blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0d5fa245a529ddeeda28d724b8adc4bcffa098d1
efd2ec91bb1861f571a9ac6a663b72203eeaf8c1
/env/lib/python3.6/tempfile.py
e5f4dd3d9c1adb7fde84d96552564a983ab0c6e4
[]
no_license
bopopescu/DjangoFirst
de2cfdf6dcf9d72e211b3374865f4b38dd2465df
d2776f44d15024d6ed03d184e27269dff0c53d2a
refs/heads/master
2021-10-28T08:48:15.508077
2019-04-23T06:29:28
2019-04-23T06:29:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
47
py
/home/satish/anaconda/lib/python3.6/tempfile.py
25bd19ebec3d335bb1ab4630ad5ef6a7c9856ce5
fde8c89b352076f95cc16e589b1baf18f7befb51
/dulwich/pack.py
878162b964ef50a9c5bcebdcb0a02cf5529b4243
[]
no_license
571451370/devstack_mitaka
b11145256deab817bcdf60a01a67bb6b2f9ddb52
1bdd3f2598f91c1446b85c5b6def7784a2f6ab02
refs/heads/master
2020-08-26T12:53:07.482514
2017-04-12T01:32:55
2017-04-12T01:32:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
66,284
py
# pack.py -- For dealing with packed git objects. # Copyright (C) 2007 James Westby <[email protected]> # Copyright (C) 2008-2013 Jelmer Vernooij <[email protected]> # # Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU # General Public License as public by the Free Software Foundation; version 2.0 # or (at your option) any later version. You can redistribute it and/or # modify it under the terms of either of these two licenses. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the licenses; if not, see # <http://www.gnu.org/licenses/> for a copy of the GNU General Public License # and <http://www.apache.org/licenses/LICENSE-2.0> for a copy of the Apache # License, Version 2.0. # """Classes for dealing with packed git objects. A pack is a compact representation of a bunch of objects, stored using deltas where possible. They have two parts, the pack file, which stores the data, and an index that tells you where the data is. To find an object you look in all of the index files 'til you find a match for the object name. You then use the pointer got from this as a pointer in to the corresponding packfile. """ from collections import defaultdict import binascii from io import BytesIO, UnsupportedOperation from collections import ( deque, ) import difflib import struct from itertools import chain try: from itertools import imap, izip except ImportError: # Python3 imap = map izip = zip import os import sys try: import mmap except ImportError: has_mmap = False else: has_mmap = True # For some reason the above try, except fails to set has_mmap = False for plan9 if sys.platform == 'Plan9': has_mmap = False from hashlib import sha1 from os import ( SEEK_CUR, SEEK_END, ) from struct import unpack_from import zlib from dulwich.errors import ( ApplyDeltaError, ChecksumMismatch, ) from dulwich.file import GitFile from dulwich.lru_cache import ( LRUSizeCache, ) from dulwich.objects import ( ShaFile, hex_to_sha, sha_to_hex, object_header, ) OFS_DELTA = 6 REF_DELTA = 7 DELTA_TYPES = (OFS_DELTA, REF_DELTA) DEFAULT_PACK_DELTA_WINDOW_SIZE = 10 def take_msb_bytes(read, crc32=None): """Read bytes marked with most significant bit. :param read: Read function """ ret = [] while len(ret) == 0 or ret[-1] & 0x80: b = read(1) if crc32 is not None: crc32 = binascii.crc32(b, crc32) ret.append(ord(b[:1])) return ret, crc32 class UnpackedObject(object): """Class encapsulating an object unpacked from a pack file. These objects should only be created from within unpack_object. Most members start out as empty and are filled in at various points by read_zlib_chunks, unpack_object, DeltaChainIterator, etc. End users of this object should take care that the function they're getting this object from is guaranteed to set the members they need. """ __slots__ = [ 'offset', # Offset in its pack. '_sha', # Cached binary SHA. 'obj_type_num', # Type of this object. 'obj_chunks', # Decompressed and delta-resolved chunks. 'pack_type_num', # Type of this object in the pack (may be a delta). 'delta_base', # Delta base offset or SHA. 'comp_chunks', # Compressed object chunks. 'decomp_chunks', # Decompressed object chunks. 'decomp_len', # Decompressed length of this object. 'crc32', # CRC32. ] # TODO(dborowitz): read_zlib_chunks and unpack_object could very well be # methods of this object. def __init__(self, pack_type_num, delta_base, decomp_len, crc32): self.offset = None self._sha = None self.pack_type_num = pack_type_num self.delta_base = delta_base self.comp_chunks = None self.decomp_chunks = [] self.decomp_len = decomp_len self.crc32 = crc32 if pack_type_num in DELTA_TYPES: self.obj_type_num = None self.obj_chunks = None else: self.obj_type_num = pack_type_num self.obj_chunks = self.decomp_chunks self.delta_base = delta_base def sha(self): """Return the binary SHA of this object.""" if self._sha is None: self._sha = obj_sha(self.obj_type_num, self.obj_chunks) return self._sha def sha_file(self): """Return a ShaFile from this object.""" return ShaFile.from_raw_chunks(self.obj_type_num, self.obj_chunks) # Only provided for backwards compatibility with code that expects either # chunks or a delta tuple. def _obj(self): """Return the decompressed chunks, or (delta base, delta chunks).""" if self.pack_type_num in DELTA_TYPES: return (self.delta_base, self.decomp_chunks) else: return self.decomp_chunks def __eq__(self, other): if not isinstance(other, UnpackedObject): return False for slot in self.__slots__: if getattr(self, slot) != getattr(other, slot): return False return True def __ne__(self, other): return not (self == other) def __repr__(self): data = ['%s=%r' % (s, getattr(self, s)) for s in self.__slots__] return '%s(%s)' % (self.__class__.__name__, ', '.join(data)) _ZLIB_BUFSIZE = 4096 def read_zlib_chunks(read_some, unpacked, include_comp=False, buffer_size=_ZLIB_BUFSIZE): """Read zlib data from a buffer. This function requires that the buffer have additional data following the compressed data, which is guaranteed to be the case for git pack files. :param read_some: Read function that returns at least one byte, but may return less than the requested size. :param unpacked: An UnpackedObject to write result data to. If its crc32 attr is not None, the CRC32 of the compressed bytes will be computed using this starting CRC32. After this function, will have the following attrs set: * comp_chunks (if include_comp is True) * decomp_chunks * decomp_len * crc32 :param include_comp: If True, include compressed data in the result. :param buffer_size: Size of the read buffer. :return: Leftover unused data from the decompression. :raise zlib.error: if a decompression error occurred. """ if unpacked.decomp_len <= -1: raise ValueError('non-negative zlib data stream size expected') decomp_obj = zlib.decompressobj() comp_chunks = [] decomp_chunks = unpacked.decomp_chunks decomp_len = 0 crc32 = unpacked.crc32 while True: add = read_some(buffer_size) if not add: raise zlib.error('EOF before end of zlib stream') comp_chunks.append(add) decomp = decomp_obj.decompress(add) decomp_len += len(decomp) decomp_chunks.append(decomp) unused = decomp_obj.unused_data if unused: left = len(unused) if crc32 is not None: crc32 = binascii.crc32(add[:-left], crc32) if include_comp: comp_chunks[-1] = add[:-left] break elif crc32 is not None: crc32 = binascii.crc32(add, crc32) if crc32 is not None: crc32 &= 0xffffffff if decomp_len != unpacked.decomp_len: raise zlib.error('decompressed data does not match expected size') unpacked.crc32 = crc32 if include_comp: unpacked.comp_chunks = comp_chunks return unused def iter_sha1(iter): """Return the hexdigest of the SHA1 over a set of names. :param iter: Iterator over string objects :return: 40-byte hex sha1 digest """ sha = sha1() for name in iter: sha.update(name) return sha.hexdigest().encode('ascii') def load_pack_index(path): """Load an index file by path. :param filename: Path to the index file :return: A PackIndex loaded from the given path """ with GitFile(path, 'rb') as f: return load_pack_index_file(path, f) def _load_file_contents(f, size=None): try: fd = f.fileno() except (UnsupportedOperation, AttributeError): fd = None # Attempt to use mmap if possible if fd is not None: if size is None: size = os.fstat(fd).st_size if has_mmap: try: contents = mmap.mmap(fd, size, access=mmap.ACCESS_READ) except mmap.error: # Perhaps a socket? pass else: return contents, size contents = f.read() size = len(contents) return contents, size def load_pack_index_file(path, f): """Load an index file from a file-like object. :param path: Path for the index file :param f: File-like object :return: A PackIndex loaded from the given file """ contents, size = _load_file_contents(f) if contents[:4] == b'\377tOc': version = struct.unpack(b'>L', contents[4:8])[0] if version == 2: return PackIndex2(path, file=f, contents=contents, size=size) else: raise KeyError('Unknown pack index format %d' % version) else: return PackIndex1(path, file=f, contents=contents, size=size) def bisect_find_sha(start, end, sha, unpack_name): """Find a SHA in a data blob with sorted SHAs. :param start: Start index of range to search :param end: End index of range to search :param sha: Sha to find :param unpack_name: Callback to retrieve SHA by index :return: Index of the SHA, or None if it wasn't found """ assert start <= end while start <= end: i = (start + end) // 2 file_sha = unpack_name(i) if file_sha < sha: start = i + 1 elif file_sha > sha: end = i - 1 else: return i return None class PackIndex(object): """An index in to a packfile. Given a sha id of an object a pack index can tell you the location in the packfile of that object if it has it. """ def __eq__(self, other): if not isinstance(other, PackIndex): return False for (name1, _, _), (name2, _, _) in izip(self.iterentries(), other.iterentries()): if name1 != name2: return False return True def __ne__(self, other): return not self.__eq__(other) def __len__(self): """Return the number of entries in this pack index.""" raise NotImplementedError(self.__len__) def __iter__(self): """Iterate over the SHAs in this pack.""" return imap(sha_to_hex, self._itersha()) def iterentries(self): """Iterate over the entries in this pack index. :return: iterator over tuples with object name, offset in packfile and crc32 checksum. """ raise NotImplementedError(self.iterentries) def get_pack_checksum(self): """Return the SHA1 checksum stored for the corresponding packfile. :return: 20-byte binary digest """ raise NotImplementedError(self.get_pack_checksum) def object_index(self, sha): """Return the index in to the corresponding packfile for the object. Given the name of an object it will return the offset that object lives at within the corresponding pack file. If the pack file doesn't have the object then None will be returned. """ if len(sha) == 40: sha = hex_to_sha(sha) return self._object_index(sha) def _object_index(self, sha): """See object_index. :param sha: A *binary* SHA string. (20 characters long)_ """ raise NotImplementedError(self._object_index) def objects_sha1(self): """Return the hex SHA1 over all the shas of all objects in this pack. :note: This is used for the filename of the pack. """ return iter_sha1(self._itersha()) def _itersha(self): """Yield all the SHA1's of the objects in the index, sorted.""" raise NotImplementedError(self._itersha) class MemoryPackIndex(PackIndex): """Pack index that is stored entirely in memory.""" def __init__(self, entries, pack_checksum=None): """Create a new MemoryPackIndex. :param entries: Sequence of name, idx, crc32 (sorted) :param pack_checksum: Optional pack checksum """ self._by_sha = {} for name, idx, crc32 in entries: self._by_sha[name] = idx self._entries = entries self._pack_checksum = pack_checksum def get_pack_checksum(self): return self._pack_checksum def __len__(self): return len(self._entries) def _object_index(self, sha): return self._by_sha[sha][0] def _itersha(self): return iter(self._by_sha) def iterentries(self): return iter(self._entries) class FilePackIndex(PackIndex): """Pack index that is based on a file. To do the loop it opens the file, and indexes first 256 4 byte groups with the first byte of the sha id. The value in the four byte group indexed is the end of the group that shares the same starting byte. Subtract one from the starting byte and index again to find the start of the group. The values are sorted by sha id within the group, so do the math to find the start and end offset and then bisect in to find if the value is present. """ def __init__(self, filename, file=None, contents=None, size=None): """Create a pack index object. Provide it with the name of the index file to consider, and it will map it whenever required. """ self._filename = filename # Take the size now, so it can be checked each time we map the file to # ensure that it hasn't changed. if file is None: self._file = GitFile(filename, 'rb') else: self._file = file if contents is None: self._contents, self._size = _load_file_contents(self._file, size) else: self._contents, self._size = (contents, size) def __eq__(self, other): # Quick optimization: if (isinstance(other, FilePackIndex) and self._fan_out_table != other._fan_out_table): return False return super(FilePackIndex, self).__eq__(other) def close(self): self._file.close() if getattr(self._contents, "close", None) is not None: self._contents.close() def __len__(self): """Return the number of entries in this pack index.""" return self._fan_out_table[-1] def _unpack_entry(self, i): """Unpack the i-th entry in the index file. :return: Tuple with object name (SHA), offset in pack file and CRC32 checksum (if known). """ raise NotImplementedError(self._unpack_entry) def _unpack_name(self, i): """Unpack the i-th name from the index file.""" raise NotImplementedError(self._unpack_name) def _unpack_offset(self, i): """Unpack the i-th object offset from the index file.""" raise NotImplementedError(self._unpack_offset) def _unpack_crc32_checksum(self, i): """Unpack the crc32 checksum for the i-th object from the index file.""" raise NotImplementedError(self._unpack_crc32_checksum) def _itersha(self): for i in range(len(self)): yield self._unpack_name(i) def iterentries(self): """Iterate over the entries in this pack index. :return: iterator over tuples with object name, offset in packfile and crc32 checksum. """ for i in range(len(self)): yield self._unpack_entry(i) def _read_fan_out_table(self, start_offset): ret = [] for i in range(0x100): fanout_entry = self._contents[start_offset+i*4:start_offset+(i+1)*4] ret.append(struct.unpack('>L', fanout_entry)[0]) return ret def check(self): """Check that the stored checksum matches the actual checksum.""" actual = self.calculate_checksum() stored = self.get_stored_checksum() if actual != stored: raise ChecksumMismatch(stored, actual) def calculate_checksum(self): """Calculate the SHA1 checksum over this pack index. :return: This is a 20-byte binary digest """ return sha1(self._contents[:-20]).digest() def get_pack_checksum(self): """Return the SHA1 checksum stored for the corresponding packfile. :return: 20-byte binary digest """ return bytes(self._contents[-40:-20]) def get_stored_checksum(self): """Return the SHA1 checksum stored for this index. :return: 20-byte binary digest """ return bytes(self._contents[-20:]) def _object_index(self, sha): """See object_index. :param sha: A *binary* SHA string. (20 characters long)_ """ assert len(sha) == 20 idx = ord(sha[:1]) if idx == 0: start = 0 else: start = self._fan_out_table[idx-1] end = self._fan_out_table[idx] i = bisect_find_sha(start, end, sha, self._unpack_name) if i is None: raise KeyError(sha) return self._unpack_offset(i) class PackIndex1(FilePackIndex): """Version 1 Pack Index file.""" def __init__(self, filename, file=None, contents=None, size=None): super(PackIndex1, self).__init__(filename, file, contents, size) self.version = 1 self._fan_out_table = self._read_fan_out_table(0) def _unpack_entry(self, i): (offset, name) = unpack_from('>L20s', self._contents, (0x100 * 4) + (i * 24)) return (name, offset, None) def _unpack_name(self, i): offset = (0x100 * 4) + (i * 24) + 4 return self._contents[offset:offset+20] def _unpack_offset(self, i): offset = (0x100 * 4) + (i * 24) return unpack_from('>L', self._contents, offset)[0] def _unpack_crc32_checksum(self, i): # Not stored in v1 index files return None class PackIndex2(FilePackIndex): """Version 2 Pack Index file.""" def __init__(self, filename, file=None, contents=None, size=None): super(PackIndex2, self).__init__(filename, file, contents, size) if self._contents[:4] != b'\377tOc': raise AssertionError('Not a v2 pack index file') (self.version, ) = unpack_from(b'>L', self._contents, 4) if self.version != 2: raise AssertionError('Version was %d' % self.version) self._fan_out_table = self._read_fan_out_table(8) self._name_table_offset = 8 + 0x100 * 4 self._crc32_table_offset = self._name_table_offset + 20 * len(self) self._pack_offset_table_offset = (self._crc32_table_offset + 4 * len(self)) self._pack_offset_largetable_offset = (self._pack_offset_table_offset + 4 * len(self)) def _unpack_entry(self, i): return (self._unpack_name(i), self._unpack_offset(i), self._unpack_crc32_checksum(i)) def _unpack_name(self, i): offset = self._name_table_offset + i * 20 return self._contents[offset:offset+20] def _unpack_offset(self, i): offset = self._pack_offset_table_offset + i * 4 offset = unpack_from('>L', self._contents, offset)[0] if offset & (2**31): offset = self._pack_offset_largetable_offset + (offset&(2**31-1)) * 8 offset = unpack_from('>Q', self._contents, offset)[0] return offset def _unpack_crc32_checksum(self, i): return unpack_from('>L', self._contents, self._crc32_table_offset + i * 4)[0] def read_pack_header(read): """Read the header of a pack file. :param read: Read function :return: Tuple of (pack version, number of objects). If no data is available to read, returns (None, None). """ header = read(12) if not header: return None, None if header[:4] != b'PACK': raise AssertionError('Invalid pack header %r' % header) (version,) = unpack_from(b'>L', header, 4) if version not in (2, 3): raise AssertionError('Version was %d' % version) (num_objects,) = unpack_from(b'>L', header, 8) return (version, num_objects) def chunks_length(chunks): if isinstance(chunks, bytes): return len(chunks) else: return sum(imap(len, chunks)) def unpack_object(read_all, read_some=None, compute_crc32=False, include_comp=False, zlib_bufsize=_ZLIB_BUFSIZE): """Unpack a Git object. :param read_all: Read function that blocks until the number of requested bytes are read. :param read_some: Read function that returns at least one byte, but may not return the number of bytes requested. :param compute_crc32: If True, compute the CRC32 of the compressed data. If False, the returned CRC32 will be None. :param include_comp: If True, include compressed data in the result. :param zlib_bufsize: An optional buffer size for zlib operations. :return: A tuple of (unpacked, unused), where unused is the unused data leftover from decompression, and unpacked in an UnpackedObject with the following attrs set: * obj_chunks (for non-delta types) * pack_type_num * delta_base (for delta types) * comp_chunks (if include_comp is True) * decomp_chunks * decomp_len * crc32 (if compute_crc32 is True) """ if read_some is None: read_some = read_all if compute_crc32: crc32 = 0 else: crc32 = None bytes, crc32 = take_msb_bytes(read_all, crc32=crc32) type_num = (bytes[0] >> 4) & 0x07 size = bytes[0] & 0x0f for i, byte in enumerate(bytes[1:]): size += (byte & 0x7f) << ((i * 7) + 4) raw_base = len(bytes) if type_num == OFS_DELTA: bytes, crc32 = take_msb_bytes(read_all, crc32=crc32) raw_base += len(bytes) if bytes[-1] & 0x80: raise AssertionError delta_base_offset = bytes[0] & 0x7f for byte in bytes[1:]: delta_base_offset += 1 delta_base_offset <<= 7 delta_base_offset += (byte & 0x7f) delta_base = delta_base_offset elif type_num == REF_DELTA: delta_base = read_all(20) if compute_crc32: crc32 = binascii.crc32(delta_base, crc32) raw_base += 20 else: delta_base = None unpacked = UnpackedObject(type_num, delta_base, size, crc32) unused = read_zlib_chunks(read_some, unpacked, buffer_size=zlib_bufsize, include_comp=include_comp) return unpacked, unused def _compute_object_size(value): """Compute the size of a unresolved object for use with LRUSizeCache.""" (num, obj) = value if num in DELTA_TYPES: return chunks_length(obj[1]) return chunks_length(obj) class PackStreamReader(object): """Class to read a pack stream. The pack is read from a ReceivableProtocol using read() or recv() as appropriate. """ def __init__(self, read_all, read_some=None, zlib_bufsize=_ZLIB_BUFSIZE): self.read_all = read_all if read_some is None: self.read_some = read_all else: self.read_some = read_some self.sha = sha1() self._offset = 0 self._rbuf = BytesIO() # trailer is a deque to avoid memory allocation on small reads self._trailer = deque() self._zlib_bufsize = zlib_bufsize def _read(self, read, size): """Read up to size bytes using the given callback. As a side effect, update the verifier's hash (excluding the last 20 bytes read). :param read: The read callback to read from. :param size: The maximum number of bytes to read; the particular behavior is callback-specific. """ data = read(size) # maintain a trailer of the last 20 bytes we've read n = len(data) self._offset += n tn = len(self._trailer) if n >= 20: to_pop = tn to_add = 20 else: to_pop = max(n + tn - 20, 0) to_add = n self.sha.update(bytes(bytearray([self._trailer.popleft() for _ in range(to_pop)]))) self._trailer.extend(data[-to_add:]) # hash everything but the trailer self.sha.update(data[:-to_add]) return data def _buf_len(self): buf = self._rbuf start = buf.tell() buf.seek(0, SEEK_END) end = buf.tell() buf.seek(start) return end - start @property def offset(self): return self._offset - self._buf_len() def read(self, size): """Read, blocking until size bytes are read.""" buf_len = self._buf_len() if buf_len >= size: return self._rbuf.read(size) buf_data = self._rbuf.read() self._rbuf = BytesIO() return buf_data + self._read(self.read_all, size - buf_len) def recv(self, size): """Read up to size bytes, blocking until one byte is read.""" buf_len = self._buf_len() if buf_len: data = self._rbuf.read(size) if size >= buf_len: self._rbuf = BytesIO() return data return self._read(self.read_some, size) def __len__(self): return self._num_objects def read_objects(self, compute_crc32=False): """Read the objects in this pack file. :param compute_crc32: If True, compute the CRC32 of the compressed data. If False, the returned CRC32 will be None. :return: Iterator over UnpackedObjects with the following members set: offset obj_type_num obj_chunks (for non-delta types) delta_base (for delta types) decomp_chunks decomp_len crc32 (if compute_crc32 is True) :raise ChecksumMismatch: if the checksum of the pack contents does not match the checksum in the pack trailer. :raise zlib.error: if an error occurred during zlib decompression. :raise IOError: if an error occurred writing to the output file. """ pack_version, self._num_objects = read_pack_header(self.read) if pack_version is None: return for i in range(self._num_objects): offset = self.offset unpacked, unused = unpack_object( self.read, read_some=self.recv, compute_crc32=compute_crc32, zlib_bufsize=self._zlib_bufsize) unpacked.offset = offset # prepend any unused data to current read buffer buf = BytesIO() buf.write(unused) buf.write(self._rbuf.read()) buf.seek(0) self._rbuf = buf yield unpacked if self._buf_len() < 20: # If the read buffer is full, then the last read() got the whole # trailer off the wire. If not, it means there is still some of the # trailer to read. We need to read() all 20 bytes; N come from the # read buffer and (20 - N) come from the wire. self.read(20) pack_sha = bytearray(self._trailer) if pack_sha != self.sha.digest(): raise ChecksumMismatch(sha_to_hex(pack_sha), self.sha.hexdigest()) class PackStreamCopier(PackStreamReader): """Class to verify a pack stream as it is being read. The pack is read from a ReceivableProtocol using read() or recv() as appropriate and written out to the given file-like object. """ def __init__(self, read_all, read_some, outfile, delta_iter=None): """Initialize the copier. :param read_all: Read function that blocks until the number of requested bytes are read. :param read_some: Read function that returns at least one byte, but may not return the number of bytes requested. :param outfile: File-like object to write output through. :param delta_iter: Optional DeltaChainIterator to record deltas as we read them. """ super(PackStreamCopier, self).__init__(read_all, read_some=read_some) self.outfile = outfile self._delta_iter = delta_iter def _read(self, read, size): """Read data from the read callback and write it to the file.""" data = super(PackStreamCopier, self)._read(read, size) self.outfile.write(data) return data def verify(self): """Verify a pack stream and write it to the output file. See PackStreamReader.iterobjects for a list of exceptions this may throw. """ if self._delta_iter: for unpacked in self.read_objects(): self._delta_iter.record(unpacked) else: for _ in self.read_objects(): pass def obj_sha(type, chunks): """Compute the SHA for a numeric type and object chunks.""" sha = sha1() sha.update(object_header(type, chunks_length(chunks))) if isinstance(chunks, bytes): sha.update(chunks) else: for chunk in chunks: sha.update(chunk) return sha.digest() def compute_file_sha(f, start_ofs=0, end_ofs=0, buffer_size=1<<16): """Hash a portion of a file into a new SHA. :param f: A file-like object to read from that supports seek(). :param start_ofs: The offset in the file to start reading at. :param end_ofs: The offset in the file to end reading at, relative to the end of the file. :param buffer_size: A buffer size for reading. :return: A new SHA object updated with data read from the file. """ sha = sha1() f.seek(0, SEEK_END) length = f.tell() if (end_ofs < 0 and length + end_ofs < start_ofs) or end_ofs > length: raise AssertionError( "Attempt to read beyond file length. " "start_ofs: %d, end_ofs: %d, file length: %d" % ( start_ofs, end_ofs, length)) todo = length + end_ofs - start_ofs f.seek(start_ofs) while todo: data = f.read(min(todo, buffer_size)) sha.update(data) todo -= len(data) return sha class PackData(object): """The data contained in a packfile. Pack files can be accessed both sequentially for exploding a pack, and directly with the help of an index to retrieve a specific object. The objects within are either complete or a delta against another. The header is variable length. If the MSB of each byte is set then it indicates that the subsequent byte is still part of the header. For the first byte the next MS bits are the type, which tells you the type of object, and whether it is a delta. The LS byte is the lowest bits of the size. For each subsequent byte the LS 7 bits are the next MS bits of the size, i.e. the last byte of the header contains the MS bits of the size. For the complete objects the data is stored as zlib deflated data. The size in the header is the uncompressed object size, so to uncompress you need to just keep feeding data to zlib until you get an object back, or it errors on bad data. This is done here by just giving the complete buffer from the start of the deflated object on. This is bad, but until I get mmap sorted out it will have to do. Currently there are no integrity checks done. Also no attempt is made to try and detect the delta case, or a request for an object at the wrong position. It will all just throw a zlib or KeyError. """ def __init__(self, filename, file=None, size=None): """Create a PackData object representing the pack in the given filename. The file must exist and stay readable until the object is disposed of. It must also stay the same size. It will be mapped whenever needed. Currently there is a restriction on the size of the pack as the python mmap implementation is flawed. """ self._filename = filename self._size = size self._header_size = 12 if file is None: self._file = GitFile(self._filename, 'rb') else: self._file = file (version, self._num_objects) = read_pack_header(self._file.read) self._offset_cache = LRUSizeCache(1024*1024*20, compute_size=_compute_object_size) self.pack = None @property def filename(self): return os.path.basename(self._filename) @classmethod def from_file(cls, file, size): return cls(str(file), file=file, size=size) @classmethod def from_path(cls, path): return cls(filename=path) def close(self): self._file.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def _get_size(self): if self._size is not None: return self._size self._size = os.path.getsize(self._filename) if self._size < self._header_size: errmsg = ('%s is too small for a packfile (%d < %d)' % (self._filename, self._size, self._header_size)) raise AssertionError(errmsg) return self._size def __len__(self): """Returns the number of objects in this pack.""" return self._num_objects def calculate_checksum(self): """Calculate the checksum for this pack. :return: 20-byte binary SHA1 digest """ return compute_file_sha(self._file, end_ofs=-20).digest() def get_ref(self, sha): """Get the object for a ref SHA, only looking in this pack.""" # TODO: cache these results if self.pack is None: raise KeyError(sha) try: offset = self.pack.index.object_index(sha) except KeyError: offset = None if offset: type, obj = self.get_object_at(offset) elif self.pack is not None and self.pack.resolve_ext_ref: type, obj = self.pack.resolve_ext_ref(sha) else: raise KeyError(sha) return offset, type, obj def resolve_object(self, offset, type, obj, get_ref=None): """Resolve an object, possibly resolving deltas when necessary. :return: Tuple with object type and contents. """ # Walk down the delta chain, building a stack of deltas to reach # the requested object. base_offset = offset base_type = type base_obj = obj delta_stack = [] while base_type in DELTA_TYPES: prev_offset = base_offset if get_ref is None: get_ref = self.get_ref if base_type == OFS_DELTA: (delta_offset, delta) = base_obj # TODO: clean up asserts and replace with nicer error messages assert ( isinstance(base_offset, int) or isinstance(base_offset, long)) assert ( isinstance(delta_offset, int) or isinstance(base_offset, long)) base_offset = base_offset - delta_offset base_type, base_obj = self.get_object_at(base_offset) assert isinstance(base_type, int) elif base_type == REF_DELTA: (basename, delta) = base_obj assert isinstance(basename, bytes) and len(basename) == 20 base_offset, base_type, base_obj = get_ref(basename) assert isinstance(base_type, int) delta_stack.append((prev_offset, base_type, delta)) # Now grab the base object (mustn't be a delta) and apply the # deltas all the way up the stack. chunks = base_obj for prev_offset, delta_type, delta in reversed(delta_stack): chunks = apply_delta(chunks, delta) # TODO(dborowitz): This can result in poor performance if # large base objects are separated from deltas in the pack. # We should reorganize so that we apply deltas to all # objects in a chain one after the other to optimize cache # performance. if prev_offset is not None: self._offset_cache[prev_offset] = base_type, chunks return base_type, chunks def iterobjects(self, progress=None, compute_crc32=True): self._file.seek(self._header_size) for i in range(1, self._num_objects + 1): offset = self._file.tell() unpacked, unused = unpack_object( self._file.read, compute_crc32=compute_crc32) if progress is not None: progress(i, self._num_objects) yield (offset, unpacked.pack_type_num, unpacked._obj(), unpacked.crc32) self._file.seek(-len(unused), SEEK_CUR) # Back up over unused data. def _iter_unpacked(self): # TODO(dborowitz): Merge this with iterobjects, if we can change its # return type. self._file.seek(self._header_size) if self._num_objects is None: return for _ in range(self._num_objects): offset = self._file.tell() unpacked, unused = unpack_object( self._file.read, compute_crc32=False) unpacked.offset = offset yield unpacked self._file.seek(-len(unused), SEEK_CUR) # Back up over unused data. def iterentries(self, progress=None): """Yield entries summarizing the contents of this pack. :param progress: Progress function, called with current and total object count. :return: iterator of tuples with (sha, offset, crc32) """ num_objects = self._num_objects resolve_ext_ref = ( self.pack.resolve_ext_ref if self.pack is not None else None) indexer = PackIndexer.for_pack_data( self, resolve_ext_ref=resolve_ext_ref) for i, result in enumerate(indexer): if progress is not None: progress(i, num_objects) yield result def sorted_entries(self, progress=None): """Return entries in this pack, sorted by SHA. :param progress: Progress function, called with current and total object count :return: List of tuples with (sha, offset, crc32) """ ret = sorted(self.iterentries(progress=progress)) return ret def create_index_v1(self, filename, progress=None): """Create a version 1 file for this data file. :param filename: Index filename. :param progress: Progress report function :return: Checksum of index file """ entries = self.sorted_entries(progress=progress) with GitFile(filename, 'wb') as f: return write_pack_index_v1(f, entries, self.calculate_checksum()) def create_index_v2(self, filename, progress=None): """Create a version 2 index file for this data file. :param filename: Index filename. :param progress: Progress report function :return: Checksum of index file """ entries = self.sorted_entries(progress=progress) with GitFile(filename, 'wb') as f: return write_pack_index_v2(f, entries, self.calculate_checksum()) def create_index(self, filename, progress=None, version=2): """Create an index file for this data file. :param filename: Index filename. :param progress: Progress report function :return: Checksum of index file """ if version == 1: return self.create_index_v1(filename, progress) elif version == 2: return self.create_index_v2(filename, progress) else: raise ValueError('unknown index format %d' % version) def get_stored_checksum(self): """Return the expected checksum stored in this pack.""" self._file.seek(-20, SEEK_END) return self._file.read(20) def check(self): """Check the consistency of this pack.""" actual = self.calculate_checksum() stored = self.get_stored_checksum() if actual != stored: raise ChecksumMismatch(stored, actual) def get_object_at(self, offset): """Given an offset in to the packfile return the object that is there. Using the associated index the location of an object can be looked up, and then the packfile can be asked directly for that object using this function. """ try: return self._offset_cache[offset] except KeyError: pass assert offset >= self._header_size self._file.seek(offset) unpacked, _ = unpack_object(self._file.read) return (unpacked.pack_type_num, unpacked._obj()) class DeltaChainIterator(object): """Abstract iterator over pack data based on delta chains. Each object in the pack is guaranteed to be inflated exactly once, regardless of how many objects reference it as a delta base. As a result, memory usage is proportional to the length of the longest delta chain. Subclasses can override _result to define the result type of the iterator. By default, results are UnpackedObjects with the following members set: * offset * obj_type_num * obj_chunks * pack_type_num * delta_base (for delta types) * comp_chunks (if _include_comp is True) * decomp_chunks * decomp_len * crc32 (if _compute_crc32 is True) """ _compute_crc32 = False _include_comp = False def __init__(self, file_obj, resolve_ext_ref=None): self._file = file_obj self._resolve_ext_ref = resolve_ext_ref self._pending_ofs = defaultdict(list) self._pending_ref = defaultdict(list) self._full_ofs = [] self._shas = {} self._ext_refs = [] @classmethod def for_pack_data(cls, pack_data, resolve_ext_ref=None): walker = cls(None, resolve_ext_ref=resolve_ext_ref) walker.set_pack_data(pack_data) for unpacked in pack_data._iter_unpacked(): walker.record(unpacked) return walker def record(self, unpacked): type_num = unpacked.pack_type_num offset = unpacked.offset if type_num == OFS_DELTA: base_offset = offset - unpacked.delta_base self._pending_ofs[base_offset].append(offset) elif type_num == REF_DELTA: self._pending_ref[unpacked.delta_base].append(offset) else: self._full_ofs.append((offset, type_num)) def set_pack_data(self, pack_data): self._file = pack_data._file def _walk_all_chains(self): for offset, type_num in self._full_ofs: for result in self._follow_chain(offset, type_num, None): yield result for result in self._walk_ref_chains(): yield result assert not self._pending_ofs def _ensure_no_pending(self): if self._pending_ref: raise KeyError([sha_to_hex(s) for s in self._pending_ref]) def _walk_ref_chains(self): if not self._resolve_ext_ref: self._ensure_no_pending() return for base_sha, pending in sorted(self._pending_ref.items()): if base_sha not in self._pending_ref: continue try: type_num, chunks = self._resolve_ext_ref(base_sha) except KeyError: # Not an external ref, but may depend on one. Either it will get # popped via a _follow_chain call, or we will raise an error # below. continue self._ext_refs.append(base_sha) self._pending_ref.pop(base_sha) for new_offset in pending: for result in self._follow_chain(new_offset, type_num, chunks): yield result self._ensure_no_pending() def _result(self, unpacked): return unpacked def _resolve_object(self, offset, obj_type_num, base_chunks): self._file.seek(offset) unpacked, _ = unpack_object( self._file.read, include_comp=self._include_comp, compute_crc32=self._compute_crc32) unpacked.offset = offset if base_chunks is None: assert unpacked.pack_type_num == obj_type_num else: assert unpacked.pack_type_num in DELTA_TYPES unpacked.obj_type_num = obj_type_num unpacked.obj_chunks = apply_delta(base_chunks, unpacked.decomp_chunks) return unpacked def _follow_chain(self, offset, obj_type_num, base_chunks): # Unlike PackData.get_object_at, there is no need to cache offsets as # this approach by design inflates each object exactly once. todo = [(offset, obj_type_num, base_chunks)] for offset, obj_type_num, base_chunks in todo: unpacked = self._resolve_object(offset, obj_type_num, base_chunks) yield self._result(unpacked) unblocked = chain(self._pending_ofs.pop(unpacked.offset, []), self._pending_ref.pop(unpacked.sha(), [])) todo.extend( (new_offset, unpacked.obj_type_num, unpacked.obj_chunks) for new_offset in unblocked) def __iter__(self): return self._walk_all_chains() def ext_refs(self): return self._ext_refs class PackIndexer(DeltaChainIterator): """Delta chain iterator that yields index entries.""" _compute_crc32 = True def _result(self, unpacked): return unpacked.sha(), unpacked.offset, unpacked.crc32 class PackInflater(DeltaChainIterator): """Delta chain iterator that yields ShaFile objects.""" def _result(self, unpacked): return unpacked.sha_file() class SHA1Reader(object): """Wrapper around a file-like object that remembers the SHA1 of its data.""" def __init__(self, f): self.f = f self.sha1 = sha1(b'') def read(self, num=None): data = self.f.read(num) self.sha1.update(data) return data def check_sha(self): stored = self.f.read(20) if stored != self.sha1.digest(): raise ChecksumMismatch(self.sha1.hexdigest(), sha_to_hex(stored)) def close(self): return self.f.close() def tell(self): return self.f.tell() class SHA1Writer(object): """Wrapper around a file-like object that remembers the SHA1 of its data.""" def __init__(self, f): self.f = f self.length = 0 self.sha1 = sha1(b'') def write(self, data): self.sha1.update(data) self.f.write(data) self.length += len(data) def write_sha(self): sha = self.sha1.digest() assert len(sha) == 20 self.f.write(sha) self.length += len(sha) return sha def close(self): sha = self.write_sha() self.f.close() return sha def offset(self): return self.length def tell(self): return self.f.tell() def pack_object_header(type_num, delta_base, size): """Create a pack object header for the given object info. :param type_num: Numeric type of the object. :param delta_base: Delta base offset or ref, or None for whole objects. :param size: Uncompressed object size. :return: A header for a packed object. """ header = [] c = (type_num << 4) | (size & 15) size >>= 4 while size: header.append(c | 0x80) c = size & 0x7f size >>= 7 header.append(c) if type_num == OFS_DELTA: ret = [delta_base & 0x7f] delta_base >>= 7 while delta_base: delta_base -= 1 ret.insert(0, 0x80 | (delta_base & 0x7f)) delta_base >>= 7 header.extend(ret) elif type_num == REF_DELTA: assert len(delta_base) == 20 header += delta_base return bytearray(header) def write_pack_object(f, type, object, sha=None): """Write pack object to a file. :param f: File to write to :param type: Numeric type of the object :param object: Object to write :return: Tuple with offset at which the object was written, and crc32 """ if type in DELTA_TYPES: delta_base, object = object else: delta_base = None header = bytes(pack_object_header(type, delta_base, len(object))) comp_data = zlib.compress(object) crc32 = 0 for data in (header, comp_data): f.write(data) if sha is not None: sha.update(data) crc32 = binascii.crc32(data, crc32) return crc32 & 0xffffffff def write_pack(filename, objects, deltify=None, delta_window_size=None): """Write a new pack data file. :param filename: Path to the new pack file (without .pack extension) :param objects: Iterable of (object, path) tuples to write. Should provide __len__ :param window_size: Delta window size :param deltify: Whether to deltify pack objects :return: Tuple with checksum of pack file and index file """ with GitFile(filename + '.pack', 'wb') as f: entries, data_sum = write_pack_objects(f, objects, delta_window_size=delta_window_size, deltify=deltify) entries = sorted([(k, v[0], v[1]) for (k, v) in entries.items()]) with GitFile(filename + '.idx', 'wb') as f: return data_sum, write_pack_index_v2(f, entries, data_sum) def write_pack_header(f, num_objects): """Write a pack header for the given number of objects.""" f.write(b'PACK') # Pack header f.write(struct.pack(b'>L', 2)) # Pack version f.write(struct.pack(b'>L', num_objects)) # Number of objects in pack def deltify_pack_objects(objects, window_size=None): """Generate deltas for pack objects. :param objects: An iterable of (object, path) tuples to deltify. :param window_size: Window size; None for default :return: Iterator over type_num, object id, delta_base, content delta_base is None for full text entries """ if window_size is None: window_size = DEFAULT_PACK_DELTA_WINDOW_SIZE # Build a list of objects ordered by the magic Linus heuristic # This helps us find good objects to diff against us magic = [] for obj, path in objects: magic.append((obj.type_num, path, -obj.raw_length(), obj)) magic.sort() possible_bases = deque() for type_num, path, neg_length, o in magic: raw = o.as_raw_string() winner = raw winner_base = None for base in possible_bases: if base.type_num != type_num: continue delta = create_delta(base.as_raw_string(), raw) if len(delta) < len(winner): winner_base = base.sha().digest() winner = delta yield type_num, o.sha().digest(), winner_base, winner possible_bases.appendleft(o) while len(possible_bases) > window_size: possible_bases.pop() def write_pack_objects(f, objects, delta_window_size=None, deltify=False): """Write a new pack data file. :param f: File to write to :param objects: Iterable of (object, path) tuples to write. Should provide __len__ :param window_size: Sliding window size for searching for deltas; Set to None for default window size. :param deltify: Whether to deltify objects :return: Dict mapping id -> (offset, crc32 checksum), pack checksum """ if deltify: pack_contents = deltify_pack_objects(objects, delta_window_size) else: pack_contents = ( (o.type_num, o.sha().digest(), None, o.as_raw_string()) for (o, path) in objects) return write_pack_data(f, len(objects), pack_contents) def write_pack_data(f, num_records, records): """Write a new pack data file. :param f: File to write to :param num_records: Number of records :param records: Iterator over type_num, object_id, delta_base, raw :return: Dict mapping id -> (offset, crc32 checksum), pack checksum """ # Write the pack entries = {} f = SHA1Writer(f) write_pack_header(f, num_records) for type_num, object_id, delta_base, raw in records: offset = f.offset() if delta_base is not None: try: base_offset, base_crc32 = entries[delta_base] except KeyError: type_num = REF_DELTA raw = (delta_base, raw) else: type_num = OFS_DELTA raw = (offset - base_offset, raw) crc32 = write_pack_object(f, type_num, raw) entries[object_id] = (offset, crc32) return entries, f.write_sha() def write_pack_index_v1(f, entries, pack_checksum): """Write a new pack index file. :param f: A file-like object to write to :param entries: List of tuples with object name (sha), offset_in_pack, and crc32_checksum. :param pack_checksum: Checksum of the pack file. :return: The SHA of the written index file """ f = SHA1Writer(f) fan_out_table = defaultdict(lambda: 0) for (name, offset, entry_checksum) in entries: fan_out_table[ord(name[:1])] += 1 # Fan-out table for i in range(0x100): f.write(struct.pack('>L', fan_out_table[i])) fan_out_table[i+1] += fan_out_table[i] for (name, offset, entry_checksum) in entries: if not (offset <= 0xffffffff): raise TypeError("pack format 1 only supports offsets < 2Gb") f.write(struct.pack('>L20s', offset, name)) assert len(pack_checksum) == 20 f.write(pack_checksum) return f.write_sha() def _delta_encode_size(size): ret = bytearray() c = size & 0x7f size >>= 7 while size: ret.append(c | 0x80) c = size & 0x7f size >>= 7 ret.append(c) return ret # The length of delta compression copy operations in version 2 packs is limited # to 64K. To copy more, we use several copy operations. Version 3 packs allow # 24-bit lengths in copy operations, but we always make version 2 packs. _MAX_COPY_LEN = 0xffff def _encode_copy_operation(start, length): scratch = [] op = 0x80 for i in range(4): if start & 0xff << i*8: scratch.append((start >> i*8) & 0xff) op |= 1 << i for i in range(2): if length & 0xff << i*8: scratch.append((length >> i*8) & 0xff) op |= 1 << (4+i) return bytearray([op] + scratch) def create_delta(base_buf, target_buf): """Use python difflib to work out how to transform base_buf to target_buf. :param base_buf: Base buffer :param target_buf: Target buffer """ assert isinstance(base_buf, bytes) assert isinstance(target_buf, bytes) out_buf = bytearray() # write delta header out_buf += _delta_encode_size(len(base_buf)) out_buf += _delta_encode_size(len(target_buf)) # write out delta opcodes seq = difflib.SequenceMatcher(a=base_buf, b=target_buf) for opcode, i1, i2, j1, j2 in seq.get_opcodes(): # Git patch opcodes don't care about deletes! #if opcode == 'replace' or opcode == 'delete': # pass if opcode == 'equal': # If they are equal, unpacker will use data from base_buf # Write out an opcode that says what range to use copy_start = i1 copy_len = i2 - i1 while copy_len > 0: to_copy = min(copy_len, _MAX_COPY_LEN) out_buf += _encode_copy_operation(copy_start, to_copy) copy_start += to_copy copy_len -= to_copy if opcode == 'replace' or opcode == 'insert': # If we are replacing a range or adding one, then we just # output it to the stream (prefixed by its size) s = j2 - j1 o = j1 while s > 127: out_buf.append(127) out_buf += bytearray(target_buf[o:o+127]) s -= 127 o += 127 out_buf.append(s) out_buf += bytearray(target_buf[o:o+s]) return bytes(out_buf) def apply_delta(src_buf, delta): """Based on the similar function in git's patch-delta.c. :param src_buf: Source buffer :param delta: Delta instructions """ if not isinstance(src_buf, bytes): src_buf = b''.join(src_buf) if not isinstance(delta, bytes): delta = b''.join(delta) out = [] index = 0 delta_length = len(delta) def get_delta_header_size(delta, index): size = 0 i = 0 while delta: cmd = ord(delta[index:index+1]) index += 1 size |= (cmd & ~0x80) << i i += 7 if not cmd & 0x80: break return size, index src_size, index = get_delta_header_size(delta, index) dest_size, index = get_delta_header_size(delta, index) assert src_size == len(src_buf), '%d vs %d' % (src_size, len(src_buf)) while index < delta_length: cmd = ord(delta[index:index+1]) index += 1 if cmd & 0x80: cp_off = 0 for i in range(4): if cmd & (1 << i): x = ord(delta[index:index+1]) index += 1 cp_off |= x << (i * 8) cp_size = 0 # Version 3 packs can contain copy sizes larger than 64K. for i in range(3): if cmd & (1 << (4+i)): x = ord(delta[index:index+1]) index += 1 cp_size |= x << (i * 8) if cp_size == 0: cp_size = 0x10000 if (cp_off + cp_size < cp_size or cp_off + cp_size > src_size or cp_size > dest_size): break out.append(src_buf[cp_off:cp_off+cp_size]) elif cmd != 0: out.append(delta[index:index+cmd]) index += cmd else: raise ApplyDeltaError('Invalid opcode 0') if index != delta_length: raise ApplyDeltaError('delta not empty: %r' % delta[index:]) if dest_size != chunks_length(out): raise ApplyDeltaError('dest size incorrect') return out def write_pack_index_v2(f, entries, pack_checksum): """Write a new pack index file. :param f: File-like object to write to :param entries: List of tuples with object name (sha), offset_in_pack, and crc32_checksum. :param pack_checksum: Checksum of the pack file. :return: The SHA of the index file written """ f = SHA1Writer(f) f.write(b'\377tOc') # Magic! f.write(struct.pack('>L', 2)) fan_out_table = defaultdict(lambda: 0) for (name, offset, entry_checksum) in entries: fan_out_table[ord(name[:1])] += 1 # Fan-out table largetable = [] for i in range(0x100): f.write(struct.pack(b'>L', fan_out_table[i])) fan_out_table[i+1] += fan_out_table[i] for (name, offset, entry_checksum) in entries: f.write(name) for (name, offset, entry_checksum) in entries: f.write(struct.pack(b'>L', entry_checksum)) for (name, offset, entry_checksum) in entries: if offset < 2**31: f.write(struct.pack(b'>L', offset)) else: f.write(struct.pack(b'>L', 2**31 + len(largetable))) largetable.append(offset) for offset in largetable: f.write(struct.pack(b'>Q', offset)) assert len(pack_checksum) == 20 f.write(pack_checksum) return f.write_sha() write_pack_index = write_pack_index_v2 class Pack(object): """A Git pack object.""" def __init__(self, basename, resolve_ext_ref=None): self._basename = basename self._data = None self._idx = None self._idx_path = self._basename + '.idx' self._data_path = self._basename + '.pack' self._data_load = lambda: PackData(self._data_path) self._idx_load = lambda: load_pack_index(self._idx_path) self.resolve_ext_ref = resolve_ext_ref @classmethod def from_lazy_objects(self, data_fn, idx_fn): """Create a new pack object from callables to load pack data and index objects.""" ret = Pack('') ret._data_load = data_fn ret._idx_load = idx_fn return ret @classmethod def from_objects(self, data, idx): """Create a new pack object from pack data and index objects.""" ret = Pack('') ret._data_load = lambda: data ret._idx_load = lambda: idx return ret def name(self): """The SHA over the SHAs of the objects in this pack.""" return self.index.objects_sha1() @property def data(self): """The pack data object being used.""" if self._data is None: self._data = self._data_load() self._data.pack = self self.check_length_and_checksum() return self._data @property def index(self): """The index being used. :note: This may be an in-memory index """ if self._idx is None: self._idx = self._idx_load() return self._idx def close(self): if self._data is not None: self._data.close() if self._idx is not None: self._idx.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def __eq__(self, other): return isinstance(self, type(other)) and self.index == other.index def __len__(self): """Number of entries in this pack.""" return len(self.index) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self._basename) def __iter__(self): """Iterate over all the sha1s of the objects in this pack.""" return iter(self.index) def check_length_and_checksum(self): """Sanity check the length and checksum of the pack index and data.""" assert len(self.index) == len(self.data) idx_stored_checksum = self.index.get_pack_checksum() data_stored_checksum = self.data.get_stored_checksum() if idx_stored_checksum != data_stored_checksum: raise ChecksumMismatch(sha_to_hex(idx_stored_checksum), sha_to_hex(data_stored_checksum)) def check(self): """Check the integrity of this pack. :raise ChecksumMismatch: if a checksum for the index or data is wrong """ self.index.check() self.data.check() for obj in self.iterobjects(): obj.check() # TODO: object connectivity checks def get_stored_checksum(self): return self.data.get_stored_checksum() def __contains__(self, sha1): """Check whether this pack contains a particular SHA1.""" try: self.index.object_index(sha1) return True except KeyError: return False def get_raw(self, sha1): offset = self.index.object_index(sha1) obj_type, obj = self.data.get_object_at(offset) type_num, chunks = self.data.resolve_object(offset, obj_type, obj) return type_num, b''.join(chunks) def __getitem__(self, sha1): """Retrieve the specified SHA1.""" type, uncomp = self.get_raw(sha1) return ShaFile.from_raw_string(type, uncomp, sha=sha1) def iterobjects(self): """Iterate over the objects in this pack.""" return iter(PackInflater.for_pack_data( self.data, resolve_ext_ref=self.resolve_ext_ref)) def pack_tuples(self): """Provide an iterable for use with write_pack_objects. :return: Object that can iterate over (object, path) tuples and provides __len__ """ class PackTupleIterable(object): def __init__(self, pack): self.pack = pack def __len__(self): return len(self.pack) def __iter__(self): return ((o, None) for o in self.pack.iterobjects()) return PackTupleIterable(self) def keep(self, msg=None): """Add a .keep file for the pack, preventing git from garbage collecting it. :param msg: A message written inside the .keep file; can be used later to determine whether or not a .keep file is obsolete. :return: The path of the .keep file, as a string. """ keepfile_name = '%s.keep' % self._basename with GitFile(keepfile_name, 'wb') as keepfile: if msg: keepfile.write(msg) keepfile.write(b'\n') return keepfile_name try: from dulwich._pack import apply_delta, bisect_find_sha except ImportError: pass
4808cbaedeec5b5afd0caf7172bca3b9c3bb2900
557ca4eae50206ecb8b19639cab249cb2d376f30
/Chapter04/spiral.py
b642ee9c1d01400018b8cff8264cad308b034929
[]
no_license
philipdongfei/Think-python-2nd
781846f455155245e7e82900ea002f1cf490c43f
56e2355b8d5b34ffcee61b38fbfd200fd6d4ffaf
refs/heads/master
2021-01-09T19:57:49.658680
2020-03-13T06:32:11
2020-03-13T06:32:11
242,441,512
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
import turtle def draw_spiral(t, n, length=3, a=0.1, b=0.0002): theta = 0.0 for i in range(n): t.fd(length) dtheta = 1 / (a + b * theta) t.lt(dtheta) theta += dtheta def main(): bob = turtle.Turtle() draw_spiral(bob, n=1000) turtle.mainloop() if __name__ == "__main__": main()
f94dc3e35df3d080642dc8f8fd2a3ffb9b4675a5
0d2c2ffe431b159a87bcd78c97147422dce8d778
/GUI学习/01PyQt5快速开发与实战/ch05高级界面控件/11timer2.py
c00045f390bd96d04ec0f63ccf8a09b77033800c
[]
no_license
YuanXianguo/Python-Project-ITC
9e297fc1e1e8ec2b136e6e8b1db0afaaba81c16c
afd14cbe501147ec66b4aa0c1c7907b3ae41d148
refs/heads/master
2020-04-16T13:54:33.727825
2019-12-20T02:16:52
2019-12-20T02:16:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
508
py
import sys from PyQt5.QtWidgets import QApplication, QLabel from PyQt5.QtCore import Qt, QTimer def test(): print(1) if __name__ == '__main__': app = QApplication(sys.argv) label = QLabel('<font color=red size=128><b>' 'Hello PyQt,窗口会在3秒后消失!</b></font>') # 无边框窗口 label.setWindowFlags(Qt.SplashScreen | Qt.FramelessWindowHint) label.show() # 设置10秒后自动退出 QTimer.singleShot(3000, test) sys.exit(app.exec_())
a11c216ccd83de27c2498fc31e7adcb24de5c462
69f83bcff8a2bd9c8ef082a2141a39a5322c4b2a
/pyenv/env/lib/python2.7/site-packages/transport/tester.py
a0c92e0c385d219b834498f737ba0f7ed0dcd5a7
[]
no_license
md848-cornell/NRF-ROKIX-sensor-mesh
ab12f6572a992ed5c468eb08b8c4586b52b411b2
b244207af0fb0fce6e2722c384d3c6c25d5ac025
refs/heads/master
2020-05-21T10:56:15.013174
2019-05-16T16:12:11
2019-05-16T16:12:11
186,021,295
0
1
null
2020-03-07T21:39:41
2019-05-10T16:35:25
C
UTF-8
Python
false
false
679
py
""" Copyright (c) 2017 Nordic Semiconductor ASA CoAP transport class for tests. """ from transport.base import TransportBase from ipaddress import ip_address class TesterTransport(TransportBase): def __init__(self, port=None): TransportBase.__init__(self, port) self.tester_opened = False self.tester_data = None self.tester_remote = None self.output_count = 0 def open(self): self.tester_opened = True def close(self): self.tester_opened = False def send(self, data, dest): self.tester_data = data self.tester_remote = dest self.output_count += 1
[ "Mike DiDomenico" ]
Mike DiDomenico
6f08a86ea414a778c093cdd193e66adf1fa27fb9
6219e6536774e8eeb4cadc4a84f6f2bea376c1b0
/scraper/storage_spiders/kuchevn.py
a9cc915cd7f15c2358aed743c2373312c26e7f93
[ "MIT" ]
permissive
nguyenminhthai/choinho
109d354b410b92784a9737f020894d073bea1534
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
refs/heads/master
2023-05-07T16:51:46.667755
2019-10-22T07:53:41
2019-10-22T07:53:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='page_title']/h1", 'price' : "//meta[@property='og:price:amount']/@content", 'category' : "", 'description' : "//div[@class='tab-container']/div[@class='pd_description_content tab-content clearfix ui-tabs-panel ui-widget-content ui-corner-bottom']", 'images' : "//meta[@property='og:image'][1]/@content", 'canonical' : "//link[@rel='canonical']/@href", 'base_url' : "", 'brand' : "", 'in_stock' : "", 'guarantee' : "", 'promotion' : "" } name = 'kuche.vn' allowed_domains = ['kuche.vn'] start_urls = ['http://kuche.vn/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [''] rules = [ #Rule(LinkExtractor(), 'parse_item'), #Rule(LinkExtractor(), 'parse'), Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+($|\?page=\d+$)']), 'parse_item_and_links'), ]
c0fc94a656f1cee1a7c8ee20e88f8085721c9112
c67f449dc7187f154df7093a95ddcc14a3f0a18f
/youngseokcoin/test/functional/net.py
a4a15da130025b87c9678b54942f92c910989ea7
[ "MIT" ]
permissive
youngseokaaa-presentation/A_system_to_ensure_the_integrity_of_Internet_of_things_by_using_Blockchain
cee9ba19e9d029759fc2fe4a43235c56fd9abe43
b2a47bc63386b5a115fc3ce62997034ebd8d4a1e
refs/heads/master
2023-02-17T07:58:43.043470
2021-01-11T05:40:28
2021-01-11T05:40:28
295,317,246
0
0
null
null
null
null
UTF-8
Python
false
false
4,225
py
#!/usr/bin/env python3 # Copyright (c) 2017 The Youngseokcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test RPC calls related to net. Tests correspond to code in rpc/net.cpp. """ import time from test_framework.test_framework import YoungseokcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, connect_nodes_bi, p2p_port, ) class NetTest(YoungseokcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def run_test(self): self._test_connection_count() self._test_getnettotals() self._test_getnetworkinginfo() self._test_getaddednodeinfo() self._test_getpeerinfo() def _test_connection_count(self): # connect_nodes_bi connects each node to the other assert_equal(self.nodes[0].getconnectioncount(), 2) def _test_getnettotals(self): # check that getnettotals totalbytesrecv and totalbytessent # are consistent with getpeerinfo peer_info = self.nodes[0].getpeerinfo() assert_equal(len(peer_info), 2) net_totals = self.nodes[0].getnettotals() assert_equal(sum([peer['bytesrecv'] for peer in peer_info]), net_totals['totalbytesrecv']) assert_equal(sum([peer['bytessent'] for peer in peer_info]), net_totals['totalbytessent']) # test getnettotals and getpeerinfo by doing a ping # the bytes sent/received should change # note ping and pong are 32 bytes each self.nodes[0].ping() time.sleep(0.1) peer_info_after_ping = self.nodes[0].getpeerinfo() net_totals_after_ping = self.nodes[0].getnettotals() for before, after in zip(peer_info, peer_info_after_ping): assert_equal(before['bytesrecv_per_msg']['pong'] + 32, after['bytesrecv_per_msg']['pong']) assert_equal(before['bytessent_per_msg']['ping'] + 32, after['bytessent_per_msg']['ping']) assert_equal(net_totals['totalbytesrecv'] + 32*2, net_totals_after_ping['totalbytesrecv']) assert_equal(net_totals['totalbytessent'] + 32*2, net_totals_after_ping['totalbytessent']) def _test_getnetworkinginfo(self): assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) self.nodes[0].setnetworkactive(False) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], False) timeout = 3 while self.nodes[0].getnetworkinfo()['connections'] != 0: # Wait a bit for all sockets to close assert timeout > 0, 'not all connections closed in time' timeout -= 0.1 time.sleep(0.1) self.nodes[0].setnetworkactive(True) connect_nodes_bi(self.nodes, 0, 1) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) def _test_getaddednodeinfo(self): assert_equal(self.nodes[0].getaddednodeinfo(), []) # add a node (node2) to node0 ip_port = "127.0.0.1:{}".format(p2p_port(2)) self.nodes[0].addnode(ip_port, 'add') # check that the node has indeed been added added_nodes = self.nodes[0].getaddednodeinfo(ip_port) assert_equal(len(added_nodes), 1) assert_equal(added_nodes[0]['addednode'], ip_port) # check that a non-existant node returns an error assert_raises_rpc_error(-24, "Node has not been added", self.nodes[0].getaddednodeinfo, '1.1.1.1') def _test_getpeerinfo(self): peer_info = [x.getpeerinfo() for x in self.nodes] # check both sides of bidirectional connection between nodes # the address bound to on one side will be the source address for the other node assert_equal(peer_info[0][0]['addrbind'], peer_info[1][0]['addr']) assert_equal(peer_info[1][0]['addrbind'], peer_info[0][0]['addr']) if __name__ == '__main__': NetTest().main()
84c6051cd1c083c73006b2058485e017d4f6a001
4d259f441632f5c45b94e8d816fc31a4f022af3c
/eventlet/prod_worker.py
51d9d239ff441f414a29933caf1e28379ec9f8d3
[]
no_license
xiaoruiguo/lab
c37224fd4eb604aa2b39fe18ba64e93b7159a1eb
ec99f51b498244c414b025d7dae91fdad2f8ef46
refs/heads/master
2020-05-25T01:37:42.070770
2016-05-16T23:24:26
2016-05-16T23:24:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
from eventlet.queue import Queue import eventlet q = Queue() def worker(): while True: q.get() a = 0 for i in xrange(1000000): a = a + 1 print 'get' def producer(): while True: a = 0 for i in xrange(1000000): a = a + 1 q.put('lol') print 'put' eventlet.spawn(worker) eventlet.spawn(producer) eventlet.sleep(30)
29ff7530a12d24ef2ff8f6e0744b6cf91faba8cf
a5b09349bb10685621788f815acfcef23e93b540
/tests/test_set_item.py
6e7fa7390740d64e413f0be77568016de3a82fe9
[]
no_license
yishuihanhan/slimurl
05d95edf3b83a118bc22a4fda4f0e8ca9d4662f7
d6ee69b0c825dcc4129bb265bd97e61218b73ccc
refs/heads/master
2020-04-02T08:34:55.228207
2017-01-10T10:09:50
2017-01-10T10:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
#!/usr/bin/env python # encoding: utf-8 from slimurl import URL def check_set(url, args, result): key, value = args url[key] = value assert url == result def test_set(): cases = [ ["http://example.net/", ('foo', 'bar'), "http://example.net/?foo=bar"], ["http://example.net/", ('foo', (0, 1)), "http://example.net/?foo=0&foo=1"], ["http://example.net/", ('foo', ("0", "1")), "http://example.net/?foo=0&foo=1"], ["http://example.net/", ('foo', (0, "1")), "http://example.net/?foo=0&foo=1"], ] for url, args, result in cases: yield check_set, URL(url), args, URL(result)
75dbe56cf58aa518de51464a64dfaa8d7f95feea
9e929843f73b099456bab9df1b08971288e3b839
/tests/integration_tests/vectors_tests/test_lower_than_or_equals.py
bedb21d4a788496d3c2bbb9138f82d33ab29733b
[ "MIT" ]
permissive
lycantropos/cppstd
fd20a37c46bd730d15b6e5c34e795f39907fad75
2a44dad540a8cc36e7fac8805cf2f5402be34aee
refs/heads/master
2023-01-11T01:13:25.821513
2020-11-12T23:19:40
2020-11-12T23:19:40
302,339,499
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
from hypothesis import given from tests.utils import (BoundPortedVectorsPair, equivalence) from . import strategies @given(strategies.vectors_pairs, strategies.vectors_pairs) def test_basic(first_pair: BoundPortedVectorsPair, second_pair: BoundPortedVectorsPair) -> None: first_bound, first_ported = first_pair second_bound, second_ported = second_pair assert equivalence(first_bound <= second_bound, first_ported <= second_ported)
1c1917ab1339c7cbb623080afbb9a8125b03933c
7c25e479b21b1e3e69a6be140f6511a892901182
/python_practice/middle_linked_list.py
5379e1fe8bdae8d8f5d08bb398c0fd1504ec458c
[]
no_license
ahrav/Python-Django
6be3e3b5a39a6eabcf2b97b071232f8b85de64d3
8a2a3f706aab557b872f27e780bd7e4ebd274f72
refs/heads/master
2022-09-09T01:29:31.391833
2019-05-23T03:34:15
2019-05-23T03:34:15
181,137,783
0
0
null
2022-08-23T00:22:08
2019-04-13T07:40:44
Python
UTF-8
Python
false
false
670
py
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node def printMiddle(self): slow_ptr = self.head fast_ptr = self.head if self.head is not None: while (fast_ptr is not None and fast_ptr.next is not None): fast_ptr = fast_ptr.next.next slow_ptr = slow_ptr.next return slow_ptr.data
4b30d61e07bfa3a4839fcb6fe9d0d2e52479a80d
401f783a202949adbf144b5780bcd87a6daf2299
/code/python/Day-69/SnakeGame.py
c61b7e9c28275ea314027b26a33f30786ac67215
[]
no_license
TalatWaheed/100-days-code
1934c8113e6e7be86ca86ea66c518d2f2cedf82a
b8fd92d4ddb6adc4089d38ac7ccd2184f9c47919
refs/heads/master
2021-07-04T14:28:45.363798
2019-03-05T13:49:55
2019-03-05T13:49:55
140,101,486
0
1
null
null
null
null
UTF-8
Python
false
false
2,380
py
# SNAKES GAME # Use ARROW KEYS to play, SPACE BAR for pausing/resuming and Esc Key for exiting import curses from curses import KEY_RIGHT, KEY_LEFT, KEY_UP, KEY_DOWN from random import randint curses.initscr() win = curses.newwin(20, 60, 0, 0) win.keypad(1) curses.noecho() curses.curs_set(0) win.border(0) win.nodelay(1) key = KEY_RIGHT score = 0 snake = [[4,10], [4,9], [4,8]] food = [10,20] win.addch(food[0], food[1], '*') while key != 27: win.border(0) win.addstr(0, 2, 'Score : ' + str(score) + ' ') win.addstr(0, 27, ' SNAKE ') win.timeout(150 - (len(snake)/5 + len(snake)/10)%120) prevKey = key event = win.getch() key = key if event == -1 else event if key == ord(' '): key = -1 while key != ord(' '): key = win.getch() key = prevKey continue if key not in [KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN, 27]: key = prevKey snake.insert(0, [snake[0][0] + (key == KEY_DOWN and 1) + (key == KEY_UP and -1), snake[0][1] + (key == KEY_LEFT and -1) + (key == KEY_RIGHT and 1)]) if snake[0][0] == 0: snake[0][0] = 18 if snake[0][1] == 0: snake[0][1] = 58 if snake[0][0] == 19: snake[0][0] = 1 if snake[0][1] == 59: snake[0][1] = 1 # Exit if snake crosses the boundaries (Uncomment to enable) #if snake[0][0] == 0 or snake[0][0] == 19 or snake[0][1] == 0 or snake[0][1] == 59: break if snake[0] in snake[1:]: break if snake[0] == food: food = [] score += 1 while food == []: food = [randint(1, 18), randint(1, 58)] if food in snake: food = [] win.addch(food[0], food[1], '*') else: last = snake.pop() win.addch(last[0], last[1], ' ') win.addch(snake[0][0], snake[0][1], '#') curses.endwin() print("\nScore - " + str(score)) print("http://bitemelater.in\n")
a41d7737fdb64767088b4153d8994a0422a6044c
ca2dbcfeac6ab571a19bd7d91b7234fd461d09e3
/contact/settings.py
f6b23ebea5443fb592009997c1e7ce9e73093d67
[]
no_license
RahulSinghDhek/test-contact
51ebcc85e32a3d4fc86cb978824337b444f077be
ff14bb369e4caae6cd4db95388f7c87bf65c3227
refs/heads/master
2020-04-20T02:18:27.516767
2019-01-31T17:44:41
2019-01-31T17:44:41
168,568,336
0
0
null
null
null
null
UTF-8
Python
false
false
4,655
py
""" Django settings for contact project. Generated by 'django-admin startproject' using Django 2.1.4. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+mg_ysn-@n6l*ltqbi59wn(b(9pt32ugy_l!ztko^ux0nl80@k' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1','https://contactlistdhek.herokuapp.com/'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'phonebook', 'rest_framework.authtoken' ] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', ], 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 10 } MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'contact.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'contact.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'test', # Or path to database file if using sqlite3. 'USER': 'postgres', # Not used with sqlite3. 'PASSWORD': '1234', # Not used with sqlite3. 'HOST': 'localhost', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '5432', # Set to empty string for default. Not used with sqlite3. } # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ # https://docs.djangoproject.com/en/1.11/howto/static-files/ PROJECT_ROOT = os.path.join(os.path.abspath(__file__)) STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATIC_URL = '/static/' # Extra lookup directories for collectstatic to find static files STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) # Add configuration for static files storage using whitenoise STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' import dj_database_url prod_db = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(prod_db)
df0300b9ae066ae31618798f45525e2480426413
7a1b08c64b29522d4bbb913475275c1bc8ad61a4
/patient_agenda/events/doc_events/conver_value.py
afcdc7008de591882958f1eb59c25de32cecb141
[ "MIT" ]
permissive
erichilarysmithsr/time-track
8f84d4cc92cebaedce550b3741982d204e734a6c
dc0a7b63c937d561309f9b1c84af65fb581a8e18
refs/heads/master
2023-03-27T08:07:46.717221
2021-03-30T16:45:50
2021-03-30T16:45:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,695
py
#!/usr/bin/python3 # -*- coding:utf-8 -*- import os import json import subprocess try: with open('./patient_agenda/events/doc_events/patient_rdv.json') as file: data=json.load(file) except FileNotFoundError as fileout: print("File 1 patient_rdv.json not created", fileout) for value in data: print(value) data_list1 = [] for value in data: data_list1.append(value[1]) data_day = data_list1[0] data_month = data_list1[1] data_year = data_list1[2] try: if data_day < 10: extraday = '0' +''+ str(data_day) elif data_day >= 10: extraday = str(data_day) else: pass except ValueError as valout: print("Value of day is a problem", valout) try: if data_month < 10: extramounth = '0' +''+ str(data_month) elif data_month >= 10: extramounth = str(data_month) else: pass except ValueError as valout: print("Value of mounth is a problem", valout) # initword = "Appointment set for :" # initword +' '+ final_data = extraday +'/'+ extramounth +'/'+ str(data_year) +' :' print(final_data) try: if os.path.getsize('./patient_agenda/events/doc_events/fix_agenda/patient_value.json'): print("+ File 'value' exist !") with open('./patient_agenda/events/doc_events/fix_agenda/patient_value.json','w') as partytime: json.dump(final_data, partytime) except FileNotFoundError as msg: print("File doesn't exist, but it has been created !") with open('./patient_agenda/events/doc_events/fix_agenda/patient_value.json','w') as partyleft: json.dump(final_data, partyleft) subprocess.call('./patient_agenda/events/doc_events/fix_agenda/extend_agenda.py')
0048953dec39f492a91c8bdde7a9ddaca57537a1
5d4753b7e463827c9540e982108de22f62435c3f
/python/tink/daead/_deterministic_aead_wrapper_test.py
b59d11dca3c7331a23581b856195197dfeb49b72
[ "Apache-2.0" ]
permissive
thaidn/tink
8c9b65e3f3914eb54d70847c9f56853afd051dd3
2a75c1c3e4ef6aa1b6e29700bf5946b725276c95
refs/heads/master
2021-07-25T02:02:59.839232
2021-02-10T17:21:31
2021-02-10T17:22:01
337,815,957
2
0
Apache-2.0
2021-02-10T18:28:20
2021-02-10T18:28:20
null
UTF-8
Python
false
false
6,074
py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tink.python.tink.aead_wrapper.""" from __future__ import absolute_import from __future__ import division # Placeholder for import for type annotations from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import tink from tink import daead from tink.testing import keyset_builder DAEAD_TEMPLATE = daead.deterministic_aead_key_templates.AES256_SIV RAW_DAEAD_TEMPLATE = keyset_builder.raw_template(DAEAD_TEMPLATE) def setUpModule(): daead.register() class AeadWrapperTest(parameterized.TestCase): @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_encrypt_decrypt(self, template): keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) ciphertext = primitive.encrypt_deterministically( b'plaintext', b'associated_data') self.assertEqual( primitive.decrypt_deterministically(ciphertext, b'associated_data'), b'plaintext') @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_decrypt_unknown_ciphertext_fails(self, template): unknown_handle = tink.new_keyset_handle(template) unknown_primitive = unknown_handle.primitive(daead.DeterministicAead) unknown_ciphertext = unknown_primitive.encrypt_deterministically( b'plaintext', b'associated_data') keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) with self.assertRaises(tink.TinkError): primitive.decrypt_deterministically(unknown_ciphertext, b'associated_data') @parameterized.parameters([DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE]) def test_decrypt_wrong_associated_data_fails(self, template): keyset_handle = tink.new_keyset_handle(template) primitive = keyset_handle.primitive(daead.DeterministicAead) ciphertext = primitive.encrypt_deterministically(b'plaintext', b'associated_data') with self.assertRaises(tink.TinkError): primitive.decrypt_deterministically(ciphertext, b'wrong_associated_data') @parameterized.parameters([(DAEAD_TEMPLATE, DAEAD_TEMPLATE), (RAW_DAEAD_TEMPLATE, DAEAD_TEMPLATE), (DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE), (RAW_DAEAD_TEMPLATE, RAW_DAEAD_TEMPLATE)]) def test_encrypt_decrypt_with_key_rotation(self, template1, template2): builder = keyset_builder.new_keyset_builder() older_key_id = builder.add_new_key(template1) builder.set_primary_key(older_key_id) p1 = builder.keyset_handle().primitive(daead.DeterministicAead) newer_key_id = builder.add_new_key(template2) p2 = builder.keyset_handle().primitive(daead.DeterministicAead) builder.set_primary_key(newer_key_id) p3 = builder.keyset_handle().primitive(daead.DeterministicAead) builder.disable_key(older_key_id) p4 = builder.keyset_handle().primitive(daead.DeterministicAead) self.assertNotEqual(older_key_id, newer_key_id) # p1 encrypts with the older key. So p1, p2 and p3 can decrypt it, # but not p4. ciphertext1 = p1.encrypt_deterministically(b'plaintext', b'ad') self.assertEqual(p1.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') self.assertEqual(p2.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext1, b'ad'), b'plaintext') with self.assertRaises(tink.TinkError): _ = p4.decrypt_deterministically(ciphertext1, b'ad') # p2 encrypts with the older key. So p1, p2 and p3 can decrypt it, # but not p4. ciphertext2 = p2.encrypt_deterministically(b'plaintext', b'ad') self.assertEqual(p1.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') self.assertEqual(p2.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext2, b'ad'), b'plaintext') with self.assertRaises(tink.TinkError): _ = p4.decrypt_deterministically(ciphertext2, b'ad') # p3 encrypts with the newer key. So p2, p3 and p4 can decrypt it, # but not p1. ciphertext3 = p3.encrypt_deterministically(b'plaintext', b'ad') with self.assertRaises(tink.TinkError): _ = p1.decrypt_deterministically(ciphertext3, b'ad') self.assertEqual(p2.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') self.assertEqual(p4.decrypt_deterministically(ciphertext3, b'ad'), b'plaintext') # p4 encrypts with the newer key. So p2, p3 and p4 can decrypt it, # but not p1. ciphertext4 = p4.encrypt_deterministically(b'plaintext', b'ad') with self.assertRaises(tink.TinkError): _ = p1.decrypt_deterministically(ciphertext4, b'ad') self.assertEqual(p2.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') self.assertEqual(p3.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') self.assertEqual(p4.decrypt_deterministically(ciphertext4, b'ad'), b'plaintext') if __name__ == '__main__': absltest.main()
f487b32d187d8c46617f40bfa556df73ae0f4374
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-iotanalytics/huaweicloudsdkiotanalytics/v1/model/list_batch_jobs_response.py
c820f1d45d59dffa07e947b9b3b4e80b79e3084e
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,929
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListBatchJobsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'count': 'int', 'jobs': 'list[Job]' } attribute_map = { 'count': 'count', 'jobs': 'jobs' } def __init__(self, count=None, jobs=None): """ListBatchJobsResponse The model defined in huaweicloud sdk :param count: 定时作业总个数。 :type count: int :param jobs: :type jobs: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ super(ListBatchJobsResponse, self).__init__() self._count = None self._jobs = None self.discriminator = None if count is not None: self.count = count if jobs is not None: self.jobs = jobs @property def count(self): """Gets the count of this ListBatchJobsResponse. 定时作业总个数。 :return: The count of this ListBatchJobsResponse. :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this ListBatchJobsResponse. 定时作业总个数。 :param count: The count of this ListBatchJobsResponse. :type count: int """ self._count = count @property def jobs(self): """Gets the jobs of this ListBatchJobsResponse. :return: The jobs of this ListBatchJobsResponse. :rtype: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ return self._jobs @jobs.setter def jobs(self, jobs): """Sets the jobs of this ListBatchJobsResponse. :param jobs: The jobs of this ListBatchJobsResponse. :type jobs: list[:class:`huaweicloudsdkiotanalytics.v1.Job`] """ self._jobs = jobs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListBatchJobsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30ca95084a650818ad76ed5e625a46506e6e8e39
60e27c8b1755c741dfd069393e8b65766a9647ae
/07_Natural_Language_Processing/C0702_bag_of_words.py
fb7af5b042f0820d93e1aaa9984960d0ba24a209
[ "MIT" ]
permissive
xiejinwen113/tensorflow_cookbook
d0426991be2369d6480728c2af7a4dc93eccf621
57d7ee719385ddd249a67c3a85bd336e884a67e5
refs/heads/master
2022-03-24T08:30:43.089441
2019-12-09T09:55:39
2019-12-09T09:55:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,784
py
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : [email protected] @site : https://github.com/zhuyuanxiang/tensorflow_cookbook --------------------------- @Software : PyCharm @Project : TensorFlow_Machine_Learning_Cookbook @File : C0702_bag_of_words.py @Version : v0.1 @Time : 2019-11-07 17:11 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《TensorFlow机器学习实战指南,Nick McClure》, Sec0702,P144 @Desc : 自然语言处理,使用 TensorFlow 实现“词袋” @理解: 1. 这个模型是个错误的模型,因为数据集本身就是87%的正常短信,那么只要判断为正常短信就有87%的准确率。 而模型的准确率还不到87%,说明正确理解数据集是非常重要的。 2. 跟踪sess.run(x_col_sums,feed_dict = {x_data: t}),也会发现训练的嵌入矩阵的结果就是UNKNOWN单词和'to'单词过多的短信就是垃圾短信, 这个也是因为数据集中数据偏离造成的,根本原因还是模型与数据不匹配。 """ # common imports import os import string import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import sklearn import tensorflow as tf import winsound from tensorflow.contrib import learn from tensorflow.python.framework import ops # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 8, suppress = True, threshold = np.inf, linewidth = 200) # 利用随机种子,保证随机数据的稳定性,使得每次随机测试的结果一样 seed = 42 np.random.seed(seed) tf.set_random_seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required assert sklearn.__version__ >= "0.20" # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 初始化默认的计算图 ops.reset_default_graph() # Open graph session sess = tf.Session() # ---------------------------------------------------------------------- print("载入数据。。。") # 下载的文件直接读出,没有下载的文件就下载后读出 data_file_name = "../Data/SMS_SPam/SMSSpamCollection" with open(data_file_name, encoding = 'utf-8') as temp_output_file: text_data = temp_output_file.read() pass pass # Format Data text_data = text_data.encode('ascii', errors = 'ignore') text_data = text_data.decode().split('\n') text_data = [x.split('\t') for x in text_data if len(x) >= 1] texts = [x[1] for x in text_data] target = [x[0] for x in text_data] # 将标签整数化, 'spam' 表示垃圾短信,设置为1, 'ham' 表示正常短信,设置为0 target = [1 if x == 'spam' else 0 for x in target] # 文本标准化 texts = [x.lower() for x in texts] # 文本字母小写 texts = [''.join(c for c in x if c not in string.punctuation) for x in texts] # 移除标点符号 texts = [''.join(c for c in x if c not in '0123456789') for x in texts] # 移除数字 texts = [' '.join(x.split()) for x in texts] # 移除多余的空格 # 统计文本中不同长度的单词的数目,最大单词长度不超过50个字母 text_lengths = [len(x.split()) for x in texts] text_lengths = [x for x in text_lengths if x < 50] plt.hist(text_lengths, bins = 25) plt.title("图7-1:文本数据中的单词长度的直方图") sentence_size = 25 # 每个句子的单词个数最多不超过25个,不足25个用0填充,超过25个的从后往前截断 min_word_freq = 3 # 单词出现的频率不低于3次,如果某个单词只在某几条短信中出现,那么就不选入字典 # TensorFlow 自带的分词器 VocabularyProcessor() vocab_processor = learn.preprocessing.VocabularyProcessor(sentence_size, min_frequency = min_word_freq) # Have to fit transform to get length of unique words. vocab_processor.fit_transform(texts) # 使用文本数据进行训练并且变换为字典 embedding_size = len(vocab_processor.vocabulary_) # 取字典大小为嵌入层的大小 # 将文本数据切分为训练数据集(80%)和测试数据集(20%) train_indices = np.random.choice(len(texts), int(round(len(texts) * 0.8)), replace = False) test_indices = np.array(list(set(range(len(texts))) - set(train_indices))) texts_train = [x for ix, x in enumerate(texts) if ix in train_indices] texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # 设置单位矩阵用于 One-Hot 编码 identity_mat = tf.diag(tf.ones(shape = [embedding_size])) # 为 logistic regression 创建变量 A = tf.Variable(tf.random_normal(shape = [embedding_size, 1])) b = tf.Variable(tf.random_normal(shape = [1, 1])) # 初始化占位符 x_data = tf.placeholder(shape = [sentence_size], dtype = tf.int32) y_target = tf.placeholder(shape = [1, 1], dtype = tf.float32) # 搜索 Text-Vocab Embedding 权重,单位矩阵用于映射句子中的单词的 One-Hot 向量 x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # ToDo:为什么要按列求和? # 模型的输出 x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = x_col_sums_2D @ A + b # 交叉熵损失函数 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y_target, logits = model_output)) # Prediction operation prediction = tf.sigmoid(model_output) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.001) train_step = my_opt.minimize(loss) # Intitialize Variables init = tf.global_variables_initializer() sess.run(init) # Start Logistic Regression print('基于训练集中{}个句子开始训练。。。'.format(len(texts_train))) loss_vec, train_acc_all, train_acc_avg = [], [], [] for ix, t in enumerate(vocab_processor.transform(texts_train)): # 只转换不训练,不应该再次训练 y_data = [[target_train[ix]]] sess.run(train_step, feed_dict = {x_data: t, y_target: y_data}) temp_loss = sess.run(loss, feed_dict = {x_data: t, y_target: y_data}) loss_vec.append(temp_loss) if ix % 100 == 0: print('训练集迭代次数: #' + str(ix + 1) + ': Loss = ' + str(temp_loss)) pass [[temp_pred]] = sess.run(prediction, feed_dict = {x_data: t, y_target: y_data}) # 获得预测结果 train_acc_temp = target_train[ix] == np.round(temp_pred) train_acc_all.append(train_acc_temp) if len(train_acc_all) >= 50: # 跟踪最后50个训练精度的平均值 train_acc_avg.append(np.mean(train_acc_all[-50:])) pass pass # 获取测试集的评估精度 print('基于测试集中{}个句子开始评估。。。'.format(len(texts_test))) test_acc_all = [] for ix, t in enumerate(vocab_processor.transform(texts_test)): y_data = [[target_test[ix]]] if ix % 50 == 0: print("测试集迭代次数 #", ix + 1) pass [[temp_pred]] = sess.run(prediction, feed_dict = {x_data: t, y_target: y_data}) test_acc_temp = target_test[ix] == np.round(temp_pred) test_acc_all.append(test_acc_temp) pass print("\n测试集精度: {}".format(np.mean(test_acc_all))) # Plot training accuracy over time plt.figure() plt.plot(range(len(train_acc_avg)), train_acc_avg, 'b-', label = "训练集精度") plt.title("统计最后50个训练集数据的平均训练集精度") plt.xlabel('迭代次数') plt.ylabel("训练集精度") # ----------------------------------------------------------------- # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
718e3a5fc92037cb1b160a8aa5414d824609ab9d
c3082eb2adc43b311dd3c9ff16fd3ed9df85f266
/python/examples/functional/filter.py
9c0234468fbdee92b7c2a3dfc2206ea06281c324
[]
no_license
szabgab/slides
78818c7138331b3ba9e221c81da3678a46efe9b3
63bba06678554db737602f2fbcd6510c36037e8a
refs/heads/main
2023-08-31T07:13:51.536711
2023-08-29T13:17:59
2023-08-29T13:17:59
122,212,527
87
69
null
2023-05-19T06:55:11
2018-02-20T14:57:03
Python
UTF-8
Python
false
false
122
py
numbers = [1, 3, 27, 10, 38] big_numbers = filter(lambda n: n > 10, numbers) print(big_numbers) print(list(big_numbers))
d1e21770e28bf318bb9670ca416bde39191d4f7d
6e0108c11132e63c81adbfab4309011b1f9f6dda
/tests/python/extra/clear_leaves.py
4d2f1e3a58a3fcb2fd07655efd2646b28d0a5f5f
[ "Apache-2.0" ]
permissive
scottdonaldau/ledger-qrl
c28a614ae52c44e53947e444abf078ec27041815
7a3b933b84065b9db2b775d50205efcdbed2399e
refs/heads/master
2020-04-12T07:12:25.687015
2018-12-19T02:55:43
2018-12-19T02:55:43
162,360,262
0
0
Apache-2.0
2018-12-19T00:15:27
2018-12-19T00:15:27
null
UTF-8
Python
false
false
269
py
from pyledgerqrl.ledgerqrl import * dev = LedgerQRL() start = time.time() for i in range(256): data = bytearray([i]) + bytearray.fromhex("00" * 32) answer = dev.send(INS_TEST_WRITE_LEAF, data) assert len(answer) == 0 answer = dev.send(INS_TEST_PK_GEN_1)
55559c3ca1ad5ff7d80c5cf736dab7da2c5d72a7
dfff816642f4e1afeab268f441906a6d811d3fb4
/polling_stations/apps/data_collection/management/commands/import_newham.py
d1463f346e39dd465ff77e53dbf91e637072ccae
[]
permissive
mtravis/UK-Polling-Stations
2c07e03d03959492c7312e5a4bfbb71e12320432
26e0331dc29253dc436a0462ffaa01e974c5dc52
refs/heads/master
2020-05-14T18:36:31.501346
2019-04-17T12:54:57
2019-04-17T12:54:57
181,912,382
0
0
BSD-3-Clause
2019-04-17T14:48:26
2019-04-17T14:48:26
null
UTF-8
Python
false
false
1,255
py
from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E09000025" addresses_name = "local.2018-05-03/Version 2/LBNewham Democracy_Club__03May2018.TSV" stations_name = "local.2018-05-03/Version 2/LBNewham Democracy_Club__03May2018.TSV" elections = ["local.2018-05-03", "mayor.newham.2018-05-03"] csv_delimiter = "\t" def address_record_to_dict(self, record): if record.addressline6 == "E16 1EF": return None if record.property_urn == "10090852604": return None if record.property_urn == "10034510101": rec = super().address_record_to_dict(record) rec["postcode"] = "E13 8NA" return rec if record.addressline6 == "E16 1XF": return None if record.property_urn == "10090756946": rec = super().address_record_to_dict(record) rec["postcode"] = "E7 9AW" return rec if record.property_urn == "10023994990": rec = super().address_record_to_dict(record) rec["postcode"] = "E7 9AW" return rec return super().address_record_to_dict(record)
f7a133da42b483bbd6721ea185ae86310461ffcc
1eb2d7d2a6e945a9bc487afcbc51daefd9af02e6
/algorithm/zhang/baiduface.py
aae543c80ba05cfedc089fe690d2f4beb4954ca2
[]
no_license
fengges/eds
11dc0fdc7a17b611af1f61894f497ad443439bfe
635bcf015e3ec12e96949632c546d29fc99aee31
refs/heads/master
2021-06-20T04:43:02.019309
2019-06-20T12:55:26
2019-06-20T12:55:26
133,342,023
0
3
null
null
null
null
UTF-8
Python
false
false
1,255
py
import os,time from aip import AipFace from PIL import Image, ImageDraw """ 你的 APPID AK SK """ APP_ID = '10909628' API_KEY = 'sInxLcVbCLSg6rNXVDXR4sHD' SECRET_KEY = 'e2zgNstc7GEhhvFOfCVKDW2itVf0iID4' filepath ="pic" client = AipFace(APP_ID, API_KEY, SECRET_KEY) def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() pathDir = os.listdir(filepath) for path in pathDir: pic=filepath+'/'+path pic3="pic3/"+path image = get_file_content(pic) """ 调用人脸检测 """ client.detect(image) """ 如果有可选参数 """ options = {} options["max_face_num"] = 10 options["face_fields"] = "age" """ 带参数调用人脸检测 """ res=client.detect(image, options) try: result=res["result"] except: print(res) img = Image.open(pic3) img_d = ImageDraw.Draw(img) for f in result: face_rectangle = f["location"] img_d.rectangle((face_rectangle['left'], face_rectangle['top'], face_rectangle['left'] + face_rectangle['width'], face_rectangle['top'] + face_rectangle['height']), outline="red") img.save(pic3) img.close() print("sleep") time.sleep(2)
7525215d0910bbe6e1301574a8bc8953a626bd5e
17ecc93814360e911d119a9d9a5fde1e9044c409
/orden/models.py
684f7edaabf2ab08452c0ae69ebe10a069f38e6f
[]
no_license
rpparada/TOCA
d2541c9464aad8a406801b4d8ef52fbe409dab3f
253993b0bbbd49895f014bcf6bc271de5475ae7e
refs/heads/master
2022-12-12T05:07:34.686563
2020-11-11T01:12:22
2020-11-11T01:12:22
236,039,156
0
0
null
2022-12-08T11:31:42
2020-01-24T16:27:23
CSS
UTF-8
Python
false
false
18,395
py
from django.db import models from django.urls import reverse from django.db.models.signals import pre_save, post_save from django.conf import settings from django.core.files.storage import FileSystemStorage from django.core.files.base import ContentFile from django.core.files import File from django.utils import timezone from django.contrib import messages User = settings.AUTH_USER_MODEL import math import os from carro.models import CarroCompra, ItemCarroCompra from facturacion.models import FacturacionProfile from direccion.models import Direccion from transaccional.models import EmailTemplate from toca.utils import unique_orden_id_generator, unique_slug_generator, render_to_pdf_file from toca.parametros import parCarro, parOrden, mediodepago # Create your models here. # Orden Compra class OrdenCompraQuerySet(models.query.QuerySet): def by_request(self, request): fact_profile, created = FacturacionProfile.objects.new_or_get(request) return self.filter(facturacion_profile=fact_profile) def by_orden_id(self, orden_id): qs = self.filter(orden_id=orden_id) obj = None if qs.count() == 1: obj = qs.first() return obj def by_tocata(self, tocata): return self.filter(carro__item__tocata=tocata) class OrdenCompraManager(models.Manager): def get_queryset(self): return OrdenCompraQuerySet(self.model, using=self._db) def by_request(self, request): return self.get_queryset().by_request(request) def new_or_get(self, fact_profile, carro_obj): created = False qs = self.get_queryset().filter(facturacion_profile=fact_profile, carro=carro_obj, activo=True, estado='pendiente') if qs.count() == 1: obj = qs.first() else: obj = self.model.objects.create(facturacion_profile=fact_profile, carro=carro_obj) created = True return obj, created def by_orden_id(self, orden_id): return self.get_queryset().by_orden_id(orden_id) def by_tocata(self, tocata): return self.get_queryset().by_tocata(tocata) ORDENCOMPRA_ESTADO_OPCIONES = ( ('pendiente','Pendiente'), ('pagado','Pagado'), ('cancelado','Cancelado'), ) class OrdenCompra(models.Model): orden_id = models.CharField(max_length=120, blank=True) facturacion_profile = models.ForeignKey(FacturacionProfile, null=True, blank=True, on_delete=models.CASCADE) direccion_envio = models.ForeignKey(Direccion, related_name='direccion_envio', null=True, blank=True, on_delete=models.CASCADE) direccion_facturacion = models.ForeignKey(Direccion, related_name='direccion_facturacion', null=True, blank=True, on_delete=models.CASCADE) email_adicional = models.EmailField(null=True, blank=True) carro = models.ForeignKey(CarroCompra, on_delete=models.DO_NOTHING) total = models.DecimalField(default=0.00, max_digits=100, decimal_places=2) envio = models.DecimalField(default=0.00, max_digits=100, decimal_places=2) activo = models.BooleanField(default=True) fecha_pago = models.DateTimeField(null=True, blank=True) estado = models.CharField(max_length=20, choices=ORDENCOMPRA_ESTADO_OPCIONES,default='pendiente') fecha_actu = models.DateTimeField(auto_now=True) fecha_crea = models.DateTimeField(auto_now_add=True) objects = OrdenCompraManager() def __str__(self): return self.orden_id def actualiza_total(self): carro_total = self.carro.total envio_total = self.envio nuevo_total = math.fsum([carro_total, envio_total]) self.total = nuevo_total self.save() return nuevo_total def email_detalles_compra(self, request): if self.email_adicional: recipient_list = [self.facturacion_profile.email,self.email_adicional] else: recipient_list = [self.facturacion_profile.email] EmailTemplate.send( 'email_boleta_itickets', context = { 'object': self }, subject = 'Tocatas Íntimas - ITicket Orden {num_orden}'.format(num_orden=self.orden_id), sender = '[email protected]', emails = recipient_list ) def check_done(self, request): is_done = True for item in self.carro.item.all(): quitar_item = False # Verificar estado de tocata if not item.tocata.check_vigencia(): quitar_item = True messages.error(request,'Tocata ya no esta disponible') # Agregar verificacion de venta de entradas disponibles if not item.tocata.check_entradas(item.cantidad): quitar_item = True messages.error(request,'No hay suficientes entradas disponibles') # Comprar antes de la fecha y hora del evento if not item.tocata.check_fechahora(): quitar_item = True messages.error(request,'Compra fuera de tiempo') # Verificar si usuario ya compro entrasas para este evento entradas_comp = EntradasCompradas.objects.by_tocata_request(request, item.tocata) num_entradas = 0 for entrada in entradas_comp: num_entradas += entrada.item.cantidad entradas_disponibles = 4 - num_entradas if item.cantidad > entradas_disponibles: quitar_item = True messages.error(request,'Ya compraste entradas') # Quita tocatas que no califican y cancela check out if quitar_item: self.carro.item.remove(item) item.delete() request.session['carro_tocatas'] = self.carro.item.count() is_done = False facturacion_profile = self.facturacion_profile total = self.total if facturacion_profile and total <= 0: is_done = False return is_done def actualiza_compras(self): for item in self.carro.item.all(): obj, created = EntradasCompradas.objects.get_or_create( orden = self, facturacion_profile = self.facturacion_profile, item = item ) return EntradasCompradas.objects.filter(orden=self).count() def agrega_entradas_compra(self): entradas_obj = EntradasCompradas.objects.by_orden(self) if entradas_obj: for entrada_obj in entradas_obj: context = { 'boleta_id': 8838838, 'nombre_cliente': 'Rodrigo Parada', 'cantidad': 29939, 'fecha_compra': 'Hoy' } #pdf = render_to_pdf('carro/entradaspdf.html', context) pdf = render_to_pdf_file('carro/entradaspdf.html', context, 'test.pdf') # Falta salvar a un archivo antes de guardarlo en la tabla f = open('nuevotest.pdf', 'wb') myfile = File(f) myfile = ContentFile(pdf) entrada_obj.file.save('nuevotest.pdf', myfile) #entrada_obj.save() def mark_pagado(self): if self.estado != 'pagado': #if self.check_done(): self.estado = 'pagado' self.fecha_pago = timezone.now() self.save() self.actualiza_compras() return self.estado def guarda_cobro(self, transaction, token): cobro_obj = Cobro.objects.create( orden = self, facturacion_profile = self.facturacion_profile, token = token, accountingDate = transaction['accountingDate'], buyOrder = transaction['buyOrder'], cardNumber = transaction['cardDetail']['cardNumber'], cardExpirationDate = transaction['cardDetail']['cardExpirationDate'], sharesAmount = transaction['detailOutput'][0]['sharesAmount'], sharesNumber = transaction['detailOutput'][0]['sharesNumber'], amount = transaction['detailOutput'][0]['amount'], commerceCode = transaction['detailOutput'][0]['commerceCode'], authorizationCode = transaction['detailOutput'][0]['authorizationCode'], paymentTypeCode = transaction['detailOutput'][0]['paymentTypeCode'], responseCode = transaction['detailOutput'][0]['responseCode'], sessionId = transaction['sessionId'], transactionDate = transaction['transactionDate'], urlRedirection = transaction['urlRedirection'], vci = transaction['VCI'], ) return cobro_obj def sumar_asistentes_total(self): for item in self.carro.item.all(): item.tocata.asistentes_total += item.cantidad item.tocata.save() def limpia_carro(self): self.carro.vigente = False self.carro.save() def pre_save_ordencompra_receiver(sender, instance, *args, **kwargs): if not instance.orden_id: instance.orden_id = unique_orden_id_generator(instance) qs = OrdenCompra.objects.filter(carro=instance.carro).exclude(facturacion_profile=instance.facturacion_profile) if qs.exists(): qs.update(activo=False) pre_save.connect(pre_save_ordencompra_receiver, sender=OrdenCompra) def post_save_carro_total(sender, instance, created, *args, **kwargs): if not created: carro_obj = instance carro_total = carro_obj.total carro_id = carro_obj.id qs = OrdenCompra.objects.filter(carro__id=carro_id) if qs.count() == 1: orden_obj = qs.first() orden_obj.actualiza_total() post_save.connect(post_save_carro_total, sender=CarroCompra) def post_save_orden(sender, instance, created, *args, **kwargs): if created: instance.actualiza_total() post_save.connect(post_save_orden, sender=OrdenCompra) # Cobro Transbank class CobroQuerySet(models.query.QuerySet): def by_orden(self, orden): return self.filter(orden=orden) def by_token(self, token): return self.filter(token=token) class CobroManager(models.Manager): def get_queryset(self): return CobroQuerySet(self.model, using=self._db) def by_orden(self, orden): return self.get_queryset().by_orden(orden) def by_token(self, token): return self.get_queryset().by_token(token) def new_or_get(self, orden): created = False qs = self.get_queryset().by_orden(orden) if qs.count() == 1: obj = qs.first() else: obj = self.model.objects.create(orden=orden) created = True return obj, created class Cobro(models.Model): orden = models.ForeignKey(OrdenCompra, on_delete=models.DO_NOTHING) facturacion_profile = models.ForeignKey(FacturacionProfile, null=True, blank=True, on_delete=models.CASCADE) token = models.CharField(max_length=64, blank=True, null=True) accountingDate = models.CharField(max_length=4, blank=True, null=True) buyOrder = models.CharField(max_length=26, blank=True, null=True) cardNumber = models.CharField(max_length=16, blank=True, null=True) cardExpirationDate = models.CharField(max_length=4, blank=True, null=True) sharesAmount = models.CharField(max_length=10, blank=True, null=True) sharesNumber = models.CharField(max_length=2, blank=True, null=True) amount = models.CharField(max_length=10, blank=True, null=True) commerceCode = models.CharField(max_length=12, blank=True, null=True) authorizationCode = models.CharField(max_length=6, blank=True, null=True) paymentTypeCode = models.CharField(max_length=3, blank=True, null=True) responseCode = models.CharField(max_length=2, blank=True, null=True) sessionId = models.CharField(max_length=61, blank=True, null=True) transactionDate = models.DateTimeField(blank=True, null=True) urlRedirection = models.CharField(max_length=256, blank=True, null=True) vci = models.CharField(max_length=3, blank=True, null=True) objects = CobroManager() def __str__(self): return str(self.orden.id) # Control de Cobros # Código de respuesta de la autorización. Valores posibles: # 0 = Transacción aprobada # -1 = Rechazo de transacción - Reintente (Posible error en el ingreso de datos de la transacción) # -2 = Rechazo de transacción (Se produjo fallo al procesar la transacción. Este mensaje de rechazo está relacionado a parámetros de la tarjeta y/o su cuenta asociada) # -3 = Error en transacción (Interno Transbank) # -4 = Rechazo emisor (Rechazada por parte del emisor) # -5 = Rechazo - Posible Fraude (Transacción con riesgo de posible fraude) CONTROLCOBRO_ESTADO_OPCIONES = ( ('initTransaction','initTransaction'), ('getTransactionResult','getTransactionResult'), ('acknowledgeTransaction','acknowledgeTransaction'), ('rechazoTransaccion_1','rechazoTransaccion_1'), ('rechazoTransaccion_2','rechazoTransaccion_2'), ('errorTransaccion','errorTransaccion'), ('rechazoEmisor','rechazoEmisor'), ('rechazoPosibleFraude','rechazoPosibleFraude'), ('desconocido','desconocido'), ('exitoso','existoso'), ) class ControlCobroQuerySet(models.query.QuerySet): def by_token(self, token): return self.filter(token=token) class ControlCobroManager(models.Manager): def get_queryset(self): return ControlCobroQuerySet(self.model, using=self._db) def by_token(self, token): return self.get_queryset().by_token(token) def new_or_get(self, token): created = False qs = self.get_queryset().by_token(token) if qs.count() == 1: obj = qs.first() else: obj = self.model.objects.create(token=token) created = True return obj, created # Control de pago con Transbank class ControlCobro(models.Model): token = models.CharField(max_length=64) estado = models.CharField(max_length=30, choices=CONTROLCOBRO_ESTADO_OPCIONES, default='initTransaction') orden = models.ForeignKey(OrdenCompra, on_delete=models.DO_NOTHING, blank=True, null=True) fecha_actu = models.DateTimeField(auto_now=True) fecha_crea = models.DateTimeField(auto_now_add=True) objects = ControlCobroManager() def __str__(self): return self.token def actualizar_estado(self, estado): self.estado = estado self.save() def agregar_orden(self, orden): self.orden = orden self.save() # Entradas Compradas class EntradasCompradasQuerySet(models.query.QuerySet): def activas(self): return self.filter(rembolsado=False) def by_request(self, request): fact_profile, created = FacturacionProfile.objects.new_or_get(request) return self.filter(facturacion_profile=fact_profile) def by_orden(self, orden): return self.filter(orden=orden) def by_tocata(self, tocata): return self.filter(item__tocata=tocata) class EntradasCompradasManager(models.Manager): def get_queryset(self): return EntradasCompradasQuerySet(self.model, self._db) def all(self): return self.get_queryset().activas() def by_request(self, request): return self.get_queryset().by_request(request) def by_orden(self, orden): return self.get_queryset().by_orden(orden) def by_tocata_request(self, request, tocata): return self.get_queryset().by_request(request).by_tocata(tocata) def by_tocata(self, tocata): return self.get_queryset().by_tocata(tocata) def upload_ticket_file_loc(instance, filename): username = instance.facturacion_profile.usuario.email slug = instance.item.tocata.slug if not slug: slug = unique_slug_generator(instance.item.tocata) location = '{0}/tickets/{1}/'.format(username,slug) return location + filename class EntradasCompradas(models.Model): orden = models.ForeignKey(OrdenCompra, on_delete=models.CASCADE) facturacion_profile = models.ForeignKey(FacturacionProfile, on_delete=models.CASCADE) item = models.ForeignKey(ItemCarroCompra, on_delete=models.CASCADE) rembolsado = models.BooleanField(default=False) slug = models.SlugField(blank=True, unique=False) fecha_actu = models.DateTimeField(auto_now=True) fecha_crea = models.DateTimeField(auto_now_add=True) file = models.FileField( upload_to=upload_ticket_file_loc, storage=FileSystemStorage(location=settings.PROTECTED_ROOT), null=True, blank=True ) objects = EntradasCompradasManager() def __str__(self): return str(self.item.cantidad)+' '+str(self.item.tocata.nombre) def get_absolute_url(self): return "/ordenes/{orden_id}/{slug}".format(orden_id=self.orden.orden_id, slug=self.slug) def get_download_url(self): return reverse('ordenes:downloadticket', kwargs={'orden_id': self.orden.id, 'pk': self.pk} ) def get_invitados(self): return self.item.cantidad - 1 @property def nombrearchivo(self): if self.file: return os.path.basename(self.file.name) def entradascompradas_pre_save_receiver(sender, instance, *args, **kwargs): if not instance.slug: instance.slug = unique_slug_generator(instance.item.tocata) pre_save.connect(entradascompradas_pre_save_receiver, sender=EntradasCompradas)
1a4331aa03052d0136ac9424cf6c3d97e49dc9fc
4a2bd14eb54a5447b9b5c67df97d9237cd506bd7
/setup.py
61fde968a06933af9c27eabc838e71e919e782a8
[]
no_license
GapData/bokehutils
85363af5d1575983fe980a7c5a269eab354d168d
deadedd7a8a2210beeb8cce226d7d566f84a6f11
refs/heads/master
2021-05-29T13:40:12.105135
2015-09-30T19:40:03
2015-09-30T19:40:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,608
py
# Copyright (C) 2015 by Per Unneberg from setuptools import setup, find_packages import glob import versioneer INSTALL_REQUIRES = [ 'sphinx>=1.3', 'pytest', 'pytest-cov>=1.8.1', 'bokeh>=0.10.0', ] try: # Hack for readthedocs if not 'readthedocs' in os.path.dirname(os.path.realpath(__file__)): pass else: print("readthedocs in path name; assuming we're building docs @readthedocs") INSTALL_REQUIRES.append('sphinx-bootstrap-theme') except: pass # Integrating pytest with setuptools: see # https://pytest.org/latest/goodpractises.html#integrating-with-distutils-python-setup-py-test from distutils.core import setup, Command # you can also import from setuptools class PyTest(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): import subprocess import sys errno = subprocess.call([sys.executable, 'runtests.py']) raise SystemExit(errno) _version = versioneer.get_version() _cmdclass = versioneer.get_cmdclass() setup(name="bokehutils", version=_version, cmdclass=_cmdclass, author="Per Unneberg", author_email="[email protected]", description="Utility functions for working with bokeh plots", license="MIT", scripts=glob.glob('scripts/*.py'), install_requires=INSTALL_REQUIRES, packages=find_packages(exclude=['ez_setup', 'test*']), package_data={ 'bokehutils': [ '_templates/*', 'static/*', ], })
6a9813e8183140d4f37cce18fe72fbf348307aa9
e41849b424e892c0ef1325ec768f4a5aa6dc11e5
/biosteam/units/_multi_effect_evaporator.py
ae5f2bda8e39b53c5a21f2db763537ba2cc004ca
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "NCSA" ]
permissive
Saurajyoti/biosteam
28a8548ec9c453124e31d73c4e3d628d44dad322
65d35586c9e40660f170e5a8aa4e4450ea171a23
refs/heads/master
2023-06-15T22:07:54.544645
2021-07-13T04:19:14
2021-07-13T04:19:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,479
py
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020-2021, Yoel Cortes-Pena <[email protected]> # # This module is under the UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. """ """ import numpy as np import biosteam as bst from .. import Unit from .mixing import Mixer from .heat_exchange import HXutility from ._flash import Flash, Evaporator_PQ from .design_tools import ( compute_vacuum_system_power_and_cost, compute_heat_transfer_area ) from thermosteam import MultiStream, settings import flexsolve as flx from warnings import warn from .design_tools import heat_transfer as ht __all__ = ('MultiEffectEvaporator',) log = np.log exp = np.exp # Table 22.32 Product process and design (pg 592) # Name: ('Area range (m2)', 'Cost(A) (USD)', 'U (kJ/(hr*m2*K)))', 'Material') evaporators = {'Horizontal tube': ((9.29, 743.224), lambda A, CE: CE*2.304*A**0.53, 4906.02, 'Carbon steel'), 'Long-tube vertical': ((9.29, 743.224), lambda A, CE: CE*3.086*A**0.55, 8176.699, 'Carbon steel'), 'Forced circulation': ((13.935, 8000), lambda A, CE: CE/500*exp(8.2986 + 0.5329*log(A*0.0929)-0.000196*log(A*0.0929)**2), 10731.918, 'Carbon steel'), 'Falling film': ((13.935, 371.612), lambda A, CE: CE*7.416*A**0.55, 10220.874, 'Stainless steel tubes/Carbon steel shell')} class MultiEffectEvaporator(Unit): """ Creates evaporatorators with pressures given by P (a list of pressures). Adjusts first evaporator vapor fraction to satisfy an overall fraction evaporated. All evaporators after the first have zero duty. Condenses the vapor coming out of the last evaporator. Pumps all liquid streams to prevent back flow in later parts. All liquid evaporated is ultimately recondensed. Cost is based on required heat transfer area. Vacuum system is based on air leakage. Air leakage is based on volume, as given by residence time `tau` and flow rate to each evaporator. Parameters ---------- ins : stream Inlet. outs : stream sequence * [0] Solid-rich stream. * [1] Condensate stream. P : tuple[float] Pressures describing each evaporator (Pa). V : float Molar fraction evaporated as specified in `V_definition` (either overall or in the first effect). V_definition : str, optional * 'Overall' - `V` is the overall molar fraction evaporated. * 'First-effect' - `V` is the molar fraction evaporated in the first effect. Examples -------- Concentrate sugar setting vapor fraction at the first effect: >>> import biosteam as bst >>> from biorefineries.cornstover import chemicals >>> bst.settings.set_thermo(chemicals) >>> feed = bst.Stream('feed', Water=1000, Glucose=100, ... AceticAcid=0.5, HMF=0.1, Furfural=0.1, ... units='kg/hr') >>> E1 = bst.MultiEffectEvaporator('E1', ins=feed, outs=('solids', 'liquid'), ... V=0.1, V_definition='First-effect', ... P=(101325, 73581, 50892, 32777, 20000)) >>> E1.simulate() >>> E1.show() MultiEffectEvaporator: E1 ins... [0] feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): Water 55.5 AceticAcid 0.00833 Furfural 0.00104 HMF 0.000793 Glucose 0.555 outs... [0] solids phase: 'l', T: 333.24 K, P: 20000 Pa flow (kmol/hr): Water 20.6 AceticAcid 0.00189 Furfural 7.39e-05 HMF 0.000793 Glucose 0.555 [1] liquid phase: 'l', T: 352.12 K, P: 101325 Pa flow (kmol/hr): Water 34.9 AceticAcid 0.00643 Furfural 0.000967 >>> E1.results() Multi-Effect Evaporator Units E1 Power Rate kW 5.72 Cost USD/hr 0.447 Low pressure steam Duty kJ/hr 5.8e+05 Flow kmol/hr 14.9 Cost USD/hr 3.55 Cooling water Duty kJ/hr -3.49e+05 Flow kmol/hr 239 Cost USD/hr 0.116 Design Area m^2 11 Volume m^3 1.64 Purchase cost Condenser USD 5.35e+03 Evaporators USD 9.59e+03 Liquid-ring pump USD 1.24e+04 Total purchase cost USD 2.74e+04 Utility cost USD/hr 4.12 Concentrate sugar setting overall vapor fraction: >>> import biosteam as bst >>> from biorefineries.cornstover import chemicals >>> bst.settings.set_thermo(chemicals) >>> feed = bst.Stream('feed', Water=1000, Glucose=100, ... AceticAcid=0.5, HMF=0.1, Furfural=0.1, ... units='kg/hr') >>> E1 = bst.MultiEffectEvaporator('E1', ins=feed, outs=('solids', 'liquid'), ... V=0.1, V_definition='Overall', ... P=(101325, 73581, 50892, 32777, 20000)) >>> E1.simulate() >>> E1.show() MultiEffectEvaporator: E1 ins... [0] feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): Water 55.5 AceticAcid 0.00833 Furfural 0.00104 HMF 0.000793 Glucose 0.555 outs... [0] solids phase: 'l', T: 354.94 K, P: 50892 Pa flow (kmol/hr): Water 50 AceticAcid 0.0069 Furfural 0.000579 HMF 0.000793 Glucose 0.555 [1] liquid phase: 'l', T: 361.2 K, P: 101325 Pa flow (kmol/hr): Water 5.55 AceticAcid 0.00143 Furfural 0.000462 >>> E1.results() Multi-Effect Evaporator Units E1 Power Rate kW 5.72 Cost USD/hr 0.447 Low pressure steam Duty kJ/hr 3.82e+05 Flow kmol/hr 9.85 Cost USD/hr 2.34 Cooling water Duty kJ/hr -1.15e+05 Flow kmol/hr 78.5 Cost USD/hr 0.0383 Design Area m^2 1.64 Volume m^3 0.986 Purchase cost Condenser USD 3.89e+03 Evaporators USD 2.77e+03 Liquid-ring pump USD 1.24e+04 Total purchase cost USD 1.91e+04 Utility cost USD/hr 2.83 """ line = 'Multi-Effect Evaporator' _units = {'Area': 'm^2', 'Volume': 'm^3'} _F_BM_default = {'Evaporators': 2.45, 'Liquid-ring pump': 1.0, 'Condenser': 3.17} _N_outs = 2 _N_heat_utilities = 2 #: Residence time (hr) tau = 0.30 # Evaporator type _Type = 'Forced circulation' # Data for simmulation and costing _evap_data = evaporators[_Type] @property def Type(self): """Evaporation type.""" return self._Type @Type.setter def Type(self, evap_type): try: self._evap_data = evaporators[evap_type] except KeyError: dummy = str(evaporators.keys())[11:-2] raise ValueError(f"Type must be one of the following: {dummy}") self._Type = evap_type @property def V_definition(self): """[str] Must be one of the following: * 'Overall' - Defines attribute `V` as the overall molar fraction evaporated. * 'First-effect' - Defines attribute `V` as the molar fraction evaporated in the first effect. """ return self._V_definition @V_definition.setter def V_definition(self, V_definition): V_definition = V_definition.capitalize() if V_definition in ('Overall', 'First-effect'): self._V_definition = V_definition else: raise ValueError("V_definition must be either 'Overall' or 'First-effect'") def __init__(self, ID='', ins=None, outs=(), thermo=None, *, P, V, V_definition='Overall'): Unit.__init__(self, ID, ins, outs, thermo) self.P = P #: tuple[float] Pressures describing each evaporator (Pa). self.V = V #: [float] Molar fraction evaporated. self.V_definition = V_definition self._V_first_effect = None self._reload_components = True self.components = {} def reset_cache(self): self._reload_components = True def load_components(self): P = self.P thermo = self.thermo # Create components self._N_evap = n = len(P) # Number of evaporators first_evaporator = Flash(None, outs=(None, None), P=P[0], thermo=thermo) # Put liquid first, then vapor side stream evaporators = [first_evaporator] for i in range(1, n): evap = Evaporator_PQ(None, outs=(None, None, None), P=P[i], Q=0, thermo=thermo) evaporators.append(evap) condenser = HXutility(None, outs=[None], thermo=thermo, V=0) condenser.parent = self self.heat_utilities = (first_evaporator.heat_utilities[0], condenser.heat_utilities[0]) mixer = Mixer(None, outs=[None], thermo=thermo) components = self.components components['evaporators'] = evaporators components['condenser'] = condenser components['mixer'] = mixer # Set-up components other_evaporators = evaporators[1:] first_evaporator.ins[:] = [i.copy() for i in self.ins] # Put liquid first, then vapor side stream ins = [first_evaporator.outs[1], first_evaporator.outs[0]] for evap in other_evaporators: evap.ins[:] = ins ins = [evap.outs[1], evap.outs[0]] def _V_overall(self, V_first_effect): first_evaporator, *other_evaporators = self.components['evaporators'] first_evaporator.V = V_overall = V_first_effect first_evaporator._run() for evap in other_evaporators: evap._run() V_overall += (1. - V_overall) * evap.V return V_overall def _V_overall_objective_function(self, V_first_effect): return self._V_overall(V_first_effect) - self.V def _run(self): out_wt_solids, liq = self.outs ins = self.ins if self.V == 0: out_wt_solids.copy_like(ins[0]) for i in self.heat_utilities: i.empty(); i.heat_exchanger = None liq.empty() self._reload_components = True return if self._reload_components: self.load_components() self._reload_components = False if self.V_definition == 'Overall': P = tuple(self.P) self.P = list(P) for i in range(self._N_evap-1): if self._V_overall(0.) > self.V: self.P.pop() self.load_components() self._reload_components = True else: break self.P = P self._V_first_effect = flx.IQ_interpolation(self._V_overall_objective_function, 0., 1., None, None, self._V_first_effect, xtol=1e-9, ytol=1e-6, checkiter=False) V_overall = self.V else: V_overall = self._V_overall(self.V) n = self._N_evap # Number of evaporators components = self.components evaporators = components['evaporators'] condenser = components['condenser'] mixer = components['mixer'] last_evaporator = evaporators[-1] # Condensing vapor from last effector outs_vap = last_evaporator.outs[0] condenser.ins[:] = [outs_vap] condenser._run() outs_liq = [condenser.outs[0]] # list containing all output liquids # Unpack other output streams out_wt_solids.copy_like(last_evaporator.outs[1]) for i in range(1, n): evap = evaporators[i] outs_liq.append(evap.outs[2]) # Mix liquid streams mixer.ins[:] = outs_liq mixer._run() liq.copy_like(mixer.outs[0]) mixed_stream = MultiStream(None, thermo=self.thermo) mixed_stream.copy_flow(self.ins[0]) mixed_stream.vle(P=last_evaporator.P, V=V_overall) out_wt_solids.mol = mixed_stream.imol['l'] liq.mol = mixed_stream.imol['g'] def _design(self): if self.V == 0: return # This functions also finds the cost A_range, C_func, U, _ = self._evap_data components = self.components evaporators = components['evaporators'] Design = self.design_results Cost = self.baseline_purchase_costs CE = bst.CE first_evaporator = evaporators[0] heat_exchanger = first_evaporator.heat_exchanger hu = heat_exchanger.heat_utilities[0] duty = first_evaporator.H_out - first_evaporator.H_in Q = abs(duty) Tci = first_evaporator.ins[0].T Tco = first_evaporator.outs[0].T hu(duty, Tci, Tco) Th = hu.inlet_utility_stream.T LMTD = ht.compute_LMTD(Th, Th, Tci, Tco) ft = 1 A = abs(compute_heat_transfer_area(LMTD, U, Q, ft)) first_evaporator.baseline_purchase_costs['Evaporator'] = C = C_func(A, CE) self._evap_costs = evap_costs = [C] # Find condenser requirements condenser = components['condenser'] condenser._summary() Cost['Condenser'] = condenser.purchase_cost # Find area and cost of evaporators As = [A] A_min, A_max = A_range evap = evaporators[-1] for evap in evaporators[1:]: Q = evap.design_results['Heat transfer'] if Q <= 1e-12: As.append(0.) evap_costs.append(0.) else: Tc = evap.outs[0].T Th = evap.outs[2].T LMTD = Th - Tc A = compute_heat_transfer_area(LMTD, U, Q, 1.) As.append(A) if settings.debug and not A_min < A < A_max: warn(f'area requirement ({A}) is out of range, {A_range}') evap_costs.append(C_func(A, CE)) self._As = As Design['Area'] = A = sum(As) Design['Volume'] = total_volume = self._N_evap * self.tau * self.ins[0].F_vol Cost['Evaporators'] = sum(evap_costs) # Calculate power power, cost = compute_vacuum_system_power_and_cost( F_mass=0, F_vol=0, P_suction=evap.outs[0].P, vessel_volume=total_volume, vacuum_system_preference='Liquid-ring pump') Cost['Liquid-ring pump'] = cost self.power_utility(power)
2a1a2dba821ba88d97ccfa8b1ac0ad83ecc9db61
5a07828016e8bafbea5dac8f83c8bfd5d0bfd603
/py_290w290/140309_srw.py
ba5c140fc766ac183dd4cc526b37aee626cb33e2
[]
no_license
JJHopkins/rajter_compare
db5b88d2c6c1efc0fead9b6ed40fb3cce36bedb4
2ba52f4f16cf2aca350a82ea58d0aa8f8866c47c
refs/heads/master
2020-06-04T23:53:57.089329
2014-04-08T18:02:30
2014-04-08T18:02:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,176
py
#$ {\bf Free energy between two skewed cylinders (CG-10 in water). Full retarded result, function of separation $\ell$ and angle $\theta$} \\ #$ Equation 12: $G(\ell,\theta) = - \frac{ (\pi R_1^{2})(\pi R_2^{2}) }{2 \pi~\ell^{4} \sin{\theta}} \left( {\cal A}^{(0)}(\ell) + {\cal A}^{(2)}(\ell) \cos 2\theta \right)$ \\ #$ $G(\ell,\theta) = - \frac{k_BT}{64 \pi} \frac{ \pi^2 R_1^{2} R_2^{2} }{\ell^{4} \sin{\theta}} {\sum_{n=0}^{\infty}}' \Delta_{1,\parallel} \Delta_{2,\parallel} ~p_n^{4} ~\int_0^{\infty} t dt ~\frac{e^{- 2 p_n \sqrt{t^{2} + 1}}}{(t^{2} + 1)} \tilde g(t, a_1(i \omega_n), a_2(i \omega_n), \theta),$ \\ #$ with $\tilde g(t, a_1, a_2, \theta) &=& 2 \left[ (1+3a_1)(1+3a_2) t^{4} + 2 (1+2a_1+2a_2+3a_1a_2) t^{2} + 2(1+a_1)(1+a_2)\right] + \nonumber \\ #$ & & ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + (1-a_1)(1-a_2)(t^{2} + 2)^2 \cos 2\theta.$ \\ #!/usr/bin/python import numpy as np import scipy.optimize as opt from scipy.integrate import trapz import matplotlib.pyplot as pl from matplotlib import axis as ax # use pyreport -l file.py from pylab import show from matplotlib.ticker import MultipleLocator from mpl_toolkits.mplot3d import Axes3D from pylab import pause from matplotlib.backends.backend_pdf import PdfPages #pp = PdfPages('plots/skew_ret_water/skew_ret_water.pdf') eiz_x = np.loadtxt('data/eiz_x_output_eV.txt') #perpendicular, radial eiz_z = np.loadtxt('data/eiz_z_output_eV.txt') # parallel,axial eiz_w = np.loadtxt('data/eiz_w_output_eV.txt') # water as intervening medium #eiz_w[0] = eiz_w[1] #NOTE: there is a jump from first val down to second val x90_A0, y90_A0 = np.loadtxt('data/290-W-290-PERPA0.PRN',unpack=True, usecols = [0,1]) # water as intervening medium x90_A2, y90_A2 = np.loadtxt('data/290-W-290-PERPA2.PRN',unpack=True, usecols = [0,1]) # water as intervening medium r_1 = 1.0e-9 r_2 = 1.0e-9 c = 2.99e8 # in m/s Temp = 297 kb = 1.3807e-23 # in J/K coeff = 2.411e14 # in rad/s # NOTES: # at RT, 1 kT = 4.11e-21 J # 1 eV = 1.602e-19 J = 0.016 zJ # h_bar_eV = 6.5821e-16 eVs # h_bar = 1. #1.0546e-34 #in Js #kb = 8.6173e-5 # in eV/K # z_n_eV = (2*pi*kT/h_bar)n # = (0.159 eV) / (6.5821e-16 eVs) # = n*2.411e14 rad/s # z_n_J = (2*pi*kT/h_bar)n # = (1.3807e-23 J/K) / (1.0546e-34 Js))*n # = n*2.411e14 rad/s #coeff = 0.159 # in eV w/o 1/h_bar ns = np.arange(0.,500.) z = ns * coeff ls = np.linspace(1.0e-9, 1.0e-6, 200) #thetas = np.linspace((0.01)*np.pi,(1./2)*np.pi,25) thetas = [np.pi/8,np.pi/4,np.pi/3,np.pi/2] dt = 1.0 ts = np.arange(1.0,10000.,dt) def Aiz(perp, par,med): return (2.0*(perp-med)*med)/((perp+med)*(par-med)) def ys(a,time,eizw,L, N): term0 = ( time / (time*time+1.0) ) term1 = ( time**4 * 2.0*(1. + 3.*a)*(1.+3.*a) ) term2 = ( time**2 * 4.0*(1. + 2.0*a+2.0*a+3.0*a*a)) term3 = ( 4.0*(1. + a)*(1.0 + a) ) term4 = (-2.0 * np.sqrt(eizw)* L * coeff * N / c * np.sqrt(time*time + 1.0)) #print 'ys term0', term0 #print 'ys term1', term1 #print 'ys term2', term2 #print 'ys term3', term3 #print 'ys term4', term4 #print '----' return (term0) * np.exp(term4)*( (term1) + (term2) + (term3))#* term5 def y_2s(a,time,eizw, L, N): term0 = (time / (time*time+1.0) ) term1 = ((1.- a)*(1.- a)*(time * time + 2.0)*(time * time + 2.0)) term2 = (-2.0 * np.sqrt(eizw)* L * coeff * N / c * np.sqrt(time*time + 1.0)) #print 'y_2s term0', term0 #print 'y_2s term1', term1 #print 'y_2s term2', term2 #print '----' return term0 * term1* np.exp(term2) #* term3 def As(eizz,eizw,L,N,Y): term1 = (((eizz-eizw)/eizw)*((eizz-eizw)/eizw)) term2 = (Y * eizw *eizw * (coeff*N)**4 * L**4 / (c**4)) #term3 = Y #print 'As term1 = ', term1 #print 'As term2 = ', term2 ##print 'As term3 = ', term3 #print '----' return term1 * term2# * term3 def A_2s(eizz,eizw, L , N ,Y): term1 = (((eizz-eizw)/eizw)*((eizz-eizw)/eizw)) term2 = (Y * eizw *eizw * (coeff*N)**4 * L**4 / (c**4)) #term3 = Y #print 'A_2s term1 = ', term1 #print 'A_2s term2 = ', term2 ##print 'A_2s term3 = ', term3 #print '----' return (term1 * term2)# * term3 y = np.zeros(shape=(len(ns),len(ls))) y_2 = np.zeros(shape=(len(ns),len(ls))) A = np.zeros(shape=(len(ns),len(ls))) A_2 = np.zeros(shape=(len(ns),len(ls))) EL = np.zeros(len(ls)) G_l_t_dt = np.zeros(shape=(len(ls),len(thetas))) A2_theta = np.zeros(shape=(len(ls),len(thetas))) aiz = [] aiz = Aiz(eiz_x,eiz_z, eiz_w) # of length = len(ns) #aiz[74] = aiz[73] #aiz[75] = aiz[76] for k,length in enumerate(ls): sum_A = np.empty(len(ls)) sum_A_2 = np.empty(len(ls)) for j,n in enumerate(ns): # Integral: y[j,k] = trapz(ys(aiz[j],ts,eiz_w[j],length,n),ts,dt) y_2[j,k] = trapz(y_2s(aiz[j],ts,eiz_w[j],length,n),ts,dt) #print 'dt Integral y = ',i,k,j, y #print 'dt Integral y_2 = ',i,k,j, y_2 #print '----' #print 'N terms for A0 = ' , As(eiz_z[j],eiz_w[j],length,n,y) #print 'N terms for A2 = ', A_2s(eiz_z[j],eiz_w[j],length,n,y_2) #print '----' A[j,k] = As(eiz_z[j],eiz_w[j],length,n,y[j,k]) A_2[j,k] = A_2s(eiz_z[j],eiz_w[j],length,n,y_2[j,k])# * np.cos(2.0*theta) A[0] = (1./2)*A[0] A_2[0] = (1./2)*A_2[0] sum_A = np.sum(A,axis=0) #print 'sum of A0 = ', k,j,sum_A sum_A_2 = np.sum(A_2,axis=0) #print 'sum of A2 = ', k,j,sum_A_2 #print '----' #print 'shape sum_A_2 = ', np.shape(sum_A_2) #sys.exit() for k,length in enumerate(ls): for i, theta in enumerate(thetas): EL[k] = 1./(length*length*length*length) A2_theta[k,i] = sum_A_2[k]* np.cos(2.0*theta) G_l_t_dt[k,i] = (1.602e-19 / 4.11e-21) * (1./32) * EL[k]*np.pi*r_1*r_1*r_2*r_2*(sum_A[k] + sum_A_2[k]* np.cos(2.0*theta) )/(2.0*np.sin(theta))# (1e21)* np.savetxt('G_srw.txt',G_l_t_dt) #pl.figure() #pl.plot(ns,eiz_x, color = 'b', label = r'$\varepsilon_{\hat{x}}(i\zeta_{N})$') #pl.plot(ns,eiz_z, color = 'r', label = r'$\varepsilon_{\hat{z}}(i\zeta_{N})$') ##pl.plot(ns,eiz_w, color = 'c', label = r'$\varepsilon_{vac}(i\zeta_{N})$') #pl.plot(ns,eiz_w, color = 'c', label = r'$\varepsilon_{water}(i\zeta_{N})$') #pl.xlabel(r'$N$', size = 20) #pl.ylabel(r'$\varepsilon(i\zeta)$', size = 20) #pl.legend(loc = 'best') ##pl.title(r'$\mathrm{CG-10\, DNA}$', size = 20) ##pl.axis([0,500,0.9,2.6]) ##pl.savefig('plots/skew_ret_water/eiz.pdf' ) #show() pl.figure() pl.plot(ns,aiz, color = 'b')#, label = r'$\varepsilon_{\hat{x}}(i\zeta_{N})$') pl.xlabel(r'$N$', size = 20) pl.ylabel(r'$a_{1,2}(i\zeta_{N})$', size = 20) pl.legend(loc = 'best') #pl.title(r'$\mathrm{Anisotropy \,Metric}$', size = 20) #pl.axis([0,500,0.9,2.6]) pl.grid() pl.savefig('plots/skew_ret_water/140306_290w290_aiz.pdf' ) show() pl.figure() pl.loglog(1e9*ls,(1e21*kb*Temp/32)*sum_A ,'b-', label = r'$\mathcal{A^{(0)}}(\ell)$') pl.loglog(1e9*ls,(1e21*kb*Temp/32)*sum_A_2,'g-', label = r'$\mathcal{A^{(2)}}(\ell)$') pl.loglog(x90_A0, y90_A0,'k-' , label = r'GH $\mathcal{A^{(0)}}(\ell)$') pl.loglog(x90_A2, y90_A2,'k--', label = r'GH $\mathcal{A^{(2)}}(\ell)$') pl.xlabel(r'$\mathrm{separation}\,\ell\,\,\,\rm{[nm]}$', size = 20) pl.ylabel(r'$\mathrm{\mathcal{A^{(0)},\,\,A^{(2)}}}\,\,\,\rm{[zJ]}$', size = 20) #pl.title(r'$\mathrm{Hamaker \, coeff.s \,:\,skewed,\,retarded,\,water}$', size = 20) #pl.legend(loc = 'best') #pl.axis([1e-9,1e-6,1e-24,1e-19]) pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140309_290w290_GH_skew_ret_A0_A2.pdf') show() pl.figure() pl.loglog(ls,(kb*Temp/32)*sum_A,'b-', label = r'$\mathcal{A^{(0)}}(\ell)$') pl.loglog(ls,(kb*Temp/32)*sum_A_2,'g-', label = r'$\mathcal{A^{(2)}}(\ell)$') #pl.loglog(ls,(kb*T/32)*A2_theta,':', label = r'$\mathcal{A^{(2)}}(\ell)cos(2\theta)$') pl.xlabel(r'$\mathrm{separation}\,\ell\,\,\,\rm{[m]}$', size = 20) pl.ylabel(r'$\mathrm{\mathcal{A^{(0)},\,\,A^{(2)}}}$', size = 20) #pl.title(r'$\mathrm{Hamaker \, coeff.s \,:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'upper right') #pl.axis([1e-9,1e-6,1e-24,1e-19]) pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_A0_A2.pdf') show() ls4 = 1e9*ls[ 2]#2] ls5 = 1e9*ls[12]#4] ls6 = 1e9*ls[22]#6] ls1 = 1e9*ls[32]#8] ls2 = 1e9*ls[42]#12] ls3 = 1e9*ls[52]#16] fig = pl.figure() ax = fig.add_axes([0.1,0.1,0.8,0.8]) #pl.semilogy(thetas, G_l_t_dt) ax.semilogy(thetas, G_l_t_dt[ 2,:], label = r'$\ell$ = %1.2f nm' %ls4) ax.semilogy(thetas, G_l_t_dt[12,:], label = r'$\ell$ = %1.2f nm' %ls5) #ax.semilogy(thetas, G_l_t_dt[22,:], label = r'$\ell$ = %1.2f nm' %ls6) ax.semilogy(thetas, G_l_t_dt[32,:], label = r'$\ell$ = %1.2f nm' %ls1) #ax.semilogy(thetas, G_l_t_dt[42,:], label = r'$\ell$ = %1.2f nm' %ls2) ax.semilogy(thetas, G_l_t_dt[52,:], label = r'$\ell$ = %1.2f nm' %ls3) #ax.semilogy(0,0,'', label = r'$G_\theta = cos(2\theta)/2sin(\theta)$') pl.xlabel(r'$Angle\,\,\mathrm{[radians]}$', size = 20) pl.ylabel(r'$-G(\ell,\theta)\,\,\mathrm{[k_{B}T]}$', size = 20) #pl.axis([0,1.7,1e-10,1.0]) #pl.title(r'$\mathrm{-G(\ell,\theta)\,vs.\,angle:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'lower left') #pl.savefig('plots/skew_ret_water/skew_ret_water_G_vs_theta.pdf') #show() pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_G_vs_theta_fixed_l.pdf') show() pl.figure() #pl.loglog(ls, G_l_t_dt)#, label = labels[i]) pl.loglog(ls, G_l_t_dt[:,1], label = r'$\theta = \pi/4$') pl.loglog(ls, G_l_t_dt[:,2], label = r'$\theta = \pi/3$') pl.loglog(ls, G_l_t_dt[:,3], label = r'$\theta = \pi/2$') pl.xlabel(r'$\ell\,\,\mathrm{[m]}$', size = 24) pl.ylabel(r'$-G(\ell,\theta)\,\,\mathrm{[k_{B}T]}$', size = 20) #pl.axis([1.0e-9, 1.0e-6,1e-16,1e3]) #pl.title(r'$\mathrm{-G(\ell,\theta)\,vs.\,separation:\,skewed,\,retarded,\,water}$', size = 20) pl.legend(loc = 'best') pl.minorticks_on() pl.ticklabel_format(axis = 'both') pl.grid(which = 'both') pl.tick_params(which = 'both',labelright = True) pl.savefig('plots/skew_ret_water/140306_290w290_skew_ret_G_vs_l.pdf') show()
859652d89a14584f5e955cc3ad819c804f555e3b
5bfca95abf14f7bb0ff29b58b018fc9062d3f837
/apps/first_draft/migrations/0001_initial.py
ac8c2856ce7f990fcbd46afa84be29c6e4323981
[]
no_license
wdudek82/django-ogame-clone
621afb20ea2dd3c0f2e4b93dfdd604e0628bd7b8
472971da826d078176a5d619b3b5cad89e3d1c5c
refs/heads/master
2021-09-08T15:19:49.407650
2017-11-26T19:14:48
2017-11-26T19:14:48
124,670,158
0
0
null
null
null
null
UTF-8
Python
false
false
3,675
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-15 20:31 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Building', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('base_cost', models.PositiveIntegerField()), ], ), migrations.CreateModel( name='PlayerBuilding', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('level', models.PositiveIntegerField(default=0)), ('acceleration', models.PositiveIntegerField(choices=[(1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8), (10, 9), (11, 10), (12, 11), (13, 12), (14, 13), (15, 14), (16, 15), (17, 16), (18, 17), (19, 18), (20, 19), (21, 20), (22, 21), (23, 22), (24, 23), (25, 24), (26, 25), (27, 26), (28, 27), (29, 28), (30, 29), (31, 30), (32, 31), (33, 32), (34, 33), (35, 34), (36, 35), (37, 36), (38, 37), (39, 38), (40, 39), (41, 40), (42, 41), (43, 42), (44, 43), (45, 44), (46, 45), (47, 46), (48, 47), (49, 48), (50, 49), (51, 50), (52, 51), (53, 52), (54, 53), (55, 54), (56, 55), (57, 56), (58, 57), (59, 58), (60, 59), (61, 60), (62, 61), (63, 62), (64, 63), (65, 64), (66, 65), (67, 66), (68, 67), (69, 68), (70, 69), (71, 70), (72, 71), (73, 72), (74, 73), (75, 74), (76, 75), (77, 76), (78, 77), (79, 78), (80, 79), (81, 80), (82, 81), (83, 82), (84, 83), (85, 84), (86, 85), (87, 86), (88, 87), (89, 88), (90, 89), (91, 90), (92, 91), (93, 92), (94, 93), (95, 94), (96, 95), (97, 96), (98, 97), (99, 98), (100, 99), (101, 100)])), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('building', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_draft.Building')), ('player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PlayerResouce', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('amount', models.PositiveIntegerField(default=0)), ('player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Resources', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(max_length=255, unique=True)), ], options={ 'verbose_name_plural': 'Resources', }, ), migrations.AddField( model_name='playerresouce', name='resource', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='first_draft.Resources'), ), migrations.AlterUniqueTogether( name='playerbuilding', unique_together=set([('player', 'building')]), ), ]
1954e1d277622077bd20c0d616dc58a3d5b3662f
0bd7a6bef178bb93b2c3fb19e789c7e3b364e6d1
/simple_frame/inference/segmentation_export.py
ea4b06435005677303a2da54ba9827504d7de7c2
[]
no_license
Magnety/Simple_Frame_linux
090e07491e170314718c9ba5f2da2a4393bdb1ad
7e1ef5d11e3baa8784fd9b6bbf81b0d954dd1ca6
refs/heads/main
2023-06-02T09:35:36.023461
2021-06-17T09:23:01
2021-06-17T09:23:01
371,412,450
0
0
null
null
null
null
UTF-8
Python
false
false
11,716
py
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from copy import deepcopy from typing import Union, Tuple import numpy as np import SimpleITK as sitk from batchgenerators.augmentations.utils import resize_segmentation from simple_frame.preprocessing.preprocessing import get_lowres_axis, get_do_separate_z, resample_data_or_seg from batchgenerators.utilities.file_and_folder_operations import * def save_segmentation_nifti_from_softmax(segmentation_softmax: Union[str, np.ndarray], out_fname: str, properties_dict: dict, order: int = 1, region_class_order: Tuple[Tuple[int]] = None, seg_postprogess_fn: callable = None, seg_postprocess_args: tuple = None, resampled_npz_fname: str = None, non_postprocessed_fname: str = None, force_separate_z: bool = None, interpolation_order_z: int = 0, verbose: bool = True): """ This is a utility for writing segmentations to nifto and npz. It requires the data to have been preprocessed by GenericPreprocessor because it depends on the property dictionary output (dct) to know the geometry of the original data. segmentation_softmax does not have to have the same size in pixels as the original data, it will be resampled to match that. This is generally useful because the spacings our networks operate on are most of the time not the native spacings of the image data. If seg_postprogess_fn is not None then seg_postprogess_fnseg_postprogess_fn(segmentation, *seg_postprocess_args) will be called before nifto export There is a problem with python process communication that prevents us from communicating obejcts larger than 2 GB between processes (basically when the length of the pickle string that will be sent is communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually patching system python code.) We circumvent that problem here by saving softmax_pred to a npy file that will then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either filename or np.ndarray for segmentation_softmax and will handle this automatically :param segmentation_softmax: :param out_fname: :param properties_dict: :param order: :param region_class_order: :param seg_postprogess_fn: :param seg_postprocess_args: :param resampled_npz_fname: :param non_postprocessed_fname: :param force_separate_z: if None then we dynamically decide how to resample along z, if True/False then always /never resample along z separately. Do not touch unless you know what you are doing :param interpolation_order_z: if separate z resampling is done then this is the order for resampling in z :param verbose: :return: """ if verbose: print("force_separate_z:", force_separate_z, "interpolation order:", order) if isinstance(segmentation_softmax, str): assert isfile(segmentation_softmax), "If isinstance(segmentation_softmax, str) then " \ "isfile(segmentation_softmax) must be True" del_file = deepcopy(segmentation_softmax) segmentation_softmax = np.load(segmentation_softmax) os.remove(del_file) # first resample, then put result into bbox of cropping, then save current_shape = segmentation_softmax.shape shape_original_after_cropping = properties_dict.get('size_after_cropping') shape_original_before_cropping = properties_dict.get('original_size_of_raw_data') # current_spacing = dct.get('spacing_after_resampling') # original_spacing = dct.get('original_spacing') if np.any([i != j for i, j in zip(np.array(current_shape[1:]), np.array(shape_original_after_cropping))]): if force_separate_z is None: if get_do_separate_z(properties_dict.get('original_spacing')): do_separate_z = True lowres_axis = get_lowres_axis(properties_dict.get('original_spacing')) elif get_do_separate_z(properties_dict.get('spacing_after_resampling')): do_separate_z = True lowres_axis = get_lowres_axis(properties_dict.get('spacing_after_resampling')) else: do_separate_z = False lowres_axis = None else: do_separate_z = force_separate_z if do_separate_z: lowres_axis = get_lowres_axis(properties_dict.get('original_spacing')) else: lowres_axis = None if verbose: print("separate z:", do_separate_z, "lowres axis", lowres_axis) seg_old_spacing = resample_data_or_seg(segmentation_softmax, shape_original_after_cropping, is_seg=False, axis=lowres_axis, order=order, do_separate_z=do_separate_z, cval=0, order_z=interpolation_order_z) # seg_old_spacing = resize_softmax_output(segmentation_softmax, shape_original_after_cropping, order=order) else: if verbose: print("no resampling necessary") seg_old_spacing = segmentation_softmax if resampled_npz_fname is not None: np.savez_compressed(resampled_npz_fname, softmax=seg_old_spacing.astype(np.float16)) # this is needed for ensembling if the nonlinearity is sigmoid if region_class_order is not None: properties_dict['regions_class_order'] = region_class_order save_pickle(properties_dict, resampled_npz_fname[:-4] + ".pkl") if region_class_order is None: seg_old_spacing = seg_old_spacing.argmax(0) else: seg_old_spacing_final = np.zeros(seg_old_spacing.shape[1:]) for i, c in enumerate(region_class_order): seg_old_spacing_final[seg_old_spacing[i] > 0.5] = c seg_old_spacing = seg_old_spacing_final bbox = properties_dict.get('crop_bbox') if bbox is not None: seg_old_size = np.zeros(shape_original_before_cropping) for c in range(3): bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c])) seg_old_size[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], bbox[2][0]:bbox[2][1]] = seg_old_spacing else: seg_old_size = seg_old_spacing if seg_postprogess_fn is not None: seg_old_size_postprocessed = seg_postprogess_fn(np.copy(seg_old_size), *seg_postprocess_args) else: seg_old_size_postprocessed = seg_old_size seg_resized_itk = sitk.GetImageFromArray(seg_old_size_postprocessed.astype(np.uint8)) seg_resized_itk.SetSpacing(properties_dict['itk_spacing']) seg_resized_itk.SetOrigin(properties_dict['itk_origin']) seg_resized_itk.SetDirection(properties_dict['itk_direction']) sitk.WriteImage(seg_resized_itk, out_fname) if (non_postprocessed_fname is not None) and (seg_postprogess_fn is not None): seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8)) seg_resized_itk.SetSpacing(properties_dict['itk_spacing']) seg_resized_itk.SetOrigin(properties_dict['itk_origin']) seg_resized_itk.SetDirection(properties_dict['itk_direction']) sitk.WriteImage(seg_resized_itk, non_postprocessed_fname) def save_segmentation_nifti(segmentation, out_fname, dct, order=1, force_separate_z=None, order_z=0): """ faster and uses less ram than save_segmentation_nifti_from_softmax, but maybe less precise and also does not support softmax export (which is needed for ensembling). So it's a niche function that may be useful in some cases. :param segmentation: :param out_fname: :param dct: :param order: :param force_separate_z: :return: """ # suppress output print("force_separate_z:", force_separate_z, "interpolation order:", order) sys.stdout = open(os.devnull, 'w') if isinstance(segmentation, str): assert isfile(segmentation), "If isinstance(segmentation_softmax, str) then " \ "isfile(segmentation_softmax) must be True" del_file = deepcopy(segmentation) segmentation = np.load(segmentation) os.remove(del_file) # first resample, then put result into bbox of cropping, then save current_shape = segmentation.shape shape_original_after_cropping = dct.get('size_after_cropping') shape_original_before_cropping = dct.get('original_size_of_raw_data') # current_spacing = dct.get('spacing_after_resampling') # original_spacing = dct.get('original_spacing') if np.any(np.array(current_shape) != np.array(shape_original_after_cropping)): if order == 0: seg_old_spacing = resize_segmentation(segmentation, shape_original_after_cropping, 0, 0) else: if force_separate_z is None: if get_do_separate_z(dct.get('original_spacing')): do_separate_z = True lowres_axis = get_lowres_axis(dct.get('original_spacing')) elif get_do_separate_z(dct.get('spacing_after_resampling')): do_separate_z = True lowres_axis = get_lowres_axis(dct.get('spacing_after_resampling')) else: do_separate_z = False lowres_axis = None else: do_separate_z = force_separate_z if do_separate_z: lowres_axis = get_lowres_axis(dct.get('original_spacing')) else: lowres_axis = None print("separate z:", do_separate_z, "lowres axis", lowres_axis) seg_old_spacing = resample_data_or_seg(segmentation[None], shape_original_after_cropping, is_seg=True, axis=lowres_axis, order=order, do_separate_z=do_separate_z, cval=0, order_z=order_z)[0] else: seg_old_spacing = segmentation bbox = dct.get('crop_bbox') if bbox is not None: seg_old_size = np.zeros(shape_original_before_cropping) for c in range(3): bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c])) seg_old_size[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], bbox[2][0]:bbox[2][1]] = seg_old_spacing else: seg_old_size = seg_old_spacing seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8)) seg_resized_itk.SetSpacing(dct['itk_spacing']) seg_resized_itk.SetOrigin(dct['itk_origin']) seg_resized_itk.SetDirection(dct['itk_direction']) sitk.WriteImage(seg_resized_itk, out_fname) sys.stdout = sys.__stdout__
755ce3602c7d4642c4b0aca6891d7446594eb0b1
48fff0f472066dc6e5b5a15d16dcc33738e7a2c2
/train2/chatbot/broadcast.py
027badb7eddef0c0ba8411820cb20092bd9088f5
[]
no_license
hasadna/OpenTrainCommunity
228a4f078829f6653e62db1294da01488be55b64
3c7a941b730160c40cc400ed94ed77ffa9189f0a
refs/heads/master
2023-01-23T14:39:10.462114
2020-06-08T11:36:27
2020-06-08T11:36:27
19,729,986
23
16
null
2023-01-13T22:57:43
2014-05-13T07:34:15
HTML
UTF-8
Python
false
false
1,036
py
import logging from django.conf import settings import telegram from django.template.loader import render_to_string from . import models logger = logging.getLogger(__name__) def broadcast_new_report_to_telegram_channel(report: models.ChatReport): message = render_to_string('chatbot/new_report_message.html', context={ 'report': report, }) _broadcast(message) def broadcast_wrong_report_to_telegram_channel(report: models.ChatReport): message = render_to_string('chatbot/wrong_report_message.html', context={ 'report': report, }) _broadcast(message) def _broadcast(message: str): channel = '@' + settings.TELEGRAM_CHANNEL try: bot = telegram.Bot(settings.TELEGRAM_TOKEN) bot.send_message( channel, message, parse_mode='html', disable_web_page_preview=True) logger.info("Broadcasting to channel %s:\n%s", channel, message) except Exception: logger.exception('Failed to broadcast to channel')
8f51618dff92b6609f174e7d9e48161f653dd784
fdba533d128e5fcc237abacda12de9545ddce39c
/keras/optimizer_experimental/optimizer_lib.py
d180179dde8284a872030aa0a8c1237796c3da4d
[ "Apache-2.0" ]
permissive
hhuang97/keras
5949d754dcaed47df011fb4218d6552251e265e2
f5fea878c271e38946c6681c1c2434e72d0ab977
refs/heads/master
2021-12-24T00:01:26.759181
2021-12-14T18:21:47
2021-12-14T18:22:26
90,206,289
0
1
null
2017-05-04T00:54:28
2017-05-04T00:54:28
null
UTF-8
Python
false
false
3,775
py
"""Library of helper classes of optimizer.""" class GradientsClipOption: """Gradients clip option for optimizer class. Attributes: clipnorm: float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value. clipvalue: float. If set, the gradient of each weight is clipped to be no higher than this value. global_clipnorm: float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value. """ def __init__(self, clipnorm=None, clipvalue=None, global_clipnorm=None): if clipnorm is not None and global_clipnorm is not None: raise ValueError(f"At most one of `clipnorm` and `global_clipnorm` can " f"be set. Received: clipnorm={clipnorm}, " f"global_clipnorm={global_clipnorm}.") if clipnorm and clipnorm <= 0: raise ValueError("Clipnorm should be a positive number, but received " f"clipnorm={clipnorm}.") if global_clipnorm and global_clipnorm <= 0: raise ValueError("global_clipnorm should be a positive number, but " f"received global_clipnorm={global_clipnorm}.") if clipvalue and clipvalue <= 0: raise ValueError("clipvalue should be a positive number, but received " f"clipvalue={clipvalue}.") self.clipnorm = clipnorm self.global_clipnorm = global_clipnorm self.clipvalue = clipvalue def get_config(self): return { "clipnorm": self.clipnorm, "global_clipnorm": self.global_clipnorm, "clipvalue": self.clipvalue, } class EMAOption: # TODO(b/207532340): Add examples on how to use this EMAOption. """EMA option for optimizer class. Attributes: use_ema: boolean, default to False. If True, exponential moving average (EMA) is applied. EMA consists of computing an exponential moving average of the weights of the model (as the weight values change after each training batch), and periodically overwriting the weights with their moving average. ema_momentum: float, default to 0.99. Only used if `use_ema=True`. This is the momentum to use when computing the EMA of the model's weights: `new_average = ema_momentum * old_average + (1 - ema_momentum) * current_variable_value`. ema_overwrite_frequency: int or None, default to 100. Only used if `use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, we overwrite the model variable by its stored moving average. If None, we do not overwrite model variables in the middle of training, and users need to explicitly overwrite the model variable by calling `finalize_variable_update()`. """ def __init__(self, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=100): self.use_ema = use_ema if use_ema: # Verify the arguments related to EMA. if ema_momentum > 1 or ema_momentum < 0: raise ValueError("`ema_momentum` must be in the range [0, 1]. " f"Received: ema_momentum={ema_momentum}") if ema_overwrite_frequency and (not isinstance( ema_overwrite_frequency, int) or ema_overwrite_frequency < 1): raise ValueError( "`ema_overwrite_frequency` must be an integer > 1 or None. " f"Received: ema_overwrite_frequency={ema_overwrite_frequency}") self.ema_momentum = ema_momentum self.ema_overwrite_frequency = ema_overwrite_frequency def get_config(self): return { "use_ema": self.use_ema, "ema_momentum": self.ema_momentum, "ema_overwrite_frequency": self.ema_overwrite_frequency, }
595eacd1e61bf19c94b33e3e829d75688a0ceefb
ecb21f6dd5d49b44826974a1c06357a8405aa89e
/code/train/csnn_two_level_inhibition.py
e9cbb3ff928be0a7613608bfd7d116895e9fcef6
[]
no_license
gumpfly/stdp-mnist
9924279014e66cb26fab75f1136f38fd05d8fa3e
03c32a47e9cd6fe8f902d134c2aa1d04bff037aa
refs/heads/master
2021-08-15T11:30:13.544379
2017-11-17T18:59:49
2017-11-17T18:59:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
55,633
py
''' Convolutional spiking neural network training, testing, and evaluation script. Evaluation can be done outside of this script; however, it is most straightforward to call this script with mode=train, then mode=test on HPC systems, where in the test mode, the network evaluation is written to disk. ''' import warnings warnings.filterwarnings('ignore') import matplotlib.cm as cmap import brian_no_units import networkx as nx import cPickle as p import pandas as pd import numpy as np import brian as b import argparse import random import timeit import time import math import os from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.spatial.distance import euclidean from sklearn.metrics import confusion_matrix from struct import unpack from brian import * from util import * np.set_printoptions(threshold=np.nan, linewidth=200) # only show log messages of level ERROR or higher b.log_level_error() # set these appropriate to your directory structure top_level_path = os.path.join('..', '..') MNIST_data_path = os.path.join(top_level_path, 'data') model_name = 'csnn_two_level_inhibition' results_path = os.path.join(top_level_path, 'results', model_name) performance_dir = os.path.join(top_level_path, 'performance', model_name) activity_dir = os.path.join(top_level_path, 'activity', model_name) deltas_dir = os.path.join(top_level_path, 'deltas', model_name) spikes_dir = os.path.join(top_level_path, 'spikes', model_name) weights_dir = os.path.join(top_level_path, 'weights', model_name) best_weights_dir = os.path.join(weights_dir, 'best') end_weights_dir = os.path.join(weights_dir, 'end') assignments_dir = os.path.join(top_level_path, 'assignments', model_name) best_assignments_dir = os.path.join(assignments_dir, 'best') end_assignments_dir = os.path.join(assignments_dir, 'end') misc_dir = os.path.join(top_level_path, 'misc', model_name) best_misc_dir = os.path.join(misc_dir, 'best') end_misc_dir = os.path.join(misc_dir, 'end') for d in [ performance_dir, activity_dir, weights_dir, deltas_dir, misc_dir, best_misc_dir, assignments_dir, best_assignments_dir, MNIST_data_path, results_path, best_weights_dir, end_weights_dir, end_misc_dir, end_assignments_dir, spikes_dir ]: if not os.path.isdir(d): os.makedirs(d) def normalize_weights(): ''' Squash the input to excitatory synaptic weights to sum to a prespecified number. ''' for conn_name in input_connections: connection = input_connections[conn_name][:].todense() for feature in xrange(conv_features): feature_connection = connection[:, feature * n_e : (feature + 1) * n_e] column_sums = np.sum(np.asarray(feature_connection), axis=0) column_factors = weight['ee_input'] / column_sums for n in xrange(n_e): dense_weights = input_connections[conn_name][:, feature * n_e + n].todense() dense_weights[convolution_locations[n]] *= column_factors[n] input_connections[conn_name][:, feature * n_e + n] = dense_weights def plot_input(rates): ''' Plot the current input example during the training procedure. ''' fig = plt.figure(fig_num, figsize = (5, 5)) im = plt.imshow(rates.reshape((28, 28)), interpolation='nearest', vmin=0, vmax=64, cmap='binary') plt.colorbar(im) plt.title('Current input example') fig.canvas.draw() return im, fig def update_input(rates, im, fig): ''' Update the input image to use for input plotting. ''' im.set_array(rates.reshape((28, 28))) fig.canvas.draw() return im def update_assignments_plot(assignments, im): im.set_array(assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T) return im def get_2d_input_weights(): ''' Get the weights from the input to excitatory layer and reshape it to be two dimensional and square. ''' # specify the desired shape of the reshaped input -> excitatory weights rearranged_weights = np.zeros((conv_features * conv_size, conv_size * n_e)) # get the input -> excitatory synaptic weights connection = input_connections['XeAe'][:] for n in xrange(n_e): for feature in xrange(conv_features): temp = connection[:, feature * n_e + (n // n_e_sqrt) * n_e_sqrt + (n % n_e_sqrt)].todense() rearranged_weights[ feature * conv_size : (feature + 1) * conv_size, n * conv_size : (n + 1) * conv_size ] = \ temp[convolution_locations[n]].reshape((conv_size, conv_size)) if n_e == 1: ceil_sqrt = int(math.ceil(math.sqrt(conv_features))) square_weights = np.zeros((28 * ceil_sqrt, 28 * ceil_sqrt)) for n in xrange(conv_features): square_weights[(n // ceil_sqrt) * 28 : ((n // ceil_sqrt) + 1) * 28, (n % ceil_sqrt) * 28 : ((n % ceil_sqrt) + 1) * 28] = rearranged_weights[n * 28 : (n + 1) * 28, :] return square_weights.T else: square_weights = np.zeros((conv_size * features_sqrt * n_e_sqrt, conv_size * features_sqrt * n_e_sqrt)) for n_1 in xrange(n_e_sqrt): for n_2 in xrange(n_e_sqrt): for f_1 in xrange(features_sqrt): for f_2 in xrange(features_sqrt): square_weights[conv_size * (n_2 * features_sqrt + f_2) : conv_size * (n_2 * features_sqrt + f_2 + 1), \ conv_size * (n_1 * features_sqrt + f_1) : conv_size * (n_1 * features_sqrt + f_1 + 1)] = \ rearranged_weights[(f_1 * features_sqrt + f_2) * conv_size : (f_1 * features_sqrt + f_2 + 1) * conv_size, \ (n_1 * n_e_sqrt + n_2) * conv_size : (n_1 * n_e_sqrt + n_2 + 1) * conv_size] return square_weights.T def get_input_weights(weight_matrix): ''' Get the weights from the input to excitatory layer and reshape it to be two dimensional and square. ''' weights = [] # for each convolution feature for feature in xrange(conv_features): # for each excitatory neuron in this convolution feature for n in xrange(n_e): temp = weight_matrix[:, feature * n_e + (n // n_e_sqrt) * n_e_sqrt + (n % n_e_sqrt)] weights.append(np.ravel(temp[convolution_locations[n]])) # return the rearranged weights to display to the user return weights def plot_weights_and_assignments(assignments): ''' Plot the weights from input to excitatory layer to view during training. ''' weights = get_2d_input_weights() fig = plt.figure(fig_num, figsize=(18, 9)) ax1 = plt.subplot(121) image1 = ax1.imshow(weights, interpolation='nearest', vmin=0, vmax=wmax_ee, cmap=cmap.get_cmap('hot_r')) ax1.set_title(ending.replace('_', ' ')) ax2 = plt.subplot(122) color = plt.get_cmap('RdBu', 11) reshaped_assignments = assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T image2 = ax2.matshow(reshaped_assignments, cmap=color, vmin=-1.5, vmax=9.5) ax2.set_title('Neuron labels') divider1 = make_axes_locatable(ax1) divider2 = make_axes_locatable(ax2) cax1 = divider1.append_axes("right", size="5%", pad=0.05) cax2 = divider2.append_axes("right", size="5%", pad=0.05) plt.colorbar(image1, cax=cax1) plt.colorbar(image2, cax=cax2, ticks=np.arange(-1, 10)) if n_e != 1: ax1.set_xticks(xrange(conv_size, conv_size * n_e_sqrt * features_sqrt + 1, conv_size), xrange(1, conv_size * n_e_sqrt * features_sqrt + 1)) ax1.set_yticks(xrange(conv_size, conv_size * n_e_sqrt * features_sqrt + 1, conv_size), xrange(1, conv_size * n_e_sqrt * features_sqrt + 1)) for pos in xrange(conv_size * features_sqrt, conv_size * features_sqrt * n_e_sqrt, conv_size * features_sqrt): ax1.axhline(pos) ax1.axvline(pos) else: ax1.set_xticks(xrange(conv_size, conv_size * (int(np.sqrt(conv_features)) + 1), conv_size), xrange(1, int(np.sqrt(conv_features)) + 1)) ax1.set_yticks(xrange(conv_size, conv_size * (int(np.sqrt(conv_features)) + 1), conv_size), xrange(1, int(np.sqrt(conv_features)) + 1)) plt.tight_layout() fig.canvas.draw() return fig, ax1, ax2, image1, image2 def update_weights_and_assignments(fig, ax1, ax2, im1, im2, assignments, spike_counts): ''' Update the plot of the weights from input to excitatory layer to view during training. ''' weights = get_2d_input_weights() im1.set_array(weights) reshaped_assignments = assignments.reshape((int(np.sqrt(n_e_total)), int(np.sqrt(n_e_total)))).T im2.set_array(reshaped_assignments) for txt in ax2.texts: txt.set_visible(False) spike_counts_reshaped = spike_counts.reshape([features_sqrt, features_sqrt]) for x in xrange(features_sqrt): for y in xrange(features_sqrt): c = spike_counts_reshaped[x, y] if c > 0: ax2.text(x, y, str(c), va='center', ha='center', weight='heavy', fontsize=16) else: ax2.text(x, y, '', va='center', ha='center') fig.canvas.draw() def get_current_performance(performances, current_example_num): ''' Evaluate the performance of the network on the past 'update_interval' training examples. ''' global input_numbers current_evaluation = int(current_example_num / update_interval) if current_example_num == num_examples -1: current_evaluation+=1 start_num = current_example_num - update_interval end_num = current_example_num wrong_idxs = {} wrong_labels = {} for scheme in performances.keys(): difference = output_numbers[scheme][start_num : end_num, 0] - input_numbers[start_num : end_num] correct = len(np.where(difference == 0)[0]) wrong_idxs[scheme] = np.where(difference != 0)[0] wrong_labels[scheme] = output_numbers[scheme][start_num : end_num, 0][np.where(difference != 0)[0]] performances[scheme][current_evaluation] = correct / float(update_interval) * 100 return performances, wrong_idxs, wrong_labels def plot_performance(fig_num, performances, num_evaluations): ''' Set up the performance plot for the beginning of the simulation. ''' time_steps = range(0, num_evaluations) fig = plt.figure(fig_num, figsize = (12, 4)) fig_num += 1 for performance in performances: plt.plot(time_steps[:np.size(np.nonzero(performances[performance]))], \ np.extract(np.nonzero(performances[performance]), performances[performance]), label=performance) lines = plt.gca().lines plt.ylim(ymax=100) plt.xticks(xrange(0, num_evaluations + 10, 10), xrange(0, ((num_evaluations + 10) * update_interval), 10)) plt.legend() plt.grid(True) plt.title('Classification performance per update interval') fig.canvas.draw() return lines, fig_num, fig def update_performance_plot(lines, performances, current_example_num, fig): ''' Update the plot of the performance based on results thus far. ''' performances, wrong_idxs, wrong_labels = get_current_performance(performances, current_example_num) for line, performance in zip(lines, performances): line.set_xdata(range((current_example_num / update_interval) + 1)) line.set_ydata(performances[performance][:(current_example_num / update_interval) + 1]) fig.canvas.draw() return lines, performances, wrong_idxs, wrong_labels def plot_deltas(fig_num, deltas, num_weight_updates): ''' Set up the performance plot for the beginning of the simulation. ''' time_steps = range(0, num_weight_updates) fig = plt.figure(fig_num, figsize = (12, 4)) fig_num += 1 plt.plot([], [], label='Absolute difference in weights') lines = plt.gca().lines plt.ylim(ymin=0, ymax=conv_size*n_e_total) plt.xticks(xrange(0, num_weight_updates + weight_update_interval, 100), \ xrange(0, ((num_weight_updates + weight_update_interval) * weight_update_interval), 100)) plt.legend() plt.grid(True) plt.title('Absolute difference in weights per weight update interval') fig.canvas.draw() return lines[0], fig_num, fig def update_deltas_plot(line, deltas, current_example_num, fig): ''' Update the plot of the performance based on results thus far. ''' delta = deltas[int(current_example_num / weight_update_interval)] line.set_xdata(range(int(current_example_num / weight_update_interval) + 1)) ydata = list(line.get_ydata()) ydata.append(delta) line.set_ydata(ydata) fig.canvas.draw() return line, deltas def predict_label(assignments, spike_rates, accumulated_rates, spike_proportions): ''' Given the label assignments of the excitatory layer and their spike rates over the past 'update_interval', get the ranking of each of the categories of input. ''' output_numbers = {} for scheme in voting_schemes: summed_rates = [0] * 10 num_assignments = [0] * 10 if scheme == 'all': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_assignments[i] elif scheme == 'all_active': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: summed_rates[i] = np.sum(np.nonzero(spike_rates[assignments == i])) / num_assignments[i] elif scheme == 'activity_neighborhood': for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: for idx in np.where(assignments == i)[0]: if np.sum(spike_rates[idx]) != 0: neighbors = [idx] neighbors.extend(get_neighbors(idx, features_sqrt)) summed_rates[i] += np.sum(spike_rates[neighbors]) / \ np.size(np.nonzero(spike_rates[neighbors].ravel())) elif scheme == 'most_spiked_neighborhood': neighborhood_activity = np.zeros([conv_features, n_e]) most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for i in xrange(10): num_assignments[i] = len(np.where(assignments == i)[0]) if num_assignments[i] > 0: for idx in np.where(assignments == i)[0]: if np.sum(spike_rates[idx]) != 0: neighbors = [idx] neighbors.extend(get_neighbors(idx, features_sqrt)) if np.size(np.nonzero(spike_rates[neighbors])) > 0: neighborhood_activity[idx] = np.sum(spike_rates[neighbors]) / \ np.size(np.nonzero(spike_rates[neighbors].ravel())) for n in xrange(n_e): # find the excitatory neuron which spiked the most in this input location most_spiked_array[np.argmax(neighborhood_activity[:, n : n + 1]), n] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'most_spiked_patch': most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for feature in xrange(conv_features): # count up the spikes for the neurons in this convolution patch column_sums = np.sum(spike_rates[feature : feature + 1, :], axis=0) # find the excitatory neuron which spiked the most most_spiked_array[feature, np.argmax(column_sums)] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'most_spiked_location': most_spiked_array = np.array(np.zeros((conv_features, n_e)), dtype=bool) for n in xrange(n_e): # find the excitatory neuron which spiked the most in this input location most_spiked_array[np.argmax(spike_rates[:, n : n + 1]), n] = True # for each label for i in xrange(10): # get the number of label assignments of this type num_assignments[i] = len(np.where(assignments[most_spiked_array] == i)[0]) if len(spike_rates[np.where(assignments[most_spiked_array] == i)]) > 0: # sum the spike rates of all excitatory neurons with this label, which fired the most in its patch summed_rates[i] = np.sum(spike_rates[np.where(np.logical_and(assignments == i, most_spiked_array))]) / float(np.sum(spike_rates[most_spiked_array])) elif scheme == 'confidence_weighting': for i in xrange(10): num_assignments[i] = np.count_nonzero(assignments == i) if num_assignments[i] > 0: summed_rates[i] = np.sum(spike_rates[assignments == i] * spike_proportions[(assignments == i).ravel(), i]) / num_assignments[i] output_numbers[scheme] = np.argsort(summed_rates)[::-1] return output_numbers def assign_labels(result_monitor, input_numbers, accumulated_rates, accumulated_inputs): ''' Based on the results from the previous 'update_interval', assign labels to the excitatory neurons. ''' for j in xrange(10): num_assignments = len(np.where(input_numbers == j)[0]) if num_assignments > 0: accumulated_inputs[j] += num_assignments accumulated_rates[:, j] = accumulated_rates[:, j] * 0.9 + \ np.ravel(np.sum(result_monitor[input_numbers == j], axis=0) / num_assignments) assignments = np.argmax(accumulated_rates, axis=1).reshape((conv_features, n_e)) spike_proportions = np.divide(accumulated_rates, np.sum(accumulated_rates, axis=0)) return assignments, accumulated_rates, spike_proportions def build_network(): global fig_num, assignments neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, refractory=refrac_e, reset=scr_e, compile=True, freeze=True) neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) for name in population_names: print '...Creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...Creating recurrent connections' for name in population_names: # if we're in test mode / using some stored weights if test_mode: # load up adaptive threshold parameters if save_best_model: neuron_groups['e'].theta = np.load(os.path.join(best_weights_dir, '_'.join(['theta_A', ending +'_best.npy']))) else: neuron_groups['e'].theta = np.load(os.path.join(end_weights_dir, '_'.join(['theta_A', ending +'_end.npy']))) else: # otherwise, set the adaptive additive threshold parameter at 20mV neuron_groups['e'].theta = np.ones((n_e_total)) * 20.0 * b.mV for conn_type in recurrent_conn_names: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie' and not (test_no_inhibition and test_mode): # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # get weight matrix depending on training or test phase if test_mode: if save_best_model and not test_max_inhibition: weight_matrix = np.load(os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) elif test_max_inhibition: weight_matrix = max_inhib * np.ones((n_e_total, n_e_total)) else: weight_matrix = np.load(os.path.join(end_weights_dir, '_'.join([conn_name, ending + '_end.npy']))) # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # define the actual synaptic connections and strengths for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: if n_e == 1: x, y = feature // np.sqrt(n_e_total), feature % np.sqrt(n_e_total) x_, y_ = other_feature // np.sqrt(n_e_total), other_feature % np.sqrt(n_e_total) else: x, y = feature // np.sqrt(conv_features), feature % np.sqrt(conv_features) x_, y_ = other_feature // np.sqrt(conv_features), other_feature % np.sqrt(conv_features) for n in xrange(n_e): if test_mode: connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ weight_matrix[feature * n_e + n, other_feature * n_e + n] else: if inhib_scheme == 'increasing': connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ min(max_inhib, start_inhib * \ np.sqrt(euclidean([x, y], [x_, y_]))) elif inhib_scheme == 'eth': connections[conn_name][feature * n_e + n, \ other_feature * n_e + n] = max_inhib elif inhib_scheme == 'mhat': connections[conn_name][feature * n_e + n, \ other_feature * n_e + n] = \ min(max_inhib, start_inhib * \ mhat(np.sqrt(euclidean([x, y], [x_, y_])), \ sigma=1.0, scale=1.0, shift=0.0)) print '...Creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor(neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor(neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes and do_plot: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and do_plot: b.figure(fig_num, figsize=(8, 6)) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Excitatory spikes per neuron') b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Inhibitory spikes per neuron') b.tight_layout() # creating Poission spike train from input image (784 vector, 28x28 image) for name in input_population_names: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor(input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to excitatory neuron population(s) for name in input_connection_names: print '\n...Creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in input_conn_names: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase if test_mode: if save_best_model: weight_matrix = np.load(os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) else: weight_matrix = np.load(os.path.join(end_weights_dir, '_'.join([conn_name, ending + '_end.npy']))) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + conn_type[1]], \ structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) if test_mode: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = \ weight_matrix[convolution_locations[n][idx], feature * n_e + n] else: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = (b.random() + 0.01) * 0.3 if test_mode: if do_plot: plot_weights_and_assignments(assignments) fig_num += 1 # if excitatory -> excitatory STDP is specified, add it here (input to excitatory populations) if not test_mode: print '...Creating STDP for connection', name # STDP connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # create the STDP object stdp_methods[conn_name] = b.STDP(input_connections[conn_name], eqs=eqs_stdp_ee, \ pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=wmax_ee) print '\n' def run_train(): global fig_num, input_intensity, previous_spike_count, rates, assignments, clusters, cluster_assignments, \ simple_clusters, simple_cluster_assignments, index_matrix, accumulated_rates, \ accumulated_inputs, spike_proportions if do_plot: input_image_monitor, input_image = plot_input(rates) fig_num += 1 weights_assignments_figure, weights_axes, assignments_axes, weights_image, \ assignments_image = plot_weights_and_assignments(assignments) fig_num += 1 # set up performance recording and plotting num_evaluations = int(num_examples / update_interval) + 1 performances = { voting_scheme : np.zeros(num_evaluations) for voting_scheme in voting_schemes } num_weight_updates = int(num_examples / weight_update_interval) all_deltas = np.zeros((num_weight_updates, n_e_total)) deltas = np.zeros(num_weight_updates) if do_plot: performance_monitor, fig_num, fig_performance = plot_performance(fig_num, performances, num_evaluations) line, fig_num, deltas_figure = plot_deltas(fig_num, deltas, num_weight_updates) if plot_all_deltas: lines, fig_num, all_deltas_figure = plot_all_deltas(fig_num, all_deltas, num_weight_updates) else: performances, wrong_idxs, wrong_labels = get_current_performance(performances, 0) # initialize network j = 0 num_retries = 0 b.run(0) if save_best_model: best_performance = 0.0 # start recording time start_time = timeit.default_timer() last_weights = input_connections['XeAe'][:].todense() current_inhib = start_inhib while j < num_examples: # get the firing rates of the next input example rates = (data['x'][j % data_size, :, :] / 8.0) * input_intensity * \ ((noise_const * np.random.randn(n_input_sqrt, n_input_sqrt)) + 1.0) # sets the input firing rates input_groups['Xe'].rate = rates.reshape(n_input) # plot the input at this step if do_plot: input_image_monitor = update_input(rates, input_image_monitor, input_image) # run the network for a single example time b.run(single_example_time) # add Gaussian noise to weights after each iteration if weights_noise: input_connections['XeAe'].W.alldata[:] *= 1 + (np.random.randn(n_input * conv_features) * weights_noise_constant) # get new neuron label assignments every 'update_interval' if j % update_interval == 0 and j > 0: assignments, accumulated_rates, spike_proportions = assign_labels(result_monitor, input_numbers[j - update_interval : j], accumulated_rates, accumulated_inputs) # get count of spikes over the past iteration current_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) - previous_spike_count previous_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) # make sure synapse weights don't grow too large normalize_weights() if not j % weight_update_interval == 0 and save_weights: save_connections(weights_dir, connections, input_connections, ending, j) save_theta(weights_dir, population_names, neuron_groups, ending, j) np.save(os.path.join(assignments_dir, '_'.join(['assignments', ending, str(j)])), assignments) np.save(os.path.join(misc_dir, '_'.join(['accumulated_rates', ending, str(j)])), accumulated_rates) np.save(os.path.join(misc_dir, '_'.join(['spike_proportions', ending, str(j)])), spike_proportions) if j % weight_update_interval == 0: deltas[j / weight_update_interval] = np.sum(np.abs((input_connections['XeAe'][:].todense() - last_weights))) if plot_all_deltas: all_deltas[j / weight_update_interval, :] = np.ravel(input_connections['XeAe'][:].todense() - last_weights) last_weights = input_connections['XeAe'][:].todense() # pickling performance recording and iteration number p.dump((j, deltas), open(os.path.join(deltas_dir, ending + '.p'), 'wb')) # update weights every 'weight_update_interval' if j % weight_update_interval == 0 and do_plot: update_weights_and_assignments(weights_assignments_figure, weights_axes, assignments_axes, \ weights_image, assignments_image, assignments, current_spike_count) # if the neurons in the network didn't spike more than four times if np.sum(current_spike_count) < 5 and num_retries < 3: # increase the intensity of input input_intensity += 2 num_retries += 1 # set all network firing rates to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # let the network relax back to equilibrium if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # otherwise, record results and continue simulation else: num_retries = 0 if j == increase_iter: for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for n in xrange(n_e): connections['AiAe'][feature * n_e + n, \ other_feature * n_e + n] = max_inhib # record the current number of spikes result_monitor[j % update_interval, :] = current_spike_count # get true label of last input example input_numbers[j] = data['y'][j % data_size][0] activity = result_monitor[j % update_interval, :] / np.sum(result_monitor[j % update_interval, :]) if do_plot and save_spikes: fig = plt.figure(9, figsize = (8, 8)) plt.imshow(rates.reshape((28, 28)), interpolation='nearest', vmin=0, vmax=64, cmap='binary') plt.title(str(data['y'][j % data_size][0]) + ' : ' + ', '.join( \ [str(int(output_numbers[scheme][j, 0])) for scheme in voting_schemes])) fig = plt.figure(10, figsize = (7, 7)) plt.xticks(xrange(features_sqrt)) plt.yticks(xrange(features_sqrt)) plt.title('Activity heatmap (total spikes = ' + str(np.sum(result_monitor[j % update_interval, :])) + ')') plt.imshow(activity.reshape((features_sqrt, features_sqrt)).T, interpolation='nearest', cmap='binary') plt.grid(True) fig.canvas.draw() if save_spikes: np.save(os.path.join(spikes_dir, '_'.join([ending, 'spike_counts', str(j)])), current_spike_count) np.save(os.path.join(spikes_dir, '_'.join([ending, 'rates', str(j)])), rates) # get network filter weights filters = input_connections['XeAe'][:].todense() # get the output classifications of the network for scheme, outputs in predict_label(assignments, result_monitor[j % update_interval, :], \ accumulated_rates, spike_proportions).items(): if scheme != 'distance': output_numbers[scheme][j, :] = outputs elif scheme == 'distance': current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() output_numbers[scheme][j, 0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] # print progress if j % print_progress_interval == 0 and j > 0: print 'runs done:', j, 'of', int(num_examples), '(time taken for past', print_progress_interval, 'runs:', str(timeit.default_timer() - start_time) + ')' start_time = timeit.default_timer() if j % weight_update_interval == 0 and do_plot: update_deltas_plot(line, deltas, j, deltas_figure) if plot_all_deltas: update_all_deltas_plot(lines, all_deltas, j, all_deltas_figure) # plot performance if appropriate if (j % update_interval == 0 or j == num_examples - 1) and j > 0: if do_plot: # updating the performance plot perf_plot, performances, wrong_idxs, wrong_labels = update_performance_plot(performance_monitor, performances, j, fig_performance) else: performances, wrong_idxs, wrong_labels = get_current_performance(performances, j) # pickling performance recording and iteration number p.dump((j, performances), open(os.path.join(performance_dir, ending + '.p'), 'wb')) # Save the best model's weights and theta parameters (if so specified) if save_best_model: for performance in performances: if performances[performance][int(j / float(update_interval))] > best_performance: print '\n', 'Best model thus far! Voting scheme:', performance, '\n' best_performance = performances[performance][int(j / float(update_interval))] save_connections(best_weights_dir, connections, input_connections, ending, 'best') save_theta(best_weights_dir, population_names, neuron_groups, ending, 'best') np.save(os.path.join(best_assignments_dir, '_'.join(['assignments', ending, 'best'])), assignments) np.save(os.path.join(best_misc_dir, '_'.join(['accumulated_rates', ending, 'best'])), accumulated_rates) np.save(os.path.join(best_misc_dir, '_'.join(['spike_proportions', ending, 'best'])), spike_proportions) # Print out performance progress intermittently for performance in performances: print '\nClassification performance (' + performance + ')', performances[performance][1:int(j / float(update_interval)) + 1], \ '\nAverage performance:', sum(performances[performance][1:int(j / float(update_interval)) + 1]) / \ float(len(performances[performance][1:int(j / float(update_interval)) + 1])), \ '\nBest performance:', max(performances[performance][1:int(j / float(update_interval)) + 1]), '\n' # set input firing rates back to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # run the network for 'resting_time' to relax back to rest potentials if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # bookkeeping input_intensity = start_input_intensity j += 1 # ensure weights don't grow without bound normalize_weights() print '\n' def run_test(): global fig_num, input_intensity, previous_spike_count, rates, assignments, clusters, cluster_assignments, \ simple_clusters, simple_cluster_assignments, index_matrix, accumulated_rates, \ accumulated_inputs, spike_proportions # set up performance recording and plotting num_evaluations = int(num_examples / update_interval) + 1 performances = { voting_scheme : np.zeros(num_evaluations) for voting_scheme in voting_schemes } num_weight_updates = int(num_examples / weight_update_interval) all_deltas = np.zeros((num_weight_updates, (conv_size ** 2) * n_e_total)) deltas = np.zeros(num_weight_updates) # initialize network j = 0 num_retries = 0 b.run(0) # get network filter weights filters = input_connections['XeAe'][:].todense() # start recording time start_time = timeit.default_timer() while j < num_examples: # get the firing rates of the next input example rates = (data['x'][j % data_size, :, :] / 8.0) * input_intensity # sets the input firing rates input_groups['Xe'].rate = rates.reshape(n_input) # run the network for a single example time b.run(single_example_time) # get count of spikes over the past iteration current_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) - previous_spike_count previous_spike_count = np.copy(spike_counters['Ae'].count[:]).reshape((conv_features, n_e)) # if the neurons in the network didn't spike more than four times if np.sum(current_spike_count) < 5 and num_retries < 3: # increase the intensity of input input_intensity += 2 num_retries += 1 # set all network firing rates to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # let the network relax back to equilibrium if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # otherwise, record results and continue simulation else: num_retries = 0 # record the current number of spikes result_monitor[j % update_interval, :] = current_spike_count # get true label of the past input example input_numbers[j] = data['y'][j % data_size][0] # get the output classifications of the network for scheme, outputs in predict_label(assignments, result_monitor[j % update_interval, :], accumulated_rates, spike_proportions).items(): if scheme != 'distance': output_numbers[scheme][j, :] = outputs elif scheme == 'distance': current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() output_numbers[scheme][j, 0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] # print progress if j % print_progress_interval == 0 and j > 0: print 'runs done:', j, 'of', int(num_examples), '(time taken for past', print_progress_interval, 'runs:', str(timeit.default_timer() - start_time) + ')' start_time = timeit.default_timer() # set input firing rates back to zero for name in input_population_names: input_groups[name + 'e'].rate = 0 # run the network for 'resting_time' to relax back to rest potentials if not reset_state_vars: b.run(resting_time) else: for neuron_group in neuron_groups: neuron_groups[neuron_group].v = v_reset_e neuron_groups[neuron_group].ge = 0 neuron_groups[neuron_group].gi = 0 # bookkeeping input_intensity = start_input_intensity j += 1 print '\n' def save_results(): ''' Save results of simulation (train or test) ''' print '...Saving results' if not test_mode: save_connections(end_weights_dir, connections, input_connections, ending, 'end') save_theta(end_weights_dir, population_names, neuron_groups, ending, 'end') np.save(os.path.join(end_assignments_dir, '_'.join(['assignments', ending, 'end'])), assignments) np.save(os.path.join(end_misc_dir, '_'.join(['accumulated_rates', ending, 'end'])), accumulated_rates) np.save(os.path.join(end_misc_dir, '_'.join(['spike_proportions', ending, 'end'])), spike_proportions) else: np.save(os.path.join(activity_dir, '_'.join(['results', str(num_examples), ending])), result_monitor) np.save(os.path.join(activity_dir, '_'.join(['input_numbers', str(num_examples), ending])), input_numbers) print '\n' def evaluate_results(): ''' Evalute the network using the various voting schemes in test mode ''' global update_interval test_results = {} for scheme in voting_schemes: test_results[scheme] = np.zeros((10, num_examples)) print '\n...Calculating accuracy per voting scheme' # get network filter weights filters = input_connections['XeAe'][:].todense() # for idx in xrange(end_time_testing - end_time_training): for idx in xrange(num_examples): label_rankings = predict_label(assignments, result_monitor[idx, :], accumulated_rates, spike_proportions) for scheme in voting_schemes: if scheme != 'distance': test_results[scheme][:, idx] = label_rankings[scheme] elif scheme == 'distance': rates = (data['x'][idx % data_size, :, :] / 8.0) * input_intensity current_input = (rates * (weight['ee_input'] / np.sum(rates))).ravel() results = np.zeros(10) results[0] = assignments[np.argmin([ euclidean(current_input, \ filters[:, i]) for i in xrange(conv_features) ])] test_results[scheme][:, idx] = results print test_results differences = { scheme : test_results[scheme][0, :] - input_numbers for scheme in voting_schemes } correct = { scheme : len(np.where(differences[scheme] == 0)[0]) for scheme in voting_schemes } incorrect = { scheme : len(np.where(differences[scheme] != 0)[0]) for scheme in voting_schemes } accuracies = { scheme : correct[scheme] / float(num_examples) * 100 for scheme in voting_schemes } conf_matrices = np.array([confusion_matrix(test_results[scheme][0, :], \ input_numbers) for scheme in voting_schemes]) np.save(os.path.join(results_path, '_'.join(['confusion_matrix', ending]) + '.npy'), conf_matrices) print '\nConfusion matrix:\n\n', conf_matrices for scheme in voting_schemes: print '\n-', scheme, 'accuracy:', accuracies[scheme] results = pd.DataFrame([ [ ending ] + accuracies.values() ], columns=[ 'Model' ] + accuracies.keys()) filename = '_'.join([str(conv_features), 'results.csv']) if not filename in os.listdir(results_path): results.to_csv(os.path.join(results_path, filename), index=False) else: all_results = pd.read_csv(os.path.join(results_path, filename)) all_results = pd.concat([all_results, results], ignore_index=True) all_results.to_csv(os.path.join(results_path, filename), index=False) print '\n' if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', default='train', help='Network operating mode: \ "train" mode learns the synaptic weights of the network, and \ "test" mode holds the weights fixed / evaluates accuracy on test data.') parser.add_argument('--conv_size', type=int, default=28, help='Side length of the square convolution \ window used by the input -> excitatory layer of the network.') parser.add_argument('--conv_stride', type=int, default=0, help='Horizontal, vertical stride \ of the convolution window used by input layer of the network.') parser.add_argument('--conv_features', type=int, default=100, help='Number of excitatory \ convolutional features / filters / patches used in the network.') parser.add_argument('--do_plot', type=str, default='False', help='Whether or not to display plots during network \ training / testing. Defaults to False, as this makes the \ network operation speedier, and possible to run on HPC resources.') parser.add_argument('--num_train', type=int, default=10000, help='The number of \ examples for which to train the network on.') parser.add_argument('--num_test', type=int, default=10000, help='The number of \ examples for which to test the network on.') parser.add_argument('--random_seed', type=int, default=0, help='The random seed \ (any integer) from which to generate random numbers.') parser.add_argument('--save_weights', type=str, default='False', help='Whether or not to \ save the weights of the model every `weight_update_interval`.') parser.add_argument('--weight_update_interval', type=int, default=10, help='How often \ to update the plot of network filter weights.') parser.add_argument('--save_best_model', type=str, default='True', help='Whether \ to save the current best version of the model.') parser.add_argument('--update_interval', type=int, default=250, help='How often \ to update neuron labels and classify new inputs.') parser.add_argument('--plot_all_deltas', type=str, default='False', help='Whether or not to \ plot weight changes for all neurons from input to excitatory layer.') parser.add_argument('--train_remove_inhibition', type=str, default='False', help='Whether or not to \ remove lateral inhibition during the training phase.') parser.add_argument('--test_no_inhibition', type=str, default='False', help='Whether or not to \ remove lateral inhibition during the test phase.') parser.add_argument('--test_max_inhibition', type=str, default='False', help='Whether or not to \ use ETH-style inhibition during the test phase.') parser.add_argument('--start_inhib', type=float, default=0.1, help='The beginning value \ of inhibiton for the increasing scheme.') parser.add_argument('--max_inhib', type=float, default=17.4, help='The maximum synapse \ weight for inhibitory to excitatory connections.') parser.add_argument('--reset_state_vars', type=str, default='False', help='Whether to \ reset neuron / synapse state variables or run a "reset" period.') parser.add_argument('--inhib_update_interval', type=int, default=250, \ help='How often to increase the inhibition strength.') parser.add_argument('--inhib_schedule', type=str, default='linear', help='How to \ update the strength of inhibition as the training progresses.') parser.add_argument('--save_spikes', type=str, default='False', help='Whether or not to \ save 2D graphs of spikes to later use to make an activity time-lapse.') parser.add_argument('--normalize_inputs', type=str, default='False', help='Whether or not \ to ensure all inputs contain the same amount of "ink".') parser.add_argument('--proportion_low', type=float, default=0.5, help='What proportion of \ the training to grow the inhibition from "start_inhib" to "max_inhib".') parser.add_argument('--noise_const', type=float, default=0.0, help='The scale of the \ noise added to input examples.') parser.add_argument('--inhib_scheme', type=str, default='increasing', help='How inhibition from \ inhibitory to excitatory neurons is handled.') parser.add_argument('--weights_noise', type=str, default='False', help='Whether to use multiplicative \ Gaussian noise on synapse weights on each iteration.') parser.add_argument('--weights_noise_constant', type=float, default=1e-2, help='The spread of the \ Gaussian noise used on synapse weights ') parser.add_argument('--start_input_intensity', type=float, default=2.0, help='The intensity at which the \ input is (default) presented to the network.') parser.add_argument('--test_adaptive_threshold', type=str, default='False', help='Whether or not to allow \ neuron thresholds to adapt during the test phase.') parser.add_argument('--train_time', type=float, default=0.35, help='How long training \ inputs are presented to the network.') parser.add_argument('--train_rest', type=float, default=0.15, help='How long the network is allowed \ to settle back to equilibrium between training examples.') parser.add_argument('--test_time', type=float, default=0.35, help='How long test \ inputs are presented to the network.') parser.add_argument('--test_rest', type=float, default=0.15, help='How long the network is allowed \ to settle back to equilibrium between test examples.') parser.add_argument('--dt', type=float, default=0.25, help='Integration time step in milliseconds.') # parse arguments and place them in local scope args = parser.parse_args() args = vars(args) locals().update(args) print '\nOptional argument values:' for key, value in args.items(): print '-', key, ':', value print '\n' for var in [ 'do_plot', 'plot_all_deltas', 'reset_state_vars', 'test_max_inhibition', \ 'normalize_inputs', 'save_weights', 'save_best_model', 'test_no_inhibition', \ 'save_spikes', 'weights_noise', 'test_adaptive_threshold' ]: if locals()[var] == 'True': locals()[var] = True elif locals()[var] == 'False': locals()[var] = False else: raise Exception('Expecting True or False-valued command line argument "' + var + '".') # test or training mode test_mode = mode == 'test' if test_mode: num_examples = num_test else: num_examples = num_train if test_mode: data_size = 10000 else: data_size = 60000 # At which iteration do we increase the inhibition to the ETH level? increase_iter = int(num_train * proportion_low) # set brian global preferences b.set_global_preferences(defaultclock = b.Clock(dt=dt*b.ms), useweave = True, gcc_options = ['-ffast-math -march=native'], usecodegen = True, usecodegenweave = True, usecodegenstateupdate = True, usecodegenthreshold = False, usenewpropagate = True, usecstdp = True, openmp = False, magic_useframes = False, useweave_linear_diffeq = True) # for reproducibility's sake np.random.seed(random_seed) start = timeit.default_timer() data = get_labeled_data(os.path.join(MNIST_data_path, 'testing' if test_mode else 'training'), not test_mode, False, xrange(10), 1000, normalize_inputs) print 'Time needed to load data:', timeit.default_timer() - start # set parameters for simulation based on train / test mode record_spikes = True # number of inputs to the network n_input = 784 n_input_sqrt = int(math.sqrt(n_input)) # number of neurons parameters if conv_size == 28 and conv_stride == 0: n_e = 1 else: n_e = ((n_input_sqrt - conv_size) / conv_stride + 1) ** 2 n_e_total = n_e * conv_features n_e_sqrt = int(math.sqrt(n_e)) n_i = n_e features_sqrt = int(math.ceil(math.sqrt(conv_features))) # time (in seconds) per data example presentation and rest period in between if not test_mode: single_example_time = train_time * b.second resting_time = train_rest * b.second else: single_example_time = test_time * b.second resting_time = test_rest * b.second # set the update interval if test_mode: update_interval = num_examples # weight updates and progress printing intervals print_progress_interval = 10 # rest potential parameters, reset potential parameters, threshold potential parameters, and refractory periods v_rest_e, v_rest_i = -65. * b.mV, -60. * b.mV v_reset_e, v_reset_i = -65. * b.mV, -45. * b.mV v_thresh_e, v_thresh_i = -52. * b.mV, -40. * b.mV refrac_e, refrac_i = 5. * b.ms, 2. * b.ms # dictionaries for weights and delays weight, delay = {}, {} # populations, connections, saved connections, etc. input_population_names = [ 'X' ] population_names = [ 'A' ] input_connection_names = [ 'XA' ] save_conns = [ 'XeAe', 'AeAe' ] # weird and bad names for variables, I think input_conn_names = [ 'ee_input' ] recurrent_conn_names = [ 'ei', 'ie', 'ee' ] # setting weight, delay, and intensity parameters weight['ee_input'] = (conv_size ** 2) * 0.099489796 delay['ee_input'] = (0 * b.ms, 10 * b.ms) delay['ei_input'] = (0 * b.ms, 5 * b.ms) input_intensity = start_input_intensity current_inhibition = 1.0 # time constants, learning rates, max weights, weight dependence, etc. tc_pre_ee, tc_post_ee = 20 * b.ms, 20 * b.ms nu_ee_pre, nu_ee_post = 0.0001, 0.01 nu_AeAe_pre, nu_Ae_Ae_post = 0.1, 0.5 wmax_ee = 1.0 exp_ee_post = exp_ee_pre = 0.2 w_mu_pre, w_mu_post = 0.2, 0.2 # setting up differential equations (depending on train / test mode) if test_mode and not test_adaptive_threshold: scr_e = 'v = v_reset_e; timer = 0*ms' else: tc_theta = 1e7 * b.ms theta_plus_e = 0.05 * b.mV scr_e = 'v = v_reset_e; theta += theta_plus_e; timer = 0*ms' offset = 20.0 * b.mV v_thresh_e = '(v>(theta - offset + ' + str(v_thresh_e) + ')) * (timer>refrac_e)' # equations for neurons neuron_eqs_e = ''' dv/dt = ((v_rest_e - v) + (I_synE + I_synI) / nS) / (100 * ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-100.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' if test_mode: neuron_eqs_e += '\n theta :volt' else: neuron_eqs_e += '\n dtheta/dt = -theta / (tc_theta) : volt' neuron_eqs_e += '\n dtimer/dt = 100.0 : ms' neuron_eqs_i = ''' dv/dt = ((v_rest_i - v) + (I_synE + I_synI) / nS) / (10*ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-85.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' # STDP synaptic traces eqs_stdp_ee = ''' dpre/dt = -pre / tc_pre_ee : 1.0 dpost/dt = -post / tc_post_ee : 1.0 ''' eqs_stdp_AeAe = ''' dpre/dt = -pre / tc_pre_ee : 1.0 dpost/dt = -post / tc_post_ee : 1.0 ''' # STDP rule (post-pre, no weight dependence) eqs_stdp_pre_ee = 'pre = 1.; w -= nu_ee_pre * post' eqs_stdp_post_ee = 'w += nu_ee_post * pre; post = 1.' eqs_stdp_pre_AeAe = 'pre += 1.; w -= nu_AeAe_pre * post' eqs_stdp_post_AeAe = 'w += nu_AeAe_post * pre; post += 1.' print '\n' # set ending of filename saves ending = '_'.join([ str(conv_size), str(conv_stride), str(conv_features), str(n_e), \ str(num_train), str(random_seed), str(proportion_low), \ str(start_inhib), str(max_inhib) ]) b.ion() fig_num = 1 # creating dictionaries for various objects neuron_groups, input_groups, connections, input_connections, stdp_methods, \ rate_monitors, spike_monitors, spike_counters, output_numbers = {}, {}, {}, {}, {}, {}, {}, {}, {} # creating convolution locations inside the input image convolution_locations = {} for n in xrange(n_e): convolution_locations[n] = [ ((n % n_e_sqrt) * conv_stride + (n // n_e_sqrt) * n_input_sqrt * \ conv_stride) + (x * n_input_sqrt) + y for y in xrange(conv_size) for x in xrange(conv_size) ] # instantiating neuron "vote" monitor result_monitor = np.zeros((update_interval, conv_features, n_e)) # bookkeeping variables previous_spike_count = np.zeros((conv_features, n_e)) input_numbers = np.zeros(num_examples) rates = np.zeros((n_input_sqrt, n_input_sqrt)) if test_mode: assignments = np.load(os.path.join(best_assignments_dir, '_'.join(['assignments', ending, 'best.npy']))) accumulated_rates = np.load(os.path.join(best_misc_dir, '_'.join(['accumulated_rates', ending, 'best.npy']))) spike_proportions = np.load(os.path.join(best_misc_dir, '_'.join(['spike_proportions', ending, 'best.npy']))) else: assignments = -1 * np.ones((conv_features, n_e)) # build the spiking neural network build_network() if test_mode: voting_schemes = ['all', 'all_active', 'most_spiked_patch', 'most_spiked_location', 'confidence_weighting', \ 'activity_neighborhood', 'most_spiked_neighborhood', 'distance'] else: voting_schemes = ['all', 'all_active', 'most_spiked_patch', 'most_spiked_location', \ 'confidence_weighting', 'activity_neighborhood', 'most_spiked_neighborhood'] for scheme in voting_schemes: output_numbers[scheme] = np.zeros((num_examples, 10)) if not test_mode: accumulated_rates = np.zeros((conv_features * n_e, 10)) accumulated_inputs = np.zeros(10) spike_proportions = np.zeros((conv_features * n_e, 10)) # run the simulation of the network if test_mode: run_test() else: run_train() # save and plot results save_results() # evaluate results if test_mode: evaluate_results()
f2744c340d84c765a7f38427e107dcf0e0339605
6ba72ce01fe8c08a10a7607536858cfd40b2dc16
/kirppuauth/migrations/0001_initial.py
a501f184d3eaff89282c7871370678d0bb60b7eb
[ "MIT" ]
permissive
jlaunonen/kirppu
dcafc5537d325b2605daf98cdde4115a759dd2ce
fb694a0d1f827f4f4aae870589eb4e57ddf9bc97
refs/heads/master
2023-07-20T03:13:10.814349
2023-07-14T16:46:55
2023-07-14T16:46:55
18,244,187
0
6
MIT
2023-01-10T20:48:08
2014-03-29T15:36:30
Python
UTF-8
Python
false
false
2,830
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone import django.core.validators class Migration(migrations.Migration): dependencies = [ ('auth', '0001_initial'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(default=django.utils.timezone.now, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(help_text='Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.', unique=True, max_length=30, verbose_name='username', validators=[django.core.validators.RegexValidator('^[\\w.@+-]+$', 'Enter a valid username.', 'invalid')])), ('first_name', models.CharField(max_length=30, verbose_name='first name', blank=True)), ('last_name', models.CharField(max_length=30, verbose_name='last name', blank=True)), ('email', models.EmailField(max_length=75, verbose_name='email address', blank=True)), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('phone', models.CharField(max_length=64)), ('last_checked', models.DateTimeField(auto_now_add=True)), ('groups', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Group', blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of his/her group.', verbose_name='groups')), ('user_permissions', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Permission', blank=True, help_text='Specific permissions for this user.', verbose_name='user permissions')), ], options={ 'abstract': False, 'verbose_name': 'user', 'verbose_name_plural': 'users', }, bases=(models.Model,), ), ]
f56f9bcaa5d9294fc2f4329958f2a02d6b674c23
4503a3bfd940dce760b5f70e90e6fe2fe0cc4881
/week02/lectures/FirstCode.py
9d2c8a972ddc17efc1eafc379c1a682a399067d9
[]
no_license
RicardoLima17/lecture
dba7de5c61507f51d51e3abc5c7c4c22ecda504f
b41f1201ab938fe0cab85566998390166c7fa7d8
refs/heads/main
2023-04-18T11:12:39.769760
2021-04-21T18:36:09
2021-04-21T18:36:09
334,456,464
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
# Programn that greets the user # Author: Ricardo Rodrigues print('Hello world! \nHow are you today')
39ea59b534f5e9b9fe9597d3cb0a435cf20a1224
29fb2eb3b9bb21b529e814da53518fab2958693a
/thesis/images/ionizationStructure.py
bab29ae268d132cad0aaf36517a5e29f94941e0a
[]
no_license
Vital-Fernandez/thesis_pipeline
acca734b1a2ce11b0bee5bd41fab534022ea295e
1253e2ed94e0f502a16cae6b88f84b633d0f16c2
refs/heads/master
2022-05-31T10:15:47.241645
2021-05-18T17:43:44
2021-05-18T17:43:44
90,319,650
0
0
null
null
null
null
UTF-8
Python
false
false
9,922
py
from dazer_methods import Dazer from numpy import nanmean, nanstd, mean, nan as np_nan from uncertainties import ufloat, unumpy, umath import pandas as pd # Generate dazer object dz = Dazer() # Declare figure format size_dict = {'figure.figsize': (14, 6), 'axes.labelsize': 20, 'legend.fontsize': 20, 'font.family': 'Times New Roman', 'mathtext.default': 'regular', 'xtick.labelsize': 20, 'ytick.labelsize': 20} dz.FigConf(plotSize=size_dict) # Declare data location folder_data = '/home/vital/Dropbox/Astrophysics/Seminars/Cloudy School 2017/teporingos/Grid_data_vital/' file_name_list_S = ['TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S', 'TGrid_Mass200000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] file_name_list_O = ['TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O', 'TGrid_Mass200000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] z_list = ['100000', '200000'] ions_list_S = ['S+', 'S+2', 'S+3'] ions_labels_S = [r'$S^{+}$', r'$S^{2+}$', r'$S^{3+}$'] ions_list_O = ['O+', 'O+2'] ions_labels_O = [r'$O^{+}$', r'$O^{2+}$'] labels_coords_S = [[(1.60e18, 0.98), (2.35e18, 0.98)], [(1.0e18, 0.72), (1.77e18, 0.72)], [(0.75e18, 0.000005), (2.0e18, 0.015)]] labels_coords_O = [[(1.55e18, 0.5), (2.3e18, 0.5)], [(1.03e18, 0.6), (1.8e18, 0.6)]] # Generate the color map dz.gen_colorList(0, 5) # ions_colors_S = [dz.get_color(0), dz.get_color(1), dz.get_color(2)] # ions_colors_O = [dz.get_color(3), dz.get_color(4)] ions_colors_S = ['tab:orange', 'tab:red', 'tab:brown'] ions_colors_O = ['tab:blue', 'tab:green'] line_type = ['--', '-'] for i in range(len(file_name_list_S)): file_name = file_name_list_S[i] elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') for j in range(len(ions_list_S)): ion = ions_list_S[j] radious = elemIon_df['#depth'].values ion_frac = elemIon_df[ion].values label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_S[j], linestyle=line_type[i], label=r'Cluster mass {}'.format(label), linewidth=2) dz.plot_text(labels_coords_S[j][i][0] / 1e19, labels_coords_S[j][i][1], text=ions_labels_S[j], color=ions_colors_S[j], fontsize=20, axis_plot=None) file_name = file_name_list_O[i] elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') for j in range(len(ions_list_O)): ion = ions_list_O[j] radious = elemIon_df['#depth'].values ion_frac = elemIon_df[ion].values label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_O[j], linestyle=line_type[i], label=r'Cluster mass {}'.format(label)) dz.plot_text(labels_coords_O[j][i][0] / 1e19, labels_coords_O[j][i][1], text=ions_labels_O[j], color=ions_colors_O[j], fontsize=20, axis_plot=None) dz.FigWording(r'$R_{19}$ $(10^{19}cm)$', r'$X(A^{+i})$', '', ncols_leg=1) leg = dz.Axis.get_legend() leg.legendHandles[0].set_color('black') leg.legendHandles[1].set_color('black') # dz.display_fig() dz.display_fig() # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/SulfurIonization_fraction_vs_cloudThickness') # dz.savefig('/home/vital/Dropbox/Astrophysics/Seminars/Stasinska conference/SulfurIonization_fraction_vs_cloudThickness') # #Load catalogue dataframe # catalogue_dict = dz.import_catalogue() # catalogue_df = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx') # # #Define plot frame and colors # size_dict = {'axes.labelsize':24, 'legend.fontsize':24, 'font.family':'Times New Roman', 'mathtext.default':'regular', 'xtick.labelsize':22, 'ytick.labelsize':22} # dz.FigConf(plotSize = size_dict) # # dz.quick_indexing(catalogue_df) # idcs = (pd.notnull(catalogue_df.OI_HI_emis2nd)) & (pd.notnull(catalogue_df.NI_HI_emis2nd)) & (pd.notnull(catalogue_df.HeII_HII_from_O_emis2nd)) & (catalogue_df.quick_index.notnull()) & (~catalogue_df.index.isin(['SHOC593'])) # # #Prepare data # O_values = catalogue_df.loc[idcs].OI_HI_emis2nd.values # N_values = catalogue_df.loc[idcs].NI_HI_emis2nd.values # HeII_HI = catalogue_df.loc[idcs].HeII_HII_from_O_emis2nd.values # objects = catalogue_df.loc[idcs].quick_index.values # # N_O_ratio = N_values/O_values # # dz.data_plot(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), label = '', markerstyle='o', x_error=unumpy.std_devs(HeII_HI), y_error=unumpy.std_devs(N_O_ratio)) # dz.plot_text(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), text=objects, x_pad=1.005, y_pad=1.01) # # dz.FigWording(r'y', r'$N/O$', '') # # dz.display_fig() # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/NO_to_y') # from dazer_methods import Dazer # from numpy import nanmean, nanstd, mean, nan as np_nan # from uncertainties import ufloat, unumpy, umath # import pandas as pd # # # Generate dazer object # dz = Dazer() # # # Declare figure format # size_dict = {'figure.figsize': (10, 10), 'axes.labelsize': 24, 'legend.fontsize': 14, 'font.family': 'Times New Roman', # 'mathtext.default': 'regular', 'xtick.labelsize': 22, 'ytick.labelsize': 22} # dz.FigConf(plotSize=size_dict) # # # Declare data location # folder_data = '/home/vital/Dropbox/Astrophysics/Seminars/Cloudy School 2017/teporingos/Grid_data_vital/' # file_name_list_S = [ # 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] # , 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_S'] # file_name_list_O = [ # 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] # , 'TGrid_Mass100000.0_age5.48_zStar-2.1_zGas0.008.ele_O'] # z_list = ['200000', '100000'] # ions_list_S = ['S+', 'S+2', 'S+3'] # ions_labels_S = [r'$S^{+}$', r'$S^{2+}$', r'$S^{3+}$'] # ions_list_O = ['O+', 'O+2'] # ions_labels_O = [r'$O^{+}$', r'$O^{2+}$'] # labels_coords_S = [[(1.65e18, 1.0), # (2.4e18, 1.0)], # [(1.0e18, 0.75), # (1.77e18, 0.75)], # [(1.2e18, 0.015), # (2.0e18, 0.015)]] # labels_coords_O = [[(1.55e18, 0.5), # (2.3e18, 0.5)], # [(1.03e18, 0.6), # (1.8e18, 0.6)]] # ions_colors_S = ['tab:orange', 'tab:red', 'tab:brown'] # ions_colors_O = ['tab:blue', 'tab:green'] # # line_type = ['-', '--'] # # for i in range(len(file_name_list_S)): # # file_name = file_name_list_S[i] # # elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') # # for j in range(len(ions_list_S)): # ion = ions_list_S[j] # radious = elemIon_df['#depth'].values # ion_frac = elemIon_df[ion].values # label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) # dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_S[j], linestyle=line_type[i], # label=r'Cluster mass {}'.format(label), linewidth=3) # dz.plot_text(labels_coords_S[j][i][0] / 1e19, labels_coords_S[j][i][1], text=ions_labels_S[j], # color=ions_colors_S[j], fontsize=17, axis_plot=None) # # file_name = file_name_list_O[i] # # elemIon_df = pd.read_csv(folder_data + file_name, sep='\t') # # for j in range(len(ions_list_O)): # ion = ions_list_O[j] # radious = elemIon_df['#depth'].values # ion_frac = elemIon_df[ion].values # label = r'{0:1.1e} $M_\odot$'.format(float(z_list[i])) # dz.data_plot(radious / 1e19, ion_frac, color=ions_colors_O[j], linestyle=line_type[i], # label=r'Cluster mass {}'.format(label)) # dz.plot_text(labels_coords_O[j][i][0] / 1e19, labels_coords_O[j][i][1], text=ions_labels_O[j], # color=ions_colors_O[j], fontsize=17, axis_plot=None) # # dz.FigWording(r'$R_{19}$ $(10^{19}cm)$', r'$X(A^{+i})$', '', ncols_leg=1) # # leg = dz.Axis.get_legend() # leg.legendHandles[0].set_color('black') # # leg.legendHandles[1].set_color('black') # # # dz.display_fig() # # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/SulfurIonization_fraction_vs_cloudThickness') # dz.savefig('/home/vital/Dropbox/Astrophysics/Seminars/Stasinska conference/SulfurIonization_fraction_vs_cloudThickness') # # # #Load catalogue dataframe # # catalogue_dict = dz.import_catalogue() # # catalogue_df = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx') # # # # #Define plot frame and colors # # size_dict = {'axes.labelsize':24, 'legend.fontsize':24, 'font.family':'Times New Roman', 'mathtext.default':'regular', 'xtick.labelsize':22, 'ytick.labelsize':22} # # dz.FigConf(plotSize = size_dict) # # # # dz.quick_indexing(catalogue_df) # # idcs = (pd.notnull(catalogue_df.OI_HI_emis2nd)) & (pd.notnull(catalogue_df.NI_HI_emis2nd)) & (pd.notnull(catalogue_df.HeII_HII_from_O_emis2nd)) & (catalogue_df.quick_index.notnull()) & (~catalogue_df.index.isin(['SHOC593'])) # # # # #Prepare data # # O_values = catalogue_df.loc[idcs].OI_HI_emis2nd.values # # N_values = catalogue_df.loc[idcs].NI_HI_emis2nd.values # # HeII_HI = catalogue_df.loc[idcs].HeII_HII_from_O_emis2nd.values # # objects = catalogue_df.loc[idcs].quick_index.values # # # # N_O_ratio = N_values/O_values # # # # dz.data_plot(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), label = '', markerstyle='o', x_error=unumpy.std_devs(HeII_HI), y_error=unumpy.std_devs(N_O_ratio)) # # dz.plot_text(unumpy.nominal_values(HeII_HI), unumpy.nominal_values(N_O_ratio), text=objects, x_pad=1.005, y_pad=1.01) # # # # dz.FigWording(r'y', r'$N/O$', '') # # # dz.display_fig() # # dz.savefig('/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/NO_to_y')
1a72065a811121f0dd9d16e8dd072b751fba6a6a
917a99fdf14097dd8001b5c98cc48c8716f8f969
/webElement/ass_service/syslogElement.py
8bffc624415e17423f022ce3b8b9a646794ed0be
[]
no_license
isomper/testIsomptySecret
722eba4cbefe9495a3292d8d10e8ad9c4a34c8a7
968bbee05af730cfb7717f1531286f11a7f99cf3
refs/heads/master
2020-03-19T07:29:28.487913
2018-07-13T06:25:50
2018-07-13T06:25:50
136,118,583
0
0
null
null
null
null
UTF-8
Python
false
false
4,408
py
#coding=utf-8 u''' #文件名: #被测软件版本号:V2.8.1 #作成人:李择优 #生成日期:2018/1/24 #模块描述:SYSLOG #历史修改记录 #修改人: #修改日期: #修改内容: ''' import sys reload(sys) sys.setdefaultencoding('utf-8') import time sys.path.append("/testIsompSecret/common/") from _icommon import getElement,selectElement,frameElement,commonFun from _cnEncode import cnEncode from _log import log sys.path.append("/testIsompSecret/webElement/ass_service/") from ntpElement import NtpService class Syslog: #运行状态开关 SWITCH = "btn_qh" #IP HOST = "host" #端口 PORT = "port" #协议 PROTOCOL = "protocol" #标识 IDENT = "ident" #机制 FACILITY = "facility" #测试按钮 TEST_BUTTON = "test_syslog" #保存按钮 SAVE_BUTTON = "save_syslog" def __init__(self,driver): self.driver = driver self.log = log() self.getElem = getElement(driver) self.select = selectElement(driver) self.frameElem = frameElement(driver) self.cmf = commonFun(driver) self.ntp = NtpService(driver) self.cnEnde = cnEncode() u'''填写变量内容 parameters: var_text : 变量内容 value : 定位方式值 ''' def set_common_func(self,var_text,value): try: revar_text = self.cnEnde.is_float(var_text) var_elem =self.getElem.find_element_with_wait_EC("id",value) var_elem.clear() var_elem.send_keys(revar_text) except Exception as e: print ("set user common text error: ") + str(revar_text) + str(e) u'''输入IP parameters: setIp : IP ''' def set_ip(self,setIp): return self.set_common_func(setIp,self.HOST) u'''输入端口 parameters: setPort : 端口 ''' def set_port(self,setPort): return self.set_common_func(setPort,self.PORT) u'''选择协议 Parameters: value:select选项中的value属性值,udp代表UDP,tcp代表TCP,nix_syslog代表nix_syslog ''' def set_protocol(self, value): valu = self.cnEnde.is_float(value) self.frameElem.from_frame_to_otherFrame("rigthFrame") selem = self.getElem.find_element_with_wait_EC("id",self.PROTOCOL) self.select.select_element_by_value(selem, valu) u'''输入标识 parameters: setIdent : 标识 ''' def set_ident(self,setIdent): return self.set_common_func(setIdent,self.IDENT) u'''选择机制 Parameters: value:select选项中的value属性值,32代表facility ''' def set_facility(self, value): valu = self.cnEnde.is_float(value) self.frameElem.from_frame_to_otherFrame("rigthFrame") selem = self.getElem.find_element_with_wait_EC("id",self.FACILITY) self.select.select_element_by_value(selem, valu) u'''点击测试按钮''' def test_button(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") self.getElem.find_element_wait_and_click_EC("id",self.TEST_BUTTON) u'''点击保存按钮''' def save_button(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") self.getElem.find_element_wait_and_click_EC("id",self.SAVE_BUTTON) u'''改变开关状态''' def change_switch_status(self): self.frameElem.from_frame_to_otherFrame("rigthFrame") try: button_elem = self.getElem.find_element_with_wait_EC("id",self.SWITCH) class_attr = button_elem.get_attribute("class") off_status = "switch_off" on_status = "switch_on" if class_attr == on_status: self.ntp.click_left_moudle(1) self.frameElem.from_frame_to_otherFrame("rigthFrame") button_elem = self.getElem.find_element_with_wait_EC("id",self.SWITCH) time.sleep(1) button_elem.click() button_elem.click() else: button_elem.click() except Exception as e: print ("Change button status error: ") + str(e)
c35de16dd47821fb8bd0c74d9ed293dc5ee70956
34ef83114e02b173bd2d55eb53ad399e738a8e3c
/django/code_test/teka/teka/settings.py
ca05f4f1f4426561e47f91918dae0a82be1e722d
[]
no_license
vavilon/Python3
e976a18eb301e4953696d1e3f4730ed890da015a
8c79729747ce51d60ad685e6a2e58292954ed7eb
refs/heads/master
2023-01-09T13:44:37.408601
2018-01-25T22:41:14
2018-01-25T22:41:14
100,892,055
0
1
null
2022-12-26T20:29:27
2017-08-20T22:23:06
Python
UTF-8
Python
false
false
3,232
py
""" Django settings for teka project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7&(=23s0&zbaks8=)r=a=5xb^mz61l1&m2&=to8_j*2h^c0ld9' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps', 'bootstrap3', 'bootstrap4', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'teka.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'teka.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static")),
44a0a7737d19c1e6e47ddf5525d0d632188aabd2
10f397d1fe8c68dc5af033e0b88cb99be56bc4f2
/Statistics/models.py
28a3d7a4f4138e1e4c55db79c7ee134721781ded
[]
no_license
wsqy/AccountRandmomAmount
db3905bd425c074935c256aab62f437fe7cb0ffc
b69bc1269a666c48fe954ac423a25d111e01176b
refs/heads/master
2023-06-29T12:49:35.947729
2020-06-30T03:27:05
2020-06-30T03:27:05
271,683,993
0
0
null
null
null
null
UTF-8
Python
false
false
3,592
py
from django.db import models # from django.conf import settings from django.utils import timezone from Account.models import Buyer, Seller, Company class DayBuyer(models.Model): """ 买方日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) buyer = models.ForeignKey(Buyer, on_delete=models.PROTECT, verbose_name='买方') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '买方日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.buyer, self.date, self.amount_total) class DaySeller(models.Model): """ 卖方日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) seller = models.ForeignKey(Seller, on_delete=models.PROTECT, verbose_name='卖方') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '卖方日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.seller, self.date, self.amount_total) class DayCompany(models.Model): """ 集团子公司日交易额总量表 """ date = models.DateField(verbose_name='任务日期', default=timezone.now) company = models.ForeignKey(Company, on_delete=models.PROTECT, verbose_name='集团子公司') amount_total = models.IntegerField(verbose_name='日总交易金额(万元)', default=0) class Meta: verbose_name = '集团子公司日交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.company, self.date, self.amount_total) class MouthBuyer(models.Model): """ 买方月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') buyer = models.ForeignKey(Buyer, on_delete=models.PROTECT, verbose_name='买方') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '买方月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.buyer, self.date, self.amount_total) class MouthSeller(models.Model): """ 卖方月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') seller = models.ForeignKey(Seller, on_delete=models.PROTECT, verbose_name='卖方') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '卖方月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.seller, self.date, self.amount_total) class MouthCompany(models.Model): """ 集团子公司月交易额总量表 """ date = models.CharField(max_length=8, verbose_name='月份') company = models.ForeignKey(Company, on_delete=models.PROTECT, verbose_name='集团子公司') amount_total = models.IntegerField(verbose_name='月总交易金额(万元)', default=0) class Meta: verbose_name = '集团子公司月交易额总量' verbose_name_plural = verbose_name def __str__(self): return '{}于{}总交易额{}万元'.format(self.company, self.date, self.amount_total)
624253db8803ba4e60460ddc4c11d392b0bac60d
297497957c531d81ba286bc91253fbbb78b4d8be
/third_party/libwebrtc/tools/grit/grit/tool/postprocess_unittest.py
21ca5e2f774610e4a7efa36f398ec1fb87b4cddc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
marco-c/gecko-dev-comments-removed
7a9dd34045b07e6b22f0c636c0a836b9e639f9d3
61942784fb157763e65608e5a29b3729b0aa66fa
refs/heads/master
2023-08-09T18:55:25.895853
2023-08-01T00:40:39
2023-08-01T00:40:39
211,297,481
0
0
NOASSERTION
2019-09-29T01:27:49
2019-09-27T10:44:24
C++
UTF-8
Python
false
false
1,705
py
'''Unit test that checks postprocessing of files. Tests postprocessing by having the postprocessor modify the grd data tree, changing the message name attributes. ''' from __future__ import print_function import os import re import sys if __name__ == '__main__': sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) import unittest import grit.tool.postprocess_interface from grit.tool import rc2grd class PostProcessingUnittest(unittest.TestCase): def testPostProcessing(self): rctext = '''STRINGTABLE BEGIN DUMMY_STRING_1 "String 1" // Some random description DUMMY_STRING_2 "This text was added during preprocessing" END ''' tool = rc2grd.Rc2Grd() class DummyOpts(object): verbose = False extra_verbose = False tool.o = DummyOpts() tool.post_process = 'grit.tool.postprocess_unittest.DummyPostProcessor' result = tool.Process(rctext, '.\resource.rc') self.failUnless( result.children[2].children[2].children[0].attrs['name'] == 'SMART_STRING_1') self.failUnless( result.children[2].children[2].children[1].attrs['name'] == 'SMART_STRING_2') class DummyPostProcessor(grit.tool.postprocess_interface.PostProcessor): ''' Post processing replaces all message name attributes containing "DUMMY" to "SMART". ''' def Process(self, rctext, rcpath, grdnode): smarter = re.compile(r'(DUMMY)(.*)') messages = grdnode.children[2].children[2] for node in messages.children: name_attr = node.attrs['name'] m = smarter.search(name_attr) if m: node.attrs['name'] = 'SMART' + m.group(2) return grdnode if __name__ == '__main__': unittest.main()
f9520500f015b1f2f85946de085b6dfb1d169031
b92b0e9ba2338ab311312dcbbeefcbb7c912fc2e
/build/shogun_lib/examples/documented/python_modular/distance_sparseeuclidean_modular.py
2e8e098e832784cb39eb330eae2d7c48c0f9148f
[]
no_license
behollis/muViewBranch
384f8f97f67723b2a4019294854969d6fc1f53e8
1d80914f57e47b3ad565c4696861f7b3213675e0
refs/heads/master
2021-01-10T13:22:28.580069
2015-10-27T21:43:20
2015-10-27T21:43:20
45,059,082
1
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
# In this example a sparse euclidean distance is computed for sparse toy data. from tools.load import LoadMatrix lm=LoadMatrix() traindat = lm.load_numbers('../data/fm_train_real.dat') testdat = lm.load_numbers('../data/fm_test_real.dat') parameter_list = [[traindat,testdat],[traindat,testdat]] def distance_sparseeuclidean_modular (fm_train_real=traindat,fm_test_real=testdat): from shogun.Features import RealFeatures, SparseRealFeatures from shogun.Distance import SparseEuclidianDistance realfeat=RealFeatures(fm_train_real) feats_train=SparseRealFeatures() feats_train.obtain_from_simple(realfeat) realfeat=RealFeatures(fm_test_real) feats_test=SparseRealFeatures() feats_test.obtain_from_simple(realfeat) distance=SparseEuclidianDistance(feats_train, feats_train) dm_train=distance.get_distance_matrix() distance.init(feats_train, feats_test) dm_test=distance.get_distance_matrix() return distance,dm_train,dm_test if __name__=='__main__': print('SparseEuclidianDistance') distance_sparseeuclidean_modular(*parameter_list[0])
[ "prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305" ]
prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305
c02054b0e7144f761e863a5a249d40a75b1c8cc5
6a609bc67d6a271c1bd26885ce90b3332995143c
/exercises/exhaustive-search/combinations_ii.py
46561751342eaead6317019aa18b093dfc811644
[]
no_license
nahgnaw/data-structure
1c38b3f7e4953462c5c46310b53912a6e3bced9b
18ed31a3edf20a3e5a0b7a0b56acca5b98939693
refs/heads/master
2020-04-05T18:33:46.321909
2016-07-29T21:14:12
2016-07-29T21:14:12
44,650,911
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
# -*- coding: utf-8 -*- """ Given a list of integer lists. Each time take an item from each list. Find all the combinations. """ class Solution(object): def combine(self, arr): """ :type arr: List[List[init]] :rtype: List[List[int]] """ def dfs(res, pos): if len(res) == len(arr): results.append(res) return for i in xrange(len(arr[pos])): dfs(res + [arr[pos][i]], pos + 1) results = [] dfs([], 0) return results if __name__ == '__main__': arr = [[1,2], [3,4], [5,6,7]] sol = Solution() print sol.combine(arr)
c359621f88fe116601d909b5dce736eebf473a4f
132c7b0c8ba606a249fbdfe24f9d73e7e224d260
/sanyuapp/urls.py
718ddf53afbfca5bc73c30fb4040c7281a875e3f
[]
no_license
sanyuOnline/sanyu-webapp
dafa3505d7f3d6eca225ca6b4dce3fa683d5e9fe
c8e3824146bb9eb4dcf971a1cdef2bc4475385f1
refs/heads/main
2023-08-31T12:52:06.104078
2021-10-27T07:03:09
2021-10-27T07:03:09
406,589,964
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
"""sanyuapp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('users/', include('users.urls')), path('users/', include('django.contrib.auth.urls')), path('', include('pages.urls')), path('', include('blog.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
75b8cf6fde95fbd9a46ab0c2c5277b706714856b
ce6538b5b7da162c1c690a346e7ec9ae0a6291f3
/wild_cat_zoo/project/cheetah.py
92f02831fe0904412100be1467c39f16c02a2ad7
[]
no_license
DaniTodorowa/Softuni
391f13dd61a6d16cd48ee06e9b35b2fd931375df
f7c875fda4e13ec63152671509aaa6eca29d7f50
refs/heads/master
2022-11-25T23:34:49.744315
2020-08-02T08:23:44
2020-08-02T08:23:44
278,938,559
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
class Cheetah: def __init__(self, name, gender, age): self.name = name self.gender = gender self.age = age @staticmethod def get_needs(self): return 60 def __repr__(self): return f"Name: {self.name}, Age: {self.age}, Gender: {self.gender}"
cec69055122f7d6681aafa3340f9b1e6c99ab682
999879f8d18e041d7fa313132408b252aded47f8
/01-codes/scipy-master/scipy/linalg/_cython_signature_generator.py
3e32f4ee3bff69c241712515ab32a5fa027911ff
[ "MIT" ]
permissive
QPanProjects/Surrogate-Model
ebcaf05728e82dcbcd924c2edca1b490ab085173
848c7128201218b0819c9665e2cec72e3b1d29ac
refs/heads/master
2022-10-11T19:03:55.224257
2020-06-09T14:37:35
2020-06-09T14:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,372
py
""" A script that uses f2py to generate the signature files used to make the Cython BLAS and LAPACK wrappers from the fortran source code for LAPACK and the reference BLAS. To generate the BLAS wrapper signatures call: python _cython_signature_generator.py blas <blas_directory> <out_file> To generate the LAPACK wrapper signatures call: python _cython_signature_generator.py lapack <lapack_src_directory> <out_file> """ import glob from numpy.f2py import crackfortran sig_types = {'integer': 'int', 'complex': 'c', 'double precision': 'd', 'real': 's', 'complex*16': 'z', 'double complex': 'z', 'character': 'char', 'logical': 'bint'} def get_type(info, arg): argtype = sig_types[info['vars'][arg]['typespec']] if argtype == 'c' and info['vars'][arg].get('kindselector') is not None: argtype = 'z' return argtype def make_signature(filename): info = crackfortran.crackfortran(filename)[0] name = info['name'] if info['block'] == 'subroutine': return_type = 'void' else: return_type = get_type(info, name) arglist = [' *'.join([get_type(info, arg), arg]) for arg in info['args']] args = ', '.join(arglist) # Eliminate strange variable naming that replaces rank with rank_bn. args = args.replace('rank_bn', 'rank') return '{0} {1}({2})\n'.format(return_type, name, args) def get_sig_name(line): return line.split('(')[0].split(' ')[-1] def sigs_from_dir(directory, outfile, manual_wrappers=None, exclusions=None): if directory[-1] in ['/', '\\']: directory = directory[:-1] files = glob.glob(directory + '/*.f*') if exclusions is None: exclusions = [] if manual_wrappers is not None: exclusions += [get_sig_name(l) for l in manual_wrappers.split('\n')] signatures = [] for filename in files: name = filename.split('\\')[-1][:-2] if name in exclusions: continue signatures.append(make_signature(filename)) if manual_wrappers is not None: signatures += [l + '\n' for l in manual_wrappers.split('\n')] signatures.sort(key=get_sig_name) comment = ["# This file was generated by _cython_wrapper_generators.py.\n", "# Do not edit this file directly.\n\n"] with open(outfile, 'w') as f: f.writelines(comment) f.writelines(signatures) # The signature that is used for zcgesv in lapack 3.1.0 and 3.1.1 changed # in version 3.2.0. The version included in the clapack on OSX has the # more recent signature though. # slamch and dlamch are not in the lapack src directory, but,since they # already have Python wrappers, we'll wrap them as well. # The other manual signatures are used because the signature generating # functions don't work when function pointer arguments are used. lapack_manual_wrappers = '''void cgees(char *jobvs, char *sort, cselect1 *select, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cgeesx(char *jobvs, char *sort, cselect1 *select, char *sense, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cgges(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, c *work, int *lwork, s *rwork, bint *bwork, int *info) void cggesx(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, char *sense, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, int *iwork, int *liwork, bint *bwork, int *info) void dgees(char *jobvs, char *sort, dselect2 *select, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *work, int *lwork, bint *bwork, int *info) void dgeesx(char *jobvs, char *sort, dselect2 *select, char *sense, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) void dgges(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *work, int *lwork, bint *bwork, int *info) void dggesx(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, char *sense, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) d dlamch(char *cmach) void ilaver(int *vers_major, int *vers_minor, int *vers_patch) void sgees(char *jobvs, char *sort, sselect2 *select, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *work, int *lwork, bint *bwork, int *info) void sgeesx(char *jobvs, char *sort, sselect2 *select, char *sense, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) void sgges(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *work, int *lwork, bint *bwork, int *info) void sggesx(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, char *sense, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info) s slamch(char *cmach) void zgees(char *jobvs, char *sort, zselect1 *select, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zgeesx(char *jobvs, char *sort, zselect1 *select, char *sense, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zgges(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, z *work, int *lwork, d *rwork, bint *bwork, int *info) void zggesx(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, char *sense, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, int *iwork, int *liwork, bint *bwork, int *info)''' if __name__ == '__main__': from sys import argv libname, src_dir, outfile = argv[1:] # Exclude scabs and sisnan since they aren't currently included # in the scipy-specific ABI wrappers. if libname.lower() == 'blas': sigs_from_dir(src_dir, outfile, exclusions=['scabs1', 'xerbla']) elif libname.lower() == 'lapack': # Exclude all routines that do not have consistent interfaces from # LAPACK 3.1.0 through 3.6.0. # Also exclude routines with string arguments to avoid # compatibility woes with different standards for string arguments. # Exclude sisnan and slaneg since they aren't currently included in # The ABI compatibility wrappers. exclusions = ['sisnan', 'csrot', 'zdrot', 'ilaenv', 'iparmq', 'lsamen', 'xerbla', 'zcgesv', 'dlaisnan', 'slaisnan', 'dlazq3', 'dlazq4', 'slazq3', 'slazq4', 'dlasq3', 'dlasq4', 'slasq3', 'slasq4', 'dlasq5', 'slasq5', 'slaneg', # Routines deprecated in LAPACK 3.6.0 'cgegs', 'cgegv', 'cgelsx', 'cgeqpf', 'cggsvd', 'cggsvp', 'clahrd', 'clatzm', 'ctzrqf', 'dgegs', 'dgegv', 'dgelsx', 'dgeqpf', 'dggsvd', 'dggsvp', 'dlahrd', 'dlatzm', 'dtzrqf', 'sgegs', 'sgegv', 'sgelsx', 'sgeqpf', 'sggsvd', 'sggsvp', 'slahrd', 'slatzm', 'stzrqf', 'zgegs', 'zgegv', 'zgelsx', 'zgeqpf', 'zggsvd', 'zggsvp', 'zlahrd', 'zlatzm', 'ztzrqf'] sigs_from_dir(src_dir, outfile, manual_wrappers=lapack_manual_wrappers, exclusions=exclusions)
e9b4572ab1f8e1c87a7d0030bcf82691a6a035e5
880103c6f9bdc9d5a7a8633c3e4d108c964e9b89
/devil/devil/android/tools/device_monitor.py
2b3503174c8a364463e242fa2f450a76e5b3047f
[ "BSD-3-Clause" ]
permissive
ateleshev/catapult
c3645f0fb0d4e929b5baebea33307b765225cb2f
faf60eb37f8b9828eddb30c8397b333eb1d89204
refs/heads/master
2021-01-22T19:08:47.140355
2017-03-16T01:01:54
2017-03-16T01:01:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,936
py
#!/usr/bin/env python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Launches a daemon to monitor android device temperatures & status. This script will repeatedly poll the given devices for their temperatures and status every 60 seconds and dump the stats to file on the host. """ import argparse import collections import json import logging import logging.handlers import os import re import socket import sys import time if __name__ == '__main__': sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..'))) from devil import devil_env from devil.android import battery_utils from devil.android import device_blacklist from devil.android import device_errors from devil.android import device_utils # Various names of sensors used to measure cpu temp CPU_TEMP_SENSORS = [ # most nexus devices 'tsens_tz_sensor0', # android one 'mtktscpu', # nexus 9 'CPU-therm', ] DEVICE_FILE_VERSION = 1 # TODO(bpastene): Remove the old file once sysmon has been updated to read the # new status file. DEVICE_FILES = [ os.path.join(os.path.expanduser('~'), 'android_device_status.json'), os.path.join( os.path.expanduser('~'), '.android', '%s__android_device_status.json' % socket.gethostname().split('.')[0] ), ] MEM_INFO_REGEX = re.compile(r'.*?\:\s*(\d+)\s*kB') # ex: 'MemTotal: 185735 kB' def get_device_status(device): """Polls the given device for various info. Returns: A dict of the following format: { 'battery': { 'level': 100, 'temperature': 123 }, 'build': { 'build.id': 'ABC12D', 'product.device': 'chickenofthesea' }, 'mem': { 'avail': 1000000, 'total': 1234567, }, 'processes': 123, 'state': 'good', 'temp': { 'some_sensor': 30 }, 'uptime': 1234.56, } """ status = collections.defaultdict(dict) # Battery battery = battery_utils.BatteryUtils(device) battery_info = battery.GetBatteryInfo() try: level = int(battery_info.get('level')) except (KeyError, TypeError, ValueError): level = None if level and level >= 0 and level <= 100: status['battery']['level'] = level try: temperature = int(battery_info.get('temperature')) except (KeyError, TypeError, ValueError): temperature = None if temperature: status['battery']['temperature'] = temperature # Build status['build']['build.id'] = device.build_id status['build']['product.device'] = device.build_product # Memory mem_info = '' try: mem_info = device.ReadFile('/proc/meminfo') except device_errors.AdbShellCommandFailedError: logging.exception('Unable to read /proc/meminfo') for line in mem_info.splitlines(): match = MEM_INFO_REGEX.match(line) if match: try: value = int(match.group(1)) except ValueError: continue key = line.split(':')[0].strip() if 'MemTotal' == key: status['mem']['total'] = value elif 'MemFree' == key: status['mem']['free'] = value # Process try: lines = device.RunShellCommand('ps', check_return=True) status['processes'] = len(lines) - 1 # Ignore the header row. except device_errors.AdbShellCommandFailedError: logging.exception('Unable to count process list.') # CPU Temps # Find a thermal sensor that matches one in CPU_TEMP_SENSORS and read its # temperature. files = [] try: files = device.RunShellCommand( 'grep -lE "%s" /sys/class/thermal/thermal_zone*/type' % '|'.join( CPU_TEMP_SENSORS), check_return=True) except device_errors.AdbShellCommandFailedError: logging.exception('Unable to list thermal sensors.') for f in files: try: sensor_name = device.ReadFile(f).strip() temp = float(device.ReadFile(f[:-4] + 'temp').strip()) # s/type^/temp status['temp'][sensor_name] = temp except (device_errors.AdbShellCommandFailedError, ValueError): logging.exception('Unable to read thermal sensor %s', f) # Uptime try: uptimes = device.ReadFile('/proc/uptime').split() status['uptime'] = float(uptimes[0]) # Take the first field (actual uptime) except (device_errors.AdbShellCommandFailedError, ValueError): logging.exception('Unable to read /proc/uptime') status['state'] = 'available' return status def get_all_status(blacklist): status_dict = { 'version': DEVICE_FILE_VERSION, 'devices': {}, } healthy_devices = device_utils.DeviceUtils.HealthyDevices(blacklist) parallel_devices = device_utils.DeviceUtils.parallel(healthy_devices) results = parallel_devices.pMap(get_device_status).pGet(None) status_dict['devices'] = { device.serial: result for device, result in zip(healthy_devices, results) } if blacklist: for device, reason in blacklist.Read().iteritems(): status_dict['devices'][device] = { 'state': reason.get('reason', 'blacklisted')} status_dict['timestamp'] = time.time() return status_dict def main(argv): """Launches the device monitor. Polls the devices for their battery and cpu temperatures and scans the blacklist file every 60 seconds and dumps the data to DEVICE_FILE. """ parser = argparse.ArgumentParser( description='Launches the device monitor.') parser.add_argument('--adb-path', help='Path to adb binary.') parser.add_argument('--blacklist-file', help='Path to device blacklist file.') args = parser.parse_args(argv) logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.handlers.RotatingFileHandler( '/tmp/device_monitor.log', maxBytes=10 * 1024 * 1024, backupCount=5) fmt = logging.Formatter('%(asctime)s %(levelname)s %(message)s', datefmt='%y%m%d %H:%M:%S') handler.setFormatter(fmt) logger.addHandler(handler) devil_dynamic_config = devil_env.EmptyConfig() if args.adb_path: devil_dynamic_config['dependencies'].update( devil_env.LocalConfigItem( 'adb', devil_env.GetPlatform(), args.adb_path)) devil_env.config.Initialize(configs=[devil_dynamic_config]) blacklist = (device_blacklist.Blacklist(args.blacklist_file) if args.blacklist_file else None) logging.info('Device monitor running with pid %d, adb: %s, blacklist: %s', os.getpid(), args.adb_path, args.blacklist_file) while True: start = time.time() status_dict = get_all_status(blacklist) for device_file in DEVICE_FILES: with open(device_file, 'wb') as f: json.dump(status_dict, f, indent=2, sort_keys=True) logging.info('Got status of all devices in %.2fs.', time.time() - start) time.sleep(60) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
54dda2fd3569a59243cb0d5b8b7dda99f42080cb
ad6ffe99c0ec781b0bb286ce5cb10ca3735bde97
/hello-docstring.py
6af55db124aa30b82bd510f054f9bb043640e19d
[ "MIT" ]
permissive
crunchy-devops/tp-bac-4
db7f9ac3824bfcf7cd8b3570c6d45284be53b9d0
4784d9c0505ad62bcad7b28d536826126ded435c
refs/heads/master
2023-02-26T09:18:31.182264
2021-02-01T09:26:27
2021-02-01T09:26:27
330,283,640
0
10
null
null
null
null
UTF-8
Python
false
false
118
py
#!/usr/bin/env python3 """ Author: Herve Meftah <[email protected]> Purpose: Say hello """ print('Hello, World!')
544535a12e8aebb81a573d170387a9a53d5e9f99
1e21f0939d4c46db8eeca9fa8ef034ed14b7a549
/PhotonTnP_SampleProduction/crab/tnpDatasetDef.py
948c5aa42935bdee103b37980cbee893ae9ef5e9
[]
no_license
Ming-Yan/photonTnp
4e46286998d4e2806e423e2e27893c0a8675494f
5468bea3eff51b21eed2701cda4f3e5d2ad9e6bf
refs/heads/master
2021-10-08T20:33:55.910375
2018-10-22T09:12:26
2018-10-22T09:12:26
162,109,988
0
0
null
null
null
null
UTF-8
Python
false
false
19,961
py
datasetsForTnP = [ {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Spring16_reHLT', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Spring16_reHLT.root', 'lumi': -1, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.767, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.646, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.353, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 3.985, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.160, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.539, 'nEvts': -1}, {'lumiProcessedFile': None, 'campaign': 'crab_project_Moriond17_v1', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/Moriond17_v1/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 8.762, 'nEvts': -1}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_DYToLL_madgraph_Winter2017//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Winter2017', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph_Winter2017.root', 'lumi': -1, 'nEvts': 49748967}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.899, 'nEvts': 238592033}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.646, 'nEvts': 93326652}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.353, 'nEvts': 146480008}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 4.050, 'nEvts': 113169852}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.160, 'nEvts': 70143321}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.391, 'nEvts': 148781520}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20_vRECO/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016prompt_RunHv2//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 8.762, 'nEvts': 123900510}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.349, 'nEvts': 235522176}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 2.363, 'nEvts': 92067646}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.256, 'nEvts': 146495223}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 3.981, 'nEvts': 111208237}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.105, 'nEvts': 70143321}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.544, 'nEvts': 152098617}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunH//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunH', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunH.root', 'lumi': 6.105, 'nEvts': 89863172}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph.root', 'lumi': -1, 'nEvts': 33584160}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunB.root', 'lumi': -1, 'nEvts': 7384544}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunC.root', 'lumi': -1, 'nEvts': 79103372}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunD.root', 'lumi': -1, 'nEvts': 124968333}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunF.root', 'lumi': -1, 'nEvts': 64744869}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v2/crab_2016prompt_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v2', 'dataset': 'SingleElectron_2016prompt_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v2/data//TnPTree_SingleElectron_2016prompt_RunG.root', 'lumi': -1, 'nEvts': 138296792}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_DYToLL_madgraph.root', 'lumi': -1, 'nEvts': 44983870}, {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOSFs_2016/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOSFs_2016', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOSFs_2016/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': -1, 'nEvts': 116256313}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunB//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunB', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunB.root', 'lumi': 5.364, 'nEvts': 236233675}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunC//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunC', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunC.root', 'lumi': 1.810, 'nEvts': 70759545}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunD//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunD', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunD.root', 'lumi': 4.241, 'nEvts': 145990095}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunE//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunE', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunE.root', 'lumi': 4.054, 'nEvts': 113169852}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunF//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunF', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunF.root', 'lumi': 3.085, 'nEvts': 69673589}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_20/src/PhysicsTools/TagAndProbe/crab/crab_projects_v1/crab_2016rereco_RunG//results/processedLumis.json', 'campaign': 'crab_projects_v1', 'dataset': 'SingleElectron_2016rereco_RunG', 'file': '/store/group/phys_egamma/tnp/80X/PhoEleIDs/v1/data//TnPTree_SingleElectron_2016rereco_RunG.root', 'lumi': 7.521, 'nEvts': 151654044}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_2016_RunB/results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'SingleElectron_2016_RunB', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/data//TnPTree_SingleElectron_2016_RunB.root', 'lumi': 5.657, 'nEvts': 228669688}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_13_patch1/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_2016_RunC//results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'SingleElectron_2016_RunC', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/data//TnPTree_SingleElectron_2016_RunC.root', 'lumi': 1.761, 'nEvts': 63419101}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_DYToLL_madgraph/results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 36311064}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_DYToLL_mcAtNLO//processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28696958}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_elev2/crab_WJets_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_elev2', 'dataset': 'WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/elev2/mc//TnPTree_WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 24908024}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_2016_RunB//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'SingleElectron', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/data//TnPTree_SingleElectron.root', 'lumi': 5.848, 'nEvts': 236203597}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 41253879}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_phov2/crab_DYToLL_mcAtNLO//results/processedLumis.json', 'campaign': 'crab_projects_phov2', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/Photons_76Xids/phov2/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28696958}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_2016_RunB//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'SingleElectron_2016_RunB', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/data//TnPTree_SingleElectron_2016_RunB.root', 'lumi': 5.401, 'nEvts': 211415403}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/CMSSW_8_0_13_patch1/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_2016_RunC//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'SingleElectron_2016_RunC', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/data//TnPTree_SingleElectron_2016_RunC.root', 'lumi': 1.730, 'nEvts': 62332526}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_DYToLL_madgraph//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root', 'lumi': -1, 'nEvts': 49877138}, # {'lumiProcessedFile': '/afs/cern.ch/work/f/fcouderc/public/EGamma/TnP/new/CMSSW_8_0_10/src/PhysicsTools/TagAndProbe/crab/crab_projects_RECOv3/crab_DYToLL_mcAtNLO//results/processedLumis.json', 'campaign': 'crab_projects_RECOv3', 'dataset': 'DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8', 'file': '/store/group/phys_egamma/tnp/80X/RecoSF/RECOv3/mc//TnPTree_DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8.root', 'lumi': -1, 'nEvts': 28328619} ]
4bfb6408fe3122c020282667a4a2da27d9bce309
ea2cf796332879d86561f80882da93b672966448
/configs/csl/rotated_retinanet_obb_csl_gaussian_r50_adamw_fpn_1x_dior_le90.py
06b08881da2ee813a6c9b31343d7fc13168ee2d2
[ "Apache-2.0" ]
permissive
yangxue0827/h2rbox-mmrotate
968c34adf22eca073ab147b670226884ea80ac61
cfd7f1fef6ae4d4e17cb891d1ec144ece8b5d7f5
refs/heads/main
2023-05-23T10:02:58.344148
2023-02-14T05:28:38
2023-02-14T05:28:38
501,580,810
68
8
null
null
null
null
UTF-8
Python
false
false
669
py
_base_ = \ ['../rotated_retinanet/rotated_retinanet_hbb_r50_adamw_fpn_1x_dior_oc.py'] angle_version = 'le90' model = dict( bbox_head=dict( type='CSLRRetinaHead', angle_coder=dict( type='CSLCoder', angle_version=angle_version, omega=4, window='gaussian', radius=3), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0), loss_angle=dict( type='SmoothFocalLoss', gamma=2.0, alpha=0.25, loss_weight=0.8)))
628776070784ddd0d523624b6c9462eea95ff6bf
0d8486c1d55c40bebea7c5428930f18165d2d0e9
/tests/asp/AllAnswerSets/aggregates/count.example4.test.py
76a4479b403d3b6ffc18810437b0f4bc40d563f8
[ "Apache-2.0" ]
permissive
bernardocuteri/wasp
6f81bf6aa8fb273c91bbf68ecce4ecb195a55953
05c8f961776dbdbf7afbf905ee00fc262eba51ad
refs/heads/master
2021-06-08T11:58:25.080818
2020-10-05T16:57:37
2020-10-05T16:57:37
124,245,808
0
0
Apache-2.0
2018-03-07T14:13:16
2018-03-07T14:13:16
null
UTF-8
Python
false
false
625
py
input = """ 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 2 1 7 8 1 7 2 1 6 8 1 8 0 0 1 9 2 1 10 11 1 10 2 1 9 11 1 11 0 0 1 12 2 1 13 14 1 13 2 1 12 14 1 14 0 0 1 15 2 1 16 17 1 16 2 1 15 17 1 17 0 0 2 18 2 0 2 12 6 1 1 1 0 18 2 19 2 0 2 15 9 1 1 1 0 19 1 20 1 0 15 1 20 1 0 12 1 21 1 0 9 1 21 1 0 6 1 1 1 1 21 1 1 1 1 20 0 20 ad(a) 21 ad(b) 6 a(b,2) 9 a(b,1) 12 a(a,2) 15 a(a,1) 4 c(a) 5 c(b) 7 na(b,2) 10 na(b,1) 13 na(a,2) 16 na(a,1) 2 b(1) 3 b(2) 0 B+ 0 B- 1 0 1 """ output = """ {b(1), b(2), c(a), c(b), a(b,2), na(b,1), na(a,2), a(a,1), ad(a), ad(b)} {b(1), b(2), c(a), c(b), na(b,2), a(b,1), a(a,2), na(a,1), ad(a), ad(b)} """
f79c9ac3da69afb6f18aca5cfd8be28254cb7292
811b67fca9efd7b6a2b95500dfdfbd981a2be9a7
/Machine Learning For Finance/Lesson5_2.py
c7d259b4d24c65ca989844a257248ee28f058f98
[]
no_license
inaheaven/Finance_Tool
a978ae534dca646088a12b58e00a8ce995b08920
adeaf05307dc1d4af002bea3d39c3273e93af347
refs/heads/master
2020-05-23T13:41:33.912276
2019-07-03T02:06:28
2019-07-03T02:06:28
186,781,682
0
0
null
null
null
null
UTF-8
Python
false
false
1,658
py
import pandas as pd import matplotlib.pyplot as plt import os def symbol_to_path(symbol, base_dir="Data/data"): return os.path.join(base_dir, "{}.csv".format(str(symbol))) def get_data(symbols, dates): df = pd.DataFrame(index=dates) if 'SPY' not in symbols: symbols.insert(0, 'SPY') for symbol in symbols: df_tmp = pd.read_csv(symbol_to_path(symbol), usecols=['Date', 'Adj Close'], index_col='Date', parse_dates=True, na_values=['NaN']) df_tmp = df_tmp.rename(columns={'Adj Close': symbol}) df = df.join(df_tmp) df = df.dropna(subset=['SPY']) print(df) return df def normalize_data(df): return df / df.ix[0, :] def plot_data(df, title="STOCK PRICE"): ax = df.plot(title=title, fontsize=12) ax.set_xlabel("Date") ax.set_ylabel("Price") plt.show() def plot_selected(df, columns, start_index, end_index): plot_data(df.ix[start_index: end_index, columns], title="STOCK PRICE") def test_run(): dates = pd.date_range('2012-01-01', '2012-12-31') symbols = ['SPY'] df = get_data(symbols, dates) print("df", df) # df = normalize_data(df) # plot_selected(df, ['GOOG', 'SPY', 'IBM', 'GLD'], '2010-01-01', '2010-05-01') # print("MEAN", df.mean()) # print("MEDIAN", df.median()) # print("STD", df.std()) ax = df['SPY'].plot(title="SPY ROLLING MEAN", label='SPY') rm_SPY = df['SPY'].rolling(20).mean() rm_SPY.plot(label="Rolling mean", ax = ax) ax.set_xlabel("DATE") ax.set_ylabel("PRICE") ax.legend(loc="upper left") plt.show() if __name__ == '__main__': test_run()
a93164796eaa571c517dc3a2993e7377c297e581
faa54203033398d264c75814b899d253edf71c9b
/pyflux/gas/__init__.py
dfb1ab71874ada0b2da30c57785c375b3036e9ae
[ "BSD-3-Clause" ]
permissive
th3nolo/pyflux
4a9e646f9ee0e650676b82134d3810c0a98d8963
21bc18ddeabce277e4485e75962e5fa5ff3a46ea
refs/heads/master
2020-12-02T15:08:53.257900
2016-07-24T17:47:59
2016-07-24T17:47:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
from .gas import GAS from .gasx import GASX from .gasmodels import GASPoisson, GASNormal, GASLaplace, GASt, GASSkewt, GASExponential from .gasllm import GASLLEV from .gasllt import GASLLT from .gasreg import GASReg from .scores import BetatScore, SkewtScore
8dc0a87dd10e8d1d8503e312210b327d6098d695
6ab31b5f3a5f26d4d534abc4b197fe469a68e8e5
/katas/beta/only_readable_once_list.py
b075f9fe98d07c99e321b7906fe37c77f51fe6d7
[ "MIT" ]
permissive
mveselov/CodeWars
e4259194bfa018299906f42cd02b8ef4e5ab6caa
1eafd1247d60955a5dfb63e4882e8ce86019f43a
refs/heads/master
2021-06-09T04:17:10.053324
2017-01-08T06:36:17
2017-01-08T06:36:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
class SecureList(object): def __init__(self, lst): self.lst = list(lst) def __getitem__(self, item): return self.lst.pop(item) def __len__(self): return len(self.lst) def __repr__(self): tmp, self.lst = self.lst, [] return repr(tmp) def __str__(self): tmp, self.lst = self.lst, [] return str(tmp)
905b497b63c36d0df8721fcbe09be8f5bcd07c97
7e409f6490957f96a1ea17161a3b791256a2ec4f
/31 - Form Field dan Option/mywebsite/forms.py
0019079b233c0b91fd26b93c04438c8e64622c04
[]
no_license
CuteCatCrying/Django
9fb8fd06f4793ef754e6e3dfd63b9caad03317f8
563119a66c81bf57616f62855bc78f448204ba83
refs/heads/master
2022-04-02T14:13:23.700165
2020-02-05T09:34:46
2020-02-05T09:34:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,360
py
from django import forms class FormField(forms.Form): # python data type integer_field = forms.IntegerField(required=False) decimal_field = forms.DecimalField(required=False) float_field = forms.FloatField(required=False) boolean_field = forms.BooleanField(required=False) char_field = forms.CharField(max_length=10, required=False) # string input email_field = forms.EmailField(required=False) regex_field = forms.RegexField(regex=r'(P?<test>)') slug_field = forms.SlugField() url_field = forms.URLField() ip_field = forms.GenericIPAddressField() # select input PILIHAN = ( ('nilai1', 'Pilihan1'), ('nilai2', 'Pilihan2'), ('nilai3', 'Pilihan3'), ) choice_field = forms.ChoiceField(choices=PILIHAN) multi_choice_field = forms.MultipleChoiceField(choices=PILIHAN) multi_typed_field = forms.TypedMultipleChoiceField(choices=PILIHAN) null_boolean_field = forms.NullBooleanField() # date time date_field = forms.DateField() datetime_field = forms.DateTimeField() duration_field = forms.DurationField() time_field = forms.TimeField() splidatetime_field = forms.SplitDateTimeField() # file input file_field = forms.FileField() image_field = forms.ImageField()
38927db265890ba6187601389420bb4787358329
5aef1c2397b96a352f26a9bc3c280bd69171da4c
/Environments/django-env/lib/python3.6/warnings.py
9425815c0fab76c7114648e38564d2b1a5e2efcd
[]
no_license
FRANKLIU90/Python
ed01cb6aa31c313cdcbb1b514df5db830d0090d3
b6066bde6e452c5463a4680a688d5628f4a1b898
refs/heads/master
2020-04-01T03:08:39.765409
2018-10-12T22:44:47
2018-10-12T22:44:47
152,811,094
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
/Users/frankyoung/anaconda3/lib/python3.6/warnings.py
ebe79df1ad52ea7869c585362ad2a6af388c05ff
eb4877802021fa9f20962a7cfb176239dfb1e169
/py/testdir_single_jvm/test_GBMGrid_basic.py
bc789ffa818ccfead0bc492810e7f8731686b00e
[ "Apache-2.0" ]
permissive
jinbochen/h2o
bd6f2b937884a6c51ccd5673310c64d6a9e1839b
48a5196cc790ed46f7c4a556258f8d2aeb7eb1c1
refs/heads/master
2021-01-17T23:33:42.765997
2013-11-14T20:06:23
2013-11-14T20:08:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,703
py
import unittest, time, sys sys.path.extend(['.','..','py']) import h2o, h2o_cmd, h2o_glm, h2o_hosts, h2o_import as h2i, h2o_jobs DO_CLASSIFICATION = True class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global localhost localhost = h2o.decide_if_localhost() if (localhost): h2o.build_cloud(1) else: h2o_hosts.build_cloud_with_hosts(1) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GBMGrid_basic_benign(self): csvFilename = "benign.csv" print "\nStarting", csvFilename csvPathname = 'logreg/' + csvFilename parseResult = h2i.import_parse(bucket='smalldata', path=csvPathname, hex_key=csvFilename + ".hex", schema='put') # columns start at 0 # cols 0-13. 3 is output # no member id in this one # fails with n_folds print "Not doing n_folds with benign. Fails with 'unable to solve?'" # check the first in the models list. It should be the best colNames = [ 'STR','OBS','AGMT','FNDX','HIGD','DEG','CHK', 'AGP1','AGMN','NLV','LIV','WT','AGLP','MST' ] modelKey = 'GBMGrid_benign' # 'cols', 'ignored_cols_by_name', and 'ignored_cols' have to be exclusive params = { 'destination_key': modelKey, 'ignored_cols_by_name': 'STR', 'learn_rate': .1, 'ntrees': 2, 'max_depth': 8, 'min_rows': 1, 'response': 'FNDX', 'classification': 1 if DO_CLASSIFICATION else 0, } kwargs = params.copy() timeoutSecs = 1800 start = time.time() GBMFirstResult = h2o_cmd.runGBM(parseResult=parseResult, noPoll=True,**kwargs) print "\nGBMFirstResult:", h2o.dump_json(GBMFirstResult) # no pattern waits for all h2o_jobs.pollWaitJobs(pattern=None, timeoutSecs=300, pollTimeoutSecs=10, retryDelaySecs=5) elapsed = time.time() - start print "GBM training completed in", elapsed, "seconds." gbmTrainView = h2o_cmd.runGBMView(model_key=modelKey) # errrs from end of list? is that the last tree? errsLast = gbmTrainView['gbm_model']['errs'][-1] print "GBM 'errsLast'", errsLast if DO_CLASSIFICATION: cm = gbmTrainView['gbm_model']['cm'] pctWrongTrain = h2o_gbm.pp_cm_summary(cm); print "Last line of this cm might be NAs, not CM" print "\nTrain\n==========\n" print h2o_gbm.pp_cm(cm) else: print "GBMTrainView:", h2o.dump_json(gbmTrainView['gbm_model']['errs']) def test_GBMGrid_basic_prostate(self): csvFilename = "prostate.csv" print "\nStarting", csvFilename # columns start at 0 csvPathname = 'logreg/' + csvFilename parseResult = h2i.import_parse(bucket='smalldata', path=csvPathname, hex_key=csvFilename + ".hex", schema='put') colNames = ['ID','CAPSULE','AGE','RACE','DPROS','DCAPS','PSA','VOL','GLEASON'] modelKey = 'GBMGrid_prostate' # 'cols', 'ignored_cols_by_name', and 'ignored_cols' have to be exclusive params = { 'destination_key': modelKey, 'ignored_cols_by_name': 'ID', 'learn_rate': .1, 'ntrees': 2, 'max_depth': 8, 'min_rows': 1, 'response': 'CAPSULE', 'classification': 1 if DO_CLASSIFICATION else 0, } kwargs = params.copy() timeoutSecs = 1800 start = time.time() GBMFirstResult = h2o_cmd.runGBM(parseResult=parseResult, noPoll=True,**kwargs) print "\nGBMFirstResult:", h2o.dump_json(GBMFirstResult) # no pattern waits for all h2o_jobs.pollWaitJobs(pattern=None, timeoutSecs=300, pollTimeoutSecs=10, retryDelaySecs=5) elapsed = time.time() - start print "GBM training completed in", elapsed, "seconds." gbmTrainView = h2o_cmd.runGBMView(model_key=modelKey) # errrs from end of list? is that the last tree? errsLast = gbmTrainView['gbm_model']['errs'][-1] print "GBM 'errsLast'", errsLast if DO_CLASSIFICATION: cm = gbmTrainView['gbm_model']['cm'] pctWrongTrain = h2o_gbm.pp_cm_summary(cm); print "Last line of this cm might be NAs, not CM" print "\nTrain\n==========\n" print h2o_gbm.pp_cm(cm) else: print "GBMTrainView:", h2o.dump_json(gbmTrainView['gbm_model']['errs']) if __name__ == '__main__': h2o.unit_main()
f9c8be44958d2e203e046c76d6dfb7572522327f
1c59524a45a5859d1bff39f83f7b4e6b2f9fdfbb
/lib/mAP/mAP.py
78f5e3d6d62f015872801f3a79c328360dc00c04
[]
no_license
fendaq/Arithmetic_Func_detection_for_CTPN
d62087547e863f22df4c219ddd616ced4103a42b
2bf6e05cd706189918ef892666d151894a049fad
refs/heads/master
2020-03-30T04:17:10.971584
2018-09-28T09:48:27
2018-09-28T09:48:27
150,734,626
2
0
null
2018-09-28T12:05:15
2018-09-28T12:05:15
null
UTF-8
Python
false
false
26,963
py
import glob import json import os import shutil import operator import sys import argparse MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge) parser = argparse.ArgumentParser() parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true") parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true") parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true") # argparse receiving list of classes to be ignored parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.") # argparse receiving list of classes with specific IoU parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.") args = parser.parse_args() # if there are no classes to ignore then replace None by empty list if args.ignore is None: args.ignore = [] specific_iou_flagged = False if args.set_class_iou is not None: specific_iou_flagged = True # if there are no images then no animation can be shown img_path = 'data/val_img' if os.path.exists(img_path): for dirpath, dirnames, files in os.walk(img_path): if not files: # no image files found args.no_animation = True else: args.no_animation = True # try to import OpenCV if the user didn't choose the option --no-animation show_animation = False if not args.no_animation: try: import cv2 show_animation = True except ImportError: print("\"opencv-python\" not found, please install to visualize the results.") args.no_animation = True # try to import Matplotlib if the user didn't choose the option --no-plot draw_plot = False if not args.no_plot: try: import matplotlib.pyplot as plt draw_plot = True except ImportError: print("\"matplotlib\" not found, please install it to get the resulting plots.") args.no_plot = True """ throw error and exit """ def error(msg): print(msg) sys.exit(0) """ check if the number is a float between 0.0 and 1.0 """ def is_float_between_0_and_1(value): try: val = float(value) if val > 0.0 and val < 1.0: return True else: return False except ValueError: return False """ Calculate the AP given the recall and precision array 1st) We compute a version of the measured precision/recall curve with precision monotonically decreasing 2nd) We compute the AP as the area under this curve by numerical integration. """ def voc_ap(rec, prec): """ --- Official matlab code VOC2012--- mrec=[0 ; rec ; 1]; mpre=[0 ; prec ; 0]; for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); end i=find(mrec(2:end)~=mrec(1:end-1))+1; ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ rec.insert(0, 0.0) # insert 0.0 at begining of list rec.append(1.0) # insert 1.0 at end of list mrec = rec[:] prec.insert(0, 0.0) # insert 0.0 at begining of list prec.append(0.0) # insert 0.0 at end of list mpre = prec[:] """ This part makes the precision monotonically decreasing (goes from the end to the beginning) matlab: for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); """ # matlab indexes start in 1 but python in 0, so I have to do: # range(start=(len(mpre) - 2), end=0, step=-1) # also the python function range excludes the end, resulting in: # range(start=(len(mpre) - 2), end=-1, step=-1) for i in range(len(mpre)-2, -1, -1): mpre[i] = max(mpre[i], mpre[i+1]) """ This part creates a list of indexes where the recall changes matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1; """ i_list = [] for i in range(1, len(mrec)): if mrec[i] != mrec[i-1]: i_list.append(i) # if it was matlab would be i + 1 """ The Average Precision (AP) is the area under the curve (numerical integration) matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ ap = 0.0 for i in i_list: ap += ((mrec[i]-mrec[i-1])*mpre[i]) return ap, mrec, mpre """ Convert the lines of a file to a list """ def file_lines_to_list(path): # open txt file lines to a list with open(path) as f: content = f.readlines() # remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] return content """ Draws text in image """ def draw_text_in_image(img, text, pos, color, line_width): font = cv2.FONT_HERSHEY_PLAIN fontScale = 1 lineType = 1 bottomLeftCornerOfText = pos cv2.putText(img, text, bottomLeftCornerOfText, font, fontScale, color, lineType) text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0] return img, (line_width + text_width) """ Plot - adjust axes """ def adjust_axes(r, t, fig, axes): # get text width for re-scaling bb = t.get_window_extent(renderer=r) text_width_inches = bb.width / fig.dpi # get axis width in inches current_fig_width = fig.get_figwidth() new_fig_width = current_fig_width + text_width_inches propotion = new_fig_width / current_fig_width # get axis limit x_lim = axes.get_xlim() axes.set_xlim([x_lim[0], x_lim[1]*propotion]) """ Draw plot using Matplotlib """ def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar): # sort the dictionary by decreasing value, into a list of tuples sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1)) # unpacking the list of tuples into two lists sorted_keys, sorted_values = zip(*sorted_dic_by_value) # if true_p_bar != "": """ Special case to draw in (green=true predictions) & (red=false predictions) """ fp_sorted = [] tp_sorted = [] for key in sorted_keys: fp_sorted.append(dictionary[key] - true_p_bar[key]) tp_sorted.append(true_p_bar[key]) plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Predictions') plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Predictions', left=fp_sorted) # add legend plt.legend(loc='lower right') """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): fp_val = fp_sorted[i] tp_val = tp_sorted[i] fp_str_val = " " + str(fp_val) tp_str_val = fp_str_val + " " + str(tp_val) # trick to paint multicolor with offset: # first paint everything and then repaint the first number t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold') plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold') if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) else: plt.barh(range(n_classes), sorted_values, color=plot_color) """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): str_val = " " + str(val) # add a space before if val < 1.0: str_val = " {0:.2f}".format(val) t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold') # re-set axes to show number inside the figure if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) # set window title fig.canvas.set_window_title(window_title) # write classes in y axis tick_font_size = 12 plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size) """ Re-scale height accordingly """ init_height = fig.get_figheight() # comput the matrix height in points and inches dpi = fig.dpi height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing) height_in = height_pt / dpi # compute the required figure height top_margin = 0.15 # in percentage of the figure height bottom_margin = 0.05 # in percentage of the figure height figure_height = height_in / (1 - top_margin - bottom_margin) # set new height if figure_height > init_height: fig.set_figheight(figure_height) # set plot title plt.title(plot_title, fontsize=14) # set axis titles # plt.xlabel('classes') plt.xlabel(x_label, fontsize='large') # adjust size of window fig.tight_layout() # save the plot fig.savefig(output_path) # show image if to_show: plt.show() # close the plot plt.close() """ Create a "tmp_files/" and "results/" directory """ tmp_files_path = "data/mAP/tmp_files" if not os.path.exists(tmp_files_path): # if it doesn't exist already os.makedirs(tmp_files_path) results_files_path = "data/mAP/results" if os.path.exists(results_files_path): # if it exist already # reset the results directory shutil.rmtree(results_files_path) os.makedirs(results_files_path) if draw_plot: os.makedirs(results_files_path + "/classes") if show_animation: os.makedirs(results_files_path + "/images") """ Ground-Truth Load each of the ground-truth files into a temporary ".json" file. Create a list of all the class names present in the ground-truth (gt_classes). """ # get a list with the ground-truth files ground_truth_files_list = glob.glob('data/mAP/ground_truth/*.txt') if len(ground_truth_files_list) == 0: error("Error: No ground-truth files found!") ground_truth_files_list.sort() # dictionary with counter per class gt_counter_per_class = {} for txt_file in ground_truth_files_list: #print(txt_file) file_id = txt_file.split(".txt",1)[0] file_id = os.path.basename(os.path.normpath(file_id)) # check if there is a correspondent predicted objects file if not os.path.exists('data/mAP/predicted/' + file_id + ".txt"): error_msg = "Error. File not found: predicted/" + file_id + ".txt\n" error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)" error(error_msg) lines_list = file_lines_to_list(txt_file) # create ground-truth dictionary bounding_boxes = [] is_difficult = False for line in lines_list: try: if "difficult" in line: class_name, left, top, right, bottom, _difficult = line.split() is_difficult = True else: class_name, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: <class_name> <left> <top> <right> <bottom> ['difficult']\n" error_msg += " Received: " + line error_msg += "\n\nIf you have a <class_name> with spaces between words you should remove them\n" error_msg += "by running the script \"remove_space.py\" or \"rename_class.py\" in the \"extra/\" folder." error(error_msg) # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue bbox = left + " " + top + " " + right + " " +bottom if is_difficult: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True}) is_difficult = False else: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False}) # count that object if class_name in gt_counter_per_class: gt_counter_per_class[class_name] += 1 else: # if class didn't exist yet gt_counter_per_class[class_name] = 1 # dump bounding_boxes into a ".json" file with open(tmp_files_path + "/" + file_id + "_ground_truth.json", 'w') as outfile: json.dump(bounding_boxes, outfile) gt_classes = list(gt_counter_per_class.keys()) # let's sort the classes alphabetically gt_classes = sorted(gt_classes) n_classes = len(gt_classes) #print(gt_classes) #print(gt_counter_per_class) """ Check format of the flag --set-class-iou (if used) e.g. check if class exists """ if specific_iou_flagged: n_args = len(args.set_class_iou) error_msg = \ '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]' if n_args % 2 != 0: error('Error, missing arguments. Flag usage:' + error_msg) # [class_1] [IoU_1] [class_2] [IoU_2] # specific_iou_classes = ['class_1', 'class_2'] specific_iou_classes = args.set_class_iou[::2] # even # iou_list = ['IoU_1', 'IoU_2'] iou_list = args.set_class_iou[1::2] # odd if len(specific_iou_classes) != len(iou_list): error('Error, missing arguments. Flag usage:' + error_msg) for tmp_class in specific_iou_classes: if tmp_class not in gt_classes: error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg) for num in iou_list: if not is_float_between_0_and_1(num): error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg) """ Predicted Load each of the predicted files into a temporary ".json" file. """ # get a list with the predicted files predicted_files_list = glob.glob('data/mAP/predicted/*.txt') predicted_files_list.sort() for class_index, class_name in enumerate(gt_classes): bounding_boxes = [] for txt_file in predicted_files_list: #print(txt_file) # the first time it checks if all the corresponding ground-truth files exist file_id = txt_file.split(".txt",1)[0] file_id = os.path.basename(os.path.normpath(file_id)) if class_index == 0: if not os.path.exists('data/mAP/ground_truth/' + file_id + ".txt"): error_msg = "Error. File not found: ground-truth/" + file_id + ".txt\n" error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)" error(error_msg) lines = file_lines_to_list(txt_file) for line in lines: try: tmp_class_name, confidence, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n" error_msg += " Received: " + line error(error_msg) if tmp_class_name == class_name: #print("match") bbox = left + " " + top + " " + right + " " +bottom bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox}) #print(bounding_boxes) # sort predictions by decreasing confidence bounding_boxes.sort(key=lambda x:x['confidence'], reverse=True) with open(tmp_files_path + "/" + class_name + "_predictions.json", 'w') as outfile: json.dump(bounding_boxes, outfile) """ Calculate the AP for each class """ sum_AP = 0.0 ap_dictionary = {} # open file to store the results with open(results_files_path + "/results.txt", 'w') as results_file: results_file.write("# AP and precision/recall per class\n") count_true_positives = {} for class_index, class_name in enumerate(gt_classes): count_true_positives[class_name] = 0 """ Load predictions of that class """ predictions_file = tmp_files_path + "/" + class_name + "_predictions.json" predictions_data = json.load(open(predictions_file)) """ Assign predictions to ground truth objects """ nd = len(predictions_data) tp = [0] * nd # creates an array of zeros of size nd fp = [0] * nd for idx, prediction in enumerate(predictions_data): file_id = prediction["file_id"] if show_animation: # find ground truth image ground_truth_img = glob.glob1(img_path, file_id + ".*") #tifCounter = len(glob.glob1(myPath,"*.tif")) if len(ground_truth_img) == 0: error("Error. Image not found with id: " + file_id) elif len(ground_truth_img) > 1: error("Error. Multiple image with id: " + file_id) else: # found image #print(img_path + "/" + ground_truth_img[0]) # Load image img = cv2.imread(img_path + "/" + ground_truth_img[0]) # Add bottom border to image bottom_border = 60 BLACK = [0, 0, 0] img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK) # assign prediction to ground truth object if any # open ground-truth with that file_id gt_file = tmp_files_path + "/" + file_id + "_ground_truth.json" ground_truth_data = json.load(open(gt_file)) ovmax = -1 gt_match = -1 # load prediction bounding-box bb = [ float(x) for x in prediction["bbox"].split() ] for obj in ground_truth_data: # look for a class_name match if obj["class_name"] == class_name: bbgt = [ float(x) for x in obj["bbox"].split() ] bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])] iw = bi[2] - bi[0] + 1 ih = bi[3] - bi[1] + 1 if iw > 0 and ih > 0: # compute overlap (IoU) = area of intersection / area of union ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0] + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih ov = iw * ih / ua if ov > ovmax: ovmax = ov gt_match = obj # assign prediction as true positive/don't care/false positive if show_animation: status = "NO MATCH FOUND!" # status is only used in the animation # set minimum overlap min_overlap = MINOVERLAP if specific_iou_flagged: if class_name in specific_iou_classes: index = specific_iou_classes.index(class_name) min_overlap = float(iou_list[index]) if ovmax >= min_overlap: if "difficult" not in gt_match: if not bool(gt_match["used"]): # true positive tp[idx] = 1 gt_match["used"] = True count_true_positives[class_name] += 1 # update the ".json" file with open(gt_file, 'w') as f: f.write(json.dumps(ground_truth_data)) if show_animation: status = "MATCH!" else: # false positive (multiple detection) fp[idx] = 1 if show_animation: status = "REPEATED MATCH!" else: # false positive fp[idx] = 1 if ovmax > 0: status = "INSUFFICIENT OVERLAP" """ Draw image to show animation """ if show_animation: height, widht = img.shape[:2] # colors (OpenCV works with BGR) white = (255,255,255) light_blue = (255,200,100) green = (0,255,0) light_red = (30,30,255) # 1st line margin = 10 v_pos = int(height - margin - (bottom_border / 2)) text = "Image: " + ground_truth_img[0] + " " img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width) if ovmax != -1: color = light_red if status == "INSUFFICIENT OVERLAP": text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100) else: text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100) color = green img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) # 2nd line v_pos += int(bottom_border / 2) rank_pos = str(idx+1) # rank position (idx starts at 0) text = "Prediction #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(prediction["confidence"])*100) img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) color = light_red if status == "MATCH!": color = green text = "Result: " + status + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) if ovmax > 0: # if there is intersections between the bounding-boxes bbgt = [ float(x) for x in gt_match["bbox"].split() ] cv2.rectangle(img,(int(bbgt[0]),int(bbgt[1])),(int(bbgt[2]),int(bbgt[3])),light_blue,2) if status == "MATCH!": cv2.rectangle(img,(int(bb[0]),int(bb[1])),(int(bb[2]),int(bb[3])),green,2) else: cv2.rectangle(img,(int(bb[0]),int(bb[1])),(int(bb[2]),int(bb[3])),light_red,2) cv2.imshow("Animation", img) cv2.waitKey(20) # show image for 20 ms # save image to results output_img_path = results_files_path + "/images/" + class_name + "_prediction" + str(idx) + ".jpg" cv2.imwrite(output_img_path, img) #print(tp) # compute precision/recall cumsum = 0 for idx, val in enumerate(fp): fp[idx] += cumsum cumsum += val cumsum = 0 for idx, val in enumerate(tp): tp[idx] += cumsum cumsum += val #print(tp) rec = tp[:] for idx, val in enumerate(tp): rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name] #print(rec) prec = tp[:] for idx, val in enumerate(tp): prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx]) #print(prec) ap, mrec, mprec = voc_ap(rec, prec) sum_AP += ap text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100) """ Write to results.txt """ rounded_prec = [ '%.2f' % elem for elem in prec ] rounded_rec = [ '%.2f' % elem for elem in rec ] results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n") if not args.quiet: print(text) ap_dictionary[class_name] = ap """ Draw plot """ if draw_plot: plt.plot(rec, prec, '-o') # add a new penultimate point to the list (mrec[-2], 0.0) # since the last line segment (and respective area) do not affect the AP value area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') # set window title fig = plt.gcf() # gcf - get current figure fig.canvas.set_window_title('AP ' + class_name) # set plot title plt.title('class: ' + text) #plt.suptitle('This is a somewhat long figure title', fontsize=16) # set axis titles plt.xlabel('Recall') plt.ylabel('Precision') # optional - set axes axes = plt.gca() # gca - get current axes axes.set_xlim([0.0,1.0]) axes.set_ylim([0.0,1.05]) # .05 to give some extra space # Alternative option -> wait for button to be pressed #while not plt.waitforbuttonpress(): pass # wait for key display # Alternative option -> normal display #plt.show() # save the plot fig.savefig(results_files_path + "/classes/" + class_name + ".png") plt.cla() # clear axes for next plot if show_animation: cv2.destroyAllWindows() results_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {0:.2f}%".format(mAP*100) results_file.write(text + "\n") print(text) # remove the tmp_files directory # shutil.rmtree(tmp_files_path) """ Count total of Predictions """ # iterate through all the files pred_counter_per_class = {} #all_classes_predicted_files = set([]) for txt_file in predicted_files_list: # get lines to list lines_list = file_lines_to_list(txt_file) for line in lines_list: class_name = line.split()[0] # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue # count that object if class_name in pred_counter_per_class: pred_counter_per_class[class_name] += 1 else: # if class didn't exist yet pred_counter_per_class[class_name] = 1 #print(pred_counter_per_class) pred_classes = list(pred_counter_per_class.keys()) """ Plot the total number of occurences of each class in the ground-truth """ if draw_plot: window_title = "Ground-Truth Info" plot_title = "Ground-Truth\n" plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" x_label = "Number of objects per class" output_path = results_files_path + "/Ground-Truth Info.png" to_show = False plot_color = 'forestgreen' draw_plot_func( gt_counter_per_class, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, '', ) """ Write number of ground-truth objects per class to results.txt """ with open(results_files_path + "results.txt", 'a') as results_file: results_file.write("\n# Number of ground-truth objects per class\n") for class_name in sorted(gt_counter_per_class): results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n") """ Finish counting true positives """ for class_name in pred_classes: # if class exists in predictions but not in ground-truth then there are no true positives in that class if class_name not in gt_classes: count_true_positives[class_name] = 0 #print(count_true_positives) """ Plot the total number of occurences of each class in the "predicted" folder """ if draw_plot: window_title = "Predicted Objects Info" # Plot title plot_title = "Predicted Objects\n" plot_title += "(" + str(len(predicted_files_list)) + " files and " count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(pred_counter_per_class.values())) plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" # end Plot title x_label = "Number of objects per class" output_path = results_files_path + "/Predicted Objects Info.png" to_show = False plot_color = 'forestgreen' true_p_bar = count_true_positives draw_plot_func( pred_counter_per_class, len(pred_counter_per_class), window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar ) """ Write number of predicted objects per class to results.txt """ with open(results_files_path + "/results.txt", 'a') as results_file: results_file.write("\n# Number of predicted objects per class\n") for class_name in sorted(pred_classes): n_pred = pred_counter_per_class[class_name] text = class_name + ": " + str(n_pred) text += " (tp:" + str(count_true_positives[class_name]) + "" text += ", fp:" + str(n_pred - count_true_positives[class_name]) + ")\n" results_file.write(text) """ Draw mAP plot (Show AP's of all classes in decreasing order) """ if draw_plot: window_title = "mAP" plot_title = "mAP = {0:.2f}%".format(mAP*100) x_label = "Average Precision" output_path = results_files_path + "/mAP.png" to_show = True plot_color = 'royalblue' draw_plot_func( ap_dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, "" )
077fa8b5db26b02abb818582046ec268a8d0215b
9b9a02657812ea0cb47db0ae411196f0e81c5152
/repoData/danfolkes-Magnet2Torrent/allPythonContent.py
0beca59a21a4fb5422f36851ab3bc50601572d49
[]
no_license
aCoffeeYin/pyreco
cb42db94a3a5fc134356c9a2a738a063d0898572
0ac6653219c2701c13c508c5c4fc9bc3437eea06
refs/heads/master
2020-12-14T14:10:05.763693
2016-06-27T05:15:15
2016-06-27T05:15:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,287
py
__FILENAME__ = Magnet_To_Torrent2 #!/usr/bin/env python ''' Created on Apr 19, 2012 @author: dan, Faless GNU GENERAL PUBLIC LICENSE - Version 3 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. http://www.gnu.org/licenses/gpl-3.0.txt ''' import shutil import tempfile import os.path as pt import sys import libtorrent as lt from time import sleep def magnet2torrent(magnet, output_name=None): if output_name and \ not pt.isdir(output_name) and \ not pt.isdir(pt.dirname(pt.abspath(output_name))): print("Invalid output folder: " + pt.dirname(pt.abspath(output_name))) print("") sys.exit(0) tempdir = tempfile.mkdtemp() ses = lt.session() params = { 'save_path': tempdir, 'duplicate_is_error': True, 'storage_mode': lt.storage_mode_t(2), 'paused': False, 'auto_managed': True, 'duplicate_is_error': True } handle = lt.add_magnet_uri(ses, magnet, params) print("Downloading Metadata (this may take a while)") while (not handle.has_metadata()): try: sleep(1) except KeyboardInterrupt: print("Aborting...") ses.pause() print("Cleanup dir " + tempdir) shutil.rmtree(tempdir) sys.exit(0) ses.pause() print("Done") torinfo = handle.get_torrent_info() torfile = lt.create_torrent(torinfo) output = pt.abspath(torinfo.name() + ".torrent") if output_name: if pt.isdir(output_name): output = pt.abspath(pt.join( output_name, torinfo.name() + ".torrent")) elif pt.isdir(pt.dirname(pt.abspath(output_name))): output = pt.abspath(output_name) print("Saving torrent file here : " + output + " ...") torcontent = lt.bencode(torfile.generate()) f = open(output, "wb") f.write(lt.bencode(torfile.generate())) f.close() print("Saved! Cleaning up dir: " + tempdir) ses.remove_torrent(handle) shutil.rmtree(tempdir) return output def showHelp(): print("") print("USAGE: " + pt.basename(sys.argv[0]) + " MAGNET [OUTPUT]") print(" MAGNET\t- the magnet url") print(" OUTPUT\t- the output torrent file name") print("") def main(): if len(sys.argv) < 2: showHelp() sys.exit(0) magnet = sys.argv[1] output_name = None if len(sys.argv) >= 3: output_name = sys.argv[2] magnet2torrent(magnet, output_name) if __name__ == "__main__": main() ########NEW FILE########
f90e32623be87b1e57f0764c5dee61fda7509d3a
514223cfd2815fb91f811787d7994793d8c09019
/QUANTAXIS/QAMarket/QAShipaneBroker.py
141cfee13978a11d106b2673c9dd529de95f2819
[ "MIT" ]
permissive
frosthaoz/QUANTAXIS
350d9c8f28cecc124ae3f1b5ff1809daed5bd431
f5f482418e5f6e23ac3530089b8d17300d931b48
refs/heads/master
2020-04-01T04:24:17.147637
2018-10-12T05:17:16
2018-10-12T05:17:16
152,862,049
1
0
MIT
2018-10-13T10:44:03
2018-10-13T10:44:02
null
UTF-8
Python
false
false
14,363
py
# coding:utf-8 import base64 import configparser import json import os import urllib import future import asyncio import pandas as pd import requests import datetime from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from QUANTAXIS.QAEngine.QAEvent import QA_Event from QUANTAXIS.QAMarket.common import cn_en_compare, trade_towards_cn_en, order_status_cn_en from QUANTAXIS.QAMarket.QABroker import QA_Broker from QUANTAXIS.QAMarket.QAOrderHandler import QA_OrderHandler from QUANTAXIS.QAUtil.QAParameter import (BROKER_EVENT, ORDER_DIRECTION, BROKER_TYPE, ORDER_MODEL, ORDER_STATUS) from QUANTAXIS.QAUtil.QADate_trade import QA_util_get_order_datetime from QUANTAXIS.QAUtil.QADate import QA_util_date_int2str from QUANTAXIS.QAUtil.QASetting import setting_path CONFIGFILE_PATH = '{}{}{}'.format(setting_path, os.sep, 'config.ini') DEFAULT_SHIPANE_URL = 'http://127.0.0.1:8888' DEFAULT_SHIPANE_KEY = '' class SPE_CONFIG(): def __init__(self, uri=DEFAULT_SHIPANE_URL, key=DEFAULT_SHIPANE_KEY): self.key = key self.uri = uri def get_config_SPE(): config = configparser.ConfigParser() if os.path.exists(CONFIGFILE_PATH): config.read(CONFIGFILE_PATH) try: return SPE_CONFIG(config.get('SPE', 'uri'), config.get('SPE', 'key')) except configparser.NoSectionError: config.add_section('SPE') config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) config.set('SPE', 'key', DEFAULT_SHIPANE_KEY) return SPE_CONFIG() except configparser.NoOptionError: config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) config.set('SPE', 'key', DEFAULT_SHIPANE_KEY) return SPE_CONFIG() finally: with open(CONFIGFILE_PATH, 'w') as f: config.write(f) else: f = open(CONFIGFILE_PATH, 'w') config.add_section('SPE') config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) config.set('SPE', 'key', DEFAULT_SHIPANE_KEY) config.write(f) f.close() return DEFAULT_SHIPANE_URL class QA_SPEBroker(QA_Broker): """ 1. 查询账户: 如果有该账户, 返回可用资金和持仓 如果当前market不存在或异常, 返回False 2. 查询所有订单: 如果成功 返回一个DataFrame 如果失败 返回False 3. 查询未成交订单 如果成功 返回DataFrame 如果失败 返回False 4. 查询已成交订单 如果成功 返回DataFramne 如果失败 返回False 5. 下单 receive_order/send_order receive_order(QAMARKET 用法): 输入一个QA_ORDER类 如果下单成功 返回带realorder_id, ORDER_STATUS.QUEUED状态值 的QA_Order 如果下单失败 返回带 ORDER_STATUS.FAILED状态值的 QA_Order send_order(测试用法) 6. 撤单 cancel_order 如果撤单成功 返回 True 如果撤单失败 返回 具体的原因 dict/json格式 7. 全撤 如果成功 返回True """ def __init__(self): super().__init__() self.name = BROKER_TYPE.SHIPANE self.order_handler = QA_OrderHandler() self.setting = get_config_SPE() self._session = requests self._endpoint = self.setting.uri self.key = self.setting.key #self.account_headers = ['forzen_cash','balance_available','cash_available','pnl_money_today','total_assets','pnl_holding','market_value','money_available'] def run(self, event): if event.event_type is BROKER_EVENT.RECEIVE_ORDER: self.order_handler.run(event) #self.run(QA_Event(event_type=BROKER_EVENT.TRADE, broker=self)) # elif event.event_type is BROKER_EVENT.TRADE: # """实盘交易部分!!!!! ATTENTION # 这里需要开一个子线程去查询是否成交 # ATTENTION # """ # event = self.order_handler.run(event) # event.message = 'trade' # if event.callback: # event.callback(event) elif event.event_type is BROKER_EVENT.SETTLE: self.order_handler.run(event) if event.callback: event.callback('settle') def call(self, func, params=''): try: if self.key == '': uri = '{}/api/v1.0/{}?client={}'.format( self._endpoint, func, params.pop('client')) else: uri = '{}/api/v1.0/{}?key={}&client={}'.format( self._endpoint, func, self.key, params.pop('client')) # print(uri) response = self._session.get(uri, params) text = response.text return json.loads(text) except Exception as e: #print(e) if isinstance(e,ConnectionRefusedError): print('与主机失去连接') print(e) else: print(e) # print(uri) return None def call_post(self, func, params={}): if self.key == '': uri = '{}/api/v1.0/{}?client={}'.format( self._endpoint, func, params.pop('client')) else: uri = '{}/api/v1.0/{}?key={}&client={}'.format( self._endpoint, func, self.key, params.pop('client')) response = self._session.post(uri, json=params) text = response.text return json.loads(text) def call_delete(self, func, params=''): if self.key == '': uri = '{}/api/v1.0/{}?client={}'.format( self._endpoint, func, params.pop('client')) else: uri = '{}/api/v1.0/{}?key={}&client={}'.format( self._endpoint, func, self.key, params.pop('client')) response = self._session.delete(uri) text = response.text # print(text) try: if text in ['', '获取提示对话框超时,因为:组件为空']: print('success') return True else: return json.loads(text) except: return text def data_to_df(self, result): return pd.DataFrame(data=result) #------ functions def ping(self): return self.call("ping", {}) def query_accounts(self, accounts): return self.call("accounts", { 'client': accounts }) def query_positions(self, accounts): """查询现金和持仓 Arguments: accounts {[type]} -- [description] Returns: dict-- {'cash':xxx,'position':xxx} """ try: data = self.call("positions", { 'client': accounts }) # print(data) if data is not None: cash_part = data.get('subAccounts', {}).get('人民币', False) if cash_part: cash_available = cash_part.get('可用金额',cash_part.get('可用')) position_part = data.get('dataTable', False) if position_part: res = data.get('dataTable', False) if res: hold_headers = res['columns'] hold_headers = [cn_en_compare[item] for item in hold_headers] hold_available = pd.DataFrame( res['rows'], columns=hold_headers) if len(hold_available)==1 and hold_available.amount[0] in [None, '', 0]: hold_available=pd.DataFrame(data=None,columns=hold_headers) return {'cash_available': cash_available, 'hold_available': hold_available.assign(amount=hold_available.amount.apply(float)).loc[:, ['code', 'amount']].set_index('code').amount} else: print(data) return False, 'None ACCOUNT' except: return False def query_clients(self): return self.call("clients") def query_orders(self, accounts, status='filled'): """查询订单 Arguments: accounts {[type]} -- [description] Keyword Arguments: status {str} -- 'open' 待成交 'filled' 成交 (default: {'filled'}) Returns: [type] -- [description] """ try: data = self.call("orders", { 'client': accounts, 'status': status }) if data is not None: orders = data.get('dataTable', False) order_headers = orders['columns'] if ('成交状态' or '状态说明' in order_headers) and ('备注' in order_headers): order_headers[order_headers.index('备注')]='废弃' order_headers = [cn_en_compare[item] for item in order_headers] order_all = pd.DataFrame( orders['rows'], columns=order_headers).assign(account_cookie=accounts) order_all.towards = order_all.towards.apply( lambda x: trade_towards_cn_en[x]) if 'order_time' in order_headers: # 这是order_status order_all['status'] = order_all.status.apply(lambda x: order_status_cn_en[x]) if 'order_date' not in order_headers: order_all.order_time = order_all.order_time.apply( lambda x: QA_util_get_order_datetime(dt='{} {}'.format(datetime.date.today(), x))) else: order_all = order_all.assign(order_time=order_all.order_date.apply(QA_util_date_int2str)+' '+order_all.order_time) if 'trade_time' in order_headers: order_all.trade_time = order_all.trade_time.apply( lambda x: '{} {}'.format(datetime.date.today(), x)) if status is 'filled': return order_all.loc[:, self.dealstatus_headers].set_index(['account_cookie', 'realorder_id']).sort_index() else: return order_all.loc[:, self.orderstatus_headers].set_index(['account_cookie', 'realorder_id']).sort_index() else: print('response is None') return False except Exception as e: print(e) return False def send_order(self, accounts, code='000001', price=9, amount=100, order_direction=ORDER_DIRECTION.BUY, order_model=ORDER_MODEL.LIMIT): """[summary] Arguments: accounts {[type]} -- [description] code {[type]} -- [description] price {[type]} -- [description] amount {[type]} -- [description] Keyword Arguments: order_direction {[type]} -- [description] (default: {ORDER_DIRECTION.BUY}) order_model {[type]} -- [description] (default: {ORDER_MODEL.LIMIT}) priceType 可选择: 上海交易所: 0 - 限价委托 4 - 五档即时成交剩余撤销 6 - 五档即时成交剩余转限 深圳交易所: 0 - 限价委托 1 - 对手方最优价格委托 2 - 本方最优价格委托 3 - 即时成交剩余撤销委托 4 - 五档即时成交剩余撤销 5 - 全额成交或撤销委托 Returns: [type] -- [description] """ try: #print(code, price, amount) return self.call_post('orders', { 'client': accounts, "action": 'BUY' if order_direction == 1 else 'SELL', "symbol": code, "type": order_model, "priceType": 0 if order_model == ORDER_MODEL.LIMIT else 4, "price": price, "amount": amount }) except json.decoder.JSONDecodeError: print(RuntimeError('TRADE ERROR')) return None def cancel_order(self, accounts, orderid): return self.call_delete('orders/{}'.format(orderid), { 'client': accounts }) def cancel_all(self, accounts): return self.call_delete('orders', { 'client': accounts }) def receive_order(self, event): order = event.order res = self.send_order(accounts=order.account_cookie, code=order.code, price=order.price, amount=order.amount, order_direction=order.towards, order_model=order.order_model) try: # if res is not None and 'id' in res.keys(): # order.status = ORDER_STATUS.QUEUED # order.text = 'SUCCESS' order.queued(realorder_id=res['id']) print('success receive order {}'.format(order.realorder_id)) return order # else: except: text = 'WRONG' if res is None else res.get( 'message', 'WRONG') order.failed(text) print('FAILED FOR CREATE ORDER {} {}'.format( order.account_cookie, order.status)) print(res) return order #self.dealer.deal(order, self.market_data) if __name__ == '__main__': a = QA_SPEBroker() print('查询账户') acc = 'account:9173' print(a.query_positions(acc)) print('查询所有订单') print(a.query_orders(acc, '')) print('查询未成交订单') print(a.query_orders(acc, 'open')) print('查询已成交订单') print(a.query_orders(acc, 'filled')) """多账户同时下单测试 """ print('下单测试') res = a.send_order(acc, price=9) #a.send_order(acc, price=9) #a.send_order(acc, price=9) # print(res) print('查询新的未成交订单') print(a.query_orders(acc, 'open')) print('撤单') print(a.cancel_order(acc, res['id'])) print('查询已成交订单') print(a.query_orders(acc, 'filled')) # print(a.send_order('account:141',price=8.95)) print('一键全部撤单') print(a.cancel_all(acc)) print(a.cancel_order('account:141', '1703'))
dd47b3c3b12d0394c13cd989e4409d25f90ad2cc
3e3506f8a9c18744b5e9c1bda2f66315d2ebe753
/snippets/serializers.py
4089503add5e5b2f37f19c8d9fb456de701cad2f
[]
no_license
didoogan/drf
63ad069540124ab057d4f271aa76be650486981a
2a0446b6d38ef8ce67c031b2ac5bff62c519cf40
refs/heads/master
2020-07-31T00:24:19.904525
2016-08-24T20:55:11
2016-08-24T20:55:11
66,281,423
0
0
null
null
null
null
UTF-8
Python
false
false
804
py
from rest_framework import serializers from snippets.models import Snippet, LANGUAGE_CHOICES, STYLE_CHOICES from django.contrib.auth.models import User class SnippetSerializer(serializers.HyperlinkedModelSerializer): owner = serializers.ReadOnlyField(source='owner.username') highlight = serializers.HyperlinkedIdentityField(view_name='snippet-highlight', format='html') class Meta: model = Snippet fields = ('url', 'pk', 'highlight', 'owner', 'title', 'code', 'linenos', 'language', 'style') class UserSerializer(serializers.HyperlinkedModelSerializer): snippets = serializers.HyperlinkedRelatedField(many=True, view_name='snippet-detail', read_only=True) class Meta: model = User fields = ('url', 'pk', 'username', 'snippets')
f52f5a4bad8ed31e4cb462e2ed17207a1b3255a4
e298bf40ae88c2bd8e0a07f3e92f3e08a92edcc6
/rpc.py
cbe3b0616fbd34a490c87035a6645337e0a63f49
[]
no_license
KevinKaiQian/polar-bear
46a814c746246394f76505846166673a049f12f2
61d4e0ccd7328a6aa543af3b75e5f7fedf98bf8e
refs/heads/master
2022-04-29T02:15:35.536039
2021-05-19T12:33:07
2021-05-19T12:33:07
172,068,536
2
0
null
2022-03-29T21:56:51
2019-02-22T13:11:58
Python
UTF-8
Python
false
false
16,644
py
# Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. __all__ = [ 'init', 'cleanup', 'set_defaults', 'add_extra_exmods', 'clear_extra_exmods', 'get_allowed_exmods', 'RequestContextSerializer', 'get_client', 'get_server', 'get_notifier', 'TRANSPORT_ALIASES', ] import functools from oslo_log import log as logging import oslo_messaging as messaging from oslo_serialization import jsonutils from oslo_service import periodic_task from oslo_utils import timeutils import nova.conf import nova.context import nova.exception from nova.i18n import _ from nova import objects CONF = nova.conf.CONF LOG = logging.getLogger(__name__) TRANSPORT = None LEGACY_NOTIFIER = None NOTIFICATION_TRANSPORT = None NOTIFIER = None ALLOWED_EXMODS = [ nova.exception.__name__, ] EXTRA_EXMODS = [] # NOTE(markmc): The nova.openstack.common.rpc entries are for backwards compat # with Havana rpc_backend configuration values. The nova.rpc entries are for # compat with Essex values. TRANSPORT_ALIASES = { 'nova.openstack.common.rpc.impl_kombu': 'rabbit', 'nova.openstack.common.rpc.impl_qpid': 'qpid', 'nova.openstack.common.rpc.impl_zmq': 'zmq', 'nova.rpc.impl_kombu': 'rabbit', 'nova.rpc.impl_qpid': 'qpid', 'nova.rpc.impl_zmq': 'zmq', } def init(conf): global TRANSPORT, NOTIFICATION_TRANSPORT, LEGACY_NOTIFIER, NOTIFIER exmods = get_allowed_exmods() TRANSPORT = messaging.get_transport(conf, allowed_remote_exmods=exmods, aliases=TRANSPORT_ALIASES) NOTIFICATION_TRANSPORT = messaging.get_notification_transport( conf, allowed_remote_exmods=exmods, aliases=TRANSPORT_ALIASES) serializer = RequestContextSerializer(JsonPayloadSerializer()) if conf.notification_format == 'unversioned': LEGACY_NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer) NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer, driver='noop') elif conf.notification_format == 'both': LEGACY_NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer) NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer, topics=['versioned_notifications']) else: LEGACY_NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer, driver='noop') NOTIFIER = messaging.Notifier(NOTIFICATION_TRANSPORT, serializer=serializer, topics=['versioned_notifications']) def cleanup(): global TRANSPORT, NOTIFICATION_TRANSPORT, LEGACY_NOTIFIER, NOTIFIER assert TRANSPORT is not None assert NOTIFICATION_TRANSPORT is not None assert LEGACY_NOTIFIER is not None assert NOTIFIER is not None TRANSPORT.cleanup() NOTIFICATION_TRANSPORT.cleanup() TRANSPORT = NOTIFICATION_TRANSPORT = LEGACY_NOTIFIER = NOTIFIER = None def set_defaults(control_exchange): messaging.set_transport_defaults(control_exchange) def add_extra_exmods(*args): EXTRA_EXMODS.extend(args) def clear_extra_exmods(): del EXTRA_EXMODS[:] def get_allowed_exmods(): return ALLOWED_EXMODS + EXTRA_EXMODS class JsonPayloadSerializer(messaging.NoOpSerializer): @staticmethod def serialize_entity(context, entity): return jsonutils.to_primitive(entity, convert_instances=True) class RequestContextSerializer(messaging.Serializer): def __init__(self, base): self._base = base def serialize_entity(self, context, entity): if not self._base: return entity return self._base.serialize_entity(context, entity) def deserialize_entity(self, context, entity): if not self._base: return entity return self._base.deserialize_entity(context, entity) def serialize_context(self, context): return context.to_dict() def deserialize_context(self, context): return nova.context.RequestContext.from_dict(context) def get_transport_url(url_str=None): return messaging.TransportURL.parse(CONF, url_str, TRANSPORT_ALIASES) def get_client(target, version_cap=None, serializer=None): assert TRANSPORT is not None serializer = RequestContextSerializer(serializer) return messaging.RPCClient(TRANSPORT, target, version_cap=version_cap, serializer=serializer) def get_server(target, endpoints, serializer=None): assert TRANSPORT is not None serializer = RequestContextSerializer(serializer) return messaging.get_rpc_server(TRANSPORT, target, endpoints, executor='eventlet', serializer=serializer) def get_notifier(service, host=None, publisher_id=None): assert LEGACY_NOTIFIER is not None if not publisher_id: publisher_id = "%s.%s" % (service, host or CONF.host) return LegacyValidatingNotifier( LEGACY_NOTIFIER.prepare(publisher_id=publisher_id)) def get_versioned_notifier(publisher_id): assert NOTIFIER is not None return NOTIFIER.prepare(publisher_id=publisher_id) def create_transport(url): exmods = get_allowed_exmods() return messaging.get_transport(CONF, url=url, allowed_remote_exmods=exmods, aliases=TRANSPORT_ALIASES) class LegacyValidatingNotifier(object): """Wraps an oslo.messaging Notifier and checks for allowed event_types.""" # If true an exception is thrown if the event_type is not allowed, if false # then only a WARNING is logged fatal = False # This list contains the already existing therefore allowed legacy # notification event_types. New items shall not be added to the list as # Nova does not allow new legacy notifications any more. This list will be # removed when all the notification is transformed to versioned # notifications. allowed_legacy_notification_event_types = [ 'aggregate.addhost.end', 'aggregate.addhost.start', 'aggregate.create.end', 'aggregate.create.start', 'aggregate.delete.end', 'aggregate.delete.start', 'aggregate.removehost.end', 'aggregate.removehost.start', 'aggregate.updatemetadata.end', 'aggregate.updatemetadata.start', 'aggregate.updateprop.end', 'aggregate.updateprop.start', 'api.fault', 'compute.instance.create.end', 'compute.instance.create.error', 'compute.instance.create_ip.end', 'compute.instance.create_ip.start', 'compute.instance.create.start', 'compute.instance.delete.end', 'compute.instance.delete_ip.end', 'compute.instance.delete_ip.start', 'compute.instance.delete.start', 'compute.instance.evacuate', 'compute.instance.exists', 'compute.instance.finish_resize.end', 'compute.instance.finish_resize.start', 'compute.instance.live.migration.abort.start', 'compute.instance.live.migration.abort.end', 'compute.instance.live.migration.force.complete.start', 'compute.instance.live.migration.force.complete.end', 'compute.instance.live_migration.post.dest.end', 'compute.instance.live_migration.post.dest.start', 'compute.instance.live_migration._post.end', 'compute.instance.live_migration._post.start', 'compute.instance.live_migration.pre.end', 'compute.instance.live_migration.pre.start', 'compute.instance.live_migration.rollback.dest.end', 'compute.instance.live_migration.rollback.dest.start', 'compute.instance.live_migration._rollback.end', 'compute.instance.live_migration._rollback.start', 'compute.instance.pause.end', 'compute.instance.pause.start', 'compute.instance.power_off.end', 'compute.instance.power_off.start', 'compute.instance.power_on.end', 'compute.instance.power_on.start', 'compute.instance.reboot.end', 'compute.instance.reboot.start', 'compute.instance.rebuild.end', 'compute.instance.rebuild.error', 'compute.instance.rebuild.scheduled', 'compute.instance.rebuild.start', 'compute.instance.rescue.end', 'compute.instance.rescue.start', 'compute.instance.resize.confirm.end', 'compute.instance.resize.confirm.start', 'compute.instance.resize.end', 'compute.instance.resize.error', 'compute.instance.resize.prep.end', 'compute.instance.resize.prep.start', 'compute.instance.resize.revert.end', 'compute.instance.resize.revert.start', 'compute.instance.resize.start', 'compute.instance.restore.end', 'compute.instance.restore.start', 'compute.instance.resume.end', 'compute.instance.resume.start', 'compute.instance.shelve.end', 'compute.instance.shelve_offload.end', 'compute.instance.shelve_offload.start', 'compute.instance.shelve.start', 'compute.instance.shutdown.end', 'compute.instance.shutdown.start', 'compute.instance.snapshot.end', 'compute.instance.snapshot.start', 'compute.instance.soft_delete.end', 'compute.instance.soft_delete.start', 'compute.instance.suspend.end', 'compute.instance.suspend.start', 'compute.instance.trigger_crash_dump.end', 'compute.instance.trigger_crash_dump.start', 'compute.instance.unpause.end', 'compute.instance.unpause.start', 'compute.instance.unrescue.end', 'compute.instance.unrescue.start', 'compute.instance.unshelve.start', 'compute.instance.unshelve.end', 'compute.instance.update', 'compute.instance.volume.attach', 'compute.instance.volume.detach', 'compute.libvirt.error', 'compute.metrics.update', 'compute_task.build_instances', 'compute_task.migrate_server', 'compute_task.rebuild_server', 'HostAPI.power_action.end', 'HostAPI.power_action.start', 'HostAPI.set_enabled.end', 'HostAPI.set_enabled.start', 'HostAPI.set_maintenance.end', 'HostAPI.set_maintenance.start', 'keypair.create.start', 'keypair.create.end', 'keypair.delete.start', 'keypair.delete.end', 'keypair.import.start', 'keypair.import.end', 'network.floating_ip.allocate', 'network.floating_ip.associate', 'network.floating_ip.deallocate', 'network.floating_ip.disassociate', 'scheduler.select_destinations.end', 'scheduler.select_destinations.start', 'servergroup.addmember', 'servergroup.create', 'servergroup.delete', 'volume.usage', ] message = _('%(event_type)s is not a versioned notification and not ' 'whitelisted. See ./doc/source/notification.rst') def __init__(self, notifier): self.notifier = notifier for priority in ['debug', 'info', 'warn', 'error', 'critical']: setattr(self, priority, functools.partial(self._notify, priority)) def _is_wrap_exception_notification(self, payload): # nova.exception_wrapper.wrap_exception decorator emits notification # where the event_type is the name of the decorated function. This # is used in many places but it will be converted to versioned # notification in one run by updating the decorator so it is pointless # to white list all the function names here we white list the # notification itself detected by the special payload keys. return {'exception', 'args'} == set(payload.keys()) def _notify(self, priority, ctxt, event_type, payload): if (event_type not in self.allowed_legacy_notification_event_types and not self._is_wrap_exception_notification(payload)): if self.fatal: raise AssertionError(self.message % {'event_type': event_type}) else: LOG.warning(self.message, {'event_type': event_type}) getattr(self.notifier, priority)(ctxt, event_type, payload) class ClientWrapper(object): def __init__(self, client): self._client = client self.last_access_time = timeutils.utcnow() @property def client(self): self.last_access_time = timeutils.utcnow() return self._client class ClientRouter(periodic_task.PeriodicTasks): """Creates and caches RPC clients that route to cells or the default. The default client connects to the API cell message queue. The rest of the clients connect to compute cell message queues. """ def __init__(self, default_client): super(ClientRouter, self).__init__(CONF) self.clients = {} self.clients['default'] = ClientWrapper(default_client) self.target = default_client.target self.version_cap = default_client.version_cap # NOTE(melwitt): Cells v1 does its own serialization and won't # have a serializer available on the client object. self.serializer = getattr(default_client, 'serializer', None) # Prevent this empty context from overwriting the thread local copy self.run_periodic_tasks(nova.context.RequestContext(overwrite=False)) def _client(self, context, cell_mapping=None): if cell_mapping: client_id = cell_mapping.uuid else: client_id = 'default' try: client = self.clients[client_id].client except KeyError: transport = create_transport(cell_mapping.transport_url) client = messaging.RPCClient(transport, self.target, version_cap=self.version_cap, serializer=self.serializer) self.clients[client_id] = ClientWrapper(client) return client @periodic_task.periodic_task def _remove_stale_clients(self, context): timeout = 60 def stale(client_id, last_access_time): if timeutils.is_older_than(last_access_time, timeout): LOG.debug('Removing stale RPC client: %s as it was last ' 'accessed at %s', client_id, last_access_time) return True return False # Never expire the default client items_copy = list(self.clients.items()) for client_id, client_wrapper in items_copy: if (client_id != 'default' and stale(client_id, client_wrapper.last_access_time)): del self.clients[client_id] def by_instance(self, context, instance): try: cell_mapping = objects.InstanceMapping.get_by_instance_uuid( context, instance.uuid).cell_mapping except nova.exception.InstanceMappingNotFound: # Not a cells v2 deployment cell_mapping = None return self._client(context, cell_mapping=cell_mapping) def by_host(self, context, host): try: cell_mapping = objects.HostMapping.get_by_host( context, host).cell_mapping except nova.exception.HostMappingNotFound: # Not a cells v2 deployment cell_mapping = None return self._client(context, cell_mapping=cell_mapping)
2c3f9bf1eb7af4abf52697eb26f2d9fc8262ce2d
23631af0987b3f1d30b0bf8bfcea1bd63159eeba
/gate_api/configuration.py
4b19c91ec5f25ad45dffcb2880c0358f4580b286
[]
no_license
xuvw/gateapi-python
08c3c72ff0e2c4713bf3a2ffe0b15d05e57491ca
1a3f3551cba4a756f76f17b070c3e0c5ff2e88ea
refs/heads/master
2020-05-25T14:33:35.592775
2019-04-02T08:50:25
2019-04-02T08:50:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,144
py
# coding: utf-8 """ Gate API v4 APIv4 provides spot, margin and futures trading operations. There are public APIs to retrieve the real-time market statistics, and private APIs which needs authentication to trade on user's behalf. # noqa: E501 OpenAPI spec version: 4.6.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import copy import logging import multiprocessing import sys import urllib3 import six from six.moves import http_client as httplib class TypeWithDefault(type): def __init__(cls, name, bases, dct): super(TypeWithDefault, cls).__init__(name, bases, dct) cls._default = None def __call__(cls): if cls._default is None: cls._default = type.__call__(cls) return copy.copy(cls._default) def set_default(cls, default): cls._default = copy.copy(default) class Configuration(six.with_metaclass(TypeWithDefault, object)): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self): """Constructor""" # Default Base url self.host = "https://api.gateio.ws/api/v4" # Temp file folder for downloading files self.temp_folder_path = None # Authentication Settings # dict to store API key(s) self.api_key = {} # dict to store API prefix (e.g. Bearer) self.api_key_prefix = {} # Username for HTTP basic authentication self.username = "" # Password for HTTP basic authentication self.password = "" # Logging Settings self.logger = {} self.logger["package_logger"] = logging.getLogger("gate_api") self.logger["urllib3_logger"] = logging.getLogger("urllib3") # Log format self.logger_format = '%(asctime)s %(levelname)s %(message)s' # Log stream handler self.logger_stream_handler = None # Log file handler self.logger_file_handler = None # Debug file location self.logger_file = None # Debug switch self.debug = False # SSL/TLS verification # Set this to false to skip verifying SSL certificate when calling API # from https server. self.verify_ssl = True # Set this to customize the certificate file to verify the peer. self.ssl_ca_cert = None # client certificate file self.cert_file = None # client key file self.key_file = None # Set this to True/False to enable/disable SSL hostname verification. self.assert_hostname = None # urllib3 connection pool's maximum number of connections saved # per pool. urllib3 uses 1 connection as default value, but this is # not the best value when you are making a lot of possibly parallel # requests to the same host, which is often the case here. # cpu_count * 5 is used as default value to increase performance. self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 # Proxy URL self.proxy = None # Safe chars for path_param self.safe_chars_for_path_param = '' # API key and secret self.key = "" self.secret = "" @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in six.iteritems(self.logger): logger.setLevel(logging.DEBUG) # turn on httplib debug httplib.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in six.iteritems(self.logger): logger.setLevel(logging.WARNING) # turn off httplib debug httplib.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :return: The token for api key authentication. """ if (self.api_key.get(identifier) and self.api_key_prefix.get(identifier)): return self.api_key_prefix[identifier] + ' ' + self.api_key[identifier] # noqa: E501 elif self.api_key.get(identifier): return self.api_key[identifier] def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ return urllib3.util.make_headers( basic_auth=self.username + ':' + self.password ).get('authorization') def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ return { 'api_key': { 'type': 'api_key', 'in': 'header', 'key': 'KEY', 'value': self.get_api_key_with_prefix('KEY') }, 'api_sign': { 'type': 'api_key', 'in': 'header', 'key': 'SIGN', 'value': self.get_api_key_with_prefix('SIGN') }, 'api_timestamp': { 'type': 'api_key', 'in': 'header', 'key': 'Timestamp', 'value': self.get_api_key_with_prefix('Timestamp') }, } def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return "Python SDK Debug Report:\n"\ "OS: {env}\n"\ "Python Version: {pyversion}\n"\ "Version of the API: 4.6.1\n"\ "SDK Package Version: 4.6.1".\ format(env=sys.platform, pyversion=sys.version)
4e8a9a0d46ec6fd7a0d4e4a3469d3697125dc00a
11c24617b0f62bc55b7d2f34eb65fa63e3e3ec06
/Comprehension-Exercise/02. Words Lengths.py
aea8d7a42100485f584a4451e6753d1751ba87ad
[]
no_license
SilviaKoynova/Python-Advanced
2d1750a4943b82a82ec910d29241bd3fc473289e
0a94556592bca60b29a85849a5e694f2eeeda52b
refs/heads/main
2023-07-18T05:41:33.641250
2021-08-26T21:15:13
2021-08-26T21:15:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
text = input().split(', ') print(*[f"{name} -> {len(name)}" for name in text], sep=', ')
891825cba08187b7841fc95a4b003d692a9c30e3
fa4618ab323f37137e2cf3044a773085f4737c03
/yabgp/tests/unit/message/attribute/test_mpreachnlri.py
f17a5fd14f4ab18c6bdc0be08a03e93b45dd4e75
[ "Apache-2.0" ]
permissive
heidinet/yabgp
5ebe5dfe93ad34baef71a1a9f8493649fd479be6
912e0cd71d3d95089556e421e5499d6bed299414
refs/heads/master
2021-01-01T19:45:52.508388
2017-07-21T08:29:11
2017-07-21T08:29:11
98,679,210
1
0
null
2017-07-28T18:57:11
2017-07-28T18:57:11
null
UTF-8
Python
false
false
12,557
py
# Copyright 2015 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unittest for MPReach NLRI""" import unittest from yabgp.message.attribute.mpreachnlri import MpReachNLRI class TestMpReachNLRI(unittest.TestCase): def setUp(self): self.maxDiff = None def test_ipv4_mpls_vpn_parse(self): data_bin = b'\x80\x0e\x21\x00\x01\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x02\x02\x02\x02' \ b'\x00\x78\x00\x01\x91\x00\x00\x00\x64\x00\x00\x00\x64\xaa\x00\x00\x00' data_hoped = {'afi_safi': (1, 128), 'nexthop': {'rd': '0:0', 'str': '2.2.2.2'}, 'nlri': [{'label': [25], 'rd': '100:100', 'prefix': '170.0.0.0/32'}]} self.assertEqual(data_hoped, MpReachNLRI.parse(data_bin[3:])) def test_ipv4_mpsl_vpn_construct_nexthop(self): nexthop = {'rd': '0:0', 'str': '2.2.2.2'} nexthop_bin = b'\x00\x00\x00\x00\x00\x00\x00\x00\x02\x02\x02\x02' self.assertEqual(nexthop_bin, MpReachNLRI.construct_mpls_vpn_nexthop(nexthop)) def test_ipv6_mpls_vpn_construct_nexthop(self): nexthop = {'rd': '0:0', 'str': '::ffff:172.16.4.12'} nexthop_bin = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' \ b'\x00\x00\x00\x00\x00\x00\xff\xff\xac\x10\x04\x0c' self.assertEqual(nexthop_bin, MpReachNLRI.construct_mpls_vpn_nexthop(nexthop)) def test_ipv4_mpls_vpn_construct(self): data_bin = b'\x80\x0e\x21\x00\x01\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x02\x02\x02\x02' \ b'\x00\x78\x00\x01\x91\x00\x00\x00\x64\x00\x00\x00\x64\xaa\x00\x00\x00' data_parsed = {'afi_safi': (1, 128), 'nexthop': {'rd': '0:0', 'str': '2.2.2.2'}, 'nlri': [{'label': [25], 'rd': '100:100', 'prefix': '170.0.0.0/32'}]} self.assertEqual(data_bin, MpReachNLRI.construct(data_parsed)) def test_ipv6_unicast(self): data_bin = b"\x00\x02\x01\x10\x20\x01\x32\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" \ b"\x01\x00\x80\x20\x01\x32\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01" \ b"\x40\x20\x01\x32\x32\x00\x01\x00\x00\x7f\x20\x01\x48\x37\x16\x32\x00\x00\x00" \ b"\x00\x00\x00\x00\x00\x00\x02" data_hoped = { 'afi_safi': (2, 1), 'nexthop': '2001:3232::1', 'nlri': ['2001:3232::1/128', '::2001:3232:1:0/64', '2001:4837:1632::2/127']} self.assertEqual(data_hoped, MpReachNLRI.parse(data_bin)) def test_ipv6_unicast_with_linklocal_nexthop(self): data_bin = b"\x00\x02\x01\x20\x20\x01\x0d\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" \ b"\x02\xfe\x80\x00\x00\x00\x00\x00\x00\xc0\x02\x0b\xff\xfe\x7e\x00\x00\x00\x40" \ b"\x20\x01\x0d\xb8\x00\x02\x00\x02\x40\x20\x01\x0d\xb8\x00\x02\x00\x01\x40\x20" \ b"\x01\x0d\xb8\x00\x02\x00\x00" data_hoped = { 'afi_safi': (2, 1), 'linklocal_nexthop': 'fe80::c002:bff:fe7e:0', 'nexthop': '2001:db8::2', 'nlri': ['::2001:db8:2:2/64', '::2001:db8:2:1/64', '::2001:db8:2:0/64']} self.assertEqual(data_hoped, MpReachNLRI.parse(data_bin)) def test_ipv6_unicast_construct(self): data_parsed = { 'afi_safi': (2, 1), 'nexthop': '2001:3232::1', 'nlri': ['2001:3232::1/128', '::2001:3232:1:0/64', '2001:4837:1632::2/127']} self.assertEqual(data_parsed, MpReachNLRI.parse(MpReachNLRI.construct(data_parsed)[3:])) def test_ipv6_unicast_with_locallink_nexthop_construct(self): data_hoped = { 'afi_safi': (2, 1), 'linklocal_nexthop': 'fe80::c002:bff:fe7e:0', 'nexthop': '2001:db8::2', 'nlri': ['::2001:db8:2:2/64', '::2001:db8:2:1/64', '::2001:db8:2:0/64']} self.assertEqual(data_hoped, MpReachNLRI.parse(MpReachNLRI.construct(data_hoped)[3:])) def test_ipv6_mpls_vpn_parse(self): data_bin = b'\x80\x0e\x45\x00\x02\x80\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' \ b'\x00\x00\x00\x00\x00\x00\xff\xff\xac\x10\x04\x0c\x00\x98\x00\x03\x61\x00\x00' \ b'\x00\x64\x00\x00\x00\x0c\x20\x10\x00\x00\x00\x12\x00\x04\x98\x00\x03\x71\x00' \ b'\x00\x00\x64\x00\x00\x00\x0c\x20\x10\x00\x01\x00\x12\x00\x00' data_hoped = { 'afi_safi': (2, 128), 'nexthop': {'rd': '0:0', 'str': '::ffff:172.16.4.12'}, 'nlri': [ {'label': [54], 'rd': '100:12', 'prefix': '2010:0:12:4::/64'}, {'label': [55], 'rd': '100:12', 'prefix': '2010:1:12::/64'} ] } self.assertEqual(data_hoped, MpReachNLRI.parse(data_bin[3:])) def test_ipv6_mpls_vpn_construct(self): data_bin = b'\x80\x0e\x45\x00\x02\x80\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' \ b'\x00\x00\x00\x00\x00\x00\xff\xff\xac\x10\x04\x0c\x00\x98\x00\x03\x61\x00\x00' \ b'\x00\x64\x00\x00\x00\x0c\x20\x10\x00\x00\x00\x12\x00\x04\x98\x00\x03\x71\x00' \ b'\x00\x00\x64\x00\x00\x00\x0c\x20\x10\x00\x01\x00\x12\x00\x00' data_hoped = { 'afi_safi': (2, 128), 'nexthop': {'rd': '0:0', 'str': '::ffff:172.16.4.12'}, 'nlri': [ {'label': [54], 'rd': '100:12', 'prefix': '2010:0:12:4::/64'}, {'label': [55], 'rd': '100:12', 'prefix': '2010:1:12::/64'} ] } self.assertEqual(data_bin, MpReachNLRI.construct(data_hoped)) def test_ipv4_flowspec_parse_multi_nlri_with_nexthop(self): data_bin = b'\x0e\x00\x1b\x00\x01\x85\x00\x00\x0a\x01\x18\xc0\x58\x03\x02\x18\xc0\x59\x03\x0a' \ b'\x01\x18\xc0\x58\x04\x02\x18\xc0\x59\x04' data_dict = { 'afi_safi': (1, 133), 'nexthop': '', 'nlri': [ {1: '192.88.3.0/24', 2: '192.89.3.0/24'}, {1: '192.88.4.0/24', 2: '192.89.4.0/24'} ]} self.assertEqual(data_dict, MpReachNLRI.parse(data_bin[3:])) def test_ipv4_flowspec_construct(self): data_bin = b'\x80\x0e\x10\x00\x01\x85\x00\x00\x0a\x01\x18\xc0\x55\x02\x02\x18\xc0\x55\x01' data_dict = {'afi_safi': (1, 133), 'nexthop': '', 'nlri': [{1: '192.85.2.0/24', 2: '192.85.1.0/24'}]} self.assertEqual(data_bin, MpReachNLRI.construct(data_dict)) def test_ipv4_flowspec_construct_multi_nlri(self): data_dict = { 'afi_safi': (1, 133), 'nexthop': '', 'nlri': [ {1: '192.88.3.0/24', 2: '192.89.3.0/24'}, {1: '192.88.4.0/24', 2: '192.89.4.0/24'} ]} data_bin_cons = MpReachNLRI.construct(data_dict) self.assertEqual(data_dict, MpReachNLRI.parse(data_bin_cons[3:])) def test_l2vpn_evpn_parse_construct_route_type1(self): data_dict = { "afi_safi": (25, 70), "nexthop": "10.75.44.254", "nlri": [{ "type": 1, "value": { "rd": "1.1.1.1:32867", "esi": 0, "eth_tag_id": 100, "label": [10] } }] } self.assertEqual(data_dict, MpReachNLRI.parse(MpReachNLRI.construct(data_dict)[3:])) def test_l2vpn_evpn_parse_route_type2(self): data_bin = b'\x80\x0e\x30\x00\x19\x46\x04\xac\x11\x00\x03\x00\x02\x25\x00\x01\xac\x11' \ b'\x00\x03\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c' \ b'\x30\x00\x11\x22\x33\x44\x55\x20\x0b\x0b\x0b\x01\x00\x00\x01' data_dict = { 'afi_safi': (25, 70), 'nexthop': '172.17.0.3', 'nlri': [ { 'type': 2, 'value': { 'eth_tag_id': 108, 'ip': '11.11.11.1', 'label': [0], 'rd': '172.17.0.3:2', 'mac': '00-11-22-33-44-55', 'esi': 0}}] } self.assertEqual(data_dict, MpReachNLRI.parse(data_bin[3:])) def test_l2vpn_evpn_construct_route_type2(self): data_bin = b'\x80\x0e\x30\x00\x19\x46\x04\xac\x11\x00\x03\x00\x02\x25\x00\x01\xac\x11' \ b'\x00\x03\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c' \ b'\x30\x00\x11\x22\x33\x44\x55\x20\x0b\x0b\x0b\x01\x00\x00\x00' data_dict = { 'afi_safi': (25, 70), 'nexthop': '172.17.0.3', 'nlri': [ { 'type': 2, 'value': { 'eth_tag_id': 108, 'ip': '11.11.11.1', 'label': [0], 'rd': '172.17.0.3:2', 'mac': '00-11-22-33-44-55', 'esi': 0}}] } self.assertEqual(data_bin, MpReachNLRI.construct(data_dict)) def test_l2vpn_evpn_parse_construct_route_type3(self): data_dict = { "afi_safi": (25, 70), "nexthop": "10.75.44.254", "nlri": [ { "type": 3, "value": { "rd": "172.16.0.1:5904", "eth_tag_id": 100, "ip": "192.168.0.1" } } ] } self.assertEqual(data_dict, MpReachNLRI.parse(MpReachNLRI.construct(data_dict)[3:])) def test_l2vpn_evpn_parse_construct_route_type4(self): data_dict = { "afi_safi": (25, 70), "nexthop": "10.75.44.254", "nlri": [ { "type": 4, "value": { "rd": "172.16.0.1:8888", "esi": 0, "ip": "192.168.0.1" } } ] } self.assertEqual(data_dict, MpReachNLRI.parse(MpReachNLRI.construct(data_dict)[3:])) def test_linkstate(self): self.maxDiff = None data = b"\x90\x0e\x00\x62\x40\x04\x47\x04\x0a\x7c\x01\x7e\x00\x00\x02\x00" \ b"\x55\x02\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x1a\x02\x00" \ b"\x00\x04\x00\x00\xff\xfe\x02\x01\x00\x04\x00\x00\x00\x00\x02\x03" \ b"\x00\x06\x00\x00\x00\x00\x00\x01\x01\x01\x00\x1a\x02\x00\x00\x04" \ b"\x00\x00\xff\xfe\x02\x01\x00\x04\x00\x00\x00\x00\x02\x03\x00\x06" \ b"\x00\x00\x00\x00\x00\x03\x01\x03\x00\x04\x01\x03\x00\x01\x01\x04" \ b"\x00\x04\x01\x03\x00\x02" data_dict = { 'afi_safi': (16388, 71), 'nexthop': '10.124.1.126', 'nlri': [ { 'type': 'link', 'value': [ { 'type': 'local-node', 'value': { 'as': 65534, 'bgpls-id': '0.0.0.0', 'igp-id': '0.0.0.1'}}, { 'type': 'remote-node', 'value': { 'as': 65534, 'bgpls-id': '0.0.0.0', 'igp-id': '0.0.0.3'}}, {'type': 'link-local-ipv4', 'value': '1.3.0.1'}, {'type': 'link-remote-ipv4', 'value': '1.3.0.2'}]}]} self.assertEqual(data_dict, MpReachNLRI.parse(data[4:])) if __name__ == '__main__': unittest.main()
65c2e9073be62766e95cebe8a13c9ff565514568
3b6ba8d4dc4dd8fe572c1419709facc7bdc2274e
/ai4water/et/utils.py
52ff6c28677cbbd9cbc4a5bdf178ee7c3ed62076
[ "MIT" ]
permissive
AtrCheema/AI4Water
fd5bfda1eee530e7bc9ed1b2130ed49dd0d5bf89
ec2a4a426673b11e3589b64cef9d7160b1de28d4
refs/heads/master
2023-09-04T10:59:55.902200
2023-02-10T15:55:32
2023-02-10T15:55:32
284,684,202
47
17
MIT
2023-02-10T15:56:43
2020-08-03T11:39:22
Python
UTF-8
Python
false
false
54,339
py
import re import math from easy_mpl.utils import process_axis from .converter import Temp, Speed, Pressure from .global_variables import ALLOWED_COLUMNS, SOLAR_CONSTANT, LAMBDA from .global_variables import default_constants, SB_CONS from ai4water.backend import np, pd, plt class AttributeChecker: def __init__(self, input_df): self.input = self.check_in_df(input_df) self.output = {} self.allowed_columns = ALLOWED_COLUMNS self.no_of_hours = None def check_in_df(self, data_frame) -> pd.DataFrame: if not isinstance(data_frame, pd.DataFrame): raise TypeError("input must be a pandas dataframe") for col in data_frame.columns: if col not in ALLOWED_COLUMNS: raise ValueError("""col {} given in input dataframe is not allowed. Allowed columns names are {}""" .format(col, ALLOWED_COLUMNS)) if not isinstance(data_frame.index, pd.DatetimeIndex): index = pd.to_datetime(data_frame.index) if not isinstance(index, pd.DatetimeIndex): raise TypeError("index of input dataframe must be convertible to pd.DatetimeIndex") if data_frame.shape[0] > 1: data_frame.index.freq = pd.infer_freq(data_frame.index) else: setattr(self, 'single_vale', True) setattr(self, 'in_freq', data_frame.index.freqstr) return data_frame class PlotData(AttributeChecker): """ Methods: plot_inputs plot_outputs """ def __init__(self, input_df, units): super(PlotData, self).__init__(input_df) self.units = units def plot_inputs(self, _name=False): no_of_plots = len(self.input.columns) plt.close('all') fig, axis = plt.subplots(no_of_plots, sharex='all') fig.set_figheight(no_of_plots+2) fig.set_figwidth(10.48) idx = 0 for ax, col in zip(axis, self.input.columns): show_xaxis = False if idx > no_of_plots-2: show_xaxis = True if col in self.units: yl = self.units[col] else: yl = ' ' data = self.input[col] process_axis(ax, data, label=col, show_xaxis=show_xaxis, ylabel=yl, legend_kws={'markerscale':8}, max_xticks=4) idx += 1 plt.subplots_adjust(wspace=0.001, hspace=0.001) if _name: plt.savefig(_name, dpi=300, bbox_inches='tight') plt.show() def plot_outputs(self, name='', _name=False): def marker_scale(_col): if 'Monthly' in _col: return 4 elif 'Yearly' in _col: return 10 else: return 0.5 to_plot = [] for key in self.output.keys(): if name in key: to_plot.append(key) no_of_plots = len(to_plot) plt.close('all') fig, axis = plt.subplots(no_of_plots, sharex='all') if no_of_plots==1: axis = [axis] fig.set_figheight(no_of_plots+4) fig.set_figwidth(10.48) idx = 0 for ax, col in zip(axis, self.output.keys()): show_xaxis = False if idx > no_of_plots-2: show_xaxis = True data = self.output[col] process_axis(ax, data, ms=marker_scale(col), label=col, show_xaxis=show_xaxis, ylabel='mm', legend_kws={'markerscale': 8}, max_xticks=4) idx += 1 plt.subplots_adjust(wspace=0.001, hspace=0.001) if _name: plt.savefig(_name, dpi=300, bbox_inches='tight') plt.show() class PreProcessing(PlotData): """ Attributes freq_str: str daily_index: pd.DatetimeIndex freq_in_mins: int """ def __init__(self, input_df, units, constants, calculate_at='same', verbosity=1): super(PreProcessing, self).__init__(input_df, units) self.units = units self.default_cons = default_constants self.cons = constants self.freq_in_mins = calculate_at self.sb_cons = self.freq_in_mins self.lat_rad = self.cons self._check_compatability() self.verbosity = verbosity @property def seconds(self): """finds number of seconds between two steps of input data""" if len(self.input) > 1: return (self.input.index[1]-self.input.index[0])/np.timedelta64(1, 's') @property def sb_cons(self): return self._sb_cons @sb_cons.setter def sb_cons(self, freq_in_mins): self._sb_cons = freq_in_mins * SB_CONS @property def lat_rad(self): return self._lat_rad @lat_rad.setter def lat_rad(self, constants): if 'lat_rad' in constants: self._lat_rad = constants['lat_rad'] elif 'lat_dec_deg' in constants: self._lat_rad = constants['lat_dec_deg'] * 0.0174533 # # degree to radians else: raise ConnectionResetError("Provide latitude information in as lat_rat or as lat_dec_deg in constants") @property def freq_in_mins(self): return self._freq_in_mins @freq_in_mins.setter def freq_in_mins(self, calculate_at): if calculate_at is not None and calculate_at != 'same': if isinstance(calculate_at, str): in_minutes = freq_in_mins_from_string(calculate_at) else: raise TypeError("invalid type of frequency demanded", calculate_at) else: in_minutes = freq_in_mins_from_string(self.input.index.freqstr) self._freq_in_mins = in_minutes @property def freq_str(self) -> str: minutes = self.freq_in_mins freq_str = min_to_str(minutes) return freq_str def daily_index(self) -> pd.DatetimeIndex: start_year = justify_len(str(self.input.index[0].year)) end_year = justify_len(str(self.input.index[-1].year)) start_month = justify_len(str(self.input.index[0].month)) end_month = justify_len(str(self.input.index[0].month)) start_day = justify_len(str(self.input.index[0].day)) end_day = justify_len(str(self.input.index[0].day)) st = start_year + start_month + start_day en = end_year + end_month + end_day return pd.date_range(st, en, freq='D') def _check_compatability(self): self._preprocess_temp() self._preprocess_rh() self._check_wind_units() self._cehck_pressure_units() self._check_rad_units() # getting julian day self.input['jday'] = self.input.index.dayofyear if self.freq_in_mins == 60: a = self.input.index.hour ma = np.convolve(a, np.ones((2,)) / 2, mode='same') ma[0] = ma[1] - (ma[2] - ma[1]) self.input['half_hr'] = ma freq = self.input.index.freqstr if len(freq) > 1: setattr(self, 'no_of_hours', int(freq[0])) else: setattr(self, 'no_of_hours', 1) self.input['t1'] = np.zeros(len(self.input)) + self.no_of_hours elif self.freq_in_mins < 60: a = self.input.index.hour b = (self.input.index.minute + self.freq_in_mins / 2.0) / 60.0 self.input['half_hr'] = a + b self.input['t1'] = np.zeros(len(self.input)) + self.freq_in_mins / 60.0 for val in ['sol_rad', 'rn']: if val in self.input: if self.freq_in_mins <= 60: self.input['is_day'] = np.where(self.input[val].values > 0.1, 1, 0) return def _preprocess_rh(self): # make sure that we mean relative humidity calculated if possible if 'rel_hum' in self.input.columns: rel_hum = self.input['rel_hum'] rel_hum = np.where(rel_hum < 0.0, 0.0, rel_hum) rel_hum = np.where(rel_hum >= 100.0, 100.0, rel_hum) self.input['rh_mean'] = rel_hum self.input['rel_hum'] = rel_hum else: if 'rh_min' in self.input.columns: self.input['rh_mean'] = np.mean(np.array([self.input['rh_min'].values, self.input['rh_max'].values]), axis=0) return def _preprocess_temp(self): """ converts temperature related input to units of Centigrade if required. """ # converting temperature units to celsius for val in ['tmin', 'tmax', 'temp', 'tdew']: if val in self.input: t = Temp(self.input[val].values, self.units[val]) temp = t.Centigrade self.input[val] = np.where(temp < -30, -30, temp) # if 'temp' is given, it is assumed to be mean otherwise calculate mean and put it as `temp` in input dataframe. if 'temp' not in self.input.columns: if 'tmin' in self.input.columns and 'tmax' in self.input.columns: self.input['temp'] = np.mean(np.array([self.input['tmin'].values, self.input['tmax'].values]), axis=0) return def _check_wind_units(self): # check units of wind speed and convert if needed if 'wind_speed' in self.input: wind = self.input['wind_speed'].values wind = np.where(wind < 0.0, 0.0, wind) w = Speed(wind, self.units['wind_speed']) self.input['wind_speed'] = w.MeterPerSecond return def _cehck_pressure_units(self): """ converts pressure related input to units of KiloPascal if required. """ for pres in ['ea', 'es', 'vp_def']: if pres in self.input: p = Pressure(self.input[pres].values, self.units[pres]) self.input[pres] = p.KiloPascal def _check_rad_units(self): """ Currently it does not converts radiation units, only makes sure that they are > 0.0. """ for val in ['rn', 'sol_rad']: if val in self.input: rad = self.input[val].values rad = np.where(rad < 0.0, 0.0, rad) self.input[val] = rad class TransFormData(PreProcessing): """ transforms input or output data to different frequencies. """ def __init__(self, input_df, units, constants, calculate_at='same', verbosity=1): self.verbosity = verbosity input_df = self.freq_check(input_df, calculate_at) input_df = self.transform_data(input_df, calculate_at) super(TransFormData, self).__init__(input_df, units, constants, calculate_at, verbosity) def freq_check(self, input_df, freq: str): """ Makes sure that the input dataframe.index as frequency. It frequency is not there, it means it contains missing data. In this case this method fills missing values. In such case, the argument freq must not be `same`. """ if input_df.shape[0] > 1: input_df.index.freq = pd.infer_freq(input_df.index) if input_df.index.freq is None: if freq == 'same' or freq is None: raise ValueError("input data does not have uniform time-step. Provide a value for argument" " `calculate_at` ") else: new_freq = freq_in_mins_from_string(freq) try: input_df.index.freq = freq except ValueError: input_df = self.fill_missing_data(input_df, str(new_freq) + 'min') return input_df def fill_missing_data(self, df: pd.DataFrame, new_freq: str): if self.verbosity > 0: print("input contains missing values or time-steps") df = force_freq(df.copy(), new_freq, 'input', 'nearest') assert df.index.freqstr is not None return df def transform_data(self, input_df, calculate_at): if calculate_at == 'same' or calculate_at is None: df = input_df else: new_freq_mins = freq_in_mins_from_string(calculate_at) old_freq_mins = freq_in_mins_from_string(input_df.index.freqstr) if new_freq_mins == old_freq_mins: df = input_df elif new_freq_mins > old_freq_mins: # we want to calculate at higher/larger time-step print('downsampling input data from {} to {}'.format(old_freq_mins, new_freq_mins)) df = self.downsample_input(input_df, new_freq_mins) else: print('upsampling input data from {} to {}'.format(old_freq_mins, new_freq_mins)) # we want to calculate at smaller time-step df = self.upsample_input(input_df, new_freq_mins) return df def upsample_input(self, df, out_freq): # from larger timestep to smaller timestep, such as from daily to hourly for col in df.columns: df[col] = self.upsample_df(pd.DataFrame(df[col]), col, out_freq) return df def downsample_input(self, df, out_freq): # from low timestep to high timestep i.e from 1 hour to 24 hour # from hourly to daily for col in df.columns: df[col] = self.downsample_df(pd.DataFrame(df[col]), col, out_freq) return df def transform_etp(self, name): freq_to_trans = self.get_freq() down_sample = freq_to_trans['up_sample'] up_sample = freq_to_trans['down_sample'] for freq in up_sample: in_col_name = 'et_' + name + '_' + self.freq_str freq_str = min_to_str(freq) out_col_name = 'et_' + name + '_' + freq_str self.output[out_col_name] = self.upsample_df(pd.DataFrame(self.output[in_col_name]), 'et', freq) for freq in down_sample: in_col_name = 'et_' + name + '_' + self.freq_str freq_str = min_to_str(freq) out_col_name = 'et_' + name + '_' + freq_str self.output[out_col_name] = self.downsample_df(pd.DataFrame(self.output[in_col_name]), 'et', freq) def downsample_df(self, data_frame: pd.DataFrame, data_name: str, out_freq: int): # from low timestep to high timestep i.e from 1 hour to 24 hour # from hourly to daily col_name = data_frame.columns[0] data_frame = data_frame.copy() old_freq = data_frame.index.freq if self.verbosity > 1: print('downsampling {} data from {} to {}'.format(col_name, old_freq, min_to_str(out_freq))) out_freq = str(out_freq) + 'min' # e.g. from hourly to daily if data_name in ['temp', 'rel_hum', 'rh_min', 'rh_max', 'uz', 'u2', 'wind_speed_kph', 'q_lps']: return data_frame.resample(out_freq).mean() elif data_name in ['rain_mm', 'ss_gpl', 'sol_rad', 'etp', 'et']: return data_frame.resample(out_freq).sum() def upsample_df(self, data_frame, data_name, out_freq_int): # from larger timestep to smaller timestep, such as from daily to hourly out_freq = str(out_freq_int) + 'min' col_name = data_frame.columns[0] old_freq = data_frame.index.freqstr nan_idx = data_frame.isna() # preserving indices with nan values nan_idx_r = nan_idx.resample(out_freq).ffill() nan_idx_r = nan_idx_r.fillna(False) # the first value was being filled with NaN, idk y? data_frame = data_frame.copy() if self.verbosity > 1: print('upsampling {} data from {} to {}'.format(data_name, old_freq, min_to_str(out_freq_int))) # e.g from monthly to daily or from hourly to sub_hourly if data_name in ['temp', 'rel_hum', 'rh_min', 'rh_max', 'uz', 'u2', 'q_lps']: data_frame = data_frame.resample(out_freq).interpolate(method='linear') # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan elif data_name in ['rain_mm', 'ss_gpl', 'sol_rad', 'pet', 'pet_hr', 'et', 'etp']: # distribute rainfall equally to smaller time steps. like hourly 17.4 will be 1.74 at 6 min resolution idx = data_frame.index[-1] + get_offset(data_frame.index.freqstr) data_frame = data_frame.append(data_frame.iloc[[-1]].rename({data_frame.index[-1]: idx})) data_frame = add_freq(data_frame) df1 = data_frame.resample(out_freq).ffill().iloc[:-1] df1[col_name] /= df1.resample(data_frame.index.freqstr)[col_name].transform('size') data_frame = df1.copy() # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan return data_frame def get_freq(self) -> dict: """ decides which frequencies to """ all_freqs = {'Sub_hourly': {'down_sample': [1], 'up_sample': [60, 1440, 43200, 525600]}, 'Hourly': {'down_sample': [1], 'up_sample': [1440, 43200, 525600]}, 'Sub_daily': {'down_sample': [1, 60], 'up_sample': [1440, 43200, 525600]}, 'Daily': {'down_sample': [1, 60], 'up_sample': [43200, 525600]}, 'Sub_monthly': {'down_sample': [1, 60, 1440], 'up_sample': [43200, 525600]}, 'Monthly': {'down_sample': [1, 60, 1440], 'up_sample': [525600]}, 'Annualy': {'down_sample': [1, 60, 1440, 43200], 'up_sample': []} } return all_freqs[self.freq_str] class Utils(TransFormData): """ Contains functions methods for calculation of ETP with various methods. Methods: net_rad atm_pressure _wind_2m """ def __init__(self, input_df, units, constants, calculate_at=None, verbosity: bool=1): """ Arguments: calculate_at :a valid pandas dataframe frequency verbosity : """ super(Utils, self).__init__(input_df, units, constants, calculate_at=calculate_at, verbosity=verbosity) @property def seasonal_correction(self): """Seasonal correction for solar time (Eqs. 57 & 58) uses ---------- doy : scalar or array_like of shape(M, ) Day of year. Returns ------ ndarray Seasonal correction [hour] """ doy = self.input['jday'] b = 2 * math.pi * (doy - 81.) / 364. return 0.1645 * np.sin(2 * b) - 0.1255 * np.cos(b) - 0.0250 * np.sin(b) def net_rad(self, ea, rs=None): """ Calculate daily net radiation at the crop surface, assuming a grass reference crop. Net radiation is the difference between the incoming net shortwave (or solar) radiation and the outgoing net longwave radiation. Output can be converted to equivalent evaporation [mm day-1] using ``energy2evap()``. Based on equation 40 in Allen et al (1998). :uses rns: Net incoming shortwave radiation [MJ m-2 day-1]. Can be estimated using ``net_in_sol_rad()``. rnl: Net outgoing longwave radiation [MJ m-2 day-1]. Can be estimated using ``net_out_lw_rad()``. :return: net radiation [MJ m-2 timestep-1]. :rtype: float """ if 'rn' not in self.input: if rs is None: rs = self.rs() if 'rns' not in self.input: rns = self.net_in_sol_rad(rs) else: rns = self.input['rns'] rnl = self.net_out_lw_rad(rs=rs, ea=ea) rn = np.subtract(rns, rnl) self.input['rn'] = rn # for future use else: rn = self.input['rn'] return rn def rs(self): """ calculate solar radiation either from temperature (as second preference, as it is les accurate) or from daily _sunshine hours as second preference). Sunshine hours is given second preference because sunshine hours will remain same for all years if sunshine hours data is not provided (which is difficult to obtain), but temperature data which is easy to obtain and thus will be different for different years""" if 'sol_rad' not in self.input.columns: if 'sunshine_hrs' in self.input.columns: rs = self.sol_rad_from_sun_hours() if self.verbosity > 0: print("Sunshine hour data is used for calculating incoming solar radiation") elif 'tmin' in self.input.columns and 'tmax' in self.input.columns: rs = self._sol_rad_from_t() if self.verbosity > 0: print("solar radiation is calculated from temperature") else: raise ValueError("""Unable to calculate solar radiation. Provide either of following inputs: sol_rad, sunshine_hrs or tmin and tmax""") else: rs = self.input['sol_rad'] self.input['sol_rad'] = rs return rs def net_in_sol_rad(self, rs): """ Calculate net incoming solar (or shortwave) radiation (*Rns*) from gross incoming solar radiation, assuming a grass reference crop. Net incoming solar radiation is the net shortwave radiation resulting from the balance between incoming and reflected solar radiation. The output can be converted to equivalent evaporation [mm day-1] using ``energy2evap()``. Based on FAO equation 38 in Allen et al (1998). Rns = (1-a)Rs uses Gross incoming solar radiation [MJ m-2 day-1]. If necessary this can be estimated using functions whose name begins with 'solar_rad_from'. :param rs: solar radiation albedo: Albedo of the crop as the proportion of gross incoming solar radiation that is reflected by the surface. Default value is 0.23, which is the value used by the FAO for a short grass reference crop. Albedo can be as high as 0.95 for freshly fallen snow and as low as 0.05 for wet bare soil. A green vegetation over has an albedo of about 0.20-0.25 (Allen et al, 1998). :return: Net incoming solar (or shortwave) radiation [MJ m-2 day-1]. :rtype: float """ return np.multiply((1 - self.cons['albedo']), rs) def net_out_lw_rad(self, rs, ea): """ Estimate net outgoing longwave radiation. This is the net longwave energy (net energy flux) leaving the earth's surface. It is proportional to the absolute temperature of the surface raised to the fourth power according to the Stefan-Boltzmann law. However, water vapour, clouds, carbon dioxide and dust are absorbers and emitters of longwave radiation. This function corrects the Stefan- Boltzmann law for humidity (using actual vapor pressure) and cloudiness (using solar radiation and clear sky radiation). The concentrations of all other absorbers are assumed to be constant. The output can be converted to equivalent evaporation [mm timestep-1] using ``energy2evap()``. Based on FAO equation 39 in Allen et al (1998). uses: Absolute daily minimum temperature [degrees Kelvin] Absolute daily maximum temperature [degrees Kelvin] Solar radiation [MJ m-2 day-1]. If necessary this can be estimated using ``sol+rad()``. Clear sky radiation [MJ m-2 day-1]. Can be estimated using ``cs_rad()``. Actual vapour pressure [kPa]. Can be estimated using functions with names beginning with 'avp_from'. :param ea: actual vapour pressure, can be calculated using method avp_from :param rs: solar radiation :return: Net outgoing longwave radiation [MJ m-2 timestep-1] :rtype: float """ if 'tmin' in self.input.columns and 'tmax' in self.input.columns: added = np.add(np.power(self.input['tmax'].values+273.16, 4), np.power(self.input['tmin'].values+273.16, 4)) divided = np.divide(added, 2.0) else: divided = np.power(self.input['temp'].values+273.16, 4.0) tmp1 = np.multiply(self.sb_cons, divided) tmp2 = np.subtract(0.34, np.multiply(0.14, np.sqrt(ea))) tmp3 = np.subtract(np.multiply(1.35, np.divide(rs, self._cs_rad())), 0.35) return np.multiply(tmp1, np.multiply(tmp2, tmp3)) # eq 39 def sol_rad_from_sun_hours(self): """ Calculate incoming solar (or shortwave) radiation, *Rs* (radiation hitting a horizontal plane after scattering by the atmosphere) from relative sunshine duration. If measured radiation data are not available this method is preferable to calculating solar radiation from temperature. If a monthly mean is required then divide the monthly number of sunshine hours by number of days in the month and ensure that *et_rad* and *daylight_hours* was calculated using the day of the year that corresponds to the middle of the month. Based on equations 34 and 35 in Allen et al (1998). uses: Number of daylight hours [hours]. Can be calculated using ``daylight_hours()``. Sunshine duration [hours]. Can be calculated using ``sunshine_hours()``. Extraterrestrial radiation [MJ m-2 day-1]. Can be estimated using ``et_rad()``. :return: Incoming solar (or shortwave) radiation [MJ m-2 day-1] :rtype: float """ # 0.5 and 0.25 are default values of regression constants (Angstrom values) # recommended by FAO when calibrated values are unavailable. ss_hrs = self.input['sunshine_hrs'] # sunshine_hours dl_hrs = self.daylight_fao56() # daylight_hours return np.multiply(np.add(self.cons['a_s'], np.multiply(np.divide(ss_hrs, dl_hrs), self.cons['b_s'])), self._et_rad()) def _sol_rad_from_t(self, coastal=False): """ Estimate incoming solar (or shortwave) radiation [Mj m-2 day-1] , *Rs*, (radiation hitting a horizontal plane after scattering by the atmosphere) from min and max temperature together with an empirical adjustment coefficient for 'interior' and 'coastal' regions. The formula is based on equation 50 in Allen et al (1998) which is the Hargreaves radiation formula (Hargreaves and Samani, 1982, 1985). This method should be used only when solar radiation or sunshine hours data are not available. It is only recommended for locations where it is not possible to use radiation data from a regional station (either because climate conditions are heterogeneous or data are lacking). **NOTE**: this method is not suitable for island locations due to the moderating effects of the surrounding water. """ # Determine value of adjustment coefficient [deg C-0.5] for # coastal/interior locations if coastal: # for 'coastal' locations, situated on or adjacent to the coast of a large l adj = 0.19 # and mass and where air masses are influenced by a nearby water body, else: # for 'interior' locations, where land mass dominates and air adj = 0.16 # masses are not strongly influenced by a large water body et_rad = None cs_rad = None if 'et_rad' not in self.input: et_rad = self._et_rad() self.input['et_rad'] = et_rad if 'cs_rad' not in self.input: cs_rad = self._cs_rad() self.input['cs_rad'] = cs_rad sol_rad = np.multiply(adj, np.multiply(np.sqrt(np.subtract(self.input['tmax'].values, self.input['tmin'].values)), et_rad)) # The solar radiation value is constrained by the clear sky radiation return np.min(np.array([sol_rad, cs_rad]), axis=0) def _cs_rad(self, method='asce'): """ Estimate clear sky radiation from altitude and extraterrestrial radiation. Based on equation 37 in Allen et al (1998) which is recommended when calibrated Angstrom values are not available. et_rad is Extraterrestrial radiation [MJ m-2 day-1]. Can be estimated using ``et_rad()``. :return: Clear sky radiation [MJ m-2 day-1] :rtype: float """ if method.upper() == 'ASCE': return (0.00002 * self.cons['altitude'] + 0.75) * self._et_rad() elif method.upper() == 'REFET': sc = self.seasonal_correction() _omega = omega(solar_time_rad(self.cons['long_dec_deg'], self.input['half_hour'], sc)) else: raise ValueError def daylight_fao56(self): """get number of maximum hours of sunlight for a given latitude using equation 34 in Fao56. Annual variation of sunlight hours on earth are plotted in figre 14 in ref 1. dr = pd.date_range('20110903 00:00', '20110903 23:59', freq='H') sol_rad = np.array([0.45 for _ in range(len(dr))]) df = pd.DataFrame(np.stack([sol_rad],axis=1), columns=['sol_rad'], index=dr) constants = {'lat' : -20} units={'solar_rad': 'MegaJoulePerMeterSquarePerHour'} eto = ReferenceET(df,units,constants=constants) N = np.unique(eto.daylight_fao56()) array([11.66]) 1) http://www.fao.org/3/X0490E/x0490e07.htm""" ws = self.sunset_angle() hrs = (24/3.14) * ws # if self.input_freq == 'Monthly': # df = pd.DataFrame(hrs, index=self.daily_index) # hrs = df.resample('M').mean().values.reshape(-1,) return hrs def _et_rad(self): """ Estimate extraterrestrial radiation (*Ra*, 'top of the atmosphere radiation'). For daily, it is based on equation 21 in Allen et al (1998). If monthly mean radiation is required make sure *sol_dec*. *sha* and *irl* have been calculated using the day of the year that corresponds to the middle of the month. **Note**: From Allen et al (1998): "For the winter months in latitudes greater than 55 degrees (N or S), the equations have limited validity. Reference should be made to the Smithsonian Tables to assess possible deviations." :return: extraterrestrial radiation [MJ m-2 timestep-1] :rtype: float dr = pd.date_range('20110903 00:00', '20110903 23:59', freq='D') sol_rad = np.array([0.45 ]) df = pd.DataFrame(np.stack([sol_rad],axis=1), columns=['sol_rad'], index=dr) constants = {'lat' : -20} units={'sol_rad': 'MegaJoulePerMeterSquarePerHour'} eto = ReferenceET(df,units,constants=constants) ra = eto._et_rad() [32.27] """ if self.freq_in_mins < 1440: # TODO should sub_hourly be different from Hourly? j = (3.14/180) * self.cons['lat_dec_deg'] # eq 22 phi dr = self.inv_rel_dist_earth_sun() # eq 23 sol_dec = self.dec_angle() # eq 24 # gamma w1, w2 = self.solar_time_angle() t1 = (12*60)/math.pi t2 = np.multiply(t1, np.multiply(SOLAR_CONSTANT, dr)) t3 = np.multiply(np.subtract(w2, w1), np.multiply(np.sin(j), np.sin(sol_dec))) t4 = np.subtract(np.sin(w2), np.sin(w1)) t5 = np.multiply(np.multiply(np.cos(j), np.cos(sol_dec)), t4) t6 = np.add(t5, t3) ra = np.multiply(t2, t6) # eq 28 elif self.freq_in_mins == 1440: # daily frequency sol_dec = self.dec_angle() # based on julian day sha = self.sunset_angle() # sunset hour angle[radians], based on latitude ird = self.inv_rel_dist_earth_sun() tmp1 = (24.0 * 60.0) / math.pi tmp2 = np.multiply(sha, np.multiply(math.sin(self.lat_rad), np.sin(sol_dec))) tmp3 = np.multiply(math.cos(self.lat_rad), np.multiply(np.cos(sol_dec), np.sin(sha))) ra = np.multiply(tmp1, np.multiply(SOLAR_CONSTANT, np.multiply(ird, np.add(tmp2, tmp3)))) # eq 21 else: raise NotImplementedError self.input['ra'] = ra return ra def sunset_angle(self): """ calculates sunset hour angle in radians given by Equation 25 in Fao56 (1) 1): http://www.fao.org/3/X0490E/x0490e07.htm""" if 'sha' not in self.input: j = (3.14/180.0) * self.cons['lat_dec_deg'] # eq 22 d = self.dec_angle() # eq 24, declination angle angle = np.arccos(-np.tan(j)*np.tan(d)) # eq 25 self.input['sha'] = angle else: angle = self.input['sha'].values return angle def inv_rel_dist_earth_sun(self): """ Calculate the inverse relative distance between earth and sun from day of the year. Based on FAO equation 23 in Allen et al (1998). ird = 1.0 + 0.033 * cos( [2pi/365] * j ) :return: Inverse relative distance between earth and the sun :rtype: np array """ if 'ird' not in self.input: inv1 = np.multiply(2*math.pi/365.0, self.input['jday'].values) inv2 = np.cos(inv1) inv3 = np.multiply(0.033, inv2) ird = np.add(1.0, inv3) self.input['ird'] = ird else: ird = self.input['ird'] return ird def dec_angle(self): """ finds solar declination angle """ if 'sol_dec' not in self.input: if self.freq_str == 'monthly': solar_dec = np.array(0.409 * np.sin(2*3.14 * self.daily_index().dayofyear/365 - 1.39)) else: solar_dec = 0.409 * np.sin(2*3.14 * self.input['jday'].values/365 - 1.39) # eq 24, declination angle self.input['solar_dec'] = solar_dec else: solar_dec = self.input['solar_dec'] return solar_dec def solar_time_angle(self): """ returns solar time angle at start, mid and end of period using equation 29, 31 and 30 respectively in Fao w = pi/12 [(t + 0.06667 ( lz-lm) + Sc) -12] t =standard clock time at the midpoint of the period [hour]. For example for a period between 14.00 and 15.00 hours, t = 14.5 lm = longitude of the measurement site [degrees west of Greenwich] lz = longitude of the centre of the local time zone [degrees west of Greenwich] w1 = w - pi*t1/24 w2 = w + pi*t1/24 where: w = solar time angle at midpoint of hourly or shorter period [rad] t1 = length of the calculation period [hour]: i.e., 1 for hourly period or 0.5 for a 30-minute period www.fao.org/3/X0490E/x0490e07.htm """ # TODO find out how to calculate lz # https://github.com/djlampert/PyHSPF/blob/c3c123acf7dba62ed42336f43962a5e4db922422/src/pyhspf/preprocessing/etcalculator.py#L610 lz = np.abs(15 * round(self.cons['long_dec_deg'] / 15.0)) lm = np.abs(self.cons['long_dec_deg']) t1 = 0.0667*(lz-lm) t2 = self.input['half_hr'].values + t1 + self.solar_time_cor() t3 = np.subtract(t2, 12) w = np.multiply((math.pi/12.0), t3) # eq 31, in rad w1 = np.subtract(w, np.divide(np.multiply(math.pi, self.input['t1']).values, 24.0)) # eq 29 w2 = np.add(w, np.divide(np.multiply(math.pi, self.input['t1']).values, 24.0)) # eq 30 return w1, w2 def solar_time_cor(self): """seasonal correction for solar time by implementation of eqation 32 in hour, `Sc`""" upar = np.multiply((2*math.pi), np.subtract(self.input['jday'].values, 81)) b = np.divide(upar, 364) # eq 33 t1 = np.multiply(0.1645, np.sin(np.multiply(2, b))) t2 = np.multiply(0.1255, np.cos(b)) t3 = np.multiply(0.025, np.sin(b)) return t1-t2-t3 # eq 32 def avp_from_rel_hum(self): """ Estimate actual vapour pressure (*ea*) from saturation vapour pressure and relative humidity. Based on FAO equation 17 in Allen et al (1998). ea = [ e_not(tmin)RHmax/100 + e_not(tmax)RHmin/100 ] / 2 uses Saturation vapour pressure at daily minimum temperature [kPa]. Saturation vapour pressure at daily maximum temperature [kPa]. Minimum relative humidity [%] Maximum relative humidity [%] :return: Actual vapour pressure [kPa] :rtype: float http://www.fao.org/3/X0490E/x0490e07.htm#TopOfPage """ if 'ea' in self.input: avp = self.input['ea'] else: avp = 0.0 # TODO `shub_hourly` calculation should be different from `Hourly` # use equation 54 in http://www.fao.org/3/X0490E/x0490e08.htm#TopOfPage if self.freq_in_mins <= 60: # for hourly or sub_hourly avp = np.multiply(self.sat_vp_fao56(self.input['temp'].values), np.divide(self.input['rel_hum'].values, 100.0)) elif self.freq_in_mins == 1440: if 'rh_min' in self.input.columns and 'rh_max' in self.input.columns: tmp1 = np.multiply(self.sat_vp_fao56(self.input['tmin'].values), np.divide(self.input['rh_max'].values, 100.0)) tmp2 = np.multiply(self.sat_vp_fao56(self.input['tmax'].values), np.divide(self.input['rh_min'].values, 100.0)) avp = np.divide(np.add(tmp1, tmp2), 2.0) elif 'rel_hum' in self.input.columns: # calculation actual vapor pressure from mean humidity # equation 19 t1 = np.divide(self.input['rel_hum'].values, 100) t2 = np.divide(np.add(self.sat_vp_fao56(self.input['tmax'].values), self.sat_vp_fao56(self.input['tmin'].values)), 2.0) avp = np.multiply(t1, t2) else: raise NotImplementedError(" for frequency of {} minutes, actual vapour pressure can not be calculated" .format(self.freq_in_mins)) self.input['ea'] = avp return avp def sat_vp_fao56(self, temp): """calculates saturation vapor pressure (*e_not*) as given in eq 11 of FAO 56 at a given temp which must be in units of centigrade. using Tetens equation es = 0.6108 * exp((17.26*temp)/(temp+273.3)) where es is in KiloPascal units. Murray, F. W., On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, 203-204, 1967. """ # e_not_t = multiply(0.6108, np.exp( multiply(17.26939, temp) / add(temp , 237.3))) e_not_t = np.multiply(0.6108, np.exp(np.multiply(17.27, np.divide(temp, np.add(temp, 237.3))))) return e_not_t def soil_heat_flux(self, rn=None): if self.freq_in_mins == 1440: return 0.0 elif self.freq_in_mins <= 60: gd = np.multiply(0.1, rn) gn = np.multiply(0.5, rn) return np.where(self.input['is_day'] == 1, gd, gn) elif self.freq_in_mins > 1440: raise NotImplementedError def mean_sat_vp_fao56(self): """ calculates mean saturation vapor pressure (*es*) for a day, weak or month according to eq 12 of FAO 56 using tmin and tmax which must be in centigrade units """ es = None # for case when tmax and tmin are not given and only `temp` is given if 'tmax' not in self.input: if 'temp' in self.input: es = self.sat_vp_fao56(self.input['temp']) # for case when `tmax` and `tmin` are provided elif 'tmax' in self.input: es_tmax = self.sat_vp_fao56(self.input['tmax'].values) es_tmin = self.sat_vp_fao56(self.input['tmin'].values) es = np.mean(np.array([es_tmin, es_tmax]), axis=0) else: raise NotImplementedError return es def psy_const(self) -> float: """ Calculate the psychrometric constant. This method assumes that the air is saturated with water vapour at the minimum daily temperature. This assumption may not hold in arid areas. Based on equation 8, page 95 in Allen et al (1998). uses Atmospheric pressure [kPa]. :return: Psychrometric constant [kPa degC-1]. :rtype: array """ return np.multiply(0.000665, self.atm_pressure()) def slope_sat_vp(self, t): """ slope of the relationship between saturation vapour pressure and temperature for a given temperature according to equation 13 in Fao56[1]. delta = 4098 [0.6108 exp(17.27T/T+237.3)] / (T+237.3)^2 :param t: Air temperature [deg C]. Use mean air temperature for use in Penman-Monteith. :return: Saturation vapour pressure [kPa degC-1] [1]: http://www.fao.org/3/X0490E/x0490e07.htm#TopOfPage """ to_exp = np.divide(np.multiply(17.27, t), np.add(t, 237.3)) tmp = np.multiply(4098, np.multiply(0.6108, np.exp(to_exp))) return np.divide(tmp, np.power(np.add(t, 237.3), 2)) def _wind_2m(self, method='fao56', z_o=0.001): """ converts wind speed (m/s) measured at height z to 2m using either FAO 56 equation 47 or McMohan eq S4.4. u2 = uz [ 4.87/ln(67.8z-5.42) ] eq 47 in [1], eq S5.20 in [2]. u2 = uz [ln(2/z_o) / ln(z/z_o)] eq S4.4 in [2] :param `method` string, either of `fao56` or `mcmohan2013`. if `mcmohan2013` is chosen then `z_o` is used :param `z_o` float, roughness height. Default value is from [2] :return: Wind speed at 2 m above the surface [m s-1] [1] http://www.fao.org/3/X0490E/x0490e07.htm [2] McMahon, T., Peel, M., Lowe, L., Srikanthan, R. & McVicar, T. 2012. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences Discussions, 9, 11829-11910. https://www.hydrol-earth-syst-sci.net/17/1331/2013/hess-17-1331-2013-supplement.pdf """ # if value of height at which wind is measured is not given, then don't convert if 'wind_z' in self.cons: wind_z = self.cons['wind_z'] else: wind_z = None if wind_z is None: if self.verbosity > 0: print("""WARNING: givn wind data is not at 2 meter and `wind_z` is also not given. So assuming wind given as measured at 2m height""") return self.input['wind_speed'].values else: if method == 'fao56': return np.multiply(self.input['wind_speed'], (4.87 / math.log((67.8 * wind_z) - 5.42))) else: return np.multiply(self.input['wind_speed'].values, math.log(2/z_o) / math.log(wind_z/z_o)) def atm_pressure(self) -> float: """ Estimate atmospheric pressure from altitude. Calculated using a simplification of the ideal gas law, assuming 20 degrees Celsius for a standard atmosphere. Based on equation 7, page 62 in Allen et al (1998). :return: atmospheric pressure [kPa] :rtype: float """ tmp = (293.0 - (0.0065 * self.cons['altitude'])) / 293.0 return math.pow(tmp, 5.26) * 101.3 def tdew_from_t_rel_hum(self): """ Calculates the dew point temperature given temperature and relative humidity. Following formulation given at https://goodcalculators.com/dew-point-calculator/ The formula is Tdew = (237.3 × [ln(RH/100) + ( (17.27×T) / (237.3+T) )]) / (17.27 - [ln(RH/100) + ( (17.27×T) / (237.3+T) )]) Where: Tdew = dew point temperature in degrees Celsius (°C), T = air temperature in degrees Celsius (°C), RH = relative humidity (%), ln = natural logarithm. The formula also holds true as calculations shown at http://www.decatur.de/javascript/dew/index.html """ temp = self.input['temp'] neum = (237.3 * (np.log(self.input['rel_hum'] / 100.0) + ((17.27 * temp) / (237.3 + temp)))) denom = (17.27 - (np.log(self.input['rel_hum'] / 100.0) + ((17.27 * temp) / (237.3 + temp)))) td = neum / denom self.input['tdew'] = td return def evap_pan(self): """ pan evaporation which is used in almost all penman related methods """ ap = self.cons['pen_ap'] lat = self.cons['lat_dec_deg'] rs = self.rs() delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() vabar = self.avp_from_rel_hum() # Vapour pressure vas = self.mean_sat_vp_fao56() u2 = self._wind_2m() r_nl = self.net_out_lw_rad(rs=rs, ea=vabar) # net outgoing longwave radiation ra = self._et_rad() # eq 34 in Thom et al., 1981 f_pan_u = np.add(1.201, np.multiply(1.621, u2)) # eq 4 and 5 in Rotstayn et al., 2006 p_rad = np.add(1.32, np.add(np.multiply(4e-4, lat), np.multiply(8e-5, lat**2))) f_dir = np.add(-0.11, np.multiply(1.31, np.divide(rs, ra))) rs_pan = np.multiply(np.add(np.add(np.multiply(f_dir, p_rad), np.multiply(1.42, np.subtract(1, f_dir))), np.multiply(0.42, self.cons['albedo'])), rs) rn_pan = np.subtract(np.multiply(1-self.cons['alphaA'], rs_pan), r_nl) # S6.1 in McMohan et al 2013 tmp1 = np.multiply(np.divide(delta, np.add(delta, np.multiply(ap, gamma))), np.divide(rn_pan, LAMBDA)) tmp2 = np.divide(np.multiply(ap, gamma), np.add(delta, np.multiply(ap, gamma))) tmp3 = np.multiply(f_pan_u, np.subtract(vas, vabar)) tmp4 = np.multiply(tmp2, tmp3) epan = np.add(tmp1, tmp4) return epan def rad_to_evap(self): """ converts solar radiation to equivalent inches of water evaporation SRadIn[in/day] = SolRad[Ley/day] / ((597.3-0.57) * temp[centigrade]) * 2.54) [1] or using equation 20 of FAO chapter 3 from TABLE 3 in FAO chap 3. SRadIn[mm/day] = 0.408 * Radiation[MJ m-2 day-1] SRadIn[mm/day] = 0.035 * Radiation[Wm-2] SRadIn[mm/day] = Radiation[MJ m-2 day-1] / 2.45 SRadIn[mm/day] = Radiation[J cm-2 day-1] / 245 SRadIn[mm/day] = Radiation[Wm-2] / 28.4 [1] https://github.com/respec/BASINS/blob/4356aa9481eb7217cb2cbc5131a0b80a932907bf/atcMetCmp/modMetCompute.vb#L1251 https://github.com/DanluGuo/Evapotranspiration/blob/8efa0a2268a3c9fedac56594b28ac4b5197ea3fe/R/Evapotranspiration.R http://www.fao.org/3/X0490E/x0490e07.htm """ # TODO following equation assumes radiations in langleys/day ando output in Inches tmp1 = np.multiply(np.subtract(597.3, np.multiply(0.57, self.input['temp'].values)), 2.54) rad_in = np.divide(self.input['sol_rad'].values, tmp1) return rad_in def equil_temp(self, et_daily): # equilibrium temperature T_e t_e = self.input['temp'].copy() ta = self.input['temp'] vabar = self.avp_from_rel_hum() r_n = self.net_rad(vabar) # net radiation gamma = self.psy_const() for i in range(9999): v_e = 0.6108 * np.exp(17.27 * t_e/(t_e + 237.3)) # saturated vapour pressure at T_e (S2.5) t_e_new = ta - 1 / gamma * (1 - r_n / (LAMBDA * et_daily)) * (v_e - vabar) # rearranged from S8.8 delta_t_e = t_e_new - t_e maxdelta_t_e = np.abs(np.max(delta_t_e)) t_e = t_e_new if maxdelta_t_e < 0.01: break return t_e def freq_in_mins_from_string(input_string: str) -> int: if has_numbers(input_string): in_minutes = split_freq(input_string) elif input_string.upper() in ['D', 'H', 'M', 'DAILY', 'HOURLY', 'MONTHLY', 'YEARLY', 'MIN', 'MINUTE']: in_minutes = str_to_mins(input_string.upper()) else: raise TypeError("invalid input string", input_string) return int(in_minutes) def str_to_mins(input_string: str) -> int: d = {'MIN': 1, 'MINUTE': 1, 'DAILY': 1440, 'D': 1440, 'HOURLY': 60, 'HOUR': 60, 'H': 60, 'MONTHLY': 43200, 'M': 43200, 'YEARLY': 525600 } return d[input_string] def split_freq(freq_str: str) -> int: match = re.match(r"([0-9]+)([a-z]+)", freq_str, re.I) if match: minutes, freq = match.groups() if freq.upper() in ['H', 'HOURLY', 'HOURS', 'HOUR']: minutes = int(minutes) * 60 elif freq.upper() in ['D', 'DAILY', 'DAY', 'DAYS']: minutes = int(minutes) * 1440 return int(minutes) else: raise NotImplementedError def has_numbers(input_string: str) -> bool: return bool(re.search(r'\d', input_string)) def justify_len(string: str, length: int = 2, pad: str = '0') -> str: if len(string) < length: zeros_to_pad = pad * int(len(string) - length) new_string = zeros_to_pad + string else: new_string = string return new_string def add_freq(dataframe, name=None, _force_freq=None, method=None): """Add a frequency attribute to idx, through inference or directly. Returns a copy. If `freq` is None, it is inferred. """ idx = dataframe.index idx = idx.copy() # if freq is None: if idx.freq is None: freq = pd.infer_freq(idx) idx.freq = freq if idx.freq is None: if _force_freq is not None: dataframe = force_freq(dataframe, _force_freq, name, method=method) else: raise AttributeError('no discernible frequency found in {} for {}. Specify' ' a frequency string with `freq`.'.format(name, name)) else: print('frequency {} is assigned to {}'.format(idx.freq, name)) dataframe.index = idx return dataframe def force_freq(data_frame, freq_to_force, name, method=None): old_nan_counts = data_frame.isna().sum() old_shape = data_frame.shape dr = pd.date_range(data_frame.index[0], data_frame.index[-1], freq=freq_to_force) df_unique = data_frame[~data_frame.index.duplicated(keep='first')] # first remove duplicate indices if present if method: df_idx_sorted = df_unique.sort_index() df_reindexed = df_idx_sorted.reindex(dr, method='nearest') else: df_reindexed = df_unique.reindex(dr, fill_value=np.nan) df_reindexed.index.freq = pd.infer_freq(df_reindexed.index) new_nan_counts = df_reindexed.isna().sum() print('Frequency {} is forced to {} dataframe, NaN counts changed from {} to {}, shape changed from {} to {}' .format(df_reindexed.index.freq, name, old_nan_counts.values, new_nan_counts.values, old_shape, df_reindexed.shape)) return df_reindexed def min_to_str(minutes: int) -> str: if minutes == 1: freq_str = 'Minute' elif 60 > minutes > 1: freq_str = 'Sub_hourly' elif minutes == 60: freq_str = 'Hourly' elif 1440 > minutes > 60: freq_str = 'Sub-daily' elif minutes == 1440: freq_str = 'Daily' elif 43200 > minutes > 1440: freq_str = 'Sub-monthly' elif minutes == 43200: freq_str = 'Monthly' elif 525600 > minutes > 43200: freq_str = 'Sub-yearly' elif minutes == 525600: freq_str = 'Yearly' else: raise ValueError("Can not calculate frequency string from given frequency in minutes ", minutes) return freq_str time_step = {'D': 'Day', 'H': 'Hour', 'M': 'MonthEnd'} def get_offset(freqstr: str) -> str: offset_step = 1 if freqstr in time_step: freqstr = time_step[freqstr] elif has_numbers(freqstr): in_minutes = split_freq(freqstr) freqstr = 'Minute' offset_step = int(in_minutes) offset = getattr(pd.offsets, freqstr)(offset_step) return offset def _wrap(x, x_min, x_max): """Wrap floating point values into range Parameters ---------- x : ndarray Values to wrap. x_min : float Minimum value in output range. x_max : float Maximum value in output range. Returns ------- ndarray """ return np.mod((x - x_min), (x_max - x_min)) + x_min def omega(solar_time): """Solar hour angle (Eq. 55) Parameters ---------- solar_time : scalar or array_like of shape(M, ) Solar time (i.e. noon is 0) [hours]. Returns ------- omega : ndarray Hour angle [radians]. """ _omega = (2 * math.pi / 24.0) * solar_time # Need to adjust omega so that the values go from -pi to pi # Values outside this range are wrapped (i.e. -3*pi/2 -> pi/2) _omega = _wrap(_omega, -math.pi, math.pi) return _omega def solar_time_rad(lon, time_mid, sc): """Solar time (i.e. noon is 0) (Eq. 55) Parameters ---------- lon : scalar or array_like of shape(M, ) Longitude [radians]. time_mid : scalar or array_like of shape(M, ) UTC time at midpoint of period [hours]. sc : scalar or array_like of shape(M, ) Seasonal correction [hours]. Returns ------- ndarray Solar time [hours]. Notes ----- This function could be integrated into the _omega() function since they are always called together (i.e. _omega(_solar_time_rad()). It was built independently from _omega to eventually support having a separate solar_time functions for longitude in degrees. """ return time_mid + (lon * 24 / (2 * math.pi)) + sc - 12
971b10ea19c5d1463cb92b153dc361635405f186
80b7f2a10506f70477d8720e229d7530da2eff5d
/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocolstack/dcbxtlv_37d6aa3b470efb288cbc76a9c77c1804.py
d458b4bd197b07612fdfe9f43e94db2631f8cae0
[ "MIT" ]
permissive
OpenIxia/ixnetwork_restpy
00fdc305901aa7e4b26e4000b133655e2d0e346a
c8ecc779421bffbc27c906c1ea51af3756d83398
refs/heads/master
2023-08-10T02:21:38.207252
2023-07-19T14:14:57
2023-07-19T14:14:57
174,170,555
26
16
MIT
2023-02-02T07:02:43
2019-03-06T15:27:20
Python
UTF-8
Python
false
false
18,046
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files if sys.version_info >= (3, 5): from typing import List, Any, Union class DcbxTlv(Base): """DCBX TLV (Type-Length-Value) The DcbxTlv class encapsulates a list of dcbxTlv resources that are managed by the user. A list of resources can be retrieved from the server using the DcbxTlv.find() method. The list can be managed by using the DcbxTlv.add() and DcbxTlv.remove() methods. """ __slots__ = () _SDM_NAME = "dcbxTlv" _SDM_ATT_MAP = { "Enabled": "enabled", "Error": "error", "ErrorOverride": "errorOverride", "FeatureEnable": "featureEnable", "FeatureType": "featureType", "MaxVersion": "maxVersion", "Name": "name", "ObjectId": "objectId", "SubType": "subType", "Willing": "willing", } _SDM_ENUM_MAP = {} def __init__(self, parent, list_op=False): super(DcbxTlv, self).__init__(parent, list_op) @property def TlvSettings(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.tlvsettings_9ee7f0bbd6252892487709b1e2bd344a.TlvSettings): An instance of the TlvSettings class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.tlvsettings_9ee7f0bbd6252892487709b1e2bd344a import ( TlvSettings, ) if len(self._object_properties) > 0: if self._properties.get("TlvSettings", None) is not None: return self._properties.get("TlvSettings") return TlvSettings(self)._select() @property def Enabled(self): # type: () -> bool """ Returns ------- - bool: Specifies if this TLV is used in the configuration. """ return self._get_attribute(self._SDM_ATT_MAP["Enabled"]) @Enabled.setter def Enabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP["Enabled"], value) @property def Error(self): # type: () -> bool """ Returns ------- - bool: Indicates that an error has occurred during the configuration exchange with the peer. """ return self._get_attribute(self._SDM_ATT_MAP["Error"]) @Error.setter def Error(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP["Error"], value) @property def ErrorOverride(self): # type: () -> bool """ Returns ------- - bool: True to override the error bit. """ return self._get_attribute(self._SDM_ATT_MAP["ErrorOverride"]) @ErrorOverride.setter def ErrorOverride(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP["ErrorOverride"], value) @property def FeatureEnable(self): # type: () -> bool """ Returns ------- - bool: Indicates whether the DCB feature is enabled or not. """ return self._get_attribute(self._SDM_ATT_MAP["FeatureEnable"]) @FeatureEnable.setter def FeatureEnable(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP["FeatureEnable"], value) @property def FeatureType(self): # type: () -> int """ Returns ------- - number: Type code of the DCB Feature. The codes translate to: 2 - Priority Group 3 - PFC 4 - Application (IEEE 1.01) / Custom(BCN) (Intel 1.0) 5 - Custom (IEEE 1.01) / FCoE (Intel 1.0) 6 - Custom (IEEE 1.01) / Logical Link (Intel 1.0) 7 - NIV 8 - Custom (IEEE 1.01 / Intel 1.0) 9/10 - Custom (IEEE 1.01 / Intel 1.0) / ETS Configuration/Recommendation (802.1Qaz) 11 - Custom (IEEE 1.01 / Intel 1.0) / PFC (802.1Qaz) 12 - Custom (IEEE 1.01 / Intel 1.0) / Application Priority (802.1Qaz) 13 to 127 - Custom (IEEE 1.01 / Intel 1.0) """ return self._get_attribute(self._SDM_ATT_MAP["FeatureType"]) @FeatureType.setter def FeatureType(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP["FeatureType"], value) @property def MaxVersion(self): # type: () -> int """ Returns ------- - number: Highest feature version supported by the system. """ return self._get_attribute(self._SDM_ATT_MAP["MaxVersion"]) @MaxVersion.setter def MaxVersion(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP["MaxVersion"], value) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of TLV """ return self._get_attribute(self._SDM_ATT_MAP["Name"]) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP["Name"], value) @property def ObjectId(self): # type: () -> str """ Returns ------- - str: Unique identifier for this object """ return self._get_attribute(self._SDM_ATT_MAP["ObjectId"]) @property def SubType(self): # type: () -> int """ Returns ------- - number: Indicates specific types of network traffic. """ return self._get_attribute(self._SDM_ATT_MAP["SubType"]) @SubType.setter def SubType(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP["SubType"], value) @property def Willing(self): # type: () -> bool """ Returns ------- - bool: Indicates whether this feature accepts its configuration from the peer or not. """ return self._get_attribute(self._SDM_ATT_MAP["Willing"]) @Willing.setter def Willing(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP["Willing"], value) def update( self, Enabled=None, Error=None, ErrorOverride=None, FeatureEnable=None, FeatureType=None, MaxVersion=None, Name=None, SubType=None, Willing=None, ): # type: (bool, bool, bool, bool, int, int, str, int, bool) -> DcbxTlv """Updates dcbxTlv resource on the server. Args ---- - Enabled (bool): Specifies if this TLV is used in the configuration. - Error (bool): Indicates that an error has occurred during the configuration exchange with the peer. - ErrorOverride (bool): True to override the error bit. - FeatureEnable (bool): Indicates whether the DCB feature is enabled or not. - FeatureType (number): Type code of the DCB Feature. The codes translate to: 2 - Priority Group 3 - PFC 4 - Application (IEEE 1.01) / Custom(BCN) (Intel 1.0) 5 - Custom (IEEE 1.01) / FCoE (Intel 1.0) 6 - Custom (IEEE 1.01) / Logical Link (Intel 1.0) 7 - NIV 8 - Custom (IEEE 1.01 / Intel 1.0) 9/10 - Custom (IEEE 1.01 / Intel 1.0) / ETS Configuration/Recommendation (802.1Qaz) 11 - Custom (IEEE 1.01 / Intel 1.0) / PFC (802.1Qaz) 12 - Custom (IEEE 1.01 / Intel 1.0) / Application Priority (802.1Qaz) 13 to 127 - Custom (IEEE 1.01 / Intel 1.0) - MaxVersion (number): Highest feature version supported by the system. - Name (str): Name of TLV - SubType (number): Indicates specific types of network traffic. - Willing (bool): Indicates whether this feature accepts its configuration from the peer or not. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add( self, Enabled=None, Error=None, ErrorOverride=None, FeatureEnable=None, FeatureType=None, MaxVersion=None, Name=None, SubType=None, Willing=None, ): # type: (bool, bool, bool, bool, int, int, str, int, bool) -> DcbxTlv """Adds a new dcbxTlv resource on the server and adds it to the container. Args ---- - Enabled (bool): Specifies if this TLV is used in the configuration. - Error (bool): Indicates that an error has occurred during the configuration exchange with the peer. - ErrorOverride (bool): True to override the error bit. - FeatureEnable (bool): Indicates whether the DCB feature is enabled or not. - FeatureType (number): Type code of the DCB Feature. The codes translate to: 2 - Priority Group 3 - PFC 4 - Application (IEEE 1.01) / Custom(BCN) (Intel 1.0) 5 - Custom (IEEE 1.01) / FCoE (Intel 1.0) 6 - Custom (IEEE 1.01) / Logical Link (Intel 1.0) 7 - NIV 8 - Custom (IEEE 1.01 / Intel 1.0) 9/10 - Custom (IEEE 1.01 / Intel 1.0) / ETS Configuration/Recommendation (802.1Qaz) 11 - Custom (IEEE 1.01 / Intel 1.0) / PFC (802.1Qaz) 12 - Custom (IEEE 1.01 / Intel 1.0) / Application Priority (802.1Qaz) 13 to 127 - Custom (IEEE 1.01 / Intel 1.0) - MaxVersion (number): Highest feature version supported by the system. - Name (str): Name of TLV - SubType (number): Indicates specific types of network traffic. - Willing (bool): Indicates whether this feature accepts its configuration from the peer or not. Returns ------- - self: This instance with all currently retrieved dcbxTlv resources using find and the newly added dcbxTlv resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained dcbxTlv resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find( self, Enabled=None, Error=None, ErrorOverride=None, FeatureEnable=None, FeatureType=None, MaxVersion=None, Name=None, ObjectId=None, SubType=None, Willing=None, ): # type: (bool, bool, bool, bool, int, int, str, str, int, bool) -> DcbxTlv """Finds and retrieves dcbxTlv resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve dcbxTlv resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all dcbxTlv resources from the server. Args ---- - Enabled (bool): Specifies if this TLV is used in the configuration. - Error (bool): Indicates that an error has occurred during the configuration exchange with the peer. - ErrorOverride (bool): True to override the error bit. - FeatureEnable (bool): Indicates whether the DCB feature is enabled or not. - FeatureType (number): Type code of the DCB Feature. The codes translate to: 2 - Priority Group 3 - PFC 4 - Application (IEEE 1.01) / Custom(BCN) (Intel 1.0) 5 - Custom (IEEE 1.01) / FCoE (Intel 1.0) 6 - Custom (IEEE 1.01) / Logical Link (Intel 1.0) 7 - NIV 8 - Custom (IEEE 1.01 / Intel 1.0) 9/10 - Custom (IEEE 1.01 / Intel 1.0) / ETS Configuration/Recommendation (802.1Qaz) 11 - Custom (IEEE 1.01 / Intel 1.0) / PFC (802.1Qaz) 12 - Custom (IEEE 1.01 / Intel 1.0) / Application Priority (802.1Qaz) 13 to 127 - Custom (IEEE 1.01 / Intel 1.0) - MaxVersion (number): Highest feature version supported by the system. - Name (str): Name of TLV - ObjectId (str): Unique identifier for this object - SubType (number): Indicates specific types of network traffic. - Willing (bool): Indicates whether this feature accepts its configuration from the peer or not. Returns ------- - self: This instance with matching dcbxTlv resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of dcbxTlv data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the dcbxTlv resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def CustomProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the customProtocolStack operation on the server. Create custom protocol stack under /vport/protocolStack customProtocolStack(Arg2=list, Arg3=enum, async_operation=bool) --------------------------------------------------------------- - Arg2 (list(str)): List of plugin types to be added in the new custom stack - Arg3 (str(kAppend | kMerge | kOverwrite)): Append, merge or overwrite existing protocol stack - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "customProtocolStack", payload=payload, response_object=None ) def DisableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the disableProtocolStack operation on the server. Disable a protocol under protocolStack using the class name disableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------- - Arg2 (str): Protocol class name to disable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self.href} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "disableProtocolStack", payload=payload, response_object=None ) def EnableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the enableProtocolStack operation on the server. Enable a protocol under protocolStack using the class name enableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------ - Arg2 (str): Protocol class name to enable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = {"Arg1": self.href} for i in range(len(args)): payload["Arg%s" % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute( "enableProtocolStack", payload=payload, response_object=None )
a4cfe939cf946016e8aa26c131d44218af521253
d5f53599338a30a9d6c7de7d5c574db59545ed3d
/Gse/generated/Ref/channels/SG1_SignalGen_Output.py
dd5c8e60cf31bbd105160631ee8ff53b9fd5a55e
[ "Apache-2.0" ]
permissive
dstockhouse/eaglesat-fprime
c39a01cc5648dcd8b351f47684923fe481c720be
e640b3faea0000e1ca8acab4d6ff66150196c32b
refs/heads/master
2020-05-07T15:31:09.289797
2019-11-20T00:33:15
2019-11-20T00:33:15
180,639,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,405
py
''' Created on Wednesday, 10 April 2019 @author: David THIS FILE IS AUTOMATICALLY GENERATED - DO NOT EDIT!!! XML Source: /cygdrive/c/Users/David/Documents/eaglesat/eaglesat-fprime/Ref/SignalGen/SignalGenComponentAi.xml ''' # Import the types this way so they do not need prefixing for execution. from models.serialize.type_exceptions import * from models.serialize.type_base import * from models.serialize.bool_type import * from models.serialize.enum_type import * from models.serialize.f32_type import * from models.serialize.f64_type import * from models.serialize.u8_type import * from models.serialize.u16_type import * from models.serialize.u32_type import * from models.serialize.u64_type import * from models.serialize.i8_type import * from models.serialize.i16_type import * from models.serialize.i32_type import * from models.serialize.i64_type import * from models.serialize.string_type import * from models.serialize.serializable_type import * from models.common import channel_telemetry # Each file represents the information for a single event # These module variables are used to instance the channel object within the Gse COMPONENT = "Ref::SignalGen" NAME = "SG1_SignalGen_Output" ID = 0xb5 CHANNEL_DESCRIPTION = "SignalGen Output" TYPE = F32Type() FORMAT_STRING = None LOW_RED = None LOW_ORANGE = None LOW_YELLOW = None HIGH_YELLOW = None HIGH_ORANGE = None HIGH_RED = None
2d54d1dc86dd11ca0fd2da892931be9a65a2636a
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/nos/v6_0_2f/interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/__init__.py
5325359c0954094916091552e54c3c268cbea198
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
52,828
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import virtual_ip import track import short_path_forwarding class vrrpv3e(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-interface - based on the path /interface/port-channel/ipv6/hide-vrrpv3-holder/vrrpv3e. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__vrid','__virtual_ip','__track','__enable','__hold_time','__preempt_mode','__priority','__description','__advertise_backup','__nd_advertisement_timer','__advertisement_interval_scale','__backup_advertisement_interval','__vrrpe_advertisement_interval','__short_path_forwarding',) _yang_name = 'vrrpv3e' _rest_name = 'vrrp-extended-group' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable Session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) self.__description = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..64']}), is_leaf=True, yang_name="description", rest_name="description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface specific description', u'cli-multi-value': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='string', is_config=True) self.__track = YANGDynClass(base=track.track, is_container='container', presence=False, yang_name="track", rest_name="track", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface to be tracked', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) self.__nd_advertisement_timer = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..3600']}), is_leaf=True, yang_name="nd-advertisement-timer", rest_name="nd-advertisement-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) self.__advertisement_interval_scale = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..10']}), is_leaf=True, yang_name="advertisement-interval-scale", rest_name="advertisement-interval-scale", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Ipv6 session advertisement interval scale factor <1|2|5|10>'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) self.__vrid = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrid", rest_name="vrid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='vrid-type', is_config=True) self.__advertise_backup = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="advertise-backup", rest_name="advertise-backup", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable periodic backup advertisement messages'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) self.__short_path_forwarding = YANGDynClass(base=short_path_forwarding.short_path_forwarding, is_container='container', presence=False, yang_name="short-path-forwarding", rest_name="short-path-forwarding", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable backup router to send traffic', u'cli-compact-syntax': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) self.__priority = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..254']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set router priority within virtual router'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint8', is_config=True) self.__virtual_ip = YANGDynClass(base=YANGListType("virtual_ipaddr",virtual_ip.virtual_ip, yang_name="virtual-ip", rest_name="virtual-ip", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='virtual-ipaddr', extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}), is_container='list', yang_name="virtual-ip", rest_name="virtual-ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='list', is_config=True) self.__vrrpe_advertisement_interval = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrrpe-advertisement-interval", rest_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set advertisement interval', u'alt-name': u'advertisement-interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) self.__hold_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..3600']}), is_leaf=True, yang_name="hold-time", rest_name="hold-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure hold time for this session'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) self.__preempt_mode = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="preempt-mode", rest_name="preempt-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set preempt mode for the session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) self.__backup_advertisement_interval = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'60..3600']}), is_leaf=True, yang_name="backup-advertisement-interval", rest_name="backup-advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Backup advertisement interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'interface', u'port-channel', u'ipv6', u'hide-vrrpv3-holder', u'vrrpv3e'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'interface', u'Port-channel', u'ipv6', u'vrrp-extended-group'] def _get_vrid(self): """ Getter method for vrid, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/vrid (vrid-type) """ return self.__vrid def _set_vrid(self, v, load=False): """ Setter method for vrid, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/vrid (vrid-type) If this variable is read-only (config: false) in the source YANG file, then _set_vrid is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vrid() directly. """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrid", rest_name="vrid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='vrid-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """vrid must be of a type compatible with vrid-type""", 'defined-type': "brocade-vrrpv3:vrid-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrid", rest_name="vrid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='vrid-type', is_config=True)""", }) self.__vrid = t if hasattr(self, '_set'): self._set() def _unset_vrid(self): self.__vrid = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrid", rest_name="vrid", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='vrid-type', is_config=True) def _get_virtual_ip(self): """ Getter method for virtual_ip, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/virtual_ip (list) """ return self.__virtual_ip def _set_virtual_ip(self, v, load=False): """ Setter method for virtual_ip, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/virtual_ip (list) If this variable is read-only (config: false) in the source YANG file, then _set_virtual_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_virtual_ip() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("virtual_ipaddr",virtual_ip.virtual_ip, yang_name="virtual-ip", rest_name="virtual-ip", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='virtual-ipaddr', extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}), is_container='list', yang_name="virtual-ip", rest_name="virtual-ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """virtual_ip must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("virtual_ipaddr",virtual_ip.virtual_ip, yang_name="virtual-ip", rest_name="virtual-ip", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='virtual-ipaddr', extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}), is_container='list', yang_name="virtual-ip", rest_name="virtual-ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='list', is_config=True)""", }) self.__virtual_ip = t if hasattr(self, '_set'): self._set() def _unset_virtual_ip(self): self.__virtual_ip = YANGDynClass(base=YANGListType("virtual_ipaddr",virtual_ip.virtual_ip, yang_name="virtual-ip", rest_name="virtual-ip", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='virtual-ipaddr', extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}), is_container='list', yang_name="virtual-ip", rest_name="virtual-ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set virtual IPv6 address', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-full-no': None, u'cli-no-match-completion': None, u'callpoint': u'vrrpv3eVirtualIPPo'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='list', is_config=True) def _get_track(self): """ Getter method for track, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/track (container) YANG Description: Interface to be tracked """ return self.__track def _set_track(self, v, load=False): """ Setter method for track, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/track (container) If this variable is read-only (config: false) in the source YANG file, then _set_track is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_track() directly. YANG Description: Interface to be tracked """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=track.track, is_container='container', presence=False, yang_name="track", rest_name="track", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface to be tracked', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """track must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=track.track, is_container='container', presence=False, yang_name="track", rest_name="track", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface to be tracked', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True)""", }) self.__track = t if hasattr(self, '_set'): self._set() def _unset_track(self): self.__track = YANGDynClass(base=track.track, is_container='container', presence=False, yang_name="track", rest_name="track", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface to be tracked', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) def _get_enable(self): """ Getter method for enable, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/enable (empty) YANG Description: Enable Session """ return self.__enable def _set_enable(self, v, load=False): """ Setter method for enable, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/enable (empty) If this variable is read-only (config: false) in the source YANG file, then _set_enable is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_enable() directly. YANG Description: Enable Session """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable Session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """enable must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable Session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True)""", }) self.__enable = t if hasattr(self, '_set'): self._set() def _unset_enable(self): self.__enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable Session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) def _get_hold_time(self): """ Getter method for hold_time, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/hold_time (uint32) YANG Description: Configure hold time for this session """ return self.__hold_time def _set_hold_time(self, v, load=False): """ Setter method for hold_time, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/hold_time (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_hold_time is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hold_time() directly. YANG Description: Configure hold time for this session """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..3600']}), is_leaf=True, yang_name="hold-time", rest_name="hold-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure hold time for this session'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """hold_time must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..3600']}), is_leaf=True, yang_name="hold-time", rest_name="hold-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure hold time for this session'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True)""", }) self.__hold_time = t if hasattr(self, '_set'): self._set() def _unset_hold_time(self): self.__hold_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..3600']}), is_leaf=True, yang_name="hold-time", rest_name="hold-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure hold time for this session'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) def _get_preempt_mode(self): """ Getter method for preempt_mode, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/preempt_mode (empty) YANG Description: Set preempt mode for the session """ return self.__preempt_mode def _set_preempt_mode(self, v, load=False): """ Setter method for preempt_mode, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/preempt_mode (empty) If this variable is read-only (config: false) in the source YANG file, then _set_preempt_mode is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_preempt_mode() directly. YANG Description: Set preempt mode for the session """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="preempt-mode", rest_name="preempt-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set preempt mode for the session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """preempt_mode must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="preempt-mode", rest_name="preempt-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set preempt mode for the session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True)""", }) self.__preempt_mode = t if hasattr(self, '_set'): self._set() def _unset_preempt_mode(self): self.__preempt_mode = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="preempt-mode", rest_name="preempt-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set preempt mode for the session', u'cli-show-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) def _get_priority(self): """ Getter method for priority, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/priority (uint8) YANG Description: Set router priority within virtual router """ return self.__priority def _set_priority(self, v, load=False): """ Setter method for priority, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/priority (uint8) If this variable is read-only (config: false) in the source YANG file, then _set_priority is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_priority() directly. YANG Description: Set router priority within virtual router """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..254']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set router priority within virtual router'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint8', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """priority must be of a type compatible with uint8""", 'defined-type': "uint8", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..254']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set router priority within virtual router'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint8', is_config=True)""", }) self.__priority = t if hasattr(self, '_set'): self._set() def _unset_priority(self): self.__priority = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': [u'1..254']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set router priority within virtual router'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint8', is_config=True) def _get_description(self): """ Getter method for description, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/description (string) YANG Description: Interface specific description """ return self.__description def _set_description(self, v, load=False): """ Setter method for description, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/description (string) If this variable is read-only (config: false) in the source YANG file, then _set_description is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_description() directly. YANG Description: Interface specific description """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..64']}), is_leaf=True, yang_name="description", rest_name="description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface specific description', u'cli-multi-value': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """description must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..64']}), is_leaf=True, yang_name="description", rest_name="description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface specific description', u'cli-multi-value': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='string', is_config=True)""", }) self.__description = t if hasattr(self, '_set'): self._set() def _unset_description(self): self.__description = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'length': [u'1..64']}), is_leaf=True, yang_name="description", rest_name="description", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Interface specific description', u'cli-multi-value': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='string', is_config=True) def _get_advertise_backup(self): """ Getter method for advertise_backup, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/advertise_backup (empty) YANG Description: Enable periodic backup advertisement messages """ return self.__advertise_backup def _set_advertise_backup(self, v, load=False): """ Setter method for advertise_backup, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/advertise_backup (empty) If this variable is read-only (config: false) in the source YANG file, then _set_advertise_backup is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_advertise_backup() directly. YANG Description: Enable periodic backup advertisement messages """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="advertise-backup", rest_name="advertise-backup", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable periodic backup advertisement messages'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """advertise_backup must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="advertise-backup", rest_name="advertise-backup", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable periodic backup advertisement messages'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True)""", }) self.__advertise_backup = t if hasattr(self, '_set'): self._set() def _unset_advertise_backup(self): self.__advertise_backup = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="advertise-backup", rest_name="advertise-backup", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable periodic backup advertisement messages'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='empty', is_config=True) def _get_nd_advertisement_timer(self): """ Getter method for nd_advertisement_timer, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/nd_advertisement_timer (uint32) """ return self.__nd_advertisement_timer def _set_nd_advertisement_timer(self, v, load=False): """ Setter method for nd_advertisement_timer, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/nd_advertisement_timer (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_nd_advertisement_timer is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_nd_advertisement_timer() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..3600']}), is_leaf=True, yang_name="nd-advertisement-timer", rest_name="nd-advertisement-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """nd_advertisement_timer must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..3600']}), is_leaf=True, yang_name="nd-advertisement-timer", rest_name="nd-advertisement-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True)""", }) self.__nd_advertisement_timer = t if hasattr(self, '_set'): self._set() def _unset_nd_advertisement_timer(self): self.__nd_advertisement_timer = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..3600']}), is_leaf=True, yang_name="nd-advertisement-timer", rest_name="nd-advertisement-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) def _get_advertisement_interval_scale(self): """ Getter method for advertisement_interval_scale, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/advertisement_interval_scale (uint32) YANG Description: Ipv6 session advertisement interval scale factor <1|2|5|10> """ return self.__advertisement_interval_scale def _set_advertisement_interval_scale(self, v, load=False): """ Setter method for advertisement_interval_scale, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/advertisement_interval_scale (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_advertisement_interval_scale is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_advertisement_interval_scale() directly. YANG Description: Ipv6 session advertisement interval scale factor <1|2|5|10> """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..10']}), is_leaf=True, yang_name="advertisement-interval-scale", rest_name="advertisement-interval-scale", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Ipv6 session advertisement interval scale factor <1|2|5|10>'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """advertisement_interval_scale must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..10']}), is_leaf=True, yang_name="advertisement-interval-scale", rest_name="advertisement-interval-scale", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Ipv6 session advertisement interval scale factor <1|2|5|10>'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True)""", }) self.__advertisement_interval_scale = t if hasattr(self, '_set'): self._set() def _unset_advertisement_interval_scale(self): self.__advertisement_interval_scale = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..10']}), is_leaf=True, yang_name="advertisement-interval-scale", rest_name="advertisement-interval-scale", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Ipv6 session advertisement interval scale factor <1|2|5|10>'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) def _get_backup_advertisement_interval(self): """ Getter method for backup_advertisement_interval, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/backup_advertisement_interval (uint32) YANG Description: Set Backup advertisement interval """ return self.__backup_advertisement_interval def _set_backup_advertisement_interval(self, v, load=False): """ Setter method for backup_advertisement_interval, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/backup_advertisement_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_backup_advertisement_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_backup_advertisement_interval() directly. YANG Description: Set Backup advertisement interval """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'60..3600']}), is_leaf=True, yang_name="backup-advertisement-interval", rest_name="backup-advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Backup advertisement interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """backup_advertisement_interval must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'60..3600']}), is_leaf=True, yang_name="backup-advertisement-interval", rest_name="backup-advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Backup advertisement interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True)""", }) self.__backup_advertisement_interval = t if hasattr(self, '_set'): self._set() def _unset_backup_advertisement_interval(self): self.__backup_advertisement_interval = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'60..3600']}), is_leaf=True, yang_name="backup-advertisement-interval", rest_name="backup-advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Backup advertisement interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) def _get_vrrpe_advertisement_interval(self): """ Getter method for vrrpe_advertisement_interval, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/vrrpe_advertisement_interval (uint32) YANG Description: Set advertisement interval """ return self.__vrrpe_advertisement_interval def _set_vrrpe_advertisement_interval(self, v, load=False): """ Setter method for vrrpe_advertisement_interval, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/vrrpe_advertisement_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_vrrpe_advertisement_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vrrpe_advertisement_interval() directly. YANG Description: Set advertisement interval """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrrpe-advertisement-interval", rest_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set advertisement interval', u'alt-name': u'advertisement-interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """vrrpe_advertisement_interval must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrrpe-advertisement-interval", rest_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set advertisement interval', u'alt-name': u'advertisement-interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True)""", }) self.__vrrpe_advertisement_interval = t if hasattr(self, '_set'): self._set() def _unset_vrrpe_advertisement_interval(self): self.__vrrpe_advertisement_interval = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..255']}), is_leaf=True, yang_name="vrrpe-advertisement-interval", rest_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set advertisement interval', u'alt-name': u'advertisement-interval'}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='uint32', is_config=True) def _get_short_path_forwarding(self): """ Getter method for short_path_forwarding, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/short_path_forwarding (container) YANG Description: Enable backup router to send traffic """ return self.__short_path_forwarding def _set_short_path_forwarding(self, v, load=False): """ Setter method for short_path_forwarding, mapped from YANG variable /interface/port_channel/ipv6/hide_vrrpv3_holder/vrrpv3e/short_path_forwarding (container) If this variable is read-only (config: false) in the source YANG file, then _set_short_path_forwarding is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_short_path_forwarding() directly. YANG Description: Enable backup router to send traffic """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=short_path_forwarding.short_path_forwarding, is_container='container', presence=False, yang_name="short-path-forwarding", rest_name="short-path-forwarding", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable backup router to send traffic', u'cli-compact-syntax': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """short_path_forwarding must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=short_path_forwarding.short_path_forwarding, is_container='container', presence=False, yang_name="short-path-forwarding", rest_name="short-path-forwarding", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable backup router to send traffic', u'cli-compact-syntax': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True)""", }) self.__short_path_forwarding = t if hasattr(self, '_set'): self._set() def _unset_short_path_forwarding(self): self.__short_path_forwarding = YANGDynClass(base=short_path_forwarding.short_path_forwarding, is_container='container', presence=False, yang_name="short-path-forwarding", rest_name="short-path-forwarding", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable backup router to send traffic', u'cli-compact-syntax': None}}, namespace='urn:brocade.com:mgmt:brocade-vrrpv3', defining_module='brocade-vrrpv3', yang_type='container', is_config=True) vrid = __builtin__.property(_get_vrid, _set_vrid) virtual_ip = __builtin__.property(_get_virtual_ip, _set_virtual_ip) track = __builtin__.property(_get_track, _set_track) enable = __builtin__.property(_get_enable, _set_enable) hold_time = __builtin__.property(_get_hold_time, _set_hold_time) preempt_mode = __builtin__.property(_get_preempt_mode, _set_preempt_mode) priority = __builtin__.property(_get_priority, _set_priority) description = __builtin__.property(_get_description, _set_description) advertise_backup = __builtin__.property(_get_advertise_backup, _set_advertise_backup) nd_advertisement_timer = __builtin__.property(_get_nd_advertisement_timer, _set_nd_advertisement_timer) advertisement_interval_scale = __builtin__.property(_get_advertisement_interval_scale, _set_advertisement_interval_scale) backup_advertisement_interval = __builtin__.property(_get_backup_advertisement_interval, _set_backup_advertisement_interval) vrrpe_advertisement_interval = __builtin__.property(_get_vrrpe_advertisement_interval, _set_vrrpe_advertisement_interval) short_path_forwarding = __builtin__.property(_get_short_path_forwarding, _set_short_path_forwarding) _pyangbind_elements = {'vrid': vrid, 'virtual_ip': virtual_ip, 'track': track, 'enable': enable, 'hold_time': hold_time, 'preempt_mode': preempt_mode, 'priority': priority, 'description': description, 'advertise_backup': advertise_backup, 'nd_advertisement_timer': nd_advertisement_timer, 'advertisement_interval_scale': advertisement_interval_scale, 'backup_advertisement_interval': backup_advertisement_interval, 'vrrpe_advertisement_interval': vrrpe_advertisement_interval, 'short_path_forwarding': short_path_forwarding, }
6a4b9b33ccb4907b8e2d6194e8a505fcd0aaaeb0
523f8f5febbbfeb6d42183f2bbeebc36f98eadb5
/539.py
3f49db2b3056bb0ea18a9558663dea67f0a5b806
[]
no_license
saleed/LeetCode
655f82fdfcc3000400f49388e97fc0560f356af0
48b43999fb7e2ed82d922e1f64ac76f8fabe4baa
refs/heads/master
2022-06-15T21:54:56.223204
2022-05-09T14:05:50
2022-05-09T14:05:50
209,430,056
2
0
null
null
null
null
UTF-8
Python
false
false
580
py
class Solution(object): def findMinDifference(self, timePoints): """ :type timePoints: List[str] :rtype: int """ timePoints.sort() diff=float("inf") for i in range(1,len(timePoints)): time1=timePoints[i%len(timePoints)] time2=timePoints[(i-1)%len(timePoints)] hour1=int(time1[:2]) hour2=int(time2[:2]) minute1=int(time1[3:]) minute2=int(time2[3:]) diff=min(diff,((hour1-hour2)*60+minute1-minute2+(24*60))%(24*60)) return diff
4dd41f91081d4649e198f6707d9523f035a40245
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2021_12_01_preview/aio/operations/_access_review_instance_operations.py
378596af3f8ac6f043cf6a4178c98399aedc4ea8
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
15,208
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._access_review_instance_operations import ( build_accept_recommendations_request, build_apply_decisions_request, build_reset_decisions_request, build_send_reminders_request, build_stop_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AccessReviewInstanceOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.authorization.v2021_12_01_preview.aio.AuthorizationManagementClient`'s :attr:`access_review_instance` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def stop( # pylint: disable=inconsistent-return-statements self, schedule_definition_id: str, id: str, **kwargs: Any ) -> None: """An action to stop an access review instance. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_stop_request( schedule_definition_id=schedule_definition_id, id=id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.stop.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) stop.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/stop"} # type: ignore @distributed_trace_async async def reset_decisions( # pylint: disable=inconsistent-return-statements self, schedule_definition_id: str, id: str, **kwargs: Any ) -> None: """An action to reset all decisions for an access review instance. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_reset_decisions_request( schedule_definition_id=schedule_definition_id, id=id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.reset_decisions.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) reset_decisions.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/resetDecisions"} # type: ignore @distributed_trace_async async def apply_decisions( # pylint: disable=inconsistent-return-statements self, schedule_definition_id: str, id: str, **kwargs: Any ) -> None: """An action to apply all decisions for an access review instance. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_apply_decisions_request( schedule_definition_id=schedule_definition_id, id=id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.apply_decisions.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) apply_decisions.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/applyDecisions"} # type: ignore @distributed_trace_async async def send_reminders( # pylint: disable=inconsistent-return-statements self, schedule_definition_id: str, id: str, **kwargs: Any ) -> None: """An action to send reminders for an access review instance. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_send_reminders_request( schedule_definition_id=schedule_definition_id, id=id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.send_reminders.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) send_reminders.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/sendReminders"} # type: ignore @distributed_trace_async async def accept_recommendations( # pylint: disable=inconsistent-return-statements self, schedule_definition_id: str, id: str, **kwargs: Any ) -> None: """An action to accept recommendations for decision in an access review instance. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_accept_recommendations_request( schedule_definition_id=schedule_definition_id, id=id, api_version=api_version, template_url=self.accept_recommendations.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) accept_recommendations.metadata = {"url": "/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/acceptRecommendations"} # type: ignore
f6be5f348da2ecdc3c2f5549a9bb3406e3276280
5da5473ff3026165a47f98744bac82903cf008e0
/packages/google-cloud-securitycenter/google/cloud/securitycenter_v1/types/vulnerability.py
a9fea0e6bca2b8199f9e1f0237c0ce0083326912
[ "Apache-2.0" ]
permissive
googleapis/google-cloud-python
ed61a5f03a476ab6053870f4da7bc5534e25558b
93c4e63408c65129422f65217325f4e7d41f7edf
refs/heads/main
2023-09-04T09:09:07.852632
2023-08-31T22:49:26
2023-08-31T22:49:26
16,316,451
2,792
917
Apache-2.0
2023-09-14T21:45:18
2014-01-28T15:51:47
Python
UTF-8
Python
false
false
12,429
py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from typing import MutableMapping, MutableSequence import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.securitycenter.v1", manifest={ "Vulnerability", "Cve", "Reference", "Cvssv3", }, ) class Vulnerability(proto.Message): r"""Refers to common vulnerability fields e.g. cve, cvss, cwe etc. Attributes: cve (google.cloud.securitycenter_v1.types.Cve): CVE stands for Common Vulnerabilities and Exposures (https://cve.mitre.org/about/) """ cve: "Cve" = proto.Field( proto.MESSAGE, number=1, message="Cve", ) class Cve(proto.Message): r"""CVE stands for Common Vulnerabilities and Exposures. More information: https://cve.mitre.org Attributes: id (str): The unique identifier for the vulnerability. e.g. CVE-2021-34527 references (MutableSequence[google.cloud.securitycenter_v1.types.Reference]): Additional information about the CVE. e.g. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34527 cvssv3 (google.cloud.securitycenter_v1.types.Cvssv3): Describe Common Vulnerability Scoring System specified at https://www.first.org/cvss/v3.1/specification-document upstream_fix_available (bool): Whether upstream fix is available for the CVE. """ id: str = proto.Field( proto.STRING, number=1, ) references: MutableSequence["Reference"] = proto.RepeatedField( proto.MESSAGE, number=2, message="Reference", ) cvssv3: "Cvssv3" = proto.Field( proto.MESSAGE, number=3, message="Cvssv3", ) upstream_fix_available: bool = proto.Field( proto.BOOL, number=4, ) class Reference(proto.Message): r"""Additional Links Attributes: source (str): Source of the reference e.g. NVD uri (str): Uri for the mentioned source e.g. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34527. """ source: str = proto.Field( proto.STRING, number=1, ) uri: str = proto.Field( proto.STRING, number=2, ) class Cvssv3(proto.Message): r"""Common Vulnerability Scoring System version 3. Attributes: base_score (float): The base score is a function of the base metric scores. attack_vector (google.cloud.securitycenter_v1.types.Cvssv3.AttackVector): Base Metrics Represents the intrinsic characteristics of a vulnerability that are constant over time and across user environments. This metric reflects the context by which vulnerability exploitation is possible. attack_complexity (google.cloud.securitycenter_v1.types.Cvssv3.AttackComplexity): This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. privileges_required (google.cloud.securitycenter_v1.types.Cvssv3.PrivilegesRequired): This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. user_interaction (google.cloud.securitycenter_v1.types.Cvssv3.UserInteraction): This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. scope (google.cloud.securitycenter_v1.types.Cvssv3.Scope): The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. confidentiality_impact (google.cloud.securitycenter_v1.types.Cvssv3.Impact): This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. integrity_impact (google.cloud.securitycenter_v1.types.Cvssv3.Impact): This metric measures the impact to integrity of a successfully exploited vulnerability. availability_impact (google.cloud.securitycenter_v1.types.Cvssv3.Impact): This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. """ class AttackVector(proto.Enum): r"""This metric reflects the context by which vulnerability exploitation is possible. Values: ATTACK_VECTOR_UNSPECIFIED (0): Invalid value. ATTACK_VECTOR_NETWORK (1): The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. ATTACK_VECTOR_ADJACENT (2): The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. ATTACK_VECTOR_LOCAL (3): The vulnerable component is not bound to the network stack and the attacker's path is via read/write/execute capabilities. ATTACK_VECTOR_PHYSICAL (4): The attack requires the attacker to physically touch or manipulate the vulnerable component. """ ATTACK_VECTOR_UNSPECIFIED = 0 ATTACK_VECTOR_NETWORK = 1 ATTACK_VECTOR_ADJACENT = 2 ATTACK_VECTOR_LOCAL = 3 ATTACK_VECTOR_PHYSICAL = 4 class AttackComplexity(proto.Enum): r"""This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. Values: ATTACK_COMPLEXITY_UNSPECIFIED (0): Invalid value. ATTACK_COMPLEXITY_LOW (1): Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. ATTACK_COMPLEXITY_HIGH (2): A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. """ ATTACK_COMPLEXITY_UNSPECIFIED = 0 ATTACK_COMPLEXITY_LOW = 1 ATTACK_COMPLEXITY_HIGH = 2 class PrivilegesRequired(proto.Enum): r"""This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. Values: PRIVILEGES_REQUIRED_UNSPECIFIED (0): Invalid value. PRIVILEGES_REQUIRED_NONE (1): The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. PRIVILEGES_REQUIRED_LOW (2): The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. PRIVILEGES_REQUIRED_HIGH (3): The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable component allowing access to component-wide settings and files. """ PRIVILEGES_REQUIRED_UNSPECIFIED = 0 PRIVILEGES_REQUIRED_NONE = 1 PRIVILEGES_REQUIRED_LOW = 2 PRIVILEGES_REQUIRED_HIGH = 3 class UserInteraction(proto.Enum): r"""This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. Values: USER_INTERACTION_UNSPECIFIED (0): Invalid value. USER_INTERACTION_NONE (1): The vulnerable system can be exploited without interaction from any user. USER_INTERACTION_REQUIRED (2): Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. """ USER_INTERACTION_UNSPECIFIED = 0 USER_INTERACTION_NONE = 1 USER_INTERACTION_REQUIRED = 2 class Scope(proto.Enum): r"""The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Values: SCOPE_UNSPECIFIED (0): Invalid value. SCOPE_UNCHANGED (1): An exploited vulnerability can only affect resources managed by the same security authority. SCOPE_CHANGED (2): An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. """ SCOPE_UNSPECIFIED = 0 SCOPE_UNCHANGED = 1 SCOPE_CHANGED = 2 class Impact(proto.Enum): r"""The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Values: IMPACT_UNSPECIFIED (0): Invalid value. IMPACT_HIGH (1): High impact. IMPACT_LOW (2): Low impact. IMPACT_NONE (3): No impact. """ IMPACT_UNSPECIFIED = 0 IMPACT_HIGH = 1 IMPACT_LOW = 2 IMPACT_NONE = 3 base_score: float = proto.Field( proto.DOUBLE, number=1, ) attack_vector: AttackVector = proto.Field( proto.ENUM, number=5, enum=AttackVector, ) attack_complexity: AttackComplexity = proto.Field( proto.ENUM, number=6, enum=AttackComplexity, ) privileges_required: PrivilegesRequired = proto.Field( proto.ENUM, number=7, enum=PrivilegesRequired, ) user_interaction: UserInteraction = proto.Field( proto.ENUM, number=8, enum=UserInteraction, ) scope: Scope = proto.Field( proto.ENUM, number=9, enum=Scope, ) confidentiality_impact: Impact = proto.Field( proto.ENUM, number=10, enum=Impact, ) integrity_impact: Impact = proto.Field( proto.ENUM, number=11, enum=Impact, ) availability_impact: Impact = proto.Field( proto.ENUM, number=12, enum=Impact, ) __all__ = tuple(sorted(__protobuf__.manifest))
7cec84d82d2dcb14c1cbdaf99b64ffc73e1ae94e
11771f5dd90a74d5c76765f27f0d9a9cb044f57b
/route/bbs_make.py
2185cef4c1bdcfd50b641b610aa030eb0d012695
[ "BSD-3-Clause" ]
permissive
openNAMU/openNAMU
cc031ea848ac6d829ad243fcf59da26adf0f0814
868107e4ef53e4e78af15c590673b78ee385baa5
refs/heads/beta
2023-08-24T10:20:00.245680
2023-08-23T14:09:53
2023-08-23T14:09:53
78,184,261
86
75
BSD-3-Clause
2023-09-13T21:36:03
2017-01-06T07:22:10
Python
UTF-8
Python
false
false
2,024
py
from .tool.func import * def bbs_make(): with get_db_connect() as conn: curs = conn.cursor() if admin_check() != 1: return re_error('/error/3') if flask.request.method == 'POST': curs.execute(db_change('select set_id from bbs_set where set_name = "bbs_name" order by set_id + 0 desc')) db_data = curs.fetchall() bbs_num = str(int(db_data[0][0]) + 1) if db_data else '1' bbs_name = flask.request.form.get('bbs_name', 'test') bbs_type = flask.request.form.get('bbs_type', 'comment') bbs_type = bbs_type if bbs_type in ['comment', 'thread'] else 'comment' curs.execute(db_change("insert into bbs_set (set_name, set_code, set_id, set_data) values ('bbs_name', '', ?, ?)"), [bbs_num, bbs_name]) curs.execute(db_change("insert into bbs_set (set_name, set_code, set_id, set_data) values ('bbs_type', '', ?, ?)"), [bbs_num, bbs_type]) conn.commit() return redirect('/bbs/main') else: return easy_minify(flask.render_template(skin_check(), imp = [load_lang('bbs_make'), wiki_set(), wiki_custom(), wiki_css([0, 0])], data = ''' <form method="post"> <input placeholder="''' + load_lang('bbs_name') + '''" name="bbs_name"> <hr class="main_hr"> <select name="bbs_type"> <option value="comment">''' + load_lang('comment_base') + '''</option> <option value="thread">''' + load_lang('thread_base') + '''</option> </select> <hr class="main_hr"> <button type="submit">''' + load_lang('save') + '''</button> </form> ''', menu = [['bbs/main', load_lang('return')]] ))
376183f1fd02abc26c81e2af35be1774eebe4052
1eab574606dffb14a63195de994ee7c2355989b1
/ixnetwork_restpy/testplatform/sessions/ixnetwork/globals/topology/bfdrouter/bfdrouter.py
a4c8d026e8eb6e4b33d202bfd079514c11616f61
[ "MIT" ]
permissive
steiler/ixnetwork_restpy
56b3f08726301e9938aaea26f6dcd20ebf53c806
dd7ec0d311b74cefb1fe310d57b5c8a65d6d4ff9
refs/heads/master
2020-09-04T12:10:18.387184
2019-11-05T11:29:43
2019-11-05T11:29:43
219,728,796
0
0
null
2019-11-05T11:28:29
2019-11-05T11:28:26
null
UTF-8
Python
false
false
2,602
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class BfdRouter(Base): """Bfd Port Specific Data The BfdRouter class encapsulates a required bfdRouter resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'bfdRouter' def __init__(self, parent): super(BfdRouter, self).__init__(parent) @property def Count(self): """Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. Returns: number """ return self._get_attribute('count') @property def DescriptiveName(self): """Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offers more context Returns: str """ return self._get_attribute('descriptiveName') @property def Name(self): """Name of NGPF element, guaranteed to be unique in Scenario Returns: str """ return self._get_attribute('name') @Name.setter def Name(self, value): self._set_attribute('name', value) @property def RowNames(self): """Name of rows Returns: list(str) """ return self._get_attribute('rowNames') def update(self, Name=None): """Updates a child instance of bfdRouter on the server. Args: Name (str): Name of NGPF element, guaranteed to be unique in Scenario Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals())
6e5b281dfdbc8eb03b095b591ce654289d789360
e0c8e66af3a72a1cc534d7a90fead48754d266b3
/vb_suite/miscellaneous.py
8295d275f2dd615f626d02981203b406f233a1ea
[ "BSD-3-Clause" ]
permissive
gwtaylor/pandas
e12b0682347b9f03a24d6bff3e14f563cb7a3758
7b0349f0545011a6cac2422b8d8d0f409ffd1e15
refs/heads/master
2021-01-15T17:51:47.147334
2012-01-13T17:53:56
2012-01-13T17:53:56
3,174,111
1
1
null
null
null
null
UTF-8
Python
false
false
505
py
from vbench.benchmark import Benchmark from datetime import datetime common_setup = """from pandas_vb_common import * """ #---------------------------------------------------------------------- # cache_readonly setup = common_setup + """ from pandas.util.decorators import cache_readonly class Foo: @cache_readonly def prop(self): return 5 obj = Foo() """ misc_cache_readonly = Benchmark("obj.prop", setup, name="misc_cache_readonly", ncalls=2000000)
7bcff9fa804b622d48c7a6bb33873bdeede52060
b61dedf12868e2bc511b6693af1985911a13f336
/src/logpipe/formats/json.py
5747c863e36910b285e51dc63598357f2e147fee
[ "ISC" ]
permissive
vitorcarmovieira/django-logpipe
f9eebb6674b9ba180a63448c9d71ce2e87929f7c
89d0543e341518f9ae49124c354e6a6c2e3f4150
refs/heads/main
2023-03-03T13:18:22.456270
2021-02-13T17:29:32
2021-02-13T17:29:32
326,679,534
1
1
ISC
2021-02-13T17:29:32
2021-01-04T12:39:30
Python
UTF-8
Python
false
false
139
py
from rest_framework.renderers import JSONRenderer from rest_framework.parsers import JSONParser __all__ = ['JSONRenderer', 'JSONParser']
53cd30d03207556424257a7a49ed432f13b6260a
9aa7b52847a161507eae57c222f6f3b3473fbf67
/Project/Main/bin/pyhtmlizer
cb636c852d7d27ecd58cab7c59fd4e7b1fc7541b
[]
no_license
azatnt/Project_Aza_Madi
13a41bcc7bc822503136046dd5905a0884ffccb5
d2804cd2b1e9b97d44e85d6a24c45d3f41458db3
refs/heads/master
2023-01-22T18:17:17.512344
2020-11-16T15:56:00
2020-11-16T15:56:00
261,734,097
1
0
null
null
null
null
UTF-8
Python
false
false
276
#!/Users/sulpak/Documents/GitHub/Project_Aza_Madi/Project/Main/bin/python # -*- coding: utf-8 -*- import re import sys from twisted.scripts.htmlizer import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run())
f012952b29876b396eeff208f656b11ad3d1d3d2
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/agc025/C/2658196.py
38086edb4f9e8897ebee6bd4d4c545b41c0b5eb2
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
333
py
from itertools import accumulate N = int(input()) L, R = [0], [0] for i in range(N): li, ri = map(int, input().split()) L.append(li) R.append(ri) L.sort(reverse=True) R.sort() L = list(accumulate(L)) R = list(accumulate(R)) ans = 0 for k in range(N+1): ans = max(ans, 2*(L[k]-R[k])) print(ans)
3e14c52e46b70e5aca1d0f5a055cabdee1774a89
372da4f11ff2996f4c7e023884f12455fdfbb045
/RA4Analysis/plotsDaniel/makeSubPlot.py
0888769bf88a5d67e18425f2471031eadb7038fd
[]
no_license
HephyAnalysisSW/Workspace
ec127f75da58c1bbf12f8999055a1ef513598e94
dcdee36e344dec8cbfe6dd6986e2345d9c1af25f
refs/heads/94X-master
2022-11-22T01:52:28.179081
2019-03-12T13:19:04
2019-03-12T13:19:04
13,293,437
1
1
null
2018-11-14T10:52:57
2013-10-03T08:07:27
Python
UTF-8
Python
false
false
8,532
py
import ROOT import os, sys, copy ROOT.gROOT.LoadMacro('../../HEPHYPythonTools/scripts/root/tdrstyle.C') ROOT.setTDRStyle() from math import * from array import array from Workspace.HEPHYPythonTools.helpers import getVarValue, getChain, deltaPhi from Workspace.RA4Analysis.cmgTuplesPostProcessed_v6_Phys14V2_HT400ST150_withDF import * #from Workspace.RA4Analysis.cmgTuplesPostProcessed_v6_Phys14V2 import * from Workspace.RA4Analysis.helpers import * varstring='deltaPhi_Wl' binning=[16,0,3.2] lepSel = 'hard' nbtagCut=0 njetCut=2 nBtagReg=[0,1,2] nJetReg=[2,3,4,5,6] stReg=[(150,-1)]#250),(250,350),(350,450),(450,-1)] htReg=[(500,-1)]#750),(750,1000),(1000,1250),(1250,-1)] startpath = '/afs/hephy.at/user/d/dspitzbart/www/subBkgInclusive/' #Load the Background Chain c = getChain(ttJets[lepSel],histname='') #Sub Background Definitions ngNuEFromW = "Sum$(abs(genPart_pdgId)==12&&abs(genPart_motherId)==24)" ngNuMuFromW = "Sum$(abs(genPart_pdgId)==14&&abs(genPart_motherId)==24)" ngNuTauFromW = "Sum$(abs(genPart_pdgId)==16&&abs(genPart_motherId)==24)" lTau_H = ngNuEFromW+"+"+ngNuMuFromW+"==0&&"+ngNuTauFromW+"==1"\ +"&&Sum$(genTau_nNuE+genTau_nNuMu==1&&genTau_nNuTau==1)==1" hTau_l= "Sum$((abs(genPart_pdgId)==14||abs(genPart_pdgId)==12)&&abs(genPart_motherId)==24)==1"\ +"&&Sum$(abs(genPart_pdgId)==16&&abs(genPart_motherId)==24)==1"\ +"&&Sum$(genTau_nNuE+genTau_nNuMu==0&&genTau_nNuTau==1)==1" diLepEff = ngNuEFromW+"+"+ngNuMuFromW+"==2&&"+ngNuTauFromW+"==0&&Sum$(genLep_pt>10&&(abs(genLep_eta)<2.1&&abs(genLep_pdgId)==13||abs(genLep_eta)<2.4&&abs(genLep_pdgId)==11))==2" diLepAcc = ngNuEFromW+"+"+ngNuMuFromW+"==2&&"+ngNuTauFromW+"==0&&Sum$(genLep_pt>10&&(abs(genLep_eta)<2.1&&abs(genLep_pdgId)==13||abs(genLep_eta)<2.4&&abs(genLep_pdgId)==11))!=2" lTau_l = ngNuEFromW+"+"+ngNuMuFromW+"==1&&"+ngNuTauFromW+"==1&&Sum$(genTau_nNuE+genTau_nNuMu==1&&genTau_nNuTau==1)==1" diTau = ngNuEFromW+"+"+ngNuMuFromW+"==0&&"+ngNuTauFromW+"==2" l_H = ngNuEFromW+"+"+ngNuMuFromW+"==1&&"+ngNuTauFromW+"==0" diHad = ngNuEFromW+"+"+ngNuMuFromW+"==0&&"+ngNuTauFromW+"==0" hTau_H = ngNuEFromW+"+"+ngNuMuFromW+"==0&&"+ngNuTauFromW+"==1&&Sum$(genTau_nNuE+genTau_nNuMu==0&&genTau_nNuTau==1)==1" allHad = "(("+diHad+")||("+hTau_H+"))" #tot_lumi = 4000 #nevents = c.GetEntries() #weight = "("+str(tot_lumi)+"*xsec)/"+str(nevents) #print weight for i,bReg in enumerate(nBtagReg): if i < len(nBtagReg)-1: nbtagCutString='&&nBJetMediumCMVA30=='+str(bReg) nbtagPath='nBtagEq'+str(bReg)+'/' else: nbtagCutString='&&nBJetMediumCMVA30>='+str(bReg) nbtagPath='nBtagLEq'+str(bReg)+'/' for j, hReg in enumerate(htReg): if j < len(htReg)-1: htCutString='&&htJet30j>='+str(hReg[0])+'&&htJet30j<'+str(hReg[1]) htPath=str(hReg[0])+'htJet30j'+str(hReg[1])+'/' else: htCutString='&&htJet30j>='+str(hReg[0]) htPath='_'+str(hReg[0])+'htJet30j/' for k,sReg in enumerate(stReg): if k < len(stReg)-1: stCutString='&&st>='+str(sReg[0])+'&&st<'+str(sReg[1]) stPath=str(sReg[0])+'st'+str(sReg[1])+'/' else: stCutString='&&st>='+str(sReg[0]) stPath='_'+str(sReg[0])+'st/' for l,jReg in enumerate(nJetReg): if l < len(nJetReg)-1: njCutString='&&nJet30=='+str(jReg) njPath='nJet30Eq'+str(jReg)+'/' else: njCutString='&&nJet30>='+str(jReg) njPath='nJet30LEq'+str(jReg)+'/' path=startpath+nbtagPath+htPath+stPath+njPath if not os.path.exists(path): os.makedirs(path) prepresel = "singleLeptonic&&nLooseHardLeptons==1&&nTightHardLeptons==1&&nLooseSoftPt10Leptons==0&&Jet_pt[1]>80" presel = prepresel+nbtagCutString+htCutString+stCutString+njCutString#"htJet30j>=750&&htJet30j<=1000&&st>=450&&"+njetCutString+"&&"+nbtagCutString+'&&Jet_pt[1]>80' prefix= ''.join(presel.split('&&')[5:]).replace("&&","_").replace(">=","le_").replace("==","eq_") can1 = ROOT.TCanvas(varstring,varstring,1200,1000) h_Stack = ROOT.THStack('h_Stack',varstring) h_Stack_S = ROOT.THStack('h_Stack_S',varstring) l = ROOT.TLegend(0.7,0.7,0.95,0.95) l.SetFillColor(ROOT.kWhite) l.SetShadowColor(ROOT.kWhite) l.SetBorderSize(1) nothing='(1)' subBkg=[ ##[allHad, 'all hadronic', ROOT.kRed-7, 'all hadronic'], [diHad,'two had.', ROOT.kRed-9,'diHad'], [hTau_H,'W#rightarrow#tau#nu#rightarrow had.+2#nu | W#rightarrow had.', ROOT.kRed-7, 'hadTau'], [lTau_H,'W#rightarrow#tau#nu#rightarrow e/#mu+3#nu | W#rightarrow had.', ROOT.kBlue-2, 'lepTau_H'], [diTau,'two #tau leptons', ROOT.kGreen+3,'diTau'], [lTau_l,'W#rightarrow#tau#nu#rightarrow e/#mu+3#nu | W#rightarrow e/#mu+#nu', ROOT.kOrange+1,'lTau_l'], [diLepAcc,'dileptonic (e/#mu) Acc.',ROOT.kRed-3,'diLepAcc'], [diLepEff,'dileptonic (e/#mu) Eff.',ROOT.kRed-4,'diLepEff'], [hTau_l,'W#rightarrow#tau#nu#rightarrow had.+2#nu | W#rightarrow e/#mu+#nu', ROOT.kAzure+6,'hTau_l'], [l_H, 'single lep. (e/#mu)',ROOT.kCyan+3,'singleLep'] #[nothing,'tt Jets',ROOT.kBlue,'ttJets'] ] totalh=ROOT.TH1F('total','Total',*binning) c.Draw(varstring+'>>total','weight*('+presel+')') totalh.SetLineColor(ROOT.kBlue+3) totalh.SetLineWidth(2) totalh.SetMarkerSize(0) totalh.SetMarkerStyle(0) totalh.SetTitleSize(20) totalh.SetFillColor(0) l.AddEntry(totalh) for i, [cut,name,col,subname] in enumerate(subBkg): histo = 'h'+str(i) histoname = histo print histoname histo = ROOT.TH1F(str(histo) ,str(histo),*binning) print histo print col wholeCut=presel+'&&'+cut print wholeCut c.Draw(varstring+'>>'+str(histoname),'weight*('+wholeCut+')') histo.SetLineColor(ROOT.kBlack) histo.SetLineWidth(1) histo.SetMarkerSize(0) histo.SetMarkerStyle(0) histo.SetTitleSize(20) histo.GetXaxis().SetTitle(varstring) histo.GetYaxis().SetTitle("Events / "+str( (binning[2] - binning[1])/binning[0])) histo.GetXaxis().SetLabelSize(0.04) histo.GetYaxis().SetLabelSize(0.04) histo.GetYaxis().SetTitleOffset(0.8) histo.GetYaxis().SetTitleSize(0.05) histo.SetFillColor(col) histo.SetFillStyle(1001) histo.SetMinimum(.08) h_Stack.Add(histo) l.AddEntry(histo, name) #RCS Backup calculation twoBin=[0,1,pi] rcsh=ROOT.TH1F('rcsh','rcsh',len(twoBin)-1, array('d', twoBin)) c.Draw(varstring+'>>rcsh','weight*('+wholeCut+')','goff') rcsb=0 if rcsh.GetBinContent(1)>0 and rcsh.GetBinContent(2)>0: rcsb=rcsh.GetBinContent(2)/rcsh.GetBinContent(1) can2=ROOT.TCanvas('sub','sub',800,600) histo.Draw() latex2 = ROOT.TLatex() latex2.SetNDC() latex2.SetTextSize(0.035) latex2.SetTextAlign(11) # align right latex2.DrawLatex(0.7,0.96,str(rcsb)) latex2.DrawLatex(0.16,0.96,name) can2.SetGrid() can2.SetLogy() can2.Print(path+varstring+subname+'_'+prefix+'notauRej.png') can2.Print(path+varstring+subname+'_'+prefix+'notauRej.root') can1.cd() can1.SetGrid() h_Stack.Draw() totalh.Draw('same') h_Stack.SetMinimum(0.08) l.Draw() #Calculation of RCS value, works only for cut at dPhi=1 atm bins=1/(binning[2]/binning[0]) i=1+int(bins) rcs=0 rcsn=0 while i <= binning[0]: rcs=rcs+h_Stack.GetStack().Last().GetBinContent(i) i=i+1 i=1 while i<= int(bins): rcsn=rcsn+h_Stack.GetStack().Last().GetBinContent(i) i=i+1 if rcsn>0: rcs=rcs/rcsn else: rcs=float('nan') print rcs latex1 = ROOT.TLatex() latex1.SetNDC() latex1.SetTextSize(0.035) latex1.SetTextAlign(11) # align right latex1.DrawLatex(0.16,0.96,"Rcs="+str(rcs)) latex1.DrawLatex(0.72,0.96,"L=4 fb^{-1} (13TeV)") can1.SetLogy() can1.Print(path+varstring+'_'+prefix+'notauRej.png') can1.Print(path+varstring+'_'+prefix+'notauRej.root')
4265c5c776462df6a9e2ace5418932716eac8fc8
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/0/a_l.py
653cbd127ab6e82ce289684705f743c8316095a0
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'a_L': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
26571dafb7f2105ef31a78259155c44e4a01ad01
22dcd52b6a07e82e8db9bf8b7ad38711d12f69a8
/venv/Lib/site-packages/sklearn/neighbors/base.py
9be7b1ffc90f2c7d40252bf586916429df32fafb
[]
no_license
MrGreenPepper/music_cluster
9060d44db68ae5e085a4f2c78d36868645432d43
af5383a7b9c68d04c16c1086cac6d2d54c3e580c
refs/heads/main
2023-08-15T09:14:50.630105
2021-10-01T09:45:47
2021-10-01T09:45:47
412,407,002
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py import sys from . import _base from ..externals._pep562 import Pep562 from ..utils.deprecation import _raise_dep_warning_if_not_pytest deprecated_path = 'sklearn.neighbors.base' correct_import_path = 'sklearn.neighbors' _raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path) def __getattr__(name): return getattr(_base, name) if not sys.version_info >= (3, 7): Pep562(__name__)
eac8e55efa2b9ab7f320a562c98fa8c884b5e994
60ce73bf2f86940438e5b7fecaaccad086888dc5
/working_scrapers/Virginia_amherst.py
dd21db5c4557762ea61e5ec1f6730d25b2bd6a00
[]
no_license
matthewgomies/jailcrawl
22baf5f0e6dc66fec1b1b362c26c8cd2469dcb0d
9a9ca7e1328ae549860ebeea9b149a785f152f39
refs/heads/master
2023-02-16T06:39:42.107493
2021-01-15T16:37:57
2021-01-15T16:37:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,248
py
#!/usr/bin/python ''' This is an template script ''' from urllib.request import urlopen, Request import pandas as pd import os import time import numpy as np from datetime import datetime import datetime as dt import sys from io import StringIO from joblib import Parallel, delayed import requests from jailscrape.common import save_to_s3, get_browser, get_logger, record_error, save_pages_array from jailscrape import crawlers # jailscrape.common is a file that is part of the project which keeps # most common boilerplate code out of this file from selenium.webdriver.common.keys import Keys import watchtower from bs4 import BeautifulSoup import re import math # NOTE: These are imports. They ideally don't change very often. It's OK # to have a large, maximal set here and to bulk-edit files to add to # these. ROW_INDEX = 1015 # Change this for each scraper. This references the row # of the main jailcrawl spreadsheet. This index will be used to look up # the URL as well as state/county info THIS_STATE = 'virginia' # Change the current state/county information. THIS_COUNTY = 'amherst' def main(roster_row): try: logger = get_logger(roster_row) # Get a standard logger # Here are standard variable values/how to initialize them. # These aren't initialized here since in the save_single_page # case, they can be done in the called function #browser = get_browser() # Get a standard browser #urlAddress = roster_row['Working Link'] # Set the main URL from the spreadsheet #page_index = 0 # Set an initial value of "page_index", which we will use to separate output pages #logger.info('Set working link to _%s_', urlAddress) # Log the chosen URL ########## # Begin core specific scraping code if roster_row['State'].lower() != THIS_STATE or roster_row['County'].lower() != THIS_COUNTY: raise Exception("Expected county definition info from _%s, %s_, but found info: _%s_" % (THIS_COUNTY, THIS_STATE, roster_row)) #crawlers.save_single_page(roster_row) # try to call a known crawler if possible crawlers.basic_multipage(roster_row, next_type='text', next_string='>') # try to call a known crawler if possible ## Code to save a page and log appropriately #save_to_s3(store_source, page_index, roster_row) #logger.info('Saved page _%s_', page_index) # End core specific scraping code ########## #Close the browser logger.info('complete!') except Exception as errorMessage: try: browser.close() record_error(message=str(errorMessage), roster_row=roster_row, browser=browser) except: record_error(message=str(errorMessage), roster_row=roster_row) # Record error in S3 for a general error logger.error('Error: %s', errorMessage) # Log error sys.exit(1) if __name__ == "__main__": #This will load in the current jail roster list #Select the index of the roster this script is for: #Write the name of the county and state roster = pd.read_csv('/opt/jail_roster_final_rmDuplicates.csv',encoding = "utf-8") main(roster[roster['index'] == ROW_INDEX].iloc[0])
93431b4260ae9bcc50dc2babafb602fe5f3a56f8
f3598888ce889075d006de9559aa67499ca0d708
/Common/CenterToLeft.py
d1cf789f60c0bb67849262f0612c7c308bf8032d
[]
no_license
JinYanming/jym_cmot_semi_mask
6f1ceafa344d2831cdc91e1af0515b417b3939d6
be5fc9694f802ab0fb2eaeb11c7eca10ee0e72b3
refs/heads/master
2022-02-20T05:56:36.418283
2019-09-18T18:23:40
2019-09-18T18:23:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
722
py
# Generated with SMOP 0.41 from libsmop import * # /workspace/MOT/cmot-v1/Common/CenterToLeft.m @function def CenterToLeft(x=None,y=None,height=None,width=None,*args,**kwargs): varargin = CenterToLeft.varargin nargin = CenterToLeft.nargin ## Copyright (C) 2014 Seung-Hwan Bae ## All rights reserved. # (x,y): Center position h_height=height / 2 # /workspace/MOT/cmot-v1/Common/CenterToLeft.m:7 h_width=width / 2 # /workspace/MOT/cmot-v1/Common/CenterToLeft.m:8 L_x=x - round(h_width) # /workspace/MOT/cmot-v1/Common/CenterToLeft.m:10 L_y=y - round(h_height) # /workspace/MOT/cmot-v1/Common/CenterToLeft.m:11 return L_x,L_y if __name__ == '__main__': pass
fa8d5992af22569fce3cc34d5d811404061b7321
fa1002dd32e2332396d0b359094050825e42c343
/emotion-program-pi-version.py
0cea550ccba505b69dfebe8c3071874a0e5092a7
[]
no_license
vanstorm9/Emotion-Recognition-DOF
ced912158e45636b53469b3dc0645bb4c5ab69f8
0d6e395bf950388a37065cb9ccf1bba44171c35f
refs/heads/master
2021-01-10T02:14:11.917489
2018-05-26T04:17:40
2018-05-26T04:17:40
45,325,932
28
15
null
null
null
null
UTF-8
Python
false
false
12,001
py
# Program implemented in the Raspberry Pi (with camera module) #from matplotlib import pyplot as plt #from sklearn.naive_bayes import GaussianNB import numpy as np import math import cv2 import os import os.path import io from time import time import picamera import smtplib #camera = picamera.PiCamera() from time import sleep #import pyttsx # Libraries to preform machine learning import sys from sklearn.svm import SVC from sklearn.metrics import accuracy_score,accuracy_score, confusion_matrix from sklearn.decomposition import PCA, RandomizedPCA # from mpl_toolkits.mplot3d import Axes3D from sklearn.externals import joblib from sklearn import cross_validation from sklearn.linear_model import Ridge from sklearn.learning_curve import validation_curve, learning_curve from sklearn.externals import joblib def emotion_to_text(pred): smtpUser= "(ENTER YOUR EMAIL ADDRESS)" smtpPass= "(ENTER YOUR EMAIL ACCOUNT'S PASSWORD)" toAdd = "[email protected]" fromAdd = smtpUser if pred == "Neutral": subject = "How are you doing?" body = "Hey! Just checking in, I was just wondering how you are doing today. \n \n - Rapiro" elif pred == "Angry": subject = "Are you okay? You look mad" body = "I noticed that you are a bit red. Did something annoy or aggrivate you? /n -Rapiro" elif pred == "Shocked": subject = "Did something scare or surprised you?" body = "What's wrong, you look like you have seen a ghost. . . \n Rapiro" else: subject = "You seem happy today" body = "Hey there! I am very happy that you are happy ^_^ \n \n -Rapiro" header = "To: " + toAdd + "\n" + "From: " + fromAdd + "\n" + "Subject: " + subject #print header + "\n" + body s = smtplib.SMTP('smtp.gmail.com', 587) s.ehlo() s.starttls() s.ehlo() s.login(smtpUser, smtpPass) s.sendmail(fromAdd, toAdd, header + "\n" + body) s.quit() # Cannot use due to memory error def pca_calc(main): n_components = 90000 print '----------------------' print main.shape pca = RandomizedPCA(n_components=n_components, whiten=True).fit(main) main = pca.transform(main) print main.shape return main def motor_emotion_response(pred): if pred == 'Smiling': print 'Activating command. . .' os.system("./rapirocommands 6") sleep(5) os.system("./rapirocommands 0") print 'Command finished' elif pred == 'Neutral': print 'Activating neutral command. . .' os.system("./hellobash") sleep(5) os.system("./rapirocommands 5") sleep(5) os.system("./rapirocommands 0") print 'End command' elif pred == 'Angry': print 'Activating angry command. . .' os.system("./rapirocommands 4") sleep(2) os.system("./rapirocommands 0") print 'Command ended' elif pred == 'Shocked': print 'Activating shocked command' os.system("./rapiro-commands 2") sleep(2) os.system("./rapiro-commands 0") print 'Command ended' def draw_flow(im,flow,step=16): h,w = im.shape[:2] y,x = np.mgrid[step/2:h:step,step/2:w:step].reshape(2,-1) fx,fy = flow[y,x].T # create line endpoints lines = np.vstack([x,y,x+fx,y+fy]).T.reshape(-1,2,2) lines = np.int32(lines) # create image and draw vis = cv2.cvtColor(im,cv2.COLOR_GRAY2BGR) for (x1,y1),(x2,y2) in lines: cv2.line(vis,(x1,y1),(x2,y2),(0,255,0),1) cv2.circle(vis,(x1,y1),1,(0,255,0), -1) return vis def catch_first_frame(): ret, frame_f = capf.read() prev_gray = cv2.cvtColor(frame_f,cv2.COLOR_BGR2GRAY) prev_gray = cv2.resize(prev_gray, (0,0), fx=0.27, fy=0.27) face = face_classifier.detectMultiScale(prev_gray, 1.2, 4) if len(face) == 0: print 'No face was detected' print prev_gray.shape exit() else: print 'Face detected' for (x,y,w,h) in face: prev_gray = prev_gray[y: y+h, x: x+w] capf.release() return (x,y,w,h, prev_gray) def sensitive_override_check(prob_s, pred): if pred == 'Neutral': override_arr = [prob_s[0,3], prob_s[0,2], prob_s[0,0]] max_comp = max(override_arr) max_ind = [i for i, j in enumerate(override_arr) if j == max_comp][0] qualified_override = False if max_comp > 30: qualified_override = True if qualified_override: if max_ind == 0: pred = 'Smiling' elif max_ind == 1: pred = 'Shocked' else: pred = 'Angry' #print 'Sensitive Override triggered. . .' return pred def emotion_to_speech(pred): engine = pyttsx.init() rate = engine.getProperty('rate') engine.setProperty('rate', rate) if pred == 'Neutral': speech = 'Hello, you seem fine today' elif pred == 'Smiling': speech = 'You seem happy. I am very happy that you are happy!' elif pred == 'Shocked': speech = 'What is wrong? You look like you seen a ghost.' elif pred == 'Angry': speech = 'Why are you angry? Did something annoy or frustrate you?' print speech engine.say(speech) engine.runAndWait() motor_emotion_response("Smiling") slash = '/' folder_trans = np.array([]) target = np.array([]) label_trans = np.array([]) folder = '' choice = '' face_classifier = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml') #print 'Load datasets [l] from file or create a new one [n]' loading = 'l' if loading == 'l': #print 'Press [p] to predict test dataset, or else press any key' predict_start = 'n' else: predict_start = 'p' if loading=='l': # load dataset matrix from npy file t0 = time() t1 = time() if predict_start == 'p': print 'Loading the main matrix. . .' main = np.load('optical-main-mini.npy') diff = diff = time() - t1 print 'Loaded main matrix in ', diff, 's of size ', main.shape t2 = time() print 'Loading the target vector. . .' target = np.load('optical-target-mini.npy') diff = time() - t2 print 'Loaded target in ', diff, 's of size ', target.shape print 'Finished' total_time = time() - t0 print total_time, 's' t0 = time() if loading == 'l': print 'Now loading trained model. . .' model = joblib.load('Optical-Model-Mini/optical-model-mini.pkl') t1 = time() print 'Loading time: ', round(time()-t0, 3), 's' else: features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(main, target, test_size = 0.2) print 'Now training. . .' model = SVC(probability=True) ''' #model = SVC(kernel='poly') #model = GaussianNB() ''' model.fit(features_train, labels_train) print 'training time: ', round(time()-t0, 3), 's' print 'Saving model. . .' t1 = time() joblib.dump(model, 'Optical-Model-Mini/optical-model-mini.pkl') t3 = time() print 'model saving time: ', round(time()-t0, 3), 's' print 'Now predicting. . .' if predict_start == 'p': if loading == 'l': features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(main, target, test_size = 0.2) # Determine amount of time to train t1 = time() pred = model.predict(features_test) print 'predicting time: ', round(time()-t1, 3), 's' accuracy = accuracy_score(labels_test, pred) print 'Confusion Matrix: ' print confusion_matrix(labels_test, pred) # Accuracy in the 0.9333, 9.6667, 1.0 range print accuracy # --------------------------------- while True: # Test with another video while True: print 'Press [n] to go into normal mode or [s] to go into sensitive mode' sensitive_out = raw_input() if sensitive_out == 'n' or sensitive_out == 's': break # Manually setting x, y, w, h values in order make more consistant test # and training videos x = 63 y = 35 w = 64 h = 64 #prev_gray = frame_f.copy() #prev_gray = cv2.cvtColor(prev_gray, cv2.COLOR_BGR2GRAY) # Start video to record the user #cap to record user for 15 frames cap = cv2.VideoCapture(0) # Name of the video file path = 'test.h264' # Starting video fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(path,fourcc, 20.0, (640,480)) print 'Press any key to start recording' go = raw_input() # New recording feature for the Raspberry Pi with picamera.PiCamera() as camera: print 'Starting recording. . .' camera.vflip = True camera.start_recording(path) print 'Before sleep' sleep(5) print 'After sleep' print 'Stopping the camera from recording. . .' camera.stop_recording() print 'Finished recording' # To get a # Cap3 cap3 = cv2.VideoCapture(path) ret, prev_gray = cap3.read() prev_gray = cv2.cvtColor(prev_gray,cv2.COLOR_BGR2GRAY) prev_gray = cv2.resize(prev_gray, (0,0), fx=0.27, fy=0.27) prev_gray = prev_gray[y: y+h, x: x+w] cap3.release() #face = face_classifier.detectMultiScale(prev_gray, 1.2, 4) j = 0 # To analyze the recording and make an emotion prediction cap4 = cv2.VideoCapture(path) max_frame = 36 while True: print 'j: ', j ret, frame = cap4.read() if frame == None: print 'Frame failure, trying again. . .' cap4.release() cap4 = cv2.VideoCapture(path) continue if j > max_frame + 1: cap4.release() break frame = cv2.resize(frame, (0,0), fx=0.35, fy=0.35) frame = frame[y: y+h, x: x+w] #cv2.imshow('To test with', frame) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prev_gray,gray,None, 0.5, 3, 15, 3, 5, 1.2, 0) # Working with the flow matrix flow_mat = flow.flatten() if j == 1: sub_main = flow_mat elif j != 0: sub_main = np.concatenate((sub_main, flow_mat)) prev_gray = gray # To show us visually each video #cv2.imshow('Optical flow',draw_flow(gray,flow)) if cv2.waitKey(1) & 0xFF == ord('q'): break j = j + 1 cap4.release() #cv2.destroyAllWindows() print 'Now predicting. . .' ### Sliding window ### k_start = 0 k_end = 15 * flow_mat.shape[0] max_frame = 36 * flow_mat.shape[0] while k_end < max_frame: count = float(k_end/max_frame) count = np.around(count, decimals=2) print count, '%' model.predict(sub_main[k_start:k_end]) prob = model.predict_proba(sub_main[k_start:k_end]) prob_s = np.around(prob, decimals=5) prob_s = prob_s* 100 # Determine amount of time to predict t1 = time() pred = model.predict(sub_main[k_start:k_end]) if sensitive_out == 's': pred = sensitive_override_check(prob_s, pred) if pred != 'Neutral': break k_start = k_start + (7 * flow_mat.shape[0]) k_end = k_end + (7 * flow_mat.shape[0]) ###################### print 'predicting time: ', round(time()-t1, 3), 's' print '' print 'Prediction: ' print pred print 'Probability: ' print 'Neutral: ', prob_s[0,1] print 'Smiling: ', prob_s[0,3] print 'Shocked: ', prob_s[0,2] print 'Angry: ', prob_s[0,0] print 'Start hello 2' os.system("./hellobash") print 'End hello 2' emotion_to_text(pred) print 'Starting robot motion response' motor_emotion_response(pred) print 'Motion ended'
a2f9e589693f4eda5cea8869d53759b116acfc76
b0e299f6ab0139b831d0ed86cc6da0c3eb80b50d
/hello/public/deploy/chal.py
3cdcfdcec0ecf9a88f3f75665084382c0d2855d2
[]
no_license
kendricktan/paradigm-ctf
96768eb6a3ee76867b873e96e2f623796803361c
21ba8273f858d1af24d0abdb841bb019e8fa0965
refs/heads/main
2023-06-26T07:50:39.179665
2021-07-31T06:27:11
2021-07-31T06:27:11
387,947,845
5
0
null
null
null
null
UTF-8
Python
false
false
191
py
import eth_sandbox from web3 import Web3 eth_sandbox.run_launcher([ eth_sandbox.new_launch_instance_action(deploy_value=Web3.toWei(0, 'ether')), eth_sandbox.new_get_flag_action() ])
781ffa6094e1e065a1662ff414e97c2d8e72f5f6
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_clambake.py
a60e6c1d2e25f9b27e08fb830685e405c05f668b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
#calss header class _CLAMBAKE(): def __init__(self,): self.name = "CLAMBAKE" self.definitions = [u'an event in which seafood is cooked and eaten outside, usually near the sea'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
c9a9d2dda80846c0c2c7b067316cfabaf6aed24b
321b4ed83b6874eeb512027eaa0b17b0daf3c289
/1266/1266.minimum-time-visiting-all-points.289659185.Accepted.leetcode.python3.py
76eb95f002965918c8ee1bffff4858d8a5a97364
[]
no_license
huangyingw/submissions
7a610613bdb03f1223cdec5f6ccc4391149ca618
bfac1238ecef8b03e54842b852f6fec111abedfa
refs/heads/master
2023-07-25T09:56:46.814504
2023-07-16T07:38:36
2023-07-16T07:38:36
143,352,065
0
1
null
null
null
null
UTF-8
Python
false
false
277
py
class Solution(object): def minTimeToVisitAllPoints(self, points): x1, y1 = points[0] time = 0 for x2, y2 in points[1:]: dx, dy = abs(x1 - x2), abs(y1 - y2) time += max(dx, dy) x1, y1 = x2, y2 return time
f03251f2e2c93487fb9538d28c53e60da6493523
772f8f0a197b736cba22627485ccbdb65ed45e4b
/day09/mygui3.py
85903ce1a15afbb06fa75763d482edd7e38d2f79
[]
no_license
zhpg/python1805
ddc69cd1b3bda8bef1cb0c2913d456ea2c29a391
3d98c8ebc106fd0aab633a4c99ae6591013e4438
refs/heads/master
2020-03-26T11:26:59.378511
2018-08-05T09:25:21
2018-08-05T09:25:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
610
py
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import tkinter from functools import partial def say_hi(world): def welcome(): label.config(text='Hello %s' % world) return welcome root = tkinter.Tk() label = tkinter.Label(text='Hello world', font="15px") b1 = tkinter.Button(root, bg='red', fg='white', text='button1', comand=say_hi('sss')) MyButton = partial(tkinter.Button(root, bg='red', fg='white')) # 偏函数 b2 = MyButton(text='button2', command=say_hi('chine')) b3 = MyButton(text='quit', command=root.quit()) label.pack() # ? b1.pack() b2.pack() b3.pack() root.mainloop() # ?
62c0360071a15ade3e6a6b3f38a577416759847b
7160e632d88bf49492616f8152c91cb9f1d40d8d
/testcases/statistical_form2/test_case_166_statistical_form_alarm_detail.py
53c29adc336cc3d9a149c60941a9e7a5f1d2954e
[]
no_license
huangqiming123/tuqiangol_test1
ad5ddf22ce61b5b6daad55f684be5da160a64e59
75722812260590480320910c4ad6f6c1251a2def
refs/heads/master
2021-03-30T23:29:08.478494
2018-03-12T03:45:11
2018-03-12T03:45:11
124,832,890
1
0
null
null
null
null
UTF-8
Python
false
false
2,802
py
import unittest from time import sleep from automate_driver.automate_driver import AutomateDriver from pages.alarm_info.alarm_info_page import AlarmInfoPage from pages.base.base_page import BasePage from pages.base.lon_in_base import LogInBase from pages.statistical_form.statistical_form_page import StatisticalFormPage from pages.statistical_form.statistical_form_page_read_csv import StatisticalFormPageReadCsv class TestCase166StatisticalFormAlarmDetail(unittest.TestCase): def setUp(self): # 前置条件 # 实例化对象 self.driver = AutomateDriver() self.base_url = self.driver.base_url self.base_page = BasePage(self.driver, self.base_url) self.alarm_info_page = AlarmInfoPage(self.driver, self.base_url) self.statistical_form_page_read_csv = StatisticalFormPageReadCsv() self.log_in_base = LogInBase(self.driver, self.base_url) self.statistical_form_page = StatisticalFormPage(self.driver, self.base_url) # 打开页面,填写用户名、密码、点击登录 self.base_page.open_page() self.driver.set_window_max() self.driver.implicitly_wait(5) self.log_in_base.log_in_jimitest() # 登录之后点击控制台,然后点击指令管理 self.statistical_form_page.click_control_after_click_statistical_form_page() sleep(3) def tearDown(self): self.driver.quit_browser() def test_case_statistical_form_alarm_detail(self): # 断言url expect_url = self.base_url + '/deviceReport/statisticalReport' self.assertEqual(expect_url, self.alarm_info_page.actual_url_click_alarm()) # 点击告警详情 self.alarm_info_page.click_alarm_detail_list() for n in range(5): self.statistical_form_page.click_customer_in_alarm_detail_form(n) # 点击搜索设备按钮 self.statistical_form_page.click_search_dev_button_in_alarm_detail() # 获取有多少组 number = self.statistical_form_page.get_group_number_in_alarm_detail_form() if number == 0: pass else: for m in range(number): # 收起默认组 self.statistical_form_page.click_defalut_group_in_alarm_detail_form() # 获取每个组设备的数量 dev_number = self.statistical_form_page.get_dev_number_in_alarm_detail_form(m) # 点开每一个分组 self.statistical_form_page.click_per_group_in_alarm_detail_form(m) dev_number_list = self.statistical_form_page.get_dev_number_list_in_alarm_detail_form(m) self.assertEqual(str(dev_number_list), dev_number)
d8c6eb7e638620f0db30fcee4607c3f27da7d23c
501e9924cb19e95c32e2d168e73ea44e7c9c440c
/readfiles.py
9c0300bb83848b8231570bcef6216b1d447617f6
[]
no_license
Miguelmargar/file-io
cc2790b109187dbeec87788c662aaf52d8e96c02
f1c6f6ccfefbc572cac83a6ddc21ba2e902ac0c1
refs/heads/master
2020-03-17T17:23:49.493484
2018-05-21T12:22:23
2018-05-21T12:22:23
133,786,461
0
0
null
null
null
null
UTF-8
Python
false
false
1,607
py
#to read a file's data # ONE WAY ----------------------------------------- f = open("data.txt", "r") # opens file to read it with "r" lines = f.readlines() # stores the file info in lines variable therefore in memory f.close() # closes the file but it is still stored in memory print(lines) # OTHER WAY --------------------------------------- f = open("data.txt", "r") #opens file lines = f.read().split("\n") #stores file in varible but as it has .split it gives each line a list without the .split it would all be one string together f.close() #closes file but it is still stored in memory print(lines) # find most common word in a text file------------- import re # imports regular expresions from a python library which is native to python - another library would be "random" import collections text = open("1155-0.txt").read().lower() # opens the file in question .read() reads it and .lower() makes it all lower case and converts it into a string in a variable called text words = re.findall("\w+", text) # this line converts the string into a line - "\w+", text = finds all the words in text long_words = [] for word in words: # this loop takes the words that are bigger than 5 characters if len(word) > 5: long_words.append(word) most_common = collections.Counter(long_words).most_common(10) # this prints out the top 10 words from the list created by the loop above print(most_common)
73782f3ba66ecf7f99c21522cdbbf9118fadd0e6
32e2ba212d39e022bea40f12cdd6b3c138a62ac0
/mizani/tests/test_breaks.py
b1e61d60f512ce503f985284c50ce6a24b8c473b
[ "BSD-3-Clause" ]
permissive
vals/mizani
148dd985d25796c25346a3fac106c1c5c7f40d05
6b288fe6061e36add001cc5f8ffb147154e7ca62
refs/heads/master
2020-09-11T09:59:07.672839
2017-06-16T08:03:30
2017-06-16T08:03:30
94,454,967
1
0
null
2017-06-15T15:47:21
2017-06-15T15:47:21
null
UTF-8
Python
false
false
5,432
py
from __future__ import division from datetime import datetime, timedelta import pandas as pd import numpy as np import numpy.testing as npt import pytest from mizani.breaks import (mpl_breaks, log_breaks, minor_breaks, trans_minor_breaks, date_breaks, timedelta_breaks, extended_breaks) from mizani.transforms import trans def test_mpl_breaks(): x = np.arange(100) limits = min(x), max(x) for nbins in (5, 7, 10, 13, 31): breaks = mpl_breaks(nbins=nbins) assert len(breaks(limits)) <= nbins+1 limits = float('-inf'), float('inf') breaks = mpl_breaks(n=5) assert len(breaks(limits)) == 0 # Zero range discrete limits = [1, 1] assert len(breaks(limits)) == 1 assert breaks(limits)[0] == limits[1] # Zero range continuous limits = [np.pi, np.pi] assert len(breaks(limits)) == 1 assert breaks(limits)[0] == limits[1] def test_log_breaks(): x = [2, 20, 2000] limits = min(x), max(x) breaks = log_breaks()(limits) npt.assert_array_equal(breaks, [1, 10, 100, 1000, 10000]) breaks = log_breaks(3)(limits) npt.assert_array_equal(breaks, [1, 100, 10000]) breaks = log_breaks()((10000, 10000)) npt.assert_array_equal(breaks, [10000]) breaks = log_breaks()((float('-inf'), float('inf'))) assert len(breaks) == 0 def test_minor_breaks(): # equidistant breaks major = [1, 2, 3, 4] limits = [0, 5] breaks = minor_breaks()(major, limits) npt.assert_array_equal(breaks, [.5, 1.5, 2.5, 3.5, 4.5]) minor = minor_breaks(3)(major, [2, 3]) npt.assert_array_equal(minor, [2.25, 2.5, 2.75]) # non-equidistant breaks major = [1, 2, 4, 8] limits = [0, 10] minor = minor_breaks()(major, limits) npt.assert_array_equal(minor, [1.5, 3, 6]) # single major break minor = minor_breaks()([2], limits) assert len(minor) == 0 def test_trans_minor_breaks(): class identity_trans(trans): minor_breaks = trans_minor_breaks() class square_trans(trans): transform = staticmethod(np.square) inverse = staticmethod(np.sqrt) minor_breaks = trans_minor_breaks() class weird_trans(trans): dataspace_is_numerical = False minor_breaks = trans_minor_breaks() major = [1, 2, 3, 4] limits = [0, 5] regular_minors = trans.minor_breaks(major, limits) npt.assert_allclose( regular_minors, identity_trans.minor_breaks(major, limits)) # Transform the input major breaks and check against # the inverse of the output minor breaks squared_input_minors = square_trans.minor_breaks( np.square(major), np.square(limits)) npt.assert_allclose(regular_minors, np.sqrt(squared_input_minors)) t = weird_trans() with pytest.raises(TypeError): t.minor_breaks(major) def test_date_breaks(): # cpython x = [datetime(year, 1, 1) for year in [2010, 2026, 2015]] limits = min(x), max(x) breaks = date_breaks('5 Years') years = [d.year for d in breaks(limits)] npt.assert_array_equal( years, [2010, 2015, 2020, 2025, 2030]) breaks = date_breaks('10 Years') years = [d.year for d in breaks(limits)] npt.assert_array_equal(years, [2010, 2020, 2030]) # numpy x = [np.datetime64(i*10, 'D') for i in range(1, 10)] breaks = date_breaks('10 Years') limits = min(x), max(x) with pytest.raises(AttributeError): breaks(limits) # NaT limits = np.datetime64('NaT'), datetime(2017, 1, 1) breaks = date_breaks('10 Years') assert len(breaks(limits)) == 0 def test_timedelta_breaks(): breaks = timedelta_breaks() # cpython x = [timedelta(days=i*365) for i in range(25)] limits = min(x), max(x) major = breaks(limits) years = [val.total_seconds()/(365*24*60*60)for val in major] npt.assert_array_equal( years, [0, 5, 10, 15, 20, 25]) x = [timedelta(microseconds=i) for i in range(25)] limits = min(x), max(x) major = breaks(limits) mseconds = [val.total_seconds()*10**6 for val in major] npt.assert_array_equal( mseconds, [0, 5, 10, 15, 20, 25]) # pandas x = [pd.Timedelta(seconds=i*60) for i in range(10)] limits = min(x), max(x) major = breaks(limits) minutes = [val.total_seconds()/60 for val in major] npt.assert_allclose( minutes, [0, 2, 4, 6, 8]) # numpy x = [np.timedelta64(i*10, unit='D') for i in range(1, 10)] limits = min(x), max(x) with pytest.raises(ValueError): breaks(limits) # NaT limits = pd.NaT, pd.Timedelta(seconds=9*60) assert len(breaks(limits)) == 0 def test_extended_breaks(): x = np.arange(100) limits = min(x), max(x) for n in (5, 7, 10, 13, 31): breaks = extended_breaks(n=n) assert len(breaks(limits)) <= n+1 # Reverse limits breaks = extended_breaks(n=7) npt.assert_array_equal(breaks((0, 6)), breaks((6, 0))) # Infinite limits limits = float('-inf'), float('inf') breaks = extended_breaks(n=5) assert len(breaks(limits)) == 0 # Zero range discrete limits = [1, 1] assert len(breaks(limits)) == 1 assert breaks(limits)[0] == limits[1] # Zero range continuous limits = [np.pi, np.pi] assert len(breaks(limits)) == 1 assert breaks(limits)[0] == limits[1]
9361aa700700b980f8e9441d56dee3d2730b8b05
8c09764a1258696c51ef9ef9c1c3bdc1b931b00d
/pylons__shootout/shootout/tests/test_views.py
a2226095f946dd0ef87a8ab37d4b07a6f4f23cf8
[]
no_license
mindreframer/python-pyramid-stuff
2178c4922adca15b7905bb0916c8f035ca495564
4b9034bdde63ac8dd799ae2050506edd164a96b7
refs/heads/master
2021-01-18T16:09:52.835796
2013-04-09T20:09:44
2013-04-09T20:09:44
9,325,528
2
0
null
null
null
null
UTF-8
Python
false
false
14,887
py
import unittest from pyramid import testing def init_db(): from shootout.models import DBSession from shootout.models import Base from sqlalchemy import create_engine engine = create_engine('sqlite://') DBSession.configure(bind=engine) Base.metadata.bind = engine Base.metadata.create_all(engine) session = DBSession() return session def register_templates(config): config.testing_add_renderer('templates/login.pt') config.testing_add_renderer('templates/toolbar.pt') config.testing_add_renderer('templates/cloud.pt') config.testing_add_renderer('templates/latest.pt') class ViewTests(unittest.TestCase): def setUp(self): self.session = init_db() self.config = testing.setUp() def tearDown(self): import transaction from shootout.models import DBSession transaction.abort() DBSession.remove() testing.tearDown() def _addUser(self, username=u'username'): from shootout.models import User user = User(username=username, password=u'password', name=u'name', email=u'email') self.session.add(user) self.session.flush() return user def _addIdea(self, target=None, user=None): from shootout.models import Idea if not user: user = self._addUser() idea = Idea(target=target, author=user, title=u'title', text=u'text') self.session.add(idea) self.session.flush() return idea def test_main_view(self): from shootout.views import main_view self.config.testing_securitypolicy(u'username') self.config.include(register_templates) request = testing.DummyRequest() result = main_view(request) self.assertEqual(result['username'], u'username') self.assertEqual(len(result['toplists']), 4) def test_idea_add_nosubmit_idea(self): from shootout.views import idea_add self.config.testing_securitypolicy(u'username') self.config.include(register_templates) request = testing.DummyRequest() result = idea_add(request) self.assertEqual(result['target'], None) self.assertEqual(result['kind'], 'idea') def test_idea_add_nosubmit_comment(self): from shootout.views import idea_add self.config.testing_securitypolicy(u'username') self.config.include(register_templates) idea = self._addIdea() request = testing.DummyRequest(params={'target': idea.idea_id}) result = idea_add(request) self.assertEqual(result['target'], idea) self.assertEqual(result['kind'], 'comment') def test_idea_add_not_existing_target(self): from shootout.views import idea_add self.config.testing_securitypolicy(u'username') self.config.include(register_templates) request = testing.DummyRequest(params={'target': 100}) result = idea_add(request) self.assertEqual(result.code, 404) def test_idea_add_submit_schema_fail_empty_params(self): from shootout.views import idea_add self.config.testing_securitypolicy(u'username') self.config.include(register_templates) self.config.include('shootout.addroutes') request = testing.DummyRequest(post={'form.submitted': 'Shoot'}) result = idea_add(request) self.assertEqual( result['form'].form.errors, { 'text': u'Missing value', 'tags': u'Missing value', 'title': u'Missing value' } ) def test_idea_add_submit_schema_succeed(self): from shootout.views import idea_add from shootout.models import Idea self.config.testing_securitypolicy(u'username') self.config.include('shootout.addroutes') request = testing.DummyRequest( post={ 'form.submitted': u'Shoot', 'tags': u'abc def, bar', 'text': u'My idea is cool', 'title': u'My idea', } ) user = self._addUser(u'username') result = idea_add(request) self.assertEqual(result.location, 'http://example.com/ideas/1') ideas = self.session.query(Idea).all() self.assertEqual(len(ideas), 1) idea = ideas[0] self.assertEqual(idea.idea_id, 1) self.assertEqual(idea.text, u'My idea is cool') self.assertEqual(idea.title, u'My idea') self.assertEqual(idea.author, user) self.assertEqual(len(idea.tags), 3) self.assertEqual(idea.tags[0].name, u'abc') self.assertEqual(idea.tags[1].name, u'bar') self.assertEqual(idea.tags[2].name, u'def') def test_comment_add_submit_schema_succeed(self): from shootout.views import idea_add from shootout.models import Idea idea = self._addIdea() self.config.testing_securitypolicy(u'commentator') self.config.include('shootout.addroutes') request = testing.DummyRequest( params={ 'form.submitted': u'Shoot', 'tags': u'abc def, bar', 'text': u'My comment is cool', 'title': u'My comment', 'target': unicode(idea.idea_id), } ) request.method = 'POST' user = self._addUser(u'commentator') result = idea_add(request) self.assertEqual(result.location, 'http://example.com/ideas/2') ideas = self.session.query(Idea).all() self.assertEqual(len(ideas), 2) comment = ideas[1] self.assertEqual(comment.idea_id, 2) self.assertEqual(comment.target_id, 1) self.assertEqual(comment.text, u'My comment is cool') self.assertEqual(comment.title, u'My comment') self.assertEqual(comment.author, user) self.assertEqual(len(comment.tags), 3) self.assertEqual(comment.tags[0].name, u'abc') self.assertEqual(comment.tags[1].name, u'bar') self.assertEqual(comment.tags[2].name, u'def') def test_vote_on_own_idea(self): from shootout.views import idea_vote from shootout.models import User self.config.include('shootout.addroutes') idea = self._addIdea() self.session.query(User).one() self.assertEqual(idea.user_voted(u'username'), False) self.config.testing_securitypolicy(u'username') post_data = { 'form.vote_hit': u'Hit', 'target': 1, } request = testing.DummyRequest(post=post_data) idea_vote(request) self.assertEqual(idea.hits, 0) self.assertEqual(idea.misses, 0) self.assertEqual(idea.hit_percentage, 0) self.assertEqual(idea.total_votes, 0) self.assertEqual(idea.vote_differential, 0) self.assertEqual(idea.author.hits, 0) self.assertEqual(len(idea.voted_users.all()), 0) self.assertEqual(idea.user_voted(u'username'), False) def test_positive_idea_voting(self): from shootout.views import idea_vote self.config.include('shootout.addroutes') user = self._addUser() idea = self._addIdea(user=user) voter = self._addUser(u'votername') self.assertEqual(idea.user_voted(u'votername'), False) self.config.testing_securitypolicy(u'votername') post_data = { 'form.vote_hit': u'Hit', 'target': 1, } request = testing.DummyRequest(post=post_data) idea_vote(request) self.assertEqual(idea.hits, 1) self.assertEqual(idea.misses, 0) self.assertEqual(idea.hit_percentage, 100) self.assertEqual(idea.total_votes, 1) self.assertEqual(idea.vote_differential, 1) self.assertEqual(idea.author.hits, 1) self.assertEqual(len(idea.voted_users.all()), 1) self.assertEqual(idea.voted_users.one(), voter) self.assertTrue(idea.user_voted(u'votername')) def test_negative_idea_voting(self): from shootout.views import idea_vote self.config.include('shootout.addroutes') user = self._addUser() idea = self._addIdea(user=user) voter = self._addUser(u'votername') self.assertEqual(idea.user_voted(u'votername'), False) self.config.testing_securitypolicy(u'votername') post_data = { 'form.vote_miss': u'Miss', 'target': 1, } request = testing.DummyRequest(post=post_data) idea_vote(request) self.assertEqual(idea.hits, 0) self.assertEqual(idea.misses, 1) self.assertEqual(idea.hit_percentage, 0) self.assertEqual(idea.total_votes, 1) self.assertEqual(idea.vote_differential, -1) self.assertEqual(idea.author.hits, 0) self.assertEqual(len(idea.voted_users.all()), 1) self.assertEqual(idea.voted_users.one(), voter) self.assertTrue(idea.user_voted(u'votername')) def test_registration_nosubmit(self): from shootout.views import user_add self.config.include(register_templates) request = testing.DummyRequest() result = user_add(request) self.assertTrue('form' in result) def test_registration_submit_empty(self): from shootout.views import user_add self.config.include(register_templates) request = testing.DummyRequest() result = user_add(request) self.assertTrue('form' in result) request = testing.DummyRequest(post={'form.submitted': 'Shoot'}) result = user_add(request) self.assertEqual( result['form'].form.errors, { 'username': u'Missing value', 'confirm_password': u'Missing value', 'password': u'Missing value', 'email': u'Missing value', 'name': u'Missing value' } ) def test_registration_submit_schema_succeed(self): from shootout.views import user_add from shootout.models import User self.config.include('shootout.addroutes') request = testing.DummyRequest( post={ 'form.submitted': u'Register', 'username': u'username', 'password': u'secret', 'confirm_password': u'secret', 'email': u'[email protected]', 'name': u'John Doe', } ) user_add(request) users = self.session.query(User).all() self.assertEqual(len(users), 1) user = users[0] self.assertEqual(user.username, u'username') self.assertEqual(user.name, u'John Doe') self.assertEqual(user.email, u'[email protected]') self.assertEqual(user.hits, 0) self.assertEqual(user.misses, 0) self.assertEqual(user.delivered_hits, 0) self.assertEqual(user.delivered_misses, 0) self.assertEqual(user.ideas, []) self.assertEqual(user.voted_ideas, []) def test_user_view(self): from shootout.views import user_view self.config.testing_securitypolicy(u'username') self.config.include('shootout.addroutes') self.config.include(register_templates) request = testing.DummyRequest() request.matchdict = {'username': u'username'} self._addUser() result = user_view(request) self.assertEqual(result['user'].username, u'username') self.assertEqual(result['user'].user_id, 1) def test_idea_view(self): from shootout.views import idea_view self.config.testing_securitypolicy(u'username') self.config.include('shootout.addroutes') self.config.include(register_templates) self._addIdea() request = testing.DummyRequest() request.matchdict = {'idea_id': 1} result = idea_view(request) self.assertEqual(result['idea'].title, u'title') self.assertEqual(result['idea'].idea_id, 1) self.assertEqual(result['viewer_username'], u'username') def test_tag_view(self): from shootout.views import tag_view from shootout.models import Tag self.config.testing_securitypolicy(u'username') self.config.include('shootout.addroutes') self.config.include(register_templates) user = self._addUser() tag1 = Tag(u'bar') tag2 = Tag(u'foo') self.session.add_all([tag1, tag2]) idea1 = self._addIdea(user=user) idea1.tags.append(tag1) idea2 = self._addIdea(user=user) idea2.tags.append(tag1) idea3 = self._addIdea(user=user) idea3.tags.append(tag2) self.session.flush() request = testing.DummyRequest() request.matchdict = {'tag_name': u'bar'} result = tag_view(request) ideas = result['ideas'].all() self.assertEqual(ideas[0].idea_id, idea1.idea_id) self.assertEqual(ideas[1].idea_id, idea2.idea_id) self.assertEqual(result['tag'], u'bar') request = testing.DummyRequest() request.matchdict = {'tag_name': u'foo'} result = tag_view(request) self.assertEqual(result['ideas'].one().idea_id, idea3.idea_id) self.assertEqual(result['tag'], u'foo') def test_about_view(self): from shootout.views import about_view self.config.include(register_templates) request = testing.DummyRequest() about_view(request) def test_login_view_submit_fail(self): from shootout.views import login_view self.config.include('shootout.addroutes') self._addUser() request = testing.DummyRequest( post={ 'submit': u'Login', 'login': u'username', 'password': u'wrongpassword', } ) login_view(request) messages = request.session.peek_flash() self.assertEqual(messages, [u'Failed to login.']) def test_login_view_submit_success(self): from shootout.views import login_view self.config.include('shootout.addroutes') self._addUser() request = testing.DummyRequest( post={ 'submit': u'Login', 'login': u'username', 'password': u'password', } ) login_view(request) messages = request.session.peek_flash() self.assertEqual(messages, [u'Logged in successfully.']) def test_logout_view(self): from shootout.views import logout_view self.config.include('shootout.addroutes') request = testing.DummyRequest() logout_view(request) messages = request.session.peek_flash() self.assertEqual(messages, [u'Logged out successfully.'])
09c5c0f500049f682537e17e758566cd5a346d59
bc01e1d158e7d8f28451a7e108afb8ec4cb7d5d4
/sage/src/sage/combinat/species/functorial_composition_species.py
6c84368ba4dfa192538a5c7946a0850b4b801bd3
[]
no_license
bopopescu/geosci
28792bda1ec1f06e23ba8dcb313769b98f793dad
0d9eacbf74e2acffefde93e39f8bcbec745cdaba
refs/heads/master
2021-09-22T17:47:20.194233
2018-09-12T22:19:36
2018-09-12T22:19:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,158
py
""" Functorial composition species """ from __future__ import absolute_import #***************************************************************************** # Copyright (C) 2008 Mike Hansen <[email protected]>, # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** from .species import GenericCombinatorialSpecies from .structure import GenericSpeciesStructure from sage.misc.cachefunc import cached_function from sage.structure.unique_representation import UniqueRepresentation class FunctorialCompositionStructure(GenericSpeciesStructure): pass class FunctorialCompositionSpecies(GenericCombinatorialSpecies): def __init__(self, F, G, min=None, max=None, weight=None): """ Returns the functorial composition of two species. EXAMPLES:: sage: E = species.SetSpecies() sage: E2 = species.SetSpecies(size=2) sage: WP = species.SubsetSpecies() sage: P2 = E2*E sage: G = WP.functorial_composition(P2) sage: G.isotype_generating_series().coefficients(5) [1, 1, 2, 4, 11] sage: G = species.SimpleGraphSpecies() sage: c = G.generating_series().coefficients(2) sage: type(G) <class 'sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies'> sage: G == loads(dumps(G)) True sage: G._check() #False due to isomorphism types not being implemented False """ self._F = F self._G = G self._state_info = [F, G] self._name = "Functorial composition of (%s) and (%s)"%(F, G) GenericCombinatorialSpecies.__init__(self, min=None, max=None, weight=None) _default_structure_class = FunctorialCompositionStructure def _structures(self, structure_class, s): """ EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.structures([1,2,3]).list() [{}, {{1, 2}*{3}}, {{1, 3}*{2}}, {{2, 3}*{1}}, {{1, 2}*{3}, {1, 3}*{2}}, {{1, 2}*{3}, {2, 3}*{1}}, {{1, 3}*{2}, {2, 3}*{1}}, {{1, 2}*{3}, {1, 3}*{2}, {2, 3}*{1}}] """ gs = self._G.structures(s).list() for f in self._F.structures(gs): yield f def _isotypes(self, structure_class, s): """ There is no known algorithm for efficiently generating the isomorphism types of the functorial composition of two species. EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.isotypes([1,2,3]).list() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def _gs(self, series_ring, base_ring): """ EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.generating_series().coefficients(5) [1, 1, 1, 4/3, 8/3] """ return self._F.generating_series(base_ring).functorial_composition(self._G.generating_series(base_ring)) def _itgs(self, series_ring, base_ring): """ EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.isotype_generating_series().coefficients(5) [1, 1, 2, 4, 11] """ return self.cycle_index_series(base_ring).isotype_generating_series() def _cis(self, series_ring, base_ring): """ EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.cycle_index_series().coefficients(5) [p[], p[1], p[1, 1] + p[2], 4/3*p[1, 1, 1] + 2*p[2, 1] + 2/3*p[3], 8/3*p[1, 1, 1, 1] + 4*p[2, 1, 1] + 2*p[2, 2] + 4/3*p[3, 1] + p[4]] """ return self._F.cycle_index_series(base_ring).functorial_composition(self._G.cycle_index_series(base_ring)) def weight_ring(self): """ Returns the weight ring for this species. This is determined by asking Sage's coercion model what the result is when you multiply (and add) elements of the weight rings for each of the operands. EXAMPLES:: sage: G = species.SimpleGraphSpecies() sage: G.weight_ring() Rational Field """ from sage.structure.element import get_coercion_model cm = get_coercion_model() f_weights = self._F.weight_ring() g_weights = self._G.weight_ring() return cm.explain(f_weights, g_weights, verbosity=0) #Backward compatibility FunctorialCompositionSpecies_class = FunctorialCompositionSpecies
[ "valber@HPC" ]
valber@HPC
042cbf52143196b868afdd9abf034bc2a4ed1dd5
a3a3183bc3ae9d3d4bad2f4923e8297bce0ff7d3
/final/Python-3.10.0/Lib/ensurepip/__init__.py
f28ab11ed400828f39a629a46d2708f9de616bad
[]
no_license
Nuitka/Nuitka-references
4b78831e6947f1c4b32ef034435a88ecfd27f701
f20d1b5728ec00cf8a5b23d650101c288b2594e9
refs/heads/main
2023-08-06T19:12:11.795836
2023-08-03T14:54:16
2023-08-03T14:55:22
169,884,560
2
1
null
null
null
null
UTF-8
Python
false
false
9,487
py
import collections import os import os.path import subprocess import sys import sysconfig import tempfile from importlib import resources __all__ = ["version", "bootstrap"] _PACKAGE_NAMES = ('setuptools', 'pip') _SETUPTOOLS_VERSION = "57.4.0" _PIP_VERSION = "21.2.3" _PROJECTS = [ ("setuptools", _SETUPTOOLS_VERSION, "py3"), ("pip", _PIP_VERSION, "py3"), ] # Packages bundled in ensurepip._bundled have wheel_name set. # Packages from WHEEL_PKG_DIR have wheel_path set. _Package = collections.namedtuple('Package', ('version', 'wheel_name', 'wheel_path')) # Directory of system wheel packages. Some Linux distribution packaging # policies recommend against bundling dependencies. For example, Fedora # installs wheel packages in the /usr/share/python-wheels/ directory and don't # install the ensurepip._bundled package. _WHEEL_PKG_DIR = sysconfig.get_config_var('WHEEL_PKG_DIR') def _find_packages(path): packages = {} try: filenames = os.listdir(path) except OSError: # Ignore: path doesn't exist or permission error filenames = () # Make the code deterministic if a directory contains multiple wheel files # of the same package, but don't attempt to implement correct version # comparison since this case should not happen. filenames = sorted(filenames) for filename in filenames: # filename is like 'pip-20.2.3-py2.py3-none-any.whl' if not filename.endswith(".whl"): continue for name in _PACKAGE_NAMES: prefix = name + '-' if filename.startswith(prefix): break else: continue # Extract '20.2.2' from 'pip-20.2.2-py2.py3-none-any.whl' version = filename.removeprefix(prefix).partition('-')[0] wheel_path = os.path.join(path, filename) packages[name] = _Package(version, None, wheel_path) return packages def _get_packages(): global _PACKAGES, _WHEEL_PKG_DIR if _PACKAGES is not None: return _PACKAGES packages = {} for name, version, py_tag in _PROJECTS: wheel_name = f"{name}-{version}-{py_tag}-none-any.whl" packages[name] = _Package(version, wheel_name, None) if _WHEEL_PKG_DIR: dir_packages = _find_packages(_WHEEL_PKG_DIR) # only used the wheel package directory if all packages are found there if all(name in dir_packages for name in _PACKAGE_NAMES): packages = dir_packages _PACKAGES = packages return packages _PACKAGES = None def _run_pip(args, additional_paths=None): # Run the bootstraping in a subprocess to avoid leaking any state that happens # after pip has executed. Particulary, this avoids the case when pip holds onto # the files in *additional_paths*, preventing us to remove them at the end of the # invocation. code = f""" import runpy import sys sys.path = {additional_paths or []} + sys.path sys.argv[1:] = {args} runpy.run_module("pip", run_name="__main__", alter_sys=True) """ return subprocess.run([sys.executable, '-W', 'ignore::DeprecationWarning', "-c", code], check=True).returncode def version(): """ Returns a string specifying the bundled version of pip. """ return _get_packages()['pip'].version def _disable_pip_configuration_settings(): # We deliberately ignore all pip environment variables # when invoking pip # See http://bugs.python.org/issue19734 for details keys_to_remove = [k for k in os.environ if k.startswith("PIP_")] for k in keys_to_remove: del os.environ[k] # We also ignore the settings in the default pip configuration file # See http://bugs.python.org/issue20053 for details os.environ['PIP_CONFIG_FILE'] = os.devnull def bootstrap(*, root=None, upgrade=False, user=False, altinstall=False, default_pip=False, verbosity=0): """ Bootstrap pip into the current Python installation (or the given root directory). Note that calling this function will alter both sys.path and os.environ. """ # Discard the return value _bootstrap(root=root, upgrade=upgrade, user=user, altinstall=altinstall, default_pip=default_pip, verbosity=verbosity) def _bootstrap(*, root=None, upgrade=False, user=False, altinstall=False, default_pip=False, verbosity=0): """ Bootstrap pip into the current Python installation (or the given root directory). Returns pip command status code. Note that calling this function will alter both sys.path and os.environ. """ if altinstall and default_pip: raise ValueError("Cannot use altinstall and default_pip together") sys.audit("ensurepip.bootstrap", root) _disable_pip_configuration_settings() # By default, installing pip and setuptools installs all of the # following scripts (X.Y == running Python version): # # pip, pipX, pipX.Y, easy_install, easy_install-X.Y # # pip 1.5+ allows ensurepip to request that some of those be left out if altinstall: # omit pip, pipX and easy_install os.environ["ENSUREPIP_OPTIONS"] = "altinstall" elif not default_pip: # omit pip and easy_install os.environ["ENSUREPIP_OPTIONS"] = "install" with tempfile.TemporaryDirectory() as tmpdir: # Put our bundled wheels into a temporary directory and construct the # additional paths that need added to sys.path additional_paths = [] for name, package in _get_packages().items(): if package.wheel_name: # Use bundled wheel package from ensurepip import _bundled wheel_name = package.wheel_name whl = resources.read_binary(_bundled, wheel_name) else: # Use the wheel package directory with open(package.wheel_path, "rb") as fp: whl = fp.read() wheel_name = os.path.basename(package.wheel_path) filename = os.path.join(tmpdir, wheel_name) with open(filename, "wb") as fp: fp.write(whl) additional_paths.append(filename) # Construct the arguments to be passed to the pip command args = ["install", "--no-cache-dir", "--no-index", "--find-links", tmpdir] if root: args += ["--root", root] if upgrade: args += ["--upgrade"] if user: args += ["--user"] if verbosity: args += ["-" + "v" * verbosity] return _run_pip([*args, *_PACKAGE_NAMES], additional_paths) def _uninstall_helper(*, verbosity=0): """Helper to support a clean default uninstall process on Windows Note that calling this function may alter os.environ. """ # Nothing to do if pip was never installed, or has been removed try: import pip except ImportError: return # If the installed pip version doesn't match the available one, # leave it alone available_version = version() if pip.__version__ != available_version: print(f"ensurepip will only uninstall a matching version " f"({pip.__version__!r} installed, " f"{available_version!r} available)", file=sys.stderr) return _disable_pip_configuration_settings() # Construct the arguments to be passed to the pip command args = ["uninstall", "-y", "--disable-pip-version-check"] if verbosity: args += ["-" + "v" * verbosity] return _run_pip([*args, *reversed(_PACKAGE_NAMES)]) def _main(argv=None): import argparse parser = argparse.ArgumentParser(prog="python -m ensurepip") parser.add_argument( "--version", action="version", version="pip {}".format(version()), help="Show the version of pip that is bundled with this Python.", ) parser.add_argument( "-v", "--verbose", action="count", default=0, dest="verbosity", help=("Give more output. Option is additive, and can be used up to 3 " "times."), ) parser.add_argument( "-U", "--upgrade", action="store_true", default=False, help="Upgrade pip and dependencies, even if already installed.", ) parser.add_argument( "--user", action="store_true", default=False, help="Install using the user scheme.", ) parser.add_argument( "--root", default=None, help="Install everything relative to this alternate root directory.", ) parser.add_argument( "--altinstall", action="store_true", default=False, help=("Make an alternate install, installing only the X.Y versioned " "scripts (Default: pipX, pipX.Y, easy_install-X.Y)."), ) parser.add_argument( "--default-pip", action="store_true", default=False, help=("Make a default pip install, installing the unqualified pip " "and easy_install in addition to the versioned scripts."), ) args = parser.parse_args(argv) return _bootstrap( root=args.root, upgrade=args.upgrade, user=args.user, verbosity=args.verbosity, altinstall=args.altinstall, default_pip=args.default_pip, )
fae38ea09e1beb8207caeb28a4f7c4996b13a758
af179f861c423a27ed4539882b1b17202c4833b5
/algorithms/curious_a2c/agent_curious_a2c.py
5c24f7f2685aa3ba6dedb53e35ac26524afdf941
[ "MIT" ]
permissive
alex-petrenko/curious-rl
1666251076859304b55969d590447fc6b5c3b2f6
6cd0eb78ab409c68f8dad1a8542d625f0dd39114
refs/heads/master
2020-04-08T01:32:28.271135
2019-06-13T20:54:22
2019-06-13T20:54:22
158,899,170
22
3
null
null
null
null
UTF-8
Python
false
false
24,992
py
""" Implementation of the curious variant of the Advantage Actor-Critic algorithm. """ import time import numpy as np import tensorflow as tf from tensorflow.contrib import slim from algorithms.algo_utils import RunningMeanStd, EPS, extract_keys from algorithms.baselines.a2c.agent_a2c import AgentA2C from algorithms.env_wrappers import has_image_observations from algorithms.multi_env import MultiEnv from algorithms.tf_utils import dense, count_total_parameters, conv from algorithms.utils import summaries_dir from utils.distributions import CategoricalProbabilityDistribution from utils.utils import log, AttrDict, put_kernels_on_grid class CuriousA2CPolicy: """A class that represents both the actor's policy and the value estimator.""" def __init__(self, env, observations, timer, params): self.regularizer = tf.contrib.layers.l2_regularizer(scale=1e-10) img_model_name = params.image_model_name fc_layers = params.fc_layers fc_size = params.fc_size lowdim_model_name = params.lowdim_model_name past_frames = params.stack_past_frames image_obs = has_image_observations(env.observation_space.spaces['obs']) num_actions = env.action_space.n if image_obs: # convolutions if img_model_name == 'convnet_simple': conv_filters = self._convnet_simple(observations, [(32, 3, 2)] * 4) else: raise Exception('Unknown model name') encoded_input = tf.contrib.layers.flatten(conv_filters) else: # low-dimensional input if lowdim_model_name == 'simple_fc': frames = tf.split(observations, past_frames, axis=1) fc_encoder = tf.make_template('fc_encoder', self._fc_frame_encoder, create_scope_now_=True) encoded_frames = [fc_encoder(frame) for frame in frames] encoded_input = tf.concat(encoded_frames, axis=1) else: raise Exception('Unknown lowdim model name') if params.ignore_timer: timer = tf.multiply(timer, 0.0) encoded_input_with_timer = tf.concat([encoded_input, tf.expand_dims(timer, 1)], axis=1) fc = encoded_input_with_timer for _ in range(fc_layers - 1): fc = dense(fc, fc_size, self.regularizer) # fully-connected layers to generate actions actions_fc = dense(fc, fc_size // 2, self.regularizer) self.actions = tf.contrib.layers.fully_connected(actions_fc, num_actions, activation_fn=None) self.best_action_deterministic = tf.argmax(self.actions, axis=1) self.actions_prob_distribution = CategoricalProbabilityDistribution(self.actions) self.act = self.actions_prob_distribution.sample() value_fc = dense(fc, fc_size // 2, self.regularizer) self.value = tf.squeeze(tf.contrib.layers.fully_connected(value_fc, 1, activation_fn=None), axis=[1]) if image_obs: # summaries with tf.variable_scope('conv1', reuse=True): weights = tf.get_variable('weights') with tf.name_scope('a2c_agent_summary_conv'): if weights.shape[2].value in [1, 3, 4]: tf.summary.image('conv1/kernels', put_kernels_on_grid(weights), max_outputs=1) log.info('Total parameters in the model: %d', count_total_parameters()) def _fc_frame_encoder(self, x): return dense(x, 128, self.regularizer) def _conv(self, x, filters, kernel, stride, scope=None): return conv(x, filters, kernel, stride=stride, regularizer=self.regularizer, scope=scope) def _convnet_simple(self, x, convs): """Basic stacked convnet.""" layer = x layer_idx = 1 for filters, kernel, stride in convs: layer = self._conv(layer, filters, kernel, stride, 'conv' + str(layer_idx)) layer_idx += 1 return layer class Model: """Single class for inverse and forward dynamics model.""" def __init__(self, env, obs, next_obs, actions, past_frames, forward_fc): """ :param obs - placeholder for observations :param actions - placeholder for selected actions """ self.regularizer = tf.contrib.layers.l2_regularizer(scale=1e-10) image_obs = has_image_observations(env.observation_space.spaces['obs']) num_actions = env.action_space.n if image_obs: # convolutions conv_encoder = tf.make_template( 'conv_encoder', self._convnet_simple, create_scope_now_=True, convs=[(32, 3, 2)] * 4, ) encoded_obs = conv_encoder(obs=obs) encoded_obs = tf.contrib.layers.flatten(encoded_obs) encoded_next_obs = conv_encoder(obs=next_obs) self.encoded_next_obs = tf.contrib.layers.flatten(encoded_next_obs) else: # low-dimensional input lowdim_encoder = tf.make_template( 'lowdim_encoder', self._lowdim_encoder, create_scope_now_=True, past_frames=past_frames, ) encoded_obs = lowdim_encoder(obs=obs) self.encoded_next_obs = lowdim_encoder(obs=next_obs) self.feature_vector_size = encoded_obs.get_shape().as_list()[-1] log.info('Feature vector size in ICM: %d', self.feature_vector_size) actions_one_hot = tf.one_hot(actions, num_actions) # forward model forward_model_input = tf.concat( [encoded_obs, actions_one_hot], axis=1, ) forward_model_hidden = dense(forward_model_input, forward_fc, self.regularizer) forward_model_hidden = dense(forward_model_hidden, forward_fc, self.regularizer) forward_model_output = tf.contrib.layers.fully_connected( forward_model_hidden, self.feature_vector_size, activation_fn=None, ) self.predicted_obs = forward_model_output # inverse model inverse_model_input = tf.concat([encoded_obs, self.encoded_next_obs], axis=1) inverse_model_hidden = dense(inverse_model_input, 256, self.regularizer) inverse_model_output = tf.contrib.layers.fully_connected( inverse_model_hidden, num_actions, activation_fn=None, ) self.predicted_actions = inverse_model_output log.info('Total parameters in the model: %d', count_total_parameters()) def _fc_frame_encoder(self, x): return dense(x, 128, self.regularizer) def _lowdim_encoder(self, obs, past_frames): frames = tf.split(obs, past_frames, axis=1) fc_encoder = tf.make_template('fc_encoder', self._fc_frame_encoder, create_scope_now_=True) encoded_frames = [fc_encoder(frame) for frame in frames] encoded_input = tf.concat(encoded_frames, axis=1) return encoded_input def _conv(self, x, filters, kernel, stride, scope=None): return conv(x, filters, kernel, stride=stride, regularizer=self.regularizer, scope=scope) def _convnet_simple(self, convs, obs): """Basic stacked convnet.""" layer = obs layer_idx = 1 for filters, kernel, stride in convs: layer = self._conv(layer, filters, kernel, stride, 'conv' + str(layer_idx)) layer_idx += 1 return layer class AgentCuriousA2C(AgentA2C): """Agent based on A2C algorithm.""" class Params(AgentA2C.Params): """Hyperparams for the algorithm and the training process.""" def __init__(self, experiment_name): """Default parameter values set in ctor.""" super(AgentCuriousA2C.Params, self).__init__(experiment_name) self.icm_beta = 0.5 # in ICM, importance of training forward model vs inverse model self.model_lr_scale = 10.0 # in ICM, importance of model loss vs actor-critic loss self.prediction_bonus_coeff = 0.05 # scaling factor for prediction bonus vs env rewards self.clip_bonus = 0.1 self.clip_advantage = 10 self.ignore_timer = False # whether or not policy uses the remaining episode time self.forward_fc = 512 self.train_for_env_steps = 10 * 1000 * 1000 * 1000 # noinspection PyMethodMayBeStatic def filename_prefix(self): return 'curious_a2c_' def __init__(self, make_env_func, params): """Initialize A2C computation graph and some auxiliary tensors.""" super(AgentA2C, self).__init__(params) # calling grandparent ctor, skipping parent global_step = tf.train.get_or_create_global_step() self.make_env_func = make_env_func self.selected_actions = tf.placeholder(tf.int32, [None]) # action selected by the policy self.value_estimates = tf.placeholder(tf.float32, [None]) self.discounted_rewards = tf.placeholder(tf.float32, [None]) # estimate of total reward (rollout + value) self.advantages = tf.placeholder(tf.float32, [None]) env = make_env_func() # we need it to query observation shape, number of actions, etc. obs_shape = list(env.observation_space.spaces['obs'].shape) input_shape = [None] + obs_shape # add batch dimension self.observations = tf.placeholder(tf.float32, shape=input_shape) self.next_obs = tf.placeholder(tf.float32, shape=input_shape) self.timer = tf.placeholder(tf.float32, shape=[None]) self.policy = CuriousA2CPolicy(env, self.observations, self.timer, params) self.model = Model( env, self.observations, self.next_obs, self.selected_actions, params.stack_past_frames, params.forward_fc, ) env.close() # negative logarithm of the probabilities of actions neglogp_actions = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.policy.actions, labels=self.selected_actions, ) # maximize probabilities of actions that give high advantage action_losses = tf.clip_by_value(self.advantages * neglogp_actions, -20.0, 20.0) action_loss = tf.reduce_mean(action_losses) # penalize for inaccurate value estimation value_losses = tf.square(self.discounted_rewards - self.policy.value) value_losses = tf.clip_by_value(value_losses, -20.0, 20.0) value_loss = self.params.value_loss_coeff * tf.reduce_mean(value_losses) # penalize the agent for being "too sure" about it's actions (to prevent converging to the suboptimal local # minimum too soon) entropy_loss = -tf.reduce_mean(self.policy.actions_prob_distribution.entropy()) entropy_loss_coeff = tf.train.exponential_decay( self.params.initial_entropy_loss_coeff, tf.cast(global_step, tf.float32), 20.0, 0.95, staircase=True, ) entropy_loss_coeff = tf.maximum(entropy_loss_coeff, self.params.min_entropy_loss_coeff) entropy_loss = entropy_loss_coeff * entropy_loss # total actor-critic loss a2c_loss = action_loss + entropy_loss + value_loss # model losses forward_loss_batch = 0.5 * tf.square(self.model.encoded_next_obs - self.model.predicted_obs) forward_loss_batch = tf.reduce_mean(forward_loss_batch, axis=1) * self.model.feature_vector_size forward_loss = tf.reduce_mean(forward_loss_batch) inverse_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.model.predicted_actions, labels=self.selected_actions, )) icm_beta = self.params.icm_beta model_loss = forward_loss * icm_beta + inverse_loss * (1.0 - icm_beta) model_loss = self.params.model_lr_scale * model_loss # regularization regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # total loss loss = a2c_loss + model_loss + regularization_loss # training self.train = tf.contrib.layers.optimize_loss( loss=loss, global_step=global_step, learning_rate=self.params.learning_rate, optimizer=tf.train.AdamOptimizer, clip_gradients=self.params.clip_gradients, ) bonus = self.params.prediction_bonus_coeff * forward_loss_batch self.prediction_curiosity_bonus = tf.clip_by_value(bonus, -self.params.clip_bonus, self.params.clip_bonus) # summaries for the agent and the training process with tf.name_scope('a2c_agent_summary'): if len(self.observations.shape) >= 4: tf.summary.image( 'observations', self.observations[:, :, :, :3], # first three channels max_outputs=8, ) # output also last channel if self.observations.shape[-1].value > 4: tf.summary.image('observations_last_channel', self.observations[:, :, :, -1:]) tf.summary.scalar('disc_rewards_avg', tf.reduce_mean(self.discounted_rewards)) tf.summary.scalar('disc_rewards_max', tf.reduce_max(self.discounted_rewards)) tf.summary.scalar('disc_rewards_min', tf.reduce_min(self.discounted_rewards)) tf.summary.scalar('bonus_avg', tf.reduce_mean(self.prediction_curiosity_bonus)) tf.summary.scalar('bonus_max', tf.reduce_max(self.prediction_curiosity_bonus)) tf.summary.scalar('bonus_min', tf.reduce_min(self.prediction_curiosity_bonus)) tf.summary.scalar('value', tf.reduce_mean(self.policy.value)) tf.summary.scalar('adv_avg_abs', tf.reduce_mean(tf.abs(self.advantages))) tf.summary.scalar('adv_max', tf.reduce_max(self.advantages)) tf.summary.scalar('adv_min', tf.reduce_min(self.advantages)) tf.summary.scalar('selected_action_avg', tf.reduce_mean(tf.to_float(self.selected_actions))) tf.summary.scalar('policy_entropy', tf.reduce_mean(self.policy.actions_prob_distribution.entropy())) tf.summary.scalar('entropy_coeff', entropy_loss_coeff) with tf.name_scope('a2c_losses'): tf.summary.scalar('action_loss', action_loss) tf.summary.scalar('max_action_loss', tf.reduce_max(action_losses)) tf.summary.scalar('value_loss', value_loss) tf.summary.scalar('max_value_loss', tf.reduce_max(value_losses)) tf.summary.scalar('entropy_loss', entropy_loss) tf.summary.scalar('a2c_loss', a2c_loss) tf.summary.scalar('forward_loss', forward_loss) tf.summary.scalar('inverse_loss', inverse_loss) tf.summary.scalar('model_loss', model_loss) tf.summary.scalar('regularization_loss', regularization_loss) tf.summary.scalar('loss', loss) summary_dir = summaries_dir(self.params.experiment_dir()) self.summary_writer = tf.summary.FileWriter(summary_dir) self.all_summaries = tf.summary.merge_all() with tf.name_scope('a2c_aux_summary'): tf.summary.scalar('training_steps', global_step, collections=['aux']) # if it's not "initialized" yet, just report 0 to preserve tensorboard plot scale best_reward_report = tf.cond( tf.equal(self.best_avg_reward, self.initial_best_avg_reward), true_fn=lambda: 0.0, false_fn=lambda: self.best_avg_reward, ) tf.summary.scalar('best_reward_ever', best_reward_report, collections=['aux']) tf.summary.scalar('avg_reward', self.avg_reward_placeholder, collections=['aux']) self.avg_length_placeholder = tf.placeholder(tf.float32, []) tf.summary.scalar('avg_lenght', self.avg_length_placeholder, collections=['aux']) self.aux_summaries = tf.summary.merge_all(key='aux') self.saver = tf.train.Saver(max_to_keep=3) all_vars = tf.trainable_variables() log.warn('curious a2c variables:') slim.model_analyzer.analyze_vars(all_vars, print_info=True) def best_action(self, observation, deterministic=False): obs, timer = extract_keys([observation], 'obs', 'timer') actions, _ = self._policy_step_timer(obs, timer, deterministic) return actions[0] def _policy_step_timer(self, observations, timer, deterministic=False): """ Select the best action by sampling from the distribution generated by the policy. Also estimate the value for the currently observed environment state. """ ops = [ self.policy.best_action_deterministic if deterministic else self.policy.act, self.policy.value, ] actions, values = self.session.run( ops, feed_dict={ self.observations: observations, self.timer: timer, }, ) return actions, values def _estimate_values_timer(self, observations, timer): values = self.session.run( self.policy.value, feed_dict={ self.observations: observations, self.timer: timer, }, ) return values def _prediction_curiosity_bonus(self, observations, actions, next_obs): bonuses = self.session.run( self.prediction_curiosity_bonus, feed_dict={ self.selected_actions: actions, self.observations: observations, self.next_obs: next_obs, } ) return bonuses def _curious_train_step( self, step, env_steps, observations, timer, actions, values, discounted_rewards, advantages, next_obs ): """ Actually do a single iteration of training. See the computational graph in the ctor to figure out the details. """ with_summaries = self._should_write_summaries(step) summaries = [self.all_summaries] if with_summaries else [] result = self.session.run( [self.train] + summaries, feed_dict={ self.observations: observations, self.timer: timer, self.selected_actions: actions, self.value_estimates: values, self.discounted_rewards: discounted_rewards, self.advantages: advantages, self.next_obs: next_obs, }, ) step = tf.train.global_step(self.session, tf.train.get_global_step()) if with_summaries: summary = result[1] self.summary_writer.add_summary(summary, global_step=env_steps) return step def _learn_loop(self, multi_env, step_callback=None): """ Main training loop. :param step_callback: a hacky callback that takes a dictionary with all local variables as an argument. Allows you too look inside the training process. """ step = initial_step = tf.train.global_step(self.session, tf.train.get_global_step()) env_steps = self.total_env_steps.eval(session=self.session) batch_size = self.params.rollout * self.params.num_envs img_obs, timer_obs = extract_keys(multi_env.initial_obs(), 'obs', 'timer') adv_running_mean_std = RunningMeanStd(max_past_samples=10000) def end_of_training(s, es): return s >= self.params.train_for_steps or es > self.params.train_for_env_steps while not end_of_training(step, env_steps): timing = AttrDict({'experience': time.time(), 'batch': time.time()}) experience_start = time.time() env_steps_before_batch = env_steps batch_obs, batch_timer = [img_obs], [timer_obs] env_steps += len(img_obs) batch_actions, batch_values, batch_rewards, batch_dones, batch_next_obs = [], [], [], [], [] for rollout_step in range(self.params.rollout): actions, values = self._policy_step_timer(img_obs, timer_obs) batch_actions.append(actions) batch_values.append(values) # wait for all the workers to complete an environment step next_obs, rewards, dones, infos = multi_env.step(actions) next_img_obs, next_timer = extract_keys(next_obs, 'obs', 'timer') # calculate curiosity bonus bonuses = self._prediction_curiosity_bonus(img_obs, actions, next_img_obs) rewards += bonuses batch_rewards.append(rewards) batch_dones.append(dones) batch_next_obs.append(next_img_obs) img_obs = next_img_obs timer_obs = next_timer if infos is not None and 'num_frames' in infos[0]: env_steps += sum((info['num_frames'] for info in infos)) else: env_steps += multi_env.num_envs if rollout_step != self.params.rollout - 1: # we don't need the newest observation in the training batch, already have enough batch_obs.append(img_obs) batch_timer.append(timer_obs) assert len(batch_obs) == len(batch_rewards) assert len(batch_obs) == len(batch_next_obs) batch_rewards = np.asarray(batch_rewards, np.float32).swapaxes(0, 1) batch_dones = np.asarray(batch_dones, np.bool).swapaxes(0, 1) batch_values = np.asarray(batch_values, np.float32).swapaxes(0, 1) # Last value won't be valid for envs with done=True (because env automatically resets and shows 1st # observation of the next episode. But that's okay, because we should never use last_value in this case. last_values = self._estimate_values_timer(img_obs, timer_obs) gamma = self.params.gamma disc_rewards = [] for i in range(len(batch_rewards)): env_rewards = self._calc_discounted_rewards(gamma, batch_rewards[i], batch_dones[i], last_values[i]) disc_rewards.extend(env_rewards) disc_rewards = np.asarray(disc_rewards, np.float32) # convert observations and estimations to meaningful n-step batches batch_obs_shape = (self.params.rollout * multi_env.num_envs,) + img_obs[0].shape batch_obs = np.asarray(batch_obs, np.float32).swapaxes(0, 1).reshape(batch_obs_shape) batch_next_obs = np.asarray(batch_next_obs, np.float32).swapaxes(0, 1).reshape(batch_obs_shape) batch_actions = np.asarray(batch_actions, np.int32).swapaxes(0, 1).flatten() batch_timer = np.asarray(batch_timer, np.float32).swapaxes(0, 1).flatten() batch_values = batch_values.flatten() advantages = disc_rewards - batch_values if self.params.normalize_adv: adv_running_mean_std.update(advantages) advantages = (advantages - adv_running_mean_std.mean) / (np.sqrt(adv_running_mean_std.var) + EPS) advantages = np.clip(advantages, -self.params.clip_advantage, self.params.clip_advantage) timing.experience = time.time() - timing.experience timing.train = time.time() step = self._curious_train_step( step, env_steps, batch_obs, batch_timer, batch_actions, batch_values, disc_rewards, advantages, batch_next_obs, ) self._maybe_save(step, env_steps) timing.train = time.time() - timing.train avg_reward = multi_env.calc_avg_rewards(n=self.params.stats_episodes) avg_length = multi_env.calc_avg_episode_lengths(n=self.params.stats_episodes) fps = (env_steps - env_steps_before_batch) / (time.time() - timing.batch) self._maybe_print(step, avg_reward, avg_length, fps, timing) self._maybe_aux_summaries(step, env_steps, avg_reward, avg_length) self._maybe_update_avg_reward(avg_reward, multi_env.stats_num_episodes()) if step_callback is not None: step_callback(locals(), globals()) def learn(self, step_callback=None): try: multi_env = MultiEnv( self.params.num_envs, self.params.num_workers, make_env_func=self.make_env_func, stats_episodes=self.params.stats_episodes, ) self._learn_loop(multi_env, step_callback) except Exception as exc: log.exception(exc) finally: log.info('Closing env...') multi_env.close()
163265522ac5b1d53899d5d114cb4432cf72522d
1548ce77537dcd50ab04b0eaee050b5d30553e23
/tests/test_pipeline/components/classification/test_lda.py
f78f133407c5e5dff1614b0807339f117fb6d6e8
[ "Apache-2.0" ]
permissive
Shamoo100/AutoTabular
4a20e349104246bf825ebceae33dca0a79928f2e
7d71bf01d2b7d84fcf5f65c9f45c5cea1255d8a2
refs/heads/main
2023-08-13T21:34:34.329888
2021-10-02T07:06:00
2021-10-02T07:06:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
import sklearn.discriminant_analysis from autotabular.pipeline.components.classification.lda import LDA from .test_base import BaseClassificationComponentTest class LDAComponentTest(BaseClassificationComponentTest): __test__ = True res = dict() res['default_iris'] = 1.0 res['default_iris_iterative'] = -1 res['default_iris_proba'] = 0.5614481896257509 res['default_iris_sparse'] = -1 res['default_digits'] = 0.88585306618093507 res['default_digits_iterative'] = -1 res['default_digits_binary'] = 0.9811778992106861 res['default_digits_multilabel'] = 0.82204896441795205 res['default_digits_multilabel_proba'] = 0.9833070018235553 sk_mod = sklearn.discriminant_analysis.LinearDiscriminantAnalysis module = LDA
9c94a6ae985e0ffbcc4884ebef338fa1f8d357d0
b7a2a80843fa5141ffb9c7b4439f1d2ac713af30
/Version2/U7.2_Threads_Alt.py
6e674dc4ae02171ef537759fd638fb0b727f2a73
[]
no_license
wunnox/python_grundlagen
df1bc2b9b1b561bd6733ccc25305e799a48e714e
fa84d7aae7332a7acbb3ba7ff0fe2216cc345fc0
refs/heads/master
2023-05-01T12:19:23.208445
2023-04-16T11:29:01
2023-04-16T11:29:01
222,099,539
2
3
null
2019-12-19T10:56:43
2019-11-16T12:57:54
Python
UTF-8
Python
false
false
1,241
py
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function #################################################### # # Uebung: # Erstellen Sie ein Programm, welches drei Threads startet # Der erste Thread läuft 8 Sekunden, der zweite 4 Sekunden und der dritte 6 Sekunden # Nehmen Sie als Vorlage , die vorhergehenden Folie. # #################################################### #### Lösung: #### import time import _thread t = [] def show(c, s): t.append(c) print("Starte Thread", c, "mit", s, "Sek.") time.sleep(s) t.remove(c) _thread.start_new_thread(show, (1, 12,)) time.sleep(0.5) _thread.start_new_thread(show, (2, 22,)) time.sleep(0.5) _thread.start_new_thread(show, (3, 18,)) time.sleep(0.5) _thread.start_new_thread(show, (4, 14,)) time.sleep(0.5) _thread.start_new_thread(show, (5, 21,)) time.sleep(0.5) _thread.start_new_thread(show, (6, 19,)) time.sleep(0.5) _thread.start_new_thread(show, (7, 15,)) time.sleep(0.5) _thread.start_new_thread(show, (8, 18,)) time.sleep(0.5) _thread.start_new_thread(show, (9, 13,)) time.sleep(0.5) _thread.start_new_thread(show, (10, 14,)) time.sleep(0.5) while t: print("Warte auf Ende der Threads", t) time.sleep(1) print("Ende der Threads")
b20ec919b3bf275ed1bcbe843963d49d1abfdeae
d6a87864028abde8da69b0a1075e3d4c483ed73c
/base/baseheap.py
6db645d2a85ffa7480fc4454289c7144d0ee5942
[]
no_license
Windsooon/LeetCode
7ef78c7e001c1e6924244869a7ba5491d33eb246
409d7db811d41dbcc7ce8cda82b77eff35585657
refs/heads/master
2021-01-10T15:26:16.986357
2020-01-01T14:57:58
2020-01-01T14:57:58
54,531,267
1
1
null
null
null
null
UTF-8
Python
false
false
105
py
class BaseHeap: def upheap(self, p): pass def downheap(self, p): pass def
9a4a66b73d5ac59e838f0aa82bbb615cf4efa43f
6c58da2c54a3d35273e7984313d181f1da9981fc
/Multiple_Apps/djangoEnv/bin/django-admin.py
78fd42c83301322a9da7ef20392fed2b3158a0b1
[ "MIT-0" ]
permissive
py1-10-2017/rgero215_PY1-10-2017
e582cb12cc63f84b1c0c14d09a922cb6cb228016
f455b335ec9c8c850571f3a75dcd95759b4cfdad
refs/heads/master
2021-09-04T03:23:48.062326
2018-01-14T21:07:26
2018-01-14T21:07:26
105,612,652
1
0
null
null
null
null
UTF-8
Python
false
false
187
py
#!/Users/RGero13/Desktop/rgero215_PY1-10-2017/Multiple_Apps/djangoEnv/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
30d76d5a0ff3e6f690abdabd2e750c027eb4391d
c05f9fb686ef49c093e618a4078ffe723231f346
/config/conf.py
aa2247f1303787036d7ea5fca1e3fa1d81a42f4c
[]
no_license
wmm0165/PytestAuto
d1bb40dcc5760439658c15af653953646119af44
42846b12ed7aefaa4e5890529ec71a76d27f245d
refs/heads/master
2020-07-16T16:35:19.962864
2019-09-16T10:08:37
2019-09-16T10:08:37
205,825,635
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
from datetime import datetime import os # 项目根目录 ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # 报告目录 REPORT_DIR = os.path.join(ROOT_DIR, 'report') # ui对象库config.ini文件所在目录 CONF_PATH = os.path.join(ROOT_DIR, 'config', 'config.ini') # 测试数据所在目录 DATA_Path = os.path.join(ROOT_DIR, 'data', 'tcData.xlsx') # 当前时间 CURRENT_TIME = datetime.now().strftime('%H_%M_%S') # 邮件配置信息 # 邮件服务器 SMTP_SERVER = 'smtp.qq.com' # 发送者 FROM_USER = '[email protected]' # 发送者密码 FROM_PASSWORD = 'mhxvqpewblldbjhf' # 接收者 TO_USER = ['账号@qq.com'] # 可以同时发送给多人,追加到列表中 # 邮件标题 SUBJECT = 'xx项目自动化测试报告' # 邮件正文 CONTENTS = '测试报告正文' # 报告名称 HTML_NAME = 'testReport{}.html'.format(CURRENT_TIME) print(HTML_NAME)
592ac9a1613e8c2b0e733f3b1ebe6ebb4046e7ca
cb12e3eff7bbb5fe2f4d0e2be9ca165a5577dc93
/plt-and-algo/webrtc-p2pframe/serve.py
a43133af73a4329d22e725d2ebc34e112a0c7968
[]
no_license
overminder/kitchen-sink
6b1227ff00f8804d4d0a632e613ee903d51ab753
2e61b9041ceed536d42b42b75a5c50dae080c0ba
refs/heads/master
2023-06-09T05:48:47.291336
2023-05-29T17:38:34
2023-05-29T17:38:34
50,777,705
18
3
null
2020-02-09T19:22:18
2016-01-31T14:13:16
Scala
UTF-8
Python
false
false
3,346
py
#!/usr/bin/env python3.5 import logging import os import sys import random import json HERE = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) STATIC_PATH = os.path.join(HERE, 'static') from tornado import gen from tornado.websocket import WebSocketHandler from tornado.web import Application, RequestHandler, StaticFileHandler from tornado.ioloop import IOLoop class Offer: resp_cb = None def __init__(self, key=None, offer_payload=None): self.key = key self.offer_payload = offer_payload self.candidates = [] def __repr__(self): return '<Offer candidates=%d %r>' % (len(self.candidates), self.offer_payload) def wait_resp(self, callback=None): self.resp_cb = callback class Offers: def __init__(self): self.offers = {} @classmethod def mkkey(cls): return str(random.randint(10000, 99999)) # Just to be simple. def add(self, offer): self.offers[offer.key] = offer return offer def find(self, key): return self.offers[key] def pop(self, key): return self.offers.pop(key) offers = Offers() class OfferListingHandler(RequestHandler): def get(self): self.write({ 'offers': [{'key': key, 'resp_cb': repr(resp_cb)} for (key, resp_cb) in offers.offers.items()], }) class OfferHandler(WebSocketHandler): offer = None key = None def open(self): self.key = Offers.mkkey() def _ensure_offer(self): if self.offer is None: self.offer = Offer(key=self.key) return self.offer @gen.coroutine def on_message(self, s): msg = json.loads(s) print('msg', type(msg), repr(msg)) if msg['type'] == 'allocKey': self.write_message({ 'type': 'allocKeyResp', 'key': self.key, }) elif msg['type'] == 'offer': offer = offers.add(self._ensure_offer()) offer.offer_payload = msg self.write_message(json.dumps({ 'type': 'offer-created', })) resp = yield gen.Task(offer.wait_resp) self.write_message(json.dumps({ 'type': 'offer-accepted', 'resp': resp, })) elif msg['type'] == 'take-offer': offer = offers.find(msg['key']) self.write_message(offer.offer_payload) for c in offer.candidates: self.write_message(c) elif msg['type'] == 'answer': key = msg.pop('forKey') offer = offers.pop(key) offer.resp_cb(msg) elif msg['type'] == 'candidate': self._ensure_offer().candidates.append(msg) class NoCacheStaticFileHandler(StaticFileHandler): def set_extra_headers(self, path): self.set_header('Cache-Control', 'no-store, no-cache, must-revalidate, max-age=0') def mkapp(): return Application([ (r'/offer', OfferHandler), (r'/offers/list', OfferListingHandler), (r'/(.*)', NoCacheStaticFileHandler, { 'path': STATIC_PATH, }), ], gzip=True) def main(): port = 17080 mkapp().listen(port) print('Listening on :%d' % port) IOLoop.current().start() if __name__ == '__main__': main()
8704bbaf901d8a35e0ee5512cc626afd639f0d60
bed0d23d35b42b7316dee35f9fa06d4d2cc9de26
/src/custom_admin/__init__.py
5ec402089bc364c75d9685df1a8d89ebdb5cca66
[]
no_license
Bloodlettinger/meandre
b55911c93faf6c279f496394137def21ec181e6a
f9a8c5dc709fcdda808fc1329264724c7b8d951e
refs/heads/master
2020-05-17T23:01:15.326103
2012-10-11T17:22:48
2012-10-11T17:22:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
# -*- coding: utf-8 -*- from datetime import date, datetime def ddmmyy(value): if isinstance(value, (date, datetime)): return value.strftime('%d.%m.%y') else: return u'--'
8b92035f4b34e0556c903e155ba9a8618bf17529
275a96a33ae1f89e7b2ee0ecdbac7d78abe6d6cc
/test/test_bad_request_error_code.py
670128cb3664339498ad0e2fe8a03b0977a7c7ff
[]
no_license
cascadiarc/cyclos-python-client
8029ce07174f2fe92350a92dda9a60976b2bb6c2
a2e22a30e22944587293d51be2b8268bce808d70
refs/heads/main
2023-04-03T16:52:01.618444
2021-04-04T00:00:52
2021-04-04T00:00:52
354,419,532
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
# coding: utf-8 """ Cyclos 4.11.5 API The REST API for Cyclos 4.11.5 # noqa: E501 OpenAPI spec version: 4.11.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.bad_request_error_code import BadRequestErrorCode # noqa: E501 from swagger_client.rest import ApiException class TestBadRequestErrorCode(unittest.TestCase): """BadRequestErrorCode unit test stubs""" def setUp(self): pass def tearDown(self): pass def testBadRequestErrorCode(self): """Test BadRequestErrorCode""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.bad_request_error_code.BadRequestErrorCode() # noqa: E501 pass if __name__ == '__main__': unittest.main()
4fd9c70db157736bfaf3aab4bd859f51b90b8f41
82aee3211216f55392d5a757eb57f02c859e9a28
/Easy/599_minimumIndexSumOfTwoLists.py
d92b6e8b5c30aa160a4ed09faac635a69b9d9ca6
[]
no_license
Yucheng7713/CodingPracticeByYuch
505d18095d4b9a35c1f3b23632a90a76d811b64a
1461b10b8910fa90a311939c6df9082a8526f9b1
refs/heads/master
2022-05-01T11:51:00.612603
2022-04-18T09:46:55
2022-04-18T09:46:55
198,961,132
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
class Solution: def findRestaurant(self, list1: List[str], list2: List[str]) -> List[str]: r_set = set(list1 + list2) map_1 = {res : i for i, res in enumerate(list1)} map_2 = {res : i for i, res in enumerate(list2)} common_res = [] min_sum = float('inf') for r in r_set: if r in map_1 and r in map_2: k = map_1[r] + map_2[r] if min_sum > k: common_res = [r] min_sum = k elif min_sum == k: common_resI += [r] return common_res