list of extra install targets. Each element is a two part list, the first of which is the source and the second is the destination. If the source is another list then it is a set of source files and the destination is a directory. If the destination is None then the source is a command to run. universal is the name of the SDK if the target is a MacOS/X universal binary. If it is None then the value is taken from the configuration. arch is the space separated MacOS/X architectures to build. If it is None then it is taken from the configuration. deployment_target MacOS/X deployment target. If it is None then it is taken from the configuration. """ if qt: if not hasattr(configuration, "qt_version"): error("The target uses Qt but pyqtconfig has not been imported.") # For Qt v4 interpret Qt support as meaning link against the core # and GUI libraries (which corresponds to the default qmake # configuration). Also allow a list of Qt v4 modules to be # specified. if configuration.qt_version >= 0x040000: if type(qt) != list: qt = ["QtCore", "QtGui"] self._threaded = configuration.qt_threaded else: self._threaded = threaded self.config = configuration self.console = console self._qt = qt self._opengl = opengl self._python = python self._warnings = warnings self._debug = debug self._makefile = makefile self._installs = installs self._infix = "" # Make sure the destination directory is an absolute path. if dir: self.dir = os.path.abspath(dir) else: self.dir = os.getcwd() # Assume we are building in the source tree. self._src_dir = self.dir if universal is None: self._universal = configuration.universal else: self._universal = universal if arch is None: self._arch = configuration.arch else: self._arch = arch if deployment_target is None: self._deployment_target = configuration.deployment_target else: self._deployment_target = deployment_target self._finalised = 0 # Copy the macros and convert them all to instance lists. macros = configuration.build_macros() for m in list(macros.keys()): # Allow the user to override the default. try: val = getattr(configuration, m) except AttributeError: val = macros[m] # These require special handling as they are (potentially) a set of # space separated values rather than a single value that might # contain spaces. if m in ("DEFINES", "CONFIG") or m[:6] in ("INCDIR", "LIBDIR"): val = val.split() # We also want to treat lists of libraries in the same way so that # duplicates get eliminated. if m[:4] == "LIBS": val = val.split() self.__dict__[m] = _Macro(m, val) # This is used to alter the configuration more significantly than can # be done with just configuration files. self.generator = self.optional_string("MAKEFILE_GENERATOR", "UNIX") # These are what configuration scripts normally only need to change. self.extra_cflags = [] self.extra_cxxflags = [] self.extra_defines = [] self.extra_include_dirs = [] self.extra_lflags = [] self.extra_lib_dirs = [] self.extra_libs = [] self.extra_source_dirs = [] # Get these once and make them available to sub-classes. if sys.platform == "win32": def_copy = "copy" def_rm = "del" def_mkdir = "mkdir" def_chk_dir_exists = "if not exist" else: def_copy = "cp -f" def_rm = "rm -f" def_mkdir = "mkdir -p" def_chk_dir_exists = "test -d" self.copy = self.optional_string("COPY", def_copy) self.rm = self.optional_string("DEL_FILE", def_rm) self.mkdir = self.optional_string("MKDIR", def_mkdir) self.chkdir = self.optional_string("CHK_DIR_EXISTS", def_chk_dir_exists) def finalise(self): """Finalise the macros by doing any consolidation that isn't specific to a Makefile. """ # Extract the things we might need from the Windows Qt configuration. # Note that we used to think that if Qt was built with exceptions, RTTI # and STL support enabled then anything that linked against it also # needed the same flags. However, detecting this was broken for some # time and nobody complained. For the moment we'll leave the code in # but it will never be used. if self._qt: wcfg = self.config.qt_winconfig.split() win_shared = ("shared" in wcfg) win_exceptions = ("exceptions" in wcfg) win_rtti = ("rtti" in wcfg) win_stl = ("stl" in wcfg) qt_version = self.config.qt_version else: win_shared = 1 win_exceptions = 0 win_rtti = 0 win_stl = 0 qt_version = 0 # Get what we are going to transform. cflags = _UniqueList() cflags.extend(self.extra_cflags) cflags.extend(self.optional_list("CFLAGS")) cxxflags = _UniqueList() cxxflags.extend(self.extra_cxxflags) cxxflags.extend(self.optional_list("CXXFLAGS")) defines = _UniqueList() defines.extend(self.extra_defines) defines.extend(self.optional_list("DEFINES")) incdir = _UniqueList(["."]) incdir.extend(self.extra_include_dirs) incdir.extend(self.optional_list("INCDIR")) lflags = _UniqueList() lflags.extend(self.extra_lflags) lflags.extend(self.optional_list("LFLAGS")) libdir = _UniqueList() libdir.extend(self.extra_lib_dirs) libdir.extend(self.optional_list("LIBDIR")) # Handle MacOS/X specific configuration. if sys.platform == 'darwin': mac_cflags = [] mac_lflags = [] for a in self._arch.split(): aflag = '-arch ' + a mac_cflags.append(aflag) mac_lflags.append(aflag) if self._universal: mac_cflags.append('-isysroot %s' % self._universal) mac_lflags.append('-Wl,-syslibroot,%s' % self._universal) cflags.lextend(mac_cflags) cxxflags.lextend(mac_cflags) lflags.lextend(mac_lflags) # Don't use a unique list as libraries may need to be searched more # than once. Also MacOS/X uses the form "-framework lib" so we don't # want to lose the multiple "-framework". libs = [] for l in self.extra_libs: libs.append(self.platform_lib(l)) if self._qt: libs.extend(self._dependent_libs(l)) libs.extend(self.optional_list("LIBS")) rpaths = _UniqueList() for l in self.extra_lib_dirs: l_dir = os.path.dirname(l) # This is a hack to ignore PyQt's internal support libraries. if '/qpy/' in l_dir: continue # Ignore relative directories. This is really a hack to handle # SIP v3 inter-module linking. if l_dir in ("", ".", ".."): continue rpaths.append(l) if self._python: incdir.append(self.config.py_inc_dir) incdir.append(self.config.py_conf_inc_dir) if sys.platform == "cygwin": libdir.append(self.config.py_lib_dir) py_lib = "python%u.%u" % ((self.config.py_version >> 16), ((self.config.py_version >> 8) & 0xff)) libs.append(self.platform_lib(py_lib)) elif sys.platform == "win32": libdir.append(self.config.py_lib_dir) py_lib = "python%u%u" % ((self.config.py_version >> 16), ((self.config.py_version >> 8) & 0xff)) # For Borland use the OMF version of the Python library if it # exists, otherwise assume that Python was built with Borland # and use the normal library. if self.generator == "BMAKE": bpy_lib = py_lib + "_bcpp" bpy_lib_path = os.path.join(self.config.py_lib_dir, self.platform_lib(bpy_lib)) if os.access(bpy_lib_path, os.F_OK): py_lib = bpy_lib if self._debug: py_lib = py_lib + "_d" if self.generator != "MINGW": cflags.append("/D_DEBUG") cxxflags.append("/D_DEBUG") libs.append(self.platform_lib(py_lib)) if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): if win_exceptions: cflags_exceptions = "CFLAGS_EXCEPTIONS_ON" cxxflags_exceptions = "CXXFLAGS_EXCEPTIONS_ON" else: cflags_exceptions = "CFLAGS_EXCEPTIONS_OFF" cxxflags_exceptions = "CXXFLAGS_EXCEPTIONS_OFF" cflags.extend(self.optional_list(cflags_exceptions)) cxxflags.extend(self.optional_list(cxxflags_exceptions)) if win_rtti: cflags_rtti = "CFLAGS_RTTI_ON" cxxflags_rtti = "CXXFLAGS_RTTI_ON" else: cflags_rtti = "CFLAGS_RTTI_OFF" cxxflags_rtti = "CXXFLAGS_RTTI_OFF" cflags.extend(self.optional_list(cflags_rtti)) cxxflags.extend(self.optional_list(cxxflags_rtti)) if win_stl: cflags_stl = "CFLAGS_STL_ON" cxxflags_stl = "CXXFLAGS_STL_ON" else: cflags_stl = "CFLAGS_STL_OFF" cxxflags_stl = "CXXFLAGS_STL_OFF" cflags.extend(self.optional_list(cflags_stl)) cxxflags.extend(self.optional_list(cxxflags_stl)) if self._debug: if win_shared: cflags_mt = "CFLAGS_MT_DLLDBG" cxxflags_mt = "CXXFLAGS_MT_DLLDBG" else: cflags_mt = "CFLAGS_MT_DBG" cxxflags_mt = "CXXFLAGS_MT_DBG" cflags_debug = "CFLAGS_DEBUG" cxxflags_debug = "CXXFLAGS_DEBUG" lflags_debug = "LFLAGS_DEBUG" else: if win_shared: cflags_mt = "CFLAGS_MT_DLL" cxxflags_mt = "CXXFLAGS_MT_DLL" else: cflags_mt = "CFLAGS_MT" cxxflags_mt = "CXXFLAGS_MT" cflags_debug = "CFLAGS_RELEASE" cxxflags_debug = "CXXFLAGS_RELEASE" lflags_debug = "LFLAGS_RELEASE" if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): if self._threaded: cflags.extend(self.optional_list(cflags_mt)) cxxflags.extend(self.optional_list(cxxflags_mt)) if self.console: cflags.extend(self.optional_list("CFLAGS_CONSOLE")) cxxflags.extend(self.optional_list("CXXFLAGS_CONSOLE")) cflags.extend(self.optional_list(cflags_debug)) cxxflags.extend(self.optional_list(cxxflags_debug)) lflags.extend(self.optional_list(lflags_debug)) if self._warnings: cflags_warn = "CFLAGS_WARN_ON" cxxflags_warn = "CXXFLAGS_WARN_ON" else: cflags_warn = "CFLAGS_WARN_OFF" cxxflags_warn = "CXXFLAGS_WARN_OFF" cflags.extend(self.optional_list(cflags_warn)) cxxflags.extend(self.optional_list(cxxflags_warn)) if self._threaded: cflags.extend(self.optional_list("CFLAGS_THREAD")) cxxflags.extend(self.optional_list("CXXFLAGS_THREAD")) lflags.extend(self.optional_list("LFLAGS_THREAD")) if self._qt: # Get the name of the mkspecs directory. try: specd_base = self.config.qt_data_dir except AttributeError: specd_base = self.config.qt_dir mkspecs = os.path.join(specd_base, "mkspecs") if self.generator != "UNIX" and win_shared: defines.append("QT_DLL") if not self._debug: defines.append("QT_NO_DEBUG") if qt_version >= 0x040000: for mod in self._qt: # Note that qmake doesn't define anything for QtHelp. if mod == "QtCore": defines.append("QT_CORE_LIB") elif mod == "QtDeclarative": defines.append("QT_DECLARATIVE_LIB") elif mod == "QtGui": defines.append("QT_GUI_LIB") elif mod == "QtMultimedia": defines.append("QT_MULTIMEDIA_LIB") elif mod == "QtNetwork": defines.append("QT_NETWORK_LIB") elif mod == "QtOpenGL": defines.append("QT_OPENGL_LIB") elif mod == "QtScript": defines.append("QT_SCRIPT_LIB") elif mod == "QtScriptTools": defines.append("QT_SCRIPTTOOLS_LIB") elif mod == "QtSql": defines.append("QT_SQL_LIB") elif mod == "QtTest": defines.append("QT_TEST_LIB") elif mod == "QtWebKit": defines.append("QT_WEBKIT_LIB") elif mod == "QtXml": defines.append("QT_XML_LIB") elif mod == "QtXmlPatterns": defines.append("QT_XMLPATTERNS_LIB") elif mod == "phonon": defines.append("QT_PHONON_LIB") if qt_version >= 0x050000: if mod == "QtTest": defines.append("QT_GUI_LIB") if mod in ("QtSql", "QtTest"): defines.append("QT_WIDGETS_LIB") elif self._threaded: defines.append("QT_THREAD_SUPPORT") # Handle library directories. libdir_qt = self.optional_list("LIBDIR_QT") libdir.extend(libdir_qt) rpaths.extend(libdir_qt) if qt_version >= 0x040000: # Try and read QT_LIBINFIX from qconfig.pri. qconfig = os.path.join(mkspecs, "qconfig.pri") self._infix = self._extract_value(qconfig, "QT_LIBINFIX") # For Windows: the macros that define the dependencies on # Windows libraries. wdepmap = { "QtCore": "LIBS_CORE", "QtGui": "LIBS_GUI", "QtNetwork": "LIBS_NETWORK", "QtOpenGL": "LIBS_OPENGL", "QtWebKit": "LIBS_WEBKIT" } # For Windows: the dependencies between Qt libraries. qt5_depmap = { "QtDeclarative": ("QtXmlPatterns", "QtNetwork", "QtSql", "QtScript", "QtWidgets", "QtGui", "QtCore"), "QtGui": ("QtPrintSupport", "QtWidgets", "QtCore"), "QtHelp": ("QtNetwork", "QtSql", "QtWidgets", "QtGui", "QtCore"), "QtMultimedia": ("QtGui", "QtCore"), "QtNetwork": ("QtCore", ), "QtOpenGL": ("QtWidgets", "QtGui", "QtCore"), "QtScript": ("QtCore", ), "QtScriptTools": ("QtScript", "QtGui", "QtCore"), "QtSql": ("QtCore", ), "QtSvg": ("QtXml", "QtWidgets", "QtGui", "QtCore"), "QtTest": ("QtGui", "QtCore"), "QtWebKit": ("QtNetwork", "QtWebKitWidgets", "QtWidgets", "QtGui", "QtCore"), "QtXml": ("QtCore", ), "QtXmlPatterns": ("QtNetwork", "QtCore"), "QtDesigner": ("QtGui", "QtCore"), "QAxContainer": ("Qt5AxBase", "QtWidgets", "QtGui", "QtCore") } qt4_depmap = { "QtAssistant": ("QtNetwork", "QtGui", "QtCore"), "QtDeclarative": ("QtNetwork", "QtGui", "QtCore"), "QtGui": ("QtCore", ), "QtHelp": ("QtSql", "QtGui", "QtCore"), "QtMultimedia": ("QtGui", "QtCore"), "QtNetwork": ("QtCore", ), "QtOpenGL": ("QtGui", "QtCore"), "QtScript": ("QtCore", ), "QtScriptTools": ("QtScript", "QtGui", "QtCore"), "QtSql": ("QtCore", ), "QtSvg": ("QtXml", "QtGui", "QtCore"), "QtTest": ("QtGui", "QtCore"), "QtWebKit": ("QtNetwork", "QtGui", "QtCore"), "QtXml": ("QtCore", ), "QtXmlPatterns": ("QtNetwork", "QtCore"), "phonon": ("QtGui", "QtCore"), "QtDesigner": ("QtGui", "QtCore"), "QAxContainer": ("QtGui", "QtCore") } if qt_version >= 0x050000: qt_depmap = qt5_depmap else: qt_depmap = qt4_depmap # The QtSql .prl file doesn't include QtGui as a dependency (at # least on Linux) so we explcitly set the dependency here for # everything. if "QtSql" in self._qt: if "QtGui" not in self._qt: self._qt.append("QtGui") # With Qt v4.2.0, the QtAssistantClient library is now a shared # library on UNIX. The QtAssistantClient .prl file doesn't # include QtGui and QtNetwork as a dependency any longer. This # seems to be a bug in Qt v4.2.0. We explicitly set the # dependencies here. if qt_version >= 0x040200 and "QtAssistant" in self._qt: if "QtGui" not in self._qt: self._qt.append("QtGui") if "QtNetwork" not in self._qt: self._qt.append("QtNetwork") for mod in self._qt: lib = self._qt_module_to_lib(mod) libs.append(self.platform_lib(lib, self._is_framework(mod))) if sys.platform == "win32": # On Windows the dependent libraries seem to be in # qmake.conf rather than the .prl file and the # inter-dependencies between Qt libraries don't seem to # be anywhere. deps = _UniqueList() if mod in list(wdepmap.keys()): deps.extend(self.optional_list(wdepmap[mod])) if mod in list(qt_depmap.keys()): for qdep in qt_depmap[mod]: # Ignore the dependency if it is explicitly # linked. if qdep not in self._qt: libs.append(self.platform_lib(self._qt_module_to_lib(qdep))) if qdep in list(wdepmap.keys()): deps.extend(self.optional_list(wdepmap[qdep])) libs.extend(deps.as_list()) else: libs.extend(self._dependent_libs(lib, self._is_framework(mod))) else: # Windows needs the version number appended if Qt is a DLL. qt_lib = self.config.qt_lib if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE") and win_shared: qt_lib = qt_lib + version_to_string(qt_version).replace(".", "") if self.config.qt_edition == "non-commercial": qt_lib = qt_lib + "nc" libs.append(self.platform_lib(qt_lib, self.config.qt_framework)) libs.extend(self._dependent_libs(self.config.qt_lib)) # Handle header directories. specd = os.path.join(mkspecs, "default") if not os.access(specd, os.F_OK): specd = os.path.join(mkspecs, self.config.platform) incdir.append(specd) qtincdir = self.optional_list("INCDIR_QT") if qtincdir: if qt_version >= 0x040000: for mod in self._qt: if mod == "QAxContainer": incdir.append(os.path.join(qtincdir[0], "ActiveQt")) elif self._is_framework(mod): idir = libdir_qt[0] if mod == "QtAssistant" and qt_version < 0x040202: mod = "QtAssistantClient" incdir.append(os.path.join(idir, mod + ".framework", "Headers")) if qt_version >= 0x050000: if mod == "QtGui": incdir.append(os.path.join(idir, "QtWidgets.framework", "Headers")) incdir.append(os.path.join(idir, "QtPrintSupport.framework", "Headers")) elif mod == "QtWebKit": incdir.append(os.path.join(idir, "QtWebKitWidgets.framework", "Headers")) else: idir = qtincdir[0] incdir.append(os.path.join(idir, mod)) if qt_version >= 0x050000: if mod == "QtGui": incdir.append(os.path.join(idir, "QtWidgets")) incdir.append(os.path.join(idir, "QtPrintSupport")) elif mod == "QtWebKit": incdir.append(os.path.join(idir, "QtWebKitWidgets")) # This must go after the module include directories. incdir.extend(qtincdir) if self._opengl: incdir.extend(self.optional_list("INCDIR_OPENGL")) lflags.extend(self.optional_list("LFLAGS_OPENGL")) libdir.extend(self.optional_list("LIBDIR_OPENGL")) libs.extend(self.optional_list("LIBS_OPENGL")) if self._qt or self._opengl: if qt_version < 0x040000 or self._opengl or "QtGui" in self._qt: incdir.extend(self.optional_list("INCDIR_X11")) libdir.extend(self.optional_list("LIBDIR_X11")) libs.extend(self.optional_list("LIBS_X11")) if self._threaded: libs.extend(self.optional_list("LIBS_THREAD")) libs.extend(self.optional_list("LIBS_RTMT")) else: libs.extend(self.optional_list("LIBS_RT")) if self.console: libs.extend(self.optional_list("LIBS_CONSOLE")) libs.extend(self.optional_list("LIBS_WINDOWS")) lflags.extend(self._platform_rpaths(rpaths.as_list())) # Save the transformed values. self.CFLAGS.set(cflags) self.CXXFLAGS.set(cxxflags) self.DEFINES.set(defines) self.INCDIR.set(incdir) self.LFLAGS.set(lflags) self.LIBDIR.set(libdir) self.LIBS.set(libs) # Don't do it again because it has side effects. self._finalised = 1 def _add_manifest(self, target=None): """Add the link flags for creating a manifest file. """ if target is None: target = "$(TARGET)" self.LFLAGS.append("/MANIFEST") self.LFLAGS.append("/MANIFESTFILE:%s.manifest" % target) def _is_framework(self, mod): """Return true if the given Qt module is a framework. """ return (self.config.qt_framework and (self.config.qt_version >= 0x040200 or mod != "QtAssistant")) def _qt_module_to_lib(self, mname): """Return the name of the Qt library corresponding to a module. mname is the name of the module. """ qt_version = self.config.qt_version if mname == "QtAssistant": if qt_version >= 0x040202 and sys.platform == "darwin": lib = mname else: lib = "QtAssistantClient" else: lib = mname lib += self._infix if self._debug: if sys.platform == "win32": lib = lib + "d" elif sys.platform == "darwin": if not self._is_framework(mname): lib = lib + "_debug" elif qt_version < 0x040200: lib = lib + "_debug" qt5_rename = False if sys.platform == "win32" and "shared" in self.config.qt_winconfig.split(): if (mname in ("QtCore", "QtDeclarative", "QtDesigner", "QtGui", "QtHelp", "QtMultimedia", "QtNetwork", "QtOpenGL", "QtScript", "QtScriptTools", "QtSql", "QtSvg", "QtTest", "QtWebKit", "QtXml", "QtXmlPatterns", "phonon", "QAxContainer", "QtPrintSupport", "QtWebKitWidgets", "QtWidgets") or (qt_version >= 0x040200 and mname == "QtAssistant")): if mname == "QAxContainer": if qt_version >= 0x050000: lib = "Qt5" + lib[1:] elif qt_version >= 0x050000: qt5_rename = True else: lib = lib + "4" elif sys.platform.startswith("linux") and qt_version >= 0x050000: qt5_rename = True if qt5_rename: lib = "Qt5" + lib[2:] return lib def optional_list(self, name): """Return an optional Makefile macro as a list. name is the name of the macro. """ return self.__dict__[name].as_list() def optional_string(self, name, default=""): """Return an optional Makefile macro as a string. name is the name of the macro. default is the default value """ s = ' '.join(self.optional_list(name)) if not s: s = default return s def required_string(self, name): """Return a required Makefile macro as a string. name is the name of the macro. """ s = self.optional_string(name) if not s: raise ValueError("\"%s\" must have a non-empty value" % name) return s def _platform_rpaths(self, rpaths): """Return a list of platform specific rpath flags. rpaths is the cannonical list of rpaths. """ flags = [] prefix = self.optional_string("RPATH") if prefix == "": # This was renamed in Qt v4.7. prefix = self.optional_string("LFLAGS_RPATH") if prefix != "": for r in rpaths: flags.append(_quote(prefix + r)) return flags def platform_lib(self, clib, framework=0): """Return a library name in platform specific form. clib is the library name in cannonical form. framework is set of the library is implemented as a MacOS framework. """ if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): plib = clib + ".lib" elif sys.platform == "darwin" and framework: plib = "-framework " + clib else: plib = "-l" + clib return plib def _dependent_libs(self, clib, framework=0): """Return a list of additional libraries (in platform specific form) that must be linked with a library. clib is the library name in cannonical form. framework is set of the library is implemented as a MacOS framework. """ if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): prl_name = os.path.join(self.config.qt_lib_dir, clib + ".prl") elif sys.platform == "darwin" and framework: prl_name = os.path.join(self.config.qt_lib_dir, clib + ".framework", clib + ".prl") else: prl_name = os.path.join(self.config.qt_lib_dir, "lib" + clib + ".prl") libs = self._extract_value(prl_name, "QMAKE_PRL_LIBS").split() if self.config.qt_version >= 0x050000: xtra_libs = [] if clib in ("QtGui", "Qt5Gui"): xtra_libs.append("QtWidgets") xtra_libs.append("QtPrintSupport") elif clib in ("QtWebKit", "Qt5WebKit"): xtra_libs.append("QtWebKitWidgets") for xtra in xtra_libs: libs.extend( self.platform_lib( self._qt_module_to_lib(xtra), framework).split()) return libs def _extract_value(self, fname, vname): """Return the stripped value from a name=value line in a file. fname is the name of the file. vname is the name of the value. """ value = "" if os.access(fname, os.F_OK): try: f = open(fname, "r") except IOError: error("Unable to open \"%s\"" % fname) line = f.readline() while line: line = line.strip() if line and line[0] != "#": eq = line.find("=") if eq > 0 and line[:eq].strip() == vname: value = line[eq + 1:].strip() break line = f.readline() f.close() return value def parse_build_file(self, filename): """ Parse a build file and return the corresponding dictionary. filename is the name of the build file. If it is a dictionary instead then its contents are validated. """ if type(filename) == dict: bfname = "dictionary" bdict = filename else: if os.path.isabs(filename): # We appear to be building out of the source tree. self._src_dir = os.path.dirname(filename) bfname = filename else: bfname = os.path.join(self.dir, filename) bdict = {} try: f = open(bfname, "r") except IOError: error("Unable to open \"%s\"" % bfname) line_nr = 1 line = f.readline() while line: line = line.strip() if line and line[0] != "#": eq = line.find("=") if eq <= 0: error("\"%s\" line %d: Line must be in the form 'name = value value...'." % (bfname, line_nr)) bdict[line[:eq].strip()] = line[eq + 1:].strip() line_nr = line_nr + 1 line = f.readline() f.close() # Check the compulsory values. for i in ("target", "sources"): try: bdict[i] except KeyError: error("\"%s\" is missing from \"%s\"." % (i, bfname)) # Get the optional values. for i in ("headers", "moc_headers"): try: bdict[i] except KeyError: bdict[i] = "" # Generate the list of objects. if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): ext = ".obj" else: ext = ".o" olist = [] for f in bdict["sources"].split(): root, discard = os.path.splitext(f) olist.append(root + ext) for f in bdict["moc_headers"].split(): if not self._qt: error("\"%s\" defines \"moc_headers\" for a non-Qt module." % bfname) root, discard = os.path.splitext(f) olist.append("moc_" + root + ext) bdict["objects"] = ' '.join(olist) return bdict def clean_build_file_objects(self, mfile, build): """Generate the clean target. mfile is the file object. build is the dictionary created from the build file. """ mfile.write("\t-%s $(TARGET)\n" % self.rm) for f in build["objects"].split(): mfile.write("\t-%s %s\n" % (self.rm, f)) for f in build["moc_headers"].split(): root, discard = os.path.splitext(f) mfile.write("\t-%s moc_%s.cpp\n" % (self.rm, root)) def ready(self): """The Makefile is now ready to be used. """ if not self._finalised: self.finalise() def generate(self): """Generate the Makefile. """ self.ready() # Make sure the destination directory exists. try: os.makedirs(self.dir) except: pass mfname = os.path.join(self.dir, self._makefile) try: mfile = open(mfname, "w") except IOError: error("Unable to create \"%s\"" % mfname) self.generate_macros_and_rules(mfile) self.generate_target_default(mfile) self.generate_target_install(mfile) if self._installs: if type(self._installs) != list: self._installs = [self._installs] for src, dst in self._installs: if dst is None: mfile.write("\t%s\n" % src) else: self.install_file(mfile, src, dst) self.generate_target_clean(mfile) mfile.close() def generate_macros_and_rules(self, mfile): """The default implementation of the macros and rules generation. mfile is the file object. """ if self._deployment_target: mfile.write("export MACOSX_DEPLOYMENT_TARGET = %s\n" % self._deployment_target) # Really we want to be testing for nmake here instead since it does not grok '?=' maybe_env = '=' if sys.platform == "win32" else '?=' mfile.write("CC %s %s\n" % (maybe_env, self.required_string("CC"))) mfile.write("CXX %s %s\n" % (maybe_env, self.required_string("CXX"))) mfile.write("LINK %s %s\n" % (maybe_env, self.required_string("LINK"))) cppflags = [] if not self._debug: cppflags.append("-DNDEBUG") for f in self.optional_list("DEFINES"): cppflags.append("-D" + f) for f in self.optional_list("INCDIR"): cppflags.append("-I" + _quote(f)) libs = [] if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): libdir_prefix = "/LIBPATH:" else: libdir_prefix = "-L" for ld in self.optional_list("LIBDIR"): if sys.platform == "darwin" and self.config.qt_framework: fflag = "-F" + _quote(ld) libs.append(fflag) cppflags.append(fflag) libs.append(libdir_prefix + _quote(ld)) libs.extend(self.optional_list("LIBS")) mfile.write("CPPFLAGS = %s\n" % ' '.join(cppflags)) mfile.write("CFLAGS = %s\n" % self.optional_string("CFLAGS")) mfile.write("CXXFLAGS = %s\n" % self.optional_string("CXXFLAGS")) mfile.write("LFLAGS = %s\n" % self.optional_string("LFLAGS")) mfile.write("LIBS = %s\n" % ' '.join(libs)) if self._qt: mfile.write("MOC = %s\n" % _quote(self.required_string("MOC"))) vpath = _UniqueList(self.extra_source_dirs) if self._src_dir != self.dir: vpath.append(self._src_dir) if vpath.as_list(): mfile.write("VPATH = %s\n\n" % " ".join(vpath.as_list())) # These probably don't matter. if self.generator == "MINGW": mfile.write(".SUFFIXES: .cpp .cxx .cc .C .c\n\n") elif self.generator == "UNIX": mfile.write(".SUFFIXES: .c .o .cpp .cc .cxx .C\n\n") else: mfile.write(".SUFFIXES: .c .cpp .cc .cxx .C\n\n") if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): mfile.write(""" {.}.cpp{}.obj:: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -Fo @<< \t$< << {.}.cc{}.obj:: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -Fo @<< \t$< << {.}.cxx{}.obj:: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -Fo @<< \t$< << {.}.C{}.obj:: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -Fo @<< \t$< << {.}.c{}.obj:: \t$(CC) -c $(CFLAGS) $(CPPFLAGS) -Fo @<< \t$< << """) elif self.generator == "BMAKE": mfile.write(""" .cpp.obj: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o$@ $< .cc.obj: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o$@ $< .cxx.obj: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o$@ $< .C.obj: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o$@ $< .c.obj: \t$(CC) -c $(CFLAGS) $(CPPFLAGS) -o$@ $< """) else: mfile.write(""" .cpp.o: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o $@ $< .cc.o: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o $@ $< .cxx.o: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o $@ $< .C.o: \t$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) -o $@ $< .c.o: \t$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $< """) def generate_target_default(self, mfile): """The default implementation of the default target. mfile is the file object. """ mfile.write("\nall:\n") def generate_target_install(self, mfile): """The default implementation of the install target. mfile is the file object. """ mfile.write("\ninstall:\n") def generate_target_clean(self, mfile): """The default implementation of the clean target. mfile is the file object. """ mfile.write("\nclean:\n") def install_file(self, mfile, src, dst, strip=0): """Install one or more files in a directory. mfile is the file object. src is the name of a single file to install, or the list of a number of files to install. dst is the name of the destination directory. strip is set if the files should be stripped after been installed. """ # Help package builders. if self.generator == "UNIX": dst = "$(DESTDIR)" + dst mfile.write("\t@%s %s " % (self.chkdir, _quote(dst))) if self.generator == "UNIX": mfile.write("|| ") mfile.write("%s %s\n" % (self.mkdir, _quote(dst))) if type(src) != list: src = [src] # Get the strip command if needed. if strip: strip_cmd = self.optional_string("STRIP") if not strip_cmd: strip = 0 for sf in src: target = _quote(os.path.join(dst, os.path.basename(sf))) mfile.write("\t%s %s %s\n" % (self.copy, _quote(sf), target)) if strip: mfile.write("\t%s %s\n" % (strip_cmd, target)) class ParentMakefile(Makefile): """The class that represents a parent Makefile. """ def __init__(self, configuration, subdirs, dir=None, makefile="Makefile", installs=None): """Initialise an instance of a parent Makefile. subdirs is the sequence of subdirectories. """ Makefile.__init__(self, configuration, dir=dir, makefile=makefile, installs=installs) self._subdirs = subdirs def generate_macros_and_rules(self, mfile): """Generate the macros and rules. mfile is the file object. """ # We don't want them. pass def generate_target_default(self, mfile): """Generate the default target. mfile is the file object. """ self._subdir_target(mfile) def generate_target_install(self, mfile): """Generate the install target. mfile is the file object. """ self._subdir_target(mfile, "install") def generate_target_clean(self, mfile): """Generate the clean target. mfile is the file object. """ self._subdir_target(mfile, "clean") def _subdir_target(self, mfile, target="all"): """Create a target for a list of sub-directories. mfile is the file object. target is the name of the target. """ if target == "all": tname = "" else: tname = " " + target mfile.write("\n" + target + ":\n") for d in self._subdirs: if self.generator == "MINGW": mfile.write("\t@$(MAKE) -C %s%s\n" % (d, tname)) elif self.generator == "UNIX": mfile.write("\t@(cd %s; $(MAKE)%s)\n" % (d, tname)) else: mfile.write("\tcd %s\n" % d) mfile.write("\t$(MAKE)%s\n" % tname) mfile.write("\t@cd ..\n") class PythonModuleMakefile(Makefile): """The class that represents a Python module Makefile. """ def __init__(self, configuration, dstdir, srcdir=None, dir=None, makefile="Makefile", installs=None): """Initialise an instance of a parent Makefile. dstdir is the name of the directory where the module's Python code will be installed. srcdir is the name of the directory (relative to the directory in which the Makefile will be created) containing the module's Python code. It defaults to the same directory. """ Makefile.__init__(self, configuration, dir=dir, makefile=makefile, installs=installs) if not srcdir: srcdir = "." if dir: self._moddir = os.path.join(dir, srcdir) else: self._moddir = srcdir self._srcdir = srcdir self._dstdir = dstdir def generate_macros_and_rules(self, mfile): """Generate the macros and rules. mfile is the file object. """ # We don't want them. pass def generate_target_install(self, mfile): """Generate the install target. mfile is the file object. """ Makefile.generate_target_install(self, mfile) for root, dirs, files in os.walk(self._moddir): # Do not recurse into certain directories. for skip in (".svn", "CVS"): if skip in dirs: dirs.remove(skip) tail = root[len(self._moddir):] flist = [] for f in files: if f == "Makefile": continue if os.path.isfile(os.path.join(root, f)): flist.append(os.path.join(self._srcdir + tail, f)) self.install_file(mfile, flist, self._dstdir + tail) class ModuleMakefile(Makefile): """The class that represents a Python extension module Makefile """ def __init__(self, configuration, build_file, install_dir=None, static=0, console=0, qt=0, opengl=0, threaded=0, warnings=1, debug=0, dir=None, makefile="Makefile", installs=None, strip=1, export_all=0, universal=None, arch=None, deployment_target=None): """Initialise an instance of a module Makefile. build_file is the file containing the target specific information. If it is a dictionary instead then its contents are validated. install_dir is the directory the target will be installed in. static is set if the module should be built as a static library. strip is set if the module should be stripped of unneeded symbols when installed. The default is 1. export_all is set if all the module's symbols should be exported rather than just the module's initialisation function. Exporting all symbols increases the size of the module and slows down module load times but may avoid problems with modules that use exceptions. The default is 0. """ Makefile.__init__(self, configuration, console, qt, opengl, 1, threaded, warnings, debug, dir, makefile, installs, universal, arch, deployment_target) self._build = self.parse_build_file(build_file) self._install_dir = install_dir self.static = static self._manifest = ("embed_manifest_dll" in self.optional_list("CONFIG")) # Don't strip or restrict the exports if this is a debug or static # build. if debug or static: self._strip = 0 self._limit_exports = 0 else: self._strip = strip self._limit_exports = not export_all # Save the target name for later. self._target = self._build["target"] # The name of the module entry point is Python version specific. if self.config.py_version >= 0x030000: self._entry_point = "PyInit_%s" % self._target else: self._entry_point = "init%s" % self._target if sys.platform != "win32" and static: self._target = "lib" + self._target if sys.platform == "win32" and debug: self._target = self._target + "_d" def finalise(self): """Finalise the macros common to all module Makefiles. """ if self.console: lflags_console = "LFLAGS_CONSOLE" else: lflags_console = "LFLAGS_WINDOWS" if self.static: self.DEFINES.append("SIP_STATIC_MODULE") else: self.CFLAGS.extend(self.optional_list("CFLAGS_SHLIB")) self.CXXFLAGS.extend(self.optional_list("CXXFLAGS_SHLIB")) lflags_dll = self.optional_list("LFLAGS_DLL") if lflags_dll: self.LFLAGS.extend(lflags_dll) elif self.console: lflags_console = "LFLAGS_CONSOLE_DLL" else: lflags_console = "LFLAGS_WINDOWS_DLL" if self._manifest: self._add_manifest() # We use this to explictly create bundles on MacOS. Apple's Python # can handle extension modules that are bundles or dynamic # libraries, but python.org versions need bundles (unless built # with DYNLOADFILE=dynload_shlib.o). if sys.platform == "darwin": lflags_plugin = ["-bundle"] else: lflags_plugin = self.optional_list("LFLAGS_PLUGIN") if not lflags_plugin: lflags_plugin = self.optional_list("LFLAGS_SHLIB") self.LFLAGS.extend(lflags_plugin) self.LFLAGS.extend(self.optional_list(lflags_console)) if sys.platform == "darwin": self.LFLAGS.append("-undefined dynamic_lookup") Makefile.finalise(self) if not self.static: if self.optional_string("AIX_SHLIB"): # AIX needs a lot of special handling. if self.required_string('LINK') == 'g++': # g++ is used for linking. # For SIP v4 and g++: # 1.) Import the python symbols aix_lflags = ['-Wl,-bI:%s/python.exp' % self.config.py_lib_dir] if self._limit_exports: aix_lflags.append('-Wl,-bnoexpall') aix_lflags.append('-Wl,-bnoentry') aix_lflags.append('-Wl,-bE:%s.exp' % self._target) else: # IBM VisualAge C++ is used for linking. # For SIP v4 and xlC: # 1.) Create a shared object # 2.) Import the python symbols aix_lflags = ['-qmkshrobj', '-bI:%s/python.exp' % self.config.py_lib_dir] if self._limit_exports: aix_lflags.append('-bnoexpall') aix_lflags.append('-bnoentry') aix_lflags.append('-bE:%s.exp' % self._target) self.LFLAGS.extend(aix_lflags) else: if self._limit_exports: if sys.platform[:5] == 'linux': self.LFLAGS.extend(['-Wl,--version-script=%s.exp' % self._target]) elif sys.platform[:5] == 'sunos': if self.required_string('LINK') == 'g++': self.LFLAGS.extend(['-Wl,-z,noversion', '-Wl,-M,%s.exp' % self._target]) else: self.LFLAGS.extend(['-z' 'noversion', '-M', '%s.exp' % self._target]) elif sys.platform[:5] == 'hp-ux': self.LFLAGS.extend(['-Wl,+e,%s' % self._entry_point]) elif sys.platform[:5] == 'irix' and self.required_string('LINK') != 'g++': # Doesn't work when g++ is used for linking on IRIX. self.LFLAGS.extend(['-Wl,-exported_symbol,%s' % self._entry_point]) # Force the shared linker if there is one. link_shlib = self.optional_list("LINK_SHLIB") if link_shlib: self.LINK.set(link_shlib) # This made an appearence in Qt v4.4rc1 and breaks extension modules so # remove it. It was removed at my request but some stupid distros may # have kept it. self.LFLAGS.remove('-Wl,--no-undefined') def module_as_lib(self, mname): """Return the name of a SIP v3.x module when it is used as a library. This will raise an exception when used with SIP v4.x modules. mname is the name of the module. """ raise ValueError("module_as_lib() can only be used with SIP v3.x") def generate_macros_and_rules(self, mfile): """Generate the macros and rules generation. mfile is the file object. """ if self.static: if sys.platform == "win32": ext = "lib" else: ext = "a" else: if sys.platform == "win32": ext = "pyd" elif sys.platform == "darwin": ext = "so" elif sys.platform == "cygwin": ext = "dll" else: ext = self.optional_string("EXTENSION_PLUGIN") if not ext: ext = self.optional_string("EXTENSION_SHLIB", "so") mfile.write("TARGET = %s\n" % (self._target + "." + ext)) mfile.write("OFILES = %s\n" % self._build["objects"]) mfile.write("HFILES = %s %s\n" % (self._build["headers"], self._build["moc_headers"])) mfile.write("\n") if self.static: if self.generator in ("MSVC", "MSVC.NET", "MSBUILD", "BMAKE"): mfile.write("LIB = %s\n" % self.required_string("LIB")) elif self.generator == "MINGW": mfile.write("AR = %s\n" % self.required_string("LIB")) self._ranlib = None else: mfile.write("AR = %s\n" % self.required_string("AR")) self._ranlib = self.optional_string("RANLIB") if self._ranlib: mfile.write("RANLIB = %s\n" % self._ranlib) Makefile.generate_macros_and_rules(self, mfile) def generate_target_default(self, mfile): """Generate the default target. mfile is the file object. """ # Do these first so that it's safe for a sub-class to append additional # commands to the real target, but make sure the default is correct. mfile.write("\nall: $(TARGET)\n") mfile.write("\n$(OFILES): $(HFILES)\n") for mf in self._build["moc_headers"].split(): root, discard = os.path.splitext(mf) cpp = "moc_" + root + ".cpp" mfile.write("\n%s: %s\n" % (cpp, mf)) mfile.write("\t$(MOC) -o %s $<\n" % cpp) mfile.write("\n$(TARGET): $(OFILES)\n") if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): if self.static: mfile.write("\t$(LIB) /OUT:$(TARGET) @<<\n") mfile.write("\t $(OFILES)\n") mfile.write("<<\n") else: mfile.write("\t$(LINK) $(LFLAGS) /OUT:$(TARGET) @<<\n") mfile.write("\t $(OFILES) $(LIBS)\n") mfile.write("<<\n") if self._manifest: mfile.write("\tmt -nologo -manifest $(TARGET).manifest -outputresource:$(TARGET);2\n") elif self.generator == "BMAKE": if self.static: mfile.write("\t-%s $(TARGET)\n" % (self.rm)) mfile.write("\t$(LIB) $(TARGET) @&&|\n") for of in self._build["objects"].split(): mfile.write("+%s \\\n" % (of)) mfile.write("|\n") else: mfile.write("\t$(LINK) @&&|\n") mfile.write("\t$(LFLAGS) $(OFILES) ,$(TARGET),,$(LIBS),%s\n" % (self._target)) mfile.write("|\n") # Create the .def file that renames the entry point. defname = os.path.join(self.dir, self._target + ".def") try: dfile = open(defname, "w") except IOError: error("Unable to create \"%s\"" % defname) dfile.write("EXPORTS\n") dfile.write("%s=_%s\n" % (self._entry_point, self._entry_point)) dfile.close() else: if self.static: mfile.write("\t-%s $(TARGET)\n" % self.rm) mfile.write("\t$(AR) $(TARGET) $(OFILES)\n") if self._ranlib: mfile.write("\t$(RANLIB) $(TARGET)\n") else: if self._limit_exports: # Create an export file for AIX, Linux and Solaris. if sys.platform[:5] == 'linux': mfile.write("\t@echo '{ global: %s; local: *; };' > %s.exp\n" % (self._entry_point, self._target)) elif sys.platform[:5] == 'sunos': mfile.write("\t@echo '{ global: %s; local: *; };' > %s.exp\n" % (self._entry_point, self._target)) elif sys.platform[:3] == 'aix': mfile.write("\t@echo '#!' >%s.exp" % self._target) mfile.write("; \\\n\t echo '%s' >>%s.exp\n" % (self._entry_point, self._target)) mfile.write("\t$(LINK) $(LFLAGS) -o $(TARGET) $(OFILES) $(LIBS)\n") def generate_target_install(self, mfile): """Generate the install target. mfile is the file object. """ if self._install_dir is None: self._install_dir = self.config.default_mod_dir mfile.write("\ninstall: $(TARGET)\n") self.install_file(mfile, "$(TARGET)", self._install_dir, self._strip) def generate_target_clean(self, mfile): """Generate the clean target. mfile is the file object. """ mfile.write("\nclean:\n") self.clean_build_file_objects(mfile, self._build) if self._manifest and not self.static: mfile.write("\t-%s $(TARGET).manifest\n" % self.rm) # Remove any export file on AIX, Linux and Solaris. if self._limit_exports and (sys.platform[:5] == 'linux' or sys.platform[:5] == 'sunos' or sys.platform[:3] == 'aix'): mfile.write("\t-%s %s.exp\n" % (self.rm, self._target)) class SIPModuleMakefile(ModuleMakefile): """The class that represents a SIP generated module Makefile. """ def __init__(self, configuration, build_file, install_dir=None, static=0, console=0, qt=0, opengl=0, threaded=0, warnings=1, debug=0, dir=None, makefile="Makefile", installs=None, strip=1, export_all=0, universal=None, arch=None, prot_is_public=0, deployment_target=None): """Initialise an instance of a SIP generated module Makefile. prot_is_public is set if "protected" is to be redefined as "public". If the platform's C++ ABI allows it this can significantly reduce the size of the generated code. For all other arguments see ModuleMakefile. """ ModuleMakefile.__init__(self, configuration, build_file, install_dir, static, console, qt, opengl, threaded, warnings, debug, dir, makefile, installs, strip, export_all, universal, arch, deployment_target) self._prot_is_public = prot_is_public def finalise(self): """Finalise the macros for a SIP generated module Makefile. """ if self._prot_is_public: self.DEFINES.append('SIP_PROTECTED_IS_PUBLIC') self.DEFINES.append('protected=public') self.INCDIR.append(self.config.sip_inc_dir) ModuleMakefile.finalise(self) class ProgramMakefile(Makefile): """The class that represents a program Makefile. """ def __init__(self, configuration, build_file=None, install_dir=None, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=1, debug=0, dir=None, makefile="Makefile", installs=None, universal=None, arch=None, deployment_target=None): """Initialise an instance of a program Makefile. build_file is the file containing the target specific information. If it is a dictionary instead then its contents are validated. install_dir is the directory the target will be installed in. """ Makefile.__init__(self, configuration, console, qt, opengl, python, threaded, warnings, debug, dir, makefile, installs, universal, arch, deployment_target) self._install_dir = install_dir self._manifest = ("embed_manifest_exe" in self.optional_list("CONFIG")) self._target = None if build_file: self._build = self.parse_build_file(build_file) else: self._build = None def build_command(self, source): """Create a command line that will build an executable. Returns a tuple of the name of the executable and the command line. source is the name of the source file. """ # The name of the executable. self._target, _ = os.path.splitext(source) if sys.platform in ("win32", "cygwin"): exe = self._target + ".exe" else: exe = self._target self.ready() # The command line. build = [] build.append(self.required_string("CXX")) for a in self._arch.split(): build.append('-arch ' + a) for f in self.optional_list("DEFINES"): build.append("-D" + f) for f in self.optional_list("INCDIR"): build.append("-I" + _quote(f)) build.extend(self.optional_list("CXXFLAGS")) # This is for Qt5. build.extend(self.optional_list("CXXFLAGS_APP")) # Borland requires all flags to precede all file names. if self.generator != "BMAKE": build.append(source) if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): build.append("-Fe") build.append("/link") libdir_prefix = "/LIBPATH:" elif self.generator == "BMAKE": build.append("-e" + exe) libdir_prefix = "-L" else: build.append("-o") build.append(exe) libdir_prefix = "-L" for ld in self.optional_list("LIBDIR"): if sys.platform == "darwin" and self.config.qt_framework: build.append("-F" + _quote(ld)) build.append(libdir_prefix + _quote(ld)) lflags = self.optional_list("LFLAGS") # This is a huge hack demonstrating my lack of understanding of how the # Borland compiler works. if self.generator == "BMAKE": blflags = [] for lf in lflags: for f in lf.split(): # Tell the compiler to pass the flags to the linker. if f[-1] == "-": f = "-l-" + f[1:-1] elif f[0] == "-": f = "-l" + f[1:] # Remove any explicit object files otherwise the compiler # will complain that they can't be found, but they don't # seem to be needed. if f[-4:].lower() != ".obj": blflags.append(f) lflags = blflags build.extend(lflags) build.extend(self.optional_list("LIBS")) if self.generator == "BMAKE": build.append(source) return (exe, ' '.join(build)) def finalise(self): """Finalise the macros for a program Makefile. """ if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): self.LFLAGS.append("/INCREMENTAL:NO") if self._manifest: self._add_manifest(self._target) if self.console: lflags_console = "LFLAGS_CONSOLE" else: lflags_console = "LFLAGS_WINDOWS" self.LFLAGS.extend(self.optional_list(lflags_console)) Makefile.finalise(self) def generate_macros_and_rules(self, mfile): """Generate the macros and rules generation. mfile is the file object. """ if not self._build: raise ValueError("pass a filename as build_file when generating a Makefile") target = self._build["target"] if sys.platform in ("win32", "cygwin"): target = target + ".exe" mfile.write("TARGET = %s\n" % target) mfile.write("OFILES = %s\n" % self._build["objects"]) mfile.write("HFILES = %s\n" % self._build["headers"]) mfile.write("\n") Makefile.generate_macros_and_rules(self, mfile) def generate_target_default(self, mfile): """Generate the default target. mfile is the file object. """ # Do these first so that it's safe for a sub-class to append additional # commands to the real target, but make sure the default is correct. mfile.write("\nall: $(TARGET)\n") mfile.write("\n$(OFILES): $(HFILES)\n") for mf in self._build["moc_headers"].split(): root, _ = os.path.splitext(mf) cpp = "moc_" + root + ".cpp" if self._src_dir != self.dir: mf = os.path.join(self._src_dir, mf) mfile.write("\n%s: %s\n" % (cpp, mf)) mfile.write("\t$(MOC) -o %s $<\n" % cpp) mfile.write("\n$(TARGET): $(OFILES)\n") if self.generator in ("MSVC", "MSVC.NET", "MSBUILD"): mfile.write("\t$(LINK) $(LFLAGS) /OUT:$(TARGET) @<<\n") mfile.write("\t $(OFILES) $(LIBS)\n") mfile.write("<<\n") elif self.generator == "BMAKE": mfile.write("\t$(LINK) @&&|\n") mfile.write("\t$(LFLAGS) $(OFILES) ,$(TARGET),,$(LIBS),,\n") mfile.write("|\n") else: mfile.write("\t$(LINK) $(LFLAGS) -o $(TARGET) $(OFILES) $(LIBS)\n") if self._manifest: mfile.write("\tmt -nologo -manifest $(TARGET).manifest -outputresource:$(TARGET);1\n") def generate_target_install(self, mfile): """Generate the install target. mfile is the file object. """ if self._install_dir is None: self._install_dir = self.config.default_bin_dir mfile.write("\ninstall: $(TARGET)\n") self.install_file(mfile, "$(TARGET)", self._install_dir) def generate_target_clean(self, mfile): """Generate the clean target. mfile is the file object. """ mfile.write("\nclean:\n") self.clean_build_file_objects(mfile, self._build) if self._manifest: mfile.write("\t-%s $(TARGET).manifest\n" % self.rm) def _quote(s): """Return a string surrounded by double quotes it if contains a space. s is the string. """ # On Qt5 paths often includes forward slashes so convert them. if sys.platform == "win32": s = s.replace("/", "\\") if s.find(" ") >= 0: s = '"' + s + '"' return s def version_to_string(version, parts=3): """ Convert an n-part version number encoded as a hexadecimal value to a string. version is the version number. Returns the string. """ part_list = [str((version >> 16) & 0xff)] if parts > 1: part_list.append(str((version >> 8) & 0xff)) if parts > 2: part_list.append(str(version & 0xff)) return '.'.join(part_list) def version_from_string(version_str): """ Convert a version string of the form m.n or m.n.o to an encoded version number (or None if it was an invalid format). version_str is the version string. """ parts = version_str.split('.') if not isinstance(parts, list): return None if len(parts) == 2: parts.append('0') if len(parts) != 3: return None version = 0 for part in parts: try: v = int(part) except ValueError: return None version = (version << 8) + v return version def read_version(filename, description, numdefine=None, strdefine=None): """Read the version information for a package from a file. The information is specified as #defines of a numeric (hexadecimal or decimal) value and/or a string value. filename is the name of the file. description is the descriptive name of the package. numdefine is the name of the #define of the numeric version. It is ignored if it is None. strdefine is the name of the #define of the string version. It is ignored if it is None. Returns a tuple of the version as a number and as a string. """ need_num = numdefine is not None need_str = strdefine is not None vers = None versstr = None f = open(filename) l = f.readline() while l and (need_num or need_str): wl = l.split() if len(wl) >= 3 and wl[0] == "#define": if need_num and wl[1] == numdefine: v = wl[2] if v[0:2] == "0x": vers = int(v, 16) else: dec = int(v) maj = dec / 100 min = (dec % 100) / 10 bug = (dec % 10) vers = (maj << 16) + (min << 8) + bug need_num = 0 if need_str and wl[1] == strdefine: # Take account of embedded spaces. versstr = ' '.join(wl[2:])[1:-1] need_str = 0 l = f.readline() f.close() if need_num or need_str: error("The %s version number could not be determined by parsing %s." % (description, filename)) return (vers, versstr) def create_content(cdict, macros=None): """Convert a dictionary to a string (typically to use as the content to a call to create_config_module()). Dictionary values that are strings are quoted. Dictionary values that are lists are converted to quoted strings. dict is the dictionary. macros is the optional dictionary of platform specific build macros. """ content = "_pkg_config = {\n" keys = list(cdict.keys()) keys.sort() # Format it nicely. width = 0 for k in keys: klen = len(k) if width < klen: width = klen for k in keys: val = cdict[k] vtype = type(val) delim = None if val is None: val = "None" elif vtype == list: val = ' '.join(val) delim = "'" elif vtype == int: if k.find("version") >= 0: # Assume it's a hexadecimal version number. It doesn't matter # if it isn't, we are just trying to make it look pretty. val = "0x%06x" % val else: val = str(val) else: val = str(val) delim = "'" if delim: if "'" in val: delim = "'''" val = delim + val + delim content = content + " '" + k + "':" + (" " * (width - len(k) + 2)) + val.replace("\\", "\\\\") if k != keys[-1]: content = content + "," content = content + "\n" content = content + "}\n\n" # Format the optional macros. content = content + "_default_macros = " if macros: content = content + "{\n" names = list(macros.keys()) names.sort() width = 0 for c in names: clen = len(c) if width < clen: width = clen for c in names: if c == names[-1]: sep = "" else: sep = "," val = macros[c] if "'" in val: delim = "'''" else: delim = "'" k = "'" + c + "':" content = content + " %-*s %s%s%s%s\n" % (1 + width + 2, k, delim, val.replace("\\", "\\\\"), delim, sep) content = content + "}\n" else: content = content + "None\n" return content def create_config_module(module, template, content, macros=None): """Create a configuration module by replacing "@" followed by "SIP_CONFIGURATION" followed by "@" in a template file with a content string. module is the name of the module file. template is the name of the template file. content is the content string. If it is a dictionary it is first converted to a string using create_content(). macros is an optional dictionary of platform specific build macros. It is only used if create_content() is called to convert the content to a string. """ if type(content) == dict: content = create_content(content, macros) # Allow this file to used as a template. key = "@" + "SIP_CONFIGURATION" + "@" df = open(module, "w") sf = open(template, "r") line = sf.readline() while line: if line.find(key) >= 0: line = content df.write(line) line = sf.readline() df.close() sf.close() def version_to_sip_tag(version, tags, description): """Convert a version number to a SIP tag. version is the version number. If it is negative then the latest version is assumed. (This is typically useful if a development preview is indicated by a negative version number.) tags is the dictionary of tags keyed by version number. The tag used is the one with the smallest key (ie. earliest version) that is greater than the given version number. description is the descriptive name of the package used for error messages. Returns the corresponding tag. """ vl = list(tags.keys()) vl.sort() # For a preview use the latest tag. if version < 0: tag = tags[vl[-1]] else: for v in vl: if version < v: tag = tags[v] break else: error("Unsupported %s version: 0x%06x." % (description, version)) return tag def error(msg): """Display an error message and terminate. msg is the text of the error message. """ sys.stderr.write(format("Error: " + msg) + "\n") sys.exit(1) def inform(msg): """Display an information message. msg is the text of the error message. """ sys.stdout.write(format(msg) + "\n") def format(msg, leftmargin=0, rightmargin=78): """Format a message by inserting line breaks at appropriate places. msg is the text of the message. leftmargin is the position of the left margin. rightmargin is the position of the right margin. Return the formatted message. """ curs = leftmargin fmsg = " " * leftmargin for w in msg.split(): l = len(w) if curs != leftmargin and curs + l > rightmargin: fmsg = fmsg + "\n" + (" " * leftmargin) curs = leftmargin if curs > leftmargin: fmsg = fmsg + " " curs = curs + 1 fmsg = fmsg + w curs = curs + l return fmsg def parse_build_macros(filename, names, overrides=None, properties=None): """Parse a qmake compatible file of build system macros and convert it to a dictionary. A macro is a name/value pair. The dictionary is returned or None if any of the overrides was invalid. filename is the name of the file to parse. names is a list of the macro names to extract from the file. overrides is an optional list of macro names and values that modify those found in the file. They are of the form "name=value" (in which case the value replaces the value found in the file) or "name+=value" (in which case the value is appended to the value found in the file). properties is an optional dictionary of property name and values that are used to resolve any expressions of the form "$[name]" in the file. """ # Validate and convert the overrides to a dictionary. orides = {} if overrides is not None: for oride in overrides: prefix = "" name_end = oride.find("+=") if name_end >= 0: prefix = "+" val_start = name_end + 2 else: name_end = oride.find("=") if name_end >= 0: val_start = name_end + 1 else: return None name = oride[:name_end] if name not in names: return None orides[name] = prefix + oride[val_start:] # This class defines a file like object that handles the nested include() # directives in qmake files. class qmake_build_file_reader: def __init__(self, filename): self.filename = filename self.currentfile = None self.filestack = [] self.pathstack = [] self.cond_fname = None self._openfile(filename) def _openfile(self, filename): try: f = open(filename, 'r') except IOError: # If this file is conditional then don't raise an error. if self.cond_fname == filename: return error("Unable to open %s" % filename) if self.currentfile: self.filestack.append(self.currentfile) self.pathstack.append(self.path) self.currentfile = f self.path = os.path.dirname(filename) def readline(self): line = self.currentfile.readline() sline = line.strip() if self.cond_fname and sline == '}': # The current condition is closed. self.cond_fname = None line = self.currentfile.readline() elif sline.startswith('exists(') and sline.endswith('{'): # A new condition is opened so extract the filename. self.cond_fname = self._normalise(sline[:-1].strip()[7:-1].strip()) line = self.currentfile.readline() elif sline.startswith('include('): nextfile = self._normalise(sline[8:-1].strip()) self._openfile(nextfile) return self.readline() if not line: self.currentfile.close() if self.filestack: self.currentfile = self.filestack.pop() self.path = self.pathstack.pop() return self.readline() return line # Normalise a filename by expanding any environment variables and # making sure it is absolute. def _normalise(self, fname): if "$(" in fname: fname = os.path.normpath(self._expandvars(fname)) if not os.path.isabs(fname): fname = os.path.join(self.path, fname) return fname # Expand the environment variables in a filename. def _expandvars(self, fname): i = 0 while True: m = re.search(r'\$\((\w+)\)', fname[i:]) if not m: break i, j = m.span(0) name = m.group(1) if name in os.environ: tail = fname[j:] fname = fname[:i] + os.environ[name] i = len(fname) fname += tail else: i = j return fname f = qmake_build_file_reader(filename) # Get everything into a dictionary. raw = { "DIR_SEPARATOR": os.sep, "LITERAL_WHITESPACE": " ", "LITERAL_DOLLAR": "$", "LITERAL_HASH": "#" } line = f.readline() while line: # Handle line continuations. while len(line) > 1 and line[-2] == "\\": line = line[:-2] next = f.readline() if next: line = line + next else: break # Strip comments and surrounding whitespace. line = line.split('#', 1)[0].strip() if line: assstart = line.find("+") if assstart > 0 and line[assstart + 1] == '=': adding = True assend = assstart + 1 else: adding = False assstart = line.find("=") assend = assstart if assstart > 0: lhs = line[:assstart].strip() rhs = line[assend + 1:].strip() # Remove the escapes for any quotes. rhs = rhs.replace(r'\"', '"').replace(r"\'", "'") if adding and rhs != "": orig_rhs = raw.get(lhs) if orig_rhs is not None: rhs = orig_rhs + " " + rhs raw[lhs] = _expand_macro_value(raw, rhs, properties) line = f.readline() # Go through the raw dictionary extracting the macros we need and # resolving any macro expansions. First of all, make sure every macro has # a value. refined = {} for m in names: refined[m] = "" macro_prefix = "QMAKE_" for lhs in list(raw.keys()): # Strip any prefix. if lhs.startswith(macro_prefix): reflhs = lhs[len(macro_prefix):] else: reflhs = lhs # See if we are interested in this one. if reflhs not in names: continue rhs = raw[lhs] # Expand any POSIX style environment variables. pleadin = ["$$(", "$("] for pl in pleadin: estart = rhs.find(pl) if estart >= 0: nstart = estart + len(pl) break else: estart = -1 while estart >= 0: eend = rhs[nstart:].find(")") if eend < 0: break eend = nstart + eend name = rhs[nstart:eend] try: env = os.environ[name] except KeyError: env = "" rhs = rhs[:estart] + env + rhs[eend + 1:] for pl in pleadin: estart = rhs.find(pl) if estart >= 0: nstart = estart + len(pl) break else: estart = -1 # Expand any Windows style environment variables. estart = rhs.find("%") while estart >= 0: eend = rhs[estart + 1:].find("%") if eend < 0: break eend = estart + 1 + eend name = rhs[estart + 1:eend] try: env = os.environ[name] except KeyError: env = "" rhs = rhs[:estart] + env + rhs[eend + 1:] estart = rhs.find("%") refined[reflhs] = rhs # Handle the user overrides. for lhs in list(orides.keys()): rhs = refined[lhs] oride = orides[lhs] if oride.find("+") == 0: if rhs: rhs = rhs + " " + oride[1:] else: rhs = oride[1:] else: rhs = oride refined[lhs] = rhs return refined def _expand_macro_value(macros, rhs, properties): """Expand the value of a macro based on ones seen so far.""" estart = rhs.find("$$(") mstart = rhs.find("$$") while mstart >= 0 and mstart != estart: rstart = mstart + 2 if rstart < len(rhs) and rhs[rstart] == "{": rstart = rstart + 1 term = "}" elif rstart < len(rhs) and rhs[rstart] == "[": rstart = rstart + 1 term = "]" else: term = string.whitespace mend = rstart while mend < len(rhs) and rhs[mend] not in term: mend = mend + 1 lhs = rhs[rstart:mend] if term in "}]": mend = mend + 1 if term == "]": # Assume a missing property expands to an empty string. if properties is None: value = "" else: value = properties.get(lhs, "") else: # We used to treat a missing value as an error, but Qt v4.3.0 has # at least one case that refers to an undefined macro. If qmake # handles it then this must be the correct behaviour. value = macros.get(lhs, "") rhs = rhs[:mstart] + value + rhs[mend:] estart = rhs.find("$$(") mstart = rhs.find("$$") return rhs def create_wrapper(script, wrapper, gui=0, use_arch=''): """Create a platform dependent executable wrapper around a Python script. script is the full pathname of the script. wrapper is the name of the wrapper file to create. gui is non-zero if a GUI enabled version of the interpreter should be used. use_arch is the MacOS/X architectures to invoke python with. Several space separated architectures may be specified. Returns the platform specific name of the wrapper. """ if sys.platform == "win32": wrapper = wrapper + ".bat" wf = open(wrapper, "w") if sys.platform == "win32": exe = sys.executable if gui: exe = exe[:-4] + "w.exe" wf.write("@\"%s\" \"%s\" %%1 %%2 %%3 %%4 %%5 %%6 %%7 %%8 %%9\n" % (exe, script)) elif sys.platform == "darwin": # The installation of MacOS's python is a mess that changes from # version to version and where sys.executable is useless. version = sys.version_info py_major = version[0] py_minor = version[1] if gui: # In Python v3.4 and later there is no pythonw. if (py_major == 3 and py_minor >= 4) or py_major >= 4: exe = "python" else: exe = "pythonw" else: exe = "python" exe = "%s%d.%d" % (exe, py_major, py_minor) if use_arch: # Note that this may not work with the "standard" interpreter but # should with the "pythonX.Y" version. arch_flags = ' '.join(["-%s" % a for a in use_arch.split()]) exe = "arch %s %s" % (arch_flags, exe) wf.write("#!/bin/sh\n") wf.write("exec %s %s ${1+\"$@\"}\n" % (exe, script)) else: wf.write("#!/bin/sh\n") wf.write("exec %s %s ${1+\"$@\"}\n" % (sys.executable, script)) wf.close() if sys.platform != "win32": sbuf = os.stat(wrapper) mode = sbuf.st_mode mode |= (stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) os.chmod(wrapper, mode) return wrapper
eb7705bd6b9d8e6677c1899be7ba4d2bdc3f42a1
368be25e37bafa8cc795f7c9f34e4585e017091f
/.history/app_fav_books/models_20201114185225.py
1f3117e89b2e0690542e5f302aea450246571448
[]
no_license
steven-halla/fav_books_proj
ebcfbfda0e7f3cdc49d592c86c633b1d331da513
512005deb84ac906c9f24d4ab0939bd0db096716
refs/heads/master
2023-03-30T09:37:38.016063
2021-04-02T20:27:22
2021-04-02T20:27:22
354,125,658
0
0
null
null
null
null
UTF-8
Python
false
false
2,606
py
from django.db import models import re class UserManager(models.Manager): def basic_validator(self, post_data): errors = {} EMAIL_REGEX = re.compile(r'^[a-zA-Z0-9.+_-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]+$') if len(post_data['first_name']) < 3: errors['first_name'] = "First name must be 3 characters" if post_data['first_name'].isalpha() == False: errors['first_name'] = "letters only" if len(post_data['last_name']) < 3: errors['last_name'] = "Last name must be 3 characters" if post_data['last_name'].isalpha() == False: errors['last_name'] = "letters only" if len(post_data['email']) < 8: errors['email'] = "Email must contain 8 characters" if post_data['email'].find("@") == -1: errors['email'] = "email must contain @ and .com" if post_data['email'].find(".com") == -1: errors['email'] = "email must contain @ and .com" # test whether a field matches the pattern if not EMAIL_REGEX.match(post_data['email']): errors['email'] = "Invalid email address!" if post_data['password'] != post_data['confirm_password']: errors['pass_match'] = "password must match confirm password" if len(post_data['password']) < 8: errors['pass_length'] = "password must be longer than 8 characters" return errors # Create your models here. class User(models.Model): first_name = models.CharField(max_length=20) last_name = models.CharField(max_length=20) email = models.CharField(max_length=20) password = models.CharField(max_length=20) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects = UserManager() class BooksManager(models.Manager): def basic_validator(self, post_data): errors = {} if len(post_data['title']) < 1: errors['title'] = "First name must be 1 characters" if len(post_data['last_name']) < 5: errors['desc'] = "Description must be 5 characters" return errors class Books(models.Model): title = models.CharField(max_length=20) desc = models.CharField(max_length=40) uploaded_by = models.ForeignKey(User, related_name="books_uploaded", on_delete=models.CASCADE) users_who_favorite = models.ManyToManyField(User, related_name="liked_books") created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects=BooksManager