blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
312aa26a98938f328a2eba660cd18cb8d9305fac
57094f0d09fd3e74eeb511e94400c3ec97051ad3
/Quax_dev_archive/quax_research/research/findif.py
837a3116e26a36c17b410aed4ddeca71656b4abe
[]
no_license
adabbott/Research_Notes
cccba246e81065dc4a663703fe225fc1ebbf806b
644394edff99dc6542e8ae6bd0ce8bcf158cff69
refs/heads/master
2023-05-12T20:26:58.938617
2021-06-02T17:15:35
2021-06-02T17:15:35
119,863,228
1
0
null
null
null
null
UTF-8
Python
false
false
687
py
# pip install fdm import numpy as np import jax.numpy as jnp import fdm import jax # Function: #f(x,y,z) = exp(1 * x + 2 * y + 3 * z) def func(vec): coef = jnp.array([1.,2.,3.]) return jnp.exp(jnp.sum(coef * vec)) findif_gradient = fdm.gradient(func) jax_gradient = jax.jacfwd(func, 0) inp1 = np.array([0.1,0.2,0.3]) inp2 = jnp.array([0.1,0.2,0.3]) print(findif_gradient(inp1)) print(jax_gradient(inp2)) findif_hessian = fdm.jacobian(jax_gradient) jax_hessian = jax.jacfwd(jax_gradient) print(findif_hessian(inp1)) print(jax_hessian(inp2)) findif_cubic = fdm.jacobian(jax_hessian) jax_cubic = jax.jacfwd(jax_hessian) print(findif_cubic(inp1)) print(jax_cubic(inp2))
ba661605c33bc97a360545d8ba5b4e9de8ab3769
4ca44b7bdb470fcbbd60c2868706dbd42b1984c9
/20.02.23/백준 2589.py
e74d174f72d9f3fb56f4e43329178cf1902b773a
[]
no_license
titiman1013/Algorithm
3b3d14b3e2f0cbc4859029eb73ad959ec8778629
8a67e36931c42422779a4c90859b665ee468255b
refs/heads/master
2023-06-29T17:04:40.015311
2021-07-06T01:37:29
2021-07-06T01:37:29
242,510,483
2
0
null
null
null
null
UTF-8
Python
false
false
3,144
py
# BFS # N, M = list(map(int, input().split())) # arr = [list(map(str, list(input()))) for i in range(N)] # dx = [-1, 1, 0, 0] # dy = [0, 0, -1, 1] # for i in range(N): # for j in range(M): # clone = [] # for i in range(N): # clone.append([]) # clone[i] = arr[i][:] # if clone[i][j] == 'L': # que = [] # x = i # y = j # cnt = 0 # result = 0 # clone[x][y] = 'W' # que.append((x, y)) # while que: # x, y = que.pop(0) # for k in range(4): # nx = x + dx[k] # ny = y + dy[k] # if 0 <= nx < N and 0 <= ny < M: # if clone[nx][ny] == 'L': # que.append((nx, ny)) # clone[nx][ny] = 'W' # cnt += 1 # if cnt > result: # result = cnt # print(result) # N, M = list(map(int, input().split())) # arr = [list(map(str, list(input()))) for i in range(N)] # dx = [-1, 1, 0, 0] # dy = [0, 0, -1, 1] # final = 0 # for i in range(N): # for j in range(M): # if arr[i][j] == 'L': # que = [] # visit = [[0] * M for i in range(N)] # x = i # y = j # result = 0 # visit[x][y] = 1 # que.append((x, y)) # while que: # x, y = que.pop(0) # for k in range(4): # nx = x + dx[k] # ny = y + dy[k] # if 0 <= nx < N and 0 <= ny < M: # if arr[nx][ny] == 'L' and visit[nx][ny] == 0: # que.append((nx, ny)) # visit[nx][ny] = visit[x][y] + 1 # if visit[nx][ny] > result: # result = visit[nx][ny] # if result > final: # final = result # print(final-1) # collection 사용 import collections N, M = list(map(int, input().split())) arr = [list(map(str, list(input()))) for i in range(N)] dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] final = 0 for i in range(N): for j in range(M): if arr[i][j] == 'L': que = collections.deque() visit = [[0] * M for i in range(N)] x = i y = j result = 0 visit[x][y] = 1 que.append((x, y)) while que: x, y = que.popleft() for k in range(4): nx = x + dx[k] ny = y + dy[k] if 0 <= nx < N and 0 <= ny < M: if arr[nx][ny] == 'L' and visit[nx][ny] == 0: que.append((nx, ny)) visit[nx][ny] = visit[x][y] + 1 if visit[nx][ny] > result: result = visit[nx][ny] if result > final: final = result print(final-1)
d93d0dd79f44036af57b9124fc0a49af6d8f58dd
8553e0b06161d288100750cda973924ee4030e17
/clustack/blueprint.py
4dfa4e64602ade14f0636b61a7ba98577f3a14d4
[]
no_license
mrmh2/clustack
0b635fec2c459f7a6db724aead84a36fb6bd7254
4b1e820e82ef8cbae400b69f156574050e72698a
refs/heads/master
2021-01-19T03:23:20.122454
2015-04-13T12:47:07
2015-04-13T12:47:07
28,097,203
0
0
null
null
null
null
UTF-8
Python
false
false
3,276
py
import os import yaml import settings def load_blueprint_yaml(filename): """Load a blueprint from the given YAML file.""" with open(filename) as f: yaml_rep = yaml.load(f) name = yaml_rep['name'] bp = BluePrint(name) bp.version = yaml_rep['version'] if 'dependencies' in yaml_rep: bp.direct_dependencies = yaml_rep['dependencies'] return bp def load_blueprint(filename): """Load a blueprint from the given filename. Try to determine the type of blueprint from the file extension and dispatch to the relevant loader.""" path, ext = os.path.splitext(filename) try: loader = LOADERS[ext] except KeyError: raise Exception("Don't know how to load blueprint: {}".format(filename)) return loader(filename) def ext_matches(name, ext_list): """Return True if file extension is in the supplied list.""" base, ext = os.path.splitext(name) return ext in ext_list def get_basename_and_full_path(name, path): """Given name and path, return name with no extension and full path.""" basename = os.path.splitext(name)[0] full_path = os.path.join(path, name) return basename, full_path def get_available_blueprints(): """Generate list of all available blueprints, in the form of a dictionary of name : path pairs.""" available = {} bp_exts = settings.blueprint_exts bp_path = settings.blueprint_path for path in bp_path: matching_files = [f for f in os.listdir(path) if ext_matches(f, bp_exts)] md = dict(get_basename_and_full_path(fn, path) for fn in matching_files) available.update(md) return available def load_blueprint_by_name(name): """Load a blueprint from a (string) name. Use settings to determine search path, then choose a loader.""" name = name.lower() available_blueprints = get_available_blueprints() if name in available_blueprints: return load_blueprint(available_blueprints[name]) raise Exception("Can't load blueprint {} by name".format(name)) class BluePrint(object): """Class representing instructions for how to build a package. Expected to be constructed from a file, and will be used to create a Builder to build the package.""" def __init__(self, name): self.name = name self.direct_dependencies = [] self._full_dependencies = None @property def full_dependencies(self): """All dependencies, both direct and indirect. To avoid calculating every time, cache the result of the initial tree walk.""" if not self._full_dependencies: self._full_dependencies = self.find_full_dependencies() return self._full_dependencies def find_full_dependencies(self): """Find all indirect dependencies, by finding dependencies of dependencies.""" full_dependencies = [] modules = self.direct_dependencies while modules: module = modules.pop() full_dependencies.append(module) bp_dep = load_blueprint_by_name(module) modules += bp_dep.direct_dependencies return full_dependencies LOADERS = { '.yaml' : load_blueprint_yaml }
6fdfbeb35e62d8c18a865ee9eff34cc303f77ce4
e35ffef188a8b72000ae9402b9143b9f35cf95ca
/web3/utils/filters.py
ccdec69050ed01b26cf2d405c2b6f66fe6989572
[ "MIT" ]
permissive
riccitensor/web3.py
7dd9215b6d6755340cfc85c37d06cb076b3518de
73bfb0f7bab1f035cb9c4ce9a8660cb664e61c58
refs/heads/master
2020-12-11T09:16:53.374513
2016-08-07T01:11:25
2016-08-07T01:11:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,915
py
import re import random import gevent from .types import ( is_string, is_array, ) from .abi import ( construct_event_topic_set, construct_event_data_set, ) def construct_event_filter_params(event_abi, contract_address=None, argument_filters=None, topics=None, fromBlock=None, toBlock=None, address=None): filter_params = {} if topics is None: topic_set = construct_event_topic_set(event_abi, argument_filters) else: topic_set = [topics] + construct_event_topic_set(event_abi, argument_filters) if len(topic_set) == 1 and is_array(topic_set[0]): filter_params['topics'] = topic_set[0] else: filter_params['topics'] = topic_set if address and contract_address: if is_array(address): filter_params['address'] = address + [contract_address] elif is_string(address): filter_params['address'] = [address, contract_address] else: raise ValueError( "Unsupported type for `address` parameter: {0}".format(type(address)) ) elif address: filter_params['address'] = address elif contract_address: filter_params['address'] = contract_address if fromBlock is not None: filter_params['fromBlock'] = fromBlock if toBlock is not None: filter_params['toBlock'] = toBlock data_filters_set = construct_event_data_set(event_abi, argument_filters) return data_filters_set, filter_params class BaseFilter(gevent.Greenlet): callbacks = None running = None stopped = False def __init__(self, web3, filter_id): self.web3 = web3 self.filter_id = filter_id self.callbacks = [] gevent.Greenlet.__init__(self) def __str__(self): return "Filter for {0}".format(self.filter_id) def _run(self): if self.stopped: raise ValueError("Cannot restart a Filter") self.running = True self.rejected_logs = [] previous_logs = self.web3.eth.getFilterLogs(self.filter_id) if previous_logs: for entry in previous_logs: for callback_fn in self.callbacks: if self.is_valid_entry(entry): callback_fn(entry) else: self.rejected_logs.append(entry) while self.running: changes = self.web3.eth.getFilterChanges(self.filter_id) if changes: for entry in changes: for callback_fn in self.callbacks: if self.is_valid_entry(entry): callback_fn(entry) else: self.rejected_logs.append(entry) gevent.sleep(random.random()) def is_valid_entry(self, entry): """ Hook for subclasses to implement additional filtering layers. """ return True def watch(self, *callbacks): if self.stopped: raise ValueError("Cannot watch on a filter that has been stopped") self.callbacks.extend(callbacks) if not self.running: self.start() def stop_watching(self, timeout=0): self.running = False self.stopped = True self.web3.eth.uninstallFilter(self.filter_id) self.join(timeout) stopWatching = stop_watching class BlockFilter(BaseFilter): pass class TransactionFilter(BaseFilter): pass ZERO_32BYTES = '[a-f0-9]{64}' def construct_data_filter_regex(data_filter_set): return re.compile(( '^' + '|'.join(( '0x' + ''.join( (ZERO_32BYTES if v is None else v[2:] for v in data_filter) ) for data_filter in data_filter_set )) + '$' )) class LogFilter(BaseFilter): data_filter_set = None data_filter_set_regex = None def get(self, only_changes=True): if self.running: raise ValueError( "Cannot call `get` on a filter object which is actively watching" ) if only_changes: return self.web3.eth.getFilterChanges(self.filter_id) else: return self.web3.eth.getFilterChanges(self.filter_id) def set_data_filters(self, data_filter_set): self.data_filter_set = data_filter_set if any(data_filter_set): self.data_filter_set_regex = construct_data_filter_regex( data_filter_set, ) def is_valid_entry(self, entry): if not self.data_filter_set_regex: return True return bool(self.data_filter_set_regex.match(entry['data']))
f054090518610eef7e91a188cf6eddfc36451fae
92782460989bc10540c85804215832b465a6474a
/spell/__main__.py
45b2f2907893f3d1ded09b0872d5dd381c92b1d3
[ "GPL-1.0-or-later", "GPL-3.0-only", "MIT" ]
permissive
malaikannan/open-tamil
805ccd2b9bd88df23127425c7bcebaf97f337352
99f0c4484cd07a98cf77146c754592e5c26f6965
refs/heads/master
2022-07-19T12:35:36.956062
2020-05-21T07:41:06
2020-05-21T07:41:06
266,903,297
2
0
MIT
2020-05-25T23:54:56
2020-05-25T23:54:56
null
UTF-8
Python
false
false
158
py
#!/usr/bin/python #(C) 2016 Muthiah Annamalai #This file is part of open-tamil package from .spell import main if __name__ == u"__main__": main()
78ec746175809e03465ab3c1d327ae68cb431ec3
ed17ca55fedd70cc336271e40634b09791437db5
/products/migrations/0002_auto_20201204_0247.py
2b725f84fddbe8f837b129604041dbd116466796
[]
no_license
wecode-bootcamp-korea/14-2nd-MyLittleTrip-backend
a5c8beb0a30ed7ef92fba04499036d4ccfbe2add
d9720f51a30028a866fd62d6c66a1a7e4525ce5f
refs/heads/master
2023-01-24T13:40:18.601842
2020-12-09T19:03:35
2020-12-11T03:49:04
317,109,595
0
3
null
2020-12-11T03:49:05
2020-11-30T04:21:54
Python
UTF-8
Python
false
false
381
py
# Generated by Django 3.1.4 on 2020-12-04 02:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.AlterField( model_name='region', name='region_code', field=models.CharField(max_length=30), ), ]
fee4e1d37330f42b34263f994d91a021098befbe
81537f77ddfa3820e7a224173b8249af2d665987
/microcosm_flask/paging.py
dd014de3020195af3815195585789346b2ef9e63
[ "Apache-2.0" ]
permissive
pokey/microcosm-flask
efa0ae6c39f0ecf85c79f3d2ef607af8bad80635
77dd32f4c670c1a6f2ac70dd37d2a3f05d118707
refs/heads/develop
2021-01-13T14:58:48.889868
2017-01-10T22:55:17
2017-01-10T22:55:17
79,353,026
0
0
null
2017-01-18T15:23:13
2017-01-18T15:23:13
null
UTF-8
Python
false
false
3,576
py
""" Pagination support. """ from marshmallow import fields, Schema from microcosm_flask.linking import Link, Links from microcosm_flask.operations import Operation class PageSchema(Schema): offset = fields.Integer(missing=0, default=0) limit = fields.Integer(missing=20, limit=20) def make_paginated_list_schema(ns, item_schema): """ Generate a paginated list schema. :param ns: a `Namespace` for the list's item type :param item_schema: a `Schema` for the list's item type """ class PaginatedListSchema(Schema): __alias__ = "{}_list".format(ns.subject_name) offset = fields.Integer(required=True) limit = fields.Integer(required=True) count = fields.Integer(required=True) items = fields.List(fields.Nested(item_schema), required=True) _links = fields.Raw() return PaginatedListSchema class Page(object): def __init__(self, offset, limit, **rest): self.offset = offset self.limit = limit self.rest = rest @classmethod def from_query_string(cls, qs): """ Create a page from a query string dictionary. This dictionary should probably come from `PageSchema.from_request()`. """ dct = qs.copy() offset = dct.pop("offset", None) limit = dct.pop("limit", None) return cls( offset=offset, limit=limit, **dct ) def next(self): return Page( offset=self.offset + self.limit, limit=self.limit, **self.rest ) def prev(self): return Page( offset=self.offset - self.limit, limit=self.limit, **self.rest ) def to_dict(self): return dict(self.to_tuples()) def to_tuples(self): """ Convert to tuples for deterministic order when passed to urlencode. """ return [ ("offset", self.offset), ("limit", self.limit), ] + [ (key, str(self.rest[key])) for key in sorted(self.rest.keys()) ] class PaginatedList(object): def __init__(self, ns, page, items, count, schema=None, operation=Operation.Search, **extra): self.ns = ns self.page = page self.items = items self.count = count self.schema = schema self.operation = operation self.extra = extra def to_dict(self): return dict( count=self.count, items=[ self.schema.dump(item).data if self.schema else item for item in self.items ], _links=self._links, **self.page.to_dict() ) @property def offset(self): return self.page.offset @property def limit(self): return self.page.limit @property def _links(self): return self.links.to_dict() @property def links(self): links = Links() links["self"] = Link.for_(self.operation, self.ns, qs=self.page.to_tuples(), **self.extra) if self.page.offset + self.page.limit < self.count: links["next"] = Link.for_(self.operation, self.ns, qs=self.page.next().to_tuples(), **self.extra) if self.page.offset > 0: links["prev"] = Link.for_(self.operation, self.ns, qs=self.page.prev().to_tuples(), **self.extra) return links
a58533d3e0ece739374952851246a130ea035d13
8f6aa9ac9c8c2e409875bbf36fbc49b3eb37d88b
/enthought/traits/ui/qt4/toolkit.py
95a3bc996def22c143270a1727135aa6b5b892ba
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
enthought/etsproxy
5660cf562c810db2ceb6b592b6c12274bce96d73
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
refs/heads/master
2023-03-27T04:51:29.297305
2020-12-02T09:05:18
2020-12-02T09:05:18
1,632,969
3
1
NOASSERTION
2020-12-02T09:05:20
2011-04-18T22:29:56
Python
UTF-8
Python
false
false
50
py
# proxy module from traitsui.qt4.toolkit import *
bdc4b50832daa23779baf1ddce94fb0fda27d228
8c3755e907a8f7fbae4e5e3334aa9332f8f705bb
/python_example_scripts/stack_lifo.py
d367791a5ad2ff1345144dca57c6111f3d7a842d
[]
no_license
xaneon/PythonProgrammingBasics
20c9db82f621a41735856a0b008bf2c328d8e4b5
accf4d16034d33e616b5ebe46f69c1130b09f85e
refs/heads/master
2020-06-13T13:47:02.995326
2019-07-01T13:45:29
2019-07-01T13:45:29
194,235,103
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
import random import os import time def print_gegenstande(gegenstande): os.system("clear") for i, gegenstand in enumerate(gegenstande): print(str(len(gegenstande) - i) + ". " + gegenstand) def eliminate_fifo(gegenstande): if len(gegenstande) == 0: print("Kein Gegenstand mehr uebrig.") else: out = gegenstande.pop(0) print_gegenstande(gegenstande) print("%s herausgenommen." %out) time.sleep(2) eliminate_fifo(gegenstande) print("Simulation einer Schlange, FIFO") anzahl_zufallszahlen = 8 groesste_zahl = 10 zufallszahlen = random.sample(range(1, groesste_zahl), anzahl_zufallszahlen) gegenstande = ['Gegenstand' + str(int(x)) for x in zufallszahlen] print_gegenstande(gegenstande) time.sleep(5) eliminate_fifo(gegenstande)
b6fa1efaa794a7a60877ebf4753cc19a49117b67
a859aadea24af173a175c2d01910314487ec6fbf
/common/coco_caption/pycocoevalcap/eval.py
1947f13ea55f7a0df5153ed2c5e8c352ae50a0fe
[ "BSD-3-Clause", "BSD-2-Clause-Views" ]
permissive
jiahuei/tf-sparse-captioning
cc52cbef5590b47727ea89f265011c9ab58aebad
9d7b8ecdd44fb1541500ca4f920d6c94fd15bad1
refs/heads/main
2023-04-07T05:27:28.395758
2021-04-19T11:27:28
2021-04-19T11:27:28
359,341,665
0
0
null
null
null
null
UTF-8
Python
false
false
2,928
py
__author__ = 'tylin' from common.coco_caption.pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from common.coco_caption.pycocoevalcap.bleu.bleu import Bleu from common.coco_caption.pycocoevalcap.meteor.meteor import Meteor from common.coco_caption.pycocoevalcap.rouge.rouge import Rouge from common.coco_caption.pycocoevalcap.cider.cider import Cider from common.coco_caption.pycocoevalcap.spice.spice import Spice class COCOEvalCap: def __init__(self, coco, cocoRes): self.evalImgs = [] self.eval = {} self.imgToEval = {} self.coco = coco self.cocoRes = cocoRes self.params = {'image_id': coco.getImgIds()} def evaluate(self): imgIds = self.params['image_id'] # imgIds = self.coco.getImgIds() gts = {} res = {} for imgId in imgIds: gts[imgId] = self.coco.imgToAnns[imgId] res[imgId] = self.cocoRes.imgToAnns[imgId] # ================================================= # Set up scorers # ================================================= print('tokenization...') tokenizer = PTBTokenizer() gts = tokenizer.tokenize(gts) res = tokenizer.tokenize(res) # ================================================= # Set up scorers # ================================================= print('setting up scorers...') scorers = [ (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]), (Meteor(), "METEOR"), (Rouge(), "ROUGE_L"), (Cider(), "CIDEr"), (Spice(), "SPICE") ] # ================================================= # Compute scores # ================================================= for scorer, method in scorers: print('computing %s score...' % (scorer.method())) score, scores = scorer.compute_score(gts, res) if type(method) == list: for sc, scs, m in zip(score, scores, method): self.setEval(sc, m) self.setImgToEvalImgs(scs, gts.keys(), m) print("%s: %0.3f" % (m, sc)) else: self.setEval(score, method) self.setImgToEvalImgs(scores, gts.keys(), method) print("%s: %0.3f" % (method, score)) self.setEvalImgs() def setEval(self, score, method): self.eval[method] = score def setImgToEvalImgs(self, scores, imgIds, method): for imgId, score in zip(imgIds, scores): if not imgId in self.imgToEval: self.imgToEval[imgId] = {} self.imgToEval[imgId]["image_id"] = imgId self.imgToEval[imgId][method] = score def setEvalImgs(self): self.evalImgs = [eval for imgId, eval in self.imgToEval.items()]
9391b31cd13597c6fe1434a51e63e7aec430beb3
3647a797d42fd51b4290f9bb3c56b80cebd1c17f
/lesson215.py
83d846bf66e88a1f14a6e902be2e796be4870611
[]
no_license
ipcoo43/algorithm
1ff8193b0adc92056fbbb7cafcbf76afa6dc7543
7088e6a6f71f6c32feab0806cb9337a8c45755c3
refs/heads/master
2020-05-17T21:15:37.671199
2019-05-03T03:04:48
2019-05-03T03:04:48
183,966,114
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
import glob2 print(list(filter(lambda x:'LIFE IS TOO SHORT' in open(x).read(), glob2.glob('./data/t*.txt') )))
224e7ac3dff3f24f45821a832a7a16546a31d23f
fd60b97a4a506bbff92709c38136fda8e4a03274
/Ben's Projects/Archived Projects/Self-Driving Buggy Rev. 2/Camera.py
af6d4f57c28feb56bfca0a855e95252d97f4b525
[]
no_license
BPPJH/Self-Driving-Buggy
3727795384f3a5d530c9bc0ab281a09dafa6748f
7268b9e6bd6274f0520c7d57cda3af250316d913
refs/heads/master
2020-12-29T03:34:24.048157
2015-08-12T01:48:03
2015-08-12T01:48:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,905
py
import cv2 import numpy import copy import time import os projectDir = os.path.dirname(os.path.realpath(__file__)) class Camera(object): excludedSources = set() increaseFPSActions = [] resolutions = { "logitech": { 8: (1920, 1080), 12: (1440, 810), 23: (960, 540), 30: (480, 270), 31: (240, 135), "default": 30 }, "ELP": { 10: (2048, 1536), 12: (1600, 1200), 30: (1280, 720), 31: (640, 480), 32: (320, 240), "default": 30 }, "ELP180": { 6: (1920, 1080), 9: (1280, 720), 21: (800, 600), 30: (640, 480), 31: (352, 288), 32: (320, 240), "default": 30 } } macKeyCodes = { 63232: "up", 63233: "down", 63234: "left", 63235: "right", 27: "esc", 13: "enter" } def __init__(self, windowName=None, camSource=None, width=None, height=None, sizeByFPS=None, cameraType=None, crop=(None,) * 4, autoSelect=False): time1 = time.time() self.windowName = windowName self.camSource = camSource if self.windowName is None: self.enableDraw = False else: self.enableDraw = True self.sizeByFPS = sizeByFPS self.isRunning = True self.analysisApplied = False self.cameraType = cameraType self.cameraFPS = None self.trackbarName = "Frame" self.crop = list(crop) if cameraType is not None: self.resolutions = Camera.resolutions[cameraType] else: self.resolutions = Camera.resolutions["logitech"] if windowName is not None: cv2.namedWindow(windowName) if camSource is not None: if type(camSource) == str: self.loadVideo(camSource) else: self.loadCamera(camSource) else: if autoSelect is True: capture = self.searchForCamera() else: capture = self.cameraSelector() self.loadCamera(capture) if width is not None and height is not None: self.width, self.height = width, height elif self.sizeByFPS is not None: if (self.sizeByFPS in self.resolutions.keys()) is False: self.sizeByFPS = self.findClosestRes(sizeByFPS) self.width, self.height = self.resolutions[self.sizeByFPS] else: if type(self.camSource) == int: self.sizeByFPS = self.resolutions["default"] self.width, self.height = self.resolutions[self.sizeByFPS] else: self.width, self.height = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH), self.camera.get( cv2.CAP_PROP_FRAME_HEIGHT) if type(self.camSource) == int: Camera.increaseFPSActions.append(self.increaseFPS) if len(Camera.increaseFPSActions) >= 2: for increaseFPS in Camera.increaseFPSActions: increaseFPS() Camera.increaseFPSActions = [] self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width) self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height) if self.crop[0] is None: self.crop[0] = 0 if self.crop[1] is None: self.crop[1] = 0 if self.crop[2] is None: self.crop[2] = self.width if self.crop[3] is None: self.crop[3] = self.height time2 = time.time() print str(self.camSource) + " loaded in " + str(time2 - time1) + " seconds. Capture size is " + \ str(int(self.width)) + "x" + str(int(self.height)) def cameraSelector(self): shape = None windowName = "camera #" capture = 0 def updateCapture(windowName, video, capture, delta=None, newCapture=None): print str(capture) + " ---> ", cv2.destroyWindow(windowName + str(capture)) if delta is not None: capture += delta elif newCapture is not None: capture = newCapture print capture video = cv2.VideoCapture(capture) video.set(cv2.CAP_PROP_FRAME_WIDTH, 720) video.set(cv2.CAP_PROP_FRAME_HEIGHT, 450) return video, capture video = cv2.VideoCapture(capture) video.set(cv2.CAP_PROP_FRAME_WIDTH, 720) video.set(cv2.CAP_PROP_FRAME_HEIGHT, 450) while True: key = self.getPressedKey(5) if key == "left": video, capture = updateCapture(windowName, video, capture, delta=-1) elif key == "right": video, capture = updateCapture(windowName, video, capture, delta=+1) elif type(key) == str and key.isdigit(): video, capture = updateCapture(windowName, video, capture, newCapture=int(key)) elif key == "enter": cv2.destroyWindow(windowName + str(capture)) return capture elif key == 'q' or key == "esc": quit() success, frame = video.read() if success is True and frame is not None: cv2.imshow(windowName + str(capture), frame) shape = frame.shape else: cv2.imshow(windowName + str(capture), numpy.zeros(shape)) def searchForCamera(self): success, frame = False, None capture = 0 while True: temp = cv2.VideoCapture(capture) success, frame = temp.read() if (success is True or capture > 10) and (capture in Camera.excludedSources) == False: break capture += 1 if success is False: capture = -1 while True: temp = cv2.VideoCapture(capture) success, frame = temp.read() if (success is True or capture > 10) and (capture in Camera.excludedSources) == False: break capture -= 1 if success is False: raise Exception("Camera could not be found") return capture def loadCamera(self, capture): print "loading camera " + str(capture) + " into window named '" + str(self.windowName) + "'..." self.camera = cv2.VideoCapture(capture) self.camSource = capture Camera.excludedSources.add(capture) def loadVideo(self, camSource): print "loading video into window named '" + str(self.windowName) + "'..." self.camera = cv2.VideoCapture(projectDir + "/videos/" + camSource) print "video loaded!" self.cameraFPS = self.camera.get(cv2.CAP_PROP_FPS) cv2.createTrackbar(self.trackbarName, self.windowName, 0, int(self.camera.get(cv2.CAP_PROP_FRAME_COUNT)), self.onSlider) def findClosestRes(self, sizeByFPS): possibleFPSs = numpy.array(self.resolutions.keys()) minuend = copy.copy(possibleFPSs) minuend.fill(sizeByFPS) difference = possibleFPSs - minuend difference = numpy.absolute(difference) minimum = numpy.min(difference) index = numpy.where(difference == minimum)[0][0] return possibleFPSs[index] def stopCamera(self): self.isRunning = False self.camera.release() cv2.destroyWindow(self.windowName) def setFrame(self, frameNumber): if frameNumber >= self.camera.get(cv2.CAP_PROP_FRAME_COUNT): frameNumber = 0 if type(self.camSource) == str and frameNumber >= 0: self.camera.set(cv2.CAP_PROP_POS_FRAMES, frameNumber) def incrementFrame(self): self.setFrame(self.camera.get(cv2.CAP_PROP_POS_FRAMES) + 1) def decrementFrame(self): self.setFrame(self.camera.get( cv2.CAP_PROP_POS_FRAMES) - 1.8) # huh??? Refuses to go back otherwise. frames numbers aren't integers?! # cv2.CAP_PROP_POS_FRAMES) - 1) def saveFrame(self, frame): cv2.imwrite("images/" + time.strftime("%c").replace(":", "_") + ".png", frame) def increaseFPS(self): possibleFPSs = sorted(self.resolutions.keys()) index = possibleFPSs.index(self.sizeByFPS) if (index + 1) < len(possibleFPSs): index += 1 self.sizeByFPS = possibleFPSs[index] self.width, self.height = self.resolutions[self.sizeByFPS] self.setCameraSize(self.width, self.height) def setCameraSize(self, width=None, height=None): if self.width != None: self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.width = width if self.height != None: self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, height) self.height = height def onSlider(self, frameIndex): if frameIndex != self.currentFrameNumber(): self.camera.set(cv2.CAP_PROP_POS_FRAMES, frameIndex) self.showFrame(self.updateFrame(False)) def getPressedKey(self, delay=1): key = cv2.waitKey(delay) if key in Camera.macKeyCodes: return Camera.macKeyCodes[key] elif key > -1: return chr(key) else: return key @staticmethod def delay(delay): cv2.waitKey(delay) def showFrame(self, frame): cv2.imshow(self.windowName, frame) def currentFrameNumber(self): return self.camera.get(cv2.CAP_PROP_POS_FRAMES) def getVideoFPS(self): return self.camera.get(cv2.CAP_PROP_FPS) def updateFrame(self, readNextFrame=True): if self.isRunning is False: self.stopCamera() return if readNextFrame is False: self.decrementFrame() success, frame = self.camera.read() if success is False or frame is None: if type(self.camSource) == int: raise Exception("Failed to read from camera!") else: self.setFrame(0) success, frame = self.camera.read() if frame.shape[0:2] != (self.height, self.width): frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_NEAREST) if self.crop is not None: x0, y0, x1, y1 = self.crop frame = frame[y0:y1, x0:x1] if readNextFrame is True: if type(self.camSource) == str: cv2.setTrackbarPos(self.trackbarName, self.windowName, int(self.camera.get(cv2.CAP_PROP_POS_FRAMES))) return frame
3f9176bfbc4b64d2b60c858a1ea0840683339b80
c84a3895e6fdcaff5a9f97abe9c3efbecbad535f
/strategy/indicator/stochastic/stochastic.py
70af686788a789545bdd38b4abffeef8074a6528
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
cal97g/siis
5a171eb34dd3f7ae6e19d8065ff1e2f8b6251319
adc06e48e5df6ffd7bed6ee6b79d0aa3cfe80e0d
refs/heads/master
2020-07-23T18:11:57.267225
2019-09-05T01:00:37
2019-09-05T01:00:37
207,663,001
0
1
null
2019-09-10T21:05:25
2019-09-10T21:05:25
null
UTF-8
Python
false
false
4,547
py
# @date 2018-09-02 # @author Frederic SCHERMA # @author Xavier BONNIN # @license Copyright (c) 2018 Dream Overflow # Stochastique indicator from strategy.indicator.indicator import Indicator from strategy.indicator.utils import down_sample, MMexp_n, MM_n import numpy as np from talib import STOCH as ta_STOCH, STOCHF as to_STOCHF class StochasticIndicator(Indicator): """ Stochastique indicator. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/slow-stochastic """ __slots__ = '_len_K', '_len_D', '_prev_k', '_last_k', '_prev_d', '_last_d', '_ks', '_ds' @classmethod def indicator_type(cls): return Indicator.TYPE_MOMENTUM @classmethod def indicator_class(cls): return Indicator.CLS_OSCILLATOR def __init__(self, timeframe, len_K=9, len_D=3): super().__init__("stochastic", timeframe) self._len_K = len_K # periods number for the K self._len_D = len_D # periods number for the D self._prev_k = 0.0 self._last_k = 0.0 self._prev_d = 0.0 self._last_d = 0.0 self._ks = np.array([]) self._ds = np.array([]) @property def length(self): return self._length @length.setter def length(self, length): self._length = length @property def prev_k(self): return self._prev_k @property def last_k(self): return self._last_k @property def prev_d(self): return self._prev_d @property def last_d(self): return self._last_d @property def len_K(self): return self._len_K @len_K.setter def len_K(self, len_K): self._len_K = len_K @property def len_D(self): return self._len_D @len_D.setter def len_D(self, len_D): self._len_D = len_D @property def ks(self): return self._ks @property def ds(self): return self._ds def cross(self): if (self._prev_k > self._prev_d and self._last_k < self._last_d): return -1 elif (self._prev_k < self._prev_d and self._last_k > self._prev_d): return 1 return 0 @staticmethod def Stochastic(N, data, N_D=3): K = np.zeros(len(data)) for (j,d) in enumerate(data): i=min(j,N) highest = max(data[j-i:j+1]) lowest = min(data[j-i:j+1]) if highest == lowest: highest += 0.000000001 K[j]=(d-lowest)/(highest-lowest) # +epsilon to avoid 0 D = MM_n(N_D, K) return (K, D) @staticmethod def Stochastic_sf(N, data, N_D=3, step=1, filtering=False): """ Calcul des stochastiques. N est le nombre de periodes a observer pour repérer le min et le max du cours. N_D est le nombre d'echantillons de K a utiliser pour le calcul de D step permet de ne selectionner qu'un echantillon sur step dans data. filtering permet de filtrer ou non les donnees avant d'appliquer la selection. Retourne les stochastiques K, D interpolees lineairement ; meme taille que data. """ sub_data = down_sample(data, step) if filtering else data [::step] K = np.zeros(len(sub_data)) t_subdata = range(0,len(data),step) for (j,d) in enumerate(sub_data): i=min(j,N) highest = max(sub_data[j-i:j+1]) lowest = min(sub_data[j-i:j+1]) if highest == lowest: highest += 0.000000001 K[j]=(d-lowest)/(highest-lowest) # +epsilon to avoid 0 D = MM_n(N_D, K) return np.interp(range(len(data)), t_subdata, K), np.interp(range(len(data)), t_subdata, D) def compute(self, timestamp, high, low, close): self._prev_k = self._last_k self._prev_d = self._last_d # k, d = StochasticIndicator.Stochastic_sf(self._len_K, close, self._len_D) # , self._step, self._filtering) # k, d = ta_STOCH(high, low, close, fastk_period=self._len_K, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self._ks, self._ds = to_STOCHF(high, low, close, fastk_period=self._len_K, fastd_period=self._len_D, fastd_matype=0) self._last_k = self._ks[-1] self._last_d = self._ds[-1] self._last_timestamp = timestamp return self._ks, self._ds def trace(self): return tuple(self._last_k, self._last_d)
90f3fd457bb6be4986e3cb9a139ce1bb796a0b93
260133e46c0c88fd20f2ed18309c5f46508b7fb9
/opengever/core/upgrades/20180427113547_remove_repository_favorites_registry/upgrade.py
d35786bcd9e9437d14564de8a7f13537174a91fb
[]
no_license
robertmuehsig/opengever.core
4180fbea1436fade9b33232a293b0d43ebfc6c51
63b3747793d5b824c56eb3659987bb361d25d8d8
refs/heads/master
2020-09-08T14:55:00.340222
2019-11-08T10:16:02
2019-11-08T10:16:02
221,163,734
0
0
null
2019-11-12T08:08:59
2019-11-12T08:08:54
null
UTF-8
Python
false
false
209
py
from ftw.upgrade import UpgradeStep class RemoveRepositoryFavoritesRegistry(UpgradeStep): """Remove repository favorites registry. """ def __call__(self): self.install_upgrade_profile()
70b9ff857f052de1494af6f15324f7f6a36b5a94
3b504a983f1807ae7c5af51078bfab8c187fc82d
/client/input/__init__.py
073192a4d4a4bb57b86582751ad2f0503f45db8e
[]
no_license
SEA-group/wowp_scripts
7d35fd213db95ea6b3dbd1ec6d3e0f13de86ba58
2fe54a44df34f2dcaa6860a23b835dcd8dd21402
refs/heads/master
2021-09-07T23:10:13.706605
2018-03-02T17:23:48
2018-03-02T17:23:48
117,280,141
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
# Embedded file name: scripts/client/input/__init__.py pass
ab0ea4f90f5163784652dfb3afb83b9c095b376c
76baf5ff0e8717ab6a17575bc9c126e7eb4e2f28
/docker/shummie/shummiev58.py
9a7880440e45168b937a2c6f6d116ae5eb46d44a
[]
no_license
nmalaguti/halite-bots
f0e8caf3e9898884e6476ff5d36884a2f4e07309
82efde39f83b5c34719d31396c7659d2c2f18c03
refs/heads/master
2023-07-15T01:20:00.784928
2023-06-29T02:49:35
2023-06-29T02:49:35
73,758,433
5
0
null
null
null
null
UTF-8
Python
false
false
63,668
py
# ============================================================================== # Imports # ============================================================================== import functools import itertools import logging import math import numpy as np import random import scipy.sparse import sys import time import copy # ============================================================================== # Variables # ============================================================================== botname = "shummie v58" strength_buffer = 0 print_maps = False def print_map(npmap, name): directory = "Maps/" if print_maps: np.savetxt(directory + name + str(game.frame) + ".txt", npmap) # ============================================================================== # Game Class # ============================================================================== class Game: def __init__(self): # This should only be called once, and at the beginning of the game self.my_id = int(get_string()) map_size_string = get_string() self.width, self.height = tuple(map(int, map_size_string.split())) production_map_string = get_string() self.production_map = np.array(list(map(int, production_map_string.split()))).reshape((self.height, self.width)).transpose() self.create_squares_list() self.frame = -1 self.phase = 0 self.get_frame() self.starting_player_count = np.amax(self.owner_map) # Note, for range you'd need to increase the range by 1 # Create the distance map self.create_one_time_maps() self.max_turns = 10 * ((self.width * self.height) ** 0.5) self.set_configs() # Send the botname send_string(botname) def __iter__(self): # Allows direct iteration over all squares return itertools.chain.from_iterable(self.squares) def get_frame(self, map_string=None): # Updates the map information from the latest frame provided by the game environment if map_string is None: map_string = get_string() split_string = map_string.split() # The state of the map (including owner and strength values, but excluding production values) is sent in the following way: # One integer, COUNTER, representing the number of tiles with the same owner consecutively. # One integer, OWNER, representing the owner of the tiles COUNTER encodes. # The above repeats until the COUNTER total is equal to the area of the map. # It fills in the map from row 1 to row HEIGHT and within a row from column 1 to column WIDTH. # Please be aware that the top row is the first row, as Halite uses screen-type coordinates. owners = list() while len(owners) < self.width * self.height: counter = int(split_string.pop(0)) owner = int(split_string.pop(0)) owners.extend([owner] * counter) assert len(owners) == self.width * self.height self.owner_map = np.array(owners).reshape((self.height, self.width)).transpose() # This is then followed by WIDTH * HEIGHT integers, representing the strength values of the tiles in the map. # It fills in the map in the same way owner values fill in the map. assert len(split_string) == self.width * self.height str_list = list(map(int, split_string)) self.strength_map = np.array(str_list).reshape((self.height, self.width)).transpose() # Update all squares for x in range(self.width): for y in range(self.height): self.squares[x, y].update(self.owner_map[x, y], self.strength_map[x, y]) # Reset the move_map self.move_map = np.ones((self.width, self.height)) * -1 # Could possibly expand this in the future to consider enemy moves... self.frame += 1 def send_frame(self): # Goes through each square and get the list of moves. move_list = [] for sq in itertools.chain.from_iterable(self.squares): if sq.owner == self.my_id: if sq.strength == 0: # Squares with 0 strength shouldn't move. sq.move = 4 if sq.move == -1: # In the event we didn't actually assign a move, make sure it's coded to STILL sq.move = 4 move_list.append(sq) send_string(' '.join(str(square.x) + ' ' + str(square.y) + ' ' + str(translate_cardinal(square.move)) for square in move_list)) def create_squares_list(self): self.squares = np.empty((self.width, self.height), dtype=np.object) for x in range(self.width): for y in range(self.height): self.squares[x, y] = Square(self, x, y, self.production_map[x, y]) for x in range(self.width): for y in range(self.height): self.squares[x, y].after_init_update() def create_one_time_maps(self): self.distance_map = self.create_distance_map() self.distance_map_no_decay = self.create_distance_map(1) self.production_map_01 = np.maximum(self.production_map, 0.1) self.production_map_1 = np.maximum(self.production_map, 1) self.strength_map_01 = np.maximum(self.strength_map, 0.1) self.strength_map_1 = np.maximum(self.strength_map, 1) self.create_dijkstra_maps() def create_dijkstra_maps(self): def get_cost_recov(cellnum): x = cellnum // self.height y = cellnum % self.height return self.strength_map_1[x, y] / self.production_map_01[x, y] dij_recov_costs = scipy.sparse.dok_matrix((self.width * self.height, self.width * self.height)) for x in range(self.width): for y in range(self.height): coord = x * self.height + y dij_recov_costs[coord, ((x + 1) % self.width) * self.height + ((y + 0) % self.height)] = get_cost_recov(((x + 1) % self.width) * self.height + ((y + 0) % self.height)) dij_recov_costs[coord, ((x - 1) % self.width) * self.height + ((y + 0) % self.height)] = get_cost_recov(((x - 1) % self.width) * self.height + ((y + 0) % self.height)) dij_recov_costs[coord, ((x + 0) % self.width) * self.height + ((y + 1) % self.height)] = get_cost_recov(((x + 0) % self.width) * self.height + ((y + 1) % self.height)) dij_recov_costs[coord, ((x + 0) % self.width) * self.height + ((y - 1) % self.height)] = get_cost_recov(((x + 0) % self.width) * self.height + ((y - 1) % self.height)) self.dij_recov_cost, self.dij_recov_route = scipy.sparse.csgraph.dijkstra(dij_recov_costs, return_predecessors=True) self.dij_recov_distance_map = np.zeros((self.width, self.height, self.width, self.height)) self.dij_recov_route_map = np.zeros((self.width, self.height, self.width, self.height)) for x in range(self.width): for y in range(self.height): self.dij_recov_distance_map[x, y, :, :] = self.dij_recov_cost[x * self.height + y].reshape((self.width, self.height)) self.dij_recov_route_map[x, y, :, :] = self.dij_recov_route[x * self.height + y].reshape((self.width, self.height)) def create_distance_map(self, falloff=1): # Creates a distance map so that we can easily divide a map to get ratios that we are interested in # self.distance_map[x, y, :, :] returns an array of (width, height) that gives the distance (x, y) is from (i, j) for all i, j # Note that the actual distance from x, y, to i, j is set to 1 to avoid divide by zero errors. Anything that utilizes this function should be aware of this fact. # Create the base map for 0, 0 zero_zero_map = np.zeros((self.width, self.height)) for x in range(self.width): for y in range(self.height): dist_x = min(x, -x % self.width) dist_y = min(y, -y % self.width) zero_zero_map[x, y] = max(dist_x + dist_y, 1) zero_zero_map = zero_zero_map ** falloff distance_map = np.zeros((self.width, self.height, self.width, self.height)) for x in range(self.width): for y in range(self.height): distance_map[x, y, :, :] = roll_xy(zero_zero_map, x, y) return distance_map def set_configs(self): self.buildup_multiplier = np.minimum(np.maximum(self.production_map, 4), 9) self.pre_combat_threshold = -3 self.combat_radius = 8 self.production_cells_out = int(self.width / self.starting_player_count / 1.5) self.phase = 0 # Find the "global max" self.global_max_square = None self.total_avg_cost_to_global = 0 def update_configs(self): self.buildup_multiplier = np.minimum(np.maximum(self.production_map, 5), 5) # self.buildup_multiplier = np.minimum(np.maximum(self.production_map, 4), 7) self.buildup_multiplier = self.buildup_multiplier - (self.distance_from_border ** 0.4) # self.combat_radius = int(min(max(5, self.percent_owned * self.width / 2), self.width // 2)) self.combat_radius = 8 if np.sum(self.combat_zone_map) > 3: self.production_cells_out = int(self.width / self.starting_player_count / 2.5) if self.percent_owned > 0.6: self.buildup_multiplier -= 1 self.pre_combat_threshold = 0 self.combat_radius = 10 elif self.my_production_sum / self.next_highest_production_sum > 1.1: self.buildup_multiplier += 1 def update(self): # start = time.time() self.update_maps() # end = time.time() # logging.debug("update_maps Frame: " + str(game.frame) + " : " + str(end - start)) self.update_stats() self.update_configs() def update_maps(self): print_map(self.strength_map, "strength_map") print_map(self.production_map, "production_map") self.update_calc_maps() self.update_owner_maps() self.update_border_maps() # start = time.time() self.update_enemy_maps() # end = time.time() # logging.debug("update_enemymaps Frame: " + str(game.frame) + " : " + str(end - start)) # start = time.time() self.update_value_production_map() self.update_controlled_influence_production_maps() def update_calc_maps(self): self.strength_map_01 = np.maximum(self.strength_map, 0.1) self.strength_map_1 = np.maximum(self.strength_map, 1) def update_owner_maps(self): self.is_owned_map = np.zeros((self.width, self.height)) self.is_neutral_map = np.zeros((self.width, self.height)) self.is_enemy_map = np.zeros((self.width, self.height)) self.is_owned_map[np.where(self.owner_map == self.my_id)] = 1 self.is_neutral_map[np.where(self.owner_map == 0)] = 1 self.is_enemy_map = 1 - self.is_owned_map - self.is_neutral_map def update_border_maps(self): self.border_map = np.zeros((self.width, self.height)) # self.inner_border_map = np.zeros((self.width, self.height)) self.combat_zone_map = np.zeros((self.width, self.height)) for square in itertools.chain.from_iterable(self.squares): if square.owner == 0: for n in square.neighbors: if n.owner == self.my_id: self.border_map[square.x, square.y] = 1 continue border_squares_indices = np.transpose(np.nonzero(self.border_map)) border_squares = [self.squares[c[0], c[1]] for c in border_squares_indices] self.distance_from_border = self.friendly_flood_fill_multiple_sources(border_squares, max(self.width, self.height)) owned_squares_indices = np.transpose(np.nonzero(self.is_owned_map)) owned_squares = [self.squares[c[0], c[1]] for c in owned_squares_indices] self.distance_from_owned = self.non_friendly_flood_fill_multiple_sources(owned_squares, max(self.width, self.height)) # print_map(self.distance_from_owned, "distance_from_owned") self.combat_zone_map = self.border_map * (self.strength_map == 0) if self.starting_player_count > 1 and np.sum(self.combat_zone_map) >= 1: # Breaks in single player mode otherwise. combat_squares_indices = np.transpose(np.nonzero(self.combat_zone_map)) combat_squares = [self.squares[c[0], c[1]] for c in combat_squares_indices] self.distance_from_combat_zone = self.friendly_flood_fill_multiple_sources(combat_squares, max(self.width, self.height)) self.distance_from_combat_zone[self.distance_from_combat_zone == -1] = 9999 # print_map(self.distance_from_combat_zone, "distance_from_combat_zone") else: self.distance_from_combat_zone = np.ones((self.width, self.height)) * 999 def update_enemy_maps(self): self.enemy_strength_map = np.zeros((5, self.width, self.height)) self.enemy_strength_map[0] = self.strength_map * self.is_enemy_map for x in range(len(self.enemy_strength_map)): self.enemy_strength_map[x] = spread_n(self.enemy_strength_map[0], x) print_map(self.enemy_strength_map[x], "enemy_str_" + str(x) + "_") self.own_strength_map = np.zeros((5, self.width, self.height)) self.own_strength_map[0] = self.strength_map * self.is_owned_map for x in range(len(self.own_strength_map)): self.own_strength_map[x] = spread_n(self.own_strength_map[0], x) def update_value_production_map(self): self.base_value_map = np.divide(self.production_map_01, self.strength_map_1) * (self.is_neutral_map - self.combat_zone_map) # Each neutral cell gets assigned to the closest border non-combat cell global_targets_indices = np.transpose(np.nonzero(self.is_neutral_map - self.combat_zone_map)) global_targets = [self.squares[c[0], c[1]] for c in global_targets_indices] self.global_border_map = np.zeros((self.width, self.height)) for g in global_targets: # Find the closest border square that routes to g gb_map = self.dij_recov_distance_map[g.x, g.y] * (self.border_map - self.combat_zone_map) gb_map[gb_map == 0] = 9999 tx, ty = np.unravel_index(gb_map.argmin(), (self.width, self.height)) self.global_border_map[tx, ty] += self.base_value_map[g.x, g.y] / self.dij_recov_distance_map[g.x, g.y, tx, ty] self.value_production_map = 1 / np.maximum(self.base_value_map + self.global_border_map * 1, 0.001) self.value_production_map *= (self.border_map - self.combat_zone_map) * (self.enemy_strength_map[1] == 0) # self.value_production_map = (self.border_map - self.combat_zone_map) * self.recover_wtd_map self.value_production_map[self.value_production_map == 0] = 9999 turns_left = self.max_turns - self.frame recover_threshold = turns_left * 0.6 self.value_production_map[self.value_production_map > recover_threshold] == 9999 bx, by = np.unravel_index(self.value_production_map.argmin(), (self.width, self.height)) # best_cell_value = self.value_production_map[bx, by] avg_recov_threshold = 2 # avg_map_recovery = np.sum(self.strength_map * (self.border_map - self.combat_zone_map)) / np.sum(self.production_map * (self.border_map - self.combat_zone_map)) avg_map_recovery = np.sum(self.strength_map * self.border_map) / np.sum(self.production_map * self.border_map) self.value_production_map[self.value_production_map > (avg_recov_threshold * avg_map_recovery)] = 9999 def update_controlled_influence_production_maps(self): max_distance = 6 self.controlled_production_influence_map = np.zeros((max_distance + 1, self.width, self.height)) self.controlled_production_influence_map[0] = self.production_map * (self.is_enemy_map + self.is_owned_map) for distance in range(1, max_distance + 1): self.controlled_production_influence_map[distance] = spread_n(self.controlled_production_influence_map[distance - 1], 1) self.controlled_production_influence_map[distance] = rebase_map(self.controlled_production_influence_map[distance - 1], False) def get_moves(self): # This is the main logic controlling code. # Find super high production cells self.get_pre_combat_production() # 1 - Find combat zone cells and attack them. # start = time.time() self.get_moves_attack() # end = time.time() # logging.debug("get_move_attack Frame: " + str(game.frame) + " : " + str(end - start)) self.get_moves_prepare_strength() # 2 - Find production zone cells and attack them # start = time.time() self.get_moves_production() # end = time.time() # logging.debug("get production moves Frame: " + str(game.frame) + " : " + str(end - start)) # 3 - Move all other unassigned cells. # start = time.time() self.get_moves_other() # end = time.time() # logging.debug("get other moves Frame: " + str(game.frame) + " : " + str(end - start)) def get_pre_combat_production(self): # In the event we are trying to fight in a very high production zone, reroute some attacking power to expand in this area. potential_targets_indices = np.transpose(np.nonzero(self.border_map - self.combat_zone_map)) potential_targets = [self.squares[c[0], c[1]] for c in potential_targets_indices if (1 / self.base_value_map[c[0], c[1]] < self.pre_combat_threshold)] if len(potential_targets) == 0: return potential_targets.sort(key=lambda sq: 1 / self.base_value_map[sq.x, sq.y]) best_target_value = 1 / self.base_value_map[potential_targets[0].x, potential_targets[0].y] # anything with X of the best_value target should be considered. Let's set this to 4 right now. while len(potential_targets) > 0 and 1 / self.base_value_map[potential_targets[0].x, potential_targets[0].y] <= (best_target_value + 1): target = potential_targets.pop(0) self.attack_cell(target, 2) def get_moves_attack(self): # Attempts to attack all border cells that are in combat potential_targets_indices = np.transpose(np.nonzero(self.combat_zone_map)) potential_targets = [self.squares[c[0], c[1]] for c in potential_targets_indices] # potential_targets.sort(key = lambda x: self.distance_from_enemy[x.x, x.y]) potential_targets.sort(key=lambda x: self.enemy_strength_map[2, x.x, x.y], reverse=True) # TODO: Should sort by amount of overkill damage possible. for square in potential_targets: self.attack_cell(square, 1) self.get_moves_breakthrough() # Get a list of all squares within 5 spaces of a combat zone. # TODO: This causes bounciness, i should probably do a floodfill of all combat zone squares instead? combat_zone_squares = [self.squares[c[0], c[1]] for c in np.transpose(np.nonzero(self.combat_zone_map))] combat_distance_matrix = self.friendly_flood_fill_multiple_sources(combat_zone_squares, self.combat_radius) # np.savetxt("Masps\maps%i.txt" % self.frame, combat_distance_matrix) # combat_distance_matrix[combat_distance_matrix == -1] = 0 # combat_distance_matrix[combat_distance_matrix == 1] = 0 combat_squares = [self.squares[c[0], c[1]] for c in np.transpose(np.nonzero(combat_distance_matrix))] combat_squares.sort(key=lambda x: x.strength, reverse=True) # combat_squares_indices = np.transpose(np.nonzero((self.distance_from_combat_zone <= combat_radius) * (self.move_map == -1))) # combat_squares = [self.squares[c[0], c[1]] for c in combat_squares_indices] print_map(combat_distance_matrix, "combat_distance_matrix_") for square in combat_squares: if (square.strength > 0) and (combat_distance_matrix[square.x, square.y] == 1) and (square.move == -1 or square.move == STILL): targets = [] alt_targets = [] for n in square.neighbors: if n.owner == 0 and n.strength == 0: targets.append(n) elif n.owner == self.my_id: alt_targets.append(n) targets.sort(key=lambda x: self.enemy_strength_map[2, x.x, x.y], reverse=True) alt_targets.sort(key=lambda x: x.strength) success = False for t in targets: success = self.move_square_to_target_simple(square, t, False) if success: break if not success: for t in targets: success = self.move_square_to_target_simple(square, t, True) if success: break elif (square.strength > (square.production * (self.buildup_multiplier[square.x, square.y] + self.distance_from_combat_zone[square.x, square.y]))) and ((square.x + square.y) % 2 == self.frame % 2) and square.move == -1 and square.moving_here == []: # self.move_towards_map(square, self.distance_from_combat_zone) self.move_towards_map_old(square, combat_distance_matrix) # elif square.strength > square.production and square.move == -1 and self.distance_from_combat_zone[square.x, square.y] < 2: # elif square.strength >= square.production and square.move == -1 and self.distance_from_combat_zone[square.x, square.y] < 2: else: if combat_distance_matrix[square.x, square.y] > 1: self.make_move(square, STILL, None) def find_nearest_non_owned_border(self, square): current_distance = self.distance_from_border[square.x, square.y] for n in square.neighbors: if self.is_owned_map[n.x, n.y]: if self.distance_from_border[n.x, n.y] < current_distance: success = self.move_square_to_target(square, n, True) if success: break def move_towards_map(self, square, distance_map): current_distance = distance_map[square.x, square.y] queue = [square] targets = [] while len(queue) > 0: current = queue.pop(0) current_distance = distance_map[current.x, current.y] for n in current.neighbors: if distance_map[n.x, n.y] == 0: targets.append(n) elif distance_map[n.x, n.y] < current_distance: queue.append(n) random.shuffle(targets) target = targets.pop(0) # success = self.move_square_to_target(square, target, True) # while len(targets) > 0: # target = targets.pop(0) # success = self.move_square_to_target(square, target, True) # if success: # return def move_towards_map_old(self, square, distance_map, through_friendly=True): current_distance = distance_map[square.x, square.y] possible_moves = [] for n in square.neighbors: if self.is_owned_map[n.x, n.y]: if distance_map[n.x, n.y] <= current_distance - 1: possible_moves.append(n) if len(possible_moves) > 0: random.shuffle(possible_moves) possible_moves.sort(key=lambda sq: self.enemy_strength_map[4, sq.x, sq.y], reverse=True) self.move_square_to_target(square, possible_moves[0], True) def get_moves_prepare_strength(self): # Attempts to build up strength prior to an immediate engagement, only if we aren't already in combat # if np.sum(self.combat_zone_map) > 0: # return border_prepare_indices = np.transpose(np.nonzero(self.border_map * self.enemy_strength_map[1] > 0)) enemy_border_squares = [self.squares[c[0], c[1]] for c in border_prepare_indices] if len(enemy_border_squares) > 0: combat_distance_matrix = self.friendly_flood_fill_multiple_sources(enemy_border_squares, 5) combat_distance_matrix[combat_distance_matrix == -1] = 0 combat_squares = [self.squares[c[0], c[1]] for c in np.transpose(np.nonzero(combat_distance_matrix))] for square in combat_squares: if self.distance_from_border[square.x, square.y] > 3 and (square.strength > square.production * self.buildup_multiplier[square.x, square.y] + 5) and ((square.x + square.y) % 2 == self.frame % 2) and square.move == -1 and square.moving_here == []: self.move_towards_map_old(square, combat_distance_matrix) elif square.strength >= 240 and self.own_strength_map[2, square.x, square.y] >= 500 and combat_distance_matrix[square.x, square.y] == 1: # Attack targets = [] for n in square.neighbors: if combat_distance_matrix[n.x, n.y] == 0: targets.append(n) targets.sort(key=lambda n: self.enemy_strength_map[1, n.x, n.y], reverse=True) self.move_square_to_target_simple(square, targets[0], False) elif square.move == -1: self.make_move(square, STILL, None) def get_moves_production(self): # Tries to find the best cells to attack from a production standpoint. # Does not try to attack cells that are in combat zones. # potential_targets_indices = np.transpose(np.nonzero((self.border_map - self.combat_zone_map) * (self.enemy_strength_map[1] == 0))) potential_targets_indices = np.transpose(np.nonzero((self.value_production_map != 9999))) potential_targets = [(self.squares[c[0], c[1]], self.value_production_map[c[0], c[1]], 1) for c in potential_targets_indices] potential_targets = [] for c in potential_targets_indices: target = self.squares[c[0], c[1]] value = self.value_production_map[c[0], c[1]] cells_out = 1 while cells_out <= self.production_cells_out: potential_targets.append((target, value, cells_out)) cells_out += 1 if len(potential_targets) == 0: return potential_targets.sort(key=lambda x: x[0].strength) potential_targets.sort(key=lambda x: x[1] + (x[2] * 1)) # Keep only the top 80ile? # potential_targets = potential_targets[0:int(len(potential_targets) * .9)] remove_targets = potential_targets[int(len(potential_targets) * 0.85):] for t in remove_targets: potential_targets.remove(t) self.value_production_map[t[0].x, t[0].y] = 9999 # best_target_value = potential_targets[0][1] # anything with X of the best_value target should be considered. Let's set this to 4 right now. while len(potential_targets) > 0: # and potential_targets[0][1] <= (best_target_value + 4000): target = potential_targets.pop(0) success = self.attack_cell(target[0], target[2], target[2]) if success and target[2] < self.production_cells_out: potential_targets = list(filter(lambda sq: sq[0] != target[0], potential_targets)) def get_moves_breakthrough(self): # Determine if we should bust through and try to open up additional lanes of attack into enemy territory # Best to have a separate lane. so we should evaluate squares that are not next to already open channels. # We are only looking at squares which are next to the enemy already. potential_squares_indices = np.transpose(np.nonzero((self.border_map - self.combat_zone_map) * (self.enemy_strength_map[1] > 0))) potential_squares = [self.squares[c[0], c[1]] for c in potential_squares_indices] # We only want to bust through if we have a lot of strength here. # logging.debug(str(self.own_strength_map[4])) for square in potential_squares: if self.own_strength_map[4, square.x, square.y] > 750 and (self.own_strength_map[4, square.x, square.y] > 1.5 * self.enemy_strength_map[4, square.x, square.y]): self.attack_cell(square, 1) def get_moves_other(self): # Tries to move to idle_squares_indices = np.transpose(np.nonzero((self.move_map == -1) * self.is_owned_map)) idle_squares = [self.squares[c[0], c[1]] for c in idle_squares_indices] if len(idle_squares) == 0: return # Move squares closer to the border first. idle_squares.sort(key=lambda sq: self.distance_from_border[sq.x, sq.y]) for square in idle_squares: if square.strength > square.production * self.buildup_multiplier[square.x, square.y] and square.move == -1 and square.moving_here == []: if self.percent_owned > 0.65: self.find_nearest_non_owned_border(square) # self.move_towards_map(square, self.distance_from_border) else: # Move towards the closest border # if not self.inner_border_map[square.x, square.y]: # For now, move to the square with the lowest recovery value_map = (self.value_production_map + self.distance_map_no_decay[square.x, square.y] * 1) * self.border_map # best_target_value = (self.recover_wtd_map * (self.border_map - self.combat_zone_map)).argmin() # value_map = value_map * (1 - self.combat_zone_map) value_map[np.nonzero(self.combat_zone_map)] = 0 value_map += self.distance_map_no_decay[square.x, square.y] * 0.66 * self.combat_zone_map value_map -= self.controlled_production_influence_map[5, square.x, square.y] * 5 * self.combat_zone_map # value_map[self.combat_zone_map == 1] = self.distance_map_no_decay[square.x, square.y] * .8 value_map[value_map == 0] = 9999 # tx, ty = np.unravel_index(value_map.argmin(), (self.width, self.height)) tx, ty = np.unravel_index(value_map.argmin(), (self.width, self.height)) target = self.squares[tx, ty] # We're targeting either a combat square, or a production square. Don't move towards close production squares. if self.distance_between(square, target) < 6 and self.distance_from_combat_zone[square.x, square.y] < 7: if (square.x + square.y) % 2 != game.frame % 2: continue if (self.enemy_strength_map[3, square.x, square.y] > 0) and (((square.x + square.y) % 2) != (game.frame % 2)): self.make_move(square, STILL, None) elif self.combat_zone_map[tx, ty]: if self.distance_between(square, target) > 14: self.move_square_to_target_simple(square, target, True) elif self.distance_between(square, target) > 1: self.move_square_to_target(square, target, True) else: if self.distance_between(square, target) > 14: self.move_square_to_target_simple(square, target, True) elif self.distance_between(square, target) > self.production_cells_out - 1: self.move_square_to_target(square, target, True) def distance_between(self, sq1, sq2): dx = abs(sq1.x - sq2.x) dy = abs(sq1.y - sq2.y) if dx > self.width / 2: dx = self.width - dx if dy > self.height / 2: dy = self.height - dy return dx + dy def attack_cell(self, target, max_cells_out, min_cells_out=1): # Attempts to coordinate attack to a specific cell. cells_out = min_cells_out while cells_out <= max_cells_out: # If we're trying to attack a combat zone cell, this isn't the function to do it. cancel. if cells_out > 1 and self.combat_zone_map[target.x, target.y]: return False if target.strength == 0 or target.production >= 5 or self.phase == 0: free_squares = self.is_owned_map * (self.move_map == -1) else: free_squares = self.is_owned_map * (self.move_map == -1) * (self.strength_map >= 5 * self.production_map) target_distance_matrix = self.friendly_flood_fill(target, cells_out) target_distance_matrix[target_distance_matrix == -1] = 0 target_distance_matrix = target_distance_matrix * free_squares available_strength = np.sum(self.strength_map * np.minimum(target_distance_matrix, 1)) target_distance_matrix_production = cells_out - target_distance_matrix target_distance_matrix_production[target_distance_matrix_production == cells_out] = 0 # Cells furthest out would be moving so no production target_distance_matrix_production = target_distance_matrix_production * free_squares available_production = np.sum(self.production_map * target_distance_matrix_production) if available_strength + available_production > target.strength + 0: attacking_cells_indices = np.transpose(np.nonzero(target_distance_matrix > 0)) attacking_cells = [self.squares[c[0], c[1]] for c in attacking_cells_indices] still_cells = [] if cells_out > 1: still_cells_indices = np.transpose(np.nonzero(target_distance_matrix_production > 0)) still_cells = [self.squares[c[0], c[1]] for c in still_cells_indices] moving_cells = list(set(attacking_cells) - set(still_cells)) for square in still_cells: self.make_move(square, STILL, None) still_strength = np.sum(self.strength_map * np.minimum(target_distance_matrix_production, 1)) needed_strength_from_movers = target.strength - available_production - still_strength + 1 if needed_strength_from_movers > 0: # Handle movement here moving_cells.sort(key=lambda x: x.strength, reverse=True) # There are probably ways to do this more efficiently, for now just start with the highest strength cell # and work backwards to minimize the # of cells that need to be moved. for square in moving_cells: if square.strength > 0: if cells_out == 1: self.move_square_to_target(square, target, False) else: self.move_square_to_target(square, target, True) needed_strength_from_movers -= square.strength if needed_strength_from_movers < 0: break return True else: cells_out += 1 return False def make_move(self, square, direction, far_target): self.move_map[square.x, square.y] = direction if direction == -1: # Reset the square move if square.target is not None: square.target.moving_here.remove(square) square.target = None square.far_target = None square.move = -1 square.far_target = None return if square.move != -1: if square.target is not None: square.target.moving_here.remove(square) square.target = None square.far_target = None square.move = direction if direction != STILL: square.target = square.neighbors[direction] square.target.moving_here.append(square) square.far_target = far_target def move_square_to_target(self, source, destination, through_friendly): # Get the distance matrix that we will use to determine movement. distance_matrix = self.flood_fill_until_target(source, destination, through_friendly) source_distance = distance_matrix[source.x, source.y] if source_distance == -1 or source_distance == 0: # We couldn't find a path to the destination or we're trying to move STILL return False path_choices = [] for d in directions: if d != STILL: neighbor = source.neighbors[d] if distance_matrix[neighbor.x, neighbor.y] == (source_distance - 1): path_choices.append((d, neighbor)) # There should be at most 2 cells in path_choices path_choices.sort(key=lambda x: x[1].production) # Try simple resolution for (direction, target) in path_choices: future_strength = 0 if target.owner == self.my_id: if target.move == -1 or target.move == STILL: future_strength = target.strength # + target.production for sq in target.moving_here: future_strength += sq.strength if future_strength + source.strength <= 255 + strength_buffer: self.make_move(source, direction, destination) return True for (direction, target) in path_choices: # Ok, can we move the cell that we are moving to: if target.owner == self.my_id: # Yes. We can, but is the cell staying still? If not, then we can't do anything if target.move == STILL or target.move == -1: # Ok, let's make sure that moving this piece actually does something. future_strength = source.strength for sq in target.moving_here: future_strength += sq.strength if future_strength <= 255 + strength_buffer: # Ok, let's move the target square. # Start with trying to move to the same destination as someone moving here. self.make_move(source, direction, destination) # Queue the move up, undo if it doesn't work n_directions = list(range(4)) n_neighbors = [(nd, target.neighbors[nd]) for nd in n_directions] n_neighbors.sort(key=lambda x: x[1].production) n_neighbors.sort(key=lambda x: self.distance_from_border[x[1].x, x[1].y], reverse=True) # Ok, none of these has worked, let's try moving to a neighbor square instead then. for n_d in n_directions: n = target.neighbors[n_d] if n.owner == self.my_id and self.enemy_strength_map[2, n.x, n.y] == 0: # Can we move into this square safely? future_n_t_strength = target.strength if n.move == STILL or n.move == -1: future_n_t_strength += n.strength # + n.production for n_moving in n.moving_here: future_n_t_strength += n_moving.strength if future_n_t_strength <= 255 + strength_buffer: success = self.move_square_to_target_simple(target, n, True) if success: return True # TODO: Logic to attempt to capture a neutral cell if we want. self.make_move(source, -1, None) # Nothing to do left return False def move_square_to_target_simple(self, source, destination, through_friendly): # For large distances, we can probably get away with simple movement rules. dist_w = (source.x - destination.x) % self.width dist_e = (destination.x - source.x) % self.width dist_n = (source.y - destination.y) % self.height dist_s = (destination.y - source.y) % self.height if dist_w == 0 and dist_n == 0: return False ew_swap = False ns_swap = False w_neighbor = source.neighbors[WEST] e_neighbor = source.neighbors[EAST] n_neighbor = source.neighbors[NORTH] s_neighbor = source.neighbors[SOUTH] if dist_w < dist_e: if through_friendly and w_neighbor.owner != self.my_id: if e_neighbor.owner == self.my_id: ew_move = (EAST, e_neighbor) ew_swap = True else: ew_move = None else: ew_move = (WEST, w_neighbor) elif dist_e < dist_w: if through_friendly and e_neighbor.owner != self.my_id: if w_neighbor.owner == self.my_id: ew_move = (WEST, w_neighbor) ew_swap = True else: ew_move = None else: ew_move = (EAST, e_neighbor) elif dist_w == 0: ew_move = None elif dist_w == dist_e: if through_friendly and (w_neighbor.owner != self.my_id or e_neighbor.owner != self.my_id): if w_neighbor.owner != self.my_id and e_neighbor.owner != self.my_id: ew_move = None elif w_neighbor.owner == self.my_id and e_neighbor.owner != self.my_id: ew_move = (WEST, w_neighbor) else: ew_move = (EAST, e_neighbor) else: # Prefer the move with lower production if e_neighbor.production < w_neighbor.production: ew_move = (EAST, e_neighbor) else: ew_move = (WEST, w_neighbor) if dist_s < dist_n: if through_friendly and s_neighbor.owner != self.my_id: if n_neighbor.owner == self.my_id: ns_move = (NORTH, n_neighbor) ns_swap = True else: ns_move = None else: ns_move = (SOUTH, s_neighbor) elif dist_n < dist_s: if through_friendly and n_neighbor.owner != self.my_id: if s_neighbor.owner == self.my_id: ns_move = (SOUTH, s_neighbor) ns_swap = True else: ns_move = None else: ns_move = (NORTH, n_neighbor) elif dist_s == 0: ns_move = None elif dist_s == dist_n: if through_friendly and (s_neighbor.owner != self.my_id or n_neighbor.owner != self.my_id): if s_neighbor.owner != self.my_id and n_neighbor.owner != self.my_id: ns_move = None elif s_neighbor.owner == self.my_id and n_neighbor.owner != self.my_id: ns_move = (SOUTH, s_neighbor) else: ns_move = (NORTH, n_neighbor) else: # Prefer the move with lower production if n_neighbor.production < s_neighbor.production: ns_move = (NORTH, n_neighbor) else: ns_move = (SOUTH, s_neighbor) if ns_move is None and ew_move is None: return False path_choices = [] if ns_move is None: path_choices.append(ew_move) elif ew_move is None: path_choices.append(ns_move) elif ns_swap is True and ew_swap is False: path_choices.append(ew_move) path_choices.append(ns_move) elif ns_swap is False and ew_swap is True: path_choices.append(ns_move) path_choices.append(ew_move) else: if ew_move[1].production < ns_move[1].production: path_choices.append(ew_move) path_choices.append(ns_move) else: path_choices.append(ns_move) path_choices.append(ew_move) for (direction, target) in path_choices: future_strength = 0 if target.owner == self.my_id: if target.move == -1 or target.move == STILL: future_strength = target.strength # + target.production for sq in target.moving_here: future_strength += sq.strength if future_strength + source.strength <= 255 + strength_buffer: self.make_move(source, direction, destination) return True # Try simple resolution for (direction, target) in path_choices: future_strength = 0 if target.owner == self.my_id: if target.move == -1 or target.move == STILL: future_strength = target.strength # + target.production for sq in target.moving_here: future_strength += sq.strength if future_strength + source.strength <= 255 + strength_buffer: self.make_move(source, direction, destination) return True for (direction, target) in path_choices: # Ok, can we move the cell that we are moving to: if target.owner == self.my_id: # Yes. We can, but is the cell staying still? If not, then we can't do anything if target.move == STILL or target.move == -1: # Ok, let's make sure that moving this piece actually does something. future_strength = source.strength for sq in target.moving_here: future_strength += sq.strength if future_strength <= 255 + strength_buffer: # Ok, let's move the target square. # Start with trying to move to the same destination as someone moving here. self.make_move(source, direction, destination) # Queue the move up, undo if it doesn't work n_directions = list(range(4)) n_neighbors = [(nd, target.neighbors[nd]) for nd in n_directions] n_neighbors.sort(key=lambda x: x[1].production) n_neighbors.sort(key=lambda x: self.distance_from_border[x[1].x, x[1].y], reverse=True) # Ok, none of these has worked, let's try moving to a neighbor square instead then. for n_d in n_directions: n = target.neighbors[n_d] if n.owner == self.my_id and self.enemy_strength_map[2, n.x, n.y] == 0: # Can we move into this square safely? future_n_t_strength = target.strength if n.move == STILL or n.move == -1: future_n_t_strength += n.strength # + n.production for n_moving in n.moving_here: future_n_t_strength += n_moving.strength if future_n_t_strength <= 255 + strength_buffer: success = self.move_square_to_target_simple(target, n, True) if success: return True # TODO: Logic to attempt to capture a neutral cell if we want. self.make_move(source, -1, None) # Nothing to do left return False def flood_fill_until_target(self, source, destination, friendly_only): # Does a BFS flood fill to find shortest distance from source to target. # Starts the fill AT destination and then stops once we hit the target. q = [destination] distance_matrix = np.ones((self.width, self.height)) * -1 distance_matrix[destination.x, destination.y] = 0 while len(q) > 0 and distance_matrix[source.x, source.y] == -1: current = q.pop(0) current_distance = distance_matrix[current.x, current.y] for neighbor in current.neighbors: if distance_matrix[neighbor.x, neighbor.y] == -1: if not friendly_only or (friendly_only and neighbor.owner == self.my_id): distance_matrix[neighbor.x, neighbor.y] = current_distance + 1 q.append(neighbor) return distance_matrix def friendly_flood_fill(self, source, max_distance): # Returns a np.array((self.width, self.height)) that contains the distance to the target by traversing through friendly owned cells only. # q is a queue(list) of items (cell, distance) q = [source] distance_matrix = np.ones((self.width, self.height)) * -1 distance_matrix[source.x, source.y] = 0 while len(q) > 0: current = q.pop(0) current_distance = distance_matrix[current.x, current.y] for neighbor in current.neighbors: if distance_matrix[neighbor.x, neighbor.y] == -1 and neighbor.owner == self.my_id: distance_matrix[neighbor.x, neighbor.y] = current_distance + 1 if current_distance < max_distance - 1: q.append(neighbor) return distance_matrix def friendly_flood_fill_multiple_sources(self, sources, max_distance=999): # Returns a np.array((self.width, self.height)) that contains the distance to the target by traversing through friendly owned cells only. # q is a queue(list) of items (cell, distance). sources is a list that contains the source cells. q = sources distance_matrix = np.ones((self.width, self.height)) * -1 for source in q: distance_matrix[source.x, source.y] = 0 while len(q) > 0: current = q.pop(0) current_distance = distance_matrix[current.x, current.y] for neighbor in current.neighbors: if (distance_matrix[neighbor.x, neighbor.y] == -1 or distance_matrix[neighbor.x, neighbor.y] > (current_distance + 1)) and neighbor.owner == self.my_id: distance_matrix[neighbor.x, neighbor.y] = current_distance + 1 if current_distance < max_distance - 1: q.append(neighbor) return distance_matrix def friendly_flood_fill_multiple_sources_cells_out(self, sources, max_distance=999): # Returns a np.array((self.width, self.height)) that contains the distance to the target by traversing through friendly owned cells only. # q is a queue(list) of items (cell, distance). sources is a list that contains the source cells. q = sources distance_matrix = np.ones((self.width, self.height)) * -1 for source in q: distance_matrix[source.x, source.y] = 0 while len(q) > 0: current = q.pop(0) current_distance = distance_matrix[current.x, current.y] for neighbor in current.neighbors: if (distance_matrix[neighbor.x, neighbor.y] == -1 or distance_matrix[neighbor.x, neighbor.y] > (current_distance + 1)) and neighbor.owner == self.my_id: distance_matrix[neighbor.x, neighbor.y] = current_distance + 1 if current_distance < max_distance - 1: current_distance += 1 q.append(neighbor) return distance_matrix def non_friendly_flood_fill_multiple_sources(self, sources, max_distance=999): # Returns a np.array((self.width, self.height)) that contains the distance to the target by traversing through non owned cells only. # q is a queue(list) of items (cell, distance). sources is a list that contains the source cells. q = sources distance_matrix = np.ones((self.width, self.height)) * -1 for source in q: distance_matrix[source.x, source.y] = 0 while len(q) > 0: current = q.pop(0) current_distance = distance_matrix[current.x, current.y] for neighbor in current.neighbors: if (distance_matrix[neighbor.x, neighbor.y] == -1 or distance_matrix[neighbor.x, neighbor.y] > (current_distance + 1)) and neighbor.owner != self.my_id: distance_matrix[neighbor.x, neighbor.y] = current_distance + 1 if current_distance < max_distance - 1: q.append(neighbor) return distance_matrix def last_resort_strength_check(self): # Calculates the projected strength map and identifies squares that are violating it. # Ignore strength overloads due to production for now # Validate moves projected_strength_map = np.zeros((self.width, self.height)) # We only care about our moves. for square in itertools.chain.from_iterable(self.squares): if square.owner == self.my_id: if square.move == -1 or square.move == STILL: projected_strength_map[square.x, square.y] += square.strength # + square.production else: dx, dy = get_offset(square.move) projected_strength_map[(square.x + dx) % self.width, (square.y + dy) % self.height] += square.strength # Get a list of squares that are over the cap violation_indices = np.transpose(np.nonzero((projected_strength_map > 255 + strength_buffer))) violation_squares = [self.squares[c[0], c[1]] for c in violation_indices] violation_count = len(violation_squares) for square in violation_squares: if square.owner == self.my_id and (square.move == -1 or square.move == STILL): # We can try to move this square to an neighbor. possible_paths = [] for d in range(0, 4): # Move to the lowest strength neighbor. this might cause a collision but we'll resolve it with multiple iterations n = square.neighbors[d] if n.owner == self.my_id and self.enemy_strength_map[2, n.x, n.y] == 0: possible_paths.append((d, n, projected_strength_map[n.x, n.y])) else: # Try attacking a bordering cell if (square.strength > (2 * n.strength)) and (n.production > 1): possible_paths.append((d, n, n.strength)) possible_paths.sort(key=lambda x: x[2]) possible_paths.sort(key=lambda x: self.distance_from_border[x[1].x, x[1].y], reverse=True) # Force a move there self.make_move(square, d, n) else: # We aren't the problem. one of the squares that's moving here is going to collide with us. # How do we resolve this? options_list = [] for n in square.neighbors: if n.owner == self.my_id: options_list.append((n, projected_strength_map[n.x, n.y])) options_list.sort(key=lambda x: x[1]) # Let's try having the smallest one stay still instead for opt in options_list: self.make_move(opt[0], STILL, None) # self.make_move(options_list[0][0], STILL, None) return violation_count def update_stats(self): # Updates various stats used for tracking self.turns_left = self.max_turns - self.frame self.percent_owned = np.sum(self.is_owned_map) / (self.width * self.height) self.production_values = [0] for i in range(1, self.starting_player_count + 1): self.production_values.append(np.sum(self.production_map * (self.owner_map == i))) self.my_production_sum = self.production_values[self.my_id] temp_production_sum = copy.copy(self.production_values) temp_production_sum.pop(self.my_id) temp_production_sum.pop(0) self.next_highest_production_sum = max(temp_production_sum) # ============================================================================== # Square class # ============================================================================== class Square: def __init__(self, game, x, y, production): self.game = game self.x = x self.y = y self.production = production self.height = game.height self.width = game.width self.vertex = x * self.height + y self.target = None self.moving_here = [] self.far_target = None def after_init_update(self): # Should only be called after all squares in game have been initialized. self.north = self.game.squares[(self.x + 0) % self.width, (self.y - 1) % self.height] self.east = self.game.squares[(self.x + 1) % self.width, (self.y + 0) % self.height] self.south = self.game.squares[(self.x + 0) % self.width, (self.y + 1) % self.height] self.west = self.game.squares[(self.x - 1) % self.width, (self.y + 0) % self.height] self.neighbors = [self.north, self.east, self.south, self.west] # doesn't include self def get_neighbors(self, n=1, include_self=False): # Returns a list containing all neighbors within n squares, excluding self unless include_self = True assert isinstance(include_self, bool) assert isinstance(n, int) and n > 0 if n == 1: if not include_self: return self.neighbors combos = ((dx, dy) for dy in range(-n, n + 1) for dx in range(-n, n + 1) if abs(dx) + abs(dy) <= n) return (self.game.squares[(self.x + dx) % self.width][(self.y + dy) % self.height] for dx, dy in combos if include_self or dx or dy) def update(self, owner, strength): # updates the square with the new owner and strength. Also resets movement variables self.owner = owner self.strength = strength self.reset_move() def reset_move(self): # Resets the move information # Note, the target's moving_here is NOT reset so this should really only be used if all squares are being reset. self.move = -1 self.target = None self.moving_here = [] self.far_target = None #################### # Helper Functions # #################### def get_offset(direction): return ((0, -1), (1, 0), (0, 1), (-1, 0), (0, 0))[direction] def distance_between(x1, y1, x2, y2): dx = abs(x1 - x2) dy = abs(y1 - y2) if dx > game.width / 2: dx = game.width - dx if dy > game.height / 2: dy = game.height - dy return dx + dy def opposite_direction(direction): return (direction + 2) % 4 if direction != STILL else STILL def roll_x(M, x): return np.roll(M, x, 0) def roll_y(M, y): return np.roll(M, y, 1) def roll_xy(M, x, y): return np.roll(np.roll(M, x, 0), y, 1) def spread_n(M, n, decay=0, include_self=True): # Takes a matrix M, and then creates an influence map by offsetting by N in every direction. # Decay function is currently of the form exp(-decay * distance) if include_self is True: spread_map = np.copy(M) else: spread_map = np.zeros_like(M) distance = 1 while distance <= n: combos = get_all_d_away(distance) decay_factor = math.exp(-decay * distance) for c in combos: spread_map += roll_xy(np.multiply(decay_factor, M), c[0], c[1]) distance += 1 return spread_map def spread(M, decay=0, include_self=True): # For now to save time, we'll use game_map.distance_map and assume that we'll always be using the same falloff distances to calculate offsets. # Takes the matrix M and then for each point (x, y), calculate the product of the distance map and the decay factor. decay_map = np.exp(np.multiply(game.distance_map, -decay)) spread_map = np.sum(np.multiply(decay_map, M), (2, 3)) return spread_map def get_all_d_away(d): combos = [] for x in range(0, d + 1): x_vals = list(set([x, -x])) y_vals = list(set([d - x, -(d - x)])) combos.extend(list(itertools.product(x_vals, y_vals))) return list(set(combos)) def distance_from_owned(M, mine): # Returns the minimum distance to get to any point if already at all points in xys using 4D array M return np.apply_along_axis(np.min, 0, M[np.nonzero(mine)]) def rebase_map(map_a, total=True): # Takes a map and returns a rebased version where numpy.sum(map) = self.width * self.height # If Total = False, rebases to the # of non-zero squares if total: size = functools.reduce(lambda x, y: x * y, map_a.shape) else: size = np.sum(map_a != 0) factor = size / np.sum(map_a) return np.multiply(map_a, factor) # ============================================================================== # Functions for communicating with the Halite game environment (formerly contained in separate module networking.py # ============================================================================== def translate_cardinal(direction): # Cardinal index used by the framework is: # NORTH = 0, EAST = 1, SOUTH = 2, WEST = 3, STILL = 4 # Cardinal index used by the game is: # STILL = 0, NORTH = 1, EAST = 2, SOUTH = 3, WEST = 4 return int((direction + 1) % 5) def send_string(to_be_sent): sys.stdout.write(to_be_sent + "\n") sys.stdout.flush() def get_string(): return sys.stdin.readline().rstrip('\n') # ============================================================================== # Game Loop # ============================================================================== def game_loop(): game.get_frame() # logging.debug("Frame: " + str(game.frame)) game.update() game.get_moves() collision_check = 998 last_collision_check = 999 while collision_check < last_collision_check: last_collision_check = collision_check collision_check = game.last_resort_strength_check() collision_check = 998 last_collision_check = 999 while collision_check < last_collision_check: last_collision_check = collision_check collision_check = game.last_resort_strength_check() collision_check = 998 last_collision_check = 999 while collision_check < last_collision_check: last_collision_check = collision_check collision_check = game.last_resort_strength_check() game.send_frame() # ##################### # Game run-time code # # ##################### logging.basicConfig(filename='logging.log', level=logging.DEBUG) # logging.debug('your message here') NORTH, EAST, SOUTH, WEST, STILL = range(5) directions = [NORTH, EAST, SOUTH, WEST, STILL] game = Game() while True: game_loop()
8397ff8119dc799e3deac3fdd0aa9bedf2c22261
0faa6fc013560b4c5acf64413d186019816a7582
/chainedSCT/__init__.py
9060c9628716ffba3b2324edd46528202b7eee2c
[ "MIT" ]
permissive
MSBeni/SmartContactTracing_Chained
f4deceb6107cfbf0f050a8f8943dd85caa1b43b8
b667ef6e04ea4e3206760f9dc2035d425b6e26f5
refs/heads/master
2023-07-30T01:05:31.383298
2021-09-09T17:36:16
2021-09-09T17:36:16
328,707,374
3
1
null
null
null
null
UTF-8
Python
false
false
110
py
from . import extraction from . import transformation from . import Loading_Blockchian __version__ = '0.0.1'
e0aaddac3ec13c25540d435aa328944f249a9596
60105dfa9cd52412e86a1970b0873a47c058ca07
/day1/files_ex1.py
7d2050c21a6d506445c58dc66deef58798fb2eec
[ "Apache-2.0" ]
permissive
ktbyers/pynet-ons-feb19
d6802ec01902169dffebe2b11fcd3a1ed9c42d3d
5f02125f115fda2c26af87656b4f83d98cd2822c
refs/heads/master
2020-04-19T20:43:31.754871
2019-02-25T20:47:40
2019-02-25T20:47:40
168,422,755
0
6
Apache-2.0
2019-02-07T20:03:09
2019-01-30T22:05:35
Python
UTF-8
Python
false
false
320
py
#!/usr/bin/env python # READ #### f = open("my_file.txt") my_content = f.read() print(my_content) # WRITE #### print("\nWriting file.") f = open("new_file.txt", "w") f.write("whatever2\n") f.close() # APPEND #### print("\nAppending file.") with open("new_file.txt", "a") as f: f.write("something else\n") print()
d036805b85edb2e1846da24c7dc43c38d5a4e726
c8c95520fb1a17d627a0256df2c6702f4f53403a
/3.3_the_for_loop.py
371bcc17241b1a8ab78f7f1d729ca822967cbf14
[]
no_license
wsargeant/httlacs
608f1b4b34c95f18f934f10883beb56a2895c269
3337b369c541e18d5ed9ecbca35494c3ebcfa591
refs/heads/master
2023-02-21T21:10:03.228762
2021-01-25T08:44:46
2021-01-25T08:44:46
284,936,152
0
0
null
2020-08-28T10:35:17
2020-08-04T09:32:38
null
UTF-8
Python
false
false
202
py
def main(): pass if __name__ == '__main__': main() for f in ["Joe", "Steve", "Pete", "Ian", "Mike", "Dom"]: invite = "Hi " + f + ". Please come to my party on Saturday." print(invite)
ee7b8e64c5c5aabbd39dc3e97b98f0c125bbe83b
ba7e577bc4d083d5bfb1b0622d6149d57537bc62
/leetcode/217_contains_duplicate.py
4a01bac85e2491ed77d936570df8ff60f59b2605
[]
no_license
lvraikkonen/GoodCode
5b59f51252384de38fd21f13d4afda1f4f8be94d
a0f270c1adce25be11df92877813037f2e73e28b
refs/heads/master
2022-05-04T19:55:40.751420
2022-04-12T09:41:15
2022-04-12T09:41:15
71,972,790
0
0
null
2020-10-13T18:57:51
2016-10-26T06:24:11
Java
UTF-8
Python
false
false
572
py
from collections import Counter def containsDuplicate_counter(nums): """ :type nums: List[int] :rtype: bool """ n = Counter(nums) for k, v in n.items(): if v > 1: return True return False def containsDuplicate_set(nums): """ :type nums: List[int] :rtype: bool """ distinct_nums = set() for num in nums: if num in distinct_nums: return True distinct_nums.add(num) return False if __name__ == "__main__": result = containsDuplicate_set([1,2,3,3]) print result
7e9b9a0aad90d98e4fb2409f0db85fadcc0b665d
bc441bb06b8948288f110af63feda4e798f30225
/architecture_view_sdk/model/metadata_center/stream_metric_states_pb2.py
8a7a27d80fc16e11d705b7d43834edd01cdc33a1
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
3,685
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: stream_metric_states.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from architecture_view_sdk.model.metadata_center import stream_metric_schema_pb2 as architecture__view__sdk_dot_model_dot_metadata__center_dot_stream__metric__schema__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='stream_metric_states.proto', package='metadata_center', syntax='proto3', serialized_options=_b('ZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_center'), serialized_pb=_b('\n\x1astream_metric_states.proto\x12\x0fmetadata_center\x1a\x46\x61rchitecture_view_sdk/model/metadata_center/stream_metric_schema.proto\"h\n\x12StreamMetricStates\x12\x0b\n\x03org\x18\x01 \x01(\x05\x12\x0f\n\x07\x63ommand\x18\x02 \x01(\t\x12\x34\n\x07payload\x18\x03 \x03(\x0b\x32#.metadata_center.StreamMetricSchemaBKZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_centerb\x06proto3') , dependencies=[architecture__view__sdk_dot_model_dot_metadata__center_dot_stream__metric__schema__pb2.DESCRIPTOR,]) _STREAMMETRICSTATES = _descriptor.Descriptor( name='StreamMetricStates', full_name='metadata_center.StreamMetricStates', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='org', full_name='metadata_center.StreamMetricStates.org', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='command', full_name='metadata_center.StreamMetricStates.command', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='payload', full_name='metadata_center.StreamMetricStates.payload', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=119, serialized_end=223, ) _STREAMMETRICSTATES.fields_by_name['payload'].message_type = architecture__view__sdk_dot_model_dot_metadata__center_dot_stream__metric__schema__pb2._STREAMMETRICSCHEMA DESCRIPTOR.message_types_by_name['StreamMetricStates'] = _STREAMMETRICSTATES _sym_db.RegisterFileDescriptor(DESCRIPTOR) StreamMetricStates = _reflection.GeneratedProtocolMessageType('StreamMetricStates', (_message.Message,), { 'DESCRIPTOR' : _STREAMMETRICSTATES, '__module__' : 'stream_metric_states_pb2' # @@protoc_insertion_point(class_scope:metadata_center.StreamMetricStates) }) _sym_db.RegisterMessage(StreamMetricStates) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
2fcaf139e76286b816d99605e71bc07a933e540c
dc940d7614c4cf55a3c61a1ad4ee48e4ea4e319d
/src/slurmify/slurmify.py
cc78977d8e499ee972aa5bd9eb2e6fe671d6160d
[ "MIT" ]
permissive
salotz/slurmify
b4c88e434c2814c71fcef9cd13ecd716163a75d8
4a6da629706621b9b2633d34e574b121a75a8f87
refs/heads/master
2020-04-28T23:22:10.227665
2019-10-08T01:37:33
2019-10-08T01:37:33
175,651,924
0
1
MIT
2020-12-01T07:43:57
2019-03-14T15:42:30
Python
UTF-8
Python
false
false
5,320
py
import os import os.path as osp import tempfile import subprocess from jinja2 import Environment, FileSystemLoader from slurmify import TEMPLATES_PATH # names of the templates SLURM_JOB_TEMPLATE = "slurm_job.sh.j2" SLURM_RUN_TEMPLATE = "slurm_run.sh.j2" SLURM_SETUP_TEMPLATE = "slurm_setup.sh.j2" SLURM_TEARDOWN_TEMPLATE = "slurm_teardown.sh.j2" SLURM_COMMANDS_TEMPLATE = "slurm_commands.sh.j2" SLURM_SCRIPT_TEMPLATE = "slurm_script.sh.j2" # list of all the templates SLURM_TEMPLATE_NAMES = (SLURM_JOB_TEMPLATE, SLURM_RUN_TEMPLATE, SLURM_SCRIPT_TEMPLATE, SLURM_COMMANDS_TEMPLATE) # the names of the targets and whether or not they are optional (True) # or not (False). This is from the perspective of the template and not # the interfaces of the programs which may support defaults and other # options etc. SLURM_JOB_TARGETS = ( ('job_name', False), ('stderr_log_dir', False), ('stdout_log_dir', False), ('login_shell', True), ('mail_user', True), ('mail_type', True), ) SLURM_RUN_TARGETS = ( ('walltime', False), ('nodes', False), ('ntasks', False), ('cpus_per_task', False), ('mem_per_cpu', True), ('node_mem', True), ('nodelist', True), ('constraint', True), ('gres', True), ('chdir', True), ) SLURM_SCRIPT_TARGETS = ( ('slurm_job', False), ('slurm_run', False), ('setup', True), ('payload', False), ('teardown', True), ) SLURM_COMMANDS_TARGETS = ( ('commands', False), ('epilog', True) ) SLURM_SCRIPT_EMBED_TARGETS = ( ('script', False), ('epilog', True) ) SLURM_SETUP_TARGETS = ( ('task_name', False), ('task_dir_path', False), ('env_vars', True), ('gnu_module', True), ('cuda_module', True), # slurm job stuff ('walltime', True), ('memory', True), ('num_nodes', True), ('num_processors', True), ('num_gpus', True), ) # Defaults MAIL_TYPE_DEFAULT = "BEGIN,END,FAIL" def get_env(): return Environment(loader=FileSystemLoader(TEMPLATES_PATH)) def check_kwargs(targets, input_kwargs): missing = [] for key, optional in targets: if key not in input_kwargs: if not optional: missing.append(key) return missing class SlurmJob(): def __init__(self, job_name, logs_dir='logs', setup=None, teardown=None, login_shell=True, email=None, mail_type='BEGIN,END,FAIL'): if logs_dir: stderr_log_dir = logs_dir stdout_log_dir = logs_dir self.job_kwargs = { 'job_name' : job_name, 'stderr_log_dir' : stderr_log_dir, 'stdout_log_dir' : stdout_log_dir, 'login_shell' : login_shell, 'mail_user' : email, 'mail_type' : mail_type } self.env = get_env() job_template = self.env.get_template(SLURM_JOB_TEMPLATE) # check to make sure all arguments work if len(check_kwargs(SLURM_JOB_TARGETS, self.job_kwargs)) < 1: self._job_header = job_template.render(self.job_kwargs) else: raise ValueError # get default setup and teardown scripts self._setup = "" self._teardown = "" @property def job_header(self): return self._job_header @property def setup(self): return self._setup @property def teardown(self): return self._teardown def run(self, run_kwargs, commands, epilog=None): run_template = self.env.get_template(SLURM_RUN_TEMPLATE) commands_template = self.env.get_template(SLURM_COMMANDS_TEMPLATE) script_template = self.env.get_template(SLURM_SCRIPT_TEMPLATE) if len(check_kwargs(SLURM_RUN_TARGETS, run_kwargs)) < 1: run_header = run_template.render(run_kwargs) else: raise ValueError payload = commands_template.render(commands=commands, epilog=epilog) script_kwargs = { 'slurm_job' : self.job_header, 'slurm_run' : run_header, 'setup' : self.setup, 'payload' : payload, 'teardown' : self.teardown } if len(check_kwargs(SLURM_SCRIPT_TARGETS, script_kwargs)) < 1: script_str = script_template.render(script_kwargs) else: raise ValueError # make a temporary file for the script and use sbatch to # submit it with tempfile.NamedTemporaryFile() as tmpfile: # write the script to the tempfile tmpfile.write(str.encode(script_str)) # set the file pointer back to the beginning of the file # so we don't have to reopen it tmpfile.seek(0) # the path to the temp file tmpfile_path = tmpfile.name # then actually submit the script and get the return # values complete_process = subprocess.run(['sbatch', tmpfile_path]) # if there was error get it: if complete_process.stderr is not None: pass # get the jobid from stdout #complete_process.stdout return 0, complete_process
7a8fa12f5d1cb13446a07ad2b0d36370c27adf16
1d04c90b3331261d741cc4f8757aeb0088193627
/setup.py
fab6d30a6a0fe2cbc72fdd710ca21377f27e0b75
[ "ZPL-2.1" ]
permissive
jean/Products.ZopeVersionControl
11f5251fea47e12b6db10c2ff2067f23a93ebad4
c5a7efacf39bd27a7acda525096f7f05e0672179
refs/heads/master
2021-01-22T16:37:29.630614
2013-03-13T14:29:07
2013-03-13T14:29:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
from setuptools import setup, find_packages __version__ = '1.1.4dev' setup( name='Products.ZopeVersionControl', version=__version__, description="Zope Version Control", long_description=(open('README.rst').read() + "\n" + open('CHANGES.rst').read()), classifiers=[ 'Framework :: Zope2', ], license='ZPL', author='Zope Foundation and Contributors', author_email='[email protected]', url='http://pypi.python.org/pypi/Products.ZopeVersionControl', packages=find_packages('src'), package_dir={'': 'src'}, namespace_packages=['Products'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'zope.interface', 'Acquisition', 'DateTime', 'transaction', 'ZODB3', 'Zope2', ], )
9230922cc0d5d21762db9fa255247982efd79301
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/formatter/closingParenthesisInFromImportStatementWithNoHangingIndent.py
acd9400b7c7627d65aaecf625caff9ce653fb00c
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
52
py
from foo import (bar, baz )
0c238b53e30bb6aace21ca85e6139c54047c9e9c
32e789a8ae5eecec4ee8ab6cf72af0b7c599f5a9
/.venv/bin/wheel
5c7f8f28cc1a15bb37695045165bd81d187b9a7f
[]
no_license
kafura-kafiri/Khorus
5aabc306673c9298bbd0c4a85ce874b7240a1d00
3d4cb0e8b56f9d296003e8bb7ff9a4f30a8f3ef8
refs/heads/master
2021-05-10T13:48:22.513815
2018-01-31T15:00:57
2018-01-31T15:00:57
118,488,436
0
0
null
null
null
null
UTF-8
Python
false
false
247
#!/home/pouria/PyProjects/Khorus/.venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a9982a8f2ea8b99b85488f5ab2984195127a5fdd
390c347ce47ad253883030f93f6901061874f2da
/experiments/genes/gene_sca_discrim_1.0.py
8a68ebbee7bcf5d85541f935f27a47cc4e866775
[ "MIT" ]
permissive
bdpedigo/sparse_new_basis
55646622330a30dd33f490bf3a23036273f4b8ad
4bb9c766154fe713c544a80178c067ae8c867026
refs/heads/main
2023-01-28T05:43:54.488110
2020-12-09T23:23:51
2020-12-09T23:23:51
312,875,716
0
0
null
null
null
null
UTF-8
Python
false
false
15,160
py
#%% import os import pickle import time from pathlib import Path import colorcet as cc import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from hyppo.discrim import DiscrimOneSample, DiscrimTwoSample from matplotlib.lines import Line2D from sklearn.decomposition import PCA, SparsePCA from sklearn.feature_selection import VarianceThreshold from sklearn.metrics import pairwise_distances from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tqdm import tqdm from umap import UMAP from graspologic.plot import pairplot from sparse_decomposition import SparseComponentAnalysis from sparse_decomposition.utils import ( calculate_explained_variance_ratio, l1_norm, proportion_variance_explained, ) from sparse_new_basis.data import load_scRNAseq from sparse_new_basis.plot import savefig, set_theme set_theme() fig_dir = Path("sparse_new_basis/results/gene_sca_discrim_1.0") def stashfig(name, *args, **kwargs): savefig(fig_dir, name, *args, **kwargs) #%% var_thresh = 0.005 train_size = 2 ** 14 max_iter = 20 with_mean = True with_std = True seed = 8888 #%% sequencing_df, annotation_df = load_scRNAseq(fillna=True) #%% throw out some genes with low variance X = sequencing_df.values var_thresh = VarianceThreshold(threshold=var_thresh) X = var_thresh.fit_transform(X) gene_index = sequencing_df.columns original_n_genes = len(gene_index) gene_index = gene_index[var_thresh.get_support()] sequencing_df = sequencing_df[gene_index] new_n_genes = len(gene_index) print( f"Number of genes removed: {original_n_genes - new_n_genes} " f"out of {original_n_genes}" ) #%% np.random.seed(seed) neuron_index = sequencing_df.index y = sequencing_df.index.get_level_values(level="Neuron_type").values # stratify=y will try to set the distribution of class labels the same for train/test X_train, X_test, index_train, index_test = train_test_split( X, neuron_index, stratify=y, train_size=train_size, shuffle=True ) #%% center and scale training data currtime = time.time() scaler = StandardScaler(with_mean=with_mean, with_std=with_std, copy=False) X_train = scaler.fit_transform(X_train) print(f"{time.time() - currtime:.3f} elapsed to scale and center data.") X_test = scaler.transform(X_test) #%% def compute_metrics(model, X_train, X_test): train_pve = proportion_variance_explained(X_train, model.components_.T) test_pve = proportion_variance_explained(X_test, model.components_.T) n_nonzero = np.count_nonzero(model.components_) p_nonzero = n_nonzero / model.components_.size n_nonzero_cols = np.count_nonzero(model.components_.max(axis=0)) p_nonzero_cols = n_nonzero_cols / model.components_.shape[1] component_l1 = l1_norm(model.components_) output = { "train_pve": train_pve, "test_pve": test_pve, "n_nonzero": n_nonzero, "p_nonzero": p_nonzero, "n_nonzero_cols": n_nonzero_cols, "p_nonzero_cols": p_nonzero_cols, "component_l1": component_l1, } return output params = [] S_train_by_params = {} S_test_by_params = {} models_by_params = {} metric_rows = [] #%% # Sparse Component Analysis and PCA method = "SCA" max_iter = 15 tol = 1e-4 n_components_range = [30] for n_components in n_components_range: gammas = [ 2 * n_components, 0.25 * np.sqrt(n_components * X_train.shape[1]), 0.5 * np.sqrt(n_components * X_train.shape[1]), np.sqrt(n_components * X_train.shape[1]), 0.5 * n_components * np.sqrt(X_train.shape[1]), ] gammas = [float(int(g)) for g in gammas] gammas.append(np.inf) for gamma in gammas: if gamma == np.inf: method = "PCA" else: method = "SCA" print(f"method = {method}, n_components = {n_components}, gamma = {gamma}") print() curr_params = (method, n_components, gamma) params.append(curr_params) # fit model currtime = time.time() model = SparseComponentAnalysis( n_components=n_components, max_iter=max_iter, gamma=gamma, verbose=10, tol=tol, ) S_train = model.fit_transform(X_train) train_time = time.time() - currtime print(f"{train_time:.3f} elapsed to train model.") S_test = model.transform(X_test) # save model fit models_by_params[curr_params] = model S_train_by_params[curr_params] = S_train S_test_by_params[curr_params] = S_test # save metrics metrics = compute_metrics(model, X_train, X_test) metrics["sparsity_param"] = gamma metrics["sparsity_level"] = gamma metrics["n_components"] = n_components metrics["train_time"] = train_time metrics["method"] = method metric_rows.append(metrics) print(f"Component L0 ratio: {metrics['p_nonzero']}") print(f"Component L0 columns: {metrics['p_nonzero_cols']}") print("\n\n\n") #%% # SparsePCA (Online Dictionary Learning) method = "SparsePCA" max_iter = 10 for n_components in n_components_range: alphas = [1, 5, 15, 30, 40] alphas = [float(int(a)) for a in alphas] for alpha in alphas: print(f"method = {method}, n_components = {n_components}, alpha = {alpha}") print() curr_params = (method, n_components, alpha) params.append(curr_params) # fit model currtime = time.time() model = SparsePCA( n_components=n_components, max_iter=max_iter, alpha=alpha, verbose=0, tol=tol, n_jobs=1, ) S_train = model.fit_transform(X_train) train_time = time.time() - currtime print(f"{train_time:.3f} elapsed to train model.") S_test = model.transform(X_test) # save model fit models_by_params[curr_params] = model S_train_by_params[curr_params] = S_train S_test_by_params[curr_params] = S_test # save metrics metrics = compute_metrics(model, X_train, X_test) metrics["sparsity_param"] = alpha metrics["sparsity_level"] = -alpha metrics["n_components"] = n_components metrics["train_time"] = train_time metrics["method"] = method metric_rows.append(metrics) print(f"Component L0 ratio: {metrics['p_nonzero']}") print(f"Component L0 columns: {metrics['p_nonzero_cols']}") print("\n\n\n") #%% # Discriminability as a metric n_subsamples = 10 n_per_subsample = 2 ** 12 # n_per_subsample = None metric = "cosine" def get_int_labels(index): y = index.get_level_values("Neuron_type").values uni_y = np.unique(y) name_map = dict(zip(uni_y, range(len(uni_y)))) y = np.vectorize(name_map.get)(y) return y discrim_result_rows = [] for curr_params in params: print(curr_params) print() model = models_by_params[curr_params] for mode in ["test"]: if mode == "train": S = S_train_by_params[curr_params] y = get_int_labels(index_train) elif mode == "test": S = S_test_by_params[curr_params] y = get_int_labels(index_test) for i in range(n_subsamples): if n_per_subsample is None: n_per_subsample = len(S) subsample_inds = np.random.choice( len(S), size=n_per_subsample, replace=False ) # compute discriminability dist_S = pairwise_distances(S[subsample_inds], metric=metric) currtime = time.time() discrim = DiscrimOneSample(is_dist=True) tstat, _ = discrim.test(dist_S, y[subsample_inds], reps=0) print(f"{time.time() - currtime:.3f} elapsed for discriminability.") # save results metrics = {} metrics["method"] = curr_params[0] metrics["tstat"] = tstat metrics["n_components"] = curr_params[1] metrics["discrim_resample"] = i metrics["mode"] = mode metrics["sparsity_param"] = curr_params[2] discrim_result_rows.append(metrics) print() discrim_results = pd.DataFrame(discrim_result_rows) discrim_results #%% discrim_results["params"] = list( zip( discrim_results["method"], discrim_results["n_components"], discrim_results["sparsity_param"], ) ) discrim_results["pretty_params"] = "" for i, row in discrim_results.iterrows(): method = row["method"] if method == "PCA": discrim_results.loc[i, "pretty_params"] = "PCA" else: if method == "SCA": symbol = r"$\gamma$" elif method == "SparsePCA": symbol = r"$\alpha$" discrim_results.loc[i, "pretty_params"] = ( row["method"] + ", " + symbol + "=" + f"{row['sparsity_param']:.0f}" ) #%% discrim_results = discrim_results.sort_values( ["method", "n_components", "sparsity_param"] ) discrim_results #%% # red_shades = sns.color_palette("Reds", n_colors=len(gammas)+1)[-2:-1] # gammas = np.unique(discrim_results[discrim_results['method'] == 'SCA']['sparsity_param']) # alphas = np.unique(discrim_results[discrim_results['method'] == 'SparsePCA']['sparsity_param']) # push = 2 # blue_shades = sns.color_palette("Blues", n_colors=len(gammas)+push)[push:] # green_shades = sns.color_palette("Greens", n_colors=len(alphas)+push)[push:][::-1] # shades = red_shades + blue_shades + green_shades # palette = dict(zip(discrim_results['params'], shades)) # palette #%% metrics = pd.DataFrame(metric_rows) metrics["params"] = list( zip(metrics["method"], metrics["n_components"], metrics["sparsity_param"]) ) metrics = metrics.set_index("params") metrics #%% plot_results = discrim_results[discrim_results["mode"] == "test"].copy() plot_results = plot_results.groupby("params").mean() plot_results = pd.concat( (plot_results, metrics.drop(["n_components", "sparsity_param", "method"], axis=1)), axis=1, ) plot_results = ( plot_results.reset_index() .rename({"level_0": "method"}, axis=1) .drop(["level_1", "level_2"], axis=1) ) plot_results = plot_results.sort_values(["method", "n_components", "sparsity_level"]) #%% plot_results["pretty_params"] = "" for i, row in plot_results.iterrows(): method = row["method"] if method == "PCA": plot_results.loc[i, "pretty_params"] = "PCA" else: if method == "SCA": symbol = r"$\gamma$" elif method == "SparsePCA": symbol = r"$\alpha$" plot_results.loc[i, "pretty_params"] = ( row["method"] + ", " + symbol + "=" + f"{row['sparsity_param']:.0f}" ) plot_results #%% red_shades = sns.color_palette("Reds", n_colors=len(gammas) + 1)[-2:-1] gammas = np.unique(plot_results[plot_results["method"] == "SCA"]["sparsity_param"]) alphas = np.unique( plot_results[plot_results["method"] == "SparsePCA"]["sparsity_param"] ) push = 2 blue_shades = sns.color_palette("Blues", n_colors=len(gammas) + push)[push:] green_shades = sns.color_palette("Greens", n_colors=len(alphas) + push)[push:] shades = red_shades + blue_shades + green_shades palette = dict(zip(plot_results["pretty_params"], shades)) palette line_palette = dict( zip( ["PCA", "SCA", "SparsePCA"], [red_shades[-1], blue_shades[-1], green_shades[-1]] ) ) #%% fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.scatterplot( data=plot_results, x="p_nonzero_cols", y="tstat", hue="pretty_params", palette=palette, ax=ax, s=100, ) handles, labels = ax.get_legend_handles_labels() handles = handles[:11] labels = labels[:11] sns.lineplot( data=plot_results, x="p_nonzero_cols", y="tstat", hue="method", zorder=-1, palette=line_palette, ) ax.get_legend().remove() ax.legend(handles=handles, labels=labels, bbox_to_anchor=(1, 1), loc="upper left") ax.set(ylabel="Discriminability", xlabel="# of genes used") stashfig("discriminability-vs-n_genes-new") #%% # plot_results["p_nonzero_cols_jitter"] = plot_results[ # "p_nonzero_cols" # ] + np.random.uniform(-0.02, 0.02, size=len(plot_results)) # mean_results = plot_results.groupby("params").mean() # gammas = np.unique(plot_results["gamma"]) # palette = dict(zip(gammas, sns.color_palette("deep", 10))) # blue_shades = sns.color_palette("Blues", n_colors=len(gammas))[1:] # palette = dict(zip(gammas[:-1], blue_shades)) # red_shades = sns.color_palette("Reds", n_colors=len(gammas))[1:] # palette[np.inf] = red_shades[-1] fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.scatterplot( data=plot_results, x="p_nonzero_cols", y="tstat", hue="params", palette=palette, ax=ax, s=10, ) # sns.scatterplot( # data=mean_results, # x="p_nonzero_cols", # y="tstat", # hue="params", # palette=palette, # ax=ax, # marker="_", # s=200, # linewidth=4, # legend=False, # ) ax.get_legend().remove() ax.legend(bbox_to_anchor=(1, 1), loc="upper left") ax.set(ylabel="Discriminability", xlabel="# of genes used") stashfig("discriminability-vs-n_genes-new") #%% fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.scatterplot( data=plot_results, x="p_nonzero", y="p_nonzero_cols", ax=ax, hue="params", palette=palette, ) #%% fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.scatterplot( data=plot_results, x="p_nonzero", y="train_time", ax=ax, hue="params", palette=palette, ) #%% from sklearn.decomposition import PCA from scipy.stats import ortho_group n_components = 10 pca = PCA(n_components=n_components) pca.fit_transform(X_train[: 2 ** 11]) Y = pca.components_.T #%% rows = [] for i in range(1000): R = ortho_group.rvs(n_components) loading_l1 = l1_norm(Y @ R) rows.append({"rotation": "random", "l1_norm": loading_l1}) from sparse_decomposition.decomposition.decomposition import _varimax Y_varimax = _varimax(Y) loading_l1 = l1_norm(Y_varimax) rows.append({"rotation": "varimax", "l1_norm": loading_l1}) results = pd.DataFrame(rows) #%% import matplotlib.transforms as transforms fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.histplot( data=results[results["rotation"] == "random"], x="l1_norm", ax=ax, stat="density", kde=True, element="step", ) ax.axvline(loading_l1, color="darkred", linestyle="--", linewidth=2) # ax.axvline(l1_norm(Y), color='blue', linestyle='--', linewidth=2) ax.annotate( "Varimax\nrotation", (loading_l1 + 2, 0.8), (20, 20), xycoords=transforms.blended_transform_factory(ax.transData, ax.transAxes), textcoords="offset points", arrowprops=dict(arrowstyle="->"), ) ax.annotate( "Random\nrotation", (605, 0.6), (-100, 20), xycoords=transforms.blended_transform_factory(ax.transData, ax.transAxes), textcoords="offset points", arrowprops=dict(arrowstyle="->"), ) ax.set(xlabel=r"$\|\|YR\|\|_{1}$ (element-wise norm)", ylabel="", yticks=[]) ax.spines["left"].set_visible(False) stashfig("random-rotations")
ce530f3a0911852d37807d078ec6dcec182f3b0f
a2dce63dc04f484d1457073610343378656a1ffd
/p24.py
c193733b0ed3535db6ba4015fe24cd7bf5da243e
[]
no_license
analaura09/pythongame
5ece67047095160cdbc56ae3bb14920c787d8d02
54c83cf731a384fdb04bc4c3ed0bcf109b03d5ed
refs/heads/main
2023-03-29T00:35:35.713616
2021-03-21T17:53:28
2021-03-21T17:53:28
348,432,418
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
import run() nome = str(input(' Digite o nome da cidade: ')).strip() print(nome[:5].upper == 'SANTO') opçao = int(input('deseja repetir esse exercicio?[1] \ndeseja voltar para o mundo1? [2] \ndeseja sair do jogo?[3]')) if opçao == 1: import p24 p24.run() if opçao ==2: import mundo1 mundo1.run() if opçao == 3: print('Obrigada por jogar! Volte sempre :)')
bd43d4b1bc8f330307b9720cb6b8e6383124f6dc
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/62/usersdata/191/32531/submittedfiles/ex1.py
e50dfa28cc19c4488d103df646274da8bad5050f
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
# -*- coding: utf-8 -*- from __future__ import division a = float(input('Digite a: ')) b = float(input('Digite b: ')) c = float(input('Digite c: ')) delta=(b**2)-(4*a*c) if delta>=0: x1=(-b+delta**(1/2))/(2*a) x2=(-b-delta**(1/2))/(2*a) print('x1 é igual a %.2f'%x1) print('x2 é igual a %.2f'%x2) else: print('SRR')
61e37196f31ae35d096a8c8fd30ddb31149a289a
3256af0d6c19732bb84b256a9f792aaf7f3d901a
/f5/bigip/tm/asm/policies/test/functional/test_extractions.py
64620349bef5b578dcd0fbe54e55e1a2ec400974
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
F5Networks/f5-common-python
73e33ea489d989399d205077163f24ce584d83b9
3050df0079c2426af99b9a1b8f93d0b512468ff4
refs/heads/development
2023-08-29T10:11:23.713392
2022-09-21T02:45:03
2022-09-21T02:45:03
45,062,555
286
180
Apache-2.0
2023-05-12T23:13:03
2015-10-27T18:48:06
Python
UTF-8
Python
false
false
4,460
py
# Copyright 2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pytest import tempfile from distutils.version import LooseVersion from f5.bigip.tm.asm.policies.extractions import Extraction from f5.sdk_exception import MissingRequiredCreationParameter from requests.exceptions import HTTPError @pytest.fixture(scope='function') def set_extraction(policy): file = tempfile.NamedTemporaryFile() name = os.path.basename(file.name) r1 = policy.extractions_s.extraction.create( extractFromAllItems=True, name=name ) yield r1 r1.delete() @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('11.6.0'), reason='This collection is fully implemented on 11.6.0 or greater.' ) class TestExtractions(object): def test_create_req_arg(self, policy): file = tempfile.NamedTemporaryFile() name = os.path.basename(file.name) r1 = policy.extractions_s.extraction.create( extractFromAllItems=True, name=name ) assert r1.kind == 'tm:asm:policies:extractions:extractionstate' r1.delete() def test_create_mandatory_arg_missing(self, policy2): file = tempfile.NamedTemporaryFile() name = os.path.basename(file.name) with pytest.raises(MissingRequiredCreationParameter) as err: policy2.extractions_s.extraction.create( extractFromAllItems=False, name=name ) assert 'This resource requires at least one of the' in str(err.value) def test_create_mandatory_arg_present(self, policy2): file = tempfile.NamedTemporaryFile() name = os.path.basename(file.name) r1 = policy2.extractions_s.extraction.create( extractFromAllItems=False, name=name, extractFromRegularExpression='["test"]') assert r1.kind == 'tm:asm:policies:extractions:extractionstate' assert r1.extractFromRegularExpression == '["test"]' assert r1.extractFromAllItems is False r1.delete() def test_refresh(self, set_extraction, policy): r1 = set_extraction r2 = policy.extractions_s.extraction.load(id=r1.id) assert r1.kind == r2.kind assert r1.extractFromAllItems == r2.extractFromAllItems assert r1.searchInXml == r2.searchInXml r2.modify(searchInXml=True) assert r1.searchInXml is False assert r2.searchInXml is True r1.refresh() assert r1.searchInXml is True def test_delete(self, policy): file = tempfile.NamedTemporaryFile() name = os.path.basename(file.name) r1 = policy.extractions_s.extraction.create( extractFromAllItems=True, name=name ) idhash = r1.id r1.delete() with pytest.raises(HTTPError) as err: policy.extractions_s.extraction.load(id=idhash) assert err.value.response.status_code == 404 def test_load_no_object(self, policy): with pytest.raises(HTTPError) as err: policy.extractions_s.extraction.load(id='Lx3553-321') assert err.value.response.status_code == 404 def test_load(self, set_extraction, policy): r1 = set_extraction assert r1.kind == 'tm:asm:policies:extractions:extractionstate' assert r1.searchInXml is False r1.modify(searchInXml=True) assert r1.searchInXml is True r2 = policy.extractions_s.extraction.load(id=r1.id) assert r1.kind == r2.kind assert r1.searchInXml == r2.searchInXml def test_extractions_subcollection(self, policy, set_extraction): r1 = set_extraction assert r1.kind == 'tm:asm:policies:extractions:extractionstate' cc = policy.extractions_s.get_collection() assert isinstance(cc, list) assert len(cc) assert isinstance(cc[0], Extraction)
ba4ce143ab4efe10927d17ed3c09492ccae1cd5b
b3aa3d77836fa8f05b54d68e7bd6bff19dced90d
/Codeforces/636 Div 3/D.py
84ea81677d1e3e2eaf8eef86a8f7d3c3ae042df2
[]
no_license
anoubhav/Codeforces-Atcoder-Codechef-solutions
660c5b78723791bc33b1d51977bf11ebe6dfe4c1
aeebcae332af64aba49f52261d11aa6996f33b1c
refs/heads/master
2022-12-08T14:02:49.574928
2020-08-29T14:18:30
2020-08-29T14:18:30
255,004,401
0
0
null
null
null
null
UTF-8
Python
false
false
4,380
py
# # Unsolved in contest ## Accepted solution: O(n+k) solution # https://www.youtube.com/watch?v=QouZfBC9CVw&list=RDCMUC4lyxGubhu5u1s1LYCwXtZw&index=2 def prefix_algo(): t = int(input()) from collections import defaultdict import math for _ in range(t): n, k = list(map(int, input().split())) seq = list(map(int, input().split())) prefix_arr = [0]*(2*k+10) zero_count = defaultdict(int) for i in range(n//2): zero_count[seq[i] + seq[n-i-1]] += 1 a, b = sorted((seq[i], seq[n-i-1])) L = a + 1 R = b + k prefix_arr[L] += 1 prefix_arr[R+1] -= 1 prefsum = 0 for i in range(2*k + 10): prefsum += prefix_arr[i] prefix_arr[i] = prefsum ans = n for i in range(2, 2*k + 1): zero = zero_count[i] ones = prefix_arr[i] - zero twos = n//2 - ones - zero total = ones + twos*2 ans = min(ans, total) print(ans) prefix_algo() ## Naive solution: O(n*k) - TLE def Naive(): t = int(input()) import math for _ in range(t): n, k = list(map(int, input().split())) seq = list(map(int, input().split())) ans = 10**6 for tot in range(2, 2*k + 1): counter = 0 for i in range(n//2): a, b = seq[i], seq[n - i - 1] if a+b>tot: minchange = max(a-1, b-1) if a+b - minchange > tot: counter += 2 else: counter += 1 elif a + b < tot: maxchange = max(k - a, k - b) if a+b+maxchange < tot: counter +=2 else: counter += 1 if counter < ans: ans = counter print(ans) ### Main mistake was that I diregarded the individual numbers (a, b) and only took the sum. The number5 ## Failed approach 1 # ans = 10**6 # pair_sum = list() # for i in range(n//2): # pair_sum.append(seq[i] + seq[n - i - 1]) # for master in pair_sum: # counter = 0 # for pair in pair_sum: # if pair!=master: # if abs(pair - master) >= k: # counter += 2 # else: # counter += 1 # if counter<ans: # ans = counter # master = k # counter = 0 # for pair in pair_sum: # if pair!=master: # if abs(pair - master) >= k: # counter += 2 # else: # counter += 1 # if counter<ans: # ans = counter # print(ans) ## Failed approach 2 # pair_sum = dict() # mode_count = 0 # for i in range(n//2): # temp = seq[i] + seq[n - i - 1] # if temp in pair_sum: pair_sum[temp] += 1 # else: pair_sum[temp] = 1 # if pair_sum[temp]>mode_count: # mode_count = pair_sum[temp] # ans = 10**6 # for key, v in pair_sum.items(): # if v == mode_count: # mode_sum = key # counter = 0 # for i in range(n//2): # temp = seq[i] + seq[n - i - 1] # if temp!=mode_sum: # if abs(temp - mode_sum) >= k: # counter += 2 # else: # counter += 1 # # print(mode_sum, temp, counter) # if counter<ans: # ans = counter # if k//2 not in pair_sum: # mode_sum = k//2 # counter = 0 # for i in range(n//2): # temp = seq[i] + seq[n - i - 1] # if temp!=mode_sum: # if abs(temp - mode_sum) >= k: # counter += 2 # else: # counter += 1 # # print(mode_sum, temp, counter) # if counter<ans: # ans = counter # ans = min(n//2, ans) # print(ans)
a4e1b7f960a339d2696bd14deaf451002d5bf475
12cb9edd19612c132028c45707b4ec944ae4ae88
/3-deploy_web_static.py
8438f8acc72a80543e4eb6219a324f9f94c48f43
[]
no_license
imperfectskillz/AirBnB_clone_v2
6345389a99f66c23d310ac3030986ef8973c00bb
8910d78da6a6bb6f14fa569af913739f4b5cf5f5
refs/heads/master
2020-03-08T01:08:53.124647
2018-04-19T01:14:16
2018-04-19T01:14:16
127,822,734
0
0
null
2018-04-02T23:11:34
2018-04-02T23:11:34
null
UTF-8
Python
false
false
1,537
py
#!/usr/bin/python3 #fabric script generates a tgz archive from fabric.api import * from datetime import datetime import os env.hosts = ["52.91.246.129", "107.23.155.217"] env.user = "ubuntu" def do_pack(): """ creates tgz """ filetime = datetime.now().strftime('%Y%m%d%H%M%s') filename = 'versions/web_static_{}.tgz'.format(filetime) try: local("mkdir -p versions") local('tar -cvzf {} web_static'.format(filename)) return filename except: return None def do_deploy(archive_path): """ distributes archive to web servers """ file = archive_path.split("/")[1] if os.path.isfile(archive_path): try: put(archive_path, "/tmp/{}".format(file)) file1 = file.split(".")[0] run("mkdir -p /data/web_static/releases/{}/".format(file1)) run("tar -xzf /tmp/{} -C /data/web_static/releases/{}".format( file, file1)) run("rm /tmp/{}".format(file)) run("mv /data/web_static/releases/{}/web_static/* /data/web_static/releases/{}/".format(file1, file1)) run("rm -rf /data/web_static/releases/{}/web_static".format(file1)) run("rm -rf /data/web_static/current") run("ln -s /data/web_static/releases/{}/ /data/web_static/current".format(file1)) return True except: return False def deploy(): """ set-up """ temp = do_pack() if not temp: return False return do_deploy(temp)
c29aa7ebe11d45637e582453e40d5f668b9e0189
5b3d8b5c612c802fd846de63f86b57652d33f672
/Python/six_kyu/digital_root.py
5655cf937c38c8dc012f4fb38a715f99a3c7198f
[ "Apache-2.0" ]
permissive
Brokenshire/codewars-projects
1e591b57ed910a567f6c0423beb194fa7f8f693e
db9cd09618b8a7085b0d53ad76f73f9e249b9396
refs/heads/master
2021-07-22T18:50:25.847592
2021-01-25T23:27:17
2021-01-25T23:27:17
228,114,677
1
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
# Python solution for 'Sum of Digits / Digital Root' codewars question. # Level: 6 kyu # Tags: Algorithms, Mathematics, Numbers, and Arithmetic. # Author: Jack Brokenshire # Date: 13/02/2020 import unittest def digital_root(n): """ A digital root is the recursive sum of all the digits in a number. Given n, take the sum of the digits of n. If that value has more than one digit, continue reducing in this way until a single-digit number is produced. This is only applicable to the natural numbers. :param n: A input integer value. :return: Adds each digit together in the given number until it reaches a single-digit number. """ while n > 10: n = sum([int(x) for x in str(n) if n > 10]) digital_root(n) return n class TestDigitalRoot(unittest.TestCase): """Class to test 'digital_root' function""" def test_digital_root(self): self.assertEqual(digital_root(16), 7) self.assertEqual(digital_root(456), 6) self.assertEqual(digital_root(942), 6) self.assertEqual(digital_root(132189), 6) self.assertEqual(digital_root(493193), 2) if __name__ == '__main__': unittest.main()
fb5e0cbc84d8801e24e350f9c849aaae07d4483e
4de03eecadc4c69caf792f4773571c2f6dbe9d68
/tests/api/test_beshared.py
6362f1d3b23953ff61e2bcedd67f638da265f5a2
[ "Apache-2.0" ]
permissive
Tr-1234/seahub
c1663dfd12f7584f24c160bcf2a83afdbe63a9e2
ed255e0566de054b5570218cb39cc320e99ffa44
refs/heads/master
2022-12-23T16:20:13.138757
2020-10-01T04:13:42
2020-10-01T04:13:42
300,138,290
0
0
Apache-2.0
2020-10-01T04:11:41
2020-10-01T04:11:40
null
UTF-8
Python
false
false
2,540
py
import json import seaserv from seaserv import seafile_api from seahub.test_utils import BaseTestCase class BeSharedReposTest(BaseTestCase): def setUp(self): self.login_as(self.admin) def tearDown(self): self.remove_repo() def _prepare_repo_and_group(self): # create repo for user sub_repo_id = seafile_api.create_virtual_repo(self.repo.id, self.folder, self.repo.name, '', self.user.username) self.sub_repo_id = sub_repo_id # create group for admin admin_group_id = seaserv.ccnet_threaded_rpc.create_group('admin-group', self.admin.email) self.admin_group_id = admin_group_id def test_can_list_personal_shared_repo(self): self._prepare_repo_and_group() # A user shares a folder to admin with permission 'rw'. seafile_api.share_repo(self.sub_repo_id, self.user.username, self.admin.username, 'rw') resp = self.client.get('/api2/beshared-repos/') self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['repo_id'] == self.sub_repo_id assert json_resp[0]['share_type'] == 'personal' def test_can_list_group_repo(self): self._prepare_repo_and_group() # A user shares a folder to admin group with permission 'rw'. seafile_api.set_group_repo(self.sub_repo_id, self.admin_group_id, self.user.username, 'rw') resp = self.client.get('/api2/beshared-repos/') self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['repo_id'] == self.sub_repo_id assert json_resp[0]['share_type'] == 'group' def test_can_list_public_repo(self): self._prepare_repo_and_group() # A user shares a folder to public with permission 'rw'. seafile_api.add_inner_pub_repo(self.sub_repo_id, 'rw') resp = self.client.get('/api2/beshared-repos/') self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['repo_id'] == self.sub_repo_id assert json_resp[0]['share_type'] == 'public'
0fcb38ed4b11b89f3af06a4adbf4410b3eab6123
528f910908885c3ded4ecc6380b9603c8dcacbd6
/tbapi/top/api/rest/SimbaRptCusteffectGetRequest.py
58297bc4539f31f788a51628d13782982910cac7
[]
no_license
Monica-ckd/data007
15fe9c4c898a51a58100138b6b064211199d2ed1
0e54ae57eb719b86ec14ce9f77b027882a3398a8
refs/heads/master
2023-03-16T05:26:14.257318
2016-05-25T06:57:05
2016-05-25T06:57:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
''' Created by auto_sdk on 2013-04-01 16:44:41 ''' from top.api.base import RestApi class SimbaRptCusteffectGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.end_time = None self.nick = None self.page_no = None self.page_size = None self.source = None self.start_time = None self.subway_token = None def getapiname(self): return 'taobao.simba.rpt.custeffect.get'
10d497ee159d5fa12d220be2c774fd33f365bf17
fcd80f58e8006cb6bb04ac9dca4b3d58dc8d1d70
/files/example197_file_seek.py
9beb719cee7f34becceb6ea5685d4a6b719d77dd
[]
no_license
penguuu/python-examples
56e252be3dbf61cb0345cf8f95a01577f755f332
32f46ba435fd2797454af6228b368524ac1ebd79
refs/heads/master
2021-01-04T22:18:03.474098
2020-02-15T20:32:18
2020-02-15T20:32:18
240,781,755
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
#!/usr/bin/python fo = open("example197_file_seek.py","r") print "Name of the file: ", fo.name line = fo.readline() print "Read Line: %s" % line fo.seek(0,0) line = fo.readline() print "Read Line: %s" % line fo.close()
64b2dd0ee2448d18b763f3d2663e33790714d44c
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/MbbX7qJJeEnQu9bKr_16.py
770c027324993f571e65cc9d43a73570afc5f508
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
def max_occur(text): freqs = {c: text.count(c) for c in text if text.count(c) > 1} ​ if not freqs: return 'No Repetition' ​ return sorted(c for c in freqs if freqs[c] == max(freqs.values()))
6d23004951c597c739a77280febec8db68afdaf6
d8a5525d2e2070f0434e971b6b03df6d6457d47d
/torch_glow/tests/nodes/zero_test.py
3a5472f453da540a4dc3a705bbf9d2e2a12c8655
[ "Apache-2.0" ]
permissive
pytorch/glow
0006dbac932da386ff1143cff166b89323aec337
f35c3d180290c79d5d3578ccc800bb35ce88e420
refs/heads/master
2023-08-30T17:44:59.170945
2023-08-29T05:29:36
2023-08-29T05:29:36
105,281,531
3,201
780
Apache-2.0
2023-09-14T08:29:16
2017-09-29T14:28:18
C++
UTF-8
Python
false
false
1,146
py
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class TestZero(utils.TorchGlowTestCase): def test_zero_basic(self): """Basic test of the PyTorch zero Node on Glow.""" class TestModule(torch.nn.Module): def forward(self, a): b = torch.zeros(a.size(), dtype=torch.float) return a + b x = torch.randn(2, 3, 4) utils.compare_tracing_methods(TestModule(), x, fusible_ops={"aten::zeros"})
b5995ba400cdef8251e2ed83be1b7a3160a382e1
627cca9406c31ce30c493ff7502f79eb4c57eee3
/xcha/pools/pool_config.py
2302aa6557d98b0686a6c0e7e602138bfb72a332
[ "Apache-2.0" ]
permissive
blockchiansea/xcha-blockchain
40c6d36813f671e94316a522904238f495f39f6b
7de0ba89056236e30069aef12fe25843f6093bcf
refs/heads/master
2023-07-26T02:36:57.654196
2021-09-06T06:04:21
2021-09-06T06:04:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,801
py
import logging from dataclasses import dataclass from pathlib import Path from typing import List from blspy import G1Element from xcha.types.blockchain_format.sized_bytes import bytes32 from xcha.util.byte_types import hexstr_to_bytes from xcha.util.config import load_config, save_config from xcha.util.streamable import Streamable, streamable """ Config example This is what goes into the user's config file, to communicate between the wallet and the farmer processes. pool_list: launcher_id: ae4ef3b9bfe68949691281a015a9c16630fc8f66d48c19ca548fb80768791afa authentication_public_key: 970e181ae45435ae696508a78012dc80548c334cf29676ea6ade7049eb9d2b9579cc30cb44c3fd68d35a250cfbc69e29 owner_public_key: 84c3fcf9d5581c1ddc702cb0f3b4a06043303b334dd993ab42b2c320ebfa98e5ce558448615b3f69638ba92cf7f43da5 payout_instructions: c2b08e41d766da4116e388357ed957d04ad754623a915f3fd65188a8746cf3e8 pool_url: localhost p2_singleton_puzzle_hash: 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824 target_puzzle_hash: 344587cf06a39db471d2cc027504e8688a0a67cce961253500c956c73603fd58 """ # noqa log = logging.getLogger(__name__) @dataclass(frozen=True) @streamable class PoolWalletConfig(Streamable): launcher_id: bytes32 pool_url: str payout_instructions: str target_puzzle_hash: bytes32 p2_singleton_puzzle_hash: bytes32 owner_public_key: G1Element authentication_public_key: G1Element def load_pool_config(root_path: Path) -> List[PoolWalletConfig]: config = load_config(root_path, "config.yaml") ret_list: List[PoolWalletConfig] = [] if "pool_list" in config["pool"]: for pool_config_dict in config["pool"]["pool_list"]: try: pool_config = PoolWalletConfig( hexstr_to_bytes(pool_config_dict["launcher_id"]), pool_config_dict["pool_url"], pool_config_dict["payout_instructions"], hexstr_to_bytes(pool_config_dict["target_puzzle_hash"]), hexstr_to_bytes(pool_config_dict["p2_singleton_puzzle_hash"]), G1Element.from_bytes(hexstr_to_bytes(pool_config_dict["owner_public_key"])), G1Element.from_bytes(hexstr_to_bytes(pool_config_dict["authentication_public_key"])), ) ret_list.append(pool_config) except Exception as e: log.error(f"Exception loading config: {pool_config_dict} {e}") return ret_list async def update_pool_config(root_path: Path, pool_config_list: List[PoolWalletConfig]): full_config = load_config(root_path, "config.yaml") full_config["pool"]["pool_list"] = [c.to_json_dict() for c in pool_config_list] save_config(root_path, "config.yaml", full_config)
0c2564c74f11c92624cfde26e3724565ec38a320
26d6c34df00a229dc85ad7326de6cb5672be7acc
/msgraph-cli-extensions/beta/financials_beta/azext_financials_beta/vendored_sdks/financials/aio/_financials.py
d04272fa50b6915e7ad0d391b9af5cb2f0907b76
[ "MIT" ]
permissive
BrianTJackett/msgraph-cli
87f92471f68f85e44872939d876b9ff5f0ae6b2c
78a4b1c73a23b85c070fed2fbca93758733f620e
refs/heads/main
2023-06-23T21:31:53.306655
2021-07-09T07:58:56
2021-07-09T07:58:56
386,993,555
0
0
NOASSERTION
2021-07-17T16:56:05
2021-07-17T16:56:05
null
UTF-8
Python
false
false
26,543
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.mgmt.core import AsyncARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential from ._configuration import FinancialsConfiguration from .operations import FinancialsFinancialsOperations from .operations import FinancialsOperations from .operations import FinancialsCompaniesOperations from .operations import FinancialsCompaniesCustomerPaymentJournalsOperations from .operations import FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsOperations from .operations import FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsCustomerOperations from .operations import FinancialsCompaniesCustomerPaymentsOperations from .operations import FinancialsCompaniesCustomerPaymentsCustomerOperations from .operations import FinancialsCompaniesCustomersOperations from .operations import FinancialsCompaniesDimensionsOperations from .operations import FinancialsCompaniesEmployeesOperations from .operations import FinancialsCompaniesGeneralLedgerEntriesOperations from .operations import FinancialsCompaniesItemsOperations from .operations import FinancialsCompaniesJournalLinesOperations from .operations import FinancialsCompaniesJournalsOperations from .operations import FinancialsCompaniesJournalsJournalLinesOperations from .operations import FinancialsCompaniesPurchaseInvoiceLinesOperations from .operations import FinancialsCompaniesPurchaseInvoiceLinesItemOperations from .operations import FinancialsCompaniesPurchaseInvoicesOperations from .operations import FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesOperations from .operations import FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesItemOperations from .operations import FinancialsCompaniesPurchaseInvoicesVendorOperations from .operations import FinancialsCompaniesSalesCreditMemoLinesOperations from .operations import FinancialsCompaniesSalesCreditMemoLinesItemOperations from .operations import FinancialsCompaniesSalesCreditMemosOperations from .operations import FinancialsCompaniesSalesCreditMemosCustomerOperations from .operations import FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesOperations from .operations import FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesItemOperations from .operations import FinancialsCompaniesSalesInvoiceLinesOperations from .operations import FinancialsCompaniesSalesInvoiceLinesItemOperations from .operations import FinancialsCompaniesSalesInvoicesOperations from .operations import FinancialsCompaniesSalesInvoicesCustomerOperations from .operations import FinancialsCompaniesSalesInvoicesSalesInvoiceLinesOperations from .operations import FinancialsCompaniesSalesInvoicesSalesInvoiceLinesItemOperations from .operations import FinancialsCompaniesSalesOrderLinesOperations from .operations import FinancialsCompaniesSalesOrderLinesItemOperations from .operations import FinancialsCompaniesSalesOrdersOperations from .operations import FinancialsCompaniesSalesOrdersCustomerOperations from .operations import FinancialsCompaniesSalesOrdersSalesOrderLinesOperations from .operations import FinancialsCompaniesSalesOrdersSalesOrderLinesItemOperations from .operations import FinancialsCompaniesSalesQuoteLinesOperations from .operations import FinancialsCompaniesSalesQuoteLinesItemOperations from .operations import FinancialsCompaniesSalesQuotesOperations from .operations import FinancialsCompaniesSalesQuotesCustomerOperations from .operations import FinancialsCompaniesSalesQuotesSalesQuoteLinesOperations from .operations import FinancialsCompaniesSalesQuotesSalesQuoteLinesItemOperations from .operations import FinancialsCompaniesVendorsOperations from .. import models class Financials(object): """Financials. :ivar financials_financials: FinancialsFinancialsOperations operations :vartype financials_financials: financials.aio.operations.FinancialsFinancialsOperations :ivar financials: FinancialsOperations operations :vartype financials: financials.aio.operations.FinancialsOperations :ivar financials_companies: FinancialsCompaniesOperations operations :vartype financials_companies: financials.aio.operations.FinancialsCompaniesOperations :ivar financials_companies_customer_payment_journals: FinancialsCompaniesCustomerPaymentJournalsOperations operations :vartype financials_companies_customer_payment_journals: financials.aio.operations.FinancialsCompaniesCustomerPaymentJournalsOperations :ivar financials_companies_customer_payment_journals_customer_payments: FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsOperations operations :vartype financials_companies_customer_payment_journals_customer_payments: financials.aio.operations.FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsOperations :ivar financials_companies_customer_payment_journals_customer_payments_customer: FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsCustomerOperations operations :vartype financials_companies_customer_payment_journals_customer_payments_customer: financials.aio.operations.FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsCustomerOperations :ivar financials_companies_customer_payments: FinancialsCompaniesCustomerPaymentsOperations operations :vartype financials_companies_customer_payments: financials.aio.operations.FinancialsCompaniesCustomerPaymentsOperations :ivar financials_companies_customer_payments_customer: FinancialsCompaniesCustomerPaymentsCustomerOperations operations :vartype financials_companies_customer_payments_customer: financials.aio.operations.FinancialsCompaniesCustomerPaymentsCustomerOperations :ivar financials_companies_customers: FinancialsCompaniesCustomersOperations operations :vartype financials_companies_customers: financials.aio.operations.FinancialsCompaniesCustomersOperations :ivar financials_companies_dimensions: FinancialsCompaniesDimensionsOperations operations :vartype financials_companies_dimensions: financials.aio.operations.FinancialsCompaniesDimensionsOperations :ivar financials_companies_employees: FinancialsCompaniesEmployeesOperations operations :vartype financials_companies_employees: financials.aio.operations.FinancialsCompaniesEmployeesOperations :ivar financials_companies_general_ledger_entries: FinancialsCompaniesGeneralLedgerEntriesOperations operations :vartype financials_companies_general_ledger_entries: financials.aio.operations.FinancialsCompaniesGeneralLedgerEntriesOperations :ivar financials_companies_items: FinancialsCompaniesItemsOperations operations :vartype financials_companies_items: financials.aio.operations.FinancialsCompaniesItemsOperations :ivar financials_companies_journal_lines: FinancialsCompaniesJournalLinesOperations operations :vartype financials_companies_journal_lines: financials.aio.operations.FinancialsCompaniesJournalLinesOperations :ivar financials_companies_journals: FinancialsCompaniesJournalsOperations operations :vartype financials_companies_journals: financials.aio.operations.FinancialsCompaniesJournalsOperations :ivar financials_companies_journals_journal_lines: FinancialsCompaniesJournalsJournalLinesOperations operations :vartype financials_companies_journals_journal_lines: financials.aio.operations.FinancialsCompaniesJournalsJournalLinesOperations :ivar financials_companies_purchase_invoice_lines: FinancialsCompaniesPurchaseInvoiceLinesOperations operations :vartype financials_companies_purchase_invoice_lines: financials.aio.operations.FinancialsCompaniesPurchaseInvoiceLinesOperations :ivar financials_companies_purchase_invoice_lines_item: FinancialsCompaniesPurchaseInvoiceLinesItemOperations operations :vartype financials_companies_purchase_invoice_lines_item: financials.aio.operations.FinancialsCompaniesPurchaseInvoiceLinesItemOperations :ivar financials_companies_purchase_invoices: FinancialsCompaniesPurchaseInvoicesOperations operations :vartype financials_companies_purchase_invoices: financials.aio.operations.FinancialsCompaniesPurchaseInvoicesOperations :ivar financials_companies_purchase_invoices_purchase_invoice_lines: FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesOperations operations :vartype financials_companies_purchase_invoices_purchase_invoice_lines: financials.aio.operations.FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesOperations :ivar financials_companies_purchase_invoices_purchase_invoice_lines_item: FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesItemOperations operations :vartype financials_companies_purchase_invoices_purchase_invoice_lines_item: financials.aio.operations.FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesItemOperations :ivar financials_companies_purchase_invoices_vendor: FinancialsCompaniesPurchaseInvoicesVendorOperations operations :vartype financials_companies_purchase_invoices_vendor: financials.aio.operations.FinancialsCompaniesPurchaseInvoicesVendorOperations :ivar financials_companies_sales_credit_memo_lines: FinancialsCompaniesSalesCreditMemoLinesOperations operations :vartype financials_companies_sales_credit_memo_lines: financials.aio.operations.FinancialsCompaniesSalesCreditMemoLinesOperations :ivar financials_companies_sales_credit_memo_lines_item: FinancialsCompaniesSalesCreditMemoLinesItemOperations operations :vartype financials_companies_sales_credit_memo_lines_item: financials.aio.operations.FinancialsCompaniesSalesCreditMemoLinesItemOperations :ivar financials_companies_sales_credit_memos: FinancialsCompaniesSalesCreditMemosOperations operations :vartype financials_companies_sales_credit_memos: financials.aio.operations.FinancialsCompaniesSalesCreditMemosOperations :ivar financials_companies_sales_credit_memos_customer: FinancialsCompaniesSalesCreditMemosCustomerOperations operations :vartype financials_companies_sales_credit_memos_customer: financials.aio.operations.FinancialsCompaniesSalesCreditMemosCustomerOperations :ivar financials_companies_sales_credit_memos_sales_credit_memo_lines: FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesOperations operations :vartype financials_companies_sales_credit_memos_sales_credit_memo_lines: financials.aio.operations.FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesOperations :ivar financials_companies_sales_credit_memos_sales_credit_memo_lines_item: FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesItemOperations operations :vartype financials_companies_sales_credit_memos_sales_credit_memo_lines_item: financials.aio.operations.FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesItemOperations :ivar financials_companies_sales_invoice_lines: FinancialsCompaniesSalesInvoiceLinesOperations operations :vartype financials_companies_sales_invoice_lines: financials.aio.operations.FinancialsCompaniesSalesInvoiceLinesOperations :ivar financials_companies_sales_invoice_lines_item: FinancialsCompaniesSalesInvoiceLinesItemOperations operations :vartype financials_companies_sales_invoice_lines_item: financials.aio.operations.FinancialsCompaniesSalesInvoiceLinesItemOperations :ivar financials_companies_sales_invoices: FinancialsCompaniesSalesInvoicesOperations operations :vartype financials_companies_sales_invoices: financials.aio.operations.FinancialsCompaniesSalesInvoicesOperations :ivar financials_companies_sales_invoices_customer: FinancialsCompaniesSalesInvoicesCustomerOperations operations :vartype financials_companies_sales_invoices_customer: financials.aio.operations.FinancialsCompaniesSalesInvoicesCustomerOperations :ivar financials_companies_sales_invoices_sales_invoice_lines: FinancialsCompaniesSalesInvoicesSalesInvoiceLinesOperations operations :vartype financials_companies_sales_invoices_sales_invoice_lines: financials.aio.operations.FinancialsCompaniesSalesInvoicesSalesInvoiceLinesOperations :ivar financials_companies_sales_invoices_sales_invoice_lines_item: FinancialsCompaniesSalesInvoicesSalesInvoiceLinesItemOperations operations :vartype financials_companies_sales_invoices_sales_invoice_lines_item: financials.aio.operations.FinancialsCompaniesSalesInvoicesSalesInvoiceLinesItemOperations :ivar financials_companies_sales_order_lines: FinancialsCompaniesSalesOrderLinesOperations operations :vartype financials_companies_sales_order_lines: financials.aio.operations.FinancialsCompaniesSalesOrderLinesOperations :ivar financials_companies_sales_order_lines_item: FinancialsCompaniesSalesOrderLinesItemOperations operations :vartype financials_companies_sales_order_lines_item: financials.aio.operations.FinancialsCompaniesSalesOrderLinesItemOperations :ivar financials_companies_sales_orders: FinancialsCompaniesSalesOrdersOperations operations :vartype financials_companies_sales_orders: financials.aio.operations.FinancialsCompaniesSalesOrdersOperations :ivar financials_companies_sales_orders_customer: FinancialsCompaniesSalesOrdersCustomerOperations operations :vartype financials_companies_sales_orders_customer: financials.aio.operations.FinancialsCompaniesSalesOrdersCustomerOperations :ivar financials_companies_sales_orders_sales_order_lines: FinancialsCompaniesSalesOrdersSalesOrderLinesOperations operations :vartype financials_companies_sales_orders_sales_order_lines: financials.aio.operations.FinancialsCompaniesSalesOrdersSalesOrderLinesOperations :ivar financials_companies_sales_orders_sales_order_lines_item: FinancialsCompaniesSalesOrdersSalesOrderLinesItemOperations operations :vartype financials_companies_sales_orders_sales_order_lines_item: financials.aio.operations.FinancialsCompaniesSalesOrdersSalesOrderLinesItemOperations :ivar financials_companies_sales_quote_lines: FinancialsCompaniesSalesQuoteLinesOperations operations :vartype financials_companies_sales_quote_lines: financials.aio.operations.FinancialsCompaniesSalesQuoteLinesOperations :ivar financials_companies_sales_quote_lines_item: FinancialsCompaniesSalesQuoteLinesItemOperations operations :vartype financials_companies_sales_quote_lines_item: financials.aio.operations.FinancialsCompaniesSalesQuoteLinesItemOperations :ivar financials_companies_sales_quotes: FinancialsCompaniesSalesQuotesOperations operations :vartype financials_companies_sales_quotes: financials.aio.operations.FinancialsCompaniesSalesQuotesOperations :ivar financials_companies_sales_quotes_customer: FinancialsCompaniesSalesQuotesCustomerOperations operations :vartype financials_companies_sales_quotes_customer: financials.aio.operations.FinancialsCompaniesSalesQuotesCustomerOperations :ivar financials_companies_sales_quotes_sales_quote_lines: FinancialsCompaniesSalesQuotesSalesQuoteLinesOperations operations :vartype financials_companies_sales_quotes_sales_quote_lines: financials.aio.operations.FinancialsCompaniesSalesQuotesSalesQuoteLinesOperations :ivar financials_companies_sales_quotes_sales_quote_lines_item: FinancialsCompaniesSalesQuotesSalesQuoteLinesItemOperations operations :vartype financials_companies_sales_quotes_sales_quote_lines_item: financials.aio.operations.FinancialsCompaniesSalesQuotesSalesQuoteLinesItemOperations :ivar financials_companies_vendors: FinancialsCompaniesVendorsOperations operations :vartype financials_companies_vendors: financials.aio.operations.FinancialsCompaniesVendorsOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param top: Show only the first n items. :type top: int :param skip: Skip the first n items. :type skip: int :param search: Search items by search phrases. :type search: str :param filter: Filter items by property values. :type filter: str :param count: Include count of items. :type count: bool :param str base_url: Service URL """ def __init__( self, credential: "AsyncTokenCredential", top: Optional[int] = None, skip: Optional[int] = None, search: Optional[str] = None, filter: Optional[str] = None, count: Optional[bool] = None, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://graph.microsoft.com/beta' self._config = FinancialsConfiguration(credential, top, skip, search, filter, count, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.financials_financials = FinancialsFinancialsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials = FinancialsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies = FinancialsCompaniesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customer_payment_journals = FinancialsCompaniesCustomerPaymentJournalsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customer_payment_journals_customer_payments = FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customer_payment_journals_customer_payments_customer = FinancialsCompaniesCustomerPaymentJournalsCustomerPaymentsCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customer_payments = FinancialsCompaniesCustomerPaymentsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customer_payments_customer = FinancialsCompaniesCustomerPaymentsCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_customers = FinancialsCompaniesCustomersOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_dimensions = FinancialsCompaniesDimensionsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_employees = FinancialsCompaniesEmployeesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_general_ledger_entries = FinancialsCompaniesGeneralLedgerEntriesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_items = FinancialsCompaniesItemsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_journal_lines = FinancialsCompaniesJournalLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_journals = FinancialsCompaniesJournalsOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_journals_journal_lines = FinancialsCompaniesJournalsJournalLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoice_lines = FinancialsCompaniesPurchaseInvoiceLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoice_lines_item = FinancialsCompaniesPurchaseInvoiceLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoices = FinancialsCompaniesPurchaseInvoicesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoices_purchase_invoice_lines = FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoices_purchase_invoice_lines_item = FinancialsCompaniesPurchaseInvoicesPurchaseInvoiceLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_purchase_invoices_vendor = FinancialsCompaniesPurchaseInvoicesVendorOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memo_lines = FinancialsCompaniesSalesCreditMemoLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memo_lines_item = FinancialsCompaniesSalesCreditMemoLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memos = FinancialsCompaniesSalesCreditMemosOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memos_customer = FinancialsCompaniesSalesCreditMemosCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memos_sales_credit_memo_lines = FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_credit_memos_sales_credit_memo_lines_item = FinancialsCompaniesSalesCreditMemosSalesCreditMemoLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoice_lines = FinancialsCompaniesSalesInvoiceLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoice_lines_item = FinancialsCompaniesSalesInvoiceLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoices = FinancialsCompaniesSalesInvoicesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoices_customer = FinancialsCompaniesSalesInvoicesCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoices_sales_invoice_lines = FinancialsCompaniesSalesInvoicesSalesInvoiceLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_invoices_sales_invoice_lines_item = FinancialsCompaniesSalesInvoicesSalesInvoiceLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_order_lines = FinancialsCompaniesSalesOrderLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_order_lines_item = FinancialsCompaniesSalesOrderLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_orders = FinancialsCompaniesSalesOrdersOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_orders_customer = FinancialsCompaniesSalesOrdersCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_orders_sales_order_lines = FinancialsCompaniesSalesOrdersSalesOrderLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_orders_sales_order_lines_item = FinancialsCompaniesSalesOrdersSalesOrderLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quote_lines = FinancialsCompaniesSalesQuoteLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quote_lines_item = FinancialsCompaniesSalesQuoteLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quotes = FinancialsCompaniesSalesQuotesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quotes_customer = FinancialsCompaniesSalesQuotesCustomerOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quotes_sales_quote_lines = FinancialsCompaniesSalesQuotesSalesQuoteLinesOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_sales_quotes_sales_quote_lines_item = FinancialsCompaniesSalesQuotesSalesQuoteLinesItemOperations( self._client, self._config, self._serialize, self._deserialize) self.financials_companies_vendors = FinancialsCompaniesVendorsOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "Financials": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
2a04a0b4d524fd056e57e98a0700803743f8a35a
afd2087e80478010d9df66e78280f75e1ff17d45
/torch/nn/intrinsic/modules/fused.py
dc962f956427ec6f6e6b1d0580a1d5c73bd9cd29
[ "BSD-3-Clause", "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
pytorch/pytorch
7521ac50c47d18b916ae47a6592c4646c2cb69b5
a6f7dd4707ac116c0f5fb5f44f42429f38d23ab4
refs/heads/main
2023-08-03T05:05:02.822937
2023-08-03T00:40:33
2023-08-03T04:14:52
65,600,975
77,092
24,610
NOASSERTION
2023-09-14T21:58:39
2016-08-13T05:26:41
Python
UTF-8
Python
false
false
901
py
from torch.ao.nn.intrinsic import BNReLU2d from torch.ao.nn.intrinsic import BNReLU3d from torch.ao.nn.intrinsic import ConvBn1d from torch.ao.nn.intrinsic import ConvBn2d from torch.ao.nn.intrinsic import ConvBn3d from torch.ao.nn.intrinsic import ConvBnReLU1d from torch.ao.nn.intrinsic import ConvBnReLU2d from torch.ao.nn.intrinsic import ConvBnReLU3d from torch.ao.nn.intrinsic import ConvReLU1d from torch.ao.nn.intrinsic import ConvReLU2d from torch.ao.nn.intrinsic import ConvReLU3d from torch.ao.nn.intrinsic import LinearBn1d from torch.ao.nn.intrinsic import LinearReLU from torch.ao.nn.intrinsic.modules.fused import _FusedModule # noqa: F401 __all__ = [ 'BNReLU2d', 'BNReLU3d', 'ConvBn1d', 'ConvBn2d', 'ConvBn3d', 'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBnReLU3d', 'ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearBn1d', 'LinearReLU', ]
1f6bf9540ccf30dd2d98ad22948909b458eb8fab
1beea84ee4ebc720e9353b71dce9cc34898f7823
/test/test_dynamic_shapes.py
28d5e740624384b890b0d240984aafeadb3cec44
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
EikanWang/pytorch
93974c30013f27064d7aeaa6a6cd061854c721e0
16d85160d511f6e0c3b3eda418b133a66d3376dd
refs/heads/master
2023-03-22T14:10:44.608629
2023-03-20T07:56:18
2023-03-20T07:56:18
616,394,473
1
1
NOASSERTION
2023-03-20T10:01:18
2023-03-20T10:00:29
null
UTF-8
Python
false
false
30,179
py
# -*- coding: utf-8 -*- # Owner(s): ["oncall: jit"] from torch._C import _disabled_torch_function_impl import torch.fx import torch.nn.functional as F from torch.testing._internal.common_utils import run_tests, TestCase, skipIfTorchDynamo, \ parametrize, instantiate_parametrized_tests import torch import operator import itertools import contextlib import math import copy import sympy from torch.utils._pytree import tree_map from torch.fx.experimental import symbolic_shapes from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.experimental.symbolic_shapes import SymNode, \ FloorDiv, ShapeEnv, sym_sqrt, sym_float, to_node, GuardOnDataDependentSymNode, \ guard_bool, guard_int, guard_float from torch.utils._python_dispatch import TorchDispatchMode from torch import SymBool, SymInt, SymFloat, sym_int aten = torch.ops.aten meta_funcs = {} def register_meta(op): def decorator(f): def add_func(op): meta_funcs[op] = f tree_map(add_func, op) return f return decorator @register_meta([aten.add.Tensor, aten.sub.Tensor]) def binary_meta(a, b): return a.new_empty(a.shape) @register_meta(aten.cat.default) def cat_meta(tensors, dim=0): concat_length = 0 shape = tensors[0].shape for tensor in tensors: for idx, (common_length, length) in enumerate(zip(shape, tensor.shape)): if idx == dim: concat_length = concat_length + length else: assert length == common_length new_shape = list(shape) new_shape[dim] = concat_length return tensors[0].new_empty(new_shape) @register_meta([aten.narrow_copy.default]) def narrow_copy_symint_meta(a, dim, start, length, **kwargs): shape = [] for i, x in enumerate(a.shape): if i == dim: shape.append(length) else: shape.append(x) return a.new_empty(tuple(shape)) @register_meta([aten.expand.default]) def expand_symint_meta(a, size, implicit=False): return a.new_empty(size) def create_contiguous(shape): strides = [1] for dim in reversed(shape[:-1]): strides.append(dim * strides[-1]) return list(reversed(strides)) class FakeSymbolicTensor(torch.Tensor): @staticmethod def __new__(cls, sym_shape, sym_strides, dtype, layout, requires_grad, device, storage_offset=0): # TODO: this is wrong in general sym_stride = create_contiguous(sym_shape) r = torch.Tensor._make_wrapper_subclass( cls, sym_shape, sym_stride, storage_offset, dtype=dtype, layout=layout, requires_grad=requires_grad, device=device, ) return r __torch_function__ = _disabled_torch_function_impl def new_empty(self, shape): return FakeSymbolicTensor(shape, None, self.dtype, self.layout, self.requires_grad, self.device) @classmethod def __torch_dispatch__(cls, func_overload, types, args=(), kwargs=None): if func_overload in meta_funcs: return meta_funcs[func_overload](*args, **kwargs) if func_overload == torch.ops.aten.new_empty.default: self = args[0] shape = args[1] return FakeSymbolicTensor(shape, self.stride(), self.dtype, self.layout, self.requires_grad, self.device) raise RuntimeError(f"operator {func_overload} not supported") def create_symbolic_tensor(name, arg, shape_env): from torch._dynamo.source import ConstantSource sym_shapes, sym_strides, sym_storage_offset = \ shape_env.create_symbolic_sizes_strides_storage_offset(arg, source=ConstantSource(name)) return FakeSymbolicTensor(sym_shapes, sym_strides, arg.dtype, arg.layout, arg.requires_grad, arg.device, sym_storage_offset) def create_symint(shape_env, i: int): from torch._dynamo.source import ConstantSource return shape_env.create_symintnode( shape_env.create_symbol(i, source=ConstantSource(f"__testing_only{len(shape_env.var_to_val)}")), hint=i ) @skipIfTorchDynamo("Creating ShapeEnv fails for confusing reasons (also we never expect dynamo to see code like this)") class TestPySymInt(TestCase): def test_arith_ops(self): shape_env = ShapeEnv() symints = [] for i in range(2, 5): symints.append((i, create_symint(shape_env, i))) ops = [operator.add, operator.sub, operator.floordiv, operator.mul, operator.mod] for op in ops: for args in itertools.permutations(symints, 2): if not isinstance(args[0][1], int) and ((op != operator.mod or op != operator.floordiv) and args[1][0] != 0): self.assertTrue(op(args[0][1], args[1][1]) == op(args[0][0], args[1][0])) def test_reverse_arith_ops(self): shape_env = ShapeEnv() a = create_symint(shape_env, 2) self.assertTrue(5 // a == 5 // 2) a = create_symint(shape_env, 2) self.assertTrue(5 * a == 5 * 2) def test_roundtrip(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env) self.assertTrue(not isinstance(x.shape[0], SymNode)) self.assertTrue(isinstance(x.shape[0], SymInt)) self.assertTrue(x.shape[0] == 5) self.assertTrue(x.shape[1] == 4) self.assertTrue(x.shape[2], 3) self.assertTrue(x.size()[0], 5) self.assertTrue(x.size()[1], 4) self.assertTrue(isinstance(x.size()[1], SymInt)) self.assertTrue(x.size()[2] == 3) self.assertTrue(x.size(0) == 5) self.assertTrue(x.size(1) == 4) self.assertTrue(x.size(2) == 3) self.assertTrue(isinstance(x.size(2), SymInt)) y = create_symbolic_tensor("y", torch.randn(5, 4, 3)[1:], shape_env) self.assertTrue(isinstance(y.storage_offset(), SymInt)) self.assertTrue(y.storage_offset() == 12) def test_binary(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env) y = create_symbolic_tensor("y", torch.randn(5, 4, 3), shape_env) z = x + y self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # broadcasting y = create_symbolic_tensor("y2", torch.randn(1, 4, 1), shape_env) z = x + y self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) def test_symint_args(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env) y = create_symbolic_tensor("y", torch.randn(5, 4, 1), shape_env) LAST_DIM = 2 z = x.narrow_copy(LAST_DIM, 0, y.shape[LAST_DIM]) self.assertTrue(z.shape[2] == y.shape[2]) # arithmetic expr with two symints z = x.narrow_copy(LAST_DIM, 0, x.shape[LAST_DIM] - y.shape[LAST_DIM]) self.assertTrue(z.shape[2] == 2) # arithmetic expr with a symint and python int z = x.narrow_copy(LAST_DIM, 0, x.shape[LAST_DIM] - 1) self.assertTrue(z.shape[2] == 2) def test_symint_vargs(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env) y = create_symbolic_tensor("y", torch.randn(1, 4, 1), shape_env) # varargs z = y.expand(x.shape[0], y.shape[1], x.shape[2]) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # shape list z = y.expand((x.shape[0], y.shape[1], x.shape[2])) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # mixed python symints and ints z = y.expand(x.shape[0], y.shape[1], 3) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # mixed python symints and ints in a list z = y.expand((x.shape[0], y.shape[1], 3)) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # mixed python symints and ints z = y.expand(5, y.shape[1], x.shape[2]) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) # mixed python ints and symints in a list z = y.expand((5, y.shape[1], x.shape[2])) self.assertTrue(z.shape[0] == 5) self.assertTrue(z.shape[1] == 4) self.assertTrue(z.shape[2] == 3) z = y.expand((y.shape[1],)) z = y.expand(y.shape[1]) def test_stride(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5, 5), shape_env) self.assertIsInstance(x.stride()[0], SymInt) def test_size_expressions(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5), shape_env) expand_x = x.expand(x.shape[0], x.shape[0]) if expand_x.shape[0] > 3: result = expand_x + expand_x else: result = expand_x + expand_x gt_op, _bt = shape_env.guards[-1] self.assertTrue(isinstance(gt_op, sympy.core.relational.StrictGreaterThan)) self.assertTrue(str(x.shape[0]), str(gt_op.args[0])) self.assertTrue(str(expand_x.shape[1]), str(x.shape[0])) self.assertTrue(str(expand_x.shape[1]), str(result.shape[0])) def test_numel(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5), shape_env) self.assertIsInstance(x.numel(), torch.SymInt) self.assertIsInstance(torch.numel(x), torch.SymInt) x = torch.rand(3, 3) self.assertIsInstance(x.numel(), int) self.assertIsInstance(torch.numel(x), int) def test_int_to_float(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5), shape_env) r = sym_float(x.shape[0]) self.assertIsInstance(r, torch.SymFloat, msg=type(r)) def test_aten_ops(self): shape_env = ShapeEnv() x = create_symbolic_tensor("x", torch.randn(5), shape_env) torch.ops.aten.narrow_copy.default(x, 0, 0, x.shape[0]) shape_env = ShapeEnv() x = create_symbolic_tensor("x2", torch.randn(5, 4, 3), shape_env) torch.ops.aten.expand.default(x, [x.shape[0], x.shape[1], x.shape[2]]) def test_fx_trace_intlist(self): class CustomModule(torch.nn.Module): def forward(self, x): bs, c, h, w = x.shape return F.pad(x, (0, w % 2, 0, h % 2, 0, 0)) m = CustomModule() x = torch.rand(1, 3, 4, 4) # should not TypeError: pad(): argument 'pad' (position 2) must be # tuple of ints, not tuple torch.fx.symbolic_trace(m) def test_meta_symint(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 2) r = torch.empty(a0, device='meta') self.assertIsInstance(r.shape[0], SymInt) def test_guard_int(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 2) self.assertEqual(guard_int(a0), 2) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(s0, 2)""") def test_sym_int(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 5) r = sym_int(a0) self.assertEqual(r, 5) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(s0, 5)""") a1 = create_symint(shape_env, 7) r = sym_int(a1 / 2) self.assertEqual(guard_int(r), 3) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[1][0]), """Eq(floor(s1/2), 3)""") a2 = create_symint(shape_env, -3) r = sym_int(a2 / 2) self.assertEqual(guard_int(r), -1) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[2][0]), """Eq(ceiling(-s2/2), -1)""") a3 = create_symint(shape_env, 3) r = sym_int(2.0 * sym_float(a3)) self.assertEqual(guard_int(r), 6) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[3][0]), """Eq(2*s2, 6)""") def test_sym_sqrt(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 4) r = sym_sqrt(a0) self.assertEqual(r, 2) self.assertIsInstance(r, torch.SymFloat, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(sqrt(s0), 2)""") def test_sym_floor(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 5) r = math.floor(a0 / 2) self.assertEqual(r, 2) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(floor(s0/2), 2)""") r = math.floor(3.0 * a0) self.assertEqual(r, 15) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[1][0]), """Eq(3*s0, 15)""") def test_sym_ceil(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 5) r = math.ceil(a0 / 2) self.assertEqual(r, 3) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(ceiling(s0/2), 3)""") r = math.floor(3.0 * a0) self.assertEqual(r, 15) self.assertIsInstance(r, torch.SymInt, msg=type(r)) self.assertExpectedInline(str(shape_env.guards[1][0]), """Eq(3*s0, 15)""") def test_int_conversion(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 2) int(a0) self.assertExpectedInline(str(shape_env.guards[0][0]), """Eq(s0, 2)""") def test_data_dependent_guard(self): shape_env = ShapeEnv() s0 = shape_env.create_unbacked_symint() self.assertRaises(GuardOnDataDependentSymNode, lambda: bool(s0 == 0)) def test_non_overlapping_and_dense(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 5) r = torch.empty_strided((a0, 7), (1, a0), device='meta') self.assertTrue(torch.ops.aten.is_non_overlapping_and_dense.default(r)) def test_specialize_zero_one(self): shape_env = ShapeEnv(specialize_zero_one=True) a0 = create_symint(shape_env, 5) assert a0 != 1 self.assertEqual(len(shape_env.guards), 0) shape_env = ShapeEnv(specialize_zero_one=False) a0 = create_symint(shape_env, 5) assert a0 != 1 self.assertEqual(len(shape_env.guards), 1) def test_duck_shape(self): shape_env = ShapeEnv(duck_shape=True) a0 = create_symint(shape_env, 5) a1 = create_symint(shape_env, 5) assert a0 == a1 self.assertEqual(len(shape_env.guards), 0) shape_env = ShapeEnv(duck_shape=False) a0 = create_symint(shape_env, 5) a1 = create_symint(shape_env, 5) assert a0 == a1 self.assertEqual(len(shape_env.guards), 1) def test_int_bool(self): # See https://github.com/pytorch/pytorch/issues/95981 shape_env = ShapeEnv(duck_shape=True) a0 = create_symint(shape_env, 5) assert a0 self.assertEqual(len(shape_env.guards), 0) def test_symint_as_scalar(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 2) sym_int_encountered = False class TestSymInt(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): assert func == torch.ops.aten.add.Tensor nonlocal sym_int_encountered # WARNING: do not do identity tests on the outer # SymInt/SymFloat, they are NOT STABLE sym_int_encountered = kwargs["alpha"].node is a0.node kwargs["alpha"] = 0 return func(*args) x = torch.rand([4, 4]) with TestSymInt(): y = torch.add(x, x, alpha=a0) self.assertTrue(sym_int_encountered) def test_deepcopy(self): shape_env = ShapeEnv() a0 = create_symint(shape_env, 2) assert a0 < 4 new_shape_env = copy.deepcopy(shape_env) self.assertEqual(len(new_shape_env.guards), 1) def test_print_readable_with_symints(self): def f(a, b): dim0 = a.shape[0] + b.shape[0] dim1 = a.shape[1] + b.shape[1] d = a.new_empty(dim0, dim1) d = torch.ops.aten.native_dropout(d, 0.5, train=True) return d fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5, 3), torch.randn(4, 3)) out = fx_g.print_readable(print_output=False) self.assertExpectedInline(out.strip(), """\ class f(torch.nn.Module): def forward(self, a_1: f32[s0, s1], b_1: f32[s2, s1]): # No stacktrace found for following nodes sym_size: Sym(s0) = torch.ops.aten.sym_size(a_1, 0) sym_size_1: Sym(s2) = torch.ops.aten.sym_size(b_1, 0) add: Sym(s0 + s2) = sym_size + sym_size_1; sym_size = sym_size_1 = None sym_size_2: Sym(s1) = torch.ops.aten.sym_size(a_1, 1) sym_size_3: Sym(s1) = torch.ops.aten.sym_size(b_1, 1); b_1 = None add_1: Sym(2*s1) = sym_size_2 + sym_size_3; sym_size_2 = sym_size_3 = None new_empty: f32[s0 + s2, 2*s1] = torch.ops.aten.new_empty.default(a_1, [add, add_1], dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False); a_1 = add = add_1 = None native_dropout = torch.ops.aten.native_dropout.default(new_empty, 0.5, True); new_empty = None getitem: f32[s0 + s2, 2*s1] = native_dropout[0] getitem_1: b8[s0 + s2, 2*s1] = native_dropout[1]; native_dropout = None return (getitem, getitem_1)""") # noqa: B950 @skipIfTorchDynamo("Creating ShapeEnv fails for confusing reasons (also we never expect dynamo to see code like this)") class TestSymNumberMagicMethods(TestCase): def _do_test(self, fn, inp1, inp2, shape_env, is_unary_fn): # Helper function seed_node = (create_symint(shape_env, 1) / 1.).node bool_seed_node = (create_symint(shape_env, 1) == 1).node def get_sym_inp(inp): # NB: this must come before int if isinstance(inp, bool): return torch.SymBool(to_node(bool_seed_node, inp)) elif isinstance(inp, int): return torch.SymInt(to_node(seed_node, inp)) else: return torch.SymFloat(to_node(seed_node, inp)) def maybe_xfail(inp1, inp2): if fn == "sym_sqrt" and inp1 < 0: # ValueError: math domain error return self.assertRaises((ValueError,)) elif fn in ("truediv", "floordiv", "mod") and inp2 == 0: # ZeroDivisionError: division by zero return self.assertRaises((ZeroDivisionError,)) elif fn == "pow" and inp1 == 0 and inp2 < 0: # ZeroDivisionError: 0.0 cannot be raised to a negative power return self.assertRaises((ZeroDivisionError,)) elif fn == "pow" and inp1 < 0 and inp2 in (2.5, -2.5) and ( type(inp1) in (SymFloat, SymInt) or type(inp2) in (SymFloat, SymInt) ): # Complex result, which we do not support: # TypeError: Cannot convert complex to float return self.assertRaises((TypeError,)) else: return contextlib.nullcontext() if fn in symbolic_shapes.magic_methods_on_math: lambda_apply = getattr(math, fn) elif fn in symbolic_shapes.magic_methods_on_submodule: lambda_apply = getattr(symbolic_shapes, fn) elif fn in symbolic_shapes.magic_methods_on_operator_with_trailing_underscore: lambda_apply = getattr(operator, f"{fn}_") else: lambda_apply = getattr(operator, fn) def guard_fn(v): try: if type(v) in (SymBool, bool): return guard_bool(v) elif type(v) in (SymFloat, float): return guard_float(v) else: # SymInt, int return guard_int(v) except Exception as e: raise e # Get reference result with maybe_xfail(inp1, inp2): if is_unary_fn: ref_out = lambda_apply(inp1) else: ref_out = lambda_apply(inp1, inp2) # Symified first arg sym_inp1 = get_sym_inp(inp1) with maybe_xfail(sym_inp1, inp2): if is_unary_fn: out = lambda_apply(sym_inp1) else: out = lambda_apply(sym_inp1, inp2) out = guard_fn(out) self.assertEqual(out, ref_out) if is_unary_fn: return # Symified second arg sym_inp2 = get_sym_inp(inp2) with maybe_xfail(inp1, sym_inp2): out = lambda_apply(inp1, sym_inp2) out = guard_fn(out) self.assertEqual(out, ref_out) # Symified both args with maybe_xfail(sym_inp1, sym_inp2): out = lambda_apply(sym_inp1, sym_inp2) out = guard_fn(out) self.assertEqual(out, ref_out) @parametrize("fn", list(symbolic_shapes.magic_methods.keys())) def test_bool_method(self, fn): if fn not in symbolic_shapes.bool_magic_methods: self.skipTest(f"{fn} is non-bool") is_unary_fn = fn in symbolic_shapes.unary_magic_methods shape_env = ShapeEnv() self._do_test(fn, True, False, shape_env, is_unary_fn) @parametrize("fn", list(symbolic_shapes.magic_methods.keys())) @parametrize("first_type", ["int", "float"]) @parametrize("second_type", ["int", "float"]) def test_method(self, fn, first_type, second_type): if first_type == "float": # TODO: Hmm, this looks like we skip all floats self.skipTest(f"{fn} is not a float magic method") is_unary_fn = fn in symbolic_shapes.unary_magic_methods # Second argument is ignored for unary function. So only run for one type if is_unary_fn and second_type == "float": self.skipTest(f"{fn} is unary and already tested") if fn in symbolic_shapes.bool_magic_methods: self.skipTest(f"{fn} is bool") # Only floats here since these will be converted to int if necessary. # We also ignore complex and bool. values = ( 0.0, 1.0, 2.5, ) neg_values = tuple(-x for x in values) for inp1, inp2 in itertools.chain( itertools.product(values, values), itertools.product(values, neg_values), itertools.product(neg_values, values), itertools.product(neg_values, neg_values), ): if first_type == "int": inp1 = int(inp1) if second_type == "int": inp2 = int(inp2) shape_env = ShapeEnv() self._do_test(fn, inp1, inp2, shape_env, is_unary_fn) instantiate_parametrized_tests(TestSymNumberMagicMethods) class TestFloorDiv(TestCase): @staticmethod def python_floordiv(x, y): return x // y @staticmethod def torch_floordiv(x, y): # Note: we fully evaluate here since FloorDiv might not always do # that. shape_env = ShapeEnv() return shape_env.evaluate_expr(FloorDiv(x, y)) @staticmethod def yield_test_cases(values, negate=True): for x, y in values: yield (x, y) if negate: yield (-x, y) yield (x, -y) yield (-x, -y) def test_floordiv_float_int(self): values = ( (2.5, 2.1), (2.1, 2.5), (2.0, 2.1), (7, 2.5), (2.1, 7), (7, 2), ) for x, y in TestFloorDiv.yield_test_cases(values): self.assertEqual(TestFloorDiv.python_floordiv(x, y), TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_bool(self): values = ( (False, True), (True, 2.5), (2.5, True), (False, 7), (7, True), ) for x, y in TestFloorDiv.yield_test_cases(values, negate=False): # Compares to int since our FloorDiv has no bool support self.assertEqual(TestFloorDiv.python_floordiv(x, y), TestFloorDiv.torch_floordiv(int(x), int(y))) # Tests that our impl throws self.assertRaisesRegex( TypeError, (rf"unsupported operand type\(s\) for //: " rf"'{type(sympy.sympify(x)).__name__}' and '{type(sympy.sympify(y)).__name__}'" rf", expected integer or real"), lambda: TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_complex(self): values = ( (1.5 + 2.5j, 1.3 + 3.5j), (1.5 + 2.5j, 2.5), (2.5, 1.5 + 2.5j), (1.5 + 2.5j, 7), (7, 1.5 + 2.5j), ) for x, y in TestFloorDiv.yield_test_cases(values): # We don't test error messages to avoid depending on Python # interpreter version self.assertRaises(TypeError, lambda: TestFloorDiv.python_floordiv(x, y)) self.assertRaisesRegex( TypeError, (rf"unsupported operand type\(s\) for //: " rf"'{type(sympy.sympify(x)).__name__}' and '{type(sympy.sympify(y)).__name__}'" rf", expected integer or real"), lambda: TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_div_by_zero(self): values = ( (2.5, 0), (2.1, 0.0), (2.3, sympy.Symbol("s", zero=True)), ) for x, y in TestFloorDiv.yield_test_cases(values, negate=False): # We don't test error messages to avoid depending on Python # interpreter version if type(y) is not sympy.Symbol: self.assertRaises(ZeroDivisionError, lambda: TestFloorDiv.python_floordiv(x, y)) self.assertRaisesRegex( ZeroDivisionError, "division by zero", lambda: TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_zero_base(self): values = ( (0, 2.5), (0.0, 2.1), (sympy.Symbol("s", zero=True), 2.3), ) for x, y in TestFloorDiv.yield_test_cases(values, negate=False): if type(x) is not sympy.Symbol: self.assertEqual(TestFloorDiv.python_floordiv(x, y), TestFloorDiv.torch_floordiv(x, y)) else: self.assertEqual(0, TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_div_by_one(self): values = ( (2.5, 1), (2.1, 1.0), (2, 1.0), (2, 1), ) for x, y in TestFloorDiv.yield_test_cases(values): self.assertEqual(TestFloorDiv.python_floordiv(x, y), TestFloorDiv.torch_floordiv(x, y)) def test_floordiv_simplify(self): # Tests how we simplify or evaluate FloorDiv without free variables shape_env = ShapeEnv() result = 21 exprs = ( 7 * FloorDiv(6, 2), 7 * FloorDiv(6.28, 2), 7 * FloorDiv(6.28, 2.0), 7 * FloorDiv(6.28, (FloorDiv(6.28, 3.14))), ) for expr in exprs: self.assertEqual(expr, result) self.assertEqual(expr.doit(deep=False), result) self.assertEqual(expr.doit(deep=True), result) self.assertEqual(sympy.simplify(expr), result) self.assertEqual(shape_env.simplify(expr), result) self.assertEqual(shape_env.evaluate_expr(expr), result) def test_floordiv_assumptions(self): # We define two Symbols (with different names) for each type to make # sure the behavior is consistent regardless of whether both arguments # are the same object or not. cases = ( sympy.Symbol("i1", integer=True), sympy.Symbol("i2", integer=True), sympy.Symbol("r1", real=True), sympy.Symbol("r2", real=True), sympy.Symbol("c1", complex=True, real=False, integer=False), sympy.Symbol("c2", complex=True, real=False, integer=False), sympy.Symbol("s1"), sympy.Symbol("s2"), ) for base, divisor in itertools.product(cases, repeat=2): def op(): return FloorDiv(base, divisor) def is_complex(x): return x.is_integer is False and x.is_real is False and x.is_complex if is_complex(base) or is_complex(divisor): self.assertRaisesRegex( TypeError, (r"unsupported operand type\(s\) for //: 'Symbol' and 'Symbol'," r" expected integer or real"), op) continue op = op() # In regular Python, x//x == 1.0 if x is a float, but FloorDiv # always returns an integer 1 when both args are the same object. # This even works for Symbols with no assumptions specified. if base is divisor: self.assertTrue(op.is_integer) self.assertTrue(op.is_real) elif base.is_integer and divisor.is_integer: self.assertTrue(op.is_integer) self.assertTrue(op.is_real) else: self.assertEqual(op.is_integer, None) self.assertTrue(op.is_real) if __name__ == '__main__': run_tests()
970f78ea015e9db88c4e3b9ee9a24620d1acd033
14252ea933a08056363230c6df89223b996a0da2
/app/users/migrations/0001_initial.py
89fc36d8186ebc06e266431cde71c53a49bd67a8
[ "MIT" ]
permissive
S3Infosoft/mvr-insights
eeb02aa2e6767e6a23818d4e09f7be7ce29f80cb
ac73feff03c1592d5efd8e0b82f72dd4dbd3e921
refs/heads/master
2020-05-29T14:08:11.070784
2020-04-23T19:46:57
2020-04-23T19:46:57
189,184,619
0
1
MIT
2020-04-23T19:46:58
2019-05-29T08:35:56
CSS
UTF-8
Python
false
false
2,357
py
# Generated by Django 2.2.1 on 2019-05-29 20:09 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('email', models.EmailField(max_length=254, unique=True, verbose_name='email address')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, ), ]
6a1fa05b533ac5a143059c018c1463515a70c318
e6630377da829600b846ad7ecd67daa335878b5a
/main/views.py
6211c54b7998d088bd564686df00b806c983aa97
[ "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
jorgecarleitao/public-contracts
839a09cf54af5fc292aa640d1aaf235f1fb755fa
3107ddc007f3574ce19aaa2223399484bc6b1382
refs/heads/master
2021-06-15T23:07:13.291743
2017-05-09T11:44:56
2017-05-09T11:44:56
14,209,257
26
8
null
2017-07-21T10:45:15
2013-11-07T16:36:47
Python
UTF-8
Python
false
false
353
py
from django.shortcuts import render def robots(request): return render(request, 'robots.txt', content_type='text/plain') def home(request): return render(request, 'main_page.html', {'REQUIRE_D3JS': True}) def about(request): return render(request, 'about.html') def contribute(request): return render(request, 'contribute.html')
79431e97956904979ec976554f8289946bb61697
ee760ad085d305f12e4a60e6ea548e94e71606b6
/sds/envs/cartpole/cartpole.py
9f40106c313c24d4b0369a481d801c71182f2463
[ "MIT" ]
permissive
zlatanajanovic/sds
819ab40f044b72e0a88504601f23d233302c0b4b
3c195fb9cbd88a9284287d62c0eacb6afc4598a7
refs/heads/master
2023-07-19T00:55:20.549984
2021-08-23T14:51:09
2021-08-23T14:51:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,644
py
import gym from gym import spaces from gym.utils import seeding import numpy as np def normalize(x): # wraps angle between [-pi, pi] return ((x + np.pi) % (2. * np.pi)) - np.pi class Cartpole(gym.Env): def __init__(self): self.state_dim = 4 self.act_dim = 1 self.obs_dim = 4 self.dt = 0.01 self.sigma = 1e-8 # g = [x, th, dx, dth] self.g = np.array([0., 0., 0., 0.]) self.gw = - np.array([1e0, 2e0, 1e-1, 1e-1]) # x = [x, th, dx, dth] self.xmax = np.array([5., np.inf, np.inf, np.inf]) self.state_space = spaces.Box(low=-self.xmax, high=self.xmax, dtype=np.float64) # y = [x, th, dx, dth] self.ymax = np.array([5., np.inf, np.inf, np.inf]) self.observation_space = spaces.Box(low=-self.ymax, high=self.ymax, dtype=np.float64) self.uw = - 1e-3 * np.ones((self.act_dim, )) self.umax = 5.0 * np.ones((self.act_dim, )) self.action_space = spaces.Box(low=-self.umax, high=self.umax, shape=(1,), dtype=np.float64) self.uniform = True self.state = None self.np_random = None self.seed() @property def xlim(self): return self.xmax @property def ulim(self): return self.umax def dynamics(self, x, u): uc = np.clip(u, -self.ulim, self.ulim) # Equations: http://coneural.org/florian/papers/05_cart_pole.pdf # x = [x, th, dx, dth] g = 9.81 Mc = 0.37 Mp = 0.127 Mt = Mc + Mp l = 0.3365 fr = 0.005 def f(x, u): q, th, dq, dth = x sth = np.sin(th) cth = np.cos(th) # This friction model is not exactly right # It neglects the influence of the pole num = g * sth + cth * (- (u - fr * dq) - Mp * l * dth**2 * sth) / Mt denom = l * ((4. / 3.) - Mp * cth**2 / Mt) ddth = num / denom ddx = (u + Mp * l * (dth**2 * sth - ddth * cth)) / Mt return np.hstack((dq, dth, ddx, ddth)) c1 = f(x, uc) c2 = f(x + 0.5 * self.dt * c1, uc) c3 = f(x + 0.5 * self.dt * c2, uc) c4 = f(x + self.dt * c3, uc) xn = x + self.dt / 6. * (c1 + 2. * c2 + 2. * c3 + c4) xn = np.clip(xn, -self.xlim, self.xlim) return xn def observe(self, x): return np.array([x[0], normalize(x[1]), x[2], x[3]]) def noise(self, x=None, u=None): _u = np.clip(u, -self.ulim, self.ulim) _x = np.clip(x, -self.xlim, self.xlim) return self.sigma * np.eye(self.obs_dim) def rewrad(self, x, u): _x = np.array([x[0], normalize(x[1]), x[2], x[3]]) return (_x - self.g).T @ np.diag(self.gw) @ (_x - self.g)\ + u.T @ np.diag(self.uw) @ u def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): self.state = self.dynamics(self.state, u) rwrd = self.rewrad(self.state, u) sigma = self.noise(self.state, u) obs = self.np_random.multivariate_normal(self.observe(self.state), sigma) return obs, rwrd, False, {} def reset(self): if self.uniform: low = np.array([-0.1, -np.pi, -5.0, -10.0]) high = np.array([0.1, np.pi, 5.0, 10.0]) else: low, high = np.array([0., np.pi - np.pi / 18., 0., -1.0]),\ np.array([0., np.pi + np.pi / 18., 0., 1.0]) self.state = self.np_random.uniform(low=low, high=high) return self.observe(self.state) # for plotting def fake_step(self, x, u): xn = self.dynamics(x, u) return self.observe(xn) class CartpoleWithCartesianObservation(Cartpole): def __init__(self): super(CartpoleWithCartesianObservation, self).__init__() self.obs_dim = 5 # y = [x, cos, sin, xd, thd] self.ymax = np.array([5., 1., 1., np.inf, np.inf]) self.observation_space = spaces.Box(low=-self.ymax, high=self.ymax, dtype=np.float64) def observe(self, x): return np.array([x[0], np.cos(x[1]), np.sin(x[1]), x[2], x[3]])
9f360e44d1c0c0dcee68e96a596c20e516949e0a
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3/pr0v3rbs/c.py
5d1ec463d56cedc7496b8cb3f35b1bb73dc76551
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
1,290
py
import math powerArr = [[],[],[],[],[],[],[],[],[],[],[]] baseArr = [0,0,0,0,0,0,0,0,0,0,0] jamArr = [0,0,0,0,0,0,0,0,0,0,0] input() N, J = raw_input().split() N = int(N) J = int(J) def JamCheck(): result = True idx = 0 t = baseArr[2] for i in range(3, 11): baseArr[i] = 0 while t != 0: if t % 2 == 1: for i in range(3, 11): baseArr[i] += powerArr[i][idx] idx += 1 t /= 2 for i in range(2, 11): primeCheck = True j = 2 length = int(math.sqrt(baseArr[i])) + 1 while j <= 10000: if baseArr[i] % j == 0: #jamArr[i] = j jamArr[i] = baseArr[i] / j primeCheck = False break j+=1 if primeCheck: result = False break return result def PrintJam(): print bin(baseArr[2])[2:], jamArr[2], jamArr[3], jamArr[4], jamArr[5], jamArr[6], jamArr[7], jamArr[8], jamArr[9], jamArr[10] for i in range(2, 11): for j in range(N): powerArr[i].append(i**j) baseArr[2] = 2**(N-1) + 1 print "Case #1:" while J != 0: if JamCheck() : PrintJam() J -= 1 baseArr[2] += 2
70db18cb9ff35971591998a62ddab059246ace2b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_anarchist.py
f6c4dbb7d584b89e893652ff5df9b887a17eaf22
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
#calss header class _ANARCHIST(): def __init__(self,): self.name = "ANARCHIST" self.definitions = [u'a person who believes in anarchism: ', u'someone who wishes to destroy the existing government and laws: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
b01999efc5b5875897213f5aaab988ee20c873f5
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/autoregressive_diffusion/experiments/audio/configs/sc09_wavenet.py
957e0ecbd26bb689722cf752a90ff946ab2ea6d4
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,032
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config for the SC09 dataset. """ import ml_collections D = lambda **kwargs: ml_collections.ConfigDict(kwargs) def get_config(): """Get the default hyperparameter configuration.""" config = ml_collections.ConfigDict() # Dataset configuration. config.dataset = D( name='speech_commands09', train_split='train', eval_split='validation', test_split='test', max_length=16000 # Some audio files are shorter than 16000. ) config.batch_size = 256 config.eval_batch_size = 512 config.mask_shape = (16000, 1) # Training. config.num_train_steps = 1_000_000 config.beta2 = 0.999 config.clip_grad = 1000. config.weight_decay = 0. config.ema_momentum = 0.995 config.learning_rate = D( base_learning_rate=1e-4, factors='constant', warmup_steps=15000, ) config.restore_checkpoints = True config.checkpoint_every_steps = 5_000 config.eval_every_steps = 2_500 config.log_every_steps = 1_000 config.sample_every_steps = None config.seed = 42 # Evaluation. config.sample_batch_size = 16 config.num_eval_passes = 32 # Model. config.model = 'arm' config.output_distribution = 'discretized_logistic' config.num_mixtures = 30 # Architecture. config.arch = D( name='diff_wave', config=D( num_blocks=36, features=256, dilation_cycle=12, ) ) return config
9aaa492c6143160703e493cdf16a62b43a86dd6e
b32ca71ab8127f7c3c1a73a6a8f01adefa1be026
/mathsquiz6.py
34a38051e90b696fc060dc3e5abac524d9bd01e5
[]
no_license
Botany-Downs-Secondary-College/mathsquiz-Howard13312
a50312776d686ab51eb6421c8af16889a3440c3c
0c78c55ff99d058264791412d312eda4d37f9bef
refs/heads/main
2023-03-28T14:37:25.155100
2021-03-26T12:12:50
2021-03-26T12:12:50
337,539,510
0
0
null
null
null
null
UTF-8
Python
false
false
5,343
py
#mathsquizv6.py #Howard Li #import the tool kit interface (tkinter) modules from tkinter import* from tkinter import ttk from random import* #parent class class Mathquiz: def __init__ (self,parent): '''Widgets for welcome frame''' self.Welcome = Frame(parent) self.Welcome.grid(row=0, column=0) self.Titlelabel1 = Label(self.Welcome, text = "Welcome to Maths quiz", bg = "black", fg = "white", width = 30, padx = 30, pady = 10, font = ("Time", '14', "bold italic")) self.Titlelabel1.grid(columnspan = 2) self.Nextbutton = ttk.Button(self.Welcome, text = 'Next', command = self.show_Questions) self.Nextbutton.grid(row = 8, column = 1) #Name and Age label self.NameLabel = Label(self.Welcome, text = 'Name', anchor = W, fg = "black", width= 10, padx = 30, pady = 10, font = ("Time", '12', "bold italic")) self.NameLabel.grid(row = 2, column = 0) self.NameLabel = Label(self.Welcome, text = 'Age', anchor = W, fg = "black", width= 10, padx = 30, pady = 10, font = ("Time", "12", "bold italic")) self.NameLabel.grid(row = 3, column = 0) #name and age entry self.NameEntry = ttk.Entry(self.Welcome, width = 20) self.NameEntry.grid(row = 2, column = 1, columnspan = 2) self.AgeEntry = ttk.Entry(self.Welcome, width = 20) self.AgeEntry.grid(row = 3, column = 1) #Warning, Difficulty level label and radio buttons self.WarningLabel = Label(self.Welcome, text = '', anchor = W, fg = "red", width= 20, padx = 30, pady = 10) self.WarningLabel.grid(row = 4, columnspan = 2) self.DifficultyLabel = Label(self.Welcome, text = 'Choose diffculity', anchor = W, fg = "black", width= 14, padx = 30, pady = 20, font = ("Time", "12", "bold italic")) self.DifficultyLabel.grid(row = 5, column = 0) self.difficulty = ["Easy", "Medium", "Hard"] self.diff_lvl = StringVar() self.diff_lvl.set(0) self.diff_btns = [] for i in range(len(self.difficulty)): rb = Radiobutton(self.Welcome, variable = self.diff_lvl, value = i, text = self.difficulty[i], anchor = W, padx = 50, width = "5", height = "2") self.diff_btns.append(rb) rb.grid(row = i+6, column = 0, sticky = W) '''Widgets for Questions frame''' self.Questions = Frame(parent) #self.Questions.grid(row = 0, column = 1) self.QuestionLabel = Label(self.Questions, text = "Quiz Questions", bg = "black", fg = "white", width = 20, padx = 30, pady = 10, font = ("Time", '14', "bold italic")) self.QuestionLabel.grid(columnspan = 2) self.HomeButton = ttk.Button(self.Questions, text = 'Home', command = self.show_Welcome) self.HomeButton.grid(row = 8, column = 0) self.Problems = Label(self.Questions, text = "") self.Problems.grid(row = 1, column = 0) self.next_button = ttk.Button(self.Questions, text = "Next question", command = self.next_question) self.next_button.grid(row=8, column=1) def show_Welcome(self): self.Questions.grid_remove() self.Welcome.grid() def show_Questions(self): #Error checking for empty or non-text user entries for Name try: if self.NameEntry.get() == "": self.WarningLabel.configure(text = "Please enter name") self.NameEntry.focus() elif self.NameEntry.get().isalpha() == False: self.WarningLabel.configure(text = "Please enter text") self.NameEntry.delete(0, END) self.NameEntry.focus() #Error for checking for empty and age limit cases elif self.AgeEntry.get() == "": self.WarningLabel.configure(text = "Please enter age") self.AgeEntry.focus() elif int(self.AgeEntry.get()) > 12: self.WarningLabel.configure(text = "You are too old!") self.AgeEntry.delete(0, END) self.AgeEntry.focus() elif int(self.AgeEntry.get()) < 0: self.WarningLabel.configure(text = "You can't be smaller than 0?") self.AgeEntry.delete(0, END) self.AgeEntry.focus() elif int(self.AgeEntry.get()) < 7: self.WarningLabel.configure(text = "You are too young!") self.AgeEntry.delete(0, END) self.AgeEntry.focus() else: self.Welcome.grid_remove() self.Questions.grid() except ValueError: self.WarningLabel.configure(text = "Please enter a number") self.AgeEntry.delete(0, END) self.AgeEntry.focus() def next_question(self): x = randrange(10) y = randrange(10) self.answer = x + y question_text = str(x) + " + " + str(y) + " = " self.Problems.configure(text = question_text) #main rootine if __name__ == "__main__": root = Tk() frames = Mathquiz(root) root.title("Quiz") root.mainloop()
0a9e74b629c603dd1c1563a8e5ef7e8718e00864
0fe394b10b39864915fcc4073a5fa050aa02502e
/MatplotPractice/AfricaCSV.py
107dee89fc18bac4c8c570c0efbedde89f3b5c09
[]
no_license
JohnAssebe/Python
9997d47bba4a056fdcd74c6e5207fc52b002cbfd
b88a7c2472f245dc6a0e8900bbea490cb0e0beda
refs/heads/master
2022-05-14T10:08:37.311345
2022-05-09T19:48:53
2022-05-09T19:48:53
212,562,910
0
1
null
null
null
null
UTF-8
Python
false
false
790
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 17 11:30:26 2019 @author: Yohannes Assebe """ import csv from matplotlib import pyplot as plt plt.title("Africa Annual Inflation per years") #print(plt.style.available) #plt.style.use("seaborn-notebook") with open("african_crises.csv") as af: files=csv.DictReader(af) x=[] y=[] for row in files: x.append(int(row['year'])) y.append(float(row['inflation_annual_cpi'])) plt.scatter(x,y) plt.scatter(x[1],y[1]) plt.xlabel("Year") plt.ylabel("Annual Inflation") plt.grid(True) #plt.legend() #plt.ylim(0,100) plt.tight_layout() #print(plt.style.available) plt.savefig("AffricaAnnualInflations.png") plt.show() import pandas as pd
105e0acf0a543fdb4c37897d8888f056971a6191
7f33c02743fbfd18726ffef08924f528354372dd
/Python_Projects/python3_selfstudy/priklady_z_knihy/k06/SortedList.py
68a5e0a9974eaaf4e25c3d093c6eab3fd1be1e95
[]
no_license
zabojnikp/study
a524eb9c2265a73e1db0b5f0e76b359c123a397b
43424bfc6641cd8fa13ab119ce283fb460b4ffc1
refs/heads/master
2020-04-06T14:21:55.786353
2018-11-27T22:10:48
2018-11-27T22:10:48
157,538,244
0
0
null
2018-11-27T22:10:49
2018-11-14T11:24:20
Python
UTF-8
Python
false
false
10,990
py
#!/usr/bin/env python3 # Copyright (c) 2008-9 Qtrac Ltd. All rights reserved. # This program or module is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. It is provided for educational # purposes and is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. """ >>> L = SortedList((5, 8, -1, 3, 4, 22)) >>> L[2] = 18 #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError: use add() to insert a value and rely on the... >>> list(L) [-1, 3, 4, 5, 8, 22] >>> L.add(5) >>> L.add(5) >>> L.add(6) >>> list(L) [-1, 3, 4, 5, 5, 5, 6, 8, 22] >>> L.index(4) 2 >>> L.count(5), L.count(2) (3, 0) >>> L.insert(2, 9) Traceback (most recent call last): ... AttributeError: 'SortedList' object has no attribute 'insert' >>> L.reverse() Traceback (most recent call last): ... AttributeError: 'SortedList' object has no attribute 'reverse' >>> L.sort() Traceback (most recent call last): ... AttributeError: 'SortedList' object has no attribute 'sort' >>> import collections >>> isinstance(L, collections.Sequence) False """ _identity = lambda x: x class SortedList: def __init__(self, sequence=None, key=None): """Vytvoří objekt typu SortedList, který řadí prvky pomocí operátoru < aplikovaného na prvky nebo na výsledky použití zadané klíčové funkce >>> L = SortedList() >>> print(L) [] >>> L = SortedList((5, 8, -1, 3, 4, 22)) >>> print(L) [-1, 3, 4, 5, 8, 22] >>> L = SortedList({9, 8, 7, 6, -1, -2}) >>> print(L) [-2, -1, 6, 7, 8, 9] >>> L = SortedList([-5, 4, -3, 8, -2, 16, -1, 0, -3, 8]) >>> print(L) [-5, -3, -3, -2, -1, 0, 4, 8, 8, 16] >>> L2 = SortedList(L) >>> print(L2) [-5, -3, -3, -2, -1, 0, 4, 8, 8, 16] >>> L = SortedList(("ta", "rychlá", "hnědá", "liška", "skáče")) >>> print(L) ['hnědá', 'liška', 'rychlá', 'skáče', 'ta'] """ self.__key = key or _identity assert hasattr(self.__key, "__call__") if sequence is None: self.__list = [] elif (isinstance(sequence, SortedList) and sequence.key == self.__key): self.__list = sequence.__list[:] else: self.__list = sorted(list(sequence), key=self.__key) @property def key(self): """Vrátí klíčovou funkci používanou tímto seznamem """ return self.__key def clear(self): """Vyčistí seznam >>> L = SortedList((5, 8, -1, 3, 4, 22)) >>> print(L) [-1, 3, 4, 5, 8, 22] >>> L.clear() >>> print(L) [] """ self.__list = [] def __bisect_left(self, value): """Vrátí indexovou pozici hodnoty v seznamu (nebo kam hodnota náleží, není-li v seznamu) """ key = self.__key(value) left, right = 0, len(self.__list) while left < right: middle = (left + right) // 2 if self.__key(self.__list[middle]) < key: left = middle + 1 else: right = middle return left def add(self, value): """Přidá hodnotu do seznamu (duplicity jsou povoleny) >>> L = SortedList((5, 8, -1, 3, 4, 22)) >>> print(L) [-1, 3, 4, 5, 8, 22] >>> L.add(5) >>> L.add(5) >>> L.add(7) >>> L.add(-18) >>> L.add(99) >>> print(L) [-18, -1, 3, 4, 5, 5, 5, 7, 8, 22, 99] """ index = self.__bisect_left(value) if index == len(self.__list): self.__list.append(value) else: self.__list.insert(index, value) def pop(self, index=-1): """Odstraní a vrátí prvek na zadané pozici >>> L = SortedList([-18, -1, 3, 4, 5, 5, 7, 8, 22, 99]) >>> print(L) [-18, -1, 3, 4, 5, 5, 7, 8, 22, 99] >>> L.pop() 99 >>> L.pop(0) -18 >>> L.pop(5) 7 >>> print(L) [-1, 3, 4, 5, 5, 8, 22] >>> L.pop(12) Traceback (most recent call last): ... IndexError: pop index out of range """ return self.__list.pop(index) def remove(self, value): """Odstraní první výskyt hodnoty ze seznamu >>> L = SortedList([-18, -1, 3, 4, 5, 5, 7, 8, 22, 99]) >>> print(L) [-18, -1, 3, 4, 5, 5, 7, 8, 22, 99] >>> L.remove(20) Traceback (most recent call last): ... ValueError: SortedList.remove(x): x not in list >>> L.remove(5) >>> L.remove(-18) >>> L.remove(99) >>> print(L) [-1, 3, 4, 5, 7, 8, 22] """ index = self.__bisect_left(value) if index < len(self.__list) and self.__list[index] == value: del self.__list[index] else: raise ValueError("{0}.remove(x): x not in list".format( self.__class__.__name__)) def remove_every(self, value): """Odstraní každý výskyt hodnoty ze seznamu Vrátí počet odstraněných výskytů (kterých může být i 0). >>> L = SortedList([5, 5, -18, -1, 3, 4, 5, 5, 7, 8, 22, 99]) >>> L.add(5) >>> L.add(5) >>> print(L) [-18, -1, 3, 4, 5, 5, 5, 5, 5, 5, 7, 8, 22, 99] >>> L.remove_every(-3) 0 >>> L.remove_every(7) 1 >>> L.remove_every(5) 6 >>> print(L) [-18, -1, 3, 4, 8, 22, 99] """ count = 0 index = self.__bisect_left(value) while (index < len(self.__list) and self.__list[index] == value): del self.__list[index] count += 1 return count def count(self, value): """Spočítá všechny výskyty hodnoty v seznamu >>> L = SortedList([5, 5, -18, -1, 3, 4, 5, 5, 7, 8, 22, 99]) >>> L.count(5) 4 >>> L.count(99) 1 >>> L.count(-17) 0 """ count = 0 index = self.__bisect_left(value) while (index < len(self.__list) and self.__list[index] == value): index += 1 count += 1 return count def index(self, value): """Vrátí indexovou pozici prvního výskytu zadané hodnoty >>> L = SortedList([5, 5, -18, -1, 3, 4, 7, 8, 22, 99, 2, 1, 3]) >>> L.index(5) 7 >>> L.index(0) Traceback (most recent call last): ... ValueError: SortedList.index(x): x not in list >>> L.index(99) 12 """ index = self.__bisect_left(value) if index < len(self.__list) and self.__list[index] == value: return index raise ValueError("{0}.index(x): x not in list".format( self.__class__.__name__)) def __delitem__(self, index): """Vymaže hodnotu na zadané indexové pozici >>> L = SortedList([9, -5, 3, -7, 8, 14, 0, 8, 3]) >>> print(L) [-7, -5, 0, 3, 3, 8, 8, 9, 14] >>> del L[0] >>> del L[-1] >>> del L[5] >>> print(L) [-5, 0, 3, 3, 8, 9] >>> del L[25] Traceback (most recent call last): ... IndexError: list assignment index out of range >>> del L[-3:] >>> print(L) [-5, 0, 3] """ del self.__list[index] def __getitem__(self, index): """Vrátí hodnotu na zadané indexové pozici >>> L = SortedList([9, -5, 3, -7, 8, 14, 0, 8, 3]) >>> L[0], L[3], L[4], L[-1] (-7, 3, 3, 14) >>> L[15] Traceback (most recent call last): ... IndexError: list index out of range >>> L[:3] [-7, -5, 0] >>> L[4:8] [3, 8, 8, 9] """ return self.__list[index] def __setitem__(self, index, value): raise TypeError("pro vložení hodnoty použijte add() a nechte seznam, " " aby ji umístil na správné místo") def __iter__(self): """Vrátí iterátor pro seznam >>> L = SortedList([5, 5, -18, -1, 3, 4, 7, 8, 22, 99, 2, 1, 3]) >>> result = [] >>> for x in L: ... result.append(x) >>> print(result) [-18, -1, 1, 2, 3, 3, 4, 5, 5, 7, 8, 22, 99] """ return iter(self.__list) def __reversed__(self): """Vrátí obrácený iterátor pro seznam >>> L = SortedList([5, 5, -18, -1, 3, 4, 7, 8, 22, 99, 2, 1, 3]) >>> result = [] >>> for x in reversed(L): ... result.append(x) >>> print(result) [99, 22, 8, 7, 5, 5, 4, 3, 3, 2, 1, -1, -18] """ return reversed(self.__list) def __contains__(self, value): """Vrátí True, je-li hodntoa v seznamu. Jinak vrátí False >>> L = SortedList([5, 5, -18, -1, 3, 4, 7, 8, 22, 99, 2, 1, 3]) >>> 5 in L True >>> 0 in L False >>> 99 in L True """ index = self.__bisect_left(value) return (index < len(self.__list) and self.__list[index] == value) def __len__(self): """Vrátí délku seznamu >>> L = SortedList([5, 5, -18, -1, 3, 4, 7, 8, 22, 99, 2, 1, 3]) >>> len(L) 13 >>> L = SortedList() >>> len(L) 0 """ return len(self.__list) def __str__(self): """Vrátí řetězcovou verzi seznamu čitelnou pro člověka. výsledek může být velmi dlouhý >>> L = SortedList([-1, 3, 4, 7, 8, 22, -9, 2, 1, 3]) >>> str(L) '[-9, -1, 1, 2, 3, 3, 4, 7, 8, 22]' >>> L = SortedList() >>> str(L) '[]' >>> L = SortedList(("the", "quick", "brown", "fox", "jumped")) >>> str(L) "['brown', 'fox', 'jumped', 'quick', 'the']" """ return str(self.__list) def copy(self): """Vrátí mělkou kopii seznamu se stejnou klíčovou funkcí >>> L = SortedList([-1, 3, 4, 7, 8, 22, -9, 2, 1, 3]) >>> m = L.copy() >>> str(m) '[-9, -1, 1, 2, 3, 3, 4, 7, 8, 22]' >>> m[:] [-9, -1, 1, 2, 3, 3, 4, 7, 8, 22] >>> import copy >>> n = copy.copy(L) >>> str(n) '[-9, -1, 1, 2, 3, 3, 4, 7, 8, 22]' """ return SortedList(self, self.__key) __copy__ = copy if __name__ == "__main__": import doctest doctest.testmod()
b409f72e18569cb332729b7e95a20bd361d3e851
3b84ca7d132e6ca5004029d39bfa7c8fead07fe1
/seexpr/3.0.1/package.py
4a03d862bddca4dccd83610ebaf068b03b7781ef
[]
no_license
est77/rez-packages
05a5a05224e02c0a28bc37a81cbd07ca7447d604
449ade7acf92196efda2e8ec883c52ba4e33262d
refs/heads/master
2020-05-27T10:35:02.323417
2020-02-23T19:03:05
2020-02-23T19:03:05
82,542,112
22
7
null
null
null
null
UTF-8
Python
false
false
180
py
# -*- coding: utf-8 -*- name = "seexpr" version = "3.0.1" description = "SeExpr" variants = [ ['gcc-6.3.1'] ] def commands(): env.LD_LIBRARY_PATH.append("{root}/lib")
e8128ec06bdbba0ad8f05aea2b9b0c4a03325995
5c096fea6033e9c07f38e773e32c901bb7146d09
/04/jiangk/reboot-website/app/modules/manufacturers.py
85c4605e190298b07eecad20527588335cd92b34
[]
no_license
keepauto/devops2
8b043ed258030b75c9b2c7129ae1468af5b42850
b93c840bcca4bd8589546a171a6458bcc6d73047
refs/heads/master
2021-01-21T10:37:48.378259
2016-07-29T05:42:46
2016-07-29T05:42:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,957
py
#!/usr/bin/python # coding:utf-8 from app.models import Manufacturers from flask import current_app from app.models import db from app.utils import check_field_exists from app.utils import check_output_field from app.utils import check_order_by from app.utils import check_limit from app.utils import process_result from app.utils import check_update_params def create(**kwargs): # 1 获取参数 # print kwargs # 2 检查参数 check_field_exists(Manufacturers, kwargs) # 3 插入到数据库 manufacturers = Manufacturers(**kwargs) db.session.add(manufacturers) try: db.session.commit() except Exception, e: # logging current_app.logger.warning( "commit error: {}".format(e.message) ) raise Exception("commit error") # 4 返回插入的状态 return manufacturers.id def get(**kwargs): # output: [manufacturers_name, user_interface, user_phone] # where: { # id: 1 # } # limit: 10 # order_by: id # 1 整理条件 output = kwargs.get("output", []) limit = kwargs.get("limit", 10) order_by = kwargs.get("order_by", "id desc") where = kwargs.get("where", {}) # 2 验证 # 验证output check_output_field(Manufacturers, output) # 验证 order_by,字符串分割,字段是否在表中 第二个字段必须为asc desc order_by_list = check_order_by(Manufacturers, order_by) # 验证 limit 必须为数字 check_limit(limit) # 验证 where 条件,先不验证 pass # print callable(getattr(getattr(Manufacturers, "id"), "desc")) # 函数对象 # getattr(getattr(Manufacturers, tmp_order_by[0]), tmp_order_by[1]) # 调用函数 # getattr(getattr(Manufacturers, tmp_order_by[0]), tmp_order_by[1])() data = db.session.query(Manufacturers).filter_by(**where)\ .order_by(getattr(getattr(Manufacturers, order_by_list[0]), order_by_list[1])())\ .limit(limit).all() db.session.close() # process result return process_result(data, output) def update(**kwargs): data = kwargs.get("data", {}) where = kwargs.get("where", {}) # # 1 验证data # # 2 验证where # # 3 更新必须提供id,只按照id更新 # # id 要为数字且大于0的整数 check_update_params(Manufacturers, data, where) # update # ret = db.session.query(Manufacturers).filter_by(**where).update(**data) # 调用模块执行出现错误:update() got an unexpected keyword argument 'rel_cabinet_num' ret = db.session.query(Manufacturers).filter_by(**where).update(data) try: db.session.commit() except Exception, e: # logging current_app.logger.warning("commit error: {}".format(e.message)) raise Exception("commit error") # print ret return ret
11c6ff5edd9c5239ca96577fc4e0da53c251d1a9
70a960186af21ae6f7a8fcd4d13fde54892f1821
/odds_and_ends/EVAunit00/dumps/serverscript/Windows Image Capture
2bdb0607338cfe16a61903f35dd46c65c877f937
[]
no_license
apua/altair_mat
d6f31bacae62d4490d561c2f9ec07a745693e15e
37dd580fd011aaae9ca52f99bb13757bab2df325
refs/heads/master
2021-04-29T05:49:01.561238
2015-08-21T09:40:50
2015-08-21T09:40:50
78,004,547
0
0
null
null
null
null
UTF-8
Python
false
false
4,161
#!/usr/bin/python # -*- mode: Python; tab-width: 4; indent-tabs-mode: nil; -*- # ex: set tabstop=4 : # Please do not change the two lines above. See PEP 8, PEP 263. # import sys import os from optparse import OptionError from osprov.optparse_ext import OptionParser from osprov.scripts import bootmode from osprov.osbp import logger from osprov.util import process from osprov.decorators import HandleShowErrorMessage from osprov import diskmgr from osprov.diskmgr import const, disk, diskmanager, partition from osprov.server import ThisLocalServer from tempfile import mkstemp LOG = logger.getIt("windows_image_capture") IMAGEX_CONFIG_FILE = """ [ExclusionList] "\\Boot" "\\Program Files\\Opsware" "\\Program Files\\Common Files\\Opsware" """ class WindowsImageCaptureOptionParser(OptionParser): """ Option parser for this step """ def defineOptions(self): self.add_option("--bootMode", type="string", help="boot mode of the server, can be UEFI or Legacy (boot mode is autodetected if this parameter is not passed).") self.add_option("--systemDiskNumber", type="int", default=0, help="system disk number where Windows is installed (default disk number is '0').") self.add_option("--systemPartitionLabel", type="string", default="System", help="label of partition where Windows is installed (default partition label is 'System').") self.add_option("--wimFilePath", type="string", help="path where to save WIM file (Currently using CA 'WimFileName' to provide WIM file name).") self.add_option("--wimScript", type="string", help="path to ImageX config file.") def validateArgs(self, opt, args): if opt.bootMode and not opt.bootMode.lower() in [x.lower() for x in bootmode.SUPPORTED_BOOT_MODES]: raise OptionError("Invalid boot mode: " + opt.bootMode, "bootMode") if not opt.wimFilePath: raise OptionError("Missing parameter: --wimFilePath", "wimFilePath") def captureESP(freeLetter, wimFilePath, log=LOG): process.runIt("imagex.exe /check /verify /capture %s: \"%s_ESP\" \"ESP\"" % (freeLetter, wimFilePath), checkExitCode=(0,), log=log) def capturePartition(windowsDriveLetter, wimFilePath, configFilePath=None, log=LOG): if not configFilePath: fd, configFilePath = mkstemp() with os.fdopen(fd, 'w') as f: f.write(IMAGEX_CONFIG_FILE) process.runIt("imagex.exe /config %s /check /verify /capture %s: \"%s\" \"System\"" % (configFilePath, windowsDriveLetter, wimFilePath), checkExitCode=(0,), log=log) @HandleShowErrorMessage("Windows Image Capture", LOG) def main(): # get and parse arguments options, remainingArgs = WindowsImageCaptureOptionParser().parse_args() wimFilePath = options.wimFilePath.strip() systemDiskNumber = options.systemDiskNumber # get bootmode (legacy bios or uefi) if options.bootMode: bootMode = options.bootMode else: bootMode = bootmode.getCurrentBootMode(ThisLocalServer(), log=LOG) windowsDriveLetter = disk.WindowsDisk(systemDiskNumber).getPartitionWithLabel( options.systemPartitionLabel).letter partitionTable = diskmgr.getPartitionTable(bootMode) if const.PARTITION_TABLE_MBR == partitionTable: print "Capturing Windows Image based on Legacy Windows Partitioning Schema" capturePartition(windowsDriveLetter, wimFilePath, configFilePath=options.wimScript) elif const.PARTITION_TABLE_GPT == partitionTable: print "Capturing Windows Image based on Uefi Windows Partitioning Schema" freeLetter = diskmanager.WindowsDiskManager().findFirstAvailableDriveLetter() partition.WindowsPartition(systemDiskNumber, 1).setPartitionLetter(freeLetter) captureESP(freeLetter, wimFilePath) capturePartition(windowsDriveLetter, wimFilePath, configFilePath=options.wimScript) if __name__ == "__main__": sys.exit(main())
b3f108e068454d46e36179dc7ee8c4f4e19a3dcd
9c517135ceebe11b88a673f707c865470eac91a8
/layers/classifier.py
6d27ff88218a39e7247f85c3e1d23be4a34a947d
[]
no_license
chenun123/reid_baseline
fd6d516a8badcda81484a98c567c92a34bf0b457
315ef25801208fc0d3f7d91fda009089b0901313
refs/heads/master
2020-12-17T15:32:30.223860
2020-01-17T10:55:57
2020-01-17T10:55:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,489
py
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ from torch import nn from modeling.losses import * from modeling.backbones import * from .batch_norm import bn_no_bias from modeling.utils import * class ClassBlock(nn.Module): """ Define the bottleneck and classifier layer |--bn--|--relu--|--linear--|--classifier--| """ def __init__(self, in_features, num_classes, relu=True, num_bottleneck=512, fc_layer='softmax'): super().__init__() block1 = [] block1 += [nn.Linear(in_features, num_bottleneck, bias=False)] block1 += [nn.BatchNorm1d(in_features)] if relu: block1 += [nn.LeakyReLU(0.1)] self.block1 = nn.Sequential(*block1) self.bnneck = bn_no_bias(num_bottleneck) if fc_layer == 'softmax': self.classifier = nn.Linear(num_bottleneck, num_classes, bias=False) elif fc_layer == 'circle_loss': self.classifier = CircleLoss(num_bottleneck, num_classes, s=256, m=0.25) def init_parameters(self): self.block1.apply(weights_init_kaiming) self.bnneck.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) def forward(self, x, label=None): x = self.block1(x) x = self.bnneck(x) if self.training: # cls_out = self.classifier(x, label) cls_out = self.classifier(x) return cls_out else: return x
f158396e7bf336520c1beb9a6a9c2e52c1bdb526
79e45a6e4846927da432087aba845036b11c5622
/UAT/bin/MarketData/Daily/MNSTdailyOHLC_withvol.py
96dad0a3c752759bf948dcdbd7ebce990c11a5b9
[]
no_license
mjserpico/Scarlett-Trading
cba2bcfaacf886b9d851d978683b4ce641c8f6ad
9778717393dbb0818ee026356996d1806345a6c2
refs/heads/master
2020-03-21T21:39:51.108503
2019-05-09T02:06:26
2019-05-09T02:06:26
139,076,454
0
0
null
null
null
null
UTF-8
Python
false
false
13,164
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 08 09:16:43 2017 @author: Michael """ import mysql.connector from ib.opt import Connection from ib.ext.Contract import Contract import time import logging import datetime import datalink #universal logins for environment import math Flag = 0 CCY1 = "MN" CCY2 = "ST" Table = 'MNST' yClose = 0 logging.basicConfig(filename='DailyOHLC' + str(datetime.date.today()) + '.txt', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh = logging.FileHandler('DailyOHLC' + str(datetime.date.today()) + '.txt') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) logger.debug('Starting DailyOHLC') def truncate(f, n): '''Truncates/pads a float f to n decimal places without rounding''' s = '{}'.format(f) if 'e' in s or 'E' in s: return '{0:.{1}f}'.format(f, n) i, p, d = s.partition('.') return '.'.join([i, (d+'0'*n)[:n]]) def reply_handler(msg): #print(msg.value) logger.debug('In beginning of Reply Handler') print("Reply:", msg) test = msg.open test2 = msg.high test3 = msg.low test4 = msg.close test5 = msg.volume logger.debug('test %s', test) logger.debug('test5 %s', test5) global Flag logger.debug('Flag %s', Flag) #test5 - msg.volume logger.debug('In Reply Handler') if float(test) != -1: import time logger.debug('Valid Price Found (OPEN NOT -1)') #cnx = mysql.connector.connect(user='mjserpico', password='UrzE8B66',host="scar01.cqxmc7cib5oh.us-east-1.rds.amazonaws.com", database='SCAR01') #cnx = mysql.connector.connect(user='Scarlett01', password='scar01lett',host="serpdb01.cqxmc7cib5oh.us-east-1.rds.amazonaws.com", database='SERPDB01') cnx = mysql.connector.connect(user=datalink.DB_User, password=datalink.DB_Pass,host=datalink.DB_Host, database=datalink.DB_Path) logger.debug('Connected to Database') cur = cnx.cursor() cur.execute("Insert Into "+ Table + """(Date, Open, High, Low, Close) values(%s,%s,%s,%s,%s)""",(time.strftime("%m/%d/%Y"),float(test),float(test2),float(test3),float(test4))) cnx.commit() logger.debug('Ran Insert Script') today = datetime.date.today( ) dayofweek = datetime.datetime.today().weekday() if dayofweek == 0: #if Today is Monday yesterday = today - datetime.timedelta(days=3) #Get Friday month = (str(0) + str(yesterday.month)) day = (str(0)+ str(yesterday.day)) yesterday2 = (month[-2:] +"/"+ day[-2:] +"/"+str(yesterday.year)) logger.debug('Yesterday2 was %s', str(yesterday2)) else: yesterday = today - datetime.timedelta(days=1) #Take 1 Day back month = (str(0) + str(yesterday.month)) day = (str(0)+ str(yesterday.day)) yesterday2 = (month[-2:] +"/"+ day[-2:] +"/"+str(yesterday.year)) logger.debug('Yesterday2 was %s', str(yesterday2)) #MovingAverage Calculation #Step 1 Get earliest Date to calculate avg from #reformat date to DB convention first logger.debug('Today is still %s', today) backdate = today - datetime.timedelta(days=13) logger.debug('Date shifted back 10 is %s', backdate) dayofweek = backdate.weekday() month = (str(0) + str(backdate.month)) day = (str(0)+ str(backdate.day)) backdate2 = (month[-2:] +"/"+ day[-2:] +"/"+str(backdate.year)) logger.debug('First Date of Moving Average is %s', backdate2) query = ("SELECT max(ID) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID1 = ID logger.debug('ID1 is %s', ID1) query = ("SELECT (max(ID)-20) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID2 = ID logger.debug('ID1 is %s', ID1) logger.debug('ID2 is %s', ID2) query = ("SELECT (max(ID)-1) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID3 = ID logger.debug('ID3 is %s', ID3) #Pull ATR Length From RiskParameter Table query = ("Select RiskParametersValue from RiskParameters where RiskParametersName = 'ATRlength';") logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: atrlength = ID logger.debug('ID4 is %s', atrlength) #ID for ATR length start point query = ("SELECT (max(ID)-" + str(atrlength[0]) + ") from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID4 = ID logger.debug('ID4 is %s', ID4) #Pull MovingAvg Length RiskParameter Table query = ("Select RiskParametersValue from RiskParameters where RiskParametersName = 'MovAvgLength';") logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: movavglength = ID logger.debug('ID is %s', atrlength) #ID for MovAvg length start point query = ("SELECT (max(ID)-" + str(movavglength[0]) + ") from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID5 = ID logger.debug('ID5 is %s', ID5) query = ("SELECT (max(ID)-30) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID30 = ID logger.debug('ID30 is %s', ID30) query = ("SELECT (max(ID)-60) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID60 = ID logger.debug('ID60 is %s', ID60) query = ("SELECT (max(ID)-90) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID90 = ID logger.debug('ID90 is %s', ID90) query = ("SELECT Close from " + CCY1 + CCY2 + " where ID = " + str(ID3[0]) + ";") cur.execute(query) for (Close) in cur: yClose = Close logger.debug('yClose is %s', yClose[0]) query = ("SELECT Close from " + CCY1 + CCY2 + " where ID = " + str(ID1[0]) + ";") cur.execute(query) for (Close) in cur: tClose = Close logger.debug('tClose is %s', tClose[0]) #Interday Return CloseReturn = float(tClose[0]) yCloseReturn = float(yClose[0]) logger.debug('yClose is %s', yClose[0]) logger.debug('Close is %s', tClose[0]) returns = round(((CloseReturn / yCloseReturn) - 1) * 100,2) logger.debug('Return is %s', returns) query = ("UPDATE " + CCY1 + CCY2 + " SET PercentReturn = " + str(returns) + " where ID = " + str(ID1[0]) +";") logger.debug('Query is %s', query) cur.execute(query) cnx.commit() # period Moving Average query = ("SELECT round(Avg(Close),2) as Avg from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID5[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (Avg) in cur: BBMovAvg = Avg #Final Moving Average Value logger.debug('MovAvg is %s', BBMovAvg) ##Puts Moving Average Value in hasPosition Table for Reference with intraday strategies query = ("UPDATE hasPosition SET MovingAvgValue = " + str(BBMovAvg[0]) + " where CCY =\'" + CCY1 + CCY2 +"\';") logger.debug('Query is %s', query) cur.execute(query) cnx.commit() #True Range TR1 = (test2-test3) TR2 = abs(test2-float(yClose[0])) TR3 = abs(test3-float(yClose[0])) TR = truncate(max(TR1,TR2,TR3),4) print(TR) print(TR1) print(TR2) print(TR3) query = ("UPDATE "+ Table +" SET TrueRange = " + str(TR) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #ATR Daily query = ("SELECT round(Avg(TrueRange),2) as Avg from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID4[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) print(query) cur.execute(query) for (Avg) in cur: ATRAvg = Avg #Final Moving Average Value logger.debug('ATR is %s', ATRAvg) ##Puts ATR in hasPosition Table for Reference with intraday strategies query = ("UPDATE hasPosition SET ATRValue = " + str(ATRAvg[0]) + " where CCY =\'" + CCY1 + CCY2 +"\';") logger.debug('Query is %s', query) cur.execute(query) print(query) cnx.commit() #Calculate 30D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol30 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID30[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol30) in cur: thirtyd = truncate((vol30[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('30d is %s', thirtyd) query = ("UPDATE "+ Table +" SET thirtyvol = " + str(thirtyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #Calculate 60D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol60 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID60[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol60) in cur: sixtyd = truncate((vol60[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('sixtyd is %s', sixtyd) query = ("UPDATE "+ Table +" SET sixtyvol = " + str(sixtyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #Calculate 90D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol90 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID90[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol90) in cur: ninetyd = truncate((vol90[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('ninetyd is %s', ninetyd) query = ("UPDATE "+ Table +" SET ninetyvol = " + str(ninetyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() Flag = 1 logger.debug('Flag set to %s', Flag) print(Flag) return(Flag) while Flag == 0: logger.debug('Flag set to %s', Flag) conn = Connection.create(port=4002, clientId=999) conn.connect() logger.debug('Connecting to Server') time.sleep(1) conn.register(reply_handler,'HistoricalData') #By registering "HistoricalData" --the Method name only --we can eliminate all the open order garbage logger.debug('Registered HistoricalData Reply Handler') time.sleep(1) qqq = Contract() qqq.m_symbol = Table qqq.m_secType = 'STK' qqq.m_exchange = 'SMART:ISLAND' qqq.m_currency = 'USD' logger.debug('Requesting historical data') conn.reqHistoricalData(1, qqq, '', '1 D', '1 day', 'TRADES', 0, 1) logger.debug('Returned from Reply Handler') time.sleep(1) #give IB time to send us messages logger.debug('Disconnecting from Server') conn.disconnect() logger.debug('Finished Daily OHLC')
18e7fca8d4143e471221237e49f1a2367953adc1
1f2445a190e1fdb36b8ace15cdd1de799c4c61b4
/arst/command_push.py
cc707d2a8c5c30ec522be85979a30474551b1f43
[]
no_license
bmustiata/ars-py
f9860a48bb63bdf781627108e57d4a8431e35f0a
0a641399807f17efeb50d355770f014721aa4d38
refs/heads/master
2021-06-13T01:05:40.023617
2020-11-08T23:50:01
2020-11-08T23:50:01
140,120,138
0
0
null
2021-03-26T00:27:14
2018-07-07T22:15:34
Python
UTF-8
Python
false
false
1,156
py
import os.path import pathlib import shutil from typing import List from termcolor_util import yellow def push_files_to_template( projects_folder: str, project_name: str, files_to_push: List[str] ) -> None: for file_name in files_to_push: recursively_push_file(projects_folder, project_name, file_name) def recursively_push_file( projects_folder: str, project_name: str, file_name: str ) -> None: print( yellow("Pushing"), yellow(file_name, bold=True), yellow("to"), yellow(project_name, bold=True), ) target_file_name = os.path.join(projects_folder, project_name, file_name) if os.path.isdir(file_name): pathlib.Path(target_file_name).mkdir(parents=True, exist_ok=True) for nested_file_name in os.listdir(file_name): recursively_push_file( projects_folder=projects_folder, project_name=project_name, file_name=os.path.join(file_name, nested_file_name), ) return pathlib.Path(target_file_name).parent.mkdir(parents=True, exist_ok=True) shutil.copy(file_name, target_file_name)
56e5633ed8f47feba79f4997982cf5abf1919f18
941b25a0d0ccd25e4e64293defc2b50a61fccb01
/Board.py
cb026329b6c90b83267f78d6cc90800b607a043b
[]
no_license
fanzhangg/sliding-tiles
c5a396818ec2d7449309f773df37a46ec7b41c8e
334bb7df76436aa9429ff6132db8a9ea1afce35f
refs/heads/master
2020-04-08T20:06:37.554387
2018-11-29T15:20:52
2018-11-29T15:20:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
568
py
class Board: def __init__(self, row, col): self.ROW = row self.COL = col self.tiles = [] def initialize_board(self, tiles: tuple or list) -> None: expected_size = self.ROW * self.COL - 1 print('The expected size is', expected_size) if len(tiles) == expected_size: self.tiles.append(tiles) elif len(tiles) >= expected_size: raise IndexError("The size of tiles exceeds the expected size") else: raise IndexError("The size of tiles less than the expected size")
285aa96f98f22097cb153d7b2e18d6c25cb6e2a0
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_152/ch28_2020_09_16_11_46_15_586916.py
09f170029eaaabc036fde28d6663bd5331c376db
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
64
py
s =0 n =0 while n<100: s = s + 1/(2**n) n = n+1 print(s)
f37a13bf85a34be9aa47183fa9763dcb850c8bbf
4fb1239a9fd39b0abecde0f0f0b81e1cb3b8f44a
/isy994/items/devices/device_insteon_contact.py
3a2c8b43a4fe7d50bf9c0317dd32185ab7f7d5a2
[ "MIT" ]
permissive
simplextech/ISY994v5
f361066e7712bc590077bdf2799223b136ac6266
f8e485452a02113f95b1a0f1a57a4d30075c1070
refs/heads/master
2020-07-23T00:26:16.730900
2019-09-10T03:16:34
2019-09-10T03:16:34
207,382,914
0
0
MIT
2019-09-09T18:58:59
2019-09-09T18:58:59
null
UTF-8
Python
false
false
932
py
#! /usr/bin/env python from .device_contact import Device_Contact from .device_insteon_base import Device_Insteon_Base class Device_Insteon_Contact(Device_Contact,Device_Insteon_Base): def __init__(self, container, device_info): Device_Contact.__init__(self,container,device_info.name,device_info.address) Device_Insteon_Base.__init__(self, device_info) if device_info.property_value: try: if int(device_info.property_value) > 0: self.set_property('contact','open') else: self.set_property('contact','closed') except: pass def process_websocket_event(self,event): if event.control == 'ST': if int(event.action) > 0: self.set_property('contact','open') else: self.set_property('contact','closed')
a4412ae9e4d031c23ba431dffde914d8ead12b9e
a55fcbe94032f98f8a858cebf7cfe843410aea76
/hw4/env/lib/python3.6/config-3.6m-darwin/python-config.py
6eaf21054fc295f5954d9f15d26efbc54c161360
[]
no_license
quentintruong/UCLA-ECE239AS-W19
a3aca9302125ee7b85f8cecf82485782718d8266
f734aa7a8178b64b309761f4a390ed4689c4caed
refs/heads/master
2022-12-10T19:01:28.589101
2020-02-14T08:00:33
2020-02-14T08:00:33
166,895,199
1
0
null
2022-12-08T01:43:39
2019-01-21T23:34:01
Jupyter Notebook
UTF-8
Python
false
false
80
py
/Users/quentintruong/anaconda3/lib/python3.6/config-3.6m-darwin/python-config.py
ad0204c58539514ac30daab92ddf9c5e97cfa7ad
d49390f27ee954ddf5f7f1a9876320e1adec8ad4
/tests/test_utils.py
7e47d12b47398cef00ccd93ae15f60caac575053
[ "MIT" ]
permissive
ssato/pytest-data-from-files
431e83827d4a2e14dd029089c8fa020b821b0683
deca8e3ae50351299f90bfe1561e5a32474812fa
refs/heads/main
2023-08-19T06:32:59.056406
2021-10-13T15:15:07
2021-10-13T15:15:07
412,952,889
0
0
null
null
null
null
UTF-8
Python
false
false
690
py
# # Copyright (C) 2021 Satoru SATOH <[email protected]> # SPDX-License-Identifier: MIT # # pylint: disable=missing-docstring """Test cases for tests.utils.""" import pytest from . import utils as TT def test_get_basename(): assert TT.get_basename(__file__) == 'utils' @pytest.mark.parametrize( ('xss', 'exp'), ( ([[]], []), ((()), []), ([[1, 2, 3], [4, 5]], [1, 2, 3, 4, 5]), ([[1, 2, 3], [4, 5, [6, 7]]], [1, 2, 3, 4, 5, [6, 7]]), (((1, 2, 3), (4, 5, (6, 7))), [1, 2, 3, 4, 5, (6, 7)]), (((i, i * 2) for i in range(3)), [0, 0, 1, 2, 2, 4]), ) ) def test_concat(xss, exp): assert list(TT.concat(xss)) == exp # vim:sw=4:ts=4:et:
f0272683f3edfbcf1f9c2e00b91bf63b2b057c61
a9e051485379fb7e569a7c8458045e9eb56d4cf8
/docker/water/sph/tags/pysph/pysph/sph/tests/test_acceleration_eval.py
b17fee871d6139baca63491dc96ca7de83677b09
[ "LicenseRef-scancode-public-domain", "Apache-2.0", "BSD-3-Clause" ]
permissive
liujiamingustc/phd
7634056500c481d39fa036bf0ed744c1d13b0035
4f815a738abad43531d02ac66f5bd0d9a1def52a
refs/heads/master
2020-05-17T07:02:56.000146
2019-04-24T15:04:19
2019-04-24T15:04:19
183,567,207
4
0
null
2019-04-26T06:04:37
2019-04-26T06:04:37
null
UTF-8
Python
false
false
17,647
py
# Standard library imports. try: # This is for Python-2.6.x import unittest2 as unittest except ImportError: import unittest # Library imports. import pytest import numpy as np # Local imports. from pysph.base.config import get_config from pysph.base.utils import get_particle_array from pysph.sph.equation import Equation, Group from pysph.sph.acceleration_eval import (AccelerationEval, check_equation_array_properties) from pysph.sph.basic_equations import SummationDensity from pysph.base.kernels import CubicSpline from pysph.base.nnps import LinkedListNNPS as NNPS from pysph.sph.sph_compiler import SPHCompiler from pysph.base.reduce_array import serial_reduce_array class DummyEquation(Equation): def initialize(self, d_idx, d_rho, d_V): d_rho[d_idx] = d_V[d_idx] def loop(self, d_idx, d_rho, s_idx, s_m, s_u, WIJ): d_rho[d_idx] += s_m[s_idx]*WIJ def post_loop(self, d_idx, d_rho, s_idx, s_m, s_V, WIJ): d_rho[d_idx] += s_m[s_idx]*WIJ class FindTotalMass(Equation): def initialize(self, d_idx, d_m, d_total_mass): # FIXME: This is stupid and should be fixed if we add a separate # initialize_once function or so. d_total_mass[0] = 0.0 def post_loop(self, d_idx, d_m, d_total_mass): d_total_mass[0] += d_m[d_idx] class TestCheckEquationArrayProps(unittest.TestCase): def test_should_raise_runtime_error_when_invalid_dest_source(self): # Given f = get_particle_array(name='f') # When eq = SummationDensity(dest='fluid', sources=['f']) # Then self.assertRaises( RuntimeError, check_equation_array_properties, eq, [f] ) # When eq = SummationDensity(dest='f', sources=['fluid']) # Then self.assertRaises( RuntimeError, check_equation_array_properties, eq, [f] ) def test_should_pass_when_properties_exist(self): # Given f = get_particle_array(name='f') # When eq = SummationDensity(dest='f', sources=['f']) # Then check_equation_array_properties(eq, [f]) def test_should_fail_when_props_dont_exist(self): # Given f = get_particle_array(name='f') # When eq = DummyEquation(dest='f', sources=['f']) # Then self.assertRaises(RuntimeError, check_equation_array_properties, eq, [f]) def test_should_fail_when_src_props_dont_exist(self): # Given f = get_particle_array(name='f') f.add_property('V') s = get_particle_array(name='s') # When eq = DummyEquation(dest='f', sources=['f', 's']) # Then self.assertRaises(RuntimeError, check_equation_array_properties, eq, [f, s]) def test_should_pass_when_src_props_exist(self): # Given f = get_particle_array(name='f') f.add_property('V') s = get_particle_array(name='s') s.add_property('V') # When eq = DummyEquation(dest='f', sources=['f', 's']) # Then check_equation_array_properties(eq, [f, s]) def test_should_check_constants(self): # Given f = get_particle_array(name='f') # When eq = FindTotalMass(dest='f', sources=['f']) # Then. self.assertRaises(RuntimeError, check_equation_array_properties, eq, [f]) # When. f.add_constant('total_mass', 0.0) # Then. check_equation_array_properties(eq, [f]) class SimpleEquation(Equation): def __init__(self, dest, sources): super(SimpleEquation, self).__init__(dest, sources) self.count = 0 def initialize(self, d_idx, d_u, d_au): d_u[d_idx] = 0.0 d_au[d_idx] = 0.0 def loop(self, d_idx, d_au, s_idx, s_m): d_au[d_idx] += s_m[s_idx] def post_loop(self, d_idx, d_u, d_au): d_u[d_idx] = d_au[d_idx] def converged(self): self.count += 1 result = self.count - 1 if result > 0: # Reset the count for the next loop. self.count = 0 return result class MixedTypeEquation(Equation): def initialize(self, d_idx, d_u, d_au, d_pid, d_tag): d_u[d_idx] = 0.0 + d_pid[d_idx] d_au[d_idx] = 0.0 + d_tag[d_idx] def loop(self, d_idx, d_au, s_idx, s_m, s_pid, s_tag): d_au[d_idx] += s_m[s_idx] + s_pid[s_idx] + s_tag[s_idx] def post_loop(self, d_idx, d_u, d_au, d_pid): d_u[d_idx] = d_au[d_idx] + d_pid[d_idx] class SimpleReduction(Equation): def initialize(self, d_idx, d_au): d_au[d_idx] = 0.0 def reduce(self, dst): dst.total_mass[0] = serial_reduce_array(dst.m, op='sum') if dst.gpu is not None: dst.gpu.push('total_mass') class TestAccelerationEval1D(unittest.TestCase): def setUp(self): self.dim = 1 n = 10 dx = 1.0/(n-1) x = np.linspace(0, 1, n) m = np.ones_like(x) h = np.ones_like(x)*dx*1.05 pa = get_particle_array(name='fluid', x=x, h=h, m=m) self.pa = pa def _make_accel_eval(self, equations, cache_nnps=False): arrays = [self.pa] kernel = CubicSpline(dim=self.dim) a_eval = AccelerationEval( particle_arrays=arrays, equations=equations, kernel=kernel ) comp = SPHCompiler(a_eval, integrator=None) comp.compile() nnps = NNPS(dim=kernel.dim, particles=arrays, cache=cache_nnps) nnps.update() a_eval.set_nnps(nnps) return a_eval def test_should_support_constants(self): # Given pa = self.pa pa.add_constant('total_mass', 0.0) equations = [FindTotalMass(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then self.assertEqual(pa.total_mass, 10.0) def test_should_not_iterate_normal_group(self): # Given pa = self.pa equations = [SimpleEquation(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.]) self.assertListEqual(list(pa.u), list(expect)) def test_should_work_with_cached_nnps(self): # Given pa = self.pa equations = [SimpleEquation(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations, cache_nnps=True) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.]) self.assertListEqual(list(pa.u), list(expect)) def test_should_iterate_iterated_group(self): # Given pa = self.pa equations = [Group( equations=[ SimpleEquation(dest='fluid', sources=['fluid']), SimpleEquation(dest='fluid', sources=['fluid']), ], iterate=True )] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.])*2 self.assertListEqual(list(pa.u), list(expect)) def test_should_iterate_nested_groups(self): pa = self.pa equations = [Group( equations=[ Group( equations=[SimpleEquation(dest='fluid', sources=['fluid'])] ), Group( equations=[SimpleEquation(dest='fluid', sources=['fluid'])] ), ], iterate=True, )] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.]) self.assertListEqual(list(pa.u), list(expect)) def test_should_run_reduce(self): # Given. pa = self.pa pa.add_constant('total_mass', 0.0) equations = [SimpleReduction(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.sum(pa.m) self.assertAlmostEqual(pa.total_mass[0], expect, 14) def test_should_work_with_non_double_arrays(self): # Given pa = self.pa equations = [MixedTypeEquation(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.]) self.assertListEqual(list(pa.u), list(expect)) class EqWithTime(Equation): def initialize(self, d_idx, d_au, t, dt): d_au[d_idx] = t + dt def loop(self, d_idx, d_au, s_idx, s_m, t, dt): d_au[d_idx] += t + dt class TestAccelerationEval1DGPU(unittest.TestCase): # Fix this to be a subclass of TestAccelerationEval1D def setUp(self): self.dim = 1 n = 10 dx = 1.0/(n-1) x = np.linspace(0, 1, n) m = np.ones_like(x) h = np.ones_like(x)*dx*1.05 pa = get_particle_array(name='fluid', x=x, h=h, m=m) self.pa = pa def _make_accel_eval(self, equations, cache_nnps=True): pytest.importorskip('pysph.base.gpu_nnps') from pysph.base.gpu_nnps import ZOrderGPUNNPS as GPUNNPS arrays = [self.pa] kernel = CubicSpline(dim=self.dim) a_eval = AccelerationEval( particle_arrays=arrays, equations=equations, kernel=kernel, backend='opencl' ) comp = SPHCompiler(a_eval, integrator=None) comp.compile() self.sph_compiler = comp nnps = GPUNNPS(dim=kernel.dim, particles=arrays, cache=cache_nnps) nnps.update() a_eval.set_nnps(nnps) return a_eval def test_accel_eval_should_work_on_gpu(self): # Given pa = self.pa equations = [SimpleEquation(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.]) pa.gpu.pull('u') self.assertListEqual(list(pa.u), list(expect)) def test_precomputed_should_work_on_gpu(self): # Given pa = self.pa equations = [SummationDensity(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([7.357, 9.0, 9., 9., 9., 9., 9., 9., 9., 7.357]) pa.gpu.pull('rho') print(pa.rho, pa.gpu.rho) self.assertTrue(np.allclose(expect, pa.rho, atol=1e-2)) def test_precomputed_should_work_on_gpu_with_double(self): orig = get_config().use_double def _cleanup(): get_config().use_double = orig get_config().use_double = True self.addCleanup(_cleanup) # Given pa = self.pa equations = [SummationDensity(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([7.357, 9.0, 9., 9., 9., 9., 9., 9., 9., 7.357]) pa.gpu.pull('rho') print(pa.rho, pa.gpu.rho) self.assertTrue(np.allclose(expect, pa.rho, atol=1e-2)) def test_equation_with_time_should_work_on_gpu(self): # Given pa = self.pa equations = [EqWithTime(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.2, 0.1) # Then expect = np.asarray([4., 5., 6., 6., 6., 6., 6., 6., 5., 4.])*0.3 pa.gpu.pull('au') print(pa.au, expect) self.assertTrue(np.allclose(expect, pa.au)) def test_update_nnps_is_called_for_opencl(self): # Given equations = [ Group( equations=[ SummationDensity(dest='fluid', sources=['fluid']), ], update_nnps=True ), Group( equations=[EqWithTime(dest='fluid', sources=['fluid'])] ), ] # When a_eval = self._make_accel_eval(equations) # Then h = a_eval.c_acceleration_eval.helper assert len(h.calls) == 5 call = h.calls[0] assert call['type'] == 'kernel' assert call['method'].function_name == 'g0_fluid_initialize' assert call['loop'] is False call = h.calls[1] assert call['type'] == 'kernel' assert call['method'].function_name == 'g0_fluid_on_fluid_loop' assert call['loop'] is True call = h.calls[2] assert call['type'] == 'method' assert call['method'] == 'update_nnps' call = h.calls[3] assert call['type'] == 'kernel' assert call['method'].function_name == 'g1_fluid_initialize' assert call['loop'] is False call = h.calls[4] assert call['type'] == 'kernel' assert call['method'].function_name == 'g1_fluid_on_fluid_loop' assert call['loop'] is True def test_should_stop_iteration_with_max_iteration_on_gpu(self): pa = self.pa class SillyEquation(Equation): def loop(self, d_idx, d_au, s_idx, s_m): d_au[d_idx] += s_m[s_idx] def converged(self): return 0 equations = [Group( equations=[ Group( equations=[SillyEquation(dest='fluid', sources=['fluid'])] ), Group( equations=[SillyEquation(dest='fluid', sources=['fluid'])] ), ], iterate=True, max_iterations=2, )] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.])*4.0 pa.gpu.pull('au') self.assertListEqual(list(pa.au), list(expect)) def test_should_stop_iteration_with_converged_on_gpu(self): pa = self.pa class SillyEquation1(Equation): def __init__(self, dest, sources): super(SillyEquation1, self).__init__(dest, sources) self.conv = 0 def loop(self, d_idx, d_au, s_idx, s_m): d_au[d_idx] += s_m[s_idx] def post_loop(self, d_idx, d_au): if d_au[d_idx] > 19.0: self.conv = 1 def converged(self): return self.conv equations = [Group( equations=[ Group( equations=[SillyEquation1(dest='fluid', sources=['fluid'])] ), Group( equations=[SillyEquation1(dest='fluid', sources=['fluid'])] ), ], iterate=True, max_iterations=10, )] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.asarray([3., 4., 5., 5., 5., 5., 5., 5., 4., 3.])*6.0 pa.gpu.pull('au') self.assertListEqual(list(pa.au), list(expect)) def test_should_handle_helper_functions_on_gpu(self): pa = self.pa def helper(x=1.0): return x*1.5 class SillyEquation2(Equation): def initialize(self, d_idx, d_au, d_m): d_au[d_idx] += helper(d_m[d_idx]) def _get_helpers_(self): return [helper] equations = [SillyEquation2(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.ones(10)*1.5 pa.gpu.pull('au') self.assertListEqual(list(pa.au), list(expect)) def test_should_run_reduce_when_using_gpu(self): # Given. pa = self.pa pa.add_constant('total_mass', 0.0) equations = [SimpleReduction(dest='fluid', sources=['fluid'])] a_eval = self._make_accel_eval(equations) # When a_eval.compute(0.1, 0.1) # Then expect = np.sum(pa.m) pa.gpu.pull('total_mass') self.assertAlmostEqual(pa.total_mass[0], expect, 14) def test_get_equations_with_converged(self): pytest.importorskip('pysph.base.gpu_nnps') from pysph.sph.acceleration_eval_opencl_helper import \ get_equations_with_converged # Given se = SimpleEquation(dest='fluid', sources=['fluid']) se1 = SimpleEquation(dest='fluid', sources=['fluid']) sd = SummationDensity(dest='fluid', sources=['fluid']) me = MixedTypeEquation(dest='fluid', sources=['fluid']) eq_t = EqWithTime(dest='fluid', sources=['fluid']) g = Group( equations=[ Group(equations=[Group(equations=[se, sd])], iterate=True, max_iterations=10), Group(equations=[me, eq_t, se1]), ], ) # When eqs = get_equations_with_converged(g) # Then assert eqs == [se, se1]
a59342015429a8fe98d84c3688d5f300989c9754
ef158af9d47fb1f0c974b49405174ba5b34e4721
/polu/prediction_site/incendie.py
7d9797880c7e7d88bf9c409c3146b094c9c89755
[]
no_license
LeGrosLezard/bobo
1227bcae22d9eb7d9e0423009cae154df5466994
7c50de512fb22c8bdf1a1127307fc4fd2f371152
refs/heads/master
2020-07-01T17:38:14.145955
2019-07-01T21:29:49
2019-07-01T21:29:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,284
py
import os import cv2 import json import requests import datetime import urllib.request from bs4 import * import datetime PATH_LYON = 'https://www.lyoncapitale.fr/?s=incendie' PATH_MARSEILLE = 'https://www.20minutes.fr/search?q=incendie+marseille' PATH_PARIS = 'https://www.20minutes.fr/search?q=incendie+paris' def incendie(ville): date = datetime.datetime.now() jour = date.day mois = date.month année = date.year dico = {'1':'janvier','2':'fevrier','3':'mars','4':'avril', '5':'mai','6':'juin','7':'juillet','8':'août', '9':'septembre','10':'octobre','11':'novembre','12':'decembre'} for cle, valeur in dico.items(): if str(mois) == cle: mois = valeur ville = ville.lower() if ville == 'lyon': path = PATH_LYON r = requests.get(path) page = r.content soup = BeautifulSoup(page, "html.parser") propriete = soup.find_all("div") liste = [] liste.append(str(propriete)) daate = str(jour) + ' ' + str(mois) + ' ' + str(année) a = str(liste).find(str(daate)) elif ville == 'paris': path = PATH_PARIS elif ville == 'marseille': path = PATH_MARSEILLE r = requests.get(path) page = r.content soup = BeautifulSoup(page, "html.parser") propriete = soup.find_all("div") liste = [] liste.append(str(propriete)) a = str(liste).find('incendie') liste = liste[0][a-1000:a+1000] mois_chi = date.month c = 0 for i in str(mois_chi): c+=1 if c == 1: daate1 = str(année) + '-0' + str(mois_chi)+'-'+str(jour) daate3 = str(jour) + '-0' + str(mois_chi)+'-'+str(année) else: daate1 = str(année) + '-' + str(mois_chi)+'-'+str(jour) daate3 = str(jour) + '-' + str(mois_chi)+'-'+str(année) daate = str(jour) + ' ' + str(mois) + ' ' + str(année) b = str(liste).find(daate) c = str(liste).find(daate1) d = str(liste).find(daate3) if b >= 0 or c >= 0 or d >=0: return 'oui'
301e49dbb4d7faa407729ff514dd2a4fecdb2b45
540dbf1622959cc1b3a6853379f6f1f502bdbc24
/offers/urls.py
4ea3e242310521d73bca6bf928f385ece1bf7173
[ "ISC" ]
permissive
pmaigutyak/mp-shop-offers
a5031af2827cee34e671793164ea786d2c4ee016
6f3d0934193c7d727d41481b0ebb164b03e34808
refs/heads/master
2023-08-02T23:02:09.498271
2023-07-19T11:01:34
2023-07-19T11:01:34
148,797,797
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.urls import path from offers import views app_name = 'offers' urlpatterns = [ path('modal/<int:product_id>/', views.get_price_offer_modal, name='modal'), path('send/<int:product_id>/', views.send_price_offer, name='send'), ]
99eb738456b493ec54c68eba2eeb0e72884b2519
09a8e7ca229a6a95cdd4a426a1c220e9daf98355
/RBSP/Tools/IntegrateSpectrum.py
afe1dc5f26134ae4cc762e18d03b76f09fcdcc78
[ "MIT" ]
permissive
mattkjames7/RBSP
8547bda29ec6c878483c21dc3281852abb256bd4
25c37cbba18b681a2f9a4e7955e49a49fc36d698
refs/heads/master
2023-07-20T00:31:43.487076
2023-07-14T12:30:04
2023-07-14T12:30:04
177,828,232
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
import numpy as np from .RelVelocity import RelVelocity def IntegrateSpectrum(E,PSD,m,Omega,Erange=(0.0,np.inf)): ''' Integrate the phase space density to get the partial density. Inputs ====== E : float Energy in keV. PSD : float Phase space density s^3 m^-6. (this includes density) m : float Mass in kg. Erange : tuple 2-element tuple specifying the energy range over which to integrate. Returns ======= n : float Partial density. NOTE: This probably won't work for reletavistic particles, so I should probably rewrite this in terms of E instead of V ''' #firstly work out the number of spectra if len(PSD.shape) == 1: ns = 1 else: ns = PSD.shape[0] #limit E and PSD to within the energy range if len(E.shape) == 1: e = np.array([E]*ns) else: e = np.array(E) etmp = np.nanmean(e,axis=0) use = np.where((etmp >= Erange[0]) & (etmp <= Erange[1]))[0] e = e[:,use] if len(PSD.shape) == 1: p = np.array([PSD[use]]).astype('float64') else: p = PSD[:,use].astype('float64') #convert E to V v = RelVelocity(e,m).astype('float64') #integrate, convert to cm^-2 n = np.zeros(ns,dtype='float64') pv2 = p*v**2 for i in range(0,ns): use = np.where(p[i] > 0)[0] if use.size > 1: n[i] = 1e-6*np.trapz(pv2[i,use],v[i,use])*Omega else: n[i] = np.nan return n
7f0a5b1b270b7e230361b6f791d4e0774ca6ed98
dbe7e1d9fe2457c26f83095d941e4392e7d30f8c
/django_dashboard/api/test.py
81e1e97da6599b88239c60f04be0a535b2b26525
[ "MIT" ]
permissive
keepexploring/smartbiogas
51e124735ec04bc6b87a8ac75c66c83de6865001
ca663435b05666113e3c0cb55e6f087c61497208
refs/heads/master
2022-12-12T10:42:37.412038
2018-07-18T15:29:04
2018-07-18T15:29:04
111,402,799
0
0
MIT
2022-12-08T00:56:54
2017-11-20T11:39:05
JavaScript
UTF-8
Python
false
false
1,051
py
class Container(models.Model): pass class ContainerItem(models.Model): blog = models.ForeignKey('Container', related_name='items') # For testing purposes only class ContainerResource(ModelResource): class Meta: queryset = Container.objects.all() authorization = Authorization() class ContainerItemResource(ModelResource): blog = tastypie.fields.ForeignKey(ContainerResource, 'blog') class Meta: queryset = ContainerItem.objects.all() authorization = Authorization() class BiogasPlants(models.Model): pass class PendingJobs(models.Model): blog = models.ForeignKey('BiogasPlants', related_name='items') # For testing purposes only class BiogasPlantResource(ModelResource): class Meta: queryset = BiogasPlants.objects.all() authorization = Authorization() class PendingJobResource(ModelResource): blog = tastypie.fields.ForeignKey(BiogasPlantResource, 'blog') class Meta: queryset = ContainerItem.objects.all() authorization = Authorization()
b7243813f8bf290dd27c60441ca3c453a67e225f
024214bff5cdd43874d30143ee90131a985c5ce3
/vycontrol/interface/urls.py
0c3aaab513ffb0106d0732d02cc9e8dd19f611e2
[ "MIT" ]
permissive
KennethEhmsen/vycontrol
c20e2d793bd03005ddfd314abc62b4ca3fd292e3
5dbebfa1b299ad20b60131d95291ee91c3b9df5c
refs/heads/master
2023-08-10T11:43:36.001119
2020-05-23T05:03:47
2020-05-23T05:03:47
267,380,513
1
0
MIT
2021-09-22T19:40:01
2020-05-27T17:13:06
null
UTF-8
Python
false
false
388
py
from django.urls import path from . import views app_name = 'interface' urlpatterns = [ path('', views.index, name='interface-list'), path('interface-show/<slug:interface_type>/<slug:interface_name>', views.interfaceshow, name='interface-show'), path('interface-firewall/<slug:interface_type>/<slug:interface_name>', views.interfacefirewall, name='interface-firewall'), ]
270166ede0ea9aa8ef6cdedfbe9dc16ea08db746
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/RADLAN-GVRP-MIB.py
c9e0c0b6e626f01b902af3235250ea18cac1799f
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
11,809
py
# # PySNMP MIB module RADLAN-GVRP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/RADLAN-GVRP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:38:27 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") dot1dBasePort, = mibBuilder.importSymbols("BRIDGE-MIB", "dot1dBasePort") EnabledStatus, = mibBuilder.importSymbols("P-BRIDGE-MIB", "EnabledStatus") rnd, = mibBuilder.importSymbols("RADLAN-MIB", "rnd") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Integer32, Gauge32, ModuleIdentity, MibIdentifier, iso, IpAddress, ObjectIdentity, TimeTicks, NotificationType, Unsigned32, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Bits, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "Gauge32", "ModuleIdentity", "MibIdentifier", "iso", "IpAddress", "ObjectIdentity", "TimeTicks", "NotificationType", "Unsigned32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Bits", "Counter32") TimeInterval, DisplayString, TextualConvention, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "TimeInterval", "DisplayString", "TextualConvention", "TruthValue") rlGvrp = ModuleIdentity((1, 3, 6, 1, 4, 1, 89, 64)) rlGvrp.setRevisions(('2007-01-02 00:00',)) if mibBuilder.loadTexts: rlGvrp.setLastUpdated('200701020000Z') if mibBuilder.loadTexts: rlGvrp.setOrganization('Radlan - a MARVELL company. Marvell Semiconductor, Inc.') rlPortGvrpTimersTable = MibTable((1, 3, 6, 1, 4, 1, 89, 64, 1), ) if mibBuilder.loadTexts: rlPortGvrpTimersTable.setStatus('current') rlPortGvrpTimersEntry = MibTableRow((1, 3, 6, 1, 4, 1, 89, 64, 1, 1), ).setIndexNames((0, "BRIDGE-MIB", "dot1dBasePort")) if mibBuilder.loadTexts: rlPortGvrpTimersEntry.setStatus('current') rlPortGvrpJoinTime = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 1, 1, 1), TimeInterval().clone(20)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpJoinTime.setStatus('current') rlPortGvrpLeaveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 1, 1, 2), TimeInterval().clone(60)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpLeaveTime.setStatus('current') rlPortGvrpLeaveAllTime = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 1, 1, 3), TimeInterval().clone(1000)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpLeaveAllTime.setStatus('current') rlPortGvrpOverrideGarp = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 1, 1, 4), EnabledStatus().clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpOverrideGarp.setStatus('current') rlGvrpSupported = MibScalar((1, 3, 6, 1, 4, 1, 89, 64, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlGvrpSupported.setStatus('current') rlGvrpMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 89, 64, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlGvrpMibVersion.setStatus('current') rlPortGvrpStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 89, 64, 4), ) if mibBuilder.loadTexts: rlPortGvrpStatisticsTable.setStatus('current') rlPortGvrpStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 89, 64, 4, 1), ).setIndexNames((0, "BRIDGE-MIB", "dot1dBasePort")) if mibBuilder.loadTexts: rlPortGvrpStatisticsEntry.setStatus('current') rlPortGvrpStatisticsRJE = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsRJE.setStatus('current') rlPortGvrpStatisticsRJIn = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsRJIn.setStatus('current') rlPortGvrpStatisticsREmp = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsREmp.setStatus('current') rlPortGvrpStatisticsRLIn = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsRLIn.setStatus('current') rlPortGvrpStatisticsRLE = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsRLE.setStatus('current') rlPortGvrpStatisticsRLA = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsRLA.setStatus('current') rlPortGvrpStatisticsSJE = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSJE.setStatus('current') rlPortGvrpStatisticsSJIn = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSJIn.setStatus('current') rlPortGvrpStatisticsSEmp = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSEmp.setStatus('current') rlPortGvrpStatisticsSLIn = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSLIn.setStatus('current') rlPortGvrpStatisticsSLE = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSLE.setStatus('current') rlPortGvrpStatisticsSLA = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpStatisticsSLA.setStatus('current') rlPortGvrpStatisticsClear = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 4, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("activate", 1), ("passive", 2))).clone('passive')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpStatisticsClear.setStatus('current') rlPortGvrpErrorStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 89, 64, 5), ) if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsTable.setStatus('current') rlPortGvrpErrorStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 89, 64, 5, 1), ).setIndexNames((0, "BRIDGE-MIB", "dot1dBasePort")) if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsEntry.setStatus('current') rlPortGvrpErrorStatisticsInvProt = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvProt.setStatus('current') rlPortGvrpErrorStatisticsInvAtyp = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvAtyp.setStatus('current') rlPortGvrpErrorStatisticsInvAval = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvAval.setStatus('current') rlPortGvrpErrorStatisticsInvPlen = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvPlen.setStatus('current') rlPortGvrpErrorStatisticsInvAlen = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvAlen.setStatus('current') rlPortGvrpErrorStatisticsInvEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsInvEvent.setStatus('current') rlPortGvrpErrorStatisticsClear = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 5, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("activate", 1), ("passive", 2))).clone('passive')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpErrorStatisticsClear.setStatus('current') rlPortGvrpApplicantStatusTable = MibTable((1, 3, 6, 1, 4, 1, 89, 64, 6), ) if mibBuilder.loadTexts: rlPortGvrpApplicantStatusTable.setStatus('current') rlPortGvrpApplicantStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 89, 64, 6, 1), ).setIndexNames((0, "BRIDGE-MIB", "dot1dBasePort")) if mibBuilder.loadTexts: rlPortGvrpApplicantStatusEntry.setStatus('current') rlPortGvrpApplicantStatusValue = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 6, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("participant", 1), ("nonParticipant", 2))).clone('participant')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpApplicantStatusValue.setStatus('current') rlPortGvrpRegistrationModeTable = MibTable((1, 3, 6, 1, 4, 1, 89, 64, 8), ) if mibBuilder.loadTexts: rlPortGvrpRegistrationModeTable.setStatus('current') rlPortGvrpRegistrationModeEntry = MibTableRow((1, 3, 6, 1, 4, 1, 89, 64, 8, 1), ).setIndexNames((0, "BRIDGE-MIB", "dot1dBasePort")) if mibBuilder.loadTexts: rlPortGvrpRegistrationModeEntry.setStatus('current') rlPortGvrpRegistrationModeForbidden = MibTableColumn((1, 3, 6, 1, 4, 1, 89, 64, 8, 1, 1), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlPortGvrpRegistrationModeForbidden.setStatus('current') mibBuilder.exportSymbols("RADLAN-GVRP-MIB", PYSNMP_MODULE_ID=rlGvrp, rlPortGvrpStatisticsEntry=rlPortGvrpStatisticsEntry, rlPortGvrpStatisticsSJE=rlPortGvrpStatisticsSJE, rlGvrp=rlGvrp, rlGvrpMibVersion=rlGvrpMibVersion, rlPortGvrpErrorStatisticsInvAlen=rlPortGvrpErrorStatisticsInvAlen, rlPortGvrpTimersTable=rlPortGvrpTimersTable, rlPortGvrpErrorStatisticsEntry=rlPortGvrpErrorStatisticsEntry, rlPortGvrpStatisticsSLA=rlPortGvrpStatisticsSLA, rlGvrpSupported=rlGvrpSupported, rlPortGvrpStatisticsRJE=rlPortGvrpStatisticsRJE, rlPortGvrpErrorStatisticsInvAtyp=rlPortGvrpErrorStatisticsInvAtyp, rlPortGvrpErrorStatisticsClear=rlPortGvrpErrorStatisticsClear, rlPortGvrpStatisticsSJIn=rlPortGvrpStatisticsSJIn, rlPortGvrpLeaveAllTime=rlPortGvrpLeaveAllTime, rlPortGvrpRegistrationModeEntry=rlPortGvrpRegistrationModeEntry, rlPortGvrpStatisticsRJIn=rlPortGvrpStatisticsRJIn, rlPortGvrpOverrideGarp=rlPortGvrpOverrideGarp, rlPortGvrpStatisticsRLA=rlPortGvrpStatisticsRLA, rlPortGvrpApplicantStatusTable=rlPortGvrpApplicantStatusTable, rlPortGvrpStatisticsSEmp=rlPortGvrpStatisticsSEmp, rlPortGvrpStatisticsClear=rlPortGvrpStatisticsClear, rlPortGvrpStatisticsRLE=rlPortGvrpStatisticsRLE, rlPortGvrpStatisticsSLE=rlPortGvrpStatisticsSLE, rlPortGvrpApplicantStatusEntry=rlPortGvrpApplicantStatusEntry, rlPortGvrpStatisticsTable=rlPortGvrpStatisticsTable, rlPortGvrpErrorStatisticsInvEvent=rlPortGvrpErrorStatisticsInvEvent, rlPortGvrpErrorStatisticsInvProt=rlPortGvrpErrorStatisticsInvProt, rlPortGvrpStatisticsRLIn=rlPortGvrpStatisticsRLIn, rlPortGvrpRegistrationModeForbidden=rlPortGvrpRegistrationModeForbidden, rlPortGvrpTimersEntry=rlPortGvrpTimersEntry, rlPortGvrpLeaveTime=rlPortGvrpLeaveTime, rlPortGvrpErrorStatisticsInvAval=rlPortGvrpErrorStatisticsInvAval, rlPortGvrpJoinTime=rlPortGvrpJoinTime, rlPortGvrpStatisticsSLIn=rlPortGvrpStatisticsSLIn, rlPortGvrpApplicantStatusValue=rlPortGvrpApplicantStatusValue, rlPortGvrpStatisticsREmp=rlPortGvrpStatisticsREmp, rlPortGvrpErrorStatisticsTable=rlPortGvrpErrorStatisticsTable, rlPortGvrpRegistrationModeTable=rlPortGvrpRegistrationModeTable, rlPortGvrpErrorStatisticsInvPlen=rlPortGvrpErrorStatisticsInvPlen)
3a9e4f92085e755aa3e85445bf48abb902e2c0a1
df560dde5ffbae51187041f422c87f7d1544cbe9
/leetcode/python/841_keys_and_rooms.py
f8f42bb5c92c2b5c43d5bc8fa4770db223f3a8f4
[ "MIT" ]
permissive
VVKot/coding-competitions
61c97dbc4fdaeb0a35ff7fa8e55529b579fd1ebb
7d6e599b223d89a7861929190be715d3b3604fa4
refs/heads/master
2021-07-04T17:47:34.246535
2020-09-23T20:28:30
2020-09-23T20:28:30
174,696,391
4
0
null
null
null
null
UTF-8
Python
false
false
414
py
class Solution: def canVisitAllRooms(self, rooms): stack = [0] visited = set(stack) while stack: curr = stack.pop() for room in rooms[curr]: if room not in visited: stack.append(room) visited.add(room) if len(visited) == len(rooms): return True return len(visited) == len(rooms)
98d67adeb2aa151c263faa61a4956cb8f620a667
fa76cf45d7bf4ed533e5a776ecd52cea15da8c90
/robocorp-python-ls-core/src/robocorp_ls_core/libs/robocop_lib/robocop/exceptions.py
a5d30bd12b3f4d63a76dca5367602c808aafd756
[ "Apache-2.0" ]
permissive
martinRenou/robotframework-lsp
8a5d63b7cc7d320c9fed2372a79c8c6772d6481e
5f23b7374139e83d0aa1ebd30675e762d7a0db86
refs/heads/master
2023-08-18T22:26:01.386975
2021-10-25T13:46:11
2021-10-25T13:46:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,180
py
class RobocopFatalError(ValueError): pass class ConfigGeneralError(RobocopFatalError): pass class DuplicatedRuleError(RobocopFatalError): def __init__(self, rule_type, rule, checker, checker_prev): msg = ( f"Fatal error: Message {rule_type} '{rule}' defined in {checker.__class__.__name__} " f"was already defined in {checker_prev.__class__.__name__}" ) super().__init__(msg) class InvalidRuleSeverityError(RobocopFatalError): def __init__(self, rule, severity_val): msg = f"Fatal error: Tried to configure message {rule} with invalid severity: {severity_val}" super().__init__(msg) class InvalidRuleBodyError(RobocopFatalError): def __init__(self, rule_id, rule_body): msg = f"Fatal error: Rule '{rule_id}' has invalid body:\n{rule_body}" super().__init__(msg) class InvalidRuleConfigurableError(RobocopFatalError): def __init__(self, rule_id, rule_body): msg = f"Fatal error: Rule '{rule_id}' has invalid configurable:\n{rule_body}" super().__init__(msg) class InvalidRuleUsageError(RobocopFatalError): def __init__(self, rule_id, type_error): msg = f"Fatal error: Rule '{rule_id}' failed to prepare message description with error: {type_error}" super().__init__(msg) class InvalidExternalCheckerError(RobocopFatalError): def __init__(self, path): msg = f'Fatal error: Failed to load external rules from file "{path}". Verify if the file exists' super().__init__(msg) class FileError(RobocopFatalError): def __init__(self, source): msg = f'File "{source}" does not exist' super().__init__(msg) class ArgumentFileNotFoundError(RobocopFatalError): def __init__(self, source): msg = f'Argument file "{source}" does not exist' super().__init__(msg) class NestedArgumentFileError(RobocopFatalError): def __init__(self, source): msg = f'Nested argument file in "{source}"' super().__init__(msg) class InvalidArgumentError(RobocopFatalError): def __init__(self, msg): super().__init__(f"Invalid configuration for Robocop:\n{msg}")
4a6c127e11f77fef064cd6c080ef8f541b4ba12b
10ec999d273b9a75b3cc5c3e353d611ea7f163b6
/grappa/operators/attributes.py
7748bfdcbeb82c4d1d8d8cbe054f6887bb88da79
[ "MIT" ]
permissive
jcassee/grappa
721bec7ee2d21fc3fc857f77b9ff6d58b941bfd9
b128da8aef67501c310701c47508e7318241aa8b
refs/heads/master
2020-05-05T02:24:30.106837
2018-10-02T10:29:16
2018-10-02T10:29:16
179,636,623
0
0
MIT
2019-04-05T07:24:31
2019-04-05T07:24:31
null
UTF-8
Python
false
false
690
py
# -*- coding: utf-8 -*- from ..decorators import attribute @attribute( operators=( 'to', 'has', 'have', 'satisfy', 'that', 'that_is', 'satisfies', 'include', 'do', '_is', 'which', 'which_is' ) ) def be(ctx): """ Semantic attributes providing chainable declarative DSL for assertions. """ ctx.negate = False @attribute(operators=( 'not_to', 'to_not', 'does_not', 'do_not', '_not', 'not_satisfy', 'not_have', 'not_has', 'have_not', 'has_not', 'dont', 'is_not', 'which_not', 'that_not' )) def not_be(ctx): """ Semantic negation attributes providing chainable declarative DSL for assertions. """ ctx.negate = True
af2208aab51a655605a7d800189d0ced90fe2709
34d88082307281333ef4aeeec012a3ff5f8ec06e
/Runood_100/R048.py
f1206ba36ee2dabd3566bd2a2b35e2a30c35bb34
[]
no_license
JKChang2015/Python
a6f8b56fa3f9943682470ae57e5ad3266feb47a7
adf3173263418aee5d32f96b9ea3bf416c43cc7b
refs/heads/master
2022-12-12T12:24:48.682712
2021-07-30T22:27:41
2021-07-30T22:27:41
80,747,432
1
8
null
2022-12-08T04:32:06
2017-02-02T17:05:19
HTML
UTF-8
Python
false
false
101
py
# -*- coding: UTF-8 -*- # R048 # Created by JKChang # Fri, 12/05/2017, 11:30 # Tag: # Description:
2ce6302758b39eeb9593bfed87110360f9bea9b6
6d54a7b26d0eb82152a549a6a9dfde656687752c
/scripts/tools/memory/memdf/__init__.py
fa0e1070112ae4544ccf65b7e5fe3cdafc2d8467
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
project-chip/connectedhomeip
81a123d675cf527773f70047d1ed1c43be5ffe6d
ea3970a7f11cd227ac55917edaa835a2a9bc4fc8
refs/heads/master
2023-09-01T11:43:37.546040
2023-09-01T08:01:32
2023-09-01T08:01:32
244,694,174
6,409
1,789
Apache-2.0
2023-09-14T20:56:31
2020-03-03T17:05:10
C++
UTF-8
Python
false
false
886
py
# # Copyright (c) 2021 Project CHIP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Package for working with memory usage information using Pandas DataFrame.""" from memdf.df import DF, DFs, ExtentDF, SectionDF, SegmentDF, SymbolDF from memdf.util.config import Config, ConfigDescription __all__ = [DF, SymbolDF, SectionDF, SegmentDF, ExtentDF, DFs, Config, ConfigDescription]
dd4e5116fd1f9eecb02b439401c88eaef08b236e
603a54e14440fbe1c8aaab34c54aedff83489ca5
/violate_ratio/without_batching/edge_serving_resnet/server.py
28b9ec0e0aff9025b90bc2aaecb24a34f9b54f54
[ "MIT" ]
permissive
fkh12345/ICE
211fdbc62211e6df6c3d90b6ff309bc8c854e01f
f6ed4933c85b541fb971f5e1bfaa814e4e613c32
refs/heads/main
2023-04-12T02:05:57.478650
2023-03-01T18:08:55
2023-03-01T18:08:55
500,040,223
51
0
null
null
null
null
UTF-8
Python
false
false
2,093
py
import grpc import time from concurrent import futures import inference_pb2 as data_pb2 import inference_pb2_grpc as data_pb2_grpc from serving import Serving import io import torch import torch.nn as nn import numpy as np import torchvision.models as models import argparse from dnn_model.lapsrn import Net from dnn_model.dfcnn import DFCNN from dnn_model.yolo import Yolov3 #from runtime import change_waiting_queue import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--bs', type=int, default=64) parser.add_argument('--qos', type=float, default=0.05) parser.add_argument('--worker', type=int, default=0) args = parser.parse_args() model = models.resnet50() #model = DFCNN(1000, 200) #model = Yolov3() model.set_profile(True) model.set_input([0, 109]) model.set_profile(False) model_input = model.get_input() device = 'cuda:{}'.format(args.worker) no_batching_server = Serving(model, device) _ONE_DAY_IN_SECONDS = 60 * 60 * 24 _HOST = '0.0.0.0' _PORT = '808{}'.format(args.worker) class FormatData(data_pb2_grpc.FormatDataServicer): def DoFormat(self, request, context): start1 = time.time() str = request.text start = request.start end = request.end #buffer = io.BytesIO(str) #buffer.seek(0) #input = torch.load(buffer) index1 = model.push_data(start, str, [0, 109], "cpu") launch = start1 index = no_batching_server.push_index(input, start, end, index1) out, duration = no_batching_server.get_result(index) #print(out.shape) out_time = time.time() return data_pb2.actionresponse(text=out_time - start1, queue=duration) def serve(): grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=5000)) data_pb2_grpc.add_FormatDataServicer_to_server(FormatData(), grpcServer) grpcServer.add_insecure_port(_HOST + ':' + _PORT) grpcServer.start() try: no_batching_server() except KeyboardInterrupt: grpcServer.stop(0) if __name__ == '__main__': serve()
647c137facd838ac6488a092188e30f81a6926b1
82aace1431e0af949b1294d979a16f8dc18f48c2
/Python-Web-Basics-Softuni/recipes/venv/Scripts/django-admin.py
a220eda67fd73b94ee6387a63bff85b7b9484757
[ "MIT" ]
permissive
borisboychev/SoftUni
6778450417f889f8e89c709897b9e26c7129dbf6
22062312f08e29a1d85377a6d41ef74966d37e99
refs/heads/master
2023-03-27T13:11:17.378197
2021-03-26T09:14:25
2021-03-26T09:14:25
295,463,442
1
0
null
2020-10-12T12:54:13
2020-09-14T15:46:12
Python
UTF-8
Python
false
false
717
py
#!C:\Users\boris\SoftUni\Python-Web-Basics-Softuni\recipes\venv\Scripts\python.exe # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
933bcaa20d4e347f811ae71388ddb4c071ba5196
a796865c5ff4dcb7c6a0c848364bd6f7cb3d7a29
/tests/test_newsgroup20.py
108161cf2027bfb2e2fbd7932f31709c2db1dccc
[ "Apache-2.0" ]
permissive
yk/chazutsu
d625f6f7f682d713910ce59953841e507ad27262
ecc42c9ff0f8d47632ba4b4c7385a5fdf4386c10
refs/heads/master
2020-03-18T19:43:40.016170
2018-05-28T14:52:00
2018-05-28T14:52:00
135,173,517
0
0
Apache-2.0
2018-05-28T14:41:16
2018-05-28T14:41:16
null
UTF-8
Python
false
false
1,716
py
import os import sys import shutil import unittest import requests sys.path.append(os.path.join(os.path.dirname(__file__), "../")) import chazutsu.datasets DATA_ROOT = os.path.join(os.path.dirname(__file__), "data") class TestNewsGroup20(unittest.TestCase): def test_extract(self): r = chazutsu.datasets.NewsGroup20().download(directory=DATA_ROOT, test_size=0) try: with open(r.data_file_path, encoding="utf-8") as f: for ln in f: els = ln.split("\t") if len(els) != 5: print(els) print(len(els)) raise Exception("data file is not constructed by label and text.") except Exception as ex: if os.path.isfile(r.data_file_path): os.remove(r.data_file_path) self.fail(ex) self.assertTrue(len(r.data().columns), 5) if os.path.isfile(r.data_file_path): os.remove(r.data_file_path) shutil.rmtree(r.root) def test_parse(self): d = chazutsu.datasets.NewsGroup20() subject, author, text = d.parse(raw_text=sample_text) self.assertEqual(subject, "Re: Political Atheists?") self.assertEqual(author, "Keith Allan Schneider") self.assertTrue(text.startswith("If I")) sample_text = """ From: [email protected] (Keith Allan Schneider) Subject: Re: Political Atheists? [email protected] (Robert Beauchaine) writes: >>If I kill this person [an innocent person convicted of murder], >>then a murder would be committed, but I would not be the murderer. At least, """ if __name__ == "__main__": unittest.main()
a6cdc1e51da55bb4298536a804dbb7eb2605ffe4
1cec8afab42c7ed104d414089e30c647b1c79974
/bubble_sort/main.py
e580cdb2e530946fa2fc46e6f50df54592bcdd83
[]
no_license
yerassyl94/problems
ea84572aa89178a30fb030a16b2e4e23df3529b9
c5f3b391c2d94445d96726aaa8572580c4c662bc
refs/heads/master
2020-08-27T23:57:44.672878
2019-11-11T11:35:55
2019-11-11T11:35:55
217,526,514
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
def bubble_sort_list(_list: list): length = len(_list) - 1 for x in range(length): for y in range(length-x): if _list[y] > _list[y+1]: _list[y],_list[y+1]=_list[y+1],_list[y] return _list list_=[32,5,3,6,7,54,87] print(bubble_sort_list(list_))
83d7fc9253ee2cb0396a0315ed154dabcc0928ab
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/KCB_MM/YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_129.py
d6747c9ad8bfc225ae04ed5405c0247a043c057c
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,273
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test//xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test//service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test//mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test//utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_129(xtp_test_case): def setUp(self): pass # YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_129 def test_YW_KCB_HASPRICELIMIT_GPMM_SHSJ_WDZC_129(self): title = '交易日五档即成转撤销卖-非最后一次卖:余额不足200股部分' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010111, 'errorMSG': queryOrderErrorMsg(11010111), '是否生成报单': '是', '是否是撤废': '否', # '是否是新股申购': '', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('688000', '1', '4', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } print(stkparm['错误原因']) self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': stkparm['涨停价'], 'quantity': 99, 'position_effect':Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 201 if __name__ == '__main__': unittest.main()
c82a3e03bf55d608e3c42b98c26484346d260228
7f8082a1a88ad6895d1e4b5cf9f3952fe8951ec3
/miniProject/bookcoversearch/search.py
1ded489e624618a5a884f2ce23c3e41bfed477d3
[ "MIT" ]
permissive
matiji66/opencv_study
a33e3fed3e320598d8b3612b387b63658539176d
9b6354907609c9841915f6300ee5915a9d80906f
refs/heads/master
2020-03-11T03:34:28.198825
2018-01-15T14:04:08
2018-01-15T14:04:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,574
py
from __future__ import print_function from pyimagesearch.coverdecriptor import CoverDescriptor from pyimagesearch.covermatcher import CoverMatcher import argparse import glob import csv import cv2 ap=argparse.ArgumentParser() ap.add_argument('-d', '--db', required=True, help="path to the book database") ap.add_argument('-c', '--covers', required=True, help="path to the directory that contains the book covers") ap.add_argument('-q', '--query', required=True, help='path to the query book cover') ap.add_argument('-s', '--sift',type=int, default=0, help="whether or not SIFT should be used") args=vars(ap.parse_args()) db={} for l in csv.reader(open(args["db"])): db[l[0]]=l[1:] useSIFT=args['sift']>0 useHamming=args['sift']==0 ratio=0.7 minMatches=40 if useSIFT: minMatches=50 cd=CoverDescriptor(useSIFT=useSIFT) cv=CoverMatcher(cd, glob.glob(args['covers']+"/*.png"), ratio=ratio, minMatches=minMatches, userHamming=useHamming) queryImage=cv2.imread(args['query']) gray=cv2.cvtColor(queryIzmage,cv2.COLOR_BGR2GRAY) (queryKps, queryDescs)=cd.describe(gray) results=cv.search(queryKps, queryDescs) cv2.imshow("Query", queryImage) if len(results)==0: print("I could not find a match for that cover") cv2.waitKey(0) else: for (i (score, coverPath)) in enumerate(results): (author, title) =db[coverPath[coverPath.rfind("/")+1:]] print("{}. {:.2f}% : {} - {}".format(i + 1, score * 100, author, title)) result = cv2.imread(coverPath) cv2.imshow("Result", result) cv2.waitKey(0)
a757418f6ddf8e7675ef47658b0381be8f8ab2c4
4a1b61cf551db7843050cc7080cec6fd60c4f8cc
/2020/백준문제/IM대비/14696_딱지놀이.py
b574a887a21deac01c3a3e0c4ea705dd1508157c
[]
no_license
phoenix9373/Algorithm
4551692027ca60e714437fd3b0c86462f635d8ff
c66fd70e14bb8357318e8b8f386d2e968f0c4d98
refs/heads/master
2023-08-24T10:01:20.798430
2021-10-15T07:57:36
2021-10-15T07:57:36
288,092,774
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
# 별4 > 동그라미3 > 네모2 > 세모1 / 무승부 # 무승부: D N = int(input()) # 1~1000 for _ in range(N): a = list(map(int, input().split()))[1:] b = list(map(int, input().split()))[1:] for i in range(4, 0, -1): a_cnt = a.count(i) b_cnt = b.count(i) if a_cnt > b_cnt: print('A') break elif b_cnt > a_cnt: print('B') break else: print('D')
e2f95965a7e29da94724dd80ff83e894d2a77927
a875495c32524d1f7b05f07337f54df52de2aad0
/algo/clustering.py
6bc5b199bbb559d716d424618a3629e094646459
[ "Apache-2.0" ]
permissive
adrianopls/GRIPy-X
a43188e1ffda37f9f668133f47c3e90589325753
21c7fa1f32f8dbb0a5dff93c2bac5acf1f9181ca
refs/heads/master
2021-07-01T16:57:16.094069
2021-03-09T19:29:23
2021-03-09T19:29:23
218,369,555
1
1
Apache-2.0
2019-10-30T18:13:12
2019-10-29T19:41:01
Python
UTF-8
Python
false
false
2,962
py
# -*- coding: utf-8 -*- import numpy as np from sklearn.cluster import KMeans from sklearn.mixture import GMM from sklearn.preprocessing import scale from sklearn import metrics def locate_nans(data): return np.sum(np.isnan(data), axis=1, dtype=bool) def reorder_clusters(clusters, centers, covars=None): nc = centers.shape[0] nf = centers.shape[1] if covars is None: covars = np.empty((nc, nf, nf)) for i in range(nc): covars[i] = np.eye(nf) d2 = np.empty(nc) for i in range(nc): d2[i] = np.dot(np.dot(centers[i], covars[i]), centers[i].T) argsort = np.argsort(d2) new_clusters = np.empty_like(clusters) for i in range(nc): new_clusters[clusters == argsort[i]] = i return new_clusters, argsort def k_means(data, nc, req_info=None): means = np.mean(data, axis=0) stds = np.std(data, axis=0) sdata = (data - means)/stds km = KMeans(init='k-means++', n_clusters=nc, n_init=10) km.fit(sdata) if req_info == 'all': req_info = ['silhouette', 'inertia', 'centers'] elif req_info is None: req_info = [] info = {} if 'silhouette' in req_info: info['silhouette'] = metrics.silhouette_score(data, km.labels_) if 'inertia' in req_info: info['inertia'] = km.inertia_ if 'centers' in req_info: info['centers'] = km.cluster_centers_*stds + means return km.labels_, info def expectation_maximization(data, nc, cv_type='full', req_info=None): gmm = GMM(n_components=nc, covariance_type=cv_type, thresh=1.0E-4, n_init=10) gmm.fit(data) labels = gmm.predict(data) if req_info == 'all': req_info = ['aic', 'bic', 'converged', 'weights', 'means', 'covars', 'silhouette', 'proba'] elif req_info is None: req_info = [] info = {} if 'aic' in req_info: info['aic'] = gmm.aic(data) if 'bic' in req_info: info['bic'] = gmm.bic(data) if 'converged' in req_info: info['converged'] = gmm.converged_ if 'weights' in req_info: info['weights'] = gmm.weights_ if 'means' in req_info: info['means'] = gmm.means_ if 'covars' in req_info: if cv_type == 'full': info['covars'] = gmm.covars_ elif cv_type == 'tied': cov = np.empty((nc, gmm.covars_.shape[0], gmm.covars_.shape[1])) for i in range(nc): cov[i] = gmm.covars_.copy() info['covars'] = cov else: cov = np.empty((nc, gmm.covars_.shape[0], gmm.covars_.shape[1])) for i in range(nc): cov[i] = np.diag(gmm.covars_[i]) info['covars'] = cov if 'silhouette' in req_info: info['silhouette'] = metrics.silhouette_score(data, labels) if 'proba' in req_info: info['proba'] = gmm.predict_proba(data).T return labels, info
12d3fed73e37e5e9e59556cf369f0593ca6170b4
5cd4ddfb9a929337fc3c48ee3af6cf973fd6c539
/eSSP/__init__.py
f8effba76e1a17a61c1ed7cbcdf2a8599d6218e3
[]
no_license
smontoya/eSSP_P3
c77724e4c19b5b57ce2e11cc0e0b3a8cb91704be
a1733e1d6637f12354b18af0934bcdea7c56117b
refs/heads/master
2021-01-13T13:14:52.913414
2016-11-03T04:23:58
2016-11-03T04:23:58
72,707,679
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
from eSSP import eSSP
fd7d229621c66ffd6a7ebdf6880af5d34b8f6d9a
bf10231754c95afd40d15b859f31b6157e1d991d
/Conversores a flotante.py
2372562d67d2de753418adaf194ee28d043af7dd
[]
no_license
smith-sanchez/validadores_en_python
de7849b0f6dde93fff6c8a2db53070f60d101688
8dab14429c1e2c5345cddeabff5e10269b6dc6e9
refs/heads/master
2020-09-06T22:10:59.153382
2019-11-09T01:12:27
2019-11-09T01:12:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
828
py
#Convertir el entero 43 a flotante x=43 a=float(x) print(a, type(a)) #Convertir el entero 1453 a flotante x=1453 b=float(x) print(b, type(b)) #Convertir el entero 4685 a flotante x=4685 y=float(x) print(y, type(y)) #convertir la cadena 1128 a flotante x="1128" c=float(x) print(c, type(c)) #Convertir la cadena -30 a flotante x="-30" d=float(x) print(d, type(d)) #Convertir el booleano 50!=61 a flotante x=(50!=61) e=float(x) print(e, type(e)) #Convertir el booleano 90>91 a flotante x=(90>91) g=float(x) print(g, type(g)) #Convertir el booleano 500>=500 a flotante x=(500>=500) h=float(x) print(h, type(h)) #Convertir el flotante 346.89 a flotante x=346.89 j=float(x) print(j, type(j)) #Convertir el flotante 0.68 a flotante x=0.68 n=float(x) print(n, type(n))
780352d72181bf550978615068022bcd6a8c8189
643c1132ac737dcaa68b887ee77155883a762329
/static_frame/core/index_auto.py
034e2af0da3c4bf524906972bdb89548aec3fffb
[ "MIT" ]
permissive
flexatone/static-frame
baa071ce61143baabba9b6cd6bae453757ce861b
b41ff788c651ee9fe7006a2404a615c09034a3b6
refs/heads/master
2020-08-28T05:06:46.000715
2019-10-24T16:34:16
2019-10-24T16:34:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,403
py
import typing as tp # from static_frame.core.index_base import IndexBase from static_frame.core.index import Index # from static_frame.core.index_hierarchy import IndexHierarchy from static_frame.core.index import IndexGO from static_frame.core.util import IndexConstructor from static_frame.core.util import DTYPE_INT_DEFAULT IndexAutoInitializer = int # could create trival subclasses for these indices, but the type would would not always describe the instance; for example, an IndexAutoGO could grow inot non-contiguous integer index, as loc_is_iloc is reevaluated with each append can simply go to false. # # class IndexAuto(Index): # pass # class IndexAutoGO(IndexGO): # pass class IndexAutoFactory: # @classmethod # def from_is_static(cls, # initializer: IndexAutoInitializer, # *, # is_static: bool, # ) -> tp.Union[Index, IndexGO]: # ''' # Args: # initializer: An integer, or a sizable iterable. # is_static: Boolean if this should be a static (not grow-only) index. # ''' # labels = range(initializer) # constructor = Index if is_static else IndexGO # return constructor( # labels=labels, # loc_is_iloc=True, # dtype=DTYPE_INT_DEFAULT # ) # @classmethod # def from_constructor(cls, # initializer: IndexAutoInitializer, # *, # constructor: IndexConstructor, # ) -> tp.Union[Index, IndexHierarchy]: # labels = range(initializer) # return constructor(labels) @classmethod def from_optional_constructor(cls, initializer: IndexAutoInitializer, *, default_constructor: IndexConstructor, explicit_constructor: tp.Optional[IndexConstructor] = None, ) -> tp.Union[Index, IndexGO]: labels = range(initializer) if explicit_constructor: return explicit_constructor(labels) else: # get from default constructor constructor = Index if default_constructor.STATIC else IndexGO return constructor( labels=labels, loc_is_iloc=True, dtype=DTYPE_INT_DEFAULT ) IndexAutoFactoryType = tp.Type[IndexAutoFactory]
880d01f91b79c5bae80d1fbcc5492413031f7d76
5f86944bdf1b810a84c63adc6ed01bbb48d2c59a
/kubernetes/test/test_v1_service_status.py
1ce1ef5f3c6c9bd4502827d24bfdea8989ba9849
[ "Apache-2.0" ]
permissive
m4ttshaw/client-python
384c721ba57b7ccc824d5eca25834d0288b211e2
4eac56a8b65d56eb23d738ceb90d3afb6dbd96c1
refs/heads/master
2021-01-13T06:05:51.564765
2017-06-21T08:31:03
2017-06-21T08:31:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
859
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.6.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_service_status import V1ServiceStatus class TestV1ServiceStatus(unittest.TestCase): """ V1ServiceStatus unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1ServiceStatus(self): """ Test V1ServiceStatus """ model = kubernetes.client.models.v1_service_status.V1ServiceStatus() if __name__ == '__main__': unittest.main()
6c6b92be69dae51b2f5d2845518c3defea495abe
6adc166c33bdada82f7509301e25d1c451852d24
/log/log_config.py
3fb9c0d9f12ce15977115f4fc21f827713b9fd2f
[]
no_license
liushiwen555/unified_management_platform_backend
ab0a92f38be7f68bc1d3c4570560ea89bf8fcb07
ae1ade20044b59de1e29288fcd61ba0b71d92be3
refs/heads/master
2023-06-25T22:45:24.669052
2021-07-27T01:08:24
2021-07-27T01:08:24
389,808,950
0
1
null
null
null
null
UTF-8
Python
false
false
1,172
py
from log.log_content import log_config """ LOG_CONFIG_DICT结构为: LOG_CONFIG_DICT{ URL_NAME:{ HTTP_METHOD: 生成log的类 } } """ LOG_CONFIG_DICT = log_config.get_config() class ModelLog(object): def __init__(self): self.conf_dict = LOG_CONFIG_DICT def log(self, request, request_body, result, response, *args, **kwargs): try: # 获取url对应的name url_name = request.resolver_match.url_name method = request.method log_generator = self.conf_dict[url_name][method] log_generator_instance = log_generator( request, request_body, result, response, *args, **kwargs) log_generator_instance.generate_log() except Exception as e: # print(e) pass # url_name = request.resolver_match.url_name # method = request.method # log_generator = self.conf_dict[url_name][method] # log_generator_instance = log_generator( # request, request_body, result, response, *args, **kwargs) # log_generator_instance.generate_log()
2630abbdd53c1fc1ab734fcfcc1a981f0a351e73
8bbe2351bbd157a46ccf8530cde4e4cc7b0bd3b7
/trashed_20170508/evan/Entropy.py
ed75ce66a6a3b227a188a9ff686da63efd021400
[]
no_license
airuibel/py_code
8dc98d71e79a4c0f785ad5cf81b2ca2073061ebf
1da9a9dcd37475dd14bab6ae58bca1e2dff4c251
refs/heads/master
2020-06-18T03:47:43.754204
2018-03-20T09:31:00
2018-03-20T09:31:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,366
py
from __future__ import division __author__ = 'Victor Ruiz, [email protected]' import pandas as pd import numpy as np from math import log import random def entropy(data_classes, base=2): ''' Computes the entropy of a set of labels (class instantiations) :param base: logarithm base for computation :param data_classes: Series with labels of examples in a dataset :return: value of entropy ''' if not isinstance(data_classes, pd.core.series.Series): raise AttributeError('input array should be a pandas series') classes = data_classes.unique() N = len(data_classes) ent = 0 # initialize entropy # iterate over classes for c in classes: partition = data_classes[data_classes == c] # data with class = c proportion = len(partition) / N #update entropy ent -= proportion * log(proportion, base) return ent def cut_point_information_gain(dataset, cut_point, feature_label, class_label): ''' Return de information gain obtained by splitting a numeric attribute in two according to cut_point :param dataset: pandas dataframe with a column for attribute values and a column for class :param cut_point: threshold at which to partition the numeric attribute :param feature_label: column label of the numeric attribute values in data :param class_label: column label of the array of instance classes :return: information gain of partition obtained by threshold cut_point ''' if not isinstance(dataset, pd.core.frame.DataFrame): raise AttributeError('input dataset should be a pandas data frame') entropy_full = entropy(dataset[class_label]) # compute entropy of full dataset (w/o split) #split data at cut_point data_left = dataset[dataset[feature_label] <= cut_point] data_right = dataset[dataset[feature_label] > cut_point] (N, N_left, N_right) = (len(dataset), len(data_left), len(data_right)) gain = entropy_full - (N_left / N) * entropy(data_left[class_label]) - \ (N_right / N) * entropy(data_right[class_label]) return gain def datset_infomation_gain(datset,class_label='y'): ''' Return information gain of attributes ''' if not isinstance(dataset, pd.core.frame.DataFrame): raise AttributeError('input dataset should be a pandas data frame')
[ "l" ]
l
f1ed1e674e834203088f1ed3f035050f5a400868
6aa7e203f278b9d1fd01244e740d5c944cc7c3d3
/docs/build
257c7678eb2f52275843d2e5a3c2f2434f7b1bcb
[ "Apache-2.0", "BSD-3-Clause", "MIT", "Python-2.0" ]
permissive
laserpedro/airflow
83fc991d91749550b151c81876d9e7864bff3946
a28afa8172489e41ecf7c381674a0cb91de850ff
refs/heads/master
2023-01-02T04:55:34.030935
2020-10-24T15:55:11
2020-10-24T15:55:11
285,867,990
1
0
Apache-2.0
2020-08-07T15:56:49
2020-08-07T15:56:49
null
UTF-8
Python
false
false
19,712
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import ast import atexit import os import re import shlex import shutil import sys from contextlib import suppress from functools import total_ordering from glob import glob from itertools import chain from subprocess import run from tempfile import NamedTemporaryFile from typing import Iterable, List, NamedTuple, Optional, Set if __name__ != "__main__": raise Exception( "This file is intended to be executed as an executable program. You cannot use it as a module." "To run this script, run the ./build command" ) @total_ordering class DocBuildError(NamedTuple): file_path: Optional[str] line_no: Optional[int] message: str def __eq__(self, other): left = (self.file_path, self.line_no, self.message) right = (other.file_path, other.line_no, other.message) return left == right def __ne__(self, other): return not (self == other) def __lt__(self, other): file_path_a = self.file_path or '' file_path_b = other.file_path or '' line_no_a = self.line_no or 0 line_no_b = other.line_no or 0 return (file_path_a, line_no_a, self.message) < (file_path_b, line_no_b, other.message) build_errors: List[DocBuildError] = [] os.chdir(os.path.dirname(os.path.abspath(__file__))) ROOT_PROJECT_DIR = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) ROOT_PACKAGE_DIR = os.path.join(ROOT_PROJECT_DIR, "airflow") def clean_files() -> None: print("Removing content of the _build and _api folders") with suppress(FileNotFoundError): for filename in glob("_build/*"): shutil.rmtree(f"_build/{filename}") with suppress(FileNotFoundError): for filename in glob("_api/*"): shutil.rmtree(f"_api/{filename}") print("Removed content of the _build and _api folders") def prepare_directories() -> None: if os.path.exists("/.dockerenv"): # This script can be run both - in container and outside of it. # Here we are inside the container which means that we should (when the host is Linux) # fix permissions of the _build and _api folders via sudo. # Those files are mounted from the host via docs folder and we might not have permissions to # write to those directories (and remove the _api folder). # We know we have sudo capabilities inside the container. print("Creating the _build and _api folders in case they do not exist") run(["sudo", "mkdir", "-pv", "_build"], check=True) run(["sudo", "mkdir", "-pv", "_api"], check=True) print("Created the _build and _api folders in case they do not exist") def restore_ownership() -> None: # We are inside the container which means that we should fix back the permissions of the # _build and _api folder files, so that they can be accessed by the host user # The _api folder should be deleted by then but just in case we should change the ownership host_user_id = os.environ["HOST_USER_ID"] host_group_id = os.environ["HOST_GROUP_ID"] print(f"Changing ownership of docs/_build folder back to {host_user_id}:{host_group_id}") run(["sudo", "chown", "-R", f'{host_user_id}:{host_group_id}', "_build"], check=True) if os.path.exists("_api"): run(["sudo", "chown", "-R", f'{host_user_id}:{host_group_id}', "_api"], check=True) print(f"Changed ownership of docs/_build folder back to {host_user_id}:{host_group_id}") atexit.register(restore_ownership) else: # We are outside the container so we simply make sure that the directories exist print("Creating the _build and _api folders in case they do not exist") run(["mkdir", "-pv", "_build"], check=True) run(["mkdir", "-pv", "_api"], check=True) print("Creating the _build and _api folders in case they do not exist") def display_errors_summary() -> None: for warning_no, error in enumerate(sorted(build_errors), 1): print("=" * 20, f"Error {warning_no:3}", "=" * 20) print(error.message) print() if error.file_path and error.line_no: print(f"File path: {error.file_path} ({error.line_no})") print() print(prepare_code_snippet(error.file_path, error.line_no)) elif error.file_path: print(f"File path: {error.file_path}") print("=" * 50) def find_existing_guide_operator_names(): operator_names = set() paths = glob("howto/operator/**/*.rst", recursive=True) for path in paths: with open(path) as f: operator_names |= set(re.findall(".. _howto/operator:(.+?):", f.read())) return operator_names def extract_ast_class_def_by_name(ast_tree, class_name): class ClassVisitor(ast.NodeVisitor): def __init__(self): self.found_class_node = None def visit_ClassDef(self, node): if node.name == class_name: self.found_class_node = node visitor = ClassVisitor() visitor.visit(ast_tree) return visitor.found_class_node def check_guide_links_in_operator_descriptions(): def generate_build_error(path, line_no, operator_name): return DocBuildError( file_path=path, line_no=line_no, message=( f"Link to the guide is missing in operator's description: {operator_name}.\n" f"Please add link to the guide to the description in the following form:\n" f"\n" f".. seealso::\n" f" For more information on how to use this operator, take a look at the guide:\n" f" :ref:`howto/operator:{operator_name}`\n" ) ) # Extract operators for which there are existing .rst guides operator_names = find_existing_guide_operator_names() # Extract all potential python modules that can contain operators python_module_paths = chain( glob(f"{ROOT_PACKAGE_DIR}/operators/*.py"), glob(f"{ROOT_PACKAGE_DIR}/sensors/*.py"), glob(f"{ROOT_PACKAGE_DIR}/providers/**/operators/*.py", recursive=True), glob(f"{ROOT_PACKAGE_DIR}/providers/**/sensors/*.py", recursive=True), glob(f"{ROOT_PACKAGE_DIR}/providers/**/transfers/*.py", recursive=True), ) for py_module_path in python_module_paths: with open(py_module_path) as f: py_content = f.read() if "This module is deprecated" in py_content: continue for existing_operator in operator_names: if f"class {existing_operator}" not in py_content: continue # This is a potential file with necessary class definition. # To make sure it's a real Python class definition, we build AST tree ast_tree = ast.parse(py_content) class_def = extract_ast_class_def_by_name(ast_tree, existing_operator) if class_def is None: continue docstring = ast.get_docstring(class_def) if "This class is deprecated." in docstring: continue if f":ref:`howto/operator:{existing_operator}`" in ast.get_docstring(class_def): continue build_errors.append( generate_build_error(py_module_path, class_def.lineno, existing_operator) ) def assert_file_not_contains(file_path: str, pattern: str, message: str) -> None: with open(file_path, "rb", 0) as doc_file: pattern_compiled = re.compile(pattern) for num, line in enumerate(doc_file, 1): line_decode = line.decode() if re.search(pattern_compiled, line_decode): build_errors.append(DocBuildError(file_path=file_path, line_no=num, message=message)) def filter_file_list_by_pattern(file_paths: Iterable[str], pattern: str) -> List[str]: output_paths = [] pattern_compiled = re.compile(pattern) for file_path in file_paths: with open(file_path, "rb", 0) as text_file: text_file_content = text_file.read().decode() if re.findall(pattern_compiled, text_file_content): output_paths.append(file_path) return output_paths def find_modules(deprecated_only: bool = False) -> Set[str]: file_paths = glob(f"{ROOT_PACKAGE_DIR}/**/*.py", recursive=True) # Exclude __init__.py file_paths = (f for f in file_paths if not f.endswith("__init__.py")) if deprecated_only: file_paths = filter_file_list_by_pattern(file_paths, r"This module is deprecated.") # Make path relative file_paths = (os.path.relpath(f, ROOT_PROJECT_DIR) for f in file_paths) # Convert filename to module modules_names = {file_path.rpartition(".")[0].replace("/", ".") for file_path in file_paths} return modules_names def check_class_links_in_operators_and_hooks_ref() -> None: with open("operators-and-hooks-ref.rst") as ref_file: content = ref_file.read() current_modules_in_file = set(re.findall(r":mod:`(.+?)`", content)) airflow_modules = find_modules() - find_modules(deprecated_only=True) airflow_modules = { o for o in airflow_modules if any(f".{d}." in o for d in ["operators", "hooks", "sensors", "transfers"]) } missing_modules = airflow_modules - current_modules_in_file missing_modules -= {"airflow.providers.google.common.hooks.base_google"} if missing_modules: module_text_list = " * " + "\n* ".join(missing_modules) build_errors.append( DocBuildError( file_path="operators-and-hooks-ref.rst", line_no=0, message=( f"New module detected." f"Please add them to the list of operators and hooks - `operators-and-hooks-ref.rst` " f"file.\n" f"\n" f"New modules:\n" f"{module_text_list}" ), ) ) def check_guide_links_in_operators_and_hooks_ref() -> None: all_guides = glob("howto/operator/**/*.rst", recursive=True) # Remove extension all_guides = ( guide.rpartition(".")[0] for guide in all_guides if "_partials" not in guide ) # Remove partials and index all_guides = ( guide for guide in all_guides if "/_partials/" not in guide and not guide.endswith("index") ) with open("operators-and-hooks-ref.rst") as ref_file: content = ref_file.read() missing_guides = [ guide for guide in all_guides if guide not in content ] if missing_guides: guide_text_list = "\n".join(f":doc:`How to use <{guide}>`" for guide in missing_guides) build_errors.append( DocBuildError( file_path="operators-and-hooks-ref.rst", line_no=0, message=( f"New guide detected. " f"Please add them to the list of operators and hooks - `operators-and-hooks-ref.rst` " f"file.\n" f"You can copy the relevant parts of the link from the section below:\n" f"\n" f"{guide_text_list}" ), ) ) def check_exampleinclude_for_example_dags(): all_docs_files = glob("**/*rst", recursive=True) for doc_file in all_docs_files: assert_file_not_contains( file_path=doc_file, pattern=r"literalinclude::.+example_dags", message=( "literalinclude directive is is prohibited for example DAGs. \n" "You should use a exampleinclude directive to include example DAGs." ) ) def check_enforce_code_block(): all_docs_files = glob("**/*rst", recursive=True) for doc_file in all_docs_files: assert_file_not_contains( file_path=doc_file, pattern=r"^.. code::", message=( "We recommend using the code-block directive instead of the code directive. " "The code-block directive is more feature-full." ) ) MISSING_GOOGLLE_DOC_GUIDES = { "ads_to_gcs", 'adls_to_gcs', 'bigquery_to_bigquery', 'bigquery_to_gcs', 'bigquery_to_mysql', 'cassandra_to_gcs', 'dataflow', 'dlp', 'gcs_to_bigquery', 'mssql_to_gcs', 'mysql_to_gcs', 'postgres_to_gcs', 's3_to_gcs', 'sql_to_gcs', 'tasks', } def check_google_guides(): doc_files = glob(f"{ROOT_PROJECT_DIR}/docs/howto/operator/google/**/*.rst", recursive=True) doc_names = {f.split("/")[-1].rsplit(".")[0] for f in doc_files} operators_files = chain(*[ glob(f"{ROOT_PROJECT_DIR}/airflow/providers/google/*/{resource_type}/*.py") for resource_type in ["operators", "sensors", "transfers"] ]) operators_files = (f for f in operators_files if not f.endswith("__init__.py")) operator_names = {f.split("/")[-1].rsplit(".")[0] for f in operators_files} # Detect missing docs: missing_guide = operator_names - doc_names missing_guide -= MISSING_GOOGLLE_DOC_GUIDES if missing_guide: missing_guide_text = " * " + "\n * ".join(missing_guide) message = ( "You've added a new operators, but it looks like you haven't added the guide.\n" f"{missing_guide_text}" "\n" "Could you add it?\n" ) build_errors.append(DocBuildError(file_path=None, line_no=None, message=message)) # Keep update missing missing guide list new_guides = set(doc_names).intersection(set(MISSING_GOOGLLE_DOC_GUIDES)) if new_guides: new_guides_text = " * " + "\n * ".join(new_guides) message = ( "You've added a guide currently listed as missing:\n" f"{new_guides_text}" "\n" "Thank you very much.\n" "Can you remove it from the list of missing guide, please?" ) build_errors.append(DocBuildError(file_path=__file__, line_no=None, message=message)) def prepare_code_snippet(file_path: str, line_no: int, context_lines_count: int=5) -> str: def guess_lexer_for_filename(filename): from pygments.lexers import get_lexer_for_filename from pygments.util import ClassNotFound try: lexer = get_lexer_for_filename(filename) except ClassNotFound: from pygments.lexers.special import TextLexer lexer = TextLexer() return lexer with open(file_path) as text_file: # Highlight code code = text_file.read() with suppress(ImportError): import pygments from pygments.formatters.terminal import TerminalFormatter code = pygments.highlight( code=code, formatter=TerminalFormatter(), lexer=guess_lexer_for_filename(file_path) ) code_lines = code.split("\n") # Prepend line number code_lines = [f"{line_no:4} | {line}" for line_no, line in enumerate(code_lines, 1)] # # Cut out the snippet start_line_no = max(0, line_no - context_lines_count) end_line_no = line_no + context_lines_count code_lines = code_lines[start_line_no:end_line_no] # Join lines code = "\n".join(code_lines) return code def parse_sphinx_warnings(warning_text: str) -> List[DocBuildError]: sphinx_build_errors = [] for sphinx_warning in warning_text.split("\n"): if not sphinx_warning: continue warning_parts = sphinx_warning.split(":", 2) if len(warning_parts) == 3: try: sphinx_build_errors.append( DocBuildError( file_path=warning_parts[0], line_no=int(warning_parts[1]), message=warning_parts[2] ) ) except Exception: # pylint: disable=broad-except # If an exception occurred while parsing the warning message, display the raw warning message. sphinx_build_errors.append( DocBuildError( file_path=None, line_no=None, message=sphinx_warning ) ) else: sphinx_build_errors.append(DocBuildError(file_path=None, line_no=None, message=sphinx_warning)) return sphinx_build_errors def build_sphinx_docs() -> None: with NamedTemporaryFile() as tmp_file: build_cmd = [ "sphinx-build", "-b", # builder to use "html", "-d", # path for the cached environment and doctree files "_build/doctrees", "--color", # do emit colored output "-w", # turn warnings into errors tmp_file.name, ".", # path to documentation source files "_build/html", # path to output directory ] print("Executing cmd: ", " ".join([shlex.quote(c) for c in build_cmd])) completed_proc = run(build_cmd) if completed_proc.returncode != 0: build_errors.append( DocBuildError( file_path=None, line_no=None, message=f"Sphinx returned non-zero exit status: {completed_proc.returncode}.", ) ) tmp_file.seek(0) warning_text = tmp_file.read().decode() # Remove 7-bit C1 ANSI escape sequences warning_text = re.sub(r"\x1B[@-_][0-?]*[ -/]*[@-~]", "", warning_text) sphinx_build_errors = parse_sphinx_warnings(warning_text) build_errors.extend(sphinx_build_errors) print("Current working directory: ", os.getcwd()) prepare_directories() clean_files() check_guide_links_in_operator_descriptions() check_class_links_in_operators_and_hooks_ref() check_guide_links_in_operators_and_hooks_ref() check_enforce_code_block() check_exampleinclude_for_example_dags() check_google_guides() CHANNEL_INVITATION = """\ If you need help, write to #documentation channel on Airflow's Slack. Channel link: https://apache-airflow.slack.com/archives/CJ1LVREHX Invitation link: https://apache-airflow-slack.herokuapp.com/\ """ if build_errors: display_errors_summary() print() print("The documentation has errors. Fix them to build documentation.") print() print(CHANNEL_INVITATION) sys.exit(1) build_sphinx_docs() if build_errors: display_errors_summary() print() print("The documentation has errors.") print() print(CHANNEL_INVITATION) sys.exit(1)
b0629394abb4bc1fca15b22b03658e2e3db5dbaf
89a90707983bdd1ae253f7c59cd4b7543c9eda7e
/programming_python/Dbase/Sql/dumpdb.py
5f9388d122656adc52dde04932b87d1bff4696fb
[]
no_license
timothyshull/python_reference_code
692a7c29608cadfd46a6cc409a000023e95b9458
f3e2205dd070fd3210316f5f470d371950945028
refs/heads/master
2021-01-22T20:44:07.018811
2017-03-17T19:17:22
2017-03-17T19:17:22
85,346,735
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
""" display table contents as raw tuples, or formatted with field names command-line usage: dumpdb.py dbname? table? [-] (dash=formatted display) """ def showformat(recs, sept=('-' * 40)): print(len(recs), 'records') print(sept) for rec in recs: maxkey = max(len(key) for key in rec) # max key len for key in rec: # or: \t align print('%-*s => %s' % (maxkey, key, rec[key])) # -ljust, *len print(sept) def dumpdb(cursor, table, format=True): if not format: cursor.execute('select * from ' + table) while True: rec = cursor.fetchone() if not rec: break print(rec) else: from makedicts import makedicts recs = makedicts(cursor, 'select * from ' + table) showformat(recs) if __name__ == '__main__': import sys dbname, format, table = 'dbase1', False, 'people' cmdargs = sys.argv[1:] if '-' in cmdargs: # format if '-' in cmdline args format = True # dbname if other cmdline arg cmdargs.remove('-') if cmdargs: dbname = cmdargs.pop(0) if cmdargs: table = cmdargs[0] from loaddb import login conn, curs = login(dbname) dumpdb(curs, table, format)
af73c60d36aefec8b5af8ad2808fa6cfd39e2542
7dcd840d896eccb1bed7868fda88973b1382ed94
/setup.py
7556608d1336b1fabc9185e643f28c41ec147e28
[ "MIT" ]
permissive
Keita1/pycrunchbase
18a341eca43e9d8a3f62e2c82026050b05fe9701
d172577d979899ca7cf0f97caa1f079476906a0c
refs/heads/master
2020-12-25T23:36:20.860263
2015-10-21T02:50:59
2015-10-21T02:50:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,791
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import, print_function import io import os import re from glob import glob from os.path import basename from os.path import dirname from os.path import join from os.path import relpath from os.path import splitext from setuptools import find_packages from setuptools import setup def read(*names, **kwargs): return io.open( join(dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8") ).read() setup( name="pycrunchbase", version="0.3.6", license="MIT", description="Python bindings to CrunchBase", long_description="{0}\n{1}".format(read("README.rst"), re.sub(":obj:`~?(.*?)`", r"``\1``", read("CHANGELOG.rst"))), author="Ng Zhi An", author_email="[email protected]", url="https://github.com/ngzhian/pycrunchbase", packages=find_packages("src"), package_dir={"": "src"}, py_modules=[splitext(basename(path))[0] for path in glob("src/*.py")], include_package_data=True, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: Unix", "Operating System :: POSIX", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Utilities", ], keywords=[ "crunchbase" ], install_requires=[ "requests==2.5.1", "six==1.9.0" ], )
5d81f00e6ed97d46ea3a1c80d7a52c23666db239
91b2fb1fb6df216f2e365c3366bab66a567fc70d
/Week08/每日一题/342. 4的幂.py
90f118bb6733e9b684bf6a93850ca73ef1b6af84
[]
no_license
hrz123/algorithm010
d17aee642f03f607a7984beb099eec18f2de1c8e
817911d4282d2e226518b3533dff28282a91b3d4
refs/heads/master
2022-12-20T14:09:26.365781
2020-10-11T04:15:57
2020-10-11T04:15:57
270,178,423
1
0
null
2020-06-07T03:21:09
2020-06-07T03:21:09
null
UTF-8
Python
false
false
2,606
py
# 342. 4的幂.py # 1. 暴力解,不解释 # 2. 暴力解法+预计算 # 我们知道输入的整数是32位整数x<2**31-1的,因此我们最大的4的幂次是15 # 所以我们总共有0-15 16种可能性 # 3.大于0且log2后是一个偶数 # 4.位操作:4的幂,二进制位都在1,3,5等位置,00000001, 00000100, 00010000 # 而只是2的幂,二进制都在2,4,6等位置 # 135位置的16进制为0x55555555 32位表示,246的16进制为0xaaaaaaaa,位与上其中一个等于0或1 # 5. 位操作判断是2的幂,对3的余数为1的是4的幂,为2的话是2的幂 class Solution: def __init__(self): s = 1 self.nums = {1} for i in range(15): s *= 4 self.nums.add(s) def isPowerOfFour(self, num: int) -> bool: return num in self.nums class Powers: def __init__(self): s = 1 self.nums = {1} for i in range(15): s *= 4 self.nums.add(s) class Solution: p = Powers() def isPowerOfFour(self, num: int) -> bool: return num in self.p.nums class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and not num & 0xaaaaaaaa class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and num & 0x55555555 class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and (num & 0x55555555) and not num & (num - 1) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and bool(num & 0x55555555) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and bool(num & 0x55555555) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and bool(num & 0x55555555) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and not num & (num - 1) and bool(num & 0x55555555) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and num & 0x55555555 and not num & (num - 1) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and num & 0x55555555 and not num & (num - 1) class Solution: def isPowerOfFour(self, num: int) -> bool: return num > 0 and num & 0x55555555 and not num & (num - 1) def main(): sol = Solution() num = 16 res = sol.isPowerOfFour(num) print(res) if __name__ == '__main__': main()
81a42ccdd857bad5f3dc6eb2f2b2d73362e6ce9e
09fd456a6552f42c124c148978289fae1af2d5c3
/Array/1380.py
1060e1504031b93129f5620c6c68d483b799b102
[]
no_license
hoang-ng/LeetCode
60b4e68cbcf54cbe763d1f98a70f52e628ab32fb
5407c6d858bfa43325363503c31134e560522be3
refs/heads/master
2021-04-10T11:34:35.310374
2020-07-28T10:22:05
2020-07-28T10:22:05
248,932,393
0
0
null
null
null
null
UTF-8
Python
false
false
1,332
py
# 1380. Lucky Numbers in a Matrix # Given a m * n matrix of distinct numbers, return all lucky numbers in the matrix in any order. # A lucky number is an element of the matrix such that it is the minimum element in its row and maximum in its column. # Example 1: # Input: matrix = [[3,7,8],[9,11,13],[15,16,17]] # Output: [15] # Explanation: 15 is the only lucky number since it is the minimum in its row and the maximum in its column # Example 2: # Input: matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]] # Output: [12] # Explanation: 12 is the only lucky number since it is the minimum in its row and the maximum in its column. # Example 3: # Input: matrix = [[7,8],[1,2]] # Output: [7] # Constraints: # m == mat.length # n == mat[i].length # 1 <= n, m <= 50 # 1 <= matrix[i][j] <= 10^5. # All elements in the matrix are distinct. class Solution: def luckyNumbers (self, matrix): cand = [] res = [] for i in range(len(matrix)): cand.append(min(matrix[i])) for j in range(len(matrix[0])): max_col = matrix[0][j] for i in range(0, len(matrix)): if matrix[i][j] > max_col: max_col = matrix[i][j] if max_col in cand: res.append(max_col) return res
a9b57132d2463d5a1544bb28dc24c79e9975f645
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/gui/Scaleform/daapi/view/meta/FalloutTankCarouselMeta.py
7f535a3045bd53b0a9708717d041352cc1658195
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
812
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/FalloutTankCarouselMeta.py from gui.Scaleform.daapi.view.lobby.hangar.carousels.basic.tank_carousel import TankCarousel class FalloutTankCarouselMeta(TankCarousel): def changeVehicle(self, id): self._printOverrideError('changeVehicle') def clearSlot(self, vehicleId): self._printOverrideError('clearSlot') def shiftSlot(self, vehicleId): self._printOverrideError('shiftSlot') def as_setMultiselectionInfoS(self, data): return self.flashObject.as_setMultiselectionInfo(data) if self._isDAAPIInited() else None def as_getMultiselectionDPS(self): return self.flashObject.as_getMultiselectionDP() if self._isDAAPIInited() else None
ad39f09b7874e552aa32a908630a17b34bcdcd25
9b722ca41671eb2cea19bac5126d0920639261bd
/.history/app_20201130150055.py
a316d9ebab63b4be424a874dca4efbd8ca1abc4d
[]
no_license
thawalk/db_flask_server
7928fd481f99d30bdccc60d97f02db78324cfdbe
cd55f1c9bf84c734457ee02d9f64a6833e295fad
refs/heads/master
2023-01-25T02:40:19.097457
2020-12-06T07:45:50
2020-12-06T07:45:50
314,229,480
0
0
null
null
null
null
UTF-8
Python
false
false
10,928
py
import json import pymongo from flask import Flask, jsonify, url_for, request, redirect,Response,Request import pymongo from bson.json_util import dumps import mysql.connector from werkzeug.serving import run_simple import os from dotenv import load_dotenv import datetime import time from flask_cors import CORS import re import sys app = Flask(__name__) CORS(app) load_dotenv() test_collection='test_collection' mongo = pymongo.MongoClient('mongodb://18.209.236.31:27017/?readPreference=primary&appname=MongoDB%20Compass&ssl=false') # mongo = pymongo.MongoClient('mongodb://{}:27017/?readPreference=primary&appname=MongoDB%20Compass&ssl=false'.format(os.getenv("mongo_url"))) metadata_db = pymongo.database.Database(mongo, 'test') metadata_col = pymongo.collection.Collection(metadata_db, 'test_collection') userlogging_db = pymongo.database.Database(mongo,'user_analytics') userlogging_col = pymongo.collection.Collection(userlogging_db,'logging') bookdetails_db = pymongo.database.Database(mongo,'extra') bookdetails_col = pymongo.collection.Collection(bookdetails_db,'book_details_collection') print(metadata_col.count()) print(userlogging_col.count()) print(bookdetails_col.count()) metadata_db = mysql.connector.connect( host ='54.163.143.77', user = 'root', password = '', database = 'reviews', ) # metadata_db = mysql.connector.connect( # host = os.getenv("host"), # user = 'root', # password = '', # database = 'reviews', # ) cur = metadata_db.cursor() # mySQL_sort_query = """SELECT * FROM reviews.kindle_reviews ORDER BY overall ASC LIMIT 10;""" # cur.execute(mySQL_sort_query) # result_set = cur.fetchall() # print(result_set) def user_logging(userid,timestamp,req,res): return userlogging_col.insert({"id":userid,"timestamp":timestamp,"request":req,"response":res}) @app.route('/',methods=["GET"]) def api_root(): data = { 'message': 'Welcome to our website. Where reviews are our number one priority' } js = json.dumps(data) response = Response(js, status=200, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",200) return response @app.route('/reviews/<ASIN>' ,methods = ['GET']) def get_review_by_ASIN(ASIN): try: mySQL_search_asin_query = f"""SELECT * FROM reviews.kindle_reviews WHERE asin = "{ASIN}" """ print(mySQL_search_asin_query) cur.execute(mySQL_search_asin_query) result_set = cur.fetchall() r = [dict((cur.description[i][0], value) \ for i, value in enumerate(row)) for row in result_set] js = json.dumps(r) response = Response(js, status=200, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",200) return response except: errMsg = "An error occurred. Please try again." js = json.dumps(errMsg) user_logging(123,datetime.datetime.now().isoformat(),"GET",400) response = Response(js, status=400, mimetype='application/json') return response @app.route('/categories', methods = ['GET']) #TODO: #returns list of categories def get_categories(): categories = [] js = json.dumps(data) response = Response(js, status=200, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",200) return response @app.route('/search', methods=['GET']) #now it only searches for TITLE. the mongo metadata does not have author def search_book(): try: title = request.args.get("title") author = request.args.get("author") pattern = re.compile(f'({title})', re.I) result = bookdetails_col.find({"$or":[{"book_title":{'$regex': pattern}},{"author_names":author}]}).limit(10) #{ $text: { $search: title } } temp_result_array = list(result) final_result = [] for data in temp_result_array: asin = data['asin'] a = metadata_col.find({"asin":asin}).limit(10) a_list = list(a) # print(a_list[0], file=sys.stderr) a_list[0]['book_title'] = data['book_title'] a_list[0]['author_names'] = data['author_names'] final_result.append(a_list[0]) result_array = dumps(final_result) print(final_result, file=sys.stderr) response = Response(result_array, status=200, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",200) return response except: errMsg = "Please include title." js = json.dumps(errMsg) user_logging(123,datetime.datetime.now().isoformat(),"GET",400) response = Response(js, status=400, mimetype='application/json') return response # @app.route('/review', methods=['POST']) # def add_review(): # if not request.json or not request.json['asin'] or type(request.json['asin']) != str or not request.json['overall'] or not request.json['reviewText'] or type(request.json['reviewText']) != str or not request.json['reviewTime'] or type(request.json['reviewTime']) != str or not request.json['reviewerID'] or type(request.json['reviewerID']) != str or not request.json['reviewerName'] or type(request.json['reviewerName']) != str or not request.json['summary'] or type(request.json['summary']) != str or not request.json['unixReviewTime'] or type(request.json['unixReviewTime']) != int : # return 'invalid request msg', 404 # txt = "INSERT INTO 'kindle_reviews' ('id', 'asin', 'overall', 'reviewText', 'reviewTime', 'reviewerID', 'reviewerName', 'summary', 'unixReviewTime') VALUES (%s)" # values = (None, request.json['asin'], request.json['overall'], request.json['reviewText'], request.json['reviewTime'], request.json['reviewerID'], request.json['reviewerName'], request.json['summary'], request.json['unixReviewTime']) # cur.execute(txt, values) # return 'successfully uploaded new review', 200 @app.route('/addBook',methods= ['POST']) def add_book(): # if not request.json or not request.json['asin'] or type(request.json['asin']) != str or not request.json['overall'] or not request.json['reviewText'] or type(request.json['reviewText']) != str or not request.json['reviewTime'] or type(request.json['reviewTime']) != str or not request.json['reviewerID'] or type(request.json['reviewerID']) != str or not request.json['reviewerName'] or type(request.json['reviewerName']) != str or not request.json['summary'] or type(request.json['summary']) != str or not request.json['unixReviewTime'] or type(request.json['unixReviewTime']) != int : # return 'invalid request msg', 404 try: data = request.json title = data['title'] asin = data['asin'] description = data['description'] price = data['price'] categories = data['categories'] message = "Book added successfully" metadata_col.insert({"title":title,"asin":asin,"description":description,"price":price,"categories":categories}) js = json.dumps(message) response = Response(js, status=201, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"POST",201) return response except: errMsg = "Please include title, asin, description, price and categories." js = json.dumps(errMsg) response = Response(js, status=400, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"POST",400) return response @app.route('/addReview',methods = ['POST']) #TODO: add review INTO sql part def add_review(): try: data = request.json asin = data["asin"] helpful = [0,0] overall = data["overall"] reviewText = data["reviewText"] reviewTime = data["reviewTime"] reviewerID = data["reviewerID"] reviewerName = data["reviewerName"] summary = data["summary"] unixReviewTime = int(time.time()) mySQL_insert_query = f"""INSERT INTO reviews.kindle_reviews (asin, helpful, overall, reviewText, reviewTime, reviewerID, reviewerName, summary, unixReviewTime) VALUES ("{asin}","{helpful}",{overall},"{reviewText}","{reviewTime}","{reviewerID}","{reviewerName}","{summary}","{unixReviewTime}");""" cur.execute(mySQL_insert_query) metadata_db.commit() message = "Successfully uploaded review" js = json.dumps(message) response = Response(js, status=201, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"POST",201) return response except Exception as e: errMsg = "An error occurred. Please check if you have all fields." js = json.dumps(e) response = Response(js, status=400, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"POST",400) return response @app.route('/sortByGenres', methods= ['GET']) #TODO: sort by genres from mongo metadata categories def sort_by_genres(): pass @app.route('/sortByRating' , methods = ['GET']) def sort_by_ratings(): #sort by increasing ratings, decreasing rating try: rating_preference = request.args.get("rating_preference") if(rating_preference == 'increasing'): #means rating 1 will come out first mySQL_sort_query = """SELECT asin as asin,CAST(AVG(overall) AS CHAR) as rating FROM reviews.kindle_reviews GROUP BY asin ORDER BY AVG(overall) ASC limit 2;""" else: #means rating 5 will come out first mySQL_sort_query = """SELECT asin as asin,CAST(AVG(overall) AS CHAR) as rating FROM reviews.kindle_reviews GROUP BY asin ORDER BY AVG(overall) DESC limit 2;""" cur.execute(mySQL_sort_query) result_set = cur.fetchall() r = [dict((cur.description[i][0], value) \ for i, value in enumerate(row)) for row in result_set] final_result = [] for data in r: asin = data['asin'] met = metadata_col.find({"asin":asin}).limit(1) metadata = list(met) metadata[0]['description']=data['description'] metadata[0]['price']=data['price'] metadata[0] print(metadata) js = json.dumps(final_result) response = Response(js, status=200, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",200) return response except Exception as e: print(e) errMsg = "An error occurred. Please check if you have all fields." js = json.dumps(errMsg) response = Response(js, status=400, mimetype='application/json') user_logging(123,datetime.datetime.now().isoformat(),"GET",400) return response if __name__ == '__main__': #app.run(host="0.0.0.0", port=5000) #remember to change this part app.run(debug=True)
cd8dbe19a67e8ef7bed57e61394fe2abd45dd9cc
c48221dbd1335701178a8b4bfadd22b16fa168fd
/tests/example_app/admin.py
3bc84c5af51a76dbe4fa83ca91d69cf12bbdce1f
[ "BSD-2-Clause" ]
permissive
prokaktus/django-meta
e92e9c45239993e4d6b350083a84c1d98a01f515
21e740f083ea32b150ad012c3bc7941ed920de20
refs/heads/develop
2020-04-05T14:35:42.801057
2017-05-06T12:26:17
2017-05-06T12:26:17
94,702,571
1
0
null
2017-06-18T17:31:16
2017-06-18T17:31:16
null
UTF-8
Python
false
false
185
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals from django.contrib import admin from .models import Post admin.site.register(Post)
0fffdfcf4e1ec8477a77939f528d77ad467a4a16
fd25231975acd147e04dc3ed3627c92cb1a4f86c
/FlaskAPI/vir_env/lib/python3.7/site-packages/scipy/sparse/bsr.py
f86c448e1d216ac11586184af2d1e5370407136f
[]
no_license
sumitkutty/Flight-Price-Prediction
832a2802a3367e655b46d3b44f073d917abd2320
d974a8b75fbcbfa42f11703602af3e45a3f08b3c
refs/heads/master
2022-12-25T07:13:06.375888
2020-10-08T18:46:44
2020-10-08T18:46:44
302,366,725
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:ef0f9bb9c9a9bd37389ba380aa25a50d381d571eaa83888b4205f2d207020fc5 size 24882
3161a5cd27238b9cfa5bc819abae49d5b6fca114
36785c0893ab1e2c81c6a03305f42459776a84e0
/ambra_sdk/service/entrypoints/order.py
f2e0fe900a88d10a1589a4cb0442c3d0b940b6d2
[ "Apache-2.0" ]
permissive
dicomgrid/sdk-python
06589f87f33850bd15e6e99fb683bada6492775f
2618e682d38339439340d86080e8bc6ee6cf21b5
refs/heads/master
2022-08-28T14:50:35.864012
2022-08-22T12:36:50
2022-08-22T12:36:50
253,867,502
11
6
Apache-2.0
2022-04-13T10:06:38
2020-04-07T17:36:56
HTML
UTF-8
Python
false
false
259
py
from ambra_sdk.service.entrypoints.generated.order import \ AsyncOrder as GAsyncOrder from ambra_sdk.service.entrypoints.generated.order import Order as GOrder class Order(GOrder): """Order.""" class AsyncOrder(GAsyncOrder): """AsyncOrder."""
b866c9d98d721c2e46b53ade178d935ac345b7f0
20564b667fe6a9fa7c75e9b20e2f0446ec3440c8
/venv/bin/pip3
27feb6ae67391b30f70bc833820ae9d3ff02bf94
[]
no_license
prashantpandey9/Covid19-India-tracker
a7e544264df92df7c790e5745ef70b69fc39263a
03df61342dffd12520f5f4172f879e35e9e6fa85
refs/heads/master
2023-08-14T00:36:19.974705
2021-02-27T11:16:49
2021-02-27T11:16:49
258,137,688
7
3
null
2021-09-22T19:02:07
2020-04-23T08:14:55
Python
UTF-8
Python
false
false
255
#!/home/prashant/my_project/covid_19/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
e2b8e855db9448e5dc41f8545f0571ae8baf5419
6444622ad4a150993955a0c8fe260bae1af7f8ce
/djangoenv/lib/python2.7/site-packages/django/conf/global_settings.py
35255ffe5295aaf95f5516e907739800d49c5501
[]
no_license
jeremyrich/Lesson_RestAPI_jeremy
ca965ef017c53f919c0bf97a4a23841818e246f9
a44263e45b1cc1ba812059f6984c0f5be25cd234
refs/heads/master
2020-04-25T23:13:47.237188
2019-03-22T09:26:58
2019-03-22T09:26:58
173,138,073
0
0
null
2019-03-22T09:26:59
2019-02-28T15:34:19
Python
UTF-8
Python
false
false
22,077
py
# -*- coding: utf-8 -*- """ Default Django settings. Override these with settings in the module pointed to by the DJANGO_SETTINGS_MODULE environment variable. """ from __future__ import unicode_literals # This is defined here as a do-nothing function because we can't import # django.utils.translation -- that module depends on the settings. def gettext_noop(s): return s #################### # CORE # #################### DEBUG = False # Whether the framework should propagate raw exceptions rather than catching # them. This is useful under some testing situations and should never be used # on a live site. DEBUG_PROPAGATE_EXCEPTIONS = False # Whether to use the "ETag" header. This saves bandwidth but slows down performance. # Deprecated (RemovedInDjango21Warning) in favor of ConditionalGetMiddleware # which sets the ETag regardless of this setting. USE_ETAGS = False # People who get code error notifications. # In the format [('Full Name', '[email protected]'), ('Full Name', '[email protected]')] ADMINS = [] # List of IP addresses, as strings, that: # * See debug comments, when DEBUG is true # * Receive x-headers INTERNAL_IPS = [] # Hosts/domain names that are valid for this site. # "*" matches anything, ".example.com" matches example.com and all subdomains ALLOWED_HOSTS = [] # Local time zone for this installation. All choices can be found here: # https://en.wikipedia.org/wiki/List_of_tz_zones_by_name (although not all # systems may support all possibilities). When USE_TZ is True, this is # interpreted as the default user time zone. TIME_ZONE = "America/Chicago" # If you set this to True, Django will use timezone-aware datetimes. USE_TZ = False # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en-us" # Languages we provide translations for, out of the box. LANGUAGES = [ ("af", gettext_noop("Afrikaans")), ("ar", gettext_noop("Arabic")), ("ast", gettext_noop("Asturian")), ("az", gettext_noop("Azerbaijani")), ("bg", gettext_noop("Bulgarian")), ("be", gettext_noop("Belarusian")), ("bn", gettext_noop("Bengali")), ("br", gettext_noop("Breton")), ("bs", gettext_noop("Bosnian")), ("ca", gettext_noop("Catalan")), ("cs", gettext_noop("Czech")), ("cy", gettext_noop("Welsh")), ("da", gettext_noop("Danish")), ("de", gettext_noop("German")), ("dsb", gettext_noop("Lower Sorbian")), ("el", gettext_noop("Greek")), ("en", gettext_noop("English")), ("en-au", gettext_noop("Australian English")), ("en-gb", gettext_noop("British English")), ("eo", gettext_noop("Esperanto")), ("es", gettext_noop("Spanish")), ("es-ar", gettext_noop("Argentinian Spanish")), ("es-co", gettext_noop("Colombian Spanish")), ("es-mx", gettext_noop("Mexican Spanish")), ("es-ni", gettext_noop("Nicaraguan Spanish")), ("es-ve", gettext_noop("Venezuelan Spanish")), ("et", gettext_noop("Estonian")), ("eu", gettext_noop("Basque")), ("fa", gettext_noop("Persian")), ("fi", gettext_noop("Finnish")), ("fr", gettext_noop("French")), ("fy", gettext_noop("Frisian")), ("ga", gettext_noop("Irish")), ("gd", gettext_noop("Scottish Gaelic")), ("gl", gettext_noop("Galician")), ("he", gettext_noop("Hebrew")), ("hi", gettext_noop("Hindi")), ("hr", gettext_noop("Croatian")), ("hsb", gettext_noop("Upper Sorbian")), ("hu", gettext_noop("Hungarian")), ("ia", gettext_noop("Interlingua")), ("id", gettext_noop("Indonesian")), ("io", gettext_noop("Ido")), ("is", gettext_noop("Icelandic")), ("it", gettext_noop("Italian")), ("ja", gettext_noop("Japanese")), ("ka", gettext_noop("Georgian")), ("kk", gettext_noop("Kazakh")), ("km", gettext_noop("Khmer")), ("kn", gettext_noop("Kannada")), ("ko", gettext_noop("Korean")), ("lb", gettext_noop("Luxembourgish")), ("lt", gettext_noop("Lithuanian")), ("lv", gettext_noop("Latvian")), ("mk", gettext_noop("Macedonian")), ("ml", gettext_noop("Malayalam")), ("mn", gettext_noop("Mongolian")), ("mr", gettext_noop("Marathi")), ("my", gettext_noop("Burmese")), ("nb", gettext_noop("Norwegian Bokmål")), ("ne", gettext_noop("Nepali")), ("nl", gettext_noop("Dutch")), ("nn", gettext_noop("Norwegian Nynorsk")), ("os", gettext_noop("Ossetic")), ("pa", gettext_noop("Punjabi")), ("pl", gettext_noop("Polish")), ("pt", gettext_noop("Portuguese")), ("pt-br", gettext_noop("Brazilian Portuguese")), ("ro", gettext_noop("Romanian")), ("ru", gettext_noop("Russian")), ("sk", gettext_noop("Slovak")), ("sl", gettext_noop("Slovenian")), ("sq", gettext_noop("Albanian")), ("sr", gettext_noop("Serbian")), ("sr-latn", gettext_noop("Serbian Latin")), ("sv", gettext_noop("Swedish")), ("sw", gettext_noop("Swahili")), ("ta", gettext_noop("Tamil")), ("te", gettext_noop("Telugu")), ("th", gettext_noop("Thai")), ("tr", gettext_noop("Turkish")), ("tt", gettext_noop("Tatar")), ("udm", gettext_noop("Udmurt")), ("uk", gettext_noop("Ukrainian")), ("ur", gettext_noop("Urdu")), ("vi", gettext_noop("Vietnamese")), ("zh-hans", gettext_noop("Simplified Chinese")), ("zh-hant", gettext_noop("Traditional Chinese")), ] # Languages using BiDi (right-to-left) layout LANGUAGES_BIDI = ["he", "ar", "fa", "ur"] # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True LOCALE_PATHS = [] # Settings for language cookie LANGUAGE_COOKIE_NAME = "django_language" LANGUAGE_COOKIE_AGE = None LANGUAGE_COOKIE_DOMAIN = None LANGUAGE_COOKIE_PATH = "/" # If you set this to True, Django will format dates, numbers and calendars # according to user current locale. USE_L10N = False # Not-necessarily-technical managers of the site. They get broken link # notifications and other various emails. MANAGERS = ADMINS # Default content type and charset to use for all HttpResponse objects, if a # MIME type isn't manually specified. These are used to construct the # Content-Type header. DEFAULT_CONTENT_TYPE = "text/html" DEFAULT_CHARSET = "utf-8" # Encoding of files read from disk (template and initial SQL files). FILE_CHARSET = "utf-8" # Email address that error messages come from. SERVER_EMAIL = "root@localhost" # Database connection info. If left empty, will default to the dummy backend. DATABASES = {} # Classes used to implement DB routing behavior. DATABASE_ROUTERS = [] # The email backend to use. For possible shortcuts see django.core.mail. # The default is to use the SMTP backend. # Third-party backends can be specified by providing a Python path # to a module that defines an EmailBackend class. EMAIL_BACKEND = "django.core.mail.backends.smtp.EmailBackend" # Host for sending email. EMAIL_HOST = "localhost" # Port for sending email. EMAIL_PORT = 25 # Whether to send SMTP 'Date' header in the local time zone or in UTC. EMAIL_USE_LOCALTIME = False # Optional SMTP authentication information for EMAIL_HOST. EMAIL_HOST_USER = "" EMAIL_HOST_PASSWORD = "" EMAIL_USE_TLS = False EMAIL_USE_SSL = False EMAIL_SSL_CERTFILE = None EMAIL_SSL_KEYFILE = None EMAIL_TIMEOUT = None # List of strings representing installed apps. INSTALLED_APPS = [] TEMPLATES = [] # Default form rendering class. FORM_RENDERER = "django.forms.renderers.DjangoTemplates" # Default email address to use for various automated correspondence from # the site managers. DEFAULT_FROM_EMAIL = "webmaster@localhost" # Subject-line prefix for email messages send with django.core.mail.mail_admins # or ...mail_managers. Make sure to include the trailing space. EMAIL_SUBJECT_PREFIX = "[Django] " # Whether to append trailing slashes to URLs. APPEND_SLASH = True # Whether to prepend the "www." subdomain to URLs that don't have it. PREPEND_WWW = False # Override the server-derived value of SCRIPT_NAME FORCE_SCRIPT_NAME = None # List of compiled regular expression objects representing User-Agent strings # that are not allowed to visit any page, systemwide. Use this for bad # robots/crawlers. Here are a few examples: # import re # DISALLOWED_USER_AGENTS = [ # re.compile(r'^NaverBot.*'), # re.compile(r'^EmailSiphon.*'), # re.compile(r'^SiteSucker.*'), # re.compile(r'^sohu-search') # ] DISALLOWED_USER_AGENTS = [] ABSOLUTE_URL_OVERRIDES = {} # List of compiled regular expression objects representing URLs that need not # be reported by BrokenLinkEmailsMiddleware. Here are a few examples: # import re # IGNORABLE_404_URLS = [ # re.compile(r'^/apple-touch-icon.*\.png$'), # re.compile(r'^/favicon.ico$), # re.compile(r'^/robots.txt$), # re.compile(r'^/phpmyadmin/), # re.compile(r'\.(cgi|php|pl)$'), # ] IGNORABLE_404_URLS = [] # A secret key for this particular Django installation. Used in secret-key # hashing algorithms. Set this in your settings, or Django will complain # loudly. SECRET_KEY = "" # Default file storage mechanism that holds media. DEFAULT_FILE_STORAGE = "django.core.files.storage.FileSystemStorage" # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = "" # URL that handles the media served from MEDIA_ROOT. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = "" # Absolute path to the directory static files should be collected to. # Example: "/var/www/example.com/static/" STATIC_ROOT = None # URL that handles the static files served from STATIC_ROOT. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = None # List of upload handler classes to be applied in order. FILE_UPLOAD_HANDLERS = [ "django.core.files.uploadhandler.MemoryFileUploadHandler", "django.core.files.uploadhandler.TemporaryFileUploadHandler", ] # Maximum size, in bytes, of a request before it will be streamed to the # file system instead of into memory. FILE_UPLOAD_MAX_MEMORY_SIZE = 2621440 # i.e. 2.5 MB # Maximum size in bytes of request data (excluding file uploads) that will be # read before a SuspiciousOperation (RequestDataTooBig) is raised. DATA_UPLOAD_MAX_MEMORY_SIZE = 2621440 # i.e. 2.5 MB # Maximum number of GET/POST parameters that will be read before a # SuspiciousOperation (TooManyFieldsSent) is raised. DATA_UPLOAD_MAX_NUMBER_FIELDS = 1000 # Directory in which upload streamed files will be temporarily saved. A value of # `None` will make Django use the operating system's default temporary directory # (i.e. "/tmp" on *nix systems). FILE_UPLOAD_TEMP_DIR = None # The numeric mode to set newly-uploaded files to. The value should be a mode # you'd pass directly to os.chmod; see https://docs.python.org/3/library/os.html#files-and-directories. FILE_UPLOAD_PERMISSIONS = None # The numeric mode to assign to newly-created directories, when uploading files. # The value should be a mode as you'd pass to os.chmod; # see https://docs.python.org/3/library/os.html#files-and-directories. FILE_UPLOAD_DIRECTORY_PERMISSIONS = None # Python module path where user will place custom format definition. # The directory where this setting is pointing should contain subdirectories # named as the locales, containing a formats.py file # (i.e. "myproject.locale" for myproject/locale/en/formats.py etc. use) FORMAT_MODULE_PATH = None # Default formatting for date objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = "N j, Y" # Default formatting for datetime objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATETIME_FORMAT = "N j, Y, P" # Default formatting for time objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date TIME_FORMAT = "P" # Default formatting for date objects when only the year and month are relevant. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date YEAR_MONTH_FORMAT = "F Y" # Default formatting for date objects when only the month and day are relevant. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date MONTH_DAY_FORMAT = "F j" # Default short formatting for date objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date SHORT_DATE_FORMAT = "m/d/Y" # Default short formatting for datetime objects. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date SHORT_DATETIME_FORMAT = "m/d/Y P" # Default formats to be used when parsing dates from input boxes, in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATE_INPUT_FORMATS = [ "%Y-%m-%d", "%m/%d/%Y", "%m/%d/%y", # '2006-10-25', '10/25/2006', '10/25/06' "%b %d %Y", "%b %d, %Y", # 'Oct 25 2006', 'Oct 25, 2006' "%d %b %Y", "%d %b, %Y", # '25 Oct 2006', '25 Oct, 2006' "%B %d %Y", "%B %d, %Y", # 'October 25 2006', 'October 25, 2006' "%d %B %Y", "%d %B, %Y", # '25 October 2006', '25 October, 2006' ] # Default formats to be used when parsing times from input boxes, in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates TIME_INPUT_FORMATS = [ "%H:%M:%S", # '14:30:59' "%H:%M:%S.%f", # '14:30:59.000200' "%H:%M", # '14:30' ] # Default formats to be used when parsing dates and times from input boxes, # in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATETIME_INPUT_FORMATS = [ "%Y-%m-%d %H:%M:%S", # '2006-10-25 14:30:59' "%Y-%m-%d %H:%M:%S.%f", # '2006-10-25 14:30:59.000200' "%Y-%m-%d %H:%M", # '2006-10-25 14:30' "%Y-%m-%d", # '2006-10-25' "%m/%d/%Y %H:%M:%S", # '10/25/2006 14:30:59' "%m/%d/%Y %H:%M:%S.%f", # '10/25/2006 14:30:59.000200' "%m/%d/%Y %H:%M", # '10/25/2006 14:30' "%m/%d/%Y", # '10/25/2006' "%m/%d/%y %H:%M:%S", # '10/25/06 14:30:59' "%m/%d/%y %H:%M:%S.%f", # '10/25/06 14:30:59.000200' "%m/%d/%y %H:%M", # '10/25/06 14:30' "%m/%d/%y", # '10/25/06' ] # First day of week, to be used on calendars # 0 means Sunday, 1 means Monday... FIRST_DAY_OF_WEEK = 0 # Decimal separator symbol DECIMAL_SEPARATOR = "." # Boolean that sets whether to add thousand separator when formatting numbers USE_THOUSAND_SEPARATOR = False # Number of digits that will be together, when splitting them by # THOUSAND_SEPARATOR. 0 means no grouping, 3 means splitting by thousands... NUMBER_GROUPING = 0 # Thousand separator symbol THOUSAND_SEPARATOR = "," # The tablespaces to use for each model when not specified otherwise. DEFAULT_TABLESPACE = "" DEFAULT_INDEX_TABLESPACE = "" # Default X-Frame-Options header value X_FRAME_OPTIONS = "SAMEORIGIN" USE_X_FORWARDED_HOST = False USE_X_FORWARDED_PORT = False # The Python dotted path to the WSGI application that Django's internal server # (runserver) will use. If `None`, the return value of # 'django.core.wsgi.get_wsgi_application' is used, thus preserving the same # behavior as previous versions of Django. Otherwise this should point to an # actual WSGI application object. WSGI_APPLICATION = None # If your Django app is behind a proxy that sets a header to specify secure # connections, AND that proxy ensures that user-submitted headers with the # same name are ignored (so that people can't spoof it), set this value to # a tuple of (header_name, header_value). For any requests that come in with # that header/value, request.is_secure() will return True. # WARNING! Only set this if you fully understand what you're doing. Otherwise, # you may be opening yourself up to a security risk. SECURE_PROXY_SSL_HEADER = None ############## # MIDDLEWARE # ############## # List of middleware to use. Order is important; in the request phase, these # middleware will be applied in the order given, and in the response # phase the middleware will be applied in reverse order. MIDDLEWARE_CLASSES = [ "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", ] MIDDLEWARE = None ############ # SESSIONS # ############ # Cache to store session data if using the cache session backend. SESSION_CACHE_ALIAS = "default" # Cookie name. This can be whatever you want. SESSION_COOKIE_NAME = "sessionid" # Age of cookie, in seconds (default: 2 weeks). SESSION_COOKIE_AGE = 60 * 60 * 24 * 7 * 2 # A string like ".example.com", or None for standard domain cookie. SESSION_COOKIE_DOMAIN = None # Whether the session cookie should be secure (https:// only). SESSION_COOKIE_SECURE = False # The path of the session cookie. SESSION_COOKIE_PATH = "/" # Whether to use the non-RFC standard httpOnly flag (IE, FF3+, others) SESSION_COOKIE_HTTPONLY = True # Whether to save the session data on every request. SESSION_SAVE_EVERY_REQUEST = False # Whether a user's session cookie expires when the Web browser is closed. SESSION_EXPIRE_AT_BROWSER_CLOSE = False # The module to store session data SESSION_ENGINE = "django.contrib.sessions.backends.db" # Directory to store session files if using the file session module. If None, # the backend will use a sensible default. SESSION_FILE_PATH = None # class to serialize session data SESSION_SERIALIZER = "django.contrib.sessions.serializers.JSONSerializer" ######### # CACHE # ######### # The cache backends to use. CACHES = {"default": {"BACKEND": "django.core.cache.backends.locmem.LocMemCache"}} CACHE_MIDDLEWARE_KEY_PREFIX = "" CACHE_MIDDLEWARE_SECONDS = 600 CACHE_MIDDLEWARE_ALIAS = "default" ################## # AUTHENTICATION # ################## AUTH_USER_MODEL = "auth.User" AUTHENTICATION_BACKENDS = ["django.contrib.auth.backends.ModelBackend"] LOGIN_URL = "/accounts/login/" LOGIN_REDIRECT_URL = "/accounts/profile/" LOGOUT_REDIRECT_URL = None # The number of days a password reset link is valid for PASSWORD_RESET_TIMEOUT_DAYS = 3 # the first hasher in this list is the preferred algorithm. any # password using different algorithms will be converted automatically # upon login PASSWORD_HASHERS = [ "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", "django.contrib.auth.hashers.BCryptPasswordHasher", ] AUTH_PASSWORD_VALIDATORS = [] ########### # SIGNING # ########### SIGNING_BACKEND = "django.core.signing.TimestampSigner" ######## # CSRF # ######## # Dotted path to callable to be used as view when a request is # rejected by the CSRF middleware. CSRF_FAILURE_VIEW = "django.views.csrf.csrf_failure" # Settings for CSRF cookie. CSRF_COOKIE_NAME = "csrftoken" CSRF_COOKIE_AGE = 60 * 60 * 24 * 7 * 52 CSRF_COOKIE_DOMAIN = None CSRF_COOKIE_PATH = "/" CSRF_COOKIE_SECURE = False CSRF_COOKIE_HTTPONLY = False CSRF_HEADER_NAME = "HTTP_X_CSRFTOKEN" CSRF_TRUSTED_ORIGINS = [] CSRF_USE_SESSIONS = False ############ # MESSAGES # ############ # Class to use as messages backend MESSAGE_STORAGE = "django.contrib.messages.storage.fallback.FallbackStorage" # Default values of MESSAGE_LEVEL and MESSAGE_TAGS are defined within # django.contrib.messages to avoid imports in this settings file. ########### # LOGGING # ########### # The callable to use to configure logging LOGGING_CONFIG = "logging.config.dictConfig" # Custom logging configuration. LOGGING = {} # Default exception reporter filter class used in case none has been # specifically assigned to the HttpRequest instance. DEFAULT_EXCEPTION_REPORTER_FILTER = "django.views.debug.SafeExceptionReporterFilter" ########### # TESTING # ########### # The name of the class to use to run the test suite TEST_RUNNER = "django.test.runner.DiscoverRunner" # Apps that don't need to be serialized at test database creation time # (only apps with migrations are to start with) TEST_NON_SERIALIZED_APPS = [] ############ # FIXTURES # ############ # The list of directories to search for fixtures FIXTURE_DIRS = [] ############### # STATICFILES # ############### # A list of locations of additional static files STATICFILES_DIRS = [] # The default file storage backend used during the build process STATICFILES_STORAGE = "django.contrib.staticfiles.storage.StaticFilesStorage" # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ] ############## # MIGRATIONS # ############## # Migration module overrides for apps, by app label. MIGRATION_MODULES = {} ################# # SYSTEM CHECKS # ################# # List of all issues generated by system checks that should be silenced. Light # issues like warnings, infos or debugs will not generate a message. Silencing # serious issues like errors and criticals does not result in hiding the # message, but Django will not stop you from e.g. running server. SILENCED_SYSTEM_CHECKS = [] ####################### # SECURITY MIDDLEWARE # ####################### SECURE_BROWSER_XSS_FILTER = False SECURE_CONTENT_TYPE_NOSNIFF = False SECURE_HSTS_INCLUDE_SUBDOMAINS = False SECURE_HSTS_PRELOAD = False SECURE_HSTS_SECONDS = 0 SECURE_REDIRECT_EXEMPT = [] SECURE_SSL_HOST = None SECURE_SSL_REDIRECT = False
54f4a480d8c01ce5d7b1aa5e4b8ab7f31dfd0da8
ad5494244bb4d0d92df8178d96b99b949f9ee04c
/hashing/models.py
10ed2e0c8732c4953087615021d57659be2234d1
[]
no_license
razyesh/Hash-gen-SHA256
14dbf86fab593bccec9997ec087535ee02995a6c
5cf91114962e048893c910832460f6984d787a38
refs/heads/master
2021-09-26T11:38:28.819734
2020-04-03T19:00:57
2020-04-03T19:00:57
252,815,271
0
0
null
2021-09-22T18:49:48
2020-04-03T18:56:29
Python
UTF-8
Python
false
false
156
py
from django.db import models # Create your models here. class Hash(models.Model): text = models.TextField() hash = models.CharField(max_length=64)