blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
cc69c17eb918fd897c9f5b7af3a2c749094d41a7
0dbfea9dcbbdf7a329c9d0f61831973b3168e560
/camera.py
a9b8a4f8902973ba7b1242f9bbea89e50609084c
[]
no_license
SmartPracticeschool/SPS-4035-Intelligent-Best-Safety-Max-Safety-Rating-Generator-for-Restaurant
6e6be915bf0208c5a9ca1368f99d754051fd9fee
47ba68197c24623fee757788e03cbb41e5fca921
refs/heads/master
2022-12-11T09:28:01.007804
2020-09-11T10:20:54
2020-09-11T10:20:54
292,284,479
0
0
null
null
null
null
UTF-8
Python
false
false
2,508
py
import cv2 import boto3 import datetime import requests face_cascade=cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml") ds_factor=0.6 count=0 class VideoCamera(object): def __init__(self): self.video = cv2.VideoCapture(0) def __del__(self): self.video.release() def get_frame(self): #count=0 global count success, image = self.video.read() is_success, im_buf_arr = cv2.imencode(".jpg", image) image1 = im_buf_arr.tobytes() client=boto3.client('rekognition', aws_access_key_id="ASIA3JZX6DJK2IOZBPEV", aws_secret_access_key="GQ4AuQs80d8r+gLfQCadeLY/vmll0SLFPQMF/x9P", aws_session_token="FwoGZXIvYXdzEHoaDMK6+Vqt+bc4zxdiSyLKAe9iC6fIvoALw6dZuXTSz5Vb0GfE43zPfJTLsmHOA+pDUpGwlCEBfT6xXrgPq5XiGabwP/5ZFbp517LpM08a3f76c356zrXXYSVPazZogFUMc/qMDkEWly/SW66SeT9cgRirmZAj49GMGUBAFovwnWAUOmWEMJVOT+R7BCcRDs7qzlV8mrmhichmPsmSWqOcZsJY+2b99WyupvX8XorhsQepP0eQK0VkZVxU0FN1iFgijdC1FgZ51y0fKVfkXFbONQ2CXdn0EnAYOcAoqu3s+gUyLRhXqAddoXMzN2yXr8kKsDW9H2XiMzfy4lVX669OchDI696RMMVo3K66fvIdiA==", region_name='us-east-1') response = client.detect_custom_labels( ProjectVersionArn='arn:aws:rekognition:us-east-1:776969525845:project/Mask-Detection2/version/Mask-Detection2.2020-09-07T23.02.02/1599499928143',Image={ 'Bytes':image1}) print(response['CustomLabels']) if not len(response['CustomLabels']): count=count+1 date = str(datetime.datetime.now()).split(" ")[0] #print(date) url = " https://81ryisfwlc.execute-api.us-east-1.amazonaws.com/apiForMaskCount?date="+date+"&count="+str(count) resp = requests.get(url) f = open("countfile.txt", "w") f.write(str(count)) f.close() #print(count) image=cv2.resize(image,None,fx=ds_factor,fy=ds_factor,interpolation=cv2.INTER_AREA) gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) face_rects=face_cascade.detectMultiScale(gray,1.3,5) for (x,y,w,h) in face_rects: cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2) break ret, jpeg = cv2.imencode('.jpg', image) #cv2.putText(image, text = str(count), org=(10,40), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=1, color=(1,0,0)) cv2.imshow('image',image) return jpeg.tobytes()
3b054790bdd248be0ce98c709a283af3f4078789
679ce4b323f79b2425976201324c6c1f88b95199
/Python/Resource/game_state_machine.py
dfc0cbe9f3c5720937da66d1172aa9f2ccb26615
[]
no_license
abriggs914/Coding_Practice
ff690fb5f145a11f4da144f3882b37f473b10450
3afd7c59e0d90f0ef5f6203853e69f853312019b
refs/heads/master
2023-08-31T04:04:58.048554
2023-08-29T13:23:29
2023-08-29T13:23:29
161,865,421
0
1
null
2022-10-27T08:35:29
2018-12-15T03:20:14
Python
UTF-8
Python
false
false
11,619
py
# Class outlining a Game-State-Machine (GSM). # Version............1.4 # Date........2022-08-03 # Author....Avery Briggs class GSM: def __init__(self, options, name=None, idx=None, max_cycles=None, allow_recycle=True): """Game State Machine. Simulates app_state switches for an object. Required: options - list of states. Optional: name - GSM name idx - starting index for a app_state max_cycles - maximum number of cycles allowed allow_recycle - use this to allow for only a single cycle(Think generators)""" if idx is None: idx = 0 if not isinstance(idx, int) or (0 < idx < len(options)): raise TypeError("Error param 'idx' needs to be an integer corresponding to a list index.") if not isinstance(options, list) and not isinstance(options, tuple): raise TypeError("Error param 'options' needs to be an ordered iterable object. (supported: list, tuple)") if len(options) == 0: raise ValueError("Error param 'options' needs to have at least 1 element.") if max_cycles == 0: raise ValueError("Error you can not create a GSM that does not have at least 1 cycle") self.name = name self.idx = idx self.options = options self.cycles = 0 self.prev = self.calc_prev() self.max_cycles = -1 if max_cycles is not None: if isinstance(max_cycles, bool) and max_cycles: # use this for 1 iteration self.max_cycles = 1 elif isinstance(max_cycles, int): self.max_cycles = max_cycles self.callbacks = {} self.allow_recycle = allow_recycle def __iter__(self): """Generator of upcoming states. ONLY 1 CYCLE""" # return self.options[:self.idx] + self.options[self.idx:] for op in self.queue(): yield op def calc_prev(self, idx=None): """Grab the index immediately before the given index, defaults to current index.""" idx = self.idx if idx is None else idx # print(f"idx: {idx}, new: {(idx - 1) % len(self)}, t: {type(idx)}") return (idx - 1) % len(self) def __next__(self): """Call this like a generator would. Simulates 'walking' states and checks against max_cycles.""" a = (self.idx - 1) % len(self) b = (self.prev + 0) % len(self) # print(f"name={self.name}, idx: <{self.idx}>, prev: <{self.prev}>, a={a}, b={b}") if a != b: # if this is true, then the app_state index was altered illegally. raise ValueError("STOP!!" + "\n" + str(self) + "\n" + "The app_state index was altered illegally.") self.idx += 1 if self.idx >= len(self): self.cycles += 1 self.restart() if not self.can_recycle(): raise StopIteration(f"Error max cycles have been reached for this GSM object. cycles={self.cycles}") # if self.max_cycles >= 0: # if self.cycles >= self.max_cycles: # raise StopIteration(f"Error max cycles have been reached for this GSM object. cycles={self.cycles}") new_state = self.state() self.callback(new_state) # print(f"new_state: <{new_state}>, idx: <{self.idx}>, prev: <{self.prev}>") self.prev = self.calc_prev() # call last to act as a check. return new_state def __len__(self): """Return length of states list""" return len(self.options) def queue(self): """List of states in pending order, beginning with the current.""" rest = self.options[self.idx:] if self.can_recycle(): rest += self.options[:self.idx] return rest def opposite(self, round_up=False): """Viewing options cyclically, return the app_state opposite to the current. Use round_up to handle odd length app_state lists""" off = 0 if not round_up else len(self) % 2 return self.options[(self.idx + ((len(self) // 2) + off)) % len(self)] def state(self, idx=None): """Return the app_state at a given index. If none given, defaults to own index.""" return self.options[self.idx] if idx is None else self.options[idx] def peek(self, n_ahead=1): """Peek ahead to the nth app_state. Default next app_state.""" return self.state((self.idx + n_ahead) % len(self)) def set_state(self, idx): if idx in self.options: self.idx = self.options.index(idx) # print(f"UPDATE: {self.idx}") self.prev = self.calc_prev() print(self) # print(f"idf: {self.idx}, prev: {self.prev}") return else: if isinstance(idx, int) and not isinstance(idx, bool): if -1 < idx < len(self): self.idx = idx self.prev = self.calc_prev() return raise ValueError(f"Error param idx is not recognized as a app_state or an index. idx={idx}, type={type(idx)}") # if isinstance(idx, int): # # TODO this will cause a problem for keys that are also whole numbers. instead of by value this does by position # if -1 < idx < len(self): # self.idx = idx # self.prev = self.calc_prev() # else: # raise ValueError(f"Error cannot set the app_state to index={idx}. Index out of range.") # else: # if idx not in self.options: # raise KeyError(f"Error key '{idx}' not a valid app_state for this machine.") # app_state = idx # self.idx = self.options.index(app_state) # print(f"idx: {idx}, s.idx: {self.idx}") # self.prev = self.calc_prev(self.idx) def add_state(self, state, idx=None): """Add a app_state. By default, appended, but can be altered using idx param.""" if idx is None: if isinstance(self.options, list): self.options.append(state) else: self.options = (*self.options, state) else: if isinstance(self.options, list): self.options.insert(idx, state) else: self.options = (*self.options[:idx], state, self.options[idx:]) self.prev = self.calc_prev() def remove_state(self, state): """Remove a app_state. Beware ValueError""" self.unbind_callback(state) if isinstance(self.options, list): self.options.remove(state) else: temp = list(self.options) temp.remove(state) self.options = tuple(temp) self.prev = self.calc_prev() def bind_callback(self, func, *args, state=None, all_states=False, **kwargs): """Add a callback to a given app_state """ # print(f"func: {func}") # print(f"args: {args}") # print(f"kwargs: {kwargs}") state = state if state is not None else self.state() if state not in self.options: raise KeyError(f"Error unable to bind callback for app_state '{state}' as it is not a valid app_state of this GSM.") self.callbacks[state] = (func, args, kwargs) if all_states: for state_ in self.options: if state_ != state: self.callbacks[state_] = (func, args, kwargs) def unbind_callback(self, state=None): """Unbind a callback for a given app_state, defaults to current app_state.""" state = state if state is not None else self.state() if state not in self.options: raise KeyError(f"Error unable to unbind callback for app_state '{state}' as it is not a valid app_state of this GSM.") if state not in self.callbacks: print(f"No callbacks have been bound to app_state '{state}' yet.") return del self.callbacks[state] def callback(self, state=None): """Call the function associated with a given app_state, defaults to current app_state.""" state = state if state is not None else self.state() if state in self.callbacks: func, args, kwargs = self.callbacks[state] func(*args, **kwargs) def restart(self): """Restart from idx=0, same cycle.""" self.idx = 0 def reset(self): """Reset from index=0 and cycle=0.""" if not self.allow_recycle: raise StopIteration("Error this GSM is not allowed to recycle based on init param 'allow_recycle'.") self.restart() self.cycles = 0 def can_recycle(self): """Can this GSM cycle again or will it raise a StopIteration.""" return self.allow_recycle and (self.max_cycles < 0 or self.cycles < self.max_cycles - 1) def __repr__(self): a = f" name={self.name}," if self.name is not None else "" b = f", cycle_num/max_cycles={self.cycles} / {self.max_cycles}" if self.max_cycles >= 0 else "" r = (self.cycles * len(self)) + self.idx f = (self.max_cycles * len(self)) if len(self) != 0 and self.max_cycles != 0 else 1 p = ("%.2f" % ((100 * r) / f)) + " %" c = f", #state_idx/ttl_states={r} / {f} = {p}" if b else "" return f"<GSM{a} app_state={self.state()}, options={self.queue()}{b}{c}>" class BooleanGSM(GSM): # Binary switch def __init__(self, name=None, idx=None, max_cycles=None, t_first=True): super().__init__(options=[True, False] if t_first else [False, True], name=name, idx=idx, max_cycles=max_cycles) class YesNoCancelGSM(GSM): # Triple app_state switch def __init__(self, name=None, idx=None, max_cycles=None): super().__init__(options=["Yes", "No", "Cancel"], name=name, idx=idx, max_cycles=max_cycles) if __name__ == '__main__': def print_hello1(): print("Hello World!") def print_hello2(arg1, arg2, arg3=4): print(f"Hello World! arg1={arg1} arg2={arg2} arg3={arg3}") # phone_number_guess.main() # orbiting_date_picker.main() gsma = GSM(options=list(range(100)), name="GSMA") gsm1 = GSM(options=list(range(100)), name="GSM1") gsm2 = BooleanGSM(name="GSM2") gsm3 = YesNoCancelGSM(name="GSM3") gsm4 = YesNoCancelGSM(max_cycles=True, name="GSM4") to_print = [ # gsm3.opposite(round_up=True), gsm2.add_state("There"), gsm2.set_state("There") # gsm2.__next__(), # gsm4.__next__(), # gsm4.__next__(), # gsm4.can_recycle(), # # gsm2.bind_callback(print_hello1), # gsm2.__next__(), # # gsm2.bind_callback(print_hello2, 1, 4, arg3=5), # # gsm2.unbind_callback(app_state=True), # gsm2.bind_callback(print_hello2, -1, -4, arg3=-5, app_state=True), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.remove_state(app_state=True), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm2.__next__(), # gsm1, # gsm2, # gsm3, # gsm4, # list(gsm1), # list(gsm2), # list(gsm3), # list(gsm4) # # gsm4.__next__() ] for i, test in enumerate(to_print): print(f"i: {i}, test=<{test}>")
dbb97f0cbc36f2bfd81ed8cc7c03df74b429d7e7
dfe2a52a1c36a28a8bf85af7efd42380d980b773
/virtual/lib/python3.6/site-packages/social/tests/backends/test_skyrock.py
6c9bc03d42c8bfa986caebbc4d6173b6d3d79df5
[ "MIT" ]
permissive
virginiah894/Instagram-clone
2c2a15d89fcdb25b22bd60428cf84a01f3bd553c
4d8abe7bafefae06a0e462e6a47631c2f8a1d361
refs/heads/master
2022-12-10T06:56:21.105357
2020-01-07T14:14:50
2020-01-07T14:14:50
229,394,540
3
0
MIT
2022-12-08T03:23:40
2019-12-21T07:41:19
Python
UTF-8
Python
false
false
1,343
py
import json from social.p3 import urlencode from social.tests.backends.oauth import OAuth1Test class SkyrockOAuth1Test(OAuth1Test): backend_path = 'social.backends.skyrock.SkyrockOAuth' user_data_url = 'https://api.skyrock.com/v2/user/get.json' expected_username = 'foobar' access_token_body = json.dumps({ 'access_token': 'foobar', 'token_type': 'bearer' }) request_token_body = urlencode({ 'oauth_token_secret': 'foobar-secret', 'oauth_token': 'foobar', }) user_data_body = json.dumps({ 'locale': 'en_US', 'city': '', 'has_blog': False, 'web_messager_enabled': True, 'email': '[email protected]', 'username': 'foobar', 'firstname': 'Foo', 'user_url': '', 'address1': '', 'address2': '', 'has_profile': False, 'allow_messages_from': 'everybody', 'is_online': False, 'postalcode': '', 'lang': 'en', 'id_user': 10101010, 'name': 'Bar', 'gender': 0, 'avatar_url': 'http://www.skyrock.com/img/avatars/default-0.jpg', 'nb_friends': 0, 'country': 'US', 'birth_date': '1980-06-10' }) def test_login(self): self.do_login() def test_partial_pipeline(self): self.do_partial_pipeline()
f7f87f6e23d10dd65ab01b555e144d39934285c9
df7f13ec34591fe1ce2d9aeebd5fd183e012711a
/hata/discord/exceptions/error_codes.py
faca39a3c0924d90bce9ef83a30fe5a758a7f70c
[ "LicenseRef-scancode-warranty-disclaimer" ]
permissive
HuyaneMatsu/hata
63e2f6a2d7a7539fd8f18498852d9d3fe5c41d2e
53f24fdb38459dc5a4fd04f11bdbfee8295b76a4
refs/heads/master
2023-08-20T15:58:09.343044
2023-08-20T13:09:03
2023-08-20T13:09:03
163,677,173
3
3
Apache-2.0
2019-12-18T03:46:12
2018-12-31T14:59:47
Python
UTF-8
Python
false
false
61,855
py
__all__ = () __doc__ = """ The possible json error codes received from Discord HTTP API requests. Import it as `ERROR_CODES`. Examples -------- Sending a direct message to a user. ```py from hata import ERROR_CODES, DiscordException async def try_send_private_message(client, user, content): private_channel = await client.channel_private_create(user) try: await client.message_create(private_channel, content) except DiscordException as err: if err.code != ERROR_CODES.cannot_message_user: raise ``` Error Codes ----------- +-------------------------------------------------------------------+-----------+-----------+ | Respective name | Value | Notes | +===================================================================+===========+===========+ | unknown_account | 10001 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_application | 10002 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_channel | 10003 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_guild | 10004 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_integration | 10005 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_invite | 10006 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_member | 10007 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_message | 10008 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_overwrite | 10009 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_provider | 10010 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_role | 10011 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_token | 10012 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_user | 10013 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_emoji | 10014 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_webhook | 10015 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_webhook_service | 10016 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_session | 10020 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_approval_form | 10023 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_ban | 10026 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_SKU | 10027 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_store_listing | 10028 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_entitlement | 10029 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_team | 10030 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_lobby | 10031 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_branch | 10032 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_store_directory_layout | 10033 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_redistributable | 10036 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_gift_code | 10038 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_team_member | 10040 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_stream | 10049 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_guild_boost_cooldown | 10050 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_guild_template | 10057 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_discovery_category | 10059 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_sticker | 10060 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_interaction | 10062 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_application_command | 10063 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_voice_state | 10065 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_application_command_permissions | 10066 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_stage | 10067 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_guild_member_verification_form | 10068 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_guild_welcome_screen | 10069 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_scheduled_event | 10070 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_scheduled_event_user | 10071 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_tag | 10071 | - | +-------------------------------------------------------------------+-----------+-----------+ | bots_not_allowed | 20001 | - | +-------------------------------------------------------------------+-----------+-----------+ | only_bots_allowed | 20002 | - | +-------------------------------------------------------------------+-----------+-----------+ | RPC_proxy_disallowed | 20003 | - | +-------------------------------------------------------------------+-----------+-----------+ | explicit_content | 20009 | - | +-------------------------------------------------------------------+-----------+-----------+ | account_scheduled_for_deletion | 20011 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_not_authorized_for_application | 20012 | - | +-------------------------------------------------------------------+-----------+-----------+ | account_disabled | 20013 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_slowmode | 20016 | - | +-------------------------------------------------------------------+-----------+-----------+ | team_ownership_required | 20018 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_announcement_message_edit | 20022 | - | +-------------------------------------------------------------------+-----------+-----------+ | under_minimum_age | 20024 | - | +-------------------------------------------------------------------+-----------+-----------+ | quarantined | 20026 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_channel_write | 20028 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_server_send | 20029 | - | +-------------------------------------------------------------------+-----------+-----------+ | name_contains_disallowed_word | 20031 | - | +-------------------------------------------------------------------+-----------+-----------+ | guild_subscription_level_too_low | 20035 | - | +-------------------------------------------------------------------+-----------+-----------+ | vanity_url_required_for_published_guilds | 20040 | - | +-------------------------------------------------------------------+-----------+-----------+ | vanity_url_employee_only_guild_disabled | 20044 | - | +-------------------------------------------------------------------+-----------+-----------+ | vanity_url_requirements_not_met | 20045 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_guilds | 30001 | 100 | +-------------------------------------------------------------------+-----------+-----------+ | max_friends | 30001 | 10000 | +-------------------------------------------------------------------+-----------+-----------+ | max_pins | 30003 | 50 | +-------------------------------------------------------------------+-----------+-----------+ | max_recipients | 30004 | 10 | +-------------------------------------------------------------------+-----------+-----------+ | max_roles | 30005 | 250 | +-------------------------------------------------------------------+-----------+-----------+ | max_used_usernames | 30006 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_webhooks | 30007 | 15 | +-------------------------------------------------------------------+-----------+-----------+ | max_emojis | 30008 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_reactions | 30010 | 20 | +-------------------------------------------------------------------+-----------+-----------+ | max_group_channels | 30011 | 10 | +-------------------------------------------------------------------+-----------+-----------+ | max_channels | 30013 | 500 | +-------------------------------------------------------------------+-----------+-----------+ | max_attachments | 30015 | 10 | +-------------------------------------------------------------------+-----------+-----------+ | max_invites | 30016 | 1000 | +-------------------------------------------------------------------+-----------+-----------+ | max_animated_emojis | 30018 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_guild_members | 30019 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_application_game_SKUs | 30021 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_teams | 30023 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_companies | 30025 | - | +-------------------------------------------------------------------+-----------+-----------+ | not_enough_guild_members | 30029 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_guild_discovery_category | 30030 | 5 | +-------------------------------------------------------------------+-----------+-----------+ | guild_has_template | 30031 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_application_commands | 30032 | 100 | +-------------------------------------------------------------------+-----------+-----------+ | max_thread_participants | 30033 | 1000 | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_daily_application_command_creation | 30034 | 200 | +-------------------------------------------------------------------+-----------+-----------+ | max_bans | 30035 | 2500~ | +-------------------------------------------------------------------+-----------+-----------+ | max_ban_fetches | 30037 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_scheduled_events | 30038 | 100 | +-------------------------------------------------------------------+-----------+-----------+ | max_stickers | 30039 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_prune | 30040 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_widget_update | 30042 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_edit_to_message_older_than_one_hour | 30046 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_pinned_threads_in_forum_channel | 30047 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_forum_channel_tags | 30048 | - | +-------------------------------------------------------------------+-----------+-----------+ | bitrate_too_high_for_channel_type | 30052 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_premium_emoji | 30056 | 25 | +-------------------------------------------------------------------+-----------+-----------+ | max_webhooks_of_guilds | 30058 | 100 | +-------------------------------------------------------------------+-----------+-----------+ | max_blocked_users | 30059 | - | +-------------------------------------------------------------------+-----------+-----------+ | channels_too_large | 30061 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_resource | 31002 | - | +-------------------------------------------------------------------+-----------+-----------+ | unauthorized | 40001 | - | +-------------------------------------------------------------------+-----------+-----------+ | email_verification_required | 40002 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_private_channel_opening | 40003 | - | +-------------------------------------------------------------------+-----------+-----------+ | send_message_temporarily_disabled | 40004 | - | +-------------------------------------------------------------------+-----------+-----------+ | request_too_large | 40005 | - | +-------------------------------------------------------------------+-----------+-----------+ | feature_disabled | 40006 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_banned | 40007 | - | +-------------------------------------------------------------------+-----------+-----------+ | connection_revoked | 40012 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_in_team | 40024 | - | +-------------------------------------------------------------------+-----------+-----------+ | team_members_must_be_verified | 40026 | - | +-------------------------------------------------------------------+-----------+-----------+ | team_invitation_accepted | 40027 | - | +-------------------------------------------------------------------+-----------+-----------+ | delete_account_transfer_team_ownership | 40028 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_not_connected_to_voice | 40032 | - | +-------------------------------------------------------------------+-----------+-----------+ | message_crossposted | 40033 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_identity_verification_processing | 40035 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_identity_verification_succeeded | 40036 | - | +-------------------------------------------------------------------+-----------+-----------+ | application_name_used | 40041 | - | +-------------------------------------------------------------------+-----------+-----------+ | interaction_failed_to_send | 40043 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_send_message_to_forum_channel | 40058 | - | +-------------------------------------------------------------------+-----------+-----------+ | interaction_already_acknowledged | 40060 | - | +-------------------------------------------------------------------+-----------+-----------+ | tag_name_not_unique | 40061 | - | +-------------------------------------------------------------------+-----------+-----------+ | rate_limit_service_resource | 40062 | - | +-------------------------------------------------------------------+-----------+-----------+ | no_tags_available_for_non_moderators | 40066 | - | +-------------------------------------------------------------------+-----------+-----------+ | tag_required | 40067 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_quarantined | 40068 | - | +-------------------------------------------------------------------+-----------+-----------+ | invites_disabled | 40069 | - | +-------------------------------------------------------------------+-----------+-----------+ | missing_access | 50001 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_account_type | 50002 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_action_for_private_channel | 50003 | - | +-------------------------------------------------------------------+-----------+-----------+ | widget_disabled | 50004 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_edit_message_of_other_user | 50005 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_create_empty_message | 50006 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_message_user | 50007 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_send_message_to_non_text_channel | 50008 | - | +-------------------------------------------------------------------+-----------+-----------+ | channel_verification_level_too_high | 50009 | - | +-------------------------------------------------------------------+-----------+-----------+ | oauth2_application_has_no_bot | 50010 | - | +-------------------------------------------------------------------+-----------+-----------+ | oauth2_application_limit_reached | 50011 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_oauth2_state | 50012 | - | +-------------------------------------------------------------------+-----------+-----------+ | missing_permissions | 50013 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_token | 50014 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_note | 50015 | - | +-------------------------------------------------------------------+-----------+-----------+ | bulk_delete_amount_out_of_range | 50016 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_MFA_level | 50017 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_password | 50018 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_pin_message_in_different_channel | 50019 | - | +-------------------------------------------------------------------+-----------+-----------+ | invite_code_invalid_or_taken | 50020 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_action_for_system_message | 50021 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_phone_number | 50022 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_client_id | 50023 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_action_for_this_channel_type | 50024 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_oauth2_access_token | 50025 | - | +-------------------------------------------------------------------+-----------+-----------+ | missing_oauth2_scope | 50026 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_webhook_token | 50027 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_role | 50028 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_recipients | 50033 | - | +-------------------------------------------------------------------+-----------+-----------+ | bulk_delete_message_too_old | 50034 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_form_body | 50035 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_add_user_to_guild_where_bot_is_not_in | 50036 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_activity_action | 50039 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_oauth2_redirect_url | 50040 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_API_version | 50041 | - | +-------------------------------------------------------------------+-----------+-----------+ | asset_size_too_large | 50045 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_asset | 50046 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_payment_source | 50048 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_application_name | 50050 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_gift_redemption_owned | 50051 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_self_redeem_this_gift | 50054 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_guild | 50055 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_request_origin | 50067 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_message_type | 50068 | - | +-------------------------------------------------------------------+-----------+-----------+ | payment_source_required_to_redeem_gift | 50070 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_edit_system_webhook | 50077 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_delete_community_channel | 50074 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_edit_sticker_within_message | 50080 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_sticker_sent | 50081 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_action_for_archived_thread | 50083 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_thread_notification_setting | 50084 | - | +-------------------------------------------------------------------+-----------+-----------+ | before_value_earlier_than_creation_time | 50085 | - | +-------------------------------------------------------------------+-----------+-----------+ | community_and_rules_channel_cannot_be_changed_to_announcement | 50086 | - | +-------------------------------------------------------------------+-----------+-----------+ | event_entity_type_different_from_the_entitys | 50091 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_country_code | 50095 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_friend_self | 50096 | - | +-------------------------------------------------------------------+-----------+-----------+ | guild_monetization_required | 50097 | - | +-------------------------------------------------------------------+-----------+-----------+ | not_enough_guild_boosters | 50101 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_user_settings_data | 50105 | - | +-------------------------------------------------------------------+-----------+-----------+ | activity_launch_no_access | 50106 | - | +-------------------------------------------------------------------+-----------+-----------+ | activity_launch_premium_tier | 50107 | - | +-------------------------------------------------------------------+-----------+-----------+ | activity_launch_concurrent_activities | 50108 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_json | 50109 | - | +-------------------------------------------------------------------+-----------+-----------+ | failed_to_resize_asset_below_max_size | 50138 | 262144 | +-------------------------------------------------------------------+-----------+-----------+ | cannot_mix_subscription_and_non_subscription_roles_for_an_emoji | 50144 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_convert_emoji_between_premium_and_non_premium | 50145 | - | +-------------------------------------------------------------------+-----------+-----------+ | upload_file_not_found | 50146 | - | +-------------------------------------------------------------------+-----------+-----------+ | activity_launch_afk_channel | 50147 | - | +-------------------------------------------------------------------+-----------+-----------+ | feature_not_yet_rolled_out | 50155 | - | +-------------------------------------------------------------------+-----------+-----------+ | voice_message_not_supports_additional_content | 50159 | - | +-------------------------------------------------------------------+-----------+-----------+ | voice_message_must_have_one_audio_attachment | 50160 | - | +-------------------------------------------------------------------+-----------+-----------+ | voice_message_must_have_supporting_metadata | 50161 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_edit_voice_message | 50162 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_delete_guild_subscription_integration | 50163 | - | +-------------------------------------------------------------------+-----------+-----------+ | new_owner_ineligible_for_subscription | 50164 | - | +-------------------------------------------------------------------+-----------+-----------+ | activity_launch_age_gated | 50165 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_send_voice_message_to_this_channel | 50173 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_enabled | 60001 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_disabled | 60002 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_required | 60003 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_unverified | 60004 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_invalid_secret | 60005 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_invalid_ticket | 60006 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_invalid_code | 60008 | - | +-------------------------------------------------------------------+-----------+-----------+ | MFA_invalid_session | 60009 | - | +-------------------------------------------------------------------+-----------+-----------+ | phone_number_unable_to_send | 70003 | - | +-------------------------------------------------------------------+-----------+-----------+ | phone_verification_required | 70007 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_incoming_disabled | 80000 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_incoming_blocked | 80001 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_invalid_target_bot | 80002 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_invalid_target_self | 80003 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_invalid_discord_tag | 80004 | - | +-------------------------------------------------------------------+-----------+-----------+ | relationship_already_friends | 80007 | - | +-------------------------------------------------------------------+-----------+-----------+ | reaction_blocked | 90001 | - | +-------------------------------------------------------------------+-----------+-----------+ | user_cannot_burst_react | 90002 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_billing_profile | 100001 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_payment_source | 100002 | - | +-------------------------------------------------------------------+-----------+-----------+ | unknown_subscriptions | 100003 | - | +-------------------------------------------------------------------+-----------+-----------+ | already_subscribed | 100004 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_plan | 100005 | - | +-------------------------------------------------------------------+-----------+-----------+ | payment_source_required | 100006 | - | +-------------------------------------------------------------------+-----------+-----------+ | already_cancelled | 100007 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_payment | 100008 | - | +-------------------------------------------------------------------+-----------+-----------+ | already_refunded | 100009 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_billing_address | 100010 | - | +-------------------------------------------------------------------+-----------+-----------+ | already_purchased | 100011 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_gift_redemption_subscription_managed | 100021 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_gift_redemption_subscription_incompatible | 100023 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_gift_redemption_invoice_open | 100024 | - | +-------------------------------------------------------------------+-----------+-----------+ | negative_invoice_amount | 100027 | - | +-------------------------------------------------------------------+-----------+-----------+ | authentication_required | 100029 | - | +-------------------------------------------------------------------+-----------+-----------+ | subscription_renewal_in_progress | 100042 | - | +-------------------------------------------------------------------+-----------+-----------+ | confirmation_required | 100047 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_currency_for_payment_source | 100051 | - | +-------------------------------------------------------------------+-----------+-----------+ | ineligible_for_subscription | 100053 | - | +-------------------------------------------------------------------+-----------+-----------+ | card_declined | 100054 | - | +-------------------------------------------------------------------+-----------+-----------+ | purchase_token_authorization_required | 100056 | - | +-------------------------------------------------------------------+-----------+-----------+ | billing_non_refundable_payment_source | 100060 | - | +-------------------------------------------------------------------+-----------+-----------+ | application_not_yet_available | 110001 | - | +-------------------------------------------------------------------+-----------+-----------+ | listing_already_joined | 120000 | - | +-------------------------------------------------------------------+-----------+-----------+ | listing_too_many_member | 120001 | - | +-------------------------------------------------------------------+-----------+-----------+ | listing_join_blocked | 120002 | - | +-------------------------------------------------------------------+-----------+-----------+ | resource_overloaded | 130000 | - | +-------------------------------------------------------------------+-----------+-----------+ | stage_already_open | 150006 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_reply_without_read_message_history_permission | 160002 | - | +-------------------------------------------------------------------+-----------+-----------+ | message_has_thread | 160004 | - | +-------------------------------------------------------------------+-----------+-----------+ | thread_locked | 160005 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_active_threads | 160006 | - | +-------------------------------------------------------------------+-----------+-----------+ | max_active_announcement_threads | 160007 | - | +-------------------------------------------------------------------+-----------+-----------+ | invalid_lottie_json | 170001 | - | +-------------------------------------------------------------------+-----------+-----------+ | sticker_maximum_dimensions_exceeded | 170005 | 320x320 | +-------------------------------------------------------------------+-----------+-----------+ | sticker_frame_rate_out_of_expected_range | 170006 | ?-400 ms | +-------------------------------------------------------------------+-----------+-----------+ | sticker_animation_duration_exceeds_five_second | 170007 | - | +-------------------------------------------------------------------+-----------+-----------+ | poggermode_temporarily_disabled | 170008 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_update_finished_scheduled_event | 180000 | - | +-------------------------------------------------------------------+-----------+-----------+ | exactly_one_guild_id_parameter_is_required | 180001 | - | +-------------------------------------------------------------------+-----------+-----------+ | failed_to_create_stage_needed_for_scheduled_event | 180002 | - | +-------------------------------------------------------------------+-----------+-----------+ | privacy_policy_required | 190001 | - | +-------------------------------------------------------------------+-----------+-----------+ | terms_of_service_required | 190002 | - | +-------------------------------------------------------------------+-----------+-----------+ | auto_moderation_message_blocked | 200000 | - | +-------------------------------------------------------------------+-----------+-----------+ | auto_moderation_title_blocked | 200001 | - | +-------------------------------------------------------------------+-----------+-----------+ | auto_moderation_invalid_regex | 200002 | - | +-------------------------------------------------------------------+-----------+-----------+ | webhook_can_create_thread_only_in_forum_channel | 220003 | - | +-------------------------------------------------------------------+-----------+-----------+ | harmful_link_message_blocked | 240000 | - | +-------------------------------------------------------------------+-----------+-----------+ | clyde_consent_required | 310000 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_enable_onboarding_requirements_not_met | 350000 | - | +-------------------------------------------------------------------+-----------+-----------+ | cannot_update_onboarding_requirements_not_met | 350001 | - | +-------------------------------------------------------------------+-----------+-----------+ """ unknown_account = 10001 unknown_application = 10002 unknown_channel = 10003 unknown_guild = 10004 unknown_integration = 10005 unknown_invite = 10006 unknown_member = 10007 unknown_message = 10008 unknown_overwrite = 10009 unknown_provider = 10010 unknown_role = 10011 unknown_token = 10012 unknown_user = 10013 unknown_emoji = 10014 unknown_webhook = 10015 unknown_webhook_service = 10016 unknown_session = 10020 unknown_approval_form = 10023 unknown_ban = 10026 unknown_SKU = 10027 unknown_store_listing = 10028 unknown_entitlement = 10029 unknown_team = 10030 unknown_lobby = 10031 unknown_branch = 10032 unknown_store_directory_layout = 10033 unknown_redistributable = 10036 unknown_gift_code = 10038 unknown_team_member = 10040 unknown_stream = 10049 unknown_guild_boost_cooldown = 10050 unknown_guild_template = 10057 unknown_discovery_category = 10059 unknown_sticker = 10060 unknown_interaction = 10062 unknown_application_command = 10063 unknown_voice_state = 10065 unknown_application_command_permissions = 10066 unknown_stage = 10067 unknown_guild_member_verification_form = 10068 unknown_guild_welcome_screen = 10069 unknown_scheduled_event = 10070 unknown_scheduled_event_user = 10071 unknown_tag = 10087 bots_not_allowed = 20001 only_bots_allowed = 20002 RPC_proxy_disallowed = 20003 explicit_content = 20009 account_scheduled_for_deletion = 20011 user_not_authorized_for_application = 20012 account_disabled = 20013 rate_limit_slowmode = 20016 team_ownership_required = 20018 rate_limit_announcement_message_edit = 20022 under_minimum_age = 20024 quarantined = 20026 rate_limit_channel_write = 20028 rate_limit_server_send = 20029 name_contains_disallowed_word = 20031 guild_subscription_level_too_low = 20035 vanity_url_required_for_published_guilds = 20040 vanity_url_employee_only_guild_disabled = 20044 vanity_url_requirements_not_met = 20045 max_guilds = 30001 # 100 max_friends = 30001 # 10000 max_pins = 30003 # 50 max_recipients = 30004 # 10 max_roles = 30005 # 250 max_used_usernames = 30006 max_webhooks = 30007 # 15 max_emojis = 30008 max_reactions = 30010 # 20 max_group_channels = 30011 # 10 max_channels = 30013 # 500 max_attachments = 30015 # 10 max_invites = 30016 # 1000 max_animated_emojis = 30018 max_guild_members = 30019 max_application_game_SKUs = 30021 max_teams = 30023 max_companies = 30025 not_enough_guild_members = 30029 max_guild_discovery_category = 30030 # 5 guild_has_template = 30031 max_application_commands = 30032 max_thread_participants = 30033 rate_limit_daily_application_command_creation = 30034 max_bans = 30035 max_ban_fetches = 30037 max_scheduled_events = 30038 max_stickers = 30039 rate_limit_prune = 30040 rate_limit_widget_update = 30042 rate_limit_edit_to_message_older_than_one_hour = 30046 max_pinned_threads_in_forum_channel = 30047 max_forum_channel_tags = 30048 bitrate_too_high_for_channel_type = 30052 max_premium_emoji = 30056 max_webhooks_of_guilds = 30058 max_blocked_users = 30059 channels_too_large = 30061 rate_limit_resource = 31002 unauthorized = 40001 email_verification_required = 40002 rate_limit_private_channel_opening = 40003 send_message_temporarily_disabled = 40004 request_too_large = 40005 feature_disabled = 40006 user_banned = 40007 connection_revoked = 40012 user_in_team = 40024 team_members_must_be_verified = 40026 team_invitation_accepted = 40027 delete_account_transfer_team_ownership = 40028 user_not_connected_to_voice = 40032 message_crossposted = 40033 user_identity_verification_processing = 40035 user_identity_verification_succeeded = 40036 application_name_used = 40041 interaction_failed_to_send = 40043 cannot_send_message_to_forum_channel = 40058 interaction_already_acknowledged = 40060 tag_name_not_unique = 40061 rate_limit_service_resource = 40062 no_tags_available_for_non_moderators = 40066 tag_required = 40067 user_quarantined = 40068 invites_disabled = 40069 missing_access = 50001 invalid_account_type = 50002 invalid_action_for_private_channel = 50003 widget_disabled = 50004 cannot_edit_message_of_other_user = 50005 cannot_create_empty_message = 50006 cannot_message_user = 50007 cannot_send_message_to_non_text_channel = 50008 channel_verification_level_too_high = 50009 oauth2_application_has_no_bot = 50010 oauth2_application_limit_reached = 50011 invalid_oauth2_state = 50012 missing_permissions = 50013 invalid_token = 50014 invalid_note = 50015 bulk_delete_amount_out_of_range = 50016 invalid_MFA_level = 50017 invalid_password = 50018 cannot_pin_message_in_different_channel = 50019 invite_code_invalid_or_taken = 50020 invalid_action_for_system_message = 50021 invalid_phone_number = 50022 invalid_client_id = 50023 invalid_action_for_this_channel_type = 50024 invalid_oauth2_access_token = 50025 missing_oauth2_scope = 50026 invalid_webhook_token = 50027 invalid_role = 50028 invalid_recipients = 50033 bulk_delete_message_too_old = 50034 invalid_form_body = 50035 cannot_add_user_to_guild_where_bot_is_not_in = 50036 invalid_activity_action = 50039 invalid_oauth2_redirect_url = 50040 invalid_API_version = 50041 asset_size_too_large = 50045 invalid_asset = 50046 invalid_payment_source = 50048 invalid_application_name = 50050 invalid_gift_redemption_owned = 50051 cannot_self_redeem_this_gift = 50054 invalid_guild = 50055 invalid_request_origin = 50067 invalid_message_type = 50068 payment_source_required_to_redeem_gift = 50070 cannot_edit_system_webhook = 50073 cannot_delete_community_channel = 50074 cannot_edit_sticker_within_message = 50080 invalid_sticker_sent = 50081 invalid_action_for_archived_thread = 50083 invalid_thread_notification_setting = 50084 before_value_earlier_than_creation_time = 50085 community_and_rules_channel_cannot_be_changed_to_announcement = 50086 event_entity_type_different_from_the_entitys = 50091 invalid_country_code = 50095 cannot_friend_self = 50096 guild_monetization_required = 50097 not_enough_guild_boosters = 50101 invalid_user_settings_data = 50105 activity_launch_no_access = 50106 activity_launch_premium_tier = 50107 activity_launch_concurrent_activities = 50108 invalid_json = 50109 failed_to_resize_asset_below_max_size = 50138 cannot_mix_subscription_and_non_subscription_roles_for_an_emoji = 50144 cannot_convert_emoji_between_premium_and_non_premium = 50145 upload_file_not_found = 50146 activity_launch_afk_channel = 50148 feature_not_yet_rolled_out = 50155 voice_message_not_supports_additional_content = 50159 voice_message_must_have_one_audio_attachment = 50160 voice_message_must_have_supporting_metadata = 50161 cannot_edit_voice_message = 50162 cannot_delete_guild_subscription_integration = 50163 new_owner_ineligible_for_subscription = 50164 activity_launch_age_gated = 50165 cannot_send_voice_message_to_this_channel = 50173 MFA_enabled = 60001 MFA_disabled = 60002 MFA_required = 60003 MFA_unverified = 60004 MFA_invalid_secret = 60005 MFA_invalid_ticket = 60006 MFA_invalid_code = 60008 MFA_invalid_session = 60009 phone_number_unable_to_send = 70003 phone_verification_required = 70007 relationship_incoming_disabled = 80000 relationship_incoming_blocked = 80001 relationship_invalid_target_bot = 80002 relationship_invalid_target_self = 80003 relationship_invalid_discord_tag = 80004 relationship_already_friends = 80007 reaction_blocked = 90001 user_cannot_burst_react = 90002 unknown_billing_profile = 100001 unknown_payment_source = 100002 unknown_subscriptions = 100003 already_subscribed = 100004 invalid_plan = 100005 payment_source_required = 100006 already_cancelled = 100007 invalid_payment = 100008 already_refunded = 100009 invalid_billing_address = 100010 already_purchased = 100011 invalid_gift_redemption_subscription_managed = 100021 invalid_gift_redemption_subscription_incompatible = 100023 invalid_gift_redemption_invoice_open = 100024 negative_invoice_amount = 100027 authentication_required = 100029 subscription_renewal_in_progress = 100042 confirmation_required = 100047 invalid_currency_for_payment_source = 100051 ineligible_for_subscription = 100053 card_declined = 100054 purchase_token_authorization_required = 100056 billing_non_refundable_payment_source = 100060 application_not_yet_available = 110001 listing_already_joined = 120000 listing_too_many_member = 120001 listing_join_blocked = 120002 resource_overloaded = 130000 stage_already_open = 150006 cannot_reply_without_read_message_history_permission = 160002 message_has_thread = 160004 thread_locked = 160005 max_active_threads = 160006 max_active_announcement_threads = 160007 invalid_lottie_json = 170001 sticker_maximum_dimensions_exceeded = 170005 sticker_frame_rate_out_of_expected_range = 170006 sticker_animation_duration_exceeds_five_second = 170007 poggermode_temporarily_disabled = 170008 cannot_update_finished_scheduled_event = 180000 exactly_one_guild_id_parameter_is_required = 180001 failed_to_create_stage_needed_for_scheduled_event = 180002 privacy_policy_required = 190001 terms_of_service_required = 190002 auto_moderation_message_blocked = 200000 auto_moderation_title_blocked = 200001 auto_moderation_invalid_regex = 200002 webhook_can_create_thread_only_in_forum_channel = 220003 harmful_link_message_blocked = 240000 clyde_consent_required = 310000 cannot_enable_onboarding_requirements_not_met = 350000 cannot_update_onboarding_requirements_not_met = 350001
d8fd4caa1881767fdbdb3243b826d95602368b79
246e9200a834261eebcf1aaa54da5080981a24ea
/project-euler/26-50/quadratic-primes.py
687b00c3053fa2d1e6a26428025f06a178f6a92c
[]
no_license
kalsotra2001/practice
db435514b7b57ce549b96a8baf64fad8f579da18
bbc8a458718ad875ce5b7caa0e56afe94ae6fa68
refs/heads/master
2021-12-15T20:48:21.186658
2017-09-07T23:01:56
2017-09-07T23:01:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
from math import sqrt def prime(n): if n < 2: return False if n == 2: return True else: for div in range(2, int(sqrt(n)) + 1): if n % div == 0: return False return True max_primes = 0 product = 0 for i in range(-999, 1001): for j in range(-999, 1001): n = 0 while True: s = n ** 2 + i * n + j if prime(s) == False: break if n > max_primes: max_primes = n product = i * j n += 1 print product
c296bcf5d763803370519dbc7b0cfa134d9b4fc7
fd3f0fdc6af4d0b0205a70b7706caccab2c46dc0
/0x08-python-more_classes/1-rectangle.py
89807a014a51f03ba7255d4d66673efba41e72ac
[]
no_license
Maynot2/holbertonschool-higher_level_programming
b41c0454a1d27fe34596fe4aacadf6fc8612cd23
230c3df96413cd22771d1c1b4c344961b4886a61
refs/heads/main
2023-05-04T05:43:19.457819
2021-05-12T14:51:56
2021-05-12T14:51:56
319,291,958
0
0
null
null
null
null
UTF-8
Python
false
false
1,042
py
#!/usr/bin/python3 """This module contains geometric shape classe(s)""" class Rectangle: """Simulates a real world rectangle""" def __init__(self, width=0, height=0): """Initialises a rectangle of a given width and height""" self.width = width self.height = height @property def width(self): """Retrieves the width""" return self.__width @width.setter def width(self, size): """Sets the width""" if not isinstance(size, int): raise TypeError('width must be an integer') if size < 0: raise ValueError('width must be >= 0') self.__width = size @property def height(self): """Retrieves the height""" return self.__height @height.setter def height(self, size): """Sets the height""" if not isinstance(size, int): raise TypeError('height must be an integer') if size < 0: raise ValueError('height must be >= 0') self.__height = size
5c6620edec199d9f5d5a8418a074133844d17c7c
e34d69f33d9bf3d9de99343ba24ad78bc5197a93
/scripts/cmp_lj_sync
f25d123129b22ec54a527691be2a502d7f0f1e29
[]
no_license
cms-ttH/ttH-TauRoast
8e8728a49d02d9e8d7dc119376a4aefb6e8fd77d
3fe6529d7270dc091db00f95997ca6add8b95ac9
refs/heads/master
2021-01-24T06:13:06.485445
2017-10-11T14:04:05
2017-10-11T14:04:05
10,819,593
2
5
null
2016-09-15T07:19:20
2013-06-20T12:46:59
Python
UTF-8
Python
false
false
656
#!/usr/bin/env python import sys def read(fn): evts = {} with open(fn) as f: for line in f: if not line.startswith('1'): continue run, lumi, event, stub = line.split(',', 3) evts[(run, lumi, event)] = stub return evts me = read(sys.argv[1]) kit = read(sys.argv[2]) mkeys = set(me.keys()) kkeys = set(kit.keys()) for k in mkeys - kkeys: print "me", ",".join(list(k) + [me[k]]).strip() for k in kkeys - mkeys: print "kit", ",".join(list(k) + [kit[k]]).strip() print len(mkeys - kkeys), "events unique in first file" print len(kkeys - mkeys), "events unique in second file"
165c12e14da405727a906d3e419de0a1d7201897
37279a0ac59daab785f1d1583851eb3f5dad30e1
/workflow/oer_analysis/oer_scaling/oer_scaling.py
4e2df538b6004a0966af53cec1e2bb3ef03c7538
[ "MIT" ]
permissive
flash-jaehyun/PROJ_IrOx_OER
50269e34f428e4c54b34afe3e07aae77e6ff82fc
e0b3ef8e69deeb41d62059a92f466477238efbed
refs/heads/master
2023-02-09T05:45:11.969160
2020-12-30T23:18:54
2020-12-30T23:18:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,594
py
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python [conda env:PROJ_irox_oer] * # language: python # name: conda-env-PROJ_irox_oer-py # --- # # Creating OER scaling plot from raw data, not my modules # --- # ### Import Modules # + jupyter={"source_hidden": true} import os print(os.getcwd()) import sys import time; ti = time.time() import copy import numpy as np from sklearn.metrics import mean_squared_error import plotly.graph_objs as go from plotly.subplots import make_subplots # ######################################################### from proj_data import layout_shared as layout_shared_main from proj_data import scatter_shared_props as scatter_shared_props_main from proj_data import stoich_color_dict # ######################################################### from methods import get_df_features_targets # ######################################################### from layout import layout # - from methods import isnotebook isnotebook_i = isnotebook() if isnotebook_i: from tqdm.notebook import tqdm verbose = True show_plot = True else: from tqdm import tqdm verbose = False show_plot = False # ### Read Data df_features_targets = get_df_features_targets() # + active="" # # # + df_features_targets = df_features_targets.dropna(subset=[ ("targets", "g_o", ""), ("targets", "g_oh", ""), ]) # df_targets = df_features_targets["targets"].dropna() df_targets = df_features_targets["targets"] x_array = df_targets["g_oh"] y_array = df_targets["g_o"] color_array = df_features_targets["format"]["color"]["stoich"] # + # print(111 * "TEMP | ") # print("") # df_features_targets.columns.tolist() # df_tmp = df_features_targets.loc[:, # [ # ('format', 'color', 'stoich'), # ('data', 'stoich', ''), # ] # ] # for index_i, row_i in df_tmp.iterrows(): # tmp = 42 # color_i = row_i["format"]["color"]["stoich"] # stoich_i = row_i["data"]["stoich"][""] # # print("# ", stoich_i, " '", color_i, "'", sep="") # if stoich_i == "AB2": # if color_i == "#46cf44": # tmp = 42 # # print("AB2 Good") # else: # print("AB2 Bad") # if stoich_i == "AB3": # if color_i == "#42e3e3": # tmp = 42 # # print("AB3 Good") # else: # print("AB3 Bad") # - # ### Fitting data x_poly = np.linspace(x_array.min() - 0.2, x_array.max() + 0.2, num=50) # + z_1 = np.polyfit( x_array, y_array, 1, ) p_1 = np.poly1d(z_1) print( "Polynomial Fit (1st order): ", "\n", [np.round(i, 3) for i in list(z_1)], sep="") rmse_i = mean_squared_error( y_array, [p_1(i) for i in x_array], squared=False) print( "RMSE (1st order): ", rmse_i, sep="") y_poly_1 = [p_1(i) for i in x_poly] # + z_2 = np.polyfit( x_array, y_array, 2, ) p_2 = np.poly1d(z_2) print( "Polynomial Fit (2nd order): ", "\n", [np.round(i, 3) for i in list(z_2)], sep="") rmse_i = mean_squared_error( y_array, [p_2(i) for i in x_array], squared=False) print( "RMSE (2nd order): ", rmse_i, sep="") y_poly_2 = [p_2(i) for i in x_poly] # - # ### Layout # + layout_shared = copy.deepcopy(layout_shared_main) layout_master = layout_shared.update( layout ) layout_master["xaxis"]["range"] = [x_array.min() - 0.2, x_array.max() + 0.2] layout_master["title"] = "*O vs *OH Scaling Plot (1st and 2nd order fits)" # - # ### Instantiate scatter plots # + trace_poly_1 = go.Scatter( x=x_poly, y=y_poly_1, mode="lines", line_color="grey", name="poly_fit (1st order)", ) trace_poly_2 = go.Scatter( x=x_poly, y=y_poly_2, mode="lines", line_color="black", name="poly_fit (2nd order)", ) # + trace = go.Scatter( x=x_array, y=y_array, mode="markers", # marker_color=color_i, marker_color=color_array, name="main", ) scatter_shared_props = copy.deepcopy(scatter_shared_props_main) trace = trace.update( scatter_shared_props, overwrite=False, ) # - # ### Instantiate figure # + fig = go.Figure( data=[ trace_poly_1, trace_poly_2, trace, ], layout=layout_master, ) fig.write_json( os.path.join( os.environ["PROJ_irox_oer"], "workflow/oer_analysis/oer_scaling", "out_plot/oer_scaling__O_vs_OH_plot.json")) # - if show_plot: fig.show() # + active="" # There seems to be some nonlinearities at weak bonding energies # + # assert False # + active="" # # # # # # # # # # # # - # ## Plotting Histogram df_ab2 = df_features_targets[df_features_targets["data"]["stoich"] == "AB2"] df_ab3 = df_features_targets[df_features_targets["data"]["stoich"] == "AB3"] print( # "\n", "AB2 ΔG_O Mean: ", df_ab2["targets"]["g_o"].mean(), "\n", "AB3 ΔG_O Mean: ", df_ab3["targets"]["g_o"].mean(), "\n", "diff: ", df_ab3["targets"]["g_o"].mean() - df_ab2["targets"]["g_o"].mean(), "\n", 40 * "-", "\n", "AB2 ΔG_OH Mean: ", df_ab2["targets"]["g_oh"].mean(), "\n", "AB3 ΔG_OH Mean: ", df_ab3["targets"]["g_oh"].mean(), "\n", "diff: ", df_ab3["targets"]["g_oh"].mean() - df_ab2["targets"]["g_oh"].mean(), sep="") # + shared_layout_hist = go.Layout( yaxis_title="N", barmode="overlay", ) shared_trace_hist = dict( opacity=0.55, nbinsx=15, ) # - # ### Trying to get the number of data in bins to set y-axis range (NOT WORKING SO FAR) # + # y_targets_list = [ # df_ab2.targets.g_oh, # # df_ab3.targets.g_oh, # # df_ab2.targets.g_o, # # df_ab3.targets.g_o, # ] # max_num_data_list = [] # for y_target_i in y_targets_list: # width = (y_target_i.max() - y_target_i.min()) / shared_trace_hist["nbinsx"] # num_data_in_sliver_list = [] # for i in np.linspace(y_target_i.min(), y_target_i.max(), 200): # i_upper = i + width / 2 # i_lower = i - width / 2 # print(i_upper, i_lower) # y_in_sliver = y_target_i[ # (y_target_i < i_upper) & \ # (y_target_i > i_lower) # ] # num_data_in_sliver = y_in_sliver.shape[0] # #print(num_data_in_sliver) # num_data_in_sliver_list.append(num_data_in_sliver) # max_num_data_in_sliver_i = np.max(num_data_in_sliver_list) # print(max_num_data_in_sliver_i) # print("") # max_num_data_list.append(max_num_data_in_sliver_i) # max_max_num_in_sliver = np.max(max_num_data_list) # max_max_num_in_sliver # # width = # (y_target_i.max() - y_target_i.min()) / shared_trace_hist["nbinsx"] # # y_targets_list[0] # # y_in_sliver = # y_target_i[ # (y_target_i < 0.6) & \ # (y_target_i > 0.4) # ] # - # ### Instantiate *OH plots # + # %%capture fig_oh = go.Figure() fig_oh.add_trace( go.Histogram( x=df_ab2.targets.g_oh, marker_color=stoich_color_dict["AB2"], name="AB2", ).update(dict1=shared_trace_hist) ) fig_oh.add_trace( go.Histogram( x=df_ab3.targets.g_oh, marker_color=stoich_color_dict["AB3"], name="AB3", ).update(dict1=shared_trace_hist) ) # ######################################################### # Layout manipulation layout_shared = copy.deepcopy(layout_shared_main) layout_shared.update( go.Layout( # title="TEMP01", xaxis=go.layout.XAxis( title="ΔG<sub>*OH</sub>", ), ), overwrite=False, ) layout_shared.update(shared_layout_hist) fig_oh.update_layout(dict1=layout_shared) # - # ### Instantiate *O plots # + # %%capture fig_o = go.Figure() fig_o.add_trace( go.Histogram( x=df_ab2.targets.g_o, marker_color=stoich_color_dict["AB2"], name="AB2", ).update(dict1=shared_trace_hist) ) fig_o.add_trace( go.Histogram( x=df_ab3.targets.g_o, marker_color=stoich_color_dict["AB3"], name="AB3", ).update(dict1=shared_trace_hist) ) # ######################################################### # Layout manipulation layout_shared = copy.deepcopy(layout_shared_main) layout_shared.update( go.Layout( # title="", xaxis=go.layout.XAxis( title="ΔG<sub>*O</sub>", ), ), overwrite=False, ) layout_shared.update(shared_layout_hist) fig_o.update_layout(dict1=layout_shared) # - # ### Instantiate subplot # + # %%capture fig = make_subplots(rows=1, cols=2) for trace_i in fig_o.data: fig.add_trace( trace_i, row=1, col=1, ) for trace_i in fig_oh.data: fig.add_trace( trace_i, row=1, col=2, ) fig.update_layout( height=600, width=1000, title_text="ΔG<sub>*O</sub> and ΔG<sub>*OH</sub> Histograms (eV)", ) fig.update_layout(layout_shared_main) fig.update_layout(shared_layout_hist) fig.update_xaxes( fig_o.layout["xaxis"], row=1, col=1, overwrite=False, ) fig.update_xaxes( fig_oh.layout["xaxis"], row=1, col=2, overwrite=False, ) y_range_ub = 45 fig.update_yaxes( fig_o.layout["yaxis"].update( range=[0, y_range_ub], ), row=1, col=1, overwrite=False, ) fig.update_yaxes( fig_oh.layout["yaxis"].update( range=[0, y_range_ub], ), row=1, col=2, overwrite=False, ) # - # ### Saving plot to json fig.write_json( os.path.join( os.environ["PROJ_irox_oer"], "workflow/oer_analysis/oer_scaling", "out_plot/oer_scaling__O_OH_histogram.json")) if show_plot: fig.show() # ######################################################### print(20 * "# # ") print("All done!") print("Run time:", np.round((time.time() - ti) / 60, 3), "min") print("oer_scaling.ipynb") print(20 * "# # ") # ######################################################### # + active="" # # # # + jupyter={"source_hidden": true} # stoich_color_dict["AB2"] # # go.Histogram? # + jupyter={"source_hidden": true} # df_features_targets.head() # df_features_targets.columns.tolist() # + jupyter={"source_hidden": true} # color_i # + jupyter={"source_hidden": true} # print(len(x_array)) # print(len(y_array)) # print(len(color_i)) # + jupyter={"source_hidden": true} # df_targets.sort_values("g_oh")
d0be707b6b95674e7a55339a7774568045b2a525
6a7058009587e78b5c758ff783410325ad7c2a4b
/educative/slidingWindow/non_repeat_substring.py
2883b8e112151f20e144a97d63367dc9680d312d
[ "Apache-2.0" ]
permissive
stacykutyepov/python-cp-cheatsheet
8b96b76403c501f5579befd07b3c4a4c69fe914e
a00a57e1b36433648d1cace331e15ff276cef189
refs/heads/master
2023-07-16T13:26:35.130763
2021-08-30T11:23:39
2021-08-30T11:23:39
401,442,535
2
0
null
null
null
null
UTF-8
Python
false
false
537
py
""" time: 13 min errors: none! """ def non_repeat_substring(str): maxLen, i = 0, 0 ht = {} for i, c in enumerate(str): if c in ht: maxLen = max(maxLen, len(ht)) ht.clear() ht[c] = True maxLen = max(len(ht), maxLen) return maxLen def main(): print("Length of the longest substring: " + str(non_repeat_substring("aabccbb"))) print("Length of the longest substring: " + str(non_repeat_substring("abbbb"))) print("Length of the longest substring: " + str(non_repeat_substring("abccde"))) main()
9610d71e683b7cf6ba117adf541c9de69f52aee6
7b5828edda7751700ca7002b40a214e39e5f48a8
/EA/core/sims4/gsi/command_buffer.py
e1301ea4581704ced936304f7533eab0b6fbd36f
[]
no_license
daniela-venuta/Sims-4-Python-Script-Workspace
54c33dac02f84daed66f46b7307f222fede0fa62
f408b28fb34626b2e3b2953152343d591a328d66
refs/heads/main
2023-03-29T18:08:39.202803
2021-03-30T19:00:42
2021-03-30T19:00:42
353,111,243
1
0
null
null
null
null
UTF-8
Python
false
false
2,504
py
import collections try: import threading _threading_enabled = True except ImportError: import dummy_threading as threading _threading_enabled = False import sims4.commands import sims4.log import sims4.service_manager logger = sims4.log.Logger('GSI') _Command = collections.namedtuple('_Command', ('command_string', 'callback', 'output_override', 'zone_id', 'connection_id')) def _execute_command(command): real_output = sims4.commands.output sims4.commands.output = command.output_override result = False try: if command.zone_id is not None: sims4.commands.execute(command.command_string, command.connection_id) else: sims4.commands.execute(command.command_string, None) result = True except Exception: result = False logger.exception('Error while executing game command for') finally: sims4.commands.output = real_output command.callback(result) if _threading_enabled: class CommandBufferService(sims4.service_manager.Service): def __init__(self): self.pending_commands = None self._lock = threading.Lock() def start(self): with self._lock: self.pending_commands = [] def stop(self): with self._lock: self.pending_commands = None def add_command(self, command_string, callback=None, output_override=None, zone_id=None, connection_id=None): with self._lock: if self.pending_commands is not None: command = _Command(command_string, callback, output_override, zone_id, connection_id) self.pending_commands.append(command) def on_tick(self): with self._lock: if not self.pending_commands: return local_pending_commands = list(self.pending_commands) del self.pending_commands[:] for command in local_pending_commands: _execute_command(command) else: class CommandBufferService(sims4.service_manager.Service): def add_command(self, command_string, callback=None, output_override=None, zone_id=None, connection_id=None): command = _Command(command_string, callback, output_override, zone_id, connection_id) _execute_command(command) def on_tick(self): pass
309cd04173b4d096eb7b590ed67fc399ef2c0877
cf668ede675f5b5a49912e8ca2170b5d5dba85c3
/FullDesign/LsRand_OnlyTau_4.py
3d9e3b41a25a22b071485ba0d01de3c81c709d52
[]
no_license
amemil/MasterThesisRaw
b6c97a671e740871be541539384192684f5f1966
bb357481cc47ef3a2b241f4b1df85fd0a4ff1de0
refs/heads/main
2023-06-09T22:49:06.082380
2021-06-25T09:38:20
2021-06-25T09:38:20
327,104,381
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 12 19:29:28 2021 @author: emilam """ import sys, os import numpy as np sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import UtilitiesMaster as ut s1init1 = np.load('s1init_16.npy') s2init1 = np.load('s2init_16.npy') Winit1 = np.load('Winit_16.npy') s1init2 = np.load('s1init_17.npy') s2init2 = np.load('s2init_17.npy') Winit2 = np.load('Winit_17.npy') s1init3 = np.load('s1init_18.npy') s2init3 = np.load('s2init_18.npy') Winit3 = np.load('Winit_18.npy') s1init4 = np.load('s1init_19.npy') s2init4 = np.load('s2init_19.npy') Winit4= np.load('Winit_19.npy') s1init5 = np.load('s1init_20.npy') s2init5 = np.load('s2init_20.npy') Winit5 = np.load('Winit_20.npy') indx = [16,17,18,19,20] s1s = [s1init1,s1init2,s1init3,s1init4,s1init5] s2s = [s2init1,s2init2,s2init3,s2init4,s2init5] ws = [Winit1,Winit2,Winit3,Winit4,Winit5] for i in range(5): design = ut.ExperimentDesign(freqs_init=np.array([20,50,100,200]),maxtime=60,trialsize=5\ ,Ap=0.005, tau=0.02, genstd=0.0001,b1=-3.1, b2=-3.1, w0=1.0,binsize = 1/500.0,reals = 20,longinit = 60\ ,s1init = s1s[i],s2init = s2s[i],Winit = ws[i]) means,entrs,optms,W,posts = design.onlineDesign_wh_tau(nofreq =False,constant = False, random = True, optimised = False) np.save('RandEstimatesTau_'+str(indx[i]),means) np.save('RandEntropiesTau_'+str(indx[i]),entrs) np.save('RandWTau_'+str(indx[i]),W) np.save('RandPostsTau_'+str(indx[i]),posts) np.save('RandFreqsTau_'+str(indx[i]),optms)
9eb21a225d99d72d993744068321b270fe85c8e0
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/model/mysql_forwarding.py
1bd1a82ee4f076d2f13ebb0d6b9e7b5b2c2a94ed
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
8,910
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class MysqlForwarding: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] sensitive_list.append('password') openapi_types = { 'address': 'NetAddress', 'db_name': 'str', 'username': 'str', 'password': 'str', 'enable_ssl': 'bool', 'table_name': 'str', 'column_mappings': 'list[ColumnMapping]' } attribute_map = { 'address': 'address', 'db_name': 'db_name', 'username': 'username', 'password': 'password', 'enable_ssl': 'enable_ssl', 'table_name': 'table_name', 'column_mappings': 'column_mappings' } def __init__(self, address=None, db_name=None, username=None, password=None, enable_ssl=None, table_name=None, column_mappings=None): """MysqlForwarding The model defined in huaweicloud sdk :param address: :type address: :class:`huaweicloudsdkiotda.v5.NetAddress` :param db_name: **参数说明**:连接MYSQL数据库的库名。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :type db_name: str :param username: **参数说明**:连接MYSQL数据库的用户名 :type username: str :param password: **参数说明**:连接MYSQL数据库的密码 :type password: str :param enable_ssl: **参数说明**:客户端是否使用SSL连接服务端,默认为true :type enable_ssl: bool :param table_name: **参数说明**:MYSQL数据库的表名 :type table_name: str :param column_mappings: **参数说明**:MYSQL数据库的列和流转数据的对应关系列表。 :type column_mappings: list[:class:`huaweicloudsdkiotda.v5.ColumnMapping`] """ self._address = None self._db_name = None self._username = None self._password = None self._enable_ssl = None self._table_name = None self._column_mappings = None self.discriminator = None self.address = address self.db_name = db_name self.username = username self.password = password if enable_ssl is not None: self.enable_ssl = enable_ssl self.table_name = table_name self.column_mappings = column_mappings @property def address(self): """Gets the address of this MysqlForwarding. :return: The address of this MysqlForwarding. :rtype: :class:`huaweicloudsdkiotda.v5.NetAddress` """ return self._address @address.setter def address(self, address): """Sets the address of this MysqlForwarding. :param address: The address of this MysqlForwarding. :type address: :class:`huaweicloudsdkiotda.v5.NetAddress` """ self._address = address @property def db_name(self): """Gets the db_name of this MysqlForwarding. **参数说明**:连接MYSQL数据库的库名。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :return: The db_name of this MysqlForwarding. :rtype: str """ return self._db_name @db_name.setter def db_name(self, db_name): """Sets the db_name of this MysqlForwarding. **参数说明**:连接MYSQL数据库的库名。 **取值范围**:长度不超过64,只允许字母、数字、下划线(_)、连接符(-)的组合。 :param db_name: The db_name of this MysqlForwarding. :type db_name: str """ self._db_name = db_name @property def username(self): """Gets the username of this MysqlForwarding. **参数说明**:连接MYSQL数据库的用户名 :return: The username of this MysqlForwarding. :rtype: str """ return self._username @username.setter def username(self, username): """Sets the username of this MysqlForwarding. **参数说明**:连接MYSQL数据库的用户名 :param username: The username of this MysqlForwarding. :type username: str """ self._username = username @property def password(self): """Gets the password of this MysqlForwarding. **参数说明**:连接MYSQL数据库的密码 :return: The password of this MysqlForwarding. :rtype: str """ return self._password @password.setter def password(self, password): """Sets the password of this MysqlForwarding. **参数说明**:连接MYSQL数据库的密码 :param password: The password of this MysqlForwarding. :type password: str """ self._password = password @property def enable_ssl(self): """Gets the enable_ssl of this MysqlForwarding. **参数说明**:客户端是否使用SSL连接服务端,默认为true :return: The enable_ssl of this MysqlForwarding. :rtype: bool """ return self._enable_ssl @enable_ssl.setter def enable_ssl(self, enable_ssl): """Sets the enable_ssl of this MysqlForwarding. **参数说明**:客户端是否使用SSL连接服务端,默认为true :param enable_ssl: The enable_ssl of this MysqlForwarding. :type enable_ssl: bool """ self._enable_ssl = enable_ssl @property def table_name(self): """Gets the table_name of this MysqlForwarding. **参数说明**:MYSQL数据库的表名 :return: The table_name of this MysqlForwarding. :rtype: str """ return self._table_name @table_name.setter def table_name(self, table_name): """Sets the table_name of this MysqlForwarding. **参数说明**:MYSQL数据库的表名 :param table_name: The table_name of this MysqlForwarding. :type table_name: str """ self._table_name = table_name @property def column_mappings(self): """Gets the column_mappings of this MysqlForwarding. **参数说明**:MYSQL数据库的列和流转数据的对应关系列表。 :return: The column_mappings of this MysqlForwarding. :rtype: list[:class:`huaweicloudsdkiotda.v5.ColumnMapping`] """ return self._column_mappings @column_mappings.setter def column_mappings(self, column_mappings): """Sets the column_mappings of this MysqlForwarding. **参数说明**:MYSQL数据库的列和流转数据的对应关系列表。 :param column_mappings: The column_mappings of this MysqlForwarding. :type column_mappings: list[:class:`huaweicloudsdkiotda.v5.ColumnMapping`] """ self._column_mappings = column_mappings def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MysqlForwarding): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
a7a8a4fc6a4d8860a7cbcf0990e903217b21bb30
fd40d6375ddae5c8613004a411341f0c984e80d5
/src/visions/core/implementations/types/visions_datetime.py
f8a11f0c6b5bf06f1ed01080801bdba0c704c5d0
[ "LicenseRef-scancode-public-domain", "MIT" ]
permissive
ieaves/tenzing
93c3353e62621c90adefc5a174a2dcde9aacbc46
92d39c1c3a5633d8074e0ffe8c2687c465aebbc8
refs/heads/master
2020-04-25T07:14:31.388737
2020-01-07T02:51:13
2020-01-07T02:51:13
172,608,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,360
py
import pandas.api.types as pdt import pandas as pd from typing import Sequence from visions.core.model.relations import ( IdentityRelation, InferenceRelation, TypeRelation, ) from visions.core.model.type import VisionsBaseType from visions.core.implementations.types import visions_string from visions.utils.coercion import test_utils def to_datetime(series: pd.Series) -> pd.Series: return pd.to_datetime(series) def _get_relations() -> Sequence[TypeRelation]: from visions.core.implementations.types import visions_generic relations = [ IdentityRelation(visions_datetime, visions_generic), InferenceRelation( visions_datetime, visions_string, relationship=test_utils.coercion_test(to_datetime), transformer=to_datetime, ), ] return relations class visions_datetime(VisionsBaseType): """**Datetime** implementation of :class:`visions.core.model.type.VisionsBaseType`. Examples: >>> x = pd.Series([pd.datetime(2017, 3, 5), pd.datetime(2019, 12, 4)]) >>> x in visions_datetime True """ @classmethod def get_relations(cls) -> Sequence[TypeRelation]: return _get_relations() @classmethod def contains_op(cls, series: pd.Series) -> bool: return pdt.is_datetime64_any_dtype(series)
045849a6dcf37e6dfd8deaa91796aebe1f3f2334
c6609c161df66949656ca91d8a3d9f4d27a4c399
/rates_project_04122021/rates_client/rates_client/rate_client.py
71771ba20ad4886144213eb414be5cd5d7451817
[ "MIT" ]
permissive
t4d-classes/advanced-python_04122021
b93ea38c5b35af2b1eb06bc1d5fe6d3f0c1cf39f
07b27aea8ac3c7170eb66d5243c5cd841f41322c
refs/heads/master
2023-04-11T11:45:18.114381
2021-04-20T12:36:04
2021-04-20T12:36:04
357,016,025
0
0
null
null
null
null
UTF-8
Python
false
false
1,063
py
""" rate client module """ import socket import sys import pathlib import yaml from rates_shared.utils import read_config def main() -> None: """Main Function""" try: config = read_config() host = config["server"]["host"] port = int(config["server"]["port"]) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket: client_socket.connect((host, port)) print(client_socket.recv(2048).decode("UTF-8")) while True: command = input("> ") if command == "exit": break else: client_socket.sendall(command.encode("UTF-8")) print(client_socket.recv(2048).decode("UTF-8")) client_socket.close() except ConnectionResetError: print("Server connection was closed.") except ConnectionRefusedError: print("Server is not running.") except KeyboardInterrupt: pass sys.exit(0) if __name__ == '__main__': main()
f9ed10bc581a959ecacc6f7e395dd6fef7ea68b0
016f96e528141db111f15a4c00a0fc46e61cdff6
/lib/emailses/urls.py
5fb0d6077dd92bf4cd7ecabb113f5b0498156de9
[ "BSD-2-Clause" ]
permissive
hdknr/emailqueue
3d02407b06a492cdf9b89fde2b06c766cd500555
05e108562f4fb612440f769973b9a3d02c11afcd
refs/heads/master
2021-01-23T20:13:04.807258
2015-10-08T08:41:51
2015-10-08T08:41:51
20,243,165
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
from django.conf.urls import url import views urlpatterns = [ url(r'(?P<topic>.+)', views.notify, name='emailses_notify'), ]
193e2e78f289aa1bb05e4b344b5c7d17b61c984e
6b0161214e4db57a81d3b4432d82c874c7106f13
/couchbase/_pyport.py
20700a813860e5ed162b08ac93b31aa54775c92d
[ "Apache-2.0" ]
permissive
neilalbrock/couchbase-python-client
de9d6115d1240f56f4cb7b57aee7e8765c5c7d1f
95789e3d49c42613fe719bbd02e6d9ad30216334
refs/heads/master
2021-01-15T18:51:31.311163
2013-10-14T13:58:28
2013-10-14T13:58:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
# # Copyright 2013, Couchbase, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This module contains various mappings for modules which have had # their names changed across Python major versions try: import urllib.parse as ulp from urllib.request import urlopen from urllib.parse import parse_qs except ImportError: import urllib as ulp from urllib2 import urlopen from urlparse import parse_qs try: long = long except NameError: long = int try: xrange = xrange except NameError: xrange = range try: basestring = basestring except NameError: basestring = str
219d2f333e3269a900b48b27c08cc48a24363b80
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02707/s167454120.py
27b53e15e36617817a3cd3b043a523410132faad
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
import math n = int(input()) c= [0]*n s = map(int,input().split()) for i in s: c[i-1]+=1 for i in c: print(i)
9cfda2d3b33fe057ffac602c8a45eb41a9ec05e5
adea9fc9697f5201f4cb215571025b0493e96b25
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/__init__.py
2c88a90da723c84456e7fd1bc37de0086e2d37c7
[ "Apache-2.0" ]
permissive
andyjsharp/napalm-yang
d8a8b51896ef7c6490f011fe265db46f63f54248
ef80ebbfb50e188f09486380c88b058db673c896
refs/heads/develop
2021-09-09T02:09:36.151629
2018-03-08T22:44:04
2018-03-08T22:44:04
114,273,455
0
0
null
2018-03-08T22:44:05
2017-12-14T16:33:35
Python
UTF-8
Python
false
false
34,558
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int unicode = str elif six.PY2: import __builtin__ class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/interfaces/interface/levels/level/afi-safi/af/segment-routing/prefix-sids/prefix-sid/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configuration parameters for the IGP Prefix SID. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__prefix','__sid_id','__label_options',) _yang_name = 'config' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__label_options = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) self.__prefix = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) self.__sid_id = YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'interfaces', u'interface', u'levels', u'level', u'afi-safi', u'af', u'segment-routing', u'prefix-sids', u'prefix-sid', u'config'] def _get_prefix(self): """ Getter method for prefix, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/prefix (inet:ip-prefix) YANG Description: The IP prefix for which the IGP prefix SID should be advertised. The value specified is a local prefix on the interface which is advertised into the IGP. """ return self.__prefix def _set_prefix(self, v, load=False): """ Setter method for prefix, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/prefix (inet:ip-prefix) If this variable is read-only (config: false) in the source YANG file, then _set_prefix is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_prefix() directly. YANG Description: The IP prefix for which the IGP prefix SID should be advertised. The value specified is a local prefix on the interface which is advertised into the IGP. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """prefix must be of a type compatible with inet:ip-prefix""", 'defined-type': "inet:ip-prefix", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True)""", }) self.__prefix = t if hasattr(self, '_set'): self._set() def _unset_prefix(self): self.__prefix = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) def _get_sid_id(self): """ Getter method for sid_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/sid_id (sr-sid-type) YANG Description: The Segment Identifier to be used when advertising the IGP Prefix SID. """ return self.__sid_id def _set_sid_id(self, v, load=False): """ Setter method for sid_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/sid_id (sr-sid-type) If this variable is read-only (config: false) in the source YANG file, then _set_sid_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_sid_id() directly. YANG Description: The Segment Identifier to be used when advertising the IGP Prefix SID. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """sid_id must be of a type compatible with sr-sid-type""", 'defined-type': "openconfig-network-instance:sr-sid-type", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True)""", }) self.__sid_id = t if hasattr(self, '_set'): self._set() def _unset_sid_id(self): self.__sid_id = YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) def _get_label_options(self): """ Getter method for label_options, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/label_options (enumeration) YANG Description: The options associated with the IGP prefix SID for MPLS. The value of this leaf specifies the option that the SID should be advertised into the IGP with. """ return self.__label_options def _set_label_options(self, v, load=False): """ Setter method for label_options, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/label_options (enumeration) If this variable is read-only (config: false) in the source YANG file, then _set_label_options is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_label_options() directly. YANG Description: The options associated with the IGP prefix SID for MPLS. The value of this leaf specifies the option that the SID should be advertised into the IGP with. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """label_options must be of a type compatible with enumeration""", 'defined-type': "openconfig-network-instance:enumeration", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True)""", }) self.__label_options = t if hasattr(self, '_set'): self._set() def _unset_label_options(self): self.__label_options = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) prefix = __builtin__.property(_get_prefix, _set_prefix) sid_id = __builtin__.property(_get_sid_id, _set_sid_id) label_options = __builtin__.property(_get_label_options, _set_label_options) _pyangbind_elements = {'prefix': prefix, 'sid_id': sid_id, 'label_options': label_options, } class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/interfaces/interface/levels/level/afi-safi/af/segment-routing/prefix-sids/prefix-sid/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configuration parameters for the IGP Prefix SID. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__prefix','__sid_id','__label_options',) _yang_name = 'config' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__label_options = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) self.__prefix = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) self.__sid_id = YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'interfaces', u'interface', u'levels', u'level', u'afi-safi', u'af', u'segment-routing', u'prefix-sids', u'prefix-sid', u'config'] def _get_prefix(self): """ Getter method for prefix, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/prefix (inet:ip-prefix) YANG Description: The IP prefix for which the IGP prefix SID should be advertised. The value specified is a local prefix on the interface which is advertised into the IGP. """ return self.__prefix def _set_prefix(self, v, load=False): """ Setter method for prefix, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/prefix (inet:ip-prefix) If this variable is read-only (config: false) in the source YANG file, then _set_prefix is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_prefix() directly. YANG Description: The IP prefix for which the IGP prefix SID should be advertised. The value specified is a local prefix on the interface which is advertised into the IGP. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """prefix must be of a type compatible with inet:ip-prefix""", 'defined-type': "inet:ip-prefix", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True)""", }) self.__prefix = t if hasattr(self, '_set'): self._set() def _unset_prefix(self): self.__prefix = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/(([0-9])|([1-2][0-9])|(3[0-2]))'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'}),], is_leaf=True, yang_name="prefix", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ip-prefix', is_config=True) def _get_sid_id(self): """ Getter method for sid_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/sid_id (sr-sid-type) YANG Description: The Segment Identifier to be used when advertising the IGP Prefix SID. """ return self.__sid_id def _set_sid_id(self, v, load=False): """ Setter method for sid_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/sid_id (sr-sid-type) If this variable is read-only (config: false) in the source YANG file, then _set_sid_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_sid_id() directly. YANG Description: The Segment Identifier to be used when advertising the IGP Prefix SID. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """sid_id must be of a type compatible with sr-sid-type""", 'defined-type': "openconfig-network-instance:sr-sid-type", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True)""", }) self.__sid_id = t if hasattr(self, '_set'): self._set() def _unset_sid_id(self): self.__sid_id = YANGDynClass(base=[RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'16..1048575']}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'NO_LABEL': {}, u'IPV6_EXPLICIT_NULL': {'value': 2}, u'ENTROPY_LABEL_INDICATOR': {'value': 7}, u'IPV4_EXPLICIT_NULL': {'value': 0}, u'ROUTER_ALERT': {'value': 1}, u'IMPLICIT_NULL': {'value': 3}},),RestrictedClassType(base_type=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': u'[0-9a-fA-F:\\.]*'}),], is_leaf=True, yang_name="sid-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='sr-sid-type', is_config=True) def _get_label_options(self): """ Getter method for label_options, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/label_options (enumeration) YANG Description: The options associated with the IGP prefix SID for MPLS. The value of this leaf specifies the option that the SID should be advertised into the IGP with. """ return self.__label_options def _set_label_options(self, v, load=False): """ Setter method for label_options, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/interfaces/interface/levels/level/afi_safi/af/segment_routing/prefix_sids/prefix_sid/config/label_options (enumeration) If this variable is read-only (config: false) in the source YANG file, then _set_label_options is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_label_options() directly. YANG Description: The options associated with the IGP prefix SID for MPLS. The value of this leaf specifies the option that the SID should be advertised into the IGP with. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """label_options must be of a type compatible with enumeration""", 'defined-type': "openconfig-network-instance:enumeration", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True)""", }) self.__label_options = t if hasattr(self, '_set'): self._set() def _unset_label_options(self): self.__label_options = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'EXPLICIT_NULL': {}, u'NO_PHP': {}},), is_leaf=True, yang_name="label-options", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='enumeration', is_config=True) prefix = __builtin__.property(_get_prefix, _set_prefix) sid_id = __builtin__.property(_get_sid_id, _set_sid_id) label_options = __builtin__.property(_get_label_options, _set_label_options) _pyangbind_elements = {'prefix': prefix, 'sid_id': sid_id, 'label_options': label_options, }
e83b9d3c0be7a33e00b85393338fd4d1bb2d0e8d
cbc7ca332ff4cb8c98cb9eb37af654ee63297802
/torch/_C/_distributed_c10d.pyi
1cbf030e4afedebc674b36fe035faa072792c35e
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
yfzheng11/pytorch
307ebedbf6c5f23ed49584cf9536e47cff0a3ab0
1aa14fcb14dd1ecc8382f747de6f2070d929ed02
refs/heads/master
2023-05-26T14:07:05.459920
2021-06-03T20:28:45
2021-06-03T20:30:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,379
pyi
from datetime import timedelta from enum import Enum from typing import Optional, List, Any, Tuple, overload from torch import Tensor # This module is defined in torch/csrc/distributed/c10d/init.cpp _DEFAULT_FIRST_BUCKET_BYTES: int _DEFAULT_NO_TIMEOUT: timedelta _DEFAULT_PG_TIMEOUT: timedelta class BuiltinCommHookType(Enum): ALLREDUCE = ... FP16_COMPRESS = ... def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ... def _register_builtin_comm_hook( reducer: Reducer, comm_hook_type: BuiltinCommHookType ): ... class GradBucket: def __init__( self, index: int, tensor: Tensor, offsets: List[int], lengths: List[int], sizes_list: List[Tuple[int]], ): ... def get_index(self) -> int: ... def get_tensor(self) -> Tensor: ... def get_per_parameter_tensors(self) -> List[Tensor]: ... def is_the_last_bucket_to_allreduce(self) -> bool: ... def set_tensor(self, tensor: Tensor) -> None: ... class Reducer: def __init__( self, replicas: List[List[Tensor]], bucket_indices: List[List[int]], process_group: ProcessGroup, expect_sparse_gradients: List[List[bool]], bucket_bytes_cap: int, find_unused_parameters: bool, gradient_as_bucket_view: bool, ): ... ... class Logger: def __init__(self, reducer: Reducer): ... def set_construction_data_and_log( self, module_name: str, device_ids: List[int], output_device: int, broadcast_buffers: bool, ): ... ... def _get_debug_mode(): ... class _DistributedDebugLevel(Enum): OFF = ... INFO = ... DETAIL = ... class ReduceOp(Enum): SUM = ... PRODUCT = ... MIN = ... MAX = ... BAND = ... BOR = ... BXOR = ... UNUSED = ... class BroadcastOptions: rootRank: int rootTensor: int timeout: timedelta class AllreduceOptions: reduceOp: ReduceOp timeout: timedelta class AllreduceCoalescedOptions(AllreduceOptions): ... class ReduceOptions: reduceOp: ReduceOp rootRank: int rootTensor: int timeout: timedelta class AllGatherOptions: timeout: timedelta class GatherOptions: rootRank: int timeout: timedelta class ScatterOptions: rootRank: int timeout: timedelta class ReduceScatterOptions: reduceOp: ReduceOp timeout: timedelta class BarrierOptions: device_ids: List[int] timeout: timedelta class AllToAllOptions: timeout: timedelta class Store: def set(self, key: str, value: str): ... def get(self, key: str) -> bytes: ... def add(self, key: str, value: int) -> int: ... def compare_set(self, key: str, expected_value: str, desired_value: str) -> bytes: ... def delete_key(self, key: str) -> bool: ... def num_keys(self) -> int: ... def set_timeout(self, timeout: timedelta): ... @overload def wait(self, keys: List[str]): ... @overload def wait(self, keys: List[str], timeout: timedelta): ... class FileStore(Store): def __init__(self, path: str, numWorkers: int): ... class HashStore(Store): def __init__(self): ... class TCPStore(Store): def __init__( self, host_name: str, port: int, world_size: int = ..., is_master: bool = ..., timeout: timedelta = ..., wait_for_workers: bool = ... ): ... class PrefixStore(Store): def __init__(self, prefix: str, store: Store): ... class Work: def is_completed(self) -> bool: ... def is_success(self) -> bool: ... def exception(self) -> Any: ... def wait(self, timeout: timedelta = _DEFAULT_NO_TIMEOUT) -> bool: ... def source_rank(self) -> int: ... def _source_rank(self) -> int: ... def result(self) -> List[Tensor]: ... def synchronize(self): ... ... class ProcessGroup: class Options: ... def __init__(self): ... def rank(self) -> int: ... def size(self) -> int: ... @overload def broadcast( self, tensors: List[Tensor], opts=BroadcastOptions(), ) -> Work: ... @overload def broadcast( self, tensor: Tensor, root: int, ) -> Work: ... @overload def allreduce( self, tensors: List[Tensor], opts: AllreduceOptions = AllreduceOptions(), ) -> Work: ... @overload def allreduce( self, tensors: List[Tensor], op=ReduceOp.SUM, ) -> Work: ... @overload def allreduce( self, tensor: Tensor, op=ReduceOp.SUM, ) -> Work: ... def allreduce_coalesced( self, tensors: List[Tensor], opts=AllreduceCoalescedOptions(), ) -> Work: ... @overload def reduce( self, tensors: List[Tensor], opts=ReduceOptions(), ) -> Work: ... @overload def reduce( self, tensor: Tensor, root: int, op=ReduceOp.SUM, ) -> Work: ... @overload def allgather( self, output_tensors: List[List[Tensor]], input_tensors: List[Tensor], opts=AllGatherOptions(), ) -> Work: ... @overload def allgather( self, output_tensors: List[Tensor], input_tensor: Tensor, ) -> Work: ... def _allgather_base( self, output: Tensor, input: Tensor, opts = AllGatherOptions(), ) -> Work: ... def allgather_coalesced( self, output_lists: List[List[Tensor]], input_list: List[Tensor], opts=AllGatherOptions(), ) -> Work: ... @overload def gather( self, output_tensors: List[List[Tensor]], input_tensors: List[Tensor], opts=GatherOptions(), ) -> Work: ... @overload def gather( self, output_tensors: List[Tensor], input_tensor: Tensor, root: int, ) -> Work: ... @overload def scatter( self, output_tensors: List[Tensor], input_tensors: List[List[Tensor]], opts=ScatterOptions(), ) -> Work: ... @overload def scatter( self, output_tensor: Tensor, input_tensors: List[Tensor], root: int, ) -> Work: ... @overload def reduce_scatter( self, output_tensors: List[Tensor], input_tensors: List[List[Tensor]], opts=ReduceScatterOptions(), ) -> Work: ... @overload def reduce_scatter( self, output_tensors: Tensor, input_tensor: List[Tensor], ) -> Work: ... @overload def alltoall_base( self, output_tensor: Tensor, input_tensor: Tensor, output_split_sizes: List[int], input_split_sizes: List[int], opts=AllToAllOptions(), ) -> Work: ... @overload def alltoall_base( self, output: Tensor, input: Tensor, output_split_sizes: List[int], input_split_sizes: List[int], ) -> Work: ... @overload def alltoall( self, output_tensor: List[Tensor], input_tensor: List[Tensor], opts=AllToAllOptions(), ) -> Work: ... @overload def alltoall( self, output: List[Tensor], input: List[Tensor], ) -> Work: ... def send( self, tensors: List[Tensor], dstRank: int, tag: int, ) -> Work: ... def recv( self, tensors: List[Tensor], srcRank: int, tag: int, ) -> Work: ... def recv_anysource(self, tensors: List[Tensor], tag: int) -> Work: ... def barrier(self, opts=BarrierOptions()) -> Work: ... class ProcessGroupRoundRobin(ProcessGroup): ... def _round_robin_process_groups( process_groups: List[ProcessGroup], ) -> ProcessGroupRoundRobin: ... class ProcessGroupGloo(ProcessGroup): class Device: ... class Options: ... def __init__( self, store: Store, rank: int, size: int, timeout: timedelta, ): ... @staticmethod def create_device(hostname=str(), interface=str()) -> Device: ... ... @staticmethod def create_default_device() -> Device: ... ... class _ProcessGroupWrapper(ProcessGroup): def __init__( self, pg: ProcessGroup, gloo_pg: ProcessGroupGloo ): ... class ProcessGroupNCCL(ProcessGroup): class Options: ... def __init__( self, store: Store, rank: int, size: int, timeout: timedelta, ): ... @staticmethod def _group_start() -> None: ... @staticmethod def _group_end() -> None: ... ... class ProcessGroupMPI(ProcessGroup): def __init__( self, rank: int, size: int, pgComm: int, ): ... @staticmethod def create(ranks: List[int]) -> ProcessGroupMPI: ... def _compute_bucket_assignment_by_size( tensors: List[Tensor], bucket_size: int, expect_sparse_gradient: List[bool], tensor_indices: List[int], ) -> List[List[int]]: ... def _broadcast_coalesced( process_group: ProcessGroup, tensors: List[Tensor], buffer_size: int, src: int, ): ... def _test_python_store(store: Store): ... def _verify_model_across_ranks( process_group: ProcessGroup, replicas: List[List[Tensor]] ): ...
2f0c54950c0ab91c97cc12a6797f81d91b85ec0b
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/stmt_for_str_same_var-9.py
f87144cd7e69039ad5482181a2f622e922dcd6a8
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
x:str = $STRING for x in x: print(x)
6c6e0e149c60270d3573a57dfa2fd3aa115c5361
e1fe1ed4f2ba8ab0146ce7c08d65bc7947150fc8
/credit11315/spiders/no_redis_detail_info_scrapy.py
3fb233a4bbd3603929edc4969dbae24a6847b673
[]
no_license
yidun55/credit11315
0d88ceef314efa444de58eb5da8939c1acff3abe
b048ec9db036a382287d5faacb9490ccbf50735c
refs/heads/master
2021-01-20T01:03:30.617914
2015-07-31T09:58:24
2015-07-31T09:58:24
38,853,611
0
1
null
null
null
null
UTF-8
Python
false
false
5,621
py
#!usr/bin/env python #coding: utf-8 """ 从11315全国企业征信系统http://www.11315.com/上 爬取企业信息 """ from scrapy.spider import Spider from scrapy.http import Request from scrapy import log from scrapy import signals from scrapy import Selector from scrapy.exceptions import DontCloseSpider import sys from credit11315.items import * from credit11315.middlewares import UnknownResponseError, ForbbidenResponseError from credit11315.tool.for_ominated_strip import for_ominated_data from credit11315.tool.for_JCXX import extract_combine_JCXX from credit11315.tool.for_all_blocks_info_extract import block_info_extract from credit11315.tool.for_fundation_info_extract import fundation_info_extract import HTMLParser import redis import urllib2 reload(sys) sys.setdefaultencoding("utf-8") class GetDetailInfo(Spider): """ 从redis上读取url,并提取企业的信息 """ name = 'noredisdetail' start_urls = ['http://www.11315.com'] def set_crawler(self,crawler): super(GetDetailInfo, self).set_crawler(crawler) self.crawler.signals.connect(self.spider_idle,\ signal=signals.spider_idle) def spider_idle(self): raise DontCloseSpider def parse(self,response): urlPath = '/home/dyh/data/credit11315/detailUrl\ /uniq_all_detail_url' f = open(urlPath, "r") for url in f: yield Request(url.strip(),callback=my_parse,\ dont_filter=True) def my_parse(self, response): """ 解析 """ sel = Selector(text=response.body) print len(sel.xpath(u"//b[text()='单位名称']"))!= 0, "parse 条件" log.msg("parse 条件=%s"%str(len(sel.xpath(u"//b[text()='单位名称']")) != 0), level=log.INFO) if (len(sel.xpath(u"//b[text()='单位名称']")) != 0): #判别是否为要输入验证码 pass else: log.msg("code=%s, %s"%(str(response.status),response.body), level=log.INFO) raise UnknownResponseError #======================================================== """ 第一部分:企业信用档案 """ item = DetailInformation() item['basic_info'] = fundation_info_extract(response) #======================================================== #======================================================== """ 第一部分 政府监管信息 """ item['regulatory_info'] = extract_combine_JCXX(response) #======================================================== #======================================================== """ 第三部分 行业评价信息 """ keywords_list = ['2-1.体系/产品/行业认证信息', '2-2.行业协会(社会组织)评价信息',\ '2-3.水电气通讯等公共事业单位评价'] item['envaluated_info'] = block_info_extract(response,\ keywords_list) #======================================================== """ 第四部分 媒体评价信息 """ keywords_list = ['3-1.媒体评价信息'] item['media_env'] = block_info_extract(response, keywords_list) #======================================================== """ 第五部分 金融信贷信息 """ #url = 'http://www.11315.com/\ #getTradeLendingCount?companyId=%s'%response.url[7:15] #header = {'User-Agent':"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36", # 'Referer':response.url} #req = urllib2.Request(url=url, headers=header) #xtml = urllib2.urlopen(req) #Nums = xtml.read() #print Nums, "this is Nums" #Nums = eval(Nums).split(",") #print Nums, "this is anothor Nums" #total = str(sum([int(i) for i in Nums])) #Nums.insert(0, total) #在头部插入 #if total == '0': # t_url = "" #else: # t_url = sel.xpath(u"//script").re(ur"html\(\'<a href=\"([\w\W]*?)\"")[0] #Nums.append(t_url) #Nums_re = "|".join(Nums) keywords_list = ['4-2.民间借贷评价信息'] item["credit_fin"] = block_info_extract(response, keywords_list) #======================================================= """ 第六部分 企业运营信息 """ #keywords_list = ['5-3.水电煤气电话费信息', #'5-4.纳税信息'] #要么运行js,要么模拟请求,破网站,就两行数据至于吗 #item['operation_info'] = block_info_extract(response, keywords_list) #======================================================== """ 第七部分 市场反馈信息 """ keywords_list = ['6-1.消费者评价信息', '6-2.企业之间履约评价','6-3.员工评价信息', '6-4.其他'] item['feedback_info'] = block_info_extract(response, keywords_list) #======================================================== return item #else: # print "raise unknownresponseError in spider", response.request.meta # #raise UnknownResponseError # #raise ForbbidenResponseError("work or no nnnnnn") # request = response.request # retryreq = request.copy() # retryreq.dont_filter = True # log.msg("UnknowResponseError %s"%response.body, level=log.INFO) # yield retryreq
dd755e188ecdc91d717143c7321fa6eaf8bdb91a
99dcb18a9e3ea367272f740b8cbf3c34285a0c08
/.sample_configs/param_handlers/cancel_data_labeling_job_sample.py
b11a0a22ff20d8c981aefa487bf8a6a00db46715
[ "Apache-2.0" ]
permissive
googleapis/python-aiplatform
926a4873f35dbea15b2fd86c0e16b5e6556d803e
76b95b92c1d3b87c72d754d8c02b1bca652b9a27
refs/heads/main
2023-08-19T23:49:02.180075
2023-08-19T13:25:59
2023-08-19T13:27:27
298,017,988
418
240
Apache-2.0
2023-09-14T21:08:33
2020-09-23T15:43:39
Python
UTF-8
Python
false
false
716
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def make_name(name: str) -> str: # Sample function parameter name in cancel_data_labeling_job_sample name = name return name
f36e4bac20c903f91a082d88b22b765caafeac35
a708f1d36586d2b01c99f2cb44aa4612b10192f6
/周赛/week183/5376非递增顺序.py
eb36dbf409919c8981dd21302f726a93af63edc0
[]
no_license
LeopoldACC/Algorithm
2477e8a371e9cdc5a47b582ca2a454539b96071e
fc1b0bec0e28d31e9a6ff722b3a66eacb0278148
refs/heads/master
2023-01-25T02:28:14.422447
2020-12-03T15:01:10
2020-12-03T15:01:10
197,297,197
2
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
class Solution:###最终版 def minSubsequence(self, nums): nums = sorted(nums) prefix_sum = nums[:] for i in range(len(nums)-2,-1,-1): prefix_sum[i]+=prefix_sum[i+1] index = -1 for i in range(len(nums)-1,-1,-1): if prefix_sum[i]>prefix_sum[0]//2: index = i break return nums[index:][::-1] class Solution0: def minSubsequence(self, nums): nums = sorted(nums) prefix_sum =nums[:] for i in range(len(nums)): prefix_sum[i]+=nums[i] target = prefix_sum[-1]//2 index = self.bisec(prefix_sum,target) return nums[index:][::-1] def bisec(self,prefix,target): start,end = 0,len(prefix)-1 while start+1<end: mid = (start+end)//2 if prefix[mid]<=target: start = mid else: end = mid return end if prefix[end]>target else start s = Solution() s.minSubsequence([4,4,7,6,7])
499a03357c8ae0101e94a0ea850bdfd693fd861f
77fc5af96da1d461c86c7f9668b64b99ca04a1b6
/codes/montecarlo.py
32c0ce13aa246aa42786f17cd7c0371a3c56965c
[]
no_license
rene-d/edupython
5b6bc8ddb5eb8ec896ee70fb961d4e689af1075a
1261d0c7aae17bb2d4ff3370860768b73ba4172d
refs/heads/master
2020-11-24T10:07:18.504472
2019-12-21T21:03:08
2019-12-21T21:03:08
228,099,675
0
0
null
null
null
null
UTF-8
Python
false
false
924
py
# Découpe d'un carré en 3 zones # https://edupython.tuxfamily.org/sources/view.php?code=montecarlo # Les zones sont les domaines du plan délimitées par les courbes # des fonctions carré et racine carrée, à l'intérieur du carré unité, # dans un repère orthonormal. # Les aires sont obtenues par la méthode de Monte Carlo. # On choisit un point au hasard dans le carré unité 10 000 fois # Et on estime ainsi l'aire de chaque domaine. a, b, c = 0, 0, 0 for i in range (10000) : x, y = random(), random() if y > sqrt (x) : a = a + 1 elif y > x * x : b = b + 1 else : c = c + 1 print ("On est dans la zone A", a, "fois sur 10 000.") print ("On est dans la zone B", b, "fois sur 10 000.") print ("On est dans la zone C", c, "fois sur 10 000.") print ("Donc les aires respectives des zones A, B et C",end="") print ("sont estimées à", a / 10000, ",", b / 10000, "et", c / 10000, "unités d'aire.")
80f832455983b37492aabb45c118bac2cd8e5ae4
e49f2251e07a70c943b70bbae27c439631a31552
/tfx/components/model_validator/component.py
d6bc178a4182f17e0e083067fa3c9cd3df96c6b5
[ "Apache-2.0" ]
permissive
hephaex/tfx
eac03c1ab670368088ec2a49af28ff374dc95c4a
76d8731cb54be3451e10d270d8bcb0589401135f
refs/heads/master
2020-09-16T11:52:06.198631
2019-11-23T21:01:50
2019-11-23T21:45:46
223,760,941
1
0
Apache-2.0
2019-11-24T14:53:08
2019-11-24T14:53:08
null
UTF-8
Python
false
false
4,026
py
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX ModelValidator component definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Optional, Text from tfx import types from tfx.components.base import base_component from tfx.components.base import executor_spec from tfx.components.model_validator import driver from tfx.components.model_validator import executor from tfx.types import standard_artifacts from tfx.types.standard_component_specs import ModelValidatorSpec class ModelValidator(base_component.BaseComponent): """A TFX component to validate a newly trained model against a prior model. The model validator component can be used to check model metrics threshold and validate current model against a previously validated model. If there isn't a prior validated model, model validator will just make sure the threshold passed. Otherwise, ModelValidator compares a newly trained models against a known good model, specifically the last model "blessed" by this component. A model is "blessed" if the exported model's metrics are within predefined thresholds around the prior model's metrics. *Note:* This component includes a driver to resolve last blessed model. ## Possible causes why model validation fails Model validation can fail for many reasons, but these are the most common: - problems with training data. For example, negative examples are dropped or features are missing. - problems with the test or evaluation data. For example, skew exists between the training and evaluation data. - changes in data distribution. This indicates the user behavior may have changed over time. - problems with the trainer. For example, the trainer was stopped before model is converged or the model is unstable. ## Example ``` # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( examples=example_gen.outputs['examples'], model=trainer.outputs['model']) ``` """ SPEC_CLASS = ModelValidatorSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor) DRIVER_CLASS = driver.Driver def __init__(self, examples: types.Channel, model: types.Channel, blessing: Optional[types.Channel] = None, instance_name: Optional[Text] = None): """Construct a ModelValidator component. Args: examples: A Channel of 'ExamplesPath' type, usually produced by [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen) component. _required_ model: A Channel of 'ModelExportPath' type, usually produced by [Trainer](https://www.tensorflow.org/tfx/guide/trainer) component. _required_ blessing: Output channel of 'ModelBlessingPath' that contains the validation result. instance_name: Optional name assigned to this specific instance of ModelValidator. Required only if multiple ModelValidator components are declared in the same pipeline. """ blessing = blessing or types.Channel( type=standard_artifacts.ModelBlessing, artifacts=[standard_artifacts.ModelBlessing()]) spec = ModelValidatorSpec(examples=examples, model=model, blessing=blessing) super(ModelValidator, self).__init__(spec=spec, instance_name=instance_name)
02275546e99d17fd7465ff2cbf3e4eacf57003e3
a64757759a7170478ad3e9c71429c484491426be
/autoconv.py
85e7b1b45b29a9ad766ab17c57193b68b5453c93
[]
no_license
fy0/autoconv
940928810bcda472bf401c14c2452ef64359fd9c
1073934a0d03eba5e5192ffb583629308ff74d13
refs/heads/master
2021-07-01T01:30:25.249292
2017-09-18T08:11:57
2017-09-18T08:11:57
103,892,929
1
1
null
null
null
null
UTF-8
Python
false
false
2,704
py
""" { "global": { "encoder": "opusenc.exe", "input_dir": "input", "output_dir": "output", "watch_ext": [".wav"], "output_ext": ".opus" }, "types": { "music": { "--title": "track title" } } } """ import os import json import time import subprocess from shlex import quote from pathlib import Path # py3.4+ from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler config = {} def convert(type_name, filepath): if len(filepath.parts) == 1: type_name = '' if filepath.suffix not in config['global']['watch_ext']: return if type_name in config['types']: typeinfo = config['types'][type_name] params = [] for k, v in typeinfo.items(): params.append('%s %s' % (k, v)) out_path = Path(config['global']['output_dir']).joinpath(filepath) out_ext = config['global']['output_ext'] encoder = subprocess.list2cmdline([config['global']['encoder']]) cmd = [ str(Path(config['global']['input_dir']).joinpath(filepath)), str(out_path)[:-len(out_path.suffix)] + out_ext # .absolute() ] os.makedirs(os.path.dirname(out_path), exist_ok=True) cmd_txt = encoder + ' ' + ' '.join(params) + subprocess.list2cmdline(cmd) print('Running: %s' % cmd_txt) os.system(cmd_txt) return True class FileEventHandler(FileSystemEventHandler): def on_moved(self, event): if event.is_directory: print("directory moved from {0} to {1}".format(event.src_path,event.dest_path)) else: path = Path(event.dest_path).relative_to(config['global']['input_dir']) if convert(path.parts[0], path): #print("file moved from {0} to {1}".format(event.src_path,event.dest_path)) print('[Encoded] %s' % event.src_path) def on_modified(self, event): if not event.is_directory: path = Path(event.src_path).relative_to(config['global']['input_dir']) if convert(path.parts[0], path): #print("file modified: %s" % event.src_path) print('[Encoded] %s' % event.src_path) def main(): global config config = json.loads(open('config.json', encoding='utf-8').read()) observer = Observer() event_handler = FileEventHandler() observer.schedule(event_handler, config['global']['input_dir'], True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() if __name__ == '__main__': main()
73a032a0612a77d65c7a07200994e83c69f92ce3
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2751486_0/Python/TheTaintedOne/solution.py
746f30c4b1aac93a50dee4c7e781e4c5746595eb
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,092
py
import sys lines = sys.stdin.readlines() ntests = int(lines[0]) vowels = set(["a", "e", "i", "o", "u"]) linenum = 1; for c in xrange(0, ntests): name, csize = lines[linenum].split() csize = int(csize) # print "[" + name + "]" # print start_size, num_others cons = []; for cc in name: if cc in vowels: cons.append(0) else: cons.append(1) # print cons runs = []; curr_run = 0; for pos in xrange(len(name)): if cons[pos]==1: curr_run = curr_run + 1 else: curr_run = 0 if curr_run>= csize: runs.append((pos, curr_run)) # print runs res = 0 list_pos = 0 for pos in xrange(len(name)): if list_pos < len(runs): if pos>runs[list_pos][0]-csize+1: list_pos = list_pos+1 if list_pos < len(runs): res = res + (len(name)-runs[list_pos][0]) # print pos, runs[list_pos] print "Case #" + str(c+1) + ": ", str(res) linenum = linenum + 1
be22c1e11ed28eafca08cf5bcfe0da6b20b66836
7c13de6b7831f99b8790452e03953e5ded0aca64
/classy_vision/generic/distributed_util.py
ec5211f4123496d80e7c9396eef6df0d0e8b1338
[ "MIT" ]
permissive
vreis/ClassyVision-2
3f99d3c06ec422e81e29b0f38f02a7ce56e480d6
80aa4d421d1203b4b92bb9b848ccc866816e4f6d
refs/heads/master
2021-07-15T18:03:14.212417
2019-12-06T16:48:19
2019-12-06T16:50:46
226,377,934
0
0
MIT
2019-12-06T17:27:46
2019-12-06T17:27:45
null
UTF-8
Python
false
false
5,284
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch # Default to GPU 0 _cuda_device_index: int = 0 # Setting _cuda_device_index to -1 internally implies that we should use CPU _CPU_DEVICE_INDEX = -1 def convert_to_distributed_tensor(tensor): """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This helper function converts to the correct device and returns the tensor + original device. """ orig_device = "cpu" if not tensor.is_cuda else "gpu" if ( torch.distributed.is_available() and torch.distributed.get_backend() == torch.distributed.Backend.NCCL and not tensor.is_cuda ): tensor = tensor.cuda() return (tensor, orig_device) def convert_to_normal_tensor(tensor, orig_device): """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This converts the tensor back to original device. """ if tensor.is_cuda and orig_device == "cpu": tensor = tensor.cpu() return tensor def is_distributed_training_run(): return ( torch.distributed.is_available() and torch.distributed.is_initialized() and (torch.distributed.get_world_size() > 1) ) def is_master(): """ Returns True if this is rank 0 of a distributed training job OR if it is a single trainer job. Otherwise False. """ return get_rank() == 0 def all_reduce_mean(tensor): """ Wrapper over torch.distributed.all_reduce for performing mean reduction of tensor over all processes. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.all_reduce(tensor, torch.distributed.ReduceOp.SUM) tensor = tensor / torch.distributed.get_world_size() tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def all_reduce_sum(tensor): """ Wrapper over torch.distributed.all_reduce for performing sum reduction of tensor over all processes in both distributed / non-distributed scenarios. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.all_reduce(tensor, torch.distributed.ReduceOp.SUM) tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def gather_tensors_from_all(tensor): """ Wrapper over torch.distributed.all_gather for performing 'gather' of 'tensor' over all processes in both distributed / non-distributed scenarios. """ if tensor.ndim == 0: # 0 dim tensors cannot be gathered. so unsqueeze tensor = tensor.unsqueeze(0) if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) gathered_tensors = [ torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(gathered_tensors, tensor) gathered_tensors = [ convert_to_normal_tensor(_tensor, orig_device) for _tensor in gathered_tensors ] else: gathered_tensors = [tensor] return gathered_tensors def gather_from_all(tensor): gathered_tensors = gather_tensors_from_all(tensor) gathered_tensor = torch.cat(gathered_tensors, 0) return gathered_tensor def barrier(): """ Wrapper over torch.distributed.barrier, returns without waiting if the distributed process group is not initialized instead of throwing error. """ if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return torch.distributed.barrier() def get_world_size(): """ Simple wrapper for correctly getting worldsize in both distributed / non-distributed settings """ return ( torch.distributed.get_world_size() if torch.distributed.is_available() and torch.distributed.is_initialized() else 1 ) def get_rank(): """ Simple wrapper for correctly getting rank in both distributed / non-distributed settings """ return ( torch.distributed.get_rank() if torch.distributed.is_available() and torch.distributed.is_initialized() else 0 ) def set_cuda_device_index(idx: int): global _cuda_device_index _cuda_device_index = idx torch.cuda.set_device(_cuda_device_index) def set_cpu_device(): global _cuda_device_index _cuda_device_index = _CPU_DEVICE_INDEX def get_cuda_device_index() -> int: return _cuda_device_index def init_distributed_data_parallel_model(model): global _cuda_device_index if _cuda_device_index == _CPU_DEVICE_INDEX: # CPU-only model, don't specify device return torch.nn.parallel.DistributedDataParallel(model, broadcast_buffers=False) else: # GPU model return torch.nn.parallel.DistributedDataParallel( model, device_ids=[_cuda_device_index], output_device=_cuda_device_index, broadcast_buffers=False, )
b34e8eb425d1099c4b4358e74814477818dfc003
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/vulkan-deps/vulkan-validation-layers/src/scripts/common_ci.py
88e5f1af7cda75fbf03793a27e6bf5f32ce53c52
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later", "BSD-3-Clause" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
10,787
py
#!/usr/bin/python3 -i # # Copyright (c) 2015-2017, 2019-2023 The Khronos Group Inc. # Copyright (c) 2015-2017, 2019-2023 Valve Corporation # Copyright (c) 2015-2017, 2019-2023 LunarG, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess import platform import shutil import argparse if sys.version_info[0] != 3: print("This script requires Python 3. Run script with [-h] option for more details.") sys_exit(0) # Use Ninja for all platforms for performance/simplicity os.environ['CMAKE_GENERATOR'] = "Ninja" # Utility for creating a directory if it does not exist. Behaves similarly to 'mkdir -p' def make_dirs(path, clean=False): if clean and os.path.isdir(path): shutil.rmtree(path) os.makedirs(path, exist_ok=True) # helper to define paths relative to the repo root def RepoRelative(path): return os.path.abspath(os.path.join(os.path.dirname(__file__), '..', path)) PROJECT_ROOT = os.path.abspath(os.path.join(os.path.split(os.path.abspath(__file__))[0], '..')) # TODO: Pass this in as arg, may be useful for running locally EXTERNAL_DIR_NAME = "external" BUILD_DIR_NAME = "build" VVL_BUILD_DIR = RepoRelative(BUILD_DIR_NAME) TEST_INSTALL_DIR = RepoRelative("build/install") def externalDir(config): return os.path.join(RepoRelative(EXTERNAL_DIR_NAME), config) # Runs a command in a directory and returns its return code. # Directory is project root by default, or a relative path from project root def RunShellCmd(command, start_dir = PROJECT_ROOT, env=None, verbose=False): if start_dir != PROJECT_ROOT: start_dir = RepoRelative(start_dir) cmd_list = command.split(" ") if verbose or ('VVL_CI_VERBOSE' in os.environ and os.environ['VVL_CI_VERBOSE'] != '0'): print(f'CICMD({cmd_list}, env={env})') subprocess.check_call(cmd_list, cwd=start_dir, env=env) # # Check if the system is Windows def IsWindows(): return 'windows' == platform.system().lower() # # Set MACOSX_DEPLOYMENT_TARGET def SetupDarwin(osx): if platform.system() != "Darwin": return # By default it will use the latest MacOS SDK available on the system. if osx == 'latest': return # Currently the Vulkan SDK targets 10.15 as the minimum for MacOS support. # If we need to we can raise the minimim like we did for C++17 support. os.environ['MACOSX_DEPLOYMENT_TARGET'] = "10.15" print(f"Targeting {os.environ['MACOSX_DEPLOYMENT_TARGET']} MacOS Deployment Target", flush=True) # # Run VVL scripts def CheckVVL(config): ext_dir = externalDir(config) vulkan_registry = ext_dir + "/Vulkan-Headers/registry" spirv_unified = ext_dir + "/SPIRV-Headers/include/spirv/unified1/" # Verify consistency of generated source code print("Check Generated Source Code Consistency") gen_check_cmd = f'python scripts/generate_source.py --verify {vulkan_registry} {spirv_unified}' RunShellCmd(gen_check_cmd) print('Run vk_validation_stats.py') valid_usage_json = vulkan_registry + "/validusage.json" text_file = RepoRelative(f'{VVL_BUILD_DIR}/layers/vuid_coverage_database.txt') gen_check_cmd = f'python scripts/vk_validation_stats.py {valid_usage_json} -text {text_file}' RunShellCmd(gen_check_cmd) # # Prepare the Validation Layers for testing def BuildVVL(config, cmake_args, build_tests): print("Log CMake version") cmake_ver_cmd = 'cmake --version' RunShellCmd(cmake_ver_cmd) print("Run CMake for Validation Layers") cmake_cmd = f'cmake -S . -B {VVL_BUILD_DIR} -DUPDATE_DEPS=ON -DCMAKE_BUILD_TYPE={config}' # By default BUILD_WERROR is OFF, CI should always enable it. cmake_cmd += ' -DBUILD_WERROR=ON' cmake_cmd += f' -DBUILD_TESTS={build_tests}' if cmake_args: cmake_cmd += f' {cmake_args}' RunShellCmd(cmake_cmd) print("Build Validation Layers and Tests") build_cmd = f'cmake --build {VVL_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Validation Layers") install_cmd = f'cmake --install {VVL_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Loader for executing Layer Validation Tests def BuildLoader(): LOADER_DIR = RepoRelative(os.path.join("%s/Vulkan-Loader" % EXTERNAL_DIR_NAME)) # Clone Loader repo if not os.path.exists(LOADER_DIR): print("Clone Loader Source Code") clone_loader_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Loader.git' RunShellCmd(clone_loader_cmd, EXTERNAL_DIR_NAME) print("Run CMake for Loader") LOADER_BUILD_DIR = RepoRelative("%s/Vulkan-Loader/%s" % (EXTERNAL_DIR_NAME, BUILD_DIR_NAME)) print("Run CMake for Loader") cmake_cmd = f'cmake -S {LOADER_DIR} -B {LOADER_BUILD_DIR}' cmake_cmd += ' -D UPDATE_DEPS=ON -D BUILD_TESTS=OFF -D CMAKE_BUILD_TYPE=Release' # This enables better stack traces from tools like leak sanitizer by using the loader feature which prevents unloading of libraries at shutdown. cmake_cmd += ' -D LOADER_DISABLE_DYNAMIC_LIBRARY_UNLOADING=ON' if not IsWindows(): cmake_cmd += ' -D LOADER_ENABLE_ADDRESS_SANITIZER=ON' RunShellCmd(cmake_cmd) print("Build Loader") build_cmd = f'cmake --build {LOADER_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Loader") install_cmd = f'cmake --install {LOADER_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Mock ICD for use with Layer Validation Tests def BuildMockICD(): VT_DIR = RepoRelative("%s/Vulkan-Tools" % EXTERNAL_DIR_NAME) if not os.path.exists(VT_DIR): print("Clone Vulkan-Tools Repository") clone_tools_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Tools.git' RunShellCmd(clone_tools_cmd, EXTERNAL_DIR_NAME) ICD_BUILD_DIR = RepoRelative("%s/Vulkan-Tools/%s" % (EXTERNAL_DIR_NAME,BUILD_DIR_NAME)) print("Run CMake for ICD") cmake_cmd = f'cmake -S {VT_DIR} -B {ICD_BUILD_DIR} -D CMAKE_BUILD_TYPE=Release ' cmake_cmd += '-DBUILD_CUBE=NO -DBUILD_VULKANINFO=NO -D INSTALL_ICD=ON -D UPDATE_DEPS=ON' RunShellCmd(cmake_cmd) print("Build Mock ICD") build_cmd = f'cmake --build {ICD_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Mock ICD") install_cmd = f'cmake --install {ICD_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Profile Layer for use with Layer Validation Tests def BuildProfileLayer(): RunShellCmd('pip3 install jsonschema', EXTERNAL_DIR_NAME) VP_DIR = RepoRelative("%s/Vulkan-Profiles" % EXTERNAL_DIR_NAME) if not os.path.exists(VP_DIR): print("Clone Vulkan-Profiles Repository") clone_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Profiles.git' RunShellCmd(clone_cmd, EXTERNAL_DIR_NAME) BUILD_DIR = RepoRelative("%s/Vulkan-Profiles/%s" % (EXTERNAL_DIR_NAME, BUILD_DIR_NAME)) print("Run CMake for Profile Layer") cmake_cmd = f'cmake -S {VP_DIR} -B {BUILD_DIR}' cmake_cmd += ' -D CMAKE_BUILD_TYPE=Release' cmake_cmd += ' -D UPDATE_DEPS=ON' cmake_cmd += ' -D PROFILES_BUILD_TESTS=OFF' RunShellCmd(cmake_cmd) print("Build Profile Layer") build_cmd = f'cmake --build {BUILD_DIR}' RunShellCmd(build_cmd) print("Install Profile Layer") install_cmd = f'cmake --install {BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Run the Layer Validation Tests def RunVVLTests(): print("Run Vulkan-ValidationLayer Tests using Mock ICD") if IsWindows(): print("Not implemented yet") exit(-1) lvt_cmd = os.path.join(PROJECT_ROOT, BUILD_DIR_NAME, 'tests', 'vk_layer_validation_tests') lvt_env = dict(os.environ) # Because we installed everything to TEST_INSTALL_DIR all the libraries/json files are in pre-determined locations # defined by GNUInstallDirs. This makes adding the LD_LIBRARY_PATH and VK_LAYER_PATH trivial/robust. lvt_env['LD_LIBRARY_PATH'] = os.path.join(TEST_INSTALL_DIR, 'lib') lvt_env['VK_LAYER_PATH'] = os.path.join(TEST_INSTALL_DIR, 'share/vulkan/explicit_layer.d') lvt_env['VK_DRIVER_FILES'] = os.path.join(TEST_INSTALL_DIR, 'share/vulkan/icd.d/VkICD_mock_icd.json') lvt_env['VK_INSTANCE_LAYERS'] = 'VK_LAYER_KHRONOS_validation' + os.pathsep + 'VK_LAYER_KHRONOS_profiles' lvt_env['VK_KHRONOS_PROFILES_SIMULATE_CAPABILITIES'] = 'SIMULATE_API_VERSION_BIT,SIMULATE_FEATURES_BIT,SIMULATE_PROPERTIES_BIT,SIMULATE_EXTENSIONS_BIT,SIMULATE_FORMATS_BIT,SIMULATE_QUEUE_FAMILY_PROPERTIES_BIT' # By default use the max_profile.json if "VK_KHRONOS_PROFILES_PROFILE_FILE" not in os.environ: lvt_env['VK_KHRONOS_PROFILES_PROFILE_FILE'] = RepoRelative('tests/device_profiles/max_profile.json') # By default set portability to false if "VK_KHRONOS_PROFILES_EMULATE_PORTABILITY" not in os.environ: lvt_env['VK_KHRONOS_PROFILES_EMULATE_PORTABILITY'] = 'false' lvt_env['VK_KHRONOS_PROFILES_DEBUG_REPORTS'] = 'DEBUG_REPORT_ERROR_BIT' RunShellCmd(lvt_cmd, env=lvt_env) print("Re-Running multithreaded tests with VK_LAYER_FINE_GRAINED_LOCKING disabled") lvt_env['VK_LAYER_FINE_GRAINED_LOCKING'] = '0' RunShellCmd(lvt_cmd + ' --gtest_filter=*Thread*', env=lvt_env) def GetArgParser(): configs = ['release', 'debug'] default_config = configs[0] osx_choices = ['min', 'latest'] osx_default = osx_choices[1] parser = argparse.ArgumentParser() parser.add_argument( '-c', '--config', dest='configuration', metavar='CONFIG', action='store', choices=configs, default=default_config, help='Build target configuration. Can be one of: {0}'.format( ', '.join(configs))) parser.add_argument( '--cmake', dest='cmake', metavar='CMAKE', type=str, default='', help='Additional args to pass to cmake') parser.add_argument( '--build', dest='build', action='store_true', help='Build the layers') parser.add_argument( '--test', dest='test', action='store_true', help='Tests the layers') parser.add_argument( '--osx', dest='osx', action='store', choices=osx_choices, default=osx_default, help='Sets MACOSX_DEPLOYMENT_TARGET on Apple platforms.') return parser
c8d58bad12f2d00dbaaa0a198b391fe827e89ccc
79a60fa1daeaa9dbe0cb551423fe28c2f2cf7da3
/websocket/bottle/mqttwsweb.py
a0e1c343be062aba3efa12502005552a8a3d9e11
[ "MIT" ]
permissive
swkim01/mqtt
a505494815cd5f487cbc1e434fd0546c1bc08eac
030d9106bf791b54538aac8789df872abaa96e17
refs/heads/master
2021-01-10T22:07:04.788958
2019-07-19T01:41:07
2019-07-19T01:41:07
42,844,241
5
2
null
null
null
null
UTF-8
Python
false
false
499
py
#-*- coding: utf-8 -*- from bottle import route, get, request, template, response, static_file from bottle import run #import json host="<HOST IP>" port=8008 wsport=9001 @route('/mqttws31.js') def mqttws31(): return static_file("mqttws31.js", root=".") @get('/mqttwschart') def dht22chart(): return template("mqttwschart", host=host, port=wsport) @get('/') def index(): return template("mqttwsindex", host=host, port=wsport) if __name__ == '__main__': run(host=host, port=port)
80bfdaf5259b84ac700aab294d7db8d5372259c3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02546/s914300427.py
3dad5d294d902104d5bf9e91b64a4bd3c9b6633e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
S = input() if(S[-1] == "s"): S += "es" else: S += "s" print(S)
d95e8925cc8de16faad7f38369d751625be57b1b
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/pkgs/networkx-1.11-py27_0/lib/python2.7/site-packages/networkx/algorithms/centrality/betweenness.py
b8c2b125f647b1c691d87810ce7eb454c7f0ab78
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
11,680
py
# coding=utf8 """ Betweenness centrality measures. """ # Copyright (C) 2004-2015 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. from heapq import heappush, heappop from itertools import count import networkx as nx import random __author__ = """Aric Hagberg ([email protected])""" __all__ = ['betweenness_centrality', 'edge_betweenness_centrality', 'edge_betweenness'] def betweenness_centrality(G, k=None, normalized=True, weight=None, endpoints=False, seed=None): r"""Compute the shortest-path betweenness centrality for nodes. Betweenness centrality of a node `v` is the sum of the fraction of all-pairs shortest paths that pass through `v` .. math:: c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)} where `V` is the set of nodes, `\sigma(s, t)` is the number of shortest `(s, t)`-paths, and `\sigma(s, t|v)` is the number of those paths passing through some node `v` other than `s, t`. If `s = t`, `\sigma(s, t) = 1`, and if `v \in {s, t}`, `\sigma(s, t|v) = 0` [2]_. Parameters ---------- G : graph A NetworkX graph k : int, optional (default=None) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. normalized : bool, optional If True the betweenness values are normalized by `2/((n-1)(n-2))` for graphs, and `1/((n-1)(n-2))` for directed graphs where `n` is the number of nodes in G. weight : None or string, optional If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. endpoints : bool, optional If True include the endpoints in the shortest path counts. Returns ------- nodes : dictionary Dictionary of nodes with betweenness centrality as the value. See Also -------- edge_betweenness_centrality load_centrality Notes ----- The algorithm is from Ulrik Brandes [1]_. See [4]_ for the original first published version and [2]_ for details on algorithms for variations and related metrics. For approximate betweenness calculations set k=#samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see [3]_. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. References ---------- .. [1] Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf .. [3] Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf .. [4] Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf """ betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G if k is None: nodes = G else: random.seed(seed) nodes = random.sample(G.nodes(), k) for s in nodes: # single source shortest paths if weight is None: # use BFS S, P, sigma = _single_source_shortest_path_basic(G, s) else: # use Dijkstra's algorithm S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight) # accumulation if endpoints: betweenness = _accumulate_endpoints(betweenness, S, P, sigma, s) else: betweenness = _accumulate_basic(betweenness, S, P, sigma, s) # rescaling betweenness = _rescale(betweenness, len(G), normalized=normalized, directed=G.is_directed(), k=k) return betweenness def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None): r"""Compute betweenness centrality for edges. Betweenness centrality of an edge `e` is the sum of the fraction of all-pairs shortest paths that pass through `e` .. math:: c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)} where `V` is the set of nodes,`\sigma(s, t)` is the number of shortest `(s, t)`-paths, and `\sigma(s, t|e)` is the number of those paths passing through edge `e` [2]_. Parameters ---------- G : graph A NetworkX graph k : int, optional (default=None) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. normalized : bool, optional If True the betweenness values are normalized by `2/(n(n-1))` for graphs, and `1/(n(n-1))` for directed graphs where `n` is the number of nodes in G. weight : None or string, optional If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. Returns ------- edges : dictionary Dictionary of edges with betweenness centrality as the value. See Also -------- betweenness_centrality edge_load Notes ----- The algorithm is from Ulrik Brandes [1]_. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. References ---------- .. [1] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf """ betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G # b[e]=0 for e in G.edges() betweenness.update(dict.fromkeys(G.edges(), 0.0)) if k is None: nodes = G else: random.seed(seed) nodes = random.sample(G.nodes(), k) for s in nodes: # single source shortest paths if weight is None: # use BFS S, P, sigma = _single_source_shortest_path_basic(G, s) else: # use Dijkstra's algorithm S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight) # accumulation betweenness = _accumulate_edges(betweenness, S, P, sigma, s) # rescaling for n in G: # remove nodes to only return edges del betweenness[n] betweenness = _rescale_e(betweenness, len(G), normalized=normalized, directed=G.is_directed()) return betweenness # obsolete name def edge_betweenness(G, k=None, normalized=True, weight=None, seed=None): return edge_betweenness_centrality(G, k, normalized, weight, seed) # helpers for betweenness centrality def _single_source_shortest_path_basic(G, s): S = [] P = {} for v in G: P[v] = [] sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G D = {} sigma[s] = 1.0 D[s] = 0 Q = [s] while Q: # use BFS to find shortest paths v = Q.pop(0) S.append(v) Dv = D[v] sigmav = sigma[v] for w in G[v]: if w not in D: Q.append(w) D[w] = Dv + 1 if D[w] == Dv + 1: # this is a shortest path, count paths sigma[w] += sigmav P[w].append(v) # predecessors return S, P, sigma def _single_source_dijkstra_path_basic(G, s, weight='weight'): # modified from Eppstein S = [] P = {} for v in G: P[v] = [] sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G D = {} sigma[s] = 1.0 push = heappush pop = heappop seen = {s: 0} c = count() Q = [] # use Q as heap with (distance,node id) tuples push(Q, (0, next(c), s, s)) while Q: (dist, _, pred, v) = pop(Q) if v in D: continue # already searched this node. sigma[v] += sigma[pred] # count paths S.append(v) D[v] = dist for w, edgedata in G[v].items(): vw_dist = dist + edgedata.get(weight, 1) if w not in D and (w not in seen or vw_dist < seen[w]): seen[w] = vw_dist push(Q, (vw_dist, next(c), v, w)) sigma[w] = 0.0 P[w] = [v] elif vw_dist == seen[w]: # handle equal paths sigma[w] += sigma[v] P[w].append(v) return S, P, sigma def _accumulate_basic(betweenness, S, P, sigma, s): delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: delta[v] += sigma[v] * coeff if w != s: betweenness[w] += delta[w] return betweenness def _accumulate_endpoints(betweenness, S, P, sigma, s): betweenness[s] += len(S) - 1 delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: delta[v] += sigma[v] * coeff if w != s: betweenness[w] += delta[w] + 1 return betweenness def _accumulate_edges(betweenness, S, P, sigma, s): delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: c = sigma[v] * coeff if (v, w) not in betweenness: betweenness[(w, v)] += c else: betweenness[(v, w)] += c delta[v] += c if w != s: betweenness[w] += delta[w] return betweenness def _rescale(betweenness, n, normalized, directed=False, k=None): if normalized is True: if n <= 2: scale = None # no normalization b=0 for all nodes else: scale = 1.0 / ((n - 1) * (n - 2)) else: # rescale by 2 for undirected graphs if not directed: scale = 1.0 / 2.0 else: scale = None if scale is not None: if k is not None: scale = scale * n / k for v in betweenness: betweenness[v] *= scale return betweenness def _rescale_e(betweenness, n, normalized, directed=False, k=None): if normalized is True: if n <= 1: scale = None # no normalization b=0 for all nodes else: scale = 1.0 / (n * (n - 1)) else: # rescale by 2 for undirected graphs if not directed: scale = 1.0 / 2.0 else: scale = None if scale is not None: if k is not None: scale = scale * n / k for v in betweenness: betweenness[v] *= scale return betweenness
5961d295b23abd4a5c1995b3f10bf6ccb333c741
44600adf1731a449ff2dd5c84ce92c7f8b567fa4
/colour_down/adaptation/fairchild1990.py
4ce1a10481213f117c2508f1c43f594b728df699
[]
no_license
ajun73/Work_Code
b6a3581c5be4ccde93bd4632d8aaaa9ecc782b43
017d12361f7f9419d4b45b23ed81f9856278e849
refs/heads/master
2020-04-11T23:16:43.994397
2019-12-28T07:48:44
2019-12-28T07:48:44
162,161,852
0
1
null
null
null
null
UTF-8
Python
false
false
7,432
py
# -*- coding: utf-8 -*- """ Fairchild (1990) Chromatic Adaptation Model =========================================== Defines *Fairchild (1990)* chromatic adaptation model objects: - :func:`colour.adaptation.chromatic_adaptation_Fairchild1990` See Also -------- `Fairchild (1990) Chromatic Adaptation Model Jupyter Notebook <http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\ blob/master/notebooks/adaptation/fairchild1990.ipynb>`_ References ---------- - :cite:`Fairchild1991a` : Fairchild, M. D. (1991). Formulation and testing of an incomplete-chromatic-adaptation model. Color Research & Application, 16(4), 243-250. doi:10.1002/col.5080160406 - :cite:`Fairchild2013s` : Fairchild, M. D. (2013). FAIRCHILD'S 1990 MODEL. In Color Appearance Models (3rd ed., pp. 4418-4495). Wiley. ISBN:B00DAYO8E2 """ from __future__ import division, unicode_literals import numpy as np from colour.adaptation import VON_KRIES_CAT from colour.utilities import dot_vector, row_as_diagonal, tsplit, tstack __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2018 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'FAIRCHILD1990_XYZ_TO_RGB_MATRIX', 'FAIRCHILD1990_RGB_TO_XYZ_MATRIX', 'chromatic_adaptation_Fairchild1990', 'XYZ_to_RGB_Fairchild1990', 'RGB_to_XYZ_Fairchild1990', 'degrees_of_adaptation' ] FAIRCHILD1990_XYZ_TO_RGB_MATRIX = VON_KRIES_CAT """ *Fairchild (1990)* colour appearance model *CIE XYZ* tristimulus values to cone responses matrix. FAIRCHILD1990_XYZ_TO_RGB_MATRIX : array_like, (3, 3) """ FAIRCHILD1990_RGB_TO_XYZ_MATRIX = np.linalg.inv(VON_KRIES_CAT) """ *Fairchild (1990)* colour appearance model cone responses to *CIE XYZ* tristimulus values matrix. FAIRCHILD1990_RGB_TO_XYZ_MATRIX : array_like, (3, 3) """ def chromatic_adaptation_Fairchild1990(XYZ_1, XYZ_n, XYZ_r, Y_n, discount_illuminant=False): """ Adapts given stimulus *CIE XYZ_1* tristimulus values from test viewing conditions to reference viewing conditions using *Fairchild (1990)* chromatic adaptation model. Parameters ---------- XYZ_1 : array_like *CIE XYZ_1* tristimulus values of test sample / stimulus in domain [0, 100]. XYZ_n : array_like Test viewing condition *CIE XYZ_n* tristimulus values of whitepoint. XYZ_r : array_like Reference viewing condition *CIE XYZ_r* tristimulus values of whitepoint. Y_n : numeric or array_like Luminance :math:`Y_n` of test adapting stimulus in :math:`cd/m^2`. discount_illuminant : bool, optional Truth value indicating if the illuminant should be discounted. Returns ------- ndarray Adapted *CIE XYZ_2* tristimulus values of stimulus. Warning ------- The input domain and output range of that definition are non standard! Notes ----- - Input *CIE XYZ_1*, *CIE XYZ_n* and *CIE XYZ_r* tristimulus values are in domain [0, 100]. - Output *CIE XYZ_2* tristimulus values are in range [0, 100]. References ---------- - :cite:`Fairchild1991a` - :cite:`Fairchild2013s` Examples -------- >>> XYZ_1 = np.array([19.53, 23.07, 24.97]) >>> XYZ_n = np.array([111.15, 100.00, 35.20]) >>> XYZ_r = np.array([94.81, 100.00, 107.30]) >>> Y_n = 200 >>> chromatic_adaptation_Fairchild1990(XYZ_1, XYZ_n, XYZ_r, Y_n) ... # doctest: +ELLIPSIS array([ 23.3252634..., 23.3245581..., 76.1159375...]) """ XYZ_1 = np.asarray(XYZ_1) XYZ_n = np.asarray(XYZ_n) XYZ_r = np.asarray(XYZ_r) Y_n = np.asarray(Y_n) LMS_1 = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_1) LMS_n = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_n) LMS_r = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_r) p_LMS = degrees_of_adaptation( LMS_1, Y_n, discount_illuminant=discount_illuminant) a_LMS_1 = p_LMS / LMS_n a_LMS_2 = p_LMS / LMS_r A_1 = row_as_diagonal(a_LMS_1) A_2 = row_as_diagonal(a_LMS_2) LMSp_1 = dot_vector(A_1, LMS_1) c = 0.219 - 0.0784 * np.log10(Y_n) C = row_as_diagonal(tstack((c, c, c))) LMS_a = dot_vector(C, LMSp_1) LMSp_2 = dot_vector(np.linalg.inv(C), LMS_a) LMS_c = dot_vector(np.linalg.inv(A_2), LMSp_2) XYZ_c = dot_vector(FAIRCHILD1990_RGB_TO_XYZ_MATRIX, LMS_c) return XYZ_c def XYZ_to_RGB_Fairchild1990(XYZ): """ Converts from *CIE XYZ* tristimulus values to cone responses. Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values. Returns ------- ndarray Cone responses. Examples -------- >>> XYZ = np.array([19.53, 23.07, 24.97]) >>> XYZ_to_RGB_Fairchild1990(XYZ) # doctest: +ELLIPSIS array([ 22.1231935..., 23.6054224..., 22.9279534...]) """ return dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ) def RGB_to_XYZ_Fairchild1990(RGB): """ Converts from cone responses to *CIE XYZ* tristimulus values. Parameters ---------- RGB : array_like Cone responses. Returns ------- ndarray *CIE XYZ* tristimulus values. Examples -------- >>> RGB = np.array([22.12319350, 23.60542240, 22.92795340]) >>> RGB_to_XYZ_Fairchild1990(RGB) # doctest: +ELLIPSIS array([ 19.53, 23.07, 24.97]) """ return dot_vector(FAIRCHILD1990_RGB_TO_XYZ_MATRIX, RGB) def degrees_of_adaptation(LMS, Y_n, v=1 / 3, discount_illuminant=False): """ Computes the degrees of adaptation :math:`p_L`, :math:`p_M` and :math:`p_S`. Parameters ---------- LMS : array_like Cone responses. Y_n : numeric or array_like Luminance :math:`Y_n` of test adapting stimulus in :math:`cd/m^2`. v : numeric or array_like, optional Exponent :math:`v`. discount_illuminant : bool, optional Truth value indicating if the illuminant should be discounted. Returns ------- ndarray Degrees of adaptation :math:`p_L`, :math:`p_M` and :math:`p_S`. Examples -------- >>> LMS = np.array([20.00052060, 19.99978300, 19.99883160]) >>> Y_n = 31.83 >>> degrees_of_adaptation(LMS, Y_n) # doctest: +ELLIPSIS array([ 0.9799324..., 0.9960035..., 1.0233041...]) >>> degrees_of_adaptation(LMS, Y_n, 1 / 3, True) array([ 1., 1., 1.]) """ LMS = np.asarray(LMS) if discount_illuminant: return np.ones(LMS.shape) Y_n = np.asarray(Y_n) v = np.asarray(v) L, M, S = tsplit(LMS) LMS_E = dot_vector(VON_KRIES_CAT, np.ones(LMS.shape)) # E illuminant. L_E, M_E, S_E = tsplit(LMS_E) Ye_n = Y_n ** v def m_E(x, y): """ Computes the :math:`m_E` term. """ return (3 * (x / y)) / (L / L_E + M / M_E + S / S_E) def P_c(x): """ Computes the :math:`P_L`, :math:`P_M` or :math:`P_S` terms. """ return (1 + Ye_n + x) / (1 + Ye_n + 1 / x) p_L = P_c(m_E(L, L_E)) p_M = P_c(m_E(M, M_E)) p_S = P_c(m_E(S, S_E)) p_LMS = tstack((p_L, p_M, p_S)) return p_LMS
68e3dbcc684161b2f8d32f752aaad8f778937993
9f6b9a40444df2b09960b5b531232ee6975e74dd
/level_1.py
13d4ca664e2d9291979dc351d30188b94817ea48
[]
no_license
nildiert/hodor
f60e94f4a64b8b0217c760104f501a6a586d4129
3c8b2df854ed2af6c5345250bc8f557b52761aee
refs/heads/master
2020-06-02T06:19:44.740188
2019-06-10T02:59:23
2019-06-10T02:59:23
191,067,129
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
from lxml import html import requests import time def req_values(url): page = requests.get(url) tree = html.fromstring(page.content) me = tree.xpath(next_val) return ([page, tree, me]) try: url = 'http://158.69.76.135/level1.php' data = {'id':'730','holdthedoor':'submit'} next_val = '//td[contains(text(), "730")]/following-sibling::node()/text()' page, tree, me = req_values(url) data.update({"key":page.cookies["HoldTheDoor"]}) while ("".join(me) != '\n4095 '): page, tree, me = req_values(url) data.update({"key":page.cookies["HoldTheDoor"]}) status = requests.post(url, data, cookies=page.cookies) print("{} {}".format(status ,me)) except Exception as e: print(e)
2da7f4194e18775060afca1bfc1dcd85d1009570
3411ad233c411c06765f4b07f8670c12025178b6
/201-300/231-240/237-deleteNodeInLinkedList/deleteNodeInLinkedList.py
9b19cef457feb64cb67a51b92b91f733e6ae73ed
[ "MIT" ]
permissive
xuychen/Leetcode
7d9d31fed898ce58440f5ae6665d2ccaf1a4b256
c8bf33af30569177c5276ffcd72a8d93ba4c402a
refs/heads/master
2021-11-19T20:39:43.741589
2021-10-24T16:26:52
2021-10-24T16:26:52
140,212,398
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def deleteNode(self, node): """ :type node: ListNode :rtype: void Do not return anything, modify node in-place instead. """ node.val = node.next.val node.next = node.next.next
b0c14efa30aa6296d714f88a56de72b29a3cb346
821d830910c354cb89767a77e00c77deb592ca0c
/bayesnet/math/__init__.py
a7e1743bd4c1a5cdfed8a8de29633ed4e5c1f037
[ "MIT" ]
permissive
zxsted/BayesianNetwork
c61aa77a511e96852dec38f268f0dc31b6752cac
efe75b5416a262741fa60ad09380684886e91eff
refs/heads/master
2021-05-09T05:38:43.513255
2017-10-25T06:58:26
2017-10-25T06:58:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
from bayesnet.math.add import add from bayesnet.math.divide import divide, rdivide from bayesnet.math.exp import exp from bayesnet.math.log import log from bayesnet.math.matmul import matmul, rmatmul from bayesnet.math.mean import mean from bayesnet.math.multiply import multiply from bayesnet.math.negative import negative from bayesnet.math.power import power, rpower from bayesnet.math.product import prod from bayesnet.math.sqrt import sqrt from bayesnet.math.square import square from bayesnet.math.subtract import subtract, rsubtract from bayesnet.math.sum import sum from bayesnet.tensor.tensor import Tensor Tensor.__add__ = add Tensor.__radd__ = add Tensor.__truediv__ = divide Tensor.__rtruediv__ = rdivide Tensor.mean = mean Tensor.__matmul__ = matmul Tensor.__rmatmul__ = rmatmul Tensor.__mul__ = multiply Tensor.__rmul__ = multiply Tensor.__neg__ = negative Tensor.__pow__ = power Tensor.__rpow__ = rpower Tensor.prod = prod Tensor.__sub__ = subtract Tensor.__rsub__ = rsubtract Tensor.sum = sum __all__ = [ "add", "divide", "exp", "log", "matmul", "mean", "multiply", "power", "prod", "sqrt", "square", "subtract", "sum" ]
3317db01ff8d0d5eff65cd314197024a8f717d5c
cc196a0111bbdcc04af7e579bc87e808cc0c7b02
/trident/__init__.py
880dacc18d173da5184a33655707722ed4ae11ab
[ "MIT" ]
permissive
Jackliaoall-AI-Framework/trident
73819a95121d9d4dbf81d28ae32aea43c0541840
cd26c1108c05c3ab4c262f9b416a126b2ad2f858
refs/heads/master
2023-01-15T15:15:10.544946
2020-11-23T04:15:33
2020-11-23T04:15:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
"""trident api""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from importlib import reload from sys import stderr defaultencoding = 'utf-8' if sys.getdefaultencoding() != defaultencoding: reload(sys) sys.setdefaultencoding(defaultencoding) __version__ = '0.6.1' stderr.write('trident {0}\n'.format(__version__)) from trident.backend import * import threading import random
49387a3cdc6c6e23837c5436d99d317dbd2554eb
40b262d813d07a113914d6009af8737898f2e096
/Platos test/apps/schedules/migrations/0001_initial.py
8cf8f0fa053f62e70fdc4f248d417b5c4d27999c
[]
no_license
Nish8192/Python
cb6de3b96e790464a0a4ad10eda86ce4f79688b4
5c03beff6f3669d5cfb6b31c5749827db8b6a627
refs/heads/master
2020-12-23T16:56:18.301723
2017-05-27T02:09:02
2017-05-27T02:09:02
92,563,061
0
0
null
null
null
null
UTF-8
Python
false
false
3,560
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-28 22:44 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('login_register', '0001_initial'), ] operations = [ migrations.CreateModel( name='Day', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('h9to10', models.BooleanField(verbose_name=False)), ('h10to11', models.BooleanField(verbose_name=False)), ('h11to12', models.BooleanField(verbose_name=False)), ('h12to13', models.BooleanField(verbose_name=False)), ('h13to14', models.BooleanField(verbose_name=False)), ('h14to15', models.BooleanField(verbose_name=False)), ('h15to16', models.BooleanField(verbose_name=False)), ('h16to17', models.BooleanField(verbose_name=False)), ('h17to18', models.BooleanField(verbose_name=False)), ('h18to19', models.BooleanField(verbose_name=False)), ('h19to20', models.BooleanField(verbose_name=False)), ('h20to21', models.BooleanField(verbose_name=False)), ('h21to22', models.BooleanField(verbose_name=False)), ('h22to23', models.BooleanField(verbose_name=False)), ('h23to0', models.BooleanField(verbose_name=False)), ('h0to1', models.BooleanField(verbose_name=False)), ('h1to2', models.BooleanField(verbose_name=False)), ('h2to3', models.BooleanField(verbose_name=False)), ('h3to4', models.BooleanField(verbose_name=False)), ('h4to5', models.BooleanField(verbose_name=False)), ('h5to6', models.BooleanField(verbose_name=False)), ('h6to7', models.BooleanField(verbose_name=False)), ('h7to8', models.BooleanField(verbose_name=False)), ('h8to9', models.BooleanField(verbose_name=False)), ], ), migrations.CreateModel( name='Schedule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fri', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fri_schedule', to='schedules.Day')), ('mon', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='mon_schedule', to='schedules.Day')), ('sat', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sat_schedule', to='schedules.Day')), ('sun', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sun_schedule', to='schedules.Day')), ('thu', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='thu_schedule', to='schedules.Day')), ('tue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='tue_schedule', to='schedules.Day')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='schedule_user', to='login_register.User')), ('wed', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='wed_schedule', to='schedules.Day')), ], ), ]
5b16d88b43724df85472827ca9a1de35f189620b
6ed48bf3c72e61fe53144a3545ab305112c93501
/appengine/findit/handlers/test/help_triage_test.py
ef11561424031e1e74e5d088f7422bb54953dd08
[ "BSD-3-Clause" ]
permissive
eunchong/infra
ee5f7a9379977de8c814f90dbba3f6adbf06a75c
ce3728559112bfb3e8b32137eada517aec6d22f9
refs/heads/master
2022-11-27T06:26:57.415805
2016-04-08T12:34:36
2016-04-08T12:34:36
55,699,880
0
0
null
null
null
null
UTF-8
Python
false
false
10,341
py
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import os import webapp2 from testing_utils import testing from common.git_repository import GitRepository from handlers import help_triage from model.wf_analysis import WfAnalysis from model.wf_build import WfBuild from waterfall import buildbot from waterfall.build_info import BuildInfo from waterfall import build_util EXPECTED_RESULTS_120 = { '598ed4fa15e6a1d0d92b2b7df04fc31ab5d6e829': { 'fixed_cl_review_url': 'https://codereview.chromium.org/12578123', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463001', 'fixing_cl_commit_position': 342013, 'fixed_cl_commit_position': 341971, 'fixed_revision': '598ed4fa15e6a1d0d92b2b7df04fc31ab5d6e829', 'fixing_build_number': 121, 'action': 'Reverted', 'fixing_revision': '598sd489df74g125svf35s04fc3' }, '062a6f974d7c08d27902060c241149ce193e4dd5': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1268183002', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463006', 'fixing_cl_commit_position': 342015, 'fixed_cl_commit_position': 341977, 'fixed_revision': '062a6f974d7c08d27902060c241149ce193e4dd5', 'fixing_build_number': 121, 'action': 'Reverted', 'fixing_revision': '123456789c08d27902060c241149ce193e4dd5dd' }, '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1263223005', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463003', 'fixing_cl_commit_position': 342014, 'fixed_cl_commit_position': 341976, 'fixed_revision': '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3', 'fixing_build_number': 122, 'action': 'Reverted', 'fixing_revision': '123456671bcdb98eae1fb0d92b2b7df04fc3' }, '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1260813007', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/123'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463100', 'fixing_cl_commit_position': 332070, 'fixed_cl_commit_position': 341978, 'fixed_revision': '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6', 'fixing_build_number': 123, 'action': 'Reverted', 'fixing_revision': '123455668d4ab0670331a6c0ebfc4f3ab8e6' } } EXPECTED_RESULTS_121 = { '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1260813007', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/123'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463100', 'action': 'Reverted', 'fixed_cl_commit_position': 341978, 'fixed_revision': '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6', 'fixing_build_number': 123, 'fixing_cl_commit_position': 332070, 'fixing_revision': '123455668d4ab0670331a6c0ebfc4f3ab8e6' }, '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1263223005', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463003', 'action': 'Reverted', 'fixed_cl_commit_position': 341976, 'fixed_revision': '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3', 'fixing_build_number': 122, 'fixing_cl_commit_position': 342014, 'fixing_revision': '123456671bcdb98eae1fb0d92b2b7df04fc3' }, '123456789c08d27902060c241149ce193e4dd5dd': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1280463006', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_number': 121, 'fixing_cl_review_url': 'https://codereview.chromium.org/1161773008', 'action': 'Reverted', 'fixed_cl_commit_position': 342015, 'fixed_revision': '123456789c08d27902060c241149ce193e4dd5dd', 'fixing_build_number': 122, 'fixing_cl_commit_position': 332062, 'fixing_revision': '062a6f974d7c01234569ce193e4dd5' } } class HelpTriageTest(testing.AppengineTestCase): app_module = webapp2.WSGIApplication([ ('/help-triage', help_triage.HelpTriage), ], debug=True) def _GetBuildInfo(self, master_name, builder_name, build_number): file_name = os.path.join( os.path.dirname(__file__), 'data', 'help_triage_test_data', 'build_data_%s_%s_%s.json' % ( master_name, builder_name, build_number)) if not os.path.isfile(file_name): return None with open(file_name, 'r') as f: return f.read() def _MockDownloadBuildData( self, master_name, builder_name, build_number): build = WfBuild.Get(master_name, builder_name, build_number) if not build: # pragma: no cover build = WfBuild.Create(master_name, builder_name, build_number) build.data = self._GetBuildInfo(master_name, builder_name, build_number) build.put() return build def _MockDownloadChangeLogData(self, revision): file_name = os.path.join( os.path.dirname(__file__), 'data', 'help_triage_test_data', 'change_log_' + revision) with open(file_name) as f: commit_log = f.read() return revision, json.loads(commit_log[len(')]}\'\n'):]) def setUp(self): super(HelpTriageTest, self).setUp() self.master_name = 'm' self.builder_name = 'b' self.mock_current_user(user_email='[email protected]', is_admin=True) self.mock(build_util, 'DownloadBuildData', self._MockDownloadBuildData) self.mock(GitRepository, '_DownloadChangeLogData', self._MockDownloadChangeLogData) def _CreateAnalysis(self, build_number, first_failure, last_pass=None): analysis = WfAnalysis.Create( self.master_name, self.builder_name, build_number) analysis.result = { 'failures': [ { 'last_pass': last_pass, 'first_failure': first_failure, 'suspected_cls': [], 'step_name': 'gn_check' } ] } analysis.put() def testGetFirstFailedBuild(self): self._CreateAnalysis(120, 118, 117) first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertEqual(118, first_build) self.assertEqual(['gn_check'], failed_steps) def testGetFirstFailedBuildNoLastPass(self): self._CreateAnalysis(120, 118) first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertEqual(118, first_build) self.assertEqual(['gn_check'], failed_steps) def testGetFirstFailedBuildNoAnalysis(self): first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertIsNone(first_build) self.assertIsNone(failed_steps) def testCheckReverts(self): self._CreateAnalysis(120, 120) results = help_triage._CheckReverts( self.master_name, self.builder_name, 120) self.assertEqual(EXPECTED_RESULTS_120, results) def testCheckRevertsReturnNoneWhenNoGreenBuild(self): self._CreateAnalysis(124, 124) expected_results = {} results = help_triage._CheckReverts( self.master_name, self.builder_name, 124) self.assertEqual(expected_results, results) def testCheckRevertsReturnNoneWhenNoReverts(self): self._CreateAnalysis(118, 118) expected_results = {} results = help_triage._CheckReverts( self.master_name, self.builder_name, 118) self.assertEqual(expected_results, results) def testHelpTriageHandler(self): build_url = buildbot.CreateBuildUrl( self.master_name, self.builder_name, 121) analysis = WfAnalysis.Create(self.master_name, self.builder_name, 121) analysis.result = { 'failures': [ { 'last_pass': None, 'first_failure': 120, 'suspected_cls': [], 'step_name': 'gn_check' } ] } analysis.put() response = self.test_app.get('/help-triage', params={'url': build_url}) self.assertEqual(200, response.status_int) self.assertEqual(EXPECTED_RESULTS_121, response.json_body) def testHelpTriageHandlerReturnNoneForGreenBuild(self): build_url = buildbot.CreateBuildUrl( self.master_name, self.builder_name, 123) build = WfBuild.Create(self.master_name, self.builder_name, 123) build.data = self._GetBuildInfo(self.master_name, self.builder_name, 123) build.put() response = self.test_app.get('/help-triage', params={'url': build_url}) expected_results = {} self.assertEqual(200, response.status_int) self.assertEqual(expected_results, response.json_body)
ee615403c191a3bc00a63b9ac501349fe54af94f
dec29f40788478f73798f23b79ca892b3121150a
/apps/core/forms.py
2dea5904ea3b9ecfd5b3ba08032c83908459e911
[]
no_license
RonaldTheodoro/django-ecommerce
2c661e6f3ae0154ecb7a8e25183875da8c27d14f
9097049107e5a7ab52474aa89fe40f02689fb24a
refs/heads/master
2021-05-06T02:08:51.166682
2017-12-17T00:32:03
2017-12-17T00:32:03
114,499,259
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
from django import forms class ContactForm(forms.Form): fullname = forms.CharField( widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Your full name'} ) ) email = forms.EmailField( widget=forms.EmailInput( attrs={'class': 'form-control', 'placeholder': 'Your email'} ) ) content = forms.CharField( widget=forms.Textarea( attrs={'class': 'form-control', 'placeholder': 'Your message'} ) )
d3977fe8da468335955c73585ad4373f968ec62b
52e8841ac9603e994fc487ecb52f232e55a50e07
/Bio/HMM/Utilities.py
17db3f4ed0ad626cb1de97b7c921f6692d2f4f6b
[]
no_license
rored/RozszerzenieBio.PDB
aff434fddfe57199a7465f79126eba62b1c789ae
7c9d696faacabff912b1263fe19291d6a198c3c2
refs/heads/master
2021-01-21T04:50:37.903227
2016-06-23T19:15:42
2016-06-23T19:15:42
55,064,794
0
3
null
null
null
null
UTF-8
Python
false
false
2,209
py
# This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. # """Generic functions which are useful for working with HMMs. This just collects general functions which you might like to use in dealing with HMMs. """ from __future__ import print_function __docformat__ = "restructuredtext en" def pretty_print_prediction(emissions, real_state, predicted_state, emission_title="Emissions", real_title="Real State", predicted_title="Predicted State", line_width=75): """Print out a state sequence prediction in a nice manner. Arguments: o emissions -- The sequence of emissions of the sequence you are dealing with. o real_state -- The actual state path that generated the emissions. o predicted_state -- A state path predicted by some kind of HMM model. """ # calculate the length of the titles and sequences title_length = max(len(emission_title), len(real_title), len(predicted_title)) + 1 seq_length = line_width - title_length # set up the titles so they'll print right emission_title = emission_title.ljust(title_length) real_title = real_title.ljust(title_length) predicted_title = predicted_title.ljust(title_length) cur_position = 0 # while we still have more than seq_length characters to print while True: if (cur_position + seq_length) < len(emissions): extension = seq_length else: extension = len(emissions) - cur_position print("%s%s" % (emission_title, emissions[cur_position:cur_position + seq_length])) print("%s%s" % (real_title, real_state[cur_position:cur_position + seq_length])) print("%s%s\n" % (predicted_title, predicted_state[cur_position: cur_position + seq_length])) if (len(emissions) < (cur_position + seq_length)): break cur_position += seq_length
7633f6f9cb7e06d32f07fd0f6c3f93f846667e26
c128d73f1d988686e3e7377520d7475ae59d8016
/test/cmd2.py
674d0464539f09de007c6d8e163e51833f2b15f4
[]
no_license
astroumd/SSINGMA
a9aba4aea0d0bf799643ebd7064b222b5c801894
044923b6e036d3679e88839593244b834e8e2d09
refs/heads/master
2021-07-01T12:48:08.520640
2019-03-22T01:50:29
2019-03-22T01:50:29
107,312,765
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# # example command line parser usage - functional approach with keyword database # # casa -c cmd2.py a=100 'c=[100,200]' script_keywords = { 'a' : 1, 'b' : 2.0, 'c' : [1,2,3], } import sys ng_initkeys(script_keywords,sys.argv) a = ng_getkey('a') b = ng_getkey('b') c = ng_getkey('c') print 'a=',a print 'b=',b print 'c=',c
023cbe9820c1c4c54c9a10bd34d54c0cd287a76a
30e58b930c31526a1e226a928bc77e23f232080e
/icesim/dataCheck.py
7152527a7b7c93513f0deaa3399d7c90caf5dd22
[]
no_license
bbw7561135/anisotropy
c8688f9d705234c6a90f607acb3e8cc28ea5be28
a21f85788c16d8aa14fc5934f476def4c8954f34
refs/heads/master
2021-06-01T05:35:48.727845
2016-05-13T00:27:37
2016-05-13T00:27:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
770
py
#!/usr/bin/env python from icecube import icetray, dataio from I3Tray import * import sys, time, glob, os import numpy as np def fileCheck(fileName): t0 = time.time() tray = I3Tray() tray.AddModule('I3Reader', FileName=fileName) tray.Execute() tray.Finish() print "Time taken: ", time.time() - t0 def checker(config, out, fileList): badList = [] for file in fileList: try: fileCheck(file) except RuntimeError: print 'Bad run found:', os.path.basename(file) badList += [file+'\n'] with open(out, 'w') as f: f.writelines(badList) if __name__ == "__main__": config = sys.argv[1] out = sys.argv[2] fileList = sys.argv[3:] checker(config, out, fileList)
34f96a0617099afd0d7f6f2da75c52d59c91696c
3474b315da3cc5cb3f7823f19a18b63a8da6a526
/scratch/KRAMS/src/ibvpy/core/i_bcond.py
724c3af30b2cc5336fb60d2c0bd2d4c98c37a380
[]
no_license
h4ck3rm1k3/scratch
8df97462f696bc2be00f1e58232e1cd915f0fafd
0a114a41b0d1e9b2d68dbe7af7cf34db11512539
refs/heads/master
2021-01-21T15:31:38.718039
2013-09-19T10:48:24
2013-09-19T10:48:24
29,173,525
0
0
null
2015-01-13T04:58:57
2015-01-13T04:58:56
null
UTF-8
Python
false
false
1,522
py
from enthought.traits.api import Array, Bool, Enum, Float, HasTraits, \ Instance, Int, Trait, Str, Enum, \ Callable, List, TraitDict, Any, Range, \ Delegate, Event, on_trait_change, Button, \ Interface, implements, Property, cached_property class IBCond( Interface ): ''' Interface of the boundary condition. ''' def is_essential( self ): ''' Distinguish the essential and natural boundary conditions. This is needed to reorganize the system matrices and vectors to reflect the prescribed primary variables (displacements). ''' def is_natural( self ): ''' Distinguish the essential and natural boundary conditions. This is needed to reorganize the system matrices and vectors to reflect the prescribed primary variables (displacements). ''' # def get_dofs( self ): # ''' # Return the list of affected DOFs. # # This is needed to reorganize the system matrices and vectors # to reflect the prescribed primary variables (displacements). # ''' def setup( self, sctx ): ''' Locate the spatial context. ''' def apply_essential( self, K ): ''' Locate the spatial context. ''' def apply( self, step_flag, sctx, K, R, t_n, t_n1 ): ''' Locate the spatial context. '''
[ "Axel@Axel-Pc" ]
Axel@Axel-Pc
dfa897d3f257e32121c709f43bebd0d52f22631a
f032cbec4f03d8c163609d4c5144b38952b2cbe9
/other/6_text_similarity/generic_process_corpus_gui.py
db1ee724f3ecd42c5669ccbac714535b829a2eae
[]
no_license
humlab/the_culture_of_international_relations
f12a604421debcc90996d98b8cccff6633615ffc
4440753d396c88dc5902e85e4c7e38ef8aadcefd
refs/heads/master
2022-11-13T14:05:01.373504
2022-11-01T16:30:16
2022-11-01T16:30:16
90,034,896
3
3
null
2021-09-06T08:08:06
2017-05-02T13:11:09
Jupyter Notebook
UTF-8
Python
false
false
8,967
py
import types import ipywidgets as widgets import textacy_corpus_utility as textacy_utility import common.utility as utility logger = utility.getLogger('corpus_text_analysis') def process_corpus(corpus, terms_opts, process_function, process_opts): def get_merged_words(scores, low, high): ws = set([]) for x, wl in scores.items(): if low <= x <= high: ws.update(wl) return ws normalize = terms_opts['normalize'] or 'orth' extra_stop_words = set(terms_opts.get('extra_stop_words', [])) if terms_opts.get('min_freq', 1) > 1: assert 'word_count_scores' in terms_opts extra_stop_words.update(get_merged_words(terms_opts['word_count_scores'], 1, terms_opts.get('min_freq'))) if terms_opts.get('max_doc_freq') < 100: assert 'word_document_count_scores' in terms_opts extra_stop_words.update(get_merged_words(terms_opts['word_document_count_scores'], terms_opts.get('max_doc_freq'), 100)) #if terms_opts.get('mask_gpe', False): # extra_stop_words.update(['_gpe_']) extract_args = dict( args=dict( ngrams=terms_opts['ngrams'], named_entities=terms_opts['named_entities'], normalize=terms_opts['normalize'], as_strings=True ), kwargs=dict( min_freq=terms_opts['min_freq'], include_pos=terms_opts['include_pos'], filter_stops=terms_opts['filter_stops'], filter_punct=terms_opts['filter_punct'] ), extra_stop_words=extra_stop_words, substitutions=(terms_opts.get('gpe_substitutions', []) if terms_opts.get('mask_gpe', False) else None), ) process_function(corpus, process_opts, extract_args) def process_corpus_gui(container, wti_index, process_function, **opts): lw = lambda width: widgets.Layout(width=width) def frequent_words(corpus, normalize, include_pos, n_top=100): if include_pos is None or include_pos == ('', ): include_pos = [] return [ x[0] for x in textacy_utility.get_most_frequent_words( corpus, n_top, normalize=normalize, include_pos=include_pos ) ] + [ '_gpe_' ] #logger.info('Preparing corpus statistics...') corpus = container.textacy_corpus gpe_substitutions = { } if opts.get('gpe_filename', None) is not None: logger.info('...loading term substitution mappings...') gpe_substitutions = { x: '_gpe_' for x in textacy_utility.load_term_substitutions(filepath=opts['gpe_filename'], vocab=None) } pos_tags = opts.get('tagset').groupby(['POS'])['DESCRIPTION'].apply(list).apply(lambda x: ', '.join(x[:1])).to_dict() if False: # display_pos_legend: pos_options = sorted([(k + ' (' + v + ')', k) for k,v in pos_tags.items() ]) else: pos_options = sorted([(k, k) for k,v in pos_tags.items() ]) ngrams_options = { '1': [1], '1,2': [1,2], '1,2,3': [1,2,3]} default_normalize = 'lemma' gui = types.SimpleNamespace( progress=widgets.IntProgress(value=0, min=0, max=5, step=1, description='', layout=lw('90%')), min_freq=widgets.IntSlider(description='Min word freq', min=0, max=10, value=2, step=1, layout=lw('240px')), max_doc_freq=widgets.IntSlider(description='Min doc. %', min=75, max=100, value=100, step=1, layout=lw('240px')), mask_gpe=widgets.ToggleButton(value=False, description='Mask GPE', tooltip='Replace geographical entites with `_gpe_`', icon='check', layout=lw('115px')), ngrams=widgets.Dropdown(description='n-grams', options=ngrams_options, value=[1], layout=lw('180px')), min_word=widgets.Dropdown(description='Min length', options=[1,2,3,4], value=1, layout=lw('180px')), normalize=widgets.Dropdown(description='Normalize', options=[ None, 'lemma', 'lower' ], value=default_normalize, layout=lw('180px')), filter_stops=widgets.ToggleButton(value=False, description='Filter stops', tooltip='Filter out stopwords', icon='check', layout=lw('115px')), filter_punct=widgets.ToggleButton(value=False, description='Filter punct', tooltip='Filter out punctuations', icon='check', layout=lw('115px')), named_entities=widgets.ToggleButton(value=False, description='Merge entities', tooltip='Merge entities', icon='check', disabled=True, layout=lw('115px')), apply_idf=widgets.ToggleButton(value=False, description='Apply IDF', tooltip='Apply IDF (skikit-learn) or TF-IDF (gensim)', icon='check'), include_pos=widgets.SelectMultiple(description='POS', options=pos_options, value=list(), rows=10, layout=lw('180px')), stop_words=widgets.SelectMultiple(description='STOP', options=[], value=list(), rows=10, layout=widgets.Layout(width='220px')), output=widgets.Output(), compute=widgets.Button(description='Compute', button_style='Success', layout=lw('115px')) ) #logger.info('...word counts...') #word_count_scores = opts.get('word_count_scores', None) or dict( # lemma=textacy_utility.generate_word_count_score(corpus, 'lemma', gui.min_freq.max), # lower=textacy_utility.generate_word_count_score(corpus, 'lower', gui.min_freq.max), # orth=textacy_utility.generate_word_count_score(corpus, 'orth', gui.min_freq.max) #) #logger.info('...word document count...') #word_document_count_scores = opts.get('word_document_count_scores', None) or dict( # lemma=textacy_utility.generate_word_document_count_score(corpus, 'lemma', gui.max_doc_freq.min), # lower=textacy_utility.generate_word_document_count_score(corpus, 'lower', gui.max_doc_freq.min), # orth=textacy_utility.generate_word_document_count_score(corpus, 'orth', gui.max_doc_freq.min) #) #logger.info('...done!') def pos_change_handler(*args): with gui.output: gui.compute.disabled = True selected = set(gui.stop_words.value) gui.stop_words.options = frequent_words(corpus, gui.normalize.value, gui.include_pos.value) selected = selected & set(gui.stop_words.options) gui.stop_words.value = list(selected) gui.compute.disabled = False pos_change_handler() gui.include_pos.observe(pos_change_handler, 'value') def tick(x=None, max_value=None): if max_value is not None: gui.progress.max = max_value gui.progress.value = gui.progress.value + 1 if x is None else x def buzy(is_buzy): gui.compute.disabled = is_buzy #gui.spinner.layout.visibility = 'visible' if is_buzy else 'hidden' def process_corpus_handler(*args): gui.output.clear_output() buzy(True) with gui.output: try: terms_opts = dict( min_freq=gui.min_freq.value, max_doc_freq=gui.max_doc_freq.value, mask_gpe=gui.mask_gpe.value, ngrams=gui.ngrams.value, min_word=gui.min_word.value, normalize=gui.normalize.value, filter_stops=gui.filter_stops.value, filter_punct=gui.filter_punct.value, named_entities=gui.named_entities.value, include_pos=gui.include_pos.value, extra_stop_words=gui.stop_words.value, gpe_substitutions=gpe_substitutions, word_count_scores=container.get_word_count(gui.normalize.value), word_document_count_scores=container.get_word_document_count(gui.normalize.value) ) process_opts = dict( container=container, gui=gui, tick=tick ) process_opts.update(opts) process_corpus(corpus, terms_opts, process_function, process_opts) # display(result) except Exception as ex: logger.error(ex) raise finally: buzy(False) gui.compute.on_click(process_corpus_handler) gui.boxes = widgets.VBox([ gui.progress, widgets.HBox([ widgets.VBox([ widgets.HBox([gui.normalize]), widgets.HBox([gui.ngrams]), widgets.HBox([gui.min_word]), gui.min_freq, gui.max_doc_freq ]), widgets.VBox([ gui.include_pos ]), widgets.VBox([ gui.stop_words ]), widgets.VBox([ gui.filter_stops, gui.mask_gpe, gui.filter_punct, gui.named_entities, gui.compute ]) ]), widgets.HBox([ gui.output ]) ]) display(gui.boxes) return gui
60498b2a36b3b029e68117c353e9d62505294008
9dab41a71bf19a9ad17ee3e9f77c0f58aebd1d6d
/python/uline/uline/uline/handlers/app/official/operations/form.py
54954fb7a2dabc703be3fa1e80e3641216ebec7a
[]
no_license
apollowesley/Demo
f0ef8ec6c4ceb0aec76771da8dd9a62fb579eac8
471c4af95d3a7222d6933afc571a8e52e8fe4aee
refs/heads/master
2021-02-15T04:01:51.590697
2018-01-29T01:44:29
2018-01-29T01:44:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from wtforms import validators, fields from uline.utils.form import BaseForm class MessageSendSearch(BaseForm): create_at = fields.DateTimeField(validators=[validators.Optional()]) message_content = fields.StringField(validators=[validators.Optional()]) sended_count = fields.IntegerField( validators=[validators.Optional()]) # 已发送的条数 need_send_count = fields.IntegerField( validators=[validators.Optional()]) # 为发送的条数
87fcbdd19d932c6379de0cd46fd9d4a1f81b1b85
47ce68e1ff970318fd31ac43405d0e1fa3594bf6
/Models/Autoencoders/TransposeConvAutoencoderDeepExtraLLR.py
281d1a5861b11b1efe478d6108fd1c7b3310b5eb
[ "BSD-3-Clause" ]
permissive
Midoriii/Anomaly_Detection_Diploma
7196da379f8aefbd4546ca23e8303d1829e059fb
11145e3e5210a4e45a33d98b138213edb7bc5d3d
refs/heads/master
2023-03-25T20:42:56.961210
2021-03-14T01:13:39
2021-03-14T01:13:39
261,205,472
0
0
null
null
null
null
UTF-8
Python
false
false
3,910
py
''' Copyright (c) 2021, Štěpán Beneš Convolutional Autoencoder with learnable Conv2DTranspose layers, especially deep, the encoding is really small With even further decreased learning rate ''' import numpy as np from Models.Autoencoders.BaseModel import BaseModel from keras.layers import Input, Reshape, Dense, Flatten from keras.layers import Activation, Conv2D, MaxPooling2D, Conv2DTranspose, PReLU from keras.initializers import Constant from keras.models import Model from keras.callbacks import History from keras.optimizers import Adam class TransposeConvAutoencoderDeepExtraLLR(BaseModel): def __init__(self): super().__init__() self.name = "TransposeConvAutoencoderDeepExtraLLR" return # Custom optimizer learning rate to see if it improves anything def compile_net(self): opt = Adam(learning_rate=0.00001) self.model.compile(optimizer=opt, loss='mse') self.model.summary() return def create_net(self, input_shape): net_input = Input(shape=input_shape) x = Conv2D(self.filters, (3, 3), padding='same')(net_input) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(self.filters, (3, 3), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) self.encoded = MaxPooling2D((2, 2), padding='same')(x) # Keep the encoder part self.encoder = Model(net_input, self.encoded) # And now the decoder part x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(self.encoded) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) x = Conv2DTranspose(self.filters, (3,3), strides=(2,2), padding='same')(x) x = PReLU(alpha_initializer=Constant(value=0.25))(x) self.decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) self.model = Model(net_input, self.decoded) return
d522119641e45ea7f443f1458d207a02f08aa4b8
afc8d5a9b1c2dd476ea59a7211b455732806fdfd
/Configurations/ControlRegions/WgS/Full2016/plot.py
ae45e9fd7f7af563855309ae7753825d3ffa7ccb
[]
no_license
latinos/PlotsConfigurations
6d88a5ad828dde4a7f45c68765081ed182fcda21
02417839021e2112e740607b0fb78e09b58c930f
refs/heads/master
2023-08-18T20:39:31.954943
2023-08-18T09:23:34
2023-08-18T09:23:34
39,819,875
10
63
null
2023-08-10T14:08:04
2015-07-28T07:36:50
Python
UTF-8
Python
false
false
10,880
py
# plot configuration # groupPlot = {} # # Groups of samples to improve the plots. # If not defined, normal plots is used # groupPlot['DY'] = { 'nameHR' : "DY", 'isSignal' : 0, 'color': 418, # kGreen+2 'samples' : ['DY'] } groupPlot['Fake'] = { 'nameHR' : 'Non-prompt', 'isSignal' : 0, 'color': 921, # kGray + 1 'samples' : ['Fake'] } groupPlot['top'] = { 'nameHR' : 'tW and t#bar{t}', 'isSignal' : 0, 'color': 400, # kYellow 'samples' : ['top'] } groupPlot['WW'] = { 'nameHR' : 'WW', 'isSignal' : 0, 'color': 851, # kAzure -9 'samples' : ['WW', 'ggWW'] } groupPlot['VVV'] = { 'nameHR' : 'VVV', 'isSignal' : 0, 'color': 857, # kAzure -3 'samples' : ['VVV'] } #groupPlot['VZ'] = { # 'nameHR' : "VZ/#gamma*/#gamma", # 'isSignal' : 0, # 'color' : 617, # kViolet + 1 # 'samples' : ['VZ', 'Vg', 'Wg', 'VgS', 'WZ', 'ZZ'] # } groupPlot['WZgS_L'] = { 'nameHR' : "WZmll01_L", 'isSignal' : 0, 'color' : 600, # kViolet + 1 'samples' : ['WZgS_L'] } groupPlot['WZgS_H'] = { 'nameHR' : "WZmll01_H", 'isSignal' : 0, 'color' : 887, # kViolet + 1 'samples' : ['WZgS_H'] } #groupPlot['WZ'] = { # 'nameHR' : "WZmll40", # 'isSignal' : 0, # 'color' : 619, # kViolet + 1 # 'samples' : ['WZ'] # } # groupPlot['VZ'] = { 'nameHR' : "VZ", 'isSignal' : 0, 'color' : 617, # kViolet + 1 'samples' : ['VZ', 'ZZ'] } groupPlot['Vg'] = { 'nameHR' : "V#gamma", 'isSignal' : 0, 'color' : 810, # kOrange + 10 'samples' : ['Vg', 'Wg'] } #groupPlot['VgS'] = { # 'nameHR' : "V#gamma*", # 'isSignal' : 0, # 'color' : 409, # kGreen - 9 # 'samples' : ['VgS'] # } # groupPlot['Higgs'] = { 'nameHR' : 'Higgs', 'isSignal' : 1, 'color': 632, # kRed 'samples' : ['H_htt', 'H_hww', 'ZH_hww', 'ggZH_hww', 'WH_hww', 'qqH_hww', 'ggH_hww', 'bbH_hww'] } #plot = {} # keys here must match keys in samples.py # plot['DY'] = { 'color': 418, # kGreen+2 'isSignal' : 0, 'isData' : 0, 'scale' : 1, #'cuts' : { #'hww2l2v_13TeV_of0j' : 0.95 , #'hww2l2v_13TeV_top_of0j' : 0.95 , #'hww2l2v_13TeV_dytt_of0j' : 0.95 , #'hww2l2v_13TeV_em_0j' : 0.95 , #'hww2l2v_13TeV_me_0j' : 0.95 , ## #'hww2l2v_13TeV_of1j' : 1.08 , #'hww2l2v_13TeV_top_of1j' : 1.08 , #'hww2l2v_13TeV_dytt_of1j' : 1.08 , #'hww2l2v_13TeV_em_1j' : 1.08 , #'hww2l2v_13TeV_me_1j' : 1.08 , #}, } plot['Wjets'] = { 'color': 921, # kGray + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['Fake'] = { 'color': 921, # kGray + 1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['FakeQCD'] = { 'color': 922, # kGray + 2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['ttbar'] = { 'nameHR' : 't#bart', 'color': 400, # kYellow 'isSignal' : 0, 'isData' : 0 , 'scale' : 1.0 } plot['singletop'] = { 'nameHR' : 't and tW', 'color': 401, # kYellow +1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['top'] = { 'nameHR' : 'tW and t#bar{t}', 'color': 400, # kYellow 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0, #'cuts' : { #'hww2l2v_13TeV_of0j' : 0.94 , #'hww2l2v_13TeV_top_of0j' : 0.94 , #'hww2l2v_13TeV_dytt_of0j' : 0.94 , #'hww2l2v_13TeV_em_0j' : 0.94 , #'hww2l2v_13TeV_me_0j' : 0.94 , ## #'hww2l2v_13TeV_of1j' : 0.86 , #'hww2l2v_13TeV_top_of1j' : 0.86 , #'hww2l2v_13TeV_dytt_of1j' : 0.86 , #'hww2l2v_13TeV_em_1j' : 0.86 , #'hww2l2v_13TeV_me_1j' : 0.86 , #}, } plot['WW'] = { 'color': 851, # kAzure -9 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 # ele/mu trigger efficiency datadriven } plot['ggWW'] = { 'color': 850, # kAzure -10 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['ggWW_Int'] = { 'color': 616, # kMagenta 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['Wg'] = { 'color': 859, # kAzure -1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['Vg'] = { 'color': 859, # kAzure -1 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } #plot['VgS'] = { # 'color' : 617, # kViolet + 1 # 'isSignal' : 0, # 'isData' : 0, # 'scale' : 1.0 # } # plot['VZ'] = { 'color': 858, # kAzure -2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['WZgS_L'] = { 'color': 890, # kAzure -2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.1 } plot['WZgS_H'] = { 'color': 887, # kAzure -2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.24 } plot['WZ'] = { 'color': 887, # kAzure -2 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['ZZ'] = { 'color': 856, # kAzure -4 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['VVV'] = { 'color': 857, # kAzure -3 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } plot['ZZ'] = { 'color': 854, # kAzure -6 'isSignal' : 0, 'isData' : 0, 'scale' : 1.0 } # Htautau plot['H_htt'] = { 'nameHR' : 'Htt', 'color': 632+4, # kRed+4 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } # HWW plot['H_hww'] = { 'nameHR' : 'Hww', 'color': 632, # kRed 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['ZH_hww'] = { 'nameHR' : 'ZH', 'color': 632+3, # kRed+3 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['ggZH_hww'] = { 'nameHR' : 'ggZH', 'color': 632+4, # kRed+4 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['WH_hww'] = { 'nameHR' : 'WH', 'color': 632+2, # kRed+2 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['qqH_hww'] = { 'nameHR' : 'qqH', 'color': 632+1, # kRed+1 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['ggH_hww'] = { 'nameHR' : 'ggH', 'color': 632, # kRed 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } plot['bbH_hww'] = { 'nameHR' : 'bbH', 'color': 632+5, # kRed+5 'isSignal' : 1, 'isData' : 0, 'scale' : 1 # } # data plot['DATA'] = { 'nameHR' : 'Data', 'color': 1 , 'isSignal' : 0, 'isData' : 1 , 'isBlind' : 0 } # additional options # legend['lumi'] = 'L = 2.3/fb' # 2.264 fb-1 #legend['lumi'] = 'L = 2.3/fb' # 2.318 fb-1 #legend['lumi'] = 'L = 0.8/fb' # 2.318 fb-1 #legend['lumi'] = 'L = 2.6/fb' #legend['lumi'] = 'L = 4.3/fb' #legend['lumi'] = 'L = 6.3/fb' #legend['lumi'] = 'L = 12.9/fb' legend['lumi'] = 'L = 35.9/fb' legend['sqrt'] = '#sqrt{s} = 13 TeV'
3878130f0f9cf98c52c5c9089cbe81841cf7040e
20149c63930ebb2a950e45a7fafa12a17712695c
/ImageProcessing/camera.py
914751cb174bbbf7236d7c86bdf4630599682c6b
[]
no_license
junyi1997/Final_OIT_projet
ffe7f1a1c61f8124ab72d5250e30c1e2cc49c1ab
98fc039378021c6db259dbe79d7980750aa91710
refs/heads/master
2023-01-03T05:24:31.133416
2020-11-01T14:12:15
2020-11-01T14:12:15
201,788,832
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
import picamera initialized = False class Camera: camera = None def __init__(self): self.camera = picamera.PiCamera() def takePhoto(self, filepath): """ Takes a photo and saves it to the /img directory. """ self.camera.capture(filepath) def getPiCamera(self): return self.camera
9c68e91c36a93581f62c5d46e522b9bb8b7c38bb
35f1d3ab93b5de8ed83f7dce534505a2b8b2217b
/backend/new_app_18938/settings.py
4070cff46d149ab3cd53e54c5017494947f10cbd
[]
no_license
crowdbotics-apps/new-app-18938
5b01023da26e48735720ce0ded6bb74bed26ec28
ba2ad11b6820b7561b818d3b7e13875331e03fe9
refs/heads/master
2022-11-16T00:31:11.211998
2020-07-16T16:36:10
2020-07-16T16:36:10
280,161,661
0
0
null
null
null
null
UTF-8
Python
false
false
5,791
py
""" Django settings for new_app_18938 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'new_app_18938.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'new_app_18938.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
44da06eb51574b41af6813f5e6252a5a2750e648
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03767/s866081759.py
cf66b2ce220f7faa16d298b3290bd992eb740c88
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
import collections n = int(input()) *a, = map(int, input().split()) a.sort() a = collections.deque(a) ans = 0 while n: a.popleft() a.pop() ans += a.pop() n -= 1 print(ans)
fd2299064cdb5b26bd595348ca1902f794c5e968
66c68ab7a6b62c4a94ddf4cdda64dc7f2181f6f7
/samples/crater/crater.py
4c20dc702a93465e1b15bd734aff41608960e0f7
[ "MIT" ]
permissive
ZhiangChen/Mask_RCNN
bfaeebbc32bdd2eef40f77ffe385437c6d9e60e0
040611909c140a98ab09ae09b511ce2a47b5f195
refs/heads/master
2020-03-27T10:04:52.300122
2019-02-25T00:42:17
2019-02-25T00:42:17
146,393,525
1
0
null
2018-08-28T04:51:42
2018-08-28T04:51:42
null
UTF-8
Python
false
false
4,235
py
""" classes for lunar crater dataset Zhiang Chen Sep 13, 2018 [email protected] """ import os import sys import numpy as np import skimage.draw import pickle import argparse import matplotlib.pyplot as plt from mrcnn import visualize from mrcnn.config import Config from mrcnn import model as modellib, utils ROOT_DIR = os.path.abspath("../../") sys.path.append(ROOT_DIR) # To find local version of the library # Path to trained weights file COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") ############################################################ # Dataset config ############################################################ class CraterConfig(Config): NAME = "crater" GPU_COUNT = 1 # cannot create model when setting gpu count as 2 IMAGES_PER_GPU = 1 NUM_CLASSES = 1 + 1 # Background + crater IMAGE_MIN_DIM = 256 IMAGE_MAX_DIM = 256 RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # IMAGE_CHANNEL = 1 # wrong, the input will be automatically converted to 3 channels (if greyscale, rgb will be repeated) STEPS_PER_EPOCH = 100 DETECTION_MIN_CONFIDENCE = 0.9 MAX_GT_INSTANCES = 500 DETECTION_MAX_INSTANCES = 600 TRAIN_ROIS_PER_IMAGE = 1000 ############################################################ # Dataset ############################################################ class CraterDataset(utils.Dataset): def load_crater(self, datadir, subset, subsubset): self.add_class("lunar_crater", 1, "lunar_crater") assert subset in ["train", "val"] subset_dir = os.path.join(datadir, subset) dataset_dir = os.path.join(subset_dir, subsubset) annotation_path = os.path.join(dataset_dir, 'annotations.pickle') assert os.path.isfile(annotation_path) with open(annotation_path, "rb") as f: annotations = pickle.load(f, encoding='latin1') del(f) print('loading ' + subsubset) for i in range(50): image_path = os.path.join(dataset_dir, "img_{i:0{zp}d}.jpg".format(i=i, zp=2)) #print(image_path) assert os.path.isfile(image_path) image_id = int(subsubset)*50 + i image = skimage.io.imread(image_path) height, width = image.shape[:2] index = "{k:0{zp}d}".format(k=i, zp=2) mask = annotations[index]['data'] mask = np.swapaxes(mask, 0, 1) mask = np.swapaxes(mask, 1, 2) self.add_image( "lunar_crater", image_id=image_id, path=image_path, width=width, height=height, annotation_path=annotation_path, annotation = mask) def load_mask(self, image_id): info = self.image_info[image_id] if info["source"] != "lunar_crater": return super(self.__class__, self).load_mask(image_id) mask = info["annotation"] return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) def image_reference(self, image_id): info = self.image_info[image_id] if info["source"] == "lunar_crater": return info["path"] else: super(self.__class__, self).image_reference(image_id) def display_mask(self, image_id): masks, ids = self.load_mask(image_id) mask = mask.max(2) plt.imshow(mask) plt.show() ############################################################ # Training ############################################################ if __name__ == '__main__': config = CraterConfig() config.display() dataset = CraterDataset() dataset.load_crater('../../dataset/lunar_craters', 'train', '0') dataset.load_crater('../../dataset/lunar_craters', 'train', '1') #dataset.load_crater('../../dataset/lunar_craters', 'train', '2') #dataset.load_crater('../../dataset/lunar_craters', 'train', '3') a,b = dataset.load_mask(65)
31e431da6f3792207879669b3ab90c80a53e57f4
1bb42bac177fb4e979faa441363c27cb636a43aa
/generalization/synthesization/cifar_synthesis.py
988e89282aea8d759288af356198101494572410
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
google-research/federated
a6040e80fa0fbf533e0d665c66a9bc549d208b3d
329e60fa56b87f691303638ceb9dfa1fc5083953
refs/heads/master
2023-08-28T13:10:10.885505
2023-08-22T23:06:08
2023-08-22T23:06:40
295,559,343
595
187
Apache-2.0
2022-05-12T08:42:53
2020-09-14T23:09:07
Python
UTF-8
Python
false
false
11,222
py
# Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Synthesize a federated dataset from CIFAR10/100.""" import collections import functools from typing import Mapping, Optional, Tuple import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_federated as tff from generalization.synthesization import coarse_dirichlet from generalization.synthesization import dirichlet from generalization.synthesization import gmm_embedding def _cifar_consistency_postprocesser(ds: tf.data.Dataset) -> tf.data.Dataset: """Preprocess to keep consistency with the TFF official CIFAR dataset.""" def elem_postprocesser( elem: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]: return collections.OrderedDict(image=elem['image'], label=elem['label']) return ds.map(elem_postprocesser) def _load_cifar_dataset(base_dataset_name: str, include_train: bool, include_test: bool) -> tf.data.Dataset: """Load CIFAR dataset.""" total_ds_dict = tfds.load(base_dataset_name) if include_train and not include_test: ds = total_ds_dict['train'] elif include_test and (not include_train): ds = total_ds_dict['test'] elif include_test and include_train: ds = total_ds_dict['train'].concatenate(total_ds_dict['test']) else: raise ValueError('At least one of the `include_train` and' '`include_test` must be True.') return ds def _load_cifar_pretrained_model(efficient_net_b: int = 7) -> tf.keras.Model: """Load pretrained model for CIFAR.""" model_builder = getattr(tf.keras.applications.efficientnet, f'EfficientNetB{efficient_net_b}') base_model = model_builder( include_top=False, weights='imagenet', input_shape=(32, 32, 3), ) inputs = tf.keras.Input(shape=(32, 32, 3)) x = base_model(inputs, training=False) # (None, 1, 1, 1280) outputs = tf.keras.layers.Flatten()(x) # (None, 1280) return tf.keras.Model(inputs=inputs, outputs=outputs) def synthesize_cifar_by_gmm_embedding( base_dataset_name: str, num_clients: int, efficient_net_b: int, pca_components: Optional[int], use_progressive_matching: bool, kl_pairwise_batch_size: int, gmm_init_params: str, include_train: bool, include_test: bool, seed: Optional[int], ) -> Tuple[tff.simulation.datasets.ClientData, str]: """Synthesize a federated dataset from a CIFAR-like dataset via GMM over embeddding. Args: base_dataset_name: A str representing the name of the base CIFAR-like dataset, can be either 'cifar10' or 'cifar100'. num_clients: An integer representing the number of clients to construct. efficient_net_b: An integer ranging from 0--7 representing the size of the EfficientNet pretrained model. pca_components: An optional integer representing the number of PCA components to be extracted from the embedding arrays for GMM. If None, the full embedding array will be used for GMM. use_progressive_matching: Whether to use progressive matching. If True, the function will progressively match the clusters of one unmatched label with a matched label by computing the optimal bipartite matching under pairwise KL divergence. If False, the function will randomly match the clusters across labels. kl_pairwise_batch_size: An optional integer representing the batch size when computing pairwise KL divergence. If None, the full cost matrix will be computed in one batch. This could result in large memory cost. gmm_init_params: A str representing the initialization mode of GMM, can be either 'random' or 'kmeans'. include_train: A boolean representing whether to include training split of the original CIFAR dataset. include_test: A boolean representing whether to include test split of the original CIFAR dataset. At least one of the include_train and include_test should be True. seed: An optional integer representing the random seed for all random procedures. If None, no random seed is used. Returns: A ClientData instance holding the resulting federated dataset, and a str representing the name of the synthesized dataset. """ dataset = _load_cifar_dataset( base_dataset_name, include_train=include_train, include_test=include_test) ds_name = base_dataset_name if include_train and (not include_test): ds_name = ds_name + '_train_only' elif include_test and (not include_train): ds_name = ds_name + '_test_only' name = ','.join([ ds_name, 'gmm_embedding', f'clients={num_clients}', f'model=b{efficient_net_b}', f'pca={pca_components}', 'matching=' + ('progressive_optimal' if use_progressive_matching else 'random'), f'gmm_init={gmm_init_params}', f'seed={seed}' ]) cd = gmm_embedding.synthesize_by_gmm_over_pretrained_embedding( dataset=dataset, pretrained_model_builder=functools.partial( _load_cifar_pretrained_model, efficient_net_b=efficient_net_b), num_clients=num_clients, pca_components=pca_components, input_name='image', label_name='label', use_progressive_matching=use_progressive_matching, kl_pairwise_batch_size=kl_pairwise_batch_size, gmm_init_params=gmm_init_params, seed=seed) cd = cd.preprocess(_cifar_consistency_postprocesser) return cd, name def synthesize_cifar_by_dirichlet_over_labels( base_dataset_name: str, num_clients: int, concentration_factor: float, use_rotate_draw: bool, include_train: bool, include_test: bool, seed: Optional[int]) -> Tuple[tff.simulation.datasets.ClientData, str]: """Synthesize a federated dataset from a CIFAR-like dataset via dirichlet over labels. Args: base_dataset_name: A str representing the name of the base CIFAR-like dataset, can be either 'cifar10' or 'cifar100'. num_clients: An integer representing the number of clients to construct. concentration_factor: A float-typed parameter of Dirichlet distribution. Each client will sample from Dirichlet(concentration_factor * label_relative_popularity) to get a multinomial distribution over labels. It controls the data heterogeneity of clients. If approaches 0, then each client only have data from a single category label. If approaches infinity, then the client distribution will approach overall popularity. use_rotate_draw: Whether to rotate the drawing clients. If True, each client will draw only one sample at once, and then rotate to the next random client. This is intended to prevent the last clients from deviating from its desired distribution. If False, a client will draw all the samples at once before moving to the next client. include_train: A boolean representing whether to include training split of the original CIFAR dataset. include_test: A boolean representing whether to include test split of the original CIFAR dataset. At least one of the include_train and include_test should be True. seed: An optional integer representing the random seed for all random procedures. If None, no random seed is used. Returns: A ClientData instance holding the resulting federated dataset, and a str representing the name of the synthesized dataset. """ dataset = _load_cifar_dataset( base_dataset_name, include_train=include_train, include_test=include_test) ds_name = base_dataset_name if include_train and (not include_test): ds_name = ds_name + '_train_only' elif include_test and (not include_train): ds_name = ds_name + '_test_only' name = ','.join([ ds_name, 'dirichlet', f'clients={num_clients}', f'concentration_factor={concentration_factor}', f'rotate={use_rotate_draw}', f'seed={seed}' ]) cd = dirichlet.synthesize_by_dirichlet_over_labels( dataset=dataset, num_clients=num_clients, concentration_factor=concentration_factor, use_rotate_draw=use_rotate_draw, seed=seed) cd = cd.preprocess(_cifar_consistency_postprocesser) return cd, name def synthesize_cifar100_over_coarse_and_fine_labels( num_clients: int, coarse_concentration_factor: float, fine_concentration_factor: float, use_rotate_draw: bool, include_train: bool, include_test: bool, seed: Optional[int]) -> Tuple[tff.simulation.datasets.ClientData, str]: """Synthesize a federated dataset from CIFAR100 via dirichlet over coarse and fine labels. Args: num_clients: An integer representing the number of clients to construct. coarse_concentration_factor: A float-typed parameter of Dirichlet distribution to draw coarse labels. fine_concentration_factor: A float-typed parameter of Dirichlet distribution to draw fine labels. use_rotate_draw: Whether to rotate the drawing clients. If True, each client will draw only one sample at once, and then rotate to the next random client. This is intended to prevent the last clients from deviating from its desired distribution. If False, a client will draw all the samples at once before moving to the next client. include_train: A boolean representing whether to include training split of the original CIFAR dataset. include_test: A boolean representing whether to include test split of the original CIFAR dataset. At least one of the include_train and include_test should be True. seed: An optional integer representing the random seed for all random procedures. If None, no random seed is used. Returns: A ClientData instance holding the resulting federated dataset, and a str representing the name of the synthesized dataset. """ dataset = _load_cifar_dataset( 'cifar100', include_train=include_train, include_test=include_test) ds_name = 'cifar100' if include_train and (not include_test): ds_name = ds_name + '_train_only' elif include_test and (not include_train): ds_name = ds_name + '_test_only' name = ','.join([ ds_name, 'coarse_dirichlet', f'clients={num_clients}', f'coarse_factor={coarse_concentration_factor}', f'fine_factor={fine_concentration_factor}', f'rotate={use_rotate_draw}', f'seed={seed}' ]) cd = coarse_dirichlet.synthesize_by_dirichlet_over_coarse_and_fine_labels( dataset=dataset, num_clients=num_clients, coarse_concentration_factor=coarse_concentration_factor, fine_concentration_factor=fine_concentration_factor, use_rotate_draw=use_rotate_draw, seed=seed) cd = cd.preprocess(_cifar_consistency_postprocesser) return cd, name
1c839c157f06ac377b799639d8ae03cc25682b58
4235ae775f1061217504ea027ef32b533e8dea34
/0x04-pagination/0-simple_helper_function.py
83390a8b4302c52fe4e99a7266d5e60bc08eb3e8
[]
no_license
Leidysalda/holbertonschool-web_back_end
892cda3361a5fc18693f645b5b8f058087f6b9fd
0b8bd14fa018d9480fd31cf300dad2a3ccd439d0
refs/heads/master
2023-08-23T18:19:17.226745
2021-10-18T05:26:30
2021-10-18T05:26:30
387,662,848
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
#!/usr/bin/env python3 """Simple helper function """ def index_range(page: int, page_size: int) -> tuple: """Index range""" return (page - 1) * page_size, page * page_size
43ae88a0b1629e2e7b1ee73877ac8e03e6ad97a0
107ebb6d25812d12718d3f0731770318fb0eb2d2
/study_code/Day_15/15展示表格Tree.py
d67b5c4e5773f4cf666b250e592e4924b4ca87ae
[]
no_license
taoranzhishang/Python_codes_for_learning
0c5fa25a5da80e5cbca8cf0b9b3703d488e1af6f
23d12b8c7524f3672ff3baed94dbfed04df821b5
refs/heads/master
2023-03-09T12:16:02.749807
2021-02-26T13:04:08
2021-02-26T13:04:08
315,070,954
1
0
null
null
null
null
UTF-8
Python
false
false
661
py
import tkinter from tkinter import ttk win = tkinter.Tk() tree = ttk.Treeview(win) # 显示表格或树 tree["columns"] = ("Name", "Age", "Height") tree.column("Name", width=100) # 表示列,不显示 tree.column("Age", width=100) tree.column("Height", width=100) tree.heading("Name", text="姓名") # 表头 tree.heading("Age", text="年龄") tree.heading("Height", text="身高") tree.insert('', 0, text="line1", values=('1', '2', '3')) # 插入行 tree.insert('', 1, text="line2", values=('1', '2', '3')) tree.insert('', 2, text="line3", values=('1', '2', '3')) tree.insert('', 3, text="line4", values=('1', '2', '3')) tree.pack() win.mainloop()
31b99f77c0ae6772cfdef2260dad07ec24ebc40a
e77a7cc1ed343a85662f0ad3c448a350ab776261
/data_structures/array/dutch_flag_problem.py
f898486c9edeca6b8bfaf519c0fddcb52c4d54b5
[ "MIT" ]
permissive
M4cs/python-ds
9dcecab10291be6a274130c42450319dc112ac46
434c127ea4c49eb8d6bf65c71ff6ee10361d994e
refs/heads/master
2020-08-10T03:40:22.340529
2019-10-10T17:52:28
2019-10-10T17:52:28
214,247,733
2
0
MIT
2019-10-10T17:43:31
2019-10-10T17:43:30
null
UTF-8
Python
false
false
446
py
def dutch(arr): low = 0 mid = 0 high = len(arr) - 1 while mid <= high: if arr[mid] == 0: arr[low], arr[mid] = arr[mid], arr[low] low += 1 mid += 1 elif arr[mid] == 1: mid += 1 else: arr[mid], arr[high] = arr[high], arr[mid] high -= 1 arr = [1,0,2,1,0,2,1,2,1,2,1,1,0,2,1,0,1,2,1,2,1,1,2,1,0,2,1,1] print(arr) dutch(arr) print(arr)
905bd2fa91b8f2f596253a2ea0da0afae3162704
73c5bc071e496b67677c55dfb9cd8621eac1f34e
/probabilistic_utils/gmm_utils.py
2887862615fb3b85f7da7651fe0e1736afc1d27f
[]
no_license
salt-fly/unsup_temp_embed
55324ffba7b2858ff3c255f2a984d0253ea23dfb
be7fa1fdfb4466673e3d6953924194cdead281a5
refs/heads/master
2020-05-30T19:33:51.311017
2019-04-29T18:07:33
2019-04-29T18:07:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,763
py
#!/usr/bin/env python """ """ __author__ = 'Anna Kukleva' __date__ = 'September 2018' import numpy as np from utils.arg_pars import opt from utils.logging_setup import logger class AuxiliaryGMM: def __init__(self): self.means_ = [0] self.covariances_ = [0] def score_samples(self, features): result = np.ones(features.shape[0]) * (-np.inf) return result class GMM_trh: def __init__(self, gmm): self._gmm = gmm self.trh = np.inf self.mean_score = 0 self.bg_trh_score = [] if not isinstance(gmm, AuxiliaryGMM): self._define_threshold() def _define_threshold(self): mean = self._gmm.means_[0] self.mean_score = self._gmm.score_samples(mean.reshape(1, -1)) logger.debug('mean: %f' % self.mean_score) # cov = self._gmm.covariances_[0] # sample = (mean - 3 * np.diag(cov)).reshape(1, -1) # sample_score = self._gmm.score_samples(sample) # # self.trh = self._gmm.score_samples(sample) # self.trh = self.mean_score - opt.bg_trh # str_print = 'GMM: %f lower bound: %f ' % (self.mean_score - sample_score, self._gmm.lower_bound_) # str_print += 'var max: %f min: %f mean: %f' % (np.max(cov), np.min(cov), np.mean(cov)) # logger.debug(str_print) def score_samples(self, features): return self._gmm.score_samples(features) def append_bg_score(self, score): self.bg_trh_score.append(score) def update_trh(self, new_bg_trh=None): if self.mean_score != 0: new_bg_trh = opt.bg_trh if new_bg_trh is None else new_bg_trh self.trh = self.mean_score - new_bg_trh # self.trh = self.mean_score - 1
a8dc4dd41c5abc7755f49846ffa67574433c31ea
2f2e9cd97d65751757ae0a92e8bb882f3cbc5b5b
/287.寻找重复数.py
e810ef03eb114a003fdd86c50269732634088bba
[]
no_license
mqinbin/python_leetcode
77f0a75eb29f8d2f9a789958e0120a7df4d0d0d3
73e0c81867f38fdf4051d8f58d0d3dc245be081e
refs/heads/main
2023-03-10T18:27:36.421262
2021-02-25T07:24:10
2021-02-25T07:24:10
314,410,703
0
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
# # @lc app=leetcode.cn id=287 lang=python3 # # [287] 寻找重复数 # # @lc code=start class Solution: # def findDuplicate(self, nums: List[int]) -> int: def findDuplicate(self, nums: List[int]) -> int: '''快慢指针''' slow = fast = 0 while True: slow = nums[slow] fast = nums[nums[fast]] print(slow,fast) if slow == fast: fast = 0 while True: fast = nums[fast] slow = nums[slow] print('-' ,slow,fast) if fast == slow: return fast # def findDuplicate(self, nums: List[int]) -> int: # '''二分法''' # n = len(nums) # left = 1 # right = n # while left < right: # mid = (left + right) // 2 # cnt = 0 # for num in nums: # if num <= mid: # cnt += 1 # if cnt <= mid: # left = mid + 1 # else: # right = mid # return left # @lc code=end
171e5c2dbed1ec67eced3b19ddf7954dfb167246
844a9fc6aac74166640657a54de6ea0978e433d0
/core/losses.py
a96bd13d096c17345953cfc043f3cf24bf7b9868
[]
no_license
TerrisGO/tDBN
441ae76a7b9369ec8e93bfd35f15de615d1c1e57
91644521f0adcc838137523a7a178394e39f4d7b
refs/heads/master
2022-06-04T00:51:08.247125
2020-05-03T04:21:41
2020-05-03T04:21:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,727
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classification and regression loss functions for object detection. Localization losses: * WeightedL2LocalizationLoss * WeightedSmoothL1LocalizationLoss Classification losses: * WeightedSigmoidClassificationLoss * WeightedSoftmaxClassificationLoss * BootstrappedSigmoidClassificationLoss """ from abc import ABCMeta, abstractmethod import numpy as np import torch from torch import nn from torch.autograd import Variable from torch.nn import functional as F import torchplus def indices_to_dense_vector(indices, size, indices_value=1., default_value=0, dtype=np.float32): """Creates dense vector with indices set to specific value and rest to zeros. This function exists because it is unclear if it is safe to use tf.sparse_to_dense(indices, [size], 1, validate_indices=False) with indices which are not ordered. This function accepts a dynamic size (e.g. tf.shape(tensor)[0]) Args: indices: 1d Tensor with integer indices which are to be set to indices_values. size: scalar with size (integer) of output Tensor. indices_value: values of elements specified by indices in the output vector default_value: values of other elements in the output vector. dtype: data type. Returns: dense 1D Tensor of shape [size] with indices set to indices_values and the rest set to default_value. """ dense = torch.zeros(size).fill_(default_value) dense[indices] = indices_value return dense class Loss(object): """Abstract base class for loss functions.""" __metaclass__ = ABCMeta def __call__(self, prediction_tensor, target_tensor, ignore_nan_targets=False, scope=None, **params): """Call the loss function. Args: prediction_tensor: an N-d tensor of shape [batch, anchors, ...] representing predicted quantities. target_tensor: an N-d tensor of shape [batch, anchors, ...] representing regression or classification targets. ignore_nan_targets: whether to ignore nan targets in the loss computation. E.g. can be used if the target tensor is missing groundtruth data that shouldn't be factored into the loss. scope: Op scope name. Defaults to 'Loss' if None. **params: Additional keyword arguments for specific implementations of the Loss. Returns: loss: a tensor representing the value of the loss function. """ if ignore_nan_targets: target_tensor = torch.where(torch.isnan(target_tensor), prediction_tensor, target_tensor) return self._compute_loss(prediction_tensor, target_tensor, **params) @abstractmethod def _compute_loss(self, prediction_tensor, target_tensor, **params): """Method to be overridden by implementations. Args: prediction_tensor: a tensor representing predicted quantities target_tensor: a tensor representing regression or classification targets **params: Additional keyword arguments for specific implementations of the Loss. Returns: loss: an N-d tensor of shape [batch, anchors, ...] containing the loss per anchor """ pass class WeightedL2LocalizationLoss(Loss): """L2 localization loss function with anchorwise output support. Loss[b,a] = .5 * ||weights[b,a] * (prediction[b,a,:] - target[b,a,:])||^2 """ def __init__(self, code_weights=None): super().__init__() if code_weights is not None: self._code_weights = np.array(code_weights, dtype=np.float32) self._code_weights = Variable(torch.from_numpy(self._code_weights))#XXX remove .cuda()) else: self._code_weights = None def _compute_loss(self, prediction_tensor, target_tensor, weights): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the (encoded) predicted locations of objects. target_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the regression targets weights: a float tensor of shape [batch_size, num_anchors] Returns: loss: a float tensor of shape [batch_size, num_anchors] tensor representing the value of the loss function. """ diff = prediction_tensor - target_tensor if self._code_weights is not None: self._code_weights = self._code_weights.type_as(prediction_tensor) self._code_weights = self._code_weights.view(1, 1, -1) diff = self._code_weights * diff weighted_diff = diff * weights.unsqueeze(-1) square_diff = 0.5 * weighted_diff * weighted_diff return square_diff.sum(2) class WeightedSmoothL1LocalizationLoss(Loss): """Smooth L1 localization loss function. The smooth L1_loss is defined elementwise as .5 x^2 if |x|<1 and |x|-.5 otherwise, where x is the difference between predictions and target. See also Equation (3) in the Fast R-CNN paper by Ross Girshick (ICCV 2015) """ def __init__(self, sigma=3.0, code_weights=None, codewise=True): super().__init__() self._sigma = sigma if code_weights is not None: self._code_weights = np.array(code_weights, dtype=np.float32) self._code_weights = Variable(torch.from_numpy(self._code_weights)) ## XXX, remove .cuda else: self._code_weights = None self._codewise = codewise def _compute_loss(self, prediction_tensor, target_tensor, weights=None): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the (encoded) predicted locations of objects. target_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the regression targets weights: a float tensor of shape [batch_size, num_anchors] Returns: loss: a float tensor of shape [batch_size, num_anchors] tensor representing the value of the loss function. """ diff = prediction_tensor - target_tensor if self._code_weights is not None: code_weights = self._code_weights.type_as(prediction_tensor) diff = code_weights.view(1, 1, -1) * diff abs_diff = torch.abs(diff) abs_diff_lt_1 = torch.le(abs_diff, 1 / (self._sigma**2)).type_as(abs_diff) loss = abs_diff_lt_1 * 0.5 * torch.pow(abs_diff * self._sigma, 2) \ + (abs_diff - 0.5 / (self._sigma**2)) * (1. - abs_diff_lt_1) if self._codewise: anchorwise_smooth_l1norm = loss if weights is not None: anchorwise_smooth_l1norm *= weights.unsqueeze(-1) else: anchorwise_smooth_l1norm = torch.sum(loss, 2)# * weights if weights is not None: anchorwise_smooth_l1norm *= weights return anchorwise_smooth_l1norm def _sigmoid_cross_entropy_with_logits(logits, labels): # to be compatible with tensorflow, we don't use ignore_idx loss = torch.clamp(logits, min=0) - logits * labels.type_as(logits) loss += torch.log1p(torch.exp(-torch.abs(logits))) # transpose_param = [0] + [param[-1]] + param[1:-1] # logits = logits.permute(*transpose_param) # loss_ftor = nn.NLLLoss(reduce=False) # loss = loss_ftor(F.logsigmoid(logits), labels) return loss def _softmax_cross_entropy_with_logits(logits, labels): param = list(range(len(logits.shape))) transpose_param = [0] + [param[-1]] + param[1:-1] logits = logits.permute(*transpose_param) # [N, ..., C] -> [N, C, ...] loss_ftor = nn.CrossEntropyLoss(reduce=False) loss = loss_ftor(logits, labels.max(dim=-1)[1]) return loss class WeightedSigmoidClassificationLoss(Loss): """Sigmoid cross entropy classification loss function.""" def _compute_loss(self, prediction_tensor, target_tensor, weights, class_indices=None): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function. """ weights = weights.unsqueeze(-1) if class_indices is not None: weights *= indices_to_dense_vector(class_indices, prediction_tensor.shape[2]).view(1, 1, -1).type_as(prediction_tensor) per_entry_cross_ent = (_sigmoid_cross_entropy_with_logits( labels=target_tensor, logits=prediction_tensor)) return per_entry_cross_ent * weights class SigmoidFocalClassificationLoss(Loss): """Sigmoid focal cross entropy loss. Focal loss down-weights well classified examples and focusses on the hard examples. See https://arxiv.org/pdf/1708.02002.pdf for the loss definition. """ def __init__(self, gamma=2.0, alpha=0.25): """Constructor. Args: gamma: exponent of the modulating factor (1 - p_t) ^ gamma. alpha: optional alpha weighting factor to balance positives vs negatives. all_zero_negative: bool. if True, will treat all zero as background. else, will treat first label as background. only affect alpha. """ self._alpha = alpha self._gamma = gamma def _compute_loss(self, prediction_tensor, target_tensor, weights, class_indices=None): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function. """ weights = weights.unsqueeze(2) if class_indices is not None: weights *= indices_to_dense_vector(class_indices, prediction_tensor.shape[2]).view(1, 1, -1).type_as(prediction_tensor) per_entry_cross_ent = (_sigmoid_cross_entropy_with_logits( labels=target_tensor, logits=prediction_tensor)) prediction_probabilities = torch.sigmoid(prediction_tensor) p_t = ((target_tensor * prediction_probabilities) + ((1 - target_tensor) * (1 - prediction_probabilities))) modulating_factor = 1.0 if self._gamma: modulating_factor = torch.pow(1.0 - p_t, self._gamma) alpha_weight_factor = 1.0 if self._alpha is not None: alpha_weight_factor = (target_tensor * self._alpha + (1 - target_tensor) * (1 - self._alpha)) focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor * per_entry_cross_ent) return focal_cross_entropy_loss * weights class SoftmaxFocalClassificationLoss(Loss): """Softmax focal cross entropy loss. Focal loss down-weights well classified examples and focusses on the hard examples. See https://arxiv.org/pdf/1708.02002.pdf for the loss definition. """ def __init__(self, gamma=2.0, alpha=0.25): """Constructor. Args: gamma: exponent of the modulating factor (1 - p_t) ^ gamma. alpha: optional alpha weighting factor to balance positives vs negatives. """ self._alpha = alpha self._gamma = gamma def _compute_loss(self, prediction_tensor, target_tensor, weights, class_indices=None): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function. """ weights = weights.unsqueeze(2) if class_indices is not None: weights *= indices_to_dense_vector(class_indices, prediction_tensor.shape[2]).view(1, 1, -1).type_as(prediction_tensor) per_entry_cross_ent = (_softmax_cross_entropy_with_logits( labels=target_tensor, logits=prediction_tensor)) # convert [N, num_anchors] to [N, num_anchors, num_classes] per_entry_cross_ent = per_entry_cross_ent.unsqueeze(-1) * target_tensor prediction_probabilities = F.softmax(prediction_tensor, dim=-1) p_t = ((target_tensor * prediction_probabilities) + ((1 - target_tensor) * (1 - prediction_probabilities))) modulating_factor = 1.0 if self._gamma: modulating_factor = torch.pow(1.0 - p_t, self._gamma) alpha_weight_factor = 1.0 if self._alpha is not None: alpha_weight_factor = torch.where(target_tensor[..., 0] == 1, torch.tensor(1 - self._alpha).type_as(per_entry_cross_ent), torch.tensor(self._alpha).type_as(per_entry_cross_ent)) focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor * per_entry_cross_ent) return focal_cross_entropy_loss * weights class WeightedSoftmaxClassificationLoss(Loss): """Softmax loss function.""" def __init__(self, logit_scale=1.0): """Constructor. Args: logit_scale: When this value is high, the prediction is "diffused" and when this value is low, the prediction is made peakier. (default 1.0) """ self._logit_scale = logit_scale def _compute_loss(self, prediction_tensor, target_tensor, weights): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] Returns: loss: a float tensor of shape [batch_size, num_anchors] representing the value of the loss function. """ num_classes = prediction_tensor.shape[-1] prediction_tensor = torch.div( prediction_tensor, self._logit_scale) per_row_cross_ent = (_softmax_cross_entropy_with_logits( labels=target_tensor.view(-1, num_classes), logits=prediction_tensor.view(-1, num_classes))) return per_row_cross_ent.view(weights.shape) * weights class BootstrappedSigmoidClassificationLoss(Loss): """Bootstrapped sigmoid cross entropy classification loss function. This loss uses a convex combination of training labels and the current model's predictions as training targets in the classification loss. The idea is that as the model improves over time, its predictions can be trusted more and we can use these predictions to mitigate the damage of noisy/incorrect labels, because incorrect labels are likely to be eventually highly inconsistent with other stimuli predicted to have the same label by the model. In "soft" bootstrapping, we use all predicted class probabilities, whereas in "hard" bootstrapping, we use the single class favored by the model. See also Training Deep Neural Networks On Noisy Labels with Bootstrapping by Reed et al. (ICLR 2015). """ def __init__(self, alpha, bootstrap_type='soft'): """Constructor. Args: alpha: a float32 scalar tensor between 0 and 1 representing interpolation weight bootstrap_type: set to either 'hard' or 'soft' (default) Raises: ValueError: if bootstrap_type is not either 'hard' or 'soft' """ if bootstrap_type != 'hard' and bootstrap_type != 'soft': raise ValueError('Unrecognized bootstrap_type: must be one of ' '\'hard\' or \'soft.\'') self._alpha = alpha self._bootstrap_type = bootstrap_type def _compute_loss(self, prediction_tensor, target_tensor, weights): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function. """ if self._bootstrap_type == 'soft': bootstrap_target_tensor = self._alpha * target_tensor + ( 1.0 - self._alpha) * torch.sigmoid(prediction_tensor) else: bootstrap_target_tensor = self._alpha * target_tensor + ( 1.0 - self._alpha) * (torch.sigmoid(prediction_tensor) > 0.5).float() per_entry_cross_ent = (_sigmoid_cross_entropy_with_logits( labels=bootstrap_target_tensor, logits=prediction_tensor)) return per_entry_cross_ent * weights.unsqueeze(2)
5970e87ee2061596cca1ae837cf3d8a58cc9226c
ea637e5e28056d0a332a7892bd241aa6a154e57a
/recyclescrollview.py
c3528005902e474677d732e97bfd75ece4cf01c5
[ "MIT" ]
permissive
JesusZerpa/kivy-recyclescrollview
85c4511569ce65e0cecf102238dd36858a6aa92c
50016c313216833b583066ec0a9ed7e5b271da01
refs/heads/master
2022-04-20T21:52:22.862800
2020-04-21T00:54:28
2020-04-21T00:54:28
257,435,919
0
0
null
null
null
null
UTF-8
Python
false
false
2,534
py
from kivy.factory import Factory from kivy.properties import * from kivy.uix.floatlayout import FloatLayout from kivy.uix.boxlayout import BoxLayout class RecycleScrollView(Factory.ScrollView): viewclass=StringProperty("") data=ListProperty([]) #box orientation= 'vertical' default_height= 1000 cursor=0 max_items=10 widget_height=None def __init__(self,*args,**kwargs): super(RecycleScrollView,self).__init__(*args,**kwargs) self.do_scroll_y=True self.box=BoxLayout(orientation="vertical",size_hint_y= None,height=self.default_height) self.add_widget(self.box) def on_parent(self,instance,value): pass def on_size(self,instance,value): height=0 for elem in self.children[0].children: height+=elem.height self.children[0].height=height def on_scroll_move(self,instance): if self.widget_height: dx=self.box.height-(self.scroll_y*self.box.height) if dx>0: item_passed=dx/self.widget_height self.cursor=int(item_passed) self.update() return super().on_scroll_move(instance) def on_scroll_stop(self,instance): if self.widget_height: dx=self.box.height-(self.scroll_y*self.box.height) if dx>0: item_passed=dx/self.widget_height self.cursor=int(item_passed) self.update() return super().on_scroll_stop(instance) def update(self): self.clear_widgets() widget=getattr(Factory,self.viewclass) _widget=widget() self.box=FloatLayout(size_hint_y= None,height=self.default_height) super(RecycleScrollView,self).add_widget(self.box) self.box.top=self.top for k,item in enumerate(self.data[self.cursor:self.cursor+self.max_items]): widget=getattr(Factory,self.viewclass) _widget=widget() _widget.size_hint_y=None self.box.add_widget(_widget) _widget.pos=(_widget.pos[0],(_widget.height*len(self.data))-(_widget.height*(self.cursor+k+1))) for elem in item: setattr(_widget,elem,item[elem]) self.box.height=self.widget_height*len(self.data) def on_classview(self,instance,value): instance.classview=value def on_data(self,instance,value): #button #size_hint: (1, None) #height: 200 self.data=value for k,item in enumerate(self.data[self.cursor:self.cursor+self.max_items]): widget=getattr(Factory,self.viewclass) _widget=widget() _widget.size_hint_y=None for elem in item: setattr(_widget,elem,item[elem]) if self.widget_height==None: self.widget_height=_widget.height self.box.add_widget(_widget)
15b938d4100f7d789627cdd8c18f844a41b98930
836312e7ced2d5c5ed43d0e3ad34f2144cf9064e
/APIs/5_SecuringYourApi/models.py
9f1b833e0b49a78a074f3a8471d669f318a8cb51
[]
no_license
muhammad-mamdouh/udacity-fullstack-tools
4342cdca75d88184a095d69b9484a4e50c87f905
a881845042f3706b5e37ea72df645859541c73ab
refs/heads/master
2022-12-15T23:33:20.813201
2019-07-11T21:05:53
2019-07-11T21:05:53
187,712,425
1
0
null
2022-12-08T05:51:53
2019-05-20T20:58:42
Python
UTF-8
Python
false
false
715
py
from sqlalchemy import Column, Integer, String, create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, sessionmaker from passlib.apps import custom_app_context as pwd_context Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) username = Column(String(32), index=True) password_hash = Column(String(64)) def hash_password(self, password): self.password_hash = pwd_context.hash(password) def verify_password(self, password): return pwd_context.verify(password, self.password_hash) engine = create_engine('sqlite:///users.db') Base.metadata.create_all(engine)
a95cff2d9d860046fa74ac94747beb54443c7426
632099ac0d895943cbbeb9048a2cdfcd21102411
/LPD8/__init__.py
854fab1bea8584f563056348a8c3ca56979773b0
[]
no_license
Toniigor/AbletonLive9_RemoteScripts
7f4bbf759a79629584413f6d1797005e8cd7f2ff
fed1e5ee61ea12ea6360107a65a6e666364353ff
refs/heads/master
2021-01-16T21:19:25.330221
2014-06-06T12:33:03
2014-06-06T12:33:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
#Embedded file name: /Users/versonator/Jenkins/live/Projects/AppLive/Resources/MIDI Remote Scripts/LPD8/__init__.py from _Generic.GenericScript import GenericScript import Live from config import * def create_instance(c_instance): """ The generic script can be customised by using parameters (see config.py). """ return GenericScript(c_instance, Live.MidiMap.MapMode.absolute, Live.MidiMap.MapMode.absolute, DEVICE_CONTROLS, TRANSPORT_CONTROLS, VOLUME_CONTROLS, TRACKARM_CONTROLS, BANK_CONTROLS, CONTROLLER_DESCRIPTION) from _Framework.Capabilities import * def get_capabilities(): return {CONTROLLER_ID_KEY: controller_id(vendor_id=2536, product_ids=[117], model_name='LPD8'), PORTS_KEY: [inport(props=[NOTES_CC, REMOTE, SCRIPT]), outport(props=[SCRIPT])]}
2a3e7dcabd45c50afa9aaec3c28922e67f7594b5
caceb60f71165772b6d6155f619e79189e7c80a9
/第一期/成都-MFC/task002/selflearn/advance02decorator/decorator/demo0.py
bcaf2abdb66537909eedbbbbfd2e83322255515b
[ "Apache-2.0" ]
permissive
beidou9313/deeptest
ff41999bb3eb5081cdc8d7523587d7bc11be5fea
e046cdd35bd63e9430416ea6954b1aaef4bc50d5
refs/heads/master
2021-04-26T23:06:08.890071
2019-04-03T02:18:44
2019-04-03T02:18:44
123,931,080
0
0
Apache-2.0
2018-03-05T14:25:54
2018-03-05T14:25:53
null
UTF-8
Python
false
false
540
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'MFC' __time__ = '18/1/24 15:14' """ 01.python高级1 02.python高级2-生成器、闭包、装饰器 05-装饰器 01 """ # example 1 def foo(): print('foo') foo # 表示是函数 foo() # 表示执行foo函数 # example 2 def foo(): print('foo') foo = lambda x: x + 1 # foo指向另一个函数 r = foo(3) # # 执行下面的lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数 print(r)
cde54a09147bedf311abc8e1fe4d88900bc757e9
1fe8d4133981e53e88abf633046060b56fae883e
/venv/lib/python3.8/site-packages/scipy/optimize/tests/test_linprog.py
a245d4719d083c4e3e039a7d01fc03a1e56ecc28
[]
no_license
Akira331/flask-cifar10
6c49db8485038731ce67d23f0972b9574746c7a7
283e7a2867c77d4b6aba7aea9013bf241d35d76c
refs/heads/master
2023-06-14T16:35:06.384755
2021-07-05T14:09:15
2021-07-05T14:09:15
382,864,970
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:f8b63b53bd829fbc07a8138950ebbc2e32d2b860e947b44b004584abe4170b6a size 69667
a06fc5c4de927107934a98e2926e54b640c22983
478de38a95c2729ee2ef8c77b1c5a81f23aedb59
/Programming-Algorithm/Palindrome Partitioning.py
a1578e415d692bf6775851f2802cd87fc34a869b
[]
no_license
shuzhancnjx/leetcode-
0c711f720ef653ddff2af3af697a453122c28403
12093c92ef33707ad8ccdd59ad040c04cad1ee3b
refs/heads/master
2020-12-24T16:32:25.976747
2016-03-03T15:36:44
2016-03-03T15:36:44
37,101,621
0
0
null
null
null
null
UTF-8
Python
false
false
1,381
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 16 14:08:57 2015 @author: ZSHU """ ''' 1. the basic idea is to have a list 'temp' formed by each letter in the string, i.e., list(s) 2. combine the components of 'temp' when they are palindrome 3. 'pos' is used to record the center for determing the palindrome ''' class Solution(object): def partition(self, s): """ :type s: str :rtype: List[List[str]] """ def par(res, temp, pos): if pos>len(temp)-1: res.append(temp) return else: p1=pos-1; p2=pos+1 while p1>=0 and p2<len(temp): if temp[p1]==temp[p2]: par(res, temp[:p1]+[''.join(temp[p1:p2+1])] +temp[p2+1:],p1+1) p1-=1;p2+=1 else: break p1=pos; p2=pos+1 while p1>=0 and p2<len(temp): if temp[p1]==temp[p2]: par(res, temp[:p1]+[''.join(temp[p1:p2+1])] +temp[p2+1:], p1+1) p1-=1; p2+=1 else: break par(res, temp,pos+1) # if no palindrome ceterned at temp[pos], then move on to next res=[] par(res, list(s),0) return res
848614b9568aff2a658d60b2321afcea163f00e3
2d647ce5b0acf255b0713304acdb0f0c193df8fc
/doc/conf.py
d526459dffd408e28854f7bbfcccf8efeec1311c
[ "CC-BY-NC-4.0", "MIT" ]
permissive
tonybaloney/pycharm-security
a1ed540f47a0af4cd659c72643f63f800df01702
5c1ceeb1fb2a18478fa7076a81f9f47fd450e592
refs/heads/master
2023-08-17T20:09:22.924182
2023-08-16T02:12:57
2023-08-16T02:12:57
231,985,043
341
27
MIT
2023-09-14T19:03:27
2020-01-05T22:35:55
Kotlin
UTF-8
Python
false
false
2,438
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Project information ----------------------------------------------------- project = 'PyCharm Python Security plugin' copyright = '2020, Anthony Shaw' author = 'Anthony Shaw' # -- General configuration --------------------------------------------------- extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.viewcode", "sphinx.ext.githubpages", "sphinx_markdown_tables" ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] source_suffix = [".rst", ".md"] source_parsers = { '.md': 'recommonmark.parser.CommonMarkParser', } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' html_theme_options = { 'logo': 'logo.png', 'logo_name': True, 'logo_text_align': "center", 'github_user': 'tonybaloney', 'github_repo': 'pycharm-security', 'github_banner': True, 'github_button': True, 'fixed_sidebar': True, 'sidebar_width': '330px', 'page_width': '70%', 'extra_nav_links': { 'JetBrains Marketplace': "https://plugins.jetbrains.com/plugin/13609-python-security", "GitHub Marketplace": "https://github.com/marketplace/actions/pycharm-python-security-scanner", "Docker Hub": "https://hub.docker.com/r/anthonypjshaw/pycharm-security" }, 'show_powered_by': False } html_show_copyright = False html_show_sphinx = False # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_sidebars = {'**': ['about.html', 'navigation.html', 'searchbox.html'], } master_doc = 'index'
8247ddf7a63ae3cc954fc819bd2bfa9d3ed5c402
a46fc5187245f7ac79758ae475d4d865e24f482b
/33_search_in_rotated_array/search_in_rotated.py
18c24c01cea4ab774ce6a9b99cb74a3bf1bf59d2
[]
no_license
narnat/leetcode
ae31f9321ac9a087244dddd64706780ea57ded91
20a48021be5e5348d681e910c843e734df98b596
refs/heads/master
2022-12-08T00:58:12.547227
2020-08-26T21:04:53
2020-08-26T21:04:53
257,167,879
0
2
null
null
null
null
UTF-8
Python
false
false
861
py
#!/usr/bin/env python3 from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: left = 0 right = len(nums) - 1 if not nums: return -1 while left < right: mid = left + (right - left) // 2 if nums[mid] > nums[right]: left = mid + 1 else: right = mid pivot = left left = 0 right = len(nums) - 1 if nums[pivot] <= target <= nums[right]: left = pivot else: right = pivot while left <= right: mid = left + (right - left) // 2 if target == nums[mid]: return mid if nums[mid] > target: right = mid - 1 else: left = mid + 1 return -1
b6d0c2267d52b5f791315417a324c2657e86e1db
5da5473ff3026165a47f98744bac82903cf008e0
/packages/google-cloud-dataform/samples/generated_samples/dataform_v1beta1_generated_dataform_list_workflow_invocations_async.py
dde7ff28eefb1bca3666f553e8ef38cb254977af
[ "Apache-2.0" ]
permissive
googleapis/google-cloud-python
ed61a5f03a476ab6053870f4da7bc5534e25558b
93c4e63408c65129422f65217325f4e7d41f7edf
refs/heads/main
2023-09-04T09:09:07.852632
2023-08-31T22:49:26
2023-08-31T22:49:26
16,316,451
2,792
917
Apache-2.0
2023-09-14T21:45:18
2014-01-28T15:51:47
Python
UTF-8
Python
false
false
1,967
py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for ListWorkflowInvocations # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dataform # [START dataform_v1beta1_generated_Dataform_ListWorkflowInvocations_async] # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dataform_v1beta1 async def sample_list_workflow_invocations(): # Create a client client = dataform_v1beta1.DataformAsyncClient() # Initialize request argument(s) request = dataform_v1beta1.ListWorkflowInvocationsRequest( parent="parent_value", ) # Make the request page_result = client.list_workflow_invocations(request=request) # Handle the response async for response in page_result: print(response) # [END dataform_v1beta1_generated_Dataform_ListWorkflowInvocations_async]
68ca9762fd012943155b4e292cef1c5cbd9fa5f5
6649efd4a95645938221eca58404db5663cd2491
/official/vision/dataloaders/tf_example_label_map_decoder_test.py
3ff9a8b3c14c70ea2289e9cf6783a02f93db5b72
[ "Apache-2.0" ]
permissive
Dithn/models
8447866855959946358f2e5160b7d31aaafcfc98
36a140b8765eaa07525ac42a00cbd01a8b03b98e
refs/heads/master
2023-09-01T07:41:28.596877
2022-03-16T18:12:00
2022-03-16T18:13:23
228,201,096
1
0
Apache-2.0
2021-09-23T21:19:16
2019-12-15T14:52:24
Python
UTF-8
Python
false
false
7,746
py
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tf_example_label_map_decoder.py.""" import os # Import libraries from absl.testing import parameterized import numpy as np import tensorflow as tf from official.vision.dataloaders import tf_example_label_map_decoder from official.vision.dataloaders import tfexample_utils LABEL_MAP_CSV_CONTENT = '0,class_0\n1,class_1\n2,class_2' class TfExampleDecoderLabelMapTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( (100, 100, 0), (100, 100, 1), (100, 100, 2), (100, 100, 0), (100, 100, 1), (100, 100, 2), ) def test_result_shape(self, image_height, image_width, num_instances): label_map_dir = self.get_temp_dir() label_map_name = 'label_map.csv' label_map_path = os.path.join(label_map_dir, label_map_name) with open(label_map_path, 'w') as f: f.write(LABEL_MAP_CSV_CONTENT) decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap( label_map_path, include_mask=True) serialized_example = tfexample_utils.create_detection_test_example( image_height=image_height, image_width=image_width, image_channel=3, num_instances=num_instances).SerializeToString() decoded_tensors = decoder.decode( tf.convert_to_tensor(value=serialized_example)) results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) self.assertAllEqual( (image_height, image_width, 3), results['image'].shape) self.assertEqual(tfexample_utils.DUMP_SOURCE_ID, results['source_id']) self.assertEqual(image_height, results['height']) self.assertEqual(image_width, results['width']) self.assertAllEqual( (num_instances,), results['groundtruth_classes'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_is_crowd'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_area'].shape) self.assertAllEqual( (num_instances, 4), results['groundtruth_boxes'].shape) self.assertAllEqual( (num_instances, image_height, image_width), results['groundtruth_instance_masks'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_instance_masks_png'].shape) def test_result_content(self): label_map_dir = self.get_temp_dir() label_map_name = 'label_map.csv' label_map_path = os.path.join(label_map_dir, label_map_name) with open(label_map_path, 'w') as f: f.write(LABEL_MAP_CSV_CONTENT) decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap( label_map_path, include_mask=True) image_content = [[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [255, 255, 255], [255, 255, 255], [0, 0, 0]], [[0, 0, 0], [255, 255, 255], [255, 255, 255], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]] image = tfexample_utils.encode_image(np.uint8(image_content), fmt='PNG') image_height = 4 image_width = 4 num_instances = 2 xmins = [0, 0.25] xmaxs = [0.5, 1.0] ymins = [0, 0] ymaxs = [0.5, 1.0] labels = [b'class_2', b'class_0'] areas = [ 0.25 * image_height * image_width, 0.75 * image_height * image_width ] is_crowds = [1, 0] mask_content = [[[255, 255, 0, 0], [255, 255, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 255, 255, 255], [0, 255, 255, 255], [0, 255, 255, 255], [0, 255, 255, 255]]] masks = [ tfexample_utils.encode_image(np.uint8(m), fmt='PNG') for m in list(mask_content) ] serialized_example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': (tf.train.Feature( bytes_list=tf.train.BytesList(value=[image]))), 'image/source_id': (tf.train.Feature( bytes_list=tf.train.BytesList( value=[tfexample_utils.DUMP_SOURCE_ID]))), 'image/height': (tf.train.Feature( int64_list=tf.train.Int64List(value=[image_height]))), 'image/width': (tf.train.Feature( int64_list=tf.train.Int64List(value=[image_width]))), 'image/object/bbox/xmin': (tf.train.Feature( float_list=tf.train.FloatList(value=xmins))), 'image/object/bbox/xmax': (tf.train.Feature( float_list=tf.train.FloatList(value=xmaxs))), 'image/object/bbox/ymin': (tf.train.Feature( float_list=tf.train.FloatList(value=ymins))), 'image/object/bbox/ymax': (tf.train.Feature( float_list=tf.train.FloatList(value=ymaxs))), 'image/object/class/text': (tf.train.Feature( bytes_list=tf.train.BytesList(value=labels))), 'image/object/is_crowd': (tf.train.Feature( int64_list=tf.train.Int64List(value=is_crowds))), 'image/object/area': (tf.train.Feature( float_list=tf.train.FloatList(value=areas))), 'image/object/mask': (tf.train.Feature( bytes_list=tf.train.BytesList(value=masks))), })).SerializeToString() decoded_tensors = decoder.decode( tf.convert_to_tensor(value=serialized_example)) results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) self.assertAllEqual( (image_height, image_width, 3), results['image'].shape) self.assertAllEqual(image_content, results['image']) self.assertEqual(tfexample_utils.DUMP_SOURCE_ID, results['source_id']) self.assertEqual(image_height, results['height']) self.assertEqual(image_width, results['width']) self.assertAllEqual( (num_instances,), results['groundtruth_classes'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_is_crowd'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_area'].shape) self.assertAllEqual( (num_instances, 4), results['groundtruth_boxes'].shape) self.assertAllEqual( (num_instances, image_height, image_width), results['groundtruth_instance_masks'].shape) self.assertAllEqual( (num_instances,), results['groundtruth_instance_masks_png'].shape) self.assertAllEqual( [2, 0], results['groundtruth_classes']) self.assertAllEqual( [True, False], results['groundtruth_is_crowd']) self.assertNDArrayNear( [0.25 * image_height * image_width, 0.75 * image_height * image_width], results['groundtruth_area'], 1e-4) self.assertNDArrayNear( [[0, 0, 0.5, 0.5], [0, 0.25, 1.0, 1.0]], results['groundtruth_boxes'], 1e-4) self.assertNDArrayNear( mask_content, results['groundtruth_instance_masks'], 1e-4) self.assertAllEqual( masks, results['groundtruth_instance_masks_png']) if __name__ == '__main__': tf.test.main()
d0421b44a25e1116f523a219dbfed2dc534f5518
f5485d955fa942711f337286a86f05374ea58a72
/migrations/versions/cbe0f844650d_.py
95626d4f1467e756a549807f7e637093f64f7ef7
[]
no_license
bingfengjiyu/flask_demo
f6245d7e8696b3bc492ed3f922948bd01319be30
3feef9fcee6e3c8f8fae46fb0fb5f5a8bdb82f4d
refs/heads/master
2020-03-24T11:04:03.012486
2018-07-28T12:16:01
2018-07-28T12:16:01
142,674,753
0
0
null
null
null
null
UTF-8
Python
false
false
646
py
"""empty message Revision ID: cbe0f844650d Revises: Create Date: 2018-07-07 12:10:18.303153 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cbe0f844650d' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('tbl_authors', sa.Column('email', sa.String(length=64), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('tbl_authors', 'email') # ### end Alembic commands ###
a0a19a07d37174229a775fc5ab451b3a3396a995
d9e0585e57b482d91e8af7514e683e2488e23381
/padinfo/view/series_scroll.py
8d6a99de4701c691fb50fc7dd9820cae2b135354
[ "MIT" ]
permissive
TrendingTechnology/pad-cogs
d08abb8da8bf2763a4091a29139168d8c1d2333a
b913a4e16a6473b8b53fae4bda564bedcc82c876
refs/heads/master
2023-08-11T01:10:22.088761
2021-09-19T00:41:43
2021-09-19T00:41:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,190
py
from typing import TYPE_CHECKING, List from discordmenu.embed.base import Box from discordmenu.embed.components import EmbedMain, EmbedField from discordmenu.embed.text import BoldText from discordmenu.embed.view import EmbedView from tsutils.emoji import char_to_emoji from tsutils.menu.footers import embed_footer_with_state from tsutils.query_settings import QuerySettings from padinfo.common.config import UserConfig from padinfo.view.components.monster.header import MonsterHeader from padinfo.view.components.view_state_base import ViewStateBase if TYPE_CHECKING: from dbcog.models.monster_model import MonsterModel from dbcog.database_context import DbContext class SeriesScrollViewState(ViewStateBase): MAX_ITEMS_PER_PANE = 11 def __init__(self, original_author_id, menu_type, raw_query, query, color, series_id, paginated_monsters: List[List["MonsterModel"]], current_page, rarity: int, query_settings: QuerySettings, all_rarities: List[int], title, message, current_index: int = None, max_len_so_far: int = None, reaction_list=None, extra_state=None, child_message_id=None): super().__init__(original_author_id, menu_type, raw_query, extra_state=extra_state) self.current_index = current_index self.all_rarities = all_rarities self.paginated_monsters = paginated_monsters self.current_page = current_page or 0 self.series_id = series_id self.rarity = rarity self.query_settings = query_settings self.idle_message = message self.child_message_id = child_message_id self.title = title self.reaction_list = reaction_list self.color = color self.query = query self._max_len_so_far = max(max_len_so_far or len(self.monster_list), len(self.monster_list)) @property def monster_list(self) -> List["MonsterModel"]: return self.paginated_monsters[self.current_page] @property def max_len_so_far(self) -> int: self._max_len_so_far = max(len(self.monster_list), self._max_len_so_far) return self._max_len_so_far @property def current_monster_id(self) -> int: return self.monster_list[self.current_index].monster_id @property def pages_in_rarity(self) -> int: return len(self.paginated_monsters) def serialize(self): ret = super().serialize() ret.update({ 'pane_type': SeriesScrollView.VIEW_TYPE, 'series_id': self.series_id, 'query_settings': self.query_settings.serialize(), 'current_page': self.current_page, 'pages_in_rarity': self.pages_in_rarity, 'title': self.title, 'rarity': self.rarity, 'all_rarities': self.all_rarities, 'reaction_list': self.reaction_list, 'child_message_id': self.child_message_id, 'idle_message': self.idle_message, 'max_len_so_far': self.max_len_so_far, 'current_index': self.current_index, }) return ret def get_serialized_child_extra_ims(self, emoji_names, menu_type): extra_ims = { 'is_child': True, 'reaction_list': emoji_names, 'menu_type': menu_type, 'resolved_monster_id': self.current_monster_id, 'query_settings': self.query_settings.serialize(), 'idle_message': self.idle_message } return extra_ims @staticmethod async def deserialize(dbcog, user_config: UserConfig, ims: dict): if ims.get('unsupported_transition'): return None series_id = ims['series_id'] rarity = ims['rarity'] all_rarities = ims['all_rarities'] query_settings = QuerySettings.deserialize(ims.get('query_settings')) paginated_monsters = await SeriesScrollViewState.do_query(dbcog, series_id, rarity, query_settings.server) current_page = ims['current_page'] title = ims['title'] raw_query = ims['raw_query'] query = ims.get('query') or raw_query original_author_id = ims['original_author_id'] menu_type = ims['menu_type'] reaction_list = ims.get('reaction_list') child_message_id = ims.get('child_message_id') current_index = ims.get('current_index') current_monster_list = paginated_monsters[current_page] max_len_so_far = max(ims['max_len_so_far'] or len(current_monster_list), len(current_monster_list)) idle_message = ims.get('idle_message') return SeriesScrollViewState(original_author_id, menu_type, raw_query, query, user_config.color, series_id, paginated_monsters, current_page, rarity, query_settings, all_rarities, title, idle_message, current_index=current_index, max_len_so_far=max_len_so_far, reaction_list=reaction_list, extra_state=ims, child_message_id=child_message_id) @staticmethod async def do_query(dbcog, series_id, rarity, server): db_context: "DbContext" = dbcog.database all_series_monsters = db_context.get_monsters_by_series(series_id, server=server) base_monsters_of_rarity = list(filter( lambda m: db_context.graph.monster_is_base(m) and m.rarity == rarity, all_series_monsters)) paginated_monsters = [base_monsters_of_rarity[i:i + SeriesScrollViewState.MAX_ITEMS_PER_PANE] for i in range( 0, len(base_monsters_of_rarity), SeriesScrollViewState.MAX_ITEMS_PER_PANE)] return paginated_monsters @staticmethod def query_all_rarities(dbcog, series_id, server): db_context: "DbContext" = dbcog.database return sorted({m.rarity for m in db_context.get_all_monsters(server) if m.series_id == series_id and db_context.graph.monster_is_base(m)}) @staticmethod async def query_from_ims(dbcog, ims) -> List[List["MonsterModel"]]: series_id = ims['series_id'] rarity = ims['rarity'] query_settings = QuerySettings.deserialize(ims['query_settings']) paginated_monsters = await SeriesScrollViewState.do_query(dbcog, series_id, rarity, query_settings.server) return paginated_monsters async def decrement_page(self, dbcog): if self.current_page > 0: self.current_page = self.current_page - 1 self.current_index = None else: # if there are multiple rarities, decrementing first page will change rarity if len(self.all_rarities) > 1: rarity_index = self.all_rarities.index(self.rarity) self.rarity = self.all_rarities[rarity_index - 1] self.paginated_monsters = await SeriesScrollViewState.do_query(dbcog, self.series_id, self.rarity, self.query_settings.server) self.current_index = None self.current_page = len(self.paginated_monsters) - 1 if len(self.paginated_monsters) > 1: self.current_index = None async def increment_page(self, dbcog): if self.current_page < len(self.paginated_monsters) - 1: self.current_page = self.current_page + 1 self.current_index = None else: # if there are multiple rarities, incrementing last page will change rarity if len(self.all_rarities) > 1: rarity_index = self.all_rarities.index(self.rarity) self.rarity = self.all_rarities[(rarity_index + 1) % len(self.all_rarities)] self.paginated_monsters = await SeriesScrollViewState.do_query(dbcog, self.series_id, self.rarity, self.query_settings.server) self.current_index = None self.current_page = 0 if len(self.paginated_monsters) > 1: self.current_index = None async def decrement_index(self, dbcog): if self.current_index is None: self.current_index = len(self.monster_list) - 1 return if self.current_index > 0: self.current_index = self.current_index - 1 return await self.decrement_page(dbcog) self.current_index = len(self.monster_list) - 1 async def increment_index(self, dbcog): if self.current_index is None: self.current_index = 0 return if self.current_index < len(self.monster_list) - 1: self.current_index = self.current_index + 1 return await self.increment_page(dbcog) self.current_index = 0 def set_index(self, new_index: int): # don't want to go out of range, which will forget current index, break next, and break prev if new_index < len(self.monster_list): self.current_index = new_index class SeriesScrollView: VIEW_TYPE = 'SeriesScroll' @staticmethod def embed(state: SeriesScrollViewState): fields = [ EmbedField(BoldText('Current rarity: {}'.format(state.rarity)), Box(*SeriesScrollView._monster_list( state.monster_list, state.current_index))), EmbedField(BoldText('Rarities'), Box( SeriesScrollView._all_rarity_text(state), ), inline=True ), EmbedField(BoldText('Page'), Box('{} of {}'.format(state.current_page + 1, state.pages_in_rarity)), inline=True ) ] return EmbedView( EmbedMain( title=state.title, color=state.color, ), embed_footer=embed_footer_with_state(state), embed_fields=fields) @staticmethod def _all_rarity_text(state): lines = [] for r in state.all_rarities: if r != state.rarity: lines.append(str(r)) else: lines.append('**{}**'.format(state.rarity)) return ', '.join(lines) @staticmethod def _monster_list(monsters, current_index): if not len(monsters): return [] return [ MonsterHeader.short_with_emoji( mon, link=SeriesScrollView._is_linked(i, current_index), prefix=char_to_emoji(str(i)) ) for i, mon in enumerate(monsters) ] @staticmethod def _is_linked(i, current_index): if current_index is None: return True return i != current_index
ee130f7ff914a89d881715663eba4f61cc90bcfb
ab4f74d127bfc89813ee359bb9c779eca5426ddc
/script/label_image.runfiles/org_tensorflow/tensorflow/core/framework/tensor_pb2.py
9adcb52c8c3ea21bdcdcb2006d01b4c3f6a19493
[ "MIT" ]
permissive
harshit-jain-git/ImageNET
cdfd5a340b62862ad8d1cc3b9a0f30cccc481744
1cd4c2b70917e4709ce75422c0205fe3735a1b01
refs/heads/master
2022-12-11T12:47:46.795376
2017-12-19T05:47:26
2017-12-19T05:47:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
/home/co/.cache/bazel/_bazel_co/2e35bede1f3fd334ff5ab28da2fc1540/execroot/org_tensorflow/bazel-out/k8-opt/genfiles/tensorflow/core/framework/tensor_pb2.py
7ae7198fa354aec4c1775a03d319da0d45d323ea
0f07107b016d2aee64788966b9f0d322ac46b998
/moya/testprojects/scratch/blog/py/test.py
2b109b36a4486a66034ed4b3c5ad99d295a37b25
[ "MIT" ]
permissive
fkztw/moya
35f48cdc5d5723b04c671947099b0b1af1c7cc7a
78b91d87b4519f91dfdd2b40dab44e72f201a843
refs/heads/master
2023-08-09T09:20:21.968908
2019-02-03T18:18:54
2019-02-03T18:18:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
from __future__ import print_function import moya @moya.expose.macro("test") def test(): print("Success! :-)") return 10
c49f884ff1e502534a0cbabe7633c2134b201d34
b391498124fdcaef989bf3ebafffb0df43e3e07f
/pygccxml-0.8.2/unittests/declarations_cache_tester.py
10112018fdfee5e022b785ec191dc8df82e502cb
[ "BSL-1.0" ]
permissive
glehmann/WrapITK-unstable
9a0dd9d387ecd59c9439465dcc32cca552e14576
402fc668f1f3c3dd57d0751a61efa3b1625d238b
refs/heads/master
2021-01-10T22:02:04.715926
2008-05-25T16:53:07
2008-05-25T16:53:07
3,272,767
0
0
null
null
null
null
UTF-8
Python
false
false
6,319
py
# Copyright 2004 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os, sys, unittest, os.path import autoconfig import pygccxml.parser from pygccxml.parser.config import config_t from pygccxml.parser.declarations_cache import * class decl_cache_tester(unittest.TestCase): def __init__(self, *args ): unittest.TestCase.__init__(self, *args) if not os.path.exists( autoconfig.build_dir ): os.makedirs( autoconfig.build_dir ) def test_file_signature(self): file1 = os.path.join(autoconfig.data_directory, 'decl_cache_file1.txt') file1_dup = os.path.join(autoconfig.data_directory, 'decl_cache_file1_duplicate.txt') file2 = os.path.join(autoconfig.data_directory, 'decl_cache_file2.txt') sig1 = file_signature(file1) sig1_dup = file_signature(file1_dup) sig2 = file_signature(file2) self.assert_(sig1 == sig1_dup) self.assert_(sig1 != sig2) def test_config_signature(self): diff_cfg_list = self.build_differing_cfg_list() def_cfg = diff_cfg_list[0] def_sig = configuration_signature(def_cfg) # Test changes that should cause sig changes for cfg in diff_cfg_list[1:]: self.assert_(configuration_signature(cfg) != def_sig) # Test changes that should not cause sig changes no_changes = def_cfg.clone() self.assert_(configuration_signature(no_changes) == def_sig) #start_decls_changed = def_cfg.clone() #start_decls_changed.start_with_declarations = "test object" #self.assert_(configuration_signature(start_decls_changed) == def_sig) ignore_changed = def_cfg.clone() ignore_changed.ignore_gccxml_output = True self.assert_(configuration_signature(ignore_changed) == def_sig) def test_cache_interface(self): cache_file = os.path.join(autoconfig.build_dir, 'decl_cache_test.test_cache_read.cache') file1 = os.path.join(autoconfig.data_directory, 'decl_cache_file1.txt') file1_dup = os.path.join(autoconfig.data_directory, 'decl_cache_file1_duplicate.txt') file2 = os.path.join(autoconfig.data_directory, 'decl_cache_file2.txt') diff_cfg_list = self.build_differing_cfg_list() def_cfg = diff_cfg_list[0] if os.path.exists(cache_file): os.remove(cache_file) cache = file_cache_t(cache_file) self.assert_(len(cache._file_cache_t__cache) == 0) # test creating new entries for differing files cache.update(file1, def_cfg, 1,[]) self.assert_(len(cache._file_cache_t__cache) == 1) cache.update(file1_dup, def_cfg, 2,[]) self.assert_(len(cache._file_cache_t__cache) == 1) cache.update(file2, def_cfg, 3,[]) self.assert_(len(cache._file_cache_t__cache) == 2) self.assert_(cache.cached_value(file1,def_cfg) == 2) self.assert_(cache.cached_value(file2,def_cfg) == 3) # Test reading again cache.flush() cache = file_cache_t(cache_file) self.assert_(len(cache._file_cache_t__cache) == 2) self.assert_(cache.cached_value(file1,def_cfg) == 2) self.assert_(cache.cached_value(file2,def_cfg) == 3) # Test flushing doesn't happen if we don't touch the cache cache = file_cache_t(cache_file) self.assert_(cache.cached_value(file1,def_cfg) == 2) # Read from cache cache.flush() # should not actually flush cache = file_cache_t(cache_file) self.assert_(len(cache._file_cache_t__cache) == 2) # Test flush culling cache = file_cache_t(cache_file) cache.update(file1_dup, def_cfg, 4,[]) # Modify cache cache.flush() # should cull off one entry cache = file_cache_t(cache_file) self.assert_(len(cache._file_cache_t__cache) == 1) def build_differing_cfg_list(self): """ Return a list of configurations that all differ. """ cfg_list = [] def_cfg = config_t("gccxml_path",'.',['tmp'],['sym'],['unsym'], None,False,"") cfg_list.append(def_cfg) # Test changes that should cause sig changes gccxml_changed = def_cfg.clone() gccxml_changed.gccxml_path = "other_path" cfg_list.append(gccxml_changed) wd_changed = def_cfg.clone() wd_changed.working_directory = "other_dir" cfg_list.append(wd_changed) #inc_changed = def_cfg.clone() #inc_changed.include_paths = ["/var/tmp"] #self.assert_(configuration_signature(inc_changed) != def_sig) inc_changed = config_t("gccxml_path",'.',['/var/tmp'],['sym'],['unsym'], None,False,"") cfg_list.append(inc_changed) #def_changed = def_cfg.clone() #def_changed.define_symbols = ["symbol"] #self.assert_(configuration_signature(def_changed) != def_sig) def_changed = config_t("gccxml_path",'.',['/var/tmp'],['new-sym'],['unsym'], None,False,"") cfg_list.append(def_changed) #undef_changed = def_cfg.clone() #undef_changed.undefine_symbols = ["symbol"] #self.assert_(configuration_signature(undef_changed) != def_sig) undef_changed = config_t("gccxml_path",'.',['/var/tmp'],['sym'],['new-unsym'], None,False,"") cfg_list.append(undef_changed) cflags_changed = def_cfg.clone() cflags_changed.cflags = "new flags" cfg_list.append(cflags_changed) return cfg_list def create_suite(): suite = unittest.TestSuite() suite.addTest( unittest.makeSuite(decl_cache_tester)) return suite def run_suite(): unittest.TextTestRunner(verbosity=2).run( create_suite() ) if __name__ == "__main__": run_suite()
9c14abf2141c645825bb3572f94ff19a61281d45
698ad822ff616b86e88784ec4fce08b42c46e870
/torch/_dynamo/allowed_functions.py
67daafc5adac78651457c01de7096eb20617b562
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
puppup420247-org/pytorch
6fa244b817ace397e97e85c553bd315093ef4533
090fce2547ac96730f99877085a7477097c4ad97
refs/heads/master
2023-07-21T03:54:26.234286
2022-11-12T05:59:55
2022-11-12T05:59:55
188,915,637
1
1
NOASSERTION
2023-07-20T11:42:38
2019-05-27T22:20:25
C++
UTF-8
Python
false
false
8,428
py
import builtins import collections import copy import functools import inspect import itertools import math import operator import types import warnings from typing import Dict, Optional, Set import numpy import torch from torch.fx._symbolic_trace import is_fx_tracing from . import config from .utils import is_safe_constant """ A note on allowed functions: Dynamo consults this file to determine if a particular function/module is allowed to appear as a node in its fx output. If a function is disallowed, it may either be traced-through, or skipped. Trace-through means dynamo will continue to trace the interior code for the function/module rather than stopping at its boundary and recording it as a node in the fx graph. Whether tracing through or allowing, the functionality of the function/module is part of the dynamo graph. Caveat: if tracing through, any interior operation could trigger its own graph-break. Skips are determined by (torch/_dynamo/skipfiles.py) - see "a note on skipfiles" there. """ def make_function_id_set(lazy_initializer): """ Track a set of `id()`s of objects which are either allowed or not allowed to go into the generated FX graph. Use to test for torch.*, numpy.*, builtins.*, etc. Support user modification to permit customization of what can be added to the graph and what will cause a graph break. """ class FunctionIdSet: function_ids: Optional[Set[int]] = None function_names: Optional[Dict[int, str]] = None def __call__(self): if self.function_ids is None: value = lazy_initializer() if isinstance(value, dict): self.function_ids = set(value.keys()) self.function_names = value else: assert isinstance(value, set) self.function_ids = value return self.function_ids def get_name(self, idx: int, default: str): self() # lazy init return self.function_names.get(idx, default) def add(self, idx: int): self() # lazy init self.function_ids.add(idx) def remove(self, idx: int): if idx in self(): self.function_ids.remove(idx) def __contains__(self, idx: int): return idx in self() return FunctionIdSet() @make_function_id_set def _disallowed_function_ids(): remove = [ True, False, None, collections.OrderedDict, copy.copy, copy.deepcopy, inspect.signature, math.__package__, torch.__builtins__, torch.autocast_decrement_nesting, torch.autocast_increment_nesting, torch.autograd.grad, torch.clear_autocast_cache, torch.cuda.current_device, torch.cuda.amp.autocast_mode.autocast, torch.distributions.constraints.is_dependent, torch.distributions.normal.Normal, torch.inference_mode, torch.set_anomaly_enabled, torch.set_autocast_cache_enabled, torch.set_autocast_cpu_dtype, torch.set_autocast_cpu_enabled, torch.set_autocast_enabled, torch.set_autocast_gpu_dtype, torch.autograd.profiler.profile, warnings.warn, torch._C._dynamo.eval_frame.unsupported, ] # extract all dtypes from torch dtypes = [ obj for obj in torch.__dict__.values() if isinstance(obj, type(torch.float32)) ] remove += dtypes storage = [ obj for obj in torch.__dict__.values() if isinstance(obj, type(torch.FloatStorage)) ] remove += storage return {id(x) for x in remove} @make_function_id_set def _allowed_function_ids(): """ Walk torch.* and get the ids of all the stuff in it """ warnings.filterwarnings("ignore", category=UserWarning, module="torch.distributed") torch_object_ids = dict() def _is_allowed_module_prefix(obj): allowed_modules = ("torch", "math") # torch.nn.modules.rnn is disallowed because these modules internally # flatten their parameters. This flattening process will call # Tensor.set_ with a Storage, and Storages cannot be traced with # AOTAutograd; so we need to graph-break. To ensure this, we inline # these functions, rather than keep them opaque-ly in the graph. disallowed_modules = ( "torch.optim.", "torch.nn.modules.rnn.", "torch._dynamo.", "torch._C._dynamo.", "torch._inductor.", "torch._C.inductor.", "torch.fx.", "torch.distributed.fsdp.", ) allowed_modules_dot = tuple([x + "." for x in allowed_modules]) module = inspect.getmodule(obj) if module is None: return False mod_name = module.__name__ if any(mod_name.startswith(m) for m in disallowed_modules): return False return mod_name in allowed_modules or mod_name.startswith(allowed_modules_dot) def _find_torch_objects(module): if any( module.__name__.startswith(mod_name) for mod_name in config.allowed_functions_module_string_ignorelist ): return torch_object_ids[id(module)] = module.__name__ for name, obj in list(module.__dict__.items()): if id(obj) not in torch_object_ids: if isinstance(obj, types.ModuleType): if obj.__name__.startswith("torch.") and _is_allowed_module_prefix( obj ): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" _find_torch_objects(obj) elif _is_allowed_module_prefix(obj): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" elif inspect.getmodule(obj) is None and not is_safe_constant(obj): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" _find_torch_objects(torch) _find_torch_objects(math) for idx in _disallowed_function_ids(): if idx in torch_object_ids: del torch_object_ids[idx] for extra in (is_fx_tracing,): torch_object_ids[id(extra)] = f"{extra.__module__}.{extra.__name__}" return torch_object_ids @make_function_id_set def _builtin_function_ids(): rv = { id(v): f"builtins.{k}" for k, v in builtins.__dict__.items() if not k.startswith("_") and callable(v) } rv.update( { id(v): f"operator.{k}" for k, v in operator.__dict__.items() if not k.startswith("_") and callable(v) } ) rv.update( {id(v): f"functools.{v.__name__}" for v in (itertools.chain, itertools.islice)} ) rv[id(functools.reduce)] = "functools.reduce" return rv @make_function_id_set def _numpy_function_ids(): rv = dict() for mod in (numpy, numpy.random): rv.update( { id(v): f"{mod.__name__}.{k}" for k, v in mod.__dict__.items() if callable(v) and (getattr(v, "__module__", None) or mod.__name__) == mod.__name__ } ) return rv @make_function_id_set def _builtin_constant_ids(): """ Collects constant builtins by eliminating callable items. """ rv = { id(v): f"builtins.{k}" for k, v in builtins.__dict__.items() if not k.startswith("_") and not callable(v) } return rv def is_allowed(obj): """Is this safe to trace like torch.add ?""" # torch.ops is populated lazily so we don't necessarily have them in # _allowed_function_ids. Figure it out by testing the type instead # in those cases return id(obj) in _allowed_function_ids or isinstance( obj, (torch._ops.OpOverloadPacket, torch._ops.OpOverload, torch._ops._OpNamespace), ) def torch_get_name(obj, default): """Convert a torch.* funcion to a string""" return _allowed_function_ids.get_name(id(obj), default) def is_builtin_callable(obj): return id(obj) in _builtin_function_ids def is_builtin_constant(obj): return id(obj) in _builtin_constant_ids def is_numpy(obj): return isinstance(obj, numpy.ndarray) or id(obj) in _numpy_function_ids
25be6302bd9150151560453a17906af226789f01
904b0d81152649ccd3349f94f88e7b89a7b5c76a
/scripts/main/xicombNS_DA02.py
e2f17c6818b725c4127a2e6be411fb79ee8c98bd
[ "BSD-3-Clause" ]
permissive
desihub/LSS
ec33538a0e7280ad1c6b257368cc009ed4b39cbb
5645461929172d327ed30389d76e7e887043c9bf
refs/heads/main
2023-08-18T23:17:13.123605
2023-08-18T20:08:22
2023-08-18T20:08:22
36,753,969
14
28
BSD-3-Clause
2023-09-13T18:37:35
2015-06-02T18:42:51
Jupyter Notebook
UTF-8
Python
false
false
1,710
py
#!/usr/bin/env python # coding: utf-8 import os import argparse import logging import numpy as np from astropy.table import Table, vstack from matplotlib import pyplot as plt from pycorr import TwoPointCorrelationFunction, TwoPointEstimator, KMeansSubsampler, utils, setup_logging njack = '60' trs = ['ELG_LOPnotqso','QSO','LRG','BGS_BRIGHT','QSO_ELG_LOPnotqso','LRG_QSO','LRG_ELG_LOPnotqso'] bsl = [1,2,4,5,10] dirxi = '/global/cfs/cdirs/desi/survey/catalogs/DA02/LSS/guadalupe/LSScats/test/xi/smu/' xit = 'poles' for tr in trs: if tr == 'ELG_LOPnotqso': zws = ['0.8_1.6','0.8_1.1','1.1_1.6'] if tr == 'QSO_ELG_LOPnotqso': zws = ['0.8_1.6','0.8_1.1','1.1_1.6'] if tr == 'QSO': zws = ['0.8_1.1','0.8_2.1lowz','1.1_1.6','1.6_2.1','2.1_3.5','0.8_3.5'] if tr == 'LRG': zws = ['0.4_0.6','0.6_0.8','0.8_1.1','0.4_1.1'] if tr == 'BGS_BRIGHT': zws = ['0.1_0.3','0.3_0.5','0.1_0.5'] if tr == 'LRG_QSO' or tr == 'LRG_ELG_LOPnotqso': zws = ['0.8_1.1'] for zw in zws: result_N = TwoPointCorrelationFunction.load(dirxi+'allcounts_'+tr+'_N_'+zw+'_default_FKP_lin_njack'+njack+'.npy') result_S = TwoPointCorrelationFunction.load(dirxi+'allcounts_'+tr+'_S_'+zw+'_default_FKP_lin_njack'+njack+'.npy') result_NS = result_N.normalize() + result_S.normalize() fn = dirxi+'allcounts_'+tr+'_NScomb_'+zw+'_default_FKP_lin_njack'+njack+'.npy' result_NS.save(fn) for bs in bsl: rebinned = result_NS[:(result_NS.shape[0]//bs)*bs:bs] fn_txt = dirxi+'xi'+xit+'_'+tr+'_NScomb_'+zw+'_default_FKP_lin'+str(bs)+'_njack'+njack+'.txt' rebinned.save_txt(fn_txt, ells=(0, 2, 4))
c15d4b3566815e61f9fc93ba6b974c34f358c170
e2ad93398194942c13c27b25aa868eda4ff4f46c
/sponsortracker/download.py
987305d12d281d57363d875f7b84883ec45f917e
[]
no_license
Auzzy/bfig-sponsor-tracker
ab2fbcf6ba562f977263b5f91c3aca756e037302
cff466de6797ea276130335bdc368c706eed583d
refs/heads/master
2023-06-01T04:41:26.082120
2023-05-11T11:52:11
2023-05-11T11:52:11
25,780,177
0
0
null
2023-05-11T11:52:12
2014-10-26T16:14:46
Python
UTF-8
Python
false
false
2,989
py
import collections import os import shutil import tempfile from enum import Enum from os.path import exists, expanduser, join, splitext from sqlalchemy import or_ from sponsortracker import model, uploads from sponsortracker.data import AssetType, Level ZIPNAME = "sponsortracker-assets" def all(level=None): return download(level=level) def website_updates(start, level=None): asset_filter = lambda deal: [asset for asset in deal.assets_by_type[AssetType.LOGO] if asset.date >= start] return download('updates', asset_filter=asset_filter, level=level) def logo_cloud(level=None): asset_filter = lambda deal: deal.assets_by_type[AssetType.LOGO] return download('logocloud', by_sponsor=False, info=False, asset_filter=asset_filter, level=level) def download(zipname=ZIPNAME, by_sponsor=True, info=True, asset_filter=lambda deal: deal.assets, level=None): with tempfile.TemporaryDirectory() as tempdir: zipdir = join(tempdir, zipname) os.makedirs(zipdir) for deal in model.Deal.query.filter(model.Deal.level_name != ""): if deal.level in (Level.SERVICE, Level.BRONZE, Level.BRONZE_BENEFITS, Level.SILVER, Level.GOLD, Level.PLATINUM) or deal.contract.received != None or deal.invoice.received != None: if not level or deal.level_name == level: target = join(*[zipdir, deal.level.name.lower()] + ([deal.sponsor.name] if by_sponsor else [])) os.makedirs(target, exist_ok=True) if info: _info_to_file(target, deal.sponsor) _copy_assets(target, asset_filter(deal)) return shutil.make_archive(expanduser(join("~", zipname)), "zip", root_dir=tempdir) def _info_to_file(target, sponsor): if sponsor.link or sponsor.description: with open(join(target, "info.txt"), 'w') as info_file: if sponsor.link: info_file.write(sponsor.link + "\n\n") if sponsor.description: info_file.write(sponsor.description) def _copy_assets(target, assets): for asset in assets: name = '-'.join([asset.deal.sponsor.name.lower(), asset.type.name.lower()]) ext = splitext(asset.filename)[-1].lstrip('.') dest = os.path.join(target, "{name}.{ext}".format(name=name, ext=ext)) uploads.Asset.get(asset.deal, asset.filename, dest) ''' path = asset_uploader.path(asset.filename) ext = splitext(asset.filename)[-1].lstrip('.') name = '-'.join([asset.sponsor.name.lower(), asset.type.name.lower()]) shutil.copy(path, _filepath(target, name, ext)) ''' ''' def _filepath(target, basename, ext): num = 2 name = "{name}.{ext}".format(name=basename, ext=ext) while exists(join(target, name)): name = "{name}_{num}.{ext}".format(name=basename, num=num, ext=ext) num += 1 return join(target, name) '''
11d173e2e009317f099e646a9d101c71ae82a9b9
519b4cf7623c40e0280c435246b6cde46853ecc1
/project/holviapp/utils.py
d731848e8107fe128a56275bbd33d4b1a41ef18a
[ "MIT" ]
permissive
HelsinkiHacklab/asylum
a3fe492f76145c922125949c41acce6e8d4beec4
6fcf71fb5c7bb894322039144e814b9edc07d5bb
refs/heads/hhl_changes
2023-02-16T18:54:17.277017
2021-08-13T17:59:46
2021-09-13T17:45:45
47,038,401
1
1
MIT
2023-02-03T13:22:48
2015-11-28T20:28:58
Python
UTF-8
Python
false
false
2,574
py
# -*- coding: utf-8 -*- import holviapi import holvirc from django.conf import settings CONNECTION_SINGLETON = None def apikey_configured(): """Check if we have apikey""" return bool(settings.HOLVI_POOL) and bool(settings.HOLVI_APIKEY) def userauth_configured(): """Check if we have username/password""" return bool(settings.HOLVI_POOL) and bool(settings.HOLVI_USER) and bool(settings.HOLVI_PASSWORD) def api_configured(): """Check that we have some API config""" return apikey_configured() or userauth_configured() def get_connection(): """Shorhand connection singleton getter""" global CONNECTION_SINGLETON if CONNECTION_SINGLETON is not None: return CONNECTION_SINGLETON if not api_configured(): raise RuntimeError('Holvi API is not configured') if userauth_configured(): CONNECTION_SINGLETON = holvirc.Connection.singleton(settings.HOLVI_POOL, settings.HOLVI_USER, settings.HOLVI_PASSWORD) if apikey_configured(): CONNECTION_SINGLETON = holviapi.Connection.singleton(settings.HOLVI_POOL, settings.HOLVI_APIKEY) return CONNECTION_SINGLETON def get_invoiceapi(): """Shorthand API instance creator""" return holvirc.InvoiceAPI(get_connection()) def list_invoices(**kwargs): """Shorthand accessor for the API method""" return get_invoiceapi().list_invoices(**kwargs) def get_invoice(code): """Shorthand accessor for the API method""" return get_invoiceapi().get_invoice(code) def get_checkoutapi(): """Shorthand API instance creator""" cnc = get_connection() if isinstance(cnc, (holvirc.Connection, holvirc.connection.Connection)): raise RuntimeError("This only works with the old style api keys") return holviapi.CheckoutAPI(cnc) def list_orders(**kwargs): """Shorthand accessor for the API method""" cnc = get_connection() if isinstance(cnc, (holvirc.Connection, holvirc.connection.Connection)): # TODO: Log the issue return iter([]) return get_checkoutapi().list_orders(**kwargs) def get_order(code): """Shorthand accessor for the API method""" return get_checkoutapi().get_order(code) def get_categoriesapi(): """Shorthand API instance creator""" cnc = get_connection() if isinstance(cnc, (holviapi.Connection, holviapi.connection.Connection)): return holviapi.CategoriesAPI(get_connection()) return holvirc.CategoriesAPI(cnc) def get_category(code): """Shorthand accessor for the API method""" return get_categoriesapi().get_category(code)
fe8087783d56301fddb861866779ab604a5e83f6
4e5cdffa14c8404d836dc9f034cbbf34a86c7503
/src/api/urls.py
9113ef4c4d5780858faf92eee0a13749d97d0775
[]
no_license
gtdata/publish_data_alpha
da1cf013a5b2c7290d0af7a48d43adc90e301f3f
f1a9753daac7fbe8cc5bed5f30b8601c781449ab
refs/heads/master
2021-01-20T03:03:36.303264
2017-04-18T11:49:29
2017-04-18T11:49:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
681
py
from django.conf.urls import url, include from rest_framework import routers import api.views as v import api.api_def as a urlpatterns = [ url(r'locations$', v.gazeteer_lookup, name='gazeteer_lookup'), url(r'^datasets$', v.dataset_lookup, name='dataset_lookup'), url(r'^status', v.StatusEndpoint.as_view()), #url(r'^1/', include(router.urls)), url(r'^1/datasets$', a.DatasetList.as_view()), url(r'^1/datasets/(?P<name>[\w-]+)$', a.DatasetDetail.as_view(), name='dataset-detail'), url(r'^1/organisations$', a.OrganisationList.as_view()), url(r'^1/organisations/(?P<name>[\w-]+)$', a.OrganisationDetail.as_view(), name='organisation-detail'), ]
ed33a50324b7e3a5eecebca1a2b58fcd87538545
97fde6e1ee2c63d4359a005a8a17db87559dd3eb
/api/models.py
44c72a280c9cf023ae7be9d686aecd138860d6d2
[]
no_license
Bibin22/Book_project
6f6d0cce452e0298d16676425eeb2f77e915c3e5
9884363927e6b3b559d43a6ead584f1741b54370
refs/heads/master
2023-03-31T21:36:02.594431
2021-03-24T07:15:46
2021-03-24T07:15:46
350,402,169
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
from django.db import models # Create your models here. class Book(models.Model): book_name = models.CharField(max_length=120, unique=100) price = models.IntegerField() pages = models.IntegerField() author = models.CharField(max_length=100) def __str__(self): return self.book_name
4d64347ffa03e103de068e66bc946d0999ccfce2
436051d199fcc323a422b7fea377f43c01004366
/helpers/labml_helpers/metrics/simple_state.py
2a6575141ce8871da42ebc4cbb7b596e62453fdb
[ "MIT" ]
permissive
xet7/labml
29d411b94f1d6b9ff03c6033f510cea443d38248
7f3918ca7de8cb21cf6dcc9d127a6ea64c0aebb9
refs/heads/master
2023-08-18T10:03:13.142430
2021-07-18T11:11:42
2021-07-18T11:11:42
387,184,226
0
0
MIT
2023-08-11T20:01:39
2021-07-18T13:36:49
null
UTF-8
Python
false
false
813
py
from typing import Generic, TypeVar, Optional from . import StateModule T = TypeVar('T') class SimpleState(Generic[T]): state: Optional[T] def __init__(self): self.state = None def get(self) -> T: return self.state def set(self, data: T): self.state = data def reset(self): self.state = None class SimpleStateModule(StateModule, Generic[T]): data: SimpleState[T] def __init__(self): super().__init__() def set(self, data: T): self.data.set(data) def get(self) -> T: return self.data.get() def create_state(self): return SimpleState() def set_state(self, data: any): self.data = data def on_epoch_start(self): self.data.reset() def on_epoch_end(self): pass
91a64805557e29b680b1300121cddd217db78eef
e42a61b7be7ec3412e5cea0ffe9f6e9f34d4bf8d
/a10sdk/core/aam/aam_authentication_portal_logon_fail.py
60ee400259987e360a04045658049f18c4e87e9f
[ "Apache-2.0" ]
permissive
amwelch/a10sdk-python
4179565afdc76cdec3601c2715a79479b3225aef
3e6d88c65bd1a2bf63917d14be58d782e06814e6
refs/heads/master
2021-01-20T23:17:07.270210
2015-08-13T17:53:23
2015-08-13T17:53:23
40,673,499
0
0
null
2015-08-13T17:51:35
2015-08-13T17:51:34
null
UTF-8
Python
false
false
8,059
py
from a10sdk.common.A10BaseClass import A10BaseClass class FailMsgCfg(A10BaseClass): """This class does not support CRUD Operations please use parent. :param fail_font_custom: {"description": "Specify custom font", "format": "string-rlx", "minLength": 1, "maxLength": 63, "not": "fail-face", "type": "string"} :param fail_color: {"default": 0, "type": "number", "description": "Specify font color", "format": "flag"} :param fail_size: {"description": "Specify font size", "minimum": 1, "type": "number", "maximum": 7, "format": "number"} :param fail_msg: {"default": 0, "type": "number", "description": "Configure logon failure message in default logon fail page", "format": "flag"} :param fail_text: {"minLength": 1, "maxLength": 63, "type": "string", "description": "Specify logon failure message (Default: Login Failed!!)", "format": "string-rlx"} :param fail_color_value: {"description": "Specify 6-digit HEX color value", "format": "string", "minLength": 6, "maxLength": 6, "not": "fail-color-name", "type": "string"} :param fail_font: {"default": 0, "type": "number", "description": "Sepcify font", "format": "flag"} :param fail_color_name: {"not": "fail-color-value", "enum": ["aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "orange", "purple", "red", "silver", "teal", "white", "yellow"], "type": "string", "description": "'aqua': aqua; 'black': black; 'blue': blue; 'fuchsia': fuchsia; 'gray': gray; 'green': green; 'lime': lime; 'maroon': maroon; 'navy': navy; 'olive': olive; 'orange': orange; 'purple': purple; 'red': red; 'silver': silver; 'teal': teal; 'white': white; 'yellow': yellow; ", "format": "enum"} :param fail_face: {"not": "fail-font-custom", "enum": ["Arial", "Courier_New", "Georgia", "Times_New_Roman", "Verdana"], "type": "string", "description": "'Arial': Arial; 'Courier_New': Courier New; 'Georgia': Georgia; 'Times_New_Roman': Times New Roman; 'Verdana': Verdana; ", "format": "enum"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.b_key = "fail-msg-cfg" self.DeviceProxy = "" self.fail_font_custom = "" self.fail_color = "" self.fail_size = "" self.fail_msg = "" self.fail_text = "" self.fail_color_value = "" self.fail_font = "" self.fail_color_name = "" self.fail_face = "" for keys, value in kwargs.items(): setattr(self,keys, value) class TitleCfg(A10BaseClass): """This class does not support CRUD Operations please use parent. :param title: {"default": 0, "type": "number", "description": "Configure title in default logon fail page", "format": "flag"} :param title_color: {"default": 0, "type": "number", "description": "Specify font color", "format": "flag"} :param title_color_name: {"not": "title-color-value", "enum": ["aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "orange", "purple", "red", "silver", "teal", "white", "yellow"], "type": "string", "description": "'aqua': aqua; 'black': black; 'blue': blue; 'fuchsia': fuchsia; 'gray': gray; 'green': green; 'lime': lime; 'maroon': maroon; 'navy': navy; 'olive': olive; 'orange': orange; 'purple': purple; 'red': red; 'silver': silver; 'teal': teal; 'white': white; 'yellow': yellow; ", "format": "enum"} :param title_font_custom: {"description": "Specify custom font", "format": "string-rlx", "minLength": 1, "maxLength": 63, "not": "title-face", "type": "string"} :param title_face: {"not": "title-font-custom", "enum": ["Arial", "Courier_New", "Georgia", "Times_New_Roman", "Verdana"], "type": "string", "description": "'Arial': Arial; 'Courier_New': Courier New; 'Georgia': Georgia; 'Times_New_Roman': Times New Roman; 'Verdana': Verdana; ", "format": "enum"} :param title_color_value: {"description": "Specify 6-digit HEX color value", "format": "string", "minLength": 6, "maxLength": 6, "not": "title-color-name", "type": "string"} :param title_size: {"description": "Specify font size", "minimum": 1, "type": "number", "maximum": 7, "format": "number"} :param title_text: {"minLength": 1, "maxLength": 63, "type": "string", "description": "Specify title (Default: Try Too Many Times)", "format": "string-rlx"} :param title_font: {"default": 0, "type": "number", "description": "Sepcify font", "format": "flag"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.b_key = "title-cfg" self.DeviceProxy = "" self.title = "" self.title_color = "" self.title_color_name = "" self.title_font_custom = "" self.title_face = "" self.title_color_value = "" self.title_size = "" self.title_text = "" self.title_font = "" for keys, value in kwargs.items(): setattr(self,keys, value) class Background(A10BaseClass): """This class does not support CRUD Operations please use parent. :param bgfile: {"description": "Specify background image filename", "format": "string-rlx", "minLength": 1, "maxLength": 63, "not": "bgcolor", "type": "string"} :param bgstyle: {"enum": ["tile", "stretch", "fit"], "type": "string", "description": "'tile': Tile; 'stretch': Stretch; 'fit': Fit; ", "format": "enum"} :param bgcolor_value: {"description": "Specify 6-digit HEX color value", "format": "string", "minLength": 6, "maxLength": 6, "not": "bgcolor-name", "type": "string"} :param bgcolor_name: {"not": "bgcolor-value", "enum": ["aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "orange", "purple", "red", "silver", "teal", "white", "yellow"], "type": "string", "description": "'aqua': aqua; 'black': black; 'blue': blue; 'fuchsia': fuchsia; 'gray': gray; 'green': green; 'lime': lime; 'maroon': maroon; 'navy': navy; 'olive': olive; 'orange': orange; 'purple': purple; 'red': red; 'silver': silver; 'teal': teal; 'white': white; 'yellow': yellow; ", "format": "enum"} :param bgcolor: {"default": 0, "not": "bgfile", "type": "number", "description": "Specify background color", "format": "flag"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.b_key = "background" self.DeviceProxy = "" self.bgfile = "" self.bgstyle = "" self.bgcolor_value = "" self.bgcolor_name = "" self.bgcolor = "" for keys, value in kwargs.items(): setattr(self,keys, value) class LogonFail(A10BaseClass): """Class Description:: Logon fail page configuration. Class logon-fail supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` :param uuid: {"description": "uuid of the object", "format": "string", "minLength": 1, "modify-not-allowed": 1, "optional": true, "maxLength": 64, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/aam/authentication/portal/{name}/logon-fail`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "logon-fail" self.a10_url="/axapi/v3/aam/authentication/portal/{name}/logon-fail" self.DeviceProxy = "" self.fail_msg_cfg = {} self.title_cfg = {} self.background = {} self.uuid = "" for keys, value in kwargs.items(): setattr(self,keys, value)
ecec82f7d6a458418140579021abfe8fd06af04d
d5934c0624095112533201ca748e035cf33e19c1
/CodeWars.py
cf1e344b5cb120c23316d6af8e874e87e7799ead
[]
no_license
waithope/codewars
b5bbb81193cb1b98830024c16b2470c5b0d070c9
315d9dca4e0163b03409a2d806ce0f809353a991
refs/heads/master
2020-03-14T15:49:17.211859
2018-05-10T04:30:40
2018-05-10T04:30:40
131,684,708
0
0
null
null
null
null
UTF-8
Python
false
false
12,745
py
# 0123456789 # 0########## # 1## ## # 2# # # # # 3# # # # # 4# ## # # 5# ## # # 6# # # # # 7# # # # # 8## ## # 9########## # rowCount = 10 # columnCount = 10 # for i in range(rowCount): # for j in range(columnCount): # if i == 0 or i == rowCount - 1 or j == 0 or \ # j == columnCount - 1 or i == j or j == columnCount - i - 1: # print("#", end='') # else: # print(" ", end='') # print() def high_and_low(numbers): # l = numbers.split(' ') # print(l) # min = int(l[0]) # max = int(l[0]) # for num in l: # if int(num) < min: # min = int(num) # if int(num) > max: # max = int(num) # more clever l = [int(num) for num in numbers.split(' ')] return str(max(l)) + ' ' + str(min(l)) # print(high_and_low("4 5 29 54 4 0 -214 542 -64 1 -3 6 -6")) ## Descending Order # def Descending_Order(num): # return int(''.join(sorted(str(num), reverse=True))) # print(Descending_Order(10147237031)) # # initialize # a = [] # # create the table (name, age, job) # a.append(["Nick", 30, "Doctor"]) # a.append(["John", 8, "Student"]) # a.append(["Paul", 22, "Car Dealer"]) # a.append(["Mark", 66, "Retired"]) # # sort the table by age # import operator # a.sort(key=operator.itemgetter(0, 1), reverse=True) # # print the table # print(a) def DNA_strand(dna): dna_map = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } return ''.join([dna_map[sym] for sym in dna]) def DNA_strand_v2(dna): return dna.translate(str.maketrans('ATCG', 'TAGC')) # assert(DNA_strand('ATTGC') == 'TAACC') ## Given a string, replace every letter with its position in the alphabet. ## a being 1, b being 2, etc. def alphabet_position(text): return ' '.join([str(ord(item.lower()) - ord('a') + 1) \ for item in text if item.isalpha() \ ]) # print(alphabet_position('asdjfak')) ## Take a list of non-negative integers and strings ## Returns a new list with the strings filtered out. def filter_list(l): return [item for item in l if item is not str(item)] def filter_list_v2(l): return [item for item in l if not isinstance(item, str)] # print(filter_list([1,2,'aasf','1','123',123]) == [1,2,123]) ## Decode morse_code MORSE_CODE = { '.-': 'A', '-...': 'B', '-.-.': 'C', '-..': 'D', '.': 'E', '..-.': 'F', '--.': 'G', '....': 'H', '..': 'I', '.---': 'J', '-.-': 'K', '.-..': 'L', '--': 'M', '-.': 'N', '---': 'O', '.--.': 'P', '--.-': 'Q', '.-.': 'R', '...': 'S', '-': 'T', '..-': 'U', '...-': 'V', '.--': 'W', '-..-': 'X', '-.--': 'Y', '--..': 'Z', '-----': '0', '.----': '1', '..---': '2', '...--': '3', '....-': '4', '.....': '5', '-....': '6', '--...': '7', '---..': '8', '----.': '9', '.-.-.-': '.', '--..--': ',', '..--..': '?', '.----.': "'", '-.-.--': '!', '-..-.': '/', '-.--.': '(', '-.--.-': ')', '.-...': '&', '---...': ':', '-.-.-.': ';', '-...-': '=', '.-.-.': '+', '-....-': '-', '..--.-': '_', '.-..-.': '"', '...-..-': '$', '.--.-.': '@', '...---...': 'SOS' } def decodeMorse(morse_code): morse_code_part = morse_code.strip().split(' ') space_cnt = 0 output = '' for ele in morse_code_part: if ele is '': space_cnt += 1 if space_cnt == 2: space_cnt = 0 output += ' ' else: output += MORSE_CODE[ele] return output def decodeMorse_v2(morse_code): return ' '.join([ ''.join([MORSE_CODE[code] for code in word.split(' ')]) for word in morse_code.strip().split(' ') ]) # print(decodeMorse_v2(".... . -.-- .--- ..- -.. .")) ## persistence(999) => 4 # Because 9*9*9 = 729, 7*2*9 = 126, ## # 1*2*6 = 12, and finally 1*2 = 2. def persistence(n): factors = list(str(n)) cnt = 0 if len(factors) <= 1: return 0 res = int(factors[0]) for i in range(1, len(factors)): res *= int(factors[i]) cnt = persistence(res) return cnt + 1 from functools import reduce ## reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5) def persistence_v2(n): factors = [int(x) for x in str(n)] i = 0 while len(factors) > 1: res = reduce(lambda x, y: x*y, factors) i += 1 factors = [int(x) for x in str(res)] return i # print(persistence_v2(999)) def get_sign(x): return (x > 0) - (x < 0) # print(get_sign(-1)) ## Write a function to calculate the absolute value of a 32-bit integer def myabs(x): high_bit_mask = x >> 31 return (x ^ high_bit_mask) - high_bit_mask # print(myabs(7)) # import random # print(random.randrange(10)) ## Dig Pow 89 = 8^1 + 9^2 def sum_dig_pow(a, b):# range(a, b + 1) will be studied by the function output = [] for num in range(a, b+1): parts = list(str(num)) new_num = 0 for exp, base in enumerate(parts, 1): new_num += (int(base))**exp if num == new_num: output.append(num) return output def dig_pow(n): return sum([int(y)**x for x, y in enumerate(str(n), 1)]) def sum_dig_pow_v2(a, b): return [num for num in range(a, b+1) if num == dig_pow(num)] # print(sum_dig_pow_v2(89,135)) def countBits(n): count = 0 while n > 0: n = n & (n - 1) count += 1 return count # unique_in_order('AAAABBBCCDAABBB') == ['A', 'B', 'C', 'D', 'A', 'B'] # unique_in_order('ABBCcAD') == ['A', 'B', 'C', 'c', 'A', 'D'] # unique_in_order([1,2,2,3,3]) == [1,2,3] def unique_in_order(iterable): unique = [] prev = None for char in iterable: if char != prev: unique.append(char) prev = char return unique # print(unique_in_order([])) def duplicate_count(text): ## str.count(sub) count the ocurrences of substring occurs = [text.lower().count(char_cnt) for char_cnt in list(set(list(text.lower)))] cnt = 0 for num in occurs: if num > 1: cnt += 1 return cnt def duplicate_count_v2(text): return len([c for c in set(text.lower()) if text.lower().count(c) > 1]) # print(duplicate_count_v2("aaBbccddeeffgg")) # add 2 integers using bitwise operations # but need to deal with special case a < 0; b > 0 abs(a) < b def add(a, b): while a: b, a = b ^ a, (b & a) << 1 return b print(add(-1, -800)) def reverseWords(str): return ' '.join(str.split(' ')[::-1]) # print(reverseWords("hello world")) ## if a portion of str1 characters can be rearranged to match str2, ## otherwise returns false. # Only lower case letters will be used (a-z). # No punctuation or digits will be included. # Performance needs to be considered. # scramble('rkqodlw', 'world') ==> True # scramble('katas', 'steak') ==> False ##cost time 4861ms def scramble_v1(s1,s2): for c in set(s2): if s1.count(c) < s2.count(c): return False return True ##cost time 5865ms def scramble_v2(s1, s2): s1_dict = {} s2_dict = {} for char in s1: if char in s1_dict: s1_dict[char] += 1 else: s1_dict[char] = 1 for char in s2: if char in s2_dict: s2_dict[char] += 1 else: s2_dict[char] = 1 for k, v in s2_dict.items(): if s1_dict.get(k, 0) >= v: continue else: return False return True ## cost time 6396ms def scramble_v3(s1, s2): h = [0] * 26 for char in s1: h[ord(char) - 97] += 1 for char in s2: h[ord(char) - 97] -= 1 for i in h: if i < 0: return False return True ## Divisors of 42 are : 1, 2, 3, 6, 7, 14, 21, 42. ## These divisors squared are: 1, 4, 9, 36, 49, 196, 441, 1764. ## The sum of the squared divisors is 2500 which is 50 * 50, a square! ## Given two integers m, n (1 <= m <= n) we want to find all integers between m and n ## whose sum of squared divisors is itself a square. 42 is such a number. import math def list_squared(m, n): res = [] for num in range(m, n+1): i = 1 sum = 0 while i <= math.sqrt(num): # all the divisors present in pairs if num % i == 0: div = num // i sum += i**2 if div != i: sum += div**2 i += 1 if math.sqrt(sum).is_integer(): res.append([num, sum]) return res ## If the input number is already a palindrome, the number of steps is 0. ## Input will always be a positive integer. ##For example, start with 87: ## 87 + 78 = 165; 165 + 561 = 726; 726 + 627 = 1353; 1353 + 3531 = 4884 ##4884 is a palindrome and we needed 4 steps to obtain it, so palindrome_chain_length(87) == 4 def is_palindrome(n): return str(n) == str(n)[::-1] def palindrome_chain_length(n): step = 0 while not is_palindrome(n): n += int(str(n)[::-1]) step += 1 return step # print(palindrome_chain_length(87)) ## Breadcrumb Generator ignore_words = ["the", "of", "in", "from", "by", "with", "and", "or", "for", "to", "at", "a" ] def generate_bc(url, separator): if url.startswith("http"): url = url.split("//")[1] crumb = url.split('/') crumb[-1] = crumb[-1].split('.')[0].split('?')[0].split('#')[0] if crumb[-1] in ('', 'index'): crumb.pop() n = len(crumb) processed_parts = [] for i, level in enumerate(crumb): aux = level if i == 0: if n == 1: processed_parts.append('<span class="active">HOME</span>') else: processed_parts.append('<a href="/">HOME</a>') else: if len(level) > 30: aux = ''.join([entry[0] for entry in level.split('-') if entry not in ignore_words ]) else: aux = ' '.join(aux.split('-')) if i > 1 and i <= n - 2: level = "/".join(crumb[1:i+1]) if i == n - 1: processed_parts.append('<span class="active">%s</span>' % aux.upper()) else: processed_parts.append('<a href="/%s/">%s</a>' % (level, aux.upper())) return separator.join(processed_parts) ## hamming number # Write a function that computes the nth smallest Hamming number. # Specifically: # The first smallest Hamming number is 1 = 2^0 * 3^0 * 5^0 # The second smallest Hamming number is 2 = 2^1 * 3^0 * 5^0 # The third smallest Hamming number is 3 = 203150 # The fourth smallest Hamming number is 4 = 223050 # The fifth smallest Hamming number is 5 = 203051 def hamming(n): hamm = [0 for num in range(n)] hamm[0] = 1 a, b, c = 0, 0, 0 for i in range(1, n): hamm[i] = min(hamm[a] * 2, hamm[b] * 3, hamm[c] * 5) if hamm[i] == hamm[a] * 2: a += 1 if hamm[i] == hamm[b] * 3: b += 1 if hamm[i] == hamm[c] * 5: c += 1 return hamm[-1] ## original version also bad code hamset = {1:1} divisors = [2, 3, 5] def hamming_v2(n): if hamset.get(n) is not None: return hamset[n] i = list(hamset.keys())[-1] + 1 while i <= n: now = hamset[i - 1] find = False while not find: now += 1 rem = now for div in divisors: while (rem / div).is_integer(): rem = rem / div if rem == 1: hamset[i] = now find = True break if find is True: break i += 1 return hamset[n] # Strip Comments # result = solution("apples, pears # and bananas\ngrapes\nbananas !apples", ["#", "!"]) # result should == "apples, pears\ngrapes\nbananas" def solution(string,markers): parts = string.split('\n') for m in markers: parts = [p.split(m)[0].rstrip() for p in parts] print(parts) return '\n'.join(parts) # solution("apples, pears # and bananas\ngrapes\nbananas !apples", ["#", "!"]) # Original Version def solution_v2(string,markers): strip = 0 s = list(string) for i in range(len(string)): if s[i] in markers: strip = 1 if s[i - 1] == ' ': s[i - 1] = '' if s[i] == "\n": strip = 0 if strip == 1: s[i] = '' return ''.join(s) # How many numbers III? # Generate all the numbers of three digits that: # the value of adding their corresponding ones(digits) is equal to 10. # their digits are in increasing order (the numbers may have two or more equal contiguous digits) # The numbers that fulfill the two above constraints are: 118, 127, 136, 145, 226, 235, 244, 334 # recursion def find_all(sum_dig, digs): res = [''.join([str(num) for num in x]) for x in gen(digs) if sum(x) == sum_dig] if not res: return [] return [len(res), int(res[0]), int(res[-1])] def gen(d, start=1): if d == 1: for x in range(start, 10): yield [x] else: for x in range(start, 10): for y in gen(d - 1, x): yield [x] + y # built-in import itertools def find_all_v2(sum_dig, digs): res = [] aux = list(itertools.combinations_with_replacement(range(1, 10), digs)) res = [''.join([str(num) for num in t]) for t in aux if sum(t) == sum_dig] if not res: return [] return [len(res), int(res[0]), int(res[-1])]
defd147ec57f50888e2a862cc79b2e4e99453437
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/cloud/listenerruleref.py
6093233a61cc528637a150a4cfdf201bb235a56f
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
5,791
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class ListenerRuleRef(Mo): """ Mo doc not defined in techpub!!! """ meta = ClassMeta("cobra.model.cloud.ListenerRuleRef") meta.moClassName = "cloudListenerRuleRef" meta.rnFormat = "lisRuleRef-%(name)s" meta.category = MoCategory.REGULAR meta.label = "Cloud Load Balancer Listener Rule Reference" meta.writeAccessMask = 0x6000000000000001 meta.readAccessMask = 0x6000000000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.cloud.RuleActionRef") meta.childClasses.add("cobra.model.cloud.RuleConditionRef") meta.childNamesAndRnPrefix.append(("cobra.model.cloud.RuleConditionRef", "conditionref-")) meta.childNamesAndRnPrefix.append(("cobra.model.cloud.RuleActionRef", "actionref-")) meta.parentClasses.add("cobra.model.cloud.ListenerRef") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.cloud.AListenerRule") meta.rnPrefixes = [ ('lisRuleRef-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "default", "default", 52033, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.defaultValue = False prop.defaultValueStr = "no" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("default", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "name", "name", 52414, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.range = [(1, 16)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "priority", "priority", 51814, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True meta.props.add("priority", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "name")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("CloudLBToHcloudSecurityGroup", "From cloudLB to hcloudSecurityGroup", "cobra.model.hcloud.SecurityGroup")) meta.deploymentQueryPaths.append(DeploymentPathMeta("CloudLBToVnsAbsGraph", "From cloudLB to vnsAbsGraph", "cobra.model.vns.AbsGraph")) meta.deploymentQueryPaths.append(DeploymentPathMeta("ALDevIfToGraphInst", "Graph Instances", "cobra.model.vns.GraphInst")) def __init__(self, parentMoOrDn, name, markDirty=True, **creationProps): namingVals = [name] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
b68d2743352106871caf8d9b6a7eae7a0237fab5
3a4f14d6638bc0c12c129ed73c6c3543437203df
/src/morphforge/simulation/__init__.py
816c765420d8ed4ec98702b232f684d5e0c03a28
[ "BSD-2-Clause" ]
permissive
unidesigner/morphforge
ef04ccb3877f069a0feea72eb1b44c97930dac44
510cd86549b2c2fb19296da2d4408ed8091fb962
refs/heads/master
2021-01-15T22:34:28.795355
2012-04-05T08:55:12
2012-04-05T08:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,509
py
#------------------------------------------------------------------------------- # Copyright (c) 2012 Michael Hull. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #-------------------------------------------------------------------------------
ab59227df732b23f0241889547035615c3d2a258
a1bffcd8854e1843e56bb812d4d83b3161a5211e
/plugins/connection/saltstack.py
6b77c982a43b9377025aa7831e6c44e954316633
[]
no_license
goneri/ansible.community
1a71f9d98c164b77f8ed2ed7f558b4963005ff8f
f26f612dd0a3154050d90b51a75502018c95f6e4
refs/heads/master
2020-12-29T07:47:35.353515
2020-01-22T17:43:18
2020-01-22T17:43:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,800
py
# Based on local.py (c) 2012, Michael DeHaan <[email protected]> # Based on chroot.py (c) 2013, Maykel Moya <[email protected]> # Based on func.py # (c) 2014, Michael Scherer <[email protected]> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' author: Michael Scherer (@mscherer) <[email protected]> connection: saltstack short_description: Allow ansible to piggyback on salt minions description: - This allows you to use existing Saltstack infrastructure to connect to targets. ''' import re import os import pty import subprocess from ansible_collections.ansible.community.plugins.module_utils._text import to_bytes, to_text from ansible.module_utils.six.moves import cPickle HAVE_SALTSTACK = False try: import salt.client as sc HAVE_SALTSTACK = True except ImportError: pass import os from ansible import errors from ansible.plugins.connection import ConnectionBase class Connection(ConnectionBase): ''' Salt-based connections ''' has_pipelining = False # while the name of the product is salt, naming that module salt cause # trouble with module import transport = 'ansible.community.saltstack' def __init__(self, play_context, new_stdin, *args, **kwargs): super(Connection, self).__init__(play_context, new_stdin, *args, **kwargs) self.host = self._play_context.remote_addr def _connect(self): if not HAVE_SALTSTACK: raise errors.AnsibleError("saltstack is not installed") self.client = sc.LocalClient() self._connected = True return self def exec_command(self, cmd, sudoable=False, in_data=None): ''' run a command on the remote minion ''' super(Connection, self).exec_command(cmd, in_data=in_data, sudoable=sudoable) if in_data: raise errors.AnsibleError("Internal Error: this module does not support optimized module pipelining") self._display.vvv("EXEC %s" % (cmd), host=self.host) # need to add 'true;' to work around https://github.com/saltstack/salt/issues/28077 res = self.client.cmd(self.host, 'cmd.exec_code_all', ['bash', 'true;' + cmd]) if self.host not in res: raise errors.AnsibleError("Minion %s didn't answer, check if salt-minion is running and the name is correct" % self.host) p = res[self.host] return (p['retcode'], p['stdout'], p['stderr']) def _normalize_path(self, path, prefix): if not path.startswith(os.path.sep): path = os.path.join(os.path.sep, path) normpath = os.path.normpath(path) return os.path.join(prefix, normpath[1:]) def put_file(self, in_path, out_path): ''' transfer a file from local to remote ''' super(Connection, self).put_file(in_path, out_path) out_path = self._normalize_path(out_path, '/') self._display.vvv("PUT %s TO %s" % (in_path, out_path), host=self.host) with open(in_path) as in_fh: content = in_fh.read() self.client.cmd(self.host, 'file.write', [out_path, content]) # TODO test it def fetch_file(self, in_path, out_path): ''' fetch a file from remote to local ''' super(Connection, self).fetch_file(in_path, out_path) in_path = self._normalize_path(in_path, '/') self._display.vvv("FETCH %s TO %s" % (in_path, out_path), host=self.host) content = self.client.cmd(self.host, 'cp.get_file_str', [in_path])[self.host] open(out_path, 'wb').write(content) def close(self): ''' terminate the connection; nothing to do here ''' pass
2ef4a0004adef2101bd16724ef51e27c1704ae7e
66c3ff83c3e3e63bf8642742356f6c1817a30eca
/.vim/tmp/neocomplete/buffer_cache/=+home=+dante=+proyectos=+django-1.9=+veterinaria=+django_apps=+inventario=+forms.py
5d06e80f35674c63172312b5fc3cafbb30c00408
[]
no_license
pacifi/vim
0a708e8bc741b4510a8da37da0d0e1eabb05ec83
22e706704357b961acb584e74689c7080e86a800
refs/heads/master
2021-05-20T17:18:10.481921
2020-08-06T12:38:58
2020-08-06T12:38:58
30,074,530
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
{'from', 'django', 'import', 'forms', 'models', 'Articulo', 'Categoria', 'class', 'ArticuloForm', 'ModelForm', 'Meta', 'model', 'fields', 'nombre', 'marca', 'codigo', 'estado', 'p_compra', 'p_venta', 'descripcion', 'avatar', 'CategoriaForm'}
1fe0e2c621f45cf284a4b99347dfe1a3a3ff93c6
e9032e64138d7b9dd90a330dfe4588e2c83f6667
/google/cloud/compute_v1/services/region_health_checks/transports/__init__.py
693981b3422dd04d3df9d0fab64969fdd9002c78
[ "Apache-2.0" ]
permissive
Ctfbuster/python-compute
6cff2418969009794c3fadadc4c45e20d7b40509
7a9e8324e08c46a93050908760b2b5aca054a863
refs/heads/main
2023-08-26T12:37:52.363526
2021-10-04T15:34:37
2021-10-04T15:34:37
412,884,620
0
0
Apache-2.0
2021-10-02T18:49:05
2021-10-02T18:49:03
null
UTF-8
Python
false
false
1,050
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from typing import Dict, Type from .base import RegionHealthChecksTransport from .rest import RegionHealthChecksRestTransport # Compile a registry of transports. _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[RegionHealthChecksTransport]] _transport_registry["rest"] = RegionHealthChecksRestTransport __all__ = ( "RegionHealthChecksTransport", "RegionHealthChecksRestTransport", )
be843d33ee176ec0d6827fefd01fdd6a15847466
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03282/s286249227.py
f28b18ffa16239f136d180ee675975bd01b56411
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
import sys input = sys.stdin.readline S = list(input().rstrip('\n')) K = int(input()) n = 1 for i in range(min(len(S), K)): if S[i] != '1': n = int(S[i]) break print(n)
69dac76bc95dc024cdf72ce09289bdfc512ab898
4b9a90ad8debaec515dcbad50b02caecba6cd6a5
/django/Dev/trydjango/venv2/lib/python3.7/token.py
0a0df7a35f6645f14e34e8ddfd3ff0ff267527a2
[]
no_license
nabilatajrin/python-programs
f51612808f1837d8e786c7f2eb1faf6387859b18
74533bab6ee2d204920c1b97622bdf757ae44aae
refs/heads/master
2022-12-24T20:14:57.046497
2022-12-20T08:41:29
2022-12-20T08:41:29
199,279,168
1
0
null
null
null
null
UTF-8
Python
false
false
42
py
/home/iit/anaconda3/lib/python3.7/token.py
eea07dff9a04a5582761f119169aec890ef58c11
aba1d17ddc7d7ad9f49e2d6d87600e9e0387ba14
/mi/dataset/driver/sio_eng/sio/sio_eng_sio_recovered_driver.py
d84a95f50b651d68787a6e469c0b57ced9a03727
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
oceanobservatories/mi-instrument
3ad880c1366b1a8461fc9085768df0e9ddeb6ef5
bdbf01f5614e7188ce19596704794466e5683b30
refs/heads/master
2023-07-23T07:28:36.091223
2023-07-14T15:54:49
2023-07-14T15:54:49
24,165,325
1
32
BSD-2-Clause
2023-07-13T01:39:22
2014-09-17T22:53:22
Python
UTF-8
Python
false
false
1,673
py
#!/usr/bin/env python """ @package mi.dataset.driver.sio_eng/sio @file mi/dataset/driver/sio_eng/sio/sio_eng_sio_recovered_driver.py @author Jeff Roy @brief Driver for the sio_eng_sio instrument Release notes: Initial Release """ from mi.dataset.dataset_parser import DataSetDriverConfigKeys from mi.dataset.dataset_driver import SimpleDatasetDriver from mi.dataset.parser.sio_eng_sio import SioEngSioParser from mi.core.versioning import version @version("15.6.1") def parse(unused, source_file_path, particle_data_handler): """ This is the method called by Uframe :param unused :param source_file_path This is the full path and filename of the file to be parsed :param particle_data_handler Java Object to consume the output of the parser :return particle_data_handler """ with open(source_file_path, 'rb') as stream_handle: # create and instance of the concrete driver class defined below driver = SioEngSioRecoveredDriver(unused, stream_handle, particle_data_handler) driver.processFileStream() return particle_data_handler class SioEngSioRecoveredDriver(SimpleDatasetDriver): """ Derived sio_eng_sio driver class All this needs to do is create a concrete _build_parser method """ def _build_parser(self, stream_handle): parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.sio_eng_sio', DataSetDriverConfigKeys.PARTICLE_CLASS: 'SioEngSioRecoveredDataParticle' } parser = SioEngSioParser(parser_config, stream_handle, self._exception_callback) return parser
87e6fcae17d4bffaeaa0b3223eed01cede3b60c5
2f666fc0c3ede72e032a66fe186300212d6160a6
/flat/views.py
5c15f6d5dea27d17645f032a9348c972d8709e2f
[]
no_license
anukat2015/flat
e8f7439ffe5cb4223a596ec7085846ebde07018c
79a75d8d2bb6275fc749d13c19f4748dc8138a98
refs/heads/master
2021-01-24T14:46:54.045115
2016-03-23T09:07:19
2016-03-23T09:07:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,694
py
from __future__ import print_function, unicode_literals, division, absolute_import from django.shortcuts import render, redirect from django.contrib.auth.decorators import login_required from django.http import HttpResponse, HttpResponseForbidden, HttpResponseRedirect import django.contrib.auth from pynlpl.formats import fql import json import datetime from django.conf import settings import flat.comm import flat.users import lxml.html import sys if sys.version < '3': from urllib2 import URLError, HTTPError #pylint: disable=import-error else: from urllib.error import URLError, HTTPError import os def getcontext(request,namespace,docid, doc, mode): return { 'configuration': settings.CONFIGURATIONS[request.session['configuration']], 'configuration_json': json.dumps(settings.CONFIGURATIONS[request.session['configuration']]), 'namespace': namespace, 'testnum': request.GET.get('testNumber',0), 'docid': docid, 'mode': mode, 'modes': settings.CONFIGURATIONS[request.session['configuration']]['modes'] , 'modes_json': json.dumps([x[0] for x in settings.CONFIGURATIONS[request.session['configuration']]['modes'] ]), 'perspectives_json': json.dumps(settings.CONFIGURATIONS[request.session['configuration']]['perspectives']), 'docdeclarations': json.dumps(doc['declarations']) if 'declarations' in doc else "{}", 'setdefinitions': json.dumps(doc['setdefinitions']) if 'setdefinitions' in doc else "{}", 'toc': json.dumps(doc['toc']) if 'toc' in doc else "[]", 'slices': json.dumps(doc['slices']) if 'slices' in doc else "{}", 'loggedin': request.user.is_authenticated(), 'version': settings.VERSION, 'username': request.user.username, 'waitmessage': "Loading document on server and initialising web-environment...", } def validatenamespace(namespace): return namespace.replace('..','').replace('"','').replace(' ','_').replace(';','').replace('&','').strip('/') def getdocumentselector(query): if query.startswith("USE "): end = query[4:].index(' ') + 4 if end >= 0: try: namespace,docid = query[4:end].rsplit("/",1) except: raise fql.SyntaxError("USE statement takes namespace/docid pair") return (validatenamespace(namespace),docid), query[end+1:] else: try: namespace,docid = query[4:end].rsplit("/",1) except: raise fql.SyntaxError("USE statement takes namespace/docid pair") return (validatenamespace(namespace),docid), "" return None, query def getbody(html): doc = lxml.html.fromstring(html) return doc.xpath("//body/p")[0].text_content() def docserveerror(e, d={}): if isinstance(e, HTTPError): body = getbody(e.read()) d['fatalerror'] = "<strong>Fatal Error:</strong> The document server returned an error<pre style=\"font-weight: bold\">" + str(e) + "</pre><pre>" + body +"</pre>" d['fatalerror_text'] = body elif isinstance(e, URLError): d['fatalerror'] = "<strong>Fatal Error:</strong> Could not connect to document server!" d['fatalerror_text'] = "Could not connect to document server!" elif isinstance(e, str) : if sys.version < '3': d['fatalerror'] = e.decode('utf-8') #pylint: disable=undefined-variable d['fatalerror_text'] = e.decode('utf-8') #pylint: disable=undefined-variable else: d['fatalerror'] = e d['fatalerror_text'] = e elif sys.version < '3' and isinstance(e, unicode): #pylint: disable=undefined-variable d['fatalerror'] = e d['fatalerror_text'] = e elif isinstance(e, Exception): # we don't handle other exceptions, raise! raise return d def initdoc(request, namespace, docid, mode, template, context={}): """Initialise a document (not invoked directly)""" perspective = request.GET.get('perspective','document') flatargs = { 'setdefinitions': True, 'declarations': True, 'toc': True, 'slices': request.GET.get('slices',settings.CONFIGURATIONS[request.session['configuration']].get('slices','p:25,s:100')), #overriden either by configuration or by user 'customslicesize': 0, #disabled for initial probe 'textclasses': True, } try: doc = flat.comm.query(request, "USE " + namespace + "/" + docid + " PROBE", **flatargs) #retrieves only the meta information, not document content context.update(getcontext(request,namespace,docid, doc, mode)) except Exception as e: context.update(docserveerror(e)) response = render(request, template, context) if 'fatalerror' in context: response.status_code = 404 return response @login_required def query(request,namespace, docid): if request.method != 'POST': return HttpResponseForbidden("POST method required for " + namespace + "/" + docid + "/query") flatargs = { 'customslicesize': request.POST.get('customslicesize',settings.CONFIGURATIONS[request.session['configuration']].get('customslicesize','50')), #for pagination of search results } if flat.users.models.hasreadpermission(request.user.username, namespace): #stupid compatibility stuff if sys.version < '3': if hasattr(request, 'body'): data = json.loads(unicode(request.body,'utf-8')) #pylint: disable=undefined-variable else: #older django data = json.loads(unicode(request.raw_post_data,'utf-8')) #pylint: disable=undefined-variable else: if hasattr(request, 'body'): data = json.loads(str(request.body,'utf-8')) else: #older django data = json.loads(str(request.raw_post_data,'utf-8')) if not data['queries']: return HttpResponseForbidden("No queries to run") for query in data['queries']: #get document selector and check it doesn't violate the namespace docselector, query = getdocumentselector(query) if not docselector: return HttpResponseForbidden("Query does not start with a valid document selector (USE keyword)!") elif docselector[0] != namespace: return HttpResponseForbidden("Query would affect a different namespace than your current one, forbidden!") if query != "GET" and query[:4] != "CQL ": #parse query on this end to catch syntax errors prior to sending, should be fast enough anyway try: query = fql.Query(query) except fql.SyntaxError as e: return HttpResponseForbidden("FQL Syntax Error: " + e) needwritepermission = query.declarations or query.action and query.action.action != "SELECT" else: needwritepermission = False if needwritepermission and not flat.users.models.haswritepermission(request.user.username, namespace): return HttpResponseForbidden("Permission denied, no write access") query = "\n".join(data['queries']) #throw all queries on a big pile to transmit try: d = flat.comm.query(request, query,**flatargs) except Exception as e: if sys.version < '3': errmsg = docserveerror(e)['fatalerror_text'] return HttpResponseForbidden("FoLiA Document Server error: ".encode('utf-8') + errmsg.encode('utf-8')) else: return HttpResponseForbidden("FoLiA Document Server error: " + docserveerror(e)['fatalerror_text']) return HttpResponse(json.dumps(d).encode('utf-8'), content_type='application/json') else: return HttpResponseForbidden("Permission denied, no read access") def login(request): if 'username' in request.POST and 'password' in request.POST: username = request.POST['username'] password = request.POST['password'] request.session['configuration'] = request.POST['configuration'] user = django.contrib.auth.authenticate(username=username, password=password) if user is not None: if user.is_active: django.contrib.auth.login(request, user) # Redirect to a success page. if 'next' in request.POST: return redirect("/" + request.POST['next']) elif 'next' in request.GET: return redirect("/" + request.GET['next']) else: return redirect("/") else: # Return a 'disabled account' error message return render(request, 'login.html', {'error': "This account is disabled","defaultconfiguration":settings.DEFAULTCONFIGURATION, "configurations":settings.CONFIGURATIONS , 'version': settings.VERSION} ) else: # Return an 'invalid login' error message. return render(request, 'login.html', {'error': "Invalid username or password","defaultconfiguration":settings.DEFAULTCONFIGURATION, "configurations":settings.CONFIGURATIONS, 'version': settings.VERSION} ) else: return render(request, 'login.html',{"defaultconfiguration":settings.DEFAULTCONFIGURATION, "configurations":settings.CONFIGURATIONS, "version": settings.VERSION}) def logout(request): if 'configuration' in request.session: del request.session['configuration'] django.contrib.auth.logout(request) return redirect("/login") def register(request): if request.method == 'POST': form = django.contrib.auth.forms.UserCreationForm(request.POST) if form.is_valid(): new_user = form.save() return HttpResponseRedirect("/login/") else: form = django.contrib.auth.forms.UserCreationForm() return render(request, "register.html", { 'form': form, 'version': settings.VERSION, }) def fatalerror(request, e,code=404): if isinstance(e, Exception): response = render(request,'base.html', docserveerror(e)) else: response = render(request,'base.html', {'fatalerror': e}) response.status_code = code return response @login_required def index(request, namespace=""): try: namespaces = flat.comm.get(request, '/namespaces/' + namespace) except Exception as e: return fatalerror(request,e) if not namespace: #check if user namespace is preset, if not, make it if not request.user.username in namespaces['namespaces']: try: flat.comm.get(request, "createnamespace/" + request.user.username, False) except Exception as e: return fatalerror(request,e) readpermission = flat.users.models.hasreadpermission(request.user.username, namespace) dirs = [] print(namespaces['namespaces'],file=sys.stderr) for ns in sorted(namespaces['namespaces']): if readpermission or flat.users.models.hasreadpermission(request.user.username, os.path.join(namespace, ns)): dirs.append(ns) dirs.sort() docs = [] if namespace and readpermission: try: r = flat.comm.get(request, '/documents/' + namespace) except Exception as e: return fatalerror(request,e) for d in sorted(r['documents']): docid = os.path.basename(d.replace('.folia.xml','')) docs.append( (docid, round(r['filesize'][d] / 1024 / 1024,2) , datetime.datetime.fromtimestamp(r['timestamp'][d]).strftime("%Y-%m-%d %H:%M") ) ) if not 'configuration' in request.session: return logout(request) docs.sort() if namespace: parentdir = '/'.join(namespace.split('/')[:-1]) else: parentdir = "" return render(request, 'index.html', {'namespace': namespace,'parentdir': parentdir, 'dirs': dirs, 'docs': docs, 'defaultmode': settings.DEFAULTMODE,'loggedin': request.user.is_authenticated(), 'username': request.user.username, 'configuration': settings.CONFIGURATIONS[request.session['configuration']], 'version': settings.VERSION}) @login_required def download(request, namespace, docid): data = flat.comm.query(request, "USE " + namespace + "/" + docid + " GET",False) return HttpResponse(data, content_type='text/xml') @login_required def upload(request): if request.method == 'POST': namespace = request.POST['namespace'].replace('/','').replace('..','.').replace(' ','').replace('&','') if flat.users.models.haswritepermission(request.user.username, namespace) and 'file' in request.FILES: #if sys.version < '3': # data = unicode(request.FILES['file'].read(),'utf-8') #pylint: disable=undefined-variable #else: # data = str(request.FILES['file'].read(),'utf-8') try: response = flat.comm.postxml(request,"upload/" + namespace , request.FILES['file']) except Exception as e: return fatalerror(request,e) if 'error' in response and response['error']: return fatalerror(response['error'],403) else: docid = response['docid'] return HttpResponseRedirect("/" + settings.DEFAULTMODE + "/" + namespace + "/" + docid ) else: return fatalerror("Permission denied",403) else: return fatalerror("Permission denied",403) @login_required def addnamespace(request): if request.method == 'POST': namespace = request.POST['namespace'].replace('/','').replace('..','.').replace(' ','').replace('&','') newdirectory = request.POST['newdirectory'].replace('/','').replace('..','.').replace(' ','').replace('&','') if flat.users.models.haswritepermission(request.user.username, namespace): try: response = flat.comm.get(request,"createnamespace/" + namespace + "/" + newdirectory) except Exception as e: return fatalerror(request,e) if 'error' in response and response['error']: return fatalerror(response['error'],403) elif namespace: return HttpResponseRedirect("/index/" + namespace + '/' + newdirectory ) else: return HttpResponseRedirect("/index/" + newdirectory ) else: return fatalerror("Permission denied",403) else: return fatalerror("Permission denied",403)
503df77b7e73dde22d4eea8e86d995e4f9983cbb
798960eb97cd1d46a2837f81fb69d123c05f1164
/symphony/cli/pyinventory/graphql/mutation/edit_service_type.py
8b288246df912b964320536842d70b2deedf041e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
kyaaqba/magma
36d5fa00ce4f827e6ca5ebd82d97a3d36e5f5b5b
fdb7be22a2076f9a9b158c9670a9af6cad68b85f
refs/heads/master
2023-01-27T12:04:52.393286
2020-08-20T20:23:50
2020-08-20T20:23:50
289,102,268
0
0
NOASSERTION
2020-08-20T20:18:42
2020-08-20T20:18:41
null
UTF-8
Python
false
false
2,154
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass from datetime import datetime from gql.gql.datetime_utils import DATETIME_FIELD from gql.gql.graphql_client import GraphqlClient from gql.gql.client import OperationException from gql.gql.reporter import FailedOperationException from functools import partial from numbers import Number from typing import Any, Callable, List, Mapping, Optional, Dict from time import perf_counter from dataclasses_json import DataClassJsonMixin from ..fragment.service_type import ServiceTypeFragment, QUERY as ServiceTypeFragmentQuery from ..input.service_type_edit_data import ServiceTypeEditData QUERY: List[str] = ServiceTypeFragmentQuery + [""" mutation EditServiceTypeMutation($input: ServiceTypeEditData!) { editServiceType(data: $input) { ...ServiceTypeFragment } } """] @dataclass class EditServiceTypeMutation(DataClassJsonMixin): @dataclass class EditServiceTypeMutationData(DataClassJsonMixin): @dataclass class ServiceType(ServiceTypeFragment): pass editServiceType: ServiceType data: EditServiceTypeMutationData @classmethod # fmt: off def execute(cls, client: GraphqlClient, input: ServiceTypeEditData) -> EditServiceTypeMutationData.ServiceType: # fmt: off variables: Dict[str, Any] = {"input": input} try: network_start = perf_counter() response_text = client.call(''.join(set(QUERY)), variables=variables) decode_start = perf_counter() res = cls.from_json(response_text).data decode_time = perf_counter() - decode_start network_time = decode_start - network_start client.reporter.log_successful_operation("EditServiceTypeMutation", variables, network_time, decode_time) return res.editServiceType except OperationException as e: raise FailedOperationException( client.reporter, e.err_msg, e.err_id, "EditServiceTypeMutation", variables, )
256ee04da6e71642f3282eebb0892374c143abcb
2090b6b92d5cada89504de548b14f9c729856606
/visualize/waveform/compare_waveforms_1obs2syn.py
0b147dda0e923352ef1132a3ea3948fa71d94e60
[]
no_license
ziyixiArchive/Japan_Slab_code
4f6a366889278ad499971cf1132591b9029c0f8c
4cb19939e45739faee7a8b6ec3d3a5da4549a108
refs/heads/master
2022-03-14T18:11:47.768695
2019-12-17T21:48:32
2019-12-17T21:48:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,378
py
import matplotlib.backends.backend_pdf import matplotlib.pyplot as plt import obspy import pyasdf from obspy.geodetics.base import gps2dist_azimuth, locations2degrees from obspy.taup import TauPyModel from recordtype import recordtype import numpy as np import click import matplotlib as mpl import tqdm label_size = 25 mpl.rcParams['xtick.labelsize'] = label_size to_plot_trace = recordtype("to_plot_trace", [ "obs_z", "syn1_z", "syn2_z", "obs_r", "syn1_r", "syn2_r", "obs_t", "syn1_t", "syn2_t", "info"]) def build_to_plot_traces(obs_ds, syn1_ds, syn2_ds, trace_length): # obs_ds,syn_ds opened asdf file # get keys key_obs = set(obs_ds.waveforms.list()) key_syn1 = set(syn1_ds.waveforms.list()) key_syn2 = set(syn2_ds.waveforms.list()) keys = key_obs & key_syn1 & key_syn2 result = {} # for each item in keys, get info # since the window is selected according to the two asdf files, we can just use keys for key in keys: axkey = key.replace(".", "_") tag_obs = obs_ds.waveforms[key].get_waveform_tags()[0] tag_syn1 = syn1_ds.waveforms[key].get_waveform_tags()[0] tag_syn2 = syn2_ds.waveforms[key].get_waveform_tags()[0] # here we use syn1_ds, which is not the normal case info = obs_ds.auxiliary_data.Traveltimes[axkey].parameters obs_st = obs_ds.waveforms[key][tag_obs].copy() syn1_st = syn1_ds.waveforms[key][tag_syn1].copy() syn2_st = syn2_ds.waveforms[key][tag_syn2].copy() # slice obs_st.trim(obs_st[0].stats.starttime, obs_st[0].stats.starttime+trace_length) syn1_st.trim(syn1_st[0].stats.starttime, syn1_st[0].stats.starttime+trace_length) syn2_st.trim(syn2_st[0].stats.starttime, syn2_st[0].stats.starttime+trace_length) obs_r = obs_st[0] obs_t = obs_st[1] obs_z = obs_st[2] syn1_r = syn1_st[0] syn1_t = syn1_st[1] syn1_z = syn1_st[2] syn2_r = syn2_st[0] syn2_t = syn2_st[1] syn2_z = syn2_st[2] result[key] = to_plot_trace( obs_z, syn1_z, syn2_z, obs_r, syn1_r, syn2_r, obs_t, syn1_t, syn2_t, info) return result def build_plottting_structure(plot_traces, azimuth_width): # we assume 360%azimuth_width==0 num_azimuths = 360//azimuth_width result = [[] for i in range(num_azimuths)] # for each item in plot_traces, seprate them into different [] for key in plot_traces: value = plot_traces[key] info = value.info azimuth = info["azimuth"] index_azimuth = int(azimuth//azimuth_width) result[index_azimuth].append((key, value)) # for each azimuth bin, sort them according to the gcarc def sort_func(item): return item[1].info["gcarc"] for index_azimuth in range(num_azimuths): result[index_azimuth] = sorted(result[index_azimuth], key=sort_func) return result @click.command() @click.option('--obs_asdf', required=True, type=str) @click.option('--syn1_asdf', required=True, type=str) @click.option('--syn2_asdf', required=True, type=str) @click.option('--azimuth_width', required=True, type=int) @click.option('--output_pdf', required=True, type=str) @click.option('--waves_perpage', required=True, type=int) @click.option('--trace_length', required=True, type=int) def main(obs_asdf, syn1_asdf, syn2_asdf, azimuth_width, output_pdf, waves_perpage, trace_length): obs_ds = pyasdf.ASDFDataSet(obs_asdf, mode="r") syn1_ds = pyasdf.ASDFDataSet(syn1_asdf, mode="r") syn2_ds = pyasdf.ASDFDataSet(syn2_asdf, mode="r") plot_traces = build_to_plot_traces(obs_ds, syn1_ds, syn2_ds, trace_length) plotting_structure = build_plottting_structure(plot_traces, azimuth_width) # plot figures pdf = matplotlib.backends.backend_pdf.PdfPages(output_pdf) figs = plt.figure() num_azimuths = 360//azimuth_width for index_azimuth in tqdm.tqdm(range(num_azimuths)): # for each azimuth bin azimuth_bin_plot_traces = plotting_structure[index_azimuth] num_azimuth_bin_plot_traces = len(azimuth_bin_plot_traces) # get num_pages for this azimuth bin if(num_azimuth_bin_plot_traces % waves_perpage == 0): num_pages = num_azimuth_bin_plot_traces // waves_perpage else: num_pages = (num_azimuth_bin_plot_traces // waves_perpage)+1 for ipage in range(num_pages): start_index = ipage*waves_perpage end_index = (ipage+1)*waves_perpage azimuth_bin_plot_traces_this_page = azimuth_bin_plot_traces[start_index:end_index] fig = plt.figure(figsize=(150, 150)) index_count = 1 axr, axz, axt = None, None, None # get the last axes xticks = None for each_plot_trace_all in azimuth_bin_plot_traces_this_page: each_plot_trace = each_plot_trace_all[1] each_plot_id = each_plot_trace_all[0] # z axz = fig.add_subplot(waves_perpage, 3, index_count) obs = each_plot_trace.obs_z syn1 = each_plot_trace.syn1_z syn2 = each_plot_trace.syn2_z x_obs = np.linspace(0, obs.stats.endtime - obs.stats.starttime, obs.stats.npts) x_syn1 = np.linspace(0, syn1.stats.endtime - syn1.stats.starttime, syn1.stats.npts) x_syn2 = np.linspace(0, syn2.stats.endtime - syn2.stats.starttime, syn2.stats.npts) y_obs = obs.data y_syn1 = syn1.data y_syn2 = syn2.data axz.plot(x_obs, y_obs, color="k") axz.plot(x_syn1, y_syn1, color="r") axz.plot(x_syn2, y_syn2, color="b") axz.get_yaxis().set_ticklabels([]) index_count += 1 # r axr = fig.add_subplot(waves_perpage, 3, index_count) obs = each_plot_trace.obs_r syn1 = each_plot_trace.syn1_r syn2 = each_plot_trace.syn2_r x_obs = np.linspace(0, obs.stats.endtime - obs.stats.starttime, obs.stats.npts) x_syn1 = np.linspace(0, syn1.stats.endtime - syn1.stats.starttime, syn1.stats.npts) x_syn2 = np.linspace(0, syn2.stats.endtime - syn2.stats.starttime, syn2.stats.npts) y_obs = obs.data y_syn1 = syn1.data y_syn2 = syn2.data axr.plot(x_obs, y_obs, color="k") axr.plot(x_syn1, y_syn1, color="r") axr.plot(x_syn2, y_syn2, color="b") axr.get_yaxis().set_ticklabels([]) index_count += 1 # t axt = fig.add_subplot(waves_perpage, 3, index_count) obs = each_plot_trace.obs_t syn1 = each_plot_trace.syn1_t syn2 = each_plot_trace.syn2_t x_obs = np.linspace(0, obs.stats.endtime - obs.stats.starttime, obs.stats.npts) x_syn1 = np.linspace(0, syn1.stats.endtime - syn1.stats.starttime, syn1.stats.npts) x_syn2 = np.linspace(0, syn2.stats.endtime - syn2.stats.starttime, syn2.stats.npts) y_obs = obs.data y_syn1 = syn1.data y_syn2 = syn2.data axt.plot(x_obs, y_obs, color="k") axt.plot(x_syn1, y_syn1, color="r") axt.plot(x_syn2, y_syn2, color="b") axt.get_yaxis().set_ticklabels([]) index_count += 1 # add labels axz.set_ylabel( f"id:{each_plot_id}\ngcarc:{each_plot_trace.info['gcarc']:.2f}\nazimuth:{each_plot_trace.info['azimuth']:.2f}", fontsize=60) # get xticks xticks = np.arange(np.min(x_obs), np.max(x_obs)+1, 100) axz.set_xticks(xticks) axr.set_xticks(xticks) axt.set_xticks(xticks) # plot title if(index_count == 4): axr.set_title( f"azimuth:{azimuth_width*index_azimuth}-{azimuth_width*(index_azimuth+1)}\npage:{ipage}", fontsize=200) # plot travel times info = each_plot_trace.info # z plot_travel_times(axz, "p", info["p"], np.max(x_obs), "blue") plot_travel_times(axz, "pp", info["pp"], np.max(x_obs), "y") plot_travel_times(axz, "sp", info["sp"], np.max(x_obs), "r") plot_travel_times( axz, "rayleigh", info["rayleigh"], np.max(x_obs), "c") plot_travel_times(axz, "s", info["s"], np.max(x_obs), "green") plot_travel_times( axz, "ss", info["ss"], np.max(x_obs), "black") # r plot_travel_times(axr, "p", info["p"], np.max(x_obs), "blue") plot_travel_times(axr, "pp", info["pp"], np.max(x_obs), "y") plot_travel_times(axr, "sp", info["sp"], np.max(x_obs), "r") plot_travel_times( axr, "rayleigh", info["rayleigh"], np.max(x_obs), "c") plot_travel_times(axr, "s", info["s"], np.max(x_obs), "green") plot_travel_times( axr, "ss", info["ss"], np.max(x_obs), "black") # t plot_travel_times(axt, "s", info["s"], np.max(x_obs), "green") plot_travel_times( axt, "ss", info["ss"], np.max(x_obs), "black") plot_travel_times( axt, "scs", info["scs"], np.max(x_obs), "magenta") plot_travel_times( axt, "love", info["love"], np.max(x_obs), "teal") if(index_count == 4): axz.legend(loc='upper right') axr.legend(loc='upper right') axt.legend(loc='upper right') plt.subplots_adjust(wspace=0, hspace=0) pdf.savefig(fig) plt.close(fig=fig) pdf.close() def plot_travel_times(ax, phasename, traveltime, length, thecolor): if(traveltime < 1e-6): return if(traveltime < length): ax.scatter(traveltime, 0, color=thecolor, label=phasename, s=9) def plot_windows(ax, phasename, win, thecolor): if(type(win) == type(None)): return mapper = { "p": (3, 4), "s": (5, 6), "pp": (7, 8), "ss": (9, 10), "sp": (11, 12), "scs": (13, 14), "rayleigh": (15, 16), "love": (17, 18) } start_time = win[mapper[phasename][0]] end_time = win[mapper[phasename][1]] if(start_time == "None" or end_time == "None"): return else: start_time = float(start_time) end_time = float(end_time) ax.axvspan(start_time, end_time, alpha=0.1, color=thecolor) if __name__ == "__main__": main()
ada65d289c521001d259f3753dd35f98479c82ff
1a04e02811c844ecf53cc041b104667e5c987a09
/vgrabber/qtgui/tabs/items/finalexam.py
75cd24590829f15938344be4414a71f826fdba8e
[]
no_license
janjanech/vzdelavanieGui
dff17add6e6946063597d4c1eba5d6d76b6f5374
b2015f41f7cb1be1ecccf1c4778a91f43f8fba12
refs/heads/master
2021-10-24T16:21:24.911817
2019-01-15T17:03:49
2019-01-15T17:03:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
from PyQt5.QtWidgets import QTreeWidgetItem class FinalExamItem(QTreeWidgetItem): def __init__(self, data, final_exam): super().__init__(data) self.final_exam = final_exam
2a1e8f91e9c52a31ab379194d4112818a490e643
f4b60f5e49baf60976987946c20a8ebca4880602
/lib/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/span/vdestdef.py
ec024b57e914be3854e9f75296a3fa2cf918029d
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
8,334
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class VDestDef(Mo): """ The definition for the VLAN-based SPAN (VSPAN) destination. """ meta = ClassMeta("cobra.model.span.VDestDef") meta.moClassName = "spanVDestDef" meta.rnFormat = "vdestdef-%(name)s" meta.category = MoCategory.REGULAR meta.label = "SPAN Destination" meta.writeAccessMask = 0x45041000020001 meta.readAccessMask = 0x45041000020001 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = True meta.isContextRoot = False meta.childClasses.add("cobra.model.span.RsDestToVPortDef") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.span.RsDestToVPort") meta.childClasses.add("cobra.model.span.VEpgSummaryDef") meta.childClasses.add("cobra.model.span.CEpDef") meta.childClasses.add("cobra.model.span.RsDestPathEp") meta.childClasses.add("cobra.model.span.RsDestEpg") meta.childClasses.add("cobra.model.fault.Delegate") meta.childClasses.add("cobra.model.span.RsDestApic") meta.childNamesAndRnPrefix.append(("cobra.model.span.RsDestToVPortDef", "rsdestToVPortDef-")) meta.childNamesAndRnPrefix.append(("cobra.model.span.RsDestToVPort", "rsdestToVPort-")) meta.childNamesAndRnPrefix.append(("cobra.model.span.VEpgSummaryDef", "vepgsummarydef")) meta.childNamesAndRnPrefix.append(("cobra.model.span.RsDestPathEp", "rsdestPathEp-")) meta.childNamesAndRnPrefix.append(("cobra.model.span.RsDestApic", "rsdestApic")) meta.childNamesAndRnPrefix.append(("cobra.model.span.RsDestEpg", "rsdestEpg")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.span.CEpDef", "CEpD-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.parentClasses.add("cobra.model.span.VDestGrpDef") meta.superClasses.add("cobra.model.fabric.ProtoPol") meta.superClasses.add("cobra.model.fabric.ProtoInstPol") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.pol.Def") meta.superClasses.add("cobra.model.span.ADest") meta.superClasses.add("cobra.model.fabric.L2InstPol") meta.superClasses.add("cobra.model.span.AVDest") meta.rnPrefixes = [ ('vdestdef-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "descr", "descr", 5579, PropCategory.REGULAR) prop.label = "Description" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "fstate", "fstate", 15656, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "no-fault" prop._addConstant("dest-port-member-of-pc-vpc", "dest-port-is-a-member-of-pc/vpc", 7) prop._addConstant("invalid-dest-apic", "invalid-destination-apic", 8) prop._addConstant("invalid-dest-epg", "invalid-destination-epg", 2) prop._addConstant("invalid-dest-epg-type", "dest-epg-is-of-the-wrong-type", 6) prop._addConstant("invalid-dest-port", "invalid-destination-pathep", 3) prop._addConstant("no-fault", "nofault", 0) prop._addConstant("non-shared-route-leak", "non-shared-route-leak", 1) prop._addConstant("unavailable-dest", "destination-unavailable", 5) prop._addConstant("unavailable-dest-port", "unavailable-destination-pathep", 4) meta.props.add("fstate", prop) prop = PropMeta("str", "fstateMap", "fstateMap", 16812, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("fstateMap", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 14657, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 7177, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.range = [(1, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "ownerKey", "ownerKey", 15230, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerKey", prop) prop = PropMeta("str", "ownerTag", "ownerTag", 15231, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerTag", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "uid", "uid", 8, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("uid", prop) meta.namingProps.append(getattr(meta.props, "name")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Policy" def __init__(self, parentMoOrDn, name, markDirty=True, **creationProps): namingVals = [name] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
0484b2199fc895b1ac5faa6eeb44803cd770356e
c9c762a08c031bafa1e577733c6af53a7a1b142f
/Project4Proj/Project4App/admin.py
a33a7882886d7d816c15cd8b34a9aed7dc315c9f
[]
no_license
Joshtg1104/Project4-Django-VideoApp
aed635d493125f42482b6f8e2424bec2e93da848
46efc176762a2fcb76e743672d3eb9b62f7808b6
refs/heads/master
2020-05-29T09:25:13.002571
2019-06-12T18:58:27
2019-06-12T18:58:27
189,061,630
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
from django.contrib import admin from .models import Video, AccountModel, CommentModel # Register your models here. admin.site.register(AccountModel) admin.site.register(Video) admin.site.register(CommentModel)
38f27425bfd3df62fce464d36f7d3ee1f274e55e
912b0c6274e9c5c0956c4d1d1178f2b68fcf4296
/suod/test/test_base.py
2a5676b05176b356328d547265bcc359ee0aa19d
[ "BSD-2-Clause" ]
permissive
DreamtaleCore/SUOD
04f238f48625a3a3e182b19c2af65612954453b2
353aeaf8d5e5c338f94686e73a8a0fec88670700
refs/heads/master
2022-10-30T04:44:17.617986
2020-06-15T21:07:26
2020-06-15T21:07:26
292,205,263
1
0
BSD-2-Clause
2020-09-02T07:01:50
2020-09-02T07:01:49
null
UTF-8
Python
false
false
3,239
py
# -*- coding: utf-8 -*- import os import sys import unittest import numpy as np # temporary solution for relative imports in case pyod is not installed # if suod # is installed, no need to use the following line sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from suod.models.base import SUOD from pyod.utils.data import generate_data from pyod.models.lof import LOF from pyod.models.pca import PCA from pyod.models.hbos import HBOS from pyod.models.lscp import LSCP class TestBASE(unittest.TestCase): def setUp(self): self.n_train = 1000 self.n_test = 500 self.contamination = 0.1 self.roc_floor = 0.6 self.random_state = 42 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=self.random_state) self.base_estimators = [ LOF(n_neighbors=5, contamination=self.contamination), LOF(n_neighbors=15, contamination=self.contamination), LOF(n_neighbors=25, contamination=self.contamination), LOF(n_neighbors=35, contamination=self.contamination), LOF(n_neighbors=45, contamination=self.contamination), HBOS(contamination=self.contamination), PCA(contamination=self.contamination), LSCP(detector_list=[ LOF(n_neighbors=5, contamination=self.contamination), LOF(n_neighbors=15, contamination=self.contamination)], random_state=self.random_state) ] this_directory = os.path.abspath(os.path.dirname(__file__)) self.cost_forecast_loc_fit_ = os.path.join(this_directory, 'bps_train.joblib') self.cost_forecast_loc_pred_ = os.path.join(this_directory, 'bps_prediction.joblib') self.model = SUOD(base_estimators=self.base_estimators, n_jobs=2, rp_flag_global=True, bps_flag=True, contamination=self.contamination, approx_flag_global=True, cost_forecast_loc_fit=self.cost_forecast_loc_fit_, cost_forecast_loc_pred=self.cost_forecast_loc_pred_) def test_initialization(self): self.model.get_params() self.model.set_params(**{'n_jobs': 4}) def test_fit(self): """ Test base class initialization :return: """ self.model.fit(self.X_train) def test_approximate(self): self.model.fit(self.X_train) self.model.approximate(self.X_train) def test_predict(self): self.model.fit(self.X_train) self.model.approximate(self.X_train) self.model.predict(self.X_test) def test_decision_function(self): self.model.fit(self.X_train) self.model.approximate(self.X_train) self.model.decision_function(self.X_test) def test_predict_proba(self): self.model.fit(self.X_train) self.model.approximate(self.X_train) self.model.predict_proba(self.X_test)
6149f8fede99ffcba481a3bb2377ebd72da708a4
b697f5d8e441328c2deee1bb5853d80710ae9873
/944.删列造序.py
d10994932e2f8dd4be69c43b93c603bca7107745
[]
no_license
happy-luck/LeetCode-python
d06b0f6cf7bad4754e96e6a160e3a8fc495c0f95
63fc5a1f6e903a901ba799e77a2ee9df2b05543a
refs/heads/master
2021-03-22T16:12:52.097329
2020-07-15T13:48:37
2020-07-15T13:48:37
247,381,313
0
0
null
2020-03-15T01:47:42
2020-03-15T01:28:38
null
UTF-8
Python
false
false
757
py
方法一: class Solution: def minDeletionSize(self, A: List[str]) -> int: D = 0 A_list = [] for string in A: res = list(string) res = [ord(i) for i in res] A_list.append(res) for j in range(len(res)): for i in range(1,len(A)): if A_list[i][j]-A_list[i-1][j]<0: D += 1 break return D 方法二: class Solution(object): def minDeletionSize(self, A): ans = 0 for col in zip(*A): if any(col[i] > col[i+1] for i in range(len(col) - 1)): ans += 1 return ans 时间复杂度:O(N),其中 N 是数组 A 中的元素个数。 空间复杂度:O(1)。
c035d9f0fb7bdc18413f6216781d4e272dbf8234
208796d60bba301648b76f3fd9af20738aca3ba7
/neuclease/bin/cleave_server_debug_main.py
83d3de98a286d0b91481496060849dd94ff1df21
[ "BSD-3-Clause" ]
permissive
stuarteberg/pydvid
2afaebeb886b8034852e21668bca6709b022cf0f
ce59988cbc8043c85fe3ba878d4fa415febba2f8
refs/heads/master
2021-01-17T20:34:47.843645
2019-10-10T19:47:23
2019-10-10T19:47:23
33,325,656
0
0
null
2015-04-02T18:43:25
2015-04-02T18:43:25
null
UTF-8
Python
false
false
2,723
py
#!/usr/bin/env python3 import sys import neuclease.cleave_server def main(): _debug_mode = False ## DEBUG if len(sys.argv) == 1: _debug_mode = True import os log_dir = os.path.dirname(neuclease.__file__) + '/../logs' sys.argv += [#"--merge-table", "/magnetic/workspace/neuclease/tiny-merge-table.npy", #"--mapping-file", "/magnetic/workspace/neuclease/tiny-mapping.npy", #"--primary-dvid-server", "emdata3:8900", #"--primary-uuid", "017a", #"--primary-labelmap-instance", "segmentation", #"--suspend-before-launch", "--merge-table", "/tmp/merge-table-5812998448.csv", "--primary-dvid-server", "emdata1:8900", "--primary-uuid", "642cfed9e8704d0b83ccca2ee3688528", "--primary-labelmap-instance", "segmentation", "--log-dir", log_dir] neuclease.cleave_server.main(_debug_mode) ## Example requests: """ {"body-id": 673509195, "mesh-instance": "segmentation_meshes_tars", "port": 8900, "request-timestamp": "2018-05-10 13:40:56.117063", "seeds": {"1": [675222237], "2": [1266560684], "3": [1142805921], "5": [1329312351], "6": [1328298063], "7": [1264523335], "8": [1233488801, 1358310013], "9": [1357286646]}, "segmentation-instance": "segmentation", "server": "emdata3.int.janelia.org", "user": "bergs", "uuid": "017a"} {"body-id": 5812980088, "mesh-instance": "segmentation_meshes_tars", "port": 8900, "request-timestamp": "2018-05-10 13:48:32.071343", "seeds": {"1": [299622182, 769164613], "2": [727964335], "3": [1290606913], "4": [485167093], "5": [769514136]}, "segmentation-instance": "segmentation", "server": "emdata3.int.janelia.org", "user": "bergs", "uuid": "017a"} {"body-id": 5812980124, "mesh-instance": "segmentation_meshes_tars", "port": 8900, "request-timestamp": "2018-05-10 13:51:46.112896", "seeds": {"1": [391090531], "2": [453151532, 515221115, 515221301, 515557950, 515562175, 515562381, 515562454, 546597327, 577632049, 608330428, 608667239, 639701979, 639702027, 639702182, 670736831, 670736971, 670737150, 670737574]}, "segmentation-instance": "segmentation", "server": "emdata3.int.janelia.org", "user": "bergs", "uuid": "017a"} {"body-id": 5812980898, "mesh-instance": "segmentation_meshes_tars", "port": 8900, "request-timestamp": "2018-05-10 13:54:00.042885", "seeds": {"1": [449551305], "2": [1261194539], "3": [1229822848], "4": [883458155, 883458603], "5": [790693775]}, "segmentation-instance": "segmentation", "server": "emdata3.int.janelia.org", "user": "bergs", "uuid": "017a"} """ if __name__ == "__main__": main()